1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/frontswap.h> 40 #include <linux/fs_parser.h> 41 42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 43 44 static struct vfsmount *shm_mnt; 45 46 #ifdef CONFIG_SHMEM 47 /* 48 * This virtual memory filesystem is heavily based on the ramfs. It 49 * extends ramfs by the ability to use swap and honor resource limits 50 * which makes it a completely usable filesystem. 51 */ 52 53 #include <linux/xattr.h> 54 #include <linux/exportfs.h> 55 #include <linux/posix_acl.h> 56 #include <linux/posix_acl_xattr.h> 57 #include <linux/mman.h> 58 #include <linux/string.h> 59 #include <linux/slab.h> 60 #include <linux/backing-dev.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/writeback.h> 63 #include <linux/blkdev.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/userfaultfd_k.h> 81 #include <linux/rmap.h> 82 #include <linux/uuid.h> 83 84 #include <linux/uaccess.h> 85 86 #include "internal.h" 87 88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 95 #define SHORT_SYMLINK_LEN 128 96 97 /* 98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 99 * inode->i_private (with i_mutex making sure that it has only one user at 100 * a time): we would prefer not to enlarge the shmem inode just for that. 101 */ 102 struct shmem_falloc { 103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 104 pgoff_t start; /* start of range currently being fallocated */ 105 pgoff_t next; /* the next page offset to be fallocated */ 106 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 108 }; 109 110 struct shmem_options { 111 unsigned long long blocks; 112 unsigned long long inodes; 113 struct mempolicy *mpol; 114 kuid_t uid; 115 kgid_t gid; 116 umode_t mode; 117 bool full_inums; 118 int huge; 119 int seen; 120 #define SHMEM_SEEN_BLOCKS 1 121 #define SHMEM_SEEN_INODES 2 122 #define SHMEM_SEEN_HUGE 4 123 #define SHMEM_SEEN_INUMS 8 124 }; 125 126 #ifdef CONFIG_TMPFS 127 static unsigned long shmem_default_max_blocks(void) 128 { 129 return totalram_pages() / 2; 130 } 131 132 static unsigned long shmem_default_max_inodes(void) 133 { 134 unsigned long nr_pages = totalram_pages(); 135 136 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 137 } 138 #endif 139 140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 141 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 142 struct shmem_inode_info *info, pgoff_t index); 143 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 144 struct page **pagep, enum sgp_type sgp, 145 gfp_t gfp, struct vm_area_struct *vma, 146 vm_fault_t *fault_type); 147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 148 struct page **pagep, enum sgp_type sgp, 149 gfp_t gfp, struct vm_area_struct *vma, 150 struct vm_fault *vmf, vm_fault_t *fault_type); 151 152 int shmem_getpage(struct inode *inode, pgoff_t index, 153 struct page **pagep, enum sgp_type sgp) 154 { 155 return shmem_getpage_gfp(inode, index, pagep, sgp, 156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 157 } 158 159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 160 { 161 return sb->s_fs_info; 162 } 163 164 /* 165 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 166 * for shared memory and for shared anonymous (/dev/zero) mappings 167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 168 * consistent with the pre-accounting of private mappings ... 169 */ 170 static inline int shmem_acct_size(unsigned long flags, loff_t size) 171 { 172 return (flags & VM_NORESERVE) ? 173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 174 } 175 176 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 177 { 178 if (!(flags & VM_NORESERVE)) 179 vm_unacct_memory(VM_ACCT(size)); 180 } 181 182 static inline int shmem_reacct_size(unsigned long flags, 183 loff_t oldsize, loff_t newsize) 184 { 185 if (!(flags & VM_NORESERVE)) { 186 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 187 return security_vm_enough_memory_mm(current->mm, 188 VM_ACCT(newsize) - VM_ACCT(oldsize)); 189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 191 } 192 return 0; 193 } 194 195 /* 196 * ... whereas tmpfs objects are accounted incrementally as 197 * pages are allocated, in order to allow large sparse files. 198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 200 */ 201 static inline int shmem_acct_block(unsigned long flags, long pages) 202 { 203 if (!(flags & VM_NORESERVE)) 204 return 0; 205 206 return security_vm_enough_memory_mm(current->mm, 207 pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 211 { 212 if (flags & VM_NORESERVE) 213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 214 } 215 216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 217 { 218 struct shmem_inode_info *info = SHMEM_I(inode); 219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 220 221 if (shmem_acct_block(info->flags, pages)) 222 return false; 223 224 if (sbinfo->max_blocks) { 225 if (percpu_counter_compare(&sbinfo->used_blocks, 226 sbinfo->max_blocks - pages) > 0) 227 goto unacct; 228 percpu_counter_add(&sbinfo->used_blocks, pages); 229 } 230 231 return true; 232 233 unacct: 234 shmem_unacct_blocks(info->flags, pages); 235 return false; 236 } 237 238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 239 { 240 struct shmem_inode_info *info = SHMEM_I(inode); 241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 242 243 if (sbinfo->max_blocks) 244 percpu_counter_sub(&sbinfo->used_blocks, pages); 245 shmem_unacct_blocks(info->flags, pages); 246 } 247 248 static const struct super_operations shmem_ops; 249 const struct address_space_operations shmem_aops; 250 static const struct file_operations shmem_file_operations; 251 static const struct inode_operations shmem_inode_operations; 252 static const struct inode_operations shmem_dir_inode_operations; 253 static const struct inode_operations shmem_special_inode_operations; 254 static const struct vm_operations_struct shmem_vm_ops; 255 static struct file_system_type shmem_fs_type; 256 257 bool vma_is_shmem(struct vm_area_struct *vma) 258 { 259 return vma->vm_ops == &shmem_vm_ops; 260 } 261 262 static LIST_HEAD(shmem_swaplist); 263 static DEFINE_MUTEX(shmem_swaplist_mutex); 264 265 /* 266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 267 * produces a novel ino for the newly allocated inode. 268 * 269 * It may also be called when making a hard link to permit the space needed by 270 * each dentry. However, in that case, no new inode number is needed since that 271 * internally draws from another pool of inode numbers (currently global 272 * get_next_ino()). This case is indicated by passing NULL as inop. 273 */ 274 #define SHMEM_INO_BATCH 1024 275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 276 { 277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 278 ino_t ino; 279 280 if (!(sb->s_flags & SB_KERNMOUNT)) { 281 raw_spin_lock(&sbinfo->stat_lock); 282 if (sbinfo->max_inodes) { 283 if (!sbinfo->free_inodes) { 284 raw_spin_unlock(&sbinfo->stat_lock); 285 return -ENOSPC; 286 } 287 sbinfo->free_inodes--; 288 } 289 if (inop) { 290 ino = sbinfo->next_ino++; 291 if (unlikely(is_zero_ino(ino))) 292 ino = sbinfo->next_ino++; 293 if (unlikely(!sbinfo->full_inums && 294 ino > UINT_MAX)) { 295 /* 296 * Emulate get_next_ino uint wraparound for 297 * compatibility 298 */ 299 if (IS_ENABLED(CONFIG_64BIT)) 300 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 301 __func__, MINOR(sb->s_dev)); 302 sbinfo->next_ino = 1; 303 ino = sbinfo->next_ino++; 304 } 305 *inop = ino; 306 } 307 raw_spin_unlock(&sbinfo->stat_lock); 308 } else if (inop) { 309 /* 310 * __shmem_file_setup, one of our callers, is lock-free: it 311 * doesn't hold stat_lock in shmem_reserve_inode since 312 * max_inodes is always 0, and is called from potentially 313 * unknown contexts. As such, use a per-cpu batched allocator 314 * which doesn't require the per-sb stat_lock unless we are at 315 * the batch boundary. 316 * 317 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 318 * shmem mounts are not exposed to userspace, so we don't need 319 * to worry about things like glibc compatibility. 320 */ 321 ino_t *next_ino; 322 323 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 324 ino = *next_ino; 325 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 326 raw_spin_lock(&sbinfo->stat_lock); 327 ino = sbinfo->next_ino; 328 sbinfo->next_ino += SHMEM_INO_BATCH; 329 raw_spin_unlock(&sbinfo->stat_lock); 330 if (unlikely(is_zero_ino(ino))) 331 ino++; 332 } 333 *inop = ino; 334 *next_ino = ++ino; 335 put_cpu(); 336 } 337 338 return 0; 339 } 340 341 static void shmem_free_inode(struct super_block *sb) 342 { 343 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 344 if (sbinfo->max_inodes) { 345 raw_spin_lock(&sbinfo->stat_lock); 346 sbinfo->free_inodes++; 347 raw_spin_unlock(&sbinfo->stat_lock); 348 } 349 } 350 351 /** 352 * shmem_recalc_inode - recalculate the block usage of an inode 353 * @inode: inode to recalc 354 * 355 * We have to calculate the free blocks since the mm can drop 356 * undirtied hole pages behind our back. 357 * 358 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 359 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 360 * 361 * It has to be called with the spinlock held. 362 */ 363 static void shmem_recalc_inode(struct inode *inode) 364 { 365 struct shmem_inode_info *info = SHMEM_I(inode); 366 long freed; 367 368 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 369 if (freed > 0) { 370 info->alloced -= freed; 371 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 372 shmem_inode_unacct_blocks(inode, freed); 373 } 374 } 375 376 bool shmem_charge(struct inode *inode, long pages) 377 { 378 struct shmem_inode_info *info = SHMEM_I(inode); 379 unsigned long flags; 380 381 if (!shmem_inode_acct_block(inode, pages)) 382 return false; 383 384 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 385 inode->i_mapping->nrpages += pages; 386 387 spin_lock_irqsave(&info->lock, flags); 388 info->alloced += pages; 389 inode->i_blocks += pages * BLOCKS_PER_PAGE; 390 shmem_recalc_inode(inode); 391 spin_unlock_irqrestore(&info->lock, flags); 392 393 return true; 394 } 395 396 void shmem_uncharge(struct inode *inode, long pages) 397 { 398 struct shmem_inode_info *info = SHMEM_I(inode); 399 unsigned long flags; 400 401 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 402 403 spin_lock_irqsave(&info->lock, flags); 404 info->alloced -= pages; 405 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 406 shmem_recalc_inode(inode); 407 spin_unlock_irqrestore(&info->lock, flags); 408 409 shmem_inode_unacct_blocks(inode, pages); 410 } 411 412 /* 413 * Replace item expected in xarray by a new item, while holding xa_lock. 414 */ 415 static int shmem_replace_entry(struct address_space *mapping, 416 pgoff_t index, void *expected, void *replacement) 417 { 418 XA_STATE(xas, &mapping->i_pages, index); 419 void *item; 420 421 VM_BUG_ON(!expected); 422 VM_BUG_ON(!replacement); 423 item = xas_load(&xas); 424 if (item != expected) 425 return -ENOENT; 426 xas_store(&xas, replacement); 427 return 0; 428 } 429 430 /* 431 * Sometimes, before we decide whether to proceed or to fail, we must check 432 * that an entry was not already brought back from swap by a racing thread. 433 * 434 * Checking page is not enough: by the time a SwapCache page is locked, it 435 * might be reused, and again be SwapCache, using the same swap as before. 436 */ 437 static bool shmem_confirm_swap(struct address_space *mapping, 438 pgoff_t index, swp_entry_t swap) 439 { 440 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 441 } 442 443 /* 444 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 445 * 446 * SHMEM_HUGE_NEVER: 447 * disables huge pages for the mount; 448 * SHMEM_HUGE_ALWAYS: 449 * enables huge pages for the mount; 450 * SHMEM_HUGE_WITHIN_SIZE: 451 * only allocate huge pages if the page will be fully within i_size, 452 * also respect fadvise()/madvise() hints; 453 * SHMEM_HUGE_ADVISE: 454 * only allocate huge pages if requested with fadvise()/madvise(); 455 */ 456 457 #define SHMEM_HUGE_NEVER 0 458 #define SHMEM_HUGE_ALWAYS 1 459 #define SHMEM_HUGE_WITHIN_SIZE 2 460 #define SHMEM_HUGE_ADVISE 3 461 462 /* 463 * Special values. 464 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 465 * 466 * SHMEM_HUGE_DENY: 467 * disables huge on shm_mnt and all mounts, for emergency use; 468 * SHMEM_HUGE_FORCE: 469 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 470 * 471 */ 472 #define SHMEM_HUGE_DENY (-1) 473 #define SHMEM_HUGE_FORCE (-2) 474 475 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 476 /* ifdef here to avoid bloating shmem.o when not necessary */ 477 478 static int shmem_huge __read_mostly; 479 480 #if defined(CONFIG_SYSFS) 481 static int shmem_parse_huge(const char *str) 482 { 483 if (!strcmp(str, "never")) 484 return SHMEM_HUGE_NEVER; 485 if (!strcmp(str, "always")) 486 return SHMEM_HUGE_ALWAYS; 487 if (!strcmp(str, "within_size")) 488 return SHMEM_HUGE_WITHIN_SIZE; 489 if (!strcmp(str, "advise")) 490 return SHMEM_HUGE_ADVISE; 491 if (!strcmp(str, "deny")) 492 return SHMEM_HUGE_DENY; 493 if (!strcmp(str, "force")) 494 return SHMEM_HUGE_FORCE; 495 return -EINVAL; 496 } 497 #endif 498 499 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 500 static const char *shmem_format_huge(int huge) 501 { 502 switch (huge) { 503 case SHMEM_HUGE_NEVER: 504 return "never"; 505 case SHMEM_HUGE_ALWAYS: 506 return "always"; 507 case SHMEM_HUGE_WITHIN_SIZE: 508 return "within_size"; 509 case SHMEM_HUGE_ADVISE: 510 return "advise"; 511 case SHMEM_HUGE_DENY: 512 return "deny"; 513 case SHMEM_HUGE_FORCE: 514 return "force"; 515 default: 516 VM_BUG_ON(1); 517 return "bad_val"; 518 } 519 } 520 #endif 521 522 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 523 struct shrink_control *sc, unsigned long nr_to_split) 524 { 525 LIST_HEAD(list), *pos, *next; 526 LIST_HEAD(to_remove); 527 struct inode *inode; 528 struct shmem_inode_info *info; 529 struct page *page; 530 unsigned long batch = sc ? sc->nr_to_scan : 128; 531 int removed = 0, split = 0; 532 533 if (list_empty(&sbinfo->shrinklist)) 534 return SHRINK_STOP; 535 536 spin_lock(&sbinfo->shrinklist_lock); 537 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 538 info = list_entry(pos, struct shmem_inode_info, shrinklist); 539 540 /* pin the inode */ 541 inode = igrab(&info->vfs_inode); 542 543 /* inode is about to be evicted */ 544 if (!inode) { 545 list_del_init(&info->shrinklist); 546 removed++; 547 goto next; 548 } 549 550 /* Check if there's anything to gain */ 551 if (round_up(inode->i_size, PAGE_SIZE) == 552 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 553 list_move(&info->shrinklist, &to_remove); 554 removed++; 555 goto next; 556 } 557 558 list_move(&info->shrinklist, &list); 559 next: 560 if (!--batch) 561 break; 562 } 563 spin_unlock(&sbinfo->shrinklist_lock); 564 565 list_for_each_safe(pos, next, &to_remove) { 566 info = list_entry(pos, struct shmem_inode_info, shrinklist); 567 inode = &info->vfs_inode; 568 list_del_init(&info->shrinklist); 569 iput(inode); 570 } 571 572 list_for_each_safe(pos, next, &list) { 573 int ret; 574 575 info = list_entry(pos, struct shmem_inode_info, shrinklist); 576 inode = &info->vfs_inode; 577 578 if (nr_to_split && split >= nr_to_split) 579 goto leave; 580 581 page = find_get_page(inode->i_mapping, 582 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 583 if (!page) 584 goto drop; 585 586 /* No huge page at the end of the file: nothing to split */ 587 if (!PageTransHuge(page)) { 588 put_page(page); 589 goto drop; 590 } 591 592 /* 593 * Leave the inode on the list if we failed to lock 594 * the page at this time. 595 * 596 * Waiting for the lock may lead to deadlock in the 597 * reclaim path. 598 */ 599 if (!trylock_page(page)) { 600 put_page(page); 601 goto leave; 602 } 603 604 ret = split_huge_page(page); 605 unlock_page(page); 606 put_page(page); 607 608 /* If split failed leave the inode on the list */ 609 if (ret) 610 goto leave; 611 612 split++; 613 drop: 614 list_del_init(&info->shrinklist); 615 removed++; 616 leave: 617 iput(inode); 618 } 619 620 spin_lock(&sbinfo->shrinklist_lock); 621 list_splice_tail(&list, &sbinfo->shrinklist); 622 sbinfo->shrinklist_len -= removed; 623 spin_unlock(&sbinfo->shrinklist_lock); 624 625 return split; 626 } 627 628 static long shmem_unused_huge_scan(struct super_block *sb, 629 struct shrink_control *sc) 630 { 631 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 632 633 if (!READ_ONCE(sbinfo->shrinklist_len)) 634 return SHRINK_STOP; 635 636 return shmem_unused_huge_shrink(sbinfo, sc, 0); 637 } 638 639 static long shmem_unused_huge_count(struct super_block *sb, 640 struct shrink_control *sc) 641 { 642 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 643 return READ_ONCE(sbinfo->shrinklist_len); 644 } 645 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 646 647 #define shmem_huge SHMEM_HUGE_DENY 648 649 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 650 struct shrink_control *sc, unsigned long nr_to_split) 651 { 652 return 0; 653 } 654 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 655 656 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) 657 { 658 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 659 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && 660 shmem_huge != SHMEM_HUGE_DENY) 661 return true; 662 return false; 663 } 664 665 /* 666 * Like add_to_page_cache_locked, but error if expected item has gone. 667 */ 668 static int shmem_add_to_page_cache(struct page *page, 669 struct address_space *mapping, 670 pgoff_t index, void *expected, gfp_t gfp, 671 struct mm_struct *charge_mm) 672 { 673 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 674 unsigned long i = 0; 675 unsigned long nr = compound_nr(page); 676 int error; 677 678 VM_BUG_ON_PAGE(PageTail(page), page); 679 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 680 VM_BUG_ON_PAGE(!PageLocked(page), page); 681 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 682 VM_BUG_ON(expected && PageTransHuge(page)); 683 684 page_ref_add(page, nr); 685 page->mapping = mapping; 686 page->index = index; 687 688 if (!PageSwapCache(page)) { 689 error = mem_cgroup_charge(page, charge_mm, gfp); 690 if (error) { 691 if (PageTransHuge(page)) { 692 count_vm_event(THP_FILE_FALLBACK); 693 count_vm_event(THP_FILE_FALLBACK_CHARGE); 694 } 695 goto error; 696 } 697 } 698 cgroup_throttle_swaprate(page, gfp); 699 700 do { 701 void *entry; 702 xas_lock_irq(&xas); 703 entry = xas_find_conflict(&xas); 704 if (entry != expected) 705 xas_set_err(&xas, -EEXIST); 706 xas_create_range(&xas); 707 if (xas_error(&xas)) 708 goto unlock; 709 next: 710 xas_store(&xas, page); 711 if (++i < nr) { 712 xas_next(&xas); 713 goto next; 714 } 715 if (PageTransHuge(page)) { 716 count_vm_event(THP_FILE_ALLOC); 717 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr); 718 } 719 mapping->nrpages += nr; 720 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr); 721 __mod_lruvec_page_state(page, NR_SHMEM, nr); 722 unlock: 723 xas_unlock_irq(&xas); 724 } while (xas_nomem(&xas, gfp)); 725 726 if (xas_error(&xas)) { 727 error = xas_error(&xas); 728 goto error; 729 } 730 731 return 0; 732 error: 733 page->mapping = NULL; 734 page_ref_sub(page, nr); 735 return error; 736 } 737 738 /* 739 * Like delete_from_page_cache, but substitutes swap for page. 740 */ 741 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 742 { 743 struct address_space *mapping = page->mapping; 744 int error; 745 746 VM_BUG_ON_PAGE(PageCompound(page), page); 747 748 xa_lock_irq(&mapping->i_pages); 749 error = shmem_replace_entry(mapping, page->index, page, radswap); 750 page->mapping = NULL; 751 mapping->nrpages--; 752 __dec_lruvec_page_state(page, NR_FILE_PAGES); 753 __dec_lruvec_page_state(page, NR_SHMEM); 754 xa_unlock_irq(&mapping->i_pages); 755 put_page(page); 756 BUG_ON(error); 757 } 758 759 /* 760 * Remove swap entry from page cache, free the swap and its page cache. 761 */ 762 static int shmem_free_swap(struct address_space *mapping, 763 pgoff_t index, void *radswap) 764 { 765 void *old; 766 767 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 768 if (old != radswap) 769 return -ENOENT; 770 free_swap_and_cache(radix_to_swp_entry(radswap)); 771 return 0; 772 } 773 774 /* 775 * Determine (in bytes) how many of the shmem object's pages mapped by the 776 * given offsets are swapped out. 777 * 778 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 779 * as long as the inode doesn't go away and racy results are not a problem. 780 */ 781 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 782 pgoff_t start, pgoff_t end) 783 { 784 XA_STATE(xas, &mapping->i_pages, start); 785 struct page *page; 786 unsigned long swapped = 0; 787 788 rcu_read_lock(); 789 xas_for_each(&xas, page, end - 1) { 790 if (xas_retry(&xas, page)) 791 continue; 792 if (xa_is_value(page)) 793 swapped++; 794 795 if (need_resched()) { 796 xas_pause(&xas); 797 cond_resched_rcu(); 798 } 799 } 800 801 rcu_read_unlock(); 802 803 return swapped << PAGE_SHIFT; 804 } 805 806 /* 807 * Determine (in bytes) how many of the shmem object's pages mapped by the 808 * given vma is swapped out. 809 * 810 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 811 * as long as the inode doesn't go away and racy results are not a problem. 812 */ 813 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 814 { 815 struct inode *inode = file_inode(vma->vm_file); 816 struct shmem_inode_info *info = SHMEM_I(inode); 817 struct address_space *mapping = inode->i_mapping; 818 unsigned long swapped; 819 820 /* Be careful as we don't hold info->lock */ 821 swapped = READ_ONCE(info->swapped); 822 823 /* 824 * The easier cases are when the shmem object has nothing in swap, or 825 * the vma maps it whole. Then we can simply use the stats that we 826 * already track. 827 */ 828 if (!swapped) 829 return 0; 830 831 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 832 return swapped << PAGE_SHIFT; 833 834 /* Here comes the more involved part */ 835 return shmem_partial_swap_usage(mapping, 836 linear_page_index(vma, vma->vm_start), 837 linear_page_index(vma, vma->vm_end)); 838 } 839 840 /* 841 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 842 */ 843 void shmem_unlock_mapping(struct address_space *mapping) 844 { 845 struct pagevec pvec; 846 pgoff_t index = 0; 847 848 pagevec_init(&pvec); 849 /* 850 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 851 */ 852 while (!mapping_unevictable(mapping)) { 853 if (!pagevec_lookup(&pvec, mapping, &index)) 854 break; 855 check_move_unevictable_pages(&pvec); 856 pagevec_release(&pvec); 857 cond_resched(); 858 } 859 } 860 861 /* 862 * Check whether a hole-punch or truncation needs to split a huge page, 863 * returning true if no split was required, or the split has been successful. 864 * 865 * Eviction (or truncation to 0 size) should never need to split a huge page; 866 * but in rare cases might do so, if shmem_undo_range() failed to trylock on 867 * head, and then succeeded to trylock on tail. 868 * 869 * A split can only succeed when there are no additional references on the 870 * huge page: so the split below relies upon find_get_entries() having stopped 871 * when it found a subpage of the huge page, without getting further references. 872 */ 873 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end) 874 { 875 if (!PageTransCompound(page)) 876 return true; 877 878 /* Just proceed to delete a huge page wholly within the range punched */ 879 if (PageHead(page) && 880 page->index >= start && page->index + HPAGE_PMD_NR <= end) 881 return true; 882 883 /* Try to split huge page, so we can truly punch the hole or truncate */ 884 return split_huge_page(page) >= 0; 885 } 886 887 /* 888 * Remove range of pages and swap entries from page cache, and free them. 889 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 890 */ 891 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 892 bool unfalloc) 893 { 894 struct address_space *mapping = inode->i_mapping; 895 struct shmem_inode_info *info = SHMEM_I(inode); 896 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 897 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 898 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 899 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 900 struct pagevec pvec; 901 pgoff_t indices[PAGEVEC_SIZE]; 902 long nr_swaps_freed = 0; 903 pgoff_t index; 904 int i; 905 906 if (lend == -1) 907 end = -1; /* unsigned, so actually very big */ 908 909 pagevec_init(&pvec); 910 index = start; 911 while (index < end && find_lock_entries(mapping, index, end - 1, 912 &pvec, indices)) { 913 for (i = 0; i < pagevec_count(&pvec); i++) { 914 struct page *page = pvec.pages[i]; 915 916 index = indices[i]; 917 918 if (xa_is_value(page)) { 919 if (unfalloc) 920 continue; 921 nr_swaps_freed += !shmem_free_swap(mapping, 922 index, page); 923 continue; 924 } 925 index += thp_nr_pages(page) - 1; 926 927 if (!unfalloc || !PageUptodate(page)) 928 truncate_inode_page(mapping, page); 929 unlock_page(page); 930 } 931 pagevec_remove_exceptionals(&pvec); 932 pagevec_release(&pvec); 933 cond_resched(); 934 index++; 935 } 936 937 if (partial_start) { 938 struct page *page = NULL; 939 shmem_getpage(inode, start - 1, &page, SGP_READ); 940 if (page) { 941 unsigned int top = PAGE_SIZE; 942 if (start > end) { 943 top = partial_end; 944 partial_end = 0; 945 } 946 zero_user_segment(page, partial_start, top); 947 set_page_dirty(page); 948 unlock_page(page); 949 put_page(page); 950 } 951 } 952 if (partial_end) { 953 struct page *page = NULL; 954 shmem_getpage(inode, end, &page, SGP_READ); 955 if (page) { 956 zero_user_segment(page, 0, partial_end); 957 set_page_dirty(page); 958 unlock_page(page); 959 put_page(page); 960 } 961 } 962 if (start >= end) 963 return; 964 965 index = start; 966 while (index < end) { 967 cond_resched(); 968 969 if (!find_get_entries(mapping, index, end - 1, &pvec, 970 indices)) { 971 /* If all gone or hole-punch or unfalloc, we're done */ 972 if (index == start || end != -1) 973 break; 974 /* But if truncating, restart to make sure all gone */ 975 index = start; 976 continue; 977 } 978 for (i = 0; i < pagevec_count(&pvec); i++) { 979 struct page *page = pvec.pages[i]; 980 981 index = indices[i]; 982 if (xa_is_value(page)) { 983 if (unfalloc) 984 continue; 985 if (shmem_free_swap(mapping, index, page)) { 986 /* Swap was replaced by page: retry */ 987 index--; 988 break; 989 } 990 nr_swaps_freed++; 991 continue; 992 } 993 994 lock_page(page); 995 996 if (!unfalloc || !PageUptodate(page)) { 997 if (page_mapping(page) != mapping) { 998 /* Page was replaced by swap: retry */ 999 unlock_page(page); 1000 index--; 1001 break; 1002 } 1003 VM_BUG_ON_PAGE(PageWriteback(page), page); 1004 if (shmem_punch_compound(page, start, end)) 1005 truncate_inode_page(mapping, page); 1006 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1007 /* Wipe the page and don't get stuck */ 1008 clear_highpage(page); 1009 flush_dcache_page(page); 1010 set_page_dirty(page); 1011 if (index < 1012 round_up(start, HPAGE_PMD_NR)) 1013 start = index + 1; 1014 } 1015 } 1016 unlock_page(page); 1017 } 1018 pagevec_remove_exceptionals(&pvec); 1019 pagevec_release(&pvec); 1020 index++; 1021 } 1022 1023 spin_lock_irq(&info->lock); 1024 info->swapped -= nr_swaps_freed; 1025 shmem_recalc_inode(inode); 1026 spin_unlock_irq(&info->lock); 1027 } 1028 1029 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1030 { 1031 shmem_undo_range(inode, lstart, lend, false); 1032 inode->i_ctime = inode->i_mtime = current_time(inode); 1033 } 1034 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1035 1036 static int shmem_getattr(struct user_namespace *mnt_userns, 1037 const struct path *path, struct kstat *stat, 1038 u32 request_mask, unsigned int query_flags) 1039 { 1040 struct inode *inode = path->dentry->d_inode; 1041 struct shmem_inode_info *info = SHMEM_I(inode); 1042 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); 1043 1044 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1045 spin_lock_irq(&info->lock); 1046 shmem_recalc_inode(inode); 1047 spin_unlock_irq(&info->lock); 1048 } 1049 generic_fillattr(&init_user_ns, inode, stat); 1050 1051 if (is_huge_enabled(sb_info)) 1052 stat->blksize = HPAGE_PMD_SIZE; 1053 1054 return 0; 1055 } 1056 1057 static int shmem_setattr(struct user_namespace *mnt_userns, 1058 struct dentry *dentry, struct iattr *attr) 1059 { 1060 struct inode *inode = d_inode(dentry); 1061 struct shmem_inode_info *info = SHMEM_I(inode); 1062 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1063 int error; 1064 1065 error = setattr_prepare(&init_user_ns, dentry, attr); 1066 if (error) 1067 return error; 1068 1069 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1070 loff_t oldsize = inode->i_size; 1071 loff_t newsize = attr->ia_size; 1072 1073 /* protected by i_mutex */ 1074 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1075 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1076 return -EPERM; 1077 1078 if (newsize != oldsize) { 1079 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1080 oldsize, newsize); 1081 if (error) 1082 return error; 1083 i_size_write(inode, newsize); 1084 inode->i_ctime = inode->i_mtime = current_time(inode); 1085 } 1086 if (newsize <= oldsize) { 1087 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1088 if (oldsize > holebegin) 1089 unmap_mapping_range(inode->i_mapping, 1090 holebegin, 0, 1); 1091 if (info->alloced) 1092 shmem_truncate_range(inode, 1093 newsize, (loff_t)-1); 1094 /* unmap again to remove racily COWed private pages */ 1095 if (oldsize > holebegin) 1096 unmap_mapping_range(inode->i_mapping, 1097 holebegin, 0, 1); 1098 1099 /* 1100 * Part of the huge page can be beyond i_size: subject 1101 * to shrink under memory pressure. 1102 */ 1103 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1104 spin_lock(&sbinfo->shrinklist_lock); 1105 /* 1106 * _careful to defend against unlocked access to 1107 * ->shrink_list in shmem_unused_huge_shrink() 1108 */ 1109 if (list_empty_careful(&info->shrinklist)) { 1110 list_add_tail(&info->shrinklist, 1111 &sbinfo->shrinklist); 1112 sbinfo->shrinklist_len++; 1113 } 1114 spin_unlock(&sbinfo->shrinklist_lock); 1115 } 1116 } 1117 } 1118 1119 setattr_copy(&init_user_ns, inode, attr); 1120 if (attr->ia_valid & ATTR_MODE) 1121 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); 1122 return error; 1123 } 1124 1125 static void shmem_evict_inode(struct inode *inode) 1126 { 1127 struct shmem_inode_info *info = SHMEM_I(inode); 1128 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1129 1130 if (shmem_mapping(inode->i_mapping)) { 1131 shmem_unacct_size(info->flags, inode->i_size); 1132 inode->i_size = 0; 1133 shmem_truncate_range(inode, 0, (loff_t)-1); 1134 if (!list_empty(&info->shrinklist)) { 1135 spin_lock(&sbinfo->shrinklist_lock); 1136 if (!list_empty(&info->shrinklist)) { 1137 list_del_init(&info->shrinklist); 1138 sbinfo->shrinklist_len--; 1139 } 1140 spin_unlock(&sbinfo->shrinklist_lock); 1141 } 1142 while (!list_empty(&info->swaplist)) { 1143 /* Wait while shmem_unuse() is scanning this inode... */ 1144 wait_var_event(&info->stop_eviction, 1145 !atomic_read(&info->stop_eviction)); 1146 mutex_lock(&shmem_swaplist_mutex); 1147 /* ...but beware of the race if we peeked too early */ 1148 if (!atomic_read(&info->stop_eviction)) 1149 list_del_init(&info->swaplist); 1150 mutex_unlock(&shmem_swaplist_mutex); 1151 } 1152 } 1153 1154 simple_xattrs_free(&info->xattrs); 1155 WARN_ON(inode->i_blocks); 1156 shmem_free_inode(inode->i_sb); 1157 clear_inode(inode); 1158 } 1159 1160 extern struct swap_info_struct *swap_info[]; 1161 1162 static int shmem_find_swap_entries(struct address_space *mapping, 1163 pgoff_t start, unsigned int nr_entries, 1164 struct page **entries, pgoff_t *indices, 1165 unsigned int type, bool frontswap) 1166 { 1167 XA_STATE(xas, &mapping->i_pages, start); 1168 struct page *page; 1169 swp_entry_t entry; 1170 unsigned int ret = 0; 1171 1172 if (!nr_entries) 1173 return 0; 1174 1175 rcu_read_lock(); 1176 xas_for_each(&xas, page, ULONG_MAX) { 1177 if (xas_retry(&xas, page)) 1178 continue; 1179 1180 if (!xa_is_value(page)) 1181 continue; 1182 1183 entry = radix_to_swp_entry(page); 1184 if (swp_type(entry) != type) 1185 continue; 1186 if (frontswap && 1187 !frontswap_test(swap_info[type], swp_offset(entry))) 1188 continue; 1189 1190 indices[ret] = xas.xa_index; 1191 entries[ret] = page; 1192 1193 if (need_resched()) { 1194 xas_pause(&xas); 1195 cond_resched_rcu(); 1196 } 1197 if (++ret == nr_entries) 1198 break; 1199 } 1200 rcu_read_unlock(); 1201 1202 return ret; 1203 } 1204 1205 /* 1206 * Move the swapped pages for an inode to page cache. Returns the count 1207 * of pages swapped in, or the error in case of failure. 1208 */ 1209 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1210 pgoff_t *indices) 1211 { 1212 int i = 0; 1213 int ret = 0; 1214 int error = 0; 1215 struct address_space *mapping = inode->i_mapping; 1216 1217 for (i = 0; i < pvec.nr; i++) { 1218 struct page *page = pvec.pages[i]; 1219 1220 if (!xa_is_value(page)) 1221 continue; 1222 error = shmem_swapin_page(inode, indices[i], 1223 &page, SGP_CACHE, 1224 mapping_gfp_mask(mapping), 1225 NULL, NULL); 1226 if (error == 0) { 1227 unlock_page(page); 1228 put_page(page); 1229 ret++; 1230 } 1231 if (error == -ENOMEM) 1232 break; 1233 error = 0; 1234 } 1235 return error ? error : ret; 1236 } 1237 1238 /* 1239 * If swap found in inode, free it and move page from swapcache to filecache. 1240 */ 1241 static int shmem_unuse_inode(struct inode *inode, unsigned int type, 1242 bool frontswap, unsigned long *fs_pages_to_unuse) 1243 { 1244 struct address_space *mapping = inode->i_mapping; 1245 pgoff_t start = 0; 1246 struct pagevec pvec; 1247 pgoff_t indices[PAGEVEC_SIZE]; 1248 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); 1249 int ret = 0; 1250 1251 pagevec_init(&pvec); 1252 do { 1253 unsigned int nr_entries = PAGEVEC_SIZE; 1254 1255 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) 1256 nr_entries = *fs_pages_to_unuse; 1257 1258 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1259 pvec.pages, indices, 1260 type, frontswap); 1261 if (pvec.nr == 0) { 1262 ret = 0; 1263 break; 1264 } 1265 1266 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1267 if (ret < 0) 1268 break; 1269 1270 if (frontswap_partial) { 1271 *fs_pages_to_unuse -= ret; 1272 if (*fs_pages_to_unuse == 0) { 1273 ret = FRONTSWAP_PAGES_UNUSED; 1274 break; 1275 } 1276 } 1277 1278 start = indices[pvec.nr - 1]; 1279 } while (true); 1280 1281 return ret; 1282 } 1283 1284 /* 1285 * Read all the shared memory data that resides in the swap 1286 * device 'type' back into memory, so the swap device can be 1287 * unused. 1288 */ 1289 int shmem_unuse(unsigned int type, bool frontswap, 1290 unsigned long *fs_pages_to_unuse) 1291 { 1292 struct shmem_inode_info *info, *next; 1293 int error = 0; 1294 1295 if (list_empty(&shmem_swaplist)) 1296 return 0; 1297 1298 mutex_lock(&shmem_swaplist_mutex); 1299 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1300 if (!info->swapped) { 1301 list_del_init(&info->swaplist); 1302 continue; 1303 } 1304 /* 1305 * Drop the swaplist mutex while searching the inode for swap; 1306 * but before doing so, make sure shmem_evict_inode() will not 1307 * remove placeholder inode from swaplist, nor let it be freed 1308 * (igrab() would protect from unlink, but not from unmount). 1309 */ 1310 atomic_inc(&info->stop_eviction); 1311 mutex_unlock(&shmem_swaplist_mutex); 1312 1313 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, 1314 fs_pages_to_unuse); 1315 cond_resched(); 1316 1317 mutex_lock(&shmem_swaplist_mutex); 1318 next = list_next_entry(info, swaplist); 1319 if (!info->swapped) 1320 list_del_init(&info->swaplist); 1321 if (atomic_dec_and_test(&info->stop_eviction)) 1322 wake_up_var(&info->stop_eviction); 1323 if (error) 1324 break; 1325 } 1326 mutex_unlock(&shmem_swaplist_mutex); 1327 1328 return error; 1329 } 1330 1331 /* 1332 * Move the page from the page cache to the swap cache. 1333 */ 1334 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1335 { 1336 struct shmem_inode_info *info; 1337 struct address_space *mapping; 1338 struct inode *inode; 1339 swp_entry_t swap; 1340 pgoff_t index; 1341 1342 VM_BUG_ON_PAGE(PageCompound(page), page); 1343 BUG_ON(!PageLocked(page)); 1344 mapping = page->mapping; 1345 index = page->index; 1346 inode = mapping->host; 1347 info = SHMEM_I(inode); 1348 if (info->flags & VM_LOCKED) 1349 goto redirty; 1350 if (!total_swap_pages) 1351 goto redirty; 1352 1353 /* 1354 * Our capabilities prevent regular writeback or sync from ever calling 1355 * shmem_writepage; but a stacking filesystem might use ->writepage of 1356 * its underlying filesystem, in which case tmpfs should write out to 1357 * swap only in response to memory pressure, and not for the writeback 1358 * threads or sync. 1359 */ 1360 if (!wbc->for_reclaim) { 1361 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1362 goto redirty; 1363 } 1364 1365 /* 1366 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1367 * value into swapfile.c, the only way we can correctly account for a 1368 * fallocated page arriving here is now to initialize it and write it. 1369 * 1370 * That's okay for a page already fallocated earlier, but if we have 1371 * not yet completed the fallocation, then (a) we want to keep track 1372 * of this page in case we have to undo it, and (b) it may not be a 1373 * good idea to continue anyway, once we're pushing into swap. So 1374 * reactivate the page, and let shmem_fallocate() quit when too many. 1375 */ 1376 if (!PageUptodate(page)) { 1377 if (inode->i_private) { 1378 struct shmem_falloc *shmem_falloc; 1379 spin_lock(&inode->i_lock); 1380 shmem_falloc = inode->i_private; 1381 if (shmem_falloc && 1382 !shmem_falloc->waitq && 1383 index >= shmem_falloc->start && 1384 index < shmem_falloc->next) 1385 shmem_falloc->nr_unswapped++; 1386 else 1387 shmem_falloc = NULL; 1388 spin_unlock(&inode->i_lock); 1389 if (shmem_falloc) 1390 goto redirty; 1391 } 1392 clear_highpage(page); 1393 flush_dcache_page(page); 1394 SetPageUptodate(page); 1395 } 1396 1397 swap = get_swap_page(page); 1398 if (!swap.val) 1399 goto redirty; 1400 1401 /* 1402 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1403 * if it's not already there. Do it now before the page is 1404 * moved to swap cache, when its pagelock no longer protects 1405 * the inode from eviction. But don't unlock the mutex until 1406 * we've incremented swapped, because shmem_unuse_inode() will 1407 * prune a !swapped inode from the swaplist under this mutex. 1408 */ 1409 mutex_lock(&shmem_swaplist_mutex); 1410 if (list_empty(&info->swaplist)) 1411 list_add(&info->swaplist, &shmem_swaplist); 1412 1413 if (add_to_swap_cache(page, swap, 1414 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1415 NULL) == 0) { 1416 spin_lock_irq(&info->lock); 1417 shmem_recalc_inode(inode); 1418 info->swapped++; 1419 spin_unlock_irq(&info->lock); 1420 1421 swap_shmem_alloc(swap); 1422 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1423 1424 mutex_unlock(&shmem_swaplist_mutex); 1425 BUG_ON(page_mapped(page)); 1426 swap_writepage(page, wbc); 1427 return 0; 1428 } 1429 1430 mutex_unlock(&shmem_swaplist_mutex); 1431 put_swap_page(page, swap); 1432 redirty: 1433 set_page_dirty(page); 1434 if (wbc->for_reclaim) 1435 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1436 unlock_page(page); 1437 return 0; 1438 } 1439 1440 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1441 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1442 { 1443 char buffer[64]; 1444 1445 if (!mpol || mpol->mode == MPOL_DEFAULT) 1446 return; /* show nothing */ 1447 1448 mpol_to_str(buffer, sizeof(buffer), mpol); 1449 1450 seq_printf(seq, ",mpol=%s", buffer); 1451 } 1452 1453 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1454 { 1455 struct mempolicy *mpol = NULL; 1456 if (sbinfo->mpol) { 1457 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1458 mpol = sbinfo->mpol; 1459 mpol_get(mpol); 1460 raw_spin_unlock(&sbinfo->stat_lock); 1461 } 1462 return mpol; 1463 } 1464 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1465 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1466 { 1467 } 1468 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1469 { 1470 return NULL; 1471 } 1472 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1473 #ifndef CONFIG_NUMA 1474 #define vm_policy vm_private_data 1475 #endif 1476 1477 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1478 struct shmem_inode_info *info, pgoff_t index) 1479 { 1480 /* Create a pseudo vma that just contains the policy */ 1481 vma_init(vma, NULL); 1482 /* Bias interleave by inode number to distribute better across nodes */ 1483 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1484 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1485 } 1486 1487 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1488 { 1489 /* Drop reference taken by mpol_shared_policy_lookup() */ 1490 mpol_cond_put(vma->vm_policy); 1491 } 1492 1493 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1494 struct shmem_inode_info *info, pgoff_t index) 1495 { 1496 struct vm_area_struct pvma; 1497 struct page *page; 1498 struct vm_fault vmf = { 1499 .vma = &pvma, 1500 }; 1501 1502 shmem_pseudo_vma_init(&pvma, info, index); 1503 page = swap_cluster_readahead(swap, gfp, &vmf); 1504 shmem_pseudo_vma_destroy(&pvma); 1505 1506 return page; 1507 } 1508 1509 /* 1510 * Make sure huge_gfp is always more limited than limit_gfp. 1511 * Some of the flags set permissions, while others set limitations. 1512 */ 1513 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1514 { 1515 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1516 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1517 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1518 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1519 1520 /* Allow allocations only from the originally specified zones. */ 1521 result |= zoneflags; 1522 1523 /* 1524 * Minimize the result gfp by taking the union with the deny flags, 1525 * and the intersection of the allow flags. 1526 */ 1527 result |= (limit_gfp & denyflags); 1528 result |= (huge_gfp & limit_gfp) & allowflags; 1529 1530 return result; 1531 } 1532 1533 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1534 struct shmem_inode_info *info, pgoff_t index) 1535 { 1536 struct vm_area_struct pvma; 1537 struct address_space *mapping = info->vfs_inode.i_mapping; 1538 pgoff_t hindex; 1539 struct page *page; 1540 1541 hindex = round_down(index, HPAGE_PMD_NR); 1542 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1543 XA_PRESENT)) 1544 return NULL; 1545 1546 shmem_pseudo_vma_init(&pvma, info, hindex); 1547 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), 1548 true); 1549 shmem_pseudo_vma_destroy(&pvma); 1550 if (page) 1551 prep_transhuge_page(page); 1552 else 1553 count_vm_event(THP_FILE_FALLBACK); 1554 return page; 1555 } 1556 1557 static struct page *shmem_alloc_page(gfp_t gfp, 1558 struct shmem_inode_info *info, pgoff_t index) 1559 { 1560 struct vm_area_struct pvma; 1561 struct page *page; 1562 1563 shmem_pseudo_vma_init(&pvma, info, index); 1564 page = alloc_page_vma(gfp, &pvma, 0); 1565 shmem_pseudo_vma_destroy(&pvma); 1566 1567 return page; 1568 } 1569 1570 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1571 struct inode *inode, 1572 pgoff_t index, bool huge) 1573 { 1574 struct shmem_inode_info *info = SHMEM_I(inode); 1575 struct page *page; 1576 int nr; 1577 int err = -ENOSPC; 1578 1579 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1580 huge = false; 1581 nr = huge ? HPAGE_PMD_NR : 1; 1582 1583 if (!shmem_inode_acct_block(inode, nr)) 1584 goto failed; 1585 1586 if (huge) 1587 page = shmem_alloc_hugepage(gfp, info, index); 1588 else 1589 page = shmem_alloc_page(gfp, info, index); 1590 if (page) { 1591 __SetPageLocked(page); 1592 __SetPageSwapBacked(page); 1593 return page; 1594 } 1595 1596 err = -ENOMEM; 1597 shmem_inode_unacct_blocks(inode, nr); 1598 failed: 1599 return ERR_PTR(err); 1600 } 1601 1602 /* 1603 * When a page is moved from swapcache to shmem filecache (either by the 1604 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1605 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1606 * ignorance of the mapping it belongs to. If that mapping has special 1607 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1608 * we may need to copy to a suitable page before moving to filecache. 1609 * 1610 * In a future release, this may well be extended to respect cpuset and 1611 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1612 * but for now it is a simple matter of zone. 1613 */ 1614 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1615 { 1616 return page_zonenum(page) > gfp_zone(gfp); 1617 } 1618 1619 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1620 struct shmem_inode_info *info, pgoff_t index) 1621 { 1622 struct page *oldpage, *newpage; 1623 struct address_space *swap_mapping; 1624 swp_entry_t entry; 1625 pgoff_t swap_index; 1626 int error; 1627 1628 oldpage = *pagep; 1629 entry.val = page_private(oldpage); 1630 swap_index = swp_offset(entry); 1631 swap_mapping = page_mapping(oldpage); 1632 1633 /* 1634 * We have arrived here because our zones are constrained, so don't 1635 * limit chance of success by further cpuset and node constraints. 1636 */ 1637 gfp &= ~GFP_CONSTRAINT_MASK; 1638 newpage = shmem_alloc_page(gfp, info, index); 1639 if (!newpage) 1640 return -ENOMEM; 1641 1642 get_page(newpage); 1643 copy_highpage(newpage, oldpage); 1644 flush_dcache_page(newpage); 1645 1646 __SetPageLocked(newpage); 1647 __SetPageSwapBacked(newpage); 1648 SetPageUptodate(newpage); 1649 set_page_private(newpage, entry.val); 1650 SetPageSwapCache(newpage); 1651 1652 /* 1653 * Our caller will very soon move newpage out of swapcache, but it's 1654 * a nice clean interface for us to replace oldpage by newpage there. 1655 */ 1656 xa_lock_irq(&swap_mapping->i_pages); 1657 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1658 if (!error) { 1659 mem_cgroup_migrate(oldpage, newpage); 1660 __inc_lruvec_page_state(newpage, NR_FILE_PAGES); 1661 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); 1662 } 1663 xa_unlock_irq(&swap_mapping->i_pages); 1664 1665 if (unlikely(error)) { 1666 /* 1667 * Is this possible? I think not, now that our callers check 1668 * both PageSwapCache and page_private after getting page lock; 1669 * but be defensive. Reverse old to newpage for clear and free. 1670 */ 1671 oldpage = newpage; 1672 } else { 1673 lru_cache_add(newpage); 1674 *pagep = newpage; 1675 } 1676 1677 ClearPageSwapCache(oldpage); 1678 set_page_private(oldpage, 0); 1679 1680 unlock_page(oldpage); 1681 put_page(oldpage); 1682 put_page(oldpage); 1683 return error; 1684 } 1685 1686 /* 1687 * Swap in the page pointed to by *pagep. 1688 * Caller has to make sure that *pagep contains a valid swapped page. 1689 * Returns 0 and the page in pagep if success. On failure, returns the 1690 * error code and NULL in *pagep. 1691 */ 1692 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1693 struct page **pagep, enum sgp_type sgp, 1694 gfp_t gfp, struct vm_area_struct *vma, 1695 vm_fault_t *fault_type) 1696 { 1697 struct address_space *mapping = inode->i_mapping; 1698 struct shmem_inode_info *info = SHMEM_I(inode); 1699 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1700 struct page *page; 1701 swp_entry_t swap; 1702 int error; 1703 1704 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1705 swap = radix_to_swp_entry(*pagep); 1706 *pagep = NULL; 1707 1708 /* Look it up and read it in.. */ 1709 page = lookup_swap_cache(swap, NULL, 0); 1710 if (!page) { 1711 /* Or update major stats only when swapin succeeds?? */ 1712 if (fault_type) { 1713 *fault_type |= VM_FAULT_MAJOR; 1714 count_vm_event(PGMAJFAULT); 1715 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1716 } 1717 /* Here we actually start the io */ 1718 page = shmem_swapin(swap, gfp, info, index); 1719 if (!page) { 1720 error = -ENOMEM; 1721 goto failed; 1722 } 1723 } 1724 1725 /* We have to do this with page locked to prevent races */ 1726 lock_page(page); 1727 if (!PageSwapCache(page) || page_private(page) != swap.val || 1728 !shmem_confirm_swap(mapping, index, swap)) { 1729 error = -EEXIST; 1730 goto unlock; 1731 } 1732 if (!PageUptodate(page)) { 1733 error = -EIO; 1734 goto failed; 1735 } 1736 wait_on_page_writeback(page); 1737 1738 /* 1739 * Some architectures may have to restore extra metadata to the 1740 * physical page after reading from swap. 1741 */ 1742 arch_swap_restore(swap, page); 1743 1744 if (shmem_should_replace_page(page, gfp)) { 1745 error = shmem_replace_page(&page, gfp, info, index); 1746 if (error) 1747 goto failed; 1748 } 1749 1750 error = shmem_add_to_page_cache(page, mapping, index, 1751 swp_to_radix_entry(swap), gfp, 1752 charge_mm); 1753 if (error) 1754 goto failed; 1755 1756 spin_lock_irq(&info->lock); 1757 info->swapped--; 1758 shmem_recalc_inode(inode); 1759 spin_unlock_irq(&info->lock); 1760 1761 if (sgp == SGP_WRITE) 1762 mark_page_accessed(page); 1763 1764 delete_from_swap_cache(page); 1765 set_page_dirty(page); 1766 swap_free(swap); 1767 1768 *pagep = page; 1769 return 0; 1770 failed: 1771 if (!shmem_confirm_swap(mapping, index, swap)) 1772 error = -EEXIST; 1773 unlock: 1774 if (page) { 1775 unlock_page(page); 1776 put_page(page); 1777 } 1778 1779 return error; 1780 } 1781 1782 /* 1783 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1784 * 1785 * If we allocate a new one we do not mark it dirty. That's up to the 1786 * vm. If we swap it in we mark it dirty since we also free the swap 1787 * entry since a page cannot live in both the swap and page cache. 1788 * 1789 * vma, vmf, and fault_type are only supplied by shmem_fault: 1790 * otherwise they are NULL. 1791 */ 1792 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1793 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1794 struct vm_area_struct *vma, struct vm_fault *vmf, 1795 vm_fault_t *fault_type) 1796 { 1797 struct address_space *mapping = inode->i_mapping; 1798 struct shmem_inode_info *info = SHMEM_I(inode); 1799 struct shmem_sb_info *sbinfo; 1800 struct mm_struct *charge_mm; 1801 struct page *page; 1802 enum sgp_type sgp_huge = sgp; 1803 pgoff_t hindex = index; 1804 gfp_t huge_gfp; 1805 int error; 1806 int once = 0; 1807 int alloced = 0; 1808 1809 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1810 return -EFBIG; 1811 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1812 sgp = SGP_CACHE; 1813 repeat: 1814 if (sgp <= SGP_CACHE && 1815 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1816 return -EINVAL; 1817 } 1818 1819 sbinfo = SHMEM_SB(inode->i_sb); 1820 charge_mm = vma ? vma->vm_mm : NULL; 1821 1822 page = pagecache_get_page(mapping, index, 1823 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0); 1824 1825 if (page && vma && userfaultfd_minor(vma)) { 1826 if (!xa_is_value(page)) { 1827 unlock_page(page); 1828 put_page(page); 1829 } 1830 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1831 return 0; 1832 } 1833 1834 if (xa_is_value(page)) { 1835 error = shmem_swapin_page(inode, index, &page, 1836 sgp, gfp, vma, fault_type); 1837 if (error == -EEXIST) 1838 goto repeat; 1839 1840 *pagep = page; 1841 return error; 1842 } 1843 1844 if (page) 1845 hindex = page->index; 1846 if (page && sgp == SGP_WRITE) 1847 mark_page_accessed(page); 1848 1849 /* fallocated page? */ 1850 if (page && !PageUptodate(page)) { 1851 if (sgp != SGP_READ) 1852 goto clear; 1853 unlock_page(page); 1854 put_page(page); 1855 page = NULL; 1856 hindex = index; 1857 } 1858 if (page || sgp == SGP_READ) 1859 goto out; 1860 1861 /* 1862 * Fast cache lookup did not find it: 1863 * bring it back from swap or allocate. 1864 */ 1865 1866 if (vma && userfaultfd_missing(vma)) { 1867 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1868 return 0; 1869 } 1870 1871 /* shmem_symlink() */ 1872 if (!shmem_mapping(mapping)) 1873 goto alloc_nohuge; 1874 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1875 goto alloc_nohuge; 1876 if (shmem_huge == SHMEM_HUGE_FORCE) 1877 goto alloc_huge; 1878 switch (sbinfo->huge) { 1879 case SHMEM_HUGE_NEVER: 1880 goto alloc_nohuge; 1881 case SHMEM_HUGE_WITHIN_SIZE: { 1882 loff_t i_size; 1883 pgoff_t off; 1884 1885 off = round_up(index, HPAGE_PMD_NR); 1886 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1887 if (i_size >= HPAGE_PMD_SIZE && 1888 i_size >> PAGE_SHIFT >= off) 1889 goto alloc_huge; 1890 1891 fallthrough; 1892 } 1893 case SHMEM_HUGE_ADVISE: 1894 if (sgp_huge == SGP_HUGE) 1895 goto alloc_huge; 1896 /* TODO: implement fadvise() hints */ 1897 goto alloc_nohuge; 1898 } 1899 1900 alloc_huge: 1901 huge_gfp = vma_thp_gfp_mask(vma); 1902 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1903 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true); 1904 if (IS_ERR(page)) { 1905 alloc_nohuge: 1906 page = shmem_alloc_and_acct_page(gfp, inode, 1907 index, false); 1908 } 1909 if (IS_ERR(page)) { 1910 int retry = 5; 1911 1912 error = PTR_ERR(page); 1913 page = NULL; 1914 if (error != -ENOSPC) 1915 goto unlock; 1916 /* 1917 * Try to reclaim some space by splitting a huge page 1918 * beyond i_size on the filesystem. 1919 */ 1920 while (retry--) { 1921 int ret; 1922 1923 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1924 if (ret == SHRINK_STOP) 1925 break; 1926 if (ret) 1927 goto alloc_nohuge; 1928 } 1929 goto unlock; 1930 } 1931 1932 if (PageTransHuge(page)) 1933 hindex = round_down(index, HPAGE_PMD_NR); 1934 else 1935 hindex = index; 1936 1937 if (sgp == SGP_WRITE) 1938 __SetPageReferenced(page); 1939 1940 error = shmem_add_to_page_cache(page, mapping, hindex, 1941 NULL, gfp & GFP_RECLAIM_MASK, 1942 charge_mm); 1943 if (error) 1944 goto unacct; 1945 lru_cache_add(page); 1946 1947 spin_lock_irq(&info->lock); 1948 info->alloced += compound_nr(page); 1949 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1950 shmem_recalc_inode(inode); 1951 spin_unlock_irq(&info->lock); 1952 alloced = true; 1953 1954 if (PageTransHuge(page) && 1955 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1956 hindex + HPAGE_PMD_NR - 1) { 1957 /* 1958 * Part of the huge page is beyond i_size: subject 1959 * to shrink under memory pressure. 1960 */ 1961 spin_lock(&sbinfo->shrinklist_lock); 1962 /* 1963 * _careful to defend against unlocked access to 1964 * ->shrink_list in shmem_unused_huge_shrink() 1965 */ 1966 if (list_empty_careful(&info->shrinklist)) { 1967 list_add_tail(&info->shrinklist, 1968 &sbinfo->shrinklist); 1969 sbinfo->shrinklist_len++; 1970 } 1971 spin_unlock(&sbinfo->shrinklist_lock); 1972 } 1973 1974 /* 1975 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1976 */ 1977 if (sgp == SGP_FALLOC) 1978 sgp = SGP_WRITE; 1979 clear: 1980 /* 1981 * Let SGP_WRITE caller clear ends if write does not fill page; 1982 * but SGP_FALLOC on a page fallocated earlier must initialize 1983 * it now, lest undo on failure cancel our earlier guarantee. 1984 */ 1985 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1986 int i; 1987 1988 for (i = 0; i < compound_nr(page); i++) { 1989 clear_highpage(page + i); 1990 flush_dcache_page(page + i); 1991 } 1992 SetPageUptodate(page); 1993 } 1994 1995 /* Perhaps the file has been truncated since we checked */ 1996 if (sgp <= SGP_CACHE && 1997 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1998 if (alloced) { 1999 ClearPageDirty(page); 2000 delete_from_page_cache(page); 2001 spin_lock_irq(&info->lock); 2002 shmem_recalc_inode(inode); 2003 spin_unlock_irq(&info->lock); 2004 } 2005 error = -EINVAL; 2006 goto unlock; 2007 } 2008 out: 2009 *pagep = page + index - hindex; 2010 return 0; 2011 2012 /* 2013 * Error recovery. 2014 */ 2015 unacct: 2016 shmem_inode_unacct_blocks(inode, compound_nr(page)); 2017 2018 if (PageTransHuge(page)) { 2019 unlock_page(page); 2020 put_page(page); 2021 goto alloc_nohuge; 2022 } 2023 unlock: 2024 if (page) { 2025 unlock_page(page); 2026 put_page(page); 2027 } 2028 if (error == -ENOSPC && !once++) { 2029 spin_lock_irq(&info->lock); 2030 shmem_recalc_inode(inode); 2031 spin_unlock_irq(&info->lock); 2032 goto repeat; 2033 } 2034 if (error == -EEXIST) 2035 goto repeat; 2036 return error; 2037 } 2038 2039 /* 2040 * This is like autoremove_wake_function, but it removes the wait queue 2041 * entry unconditionally - even if something else had already woken the 2042 * target. 2043 */ 2044 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2045 { 2046 int ret = default_wake_function(wait, mode, sync, key); 2047 list_del_init(&wait->entry); 2048 return ret; 2049 } 2050 2051 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2052 { 2053 struct vm_area_struct *vma = vmf->vma; 2054 struct inode *inode = file_inode(vma->vm_file); 2055 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2056 enum sgp_type sgp; 2057 int err; 2058 vm_fault_t ret = VM_FAULT_LOCKED; 2059 2060 /* 2061 * Trinity finds that probing a hole which tmpfs is punching can 2062 * prevent the hole-punch from ever completing: which in turn 2063 * locks writers out with its hold on i_mutex. So refrain from 2064 * faulting pages into the hole while it's being punched. Although 2065 * shmem_undo_range() does remove the additions, it may be unable to 2066 * keep up, as each new page needs its own unmap_mapping_range() call, 2067 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2068 * 2069 * It does not matter if we sometimes reach this check just before the 2070 * hole-punch begins, so that one fault then races with the punch: 2071 * we just need to make racing faults a rare case. 2072 * 2073 * The implementation below would be much simpler if we just used a 2074 * standard mutex or completion: but we cannot take i_mutex in fault, 2075 * and bloating every shmem inode for this unlikely case would be sad. 2076 */ 2077 if (unlikely(inode->i_private)) { 2078 struct shmem_falloc *shmem_falloc; 2079 2080 spin_lock(&inode->i_lock); 2081 shmem_falloc = inode->i_private; 2082 if (shmem_falloc && 2083 shmem_falloc->waitq && 2084 vmf->pgoff >= shmem_falloc->start && 2085 vmf->pgoff < shmem_falloc->next) { 2086 struct file *fpin; 2087 wait_queue_head_t *shmem_falloc_waitq; 2088 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2089 2090 ret = VM_FAULT_NOPAGE; 2091 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2092 if (fpin) 2093 ret = VM_FAULT_RETRY; 2094 2095 shmem_falloc_waitq = shmem_falloc->waitq; 2096 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2097 TASK_UNINTERRUPTIBLE); 2098 spin_unlock(&inode->i_lock); 2099 schedule(); 2100 2101 /* 2102 * shmem_falloc_waitq points into the shmem_fallocate() 2103 * stack of the hole-punching task: shmem_falloc_waitq 2104 * is usually invalid by the time we reach here, but 2105 * finish_wait() does not dereference it in that case; 2106 * though i_lock needed lest racing with wake_up_all(). 2107 */ 2108 spin_lock(&inode->i_lock); 2109 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2110 spin_unlock(&inode->i_lock); 2111 2112 if (fpin) 2113 fput(fpin); 2114 return ret; 2115 } 2116 spin_unlock(&inode->i_lock); 2117 } 2118 2119 sgp = SGP_CACHE; 2120 2121 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2122 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2123 sgp = SGP_NOHUGE; 2124 else if (vma->vm_flags & VM_HUGEPAGE) 2125 sgp = SGP_HUGE; 2126 2127 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2128 gfp, vma, vmf, &ret); 2129 if (err) 2130 return vmf_error(err); 2131 return ret; 2132 } 2133 2134 unsigned long shmem_get_unmapped_area(struct file *file, 2135 unsigned long uaddr, unsigned long len, 2136 unsigned long pgoff, unsigned long flags) 2137 { 2138 unsigned long (*get_area)(struct file *, 2139 unsigned long, unsigned long, unsigned long, unsigned long); 2140 unsigned long addr; 2141 unsigned long offset; 2142 unsigned long inflated_len; 2143 unsigned long inflated_addr; 2144 unsigned long inflated_offset; 2145 2146 if (len > TASK_SIZE) 2147 return -ENOMEM; 2148 2149 get_area = current->mm->get_unmapped_area; 2150 addr = get_area(file, uaddr, len, pgoff, flags); 2151 2152 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2153 return addr; 2154 if (IS_ERR_VALUE(addr)) 2155 return addr; 2156 if (addr & ~PAGE_MASK) 2157 return addr; 2158 if (addr > TASK_SIZE - len) 2159 return addr; 2160 2161 if (shmem_huge == SHMEM_HUGE_DENY) 2162 return addr; 2163 if (len < HPAGE_PMD_SIZE) 2164 return addr; 2165 if (flags & MAP_FIXED) 2166 return addr; 2167 /* 2168 * Our priority is to support MAP_SHARED mapped hugely; 2169 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2170 * But if caller specified an address hint and we allocated area there 2171 * successfully, respect that as before. 2172 */ 2173 if (uaddr == addr) 2174 return addr; 2175 2176 if (shmem_huge != SHMEM_HUGE_FORCE) { 2177 struct super_block *sb; 2178 2179 if (file) { 2180 VM_BUG_ON(file->f_op != &shmem_file_operations); 2181 sb = file_inode(file)->i_sb; 2182 } else { 2183 /* 2184 * Called directly from mm/mmap.c, or drivers/char/mem.c 2185 * for "/dev/zero", to create a shared anonymous object. 2186 */ 2187 if (IS_ERR(shm_mnt)) 2188 return addr; 2189 sb = shm_mnt->mnt_sb; 2190 } 2191 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2192 return addr; 2193 } 2194 2195 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2196 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2197 return addr; 2198 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2199 return addr; 2200 2201 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2202 if (inflated_len > TASK_SIZE) 2203 return addr; 2204 if (inflated_len < len) 2205 return addr; 2206 2207 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2208 if (IS_ERR_VALUE(inflated_addr)) 2209 return addr; 2210 if (inflated_addr & ~PAGE_MASK) 2211 return addr; 2212 2213 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2214 inflated_addr += offset - inflated_offset; 2215 if (inflated_offset > offset) 2216 inflated_addr += HPAGE_PMD_SIZE; 2217 2218 if (inflated_addr > TASK_SIZE - len) 2219 return addr; 2220 return inflated_addr; 2221 } 2222 2223 #ifdef CONFIG_NUMA 2224 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2225 { 2226 struct inode *inode = file_inode(vma->vm_file); 2227 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2228 } 2229 2230 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2231 unsigned long addr) 2232 { 2233 struct inode *inode = file_inode(vma->vm_file); 2234 pgoff_t index; 2235 2236 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2237 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2238 } 2239 #endif 2240 2241 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2242 { 2243 struct inode *inode = file_inode(file); 2244 struct shmem_inode_info *info = SHMEM_I(inode); 2245 int retval = -ENOMEM; 2246 2247 /* 2248 * What serializes the accesses to info->flags? 2249 * ipc_lock_object() when called from shmctl_do_lock(), 2250 * no serialization needed when called from shm_destroy(). 2251 */ 2252 if (lock && !(info->flags & VM_LOCKED)) { 2253 if (!user_shm_lock(inode->i_size, ucounts)) 2254 goto out_nomem; 2255 info->flags |= VM_LOCKED; 2256 mapping_set_unevictable(file->f_mapping); 2257 } 2258 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2259 user_shm_unlock(inode->i_size, ucounts); 2260 info->flags &= ~VM_LOCKED; 2261 mapping_clear_unevictable(file->f_mapping); 2262 } 2263 retval = 0; 2264 2265 out_nomem: 2266 return retval; 2267 } 2268 2269 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2270 { 2271 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2272 int ret; 2273 2274 ret = seal_check_future_write(info->seals, vma); 2275 if (ret) 2276 return ret; 2277 2278 /* arm64 - allow memory tagging on RAM-based files */ 2279 vma->vm_flags |= VM_MTE_ALLOWED; 2280 2281 file_accessed(file); 2282 vma->vm_ops = &shmem_vm_ops; 2283 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 2284 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2285 (vma->vm_end & HPAGE_PMD_MASK)) { 2286 khugepaged_enter(vma, vma->vm_flags); 2287 } 2288 return 0; 2289 } 2290 2291 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2292 umode_t mode, dev_t dev, unsigned long flags) 2293 { 2294 struct inode *inode; 2295 struct shmem_inode_info *info; 2296 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2297 ino_t ino; 2298 2299 if (shmem_reserve_inode(sb, &ino)) 2300 return NULL; 2301 2302 inode = new_inode(sb); 2303 if (inode) { 2304 inode->i_ino = ino; 2305 inode_init_owner(&init_user_ns, inode, dir, mode); 2306 inode->i_blocks = 0; 2307 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2308 inode->i_generation = prandom_u32(); 2309 info = SHMEM_I(inode); 2310 memset(info, 0, (char *)inode - (char *)info); 2311 spin_lock_init(&info->lock); 2312 atomic_set(&info->stop_eviction, 0); 2313 info->seals = F_SEAL_SEAL; 2314 info->flags = flags & VM_NORESERVE; 2315 INIT_LIST_HEAD(&info->shrinklist); 2316 INIT_LIST_HEAD(&info->swaplist); 2317 simple_xattrs_init(&info->xattrs); 2318 cache_no_acl(inode); 2319 2320 switch (mode & S_IFMT) { 2321 default: 2322 inode->i_op = &shmem_special_inode_operations; 2323 init_special_inode(inode, mode, dev); 2324 break; 2325 case S_IFREG: 2326 inode->i_mapping->a_ops = &shmem_aops; 2327 inode->i_op = &shmem_inode_operations; 2328 inode->i_fop = &shmem_file_operations; 2329 mpol_shared_policy_init(&info->policy, 2330 shmem_get_sbmpol(sbinfo)); 2331 break; 2332 case S_IFDIR: 2333 inc_nlink(inode); 2334 /* Some things misbehave if size == 0 on a directory */ 2335 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2336 inode->i_op = &shmem_dir_inode_operations; 2337 inode->i_fop = &simple_dir_operations; 2338 break; 2339 case S_IFLNK: 2340 /* 2341 * Must not load anything in the rbtree, 2342 * mpol_free_shared_policy will not be called. 2343 */ 2344 mpol_shared_policy_init(&info->policy, NULL); 2345 break; 2346 } 2347 2348 lockdep_annotate_inode_mutex_key(inode); 2349 } else 2350 shmem_free_inode(sb); 2351 return inode; 2352 } 2353 2354 #ifdef CONFIG_USERFAULTFD 2355 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2356 pmd_t *dst_pmd, 2357 struct vm_area_struct *dst_vma, 2358 unsigned long dst_addr, 2359 unsigned long src_addr, 2360 bool zeropage, 2361 struct page **pagep) 2362 { 2363 struct inode *inode = file_inode(dst_vma->vm_file); 2364 struct shmem_inode_info *info = SHMEM_I(inode); 2365 struct address_space *mapping = inode->i_mapping; 2366 gfp_t gfp = mapping_gfp_mask(mapping); 2367 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2368 void *page_kaddr; 2369 struct page *page; 2370 int ret; 2371 pgoff_t max_off; 2372 2373 if (!shmem_inode_acct_block(inode, 1)) { 2374 /* 2375 * We may have got a page, returned -ENOENT triggering a retry, 2376 * and now we find ourselves with -ENOMEM. Release the page, to 2377 * avoid a BUG_ON in our caller. 2378 */ 2379 if (unlikely(*pagep)) { 2380 put_page(*pagep); 2381 *pagep = NULL; 2382 } 2383 return -ENOMEM; 2384 } 2385 2386 if (!*pagep) { 2387 ret = -ENOMEM; 2388 page = shmem_alloc_page(gfp, info, pgoff); 2389 if (!page) 2390 goto out_unacct_blocks; 2391 2392 if (!zeropage) { /* COPY */ 2393 page_kaddr = kmap_atomic(page); 2394 ret = copy_from_user(page_kaddr, 2395 (const void __user *)src_addr, 2396 PAGE_SIZE); 2397 kunmap_atomic(page_kaddr); 2398 2399 /* fallback to copy_from_user outside mmap_lock */ 2400 if (unlikely(ret)) { 2401 *pagep = page; 2402 ret = -ENOENT; 2403 /* don't free the page */ 2404 goto out_unacct_blocks; 2405 } 2406 } else { /* ZEROPAGE */ 2407 clear_highpage(page); 2408 } 2409 } else { 2410 page = *pagep; 2411 *pagep = NULL; 2412 } 2413 2414 VM_BUG_ON(PageLocked(page)); 2415 VM_BUG_ON(PageSwapBacked(page)); 2416 __SetPageLocked(page); 2417 __SetPageSwapBacked(page); 2418 __SetPageUptodate(page); 2419 2420 ret = -EFAULT; 2421 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2422 if (unlikely(pgoff >= max_off)) 2423 goto out_release; 2424 2425 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2426 gfp & GFP_RECLAIM_MASK, dst_mm); 2427 if (ret) 2428 goto out_release; 2429 2430 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 2431 page, true, false); 2432 if (ret) 2433 goto out_delete_from_cache; 2434 2435 spin_lock_irq(&info->lock); 2436 info->alloced++; 2437 inode->i_blocks += BLOCKS_PER_PAGE; 2438 shmem_recalc_inode(inode); 2439 spin_unlock_irq(&info->lock); 2440 2441 SetPageDirty(page); 2442 unlock_page(page); 2443 return 0; 2444 out_delete_from_cache: 2445 delete_from_page_cache(page); 2446 out_release: 2447 unlock_page(page); 2448 put_page(page); 2449 out_unacct_blocks: 2450 shmem_inode_unacct_blocks(inode, 1); 2451 return ret; 2452 } 2453 #endif /* CONFIG_USERFAULTFD */ 2454 2455 #ifdef CONFIG_TMPFS 2456 static const struct inode_operations shmem_symlink_inode_operations; 2457 static const struct inode_operations shmem_short_symlink_operations; 2458 2459 #ifdef CONFIG_TMPFS_XATTR 2460 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2461 #else 2462 #define shmem_initxattrs NULL 2463 #endif 2464 2465 static int 2466 shmem_write_begin(struct file *file, struct address_space *mapping, 2467 loff_t pos, unsigned len, unsigned flags, 2468 struct page **pagep, void **fsdata) 2469 { 2470 struct inode *inode = mapping->host; 2471 struct shmem_inode_info *info = SHMEM_I(inode); 2472 pgoff_t index = pos >> PAGE_SHIFT; 2473 2474 /* i_mutex is held by caller */ 2475 if (unlikely(info->seals & (F_SEAL_GROW | 2476 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2477 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2478 return -EPERM; 2479 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2480 return -EPERM; 2481 } 2482 2483 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2484 } 2485 2486 static int 2487 shmem_write_end(struct file *file, struct address_space *mapping, 2488 loff_t pos, unsigned len, unsigned copied, 2489 struct page *page, void *fsdata) 2490 { 2491 struct inode *inode = mapping->host; 2492 2493 if (pos + copied > inode->i_size) 2494 i_size_write(inode, pos + copied); 2495 2496 if (!PageUptodate(page)) { 2497 struct page *head = compound_head(page); 2498 if (PageTransCompound(page)) { 2499 int i; 2500 2501 for (i = 0; i < HPAGE_PMD_NR; i++) { 2502 if (head + i == page) 2503 continue; 2504 clear_highpage(head + i); 2505 flush_dcache_page(head + i); 2506 } 2507 } 2508 if (copied < PAGE_SIZE) { 2509 unsigned from = pos & (PAGE_SIZE - 1); 2510 zero_user_segments(page, 0, from, 2511 from + copied, PAGE_SIZE); 2512 } 2513 SetPageUptodate(head); 2514 } 2515 set_page_dirty(page); 2516 unlock_page(page); 2517 put_page(page); 2518 2519 return copied; 2520 } 2521 2522 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2523 { 2524 struct file *file = iocb->ki_filp; 2525 struct inode *inode = file_inode(file); 2526 struct address_space *mapping = inode->i_mapping; 2527 pgoff_t index; 2528 unsigned long offset; 2529 enum sgp_type sgp = SGP_READ; 2530 int error = 0; 2531 ssize_t retval = 0; 2532 loff_t *ppos = &iocb->ki_pos; 2533 2534 /* 2535 * Might this read be for a stacking filesystem? Then when reading 2536 * holes of a sparse file, we actually need to allocate those pages, 2537 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2538 */ 2539 if (!iter_is_iovec(to)) 2540 sgp = SGP_CACHE; 2541 2542 index = *ppos >> PAGE_SHIFT; 2543 offset = *ppos & ~PAGE_MASK; 2544 2545 for (;;) { 2546 struct page *page = NULL; 2547 pgoff_t end_index; 2548 unsigned long nr, ret; 2549 loff_t i_size = i_size_read(inode); 2550 2551 end_index = i_size >> PAGE_SHIFT; 2552 if (index > end_index) 2553 break; 2554 if (index == end_index) { 2555 nr = i_size & ~PAGE_MASK; 2556 if (nr <= offset) 2557 break; 2558 } 2559 2560 error = shmem_getpage(inode, index, &page, sgp); 2561 if (error) { 2562 if (error == -EINVAL) 2563 error = 0; 2564 break; 2565 } 2566 if (page) { 2567 if (sgp == SGP_CACHE) 2568 set_page_dirty(page); 2569 unlock_page(page); 2570 } 2571 2572 /* 2573 * We must evaluate after, since reads (unlike writes) 2574 * are called without i_mutex protection against truncate 2575 */ 2576 nr = PAGE_SIZE; 2577 i_size = i_size_read(inode); 2578 end_index = i_size >> PAGE_SHIFT; 2579 if (index == end_index) { 2580 nr = i_size & ~PAGE_MASK; 2581 if (nr <= offset) { 2582 if (page) 2583 put_page(page); 2584 break; 2585 } 2586 } 2587 nr -= offset; 2588 2589 if (page) { 2590 /* 2591 * If users can be writing to this page using arbitrary 2592 * virtual addresses, take care about potential aliasing 2593 * before reading the page on the kernel side. 2594 */ 2595 if (mapping_writably_mapped(mapping)) 2596 flush_dcache_page(page); 2597 /* 2598 * Mark the page accessed if we read the beginning. 2599 */ 2600 if (!offset) 2601 mark_page_accessed(page); 2602 } else { 2603 page = ZERO_PAGE(0); 2604 get_page(page); 2605 } 2606 2607 /* 2608 * Ok, we have the page, and it's up-to-date, so 2609 * now we can copy it to user space... 2610 */ 2611 ret = copy_page_to_iter(page, offset, nr, to); 2612 retval += ret; 2613 offset += ret; 2614 index += offset >> PAGE_SHIFT; 2615 offset &= ~PAGE_MASK; 2616 2617 put_page(page); 2618 if (!iov_iter_count(to)) 2619 break; 2620 if (ret < nr) { 2621 error = -EFAULT; 2622 break; 2623 } 2624 cond_resched(); 2625 } 2626 2627 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2628 file_accessed(file); 2629 return retval ? retval : error; 2630 } 2631 2632 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2633 { 2634 struct address_space *mapping = file->f_mapping; 2635 struct inode *inode = mapping->host; 2636 2637 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2638 return generic_file_llseek_size(file, offset, whence, 2639 MAX_LFS_FILESIZE, i_size_read(inode)); 2640 if (offset < 0) 2641 return -ENXIO; 2642 2643 inode_lock(inode); 2644 /* We're holding i_mutex so we can access i_size directly */ 2645 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2646 if (offset >= 0) 2647 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2648 inode_unlock(inode); 2649 return offset; 2650 } 2651 2652 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2653 loff_t len) 2654 { 2655 struct inode *inode = file_inode(file); 2656 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2657 struct shmem_inode_info *info = SHMEM_I(inode); 2658 struct shmem_falloc shmem_falloc; 2659 pgoff_t start, index, end; 2660 int error; 2661 2662 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2663 return -EOPNOTSUPP; 2664 2665 inode_lock(inode); 2666 2667 if (mode & FALLOC_FL_PUNCH_HOLE) { 2668 struct address_space *mapping = file->f_mapping; 2669 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2670 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2671 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2672 2673 /* protected by i_mutex */ 2674 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2675 error = -EPERM; 2676 goto out; 2677 } 2678 2679 shmem_falloc.waitq = &shmem_falloc_waitq; 2680 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2681 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2682 spin_lock(&inode->i_lock); 2683 inode->i_private = &shmem_falloc; 2684 spin_unlock(&inode->i_lock); 2685 2686 if ((u64)unmap_end > (u64)unmap_start) 2687 unmap_mapping_range(mapping, unmap_start, 2688 1 + unmap_end - unmap_start, 0); 2689 shmem_truncate_range(inode, offset, offset + len - 1); 2690 /* No need to unmap again: hole-punching leaves COWed pages */ 2691 2692 spin_lock(&inode->i_lock); 2693 inode->i_private = NULL; 2694 wake_up_all(&shmem_falloc_waitq); 2695 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2696 spin_unlock(&inode->i_lock); 2697 error = 0; 2698 goto out; 2699 } 2700 2701 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2702 error = inode_newsize_ok(inode, offset + len); 2703 if (error) 2704 goto out; 2705 2706 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2707 error = -EPERM; 2708 goto out; 2709 } 2710 2711 start = offset >> PAGE_SHIFT; 2712 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2713 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2714 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2715 error = -ENOSPC; 2716 goto out; 2717 } 2718 2719 shmem_falloc.waitq = NULL; 2720 shmem_falloc.start = start; 2721 shmem_falloc.next = start; 2722 shmem_falloc.nr_falloced = 0; 2723 shmem_falloc.nr_unswapped = 0; 2724 spin_lock(&inode->i_lock); 2725 inode->i_private = &shmem_falloc; 2726 spin_unlock(&inode->i_lock); 2727 2728 for (index = start; index < end; index++) { 2729 struct page *page; 2730 2731 /* 2732 * Good, the fallocate(2) manpage permits EINTR: we may have 2733 * been interrupted because we are using up too much memory. 2734 */ 2735 if (signal_pending(current)) 2736 error = -EINTR; 2737 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2738 error = -ENOMEM; 2739 else 2740 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2741 if (error) { 2742 /* Remove the !PageUptodate pages we added */ 2743 if (index > start) { 2744 shmem_undo_range(inode, 2745 (loff_t)start << PAGE_SHIFT, 2746 ((loff_t)index << PAGE_SHIFT) - 1, true); 2747 } 2748 goto undone; 2749 } 2750 2751 /* 2752 * Inform shmem_writepage() how far we have reached. 2753 * No need for lock or barrier: we have the page lock. 2754 */ 2755 shmem_falloc.next++; 2756 if (!PageUptodate(page)) 2757 shmem_falloc.nr_falloced++; 2758 2759 /* 2760 * If !PageUptodate, leave it that way so that freeable pages 2761 * can be recognized if we need to rollback on error later. 2762 * But set_page_dirty so that memory pressure will swap rather 2763 * than free the pages we are allocating (and SGP_CACHE pages 2764 * might still be clean: we now need to mark those dirty too). 2765 */ 2766 set_page_dirty(page); 2767 unlock_page(page); 2768 put_page(page); 2769 cond_resched(); 2770 } 2771 2772 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2773 i_size_write(inode, offset + len); 2774 inode->i_ctime = current_time(inode); 2775 undone: 2776 spin_lock(&inode->i_lock); 2777 inode->i_private = NULL; 2778 spin_unlock(&inode->i_lock); 2779 out: 2780 inode_unlock(inode); 2781 return error; 2782 } 2783 2784 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2785 { 2786 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2787 2788 buf->f_type = TMPFS_MAGIC; 2789 buf->f_bsize = PAGE_SIZE; 2790 buf->f_namelen = NAME_MAX; 2791 if (sbinfo->max_blocks) { 2792 buf->f_blocks = sbinfo->max_blocks; 2793 buf->f_bavail = 2794 buf->f_bfree = sbinfo->max_blocks - 2795 percpu_counter_sum(&sbinfo->used_blocks); 2796 } 2797 if (sbinfo->max_inodes) { 2798 buf->f_files = sbinfo->max_inodes; 2799 buf->f_ffree = sbinfo->free_inodes; 2800 } 2801 /* else leave those fields 0 like simple_statfs */ 2802 2803 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 2804 2805 return 0; 2806 } 2807 2808 /* 2809 * File creation. Allocate an inode, and we're done.. 2810 */ 2811 static int 2812 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2813 struct dentry *dentry, umode_t mode, dev_t dev) 2814 { 2815 struct inode *inode; 2816 int error = -ENOSPC; 2817 2818 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2819 if (inode) { 2820 error = simple_acl_create(dir, inode); 2821 if (error) 2822 goto out_iput; 2823 error = security_inode_init_security(inode, dir, 2824 &dentry->d_name, 2825 shmem_initxattrs, NULL); 2826 if (error && error != -EOPNOTSUPP) 2827 goto out_iput; 2828 2829 error = 0; 2830 dir->i_size += BOGO_DIRENT_SIZE; 2831 dir->i_ctime = dir->i_mtime = current_time(dir); 2832 d_instantiate(dentry, inode); 2833 dget(dentry); /* Extra count - pin the dentry in core */ 2834 } 2835 return error; 2836 out_iput: 2837 iput(inode); 2838 return error; 2839 } 2840 2841 static int 2842 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 2843 struct dentry *dentry, umode_t mode) 2844 { 2845 struct inode *inode; 2846 int error = -ENOSPC; 2847 2848 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2849 if (inode) { 2850 error = security_inode_init_security(inode, dir, 2851 NULL, 2852 shmem_initxattrs, NULL); 2853 if (error && error != -EOPNOTSUPP) 2854 goto out_iput; 2855 error = simple_acl_create(dir, inode); 2856 if (error) 2857 goto out_iput; 2858 d_tmpfile(dentry, inode); 2859 } 2860 return error; 2861 out_iput: 2862 iput(inode); 2863 return error; 2864 } 2865 2866 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2867 struct dentry *dentry, umode_t mode) 2868 { 2869 int error; 2870 2871 if ((error = shmem_mknod(&init_user_ns, dir, dentry, 2872 mode | S_IFDIR, 0))) 2873 return error; 2874 inc_nlink(dir); 2875 return 0; 2876 } 2877 2878 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, 2879 struct dentry *dentry, umode_t mode, bool excl) 2880 { 2881 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 2882 } 2883 2884 /* 2885 * Link a file.. 2886 */ 2887 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2888 { 2889 struct inode *inode = d_inode(old_dentry); 2890 int ret = 0; 2891 2892 /* 2893 * No ordinary (disk based) filesystem counts links as inodes; 2894 * but each new link needs a new dentry, pinning lowmem, and 2895 * tmpfs dentries cannot be pruned until they are unlinked. 2896 * But if an O_TMPFILE file is linked into the tmpfs, the 2897 * first link must skip that, to get the accounting right. 2898 */ 2899 if (inode->i_nlink) { 2900 ret = shmem_reserve_inode(inode->i_sb, NULL); 2901 if (ret) 2902 goto out; 2903 } 2904 2905 dir->i_size += BOGO_DIRENT_SIZE; 2906 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2907 inc_nlink(inode); 2908 ihold(inode); /* New dentry reference */ 2909 dget(dentry); /* Extra pinning count for the created dentry */ 2910 d_instantiate(dentry, inode); 2911 out: 2912 return ret; 2913 } 2914 2915 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2916 { 2917 struct inode *inode = d_inode(dentry); 2918 2919 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2920 shmem_free_inode(inode->i_sb); 2921 2922 dir->i_size -= BOGO_DIRENT_SIZE; 2923 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2924 drop_nlink(inode); 2925 dput(dentry); /* Undo the count from "create" - this does all the work */ 2926 return 0; 2927 } 2928 2929 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2930 { 2931 if (!simple_empty(dentry)) 2932 return -ENOTEMPTY; 2933 2934 drop_nlink(d_inode(dentry)); 2935 drop_nlink(dir); 2936 return shmem_unlink(dir, dentry); 2937 } 2938 2939 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2940 { 2941 bool old_is_dir = d_is_dir(old_dentry); 2942 bool new_is_dir = d_is_dir(new_dentry); 2943 2944 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2945 if (old_is_dir) { 2946 drop_nlink(old_dir); 2947 inc_nlink(new_dir); 2948 } else { 2949 drop_nlink(new_dir); 2950 inc_nlink(old_dir); 2951 } 2952 } 2953 old_dir->i_ctime = old_dir->i_mtime = 2954 new_dir->i_ctime = new_dir->i_mtime = 2955 d_inode(old_dentry)->i_ctime = 2956 d_inode(new_dentry)->i_ctime = current_time(old_dir); 2957 2958 return 0; 2959 } 2960 2961 static int shmem_whiteout(struct user_namespace *mnt_userns, 2962 struct inode *old_dir, struct dentry *old_dentry) 2963 { 2964 struct dentry *whiteout; 2965 int error; 2966 2967 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2968 if (!whiteout) 2969 return -ENOMEM; 2970 2971 error = shmem_mknod(&init_user_ns, old_dir, whiteout, 2972 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2973 dput(whiteout); 2974 if (error) 2975 return error; 2976 2977 /* 2978 * Cheat and hash the whiteout while the old dentry is still in 2979 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2980 * 2981 * d_lookup() will consistently find one of them at this point, 2982 * not sure which one, but that isn't even important. 2983 */ 2984 d_rehash(whiteout); 2985 return 0; 2986 } 2987 2988 /* 2989 * The VFS layer already does all the dentry stuff for rename, 2990 * we just have to decrement the usage count for the target if 2991 * it exists so that the VFS layer correctly free's it when it 2992 * gets overwritten. 2993 */ 2994 static int shmem_rename2(struct user_namespace *mnt_userns, 2995 struct inode *old_dir, struct dentry *old_dentry, 2996 struct inode *new_dir, struct dentry *new_dentry, 2997 unsigned int flags) 2998 { 2999 struct inode *inode = d_inode(old_dentry); 3000 int they_are_dirs = S_ISDIR(inode->i_mode); 3001 3002 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3003 return -EINVAL; 3004 3005 if (flags & RENAME_EXCHANGE) 3006 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3007 3008 if (!simple_empty(new_dentry)) 3009 return -ENOTEMPTY; 3010 3011 if (flags & RENAME_WHITEOUT) { 3012 int error; 3013 3014 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); 3015 if (error) 3016 return error; 3017 } 3018 3019 if (d_really_is_positive(new_dentry)) { 3020 (void) shmem_unlink(new_dir, new_dentry); 3021 if (they_are_dirs) { 3022 drop_nlink(d_inode(new_dentry)); 3023 drop_nlink(old_dir); 3024 } 3025 } else if (they_are_dirs) { 3026 drop_nlink(old_dir); 3027 inc_nlink(new_dir); 3028 } 3029 3030 old_dir->i_size -= BOGO_DIRENT_SIZE; 3031 new_dir->i_size += BOGO_DIRENT_SIZE; 3032 old_dir->i_ctime = old_dir->i_mtime = 3033 new_dir->i_ctime = new_dir->i_mtime = 3034 inode->i_ctime = current_time(old_dir); 3035 return 0; 3036 } 3037 3038 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, 3039 struct dentry *dentry, const char *symname) 3040 { 3041 int error; 3042 int len; 3043 struct inode *inode; 3044 struct page *page; 3045 3046 len = strlen(symname) + 1; 3047 if (len > PAGE_SIZE) 3048 return -ENAMETOOLONG; 3049 3050 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3051 VM_NORESERVE); 3052 if (!inode) 3053 return -ENOSPC; 3054 3055 error = security_inode_init_security(inode, dir, &dentry->d_name, 3056 shmem_initxattrs, NULL); 3057 if (error && error != -EOPNOTSUPP) { 3058 iput(inode); 3059 return error; 3060 } 3061 3062 inode->i_size = len-1; 3063 if (len <= SHORT_SYMLINK_LEN) { 3064 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3065 if (!inode->i_link) { 3066 iput(inode); 3067 return -ENOMEM; 3068 } 3069 inode->i_op = &shmem_short_symlink_operations; 3070 } else { 3071 inode_nohighmem(inode); 3072 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3073 if (error) { 3074 iput(inode); 3075 return error; 3076 } 3077 inode->i_mapping->a_ops = &shmem_aops; 3078 inode->i_op = &shmem_symlink_inode_operations; 3079 memcpy(page_address(page), symname, len); 3080 SetPageUptodate(page); 3081 set_page_dirty(page); 3082 unlock_page(page); 3083 put_page(page); 3084 } 3085 dir->i_size += BOGO_DIRENT_SIZE; 3086 dir->i_ctime = dir->i_mtime = current_time(dir); 3087 d_instantiate(dentry, inode); 3088 dget(dentry); 3089 return 0; 3090 } 3091 3092 static void shmem_put_link(void *arg) 3093 { 3094 mark_page_accessed(arg); 3095 put_page(arg); 3096 } 3097 3098 static const char *shmem_get_link(struct dentry *dentry, 3099 struct inode *inode, 3100 struct delayed_call *done) 3101 { 3102 struct page *page = NULL; 3103 int error; 3104 if (!dentry) { 3105 page = find_get_page(inode->i_mapping, 0); 3106 if (!page) 3107 return ERR_PTR(-ECHILD); 3108 if (!PageUptodate(page)) { 3109 put_page(page); 3110 return ERR_PTR(-ECHILD); 3111 } 3112 } else { 3113 error = shmem_getpage(inode, 0, &page, SGP_READ); 3114 if (error) 3115 return ERR_PTR(error); 3116 unlock_page(page); 3117 } 3118 set_delayed_call(done, shmem_put_link, page); 3119 return page_address(page); 3120 } 3121 3122 #ifdef CONFIG_TMPFS_XATTR 3123 /* 3124 * Superblocks without xattr inode operations may get some security.* xattr 3125 * support from the LSM "for free". As soon as we have any other xattrs 3126 * like ACLs, we also need to implement the security.* handlers at 3127 * filesystem level, though. 3128 */ 3129 3130 /* 3131 * Callback for security_inode_init_security() for acquiring xattrs. 3132 */ 3133 static int shmem_initxattrs(struct inode *inode, 3134 const struct xattr *xattr_array, 3135 void *fs_info) 3136 { 3137 struct shmem_inode_info *info = SHMEM_I(inode); 3138 const struct xattr *xattr; 3139 struct simple_xattr *new_xattr; 3140 size_t len; 3141 3142 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3143 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3144 if (!new_xattr) 3145 return -ENOMEM; 3146 3147 len = strlen(xattr->name) + 1; 3148 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3149 GFP_KERNEL); 3150 if (!new_xattr->name) { 3151 kvfree(new_xattr); 3152 return -ENOMEM; 3153 } 3154 3155 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3156 XATTR_SECURITY_PREFIX_LEN); 3157 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3158 xattr->name, len); 3159 3160 simple_xattr_list_add(&info->xattrs, new_xattr); 3161 } 3162 3163 return 0; 3164 } 3165 3166 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3167 struct dentry *unused, struct inode *inode, 3168 const char *name, void *buffer, size_t size) 3169 { 3170 struct shmem_inode_info *info = SHMEM_I(inode); 3171 3172 name = xattr_full_name(handler, name); 3173 return simple_xattr_get(&info->xattrs, name, buffer, size); 3174 } 3175 3176 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3177 struct user_namespace *mnt_userns, 3178 struct dentry *unused, struct inode *inode, 3179 const char *name, const void *value, 3180 size_t size, int flags) 3181 { 3182 struct shmem_inode_info *info = SHMEM_I(inode); 3183 3184 name = xattr_full_name(handler, name); 3185 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3186 } 3187 3188 static const struct xattr_handler shmem_security_xattr_handler = { 3189 .prefix = XATTR_SECURITY_PREFIX, 3190 .get = shmem_xattr_handler_get, 3191 .set = shmem_xattr_handler_set, 3192 }; 3193 3194 static const struct xattr_handler shmem_trusted_xattr_handler = { 3195 .prefix = XATTR_TRUSTED_PREFIX, 3196 .get = shmem_xattr_handler_get, 3197 .set = shmem_xattr_handler_set, 3198 }; 3199 3200 static const struct xattr_handler *shmem_xattr_handlers[] = { 3201 #ifdef CONFIG_TMPFS_POSIX_ACL 3202 &posix_acl_access_xattr_handler, 3203 &posix_acl_default_xattr_handler, 3204 #endif 3205 &shmem_security_xattr_handler, 3206 &shmem_trusted_xattr_handler, 3207 NULL 3208 }; 3209 3210 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3211 { 3212 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3213 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3214 } 3215 #endif /* CONFIG_TMPFS_XATTR */ 3216 3217 static const struct inode_operations shmem_short_symlink_operations = { 3218 .get_link = simple_get_link, 3219 #ifdef CONFIG_TMPFS_XATTR 3220 .listxattr = shmem_listxattr, 3221 #endif 3222 }; 3223 3224 static const struct inode_operations shmem_symlink_inode_operations = { 3225 .get_link = shmem_get_link, 3226 #ifdef CONFIG_TMPFS_XATTR 3227 .listxattr = shmem_listxattr, 3228 #endif 3229 }; 3230 3231 static struct dentry *shmem_get_parent(struct dentry *child) 3232 { 3233 return ERR_PTR(-ESTALE); 3234 } 3235 3236 static int shmem_match(struct inode *ino, void *vfh) 3237 { 3238 __u32 *fh = vfh; 3239 __u64 inum = fh[2]; 3240 inum = (inum << 32) | fh[1]; 3241 return ino->i_ino == inum && fh[0] == ino->i_generation; 3242 } 3243 3244 /* Find any alias of inode, but prefer a hashed alias */ 3245 static struct dentry *shmem_find_alias(struct inode *inode) 3246 { 3247 struct dentry *alias = d_find_alias(inode); 3248 3249 return alias ?: d_find_any_alias(inode); 3250 } 3251 3252 3253 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3254 struct fid *fid, int fh_len, int fh_type) 3255 { 3256 struct inode *inode; 3257 struct dentry *dentry = NULL; 3258 u64 inum; 3259 3260 if (fh_len < 3) 3261 return NULL; 3262 3263 inum = fid->raw[2]; 3264 inum = (inum << 32) | fid->raw[1]; 3265 3266 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3267 shmem_match, fid->raw); 3268 if (inode) { 3269 dentry = shmem_find_alias(inode); 3270 iput(inode); 3271 } 3272 3273 return dentry; 3274 } 3275 3276 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3277 struct inode *parent) 3278 { 3279 if (*len < 3) { 3280 *len = 3; 3281 return FILEID_INVALID; 3282 } 3283 3284 if (inode_unhashed(inode)) { 3285 /* Unfortunately insert_inode_hash is not idempotent, 3286 * so as we hash inodes here rather than at creation 3287 * time, we need a lock to ensure we only try 3288 * to do it once 3289 */ 3290 static DEFINE_SPINLOCK(lock); 3291 spin_lock(&lock); 3292 if (inode_unhashed(inode)) 3293 __insert_inode_hash(inode, 3294 inode->i_ino + inode->i_generation); 3295 spin_unlock(&lock); 3296 } 3297 3298 fh[0] = inode->i_generation; 3299 fh[1] = inode->i_ino; 3300 fh[2] = ((__u64)inode->i_ino) >> 32; 3301 3302 *len = 3; 3303 return 1; 3304 } 3305 3306 static const struct export_operations shmem_export_ops = { 3307 .get_parent = shmem_get_parent, 3308 .encode_fh = shmem_encode_fh, 3309 .fh_to_dentry = shmem_fh_to_dentry, 3310 }; 3311 3312 enum shmem_param { 3313 Opt_gid, 3314 Opt_huge, 3315 Opt_mode, 3316 Opt_mpol, 3317 Opt_nr_blocks, 3318 Opt_nr_inodes, 3319 Opt_size, 3320 Opt_uid, 3321 Opt_inode32, 3322 Opt_inode64, 3323 }; 3324 3325 static const struct constant_table shmem_param_enums_huge[] = { 3326 {"never", SHMEM_HUGE_NEVER }, 3327 {"always", SHMEM_HUGE_ALWAYS }, 3328 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3329 {"advise", SHMEM_HUGE_ADVISE }, 3330 {} 3331 }; 3332 3333 const struct fs_parameter_spec shmem_fs_parameters[] = { 3334 fsparam_u32 ("gid", Opt_gid), 3335 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3336 fsparam_u32oct("mode", Opt_mode), 3337 fsparam_string("mpol", Opt_mpol), 3338 fsparam_string("nr_blocks", Opt_nr_blocks), 3339 fsparam_string("nr_inodes", Opt_nr_inodes), 3340 fsparam_string("size", Opt_size), 3341 fsparam_u32 ("uid", Opt_uid), 3342 fsparam_flag ("inode32", Opt_inode32), 3343 fsparam_flag ("inode64", Opt_inode64), 3344 {} 3345 }; 3346 3347 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3348 { 3349 struct shmem_options *ctx = fc->fs_private; 3350 struct fs_parse_result result; 3351 unsigned long long size; 3352 char *rest; 3353 int opt; 3354 3355 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3356 if (opt < 0) 3357 return opt; 3358 3359 switch (opt) { 3360 case Opt_size: 3361 size = memparse(param->string, &rest); 3362 if (*rest == '%') { 3363 size <<= PAGE_SHIFT; 3364 size *= totalram_pages(); 3365 do_div(size, 100); 3366 rest++; 3367 } 3368 if (*rest) 3369 goto bad_value; 3370 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3371 ctx->seen |= SHMEM_SEEN_BLOCKS; 3372 break; 3373 case Opt_nr_blocks: 3374 ctx->blocks = memparse(param->string, &rest); 3375 if (*rest) 3376 goto bad_value; 3377 ctx->seen |= SHMEM_SEEN_BLOCKS; 3378 break; 3379 case Opt_nr_inodes: 3380 ctx->inodes = memparse(param->string, &rest); 3381 if (*rest) 3382 goto bad_value; 3383 ctx->seen |= SHMEM_SEEN_INODES; 3384 break; 3385 case Opt_mode: 3386 ctx->mode = result.uint_32 & 07777; 3387 break; 3388 case Opt_uid: 3389 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3390 if (!uid_valid(ctx->uid)) 3391 goto bad_value; 3392 break; 3393 case Opt_gid: 3394 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3395 if (!gid_valid(ctx->gid)) 3396 goto bad_value; 3397 break; 3398 case Opt_huge: 3399 ctx->huge = result.uint_32; 3400 if (ctx->huge != SHMEM_HUGE_NEVER && 3401 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3402 has_transparent_hugepage())) 3403 goto unsupported_parameter; 3404 ctx->seen |= SHMEM_SEEN_HUGE; 3405 break; 3406 case Opt_mpol: 3407 if (IS_ENABLED(CONFIG_NUMA)) { 3408 mpol_put(ctx->mpol); 3409 ctx->mpol = NULL; 3410 if (mpol_parse_str(param->string, &ctx->mpol)) 3411 goto bad_value; 3412 break; 3413 } 3414 goto unsupported_parameter; 3415 case Opt_inode32: 3416 ctx->full_inums = false; 3417 ctx->seen |= SHMEM_SEEN_INUMS; 3418 break; 3419 case Opt_inode64: 3420 if (sizeof(ino_t) < 8) { 3421 return invalfc(fc, 3422 "Cannot use inode64 with <64bit inums in kernel\n"); 3423 } 3424 ctx->full_inums = true; 3425 ctx->seen |= SHMEM_SEEN_INUMS; 3426 break; 3427 } 3428 return 0; 3429 3430 unsupported_parameter: 3431 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3432 bad_value: 3433 return invalfc(fc, "Bad value for '%s'", param->key); 3434 } 3435 3436 static int shmem_parse_options(struct fs_context *fc, void *data) 3437 { 3438 char *options = data; 3439 3440 if (options) { 3441 int err = security_sb_eat_lsm_opts(options, &fc->security); 3442 if (err) 3443 return err; 3444 } 3445 3446 while (options != NULL) { 3447 char *this_char = options; 3448 for (;;) { 3449 /* 3450 * NUL-terminate this option: unfortunately, 3451 * mount options form a comma-separated list, 3452 * but mpol's nodelist may also contain commas. 3453 */ 3454 options = strchr(options, ','); 3455 if (options == NULL) 3456 break; 3457 options++; 3458 if (!isdigit(*options)) { 3459 options[-1] = '\0'; 3460 break; 3461 } 3462 } 3463 if (*this_char) { 3464 char *value = strchr(this_char, '='); 3465 size_t len = 0; 3466 int err; 3467 3468 if (value) { 3469 *value++ = '\0'; 3470 len = strlen(value); 3471 } 3472 err = vfs_parse_fs_string(fc, this_char, value, len); 3473 if (err < 0) 3474 return err; 3475 } 3476 } 3477 return 0; 3478 } 3479 3480 /* 3481 * Reconfigure a shmem filesystem. 3482 * 3483 * Note that we disallow change from limited->unlimited blocks/inodes while any 3484 * are in use; but we must separately disallow unlimited->limited, because in 3485 * that case we have no record of how much is already in use. 3486 */ 3487 static int shmem_reconfigure(struct fs_context *fc) 3488 { 3489 struct shmem_options *ctx = fc->fs_private; 3490 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3491 unsigned long inodes; 3492 struct mempolicy *mpol = NULL; 3493 const char *err; 3494 3495 raw_spin_lock(&sbinfo->stat_lock); 3496 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3497 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3498 if (!sbinfo->max_blocks) { 3499 err = "Cannot retroactively limit size"; 3500 goto out; 3501 } 3502 if (percpu_counter_compare(&sbinfo->used_blocks, 3503 ctx->blocks) > 0) { 3504 err = "Too small a size for current use"; 3505 goto out; 3506 } 3507 } 3508 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3509 if (!sbinfo->max_inodes) { 3510 err = "Cannot retroactively limit inodes"; 3511 goto out; 3512 } 3513 if (ctx->inodes < inodes) { 3514 err = "Too few inodes for current use"; 3515 goto out; 3516 } 3517 } 3518 3519 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3520 sbinfo->next_ino > UINT_MAX) { 3521 err = "Current inum too high to switch to 32-bit inums"; 3522 goto out; 3523 } 3524 3525 if (ctx->seen & SHMEM_SEEN_HUGE) 3526 sbinfo->huge = ctx->huge; 3527 if (ctx->seen & SHMEM_SEEN_INUMS) 3528 sbinfo->full_inums = ctx->full_inums; 3529 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3530 sbinfo->max_blocks = ctx->blocks; 3531 if (ctx->seen & SHMEM_SEEN_INODES) { 3532 sbinfo->max_inodes = ctx->inodes; 3533 sbinfo->free_inodes = ctx->inodes - inodes; 3534 } 3535 3536 /* 3537 * Preserve previous mempolicy unless mpol remount option was specified. 3538 */ 3539 if (ctx->mpol) { 3540 mpol = sbinfo->mpol; 3541 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3542 ctx->mpol = NULL; 3543 } 3544 raw_spin_unlock(&sbinfo->stat_lock); 3545 mpol_put(mpol); 3546 return 0; 3547 out: 3548 raw_spin_unlock(&sbinfo->stat_lock); 3549 return invalfc(fc, "%s", err); 3550 } 3551 3552 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3553 { 3554 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3555 3556 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3557 seq_printf(seq, ",size=%luk", 3558 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3559 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3560 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3561 if (sbinfo->mode != (0777 | S_ISVTX)) 3562 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3563 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3564 seq_printf(seq, ",uid=%u", 3565 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3566 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3567 seq_printf(seq, ",gid=%u", 3568 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3569 3570 /* 3571 * Showing inode{64,32} might be useful even if it's the system default, 3572 * since then people don't have to resort to checking both here and 3573 * /proc/config.gz to confirm 64-bit inums were successfully applied 3574 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3575 * 3576 * We hide it when inode64 isn't the default and we are using 32-bit 3577 * inodes, since that probably just means the feature isn't even under 3578 * consideration. 3579 * 3580 * As such: 3581 * 3582 * +-----------------+-----------------+ 3583 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3584 * +------------------+-----------------+-----------------+ 3585 * | full_inums=true | show | show | 3586 * | full_inums=false | show | hide | 3587 * +------------------+-----------------+-----------------+ 3588 * 3589 */ 3590 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3591 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3592 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3593 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3594 if (sbinfo->huge) 3595 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3596 #endif 3597 shmem_show_mpol(seq, sbinfo->mpol); 3598 return 0; 3599 } 3600 3601 #endif /* CONFIG_TMPFS */ 3602 3603 static void shmem_put_super(struct super_block *sb) 3604 { 3605 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3606 3607 free_percpu(sbinfo->ino_batch); 3608 percpu_counter_destroy(&sbinfo->used_blocks); 3609 mpol_put(sbinfo->mpol); 3610 kfree(sbinfo); 3611 sb->s_fs_info = NULL; 3612 } 3613 3614 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3615 { 3616 struct shmem_options *ctx = fc->fs_private; 3617 struct inode *inode; 3618 struct shmem_sb_info *sbinfo; 3619 int err = -ENOMEM; 3620 3621 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3622 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3623 L1_CACHE_BYTES), GFP_KERNEL); 3624 if (!sbinfo) 3625 return -ENOMEM; 3626 3627 sb->s_fs_info = sbinfo; 3628 3629 #ifdef CONFIG_TMPFS 3630 /* 3631 * Per default we only allow half of the physical ram per 3632 * tmpfs instance, limiting inodes to one per page of lowmem; 3633 * but the internal instance is left unlimited. 3634 */ 3635 if (!(sb->s_flags & SB_KERNMOUNT)) { 3636 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3637 ctx->blocks = shmem_default_max_blocks(); 3638 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3639 ctx->inodes = shmem_default_max_inodes(); 3640 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3641 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3642 } else { 3643 sb->s_flags |= SB_NOUSER; 3644 } 3645 sb->s_export_op = &shmem_export_ops; 3646 sb->s_flags |= SB_NOSEC; 3647 #else 3648 sb->s_flags |= SB_NOUSER; 3649 #endif 3650 sbinfo->max_blocks = ctx->blocks; 3651 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3652 if (sb->s_flags & SB_KERNMOUNT) { 3653 sbinfo->ino_batch = alloc_percpu(ino_t); 3654 if (!sbinfo->ino_batch) 3655 goto failed; 3656 } 3657 sbinfo->uid = ctx->uid; 3658 sbinfo->gid = ctx->gid; 3659 sbinfo->full_inums = ctx->full_inums; 3660 sbinfo->mode = ctx->mode; 3661 sbinfo->huge = ctx->huge; 3662 sbinfo->mpol = ctx->mpol; 3663 ctx->mpol = NULL; 3664 3665 raw_spin_lock_init(&sbinfo->stat_lock); 3666 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3667 goto failed; 3668 spin_lock_init(&sbinfo->shrinklist_lock); 3669 INIT_LIST_HEAD(&sbinfo->shrinklist); 3670 3671 sb->s_maxbytes = MAX_LFS_FILESIZE; 3672 sb->s_blocksize = PAGE_SIZE; 3673 sb->s_blocksize_bits = PAGE_SHIFT; 3674 sb->s_magic = TMPFS_MAGIC; 3675 sb->s_op = &shmem_ops; 3676 sb->s_time_gran = 1; 3677 #ifdef CONFIG_TMPFS_XATTR 3678 sb->s_xattr = shmem_xattr_handlers; 3679 #endif 3680 #ifdef CONFIG_TMPFS_POSIX_ACL 3681 sb->s_flags |= SB_POSIXACL; 3682 #endif 3683 uuid_gen(&sb->s_uuid); 3684 3685 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3686 if (!inode) 3687 goto failed; 3688 inode->i_uid = sbinfo->uid; 3689 inode->i_gid = sbinfo->gid; 3690 sb->s_root = d_make_root(inode); 3691 if (!sb->s_root) 3692 goto failed; 3693 return 0; 3694 3695 failed: 3696 shmem_put_super(sb); 3697 return err; 3698 } 3699 3700 static int shmem_get_tree(struct fs_context *fc) 3701 { 3702 return get_tree_nodev(fc, shmem_fill_super); 3703 } 3704 3705 static void shmem_free_fc(struct fs_context *fc) 3706 { 3707 struct shmem_options *ctx = fc->fs_private; 3708 3709 if (ctx) { 3710 mpol_put(ctx->mpol); 3711 kfree(ctx); 3712 } 3713 } 3714 3715 static const struct fs_context_operations shmem_fs_context_ops = { 3716 .free = shmem_free_fc, 3717 .get_tree = shmem_get_tree, 3718 #ifdef CONFIG_TMPFS 3719 .parse_monolithic = shmem_parse_options, 3720 .parse_param = shmem_parse_one, 3721 .reconfigure = shmem_reconfigure, 3722 #endif 3723 }; 3724 3725 static struct kmem_cache *shmem_inode_cachep; 3726 3727 static struct inode *shmem_alloc_inode(struct super_block *sb) 3728 { 3729 struct shmem_inode_info *info; 3730 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3731 if (!info) 3732 return NULL; 3733 return &info->vfs_inode; 3734 } 3735 3736 static void shmem_free_in_core_inode(struct inode *inode) 3737 { 3738 if (S_ISLNK(inode->i_mode)) 3739 kfree(inode->i_link); 3740 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3741 } 3742 3743 static void shmem_destroy_inode(struct inode *inode) 3744 { 3745 if (S_ISREG(inode->i_mode)) 3746 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3747 } 3748 3749 static void shmem_init_inode(void *foo) 3750 { 3751 struct shmem_inode_info *info = foo; 3752 inode_init_once(&info->vfs_inode); 3753 } 3754 3755 static void shmem_init_inodecache(void) 3756 { 3757 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3758 sizeof(struct shmem_inode_info), 3759 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3760 } 3761 3762 static void shmem_destroy_inodecache(void) 3763 { 3764 kmem_cache_destroy(shmem_inode_cachep); 3765 } 3766 3767 const struct address_space_operations shmem_aops = { 3768 .writepage = shmem_writepage, 3769 .set_page_dirty = __set_page_dirty_no_writeback, 3770 #ifdef CONFIG_TMPFS 3771 .write_begin = shmem_write_begin, 3772 .write_end = shmem_write_end, 3773 #endif 3774 #ifdef CONFIG_MIGRATION 3775 .migratepage = migrate_page, 3776 #endif 3777 .error_remove_page = generic_error_remove_page, 3778 }; 3779 EXPORT_SYMBOL(shmem_aops); 3780 3781 static const struct file_operations shmem_file_operations = { 3782 .mmap = shmem_mmap, 3783 .get_unmapped_area = shmem_get_unmapped_area, 3784 #ifdef CONFIG_TMPFS 3785 .llseek = shmem_file_llseek, 3786 .read_iter = shmem_file_read_iter, 3787 .write_iter = generic_file_write_iter, 3788 .fsync = noop_fsync, 3789 .splice_read = generic_file_splice_read, 3790 .splice_write = iter_file_splice_write, 3791 .fallocate = shmem_fallocate, 3792 #endif 3793 }; 3794 3795 static const struct inode_operations shmem_inode_operations = { 3796 .getattr = shmem_getattr, 3797 .setattr = shmem_setattr, 3798 #ifdef CONFIG_TMPFS_XATTR 3799 .listxattr = shmem_listxattr, 3800 .set_acl = simple_set_acl, 3801 #endif 3802 }; 3803 3804 static const struct inode_operations shmem_dir_inode_operations = { 3805 #ifdef CONFIG_TMPFS 3806 .create = shmem_create, 3807 .lookup = simple_lookup, 3808 .link = shmem_link, 3809 .unlink = shmem_unlink, 3810 .symlink = shmem_symlink, 3811 .mkdir = shmem_mkdir, 3812 .rmdir = shmem_rmdir, 3813 .mknod = shmem_mknod, 3814 .rename = shmem_rename2, 3815 .tmpfile = shmem_tmpfile, 3816 #endif 3817 #ifdef CONFIG_TMPFS_XATTR 3818 .listxattr = shmem_listxattr, 3819 #endif 3820 #ifdef CONFIG_TMPFS_POSIX_ACL 3821 .setattr = shmem_setattr, 3822 .set_acl = simple_set_acl, 3823 #endif 3824 }; 3825 3826 static const struct inode_operations shmem_special_inode_operations = { 3827 #ifdef CONFIG_TMPFS_XATTR 3828 .listxattr = shmem_listxattr, 3829 #endif 3830 #ifdef CONFIG_TMPFS_POSIX_ACL 3831 .setattr = shmem_setattr, 3832 .set_acl = simple_set_acl, 3833 #endif 3834 }; 3835 3836 static const struct super_operations shmem_ops = { 3837 .alloc_inode = shmem_alloc_inode, 3838 .free_inode = shmem_free_in_core_inode, 3839 .destroy_inode = shmem_destroy_inode, 3840 #ifdef CONFIG_TMPFS 3841 .statfs = shmem_statfs, 3842 .show_options = shmem_show_options, 3843 #endif 3844 .evict_inode = shmem_evict_inode, 3845 .drop_inode = generic_delete_inode, 3846 .put_super = shmem_put_super, 3847 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3848 .nr_cached_objects = shmem_unused_huge_count, 3849 .free_cached_objects = shmem_unused_huge_scan, 3850 #endif 3851 }; 3852 3853 static const struct vm_operations_struct shmem_vm_ops = { 3854 .fault = shmem_fault, 3855 .map_pages = filemap_map_pages, 3856 #ifdef CONFIG_NUMA 3857 .set_policy = shmem_set_policy, 3858 .get_policy = shmem_get_policy, 3859 #endif 3860 }; 3861 3862 int shmem_init_fs_context(struct fs_context *fc) 3863 { 3864 struct shmem_options *ctx; 3865 3866 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3867 if (!ctx) 3868 return -ENOMEM; 3869 3870 ctx->mode = 0777 | S_ISVTX; 3871 ctx->uid = current_fsuid(); 3872 ctx->gid = current_fsgid(); 3873 3874 fc->fs_private = ctx; 3875 fc->ops = &shmem_fs_context_ops; 3876 return 0; 3877 } 3878 3879 static struct file_system_type shmem_fs_type = { 3880 .owner = THIS_MODULE, 3881 .name = "tmpfs", 3882 .init_fs_context = shmem_init_fs_context, 3883 #ifdef CONFIG_TMPFS 3884 .parameters = shmem_fs_parameters, 3885 #endif 3886 .kill_sb = kill_litter_super, 3887 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT, 3888 }; 3889 3890 int __init shmem_init(void) 3891 { 3892 int error; 3893 3894 shmem_init_inodecache(); 3895 3896 error = register_filesystem(&shmem_fs_type); 3897 if (error) { 3898 pr_err("Could not register tmpfs\n"); 3899 goto out2; 3900 } 3901 3902 shm_mnt = kern_mount(&shmem_fs_type); 3903 if (IS_ERR(shm_mnt)) { 3904 error = PTR_ERR(shm_mnt); 3905 pr_err("Could not kern_mount tmpfs\n"); 3906 goto out1; 3907 } 3908 3909 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3910 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3911 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3912 else 3913 shmem_huge = 0; /* just in case it was patched */ 3914 #endif 3915 return 0; 3916 3917 out1: 3918 unregister_filesystem(&shmem_fs_type); 3919 out2: 3920 shmem_destroy_inodecache(); 3921 shm_mnt = ERR_PTR(error); 3922 return error; 3923 } 3924 3925 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 3926 static ssize_t shmem_enabled_show(struct kobject *kobj, 3927 struct kobj_attribute *attr, char *buf) 3928 { 3929 static const int values[] = { 3930 SHMEM_HUGE_ALWAYS, 3931 SHMEM_HUGE_WITHIN_SIZE, 3932 SHMEM_HUGE_ADVISE, 3933 SHMEM_HUGE_NEVER, 3934 SHMEM_HUGE_DENY, 3935 SHMEM_HUGE_FORCE, 3936 }; 3937 int len = 0; 3938 int i; 3939 3940 for (i = 0; i < ARRAY_SIZE(values); i++) { 3941 len += sysfs_emit_at(buf, len, 3942 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 3943 i ? " " : "", 3944 shmem_format_huge(values[i])); 3945 } 3946 3947 len += sysfs_emit_at(buf, len, "\n"); 3948 3949 return len; 3950 } 3951 3952 static ssize_t shmem_enabled_store(struct kobject *kobj, 3953 struct kobj_attribute *attr, const char *buf, size_t count) 3954 { 3955 char tmp[16]; 3956 int huge; 3957 3958 if (count + 1 > sizeof(tmp)) 3959 return -EINVAL; 3960 memcpy(tmp, buf, count); 3961 tmp[count] = '\0'; 3962 if (count && tmp[count - 1] == '\n') 3963 tmp[count - 1] = '\0'; 3964 3965 huge = shmem_parse_huge(tmp); 3966 if (huge == -EINVAL) 3967 return -EINVAL; 3968 if (!has_transparent_hugepage() && 3969 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3970 return -EINVAL; 3971 3972 shmem_huge = huge; 3973 if (shmem_huge > SHMEM_HUGE_DENY) 3974 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3975 return count; 3976 } 3977 3978 struct kobj_attribute shmem_enabled_attr = 3979 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3980 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 3981 3982 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3983 bool shmem_huge_enabled(struct vm_area_struct *vma) 3984 { 3985 struct inode *inode = file_inode(vma->vm_file); 3986 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3987 loff_t i_size; 3988 pgoff_t off; 3989 3990 if (!transhuge_vma_enabled(vma, vma->vm_flags)) 3991 return false; 3992 if (shmem_huge == SHMEM_HUGE_FORCE) 3993 return true; 3994 if (shmem_huge == SHMEM_HUGE_DENY) 3995 return false; 3996 switch (sbinfo->huge) { 3997 case SHMEM_HUGE_NEVER: 3998 return false; 3999 case SHMEM_HUGE_ALWAYS: 4000 return true; 4001 case SHMEM_HUGE_WITHIN_SIZE: 4002 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 4003 i_size = round_up(i_size_read(inode), PAGE_SIZE); 4004 if (i_size >= HPAGE_PMD_SIZE && 4005 i_size >> PAGE_SHIFT >= off) 4006 return true; 4007 fallthrough; 4008 case SHMEM_HUGE_ADVISE: 4009 /* TODO: implement fadvise() hints */ 4010 return (vma->vm_flags & VM_HUGEPAGE); 4011 default: 4012 VM_BUG_ON(1); 4013 return false; 4014 } 4015 } 4016 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4017 4018 #else /* !CONFIG_SHMEM */ 4019 4020 /* 4021 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4022 * 4023 * This is intended for small system where the benefits of the full 4024 * shmem code (swap-backed and resource-limited) are outweighed by 4025 * their complexity. On systems without swap this code should be 4026 * effectively equivalent, but much lighter weight. 4027 */ 4028 4029 static struct file_system_type shmem_fs_type = { 4030 .name = "tmpfs", 4031 .init_fs_context = ramfs_init_fs_context, 4032 .parameters = ramfs_fs_parameters, 4033 .kill_sb = kill_litter_super, 4034 .fs_flags = FS_USERNS_MOUNT, 4035 }; 4036 4037 int __init shmem_init(void) 4038 { 4039 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4040 4041 shm_mnt = kern_mount(&shmem_fs_type); 4042 BUG_ON(IS_ERR(shm_mnt)); 4043 4044 return 0; 4045 } 4046 4047 int shmem_unuse(unsigned int type, bool frontswap, 4048 unsigned long *fs_pages_to_unuse) 4049 { 4050 return 0; 4051 } 4052 4053 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4054 { 4055 return 0; 4056 } 4057 4058 void shmem_unlock_mapping(struct address_space *mapping) 4059 { 4060 } 4061 4062 #ifdef CONFIG_MMU 4063 unsigned long shmem_get_unmapped_area(struct file *file, 4064 unsigned long addr, unsigned long len, 4065 unsigned long pgoff, unsigned long flags) 4066 { 4067 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4068 } 4069 #endif 4070 4071 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4072 { 4073 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4074 } 4075 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4076 4077 #define shmem_vm_ops generic_file_vm_ops 4078 #define shmem_file_operations ramfs_file_operations 4079 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4080 #define shmem_acct_size(flags, size) 0 4081 #define shmem_unacct_size(flags, size) do {} while (0) 4082 4083 #endif /* CONFIG_SHMEM */ 4084 4085 /* common code */ 4086 4087 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4088 unsigned long flags, unsigned int i_flags) 4089 { 4090 struct inode *inode; 4091 struct file *res; 4092 4093 if (IS_ERR(mnt)) 4094 return ERR_CAST(mnt); 4095 4096 if (size < 0 || size > MAX_LFS_FILESIZE) 4097 return ERR_PTR(-EINVAL); 4098 4099 if (shmem_acct_size(flags, size)) 4100 return ERR_PTR(-ENOMEM); 4101 4102 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4103 flags); 4104 if (unlikely(!inode)) { 4105 shmem_unacct_size(flags, size); 4106 return ERR_PTR(-ENOSPC); 4107 } 4108 inode->i_flags |= i_flags; 4109 inode->i_size = size; 4110 clear_nlink(inode); /* It is unlinked */ 4111 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4112 if (!IS_ERR(res)) 4113 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4114 &shmem_file_operations); 4115 if (IS_ERR(res)) 4116 iput(inode); 4117 return res; 4118 } 4119 4120 /** 4121 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4122 * kernel internal. There will be NO LSM permission checks against the 4123 * underlying inode. So users of this interface must do LSM checks at a 4124 * higher layer. The users are the big_key and shm implementations. LSM 4125 * checks are provided at the key or shm level rather than the inode. 4126 * @name: name for dentry (to be seen in /proc/<pid>/maps 4127 * @size: size to be set for the file 4128 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4129 */ 4130 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4131 { 4132 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4133 } 4134 4135 /** 4136 * shmem_file_setup - get an unlinked file living in tmpfs 4137 * @name: name for dentry (to be seen in /proc/<pid>/maps 4138 * @size: size to be set for the file 4139 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4140 */ 4141 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4142 { 4143 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4144 } 4145 EXPORT_SYMBOL_GPL(shmem_file_setup); 4146 4147 /** 4148 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4149 * @mnt: the tmpfs mount where the file will be created 4150 * @name: name for dentry (to be seen in /proc/<pid>/maps 4151 * @size: size to be set for the file 4152 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4153 */ 4154 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4155 loff_t size, unsigned long flags) 4156 { 4157 return __shmem_file_setup(mnt, name, size, flags, 0); 4158 } 4159 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4160 4161 /** 4162 * shmem_zero_setup - setup a shared anonymous mapping 4163 * @vma: the vma to be mmapped is prepared by do_mmap 4164 */ 4165 int shmem_zero_setup(struct vm_area_struct *vma) 4166 { 4167 struct file *file; 4168 loff_t size = vma->vm_end - vma->vm_start; 4169 4170 /* 4171 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4172 * between XFS directory reading and selinux: since this file is only 4173 * accessible to the user through its mapping, use S_PRIVATE flag to 4174 * bypass file security, in the same way as shmem_kernel_file_setup(). 4175 */ 4176 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4177 if (IS_ERR(file)) 4178 return PTR_ERR(file); 4179 4180 if (vma->vm_file) 4181 fput(vma->vm_file); 4182 vma->vm_file = file; 4183 vma->vm_ops = &shmem_vm_ops; 4184 4185 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4186 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4187 (vma->vm_end & HPAGE_PMD_MASK)) { 4188 khugepaged_enter(vma, vma->vm_flags); 4189 } 4190 4191 return 0; 4192 } 4193 4194 /** 4195 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4196 * @mapping: the page's address_space 4197 * @index: the page index 4198 * @gfp: the page allocator flags to use if allocating 4199 * 4200 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4201 * with any new page allocations done using the specified allocation flags. 4202 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4203 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4204 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4205 * 4206 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4207 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4208 */ 4209 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4210 pgoff_t index, gfp_t gfp) 4211 { 4212 #ifdef CONFIG_SHMEM 4213 struct inode *inode = mapping->host; 4214 struct page *page; 4215 int error; 4216 4217 BUG_ON(!shmem_mapping(mapping)); 4218 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4219 gfp, NULL, NULL, NULL); 4220 if (error) 4221 page = ERR_PTR(error); 4222 else 4223 unlock_page(page); 4224 return page; 4225 #else 4226 /* 4227 * The tiny !SHMEM case uses ramfs without swap 4228 */ 4229 return read_cache_page_gfp(mapping, index, gfp); 4230 #endif 4231 } 4232 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4233