xref: /openbmc/linux/mm/shmem.c (revision b1cc94ab2f2ba31fcb2c59df0b9cf03f6d720553)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 
38 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
39 
40 static struct vfsmount *shm_mnt;
41 
42 #ifdef CONFIG_SHMEM
43 /*
44  * This virtual memory filesystem is heavily based on the ramfs. It
45  * extends ramfs by the ability to use swap and honor resource limits
46  * which makes it a completely usable filesystem.
47  */
48 
49 #include <linux/xattr.h>
50 #include <linux/exportfs.h>
51 #include <linux/posix_acl.h>
52 #include <linux/posix_acl_xattr.h>
53 #include <linux/mman.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <linux/backing-dev.h>
57 #include <linux/shmem_fs.h>
58 #include <linux/writeback.h>
59 #include <linux/blkdev.h>
60 #include <linux/pagevec.h>
61 #include <linux/percpu_counter.h>
62 #include <linux/falloc.h>
63 #include <linux/splice.h>
64 #include <linux/security.h>
65 #include <linux/swapops.h>
66 #include <linux/mempolicy.h>
67 #include <linux/namei.h>
68 #include <linux/ctype.h>
69 #include <linux/migrate.h>
70 #include <linux/highmem.h>
71 #include <linux/seq_file.h>
72 #include <linux/magic.h>
73 #include <linux/syscalls.h>
74 #include <linux/fcntl.h>
75 #include <uapi/linux/memfd.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/rmap.h>
78 #include <linux/uuid.h>
79 
80 #include <linux/uaccess.h>
81 #include <asm/pgtable.h>
82 
83 #include "internal.h"
84 
85 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
86 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
87 
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
90 
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
93 
94 /*
95  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96  * inode->i_private (with i_mutex making sure that it has only one user at
97  * a time): we would prefer not to enlarge the shmem inode just for that.
98  */
99 struct shmem_falloc {
100 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
101 	pgoff_t start;		/* start of range currently being fallocated */
102 	pgoff_t next;		/* the next page offset to be fallocated */
103 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
104 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
105 };
106 
107 #ifdef CONFIG_TMPFS
108 static unsigned long shmem_default_max_blocks(void)
109 {
110 	return totalram_pages / 2;
111 }
112 
113 static unsigned long shmem_default_max_inodes(void)
114 {
115 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116 }
117 #endif
118 
119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121 				struct shmem_inode_info *info, pgoff_t index);
122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123 		struct page **pagep, enum sgp_type sgp,
124 		gfp_t gfp, struct vm_area_struct *vma,
125 		struct vm_fault *vmf, int *fault_type);
126 
127 int shmem_getpage(struct inode *inode, pgoff_t index,
128 		struct page **pagep, enum sgp_type sgp)
129 {
130 	return shmem_getpage_gfp(inode, index, pagep, sgp,
131 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
132 }
133 
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136 	return sb->s_fs_info;
137 }
138 
139 /*
140  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141  * for shared memory and for shared anonymous (/dev/zero) mappings
142  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143  * consistent with the pre-accounting of private mappings ...
144  */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147 	return (flags & VM_NORESERVE) ?
148 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150 
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153 	if (!(flags & VM_NORESERVE))
154 		vm_unacct_memory(VM_ACCT(size));
155 }
156 
157 static inline int shmem_reacct_size(unsigned long flags,
158 		loff_t oldsize, loff_t newsize)
159 {
160 	if (!(flags & VM_NORESERVE)) {
161 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 			return security_vm_enough_memory_mm(current->mm,
163 					VM_ACCT(newsize) - VM_ACCT(oldsize));
164 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 	}
167 	return 0;
168 }
169 
170 /*
171  * ... whereas tmpfs objects are accounted incrementally as
172  * pages are allocated, in order to allow large sparse files.
173  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175  */
176 static inline int shmem_acct_block(unsigned long flags, long pages)
177 {
178 	if (!(flags & VM_NORESERVE))
179 		return 0;
180 
181 	return security_vm_enough_memory_mm(current->mm,
182 			pages * VM_ACCT(PAGE_SIZE));
183 }
184 
185 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
186 {
187 	if (flags & VM_NORESERVE)
188 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
189 }
190 
191 static const struct super_operations shmem_ops;
192 static const struct address_space_operations shmem_aops;
193 static const struct file_operations shmem_file_operations;
194 static const struct inode_operations shmem_inode_operations;
195 static const struct inode_operations shmem_dir_inode_operations;
196 static const struct inode_operations shmem_special_inode_operations;
197 static const struct vm_operations_struct shmem_vm_ops;
198 static struct file_system_type shmem_fs_type;
199 
200 bool vma_is_shmem(struct vm_area_struct *vma)
201 {
202 	return vma->vm_ops == &shmem_vm_ops;
203 }
204 
205 static LIST_HEAD(shmem_swaplist);
206 static DEFINE_MUTEX(shmem_swaplist_mutex);
207 
208 static int shmem_reserve_inode(struct super_block *sb)
209 {
210 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
211 	if (sbinfo->max_inodes) {
212 		spin_lock(&sbinfo->stat_lock);
213 		if (!sbinfo->free_inodes) {
214 			spin_unlock(&sbinfo->stat_lock);
215 			return -ENOSPC;
216 		}
217 		sbinfo->free_inodes--;
218 		spin_unlock(&sbinfo->stat_lock);
219 	}
220 	return 0;
221 }
222 
223 static void shmem_free_inode(struct super_block *sb)
224 {
225 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
226 	if (sbinfo->max_inodes) {
227 		spin_lock(&sbinfo->stat_lock);
228 		sbinfo->free_inodes++;
229 		spin_unlock(&sbinfo->stat_lock);
230 	}
231 }
232 
233 /**
234  * shmem_recalc_inode - recalculate the block usage of an inode
235  * @inode: inode to recalc
236  *
237  * We have to calculate the free blocks since the mm can drop
238  * undirtied hole pages behind our back.
239  *
240  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
241  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
242  *
243  * It has to be called with the spinlock held.
244  */
245 static void shmem_recalc_inode(struct inode *inode)
246 {
247 	struct shmem_inode_info *info = SHMEM_I(inode);
248 	long freed;
249 
250 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
251 	if (freed > 0) {
252 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253 		if (sbinfo->max_blocks)
254 			percpu_counter_add(&sbinfo->used_blocks, -freed);
255 		info->alloced -= freed;
256 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
257 		shmem_unacct_blocks(info->flags, freed);
258 	}
259 }
260 
261 bool shmem_charge(struct inode *inode, long pages)
262 {
263 	struct shmem_inode_info *info = SHMEM_I(inode);
264 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
265 	unsigned long flags;
266 
267 	if (shmem_acct_block(info->flags, pages))
268 		return false;
269 
270 	if (sbinfo->max_blocks) {
271 		if (percpu_counter_compare(&sbinfo->used_blocks,
272 					   sbinfo->max_blocks - pages) > 0)
273 			goto unacct;
274 		percpu_counter_add(&sbinfo->used_blocks, pages);
275 	}
276 
277 	spin_lock_irqsave(&info->lock, flags);
278 	info->alloced += pages;
279 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
280 	shmem_recalc_inode(inode);
281 	spin_unlock_irqrestore(&info->lock, flags);
282 	inode->i_mapping->nrpages += pages;
283 
284 	return true;
285 
286 unacct:
287 	shmem_unacct_blocks(info->flags, pages);
288 	return false;
289 }
290 
291 void shmem_uncharge(struct inode *inode, long pages)
292 {
293 	struct shmem_inode_info *info = SHMEM_I(inode);
294 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
295 	unsigned long flags;
296 
297 	spin_lock_irqsave(&info->lock, flags);
298 	info->alloced -= pages;
299 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
300 	shmem_recalc_inode(inode);
301 	spin_unlock_irqrestore(&info->lock, flags);
302 
303 	if (sbinfo->max_blocks)
304 		percpu_counter_sub(&sbinfo->used_blocks, pages);
305 	shmem_unacct_blocks(info->flags, pages);
306 }
307 
308 /*
309  * Replace item expected in radix tree by a new item, while holding tree lock.
310  */
311 static int shmem_radix_tree_replace(struct address_space *mapping,
312 			pgoff_t index, void *expected, void *replacement)
313 {
314 	struct radix_tree_node *node;
315 	void **pslot;
316 	void *item;
317 
318 	VM_BUG_ON(!expected);
319 	VM_BUG_ON(!replacement);
320 	item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
321 	if (!item)
322 		return -ENOENT;
323 	if (item != expected)
324 		return -ENOENT;
325 	__radix_tree_replace(&mapping->page_tree, node, pslot,
326 			     replacement, NULL, NULL);
327 	return 0;
328 }
329 
330 /*
331  * Sometimes, before we decide whether to proceed or to fail, we must check
332  * that an entry was not already brought back from swap by a racing thread.
333  *
334  * Checking page is not enough: by the time a SwapCache page is locked, it
335  * might be reused, and again be SwapCache, using the same swap as before.
336  */
337 static bool shmem_confirm_swap(struct address_space *mapping,
338 			       pgoff_t index, swp_entry_t swap)
339 {
340 	void *item;
341 
342 	rcu_read_lock();
343 	item = radix_tree_lookup(&mapping->page_tree, index);
344 	rcu_read_unlock();
345 	return item == swp_to_radix_entry(swap);
346 }
347 
348 /*
349  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
350  *
351  * SHMEM_HUGE_NEVER:
352  *	disables huge pages for the mount;
353  * SHMEM_HUGE_ALWAYS:
354  *	enables huge pages for the mount;
355  * SHMEM_HUGE_WITHIN_SIZE:
356  *	only allocate huge pages if the page will be fully within i_size,
357  *	also respect fadvise()/madvise() hints;
358  * SHMEM_HUGE_ADVISE:
359  *	only allocate huge pages if requested with fadvise()/madvise();
360  */
361 
362 #define SHMEM_HUGE_NEVER	0
363 #define SHMEM_HUGE_ALWAYS	1
364 #define SHMEM_HUGE_WITHIN_SIZE	2
365 #define SHMEM_HUGE_ADVISE	3
366 
367 /*
368  * Special values.
369  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
370  *
371  * SHMEM_HUGE_DENY:
372  *	disables huge on shm_mnt and all mounts, for emergency use;
373  * SHMEM_HUGE_FORCE:
374  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
375  *
376  */
377 #define SHMEM_HUGE_DENY		(-1)
378 #define SHMEM_HUGE_FORCE	(-2)
379 
380 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
381 /* ifdef here to avoid bloating shmem.o when not necessary */
382 
383 int shmem_huge __read_mostly;
384 
385 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
386 static int shmem_parse_huge(const char *str)
387 {
388 	if (!strcmp(str, "never"))
389 		return SHMEM_HUGE_NEVER;
390 	if (!strcmp(str, "always"))
391 		return SHMEM_HUGE_ALWAYS;
392 	if (!strcmp(str, "within_size"))
393 		return SHMEM_HUGE_WITHIN_SIZE;
394 	if (!strcmp(str, "advise"))
395 		return SHMEM_HUGE_ADVISE;
396 	if (!strcmp(str, "deny"))
397 		return SHMEM_HUGE_DENY;
398 	if (!strcmp(str, "force"))
399 		return SHMEM_HUGE_FORCE;
400 	return -EINVAL;
401 }
402 
403 static const char *shmem_format_huge(int huge)
404 {
405 	switch (huge) {
406 	case SHMEM_HUGE_NEVER:
407 		return "never";
408 	case SHMEM_HUGE_ALWAYS:
409 		return "always";
410 	case SHMEM_HUGE_WITHIN_SIZE:
411 		return "within_size";
412 	case SHMEM_HUGE_ADVISE:
413 		return "advise";
414 	case SHMEM_HUGE_DENY:
415 		return "deny";
416 	case SHMEM_HUGE_FORCE:
417 		return "force";
418 	default:
419 		VM_BUG_ON(1);
420 		return "bad_val";
421 	}
422 }
423 #endif
424 
425 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
426 		struct shrink_control *sc, unsigned long nr_to_split)
427 {
428 	LIST_HEAD(list), *pos, *next;
429 	LIST_HEAD(to_remove);
430 	struct inode *inode;
431 	struct shmem_inode_info *info;
432 	struct page *page;
433 	unsigned long batch = sc ? sc->nr_to_scan : 128;
434 	int removed = 0, split = 0;
435 
436 	if (list_empty(&sbinfo->shrinklist))
437 		return SHRINK_STOP;
438 
439 	spin_lock(&sbinfo->shrinklist_lock);
440 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
441 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
442 
443 		/* pin the inode */
444 		inode = igrab(&info->vfs_inode);
445 
446 		/* inode is about to be evicted */
447 		if (!inode) {
448 			list_del_init(&info->shrinklist);
449 			removed++;
450 			goto next;
451 		}
452 
453 		/* Check if there's anything to gain */
454 		if (round_up(inode->i_size, PAGE_SIZE) ==
455 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
456 			list_move(&info->shrinklist, &to_remove);
457 			removed++;
458 			goto next;
459 		}
460 
461 		list_move(&info->shrinklist, &list);
462 next:
463 		if (!--batch)
464 			break;
465 	}
466 	spin_unlock(&sbinfo->shrinklist_lock);
467 
468 	list_for_each_safe(pos, next, &to_remove) {
469 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
470 		inode = &info->vfs_inode;
471 		list_del_init(&info->shrinklist);
472 		iput(inode);
473 	}
474 
475 	list_for_each_safe(pos, next, &list) {
476 		int ret;
477 
478 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
479 		inode = &info->vfs_inode;
480 
481 		if (nr_to_split && split >= nr_to_split) {
482 			iput(inode);
483 			continue;
484 		}
485 
486 		page = find_lock_page(inode->i_mapping,
487 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
488 		if (!page)
489 			goto drop;
490 
491 		if (!PageTransHuge(page)) {
492 			unlock_page(page);
493 			put_page(page);
494 			goto drop;
495 		}
496 
497 		ret = split_huge_page(page);
498 		unlock_page(page);
499 		put_page(page);
500 
501 		if (ret) {
502 			/* split failed: leave it on the list */
503 			iput(inode);
504 			continue;
505 		}
506 
507 		split++;
508 drop:
509 		list_del_init(&info->shrinklist);
510 		removed++;
511 		iput(inode);
512 	}
513 
514 	spin_lock(&sbinfo->shrinklist_lock);
515 	list_splice_tail(&list, &sbinfo->shrinklist);
516 	sbinfo->shrinklist_len -= removed;
517 	spin_unlock(&sbinfo->shrinklist_lock);
518 
519 	return split;
520 }
521 
522 static long shmem_unused_huge_scan(struct super_block *sb,
523 		struct shrink_control *sc)
524 {
525 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
526 
527 	if (!READ_ONCE(sbinfo->shrinklist_len))
528 		return SHRINK_STOP;
529 
530 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
531 }
532 
533 static long shmem_unused_huge_count(struct super_block *sb,
534 		struct shrink_control *sc)
535 {
536 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
537 	return READ_ONCE(sbinfo->shrinklist_len);
538 }
539 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
540 
541 #define shmem_huge SHMEM_HUGE_DENY
542 
543 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
544 		struct shrink_control *sc, unsigned long nr_to_split)
545 {
546 	return 0;
547 }
548 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
549 
550 /*
551  * Like add_to_page_cache_locked, but error if expected item has gone.
552  */
553 static int shmem_add_to_page_cache(struct page *page,
554 				   struct address_space *mapping,
555 				   pgoff_t index, void *expected)
556 {
557 	int error, nr = hpage_nr_pages(page);
558 
559 	VM_BUG_ON_PAGE(PageTail(page), page);
560 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
561 	VM_BUG_ON_PAGE(!PageLocked(page), page);
562 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
563 	VM_BUG_ON(expected && PageTransHuge(page));
564 
565 	page_ref_add(page, nr);
566 	page->mapping = mapping;
567 	page->index = index;
568 
569 	spin_lock_irq(&mapping->tree_lock);
570 	if (PageTransHuge(page)) {
571 		void __rcu **results;
572 		pgoff_t idx;
573 		int i;
574 
575 		error = 0;
576 		if (radix_tree_gang_lookup_slot(&mapping->page_tree,
577 					&results, &idx, index, 1) &&
578 				idx < index + HPAGE_PMD_NR) {
579 			error = -EEXIST;
580 		}
581 
582 		if (!error) {
583 			for (i = 0; i < HPAGE_PMD_NR; i++) {
584 				error = radix_tree_insert(&mapping->page_tree,
585 						index + i, page + i);
586 				VM_BUG_ON(error);
587 			}
588 			count_vm_event(THP_FILE_ALLOC);
589 		}
590 	} else if (!expected) {
591 		error = radix_tree_insert(&mapping->page_tree, index, page);
592 	} else {
593 		error = shmem_radix_tree_replace(mapping, index, expected,
594 								 page);
595 	}
596 
597 	if (!error) {
598 		mapping->nrpages += nr;
599 		if (PageTransHuge(page))
600 			__inc_node_page_state(page, NR_SHMEM_THPS);
601 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
602 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
603 		spin_unlock_irq(&mapping->tree_lock);
604 	} else {
605 		page->mapping = NULL;
606 		spin_unlock_irq(&mapping->tree_lock);
607 		page_ref_sub(page, nr);
608 	}
609 	return error;
610 }
611 
612 /*
613  * Like delete_from_page_cache, but substitutes swap for page.
614  */
615 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
616 {
617 	struct address_space *mapping = page->mapping;
618 	int error;
619 
620 	VM_BUG_ON_PAGE(PageCompound(page), page);
621 
622 	spin_lock_irq(&mapping->tree_lock);
623 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
624 	page->mapping = NULL;
625 	mapping->nrpages--;
626 	__dec_node_page_state(page, NR_FILE_PAGES);
627 	__dec_node_page_state(page, NR_SHMEM);
628 	spin_unlock_irq(&mapping->tree_lock);
629 	put_page(page);
630 	BUG_ON(error);
631 }
632 
633 /*
634  * Remove swap entry from radix tree, free the swap and its page cache.
635  */
636 static int shmem_free_swap(struct address_space *mapping,
637 			   pgoff_t index, void *radswap)
638 {
639 	void *old;
640 
641 	spin_lock_irq(&mapping->tree_lock);
642 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
643 	spin_unlock_irq(&mapping->tree_lock);
644 	if (old != radswap)
645 		return -ENOENT;
646 	free_swap_and_cache(radix_to_swp_entry(radswap));
647 	return 0;
648 }
649 
650 /*
651  * Determine (in bytes) how many of the shmem object's pages mapped by the
652  * given offsets are swapped out.
653  *
654  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
655  * as long as the inode doesn't go away and racy results are not a problem.
656  */
657 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
658 						pgoff_t start, pgoff_t end)
659 {
660 	struct radix_tree_iter iter;
661 	void **slot;
662 	struct page *page;
663 	unsigned long swapped = 0;
664 
665 	rcu_read_lock();
666 
667 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
668 		if (iter.index >= end)
669 			break;
670 
671 		page = radix_tree_deref_slot(slot);
672 
673 		if (radix_tree_deref_retry(page)) {
674 			slot = radix_tree_iter_retry(&iter);
675 			continue;
676 		}
677 
678 		if (radix_tree_exceptional_entry(page))
679 			swapped++;
680 
681 		if (need_resched()) {
682 			slot = radix_tree_iter_resume(slot, &iter);
683 			cond_resched_rcu();
684 		}
685 	}
686 
687 	rcu_read_unlock();
688 
689 	return swapped << PAGE_SHIFT;
690 }
691 
692 /*
693  * Determine (in bytes) how many of the shmem object's pages mapped by the
694  * given vma is swapped out.
695  *
696  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
697  * as long as the inode doesn't go away and racy results are not a problem.
698  */
699 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
700 {
701 	struct inode *inode = file_inode(vma->vm_file);
702 	struct shmem_inode_info *info = SHMEM_I(inode);
703 	struct address_space *mapping = inode->i_mapping;
704 	unsigned long swapped;
705 
706 	/* Be careful as we don't hold info->lock */
707 	swapped = READ_ONCE(info->swapped);
708 
709 	/*
710 	 * The easier cases are when the shmem object has nothing in swap, or
711 	 * the vma maps it whole. Then we can simply use the stats that we
712 	 * already track.
713 	 */
714 	if (!swapped)
715 		return 0;
716 
717 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
718 		return swapped << PAGE_SHIFT;
719 
720 	/* Here comes the more involved part */
721 	return shmem_partial_swap_usage(mapping,
722 			linear_page_index(vma, vma->vm_start),
723 			linear_page_index(vma, vma->vm_end));
724 }
725 
726 /*
727  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
728  */
729 void shmem_unlock_mapping(struct address_space *mapping)
730 {
731 	struct pagevec pvec;
732 	pgoff_t indices[PAGEVEC_SIZE];
733 	pgoff_t index = 0;
734 
735 	pagevec_init(&pvec, 0);
736 	/*
737 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
738 	 */
739 	while (!mapping_unevictable(mapping)) {
740 		/*
741 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
742 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
743 		 */
744 		pvec.nr = find_get_entries(mapping, index,
745 					   PAGEVEC_SIZE, pvec.pages, indices);
746 		if (!pvec.nr)
747 			break;
748 		index = indices[pvec.nr - 1] + 1;
749 		pagevec_remove_exceptionals(&pvec);
750 		check_move_unevictable_pages(pvec.pages, pvec.nr);
751 		pagevec_release(&pvec);
752 		cond_resched();
753 	}
754 }
755 
756 /*
757  * Remove range of pages and swap entries from radix tree, and free them.
758  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
759  */
760 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
761 								 bool unfalloc)
762 {
763 	struct address_space *mapping = inode->i_mapping;
764 	struct shmem_inode_info *info = SHMEM_I(inode);
765 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
766 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
767 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
768 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
769 	struct pagevec pvec;
770 	pgoff_t indices[PAGEVEC_SIZE];
771 	long nr_swaps_freed = 0;
772 	pgoff_t index;
773 	int i;
774 
775 	if (lend == -1)
776 		end = -1;	/* unsigned, so actually very big */
777 
778 	pagevec_init(&pvec, 0);
779 	index = start;
780 	while (index < end) {
781 		pvec.nr = find_get_entries(mapping, index,
782 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
783 			pvec.pages, indices);
784 		if (!pvec.nr)
785 			break;
786 		for (i = 0; i < pagevec_count(&pvec); i++) {
787 			struct page *page = pvec.pages[i];
788 
789 			index = indices[i];
790 			if (index >= end)
791 				break;
792 
793 			if (radix_tree_exceptional_entry(page)) {
794 				if (unfalloc)
795 					continue;
796 				nr_swaps_freed += !shmem_free_swap(mapping,
797 								index, page);
798 				continue;
799 			}
800 
801 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
802 
803 			if (!trylock_page(page))
804 				continue;
805 
806 			if (PageTransTail(page)) {
807 				/* Middle of THP: zero out the page */
808 				clear_highpage(page);
809 				unlock_page(page);
810 				continue;
811 			} else if (PageTransHuge(page)) {
812 				if (index == round_down(end, HPAGE_PMD_NR)) {
813 					/*
814 					 * Range ends in the middle of THP:
815 					 * zero out the page
816 					 */
817 					clear_highpage(page);
818 					unlock_page(page);
819 					continue;
820 				}
821 				index += HPAGE_PMD_NR - 1;
822 				i += HPAGE_PMD_NR - 1;
823 			}
824 
825 			if (!unfalloc || !PageUptodate(page)) {
826 				VM_BUG_ON_PAGE(PageTail(page), page);
827 				if (page_mapping(page) == mapping) {
828 					VM_BUG_ON_PAGE(PageWriteback(page), page);
829 					truncate_inode_page(mapping, page);
830 				}
831 			}
832 			unlock_page(page);
833 		}
834 		pagevec_remove_exceptionals(&pvec);
835 		pagevec_release(&pvec);
836 		cond_resched();
837 		index++;
838 	}
839 
840 	if (partial_start) {
841 		struct page *page = NULL;
842 		shmem_getpage(inode, start - 1, &page, SGP_READ);
843 		if (page) {
844 			unsigned int top = PAGE_SIZE;
845 			if (start > end) {
846 				top = partial_end;
847 				partial_end = 0;
848 			}
849 			zero_user_segment(page, partial_start, top);
850 			set_page_dirty(page);
851 			unlock_page(page);
852 			put_page(page);
853 		}
854 	}
855 	if (partial_end) {
856 		struct page *page = NULL;
857 		shmem_getpage(inode, end, &page, SGP_READ);
858 		if (page) {
859 			zero_user_segment(page, 0, partial_end);
860 			set_page_dirty(page);
861 			unlock_page(page);
862 			put_page(page);
863 		}
864 	}
865 	if (start >= end)
866 		return;
867 
868 	index = start;
869 	while (index < end) {
870 		cond_resched();
871 
872 		pvec.nr = find_get_entries(mapping, index,
873 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
874 				pvec.pages, indices);
875 		if (!pvec.nr) {
876 			/* If all gone or hole-punch or unfalloc, we're done */
877 			if (index == start || end != -1)
878 				break;
879 			/* But if truncating, restart to make sure all gone */
880 			index = start;
881 			continue;
882 		}
883 		for (i = 0; i < pagevec_count(&pvec); i++) {
884 			struct page *page = pvec.pages[i];
885 
886 			index = indices[i];
887 			if (index >= end)
888 				break;
889 
890 			if (radix_tree_exceptional_entry(page)) {
891 				if (unfalloc)
892 					continue;
893 				if (shmem_free_swap(mapping, index, page)) {
894 					/* Swap was replaced by page: retry */
895 					index--;
896 					break;
897 				}
898 				nr_swaps_freed++;
899 				continue;
900 			}
901 
902 			lock_page(page);
903 
904 			if (PageTransTail(page)) {
905 				/* Middle of THP: zero out the page */
906 				clear_highpage(page);
907 				unlock_page(page);
908 				/*
909 				 * Partial thp truncate due 'start' in middle
910 				 * of THP: don't need to look on these pages
911 				 * again on !pvec.nr restart.
912 				 */
913 				if (index != round_down(end, HPAGE_PMD_NR))
914 					start++;
915 				continue;
916 			} else if (PageTransHuge(page)) {
917 				if (index == round_down(end, HPAGE_PMD_NR)) {
918 					/*
919 					 * Range ends in the middle of THP:
920 					 * zero out the page
921 					 */
922 					clear_highpage(page);
923 					unlock_page(page);
924 					continue;
925 				}
926 				index += HPAGE_PMD_NR - 1;
927 				i += HPAGE_PMD_NR - 1;
928 			}
929 
930 			if (!unfalloc || !PageUptodate(page)) {
931 				VM_BUG_ON_PAGE(PageTail(page), page);
932 				if (page_mapping(page) == mapping) {
933 					VM_BUG_ON_PAGE(PageWriteback(page), page);
934 					truncate_inode_page(mapping, page);
935 				} else {
936 					/* Page was replaced by swap: retry */
937 					unlock_page(page);
938 					index--;
939 					break;
940 				}
941 			}
942 			unlock_page(page);
943 		}
944 		pagevec_remove_exceptionals(&pvec);
945 		pagevec_release(&pvec);
946 		index++;
947 	}
948 
949 	spin_lock_irq(&info->lock);
950 	info->swapped -= nr_swaps_freed;
951 	shmem_recalc_inode(inode);
952 	spin_unlock_irq(&info->lock);
953 }
954 
955 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
956 {
957 	shmem_undo_range(inode, lstart, lend, false);
958 	inode->i_ctime = inode->i_mtime = current_time(inode);
959 }
960 EXPORT_SYMBOL_GPL(shmem_truncate_range);
961 
962 static int shmem_getattr(const struct path *path, struct kstat *stat,
963 			 u32 request_mask, unsigned int query_flags)
964 {
965 	struct inode *inode = path->dentry->d_inode;
966 	struct shmem_inode_info *info = SHMEM_I(inode);
967 
968 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
969 		spin_lock_irq(&info->lock);
970 		shmem_recalc_inode(inode);
971 		spin_unlock_irq(&info->lock);
972 	}
973 	generic_fillattr(inode, stat);
974 	return 0;
975 }
976 
977 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
978 {
979 	struct inode *inode = d_inode(dentry);
980 	struct shmem_inode_info *info = SHMEM_I(inode);
981 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
982 	int error;
983 
984 	error = setattr_prepare(dentry, attr);
985 	if (error)
986 		return error;
987 
988 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
989 		loff_t oldsize = inode->i_size;
990 		loff_t newsize = attr->ia_size;
991 
992 		/* protected by i_mutex */
993 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
994 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
995 			return -EPERM;
996 
997 		if (newsize != oldsize) {
998 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
999 					oldsize, newsize);
1000 			if (error)
1001 				return error;
1002 			i_size_write(inode, newsize);
1003 			inode->i_ctime = inode->i_mtime = current_time(inode);
1004 		}
1005 		if (newsize <= oldsize) {
1006 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1007 			if (oldsize > holebegin)
1008 				unmap_mapping_range(inode->i_mapping,
1009 							holebegin, 0, 1);
1010 			if (info->alloced)
1011 				shmem_truncate_range(inode,
1012 							newsize, (loff_t)-1);
1013 			/* unmap again to remove racily COWed private pages */
1014 			if (oldsize > holebegin)
1015 				unmap_mapping_range(inode->i_mapping,
1016 							holebegin, 0, 1);
1017 
1018 			/*
1019 			 * Part of the huge page can be beyond i_size: subject
1020 			 * to shrink under memory pressure.
1021 			 */
1022 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1023 				spin_lock(&sbinfo->shrinklist_lock);
1024 				/*
1025 				 * _careful to defend against unlocked access to
1026 				 * ->shrink_list in shmem_unused_huge_shrink()
1027 				 */
1028 				if (list_empty_careful(&info->shrinklist)) {
1029 					list_add_tail(&info->shrinklist,
1030 							&sbinfo->shrinklist);
1031 					sbinfo->shrinklist_len++;
1032 				}
1033 				spin_unlock(&sbinfo->shrinklist_lock);
1034 			}
1035 		}
1036 	}
1037 
1038 	setattr_copy(inode, attr);
1039 	if (attr->ia_valid & ATTR_MODE)
1040 		error = posix_acl_chmod(inode, inode->i_mode);
1041 	return error;
1042 }
1043 
1044 static void shmem_evict_inode(struct inode *inode)
1045 {
1046 	struct shmem_inode_info *info = SHMEM_I(inode);
1047 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1048 
1049 	if (inode->i_mapping->a_ops == &shmem_aops) {
1050 		shmem_unacct_size(info->flags, inode->i_size);
1051 		inode->i_size = 0;
1052 		shmem_truncate_range(inode, 0, (loff_t)-1);
1053 		if (!list_empty(&info->shrinklist)) {
1054 			spin_lock(&sbinfo->shrinklist_lock);
1055 			if (!list_empty(&info->shrinklist)) {
1056 				list_del_init(&info->shrinklist);
1057 				sbinfo->shrinklist_len--;
1058 			}
1059 			spin_unlock(&sbinfo->shrinklist_lock);
1060 		}
1061 		if (!list_empty(&info->swaplist)) {
1062 			mutex_lock(&shmem_swaplist_mutex);
1063 			list_del_init(&info->swaplist);
1064 			mutex_unlock(&shmem_swaplist_mutex);
1065 		}
1066 	}
1067 
1068 	simple_xattrs_free(&info->xattrs);
1069 	WARN_ON(inode->i_blocks);
1070 	shmem_free_inode(inode->i_sb);
1071 	clear_inode(inode);
1072 }
1073 
1074 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1075 {
1076 	struct radix_tree_iter iter;
1077 	void **slot;
1078 	unsigned long found = -1;
1079 	unsigned int checked = 0;
1080 
1081 	rcu_read_lock();
1082 	radix_tree_for_each_slot(slot, root, &iter, 0) {
1083 		if (*slot == item) {
1084 			found = iter.index;
1085 			break;
1086 		}
1087 		checked++;
1088 		if ((checked % 4096) != 0)
1089 			continue;
1090 		slot = radix_tree_iter_resume(slot, &iter);
1091 		cond_resched_rcu();
1092 	}
1093 
1094 	rcu_read_unlock();
1095 	return found;
1096 }
1097 
1098 /*
1099  * If swap found in inode, free it and move page from swapcache to filecache.
1100  */
1101 static int shmem_unuse_inode(struct shmem_inode_info *info,
1102 			     swp_entry_t swap, struct page **pagep)
1103 {
1104 	struct address_space *mapping = info->vfs_inode.i_mapping;
1105 	void *radswap;
1106 	pgoff_t index;
1107 	gfp_t gfp;
1108 	int error = 0;
1109 
1110 	radswap = swp_to_radix_entry(swap);
1111 	index = find_swap_entry(&mapping->page_tree, radswap);
1112 	if (index == -1)
1113 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1114 
1115 	/*
1116 	 * Move _head_ to start search for next from here.
1117 	 * But be careful: shmem_evict_inode checks list_empty without taking
1118 	 * mutex, and there's an instant in list_move_tail when info->swaplist
1119 	 * would appear empty, if it were the only one on shmem_swaplist.
1120 	 */
1121 	if (shmem_swaplist.next != &info->swaplist)
1122 		list_move_tail(&shmem_swaplist, &info->swaplist);
1123 
1124 	gfp = mapping_gfp_mask(mapping);
1125 	if (shmem_should_replace_page(*pagep, gfp)) {
1126 		mutex_unlock(&shmem_swaplist_mutex);
1127 		error = shmem_replace_page(pagep, gfp, info, index);
1128 		mutex_lock(&shmem_swaplist_mutex);
1129 		/*
1130 		 * We needed to drop mutex to make that restrictive page
1131 		 * allocation, but the inode might have been freed while we
1132 		 * dropped it: although a racing shmem_evict_inode() cannot
1133 		 * complete without emptying the radix_tree, our page lock
1134 		 * on this swapcache page is not enough to prevent that -
1135 		 * free_swap_and_cache() of our swap entry will only
1136 		 * trylock_page(), removing swap from radix_tree whatever.
1137 		 *
1138 		 * We must not proceed to shmem_add_to_page_cache() if the
1139 		 * inode has been freed, but of course we cannot rely on
1140 		 * inode or mapping or info to check that.  However, we can
1141 		 * safely check if our swap entry is still in use (and here
1142 		 * it can't have got reused for another page): if it's still
1143 		 * in use, then the inode cannot have been freed yet, and we
1144 		 * can safely proceed (if it's no longer in use, that tells
1145 		 * nothing about the inode, but we don't need to unuse swap).
1146 		 */
1147 		if (!page_swapcount(*pagep))
1148 			error = -ENOENT;
1149 	}
1150 
1151 	/*
1152 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1153 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1154 	 * beneath us (pagelock doesn't help until the page is in pagecache).
1155 	 */
1156 	if (!error)
1157 		error = shmem_add_to_page_cache(*pagep, mapping, index,
1158 						radswap);
1159 	if (error != -ENOMEM) {
1160 		/*
1161 		 * Truncation and eviction use free_swap_and_cache(), which
1162 		 * only does trylock page: if we raced, best clean up here.
1163 		 */
1164 		delete_from_swap_cache(*pagep);
1165 		set_page_dirty(*pagep);
1166 		if (!error) {
1167 			spin_lock_irq(&info->lock);
1168 			info->swapped--;
1169 			spin_unlock_irq(&info->lock);
1170 			swap_free(swap);
1171 		}
1172 	}
1173 	return error;
1174 }
1175 
1176 /*
1177  * Search through swapped inodes to find and replace swap by page.
1178  */
1179 int shmem_unuse(swp_entry_t swap, struct page *page)
1180 {
1181 	struct list_head *this, *next;
1182 	struct shmem_inode_info *info;
1183 	struct mem_cgroup *memcg;
1184 	int error = 0;
1185 
1186 	/*
1187 	 * There's a faint possibility that swap page was replaced before
1188 	 * caller locked it: caller will come back later with the right page.
1189 	 */
1190 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1191 		goto out;
1192 
1193 	/*
1194 	 * Charge page using GFP_KERNEL while we can wait, before taking
1195 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1196 	 * Charged back to the user (not to caller) when swap account is used.
1197 	 */
1198 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1199 			false);
1200 	if (error)
1201 		goto out;
1202 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1203 	error = -EAGAIN;
1204 
1205 	mutex_lock(&shmem_swaplist_mutex);
1206 	list_for_each_safe(this, next, &shmem_swaplist) {
1207 		info = list_entry(this, struct shmem_inode_info, swaplist);
1208 		if (info->swapped)
1209 			error = shmem_unuse_inode(info, swap, &page);
1210 		else
1211 			list_del_init(&info->swaplist);
1212 		cond_resched();
1213 		if (error != -EAGAIN)
1214 			break;
1215 		/* found nothing in this: move on to search the next */
1216 	}
1217 	mutex_unlock(&shmem_swaplist_mutex);
1218 
1219 	if (error) {
1220 		if (error != -ENOMEM)
1221 			error = 0;
1222 		mem_cgroup_cancel_charge(page, memcg, false);
1223 	} else
1224 		mem_cgroup_commit_charge(page, memcg, true, false);
1225 out:
1226 	unlock_page(page);
1227 	put_page(page);
1228 	return error;
1229 }
1230 
1231 /*
1232  * Move the page from the page cache to the swap cache.
1233  */
1234 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1235 {
1236 	struct shmem_inode_info *info;
1237 	struct address_space *mapping;
1238 	struct inode *inode;
1239 	swp_entry_t swap;
1240 	pgoff_t index;
1241 
1242 	VM_BUG_ON_PAGE(PageCompound(page), page);
1243 	BUG_ON(!PageLocked(page));
1244 	mapping = page->mapping;
1245 	index = page->index;
1246 	inode = mapping->host;
1247 	info = SHMEM_I(inode);
1248 	if (info->flags & VM_LOCKED)
1249 		goto redirty;
1250 	if (!total_swap_pages)
1251 		goto redirty;
1252 
1253 	/*
1254 	 * Our capabilities prevent regular writeback or sync from ever calling
1255 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1256 	 * its underlying filesystem, in which case tmpfs should write out to
1257 	 * swap only in response to memory pressure, and not for the writeback
1258 	 * threads or sync.
1259 	 */
1260 	if (!wbc->for_reclaim) {
1261 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1262 		goto redirty;
1263 	}
1264 
1265 	/*
1266 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1267 	 * value into swapfile.c, the only way we can correctly account for a
1268 	 * fallocated page arriving here is now to initialize it and write it.
1269 	 *
1270 	 * That's okay for a page already fallocated earlier, but if we have
1271 	 * not yet completed the fallocation, then (a) we want to keep track
1272 	 * of this page in case we have to undo it, and (b) it may not be a
1273 	 * good idea to continue anyway, once we're pushing into swap.  So
1274 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1275 	 */
1276 	if (!PageUptodate(page)) {
1277 		if (inode->i_private) {
1278 			struct shmem_falloc *shmem_falloc;
1279 			spin_lock(&inode->i_lock);
1280 			shmem_falloc = inode->i_private;
1281 			if (shmem_falloc &&
1282 			    !shmem_falloc->waitq &&
1283 			    index >= shmem_falloc->start &&
1284 			    index < shmem_falloc->next)
1285 				shmem_falloc->nr_unswapped++;
1286 			else
1287 				shmem_falloc = NULL;
1288 			spin_unlock(&inode->i_lock);
1289 			if (shmem_falloc)
1290 				goto redirty;
1291 		}
1292 		clear_highpage(page);
1293 		flush_dcache_page(page);
1294 		SetPageUptodate(page);
1295 	}
1296 
1297 	swap = get_swap_page(page);
1298 	if (!swap.val)
1299 		goto redirty;
1300 
1301 	if (mem_cgroup_try_charge_swap(page, swap))
1302 		goto free_swap;
1303 
1304 	/*
1305 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1306 	 * if it's not already there.  Do it now before the page is
1307 	 * moved to swap cache, when its pagelock no longer protects
1308 	 * the inode from eviction.  But don't unlock the mutex until
1309 	 * we've incremented swapped, because shmem_unuse_inode() will
1310 	 * prune a !swapped inode from the swaplist under this mutex.
1311 	 */
1312 	mutex_lock(&shmem_swaplist_mutex);
1313 	if (list_empty(&info->swaplist))
1314 		list_add_tail(&info->swaplist, &shmem_swaplist);
1315 
1316 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1317 		spin_lock_irq(&info->lock);
1318 		shmem_recalc_inode(inode);
1319 		info->swapped++;
1320 		spin_unlock_irq(&info->lock);
1321 
1322 		swap_shmem_alloc(swap);
1323 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1324 
1325 		mutex_unlock(&shmem_swaplist_mutex);
1326 		BUG_ON(page_mapped(page));
1327 		swap_writepage(page, wbc);
1328 		return 0;
1329 	}
1330 
1331 	mutex_unlock(&shmem_swaplist_mutex);
1332 free_swap:
1333 	put_swap_page(page, swap);
1334 redirty:
1335 	set_page_dirty(page);
1336 	if (wbc->for_reclaim)
1337 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1338 	unlock_page(page);
1339 	return 0;
1340 }
1341 
1342 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1343 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1344 {
1345 	char buffer[64];
1346 
1347 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1348 		return;		/* show nothing */
1349 
1350 	mpol_to_str(buffer, sizeof(buffer), mpol);
1351 
1352 	seq_printf(seq, ",mpol=%s", buffer);
1353 }
1354 
1355 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1356 {
1357 	struct mempolicy *mpol = NULL;
1358 	if (sbinfo->mpol) {
1359 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1360 		mpol = sbinfo->mpol;
1361 		mpol_get(mpol);
1362 		spin_unlock(&sbinfo->stat_lock);
1363 	}
1364 	return mpol;
1365 }
1366 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1367 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1368 {
1369 }
1370 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1371 {
1372 	return NULL;
1373 }
1374 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1375 #ifndef CONFIG_NUMA
1376 #define vm_policy vm_private_data
1377 #endif
1378 
1379 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1380 		struct shmem_inode_info *info, pgoff_t index)
1381 {
1382 	/* Create a pseudo vma that just contains the policy */
1383 	vma->vm_start = 0;
1384 	/* Bias interleave by inode number to distribute better across nodes */
1385 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1386 	vma->vm_ops = NULL;
1387 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1388 }
1389 
1390 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1391 {
1392 	/* Drop reference taken by mpol_shared_policy_lookup() */
1393 	mpol_cond_put(vma->vm_policy);
1394 }
1395 
1396 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1397 			struct shmem_inode_info *info, pgoff_t index)
1398 {
1399 	struct vm_area_struct pvma;
1400 	struct page *page;
1401 
1402 	shmem_pseudo_vma_init(&pvma, info, index);
1403 	page = swapin_readahead(swap, gfp, &pvma, 0);
1404 	shmem_pseudo_vma_destroy(&pvma);
1405 
1406 	return page;
1407 }
1408 
1409 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1410 		struct shmem_inode_info *info, pgoff_t index)
1411 {
1412 	struct vm_area_struct pvma;
1413 	struct inode *inode = &info->vfs_inode;
1414 	struct address_space *mapping = inode->i_mapping;
1415 	pgoff_t idx, hindex;
1416 	void __rcu **results;
1417 	struct page *page;
1418 
1419 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1420 		return NULL;
1421 
1422 	hindex = round_down(index, HPAGE_PMD_NR);
1423 	rcu_read_lock();
1424 	if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1425 				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1426 		rcu_read_unlock();
1427 		return NULL;
1428 	}
1429 	rcu_read_unlock();
1430 
1431 	shmem_pseudo_vma_init(&pvma, info, hindex);
1432 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1433 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1434 	shmem_pseudo_vma_destroy(&pvma);
1435 	if (page)
1436 		prep_transhuge_page(page);
1437 	return page;
1438 }
1439 
1440 static struct page *shmem_alloc_page(gfp_t gfp,
1441 			struct shmem_inode_info *info, pgoff_t index)
1442 {
1443 	struct vm_area_struct pvma;
1444 	struct page *page;
1445 
1446 	shmem_pseudo_vma_init(&pvma, info, index);
1447 	page = alloc_page_vma(gfp, &pvma, 0);
1448 	shmem_pseudo_vma_destroy(&pvma);
1449 
1450 	return page;
1451 }
1452 
1453 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1454 		struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1455 		pgoff_t index, bool huge)
1456 {
1457 	struct page *page;
1458 	int nr;
1459 	int err = -ENOSPC;
1460 
1461 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1462 		huge = false;
1463 	nr = huge ? HPAGE_PMD_NR : 1;
1464 
1465 	if (shmem_acct_block(info->flags, nr))
1466 		goto failed;
1467 	if (sbinfo->max_blocks) {
1468 		if (percpu_counter_compare(&sbinfo->used_blocks,
1469 					sbinfo->max_blocks - nr) > 0)
1470 			goto unacct;
1471 		percpu_counter_add(&sbinfo->used_blocks, nr);
1472 	}
1473 
1474 	if (huge)
1475 		page = shmem_alloc_hugepage(gfp, info, index);
1476 	else
1477 		page = shmem_alloc_page(gfp, info, index);
1478 	if (page) {
1479 		__SetPageLocked(page);
1480 		__SetPageSwapBacked(page);
1481 		return page;
1482 	}
1483 
1484 	err = -ENOMEM;
1485 	if (sbinfo->max_blocks)
1486 		percpu_counter_add(&sbinfo->used_blocks, -nr);
1487 unacct:
1488 	shmem_unacct_blocks(info->flags, nr);
1489 failed:
1490 	return ERR_PTR(err);
1491 }
1492 
1493 /*
1494  * When a page is moved from swapcache to shmem filecache (either by the
1495  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1496  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1497  * ignorance of the mapping it belongs to.  If that mapping has special
1498  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1499  * we may need to copy to a suitable page before moving to filecache.
1500  *
1501  * In a future release, this may well be extended to respect cpuset and
1502  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1503  * but for now it is a simple matter of zone.
1504  */
1505 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1506 {
1507 	return page_zonenum(page) > gfp_zone(gfp);
1508 }
1509 
1510 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1511 				struct shmem_inode_info *info, pgoff_t index)
1512 {
1513 	struct page *oldpage, *newpage;
1514 	struct address_space *swap_mapping;
1515 	pgoff_t swap_index;
1516 	int error;
1517 
1518 	oldpage = *pagep;
1519 	swap_index = page_private(oldpage);
1520 	swap_mapping = page_mapping(oldpage);
1521 
1522 	/*
1523 	 * We have arrived here because our zones are constrained, so don't
1524 	 * limit chance of success by further cpuset and node constraints.
1525 	 */
1526 	gfp &= ~GFP_CONSTRAINT_MASK;
1527 	newpage = shmem_alloc_page(gfp, info, index);
1528 	if (!newpage)
1529 		return -ENOMEM;
1530 
1531 	get_page(newpage);
1532 	copy_highpage(newpage, oldpage);
1533 	flush_dcache_page(newpage);
1534 
1535 	__SetPageLocked(newpage);
1536 	__SetPageSwapBacked(newpage);
1537 	SetPageUptodate(newpage);
1538 	set_page_private(newpage, swap_index);
1539 	SetPageSwapCache(newpage);
1540 
1541 	/*
1542 	 * Our caller will very soon move newpage out of swapcache, but it's
1543 	 * a nice clean interface for us to replace oldpage by newpage there.
1544 	 */
1545 	spin_lock_irq(&swap_mapping->tree_lock);
1546 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1547 								   newpage);
1548 	if (!error) {
1549 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1550 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1551 	}
1552 	spin_unlock_irq(&swap_mapping->tree_lock);
1553 
1554 	if (unlikely(error)) {
1555 		/*
1556 		 * Is this possible?  I think not, now that our callers check
1557 		 * both PageSwapCache and page_private after getting page lock;
1558 		 * but be defensive.  Reverse old to newpage for clear and free.
1559 		 */
1560 		oldpage = newpage;
1561 	} else {
1562 		mem_cgroup_migrate(oldpage, newpage);
1563 		lru_cache_add_anon(newpage);
1564 		*pagep = newpage;
1565 	}
1566 
1567 	ClearPageSwapCache(oldpage);
1568 	set_page_private(oldpage, 0);
1569 
1570 	unlock_page(oldpage);
1571 	put_page(oldpage);
1572 	put_page(oldpage);
1573 	return error;
1574 }
1575 
1576 /*
1577  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1578  *
1579  * If we allocate a new one we do not mark it dirty. That's up to the
1580  * vm. If we swap it in we mark it dirty since we also free the swap
1581  * entry since a page cannot live in both the swap and page cache.
1582  *
1583  * fault_mm and fault_type are only supplied by shmem_fault:
1584  * otherwise they are NULL.
1585  */
1586 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1587 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1588 	struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1589 {
1590 	struct address_space *mapping = inode->i_mapping;
1591 	struct shmem_inode_info *info = SHMEM_I(inode);
1592 	struct shmem_sb_info *sbinfo;
1593 	struct mm_struct *charge_mm;
1594 	struct mem_cgroup *memcg;
1595 	struct page *page;
1596 	swp_entry_t swap;
1597 	enum sgp_type sgp_huge = sgp;
1598 	pgoff_t hindex = index;
1599 	int error;
1600 	int once = 0;
1601 	int alloced = 0;
1602 
1603 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1604 		return -EFBIG;
1605 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1606 		sgp = SGP_CACHE;
1607 repeat:
1608 	swap.val = 0;
1609 	page = find_lock_entry(mapping, index);
1610 	if (radix_tree_exceptional_entry(page)) {
1611 		swap = radix_to_swp_entry(page);
1612 		page = NULL;
1613 	}
1614 
1615 	if (sgp <= SGP_CACHE &&
1616 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1617 		error = -EINVAL;
1618 		goto unlock;
1619 	}
1620 
1621 	if (page && sgp == SGP_WRITE)
1622 		mark_page_accessed(page);
1623 
1624 	/* fallocated page? */
1625 	if (page && !PageUptodate(page)) {
1626 		if (sgp != SGP_READ)
1627 			goto clear;
1628 		unlock_page(page);
1629 		put_page(page);
1630 		page = NULL;
1631 	}
1632 	if (page || (sgp == SGP_READ && !swap.val)) {
1633 		*pagep = page;
1634 		return 0;
1635 	}
1636 
1637 	/*
1638 	 * Fast cache lookup did not find it:
1639 	 * bring it back from swap or allocate.
1640 	 */
1641 	sbinfo = SHMEM_SB(inode->i_sb);
1642 	charge_mm = vma ? vma->vm_mm : current->mm;
1643 
1644 	if (swap.val) {
1645 		/* Look it up and read it in.. */
1646 		page = lookup_swap_cache(swap);
1647 		if (!page) {
1648 			/* Or update major stats only when swapin succeeds?? */
1649 			if (fault_type) {
1650 				*fault_type |= VM_FAULT_MAJOR;
1651 				count_vm_event(PGMAJFAULT);
1652 				count_memcg_event_mm(charge_mm, PGMAJFAULT);
1653 			}
1654 			/* Here we actually start the io */
1655 			page = shmem_swapin(swap, gfp, info, index);
1656 			if (!page) {
1657 				error = -ENOMEM;
1658 				goto failed;
1659 			}
1660 		}
1661 
1662 		/* We have to do this with page locked to prevent races */
1663 		lock_page(page);
1664 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1665 		    !shmem_confirm_swap(mapping, index, swap)) {
1666 			error = -EEXIST;	/* try again */
1667 			goto unlock;
1668 		}
1669 		if (!PageUptodate(page)) {
1670 			error = -EIO;
1671 			goto failed;
1672 		}
1673 		wait_on_page_writeback(page);
1674 
1675 		if (shmem_should_replace_page(page, gfp)) {
1676 			error = shmem_replace_page(&page, gfp, info, index);
1677 			if (error)
1678 				goto failed;
1679 		}
1680 
1681 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1682 				false);
1683 		if (!error) {
1684 			error = shmem_add_to_page_cache(page, mapping, index,
1685 						swp_to_radix_entry(swap));
1686 			/*
1687 			 * We already confirmed swap under page lock, and make
1688 			 * no memory allocation here, so usually no possibility
1689 			 * of error; but free_swap_and_cache() only trylocks a
1690 			 * page, so it is just possible that the entry has been
1691 			 * truncated or holepunched since swap was confirmed.
1692 			 * shmem_undo_range() will have done some of the
1693 			 * unaccounting, now delete_from_swap_cache() will do
1694 			 * the rest.
1695 			 * Reset swap.val? No, leave it so "failed" goes back to
1696 			 * "repeat": reading a hole and writing should succeed.
1697 			 */
1698 			if (error) {
1699 				mem_cgroup_cancel_charge(page, memcg, false);
1700 				delete_from_swap_cache(page);
1701 			}
1702 		}
1703 		if (error)
1704 			goto failed;
1705 
1706 		mem_cgroup_commit_charge(page, memcg, true, false);
1707 
1708 		spin_lock_irq(&info->lock);
1709 		info->swapped--;
1710 		shmem_recalc_inode(inode);
1711 		spin_unlock_irq(&info->lock);
1712 
1713 		if (sgp == SGP_WRITE)
1714 			mark_page_accessed(page);
1715 
1716 		delete_from_swap_cache(page);
1717 		set_page_dirty(page);
1718 		swap_free(swap);
1719 
1720 	} else {
1721 		if (vma && userfaultfd_missing(vma)) {
1722 			*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1723 			return 0;
1724 		}
1725 
1726 		/* shmem_symlink() */
1727 		if (mapping->a_ops != &shmem_aops)
1728 			goto alloc_nohuge;
1729 		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1730 			goto alloc_nohuge;
1731 		if (shmem_huge == SHMEM_HUGE_FORCE)
1732 			goto alloc_huge;
1733 		switch (sbinfo->huge) {
1734 			loff_t i_size;
1735 			pgoff_t off;
1736 		case SHMEM_HUGE_NEVER:
1737 			goto alloc_nohuge;
1738 		case SHMEM_HUGE_WITHIN_SIZE:
1739 			off = round_up(index, HPAGE_PMD_NR);
1740 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1741 			if (i_size >= HPAGE_PMD_SIZE &&
1742 					i_size >> PAGE_SHIFT >= off)
1743 				goto alloc_huge;
1744 			/* fallthrough */
1745 		case SHMEM_HUGE_ADVISE:
1746 			if (sgp_huge == SGP_HUGE)
1747 				goto alloc_huge;
1748 			/* TODO: implement fadvise() hints */
1749 			goto alloc_nohuge;
1750 		}
1751 
1752 alloc_huge:
1753 		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1754 				index, true);
1755 		if (IS_ERR(page)) {
1756 alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1757 					index, false);
1758 		}
1759 		if (IS_ERR(page)) {
1760 			int retry = 5;
1761 			error = PTR_ERR(page);
1762 			page = NULL;
1763 			if (error != -ENOSPC)
1764 				goto failed;
1765 			/*
1766 			 * Try to reclaim some spece by splitting a huge page
1767 			 * beyond i_size on the filesystem.
1768 			 */
1769 			while (retry--) {
1770 				int ret;
1771 				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1772 				if (ret == SHRINK_STOP)
1773 					break;
1774 				if (ret)
1775 					goto alloc_nohuge;
1776 			}
1777 			goto failed;
1778 		}
1779 
1780 		if (PageTransHuge(page))
1781 			hindex = round_down(index, HPAGE_PMD_NR);
1782 		else
1783 			hindex = index;
1784 
1785 		if (sgp == SGP_WRITE)
1786 			__SetPageReferenced(page);
1787 
1788 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1789 				PageTransHuge(page));
1790 		if (error)
1791 			goto unacct;
1792 		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1793 				compound_order(page));
1794 		if (!error) {
1795 			error = shmem_add_to_page_cache(page, mapping, hindex,
1796 							NULL);
1797 			radix_tree_preload_end();
1798 		}
1799 		if (error) {
1800 			mem_cgroup_cancel_charge(page, memcg,
1801 					PageTransHuge(page));
1802 			goto unacct;
1803 		}
1804 		mem_cgroup_commit_charge(page, memcg, false,
1805 				PageTransHuge(page));
1806 		lru_cache_add_anon(page);
1807 
1808 		spin_lock_irq(&info->lock);
1809 		info->alloced += 1 << compound_order(page);
1810 		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1811 		shmem_recalc_inode(inode);
1812 		spin_unlock_irq(&info->lock);
1813 		alloced = true;
1814 
1815 		if (PageTransHuge(page) &&
1816 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1817 				hindex + HPAGE_PMD_NR - 1) {
1818 			/*
1819 			 * Part of the huge page is beyond i_size: subject
1820 			 * to shrink under memory pressure.
1821 			 */
1822 			spin_lock(&sbinfo->shrinklist_lock);
1823 			/*
1824 			 * _careful to defend against unlocked access to
1825 			 * ->shrink_list in shmem_unused_huge_shrink()
1826 			 */
1827 			if (list_empty_careful(&info->shrinklist)) {
1828 				list_add_tail(&info->shrinklist,
1829 						&sbinfo->shrinklist);
1830 				sbinfo->shrinklist_len++;
1831 			}
1832 			spin_unlock(&sbinfo->shrinklist_lock);
1833 		}
1834 
1835 		/*
1836 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1837 		 */
1838 		if (sgp == SGP_FALLOC)
1839 			sgp = SGP_WRITE;
1840 clear:
1841 		/*
1842 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1843 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1844 		 * it now, lest undo on failure cancel our earlier guarantee.
1845 		 */
1846 		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1847 			struct page *head = compound_head(page);
1848 			int i;
1849 
1850 			for (i = 0; i < (1 << compound_order(head)); i++) {
1851 				clear_highpage(head + i);
1852 				flush_dcache_page(head + i);
1853 			}
1854 			SetPageUptodate(head);
1855 		}
1856 	}
1857 
1858 	/* Perhaps the file has been truncated since we checked */
1859 	if (sgp <= SGP_CACHE &&
1860 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1861 		if (alloced) {
1862 			ClearPageDirty(page);
1863 			delete_from_page_cache(page);
1864 			spin_lock_irq(&info->lock);
1865 			shmem_recalc_inode(inode);
1866 			spin_unlock_irq(&info->lock);
1867 		}
1868 		error = -EINVAL;
1869 		goto unlock;
1870 	}
1871 	*pagep = page + index - hindex;
1872 	return 0;
1873 
1874 	/*
1875 	 * Error recovery.
1876 	 */
1877 unacct:
1878 	if (sbinfo->max_blocks)
1879 		percpu_counter_sub(&sbinfo->used_blocks,
1880 				1 << compound_order(page));
1881 	shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1882 
1883 	if (PageTransHuge(page)) {
1884 		unlock_page(page);
1885 		put_page(page);
1886 		goto alloc_nohuge;
1887 	}
1888 failed:
1889 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1890 		error = -EEXIST;
1891 unlock:
1892 	if (page) {
1893 		unlock_page(page);
1894 		put_page(page);
1895 	}
1896 	if (error == -ENOSPC && !once++) {
1897 		spin_lock_irq(&info->lock);
1898 		shmem_recalc_inode(inode);
1899 		spin_unlock_irq(&info->lock);
1900 		goto repeat;
1901 	}
1902 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1903 		goto repeat;
1904 	return error;
1905 }
1906 
1907 /*
1908  * This is like autoremove_wake_function, but it removes the wait queue
1909  * entry unconditionally - even if something else had already woken the
1910  * target.
1911  */
1912 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1913 {
1914 	int ret = default_wake_function(wait, mode, sync, key);
1915 	list_del_init(&wait->entry);
1916 	return ret;
1917 }
1918 
1919 static int shmem_fault(struct vm_fault *vmf)
1920 {
1921 	struct vm_area_struct *vma = vmf->vma;
1922 	struct inode *inode = file_inode(vma->vm_file);
1923 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1924 	enum sgp_type sgp;
1925 	int error;
1926 	int ret = VM_FAULT_LOCKED;
1927 
1928 	/*
1929 	 * Trinity finds that probing a hole which tmpfs is punching can
1930 	 * prevent the hole-punch from ever completing: which in turn
1931 	 * locks writers out with its hold on i_mutex.  So refrain from
1932 	 * faulting pages into the hole while it's being punched.  Although
1933 	 * shmem_undo_range() does remove the additions, it may be unable to
1934 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1935 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1936 	 *
1937 	 * It does not matter if we sometimes reach this check just before the
1938 	 * hole-punch begins, so that one fault then races with the punch:
1939 	 * we just need to make racing faults a rare case.
1940 	 *
1941 	 * The implementation below would be much simpler if we just used a
1942 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1943 	 * and bloating every shmem inode for this unlikely case would be sad.
1944 	 */
1945 	if (unlikely(inode->i_private)) {
1946 		struct shmem_falloc *shmem_falloc;
1947 
1948 		spin_lock(&inode->i_lock);
1949 		shmem_falloc = inode->i_private;
1950 		if (shmem_falloc &&
1951 		    shmem_falloc->waitq &&
1952 		    vmf->pgoff >= shmem_falloc->start &&
1953 		    vmf->pgoff < shmem_falloc->next) {
1954 			wait_queue_head_t *shmem_falloc_waitq;
1955 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1956 
1957 			ret = VM_FAULT_NOPAGE;
1958 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1959 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1960 				/* It's polite to up mmap_sem if we can */
1961 				up_read(&vma->vm_mm->mmap_sem);
1962 				ret = VM_FAULT_RETRY;
1963 			}
1964 
1965 			shmem_falloc_waitq = shmem_falloc->waitq;
1966 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1967 					TASK_UNINTERRUPTIBLE);
1968 			spin_unlock(&inode->i_lock);
1969 			schedule();
1970 
1971 			/*
1972 			 * shmem_falloc_waitq points into the shmem_fallocate()
1973 			 * stack of the hole-punching task: shmem_falloc_waitq
1974 			 * is usually invalid by the time we reach here, but
1975 			 * finish_wait() does not dereference it in that case;
1976 			 * though i_lock needed lest racing with wake_up_all().
1977 			 */
1978 			spin_lock(&inode->i_lock);
1979 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1980 			spin_unlock(&inode->i_lock);
1981 			return ret;
1982 		}
1983 		spin_unlock(&inode->i_lock);
1984 	}
1985 
1986 	sgp = SGP_CACHE;
1987 
1988 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
1989 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
1990 		sgp = SGP_NOHUGE;
1991 	else if (vma->vm_flags & VM_HUGEPAGE)
1992 		sgp = SGP_HUGE;
1993 
1994 	error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1995 				  gfp, vma, vmf, &ret);
1996 	if (error)
1997 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1998 	return ret;
1999 }
2000 
2001 unsigned long shmem_get_unmapped_area(struct file *file,
2002 				      unsigned long uaddr, unsigned long len,
2003 				      unsigned long pgoff, unsigned long flags)
2004 {
2005 	unsigned long (*get_area)(struct file *,
2006 		unsigned long, unsigned long, unsigned long, unsigned long);
2007 	unsigned long addr;
2008 	unsigned long offset;
2009 	unsigned long inflated_len;
2010 	unsigned long inflated_addr;
2011 	unsigned long inflated_offset;
2012 
2013 	if (len > TASK_SIZE)
2014 		return -ENOMEM;
2015 
2016 	get_area = current->mm->get_unmapped_area;
2017 	addr = get_area(file, uaddr, len, pgoff, flags);
2018 
2019 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2020 		return addr;
2021 	if (IS_ERR_VALUE(addr))
2022 		return addr;
2023 	if (addr & ~PAGE_MASK)
2024 		return addr;
2025 	if (addr > TASK_SIZE - len)
2026 		return addr;
2027 
2028 	if (shmem_huge == SHMEM_HUGE_DENY)
2029 		return addr;
2030 	if (len < HPAGE_PMD_SIZE)
2031 		return addr;
2032 	if (flags & MAP_FIXED)
2033 		return addr;
2034 	/*
2035 	 * Our priority is to support MAP_SHARED mapped hugely;
2036 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2037 	 * But if caller specified an address hint, respect that as before.
2038 	 */
2039 	if (uaddr)
2040 		return addr;
2041 
2042 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2043 		struct super_block *sb;
2044 
2045 		if (file) {
2046 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2047 			sb = file_inode(file)->i_sb;
2048 		} else {
2049 			/*
2050 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2051 			 * for "/dev/zero", to create a shared anonymous object.
2052 			 */
2053 			if (IS_ERR(shm_mnt))
2054 				return addr;
2055 			sb = shm_mnt->mnt_sb;
2056 		}
2057 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2058 			return addr;
2059 	}
2060 
2061 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2062 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2063 		return addr;
2064 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2065 		return addr;
2066 
2067 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2068 	if (inflated_len > TASK_SIZE)
2069 		return addr;
2070 	if (inflated_len < len)
2071 		return addr;
2072 
2073 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2074 	if (IS_ERR_VALUE(inflated_addr))
2075 		return addr;
2076 	if (inflated_addr & ~PAGE_MASK)
2077 		return addr;
2078 
2079 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2080 	inflated_addr += offset - inflated_offset;
2081 	if (inflated_offset > offset)
2082 		inflated_addr += HPAGE_PMD_SIZE;
2083 
2084 	if (inflated_addr > TASK_SIZE - len)
2085 		return addr;
2086 	return inflated_addr;
2087 }
2088 
2089 #ifdef CONFIG_NUMA
2090 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2091 {
2092 	struct inode *inode = file_inode(vma->vm_file);
2093 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2094 }
2095 
2096 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2097 					  unsigned long addr)
2098 {
2099 	struct inode *inode = file_inode(vma->vm_file);
2100 	pgoff_t index;
2101 
2102 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2103 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2104 }
2105 #endif
2106 
2107 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2108 {
2109 	struct inode *inode = file_inode(file);
2110 	struct shmem_inode_info *info = SHMEM_I(inode);
2111 	int retval = -ENOMEM;
2112 
2113 	spin_lock_irq(&info->lock);
2114 	if (lock && !(info->flags & VM_LOCKED)) {
2115 		if (!user_shm_lock(inode->i_size, user))
2116 			goto out_nomem;
2117 		info->flags |= VM_LOCKED;
2118 		mapping_set_unevictable(file->f_mapping);
2119 	}
2120 	if (!lock && (info->flags & VM_LOCKED) && user) {
2121 		user_shm_unlock(inode->i_size, user);
2122 		info->flags &= ~VM_LOCKED;
2123 		mapping_clear_unevictable(file->f_mapping);
2124 	}
2125 	retval = 0;
2126 
2127 out_nomem:
2128 	spin_unlock_irq(&info->lock);
2129 	return retval;
2130 }
2131 
2132 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2133 {
2134 	file_accessed(file);
2135 	vma->vm_ops = &shmem_vm_ops;
2136 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2137 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2138 			(vma->vm_end & HPAGE_PMD_MASK)) {
2139 		khugepaged_enter(vma, vma->vm_flags);
2140 	}
2141 	return 0;
2142 }
2143 
2144 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2145 				     umode_t mode, dev_t dev, unsigned long flags)
2146 {
2147 	struct inode *inode;
2148 	struct shmem_inode_info *info;
2149 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2150 
2151 	if (shmem_reserve_inode(sb))
2152 		return NULL;
2153 
2154 	inode = new_inode(sb);
2155 	if (inode) {
2156 		inode->i_ino = get_next_ino();
2157 		inode_init_owner(inode, dir, mode);
2158 		inode->i_blocks = 0;
2159 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2160 		inode->i_generation = get_seconds();
2161 		info = SHMEM_I(inode);
2162 		memset(info, 0, (char *)inode - (char *)info);
2163 		spin_lock_init(&info->lock);
2164 		info->seals = F_SEAL_SEAL;
2165 		info->flags = flags & VM_NORESERVE;
2166 		INIT_LIST_HEAD(&info->shrinklist);
2167 		INIT_LIST_HEAD(&info->swaplist);
2168 		simple_xattrs_init(&info->xattrs);
2169 		cache_no_acl(inode);
2170 
2171 		switch (mode & S_IFMT) {
2172 		default:
2173 			inode->i_op = &shmem_special_inode_operations;
2174 			init_special_inode(inode, mode, dev);
2175 			break;
2176 		case S_IFREG:
2177 			inode->i_mapping->a_ops = &shmem_aops;
2178 			inode->i_op = &shmem_inode_operations;
2179 			inode->i_fop = &shmem_file_operations;
2180 			mpol_shared_policy_init(&info->policy,
2181 						 shmem_get_sbmpol(sbinfo));
2182 			break;
2183 		case S_IFDIR:
2184 			inc_nlink(inode);
2185 			/* Some things misbehave if size == 0 on a directory */
2186 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2187 			inode->i_op = &shmem_dir_inode_operations;
2188 			inode->i_fop = &simple_dir_operations;
2189 			break;
2190 		case S_IFLNK:
2191 			/*
2192 			 * Must not load anything in the rbtree,
2193 			 * mpol_free_shared_policy will not be called.
2194 			 */
2195 			mpol_shared_policy_init(&info->policy, NULL);
2196 			break;
2197 		}
2198 	} else
2199 		shmem_free_inode(sb);
2200 	return inode;
2201 }
2202 
2203 bool shmem_mapping(struct address_space *mapping)
2204 {
2205 	return mapping->a_ops == &shmem_aops;
2206 }
2207 
2208 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2209 			   pmd_t *dst_pmd,
2210 			   struct vm_area_struct *dst_vma,
2211 			   unsigned long dst_addr,
2212 			   unsigned long src_addr,
2213 			   struct page **pagep)
2214 {
2215 	struct inode *inode = file_inode(dst_vma->vm_file);
2216 	struct shmem_inode_info *info = SHMEM_I(inode);
2217 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2218 	struct address_space *mapping = inode->i_mapping;
2219 	gfp_t gfp = mapping_gfp_mask(mapping);
2220 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2221 	struct mem_cgroup *memcg;
2222 	spinlock_t *ptl;
2223 	void *page_kaddr;
2224 	struct page *page;
2225 	pte_t _dst_pte, *dst_pte;
2226 	int ret;
2227 
2228 	ret = -ENOMEM;
2229 	if (shmem_acct_block(info->flags, 1))
2230 		goto out;
2231 	if (sbinfo->max_blocks) {
2232 		if (percpu_counter_compare(&sbinfo->used_blocks,
2233 					   sbinfo->max_blocks) >= 0)
2234 			goto out_unacct_blocks;
2235 		percpu_counter_inc(&sbinfo->used_blocks);
2236 	}
2237 
2238 	if (!*pagep) {
2239 		page = shmem_alloc_page(gfp, info, pgoff);
2240 		if (!page)
2241 			goto out_dec_used_blocks;
2242 
2243 		page_kaddr = kmap_atomic(page);
2244 		ret = copy_from_user(page_kaddr, (const void __user *)src_addr,
2245 				     PAGE_SIZE);
2246 		kunmap_atomic(page_kaddr);
2247 
2248 		/* fallback to copy_from_user outside mmap_sem */
2249 		if (unlikely(ret)) {
2250 			*pagep = page;
2251 			if (sbinfo->max_blocks)
2252 				percpu_counter_add(&sbinfo->used_blocks, -1);
2253 			shmem_unacct_blocks(info->flags, 1);
2254 			/* don't free the page */
2255 			return -EFAULT;
2256 		}
2257 	} else {
2258 		page = *pagep;
2259 		*pagep = NULL;
2260 	}
2261 
2262 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2263 	__SetPageLocked(page);
2264 	__SetPageSwapBacked(page);
2265 	__SetPageUptodate(page);
2266 
2267 	ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2268 	if (ret)
2269 		goto out_release;
2270 
2271 	ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2272 	if (!ret) {
2273 		ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2274 		radix_tree_preload_end();
2275 	}
2276 	if (ret)
2277 		goto out_release_uncharge;
2278 
2279 	mem_cgroup_commit_charge(page, memcg, false, false);
2280 
2281 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2282 	if (dst_vma->vm_flags & VM_WRITE)
2283 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2284 
2285 	ret = -EEXIST;
2286 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2287 	if (!pte_none(*dst_pte))
2288 		goto out_release_uncharge_unlock;
2289 
2290 	lru_cache_add_anon(page);
2291 
2292 	spin_lock(&info->lock);
2293 	info->alloced++;
2294 	inode->i_blocks += BLOCKS_PER_PAGE;
2295 	shmem_recalc_inode(inode);
2296 	spin_unlock(&info->lock);
2297 
2298 	inc_mm_counter(dst_mm, mm_counter_file(page));
2299 	page_add_file_rmap(page, false);
2300 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2301 
2302 	/* No need to invalidate - it was non-present before */
2303 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2304 	unlock_page(page);
2305 	pte_unmap_unlock(dst_pte, ptl);
2306 	ret = 0;
2307 out:
2308 	return ret;
2309 out_release_uncharge_unlock:
2310 	pte_unmap_unlock(dst_pte, ptl);
2311 out_release_uncharge:
2312 	mem_cgroup_cancel_charge(page, memcg, false);
2313 out_release:
2314 	unlock_page(page);
2315 	put_page(page);
2316 out_dec_used_blocks:
2317 	if (sbinfo->max_blocks)
2318 		percpu_counter_add(&sbinfo->used_blocks, -1);
2319 out_unacct_blocks:
2320 	shmem_unacct_blocks(info->flags, 1);
2321 	goto out;
2322 }
2323 
2324 #ifdef CONFIG_TMPFS
2325 static const struct inode_operations shmem_symlink_inode_operations;
2326 static const struct inode_operations shmem_short_symlink_operations;
2327 
2328 #ifdef CONFIG_TMPFS_XATTR
2329 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2330 #else
2331 #define shmem_initxattrs NULL
2332 #endif
2333 
2334 static int
2335 shmem_write_begin(struct file *file, struct address_space *mapping,
2336 			loff_t pos, unsigned len, unsigned flags,
2337 			struct page **pagep, void **fsdata)
2338 {
2339 	struct inode *inode = mapping->host;
2340 	struct shmem_inode_info *info = SHMEM_I(inode);
2341 	pgoff_t index = pos >> PAGE_SHIFT;
2342 
2343 	/* i_mutex is held by caller */
2344 	if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2345 		if (info->seals & F_SEAL_WRITE)
2346 			return -EPERM;
2347 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2348 			return -EPERM;
2349 	}
2350 
2351 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2352 }
2353 
2354 static int
2355 shmem_write_end(struct file *file, struct address_space *mapping,
2356 			loff_t pos, unsigned len, unsigned copied,
2357 			struct page *page, void *fsdata)
2358 {
2359 	struct inode *inode = mapping->host;
2360 
2361 	if (pos + copied > inode->i_size)
2362 		i_size_write(inode, pos + copied);
2363 
2364 	if (!PageUptodate(page)) {
2365 		struct page *head = compound_head(page);
2366 		if (PageTransCompound(page)) {
2367 			int i;
2368 
2369 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2370 				if (head + i == page)
2371 					continue;
2372 				clear_highpage(head + i);
2373 				flush_dcache_page(head + i);
2374 			}
2375 		}
2376 		if (copied < PAGE_SIZE) {
2377 			unsigned from = pos & (PAGE_SIZE - 1);
2378 			zero_user_segments(page, 0, from,
2379 					from + copied, PAGE_SIZE);
2380 		}
2381 		SetPageUptodate(head);
2382 	}
2383 	set_page_dirty(page);
2384 	unlock_page(page);
2385 	put_page(page);
2386 
2387 	return copied;
2388 }
2389 
2390 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2391 {
2392 	struct file *file = iocb->ki_filp;
2393 	struct inode *inode = file_inode(file);
2394 	struct address_space *mapping = inode->i_mapping;
2395 	pgoff_t index;
2396 	unsigned long offset;
2397 	enum sgp_type sgp = SGP_READ;
2398 	int error = 0;
2399 	ssize_t retval = 0;
2400 	loff_t *ppos = &iocb->ki_pos;
2401 
2402 	/*
2403 	 * Might this read be for a stacking filesystem?  Then when reading
2404 	 * holes of a sparse file, we actually need to allocate those pages,
2405 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2406 	 */
2407 	if (!iter_is_iovec(to))
2408 		sgp = SGP_CACHE;
2409 
2410 	index = *ppos >> PAGE_SHIFT;
2411 	offset = *ppos & ~PAGE_MASK;
2412 
2413 	for (;;) {
2414 		struct page *page = NULL;
2415 		pgoff_t end_index;
2416 		unsigned long nr, ret;
2417 		loff_t i_size = i_size_read(inode);
2418 
2419 		end_index = i_size >> PAGE_SHIFT;
2420 		if (index > end_index)
2421 			break;
2422 		if (index == end_index) {
2423 			nr = i_size & ~PAGE_MASK;
2424 			if (nr <= offset)
2425 				break;
2426 		}
2427 
2428 		error = shmem_getpage(inode, index, &page, sgp);
2429 		if (error) {
2430 			if (error == -EINVAL)
2431 				error = 0;
2432 			break;
2433 		}
2434 		if (page) {
2435 			if (sgp == SGP_CACHE)
2436 				set_page_dirty(page);
2437 			unlock_page(page);
2438 		}
2439 
2440 		/*
2441 		 * We must evaluate after, since reads (unlike writes)
2442 		 * are called without i_mutex protection against truncate
2443 		 */
2444 		nr = PAGE_SIZE;
2445 		i_size = i_size_read(inode);
2446 		end_index = i_size >> PAGE_SHIFT;
2447 		if (index == end_index) {
2448 			nr = i_size & ~PAGE_MASK;
2449 			if (nr <= offset) {
2450 				if (page)
2451 					put_page(page);
2452 				break;
2453 			}
2454 		}
2455 		nr -= offset;
2456 
2457 		if (page) {
2458 			/*
2459 			 * If users can be writing to this page using arbitrary
2460 			 * virtual addresses, take care about potential aliasing
2461 			 * before reading the page on the kernel side.
2462 			 */
2463 			if (mapping_writably_mapped(mapping))
2464 				flush_dcache_page(page);
2465 			/*
2466 			 * Mark the page accessed if we read the beginning.
2467 			 */
2468 			if (!offset)
2469 				mark_page_accessed(page);
2470 		} else {
2471 			page = ZERO_PAGE(0);
2472 			get_page(page);
2473 		}
2474 
2475 		/*
2476 		 * Ok, we have the page, and it's up-to-date, so
2477 		 * now we can copy it to user space...
2478 		 */
2479 		ret = copy_page_to_iter(page, offset, nr, to);
2480 		retval += ret;
2481 		offset += ret;
2482 		index += offset >> PAGE_SHIFT;
2483 		offset &= ~PAGE_MASK;
2484 
2485 		put_page(page);
2486 		if (!iov_iter_count(to))
2487 			break;
2488 		if (ret < nr) {
2489 			error = -EFAULT;
2490 			break;
2491 		}
2492 		cond_resched();
2493 	}
2494 
2495 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2496 	file_accessed(file);
2497 	return retval ? retval : error;
2498 }
2499 
2500 /*
2501  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2502  */
2503 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2504 				    pgoff_t index, pgoff_t end, int whence)
2505 {
2506 	struct page *page;
2507 	struct pagevec pvec;
2508 	pgoff_t indices[PAGEVEC_SIZE];
2509 	bool done = false;
2510 	int i;
2511 
2512 	pagevec_init(&pvec, 0);
2513 	pvec.nr = 1;		/* start small: we may be there already */
2514 	while (!done) {
2515 		pvec.nr = find_get_entries(mapping, index,
2516 					pvec.nr, pvec.pages, indices);
2517 		if (!pvec.nr) {
2518 			if (whence == SEEK_DATA)
2519 				index = end;
2520 			break;
2521 		}
2522 		for (i = 0; i < pvec.nr; i++, index++) {
2523 			if (index < indices[i]) {
2524 				if (whence == SEEK_HOLE) {
2525 					done = true;
2526 					break;
2527 				}
2528 				index = indices[i];
2529 			}
2530 			page = pvec.pages[i];
2531 			if (page && !radix_tree_exceptional_entry(page)) {
2532 				if (!PageUptodate(page))
2533 					page = NULL;
2534 			}
2535 			if (index >= end ||
2536 			    (page && whence == SEEK_DATA) ||
2537 			    (!page && whence == SEEK_HOLE)) {
2538 				done = true;
2539 				break;
2540 			}
2541 		}
2542 		pagevec_remove_exceptionals(&pvec);
2543 		pagevec_release(&pvec);
2544 		pvec.nr = PAGEVEC_SIZE;
2545 		cond_resched();
2546 	}
2547 	return index;
2548 }
2549 
2550 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2551 {
2552 	struct address_space *mapping = file->f_mapping;
2553 	struct inode *inode = mapping->host;
2554 	pgoff_t start, end;
2555 	loff_t new_offset;
2556 
2557 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2558 		return generic_file_llseek_size(file, offset, whence,
2559 					MAX_LFS_FILESIZE, i_size_read(inode));
2560 	inode_lock(inode);
2561 	/* We're holding i_mutex so we can access i_size directly */
2562 
2563 	if (offset < 0)
2564 		offset = -EINVAL;
2565 	else if (offset >= inode->i_size)
2566 		offset = -ENXIO;
2567 	else {
2568 		start = offset >> PAGE_SHIFT;
2569 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2570 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2571 		new_offset <<= PAGE_SHIFT;
2572 		if (new_offset > offset) {
2573 			if (new_offset < inode->i_size)
2574 				offset = new_offset;
2575 			else if (whence == SEEK_DATA)
2576 				offset = -ENXIO;
2577 			else
2578 				offset = inode->i_size;
2579 		}
2580 	}
2581 
2582 	if (offset >= 0)
2583 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2584 	inode_unlock(inode);
2585 	return offset;
2586 }
2587 
2588 /*
2589  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2590  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2591  */
2592 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2593 #define LAST_SCAN               4       /* about 150ms max */
2594 
2595 static void shmem_tag_pins(struct address_space *mapping)
2596 {
2597 	struct radix_tree_iter iter;
2598 	void **slot;
2599 	pgoff_t start;
2600 	struct page *page;
2601 
2602 	lru_add_drain();
2603 	start = 0;
2604 	rcu_read_lock();
2605 
2606 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2607 		page = radix_tree_deref_slot(slot);
2608 		if (!page || radix_tree_exception(page)) {
2609 			if (radix_tree_deref_retry(page)) {
2610 				slot = radix_tree_iter_retry(&iter);
2611 				continue;
2612 			}
2613 		} else if (page_count(page) - page_mapcount(page) > 1) {
2614 			spin_lock_irq(&mapping->tree_lock);
2615 			radix_tree_tag_set(&mapping->page_tree, iter.index,
2616 					   SHMEM_TAG_PINNED);
2617 			spin_unlock_irq(&mapping->tree_lock);
2618 		}
2619 
2620 		if (need_resched()) {
2621 			slot = radix_tree_iter_resume(slot, &iter);
2622 			cond_resched_rcu();
2623 		}
2624 	}
2625 	rcu_read_unlock();
2626 }
2627 
2628 /*
2629  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2630  * via get_user_pages(), drivers might have some pending I/O without any active
2631  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2632  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2633  * them to be dropped.
2634  * The caller must guarantee that no new user will acquire writable references
2635  * to those pages to avoid races.
2636  */
2637 static int shmem_wait_for_pins(struct address_space *mapping)
2638 {
2639 	struct radix_tree_iter iter;
2640 	void **slot;
2641 	pgoff_t start;
2642 	struct page *page;
2643 	int error, scan;
2644 
2645 	shmem_tag_pins(mapping);
2646 
2647 	error = 0;
2648 	for (scan = 0; scan <= LAST_SCAN; scan++) {
2649 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2650 			break;
2651 
2652 		if (!scan)
2653 			lru_add_drain_all();
2654 		else if (schedule_timeout_killable((HZ << scan) / 200))
2655 			scan = LAST_SCAN;
2656 
2657 		start = 0;
2658 		rcu_read_lock();
2659 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2660 					   start, SHMEM_TAG_PINNED) {
2661 
2662 			page = radix_tree_deref_slot(slot);
2663 			if (radix_tree_exception(page)) {
2664 				if (radix_tree_deref_retry(page)) {
2665 					slot = radix_tree_iter_retry(&iter);
2666 					continue;
2667 				}
2668 
2669 				page = NULL;
2670 			}
2671 
2672 			if (page &&
2673 			    page_count(page) - page_mapcount(page) != 1) {
2674 				if (scan < LAST_SCAN)
2675 					goto continue_resched;
2676 
2677 				/*
2678 				 * On the last scan, we clean up all those tags
2679 				 * we inserted; but make a note that we still
2680 				 * found pages pinned.
2681 				 */
2682 				error = -EBUSY;
2683 			}
2684 
2685 			spin_lock_irq(&mapping->tree_lock);
2686 			radix_tree_tag_clear(&mapping->page_tree,
2687 					     iter.index, SHMEM_TAG_PINNED);
2688 			spin_unlock_irq(&mapping->tree_lock);
2689 continue_resched:
2690 			if (need_resched()) {
2691 				slot = radix_tree_iter_resume(slot, &iter);
2692 				cond_resched_rcu();
2693 			}
2694 		}
2695 		rcu_read_unlock();
2696 	}
2697 
2698 	return error;
2699 }
2700 
2701 #define F_ALL_SEALS (F_SEAL_SEAL | \
2702 		     F_SEAL_SHRINK | \
2703 		     F_SEAL_GROW | \
2704 		     F_SEAL_WRITE)
2705 
2706 int shmem_add_seals(struct file *file, unsigned int seals)
2707 {
2708 	struct inode *inode = file_inode(file);
2709 	struct shmem_inode_info *info = SHMEM_I(inode);
2710 	int error;
2711 
2712 	/*
2713 	 * SEALING
2714 	 * Sealing allows multiple parties to share a shmem-file but restrict
2715 	 * access to a specific subset of file operations. Seals can only be
2716 	 * added, but never removed. This way, mutually untrusted parties can
2717 	 * share common memory regions with a well-defined policy. A malicious
2718 	 * peer can thus never perform unwanted operations on a shared object.
2719 	 *
2720 	 * Seals are only supported on special shmem-files and always affect
2721 	 * the whole underlying inode. Once a seal is set, it may prevent some
2722 	 * kinds of access to the file. Currently, the following seals are
2723 	 * defined:
2724 	 *   SEAL_SEAL: Prevent further seals from being set on this file
2725 	 *   SEAL_SHRINK: Prevent the file from shrinking
2726 	 *   SEAL_GROW: Prevent the file from growing
2727 	 *   SEAL_WRITE: Prevent write access to the file
2728 	 *
2729 	 * As we don't require any trust relationship between two parties, we
2730 	 * must prevent seals from being removed. Therefore, sealing a file
2731 	 * only adds a given set of seals to the file, it never touches
2732 	 * existing seals. Furthermore, the "setting seals"-operation can be
2733 	 * sealed itself, which basically prevents any further seal from being
2734 	 * added.
2735 	 *
2736 	 * Semantics of sealing are only defined on volatile files. Only
2737 	 * anonymous shmem files support sealing. More importantly, seals are
2738 	 * never written to disk. Therefore, there's no plan to support it on
2739 	 * other file types.
2740 	 */
2741 
2742 	if (file->f_op != &shmem_file_operations)
2743 		return -EINVAL;
2744 	if (!(file->f_mode & FMODE_WRITE))
2745 		return -EPERM;
2746 	if (seals & ~(unsigned int)F_ALL_SEALS)
2747 		return -EINVAL;
2748 
2749 	inode_lock(inode);
2750 
2751 	if (info->seals & F_SEAL_SEAL) {
2752 		error = -EPERM;
2753 		goto unlock;
2754 	}
2755 
2756 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2757 		error = mapping_deny_writable(file->f_mapping);
2758 		if (error)
2759 			goto unlock;
2760 
2761 		error = shmem_wait_for_pins(file->f_mapping);
2762 		if (error) {
2763 			mapping_allow_writable(file->f_mapping);
2764 			goto unlock;
2765 		}
2766 	}
2767 
2768 	info->seals |= seals;
2769 	error = 0;
2770 
2771 unlock:
2772 	inode_unlock(inode);
2773 	return error;
2774 }
2775 EXPORT_SYMBOL_GPL(shmem_add_seals);
2776 
2777 int shmem_get_seals(struct file *file)
2778 {
2779 	if (file->f_op != &shmem_file_operations)
2780 		return -EINVAL;
2781 
2782 	return SHMEM_I(file_inode(file))->seals;
2783 }
2784 EXPORT_SYMBOL_GPL(shmem_get_seals);
2785 
2786 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2787 {
2788 	long error;
2789 
2790 	switch (cmd) {
2791 	case F_ADD_SEALS:
2792 		/* disallow upper 32bit */
2793 		if (arg > UINT_MAX)
2794 			return -EINVAL;
2795 
2796 		error = shmem_add_seals(file, arg);
2797 		break;
2798 	case F_GET_SEALS:
2799 		error = shmem_get_seals(file);
2800 		break;
2801 	default:
2802 		error = -EINVAL;
2803 		break;
2804 	}
2805 
2806 	return error;
2807 }
2808 
2809 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2810 							 loff_t len)
2811 {
2812 	struct inode *inode = file_inode(file);
2813 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2814 	struct shmem_inode_info *info = SHMEM_I(inode);
2815 	struct shmem_falloc shmem_falloc;
2816 	pgoff_t start, index, end;
2817 	int error;
2818 
2819 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2820 		return -EOPNOTSUPP;
2821 
2822 	inode_lock(inode);
2823 
2824 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2825 		struct address_space *mapping = file->f_mapping;
2826 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2827 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2828 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2829 
2830 		/* protected by i_mutex */
2831 		if (info->seals & F_SEAL_WRITE) {
2832 			error = -EPERM;
2833 			goto out;
2834 		}
2835 
2836 		shmem_falloc.waitq = &shmem_falloc_waitq;
2837 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2838 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2839 		spin_lock(&inode->i_lock);
2840 		inode->i_private = &shmem_falloc;
2841 		spin_unlock(&inode->i_lock);
2842 
2843 		if ((u64)unmap_end > (u64)unmap_start)
2844 			unmap_mapping_range(mapping, unmap_start,
2845 					    1 + unmap_end - unmap_start, 0);
2846 		shmem_truncate_range(inode, offset, offset + len - 1);
2847 		/* No need to unmap again: hole-punching leaves COWed pages */
2848 
2849 		spin_lock(&inode->i_lock);
2850 		inode->i_private = NULL;
2851 		wake_up_all(&shmem_falloc_waitq);
2852 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2853 		spin_unlock(&inode->i_lock);
2854 		error = 0;
2855 		goto out;
2856 	}
2857 
2858 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2859 	error = inode_newsize_ok(inode, offset + len);
2860 	if (error)
2861 		goto out;
2862 
2863 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2864 		error = -EPERM;
2865 		goto out;
2866 	}
2867 
2868 	start = offset >> PAGE_SHIFT;
2869 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2870 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2871 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2872 		error = -ENOSPC;
2873 		goto out;
2874 	}
2875 
2876 	shmem_falloc.waitq = NULL;
2877 	shmem_falloc.start = start;
2878 	shmem_falloc.next  = start;
2879 	shmem_falloc.nr_falloced = 0;
2880 	shmem_falloc.nr_unswapped = 0;
2881 	spin_lock(&inode->i_lock);
2882 	inode->i_private = &shmem_falloc;
2883 	spin_unlock(&inode->i_lock);
2884 
2885 	for (index = start; index < end; index++) {
2886 		struct page *page;
2887 
2888 		/*
2889 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2890 		 * been interrupted because we are using up too much memory.
2891 		 */
2892 		if (signal_pending(current))
2893 			error = -EINTR;
2894 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2895 			error = -ENOMEM;
2896 		else
2897 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2898 		if (error) {
2899 			/* Remove the !PageUptodate pages we added */
2900 			if (index > start) {
2901 				shmem_undo_range(inode,
2902 				    (loff_t)start << PAGE_SHIFT,
2903 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2904 			}
2905 			goto undone;
2906 		}
2907 
2908 		/*
2909 		 * Inform shmem_writepage() how far we have reached.
2910 		 * No need for lock or barrier: we have the page lock.
2911 		 */
2912 		shmem_falloc.next++;
2913 		if (!PageUptodate(page))
2914 			shmem_falloc.nr_falloced++;
2915 
2916 		/*
2917 		 * If !PageUptodate, leave it that way so that freeable pages
2918 		 * can be recognized if we need to rollback on error later.
2919 		 * But set_page_dirty so that memory pressure will swap rather
2920 		 * than free the pages we are allocating (and SGP_CACHE pages
2921 		 * might still be clean: we now need to mark those dirty too).
2922 		 */
2923 		set_page_dirty(page);
2924 		unlock_page(page);
2925 		put_page(page);
2926 		cond_resched();
2927 	}
2928 
2929 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2930 		i_size_write(inode, offset + len);
2931 	inode->i_ctime = current_time(inode);
2932 undone:
2933 	spin_lock(&inode->i_lock);
2934 	inode->i_private = NULL;
2935 	spin_unlock(&inode->i_lock);
2936 out:
2937 	inode_unlock(inode);
2938 	return error;
2939 }
2940 
2941 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2942 {
2943 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2944 
2945 	buf->f_type = TMPFS_MAGIC;
2946 	buf->f_bsize = PAGE_SIZE;
2947 	buf->f_namelen = NAME_MAX;
2948 	if (sbinfo->max_blocks) {
2949 		buf->f_blocks = sbinfo->max_blocks;
2950 		buf->f_bavail =
2951 		buf->f_bfree  = sbinfo->max_blocks -
2952 				percpu_counter_sum(&sbinfo->used_blocks);
2953 	}
2954 	if (sbinfo->max_inodes) {
2955 		buf->f_files = sbinfo->max_inodes;
2956 		buf->f_ffree = sbinfo->free_inodes;
2957 	}
2958 	/* else leave those fields 0 like simple_statfs */
2959 	return 0;
2960 }
2961 
2962 /*
2963  * File creation. Allocate an inode, and we're done..
2964  */
2965 static int
2966 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2967 {
2968 	struct inode *inode;
2969 	int error = -ENOSPC;
2970 
2971 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2972 	if (inode) {
2973 		error = simple_acl_create(dir, inode);
2974 		if (error)
2975 			goto out_iput;
2976 		error = security_inode_init_security(inode, dir,
2977 						     &dentry->d_name,
2978 						     shmem_initxattrs, NULL);
2979 		if (error && error != -EOPNOTSUPP)
2980 			goto out_iput;
2981 
2982 		error = 0;
2983 		dir->i_size += BOGO_DIRENT_SIZE;
2984 		dir->i_ctime = dir->i_mtime = current_time(dir);
2985 		d_instantiate(dentry, inode);
2986 		dget(dentry); /* Extra count - pin the dentry in core */
2987 	}
2988 	return error;
2989 out_iput:
2990 	iput(inode);
2991 	return error;
2992 }
2993 
2994 static int
2995 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2996 {
2997 	struct inode *inode;
2998 	int error = -ENOSPC;
2999 
3000 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3001 	if (inode) {
3002 		error = security_inode_init_security(inode, dir,
3003 						     NULL,
3004 						     shmem_initxattrs, NULL);
3005 		if (error && error != -EOPNOTSUPP)
3006 			goto out_iput;
3007 		error = simple_acl_create(dir, inode);
3008 		if (error)
3009 			goto out_iput;
3010 		d_tmpfile(dentry, inode);
3011 	}
3012 	return error;
3013 out_iput:
3014 	iput(inode);
3015 	return error;
3016 }
3017 
3018 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3019 {
3020 	int error;
3021 
3022 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3023 		return error;
3024 	inc_nlink(dir);
3025 	return 0;
3026 }
3027 
3028 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3029 		bool excl)
3030 {
3031 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3032 }
3033 
3034 /*
3035  * Link a file..
3036  */
3037 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3038 {
3039 	struct inode *inode = d_inode(old_dentry);
3040 	int ret;
3041 
3042 	/*
3043 	 * No ordinary (disk based) filesystem counts links as inodes;
3044 	 * but each new link needs a new dentry, pinning lowmem, and
3045 	 * tmpfs dentries cannot be pruned until they are unlinked.
3046 	 */
3047 	ret = shmem_reserve_inode(inode->i_sb);
3048 	if (ret)
3049 		goto out;
3050 
3051 	dir->i_size += BOGO_DIRENT_SIZE;
3052 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3053 	inc_nlink(inode);
3054 	ihold(inode);	/* New dentry reference */
3055 	dget(dentry);		/* Extra pinning count for the created dentry */
3056 	d_instantiate(dentry, inode);
3057 out:
3058 	return ret;
3059 }
3060 
3061 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3062 {
3063 	struct inode *inode = d_inode(dentry);
3064 
3065 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3066 		shmem_free_inode(inode->i_sb);
3067 
3068 	dir->i_size -= BOGO_DIRENT_SIZE;
3069 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3070 	drop_nlink(inode);
3071 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3072 	return 0;
3073 }
3074 
3075 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3076 {
3077 	if (!simple_empty(dentry))
3078 		return -ENOTEMPTY;
3079 
3080 	drop_nlink(d_inode(dentry));
3081 	drop_nlink(dir);
3082 	return shmem_unlink(dir, dentry);
3083 }
3084 
3085 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3086 {
3087 	bool old_is_dir = d_is_dir(old_dentry);
3088 	bool new_is_dir = d_is_dir(new_dentry);
3089 
3090 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3091 		if (old_is_dir) {
3092 			drop_nlink(old_dir);
3093 			inc_nlink(new_dir);
3094 		} else {
3095 			drop_nlink(new_dir);
3096 			inc_nlink(old_dir);
3097 		}
3098 	}
3099 	old_dir->i_ctime = old_dir->i_mtime =
3100 	new_dir->i_ctime = new_dir->i_mtime =
3101 	d_inode(old_dentry)->i_ctime =
3102 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3103 
3104 	return 0;
3105 }
3106 
3107 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3108 {
3109 	struct dentry *whiteout;
3110 	int error;
3111 
3112 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3113 	if (!whiteout)
3114 		return -ENOMEM;
3115 
3116 	error = shmem_mknod(old_dir, whiteout,
3117 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3118 	dput(whiteout);
3119 	if (error)
3120 		return error;
3121 
3122 	/*
3123 	 * Cheat and hash the whiteout while the old dentry is still in
3124 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3125 	 *
3126 	 * d_lookup() will consistently find one of them at this point,
3127 	 * not sure which one, but that isn't even important.
3128 	 */
3129 	d_rehash(whiteout);
3130 	return 0;
3131 }
3132 
3133 /*
3134  * The VFS layer already does all the dentry stuff for rename,
3135  * we just have to decrement the usage count for the target if
3136  * it exists so that the VFS layer correctly free's it when it
3137  * gets overwritten.
3138  */
3139 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3140 {
3141 	struct inode *inode = d_inode(old_dentry);
3142 	int they_are_dirs = S_ISDIR(inode->i_mode);
3143 
3144 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3145 		return -EINVAL;
3146 
3147 	if (flags & RENAME_EXCHANGE)
3148 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3149 
3150 	if (!simple_empty(new_dentry))
3151 		return -ENOTEMPTY;
3152 
3153 	if (flags & RENAME_WHITEOUT) {
3154 		int error;
3155 
3156 		error = shmem_whiteout(old_dir, old_dentry);
3157 		if (error)
3158 			return error;
3159 	}
3160 
3161 	if (d_really_is_positive(new_dentry)) {
3162 		(void) shmem_unlink(new_dir, new_dentry);
3163 		if (they_are_dirs) {
3164 			drop_nlink(d_inode(new_dentry));
3165 			drop_nlink(old_dir);
3166 		}
3167 	} else if (they_are_dirs) {
3168 		drop_nlink(old_dir);
3169 		inc_nlink(new_dir);
3170 	}
3171 
3172 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3173 	new_dir->i_size += BOGO_DIRENT_SIZE;
3174 	old_dir->i_ctime = old_dir->i_mtime =
3175 	new_dir->i_ctime = new_dir->i_mtime =
3176 	inode->i_ctime = current_time(old_dir);
3177 	return 0;
3178 }
3179 
3180 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3181 {
3182 	int error;
3183 	int len;
3184 	struct inode *inode;
3185 	struct page *page;
3186 	struct shmem_inode_info *info;
3187 
3188 	len = strlen(symname) + 1;
3189 	if (len > PAGE_SIZE)
3190 		return -ENAMETOOLONG;
3191 
3192 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3193 	if (!inode)
3194 		return -ENOSPC;
3195 
3196 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3197 					     shmem_initxattrs, NULL);
3198 	if (error) {
3199 		if (error != -EOPNOTSUPP) {
3200 			iput(inode);
3201 			return error;
3202 		}
3203 		error = 0;
3204 	}
3205 
3206 	info = SHMEM_I(inode);
3207 	inode->i_size = len-1;
3208 	if (len <= SHORT_SYMLINK_LEN) {
3209 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3210 		if (!inode->i_link) {
3211 			iput(inode);
3212 			return -ENOMEM;
3213 		}
3214 		inode->i_op = &shmem_short_symlink_operations;
3215 	} else {
3216 		inode_nohighmem(inode);
3217 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3218 		if (error) {
3219 			iput(inode);
3220 			return error;
3221 		}
3222 		inode->i_mapping->a_ops = &shmem_aops;
3223 		inode->i_op = &shmem_symlink_inode_operations;
3224 		memcpy(page_address(page), symname, len);
3225 		SetPageUptodate(page);
3226 		set_page_dirty(page);
3227 		unlock_page(page);
3228 		put_page(page);
3229 	}
3230 	dir->i_size += BOGO_DIRENT_SIZE;
3231 	dir->i_ctime = dir->i_mtime = current_time(dir);
3232 	d_instantiate(dentry, inode);
3233 	dget(dentry);
3234 	return 0;
3235 }
3236 
3237 static void shmem_put_link(void *arg)
3238 {
3239 	mark_page_accessed(arg);
3240 	put_page(arg);
3241 }
3242 
3243 static const char *shmem_get_link(struct dentry *dentry,
3244 				  struct inode *inode,
3245 				  struct delayed_call *done)
3246 {
3247 	struct page *page = NULL;
3248 	int error;
3249 	if (!dentry) {
3250 		page = find_get_page(inode->i_mapping, 0);
3251 		if (!page)
3252 			return ERR_PTR(-ECHILD);
3253 		if (!PageUptodate(page)) {
3254 			put_page(page);
3255 			return ERR_PTR(-ECHILD);
3256 		}
3257 	} else {
3258 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3259 		if (error)
3260 			return ERR_PTR(error);
3261 		unlock_page(page);
3262 	}
3263 	set_delayed_call(done, shmem_put_link, page);
3264 	return page_address(page);
3265 }
3266 
3267 #ifdef CONFIG_TMPFS_XATTR
3268 /*
3269  * Superblocks without xattr inode operations may get some security.* xattr
3270  * support from the LSM "for free". As soon as we have any other xattrs
3271  * like ACLs, we also need to implement the security.* handlers at
3272  * filesystem level, though.
3273  */
3274 
3275 /*
3276  * Callback for security_inode_init_security() for acquiring xattrs.
3277  */
3278 static int shmem_initxattrs(struct inode *inode,
3279 			    const struct xattr *xattr_array,
3280 			    void *fs_info)
3281 {
3282 	struct shmem_inode_info *info = SHMEM_I(inode);
3283 	const struct xattr *xattr;
3284 	struct simple_xattr *new_xattr;
3285 	size_t len;
3286 
3287 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3288 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3289 		if (!new_xattr)
3290 			return -ENOMEM;
3291 
3292 		len = strlen(xattr->name) + 1;
3293 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3294 					  GFP_KERNEL);
3295 		if (!new_xattr->name) {
3296 			kfree(new_xattr);
3297 			return -ENOMEM;
3298 		}
3299 
3300 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3301 		       XATTR_SECURITY_PREFIX_LEN);
3302 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3303 		       xattr->name, len);
3304 
3305 		simple_xattr_list_add(&info->xattrs, new_xattr);
3306 	}
3307 
3308 	return 0;
3309 }
3310 
3311 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3312 				   struct dentry *unused, struct inode *inode,
3313 				   const char *name, void *buffer, size_t size)
3314 {
3315 	struct shmem_inode_info *info = SHMEM_I(inode);
3316 
3317 	name = xattr_full_name(handler, name);
3318 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3319 }
3320 
3321 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3322 				   struct dentry *unused, struct inode *inode,
3323 				   const char *name, const void *value,
3324 				   size_t size, int flags)
3325 {
3326 	struct shmem_inode_info *info = SHMEM_I(inode);
3327 
3328 	name = xattr_full_name(handler, name);
3329 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3330 }
3331 
3332 static const struct xattr_handler shmem_security_xattr_handler = {
3333 	.prefix = XATTR_SECURITY_PREFIX,
3334 	.get = shmem_xattr_handler_get,
3335 	.set = shmem_xattr_handler_set,
3336 };
3337 
3338 static const struct xattr_handler shmem_trusted_xattr_handler = {
3339 	.prefix = XATTR_TRUSTED_PREFIX,
3340 	.get = shmem_xattr_handler_get,
3341 	.set = shmem_xattr_handler_set,
3342 };
3343 
3344 static const struct xattr_handler *shmem_xattr_handlers[] = {
3345 #ifdef CONFIG_TMPFS_POSIX_ACL
3346 	&posix_acl_access_xattr_handler,
3347 	&posix_acl_default_xattr_handler,
3348 #endif
3349 	&shmem_security_xattr_handler,
3350 	&shmem_trusted_xattr_handler,
3351 	NULL
3352 };
3353 
3354 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3355 {
3356 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3357 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3358 }
3359 #endif /* CONFIG_TMPFS_XATTR */
3360 
3361 static const struct inode_operations shmem_short_symlink_operations = {
3362 	.get_link	= simple_get_link,
3363 #ifdef CONFIG_TMPFS_XATTR
3364 	.listxattr	= shmem_listxattr,
3365 #endif
3366 };
3367 
3368 static const struct inode_operations shmem_symlink_inode_operations = {
3369 	.get_link	= shmem_get_link,
3370 #ifdef CONFIG_TMPFS_XATTR
3371 	.listxattr	= shmem_listxattr,
3372 #endif
3373 };
3374 
3375 static struct dentry *shmem_get_parent(struct dentry *child)
3376 {
3377 	return ERR_PTR(-ESTALE);
3378 }
3379 
3380 static int shmem_match(struct inode *ino, void *vfh)
3381 {
3382 	__u32 *fh = vfh;
3383 	__u64 inum = fh[2];
3384 	inum = (inum << 32) | fh[1];
3385 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3386 }
3387 
3388 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3389 		struct fid *fid, int fh_len, int fh_type)
3390 {
3391 	struct inode *inode;
3392 	struct dentry *dentry = NULL;
3393 	u64 inum;
3394 
3395 	if (fh_len < 3)
3396 		return NULL;
3397 
3398 	inum = fid->raw[2];
3399 	inum = (inum << 32) | fid->raw[1];
3400 
3401 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3402 			shmem_match, fid->raw);
3403 	if (inode) {
3404 		dentry = d_find_alias(inode);
3405 		iput(inode);
3406 	}
3407 
3408 	return dentry;
3409 }
3410 
3411 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3412 				struct inode *parent)
3413 {
3414 	if (*len < 3) {
3415 		*len = 3;
3416 		return FILEID_INVALID;
3417 	}
3418 
3419 	if (inode_unhashed(inode)) {
3420 		/* Unfortunately insert_inode_hash is not idempotent,
3421 		 * so as we hash inodes here rather than at creation
3422 		 * time, we need a lock to ensure we only try
3423 		 * to do it once
3424 		 */
3425 		static DEFINE_SPINLOCK(lock);
3426 		spin_lock(&lock);
3427 		if (inode_unhashed(inode))
3428 			__insert_inode_hash(inode,
3429 					    inode->i_ino + inode->i_generation);
3430 		spin_unlock(&lock);
3431 	}
3432 
3433 	fh[0] = inode->i_generation;
3434 	fh[1] = inode->i_ino;
3435 	fh[2] = ((__u64)inode->i_ino) >> 32;
3436 
3437 	*len = 3;
3438 	return 1;
3439 }
3440 
3441 static const struct export_operations shmem_export_ops = {
3442 	.get_parent     = shmem_get_parent,
3443 	.encode_fh      = shmem_encode_fh,
3444 	.fh_to_dentry	= shmem_fh_to_dentry,
3445 };
3446 
3447 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3448 			       bool remount)
3449 {
3450 	char *this_char, *value, *rest;
3451 	struct mempolicy *mpol = NULL;
3452 	uid_t uid;
3453 	gid_t gid;
3454 
3455 	while (options != NULL) {
3456 		this_char = options;
3457 		for (;;) {
3458 			/*
3459 			 * NUL-terminate this option: unfortunately,
3460 			 * mount options form a comma-separated list,
3461 			 * but mpol's nodelist may also contain commas.
3462 			 */
3463 			options = strchr(options, ',');
3464 			if (options == NULL)
3465 				break;
3466 			options++;
3467 			if (!isdigit(*options)) {
3468 				options[-1] = '\0';
3469 				break;
3470 			}
3471 		}
3472 		if (!*this_char)
3473 			continue;
3474 		if ((value = strchr(this_char,'=')) != NULL) {
3475 			*value++ = 0;
3476 		} else {
3477 			pr_err("tmpfs: No value for mount option '%s'\n",
3478 			       this_char);
3479 			goto error;
3480 		}
3481 
3482 		if (!strcmp(this_char,"size")) {
3483 			unsigned long long size;
3484 			size = memparse(value,&rest);
3485 			if (*rest == '%') {
3486 				size <<= PAGE_SHIFT;
3487 				size *= totalram_pages;
3488 				do_div(size, 100);
3489 				rest++;
3490 			}
3491 			if (*rest)
3492 				goto bad_val;
3493 			sbinfo->max_blocks =
3494 				DIV_ROUND_UP(size, PAGE_SIZE);
3495 		} else if (!strcmp(this_char,"nr_blocks")) {
3496 			sbinfo->max_blocks = memparse(value, &rest);
3497 			if (*rest)
3498 				goto bad_val;
3499 		} else if (!strcmp(this_char,"nr_inodes")) {
3500 			sbinfo->max_inodes = memparse(value, &rest);
3501 			if (*rest)
3502 				goto bad_val;
3503 		} else if (!strcmp(this_char,"mode")) {
3504 			if (remount)
3505 				continue;
3506 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3507 			if (*rest)
3508 				goto bad_val;
3509 		} else if (!strcmp(this_char,"uid")) {
3510 			if (remount)
3511 				continue;
3512 			uid = simple_strtoul(value, &rest, 0);
3513 			if (*rest)
3514 				goto bad_val;
3515 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3516 			if (!uid_valid(sbinfo->uid))
3517 				goto bad_val;
3518 		} else if (!strcmp(this_char,"gid")) {
3519 			if (remount)
3520 				continue;
3521 			gid = simple_strtoul(value, &rest, 0);
3522 			if (*rest)
3523 				goto bad_val;
3524 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3525 			if (!gid_valid(sbinfo->gid))
3526 				goto bad_val;
3527 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3528 		} else if (!strcmp(this_char, "huge")) {
3529 			int huge;
3530 			huge = shmem_parse_huge(value);
3531 			if (huge < 0)
3532 				goto bad_val;
3533 			if (!has_transparent_hugepage() &&
3534 					huge != SHMEM_HUGE_NEVER)
3535 				goto bad_val;
3536 			sbinfo->huge = huge;
3537 #endif
3538 #ifdef CONFIG_NUMA
3539 		} else if (!strcmp(this_char,"mpol")) {
3540 			mpol_put(mpol);
3541 			mpol = NULL;
3542 			if (mpol_parse_str(value, &mpol))
3543 				goto bad_val;
3544 #endif
3545 		} else {
3546 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3547 			goto error;
3548 		}
3549 	}
3550 	sbinfo->mpol = mpol;
3551 	return 0;
3552 
3553 bad_val:
3554 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3555 	       value, this_char);
3556 error:
3557 	mpol_put(mpol);
3558 	return 1;
3559 
3560 }
3561 
3562 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3563 {
3564 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3565 	struct shmem_sb_info config = *sbinfo;
3566 	unsigned long inodes;
3567 	int error = -EINVAL;
3568 
3569 	config.mpol = NULL;
3570 	if (shmem_parse_options(data, &config, true))
3571 		return error;
3572 
3573 	spin_lock(&sbinfo->stat_lock);
3574 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3575 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3576 		goto out;
3577 	if (config.max_inodes < inodes)
3578 		goto out;
3579 	/*
3580 	 * Those tests disallow limited->unlimited while any are in use;
3581 	 * but we must separately disallow unlimited->limited, because
3582 	 * in that case we have no record of how much is already in use.
3583 	 */
3584 	if (config.max_blocks && !sbinfo->max_blocks)
3585 		goto out;
3586 	if (config.max_inodes && !sbinfo->max_inodes)
3587 		goto out;
3588 
3589 	error = 0;
3590 	sbinfo->huge = config.huge;
3591 	sbinfo->max_blocks  = config.max_blocks;
3592 	sbinfo->max_inodes  = config.max_inodes;
3593 	sbinfo->free_inodes = config.max_inodes - inodes;
3594 
3595 	/*
3596 	 * Preserve previous mempolicy unless mpol remount option was specified.
3597 	 */
3598 	if (config.mpol) {
3599 		mpol_put(sbinfo->mpol);
3600 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3601 	}
3602 out:
3603 	spin_unlock(&sbinfo->stat_lock);
3604 	return error;
3605 }
3606 
3607 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3608 {
3609 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3610 
3611 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3612 		seq_printf(seq, ",size=%luk",
3613 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3614 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3615 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3616 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3617 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3618 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3619 		seq_printf(seq, ",uid=%u",
3620 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3621 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3622 		seq_printf(seq, ",gid=%u",
3623 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3624 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3625 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3626 	if (sbinfo->huge)
3627 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3628 #endif
3629 	shmem_show_mpol(seq, sbinfo->mpol);
3630 	return 0;
3631 }
3632 
3633 #define MFD_NAME_PREFIX "memfd:"
3634 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3635 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3636 
3637 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3638 
3639 SYSCALL_DEFINE2(memfd_create,
3640 		const char __user *, uname,
3641 		unsigned int, flags)
3642 {
3643 	struct shmem_inode_info *info;
3644 	struct file *file;
3645 	int fd, error;
3646 	char *name;
3647 	long len;
3648 
3649 	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3650 		return -EINVAL;
3651 
3652 	/* length includes terminating zero */
3653 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3654 	if (len <= 0)
3655 		return -EFAULT;
3656 	if (len > MFD_NAME_MAX_LEN + 1)
3657 		return -EINVAL;
3658 
3659 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3660 	if (!name)
3661 		return -ENOMEM;
3662 
3663 	strcpy(name, MFD_NAME_PREFIX);
3664 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3665 		error = -EFAULT;
3666 		goto err_name;
3667 	}
3668 
3669 	/* terminating-zero may have changed after strnlen_user() returned */
3670 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3671 		error = -EFAULT;
3672 		goto err_name;
3673 	}
3674 
3675 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3676 	if (fd < 0) {
3677 		error = fd;
3678 		goto err_name;
3679 	}
3680 
3681 	file = shmem_file_setup(name, 0, VM_NORESERVE);
3682 	if (IS_ERR(file)) {
3683 		error = PTR_ERR(file);
3684 		goto err_fd;
3685 	}
3686 	info = SHMEM_I(file_inode(file));
3687 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3688 	file->f_flags |= O_RDWR | O_LARGEFILE;
3689 	if (flags & MFD_ALLOW_SEALING)
3690 		info->seals &= ~F_SEAL_SEAL;
3691 
3692 	fd_install(fd, file);
3693 	kfree(name);
3694 	return fd;
3695 
3696 err_fd:
3697 	put_unused_fd(fd);
3698 err_name:
3699 	kfree(name);
3700 	return error;
3701 }
3702 
3703 #endif /* CONFIG_TMPFS */
3704 
3705 static void shmem_put_super(struct super_block *sb)
3706 {
3707 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3708 
3709 	percpu_counter_destroy(&sbinfo->used_blocks);
3710 	mpol_put(sbinfo->mpol);
3711 	kfree(sbinfo);
3712 	sb->s_fs_info = NULL;
3713 }
3714 
3715 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3716 {
3717 	struct inode *inode;
3718 	struct shmem_sb_info *sbinfo;
3719 	int err = -ENOMEM;
3720 
3721 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3722 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3723 				L1_CACHE_BYTES), GFP_KERNEL);
3724 	if (!sbinfo)
3725 		return -ENOMEM;
3726 
3727 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3728 	sbinfo->uid = current_fsuid();
3729 	sbinfo->gid = current_fsgid();
3730 	sb->s_fs_info = sbinfo;
3731 
3732 #ifdef CONFIG_TMPFS
3733 	/*
3734 	 * Per default we only allow half of the physical ram per
3735 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3736 	 * but the internal instance is left unlimited.
3737 	 */
3738 	if (!(sb->s_flags & MS_KERNMOUNT)) {
3739 		sbinfo->max_blocks = shmem_default_max_blocks();
3740 		sbinfo->max_inodes = shmem_default_max_inodes();
3741 		if (shmem_parse_options(data, sbinfo, false)) {
3742 			err = -EINVAL;
3743 			goto failed;
3744 		}
3745 	} else {
3746 		sb->s_flags |= MS_NOUSER;
3747 	}
3748 	sb->s_export_op = &shmem_export_ops;
3749 	sb->s_flags |= MS_NOSEC;
3750 #else
3751 	sb->s_flags |= MS_NOUSER;
3752 #endif
3753 
3754 	spin_lock_init(&sbinfo->stat_lock);
3755 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3756 		goto failed;
3757 	sbinfo->free_inodes = sbinfo->max_inodes;
3758 	spin_lock_init(&sbinfo->shrinklist_lock);
3759 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3760 
3761 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3762 	sb->s_blocksize = PAGE_SIZE;
3763 	sb->s_blocksize_bits = PAGE_SHIFT;
3764 	sb->s_magic = TMPFS_MAGIC;
3765 	sb->s_op = &shmem_ops;
3766 	sb->s_time_gran = 1;
3767 #ifdef CONFIG_TMPFS_XATTR
3768 	sb->s_xattr = shmem_xattr_handlers;
3769 #endif
3770 #ifdef CONFIG_TMPFS_POSIX_ACL
3771 	sb->s_flags |= MS_POSIXACL;
3772 #endif
3773 	uuid_gen(&sb->s_uuid);
3774 
3775 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3776 	if (!inode)
3777 		goto failed;
3778 	inode->i_uid = sbinfo->uid;
3779 	inode->i_gid = sbinfo->gid;
3780 	sb->s_root = d_make_root(inode);
3781 	if (!sb->s_root)
3782 		goto failed;
3783 	return 0;
3784 
3785 failed:
3786 	shmem_put_super(sb);
3787 	return err;
3788 }
3789 
3790 static struct kmem_cache *shmem_inode_cachep;
3791 
3792 static struct inode *shmem_alloc_inode(struct super_block *sb)
3793 {
3794 	struct shmem_inode_info *info;
3795 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3796 	if (!info)
3797 		return NULL;
3798 	return &info->vfs_inode;
3799 }
3800 
3801 static void shmem_destroy_callback(struct rcu_head *head)
3802 {
3803 	struct inode *inode = container_of(head, struct inode, i_rcu);
3804 	if (S_ISLNK(inode->i_mode))
3805 		kfree(inode->i_link);
3806 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3807 }
3808 
3809 static void shmem_destroy_inode(struct inode *inode)
3810 {
3811 	if (S_ISREG(inode->i_mode))
3812 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3813 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3814 }
3815 
3816 static void shmem_init_inode(void *foo)
3817 {
3818 	struct shmem_inode_info *info = foo;
3819 	inode_init_once(&info->vfs_inode);
3820 }
3821 
3822 static int shmem_init_inodecache(void)
3823 {
3824 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3825 				sizeof(struct shmem_inode_info),
3826 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3827 	return 0;
3828 }
3829 
3830 static void shmem_destroy_inodecache(void)
3831 {
3832 	kmem_cache_destroy(shmem_inode_cachep);
3833 }
3834 
3835 static const struct address_space_operations shmem_aops = {
3836 	.writepage	= shmem_writepage,
3837 	.set_page_dirty	= __set_page_dirty_no_writeback,
3838 #ifdef CONFIG_TMPFS
3839 	.write_begin	= shmem_write_begin,
3840 	.write_end	= shmem_write_end,
3841 #endif
3842 #ifdef CONFIG_MIGRATION
3843 	.migratepage	= migrate_page,
3844 #endif
3845 	.error_remove_page = generic_error_remove_page,
3846 };
3847 
3848 static const struct file_operations shmem_file_operations = {
3849 	.mmap		= shmem_mmap,
3850 	.get_unmapped_area = shmem_get_unmapped_area,
3851 #ifdef CONFIG_TMPFS
3852 	.llseek		= shmem_file_llseek,
3853 	.read_iter	= shmem_file_read_iter,
3854 	.write_iter	= generic_file_write_iter,
3855 	.fsync		= noop_fsync,
3856 	.splice_read	= generic_file_splice_read,
3857 	.splice_write	= iter_file_splice_write,
3858 	.fallocate	= shmem_fallocate,
3859 #endif
3860 };
3861 
3862 static const struct inode_operations shmem_inode_operations = {
3863 	.getattr	= shmem_getattr,
3864 	.setattr	= shmem_setattr,
3865 #ifdef CONFIG_TMPFS_XATTR
3866 	.listxattr	= shmem_listxattr,
3867 	.set_acl	= simple_set_acl,
3868 #endif
3869 };
3870 
3871 static const struct inode_operations shmem_dir_inode_operations = {
3872 #ifdef CONFIG_TMPFS
3873 	.create		= shmem_create,
3874 	.lookup		= simple_lookup,
3875 	.link		= shmem_link,
3876 	.unlink		= shmem_unlink,
3877 	.symlink	= shmem_symlink,
3878 	.mkdir		= shmem_mkdir,
3879 	.rmdir		= shmem_rmdir,
3880 	.mknod		= shmem_mknod,
3881 	.rename		= shmem_rename2,
3882 	.tmpfile	= shmem_tmpfile,
3883 #endif
3884 #ifdef CONFIG_TMPFS_XATTR
3885 	.listxattr	= shmem_listxattr,
3886 #endif
3887 #ifdef CONFIG_TMPFS_POSIX_ACL
3888 	.setattr	= shmem_setattr,
3889 	.set_acl	= simple_set_acl,
3890 #endif
3891 };
3892 
3893 static const struct inode_operations shmem_special_inode_operations = {
3894 #ifdef CONFIG_TMPFS_XATTR
3895 	.listxattr	= shmem_listxattr,
3896 #endif
3897 #ifdef CONFIG_TMPFS_POSIX_ACL
3898 	.setattr	= shmem_setattr,
3899 	.set_acl	= simple_set_acl,
3900 #endif
3901 };
3902 
3903 static const struct super_operations shmem_ops = {
3904 	.alloc_inode	= shmem_alloc_inode,
3905 	.destroy_inode	= shmem_destroy_inode,
3906 #ifdef CONFIG_TMPFS
3907 	.statfs		= shmem_statfs,
3908 	.remount_fs	= shmem_remount_fs,
3909 	.show_options	= shmem_show_options,
3910 #endif
3911 	.evict_inode	= shmem_evict_inode,
3912 	.drop_inode	= generic_delete_inode,
3913 	.put_super	= shmem_put_super,
3914 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3915 	.nr_cached_objects	= shmem_unused_huge_count,
3916 	.free_cached_objects	= shmem_unused_huge_scan,
3917 #endif
3918 };
3919 
3920 static const struct vm_operations_struct shmem_vm_ops = {
3921 	.fault		= shmem_fault,
3922 	.map_pages	= filemap_map_pages,
3923 #ifdef CONFIG_NUMA
3924 	.set_policy     = shmem_set_policy,
3925 	.get_policy     = shmem_get_policy,
3926 #endif
3927 };
3928 
3929 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3930 	int flags, const char *dev_name, void *data)
3931 {
3932 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3933 }
3934 
3935 static struct file_system_type shmem_fs_type = {
3936 	.owner		= THIS_MODULE,
3937 	.name		= "tmpfs",
3938 	.mount		= shmem_mount,
3939 	.kill_sb	= kill_litter_super,
3940 	.fs_flags	= FS_USERNS_MOUNT,
3941 };
3942 
3943 int __init shmem_init(void)
3944 {
3945 	int error;
3946 
3947 	/* If rootfs called this, don't re-init */
3948 	if (shmem_inode_cachep)
3949 		return 0;
3950 
3951 	error = shmem_init_inodecache();
3952 	if (error)
3953 		goto out3;
3954 
3955 	error = register_filesystem(&shmem_fs_type);
3956 	if (error) {
3957 		pr_err("Could not register tmpfs\n");
3958 		goto out2;
3959 	}
3960 
3961 	shm_mnt = kern_mount(&shmem_fs_type);
3962 	if (IS_ERR(shm_mnt)) {
3963 		error = PTR_ERR(shm_mnt);
3964 		pr_err("Could not kern_mount tmpfs\n");
3965 		goto out1;
3966 	}
3967 
3968 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3969 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3970 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3971 	else
3972 		shmem_huge = 0; /* just in case it was patched */
3973 #endif
3974 	return 0;
3975 
3976 out1:
3977 	unregister_filesystem(&shmem_fs_type);
3978 out2:
3979 	shmem_destroy_inodecache();
3980 out3:
3981 	shm_mnt = ERR_PTR(error);
3982 	return error;
3983 }
3984 
3985 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3986 static ssize_t shmem_enabled_show(struct kobject *kobj,
3987 		struct kobj_attribute *attr, char *buf)
3988 {
3989 	int values[] = {
3990 		SHMEM_HUGE_ALWAYS,
3991 		SHMEM_HUGE_WITHIN_SIZE,
3992 		SHMEM_HUGE_ADVISE,
3993 		SHMEM_HUGE_NEVER,
3994 		SHMEM_HUGE_DENY,
3995 		SHMEM_HUGE_FORCE,
3996 	};
3997 	int i, count;
3998 
3999 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4000 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4001 
4002 		count += sprintf(buf + count, fmt,
4003 				shmem_format_huge(values[i]));
4004 	}
4005 	buf[count - 1] = '\n';
4006 	return count;
4007 }
4008 
4009 static ssize_t shmem_enabled_store(struct kobject *kobj,
4010 		struct kobj_attribute *attr, const char *buf, size_t count)
4011 {
4012 	char tmp[16];
4013 	int huge;
4014 
4015 	if (count + 1 > sizeof(tmp))
4016 		return -EINVAL;
4017 	memcpy(tmp, buf, count);
4018 	tmp[count] = '\0';
4019 	if (count && tmp[count - 1] == '\n')
4020 		tmp[count - 1] = '\0';
4021 
4022 	huge = shmem_parse_huge(tmp);
4023 	if (huge == -EINVAL)
4024 		return -EINVAL;
4025 	if (!has_transparent_hugepage() &&
4026 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4027 		return -EINVAL;
4028 
4029 	shmem_huge = huge;
4030 	if (shmem_huge > SHMEM_HUGE_DENY)
4031 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4032 	return count;
4033 }
4034 
4035 struct kobj_attribute shmem_enabled_attr =
4036 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4037 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4038 
4039 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4040 bool shmem_huge_enabled(struct vm_area_struct *vma)
4041 {
4042 	struct inode *inode = file_inode(vma->vm_file);
4043 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4044 	loff_t i_size;
4045 	pgoff_t off;
4046 
4047 	if (shmem_huge == SHMEM_HUGE_FORCE)
4048 		return true;
4049 	if (shmem_huge == SHMEM_HUGE_DENY)
4050 		return false;
4051 	switch (sbinfo->huge) {
4052 		case SHMEM_HUGE_NEVER:
4053 			return false;
4054 		case SHMEM_HUGE_ALWAYS:
4055 			return true;
4056 		case SHMEM_HUGE_WITHIN_SIZE:
4057 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4058 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4059 			if (i_size >= HPAGE_PMD_SIZE &&
4060 					i_size >> PAGE_SHIFT >= off)
4061 				return true;
4062 		case SHMEM_HUGE_ADVISE:
4063 			/* TODO: implement fadvise() hints */
4064 			return (vma->vm_flags & VM_HUGEPAGE);
4065 		default:
4066 			VM_BUG_ON(1);
4067 			return false;
4068 	}
4069 }
4070 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4071 
4072 #else /* !CONFIG_SHMEM */
4073 
4074 /*
4075  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4076  *
4077  * This is intended for small system where the benefits of the full
4078  * shmem code (swap-backed and resource-limited) are outweighed by
4079  * their complexity. On systems without swap this code should be
4080  * effectively equivalent, but much lighter weight.
4081  */
4082 
4083 static struct file_system_type shmem_fs_type = {
4084 	.name		= "tmpfs",
4085 	.mount		= ramfs_mount,
4086 	.kill_sb	= kill_litter_super,
4087 	.fs_flags	= FS_USERNS_MOUNT,
4088 };
4089 
4090 int __init shmem_init(void)
4091 {
4092 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4093 
4094 	shm_mnt = kern_mount(&shmem_fs_type);
4095 	BUG_ON(IS_ERR(shm_mnt));
4096 
4097 	return 0;
4098 }
4099 
4100 int shmem_unuse(swp_entry_t swap, struct page *page)
4101 {
4102 	return 0;
4103 }
4104 
4105 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4106 {
4107 	return 0;
4108 }
4109 
4110 void shmem_unlock_mapping(struct address_space *mapping)
4111 {
4112 }
4113 
4114 #ifdef CONFIG_MMU
4115 unsigned long shmem_get_unmapped_area(struct file *file,
4116 				      unsigned long addr, unsigned long len,
4117 				      unsigned long pgoff, unsigned long flags)
4118 {
4119 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4120 }
4121 #endif
4122 
4123 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4124 {
4125 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4126 }
4127 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4128 
4129 #define shmem_vm_ops				generic_file_vm_ops
4130 #define shmem_file_operations			ramfs_file_operations
4131 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4132 #define shmem_acct_size(flags, size)		0
4133 #define shmem_unacct_size(flags, size)		do {} while (0)
4134 
4135 #endif /* CONFIG_SHMEM */
4136 
4137 /* common code */
4138 
4139 static const struct dentry_operations anon_ops = {
4140 	.d_dname = simple_dname
4141 };
4142 
4143 static struct file *__shmem_file_setup(const char *name, loff_t size,
4144 				       unsigned long flags, unsigned int i_flags)
4145 {
4146 	struct file *res;
4147 	struct inode *inode;
4148 	struct path path;
4149 	struct super_block *sb;
4150 	struct qstr this;
4151 
4152 	if (IS_ERR(shm_mnt))
4153 		return ERR_CAST(shm_mnt);
4154 
4155 	if (size < 0 || size > MAX_LFS_FILESIZE)
4156 		return ERR_PTR(-EINVAL);
4157 
4158 	if (shmem_acct_size(flags, size))
4159 		return ERR_PTR(-ENOMEM);
4160 
4161 	res = ERR_PTR(-ENOMEM);
4162 	this.name = name;
4163 	this.len = strlen(name);
4164 	this.hash = 0; /* will go */
4165 	sb = shm_mnt->mnt_sb;
4166 	path.mnt = mntget(shm_mnt);
4167 	path.dentry = d_alloc_pseudo(sb, &this);
4168 	if (!path.dentry)
4169 		goto put_memory;
4170 	d_set_d_op(path.dentry, &anon_ops);
4171 
4172 	res = ERR_PTR(-ENOSPC);
4173 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4174 	if (!inode)
4175 		goto put_memory;
4176 
4177 	inode->i_flags |= i_flags;
4178 	d_instantiate(path.dentry, inode);
4179 	inode->i_size = size;
4180 	clear_nlink(inode);	/* It is unlinked */
4181 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4182 	if (IS_ERR(res))
4183 		goto put_path;
4184 
4185 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4186 		  &shmem_file_operations);
4187 	if (IS_ERR(res))
4188 		goto put_path;
4189 
4190 	return res;
4191 
4192 put_memory:
4193 	shmem_unacct_size(flags, size);
4194 put_path:
4195 	path_put(&path);
4196 	return res;
4197 }
4198 
4199 /**
4200  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4201  * 	kernel internal.  There will be NO LSM permission checks against the
4202  * 	underlying inode.  So users of this interface must do LSM checks at a
4203  *	higher layer.  The users are the big_key and shm implementations.  LSM
4204  *	checks are provided at the key or shm level rather than the inode.
4205  * @name: name for dentry (to be seen in /proc/<pid>/maps
4206  * @size: size to be set for the file
4207  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4208  */
4209 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4210 {
4211 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
4212 }
4213 
4214 /**
4215  * shmem_file_setup - get an unlinked file living in tmpfs
4216  * @name: name for dentry (to be seen in /proc/<pid>/maps
4217  * @size: size to be set for the file
4218  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4219  */
4220 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4221 {
4222 	return __shmem_file_setup(name, size, flags, 0);
4223 }
4224 EXPORT_SYMBOL_GPL(shmem_file_setup);
4225 
4226 /**
4227  * shmem_zero_setup - setup a shared anonymous mapping
4228  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4229  */
4230 int shmem_zero_setup(struct vm_area_struct *vma)
4231 {
4232 	struct file *file;
4233 	loff_t size = vma->vm_end - vma->vm_start;
4234 
4235 	/*
4236 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4237 	 * between XFS directory reading and selinux: since this file is only
4238 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4239 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4240 	 */
4241 	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4242 	if (IS_ERR(file))
4243 		return PTR_ERR(file);
4244 
4245 	if (vma->vm_file)
4246 		fput(vma->vm_file);
4247 	vma->vm_file = file;
4248 	vma->vm_ops = &shmem_vm_ops;
4249 
4250 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4251 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4252 			(vma->vm_end & HPAGE_PMD_MASK)) {
4253 		khugepaged_enter(vma, vma->vm_flags);
4254 	}
4255 
4256 	return 0;
4257 }
4258 
4259 /**
4260  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4261  * @mapping:	the page's address_space
4262  * @index:	the page index
4263  * @gfp:	the page allocator flags to use if allocating
4264  *
4265  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4266  * with any new page allocations done using the specified allocation flags.
4267  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4268  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4269  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4270  *
4271  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4272  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4273  */
4274 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4275 					 pgoff_t index, gfp_t gfp)
4276 {
4277 #ifdef CONFIG_SHMEM
4278 	struct inode *inode = mapping->host;
4279 	struct page *page;
4280 	int error;
4281 
4282 	BUG_ON(mapping->a_ops != &shmem_aops);
4283 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4284 				  gfp, NULL, NULL, NULL);
4285 	if (error)
4286 		page = ERR_PTR(error);
4287 	else
4288 		unlock_page(page);
4289 	return page;
4290 #else
4291 	/*
4292 	 * The tiny !SHMEM case uses ramfs without swap
4293 	 */
4294 	return read_cache_page_gfp(mapping, index, gfp);
4295 #endif
4296 }
4297 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4298