1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/sched/signal.h> 33 #include <linux/export.h> 34 #include <linux/swap.h> 35 #include <linux/uio.h> 36 #include <linux/khugepaged.h> 37 38 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 39 40 static struct vfsmount *shm_mnt; 41 42 #ifdef CONFIG_SHMEM 43 /* 44 * This virtual memory filesystem is heavily based on the ramfs. It 45 * extends ramfs by the ability to use swap and honor resource limits 46 * which makes it a completely usable filesystem. 47 */ 48 49 #include <linux/xattr.h> 50 #include <linux/exportfs.h> 51 #include <linux/posix_acl.h> 52 #include <linux/posix_acl_xattr.h> 53 #include <linux/mman.h> 54 #include <linux/string.h> 55 #include <linux/slab.h> 56 #include <linux/backing-dev.h> 57 #include <linux/shmem_fs.h> 58 #include <linux/writeback.h> 59 #include <linux/blkdev.h> 60 #include <linux/pagevec.h> 61 #include <linux/percpu_counter.h> 62 #include <linux/falloc.h> 63 #include <linux/splice.h> 64 #include <linux/security.h> 65 #include <linux/swapops.h> 66 #include <linux/mempolicy.h> 67 #include <linux/namei.h> 68 #include <linux/ctype.h> 69 #include <linux/migrate.h> 70 #include <linux/highmem.h> 71 #include <linux/seq_file.h> 72 #include <linux/magic.h> 73 #include <linux/syscalls.h> 74 #include <linux/fcntl.h> 75 #include <uapi/linux/memfd.h> 76 #include <linux/userfaultfd_k.h> 77 #include <linux/rmap.h> 78 #include <linux/uuid.h> 79 80 #include <linux/uaccess.h> 81 #include <asm/pgtable.h> 82 83 #include "internal.h" 84 85 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 86 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 87 88 /* Pretend that each entry is of this size in directory's i_size */ 89 #define BOGO_DIRENT_SIZE 20 90 91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 92 #define SHORT_SYMLINK_LEN 128 93 94 /* 95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 96 * inode->i_private (with i_mutex making sure that it has only one user at 97 * a time): we would prefer not to enlarge the shmem inode just for that. 98 */ 99 struct shmem_falloc { 100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 101 pgoff_t start; /* start of range currently being fallocated */ 102 pgoff_t next; /* the next page offset to be fallocated */ 103 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 105 }; 106 107 #ifdef CONFIG_TMPFS 108 static unsigned long shmem_default_max_blocks(void) 109 { 110 return totalram_pages / 2; 111 } 112 113 static unsigned long shmem_default_max_inodes(void) 114 { 115 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 116 } 117 #endif 118 119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 120 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 121 struct shmem_inode_info *info, pgoff_t index); 122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 123 struct page **pagep, enum sgp_type sgp, 124 gfp_t gfp, struct vm_area_struct *vma, 125 struct vm_fault *vmf, int *fault_type); 126 127 int shmem_getpage(struct inode *inode, pgoff_t index, 128 struct page **pagep, enum sgp_type sgp) 129 { 130 return shmem_getpage_gfp(inode, index, pagep, sgp, 131 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 132 } 133 134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 135 { 136 return sb->s_fs_info; 137 } 138 139 /* 140 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 141 * for shared memory and for shared anonymous (/dev/zero) mappings 142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 143 * consistent with the pre-accounting of private mappings ... 144 */ 145 static inline int shmem_acct_size(unsigned long flags, loff_t size) 146 { 147 return (flags & VM_NORESERVE) ? 148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 149 } 150 151 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 152 { 153 if (!(flags & VM_NORESERVE)) 154 vm_unacct_memory(VM_ACCT(size)); 155 } 156 157 static inline int shmem_reacct_size(unsigned long flags, 158 loff_t oldsize, loff_t newsize) 159 { 160 if (!(flags & VM_NORESERVE)) { 161 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 162 return security_vm_enough_memory_mm(current->mm, 163 VM_ACCT(newsize) - VM_ACCT(oldsize)); 164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 166 } 167 return 0; 168 } 169 170 /* 171 * ... whereas tmpfs objects are accounted incrementally as 172 * pages are allocated, in order to allow large sparse files. 173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 175 */ 176 static inline int shmem_acct_block(unsigned long flags, long pages) 177 { 178 if (!(flags & VM_NORESERVE)) 179 return 0; 180 181 return security_vm_enough_memory_mm(current->mm, 182 pages * VM_ACCT(PAGE_SIZE)); 183 } 184 185 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 186 { 187 if (flags & VM_NORESERVE) 188 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 189 } 190 191 static const struct super_operations shmem_ops; 192 static const struct address_space_operations shmem_aops; 193 static const struct file_operations shmem_file_operations; 194 static const struct inode_operations shmem_inode_operations; 195 static const struct inode_operations shmem_dir_inode_operations; 196 static const struct inode_operations shmem_special_inode_operations; 197 static const struct vm_operations_struct shmem_vm_ops; 198 static struct file_system_type shmem_fs_type; 199 200 bool vma_is_shmem(struct vm_area_struct *vma) 201 { 202 return vma->vm_ops == &shmem_vm_ops; 203 } 204 205 static LIST_HEAD(shmem_swaplist); 206 static DEFINE_MUTEX(shmem_swaplist_mutex); 207 208 static int shmem_reserve_inode(struct super_block *sb) 209 { 210 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 211 if (sbinfo->max_inodes) { 212 spin_lock(&sbinfo->stat_lock); 213 if (!sbinfo->free_inodes) { 214 spin_unlock(&sbinfo->stat_lock); 215 return -ENOSPC; 216 } 217 sbinfo->free_inodes--; 218 spin_unlock(&sbinfo->stat_lock); 219 } 220 return 0; 221 } 222 223 static void shmem_free_inode(struct super_block *sb) 224 { 225 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 226 if (sbinfo->max_inodes) { 227 spin_lock(&sbinfo->stat_lock); 228 sbinfo->free_inodes++; 229 spin_unlock(&sbinfo->stat_lock); 230 } 231 } 232 233 /** 234 * shmem_recalc_inode - recalculate the block usage of an inode 235 * @inode: inode to recalc 236 * 237 * We have to calculate the free blocks since the mm can drop 238 * undirtied hole pages behind our back. 239 * 240 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 241 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 242 * 243 * It has to be called with the spinlock held. 244 */ 245 static void shmem_recalc_inode(struct inode *inode) 246 { 247 struct shmem_inode_info *info = SHMEM_I(inode); 248 long freed; 249 250 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 251 if (freed > 0) { 252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 253 if (sbinfo->max_blocks) 254 percpu_counter_add(&sbinfo->used_blocks, -freed); 255 info->alloced -= freed; 256 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 257 shmem_unacct_blocks(info->flags, freed); 258 } 259 } 260 261 bool shmem_charge(struct inode *inode, long pages) 262 { 263 struct shmem_inode_info *info = SHMEM_I(inode); 264 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 265 unsigned long flags; 266 267 if (shmem_acct_block(info->flags, pages)) 268 return false; 269 270 if (sbinfo->max_blocks) { 271 if (percpu_counter_compare(&sbinfo->used_blocks, 272 sbinfo->max_blocks - pages) > 0) 273 goto unacct; 274 percpu_counter_add(&sbinfo->used_blocks, pages); 275 } 276 277 spin_lock_irqsave(&info->lock, flags); 278 info->alloced += pages; 279 inode->i_blocks += pages * BLOCKS_PER_PAGE; 280 shmem_recalc_inode(inode); 281 spin_unlock_irqrestore(&info->lock, flags); 282 inode->i_mapping->nrpages += pages; 283 284 return true; 285 286 unacct: 287 shmem_unacct_blocks(info->flags, pages); 288 return false; 289 } 290 291 void shmem_uncharge(struct inode *inode, long pages) 292 { 293 struct shmem_inode_info *info = SHMEM_I(inode); 294 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 295 unsigned long flags; 296 297 spin_lock_irqsave(&info->lock, flags); 298 info->alloced -= pages; 299 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 300 shmem_recalc_inode(inode); 301 spin_unlock_irqrestore(&info->lock, flags); 302 303 if (sbinfo->max_blocks) 304 percpu_counter_sub(&sbinfo->used_blocks, pages); 305 shmem_unacct_blocks(info->flags, pages); 306 } 307 308 /* 309 * Replace item expected in radix tree by a new item, while holding tree lock. 310 */ 311 static int shmem_radix_tree_replace(struct address_space *mapping, 312 pgoff_t index, void *expected, void *replacement) 313 { 314 struct radix_tree_node *node; 315 void **pslot; 316 void *item; 317 318 VM_BUG_ON(!expected); 319 VM_BUG_ON(!replacement); 320 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot); 321 if (!item) 322 return -ENOENT; 323 if (item != expected) 324 return -ENOENT; 325 __radix_tree_replace(&mapping->page_tree, node, pslot, 326 replacement, NULL, NULL); 327 return 0; 328 } 329 330 /* 331 * Sometimes, before we decide whether to proceed or to fail, we must check 332 * that an entry was not already brought back from swap by a racing thread. 333 * 334 * Checking page is not enough: by the time a SwapCache page is locked, it 335 * might be reused, and again be SwapCache, using the same swap as before. 336 */ 337 static bool shmem_confirm_swap(struct address_space *mapping, 338 pgoff_t index, swp_entry_t swap) 339 { 340 void *item; 341 342 rcu_read_lock(); 343 item = radix_tree_lookup(&mapping->page_tree, index); 344 rcu_read_unlock(); 345 return item == swp_to_radix_entry(swap); 346 } 347 348 /* 349 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 350 * 351 * SHMEM_HUGE_NEVER: 352 * disables huge pages for the mount; 353 * SHMEM_HUGE_ALWAYS: 354 * enables huge pages for the mount; 355 * SHMEM_HUGE_WITHIN_SIZE: 356 * only allocate huge pages if the page will be fully within i_size, 357 * also respect fadvise()/madvise() hints; 358 * SHMEM_HUGE_ADVISE: 359 * only allocate huge pages if requested with fadvise()/madvise(); 360 */ 361 362 #define SHMEM_HUGE_NEVER 0 363 #define SHMEM_HUGE_ALWAYS 1 364 #define SHMEM_HUGE_WITHIN_SIZE 2 365 #define SHMEM_HUGE_ADVISE 3 366 367 /* 368 * Special values. 369 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 370 * 371 * SHMEM_HUGE_DENY: 372 * disables huge on shm_mnt and all mounts, for emergency use; 373 * SHMEM_HUGE_FORCE: 374 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 375 * 376 */ 377 #define SHMEM_HUGE_DENY (-1) 378 #define SHMEM_HUGE_FORCE (-2) 379 380 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 381 /* ifdef here to avoid bloating shmem.o when not necessary */ 382 383 int shmem_huge __read_mostly; 384 385 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 386 static int shmem_parse_huge(const char *str) 387 { 388 if (!strcmp(str, "never")) 389 return SHMEM_HUGE_NEVER; 390 if (!strcmp(str, "always")) 391 return SHMEM_HUGE_ALWAYS; 392 if (!strcmp(str, "within_size")) 393 return SHMEM_HUGE_WITHIN_SIZE; 394 if (!strcmp(str, "advise")) 395 return SHMEM_HUGE_ADVISE; 396 if (!strcmp(str, "deny")) 397 return SHMEM_HUGE_DENY; 398 if (!strcmp(str, "force")) 399 return SHMEM_HUGE_FORCE; 400 return -EINVAL; 401 } 402 403 static const char *shmem_format_huge(int huge) 404 { 405 switch (huge) { 406 case SHMEM_HUGE_NEVER: 407 return "never"; 408 case SHMEM_HUGE_ALWAYS: 409 return "always"; 410 case SHMEM_HUGE_WITHIN_SIZE: 411 return "within_size"; 412 case SHMEM_HUGE_ADVISE: 413 return "advise"; 414 case SHMEM_HUGE_DENY: 415 return "deny"; 416 case SHMEM_HUGE_FORCE: 417 return "force"; 418 default: 419 VM_BUG_ON(1); 420 return "bad_val"; 421 } 422 } 423 #endif 424 425 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 426 struct shrink_control *sc, unsigned long nr_to_split) 427 { 428 LIST_HEAD(list), *pos, *next; 429 LIST_HEAD(to_remove); 430 struct inode *inode; 431 struct shmem_inode_info *info; 432 struct page *page; 433 unsigned long batch = sc ? sc->nr_to_scan : 128; 434 int removed = 0, split = 0; 435 436 if (list_empty(&sbinfo->shrinklist)) 437 return SHRINK_STOP; 438 439 spin_lock(&sbinfo->shrinklist_lock); 440 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 441 info = list_entry(pos, struct shmem_inode_info, shrinklist); 442 443 /* pin the inode */ 444 inode = igrab(&info->vfs_inode); 445 446 /* inode is about to be evicted */ 447 if (!inode) { 448 list_del_init(&info->shrinklist); 449 removed++; 450 goto next; 451 } 452 453 /* Check if there's anything to gain */ 454 if (round_up(inode->i_size, PAGE_SIZE) == 455 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 456 list_move(&info->shrinklist, &to_remove); 457 removed++; 458 goto next; 459 } 460 461 list_move(&info->shrinklist, &list); 462 next: 463 if (!--batch) 464 break; 465 } 466 spin_unlock(&sbinfo->shrinklist_lock); 467 468 list_for_each_safe(pos, next, &to_remove) { 469 info = list_entry(pos, struct shmem_inode_info, shrinklist); 470 inode = &info->vfs_inode; 471 list_del_init(&info->shrinklist); 472 iput(inode); 473 } 474 475 list_for_each_safe(pos, next, &list) { 476 int ret; 477 478 info = list_entry(pos, struct shmem_inode_info, shrinklist); 479 inode = &info->vfs_inode; 480 481 if (nr_to_split && split >= nr_to_split) { 482 iput(inode); 483 continue; 484 } 485 486 page = find_lock_page(inode->i_mapping, 487 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 488 if (!page) 489 goto drop; 490 491 if (!PageTransHuge(page)) { 492 unlock_page(page); 493 put_page(page); 494 goto drop; 495 } 496 497 ret = split_huge_page(page); 498 unlock_page(page); 499 put_page(page); 500 501 if (ret) { 502 /* split failed: leave it on the list */ 503 iput(inode); 504 continue; 505 } 506 507 split++; 508 drop: 509 list_del_init(&info->shrinklist); 510 removed++; 511 iput(inode); 512 } 513 514 spin_lock(&sbinfo->shrinklist_lock); 515 list_splice_tail(&list, &sbinfo->shrinklist); 516 sbinfo->shrinklist_len -= removed; 517 spin_unlock(&sbinfo->shrinklist_lock); 518 519 return split; 520 } 521 522 static long shmem_unused_huge_scan(struct super_block *sb, 523 struct shrink_control *sc) 524 { 525 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 526 527 if (!READ_ONCE(sbinfo->shrinklist_len)) 528 return SHRINK_STOP; 529 530 return shmem_unused_huge_shrink(sbinfo, sc, 0); 531 } 532 533 static long shmem_unused_huge_count(struct super_block *sb, 534 struct shrink_control *sc) 535 { 536 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 537 return READ_ONCE(sbinfo->shrinklist_len); 538 } 539 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 540 541 #define shmem_huge SHMEM_HUGE_DENY 542 543 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 544 struct shrink_control *sc, unsigned long nr_to_split) 545 { 546 return 0; 547 } 548 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 549 550 /* 551 * Like add_to_page_cache_locked, but error if expected item has gone. 552 */ 553 static int shmem_add_to_page_cache(struct page *page, 554 struct address_space *mapping, 555 pgoff_t index, void *expected) 556 { 557 int error, nr = hpage_nr_pages(page); 558 559 VM_BUG_ON_PAGE(PageTail(page), page); 560 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 561 VM_BUG_ON_PAGE(!PageLocked(page), page); 562 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 563 VM_BUG_ON(expected && PageTransHuge(page)); 564 565 page_ref_add(page, nr); 566 page->mapping = mapping; 567 page->index = index; 568 569 spin_lock_irq(&mapping->tree_lock); 570 if (PageTransHuge(page)) { 571 void __rcu **results; 572 pgoff_t idx; 573 int i; 574 575 error = 0; 576 if (radix_tree_gang_lookup_slot(&mapping->page_tree, 577 &results, &idx, index, 1) && 578 idx < index + HPAGE_PMD_NR) { 579 error = -EEXIST; 580 } 581 582 if (!error) { 583 for (i = 0; i < HPAGE_PMD_NR; i++) { 584 error = radix_tree_insert(&mapping->page_tree, 585 index + i, page + i); 586 VM_BUG_ON(error); 587 } 588 count_vm_event(THP_FILE_ALLOC); 589 } 590 } else if (!expected) { 591 error = radix_tree_insert(&mapping->page_tree, index, page); 592 } else { 593 error = shmem_radix_tree_replace(mapping, index, expected, 594 page); 595 } 596 597 if (!error) { 598 mapping->nrpages += nr; 599 if (PageTransHuge(page)) 600 __inc_node_page_state(page, NR_SHMEM_THPS); 601 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 602 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 603 spin_unlock_irq(&mapping->tree_lock); 604 } else { 605 page->mapping = NULL; 606 spin_unlock_irq(&mapping->tree_lock); 607 page_ref_sub(page, nr); 608 } 609 return error; 610 } 611 612 /* 613 * Like delete_from_page_cache, but substitutes swap for page. 614 */ 615 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 616 { 617 struct address_space *mapping = page->mapping; 618 int error; 619 620 VM_BUG_ON_PAGE(PageCompound(page), page); 621 622 spin_lock_irq(&mapping->tree_lock); 623 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 624 page->mapping = NULL; 625 mapping->nrpages--; 626 __dec_node_page_state(page, NR_FILE_PAGES); 627 __dec_node_page_state(page, NR_SHMEM); 628 spin_unlock_irq(&mapping->tree_lock); 629 put_page(page); 630 BUG_ON(error); 631 } 632 633 /* 634 * Remove swap entry from radix tree, free the swap and its page cache. 635 */ 636 static int shmem_free_swap(struct address_space *mapping, 637 pgoff_t index, void *radswap) 638 { 639 void *old; 640 641 spin_lock_irq(&mapping->tree_lock); 642 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 643 spin_unlock_irq(&mapping->tree_lock); 644 if (old != radswap) 645 return -ENOENT; 646 free_swap_and_cache(radix_to_swp_entry(radswap)); 647 return 0; 648 } 649 650 /* 651 * Determine (in bytes) how many of the shmem object's pages mapped by the 652 * given offsets are swapped out. 653 * 654 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 655 * as long as the inode doesn't go away and racy results are not a problem. 656 */ 657 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 658 pgoff_t start, pgoff_t end) 659 { 660 struct radix_tree_iter iter; 661 void **slot; 662 struct page *page; 663 unsigned long swapped = 0; 664 665 rcu_read_lock(); 666 667 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 668 if (iter.index >= end) 669 break; 670 671 page = radix_tree_deref_slot(slot); 672 673 if (radix_tree_deref_retry(page)) { 674 slot = radix_tree_iter_retry(&iter); 675 continue; 676 } 677 678 if (radix_tree_exceptional_entry(page)) 679 swapped++; 680 681 if (need_resched()) { 682 slot = radix_tree_iter_resume(slot, &iter); 683 cond_resched_rcu(); 684 } 685 } 686 687 rcu_read_unlock(); 688 689 return swapped << PAGE_SHIFT; 690 } 691 692 /* 693 * Determine (in bytes) how many of the shmem object's pages mapped by the 694 * given vma is swapped out. 695 * 696 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 697 * as long as the inode doesn't go away and racy results are not a problem. 698 */ 699 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 700 { 701 struct inode *inode = file_inode(vma->vm_file); 702 struct shmem_inode_info *info = SHMEM_I(inode); 703 struct address_space *mapping = inode->i_mapping; 704 unsigned long swapped; 705 706 /* Be careful as we don't hold info->lock */ 707 swapped = READ_ONCE(info->swapped); 708 709 /* 710 * The easier cases are when the shmem object has nothing in swap, or 711 * the vma maps it whole. Then we can simply use the stats that we 712 * already track. 713 */ 714 if (!swapped) 715 return 0; 716 717 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 718 return swapped << PAGE_SHIFT; 719 720 /* Here comes the more involved part */ 721 return shmem_partial_swap_usage(mapping, 722 linear_page_index(vma, vma->vm_start), 723 linear_page_index(vma, vma->vm_end)); 724 } 725 726 /* 727 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 728 */ 729 void shmem_unlock_mapping(struct address_space *mapping) 730 { 731 struct pagevec pvec; 732 pgoff_t indices[PAGEVEC_SIZE]; 733 pgoff_t index = 0; 734 735 pagevec_init(&pvec, 0); 736 /* 737 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 738 */ 739 while (!mapping_unevictable(mapping)) { 740 /* 741 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 742 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 743 */ 744 pvec.nr = find_get_entries(mapping, index, 745 PAGEVEC_SIZE, pvec.pages, indices); 746 if (!pvec.nr) 747 break; 748 index = indices[pvec.nr - 1] + 1; 749 pagevec_remove_exceptionals(&pvec); 750 check_move_unevictable_pages(pvec.pages, pvec.nr); 751 pagevec_release(&pvec); 752 cond_resched(); 753 } 754 } 755 756 /* 757 * Remove range of pages and swap entries from radix tree, and free them. 758 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 759 */ 760 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 761 bool unfalloc) 762 { 763 struct address_space *mapping = inode->i_mapping; 764 struct shmem_inode_info *info = SHMEM_I(inode); 765 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 766 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 767 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 768 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 769 struct pagevec pvec; 770 pgoff_t indices[PAGEVEC_SIZE]; 771 long nr_swaps_freed = 0; 772 pgoff_t index; 773 int i; 774 775 if (lend == -1) 776 end = -1; /* unsigned, so actually very big */ 777 778 pagevec_init(&pvec, 0); 779 index = start; 780 while (index < end) { 781 pvec.nr = find_get_entries(mapping, index, 782 min(end - index, (pgoff_t)PAGEVEC_SIZE), 783 pvec.pages, indices); 784 if (!pvec.nr) 785 break; 786 for (i = 0; i < pagevec_count(&pvec); i++) { 787 struct page *page = pvec.pages[i]; 788 789 index = indices[i]; 790 if (index >= end) 791 break; 792 793 if (radix_tree_exceptional_entry(page)) { 794 if (unfalloc) 795 continue; 796 nr_swaps_freed += !shmem_free_swap(mapping, 797 index, page); 798 continue; 799 } 800 801 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 802 803 if (!trylock_page(page)) 804 continue; 805 806 if (PageTransTail(page)) { 807 /* Middle of THP: zero out the page */ 808 clear_highpage(page); 809 unlock_page(page); 810 continue; 811 } else if (PageTransHuge(page)) { 812 if (index == round_down(end, HPAGE_PMD_NR)) { 813 /* 814 * Range ends in the middle of THP: 815 * zero out the page 816 */ 817 clear_highpage(page); 818 unlock_page(page); 819 continue; 820 } 821 index += HPAGE_PMD_NR - 1; 822 i += HPAGE_PMD_NR - 1; 823 } 824 825 if (!unfalloc || !PageUptodate(page)) { 826 VM_BUG_ON_PAGE(PageTail(page), page); 827 if (page_mapping(page) == mapping) { 828 VM_BUG_ON_PAGE(PageWriteback(page), page); 829 truncate_inode_page(mapping, page); 830 } 831 } 832 unlock_page(page); 833 } 834 pagevec_remove_exceptionals(&pvec); 835 pagevec_release(&pvec); 836 cond_resched(); 837 index++; 838 } 839 840 if (partial_start) { 841 struct page *page = NULL; 842 shmem_getpage(inode, start - 1, &page, SGP_READ); 843 if (page) { 844 unsigned int top = PAGE_SIZE; 845 if (start > end) { 846 top = partial_end; 847 partial_end = 0; 848 } 849 zero_user_segment(page, partial_start, top); 850 set_page_dirty(page); 851 unlock_page(page); 852 put_page(page); 853 } 854 } 855 if (partial_end) { 856 struct page *page = NULL; 857 shmem_getpage(inode, end, &page, SGP_READ); 858 if (page) { 859 zero_user_segment(page, 0, partial_end); 860 set_page_dirty(page); 861 unlock_page(page); 862 put_page(page); 863 } 864 } 865 if (start >= end) 866 return; 867 868 index = start; 869 while (index < end) { 870 cond_resched(); 871 872 pvec.nr = find_get_entries(mapping, index, 873 min(end - index, (pgoff_t)PAGEVEC_SIZE), 874 pvec.pages, indices); 875 if (!pvec.nr) { 876 /* If all gone or hole-punch or unfalloc, we're done */ 877 if (index == start || end != -1) 878 break; 879 /* But if truncating, restart to make sure all gone */ 880 index = start; 881 continue; 882 } 883 for (i = 0; i < pagevec_count(&pvec); i++) { 884 struct page *page = pvec.pages[i]; 885 886 index = indices[i]; 887 if (index >= end) 888 break; 889 890 if (radix_tree_exceptional_entry(page)) { 891 if (unfalloc) 892 continue; 893 if (shmem_free_swap(mapping, index, page)) { 894 /* Swap was replaced by page: retry */ 895 index--; 896 break; 897 } 898 nr_swaps_freed++; 899 continue; 900 } 901 902 lock_page(page); 903 904 if (PageTransTail(page)) { 905 /* Middle of THP: zero out the page */ 906 clear_highpage(page); 907 unlock_page(page); 908 /* 909 * Partial thp truncate due 'start' in middle 910 * of THP: don't need to look on these pages 911 * again on !pvec.nr restart. 912 */ 913 if (index != round_down(end, HPAGE_PMD_NR)) 914 start++; 915 continue; 916 } else if (PageTransHuge(page)) { 917 if (index == round_down(end, HPAGE_PMD_NR)) { 918 /* 919 * Range ends in the middle of THP: 920 * zero out the page 921 */ 922 clear_highpage(page); 923 unlock_page(page); 924 continue; 925 } 926 index += HPAGE_PMD_NR - 1; 927 i += HPAGE_PMD_NR - 1; 928 } 929 930 if (!unfalloc || !PageUptodate(page)) { 931 VM_BUG_ON_PAGE(PageTail(page), page); 932 if (page_mapping(page) == mapping) { 933 VM_BUG_ON_PAGE(PageWriteback(page), page); 934 truncate_inode_page(mapping, page); 935 } else { 936 /* Page was replaced by swap: retry */ 937 unlock_page(page); 938 index--; 939 break; 940 } 941 } 942 unlock_page(page); 943 } 944 pagevec_remove_exceptionals(&pvec); 945 pagevec_release(&pvec); 946 index++; 947 } 948 949 spin_lock_irq(&info->lock); 950 info->swapped -= nr_swaps_freed; 951 shmem_recalc_inode(inode); 952 spin_unlock_irq(&info->lock); 953 } 954 955 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 956 { 957 shmem_undo_range(inode, lstart, lend, false); 958 inode->i_ctime = inode->i_mtime = current_time(inode); 959 } 960 EXPORT_SYMBOL_GPL(shmem_truncate_range); 961 962 static int shmem_getattr(const struct path *path, struct kstat *stat, 963 u32 request_mask, unsigned int query_flags) 964 { 965 struct inode *inode = path->dentry->d_inode; 966 struct shmem_inode_info *info = SHMEM_I(inode); 967 968 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 969 spin_lock_irq(&info->lock); 970 shmem_recalc_inode(inode); 971 spin_unlock_irq(&info->lock); 972 } 973 generic_fillattr(inode, stat); 974 return 0; 975 } 976 977 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 978 { 979 struct inode *inode = d_inode(dentry); 980 struct shmem_inode_info *info = SHMEM_I(inode); 981 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 982 int error; 983 984 error = setattr_prepare(dentry, attr); 985 if (error) 986 return error; 987 988 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 989 loff_t oldsize = inode->i_size; 990 loff_t newsize = attr->ia_size; 991 992 /* protected by i_mutex */ 993 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 994 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 995 return -EPERM; 996 997 if (newsize != oldsize) { 998 error = shmem_reacct_size(SHMEM_I(inode)->flags, 999 oldsize, newsize); 1000 if (error) 1001 return error; 1002 i_size_write(inode, newsize); 1003 inode->i_ctime = inode->i_mtime = current_time(inode); 1004 } 1005 if (newsize <= oldsize) { 1006 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1007 if (oldsize > holebegin) 1008 unmap_mapping_range(inode->i_mapping, 1009 holebegin, 0, 1); 1010 if (info->alloced) 1011 shmem_truncate_range(inode, 1012 newsize, (loff_t)-1); 1013 /* unmap again to remove racily COWed private pages */ 1014 if (oldsize > holebegin) 1015 unmap_mapping_range(inode->i_mapping, 1016 holebegin, 0, 1); 1017 1018 /* 1019 * Part of the huge page can be beyond i_size: subject 1020 * to shrink under memory pressure. 1021 */ 1022 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 1023 spin_lock(&sbinfo->shrinklist_lock); 1024 /* 1025 * _careful to defend against unlocked access to 1026 * ->shrink_list in shmem_unused_huge_shrink() 1027 */ 1028 if (list_empty_careful(&info->shrinklist)) { 1029 list_add_tail(&info->shrinklist, 1030 &sbinfo->shrinklist); 1031 sbinfo->shrinklist_len++; 1032 } 1033 spin_unlock(&sbinfo->shrinklist_lock); 1034 } 1035 } 1036 } 1037 1038 setattr_copy(inode, attr); 1039 if (attr->ia_valid & ATTR_MODE) 1040 error = posix_acl_chmod(inode, inode->i_mode); 1041 return error; 1042 } 1043 1044 static void shmem_evict_inode(struct inode *inode) 1045 { 1046 struct shmem_inode_info *info = SHMEM_I(inode); 1047 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1048 1049 if (inode->i_mapping->a_ops == &shmem_aops) { 1050 shmem_unacct_size(info->flags, inode->i_size); 1051 inode->i_size = 0; 1052 shmem_truncate_range(inode, 0, (loff_t)-1); 1053 if (!list_empty(&info->shrinklist)) { 1054 spin_lock(&sbinfo->shrinklist_lock); 1055 if (!list_empty(&info->shrinklist)) { 1056 list_del_init(&info->shrinklist); 1057 sbinfo->shrinklist_len--; 1058 } 1059 spin_unlock(&sbinfo->shrinklist_lock); 1060 } 1061 if (!list_empty(&info->swaplist)) { 1062 mutex_lock(&shmem_swaplist_mutex); 1063 list_del_init(&info->swaplist); 1064 mutex_unlock(&shmem_swaplist_mutex); 1065 } 1066 } 1067 1068 simple_xattrs_free(&info->xattrs); 1069 WARN_ON(inode->i_blocks); 1070 shmem_free_inode(inode->i_sb); 1071 clear_inode(inode); 1072 } 1073 1074 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item) 1075 { 1076 struct radix_tree_iter iter; 1077 void **slot; 1078 unsigned long found = -1; 1079 unsigned int checked = 0; 1080 1081 rcu_read_lock(); 1082 radix_tree_for_each_slot(slot, root, &iter, 0) { 1083 if (*slot == item) { 1084 found = iter.index; 1085 break; 1086 } 1087 checked++; 1088 if ((checked % 4096) != 0) 1089 continue; 1090 slot = radix_tree_iter_resume(slot, &iter); 1091 cond_resched_rcu(); 1092 } 1093 1094 rcu_read_unlock(); 1095 return found; 1096 } 1097 1098 /* 1099 * If swap found in inode, free it and move page from swapcache to filecache. 1100 */ 1101 static int shmem_unuse_inode(struct shmem_inode_info *info, 1102 swp_entry_t swap, struct page **pagep) 1103 { 1104 struct address_space *mapping = info->vfs_inode.i_mapping; 1105 void *radswap; 1106 pgoff_t index; 1107 gfp_t gfp; 1108 int error = 0; 1109 1110 radswap = swp_to_radix_entry(swap); 1111 index = find_swap_entry(&mapping->page_tree, radswap); 1112 if (index == -1) 1113 return -EAGAIN; /* tell shmem_unuse we found nothing */ 1114 1115 /* 1116 * Move _head_ to start search for next from here. 1117 * But be careful: shmem_evict_inode checks list_empty without taking 1118 * mutex, and there's an instant in list_move_tail when info->swaplist 1119 * would appear empty, if it were the only one on shmem_swaplist. 1120 */ 1121 if (shmem_swaplist.next != &info->swaplist) 1122 list_move_tail(&shmem_swaplist, &info->swaplist); 1123 1124 gfp = mapping_gfp_mask(mapping); 1125 if (shmem_should_replace_page(*pagep, gfp)) { 1126 mutex_unlock(&shmem_swaplist_mutex); 1127 error = shmem_replace_page(pagep, gfp, info, index); 1128 mutex_lock(&shmem_swaplist_mutex); 1129 /* 1130 * We needed to drop mutex to make that restrictive page 1131 * allocation, but the inode might have been freed while we 1132 * dropped it: although a racing shmem_evict_inode() cannot 1133 * complete without emptying the radix_tree, our page lock 1134 * on this swapcache page is not enough to prevent that - 1135 * free_swap_and_cache() of our swap entry will only 1136 * trylock_page(), removing swap from radix_tree whatever. 1137 * 1138 * We must not proceed to shmem_add_to_page_cache() if the 1139 * inode has been freed, but of course we cannot rely on 1140 * inode or mapping or info to check that. However, we can 1141 * safely check if our swap entry is still in use (and here 1142 * it can't have got reused for another page): if it's still 1143 * in use, then the inode cannot have been freed yet, and we 1144 * can safely proceed (if it's no longer in use, that tells 1145 * nothing about the inode, but we don't need to unuse swap). 1146 */ 1147 if (!page_swapcount(*pagep)) 1148 error = -ENOENT; 1149 } 1150 1151 /* 1152 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 1153 * but also to hold up shmem_evict_inode(): so inode cannot be freed 1154 * beneath us (pagelock doesn't help until the page is in pagecache). 1155 */ 1156 if (!error) 1157 error = shmem_add_to_page_cache(*pagep, mapping, index, 1158 radswap); 1159 if (error != -ENOMEM) { 1160 /* 1161 * Truncation and eviction use free_swap_and_cache(), which 1162 * only does trylock page: if we raced, best clean up here. 1163 */ 1164 delete_from_swap_cache(*pagep); 1165 set_page_dirty(*pagep); 1166 if (!error) { 1167 spin_lock_irq(&info->lock); 1168 info->swapped--; 1169 spin_unlock_irq(&info->lock); 1170 swap_free(swap); 1171 } 1172 } 1173 return error; 1174 } 1175 1176 /* 1177 * Search through swapped inodes to find and replace swap by page. 1178 */ 1179 int shmem_unuse(swp_entry_t swap, struct page *page) 1180 { 1181 struct list_head *this, *next; 1182 struct shmem_inode_info *info; 1183 struct mem_cgroup *memcg; 1184 int error = 0; 1185 1186 /* 1187 * There's a faint possibility that swap page was replaced before 1188 * caller locked it: caller will come back later with the right page. 1189 */ 1190 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 1191 goto out; 1192 1193 /* 1194 * Charge page using GFP_KERNEL while we can wait, before taking 1195 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 1196 * Charged back to the user (not to caller) when swap account is used. 1197 */ 1198 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg, 1199 false); 1200 if (error) 1201 goto out; 1202 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 1203 error = -EAGAIN; 1204 1205 mutex_lock(&shmem_swaplist_mutex); 1206 list_for_each_safe(this, next, &shmem_swaplist) { 1207 info = list_entry(this, struct shmem_inode_info, swaplist); 1208 if (info->swapped) 1209 error = shmem_unuse_inode(info, swap, &page); 1210 else 1211 list_del_init(&info->swaplist); 1212 cond_resched(); 1213 if (error != -EAGAIN) 1214 break; 1215 /* found nothing in this: move on to search the next */ 1216 } 1217 mutex_unlock(&shmem_swaplist_mutex); 1218 1219 if (error) { 1220 if (error != -ENOMEM) 1221 error = 0; 1222 mem_cgroup_cancel_charge(page, memcg, false); 1223 } else 1224 mem_cgroup_commit_charge(page, memcg, true, false); 1225 out: 1226 unlock_page(page); 1227 put_page(page); 1228 return error; 1229 } 1230 1231 /* 1232 * Move the page from the page cache to the swap cache. 1233 */ 1234 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1235 { 1236 struct shmem_inode_info *info; 1237 struct address_space *mapping; 1238 struct inode *inode; 1239 swp_entry_t swap; 1240 pgoff_t index; 1241 1242 VM_BUG_ON_PAGE(PageCompound(page), page); 1243 BUG_ON(!PageLocked(page)); 1244 mapping = page->mapping; 1245 index = page->index; 1246 inode = mapping->host; 1247 info = SHMEM_I(inode); 1248 if (info->flags & VM_LOCKED) 1249 goto redirty; 1250 if (!total_swap_pages) 1251 goto redirty; 1252 1253 /* 1254 * Our capabilities prevent regular writeback or sync from ever calling 1255 * shmem_writepage; but a stacking filesystem might use ->writepage of 1256 * its underlying filesystem, in which case tmpfs should write out to 1257 * swap only in response to memory pressure, and not for the writeback 1258 * threads or sync. 1259 */ 1260 if (!wbc->for_reclaim) { 1261 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1262 goto redirty; 1263 } 1264 1265 /* 1266 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1267 * value into swapfile.c, the only way we can correctly account for a 1268 * fallocated page arriving here is now to initialize it and write it. 1269 * 1270 * That's okay for a page already fallocated earlier, but if we have 1271 * not yet completed the fallocation, then (a) we want to keep track 1272 * of this page in case we have to undo it, and (b) it may not be a 1273 * good idea to continue anyway, once we're pushing into swap. So 1274 * reactivate the page, and let shmem_fallocate() quit when too many. 1275 */ 1276 if (!PageUptodate(page)) { 1277 if (inode->i_private) { 1278 struct shmem_falloc *shmem_falloc; 1279 spin_lock(&inode->i_lock); 1280 shmem_falloc = inode->i_private; 1281 if (shmem_falloc && 1282 !shmem_falloc->waitq && 1283 index >= shmem_falloc->start && 1284 index < shmem_falloc->next) 1285 shmem_falloc->nr_unswapped++; 1286 else 1287 shmem_falloc = NULL; 1288 spin_unlock(&inode->i_lock); 1289 if (shmem_falloc) 1290 goto redirty; 1291 } 1292 clear_highpage(page); 1293 flush_dcache_page(page); 1294 SetPageUptodate(page); 1295 } 1296 1297 swap = get_swap_page(page); 1298 if (!swap.val) 1299 goto redirty; 1300 1301 if (mem_cgroup_try_charge_swap(page, swap)) 1302 goto free_swap; 1303 1304 /* 1305 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1306 * if it's not already there. Do it now before the page is 1307 * moved to swap cache, when its pagelock no longer protects 1308 * the inode from eviction. But don't unlock the mutex until 1309 * we've incremented swapped, because shmem_unuse_inode() will 1310 * prune a !swapped inode from the swaplist under this mutex. 1311 */ 1312 mutex_lock(&shmem_swaplist_mutex); 1313 if (list_empty(&info->swaplist)) 1314 list_add_tail(&info->swaplist, &shmem_swaplist); 1315 1316 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1317 spin_lock_irq(&info->lock); 1318 shmem_recalc_inode(inode); 1319 info->swapped++; 1320 spin_unlock_irq(&info->lock); 1321 1322 swap_shmem_alloc(swap); 1323 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1324 1325 mutex_unlock(&shmem_swaplist_mutex); 1326 BUG_ON(page_mapped(page)); 1327 swap_writepage(page, wbc); 1328 return 0; 1329 } 1330 1331 mutex_unlock(&shmem_swaplist_mutex); 1332 free_swap: 1333 put_swap_page(page, swap); 1334 redirty: 1335 set_page_dirty(page); 1336 if (wbc->for_reclaim) 1337 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1338 unlock_page(page); 1339 return 0; 1340 } 1341 1342 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1343 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1344 { 1345 char buffer[64]; 1346 1347 if (!mpol || mpol->mode == MPOL_DEFAULT) 1348 return; /* show nothing */ 1349 1350 mpol_to_str(buffer, sizeof(buffer), mpol); 1351 1352 seq_printf(seq, ",mpol=%s", buffer); 1353 } 1354 1355 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1356 { 1357 struct mempolicy *mpol = NULL; 1358 if (sbinfo->mpol) { 1359 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1360 mpol = sbinfo->mpol; 1361 mpol_get(mpol); 1362 spin_unlock(&sbinfo->stat_lock); 1363 } 1364 return mpol; 1365 } 1366 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1367 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1368 { 1369 } 1370 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1371 { 1372 return NULL; 1373 } 1374 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1375 #ifndef CONFIG_NUMA 1376 #define vm_policy vm_private_data 1377 #endif 1378 1379 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1380 struct shmem_inode_info *info, pgoff_t index) 1381 { 1382 /* Create a pseudo vma that just contains the policy */ 1383 vma->vm_start = 0; 1384 /* Bias interleave by inode number to distribute better across nodes */ 1385 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1386 vma->vm_ops = NULL; 1387 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1388 } 1389 1390 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1391 { 1392 /* Drop reference taken by mpol_shared_policy_lookup() */ 1393 mpol_cond_put(vma->vm_policy); 1394 } 1395 1396 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1397 struct shmem_inode_info *info, pgoff_t index) 1398 { 1399 struct vm_area_struct pvma; 1400 struct page *page; 1401 1402 shmem_pseudo_vma_init(&pvma, info, index); 1403 page = swapin_readahead(swap, gfp, &pvma, 0); 1404 shmem_pseudo_vma_destroy(&pvma); 1405 1406 return page; 1407 } 1408 1409 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1410 struct shmem_inode_info *info, pgoff_t index) 1411 { 1412 struct vm_area_struct pvma; 1413 struct inode *inode = &info->vfs_inode; 1414 struct address_space *mapping = inode->i_mapping; 1415 pgoff_t idx, hindex; 1416 void __rcu **results; 1417 struct page *page; 1418 1419 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1420 return NULL; 1421 1422 hindex = round_down(index, HPAGE_PMD_NR); 1423 rcu_read_lock(); 1424 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx, 1425 hindex, 1) && idx < hindex + HPAGE_PMD_NR) { 1426 rcu_read_unlock(); 1427 return NULL; 1428 } 1429 rcu_read_unlock(); 1430 1431 shmem_pseudo_vma_init(&pvma, info, hindex); 1432 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1433 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1434 shmem_pseudo_vma_destroy(&pvma); 1435 if (page) 1436 prep_transhuge_page(page); 1437 return page; 1438 } 1439 1440 static struct page *shmem_alloc_page(gfp_t gfp, 1441 struct shmem_inode_info *info, pgoff_t index) 1442 { 1443 struct vm_area_struct pvma; 1444 struct page *page; 1445 1446 shmem_pseudo_vma_init(&pvma, info, index); 1447 page = alloc_page_vma(gfp, &pvma, 0); 1448 shmem_pseudo_vma_destroy(&pvma); 1449 1450 return page; 1451 } 1452 1453 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1454 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo, 1455 pgoff_t index, bool huge) 1456 { 1457 struct page *page; 1458 int nr; 1459 int err = -ENOSPC; 1460 1461 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1462 huge = false; 1463 nr = huge ? HPAGE_PMD_NR : 1; 1464 1465 if (shmem_acct_block(info->flags, nr)) 1466 goto failed; 1467 if (sbinfo->max_blocks) { 1468 if (percpu_counter_compare(&sbinfo->used_blocks, 1469 sbinfo->max_blocks - nr) > 0) 1470 goto unacct; 1471 percpu_counter_add(&sbinfo->used_blocks, nr); 1472 } 1473 1474 if (huge) 1475 page = shmem_alloc_hugepage(gfp, info, index); 1476 else 1477 page = shmem_alloc_page(gfp, info, index); 1478 if (page) { 1479 __SetPageLocked(page); 1480 __SetPageSwapBacked(page); 1481 return page; 1482 } 1483 1484 err = -ENOMEM; 1485 if (sbinfo->max_blocks) 1486 percpu_counter_add(&sbinfo->used_blocks, -nr); 1487 unacct: 1488 shmem_unacct_blocks(info->flags, nr); 1489 failed: 1490 return ERR_PTR(err); 1491 } 1492 1493 /* 1494 * When a page is moved from swapcache to shmem filecache (either by the 1495 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1496 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1497 * ignorance of the mapping it belongs to. If that mapping has special 1498 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1499 * we may need to copy to a suitable page before moving to filecache. 1500 * 1501 * In a future release, this may well be extended to respect cpuset and 1502 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1503 * but for now it is a simple matter of zone. 1504 */ 1505 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1506 { 1507 return page_zonenum(page) > gfp_zone(gfp); 1508 } 1509 1510 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1511 struct shmem_inode_info *info, pgoff_t index) 1512 { 1513 struct page *oldpage, *newpage; 1514 struct address_space *swap_mapping; 1515 pgoff_t swap_index; 1516 int error; 1517 1518 oldpage = *pagep; 1519 swap_index = page_private(oldpage); 1520 swap_mapping = page_mapping(oldpage); 1521 1522 /* 1523 * We have arrived here because our zones are constrained, so don't 1524 * limit chance of success by further cpuset and node constraints. 1525 */ 1526 gfp &= ~GFP_CONSTRAINT_MASK; 1527 newpage = shmem_alloc_page(gfp, info, index); 1528 if (!newpage) 1529 return -ENOMEM; 1530 1531 get_page(newpage); 1532 copy_highpage(newpage, oldpage); 1533 flush_dcache_page(newpage); 1534 1535 __SetPageLocked(newpage); 1536 __SetPageSwapBacked(newpage); 1537 SetPageUptodate(newpage); 1538 set_page_private(newpage, swap_index); 1539 SetPageSwapCache(newpage); 1540 1541 /* 1542 * Our caller will very soon move newpage out of swapcache, but it's 1543 * a nice clean interface for us to replace oldpage by newpage there. 1544 */ 1545 spin_lock_irq(&swap_mapping->tree_lock); 1546 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1547 newpage); 1548 if (!error) { 1549 __inc_node_page_state(newpage, NR_FILE_PAGES); 1550 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1551 } 1552 spin_unlock_irq(&swap_mapping->tree_lock); 1553 1554 if (unlikely(error)) { 1555 /* 1556 * Is this possible? I think not, now that our callers check 1557 * both PageSwapCache and page_private after getting page lock; 1558 * but be defensive. Reverse old to newpage for clear and free. 1559 */ 1560 oldpage = newpage; 1561 } else { 1562 mem_cgroup_migrate(oldpage, newpage); 1563 lru_cache_add_anon(newpage); 1564 *pagep = newpage; 1565 } 1566 1567 ClearPageSwapCache(oldpage); 1568 set_page_private(oldpage, 0); 1569 1570 unlock_page(oldpage); 1571 put_page(oldpage); 1572 put_page(oldpage); 1573 return error; 1574 } 1575 1576 /* 1577 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1578 * 1579 * If we allocate a new one we do not mark it dirty. That's up to the 1580 * vm. If we swap it in we mark it dirty since we also free the swap 1581 * entry since a page cannot live in both the swap and page cache. 1582 * 1583 * fault_mm and fault_type are only supplied by shmem_fault: 1584 * otherwise they are NULL. 1585 */ 1586 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1587 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1588 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type) 1589 { 1590 struct address_space *mapping = inode->i_mapping; 1591 struct shmem_inode_info *info = SHMEM_I(inode); 1592 struct shmem_sb_info *sbinfo; 1593 struct mm_struct *charge_mm; 1594 struct mem_cgroup *memcg; 1595 struct page *page; 1596 swp_entry_t swap; 1597 enum sgp_type sgp_huge = sgp; 1598 pgoff_t hindex = index; 1599 int error; 1600 int once = 0; 1601 int alloced = 0; 1602 1603 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1604 return -EFBIG; 1605 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1606 sgp = SGP_CACHE; 1607 repeat: 1608 swap.val = 0; 1609 page = find_lock_entry(mapping, index); 1610 if (radix_tree_exceptional_entry(page)) { 1611 swap = radix_to_swp_entry(page); 1612 page = NULL; 1613 } 1614 1615 if (sgp <= SGP_CACHE && 1616 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1617 error = -EINVAL; 1618 goto unlock; 1619 } 1620 1621 if (page && sgp == SGP_WRITE) 1622 mark_page_accessed(page); 1623 1624 /* fallocated page? */ 1625 if (page && !PageUptodate(page)) { 1626 if (sgp != SGP_READ) 1627 goto clear; 1628 unlock_page(page); 1629 put_page(page); 1630 page = NULL; 1631 } 1632 if (page || (sgp == SGP_READ && !swap.val)) { 1633 *pagep = page; 1634 return 0; 1635 } 1636 1637 /* 1638 * Fast cache lookup did not find it: 1639 * bring it back from swap or allocate. 1640 */ 1641 sbinfo = SHMEM_SB(inode->i_sb); 1642 charge_mm = vma ? vma->vm_mm : current->mm; 1643 1644 if (swap.val) { 1645 /* Look it up and read it in.. */ 1646 page = lookup_swap_cache(swap); 1647 if (!page) { 1648 /* Or update major stats only when swapin succeeds?? */ 1649 if (fault_type) { 1650 *fault_type |= VM_FAULT_MAJOR; 1651 count_vm_event(PGMAJFAULT); 1652 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1653 } 1654 /* Here we actually start the io */ 1655 page = shmem_swapin(swap, gfp, info, index); 1656 if (!page) { 1657 error = -ENOMEM; 1658 goto failed; 1659 } 1660 } 1661 1662 /* We have to do this with page locked to prevent races */ 1663 lock_page(page); 1664 if (!PageSwapCache(page) || page_private(page) != swap.val || 1665 !shmem_confirm_swap(mapping, index, swap)) { 1666 error = -EEXIST; /* try again */ 1667 goto unlock; 1668 } 1669 if (!PageUptodate(page)) { 1670 error = -EIO; 1671 goto failed; 1672 } 1673 wait_on_page_writeback(page); 1674 1675 if (shmem_should_replace_page(page, gfp)) { 1676 error = shmem_replace_page(&page, gfp, info, index); 1677 if (error) 1678 goto failed; 1679 } 1680 1681 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1682 false); 1683 if (!error) { 1684 error = shmem_add_to_page_cache(page, mapping, index, 1685 swp_to_radix_entry(swap)); 1686 /* 1687 * We already confirmed swap under page lock, and make 1688 * no memory allocation here, so usually no possibility 1689 * of error; but free_swap_and_cache() only trylocks a 1690 * page, so it is just possible that the entry has been 1691 * truncated or holepunched since swap was confirmed. 1692 * shmem_undo_range() will have done some of the 1693 * unaccounting, now delete_from_swap_cache() will do 1694 * the rest. 1695 * Reset swap.val? No, leave it so "failed" goes back to 1696 * "repeat": reading a hole and writing should succeed. 1697 */ 1698 if (error) { 1699 mem_cgroup_cancel_charge(page, memcg, false); 1700 delete_from_swap_cache(page); 1701 } 1702 } 1703 if (error) 1704 goto failed; 1705 1706 mem_cgroup_commit_charge(page, memcg, true, false); 1707 1708 spin_lock_irq(&info->lock); 1709 info->swapped--; 1710 shmem_recalc_inode(inode); 1711 spin_unlock_irq(&info->lock); 1712 1713 if (sgp == SGP_WRITE) 1714 mark_page_accessed(page); 1715 1716 delete_from_swap_cache(page); 1717 set_page_dirty(page); 1718 swap_free(swap); 1719 1720 } else { 1721 if (vma && userfaultfd_missing(vma)) { 1722 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1723 return 0; 1724 } 1725 1726 /* shmem_symlink() */ 1727 if (mapping->a_ops != &shmem_aops) 1728 goto alloc_nohuge; 1729 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1730 goto alloc_nohuge; 1731 if (shmem_huge == SHMEM_HUGE_FORCE) 1732 goto alloc_huge; 1733 switch (sbinfo->huge) { 1734 loff_t i_size; 1735 pgoff_t off; 1736 case SHMEM_HUGE_NEVER: 1737 goto alloc_nohuge; 1738 case SHMEM_HUGE_WITHIN_SIZE: 1739 off = round_up(index, HPAGE_PMD_NR); 1740 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1741 if (i_size >= HPAGE_PMD_SIZE && 1742 i_size >> PAGE_SHIFT >= off) 1743 goto alloc_huge; 1744 /* fallthrough */ 1745 case SHMEM_HUGE_ADVISE: 1746 if (sgp_huge == SGP_HUGE) 1747 goto alloc_huge; 1748 /* TODO: implement fadvise() hints */ 1749 goto alloc_nohuge; 1750 } 1751 1752 alloc_huge: 1753 page = shmem_alloc_and_acct_page(gfp, info, sbinfo, 1754 index, true); 1755 if (IS_ERR(page)) { 1756 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo, 1757 index, false); 1758 } 1759 if (IS_ERR(page)) { 1760 int retry = 5; 1761 error = PTR_ERR(page); 1762 page = NULL; 1763 if (error != -ENOSPC) 1764 goto failed; 1765 /* 1766 * Try to reclaim some spece by splitting a huge page 1767 * beyond i_size on the filesystem. 1768 */ 1769 while (retry--) { 1770 int ret; 1771 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1772 if (ret == SHRINK_STOP) 1773 break; 1774 if (ret) 1775 goto alloc_nohuge; 1776 } 1777 goto failed; 1778 } 1779 1780 if (PageTransHuge(page)) 1781 hindex = round_down(index, HPAGE_PMD_NR); 1782 else 1783 hindex = index; 1784 1785 if (sgp == SGP_WRITE) 1786 __SetPageReferenced(page); 1787 1788 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1789 PageTransHuge(page)); 1790 if (error) 1791 goto unacct; 1792 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK, 1793 compound_order(page)); 1794 if (!error) { 1795 error = shmem_add_to_page_cache(page, mapping, hindex, 1796 NULL); 1797 radix_tree_preload_end(); 1798 } 1799 if (error) { 1800 mem_cgroup_cancel_charge(page, memcg, 1801 PageTransHuge(page)); 1802 goto unacct; 1803 } 1804 mem_cgroup_commit_charge(page, memcg, false, 1805 PageTransHuge(page)); 1806 lru_cache_add_anon(page); 1807 1808 spin_lock_irq(&info->lock); 1809 info->alloced += 1 << compound_order(page); 1810 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1811 shmem_recalc_inode(inode); 1812 spin_unlock_irq(&info->lock); 1813 alloced = true; 1814 1815 if (PageTransHuge(page) && 1816 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1817 hindex + HPAGE_PMD_NR - 1) { 1818 /* 1819 * Part of the huge page is beyond i_size: subject 1820 * to shrink under memory pressure. 1821 */ 1822 spin_lock(&sbinfo->shrinklist_lock); 1823 /* 1824 * _careful to defend against unlocked access to 1825 * ->shrink_list in shmem_unused_huge_shrink() 1826 */ 1827 if (list_empty_careful(&info->shrinklist)) { 1828 list_add_tail(&info->shrinklist, 1829 &sbinfo->shrinklist); 1830 sbinfo->shrinklist_len++; 1831 } 1832 spin_unlock(&sbinfo->shrinklist_lock); 1833 } 1834 1835 /* 1836 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1837 */ 1838 if (sgp == SGP_FALLOC) 1839 sgp = SGP_WRITE; 1840 clear: 1841 /* 1842 * Let SGP_WRITE caller clear ends if write does not fill page; 1843 * but SGP_FALLOC on a page fallocated earlier must initialize 1844 * it now, lest undo on failure cancel our earlier guarantee. 1845 */ 1846 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1847 struct page *head = compound_head(page); 1848 int i; 1849 1850 for (i = 0; i < (1 << compound_order(head)); i++) { 1851 clear_highpage(head + i); 1852 flush_dcache_page(head + i); 1853 } 1854 SetPageUptodate(head); 1855 } 1856 } 1857 1858 /* Perhaps the file has been truncated since we checked */ 1859 if (sgp <= SGP_CACHE && 1860 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1861 if (alloced) { 1862 ClearPageDirty(page); 1863 delete_from_page_cache(page); 1864 spin_lock_irq(&info->lock); 1865 shmem_recalc_inode(inode); 1866 spin_unlock_irq(&info->lock); 1867 } 1868 error = -EINVAL; 1869 goto unlock; 1870 } 1871 *pagep = page + index - hindex; 1872 return 0; 1873 1874 /* 1875 * Error recovery. 1876 */ 1877 unacct: 1878 if (sbinfo->max_blocks) 1879 percpu_counter_sub(&sbinfo->used_blocks, 1880 1 << compound_order(page)); 1881 shmem_unacct_blocks(info->flags, 1 << compound_order(page)); 1882 1883 if (PageTransHuge(page)) { 1884 unlock_page(page); 1885 put_page(page); 1886 goto alloc_nohuge; 1887 } 1888 failed: 1889 if (swap.val && !shmem_confirm_swap(mapping, index, swap)) 1890 error = -EEXIST; 1891 unlock: 1892 if (page) { 1893 unlock_page(page); 1894 put_page(page); 1895 } 1896 if (error == -ENOSPC && !once++) { 1897 spin_lock_irq(&info->lock); 1898 shmem_recalc_inode(inode); 1899 spin_unlock_irq(&info->lock); 1900 goto repeat; 1901 } 1902 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1903 goto repeat; 1904 return error; 1905 } 1906 1907 /* 1908 * This is like autoremove_wake_function, but it removes the wait queue 1909 * entry unconditionally - even if something else had already woken the 1910 * target. 1911 */ 1912 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1913 { 1914 int ret = default_wake_function(wait, mode, sync, key); 1915 list_del_init(&wait->entry); 1916 return ret; 1917 } 1918 1919 static int shmem_fault(struct vm_fault *vmf) 1920 { 1921 struct vm_area_struct *vma = vmf->vma; 1922 struct inode *inode = file_inode(vma->vm_file); 1923 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1924 enum sgp_type sgp; 1925 int error; 1926 int ret = VM_FAULT_LOCKED; 1927 1928 /* 1929 * Trinity finds that probing a hole which tmpfs is punching can 1930 * prevent the hole-punch from ever completing: which in turn 1931 * locks writers out with its hold on i_mutex. So refrain from 1932 * faulting pages into the hole while it's being punched. Although 1933 * shmem_undo_range() does remove the additions, it may be unable to 1934 * keep up, as each new page needs its own unmap_mapping_range() call, 1935 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1936 * 1937 * It does not matter if we sometimes reach this check just before the 1938 * hole-punch begins, so that one fault then races with the punch: 1939 * we just need to make racing faults a rare case. 1940 * 1941 * The implementation below would be much simpler if we just used a 1942 * standard mutex or completion: but we cannot take i_mutex in fault, 1943 * and bloating every shmem inode for this unlikely case would be sad. 1944 */ 1945 if (unlikely(inode->i_private)) { 1946 struct shmem_falloc *shmem_falloc; 1947 1948 spin_lock(&inode->i_lock); 1949 shmem_falloc = inode->i_private; 1950 if (shmem_falloc && 1951 shmem_falloc->waitq && 1952 vmf->pgoff >= shmem_falloc->start && 1953 vmf->pgoff < shmem_falloc->next) { 1954 wait_queue_head_t *shmem_falloc_waitq; 1955 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 1956 1957 ret = VM_FAULT_NOPAGE; 1958 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1959 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1960 /* It's polite to up mmap_sem if we can */ 1961 up_read(&vma->vm_mm->mmap_sem); 1962 ret = VM_FAULT_RETRY; 1963 } 1964 1965 shmem_falloc_waitq = shmem_falloc->waitq; 1966 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1967 TASK_UNINTERRUPTIBLE); 1968 spin_unlock(&inode->i_lock); 1969 schedule(); 1970 1971 /* 1972 * shmem_falloc_waitq points into the shmem_fallocate() 1973 * stack of the hole-punching task: shmem_falloc_waitq 1974 * is usually invalid by the time we reach here, but 1975 * finish_wait() does not dereference it in that case; 1976 * though i_lock needed lest racing with wake_up_all(). 1977 */ 1978 spin_lock(&inode->i_lock); 1979 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1980 spin_unlock(&inode->i_lock); 1981 return ret; 1982 } 1983 spin_unlock(&inode->i_lock); 1984 } 1985 1986 sgp = SGP_CACHE; 1987 1988 if ((vma->vm_flags & VM_NOHUGEPAGE) || 1989 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 1990 sgp = SGP_NOHUGE; 1991 else if (vma->vm_flags & VM_HUGEPAGE) 1992 sgp = SGP_HUGE; 1993 1994 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 1995 gfp, vma, vmf, &ret); 1996 if (error) 1997 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1998 return ret; 1999 } 2000 2001 unsigned long shmem_get_unmapped_area(struct file *file, 2002 unsigned long uaddr, unsigned long len, 2003 unsigned long pgoff, unsigned long flags) 2004 { 2005 unsigned long (*get_area)(struct file *, 2006 unsigned long, unsigned long, unsigned long, unsigned long); 2007 unsigned long addr; 2008 unsigned long offset; 2009 unsigned long inflated_len; 2010 unsigned long inflated_addr; 2011 unsigned long inflated_offset; 2012 2013 if (len > TASK_SIZE) 2014 return -ENOMEM; 2015 2016 get_area = current->mm->get_unmapped_area; 2017 addr = get_area(file, uaddr, len, pgoff, flags); 2018 2019 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 2020 return addr; 2021 if (IS_ERR_VALUE(addr)) 2022 return addr; 2023 if (addr & ~PAGE_MASK) 2024 return addr; 2025 if (addr > TASK_SIZE - len) 2026 return addr; 2027 2028 if (shmem_huge == SHMEM_HUGE_DENY) 2029 return addr; 2030 if (len < HPAGE_PMD_SIZE) 2031 return addr; 2032 if (flags & MAP_FIXED) 2033 return addr; 2034 /* 2035 * Our priority is to support MAP_SHARED mapped hugely; 2036 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2037 * But if caller specified an address hint, respect that as before. 2038 */ 2039 if (uaddr) 2040 return addr; 2041 2042 if (shmem_huge != SHMEM_HUGE_FORCE) { 2043 struct super_block *sb; 2044 2045 if (file) { 2046 VM_BUG_ON(file->f_op != &shmem_file_operations); 2047 sb = file_inode(file)->i_sb; 2048 } else { 2049 /* 2050 * Called directly from mm/mmap.c, or drivers/char/mem.c 2051 * for "/dev/zero", to create a shared anonymous object. 2052 */ 2053 if (IS_ERR(shm_mnt)) 2054 return addr; 2055 sb = shm_mnt->mnt_sb; 2056 } 2057 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2058 return addr; 2059 } 2060 2061 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2062 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2063 return addr; 2064 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2065 return addr; 2066 2067 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2068 if (inflated_len > TASK_SIZE) 2069 return addr; 2070 if (inflated_len < len) 2071 return addr; 2072 2073 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags); 2074 if (IS_ERR_VALUE(inflated_addr)) 2075 return addr; 2076 if (inflated_addr & ~PAGE_MASK) 2077 return addr; 2078 2079 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2080 inflated_addr += offset - inflated_offset; 2081 if (inflated_offset > offset) 2082 inflated_addr += HPAGE_PMD_SIZE; 2083 2084 if (inflated_addr > TASK_SIZE - len) 2085 return addr; 2086 return inflated_addr; 2087 } 2088 2089 #ifdef CONFIG_NUMA 2090 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2091 { 2092 struct inode *inode = file_inode(vma->vm_file); 2093 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2094 } 2095 2096 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2097 unsigned long addr) 2098 { 2099 struct inode *inode = file_inode(vma->vm_file); 2100 pgoff_t index; 2101 2102 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2103 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2104 } 2105 #endif 2106 2107 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2108 { 2109 struct inode *inode = file_inode(file); 2110 struct shmem_inode_info *info = SHMEM_I(inode); 2111 int retval = -ENOMEM; 2112 2113 spin_lock_irq(&info->lock); 2114 if (lock && !(info->flags & VM_LOCKED)) { 2115 if (!user_shm_lock(inode->i_size, user)) 2116 goto out_nomem; 2117 info->flags |= VM_LOCKED; 2118 mapping_set_unevictable(file->f_mapping); 2119 } 2120 if (!lock && (info->flags & VM_LOCKED) && user) { 2121 user_shm_unlock(inode->i_size, user); 2122 info->flags &= ~VM_LOCKED; 2123 mapping_clear_unevictable(file->f_mapping); 2124 } 2125 retval = 0; 2126 2127 out_nomem: 2128 spin_unlock_irq(&info->lock); 2129 return retval; 2130 } 2131 2132 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2133 { 2134 file_accessed(file); 2135 vma->vm_ops = &shmem_vm_ops; 2136 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 2137 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2138 (vma->vm_end & HPAGE_PMD_MASK)) { 2139 khugepaged_enter(vma, vma->vm_flags); 2140 } 2141 return 0; 2142 } 2143 2144 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2145 umode_t mode, dev_t dev, unsigned long flags) 2146 { 2147 struct inode *inode; 2148 struct shmem_inode_info *info; 2149 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2150 2151 if (shmem_reserve_inode(sb)) 2152 return NULL; 2153 2154 inode = new_inode(sb); 2155 if (inode) { 2156 inode->i_ino = get_next_ino(); 2157 inode_init_owner(inode, dir, mode); 2158 inode->i_blocks = 0; 2159 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2160 inode->i_generation = get_seconds(); 2161 info = SHMEM_I(inode); 2162 memset(info, 0, (char *)inode - (char *)info); 2163 spin_lock_init(&info->lock); 2164 info->seals = F_SEAL_SEAL; 2165 info->flags = flags & VM_NORESERVE; 2166 INIT_LIST_HEAD(&info->shrinklist); 2167 INIT_LIST_HEAD(&info->swaplist); 2168 simple_xattrs_init(&info->xattrs); 2169 cache_no_acl(inode); 2170 2171 switch (mode & S_IFMT) { 2172 default: 2173 inode->i_op = &shmem_special_inode_operations; 2174 init_special_inode(inode, mode, dev); 2175 break; 2176 case S_IFREG: 2177 inode->i_mapping->a_ops = &shmem_aops; 2178 inode->i_op = &shmem_inode_operations; 2179 inode->i_fop = &shmem_file_operations; 2180 mpol_shared_policy_init(&info->policy, 2181 shmem_get_sbmpol(sbinfo)); 2182 break; 2183 case S_IFDIR: 2184 inc_nlink(inode); 2185 /* Some things misbehave if size == 0 on a directory */ 2186 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2187 inode->i_op = &shmem_dir_inode_operations; 2188 inode->i_fop = &simple_dir_operations; 2189 break; 2190 case S_IFLNK: 2191 /* 2192 * Must not load anything in the rbtree, 2193 * mpol_free_shared_policy will not be called. 2194 */ 2195 mpol_shared_policy_init(&info->policy, NULL); 2196 break; 2197 } 2198 } else 2199 shmem_free_inode(sb); 2200 return inode; 2201 } 2202 2203 bool shmem_mapping(struct address_space *mapping) 2204 { 2205 return mapping->a_ops == &shmem_aops; 2206 } 2207 2208 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2209 pmd_t *dst_pmd, 2210 struct vm_area_struct *dst_vma, 2211 unsigned long dst_addr, 2212 unsigned long src_addr, 2213 struct page **pagep) 2214 { 2215 struct inode *inode = file_inode(dst_vma->vm_file); 2216 struct shmem_inode_info *info = SHMEM_I(inode); 2217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2218 struct address_space *mapping = inode->i_mapping; 2219 gfp_t gfp = mapping_gfp_mask(mapping); 2220 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2221 struct mem_cgroup *memcg; 2222 spinlock_t *ptl; 2223 void *page_kaddr; 2224 struct page *page; 2225 pte_t _dst_pte, *dst_pte; 2226 int ret; 2227 2228 ret = -ENOMEM; 2229 if (shmem_acct_block(info->flags, 1)) 2230 goto out; 2231 if (sbinfo->max_blocks) { 2232 if (percpu_counter_compare(&sbinfo->used_blocks, 2233 sbinfo->max_blocks) >= 0) 2234 goto out_unacct_blocks; 2235 percpu_counter_inc(&sbinfo->used_blocks); 2236 } 2237 2238 if (!*pagep) { 2239 page = shmem_alloc_page(gfp, info, pgoff); 2240 if (!page) 2241 goto out_dec_used_blocks; 2242 2243 page_kaddr = kmap_atomic(page); 2244 ret = copy_from_user(page_kaddr, (const void __user *)src_addr, 2245 PAGE_SIZE); 2246 kunmap_atomic(page_kaddr); 2247 2248 /* fallback to copy_from_user outside mmap_sem */ 2249 if (unlikely(ret)) { 2250 *pagep = page; 2251 if (sbinfo->max_blocks) 2252 percpu_counter_add(&sbinfo->used_blocks, -1); 2253 shmem_unacct_blocks(info->flags, 1); 2254 /* don't free the page */ 2255 return -EFAULT; 2256 } 2257 } else { 2258 page = *pagep; 2259 *pagep = NULL; 2260 } 2261 2262 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2263 __SetPageLocked(page); 2264 __SetPageSwapBacked(page); 2265 __SetPageUptodate(page); 2266 2267 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false); 2268 if (ret) 2269 goto out_release; 2270 2271 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 2272 if (!ret) { 2273 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL); 2274 radix_tree_preload_end(); 2275 } 2276 if (ret) 2277 goto out_release_uncharge; 2278 2279 mem_cgroup_commit_charge(page, memcg, false, false); 2280 2281 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2282 if (dst_vma->vm_flags & VM_WRITE) 2283 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2284 2285 ret = -EEXIST; 2286 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2287 if (!pte_none(*dst_pte)) 2288 goto out_release_uncharge_unlock; 2289 2290 lru_cache_add_anon(page); 2291 2292 spin_lock(&info->lock); 2293 info->alloced++; 2294 inode->i_blocks += BLOCKS_PER_PAGE; 2295 shmem_recalc_inode(inode); 2296 spin_unlock(&info->lock); 2297 2298 inc_mm_counter(dst_mm, mm_counter_file(page)); 2299 page_add_file_rmap(page, false); 2300 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2301 2302 /* No need to invalidate - it was non-present before */ 2303 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2304 unlock_page(page); 2305 pte_unmap_unlock(dst_pte, ptl); 2306 ret = 0; 2307 out: 2308 return ret; 2309 out_release_uncharge_unlock: 2310 pte_unmap_unlock(dst_pte, ptl); 2311 out_release_uncharge: 2312 mem_cgroup_cancel_charge(page, memcg, false); 2313 out_release: 2314 unlock_page(page); 2315 put_page(page); 2316 out_dec_used_blocks: 2317 if (sbinfo->max_blocks) 2318 percpu_counter_add(&sbinfo->used_blocks, -1); 2319 out_unacct_blocks: 2320 shmem_unacct_blocks(info->flags, 1); 2321 goto out; 2322 } 2323 2324 #ifdef CONFIG_TMPFS 2325 static const struct inode_operations shmem_symlink_inode_operations; 2326 static const struct inode_operations shmem_short_symlink_operations; 2327 2328 #ifdef CONFIG_TMPFS_XATTR 2329 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2330 #else 2331 #define shmem_initxattrs NULL 2332 #endif 2333 2334 static int 2335 shmem_write_begin(struct file *file, struct address_space *mapping, 2336 loff_t pos, unsigned len, unsigned flags, 2337 struct page **pagep, void **fsdata) 2338 { 2339 struct inode *inode = mapping->host; 2340 struct shmem_inode_info *info = SHMEM_I(inode); 2341 pgoff_t index = pos >> PAGE_SHIFT; 2342 2343 /* i_mutex is held by caller */ 2344 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) { 2345 if (info->seals & F_SEAL_WRITE) 2346 return -EPERM; 2347 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2348 return -EPERM; 2349 } 2350 2351 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2352 } 2353 2354 static int 2355 shmem_write_end(struct file *file, struct address_space *mapping, 2356 loff_t pos, unsigned len, unsigned copied, 2357 struct page *page, void *fsdata) 2358 { 2359 struct inode *inode = mapping->host; 2360 2361 if (pos + copied > inode->i_size) 2362 i_size_write(inode, pos + copied); 2363 2364 if (!PageUptodate(page)) { 2365 struct page *head = compound_head(page); 2366 if (PageTransCompound(page)) { 2367 int i; 2368 2369 for (i = 0; i < HPAGE_PMD_NR; i++) { 2370 if (head + i == page) 2371 continue; 2372 clear_highpage(head + i); 2373 flush_dcache_page(head + i); 2374 } 2375 } 2376 if (copied < PAGE_SIZE) { 2377 unsigned from = pos & (PAGE_SIZE - 1); 2378 zero_user_segments(page, 0, from, 2379 from + copied, PAGE_SIZE); 2380 } 2381 SetPageUptodate(head); 2382 } 2383 set_page_dirty(page); 2384 unlock_page(page); 2385 put_page(page); 2386 2387 return copied; 2388 } 2389 2390 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2391 { 2392 struct file *file = iocb->ki_filp; 2393 struct inode *inode = file_inode(file); 2394 struct address_space *mapping = inode->i_mapping; 2395 pgoff_t index; 2396 unsigned long offset; 2397 enum sgp_type sgp = SGP_READ; 2398 int error = 0; 2399 ssize_t retval = 0; 2400 loff_t *ppos = &iocb->ki_pos; 2401 2402 /* 2403 * Might this read be for a stacking filesystem? Then when reading 2404 * holes of a sparse file, we actually need to allocate those pages, 2405 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2406 */ 2407 if (!iter_is_iovec(to)) 2408 sgp = SGP_CACHE; 2409 2410 index = *ppos >> PAGE_SHIFT; 2411 offset = *ppos & ~PAGE_MASK; 2412 2413 for (;;) { 2414 struct page *page = NULL; 2415 pgoff_t end_index; 2416 unsigned long nr, ret; 2417 loff_t i_size = i_size_read(inode); 2418 2419 end_index = i_size >> PAGE_SHIFT; 2420 if (index > end_index) 2421 break; 2422 if (index == end_index) { 2423 nr = i_size & ~PAGE_MASK; 2424 if (nr <= offset) 2425 break; 2426 } 2427 2428 error = shmem_getpage(inode, index, &page, sgp); 2429 if (error) { 2430 if (error == -EINVAL) 2431 error = 0; 2432 break; 2433 } 2434 if (page) { 2435 if (sgp == SGP_CACHE) 2436 set_page_dirty(page); 2437 unlock_page(page); 2438 } 2439 2440 /* 2441 * We must evaluate after, since reads (unlike writes) 2442 * are called without i_mutex protection against truncate 2443 */ 2444 nr = PAGE_SIZE; 2445 i_size = i_size_read(inode); 2446 end_index = i_size >> PAGE_SHIFT; 2447 if (index == end_index) { 2448 nr = i_size & ~PAGE_MASK; 2449 if (nr <= offset) { 2450 if (page) 2451 put_page(page); 2452 break; 2453 } 2454 } 2455 nr -= offset; 2456 2457 if (page) { 2458 /* 2459 * If users can be writing to this page using arbitrary 2460 * virtual addresses, take care about potential aliasing 2461 * before reading the page on the kernel side. 2462 */ 2463 if (mapping_writably_mapped(mapping)) 2464 flush_dcache_page(page); 2465 /* 2466 * Mark the page accessed if we read the beginning. 2467 */ 2468 if (!offset) 2469 mark_page_accessed(page); 2470 } else { 2471 page = ZERO_PAGE(0); 2472 get_page(page); 2473 } 2474 2475 /* 2476 * Ok, we have the page, and it's up-to-date, so 2477 * now we can copy it to user space... 2478 */ 2479 ret = copy_page_to_iter(page, offset, nr, to); 2480 retval += ret; 2481 offset += ret; 2482 index += offset >> PAGE_SHIFT; 2483 offset &= ~PAGE_MASK; 2484 2485 put_page(page); 2486 if (!iov_iter_count(to)) 2487 break; 2488 if (ret < nr) { 2489 error = -EFAULT; 2490 break; 2491 } 2492 cond_resched(); 2493 } 2494 2495 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2496 file_accessed(file); 2497 return retval ? retval : error; 2498 } 2499 2500 /* 2501 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 2502 */ 2503 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2504 pgoff_t index, pgoff_t end, int whence) 2505 { 2506 struct page *page; 2507 struct pagevec pvec; 2508 pgoff_t indices[PAGEVEC_SIZE]; 2509 bool done = false; 2510 int i; 2511 2512 pagevec_init(&pvec, 0); 2513 pvec.nr = 1; /* start small: we may be there already */ 2514 while (!done) { 2515 pvec.nr = find_get_entries(mapping, index, 2516 pvec.nr, pvec.pages, indices); 2517 if (!pvec.nr) { 2518 if (whence == SEEK_DATA) 2519 index = end; 2520 break; 2521 } 2522 for (i = 0; i < pvec.nr; i++, index++) { 2523 if (index < indices[i]) { 2524 if (whence == SEEK_HOLE) { 2525 done = true; 2526 break; 2527 } 2528 index = indices[i]; 2529 } 2530 page = pvec.pages[i]; 2531 if (page && !radix_tree_exceptional_entry(page)) { 2532 if (!PageUptodate(page)) 2533 page = NULL; 2534 } 2535 if (index >= end || 2536 (page && whence == SEEK_DATA) || 2537 (!page && whence == SEEK_HOLE)) { 2538 done = true; 2539 break; 2540 } 2541 } 2542 pagevec_remove_exceptionals(&pvec); 2543 pagevec_release(&pvec); 2544 pvec.nr = PAGEVEC_SIZE; 2545 cond_resched(); 2546 } 2547 return index; 2548 } 2549 2550 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2551 { 2552 struct address_space *mapping = file->f_mapping; 2553 struct inode *inode = mapping->host; 2554 pgoff_t start, end; 2555 loff_t new_offset; 2556 2557 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2558 return generic_file_llseek_size(file, offset, whence, 2559 MAX_LFS_FILESIZE, i_size_read(inode)); 2560 inode_lock(inode); 2561 /* We're holding i_mutex so we can access i_size directly */ 2562 2563 if (offset < 0) 2564 offset = -EINVAL; 2565 else if (offset >= inode->i_size) 2566 offset = -ENXIO; 2567 else { 2568 start = offset >> PAGE_SHIFT; 2569 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2570 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2571 new_offset <<= PAGE_SHIFT; 2572 if (new_offset > offset) { 2573 if (new_offset < inode->i_size) 2574 offset = new_offset; 2575 else if (whence == SEEK_DATA) 2576 offset = -ENXIO; 2577 else 2578 offset = inode->i_size; 2579 } 2580 } 2581 2582 if (offset >= 0) 2583 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2584 inode_unlock(inode); 2585 return offset; 2586 } 2587 2588 /* 2589 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 2590 * so reuse a tag which we firmly believe is never set or cleared on shmem. 2591 */ 2592 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 2593 #define LAST_SCAN 4 /* about 150ms max */ 2594 2595 static void shmem_tag_pins(struct address_space *mapping) 2596 { 2597 struct radix_tree_iter iter; 2598 void **slot; 2599 pgoff_t start; 2600 struct page *page; 2601 2602 lru_add_drain(); 2603 start = 0; 2604 rcu_read_lock(); 2605 2606 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 2607 page = radix_tree_deref_slot(slot); 2608 if (!page || radix_tree_exception(page)) { 2609 if (radix_tree_deref_retry(page)) { 2610 slot = radix_tree_iter_retry(&iter); 2611 continue; 2612 } 2613 } else if (page_count(page) - page_mapcount(page) > 1) { 2614 spin_lock_irq(&mapping->tree_lock); 2615 radix_tree_tag_set(&mapping->page_tree, iter.index, 2616 SHMEM_TAG_PINNED); 2617 spin_unlock_irq(&mapping->tree_lock); 2618 } 2619 2620 if (need_resched()) { 2621 slot = radix_tree_iter_resume(slot, &iter); 2622 cond_resched_rcu(); 2623 } 2624 } 2625 rcu_read_unlock(); 2626 } 2627 2628 /* 2629 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 2630 * via get_user_pages(), drivers might have some pending I/O without any active 2631 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 2632 * and see whether it has an elevated ref-count. If so, we tag them and wait for 2633 * them to be dropped. 2634 * The caller must guarantee that no new user will acquire writable references 2635 * to those pages to avoid races. 2636 */ 2637 static int shmem_wait_for_pins(struct address_space *mapping) 2638 { 2639 struct radix_tree_iter iter; 2640 void **slot; 2641 pgoff_t start; 2642 struct page *page; 2643 int error, scan; 2644 2645 shmem_tag_pins(mapping); 2646 2647 error = 0; 2648 for (scan = 0; scan <= LAST_SCAN; scan++) { 2649 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) 2650 break; 2651 2652 if (!scan) 2653 lru_add_drain_all(); 2654 else if (schedule_timeout_killable((HZ << scan) / 200)) 2655 scan = LAST_SCAN; 2656 2657 start = 0; 2658 rcu_read_lock(); 2659 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 2660 start, SHMEM_TAG_PINNED) { 2661 2662 page = radix_tree_deref_slot(slot); 2663 if (radix_tree_exception(page)) { 2664 if (radix_tree_deref_retry(page)) { 2665 slot = radix_tree_iter_retry(&iter); 2666 continue; 2667 } 2668 2669 page = NULL; 2670 } 2671 2672 if (page && 2673 page_count(page) - page_mapcount(page) != 1) { 2674 if (scan < LAST_SCAN) 2675 goto continue_resched; 2676 2677 /* 2678 * On the last scan, we clean up all those tags 2679 * we inserted; but make a note that we still 2680 * found pages pinned. 2681 */ 2682 error = -EBUSY; 2683 } 2684 2685 spin_lock_irq(&mapping->tree_lock); 2686 radix_tree_tag_clear(&mapping->page_tree, 2687 iter.index, SHMEM_TAG_PINNED); 2688 spin_unlock_irq(&mapping->tree_lock); 2689 continue_resched: 2690 if (need_resched()) { 2691 slot = radix_tree_iter_resume(slot, &iter); 2692 cond_resched_rcu(); 2693 } 2694 } 2695 rcu_read_unlock(); 2696 } 2697 2698 return error; 2699 } 2700 2701 #define F_ALL_SEALS (F_SEAL_SEAL | \ 2702 F_SEAL_SHRINK | \ 2703 F_SEAL_GROW | \ 2704 F_SEAL_WRITE) 2705 2706 int shmem_add_seals(struct file *file, unsigned int seals) 2707 { 2708 struct inode *inode = file_inode(file); 2709 struct shmem_inode_info *info = SHMEM_I(inode); 2710 int error; 2711 2712 /* 2713 * SEALING 2714 * Sealing allows multiple parties to share a shmem-file but restrict 2715 * access to a specific subset of file operations. Seals can only be 2716 * added, but never removed. This way, mutually untrusted parties can 2717 * share common memory regions with a well-defined policy. A malicious 2718 * peer can thus never perform unwanted operations on a shared object. 2719 * 2720 * Seals are only supported on special shmem-files and always affect 2721 * the whole underlying inode. Once a seal is set, it may prevent some 2722 * kinds of access to the file. Currently, the following seals are 2723 * defined: 2724 * SEAL_SEAL: Prevent further seals from being set on this file 2725 * SEAL_SHRINK: Prevent the file from shrinking 2726 * SEAL_GROW: Prevent the file from growing 2727 * SEAL_WRITE: Prevent write access to the file 2728 * 2729 * As we don't require any trust relationship between two parties, we 2730 * must prevent seals from being removed. Therefore, sealing a file 2731 * only adds a given set of seals to the file, it never touches 2732 * existing seals. Furthermore, the "setting seals"-operation can be 2733 * sealed itself, which basically prevents any further seal from being 2734 * added. 2735 * 2736 * Semantics of sealing are only defined on volatile files. Only 2737 * anonymous shmem files support sealing. More importantly, seals are 2738 * never written to disk. Therefore, there's no plan to support it on 2739 * other file types. 2740 */ 2741 2742 if (file->f_op != &shmem_file_operations) 2743 return -EINVAL; 2744 if (!(file->f_mode & FMODE_WRITE)) 2745 return -EPERM; 2746 if (seals & ~(unsigned int)F_ALL_SEALS) 2747 return -EINVAL; 2748 2749 inode_lock(inode); 2750 2751 if (info->seals & F_SEAL_SEAL) { 2752 error = -EPERM; 2753 goto unlock; 2754 } 2755 2756 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) { 2757 error = mapping_deny_writable(file->f_mapping); 2758 if (error) 2759 goto unlock; 2760 2761 error = shmem_wait_for_pins(file->f_mapping); 2762 if (error) { 2763 mapping_allow_writable(file->f_mapping); 2764 goto unlock; 2765 } 2766 } 2767 2768 info->seals |= seals; 2769 error = 0; 2770 2771 unlock: 2772 inode_unlock(inode); 2773 return error; 2774 } 2775 EXPORT_SYMBOL_GPL(shmem_add_seals); 2776 2777 int shmem_get_seals(struct file *file) 2778 { 2779 if (file->f_op != &shmem_file_operations) 2780 return -EINVAL; 2781 2782 return SHMEM_I(file_inode(file))->seals; 2783 } 2784 EXPORT_SYMBOL_GPL(shmem_get_seals); 2785 2786 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2787 { 2788 long error; 2789 2790 switch (cmd) { 2791 case F_ADD_SEALS: 2792 /* disallow upper 32bit */ 2793 if (arg > UINT_MAX) 2794 return -EINVAL; 2795 2796 error = shmem_add_seals(file, arg); 2797 break; 2798 case F_GET_SEALS: 2799 error = shmem_get_seals(file); 2800 break; 2801 default: 2802 error = -EINVAL; 2803 break; 2804 } 2805 2806 return error; 2807 } 2808 2809 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2810 loff_t len) 2811 { 2812 struct inode *inode = file_inode(file); 2813 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2814 struct shmem_inode_info *info = SHMEM_I(inode); 2815 struct shmem_falloc shmem_falloc; 2816 pgoff_t start, index, end; 2817 int error; 2818 2819 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2820 return -EOPNOTSUPP; 2821 2822 inode_lock(inode); 2823 2824 if (mode & FALLOC_FL_PUNCH_HOLE) { 2825 struct address_space *mapping = file->f_mapping; 2826 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2827 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2828 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2829 2830 /* protected by i_mutex */ 2831 if (info->seals & F_SEAL_WRITE) { 2832 error = -EPERM; 2833 goto out; 2834 } 2835 2836 shmem_falloc.waitq = &shmem_falloc_waitq; 2837 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2838 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2839 spin_lock(&inode->i_lock); 2840 inode->i_private = &shmem_falloc; 2841 spin_unlock(&inode->i_lock); 2842 2843 if ((u64)unmap_end > (u64)unmap_start) 2844 unmap_mapping_range(mapping, unmap_start, 2845 1 + unmap_end - unmap_start, 0); 2846 shmem_truncate_range(inode, offset, offset + len - 1); 2847 /* No need to unmap again: hole-punching leaves COWed pages */ 2848 2849 spin_lock(&inode->i_lock); 2850 inode->i_private = NULL; 2851 wake_up_all(&shmem_falloc_waitq); 2852 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2853 spin_unlock(&inode->i_lock); 2854 error = 0; 2855 goto out; 2856 } 2857 2858 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2859 error = inode_newsize_ok(inode, offset + len); 2860 if (error) 2861 goto out; 2862 2863 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2864 error = -EPERM; 2865 goto out; 2866 } 2867 2868 start = offset >> PAGE_SHIFT; 2869 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2870 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2871 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2872 error = -ENOSPC; 2873 goto out; 2874 } 2875 2876 shmem_falloc.waitq = NULL; 2877 shmem_falloc.start = start; 2878 shmem_falloc.next = start; 2879 shmem_falloc.nr_falloced = 0; 2880 shmem_falloc.nr_unswapped = 0; 2881 spin_lock(&inode->i_lock); 2882 inode->i_private = &shmem_falloc; 2883 spin_unlock(&inode->i_lock); 2884 2885 for (index = start; index < end; index++) { 2886 struct page *page; 2887 2888 /* 2889 * Good, the fallocate(2) manpage permits EINTR: we may have 2890 * been interrupted because we are using up too much memory. 2891 */ 2892 if (signal_pending(current)) 2893 error = -EINTR; 2894 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2895 error = -ENOMEM; 2896 else 2897 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2898 if (error) { 2899 /* Remove the !PageUptodate pages we added */ 2900 if (index > start) { 2901 shmem_undo_range(inode, 2902 (loff_t)start << PAGE_SHIFT, 2903 ((loff_t)index << PAGE_SHIFT) - 1, true); 2904 } 2905 goto undone; 2906 } 2907 2908 /* 2909 * Inform shmem_writepage() how far we have reached. 2910 * No need for lock or barrier: we have the page lock. 2911 */ 2912 shmem_falloc.next++; 2913 if (!PageUptodate(page)) 2914 shmem_falloc.nr_falloced++; 2915 2916 /* 2917 * If !PageUptodate, leave it that way so that freeable pages 2918 * can be recognized if we need to rollback on error later. 2919 * But set_page_dirty so that memory pressure will swap rather 2920 * than free the pages we are allocating (and SGP_CACHE pages 2921 * might still be clean: we now need to mark those dirty too). 2922 */ 2923 set_page_dirty(page); 2924 unlock_page(page); 2925 put_page(page); 2926 cond_resched(); 2927 } 2928 2929 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2930 i_size_write(inode, offset + len); 2931 inode->i_ctime = current_time(inode); 2932 undone: 2933 spin_lock(&inode->i_lock); 2934 inode->i_private = NULL; 2935 spin_unlock(&inode->i_lock); 2936 out: 2937 inode_unlock(inode); 2938 return error; 2939 } 2940 2941 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2942 { 2943 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2944 2945 buf->f_type = TMPFS_MAGIC; 2946 buf->f_bsize = PAGE_SIZE; 2947 buf->f_namelen = NAME_MAX; 2948 if (sbinfo->max_blocks) { 2949 buf->f_blocks = sbinfo->max_blocks; 2950 buf->f_bavail = 2951 buf->f_bfree = sbinfo->max_blocks - 2952 percpu_counter_sum(&sbinfo->used_blocks); 2953 } 2954 if (sbinfo->max_inodes) { 2955 buf->f_files = sbinfo->max_inodes; 2956 buf->f_ffree = sbinfo->free_inodes; 2957 } 2958 /* else leave those fields 0 like simple_statfs */ 2959 return 0; 2960 } 2961 2962 /* 2963 * File creation. Allocate an inode, and we're done.. 2964 */ 2965 static int 2966 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2967 { 2968 struct inode *inode; 2969 int error = -ENOSPC; 2970 2971 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2972 if (inode) { 2973 error = simple_acl_create(dir, inode); 2974 if (error) 2975 goto out_iput; 2976 error = security_inode_init_security(inode, dir, 2977 &dentry->d_name, 2978 shmem_initxattrs, NULL); 2979 if (error && error != -EOPNOTSUPP) 2980 goto out_iput; 2981 2982 error = 0; 2983 dir->i_size += BOGO_DIRENT_SIZE; 2984 dir->i_ctime = dir->i_mtime = current_time(dir); 2985 d_instantiate(dentry, inode); 2986 dget(dentry); /* Extra count - pin the dentry in core */ 2987 } 2988 return error; 2989 out_iput: 2990 iput(inode); 2991 return error; 2992 } 2993 2994 static int 2995 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2996 { 2997 struct inode *inode; 2998 int error = -ENOSPC; 2999 3000 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 3001 if (inode) { 3002 error = security_inode_init_security(inode, dir, 3003 NULL, 3004 shmem_initxattrs, NULL); 3005 if (error && error != -EOPNOTSUPP) 3006 goto out_iput; 3007 error = simple_acl_create(dir, inode); 3008 if (error) 3009 goto out_iput; 3010 d_tmpfile(dentry, inode); 3011 } 3012 return error; 3013 out_iput: 3014 iput(inode); 3015 return error; 3016 } 3017 3018 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3019 { 3020 int error; 3021 3022 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 3023 return error; 3024 inc_nlink(dir); 3025 return 0; 3026 } 3027 3028 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 3029 bool excl) 3030 { 3031 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 3032 } 3033 3034 /* 3035 * Link a file.. 3036 */ 3037 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 3038 { 3039 struct inode *inode = d_inode(old_dentry); 3040 int ret; 3041 3042 /* 3043 * No ordinary (disk based) filesystem counts links as inodes; 3044 * but each new link needs a new dentry, pinning lowmem, and 3045 * tmpfs dentries cannot be pruned until they are unlinked. 3046 */ 3047 ret = shmem_reserve_inode(inode->i_sb); 3048 if (ret) 3049 goto out; 3050 3051 dir->i_size += BOGO_DIRENT_SIZE; 3052 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3053 inc_nlink(inode); 3054 ihold(inode); /* New dentry reference */ 3055 dget(dentry); /* Extra pinning count for the created dentry */ 3056 d_instantiate(dentry, inode); 3057 out: 3058 return ret; 3059 } 3060 3061 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3062 { 3063 struct inode *inode = d_inode(dentry); 3064 3065 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3066 shmem_free_inode(inode->i_sb); 3067 3068 dir->i_size -= BOGO_DIRENT_SIZE; 3069 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3070 drop_nlink(inode); 3071 dput(dentry); /* Undo the count from "create" - this does all the work */ 3072 return 0; 3073 } 3074 3075 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3076 { 3077 if (!simple_empty(dentry)) 3078 return -ENOTEMPTY; 3079 3080 drop_nlink(d_inode(dentry)); 3081 drop_nlink(dir); 3082 return shmem_unlink(dir, dentry); 3083 } 3084 3085 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 3086 { 3087 bool old_is_dir = d_is_dir(old_dentry); 3088 bool new_is_dir = d_is_dir(new_dentry); 3089 3090 if (old_dir != new_dir && old_is_dir != new_is_dir) { 3091 if (old_is_dir) { 3092 drop_nlink(old_dir); 3093 inc_nlink(new_dir); 3094 } else { 3095 drop_nlink(new_dir); 3096 inc_nlink(old_dir); 3097 } 3098 } 3099 old_dir->i_ctime = old_dir->i_mtime = 3100 new_dir->i_ctime = new_dir->i_mtime = 3101 d_inode(old_dentry)->i_ctime = 3102 d_inode(new_dentry)->i_ctime = current_time(old_dir); 3103 3104 return 0; 3105 } 3106 3107 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 3108 { 3109 struct dentry *whiteout; 3110 int error; 3111 3112 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3113 if (!whiteout) 3114 return -ENOMEM; 3115 3116 error = shmem_mknod(old_dir, whiteout, 3117 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3118 dput(whiteout); 3119 if (error) 3120 return error; 3121 3122 /* 3123 * Cheat and hash the whiteout while the old dentry is still in 3124 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3125 * 3126 * d_lookup() will consistently find one of them at this point, 3127 * not sure which one, but that isn't even important. 3128 */ 3129 d_rehash(whiteout); 3130 return 0; 3131 } 3132 3133 /* 3134 * The VFS layer already does all the dentry stuff for rename, 3135 * we just have to decrement the usage count for the target if 3136 * it exists so that the VFS layer correctly free's it when it 3137 * gets overwritten. 3138 */ 3139 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3140 { 3141 struct inode *inode = d_inode(old_dentry); 3142 int they_are_dirs = S_ISDIR(inode->i_mode); 3143 3144 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3145 return -EINVAL; 3146 3147 if (flags & RENAME_EXCHANGE) 3148 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3149 3150 if (!simple_empty(new_dentry)) 3151 return -ENOTEMPTY; 3152 3153 if (flags & RENAME_WHITEOUT) { 3154 int error; 3155 3156 error = shmem_whiteout(old_dir, old_dentry); 3157 if (error) 3158 return error; 3159 } 3160 3161 if (d_really_is_positive(new_dentry)) { 3162 (void) shmem_unlink(new_dir, new_dentry); 3163 if (they_are_dirs) { 3164 drop_nlink(d_inode(new_dentry)); 3165 drop_nlink(old_dir); 3166 } 3167 } else if (they_are_dirs) { 3168 drop_nlink(old_dir); 3169 inc_nlink(new_dir); 3170 } 3171 3172 old_dir->i_size -= BOGO_DIRENT_SIZE; 3173 new_dir->i_size += BOGO_DIRENT_SIZE; 3174 old_dir->i_ctime = old_dir->i_mtime = 3175 new_dir->i_ctime = new_dir->i_mtime = 3176 inode->i_ctime = current_time(old_dir); 3177 return 0; 3178 } 3179 3180 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3181 { 3182 int error; 3183 int len; 3184 struct inode *inode; 3185 struct page *page; 3186 struct shmem_inode_info *info; 3187 3188 len = strlen(symname) + 1; 3189 if (len > PAGE_SIZE) 3190 return -ENAMETOOLONG; 3191 3192 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 3193 if (!inode) 3194 return -ENOSPC; 3195 3196 error = security_inode_init_security(inode, dir, &dentry->d_name, 3197 shmem_initxattrs, NULL); 3198 if (error) { 3199 if (error != -EOPNOTSUPP) { 3200 iput(inode); 3201 return error; 3202 } 3203 error = 0; 3204 } 3205 3206 info = SHMEM_I(inode); 3207 inode->i_size = len-1; 3208 if (len <= SHORT_SYMLINK_LEN) { 3209 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3210 if (!inode->i_link) { 3211 iput(inode); 3212 return -ENOMEM; 3213 } 3214 inode->i_op = &shmem_short_symlink_operations; 3215 } else { 3216 inode_nohighmem(inode); 3217 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3218 if (error) { 3219 iput(inode); 3220 return error; 3221 } 3222 inode->i_mapping->a_ops = &shmem_aops; 3223 inode->i_op = &shmem_symlink_inode_operations; 3224 memcpy(page_address(page), symname, len); 3225 SetPageUptodate(page); 3226 set_page_dirty(page); 3227 unlock_page(page); 3228 put_page(page); 3229 } 3230 dir->i_size += BOGO_DIRENT_SIZE; 3231 dir->i_ctime = dir->i_mtime = current_time(dir); 3232 d_instantiate(dentry, inode); 3233 dget(dentry); 3234 return 0; 3235 } 3236 3237 static void shmem_put_link(void *arg) 3238 { 3239 mark_page_accessed(arg); 3240 put_page(arg); 3241 } 3242 3243 static const char *shmem_get_link(struct dentry *dentry, 3244 struct inode *inode, 3245 struct delayed_call *done) 3246 { 3247 struct page *page = NULL; 3248 int error; 3249 if (!dentry) { 3250 page = find_get_page(inode->i_mapping, 0); 3251 if (!page) 3252 return ERR_PTR(-ECHILD); 3253 if (!PageUptodate(page)) { 3254 put_page(page); 3255 return ERR_PTR(-ECHILD); 3256 } 3257 } else { 3258 error = shmem_getpage(inode, 0, &page, SGP_READ); 3259 if (error) 3260 return ERR_PTR(error); 3261 unlock_page(page); 3262 } 3263 set_delayed_call(done, shmem_put_link, page); 3264 return page_address(page); 3265 } 3266 3267 #ifdef CONFIG_TMPFS_XATTR 3268 /* 3269 * Superblocks without xattr inode operations may get some security.* xattr 3270 * support from the LSM "for free". As soon as we have any other xattrs 3271 * like ACLs, we also need to implement the security.* handlers at 3272 * filesystem level, though. 3273 */ 3274 3275 /* 3276 * Callback for security_inode_init_security() for acquiring xattrs. 3277 */ 3278 static int shmem_initxattrs(struct inode *inode, 3279 const struct xattr *xattr_array, 3280 void *fs_info) 3281 { 3282 struct shmem_inode_info *info = SHMEM_I(inode); 3283 const struct xattr *xattr; 3284 struct simple_xattr *new_xattr; 3285 size_t len; 3286 3287 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3288 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3289 if (!new_xattr) 3290 return -ENOMEM; 3291 3292 len = strlen(xattr->name) + 1; 3293 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3294 GFP_KERNEL); 3295 if (!new_xattr->name) { 3296 kfree(new_xattr); 3297 return -ENOMEM; 3298 } 3299 3300 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3301 XATTR_SECURITY_PREFIX_LEN); 3302 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3303 xattr->name, len); 3304 3305 simple_xattr_list_add(&info->xattrs, new_xattr); 3306 } 3307 3308 return 0; 3309 } 3310 3311 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3312 struct dentry *unused, struct inode *inode, 3313 const char *name, void *buffer, size_t size) 3314 { 3315 struct shmem_inode_info *info = SHMEM_I(inode); 3316 3317 name = xattr_full_name(handler, name); 3318 return simple_xattr_get(&info->xattrs, name, buffer, size); 3319 } 3320 3321 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3322 struct dentry *unused, struct inode *inode, 3323 const char *name, const void *value, 3324 size_t size, int flags) 3325 { 3326 struct shmem_inode_info *info = SHMEM_I(inode); 3327 3328 name = xattr_full_name(handler, name); 3329 return simple_xattr_set(&info->xattrs, name, value, size, flags); 3330 } 3331 3332 static const struct xattr_handler shmem_security_xattr_handler = { 3333 .prefix = XATTR_SECURITY_PREFIX, 3334 .get = shmem_xattr_handler_get, 3335 .set = shmem_xattr_handler_set, 3336 }; 3337 3338 static const struct xattr_handler shmem_trusted_xattr_handler = { 3339 .prefix = XATTR_TRUSTED_PREFIX, 3340 .get = shmem_xattr_handler_get, 3341 .set = shmem_xattr_handler_set, 3342 }; 3343 3344 static const struct xattr_handler *shmem_xattr_handlers[] = { 3345 #ifdef CONFIG_TMPFS_POSIX_ACL 3346 &posix_acl_access_xattr_handler, 3347 &posix_acl_default_xattr_handler, 3348 #endif 3349 &shmem_security_xattr_handler, 3350 &shmem_trusted_xattr_handler, 3351 NULL 3352 }; 3353 3354 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3355 { 3356 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3357 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3358 } 3359 #endif /* CONFIG_TMPFS_XATTR */ 3360 3361 static const struct inode_operations shmem_short_symlink_operations = { 3362 .get_link = simple_get_link, 3363 #ifdef CONFIG_TMPFS_XATTR 3364 .listxattr = shmem_listxattr, 3365 #endif 3366 }; 3367 3368 static const struct inode_operations shmem_symlink_inode_operations = { 3369 .get_link = shmem_get_link, 3370 #ifdef CONFIG_TMPFS_XATTR 3371 .listxattr = shmem_listxattr, 3372 #endif 3373 }; 3374 3375 static struct dentry *shmem_get_parent(struct dentry *child) 3376 { 3377 return ERR_PTR(-ESTALE); 3378 } 3379 3380 static int shmem_match(struct inode *ino, void *vfh) 3381 { 3382 __u32 *fh = vfh; 3383 __u64 inum = fh[2]; 3384 inum = (inum << 32) | fh[1]; 3385 return ino->i_ino == inum && fh[0] == ino->i_generation; 3386 } 3387 3388 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3389 struct fid *fid, int fh_len, int fh_type) 3390 { 3391 struct inode *inode; 3392 struct dentry *dentry = NULL; 3393 u64 inum; 3394 3395 if (fh_len < 3) 3396 return NULL; 3397 3398 inum = fid->raw[2]; 3399 inum = (inum << 32) | fid->raw[1]; 3400 3401 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3402 shmem_match, fid->raw); 3403 if (inode) { 3404 dentry = d_find_alias(inode); 3405 iput(inode); 3406 } 3407 3408 return dentry; 3409 } 3410 3411 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3412 struct inode *parent) 3413 { 3414 if (*len < 3) { 3415 *len = 3; 3416 return FILEID_INVALID; 3417 } 3418 3419 if (inode_unhashed(inode)) { 3420 /* Unfortunately insert_inode_hash is not idempotent, 3421 * so as we hash inodes here rather than at creation 3422 * time, we need a lock to ensure we only try 3423 * to do it once 3424 */ 3425 static DEFINE_SPINLOCK(lock); 3426 spin_lock(&lock); 3427 if (inode_unhashed(inode)) 3428 __insert_inode_hash(inode, 3429 inode->i_ino + inode->i_generation); 3430 spin_unlock(&lock); 3431 } 3432 3433 fh[0] = inode->i_generation; 3434 fh[1] = inode->i_ino; 3435 fh[2] = ((__u64)inode->i_ino) >> 32; 3436 3437 *len = 3; 3438 return 1; 3439 } 3440 3441 static const struct export_operations shmem_export_ops = { 3442 .get_parent = shmem_get_parent, 3443 .encode_fh = shmem_encode_fh, 3444 .fh_to_dentry = shmem_fh_to_dentry, 3445 }; 3446 3447 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 3448 bool remount) 3449 { 3450 char *this_char, *value, *rest; 3451 struct mempolicy *mpol = NULL; 3452 uid_t uid; 3453 gid_t gid; 3454 3455 while (options != NULL) { 3456 this_char = options; 3457 for (;;) { 3458 /* 3459 * NUL-terminate this option: unfortunately, 3460 * mount options form a comma-separated list, 3461 * but mpol's nodelist may also contain commas. 3462 */ 3463 options = strchr(options, ','); 3464 if (options == NULL) 3465 break; 3466 options++; 3467 if (!isdigit(*options)) { 3468 options[-1] = '\0'; 3469 break; 3470 } 3471 } 3472 if (!*this_char) 3473 continue; 3474 if ((value = strchr(this_char,'=')) != NULL) { 3475 *value++ = 0; 3476 } else { 3477 pr_err("tmpfs: No value for mount option '%s'\n", 3478 this_char); 3479 goto error; 3480 } 3481 3482 if (!strcmp(this_char,"size")) { 3483 unsigned long long size; 3484 size = memparse(value,&rest); 3485 if (*rest == '%') { 3486 size <<= PAGE_SHIFT; 3487 size *= totalram_pages; 3488 do_div(size, 100); 3489 rest++; 3490 } 3491 if (*rest) 3492 goto bad_val; 3493 sbinfo->max_blocks = 3494 DIV_ROUND_UP(size, PAGE_SIZE); 3495 } else if (!strcmp(this_char,"nr_blocks")) { 3496 sbinfo->max_blocks = memparse(value, &rest); 3497 if (*rest) 3498 goto bad_val; 3499 } else if (!strcmp(this_char,"nr_inodes")) { 3500 sbinfo->max_inodes = memparse(value, &rest); 3501 if (*rest) 3502 goto bad_val; 3503 } else if (!strcmp(this_char,"mode")) { 3504 if (remount) 3505 continue; 3506 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 3507 if (*rest) 3508 goto bad_val; 3509 } else if (!strcmp(this_char,"uid")) { 3510 if (remount) 3511 continue; 3512 uid = simple_strtoul(value, &rest, 0); 3513 if (*rest) 3514 goto bad_val; 3515 sbinfo->uid = make_kuid(current_user_ns(), uid); 3516 if (!uid_valid(sbinfo->uid)) 3517 goto bad_val; 3518 } else if (!strcmp(this_char,"gid")) { 3519 if (remount) 3520 continue; 3521 gid = simple_strtoul(value, &rest, 0); 3522 if (*rest) 3523 goto bad_val; 3524 sbinfo->gid = make_kgid(current_user_ns(), gid); 3525 if (!gid_valid(sbinfo->gid)) 3526 goto bad_val; 3527 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3528 } else if (!strcmp(this_char, "huge")) { 3529 int huge; 3530 huge = shmem_parse_huge(value); 3531 if (huge < 0) 3532 goto bad_val; 3533 if (!has_transparent_hugepage() && 3534 huge != SHMEM_HUGE_NEVER) 3535 goto bad_val; 3536 sbinfo->huge = huge; 3537 #endif 3538 #ifdef CONFIG_NUMA 3539 } else if (!strcmp(this_char,"mpol")) { 3540 mpol_put(mpol); 3541 mpol = NULL; 3542 if (mpol_parse_str(value, &mpol)) 3543 goto bad_val; 3544 #endif 3545 } else { 3546 pr_err("tmpfs: Bad mount option %s\n", this_char); 3547 goto error; 3548 } 3549 } 3550 sbinfo->mpol = mpol; 3551 return 0; 3552 3553 bad_val: 3554 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", 3555 value, this_char); 3556 error: 3557 mpol_put(mpol); 3558 return 1; 3559 3560 } 3561 3562 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 3563 { 3564 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3565 struct shmem_sb_info config = *sbinfo; 3566 unsigned long inodes; 3567 int error = -EINVAL; 3568 3569 config.mpol = NULL; 3570 if (shmem_parse_options(data, &config, true)) 3571 return error; 3572 3573 spin_lock(&sbinfo->stat_lock); 3574 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3575 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 3576 goto out; 3577 if (config.max_inodes < inodes) 3578 goto out; 3579 /* 3580 * Those tests disallow limited->unlimited while any are in use; 3581 * but we must separately disallow unlimited->limited, because 3582 * in that case we have no record of how much is already in use. 3583 */ 3584 if (config.max_blocks && !sbinfo->max_blocks) 3585 goto out; 3586 if (config.max_inodes && !sbinfo->max_inodes) 3587 goto out; 3588 3589 error = 0; 3590 sbinfo->huge = config.huge; 3591 sbinfo->max_blocks = config.max_blocks; 3592 sbinfo->max_inodes = config.max_inodes; 3593 sbinfo->free_inodes = config.max_inodes - inodes; 3594 3595 /* 3596 * Preserve previous mempolicy unless mpol remount option was specified. 3597 */ 3598 if (config.mpol) { 3599 mpol_put(sbinfo->mpol); 3600 sbinfo->mpol = config.mpol; /* transfers initial ref */ 3601 } 3602 out: 3603 spin_unlock(&sbinfo->stat_lock); 3604 return error; 3605 } 3606 3607 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3608 { 3609 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3610 3611 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3612 seq_printf(seq, ",size=%luk", 3613 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3614 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3615 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3616 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 3617 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3618 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3619 seq_printf(seq, ",uid=%u", 3620 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3621 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3622 seq_printf(seq, ",gid=%u", 3623 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3624 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3625 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3626 if (sbinfo->huge) 3627 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3628 #endif 3629 shmem_show_mpol(seq, sbinfo->mpol); 3630 return 0; 3631 } 3632 3633 #define MFD_NAME_PREFIX "memfd:" 3634 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 3635 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 3636 3637 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING) 3638 3639 SYSCALL_DEFINE2(memfd_create, 3640 const char __user *, uname, 3641 unsigned int, flags) 3642 { 3643 struct shmem_inode_info *info; 3644 struct file *file; 3645 int fd, error; 3646 char *name; 3647 long len; 3648 3649 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 3650 return -EINVAL; 3651 3652 /* length includes terminating zero */ 3653 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 3654 if (len <= 0) 3655 return -EFAULT; 3656 if (len > MFD_NAME_MAX_LEN + 1) 3657 return -EINVAL; 3658 3659 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY); 3660 if (!name) 3661 return -ENOMEM; 3662 3663 strcpy(name, MFD_NAME_PREFIX); 3664 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 3665 error = -EFAULT; 3666 goto err_name; 3667 } 3668 3669 /* terminating-zero may have changed after strnlen_user() returned */ 3670 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 3671 error = -EFAULT; 3672 goto err_name; 3673 } 3674 3675 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 3676 if (fd < 0) { 3677 error = fd; 3678 goto err_name; 3679 } 3680 3681 file = shmem_file_setup(name, 0, VM_NORESERVE); 3682 if (IS_ERR(file)) { 3683 error = PTR_ERR(file); 3684 goto err_fd; 3685 } 3686 info = SHMEM_I(file_inode(file)); 3687 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 3688 file->f_flags |= O_RDWR | O_LARGEFILE; 3689 if (flags & MFD_ALLOW_SEALING) 3690 info->seals &= ~F_SEAL_SEAL; 3691 3692 fd_install(fd, file); 3693 kfree(name); 3694 return fd; 3695 3696 err_fd: 3697 put_unused_fd(fd); 3698 err_name: 3699 kfree(name); 3700 return error; 3701 } 3702 3703 #endif /* CONFIG_TMPFS */ 3704 3705 static void shmem_put_super(struct super_block *sb) 3706 { 3707 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3708 3709 percpu_counter_destroy(&sbinfo->used_blocks); 3710 mpol_put(sbinfo->mpol); 3711 kfree(sbinfo); 3712 sb->s_fs_info = NULL; 3713 } 3714 3715 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3716 { 3717 struct inode *inode; 3718 struct shmem_sb_info *sbinfo; 3719 int err = -ENOMEM; 3720 3721 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3722 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3723 L1_CACHE_BYTES), GFP_KERNEL); 3724 if (!sbinfo) 3725 return -ENOMEM; 3726 3727 sbinfo->mode = S_IRWXUGO | S_ISVTX; 3728 sbinfo->uid = current_fsuid(); 3729 sbinfo->gid = current_fsgid(); 3730 sb->s_fs_info = sbinfo; 3731 3732 #ifdef CONFIG_TMPFS 3733 /* 3734 * Per default we only allow half of the physical ram per 3735 * tmpfs instance, limiting inodes to one per page of lowmem; 3736 * but the internal instance is left unlimited. 3737 */ 3738 if (!(sb->s_flags & MS_KERNMOUNT)) { 3739 sbinfo->max_blocks = shmem_default_max_blocks(); 3740 sbinfo->max_inodes = shmem_default_max_inodes(); 3741 if (shmem_parse_options(data, sbinfo, false)) { 3742 err = -EINVAL; 3743 goto failed; 3744 } 3745 } else { 3746 sb->s_flags |= MS_NOUSER; 3747 } 3748 sb->s_export_op = &shmem_export_ops; 3749 sb->s_flags |= MS_NOSEC; 3750 #else 3751 sb->s_flags |= MS_NOUSER; 3752 #endif 3753 3754 spin_lock_init(&sbinfo->stat_lock); 3755 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3756 goto failed; 3757 sbinfo->free_inodes = sbinfo->max_inodes; 3758 spin_lock_init(&sbinfo->shrinklist_lock); 3759 INIT_LIST_HEAD(&sbinfo->shrinklist); 3760 3761 sb->s_maxbytes = MAX_LFS_FILESIZE; 3762 sb->s_blocksize = PAGE_SIZE; 3763 sb->s_blocksize_bits = PAGE_SHIFT; 3764 sb->s_magic = TMPFS_MAGIC; 3765 sb->s_op = &shmem_ops; 3766 sb->s_time_gran = 1; 3767 #ifdef CONFIG_TMPFS_XATTR 3768 sb->s_xattr = shmem_xattr_handlers; 3769 #endif 3770 #ifdef CONFIG_TMPFS_POSIX_ACL 3771 sb->s_flags |= MS_POSIXACL; 3772 #endif 3773 uuid_gen(&sb->s_uuid); 3774 3775 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3776 if (!inode) 3777 goto failed; 3778 inode->i_uid = sbinfo->uid; 3779 inode->i_gid = sbinfo->gid; 3780 sb->s_root = d_make_root(inode); 3781 if (!sb->s_root) 3782 goto failed; 3783 return 0; 3784 3785 failed: 3786 shmem_put_super(sb); 3787 return err; 3788 } 3789 3790 static struct kmem_cache *shmem_inode_cachep; 3791 3792 static struct inode *shmem_alloc_inode(struct super_block *sb) 3793 { 3794 struct shmem_inode_info *info; 3795 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3796 if (!info) 3797 return NULL; 3798 return &info->vfs_inode; 3799 } 3800 3801 static void shmem_destroy_callback(struct rcu_head *head) 3802 { 3803 struct inode *inode = container_of(head, struct inode, i_rcu); 3804 if (S_ISLNK(inode->i_mode)) 3805 kfree(inode->i_link); 3806 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3807 } 3808 3809 static void shmem_destroy_inode(struct inode *inode) 3810 { 3811 if (S_ISREG(inode->i_mode)) 3812 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3813 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3814 } 3815 3816 static void shmem_init_inode(void *foo) 3817 { 3818 struct shmem_inode_info *info = foo; 3819 inode_init_once(&info->vfs_inode); 3820 } 3821 3822 static int shmem_init_inodecache(void) 3823 { 3824 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3825 sizeof(struct shmem_inode_info), 3826 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3827 return 0; 3828 } 3829 3830 static void shmem_destroy_inodecache(void) 3831 { 3832 kmem_cache_destroy(shmem_inode_cachep); 3833 } 3834 3835 static const struct address_space_operations shmem_aops = { 3836 .writepage = shmem_writepage, 3837 .set_page_dirty = __set_page_dirty_no_writeback, 3838 #ifdef CONFIG_TMPFS 3839 .write_begin = shmem_write_begin, 3840 .write_end = shmem_write_end, 3841 #endif 3842 #ifdef CONFIG_MIGRATION 3843 .migratepage = migrate_page, 3844 #endif 3845 .error_remove_page = generic_error_remove_page, 3846 }; 3847 3848 static const struct file_operations shmem_file_operations = { 3849 .mmap = shmem_mmap, 3850 .get_unmapped_area = shmem_get_unmapped_area, 3851 #ifdef CONFIG_TMPFS 3852 .llseek = shmem_file_llseek, 3853 .read_iter = shmem_file_read_iter, 3854 .write_iter = generic_file_write_iter, 3855 .fsync = noop_fsync, 3856 .splice_read = generic_file_splice_read, 3857 .splice_write = iter_file_splice_write, 3858 .fallocate = shmem_fallocate, 3859 #endif 3860 }; 3861 3862 static const struct inode_operations shmem_inode_operations = { 3863 .getattr = shmem_getattr, 3864 .setattr = shmem_setattr, 3865 #ifdef CONFIG_TMPFS_XATTR 3866 .listxattr = shmem_listxattr, 3867 .set_acl = simple_set_acl, 3868 #endif 3869 }; 3870 3871 static const struct inode_operations shmem_dir_inode_operations = { 3872 #ifdef CONFIG_TMPFS 3873 .create = shmem_create, 3874 .lookup = simple_lookup, 3875 .link = shmem_link, 3876 .unlink = shmem_unlink, 3877 .symlink = shmem_symlink, 3878 .mkdir = shmem_mkdir, 3879 .rmdir = shmem_rmdir, 3880 .mknod = shmem_mknod, 3881 .rename = shmem_rename2, 3882 .tmpfile = shmem_tmpfile, 3883 #endif 3884 #ifdef CONFIG_TMPFS_XATTR 3885 .listxattr = shmem_listxattr, 3886 #endif 3887 #ifdef CONFIG_TMPFS_POSIX_ACL 3888 .setattr = shmem_setattr, 3889 .set_acl = simple_set_acl, 3890 #endif 3891 }; 3892 3893 static const struct inode_operations shmem_special_inode_operations = { 3894 #ifdef CONFIG_TMPFS_XATTR 3895 .listxattr = shmem_listxattr, 3896 #endif 3897 #ifdef CONFIG_TMPFS_POSIX_ACL 3898 .setattr = shmem_setattr, 3899 .set_acl = simple_set_acl, 3900 #endif 3901 }; 3902 3903 static const struct super_operations shmem_ops = { 3904 .alloc_inode = shmem_alloc_inode, 3905 .destroy_inode = shmem_destroy_inode, 3906 #ifdef CONFIG_TMPFS 3907 .statfs = shmem_statfs, 3908 .remount_fs = shmem_remount_fs, 3909 .show_options = shmem_show_options, 3910 #endif 3911 .evict_inode = shmem_evict_inode, 3912 .drop_inode = generic_delete_inode, 3913 .put_super = shmem_put_super, 3914 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3915 .nr_cached_objects = shmem_unused_huge_count, 3916 .free_cached_objects = shmem_unused_huge_scan, 3917 #endif 3918 }; 3919 3920 static const struct vm_operations_struct shmem_vm_ops = { 3921 .fault = shmem_fault, 3922 .map_pages = filemap_map_pages, 3923 #ifdef CONFIG_NUMA 3924 .set_policy = shmem_set_policy, 3925 .get_policy = shmem_get_policy, 3926 #endif 3927 }; 3928 3929 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3930 int flags, const char *dev_name, void *data) 3931 { 3932 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3933 } 3934 3935 static struct file_system_type shmem_fs_type = { 3936 .owner = THIS_MODULE, 3937 .name = "tmpfs", 3938 .mount = shmem_mount, 3939 .kill_sb = kill_litter_super, 3940 .fs_flags = FS_USERNS_MOUNT, 3941 }; 3942 3943 int __init shmem_init(void) 3944 { 3945 int error; 3946 3947 /* If rootfs called this, don't re-init */ 3948 if (shmem_inode_cachep) 3949 return 0; 3950 3951 error = shmem_init_inodecache(); 3952 if (error) 3953 goto out3; 3954 3955 error = register_filesystem(&shmem_fs_type); 3956 if (error) { 3957 pr_err("Could not register tmpfs\n"); 3958 goto out2; 3959 } 3960 3961 shm_mnt = kern_mount(&shmem_fs_type); 3962 if (IS_ERR(shm_mnt)) { 3963 error = PTR_ERR(shm_mnt); 3964 pr_err("Could not kern_mount tmpfs\n"); 3965 goto out1; 3966 } 3967 3968 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3969 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3970 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3971 else 3972 shmem_huge = 0; /* just in case it was patched */ 3973 #endif 3974 return 0; 3975 3976 out1: 3977 unregister_filesystem(&shmem_fs_type); 3978 out2: 3979 shmem_destroy_inodecache(); 3980 out3: 3981 shm_mnt = ERR_PTR(error); 3982 return error; 3983 } 3984 3985 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) 3986 static ssize_t shmem_enabled_show(struct kobject *kobj, 3987 struct kobj_attribute *attr, char *buf) 3988 { 3989 int values[] = { 3990 SHMEM_HUGE_ALWAYS, 3991 SHMEM_HUGE_WITHIN_SIZE, 3992 SHMEM_HUGE_ADVISE, 3993 SHMEM_HUGE_NEVER, 3994 SHMEM_HUGE_DENY, 3995 SHMEM_HUGE_FORCE, 3996 }; 3997 int i, count; 3998 3999 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 4000 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 4001 4002 count += sprintf(buf + count, fmt, 4003 shmem_format_huge(values[i])); 4004 } 4005 buf[count - 1] = '\n'; 4006 return count; 4007 } 4008 4009 static ssize_t shmem_enabled_store(struct kobject *kobj, 4010 struct kobj_attribute *attr, const char *buf, size_t count) 4011 { 4012 char tmp[16]; 4013 int huge; 4014 4015 if (count + 1 > sizeof(tmp)) 4016 return -EINVAL; 4017 memcpy(tmp, buf, count); 4018 tmp[count] = '\0'; 4019 if (count && tmp[count - 1] == '\n') 4020 tmp[count - 1] = '\0'; 4021 4022 huge = shmem_parse_huge(tmp); 4023 if (huge == -EINVAL) 4024 return -EINVAL; 4025 if (!has_transparent_hugepage() && 4026 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4027 return -EINVAL; 4028 4029 shmem_huge = huge; 4030 if (shmem_huge > SHMEM_HUGE_DENY) 4031 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4032 return count; 4033 } 4034 4035 struct kobj_attribute shmem_enabled_attr = 4036 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 4037 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ 4038 4039 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 4040 bool shmem_huge_enabled(struct vm_area_struct *vma) 4041 { 4042 struct inode *inode = file_inode(vma->vm_file); 4043 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4044 loff_t i_size; 4045 pgoff_t off; 4046 4047 if (shmem_huge == SHMEM_HUGE_FORCE) 4048 return true; 4049 if (shmem_huge == SHMEM_HUGE_DENY) 4050 return false; 4051 switch (sbinfo->huge) { 4052 case SHMEM_HUGE_NEVER: 4053 return false; 4054 case SHMEM_HUGE_ALWAYS: 4055 return true; 4056 case SHMEM_HUGE_WITHIN_SIZE: 4057 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 4058 i_size = round_up(i_size_read(inode), PAGE_SIZE); 4059 if (i_size >= HPAGE_PMD_SIZE && 4060 i_size >> PAGE_SHIFT >= off) 4061 return true; 4062 case SHMEM_HUGE_ADVISE: 4063 /* TODO: implement fadvise() hints */ 4064 return (vma->vm_flags & VM_HUGEPAGE); 4065 default: 4066 VM_BUG_ON(1); 4067 return false; 4068 } 4069 } 4070 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 4071 4072 #else /* !CONFIG_SHMEM */ 4073 4074 /* 4075 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4076 * 4077 * This is intended for small system where the benefits of the full 4078 * shmem code (swap-backed and resource-limited) are outweighed by 4079 * their complexity. On systems without swap this code should be 4080 * effectively equivalent, but much lighter weight. 4081 */ 4082 4083 static struct file_system_type shmem_fs_type = { 4084 .name = "tmpfs", 4085 .mount = ramfs_mount, 4086 .kill_sb = kill_litter_super, 4087 .fs_flags = FS_USERNS_MOUNT, 4088 }; 4089 4090 int __init shmem_init(void) 4091 { 4092 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4093 4094 shm_mnt = kern_mount(&shmem_fs_type); 4095 BUG_ON(IS_ERR(shm_mnt)); 4096 4097 return 0; 4098 } 4099 4100 int shmem_unuse(swp_entry_t swap, struct page *page) 4101 { 4102 return 0; 4103 } 4104 4105 int shmem_lock(struct file *file, int lock, struct user_struct *user) 4106 { 4107 return 0; 4108 } 4109 4110 void shmem_unlock_mapping(struct address_space *mapping) 4111 { 4112 } 4113 4114 #ifdef CONFIG_MMU 4115 unsigned long shmem_get_unmapped_area(struct file *file, 4116 unsigned long addr, unsigned long len, 4117 unsigned long pgoff, unsigned long flags) 4118 { 4119 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4120 } 4121 #endif 4122 4123 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4124 { 4125 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4126 } 4127 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4128 4129 #define shmem_vm_ops generic_file_vm_ops 4130 #define shmem_file_operations ramfs_file_operations 4131 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4132 #define shmem_acct_size(flags, size) 0 4133 #define shmem_unacct_size(flags, size) do {} while (0) 4134 4135 #endif /* CONFIG_SHMEM */ 4136 4137 /* common code */ 4138 4139 static const struct dentry_operations anon_ops = { 4140 .d_dname = simple_dname 4141 }; 4142 4143 static struct file *__shmem_file_setup(const char *name, loff_t size, 4144 unsigned long flags, unsigned int i_flags) 4145 { 4146 struct file *res; 4147 struct inode *inode; 4148 struct path path; 4149 struct super_block *sb; 4150 struct qstr this; 4151 4152 if (IS_ERR(shm_mnt)) 4153 return ERR_CAST(shm_mnt); 4154 4155 if (size < 0 || size > MAX_LFS_FILESIZE) 4156 return ERR_PTR(-EINVAL); 4157 4158 if (shmem_acct_size(flags, size)) 4159 return ERR_PTR(-ENOMEM); 4160 4161 res = ERR_PTR(-ENOMEM); 4162 this.name = name; 4163 this.len = strlen(name); 4164 this.hash = 0; /* will go */ 4165 sb = shm_mnt->mnt_sb; 4166 path.mnt = mntget(shm_mnt); 4167 path.dentry = d_alloc_pseudo(sb, &this); 4168 if (!path.dentry) 4169 goto put_memory; 4170 d_set_d_op(path.dentry, &anon_ops); 4171 4172 res = ERR_PTR(-ENOSPC); 4173 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 4174 if (!inode) 4175 goto put_memory; 4176 4177 inode->i_flags |= i_flags; 4178 d_instantiate(path.dentry, inode); 4179 inode->i_size = size; 4180 clear_nlink(inode); /* It is unlinked */ 4181 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4182 if (IS_ERR(res)) 4183 goto put_path; 4184 4185 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 4186 &shmem_file_operations); 4187 if (IS_ERR(res)) 4188 goto put_path; 4189 4190 return res; 4191 4192 put_memory: 4193 shmem_unacct_size(flags, size); 4194 put_path: 4195 path_put(&path); 4196 return res; 4197 } 4198 4199 /** 4200 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4201 * kernel internal. There will be NO LSM permission checks against the 4202 * underlying inode. So users of this interface must do LSM checks at a 4203 * higher layer. The users are the big_key and shm implementations. LSM 4204 * checks are provided at the key or shm level rather than the inode. 4205 * @name: name for dentry (to be seen in /proc/<pid>/maps 4206 * @size: size to be set for the file 4207 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4208 */ 4209 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4210 { 4211 return __shmem_file_setup(name, size, flags, S_PRIVATE); 4212 } 4213 4214 /** 4215 * shmem_file_setup - get an unlinked file living in tmpfs 4216 * @name: name for dentry (to be seen in /proc/<pid>/maps 4217 * @size: size to be set for the file 4218 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4219 */ 4220 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4221 { 4222 return __shmem_file_setup(name, size, flags, 0); 4223 } 4224 EXPORT_SYMBOL_GPL(shmem_file_setup); 4225 4226 /** 4227 * shmem_zero_setup - setup a shared anonymous mapping 4228 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4229 */ 4230 int shmem_zero_setup(struct vm_area_struct *vma) 4231 { 4232 struct file *file; 4233 loff_t size = vma->vm_end - vma->vm_start; 4234 4235 /* 4236 * Cloning a new file under mmap_sem leads to a lock ordering conflict 4237 * between XFS directory reading and selinux: since this file is only 4238 * accessible to the user through its mapping, use S_PRIVATE flag to 4239 * bypass file security, in the same way as shmem_kernel_file_setup(). 4240 */ 4241 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE); 4242 if (IS_ERR(file)) 4243 return PTR_ERR(file); 4244 4245 if (vma->vm_file) 4246 fput(vma->vm_file); 4247 vma->vm_file = file; 4248 vma->vm_ops = &shmem_vm_ops; 4249 4250 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 4251 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4252 (vma->vm_end & HPAGE_PMD_MASK)) { 4253 khugepaged_enter(vma, vma->vm_flags); 4254 } 4255 4256 return 0; 4257 } 4258 4259 /** 4260 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4261 * @mapping: the page's address_space 4262 * @index: the page index 4263 * @gfp: the page allocator flags to use if allocating 4264 * 4265 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4266 * with any new page allocations done using the specified allocation flags. 4267 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4268 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4269 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4270 * 4271 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4272 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4273 */ 4274 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4275 pgoff_t index, gfp_t gfp) 4276 { 4277 #ifdef CONFIG_SHMEM 4278 struct inode *inode = mapping->host; 4279 struct page *page; 4280 int error; 4281 4282 BUG_ON(mapping->a_ops != &shmem_aops); 4283 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4284 gfp, NULL, NULL, NULL); 4285 if (error) 4286 page = ERR_PTR(error); 4287 else 4288 unlock_page(page); 4289 return page; 4290 #else 4291 /* 4292 * The tiny !SHMEM case uses ramfs without swap 4293 */ 4294 return read_cache_page_gfp(mapping, index, gfp); 4295 #endif 4296 } 4297 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4298