xref: /openbmc/linux/mm/shmem.c (revision a4c366f01f10073e0220656561b875627ff7cd90)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/uio.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
41 #include "swap.h"
42 
43 static struct vfsmount *shm_mnt;
44 
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51 
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 
82 #include <linux/uaccess.h>
83 
84 #include "internal.h"
85 
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88 
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91 
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94 
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_rwsem making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 	pgoff_t start;		/* start of range currently being fallocated */
103 	pgoff_t next;		/* the next page offset to be fallocated */
104 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
105 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
106 };
107 
108 struct shmem_options {
109 	unsigned long long blocks;
110 	unsigned long long inodes;
111 	struct mempolicy *mpol;
112 	kuid_t uid;
113 	kgid_t gid;
114 	umode_t mode;
115 	bool full_inums;
116 	int huge;
117 	int seen;
118 #define SHMEM_SEEN_BLOCKS 1
119 #define SHMEM_SEEN_INODES 2
120 #define SHMEM_SEEN_HUGE 4
121 #define SHMEM_SEEN_INUMS 8
122 };
123 
124 #ifdef CONFIG_TMPFS
125 static unsigned long shmem_default_max_blocks(void)
126 {
127 	return totalram_pages() / 2;
128 }
129 
130 static unsigned long shmem_default_max_inodes(void)
131 {
132 	unsigned long nr_pages = totalram_pages();
133 
134 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
135 }
136 #endif
137 
138 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
139 			     struct folio **foliop, enum sgp_type sgp,
140 			     gfp_t gfp, struct vm_area_struct *vma,
141 			     vm_fault_t *fault_type);
142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
143 		struct page **pagep, enum sgp_type sgp,
144 		gfp_t gfp, struct vm_area_struct *vma,
145 		struct vm_fault *vmf, vm_fault_t *fault_type);
146 
147 int shmem_getpage(struct inode *inode, pgoff_t index,
148 		struct page **pagep, enum sgp_type sgp)
149 {
150 	return shmem_getpage_gfp(inode, index, pagep, sgp,
151 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
152 }
153 
154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155 {
156 	return sb->s_fs_info;
157 }
158 
159 /*
160  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161  * for shared memory and for shared anonymous (/dev/zero) mappings
162  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163  * consistent with the pre-accounting of private mappings ...
164  */
165 static inline int shmem_acct_size(unsigned long flags, loff_t size)
166 {
167 	return (flags & VM_NORESERVE) ?
168 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
169 }
170 
171 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172 {
173 	if (!(flags & VM_NORESERVE))
174 		vm_unacct_memory(VM_ACCT(size));
175 }
176 
177 static inline int shmem_reacct_size(unsigned long flags,
178 		loff_t oldsize, loff_t newsize)
179 {
180 	if (!(flags & VM_NORESERVE)) {
181 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182 			return security_vm_enough_memory_mm(current->mm,
183 					VM_ACCT(newsize) - VM_ACCT(oldsize));
184 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
186 	}
187 	return 0;
188 }
189 
190 /*
191  * ... whereas tmpfs objects are accounted incrementally as
192  * pages are allocated, in order to allow large sparse files.
193  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195  */
196 static inline int shmem_acct_block(unsigned long flags, long pages)
197 {
198 	if (!(flags & VM_NORESERVE))
199 		return 0;
200 
201 	return security_vm_enough_memory_mm(current->mm,
202 			pages * VM_ACCT(PAGE_SIZE));
203 }
204 
205 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206 {
207 	if (flags & VM_NORESERVE)
208 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
209 }
210 
211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212 {
213 	struct shmem_inode_info *info = SHMEM_I(inode);
214 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215 
216 	if (shmem_acct_block(info->flags, pages))
217 		return false;
218 
219 	if (sbinfo->max_blocks) {
220 		if (percpu_counter_compare(&sbinfo->used_blocks,
221 					   sbinfo->max_blocks - pages) > 0)
222 			goto unacct;
223 		percpu_counter_add(&sbinfo->used_blocks, pages);
224 	}
225 
226 	return true;
227 
228 unacct:
229 	shmem_unacct_blocks(info->flags, pages);
230 	return false;
231 }
232 
233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234 {
235 	struct shmem_inode_info *info = SHMEM_I(inode);
236 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237 
238 	if (sbinfo->max_blocks)
239 		percpu_counter_sub(&sbinfo->used_blocks, pages);
240 	shmem_unacct_blocks(info->flags, pages);
241 }
242 
243 static const struct super_operations shmem_ops;
244 const struct address_space_operations shmem_aops;
245 static const struct file_operations shmem_file_operations;
246 static const struct inode_operations shmem_inode_operations;
247 static const struct inode_operations shmem_dir_inode_operations;
248 static const struct inode_operations shmem_special_inode_operations;
249 static const struct vm_operations_struct shmem_vm_ops;
250 static struct file_system_type shmem_fs_type;
251 
252 bool vma_is_shmem(struct vm_area_struct *vma)
253 {
254 	return vma->vm_ops == &shmem_vm_ops;
255 }
256 
257 static LIST_HEAD(shmem_swaplist);
258 static DEFINE_MUTEX(shmem_swaplist_mutex);
259 
260 /*
261  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262  * produces a novel ino for the newly allocated inode.
263  *
264  * It may also be called when making a hard link to permit the space needed by
265  * each dentry. However, in that case, no new inode number is needed since that
266  * internally draws from another pool of inode numbers (currently global
267  * get_next_ino()). This case is indicated by passing NULL as inop.
268  */
269 #define SHMEM_INO_BATCH 1024
270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
271 {
272 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
273 	ino_t ino;
274 
275 	if (!(sb->s_flags & SB_KERNMOUNT)) {
276 		raw_spin_lock(&sbinfo->stat_lock);
277 		if (sbinfo->max_inodes) {
278 			if (!sbinfo->free_inodes) {
279 				raw_spin_unlock(&sbinfo->stat_lock);
280 				return -ENOSPC;
281 			}
282 			sbinfo->free_inodes--;
283 		}
284 		if (inop) {
285 			ino = sbinfo->next_ino++;
286 			if (unlikely(is_zero_ino(ino)))
287 				ino = sbinfo->next_ino++;
288 			if (unlikely(!sbinfo->full_inums &&
289 				     ino > UINT_MAX)) {
290 				/*
291 				 * Emulate get_next_ino uint wraparound for
292 				 * compatibility
293 				 */
294 				if (IS_ENABLED(CONFIG_64BIT))
295 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296 						__func__, MINOR(sb->s_dev));
297 				sbinfo->next_ino = 1;
298 				ino = sbinfo->next_ino++;
299 			}
300 			*inop = ino;
301 		}
302 		raw_spin_unlock(&sbinfo->stat_lock);
303 	} else if (inop) {
304 		/*
305 		 * __shmem_file_setup, one of our callers, is lock-free: it
306 		 * doesn't hold stat_lock in shmem_reserve_inode since
307 		 * max_inodes is always 0, and is called from potentially
308 		 * unknown contexts. As such, use a per-cpu batched allocator
309 		 * which doesn't require the per-sb stat_lock unless we are at
310 		 * the batch boundary.
311 		 *
312 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313 		 * shmem mounts are not exposed to userspace, so we don't need
314 		 * to worry about things like glibc compatibility.
315 		 */
316 		ino_t *next_ino;
317 
318 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319 		ino = *next_ino;
320 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
321 			raw_spin_lock(&sbinfo->stat_lock);
322 			ino = sbinfo->next_ino;
323 			sbinfo->next_ino += SHMEM_INO_BATCH;
324 			raw_spin_unlock(&sbinfo->stat_lock);
325 			if (unlikely(is_zero_ino(ino)))
326 				ino++;
327 		}
328 		*inop = ino;
329 		*next_ino = ++ino;
330 		put_cpu();
331 	}
332 
333 	return 0;
334 }
335 
336 static void shmem_free_inode(struct super_block *sb)
337 {
338 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339 	if (sbinfo->max_inodes) {
340 		raw_spin_lock(&sbinfo->stat_lock);
341 		sbinfo->free_inodes++;
342 		raw_spin_unlock(&sbinfo->stat_lock);
343 	}
344 }
345 
346 /**
347  * shmem_recalc_inode - recalculate the block usage of an inode
348  * @inode: inode to recalc
349  *
350  * We have to calculate the free blocks since the mm can drop
351  * undirtied hole pages behind our back.
352  *
353  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
354  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355  *
356  * It has to be called with the spinlock held.
357  */
358 static void shmem_recalc_inode(struct inode *inode)
359 {
360 	struct shmem_inode_info *info = SHMEM_I(inode);
361 	long freed;
362 
363 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364 	if (freed > 0) {
365 		info->alloced -= freed;
366 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
367 		shmem_inode_unacct_blocks(inode, freed);
368 	}
369 }
370 
371 bool shmem_charge(struct inode *inode, long pages)
372 {
373 	struct shmem_inode_info *info = SHMEM_I(inode);
374 	unsigned long flags;
375 
376 	if (!shmem_inode_acct_block(inode, pages))
377 		return false;
378 
379 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380 	inode->i_mapping->nrpages += pages;
381 
382 	spin_lock_irqsave(&info->lock, flags);
383 	info->alloced += pages;
384 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
385 	shmem_recalc_inode(inode);
386 	spin_unlock_irqrestore(&info->lock, flags);
387 
388 	return true;
389 }
390 
391 void shmem_uncharge(struct inode *inode, long pages)
392 {
393 	struct shmem_inode_info *info = SHMEM_I(inode);
394 	unsigned long flags;
395 
396 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
397 
398 	spin_lock_irqsave(&info->lock, flags);
399 	info->alloced -= pages;
400 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401 	shmem_recalc_inode(inode);
402 	spin_unlock_irqrestore(&info->lock, flags);
403 
404 	shmem_inode_unacct_blocks(inode, pages);
405 }
406 
407 /*
408  * Replace item expected in xarray by a new item, while holding xa_lock.
409  */
410 static int shmem_replace_entry(struct address_space *mapping,
411 			pgoff_t index, void *expected, void *replacement)
412 {
413 	XA_STATE(xas, &mapping->i_pages, index);
414 	void *item;
415 
416 	VM_BUG_ON(!expected);
417 	VM_BUG_ON(!replacement);
418 	item = xas_load(&xas);
419 	if (item != expected)
420 		return -ENOENT;
421 	xas_store(&xas, replacement);
422 	return 0;
423 }
424 
425 /*
426  * Sometimes, before we decide whether to proceed or to fail, we must check
427  * that an entry was not already brought back from swap by a racing thread.
428  *
429  * Checking page is not enough: by the time a SwapCache page is locked, it
430  * might be reused, and again be SwapCache, using the same swap as before.
431  */
432 static bool shmem_confirm_swap(struct address_space *mapping,
433 			       pgoff_t index, swp_entry_t swap)
434 {
435 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
436 }
437 
438 /*
439  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
440  *
441  * SHMEM_HUGE_NEVER:
442  *	disables huge pages for the mount;
443  * SHMEM_HUGE_ALWAYS:
444  *	enables huge pages for the mount;
445  * SHMEM_HUGE_WITHIN_SIZE:
446  *	only allocate huge pages if the page will be fully within i_size,
447  *	also respect fadvise()/madvise() hints;
448  * SHMEM_HUGE_ADVISE:
449  *	only allocate huge pages if requested with fadvise()/madvise();
450  */
451 
452 #define SHMEM_HUGE_NEVER	0
453 #define SHMEM_HUGE_ALWAYS	1
454 #define SHMEM_HUGE_WITHIN_SIZE	2
455 #define SHMEM_HUGE_ADVISE	3
456 
457 /*
458  * Special values.
459  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
460  *
461  * SHMEM_HUGE_DENY:
462  *	disables huge on shm_mnt and all mounts, for emergency use;
463  * SHMEM_HUGE_FORCE:
464  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
465  *
466  */
467 #define SHMEM_HUGE_DENY		(-1)
468 #define SHMEM_HUGE_FORCE	(-2)
469 
470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
471 /* ifdef here to avoid bloating shmem.o when not necessary */
472 
473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
474 
475 bool shmem_is_huge(struct vm_area_struct *vma,
476 		   struct inode *inode, pgoff_t index)
477 {
478 	loff_t i_size;
479 
480 	if (!S_ISREG(inode->i_mode))
481 		return false;
482 	if (shmem_huge == SHMEM_HUGE_DENY)
483 		return false;
484 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
485 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
486 		return false;
487 	if (shmem_huge == SHMEM_HUGE_FORCE)
488 		return true;
489 
490 	switch (SHMEM_SB(inode->i_sb)->huge) {
491 	case SHMEM_HUGE_ALWAYS:
492 		return true;
493 	case SHMEM_HUGE_WITHIN_SIZE:
494 		index = round_up(index + 1, HPAGE_PMD_NR);
495 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
496 		if (i_size >> PAGE_SHIFT >= index)
497 			return true;
498 		fallthrough;
499 	case SHMEM_HUGE_ADVISE:
500 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
501 			return true;
502 		fallthrough;
503 	default:
504 		return false;
505 	}
506 }
507 
508 #if defined(CONFIG_SYSFS)
509 static int shmem_parse_huge(const char *str)
510 {
511 	if (!strcmp(str, "never"))
512 		return SHMEM_HUGE_NEVER;
513 	if (!strcmp(str, "always"))
514 		return SHMEM_HUGE_ALWAYS;
515 	if (!strcmp(str, "within_size"))
516 		return SHMEM_HUGE_WITHIN_SIZE;
517 	if (!strcmp(str, "advise"))
518 		return SHMEM_HUGE_ADVISE;
519 	if (!strcmp(str, "deny"))
520 		return SHMEM_HUGE_DENY;
521 	if (!strcmp(str, "force"))
522 		return SHMEM_HUGE_FORCE;
523 	return -EINVAL;
524 }
525 #endif
526 
527 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
528 static const char *shmem_format_huge(int huge)
529 {
530 	switch (huge) {
531 	case SHMEM_HUGE_NEVER:
532 		return "never";
533 	case SHMEM_HUGE_ALWAYS:
534 		return "always";
535 	case SHMEM_HUGE_WITHIN_SIZE:
536 		return "within_size";
537 	case SHMEM_HUGE_ADVISE:
538 		return "advise";
539 	case SHMEM_HUGE_DENY:
540 		return "deny";
541 	case SHMEM_HUGE_FORCE:
542 		return "force";
543 	default:
544 		VM_BUG_ON(1);
545 		return "bad_val";
546 	}
547 }
548 #endif
549 
550 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
551 		struct shrink_control *sc, unsigned long nr_to_split)
552 {
553 	LIST_HEAD(list), *pos, *next;
554 	LIST_HEAD(to_remove);
555 	struct inode *inode;
556 	struct shmem_inode_info *info;
557 	struct folio *folio;
558 	unsigned long batch = sc ? sc->nr_to_scan : 128;
559 	int split = 0;
560 
561 	if (list_empty(&sbinfo->shrinklist))
562 		return SHRINK_STOP;
563 
564 	spin_lock(&sbinfo->shrinklist_lock);
565 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
566 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
567 
568 		/* pin the inode */
569 		inode = igrab(&info->vfs_inode);
570 
571 		/* inode is about to be evicted */
572 		if (!inode) {
573 			list_del_init(&info->shrinklist);
574 			goto next;
575 		}
576 
577 		/* Check if there's anything to gain */
578 		if (round_up(inode->i_size, PAGE_SIZE) ==
579 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
580 			list_move(&info->shrinklist, &to_remove);
581 			goto next;
582 		}
583 
584 		list_move(&info->shrinklist, &list);
585 next:
586 		sbinfo->shrinklist_len--;
587 		if (!--batch)
588 			break;
589 	}
590 	spin_unlock(&sbinfo->shrinklist_lock);
591 
592 	list_for_each_safe(pos, next, &to_remove) {
593 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
594 		inode = &info->vfs_inode;
595 		list_del_init(&info->shrinklist);
596 		iput(inode);
597 	}
598 
599 	list_for_each_safe(pos, next, &list) {
600 		int ret;
601 		pgoff_t index;
602 
603 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
604 		inode = &info->vfs_inode;
605 
606 		if (nr_to_split && split >= nr_to_split)
607 			goto move_back;
608 
609 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
610 		folio = filemap_get_folio(inode->i_mapping, index);
611 		if (!folio)
612 			goto drop;
613 
614 		/* No huge page at the end of the file: nothing to split */
615 		if (!folio_test_large(folio)) {
616 			folio_put(folio);
617 			goto drop;
618 		}
619 
620 		/*
621 		 * Move the inode on the list back to shrinklist if we failed
622 		 * to lock the page at this time.
623 		 *
624 		 * Waiting for the lock may lead to deadlock in the
625 		 * reclaim path.
626 		 */
627 		if (!folio_trylock(folio)) {
628 			folio_put(folio);
629 			goto move_back;
630 		}
631 
632 		ret = split_folio(folio);
633 		folio_unlock(folio);
634 		folio_put(folio);
635 
636 		/* If split failed move the inode on the list back to shrinklist */
637 		if (ret)
638 			goto move_back;
639 
640 		split++;
641 drop:
642 		list_del_init(&info->shrinklist);
643 		goto put;
644 move_back:
645 		/*
646 		 * Make sure the inode is either on the global list or deleted
647 		 * from any local list before iput() since it could be deleted
648 		 * in another thread once we put the inode (then the local list
649 		 * is corrupted).
650 		 */
651 		spin_lock(&sbinfo->shrinklist_lock);
652 		list_move(&info->shrinklist, &sbinfo->shrinklist);
653 		sbinfo->shrinklist_len++;
654 		spin_unlock(&sbinfo->shrinklist_lock);
655 put:
656 		iput(inode);
657 	}
658 
659 	return split;
660 }
661 
662 static long shmem_unused_huge_scan(struct super_block *sb,
663 		struct shrink_control *sc)
664 {
665 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
666 
667 	if (!READ_ONCE(sbinfo->shrinklist_len))
668 		return SHRINK_STOP;
669 
670 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
671 }
672 
673 static long shmem_unused_huge_count(struct super_block *sb,
674 		struct shrink_control *sc)
675 {
676 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
677 	return READ_ONCE(sbinfo->shrinklist_len);
678 }
679 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
680 
681 #define shmem_huge SHMEM_HUGE_DENY
682 
683 bool shmem_is_huge(struct vm_area_struct *vma,
684 		   struct inode *inode, pgoff_t index)
685 {
686 	return false;
687 }
688 
689 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
690 		struct shrink_control *sc, unsigned long nr_to_split)
691 {
692 	return 0;
693 }
694 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
695 
696 /*
697  * Like filemap_add_folio, but error if expected item has gone.
698  */
699 static int shmem_add_to_page_cache(struct folio *folio,
700 				   struct address_space *mapping,
701 				   pgoff_t index, void *expected, gfp_t gfp,
702 				   struct mm_struct *charge_mm)
703 {
704 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
705 	long nr = folio_nr_pages(folio);
706 	int error;
707 
708 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
709 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
710 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
711 	VM_BUG_ON(expected && folio_test_large(folio));
712 
713 	folio_ref_add(folio, nr);
714 	folio->mapping = mapping;
715 	folio->index = index;
716 
717 	if (!folio_test_swapcache(folio)) {
718 		error = mem_cgroup_charge(folio, charge_mm, gfp);
719 		if (error) {
720 			if (folio_test_pmd_mappable(folio)) {
721 				count_vm_event(THP_FILE_FALLBACK);
722 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
723 			}
724 			goto error;
725 		}
726 	}
727 	folio_throttle_swaprate(folio, gfp);
728 
729 	do {
730 		xas_lock_irq(&xas);
731 		if (expected != xas_find_conflict(&xas)) {
732 			xas_set_err(&xas, -EEXIST);
733 			goto unlock;
734 		}
735 		if (expected && xas_find_conflict(&xas)) {
736 			xas_set_err(&xas, -EEXIST);
737 			goto unlock;
738 		}
739 		xas_store(&xas, folio);
740 		if (xas_error(&xas))
741 			goto unlock;
742 		if (folio_test_pmd_mappable(folio)) {
743 			count_vm_event(THP_FILE_ALLOC);
744 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
745 		}
746 		mapping->nrpages += nr;
747 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
748 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
749 unlock:
750 		xas_unlock_irq(&xas);
751 	} while (xas_nomem(&xas, gfp));
752 
753 	if (xas_error(&xas)) {
754 		error = xas_error(&xas);
755 		goto error;
756 	}
757 
758 	return 0;
759 error:
760 	folio->mapping = NULL;
761 	folio_ref_sub(folio, nr);
762 	return error;
763 }
764 
765 /*
766  * Like delete_from_page_cache, but substitutes swap for @folio.
767  */
768 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
769 {
770 	struct address_space *mapping = folio->mapping;
771 	long nr = folio_nr_pages(folio);
772 	int error;
773 
774 	xa_lock_irq(&mapping->i_pages);
775 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
776 	folio->mapping = NULL;
777 	mapping->nrpages -= nr;
778 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
779 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
780 	xa_unlock_irq(&mapping->i_pages);
781 	folio_put(folio);
782 	BUG_ON(error);
783 }
784 
785 /*
786  * Remove swap entry from page cache, free the swap and its page cache.
787  */
788 static int shmem_free_swap(struct address_space *mapping,
789 			   pgoff_t index, void *radswap)
790 {
791 	void *old;
792 
793 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
794 	if (old != radswap)
795 		return -ENOENT;
796 	free_swap_and_cache(radix_to_swp_entry(radswap));
797 	return 0;
798 }
799 
800 /*
801  * Determine (in bytes) how many of the shmem object's pages mapped by the
802  * given offsets are swapped out.
803  *
804  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
805  * as long as the inode doesn't go away and racy results are not a problem.
806  */
807 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
808 						pgoff_t start, pgoff_t end)
809 {
810 	XA_STATE(xas, &mapping->i_pages, start);
811 	struct page *page;
812 	unsigned long swapped = 0;
813 
814 	rcu_read_lock();
815 	xas_for_each(&xas, page, end - 1) {
816 		if (xas_retry(&xas, page))
817 			continue;
818 		if (xa_is_value(page))
819 			swapped++;
820 
821 		if (need_resched()) {
822 			xas_pause(&xas);
823 			cond_resched_rcu();
824 		}
825 	}
826 
827 	rcu_read_unlock();
828 
829 	return swapped << PAGE_SHIFT;
830 }
831 
832 /*
833  * Determine (in bytes) how many of the shmem object's pages mapped by the
834  * given vma is swapped out.
835  *
836  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
837  * as long as the inode doesn't go away and racy results are not a problem.
838  */
839 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
840 {
841 	struct inode *inode = file_inode(vma->vm_file);
842 	struct shmem_inode_info *info = SHMEM_I(inode);
843 	struct address_space *mapping = inode->i_mapping;
844 	unsigned long swapped;
845 
846 	/* Be careful as we don't hold info->lock */
847 	swapped = READ_ONCE(info->swapped);
848 
849 	/*
850 	 * The easier cases are when the shmem object has nothing in swap, or
851 	 * the vma maps it whole. Then we can simply use the stats that we
852 	 * already track.
853 	 */
854 	if (!swapped)
855 		return 0;
856 
857 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
858 		return swapped << PAGE_SHIFT;
859 
860 	/* Here comes the more involved part */
861 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
862 					vma->vm_pgoff + vma_pages(vma));
863 }
864 
865 /*
866  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
867  */
868 void shmem_unlock_mapping(struct address_space *mapping)
869 {
870 	struct folio_batch fbatch;
871 	pgoff_t index = 0;
872 
873 	folio_batch_init(&fbatch);
874 	/*
875 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
876 	 */
877 	while (!mapping_unevictable(mapping) &&
878 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
879 		check_move_unevictable_folios(&fbatch);
880 		folio_batch_release(&fbatch);
881 		cond_resched();
882 	}
883 }
884 
885 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
886 {
887 	struct folio *folio;
888 	struct page *page;
889 
890 	/*
891 	 * At first avoid shmem_getpage(,,,SGP_READ): that fails
892 	 * beyond i_size, and reports fallocated pages as holes.
893 	 */
894 	folio = __filemap_get_folio(inode->i_mapping, index,
895 					FGP_ENTRY | FGP_LOCK, 0);
896 	if (!xa_is_value(folio))
897 		return folio;
898 	/*
899 	 * But read a page back from swap if any of it is within i_size
900 	 * (although in some cases this is just a waste of time).
901 	 */
902 	page = NULL;
903 	shmem_getpage(inode, index, &page, SGP_READ);
904 	return page ? page_folio(page) : NULL;
905 }
906 
907 /*
908  * Remove range of pages and swap entries from page cache, and free them.
909  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
910  */
911 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
912 								 bool unfalloc)
913 {
914 	struct address_space *mapping = inode->i_mapping;
915 	struct shmem_inode_info *info = SHMEM_I(inode);
916 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
917 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
918 	struct folio_batch fbatch;
919 	pgoff_t indices[PAGEVEC_SIZE];
920 	struct folio *folio;
921 	bool same_folio;
922 	long nr_swaps_freed = 0;
923 	pgoff_t index;
924 	int i;
925 
926 	if (lend == -1)
927 		end = -1;	/* unsigned, so actually very big */
928 
929 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
930 		info->fallocend = start;
931 
932 	folio_batch_init(&fbatch);
933 	index = start;
934 	while (index < end && find_lock_entries(mapping, index, end - 1,
935 			&fbatch, indices)) {
936 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
937 			folio = fbatch.folios[i];
938 
939 			index = indices[i];
940 
941 			if (xa_is_value(folio)) {
942 				if (unfalloc)
943 					continue;
944 				nr_swaps_freed += !shmem_free_swap(mapping,
945 								index, folio);
946 				continue;
947 			}
948 			index += folio_nr_pages(folio) - 1;
949 
950 			if (!unfalloc || !folio_test_uptodate(folio))
951 				truncate_inode_folio(mapping, folio);
952 			folio_unlock(folio);
953 		}
954 		folio_batch_remove_exceptionals(&fbatch);
955 		folio_batch_release(&fbatch);
956 		cond_resched();
957 		index++;
958 	}
959 
960 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
961 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
962 	if (folio) {
963 		same_folio = lend < folio_pos(folio) + folio_size(folio);
964 		folio_mark_dirty(folio);
965 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
966 			start = folio->index + folio_nr_pages(folio);
967 			if (same_folio)
968 				end = folio->index;
969 		}
970 		folio_unlock(folio);
971 		folio_put(folio);
972 		folio = NULL;
973 	}
974 
975 	if (!same_folio)
976 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
977 	if (folio) {
978 		folio_mark_dirty(folio);
979 		if (!truncate_inode_partial_folio(folio, lstart, lend))
980 			end = folio->index;
981 		folio_unlock(folio);
982 		folio_put(folio);
983 	}
984 
985 	index = start;
986 	while (index < end) {
987 		cond_resched();
988 
989 		if (!find_get_entries(mapping, index, end - 1, &fbatch,
990 				indices)) {
991 			/* If all gone or hole-punch or unfalloc, we're done */
992 			if (index == start || end != -1)
993 				break;
994 			/* But if truncating, restart to make sure all gone */
995 			index = start;
996 			continue;
997 		}
998 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
999 			folio = fbatch.folios[i];
1000 
1001 			index = indices[i];
1002 			if (xa_is_value(folio)) {
1003 				if (unfalloc)
1004 					continue;
1005 				if (shmem_free_swap(mapping, index, folio)) {
1006 					/* Swap was replaced by page: retry */
1007 					index--;
1008 					break;
1009 				}
1010 				nr_swaps_freed++;
1011 				continue;
1012 			}
1013 
1014 			folio_lock(folio);
1015 
1016 			if (!unfalloc || !folio_test_uptodate(folio)) {
1017 				if (folio_mapping(folio) != mapping) {
1018 					/* Page was replaced by swap: retry */
1019 					folio_unlock(folio);
1020 					index--;
1021 					break;
1022 				}
1023 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1024 						folio);
1025 				truncate_inode_folio(mapping, folio);
1026 			}
1027 			index = folio->index + folio_nr_pages(folio) - 1;
1028 			folio_unlock(folio);
1029 		}
1030 		folio_batch_remove_exceptionals(&fbatch);
1031 		folio_batch_release(&fbatch);
1032 		index++;
1033 	}
1034 
1035 	spin_lock_irq(&info->lock);
1036 	info->swapped -= nr_swaps_freed;
1037 	shmem_recalc_inode(inode);
1038 	spin_unlock_irq(&info->lock);
1039 }
1040 
1041 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1042 {
1043 	shmem_undo_range(inode, lstart, lend, false);
1044 	inode->i_ctime = inode->i_mtime = current_time(inode);
1045 }
1046 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1047 
1048 static int shmem_getattr(struct user_namespace *mnt_userns,
1049 			 const struct path *path, struct kstat *stat,
1050 			 u32 request_mask, unsigned int query_flags)
1051 {
1052 	struct inode *inode = path->dentry->d_inode;
1053 	struct shmem_inode_info *info = SHMEM_I(inode);
1054 
1055 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1056 		spin_lock_irq(&info->lock);
1057 		shmem_recalc_inode(inode);
1058 		spin_unlock_irq(&info->lock);
1059 	}
1060 	if (info->fsflags & FS_APPEND_FL)
1061 		stat->attributes |= STATX_ATTR_APPEND;
1062 	if (info->fsflags & FS_IMMUTABLE_FL)
1063 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1064 	if (info->fsflags & FS_NODUMP_FL)
1065 		stat->attributes |= STATX_ATTR_NODUMP;
1066 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1067 			STATX_ATTR_IMMUTABLE |
1068 			STATX_ATTR_NODUMP);
1069 	generic_fillattr(&init_user_ns, inode, stat);
1070 
1071 	if (shmem_is_huge(NULL, inode, 0))
1072 		stat->blksize = HPAGE_PMD_SIZE;
1073 
1074 	if (request_mask & STATX_BTIME) {
1075 		stat->result_mask |= STATX_BTIME;
1076 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1077 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1078 	}
1079 
1080 	return 0;
1081 }
1082 
1083 static int shmem_setattr(struct user_namespace *mnt_userns,
1084 			 struct dentry *dentry, struct iattr *attr)
1085 {
1086 	struct inode *inode = d_inode(dentry);
1087 	struct shmem_inode_info *info = SHMEM_I(inode);
1088 	int error;
1089 
1090 	error = setattr_prepare(&init_user_ns, dentry, attr);
1091 	if (error)
1092 		return error;
1093 
1094 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1095 		loff_t oldsize = inode->i_size;
1096 		loff_t newsize = attr->ia_size;
1097 
1098 		/* protected by i_rwsem */
1099 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1100 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1101 			return -EPERM;
1102 
1103 		if (newsize != oldsize) {
1104 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1105 					oldsize, newsize);
1106 			if (error)
1107 				return error;
1108 			i_size_write(inode, newsize);
1109 			inode->i_ctime = inode->i_mtime = current_time(inode);
1110 		}
1111 		if (newsize <= oldsize) {
1112 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1113 			if (oldsize > holebegin)
1114 				unmap_mapping_range(inode->i_mapping,
1115 							holebegin, 0, 1);
1116 			if (info->alloced)
1117 				shmem_truncate_range(inode,
1118 							newsize, (loff_t)-1);
1119 			/* unmap again to remove racily COWed private pages */
1120 			if (oldsize > holebegin)
1121 				unmap_mapping_range(inode->i_mapping,
1122 							holebegin, 0, 1);
1123 		}
1124 	}
1125 
1126 	setattr_copy(&init_user_ns, inode, attr);
1127 	if (attr->ia_valid & ATTR_MODE)
1128 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1129 	return error;
1130 }
1131 
1132 static void shmem_evict_inode(struct inode *inode)
1133 {
1134 	struct shmem_inode_info *info = SHMEM_I(inode);
1135 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1136 
1137 	if (shmem_mapping(inode->i_mapping)) {
1138 		shmem_unacct_size(info->flags, inode->i_size);
1139 		inode->i_size = 0;
1140 		mapping_set_exiting(inode->i_mapping);
1141 		shmem_truncate_range(inode, 0, (loff_t)-1);
1142 		if (!list_empty(&info->shrinklist)) {
1143 			spin_lock(&sbinfo->shrinklist_lock);
1144 			if (!list_empty(&info->shrinklist)) {
1145 				list_del_init(&info->shrinklist);
1146 				sbinfo->shrinklist_len--;
1147 			}
1148 			spin_unlock(&sbinfo->shrinklist_lock);
1149 		}
1150 		while (!list_empty(&info->swaplist)) {
1151 			/* Wait while shmem_unuse() is scanning this inode... */
1152 			wait_var_event(&info->stop_eviction,
1153 				       !atomic_read(&info->stop_eviction));
1154 			mutex_lock(&shmem_swaplist_mutex);
1155 			/* ...but beware of the race if we peeked too early */
1156 			if (!atomic_read(&info->stop_eviction))
1157 				list_del_init(&info->swaplist);
1158 			mutex_unlock(&shmem_swaplist_mutex);
1159 		}
1160 	}
1161 
1162 	simple_xattrs_free(&info->xattrs);
1163 	WARN_ON(inode->i_blocks);
1164 	shmem_free_inode(inode->i_sb);
1165 	clear_inode(inode);
1166 }
1167 
1168 static int shmem_find_swap_entries(struct address_space *mapping,
1169 				   pgoff_t start, struct folio_batch *fbatch,
1170 				   pgoff_t *indices, unsigned int type)
1171 {
1172 	XA_STATE(xas, &mapping->i_pages, start);
1173 	struct folio *folio;
1174 	swp_entry_t entry;
1175 
1176 	rcu_read_lock();
1177 	xas_for_each(&xas, folio, ULONG_MAX) {
1178 		if (xas_retry(&xas, folio))
1179 			continue;
1180 
1181 		if (!xa_is_value(folio))
1182 			continue;
1183 
1184 		entry = radix_to_swp_entry(folio);
1185 		/*
1186 		 * swapin error entries can be found in the mapping. But they're
1187 		 * deliberately ignored here as we've done everything we can do.
1188 		 */
1189 		if (swp_type(entry) != type)
1190 			continue;
1191 
1192 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1193 		if (!folio_batch_add(fbatch, folio))
1194 			break;
1195 
1196 		if (need_resched()) {
1197 			xas_pause(&xas);
1198 			cond_resched_rcu();
1199 		}
1200 	}
1201 	rcu_read_unlock();
1202 
1203 	return xas.xa_index;
1204 }
1205 
1206 /*
1207  * Move the swapped pages for an inode to page cache. Returns the count
1208  * of pages swapped in, or the error in case of failure.
1209  */
1210 static int shmem_unuse_swap_entries(struct inode *inode,
1211 		struct folio_batch *fbatch, pgoff_t *indices)
1212 {
1213 	int i = 0;
1214 	int ret = 0;
1215 	int error = 0;
1216 	struct address_space *mapping = inode->i_mapping;
1217 
1218 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1219 		struct folio *folio = fbatch->folios[i];
1220 
1221 		if (!xa_is_value(folio))
1222 			continue;
1223 		error = shmem_swapin_folio(inode, indices[i],
1224 					  &folio, SGP_CACHE,
1225 					  mapping_gfp_mask(mapping),
1226 					  NULL, NULL);
1227 		if (error == 0) {
1228 			folio_unlock(folio);
1229 			folio_put(folio);
1230 			ret++;
1231 		}
1232 		if (error == -ENOMEM)
1233 			break;
1234 		error = 0;
1235 	}
1236 	return error ? error : ret;
1237 }
1238 
1239 /*
1240  * If swap found in inode, free it and move page from swapcache to filecache.
1241  */
1242 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1243 {
1244 	struct address_space *mapping = inode->i_mapping;
1245 	pgoff_t start = 0;
1246 	struct folio_batch fbatch;
1247 	pgoff_t indices[PAGEVEC_SIZE];
1248 	int ret = 0;
1249 
1250 	do {
1251 		folio_batch_init(&fbatch);
1252 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1253 		if (folio_batch_count(&fbatch) == 0) {
1254 			ret = 0;
1255 			break;
1256 		}
1257 
1258 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1259 		if (ret < 0)
1260 			break;
1261 
1262 		start = indices[folio_batch_count(&fbatch) - 1];
1263 	} while (true);
1264 
1265 	return ret;
1266 }
1267 
1268 /*
1269  * Read all the shared memory data that resides in the swap
1270  * device 'type' back into memory, so the swap device can be
1271  * unused.
1272  */
1273 int shmem_unuse(unsigned int type)
1274 {
1275 	struct shmem_inode_info *info, *next;
1276 	int error = 0;
1277 
1278 	if (list_empty(&shmem_swaplist))
1279 		return 0;
1280 
1281 	mutex_lock(&shmem_swaplist_mutex);
1282 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1283 		if (!info->swapped) {
1284 			list_del_init(&info->swaplist);
1285 			continue;
1286 		}
1287 		/*
1288 		 * Drop the swaplist mutex while searching the inode for swap;
1289 		 * but before doing so, make sure shmem_evict_inode() will not
1290 		 * remove placeholder inode from swaplist, nor let it be freed
1291 		 * (igrab() would protect from unlink, but not from unmount).
1292 		 */
1293 		atomic_inc(&info->stop_eviction);
1294 		mutex_unlock(&shmem_swaplist_mutex);
1295 
1296 		error = shmem_unuse_inode(&info->vfs_inode, type);
1297 		cond_resched();
1298 
1299 		mutex_lock(&shmem_swaplist_mutex);
1300 		next = list_next_entry(info, swaplist);
1301 		if (!info->swapped)
1302 			list_del_init(&info->swaplist);
1303 		if (atomic_dec_and_test(&info->stop_eviction))
1304 			wake_up_var(&info->stop_eviction);
1305 		if (error)
1306 			break;
1307 	}
1308 	mutex_unlock(&shmem_swaplist_mutex);
1309 
1310 	return error;
1311 }
1312 
1313 /*
1314  * Move the page from the page cache to the swap cache.
1315  */
1316 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1317 {
1318 	struct folio *folio = page_folio(page);
1319 	struct shmem_inode_info *info;
1320 	struct address_space *mapping;
1321 	struct inode *inode;
1322 	swp_entry_t swap;
1323 	pgoff_t index;
1324 
1325 	/*
1326 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1327 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1328 	 * and its shmem_writeback() needs them to be split when swapping.
1329 	 */
1330 	if (folio_test_large(folio)) {
1331 		/* Ensure the subpages are still dirty */
1332 		folio_test_set_dirty(folio);
1333 		if (split_huge_page(page) < 0)
1334 			goto redirty;
1335 		folio = page_folio(page);
1336 		folio_clear_dirty(folio);
1337 	}
1338 
1339 	BUG_ON(!folio_test_locked(folio));
1340 	mapping = folio->mapping;
1341 	index = folio->index;
1342 	inode = mapping->host;
1343 	info = SHMEM_I(inode);
1344 	if (info->flags & VM_LOCKED)
1345 		goto redirty;
1346 	if (!total_swap_pages)
1347 		goto redirty;
1348 
1349 	/*
1350 	 * Our capabilities prevent regular writeback or sync from ever calling
1351 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1352 	 * its underlying filesystem, in which case tmpfs should write out to
1353 	 * swap only in response to memory pressure, and not for the writeback
1354 	 * threads or sync.
1355 	 */
1356 	if (!wbc->for_reclaim) {
1357 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1358 		goto redirty;
1359 	}
1360 
1361 	/*
1362 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1363 	 * value into swapfile.c, the only way we can correctly account for a
1364 	 * fallocated folio arriving here is now to initialize it and write it.
1365 	 *
1366 	 * That's okay for a folio already fallocated earlier, but if we have
1367 	 * not yet completed the fallocation, then (a) we want to keep track
1368 	 * of this folio in case we have to undo it, and (b) it may not be a
1369 	 * good idea to continue anyway, once we're pushing into swap.  So
1370 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1371 	 */
1372 	if (!folio_test_uptodate(folio)) {
1373 		if (inode->i_private) {
1374 			struct shmem_falloc *shmem_falloc;
1375 			spin_lock(&inode->i_lock);
1376 			shmem_falloc = inode->i_private;
1377 			if (shmem_falloc &&
1378 			    !shmem_falloc->waitq &&
1379 			    index >= shmem_falloc->start &&
1380 			    index < shmem_falloc->next)
1381 				shmem_falloc->nr_unswapped++;
1382 			else
1383 				shmem_falloc = NULL;
1384 			spin_unlock(&inode->i_lock);
1385 			if (shmem_falloc)
1386 				goto redirty;
1387 		}
1388 		folio_zero_range(folio, 0, folio_size(folio));
1389 		flush_dcache_folio(folio);
1390 		folio_mark_uptodate(folio);
1391 	}
1392 
1393 	swap = folio_alloc_swap(folio);
1394 	if (!swap.val)
1395 		goto redirty;
1396 
1397 	/*
1398 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1399 	 * if it's not already there.  Do it now before the folio is
1400 	 * moved to swap cache, when its pagelock no longer protects
1401 	 * the inode from eviction.  But don't unlock the mutex until
1402 	 * we've incremented swapped, because shmem_unuse_inode() will
1403 	 * prune a !swapped inode from the swaplist under this mutex.
1404 	 */
1405 	mutex_lock(&shmem_swaplist_mutex);
1406 	if (list_empty(&info->swaplist))
1407 		list_add(&info->swaplist, &shmem_swaplist);
1408 
1409 	if (add_to_swap_cache(folio, swap,
1410 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1411 			NULL) == 0) {
1412 		spin_lock_irq(&info->lock);
1413 		shmem_recalc_inode(inode);
1414 		info->swapped++;
1415 		spin_unlock_irq(&info->lock);
1416 
1417 		swap_shmem_alloc(swap);
1418 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1419 
1420 		mutex_unlock(&shmem_swaplist_mutex);
1421 		BUG_ON(folio_mapped(folio));
1422 		swap_writepage(&folio->page, wbc);
1423 		return 0;
1424 	}
1425 
1426 	mutex_unlock(&shmem_swaplist_mutex);
1427 	put_swap_page(&folio->page, swap);
1428 redirty:
1429 	folio_mark_dirty(folio);
1430 	if (wbc->for_reclaim)
1431 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1432 	folio_unlock(folio);
1433 	return 0;
1434 }
1435 
1436 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1437 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1438 {
1439 	char buffer[64];
1440 
1441 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1442 		return;		/* show nothing */
1443 
1444 	mpol_to_str(buffer, sizeof(buffer), mpol);
1445 
1446 	seq_printf(seq, ",mpol=%s", buffer);
1447 }
1448 
1449 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1450 {
1451 	struct mempolicy *mpol = NULL;
1452 	if (sbinfo->mpol) {
1453 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1454 		mpol = sbinfo->mpol;
1455 		mpol_get(mpol);
1456 		raw_spin_unlock(&sbinfo->stat_lock);
1457 	}
1458 	return mpol;
1459 }
1460 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1461 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1462 {
1463 }
1464 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1465 {
1466 	return NULL;
1467 }
1468 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1469 #ifndef CONFIG_NUMA
1470 #define vm_policy vm_private_data
1471 #endif
1472 
1473 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1474 		struct shmem_inode_info *info, pgoff_t index)
1475 {
1476 	/* Create a pseudo vma that just contains the policy */
1477 	vma_init(vma, NULL);
1478 	/* Bias interleave by inode number to distribute better across nodes */
1479 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1480 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1481 }
1482 
1483 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1484 {
1485 	/* Drop reference taken by mpol_shared_policy_lookup() */
1486 	mpol_cond_put(vma->vm_policy);
1487 }
1488 
1489 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1490 			struct shmem_inode_info *info, pgoff_t index)
1491 {
1492 	struct vm_area_struct pvma;
1493 	struct page *page;
1494 	struct vm_fault vmf = {
1495 		.vma = &pvma,
1496 	};
1497 
1498 	shmem_pseudo_vma_init(&pvma, info, index);
1499 	page = swap_cluster_readahead(swap, gfp, &vmf);
1500 	shmem_pseudo_vma_destroy(&pvma);
1501 
1502 	return page;
1503 }
1504 
1505 /*
1506  * Make sure huge_gfp is always more limited than limit_gfp.
1507  * Some of the flags set permissions, while others set limitations.
1508  */
1509 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1510 {
1511 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1512 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1513 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1514 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1515 
1516 	/* Allow allocations only from the originally specified zones. */
1517 	result |= zoneflags;
1518 
1519 	/*
1520 	 * Minimize the result gfp by taking the union with the deny flags,
1521 	 * and the intersection of the allow flags.
1522 	 */
1523 	result |= (limit_gfp & denyflags);
1524 	result |= (huge_gfp & limit_gfp) & allowflags;
1525 
1526 	return result;
1527 }
1528 
1529 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1530 		struct shmem_inode_info *info, pgoff_t index)
1531 {
1532 	struct vm_area_struct pvma;
1533 	struct address_space *mapping = info->vfs_inode.i_mapping;
1534 	pgoff_t hindex;
1535 	struct folio *folio;
1536 
1537 	hindex = round_down(index, HPAGE_PMD_NR);
1538 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1539 								XA_PRESENT))
1540 		return NULL;
1541 
1542 	shmem_pseudo_vma_init(&pvma, info, hindex);
1543 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1544 	shmem_pseudo_vma_destroy(&pvma);
1545 	if (!folio)
1546 		count_vm_event(THP_FILE_FALLBACK);
1547 	return folio;
1548 }
1549 
1550 static struct folio *shmem_alloc_folio(gfp_t gfp,
1551 			struct shmem_inode_info *info, pgoff_t index)
1552 {
1553 	struct vm_area_struct pvma;
1554 	struct folio *folio;
1555 
1556 	shmem_pseudo_vma_init(&pvma, info, index);
1557 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1558 	shmem_pseudo_vma_destroy(&pvma);
1559 
1560 	return folio;
1561 }
1562 
1563 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1564 		pgoff_t index, bool huge)
1565 {
1566 	struct shmem_inode_info *info = SHMEM_I(inode);
1567 	struct folio *folio;
1568 	int nr;
1569 	int err = -ENOSPC;
1570 
1571 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1572 		huge = false;
1573 	nr = huge ? HPAGE_PMD_NR : 1;
1574 
1575 	if (!shmem_inode_acct_block(inode, nr))
1576 		goto failed;
1577 
1578 	if (huge)
1579 		folio = shmem_alloc_hugefolio(gfp, info, index);
1580 	else
1581 		folio = shmem_alloc_folio(gfp, info, index);
1582 	if (folio) {
1583 		__folio_set_locked(folio);
1584 		__folio_set_swapbacked(folio);
1585 		return folio;
1586 	}
1587 
1588 	err = -ENOMEM;
1589 	shmem_inode_unacct_blocks(inode, nr);
1590 failed:
1591 	return ERR_PTR(err);
1592 }
1593 
1594 /*
1595  * When a page is moved from swapcache to shmem filecache (either by the
1596  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1597  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1598  * ignorance of the mapping it belongs to.  If that mapping has special
1599  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1600  * we may need to copy to a suitable page before moving to filecache.
1601  *
1602  * In a future release, this may well be extended to respect cpuset and
1603  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1604  * but for now it is a simple matter of zone.
1605  */
1606 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1607 {
1608 	return folio_zonenum(folio) > gfp_zone(gfp);
1609 }
1610 
1611 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1612 				struct shmem_inode_info *info, pgoff_t index)
1613 {
1614 	struct folio *old, *new;
1615 	struct address_space *swap_mapping;
1616 	swp_entry_t entry;
1617 	pgoff_t swap_index;
1618 	int error;
1619 
1620 	old = page_folio(*pagep);
1621 	entry = folio_swap_entry(old);
1622 	swap_index = swp_offset(entry);
1623 	swap_mapping = swap_address_space(entry);
1624 
1625 	/*
1626 	 * We have arrived here because our zones are constrained, so don't
1627 	 * limit chance of success by further cpuset and node constraints.
1628 	 */
1629 	gfp &= ~GFP_CONSTRAINT_MASK;
1630 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1631 	new = shmem_alloc_folio(gfp, info, index);
1632 	if (!new)
1633 		return -ENOMEM;
1634 
1635 	folio_get(new);
1636 	folio_copy(new, old);
1637 	flush_dcache_folio(new);
1638 
1639 	__folio_set_locked(new);
1640 	__folio_set_swapbacked(new);
1641 	folio_mark_uptodate(new);
1642 	folio_set_swap_entry(new, entry);
1643 	folio_set_swapcache(new);
1644 
1645 	/*
1646 	 * Our caller will very soon move newpage out of swapcache, but it's
1647 	 * a nice clean interface for us to replace oldpage by newpage there.
1648 	 */
1649 	xa_lock_irq(&swap_mapping->i_pages);
1650 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1651 	if (!error) {
1652 		mem_cgroup_migrate(old, new);
1653 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1654 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1655 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1656 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1657 	}
1658 	xa_unlock_irq(&swap_mapping->i_pages);
1659 
1660 	if (unlikely(error)) {
1661 		/*
1662 		 * Is this possible?  I think not, now that our callers check
1663 		 * both PageSwapCache and page_private after getting page lock;
1664 		 * but be defensive.  Reverse old to newpage for clear and free.
1665 		 */
1666 		old = new;
1667 	} else {
1668 		folio_add_lru(new);
1669 		*pagep = &new->page;
1670 	}
1671 
1672 	folio_clear_swapcache(old);
1673 	old->private = NULL;
1674 
1675 	folio_unlock(old);
1676 	folio_put_refs(old, 2);
1677 	return error;
1678 }
1679 
1680 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1681 					 struct folio *folio, swp_entry_t swap)
1682 {
1683 	struct address_space *mapping = inode->i_mapping;
1684 	struct shmem_inode_info *info = SHMEM_I(inode);
1685 	swp_entry_t swapin_error;
1686 	void *old;
1687 
1688 	swapin_error = make_swapin_error_entry(&folio->page);
1689 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1690 			     swp_to_radix_entry(swap),
1691 			     swp_to_radix_entry(swapin_error), 0);
1692 	if (old != swp_to_radix_entry(swap))
1693 		return;
1694 
1695 	folio_wait_writeback(folio);
1696 	delete_from_swap_cache(folio);
1697 	spin_lock_irq(&info->lock);
1698 	/*
1699 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1700 	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1701 	 * shmem_evict_inode.
1702 	 */
1703 	info->alloced--;
1704 	info->swapped--;
1705 	shmem_recalc_inode(inode);
1706 	spin_unlock_irq(&info->lock);
1707 	swap_free(swap);
1708 }
1709 
1710 /*
1711  * Swap in the folio pointed to by *foliop.
1712  * Caller has to make sure that *foliop contains a valid swapped folio.
1713  * Returns 0 and the folio in foliop if success. On failure, returns the
1714  * error code and NULL in *foliop.
1715  */
1716 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1717 			     struct folio **foliop, enum sgp_type sgp,
1718 			     gfp_t gfp, struct vm_area_struct *vma,
1719 			     vm_fault_t *fault_type)
1720 {
1721 	struct address_space *mapping = inode->i_mapping;
1722 	struct shmem_inode_info *info = SHMEM_I(inode);
1723 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1724 	struct page *page;
1725 	struct folio *folio = NULL;
1726 	swp_entry_t swap;
1727 	int error;
1728 
1729 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1730 	swap = radix_to_swp_entry(*foliop);
1731 	*foliop = NULL;
1732 
1733 	if (is_swapin_error_entry(swap))
1734 		return -EIO;
1735 
1736 	/* Look it up and read it in.. */
1737 	page = lookup_swap_cache(swap, NULL, 0);
1738 	if (!page) {
1739 		/* Or update major stats only when swapin succeeds?? */
1740 		if (fault_type) {
1741 			*fault_type |= VM_FAULT_MAJOR;
1742 			count_vm_event(PGMAJFAULT);
1743 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1744 		}
1745 		/* Here we actually start the io */
1746 		page = shmem_swapin(swap, gfp, info, index);
1747 		if (!page) {
1748 			error = -ENOMEM;
1749 			goto failed;
1750 		}
1751 	}
1752 	folio = page_folio(page);
1753 
1754 	/* We have to do this with folio locked to prevent races */
1755 	folio_lock(folio);
1756 	if (!folio_test_swapcache(folio) ||
1757 	    folio_swap_entry(folio).val != swap.val ||
1758 	    !shmem_confirm_swap(mapping, index, swap)) {
1759 		error = -EEXIST;
1760 		goto unlock;
1761 	}
1762 	if (!folio_test_uptodate(folio)) {
1763 		error = -EIO;
1764 		goto failed;
1765 	}
1766 	folio_wait_writeback(folio);
1767 
1768 	/*
1769 	 * Some architectures may have to restore extra metadata to the
1770 	 * folio after reading from swap.
1771 	 */
1772 	arch_swap_restore(swap, folio);
1773 
1774 	if (shmem_should_replace_folio(folio, gfp)) {
1775 		error = shmem_replace_page(&page, gfp, info, index);
1776 		folio = page_folio(page);
1777 		if (error)
1778 			goto failed;
1779 	}
1780 
1781 	error = shmem_add_to_page_cache(folio, mapping, index,
1782 					swp_to_radix_entry(swap), gfp,
1783 					charge_mm);
1784 	if (error)
1785 		goto failed;
1786 
1787 	spin_lock_irq(&info->lock);
1788 	info->swapped--;
1789 	shmem_recalc_inode(inode);
1790 	spin_unlock_irq(&info->lock);
1791 
1792 	if (sgp == SGP_WRITE)
1793 		folio_mark_accessed(folio);
1794 
1795 	delete_from_swap_cache(folio);
1796 	folio_mark_dirty(folio);
1797 	swap_free(swap);
1798 
1799 	*foliop = folio;
1800 	return 0;
1801 failed:
1802 	if (!shmem_confirm_swap(mapping, index, swap))
1803 		error = -EEXIST;
1804 	if (error == -EIO)
1805 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1806 unlock:
1807 	if (folio) {
1808 		folio_unlock(folio);
1809 		folio_put(folio);
1810 	}
1811 
1812 	return error;
1813 }
1814 
1815 /*
1816  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1817  *
1818  * If we allocate a new one we do not mark it dirty. That's up to the
1819  * vm. If we swap it in we mark it dirty since we also free the swap
1820  * entry since a page cannot live in both the swap and page cache.
1821  *
1822  * vma, vmf, and fault_type are only supplied by shmem_fault:
1823  * otherwise they are NULL.
1824  */
1825 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1826 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1827 	struct vm_area_struct *vma, struct vm_fault *vmf,
1828 			vm_fault_t *fault_type)
1829 {
1830 	struct address_space *mapping = inode->i_mapping;
1831 	struct shmem_inode_info *info = SHMEM_I(inode);
1832 	struct shmem_sb_info *sbinfo;
1833 	struct mm_struct *charge_mm;
1834 	struct folio *folio;
1835 	pgoff_t hindex = index;
1836 	gfp_t huge_gfp;
1837 	int error;
1838 	int once = 0;
1839 	int alloced = 0;
1840 
1841 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1842 		return -EFBIG;
1843 repeat:
1844 	if (sgp <= SGP_CACHE &&
1845 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1846 		return -EINVAL;
1847 	}
1848 
1849 	sbinfo = SHMEM_SB(inode->i_sb);
1850 	charge_mm = vma ? vma->vm_mm : NULL;
1851 
1852 	folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1853 	if (folio && vma && userfaultfd_minor(vma)) {
1854 		if (!xa_is_value(folio)) {
1855 			folio_unlock(folio);
1856 			folio_put(folio);
1857 		}
1858 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1859 		return 0;
1860 	}
1861 
1862 	if (xa_is_value(folio)) {
1863 		error = shmem_swapin_folio(inode, index, &folio,
1864 					  sgp, gfp, vma, fault_type);
1865 		if (error == -EEXIST)
1866 			goto repeat;
1867 
1868 		*pagep = &folio->page;
1869 		return error;
1870 	}
1871 
1872 	if (folio) {
1873 		hindex = folio->index;
1874 		if (sgp == SGP_WRITE)
1875 			folio_mark_accessed(folio);
1876 		if (folio_test_uptodate(folio))
1877 			goto out;
1878 		/* fallocated page */
1879 		if (sgp != SGP_READ)
1880 			goto clear;
1881 		folio_unlock(folio);
1882 		folio_put(folio);
1883 	}
1884 
1885 	/*
1886 	 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1887 	 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1888 	 */
1889 	*pagep = NULL;
1890 	if (sgp == SGP_READ)
1891 		return 0;
1892 	if (sgp == SGP_NOALLOC)
1893 		return -ENOENT;
1894 
1895 	/*
1896 	 * Fast cache lookup and swap lookup did not find it: allocate.
1897 	 */
1898 
1899 	if (vma && userfaultfd_missing(vma)) {
1900 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1901 		return 0;
1902 	}
1903 
1904 	if (!shmem_is_huge(vma, inode, index))
1905 		goto alloc_nohuge;
1906 
1907 	huge_gfp = vma_thp_gfp_mask(vma);
1908 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1909 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1910 	if (IS_ERR(folio)) {
1911 alloc_nohuge:
1912 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1913 	}
1914 	if (IS_ERR(folio)) {
1915 		int retry = 5;
1916 
1917 		error = PTR_ERR(folio);
1918 		folio = NULL;
1919 		if (error != -ENOSPC)
1920 			goto unlock;
1921 		/*
1922 		 * Try to reclaim some space by splitting a huge page
1923 		 * beyond i_size on the filesystem.
1924 		 */
1925 		while (retry--) {
1926 			int ret;
1927 
1928 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1929 			if (ret == SHRINK_STOP)
1930 				break;
1931 			if (ret)
1932 				goto alloc_nohuge;
1933 		}
1934 		goto unlock;
1935 	}
1936 
1937 	hindex = round_down(index, folio_nr_pages(folio));
1938 
1939 	if (sgp == SGP_WRITE)
1940 		__folio_set_referenced(folio);
1941 
1942 	error = shmem_add_to_page_cache(folio, mapping, hindex,
1943 					NULL, gfp & GFP_RECLAIM_MASK,
1944 					charge_mm);
1945 	if (error)
1946 		goto unacct;
1947 	folio_add_lru(folio);
1948 
1949 	spin_lock_irq(&info->lock);
1950 	info->alloced += folio_nr_pages(folio);
1951 	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1952 	shmem_recalc_inode(inode);
1953 	spin_unlock_irq(&info->lock);
1954 	alloced = true;
1955 
1956 	if (folio_test_pmd_mappable(folio) &&
1957 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1958 			hindex + HPAGE_PMD_NR - 1) {
1959 		/*
1960 		 * Part of the huge page is beyond i_size: subject
1961 		 * to shrink under memory pressure.
1962 		 */
1963 		spin_lock(&sbinfo->shrinklist_lock);
1964 		/*
1965 		 * _careful to defend against unlocked access to
1966 		 * ->shrink_list in shmem_unused_huge_shrink()
1967 		 */
1968 		if (list_empty_careful(&info->shrinklist)) {
1969 			list_add_tail(&info->shrinklist,
1970 				      &sbinfo->shrinklist);
1971 			sbinfo->shrinklist_len++;
1972 		}
1973 		spin_unlock(&sbinfo->shrinklist_lock);
1974 	}
1975 
1976 	/*
1977 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1978 	 */
1979 	if (sgp == SGP_FALLOC)
1980 		sgp = SGP_WRITE;
1981 clear:
1982 	/*
1983 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1984 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1985 	 * it now, lest undo on failure cancel our earlier guarantee.
1986 	 */
1987 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1988 		long i, n = folio_nr_pages(folio);
1989 
1990 		for (i = 0; i < n; i++)
1991 			clear_highpage(folio_page(folio, i));
1992 		flush_dcache_folio(folio);
1993 		folio_mark_uptodate(folio);
1994 	}
1995 
1996 	/* Perhaps the file has been truncated since we checked */
1997 	if (sgp <= SGP_CACHE &&
1998 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1999 		if (alloced) {
2000 			folio_clear_dirty(folio);
2001 			filemap_remove_folio(folio);
2002 			spin_lock_irq(&info->lock);
2003 			shmem_recalc_inode(inode);
2004 			spin_unlock_irq(&info->lock);
2005 		}
2006 		error = -EINVAL;
2007 		goto unlock;
2008 	}
2009 out:
2010 	*pagep = folio_page(folio, index - hindex);
2011 	return 0;
2012 
2013 	/*
2014 	 * Error recovery.
2015 	 */
2016 unacct:
2017 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2018 
2019 	if (folio_test_large(folio)) {
2020 		folio_unlock(folio);
2021 		folio_put(folio);
2022 		goto alloc_nohuge;
2023 	}
2024 unlock:
2025 	if (folio) {
2026 		folio_unlock(folio);
2027 		folio_put(folio);
2028 	}
2029 	if (error == -ENOSPC && !once++) {
2030 		spin_lock_irq(&info->lock);
2031 		shmem_recalc_inode(inode);
2032 		spin_unlock_irq(&info->lock);
2033 		goto repeat;
2034 	}
2035 	if (error == -EEXIST)
2036 		goto repeat;
2037 	return error;
2038 }
2039 
2040 /*
2041  * This is like autoremove_wake_function, but it removes the wait queue
2042  * entry unconditionally - even if something else had already woken the
2043  * target.
2044  */
2045 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2046 {
2047 	int ret = default_wake_function(wait, mode, sync, key);
2048 	list_del_init(&wait->entry);
2049 	return ret;
2050 }
2051 
2052 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2053 {
2054 	struct vm_area_struct *vma = vmf->vma;
2055 	struct inode *inode = file_inode(vma->vm_file);
2056 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2057 	int err;
2058 	vm_fault_t ret = VM_FAULT_LOCKED;
2059 
2060 	/*
2061 	 * Trinity finds that probing a hole which tmpfs is punching can
2062 	 * prevent the hole-punch from ever completing: which in turn
2063 	 * locks writers out with its hold on i_rwsem.  So refrain from
2064 	 * faulting pages into the hole while it's being punched.  Although
2065 	 * shmem_undo_range() does remove the additions, it may be unable to
2066 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2067 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2068 	 *
2069 	 * It does not matter if we sometimes reach this check just before the
2070 	 * hole-punch begins, so that one fault then races with the punch:
2071 	 * we just need to make racing faults a rare case.
2072 	 *
2073 	 * The implementation below would be much simpler if we just used a
2074 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2075 	 * and bloating every shmem inode for this unlikely case would be sad.
2076 	 */
2077 	if (unlikely(inode->i_private)) {
2078 		struct shmem_falloc *shmem_falloc;
2079 
2080 		spin_lock(&inode->i_lock);
2081 		shmem_falloc = inode->i_private;
2082 		if (shmem_falloc &&
2083 		    shmem_falloc->waitq &&
2084 		    vmf->pgoff >= shmem_falloc->start &&
2085 		    vmf->pgoff < shmem_falloc->next) {
2086 			struct file *fpin;
2087 			wait_queue_head_t *shmem_falloc_waitq;
2088 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2089 
2090 			ret = VM_FAULT_NOPAGE;
2091 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2092 			if (fpin)
2093 				ret = VM_FAULT_RETRY;
2094 
2095 			shmem_falloc_waitq = shmem_falloc->waitq;
2096 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2097 					TASK_UNINTERRUPTIBLE);
2098 			spin_unlock(&inode->i_lock);
2099 			schedule();
2100 
2101 			/*
2102 			 * shmem_falloc_waitq points into the shmem_fallocate()
2103 			 * stack of the hole-punching task: shmem_falloc_waitq
2104 			 * is usually invalid by the time we reach here, but
2105 			 * finish_wait() does not dereference it in that case;
2106 			 * though i_lock needed lest racing with wake_up_all().
2107 			 */
2108 			spin_lock(&inode->i_lock);
2109 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2110 			spin_unlock(&inode->i_lock);
2111 
2112 			if (fpin)
2113 				fput(fpin);
2114 			return ret;
2115 		}
2116 		spin_unlock(&inode->i_lock);
2117 	}
2118 
2119 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2120 				  gfp, vma, vmf, &ret);
2121 	if (err)
2122 		return vmf_error(err);
2123 	return ret;
2124 }
2125 
2126 unsigned long shmem_get_unmapped_area(struct file *file,
2127 				      unsigned long uaddr, unsigned long len,
2128 				      unsigned long pgoff, unsigned long flags)
2129 {
2130 	unsigned long (*get_area)(struct file *,
2131 		unsigned long, unsigned long, unsigned long, unsigned long);
2132 	unsigned long addr;
2133 	unsigned long offset;
2134 	unsigned long inflated_len;
2135 	unsigned long inflated_addr;
2136 	unsigned long inflated_offset;
2137 
2138 	if (len > TASK_SIZE)
2139 		return -ENOMEM;
2140 
2141 	get_area = current->mm->get_unmapped_area;
2142 	addr = get_area(file, uaddr, len, pgoff, flags);
2143 
2144 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2145 		return addr;
2146 	if (IS_ERR_VALUE(addr))
2147 		return addr;
2148 	if (addr & ~PAGE_MASK)
2149 		return addr;
2150 	if (addr > TASK_SIZE - len)
2151 		return addr;
2152 
2153 	if (shmem_huge == SHMEM_HUGE_DENY)
2154 		return addr;
2155 	if (len < HPAGE_PMD_SIZE)
2156 		return addr;
2157 	if (flags & MAP_FIXED)
2158 		return addr;
2159 	/*
2160 	 * Our priority is to support MAP_SHARED mapped hugely;
2161 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2162 	 * But if caller specified an address hint and we allocated area there
2163 	 * successfully, respect that as before.
2164 	 */
2165 	if (uaddr == addr)
2166 		return addr;
2167 
2168 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2169 		struct super_block *sb;
2170 
2171 		if (file) {
2172 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2173 			sb = file_inode(file)->i_sb;
2174 		} else {
2175 			/*
2176 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2177 			 * for "/dev/zero", to create a shared anonymous object.
2178 			 */
2179 			if (IS_ERR(shm_mnt))
2180 				return addr;
2181 			sb = shm_mnt->mnt_sb;
2182 		}
2183 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2184 			return addr;
2185 	}
2186 
2187 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2188 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2189 		return addr;
2190 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2191 		return addr;
2192 
2193 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2194 	if (inflated_len > TASK_SIZE)
2195 		return addr;
2196 	if (inflated_len < len)
2197 		return addr;
2198 
2199 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2200 	if (IS_ERR_VALUE(inflated_addr))
2201 		return addr;
2202 	if (inflated_addr & ~PAGE_MASK)
2203 		return addr;
2204 
2205 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2206 	inflated_addr += offset - inflated_offset;
2207 	if (inflated_offset > offset)
2208 		inflated_addr += HPAGE_PMD_SIZE;
2209 
2210 	if (inflated_addr > TASK_SIZE - len)
2211 		return addr;
2212 	return inflated_addr;
2213 }
2214 
2215 #ifdef CONFIG_NUMA
2216 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2217 {
2218 	struct inode *inode = file_inode(vma->vm_file);
2219 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2220 }
2221 
2222 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2223 					  unsigned long addr)
2224 {
2225 	struct inode *inode = file_inode(vma->vm_file);
2226 	pgoff_t index;
2227 
2228 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2229 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2230 }
2231 #endif
2232 
2233 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2234 {
2235 	struct inode *inode = file_inode(file);
2236 	struct shmem_inode_info *info = SHMEM_I(inode);
2237 	int retval = -ENOMEM;
2238 
2239 	/*
2240 	 * What serializes the accesses to info->flags?
2241 	 * ipc_lock_object() when called from shmctl_do_lock(),
2242 	 * no serialization needed when called from shm_destroy().
2243 	 */
2244 	if (lock && !(info->flags & VM_LOCKED)) {
2245 		if (!user_shm_lock(inode->i_size, ucounts))
2246 			goto out_nomem;
2247 		info->flags |= VM_LOCKED;
2248 		mapping_set_unevictable(file->f_mapping);
2249 	}
2250 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2251 		user_shm_unlock(inode->i_size, ucounts);
2252 		info->flags &= ~VM_LOCKED;
2253 		mapping_clear_unevictable(file->f_mapping);
2254 	}
2255 	retval = 0;
2256 
2257 out_nomem:
2258 	return retval;
2259 }
2260 
2261 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2262 {
2263 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2264 	int ret;
2265 
2266 	ret = seal_check_future_write(info->seals, vma);
2267 	if (ret)
2268 		return ret;
2269 
2270 	/* arm64 - allow memory tagging on RAM-based files */
2271 	vma->vm_flags |= VM_MTE_ALLOWED;
2272 
2273 	file_accessed(file);
2274 	vma->vm_ops = &shmem_vm_ops;
2275 	return 0;
2276 }
2277 
2278 #ifdef CONFIG_TMPFS_XATTR
2279 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2280 
2281 /*
2282  * chattr's fsflags are unrelated to extended attributes,
2283  * but tmpfs has chosen to enable them under the same config option.
2284  */
2285 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2286 {
2287 	unsigned int i_flags = 0;
2288 
2289 	if (fsflags & FS_NOATIME_FL)
2290 		i_flags |= S_NOATIME;
2291 	if (fsflags & FS_APPEND_FL)
2292 		i_flags |= S_APPEND;
2293 	if (fsflags & FS_IMMUTABLE_FL)
2294 		i_flags |= S_IMMUTABLE;
2295 	/*
2296 	 * But FS_NODUMP_FL does not require any action in i_flags.
2297 	 */
2298 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2299 }
2300 #else
2301 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2302 {
2303 }
2304 #define shmem_initxattrs NULL
2305 #endif
2306 
2307 static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir,
2308 				     umode_t mode, dev_t dev, unsigned long flags)
2309 {
2310 	struct inode *inode;
2311 	struct shmem_inode_info *info;
2312 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2313 	ino_t ino;
2314 
2315 	if (shmem_reserve_inode(sb, &ino))
2316 		return NULL;
2317 
2318 	inode = new_inode(sb);
2319 	if (inode) {
2320 		inode->i_ino = ino;
2321 		inode_init_owner(&init_user_ns, inode, dir, mode);
2322 		inode->i_blocks = 0;
2323 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2324 		inode->i_generation = prandom_u32();
2325 		info = SHMEM_I(inode);
2326 		memset(info, 0, (char *)inode - (char *)info);
2327 		spin_lock_init(&info->lock);
2328 		atomic_set(&info->stop_eviction, 0);
2329 		info->seals = F_SEAL_SEAL;
2330 		info->flags = flags & VM_NORESERVE;
2331 		info->i_crtime = inode->i_mtime;
2332 		info->fsflags = (dir == NULL) ? 0 :
2333 			SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2334 		if (info->fsflags)
2335 			shmem_set_inode_flags(inode, info->fsflags);
2336 		INIT_LIST_HEAD(&info->shrinklist);
2337 		INIT_LIST_HEAD(&info->swaplist);
2338 		simple_xattrs_init(&info->xattrs);
2339 		cache_no_acl(inode);
2340 		mapping_set_large_folios(inode->i_mapping);
2341 
2342 		switch (mode & S_IFMT) {
2343 		default:
2344 			inode->i_op = &shmem_special_inode_operations;
2345 			init_special_inode(inode, mode, dev);
2346 			break;
2347 		case S_IFREG:
2348 			inode->i_mapping->a_ops = &shmem_aops;
2349 			inode->i_op = &shmem_inode_operations;
2350 			inode->i_fop = &shmem_file_operations;
2351 			mpol_shared_policy_init(&info->policy,
2352 						 shmem_get_sbmpol(sbinfo));
2353 			break;
2354 		case S_IFDIR:
2355 			inc_nlink(inode);
2356 			/* Some things misbehave if size == 0 on a directory */
2357 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2358 			inode->i_op = &shmem_dir_inode_operations;
2359 			inode->i_fop = &simple_dir_operations;
2360 			break;
2361 		case S_IFLNK:
2362 			/*
2363 			 * Must not load anything in the rbtree,
2364 			 * mpol_free_shared_policy will not be called.
2365 			 */
2366 			mpol_shared_policy_init(&info->policy, NULL);
2367 			break;
2368 		}
2369 
2370 		lockdep_annotate_inode_mutex_key(inode);
2371 	} else
2372 		shmem_free_inode(sb);
2373 	return inode;
2374 }
2375 
2376 #ifdef CONFIG_USERFAULTFD
2377 static struct page *shmem_alloc_page(gfp_t gfp,
2378 			struct shmem_inode_info *info, pgoff_t index)
2379 {
2380 	return &shmem_alloc_folio(gfp, info, index)->page;
2381 }
2382 
2383 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2384 			   pmd_t *dst_pmd,
2385 			   struct vm_area_struct *dst_vma,
2386 			   unsigned long dst_addr,
2387 			   unsigned long src_addr,
2388 			   bool zeropage, bool wp_copy,
2389 			   struct page **pagep)
2390 {
2391 	struct inode *inode = file_inode(dst_vma->vm_file);
2392 	struct shmem_inode_info *info = SHMEM_I(inode);
2393 	struct address_space *mapping = inode->i_mapping;
2394 	gfp_t gfp = mapping_gfp_mask(mapping);
2395 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2396 	void *page_kaddr;
2397 	struct folio *folio;
2398 	struct page *page;
2399 	int ret;
2400 	pgoff_t max_off;
2401 
2402 	if (!shmem_inode_acct_block(inode, 1)) {
2403 		/*
2404 		 * We may have got a page, returned -ENOENT triggering a retry,
2405 		 * and now we find ourselves with -ENOMEM. Release the page, to
2406 		 * avoid a BUG_ON in our caller.
2407 		 */
2408 		if (unlikely(*pagep)) {
2409 			put_page(*pagep);
2410 			*pagep = NULL;
2411 		}
2412 		return -ENOMEM;
2413 	}
2414 
2415 	if (!*pagep) {
2416 		ret = -ENOMEM;
2417 		page = shmem_alloc_page(gfp, info, pgoff);
2418 		if (!page)
2419 			goto out_unacct_blocks;
2420 
2421 		if (!zeropage) {	/* COPY */
2422 			page_kaddr = kmap_atomic(page);
2423 			ret = copy_from_user(page_kaddr,
2424 					     (const void __user *)src_addr,
2425 					     PAGE_SIZE);
2426 			kunmap_atomic(page_kaddr);
2427 
2428 			/* fallback to copy_from_user outside mmap_lock */
2429 			if (unlikely(ret)) {
2430 				*pagep = page;
2431 				ret = -ENOENT;
2432 				/* don't free the page */
2433 				goto out_unacct_blocks;
2434 			}
2435 
2436 			flush_dcache_page(page);
2437 		} else {		/* ZEROPAGE */
2438 			clear_user_highpage(page, dst_addr);
2439 		}
2440 	} else {
2441 		page = *pagep;
2442 		*pagep = NULL;
2443 	}
2444 
2445 	VM_BUG_ON(PageLocked(page));
2446 	VM_BUG_ON(PageSwapBacked(page));
2447 	__SetPageLocked(page);
2448 	__SetPageSwapBacked(page);
2449 	__SetPageUptodate(page);
2450 
2451 	ret = -EFAULT;
2452 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2453 	if (unlikely(pgoff >= max_off))
2454 		goto out_release;
2455 
2456 	folio = page_folio(page);
2457 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2458 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2459 	if (ret)
2460 		goto out_release;
2461 
2462 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2463 				       page, true, wp_copy);
2464 	if (ret)
2465 		goto out_delete_from_cache;
2466 
2467 	spin_lock_irq(&info->lock);
2468 	info->alloced++;
2469 	inode->i_blocks += BLOCKS_PER_PAGE;
2470 	shmem_recalc_inode(inode);
2471 	spin_unlock_irq(&info->lock);
2472 
2473 	unlock_page(page);
2474 	return 0;
2475 out_delete_from_cache:
2476 	delete_from_page_cache(page);
2477 out_release:
2478 	unlock_page(page);
2479 	put_page(page);
2480 out_unacct_blocks:
2481 	shmem_inode_unacct_blocks(inode, 1);
2482 	return ret;
2483 }
2484 #endif /* CONFIG_USERFAULTFD */
2485 
2486 #ifdef CONFIG_TMPFS
2487 static const struct inode_operations shmem_symlink_inode_operations;
2488 static const struct inode_operations shmem_short_symlink_operations;
2489 
2490 static int
2491 shmem_write_begin(struct file *file, struct address_space *mapping,
2492 			loff_t pos, unsigned len,
2493 			struct page **pagep, void **fsdata)
2494 {
2495 	struct inode *inode = mapping->host;
2496 	struct shmem_inode_info *info = SHMEM_I(inode);
2497 	pgoff_t index = pos >> PAGE_SHIFT;
2498 	int ret = 0;
2499 
2500 	/* i_rwsem is held by caller */
2501 	if (unlikely(info->seals & (F_SEAL_GROW |
2502 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2503 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2504 			return -EPERM;
2505 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2506 			return -EPERM;
2507 	}
2508 
2509 	ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2510 
2511 	if (ret)
2512 		return ret;
2513 
2514 	if (PageHWPoison(*pagep)) {
2515 		unlock_page(*pagep);
2516 		put_page(*pagep);
2517 		*pagep = NULL;
2518 		return -EIO;
2519 	}
2520 
2521 	return 0;
2522 }
2523 
2524 static int
2525 shmem_write_end(struct file *file, struct address_space *mapping,
2526 			loff_t pos, unsigned len, unsigned copied,
2527 			struct page *page, void *fsdata)
2528 {
2529 	struct inode *inode = mapping->host;
2530 
2531 	if (pos + copied > inode->i_size)
2532 		i_size_write(inode, pos + copied);
2533 
2534 	if (!PageUptodate(page)) {
2535 		struct page *head = compound_head(page);
2536 		if (PageTransCompound(page)) {
2537 			int i;
2538 
2539 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2540 				if (head + i == page)
2541 					continue;
2542 				clear_highpage(head + i);
2543 				flush_dcache_page(head + i);
2544 			}
2545 		}
2546 		if (copied < PAGE_SIZE) {
2547 			unsigned from = pos & (PAGE_SIZE - 1);
2548 			zero_user_segments(page, 0, from,
2549 					from + copied, PAGE_SIZE);
2550 		}
2551 		SetPageUptodate(head);
2552 	}
2553 	set_page_dirty(page);
2554 	unlock_page(page);
2555 	put_page(page);
2556 
2557 	return copied;
2558 }
2559 
2560 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2561 {
2562 	struct file *file = iocb->ki_filp;
2563 	struct inode *inode = file_inode(file);
2564 	struct address_space *mapping = inode->i_mapping;
2565 	pgoff_t index;
2566 	unsigned long offset;
2567 	int error = 0;
2568 	ssize_t retval = 0;
2569 	loff_t *ppos = &iocb->ki_pos;
2570 
2571 	index = *ppos >> PAGE_SHIFT;
2572 	offset = *ppos & ~PAGE_MASK;
2573 
2574 	for (;;) {
2575 		struct page *page = NULL;
2576 		pgoff_t end_index;
2577 		unsigned long nr, ret;
2578 		loff_t i_size = i_size_read(inode);
2579 
2580 		end_index = i_size >> PAGE_SHIFT;
2581 		if (index > end_index)
2582 			break;
2583 		if (index == end_index) {
2584 			nr = i_size & ~PAGE_MASK;
2585 			if (nr <= offset)
2586 				break;
2587 		}
2588 
2589 		error = shmem_getpage(inode, index, &page, SGP_READ);
2590 		if (error) {
2591 			if (error == -EINVAL)
2592 				error = 0;
2593 			break;
2594 		}
2595 		if (page) {
2596 			unlock_page(page);
2597 
2598 			if (PageHWPoison(page)) {
2599 				put_page(page);
2600 				error = -EIO;
2601 				break;
2602 			}
2603 		}
2604 
2605 		/*
2606 		 * We must evaluate after, since reads (unlike writes)
2607 		 * are called without i_rwsem protection against truncate
2608 		 */
2609 		nr = PAGE_SIZE;
2610 		i_size = i_size_read(inode);
2611 		end_index = i_size >> PAGE_SHIFT;
2612 		if (index == end_index) {
2613 			nr = i_size & ~PAGE_MASK;
2614 			if (nr <= offset) {
2615 				if (page)
2616 					put_page(page);
2617 				break;
2618 			}
2619 		}
2620 		nr -= offset;
2621 
2622 		if (page) {
2623 			/*
2624 			 * If users can be writing to this page using arbitrary
2625 			 * virtual addresses, take care about potential aliasing
2626 			 * before reading the page on the kernel side.
2627 			 */
2628 			if (mapping_writably_mapped(mapping))
2629 				flush_dcache_page(page);
2630 			/*
2631 			 * Mark the page accessed if we read the beginning.
2632 			 */
2633 			if (!offset)
2634 				mark_page_accessed(page);
2635 			/*
2636 			 * Ok, we have the page, and it's up-to-date, so
2637 			 * now we can copy it to user space...
2638 			 */
2639 			ret = copy_page_to_iter(page, offset, nr, to);
2640 			put_page(page);
2641 
2642 		} else if (user_backed_iter(to)) {
2643 			/*
2644 			 * Copy to user tends to be so well optimized, but
2645 			 * clear_user() not so much, that it is noticeably
2646 			 * faster to copy the zero page instead of clearing.
2647 			 */
2648 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2649 		} else {
2650 			/*
2651 			 * But submitting the same page twice in a row to
2652 			 * splice() - or others? - can result in confusion:
2653 			 * so don't attempt that optimization on pipes etc.
2654 			 */
2655 			ret = iov_iter_zero(nr, to);
2656 		}
2657 
2658 		retval += ret;
2659 		offset += ret;
2660 		index += offset >> PAGE_SHIFT;
2661 		offset &= ~PAGE_MASK;
2662 
2663 		if (!iov_iter_count(to))
2664 			break;
2665 		if (ret < nr) {
2666 			error = -EFAULT;
2667 			break;
2668 		}
2669 		cond_resched();
2670 	}
2671 
2672 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2673 	file_accessed(file);
2674 	return retval ? retval : error;
2675 }
2676 
2677 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2678 {
2679 	struct address_space *mapping = file->f_mapping;
2680 	struct inode *inode = mapping->host;
2681 
2682 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2683 		return generic_file_llseek_size(file, offset, whence,
2684 					MAX_LFS_FILESIZE, i_size_read(inode));
2685 	if (offset < 0)
2686 		return -ENXIO;
2687 
2688 	inode_lock(inode);
2689 	/* We're holding i_rwsem so we can access i_size directly */
2690 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2691 	if (offset >= 0)
2692 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2693 	inode_unlock(inode);
2694 	return offset;
2695 }
2696 
2697 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2698 							 loff_t len)
2699 {
2700 	struct inode *inode = file_inode(file);
2701 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2702 	struct shmem_inode_info *info = SHMEM_I(inode);
2703 	struct shmem_falloc shmem_falloc;
2704 	pgoff_t start, index, end, undo_fallocend;
2705 	int error;
2706 
2707 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2708 		return -EOPNOTSUPP;
2709 
2710 	inode_lock(inode);
2711 
2712 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2713 		struct address_space *mapping = file->f_mapping;
2714 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2715 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2716 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2717 
2718 		/* protected by i_rwsem */
2719 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2720 			error = -EPERM;
2721 			goto out;
2722 		}
2723 
2724 		shmem_falloc.waitq = &shmem_falloc_waitq;
2725 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2726 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2727 		spin_lock(&inode->i_lock);
2728 		inode->i_private = &shmem_falloc;
2729 		spin_unlock(&inode->i_lock);
2730 
2731 		if ((u64)unmap_end > (u64)unmap_start)
2732 			unmap_mapping_range(mapping, unmap_start,
2733 					    1 + unmap_end - unmap_start, 0);
2734 		shmem_truncate_range(inode, offset, offset + len - 1);
2735 		/* No need to unmap again: hole-punching leaves COWed pages */
2736 
2737 		spin_lock(&inode->i_lock);
2738 		inode->i_private = NULL;
2739 		wake_up_all(&shmem_falloc_waitq);
2740 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2741 		spin_unlock(&inode->i_lock);
2742 		error = 0;
2743 		goto out;
2744 	}
2745 
2746 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2747 	error = inode_newsize_ok(inode, offset + len);
2748 	if (error)
2749 		goto out;
2750 
2751 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2752 		error = -EPERM;
2753 		goto out;
2754 	}
2755 
2756 	start = offset >> PAGE_SHIFT;
2757 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2758 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2759 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2760 		error = -ENOSPC;
2761 		goto out;
2762 	}
2763 
2764 	shmem_falloc.waitq = NULL;
2765 	shmem_falloc.start = start;
2766 	shmem_falloc.next  = start;
2767 	shmem_falloc.nr_falloced = 0;
2768 	shmem_falloc.nr_unswapped = 0;
2769 	spin_lock(&inode->i_lock);
2770 	inode->i_private = &shmem_falloc;
2771 	spin_unlock(&inode->i_lock);
2772 
2773 	/*
2774 	 * info->fallocend is only relevant when huge pages might be
2775 	 * involved: to prevent split_huge_page() freeing fallocated
2776 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2777 	 */
2778 	undo_fallocend = info->fallocend;
2779 	if (info->fallocend < end)
2780 		info->fallocend = end;
2781 
2782 	for (index = start; index < end; ) {
2783 		struct page *page;
2784 
2785 		/*
2786 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2787 		 * been interrupted because we are using up too much memory.
2788 		 */
2789 		if (signal_pending(current))
2790 			error = -EINTR;
2791 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2792 			error = -ENOMEM;
2793 		else
2794 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2795 		if (error) {
2796 			info->fallocend = undo_fallocend;
2797 			/* Remove the !PageUptodate pages we added */
2798 			if (index > start) {
2799 				shmem_undo_range(inode,
2800 				    (loff_t)start << PAGE_SHIFT,
2801 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2802 			}
2803 			goto undone;
2804 		}
2805 
2806 		index++;
2807 		/*
2808 		 * Here is a more important optimization than it appears:
2809 		 * a second SGP_FALLOC on the same huge page will clear it,
2810 		 * making it PageUptodate and un-undoable if we fail later.
2811 		 */
2812 		if (PageTransCompound(page)) {
2813 			index = round_up(index, HPAGE_PMD_NR);
2814 			/* Beware 32-bit wraparound */
2815 			if (!index)
2816 				index--;
2817 		}
2818 
2819 		/*
2820 		 * Inform shmem_writepage() how far we have reached.
2821 		 * No need for lock or barrier: we have the page lock.
2822 		 */
2823 		if (!PageUptodate(page))
2824 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2825 		shmem_falloc.next = index;
2826 
2827 		/*
2828 		 * If !PageUptodate, leave it that way so that freeable pages
2829 		 * can be recognized if we need to rollback on error later.
2830 		 * But set_page_dirty so that memory pressure will swap rather
2831 		 * than free the pages we are allocating (and SGP_CACHE pages
2832 		 * might still be clean: we now need to mark those dirty too).
2833 		 */
2834 		set_page_dirty(page);
2835 		unlock_page(page);
2836 		put_page(page);
2837 		cond_resched();
2838 	}
2839 
2840 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2841 		i_size_write(inode, offset + len);
2842 undone:
2843 	spin_lock(&inode->i_lock);
2844 	inode->i_private = NULL;
2845 	spin_unlock(&inode->i_lock);
2846 out:
2847 	if (!error)
2848 		file_modified(file);
2849 	inode_unlock(inode);
2850 	return error;
2851 }
2852 
2853 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2854 {
2855 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2856 
2857 	buf->f_type = TMPFS_MAGIC;
2858 	buf->f_bsize = PAGE_SIZE;
2859 	buf->f_namelen = NAME_MAX;
2860 	if (sbinfo->max_blocks) {
2861 		buf->f_blocks = sbinfo->max_blocks;
2862 		buf->f_bavail =
2863 		buf->f_bfree  = sbinfo->max_blocks -
2864 				percpu_counter_sum(&sbinfo->used_blocks);
2865 	}
2866 	if (sbinfo->max_inodes) {
2867 		buf->f_files = sbinfo->max_inodes;
2868 		buf->f_ffree = sbinfo->free_inodes;
2869 	}
2870 	/* else leave those fields 0 like simple_statfs */
2871 
2872 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2873 
2874 	return 0;
2875 }
2876 
2877 /*
2878  * File creation. Allocate an inode, and we're done..
2879  */
2880 static int
2881 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2882 	    struct dentry *dentry, umode_t mode, dev_t dev)
2883 {
2884 	struct inode *inode;
2885 	int error = -ENOSPC;
2886 
2887 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2888 	if (inode) {
2889 		error = simple_acl_create(dir, inode);
2890 		if (error)
2891 			goto out_iput;
2892 		error = security_inode_init_security(inode, dir,
2893 						     &dentry->d_name,
2894 						     shmem_initxattrs, NULL);
2895 		if (error && error != -EOPNOTSUPP)
2896 			goto out_iput;
2897 
2898 		error = 0;
2899 		dir->i_size += BOGO_DIRENT_SIZE;
2900 		dir->i_ctime = dir->i_mtime = current_time(dir);
2901 		d_instantiate(dentry, inode);
2902 		dget(dentry); /* Extra count - pin the dentry in core */
2903 	}
2904 	return error;
2905 out_iput:
2906 	iput(inode);
2907 	return error;
2908 }
2909 
2910 static int
2911 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2912 	      struct dentry *dentry, umode_t mode)
2913 {
2914 	struct inode *inode;
2915 	int error = -ENOSPC;
2916 
2917 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2918 	if (inode) {
2919 		error = security_inode_init_security(inode, dir,
2920 						     NULL,
2921 						     shmem_initxattrs, NULL);
2922 		if (error && error != -EOPNOTSUPP)
2923 			goto out_iput;
2924 		error = simple_acl_create(dir, inode);
2925 		if (error)
2926 			goto out_iput;
2927 		d_tmpfile(dentry, inode);
2928 	}
2929 	return error;
2930 out_iput:
2931 	iput(inode);
2932 	return error;
2933 }
2934 
2935 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2936 		       struct dentry *dentry, umode_t mode)
2937 {
2938 	int error;
2939 
2940 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2941 				 mode | S_IFDIR, 0)))
2942 		return error;
2943 	inc_nlink(dir);
2944 	return 0;
2945 }
2946 
2947 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2948 			struct dentry *dentry, umode_t mode, bool excl)
2949 {
2950 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2951 }
2952 
2953 /*
2954  * Link a file..
2955  */
2956 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2957 {
2958 	struct inode *inode = d_inode(old_dentry);
2959 	int ret = 0;
2960 
2961 	/*
2962 	 * No ordinary (disk based) filesystem counts links as inodes;
2963 	 * but each new link needs a new dentry, pinning lowmem, and
2964 	 * tmpfs dentries cannot be pruned until they are unlinked.
2965 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2966 	 * first link must skip that, to get the accounting right.
2967 	 */
2968 	if (inode->i_nlink) {
2969 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2970 		if (ret)
2971 			goto out;
2972 	}
2973 
2974 	dir->i_size += BOGO_DIRENT_SIZE;
2975 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2976 	inc_nlink(inode);
2977 	ihold(inode);	/* New dentry reference */
2978 	dget(dentry);		/* Extra pinning count for the created dentry */
2979 	d_instantiate(dentry, inode);
2980 out:
2981 	return ret;
2982 }
2983 
2984 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2985 {
2986 	struct inode *inode = d_inode(dentry);
2987 
2988 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2989 		shmem_free_inode(inode->i_sb);
2990 
2991 	dir->i_size -= BOGO_DIRENT_SIZE;
2992 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2993 	drop_nlink(inode);
2994 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2995 	return 0;
2996 }
2997 
2998 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2999 {
3000 	if (!simple_empty(dentry))
3001 		return -ENOTEMPTY;
3002 
3003 	drop_nlink(d_inode(dentry));
3004 	drop_nlink(dir);
3005 	return shmem_unlink(dir, dentry);
3006 }
3007 
3008 static int shmem_whiteout(struct user_namespace *mnt_userns,
3009 			  struct inode *old_dir, struct dentry *old_dentry)
3010 {
3011 	struct dentry *whiteout;
3012 	int error;
3013 
3014 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3015 	if (!whiteout)
3016 		return -ENOMEM;
3017 
3018 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3019 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3020 	dput(whiteout);
3021 	if (error)
3022 		return error;
3023 
3024 	/*
3025 	 * Cheat and hash the whiteout while the old dentry is still in
3026 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3027 	 *
3028 	 * d_lookup() will consistently find one of them at this point,
3029 	 * not sure which one, but that isn't even important.
3030 	 */
3031 	d_rehash(whiteout);
3032 	return 0;
3033 }
3034 
3035 /*
3036  * The VFS layer already does all the dentry stuff for rename,
3037  * we just have to decrement the usage count for the target if
3038  * it exists so that the VFS layer correctly free's it when it
3039  * gets overwritten.
3040  */
3041 static int shmem_rename2(struct user_namespace *mnt_userns,
3042 			 struct inode *old_dir, struct dentry *old_dentry,
3043 			 struct inode *new_dir, struct dentry *new_dentry,
3044 			 unsigned int flags)
3045 {
3046 	struct inode *inode = d_inode(old_dentry);
3047 	int they_are_dirs = S_ISDIR(inode->i_mode);
3048 
3049 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3050 		return -EINVAL;
3051 
3052 	if (flags & RENAME_EXCHANGE)
3053 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3054 
3055 	if (!simple_empty(new_dentry))
3056 		return -ENOTEMPTY;
3057 
3058 	if (flags & RENAME_WHITEOUT) {
3059 		int error;
3060 
3061 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3062 		if (error)
3063 			return error;
3064 	}
3065 
3066 	if (d_really_is_positive(new_dentry)) {
3067 		(void) shmem_unlink(new_dir, new_dentry);
3068 		if (they_are_dirs) {
3069 			drop_nlink(d_inode(new_dentry));
3070 			drop_nlink(old_dir);
3071 		}
3072 	} else if (they_are_dirs) {
3073 		drop_nlink(old_dir);
3074 		inc_nlink(new_dir);
3075 	}
3076 
3077 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3078 	new_dir->i_size += BOGO_DIRENT_SIZE;
3079 	old_dir->i_ctime = old_dir->i_mtime =
3080 	new_dir->i_ctime = new_dir->i_mtime =
3081 	inode->i_ctime = current_time(old_dir);
3082 	return 0;
3083 }
3084 
3085 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3086 			 struct dentry *dentry, const char *symname)
3087 {
3088 	int error;
3089 	int len;
3090 	struct inode *inode;
3091 	struct page *page;
3092 
3093 	len = strlen(symname) + 1;
3094 	if (len > PAGE_SIZE)
3095 		return -ENAMETOOLONG;
3096 
3097 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3098 				VM_NORESERVE);
3099 	if (!inode)
3100 		return -ENOSPC;
3101 
3102 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3103 					     shmem_initxattrs, NULL);
3104 	if (error && error != -EOPNOTSUPP) {
3105 		iput(inode);
3106 		return error;
3107 	}
3108 
3109 	inode->i_size = len-1;
3110 	if (len <= SHORT_SYMLINK_LEN) {
3111 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3112 		if (!inode->i_link) {
3113 			iput(inode);
3114 			return -ENOMEM;
3115 		}
3116 		inode->i_op = &shmem_short_symlink_operations;
3117 	} else {
3118 		inode_nohighmem(inode);
3119 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3120 		if (error) {
3121 			iput(inode);
3122 			return error;
3123 		}
3124 		inode->i_mapping->a_ops = &shmem_aops;
3125 		inode->i_op = &shmem_symlink_inode_operations;
3126 		memcpy(page_address(page), symname, len);
3127 		SetPageUptodate(page);
3128 		set_page_dirty(page);
3129 		unlock_page(page);
3130 		put_page(page);
3131 	}
3132 	dir->i_size += BOGO_DIRENT_SIZE;
3133 	dir->i_ctime = dir->i_mtime = current_time(dir);
3134 	d_instantiate(dentry, inode);
3135 	dget(dentry);
3136 	return 0;
3137 }
3138 
3139 static void shmem_put_link(void *arg)
3140 {
3141 	mark_page_accessed(arg);
3142 	put_page(arg);
3143 }
3144 
3145 static const char *shmem_get_link(struct dentry *dentry,
3146 				  struct inode *inode,
3147 				  struct delayed_call *done)
3148 {
3149 	struct page *page = NULL;
3150 	int error;
3151 	if (!dentry) {
3152 		page = find_get_page(inode->i_mapping, 0);
3153 		if (!page)
3154 			return ERR_PTR(-ECHILD);
3155 		if (PageHWPoison(page) ||
3156 		    !PageUptodate(page)) {
3157 			put_page(page);
3158 			return ERR_PTR(-ECHILD);
3159 		}
3160 	} else {
3161 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3162 		if (error)
3163 			return ERR_PTR(error);
3164 		if (!page)
3165 			return ERR_PTR(-ECHILD);
3166 		if (PageHWPoison(page)) {
3167 			unlock_page(page);
3168 			put_page(page);
3169 			return ERR_PTR(-ECHILD);
3170 		}
3171 		unlock_page(page);
3172 	}
3173 	set_delayed_call(done, shmem_put_link, page);
3174 	return page_address(page);
3175 }
3176 
3177 #ifdef CONFIG_TMPFS_XATTR
3178 
3179 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3180 {
3181 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3182 
3183 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3184 
3185 	return 0;
3186 }
3187 
3188 static int shmem_fileattr_set(struct user_namespace *mnt_userns,
3189 			      struct dentry *dentry, struct fileattr *fa)
3190 {
3191 	struct inode *inode = d_inode(dentry);
3192 	struct shmem_inode_info *info = SHMEM_I(inode);
3193 
3194 	if (fileattr_has_fsx(fa))
3195 		return -EOPNOTSUPP;
3196 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3197 		return -EOPNOTSUPP;
3198 
3199 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3200 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3201 
3202 	shmem_set_inode_flags(inode, info->fsflags);
3203 	inode->i_ctime = current_time(inode);
3204 	return 0;
3205 }
3206 
3207 /*
3208  * Superblocks without xattr inode operations may get some security.* xattr
3209  * support from the LSM "for free". As soon as we have any other xattrs
3210  * like ACLs, we also need to implement the security.* handlers at
3211  * filesystem level, though.
3212  */
3213 
3214 /*
3215  * Callback for security_inode_init_security() for acquiring xattrs.
3216  */
3217 static int shmem_initxattrs(struct inode *inode,
3218 			    const struct xattr *xattr_array,
3219 			    void *fs_info)
3220 {
3221 	struct shmem_inode_info *info = SHMEM_I(inode);
3222 	const struct xattr *xattr;
3223 	struct simple_xattr *new_xattr;
3224 	size_t len;
3225 
3226 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3227 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3228 		if (!new_xattr)
3229 			return -ENOMEM;
3230 
3231 		len = strlen(xattr->name) + 1;
3232 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3233 					  GFP_KERNEL);
3234 		if (!new_xattr->name) {
3235 			kvfree(new_xattr);
3236 			return -ENOMEM;
3237 		}
3238 
3239 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3240 		       XATTR_SECURITY_PREFIX_LEN);
3241 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3242 		       xattr->name, len);
3243 
3244 		simple_xattr_list_add(&info->xattrs, new_xattr);
3245 	}
3246 
3247 	return 0;
3248 }
3249 
3250 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3251 				   struct dentry *unused, struct inode *inode,
3252 				   const char *name, void *buffer, size_t size)
3253 {
3254 	struct shmem_inode_info *info = SHMEM_I(inode);
3255 
3256 	name = xattr_full_name(handler, name);
3257 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3258 }
3259 
3260 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3261 				   struct user_namespace *mnt_userns,
3262 				   struct dentry *unused, struct inode *inode,
3263 				   const char *name, const void *value,
3264 				   size_t size, int flags)
3265 {
3266 	struct shmem_inode_info *info = SHMEM_I(inode);
3267 
3268 	name = xattr_full_name(handler, name);
3269 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3270 }
3271 
3272 static const struct xattr_handler shmem_security_xattr_handler = {
3273 	.prefix = XATTR_SECURITY_PREFIX,
3274 	.get = shmem_xattr_handler_get,
3275 	.set = shmem_xattr_handler_set,
3276 };
3277 
3278 static const struct xattr_handler shmem_trusted_xattr_handler = {
3279 	.prefix = XATTR_TRUSTED_PREFIX,
3280 	.get = shmem_xattr_handler_get,
3281 	.set = shmem_xattr_handler_set,
3282 };
3283 
3284 static const struct xattr_handler *shmem_xattr_handlers[] = {
3285 #ifdef CONFIG_TMPFS_POSIX_ACL
3286 	&posix_acl_access_xattr_handler,
3287 	&posix_acl_default_xattr_handler,
3288 #endif
3289 	&shmem_security_xattr_handler,
3290 	&shmem_trusted_xattr_handler,
3291 	NULL
3292 };
3293 
3294 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3295 {
3296 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3297 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3298 }
3299 #endif /* CONFIG_TMPFS_XATTR */
3300 
3301 static const struct inode_operations shmem_short_symlink_operations = {
3302 	.getattr	= shmem_getattr,
3303 	.get_link	= simple_get_link,
3304 #ifdef CONFIG_TMPFS_XATTR
3305 	.listxattr	= shmem_listxattr,
3306 #endif
3307 };
3308 
3309 static const struct inode_operations shmem_symlink_inode_operations = {
3310 	.getattr	= shmem_getattr,
3311 	.get_link	= shmem_get_link,
3312 #ifdef CONFIG_TMPFS_XATTR
3313 	.listxattr	= shmem_listxattr,
3314 #endif
3315 };
3316 
3317 static struct dentry *shmem_get_parent(struct dentry *child)
3318 {
3319 	return ERR_PTR(-ESTALE);
3320 }
3321 
3322 static int shmem_match(struct inode *ino, void *vfh)
3323 {
3324 	__u32 *fh = vfh;
3325 	__u64 inum = fh[2];
3326 	inum = (inum << 32) | fh[1];
3327 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3328 }
3329 
3330 /* Find any alias of inode, but prefer a hashed alias */
3331 static struct dentry *shmem_find_alias(struct inode *inode)
3332 {
3333 	struct dentry *alias = d_find_alias(inode);
3334 
3335 	return alias ?: d_find_any_alias(inode);
3336 }
3337 
3338 
3339 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3340 		struct fid *fid, int fh_len, int fh_type)
3341 {
3342 	struct inode *inode;
3343 	struct dentry *dentry = NULL;
3344 	u64 inum;
3345 
3346 	if (fh_len < 3)
3347 		return NULL;
3348 
3349 	inum = fid->raw[2];
3350 	inum = (inum << 32) | fid->raw[1];
3351 
3352 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3353 			shmem_match, fid->raw);
3354 	if (inode) {
3355 		dentry = shmem_find_alias(inode);
3356 		iput(inode);
3357 	}
3358 
3359 	return dentry;
3360 }
3361 
3362 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3363 				struct inode *parent)
3364 {
3365 	if (*len < 3) {
3366 		*len = 3;
3367 		return FILEID_INVALID;
3368 	}
3369 
3370 	if (inode_unhashed(inode)) {
3371 		/* Unfortunately insert_inode_hash is not idempotent,
3372 		 * so as we hash inodes here rather than at creation
3373 		 * time, we need a lock to ensure we only try
3374 		 * to do it once
3375 		 */
3376 		static DEFINE_SPINLOCK(lock);
3377 		spin_lock(&lock);
3378 		if (inode_unhashed(inode))
3379 			__insert_inode_hash(inode,
3380 					    inode->i_ino + inode->i_generation);
3381 		spin_unlock(&lock);
3382 	}
3383 
3384 	fh[0] = inode->i_generation;
3385 	fh[1] = inode->i_ino;
3386 	fh[2] = ((__u64)inode->i_ino) >> 32;
3387 
3388 	*len = 3;
3389 	return 1;
3390 }
3391 
3392 static const struct export_operations shmem_export_ops = {
3393 	.get_parent     = shmem_get_parent,
3394 	.encode_fh      = shmem_encode_fh,
3395 	.fh_to_dentry	= shmem_fh_to_dentry,
3396 };
3397 
3398 enum shmem_param {
3399 	Opt_gid,
3400 	Opt_huge,
3401 	Opt_mode,
3402 	Opt_mpol,
3403 	Opt_nr_blocks,
3404 	Opt_nr_inodes,
3405 	Opt_size,
3406 	Opt_uid,
3407 	Opt_inode32,
3408 	Opt_inode64,
3409 };
3410 
3411 static const struct constant_table shmem_param_enums_huge[] = {
3412 	{"never",	SHMEM_HUGE_NEVER },
3413 	{"always",	SHMEM_HUGE_ALWAYS },
3414 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3415 	{"advise",	SHMEM_HUGE_ADVISE },
3416 	{}
3417 };
3418 
3419 const struct fs_parameter_spec shmem_fs_parameters[] = {
3420 	fsparam_u32   ("gid",		Opt_gid),
3421 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3422 	fsparam_u32oct("mode",		Opt_mode),
3423 	fsparam_string("mpol",		Opt_mpol),
3424 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3425 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3426 	fsparam_string("size",		Opt_size),
3427 	fsparam_u32   ("uid",		Opt_uid),
3428 	fsparam_flag  ("inode32",	Opt_inode32),
3429 	fsparam_flag  ("inode64",	Opt_inode64),
3430 	{}
3431 };
3432 
3433 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3434 {
3435 	struct shmem_options *ctx = fc->fs_private;
3436 	struct fs_parse_result result;
3437 	unsigned long long size;
3438 	char *rest;
3439 	int opt;
3440 
3441 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3442 	if (opt < 0)
3443 		return opt;
3444 
3445 	switch (opt) {
3446 	case Opt_size:
3447 		size = memparse(param->string, &rest);
3448 		if (*rest == '%') {
3449 			size <<= PAGE_SHIFT;
3450 			size *= totalram_pages();
3451 			do_div(size, 100);
3452 			rest++;
3453 		}
3454 		if (*rest)
3455 			goto bad_value;
3456 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3457 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3458 		break;
3459 	case Opt_nr_blocks:
3460 		ctx->blocks = memparse(param->string, &rest);
3461 		if (*rest || ctx->blocks > S64_MAX)
3462 			goto bad_value;
3463 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3464 		break;
3465 	case Opt_nr_inodes:
3466 		ctx->inodes = memparse(param->string, &rest);
3467 		if (*rest)
3468 			goto bad_value;
3469 		ctx->seen |= SHMEM_SEEN_INODES;
3470 		break;
3471 	case Opt_mode:
3472 		ctx->mode = result.uint_32 & 07777;
3473 		break;
3474 	case Opt_uid:
3475 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3476 		if (!uid_valid(ctx->uid))
3477 			goto bad_value;
3478 		break;
3479 	case Opt_gid:
3480 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3481 		if (!gid_valid(ctx->gid))
3482 			goto bad_value;
3483 		break;
3484 	case Opt_huge:
3485 		ctx->huge = result.uint_32;
3486 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3487 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3488 		      has_transparent_hugepage()))
3489 			goto unsupported_parameter;
3490 		ctx->seen |= SHMEM_SEEN_HUGE;
3491 		break;
3492 	case Opt_mpol:
3493 		if (IS_ENABLED(CONFIG_NUMA)) {
3494 			mpol_put(ctx->mpol);
3495 			ctx->mpol = NULL;
3496 			if (mpol_parse_str(param->string, &ctx->mpol))
3497 				goto bad_value;
3498 			break;
3499 		}
3500 		goto unsupported_parameter;
3501 	case Opt_inode32:
3502 		ctx->full_inums = false;
3503 		ctx->seen |= SHMEM_SEEN_INUMS;
3504 		break;
3505 	case Opt_inode64:
3506 		if (sizeof(ino_t) < 8) {
3507 			return invalfc(fc,
3508 				       "Cannot use inode64 with <64bit inums in kernel\n");
3509 		}
3510 		ctx->full_inums = true;
3511 		ctx->seen |= SHMEM_SEEN_INUMS;
3512 		break;
3513 	}
3514 	return 0;
3515 
3516 unsupported_parameter:
3517 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3518 bad_value:
3519 	return invalfc(fc, "Bad value for '%s'", param->key);
3520 }
3521 
3522 static int shmem_parse_options(struct fs_context *fc, void *data)
3523 {
3524 	char *options = data;
3525 
3526 	if (options) {
3527 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3528 		if (err)
3529 			return err;
3530 	}
3531 
3532 	while (options != NULL) {
3533 		char *this_char = options;
3534 		for (;;) {
3535 			/*
3536 			 * NUL-terminate this option: unfortunately,
3537 			 * mount options form a comma-separated list,
3538 			 * but mpol's nodelist may also contain commas.
3539 			 */
3540 			options = strchr(options, ',');
3541 			if (options == NULL)
3542 				break;
3543 			options++;
3544 			if (!isdigit(*options)) {
3545 				options[-1] = '\0';
3546 				break;
3547 			}
3548 		}
3549 		if (*this_char) {
3550 			char *value = strchr(this_char, '=');
3551 			size_t len = 0;
3552 			int err;
3553 
3554 			if (value) {
3555 				*value++ = '\0';
3556 				len = strlen(value);
3557 			}
3558 			err = vfs_parse_fs_string(fc, this_char, value, len);
3559 			if (err < 0)
3560 				return err;
3561 		}
3562 	}
3563 	return 0;
3564 }
3565 
3566 /*
3567  * Reconfigure a shmem filesystem.
3568  *
3569  * Note that we disallow change from limited->unlimited blocks/inodes while any
3570  * are in use; but we must separately disallow unlimited->limited, because in
3571  * that case we have no record of how much is already in use.
3572  */
3573 static int shmem_reconfigure(struct fs_context *fc)
3574 {
3575 	struct shmem_options *ctx = fc->fs_private;
3576 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3577 	unsigned long inodes;
3578 	struct mempolicy *mpol = NULL;
3579 	const char *err;
3580 
3581 	raw_spin_lock(&sbinfo->stat_lock);
3582 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3583 
3584 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3585 		if (!sbinfo->max_blocks) {
3586 			err = "Cannot retroactively limit size";
3587 			goto out;
3588 		}
3589 		if (percpu_counter_compare(&sbinfo->used_blocks,
3590 					   ctx->blocks) > 0) {
3591 			err = "Too small a size for current use";
3592 			goto out;
3593 		}
3594 	}
3595 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3596 		if (!sbinfo->max_inodes) {
3597 			err = "Cannot retroactively limit inodes";
3598 			goto out;
3599 		}
3600 		if (ctx->inodes < inodes) {
3601 			err = "Too few inodes for current use";
3602 			goto out;
3603 		}
3604 	}
3605 
3606 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3607 	    sbinfo->next_ino > UINT_MAX) {
3608 		err = "Current inum too high to switch to 32-bit inums";
3609 		goto out;
3610 	}
3611 
3612 	if (ctx->seen & SHMEM_SEEN_HUGE)
3613 		sbinfo->huge = ctx->huge;
3614 	if (ctx->seen & SHMEM_SEEN_INUMS)
3615 		sbinfo->full_inums = ctx->full_inums;
3616 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3617 		sbinfo->max_blocks  = ctx->blocks;
3618 	if (ctx->seen & SHMEM_SEEN_INODES) {
3619 		sbinfo->max_inodes  = ctx->inodes;
3620 		sbinfo->free_inodes = ctx->inodes - inodes;
3621 	}
3622 
3623 	/*
3624 	 * Preserve previous mempolicy unless mpol remount option was specified.
3625 	 */
3626 	if (ctx->mpol) {
3627 		mpol = sbinfo->mpol;
3628 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3629 		ctx->mpol = NULL;
3630 	}
3631 	raw_spin_unlock(&sbinfo->stat_lock);
3632 	mpol_put(mpol);
3633 	return 0;
3634 out:
3635 	raw_spin_unlock(&sbinfo->stat_lock);
3636 	return invalfc(fc, "%s", err);
3637 }
3638 
3639 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3640 {
3641 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3642 
3643 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3644 		seq_printf(seq, ",size=%luk",
3645 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3646 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3647 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3648 	if (sbinfo->mode != (0777 | S_ISVTX))
3649 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3650 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3651 		seq_printf(seq, ",uid=%u",
3652 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3653 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3654 		seq_printf(seq, ",gid=%u",
3655 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3656 
3657 	/*
3658 	 * Showing inode{64,32} might be useful even if it's the system default,
3659 	 * since then people don't have to resort to checking both here and
3660 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3661 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3662 	 *
3663 	 * We hide it when inode64 isn't the default and we are using 32-bit
3664 	 * inodes, since that probably just means the feature isn't even under
3665 	 * consideration.
3666 	 *
3667 	 * As such:
3668 	 *
3669 	 *                     +-----------------+-----------------+
3670 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3671 	 *  +------------------+-----------------+-----------------+
3672 	 *  | full_inums=true  | show            | show            |
3673 	 *  | full_inums=false | show            | hide            |
3674 	 *  +------------------+-----------------+-----------------+
3675 	 *
3676 	 */
3677 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3678 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3680 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3681 	if (sbinfo->huge)
3682 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3683 #endif
3684 	shmem_show_mpol(seq, sbinfo->mpol);
3685 	return 0;
3686 }
3687 
3688 #endif /* CONFIG_TMPFS */
3689 
3690 static void shmem_put_super(struct super_block *sb)
3691 {
3692 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3693 
3694 	free_percpu(sbinfo->ino_batch);
3695 	percpu_counter_destroy(&sbinfo->used_blocks);
3696 	mpol_put(sbinfo->mpol);
3697 	kfree(sbinfo);
3698 	sb->s_fs_info = NULL;
3699 }
3700 
3701 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3702 {
3703 	struct shmem_options *ctx = fc->fs_private;
3704 	struct inode *inode;
3705 	struct shmem_sb_info *sbinfo;
3706 
3707 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3708 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3709 				L1_CACHE_BYTES), GFP_KERNEL);
3710 	if (!sbinfo)
3711 		return -ENOMEM;
3712 
3713 	sb->s_fs_info = sbinfo;
3714 
3715 #ifdef CONFIG_TMPFS
3716 	/*
3717 	 * Per default we only allow half of the physical ram per
3718 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3719 	 * but the internal instance is left unlimited.
3720 	 */
3721 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3722 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3723 			ctx->blocks = shmem_default_max_blocks();
3724 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3725 			ctx->inodes = shmem_default_max_inodes();
3726 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3727 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3728 	} else {
3729 		sb->s_flags |= SB_NOUSER;
3730 	}
3731 	sb->s_export_op = &shmem_export_ops;
3732 	sb->s_flags |= SB_NOSEC;
3733 #else
3734 	sb->s_flags |= SB_NOUSER;
3735 #endif
3736 	sbinfo->max_blocks = ctx->blocks;
3737 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3738 	if (sb->s_flags & SB_KERNMOUNT) {
3739 		sbinfo->ino_batch = alloc_percpu(ino_t);
3740 		if (!sbinfo->ino_batch)
3741 			goto failed;
3742 	}
3743 	sbinfo->uid = ctx->uid;
3744 	sbinfo->gid = ctx->gid;
3745 	sbinfo->full_inums = ctx->full_inums;
3746 	sbinfo->mode = ctx->mode;
3747 	sbinfo->huge = ctx->huge;
3748 	sbinfo->mpol = ctx->mpol;
3749 	ctx->mpol = NULL;
3750 
3751 	raw_spin_lock_init(&sbinfo->stat_lock);
3752 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3753 		goto failed;
3754 	spin_lock_init(&sbinfo->shrinklist_lock);
3755 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3756 
3757 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3758 	sb->s_blocksize = PAGE_SIZE;
3759 	sb->s_blocksize_bits = PAGE_SHIFT;
3760 	sb->s_magic = TMPFS_MAGIC;
3761 	sb->s_op = &shmem_ops;
3762 	sb->s_time_gran = 1;
3763 #ifdef CONFIG_TMPFS_XATTR
3764 	sb->s_xattr = shmem_xattr_handlers;
3765 #endif
3766 #ifdef CONFIG_TMPFS_POSIX_ACL
3767 	sb->s_flags |= SB_POSIXACL;
3768 #endif
3769 	uuid_gen(&sb->s_uuid);
3770 
3771 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3772 	if (!inode)
3773 		goto failed;
3774 	inode->i_uid = sbinfo->uid;
3775 	inode->i_gid = sbinfo->gid;
3776 	sb->s_root = d_make_root(inode);
3777 	if (!sb->s_root)
3778 		goto failed;
3779 	return 0;
3780 
3781 failed:
3782 	shmem_put_super(sb);
3783 	return -ENOMEM;
3784 }
3785 
3786 static int shmem_get_tree(struct fs_context *fc)
3787 {
3788 	return get_tree_nodev(fc, shmem_fill_super);
3789 }
3790 
3791 static void shmem_free_fc(struct fs_context *fc)
3792 {
3793 	struct shmem_options *ctx = fc->fs_private;
3794 
3795 	if (ctx) {
3796 		mpol_put(ctx->mpol);
3797 		kfree(ctx);
3798 	}
3799 }
3800 
3801 static const struct fs_context_operations shmem_fs_context_ops = {
3802 	.free			= shmem_free_fc,
3803 	.get_tree		= shmem_get_tree,
3804 #ifdef CONFIG_TMPFS
3805 	.parse_monolithic	= shmem_parse_options,
3806 	.parse_param		= shmem_parse_one,
3807 	.reconfigure		= shmem_reconfigure,
3808 #endif
3809 };
3810 
3811 static struct kmem_cache *shmem_inode_cachep;
3812 
3813 static struct inode *shmem_alloc_inode(struct super_block *sb)
3814 {
3815 	struct shmem_inode_info *info;
3816 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3817 	if (!info)
3818 		return NULL;
3819 	return &info->vfs_inode;
3820 }
3821 
3822 static void shmem_free_in_core_inode(struct inode *inode)
3823 {
3824 	if (S_ISLNK(inode->i_mode))
3825 		kfree(inode->i_link);
3826 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3827 }
3828 
3829 static void shmem_destroy_inode(struct inode *inode)
3830 {
3831 	if (S_ISREG(inode->i_mode))
3832 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3833 }
3834 
3835 static void shmem_init_inode(void *foo)
3836 {
3837 	struct shmem_inode_info *info = foo;
3838 	inode_init_once(&info->vfs_inode);
3839 }
3840 
3841 static void shmem_init_inodecache(void)
3842 {
3843 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3844 				sizeof(struct shmem_inode_info),
3845 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3846 }
3847 
3848 static void shmem_destroy_inodecache(void)
3849 {
3850 	kmem_cache_destroy(shmem_inode_cachep);
3851 }
3852 
3853 /* Keep the page in page cache instead of truncating it */
3854 static int shmem_error_remove_page(struct address_space *mapping,
3855 				   struct page *page)
3856 {
3857 	return 0;
3858 }
3859 
3860 const struct address_space_operations shmem_aops = {
3861 	.writepage	= shmem_writepage,
3862 	.dirty_folio	= noop_dirty_folio,
3863 #ifdef CONFIG_TMPFS
3864 	.write_begin	= shmem_write_begin,
3865 	.write_end	= shmem_write_end,
3866 #endif
3867 #ifdef CONFIG_MIGRATION
3868 	.migrate_folio	= migrate_folio,
3869 #endif
3870 	.error_remove_page = shmem_error_remove_page,
3871 };
3872 EXPORT_SYMBOL(shmem_aops);
3873 
3874 static const struct file_operations shmem_file_operations = {
3875 	.mmap		= shmem_mmap,
3876 	.get_unmapped_area = shmem_get_unmapped_area,
3877 #ifdef CONFIG_TMPFS
3878 	.llseek		= shmem_file_llseek,
3879 	.read_iter	= shmem_file_read_iter,
3880 	.write_iter	= generic_file_write_iter,
3881 	.fsync		= noop_fsync,
3882 	.splice_read	= generic_file_splice_read,
3883 	.splice_write	= iter_file_splice_write,
3884 	.fallocate	= shmem_fallocate,
3885 #endif
3886 };
3887 
3888 static const struct inode_operations shmem_inode_operations = {
3889 	.getattr	= shmem_getattr,
3890 	.setattr	= shmem_setattr,
3891 #ifdef CONFIG_TMPFS_XATTR
3892 	.listxattr	= shmem_listxattr,
3893 	.set_acl	= simple_set_acl,
3894 	.fileattr_get	= shmem_fileattr_get,
3895 	.fileattr_set	= shmem_fileattr_set,
3896 #endif
3897 };
3898 
3899 static const struct inode_operations shmem_dir_inode_operations = {
3900 #ifdef CONFIG_TMPFS
3901 	.getattr	= shmem_getattr,
3902 	.create		= shmem_create,
3903 	.lookup		= simple_lookup,
3904 	.link		= shmem_link,
3905 	.unlink		= shmem_unlink,
3906 	.symlink	= shmem_symlink,
3907 	.mkdir		= shmem_mkdir,
3908 	.rmdir		= shmem_rmdir,
3909 	.mknod		= shmem_mknod,
3910 	.rename		= shmem_rename2,
3911 	.tmpfile	= shmem_tmpfile,
3912 #endif
3913 #ifdef CONFIG_TMPFS_XATTR
3914 	.listxattr	= shmem_listxattr,
3915 	.fileattr_get	= shmem_fileattr_get,
3916 	.fileattr_set	= shmem_fileattr_set,
3917 #endif
3918 #ifdef CONFIG_TMPFS_POSIX_ACL
3919 	.setattr	= shmem_setattr,
3920 	.set_acl	= simple_set_acl,
3921 #endif
3922 };
3923 
3924 static const struct inode_operations shmem_special_inode_operations = {
3925 	.getattr	= shmem_getattr,
3926 #ifdef CONFIG_TMPFS_XATTR
3927 	.listxattr	= shmem_listxattr,
3928 #endif
3929 #ifdef CONFIG_TMPFS_POSIX_ACL
3930 	.setattr	= shmem_setattr,
3931 	.set_acl	= simple_set_acl,
3932 #endif
3933 };
3934 
3935 static const struct super_operations shmem_ops = {
3936 	.alloc_inode	= shmem_alloc_inode,
3937 	.free_inode	= shmem_free_in_core_inode,
3938 	.destroy_inode	= shmem_destroy_inode,
3939 #ifdef CONFIG_TMPFS
3940 	.statfs		= shmem_statfs,
3941 	.show_options	= shmem_show_options,
3942 #endif
3943 	.evict_inode	= shmem_evict_inode,
3944 	.drop_inode	= generic_delete_inode,
3945 	.put_super	= shmem_put_super,
3946 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3947 	.nr_cached_objects	= shmem_unused_huge_count,
3948 	.free_cached_objects	= shmem_unused_huge_scan,
3949 #endif
3950 };
3951 
3952 static const struct vm_operations_struct shmem_vm_ops = {
3953 	.fault		= shmem_fault,
3954 	.map_pages	= filemap_map_pages,
3955 #ifdef CONFIG_NUMA
3956 	.set_policy     = shmem_set_policy,
3957 	.get_policy     = shmem_get_policy,
3958 #endif
3959 };
3960 
3961 int shmem_init_fs_context(struct fs_context *fc)
3962 {
3963 	struct shmem_options *ctx;
3964 
3965 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3966 	if (!ctx)
3967 		return -ENOMEM;
3968 
3969 	ctx->mode = 0777 | S_ISVTX;
3970 	ctx->uid = current_fsuid();
3971 	ctx->gid = current_fsgid();
3972 
3973 	fc->fs_private = ctx;
3974 	fc->ops = &shmem_fs_context_ops;
3975 	return 0;
3976 }
3977 
3978 static struct file_system_type shmem_fs_type = {
3979 	.owner		= THIS_MODULE,
3980 	.name		= "tmpfs",
3981 	.init_fs_context = shmem_init_fs_context,
3982 #ifdef CONFIG_TMPFS
3983 	.parameters	= shmem_fs_parameters,
3984 #endif
3985 	.kill_sb	= kill_litter_super,
3986 	.fs_flags	= FS_USERNS_MOUNT,
3987 };
3988 
3989 void __init shmem_init(void)
3990 {
3991 	int error;
3992 
3993 	shmem_init_inodecache();
3994 
3995 	error = register_filesystem(&shmem_fs_type);
3996 	if (error) {
3997 		pr_err("Could not register tmpfs\n");
3998 		goto out2;
3999 	}
4000 
4001 	shm_mnt = kern_mount(&shmem_fs_type);
4002 	if (IS_ERR(shm_mnt)) {
4003 		error = PTR_ERR(shm_mnt);
4004 		pr_err("Could not kern_mount tmpfs\n");
4005 		goto out1;
4006 	}
4007 
4008 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4009 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4010 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4011 	else
4012 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4013 #endif
4014 	return;
4015 
4016 out1:
4017 	unregister_filesystem(&shmem_fs_type);
4018 out2:
4019 	shmem_destroy_inodecache();
4020 	shm_mnt = ERR_PTR(error);
4021 }
4022 
4023 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4024 static ssize_t shmem_enabled_show(struct kobject *kobj,
4025 				  struct kobj_attribute *attr, char *buf)
4026 {
4027 	static const int values[] = {
4028 		SHMEM_HUGE_ALWAYS,
4029 		SHMEM_HUGE_WITHIN_SIZE,
4030 		SHMEM_HUGE_ADVISE,
4031 		SHMEM_HUGE_NEVER,
4032 		SHMEM_HUGE_DENY,
4033 		SHMEM_HUGE_FORCE,
4034 	};
4035 	int len = 0;
4036 	int i;
4037 
4038 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4039 		len += sysfs_emit_at(buf, len,
4040 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4041 				     i ? " " : "",
4042 				     shmem_format_huge(values[i]));
4043 	}
4044 
4045 	len += sysfs_emit_at(buf, len, "\n");
4046 
4047 	return len;
4048 }
4049 
4050 static ssize_t shmem_enabled_store(struct kobject *kobj,
4051 		struct kobj_attribute *attr, const char *buf, size_t count)
4052 {
4053 	char tmp[16];
4054 	int huge;
4055 
4056 	if (count + 1 > sizeof(tmp))
4057 		return -EINVAL;
4058 	memcpy(tmp, buf, count);
4059 	tmp[count] = '\0';
4060 	if (count && tmp[count - 1] == '\n')
4061 		tmp[count - 1] = '\0';
4062 
4063 	huge = shmem_parse_huge(tmp);
4064 	if (huge == -EINVAL)
4065 		return -EINVAL;
4066 	if (!has_transparent_hugepage() &&
4067 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4068 		return -EINVAL;
4069 
4070 	shmem_huge = huge;
4071 	if (shmem_huge > SHMEM_HUGE_DENY)
4072 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4073 	return count;
4074 }
4075 
4076 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4077 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4078 
4079 #else /* !CONFIG_SHMEM */
4080 
4081 /*
4082  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4083  *
4084  * This is intended for small system where the benefits of the full
4085  * shmem code (swap-backed and resource-limited) are outweighed by
4086  * their complexity. On systems without swap this code should be
4087  * effectively equivalent, but much lighter weight.
4088  */
4089 
4090 static struct file_system_type shmem_fs_type = {
4091 	.name		= "tmpfs",
4092 	.init_fs_context = ramfs_init_fs_context,
4093 	.parameters	= ramfs_fs_parameters,
4094 	.kill_sb	= kill_litter_super,
4095 	.fs_flags	= FS_USERNS_MOUNT,
4096 };
4097 
4098 void __init shmem_init(void)
4099 {
4100 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4101 
4102 	shm_mnt = kern_mount(&shmem_fs_type);
4103 	BUG_ON(IS_ERR(shm_mnt));
4104 }
4105 
4106 int shmem_unuse(unsigned int type)
4107 {
4108 	return 0;
4109 }
4110 
4111 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4112 {
4113 	return 0;
4114 }
4115 
4116 void shmem_unlock_mapping(struct address_space *mapping)
4117 {
4118 }
4119 
4120 #ifdef CONFIG_MMU
4121 unsigned long shmem_get_unmapped_area(struct file *file,
4122 				      unsigned long addr, unsigned long len,
4123 				      unsigned long pgoff, unsigned long flags)
4124 {
4125 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4126 }
4127 #endif
4128 
4129 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4130 {
4131 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4132 }
4133 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4134 
4135 #define shmem_vm_ops				generic_file_vm_ops
4136 #define shmem_file_operations			ramfs_file_operations
4137 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4138 #define shmem_acct_size(flags, size)		0
4139 #define shmem_unacct_size(flags, size)		do {} while (0)
4140 
4141 #endif /* CONFIG_SHMEM */
4142 
4143 /* common code */
4144 
4145 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4146 				       unsigned long flags, unsigned int i_flags)
4147 {
4148 	struct inode *inode;
4149 	struct file *res;
4150 
4151 	if (IS_ERR(mnt))
4152 		return ERR_CAST(mnt);
4153 
4154 	if (size < 0 || size > MAX_LFS_FILESIZE)
4155 		return ERR_PTR(-EINVAL);
4156 
4157 	if (shmem_acct_size(flags, size))
4158 		return ERR_PTR(-ENOMEM);
4159 
4160 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4161 				flags);
4162 	if (unlikely(!inode)) {
4163 		shmem_unacct_size(flags, size);
4164 		return ERR_PTR(-ENOSPC);
4165 	}
4166 	inode->i_flags |= i_flags;
4167 	inode->i_size = size;
4168 	clear_nlink(inode);	/* It is unlinked */
4169 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4170 	if (!IS_ERR(res))
4171 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4172 				&shmem_file_operations);
4173 	if (IS_ERR(res))
4174 		iput(inode);
4175 	return res;
4176 }
4177 
4178 /**
4179  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4180  * 	kernel internal.  There will be NO LSM permission checks against the
4181  * 	underlying inode.  So users of this interface must do LSM checks at a
4182  *	higher layer.  The users are the big_key and shm implementations.  LSM
4183  *	checks are provided at the key or shm level rather than the inode.
4184  * @name: name for dentry (to be seen in /proc/<pid>/maps
4185  * @size: size to be set for the file
4186  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4187  */
4188 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4189 {
4190 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4191 }
4192 
4193 /**
4194  * shmem_file_setup - get an unlinked file living in tmpfs
4195  * @name: name for dentry (to be seen in /proc/<pid>/maps
4196  * @size: size to be set for the file
4197  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4198  */
4199 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4200 {
4201 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4202 }
4203 EXPORT_SYMBOL_GPL(shmem_file_setup);
4204 
4205 /**
4206  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4207  * @mnt: the tmpfs mount where the file will be created
4208  * @name: name for dentry (to be seen in /proc/<pid>/maps
4209  * @size: size to be set for the file
4210  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4211  */
4212 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4213 				       loff_t size, unsigned long flags)
4214 {
4215 	return __shmem_file_setup(mnt, name, size, flags, 0);
4216 }
4217 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4218 
4219 /**
4220  * shmem_zero_setup - setup a shared anonymous mapping
4221  * @vma: the vma to be mmapped is prepared by do_mmap
4222  */
4223 int shmem_zero_setup(struct vm_area_struct *vma)
4224 {
4225 	struct file *file;
4226 	loff_t size = vma->vm_end - vma->vm_start;
4227 
4228 	/*
4229 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4230 	 * between XFS directory reading and selinux: since this file is only
4231 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4232 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4233 	 */
4234 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4235 	if (IS_ERR(file))
4236 		return PTR_ERR(file);
4237 
4238 	if (vma->vm_file)
4239 		fput(vma->vm_file);
4240 	vma->vm_file = file;
4241 	vma->vm_ops = &shmem_vm_ops;
4242 
4243 	return 0;
4244 }
4245 
4246 /**
4247  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4248  * @mapping:	the page's address_space
4249  * @index:	the page index
4250  * @gfp:	the page allocator flags to use if allocating
4251  *
4252  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4253  * with any new page allocations done using the specified allocation flags.
4254  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4255  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4256  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4257  *
4258  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4259  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4260  */
4261 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4262 					 pgoff_t index, gfp_t gfp)
4263 {
4264 #ifdef CONFIG_SHMEM
4265 	struct inode *inode = mapping->host;
4266 	struct page *page;
4267 	int error;
4268 
4269 	BUG_ON(!shmem_mapping(mapping));
4270 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4271 				  gfp, NULL, NULL, NULL);
4272 	if (error)
4273 		return ERR_PTR(error);
4274 
4275 	unlock_page(page);
4276 	if (PageHWPoison(page)) {
4277 		put_page(page);
4278 		return ERR_PTR(-EIO);
4279 	}
4280 
4281 	return page;
4282 #else
4283 	/*
4284 	 * The tiny !SHMEM case uses ramfs without swap
4285 	 */
4286 	return read_cache_page_gfp(mapping, index, gfp);
4287 #endif
4288 }
4289 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4290