xref: /openbmc/linux/mm/shmem.c (revision b1a366500bd537b50c3aad26dc7df083ec03a448)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35 
36 static struct vfsmount *shm_mnt;
37 
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44 
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72 
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75 
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78 
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81 
82 /*
83  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84  * inode->i_private (with i_mutex making sure that it has only one user at
85  * a time): we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89 	pgoff_t start;		/* start of range currently being fallocated */
90 	pgoff_t next;		/* the next page offset to be fallocated */
91 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
92 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
93 };
94 
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97 	SGP_READ,	/* don't exceed i_size, don't allocate page */
98 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
99 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
100 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
101 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
102 };
103 
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107 	return totalram_pages / 2;
108 }
109 
110 static unsigned long shmem_default_max_inodes(void)
111 {
112 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115 
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118 				struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121 
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123 	struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125 	return shmem_getpage_gfp(inode, index, pagep, sgp,
126 			mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128 
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131 	return sb->s_fs_info;
132 }
133 
134 /*
135  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136  * for shared memory and for shared anonymous (/dev/zero) mappings
137  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138  * consistent with the pre-accounting of private mappings ...
139  */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142 	return (flags & VM_NORESERVE) ?
143 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145 
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148 	if (!(flags & VM_NORESERVE))
149 		vm_unacct_memory(VM_ACCT(size));
150 }
151 
152 /*
153  * ... whereas tmpfs objects are accounted incrementally as
154  * pages are allocated, in order to allow huge sparse files.
155  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157  */
158 static inline int shmem_acct_block(unsigned long flags)
159 {
160 	return (flags & VM_NORESERVE) ?
161 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
162 }
163 
164 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165 {
166 	if (flags & VM_NORESERVE)
167 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168 }
169 
170 static const struct super_operations shmem_ops;
171 static const struct address_space_operations shmem_aops;
172 static const struct file_operations shmem_file_operations;
173 static const struct inode_operations shmem_inode_operations;
174 static const struct inode_operations shmem_dir_inode_operations;
175 static const struct inode_operations shmem_special_inode_operations;
176 static const struct vm_operations_struct shmem_vm_ops;
177 
178 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
179 	.ra_pages	= 0,	/* No readahead */
180 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
181 };
182 
183 static LIST_HEAD(shmem_swaplist);
184 static DEFINE_MUTEX(shmem_swaplist_mutex);
185 
186 static int shmem_reserve_inode(struct super_block *sb)
187 {
188 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189 	if (sbinfo->max_inodes) {
190 		spin_lock(&sbinfo->stat_lock);
191 		if (!sbinfo->free_inodes) {
192 			spin_unlock(&sbinfo->stat_lock);
193 			return -ENOSPC;
194 		}
195 		sbinfo->free_inodes--;
196 		spin_unlock(&sbinfo->stat_lock);
197 	}
198 	return 0;
199 }
200 
201 static void shmem_free_inode(struct super_block *sb)
202 {
203 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204 	if (sbinfo->max_inodes) {
205 		spin_lock(&sbinfo->stat_lock);
206 		sbinfo->free_inodes++;
207 		spin_unlock(&sbinfo->stat_lock);
208 	}
209 }
210 
211 /**
212  * shmem_recalc_inode - recalculate the block usage of an inode
213  * @inode: inode to recalc
214  *
215  * We have to calculate the free blocks since the mm can drop
216  * undirtied hole pages behind our back.
217  *
218  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
219  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220  *
221  * It has to be called with the spinlock held.
222  */
223 static void shmem_recalc_inode(struct inode *inode)
224 {
225 	struct shmem_inode_info *info = SHMEM_I(inode);
226 	long freed;
227 
228 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229 	if (freed > 0) {
230 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231 		if (sbinfo->max_blocks)
232 			percpu_counter_add(&sbinfo->used_blocks, -freed);
233 		info->alloced -= freed;
234 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235 		shmem_unacct_blocks(info->flags, freed);
236 	}
237 }
238 
239 /*
240  * Replace item expected in radix tree by a new item, while holding tree lock.
241  */
242 static int shmem_radix_tree_replace(struct address_space *mapping,
243 			pgoff_t index, void *expected, void *replacement)
244 {
245 	void **pslot;
246 	void *item;
247 
248 	VM_BUG_ON(!expected);
249 	VM_BUG_ON(!replacement);
250 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
251 	if (!pslot)
252 		return -ENOENT;
253 	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
254 	if (item != expected)
255 		return -ENOENT;
256 	radix_tree_replace_slot(pslot, replacement);
257 	return 0;
258 }
259 
260 /*
261  * Sometimes, before we decide whether to proceed or to fail, we must check
262  * that an entry was not already brought back from swap by a racing thread.
263  *
264  * Checking page is not enough: by the time a SwapCache page is locked, it
265  * might be reused, and again be SwapCache, using the same swap as before.
266  */
267 static bool shmem_confirm_swap(struct address_space *mapping,
268 			       pgoff_t index, swp_entry_t swap)
269 {
270 	void *item;
271 
272 	rcu_read_lock();
273 	item = radix_tree_lookup(&mapping->page_tree, index);
274 	rcu_read_unlock();
275 	return item == swp_to_radix_entry(swap);
276 }
277 
278 /*
279  * Like add_to_page_cache_locked, but error if expected item has gone.
280  */
281 static int shmem_add_to_page_cache(struct page *page,
282 				   struct address_space *mapping,
283 				   pgoff_t index, gfp_t gfp, void *expected)
284 {
285 	int error;
286 
287 	VM_BUG_ON_PAGE(!PageLocked(page), page);
288 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
289 
290 	page_cache_get(page);
291 	page->mapping = mapping;
292 	page->index = index;
293 
294 	spin_lock_irq(&mapping->tree_lock);
295 	if (!expected)
296 		error = radix_tree_insert(&mapping->page_tree, index, page);
297 	else
298 		error = shmem_radix_tree_replace(mapping, index, expected,
299 								 page);
300 	if (!error) {
301 		mapping->nrpages++;
302 		__inc_zone_page_state(page, NR_FILE_PAGES);
303 		__inc_zone_page_state(page, NR_SHMEM);
304 		spin_unlock_irq(&mapping->tree_lock);
305 	} else {
306 		page->mapping = NULL;
307 		spin_unlock_irq(&mapping->tree_lock);
308 		page_cache_release(page);
309 	}
310 	return error;
311 }
312 
313 /*
314  * Like delete_from_page_cache, but substitutes swap for page.
315  */
316 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
317 {
318 	struct address_space *mapping = page->mapping;
319 	int error;
320 
321 	spin_lock_irq(&mapping->tree_lock);
322 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
323 	page->mapping = NULL;
324 	mapping->nrpages--;
325 	__dec_zone_page_state(page, NR_FILE_PAGES);
326 	__dec_zone_page_state(page, NR_SHMEM);
327 	spin_unlock_irq(&mapping->tree_lock);
328 	page_cache_release(page);
329 	BUG_ON(error);
330 }
331 
332 /*
333  * Remove swap entry from radix tree, free the swap and its page cache.
334  */
335 static int shmem_free_swap(struct address_space *mapping,
336 			   pgoff_t index, void *radswap)
337 {
338 	void *old;
339 
340 	spin_lock_irq(&mapping->tree_lock);
341 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
342 	spin_unlock_irq(&mapping->tree_lock);
343 	if (old != radswap)
344 		return -ENOENT;
345 	free_swap_and_cache(radix_to_swp_entry(radswap));
346 	return 0;
347 }
348 
349 /*
350  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
351  */
352 void shmem_unlock_mapping(struct address_space *mapping)
353 {
354 	struct pagevec pvec;
355 	pgoff_t indices[PAGEVEC_SIZE];
356 	pgoff_t index = 0;
357 
358 	pagevec_init(&pvec, 0);
359 	/*
360 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
361 	 */
362 	while (!mapping_unevictable(mapping)) {
363 		/*
364 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
365 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
366 		 */
367 		pvec.nr = find_get_entries(mapping, index,
368 					   PAGEVEC_SIZE, pvec.pages, indices);
369 		if (!pvec.nr)
370 			break;
371 		index = indices[pvec.nr - 1] + 1;
372 		pagevec_remove_exceptionals(&pvec);
373 		check_move_unevictable_pages(pvec.pages, pvec.nr);
374 		pagevec_release(&pvec);
375 		cond_resched();
376 	}
377 }
378 
379 /*
380  * Remove range of pages and swap entries from radix tree, and free them.
381  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
382  */
383 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
384 								 bool unfalloc)
385 {
386 	struct address_space *mapping = inode->i_mapping;
387 	struct shmem_inode_info *info = SHMEM_I(inode);
388 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
389 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
390 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
391 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
392 	struct pagevec pvec;
393 	pgoff_t indices[PAGEVEC_SIZE];
394 	long nr_swaps_freed = 0;
395 	pgoff_t index;
396 	int i;
397 
398 	if (lend == -1)
399 		end = -1;	/* unsigned, so actually very big */
400 
401 	pagevec_init(&pvec, 0);
402 	index = start;
403 	while (index < end) {
404 		pvec.nr = find_get_entries(mapping, index,
405 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
406 			pvec.pages, indices);
407 		if (!pvec.nr)
408 			break;
409 		mem_cgroup_uncharge_start();
410 		for (i = 0; i < pagevec_count(&pvec); i++) {
411 			struct page *page = pvec.pages[i];
412 
413 			index = indices[i];
414 			if (index >= end)
415 				break;
416 
417 			if (radix_tree_exceptional_entry(page)) {
418 				if (unfalloc)
419 					continue;
420 				nr_swaps_freed += !shmem_free_swap(mapping,
421 								index, page);
422 				continue;
423 			}
424 
425 			if (!trylock_page(page))
426 				continue;
427 			if (!unfalloc || !PageUptodate(page)) {
428 				if (page->mapping == mapping) {
429 					VM_BUG_ON_PAGE(PageWriteback(page), page);
430 					truncate_inode_page(mapping, page);
431 				}
432 			}
433 			unlock_page(page);
434 		}
435 		pagevec_remove_exceptionals(&pvec);
436 		pagevec_release(&pvec);
437 		mem_cgroup_uncharge_end();
438 		cond_resched();
439 		index++;
440 	}
441 
442 	if (partial_start) {
443 		struct page *page = NULL;
444 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
445 		if (page) {
446 			unsigned int top = PAGE_CACHE_SIZE;
447 			if (start > end) {
448 				top = partial_end;
449 				partial_end = 0;
450 			}
451 			zero_user_segment(page, partial_start, top);
452 			set_page_dirty(page);
453 			unlock_page(page);
454 			page_cache_release(page);
455 		}
456 	}
457 	if (partial_end) {
458 		struct page *page = NULL;
459 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
460 		if (page) {
461 			zero_user_segment(page, 0, partial_end);
462 			set_page_dirty(page);
463 			unlock_page(page);
464 			page_cache_release(page);
465 		}
466 	}
467 	if (start >= end)
468 		return;
469 
470 	index = start;
471 	while (index < end) {
472 		cond_resched();
473 
474 		pvec.nr = find_get_entries(mapping, index,
475 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
476 				pvec.pages, indices);
477 		if (!pvec.nr) {
478 			/* If all gone or hole-punch or unfalloc, we're done */
479 			if (index == start || end != -1)
480 				break;
481 			/* But if truncating, restart to make sure all gone */
482 			index = start;
483 			continue;
484 		}
485 		mem_cgroup_uncharge_start();
486 		for (i = 0; i < pagevec_count(&pvec); i++) {
487 			struct page *page = pvec.pages[i];
488 
489 			index = indices[i];
490 			if (index >= end)
491 				break;
492 
493 			if (radix_tree_exceptional_entry(page)) {
494 				if (unfalloc)
495 					continue;
496 				if (shmem_free_swap(mapping, index, page)) {
497 					/* Swap was replaced by page: retry */
498 					index--;
499 					break;
500 				}
501 				nr_swaps_freed++;
502 				continue;
503 			}
504 
505 			lock_page(page);
506 			if (!unfalloc || !PageUptodate(page)) {
507 				if (page->mapping == mapping) {
508 					VM_BUG_ON_PAGE(PageWriteback(page), page);
509 					truncate_inode_page(mapping, page);
510 				} else {
511 					/* Page was replaced by swap: retry */
512 					unlock_page(page);
513 					index--;
514 					break;
515 				}
516 			}
517 			unlock_page(page);
518 		}
519 		pagevec_remove_exceptionals(&pvec);
520 		pagevec_release(&pvec);
521 		mem_cgroup_uncharge_end();
522 		index++;
523 	}
524 
525 	spin_lock(&info->lock);
526 	info->swapped -= nr_swaps_freed;
527 	shmem_recalc_inode(inode);
528 	spin_unlock(&info->lock);
529 }
530 
531 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
532 {
533 	shmem_undo_range(inode, lstart, lend, false);
534 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
535 }
536 EXPORT_SYMBOL_GPL(shmem_truncate_range);
537 
538 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
539 {
540 	struct inode *inode = dentry->d_inode;
541 	int error;
542 
543 	error = inode_change_ok(inode, attr);
544 	if (error)
545 		return error;
546 
547 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
548 		loff_t oldsize = inode->i_size;
549 		loff_t newsize = attr->ia_size;
550 
551 		if (newsize != oldsize) {
552 			i_size_write(inode, newsize);
553 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
554 		}
555 		if (newsize < oldsize) {
556 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
557 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
558 			shmem_truncate_range(inode, newsize, (loff_t)-1);
559 			/* unmap again to remove racily COWed private pages */
560 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
561 		}
562 	}
563 
564 	setattr_copy(inode, attr);
565 	if (attr->ia_valid & ATTR_MODE)
566 		error = posix_acl_chmod(inode, inode->i_mode);
567 	return error;
568 }
569 
570 static void shmem_evict_inode(struct inode *inode)
571 {
572 	struct shmem_inode_info *info = SHMEM_I(inode);
573 
574 	if (inode->i_mapping->a_ops == &shmem_aops) {
575 		shmem_unacct_size(info->flags, inode->i_size);
576 		inode->i_size = 0;
577 		shmem_truncate_range(inode, 0, (loff_t)-1);
578 		if (!list_empty(&info->swaplist)) {
579 			mutex_lock(&shmem_swaplist_mutex);
580 			list_del_init(&info->swaplist);
581 			mutex_unlock(&shmem_swaplist_mutex);
582 		}
583 	} else
584 		kfree(info->symlink);
585 
586 	simple_xattrs_free(&info->xattrs);
587 	WARN_ON(inode->i_blocks);
588 	shmem_free_inode(inode->i_sb);
589 	clear_inode(inode);
590 }
591 
592 /*
593  * If swap found in inode, free it and move page from swapcache to filecache.
594  */
595 static int shmem_unuse_inode(struct shmem_inode_info *info,
596 			     swp_entry_t swap, struct page **pagep)
597 {
598 	struct address_space *mapping = info->vfs_inode.i_mapping;
599 	void *radswap;
600 	pgoff_t index;
601 	gfp_t gfp;
602 	int error = 0;
603 
604 	radswap = swp_to_radix_entry(swap);
605 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
606 	if (index == -1)
607 		return 0;
608 
609 	/*
610 	 * Move _head_ to start search for next from here.
611 	 * But be careful: shmem_evict_inode checks list_empty without taking
612 	 * mutex, and there's an instant in list_move_tail when info->swaplist
613 	 * would appear empty, if it were the only one on shmem_swaplist.
614 	 */
615 	if (shmem_swaplist.next != &info->swaplist)
616 		list_move_tail(&shmem_swaplist, &info->swaplist);
617 
618 	gfp = mapping_gfp_mask(mapping);
619 	if (shmem_should_replace_page(*pagep, gfp)) {
620 		mutex_unlock(&shmem_swaplist_mutex);
621 		error = shmem_replace_page(pagep, gfp, info, index);
622 		mutex_lock(&shmem_swaplist_mutex);
623 		/*
624 		 * We needed to drop mutex to make that restrictive page
625 		 * allocation, but the inode might have been freed while we
626 		 * dropped it: although a racing shmem_evict_inode() cannot
627 		 * complete without emptying the radix_tree, our page lock
628 		 * on this swapcache page is not enough to prevent that -
629 		 * free_swap_and_cache() of our swap entry will only
630 		 * trylock_page(), removing swap from radix_tree whatever.
631 		 *
632 		 * We must not proceed to shmem_add_to_page_cache() if the
633 		 * inode has been freed, but of course we cannot rely on
634 		 * inode or mapping or info to check that.  However, we can
635 		 * safely check if our swap entry is still in use (and here
636 		 * it can't have got reused for another page): if it's still
637 		 * in use, then the inode cannot have been freed yet, and we
638 		 * can safely proceed (if it's no longer in use, that tells
639 		 * nothing about the inode, but we don't need to unuse swap).
640 		 */
641 		if (!page_swapcount(*pagep))
642 			error = -ENOENT;
643 	}
644 
645 	/*
646 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
647 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
648 	 * beneath us (pagelock doesn't help until the page is in pagecache).
649 	 */
650 	if (!error)
651 		error = shmem_add_to_page_cache(*pagep, mapping, index,
652 						GFP_NOWAIT, radswap);
653 	if (error != -ENOMEM) {
654 		/*
655 		 * Truncation and eviction use free_swap_and_cache(), which
656 		 * only does trylock page: if we raced, best clean up here.
657 		 */
658 		delete_from_swap_cache(*pagep);
659 		set_page_dirty(*pagep);
660 		if (!error) {
661 			spin_lock(&info->lock);
662 			info->swapped--;
663 			spin_unlock(&info->lock);
664 			swap_free(swap);
665 		}
666 		error = 1;	/* not an error, but entry was found */
667 	}
668 	return error;
669 }
670 
671 /*
672  * Search through swapped inodes to find and replace swap by page.
673  */
674 int shmem_unuse(swp_entry_t swap, struct page *page)
675 {
676 	struct list_head *this, *next;
677 	struct shmem_inode_info *info;
678 	int found = 0;
679 	int error = 0;
680 
681 	/*
682 	 * There's a faint possibility that swap page was replaced before
683 	 * caller locked it: caller will come back later with the right page.
684 	 */
685 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
686 		goto out;
687 
688 	/*
689 	 * Charge page using GFP_KERNEL while we can wait, before taking
690 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
691 	 * Charged back to the user (not to caller) when swap account is used.
692 	 */
693 	error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
694 	if (error)
695 		goto out;
696 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
697 
698 	mutex_lock(&shmem_swaplist_mutex);
699 	list_for_each_safe(this, next, &shmem_swaplist) {
700 		info = list_entry(this, struct shmem_inode_info, swaplist);
701 		if (info->swapped)
702 			found = shmem_unuse_inode(info, swap, &page);
703 		else
704 			list_del_init(&info->swaplist);
705 		cond_resched();
706 		if (found)
707 			break;
708 	}
709 	mutex_unlock(&shmem_swaplist_mutex);
710 
711 	if (found < 0)
712 		error = found;
713 out:
714 	unlock_page(page);
715 	page_cache_release(page);
716 	return error;
717 }
718 
719 /*
720  * Move the page from the page cache to the swap cache.
721  */
722 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
723 {
724 	struct shmem_inode_info *info;
725 	struct address_space *mapping;
726 	struct inode *inode;
727 	swp_entry_t swap;
728 	pgoff_t index;
729 
730 	BUG_ON(!PageLocked(page));
731 	mapping = page->mapping;
732 	index = page->index;
733 	inode = mapping->host;
734 	info = SHMEM_I(inode);
735 	if (info->flags & VM_LOCKED)
736 		goto redirty;
737 	if (!total_swap_pages)
738 		goto redirty;
739 
740 	/*
741 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
742 	 * sync from ever calling shmem_writepage; but a stacking filesystem
743 	 * might use ->writepage of its underlying filesystem, in which case
744 	 * tmpfs should write out to swap only in response to memory pressure,
745 	 * and not for the writeback threads or sync.
746 	 */
747 	if (!wbc->for_reclaim) {
748 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
749 		goto redirty;
750 	}
751 
752 	/*
753 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
754 	 * value into swapfile.c, the only way we can correctly account for a
755 	 * fallocated page arriving here is now to initialize it and write it.
756 	 *
757 	 * That's okay for a page already fallocated earlier, but if we have
758 	 * not yet completed the fallocation, then (a) we want to keep track
759 	 * of this page in case we have to undo it, and (b) it may not be a
760 	 * good idea to continue anyway, once we're pushing into swap.  So
761 	 * reactivate the page, and let shmem_fallocate() quit when too many.
762 	 */
763 	if (!PageUptodate(page)) {
764 		if (inode->i_private) {
765 			struct shmem_falloc *shmem_falloc;
766 			spin_lock(&inode->i_lock);
767 			shmem_falloc = inode->i_private;
768 			if (shmem_falloc &&
769 			    !shmem_falloc->waitq &&
770 			    index >= shmem_falloc->start &&
771 			    index < shmem_falloc->next)
772 				shmem_falloc->nr_unswapped++;
773 			else
774 				shmem_falloc = NULL;
775 			spin_unlock(&inode->i_lock);
776 			if (shmem_falloc)
777 				goto redirty;
778 		}
779 		clear_highpage(page);
780 		flush_dcache_page(page);
781 		SetPageUptodate(page);
782 	}
783 
784 	swap = get_swap_page();
785 	if (!swap.val)
786 		goto redirty;
787 
788 	/*
789 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
790 	 * if it's not already there.  Do it now before the page is
791 	 * moved to swap cache, when its pagelock no longer protects
792 	 * the inode from eviction.  But don't unlock the mutex until
793 	 * we've incremented swapped, because shmem_unuse_inode() will
794 	 * prune a !swapped inode from the swaplist under this mutex.
795 	 */
796 	mutex_lock(&shmem_swaplist_mutex);
797 	if (list_empty(&info->swaplist))
798 		list_add_tail(&info->swaplist, &shmem_swaplist);
799 
800 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
801 		swap_shmem_alloc(swap);
802 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
803 
804 		spin_lock(&info->lock);
805 		info->swapped++;
806 		shmem_recalc_inode(inode);
807 		spin_unlock(&info->lock);
808 
809 		mutex_unlock(&shmem_swaplist_mutex);
810 		BUG_ON(page_mapped(page));
811 		swap_writepage(page, wbc);
812 		return 0;
813 	}
814 
815 	mutex_unlock(&shmem_swaplist_mutex);
816 	swapcache_free(swap, NULL);
817 redirty:
818 	set_page_dirty(page);
819 	if (wbc->for_reclaim)
820 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
821 	unlock_page(page);
822 	return 0;
823 }
824 
825 #ifdef CONFIG_NUMA
826 #ifdef CONFIG_TMPFS
827 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
828 {
829 	char buffer[64];
830 
831 	if (!mpol || mpol->mode == MPOL_DEFAULT)
832 		return;		/* show nothing */
833 
834 	mpol_to_str(buffer, sizeof(buffer), mpol);
835 
836 	seq_printf(seq, ",mpol=%s", buffer);
837 }
838 
839 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
840 {
841 	struct mempolicy *mpol = NULL;
842 	if (sbinfo->mpol) {
843 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
844 		mpol = sbinfo->mpol;
845 		mpol_get(mpol);
846 		spin_unlock(&sbinfo->stat_lock);
847 	}
848 	return mpol;
849 }
850 #endif /* CONFIG_TMPFS */
851 
852 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
853 			struct shmem_inode_info *info, pgoff_t index)
854 {
855 	struct vm_area_struct pvma;
856 	struct page *page;
857 
858 	/* Create a pseudo vma that just contains the policy */
859 	pvma.vm_start = 0;
860 	/* Bias interleave by inode number to distribute better across nodes */
861 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
862 	pvma.vm_ops = NULL;
863 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
864 
865 	page = swapin_readahead(swap, gfp, &pvma, 0);
866 
867 	/* Drop reference taken by mpol_shared_policy_lookup() */
868 	mpol_cond_put(pvma.vm_policy);
869 
870 	return page;
871 }
872 
873 static struct page *shmem_alloc_page(gfp_t gfp,
874 			struct shmem_inode_info *info, pgoff_t index)
875 {
876 	struct vm_area_struct pvma;
877 	struct page *page;
878 
879 	/* Create a pseudo vma that just contains the policy */
880 	pvma.vm_start = 0;
881 	/* Bias interleave by inode number to distribute better across nodes */
882 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
883 	pvma.vm_ops = NULL;
884 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
885 
886 	page = alloc_page_vma(gfp, &pvma, 0);
887 
888 	/* Drop reference taken by mpol_shared_policy_lookup() */
889 	mpol_cond_put(pvma.vm_policy);
890 
891 	return page;
892 }
893 #else /* !CONFIG_NUMA */
894 #ifdef CONFIG_TMPFS
895 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
896 {
897 }
898 #endif /* CONFIG_TMPFS */
899 
900 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
901 			struct shmem_inode_info *info, pgoff_t index)
902 {
903 	return swapin_readahead(swap, gfp, NULL, 0);
904 }
905 
906 static inline struct page *shmem_alloc_page(gfp_t gfp,
907 			struct shmem_inode_info *info, pgoff_t index)
908 {
909 	return alloc_page(gfp);
910 }
911 #endif /* CONFIG_NUMA */
912 
913 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
914 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
915 {
916 	return NULL;
917 }
918 #endif
919 
920 /*
921  * When a page is moved from swapcache to shmem filecache (either by the
922  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
923  * shmem_unuse_inode()), it may have been read in earlier from swap, in
924  * ignorance of the mapping it belongs to.  If that mapping has special
925  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
926  * we may need to copy to a suitable page before moving to filecache.
927  *
928  * In a future release, this may well be extended to respect cpuset and
929  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
930  * but for now it is a simple matter of zone.
931  */
932 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
933 {
934 	return page_zonenum(page) > gfp_zone(gfp);
935 }
936 
937 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
938 				struct shmem_inode_info *info, pgoff_t index)
939 {
940 	struct page *oldpage, *newpage;
941 	struct address_space *swap_mapping;
942 	pgoff_t swap_index;
943 	int error;
944 
945 	oldpage = *pagep;
946 	swap_index = page_private(oldpage);
947 	swap_mapping = page_mapping(oldpage);
948 
949 	/*
950 	 * We have arrived here because our zones are constrained, so don't
951 	 * limit chance of success by further cpuset and node constraints.
952 	 */
953 	gfp &= ~GFP_CONSTRAINT_MASK;
954 	newpage = shmem_alloc_page(gfp, info, index);
955 	if (!newpage)
956 		return -ENOMEM;
957 
958 	page_cache_get(newpage);
959 	copy_highpage(newpage, oldpage);
960 	flush_dcache_page(newpage);
961 
962 	__set_page_locked(newpage);
963 	SetPageUptodate(newpage);
964 	SetPageSwapBacked(newpage);
965 	set_page_private(newpage, swap_index);
966 	SetPageSwapCache(newpage);
967 
968 	/*
969 	 * Our caller will very soon move newpage out of swapcache, but it's
970 	 * a nice clean interface for us to replace oldpage by newpage there.
971 	 */
972 	spin_lock_irq(&swap_mapping->tree_lock);
973 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
974 								   newpage);
975 	if (!error) {
976 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
977 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
978 	}
979 	spin_unlock_irq(&swap_mapping->tree_lock);
980 
981 	if (unlikely(error)) {
982 		/*
983 		 * Is this possible?  I think not, now that our callers check
984 		 * both PageSwapCache and page_private after getting page lock;
985 		 * but be defensive.  Reverse old to newpage for clear and free.
986 		 */
987 		oldpage = newpage;
988 	} else {
989 		mem_cgroup_replace_page_cache(oldpage, newpage);
990 		lru_cache_add_anon(newpage);
991 		*pagep = newpage;
992 	}
993 
994 	ClearPageSwapCache(oldpage);
995 	set_page_private(oldpage, 0);
996 
997 	unlock_page(oldpage);
998 	page_cache_release(oldpage);
999 	page_cache_release(oldpage);
1000 	return error;
1001 }
1002 
1003 /*
1004  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1005  *
1006  * If we allocate a new one we do not mark it dirty. That's up to the
1007  * vm. If we swap it in we mark it dirty since we also free the swap
1008  * entry since a page cannot live in both the swap and page cache
1009  */
1010 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1011 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1012 {
1013 	struct address_space *mapping = inode->i_mapping;
1014 	struct shmem_inode_info *info;
1015 	struct shmem_sb_info *sbinfo;
1016 	struct page *page;
1017 	swp_entry_t swap;
1018 	int error;
1019 	int once = 0;
1020 	int alloced = 0;
1021 
1022 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1023 		return -EFBIG;
1024 repeat:
1025 	swap.val = 0;
1026 	page = find_lock_entry(mapping, index);
1027 	if (radix_tree_exceptional_entry(page)) {
1028 		swap = radix_to_swp_entry(page);
1029 		page = NULL;
1030 	}
1031 
1032 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1033 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1034 		error = -EINVAL;
1035 		goto failed;
1036 	}
1037 
1038 	if (page && sgp == SGP_WRITE)
1039 		mark_page_accessed(page);
1040 
1041 	/* fallocated page? */
1042 	if (page && !PageUptodate(page)) {
1043 		if (sgp != SGP_READ)
1044 			goto clear;
1045 		unlock_page(page);
1046 		page_cache_release(page);
1047 		page = NULL;
1048 	}
1049 	if (page || (sgp == SGP_READ && !swap.val)) {
1050 		*pagep = page;
1051 		return 0;
1052 	}
1053 
1054 	/*
1055 	 * Fast cache lookup did not find it:
1056 	 * bring it back from swap or allocate.
1057 	 */
1058 	info = SHMEM_I(inode);
1059 	sbinfo = SHMEM_SB(inode->i_sb);
1060 
1061 	if (swap.val) {
1062 		/* Look it up and read it in.. */
1063 		page = lookup_swap_cache(swap);
1064 		if (!page) {
1065 			/* here we actually do the io */
1066 			if (fault_type)
1067 				*fault_type |= VM_FAULT_MAJOR;
1068 			page = shmem_swapin(swap, gfp, info, index);
1069 			if (!page) {
1070 				error = -ENOMEM;
1071 				goto failed;
1072 			}
1073 		}
1074 
1075 		/* We have to do this with page locked to prevent races */
1076 		lock_page(page);
1077 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1078 		    !shmem_confirm_swap(mapping, index, swap)) {
1079 			error = -EEXIST;	/* try again */
1080 			goto unlock;
1081 		}
1082 		if (!PageUptodate(page)) {
1083 			error = -EIO;
1084 			goto failed;
1085 		}
1086 		wait_on_page_writeback(page);
1087 
1088 		if (shmem_should_replace_page(page, gfp)) {
1089 			error = shmem_replace_page(&page, gfp, info, index);
1090 			if (error)
1091 				goto failed;
1092 		}
1093 
1094 		error = mem_cgroup_charge_file(page, current->mm,
1095 						gfp & GFP_RECLAIM_MASK);
1096 		if (!error) {
1097 			error = shmem_add_to_page_cache(page, mapping, index,
1098 						gfp, swp_to_radix_entry(swap));
1099 			/*
1100 			 * We already confirmed swap under page lock, and make
1101 			 * no memory allocation here, so usually no possibility
1102 			 * of error; but free_swap_and_cache() only trylocks a
1103 			 * page, so it is just possible that the entry has been
1104 			 * truncated or holepunched since swap was confirmed.
1105 			 * shmem_undo_range() will have done some of the
1106 			 * unaccounting, now delete_from_swap_cache() will do
1107 			 * the rest (including mem_cgroup_uncharge_swapcache).
1108 			 * Reset swap.val? No, leave it so "failed" goes back to
1109 			 * "repeat": reading a hole and writing should succeed.
1110 			 */
1111 			if (error)
1112 				delete_from_swap_cache(page);
1113 		}
1114 		if (error)
1115 			goto failed;
1116 
1117 		spin_lock(&info->lock);
1118 		info->swapped--;
1119 		shmem_recalc_inode(inode);
1120 		spin_unlock(&info->lock);
1121 
1122 		if (sgp == SGP_WRITE)
1123 			mark_page_accessed(page);
1124 
1125 		delete_from_swap_cache(page);
1126 		set_page_dirty(page);
1127 		swap_free(swap);
1128 
1129 	} else {
1130 		if (shmem_acct_block(info->flags)) {
1131 			error = -ENOSPC;
1132 			goto failed;
1133 		}
1134 		if (sbinfo->max_blocks) {
1135 			if (percpu_counter_compare(&sbinfo->used_blocks,
1136 						sbinfo->max_blocks) >= 0) {
1137 				error = -ENOSPC;
1138 				goto unacct;
1139 			}
1140 			percpu_counter_inc(&sbinfo->used_blocks);
1141 		}
1142 
1143 		page = shmem_alloc_page(gfp, info, index);
1144 		if (!page) {
1145 			error = -ENOMEM;
1146 			goto decused;
1147 		}
1148 
1149 		__SetPageSwapBacked(page);
1150 		__set_page_locked(page);
1151 		if (sgp == SGP_WRITE)
1152 			init_page_accessed(page);
1153 
1154 		error = mem_cgroup_charge_file(page, current->mm,
1155 						gfp & GFP_RECLAIM_MASK);
1156 		if (error)
1157 			goto decused;
1158 		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1159 		if (!error) {
1160 			error = shmem_add_to_page_cache(page, mapping, index,
1161 							gfp, NULL);
1162 			radix_tree_preload_end();
1163 		}
1164 		if (error) {
1165 			mem_cgroup_uncharge_cache_page(page);
1166 			goto decused;
1167 		}
1168 		lru_cache_add_anon(page);
1169 
1170 		spin_lock(&info->lock);
1171 		info->alloced++;
1172 		inode->i_blocks += BLOCKS_PER_PAGE;
1173 		shmem_recalc_inode(inode);
1174 		spin_unlock(&info->lock);
1175 		alloced = true;
1176 
1177 		/*
1178 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1179 		 */
1180 		if (sgp == SGP_FALLOC)
1181 			sgp = SGP_WRITE;
1182 clear:
1183 		/*
1184 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1185 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1186 		 * it now, lest undo on failure cancel our earlier guarantee.
1187 		 */
1188 		if (sgp != SGP_WRITE) {
1189 			clear_highpage(page);
1190 			flush_dcache_page(page);
1191 			SetPageUptodate(page);
1192 		}
1193 		if (sgp == SGP_DIRTY)
1194 			set_page_dirty(page);
1195 	}
1196 
1197 	/* Perhaps the file has been truncated since we checked */
1198 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1199 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1200 		error = -EINVAL;
1201 		if (alloced)
1202 			goto trunc;
1203 		else
1204 			goto failed;
1205 	}
1206 	*pagep = page;
1207 	return 0;
1208 
1209 	/*
1210 	 * Error recovery.
1211 	 */
1212 trunc:
1213 	info = SHMEM_I(inode);
1214 	ClearPageDirty(page);
1215 	delete_from_page_cache(page);
1216 	spin_lock(&info->lock);
1217 	info->alloced--;
1218 	inode->i_blocks -= BLOCKS_PER_PAGE;
1219 	spin_unlock(&info->lock);
1220 decused:
1221 	sbinfo = SHMEM_SB(inode->i_sb);
1222 	if (sbinfo->max_blocks)
1223 		percpu_counter_add(&sbinfo->used_blocks, -1);
1224 unacct:
1225 	shmem_unacct_blocks(info->flags, 1);
1226 failed:
1227 	if (swap.val && error != -EINVAL &&
1228 	    !shmem_confirm_swap(mapping, index, swap))
1229 		error = -EEXIST;
1230 unlock:
1231 	if (page) {
1232 		unlock_page(page);
1233 		page_cache_release(page);
1234 	}
1235 	if (error == -ENOSPC && !once++) {
1236 		info = SHMEM_I(inode);
1237 		spin_lock(&info->lock);
1238 		shmem_recalc_inode(inode);
1239 		spin_unlock(&info->lock);
1240 		goto repeat;
1241 	}
1242 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1243 		goto repeat;
1244 	return error;
1245 }
1246 
1247 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1248 {
1249 	struct inode *inode = file_inode(vma->vm_file);
1250 	int error;
1251 	int ret = VM_FAULT_LOCKED;
1252 
1253 	/*
1254 	 * Trinity finds that probing a hole which tmpfs is punching can
1255 	 * prevent the hole-punch from ever completing: which in turn
1256 	 * locks writers out with its hold on i_mutex.  So refrain from
1257 	 * faulting pages into the hole while it's being punched.  Although
1258 	 * shmem_undo_range() does remove the additions, it may be unable to
1259 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1260 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1261 	 *
1262 	 * It does not matter if we sometimes reach this check just before the
1263 	 * hole-punch begins, so that one fault then races with the punch:
1264 	 * we just need to make racing faults a rare case.
1265 	 *
1266 	 * The implementation below would be much simpler if we just used a
1267 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1268 	 * and bloating every shmem inode for this unlikely case would be sad.
1269 	 */
1270 	if (unlikely(inode->i_private)) {
1271 		struct shmem_falloc *shmem_falloc;
1272 
1273 		spin_lock(&inode->i_lock);
1274 		shmem_falloc = inode->i_private;
1275 		if (shmem_falloc &&
1276 		    shmem_falloc->waitq &&
1277 		    vmf->pgoff >= shmem_falloc->start &&
1278 		    vmf->pgoff < shmem_falloc->next) {
1279 			wait_queue_head_t *shmem_falloc_waitq;
1280 			DEFINE_WAIT(shmem_fault_wait);
1281 
1282 			ret = VM_FAULT_NOPAGE;
1283 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1284 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1285 				/* It's polite to up mmap_sem if we can */
1286 				up_read(&vma->vm_mm->mmap_sem);
1287 				ret = VM_FAULT_RETRY;
1288 			}
1289 
1290 			shmem_falloc_waitq = shmem_falloc->waitq;
1291 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1292 					TASK_UNINTERRUPTIBLE);
1293 			spin_unlock(&inode->i_lock);
1294 			schedule();
1295 
1296 			/*
1297 			 * shmem_falloc_waitq points into the shmem_fallocate()
1298 			 * stack of the hole-punching task: shmem_falloc_waitq
1299 			 * is usually invalid by the time we reach here, but
1300 			 * finish_wait() does not dereference it in that case;
1301 			 * though i_lock needed lest racing with wake_up_all().
1302 			 */
1303 			spin_lock(&inode->i_lock);
1304 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1305 			spin_unlock(&inode->i_lock);
1306 			return ret;
1307 		}
1308 		spin_unlock(&inode->i_lock);
1309 	}
1310 
1311 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1312 	if (error)
1313 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1314 
1315 	if (ret & VM_FAULT_MAJOR) {
1316 		count_vm_event(PGMAJFAULT);
1317 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1318 	}
1319 	return ret;
1320 }
1321 
1322 #ifdef CONFIG_NUMA
1323 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1324 {
1325 	struct inode *inode = file_inode(vma->vm_file);
1326 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1327 }
1328 
1329 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1330 					  unsigned long addr)
1331 {
1332 	struct inode *inode = file_inode(vma->vm_file);
1333 	pgoff_t index;
1334 
1335 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1336 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1337 }
1338 #endif
1339 
1340 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1341 {
1342 	struct inode *inode = file_inode(file);
1343 	struct shmem_inode_info *info = SHMEM_I(inode);
1344 	int retval = -ENOMEM;
1345 
1346 	spin_lock(&info->lock);
1347 	if (lock && !(info->flags & VM_LOCKED)) {
1348 		if (!user_shm_lock(inode->i_size, user))
1349 			goto out_nomem;
1350 		info->flags |= VM_LOCKED;
1351 		mapping_set_unevictable(file->f_mapping);
1352 	}
1353 	if (!lock && (info->flags & VM_LOCKED) && user) {
1354 		user_shm_unlock(inode->i_size, user);
1355 		info->flags &= ~VM_LOCKED;
1356 		mapping_clear_unevictable(file->f_mapping);
1357 	}
1358 	retval = 0;
1359 
1360 out_nomem:
1361 	spin_unlock(&info->lock);
1362 	return retval;
1363 }
1364 
1365 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1366 {
1367 	file_accessed(file);
1368 	vma->vm_ops = &shmem_vm_ops;
1369 	return 0;
1370 }
1371 
1372 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1373 				     umode_t mode, dev_t dev, unsigned long flags)
1374 {
1375 	struct inode *inode;
1376 	struct shmem_inode_info *info;
1377 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1378 
1379 	if (shmem_reserve_inode(sb))
1380 		return NULL;
1381 
1382 	inode = new_inode(sb);
1383 	if (inode) {
1384 		inode->i_ino = get_next_ino();
1385 		inode_init_owner(inode, dir, mode);
1386 		inode->i_blocks = 0;
1387 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1388 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1389 		inode->i_generation = get_seconds();
1390 		info = SHMEM_I(inode);
1391 		memset(info, 0, (char *)inode - (char *)info);
1392 		spin_lock_init(&info->lock);
1393 		info->flags = flags & VM_NORESERVE;
1394 		INIT_LIST_HEAD(&info->swaplist);
1395 		simple_xattrs_init(&info->xattrs);
1396 		cache_no_acl(inode);
1397 
1398 		switch (mode & S_IFMT) {
1399 		default:
1400 			inode->i_op = &shmem_special_inode_operations;
1401 			init_special_inode(inode, mode, dev);
1402 			break;
1403 		case S_IFREG:
1404 			inode->i_mapping->a_ops = &shmem_aops;
1405 			inode->i_op = &shmem_inode_operations;
1406 			inode->i_fop = &shmem_file_operations;
1407 			mpol_shared_policy_init(&info->policy,
1408 						 shmem_get_sbmpol(sbinfo));
1409 			break;
1410 		case S_IFDIR:
1411 			inc_nlink(inode);
1412 			/* Some things misbehave if size == 0 on a directory */
1413 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1414 			inode->i_op = &shmem_dir_inode_operations;
1415 			inode->i_fop = &simple_dir_operations;
1416 			break;
1417 		case S_IFLNK:
1418 			/*
1419 			 * Must not load anything in the rbtree,
1420 			 * mpol_free_shared_policy will not be called.
1421 			 */
1422 			mpol_shared_policy_init(&info->policy, NULL);
1423 			break;
1424 		}
1425 	} else
1426 		shmem_free_inode(sb);
1427 	return inode;
1428 }
1429 
1430 bool shmem_mapping(struct address_space *mapping)
1431 {
1432 	return mapping->backing_dev_info == &shmem_backing_dev_info;
1433 }
1434 
1435 #ifdef CONFIG_TMPFS
1436 static const struct inode_operations shmem_symlink_inode_operations;
1437 static const struct inode_operations shmem_short_symlink_operations;
1438 
1439 #ifdef CONFIG_TMPFS_XATTR
1440 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1441 #else
1442 #define shmem_initxattrs NULL
1443 #endif
1444 
1445 static int
1446 shmem_write_begin(struct file *file, struct address_space *mapping,
1447 			loff_t pos, unsigned len, unsigned flags,
1448 			struct page **pagep, void **fsdata)
1449 {
1450 	struct inode *inode = mapping->host;
1451 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1452 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1453 }
1454 
1455 static int
1456 shmem_write_end(struct file *file, struct address_space *mapping,
1457 			loff_t pos, unsigned len, unsigned copied,
1458 			struct page *page, void *fsdata)
1459 {
1460 	struct inode *inode = mapping->host;
1461 
1462 	if (pos + copied > inode->i_size)
1463 		i_size_write(inode, pos + copied);
1464 
1465 	if (!PageUptodate(page)) {
1466 		if (copied < PAGE_CACHE_SIZE) {
1467 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1468 			zero_user_segments(page, 0, from,
1469 					from + copied, PAGE_CACHE_SIZE);
1470 		}
1471 		SetPageUptodate(page);
1472 	}
1473 	set_page_dirty(page);
1474 	unlock_page(page);
1475 	page_cache_release(page);
1476 
1477 	return copied;
1478 }
1479 
1480 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1481 {
1482 	struct file *file = iocb->ki_filp;
1483 	struct inode *inode = file_inode(file);
1484 	struct address_space *mapping = inode->i_mapping;
1485 	pgoff_t index;
1486 	unsigned long offset;
1487 	enum sgp_type sgp = SGP_READ;
1488 	int error = 0;
1489 	ssize_t retval = 0;
1490 	loff_t *ppos = &iocb->ki_pos;
1491 
1492 	/*
1493 	 * Might this read be for a stacking filesystem?  Then when reading
1494 	 * holes of a sparse file, we actually need to allocate those pages,
1495 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1496 	 */
1497 	if (segment_eq(get_fs(), KERNEL_DS))
1498 		sgp = SGP_DIRTY;
1499 
1500 	index = *ppos >> PAGE_CACHE_SHIFT;
1501 	offset = *ppos & ~PAGE_CACHE_MASK;
1502 
1503 	for (;;) {
1504 		struct page *page = NULL;
1505 		pgoff_t end_index;
1506 		unsigned long nr, ret;
1507 		loff_t i_size = i_size_read(inode);
1508 
1509 		end_index = i_size >> PAGE_CACHE_SHIFT;
1510 		if (index > end_index)
1511 			break;
1512 		if (index == end_index) {
1513 			nr = i_size & ~PAGE_CACHE_MASK;
1514 			if (nr <= offset)
1515 				break;
1516 		}
1517 
1518 		error = shmem_getpage(inode, index, &page, sgp, NULL);
1519 		if (error) {
1520 			if (error == -EINVAL)
1521 				error = 0;
1522 			break;
1523 		}
1524 		if (page)
1525 			unlock_page(page);
1526 
1527 		/*
1528 		 * We must evaluate after, since reads (unlike writes)
1529 		 * are called without i_mutex protection against truncate
1530 		 */
1531 		nr = PAGE_CACHE_SIZE;
1532 		i_size = i_size_read(inode);
1533 		end_index = i_size >> PAGE_CACHE_SHIFT;
1534 		if (index == end_index) {
1535 			nr = i_size & ~PAGE_CACHE_MASK;
1536 			if (nr <= offset) {
1537 				if (page)
1538 					page_cache_release(page);
1539 				break;
1540 			}
1541 		}
1542 		nr -= offset;
1543 
1544 		if (page) {
1545 			/*
1546 			 * If users can be writing to this page using arbitrary
1547 			 * virtual addresses, take care about potential aliasing
1548 			 * before reading the page on the kernel side.
1549 			 */
1550 			if (mapping_writably_mapped(mapping))
1551 				flush_dcache_page(page);
1552 			/*
1553 			 * Mark the page accessed if we read the beginning.
1554 			 */
1555 			if (!offset)
1556 				mark_page_accessed(page);
1557 		} else {
1558 			page = ZERO_PAGE(0);
1559 			page_cache_get(page);
1560 		}
1561 
1562 		/*
1563 		 * Ok, we have the page, and it's up-to-date, so
1564 		 * now we can copy it to user space...
1565 		 */
1566 		ret = copy_page_to_iter(page, offset, nr, to);
1567 		retval += ret;
1568 		offset += ret;
1569 		index += offset >> PAGE_CACHE_SHIFT;
1570 		offset &= ~PAGE_CACHE_MASK;
1571 
1572 		page_cache_release(page);
1573 		if (!iov_iter_count(to))
1574 			break;
1575 		if (ret < nr) {
1576 			error = -EFAULT;
1577 			break;
1578 		}
1579 		cond_resched();
1580 	}
1581 
1582 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1583 	file_accessed(file);
1584 	return retval ? retval : error;
1585 }
1586 
1587 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1588 				struct pipe_inode_info *pipe, size_t len,
1589 				unsigned int flags)
1590 {
1591 	struct address_space *mapping = in->f_mapping;
1592 	struct inode *inode = mapping->host;
1593 	unsigned int loff, nr_pages, req_pages;
1594 	struct page *pages[PIPE_DEF_BUFFERS];
1595 	struct partial_page partial[PIPE_DEF_BUFFERS];
1596 	struct page *page;
1597 	pgoff_t index, end_index;
1598 	loff_t isize, left;
1599 	int error, page_nr;
1600 	struct splice_pipe_desc spd = {
1601 		.pages = pages,
1602 		.partial = partial,
1603 		.nr_pages_max = PIPE_DEF_BUFFERS,
1604 		.flags = flags,
1605 		.ops = &page_cache_pipe_buf_ops,
1606 		.spd_release = spd_release_page,
1607 	};
1608 
1609 	isize = i_size_read(inode);
1610 	if (unlikely(*ppos >= isize))
1611 		return 0;
1612 
1613 	left = isize - *ppos;
1614 	if (unlikely(left < len))
1615 		len = left;
1616 
1617 	if (splice_grow_spd(pipe, &spd))
1618 		return -ENOMEM;
1619 
1620 	index = *ppos >> PAGE_CACHE_SHIFT;
1621 	loff = *ppos & ~PAGE_CACHE_MASK;
1622 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1623 	nr_pages = min(req_pages, spd.nr_pages_max);
1624 
1625 	spd.nr_pages = find_get_pages_contig(mapping, index,
1626 						nr_pages, spd.pages);
1627 	index += spd.nr_pages;
1628 	error = 0;
1629 
1630 	while (spd.nr_pages < nr_pages) {
1631 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1632 		if (error)
1633 			break;
1634 		unlock_page(page);
1635 		spd.pages[spd.nr_pages++] = page;
1636 		index++;
1637 	}
1638 
1639 	index = *ppos >> PAGE_CACHE_SHIFT;
1640 	nr_pages = spd.nr_pages;
1641 	spd.nr_pages = 0;
1642 
1643 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1644 		unsigned int this_len;
1645 
1646 		if (!len)
1647 			break;
1648 
1649 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1650 		page = spd.pages[page_nr];
1651 
1652 		if (!PageUptodate(page) || page->mapping != mapping) {
1653 			error = shmem_getpage(inode, index, &page,
1654 							SGP_CACHE, NULL);
1655 			if (error)
1656 				break;
1657 			unlock_page(page);
1658 			page_cache_release(spd.pages[page_nr]);
1659 			spd.pages[page_nr] = page;
1660 		}
1661 
1662 		isize = i_size_read(inode);
1663 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1664 		if (unlikely(!isize || index > end_index))
1665 			break;
1666 
1667 		if (end_index == index) {
1668 			unsigned int plen;
1669 
1670 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1671 			if (plen <= loff)
1672 				break;
1673 
1674 			this_len = min(this_len, plen - loff);
1675 			len = this_len;
1676 		}
1677 
1678 		spd.partial[page_nr].offset = loff;
1679 		spd.partial[page_nr].len = this_len;
1680 		len -= this_len;
1681 		loff = 0;
1682 		spd.nr_pages++;
1683 		index++;
1684 	}
1685 
1686 	while (page_nr < nr_pages)
1687 		page_cache_release(spd.pages[page_nr++]);
1688 
1689 	if (spd.nr_pages)
1690 		error = splice_to_pipe(pipe, &spd);
1691 
1692 	splice_shrink_spd(&spd);
1693 
1694 	if (error > 0) {
1695 		*ppos += error;
1696 		file_accessed(in);
1697 	}
1698 	return error;
1699 }
1700 
1701 /*
1702  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1703  */
1704 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1705 				    pgoff_t index, pgoff_t end, int whence)
1706 {
1707 	struct page *page;
1708 	struct pagevec pvec;
1709 	pgoff_t indices[PAGEVEC_SIZE];
1710 	bool done = false;
1711 	int i;
1712 
1713 	pagevec_init(&pvec, 0);
1714 	pvec.nr = 1;		/* start small: we may be there already */
1715 	while (!done) {
1716 		pvec.nr = find_get_entries(mapping, index,
1717 					pvec.nr, pvec.pages, indices);
1718 		if (!pvec.nr) {
1719 			if (whence == SEEK_DATA)
1720 				index = end;
1721 			break;
1722 		}
1723 		for (i = 0; i < pvec.nr; i++, index++) {
1724 			if (index < indices[i]) {
1725 				if (whence == SEEK_HOLE) {
1726 					done = true;
1727 					break;
1728 				}
1729 				index = indices[i];
1730 			}
1731 			page = pvec.pages[i];
1732 			if (page && !radix_tree_exceptional_entry(page)) {
1733 				if (!PageUptodate(page))
1734 					page = NULL;
1735 			}
1736 			if (index >= end ||
1737 			    (page && whence == SEEK_DATA) ||
1738 			    (!page && whence == SEEK_HOLE)) {
1739 				done = true;
1740 				break;
1741 			}
1742 		}
1743 		pagevec_remove_exceptionals(&pvec);
1744 		pagevec_release(&pvec);
1745 		pvec.nr = PAGEVEC_SIZE;
1746 		cond_resched();
1747 	}
1748 	return index;
1749 }
1750 
1751 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1752 {
1753 	struct address_space *mapping = file->f_mapping;
1754 	struct inode *inode = mapping->host;
1755 	pgoff_t start, end;
1756 	loff_t new_offset;
1757 
1758 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1759 		return generic_file_llseek_size(file, offset, whence,
1760 					MAX_LFS_FILESIZE, i_size_read(inode));
1761 	mutex_lock(&inode->i_mutex);
1762 	/* We're holding i_mutex so we can access i_size directly */
1763 
1764 	if (offset < 0)
1765 		offset = -EINVAL;
1766 	else if (offset >= inode->i_size)
1767 		offset = -ENXIO;
1768 	else {
1769 		start = offset >> PAGE_CACHE_SHIFT;
1770 		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1771 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1772 		new_offset <<= PAGE_CACHE_SHIFT;
1773 		if (new_offset > offset) {
1774 			if (new_offset < inode->i_size)
1775 				offset = new_offset;
1776 			else if (whence == SEEK_DATA)
1777 				offset = -ENXIO;
1778 			else
1779 				offset = inode->i_size;
1780 		}
1781 	}
1782 
1783 	if (offset >= 0)
1784 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1785 	mutex_unlock(&inode->i_mutex);
1786 	return offset;
1787 }
1788 
1789 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1790 							 loff_t len)
1791 {
1792 	struct inode *inode = file_inode(file);
1793 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1794 	struct shmem_falloc shmem_falloc;
1795 	pgoff_t start, index, end;
1796 	int error;
1797 
1798 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1799 		return -EOPNOTSUPP;
1800 
1801 	mutex_lock(&inode->i_mutex);
1802 
1803 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1804 		struct address_space *mapping = file->f_mapping;
1805 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1806 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1807 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1808 
1809 		shmem_falloc.waitq = &shmem_falloc_waitq;
1810 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1811 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1812 		spin_lock(&inode->i_lock);
1813 		inode->i_private = &shmem_falloc;
1814 		spin_unlock(&inode->i_lock);
1815 
1816 		if ((u64)unmap_end > (u64)unmap_start)
1817 			unmap_mapping_range(mapping, unmap_start,
1818 					    1 + unmap_end - unmap_start, 0);
1819 		shmem_truncate_range(inode, offset, offset + len - 1);
1820 		/* No need to unmap again: hole-punching leaves COWed pages */
1821 
1822 		spin_lock(&inode->i_lock);
1823 		inode->i_private = NULL;
1824 		wake_up_all(&shmem_falloc_waitq);
1825 		spin_unlock(&inode->i_lock);
1826 		error = 0;
1827 		goto out;
1828 	}
1829 
1830 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1831 	error = inode_newsize_ok(inode, offset + len);
1832 	if (error)
1833 		goto out;
1834 
1835 	start = offset >> PAGE_CACHE_SHIFT;
1836 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1837 	/* Try to avoid a swapstorm if len is impossible to satisfy */
1838 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1839 		error = -ENOSPC;
1840 		goto out;
1841 	}
1842 
1843 	shmem_falloc.waitq = NULL;
1844 	shmem_falloc.start = start;
1845 	shmem_falloc.next  = start;
1846 	shmem_falloc.nr_falloced = 0;
1847 	shmem_falloc.nr_unswapped = 0;
1848 	spin_lock(&inode->i_lock);
1849 	inode->i_private = &shmem_falloc;
1850 	spin_unlock(&inode->i_lock);
1851 
1852 	for (index = start; index < end; index++) {
1853 		struct page *page;
1854 
1855 		/*
1856 		 * Good, the fallocate(2) manpage permits EINTR: we may have
1857 		 * been interrupted because we are using up too much memory.
1858 		 */
1859 		if (signal_pending(current))
1860 			error = -EINTR;
1861 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1862 			error = -ENOMEM;
1863 		else
1864 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1865 									NULL);
1866 		if (error) {
1867 			/* Remove the !PageUptodate pages we added */
1868 			shmem_undo_range(inode,
1869 				(loff_t)start << PAGE_CACHE_SHIFT,
1870 				(loff_t)index << PAGE_CACHE_SHIFT, true);
1871 			goto undone;
1872 		}
1873 
1874 		/*
1875 		 * Inform shmem_writepage() how far we have reached.
1876 		 * No need for lock or barrier: we have the page lock.
1877 		 */
1878 		shmem_falloc.next++;
1879 		if (!PageUptodate(page))
1880 			shmem_falloc.nr_falloced++;
1881 
1882 		/*
1883 		 * If !PageUptodate, leave it that way so that freeable pages
1884 		 * can be recognized if we need to rollback on error later.
1885 		 * But set_page_dirty so that memory pressure will swap rather
1886 		 * than free the pages we are allocating (and SGP_CACHE pages
1887 		 * might still be clean: we now need to mark those dirty too).
1888 		 */
1889 		set_page_dirty(page);
1890 		unlock_page(page);
1891 		page_cache_release(page);
1892 		cond_resched();
1893 	}
1894 
1895 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1896 		i_size_write(inode, offset + len);
1897 	inode->i_ctime = CURRENT_TIME;
1898 undone:
1899 	spin_lock(&inode->i_lock);
1900 	inode->i_private = NULL;
1901 	spin_unlock(&inode->i_lock);
1902 out:
1903 	mutex_unlock(&inode->i_mutex);
1904 	return error;
1905 }
1906 
1907 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1908 {
1909 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1910 
1911 	buf->f_type = TMPFS_MAGIC;
1912 	buf->f_bsize = PAGE_CACHE_SIZE;
1913 	buf->f_namelen = NAME_MAX;
1914 	if (sbinfo->max_blocks) {
1915 		buf->f_blocks = sbinfo->max_blocks;
1916 		buf->f_bavail =
1917 		buf->f_bfree  = sbinfo->max_blocks -
1918 				percpu_counter_sum(&sbinfo->used_blocks);
1919 	}
1920 	if (sbinfo->max_inodes) {
1921 		buf->f_files = sbinfo->max_inodes;
1922 		buf->f_ffree = sbinfo->free_inodes;
1923 	}
1924 	/* else leave those fields 0 like simple_statfs */
1925 	return 0;
1926 }
1927 
1928 /*
1929  * File creation. Allocate an inode, and we're done..
1930  */
1931 static int
1932 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1933 {
1934 	struct inode *inode;
1935 	int error = -ENOSPC;
1936 
1937 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1938 	if (inode) {
1939 		error = simple_acl_create(dir, inode);
1940 		if (error)
1941 			goto out_iput;
1942 		error = security_inode_init_security(inode, dir,
1943 						     &dentry->d_name,
1944 						     shmem_initxattrs, NULL);
1945 		if (error && error != -EOPNOTSUPP)
1946 			goto out_iput;
1947 
1948 		error = 0;
1949 		dir->i_size += BOGO_DIRENT_SIZE;
1950 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1951 		d_instantiate(dentry, inode);
1952 		dget(dentry); /* Extra count - pin the dentry in core */
1953 	}
1954 	return error;
1955 out_iput:
1956 	iput(inode);
1957 	return error;
1958 }
1959 
1960 static int
1961 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1962 {
1963 	struct inode *inode;
1964 	int error = -ENOSPC;
1965 
1966 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1967 	if (inode) {
1968 		error = security_inode_init_security(inode, dir,
1969 						     NULL,
1970 						     shmem_initxattrs, NULL);
1971 		if (error && error != -EOPNOTSUPP)
1972 			goto out_iput;
1973 		error = simple_acl_create(dir, inode);
1974 		if (error)
1975 			goto out_iput;
1976 		d_tmpfile(dentry, inode);
1977 	}
1978 	return error;
1979 out_iput:
1980 	iput(inode);
1981 	return error;
1982 }
1983 
1984 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1985 {
1986 	int error;
1987 
1988 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1989 		return error;
1990 	inc_nlink(dir);
1991 	return 0;
1992 }
1993 
1994 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1995 		bool excl)
1996 {
1997 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1998 }
1999 
2000 /*
2001  * Link a file..
2002  */
2003 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2004 {
2005 	struct inode *inode = old_dentry->d_inode;
2006 	int ret;
2007 
2008 	/*
2009 	 * No ordinary (disk based) filesystem counts links as inodes;
2010 	 * but each new link needs a new dentry, pinning lowmem, and
2011 	 * tmpfs dentries cannot be pruned until they are unlinked.
2012 	 */
2013 	ret = shmem_reserve_inode(inode->i_sb);
2014 	if (ret)
2015 		goto out;
2016 
2017 	dir->i_size += BOGO_DIRENT_SIZE;
2018 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2019 	inc_nlink(inode);
2020 	ihold(inode);	/* New dentry reference */
2021 	dget(dentry);		/* Extra pinning count for the created dentry */
2022 	d_instantiate(dentry, inode);
2023 out:
2024 	return ret;
2025 }
2026 
2027 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2028 {
2029 	struct inode *inode = dentry->d_inode;
2030 
2031 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2032 		shmem_free_inode(inode->i_sb);
2033 
2034 	dir->i_size -= BOGO_DIRENT_SIZE;
2035 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2036 	drop_nlink(inode);
2037 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2038 	return 0;
2039 }
2040 
2041 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2042 {
2043 	if (!simple_empty(dentry))
2044 		return -ENOTEMPTY;
2045 
2046 	drop_nlink(dentry->d_inode);
2047 	drop_nlink(dir);
2048 	return shmem_unlink(dir, dentry);
2049 }
2050 
2051 /*
2052  * The VFS layer already does all the dentry stuff for rename,
2053  * we just have to decrement the usage count for the target if
2054  * it exists so that the VFS layer correctly free's it when it
2055  * gets overwritten.
2056  */
2057 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2058 {
2059 	struct inode *inode = old_dentry->d_inode;
2060 	int they_are_dirs = S_ISDIR(inode->i_mode);
2061 
2062 	if (!simple_empty(new_dentry))
2063 		return -ENOTEMPTY;
2064 
2065 	if (new_dentry->d_inode) {
2066 		(void) shmem_unlink(new_dir, new_dentry);
2067 		if (they_are_dirs)
2068 			drop_nlink(old_dir);
2069 	} else if (they_are_dirs) {
2070 		drop_nlink(old_dir);
2071 		inc_nlink(new_dir);
2072 	}
2073 
2074 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2075 	new_dir->i_size += BOGO_DIRENT_SIZE;
2076 	old_dir->i_ctime = old_dir->i_mtime =
2077 	new_dir->i_ctime = new_dir->i_mtime =
2078 	inode->i_ctime = CURRENT_TIME;
2079 	return 0;
2080 }
2081 
2082 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2083 {
2084 	int error;
2085 	int len;
2086 	struct inode *inode;
2087 	struct page *page;
2088 	char *kaddr;
2089 	struct shmem_inode_info *info;
2090 
2091 	len = strlen(symname) + 1;
2092 	if (len > PAGE_CACHE_SIZE)
2093 		return -ENAMETOOLONG;
2094 
2095 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2096 	if (!inode)
2097 		return -ENOSPC;
2098 
2099 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2100 					     shmem_initxattrs, NULL);
2101 	if (error) {
2102 		if (error != -EOPNOTSUPP) {
2103 			iput(inode);
2104 			return error;
2105 		}
2106 		error = 0;
2107 	}
2108 
2109 	info = SHMEM_I(inode);
2110 	inode->i_size = len-1;
2111 	if (len <= SHORT_SYMLINK_LEN) {
2112 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2113 		if (!info->symlink) {
2114 			iput(inode);
2115 			return -ENOMEM;
2116 		}
2117 		inode->i_op = &shmem_short_symlink_operations;
2118 	} else {
2119 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2120 		if (error) {
2121 			iput(inode);
2122 			return error;
2123 		}
2124 		inode->i_mapping->a_ops = &shmem_aops;
2125 		inode->i_op = &shmem_symlink_inode_operations;
2126 		kaddr = kmap_atomic(page);
2127 		memcpy(kaddr, symname, len);
2128 		kunmap_atomic(kaddr);
2129 		SetPageUptodate(page);
2130 		set_page_dirty(page);
2131 		unlock_page(page);
2132 		page_cache_release(page);
2133 	}
2134 	dir->i_size += BOGO_DIRENT_SIZE;
2135 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2136 	d_instantiate(dentry, inode);
2137 	dget(dentry);
2138 	return 0;
2139 }
2140 
2141 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2142 {
2143 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2144 	return NULL;
2145 }
2146 
2147 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2148 {
2149 	struct page *page = NULL;
2150 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2151 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2152 	if (page)
2153 		unlock_page(page);
2154 	return page;
2155 }
2156 
2157 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2158 {
2159 	if (!IS_ERR(nd_get_link(nd))) {
2160 		struct page *page = cookie;
2161 		kunmap(page);
2162 		mark_page_accessed(page);
2163 		page_cache_release(page);
2164 	}
2165 }
2166 
2167 #ifdef CONFIG_TMPFS_XATTR
2168 /*
2169  * Superblocks without xattr inode operations may get some security.* xattr
2170  * support from the LSM "for free". As soon as we have any other xattrs
2171  * like ACLs, we also need to implement the security.* handlers at
2172  * filesystem level, though.
2173  */
2174 
2175 /*
2176  * Callback for security_inode_init_security() for acquiring xattrs.
2177  */
2178 static int shmem_initxattrs(struct inode *inode,
2179 			    const struct xattr *xattr_array,
2180 			    void *fs_info)
2181 {
2182 	struct shmem_inode_info *info = SHMEM_I(inode);
2183 	const struct xattr *xattr;
2184 	struct simple_xattr *new_xattr;
2185 	size_t len;
2186 
2187 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2188 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2189 		if (!new_xattr)
2190 			return -ENOMEM;
2191 
2192 		len = strlen(xattr->name) + 1;
2193 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2194 					  GFP_KERNEL);
2195 		if (!new_xattr->name) {
2196 			kfree(new_xattr);
2197 			return -ENOMEM;
2198 		}
2199 
2200 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2201 		       XATTR_SECURITY_PREFIX_LEN);
2202 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2203 		       xattr->name, len);
2204 
2205 		simple_xattr_list_add(&info->xattrs, new_xattr);
2206 	}
2207 
2208 	return 0;
2209 }
2210 
2211 static const struct xattr_handler *shmem_xattr_handlers[] = {
2212 #ifdef CONFIG_TMPFS_POSIX_ACL
2213 	&posix_acl_access_xattr_handler,
2214 	&posix_acl_default_xattr_handler,
2215 #endif
2216 	NULL
2217 };
2218 
2219 static int shmem_xattr_validate(const char *name)
2220 {
2221 	struct { const char *prefix; size_t len; } arr[] = {
2222 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2223 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2224 	};
2225 	int i;
2226 
2227 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2228 		size_t preflen = arr[i].len;
2229 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2230 			if (!name[preflen])
2231 				return -EINVAL;
2232 			return 0;
2233 		}
2234 	}
2235 	return -EOPNOTSUPP;
2236 }
2237 
2238 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2239 			      void *buffer, size_t size)
2240 {
2241 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2242 	int err;
2243 
2244 	/*
2245 	 * If this is a request for a synthetic attribute in the system.*
2246 	 * namespace use the generic infrastructure to resolve a handler
2247 	 * for it via sb->s_xattr.
2248 	 */
2249 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2250 		return generic_getxattr(dentry, name, buffer, size);
2251 
2252 	err = shmem_xattr_validate(name);
2253 	if (err)
2254 		return err;
2255 
2256 	return simple_xattr_get(&info->xattrs, name, buffer, size);
2257 }
2258 
2259 static int shmem_setxattr(struct dentry *dentry, const char *name,
2260 			  const void *value, size_t size, int flags)
2261 {
2262 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2263 	int err;
2264 
2265 	/*
2266 	 * If this is a request for a synthetic attribute in the system.*
2267 	 * namespace use the generic infrastructure to resolve a handler
2268 	 * for it via sb->s_xattr.
2269 	 */
2270 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2271 		return generic_setxattr(dentry, name, value, size, flags);
2272 
2273 	err = shmem_xattr_validate(name);
2274 	if (err)
2275 		return err;
2276 
2277 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2278 }
2279 
2280 static int shmem_removexattr(struct dentry *dentry, const char *name)
2281 {
2282 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2283 	int err;
2284 
2285 	/*
2286 	 * If this is a request for a synthetic attribute in the system.*
2287 	 * namespace use the generic infrastructure to resolve a handler
2288 	 * for it via sb->s_xattr.
2289 	 */
2290 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2291 		return generic_removexattr(dentry, name);
2292 
2293 	err = shmem_xattr_validate(name);
2294 	if (err)
2295 		return err;
2296 
2297 	return simple_xattr_remove(&info->xattrs, name);
2298 }
2299 
2300 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2301 {
2302 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2303 	return simple_xattr_list(&info->xattrs, buffer, size);
2304 }
2305 #endif /* CONFIG_TMPFS_XATTR */
2306 
2307 static const struct inode_operations shmem_short_symlink_operations = {
2308 	.readlink	= generic_readlink,
2309 	.follow_link	= shmem_follow_short_symlink,
2310 #ifdef CONFIG_TMPFS_XATTR
2311 	.setxattr	= shmem_setxattr,
2312 	.getxattr	= shmem_getxattr,
2313 	.listxattr	= shmem_listxattr,
2314 	.removexattr	= shmem_removexattr,
2315 #endif
2316 };
2317 
2318 static const struct inode_operations shmem_symlink_inode_operations = {
2319 	.readlink	= generic_readlink,
2320 	.follow_link	= shmem_follow_link,
2321 	.put_link	= shmem_put_link,
2322 #ifdef CONFIG_TMPFS_XATTR
2323 	.setxattr	= shmem_setxattr,
2324 	.getxattr	= shmem_getxattr,
2325 	.listxattr	= shmem_listxattr,
2326 	.removexattr	= shmem_removexattr,
2327 #endif
2328 };
2329 
2330 static struct dentry *shmem_get_parent(struct dentry *child)
2331 {
2332 	return ERR_PTR(-ESTALE);
2333 }
2334 
2335 static int shmem_match(struct inode *ino, void *vfh)
2336 {
2337 	__u32 *fh = vfh;
2338 	__u64 inum = fh[2];
2339 	inum = (inum << 32) | fh[1];
2340 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2341 }
2342 
2343 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2344 		struct fid *fid, int fh_len, int fh_type)
2345 {
2346 	struct inode *inode;
2347 	struct dentry *dentry = NULL;
2348 	u64 inum;
2349 
2350 	if (fh_len < 3)
2351 		return NULL;
2352 
2353 	inum = fid->raw[2];
2354 	inum = (inum << 32) | fid->raw[1];
2355 
2356 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2357 			shmem_match, fid->raw);
2358 	if (inode) {
2359 		dentry = d_find_alias(inode);
2360 		iput(inode);
2361 	}
2362 
2363 	return dentry;
2364 }
2365 
2366 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2367 				struct inode *parent)
2368 {
2369 	if (*len < 3) {
2370 		*len = 3;
2371 		return FILEID_INVALID;
2372 	}
2373 
2374 	if (inode_unhashed(inode)) {
2375 		/* Unfortunately insert_inode_hash is not idempotent,
2376 		 * so as we hash inodes here rather than at creation
2377 		 * time, we need a lock to ensure we only try
2378 		 * to do it once
2379 		 */
2380 		static DEFINE_SPINLOCK(lock);
2381 		spin_lock(&lock);
2382 		if (inode_unhashed(inode))
2383 			__insert_inode_hash(inode,
2384 					    inode->i_ino + inode->i_generation);
2385 		spin_unlock(&lock);
2386 	}
2387 
2388 	fh[0] = inode->i_generation;
2389 	fh[1] = inode->i_ino;
2390 	fh[2] = ((__u64)inode->i_ino) >> 32;
2391 
2392 	*len = 3;
2393 	return 1;
2394 }
2395 
2396 static const struct export_operations shmem_export_ops = {
2397 	.get_parent     = shmem_get_parent,
2398 	.encode_fh      = shmem_encode_fh,
2399 	.fh_to_dentry	= shmem_fh_to_dentry,
2400 };
2401 
2402 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2403 			       bool remount)
2404 {
2405 	char *this_char, *value, *rest;
2406 	struct mempolicy *mpol = NULL;
2407 	uid_t uid;
2408 	gid_t gid;
2409 
2410 	while (options != NULL) {
2411 		this_char = options;
2412 		for (;;) {
2413 			/*
2414 			 * NUL-terminate this option: unfortunately,
2415 			 * mount options form a comma-separated list,
2416 			 * but mpol's nodelist may also contain commas.
2417 			 */
2418 			options = strchr(options, ',');
2419 			if (options == NULL)
2420 				break;
2421 			options++;
2422 			if (!isdigit(*options)) {
2423 				options[-1] = '\0';
2424 				break;
2425 			}
2426 		}
2427 		if (!*this_char)
2428 			continue;
2429 		if ((value = strchr(this_char,'=')) != NULL) {
2430 			*value++ = 0;
2431 		} else {
2432 			printk(KERN_ERR
2433 			    "tmpfs: No value for mount option '%s'\n",
2434 			    this_char);
2435 			goto error;
2436 		}
2437 
2438 		if (!strcmp(this_char,"size")) {
2439 			unsigned long long size;
2440 			size = memparse(value,&rest);
2441 			if (*rest == '%') {
2442 				size <<= PAGE_SHIFT;
2443 				size *= totalram_pages;
2444 				do_div(size, 100);
2445 				rest++;
2446 			}
2447 			if (*rest)
2448 				goto bad_val;
2449 			sbinfo->max_blocks =
2450 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2451 		} else if (!strcmp(this_char,"nr_blocks")) {
2452 			sbinfo->max_blocks = memparse(value, &rest);
2453 			if (*rest)
2454 				goto bad_val;
2455 		} else if (!strcmp(this_char,"nr_inodes")) {
2456 			sbinfo->max_inodes = memparse(value, &rest);
2457 			if (*rest)
2458 				goto bad_val;
2459 		} else if (!strcmp(this_char,"mode")) {
2460 			if (remount)
2461 				continue;
2462 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2463 			if (*rest)
2464 				goto bad_val;
2465 		} else if (!strcmp(this_char,"uid")) {
2466 			if (remount)
2467 				continue;
2468 			uid = simple_strtoul(value, &rest, 0);
2469 			if (*rest)
2470 				goto bad_val;
2471 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2472 			if (!uid_valid(sbinfo->uid))
2473 				goto bad_val;
2474 		} else if (!strcmp(this_char,"gid")) {
2475 			if (remount)
2476 				continue;
2477 			gid = simple_strtoul(value, &rest, 0);
2478 			if (*rest)
2479 				goto bad_val;
2480 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2481 			if (!gid_valid(sbinfo->gid))
2482 				goto bad_val;
2483 		} else if (!strcmp(this_char,"mpol")) {
2484 			mpol_put(mpol);
2485 			mpol = NULL;
2486 			if (mpol_parse_str(value, &mpol))
2487 				goto bad_val;
2488 		} else {
2489 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2490 			       this_char);
2491 			goto error;
2492 		}
2493 	}
2494 	sbinfo->mpol = mpol;
2495 	return 0;
2496 
2497 bad_val:
2498 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2499 	       value, this_char);
2500 error:
2501 	mpol_put(mpol);
2502 	return 1;
2503 
2504 }
2505 
2506 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2507 {
2508 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2509 	struct shmem_sb_info config = *sbinfo;
2510 	unsigned long inodes;
2511 	int error = -EINVAL;
2512 
2513 	config.mpol = NULL;
2514 	if (shmem_parse_options(data, &config, true))
2515 		return error;
2516 
2517 	spin_lock(&sbinfo->stat_lock);
2518 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2519 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2520 		goto out;
2521 	if (config.max_inodes < inodes)
2522 		goto out;
2523 	/*
2524 	 * Those tests disallow limited->unlimited while any are in use;
2525 	 * but we must separately disallow unlimited->limited, because
2526 	 * in that case we have no record of how much is already in use.
2527 	 */
2528 	if (config.max_blocks && !sbinfo->max_blocks)
2529 		goto out;
2530 	if (config.max_inodes && !sbinfo->max_inodes)
2531 		goto out;
2532 
2533 	error = 0;
2534 	sbinfo->max_blocks  = config.max_blocks;
2535 	sbinfo->max_inodes  = config.max_inodes;
2536 	sbinfo->free_inodes = config.max_inodes - inodes;
2537 
2538 	/*
2539 	 * Preserve previous mempolicy unless mpol remount option was specified.
2540 	 */
2541 	if (config.mpol) {
2542 		mpol_put(sbinfo->mpol);
2543 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2544 	}
2545 out:
2546 	spin_unlock(&sbinfo->stat_lock);
2547 	return error;
2548 }
2549 
2550 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2551 {
2552 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2553 
2554 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2555 		seq_printf(seq, ",size=%luk",
2556 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2557 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2558 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2559 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2560 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2561 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2562 		seq_printf(seq, ",uid=%u",
2563 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2564 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2565 		seq_printf(seq, ",gid=%u",
2566 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2567 	shmem_show_mpol(seq, sbinfo->mpol);
2568 	return 0;
2569 }
2570 #endif /* CONFIG_TMPFS */
2571 
2572 static void shmem_put_super(struct super_block *sb)
2573 {
2574 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2575 
2576 	percpu_counter_destroy(&sbinfo->used_blocks);
2577 	mpol_put(sbinfo->mpol);
2578 	kfree(sbinfo);
2579 	sb->s_fs_info = NULL;
2580 }
2581 
2582 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2583 {
2584 	struct inode *inode;
2585 	struct shmem_sb_info *sbinfo;
2586 	int err = -ENOMEM;
2587 
2588 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2589 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2590 				L1_CACHE_BYTES), GFP_KERNEL);
2591 	if (!sbinfo)
2592 		return -ENOMEM;
2593 
2594 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2595 	sbinfo->uid = current_fsuid();
2596 	sbinfo->gid = current_fsgid();
2597 	sb->s_fs_info = sbinfo;
2598 
2599 #ifdef CONFIG_TMPFS
2600 	/*
2601 	 * Per default we only allow half of the physical ram per
2602 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2603 	 * but the internal instance is left unlimited.
2604 	 */
2605 	if (!(sb->s_flags & MS_KERNMOUNT)) {
2606 		sbinfo->max_blocks = shmem_default_max_blocks();
2607 		sbinfo->max_inodes = shmem_default_max_inodes();
2608 		if (shmem_parse_options(data, sbinfo, false)) {
2609 			err = -EINVAL;
2610 			goto failed;
2611 		}
2612 	} else {
2613 		sb->s_flags |= MS_NOUSER;
2614 	}
2615 	sb->s_export_op = &shmem_export_ops;
2616 	sb->s_flags |= MS_NOSEC;
2617 #else
2618 	sb->s_flags |= MS_NOUSER;
2619 #endif
2620 
2621 	spin_lock_init(&sbinfo->stat_lock);
2622 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2623 		goto failed;
2624 	sbinfo->free_inodes = sbinfo->max_inodes;
2625 
2626 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2627 	sb->s_blocksize = PAGE_CACHE_SIZE;
2628 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2629 	sb->s_magic = TMPFS_MAGIC;
2630 	sb->s_op = &shmem_ops;
2631 	sb->s_time_gran = 1;
2632 #ifdef CONFIG_TMPFS_XATTR
2633 	sb->s_xattr = shmem_xattr_handlers;
2634 #endif
2635 #ifdef CONFIG_TMPFS_POSIX_ACL
2636 	sb->s_flags |= MS_POSIXACL;
2637 #endif
2638 
2639 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2640 	if (!inode)
2641 		goto failed;
2642 	inode->i_uid = sbinfo->uid;
2643 	inode->i_gid = sbinfo->gid;
2644 	sb->s_root = d_make_root(inode);
2645 	if (!sb->s_root)
2646 		goto failed;
2647 	return 0;
2648 
2649 failed:
2650 	shmem_put_super(sb);
2651 	return err;
2652 }
2653 
2654 static struct kmem_cache *shmem_inode_cachep;
2655 
2656 static struct inode *shmem_alloc_inode(struct super_block *sb)
2657 {
2658 	struct shmem_inode_info *info;
2659 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2660 	if (!info)
2661 		return NULL;
2662 	return &info->vfs_inode;
2663 }
2664 
2665 static void shmem_destroy_callback(struct rcu_head *head)
2666 {
2667 	struct inode *inode = container_of(head, struct inode, i_rcu);
2668 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2669 }
2670 
2671 static void shmem_destroy_inode(struct inode *inode)
2672 {
2673 	if (S_ISREG(inode->i_mode))
2674 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2675 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2676 }
2677 
2678 static void shmem_init_inode(void *foo)
2679 {
2680 	struct shmem_inode_info *info = foo;
2681 	inode_init_once(&info->vfs_inode);
2682 }
2683 
2684 static int shmem_init_inodecache(void)
2685 {
2686 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2687 				sizeof(struct shmem_inode_info),
2688 				0, SLAB_PANIC, shmem_init_inode);
2689 	return 0;
2690 }
2691 
2692 static void shmem_destroy_inodecache(void)
2693 {
2694 	kmem_cache_destroy(shmem_inode_cachep);
2695 }
2696 
2697 static const struct address_space_operations shmem_aops = {
2698 	.writepage	= shmem_writepage,
2699 	.set_page_dirty	= __set_page_dirty_no_writeback,
2700 #ifdef CONFIG_TMPFS
2701 	.write_begin	= shmem_write_begin,
2702 	.write_end	= shmem_write_end,
2703 #endif
2704 	.migratepage	= migrate_page,
2705 	.error_remove_page = generic_error_remove_page,
2706 };
2707 
2708 static const struct file_operations shmem_file_operations = {
2709 	.mmap		= shmem_mmap,
2710 #ifdef CONFIG_TMPFS
2711 	.llseek		= shmem_file_llseek,
2712 	.read		= new_sync_read,
2713 	.write		= new_sync_write,
2714 	.read_iter	= shmem_file_read_iter,
2715 	.write_iter	= generic_file_write_iter,
2716 	.fsync		= noop_fsync,
2717 	.splice_read	= shmem_file_splice_read,
2718 	.splice_write	= iter_file_splice_write,
2719 	.fallocate	= shmem_fallocate,
2720 #endif
2721 };
2722 
2723 static const struct inode_operations shmem_inode_operations = {
2724 	.setattr	= shmem_setattr,
2725 #ifdef CONFIG_TMPFS_XATTR
2726 	.setxattr	= shmem_setxattr,
2727 	.getxattr	= shmem_getxattr,
2728 	.listxattr	= shmem_listxattr,
2729 	.removexattr	= shmem_removexattr,
2730 	.set_acl	= simple_set_acl,
2731 #endif
2732 };
2733 
2734 static const struct inode_operations shmem_dir_inode_operations = {
2735 #ifdef CONFIG_TMPFS
2736 	.create		= shmem_create,
2737 	.lookup		= simple_lookup,
2738 	.link		= shmem_link,
2739 	.unlink		= shmem_unlink,
2740 	.symlink	= shmem_symlink,
2741 	.mkdir		= shmem_mkdir,
2742 	.rmdir		= shmem_rmdir,
2743 	.mknod		= shmem_mknod,
2744 	.rename		= shmem_rename,
2745 	.tmpfile	= shmem_tmpfile,
2746 #endif
2747 #ifdef CONFIG_TMPFS_XATTR
2748 	.setxattr	= shmem_setxattr,
2749 	.getxattr	= shmem_getxattr,
2750 	.listxattr	= shmem_listxattr,
2751 	.removexattr	= shmem_removexattr,
2752 #endif
2753 #ifdef CONFIG_TMPFS_POSIX_ACL
2754 	.setattr	= shmem_setattr,
2755 	.set_acl	= simple_set_acl,
2756 #endif
2757 };
2758 
2759 static const struct inode_operations shmem_special_inode_operations = {
2760 #ifdef CONFIG_TMPFS_XATTR
2761 	.setxattr	= shmem_setxattr,
2762 	.getxattr	= shmem_getxattr,
2763 	.listxattr	= shmem_listxattr,
2764 	.removexattr	= shmem_removexattr,
2765 #endif
2766 #ifdef CONFIG_TMPFS_POSIX_ACL
2767 	.setattr	= shmem_setattr,
2768 	.set_acl	= simple_set_acl,
2769 #endif
2770 };
2771 
2772 static const struct super_operations shmem_ops = {
2773 	.alloc_inode	= shmem_alloc_inode,
2774 	.destroy_inode	= shmem_destroy_inode,
2775 #ifdef CONFIG_TMPFS
2776 	.statfs		= shmem_statfs,
2777 	.remount_fs	= shmem_remount_fs,
2778 	.show_options	= shmem_show_options,
2779 #endif
2780 	.evict_inode	= shmem_evict_inode,
2781 	.drop_inode	= generic_delete_inode,
2782 	.put_super	= shmem_put_super,
2783 };
2784 
2785 static const struct vm_operations_struct shmem_vm_ops = {
2786 	.fault		= shmem_fault,
2787 	.map_pages	= filemap_map_pages,
2788 #ifdef CONFIG_NUMA
2789 	.set_policy     = shmem_set_policy,
2790 	.get_policy     = shmem_get_policy,
2791 #endif
2792 	.remap_pages	= generic_file_remap_pages,
2793 };
2794 
2795 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2796 	int flags, const char *dev_name, void *data)
2797 {
2798 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2799 }
2800 
2801 static struct file_system_type shmem_fs_type = {
2802 	.owner		= THIS_MODULE,
2803 	.name		= "tmpfs",
2804 	.mount		= shmem_mount,
2805 	.kill_sb	= kill_litter_super,
2806 	.fs_flags	= FS_USERNS_MOUNT,
2807 };
2808 
2809 int __init shmem_init(void)
2810 {
2811 	int error;
2812 
2813 	/* If rootfs called this, don't re-init */
2814 	if (shmem_inode_cachep)
2815 		return 0;
2816 
2817 	error = bdi_init(&shmem_backing_dev_info);
2818 	if (error)
2819 		goto out4;
2820 
2821 	error = shmem_init_inodecache();
2822 	if (error)
2823 		goto out3;
2824 
2825 	error = register_filesystem(&shmem_fs_type);
2826 	if (error) {
2827 		printk(KERN_ERR "Could not register tmpfs\n");
2828 		goto out2;
2829 	}
2830 
2831 	shm_mnt = kern_mount(&shmem_fs_type);
2832 	if (IS_ERR(shm_mnt)) {
2833 		error = PTR_ERR(shm_mnt);
2834 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2835 		goto out1;
2836 	}
2837 	return 0;
2838 
2839 out1:
2840 	unregister_filesystem(&shmem_fs_type);
2841 out2:
2842 	shmem_destroy_inodecache();
2843 out3:
2844 	bdi_destroy(&shmem_backing_dev_info);
2845 out4:
2846 	shm_mnt = ERR_PTR(error);
2847 	return error;
2848 }
2849 
2850 #else /* !CONFIG_SHMEM */
2851 
2852 /*
2853  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2854  *
2855  * This is intended for small system where the benefits of the full
2856  * shmem code (swap-backed and resource-limited) are outweighed by
2857  * their complexity. On systems without swap this code should be
2858  * effectively equivalent, but much lighter weight.
2859  */
2860 
2861 static struct file_system_type shmem_fs_type = {
2862 	.name		= "tmpfs",
2863 	.mount		= ramfs_mount,
2864 	.kill_sb	= kill_litter_super,
2865 	.fs_flags	= FS_USERNS_MOUNT,
2866 };
2867 
2868 int __init shmem_init(void)
2869 {
2870 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2871 
2872 	shm_mnt = kern_mount(&shmem_fs_type);
2873 	BUG_ON(IS_ERR(shm_mnt));
2874 
2875 	return 0;
2876 }
2877 
2878 int shmem_unuse(swp_entry_t swap, struct page *page)
2879 {
2880 	return 0;
2881 }
2882 
2883 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2884 {
2885 	return 0;
2886 }
2887 
2888 void shmem_unlock_mapping(struct address_space *mapping)
2889 {
2890 }
2891 
2892 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2893 {
2894 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2895 }
2896 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2897 
2898 #define shmem_vm_ops				generic_file_vm_ops
2899 #define shmem_file_operations			ramfs_file_operations
2900 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2901 #define shmem_acct_size(flags, size)		0
2902 #define shmem_unacct_size(flags, size)		do {} while (0)
2903 
2904 #endif /* CONFIG_SHMEM */
2905 
2906 /* common code */
2907 
2908 static struct dentry_operations anon_ops = {
2909 	.d_dname = simple_dname
2910 };
2911 
2912 static struct file *__shmem_file_setup(const char *name, loff_t size,
2913 				       unsigned long flags, unsigned int i_flags)
2914 {
2915 	struct file *res;
2916 	struct inode *inode;
2917 	struct path path;
2918 	struct super_block *sb;
2919 	struct qstr this;
2920 
2921 	if (IS_ERR(shm_mnt))
2922 		return ERR_CAST(shm_mnt);
2923 
2924 	if (size < 0 || size > MAX_LFS_FILESIZE)
2925 		return ERR_PTR(-EINVAL);
2926 
2927 	if (shmem_acct_size(flags, size))
2928 		return ERR_PTR(-ENOMEM);
2929 
2930 	res = ERR_PTR(-ENOMEM);
2931 	this.name = name;
2932 	this.len = strlen(name);
2933 	this.hash = 0; /* will go */
2934 	sb = shm_mnt->mnt_sb;
2935 	path.dentry = d_alloc_pseudo(sb, &this);
2936 	if (!path.dentry)
2937 		goto put_memory;
2938 	d_set_d_op(path.dentry, &anon_ops);
2939 	path.mnt = mntget(shm_mnt);
2940 
2941 	res = ERR_PTR(-ENOSPC);
2942 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2943 	if (!inode)
2944 		goto put_dentry;
2945 
2946 	inode->i_flags |= i_flags;
2947 	d_instantiate(path.dentry, inode);
2948 	inode->i_size = size;
2949 	clear_nlink(inode);	/* It is unlinked */
2950 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2951 	if (IS_ERR(res))
2952 		goto put_dentry;
2953 
2954 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2955 		  &shmem_file_operations);
2956 	if (IS_ERR(res))
2957 		goto put_dentry;
2958 
2959 	return res;
2960 
2961 put_dentry:
2962 	path_put(&path);
2963 put_memory:
2964 	shmem_unacct_size(flags, size);
2965 	return res;
2966 }
2967 
2968 /**
2969  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2970  * 	kernel internal.  There will be NO LSM permission checks against the
2971  * 	underlying inode.  So users of this interface must do LSM checks at a
2972  * 	higher layer.  The one user is the big_key implementation.  LSM checks
2973  * 	are provided at the key level rather than the inode level.
2974  * @name: name for dentry (to be seen in /proc/<pid>/maps
2975  * @size: size to be set for the file
2976  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2977  */
2978 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2979 {
2980 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
2981 }
2982 
2983 /**
2984  * shmem_file_setup - get an unlinked file living in tmpfs
2985  * @name: name for dentry (to be seen in /proc/<pid>/maps
2986  * @size: size to be set for the file
2987  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2988  */
2989 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2990 {
2991 	return __shmem_file_setup(name, size, flags, 0);
2992 }
2993 EXPORT_SYMBOL_GPL(shmem_file_setup);
2994 
2995 /**
2996  * shmem_zero_setup - setup a shared anonymous mapping
2997  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2998  */
2999 int shmem_zero_setup(struct vm_area_struct *vma)
3000 {
3001 	struct file *file;
3002 	loff_t size = vma->vm_end - vma->vm_start;
3003 
3004 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3005 	if (IS_ERR(file))
3006 		return PTR_ERR(file);
3007 
3008 	if (vma->vm_file)
3009 		fput(vma->vm_file);
3010 	vma->vm_file = file;
3011 	vma->vm_ops = &shmem_vm_ops;
3012 	return 0;
3013 }
3014 
3015 /**
3016  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3017  * @mapping:	the page's address_space
3018  * @index:	the page index
3019  * @gfp:	the page allocator flags to use if allocating
3020  *
3021  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3022  * with any new page allocations done using the specified allocation flags.
3023  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3024  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3025  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3026  *
3027  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3028  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3029  */
3030 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3031 					 pgoff_t index, gfp_t gfp)
3032 {
3033 #ifdef CONFIG_SHMEM
3034 	struct inode *inode = mapping->host;
3035 	struct page *page;
3036 	int error;
3037 
3038 	BUG_ON(mapping->a_ops != &shmem_aops);
3039 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3040 	if (error)
3041 		page = ERR_PTR(error);
3042 	else
3043 		unlock_page(page);
3044 	return page;
3045 #else
3046 	/*
3047 	 * The tiny !SHMEM case uses ramfs without swap
3048 	 */
3049 	return read_cache_page_gfp(mapping, index, gfp);
3050 #endif
3051 }
3052 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3053