xref: /openbmc/linux/mm/shmem.c (revision a12831bf4293d38518e41b80dd897af0122bb268)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 
40 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
41 
42 static struct vfsmount *shm_mnt;
43 
44 #ifdef CONFIG_SHMEM
45 /*
46  * This virtual memory filesystem is heavily based on the ramfs. It
47  * extends ramfs by the ability to use swap and honor resource limits
48  * which makes it a completely usable filesystem.
49  */
50 
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/blkdev.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 
82 #include <linux/uaccess.h>
83 #include <asm/pgtable.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95 
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_mutex making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 	pgoff_t start;		/* start of range currently being fallocated */
104 	pgoff_t next;		/* the next page offset to be fallocated */
105 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
106 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
107 };
108 
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112 	return totalram_pages / 2;
113 }
114 
115 static unsigned long shmem_default_max_inodes(void)
116 {
117 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120 
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 				struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 		struct page **pagep, enum sgp_type sgp,
126 		gfp_t gfp, struct vm_area_struct *vma,
127 		struct vm_fault *vmf, vm_fault_t *fault_type);
128 
129 int shmem_getpage(struct inode *inode, pgoff_t index,
130 		struct page **pagep, enum sgp_type sgp)
131 {
132 	return shmem_getpage_gfp(inode, index, pagep, sgp,
133 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
134 }
135 
136 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137 {
138 	return sb->s_fs_info;
139 }
140 
141 /*
142  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143  * for shared memory and for shared anonymous (/dev/zero) mappings
144  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145  * consistent with the pre-accounting of private mappings ...
146  */
147 static inline int shmem_acct_size(unsigned long flags, loff_t size)
148 {
149 	return (flags & VM_NORESERVE) ?
150 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
151 }
152 
153 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154 {
155 	if (!(flags & VM_NORESERVE))
156 		vm_unacct_memory(VM_ACCT(size));
157 }
158 
159 static inline int shmem_reacct_size(unsigned long flags,
160 		loff_t oldsize, loff_t newsize)
161 {
162 	if (!(flags & VM_NORESERVE)) {
163 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
164 			return security_vm_enough_memory_mm(current->mm,
165 					VM_ACCT(newsize) - VM_ACCT(oldsize));
166 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
167 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
168 	}
169 	return 0;
170 }
171 
172 /*
173  * ... whereas tmpfs objects are accounted incrementally as
174  * pages are allocated, in order to allow large sparse files.
175  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
176  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177  */
178 static inline int shmem_acct_block(unsigned long flags, long pages)
179 {
180 	if (!(flags & VM_NORESERVE))
181 		return 0;
182 
183 	return security_vm_enough_memory_mm(current->mm,
184 			pages * VM_ACCT(PAGE_SIZE));
185 }
186 
187 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
188 {
189 	if (flags & VM_NORESERVE)
190 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
191 }
192 
193 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
194 {
195 	struct shmem_inode_info *info = SHMEM_I(inode);
196 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
197 
198 	if (shmem_acct_block(info->flags, pages))
199 		return false;
200 
201 	if (sbinfo->max_blocks) {
202 		if (percpu_counter_compare(&sbinfo->used_blocks,
203 					   sbinfo->max_blocks - pages) > 0)
204 			goto unacct;
205 		percpu_counter_add(&sbinfo->used_blocks, pages);
206 	}
207 
208 	return true;
209 
210 unacct:
211 	shmem_unacct_blocks(info->flags, pages);
212 	return false;
213 }
214 
215 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
216 {
217 	struct shmem_inode_info *info = SHMEM_I(inode);
218 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219 
220 	if (sbinfo->max_blocks)
221 		percpu_counter_sub(&sbinfo->used_blocks, pages);
222 	shmem_unacct_blocks(info->flags, pages);
223 }
224 
225 static const struct super_operations shmem_ops;
226 static const struct address_space_operations shmem_aops;
227 static const struct file_operations shmem_file_operations;
228 static const struct inode_operations shmem_inode_operations;
229 static const struct inode_operations shmem_dir_inode_operations;
230 static const struct inode_operations shmem_special_inode_operations;
231 static const struct vm_operations_struct shmem_vm_ops;
232 static struct file_system_type shmem_fs_type;
233 
234 bool vma_is_shmem(struct vm_area_struct *vma)
235 {
236 	return vma->vm_ops == &shmem_vm_ops;
237 }
238 
239 static LIST_HEAD(shmem_swaplist);
240 static DEFINE_MUTEX(shmem_swaplist_mutex);
241 
242 static int shmem_reserve_inode(struct super_block *sb)
243 {
244 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
245 	if (sbinfo->max_inodes) {
246 		spin_lock(&sbinfo->stat_lock);
247 		if (!sbinfo->free_inodes) {
248 			spin_unlock(&sbinfo->stat_lock);
249 			return -ENOSPC;
250 		}
251 		sbinfo->free_inodes--;
252 		spin_unlock(&sbinfo->stat_lock);
253 	}
254 	return 0;
255 }
256 
257 static void shmem_free_inode(struct super_block *sb)
258 {
259 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
260 	if (sbinfo->max_inodes) {
261 		spin_lock(&sbinfo->stat_lock);
262 		sbinfo->free_inodes++;
263 		spin_unlock(&sbinfo->stat_lock);
264 	}
265 }
266 
267 /**
268  * shmem_recalc_inode - recalculate the block usage of an inode
269  * @inode: inode to recalc
270  *
271  * We have to calculate the free blocks since the mm can drop
272  * undirtied hole pages behind our back.
273  *
274  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
275  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276  *
277  * It has to be called with the spinlock held.
278  */
279 static void shmem_recalc_inode(struct inode *inode)
280 {
281 	struct shmem_inode_info *info = SHMEM_I(inode);
282 	long freed;
283 
284 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
285 	if (freed > 0) {
286 		info->alloced -= freed;
287 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
288 		shmem_inode_unacct_blocks(inode, freed);
289 	}
290 }
291 
292 bool shmem_charge(struct inode *inode, long pages)
293 {
294 	struct shmem_inode_info *info = SHMEM_I(inode);
295 	unsigned long flags;
296 
297 	if (!shmem_inode_acct_block(inode, pages))
298 		return false;
299 
300 	spin_lock_irqsave(&info->lock, flags);
301 	info->alloced += pages;
302 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
303 	shmem_recalc_inode(inode);
304 	spin_unlock_irqrestore(&info->lock, flags);
305 	inode->i_mapping->nrpages += pages;
306 
307 	return true;
308 }
309 
310 void shmem_uncharge(struct inode *inode, long pages)
311 {
312 	struct shmem_inode_info *info = SHMEM_I(inode);
313 	unsigned long flags;
314 
315 	spin_lock_irqsave(&info->lock, flags);
316 	info->alloced -= pages;
317 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
318 	shmem_recalc_inode(inode);
319 	spin_unlock_irqrestore(&info->lock, flags);
320 
321 	shmem_inode_unacct_blocks(inode, pages);
322 }
323 
324 /*
325  * Replace item expected in xarray by a new item, while holding xa_lock.
326  */
327 static int shmem_replace_entry(struct address_space *mapping,
328 			pgoff_t index, void *expected, void *replacement)
329 {
330 	XA_STATE(xas, &mapping->i_pages, index);
331 	void *item;
332 
333 	VM_BUG_ON(!expected);
334 	VM_BUG_ON(!replacement);
335 	item = xas_load(&xas);
336 	if (item != expected)
337 		return -ENOENT;
338 	xas_store(&xas, replacement);
339 	return 0;
340 }
341 
342 /*
343  * Sometimes, before we decide whether to proceed or to fail, we must check
344  * that an entry was not already brought back from swap by a racing thread.
345  *
346  * Checking page is not enough: by the time a SwapCache page is locked, it
347  * might be reused, and again be SwapCache, using the same swap as before.
348  */
349 static bool shmem_confirm_swap(struct address_space *mapping,
350 			       pgoff_t index, swp_entry_t swap)
351 {
352 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
353 }
354 
355 /*
356  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
357  *
358  * SHMEM_HUGE_NEVER:
359  *	disables huge pages for the mount;
360  * SHMEM_HUGE_ALWAYS:
361  *	enables huge pages for the mount;
362  * SHMEM_HUGE_WITHIN_SIZE:
363  *	only allocate huge pages if the page will be fully within i_size,
364  *	also respect fadvise()/madvise() hints;
365  * SHMEM_HUGE_ADVISE:
366  *	only allocate huge pages if requested with fadvise()/madvise();
367  */
368 
369 #define SHMEM_HUGE_NEVER	0
370 #define SHMEM_HUGE_ALWAYS	1
371 #define SHMEM_HUGE_WITHIN_SIZE	2
372 #define SHMEM_HUGE_ADVISE	3
373 
374 /*
375  * Special values.
376  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
377  *
378  * SHMEM_HUGE_DENY:
379  *	disables huge on shm_mnt and all mounts, for emergency use;
380  * SHMEM_HUGE_FORCE:
381  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
382  *
383  */
384 #define SHMEM_HUGE_DENY		(-1)
385 #define SHMEM_HUGE_FORCE	(-2)
386 
387 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
388 /* ifdef here to avoid bloating shmem.o when not necessary */
389 
390 static int shmem_huge __read_mostly;
391 
392 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
393 static int shmem_parse_huge(const char *str)
394 {
395 	if (!strcmp(str, "never"))
396 		return SHMEM_HUGE_NEVER;
397 	if (!strcmp(str, "always"))
398 		return SHMEM_HUGE_ALWAYS;
399 	if (!strcmp(str, "within_size"))
400 		return SHMEM_HUGE_WITHIN_SIZE;
401 	if (!strcmp(str, "advise"))
402 		return SHMEM_HUGE_ADVISE;
403 	if (!strcmp(str, "deny"))
404 		return SHMEM_HUGE_DENY;
405 	if (!strcmp(str, "force"))
406 		return SHMEM_HUGE_FORCE;
407 	return -EINVAL;
408 }
409 
410 static const char *shmem_format_huge(int huge)
411 {
412 	switch (huge) {
413 	case SHMEM_HUGE_NEVER:
414 		return "never";
415 	case SHMEM_HUGE_ALWAYS:
416 		return "always";
417 	case SHMEM_HUGE_WITHIN_SIZE:
418 		return "within_size";
419 	case SHMEM_HUGE_ADVISE:
420 		return "advise";
421 	case SHMEM_HUGE_DENY:
422 		return "deny";
423 	case SHMEM_HUGE_FORCE:
424 		return "force";
425 	default:
426 		VM_BUG_ON(1);
427 		return "bad_val";
428 	}
429 }
430 #endif
431 
432 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
433 		struct shrink_control *sc, unsigned long nr_to_split)
434 {
435 	LIST_HEAD(list), *pos, *next;
436 	LIST_HEAD(to_remove);
437 	struct inode *inode;
438 	struct shmem_inode_info *info;
439 	struct page *page;
440 	unsigned long batch = sc ? sc->nr_to_scan : 128;
441 	int removed = 0, split = 0;
442 
443 	if (list_empty(&sbinfo->shrinklist))
444 		return SHRINK_STOP;
445 
446 	spin_lock(&sbinfo->shrinklist_lock);
447 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
448 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
449 
450 		/* pin the inode */
451 		inode = igrab(&info->vfs_inode);
452 
453 		/* inode is about to be evicted */
454 		if (!inode) {
455 			list_del_init(&info->shrinklist);
456 			removed++;
457 			goto next;
458 		}
459 
460 		/* Check if there's anything to gain */
461 		if (round_up(inode->i_size, PAGE_SIZE) ==
462 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
463 			list_move(&info->shrinklist, &to_remove);
464 			removed++;
465 			goto next;
466 		}
467 
468 		list_move(&info->shrinklist, &list);
469 next:
470 		if (!--batch)
471 			break;
472 	}
473 	spin_unlock(&sbinfo->shrinklist_lock);
474 
475 	list_for_each_safe(pos, next, &to_remove) {
476 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
477 		inode = &info->vfs_inode;
478 		list_del_init(&info->shrinklist);
479 		iput(inode);
480 	}
481 
482 	list_for_each_safe(pos, next, &list) {
483 		int ret;
484 
485 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
486 		inode = &info->vfs_inode;
487 
488 		if (nr_to_split && split >= nr_to_split)
489 			goto leave;
490 
491 		page = find_get_page(inode->i_mapping,
492 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
493 		if (!page)
494 			goto drop;
495 
496 		/* No huge page at the end of the file: nothing to split */
497 		if (!PageTransHuge(page)) {
498 			put_page(page);
499 			goto drop;
500 		}
501 
502 		/*
503 		 * Leave the inode on the list if we failed to lock
504 		 * the page at this time.
505 		 *
506 		 * Waiting for the lock may lead to deadlock in the
507 		 * reclaim path.
508 		 */
509 		if (!trylock_page(page)) {
510 			put_page(page);
511 			goto leave;
512 		}
513 
514 		ret = split_huge_page(page);
515 		unlock_page(page);
516 		put_page(page);
517 
518 		/* If split failed leave the inode on the list */
519 		if (ret)
520 			goto leave;
521 
522 		split++;
523 drop:
524 		list_del_init(&info->shrinklist);
525 		removed++;
526 leave:
527 		iput(inode);
528 	}
529 
530 	spin_lock(&sbinfo->shrinklist_lock);
531 	list_splice_tail(&list, &sbinfo->shrinklist);
532 	sbinfo->shrinklist_len -= removed;
533 	spin_unlock(&sbinfo->shrinklist_lock);
534 
535 	return split;
536 }
537 
538 static long shmem_unused_huge_scan(struct super_block *sb,
539 		struct shrink_control *sc)
540 {
541 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
542 
543 	if (!READ_ONCE(sbinfo->shrinklist_len))
544 		return SHRINK_STOP;
545 
546 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
547 }
548 
549 static long shmem_unused_huge_count(struct super_block *sb,
550 		struct shrink_control *sc)
551 {
552 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
553 	return READ_ONCE(sbinfo->shrinklist_len);
554 }
555 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
556 
557 #define shmem_huge SHMEM_HUGE_DENY
558 
559 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
560 		struct shrink_control *sc, unsigned long nr_to_split)
561 {
562 	return 0;
563 }
564 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
565 
566 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
567 {
568 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
569 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
570 	    shmem_huge != SHMEM_HUGE_DENY)
571 		return true;
572 	return false;
573 }
574 
575 /*
576  * Like add_to_page_cache_locked, but error if expected item has gone.
577  */
578 static int shmem_add_to_page_cache(struct page *page,
579 				   struct address_space *mapping,
580 				   pgoff_t index, void *expected)
581 {
582 	int error, nr = hpage_nr_pages(page);
583 
584 	VM_BUG_ON_PAGE(PageTail(page), page);
585 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
586 	VM_BUG_ON_PAGE(!PageLocked(page), page);
587 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
588 	VM_BUG_ON(expected && PageTransHuge(page));
589 
590 	page_ref_add(page, nr);
591 	page->mapping = mapping;
592 	page->index = index;
593 
594 	xa_lock_irq(&mapping->i_pages);
595 	if (PageTransHuge(page)) {
596 		void __rcu **results;
597 		pgoff_t idx;
598 		int i;
599 
600 		error = 0;
601 		if (radix_tree_gang_lookup_slot(&mapping->i_pages,
602 					&results, &idx, index, 1) &&
603 				idx < index + HPAGE_PMD_NR) {
604 			error = -EEXIST;
605 		}
606 
607 		if (!error) {
608 			for (i = 0; i < HPAGE_PMD_NR; i++) {
609 				error = radix_tree_insert(&mapping->i_pages,
610 						index + i, page + i);
611 				VM_BUG_ON(error);
612 			}
613 			count_vm_event(THP_FILE_ALLOC);
614 		}
615 	} else if (!expected) {
616 		error = radix_tree_insert(&mapping->i_pages, index, page);
617 	} else {
618 		error = shmem_replace_entry(mapping, index, expected, page);
619 	}
620 
621 	if (!error) {
622 		mapping->nrpages += nr;
623 		if (PageTransHuge(page))
624 			__inc_node_page_state(page, NR_SHMEM_THPS);
625 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
626 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
627 		xa_unlock_irq(&mapping->i_pages);
628 	} else {
629 		page->mapping = NULL;
630 		xa_unlock_irq(&mapping->i_pages);
631 		page_ref_sub(page, nr);
632 	}
633 	return error;
634 }
635 
636 /*
637  * Like delete_from_page_cache, but substitutes swap for page.
638  */
639 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
640 {
641 	struct address_space *mapping = page->mapping;
642 	int error;
643 
644 	VM_BUG_ON_PAGE(PageCompound(page), page);
645 
646 	xa_lock_irq(&mapping->i_pages);
647 	error = shmem_replace_entry(mapping, page->index, page, radswap);
648 	page->mapping = NULL;
649 	mapping->nrpages--;
650 	__dec_node_page_state(page, NR_FILE_PAGES);
651 	__dec_node_page_state(page, NR_SHMEM);
652 	xa_unlock_irq(&mapping->i_pages);
653 	put_page(page);
654 	BUG_ON(error);
655 }
656 
657 /*
658  * Remove swap entry from radix tree, free the swap and its page cache.
659  */
660 static int shmem_free_swap(struct address_space *mapping,
661 			   pgoff_t index, void *radswap)
662 {
663 	void *old;
664 
665 	xa_lock_irq(&mapping->i_pages);
666 	old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
667 	xa_unlock_irq(&mapping->i_pages);
668 	if (old != radswap)
669 		return -ENOENT;
670 	free_swap_and_cache(radix_to_swp_entry(radswap));
671 	return 0;
672 }
673 
674 /*
675  * Determine (in bytes) how many of the shmem object's pages mapped by the
676  * given offsets are swapped out.
677  *
678  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
679  * as long as the inode doesn't go away and racy results are not a problem.
680  */
681 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
682 						pgoff_t start, pgoff_t end)
683 {
684 	struct radix_tree_iter iter;
685 	void __rcu **slot;
686 	struct page *page;
687 	unsigned long swapped = 0;
688 
689 	rcu_read_lock();
690 
691 	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
692 		if (iter.index >= end)
693 			break;
694 
695 		page = radix_tree_deref_slot(slot);
696 
697 		if (radix_tree_deref_retry(page)) {
698 			slot = radix_tree_iter_retry(&iter);
699 			continue;
700 		}
701 
702 		if (xa_is_value(page))
703 			swapped++;
704 
705 		if (need_resched()) {
706 			slot = radix_tree_iter_resume(slot, &iter);
707 			cond_resched_rcu();
708 		}
709 	}
710 
711 	rcu_read_unlock();
712 
713 	return swapped << PAGE_SHIFT;
714 }
715 
716 /*
717  * Determine (in bytes) how many of the shmem object's pages mapped by the
718  * given vma is swapped out.
719  *
720  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
721  * as long as the inode doesn't go away and racy results are not a problem.
722  */
723 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
724 {
725 	struct inode *inode = file_inode(vma->vm_file);
726 	struct shmem_inode_info *info = SHMEM_I(inode);
727 	struct address_space *mapping = inode->i_mapping;
728 	unsigned long swapped;
729 
730 	/* Be careful as we don't hold info->lock */
731 	swapped = READ_ONCE(info->swapped);
732 
733 	/*
734 	 * The easier cases are when the shmem object has nothing in swap, or
735 	 * the vma maps it whole. Then we can simply use the stats that we
736 	 * already track.
737 	 */
738 	if (!swapped)
739 		return 0;
740 
741 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
742 		return swapped << PAGE_SHIFT;
743 
744 	/* Here comes the more involved part */
745 	return shmem_partial_swap_usage(mapping,
746 			linear_page_index(vma, vma->vm_start),
747 			linear_page_index(vma, vma->vm_end));
748 }
749 
750 /*
751  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
752  */
753 void shmem_unlock_mapping(struct address_space *mapping)
754 {
755 	struct pagevec pvec;
756 	pgoff_t indices[PAGEVEC_SIZE];
757 	pgoff_t index = 0;
758 
759 	pagevec_init(&pvec);
760 	/*
761 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
762 	 */
763 	while (!mapping_unevictable(mapping)) {
764 		/*
765 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
766 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
767 		 */
768 		pvec.nr = find_get_entries(mapping, index,
769 					   PAGEVEC_SIZE, pvec.pages, indices);
770 		if (!pvec.nr)
771 			break;
772 		index = indices[pvec.nr - 1] + 1;
773 		pagevec_remove_exceptionals(&pvec);
774 		check_move_unevictable_pages(pvec.pages, pvec.nr);
775 		pagevec_release(&pvec);
776 		cond_resched();
777 	}
778 }
779 
780 /*
781  * Remove range of pages and swap entries from radix tree, and free them.
782  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
783  */
784 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
785 								 bool unfalloc)
786 {
787 	struct address_space *mapping = inode->i_mapping;
788 	struct shmem_inode_info *info = SHMEM_I(inode);
789 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
790 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
791 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
792 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
793 	struct pagevec pvec;
794 	pgoff_t indices[PAGEVEC_SIZE];
795 	long nr_swaps_freed = 0;
796 	pgoff_t index;
797 	int i;
798 
799 	if (lend == -1)
800 		end = -1;	/* unsigned, so actually very big */
801 
802 	pagevec_init(&pvec);
803 	index = start;
804 	while (index < end) {
805 		pvec.nr = find_get_entries(mapping, index,
806 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
807 			pvec.pages, indices);
808 		if (!pvec.nr)
809 			break;
810 		for (i = 0; i < pagevec_count(&pvec); i++) {
811 			struct page *page = pvec.pages[i];
812 
813 			index = indices[i];
814 			if (index >= end)
815 				break;
816 
817 			if (xa_is_value(page)) {
818 				if (unfalloc)
819 					continue;
820 				nr_swaps_freed += !shmem_free_swap(mapping,
821 								index, page);
822 				continue;
823 			}
824 
825 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
826 
827 			if (!trylock_page(page))
828 				continue;
829 
830 			if (PageTransTail(page)) {
831 				/* Middle of THP: zero out the page */
832 				clear_highpage(page);
833 				unlock_page(page);
834 				continue;
835 			} else if (PageTransHuge(page)) {
836 				if (index == round_down(end, HPAGE_PMD_NR)) {
837 					/*
838 					 * Range ends in the middle of THP:
839 					 * zero out the page
840 					 */
841 					clear_highpage(page);
842 					unlock_page(page);
843 					continue;
844 				}
845 				index += HPAGE_PMD_NR - 1;
846 				i += HPAGE_PMD_NR - 1;
847 			}
848 
849 			if (!unfalloc || !PageUptodate(page)) {
850 				VM_BUG_ON_PAGE(PageTail(page), page);
851 				if (page_mapping(page) == mapping) {
852 					VM_BUG_ON_PAGE(PageWriteback(page), page);
853 					truncate_inode_page(mapping, page);
854 				}
855 			}
856 			unlock_page(page);
857 		}
858 		pagevec_remove_exceptionals(&pvec);
859 		pagevec_release(&pvec);
860 		cond_resched();
861 		index++;
862 	}
863 
864 	if (partial_start) {
865 		struct page *page = NULL;
866 		shmem_getpage(inode, start - 1, &page, SGP_READ);
867 		if (page) {
868 			unsigned int top = PAGE_SIZE;
869 			if (start > end) {
870 				top = partial_end;
871 				partial_end = 0;
872 			}
873 			zero_user_segment(page, partial_start, top);
874 			set_page_dirty(page);
875 			unlock_page(page);
876 			put_page(page);
877 		}
878 	}
879 	if (partial_end) {
880 		struct page *page = NULL;
881 		shmem_getpage(inode, end, &page, SGP_READ);
882 		if (page) {
883 			zero_user_segment(page, 0, partial_end);
884 			set_page_dirty(page);
885 			unlock_page(page);
886 			put_page(page);
887 		}
888 	}
889 	if (start >= end)
890 		return;
891 
892 	index = start;
893 	while (index < end) {
894 		cond_resched();
895 
896 		pvec.nr = find_get_entries(mapping, index,
897 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
898 				pvec.pages, indices);
899 		if (!pvec.nr) {
900 			/* If all gone or hole-punch or unfalloc, we're done */
901 			if (index == start || end != -1)
902 				break;
903 			/* But if truncating, restart to make sure all gone */
904 			index = start;
905 			continue;
906 		}
907 		for (i = 0; i < pagevec_count(&pvec); i++) {
908 			struct page *page = pvec.pages[i];
909 
910 			index = indices[i];
911 			if (index >= end)
912 				break;
913 
914 			if (xa_is_value(page)) {
915 				if (unfalloc)
916 					continue;
917 				if (shmem_free_swap(mapping, index, page)) {
918 					/* Swap was replaced by page: retry */
919 					index--;
920 					break;
921 				}
922 				nr_swaps_freed++;
923 				continue;
924 			}
925 
926 			lock_page(page);
927 
928 			if (PageTransTail(page)) {
929 				/* Middle of THP: zero out the page */
930 				clear_highpage(page);
931 				unlock_page(page);
932 				/*
933 				 * Partial thp truncate due 'start' in middle
934 				 * of THP: don't need to look on these pages
935 				 * again on !pvec.nr restart.
936 				 */
937 				if (index != round_down(end, HPAGE_PMD_NR))
938 					start++;
939 				continue;
940 			} else if (PageTransHuge(page)) {
941 				if (index == round_down(end, HPAGE_PMD_NR)) {
942 					/*
943 					 * Range ends in the middle of THP:
944 					 * zero out the page
945 					 */
946 					clear_highpage(page);
947 					unlock_page(page);
948 					continue;
949 				}
950 				index += HPAGE_PMD_NR - 1;
951 				i += HPAGE_PMD_NR - 1;
952 			}
953 
954 			if (!unfalloc || !PageUptodate(page)) {
955 				VM_BUG_ON_PAGE(PageTail(page), page);
956 				if (page_mapping(page) == mapping) {
957 					VM_BUG_ON_PAGE(PageWriteback(page), page);
958 					truncate_inode_page(mapping, page);
959 				} else {
960 					/* Page was replaced by swap: retry */
961 					unlock_page(page);
962 					index--;
963 					break;
964 				}
965 			}
966 			unlock_page(page);
967 		}
968 		pagevec_remove_exceptionals(&pvec);
969 		pagevec_release(&pvec);
970 		index++;
971 	}
972 
973 	spin_lock_irq(&info->lock);
974 	info->swapped -= nr_swaps_freed;
975 	shmem_recalc_inode(inode);
976 	spin_unlock_irq(&info->lock);
977 }
978 
979 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
980 {
981 	shmem_undo_range(inode, lstart, lend, false);
982 	inode->i_ctime = inode->i_mtime = current_time(inode);
983 }
984 EXPORT_SYMBOL_GPL(shmem_truncate_range);
985 
986 static int shmem_getattr(const struct path *path, struct kstat *stat,
987 			 u32 request_mask, unsigned int query_flags)
988 {
989 	struct inode *inode = path->dentry->d_inode;
990 	struct shmem_inode_info *info = SHMEM_I(inode);
991 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
992 
993 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
994 		spin_lock_irq(&info->lock);
995 		shmem_recalc_inode(inode);
996 		spin_unlock_irq(&info->lock);
997 	}
998 	generic_fillattr(inode, stat);
999 
1000 	if (is_huge_enabled(sb_info))
1001 		stat->blksize = HPAGE_PMD_SIZE;
1002 
1003 	return 0;
1004 }
1005 
1006 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1007 {
1008 	struct inode *inode = d_inode(dentry);
1009 	struct shmem_inode_info *info = SHMEM_I(inode);
1010 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1011 	int error;
1012 
1013 	error = setattr_prepare(dentry, attr);
1014 	if (error)
1015 		return error;
1016 
1017 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1018 		loff_t oldsize = inode->i_size;
1019 		loff_t newsize = attr->ia_size;
1020 
1021 		/* protected by i_mutex */
1022 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1023 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1024 			return -EPERM;
1025 
1026 		if (newsize != oldsize) {
1027 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1028 					oldsize, newsize);
1029 			if (error)
1030 				return error;
1031 			i_size_write(inode, newsize);
1032 			inode->i_ctime = inode->i_mtime = current_time(inode);
1033 		}
1034 		if (newsize <= oldsize) {
1035 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1036 			if (oldsize > holebegin)
1037 				unmap_mapping_range(inode->i_mapping,
1038 							holebegin, 0, 1);
1039 			if (info->alloced)
1040 				shmem_truncate_range(inode,
1041 							newsize, (loff_t)-1);
1042 			/* unmap again to remove racily COWed private pages */
1043 			if (oldsize > holebegin)
1044 				unmap_mapping_range(inode->i_mapping,
1045 							holebegin, 0, 1);
1046 
1047 			/*
1048 			 * Part of the huge page can be beyond i_size: subject
1049 			 * to shrink under memory pressure.
1050 			 */
1051 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1052 				spin_lock(&sbinfo->shrinklist_lock);
1053 				/*
1054 				 * _careful to defend against unlocked access to
1055 				 * ->shrink_list in shmem_unused_huge_shrink()
1056 				 */
1057 				if (list_empty_careful(&info->shrinklist)) {
1058 					list_add_tail(&info->shrinklist,
1059 							&sbinfo->shrinklist);
1060 					sbinfo->shrinklist_len++;
1061 				}
1062 				spin_unlock(&sbinfo->shrinklist_lock);
1063 			}
1064 		}
1065 	}
1066 
1067 	setattr_copy(inode, attr);
1068 	if (attr->ia_valid & ATTR_MODE)
1069 		error = posix_acl_chmod(inode, inode->i_mode);
1070 	return error;
1071 }
1072 
1073 static void shmem_evict_inode(struct inode *inode)
1074 {
1075 	struct shmem_inode_info *info = SHMEM_I(inode);
1076 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1077 
1078 	if (inode->i_mapping->a_ops == &shmem_aops) {
1079 		shmem_unacct_size(info->flags, inode->i_size);
1080 		inode->i_size = 0;
1081 		shmem_truncate_range(inode, 0, (loff_t)-1);
1082 		if (!list_empty(&info->shrinklist)) {
1083 			spin_lock(&sbinfo->shrinklist_lock);
1084 			if (!list_empty(&info->shrinklist)) {
1085 				list_del_init(&info->shrinklist);
1086 				sbinfo->shrinklist_len--;
1087 			}
1088 			spin_unlock(&sbinfo->shrinklist_lock);
1089 		}
1090 		if (!list_empty(&info->swaplist)) {
1091 			mutex_lock(&shmem_swaplist_mutex);
1092 			list_del_init(&info->swaplist);
1093 			mutex_unlock(&shmem_swaplist_mutex);
1094 		}
1095 	}
1096 
1097 	simple_xattrs_free(&info->xattrs);
1098 	WARN_ON(inode->i_blocks);
1099 	shmem_free_inode(inode->i_sb);
1100 	clear_inode(inode);
1101 }
1102 
1103 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1104 {
1105 	struct radix_tree_iter iter;
1106 	void __rcu **slot;
1107 	unsigned long found = -1;
1108 	unsigned int checked = 0;
1109 
1110 	rcu_read_lock();
1111 	radix_tree_for_each_slot(slot, root, &iter, 0) {
1112 		void *entry = radix_tree_deref_slot(slot);
1113 
1114 		if (radix_tree_deref_retry(entry)) {
1115 			slot = radix_tree_iter_retry(&iter);
1116 			continue;
1117 		}
1118 		if (entry == item) {
1119 			found = iter.index;
1120 			break;
1121 		}
1122 		checked++;
1123 		if ((checked % 4096) != 0)
1124 			continue;
1125 		slot = radix_tree_iter_resume(slot, &iter);
1126 		cond_resched_rcu();
1127 	}
1128 
1129 	rcu_read_unlock();
1130 	return found;
1131 }
1132 
1133 /*
1134  * If swap found in inode, free it and move page from swapcache to filecache.
1135  */
1136 static int shmem_unuse_inode(struct shmem_inode_info *info,
1137 			     swp_entry_t swap, struct page **pagep)
1138 {
1139 	struct address_space *mapping = info->vfs_inode.i_mapping;
1140 	void *radswap;
1141 	pgoff_t index;
1142 	gfp_t gfp;
1143 	int error = 0;
1144 
1145 	radswap = swp_to_radix_entry(swap);
1146 	index = find_swap_entry(&mapping->i_pages, radswap);
1147 	if (index == -1)
1148 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1149 
1150 	/*
1151 	 * Move _head_ to start search for next from here.
1152 	 * But be careful: shmem_evict_inode checks list_empty without taking
1153 	 * mutex, and there's an instant in list_move_tail when info->swaplist
1154 	 * would appear empty, if it were the only one on shmem_swaplist.
1155 	 */
1156 	if (shmem_swaplist.next != &info->swaplist)
1157 		list_move_tail(&shmem_swaplist, &info->swaplist);
1158 
1159 	gfp = mapping_gfp_mask(mapping);
1160 	if (shmem_should_replace_page(*pagep, gfp)) {
1161 		mutex_unlock(&shmem_swaplist_mutex);
1162 		error = shmem_replace_page(pagep, gfp, info, index);
1163 		mutex_lock(&shmem_swaplist_mutex);
1164 		/*
1165 		 * We needed to drop mutex to make that restrictive page
1166 		 * allocation, but the inode might have been freed while we
1167 		 * dropped it: although a racing shmem_evict_inode() cannot
1168 		 * complete without emptying the radix_tree, our page lock
1169 		 * on this swapcache page is not enough to prevent that -
1170 		 * free_swap_and_cache() of our swap entry will only
1171 		 * trylock_page(), removing swap from radix_tree whatever.
1172 		 *
1173 		 * We must not proceed to shmem_add_to_page_cache() if the
1174 		 * inode has been freed, but of course we cannot rely on
1175 		 * inode or mapping or info to check that.  However, we can
1176 		 * safely check if our swap entry is still in use (and here
1177 		 * it can't have got reused for another page): if it's still
1178 		 * in use, then the inode cannot have been freed yet, and we
1179 		 * can safely proceed (if it's no longer in use, that tells
1180 		 * nothing about the inode, but we don't need to unuse swap).
1181 		 */
1182 		if (!page_swapcount(*pagep))
1183 			error = -ENOENT;
1184 	}
1185 
1186 	/*
1187 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1188 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1189 	 * beneath us (pagelock doesn't help until the page is in pagecache).
1190 	 */
1191 	if (!error)
1192 		error = shmem_add_to_page_cache(*pagep, mapping, index,
1193 						radswap);
1194 	if (error != -ENOMEM) {
1195 		/*
1196 		 * Truncation and eviction use free_swap_and_cache(), which
1197 		 * only does trylock page: if we raced, best clean up here.
1198 		 */
1199 		delete_from_swap_cache(*pagep);
1200 		set_page_dirty(*pagep);
1201 		if (!error) {
1202 			spin_lock_irq(&info->lock);
1203 			info->swapped--;
1204 			spin_unlock_irq(&info->lock);
1205 			swap_free(swap);
1206 		}
1207 	}
1208 	return error;
1209 }
1210 
1211 /*
1212  * Search through swapped inodes to find and replace swap by page.
1213  */
1214 int shmem_unuse(swp_entry_t swap, struct page *page)
1215 {
1216 	struct list_head *this, *next;
1217 	struct shmem_inode_info *info;
1218 	struct mem_cgroup *memcg;
1219 	int error = 0;
1220 
1221 	/*
1222 	 * There's a faint possibility that swap page was replaced before
1223 	 * caller locked it: caller will come back later with the right page.
1224 	 */
1225 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1226 		goto out;
1227 
1228 	/*
1229 	 * Charge page using GFP_KERNEL while we can wait, before taking
1230 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1231 	 * Charged back to the user (not to caller) when swap account is used.
1232 	 */
1233 	error = mem_cgroup_try_charge_delay(page, current->mm, GFP_KERNEL,
1234 					    &memcg, false);
1235 	if (error)
1236 		goto out;
1237 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1238 	error = -EAGAIN;
1239 
1240 	mutex_lock(&shmem_swaplist_mutex);
1241 	list_for_each_safe(this, next, &shmem_swaplist) {
1242 		info = list_entry(this, struct shmem_inode_info, swaplist);
1243 		if (info->swapped)
1244 			error = shmem_unuse_inode(info, swap, &page);
1245 		else
1246 			list_del_init(&info->swaplist);
1247 		cond_resched();
1248 		if (error != -EAGAIN)
1249 			break;
1250 		/* found nothing in this: move on to search the next */
1251 	}
1252 	mutex_unlock(&shmem_swaplist_mutex);
1253 
1254 	if (error) {
1255 		if (error != -ENOMEM)
1256 			error = 0;
1257 		mem_cgroup_cancel_charge(page, memcg, false);
1258 	} else
1259 		mem_cgroup_commit_charge(page, memcg, true, false);
1260 out:
1261 	unlock_page(page);
1262 	put_page(page);
1263 	return error;
1264 }
1265 
1266 /*
1267  * Move the page from the page cache to the swap cache.
1268  */
1269 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1270 {
1271 	struct shmem_inode_info *info;
1272 	struct address_space *mapping;
1273 	struct inode *inode;
1274 	swp_entry_t swap;
1275 	pgoff_t index;
1276 
1277 	VM_BUG_ON_PAGE(PageCompound(page), page);
1278 	BUG_ON(!PageLocked(page));
1279 	mapping = page->mapping;
1280 	index = page->index;
1281 	inode = mapping->host;
1282 	info = SHMEM_I(inode);
1283 	if (info->flags & VM_LOCKED)
1284 		goto redirty;
1285 	if (!total_swap_pages)
1286 		goto redirty;
1287 
1288 	/*
1289 	 * Our capabilities prevent regular writeback or sync from ever calling
1290 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1291 	 * its underlying filesystem, in which case tmpfs should write out to
1292 	 * swap only in response to memory pressure, and not for the writeback
1293 	 * threads or sync.
1294 	 */
1295 	if (!wbc->for_reclaim) {
1296 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1297 		goto redirty;
1298 	}
1299 
1300 	/*
1301 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1302 	 * value into swapfile.c, the only way we can correctly account for a
1303 	 * fallocated page arriving here is now to initialize it and write it.
1304 	 *
1305 	 * That's okay for a page already fallocated earlier, but if we have
1306 	 * not yet completed the fallocation, then (a) we want to keep track
1307 	 * of this page in case we have to undo it, and (b) it may not be a
1308 	 * good idea to continue anyway, once we're pushing into swap.  So
1309 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1310 	 */
1311 	if (!PageUptodate(page)) {
1312 		if (inode->i_private) {
1313 			struct shmem_falloc *shmem_falloc;
1314 			spin_lock(&inode->i_lock);
1315 			shmem_falloc = inode->i_private;
1316 			if (shmem_falloc &&
1317 			    !shmem_falloc->waitq &&
1318 			    index >= shmem_falloc->start &&
1319 			    index < shmem_falloc->next)
1320 				shmem_falloc->nr_unswapped++;
1321 			else
1322 				shmem_falloc = NULL;
1323 			spin_unlock(&inode->i_lock);
1324 			if (shmem_falloc)
1325 				goto redirty;
1326 		}
1327 		clear_highpage(page);
1328 		flush_dcache_page(page);
1329 		SetPageUptodate(page);
1330 	}
1331 
1332 	swap = get_swap_page(page);
1333 	if (!swap.val)
1334 		goto redirty;
1335 
1336 	/*
1337 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1338 	 * if it's not already there.  Do it now before the page is
1339 	 * moved to swap cache, when its pagelock no longer protects
1340 	 * the inode from eviction.  But don't unlock the mutex until
1341 	 * we've incremented swapped, because shmem_unuse_inode() will
1342 	 * prune a !swapped inode from the swaplist under this mutex.
1343 	 */
1344 	mutex_lock(&shmem_swaplist_mutex);
1345 	if (list_empty(&info->swaplist))
1346 		list_add_tail(&info->swaplist, &shmem_swaplist);
1347 
1348 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1349 		spin_lock_irq(&info->lock);
1350 		shmem_recalc_inode(inode);
1351 		info->swapped++;
1352 		spin_unlock_irq(&info->lock);
1353 
1354 		swap_shmem_alloc(swap);
1355 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1356 
1357 		mutex_unlock(&shmem_swaplist_mutex);
1358 		BUG_ON(page_mapped(page));
1359 		swap_writepage(page, wbc);
1360 		return 0;
1361 	}
1362 
1363 	mutex_unlock(&shmem_swaplist_mutex);
1364 	put_swap_page(page, swap);
1365 redirty:
1366 	set_page_dirty(page);
1367 	if (wbc->for_reclaim)
1368 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1369 	unlock_page(page);
1370 	return 0;
1371 }
1372 
1373 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1374 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1375 {
1376 	char buffer[64];
1377 
1378 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1379 		return;		/* show nothing */
1380 
1381 	mpol_to_str(buffer, sizeof(buffer), mpol);
1382 
1383 	seq_printf(seq, ",mpol=%s", buffer);
1384 }
1385 
1386 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1387 {
1388 	struct mempolicy *mpol = NULL;
1389 	if (sbinfo->mpol) {
1390 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1391 		mpol = sbinfo->mpol;
1392 		mpol_get(mpol);
1393 		spin_unlock(&sbinfo->stat_lock);
1394 	}
1395 	return mpol;
1396 }
1397 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1398 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1399 {
1400 }
1401 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1402 {
1403 	return NULL;
1404 }
1405 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1406 #ifndef CONFIG_NUMA
1407 #define vm_policy vm_private_data
1408 #endif
1409 
1410 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1411 		struct shmem_inode_info *info, pgoff_t index)
1412 {
1413 	/* Create a pseudo vma that just contains the policy */
1414 	vma_init(vma, NULL);
1415 	/* Bias interleave by inode number to distribute better across nodes */
1416 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1417 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1418 }
1419 
1420 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1421 {
1422 	/* Drop reference taken by mpol_shared_policy_lookup() */
1423 	mpol_cond_put(vma->vm_policy);
1424 }
1425 
1426 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1427 			struct shmem_inode_info *info, pgoff_t index)
1428 {
1429 	struct vm_area_struct pvma;
1430 	struct page *page;
1431 	struct vm_fault vmf;
1432 
1433 	shmem_pseudo_vma_init(&pvma, info, index);
1434 	vmf.vma = &pvma;
1435 	vmf.address = 0;
1436 	page = swap_cluster_readahead(swap, gfp, &vmf);
1437 	shmem_pseudo_vma_destroy(&pvma);
1438 
1439 	return page;
1440 }
1441 
1442 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1443 		struct shmem_inode_info *info, pgoff_t index)
1444 {
1445 	struct vm_area_struct pvma;
1446 	struct inode *inode = &info->vfs_inode;
1447 	struct address_space *mapping = inode->i_mapping;
1448 	pgoff_t idx, hindex;
1449 	void __rcu **results;
1450 	struct page *page;
1451 
1452 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1453 		return NULL;
1454 
1455 	hindex = round_down(index, HPAGE_PMD_NR);
1456 	rcu_read_lock();
1457 	if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
1458 				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1459 		rcu_read_unlock();
1460 		return NULL;
1461 	}
1462 	rcu_read_unlock();
1463 
1464 	shmem_pseudo_vma_init(&pvma, info, hindex);
1465 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1466 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1467 	shmem_pseudo_vma_destroy(&pvma);
1468 	if (page)
1469 		prep_transhuge_page(page);
1470 	return page;
1471 }
1472 
1473 static struct page *shmem_alloc_page(gfp_t gfp,
1474 			struct shmem_inode_info *info, pgoff_t index)
1475 {
1476 	struct vm_area_struct pvma;
1477 	struct page *page;
1478 
1479 	shmem_pseudo_vma_init(&pvma, info, index);
1480 	page = alloc_page_vma(gfp, &pvma, 0);
1481 	shmem_pseudo_vma_destroy(&pvma);
1482 
1483 	return page;
1484 }
1485 
1486 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1487 		struct inode *inode,
1488 		pgoff_t index, bool huge)
1489 {
1490 	struct shmem_inode_info *info = SHMEM_I(inode);
1491 	struct page *page;
1492 	int nr;
1493 	int err = -ENOSPC;
1494 
1495 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1496 		huge = false;
1497 	nr = huge ? HPAGE_PMD_NR : 1;
1498 
1499 	if (!shmem_inode_acct_block(inode, nr))
1500 		goto failed;
1501 
1502 	if (huge)
1503 		page = shmem_alloc_hugepage(gfp, info, index);
1504 	else
1505 		page = shmem_alloc_page(gfp, info, index);
1506 	if (page) {
1507 		__SetPageLocked(page);
1508 		__SetPageSwapBacked(page);
1509 		return page;
1510 	}
1511 
1512 	err = -ENOMEM;
1513 	shmem_inode_unacct_blocks(inode, nr);
1514 failed:
1515 	return ERR_PTR(err);
1516 }
1517 
1518 /*
1519  * When a page is moved from swapcache to shmem filecache (either by the
1520  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1521  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1522  * ignorance of the mapping it belongs to.  If that mapping has special
1523  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1524  * we may need to copy to a suitable page before moving to filecache.
1525  *
1526  * In a future release, this may well be extended to respect cpuset and
1527  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1528  * but for now it is a simple matter of zone.
1529  */
1530 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1531 {
1532 	return page_zonenum(page) > gfp_zone(gfp);
1533 }
1534 
1535 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1536 				struct shmem_inode_info *info, pgoff_t index)
1537 {
1538 	struct page *oldpage, *newpage;
1539 	struct address_space *swap_mapping;
1540 	pgoff_t swap_index;
1541 	int error;
1542 
1543 	oldpage = *pagep;
1544 	swap_index = page_private(oldpage);
1545 	swap_mapping = page_mapping(oldpage);
1546 
1547 	/*
1548 	 * We have arrived here because our zones are constrained, so don't
1549 	 * limit chance of success by further cpuset and node constraints.
1550 	 */
1551 	gfp &= ~GFP_CONSTRAINT_MASK;
1552 	newpage = shmem_alloc_page(gfp, info, index);
1553 	if (!newpage)
1554 		return -ENOMEM;
1555 
1556 	get_page(newpage);
1557 	copy_highpage(newpage, oldpage);
1558 	flush_dcache_page(newpage);
1559 
1560 	__SetPageLocked(newpage);
1561 	__SetPageSwapBacked(newpage);
1562 	SetPageUptodate(newpage);
1563 	set_page_private(newpage, swap_index);
1564 	SetPageSwapCache(newpage);
1565 
1566 	/*
1567 	 * Our caller will very soon move newpage out of swapcache, but it's
1568 	 * a nice clean interface for us to replace oldpage by newpage there.
1569 	 */
1570 	xa_lock_irq(&swap_mapping->i_pages);
1571 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1572 	if (!error) {
1573 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1574 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1575 	}
1576 	xa_unlock_irq(&swap_mapping->i_pages);
1577 
1578 	if (unlikely(error)) {
1579 		/*
1580 		 * Is this possible?  I think not, now that our callers check
1581 		 * both PageSwapCache and page_private after getting page lock;
1582 		 * but be defensive.  Reverse old to newpage for clear and free.
1583 		 */
1584 		oldpage = newpage;
1585 	} else {
1586 		mem_cgroup_migrate(oldpage, newpage);
1587 		lru_cache_add_anon(newpage);
1588 		*pagep = newpage;
1589 	}
1590 
1591 	ClearPageSwapCache(oldpage);
1592 	set_page_private(oldpage, 0);
1593 
1594 	unlock_page(oldpage);
1595 	put_page(oldpage);
1596 	put_page(oldpage);
1597 	return error;
1598 }
1599 
1600 /*
1601  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1602  *
1603  * If we allocate a new one we do not mark it dirty. That's up to the
1604  * vm. If we swap it in we mark it dirty since we also free the swap
1605  * entry since a page cannot live in both the swap and page cache.
1606  *
1607  * fault_mm and fault_type are only supplied by shmem_fault:
1608  * otherwise they are NULL.
1609  */
1610 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1611 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1612 	struct vm_area_struct *vma, struct vm_fault *vmf,
1613 			vm_fault_t *fault_type)
1614 {
1615 	struct address_space *mapping = inode->i_mapping;
1616 	struct shmem_inode_info *info = SHMEM_I(inode);
1617 	struct shmem_sb_info *sbinfo;
1618 	struct mm_struct *charge_mm;
1619 	struct mem_cgroup *memcg;
1620 	struct page *page;
1621 	swp_entry_t swap;
1622 	enum sgp_type sgp_huge = sgp;
1623 	pgoff_t hindex = index;
1624 	int error;
1625 	int once = 0;
1626 	int alloced = 0;
1627 
1628 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1629 		return -EFBIG;
1630 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1631 		sgp = SGP_CACHE;
1632 repeat:
1633 	swap.val = 0;
1634 	page = find_lock_entry(mapping, index);
1635 	if (xa_is_value(page)) {
1636 		swap = radix_to_swp_entry(page);
1637 		page = NULL;
1638 	}
1639 
1640 	if (sgp <= SGP_CACHE &&
1641 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1642 		error = -EINVAL;
1643 		goto unlock;
1644 	}
1645 
1646 	if (page && sgp == SGP_WRITE)
1647 		mark_page_accessed(page);
1648 
1649 	/* fallocated page? */
1650 	if (page && !PageUptodate(page)) {
1651 		if (sgp != SGP_READ)
1652 			goto clear;
1653 		unlock_page(page);
1654 		put_page(page);
1655 		page = NULL;
1656 	}
1657 	if (page || (sgp == SGP_READ && !swap.val)) {
1658 		*pagep = page;
1659 		return 0;
1660 	}
1661 
1662 	/*
1663 	 * Fast cache lookup did not find it:
1664 	 * bring it back from swap or allocate.
1665 	 */
1666 	sbinfo = SHMEM_SB(inode->i_sb);
1667 	charge_mm = vma ? vma->vm_mm : current->mm;
1668 
1669 	if (swap.val) {
1670 		/* Look it up and read it in.. */
1671 		page = lookup_swap_cache(swap, NULL, 0);
1672 		if (!page) {
1673 			/* Or update major stats only when swapin succeeds?? */
1674 			if (fault_type) {
1675 				*fault_type |= VM_FAULT_MAJOR;
1676 				count_vm_event(PGMAJFAULT);
1677 				count_memcg_event_mm(charge_mm, PGMAJFAULT);
1678 			}
1679 			/* Here we actually start the io */
1680 			page = shmem_swapin(swap, gfp, info, index);
1681 			if (!page) {
1682 				error = -ENOMEM;
1683 				goto failed;
1684 			}
1685 		}
1686 
1687 		/* We have to do this with page locked to prevent races */
1688 		lock_page(page);
1689 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1690 		    !shmem_confirm_swap(mapping, index, swap)) {
1691 			error = -EEXIST;	/* try again */
1692 			goto unlock;
1693 		}
1694 		if (!PageUptodate(page)) {
1695 			error = -EIO;
1696 			goto failed;
1697 		}
1698 		wait_on_page_writeback(page);
1699 
1700 		if (shmem_should_replace_page(page, gfp)) {
1701 			error = shmem_replace_page(&page, gfp, info, index);
1702 			if (error)
1703 				goto failed;
1704 		}
1705 
1706 		error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1707 				false);
1708 		if (!error) {
1709 			error = shmem_add_to_page_cache(page, mapping, index,
1710 						swp_to_radix_entry(swap));
1711 			/*
1712 			 * We already confirmed swap under page lock, and make
1713 			 * no memory allocation here, so usually no possibility
1714 			 * of error; but free_swap_and_cache() only trylocks a
1715 			 * page, so it is just possible that the entry has been
1716 			 * truncated or holepunched since swap was confirmed.
1717 			 * shmem_undo_range() will have done some of the
1718 			 * unaccounting, now delete_from_swap_cache() will do
1719 			 * the rest.
1720 			 * Reset swap.val? No, leave it so "failed" goes back to
1721 			 * "repeat": reading a hole and writing should succeed.
1722 			 */
1723 			if (error) {
1724 				mem_cgroup_cancel_charge(page, memcg, false);
1725 				delete_from_swap_cache(page);
1726 			}
1727 		}
1728 		if (error)
1729 			goto failed;
1730 
1731 		mem_cgroup_commit_charge(page, memcg, true, false);
1732 
1733 		spin_lock_irq(&info->lock);
1734 		info->swapped--;
1735 		shmem_recalc_inode(inode);
1736 		spin_unlock_irq(&info->lock);
1737 
1738 		if (sgp == SGP_WRITE)
1739 			mark_page_accessed(page);
1740 
1741 		delete_from_swap_cache(page);
1742 		set_page_dirty(page);
1743 		swap_free(swap);
1744 
1745 	} else {
1746 		if (vma && userfaultfd_missing(vma)) {
1747 			*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1748 			return 0;
1749 		}
1750 
1751 		/* shmem_symlink() */
1752 		if (mapping->a_ops != &shmem_aops)
1753 			goto alloc_nohuge;
1754 		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1755 			goto alloc_nohuge;
1756 		if (shmem_huge == SHMEM_HUGE_FORCE)
1757 			goto alloc_huge;
1758 		switch (sbinfo->huge) {
1759 			loff_t i_size;
1760 			pgoff_t off;
1761 		case SHMEM_HUGE_NEVER:
1762 			goto alloc_nohuge;
1763 		case SHMEM_HUGE_WITHIN_SIZE:
1764 			off = round_up(index, HPAGE_PMD_NR);
1765 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1766 			if (i_size >= HPAGE_PMD_SIZE &&
1767 					i_size >> PAGE_SHIFT >= off)
1768 				goto alloc_huge;
1769 			/* fallthrough */
1770 		case SHMEM_HUGE_ADVISE:
1771 			if (sgp_huge == SGP_HUGE)
1772 				goto alloc_huge;
1773 			/* TODO: implement fadvise() hints */
1774 			goto alloc_nohuge;
1775 		}
1776 
1777 alloc_huge:
1778 		page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1779 		if (IS_ERR(page)) {
1780 alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, inode,
1781 					index, false);
1782 		}
1783 		if (IS_ERR(page)) {
1784 			int retry = 5;
1785 			error = PTR_ERR(page);
1786 			page = NULL;
1787 			if (error != -ENOSPC)
1788 				goto failed;
1789 			/*
1790 			 * Try to reclaim some spece by splitting a huge page
1791 			 * beyond i_size on the filesystem.
1792 			 */
1793 			while (retry--) {
1794 				int ret;
1795 				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1796 				if (ret == SHRINK_STOP)
1797 					break;
1798 				if (ret)
1799 					goto alloc_nohuge;
1800 			}
1801 			goto failed;
1802 		}
1803 
1804 		if (PageTransHuge(page))
1805 			hindex = round_down(index, HPAGE_PMD_NR);
1806 		else
1807 			hindex = index;
1808 
1809 		if (sgp == SGP_WRITE)
1810 			__SetPageReferenced(page);
1811 
1812 		error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1813 				PageTransHuge(page));
1814 		if (error)
1815 			goto unacct;
1816 		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1817 				compound_order(page));
1818 		if (!error) {
1819 			error = shmem_add_to_page_cache(page, mapping, hindex,
1820 							NULL);
1821 			radix_tree_preload_end();
1822 		}
1823 		if (error) {
1824 			mem_cgroup_cancel_charge(page, memcg,
1825 					PageTransHuge(page));
1826 			goto unacct;
1827 		}
1828 		mem_cgroup_commit_charge(page, memcg, false,
1829 				PageTransHuge(page));
1830 		lru_cache_add_anon(page);
1831 
1832 		spin_lock_irq(&info->lock);
1833 		info->alloced += 1 << compound_order(page);
1834 		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1835 		shmem_recalc_inode(inode);
1836 		spin_unlock_irq(&info->lock);
1837 		alloced = true;
1838 
1839 		if (PageTransHuge(page) &&
1840 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1841 				hindex + HPAGE_PMD_NR - 1) {
1842 			/*
1843 			 * Part of the huge page is beyond i_size: subject
1844 			 * to shrink under memory pressure.
1845 			 */
1846 			spin_lock(&sbinfo->shrinklist_lock);
1847 			/*
1848 			 * _careful to defend against unlocked access to
1849 			 * ->shrink_list in shmem_unused_huge_shrink()
1850 			 */
1851 			if (list_empty_careful(&info->shrinklist)) {
1852 				list_add_tail(&info->shrinklist,
1853 						&sbinfo->shrinklist);
1854 				sbinfo->shrinklist_len++;
1855 			}
1856 			spin_unlock(&sbinfo->shrinklist_lock);
1857 		}
1858 
1859 		/*
1860 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1861 		 */
1862 		if (sgp == SGP_FALLOC)
1863 			sgp = SGP_WRITE;
1864 clear:
1865 		/*
1866 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1867 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1868 		 * it now, lest undo on failure cancel our earlier guarantee.
1869 		 */
1870 		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1871 			struct page *head = compound_head(page);
1872 			int i;
1873 
1874 			for (i = 0; i < (1 << compound_order(head)); i++) {
1875 				clear_highpage(head + i);
1876 				flush_dcache_page(head + i);
1877 			}
1878 			SetPageUptodate(head);
1879 		}
1880 	}
1881 
1882 	/* Perhaps the file has been truncated since we checked */
1883 	if (sgp <= SGP_CACHE &&
1884 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1885 		if (alloced) {
1886 			ClearPageDirty(page);
1887 			delete_from_page_cache(page);
1888 			spin_lock_irq(&info->lock);
1889 			shmem_recalc_inode(inode);
1890 			spin_unlock_irq(&info->lock);
1891 		}
1892 		error = -EINVAL;
1893 		goto unlock;
1894 	}
1895 	*pagep = page + index - hindex;
1896 	return 0;
1897 
1898 	/*
1899 	 * Error recovery.
1900 	 */
1901 unacct:
1902 	shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1903 
1904 	if (PageTransHuge(page)) {
1905 		unlock_page(page);
1906 		put_page(page);
1907 		goto alloc_nohuge;
1908 	}
1909 failed:
1910 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1911 		error = -EEXIST;
1912 unlock:
1913 	if (page) {
1914 		unlock_page(page);
1915 		put_page(page);
1916 	}
1917 	if (error == -ENOSPC && !once++) {
1918 		spin_lock_irq(&info->lock);
1919 		shmem_recalc_inode(inode);
1920 		spin_unlock_irq(&info->lock);
1921 		goto repeat;
1922 	}
1923 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1924 		goto repeat;
1925 	return error;
1926 }
1927 
1928 /*
1929  * This is like autoremove_wake_function, but it removes the wait queue
1930  * entry unconditionally - even if something else had already woken the
1931  * target.
1932  */
1933 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1934 {
1935 	int ret = default_wake_function(wait, mode, sync, key);
1936 	list_del_init(&wait->entry);
1937 	return ret;
1938 }
1939 
1940 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1941 {
1942 	struct vm_area_struct *vma = vmf->vma;
1943 	struct inode *inode = file_inode(vma->vm_file);
1944 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1945 	enum sgp_type sgp;
1946 	int err;
1947 	vm_fault_t ret = VM_FAULT_LOCKED;
1948 
1949 	/*
1950 	 * Trinity finds that probing a hole which tmpfs is punching can
1951 	 * prevent the hole-punch from ever completing: which in turn
1952 	 * locks writers out with its hold on i_mutex.  So refrain from
1953 	 * faulting pages into the hole while it's being punched.  Although
1954 	 * shmem_undo_range() does remove the additions, it may be unable to
1955 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1956 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1957 	 *
1958 	 * It does not matter if we sometimes reach this check just before the
1959 	 * hole-punch begins, so that one fault then races with the punch:
1960 	 * we just need to make racing faults a rare case.
1961 	 *
1962 	 * The implementation below would be much simpler if we just used a
1963 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1964 	 * and bloating every shmem inode for this unlikely case would be sad.
1965 	 */
1966 	if (unlikely(inode->i_private)) {
1967 		struct shmem_falloc *shmem_falloc;
1968 
1969 		spin_lock(&inode->i_lock);
1970 		shmem_falloc = inode->i_private;
1971 		if (shmem_falloc &&
1972 		    shmem_falloc->waitq &&
1973 		    vmf->pgoff >= shmem_falloc->start &&
1974 		    vmf->pgoff < shmem_falloc->next) {
1975 			wait_queue_head_t *shmem_falloc_waitq;
1976 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1977 
1978 			ret = VM_FAULT_NOPAGE;
1979 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1980 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1981 				/* It's polite to up mmap_sem if we can */
1982 				up_read(&vma->vm_mm->mmap_sem);
1983 				ret = VM_FAULT_RETRY;
1984 			}
1985 
1986 			shmem_falloc_waitq = shmem_falloc->waitq;
1987 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1988 					TASK_UNINTERRUPTIBLE);
1989 			spin_unlock(&inode->i_lock);
1990 			schedule();
1991 
1992 			/*
1993 			 * shmem_falloc_waitq points into the shmem_fallocate()
1994 			 * stack of the hole-punching task: shmem_falloc_waitq
1995 			 * is usually invalid by the time we reach here, but
1996 			 * finish_wait() does not dereference it in that case;
1997 			 * though i_lock needed lest racing with wake_up_all().
1998 			 */
1999 			spin_lock(&inode->i_lock);
2000 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2001 			spin_unlock(&inode->i_lock);
2002 			return ret;
2003 		}
2004 		spin_unlock(&inode->i_lock);
2005 	}
2006 
2007 	sgp = SGP_CACHE;
2008 
2009 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2010 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2011 		sgp = SGP_NOHUGE;
2012 	else if (vma->vm_flags & VM_HUGEPAGE)
2013 		sgp = SGP_HUGE;
2014 
2015 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2016 				  gfp, vma, vmf, &ret);
2017 	if (err)
2018 		return vmf_error(err);
2019 	return ret;
2020 }
2021 
2022 unsigned long shmem_get_unmapped_area(struct file *file,
2023 				      unsigned long uaddr, unsigned long len,
2024 				      unsigned long pgoff, unsigned long flags)
2025 {
2026 	unsigned long (*get_area)(struct file *,
2027 		unsigned long, unsigned long, unsigned long, unsigned long);
2028 	unsigned long addr;
2029 	unsigned long offset;
2030 	unsigned long inflated_len;
2031 	unsigned long inflated_addr;
2032 	unsigned long inflated_offset;
2033 
2034 	if (len > TASK_SIZE)
2035 		return -ENOMEM;
2036 
2037 	get_area = current->mm->get_unmapped_area;
2038 	addr = get_area(file, uaddr, len, pgoff, flags);
2039 
2040 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2041 		return addr;
2042 	if (IS_ERR_VALUE(addr))
2043 		return addr;
2044 	if (addr & ~PAGE_MASK)
2045 		return addr;
2046 	if (addr > TASK_SIZE - len)
2047 		return addr;
2048 
2049 	if (shmem_huge == SHMEM_HUGE_DENY)
2050 		return addr;
2051 	if (len < HPAGE_PMD_SIZE)
2052 		return addr;
2053 	if (flags & MAP_FIXED)
2054 		return addr;
2055 	/*
2056 	 * Our priority is to support MAP_SHARED mapped hugely;
2057 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2058 	 * But if caller specified an address hint, respect that as before.
2059 	 */
2060 	if (uaddr)
2061 		return addr;
2062 
2063 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2064 		struct super_block *sb;
2065 
2066 		if (file) {
2067 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2068 			sb = file_inode(file)->i_sb;
2069 		} else {
2070 			/*
2071 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2072 			 * for "/dev/zero", to create a shared anonymous object.
2073 			 */
2074 			if (IS_ERR(shm_mnt))
2075 				return addr;
2076 			sb = shm_mnt->mnt_sb;
2077 		}
2078 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2079 			return addr;
2080 	}
2081 
2082 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2083 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2084 		return addr;
2085 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2086 		return addr;
2087 
2088 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2089 	if (inflated_len > TASK_SIZE)
2090 		return addr;
2091 	if (inflated_len < len)
2092 		return addr;
2093 
2094 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2095 	if (IS_ERR_VALUE(inflated_addr))
2096 		return addr;
2097 	if (inflated_addr & ~PAGE_MASK)
2098 		return addr;
2099 
2100 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2101 	inflated_addr += offset - inflated_offset;
2102 	if (inflated_offset > offset)
2103 		inflated_addr += HPAGE_PMD_SIZE;
2104 
2105 	if (inflated_addr > TASK_SIZE - len)
2106 		return addr;
2107 	return inflated_addr;
2108 }
2109 
2110 #ifdef CONFIG_NUMA
2111 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2112 {
2113 	struct inode *inode = file_inode(vma->vm_file);
2114 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2115 }
2116 
2117 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2118 					  unsigned long addr)
2119 {
2120 	struct inode *inode = file_inode(vma->vm_file);
2121 	pgoff_t index;
2122 
2123 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2124 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2125 }
2126 #endif
2127 
2128 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2129 {
2130 	struct inode *inode = file_inode(file);
2131 	struct shmem_inode_info *info = SHMEM_I(inode);
2132 	int retval = -ENOMEM;
2133 
2134 	spin_lock_irq(&info->lock);
2135 	if (lock && !(info->flags & VM_LOCKED)) {
2136 		if (!user_shm_lock(inode->i_size, user))
2137 			goto out_nomem;
2138 		info->flags |= VM_LOCKED;
2139 		mapping_set_unevictable(file->f_mapping);
2140 	}
2141 	if (!lock && (info->flags & VM_LOCKED) && user) {
2142 		user_shm_unlock(inode->i_size, user);
2143 		info->flags &= ~VM_LOCKED;
2144 		mapping_clear_unevictable(file->f_mapping);
2145 	}
2146 	retval = 0;
2147 
2148 out_nomem:
2149 	spin_unlock_irq(&info->lock);
2150 	return retval;
2151 }
2152 
2153 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2154 {
2155 	file_accessed(file);
2156 	vma->vm_ops = &shmem_vm_ops;
2157 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2158 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2159 			(vma->vm_end & HPAGE_PMD_MASK)) {
2160 		khugepaged_enter(vma, vma->vm_flags);
2161 	}
2162 	return 0;
2163 }
2164 
2165 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2166 				     umode_t mode, dev_t dev, unsigned long flags)
2167 {
2168 	struct inode *inode;
2169 	struct shmem_inode_info *info;
2170 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2171 
2172 	if (shmem_reserve_inode(sb))
2173 		return NULL;
2174 
2175 	inode = new_inode(sb);
2176 	if (inode) {
2177 		inode->i_ino = get_next_ino();
2178 		inode_init_owner(inode, dir, mode);
2179 		inode->i_blocks = 0;
2180 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2181 		inode->i_generation = prandom_u32();
2182 		info = SHMEM_I(inode);
2183 		memset(info, 0, (char *)inode - (char *)info);
2184 		spin_lock_init(&info->lock);
2185 		info->seals = F_SEAL_SEAL;
2186 		info->flags = flags & VM_NORESERVE;
2187 		INIT_LIST_HEAD(&info->shrinklist);
2188 		INIT_LIST_HEAD(&info->swaplist);
2189 		simple_xattrs_init(&info->xattrs);
2190 		cache_no_acl(inode);
2191 
2192 		switch (mode & S_IFMT) {
2193 		default:
2194 			inode->i_op = &shmem_special_inode_operations;
2195 			init_special_inode(inode, mode, dev);
2196 			break;
2197 		case S_IFREG:
2198 			inode->i_mapping->a_ops = &shmem_aops;
2199 			inode->i_op = &shmem_inode_operations;
2200 			inode->i_fop = &shmem_file_operations;
2201 			mpol_shared_policy_init(&info->policy,
2202 						 shmem_get_sbmpol(sbinfo));
2203 			break;
2204 		case S_IFDIR:
2205 			inc_nlink(inode);
2206 			/* Some things misbehave if size == 0 on a directory */
2207 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2208 			inode->i_op = &shmem_dir_inode_operations;
2209 			inode->i_fop = &simple_dir_operations;
2210 			break;
2211 		case S_IFLNK:
2212 			/*
2213 			 * Must not load anything in the rbtree,
2214 			 * mpol_free_shared_policy will not be called.
2215 			 */
2216 			mpol_shared_policy_init(&info->policy, NULL);
2217 			break;
2218 		}
2219 
2220 		lockdep_annotate_inode_mutex_key(inode);
2221 	} else
2222 		shmem_free_inode(sb);
2223 	return inode;
2224 }
2225 
2226 bool shmem_mapping(struct address_space *mapping)
2227 {
2228 	return mapping->a_ops == &shmem_aops;
2229 }
2230 
2231 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2232 				  pmd_t *dst_pmd,
2233 				  struct vm_area_struct *dst_vma,
2234 				  unsigned long dst_addr,
2235 				  unsigned long src_addr,
2236 				  bool zeropage,
2237 				  struct page **pagep)
2238 {
2239 	struct inode *inode = file_inode(dst_vma->vm_file);
2240 	struct shmem_inode_info *info = SHMEM_I(inode);
2241 	struct address_space *mapping = inode->i_mapping;
2242 	gfp_t gfp = mapping_gfp_mask(mapping);
2243 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2244 	struct mem_cgroup *memcg;
2245 	spinlock_t *ptl;
2246 	void *page_kaddr;
2247 	struct page *page;
2248 	pte_t _dst_pte, *dst_pte;
2249 	int ret;
2250 
2251 	ret = -ENOMEM;
2252 	if (!shmem_inode_acct_block(inode, 1))
2253 		goto out;
2254 
2255 	if (!*pagep) {
2256 		page = shmem_alloc_page(gfp, info, pgoff);
2257 		if (!page)
2258 			goto out_unacct_blocks;
2259 
2260 		if (!zeropage) {	/* mcopy_atomic */
2261 			page_kaddr = kmap_atomic(page);
2262 			ret = copy_from_user(page_kaddr,
2263 					     (const void __user *)src_addr,
2264 					     PAGE_SIZE);
2265 			kunmap_atomic(page_kaddr);
2266 
2267 			/* fallback to copy_from_user outside mmap_sem */
2268 			if (unlikely(ret)) {
2269 				*pagep = page;
2270 				shmem_inode_unacct_blocks(inode, 1);
2271 				/* don't free the page */
2272 				return -EFAULT;
2273 			}
2274 		} else {		/* mfill_zeropage_atomic */
2275 			clear_highpage(page);
2276 		}
2277 	} else {
2278 		page = *pagep;
2279 		*pagep = NULL;
2280 	}
2281 
2282 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2283 	__SetPageLocked(page);
2284 	__SetPageSwapBacked(page);
2285 	__SetPageUptodate(page);
2286 
2287 	ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2288 	if (ret)
2289 		goto out_release;
2290 
2291 	ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2292 	if (!ret) {
2293 		ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2294 		radix_tree_preload_end();
2295 	}
2296 	if (ret)
2297 		goto out_release_uncharge;
2298 
2299 	mem_cgroup_commit_charge(page, memcg, false, false);
2300 
2301 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2302 	if (dst_vma->vm_flags & VM_WRITE)
2303 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2304 
2305 	ret = -EEXIST;
2306 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2307 	if (!pte_none(*dst_pte))
2308 		goto out_release_uncharge_unlock;
2309 
2310 	lru_cache_add_anon(page);
2311 
2312 	spin_lock(&info->lock);
2313 	info->alloced++;
2314 	inode->i_blocks += BLOCKS_PER_PAGE;
2315 	shmem_recalc_inode(inode);
2316 	spin_unlock(&info->lock);
2317 
2318 	inc_mm_counter(dst_mm, mm_counter_file(page));
2319 	page_add_file_rmap(page, false);
2320 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2321 
2322 	/* No need to invalidate - it was non-present before */
2323 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2324 	unlock_page(page);
2325 	pte_unmap_unlock(dst_pte, ptl);
2326 	ret = 0;
2327 out:
2328 	return ret;
2329 out_release_uncharge_unlock:
2330 	pte_unmap_unlock(dst_pte, ptl);
2331 out_release_uncharge:
2332 	mem_cgroup_cancel_charge(page, memcg, false);
2333 out_release:
2334 	unlock_page(page);
2335 	put_page(page);
2336 out_unacct_blocks:
2337 	shmem_inode_unacct_blocks(inode, 1);
2338 	goto out;
2339 }
2340 
2341 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2342 			   pmd_t *dst_pmd,
2343 			   struct vm_area_struct *dst_vma,
2344 			   unsigned long dst_addr,
2345 			   unsigned long src_addr,
2346 			   struct page **pagep)
2347 {
2348 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2349 				      dst_addr, src_addr, false, pagep);
2350 }
2351 
2352 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2353 			     pmd_t *dst_pmd,
2354 			     struct vm_area_struct *dst_vma,
2355 			     unsigned long dst_addr)
2356 {
2357 	struct page *page = NULL;
2358 
2359 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2360 				      dst_addr, 0, true, &page);
2361 }
2362 
2363 #ifdef CONFIG_TMPFS
2364 static const struct inode_operations shmem_symlink_inode_operations;
2365 static const struct inode_operations shmem_short_symlink_operations;
2366 
2367 #ifdef CONFIG_TMPFS_XATTR
2368 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2369 #else
2370 #define shmem_initxattrs NULL
2371 #endif
2372 
2373 static int
2374 shmem_write_begin(struct file *file, struct address_space *mapping,
2375 			loff_t pos, unsigned len, unsigned flags,
2376 			struct page **pagep, void **fsdata)
2377 {
2378 	struct inode *inode = mapping->host;
2379 	struct shmem_inode_info *info = SHMEM_I(inode);
2380 	pgoff_t index = pos >> PAGE_SHIFT;
2381 
2382 	/* i_mutex is held by caller */
2383 	if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2384 		if (info->seals & F_SEAL_WRITE)
2385 			return -EPERM;
2386 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2387 			return -EPERM;
2388 	}
2389 
2390 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2391 }
2392 
2393 static int
2394 shmem_write_end(struct file *file, struct address_space *mapping,
2395 			loff_t pos, unsigned len, unsigned copied,
2396 			struct page *page, void *fsdata)
2397 {
2398 	struct inode *inode = mapping->host;
2399 
2400 	if (pos + copied > inode->i_size)
2401 		i_size_write(inode, pos + copied);
2402 
2403 	if (!PageUptodate(page)) {
2404 		struct page *head = compound_head(page);
2405 		if (PageTransCompound(page)) {
2406 			int i;
2407 
2408 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2409 				if (head + i == page)
2410 					continue;
2411 				clear_highpage(head + i);
2412 				flush_dcache_page(head + i);
2413 			}
2414 		}
2415 		if (copied < PAGE_SIZE) {
2416 			unsigned from = pos & (PAGE_SIZE - 1);
2417 			zero_user_segments(page, 0, from,
2418 					from + copied, PAGE_SIZE);
2419 		}
2420 		SetPageUptodate(head);
2421 	}
2422 	set_page_dirty(page);
2423 	unlock_page(page);
2424 	put_page(page);
2425 
2426 	return copied;
2427 }
2428 
2429 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2430 {
2431 	struct file *file = iocb->ki_filp;
2432 	struct inode *inode = file_inode(file);
2433 	struct address_space *mapping = inode->i_mapping;
2434 	pgoff_t index;
2435 	unsigned long offset;
2436 	enum sgp_type sgp = SGP_READ;
2437 	int error = 0;
2438 	ssize_t retval = 0;
2439 	loff_t *ppos = &iocb->ki_pos;
2440 
2441 	/*
2442 	 * Might this read be for a stacking filesystem?  Then when reading
2443 	 * holes of a sparse file, we actually need to allocate those pages,
2444 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2445 	 */
2446 	if (!iter_is_iovec(to))
2447 		sgp = SGP_CACHE;
2448 
2449 	index = *ppos >> PAGE_SHIFT;
2450 	offset = *ppos & ~PAGE_MASK;
2451 
2452 	for (;;) {
2453 		struct page *page = NULL;
2454 		pgoff_t end_index;
2455 		unsigned long nr, ret;
2456 		loff_t i_size = i_size_read(inode);
2457 
2458 		end_index = i_size >> PAGE_SHIFT;
2459 		if (index > end_index)
2460 			break;
2461 		if (index == end_index) {
2462 			nr = i_size & ~PAGE_MASK;
2463 			if (nr <= offset)
2464 				break;
2465 		}
2466 
2467 		error = shmem_getpage(inode, index, &page, sgp);
2468 		if (error) {
2469 			if (error == -EINVAL)
2470 				error = 0;
2471 			break;
2472 		}
2473 		if (page) {
2474 			if (sgp == SGP_CACHE)
2475 				set_page_dirty(page);
2476 			unlock_page(page);
2477 		}
2478 
2479 		/*
2480 		 * We must evaluate after, since reads (unlike writes)
2481 		 * are called without i_mutex protection against truncate
2482 		 */
2483 		nr = PAGE_SIZE;
2484 		i_size = i_size_read(inode);
2485 		end_index = i_size >> PAGE_SHIFT;
2486 		if (index == end_index) {
2487 			nr = i_size & ~PAGE_MASK;
2488 			if (nr <= offset) {
2489 				if (page)
2490 					put_page(page);
2491 				break;
2492 			}
2493 		}
2494 		nr -= offset;
2495 
2496 		if (page) {
2497 			/*
2498 			 * If users can be writing to this page using arbitrary
2499 			 * virtual addresses, take care about potential aliasing
2500 			 * before reading the page on the kernel side.
2501 			 */
2502 			if (mapping_writably_mapped(mapping))
2503 				flush_dcache_page(page);
2504 			/*
2505 			 * Mark the page accessed if we read the beginning.
2506 			 */
2507 			if (!offset)
2508 				mark_page_accessed(page);
2509 		} else {
2510 			page = ZERO_PAGE(0);
2511 			get_page(page);
2512 		}
2513 
2514 		/*
2515 		 * Ok, we have the page, and it's up-to-date, so
2516 		 * now we can copy it to user space...
2517 		 */
2518 		ret = copy_page_to_iter(page, offset, nr, to);
2519 		retval += ret;
2520 		offset += ret;
2521 		index += offset >> PAGE_SHIFT;
2522 		offset &= ~PAGE_MASK;
2523 
2524 		put_page(page);
2525 		if (!iov_iter_count(to))
2526 			break;
2527 		if (ret < nr) {
2528 			error = -EFAULT;
2529 			break;
2530 		}
2531 		cond_resched();
2532 	}
2533 
2534 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2535 	file_accessed(file);
2536 	return retval ? retval : error;
2537 }
2538 
2539 /*
2540  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2541  */
2542 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2543 				    pgoff_t index, pgoff_t end, int whence)
2544 {
2545 	struct page *page;
2546 	struct pagevec pvec;
2547 	pgoff_t indices[PAGEVEC_SIZE];
2548 	bool done = false;
2549 	int i;
2550 
2551 	pagevec_init(&pvec);
2552 	pvec.nr = 1;		/* start small: we may be there already */
2553 	while (!done) {
2554 		pvec.nr = find_get_entries(mapping, index,
2555 					pvec.nr, pvec.pages, indices);
2556 		if (!pvec.nr) {
2557 			if (whence == SEEK_DATA)
2558 				index = end;
2559 			break;
2560 		}
2561 		for (i = 0; i < pvec.nr; i++, index++) {
2562 			if (index < indices[i]) {
2563 				if (whence == SEEK_HOLE) {
2564 					done = true;
2565 					break;
2566 				}
2567 				index = indices[i];
2568 			}
2569 			page = pvec.pages[i];
2570 			if (page && !xa_is_value(page)) {
2571 				if (!PageUptodate(page))
2572 					page = NULL;
2573 			}
2574 			if (index >= end ||
2575 			    (page && whence == SEEK_DATA) ||
2576 			    (!page && whence == SEEK_HOLE)) {
2577 				done = true;
2578 				break;
2579 			}
2580 		}
2581 		pagevec_remove_exceptionals(&pvec);
2582 		pagevec_release(&pvec);
2583 		pvec.nr = PAGEVEC_SIZE;
2584 		cond_resched();
2585 	}
2586 	return index;
2587 }
2588 
2589 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2590 {
2591 	struct address_space *mapping = file->f_mapping;
2592 	struct inode *inode = mapping->host;
2593 	pgoff_t start, end;
2594 	loff_t new_offset;
2595 
2596 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2597 		return generic_file_llseek_size(file, offset, whence,
2598 					MAX_LFS_FILESIZE, i_size_read(inode));
2599 	inode_lock(inode);
2600 	/* We're holding i_mutex so we can access i_size directly */
2601 
2602 	if (offset < 0)
2603 		offset = -EINVAL;
2604 	else if (offset >= inode->i_size)
2605 		offset = -ENXIO;
2606 	else {
2607 		start = offset >> PAGE_SHIFT;
2608 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2609 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2610 		new_offset <<= PAGE_SHIFT;
2611 		if (new_offset > offset) {
2612 			if (new_offset < inode->i_size)
2613 				offset = new_offset;
2614 			else if (whence == SEEK_DATA)
2615 				offset = -ENXIO;
2616 			else
2617 				offset = inode->i_size;
2618 		}
2619 	}
2620 
2621 	if (offset >= 0)
2622 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2623 	inode_unlock(inode);
2624 	return offset;
2625 }
2626 
2627 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2628 							 loff_t len)
2629 {
2630 	struct inode *inode = file_inode(file);
2631 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2632 	struct shmem_inode_info *info = SHMEM_I(inode);
2633 	struct shmem_falloc shmem_falloc;
2634 	pgoff_t start, index, end;
2635 	int error;
2636 
2637 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2638 		return -EOPNOTSUPP;
2639 
2640 	inode_lock(inode);
2641 
2642 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2643 		struct address_space *mapping = file->f_mapping;
2644 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2645 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2646 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2647 
2648 		/* protected by i_mutex */
2649 		if (info->seals & F_SEAL_WRITE) {
2650 			error = -EPERM;
2651 			goto out;
2652 		}
2653 
2654 		shmem_falloc.waitq = &shmem_falloc_waitq;
2655 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2656 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2657 		spin_lock(&inode->i_lock);
2658 		inode->i_private = &shmem_falloc;
2659 		spin_unlock(&inode->i_lock);
2660 
2661 		if ((u64)unmap_end > (u64)unmap_start)
2662 			unmap_mapping_range(mapping, unmap_start,
2663 					    1 + unmap_end - unmap_start, 0);
2664 		shmem_truncate_range(inode, offset, offset + len - 1);
2665 		/* No need to unmap again: hole-punching leaves COWed pages */
2666 
2667 		spin_lock(&inode->i_lock);
2668 		inode->i_private = NULL;
2669 		wake_up_all(&shmem_falloc_waitq);
2670 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2671 		spin_unlock(&inode->i_lock);
2672 		error = 0;
2673 		goto out;
2674 	}
2675 
2676 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2677 	error = inode_newsize_ok(inode, offset + len);
2678 	if (error)
2679 		goto out;
2680 
2681 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2682 		error = -EPERM;
2683 		goto out;
2684 	}
2685 
2686 	start = offset >> PAGE_SHIFT;
2687 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2688 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2689 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2690 		error = -ENOSPC;
2691 		goto out;
2692 	}
2693 
2694 	shmem_falloc.waitq = NULL;
2695 	shmem_falloc.start = start;
2696 	shmem_falloc.next  = start;
2697 	shmem_falloc.nr_falloced = 0;
2698 	shmem_falloc.nr_unswapped = 0;
2699 	spin_lock(&inode->i_lock);
2700 	inode->i_private = &shmem_falloc;
2701 	spin_unlock(&inode->i_lock);
2702 
2703 	for (index = start; index < end; index++) {
2704 		struct page *page;
2705 
2706 		/*
2707 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2708 		 * been interrupted because we are using up too much memory.
2709 		 */
2710 		if (signal_pending(current))
2711 			error = -EINTR;
2712 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2713 			error = -ENOMEM;
2714 		else
2715 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2716 		if (error) {
2717 			/* Remove the !PageUptodate pages we added */
2718 			if (index > start) {
2719 				shmem_undo_range(inode,
2720 				    (loff_t)start << PAGE_SHIFT,
2721 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2722 			}
2723 			goto undone;
2724 		}
2725 
2726 		/*
2727 		 * Inform shmem_writepage() how far we have reached.
2728 		 * No need for lock or barrier: we have the page lock.
2729 		 */
2730 		shmem_falloc.next++;
2731 		if (!PageUptodate(page))
2732 			shmem_falloc.nr_falloced++;
2733 
2734 		/*
2735 		 * If !PageUptodate, leave it that way so that freeable pages
2736 		 * can be recognized if we need to rollback on error later.
2737 		 * But set_page_dirty so that memory pressure will swap rather
2738 		 * than free the pages we are allocating (and SGP_CACHE pages
2739 		 * might still be clean: we now need to mark those dirty too).
2740 		 */
2741 		set_page_dirty(page);
2742 		unlock_page(page);
2743 		put_page(page);
2744 		cond_resched();
2745 	}
2746 
2747 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2748 		i_size_write(inode, offset + len);
2749 	inode->i_ctime = current_time(inode);
2750 undone:
2751 	spin_lock(&inode->i_lock);
2752 	inode->i_private = NULL;
2753 	spin_unlock(&inode->i_lock);
2754 out:
2755 	inode_unlock(inode);
2756 	return error;
2757 }
2758 
2759 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2760 {
2761 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2762 
2763 	buf->f_type = TMPFS_MAGIC;
2764 	buf->f_bsize = PAGE_SIZE;
2765 	buf->f_namelen = NAME_MAX;
2766 	if (sbinfo->max_blocks) {
2767 		buf->f_blocks = sbinfo->max_blocks;
2768 		buf->f_bavail =
2769 		buf->f_bfree  = sbinfo->max_blocks -
2770 				percpu_counter_sum(&sbinfo->used_blocks);
2771 	}
2772 	if (sbinfo->max_inodes) {
2773 		buf->f_files = sbinfo->max_inodes;
2774 		buf->f_ffree = sbinfo->free_inodes;
2775 	}
2776 	/* else leave those fields 0 like simple_statfs */
2777 	return 0;
2778 }
2779 
2780 /*
2781  * File creation. Allocate an inode, and we're done..
2782  */
2783 static int
2784 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2785 {
2786 	struct inode *inode;
2787 	int error = -ENOSPC;
2788 
2789 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2790 	if (inode) {
2791 		error = simple_acl_create(dir, inode);
2792 		if (error)
2793 			goto out_iput;
2794 		error = security_inode_init_security(inode, dir,
2795 						     &dentry->d_name,
2796 						     shmem_initxattrs, NULL);
2797 		if (error && error != -EOPNOTSUPP)
2798 			goto out_iput;
2799 
2800 		error = 0;
2801 		dir->i_size += BOGO_DIRENT_SIZE;
2802 		dir->i_ctime = dir->i_mtime = current_time(dir);
2803 		d_instantiate(dentry, inode);
2804 		dget(dentry); /* Extra count - pin the dentry in core */
2805 	}
2806 	return error;
2807 out_iput:
2808 	iput(inode);
2809 	return error;
2810 }
2811 
2812 static int
2813 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2814 {
2815 	struct inode *inode;
2816 	int error = -ENOSPC;
2817 
2818 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2819 	if (inode) {
2820 		error = security_inode_init_security(inode, dir,
2821 						     NULL,
2822 						     shmem_initxattrs, NULL);
2823 		if (error && error != -EOPNOTSUPP)
2824 			goto out_iput;
2825 		error = simple_acl_create(dir, inode);
2826 		if (error)
2827 			goto out_iput;
2828 		d_tmpfile(dentry, inode);
2829 	}
2830 	return error;
2831 out_iput:
2832 	iput(inode);
2833 	return error;
2834 }
2835 
2836 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2837 {
2838 	int error;
2839 
2840 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2841 		return error;
2842 	inc_nlink(dir);
2843 	return 0;
2844 }
2845 
2846 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2847 		bool excl)
2848 {
2849 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2850 }
2851 
2852 /*
2853  * Link a file..
2854  */
2855 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2856 {
2857 	struct inode *inode = d_inode(old_dentry);
2858 	int ret;
2859 
2860 	/*
2861 	 * No ordinary (disk based) filesystem counts links as inodes;
2862 	 * but each new link needs a new dentry, pinning lowmem, and
2863 	 * tmpfs dentries cannot be pruned until they are unlinked.
2864 	 */
2865 	ret = shmem_reserve_inode(inode->i_sb);
2866 	if (ret)
2867 		goto out;
2868 
2869 	dir->i_size += BOGO_DIRENT_SIZE;
2870 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2871 	inc_nlink(inode);
2872 	ihold(inode);	/* New dentry reference */
2873 	dget(dentry);		/* Extra pinning count for the created dentry */
2874 	d_instantiate(dentry, inode);
2875 out:
2876 	return ret;
2877 }
2878 
2879 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2880 {
2881 	struct inode *inode = d_inode(dentry);
2882 
2883 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2884 		shmem_free_inode(inode->i_sb);
2885 
2886 	dir->i_size -= BOGO_DIRENT_SIZE;
2887 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2888 	drop_nlink(inode);
2889 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2890 	return 0;
2891 }
2892 
2893 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2894 {
2895 	if (!simple_empty(dentry))
2896 		return -ENOTEMPTY;
2897 
2898 	drop_nlink(d_inode(dentry));
2899 	drop_nlink(dir);
2900 	return shmem_unlink(dir, dentry);
2901 }
2902 
2903 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2904 {
2905 	bool old_is_dir = d_is_dir(old_dentry);
2906 	bool new_is_dir = d_is_dir(new_dentry);
2907 
2908 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2909 		if (old_is_dir) {
2910 			drop_nlink(old_dir);
2911 			inc_nlink(new_dir);
2912 		} else {
2913 			drop_nlink(new_dir);
2914 			inc_nlink(old_dir);
2915 		}
2916 	}
2917 	old_dir->i_ctime = old_dir->i_mtime =
2918 	new_dir->i_ctime = new_dir->i_mtime =
2919 	d_inode(old_dentry)->i_ctime =
2920 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2921 
2922 	return 0;
2923 }
2924 
2925 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2926 {
2927 	struct dentry *whiteout;
2928 	int error;
2929 
2930 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2931 	if (!whiteout)
2932 		return -ENOMEM;
2933 
2934 	error = shmem_mknod(old_dir, whiteout,
2935 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2936 	dput(whiteout);
2937 	if (error)
2938 		return error;
2939 
2940 	/*
2941 	 * Cheat and hash the whiteout while the old dentry is still in
2942 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2943 	 *
2944 	 * d_lookup() will consistently find one of them at this point,
2945 	 * not sure which one, but that isn't even important.
2946 	 */
2947 	d_rehash(whiteout);
2948 	return 0;
2949 }
2950 
2951 /*
2952  * The VFS layer already does all the dentry stuff for rename,
2953  * we just have to decrement the usage count for the target if
2954  * it exists so that the VFS layer correctly free's it when it
2955  * gets overwritten.
2956  */
2957 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2958 {
2959 	struct inode *inode = d_inode(old_dentry);
2960 	int they_are_dirs = S_ISDIR(inode->i_mode);
2961 
2962 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2963 		return -EINVAL;
2964 
2965 	if (flags & RENAME_EXCHANGE)
2966 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2967 
2968 	if (!simple_empty(new_dentry))
2969 		return -ENOTEMPTY;
2970 
2971 	if (flags & RENAME_WHITEOUT) {
2972 		int error;
2973 
2974 		error = shmem_whiteout(old_dir, old_dentry);
2975 		if (error)
2976 			return error;
2977 	}
2978 
2979 	if (d_really_is_positive(new_dentry)) {
2980 		(void) shmem_unlink(new_dir, new_dentry);
2981 		if (they_are_dirs) {
2982 			drop_nlink(d_inode(new_dentry));
2983 			drop_nlink(old_dir);
2984 		}
2985 	} else if (they_are_dirs) {
2986 		drop_nlink(old_dir);
2987 		inc_nlink(new_dir);
2988 	}
2989 
2990 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2991 	new_dir->i_size += BOGO_DIRENT_SIZE;
2992 	old_dir->i_ctime = old_dir->i_mtime =
2993 	new_dir->i_ctime = new_dir->i_mtime =
2994 	inode->i_ctime = current_time(old_dir);
2995 	return 0;
2996 }
2997 
2998 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2999 {
3000 	int error;
3001 	int len;
3002 	struct inode *inode;
3003 	struct page *page;
3004 
3005 	len = strlen(symname) + 1;
3006 	if (len > PAGE_SIZE)
3007 		return -ENAMETOOLONG;
3008 
3009 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3010 				VM_NORESERVE);
3011 	if (!inode)
3012 		return -ENOSPC;
3013 
3014 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3015 					     shmem_initxattrs, NULL);
3016 	if (error) {
3017 		if (error != -EOPNOTSUPP) {
3018 			iput(inode);
3019 			return error;
3020 		}
3021 		error = 0;
3022 	}
3023 
3024 	inode->i_size = len-1;
3025 	if (len <= SHORT_SYMLINK_LEN) {
3026 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3027 		if (!inode->i_link) {
3028 			iput(inode);
3029 			return -ENOMEM;
3030 		}
3031 		inode->i_op = &shmem_short_symlink_operations;
3032 	} else {
3033 		inode_nohighmem(inode);
3034 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3035 		if (error) {
3036 			iput(inode);
3037 			return error;
3038 		}
3039 		inode->i_mapping->a_ops = &shmem_aops;
3040 		inode->i_op = &shmem_symlink_inode_operations;
3041 		memcpy(page_address(page), symname, len);
3042 		SetPageUptodate(page);
3043 		set_page_dirty(page);
3044 		unlock_page(page);
3045 		put_page(page);
3046 	}
3047 	dir->i_size += BOGO_DIRENT_SIZE;
3048 	dir->i_ctime = dir->i_mtime = current_time(dir);
3049 	d_instantiate(dentry, inode);
3050 	dget(dentry);
3051 	return 0;
3052 }
3053 
3054 static void shmem_put_link(void *arg)
3055 {
3056 	mark_page_accessed(arg);
3057 	put_page(arg);
3058 }
3059 
3060 static const char *shmem_get_link(struct dentry *dentry,
3061 				  struct inode *inode,
3062 				  struct delayed_call *done)
3063 {
3064 	struct page *page = NULL;
3065 	int error;
3066 	if (!dentry) {
3067 		page = find_get_page(inode->i_mapping, 0);
3068 		if (!page)
3069 			return ERR_PTR(-ECHILD);
3070 		if (!PageUptodate(page)) {
3071 			put_page(page);
3072 			return ERR_PTR(-ECHILD);
3073 		}
3074 	} else {
3075 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3076 		if (error)
3077 			return ERR_PTR(error);
3078 		unlock_page(page);
3079 	}
3080 	set_delayed_call(done, shmem_put_link, page);
3081 	return page_address(page);
3082 }
3083 
3084 #ifdef CONFIG_TMPFS_XATTR
3085 /*
3086  * Superblocks without xattr inode operations may get some security.* xattr
3087  * support from the LSM "for free". As soon as we have any other xattrs
3088  * like ACLs, we also need to implement the security.* handlers at
3089  * filesystem level, though.
3090  */
3091 
3092 /*
3093  * Callback for security_inode_init_security() for acquiring xattrs.
3094  */
3095 static int shmem_initxattrs(struct inode *inode,
3096 			    const struct xattr *xattr_array,
3097 			    void *fs_info)
3098 {
3099 	struct shmem_inode_info *info = SHMEM_I(inode);
3100 	const struct xattr *xattr;
3101 	struct simple_xattr *new_xattr;
3102 	size_t len;
3103 
3104 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3105 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3106 		if (!new_xattr)
3107 			return -ENOMEM;
3108 
3109 		len = strlen(xattr->name) + 1;
3110 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3111 					  GFP_KERNEL);
3112 		if (!new_xattr->name) {
3113 			kfree(new_xattr);
3114 			return -ENOMEM;
3115 		}
3116 
3117 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3118 		       XATTR_SECURITY_PREFIX_LEN);
3119 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3120 		       xattr->name, len);
3121 
3122 		simple_xattr_list_add(&info->xattrs, new_xattr);
3123 	}
3124 
3125 	return 0;
3126 }
3127 
3128 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3129 				   struct dentry *unused, struct inode *inode,
3130 				   const char *name, void *buffer, size_t size)
3131 {
3132 	struct shmem_inode_info *info = SHMEM_I(inode);
3133 
3134 	name = xattr_full_name(handler, name);
3135 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3136 }
3137 
3138 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3139 				   struct dentry *unused, struct inode *inode,
3140 				   const char *name, const void *value,
3141 				   size_t size, int flags)
3142 {
3143 	struct shmem_inode_info *info = SHMEM_I(inode);
3144 
3145 	name = xattr_full_name(handler, name);
3146 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3147 }
3148 
3149 static const struct xattr_handler shmem_security_xattr_handler = {
3150 	.prefix = XATTR_SECURITY_PREFIX,
3151 	.get = shmem_xattr_handler_get,
3152 	.set = shmem_xattr_handler_set,
3153 };
3154 
3155 static const struct xattr_handler shmem_trusted_xattr_handler = {
3156 	.prefix = XATTR_TRUSTED_PREFIX,
3157 	.get = shmem_xattr_handler_get,
3158 	.set = shmem_xattr_handler_set,
3159 };
3160 
3161 static const struct xattr_handler *shmem_xattr_handlers[] = {
3162 #ifdef CONFIG_TMPFS_POSIX_ACL
3163 	&posix_acl_access_xattr_handler,
3164 	&posix_acl_default_xattr_handler,
3165 #endif
3166 	&shmem_security_xattr_handler,
3167 	&shmem_trusted_xattr_handler,
3168 	NULL
3169 };
3170 
3171 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3172 {
3173 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3174 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3175 }
3176 #endif /* CONFIG_TMPFS_XATTR */
3177 
3178 static const struct inode_operations shmem_short_symlink_operations = {
3179 	.get_link	= simple_get_link,
3180 #ifdef CONFIG_TMPFS_XATTR
3181 	.listxattr	= shmem_listxattr,
3182 #endif
3183 };
3184 
3185 static const struct inode_operations shmem_symlink_inode_operations = {
3186 	.get_link	= shmem_get_link,
3187 #ifdef CONFIG_TMPFS_XATTR
3188 	.listxattr	= shmem_listxattr,
3189 #endif
3190 };
3191 
3192 static struct dentry *shmem_get_parent(struct dentry *child)
3193 {
3194 	return ERR_PTR(-ESTALE);
3195 }
3196 
3197 static int shmem_match(struct inode *ino, void *vfh)
3198 {
3199 	__u32 *fh = vfh;
3200 	__u64 inum = fh[2];
3201 	inum = (inum << 32) | fh[1];
3202 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3203 }
3204 
3205 /* Find any alias of inode, but prefer a hashed alias */
3206 static struct dentry *shmem_find_alias(struct inode *inode)
3207 {
3208 	struct dentry *alias = d_find_alias(inode);
3209 
3210 	return alias ?: d_find_any_alias(inode);
3211 }
3212 
3213 
3214 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3215 		struct fid *fid, int fh_len, int fh_type)
3216 {
3217 	struct inode *inode;
3218 	struct dentry *dentry = NULL;
3219 	u64 inum;
3220 
3221 	if (fh_len < 3)
3222 		return NULL;
3223 
3224 	inum = fid->raw[2];
3225 	inum = (inum << 32) | fid->raw[1];
3226 
3227 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3228 			shmem_match, fid->raw);
3229 	if (inode) {
3230 		dentry = shmem_find_alias(inode);
3231 		iput(inode);
3232 	}
3233 
3234 	return dentry;
3235 }
3236 
3237 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3238 				struct inode *parent)
3239 {
3240 	if (*len < 3) {
3241 		*len = 3;
3242 		return FILEID_INVALID;
3243 	}
3244 
3245 	if (inode_unhashed(inode)) {
3246 		/* Unfortunately insert_inode_hash is not idempotent,
3247 		 * so as we hash inodes here rather than at creation
3248 		 * time, we need a lock to ensure we only try
3249 		 * to do it once
3250 		 */
3251 		static DEFINE_SPINLOCK(lock);
3252 		spin_lock(&lock);
3253 		if (inode_unhashed(inode))
3254 			__insert_inode_hash(inode,
3255 					    inode->i_ino + inode->i_generation);
3256 		spin_unlock(&lock);
3257 	}
3258 
3259 	fh[0] = inode->i_generation;
3260 	fh[1] = inode->i_ino;
3261 	fh[2] = ((__u64)inode->i_ino) >> 32;
3262 
3263 	*len = 3;
3264 	return 1;
3265 }
3266 
3267 static const struct export_operations shmem_export_ops = {
3268 	.get_parent     = shmem_get_parent,
3269 	.encode_fh      = shmem_encode_fh,
3270 	.fh_to_dentry	= shmem_fh_to_dentry,
3271 };
3272 
3273 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3274 			       bool remount)
3275 {
3276 	char *this_char, *value, *rest;
3277 	struct mempolicy *mpol = NULL;
3278 	uid_t uid;
3279 	gid_t gid;
3280 
3281 	while (options != NULL) {
3282 		this_char = options;
3283 		for (;;) {
3284 			/*
3285 			 * NUL-terminate this option: unfortunately,
3286 			 * mount options form a comma-separated list,
3287 			 * but mpol's nodelist may also contain commas.
3288 			 */
3289 			options = strchr(options, ',');
3290 			if (options == NULL)
3291 				break;
3292 			options++;
3293 			if (!isdigit(*options)) {
3294 				options[-1] = '\0';
3295 				break;
3296 			}
3297 		}
3298 		if (!*this_char)
3299 			continue;
3300 		if ((value = strchr(this_char,'=')) != NULL) {
3301 			*value++ = 0;
3302 		} else {
3303 			pr_err("tmpfs: No value for mount option '%s'\n",
3304 			       this_char);
3305 			goto error;
3306 		}
3307 
3308 		if (!strcmp(this_char,"size")) {
3309 			unsigned long long size;
3310 			size = memparse(value,&rest);
3311 			if (*rest == '%') {
3312 				size <<= PAGE_SHIFT;
3313 				size *= totalram_pages;
3314 				do_div(size, 100);
3315 				rest++;
3316 			}
3317 			if (*rest)
3318 				goto bad_val;
3319 			sbinfo->max_blocks =
3320 				DIV_ROUND_UP(size, PAGE_SIZE);
3321 		} else if (!strcmp(this_char,"nr_blocks")) {
3322 			sbinfo->max_blocks = memparse(value, &rest);
3323 			if (*rest)
3324 				goto bad_val;
3325 		} else if (!strcmp(this_char,"nr_inodes")) {
3326 			sbinfo->max_inodes = memparse(value, &rest);
3327 			if (*rest)
3328 				goto bad_val;
3329 		} else if (!strcmp(this_char,"mode")) {
3330 			if (remount)
3331 				continue;
3332 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3333 			if (*rest)
3334 				goto bad_val;
3335 		} else if (!strcmp(this_char,"uid")) {
3336 			if (remount)
3337 				continue;
3338 			uid = simple_strtoul(value, &rest, 0);
3339 			if (*rest)
3340 				goto bad_val;
3341 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3342 			if (!uid_valid(sbinfo->uid))
3343 				goto bad_val;
3344 		} else if (!strcmp(this_char,"gid")) {
3345 			if (remount)
3346 				continue;
3347 			gid = simple_strtoul(value, &rest, 0);
3348 			if (*rest)
3349 				goto bad_val;
3350 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3351 			if (!gid_valid(sbinfo->gid))
3352 				goto bad_val;
3353 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3354 		} else if (!strcmp(this_char, "huge")) {
3355 			int huge;
3356 			huge = shmem_parse_huge(value);
3357 			if (huge < 0)
3358 				goto bad_val;
3359 			if (!has_transparent_hugepage() &&
3360 					huge != SHMEM_HUGE_NEVER)
3361 				goto bad_val;
3362 			sbinfo->huge = huge;
3363 #endif
3364 #ifdef CONFIG_NUMA
3365 		} else if (!strcmp(this_char,"mpol")) {
3366 			mpol_put(mpol);
3367 			mpol = NULL;
3368 			if (mpol_parse_str(value, &mpol))
3369 				goto bad_val;
3370 #endif
3371 		} else {
3372 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3373 			goto error;
3374 		}
3375 	}
3376 	sbinfo->mpol = mpol;
3377 	return 0;
3378 
3379 bad_val:
3380 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3381 	       value, this_char);
3382 error:
3383 	mpol_put(mpol);
3384 	return 1;
3385 
3386 }
3387 
3388 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3389 {
3390 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3391 	struct shmem_sb_info config = *sbinfo;
3392 	unsigned long inodes;
3393 	int error = -EINVAL;
3394 
3395 	config.mpol = NULL;
3396 	if (shmem_parse_options(data, &config, true))
3397 		return error;
3398 
3399 	spin_lock(&sbinfo->stat_lock);
3400 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3401 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3402 		goto out;
3403 	if (config.max_inodes < inodes)
3404 		goto out;
3405 	/*
3406 	 * Those tests disallow limited->unlimited while any are in use;
3407 	 * but we must separately disallow unlimited->limited, because
3408 	 * in that case we have no record of how much is already in use.
3409 	 */
3410 	if (config.max_blocks && !sbinfo->max_blocks)
3411 		goto out;
3412 	if (config.max_inodes && !sbinfo->max_inodes)
3413 		goto out;
3414 
3415 	error = 0;
3416 	sbinfo->huge = config.huge;
3417 	sbinfo->max_blocks  = config.max_blocks;
3418 	sbinfo->max_inodes  = config.max_inodes;
3419 	sbinfo->free_inodes = config.max_inodes - inodes;
3420 
3421 	/*
3422 	 * Preserve previous mempolicy unless mpol remount option was specified.
3423 	 */
3424 	if (config.mpol) {
3425 		mpol_put(sbinfo->mpol);
3426 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3427 	}
3428 out:
3429 	spin_unlock(&sbinfo->stat_lock);
3430 	return error;
3431 }
3432 
3433 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3434 {
3435 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3436 
3437 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3438 		seq_printf(seq, ",size=%luk",
3439 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3440 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3441 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3442 	if (sbinfo->mode != (0777 | S_ISVTX))
3443 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3444 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3445 		seq_printf(seq, ",uid=%u",
3446 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3447 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3448 		seq_printf(seq, ",gid=%u",
3449 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3450 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3451 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3452 	if (sbinfo->huge)
3453 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3454 #endif
3455 	shmem_show_mpol(seq, sbinfo->mpol);
3456 	return 0;
3457 }
3458 
3459 #endif /* CONFIG_TMPFS */
3460 
3461 static void shmem_put_super(struct super_block *sb)
3462 {
3463 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3464 
3465 	percpu_counter_destroy(&sbinfo->used_blocks);
3466 	mpol_put(sbinfo->mpol);
3467 	kfree(sbinfo);
3468 	sb->s_fs_info = NULL;
3469 }
3470 
3471 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3472 {
3473 	struct inode *inode;
3474 	struct shmem_sb_info *sbinfo;
3475 	int err = -ENOMEM;
3476 
3477 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3478 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3479 				L1_CACHE_BYTES), GFP_KERNEL);
3480 	if (!sbinfo)
3481 		return -ENOMEM;
3482 
3483 	sbinfo->mode = 0777 | S_ISVTX;
3484 	sbinfo->uid = current_fsuid();
3485 	sbinfo->gid = current_fsgid();
3486 	sb->s_fs_info = sbinfo;
3487 
3488 #ifdef CONFIG_TMPFS
3489 	/*
3490 	 * Per default we only allow half of the physical ram per
3491 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3492 	 * but the internal instance is left unlimited.
3493 	 */
3494 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3495 		sbinfo->max_blocks = shmem_default_max_blocks();
3496 		sbinfo->max_inodes = shmem_default_max_inodes();
3497 		if (shmem_parse_options(data, sbinfo, false)) {
3498 			err = -EINVAL;
3499 			goto failed;
3500 		}
3501 	} else {
3502 		sb->s_flags |= SB_NOUSER;
3503 	}
3504 	sb->s_export_op = &shmem_export_ops;
3505 	sb->s_flags |= SB_NOSEC;
3506 #else
3507 	sb->s_flags |= SB_NOUSER;
3508 #endif
3509 
3510 	spin_lock_init(&sbinfo->stat_lock);
3511 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3512 		goto failed;
3513 	sbinfo->free_inodes = sbinfo->max_inodes;
3514 	spin_lock_init(&sbinfo->shrinklist_lock);
3515 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3516 
3517 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3518 	sb->s_blocksize = PAGE_SIZE;
3519 	sb->s_blocksize_bits = PAGE_SHIFT;
3520 	sb->s_magic = TMPFS_MAGIC;
3521 	sb->s_op = &shmem_ops;
3522 	sb->s_time_gran = 1;
3523 #ifdef CONFIG_TMPFS_XATTR
3524 	sb->s_xattr = shmem_xattr_handlers;
3525 #endif
3526 #ifdef CONFIG_TMPFS_POSIX_ACL
3527 	sb->s_flags |= SB_POSIXACL;
3528 #endif
3529 	uuid_gen(&sb->s_uuid);
3530 
3531 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3532 	if (!inode)
3533 		goto failed;
3534 	inode->i_uid = sbinfo->uid;
3535 	inode->i_gid = sbinfo->gid;
3536 	sb->s_root = d_make_root(inode);
3537 	if (!sb->s_root)
3538 		goto failed;
3539 	return 0;
3540 
3541 failed:
3542 	shmem_put_super(sb);
3543 	return err;
3544 }
3545 
3546 static struct kmem_cache *shmem_inode_cachep;
3547 
3548 static struct inode *shmem_alloc_inode(struct super_block *sb)
3549 {
3550 	struct shmem_inode_info *info;
3551 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3552 	if (!info)
3553 		return NULL;
3554 	return &info->vfs_inode;
3555 }
3556 
3557 static void shmem_destroy_callback(struct rcu_head *head)
3558 {
3559 	struct inode *inode = container_of(head, struct inode, i_rcu);
3560 	if (S_ISLNK(inode->i_mode))
3561 		kfree(inode->i_link);
3562 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3563 }
3564 
3565 static void shmem_destroy_inode(struct inode *inode)
3566 {
3567 	if (S_ISREG(inode->i_mode))
3568 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3569 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3570 }
3571 
3572 static void shmem_init_inode(void *foo)
3573 {
3574 	struct shmem_inode_info *info = foo;
3575 	inode_init_once(&info->vfs_inode);
3576 }
3577 
3578 static void shmem_init_inodecache(void)
3579 {
3580 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3581 				sizeof(struct shmem_inode_info),
3582 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3583 }
3584 
3585 static void shmem_destroy_inodecache(void)
3586 {
3587 	kmem_cache_destroy(shmem_inode_cachep);
3588 }
3589 
3590 static const struct address_space_operations shmem_aops = {
3591 	.writepage	= shmem_writepage,
3592 	.set_page_dirty	= __set_page_dirty_no_writeback,
3593 #ifdef CONFIG_TMPFS
3594 	.write_begin	= shmem_write_begin,
3595 	.write_end	= shmem_write_end,
3596 #endif
3597 #ifdef CONFIG_MIGRATION
3598 	.migratepage	= migrate_page,
3599 #endif
3600 	.error_remove_page = generic_error_remove_page,
3601 };
3602 
3603 static const struct file_operations shmem_file_operations = {
3604 	.mmap		= shmem_mmap,
3605 	.get_unmapped_area = shmem_get_unmapped_area,
3606 #ifdef CONFIG_TMPFS
3607 	.llseek		= shmem_file_llseek,
3608 	.read_iter	= shmem_file_read_iter,
3609 	.write_iter	= generic_file_write_iter,
3610 	.fsync		= noop_fsync,
3611 	.splice_read	= generic_file_splice_read,
3612 	.splice_write	= iter_file_splice_write,
3613 	.fallocate	= shmem_fallocate,
3614 #endif
3615 };
3616 
3617 static const struct inode_operations shmem_inode_operations = {
3618 	.getattr	= shmem_getattr,
3619 	.setattr	= shmem_setattr,
3620 #ifdef CONFIG_TMPFS_XATTR
3621 	.listxattr	= shmem_listxattr,
3622 	.set_acl	= simple_set_acl,
3623 #endif
3624 };
3625 
3626 static const struct inode_operations shmem_dir_inode_operations = {
3627 #ifdef CONFIG_TMPFS
3628 	.create		= shmem_create,
3629 	.lookup		= simple_lookup,
3630 	.link		= shmem_link,
3631 	.unlink		= shmem_unlink,
3632 	.symlink	= shmem_symlink,
3633 	.mkdir		= shmem_mkdir,
3634 	.rmdir		= shmem_rmdir,
3635 	.mknod		= shmem_mknod,
3636 	.rename		= shmem_rename2,
3637 	.tmpfile	= shmem_tmpfile,
3638 #endif
3639 #ifdef CONFIG_TMPFS_XATTR
3640 	.listxattr	= shmem_listxattr,
3641 #endif
3642 #ifdef CONFIG_TMPFS_POSIX_ACL
3643 	.setattr	= shmem_setattr,
3644 	.set_acl	= simple_set_acl,
3645 #endif
3646 };
3647 
3648 static const struct inode_operations shmem_special_inode_operations = {
3649 #ifdef CONFIG_TMPFS_XATTR
3650 	.listxattr	= shmem_listxattr,
3651 #endif
3652 #ifdef CONFIG_TMPFS_POSIX_ACL
3653 	.setattr	= shmem_setattr,
3654 	.set_acl	= simple_set_acl,
3655 #endif
3656 };
3657 
3658 static const struct super_operations shmem_ops = {
3659 	.alloc_inode	= shmem_alloc_inode,
3660 	.destroy_inode	= shmem_destroy_inode,
3661 #ifdef CONFIG_TMPFS
3662 	.statfs		= shmem_statfs,
3663 	.remount_fs	= shmem_remount_fs,
3664 	.show_options	= shmem_show_options,
3665 #endif
3666 	.evict_inode	= shmem_evict_inode,
3667 	.drop_inode	= generic_delete_inode,
3668 	.put_super	= shmem_put_super,
3669 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3670 	.nr_cached_objects	= shmem_unused_huge_count,
3671 	.free_cached_objects	= shmem_unused_huge_scan,
3672 #endif
3673 };
3674 
3675 static const struct vm_operations_struct shmem_vm_ops = {
3676 	.fault		= shmem_fault,
3677 	.map_pages	= filemap_map_pages,
3678 #ifdef CONFIG_NUMA
3679 	.set_policy     = shmem_set_policy,
3680 	.get_policy     = shmem_get_policy,
3681 #endif
3682 };
3683 
3684 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3685 	int flags, const char *dev_name, void *data)
3686 {
3687 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3688 }
3689 
3690 static struct file_system_type shmem_fs_type = {
3691 	.owner		= THIS_MODULE,
3692 	.name		= "tmpfs",
3693 	.mount		= shmem_mount,
3694 	.kill_sb	= kill_litter_super,
3695 	.fs_flags	= FS_USERNS_MOUNT,
3696 };
3697 
3698 int __init shmem_init(void)
3699 {
3700 	int error;
3701 
3702 	/* If rootfs called this, don't re-init */
3703 	if (shmem_inode_cachep)
3704 		return 0;
3705 
3706 	shmem_init_inodecache();
3707 
3708 	error = register_filesystem(&shmem_fs_type);
3709 	if (error) {
3710 		pr_err("Could not register tmpfs\n");
3711 		goto out2;
3712 	}
3713 
3714 	shm_mnt = kern_mount(&shmem_fs_type);
3715 	if (IS_ERR(shm_mnt)) {
3716 		error = PTR_ERR(shm_mnt);
3717 		pr_err("Could not kern_mount tmpfs\n");
3718 		goto out1;
3719 	}
3720 
3721 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3722 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3723 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3724 	else
3725 		shmem_huge = 0; /* just in case it was patched */
3726 #endif
3727 	return 0;
3728 
3729 out1:
3730 	unregister_filesystem(&shmem_fs_type);
3731 out2:
3732 	shmem_destroy_inodecache();
3733 	shm_mnt = ERR_PTR(error);
3734 	return error;
3735 }
3736 
3737 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3738 static ssize_t shmem_enabled_show(struct kobject *kobj,
3739 		struct kobj_attribute *attr, char *buf)
3740 {
3741 	int values[] = {
3742 		SHMEM_HUGE_ALWAYS,
3743 		SHMEM_HUGE_WITHIN_SIZE,
3744 		SHMEM_HUGE_ADVISE,
3745 		SHMEM_HUGE_NEVER,
3746 		SHMEM_HUGE_DENY,
3747 		SHMEM_HUGE_FORCE,
3748 	};
3749 	int i, count;
3750 
3751 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3752 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3753 
3754 		count += sprintf(buf + count, fmt,
3755 				shmem_format_huge(values[i]));
3756 	}
3757 	buf[count - 1] = '\n';
3758 	return count;
3759 }
3760 
3761 static ssize_t shmem_enabled_store(struct kobject *kobj,
3762 		struct kobj_attribute *attr, const char *buf, size_t count)
3763 {
3764 	char tmp[16];
3765 	int huge;
3766 
3767 	if (count + 1 > sizeof(tmp))
3768 		return -EINVAL;
3769 	memcpy(tmp, buf, count);
3770 	tmp[count] = '\0';
3771 	if (count && tmp[count - 1] == '\n')
3772 		tmp[count - 1] = '\0';
3773 
3774 	huge = shmem_parse_huge(tmp);
3775 	if (huge == -EINVAL)
3776 		return -EINVAL;
3777 	if (!has_transparent_hugepage() &&
3778 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3779 		return -EINVAL;
3780 
3781 	shmem_huge = huge;
3782 	if (shmem_huge > SHMEM_HUGE_DENY)
3783 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3784 	return count;
3785 }
3786 
3787 struct kobj_attribute shmem_enabled_attr =
3788 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3789 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3790 
3791 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3792 bool shmem_huge_enabled(struct vm_area_struct *vma)
3793 {
3794 	struct inode *inode = file_inode(vma->vm_file);
3795 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3796 	loff_t i_size;
3797 	pgoff_t off;
3798 
3799 	if (shmem_huge == SHMEM_HUGE_FORCE)
3800 		return true;
3801 	if (shmem_huge == SHMEM_HUGE_DENY)
3802 		return false;
3803 	switch (sbinfo->huge) {
3804 		case SHMEM_HUGE_NEVER:
3805 			return false;
3806 		case SHMEM_HUGE_ALWAYS:
3807 			return true;
3808 		case SHMEM_HUGE_WITHIN_SIZE:
3809 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3810 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
3811 			if (i_size >= HPAGE_PMD_SIZE &&
3812 					i_size >> PAGE_SHIFT >= off)
3813 				return true;
3814 			/* fall through */
3815 		case SHMEM_HUGE_ADVISE:
3816 			/* TODO: implement fadvise() hints */
3817 			return (vma->vm_flags & VM_HUGEPAGE);
3818 		default:
3819 			VM_BUG_ON(1);
3820 			return false;
3821 	}
3822 }
3823 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3824 
3825 #else /* !CONFIG_SHMEM */
3826 
3827 /*
3828  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3829  *
3830  * This is intended for small system where the benefits of the full
3831  * shmem code (swap-backed and resource-limited) are outweighed by
3832  * their complexity. On systems without swap this code should be
3833  * effectively equivalent, but much lighter weight.
3834  */
3835 
3836 static struct file_system_type shmem_fs_type = {
3837 	.name		= "tmpfs",
3838 	.mount		= ramfs_mount,
3839 	.kill_sb	= kill_litter_super,
3840 	.fs_flags	= FS_USERNS_MOUNT,
3841 };
3842 
3843 int __init shmem_init(void)
3844 {
3845 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3846 
3847 	shm_mnt = kern_mount(&shmem_fs_type);
3848 	BUG_ON(IS_ERR(shm_mnt));
3849 
3850 	return 0;
3851 }
3852 
3853 int shmem_unuse(swp_entry_t swap, struct page *page)
3854 {
3855 	return 0;
3856 }
3857 
3858 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3859 {
3860 	return 0;
3861 }
3862 
3863 void shmem_unlock_mapping(struct address_space *mapping)
3864 {
3865 }
3866 
3867 #ifdef CONFIG_MMU
3868 unsigned long shmem_get_unmapped_area(struct file *file,
3869 				      unsigned long addr, unsigned long len,
3870 				      unsigned long pgoff, unsigned long flags)
3871 {
3872 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3873 }
3874 #endif
3875 
3876 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3877 {
3878 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3879 }
3880 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3881 
3882 #define shmem_vm_ops				generic_file_vm_ops
3883 #define shmem_file_operations			ramfs_file_operations
3884 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3885 #define shmem_acct_size(flags, size)		0
3886 #define shmem_unacct_size(flags, size)		do {} while (0)
3887 
3888 #endif /* CONFIG_SHMEM */
3889 
3890 /* common code */
3891 
3892 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3893 				       unsigned long flags, unsigned int i_flags)
3894 {
3895 	struct inode *inode;
3896 	struct file *res;
3897 
3898 	if (IS_ERR(mnt))
3899 		return ERR_CAST(mnt);
3900 
3901 	if (size < 0 || size > MAX_LFS_FILESIZE)
3902 		return ERR_PTR(-EINVAL);
3903 
3904 	if (shmem_acct_size(flags, size))
3905 		return ERR_PTR(-ENOMEM);
3906 
3907 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3908 				flags);
3909 	if (unlikely(!inode)) {
3910 		shmem_unacct_size(flags, size);
3911 		return ERR_PTR(-ENOSPC);
3912 	}
3913 	inode->i_flags |= i_flags;
3914 	inode->i_size = size;
3915 	clear_nlink(inode);	/* It is unlinked */
3916 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3917 	if (!IS_ERR(res))
3918 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3919 				&shmem_file_operations);
3920 	if (IS_ERR(res))
3921 		iput(inode);
3922 	return res;
3923 }
3924 
3925 /**
3926  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3927  * 	kernel internal.  There will be NO LSM permission checks against the
3928  * 	underlying inode.  So users of this interface must do LSM checks at a
3929  *	higher layer.  The users are the big_key and shm implementations.  LSM
3930  *	checks are provided at the key or shm level rather than the inode.
3931  * @name: name for dentry (to be seen in /proc/<pid>/maps
3932  * @size: size to be set for the file
3933  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3934  */
3935 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3936 {
3937 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
3938 }
3939 
3940 /**
3941  * shmem_file_setup - get an unlinked file living in tmpfs
3942  * @name: name for dentry (to be seen in /proc/<pid>/maps
3943  * @size: size to be set for the file
3944  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3945  */
3946 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3947 {
3948 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
3949 }
3950 EXPORT_SYMBOL_GPL(shmem_file_setup);
3951 
3952 /**
3953  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3954  * @mnt: the tmpfs mount where the file will be created
3955  * @name: name for dentry (to be seen in /proc/<pid>/maps
3956  * @size: size to be set for the file
3957  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3958  */
3959 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
3960 				       loff_t size, unsigned long flags)
3961 {
3962 	return __shmem_file_setup(mnt, name, size, flags, 0);
3963 }
3964 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
3965 
3966 /**
3967  * shmem_zero_setup - setup a shared anonymous mapping
3968  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3969  */
3970 int shmem_zero_setup(struct vm_area_struct *vma)
3971 {
3972 	struct file *file;
3973 	loff_t size = vma->vm_end - vma->vm_start;
3974 
3975 	/*
3976 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3977 	 * between XFS directory reading and selinux: since this file is only
3978 	 * accessible to the user through its mapping, use S_PRIVATE flag to
3979 	 * bypass file security, in the same way as shmem_kernel_file_setup().
3980 	 */
3981 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
3982 	if (IS_ERR(file))
3983 		return PTR_ERR(file);
3984 
3985 	if (vma->vm_file)
3986 		fput(vma->vm_file);
3987 	vma->vm_file = file;
3988 	vma->vm_ops = &shmem_vm_ops;
3989 
3990 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3991 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
3992 			(vma->vm_end & HPAGE_PMD_MASK)) {
3993 		khugepaged_enter(vma, vma->vm_flags);
3994 	}
3995 
3996 	return 0;
3997 }
3998 
3999 /**
4000  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4001  * @mapping:	the page's address_space
4002  * @index:	the page index
4003  * @gfp:	the page allocator flags to use if allocating
4004  *
4005  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4006  * with any new page allocations done using the specified allocation flags.
4007  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4008  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4009  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4010  *
4011  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4012  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4013  */
4014 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4015 					 pgoff_t index, gfp_t gfp)
4016 {
4017 #ifdef CONFIG_SHMEM
4018 	struct inode *inode = mapping->host;
4019 	struct page *page;
4020 	int error;
4021 
4022 	BUG_ON(mapping->a_ops != &shmem_aops);
4023 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4024 				  gfp, NULL, NULL, NULL);
4025 	if (error)
4026 		page = ERR_PTR(error);
4027 	else
4028 		unlock_page(page);
4029 	return page;
4030 #else
4031 	/*
4032 	 * The tiny !SHMEM case uses ramfs without swap
4033 	 */
4034 	return read_cache_page_gfp(mapping, index, gfp);
4035 #endif
4036 }
4037 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4038