xref: /openbmc/linux/mm/shmem.c (revision bde05d1ccd512696b09db9dd2e5f33ad19152605)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33 
34 static struct vfsmount *shm_mnt;
35 
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42 
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/splice.h>
57 #include <linux/security.h>
58 #include <linux/swapops.h>
59 #include <linux/mempolicy.h>
60 #include <linux/namei.h>
61 #include <linux/ctype.h>
62 #include <linux/migrate.h>
63 #include <linux/highmem.h>
64 #include <linux/seq_file.h>
65 #include <linux/magic.h>
66 
67 #include <asm/uaccess.h>
68 #include <asm/pgtable.h>
69 
70 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
71 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
72 
73 /* Pretend that each entry is of this size in directory's i_size */
74 #define BOGO_DIRENT_SIZE 20
75 
76 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
77 #define SHORT_SYMLINK_LEN 128
78 
79 struct shmem_xattr {
80 	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
81 	char *name;		/* xattr name */
82 	size_t size;
83 	char value[0];
84 };
85 
86 /* Flag allocation requirements to shmem_getpage */
87 enum sgp_type {
88 	SGP_READ,	/* don't exceed i_size, don't allocate page */
89 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
90 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
91 	SGP_WRITE,	/* may exceed i_size, may allocate page */
92 };
93 
94 #ifdef CONFIG_TMPFS
95 static unsigned long shmem_default_max_blocks(void)
96 {
97 	return totalram_pages / 2;
98 }
99 
100 static unsigned long shmem_default_max_inodes(void)
101 {
102 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
103 }
104 #endif
105 
106 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
107 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
108 				struct shmem_inode_info *info, pgoff_t index);
109 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
110 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
111 
112 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
113 	struct page **pagep, enum sgp_type sgp, int *fault_type)
114 {
115 	return shmem_getpage_gfp(inode, index, pagep, sgp,
116 			mapping_gfp_mask(inode->i_mapping), fault_type);
117 }
118 
119 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
120 {
121 	return sb->s_fs_info;
122 }
123 
124 /*
125  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
126  * for shared memory and for shared anonymous (/dev/zero) mappings
127  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
128  * consistent with the pre-accounting of private mappings ...
129  */
130 static inline int shmem_acct_size(unsigned long flags, loff_t size)
131 {
132 	return (flags & VM_NORESERVE) ?
133 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
134 }
135 
136 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
137 {
138 	if (!(flags & VM_NORESERVE))
139 		vm_unacct_memory(VM_ACCT(size));
140 }
141 
142 /*
143  * ... whereas tmpfs objects are accounted incrementally as
144  * pages are allocated, in order to allow huge sparse files.
145  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
146  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
147  */
148 static inline int shmem_acct_block(unsigned long flags)
149 {
150 	return (flags & VM_NORESERVE) ?
151 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
152 }
153 
154 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
155 {
156 	if (flags & VM_NORESERVE)
157 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
158 }
159 
160 static const struct super_operations shmem_ops;
161 static const struct address_space_operations shmem_aops;
162 static const struct file_operations shmem_file_operations;
163 static const struct inode_operations shmem_inode_operations;
164 static const struct inode_operations shmem_dir_inode_operations;
165 static const struct inode_operations shmem_special_inode_operations;
166 static const struct vm_operations_struct shmem_vm_ops;
167 
168 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
169 	.ra_pages	= 0,	/* No readahead */
170 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
171 };
172 
173 static LIST_HEAD(shmem_swaplist);
174 static DEFINE_MUTEX(shmem_swaplist_mutex);
175 
176 static int shmem_reserve_inode(struct super_block *sb)
177 {
178 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
179 	if (sbinfo->max_inodes) {
180 		spin_lock(&sbinfo->stat_lock);
181 		if (!sbinfo->free_inodes) {
182 			spin_unlock(&sbinfo->stat_lock);
183 			return -ENOSPC;
184 		}
185 		sbinfo->free_inodes--;
186 		spin_unlock(&sbinfo->stat_lock);
187 	}
188 	return 0;
189 }
190 
191 static void shmem_free_inode(struct super_block *sb)
192 {
193 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
194 	if (sbinfo->max_inodes) {
195 		spin_lock(&sbinfo->stat_lock);
196 		sbinfo->free_inodes++;
197 		spin_unlock(&sbinfo->stat_lock);
198 	}
199 }
200 
201 /**
202  * shmem_recalc_inode - recalculate the block usage of an inode
203  * @inode: inode to recalc
204  *
205  * We have to calculate the free blocks since the mm can drop
206  * undirtied hole pages behind our back.
207  *
208  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
209  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
210  *
211  * It has to be called with the spinlock held.
212  */
213 static void shmem_recalc_inode(struct inode *inode)
214 {
215 	struct shmem_inode_info *info = SHMEM_I(inode);
216 	long freed;
217 
218 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
219 	if (freed > 0) {
220 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
221 		if (sbinfo->max_blocks)
222 			percpu_counter_add(&sbinfo->used_blocks, -freed);
223 		info->alloced -= freed;
224 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
225 		shmem_unacct_blocks(info->flags, freed);
226 	}
227 }
228 
229 /*
230  * Replace item expected in radix tree by a new item, while holding tree lock.
231  */
232 static int shmem_radix_tree_replace(struct address_space *mapping,
233 			pgoff_t index, void *expected, void *replacement)
234 {
235 	void **pslot;
236 	void *item = NULL;
237 
238 	VM_BUG_ON(!expected);
239 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
240 	if (pslot)
241 		item = radix_tree_deref_slot_protected(pslot,
242 							&mapping->tree_lock);
243 	if (item != expected)
244 		return -ENOENT;
245 	if (replacement)
246 		radix_tree_replace_slot(pslot, replacement);
247 	else
248 		radix_tree_delete(&mapping->page_tree, index);
249 	return 0;
250 }
251 
252 /*
253  * Like add_to_page_cache_locked, but error if expected item has gone.
254  */
255 static int shmem_add_to_page_cache(struct page *page,
256 				   struct address_space *mapping,
257 				   pgoff_t index, gfp_t gfp, void *expected)
258 {
259 	int error = 0;
260 
261 	VM_BUG_ON(!PageLocked(page));
262 	VM_BUG_ON(!PageSwapBacked(page));
263 
264 	if (!expected)
265 		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
266 	if (!error) {
267 		page_cache_get(page);
268 		page->mapping = mapping;
269 		page->index = index;
270 
271 		spin_lock_irq(&mapping->tree_lock);
272 		if (!expected)
273 			error = radix_tree_insert(&mapping->page_tree,
274 							index, page);
275 		else
276 			error = shmem_radix_tree_replace(mapping, index,
277 							expected, page);
278 		if (!error) {
279 			mapping->nrpages++;
280 			__inc_zone_page_state(page, NR_FILE_PAGES);
281 			__inc_zone_page_state(page, NR_SHMEM);
282 			spin_unlock_irq(&mapping->tree_lock);
283 		} else {
284 			page->mapping = NULL;
285 			spin_unlock_irq(&mapping->tree_lock);
286 			page_cache_release(page);
287 		}
288 		if (!expected)
289 			radix_tree_preload_end();
290 	}
291 	if (error)
292 		mem_cgroup_uncharge_cache_page(page);
293 	return error;
294 }
295 
296 /*
297  * Like delete_from_page_cache, but substitutes swap for page.
298  */
299 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
300 {
301 	struct address_space *mapping = page->mapping;
302 	int error;
303 
304 	spin_lock_irq(&mapping->tree_lock);
305 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
306 	page->mapping = NULL;
307 	mapping->nrpages--;
308 	__dec_zone_page_state(page, NR_FILE_PAGES);
309 	__dec_zone_page_state(page, NR_SHMEM);
310 	spin_unlock_irq(&mapping->tree_lock);
311 	page_cache_release(page);
312 	BUG_ON(error);
313 }
314 
315 /*
316  * Like find_get_pages, but collecting swap entries as well as pages.
317  */
318 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
319 					pgoff_t start, unsigned int nr_pages,
320 					struct page **pages, pgoff_t *indices)
321 {
322 	unsigned int i;
323 	unsigned int ret;
324 	unsigned int nr_found;
325 
326 	rcu_read_lock();
327 restart:
328 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
329 				(void ***)pages, indices, start, nr_pages);
330 	ret = 0;
331 	for (i = 0; i < nr_found; i++) {
332 		struct page *page;
333 repeat:
334 		page = radix_tree_deref_slot((void **)pages[i]);
335 		if (unlikely(!page))
336 			continue;
337 		if (radix_tree_exception(page)) {
338 			if (radix_tree_deref_retry(page))
339 				goto restart;
340 			/*
341 			 * Otherwise, we must be storing a swap entry
342 			 * here as an exceptional entry: so return it
343 			 * without attempting to raise page count.
344 			 */
345 			goto export;
346 		}
347 		if (!page_cache_get_speculative(page))
348 			goto repeat;
349 
350 		/* Has the page moved? */
351 		if (unlikely(page != *((void **)pages[i]))) {
352 			page_cache_release(page);
353 			goto repeat;
354 		}
355 export:
356 		indices[ret] = indices[i];
357 		pages[ret] = page;
358 		ret++;
359 	}
360 	if (unlikely(!ret && nr_found))
361 		goto restart;
362 	rcu_read_unlock();
363 	return ret;
364 }
365 
366 /*
367  * Remove swap entry from radix tree, free the swap and its page cache.
368  */
369 static int shmem_free_swap(struct address_space *mapping,
370 			   pgoff_t index, void *radswap)
371 {
372 	int error;
373 
374 	spin_lock_irq(&mapping->tree_lock);
375 	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
376 	spin_unlock_irq(&mapping->tree_lock);
377 	if (!error)
378 		free_swap_and_cache(radix_to_swp_entry(radswap));
379 	return error;
380 }
381 
382 /*
383  * Pagevec may contain swap entries, so shuffle up pages before releasing.
384  */
385 static void shmem_deswap_pagevec(struct pagevec *pvec)
386 {
387 	int i, j;
388 
389 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
390 		struct page *page = pvec->pages[i];
391 		if (!radix_tree_exceptional_entry(page))
392 			pvec->pages[j++] = page;
393 	}
394 	pvec->nr = j;
395 }
396 
397 /*
398  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
399  */
400 void shmem_unlock_mapping(struct address_space *mapping)
401 {
402 	struct pagevec pvec;
403 	pgoff_t indices[PAGEVEC_SIZE];
404 	pgoff_t index = 0;
405 
406 	pagevec_init(&pvec, 0);
407 	/*
408 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
409 	 */
410 	while (!mapping_unevictable(mapping)) {
411 		/*
412 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
413 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
414 		 */
415 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
416 					PAGEVEC_SIZE, pvec.pages, indices);
417 		if (!pvec.nr)
418 			break;
419 		index = indices[pvec.nr - 1] + 1;
420 		shmem_deswap_pagevec(&pvec);
421 		check_move_unevictable_pages(pvec.pages, pvec.nr);
422 		pagevec_release(&pvec);
423 		cond_resched();
424 	}
425 }
426 
427 /*
428  * Remove range of pages and swap entries from radix tree, and free them.
429  */
430 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
431 {
432 	struct address_space *mapping = inode->i_mapping;
433 	struct shmem_inode_info *info = SHMEM_I(inode);
434 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
435 	unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
436 	pgoff_t end = (lend >> PAGE_CACHE_SHIFT);
437 	struct pagevec pvec;
438 	pgoff_t indices[PAGEVEC_SIZE];
439 	long nr_swaps_freed = 0;
440 	pgoff_t index;
441 	int i;
442 
443 	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
444 
445 	pagevec_init(&pvec, 0);
446 	index = start;
447 	while (index <= end) {
448 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
449 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
450 							pvec.pages, indices);
451 		if (!pvec.nr)
452 			break;
453 		mem_cgroup_uncharge_start();
454 		for (i = 0; i < pagevec_count(&pvec); i++) {
455 			struct page *page = pvec.pages[i];
456 
457 			index = indices[i];
458 			if (index > end)
459 				break;
460 
461 			if (radix_tree_exceptional_entry(page)) {
462 				nr_swaps_freed += !shmem_free_swap(mapping,
463 								index, page);
464 				continue;
465 			}
466 
467 			if (!trylock_page(page))
468 				continue;
469 			if (page->mapping == mapping) {
470 				VM_BUG_ON(PageWriteback(page));
471 				truncate_inode_page(mapping, page);
472 			}
473 			unlock_page(page);
474 		}
475 		shmem_deswap_pagevec(&pvec);
476 		pagevec_release(&pvec);
477 		mem_cgroup_uncharge_end();
478 		cond_resched();
479 		index++;
480 	}
481 
482 	if (partial) {
483 		struct page *page = NULL;
484 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
485 		if (page) {
486 			zero_user_segment(page, partial, PAGE_CACHE_SIZE);
487 			set_page_dirty(page);
488 			unlock_page(page);
489 			page_cache_release(page);
490 		}
491 	}
492 
493 	index = start;
494 	for ( ; ; ) {
495 		cond_resched();
496 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
497 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
498 							pvec.pages, indices);
499 		if (!pvec.nr) {
500 			if (index == start)
501 				break;
502 			index = start;
503 			continue;
504 		}
505 		if (index == start && indices[0] > end) {
506 			shmem_deswap_pagevec(&pvec);
507 			pagevec_release(&pvec);
508 			break;
509 		}
510 		mem_cgroup_uncharge_start();
511 		for (i = 0; i < pagevec_count(&pvec); i++) {
512 			struct page *page = pvec.pages[i];
513 
514 			index = indices[i];
515 			if (index > end)
516 				break;
517 
518 			if (radix_tree_exceptional_entry(page)) {
519 				nr_swaps_freed += !shmem_free_swap(mapping,
520 								index, page);
521 				continue;
522 			}
523 
524 			lock_page(page);
525 			if (page->mapping == mapping) {
526 				VM_BUG_ON(PageWriteback(page));
527 				truncate_inode_page(mapping, page);
528 			}
529 			unlock_page(page);
530 		}
531 		shmem_deswap_pagevec(&pvec);
532 		pagevec_release(&pvec);
533 		mem_cgroup_uncharge_end();
534 		index++;
535 	}
536 
537 	spin_lock(&info->lock);
538 	info->swapped -= nr_swaps_freed;
539 	shmem_recalc_inode(inode);
540 	spin_unlock(&info->lock);
541 
542 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
543 }
544 EXPORT_SYMBOL_GPL(shmem_truncate_range);
545 
546 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
547 {
548 	struct inode *inode = dentry->d_inode;
549 	int error;
550 
551 	error = inode_change_ok(inode, attr);
552 	if (error)
553 		return error;
554 
555 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
556 		loff_t oldsize = inode->i_size;
557 		loff_t newsize = attr->ia_size;
558 
559 		if (newsize != oldsize) {
560 			i_size_write(inode, newsize);
561 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
562 		}
563 		if (newsize < oldsize) {
564 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
565 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
566 			shmem_truncate_range(inode, newsize, (loff_t)-1);
567 			/* unmap again to remove racily COWed private pages */
568 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
569 		}
570 	}
571 
572 	setattr_copy(inode, attr);
573 #ifdef CONFIG_TMPFS_POSIX_ACL
574 	if (attr->ia_valid & ATTR_MODE)
575 		error = generic_acl_chmod(inode);
576 #endif
577 	return error;
578 }
579 
580 static void shmem_evict_inode(struct inode *inode)
581 {
582 	struct shmem_inode_info *info = SHMEM_I(inode);
583 	struct shmem_xattr *xattr, *nxattr;
584 
585 	if (inode->i_mapping->a_ops == &shmem_aops) {
586 		shmem_unacct_size(info->flags, inode->i_size);
587 		inode->i_size = 0;
588 		shmem_truncate_range(inode, 0, (loff_t)-1);
589 		if (!list_empty(&info->swaplist)) {
590 			mutex_lock(&shmem_swaplist_mutex);
591 			list_del_init(&info->swaplist);
592 			mutex_unlock(&shmem_swaplist_mutex);
593 		}
594 	} else
595 		kfree(info->symlink);
596 
597 	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
598 		kfree(xattr->name);
599 		kfree(xattr);
600 	}
601 	BUG_ON(inode->i_blocks);
602 	shmem_free_inode(inode->i_sb);
603 	clear_inode(inode);
604 }
605 
606 /*
607  * If swap found in inode, free it and move page from swapcache to filecache.
608  */
609 static int shmem_unuse_inode(struct shmem_inode_info *info,
610 			     swp_entry_t swap, struct page **pagep)
611 {
612 	struct address_space *mapping = info->vfs_inode.i_mapping;
613 	void *radswap;
614 	pgoff_t index;
615 	gfp_t gfp;
616 	int error = 0;
617 
618 	radswap = swp_to_radix_entry(swap);
619 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
620 	if (index == -1)
621 		return 0;
622 
623 	/*
624 	 * Move _head_ to start search for next from here.
625 	 * But be careful: shmem_evict_inode checks list_empty without taking
626 	 * mutex, and there's an instant in list_move_tail when info->swaplist
627 	 * would appear empty, if it were the only one on shmem_swaplist.
628 	 */
629 	if (shmem_swaplist.next != &info->swaplist)
630 		list_move_tail(&shmem_swaplist, &info->swaplist);
631 
632 	gfp = mapping_gfp_mask(mapping);
633 	if (shmem_should_replace_page(*pagep, gfp)) {
634 		mutex_unlock(&shmem_swaplist_mutex);
635 		error = shmem_replace_page(pagep, gfp, info, index);
636 		mutex_lock(&shmem_swaplist_mutex);
637 		/*
638 		 * We needed to drop mutex to make that restrictive page
639 		 * allocation; but the inode might already be freed by now,
640 		 * and we cannot refer to inode or mapping or info to check.
641 		 * However, we do hold page lock on the PageSwapCache page,
642 		 * so can check if that still has our reference remaining.
643 		 */
644 		if (!page_swapcount(*pagep))
645 			error = -ENOENT;
646 	}
647 
648 	/*
649 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
650 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
651 	 * beneath us (pagelock doesn't help until the page is in pagecache).
652 	 */
653 	if (!error)
654 		error = shmem_add_to_page_cache(*pagep, mapping, index,
655 						GFP_NOWAIT, radswap);
656 	if (error != -ENOMEM) {
657 		/*
658 		 * Truncation and eviction use free_swap_and_cache(), which
659 		 * only does trylock page: if we raced, best clean up here.
660 		 */
661 		delete_from_swap_cache(*pagep);
662 		set_page_dirty(*pagep);
663 		if (!error) {
664 			spin_lock(&info->lock);
665 			info->swapped--;
666 			spin_unlock(&info->lock);
667 			swap_free(swap);
668 		}
669 		error = 1;	/* not an error, but entry was found */
670 	}
671 	return error;
672 }
673 
674 /*
675  * Search through swapped inodes to find and replace swap by page.
676  */
677 int shmem_unuse(swp_entry_t swap, struct page *page)
678 {
679 	struct list_head *this, *next;
680 	struct shmem_inode_info *info;
681 	int found = 0;
682 	int error = 0;
683 
684 	/*
685 	 * There's a faint possibility that swap page was replaced before
686 	 * caller locked it: it will come back later with the right page.
687 	 */
688 	if (unlikely(!PageSwapCache(page)))
689 		goto out;
690 
691 	/*
692 	 * Charge page using GFP_KERNEL while we can wait, before taking
693 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
694 	 * Charged back to the user (not to caller) when swap account is used.
695 	 */
696 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
697 	if (error)
698 		goto out;
699 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
700 
701 	mutex_lock(&shmem_swaplist_mutex);
702 	list_for_each_safe(this, next, &shmem_swaplist) {
703 		info = list_entry(this, struct shmem_inode_info, swaplist);
704 		if (info->swapped)
705 			found = shmem_unuse_inode(info, swap, &page);
706 		else
707 			list_del_init(&info->swaplist);
708 		cond_resched();
709 		if (found)
710 			break;
711 	}
712 	mutex_unlock(&shmem_swaplist_mutex);
713 
714 	if (found < 0)
715 		error = found;
716 out:
717 	unlock_page(page);
718 	page_cache_release(page);
719 	return error;
720 }
721 
722 /*
723  * Move the page from the page cache to the swap cache.
724  */
725 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
726 {
727 	struct shmem_inode_info *info;
728 	struct address_space *mapping;
729 	struct inode *inode;
730 	swp_entry_t swap;
731 	pgoff_t index;
732 
733 	BUG_ON(!PageLocked(page));
734 	mapping = page->mapping;
735 	index = page->index;
736 	inode = mapping->host;
737 	info = SHMEM_I(inode);
738 	if (info->flags & VM_LOCKED)
739 		goto redirty;
740 	if (!total_swap_pages)
741 		goto redirty;
742 
743 	/*
744 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
745 	 * sync from ever calling shmem_writepage; but a stacking filesystem
746 	 * might use ->writepage of its underlying filesystem, in which case
747 	 * tmpfs should write out to swap only in response to memory pressure,
748 	 * and not for the writeback threads or sync.
749 	 */
750 	if (!wbc->for_reclaim) {
751 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
752 		goto redirty;
753 	}
754 	swap = get_swap_page();
755 	if (!swap.val)
756 		goto redirty;
757 
758 	/*
759 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
760 	 * if it's not already there.  Do it now before the page is
761 	 * moved to swap cache, when its pagelock no longer protects
762 	 * the inode from eviction.  But don't unlock the mutex until
763 	 * we've incremented swapped, because shmem_unuse_inode() will
764 	 * prune a !swapped inode from the swaplist under this mutex.
765 	 */
766 	mutex_lock(&shmem_swaplist_mutex);
767 	if (list_empty(&info->swaplist))
768 		list_add_tail(&info->swaplist, &shmem_swaplist);
769 
770 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
771 		swap_shmem_alloc(swap);
772 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
773 
774 		spin_lock(&info->lock);
775 		info->swapped++;
776 		shmem_recalc_inode(inode);
777 		spin_unlock(&info->lock);
778 
779 		mutex_unlock(&shmem_swaplist_mutex);
780 		BUG_ON(page_mapped(page));
781 		swap_writepage(page, wbc);
782 		return 0;
783 	}
784 
785 	mutex_unlock(&shmem_swaplist_mutex);
786 	swapcache_free(swap, NULL);
787 redirty:
788 	set_page_dirty(page);
789 	if (wbc->for_reclaim)
790 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
791 	unlock_page(page);
792 	return 0;
793 }
794 
795 #ifdef CONFIG_NUMA
796 #ifdef CONFIG_TMPFS
797 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
798 {
799 	char buffer[64];
800 
801 	if (!mpol || mpol->mode == MPOL_DEFAULT)
802 		return;		/* show nothing */
803 
804 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
805 
806 	seq_printf(seq, ",mpol=%s", buffer);
807 }
808 
809 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
810 {
811 	struct mempolicy *mpol = NULL;
812 	if (sbinfo->mpol) {
813 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
814 		mpol = sbinfo->mpol;
815 		mpol_get(mpol);
816 		spin_unlock(&sbinfo->stat_lock);
817 	}
818 	return mpol;
819 }
820 #endif /* CONFIG_TMPFS */
821 
822 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
823 			struct shmem_inode_info *info, pgoff_t index)
824 {
825 	struct mempolicy mpol, *spol;
826 	struct vm_area_struct pvma;
827 
828 	spol = mpol_cond_copy(&mpol,
829 			mpol_shared_policy_lookup(&info->policy, index));
830 
831 	/* Create a pseudo vma that just contains the policy */
832 	pvma.vm_start = 0;
833 	pvma.vm_pgoff = index;
834 	pvma.vm_ops = NULL;
835 	pvma.vm_policy = spol;
836 	return swapin_readahead(swap, gfp, &pvma, 0);
837 }
838 
839 static struct page *shmem_alloc_page(gfp_t gfp,
840 			struct shmem_inode_info *info, pgoff_t index)
841 {
842 	struct vm_area_struct pvma;
843 
844 	/* Create a pseudo vma that just contains the policy */
845 	pvma.vm_start = 0;
846 	pvma.vm_pgoff = index;
847 	pvma.vm_ops = NULL;
848 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
849 
850 	/*
851 	 * alloc_page_vma() will drop the shared policy reference
852 	 */
853 	return alloc_page_vma(gfp, &pvma, 0);
854 }
855 #else /* !CONFIG_NUMA */
856 #ifdef CONFIG_TMPFS
857 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
858 {
859 }
860 #endif /* CONFIG_TMPFS */
861 
862 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
863 			struct shmem_inode_info *info, pgoff_t index)
864 {
865 	return swapin_readahead(swap, gfp, NULL, 0);
866 }
867 
868 static inline struct page *shmem_alloc_page(gfp_t gfp,
869 			struct shmem_inode_info *info, pgoff_t index)
870 {
871 	return alloc_page(gfp);
872 }
873 #endif /* CONFIG_NUMA */
874 
875 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
876 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
877 {
878 	return NULL;
879 }
880 #endif
881 
882 /*
883  * When a page is moved from swapcache to shmem filecache (either by the
884  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
885  * shmem_unuse_inode()), it may have been read in earlier from swap, in
886  * ignorance of the mapping it belongs to.  If that mapping has special
887  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
888  * we may need to copy to a suitable page before moving to filecache.
889  *
890  * In a future release, this may well be extended to respect cpuset and
891  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
892  * but for now it is a simple matter of zone.
893  */
894 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
895 {
896 	return page_zonenum(page) > gfp_zone(gfp);
897 }
898 
899 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
900 				struct shmem_inode_info *info, pgoff_t index)
901 {
902 	struct page *oldpage, *newpage;
903 	struct address_space *swap_mapping;
904 	pgoff_t swap_index;
905 	int error;
906 
907 	oldpage = *pagep;
908 	swap_index = page_private(oldpage);
909 	swap_mapping = page_mapping(oldpage);
910 
911 	/*
912 	 * We have arrived here because our zones are constrained, so don't
913 	 * limit chance of success by further cpuset and node constraints.
914 	 */
915 	gfp &= ~GFP_CONSTRAINT_MASK;
916 	newpage = shmem_alloc_page(gfp, info, index);
917 	if (!newpage)
918 		return -ENOMEM;
919 	VM_BUG_ON(shmem_should_replace_page(newpage, gfp));
920 
921 	*pagep = newpage;
922 	page_cache_get(newpage);
923 	copy_highpage(newpage, oldpage);
924 
925 	VM_BUG_ON(!PageLocked(oldpage));
926 	__set_page_locked(newpage);
927 	VM_BUG_ON(!PageUptodate(oldpage));
928 	SetPageUptodate(newpage);
929 	VM_BUG_ON(!PageSwapBacked(oldpage));
930 	SetPageSwapBacked(newpage);
931 	VM_BUG_ON(!swap_index);
932 	set_page_private(newpage, swap_index);
933 	VM_BUG_ON(!PageSwapCache(oldpage));
934 	SetPageSwapCache(newpage);
935 
936 	/*
937 	 * Our caller will very soon move newpage out of swapcache, but it's
938 	 * a nice clean interface for us to replace oldpage by newpage there.
939 	 */
940 	spin_lock_irq(&swap_mapping->tree_lock);
941 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
942 								   newpage);
943 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
944 	__dec_zone_page_state(oldpage, NR_FILE_PAGES);
945 	spin_unlock_irq(&swap_mapping->tree_lock);
946 	BUG_ON(error);
947 
948 	mem_cgroup_replace_page_cache(oldpage, newpage);
949 	lru_cache_add_anon(newpage);
950 
951 	ClearPageSwapCache(oldpage);
952 	set_page_private(oldpage, 0);
953 
954 	unlock_page(oldpage);
955 	page_cache_release(oldpage);
956 	page_cache_release(oldpage);
957 	return 0;
958 }
959 
960 /*
961  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
962  *
963  * If we allocate a new one we do not mark it dirty. That's up to the
964  * vm. If we swap it in we mark it dirty since we also free the swap
965  * entry since a page cannot live in both the swap and page cache
966  */
967 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
968 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
969 {
970 	struct address_space *mapping = inode->i_mapping;
971 	struct shmem_inode_info *info;
972 	struct shmem_sb_info *sbinfo;
973 	struct page *page;
974 	swp_entry_t swap;
975 	int error;
976 	int once = 0;
977 
978 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
979 		return -EFBIG;
980 repeat:
981 	swap.val = 0;
982 	page = find_lock_page(mapping, index);
983 	if (radix_tree_exceptional_entry(page)) {
984 		swap = radix_to_swp_entry(page);
985 		page = NULL;
986 	}
987 
988 	if (sgp != SGP_WRITE &&
989 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
990 		error = -EINVAL;
991 		goto failed;
992 	}
993 
994 	if (page || (sgp == SGP_READ && !swap.val)) {
995 		/*
996 		 * Once we can get the page lock, it must be uptodate:
997 		 * if there were an error in reading back from swap,
998 		 * the page would not be inserted into the filecache.
999 		 */
1000 		BUG_ON(page && !PageUptodate(page));
1001 		*pagep = page;
1002 		return 0;
1003 	}
1004 
1005 	/*
1006 	 * Fast cache lookup did not find it:
1007 	 * bring it back from swap or allocate.
1008 	 */
1009 	info = SHMEM_I(inode);
1010 	sbinfo = SHMEM_SB(inode->i_sb);
1011 
1012 	if (swap.val) {
1013 		/* Look it up and read it in.. */
1014 		page = lookup_swap_cache(swap);
1015 		if (!page) {
1016 			/* here we actually do the io */
1017 			if (fault_type)
1018 				*fault_type |= VM_FAULT_MAJOR;
1019 			page = shmem_swapin(swap, gfp, info, index);
1020 			if (!page) {
1021 				error = -ENOMEM;
1022 				goto failed;
1023 			}
1024 		}
1025 
1026 		/* We have to do this with page locked to prevent races */
1027 		lock_page(page);
1028 		if (!PageSwapCache(page) || page->mapping) {
1029 			error = -EEXIST;	/* try again */
1030 			goto failed;
1031 		}
1032 		if (!PageUptodate(page)) {
1033 			error = -EIO;
1034 			goto failed;
1035 		}
1036 		wait_on_page_writeback(page);
1037 
1038 		if (shmem_should_replace_page(page, gfp)) {
1039 			error = shmem_replace_page(&page, gfp, info, index);
1040 			if (error)
1041 				goto failed;
1042 		}
1043 
1044 		error = mem_cgroup_cache_charge(page, current->mm,
1045 						gfp & GFP_RECLAIM_MASK);
1046 		if (!error)
1047 			error = shmem_add_to_page_cache(page, mapping, index,
1048 						gfp, swp_to_radix_entry(swap));
1049 		if (error)
1050 			goto failed;
1051 
1052 		spin_lock(&info->lock);
1053 		info->swapped--;
1054 		shmem_recalc_inode(inode);
1055 		spin_unlock(&info->lock);
1056 
1057 		delete_from_swap_cache(page);
1058 		set_page_dirty(page);
1059 		swap_free(swap);
1060 
1061 	} else {
1062 		if (shmem_acct_block(info->flags)) {
1063 			error = -ENOSPC;
1064 			goto failed;
1065 		}
1066 		if (sbinfo->max_blocks) {
1067 			if (percpu_counter_compare(&sbinfo->used_blocks,
1068 						sbinfo->max_blocks) >= 0) {
1069 				error = -ENOSPC;
1070 				goto unacct;
1071 			}
1072 			percpu_counter_inc(&sbinfo->used_blocks);
1073 		}
1074 
1075 		page = shmem_alloc_page(gfp, info, index);
1076 		if (!page) {
1077 			error = -ENOMEM;
1078 			goto decused;
1079 		}
1080 
1081 		SetPageSwapBacked(page);
1082 		__set_page_locked(page);
1083 		error = mem_cgroup_cache_charge(page, current->mm,
1084 						gfp & GFP_RECLAIM_MASK);
1085 		if (!error)
1086 			error = shmem_add_to_page_cache(page, mapping, index,
1087 						gfp, NULL);
1088 		if (error)
1089 			goto decused;
1090 		lru_cache_add_anon(page);
1091 
1092 		spin_lock(&info->lock);
1093 		info->alloced++;
1094 		inode->i_blocks += BLOCKS_PER_PAGE;
1095 		shmem_recalc_inode(inode);
1096 		spin_unlock(&info->lock);
1097 
1098 		clear_highpage(page);
1099 		flush_dcache_page(page);
1100 		SetPageUptodate(page);
1101 		if (sgp == SGP_DIRTY)
1102 			set_page_dirty(page);
1103 	}
1104 
1105 	/* Perhaps the file has been truncated since we checked */
1106 	if (sgp != SGP_WRITE &&
1107 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1108 		error = -EINVAL;
1109 		goto trunc;
1110 	}
1111 	*pagep = page;
1112 	return 0;
1113 
1114 	/*
1115 	 * Error recovery.
1116 	 */
1117 trunc:
1118 	ClearPageDirty(page);
1119 	delete_from_page_cache(page);
1120 	spin_lock(&info->lock);
1121 	info->alloced--;
1122 	inode->i_blocks -= BLOCKS_PER_PAGE;
1123 	spin_unlock(&info->lock);
1124 decused:
1125 	if (sbinfo->max_blocks)
1126 		percpu_counter_add(&sbinfo->used_blocks, -1);
1127 unacct:
1128 	shmem_unacct_blocks(info->flags, 1);
1129 failed:
1130 	if (swap.val && error != -EINVAL) {
1131 		struct page *test = find_get_page(mapping, index);
1132 		if (test && !radix_tree_exceptional_entry(test))
1133 			page_cache_release(test);
1134 		/* Have another try if the entry has changed */
1135 		if (test != swp_to_radix_entry(swap))
1136 			error = -EEXIST;
1137 	}
1138 	if (page) {
1139 		unlock_page(page);
1140 		page_cache_release(page);
1141 	}
1142 	if (error == -ENOSPC && !once++) {
1143 		info = SHMEM_I(inode);
1144 		spin_lock(&info->lock);
1145 		shmem_recalc_inode(inode);
1146 		spin_unlock(&info->lock);
1147 		goto repeat;
1148 	}
1149 	if (error == -EEXIST)
1150 		goto repeat;
1151 	return error;
1152 }
1153 
1154 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1155 {
1156 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1157 	int error;
1158 	int ret = VM_FAULT_LOCKED;
1159 
1160 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1161 	if (error)
1162 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1163 
1164 	if (ret & VM_FAULT_MAJOR) {
1165 		count_vm_event(PGMAJFAULT);
1166 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1167 	}
1168 	return ret;
1169 }
1170 
1171 #ifdef CONFIG_NUMA
1172 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1173 {
1174 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1175 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1176 }
1177 
1178 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1179 					  unsigned long addr)
1180 {
1181 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1182 	pgoff_t index;
1183 
1184 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1185 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1186 }
1187 #endif
1188 
1189 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1190 {
1191 	struct inode *inode = file->f_path.dentry->d_inode;
1192 	struct shmem_inode_info *info = SHMEM_I(inode);
1193 	int retval = -ENOMEM;
1194 
1195 	spin_lock(&info->lock);
1196 	if (lock && !(info->flags & VM_LOCKED)) {
1197 		if (!user_shm_lock(inode->i_size, user))
1198 			goto out_nomem;
1199 		info->flags |= VM_LOCKED;
1200 		mapping_set_unevictable(file->f_mapping);
1201 	}
1202 	if (!lock && (info->flags & VM_LOCKED) && user) {
1203 		user_shm_unlock(inode->i_size, user);
1204 		info->flags &= ~VM_LOCKED;
1205 		mapping_clear_unevictable(file->f_mapping);
1206 	}
1207 	retval = 0;
1208 
1209 out_nomem:
1210 	spin_unlock(&info->lock);
1211 	return retval;
1212 }
1213 
1214 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1215 {
1216 	file_accessed(file);
1217 	vma->vm_ops = &shmem_vm_ops;
1218 	vma->vm_flags |= VM_CAN_NONLINEAR;
1219 	return 0;
1220 }
1221 
1222 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1223 				     umode_t mode, dev_t dev, unsigned long flags)
1224 {
1225 	struct inode *inode;
1226 	struct shmem_inode_info *info;
1227 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1228 
1229 	if (shmem_reserve_inode(sb))
1230 		return NULL;
1231 
1232 	inode = new_inode(sb);
1233 	if (inode) {
1234 		inode->i_ino = get_next_ino();
1235 		inode_init_owner(inode, dir, mode);
1236 		inode->i_blocks = 0;
1237 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1238 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1239 		inode->i_generation = get_seconds();
1240 		info = SHMEM_I(inode);
1241 		memset(info, 0, (char *)inode - (char *)info);
1242 		spin_lock_init(&info->lock);
1243 		info->flags = flags & VM_NORESERVE;
1244 		INIT_LIST_HEAD(&info->swaplist);
1245 		INIT_LIST_HEAD(&info->xattr_list);
1246 		cache_no_acl(inode);
1247 
1248 		switch (mode & S_IFMT) {
1249 		default:
1250 			inode->i_op = &shmem_special_inode_operations;
1251 			init_special_inode(inode, mode, dev);
1252 			break;
1253 		case S_IFREG:
1254 			inode->i_mapping->a_ops = &shmem_aops;
1255 			inode->i_op = &shmem_inode_operations;
1256 			inode->i_fop = &shmem_file_operations;
1257 			mpol_shared_policy_init(&info->policy,
1258 						 shmem_get_sbmpol(sbinfo));
1259 			break;
1260 		case S_IFDIR:
1261 			inc_nlink(inode);
1262 			/* Some things misbehave if size == 0 on a directory */
1263 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1264 			inode->i_op = &shmem_dir_inode_operations;
1265 			inode->i_fop = &simple_dir_operations;
1266 			break;
1267 		case S_IFLNK:
1268 			/*
1269 			 * Must not load anything in the rbtree,
1270 			 * mpol_free_shared_policy will not be called.
1271 			 */
1272 			mpol_shared_policy_init(&info->policy, NULL);
1273 			break;
1274 		}
1275 	} else
1276 		shmem_free_inode(sb);
1277 	return inode;
1278 }
1279 
1280 #ifdef CONFIG_TMPFS
1281 static const struct inode_operations shmem_symlink_inode_operations;
1282 static const struct inode_operations shmem_short_symlink_operations;
1283 
1284 #ifdef CONFIG_TMPFS_XATTR
1285 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1286 #else
1287 #define shmem_initxattrs NULL
1288 #endif
1289 
1290 static int
1291 shmem_write_begin(struct file *file, struct address_space *mapping,
1292 			loff_t pos, unsigned len, unsigned flags,
1293 			struct page **pagep, void **fsdata)
1294 {
1295 	struct inode *inode = mapping->host;
1296 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1297 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1298 }
1299 
1300 static int
1301 shmem_write_end(struct file *file, struct address_space *mapping,
1302 			loff_t pos, unsigned len, unsigned copied,
1303 			struct page *page, void *fsdata)
1304 {
1305 	struct inode *inode = mapping->host;
1306 
1307 	if (pos + copied > inode->i_size)
1308 		i_size_write(inode, pos + copied);
1309 
1310 	set_page_dirty(page);
1311 	unlock_page(page);
1312 	page_cache_release(page);
1313 
1314 	return copied;
1315 }
1316 
1317 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1318 {
1319 	struct inode *inode = filp->f_path.dentry->d_inode;
1320 	struct address_space *mapping = inode->i_mapping;
1321 	pgoff_t index;
1322 	unsigned long offset;
1323 	enum sgp_type sgp = SGP_READ;
1324 
1325 	/*
1326 	 * Might this read be for a stacking filesystem?  Then when reading
1327 	 * holes of a sparse file, we actually need to allocate those pages,
1328 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1329 	 */
1330 	if (segment_eq(get_fs(), KERNEL_DS))
1331 		sgp = SGP_DIRTY;
1332 
1333 	index = *ppos >> PAGE_CACHE_SHIFT;
1334 	offset = *ppos & ~PAGE_CACHE_MASK;
1335 
1336 	for (;;) {
1337 		struct page *page = NULL;
1338 		pgoff_t end_index;
1339 		unsigned long nr, ret;
1340 		loff_t i_size = i_size_read(inode);
1341 
1342 		end_index = i_size >> PAGE_CACHE_SHIFT;
1343 		if (index > end_index)
1344 			break;
1345 		if (index == end_index) {
1346 			nr = i_size & ~PAGE_CACHE_MASK;
1347 			if (nr <= offset)
1348 				break;
1349 		}
1350 
1351 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1352 		if (desc->error) {
1353 			if (desc->error == -EINVAL)
1354 				desc->error = 0;
1355 			break;
1356 		}
1357 		if (page)
1358 			unlock_page(page);
1359 
1360 		/*
1361 		 * We must evaluate after, since reads (unlike writes)
1362 		 * are called without i_mutex protection against truncate
1363 		 */
1364 		nr = PAGE_CACHE_SIZE;
1365 		i_size = i_size_read(inode);
1366 		end_index = i_size >> PAGE_CACHE_SHIFT;
1367 		if (index == end_index) {
1368 			nr = i_size & ~PAGE_CACHE_MASK;
1369 			if (nr <= offset) {
1370 				if (page)
1371 					page_cache_release(page);
1372 				break;
1373 			}
1374 		}
1375 		nr -= offset;
1376 
1377 		if (page) {
1378 			/*
1379 			 * If users can be writing to this page using arbitrary
1380 			 * virtual addresses, take care about potential aliasing
1381 			 * before reading the page on the kernel side.
1382 			 */
1383 			if (mapping_writably_mapped(mapping))
1384 				flush_dcache_page(page);
1385 			/*
1386 			 * Mark the page accessed if we read the beginning.
1387 			 */
1388 			if (!offset)
1389 				mark_page_accessed(page);
1390 		} else {
1391 			page = ZERO_PAGE(0);
1392 			page_cache_get(page);
1393 		}
1394 
1395 		/*
1396 		 * Ok, we have the page, and it's up-to-date, so
1397 		 * now we can copy it to user space...
1398 		 *
1399 		 * The actor routine returns how many bytes were actually used..
1400 		 * NOTE! This may not be the same as how much of a user buffer
1401 		 * we filled up (we may be padding etc), so we can only update
1402 		 * "pos" here (the actor routine has to update the user buffer
1403 		 * pointers and the remaining count).
1404 		 */
1405 		ret = actor(desc, page, offset, nr);
1406 		offset += ret;
1407 		index += offset >> PAGE_CACHE_SHIFT;
1408 		offset &= ~PAGE_CACHE_MASK;
1409 
1410 		page_cache_release(page);
1411 		if (ret != nr || !desc->count)
1412 			break;
1413 
1414 		cond_resched();
1415 	}
1416 
1417 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1418 	file_accessed(filp);
1419 }
1420 
1421 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1422 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1423 {
1424 	struct file *filp = iocb->ki_filp;
1425 	ssize_t retval;
1426 	unsigned long seg;
1427 	size_t count;
1428 	loff_t *ppos = &iocb->ki_pos;
1429 
1430 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1431 	if (retval)
1432 		return retval;
1433 
1434 	for (seg = 0; seg < nr_segs; seg++) {
1435 		read_descriptor_t desc;
1436 
1437 		desc.written = 0;
1438 		desc.arg.buf = iov[seg].iov_base;
1439 		desc.count = iov[seg].iov_len;
1440 		if (desc.count == 0)
1441 			continue;
1442 		desc.error = 0;
1443 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1444 		retval += desc.written;
1445 		if (desc.error) {
1446 			retval = retval ?: desc.error;
1447 			break;
1448 		}
1449 		if (desc.count > 0)
1450 			break;
1451 	}
1452 	return retval;
1453 }
1454 
1455 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1456 				struct pipe_inode_info *pipe, size_t len,
1457 				unsigned int flags)
1458 {
1459 	struct address_space *mapping = in->f_mapping;
1460 	struct inode *inode = mapping->host;
1461 	unsigned int loff, nr_pages, req_pages;
1462 	struct page *pages[PIPE_DEF_BUFFERS];
1463 	struct partial_page partial[PIPE_DEF_BUFFERS];
1464 	struct page *page;
1465 	pgoff_t index, end_index;
1466 	loff_t isize, left;
1467 	int error, page_nr;
1468 	struct splice_pipe_desc spd = {
1469 		.pages = pages,
1470 		.partial = partial,
1471 		.flags = flags,
1472 		.ops = &page_cache_pipe_buf_ops,
1473 		.spd_release = spd_release_page,
1474 	};
1475 
1476 	isize = i_size_read(inode);
1477 	if (unlikely(*ppos >= isize))
1478 		return 0;
1479 
1480 	left = isize - *ppos;
1481 	if (unlikely(left < len))
1482 		len = left;
1483 
1484 	if (splice_grow_spd(pipe, &spd))
1485 		return -ENOMEM;
1486 
1487 	index = *ppos >> PAGE_CACHE_SHIFT;
1488 	loff = *ppos & ~PAGE_CACHE_MASK;
1489 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1490 	nr_pages = min(req_pages, pipe->buffers);
1491 
1492 	spd.nr_pages = find_get_pages_contig(mapping, index,
1493 						nr_pages, spd.pages);
1494 	index += spd.nr_pages;
1495 	error = 0;
1496 
1497 	while (spd.nr_pages < nr_pages) {
1498 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1499 		if (error)
1500 			break;
1501 		unlock_page(page);
1502 		spd.pages[spd.nr_pages++] = page;
1503 		index++;
1504 	}
1505 
1506 	index = *ppos >> PAGE_CACHE_SHIFT;
1507 	nr_pages = spd.nr_pages;
1508 	spd.nr_pages = 0;
1509 
1510 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1511 		unsigned int this_len;
1512 
1513 		if (!len)
1514 			break;
1515 
1516 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1517 		page = spd.pages[page_nr];
1518 
1519 		if (!PageUptodate(page) || page->mapping != mapping) {
1520 			error = shmem_getpage(inode, index, &page,
1521 							SGP_CACHE, NULL);
1522 			if (error)
1523 				break;
1524 			unlock_page(page);
1525 			page_cache_release(spd.pages[page_nr]);
1526 			spd.pages[page_nr] = page;
1527 		}
1528 
1529 		isize = i_size_read(inode);
1530 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1531 		if (unlikely(!isize || index > end_index))
1532 			break;
1533 
1534 		if (end_index == index) {
1535 			unsigned int plen;
1536 
1537 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1538 			if (plen <= loff)
1539 				break;
1540 
1541 			this_len = min(this_len, plen - loff);
1542 			len = this_len;
1543 		}
1544 
1545 		spd.partial[page_nr].offset = loff;
1546 		spd.partial[page_nr].len = this_len;
1547 		len -= this_len;
1548 		loff = 0;
1549 		spd.nr_pages++;
1550 		index++;
1551 	}
1552 
1553 	while (page_nr < nr_pages)
1554 		page_cache_release(spd.pages[page_nr++]);
1555 
1556 	if (spd.nr_pages)
1557 		error = splice_to_pipe(pipe, &spd);
1558 
1559 	splice_shrink_spd(pipe, &spd);
1560 
1561 	if (error > 0) {
1562 		*ppos += error;
1563 		file_accessed(in);
1564 	}
1565 	return error;
1566 }
1567 
1568 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1569 {
1570 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1571 
1572 	buf->f_type = TMPFS_MAGIC;
1573 	buf->f_bsize = PAGE_CACHE_SIZE;
1574 	buf->f_namelen = NAME_MAX;
1575 	if (sbinfo->max_blocks) {
1576 		buf->f_blocks = sbinfo->max_blocks;
1577 		buf->f_bavail =
1578 		buf->f_bfree  = sbinfo->max_blocks -
1579 				percpu_counter_sum(&sbinfo->used_blocks);
1580 	}
1581 	if (sbinfo->max_inodes) {
1582 		buf->f_files = sbinfo->max_inodes;
1583 		buf->f_ffree = sbinfo->free_inodes;
1584 	}
1585 	/* else leave those fields 0 like simple_statfs */
1586 	return 0;
1587 }
1588 
1589 /*
1590  * File creation. Allocate an inode, and we're done..
1591  */
1592 static int
1593 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1594 {
1595 	struct inode *inode;
1596 	int error = -ENOSPC;
1597 
1598 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1599 	if (inode) {
1600 		error = security_inode_init_security(inode, dir,
1601 						     &dentry->d_name,
1602 						     shmem_initxattrs, NULL);
1603 		if (error) {
1604 			if (error != -EOPNOTSUPP) {
1605 				iput(inode);
1606 				return error;
1607 			}
1608 		}
1609 #ifdef CONFIG_TMPFS_POSIX_ACL
1610 		error = generic_acl_init(inode, dir);
1611 		if (error) {
1612 			iput(inode);
1613 			return error;
1614 		}
1615 #else
1616 		error = 0;
1617 #endif
1618 		dir->i_size += BOGO_DIRENT_SIZE;
1619 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1620 		d_instantiate(dentry, inode);
1621 		dget(dentry); /* Extra count - pin the dentry in core */
1622 	}
1623 	return error;
1624 }
1625 
1626 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1627 {
1628 	int error;
1629 
1630 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1631 		return error;
1632 	inc_nlink(dir);
1633 	return 0;
1634 }
1635 
1636 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1637 		struct nameidata *nd)
1638 {
1639 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1640 }
1641 
1642 /*
1643  * Link a file..
1644  */
1645 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1646 {
1647 	struct inode *inode = old_dentry->d_inode;
1648 	int ret;
1649 
1650 	/*
1651 	 * No ordinary (disk based) filesystem counts links as inodes;
1652 	 * but each new link needs a new dentry, pinning lowmem, and
1653 	 * tmpfs dentries cannot be pruned until they are unlinked.
1654 	 */
1655 	ret = shmem_reserve_inode(inode->i_sb);
1656 	if (ret)
1657 		goto out;
1658 
1659 	dir->i_size += BOGO_DIRENT_SIZE;
1660 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1661 	inc_nlink(inode);
1662 	ihold(inode);	/* New dentry reference */
1663 	dget(dentry);		/* Extra pinning count for the created dentry */
1664 	d_instantiate(dentry, inode);
1665 out:
1666 	return ret;
1667 }
1668 
1669 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1670 {
1671 	struct inode *inode = dentry->d_inode;
1672 
1673 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1674 		shmem_free_inode(inode->i_sb);
1675 
1676 	dir->i_size -= BOGO_DIRENT_SIZE;
1677 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1678 	drop_nlink(inode);
1679 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1680 	return 0;
1681 }
1682 
1683 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1684 {
1685 	if (!simple_empty(dentry))
1686 		return -ENOTEMPTY;
1687 
1688 	drop_nlink(dentry->d_inode);
1689 	drop_nlink(dir);
1690 	return shmem_unlink(dir, dentry);
1691 }
1692 
1693 /*
1694  * The VFS layer already does all the dentry stuff for rename,
1695  * we just have to decrement the usage count for the target if
1696  * it exists so that the VFS layer correctly free's it when it
1697  * gets overwritten.
1698  */
1699 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1700 {
1701 	struct inode *inode = old_dentry->d_inode;
1702 	int they_are_dirs = S_ISDIR(inode->i_mode);
1703 
1704 	if (!simple_empty(new_dentry))
1705 		return -ENOTEMPTY;
1706 
1707 	if (new_dentry->d_inode) {
1708 		(void) shmem_unlink(new_dir, new_dentry);
1709 		if (they_are_dirs)
1710 			drop_nlink(old_dir);
1711 	} else if (they_are_dirs) {
1712 		drop_nlink(old_dir);
1713 		inc_nlink(new_dir);
1714 	}
1715 
1716 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1717 	new_dir->i_size += BOGO_DIRENT_SIZE;
1718 	old_dir->i_ctime = old_dir->i_mtime =
1719 	new_dir->i_ctime = new_dir->i_mtime =
1720 	inode->i_ctime = CURRENT_TIME;
1721 	return 0;
1722 }
1723 
1724 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1725 {
1726 	int error;
1727 	int len;
1728 	struct inode *inode;
1729 	struct page *page;
1730 	char *kaddr;
1731 	struct shmem_inode_info *info;
1732 
1733 	len = strlen(symname) + 1;
1734 	if (len > PAGE_CACHE_SIZE)
1735 		return -ENAMETOOLONG;
1736 
1737 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1738 	if (!inode)
1739 		return -ENOSPC;
1740 
1741 	error = security_inode_init_security(inode, dir, &dentry->d_name,
1742 					     shmem_initxattrs, NULL);
1743 	if (error) {
1744 		if (error != -EOPNOTSUPP) {
1745 			iput(inode);
1746 			return error;
1747 		}
1748 		error = 0;
1749 	}
1750 
1751 	info = SHMEM_I(inode);
1752 	inode->i_size = len-1;
1753 	if (len <= SHORT_SYMLINK_LEN) {
1754 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
1755 		if (!info->symlink) {
1756 			iput(inode);
1757 			return -ENOMEM;
1758 		}
1759 		inode->i_op = &shmem_short_symlink_operations;
1760 	} else {
1761 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1762 		if (error) {
1763 			iput(inode);
1764 			return error;
1765 		}
1766 		inode->i_mapping->a_ops = &shmem_aops;
1767 		inode->i_op = &shmem_symlink_inode_operations;
1768 		kaddr = kmap_atomic(page);
1769 		memcpy(kaddr, symname, len);
1770 		kunmap_atomic(kaddr);
1771 		set_page_dirty(page);
1772 		unlock_page(page);
1773 		page_cache_release(page);
1774 	}
1775 	dir->i_size += BOGO_DIRENT_SIZE;
1776 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1777 	d_instantiate(dentry, inode);
1778 	dget(dentry);
1779 	return 0;
1780 }
1781 
1782 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1783 {
1784 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
1785 	return NULL;
1786 }
1787 
1788 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1789 {
1790 	struct page *page = NULL;
1791 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1792 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1793 	if (page)
1794 		unlock_page(page);
1795 	return page;
1796 }
1797 
1798 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1799 {
1800 	if (!IS_ERR(nd_get_link(nd))) {
1801 		struct page *page = cookie;
1802 		kunmap(page);
1803 		mark_page_accessed(page);
1804 		page_cache_release(page);
1805 	}
1806 }
1807 
1808 #ifdef CONFIG_TMPFS_XATTR
1809 /*
1810  * Superblocks without xattr inode operations may get some security.* xattr
1811  * support from the LSM "for free". As soon as we have any other xattrs
1812  * like ACLs, we also need to implement the security.* handlers at
1813  * filesystem level, though.
1814  */
1815 
1816 /*
1817  * Allocate new xattr and copy in the value; but leave the name to callers.
1818  */
1819 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
1820 {
1821 	struct shmem_xattr *new_xattr;
1822 	size_t len;
1823 
1824 	/* wrap around? */
1825 	len = sizeof(*new_xattr) + size;
1826 	if (len <= sizeof(*new_xattr))
1827 		return NULL;
1828 
1829 	new_xattr = kmalloc(len, GFP_KERNEL);
1830 	if (!new_xattr)
1831 		return NULL;
1832 
1833 	new_xattr->size = size;
1834 	memcpy(new_xattr->value, value, size);
1835 	return new_xattr;
1836 }
1837 
1838 /*
1839  * Callback for security_inode_init_security() for acquiring xattrs.
1840  */
1841 static int shmem_initxattrs(struct inode *inode,
1842 			    const struct xattr *xattr_array,
1843 			    void *fs_info)
1844 {
1845 	struct shmem_inode_info *info = SHMEM_I(inode);
1846 	const struct xattr *xattr;
1847 	struct shmem_xattr *new_xattr;
1848 	size_t len;
1849 
1850 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
1851 		new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
1852 		if (!new_xattr)
1853 			return -ENOMEM;
1854 
1855 		len = strlen(xattr->name) + 1;
1856 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
1857 					  GFP_KERNEL);
1858 		if (!new_xattr->name) {
1859 			kfree(new_xattr);
1860 			return -ENOMEM;
1861 		}
1862 
1863 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
1864 		       XATTR_SECURITY_PREFIX_LEN);
1865 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
1866 		       xattr->name, len);
1867 
1868 		spin_lock(&info->lock);
1869 		list_add(&new_xattr->list, &info->xattr_list);
1870 		spin_unlock(&info->lock);
1871 	}
1872 
1873 	return 0;
1874 }
1875 
1876 static int shmem_xattr_get(struct dentry *dentry, const char *name,
1877 			   void *buffer, size_t size)
1878 {
1879 	struct shmem_inode_info *info;
1880 	struct shmem_xattr *xattr;
1881 	int ret = -ENODATA;
1882 
1883 	info = SHMEM_I(dentry->d_inode);
1884 
1885 	spin_lock(&info->lock);
1886 	list_for_each_entry(xattr, &info->xattr_list, list) {
1887 		if (strcmp(name, xattr->name))
1888 			continue;
1889 
1890 		ret = xattr->size;
1891 		if (buffer) {
1892 			if (size < xattr->size)
1893 				ret = -ERANGE;
1894 			else
1895 				memcpy(buffer, xattr->value, xattr->size);
1896 		}
1897 		break;
1898 	}
1899 	spin_unlock(&info->lock);
1900 	return ret;
1901 }
1902 
1903 static int shmem_xattr_set(struct inode *inode, const char *name,
1904 			   const void *value, size_t size, int flags)
1905 {
1906 	struct shmem_inode_info *info = SHMEM_I(inode);
1907 	struct shmem_xattr *xattr;
1908 	struct shmem_xattr *new_xattr = NULL;
1909 	int err = 0;
1910 
1911 	/* value == NULL means remove */
1912 	if (value) {
1913 		new_xattr = shmem_xattr_alloc(value, size);
1914 		if (!new_xattr)
1915 			return -ENOMEM;
1916 
1917 		new_xattr->name = kstrdup(name, GFP_KERNEL);
1918 		if (!new_xattr->name) {
1919 			kfree(new_xattr);
1920 			return -ENOMEM;
1921 		}
1922 	}
1923 
1924 	spin_lock(&info->lock);
1925 	list_for_each_entry(xattr, &info->xattr_list, list) {
1926 		if (!strcmp(name, xattr->name)) {
1927 			if (flags & XATTR_CREATE) {
1928 				xattr = new_xattr;
1929 				err = -EEXIST;
1930 			} else if (new_xattr) {
1931 				list_replace(&xattr->list, &new_xattr->list);
1932 			} else {
1933 				list_del(&xattr->list);
1934 			}
1935 			goto out;
1936 		}
1937 	}
1938 	if (flags & XATTR_REPLACE) {
1939 		xattr = new_xattr;
1940 		err = -ENODATA;
1941 	} else {
1942 		list_add(&new_xattr->list, &info->xattr_list);
1943 		xattr = NULL;
1944 	}
1945 out:
1946 	spin_unlock(&info->lock);
1947 	if (xattr)
1948 		kfree(xattr->name);
1949 	kfree(xattr);
1950 	return err;
1951 }
1952 
1953 static const struct xattr_handler *shmem_xattr_handlers[] = {
1954 #ifdef CONFIG_TMPFS_POSIX_ACL
1955 	&generic_acl_access_handler,
1956 	&generic_acl_default_handler,
1957 #endif
1958 	NULL
1959 };
1960 
1961 static int shmem_xattr_validate(const char *name)
1962 {
1963 	struct { const char *prefix; size_t len; } arr[] = {
1964 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
1965 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
1966 	};
1967 	int i;
1968 
1969 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1970 		size_t preflen = arr[i].len;
1971 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
1972 			if (!name[preflen])
1973 				return -EINVAL;
1974 			return 0;
1975 		}
1976 	}
1977 	return -EOPNOTSUPP;
1978 }
1979 
1980 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
1981 			      void *buffer, size_t size)
1982 {
1983 	int err;
1984 
1985 	/*
1986 	 * If this is a request for a synthetic attribute in the system.*
1987 	 * namespace use the generic infrastructure to resolve a handler
1988 	 * for it via sb->s_xattr.
1989 	 */
1990 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1991 		return generic_getxattr(dentry, name, buffer, size);
1992 
1993 	err = shmem_xattr_validate(name);
1994 	if (err)
1995 		return err;
1996 
1997 	return shmem_xattr_get(dentry, name, buffer, size);
1998 }
1999 
2000 static int shmem_setxattr(struct dentry *dentry, const char *name,
2001 			  const void *value, size_t size, int flags)
2002 {
2003 	int err;
2004 
2005 	/*
2006 	 * If this is a request for a synthetic attribute in the system.*
2007 	 * namespace use the generic infrastructure to resolve a handler
2008 	 * for it via sb->s_xattr.
2009 	 */
2010 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2011 		return generic_setxattr(dentry, name, value, size, flags);
2012 
2013 	err = shmem_xattr_validate(name);
2014 	if (err)
2015 		return err;
2016 
2017 	if (size == 0)
2018 		value = "";  /* empty EA, do not remove */
2019 
2020 	return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
2021 
2022 }
2023 
2024 static int shmem_removexattr(struct dentry *dentry, const char *name)
2025 {
2026 	int err;
2027 
2028 	/*
2029 	 * If this is a request for a synthetic attribute in the system.*
2030 	 * namespace use the generic infrastructure to resolve a handler
2031 	 * for it via sb->s_xattr.
2032 	 */
2033 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2034 		return generic_removexattr(dentry, name);
2035 
2036 	err = shmem_xattr_validate(name);
2037 	if (err)
2038 		return err;
2039 
2040 	return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
2041 }
2042 
2043 static bool xattr_is_trusted(const char *name)
2044 {
2045 	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2046 }
2047 
2048 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2049 {
2050 	bool trusted = capable(CAP_SYS_ADMIN);
2051 	struct shmem_xattr *xattr;
2052 	struct shmem_inode_info *info;
2053 	size_t used = 0;
2054 
2055 	info = SHMEM_I(dentry->d_inode);
2056 
2057 	spin_lock(&info->lock);
2058 	list_for_each_entry(xattr, &info->xattr_list, list) {
2059 		size_t len;
2060 
2061 		/* skip "trusted." attributes for unprivileged callers */
2062 		if (!trusted && xattr_is_trusted(xattr->name))
2063 			continue;
2064 
2065 		len = strlen(xattr->name) + 1;
2066 		used += len;
2067 		if (buffer) {
2068 			if (size < used) {
2069 				used = -ERANGE;
2070 				break;
2071 			}
2072 			memcpy(buffer, xattr->name, len);
2073 			buffer += len;
2074 		}
2075 	}
2076 	spin_unlock(&info->lock);
2077 
2078 	return used;
2079 }
2080 #endif /* CONFIG_TMPFS_XATTR */
2081 
2082 static const struct inode_operations shmem_short_symlink_operations = {
2083 	.readlink	= generic_readlink,
2084 	.follow_link	= shmem_follow_short_symlink,
2085 #ifdef CONFIG_TMPFS_XATTR
2086 	.setxattr	= shmem_setxattr,
2087 	.getxattr	= shmem_getxattr,
2088 	.listxattr	= shmem_listxattr,
2089 	.removexattr	= shmem_removexattr,
2090 #endif
2091 };
2092 
2093 static const struct inode_operations shmem_symlink_inode_operations = {
2094 	.readlink	= generic_readlink,
2095 	.follow_link	= shmem_follow_link,
2096 	.put_link	= shmem_put_link,
2097 #ifdef CONFIG_TMPFS_XATTR
2098 	.setxattr	= shmem_setxattr,
2099 	.getxattr	= shmem_getxattr,
2100 	.listxattr	= shmem_listxattr,
2101 	.removexattr	= shmem_removexattr,
2102 #endif
2103 };
2104 
2105 static struct dentry *shmem_get_parent(struct dentry *child)
2106 {
2107 	return ERR_PTR(-ESTALE);
2108 }
2109 
2110 static int shmem_match(struct inode *ino, void *vfh)
2111 {
2112 	__u32 *fh = vfh;
2113 	__u64 inum = fh[2];
2114 	inum = (inum << 32) | fh[1];
2115 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2116 }
2117 
2118 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2119 		struct fid *fid, int fh_len, int fh_type)
2120 {
2121 	struct inode *inode;
2122 	struct dentry *dentry = NULL;
2123 	u64 inum = fid->raw[2];
2124 	inum = (inum << 32) | fid->raw[1];
2125 
2126 	if (fh_len < 3)
2127 		return NULL;
2128 
2129 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2130 			shmem_match, fid->raw);
2131 	if (inode) {
2132 		dentry = d_find_alias(inode);
2133 		iput(inode);
2134 	}
2135 
2136 	return dentry;
2137 }
2138 
2139 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2140 				int connectable)
2141 {
2142 	struct inode *inode = dentry->d_inode;
2143 
2144 	if (*len < 3) {
2145 		*len = 3;
2146 		return 255;
2147 	}
2148 
2149 	if (inode_unhashed(inode)) {
2150 		/* Unfortunately insert_inode_hash is not idempotent,
2151 		 * so as we hash inodes here rather than at creation
2152 		 * time, we need a lock to ensure we only try
2153 		 * to do it once
2154 		 */
2155 		static DEFINE_SPINLOCK(lock);
2156 		spin_lock(&lock);
2157 		if (inode_unhashed(inode))
2158 			__insert_inode_hash(inode,
2159 					    inode->i_ino + inode->i_generation);
2160 		spin_unlock(&lock);
2161 	}
2162 
2163 	fh[0] = inode->i_generation;
2164 	fh[1] = inode->i_ino;
2165 	fh[2] = ((__u64)inode->i_ino) >> 32;
2166 
2167 	*len = 3;
2168 	return 1;
2169 }
2170 
2171 static const struct export_operations shmem_export_ops = {
2172 	.get_parent     = shmem_get_parent,
2173 	.encode_fh      = shmem_encode_fh,
2174 	.fh_to_dentry	= shmem_fh_to_dentry,
2175 };
2176 
2177 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2178 			       bool remount)
2179 {
2180 	char *this_char, *value, *rest;
2181 	uid_t uid;
2182 	gid_t gid;
2183 
2184 	while (options != NULL) {
2185 		this_char = options;
2186 		for (;;) {
2187 			/*
2188 			 * NUL-terminate this option: unfortunately,
2189 			 * mount options form a comma-separated list,
2190 			 * but mpol's nodelist may also contain commas.
2191 			 */
2192 			options = strchr(options, ',');
2193 			if (options == NULL)
2194 				break;
2195 			options++;
2196 			if (!isdigit(*options)) {
2197 				options[-1] = '\0';
2198 				break;
2199 			}
2200 		}
2201 		if (!*this_char)
2202 			continue;
2203 		if ((value = strchr(this_char,'=')) != NULL) {
2204 			*value++ = 0;
2205 		} else {
2206 			printk(KERN_ERR
2207 			    "tmpfs: No value for mount option '%s'\n",
2208 			    this_char);
2209 			return 1;
2210 		}
2211 
2212 		if (!strcmp(this_char,"size")) {
2213 			unsigned long long size;
2214 			size = memparse(value,&rest);
2215 			if (*rest == '%') {
2216 				size <<= PAGE_SHIFT;
2217 				size *= totalram_pages;
2218 				do_div(size, 100);
2219 				rest++;
2220 			}
2221 			if (*rest)
2222 				goto bad_val;
2223 			sbinfo->max_blocks =
2224 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2225 		} else if (!strcmp(this_char,"nr_blocks")) {
2226 			sbinfo->max_blocks = memparse(value, &rest);
2227 			if (*rest)
2228 				goto bad_val;
2229 		} else if (!strcmp(this_char,"nr_inodes")) {
2230 			sbinfo->max_inodes = memparse(value, &rest);
2231 			if (*rest)
2232 				goto bad_val;
2233 		} else if (!strcmp(this_char,"mode")) {
2234 			if (remount)
2235 				continue;
2236 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2237 			if (*rest)
2238 				goto bad_val;
2239 		} else if (!strcmp(this_char,"uid")) {
2240 			if (remount)
2241 				continue;
2242 			uid = simple_strtoul(value, &rest, 0);
2243 			if (*rest)
2244 				goto bad_val;
2245 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2246 			if (!uid_valid(sbinfo->uid))
2247 				goto bad_val;
2248 		} else if (!strcmp(this_char,"gid")) {
2249 			if (remount)
2250 				continue;
2251 			gid = simple_strtoul(value, &rest, 0);
2252 			if (*rest)
2253 				goto bad_val;
2254 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2255 			if (!gid_valid(sbinfo->gid))
2256 				goto bad_val;
2257 		} else if (!strcmp(this_char,"mpol")) {
2258 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2259 				goto bad_val;
2260 		} else {
2261 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2262 			       this_char);
2263 			return 1;
2264 		}
2265 	}
2266 	return 0;
2267 
2268 bad_val:
2269 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2270 	       value, this_char);
2271 	return 1;
2272 
2273 }
2274 
2275 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2276 {
2277 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2278 	struct shmem_sb_info config = *sbinfo;
2279 	unsigned long inodes;
2280 	int error = -EINVAL;
2281 
2282 	if (shmem_parse_options(data, &config, true))
2283 		return error;
2284 
2285 	spin_lock(&sbinfo->stat_lock);
2286 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2287 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2288 		goto out;
2289 	if (config.max_inodes < inodes)
2290 		goto out;
2291 	/*
2292 	 * Those tests disallow limited->unlimited while any are in use;
2293 	 * but we must separately disallow unlimited->limited, because
2294 	 * in that case we have no record of how much is already in use.
2295 	 */
2296 	if (config.max_blocks && !sbinfo->max_blocks)
2297 		goto out;
2298 	if (config.max_inodes && !sbinfo->max_inodes)
2299 		goto out;
2300 
2301 	error = 0;
2302 	sbinfo->max_blocks  = config.max_blocks;
2303 	sbinfo->max_inodes  = config.max_inodes;
2304 	sbinfo->free_inodes = config.max_inodes - inodes;
2305 
2306 	mpol_put(sbinfo->mpol);
2307 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2308 out:
2309 	spin_unlock(&sbinfo->stat_lock);
2310 	return error;
2311 }
2312 
2313 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2314 {
2315 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2316 
2317 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2318 		seq_printf(seq, ",size=%luk",
2319 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2320 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2321 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2322 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2323 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2324 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2325 		seq_printf(seq, ",uid=%u",
2326 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2327 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2328 		seq_printf(seq, ",gid=%u",
2329 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2330 	shmem_show_mpol(seq, sbinfo->mpol);
2331 	return 0;
2332 }
2333 #endif /* CONFIG_TMPFS */
2334 
2335 static void shmem_put_super(struct super_block *sb)
2336 {
2337 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2338 
2339 	percpu_counter_destroy(&sbinfo->used_blocks);
2340 	kfree(sbinfo);
2341 	sb->s_fs_info = NULL;
2342 }
2343 
2344 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2345 {
2346 	struct inode *inode;
2347 	struct shmem_sb_info *sbinfo;
2348 	int err = -ENOMEM;
2349 
2350 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2351 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2352 				L1_CACHE_BYTES), GFP_KERNEL);
2353 	if (!sbinfo)
2354 		return -ENOMEM;
2355 
2356 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2357 	sbinfo->uid = current_fsuid();
2358 	sbinfo->gid = current_fsgid();
2359 	sb->s_fs_info = sbinfo;
2360 
2361 #ifdef CONFIG_TMPFS
2362 	/*
2363 	 * Per default we only allow half of the physical ram per
2364 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2365 	 * but the internal instance is left unlimited.
2366 	 */
2367 	if (!(sb->s_flags & MS_NOUSER)) {
2368 		sbinfo->max_blocks = shmem_default_max_blocks();
2369 		sbinfo->max_inodes = shmem_default_max_inodes();
2370 		if (shmem_parse_options(data, sbinfo, false)) {
2371 			err = -EINVAL;
2372 			goto failed;
2373 		}
2374 	}
2375 	sb->s_export_op = &shmem_export_ops;
2376 #else
2377 	sb->s_flags |= MS_NOUSER;
2378 #endif
2379 
2380 	spin_lock_init(&sbinfo->stat_lock);
2381 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2382 		goto failed;
2383 	sbinfo->free_inodes = sbinfo->max_inodes;
2384 
2385 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2386 	sb->s_blocksize = PAGE_CACHE_SIZE;
2387 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2388 	sb->s_magic = TMPFS_MAGIC;
2389 	sb->s_op = &shmem_ops;
2390 	sb->s_time_gran = 1;
2391 #ifdef CONFIG_TMPFS_XATTR
2392 	sb->s_xattr = shmem_xattr_handlers;
2393 #endif
2394 #ifdef CONFIG_TMPFS_POSIX_ACL
2395 	sb->s_flags |= MS_POSIXACL;
2396 #endif
2397 
2398 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2399 	if (!inode)
2400 		goto failed;
2401 	inode->i_uid = sbinfo->uid;
2402 	inode->i_gid = sbinfo->gid;
2403 	sb->s_root = d_make_root(inode);
2404 	if (!sb->s_root)
2405 		goto failed;
2406 	return 0;
2407 
2408 failed:
2409 	shmem_put_super(sb);
2410 	return err;
2411 }
2412 
2413 static struct kmem_cache *shmem_inode_cachep;
2414 
2415 static struct inode *shmem_alloc_inode(struct super_block *sb)
2416 {
2417 	struct shmem_inode_info *info;
2418 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2419 	if (!info)
2420 		return NULL;
2421 	return &info->vfs_inode;
2422 }
2423 
2424 static void shmem_destroy_callback(struct rcu_head *head)
2425 {
2426 	struct inode *inode = container_of(head, struct inode, i_rcu);
2427 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2428 }
2429 
2430 static void shmem_destroy_inode(struct inode *inode)
2431 {
2432 	if (S_ISREG(inode->i_mode))
2433 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2434 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2435 }
2436 
2437 static void shmem_init_inode(void *foo)
2438 {
2439 	struct shmem_inode_info *info = foo;
2440 	inode_init_once(&info->vfs_inode);
2441 }
2442 
2443 static int shmem_init_inodecache(void)
2444 {
2445 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2446 				sizeof(struct shmem_inode_info),
2447 				0, SLAB_PANIC, shmem_init_inode);
2448 	return 0;
2449 }
2450 
2451 static void shmem_destroy_inodecache(void)
2452 {
2453 	kmem_cache_destroy(shmem_inode_cachep);
2454 }
2455 
2456 static const struct address_space_operations shmem_aops = {
2457 	.writepage	= shmem_writepage,
2458 	.set_page_dirty	= __set_page_dirty_no_writeback,
2459 #ifdef CONFIG_TMPFS
2460 	.write_begin	= shmem_write_begin,
2461 	.write_end	= shmem_write_end,
2462 #endif
2463 	.migratepage	= migrate_page,
2464 	.error_remove_page = generic_error_remove_page,
2465 };
2466 
2467 static const struct file_operations shmem_file_operations = {
2468 	.mmap		= shmem_mmap,
2469 #ifdef CONFIG_TMPFS
2470 	.llseek		= generic_file_llseek,
2471 	.read		= do_sync_read,
2472 	.write		= do_sync_write,
2473 	.aio_read	= shmem_file_aio_read,
2474 	.aio_write	= generic_file_aio_write,
2475 	.fsync		= noop_fsync,
2476 	.splice_read	= shmem_file_splice_read,
2477 	.splice_write	= generic_file_splice_write,
2478 #endif
2479 };
2480 
2481 static const struct inode_operations shmem_inode_operations = {
2482 	.setattr	= shmem_setattr,
2483 	.truncate_range	= shmem_truncate_range,
2484 #ifdef CONFIG_TMPFS_XATTR
2485 	.setxattr	= shmem_setxattr,
2486 	.getxattr	= shmem_getxattr,
2487 	.listxattr	= shmem_listxattr,
2488 	.removexattr	= shmem_removexattr,
2489 #endif
2490 };
2491 
2492 static const struct inode_operations shmem_dir_inode_operations = {
2493 #ifdef CONFIG_TMPFS
2494 	.create		= shmem_create,
2495 	.lookup		= simple_lookup,
2496 	.link		= shmem_link,
2497 	.unlink		= shmem_unlink,
2498 	.symlink	= shmem_symlink,
2499 	.mkdir		= shmem_mkdir,
2500 	.rmdir		= shmem_rmdir,
2501 	.mknod		= shmem_mknod,
2502 	.rename		= shmem_rename,
2503 #endif
2504 #ifdef CONFIG_TMPFS_XATTR
2505 	.setxattr	= shmem_setxattr,
2506 	.getxattr	= shmem_getxattr,
2507 	.listxattr	= shmem_listxattr,
2508 	.removexattr	= shmem_removexattr,
2509 #endif
2510 #ifdef CONFIG_TMPFS_POSIX_ACL
2511 	.setattr	= shmem_setattr,
2512 #endif
2513 };
2514 
2515 static const struct inode_operations shmem_special_inode_operations = {
2516 #ifdef CONFIG_TMPFS_XATTR
2517 	.setxattr	= shmem_setxattr,
2518 	.getxattr	= shmem_getxattr,
2519 	.listxattr	= shmem_listxattr,
2520 	.removexattr	= shmem_removexattr,
2521 #endif
2522 #ifdef CONFIG_TMPFS_POSIX_ACL
2523 	.setattr	= shmem_setattr,
2524 #endif
2525 };
2526 
2527 static const struct super_operations shmem_ops = {
2528 	.alloc_inode	= shmem_alloc_inode,
2529 	.destroy_inode	= shmem_destroy_inode,
2530 #ifdef CONFIG_TMPFS
2531 	.statfs		= shmem_statfs,
2532 	.remount_fs	= shmem_remount_fs,
2533 	.show_options	= shmem_show_options,
2534 #endif
2535 	.evict_inode	= shmem_evict_inode,
2536 	.drop_inode	= generic_delete_inode,
2537 	.put_super	= shmem_put_super,
2538 };
2539 
2540 static const struct vm_operations_struct shmem_vm_ops = {
2541 	.fault		= shmem_fault,
2542 #ifdef CONFIG_NUMA
2543 	.set_policy     = shmem_set_policy,
2544 	.get_policy     = shmem_get_policy,
2545 #endif
2546 };
2547 
2548 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2549 	int flags, const char *dev_name, void *data)
2550 {
2551 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2552 }
2553 
2554 static struct file_system_type shmem_fs_type = {
2555 	.owner		= THIS_MODULE,
2556 	.name		= "tmpfs",
2557 	.mount		= shmem_mount,
2558 	.kill_sb	= kill_litter_super,
2559 };
2560 
2561 int __init shmem_init(void)
2562 {
2563 	int error;
2564 
2565 	error = bdi_init(&shmem_backing_dev_info);
2566 	if (error)
2567 		goto out4;
2568 
2569 	error = shmem_init_inodecache();
2570 	if (error)
2571 		goto out3;
2572 
2573 	error = register_filesystem(&shmem_fs_type);
2574 	if (error) {
2575 		printk(KERN_ERR "Could not register tmpfs\n");
2576 		goto out2;
2577 	}
2578 
2579 	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2580 				 shmem_fs_type.name, NULL);
2581 	if (IS_ERR(shm_mnt)) {
2582 		error = PTR_ERR(shm_mnt);
2583 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2584 		goto out1;
2585 	}
2586 	return 0;
2587 
2588 out1:
2589 	unregister_filesystem(&shmem_fs_type);
2590 out2:
2591 	shmem_destroy_inodecache();
2592 out3:
2593 	bdi_destroy(&shmem_backing_dev_info);
2594 out4:
2595 	shm_mnt = ERR_PTR(error);
2596 	return error;
2597 }
2598 
2599 #else /* !CONFIG_SHMEM */
2600 
2601 /*
2602  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2603  *
2604  * This is intended for small system where the benefits of the full
2605  * shmem code (swap-backed and resource-limited) are outweighed by
2606  * their complexity. On systems without swap this code should be
2607  * effectively equivalent, but much lighter weight.
2608  */
2609 
2610 #include <linux/ramfs.h>
2611 
2612 static struct file_system_type shmem_fs_type = {
2613 	.name		= "tmpfs",
2614 	.mount		= ramfs_mount,
2615 	.kill_sb	= kill_litter_super,
2616 };
2617 
2618 int __init shmem_init(void)
2619 {
2620 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2621 
2622 	shm_mnt = kern_mount(&shmem_fs_type);
2623 	BUG_ON(IS_ERR(shm_mnt));
2624 
2625 	return 0;
2626 }
2627 
2628 int shmem_unuse(swp_entry_t swap, struct page *page)
2629 {
2630 	return 0;
2631 }
2632 
2633 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2634 {
2635 	return 0;
2636 }
2637 
2638 void shmem_unlock_mapping(struct address_space *mapping)
2639 {
2640 }
2641 
2642 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2643 {
2644 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2645 }
2646 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2647 
2648 #define shmem_vm_ops				generic_file_vm_ops
2649 #define shmem_file_operations			ramfs_file_operations
2650 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2651 #define shmem_acct_size(flags, size)		0
2652 #define shmem_unacct_size(flags, size)		do {} while (0)
2653 
2654 #endif /* CONFIG_SHMEM */
2655 
2656 /* common code */
2657 
2658 /**
2659  * shmem_file_setup - get an unlinked file living in tmpfs
2660  * @name: name for dentry (to be seen in /proc/<pid>/maps
2661  * @size: size to be set for the file
2662  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2663  */
2664 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2665 {
2666 	int error;
2667 	struct file *file;
2668 	struct inode *inode;
2669 	struct path path;
2670 	struct dentry *root;
2671 	struct qstr this;
2672 
2673 	if (IS_ERR(shm_mnt))
2674 		return (void *)shm_mnt;
2675 
2676 	if (size < 0 || size > MAX_LFS_FILESIZE)
2677 		return ERR_PTR(-EINVAL);
2678 
2679 	if (shmem_acct_size(flags, size))
2680 		return ERR_PTR(-ENOMEM);
2681 
2682 	error = -ENOMEM;
2683 	this.name = name;
2684 	this.len = strlen(name);
2685 	this.hash = 0; /* will go */
2686 	root = shm_mnt->mnt_root;
2687 	path.dentry = d_alloc(root, &this);
2688 	if (!path.dentry)
2689 		goto put_memory;
2690 	path.mnt = mntget(shm_mnt);
2691 
2692 	error = -ENOSPC;
2693 	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2694 	if (!inode)
2695 		goto put_dentry;
2696 
2697 	d_instantiate(path.dentry, inode);
2698 	inode->i_size = size;
2699 	clear_nlink(inode);	/* It is unlinked */
2700 #ifndef CONFIG_MMU
2701 	error = ramfs_nommu_expand_for_mapping(inode, size);
2702 	if (error)
2703 		goto put_dentry;
2704 #endif
2705 
2706 	error = -ENFILE;
2707 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2708 		  &shmem_file_operations);
2709 	if (!file)
2710 		goto put_dentry;
2711 
2712 	return file;
2713 
2714 put_dentry:
2715 	path_put(&path);
2716 put_memory:
2717 	shmem_unacct_size(flags, size);
2718 	return ERR_PTR(error);
2719 }
2720 EXPORT_SYMBOL_GPL(shmem_file_setup);
2721 
2722 /**
2723  * shmem_zero_setup - setup a shared anonymous mapping
2724  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2725  */
2726 int shmem_zero_setup(struct vm_area_struct *vma)
2727 {
2728 	struct file *file;
2729 	loff_t size = vma->vm_end - vma->vm_start;
2730 
2731 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2732 	if (IS_ERR(file))
2733 		return PTR_ERR(file);
2734 
2735 	if (vma->vm_file)
2736 		fput(vma->vm_file);
2737 	vma->vm_file = file;
2738 	vma->vm_ops = &shmem_vm_ops;
2739 	vma->vm_flags |= VM_CAN_NONLINEAR;
2740 	return 0;
2741 }
2742 
2743 /**
2744  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2745  * @mapping:	the page's address_space
2746  * @index:	the page index
2747  * @gfp:	the page allocator flags to use if allocating
2748  *
2749  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2750  * with any new page allocations done using the specified allocation flags.
2751  * But read_cache_page_gfp() uses the ->readpage() method: which does not
2752  * suit tmpfs, since it may have pages in swapcache, and needs to find those
2753  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2754  *
2755  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2756  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2757  */
2758 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2759 					 pgoff_t index, gfp_t gfp)
2760 {
2761 #ifdef CONFIG_SHMEM
2762 	struct inode *inode = mapping->host;
2763 	struct page *page;
2764 	int error;
2765 
2766 	BUG_ON(mapping->a_ops != &shmem_aops);
2767 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2768 	if (error)
2769 		page = ERR_PTR(error);
2770 	else
2771 		unlock_page(page);
2772 	return page;
2773 #else
2774 	/*
2775 	 * The tiny !SHMEM case uses ramfs without swap
2776 	 */
2777 	return read_cache_page_gfp(mapping, index, gfp);
2778 #endif
2779 }
2780 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
2781