xref: /openbmc/linux/mm/shmem.c (revision bf11b9a8e9a93c1fc0ebfc2929622d5cf7d43888)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43 
44 static struct vfsmount *shm_mnt;
45 
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52 
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83 
84 #include <linux/uaccess.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96 
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 	pgoff_t start;		/* start of range currently being fallocated */
105 	pgoff_t next;		/* the next page offset to be fallocated */
106 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
107 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
108 };
109 
110 struct shmem_options {
111 	unsigned long long blocks;
112 	unsigned long long inodes;
113 	struct mempolicy *mpol;
114 	kuid_t uid;
115 	kgid_t gid;
116 	umode_t mode;
117 	bool full_inums;
118 	int huge;
119 	int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125 
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129 	return totalram_pages() / 2;
130 }
131 
132 static unsigned long shmem_default_max_inodes(void)
133 {
134 	unsigned long nr_pages = totalram_pages();
135 
136 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139 
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 				struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 			     struct page **pagep, enum sgp_type sgp,
145 			     gfp_t gfp, struct vm_area_struct *vma,
146 			     vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148 		struct page **pagep, enum sgp_type sgp,
149 		gfp_t gfp, struct vm_area_struct *vma,
150 		struct vm_fault *vmf, vm_fault_t *fault_type);
151 
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153 		struct page **pagep, enum sgp_type sgp)
154 {
155 	return shmem_getpage_gfp(inode, index, pagep, sgp,
156 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158 
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161 	return sb->s_fs_info;
162 }
163 
164 /*
165  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166  * for shared memory and for shared anonymous (/dev/zero) mappings
167  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168  * consistent with the pre-accounting of private mappings ...
169  */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172 	return (flags & VM_NORESERVE) ?
173 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175 
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178 	if (!(flags & VM_NORESERVE))
179 		vm_unacct_memory(VM_ACCT(size));
180 }
181 
182 static inline int shmem_reacct_size(unsigned long flags,
183 		loff_t oldsize, loff_t newsize)
184 {
185 	if (!(flags & VM_NORESERVE)) {
186 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 			return security_vm_enough_memory_mm(current->mm,
188 					VM_ACCT(newsize) - VM_ACCT(oldsize));
189 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 	}
192 	return 0;
193 }
194 
195 /*
196  * ... whereas tmpfs objects are accounted incrementally as
197  * pages are allocated, in order to allow large sparse files.
198  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200  */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203 	if (!(flags & VM_NORESERVE))
204 		return 0;
205 
206 	return security_vm_enough_memory_mm(current->mm,
207 			pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 	if (flags & VM_NORESERVE)
213 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215 
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218 	struct shmem_inode_info *info = SHMEM_I(inode);
219 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220 
221 	if (shmem_acct_block(info->flags, pages))
222 		return false;
223 
224 	if (sbinfo->max_blocks) {
225 		if (percpu_counter_compare(&sbinfo->used_blocks,
226 					   sbinfo->max_blocks - pages) > 0)
227 			goto unacct;
228 		percpu_counter_add(&sbinfo->used_blocks, pages);
229 	}
230 
231 	return true;
232 
233 unacct:
234 	shmem_unacct_blocks(info->flags, pages);
235 	return false;
236 }
237 
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240 	struct shmem_inode_info *info = SHMEM_I(inode);
241 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 
243 	if (sbinfo->max_blocks)
244 		percpu_counter_sub(&sbinfo->used_blocks, pages);
245 	shmem_unacct_blocks(info->flags, pages);
246 }
247 
248 static const struct super_operations shmem_ops;
249 const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256 
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259 	return vma->vm_ops == &shmem_vm_ops;
260 }
261 
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264 
265 /*
266  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267  * produces a novel ino for the newly allocated inode.
268  *
269  * It may also be called when making a hard link to permit the space needed by
270  * each dentry. However, in that case, no new inode number is needed since that
271  * internally draws from another pool of inode numbers (currently global
272  * get_next_ino()). This case is indicated by passing NULL as inop.
273  */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278 	ino_t ino;
279 
280 	if (!(sb->s_flags & SB_KERNMOUNT)) {
281 		raw_spin_lock(&sbinfo->stat_lock);
282 		if (sbinfo->max_inodes) {
283 			if (!sbinfo->free_inodes) {
284 				raw_spin_unlock(&sbinfo->stat_lock);
285 				return -ENOSPC;
286 			}
287 			sbinfo->free_inodes--;
288 		}
289 		if (inop) {
290 			ino = sbinfo->next_ino++;
291 			if (unlikely(is_zero_ino(ino)))
292 				ino = sbinfo->next_ino++;
293 			if (unlikely(!sbinfo->full_inums &&
294 				     ino > UINT_MAX)) {
295 				/*
296 				 * Emulate get_next_ino uint wraparound for
297 				 * compatibility
298 				 */
299 				if (IS_ENABLED(CONFIG_64BIT))
300 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301 						__func__, MINOR(sb->s_dev));
302 				sbinfo->next_ino = 1;
303 				ino = sbinfo->next_ino++;
304 			}
305 			*inop = ino;
306 		}
307 		raw_spin_unlock(&sbinfo->stat_lock);
308 	} else if (inop) {
309 		/*
310 		 * __shmem_file_setup, one of our callers, is lock-free: it
311 		 * doesn't hold stat_lock in shmem_reserve_inode since
312 		 * max_inodes is always 0, and is called from potentially
313 		 * unknown contexts. As such, use a per-cpu batched allocator
314 		 * which doesn't require the per-sb stat_lock unless we are at
315 		 * the batch boundary.
316 		 *
317 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318 		 * shmem mounts are not exposed to userspace, so we don't need
319 		 * to worry about things like glibc compatibility.
320 		 */
321 		ino_t *next_ino;
322 
323 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
324 		ino = *next_ino;
325 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
326 			raw_spin_lock(&sbinfo->stat_lock);
327 			ino = sbinfo->next_ino;
328 			sbinfo->next_ino += SHMEM_INO_BATCH;
329 			raw_spin_unlock(&sbinfo->stat_lock);
330 			if (unlikely(is_zero_ino(ino)))
331 				ino++;
332 		}
333 		*inop = ino;
334 		*next_ino = ++ino;
335 		put_cpu();
336 	}
337 
338 	return 0;
339 }
340 
341 static void shmem_free_inode(struct super_block *sb)
342 {
343 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
344 	if (sbinfo->max_inodes) {
345 		raw_spin_lock(&sbinfo->stat_lock);
346 		sbinfo->free_inodes++;
347 		raw_spin_unlock(&sbinfo->stat_lock);
348 	}
349 }
350 
351 /**
352  * shmem_recalc_inode - recalculate the block usage of an inode
353  * @inode: inode to recalc
354  *
355  * We have to calculate the free blocks since the mm can drop
356  * undirtied hole pages behind our back.
357  *
358  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
359  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
360  *
361  * It has to be called with the spinlock held.
362  */
363 static void shmem_recalc_inode(struct inode *inode)
364 {
365 	struct shmem_inode_info *info = SHMEM_I(inode);
366 	long freed;
367 
368 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
369 	if (freed > 0) {
370 		info->alloced -= freed;
371 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
372 		shmem_inode_unacct_blocks(inode, freed);
373 	}
374 }
375 
376 bool shmem_charge(struct inode *inode, long pages)
377 {
378 	struct shmem_inode_info *info = SHMEM_I(inode);
379 	unsigned long flags;
380 
381 	if (!shmem_inode_acct_block(inode, pages))
382 		return false;
383 
384 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
385 	inode->i_mapping->nrpages += pages;
386 
387 	spin_lock_irqsave(&info->lock, flags);
388 	info->alloced += pages;
389 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
390 	shmem_recalc_inode(inode);
391 	spin_unlock_irqrestore(&info->lock, flags);
392 
393 	return true;
394 }
395 
396 void shmem_uncharge(struct inode *inode, long pages)
397 {
398 	struct shmem_inode_info *info = SHMEM_I(inode);
399 	unsigned long flags;
400 
401 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
402 
403 	spin_lock_irqsave(&info->lock, flags);
404 	info->alloced -= pages;
405 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
406 	shmem_recalc_inode(inode);
407 	spin_unlock_irqrestore(&info->lock, flags);
408 
409 	shmem_inode_unacct_blocks(inode, pages);
410 }
411 
412 /*
413  * Replace item expected in xarray by a new item, while holding xa_lock.
414  */
415 static int shmem_replace_entry(struct address_space *mapping,
416 			pgoff_t index, void *expected, void *replacement)
417 {
418 	XA_STATE(xas, &mapping->i_pages, index);
419 	void *item;
420 
421 	VM_BUG_ON(!expected);
422 	VM_BUG_ON(!replacement);
423 	item = xas_load(&xas);
424 	if (item != expected)
425 		return -ENOENT;
426 	xas_store(&xas, replacement);
427 	return 0;
428 }
429 
430 /*
431  * Sometimes, before we decide whether to proceed or to fail, we must check
432  * that an entry was not already brought back from swap by a racing thread.
433  *
434  * Checking page is not enough: by the time a SwapCache page is locked, it
435  * might be reused, and again be SwapCache, using the same swap as before.
436  */
437 static bool shmem_confirm_swap(struct address_space *mapping,
438 			       pgoff_t index, swp_entry_t swap)
439 {
440 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
441 }
442 
443 /*
444  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
445  *
446  * SHMEM_HUGE_NEVER:
447  *	disables huge pages for the mount;
448  * SHMEM_HUGE_ALWAYS:
449  *	enables huge pages for the mount;
450  * SHMEM_HUGE_WITHIN_SIZE:
451  *	only allocate huge pages if the page will be fully within i_size,
452  *	also respect fadvise()/madvise() hints;
453  * SHMEM_HUGE_ADVISE:
454  *	only allocate huge pages if requested with fadvise()/madvise();
455  */
456 
457 #define SHMEM_HUGE_NEVER	0
458 #define SHMEM_HUGE_ALWAYS	1
459 #define SHMEM_HUGE_WITHIN_SIZE	2
460 #define SHMEM_HUGE_ADVISE	3
461 
462 /*
463  * Special values.
464  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
465  *
466  * SHMEM_HUGE_DENY:
467  *	disables huge on shm_mnt and all mounts, for emergency use;
468  * SHMEM_HUGE_FORCE:
469  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
470  *
471  */
472 #define SHMEM_HUGE_DENY		(-1)
473 #define SHMEM_HUGE_FORCE	(-2)
474 
475 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
476 /* ifdef here to avoid bloating shmem.o when not necessary */
477 
478 static int shmem_huge __read_mostly;
479 
480 #if defined(CONFIG_SYSFS)
481 static int shmem_parse_huge(const char *str)
482 {
483 	if (!strcmp(str, "never"))
484 		return SHMEM_HUGE_NEVER;
485 	if (!strcmp(str, "always"))
486 		return SHMEM_HUGE_ALWAYS;
487 	if (!strcmp(str, "within_size"))
488 		return SHMEM_HUGE_WITHIN_SIZE;
489 	if (!strcmp(str, "advise"))
490 		return SHMEM_HUGE_ADVISE;
491 	if (!strcmp(str, "deny"))
492 		return SHMEM_HUGE_DENY;
493 	if (!strcmp(str, "force"))
494 		return SHMEM_HUGE_FORCE;
495 	return -EINVAL;
496 }
497 #endif
498 
499 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
500 static const char *shmem_format_huge(int huge)
501 {
502 	switch (huge) {
503 	case SHMEM_HUGE_NEVER:
504 		return "never";
505 	case SHMEM_HUGE_ALWAYS:
506 		return "always";
507 	case SHMEM_HUGE_WITHIN_SIZE:
508 		return "within_size";
509 	case SHMEM_HUGE_ADVISE:
510 		return "advise";
511 	case SHMEM_HUGE_DENY:
512 		return "deny";
513 	case SHMEM_HUGE_FORCE:
514 		return "force";
515 	default:
516 		VM_BUG_ON(1);
517 		return "bad_val";
518 	}
519 }
520 #endif
521 
522 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
523 		struct shrink_control *sc, unsigned long nr_to_split)
524 {
525 	LIST_HEAD(list), *pos, *next;
526 	LIST_HEAD(to_remove);
527 	struct inode *inode;
528 	struct shmem_inode_info *info;
529 	struct page *page;
530 	unsigned long batch = sc ? sc->nr_to_scan : 128;
531 	int removed = 0, split = 0;
532 
533 	if (list_empty(&sbinfo->shrinklist))
534 		return SHRINK_STOP;
535 
536 	spin_lock(&sbinfo->shrinklist_lock);
537 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
538 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
539 
540 		/* pin the inode */
541 		inode = igrab(&info->vfs_inode);
542 
543 		/* inode is about to be evicted */
544 		if (!inode) {
545 			list_del_init(&info->shrinklist);
546 			removed++;
547 			goto next;
548 		}
549 
550 		/* Check if there's anything to gain */
551 		if (round_up(inode->i_size, PAGE_SIZE) ==
552 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
553 			list_move(&info->shrinklist, &to_remove);
554 			removed++;
555 			goto next;
556 		}
557 
558 		list_move(&info->shrinklist, &list);
559 next:
560 		if (!--batch)
561 			break;
562 	}
563 	spin_unlock(&sbinfo->shrinklist_lock);
564 
565 	list_for_each_safe(pos, next, &to_remove) {
566 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
567 		inode = &info->vfs_inode;
568 		list_del_init(&info->shrinklist);
569 		iput(inode);
570 	}
571 
572 	list_for_each_safe(pos, next, &list) {
573 		int ret;
574 
575 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
576 		inode = &info->vfs_inode;
577 
578 		if (nr_to_split && split >= nr_to_split)
579 			goto leave;
580 
581 		page = find_get_page(inode->i_mapping,
582 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
583 		if (!page)
584 			goto drop;
585 
586 		/* No huge page at the end of the file: nothing to split */
587 		if (!PageTransHuge(page)) {
588 			put_page(page);
589 			goto drop;
590 		}
591 
592 		/*
593 		 * Leave the inode on the list if we failed to lock
594 		 * the page at this time.
595 		 *
596 		 * Waiting for the lock may lead to deadlock in the
597 		 * reclaim path.
598 		 */
599 		if (!trylock_page(page)) {
600 			put_page(page);
601 			goto leave;
602 		}
603 
604 		ret = split_huge_page(page);
605 		unlock_page(page);
606 		put_page(page);
607 
608 		/* If split failed leave the inode on the list */
609 		if (ret)
610 			goto leave;
611 
612 		split++;
613 drop:
614 		list_del_init(&info->shrinklist);
615 		removed++;
616 leave:
617 		iput(inode);
618 	}
619 
620 	spin_lock(&sbinfo->shrinklist_lock);
621 	list_splice_tail(&list, &sbinfo->shrinklist);
622 	sbinfo->shrinklist_len -= removed;
623 	spin_unlock(&sbinfo->shrinklist_lock);
624 
625 	return split;
626 }
627 
628 static long shmem_unused_huge_scan(struct super_block *sb,
629 		struct shrink_control *sc)
630 {
631 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
632 
633 	if (!READ_ONCE(sbinfo->shrinklist_len))
634 		return SHRINK_STOP;
635 
636 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
637 }
638 
639 static long shmem_unused_huge_count(struct super_block *sb,
640 		struct shrink_control *sc)
641 {
642 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
643 	return READ_ONCE(sbinfo->shrinklist_len);
644 }
645 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
646 
647 #define shmem_huge SHMEM_HUGE_DENY
648 
649 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
650 		struct shrink_control *sc, unsigned long nr_to_split)
651 {
652 	return 0;
653 }
654 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
655 
656 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
657 {
658 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
659 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
660 	    shmem_huge != SHMEM_HUGE_DENY)
661 		return true;
662 	return false;
663 }
664 
665 /*
666  * Like add_to_page_cache_locked, but error if expected item has gone.
667  */
668 static int shmem_add_to_page_cache(struct page *page,
669 				   struct address_space *mapping,
670 				   pgoff_t index, void *expected, gfp_t gfp,
671 				   struct mm_struct *charge_mm)
672 {
673 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
674 	unsigned long i = 0;
675 	unsigned long nr = compound_nr(page);
676 	int error;
677 
678 	VM_BUG_ON_PAGE(PageTail(page), page);
679 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
680 	VM_BUG_ON_PAGE(!PageLocked(page), page);
681 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
682 	VM_BUG_ON(expected && PageTransHuge(page));
683 
684 	page_ref_add(page, nr);
685 	page->mapping = mapping;
686 	page->index = index;
687 
688 	if (!PageSwapCache(page)) {
689 		error = mem_cgroup_charge(page, charge_mm, gfp);
690 		if (error) {
691 			if (PageTransHuge(page)) {
692 				count_vm_event(THP_FILE_FALLBACK);
693 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
694 			}
695 			goto error;
696 		}
697 	}
698 	cgroup_throttle_swaprate(page, gfp);
699 
700 	do {
701 		void *entry;
702 		xas_lock_irq(&xas);
703 		entry = xas_find_conflict(&xas);
704 		if (entry != expected)
705 			xas_set_err(&xas, -EEXIST);
706 		xas_create_range(&xas);
707 		if (xas_error(&xas))
708 			goto unlock;
709 next:
710 		xas_store(&xas, page);
711 		if (++i < nr) {
712 			xas_next(&xas);
713 			goto next;
714 		}
715 		if (PageTransHuge(page)) {
716 			count_vm_event(THP_FILE_ALLOC);
717 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
718 		}
719 		mapping->nrpages += nr;
720 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
721 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
722 unlock:
723 		xas_unlock_irq(&xas);
724 	} while (xas_nomem(&xas, gfp));
725 
726 	if (xas_error(&xas)) {
727 		error = xas_error(&xas);
728 		goto error;
729 	}
730 
731 	return 0;
732 error:
733 	page->mapping = NULL;
734 	page_ref_sub(page, nr);
735 	return error;
736 }
737 
738 /*
739  * Like delete_from_page_cache, but substitutes swap for page.
740  */
741 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
742 {
743 	struct address_space *mapping = page->mapping;
744 	int error;
745 
746 	VM_BUG_ON_PAGE(PageCompound(page), page);
747 
748 	xa_lock_irq(&mapping->i_pages);
749 	error = shmem_replace_entry(mapping, page->index, page, radswap);
750 	page->mapping = NULL;
751 	mapping->nrpages--;
752 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
753 	__dec_lruvec_page_state(page, NR_SHMEM);
754 	xa_unlock_irq(&mapping->i_pages);
755 	put_page(page);
756 	BUG_ON(error);
757 }
758 
759 /*
760  * Remove swap entry from page cache, free the swap and its page cache.
761  */
762 static int shmem_free_swap(struct address_space *mapping,
763 			   pgoff_t index, void *radswap)
764 {
765 	void *old;
766 
767 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
768 	if (old != radswap)
769 		return -ENOENT;
770 	free_swap_and_cache(radix_to_swp_entry(radswap));
771 	return 0;
772 }
773 
774 /*
775  * Determine (in bytes) how many of the shmem object's pages mapped by the
776  * given offsets are swapped out.
777  *
778  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
779  * as long as the inode doesn't go away and racy results are not a problem.
780  */
781 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
782 						pgoff_t start, pgoff_t end)
783 {
784 	XA_STATE(xas, &mapping->i_pages, start);
785 	struct page *page;
786 	unsigned long swapped = 0;
787 
788 	rcu_read_lock();
789 	xas_for_each(&xas, page, end - 1) {
790 		if (xas_retry(&xas, page))
791 			continue;
792 		if (xa_is_value(page))
793 			swapped++;
794 
795 		if (need_resched()) {
796 			xas_pause(&xas);
797 			cond_resched_rcu();
798 		}
799 	}
800 
801 	rcu_read_unlock();
802 
803 	return swapped << PAGE_SHIFT;
804 }
805 
806 /*
807  * Determine (in bytes) how many of the shmem object's pages mapped by the
808  * given vma is swapped out.
809  *
810  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
811  * as long as the inode doesn't go away and racy results are not a problem.
812  */
813 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
814 {
815 	struct inode *inode = file_inode(vma->vm_file);
816 	struct shmem_inode_info *info = SHMEM_I(inode);
817 	struct address_space *mapping = inode->i_mapping;
818 	unsigned long swapped;
819 
820 	/* Be careful as we don't hold info->lock */
821 	swapped = READ_ONCE(info->swapped);
822 
823 	/*
824 	 * The easier cases are when the shmem object has nothing in swap, or
825 	 * the vma maps it whole. Then we can simply use the stats that we
826 	 * already track.
827 	 */
828 	if (!swapped)
829 		return 0;
830 
831 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
832 		return swapped << PAGE_SHIFT;
833 
834 	/* Here comes the more involved part */
835 	return shmem_partial_swap_usage(mapping,
836 			linear_page_index(vma, vma->vm_start),
837 			linear_page_index(vma, vma->vm_end));
838 }
839 
840 /*
841  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
842  */
843 void shmem_unlock_mapping(struct address_space *mapping)
844 {
845 	struct pagevec pvec;
846 	pgoff_t index = 0;
847 
848 	pagevec_init(&pvec);
849 	/*
850 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
851 	 */
852 	while (!mapping_unevictable(mapping)) {
853 		if (!pagevec_lookup(&pvec, mapping, &index))
854 			break;
855 		check_move_unevictable_pages(&pvec);
856 		pagevec_release(&pvec);
857 		cond_resched();
858 	}
859 }
860 
861 /*
862  * Check whether a hole-punch or truncation needs to split a huge page,
863  * returning true if no split was required, or the split has been successful.
864  *
865  * Eviction (or truncation to 0 size) should never need to split a huge page;
866  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
867  * head, and then succeeded to trylock on tail.
868  *
869  * A split can only succeed when there are no additional references on the
870  * huge page: so the split below relies upon find_get_entries() having stopped
871  * when it found a subpage of the huge page, without getting further references.
872  */
873 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
874 {
875 	if (!PageTransCompound(page))
876 		return true;
877 
878 	/* Just proceed to delete a huge page wholly within the range punched */
879 	if (PageHead(page) &&
880 	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
881 		return true;
882 
883 	/* Try to split huge page, so we can truly punch the hole or truncate */
884 	return split_huge_page(page) >= 0;
885 }
886 
887 /*
888  * Remove range of pages and swap entries from page cache, and free them.
889  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
890  */
891 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
892 								 bool unfalloc)
893 {
894 	struct address_space *mapping = inode->i_mapping;
895 	struct shmem_inode_info *info = SHMEM_I(inode);
896 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
897 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
898 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
899 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
900 	struct pagevec pvec;
901 	pgoff_t indices[PAGEVEC_SIZE];
902 	long nr_swaps_freed = 0;
903 	pgoff_t index;
904 	int i;
905 
906 	if (lend == -1)
907 		end = -1;	/* unsigned, so actually very big */
908 
909 	pagevec_init(&pvec);
910 	index = start;
911 	while (index < end && find_lock_entries(mapping, index, end - 1,
912 			&pvec, indices)) {
913 		for (i = 0; i < pagevec_count(&pvec); i++) {
914 			struct page *page = pvec.pages[i];
915 
916 			index = indices[i];
917 
918 			if (xa_is_value(page)) {
919 				if (unfalloc)
920 					continue;
921 				nr_swaps_freed += !shmem_free_swap(mapping,
922 								index, page);
923 				continue;
924 			}
925 			index += thp_nr_pages(page) - 1;
926 
927 			if (!unfalloc || !PageUptodate(page))
928 				truncate_inode_page(mapping, page);
929 			unlock_page(page);
930 		}
931 		pagevec_remove_exceptionals(&pvec);
932 		pagevec_release(&pvec);
933 		cond_resched();
934 		index++;
935 	}
936 
937 	if (partial_start) {
938 		struct page *page = NULL;
939 		shmem_getpage(inode, start - 1, &page, SGP_READ);
940 		if (page) {
941 			unsigned int top = PAGE_SIZE;
942 			if (start > end) {
943 				top = partial_end;
944 				partial_end = 0;
945 			}
946 			zero_user_segment(page, partial_start, top);
947 			set_page_dirty(page);
948 			unlock_page(page);
949 			put_page(page);
950 		}
951 	}
952 	if (partial_end) {
953 		struct page *page = NULL;
954 		shmem_getpage(inode, end, &page, SGP_READ);
955 		if (page) {
956 			zero_user_segment(page, 0, partial_end);
957 			set_page_dirty(page);
958 			unlock_page(page);
959 			put_page(page);
960 		}
961 	}
962 	if (start >= end)
963 		return;
964 
965 	index = start;
966 	while (index < end) {
967 		cond_resched();
968 
969 		if (!find_get_entries(mapping, index, end - 1, &pvec,
970 				indices)) {
971 			/* If all gone or hole-punch or unfalloc, we're done */
972 			if (index == start || end != -1)
973 				break;
974 			/* But if truncating, restart to make sure all gone */
975 			index = start;
976 			continue;
977 		}
978 		for (i = 0; i < pagevec_count(&pvec); i++) {
979 			struct page *page = pvec.pages[i];
980 
981 			index = indices[i];
982 			if (xa_is_value(page)) {
983 				if (unfalloc)
984 					continue;
985 				if (shmem_free_swap(mapping, index, page)) {
986 					/* Swap was replaced by page: retry */
987 					index--;
988 					break;
989 				}
990 				nr_swaps_freed++;
991 				continue;
992 			}
993 
994 			lock_page(page);
995 
996 			if (!unfalloc || !PageUptodate(page)) {
997 				if (page_mapping(page) != mapping) {
998 					/* Page was replaced by swap: retry */
999 					unlock_page(page);
1000 					index--;
1001 					break;
1002 				}
1003 				VM_BUG_ON_PAGE(PageWriteback(page), page);
1004 				if (shmem_punch_compound(page, start, end))
1005 					truncate_inode_page(mapping, page);
1006 				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1007 					/* Wipe the page and don't get stuck */
1008 					clear_highpage(page);
1009 					flush_dcache_page(page);
1010 					set_page_dirty(page);
1011 					if (index <
1012 					    round_up(start, HPAGE_PMD_NR))
1013 						start = index + 1;
1014 				}
1015 			}
1016 			unlock_page(page);
1017 		}
1018 		pagevec_remove_exceptionals(&pvec);
1019 		pagevec_release(&pvec);
1020 		index++;
1021 	}
1022 
1023 	spin_lock_irq(&info->lock);
1024 	info->swapped -= nr_swaps_freed;
1025 	shmem_recalc_inode(inode);
1026 	spin_unlock_irq(&info->lock);
1027 }
1028 
1029 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1030 {
1031 	shmem_undo_range(inode, lstart, lend, false);
1032 	inode->i_ctime = inode->i_mtime = current_time(inode);
1033 }
1034 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1035 
1036 static int shmem_getattr(struct user_namespace *mnt_userns,
1037 			 const struct path *path, struct kstat *stat,
1038 			 u32 request_mask, unsigned int query_flags)
1039 {
1040 	struct inode *inode = path->dentry->d_inode;
1041 	struct shmem_inode_info *info = SHMEM_I(inode);
1042 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1043 
1044 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1045 		spin_lock_irq(&info->lock);
1046 		shmem_recalc_inode(inode);
1047 		spin_unlock_irq(&info->lock);
1048 	}
1049 	generic_fillattr(&init_user_ns, inode, stat);
1050 
1051 	if (is_huge_enabled(sb_info))
1052 		stat->blksize = HPAGE_PMD_SIZE;
1053 
1054 	return 0;
1055 }
1056 
1057 static int shmem_setattr(struct user_namespace *mnt_userns,
1058 			 struct dentry *dentry, struct iattr *attr)
1059 {
1060 	struct inode *inode = d_inode(dentry);
1061 	struct shmem_inode_info *info = SHMEM_I(inode);
1062 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1063 	int error;
1064 
1065 	error = setattr_prepare(&init_user_ns, dentry, attr);
1066 	if (error)
1067 		return error;
1068 
1069 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1070 		loff_t oldsize = inode->i_size;
1071 		loff_t newsize = attr->ia_size;
1072 
1073 		/* protected by i_mutex */
1074 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1075 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1076 			return -EPERM;
1077 
1078 		if (newsize != oldsize) {
1079 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1080 					oldsize, newsize);
1081 			if (error)
1082 				return error;
1083 			i_size_write(inode, newsize);
1084 			inode->i_ctime = inode->i_mtime = current_time(inode);
1085 		}
1086 		if (newsize <= oldsize) {
1087 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1088 			if (oldsize > holebegin)
1089 				unmap_mapping_range(inode->i_mapping,
1090 							holebegin, 0, 1);
1091 			if (info->alloced)
1092 				shmem_truncate_range(inode,
1093 							newsize, (loff_t)-1);
1094 			/* unmap again to remove racily COWed private pages */
1095 			if (oldsize > holebegin)
1096 				unmap_mapping_range(inode->i_mapping,
1097 							holebegin, 0, 1);
1098 
1099 			/*
1100 			 * Part of the huge page can be beyond i_size: subject
1101 			 * to shrink under memory pressure.
1102 			 */
1103 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1104 				spin_lock(&sbinfo->shrinklist_lock);
1105 				/*
1106 				 * _careful to defend against unlocked access to
1107 				 * ->shrink_list in shmem_unused_huge_shrink()
1108 				 */
1109 				if (list_empty_careful(&info->shrinklist)) {
1110 					list_add_tail(&info->shrinklist,
1111 							&sbinfo->shrinklist);
1112 					sbinfo->shrinklist_len++;
1113 				}
1114 				spin_unlock(&sbinfo->shrinklist_lock);
1115 			}
1116 		}
1117 	}
1118 
1119 	setattr_copy(&init_user_ns, inode, attr);
1120 	if (attr->ia_valid & ATTR_MODE)
1121 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1122 	return error;
1123 }
1124 
1125 static void shmem_evict_inode(struct inode *inode)
1126 {
1127 	struct shmem_inode_info *info = SHMEM_I(inode);
1128 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1129 
1130 	if (shmem_mapping(inode->i_mapping)) {
1131 		shmem_unacct_size(info->flags, inode->i_size);
1132 		inode->i_size = 0;
1133 		shmem_truncate_range(inode, 0, (loff_t)-1);
1134 		if (!list_empty(&info->shrinklist)) {
1135 			spin_lock(&sbinfo->shrinklist_lock);
1136 			if (!list_empty(&info->shrinklist)) {
1137 				list_del_init(&info->shrinklist);
1138 				sbinfo->shrinklist_len--;
1139 			}
1140 			spin_unlock(&sbinfo->shrinklist_lock);
1141 		}
1142 		while (!list_empty(&info->swaplist)) {
1143 			/* Wait while shmem_unuse() is scanning this inode... */
1144 			wait_var_event(&info->stop_eviction,
1145 				       !atomic_read(&info->stop_eviction));
1146 			mutex_lock(&shmem_swaplist_mutex);
1147 			/* ...but beware of the race if we peeked too early */
1148 			if (!atomic_read(&info->stop_eviction))
1149 				list_del_init(&info->swaplist);
1150 			mutex_unlock(&shmem_swaplist_mutex);
1151 		}
1152 	}
1153 
1154 	simple_xattrs_free(&info->xattrs);
1155 	WARN_ON(inode->i_blocks);
1156 	shmem_free_inode(inode->i_sb);
1157 	clear_inode(inode);
1158 }
1159 
1160 extern struct swap_info_struct *swap_info[];
1161 
1162 static int shmem_find_swap_entries(struct address_space *mapping,
1163 				   pgoff_t start, unsigned int nr_entries,
1164 				   struct page **entries, pgoff_t *indices,
1165 				   unsigned int type, bool frontswap)
1166 {
1167 	XA_STATE(xas, &mapping->i_pages, start);
1168 	struct page *page;
1169 	swp_entry_t entry;
1170 	unsigned int ret = 0;
1171 
1172 	if (!nr_entries)
1173 		return 0;
1174 
1175 	rcu_read_lock();
1176 	xas_for_each(&xas, page, ULONG_MAX) {
1177 		if (xas_retry(&xas, page))
1178 			continue;
1179 
1180 		if (!xa_is_value(page))
1181 			continue;
1182 
1183 		entry = radix_to_swp_entry(page);
1184 		if (swp_type(entry) != type)
1185 			continue;
1186 		if (frontswap &&
1187 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1188 			continue;
1189 
1190 		indices[ret] = xas.xa_index;
1191 		entries[ret] = page;
1192 
1193 		if (need_resched()) {
1194 			xas_pause(&xas);
1195 			cond_resched_rcu();
1196 		}
1197 		if (++ret == nr_entries)
1198 			break;
1199 	}
1200 	rcu_read_unlock();
1201 
1202 	return ret;
1203 }
1204 
1205 /*
1206  * Move the swapped pages for an inode to page cache. Returns the count
1207  * of pages swapped in, or the error in case of failure.
1208  */
1209 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1210 				    pgoff_t *indices)
1211 {
1212 	int i = 0;
1213 	int ret = 0;
1214 	int error = 0;
1215 	struct address_space *mapping = inode->i_mapping;
1216 
1217 	for (i = 0; i < pvec.nr; i++) {
1218 		struct page *page = pvec.pages[i];
1219 
1220 		if (!xa_is_value(page))
1221 			continue;
1222 		error = shmem_swapin_page(inode, indices[i],
1223 					  &page, SGP_CACHE,
1224 					  mapping_gfp_mask(mapping),
1225 					  NULL, NULL);
1226 		if (error == 0) {
1227 			unlock_page(page);
1228 			put_page(page);
1229 			ret++;
1230 		}
1231 		if (error == -ENOMEM)
1232 			break;
1233 		error = 0;
1234 	}
1235 	return error ? error : ret;
1236 }
1237 
1238 /*
1239  * If swap found in inode, free it and move page from swapcache to filecache.
1240  */
1241 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1242 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1243 {
1244 	struct address_space *mapping = inode->i_mapping;
1245 	pgoff_t start = 0;
1246 	struct pagevec pvec;
1247 	pgoff_t indices[PAGEVEC_SIZE];
1248 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1249 	int ret = 0;
1250 
1251 	pagevec_init(&pvec);
1252 	do {
1253 		unsigned int nr_entries = PAGEVEC_SIZE;
1254 
1255 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1256 			nr_entries = *fs_pages_to_unuse;
1257 
1258 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1259 						  pvec.pages, indices,
1260 						  type, frontswap);
1261 		if (pvec.nr == 0) {
1262 			ret = 0;
1263 			break;
1264 		}
1265 
1266 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1267 		if (ret < 0)
1268 			break;
1269 
1270 		if (frontswap_partial) {
1271 			*fs_pages_to_unuse -= ret;
1272 			if (*fs_pages_to_unuse == 0) {
1273 				ret = FRONTSWAP_PAGES_UNUSED;
1274 				break;
1275 			}
1276 		}
1277 
1278 		start = indices[pvec.nr - 1];
1279 	} while (true);
1280 
1281 	return ret;
1282 }
1283 
1284 /*
1285  * Read all the shared memory data that resides in the swap
1286  * device 'type' back into memory, so the swap device can be
1287  * unused.
1288  */
1289 int shmem_unuse(unsigned int type, bool frontswap,
1290 		unsigned long *fs_pages_to_unuse)
1291 {
1292 	struct shmem_inode_info *info, *next;
1293 	int error = 0;
1294 
1295 	if (list_empty(&shmem_swaplist))
1296 		return 0;
1297 
1298 	mutex_lock(&shmem_swaplist_mutex);
1299 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1300 		if (!info->swapped) {
1301 			list_del_init(&info->swaplist);
1302 			continue;
1303 		}
1304 		/*
1305 		 * Drop the swaplist mutex while searching the inode for swap;
1306 		 * but before doing so, make sure shmem_evict_inode() will not
1307 		 * remove placeholder inode from swaplist, nor let it be freed
1308 		 * (igrab() would protect from unlink, but not from unmount).
1309 		 */
1310 		atomic_inc(&info->stop_eviction);
1311 		mutex_unlock(&shmem_swaplist_mutex);
1312 
1313 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1314 					  fs_pages_to_unuse);
1315 		cond_resched();
1316 
1317 		mutex_lock(&shmem_swaplist_mutex);
1318 		next = list_next_entry(info, swaplist);
1319 		if (!info->swapped)
1320 			list_del_init(&info->swaplist);
1321 		if (atomic_dec_and_test(&info->stop_eviction))
1322 			wake_up_var(&info->stop_eviction);
1323 		if (error)
1324 			break;
1325 	}
1326 	mutex_unlock(&shmem_swaplist_mutex);
1327 
1328 	return error;
1329 }
1330 
1331 /*
1332  * Move the page from the page cache to the swap cache.
1333  */
1334 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1335 {
1336 	struct shmem_inode_info *info;
1337 	struct address_space *mapping;
1338 	struct inode *inode;
1339 	swp_entry_t swap;
1340 	pgoff_t index;
1341 
1342 	VM_BUG_ON_PAGE(PageCompound(page), page);
1343 	BUG_ON(!PageLocked(page));
1344 	mapping = page->mapping;
1345 	index = page->index;
1346 	inode = mapping->host;
1347 	info = SHMEM_I(inode);
1348 	if (info->flags & VM_LOCKED)
1349 		goto redirty;
1350 	if (!total_swap_pages)
1351 		goto redirty;
1352 
1353 	/*
1354 	 * Our capabilities prevent regular writeback or sync from ever calling
1355 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1356 	 * its underlying filesystem, in which case tmpfs should write out to
1357 	 * swap only in response to memory pressure, and not for the writeback
1358 	 * threads or sync.
1359 	 */
1360 	if (!wbc->for_reclaim) {
1361 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1362 		goto redirty;
1363 	}
1364 
1365 	/*
1366 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1367 	 * value into swapfile.c, the only way we can correctly account for a
1368 	 * fallocated page arriving here is now to initialize it and write it.
1369 	 *
1370 	 * That's okay for a page already fallocated earlier, but if we have
1371 	 * not yet completed the fallocation, then (a) we want to keep track
1372 	 * of this page in case we have to undo it, and (b) it may not be a
1373 	 * good idea to continue anyway, once we're pushing into swap.  So
1374 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1375 	 */
1376 	if (!PageUptodate(page)) {
1377 		if (inode->i_private) {
1378 			struct shmem_falloc *shmem_falloc;
1379 			spin_lock(&inode->i_lock);
1380 			shmem_falloc = inode->i_private;
1381 			if (shmem_falloc &&
1382 			    !shmem_falloc->waitq &&
1383 			    index >= shmem_falloc->start &&
1384 			    index < shmem_falloc->next)
1385 				shmem_falloc->nr_unswapped++;
1386 			else
1387 				shmem_falloc = NULL;
1388 			spin_unlock(&inode->i_lock);
1389 			if (shmem_falloc)
1390 				goto redirty;
1391 		}
1392 		clear_highpage(page);
1393 		flush_dcache_page(page);
1394 		SetPageUptodate(page);
1395 	}
1396 
1397 	swap = get_swap_page(page);
1398 	if (!swap.val)
1399 		goto redirty;
1400 
1401 	/*
1402 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1403 	 * if it's not already there.  Do it now before the page is
1404 	 * moved to swap cache, when its pagelock no longer protects
1405 	 * the inode from eviction.  But don't unlock the mutex until
1406 	 * we've incremented swapped, because shmem_unuse_inode() will
1407 	 * prune a !swapped inode from the swaplist under this mutex.
1408 	 */
1409 	mutex_lock(&shmem_swaplist_mutex);
1410 	if (list_empty(&info->swaplist))
1411 		list_add(&info->swaplist, &shmem_swaplist);
1412 
1413 	if (add_to_swap_cache(page, swap,
1414 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1415 			NULL) == 0) {
1416 		spin_lock_irq(&info->lock);
1417 		shmem_recalc_inode(inode);
1418 		info->swapped++;
1419 		spin_unlock_irq(&info->lock);
1420 
1421 		swap_shmem_alloc(swap);
1422 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1423 
1424 		mutex_unlock(&shmem_swaplist_mutex);
1425 		BUG_ON(page_mapped(page));
1426 		swap_writepage(page, wbc);
1427 		return 0;
1428 	}
1429 
1430 	mutex_unlock(&shmem_swaplist_mutex);
1431 	put_swap_page(page, swap);
1432 redirty:
1433 	set_page_dirty(page);
1434 	if (wbc->for_reclaim)
1435 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1436 	unlock_page(page);
1437 	return 0;
1438 }
1439 
1440 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1441 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1442 {
1443 	char buffer[64];
1444 
1445 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1446 		return;		/* show nothing */
1447 
1448 	mpol_to_str(buffer, sizeof(buffer), mpol);
1449 
1450 	seq_printf(seq, ",mpol=%s", buffer);
1451 }
1452 
1453 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1454 {
1455 	struct mempolicy *mpol = NULL;
1456 	if (sbinfo->mpol) {
1457 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1458 		mpol = sbinfo->mpol;
1459 		mpol_get(mpol);
1460 		raw_spin_unlock(&sbinfo->stat_lock);
1461 	}
1462 	return mpol;
1463 }
1464 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1465 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1466 {
1467 }
1468 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1469 {
1470 	return NULL;
1471 }
1472 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1473 #ifndef CONFIG_NUMA
1474 #define vm_policy vm_private_data
1475 #endif
1476 
1477 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1478 		struct shmem_inode_info *info, pgoff_t index)
1479 {
1480 	/* Create a pseudo vma that just contains the policy */
1481 	vma_init(vma, NULL);
1482 	/* Bias interleave by inode number to distribute better across nodes */
1483 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1484 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1485 }
1486 
1487 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1488 {
1489 	/* Drop reference taken by mpol_shared_policy_lookup() */
1490 	mpol_cond_put(vma->vm_policy);
1491 }
1492 
1493 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1494 			struct shmem_inode_info *info, pgoff_t index)
1495 {
1496 	struct vm_area_struct pvma;
1497 	struct page *page;
1498 	struct vm_fault vmf = {
1499 		.vma = &pvma,
1500 	};
1501 
1502 	shmem_pseudo_vma_init(&pvma, info, index);
1503 	page = swap_cluster_readahead(swap, gfp, &vmf);
1504 	shmem_pseudo_vma_destroy(&pvma);
1505 
1506 	return page;
1507 }
1508 
1509 /*
1510  * Make sure huge_gfp is always more limited than limit_gfp.
1511  * Some of the flags set permissions, while others set limitations.
1512  */
1513 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1514 {
1515 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1516 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1517 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1518 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1519 
1520 	/* Allow allocations only from the originally specified zones. */
1521 	result |= zoneflags;
1522 
1523 	/*
1524 	 * Minimize the result gfp by taking the union with the deny flags,
1525 	 * and the intersection of the allow flags.
1526 	 */
1527 	result |= (limit_gfp & denyflags);
1528 	result |= (huge_gfp & limit_gfp) & allowflags;
1529 
1530 	return result;
1531 }
1532 
1533 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1534 		struct shmem_inode_info *info, pgoff_t index)
1535 {
1536 	struct vm_area_struct pvma;
1537 	struct address_space *mapping = info->vfs_inode.i_mapping;
1538 	pgoff_t hindex;
1539 	struct page *page;
1540 
1541 	hindex = round_down(index, HPAGE_PMD_NR);
1542 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1543 								XA_PRESENT))
1544 		return NULL;
1545 
1546 	shmem_pseudo_vma_init(&pvma, info, hindex);
1547 	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1548 			       true);
1549 	shmem_pseudo_vma_destroy(&pvma);
1550 	if (page)
1551 		prep_transhuge_page(page);
1552 	else
1553 		count_vm_event(THP_FILE_FALLBACK);
1554 	return page;
1555 }
1556 
1557 static struct page *shmem_alloc_page(gfp_t gfp,
1558 			struct shmem_inode_info *info, pgoff_t index)
1559 {
1560 	struct vm_area_struct pvma;
1561 	struct page *page;
1562 
1563 	shmem_pseudo_vma_init(&pvma, info, index);
1564 	page = alloc_page_vma(gfp, &pvma, 0);
1565 	shmem_pseudo_vma_destroy(&pvma);
1566 
1567 	return page;
1568 }
1569 
1570 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1571 		struct inode *inode,
1572 		pgoff_t index, bool huge)
1573 {
1574 	struct shmem_inode_info *info = SHMEM_I(inode);
1575 	struct page *page;
1576 	int nr;
1577 	int err = -ENOSPC;
1578 
1579 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1580 		huge = false;
1581 	nr = huge ? HPAGE_PMD_NR : 1;
1582 
1583 	if (!shmem_inode_acct_block(inode, nr))
1584 		goto failed;
1585 
1586 	if (huge)
1587 		page = shmem_alloc_hugepage(gfp, info, index);
1588 	else
1589 		page = shmem_alloc_page(gfp, info, index);
1590 	if (page) {
1591 		__SetPageLocked(page);
1592 		__SetPageSwapBacked(page);
1593 		return page;
1594 	}
1595 
1596 	err = -ENOMEM;
1597 	shmem_inode_unacct_blocks(inode, nr);
1598 failed:
1599 	return ERR_PTR(err);
1600 }
1601 
1602 /*
1603  * When a page is moved from swapcache to shmem filecache (either by the
1604  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1605  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1606  * ignorance of the mapping it belongs to.  If that mapping has special
1607  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1608  * we may need to copy to a suitable page before moving to filecache.
1609  *
1610  * In a future release, this may well be extended to respect cpuset and
1611  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1612  * but for now it is a simple matter of zone.
1613  */
1614 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1615 {
1616 	return page_zonenum(page) > gfp_zone(gfp);
1617 }
1618 
1619 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1620 				struct shmem_inode_info *info, pgoff_t index)
1621 {
1622 	struct page *oldpage, *newpage;
1623 	struct address_space *swap_mapping;
1624 	swp_entry_t entry;
1625 	pgoff_t swap_index;
1626 	int error;
1627 
1628 	oldpage = *pagep;
1629 	entry.val = page_private(oldpage);
1630 	swap_index = swp_offset(entry);
1631 	swap_mapping = page_mapping(oldpage);
1632 
1633 	/*
1634 	 * We have arrived here because our zones are constrained, so don't
1635 	 * limit chance of success by further cpuset and node constraints.
1636 	 */
1637 	gfp &= ~GFP_CONSTRAINT_MASK;
1638 	newpage = shmem_alloc_page(gfp, info, index);
1639 	if (!newpage)
1640 		return -ENOMEM;
1641 
1642 	get_page(newpage);
1643 	copy_highpage(newpage, oldpage);
1644 	flush_dcache_page(newpage);
1645 
1646 	__SetPageLocked(newpage);
1647 	__SetPageSwapBacked(newpage);
1648 	SetPageUptodate(newpage);
1649 	set_page_private(newpage, entry.val);
1650 	SetPageSwapCache(newpage);
1651 
1652 	/*
1653 	 * Our caller will very soon move newpage out of swapcache, but it's
1654 	 * a nice clean interface for us to replace oldpage by newpage there.
1655 	 */
1656 	xa_lock_irq(&swap_mapping->i_pages);
1657 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1658 	if (!error) {
1659 		mem_cgroup_migrate(oldpage, newpage);
1660 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1661 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1662 	}
1663 	xa_unlock_irq(&swap_mapping->i_pages);
1664 
1665 	if (unlikely(error)) {
1666 		/*
1667 		 * Is this possible?  I think not, now that our callers check
1668 		 * both PageSwapCache and page_private after getting page lock;
1669 		 * but be defensive.  Reverse old to newpage for clear and free.
1670 		 */
1671 		oldpage = newpage;
1672 	} else {
1673 		lru_cache_add(newpage);
1674 		*pagep = newpage;
1675 	}
1676 
1677 	ClearPageSwapCache(oldpage);
1678 	set_page_private(oldpage, 0);
1679 
1680 	unlock_page(oldpage);
1681 	put_page(oldpage);
1682 	put_page(oldpage);
1683 	return error;
1684 }
1685 
1686 /*
1687  * Swap in the page pointed to by *pagep.
1688  * Caller has to make sure that *pagep contains a valid swapped page.
1689  * Returns 0 and the page in pagep if success. On failure, returns the
1690  * error code and NULL in *pagep.
1691  */
1692 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1693 			     struct page **pagep, enum sgp_type sgp,
1694 			     gfp_t gfp, struct vm_area_struct *vma,
1695 			     vm_fault_t *fault_type)
1696 {
1697 	struct address_space *mapping = inode->i_mapping;
1698 	struct shmem_inode_info *info = SHMEM_I(inode);
1699 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1700 	struct page *page;
1701 	swp_entry_t swap;
1702 	int error;
1703 
1704 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1705 	swap = radix_to_swp_entry(*pagep);
1706 	*pagep = NULL;
1707 
1708 	/* Look it up and read it in.. */
1709 	page = lookup_swap_cache(swap, NULL, 0);
1710 	if (!page) {
1711 		/* Or update major stats only when swapin succeeds?? */
1712 		if (fault_type) {
1713 			*fault_type |= VM_FAULT_MAJOR;
1714 			count_vm_event(PGMAJFAULT);
1715 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1716 		}
1717 		/* Here we actually start the io */
1718 		page = shmem_swapin(swap, gfp, info, index);
1719 		if (!page) {
1720 			error = -ENOMEM;
1721 			goto failed;
1722 		}
1723 	}
1724 
1725 	/* We have to do this with page locked to prevent races */
1726 	lock_page(page);
1727 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1728 	    !shmem_confirm_swap(mapping, index, swap)) {
1729 		error = -EEXIST;
1730 		goto unlock;
1731 	}
1732 	if (!PageUptodate(page)) {
1733 		error = -EIO;
1734 		goto failed;
1735 	}
1736 	wait_on_page_writeback(page);
1737 
1738 	/*
1739 	 * Some architectures may have to restore extra metadata to the
1740 	 * physical page after reading from swap.
1741 	 */
1742 	arch_swap_restore(swap, page);
1743 
1744 	if (shmem_should_replace_page(page, gfp)) {
1745 		error = shmem_replace_page(&page, gfp, info, index);
1746 		if (error)
1747 			goto failed;
1748 	}
1749 
1750 	error = shmem_add_to_page_cache(page, mapping, index,
1751 					swp_to_radix_entry(swap), gfp,
1752 					charge_mm);
1753 	if (error)
1754 		goto failed;
1755 
1756 	spin_lock_irq(&info->lock);
1757 	info->swapped--;
1758 	shmem_recalc_inode(inode);
1759 	spin_unlock_irq(&info->lock);
1760 
1761 	if (sgp == SGP_WRITE)
1762 		mark_page_accessed(page);
1763 
1764 	delete_from_swap_cache(page);
1765 	set_page_dirty(page);
1766 	swap_free(swap);
1767 
1768 	*pagep = page;
1769 	return 0;
1770 failed:
1771 	if (!shmem_confirm_swap(mapping, index, swap))
1772 		error = -EEXIST;
1773 unlock:
1774 	if (page) {
1775 		unlock_page(page);
1776 		put_page(page);
1777 	}
1778 
1779 	return error;
1780 }
1781 
1782 /*
1783  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1784  *
1785  * If we allocate a new one we do not mark it dirty. That's up to the
1786  * vm. If we swap it in we mark it dirty since we also free the swap
1787  * entry since a page cannot live in both the swap and page cache.
1788  *
1789  * vma, vmf, and fault_type are only supplied by shmem_fault:
1790  * otherwise they are NULL.
1791  */
1792 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1793 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1794 	struct vm_area_struct *vma, struct vm_fault *vmf,
1795 			vm_fault_t *fault_type)
1796 {
1797 	struct address_space *mapping = inode->i_mapping;
1798 	struct shmem_inode_info *info = SHMEM_I(inode);
1799 	struct shmem_sb_info *sbinfo;
1800 	struct mm_struct *charge_mm;
1801 	struct page *page;
1802 	enum sgp_type sgp_huge = sgp;
1803 	pgoff_t hindex = index;
1804 	gfp_t huge_gfp;
1805 	int error;
1806 	int once = 0;
1807 	int alloced = 0;
1808 
1809 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1810 		return -EFBIG;
1811 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1812 		sgp = SGP_CACHE;
1813 repeat:
1814 	if (sgp <= SGP_CACHE &&
1815 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1816 		return -EINVAL;
1817 	}
1818 
1819 	sbinfo = SHMEM_SB(inode->i_sb);
1820 	charge_mm = vma ? vma->vm_mm : NULL;
1821 
1822 	page = pagecache_get_page(mapping, index,
1823 					FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1824 
1825 	if (page && vma && userfaultfd_minor(vma)) {
1826 		if (!xa_is_value(page)) {
1827 			unlock_page(page);
1828 			put_page(page);
1829 		}
1830 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1831 		return 0;
1832 	}
1833 
1834 	if (xa_is_value(page)) {
1835 		error = shmem_swapin_page(inode, index, &page,
1836 					  sgp, gfp, vma, fault_type);
1837 		if (error == -EEXIST)
1838 			goto repeat;
1839 
1840 		*pagep = page;
1841 		return error;
1842 	}
1843 
1844 	if (page)
1845 		hindex = page->index;
1846 	if (page && sgp == SGP_WRITE)
1847 		mark_page_accessed(page);
1848 
1849 	/* fallocated page? */
1850 	if (page && !PageUptodate(page)) {
1851 		if (sgp != SGP_READ)
1852 			goto clear;
1853 		unlock_page(page);
1854 		put_page(page);
1855 		page = NULL;
1856 		hindex = index;
1857 	}
1858 	if (page || sgp == SGP_READ)
1859 		goto out;
1860 
1861 	/*
1862 	 * Fast cache lookup did not find it:
1863 	 * bring it back from swap or allocate.
1864 	 */
1865 
1866 	if (vma && userfaultfd_missing(vma)) {
1867 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1868 		return 0;
1869 	}
1870 
1871 	/* shmem_symlink() */
1872 	if (!shmem_mapping(mapping))
1873 		goto alloc_nohuge;
1874 	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1875 		goto alloc_nohuge;
1876 	if (shmem_huge == SHMEM_HUGE_FORCE)
1877 		goto alloc_huge;
1878 	switch (sbinfo->huge) {
1879 	case SHMEM_HUGE_NEVER:
1880 		goto alloc_nohuge;
1881 	case SHMEM_HUGE_WITHIN_SIZE: {
1882 		loff_t i_size;
1883 		pgoff_t off;
1884 
1885 		off = round_up(index, HPAGE_PMD_NR);
1886 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1887 		if (i_size >= HPAGE_PMD_SIZE &&
1888 		    i_size >> PAGE_SHIFT >= off)
1889 			goto alloc_huge;
1890 
1891 		fallthrough;
1892 	}
1893 	case SHMEM_HUGE_ADVISE:
1894 		if (sgp_huge == SGP_HUGE)
1895 			goto alloc_huge;
1896 		/* TODO: implement fadvise() hints */
1897 		goto alloc_nohuge;
1898 	}
1899 
1900 alloc_huge:
1901 	huge_gfp = vma_thp_gfp_mask(vma);
1902 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1903 	page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1904 	if (IS_ERR(page)) {
1905 alloc_nohuge:
1906 		page = shmem_alloc_and_acct_page(gfp, inode,
1907 						 index, false);
1908 	}
1909 	if (IS_ERR(page)) {
1910 		int retry = 5;
1911 
1912 		error = PTR_ERR(page);
1913 		page = NULL;
1914 		if (error != -ENOSPC)
1915 			goto unlock;
1916 		/*
1917 		 * Try to reclaim some space by splitting a huge page
1918 		 * beyond i_size on the filesystem.
1919 		 */
1920 		while (retry--) {
1921 			int ret;
1922 
1923 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1924 			if (ret == SHRINK_STOP)
1925 				break;
1926 			if (ret)
1927 				goto alloc_nohuge;
1928 		}
1929 		goto unlock;
1930 	}
1931 
1932 	if (PageTransHuge(page))
1933 		hindex = round_down(index, HPAGE_PMD_NR);
1934 	else
1935 		hindex = index;
1936 
1937 	if (sgp == SGP_WRITE)
1938 		__SetPageReferenced(page);
1939 
1940 	error = shmem_add_to_page_cache(page, mapping, hindex,
1941 					NULL, gfp & GFP_RECLAIM_MASK,
1942 					charge_mm);
1943 	if (error)
1944 		goto unacct;
1945 	lru_cache_add(page);
1946 
1947 	spin_lock_irq(&info->lock);
1948 	info->alloced += compound_nr(page);
1949 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1950 	shmem_recalc_inode(inode);
1951 	spin_unlock_irq(&info->lock);
1952 	alloced = true;
1953 
1954 	if (PageTransHuge(page) &&
1955 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1956 			hindex + HPAGE_PMD_NR - 1) {
1957 		/*
1958 		 * Part of the huge page is beyond i_size: subject
1959 		 * to shrink under memory pressure.
1960 		 */
1961 		spin_lock(&sbinfo->shrinklist_lock);
1962 		/*
1963 		 * _careful to defend against unlocked access to
1964 		 * ->shrink_list in shmem_unused_huge_shrink()
1965 		 */
1966 		if (list_empty_careful(&info->shrinklist)) {
1967 			list_add_tail(&info->shrinklist,
1968 				      &sbinfo->shrinklist);
1969 			sbinfo->shrinklist_len++;
1970 		}
1971 		spin_unlock(&sbinfo->shrinklist_lock);
1972 	}
1973 
1974 	/*
1975 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1976 	 */
1977 	if (sgp == SGP_FALLOC)
1978 		sgp = SGP_WRITE;
1979 clear:
1980 	/*
1981 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1982 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1983 	 * it now, lest undo on failure cancel our earlier guarantee.
1984 	 */
1985 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1986 		int i;
1987 
1988 		for (i = 0; i < compound_nr(page); i++) {
1989 			clear_highpage(page + i);
1990 			flush_dcache_page(page + i);
1991 		}
1992 		SetPageUptodate(page);
1993 	}
1994 
1995 	/* Perhaps the file has been truncated since we checked */
1996 	if (sgp <= SGP_CACHE &&
1997 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1998 		if (alloced) {
1999 			ClearPageDirty(page);
2000 			delete_from_page_cache(page);
2001 			spin_lock_irq(&info->lock);
2002 			shmem_recalc_inode(inode);
2003 			spin_unlock_irq(&info->lock);
2004 		}
2005 		error = -EINVAL;
2006 		goto unlock;
2007 	}
2008 out:
2009 	*pagep = page + index - hindex;
2010 	return 0;
2011 
2012 	/*
2013 	 * Error recovery.
2014 	 */
2015 unacct:
2016 	shmem_inode_unacct_blocks(inode, compound_nr(page));
2017 
2018 	if (PageTransHuge(page)) {
2019 		unlock_page(page);
2020 		put_page(page);
2021 		goto alloc_nohuge;
2022 	}
2023 unlock:
2024 	if (page) {
2025 		unlock_page(page);
2026 		put_page(page);
2027 	}
2028 	if (error == -ENOSPC && !once++) {
2029 		spin_lock_irq(&info->lock);
2030 		shmem_recalc_inode(inode);
2031 		spin_unlock_irq(&info->lock);
2032 		goto repeat;
2033 	}
2034 	if (error == -EEXIST)
2035 		goto repeat;
2036 	return error;
2037 }
2038 
2039 /*
2040  * This is like autoremove_wake_function, but it removes the wait queue
2041  * entry unconditionally - even if something else had already woken the
2042  * target.
2043  */
2044 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2045 {
2046 	int ret = default_wake_function(wait, mode, sync, key);
2047 	list_del_init(&wait->entry);
2048 	return ret;
2049 }
2050 
2051 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2052 {
2053 	struct vm_area_struct *vma = vmf->vma;
2054 	struct inode *inode = file_inode(vma->vm_file);
2055 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2056 	enum sgp_type sgp;
2057 	int err;
2058 	vm_fault_t ret = VM_FAULT_LOCKED;
2059 
2060 	/*
2061 	 * Trinity finds that probing a hole which tmpfs is punching can
2062 	 * prevent the hole-punch from ever completing: which in turn
2063 	 * locks writers out with its hold on i_mutex.  So refrain from
2064 	 * faulting pages into the hole while it's being punched.  Although
2065 	 * shmem_undo_range() does remove the additions, it may be unable to
2066 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2067 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2068 	 *
2069 	 * It does not matter if we sometimes reach this check just before the
2070 	 * hole-punch begins, so that one fault then races with the punch:
2071 	 * we just need to make racing faults a rare case.
2072 	 *
2073 	 * The implementation below would be much simpler if we just used a
2074 	 * standard mutex or completion: but we cannot take i_mutex in fault,
2075 	 * and bloating every shmem inode for this unlikely case would be sad.
2076 	 */
2077 	if (unlikely(inode->i_private)) {
2078 		struct shmem_falloc *shmem_falloc;
2079 
2080 		spin_lock(&inode->i_lock);
2081 		shmem_falloc = inode->i_private;
2082 		if (shmem_falloc &&
2083 		    shmem_falloc->waitq &&
2084 		    vmf->pgoff >= shmem_falloc->start &&
2085 		    vmf->pgoff < shmem_falloc->next) {
2086 			struct file *fpin;
2087 			wait_queue_head_t *shmem_falloc_waitq;
2088 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2089 
2090 			ret = VM_FAULT_NOPAGE;
2091 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2092 			if (fpin)
2093 				ret = VM_FAULT_RETRY;
2094 
2095 			shmem_falloc_waitq = shmem_falloc->waitq;
2096 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2097 					TASK_UNINTERRUPTIBLE);
2098 			spin_unlock(&inode->i_lock);
2099 			schedule();
2100 
2101 			/*
2102 			 * shmem_falloc_waitq points into the shmem_fallocate()
2103 			 * stack of the hole-punching task: shmem_falloc_waitq
2104 			 * is usually invalid by the time we reach here, but
2105 			 * finish_wait() does not dereference it in that case;
2106 			 * though i_lock needed lest racing with wake_up_all().
2107 			 */
2108 			spin_lock(&inode->i_lock);
2109 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2110 			spin_unlock(&inode->i_lock);
2111 
2112 			if (fpin)
2113 				fput(fpin);
2114 			return ret;
2115 		}
2116 		spin_unlock(&inode->i_lock);
2117 	}
2118 
2119 	sgp = SGP_CACHE;
2120 
2121 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2122 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2123 		sgp = SGP_NOHUGE;
2124 	else if (vma->vm_flags & VM_HUGEPAGE)
2125 		sgp = SGP_HUGE;
2126 
2127 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2128 				  gfp, vma, vmf, &ret);
2129 	if (err)
2130 		return vmf_error(err);
2131 	return ret;
2132 }
2133 
2134 unsigned long shmem_get_unmapped_area(struct file *file,
2135 				      unsigned long uaddr, unsigned long len,
2136 				      unsigned long pgoff, unsigned long flags)
2137 {
2138 	unsigned long (*get_area)(struct file *,
2139 		unsigned long, unsigned long, unsigned long, unsigned long);
2140 	unsigned long addr;
2141 	unsigned long offset;
2142 	unsigned long inflated_len;
2143 	unsigned long inflated_addr;
2144 	unsigned long inflated_offset;
2145 
2146 	if (len > TASK_SIZE)
2147 		return -ENOMEM;
2148 
2149 	get_area = current->mm->get_unmapped_area;
2150 	addr = get_area(file, uaddr, len, pgoff, flags);
2151 
2152 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2153 		return addr;
2154 	if (IS_ERR_VALUE(addr))
2155 		return addr;
2156 	if (addr & ~PAGE_MASK)
2157 		return addr;
2158 	if (addr > TASK_SIZE - len)
2159 		return addr;
2160 
2161 	if (shmem_huge == SHMEM_HUGE_DENY)
2162 		return addr;
2163 	if (len < HPAGE_PMD_SIZE)
2164 		return addr;
2165 	if (flags & MAP_FIXED)
2166 		return addr;
2167 	/*
2168 	 * Our priority is to support MAP_SHARED mapped hugely;
2169 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2170 	 * But if caller specified an address hint and we allocated area there
2171 	 * successfully, respect that as before.
2172 	 */
2173 	if (uaddr == addr)
2174 		return addr;
2175 
2176 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2177 		struct super_block *sb;
2178 
2179 		if (file) {
2180 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2181 			sb = file_inode(file)->i_sb;
2182 		} else {
2183 			/*
2184 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2185 			 * for "/dev/zero", to create a shared anonymous object.
2186 			 */
2187 			if (IS_ERR(shm_mnt))
2188 				return addr;
2189 			sb = shm_mnt->mnt_sb;
2190 		}
2191 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2192 			return addr;
2193 	}
2194 
2195 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2196 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2197 		return addr;
2198 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2199 		return addr;
2200 
2201 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2202 	if (inflated_len > TASK_SIZE)
2203 		return addr;
2204 	if (inflated_len < len)
2205 		return addr;
2206 
2207 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2208 	if (IS_ERR_VALUE(inflated_addr))
2209 		return addr;
2210 	if (inflated_addr & ~PAGE_MASK)
2211 		return addr;
2212 
2213 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2214 	inflated_addr += offset - inflated_offset;
2215 	if (inflated_offset > offset)
2216 		inflated_addr += HPAGE_PMD_SIZE;
2217 
2218 	if (inflated_addr > TASK_SIZE - len)
2219 		return addr;
2220 	return inflated_addr;
2221 }
2222 
2223 #ifdef CONFIG_NUMA
2224 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2225 {
2226 	struct inode *inode = file_inode(vma->vm_file);
2227 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2228 }
2229 
2230 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2231 					  unsigned long addr)
2232 {
2233 	struct inode *inode = file_inode(vma->vm_file);
2234 	pgoff_t index;
2235 
2236 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2237 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2238 }
2239 #endif
2240 
2241 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2242 {
2243 	struct inode *inode = file_inode(file);
2244 	struct shmem_inode_info *info = SHMEM_I(inode);
2245 	int retval = -ENOMEM;
2246 
2247 	/*
2248 	 * What serializes the accesses to info->flags?
2249 	 * ipc_lock_object() when called from shmctl_do_lock(),
2250 	 * no serialization needed when called from shm_destroy().
2251 	 */
2252 	if (lock && !(info->flags & VM_LOCKED)) {
2253 		if (!user_shm_lock(inode->i_size, ucounts))
2254 			goto out_nomem;
2255 		info->flags |= VM_LOCKED;
2256 		mapping_set_unevictable(file->f_mapping);
2257 	}
2258 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2259 		user_shm_unlock(inode->i_size, ucounts);
2260 		info->flags &= ~VM_LOCKED;
2261 		mapping_clear_unevictable(file->f_mapping);
2262 	}
2263 	retval = 0;
2264 
2265 out_nomem:
2266 	return retval;
2267 }
2268 
2269 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2270 {
2271 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2272 	int ret;
2273 
2274 	ret = seal_check_future_write(info->seals, vma);
2275 	if (ret)
2276 		return ret;
2277 
2278 	/* arm64 - allow memory tagging on RAM-based files */
2279 	vma->vm_flags |= VM_MTE_ALLOWED;
2280 
2281 	file_accessed(file);
2282 	vma->vm_ops = &shmem_vm_ops;
2283 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2284 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2285 			(vma->vm_end & HPAGE_PMD_MASK)) {
2286 		khugepaged_enter(vma, vma->vm_flags);
2287 	}
2288 	return 0;
2289 }
2290 
2291 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2292 				     umode_t mode, dev_t dev, unsigned long flags)
2293 {
2294 	struct inode *inode;
2295 	struct shmem_inode_info *info;
2296 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2297 	ino_t ino;
2298 
2299 	if (shmem_reserve_inode(sb, &ino))
2300 		return NULL;
2301 
2302 	inode = new_inode(sb);
2303 	if (inode) {
2304 		inode->i_ino = ino;
2305 		inode_init_owner(&init_user_ns, inode, dir, mode);
2306 		inode->i_blocks = 0;
2307 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2308 		inode->i_generation = prandom_u32();
2309 		info = SHMEM_I(inode);
2310 		memset(info, 0, (char *)inode - (char *)info);
2311 		spin_lock_init(&info->lock);
2312 		atomic_set(&info->stop_eviction, 0);
2313 		info->seals = F_SEAL_SEAL;
2314 		info->flags = flags & VM_NORESERVE;
2315 		INIT_LIST_HEAD(&info->shrinklist);
2316 		INIT_LIST_HEAD(&info->swaplist);
2317 		simple_xattrs_init(&info->xattrs);
2318 		cache_no_acl(inode);
2319 
2320 		switch (mode & S_IFMT) {
2321 		default:
2322 			inode->i_op = &shmem_special_inode_operations;
2323 			init_special_inode(inode, mode, dev);
2324 			break;
2325 		case S_IFREG:
2326 			inode->i_mapping->a_ops = &shmem_aops;
2327 			inode->i_op = &shmem_inode_operations;
2328 			inode->i_fop = &shmem_file_operations;
2329 			mpol_shared_policy_init(&info->policy,
2330 						 shmem_get_sbmpol(sbinfo));
2331 			break;
2332 		case S_IFDIR:
2333 			inc_nlink(inode);
2334 			/* Some things misbehave if size == 0 on a directory */
2335 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2336 			inode->i_op = &shmem_dir_inode_operations;
2337 			inode->i_fop = &simple_dir_operations;
2338 			break;
2339 		case S_IFLNK:
2340 			/*
2341 			 * Must not load anything in the rbtree,
2342 			 * mpol_free_shared_policy will not be called.
2343 			 */
2344 			mpol_shared_policy_init(&info->policy, NULL);
2345 			break;
2346 		}
2347 
2348 		lockdep_annotate_inode_mutex_key(inode);
2349 	} else
2350 		shmem_free_inode(sb);
2351 	return inode;
2352 }
2353 
2354 #ifdef CONFIG_USERFAULTFD
2355 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2356 			   pmd_t *dst_pmd,
2357 			   struct vm_area_struct *dst_vma,
2358 			   unsigned long dst_addr,
2359 			   unsigned long src_addr,
2360 			   bool zeropage,
2361 			   struct page **pagep)
2362 {
2363 	struct inode *inode = file_inode(dst_vma->vm_file);
2364 	struct shmem_inode_info *info = SHMEM_I(inode);
2365 	struct address_space *mapping = inode->i_mapping;
2366 	gfp_t gfp = mapping_gfp_mask(mapping);
2367 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2368 	void *page_kaddr;
2369 	struct page *page;
2370 	int ret;
2371 	pgoff_t max_off;
2372 
2373 	if (!shmem_inode_acct_block(inode, 1)) {
2374 		/*
2375 		 * We may have got a page, returned -ENOENT triggering a retry,
2376 		 * and now we find ourselves with -ENOMEM. Release the page, to
2377 		 * avoid a BUG_ON in our caller.
2378 		 */
2379 		if (unlikely(*pagep)) {
2380 			put_page(*pagep);
2381 			*pagep = NULL;
2382 		}
2383 		return -ENOMEM;
2384 	}
2385 
2386 	if (!*pagep) {
2387 		ret = -ENOMEM;
2388 		page = shmem_alloc_page(gfp, info, pgoff);
2389 		if (!page)
2390 			goto out_unacct_blocks;
2391 
2392 		if (!zeropage) {	/* COPY */
2393 			page_kaddr = kmap_atomic(page);
2394 			ret = copy_from_user(page_kaddr,
2395 					     (const void __user *)src_addr,
2396 					     PAGE_SIZE);
2397 			kunmap_atomic(page_kaddr);
2398 
2399 			/* fallback to copy_from_user outside mmap_lock */
2400 			if (unlikely(ret)) {
2401 				*pagep = page;
2402 				ret = -ENOENT;
2403 				/* don't free the page */
2404 				goto out_unacct_blocks;
2405 			}
2406 		} else {		/* ZEROPAGE */
2407 			clear_highpage(page);
2408 		}
2409 	} else {
2410 		page = *pagep;
2411 		*pagep = NULL;
2412 	}
2413 
2414 	VM_BUG_ON(PageLocked(page));
2415 	VM_BUG_ON(PageSwapBacked(page));
2416 	__SetPageLocked(page);
2417 	__SetPageSwapBacked(page);
2418 	__SetPageUptodate(page);
2419 
2420 	ret = -EFAULT;
2421 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2422 	if (unlikely(pgoff >= max_off))
2423 		goto out_release;
2424 
2425 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2426 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2427 	if (ret)
2428 		goto out_release;
2429 
2430 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2431 				       page, true, false);
2432 	if (ret)
2433 		goto out_delete_from_cache;
2434 
2435 	spin_lock_irq(&info->lock);
2436 	info->alloced++;
2437 	inode->i_blocks += BLOCKS_PER_PAGE;
2438 	shmem_recalc_inode(inode);
2439 	spin_unlock_irq(&info->lock);
2440 
2441 	SetPageDirty(page);
2442 	unlock_page(page);
2443 	return 0;
2444 out_delete_from_cache:
2445 	delete_from_page_cache(page);
2446 out_release:
2447 	unlock_page(page);
2448 	put_page(page);
2449 out_unacct_blocks:
2450 	shmem_inode_unacct_blocks(inode, 1);
2451 	return ret;
2452 }
2453 #endif /* CONFIG_USERFAULTFD */
2454 
2455 #ifdef CONFIG_TMPFS
2456 static const struct inode_operations shmem_symlink_inode_operations;
2457 static const struct inode_operations shmem_short_symlink_operations;
2458 
2459 #ifdef CONFIG_TMPFS_XATTR
2460 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2461 #else
2462 #define shmem_initxattrs NULL
2463 #endif
2464 
2465 static int
2466 shmem_write_begin(struct file *file, struct address_space *mapping,
2467 			loff_t pos, unsigned len, unsigned flags,
2468 			struct page **pagep, void **fsdata)
2469 {
2470 	struct inode *inode = mapping->host;
2471 	struct shmem_inode_info *info = SHMEM_I(inode);
2472 	pgoff_t index = pos >> PAGE_SHIFT;
2473 
2474 	/* i_mutex is held by caller */
2475 	if (unlikely(info->seals & (F_SEAL_GROW |
2476 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2477 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2478 			return -EPERM;
2479 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2480 			return -EPERM;
2481 	}
2482 
2483 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2484 }
2485 
2486 static int
2487 shmem_write_end(struct file *file, struct address_space *mapping,
2488 			loff_t pos, unsigned len, unsigned copied,
2489 			struct page *page, void *fsdata)
2490 {
2491 	struct inode *inode = mapping->host;
2492 
2493 	if (pos + copied > inode->i_size)
2494 		i_size_write(inode, pos + copied);
2495 
2496 	if (!PageUptodate(page)) {
2497 		struct page *head = compound_head(page);
2498 		if (PageTransCompound(page)) {
2499 			int i;
2500 
2501 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2502 				if (head + i == page)
2503 					continue;
2504 				clear_highpage(head + i);
2505 				flush_dcache_page(head + i);
2506 			}
2507 		}
2508 		if (copied < PAGE_SIZE) {
2509 			unsigned from = pos & (PAGE_SIZE - 1);
2510 			zero_user_segments(page, 0, from,
2511 					from + copied, PAGE_SIZE);
2512 		}
2513 		SetPageUptodate(head);
2514 	}
2515 	set_page_dirty(page);
2516 	unlock_page(page);
2517 	put_page(page);
2518 
2519 	return copied;
2520 }
2521 
2522 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2523 {
2524 	struct file *file = iocb->ki_filp;
2525 	struct inode *inode = file_inode(file);
2526 	struct address_space *mapping = inode->i_mapping;
2527 	pgoff_t index;
2528 	unsigned long offset;
2529 	enum sgp_type sgp = SGP_READ;
2530 	int error = 0;
2531 	ssize_t retval = 0;
2532 	loff_t *ppos = &iocb->ki_pos;
2533 
2534 	/*
2535 	 * Might this read be for a stacking filesystem?  Then when reading
2536 	 * holes of a sparse file, we actually need to allocate those pages,
2537 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2538 	 */
2539 	if (!iter_is_iovec(to))
2540 		sgp = SGP_CACHE;
2541 
2542 	index = *ppos >> PAGE_SHIFT;
2543 	offset = *ppos & ~PAGE_MASK;
2544 
2545 	for (;;) {
2546 		struct page *page = NULL;
2547 		pgoff_t end_index;
2548 		unsigned long nr, ret;
2549 		loff_t i_size = i_size_read(inode);
2550 
2551 		end_index = i_size >> PAGE_SHIFT;
2552 		if (index > end_index)
2553 			break;
2554 		if (index == end_index) {
2555 			nr = i_size & ~PAGE_MASK;
2556 			if (nr <= offset)
2557 				break;
2558 		}
2559 
2560 		error = shmem_getpage(inode, index, &page, sgp);
2561 		if (error) {
2562 			if (error == -EINVAL)
2563 				error = 0;
2564 			break;
2565 		}
2566 		if (page) {
2567 			if (sgp == SGP_CACHE)
2568 				set_page_dirty(page);
2569 			unlock_page(page);
2570 		}
2571 
2572 		/*
2573 		 * We must evaluate after, since reads (unlike writes)
2574 		 * are called without i_mutex protection against truncate
2575 		 */
2576 		nr = PAGE_SIZE;
2577 		i_size = i_size_read(inode);
2578 		end_index = i_size >> PAGE_SHIFT;
2579 		if (index == end_index) {
2580 			nr = i_size & ~PAGE_MASK;
2581 			if (nr <= offset) {
2582 				if (page)
2583 					put_page(page);
2584 				break;
2585 			}
2586 		}
2587 		nr -= offset;
2588 
2589 		if (page) {
2590 			/*
2591 			 * If users can be writing to this page using arbitrary
2592 			 * virtual addresses, take care about potential aliasing
2593 			 * before reading the page on the kernel side.
2594 			 */
2595 			if (mapping_writably_mapped(mapping))
2596 				flush_dcache_page(page);
2597 			/*
2598 			 * Mark the page accessed if we read the beginning.
2599 			 */
2600 			if (!offset)
2601 				mark_page_accessed(page);
2602 		} else {
2603 			page = ZERO_PAGE(0);
2604 			get_page(page);
2605 		}
2606 
2607 		/*
2608 		 * Ok, we have the page, and it's up-to-date, so
2609 		 * now we can copy it to user space...
2610 		 */
2611 		ret = copy_page_to_iter(page, offset, nr, to);
2612 		retval += ret;
2613 		offset += ret;
2614 		index += offset >> PAGE_SHIFT;
2615 		offset &= ~PAGE_MASK;
2616 
2617 		put_page(page);
2618 		if (!iov_iter_count(to))
2619 			break;
2620 		if (ret < nr) {
2621 			error = -EFAULT;
2622 			break;
2623 		}
2624 		cond_resched();
2625 	}
2626 
2627 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2628 	file_accessed(file);
2629 	return retval ? retval : error;
2630 }
2631 
2632 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2633 {
2634 	struct address_space *mapping = file->f_mapping;
2635 	struct inode *inode = mapping->host;
2636 
2637 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2638 		return generic_file_llseek_size(file, offset, whence,
2639 					MAX_LFS_FILESIZE, i_size_read(inode));
2640 	if (offset < 0)
2641 		return -ENXIO;
2642 
2643 	inode_lock(inode);
2644 	/* We're holding i_mutex so we can access i_size directly */
2645 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2646 	if (offset >= 0)
2647 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2648 	inode_unlock(inode);
2649 	return offset;
2650 }
2651 
2652 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2653 							 loff_t len)
2654 {
2655 	struct inode *inode = file_inode(file);
2656 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2657 	struct shmem_inode_info *info = SHMEM_I(inode);
2658 	struct shmem_falloc shmem_falloc;
2659 	pgoff_t start, index, end;
2660 	int error;
2661 
2662 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2663 		return -EOPNOTSUPP;
2664 
2665 	inode_lock(inode);
2666 
2667 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2668 		struct address_space *mapping = file->f_mapping;
2669 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2670 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2671 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2672 
2673 		/* protected by i_mutex */
2674 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2675 			error = -EPERM;
2676 			goto out;
2677 		}
2678 
2679 		shmem_falloc.waitq = &shmem_falloc_waitq;
2680 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2681 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2682 		spin_lock(&inode->i_lock);
2683 		inode->i_private = &shmem_falloc;
2684 		spin_unlock(&inode->i_lock);
2685 
2686 		if ((u64)unmap_end > (u64)unmap_start)
2687 			unmap_mapping_range(mapping, unmap_start,
2688 					    1 + unmap_end - unmap_start, 0);
2689 		shmem_truncate_range(inode, offset, offset + len - 1);
2690 		/* No need to unmap again: hole-punching leaves COWed pages */
2691 
2692 		spin_lock(&inode->i_lock);
2693 		inode->i_private = NULL;
2694 		wake_up_all(&shmem_falloc_waitq);
2695 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2696 		spin_unlock(&inode->i_lock);
2697 		error = 0;
2698 		goto out;
2699 	}
2700 
2701 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2702 	error = inode_newsize_ok(inode, offset + len);
2703 	if (error)
2704 		goto out;
2705 
2706 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2707 		error = -EPERM;
2708 		goto out;
2709 	}
2710 
2711 	start = offset >> PAGE_SHIFT;
2712 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2713 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2714 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2715 		error = -ENOSPC;
2716 		goto out;
2717 	}
2718 
2719 	shmem_falloc.waitq = NULL;
2720 	shmem_falloc.start = start;
2721 	shmem_falloc.next  = start;
2722 	shmem_falloc.nr_falloced = 0;
2723 	shmem_falloc.nr_unswapped = 0;
2724 	spin_lock(&inode->i_lock);
2725 	inode->i_private = &shmem_falloc;
2726 	spin_unlock(&inode->i_lock);
2727 
2728 	for (index = start; index < end; index++) {
2729 		struct page *page;
2730 
2731 		/*
2732 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2733 		 * been interrupted because we are using up too much memory.
2734 		 */
2735 		if (signal_pending(current))
2736 			error = -EINTR;
2737 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2738 			error = -ENOMEM;
2739 		else
2740 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2741 		if (error) {
2742 			/* Remove the !PageUptodate pages we added */
2743 			if (index > start) {
2744 				shmem_undo_range(inode,
2745 				    (loff_t)start << PAGE_SHIFT,
2746 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2747 			}
2748 			goto undone;
2749 		}
2750 
2751 		/*
2752 		 * Inform shmem_writepage() how far we have reached.
2753 		 * No need for lock or barrier: we have the page lock.
2754 		 */
2755 		shmem_falloc.next++;
2756 		if (!PageUptodate(page))
2757 			shmem_falloc.nr_falloced++;
2758 
2759 		/*
2760 		 * If !PageUptodate, leave it that way so that freeable pages
2761 		 * can be recognized if we need to rollback on error later.
2762 		 * But set_page_dirty so that memory pressure will swap rather
2763 		 * than free the pages we are allocating (and SGP_CACHE pages
2764 		 * might still be clean: we now need to mark those dirty too).
2765 		 */
2766 		set_page_dirty(page);
2767 		unlock_page(page);
2768 		put_page(page);
2769 		cond_resched();
2770 	}
2771 
2772 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2773 		i_size_write(inode, offset + len);
2774 	inode->i_ctime = current_time(inode);
2775 undone:
2776 	spin_lock(&inode->i_lock);
2777 	inode->i_private = NULL;
2778 	spin_unlock(&inode->i_lock);
2779 out:
2780 	inode_unlock(inode);
2781 	return error;
2782 }
2783 
2784 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2785 {
2786 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2787 
2788 	buf->f_type = TMPFS_MAGIC;
2789 	buf->f_bsize = PAGE_SIZE;
2790 	buf->f_namelen = NAME_MAX;
2791 	if (sbinfo->max_blocks) {
2792 		buf->f_blocks = sbinfo->max_blocks;
2793 		buf->f_bavail =
2794 		buf->f_bfree  = sbinfo->max_blocks -
2795 				percpu_counter_sum(&sbinfo->used_blocks);
2796 	}
2797 	if (sbinfo->max_inodes) {
2798 		buf->f_files = sbinfo->max_inodes;
2799 		buf->f_ffree = sbinfo->free_inodes;
2800 	}
2801 	/* else leave those fields 0 like simple_statfs */
2802 
2803 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2804 
2805 	return 0;
2806 }
2807 
2808 /*
2809  * File creation. Allocate an inode, and we're done..
2810  */
2811 static int
2812 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2813 	    struct dentry *dentry, umode_t mode, dev_t dev)
2814 {
2815 	struct inode *inode;
2816 	int error = -ENOSPC;
2817 
2818 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2819 	if (inode) {
2820 		error = simple_acl_create(dir, inode);
2821 		if (error)
2822 			goto out_iput;
2823 		error = security_inode_init_security(inode, dir,
2824 						     &dentry->d_name,
2825 						     shmem_initxattrs, NULL);
2826 		if (error && error != -EOPNOTSUPP)
2827 			goto out_iput;
2828 
2829 		error = 0;
2830 		dir->i_size += BOGO_DIRENT_SIZE;
2831 		dir->i_ctime = dir->i_mtime = current_time(dir);
2832 		d_instantiate(dentry, inode);
2833 		dget(dentry); /* Extra count - pin the dentry in core */
2834 	}
2835 	return error;
2836 out_iput:
2837 	iput(inode);
2838 	return error;
2839 }
2840 
2841 static int
2842 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2843 	      struct dentry *dentry, umode_t mode)
2844 {
2845 	struct inode *inode;
2846 	int error = -ENOSPC;
2847 
2848 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2849 	if (inode) {
2850 		error = security_inode_init_security(inode, dir,
2851 						     NULL,
2852 						     shmem_initxattrs, NULL);
2853 		if (error && error != -EOPNOTSUPP)
2854 			goto out_iput;
2855 		error = simple_acl_create(dir, inode);
2856 		if (error)
2857 			goto out_iput;
2858 		d_tmpfile(dentry, inode);
2859 	}
2860 	return error;
2861 out_iput:
2862 	iput(inode);
2863 	return error;
2864 }
2865 
2866 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2867 		       struct dentry *dentry, umode_t mode)
2868 {
2869 	int error;
2870 
2871 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2872 				 mode | S_IFDIR, 0)))
2873 		return error;
2874 	inc_nlink(dir);
2875 	return 0;
2876 }
2877 
2878 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2879 			struct dentry *dentry, umode_t mode, bool excl)
2880 {
2881 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2882 }
2883 
2884 /*
2885  * Link a file..
2886  */
2887 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2888 {
2889 	struct inode *inode = d_inode(old_dentry);
2890 	int ret = 0;
2891 
2892 	/*
2893 	 * No ordinary (disk based) filesystem counts links as inodes;
2894 	 * but each new link needs a new dentry, pinning lowmem, and
2895 	 * tmpfs dentries cannot be pruned until they are unlinked.
2896 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2897 	 * first link must skip that, to get the accounting right.
2898 	 */
2899 	if (inode->i_nlink) {
2900 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2901 		if (ret)
2902 			goto out;
2903 	}
2904 
2905 	dir->i_size += BOGO_DIRENT_SIZE;
2906 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2907 	inc_nlink(inode);
2908 	ihold(inode);	/* New dentry reference */
2909 	dget(dentry);		/* Extra pinning count for the created dentry */
2910 	d_instantiate(dentry, inode);
2911 out:
2912 	return ret;
2913 }
2914 
2915 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2916 {
2917 	struct inode *inode = d_inode(dentry);
2918 
2919 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2920 		shmem_free_inode(inode->i_sb);
2921 
2922 	dir->i_size -= BOGO_DIRENT_SIZE;
2923 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2924 	drop_nlink(inode);
2925 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2926 	return 0;
2927 }
2928 
2929 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2930 {
2931 	if (!simple_empty(dentry))
2932 		return -ENOTEMPTY;
2933 
2934 	drop_nlink(d_inode(dentry));
2935 	drop_nlink(dir);
2936 	return shmem_unlink(dir, dentry);
2937 }
2938 
2939 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2940 {
2941 	bool old_is_dir = d_is_dir(old_dentry);
2942 	bool new_is_dir = d_is_dir(new_dentry);
2943 
2944 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2945 		if (old_is_dir) {
2946 			drop_nlink(old_dir);
2947 			inc_nlink(new_dir);
2948 		} else {
2949 			drop_nlink(new_dir);
2950 			inc_nlink(old_dir);
2951 		}
2952 	}
2953 	old_dir->i_ctime = old_dir->i_mtime =
2954 	new_dir->i_ctime = new_dir->i_mtime =
2955 	d_inode(old_dentry)->i_ctime =
2956 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2957 
2958 	return 0;
2959 }
2960 
2961 static int shmem_whiteout(struct user_namespace *mnt_userns,
2962 			  struct inode *old_dir, struct dentry *old_dentry)
2963 {
2964 	struct dentry *whiteout;
2965 	int error;
2966 
2967 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2968 	if (!whiteout)
2969 		return -ENOMEM;
2970 
2971 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2972 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2973 	dput(whiteout);
2974 	if (error)
2975 		return error;
2976 
2977 	/*
2978 	 * Cheat and hash the whiteout while the old dentry is still in
2979 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2980 	 *
2981 	 * d_lookup() will consistently find one of them at this point,
2982 	 * not sure which one, but that isn't even important.
2983 	 */
2984 	d_rehash(whiteout);
2985 	return 0;
2986 }
2987 
2988 /*
2989  * The VFS layer already does all the dentry stuff for rename,
2990  * we just have to decrement the usage count for the target if
2991  * it exists so that the VFS layer correctly free's it when it
2992  * gets overwritten.
2993  */
2994 static int shmem_rename2(struct user_namespace *mnt_userns,
2995 			 struct inode *old_dir, struct dentry *old_dentry,
2996 			 struct inode *new_dir, struct dentry *new_dentry,
2997 			 unsigned int flags)
2998 {
2999 	struct inode *inode = d_inode(old_dentry);
3000 	int they_are_dirs = S_ISDIR(inode->i_mode);
3001 
3002 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3003 		return -EINVAL;
3004 
3005 	if (flags & RENAME_EXCHANGE)
3006 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3007 
3008 	if (!simple_empty(new_dentry))
3009 		return -ENOTEMPTY;
3010 
3011 	if (flags & RENAME_WHITEOUT) {
3012 		int error;
3013 
3014 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3015 		if (error)
3016 			return error;
3017 	}
3018 
3019 	if (d_really_is_positive(new_dentry)) {
3020 		(void) shmem_unlink(new_dir, new_dentry);
3021 		if (they_are_dirs) {
3022 			drop_nlink(d_inode(new_dentry));
3023 			drop_nlink(old_dir);
3024 		}
3025 	} else if (they_are_dirs) {
3026 		drop_nlink(old_dir);
3027 		inc_nlink(new_dir);
3028 	}
3029 
3030 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3031 	new_dir->i_size += BOGO_DIRENT_SIZE;
3032 	old_dir->i_ctime = old_dir->i_mtime =
3033 	new_dir->i_ctime = new_dir->i_mtime =
3034 	inode->i_ctime = current_time(old_dir);
3035 	return 0;
3036 }
3037 
3038 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3039 			 struct dentry *dentry, const char *symname)
3040 {
3041 	int error;
3042 	int len;
3043 	struct inode *inode;
3044 	struct page *page;
3045 
3046 	len = strlen(symname) + 1;
3047 	if (len > PAGE_SIZE)
3048 		return -ENAMETOOLONG;
3049 
3050 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3051 				VM_NORESERVE);
3052 	if (!inode)
3053 		return -ENOSPC;
3054 
3055 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3056 					     shmem_initxattrs, NULL);
3057 	if (error && error != -EOPNOTSUPP) {
3058 		iput(inode);
3059 		return error;
3060 	}
3061 
3062 	inode->i_size = len-1;
3063 	if (len <= SHORT_SYMLINK_LEN) {
3064 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3065 		if (!inode->i_link) {
3066 			iput(inode);
3067 			return -ENOMEM;
3068 		}
3069 		inode->i_op = &shmem_short_symlink_operations;
3070 	} else {
3071 		inode_nohighmem(inode);
3072 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3073 		if (error) {
3074 			iput(inode);
3075 			return error;
3076 		}
3077 		inode->i_mapping->a_ops = &shmem_aops;
3078 		inode->i_op = &shmem_symlink_inode_operations;
3079 		memcpy(page_address(page), symname, len);
3080 		SetPageUptodate(page);
3081 		set_page_dirty(page);
3082 		unlock_page(page);
3083 		put_page(page);
3084 	}
3085 	dir->i_size += BOGO_DIRENT_SIZE;
3086 	dir->i_ctime = dir->i_mtime = current_time(dir);
3087 	d_instantiate(dentry, inode);
3088 	dget(dentry);
3089 	return 0;
3090 }
3091 
3092 static void shmem_put_link(void *arg)
3093 {
3094 	mark_page_accessed(arg);
3095 	put_page(arg);
3096 }
3097 
3098 static const char *shmem_get_link(struct dentry *dentry,
3099 				  struct inode *inode,
3100 				  struct delayed_call *done)
3101 {
3102 	struct page *page = NULL;
3103 	int error;
3104 	if (!dentry) {
3105 		page = find_get_page(inode->i_mapping, 0);
3106 		if (!page)
3107 			return ERR_PTR(-ECHILD);
3108 		if (!PageUptodate(page)) {
3109 			put_page(page);
3110 			return ERR_PTR(-ECHILD);
3111 		}
3112 	} else {
3113 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3114 		if (error)
3115 			return ERR_PTR(error);
3116 		unlock_page(page);
3117 	}
3118 	set_delayed_call(done, shmem_put_link, page);
3119 	return page_address(page);
3120 }
3121 
3122 #ifdef CONFIG_TMPFS_XATTR
3123 /*
3124  * Superblocks without xattr inode operations may get some security.* xattr
3125  * support from the LSM "for free". As soon as we have any other xattrs
3126  * like ACLs, we also need to implement the security.* handlers at
3127  * filesystem level, though.
3128  */
3129 
3130 /*
3131  * Callback for security_inode_init_security() for acquiring xattrs.
3132  */
3133 static int shmem_initxattrs(struct inode *inode,
3134 			    const struct xattr *xattr_array,
3135 			    void *fs_info)
3136 {
3137 	struct shmem_inode_info *info = SHMEM_I(inode);
3138 	const struct xattr *xattr;
3139 	struct simple_xattr *new_xattr;
3140 	size_t len;
3141 
3142 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3143 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3144 		if (!new_xattr)
3145 			return -ENOMEM;
3146 
3147 		len = strlen(xattr->name) + 1;
3148 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3149 					  GFP_KERNEL);
3150 		if (!new_xattr->name) {
3151 			kvfree(new_xattr);
3152 			return -ENOMEM;
3153 		}
3154 
3155 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3156 		       XATTR_SECURITY_PREFIX_LEN);
3157 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3158 		       xattr->name, len);
3159 
3160 		simple_xattr_list_add(&info->xattrs, new_xattr);
3161 	}
3162 
3163 	return 0;
3164 }
3165 
3166 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3167 				   struct dentry *unused, struct inode *inode,
3168 				   const char *name, void *buffer, size_t size)
3169 {
3170 	struct shmem_inode_info *info = SHMEM_I(inode);
3171 
3172 	name = xattr_full_name(handler, name);
3173 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3174 }
3175 
3176 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3177 				   struct user_namespace *mnt_userns,
3178 				   struct dentry *unused, struct inode *inode,
3179 				   const char *name, const void *value,
3180 				   size_t size, int flags)
3181 {
3182 	struct shmem_inode_info *info = SHMEM_I(inode);
3183 
3184 	name = xattr_full_name(handler, name);
3185 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3186 }
3187 
3188 static const struct xattr_handler shmem_security_xattr_handler = {
3189 	.prefix = XATTR_SECURITY_PREFIX,
3190 	.get = shmem_xattr_handler_get,
3191 	.set = shmem_xattr_handler_set,
3192 };
3193 
3194 static const struct xattr_handler shmem_trusted_xattr_handler = {
3195 	.prefix = XATTR_TRUSTED_PREFIX,
3196 	.get = shmem_xattr_handler_get,
3197 	.set = shmem_xattr_handler_set,
3198 };
3199 
3200 static const struct xattr_handler *shmem_xattr_handlers[] = {
3201 #ifdef CONFIG_TMPFS_POSIX_ACL
3202 	&posix_acl_access_xattr_handler,
3203 	&posix_acl_default_xattr_handler,
3204 #endif
3205 	&shmem_security_xattr_handler,
3206 	&shmem_trusted_xattr_handler,
3207 	NULL
3208 };
3209 
3210 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3211 {
3212 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3213 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3214 }
3215 #endif /* CONFIG_TMPFS_XATTR */
3216 
3217 static const struct inode_operations shmem_short_symlink_operations = {
3218 	.get_link	= simple_get_link,
3219 #ifdef CONFIG_TMPFS_XATTR
3220 	.listxattr	= shmem_listxattr,
3221 #endif
3222 };
3223 
3224 static const struct inode_operations shmem_symlink_inode_operations = {
3225 	.get_link	= shmem_get_link,
3226 #ifdef CONFIG_TMPFS_XATTR
3227 	.listxattr	= shmem_listxattr,
3228 #endif
3229 };
3230 
3231 static struct dentry *shmem_get_parent(struct dentry *child)
3232 {
3233 	return ERR_PTR(-ESTALE);
3234 }
3235 
3236 static int shmem_match(struct inode *ino, void *vfh)
3237 {
3238 	__u32 *fh = vfh;
3239 	__u64 inum = fh[2];
3240 	inum = (inum << 32) | fh[1];
3241 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3242 }
3243 
3244 /* Find any alias of inode, but prefer a hashed alias */
3245 static struct dentry *shmem_find_alias(struct inode *inode)
3246 {
3247 	struct dentry *alias = d_find_alias(inode);
3248 
3249 	return alias ?: d_find_any_alias(inode);
3250 }
3251 
3252 
3253 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3254 		struct fid *fid, int fh_len, int fh_type)
3255 {
3256 	struct inode *inode;
3257 	struct dentry *dentry = NULL;
3258 	u64 inum;
3259 
3260 	if (fh_len < 3)
3261 		return NULL;
3262 
3263 	inum = fid->raw[2];
3264 	inum = (inum << 32) | fid->raw[1];
3265 
3266 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3267 			shmem_match, fid->raw);
3268 	if (inode) {
3269 		dentry = shmem_find_alias(inode);
3270 		iput(inode);
3271 	}
3272 
3273 	return dentry;
3274 }
3275 
3276 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3277 				struct inode *parent)
3278 {
3279 	if (*len < 3) {
3280 		*len = 3;
3281 		return FILEID_INVALID;
3282 	}
3283 
3284 	if (inode_unhashed(inode)) {
3285 		/* Unfortunately insert_inode_hash is not idempotent,
3286 		 * so as we hash inodes here rather than at creation
3287 		 * time, we need a lock to ensure we only try
3288 		 * to do it once
3289 		 */
3290 		static DEFINE_SPINLOCK(lock);
3291 		spin_lock(&lock);
3292 		if (inode_unhashed(inode))
3293 			__insert_inode_hash(inode,
3294 					    inode->i_ino + inode->i_generation);
3295 		spin_unlock(&lock);
3296 	}
3297 
3298 	fh[0] = inode->i_generation;
3299 	fh[1] = inode->i_ino;
3300 	fh[2] = ((__u64)inode->i_ino) >> 32;
3301 
3302 	*len = 3;
3303 	return 1;
3304 }
3305 
3306 static const struct export_operations shmem_export_ops = {
3307 	.get_parent     = shmem_get_parent,
3308 	.encode_fh      = shmem_encode_fh,
3309 	.fh_to_dentry	= shmem_fh_to_dentry,
3310 };
3311 
3312 enum shmem_param {
3313 	Opt_gid,
3314 	Opt_huge,
3315 	Opt_mode,
3316 	Opt_mpol,
3317 	Opt_nr_blocks,
3318 	Opt_nr_inodes,
3319 	Opt_size,
3320 	Opt_uid,
3321 	Opt_inode32,
3322 	Opt_inode64,
3323 };
3324 
3325 static const struct constant_table shmem_param_enums_huge[] = {
3326 	{"never",	SHMEM_HUGE_NEVER },
3327 	{"always",	SHMEM_HUGE_ALWAYS },
3328 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3329 	{"advise",	SHMEM_HUGE_ADVISE },
3330 	{}
3331 };
3332 
3333 const struct fs_parameter_spec shmem_fs_parameters[] = {
3334 	fsparam_u32   ("gid",		Opt_gid),
3335 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3336 	fsparam_u32oct("mode",		Opt_mode),
3337 	fsparam_string("mpol",		Opt_mpol),
3338 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3339 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3340 	fsparam_string("size",		Opt_size),
3341 	fsparam_u32   ("uid",		Opt_uid),
3342 	fsparam_flag  ("inode32",	Opt_inode32),
3343 	fsparam_flag  ("inode64",	Opt_inode64),
3344 	{}
3345 };
3346 
3347 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3348 {
3349 	struct shmem_options *ctx = fc->fs_private;
3350 	struct fs_parse_result result;
3351 	unsigned long long size;
3352 	char *rest;
3353 	int opt;
3354 
3355 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3356 	if (opt < 0)
3357 		return opt;
3358 
3359 	switch (opt) {
3360 	case Opt_size:
3361 		size = memparse(param->string, &rest);
3362 		if (*rest == '%') {
3363 			size <<= PAGE_SHIFT;
3364 			size *= totalram_pages();
3365 			do_div(size, 100);
3366 			rest++;
3367 		}
3368 		if (*rest)
3369 			goto bad_value;
3370 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3371 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3372 		break;
3373 	case Opt_nr_blocks:
3374 		ctx->blocks = memparse(param->string, &rest);
3375 		if (*rest)
3376 			goto bad_value;
3377 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3378 		break;
3379 	case Opt_nr_inodes:
3380 		ctx->inodes = memparse(param->string, &rest);
3381 		if (*rest)
3382 			goto bad_value;
3383 		ctx->seen |= SHMEM_SEEN_INODES;
3384 		break;
3385 	case Opt_mode:
3386 		ctx->mode = result.uint_32 & 07777;
3387 		break;
3388 	case Opt_uid:
3389 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3390 		if (!uid_valid(ctx->uid))
3391 			goto bad_value;
3392 		break;
3393 	case Opt_gid:
3394 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3395 		if (!gid_valid(ctx->gid))
3396 			goto bad_value;
3397 		break;
3398 	case Opt_huge:
3399 		ctx->huge = result.uint_32;
3400 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3401 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3402 		      has_transparent_hugepage()))
3403 			goto unsupported_parameter;
3404 		ctx->seen |= SHMEM_SEEN_HUGE;
3405 		break;
3406 	case Opt_mpol:
3407 		if (IS_ENABLED(CONFIG_NUMA)) {
3408 			mpol_put(ctx->mpol);
3409 			ctx->mpol = NULL;
3410 			if (mpol_parse_str(param->string, &ctx->mpol))
3411 				goto bad_value;
3412 			break;
3413 		}
3414 		goto unsupported_parameter;
3415 	case Opt_inode32:
3416 		ctx->full_inums = false;
3417 		ctx->seen |= SHMEM_SEEN_INUMS;
3418 		break;
3419 	case Opt_inode64:
3420 		if (sizeof(ino_t) < 8) {
3421 			return invalfc(fc,
3422 				       "Cannot use inode64 with <64bit inums in kernel\n");
3423 		}
3424 		ctx->full_inums = true;
3425 		ctx->seen |= SHMEM_SEEN_INUMS;
3426 		break;
3427 	}
3428 	return 0;
3429 
3430 unsupported_parameter:
3431 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3432 bad_value:
3433 	return invalfc(fc, "Bad value for '%s'", param->key);
3434 }
3435 
3436 static int shmem_parse_options(struct fs_context *fc, void *data)
3437 {
3438 	char *options = data;
3439 
3440 	if (options) {
3441 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3442 		if (err)
3443 			return err;
3444 	}
3445 
3446 	while (options != NULL) {
3447 		char *this_char = options;
3448 		for (;;) {
3449 			/*
3450 			 * NUL-terminate this option: unfortunately,
3451 			 * mount options form a comma-separated list,
3452 			 * but mpol's nodelist may also contain commas.
3453 			 */
3454 			options = strchr(options, ',');
3455 			if (options == NULL)
3456 				break;
3457 			options++;
3458 			if (!isdigit(*options)) {
3459 				options[-1] = '\0';
3460 				break;
3461 			}
3462 		}
3463 		if (*this_char) {
3464 			char *value = strchr(this_char, '=');
3465 			size_t len = 0;
3466 			int err;
3467 
3468 			if (value) {
3469 				*value++ = '\0';
3470 				len = strlen(value);
3471 			}
3472 			err = vfs_parse_fs_string(fc, this_char, value, len);
3473 			if (err < 0)
3474 				return err;
3475 		}
3476 	}
3477 	return 0;
3478 }
3479 
3480 /*
3481  * Reconfigure a shmem filesystem.
3482  *
3483  * Note that we disallow change from limited->unlimited blocks/inodes while any
3484  * are in use; but we must separately disallow unlimited->limited, because in
3485  * that case we have no record of how much is already in use.
3486  */
3487 static int shmem_reconfigure(struct fs_context *fc)
3488 {
3489 	struct shmem_options *ctx = fc->fs_private;
3490 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3491 	unsigned long inodes;
3492 	struct mempolicy *mpol = NULL;
3493 	const char *err;
3494 
3495 	raw_spin_lock(&sbinfo->stat_lock);
3496 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3497 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3498 		if (!sbinfo->max_blocks) {
3499 			err = "Cannot retroactively limit size";
3500 			goto out;
3501 		}
3502 		if (percpu_counter_compare(&sbinfo->used_blocks,
3503 					   ctx->blocks) > 0) {
3504 			err = "Too small a size for current use";
3505 			goto out;
3506 		}
3507 	}
3508 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3509 		if (!sbinfo->max_inodes) {
3510 			err = "Cannot retroactively limit inodes";
3511 			goto out;
3512 		}
3513 		if (ctx->inodes < inodes) {
3514 			err = "Too few inodes for current use";
3515 			goto out;
3516 		}
3517 	}
3518 
3519 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3520 	    sbinfo->next_ino > UINT_MAX) {
3521 		err = "Current inum too high to switch to 32-bit inums";
3522 		goto out;
3523 	}
3524 
3525 	if (ctx->seen & SHMEM_SEEN_HUGE)
3526 		sbinfo->huge = ctx->huge;
3527 	if (ctx->seen & SHMEM_SEEN_INUMS)
3528 		sbinfo->full_inums = ctx->full_inums;
3529 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3530 		sbinfo->max_blocks  = ctx->blocks;
3531 	if (ctx->seen & SHMEM_SEEN_INODES) {
3532 		sbinfo->max_inodes  = ctx->inodes;
3533 		sbinfo->free_inodes = ctx->inodes - inodes;
3534 	}
3535 
3536 	/*
3537 	 * Preserve previous mempolicy unless mpol remount option was specified.
3538 	 */
3539 	if (ctx->mpol) {
3540 		mpol = sbinfo->mpol;
3541 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3542 		ctx->mpol = NULL;
3543 	}
3544 	raw_spin_unlock(&sbinfo->stat_lock);
3545 	mpol_put(mpol);
3546 	return 0;
3547 out:
3548 	raw_spin_unlock(&sbinfo->stat_lock);
3549 	return invalfc(fc, "%s", err);
3550 }
3551 
3552 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3553 {
3554 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3555 
3556 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3557 		seq_printf(seq, ",size=%luk",
3558 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3559 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3560 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3561 	if (sbinfo->mode != (0777 | S_ISVTX))
3562 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3563 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3564 		seq_printf(seq, ",uid=%u",
3565 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3566 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3567 		seq_printf(seq, ",gid=%u",
3568 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3569 
3570 	/*
3571 	 * Showing inode{64,32} might be useful even if it's the system default,
3572 	 * since then people don't have to resort to checking both here and
3573 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3574 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3575 	 *
3576 	 * We hide it when inode64 isn't the default and we are using 32-bit
3577 	 * inodes, since that probably just means the feature isn't even under
3578 	 * consideration.
3579 	 *
3580 	 * As such:
3581 	 *
3582 	 *                     +-----------------+-----------------+
3583 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3584 	 *  +------------------+-----------------+-----------------+
3585 	 *  | full_inums=true  | show            | show            |
3586 	 *  | full_inums=false | show            | hide            |
3587 	 *  +------------------+-----------------+-----------------+
3588 	 *
3589 	 */
3590 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3591 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3592 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3593 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3594 	if (sbinfo->huge)
3595 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3596 #endif
3597 	shmem_show_mpol(seq, sbinfo->mpol);
3598 	return 0;
3599 }
3600 
3601 #endif /* CONFIG_TMPFS */
3602 
3603 static void shmem_put_super(struct super_block *sb)
3604 {
3605 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3606 
3607 	free_percpu(sbinfo->ino_batch);
3608 	percpu_counter_destroy(&sbinfo->used_blocks);
3609 	mpol_put(sbinfo->mpol);
3610 	kfree(sbinfo);
3611 	sb->s_fs_info = NULL;
3612 }
3613 
3614 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3615 {
3616 	struct shmem_options *ctx = fc->fs_private;
3617 	struct inode *inode;
3618 	struct shmem_sb_info *sbinfo;
3619 	int err = -ENOMEM;
3620 
3621 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3622 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3623 				L1_CACHE_BYTES), GFP_KERNEL);
3624 	if (!sbinfo)
3625 		return -ENOMEM;
3626 
3627 	sb->s_fs_info = sbinfo;
3628 
3629 #ifdef CONFIG_TMPFS
3630 	/*
3631 	 * Per default we only allow half of the physical ram per
3632 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3633 	 * but the internal instance is left unlimited.
3634 	 */
3635 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3636 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3637 			ctx->blocks = shmem_default_max_blocks();
3638 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3639 			ctx->inodes = shmem_default_max_inodes();
3640 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3641 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3642 	} else {
3643 		sb->s_flags |= SB_NOUSER;
3644 	}
3645 	sb->s_export_op = &shmem_export_ops;
3646 	sb->s_flags |= SB_NOSEC;
3647 #else
3648 	sb->s_flags |= SB_NOUSER;
3649 #endif
3650 	sbinfo->max_blocks = ctx->blocks;
3651 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3652 	if (sb->s_flags & SB_KERNMOUNT) {
3653 		sbinfo->ino_batch = alloc_percpu(ino_t);
3654 		if (!sbinfo->ino_batch)
3655 			goto failed;
3656 	}
3657 	sbinfo->uid = ctx->uid;
3658 	sbinfo->gid = ctx->gid;
3659 	sbinfo->full_inums = ctx->full_inums;
3660 	sbinfo->mode = ctx->mode;
3661 	sbinfo->huge = ctx->huge;
3662 	sbinfo->mpol = ctx->mpol;
3663 	ctx->mpol = NULL;
3664 
3665 	raw_spin_lock_init(&sbinfo->stat_lock);
3666 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3667 		goto failed;
3668 	spin_lock_init(&sbinfo->shrinklist_lock);
3669 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3670 
3671 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3672 	sb->s_blocksize = PAGE_SIZE;
3673 	sb->s_blocksize_bits = PAGE_SHIFT;
3674 	sb->s_magic = TMPFS_MAGIC;
3675 	sb->s_op = &shmem_ops;
3676 	sb->s_time_gran = 1;
3677 #ifdef CONFIG_TMPFS_XATTR
3678 	sb->s_xattr = shmem_xattr_handlers;
3679 #endif
3680 #ifdef CONFIG_TMPFS_POSIX_ACL
3681 	sb->s_flags |= SB_POSIXACL;
3682 #endif
3683 	uuid_gen(&sb->s_uuid);
3684 
3685 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3686 	if (!inode)
3687 		goto failed;
3688 	inode->i_uid = sbinfo->uid;
3689 	inode->i_gid = sbinfo->gid;
3690 	sb->s_root = d_make_root(inode);
3691 	if (!sb->s_root)
3692 		goto failed;
3693 	return 0;
3694 
3695 failed:
3696 	shmem_put_super(sb);
3697 	return err;
3698 }
3699 
3700 static int shmem_get_tree(struct fs_context *fc)
3701 {
3702 	return get_tree_nodev(fc, shmem_fill_super);
3703 }
3704 
3705 static void shmem_free_fc(struct fs_context *fc)
3706 {
3707 	struct shmem_options *ctx = fc->fs_private;
3708 
3709 	if (ctx) {
3710 		mpol_put(ctx->mpol);
3711 		kfree(ctx);
3712 	}
3713 }
3714 
3715 static const struct fs_context_operations shmem_fs_context_ops = {
3716 	.free			= shmem_free_fc,
3717 	.get_tree		= shmem_get_tree,
3718 #ifdef CONFIG_TMPFS
3719 	.parse_monolithic	= shmem_parse_options,
3720 	.parse_param		= shmem_parse_one,
3721 	.reconfigure		= shmem_reconfigure,
3722 #endif
3723 };
3724 
3725 static struct kmem_cache *shmem_inode_cachep;
3726 
3727 static struct inode *shmem_alloc_inode(struct super_block *sb)
3728 {
3729 	struct shmem_inode_info *info;
3730 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3731 	if (!info)
3732 		return NULL;
3733 	return &info->vfs_inode;
3734 }
3735 
3736 static void shmem_free_in_core_inode(struct inode *inode)
3737 {
3738 	if (S_ISLNK(inode->i_mode))
3739 		kfree(inode->i_link);
3740 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3741 }
3742 
3743 static void shmem_destroy_inode(struct inode *inode)
3744 {
3745 	if (S_ISREG(inode->i_mode))
3746 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3747 }
3748 
3749 static void shmem_init_inode(void *foo)
3750 {
3751 	struct shmem_inode_info *info = foo;
3752 	inode_init_once(&info->vfs_inode);
3753 }
3754 
3755 static void shmem_init_inodecache(void)
3756 {
3757 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3758 				sizeof(struct shmem_inode_info),
3759 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3760 }
3761 
3762 static void shmem_destroy_inodecache(void)
3763 {
3764 	kmem_cache_destroy(shmem_inode_cachep);
3765 }
3766 
3767 const struct address_space_operations shmem_aops = {
3768 	.writepage	= shmem_writepage,
3769 	.set_page_dirty	= __set_page_dirty_no_writeback,
3770 #ifdef CONFIG_TMPFS
3771 	.write_begin	= shmem_write_begin,
3772 	.write_end	= shmem_write_end,
3773 #endif
3774 #ifdef CONFIG_MIGRATION
3775 	.migratepage	= migrate_page,
3776 #endif
3777 	.error_remove_page = generic_error_remove_page,
3778 };
3779 EXPORT_SYMBOL(shmem_aops);
3780 
3781 static const struct file_operations shmem_file_operations = {
3782 	.mmap		= shmem_mmap,
3783 	.get_unmapped_area = shmem_get_unmapped_area,
3784 #ifdef CONFIG_TMPFS
3785 	.llseek		= shmem_file_llseek,
3786 	.read_iter	= shmem_file_read_iter,
3787 	.write_iter	= generic_file_write_iter,
3788 	.fsync		= noop_fsync,
3789 	.splice_read	= generic_file_splice_read,
3790 	.splice_write	= iter_file_splice_write,
3791 	.fallocate	= shmem_fallocate,
3792 #endif
3793 };
3794 
3795 static const struct inode_operations shmem_inode_operations = {
3796 	.getattr	= shmem_getattr,
3797 	.setattr	= shmem_setattr,
3798 #ifdef CONFIG_TMPFS_XATTR
3799 	.listxattr	= shmem_listxattr,
3800 	.set_acl	= simple_set_acl,
3801 #endif
3802 };
3803 
3804 static const struct inode_operations shmem_dir_inode_operations = {
3805 #ifdef CONFIG_TMPFS
3806 	.create		= shmem_create,
3807 	.lookup		= simple_lookup,
3808 	.link		= shmem_link,
3809 	.unlink		= shmem_unlink,
3810 	.symlink	= shmem_symlink,
3811 	.mkdir		= shmem_mkdir,
3812 	.rmdir		= shmem_rmdir,
3813 	.mknod		= shmem_mknod,
3814 	.rename		= shmem_rename2,
3815 	.tmpfile	= shmem_tmpfile,
3816 #endif
3817 #ifdef CONFIG_TMPFS_XATTR
3818 	.listxattr	= shmem_listxattr,
3819 #endif
3820 #ifdef CONFIG_TMPFS_POSIX_ACL
3821 	.setattr	= shmem_setattr,
3822 	.set_acl	= simple_set_acl,
3823 #endif
3824 };
3825 
3826 static const struct inode_operations shmem_special_inode_operations = {
3827 #ifdef CONFIG_TMPFS_XATTR
3828 	.listxattr	= shmem_listxattr,
3829 #endif
3830 #ifdef CONFIG_TMPFS_POSIX_ACL
3831 	.setattr	= shmem_setattr,
3832 	.set_acl	= simple_set_acl,
3833 #endif
3834 };
3835 
3836 static const struct super_operations shmem_ops = {
3837 	.alloc_inode	= shmem_alloc_inode,
3838 	.free_inode	= shmem_free_in_core_inode,
3839 	.destroy_inode	= shmem_destroy_inode,
3840 #ifdef CONFIG_TMPFS
3841 	.statfs		= shmem_statfs,
3842 	.show_options	= shmem_show_options,
3843 #endif
3844 	.evict_inode	= shmem_evict_inode,
3845 	.drop_inode	= generic_delete_inode,
3846 	.put_super	= shmem_put_super,
3847 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3848 	.nr_cached_objects	= shmem_unused_huge_count,
3849 	.free_cached_objects	= shmem_unused_huge_scan,
3850 #endif
3851 };
3852 
3853 static const struct vm_operations_struct shmem_vm_ops = {
3854 	.fault		= shmem_fault,
3855 	.map_pages	= filemap_map_pages,
3856 #ifdef CONFIG_NUMA
3857 	.set_policy     = shmem_set_policy,
3858 	.get_policy     = shmem_get_policy,
3859 #endif
3860 };
3861 
3862 int shmem_init_fs_context(struct fs_context *fc)
3863 {
3864 	struct shmem_options *ctx;
3865 
3866 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3867 	if (!ctx)
3868 		return -ENOMEM;
3869 
3870 	ctx->mode = 0777 | S_ISVTX;
3871 	ctx->uid = current_fsuid();
3872 	ctx->gid = current_fsgid();
3873 
3874 	fc->fs_private = ctx;
3875 	fc->ops = &shmem_fs_context_ops;
3876 	return 0;
3877 }
3878 
3879 static struct file_system_type shmem_fs_type = {
3880 	.owner		= THIS_MODULE,
3881 	.name		= "tmpfs",
3882 	.init_fs_context = shmem_init_fs_context,
3883 #ifdef CONFIG_TMPFS
3884 	.parameters	= shmem_fs_parameters,
3885 #endif
3886 	.kill_sb	= kill_litter_super,
3887 	.fs_flags	= FS_USERNS_MOUNT | FS_THP_SUPPORT,
3888 };
3889 
3890 int __init shmem_init(void)
3891 {
3892 	int error;
3893 
3894 	shmem_init_inodecache();
3895 
3896 	error = register_filesystem(&shmem_fs_type);
3897 	if (error) {
3898 		pr_err("Could not register tmpfs\n");
3899 		goto out2;
3900 	}
3901 
3902 	shm_mnt = kern_mount(&shmem_fs_type);
3903 	if (IS_ERR(shm_mnt)) {
3904 		error = PTR_ERR(shm_mnt);
3905 		pr_err("Could not kern_mount tmpfs\n");
3906 		goto out1;
3907 	}
3908 
3909 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3910 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3911 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3912 	else
3913 		shmem_huge = 0; /* just in case it was patched */
3914 #endif
3915 	return 0;
3916 
3917 out1:
3918 	unregister_filesystem(&shmem_fs_type);
3919 out2:
3920 	shmem_destroy_inodecache();
3921 	shm_mnt = ERR_PTR(error);
3922 	return error;
3923 }
3924 
3925 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3926 static ssize_t shmem_enabled_show(struct kobject *kobj,
3927 				  struct kobj_attribute *attr, char *buf)
3928 {
3929 	static const int values[] = {
3930 		SHMEM_HUGE_ALWAYS,
3931 		SHMEM_HUGE_WITHIN_SIZE,
3932 		SHMEM_HUGE_ADVISE,
3933 		SHMEM_HUGE_NEVER,
3934 		SHMEM_HUGE_DENY,
3935 		SHMEM_HUGE_FORCE,
3936 	};
3937 	int len = 0;
3938 	int i;
3939 
3940 	for (i = 0; i < ARRAY_SIZE(values); i++) {
3941 		len += sysfs_emit_at(buf, len,
3942 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3943 				     i ? " " : "",
3944 				     shmem_format_huge(values[i]));
3945 	}
3946 
3947 	len += sysfs_emit_at(buf, len, "\n");
3948 
3949 	return len;
3950 }
3951 
3952 static ssize_t shmem_enabled_store(struct kobject *kobj,
3953 		struct kobj_attribute *attr, const char *buf, size_t count)
3954 {
3955 	char tmp[16];
3956 	int huge;
3957 
3958 	if (count + 1 > sizeof(tmp))
3959 		return -EINVAL;
3960 	memcpy(tmp, buf, count);
3961 	tmp[count] = '\0';
3962 	if (count && tmp[count - 1] == '\n')
3963 		tmp[count - 1] = '\0';
3964 
3965 	huge = shmem_parse_huge(tmp);
3966 	if (huge == -EINVAL)
3967 		return -EINVAL;
3968 	if (!has_transparent_hugepage() &&
3969 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3970 		return -EINVAL;
3971 
3972 	shmem_huge = huge;
3973 	if (shmem_huge > SHMEM_HUGE_DENY)
3974 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3975 	return count;
3976 }
3977 
3978 struct kobj_attribute shmem_enabled_attr =
3979 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3980 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3981 
3982 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3983 bool shmem_huge_enabled(struct vm_area_struct *vma)
3984 {
3985 	struct inode *inode = file_inode(vma->vm_file);
3986 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3987 	loff_t i_size;
3988 	pgoff_t off;
3989 
3990 	if (!transhuge_vma_enabled(vma, vma->vm_flags))
3991 		return false;
3992 	if (shmem_huge == SHMEM_HUGE_FORCE)
3993 		return true;
3994 	if (shmem_huge == SHMEM_HUGE_DENY)
3995 		return false;
3996 	switch (sbinfo->huge) {
3997 		case SHMEM_HUGE_NEVER:
3998 			return false;
3999 		case SHMEM_HUGE_ALWAYS:
4000 			return true;
4001 		case SHMEM_HUGE_WITHIN_SIZE:
4002 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4003 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4004 			if (i_size >= HPAGE_PMD_SIZE &&
4005 					i_size >> PAGE_SHIFT >= off)
4006 				return true;
4007 			fallthrough;
4008 		case SHMEM_HUGE_ADVISE:
4009 			/* TODO: implement fadvise() hints */
4010 			return (vma->vm_flags & VM_HUGEPAGE);
4011 		default:
4012 			VM_BUG_ON(1);
4013 			return false;
4014 	}
4015 }
4016 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4017 
4018 #else /* !CONFIG_SHMEM */
4019 
4020 /*
4021  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4022  *
4023  * This is intended for small system where the benefits of the full
4024  * shmem code (swap-backed and resource-limited) are outweighed by
4025  * their complexity. On systems without swap this code should be
4026  * effectively equivalent, but much lighter weight.
4027  */
4028 
4029 static struct file_system_type shmem_fs_type = {
4030 	.name		= "tmpfs",
4031 	.init_fs_context = ramfs_init_fs_context,
4032 	.parameters	= ramfs_fs_parameters,
4033 	.kill_sb	= kill_litter_super,
4034 	.fs_flags	= FS_USERNS_MOUNT,
4035 };
4036 
4037 int __init shmem_init(void)
4038 {
4039 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4040 
4041 	shm_mnt = kern_mount(&shmem_fs_type);
4042 	BUG_ON(IS_ERR(shm_mnt));
4043 
4044 	return 0;
4045 }
4046 
4047 int shmem_unuse(unsigned int type, bool frontswap,
4048 		unsigned long *fs_pages_to_unuse)
4049 {
4050 	return 0;
4051 }
4052 
4053 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4054 {
4055 	return 0;
4056 }
4057 
4058 void shmem_unlock_mapping(struct address_space *mapping)
4059 {
4060 }
4061 
4062 #ifdef CONFIG_MMU
4063 unsigned long shmem_get_unmapped_area(struct file *file,
4064 				      unsigned long addr, unsigned long len,
4065 				      unsigned long pgoff, unsigned long flags)
4066 {
4067 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4068 }
4069 #endif
4070 
4071 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4072 {
4073 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4074 }
4075 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4076 
4077 #define shmem_vm_ops				generic_file_vm_ops
4078 #define shmem_file_operations			ramfs_file_operations
4079 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4080 #define shmem_acct_size(flags, size)		0
4081 #define shmem_unacct_size(flags, size)		do {} while (0)
4082 
4083 #endif /* CONFIG_SHMEM */
4084 
4085 /* common code */
4086 
4087 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4088 				       unsigned long flags, unsigned int i_flags)
4089 {
4090 	struct inode *inode;
4091 	struct file *res;
4092 
4093 	if (IS_ERR(mnt))
4094 		return ERR_CAST(mnt);
4095 
4096 	if (size < 0 || size > MAX_LFS_FILESIZE)
4097 		return ERR_PTR(-EINVAL);
4098 
4099 	if (shmem_acct_size(flags, size))
4100 		return ERR_PTR(-ENOMEM);
4101 
4102 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4103 				flags);
4104 	if (unlikely(!inode)) {
4105 		shmem_unacct_size(flags, size);
4106 		return ERR_PTR(-ENOSPC);
4107 	}
4108 	inode->i_flags |= i_flags;
4109 	inode->i_size = size;
4110 	clear_nlink(inode);	/* It is unlinked */
4111 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4112 	if (!IS_ERR(res))
4113 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4114 				&shmem_file_operations);
4115 	if (IS_ERR(res))
4116 		iput(inode);
4117 	return res;
4118 }
4119 
4120 /**
4121  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4122  * 	kernel internal.  There will be NO LSM permission checks against the
4123  * 	underlying inode.  So users of this interface must do LSM checks at a
4124  *	higher layer.  The users are the big_key and shm implementations.  LSM
4125  *	checks are provided at the key or shm level rather than the inode.
4126  * @name: name for dentry (to be seen in /proc/<pid>/maps
4127  * @size: size to be set for the file
4128  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4129  */
4130 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4131 {
4132 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4133 }
4134 
4135 /**
4136  * shmem_file_setup - get an unlinked file living in tmpfs
4137  * @name: name for dentry (to be seen in /proc/<pid>/maps
4138  * @size: size to be set for the file
4139  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4140  */
4141 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4142 {
4143 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4144 }
4145 EXPORT_SYMBOL_GPL(shmem_file_setup);
4146 
4147 /**
4148  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4149  * @mnt: the tmpfs mount where the file will be created
4150  * @name: name for dentry (to be seen in /proc/<pid>/maps
4151  * @size: size to be set for the file
4152  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4153  */
4154 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4155 				       loff_t size, unsigned long flags)
4156 {
4157 	return __shmem_file_setup(mnt, name, size, flags, 0);
4158 }
4159 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4160 
4161 /**
4162  * shmem_zero_setup - setup a shared anonymous mapping
4163  * @vma: the vma to be mmapped is prepared by do_mmap
4164  */
4165 int shmem_zero_setup(struct vm_area_struct *vma)
4166 {
4167 	struct file *file;
4168 	loff_t size = vma->vm_end - vma->vm_start;
4169 
4170 	/*
4171 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4172 	 * between XFS directory reading and selinux: since this file is only
4173 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4174 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4175 	 */
4176 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4177 	if (IS_ERR(file))
4178 		return PTR_ERR(file);
4179 
4180 	if (vma->vm_file)
4181 		fput(vma->vm_file);
4182 	vma->vm_file = file;
4183 	vma->vm_ops = &shmem_vm_ops;
4184 
4185 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4186 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4187 			(vma->vm_end & HPAGE_PMD_MASK)) {
4188 		khugepaged_enter(vma, vma->vm_flags);
4189 	}
4190 
4191 	return 0;
4192 }
4193 
4194 /**
4195  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4196  * @mapping:	the page's address_space
4197  * @index:	the page index
4198  * @gfp:	the page allocator flags to use if allocating
4199  *
4200  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4201  * with any new page allocations done using the specified allocation flags.
4202  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4203  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4204  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4205  *
4206  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4207  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4208  */
4209 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4210 					 pgoff_t index, gfp_t gfp)
4211 {
4212 #ifdef CONFIG_SHMEM
4213 	struct inode *inode = mapping->host;
4214 	struct page *page;
4215 	int error;
4216 
4217 	BUG_ON(!shmem_mapping(mapping));
4218 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4219 				  gfp, NULL, NULL, NULL);
4220 	if (error)
4221 		page = ERR_PTR(error);
4222 	else
4223 		unlock_page(page);
4224 	return page;
4225 #else
4226 	/*
4227 	 * The tiny !SHMEM case uses ramfs without swap
4228 	 */
4229 	return read_cache_page_gfp(mapping, index, gfp);
4230 #endif
4231 }
4232 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4233