1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/uio.h> 38 #include <linux/hugetlb.h> 39 #include <linux/fs_parser.h> 40 #include <linux/swapfile.h> 41 #include "swap.h" 42 43 static struct vfsmount *shm_mnt; 44 45 #ifdef CONFIG_SHMEM 46 /* 47 * This virtual memory filesystem is heavily based on the ramfs. It 48 * extends ramfs by the ability to use swap and honor resource limits 49 * which makes it a completely usable filesystem. 50 */ 51 52 #include <linux/xattr.h> 53 #include <linux/exportfs.h> 54 #include <linux/posix_acl.h> 55 #include <linux/posix_acl_xattr.h> 56 #include <linux/mman.h> 57 #include <linux/string.h> 58 #include <linux/slab.h> 59 #include <linux/backing-dev.h> 60 #include <linux/shmem_fs.h> 61 #include <linux/writeback.h> 62 #include <linux/pagevec.h> 63 #include <linux/percpu_counter.h> 64 #include <linux/falloc.h> 65 #include <linux/splice.h> 66 #include <linux/security.h> 67 #include <linux/swapops.h> 68 #include <linux/mempolicy.h> 69 #include <linux/namei.h> 70 #include <linux/ctype.h> 71 #include <linux/migrate.h> 72 #include <linux/highmem.h> 73 #include <linux/seq_file.h> 74 #include <linux/magic.h> 75 #include <linux/syscalls.h> 76 #include <linux/fcntl.h> 77 #include <uapi/linux/memfd.h> 78 #include <linux/userfaultfd_k.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 82 #include <linux/uaccess.h> 83 84 #include "internal.h" 85 86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 88 89 /* Pretend that each entry is of this size in directory's i_size */ 90 #define BOGO_DIRENT_SIZE 20 91 92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 93 #define SHORT_SYMLINK_LEN 128 94 95 /* 96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 97 * inode->i_private (with i_rwsem making sure that it has only one user at 98 * a time): we would prefer not to enlarge the shmem inode just for that. 99 */ 100 struct shmem_falloc { 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 102 pgoff_t start; /* start of range currently being fallocated */ 103 pgoff_t next; /* the next page offset to be fallocated */ 104 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 106 }; 107 108 struct shmem_options { 109 unsigned long long blocks; 110 unsigned long long inodes; 111 struct mempolicy *mpol; 112 kuid_t uid; 113 kgid_t gid; 114 umode_t mode; 115 bool full_inums; 116 int huge; 117 int seen; 118 #define SHMEM_SEEN_BLOCKS 1 119 #define SHMEM_SEEN_INODES 2 120 #define SHMEM_SEEN_HUGE 4 121 #define SHMEM_SEEN_INUMS 8 122 }; 123 124 #ifdef CONFIG_TMPFS 125 static unsigned long shmem_default_max_blocks(void) 126 { 127 return totalram_pages() / 2; 128 } 129 130 static unsigned long shmem_default_max_inodes(void) 131 { 132 unsigned long nr_pages = totalram_pages(); 133 134 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 135 } 136 #endif 137 138 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 139 struct folio **foliop, enum sgp_type sgp, 140 gfp_t gfp, struct vm_area_struct *vma, 141 vm_fault_t *fault_type); 142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 143 struct page **pagep, enum sgp_type sgp, 144 gfp_t gfp, struct vm_area_struct *vma, 145 struct vm_fault *vmf, vm_fault_t *fault_type); 146 147 int shmem_getpage(struct inode *inode, pgoff_t index, 148 struct page **pagep, enum sgp_type sgp) 149 { 150 return shmem_getpage_gfp(inode, index, pagep, sgp, 151 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 152 } 153 154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 155 { 156 return sb->s_fs_info; 157 } 158 159 /* 160 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 161 * for shared memory and for shared anonymous (/dev/zero) mappings 162 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 163 * consistent with the pre-accounting of private mappings ... 164 */ 165 static inline int shmem_acct_size(unsigned long flags, loff_t size) 166 { 167 return (flags & VM_NORESERVE) ? 168 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 169 } 170 171 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 172 { 173 if (!(flags & VM_NORESERVE)) 174 vm_unacct_memory(VM_ACCT(size)); 175 } 176 177 static inline int shmem_reacct_size(unsigned long flags, 178 loff_t oldsize, loff_t newsize) 179 { 180 if (!(flags & VM_NORESERVE)) { 181 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 182 return security_vm_enough_memory_mm(current->mm, 183 VM_ACCT(newsize) - VM_ACCT(oldsize)); 184 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 185 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 186 } 187 return 0; 188 } 189 190 /* 191 * ... whereas tmpfs objects are accounted incrementally as 192 * pages are allocated, in order to allow large sparse files. 193 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 194 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 195 */ 196 static inline int shmem_acct_block(unsigned long flags, long pages) 197 { 198 if (!(flags & VM_NORESERVE)) 199 return 0; 200 201 return security_vm_enough_memory_mm(current->mm, 202 pages * VM_ACCT(PAGE_SIZE)); 203 } 204 205 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 206 { 207 if (flags & VM_NORESERVE) 208 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 209 } 210 211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 212 { 213 struct shmem_inode_info *info = SHMEM_I(inode); 214 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 215 216 if (shmem_acct_block(info->flags, pages)) 217 return false; 218 219 if (sbinfo->max_blocks) { 220 if (percpu_counter_compare(&sbinfo->used_blocks, 221 sbinfo->max_blocks - pages) > 0) 222 goto unacct; 223 percpu_counter_add(&sbinfo->used_blocks, pages); 224 } 225 226 return true; 227 228 unacct: 229 shmem_unacct_blocks(info->flags, pages); 230 return false; 231 } 232 233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 234 { 235 struct shmem_inode_info *info = SHMEM_I(inode); 236 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 237 238 if (sbinfo->max_blocks) 239 percpu_counter_sub(&sbinfo->used_blocks, pages); 240 shmem_unacct_blocks(info->flags, pages); 241 } 242 243 static const struct super_operations shmem_ops; 244 const struct address_space_operations shmem_aops; 245 static const struct file_operations shmem_file_operations; 246 static const struct inode_operations shmem_inode_operations; 247 static const struct inode_operations shmem_dir_inode_operations; 248 static const struct inode_operations shmem_special_inode_operations; 249 static const struct vm_operations_struct shmem_vm_ops; 250 static struct file_system_type shmem_fs_type; 251 252 bool vma_is_shmem(struct vm_area_struct *vma) 253 { 254 return vma->vm_ops == &shmem_vm_ops; 255 } 256 257 static LIST_HEAD(shmem_swaplist); 258 static DEFINE_MUTEX(shmem_swaplist_mutex); 259 260 /* 261 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 262 * produces a novel ino for the newly allocated inode. 263 * 264 * It may also be called when making a hard link to permit the space needed by 265 * each dentry. However, in that case, no new inode number is needed since that 266 * internally draws from another pool of inode numbers (currently global 267 * get_next_ino()). This case is indicated by passing NULL as inop. 268 */ 269 #define SHMEM_INO_BATCH 1024 270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 271 { 272 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 273 ino_t ino; 274 275 if (!(sb->s_flags & SB_KERNMOUNT)) { 276 raw_spin_lock(&sbinfo->stat_lock); 277 if (sbinfo->max_inodes) { 278 if (!sbinfo->free_inodes) { 279 raw_spin_unlock(&sbinfo->stat_lock); 280 return -ENOSPC; 281 } 282 sbinfo->free_inodes--; 283 } 284 if (inop) { 285 ino = sbinfo->next_ino++; 286 if (unlikely(is_zero_ino(ino))) 287 ino = sbinfo->next_ino++; 288 if (unlikely(!sbinfo->full_inums && 289 ino > UINT_MAX)) { 290 /* 291 * Emulate get_next_ino uint wraparound for 292 * compatibility 293 */ 294 if (IS_ENABLED(CONFIG_64BIT)) 295 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 296 __func__, MINOR(sb->s_dev)); 297 sbinfo->next_ino = 1; 298 ino = sbinfo->next_ino++; 299 } 300 *inop = ino; 301 } 302 raw_spin_unlock(&sbinfo->stat_lock); 303 } else if (inop) { 304 /* 305 * __shmem_file_setup, one of our callers, is lock-free: it 306 * doesn't hold stat_lock in shmem_reserve_inode since 307 * max_inodes is always 0, and is called from potentially 308 * unknown contexts. As such, use a per-cpu batched allocator 309 * which doesn't require the per-sb stat_lock unless we are at 310 * the batch boundary. 311 * 312 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 313 * shmem mounts are not exposed to userspace, so we don't need 314 * to worry about things like glibc compatibility. 315 */ 316 ino_t *next_ino; 317 318 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 319 ino = *next_ino; 320 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 321 raw_spin_lock(&sbinfo->stat_lock); 322 ino = sbinfo->next_ino; 323 sbinfo->next_ino += SHMEM_INO_BATCH; 324 raw_spin_unlock(&sbinfo->stat_lock); 325 if (unlikely(is_zero_ino(ino))) 326 ino++; 327 } 328 *inop = ino; 329 *next_ino = ++ino; 330 put_cpu(); 331 } 332 333 return 0; 334 } 335 336 static void shmem_free_inode(struct super_block *sb) 337 { 338 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 339 if (sbinfo->max_inodes) { 340 raw_spin_lock(&sbinfo->stat_lock); 341 sbinfo->free_inodes++; 342 raw_spin_unlock(&sbinfo->stat_lock); 343 } 344 } 345 346 /** 347 * shmem_recalc_inode - recalculate the block usage of an inode 348 * @inode: inode to recalc 349 * 350 * We have to calculate the free blocks since the mm can drop 351 * undirtied hole pages behind our back. 352 * 353 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 354 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 355 * 356 * It has to be called with the spinlock held. 357 */ 358 static void shmem_recalc_inode(struct inode *inode) 359 { 360 struct shmem_inode_info *info = SHMEM_I(inode); 361 long freed; 362 363 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 364 if (freed > 0) { 365 info->alloced -= freed; 366 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 367 shmem_inode_unacct_blocks(inode, freed); 368 } 369 } 370 371 bool shmem_charge(struct inode *inode, long pages) 372 { 373 struct shmem_inode_info *info = SHMEM_I(inode); 374 unsigned long flags; 375 376 if (!shmem_inode_acct_block(inode, pages)) 377 return false; 378 379 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 380 inode->i_mapping->nrpages += pages; 381 382 spin_lock_irqsave(&info->lock, flags); 383 info->alloced += pages; 384 inode->i_blocks += pages * BLOCKS_PER_PAGE; 385 shmem_recalc_inode(inode); 386 spin_unlock_irqrestore(&info->lock, flags); 387 388 return true; 389 } 390 391 void shmem_uncharge(struct inode *inode, long pages) 392 { 393 struct shmem_inode_info *info = SHMEM_I(inode); 394 unsigned long flags; 395 396 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 397 398 spin_lock_irqsave(&info->lock, flags); 399 info->alloced -= pages; 400 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 401 shmem_recalc_inode(inode); 402 spin_unlock_irqrestore(&info->lock, flags); 403 404 shmem_inode_unacct_blocks(inode, pages); 405 } 406 407 /* 408 * Replace item expected in xarray by a new item, while holding xa_lock. 409 */ 410 static int shmem_replace_entry(struct address_space *mapping, 411 pgoff_t index, void *expected, void *replacement) 412 { 413 XA_STATE(xas, &mapping->i_pages, index); 414 void *item; 415 416 VM_BUG_ON(!expected); 417 VM_BUG_ON(!replacement); 418 item = xas_load(&xas); 419 if (item != expected) 420 return -ENOENT; 421 xas_store(&xas, replacement); 422 return 0; 423 } 424 425 /* 426 * Sometimes, before we decide whether to proceed or to fail, we must check 427 * that an entry was not already brought back from swap by a racing thread. 428 * 429 * Checking page is not enough: by the time a SwapCache page is locked, it 430 * might be reused, and again be SwapCache, using the same swap as before. 431 */ 432 static bool shmem_confirm_swap(struct address_space *mapping, 433 pgoff_t index, swp_entry_t swap) 434 { 435 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 436 } 437 438 /* 439 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 440 * 441 * SHMEM_HUGE_NEVER: 442 * disables huge pages for the mount; 443 * SHMEM_HUGE_ALWAYS: 444 * enables huge pages for the mount; 445 * SHMEM_HUGE_WITHIN_SIZE: 446 * only allocate huge pages if the page will be fully within i_size, 447 * also respect fadvise()/madvise() hints; 448 * SHMEM_HUGE_ADVISE: 449 * only allocate huge pages if requested with fadvise()/madvise(); 450 */ 451 452 #define SHMEM_HUGE_NEVER 0 453 #define SHMEM_HUGE_ALWAYS 1 454 #define SHMEM_HUGE_WITHIN_SIZE 2 455 #define SHMEM_HUGE_ADVISE 3 456 457 /* 458 * Special values. 459 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 460 * 461 * SHMEM_HUGE_DENY: 462 * disables huge on shm_mnt and all mounts, for emergency use; 463 * SHMEM_HUGE_FORCE: 464 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 465 * 466 */ 467 #define SHMEM_HUGE_DENY (-1) 468 #define SHMEM_HUGE_FORCE (-2) 469 470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 471 /* ifdef here to avoid bloating shmem.o when not necessary */ 472 473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 474 475 bool shmem_is_huge(struct vm_area_struct *vma, 476 struct inode *inode, pgoff_t index) 477 { 478 loff_t i_size; 479 480 if (!S_ISREG(inode->i_mode)) 481 return false; 482 if (shmem_huge == SHMEM_HUGE_DENY) 483 return false; 484 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) || 485 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))) 486 return false; 487 if (shmem_huge == SHMEM_HUGE_FORCE) 488 return true; 489 490 switch (SHMEM_SB(inode->i_sb)->huge) { 491 case SHMEM_HUGE_ALWAYS: 492 return true; 493 case SHMEM_HUGE_WITHIN_SIZE: 494 index = round_up(index + 1, HPAGE_PMD_NR); 495 i_size = round_up(i_size_read(inode), PAGE_SIZE); 496 if (i_size >> PAGE_SHIFT >= index) 497 return true; 498 fallthrough; 499 case SHMEM_HUGE_ADVISE: 500 if (vma && (vma->vm_flags & VM_HUGEPAGE)) 501 return true; 502 fallthrough; 503 default: 504 return false; 505 } 506 } 507 508 #if defined(CONFIG_SYSFS) 509 static int shmem_parse_huge(const char *str) 510 { 511 if (!strcmp(str, "never")) 512 return SHMEM_HUGE_NEVER; 513 if (!strcmp(str, "always")) 514 return SHMEM_HUGE_ALWAYS; 515 if (!strcmp(str, "within_size")) 516 return SHMEM_HUGE_WITHIN_SIZE; 517 if (!strcmp(str, "advise")) 518 return SHMEM_HUGE_ADVISE; 519 if (!strcmp(str, "deny")) 520 return SHMEM_HUGE_DENY; 521 if (!strcmp(str, "force")) 522 return SHMEM_HUGE_FORCE; 523 return -EINVAL; 524 } 525 #endif 526 527 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 528 static const char *shmem_format_huge(int huge) 529 { 530 switch (huge) { 531 case SHMEM_HUGE_NEVER: 532 return "never"; 533 case SHMEM_HUGE_ALWAYS: 534 return "always"; 535 case SHMEM_HUGE_WITHIN_SIZE: 536 return "within_size"; 537 case SHMEM_HUGE_ADVISE: 538 return "advise"; 539 case SHMEM_HUGE_DENY: 540 return "deny"; 541 case SHMEM_HUGE_FORCE: 542 return "force"; 543 default: 544 VM_BUG_ON(1); 545 return "bad_val"; 546 } 547 } 548 #endif 549 550 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 551 struct shrink_control *sc, unsigned long nr_to_split) 552 { 553 LIST_HEAD(list), *pos, *next; 554 LIST_HEAD(to_remove); 555 struct inode *inode; 556 struct shmem_inode_info *info; 557 struct folio *folio; 558 unsigned long batch = sc ? sc->nr_to_scan : 128; 559 int split = 0; 560 561 if (list_empty(&sbinfo->shrinklist)) 562 return SHRINK_STOP; 563 564 spin_lock(&sbinfo->shrinklist_lock); 565 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 566 info = list_entry(pos, struct shmem_inode_info, shrinklist); 567 568 /* pin the inode */ 569 inode = igrab(&info->vfs_inode); 570 571 /* inode is about to be evicted */ 572 if (!inode) { 573 list_del_init(&info->shrinklist); 574 goto next; 575 } 576 577 /* Check if there's anything to gain */ 578 if (round_up(inode->i_size, PAGE_SIZE) == 579 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 580 list_move(&info->shrinklist, &to_remove); 581 goto next; 582 } 583 584 list_move(&info->shrinklist, &list); 585 next: 586 sbinfo->shrinklist_len--; 587 if (!--batch) 588 break; 589 } 590 spin_unlock(&sbinfo->shrinklist_lock); 591 592 list_for_each_safe(pos, next, &to_remove) { 593 info = list_entry(pos, struct shmem_inode_info, shrinklist); 594 inode = &info->vfs_inode; 595 list_del_init(&info->shrinklist); 596 iput(inode); 597 } 598 599 list_for_each_safe(pos, next, &list) { 600 int ret; 601 pgoff_t index; 602 603 info = list_entry(pos, struct shmem_inode_info, shrinklist); 604 inode = &info->vfs_inode; 605 606 if (nr_to_split && split >= nr_to_split) 607 goto move_back; 608 609 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 610 folio = filemap_get_folio(inode->i_mapping, index); 611 if (!folio) 612 goto drop; 613 614 /* No huge page at the end of the file: nothing to split */ 615 if (!folio_test_large(folio)) { 616 folio_put(folio); 617 goto drop; 618 } 619 620 /* 621 * Move the inode on the list back to shrinklist if we failed 622 * to lock the page at this time. 623 * 624 * Waiting for the lock may lead to deadlock in the 625 * reclaim path. 626 */ 627 if (!folio_trylock(folio)) { 628 folio_put(folio); 629 goto move_back; 630 } 631 632 ret = split_folio(folio); 633 folio_unlock(folio); 634 folio_put(folio); 635 636 /* If split failed move the inode on the list back to shrinklist */ 637 if (ret) 638 goto move_back; 639 640 split++; 641 drop: 642 list_del_init(&info->shrinklist); 643 goto put; 644 move_back: 645 /* 646 * Make sure the inode is either on the global list or deleted 647 * from any local list before iput() since it could be deleted 648 * in another thread once we put the inode (then the local list 649 * is corrupted). 650 */ 651 spin_lock(&sbinfo->shrinklist_lock); 652 list_move(&info->shrinklist, &sbinfo->shrinklist); 653 sbinfo->shrinklist_len++; 654 spin_unlock(&sbinfo->shrinklist_lock); 655 put: 656 iput(inode); 657 } 658 659 return split; 660 } 661 662 static long shmem_unused_huge_scan(struct super_block *sb, 663 struct shrink_control *sc) 664 { 665 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 666 667 if (!READ_ONCE(sbinfo->shrinklist_len)) 668 return SHRINK_STOP; 669 670 return shmem_unused_huge_shrink(sbinfo, sc, 0); 671 } 672 673 static long shmem_unused_huge_count(struct super_block *sb, 674 struct shrink_control *sc) 675 { 676 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 677 return READ_ONCE(sbinfo->shrinklist_len); 678 } 679 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 680 681 #define shmem_huge SHMEM_HUGE_DENY 682 683 bool shmem_is_huge(struct vm_area_struct *vma, 684 struct inode *inode, pgoff_t index) 685 { 686 return false; 687 } 688 689 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 690 struct shrink_control *sc, unsigned long nr_to_split) 691 { 692 return 0; 693 } 694 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 695 696 /* 697 * Like filemap_add_folio, but error if expected item has gone. 698 */ 699 static int shmem_add_to_page_cache(struct folio *folio, 700 struct address_space *mapping, 701 pgoff_t index, void *expected, gfp_t gfp, 702 struct mm_struct *charge_mm) 703 { 704 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 705 long nr = folio_nr_pages(folio); 706 int error; 707 708 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 709 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 710 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 711 VM_BUG_ON(expected && folio_test_large(folio)); 712 713 folio_ref_add(folio, nr); 714 folio->mapping = mapping; 715 folio->index = index; 716 717 if (!folio_test_swapcache(folio)) { 718 error = mem_cgroup_charge(folio, charge_mm, gfp); 719 if (error) { 720 if (folio_test_pmd_mappable(folio)) { 721 count_vm_event(THP_FILE_FALLBACK); 722 count_vm_event(THP_FILE_FALLBACK_CHARGE); 723 } 724 goto error; 725 } 726 } 727 folio_throttle_swaprate(folio, gfp); 728 729 do { 730 xas_lock_irq(&xas); 731 if (expected != xas_find_conflict(&xas)) { 732 xas_set_err(&xas, -EEXIST); 733 goto unlock; 734 } 735 if (expected && xas_find_conflict(&xas)) { 736 xas_set_err(&xas, -EEXIST); 737 goto unlock; 738 } 739 xas_store(&xas, folio); 740 if (xas_error(&xas)) 741 goto unlock; 742 if (folio_test_pmd_mappable(folio)) { 743 count_vm_event(THP_FILE_ALLOC); 744 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 745 } 746 mapping->nrpages += nr; 747 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 748 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 749 unlock: 750 xas_unlock_irq(&xas); 751 } while (xas_nomem(&xas, gfp)); 752 753 if (xas_error(&xas)) { 754 error = xas_error(&xas); 755 goto error; 756 } 757 758 return 0; 759 error: 760 folio->mapping = NULL; 761 folio_ref_sub(folio, nr); 762 return error; 763 } 764 765 /* 766 * Like delete_from_page_cache, but substitutes swap for @folio. 767 */ 768 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 769 { 770 struct address_space *mapping = folio->mapping; 771 long nr = folio_nr_pages(folio); 772 int error; 773 774 xa_lock_irq(&mapping->i_pages); 775 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 776 folio->mapping = NULL; 777 mapping->nrpages -= nr; 778 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 779 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 780 xa_unlock_irq(&mapping->i_pages); 781 folio_put(folio); 782 BUG_ON(error); 783 } 784 785 /* 786 * Remove swap entry from page cache, free the swap and its page cache. 787 */ 788 static int shmem_free_swap(struct address_space *mapping, 789 pgoff_t index, void *radswap) 790 { 791 void *old; 792 793 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 794 if (old != radswap) 795 return -ENOENT; 796 free_swap_and_cache(radix_to_swp_entry(radswap)); 797 return 0; 798 } 799 800 /* 801 * Determine (in bytes) how many of the shmem object's pages mapped by the 802 * given offsets are swapped out. 803 * 804 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 805 * as long as the inode doesn't go away and racy results are not a problem. 806 */ 807 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 808 pgoff_t start, pgoff_t end) 809 { 810 XA_STATE(xas, &mapping->i_pages, start); 811 struct page *page; 812 unsigned long swapped = 0; 813 814 rcu_read_lock(); 815 xas_for_each(&xas, page, end - 1) { 816 if (xas_retry(&xas, page)) 817 continue; 818 if (xa_is_value(page)) 819 swapped++; 820 821 if (need_resched()) { 822 xas_pause(&xas); 823 cond_resched_rcu(); 824 } 825 } 826 827 rcu_read_unlock(); 828 829 return swapped << PAGE_SHIFT; 830 } 831 832 /* 833 * Determine (in bytes) how many of the shmem object's pages mapped by the 834 * given vma is swapped out. 835 * 836 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 837 * as long as the inode doesn't go away and racy results are not a problem. 838 */ 839 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 840 { 841 struct inode *inode = file_inode(vma->vm_file); 842 struct shmem_inode_info *info = SHMEM_I(inode); 843 struct address_space *mapping = inode->i_mapping; 844 unsigned long swapped; 845 846 /* Be careful as we don't hold info->lock */ 847 swapped = READ_ONCE(info->swapped); 848 849 /* 850 * The easier cases are when the shmem object has nothing in swap, or 851 * the vma maps it whole. Then we can simply use the stats that we 852 * already track. 853 */ 854 if (!swapped) 855 return 0; 856 857 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 858 return swapped << PAGE_SHIFT; 859 860 /* Here comes the more involved part */ 861 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 862 vma->vm_pgoff + vma_pages(vma)); 863 } 864 865 /* 866 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 867 */ 868 void shmem_unlock_mapping(struct address_space *mapping) 869 { 870 struct folio_batch fbatch; 871 pgoff_t index = 0; 872 873 folio_batch_init(&fbatch); 874 /* 875 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 876 */ 877 while (!mapping_unevictable(mapping) && 878 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 879 check_move_unevictable_folios(&fbatch); 880 folio_batch_release(&fbatch); 881 cond_resched(); 882 } 883 } 884 885 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 886 { 887 struct folio *folio; 888 struct page *page; 889 890 /* 891 * At first avoid shmem_getpage(,,,SGP_READ): that fails 892 * beyond i_size, and reports fallocated pages as holes. 893 */ 894 folio = __filemap_get_folio(inode->i_mapping, index, 895 FGP_ENTRY | FGP_LOCK, 0); 896 if (!xa_is_value(folio)) 897 return folio; 898 /* 899 * But read a page back from swap if any of it is within i_size 900 * (although in some cases this is just a waste of time). 901 */ 902 page = NULL; 903 shmem_getpage(inode, index, &page, SGP_READ); 904 return page ? page_folio(page) : NULL; 905 } 906 907 /* 908 * Remove range of pages and swap entries from page cache, and free them. 909 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 910 */ 911 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 912 bool unfalloc) 913 { 914 struct address_space *mapping = inode->i_mapping; 915 struct shmem_inode_info *info = SHMEM_I(inode); 916 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 917 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 918 struct folio_batch fbatch; 919 pgoff_t indices[PAGEVEC_SIZE]; 920 struct folio *folio; 921 bool same_folio; 922 long nr_swaps_freed = 0; 923 pgoff_t index; 924 int i; 925 926 if (lend == -1) 927 end = -1; /* unsigned, so actually very big */ 928 929 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 930 info->fallocend = start; 931 932 folio_batch_init(&fbatch); 933 index = start; 934 while (index < end && find_lock_entries(mapping, index, end - 1, 935 &fbatch, indices)) { 936 for (i = 0; i < folio_batch_count(&fbatch); i++) { 937 folio = fbatch.folios[i]; 938 939 index = indices[i]; 940 941 if (xa_is_value(folio)) { 942 if (unfalloc) 943 continue; 944 nr_swaps_freed += !shmem_free_swap(mapping, 945 index, folio); 946 continue; 947 } 948 index += folio_nr_pages(folio) - 1; 949 950 if (!unfalloc || !folio_test_uptodate(folio)) 951 truncate_inode_folio(mapping, folio); 952 folio_unlock(folio); 953 } 954 folio_batch_remove_exceptionals(&fbatch); 955 folio_batch_release(&fbatch); 956 cond_resched(); 957 index++; 958 } 959 960 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 961 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 962 if (folio) { 963 same_folio = lend < folio_pos(folio) + folio_size(folio); 964 folio_mark_dirty(folio); 965 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 966 start = folio->index + folio_nr_pages(folio); 967 if (same_folio) 968 end = folio->index; 969 } 970 folio_unlock(folio); 971 folio_put(folio); 972 folio = NULL; 973 } 974 975 if (!same_folio) 976 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 977 if (folio) { 978 folio_mark_dirty(folio); 979 if (!truncate_inode_partial_folio(folio, lstart, lend)) 980 end = folio->index; 981 folio_unlock(folio); 982 folio_put(folio); 983 } 984 985 index = start; 986 while (index < end) { 987 cond_resched(); 988 989 if (!find_get_entries(mapping, index, end - 1, &fbatch, 990 indices)) { 991 /* If all gone or hole-punch or unfalloc, we're done */ 992 if (index == start || end != -1) 993 break; 994 /* But if truncating, restart to make sure all gone */ 995 index = start; 996 continue; 997 } 998 for (i = 0; i < folio_batch_count(&fbatch); i++) { 999 folio = fbatch.folios[i]; 1000 1001 index = indices[i]; 1002 if (xa_is_value(folio)) { 1003 if (unfalloc) 1004 continue; 1005 if (shmem_free_swap(mapping, index, folio)) { 1006 /* Swap was replaced by page: retry */ 1007 index--; 1008 break; 1009 } 1010 nr_swaps_freed++; 1011 continue; 1012 } 1013 1014 folio_lock(folio); 1015 1016 if (!unfalloc || !folio_test_uptodate(folio)) { 1017 if (folio_mapping(folio) != mapping) { 1018 /* Page was replaced by swap: retry */ 1019 folio_unlock(folio); 1020 index--; 1021 break; 1022 } 1023 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1024 folio); 1025 truncate_inode_folio(mapping, folio); 1026 } 1027 index = folio->index + folio_nr_pages(folio) - 1; 1028 folio_unlock(folio); 1029 } 1030 folio_batch_remove_exceptionals(&fbatch); 1031 folio_batch_release(&fbatch); 1032 index++; 1033 } 1034 1035 spin_lock_irq(&info->lock); 1036 info->swapped -= nr_swaps_freed; 1037 shmem_recalc_inode(inode); 1038 spin_unlock_irq(&info->lock); 1039 } 1040 1041 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1042 { 1043 shmem_undo_range(inode, lstart, lend, false); 1044 inode->i_ctime = inode->i_mtime = current_time(inode); 1045 } 1046 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1047 1048 static int shmem_getattr(struct user_namespace *mnt_userns, 1049 const struct path *path, struct kstat *stat, 1050 u32 request_mask, unsigned int query_flags) 1051 { 1052 struct inode *inode = path->dentry->d_inode; 1053 struct shmem_inode_info *info = SHMEM_I(inode); 1054 1055 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1056 spin_lock_irq(&info->lock); 1057 shmem_recalc_inode(inode); 1058 spin_unlock_irq(&info->lock); 1059 } 1060 if (info->fsflags & FS_APPEND_FL) 1061 stat->attributes |= STATX_ATTR_APPEND; 1062 if (info->fsflags & FS_IMMUTABLE_FL) 1063 stat->attributes |= STATX_ATTR_IMMUTABLE; 1064 if (info->fsflags & FS_NODUMP_FL) 1065 stat->attributes |= STATX_ATTR_NODUMP; 1066 stat->attributes_mask |= (STATX_ATTR_APPEND | 1067 STATX_ATTR_IMMUTABLE | 1068 STATX_ATTR_NODUMP); 1069 generic_fillattr(&init_user_ns, inode, stat); 1070 1071 if (shmem_is_huge(NULL, inode, 0)) 1072 stat->blksize = HPAGE_PMD_SIZE; 1073 1074 if (request_mask & STATX_BTIME) { 1075 stat->result_mask |= STATX_BTIME; 1076 stat->btime.tv_sec = info->i_crtime.tv_sec; 1077 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1078 } 1079 1080 return 0; 1081 } 1082 1083 static int shmem_setattr(struct user_namespace *mnt_userns, 1084 struct dentry *dentry, struct iattr *attr) 1085 { 1086 struct inode *inode = d_inode(dentry); 1087 struct shmem_inode_info *info = SHMEM_I(inode); 1088 int error; 1089 1090 error = setattr_prepare(&init_user_ns, dentry, attr); 1091 if (error) 1092 return error; 1093 1094 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1095 loff_t oldsize = inode->i_size; 1096 loff_t newsize = attr->ia_size; 1097 1098 /* protected by i_rwsem */ 1099 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1100 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1101 return -EPERM; 1102 1103 if (newsize != oldsize) { 1104 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1105 oldsize, newsize); 1106 if (error) 1107 return error; 1108 i_size_write(inode, newsize); 1109 inode->i_ctime = inode->i_mtime = current_time(inode); 1110 } 1111 if (newsize <= oldsize) { 1112 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1113 if (oldsize > holebegin) 1114 unmap_mapping_range(inode->i_mapping, 1115 holebegin, 0, 1); 1116 if (info->alloced) 1117 shmem_truncate_range(inode, 1118 newsize, (loff_t)-1); 1119 /* unmap again to remove racily COWed private pages */ 1120 if (oldsize > holebegin) 1121 unmap_mapping_range(inode->i_mapping, 1122 holebegin, 0, 1); 1123 } 1124 } 1125 1126 setattr_copy(&init_user_ns, inode, attr); 1127 if (attr->ia_valid & ATTR_MODE) 1128 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); 1129 return error; 1130 } 1131 1132 static void shmem_evict_inode(struct inode *inode) 1133 { 1134 struct shmem_inode_info *info = SHMEM_I(inode); 1135 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1136 1137 if (shmem_mapping(inode->i_mapping)) { 1138 shmem_unacct_size(info->flags, inode->i_size); 1139 inode->i_size = 0; 1140 mapping_set_exiting(inode->i_mapping); 1141 shmem_truncate_range(inode, 0, (loff_t)-1); 1142 if (!list_empty(&info->shrinklist)) { 1143 spin_lock(&sbinfo->shrinklist_lock); 1144 if (!list_empty(&info->shrinklist)) { 1145 list_del_init(&info->shrinklist); 1146 sbinfo->shrinklist_len--; 1147 } 1148 spin_unlock(&sbinfo->shrinklist_lock); 1149 } 1150 while (!list_empty(&info->swaplist)) { 1151 /* Wait while shmem_unuse() is scanning this inode... */ 1152 wait_var_event(&info->stop_eviction, 1153 !atomic_read(&info->stop_eviction)); 1154 mutex_lock(&shmem_swaplist_mutex); 1155 /* ...but beware of the race if we peeked too early */ 1156 if (!atomic_read(&info->stop_eviction)) 1157 list_del_init(&info->swaplist); 1158 mutex_unlock(&shmem_swaplist_mutex); 1159 } 1160 } 1161 1162 simple_xattrs_free(&info->xattrs); 1163 WARN_ON(inode->i_blocks); 1164 shmem_free_inode(inode->i_sb); 1165 clear_inode(inode); 1166 } 1167 1168 static int shmem_find_swap_entries(struct address_space *mapping, 1169 pgoff_t start, struct folio_batch *fbatch, 1170 pgoff_t *indices, unsigned int type) 1171 { 1172 XA_STATE(xas, &mapping->i_pages, start); 1173 struct folio *folio; 1174 swp_entry_t entry; 1175 1176 rcu_read_lock(); 1177 xas_for_each(&xas, folio, ULONG_MAX) { 1178 if (xas_retry(&xas, folio)) 1179 continue; 1180 1181 if (!xa_is_value(folio)) 1182 continue; 1183 1184 entry = radix_to_swp_entry(folio); 1185 /* 1186 * swapin error entries can be found in the mapping. But they're 1187 * deliberately ignored here as we've done everything we can do. 1188 */ 1189 if (swp_type(entry) != type) 1190 continue; 1191 1192 indices[folio_batch_count(fbatch)] = xas.xa_index; 1193 if (!folio_batch_add(fbatch, folio)) 1194 break; 1195 1196 if (need_resched()) { 1197 xas_pause(&xas); 1198 cond_resched_rcu(); 1199 } 1200 } 1201 rcu_read_unlock(); 1202 1203 return xas.xa_index; 1204 } 1205 1206 /* 1207 * Move the swapped pages for an inode to page cache. Returns the count 1208 * of pages swapped in, or the error in case of failure. 1209 */ 1210 static int shmem_unuse_swap_entries(struct inode *inode, 1211 struct folio_batch *fbatch, pgoff_t *indices) 1212 { 1213 int i = 0; 1214 int ret = 0; 1215 int error = 0; 1216 struct address_space *mapping = inode->i_mapping; 1217 1218 for (i = 0; i < folio_batch_count(fbatch); i++) { 1219 struct folio *folio = fbatch->folios[i]; 1220 1221 if (!xa_is_value(folio)) 1222 continue; 1223 error = shmem_swapin_folio(inode, indices[i], 1224 &folio, SGP_CACHE, 1225 mapping_gfp_mask(mapping), 1226 NULL, NULL); 1227 if (error == 0) { 1228 folio_unlock(folio); 1229 folio_put(folio); 1230 ret++; 1231 } 1232 if (error == -ENOMEM) 1233 break; 1234 error = 0; 1235 } 1236 return error ? error : ret; 1237 } 1238 1239 /* 1240 * If swap found in inode, free it and move page from swapcache to filecache. 1241 */ 1242 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1243 { 1244 struct address_space *mapping = inode->i_mapping; 1245 pgoff_t start = 0; 1246 struct folio_batch fbatch; 1247 pgoff_t indices[PAGEVEC_SIZE]; 1248 int ret = 0; 1249 1250 do { 1251 folio_batch_init(&fbatch); 1252 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1253 if (folio_batch_count(&fbatch) == 0) { 1254 ret = 0; 1255 break; 1256 } 1257 1258 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1259 if (ret < 0) 1260 break; 1261 1262 start = indices[folio_batch_count(&fbatch) - 1]; 1263 } while (true); 1264 1265 return ret; 1266 } 1267 1268 /* 1269 * Read all the shared memory data that resides in the swap 1270 * device 'type' back into memory, so the swap device can be 1271 * unused. 1272 */ 1273 int shmem_unuse(unsigned int type) 1274 { 1275 struct shmem_inode_info *info, *next; 1276 int error = 0; 1277 1278 if (list_empty(&shmem_swaplist)) 1279 return 0; 1280 1281 mutex_lock(&shmem_swaplist_mutex); 1282 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1283 if (!info->swapped) { 1284 list_del_init(&info->swaplist); 1285 continue; 1286 } 1287 /* 1288 * Drop the swaplist mutex while searching the inode for swap; 1289 * but before doing so, make sure shmem_evict_inode() will not 1290 * remove placeholder inode from swaplist, nor let it be freed 1291 * (igrab() would protect from unlink, but not from unmount). 1292 */ 1293 atomic_inc(&info->stop_eviction); 1294 mutex_unlock(&shmem_swaplist_mutex); 1295 1296 error = shmem_unuse_inode(&info->vfs_inode, type); 1297 cond_resched(); 1298 1299 mutex_lock(&shmem_swaplist_mutex); 1300 next = list_next_entry(info, swaplist); 1301 if (!info->swapped) 1302 list_del_init(&info->swaplist); 1303 if (atomic_dec_and_test(&info->stop_eviction)) 1304 wake_up_var(&info->stop_eviction); 1305 if (error) 1306 break; 1307 } 1308 mutex_unlock(&shmem_swaplist_mutex); 1309 1310 return error; 1311 } 1312 1313 /* 1314 * Move the page from the page cache to the swap cache. 1315 */ 1316 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1317 { 1318 struct folio *folio = page_folio(page); 1319 struct shmem_inode_info *info; 1320 struct address_space *mapping; 1321 struct inode *inode; 1322 swp_entry_t swap; 1323 pgoff_t index; 1324 1325 /* 1326 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1327 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1328 * and its shmem_writeback() needs them to be split when swapping. 1329 */ 1330 if (folio_test_large(folio)) { 1331 /* Ensure the subpages are still dirty */ 1332 folio_test_set_dirty(folio); 1333 if (split_huge_page(page) < 0) 1334 goto redirty; 1335 folio = page_folio(page); 1336 folio_clear_dirty(folio); 1337 } 1338 1339 BUG_ON(!folio_test_locked(folio)); 1340 mapping = folio->mapping; 1341 index = folio->index; 1342 inode = mapping->host; 1343 info = SHMEM_I(inode); 1344 if (info->flags & VM_LOCKED) 1345 goto redirty; 1346 if (!total_swap_pages) 1347 goto redirty; 1348 1349 /* 1350 * Our capabilities prevent regular writeback or sync from ever calling 1351 * shmem_writepage; but a stacking filesystem might use ->writepage of 1352 * its underlying filesystem, in which case tmpfs should write out to 1353 * swap only in response to memory pressure, and not for the writeback 1354 * threads or sync. 1355 */ 1356 if (!wbc->for_reclaim) { 1357 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1358 goto redirty; 1359 } 1360 1361 /* 1362 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1363 * value into swapfile.c, the only way we can correctly account for a 1364 * fallocated folio arriving here is now to initialize it and write it. 1365 * 1366 * That's okay for a folio already fallocated earlier, but if we have 1367 * not yet completed the fallocation, then (a) we want to keep track 1368 * of this folio in case we have to undo it, and (b) it may not be a 1369 * good idea to continue anyway, once we're pushing into swap. So 1370 * reactivate the folio, and let shmem_fallocate() quit when too many. 1371 */ 1372 if (!folio_test_uptodate(folio)) { 1373 if (inode->i_private) { 1374 struct shmem_falloc *shmem_falloc; 1375 spin_lock(&inode->i_lock); 1376 shmem_falloc = inode->i_private; 1377 if (shmem_falloc && 1378 !shmem_falloc->waitq && 1379 index >= shmem_falloc->start && 1380 index < shmem_falloc->next) 1381 shmem_falloc->nr_unswapped++; 1382 else 1383 shmem_falloc = NULL; 1384 spin_unlock(&inode->i_lock); 1385 if (shmem_falloc) 1386 goto redirty; 1387 } 1388 folio_zero_range(folio, 0, folio_size(folio)); 1389 flush_dcache_folio(folio); 1390 folio_mark_uptodate(folio); 1391 } 1392 1393 swap = folio_alloc_swap(folio); 1394 if (!swap.val) 1395 goto redirty; 1396 1397 /* 1398 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1399 * if it's not already there. Do it now before the folio is 1400 * moved to swap cache, when its pagelock no longer protects 1401 * the inode from eviction. But don't unlock the mutex until 1402 * we've incremented swapped, because shmem_unuse_inode() will 1403 * prune a !swapped inode from the swaplist under this mutex. 1404 */ 1405 mutex_lock(&shmem_swaplist_mutex); 1406 if (list_empty(&info->swaplist)) 1407 list_add(&info->swaplist, &shmem_swaplist); 1408 1409 if (add_to_swap_cache(folio, swap, 1410 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1411 NULL) == 0) { 1412 spin_lock_irq(&info->lock); 1413 shmem_recalc_inode(inode); 1414 info->swapped++; 1415 spin_unlock_irq(&info->lock); 1416 1417 swap_shmem_alloc(swap); 1418 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1419 1420 mutex_unlock(&shmem_swaplist_mutex); 1421 BUG_ON(folio_mapped(folio)); 1422 swap_writepage(&folio->page, wbc); 1423 return 0; 1424 } 1425 1426 mutex_unlock(&shmem_swaplist_mutex); 1427 put_swap_page(&folio->page, swap); 1428 redirty: 1429 folio_mark_dirty(folio); 1430 if (wbc->for_reclaim) 1431 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1432 folio_unlock(folio); 1433 return 0; 1434 } 1435 1436 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1437 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1438 { 1439 char buffer[64]; 1440 1441 if (!mpol || mpol->mode == MPOL_DEFAULT) 1442 return; /* show nothing */ 1443 1444 mpol_to_str(buffer, sizeof(buffer), mpol); 1445 1446 seq_printf(seq, ",mpol=%s", buffer); 1447 } 1448 1449 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1450 { 1451 struct mempolicy *mpol = NULL; 1452 if (sbinfo->mpol) { 1453 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1454 mpol = sbinfo->mpol; 1455 mpol_get(mpol); 1456 raw_spin_unlock(&sbinfo->stat_lock); 1457 } 1458 return mpol; 1459 } 1460 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1461 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1462 { 1463 } 1464 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1465 { 1466 return NULL; 1467 } 1468 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1469 #ifndef CONFIG_NUMA 1470 #define vm_policy vm_private_data 1471 #endif 1472 1473 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1474 struct shmem_inode_info *info, pgoff_t index) 1475 { 1476 /* Create a pseudo vma that just contains the policy */ 1477 vma_init(vma, NULL); 1478 /* Bias interleave by inode number to distribute better across nodes */ 1479 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1480 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1481 } 1482 1483 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1484 { 1485 /* Drop reference taken by mpol_shared_policy_lookup() */ 1486 mpol_cond_put(vma->vm_policy); 1487 } 1488 1489 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1490 struct shmem_inode_info *info, pgoff_t index) 1491 { 1492 struct vm_area_struct pvma; 1493 struct page *page; 1494 struct vm_fault vmf = { 1495 .vma = &pvma, 1496 }; 1497 1498 shmem_pseudo_vma_init(&pvma, info, index); 1499 page = swap_cluster_readahead(swap, gfp, &vmf); 1500 shmem_pseudo_vma_destroy(&pvma); 1501 1502 return page; 1503 } 1504 1505 /* 1506 * Make sure huge_gfp is always more limited than limit_gfp. 1507 * Some of the flags set permissions, while others set limitations. 1508 */ 1509 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1510 { 1511 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1512 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1513 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1514 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1515 1516 /* Allow allocations only from the originally specified zones. */ 1517 result |= zoneflags; 1518 1519 /* 1520 * Minimize the result gfp by taking the union with the deny flags, 1521 * and the intersection of the allow flags. 1522 */ 1523 result |= (limit_gfp & denyflags); 1524 result |= (huge_gfp & limit_gfp) & allowflags; 1525 1526 return result; 1527 } 1528 1529 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1530 struct shmem_inode_info *info, pgoff_t index) 1531 { 1532 struct vm_area_struct pvma; 1533 struct address_space *mapping = info->vfs_inode.i_mapping; 1534 pgoff_t hindex; 1535 struct folio *folio; 1536 1537 hindex = round_down(index, HPAGE_PMD_NR); 1538 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1539 XA_PRESENT)) 1540 return NULL; 1541 1542 shmem_pseudo_vma_init(&pvma, info, hindex); 1543 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1544 shmem_pseudo_vma_destroy(&pvma); 1545 if (!folio) 1546 count_vm_event(THP_FILE_FALLBACK); 1547 return folio; 1548 } 1549 1550 static struct folio *shmem_alloc_folio(gfp_t gfp, 1551 struct shmem_inode_info *info, pgoff_t index) 1552 { 1553 struct vm_area_struct pvma; 1554 struct folio *folio; 1555 1556 shmem_pseudo_vma_init(&pvma, info, index); 1557 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false); 1558 shmem_pseudo_vma_destroy(&pvma); 1559 1560 return folio; 1561 } 1562 1563 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode, 1564 pgoff_t index, bool huge) 1565 { 1566 struct shmem_inode_info *info = SHMEM_I(inode); 1567 struct folio *folio; 1568 int nr; 1569 int err = -ENOSPC; 1570 1571 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1572 huge = false; 1573 nr = huge ? HPAGE_PMD_NR : 1; 1574 1575 if (!shmem_inode_acct_block(inode, nr)) 1576 goto failed; 1577 1578 if (huge) 1579 folio = shmem_alloc_hugefolio(gfp, info, index); 1580 else 1581 folio = shmem_alloc_folio(gfp, info, index); 1582 if (folio) { 1583 __folio_set_locked(folio); 1584 __folio_set_swapbacked(folio); 1585 return folio; 1586 } 1587 1588 err = -ENOMEM; 1589 shmem_inode_unacct_blocks(inode, nr); 1590 failed: 1591 return ERR_PTR(err); 1592 } 1593 1594 /* 1595 * When a page is moved from swapcache to shmem filecache (either by the 1596 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1597 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1598 * ignorance of the mapping it belongs to. If that mapping has special 1599 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1600 * we may need to copy to a suitable page before moving to filecache. 1601 * 1602 * In a future release, this may well be extended to respect cpuset and 1603 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1604 * but for now it is a simple matter of zone. 1605 */ 1606 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1607 { 1608 return folio_zonenum(folio) > gfp_zone(gfp); 1609 } 1610 1611 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1612 struct shmem_inode_info *info, pgoff_t index) 1613 { 1614 struct folio *old, *new; 1615 struct address_space *swap_mapping; 1616 swp_entry_t entry; 1617 pgoff_t swap_index; 1618 int error; 1619 1620 old = page_folio(*pagep); 1621 entry = folio_swap_entry(old); 1622 swap_index = swp_offset(entry); 1623 swap_mapping = swap_address_space(entry); 1624 1625 /* 1626 * We have arrived here because our zones are constrained, so don't 1627 * limit chance of success by further cpuset and node constraints. 1628 */ 1629 gfp &= ~GFP_CONSTRAINT_MASK; 1630 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1631 new = shmem_alloc_folio(gfp, info, index); 1632 if (!new) 1633 return -ENOMEM; 1634 1635 folio_get(new); 1636 folio_copy(new, old); 1637 flush_dcache_folio(new); 1638 1639 __folio_set_locked(new); 1640 __folio_set_swapbacked(new); 1641 folio_mark_uptodate(new); 1642 folio_set_swap_entry(new, entry); 1643 folio_set_swapcache(new); 1644 1645 /* 1646 * Our caller will very soon move newpage out of swapcache, but it's 1647 * a nice clean interface for us to replace oldpage by newpage there. 1648 */ 1649 xa_lock_irq(&swap_mapping->i_pages); 1650 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1651 if (!error) { 1652 mem_cgroup_migrate(old, new); 1653 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1654 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1655 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1656 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1657 } 1658 xa_unlock_irq(&swap_mapping->i_pages); 1659 1660 if (unlikely(error)) { 1661 /* 1662 * Is this possible? I think not, now that our callers check 1663 * both PageSwapCache and page_private after getting page lock; 1664 * but be defensive. Reverse old to newpage for clear and free. 1665 */ 1666 old = new; 1667 } else { 1668 folio_add_lru(new); 1669 *pagep = &new->page; 1670 } 1671 1672 folio_clear_swapcache(old); 1673 old->private = NULL; 1674 1675 folio_unlock(old); 1676 folio_put_refs(old, 2); 1677 return error; 1678 } 1679 1680 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1681 struct folio *folio, swp_entry_t swap) 1682 { 1683 struct address_space *mapping = inode->i_mapping; 1684 struct shmem_inode_info *info = SHMEM_I(inode); 1685 swp_entry_t swapin_error; 1686 void *old; 1687 1688 swapin_error = make_swapin_error_entry(&folio->page); 1689 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1690 swp_to_radix_entry(swap), 1691 swp_to_radix_entry(swapin_error), 0); 1692 if (old != swp_to_radix_entry(swap)) 1693 return; 1694 1695 folio_wait_writeback(folio); 1696 delete_from_swap_cache(folio); 1697 spin_lock_irq(&info->lock); 1698 /* 1699 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't 1700 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in 1701 * shmem_evict_inode. 1702 */ 1703 info->alloced--; 1704 info->swapped--; 1705 shmem_recalc_inode(inode); 1706 spin_unlock_irq(&info->lock); 1707 swap_free(swap); 1708 } 1709 1710 /* 1711 * Swap in the folio pointed to by *foliop. 1712 * Caller has to make sure that *foliop contains a valid swapped folio. 1713 * Returns 0 and the folio in foliop if success. On failure, returns the 1714 * error code and NULL in *foliop. 1715 */ 1716 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1717 struct folio **foliop, enum sgp_type sgp, 1718 gfp_t gfp, struct vm_area_struct *vma, 1719 vm_fault_t *fault_type) 1720 { 1721 struct address_space *mapping = inode->i_mapping; 1722 struct shmem_inode_info *info = SHMEM_I(inode); 1723 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1724 struct page *page; 1725 struct folio *folio = NULL; 1726 swp_entry_t swap; 1727 int error; 1728 1729 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1730 swap = radix_to_swp_entry(*foliop); 1731 *foliop = NULL; 1732 1733 if (is_swapin_error_entry(swap)) 1734 return -EIO; 1735 1736 /* Look it up and read it in.. */ 1737 page = lookup_swap_cache(swap, NULL, 0); 1738 if (!page) { 1739 /* Or update major stats only when swapin succeeds?? */ 1740 if (fault_type) { 1741 *fault_type |= VM_FAULT_MAJOR; 1742 count_vm_event(PGMAJFAULT); 1743 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1744 } 1745 /* Here we actually start the io */ 1746 page = shmem_swapin(swap, gfp, info, index); 1747 if (!page) { 1748 error = -ENOMEM; 1749 goto failed; 1750 } 1751 } 1752 folio = page_folio(page); 1753 1754 /* We have to do this with folio locked to prevent races */ 1755 folio_lock(folio); 1756 if (!folio_test_swapcache(folio) || 1757 folio_swap_entry(folio).val != swap.val || 1758 !shmem_confirm_swap(mapping, index, swap)) { 1759 error = -EEXIST; 1760 goto unlock; 1761 } 1762 if (!folio_test_uptodate(folio)) { 1763 error = -EIO; 1764 goto failed; 1765 } 1766 folio_wait_writeback(folio); 1767 1768 /* 1769 * Some architectures may have to restore extra metadata to the 1770 * folio after reading from swap. 1771 */ 1772 arch_swap_restore(swap, folio); 1773 1774 if (shmem_should_replace_folio(folio, gfp)) { 1775 error = shmem_replace_page(&page, gfp, info, index); 1776 folio = page_folio(page); 1777 if (error) 1778 goto failed; 1779 } 1780 1781 error = shmem_add_to_page_cache(folio, mapping, index, 1782 swp_to_radix_entry(swap), gfp, 1783 charge_mm); 1784 if (error) 1785 goto failed; 1786 1787 spin_lock_irq(&info->lock); 1788 info->swapped--; 1789 shmem_recalc_inode(inode); 1790 spin_unlock_irq(&info->lock); 1791 1792 if (sgp == SGP_WRITE) 1793 folio_mark_accessed(folio); 1794 1795 delete_from_swap_cache(folio); 1796 folio_mark_dirty(folio); 1797 swap_free(swap); 1798 1799 *foliop = folio; 1800 return 0; 1801 failed: 1802 if (!shmem_confirm_swap(mapping, index, swap)) 1803 error = -EEXIST; 1804 if (error == -EIO) 1805 shmem_set_folio_swapin_error(inode, index, folio, swap); 1806 unlock: 1807 if (folio) { 1808 folio_unlock(folio); 1809 folio_put(folio); 1810 } 1811 1812 return error; 1813 } 1814 1815 /* 1816 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1817 * 1818 * If we allocate a new one we do not mark it dirty. That's up to the 1819 * vm. If we swap it in we mark it dirty since we also free the swap 1820 * entry since a page cannot live in both the swap and page cache. 1821 * 1822 * vma, vmf, and fault_type are only supplied by shmem_fault: 1823 * otherwise they are NULL. 1824 */ 1825 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1826 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1827 struct vm_area_struct *vma, struct vm_fault *vmf, 1828 vm_fault_t *fault_type) 1829 { 1830 struct address_space *mapping = inode->i_mapping; 1831 struct shmem_inode_info *info = SHMEM_I(inode); 1832 struct shmem_sb_info *sbinfo; 1833 struct mm_struct *charge_mm; 1834 struct folio *folio; 1835 pgoff_t hindex = index; 1836 gfp_t huge_gfp; 1837 int error; 1838 int once = 0; 1839 int alloced = 0; 1840 1841 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1842 return -EFBIG; 1843 repeat: 1844 if (sgp <= SGP_CACHE && 1845 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1846 return -EINVAL; 1847 } 1848 1849 sbinfo = SHMEM_SB(inode->i_sb); 1850 charge_mm = vma ? vma->vm_mm : NULL; 1851 1852 folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0); 1853 if (folio && vma && userfaultfd_minor(vma)) { 1854 if (!xa_is_value(folio)) { 1855 folio_unlock(folio); 1856 folio_put(folio); 1857 } 1858 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1859 return 0; 1860 } 1861 1862 if (xa_is_value(folio)) { 1863 error = shmem_swapin_folio(inode, index, &folio, 1864 sgp, gfp, vma, fault_type); 1865 if (error == -EEXIST) 1866 goto repeat; 1867 1868 *pagep = &folio->page; 1869 return error; 1870 } 1871 1872 if (folio) { 1873 hindex = folio->index; 1874 if (sgp == SGP_WRITE) 1875 folio_mark_accessed(folio); 1876 if (folio_test_uptodate(folio)) 1877 goto out; 1878 /* fallocated page */ 1879 if (sgp != SGP_READ) 1880 goto clear; 1881 folio_unlock(folio); 1882 folio_put(folio); 1883 } 1884 1885 /* 1886 * SGP_READ: succeed on hole, with NULL page, letting caller zero. 1887 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail. 1888 */ 1889 *pagep = NULL; 1890 if (sgp == SGP_READ) 1891 return 0; 1892 if (sgp == SGP_NOALLOC) 1893 return -ENOENT; 1894 1895 /* 1896 * Fast cache lookup and swap lookup did not find it: allocate. 1897 */ 1898 1899 if (vma && userfaultfd_missing(vma)) { 1900 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1901 return 0; 1902 } 1903 1904 if (!shmem_is_huge(vma, inode, index)) 1905 goto alloc_nohuge; 1906 1907 huge_gfp = vma_thp_gfp_mask(vma); 1908 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1909 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true); 1910 if (IS_ERR(folio)) { 1911 alloc_nohuge: 1912 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false); 1913 } 1914 if (IS_ERR(folio)) { 1915 int retry = 5; 1916 1917 error = PTR_ERR(folio); 1918 folio = NULL; 1919 if (error != -ENOSPC) 1920 goto unlock; 1921 /* 1922 * Try to reclaim some space by splitting a huge page 1923 * beyond i_size on the filesystem. 1924 */ 1925 while (retry--) { 1926 int ret; 1927 1928 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1929 if (ret == SHRINK_STOP) 1930 break; 1931 if (ret) 1932 goto alloc_nohuge; 1933 } 1934 goto unlock; 1935 } 1936 1937 hindex = round_down(index, folio_nr_pages(folio)); 1938 1939 if (sgp == SGP_WRITE) 1940 __folio_set_referenced(folio); 1941 1942 error = shmem_add_to_page_cache(folio, mapping, hindex, 1943 NULL, gfp & GFP_RECLAIM_MASK, 1944 charge_mm); 1945 if (error) 1946 goto unacct; 1947 folio_add_lru(folio); 1948 1949 spin_lock_irq(&info->lock); 1950 info->alloced += folio_nr_pages(folio); 1951 inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio); 1952 shmem_recalc_inode(inode); 1953 spin_unlock_irq(&info->lock); 1954 alloced = true; 1955 1956 if (folio_test_pmd_mappable(folio) && 1957 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1958 hindex + HPAGE_PMD_NR - 1) { 1959 /* 1960 * Part of the huge page is beyond i_size: subject 1961 * to shrink under memory pressure. 1962 */ 1963 spin_lock(&sbinfo->shrinklist_lock); 1964 /* 1965 * _careful to defend against unlocked access to 1966 * ->shrink_list in shmem_unused_huge_shrink() 1967 */ 1968 if (list_empty_careful(&info->shrinklist)) { 1969 list_add_tail(&info->shrinklist, 1970 &sbinfo->shrinklist); 1971 sbinfo->shrinklist_len++; 1972 } 1973 spin_unlock(&sbinfo->shrinklist_lock); 1974 } 1975 1976 /* 1977 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1978 */ 1979 if (sgp == SGP_FALLOC) 1980 sgp = SGP_WRITE; 1981 clear: 1982 /* 1983 * Let SGP_WRITE caller clear ends if write does not fill page; 1984 * but SGP_FALLOC on a page fallocated earlier must initialize 1985 * it now, lest undo on failure cancel our earlier guarantee. 1986 */ 1987 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 1988 long i, n = folio_nr_pages(folio); 1989 1990 for (i = 0; i < n; i++) 1991 clear_highpage(folio_page(folio, i)); 1992 flush_dcache_folio(folio); 1993 folio_mark_uptodate(folio); 1994 } 1995 1996 /* Perhaps the file has been truncated since we checked */ 1997 if (sgp <= SGP_CACHE && 1998 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1999 if (alloced) { 2000 folio_clear_dirty(folio); 2001 filemap_remove_folio(folio); 2002 spin_lock_irq(&info->lock); 2003 shmem_recalc_inode(inode); 2004 spin_unlock_irq(&info->lock); 2005 } 2006 error = -EINVAL; 2007 goto unlock; 2008 } 2009 out: 2010 *pagep = folio_page(folio, index - hindex); 2011 return 0; 2012 2013 /* 2014 * Error recovery. 2015 */ 2016 unacct: 2017 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio)); 2018 2019 if (folio_test_large(folio)) { 2020 folio_unlock(folio); 2021 folio_put(folio); 2022 goto alloc_nohuge; 2023 } 2024 unlock: 2025 if (folio) { 2026 folio_unlock(folio); 2027 folio_put(folio); 2028 } 2029 if (error == -ENOSPC && !once++) { 2030 spin_lock_irq(&info->lock); 2031 shmem_recalc_inode(inode); 2032 spin_unlock_irq(&info->lock); 2033 goto repeat; 2034 } 2035 if (error == -EEXIST) 2036 goto repeat; 2037 return error; 2038 } 2039 2040 /* 2041 * This is like autoremove_wake_function, but it removes the wait queue 2042 * entry unconditionally - even if something else had already woken the 2043 * target. 2044 */ 2045 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2046 { 2047 int ret = default_wake_function(wait, mode, sync, key); 2048 list_del_init(&wait->entry); 2049 return ret; 2050 } 2051 2052 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2053 { 2054 struct vm_area_struct *vma = vmf->vma; 2055 struct inode *inode = file_inode(vma->vm_file); 2056 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2057 int err; 2058 vm_fault_t ret = VM_FAULT_LOCKED; 2059 2060 /* 2061 * Trinity finds that probing a hole which tmpfs is punching can 2062 * prevent the hole-punch from ever completing: which in turn 2063 * locks writers out with its hold on i_rwsem. So refrain from 2064 * faulting pages into the hole while it's being punched. Although 2065 * shmem_undo_range() does remove the additions, it may be unable to 2066 * keep up, as each new page needs its own unmap_mapping_range() call, 2067 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2068 * 2069 * It does not matter if we sometimes reach this check just before the 2070 * hole-punch begins, so that one fault then races with the punch: 2071 * we just need to make racing faults a rare case. 2072 * 2073 * The implementation below would be much simpler if we just used a 2074 * standard mutex or completion: but we cannot take i_rwsem in fault, 2075 * and bloating every shmem inode for this unlikely case would be sad. 2076 */ 2077 if (unlikely(inode->i_private)) { 2078 struct shmem_falloc *shmem_falloc; 2079 2080 spin_lock(&inode->i_lock); 2081 shmem_falloc = inode->i_private; 2082 if (shmem_falloc && 2083 shmem_falloc->waitq && 2084 vmf->pgoff >= shmem_falloc->start && 2085 vmf->pgoff < shmem_falloc->next) { 2086 struct file *fpin; 2087 wait_queue_head_t *shmem_falloc_waitq; 2088 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2089 2090 ret = VM_FAULT_NOPAGE; 2091 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2092 if (fpin) 2093 ret = VM_FAULT_RETRY; 2094 2095 shmem_falloc_waitq = shmem_falloc->waitq; 2096 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2097 TASK_UNINTERRUPTIBLE); 2098 spin_unlock(&inode->i_lock); 2099 schedule(); 2100 2101 /* 2102 * shmem_falloc_waitq points into the shmem_fallocate() 2103 * stack of the hole-punching task: shmem_falloc_waitq 2104 * is usually invalid by the time we reach here, but 2105 * finish_wait() does not dereference it in that case; 2106 * though i_lock needed lest racing with wake_up_all(). 2107 */ 2108 spin_lock(&inode->i_lock); 2109 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2110 spin_unlock(&inode->i_lock); 2111 2112 if (fpin) 2113 fput(fpin); 2114 return ret; 2115 } 2116 spin_unlock(&inode->i_lock); 2117 } 2118 2119 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE, 2120 gfp, vma, vmf, &ret); 2121 if (err) 2122 return vmf_error(err); 2123 return ret; 2124 } 2125 2126 unsigned long shmem_get_unmapped_area(struct file *file, 2127 unsigned long uaddr, unsigned long len, 2128 unsigned long pgoff, unsigned long flags) 2129 { 2130 unsigned long (*get_area)(struct file *, 2131 unsigned long, unsigned long, unsigned long, unsigned long); 2132 unsigned long addr; 2133 unsigned long offset; 2134 unsigned long inflated_len; 2135 unsigned long inflated_addr; 2136 unsigned long inflated_offset; 2137 2138 if (len > TASK_SIZE) 2139 return -ENOMEM; 2140 2141 get_area = current->mm->get_unmapped_area; 2142 addr = get_area(file, uaddr, len, pgoff, flags); 2143 2144 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2145 return addr; 2146 if (IS_ERR_VALUE(addr)) 2147 return addr; 2148 if (addr & ~PAGE_MASK) 2149 return addr; 2150 if (addr > TASK_SIZE - len) 2151 return addr; 2152 2153 if (shmem_huge == SHMEM_HUGE_DENY) 2154 return addr; 2155 if (len < HPAGE_PMD_SIZE) 2156 return addr; 2157 if (flags & MAP_FIXED) 2158 return addr; 2159 /* 2160 * Our priority is to support MAP_SHARED mapped hugely; 2161 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2162 * But if caller specified an address hint and we allocated area there 2163 * successfully, respect that as before. 2164 */ 2165 if (uaddr == addr) 2166 return addr; 2167 2168 if (shmem_huge != SHMEM_HUGE_FORCE) { 2169 struct super_block *sb; 2170 2171 if (file) { 2172 VM_BUG_ON(file->f_op != &shmem_file_operations); 2173 sb = file_inode(file)->i_sb; 2174 } else { 2175 /* 2176 * Called directly from mm/mmap.c, or drivers/char/mem.c 2177 * for "/dev/zero", to create a shared anonymous object. 2178 */ 2179 if (IS_ERR(shm_mnt)) 2180 return addr; 2181 sb = shm_mnt->mnt_sb; 2182 } 2183 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2184 return addr; 2185 } 2186 2187 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2188 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2189 return addr; 2190 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2191 return addr; 2192 2193 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2194 if (inflated_len > TASK_SIZE) 2195 return addr; 2196 if (inflated_len < len) 2197 return addr; 2198 2199 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2200 if (IS_ERR_VALUE(inflated_addr)) 2201 return addr; 2202 if (inflated_addr & ~PAGE_MASK) 2203 return addr; 2204 2205 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2206 inflated_addr += offset - inflated_offset; 2207 if (inflated_offset > offset) 2208 inflated_addr += HPAGE_PMD_SIZE; 2209 2210 if (inflated_addr > TASK_SIZE - len) 2211 return addr; 2212 return inflated_addr; 2213 } 2214 2215 #ifdef CONFIG_NUMA 2216 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2217 { 2218 struct inode *inode = file_inode(vma->vm_file); 2219 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2220 } 2221 2222 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2223 unsigned long addr) 2224 { 2225 struct inode *inode = file_inode(vma->vm_file); 2226 pgoff_t index; 2227 2228 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2229 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2230 } 2231 #endif 2232 2233 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2234 { 2235 struct inode *inode = file_inode(file); 2236 struct shmem_inode_info *info = SHMEM_I(inode); 2237 int retval = -ENOMEM; 2238 2239 /* 2240 * What serializes the accesses to info->flags? 2241 * ipc_lock_object() when called from shmctl_do_lock(), 2242 * no serialization needed when called from shm_destroy(). 2243 */ 2244 if (lock && !(info->flags & VM_LOCKED)) { 2245 if (!user_shm_lock(inode->i_size, ucounts)) 2246 goto out_nomem; 2247 info->flags |= VM_LOCKED; 2248 mapping_set_unevictable(file->f_mapping); 2249 } 2250 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2251 user_shm_unlock(inode->i_size, ucounts); 2252 info->flags &= ~VM_LOCKED; 2253 mapping_clear_unevictable(file->f_mapping); 2254 } 2255 retval = 0; 2256 2257 out_nomem: 2258 return retval; 2259 } 2260 2261 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2262 { 2263 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2264 int ret; 2265 2266 ret = seal_check_future_write(info->seals, vma); 2267 if (ret) 2268 return ret; 2269 2270 /* arm64 - allow memory tagging on RAM-based files */ 2271 vma->vm_flags |= VM_MTE_ALLOWED; 2272 2273 file_accessed(file); 2274 vma->vm_ops = &shmem_vm_ops; 2275 return 0; 2276 } 2277 2278 #ifdef CONFIG_TMPFS_XATTR 2279 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2280 2281 /* 2282 * chattr's fsflags are unrelated to extended attributes, 2283 * but tmpfs has chosen to enable them under the same config option. 2284 */ 2285 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2286 { 2287 unsigned int i_flags = 0; 2288 2289 if (fsflags & FS_NOATIME_FL) 2290 i_flags |= S_NOATIME; 2291 if (fsflags & FS_APPEND_FL) 2292 i_flags |= S_APPEND; 2293 if (fsflags & FS_IMMUTABLE_FL) 2294 i_flags |= S_IMMUTABLE; 2295 /* 2296 * But FS_NODUMP_FL does not require any action in i_flags. 2297 */ 2298 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2299 } 2300 #else 2301 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2302 { 2303 } 2304 #define shmem_initxattrs NULL 2305 #endif 2306 2307 static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir, 2308 umode_t mode, dev_t dev, unsigned long flags) 2309 { 2310 struct inode *inode; 2311 struct shmem_inode_info *info; 2312 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2313 ino_t ino; 2314 2315 if (shmem_reserve_inode(sb, &ino)) 2316 return NULL; 2317 2318 inode = new_inode(sb); 2319 if (inode) { 2320 inode->i_ino = ino; 2321 inode_init_owner(&init_user_ns, inode, dir, mode); 2322 inode->i_blocks = 0; 2323 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2324 inode->i_generation = prandom_u32(); 2325 info = SHMEM_I(inode); 2326 memset(info, 0, (char *)inode - (char *)info); 2327 spin_lock_init(&info->lock); 2328 atomic_set(&info->stop_eviction, 0); 2329 info->seals = F_SEAL_SEAL; 2330 info->flags = flags & VM_NORESERVE; 2331 info->i_crtime = inode->i_mtime; 2332 info->fsflags = (dir == NULL) ? 0 : 2333 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2334 if (info->fsflags) 2335 shmem_set_inode_flags(inode, info->fsflags); 2336 INIT_LIST_HEAD(&info->shrinklist); 2337 INIT_LIST_HEAD(&info->swaplist); 2338 simple_xattrs_init(&info->xattrs); 2339 cache_no_acl(inode); 2340 mapping_set_large_folios(inode->i_mapping); 2341 2342 switch (mode & S_IFMT) { 2343 default: 2344 inode->i_op = &shmem_special_inode_operations; 2345 init_special_inode(inode, mode, dev); 2346 break; 2347 case S_IFREG: 2348 inode->i_mapping->a_ops = &shmem_aops; 2349 inode->i_op = &shmem_inode_operations; 2350 inode->i_fop = &shmem_file_operations; 2351 mpol_shared_policy_init(&info->policy, 2352 shmem_get_sbmpol(sbinfo)); 2353 break; 2354 case S_IFDIR: 2355 inc_nlink(inode); 2356 /* Some things misbehave if size == 0 on a directory */ 2357 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2358 inode->i_op = &shmem_dir_inode_operations; 2359 inode->i_fop = &simple_dir_operations; 2360 break; 2361 case S_IFLNK: 2362 /* 2363 * Must not load anything in the rbtree, 2364 * mpol_free_shared_policy will not be called. 2365 */ 2366 mpol_shared_policy_init(&info->policy, NULL); 2367 break; 2368 } 2369 2370 lockdep_annotate_inode_mutex_key(inode); 2371 } else 2372 shmem_free_inode(sb); 2373 return inode; 2374 } 2375 2376 #ifdef CONFIG_USERFAULTFD 2377 static struct page *shmem_alloc_page(gfp_t gfp, 2378 struct shmem_inode_info *info, pgoff_t index) 2379 { 2380 return &shmem_alloc_folio(gfp, info, index)->page; 2381 } 2382 2383 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2384 pmd_t *dst_pmd, 2385 struct vm_area_struct *dst_vma, 2386 unsigned long dst_addr, 2387 unsigned long src_addr, 2388 bool zeropage, bool wp_copy, 2389 struct page **pagep) 2390 { 2391 struct inode *inode = file_inode(dst_vma->vm_file); 2392 struct shmem_inode_info *info = SHMEM_I(inode); 2393 struct address_space *mapping = inode->i_mapping; 2394 gfp_t gfp = mapping_gfp_mask(mapping); 2395 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2396 void *page_kaddr; 2397 struct folio *folio; 2398 struct page *page; 2399 int ret; 2400 pgoff_t max_off; 2401 2402 if (!shmem_inode_acct_block(inode, 1)) { 2403 /* 2404 * We may have got a page, returned -ENOENT triggering a retry, 2405 * and now we find ourselves with -ENOMEM. Release the page, to 2406 * avoid a BUG_ON in our caller. 2407 */ 2408 if (unlikely(*pagep)) { 2409 put_page(*pagep); 2410 *pagep = NULL; 2411 } 2412 return -ENOMEM; 2413 } 2414 2415 if (!*pagep) { 2416 ret = -ENOMEM; 2417 page = shmem_alloc_page(gfp, info, pgoff); 2418 if (!page) 2419 goto out_unacct_blocks; 2420 2421 if (!zeropage) { /* COPY */ 2422 page_kaddr = kmap_atomic(page); 2423 ret = copy_from_user(page_kaddr, 2424 (const void __user *)src_addr, 2425 PAGE_SIZE); 2426 kunmap_atomic(page_kaddr); 2427 2428 /* fallback to copy_from_user outside mmap_lock */ 2429 if (unlikely(ret)) { 2430 *pagep = page; 2431 ret = -ENOENT; 2432 /* don't free the page */ 2433 goto out_unacct_blocks; 2434 } 2435 2436 flush_dcache_page(page); 2437 } else { /* ZEROPAGE */ 2438 clear_user_highpage(page, dst_addr); 2439 } 2440 } else { 2441 page = *pagep; 2442 *pagep = NULL; 2443 } 2444 2445 VM_BUG_ON(PageLocked(page)); 2446 VM_BUG_ON(PageSwapBacked(page)); 2447 __SetPageLocked(page); 2448 __SetPageSwapBacked(page); 2449 __SetPageUptodate(page); 2450 2451 ret = -EFAULT; 2452 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2453 if (unlikely(pgoff >= max_off)) 2454 goto out_release; 2455 2456 folio = page_folio(page); 2457 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, 2458 gfp & GFP_RECLAIM_MASK, dst_mm); 2459 if (ret) 2460 goto out_release; 2461 2462 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 2463 page, true, wp_copy); 2464 if (ret) 2465 goto out_delete_from_cache; 2466 2467 spin_lock_irq(&info->lock); 2468 info->alloced++; 2469 inode->i_blocks += BLOCKS_PER_PAGE; 2470 shmem_recalc_inode(inode); 2471 spin_unlock_irq(&info->lock); 2472 2473 unlock_page(page); 2474 return 0; 2475 out_delete_from_cache: 2476 delete_from_page_cache(page); 2477 out_release: 2478 unlock_page(page); 2479 put_page(page); 2480 out_unacct_blocks: 2481 shmem_inode_unacct_blocks(inode, 1); 2482 return ret; 2483 } 2484 #endif /* CONFIG_USERFAULTFD */ 2485 2486 #ifdef CONFIG_TMPFS 2487 static const struct inode_operations shmem_symlink_inode_operations; 2488 static const struct inode_operations shmem_short_symlink_operations; 2489 2490 static int 2491 shmem_write_begin(struct file *file, struct address_space *mapping, 2492 loff_t pos, unsigned len, 2493 struct page **pagep, void **fsdata) 2494 { 2495 struct inode *inode = mapping->host; 2496 struct shmem_inode_info *info = SHMEM_I(inode); 2497 pgoff_t index = pos >> PAGE_SHIFT; 2498 int ret = 0; 2499 2500 /* i_rwsem is held by caller */ 2501 if (unlikely(info->seals & (F_SEAL_GROW | 2502 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2503 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2504 return -EPERM; 2505 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2506 return -EPERM; 2507 } 2508 2509 ret = shmem_getpage(inode, index, pagep, SGP_WRITE); 2510 2511 if (ret) 2512 return ret; 2513 2514 if (PageHWPoison(*pagep)) { 2515 unlock_page(*pagep); 2516 put_page(*pagep); 2517 *pagep = NULL; 2518 return -EIO; 2519 } 2520 2521 return 0; 2522 } 2523 2524 static int 2525 shmem_write_end(struct file *file, struct address_space *mapping, 2526 loff_t pos, unsigned len, unsigned copied, 2527 struct page *page, void *fsdata) 2528 { 2529 struct inode *inode = mapping->host; 2530 2531 if (pos + copied > inode->i_size) 2532 i_size_write(inode, pos + copied); 2533 2534 if (!PageUptodate(page)) { 2535 struct page *head = compound_head(page); 2536 if (PageTransCompound(page)) { 2537 int i; 2538 2539 for (i = 0; i < HPAGE_PMD_NR; i++) { 2540 if (head + i == page) 2541 continue; 2542 clear_highpage(head + i); 2543 flush_dcache_page(head + i); 2544 } 2545 } 2546 if (copied < PAGE_SIZE) { 2547 unsigned from = pos & (PAGE_SIZE - 1); 2548 zero_user_segments(page, 0, from, 2549 from + copied, PAGE_SIZE); 2550 } 2551 SetPageUptodate(head); 2552 } 2553 set_page_dirty(page); 2554 unlock_page(page); 2555 put_page(page); 2556 2557 return copied; 2558 } 2559 2560 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2561 { 2562 struct file *file = iocb->ki_filp; 2563 struct inode *inode = file_inode(file); 2564 struct address_space *mapping = inode->i_mapping; 2565 pgoff_t index; 2566 unsigned long offset; 2567 int error = 0; 2568 ssize_t retval = 0; 2569 loff_t *ppos = &iocb->ki_pos; 2570 2571 index = *ppos >> PAGE_SHIFT; 2572 offset = *ppos & ~PAGE_MASK; 2573 2574 for (;;) { 2575 struct page *page = NULL; 2576 pgoff_t end_index; 2577 unsigned long nr, ret; 2578 loff_t i_size = i_size_read(inode); 2579 2580 end_index = i_size >> PAGE_SHIFT; 2581 if (index > end_index) 2582 break; 2583 if (index == end_index) { 2584 nr = i_size & ~PAGE_MASK; 2585 if (nr <= offset) 2586 break; 2587 } 2588 2589 error = shmem_getpage(inode, index, &page, SGP_READ); 2590 if (error) { 2591 if (error == -EINVAL) 2592 error = 0; 2593 break; 2594 } 2595 if (page) { 2596 unlock_page(page); 2597 2598 if (PageHWPoison(page)) { 2599 put_page(page); 2600 error = -EIO; 2601 break; 2602 } 2603 } 2604 2605 /* 2606 * We must evaluate after, since reads (unlike writes) 2607 * are called without i_rwsem protection against truncate 2608 */ 2609 nr = PAGE_SIZE; 2610 i_size = i_size_read(inode); 2611 end_index = i_size >> PAGE_SHIFT; 2612 if (index == end_index) { 2613 nr = i_size & ~PAGE_MASK; 2614 if (nr <= offset) { 2615 if (page) 2616 put_page(page); 2617 break; 2618 } 2619 } 2620 nr -= offset; 2621 2622 if (page) { 2623 /* 2624 * If users can be writing to this page using arbitrary 2625 * virtual addresses, take care about potential aliasing 2626 * before reading the page on the kernel side. 2627 */ 2628 if (mapping_writably_mapped(mapping)) 2629 flush_dcache_page(page); 2630 /* 2631 * Mark the page accessed if we read the beginning. 2632 */ 2633 if (!offset) 2634 mark_page_accessed(page); 2635 /* 2636 * Ok, we have the page, and it's up-to-date, so 2637 * now we can copy it to user space... 2638 */ 2639 ret = copy_page_to_iter(page, offset, nr, to); 2640 put_page(page); 2641 2642 } else if (user_backed_iter(to)) { 2643 /* 2644 * Copy to user tends to be so well optimized, but 2645 * clear_user() not so much, that it is noticeably 2646 * faster to copy the zero page instead of clearing. 2647 */ 2648 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2649 } else { 2650 /* 2651 * But submitting the same page twice in a row to 2652 * splice() - or others? - can result in confusion: 2653 * so don't attempt that optimization on pipes etc. 2654 */ 2655 ret = iov_iter_zero(nr, to); 2656 } 2657 2658 retval += ret; 2659 offset += ret; 2660 index += offset >> PAGE_SHIFT; 2661 offset &= ~PAGE_MASK; 2662 2663 if (!iov_iter_count(to)) 2664 break; 2665 if (ret < nr) { 2666 error = -EFAULT; 2667 break; 2668 } 2669 cond_resched(); 2670 } 2671 2672 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2673 file_accessed(file); 2674 return retval ? retval : error; 2675 } 2676 2677 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2678 { 2679 struct address_space *mapping = file->f_mapping; 2680 struct inode *inode = mapping->host; 2681 2682 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2683 return generic_file_llseek_size(file, offset, whence, 2684 MAX_LFS_FILESIZE, i_size_read(inode)); 2685 if (offset < 0) 2686 return -ENXIO; 2687 2688 inode_lock(inode); 2689 /* We're holding i_rwsem so we can access i_size directly */ 2690 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2691 if (offset >= 0) 2692 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2693 inode_unlock(inode); 2694 return offset; 2695 } 2696 2697 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2698 loff_t len) 2699 { 2700 struct inode *inode = file_inode(file); 2701 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2702 struct shmem_inode_info *info = SHMEM_I(inode); 2703 struct shmem_falloc shmem_falloc; 2704 pgoff_t start, index, end, undo_fallocend; 2705 int error; 2706 2707 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2708 return -EOPNOTSUPP; 2709 2710 inode_lock(inode); 2711 2712 if (mode & FALLOC_FL_PUNCH_HOLE) { 2713 struct address_space *mapping = file->f_mapping; 2714 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2715 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2716 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2717 2718 /* protected by i_rwsem */ 2719 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2720 error = -EPERM; 2721 goto out; 2722 } 2723 2724 shmem_falloc.waitq = &shmem_falloc_waitq; 2725 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2726 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2727 spin_lock(&inode->i_lock); 2728 inode->i_private = &shmem_falloc; 2729 spin_unlock(&inode->i_lock); 2730 2731 if ((u64)unmap_end > (u64)unmap_start) 2732 unmap_mapping_range(mapping, unmap_start, 2733 1 + unmap_end - unmap_start, 0); 2734 shmem_truncate_range(inode, offset, offset + len - 1); 2735 /* No need to unmap again: hole-punching leaves COWed pages */ 2736 2737 spin_lock(&inode->i_lock); 2738 inode->i_private = NULL; 2739 wake_up_all(&shmem_falloc_waitq); 2740 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2741 spin_unlock(&inode->i_lock); 2742 error = 0; 2743 goto out; 2744 } 2745 2746 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2747 error = inode_newsize_ok(inode, offset + len); 2748 if (error) 2749 goto out; 2750 2751 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2752 error = -EPERM; 2753 goto out; 2754 } 2755 2756 start = offset >> PAGE_SHIFT; 2757 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2758 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2759 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2760 error = -ENOSPC; 2761 goto out; 2762 } 2763 2764 shmem_falloc.waitq = NULL; 2765 shmem_falloc.start = start; 2766 shmem_falloc.next = start; 2767 shmem_falloc.nr_falloced = 0; 2768 shmem_falloc.nr_unswapped = 0; 2769 spin_lock(&inode->i_lock); 2770 inode->i_private = &shmem_falloc; 2771 spin_unlock(&inode->i_lock); 2772 2773 /* 2774 * info->fallocend is only relevant when huge pages might be 2775 * involved: to prevent split_huge_page() freeing fallocated 2776 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 2777 */ 2778 undo_fallocend = info->fallocend; 2779 if (info->fallocend < end) 2780 info->fallocend = end; 2781 2782 for (index = start; index < end; ) { 2783 struct page *page; 2784 2785 /* 2786 * Good, the fallocate(2) manpage permits EINTR: we may have 2787 * been interrupted because we are using up too much memory. 2788 */ 2789 if (signal_pending(current)) 2790 error = -EINTR; 2791 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2792 error = -ENOMEM; 2793 else 2794 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2795 if (error) { 2796 info->fallocend = undo_fallocend; 2797 /* Remove the !PageUptodate pages we added */ 2798 if (index > start) { 2799 shmem_undo_range(inode, 2800 (loff_t)start << PAGE_SHIFT, 2801 ((loff_t)index << PAGE_SHIFT) - 1, true); 2802 } 2803 goto undone; 2804 } 2805 2806 index++; 2807 /* 2808 * Here is a more important optimization than it appears: 2809 * a second SGP_FALLOC on the same huge page will clear it, 2810 * making it PageUptodate and un-undoable if we fail later. 2811 */ 2812 if (PageTransCompound(page)) { 2813 index = round_up(index, HPAGE_PMD_NR); 2814 /* Beware 32-bit wraparound */ 2815 if (!index) 2816 index--; 2817 } 2818 2819 /* 2820 * Inform shmem_writepage() how far we have reached. 2821 * No need for lock or barrier: we have the page lock. 2822 */ 2823 if (!PageUptodate(page)) 2824 shmem_falloc.nr_falloced += index - shmem_falloc.next; 2825 shmem_falloc.next = index; 2826 2827 /* 2828 * If !PageUptodate, leave it that way so that freeable pages 2829 * can be recognized if we need to rollback on error later. 2830 * But set_page_dirty so that memory pressure will swap rather 2831 * than free the pages we are allocating (and SGP_CACHE pages 2832 * might still be clean: we now need to mark those dirty too). 2833 */ 2834 set_page_dirty(page); 2835 unlock_page(page); 2836 put_page(page); 2837 cond_resched(); 2838 } 2839 2840 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2841 i_size_write(inode, offset + len); 2842 undone: 2843 spin_lock(&inode->i_lock); 2844 inode->i_private = NULL; 2845 spin_unlock(&inode->i_lock); 2846 out: 2847 if (!error) 2848 file_modified(file); 2849 inode_unlock(inode); 2850 return error; 2851 } 2852 2853 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2854 { 2855 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2856 2857 buf->f_type = TMPFS_MAGIC; 2858 buf->f_bsize = PAGE_SIZE; 2859 buf->f_namelen = NAME_MAX; 2860 if (sbinfo->max_blocks) { 2861 buf->f_blocks = sbinfo->max_blocks; 2862 buf->f_bavail = 2863 buf->f_bfree = sbinfo->max_blocks - 2864 percpu_counter_sum(&sbinfo->used_blocks); 2865 } 2866 if (sbinfo->max_inodes) { 2867 buf->f_files = sbinfo->max_inodes; 2868 buf->f_ffree = sbinfo->free_inodes; 2869 } 2870 /* else leave those fields 0 like simple_statfs */ 2871 2872 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 2873 2874 return 0; 2875 } 2876 2877 /* 2878 * File creation. Allocate an inode, and we're done.. 2879 */ 2880 static int 2881 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2882 struct dentry *dentry, umode_t mode, dev_t dev) 2883 { 2884 struct inode *inode; 2885 int error = -ENOSPC; 2886 2887 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2888 if (inode) { 2889 error = simple_acl_create(dir, inode); 2890 if (error) 2891 goto out_iput; 2892 error = security_inode_init_security(inode, dir, 2893 &dentry->d_name, 2894 shmem_initxattrs, NULL); 2895 if (error && error != -EOPNOTSUPP) 2896 goto out_iput; 2897 2898 error = 0; 2899 dir->i_size += BOGO_DIRENT_SIZE; 2900 dir->i_ctime = dir->i_mtime = current_time(dir); 2901 d_instantiate(dentry, inode); 2902 dget(dentry); /* Extra count - pin the dentry in core */ 2903 } 2904 return error; 2905 out_iput: 2906 iput(inode); 2907 return error; 2908 } 2909 2910 static int 2911 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 2912 struct dentry *dentry, umode_t mode) 2913 { 2914 struct inode *inode; 2915 int error = -ENOSPC; 2916 2917 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2918 if (inode) { 2919 error = security_inode_init_security(inode, dir, 2920 NULL, 2921 shmem_initxattrs, NULL); 2922 if (error && error != -EOPNOTSUPP) 2923 goto out_iput; 2924 error = simple_acl_create(dir, inode); 2925 if (error) 2926 goto out_iput; 2927 d_tmpfile(dentry, inode); 2928 } 2929 return error; 2930 out_iput: 2931 iput(inode); 2932 return error; 2933 } 2934 2935 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2936 struct dentry *dentry, umode_t mode) 2937 { 2938 int error; 2939 2940 if ((error = shmem_mknod(&init_user_ns, dir, dentry, 2941 mode | S_IFDIR, 0))) 2942 return error; 2943 inc_nlink(dir); 2944 return 0; 2945 } 2946 2947 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, 2948 struct dentry *dentry, umode_t mode, bool excl) 2949 { 2950 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 2951 } 2952 2953 /* 2954 * Link a file.. 2955 */ 2956 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2957 { 2958 struct inode *inode = d_inode(old_dentry); 2959 int ret = 0; 2960 2961 /* 2962 * No ordinary (disk based) filesystem counts links as inodes; 2963 * but each new link needs a new dentry, pinning lowmem, and 2964 * tmpfs dentries cannot be pruned until they are unlinked. 2965 * But if an O_TMPFILE file is linked into the tmpfs, the 2966 * first link must skip that, to get the accounting right. 2967 */ 2968 if (inode->i_nlink) { 2969 ret = shmem_reserve_inode(inode->i_sb, NULL); 2970 if (ret) 2971 goto out; 2972 } 2973 2974 dir->i_size += BOGO_DIRENT_SIZE; 2975 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2976 inc_nlink(inode); 2977 ihold(inode); /* New dentry reference */ 2978 dget(dentry); /* Extra pinning count for the created dentry */ 2979 d_instantiate(dentry, inode); 2980 out: 2981 return ret; 2982 } 2983 2984 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2985 { 2986 struct inode *inode = d_inode(dentry); 2987 2988 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2989 shmem_free_inode(inode->i_sb); 2990 2991 dir->i_size -= BOGO_DIRENT_SIZE; 2992 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2993 drop_nlink(inode); 2994 dput(dentry); /* Undo the count from "create" - this does all the work */ 2995 return 0; 2996 } 2997 2998 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2999 { 3000 if (!simple_empty(dentry)) 3001 return -ENOTEMPTY; 3002 3003 drop_nlink(d_inode(dentry)); 3004 drop_nlink(dir); 3005 return shmem_unlink(dir, dentry); 3006 } 3007 3008 static int shmem_whiteout(struct user_namespace *mnt_userns, 3009 struct inode *old_dir, struct dentry *old_dentry) 3010 { 3011 struct dentry *whiteout; 3012 int error; 3013 3014 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3015 if (!whiteout) 3016 return -ENOMEM; 3017 3018 error = shmem_mknod(&init_user_ns, old_dir, whiteout, 3019 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3020 dput(whiteout); 3021 if (error) 3022 return error; 3023 3024 /* 3025 * Cheat and hash the whiteout while the old dentry is still in 3026 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3027 * 3028 * d_lookup() will consistently find one of them at this point, 3029 * not sure which one, but that isn't even important. 3030 */ 3031 d_rehash(whiteout); 3032 return 0; 3033 } 3034 3035 /* 3036 * The VFS layer already does all the dentry stuff for rename, 3037 * we just have to decrement the usage count for the target if 3038 * it exists so that the VFS layer correctly free's it when it 3039 * gets overwritten. 3040 */ 3041 static int shmem_rename2(struct user_namespace *mnt_userns, 3042 struct inode *old_dir, struct dentry *old_dentry, 3043 struct inode *new_dir, struct dentry *new_dentry, 3044 unsigned int flags) 3045 { 3046 struct inode *inode = d_inode(old_dentry); 3047 int they_are_dirs = S_ISDIR(inode->i_mode); 3048 3049 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3050 return -EINVAL; 3051 3052 if (flags & RENAME_EXCHANGE) 3053 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 3054 3055 if (!simple_empty(new_dentry)) 3056 return -ENOTEMPTY; 3057 3058 if (flags & RENAME_WHITEOUT) { 3059 int error; 3060 3061 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); 3062 if (error) 3063 return error; 3064 } 3065 3066 if (d_really_is_positive(new_dentry)) { 3067 (void) shmem_unlink(new_dir, new_dentry); 3068 if (they_are_dirs) { 3069 drop_nlink(d_inode(new_dentry)); 3070 drop_nlink(old_dir); 3071 } 3072 } else if (they_are_dirs) { 3073 drop_nlink(old_dir); 3074 inc_nlink(new_dir); 3075 } 3076 3077 old_dir->i_size -= BOGO_DIRENT_SIZE; 3078 new_dir->i_size += BOGO_DIRENT_SIZE; 3079 old_dir->i_ctime = old_dir->i_mtime = 3080 new_dir->i_ctime = new_dir->i_mtime = 3081 inode->i_ctime = current_time(old_dir); 3082 return 0; 3083 } 3084 3085 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, 3086 struct dentry *dentry, const char *symname) 3087 { 3088 int error; 3089 int len; 3090 struct inode *inode; 3091 struct page *page; 3092 3093 len = strlen(symname) + 1; 3094 if (len > PAGE_SIZE) 3095 return -ENAMETOOLONG; 3096 3097 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3098 VM_NORESERVE); 3099 if (!inode) 3100 return -ENOSPC; 3101 3102 error = security_inode_init_security(inode, dir, &dentry->d_name, 3103 shmem_initxattrs, NULL); 3104 if (error && error != -EOPNOTSUPP) { 3105 iput(inode); 3106 return error; 3107 } 3108 3109 inode->i_size = len-1; 3110 if (len <= SHORT_SYMLINK_LEN) { 3111 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3112 if (!inode->i_link) { 3113 iput(inode); 3114 return -ENOMEM; 3115 } 3116 inode->i_op = &shmem_short_symlink_operations; 3117 } else { 3118 inode_nohighmem(inode); 3119 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3120 if (error) { 3121 iput(inode); 3122 return error; 3123 } 3124 inode->i_mapping->a_ops = &shmem_aops; 3125 inode->i_op = &shmem_symlink_inode_operations; 3126 memcpy(page_address(page), symname, len); 3127 SetPageUptodate(page); 3128 set_page_dirty(page); 3129 unlock_page(page); 3130 put_page(page); 3131 } 3132 dir->i_size += BOGO_DIRENT_SIZE; 3133 dir->i_ctime = dir->i_mtime = current_time(dir); 3134 d_instantiate(dentry, inode); 3135 dget(dentry); 3136 return 0; 3137 } 3138 3139 static void shmem_put_link(void *arg) 3140 { 3141 mark_page_accessed(arg); 3142 put_page(arg); 3143 } 3144 3145 static const char *shmem_get_link(struct dentry *dentry, 3146 struct inode *inode, 3147 struct delayed_call *done) 3148 { 3149 struct page *page = NULL; 3150 int error; 3151 if (!dentry) { 3152 page = find_get_page(inode->i_mapping, 0); 3153 if (!page) 3154 return ERR_PTR(-ECHILD); 3155 if (PageHWPoison(page) || 3156 !PageUptodate(page)) { 3157 put_page(page); 3158 return ERR_PTR(-ECHILD); 3159 } 3160 } else { 3161 error = shmem_getpage(inode, 0, &page, SGP_READ); 3162 if (error) 3163 return ERR_PTR(error); 3164 if (!page) 3165 return ERR_PTR(-ECHILD); 3166 if (PageHWPoison(page)) { 3167 unlock_page(page); 3168 put_page(page); 3169 return ERR_PTR(-ECHILD); 3170 } 3171 unlock_page(page); 3172 } 3173 set_delayed_call(done, shmem_put_link, page); 3174 return page_address(page); 3175 } 3176 3177 #ifdef CONFIG_TMPFS_XATTR 3178 3179 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3180 { 3181 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3182 3183 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3184 3185 return 0; 3186 } 3187 3188 static int shmem_fileattr_set(struct user_namespace *mnt_userns, 3189 struct dentry *dentry, struct fileattr *fa) 3190 { 3191 struct inode *inode = d_inode(dentry); 3192 struct shmem_inode_info *info = SHMEM_I(inode); 3193 3194 if (fileattr_has_fsx(fa)) 3195 return -EOPNOTSUPP; 3196 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3197 return -EOPNOTSUPP; 3198 3199 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3200 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3201 3202 shmem_set_inode_flags(inode, info->fsflags); 3203 inode->i_ctime = current_time(inode); 3204 return 0; 3205 } 3206 3207 /* 3208 * Superblocks without xattr inode operations may get some security.* xattr 3209 * support from the LSM "for free". As soon as we have any other xattrs 3210 * like ACLs, we also need to implement the security.* handlers at 3211 * filesystem level, though. 3212 */ 3213 3214 /* 3215 * Callback for security_inode_init_security() for acquiring xattrs. 3216 */ 3217 static int shmem_initxattrs(struct inode *inode, 3218 const struct xattr *xattr_array, 3219 void *fs_info) 3220 { 3221 struct shmem_inode_info *info = SHMEM_I(inode); 3222 const struct xattr *xattr; 3223 struct simple_xattr *new_xattr; 3224 size_t len; 3225 3226 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3227 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3228 if (!new_xattr) 3229 return -ENOMEM; 3230 3231 len = strlen(xattr->name) + 1; 3232 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3233 GFP_KERNEL); 3234 if (!new_xattr->name) { 3235 kvfree(new_xattr); 3236 return -ENOMEM; 3237 } 3238 3239 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3240 XATTR_SECURITY_PREFIX_LEN); 3241 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3242 xattr->name, len); 3243 3244 simple_xattr_list_add(&info->xattrs, new_xattr); 3245 } 3246 3247 return 0; 3248 } 3249 3250 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3251 struct dentry *unused, struct inode *inode, 3252 const char *name, void *buffer, size_t size) 3253 { 3254 struct shmem_inode_info *info = SHMEM_I(inode); 3255 3256 name = xattr_full_name(handler, name); 3257 return simple_xattr_get(&info->xattrs, name, buffer, size); 3258 } 3259 3260 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3261 struct user_namespace *mnt_userns, 3262 struct dentry *unused, struct inode *inode, 3263 const char *name, const void *value, 3264 size_t size, int flags) 3265 { 3266 struct shmem_inode_info *info = SHMEM_I(inode); 3267 3268 name = xattr_full_name(handler, name); 3269 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3270 } 3271 3272 static const struct xattr_handler shmem_security_xattr_handler = { 3273 .prefix = XATTR_SECURITY_PREFIX, 3274 .get = shmem_xattr_handler_get, 3275 .set = shmem_xattr_handler_set, 3276 }; 3277 3278 static const struct xattr_handler shmem_trusted_xattr_handler = { 3279 .prefix = XATTR_TRUSTED_PREFIX, 3280 .get = shmem_xattr_handler_get, 3281 .set = shmem_xattr_handler_set, 3282 }; 3283 3284 static const struct xattr_handler *shmem_xattr_handlers[] = { 3285 #ifdef CONFIG_TMPFS_POSIX_ACL 3286 &posix_acl_access_xattr_handler, 3287 &posix_acl_default_xattr_handler, 3288 #endif 3289 &shmem_security_xattr_handler, 3290 &shmem_trusted_xattr_handler, 3291 NULL 3292 }; 3293 3294 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3295 { 3296 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3297 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3298 } 3299 #endif /* CONFIG_TMPFS_XATTR */ 3300 3301 static const struct inode_operations shmem_short_symlink_operations = { 3302 .getattr = shmem_getattr, 3303 .get_link = simple_get_link, 3304 #ifdef CONFIG_TMPFS_XATTR 3305 .listxattr = shmem_listxattr, 3306 #endif 3307 }; 3308 3309 static const struct inode_operations shmem_symlink_inode_operations = { 3310 .getattr = shmem_getattr, 3311 .get_link = shmem_get_link, 3312 #ifdef CONFIG_TMPFS_XATTR 3313 .listxattr = shmem_listxattr, 3314 #endif 3315 }; 3316 3317 static struct dentry *shmem_get_parent(struct dentry *child) 3318 { 3319 return ERR_PTR(-ESTALE); 3320 } 3321 3322 static int shmem_match(struct inode *ino, void *vfh) 3323 { 3324 __u32 *fh = vfh; 3325 __u64 inum = fh[2]; 3326 inum = (inum << 32) | fh[1]; 3327 return ino->i_ino == inum && fh[0] == ino->i_generation; 3328 } 3329 3330 /* Find any alias of inode, but prefer a hashed alias */ 3331 static struct dentry *shmem_find_alias(struct inode *inode) 3332 { 3333 struct dentry *alias = d_find_alias(inode); 3334 3335 return alias ?: d_find_any_alias(inode); 3336 } 3337 3338 3339 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3340 struct fid *fid, int fh_len, int fh_type) 3341 { 3342 struct inode *inode; 3343 struct dentry *dentry = NULL; 3344 u64 inum; 3345 3346 if (fh_len < 3) 3347 return NULL; 3348 3349 inum = fid->raw[2]; 3350 inum = (inum << 32) | fid->raw[1]; 3351 3352 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3353 shmem_match, fid->raw); 3354 if (inode) { 3355 dentry = shmem_find_alias(inode); 3356 iput(inode); 3357 } 3358 3359 return dentry; 3360 } 3361 3362 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3363 struct inode *parent) 3364 { 3365 if (*len < 3) { 3366 *len = 3; 3367 return FILEID_INVALID; 3368 } 3369 3370 if (inode_unhashed(inode)) { 3371 /* Unfortunately insert_inode_hash is not idempotent, 3372 * so as we hash inodes here rather than at creation 3373 * time, we need a lock to ensure we only try 3374 * to do it once 3375 */ 3376 static DEFINE_SPINLOCK(lock); 3377 spin_lock(&lock); 3378 if (inode_unhashed(inode)) 3379 __insert_inode_hash(inode, 3380 inode->i_ino + inode->i_generation); 3381 spin_unlock(&lock); 3382 } 3383 3384 fh[0] = inode->i_generation; 3385 fh[1] = inode->i_ino; 3386 fh[2] = ((__u64)inode->i_ino) >> 32; 3387 3388 *len = 3; 3389 return 1; 3390 } 3391 3392 static const struct export_operations shmem_export_ops = { 3393 .get_parent = shmem_get_parent, 3394 .encode_fh = shmem_encode_fh, 3395 .fh_to_dentry = shmem_fh_to_dentry, 3396 }; 3397 3398 enum shmem_param { 3399 Opt_gid, 3400 Opt_huge, 3401 Opt_mode, 3402 Opt_mpol, 3403 Opt_nr_blocks, 3404 Opt_nr_inodes, 3405 Opt_size, 3406 Opt_uid, 3407 Opt_inode32, 3408 Opt_inode64, 3409 }; 3410 3411 static const struct constant_table shmem_param_enums_huge[] = { 3412 {"never", SHMEM_HUGE_NEVER }, 3413 {"always", SHMEM_HUGE_ALWAYS }, 3414 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3415 {"advise", SHMEM_HUGE_ADVISE }, 3416 {} 3417 }; 3418 3419 const struct fs_parameter_spec shmem_fs_parameters[] = { 3420 fsparam_u32 ("gid", Opt_gid), 3421 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3422 fsparam_u32oct("mode", Opt_mode), 3423 fsparam_string("mpol", Opt_mpol), 3424 fsparam_string("nr_blocks", Opt_nr_blocks), 3425 fsparam_string("nr_inodes", Opt_nr_inodes), 3426 fsparam_string("size", Opt_size), 3427 fsparam_u32 ("uid", Opt_uid), 3428 fsparam_flag ("inode32", Opt_inode32), 3429 fsparam_flag ("inode64", Opt_inode64), 3430 {} 3431 }; 3432 3433 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3434 { 3435 struct shmem_options *ctx = fc->fs_private; 3436 struct fs_parse_result result; 3437 unsigned long long size; 3438 char *rest; 3439 int opt; 3440 3441 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3442 if (opt < 0) 3443 return opt; 3444 3445 switch (opt) { 3446 case Opt_size: 3447 size = memparse(param->string, &rest); 3448 if (*rest == '%') { 3449 size <<= PAGE_SHIFT; 3450 size *= totalram_pages(); 3451 do_div(size, 100); 3452 rest++; 3453 } 3454 if (*rest) 3455 goto bad_value; 3456 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3457 ctx->seen |= SHMEM_SEEN_BLOCKS; 3458 break; 3459 case Opt_nr_blocks: 3460 ctx->blocks = memparse(param->string, &rest); 3461 if (*rest || ctx->blocks > S64_MAX) 3462 goto bad_value; 3463 ctx->seen |= SHMEM_SEEN_BLOCKS; 3464 break; 3465 case Opt_nr_inodes: 3466 ctx->inodes = memparse(param->string, &rest); 3467 if (*rest) 3468 goto bad_value; 3469 ctx->seen |= SHMEM_SEEN_INODES; 3470 break; 3471 case Opt_mode: 3472 ctx->mode = result.uint_32 & 07777; 3473 break; 3474 case Opt_uid: 3475 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3476 if (!uid_valid(ctx->uid)) 3477 goto bad_value; 3478 break; 3479 case Opt_gid: 3480 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3481 if (!gid_valid(ctx->gid)) 3482 goto bad_value; 3483 break; 3484 case Opt_huge: 3485 ctx->huge = result.uint_32; 3486 if (ctx->huge != SHMEM_HUGE_NEVER && 3487 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3488 has_transparent_hugepage())) 3489 goto unsupported_parameter; 3490 ctx->seen |= SHMEM_SEEN_HUGE; 3491 break; 3492 case Opt_mpol: 3493 if (IS_ENABLED(CONFIG_NUMA)) { 3494 mpol_put(ctx->mpol); 3495 ctx->mpol = NULL; 3496 if (mpol_parse_str(param->string, &ctx->mpol)) 3497 goto bad_value; 3498 break; 3499 } 3500 goto unsupported_parameter; 3501 case Opt_inode32: 3502 ctx->full_inums = false; 3503 ctx->seen |= SHMEM_SEEN_INUMS; 3504 break; 3505 case Opt_inode64: 3506 if (sizeof(ino_t) < 8) { 3507 return invalfc(fc, 3508 "Cannot use inode64 with <64bit inums in kernel\n"); 3509 } 3510 ctx->full_inums = true; 3511 ctx->seen |= SHMEM_SEEN_INUMS; 3512 break; 3513 } 3514 return 0; 3515 3516 unsupported_parameter: 3517 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3518 bad_value: 3519 return invalfc(fc, "Bad value for '%s'", param->key); 3520 } 3521 3522 static int shmem_parse_options(struct fs_context *fc, void *data) 3523 { 3524 char *options = data; 3525 3526 if (options) { 3527 int err = security_sb_eat_lsm_opts(options, &fc->security); 3528 if (err) 3529 return err; 3530 } 3531 3532 while (options != NULL) { 3533 char *this_char = options; 3534 for (;;) { 3535 /* 3536 * NUL-terminate this option: unfortunately, 3537 * mount options form a comma-separated list, 3538 * but mpol's nodelist may also contain commas. 3539 */ 3540 options = strchr(options, ','); 3541 if (options == NULL) 3542 break; 3543 options++; 3544 if (!isdigit(*options)) { 3545 options[-1] = '\0'; 3546 break; 3547 } 3548 } 3549 if (*this_char) { 3550 char *value = strchr(this_char, '='); 3551 size_t len = 0; 3552 int err; 3553 3554 if (value) { 3555 *value++ = '\0'; 3556 len = strlen(value); 3557 } 3558 err = vfs_parse_fs_string(fc, this_char, value, len); 3559 if (err < 0) 3560 return err; 3561 } 3562 } 3563 return 0; 3564 } 3565 3566 /* 3567 * Reconfigure a shmem filesystem. 3568 * 3569 * Note that we disallow change from limited->unlimited blocks/inodes while any 3570 * are in use; but we must separately disallow unlimited->limited, because in 3571 * that case we have no record of how much is already in use. 3572 */ 3573 static int shmem_reconfigure(struct fs_context *fc) 3574 { 3575 struct shmem_options *ctx = fc->fs_private; 3576 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3577 unsigned long inodes; 3578 struct mempolicy *mpol = NULL; 3579 const char *err; 3580 3581 raw_spin_lock(&sbinfo->stat_lock); 3582 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3583 3584 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3585 if (!sbinfo->max_blocks) { 3586 err = "Cannot retroactively limit size"; 3587 goto out; 3588 } 3589 if (percpu_counter_compare(&sbinfo->used_blocks, 3590 ctx->blocks) > 0) { 3591 err = "Too small a size for current use"; 3592 goto out; 3593 } 3594 } 3595 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3596 if (!sbinfo->max_inodes) { 3597 err = "Cannot retroactively limit inodes"; 3598 goto out; 3599 } 3600 if (ctx->inodes < inodes) { 3601 err = "Too few inodes for current use"; 3602 goto out; 3603 } 3604 } 3605 3606 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3607 sbinfo->next_ino > UINT_MAX) { 3608 err = "Current inum too high to switch to 32-bit inums"; 3609 goto out; 3610 } 3611 3612 if (ctx->seen & SHMEM_SEEN_HUGE) 3613 sbinfo->huge = ctx->huge; 3614 if (ctx->seen & SHMEM_SEEN_INUMS) 3615 sbinfo->full_inums = ctx->full_inums; 3616 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3617 sbinfo->max_blocks = ctx->blocks; 3618 if (ctx->seen & SHMEM_SEEN_INODES) { 3619 sbinfo->max_inodes = ctx->inodes; 3620 sbinfo->free_inodes = ctx->inodes - inodes; 3621 } 3622 3623 /* 3624 * Preserve previous mempolicy unless mpol remount option was specified. 3625 */ 3626 if (ctx->mpol) { 3627 mpol = sbinfo->mpol; 3628 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3629 ctx->mpol = NULL; 3630 } 3631 raw_spin_unlock(&sbinfo->stat_lock); 3632 mpol_put(mpol); 3633 return 0; 3634 out: 3635 raw_spin_unlock(&sbinfo->stat_lock); 3636 return invalfc(fc, "%s", err); 3637 } 3638 3639 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3640 { 3641 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3642 3643 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3644 seq_printf(seq, ",size=%luk", 3645 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3646 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3647 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3648 if (sbinfo->mode != (0777 | S_ISVTX)) 3649 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3650 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3651 seq_printf(seq, ",uid=%u", 3652 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3653 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3654 seq_printf(seq, ",gid=%u", 3655 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3656 3657 /* 3658 * Showing inode{64,32} might be useful even if it's the system default, 3659 * since then people don't have to resort to checking both here and 3660 * /proc/config.gz to confirm 64-bit inums were successfully applied 3661 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3662 * 3663 * We hide it when inode64 isn't the default and we are using 32-bit 3664 * inodes, since that probably just means the feature isn't even under 3665 * consideration. 3666 * 3667 * As such: 3668 * 3669 * +-----------------+-----------------+ 3670 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3671 * +------------------+-----------------+-----------------+ 3672 * | full_inums=true | show | show | 3673 * | full_inums=false | show | hide | 3674 * +------------------+-----------------+-----------------+ 3675 * 3676 */ 3677 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3678 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3680 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3681 if (sbinfo->huge) 3682 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3683 #endif 3684 shmem_show_mpol(seq, sbinfo->mpol); 3685 return 0; 3686 } 3687 3688 #endif /* CONFIG_TMPFS */ 3689 3690 static void shmem_put_super(struct super_block *sb) 3691 { 3692 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3693 3694 free_percpu(sbinfo->ino_batch); 3695 percpu_counter_destroy(&sbinfo->used_blocks); 3696 mpol_put(sbinfo->mpol); 3697 kfree(sbinfo); 3698 sb->s_fs_info = NULL; 3699 } 3700 3701 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3702 { 3703 struct shmem_options *ctx = fc->fs_private; 3704 struct inode *inode; 3705 struct shmem_sb_info *sbinfo; 3706 3707 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3708 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3709 L1_CACHE_BYTES), GFP_KERNEL); 3710 if (!sbinfo) 3711 return -ENOMEM; 3712 3713 sb->s_fs_info = sbinfo; 3714 3715 #ifdef CONFIG_TMPFS 3716 /* 3717 * Per default we only allow half of the physical ram per 3718 * tmpfs instance, limiting inodes to one per page of lowmem; 3719 * but the internal instance is left unlimited. 3720 */ 3721 if (!(sb->s_flags & SB_KERNMOUNT)) { 3722 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3723 ctx->blocks = shmem_default_max_blocks(); 3724 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3725 ctx->inodes = shmem_default_max_inodes(); 3726 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3727 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3728 } else { 3729 sb->s_flags |= SB_NOUSER; 3730 } 3731 sb->s_export_op = &shmem_export_ops; 3732 sb->s_flags |= SB_NOSEC; 3733 #else 3734 sb->s_flags |= SB_NOUSER; 3735 #endif 3736 sbinfo->max_blocks = ctx->blocks; 3737 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3738 if (sb->s_flags & SB_KERNMOUNT) { 3739 sbinfo->ino_batch = alloc_percpu(ino_t); 3740 if (!sbinfo->ino_batch) 3741 goto failed; 3742 } 3743 sbinfo->uid = ctx->uid; 3744 sbinfo->gid = ctx->gid; 3745 sbinfo->full_inums = ctx->full_inums; 3746 sbinfo->mode = ctx->mode; 3747 sbinfo->huge = ctx->huge; 3748 sbinfo->mpol = ctx->mpol; 3749 ctx->mpol = NULL; 3750 3751 raw_spin_lock_init(&sbinfo->stat_lock); 3752 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3753 goto failed; 3754 spin_lock_init(&sbinfo->shrinklist_lock); 3755 INIT_LIST_HEAD(&sbinfo->shrinklist); 3756 3757 sb->s_maxbytes = MAX_LFS_FILESIZE; 3758 sb->s_blocksize = PAGE_SIZE; 3759 sb->s_blocksize_bits = PAGE_SHIFT; 3760 sb->s_magic = TMPFS_MAGIC; 3761 sb->s_op = &shmem_ops; 3762 sb->s_time_gran = 1; 3763 #ifdef CONFIG_TMPFS_XATTR 3764 sb->s_xattr = shmem_xattr_handlers; 3765 #endif 3766 #ifdef CONFIG_TMPFS_POSIX_ACL 3767 sb->s_flags |= SB_POSIXACL; 3768 #endif 3769 uuid_gen(&sb->s_uuid); 3770 3771 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3772 if (!inode) 3773 goto failed; 3774 inode->i_uid = sbinfo->uid; 3775 inode->i_gid = sbinfo->gid; 3776 sb->s_root = d_make_root(inode); 3777 if (!sb->s_root) 3778 goto failed; 3779 return 0; 3780 3781 failed: 3782 shmem_put_super(sb); 3783 return -ENOMEM; 3784 } 3785 3786 static int shmem_get_tree(struct fs_context *fc) 3787 { 3788 return get_tree_nodev(fc, shmem_fill_super); 3789 } 3790 3791 static void shmem_free_fc(struct fs_context *fc) 3792 { 3793 struct shmem_options *ctx = fc->fs_private; 3794 3795 if (ctx) { 3796 mpol_put(ctx->mpol); 3797 kfree(ctx); 3798 } 3799 } 3800 3801 static const struct fs_context_operations shmem_fs_context_ops = { 3802 .free = shmem_free_fc, 3803 .get_tree = shmem_get_tree, 3804 #ifdef CONFIG_TMPFS 3805 .parse_monolithic = shmem_parse_options, 3806 .parse_param = shmem_parse_one, 3807 .reconfigure = shmem_reconfigure, 3808 #endif 3809 }; 3810 3811 static struct kmem_cache *shmem_inode_cachep; 3812 3813 static struct inode *shmem_alloc_inode(struct super_block *sb) 3814 { 3815 struct shmem_inode_info *info; 3816 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 3817 if (!info) 3818 return NULL; 3819 return &info->vfs_inode; 3820 } 3821 3822 static void shmem_free_in_core_inode(struct inode *inode) 3823 { 3824 if (S_ISLNK(inode->i_mode)) 3825 kfree(inode->i_link); 3826 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3827 } 3828 3829 static void shmem_destroy_inode(struct inode *inode) 3830 { 3831 if (S_ISREG(inode->i_mode)) 3832 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3833 } 3834 3835 static void shmem_init_inode(void *foo) 3836 { 3837 struct shmem_inode_info *info = foo; 3838 inode_init_once(&info->vfs_inode); 3839 } 3840 3841 static void shmem_init_inodecache(void) 3842 { 3843 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3844 sizeof(struct shmem_inode_info), 3845 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3846 } 3847 3848 static void shmem_destroy_inodecache(void) 3849 { 3850 kmem_cache_destroy(shmem_inode_cachep); 3851 } 3852 3853 /* Keep the page in page cache instead of truncating it */ 3854 static int shmem_error_remove_page(struct address_space *mapping, 3855 struct page *page) 3856 { 3857 return 0; 3858 } 3859 3860 const struct address_space_operations shmem_aops = { 3861 .writepage = shmem_writepage, 3862 .dirty_folio = noop_dirty_folio, 3863 #ifdef CONFIG_TMPFS 3864 .write_begin = shmem_write_begin, 3865 .write_end = shmem_write_end, 3866 #endif 3867 #ifdef CONFIG_MIGRATION 3868 .migrate_folio = migrate_folio, 3869 #endif 3870 .error_remove_page = shmem_error_remove_page, 3871 }; 3872 EXPORT_SYMBOL(shmem_aops); 3873 3874 static const struct file_operations shmem_file_operations = { 3875 .mmap = shmem_mmap, 3876 .get_unmapped_area = shmem_get_unmapped_area, 3877 #ifdef CONFIG_TMPFS 3878 .llseek = shmem_file_llseek, 3879 .read_iter = shmem_file_read_iter, 3880 .write_iter = generic_file_write_iter, 3881 .fsync = noop_fsync, 3882 .splice_read = generic_file_splice_read, 3883 .splice_write = iter_file_splice_write, 3884 .fallocate = shmem_fallocate, 3885 #endif 3886 }; 3887 3888 static const struct inode_operations shmem_inode_operations = { 3889 .getattr = shmem_getattr, 3890 .setattr = shmem_setattr, 3891 #ifdef CONFIG_TMPFS_XATTR 3892 .listxattr = shmem_listxattr, 3893 .set_acl = simple_set_acl, 3894 .fileattr_get = shmem_fileattr_get, 3895 .fileattr_set = shmem_fileattr_set, 3896 #endif 3897 }; 3898 3899 static const struct inode_operations shmem_dir_inode_operations = { 3900 #ifdef CONFIG_TMPFS 3901 .getattr = shmem_getattr, 3902 .create = shmem_create, 3903 .lookup = simple_lookup, 3904 .link = shmem_link, 3905 .unlink = shmem_unlink, 3906 .symlink = shmem_symlink, 3907 .mkdir = shmem_mkdir, 3908 .rmdir = shmem_rmdir, 3909 .mknod = shmem_mknod, 3910 .rename = shmem_rename2, 3911 .tmpfile = shmem_tmpfile, 3912 #endif 3913 #ifdef CONFIG_TMPFS_XATTR 3914 .listxattr = shmem_listxattr, 3915 .fileattr_get = shmem_fileattr_get, 3916 .fileattr_set = shmem_fileattr_set, 3917 #endif 3918 #ifdef CONFIG_TMPFS_POSIX_ACL 3919 .setattr = shmem_setattr, 3920 .set_acl = simple_set_acl, 3921 #endif 3922 }; 3923 3924 static const struct inode_operations shmem_special_inode_operations = { 3925 .getattr = shmem_getattr, 3926 #ifdef CONFIG_TMPFS_XATTR 3927 .listxattr = shmem_listxattr, 3928 #endif 3929 #ifdef CONFIG_TMPFS_POSIX_ACL 3930 .setattr = shmem_setattr, 3931 .set_acl = simple_set_acl, 3932 #endif 3933 }; 3934 3935 static const struct super_operations shmem_ops = { 3936 .alloc_inode = shmem_alloc_inode, 3937 .free_inode = shmem_free_in_core_inode, 3938 .destroy_inode = shmem_destroy_inode, 3939 #ifdef CONFIG_TMPFS 3940 .statfs = shmem_statfs, 3941 .show_options = shmem_show_options, 3942 #endif 3943 .evict_inode = shmem_evict_inode, 3944 .drop_inode = generic_delete_inode, 3945 .put_super = shmem_put_super, 3946 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3947 .nr_cached_objects = shmem_unused_huge_count, 3948 .free_cached_objects = shmem_unused_huge_scan, 3949 #endif 3950 }; 3951 3952 static const struct vm_operations_struct shmem_vm_ops = { 3953 .fault = shmem_fault, 3954 .map_pages = filemap_map_pages, 3955 #ifdef CONFIG_NUMA 3956 .set_policy = shmem_set_policy, 3957 .get_policy = shmem_get_policy, 3958 #endif 3959 }; 3960 3961 int shmem_init_fs_context(struct fs_context *fc) 3962 { 3963 struct shmem_options *ctx; 3964 3965 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3966 if (!ctx) 3967 return -ENOMEM; 3968 3969 ctx->mode = 0777 | S_ISVTX; 3970 ctx->uid = current_fsuid(); 3971 ctx->gid = current_fsgid(); 3972 3973 fc->fs_private = ctx; 3974 fc->ops = &shmem_fs_context_ops; 3975 return 0; 3976 } 3977 3978 static struct file_system_type shmem_fs_type = { 3979 .owner = THIS_MODULE, 3980 .name = "tmpfs", 3981 .init_fs_context = shmem_init_fs_context, 3982 #ifdef CONFIG_TMPFS 3983 .parameters = shmem_fs_parameters, 3984 #endif 3985 .kill_sb = kill_litter_super, 3986 .fs_flags = FS_USERNS_MOUNT, 3987 }; 3988 3989 void __init shmem_init(void) 3990 { 3991 int error; 3992 3993 shmem_init_inodecache(); 3994 3995 error = register_filesystem(&shmem_fs_type); 3996 if (error) { 3997 pr_err("Could not register tmpfs\n"); 3998 goto out2; 3999 } 4000 4001 shm_mnt = kern_mount(&shmem_fs_type); 4002 if (IS_ERR(shm_mnt)) { 4003 error = PTR_ERR(shm_mnt); 4004 pr_err("Could not kern_mount tmpfs\n"); 4005 goto out1; 4006 } 4007 4008 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4009 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4010 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4011 else 4012 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4013 #endif 4014 return; 4015 4016 out1: 4017 unregister_filesystem(&shmem_fs_type); 4018 out2: 4019 shmem_destroy_inodecache(); 4020 shm_mnt = ERR_PTR(error); 4021 } 4022 4023 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4024 static ssize_t shmem_enabled_show(struct kobject *kobj, 4025 struct kobj_attribute *attr, char *buf) 4026 { 4027 static const int values[] = { 4028 SHMEM_HUGE_ALWAYS, 4029 SHMEM_HUGE_WITHIN_SIZE, 4030 SHMEM_HUGE_ADVISE, 4031 SHMEM_HUGE_NEVER, 4032 SHMEM_HUGE_DENY, 4033 SHMEM_HUGE_FORCE, 4034 }; 4035 int len = 0; 4036 int i; 4037 4038 for (i = 0; i < ARRAY_SIZE(values); i++) { 4039 len += sysfs_emit_at(buf, len, 4040 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4041 i ? " " : "", 4042 shmem_format_huge(values[i])); 4043 } 4044 4045 len += sysfs_emit_at(buf, len, "\n"); 4046 4047 return len; 4048 } 4049 4050 static ssize_t shmem_enabled_store(struct kobject *kobj, 4051 struct kobj_attribute *attr, const char *buf, size_t count) 4052 { 4053 char tmp[16]; 4054 int huge; 4055 4056 if (count + 1 > sizeof(tmp)) 4057 return -EINVAL; 4058 memcpy(tmp, buf, count); 4059 tmp[count] = '\0'; 4060 if (count && tmp[count - 1] == '\n') 4061 tmp[count - 1] = '\0'; 4062 4063 huge = shmem_parse_huge(tmp); 4064 if (huge == -EINVAL) 4065 return -EINVAL; 4066 if (!has_transparent_hugepage() && 4067 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4068 return -EINVAL; 4069 4070 shmem_huge = huge; 4071 if (shmem_huge > SHMEM_HUGE_DENY) 4072 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4073 return count; 4074 } 4075 4076 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4077 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4078 4079 #else /* !CONFIG_SHMEM */ 4080 4081 /* 4082 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4083 * 4084 * This is intended for small system where the benefits of the full 4085 * shmem code (swap-backed and resource-limited) are outweighed by 4086 * their complexity. On systems without swap this code should be 4087 * effectively equivalent, but much lighter weight. 4088 */ 4089 4090 static struct file_system_type shmem_fs_type = { 4091 .name = "tmpfs", 4092 .init_fs_context = ramfs_init_fs_context, 4093 .parameters = ramfs_fs_parameters, 4094 .kill_sb = kill_litter_super, 4095 .fs_flags = FS_USERNS_MOUNT, 4096 }; 4097 4098 void __init shmem_init(void) 4099 { 4100 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4101 4102 shm_mnt = kern_mount(&shmem_fs_type); 4103 BUG_ON(IS_ERR(shm_mnt)); 4104 } 4105 4106 int shmem_unuse(unsigned int type) 4107 { 4108 return 0; 4109 } 4110 4111 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4112 { 4113 return 0; 4114 } 4115 4116 void shmem_unlock_mapping(struct address_space *mapping) 4117 { 4118 } 4119 4120 #ifdef CONFIG_MMU 4121 unsigned long shmem_get_unmapped_area(struct file *file, 4122 unsigned long addr, unsigned long len, 4123 unsigned long pgoff, unsigned long flags) 4124 { 4125 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4126 } 4127 #endif 4128 4129 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4130 { 4131 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4132 } 4133 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4134 4135 #define shmem_vm_ops generic_file_vm_ops 4136 #define shmem_file_operations ramfs_file_operations 4137 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4138 #define shmem_acct_size(flags, size) 0 4139 #define shmem_unacct_size(flags, size) do {} while (0) 4140 4141 #endif /* CONFIG_SHMEM */ 4142 4143 /* common code */ 4144 4145 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4146 unsigned long flags, unsigned int i_flags) 4147 { 4148 struct inode *inode; 4149 struct file *res; 4150 4151 if (IS_ERR(mnt)) 4152 return ERR_CAST(mnt); 4153 4154 if (size < 0 || size > MAX_LFS_FILESIZE) 4155 return ERR_PTR(-EINVAL); 4156 4157 if (shmem_acct_size(flags, size)) 4158 return ERR_PTR(-ENOMEM); 4159 4160 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4161 flags); 4162 if (unlikely(!inode)) { 4163 shmem_unacct_size(flags, size); 4164 return ERR_PTR(-ENOSPC); 4165 } 4166 inode->i_flags |= i_flags; 4167 inode->i_size = size; 4168 clear_nlink(inode); /* It is unlinked */ 4169 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4170 if (!IS_ERR(res)) 4171 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4172 &shmem_file_operations); 4173 if (IS_ERR(res)) 4174 iput(inode); 4175 return res; 4176 } 4177 4178 /** 4179 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4180 * kernel internal. There will be NO LSM permission checks against the 4181 * underlying inode. So users of this interface must do LSM checks at a 4182 * higher layer. The users are the big_key and shm implementations. LSM 4183 * checks are provided at the key or shm level rather than the inode. 4184 * @name: name for dentry (to be seen in /proc/<pid>/maps 4185 * @size: size to be set for the file 4186 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4187 */ 4188 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4189 { 4190 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4191 } 4192 4193 /** 4194 * shmem_file_setup - get an unlinked file living in tmpfs 4195 * @name: name for dentry (to be seen in /proc/<pid>/maps 4196 * @size: size to be set for the file 4197 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4198 */ 4199 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4200 { 4201 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4202 } 4203 EXPORT_SYMBOL_GPL(shmem_file_setup); 4204 4205 /** 4206 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4207 * @mnt: the tmpfs mount where the file will be created 4208 * @name: name for dentry (to be seen in /proc/<pid>/maps 4209 * @size: size to be set for the file 4210 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4211 */ 4212 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4213 loff_t size, unsigned long flags) 4214 { 4215 return __shmem_file_setup(mnt, name, size, flags, 0); 4216 } 4217 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4218 4219 /** 4220 * shmem_zero_setup - setup a shared anonymous mapping 4221 * @vma: the vma to be mmapped is prepared by do_mmap 4222 */ 4223 int shmem_zero_setup(struct vm_area_struct *vma) 4224 { 4225 struct file *file; 4226 loff_t size = vma->vm_end - vma->vm_start; 4227 4228 /* 4229 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4230 * between XFS directory reading and selinux: since this file is only 4231 * accessible to the user through its mapping, use S_PRIVATE flag to 4232 * bypass file security, in the same way as shmem_kernel_file_setup(). 4233 */ 4234 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4235 if (IS_ERR(file)) 4236 return PTR_ERR(file); 4237 4238 if (vma->vm_file) 4239 fput(vma->vm_file); 4240 vma->vm_file = file; 4241 vma->vm_ops = &shmem_vm_ops; 4242 4243 return 0; 4244 } 4245 4246 /** 4247 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4248 * @mapping: the page's address_space 4249 * @index: the page index 4250 * @gfp: the page allocator flags to use if allocating 4251 * 4252 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4253 * with any new page allocations done using the specified allocation flags. 4254 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4255 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4256 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4257 * 4258 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4259 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4260 */ 4261 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4262 pgoff_t index, gfp_t gfp) 4263 { 4264 #ifdef CONFIG_SHMEM 4265 struct inode *inode = mapping->host; 4266 struct page *page; 4267 int error; 4268 4269 BUG_ON(!shmem_mapping(mapping)); 4270 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4271 gfp, NULL, NULL, NULL); 4272 if (error) 4273 return ERR_PTR(error); 4274 4275 unlock_page(page); 4276 if (PageHWPoison(page)) { 4277 put_page(page); 4278 return ERR_PTR(-EIO); 4279 } 4280 4281 return page; 4282 #else 4283 /* 4284 * The tiny !SHMEM case uses ramfs without swap 4285 */ 4286 return read_cache_page_gfp(mapping, index, gfp); 4287 #endif 4288 } 4289 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4290