xref: /openbmc/linux/mm/shmem.c (revision 8e205f779d1443a94b5ae81aa359cb535dd3021e)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35 
36 static struct vfsmount *shm_mnt;
37 
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44 
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72 
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75 
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78 
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81 
82 /*
83  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84  * inode->i_private (with i_mutex making sure that it has only one user at
85  * a time): we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89 	pgoff_t start;		/* start of range currently being fallocated */
90 	pgoff_t next;		/* the next page offset to be fallocated */
91 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
92 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
93 };
94 
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97 	SGP_READ,	/* don't exceed i_size, don't allocate page */
98 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
99 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
100 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
101 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
102 };
103 
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107 	return totalram_pages / 2;
108 }
109 
110 static unsigned long shmem_default_max_inodes(void)
111 {
112 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115 
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118 				struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121 
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123 	struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125 	return shmem_getpage_gfp(inode, index, pagep, sgp,
126 			mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128 
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131 	return sb->s_fs_info;
132 }
133 
134 /*
135  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136  * for shared memory and for shared anonymous (/dev/zero) mappings
137  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138  * consistent with the pre-accounting of private mappings ...
139  */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142 	return (flags & VM_NORESERVE) ?
143 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145 
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148 	if (!(flags & VM_NORESERVE))
149 		vm_unacct_memory(VM_ACCT(size));
150 }
151 
152 /*
153  * ... whereas tmpfs objects are accounted incrementally as
154  * pages are allocated, in order to allow huge sparse files.
155  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157  */
158 static inline int shmem_acct_block(unsigned long flags)
159 {
160 	return (flags & VM_NORESERVE) ?
161 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
162 }
163 
164 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165 {
166 	if (flags & VM_NORESERVE)
167 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168 }
169 
170 static const struct super_operations shmem_ops;
171 static const struct address_space_operations shmem_aops;
172 static const struct file_operations shmem_file_operations;
173 static const struct inode_operations shmem_inode_operations;
174 static const struct inode_operations shmem_dir_inode_operations;
175 static const struct inode_operations shmem_special_inode_operations;
176 static const struct vm_operations_struct shmem_vm_ops;
177 
178 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
179 	.ra_pages	= 0,	/* No readahead */
180 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
181 };
182 
183 static LIST_HEAD(shmem_swaplist);
184 static DEFINE_MUTEX(shmem_swaplist_mutex);
185 
186 static int shmem_reserve_inode(struct super_block *sb)
187 {
188 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189 	if (sbinfo->max_inodes) {
190 		spin_lock(&sbinfo->stat_lock);
191 		if (!sbinfo->free_inodes) {
192 			spin_unlock(&sbinfo->stat_lock);
193 			return -ENOSPC;
194 		}
195 		sbinfo->free_inodes--;
196 		spin_unlock(&sbinfo->stat_lock);
197 	}
198 	return 0;
199 }
200 
201 static void shmem_free_inode(struct super_block *sb)
202 {
203 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204 	if (sbinfo->max_inodes) {
205 		spin_lock(&sbinfo->stat_lock);
206 		sbinfo->free_inodes++;
207 		spin_unlock(&sbinfo->stat_lock);
208 	}
209 }
210 
211 /**
212  * shmem_recalc_inode - recalculate the block usage of an inode
213  * @inode: inode to recalc
214  *
215  * We have to calculate the free blocks since the mm can drop
216  * undirtied hole pages behind our back.
217  *
218  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
219  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220  *
221  * It has to be called with the spinlock held.
222  */
223 static void shmem_recalc_inode(struct inode *inode)
224 {
225 	struct shmem_inode_info *info = SHMEM_I(inode);
226 	long freed;
227 
228 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229 	if (freed > 0) {
230 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231 		if (sbinfo->max_blocks)
232 			percpu_counter_add(&sbinfo->used_blocks, -freed);
233 		info->alloced -= freed;
234 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235 		shmem_unacct_blocks(info->flags, freed);
236 	}
237 }
238 
239 /*
240  * Replace item expected in radix tree by a new item, while holding tree lock.
241  */
242 static int shmem_radix_tree_replace(struct address_space *mapping,
243 			pgoff_t index, void *expected, void *replacement)
244 {
245 	void **pslot;
246 	void *item;
247 
248 	VM_BUG_ON(!expected);
249 	VM_BUG_ON(!replacement);
250 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
251 	if (!pslot)
252 		return -ENOENT;
253 	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
254 	if (item != expected)
255 		return -ENOENT;
256 	radix_tree_replace_slot(pslot, replacement);
257 	return 0;
258 }
259 
260 /*
261  * Sometimes, before we decide whether to proceed or to fail, we must check
262  * that an entry was not already brought back from swap by a racing thread.
263  *
264  * Checking page is not enough: by the time a SwapCache page is locked, it
265  * might be reused, and again be SwapCache, using the same swap as before.
266  */
267 static bool shmem_confirm_swap(struct address_space *mapping,
268 			       pgoff_t index, swp_entry_t swap)
269 {
270 	void *item;
271 
272 	rcu_read_lock();
273 	item = radix_tree_lookup(&mapping->page_tree, index);
274 	rcu_read_unlock();
275 	return item == swp_to_radix_entry(swap);
276 }
277 
278 /*
279  * Like add_to_page_cache_locked, but error if expected item has gone.
280  */
281 static int shmem_add_to_page_cache(struct page *page,
282 				   struct address_space *mapping,
283 				   pgoff_t index, gfp_t gfp, void *expected)
284 {
285 	int error;
286 
287 	VM_BUG_ON_PAGE(!PageLocked(page), page);
288 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
289 
290 	page_cache_get(page);
291 	page->mapping = mapping;
292 	page->index = index;
293 
294 	spin_lock_irq(&mapping->tree_lock);
295 	if (!expected)
296 		error = radix_tree_insert(&mapping->page_tree, index, page);
297 	else
298 		error = shmem_radix_tree_replace(mapping, index, expected,
299 								 page);
300 	if (!error) {
301 		mapping->nrpages++;
302 		__inc_zone_page_state(page, NR_FILE_PAGES);
303 		__inc_zone_page_state(page, NR_SHMEM);
304 		spin_unlock_irq(&mapping->tree_lock);
305 	} else {
306 		page->mapping = NULL;
307 		spin_unlock_irq(&mapping->tree_lock);
308 		page_cache_release(page);
309 	}
310 	return error;
311 }
312 
313 /*
314  * Like delete_from_page_cache, but substitutes swap for page.
315  */
316 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
317 {
318 	struct address_space *mapping = page->mapping;
319 	int error;
320 
321 	spin_lock_irq(&mapping->tree_lock);
322 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
323 	page->mapping = NULL;
324 	mapping->nrpages--;
325 	__dec_zone_page_state(page, NR_FILE_PAGES);
326 	__dec_zone_page_state(page, NR_SHMEM);
327 	spin_unlock_irq(&mapping->tree_lock);
328 	page_cache_release(page);
329 	BUG_ON(error);
330 }
331 
332 /*
333  * Remove swap entry from radix tree, free the swap and its page cache.
334  */
335 static int shmem_free_swap(struct address_space *mapping,
336 			   pgoff_t index, void *radswap)
337 {
338 	void *old;
339 
340 	spin_lock_irq(&mapping->tree_lock);
341 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
342 	spin_unlock_irq(&mapping->tree_lock);
343 	if (old != radswap)
344 		return -ENOENT;
345 	free_swap_and_cache(radix_to_swp_entry(radswap));
346 	return 0;
347 }
348 
349 /*
350  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
351  */
352 void shmem_unlock_mapping(struct address_space *mapping)
353 {
354 	struct pagevec pvec;
355 	pgoff_t indices[PAGEVEC_SIZE];
356 	pgoff_t index = 0;
357 
358 	pagevec_init(&pvec, 0);
359 	/*
360 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
361 	 */
362 	while (!mapping_unevictable(mapping)) {
363 		/*
364 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
365 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
366 		 */
367 		pvec.nr = find_get_entries(mapping, index,
368 					   PAGEVEC_SIZE, pvec.pages, indices);
369 		if (!pvec.nr)
370 			break;
371 		index = indices[pvec.nr - 1] + 1;
372 		pagevec_remove_exceptionals(&pvec);
373 		check_move_unevictable_pages(pvec.pages, pvec.nr);
374 		pagevec_release(&pvec);
375 		cond_resched();
376 	}
377 }
378 
379 /*
380  * Remove range of pages and swap entries from radix tree, and free them.
381  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
382  */
383 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
384 								 bool unfalloc)
385 {
386 	struct address_space *mapping = inode->i_mapping;
387 	struct shmem_inode_info *info = SHMEM_I(inode);
388 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
389 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
390 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
391 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
392 	struct pagevec pvec;
393 	pgoff_t indices[PAGEVEC_SIZE];
394 	long nr_swaps_freed = 0;
395 	pgoff_t index;
396 	int i;
397 
398 	if (lend == -1)
399 		end = -1;	/* unsigned, so actually very big */
400 
401 	pagevec_init(&pvec, 0);
402 	index = start;
403 	while (index < end) {
404 		pvec.nr = find_get_entries(mapping, index,
405 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
406 			pvec.pages, indices);
407 		if (!pvec.nr)
408 			break;
409 		mem_cgroup_uncharge_start();
410 		for (i = 0; i < pagevec_count(&pvec); i++) {
411 			struct page *page = pvec.pages[i];
412 
413 			index = indices[i];
414 			if (index >= end)
415 				break;
416 
417 			if (radix_tree_exceptional_entry(page)) {
418 				if (unfalloc)
419 					continue;
420 				nr_swaps_freed += !shmem_free_swap(mapping,
421 								index, page);
422 				continue;
423 			}
424 
425 			if (!trylock_page(page))
426 				continue;
427 			if (!unfalloc || !PageUptodate(page)) {
428 				if (page->mapping == mapping) {
429 					VM_BUG_ON_PAGE(PageWriteback(page), page);
430 					truncate_inode_page(mapping, page);
431 				}
432 			}
433 			unlock_page(page);
434 		}
435 		pagevec_remove_exceptionals(&pvec);
436 		pagevec_release(&pvec);
437 		mem_cgroup_uncharge_end();
438 		cond_resched();
439 		index++;
440 	}
441 
442 	if (partial_start) {
443 		struct page *page = NULL;
444 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
445 		if (page) {
446 			unsigned int top = PAGE_CACHE_SIZE;
447 			if (start > end) {
448 				top = partial_end;
449 				partial_end = 0;
450 			}
451 			zero_user_segment(page, partial_start, top);
452 			set_page_dirty(page);
453 			unlock_page(page);
454 			page_cache_release(page);
455 		}
456 	}
457 	if (partial_end) {
458 		struct page *page = NULL;
459 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
460 		if (page) {
461 			zero_user_segment(page, 0, partial_end);
462 			set_page_dirty(page);
463 			unlock_page(page);
464 			page_cache_release(page);
465 		}
466 	}
467 	if (start >= end)
468 		return;
469 
470 	index = start;
471 	for ( ; ; ) {
472 		cond_resched();
473 
474 		pvec.nr = find_get_entries(mapping, index,
475 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
476 				pvec.pages, indices);
477 		if (!pvec.nr) {
478 			if (index == start || unfalloc)
479 				break;
480 			index = start;
481 			continue;
482 		}
483 		if ((index == start || unfalloc) && indices[0] >= end) {
484 			pagevec_remove_exceptionals(&pvec);
485 			pagevec_release(&pvec);
486 			break;
487 		}
488 		mem_cgroup_uncharge_start();
489 		for (i = 0; i < pagevec_count(&pvec); i++) {
490 			struct page *page = pvec.pages[i];
491 
492 			index = indices[i];
493 			if (index >= end)
494 				break;
495 
496 			if (radix_tree_exceptional_entry(page)) {
497 				if (unfalloc)
498 					continue;
499 				nr_swaps_freed += !shmem_free_swap(mapping,
500 								index, page);
501 				continue;
502 			}
503 
504 			lock_page(page);
505 			if (!unfalloc || !PageUptodate(page)) {
506 				if (page->mapping == mapping) {
507 					VM_BUG_ON_PAGE(PageWriteback(page), page);
508 					truncate_inode_page(mapping, page);
509 				}
510 			}
511 			unlock_page(page);
512 		}
513 		pagevec_remove_exceptionals(&pvec);
514 		pagevec_release(&pvec);
515 		mem_cgroup_uncharge_end();
516 		index++;
517 	}
518 
519 	spin_lock(&info->lock);
520 	info->swapped -= nr_swaps_freed;
521 	shmem_recalc_inode(inode);
522 	spin_unlock(&info->lock);
523 }
524 
525 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
526 {
527 	shmem_undo_range(inode, lstart, lend, false);
528 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
529 }
530 EXPORT_SYMBOL_GPL(shmem_truncate_range);
531 
532 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
533 {
534 	struct inode *inode = dentry->d_inode;
535 	int error;
536 
537 	error = inode_change_ok(inode, attr);
538 	if (error)
539 		return error;
540 
541 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
542 		loff_t oldsize = inode->i_size;
543 		loff_t newsize = attr->ia_size;
544 
545 		if (newsize != oldsize) {
546 			i_size_write(inode, newsize);
547 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
548 		}
549 		if (newsize < oldsize) {
550 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
551 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
552 			shmem_truncate_range(inode, newsize, (loff_t)-1);
553 			/* unmap again to remove racily COWed private pages */
554 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
555 		}
556 	}
557 
558 	setattr_copy(inode, attr);
559 	if (attr->ia_valid & ATTR_MODE)
560 		error = posix_acl_chmod(inode, inode->i_mode);
561 	return error;
562 }
563 
564 static void shmem_evict_inode(struct inode *inode)
565 {
566 	struct shmem_inode_info *info = SHMEM_I(inode);
567 
568 	if (inode->i_mapping->a_ops == &shmem_aops) {
569 		shmem_unacct_size(info->flags, inode->i_size);
570 		inode->i_size = 0;
571 		shmem_truncate_range(inode, 0, (loff_t)-1);
572 		if (!list_empty(&info->swaplist)) {
573 			mutex_lock(&shmem_swaplist_mutex);
574 			list_del_init(&info->swaplist);
575 			mutex_unlock(&shmem_swaplist_mutex);
576 		}
577 	} else
578 		kfree(info->symlink);
579 
580 	simple_xattrs_free(&info->xattrs);
581 	WARN_ON(inode->i_blocks);
582 	shmem_free_inode(inode->i_sb);
583 	clear_inode(inode);
584 }
585 
586 /*
587  * If swap found in inode, free it and move page from swapcache to filecache.
588  */
589 static int shmem_unuse_inode(struct shmem_inode_info *info,
590 			     swp_entry_t swap, struct page **pagep)
591 {
592 	struct address_space *mapping = info->vfs_inode.i_mapping;
593 	void *radswap;
594 	pgoff_t index;
595 	gfp_t gfp;
596 	int error = 0;
597 
598 	radswap = swp_to_radix_entry(swap);
599 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
600 	if (index == -1)
601 		return 0;
602 
603 	/*
604 	 * Move _head_ to start search for next from here.
605 	 * But be careful: shmem_evict_inode checks list_empty without taking
606 	 * mutex, and there's an instant in list_move_tail when info->swaplist
607 	 * would appear empty, if it were the only one on shmem_swaplist.
608 	 */
609 	if (shmem_swaplist.next != &info->swaplist)
610 		list_move_tail(&shmem_swaplist, &info->swaplist);
611 
612 	gfp = mapping_gfp_mask(mapping);
613 	if (shmem_should_replace_page(*pagep, gfp)) {
614 		mutex_unlock(&shmem_swaplist_mutex);
615 		error = shmem_replace_page(pagep, gfp, info, index);
616 		mutex_lock(&shmem_swaplist_mutex);
617 		/*
618 		 * We needed to drop mutex to make that restrictive page
619 		 * allocation, but the inode might have been freed while we
620 		 * dropped it: although a racing shmem_evict_inode() cannot
621 		 * complete without emptying the radix_tree, our page lock
622 		 * on this swapcache page is not enough to prevent that -
623 		 * free_swap_and_cache() of our swap entry will only
624 		 * trylock_page(), removing swap from radix_tree whatever.
625 		 *
626 		 * We must not proceed to shmem_add_to_page_cache() if the
627 		 * inode has been freed, but of course we cannot rely on
628 		 * inode or mapping or info to check that.  However, we can
629 		 * safely check if our swap entry is still in use (and here
630 		 * it can't have got reused for another page): if it's still
631 		 * in use, then the inode cannot have been freed yet, and we
632 		 * can safely proceed (if it's no longer in use, that tells
633 		 * nothing about the inode, but we don't need to unuse swap).
634 		 */
635 		if (!page_swapcount(*pagep))
636 			error = -ENOENT;
637 	}
638 
639 	/*
640 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
641 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
642 	 * beneath us (pagelock doesn't help until the page is in pagecache).
643 	 */
644 	if (!error)
645 		error = shmem_add_to_page_cache(*pagep, mapping, index,
646 						GFP_NOWAIT, radswap);
647 	if (error != -ENOMEM) {
648 		/*
649 		 * Truncation and eviction use free_swap_and_cache(), which
650 		 * only does trylock page: if we raced, best clean up here.
651 		 */
652 		delete_from_swap_cache(*pagep);
653 		set_page_dirty(*pagep);
654 		if (!error) {
655 			spin_lock(&info->lock);
656 			info->swapped--;
657 			spin_unlock(&info->lock);
658 			swap_free(swap);
659 		}
660 		error = 1;	/* not an error, but entry was found */
661 	}
662 	return error;
663 }
664 
665 /*
666  * Search through swapped inodes to find and replace swap by page.
667  */
668 int shmem_unuse(swp_entry_t swap, struct page *page)
669 {
670 	struct list_head *this, *next;
671 	struct shmem_inode_info *info;
672 	int found = 0;
673 	int error = 0;
674 
675 	/*
676 	 * There's a faint possibility that swap page was replaced before
677 	 * caller locked it: caller will come back later with the right page.
678 	 */
679 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
680 		goto out;
681 
682 	/*
683 	 * Charge page using GFP_KERNEL while we can wait, before taking
684 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
685 	 * Charged back to the user (not to caller) when swap account is used.
686 	 */
687 	error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
688 	if (error)
689 		goto out;
690 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
691 
692 	mutex_lock(&shmem_swaplist_mutex);
693 	list_for_each_safe(this, next, &shmem_swaplist) {
694 		info = list_entry(this, struct shmem_inode_info, swaplist);
695 		if (info->swapped)
696 			found = shmem_unuse_inode(info, swap, &page);
697 		else
698 			list_del_init(&info->swaplist);
699 		cond_resched();
700 		if (found)
701 			break;
702 	}
703 	mutex_unlock(&shmem_swaplist_mutex);
704 
705 	if (found < 0)
706 		error = found;
707 out:
708 	unlock_page(page);
709 	page_cache_release(page);
710 	return error;
711 }
712 
713 /*
714  * Move the page from the page cache to the swap cache.
715  */
716 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
717 {
718 	struct shmem_inode_info *info;
719 	struct address_space *mapping;
720 	struct inode *inode;
721 	swp_entry_t swap;
722 	pgoff_t index;
723 
724 	BUG_ON(!PageLocked(page));
725 	mapping = page->mapping;
726 	index = page->index;
727 	inode = mapping->host;
728 	info = SHMEM_I(inode);
729 	if (info->flags & VM_LOCKED)
730 		goto redirty;
731 	if (!total_swap_pages)
732 		goto redirty;
733 
734 	/*
735 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
736 	 * sync from ever calling shmem_writepage; but a stacking filesystem
737 	 * might use ->writepage of its underlying filesystem, in which case
738 	 * tmpfs should write out to swap only in response to memory pressure,
739 	 * and not for the writeback threads or sync.
740 	 */
741 	if (!wbc->for_reclaim) {
742 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
743 		goto redirty;
744 	}
745 
746 	/*
747 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
748 	 * value into swapfile.c, the only way we can correctly account for a
749 	 * fallocated page arriving here is now to initialize it and write it.
750 	 *
751 	 * That's okay for a page already fallocated earlier, but if we have
752 	 * not yet completed the fallocation, then (a) we want to keep track
753 	 * of this page in case we have to undo it, and (b) it may not be a
754 	 * good idea to continue anyway, once we're pushing into swap.  So
755 	 * reactivate the page, and let shmem_fallocate() quit when too many.
756 	 */
757 	if (!PageUptodate(page)) {
758 		if (inode->i_private) {
759 			struct shmem_falloc *shmem_falloc;
760 			spin_lock(&inode->i_lock);
761 			shmem_falloc = inode->i_private;
762 			if (shmem_falloc &&
763 			    !shmem_falloc->waitq &&
764 			    index >= shmem_falloc->start &&
765 			    index < shmem_falloc->next)
766 				shmem_falloc->nr_unswapped++;
767 			else
768 				shmem_falloc = NULL;
769 			spin_unlock(&inode->i_lock);
770 			if (shmem_falloc)
771 				goto redirty;
772 		}
773 		clear_highpage(page);
774 		flush_dcache_page(page);
775 		SetPageUptodate(page);
776 	}
777 
778 	swap = get_swap_page();
779 	if (!swap.val)
780 		goto redirty;
781 
782 	/*
783 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
784 	 * if it's not already there.  Do it now before the page is
785 	 * moved to swap cache, when its pagelock no longer protects
786 	 * the inode from eviction.  But don't unlock the mutex until
787 	 * we've incremented swapped, because shmem_unuse_inode() will
788 	 * prune a !swapped inode from the swaplist under this mutex.
789 	 */
790 	mutex_lock(&shmem_swaplist_mutex);
791 	if (list_empty(&info->swaplist))
792 		list_add_tail(&info->swaplist, &shmem_swaplist);
793 
794 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
795 		swap_shmem_alloc(swap);
796 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
797 
798 		spin_lock(&info->lock);
799 		info->swapped++;
800 		shmem_recalc_inode(inode);
801 		spin_unlock(&info->lock);
802 
803 		mutex_unlock(&shmem_swaplist_mutex);
804 		BUG_ON(page_mapped(page));
805 		swap_writepage(page, wbc);
806 		return 0;
807 	}
808 
809 	mutex_unlock(&shmem_swaplist_mutex);
810 	swapcache_free(swap, NULL);
811 redirty:
812 	set_page_dirty(page);
813 	if (wbc->for_reclaim)
814 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
815 	unlock_page(page);
816 	return 0;
817 }
818 
819 #ifdef CONFIG_NUMA
820 #ifdef CONFIG_TMPFS
821 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
822 {
823 	char buffer[64];
824 
825 	if (!mpol || mpol->mode == MPOL_DEFAULT)
826 		return;		/* show nothing */
827 
828 	mpol_to_str(buffer, sizeof(buffer), mpol);
829 
830 	seq_printf(seq, ",mpol=%s", buffer);
831 }
832 
833 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
834 {
835 	struct mempolicy *mpol = NULL;
836 	if (sbinfo->mpol) {
837 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
838 		mpol = sbinfo->mpol;
839 		mpol_get(mpol);
840 		spin_unlock(&sbinfo->stat_lock);
841 	}
842 	return mpol;
843 }
844 #endif /* CONFIG_TMPFS */
845 
846 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
847 			struct shmem_inode_info *info, pgoff_t index)
848 {
849 	struct vm_area_struct pvma;
850 	struct page *page;
851 
852 	/* Create a pseudo vma that just contains the policy */
853 	pvma.vm_start = 0;
854 	/* Bias interleave by inode number to distribute better across nodes */
855 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
856 	pvma.vm_ops = NULL;
857 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
858 
859 	page = swapin_readahead(swap, gfp, &pvma, 0);
860 
861 	/* Drop reference taken by mpol_shared_policy_lookup() */
862 	mpol_cond_put(pvma.vm_policy);
863 
864 	return page;
865 }
866 
867 static struct page *shmem_alloc_page(gfp_t gfp,
868 			struct shmem_inode_info *info, pgoff_t index)
869 {
870 	struct vm_area_struct pvma;
871 	struct page *page;
872 
873 	/* Create a pseudo vma that just contains the policy */
874 	pvma.vm_start = 0;
875 	/* Bias interleave by inode number to distribute better across nodes */
876 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
877 	pvma.vm_ops = NULL;
878 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
879 
880 	page = alloc_page_vma(gfp, &pvma, 0);
881 
882 	/* Drop reference taken by mpol_shared_policy_lookup() */
883 	mpol_cond_put(pvma.vm_policy);
884 
885 	return page;
886 }
887 #else /* !CONFIG_NUMA */
888 #ifdef CONFIG_TMPFS
889 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
890 {
891 }
892 #endif /* CONFIG_TMPFS */
893 
894 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
895 			struct shmem_inode_info *info, pgoff_t index)
896 {
897 	return swapin_readahead(swap, gfp, NULL, 0);
898 }
899 
900 static inline struct page *shmem_alloc_page(gfp_t gfp,
901 			struct shmem_inode_info *info, pgoff_t index)
902 {
903 	return alloc_page(gfp);
904 }
905 #endif /* CONFIG_NUMA */
906 
907 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
908 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
909 {
910 	return NULL;
911 }
912 #endif
913 
914 /*
915  * When a page is moved from swapcache to shmem filecache (either by the
916  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
917  * shmem_unuse_inode()), it may have been read in earlier from swap, in
918  * ignorance of the mapping it belongs to.  If that mapping has special
919  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
920  * we may need to copy to a suitable page before moving to filecache.
921  *
922  * In a future release, this may well be extended to respect cpuset and
923  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
924  * but for now it is a simple matter of zone.
925  */
926 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
927 {
928 	return page_zonenum(page) > gfp_zone(gfp);
929 }
930 
931 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
932 				struct shmem_inode_info *info, pgoff_t index)
933 {
934 	struct page *oldpage, *newpage;
935 	struct address_space *swap_mapping;
936 	pgoff_t swap_index;
937 	int error;
938 
939 	oldpage = *pagep;
940 	swap_index = page_private(oldpage);
941 	swap_mapping = page_mapping(oldpage);
942 
943 	/*
944 	 * We have arrived here because our zones are constrained, so don't
945 	 * limit chance of success by further cpuset and node constraints.
946 	 */
947 	gfp &= ~GFP_CONSTRAINT_MASK;
948 	newpage = shmem_alloc_page(gfp, info, index);
949 	if (!newpage)
950 		return -ENOMEM;
951 
952 	page_cache_get(newpage);
953 	copy_highpage(newpage, oldpage);
954 	flush_dcache_page(newpage);
955 
956 	__set_page_locked(newpage);
957 	SetPageUptodate(newpage);
958 	SetPageSwapBacked(newpage);
959 	set_page_private(newpage, swap_index);
960 	SetPageSwapCache(newpage);
961 
962 	/*
963 	 * Our caller will very soon move newpage out of swapcache, but it's
964 	 * a nice clean interface for us to replace oldpage by newpage there.
965 	 */
966 	spin_lock_irq(&swap_mapping->tree_lock);
967 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
968 								   newpage);
969 	if (!error) {
970 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
971 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
972 	}
973 	spin_unlock_irq(&swap_mapping->tree_lock);
974 
975 	if (unlikely(error)) {
976 		/*
977 		 * Is this possible?  I think not, now that our callers check
978 		 * both PageSwapCache and page_private after getting page lock;
979 		 * but be defensive.  Reverse old to newpage for clear and free.
980 		 */
981 		oldpage = newpage;
982 	} else {
983 		mem_cgroup_replace_page_cache(oldpage, newpage);
984 		lru_cache_add_anon(newpage);
985 		*pagep = newpage;
986 	}
987 
988 	ClearPageSwapCache(oldpage);
989 	set_page_private(oldpage, 0);
990 
991 	unlock_page(oldpage);
992 	page_cache_release(oldpage);
993 	page_cache_release(oldpage);
994 	return error;
995 }
996 
997 /*
998  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
999  *
1000  * If we allocate a new one we do not mark it dirty. That's up to the
1001  * vm. If we swap it in we mark it dirty since we also free the swap
1002  * entry since a page cannot live in both the swap and page cache
1003  */
1004 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1005 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1006 {
1007 	struct address_space *mapping = inode->i_mapping;
1008 	struct shmem_inode_info *info;
1009 	struct shmem_sb_info *sbinfo;
1010 	struct page *page;
1011 	swp_entry_t swap;
1012 	int error;
1013 	int once = 0;
1014 	int alloced = 0;
1015 
1016 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1017 		return -EFBIG;
1018 repeat:
1019 	swap.val = 0;
1020 	page = find_lock_entry(mapping, index);
1021 	if (radix_tree_exceptional_entry(page)) {
1022 		swap = radix_to_swp_entry(page);
1023 		page = NULL;
1024 	}
1025 
1026 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1027 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1028 		error = -EINVAL;
1029 		goto failed;
1030 	}
1031 
1032 	if (page && sgp == SGP_WRITE)
1033 		mark_page_accessed(page);
1034 
1035 	/* fallocated page? */
1036 	if (page && !PageUptodate(page)) {
1037 		if (sgp != SGP_READ)
1038 			goto clear;
1039 		unlock_page(page);
1040 		page_cache_release(page);
1041 		page = NULL;
1042 	}
1043 	if (page || (sgp == SGP_READ && !swap.val)) {
1044 		*pagep = page;
1045 		return 0;
1046 	}
1047 
1048 	/*
1049 	 * Fast cache lookup did not find it:
1050 	 * bring it back from swap or allocate.
1051 	 */
1052 	info = SHMEM_I(inode);
1053 	sbinfo = SHMEM_SB(inode->i_sb);
1054 
1055 	if (swap.val) {
1056 		/* Look it up and read it in.. */
1057 		page = lookup_swap_cache(swap);
1058 		if (!page) {
1059 			/* here we actually do the io */
1060 			if (fault_type)
1061 				*fault_type |= VM_FAULT_MAJOR;
1062 			page = shmem_swapin(swap, gfp, info, index);
1063 			if (!page) {
1064 				error = -ENOMEM;
1065 				goto failed;
1066 			}
1067 		}
1068 
1069 		/* We have to do this with page locked to prevent races */
1070 		lock_page(page);
1071 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1072 		    !shmem_confirm_swap(mapping, index, swap)) {
1073 			error = -EEXIST;	/* try again */
1074 			goto unlock;
1075 		}
1076 		if (!PageUptodate(page)) {
1077 			error = -EIO;
1078 			goto failed;
1079 		}
1080 		wait_on_page_writeback(page);
1081 
1082 		if (shmem_should_replace_page(page, gfp)) {
1083 			error = shmem_replace_page(&page, gfp, info, index);
1084 			if (error)
1085 				goto failed;
1086 		}
1087 
1088 		error = mem_cgroup_charge_file(page, current->mm,
1089 						gfp & GFP_RECLAIM_MASK);
1090 		if (!error) {
1091 			error = shmem_add_to_page_cache(page, mapping, index,
1092 						gfp, swp_to_radix_entry(swap));
1093 			/*
1094 			 * We already confirmed swap under page lock, and make
1095 			 * no memory allocation here, so usually no possibility
1096 			 * of error; but free_swap_and_cache() only trylocks a
1097 			 * page, so it is just possible that the entry has been
1098 			 * truncated or holepunched since swap was confirmed.
1099 			 * shmem_undo_range() will have done some of the
1100 			 * unaccounting, now delete_from_swap_cache() will do
1101 			 * the rest (including mem_cgroup_uncharge_swapcache).
1102 			 * Reset swap.val? No, leave it so "failed" goes back to
1103 			 * "repeat": reading a hole and writing should succeed.
1104 			 */
1105 			if (error)
1106 				delete_from_swap_cache(page);
1107 		}
1108 		if (error)
1109 			goto failed;
1110 
1111 		spin_lock(&info->lock);
1112 		info->swapped--;
1113 		shmem_recalc_inode(inode);
1114 		spin_unlock(&info->lock);
1115 
1116 		if (sgp == SGP_WRITE)
1117 			mark_page_accessed(page);
1118 
1119 		delete_from_swap_cache(page);
1120 		set_page_dirty(page);
1121 		swap_free(swap);
1122 
1123 	} else {
1124 		if (shmem_acct_block(info->flags)) {
1125 			error = -ENOSPC;
1126 			goto failed;
1127 		}
1128 		if (sbinfo->max_blocks) {
1129 			if (percpu_counter_compare(&sbinfo->used_blocks,
1130 						sbinfo->max_blocks) >= 0) {
1131 				error = -ENOSPC;
1132 				goto unacct;
1133 			}
1134 			percpu_counter_inc(&sbinfo->used_blocks);
1135 		}
1136 
1137 		page = shmem_alloc_page(gfp, info, index);
1138 		if (!page) {
1139 			error = -ENOMEM;
1140 			goto decused;
1141 		}
1142 
1143 		__SetPageSwapBacked(page);
1144 		__set_page_locked(page);
1145 		if (sgp == SGP_WRITE)
1146 			init_page_accessed(page);
1147 
1148 		error = mem_cgroup_charge_file(page, current->mm,
1149 						gfp & GFP_RECLAIM_MASK);
1150 		if (error)
1151 			goto decused;
1152 		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1153 		if (!error) {
1154 			error = shmem_add_to_page_cache(page, mapping, index,
1155 							gfp, NULL);
1156 			radix_tree_preload_end();
1157 		}
1158 		if (error) {
1159 			mem_cgroup_uncharge_cache_page(page);
1160 			goto decused;
1161 		}
1162 		lru_cache_add_anon(page);
1163 
1164 		spin_lock(&info->lock);
1165 		info->alloced++;
1166 		inode->i_blocks += BLOCKS_PER_PAGE;
1167 		shmem_recalc_inode(inode);
1168 		spin_unlock(&info->lock);
1169 		alloced = true;
1170 
1171 		/*
1172 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1173 		 */
1174 		if (sgp == SGP_FALLOC)
1175 			sgp = SGP_WRITE;
1176 clear:
1177 		/*
1178 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1179 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1180 		 * it now, lest undo on failure cancel our earlier guarantee.
1181 		 */
1182 		if (sgp != SGP_WRITE) {
1183 			clear_highpage(page);
1184 			flush_dcache_page(page);
1185 			SetPageUptodate(page);
1186 		}
1187 		if (sgp == SGP_DIRTY)
1188 			set_page_dirty(page);
1189 	}
1190 
1191 	/* Perhaps the file has been truncated since we checked */
1192 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1193 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1194 		error = -EINVAL;
1195 		if (alloced)
1196 			goto trunc;
1197 		else
1198 			goto failed;
1199 	}
1200 	*pagep = page;
1201 	return 0;
1202 
1203 	/*
1204 	 * Error recovery.
1205 	 */
1206 trunc:
1207 	info = SHMEM_I(inode);
1208 	ClearPageDirty(page);
1209 	delete_from_page_cache(page);
1210 	spin_lock(&info->lock);
1211 	info->alloced--;
1212 	inode->i_blocks -= BLOCKS_PER_PAGE;
1213 	spin_unlock(&info->lock);
1214 decused:
1215 	sbinfo = SHMEM_SB(inode->i_sb);
1216 	if (sbinfo->max_blocks)
1217 		percpu_counter_add(&sbinfo->used_blocks, -1);
1218 unacct:
1219 	shmem_unacct_blocks(info->flags, 1);
1220 failed:
1221 	if (swap.val && error != -EINVAL &&
1222 	    !shmem_confirm_swap(mapping, index, swap))
1223 		error = -EEXIST;
1224 unlock:
1225 	if (page) {
1226 		unlock_page(page);
1227 		page_cache_release(page);
1228 	}
1229 	if (error == -ENOSPC && !once++) {
1230 		info = SHMEM_I(inode);
1231 		spin_lock(&info->lock);
1232 		shmem_recalc_inode(inode);
1233 		spin_unlock(&info->lock);
1234 		goto repeat;
1235 	}
1236 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1237 		goto repeat;
1238 	return error;
1239 }
1240 
1241 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1242 {
1243 	struct inode *inode = file_inode(vma->vm_file);
1244 	int error;
1245 	int ret = VM_FAULT_LOCKED;
1246 
1247 	/*
1248 	 * Trinity finds that probing a hole which tmpfs is punching can
1249 	 * prevent the hole-punch from ever completing: which in turn
1250 	 * locks writers out with its hold on i_mutex.  So refrain from
1251 	 * faulting pages into the hole while it's being punched.  Although
1252 	 * shmem_undo_range() does remove the additions, it may be unable to
1253 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1254 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1255 	 *
1256 	 * It does not matter if we sometimes reach this check just before the
1257 	 * hole-punch begins, so that one fault then races with the punch:
1258 	 * we just need to make racing faults a rare case.
1259 	 *
1260 	 * The implementation below would be much simpler if we just used a
1261 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1262 	 * and bloating every shmem inode for this unlikely case would be sad.
1263 	 */
1264 	if (unlikely(inode->i_private)) {
1265 		struct shmem_falloc *shmem_falloc;
1266 
1267 		spin_lock(&inode->i_lock);
1268 		shmem_falloc = inode->i_private;
1269 		if (shmem_falloc &&
1270 		    shmem_falloc->waitq &&
1271 		    vmf->pgoff >= shmem_falloc->start &&
1272 		    vmf->pgoff < shmem_falloc->next) {
1273 			wait_queue_head_t *shmem_falloc_waitq;
1274 			DEFINE_WAIT(shmem_fault_wait);
1275 
1276 			ret = VM_FAULT_NOPAGE;
1277 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1278 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1279 				/* It's polite to up mmap_sem if we can */
1280 				up_read(&vma->vm_mm->mmap_sem);
1281 				ret = VM_FAULT_RETRY;
1282 			}
1283 
1284 			shmem_falloc_waitq = shmem_falloc->waitq;
1285 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1286 					TASK_UNINTERRUPTIBLE);
1287 			spin_unlock(&inode->i_lock);
1288 			schedule();
1289 
1290 			/*
1291 			 * shmem_falloc_waitq points into the shmem_fallocate()
1292 			 * stack of the hole-punching task: shmem_falloc_waitq
1293 			 * is usually invalid by the time we reach here, but
1294 			 * finish_wait() does not dereference it in that case;
1295 			 * though i_lock needed lest racing with wake_up_all().
1296 			 */
1297 			spin_lock(&inode->i_lock);
1298 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1299 			spin_unlock(&inode->i_lock);
1300 			return ret;
1301 		}
1302 		spin_unlock(&inode->i_lock);
1303 	}
1304 
1305 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1306 	if (error)
1307 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1308 
1309 	if (ret & VM_FAULT_MAJOR) {
1310 		count_vm_event(PGMAJFAULT);
1311 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1312 	}
1313 	return ret;
1314 }
1315 
1316 #ifdef CONFIG_NUMA
1317 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1318 {
1319 	struct inode *inode = file_inode(vma->vm_file);
1320 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1321 }
1322 
1323 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1324 					  unsigned long addr)
1325 {
1326 	struct inode *inode = file_inode(vma->vm_file);
1327 	pgoff_t index;
1328 
1329 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1330 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1331 }
1332 #endif
1333 
1334 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1335 {
1336 	struct inode *inode = file_inode(file);
1337 	struct shmem_inode_info *info = SHMEM_I(inode);
1338 	int retval = -ENOMEM;
1339 
1340 	spin_lock(&info->lock);
1341 	if (lock && !(info->flags & VM_LOCKED)) {
1342 		if (!user_shm_lock(inode->i_size, user))
1343 			goto out_nomem;
1344 		info->flags |= VM_LOCKED;
1345 		mapping_set_unevictable(file->f_mapping);
1346 	}
1347 	if (!lock && (info->flags & VM_LOCKED) && user) {
1348 		user_shm_unlock(inode->i_size, user);
1349 		info->flags &= ~VM_LOCKED;
1350 		mapping_clear_unevictable(file->f_mapping);
1351 	}
1352 	retval = 0;
1353 
1354 out_nomem:
1355 	spin_unlock(&info->lock);
1356 	return retval;
1357 }
1358 
1359 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1360 {
1361 	file_accessed(file);
1362 	vma->vm_ops = &shmem_vm_ops;
1363 	return 0;
1364 }
1365 
1366 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1367 				     umode_t mode, dev_t dev, unsigned long flags)
1368 {
1369 	struct inode *inode;
1370 	struct shmem_inode_info *info;
1371 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1372 
1373 	if (shmem_reserve_inode(sb))
1374 		return NULL;
1375 
1376 	inode = new_inode(sb);
1377 	if (inode) {
1378 		inode->i_ino = get_next_ino();
1379 		inode_init_owner(inode, dir, mode);
1380 		inode->i_blocks = 0;
1381 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1382 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1383 		inode->i_generation = get_seconds();
1384 		info = SHMEM_I(inode);
1385 		memset(info, 0, (char *)inode - (char *)info);
1386 		spin_lock_init(&info->lock);
1387 		info->flags = flags & VM_NORESERVE;
1388 		INIT_LIST_HEAD(&info->swaplist);
1389 		simple_xattrs_init(&info->xattrs);
1390 		cache_no_acl(inode);
1391 
1392 		switch (mode & S_IFMT) {
1393 		default:
1394 			inode->i_op = &shmem_special_inode_operations;
1395 			init_special_inode(inode, mode, dev);
1396 			break;
1397 		case S_IFREG:
1398 			inode->i_mapping->a_ops = &shmem_aops;
1399 			inode->i_op = &shmem_inode_operations;
1400 			inode->i_fop = &shmem_file_operations;
1401 			mpol_shared_policy_init(&info->policy,
1402 						 shmem_get_sbmpol(sbinfo));
1403 			break;
1404 		case S_IFDIR:
1405 			inc_nlink(inode);
1406 			/* Some things misbehave if size == 0 on a directory */
1407 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1408 			inode->i_op = &shmem_dir_inode_operations;
1409 			inode->i_fop = &simple_dir_operations;
1410 			break;
1411 		case S_IFLNK:
1412 			/*
1413 			 * Must not load anything in the rbtree,
1414 			 * mpol_free_shared_policy will not be called.
1415 			 */
1416 			mpol_shared_policy_init(&info->policy, NULL);
1417 			break;
1418 		}
1419 	} else
1420 		shmem_free_inode(sb);
1421 	return inode;
1422 }
1423 
1424 bool shmem_mapping(struct address_space *mapping)
1425 {
1426 	return mapping->backing_dev_info == &shmem_backing_dev_info;
1427 }
1428 
1429 #ifdef CONFIG_TMPFS
1430 static const struct inode_operations shmem_symlink_inode_operations;
1431 static const struct inode_operations shmem_short_symlink_operations;
1432 
1433 #ifdef CONFIG_TMPFS_XATTR
1434 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1435 #else
1436 #define shmem_initxattrs NULL
1437 #endif
1438 
1439 static int
1440 shmem_write_begin(struct file *file, struct address_space *mapping,
1441 			loff_t pos, unsigned len, unsigned flags,
1442 			struct page **pagep, void **fsdata)
1443 {
1444 	struct inode *inode = mapping->host;
1445 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1446 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1447 }
1448 
1449 static int
1450 shmem_write_end(struct file *file, struct address_space *mapping,
1451 			loff_t pos, unsigned len, unsigned copied,
1452 			struct page *page, void *fsdata)
1453 {
1454 	struct inode *inode = mapping->host;
1455 
1456 	if (pos + copied > inode->i_size)
1457 		i_size_write(inode, pos + copied);
1458 
1459 	if (!PageUptodate(page)) {
1460 		if (copied < PAGE_CACHE_SIZE) {
1461 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1462 			zero_user_segments(page, 0, from,
1463 					from + copied, PAGE_CACHE_SIZE);
1464 		}
1465 		SetPageUptodate(page);
1466 	}
1467 	set_page_dirty(page);
1468 	unlock_page(page);
1469 	page_cache_release(page);
1470 
1471 	return copied;
1472 }
1473 
1474 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1475 {
1476 	struct file *file = iocb->ki_filp;
1477 	struct inode *inode = file_inode(file);
1478 	struct address_space *mapping = inode->i_mapping;
1479 	pgoff_t index;
1480 	unsigned long offset;
1481 	enum sgp_type sgp = SGP_READ;
1482 	int error = 0;
1483 	ssize_t retval = 0;
1484 	loff_t *ppos = &iocb->ki_pos;
1485 
1486 	/*
1487 	 * Might this read be for a stacking filesystem?  Then when reading
1488 	 * holes of a sparse file, we actually need to allocate those pages,
1489 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1490 	 */
1491 	if (segment_eq(get_fs(), KERNEL_DS))
1492 		sgp = SGP_DIRTY;
1493 
1494 	index = *ppos >> PAGE_CACHE_SHIFT;
1495 	offset = *ppos & ~PAGE_CACHE_MASK;
1496 
1497 	for (;;) {
1498 		struct page *page = NULL;
1499 		pgoff_t end_index;
1500 		unsigned long nr, ret;
1501 		loff_t i_size = i_size_read(inode);
1502 
1503 		end_index = i_size >> PAGE_CACHE_SHIFT;
1504 		if (index > end_index)
1505 			break;
1506 		if (index == end_index) {
1507 			nr = i_size & ~PAGE_CACHE_MASK;
1508 			if (nr <= offset)
1509 				break;
1510 		}
1511 
1512 		error = shmem_getpage(inode, index, &page, sgp, NULL);
1513 		if (error) {
1514 			if (error == -EINVAL)
1515 				error = 0;
1516 			break;
1517 		}
1518 		if (page)
1519 			unlock_page(page);
1520 
1521 		/*
1522 		 * We must evaluate after, since reads (unlike writes)
1523 		 * are called without i_mutex protection against truncate
1524 		 */
1525 		nr = PAGE_CACHE_SIZE;
1526 		i_size = i_size_read(inode);
1527 		end_index = i_size >> PAGE_CACHE_SHIFT;
1528 		if (index == end_index) {
1529 			nr = i_size & ~PAGE_CACHE_MASK;
1530 			if (nr <= offset) {
1531 				if (page)
1532 					page_cache_release(page);
1533 				break;
1534 			}
1535 		}
1536 		nr -= offset;
1537 
1538 		if (page) {
1539 			/*
1540 			 * If users can be writing to this page using arbitrary
1541 			 * virtual addresses, take care about potential aliasing
1542 			 * before reading the page on the kernel side.
1543 			 */
1544 			if (mapping_writably_mapped(mapping))
1545 				flush_dcache_page(page);
1546 			/*
1547 			 * Mark the page accessed if we read the beginning.
1548 			 */
1549 			if (!offset)
1550 				mark_page_accessed(page);
1551 		} else {
1552 			page = ZERO_PAGE(0);
1553 			page_cache_get(page);
1554 		}
1555 
1556 		/*
1557 		 * Ok, we have the page, and it's up-to-date, so
1558 		 * now we can copy it to user space...
1559 		 */
1560 		ret = copy_page_to_iter(page, offset, nr, to);
1561 		retval += ret;
1562 		offset += ret;
1563 		index += offset >> PAGE_CACHE_SHIFT;
1564 		offset &= ~PAGE_CACHE_MASK;
1565 
1566 		page_cache_release(page);
1567 		if (!iov_iter_count(to))
1568 			break;
1569 		if (ret < nr) {
1570 			error = -EFAULT;
1571 			break;
1572 		}
1573 		cond_resched();
1574 	}
1575 
1576 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1577 	file_accessed(file);
1578 	return retval ? retval : error;
1579 }
1580 
1581 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1582 				struct pipe_inode_info *pipe, size_t len,
1583 				unsigned int flags)
1584 {
1585 	struct address_space *mapping = in->f_mapping;
1586 	struct inode *inode = mapping->host;
1587 	unsigned int loff, nr_pages, req_pages;
1588 	struct page *pages[PIPE_DEF_BUFFERS];
1589 	struct partial_page partial[PIPE_DEF_BUFFERS];
1590 	struct page *page;
1591 	pgoff_t index, end_index;
1592 	loff_t isize, left;
1593 	int error, page_nr;
1594 	struct splice_pipe_desc spd = {
1595 		.pages = pages,
1596 		.partial = partial,
1597 		.nr_pages_max = PIPE_DEF_BUFFERS,
1598 		.flags = flags,
1599 		.ops = &page_cache_pipe_buf_ops,
1600 		.spd_release = spd_release_page,
1601 	};
1602 
1603 	isize = i_size_read(inode);
1604 	if (unlikely(*ppos >= isize))
1605 		return 0;
1606 
1607 	left = isize - *ppos;
1608 	if (unlikely(left < len))
1609 		len = left;
1610 
1611 	if (splice_grow_spd(pipe, &spd))
1612 		return -ENOMEM;
1613 
1614 	index = *ppos >> PAGE_CACHE_SHIFT;
1615 	loff = *ppos & ~PAGE_CACHE_MASK;
1616 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1617 	nr_pages = min(req_pages, spd.nr_pages_max);
1618 
1619 	spd.nr_pages = find_get_pages_contig(mapping, index,
1620 						nr_pages, spd.pages);
1621 	index += spd.nr_pages;
1622 	error = 0;
1623 
1624 	while (spd.nr_pages < nr_pages) {
1625 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1626 		if (error)
1627 			break;
1628 		unlock_page(page);
1629 		spd.pages[spd.nr_pages++] = page;
1630 		index++;
1631 	}
1632 
1633 	index = *ppos >> PAGE_CACHE_SHIFT;
1634 	nr_pages = spd.nr_pages;
1635 	spd.nr_pages = 0;
1636 
1637 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1638 		unsigned int this_len;
1639 
1640 		if (!len)
1641 			break;
1642 
1643 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1644 		page = spd.pages[page_nr];
1645 
1646 		if (!PageUptodate(page) || page->mapping != mapping) {
1647 			error = shmem_getpage(inode, index, &page,
1648 							SGP_CACHE, NULL);
1649 			if (error)
1650 				break;
1651 			unlock_page(page);
1652 			page_cache_release(spd.pages[page_nr]);
1653 			spd.pages[page_nr] = page;
1654 		}
1655 
1656 		isize = i_size_read(inode);
1657 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1658 		if (unlikely(!isize || index > end_index))
1659 			break;
1660 
1661 		if (end_index == index) {
1662 			unsigned int plen;
1663 
1664 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1665 			if (plen <= loff)
1666 				break;
1667 
1668 			this_len = min(this_len, plen - loff);
1669 			len = this_len;
1670 		}
1671 
1672 		spd.partial[page_nr].offset = loff;
1673 		spd.partial[page_nr].len = this_len;
1674 		len -= this_len;
1675 		loff = 0;
1676 		spd.nr_pages++;
1677 		index++;
1678 	}
1679 
1680 	while (page_nr < nr_pages)
1681 		page_cache_release(spd.pages[page_nr++]);
1682 
1683 	if (spd.nr_pages)
1684 		error = splice_to_pipe(pipe, &spd);
1685 
1686 	splice_shrink_spd(&spd);
1687 
1688 	if (error > 0) {
1689 		*ppos += error;
1690 		file_accessed(in);
1691 	}
1692 	return error;
1693 }
1694 
1695 /*
1696  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1697  */
1698 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1699 				    pgoff_t index, pgoff_t end, int whence)
1700 {
1701 	struct page *page;
1702 	struct pagevec pvec;
1703 	pgoff_t indices[PAGEVEC_SIZE];
1704 	bool done = false;
1705 	int i;
1706 
1707 	pagevec_init(&pvec, 0);
1708 	pvec.nr = 1;		/* start small: we may be there already */
1709 	while (!done) {
1710 		pvec.nr = find_get_entries(mapping, index,
1711 					pvec.nr, pvec.pages, indices);
1712 		if (!pvec.nr) {
1713 			if (whence == SEEK_DATA)
1714 				index = end;
1715 			break;
1716 		}
1717 		for (i = 0; i < pvec.nr; i++, index++) {
1718 			if (index < indices[i]) {
1719 				if (whence == SEEK_HOLE) {
1720 					done = true;
1721 					break;
1722 				}
1723 				index = indices[i];
1724 			}
1725 			page = pvec.pages[i];
1726 			if (page && !radix_tree_exceptional_entry(page)) {
1727 				if (!PageUptodate(page))
1728 					page = NULL;
1729 			}
1730 			if (index >= end ||
1731 			    (page && whence == SEEK_DATA) ||
1732 			    (!page && whence == SEEK_HOLE)) {
1733 				done = true;
1734 				break;
1735 			}
1736 		}
1737 		pagevec_remove_exceptionals(&pvec);
1738 		pagevec_release(&pvec);
1739 		pvec.nr = PAGEVEC_SIZE;
1740 		cond_resched();
1741 	}
1742 	return index;
1743 }
1744 
1745 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1746 {
1747 	struct address_space *mapping = file->f_mapping;
1748 	struct inode *inode = mapping->host;
1749 	pgoff_t start, end;
1750 	loff_t new_offset;
1751 
1752 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1753 		return generic_file_llseek_size(file, offset, whence,
1754 					MAX_LFS_FILESIZE, i_size_read(inode));
1755 	mutex_lock(&inode->i_mutex);
1756 	/* We're holding i_mutex so we can access i_size directly */
1757 
1758 	if (offset < 0)
1759 		offset = -EINVAL;
1760 	else if (offset >= inode->i_size)
1761 		offset = -ENXIO;
1762 	else {
1763 		start = offset >> PAGE_CACHE_SHIFT;
1764 		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1765 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1766 		new_offset <<= PAGE_CACHE_SHIFT;
1767 		if (new_offset > offset) {
1768 			if (new_offset < inode->i_size)
1769 				offset = new_offset;
1770 			else if (whence == SEEK_DATA)
1771 				offset = -ENXIO;
1772 			else
1773 				offset = inode->i_size;
1774 		}
1775 	}
1776 
1777 	if (offset >= 0)
1778 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1779 	mutex_unlock(&inode->i_mutex);
1780 	return offset;
1781 }
1782 
1783 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1784 							 loff_t len)
1785 {
1786 	struct inode *inode = file_inode(file);
1787 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1788 	struct shmem_falloc shmem_falloc;
1789 	pgoff_t start, index, end;
1790 	int error;
1791 
1792 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1793 		return -EOPNOTSUPP;
1794 
1795 	mutex_lock(&inode->i_mutex);
1796 
1797 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1798 		struct address_space *mapping = file->f_mapping;
1799 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1800 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1801 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1802 
1803 		shmem_falloc.waitq = &shmem_falloc_waitq;
1804 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1805 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1806 		spin_lock(&inode->i_lock);
1807 		inode->i_private = &shmem_falloc;
1808 		spin_unlock(&inode->i_lock);
1809 
1810 		if ((u64)unmap_end > (u64)unmap_start)
1811 			unmap_mapping_range(mapping, unmap_start,
1812 					    1 + unmap_end - unmap_start, 0);
1813 		shmem_truncate_range(inode, offset, offset + len - 1);
1814 		/* No need to unmap again: hole-punching leaves COWed pages */
1815 
1816 		spin_lock(&inode->i_lock);
1817 		inode->i_private = NULL;
1818 		wake_up_all(&shmem_falloc_waitq);
1819 		spin_unlock(&inode->i_lock);
1820 		error = 0;
1821 		goto out;
1822 	}
1823 
1824 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1825 	error = inode_newsize_ok(inode, offset + len);
1826 	if (error)
1827 		goto out;
1828 
1829 	start = offset >> PAGE_CACHE_SHIFT;
1830 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1831 	/* Try to avoid a swapstorm if len is impossible to satisfy */
1832 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1833 		error = -ENOSPC;
1834 		goto out;
1835 	}
1836 
1837 	shmem_falloc.waitq = NULL;
1838 	shmem_falloc.start = start;
1839 	shmem_falloc.next  = start;
1840 	shmem_falloc.nr_falloced = 0;
1841 	shmem_falloc.nr_unswapped = 0;
1842 	spin_lock(&inode->i_lock);
1843 	inode->i_private = &shmem_falloc;
1844 	spin_unlock(&inode->i_lock);
1845 
1846 	for (index = start; index < end; index++) {
1847 		struct page *page;
1848 
1849 		/*
1850 		 * Good, the fallocate(2) manpage permits EINTR: we may have
1851 		 * been interrupted because we are using up too much memory.
1852 		 */
1853 		if (signal_pending(current))
1854 			error = -EINTR;
1855 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1856 			error = -ENOMEM;
1857 		else
1858 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1859 									NULL);
1860 		if (error) {
1861 			/* Remove the !PageUptodate pages we added */
1862 			shmem_undo_range(inode,
1863 				(loff_t)start << PAGE_CACHE_SHIFT,
1864 				(loff_t)index << PAGE_CACHE_SHIFT, true);
1865 			goto undone;
1866 		}
1867 
1868 		/*
1869 		 * Inform shmem_writepage() how far we have reached.
1870 		 * No need for lock or barrier: we have the page lock.
1871 		 */
1872 		shmem_falloc.next++;
1873 		if (!PageUptodate(page))
1874 			shmem_falloc.nr_falloced++;
1875 
1876 		/*
1877 		 * If !PageUptodate, leave it that way so that freeable pages
1878 		 * can be recognized if we need to rollback on error later.
1879 		 * But set_page_dirty so that memory pressure will swap rather
1880 		 * than free the pages we are allocating (and SGP_CACHE pages
1881 		 * might still be clean: we now need to mark those dirty too).
1882 		 */
1883 		set_page_dirty(page);
1884 		unlock_page(page);
1885 		page_cache_release(page);
1886 		cond_resched();
1887 	}
1888 
1889 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1890 		i_size_write(inode, offset + len);
1891 	inode->i_ctime = CURRENT_TIME;
1892 undone:
1893 	spin_lock(&inode->i_lock);
1894 	inode->i_private = NULL;
1895 	spin_unlock(&inode->i_lock);
1896 out:
1897 	mutex_unlock(&inode->i_mutex);
1898 	return error;
1899 }
1900 
1901 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1902 {
1903 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1904 
1905 	buf->f_type = TMPFS_MAGIC;
1906 	buf->f_bsize = PAGE_CACHE_SIZE;
1907 	buf->f_namelen = NAME_MAX;
1908 	if (sbinfo->max_blocks) {
1909 		buf->f_blocks = sbinfo->max_blocks;
1910 		buf->f_bavail =
1911 		buf->f_bfree  = sbinfo->max_blocks -
1912 				percpu_counter_sum(&sbinfo->used_blocks);
1913 	}
1914 	if (sbinfo->max_inodes) {
1915 		buf->f_files = sbinfo->max_inodes;
1916 		buf->f_ffree = sbinfo->free_inodes;
1917 	}
1918 	/* else leave those fields 0 like simple_statfs */
1919 	return 0;
1920 }
1921 
1922 /*
1923  * File creation. Allocate an inode, and we're done..
1924  */
1925 static int
1926 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1927 {
1928 	struct inode *inode;
1929 	int error = -ENOSPC;
1930 
1931 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1932 	if (inode) {
1933 		error = simple_acl_create(dir, inode);
1934 		if (error)
1935 			goto out_iput;
1936 		error = security_inode_init_security(inode, dir,
1937 						     &dentry->d_name,
1938 						     shmem_initxattrs, NULL);
1939 		if (error && error != -EOPNOTSUPP)
1940 			goto out_iput;
1941 
1942 		error = 0;
1943 		dir->i_size += BOGO_DIRENT_SIZE;
1944 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1945 		d_instantiate(dentry, inode);
1946 		dget(dentry); /* Extra count - pin the dentry in core */
1947 	}
1948 	return error;
1949 out_iput:
1950 	iput(inode);
1951 	return error;
1952 }
1953 
1954 static int
1955 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1956 {
1957 	struct inode *inode;
1958 	int error = -ENOSPC;
1959 
1960 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1961 	if (inode) {
1962 		error = security_inode_init_security(inode, dir,
1963 						     NULL,
1964 						     shmem_initxattrs, NULL);
1965 		if (error && error != -EOPNOTSUPP)
1966 			goto out_iput;
1967 		error = simple_acl_create(dir, inode);
1968 		if (error)
1969 			goto out_iput;
1970 		d_tmpfile(dentry, inode);
1971 	}
1972 	return error;
1973 out_iput:
1974 	iput(inode);
1975 	return error;
1976 }
1977 
1978 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1979 {
1980 	int error;
1981 
1982 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1983 		return error;
1984 	inc_nlink(dir);
1985 	return 0;
1986 }
1987 
1988 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1989 		bool excl)
1990 {
1991 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1992 }
1993 
1994 /*
1995  * Link a file..
1996  */
1997 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1998 {
1999 	struct inode *inode = old_dentry->d_inode;
2000 	int ret;
2001 
2002 	/*
2003 	 * No ordinary (disk based) filesystem counts links as inodes;
2004 	 * but each new link needs a new dentry, pinning lowmem, and
2005 	 * tmpfs dentries cannot be pruned until they are unlinked.
2006 	 */
2007 	ret = shmem_reserve_inode(inode->i_sb);
2008 	if (ret)
2009 		goto out;
2010 
2011 	dir->i_size += BOGO_DIRENT_SIZE;
2012 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2013 	inc_nlink(inode);
2014 	ihold(inode);	/* New dentry reference */
2015 	dget(dentry);		/* Extra pinning count for the created dentry */
2016 	d_instantiate(dentry, inode);
2017 out:
2018 	return ret;
2019 }
2020 
2021 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2022 {
2023 	struct inode *inode = dentry->d_inode;
2024 
2025 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2026 		shmem_free_inode(inode->i_sb);
2027 
2028 	dir->i_size -= BOGO_DIRENT_SIZE;
2029 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2030 	drop_nlink(inode);
2031 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2032 	return 0;
2033 }
2034 
2035 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2036 {
2037 	if (!simple_empty(dentry))
2038 		return -ENOTEMPTY;
2039 
2040 	drop_nlink(dentry->d_inode);
2041 	drop_nlink(dir);
2042 	return shmem_unlink(dir, dentry);
2043 }
2044 
2045 /*
2046  * The VFS layer already does all the dentry stuff for rename,
2047  * we just have to decrement the usage count for the target if
2048  * it exists so that the VFS layer correctly free's it when it
2049  * gets overwritten.
2050  */
2051 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2052 {
2053 	struct inode *inode = old_dentry->d_inode;
2054 	int they_are_dirs = S_ISDIR(inode->i_mode);
2055 
2056 	if (!simple_empty(new_dentry))
2057 		return -ENOTEMPTY;
2058 
2059 	if (new_dentry->d_inode) {
2060 		(void) shmem_unlink(new_dir, new_dentry);
2061 		if (they_are_dirs)
2062 			drop_nlink(old_dir);
2063 	} else if (they_are_dirs) {
2064 		drop_nlink(old_dir);
2065 		inc_nlink(new_dir);
2066 	}
2067 
2068 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2069 	new_dir->i_size += BOGO_DIRENT_SIZE;
2070 	old_dir->i_ctime = old_dir->i_mtime =
2071 	new_dir->i_ctime = new_dir->i_mtime =
2072 	inode->i_ctime = CURRENT_TIME;
2073 	return 0;
2074 }
2075 
2076 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2077 {
2078 	int error;
2079 	int len;
2080 	struct inode *inode;
2081 	struct page *page;
2082 	char *kaddr;
2083 	struct shmem_inode_info *info;
2084 
2085 	len = strlen(symname) + 1;
2086 	if (len > PAGE_CACHE_SIZE)
2087 		return -ENAMETOOLONG;
2088 
2089 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2090 	if (!inode)
2091 		return -ENOSPC;
2092 
2093 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2094 					     shmem_initxattrs, NULL);
2095 	if (error) {
2096 		if (error != -EOPNOTSUPP) {
2097 			iput(inode);
2098 			return error;
2099 		}
2100 		error = 0;
2101 	}
2102 
2103 	info = SHMEM_I(inode);
2104 	inode->i_size = len-1;
2105 	if (len <= SHORT_SYMLINK_LEN) {
2106 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2107 		if (!info->symlink) {
2108 			iput(inode);
2109 			return -ENOMEM;
2110 		}
2111 		inode->i_op = &shmem_short_symlink_operations;
2112 	} else {
2113 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2114 		if (error) {
2115 			iput(inode);
2116 			return error;
2117 		}
2118 		inode->i_mapping->a_ops = &shmem_aops;
2119 		inode->i_op = &shmem_symlink_inode_operations;
2120 		kaddr = kmap_atomic(page);
2121 		memcpy(kaddr, symname, len);
2122 		kunmap_atomic(kaddr);
2123 		SetPageUptodate(page);
2124 		set_page_dirty(page);
2125 		unlock_page(page);
2126 		page_cache_release(page);
2127 	}
2128 	dir->i_size += BOGO_DIRENT_SIZE;
2129 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2130 	d_instantiate(dentry, inode);
2131 	dget(dentry);
2132 	return 0;
2133 }
2134 
2135 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2136 {
2137 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2138 	return NULL;
2139 }
2140 
2141 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2142 {
2143 	struct page *page = NULL;
2144 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2145 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2146 	if (page)
2147 		unlock_page(page);
2148 	return page;
2149 }
2150 
2151 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2152 {
2153 	if (!IS_ERR(nd_get_link(nd))) {
2154 		struct page *page = cookie;
2155 		kunmap(page);
2156 		mark_page_accessed(page);
2157 		page_cache_release(page);
2158 	}
2159 }
2160 
2161 #ifdef CONFIG_TMPFS_XATTR
2162 /*
2163  * Superblocks without xattr inode operations may get some security.* xattr
2164  * support from the LSM "for free". As soon as we have any other xattrs
2165  * like ACLs, we also need to implement the security.* handlers at
2166  * filesystem level, though.
2167  */
2168 
2169 /*
2170  * Callback for security_inode_init_security() for acquiring xattrs.
2171  */
2172 static int shmem_initxattrs(struct inode *inode,
2173 			    const struct xattr *xattr_array,
2174 			    void *fs_info)
2175 {
2176 	struct shmem_inode_info *info = SHMEM_I(inode);
2177 	const struct xattr *xattr;
2178 	struct simple_xattr *new_xattr;
2179 	size_t len;
2180 
2181 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2182 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2183 		if (!new_xattr)
2184 			return -ENOMEM;
2185 
2186 		len = strlen(xattr->name) + 1;
2187 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2188 					  GFP_KERNEL);
2189 		if (!new_xattr->name) {
2190 			kfree(new_xattr);
2191 			return -ENOMEM;
2192 		}
2193 
2194 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2195 		       XATTR_SECURITY_PREFIX_LEN);
2196 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2197 		       xattr->name, len);
2198 
2199 		simple_xattr_list_add(&info->xattrs, new_xattr);
2200 	}
2201 
2202 	return 0;
2203 }
2204 
2205 static const struct xattr_handler *shmem_xattr_handlers[] = {
2206 #ifdef CONFIG_TMPFS_POSIX_ACL
2207 	&posix_acl_access_xattr_handler,
2208 	&posix_acl_default_xattr_handler,
2209 #endif
2210 	NULL
2211 };
2212 
2213 static int shmem_xattr_validate(const char *name)
2214 {
2215 	struct { const char *prefix; size_t len; } arr[] = {
2216 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2217 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2218 	};
2219 	int i;
2220 
2221 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2222 		size_t preflen = arr[i].len;
2223 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2224 			if (!name[preflen])
2225 				return -EINVAL;
2226 			return 0;
2227 		}
2228 	}
2229 	return -EOPNOTSUPP;
2230 }
2231 
2232 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2233 			      void *buffer, size_t size)
2234 {
2235 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2236 	int err;
2237 
2238 	/*
2239 	 * If this is a request for a synthetic attribute in the system.*
2240 	 * namespace use the generic infrastructure to resolve a handler
2241 	 * for it via sb->s_xattr.
2242 	 */
2243 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2244 		return generic_getxattr(dentry, name, buffer, size);
2245 
2246 	err = shmem_xattr_validate(name);
2247 	if (err)
2248 		return err;
2249 
2250 	return simple_xattr_get(&info->xattrs, name, buffer, size);
2251 }
2252 
2253 static int shmem_setxattr(struct dentry *dentry, const char *name,
2254 			  const void *value, size_t size, int flags)
2255 {
2256 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2257 	int err;
2258 
2259 	/*
2260 	 * If this is a request for a synthetic attribute in the system.*
2261 	 * namespace use the generic infrastructure to resolve a handler
2262 	 * for it via sb->s_xattr.
2263 	 */
2264 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2265 		return generic_setxattr(dentry, name, value, size, flags);
2266 
2267 	err = shmem_xattr_validate(name);
2268 	if (err)
2269 		return err;
2270 
2271 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2272 }
2273 
2274 static int shmem_removexattr(struct dentry *dentry, const char *name)
2275 {
2276 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2277 	int err;
2278 
2279 	/*
2280 	 * If this is a request for a synthetic attribute in the system.*
2281 	 * namespace use the generic infrastructure to resolve a handler
2282 	 * for it via sb->s_xattr.
2283 	 */
2284 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2285 		return generic_removexattr(dentry, name);
2286 
2287 	err = shmem_xattr_validate(name);
2288 	if (err)
2289 		return err;
2290 
2291 	return simple_xattr_remove(&info->xattrs, name);
2292 }
2293 
2294 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2295 {
2296 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2297 	return simple_xattr_list(&info->xattrs, buffer, size);
2298 }
2299 #endif /* CONFIG_TMPFS_XATTR */
2300 
2301 static const struct inode_operations shmem_short_symlink_operations = {
2302 	.readlink	= generic_readlink,
2303 	.follow_link	= shmem_follow_short_symlink,
2304 #ifdef CONFIG_TMPFS_XATTR
2305 	.setxattr	= shmem_setxattr,
2306 	.getxattr	= shmem_getxattr,
2307 	.listxattr	= shmem_listxattr,
2308 	.removexattr	= shmem_removexattr,
2309 #endif
2310 };
2311 
2312 static const struct inode_operations shmem_symlink_inode_operations = {
2313 	.readlink	= generic_readlink,
2314 	.follow_link	= shmem_follow_link,
2315 	.put_link	= shmem_put_link,
2316 #ifdef CONFIG_TMPFS_XATTR
2317 	.setxattr	= shmem_setxattr,
2318 	.getxattr	= shmem_getxattr,
2319 	.listxattr	= shmem_listxattr,
2320 	.removexattr	= shmem_removexattr,
2321 #endif
2322 };
2323 
2324 static struct dentry *shmem_get_parent(struct dentry *child)
2325 {
2326 	return ERR_PTR(-ESTALE);
2327 }
2328 
2329 static int shmem_match(struct inode *ino, void *vfh)
2330 {
2331 	__u32 *fh = vfh;
2332 	__u64 inum = fh[2];
2333 	inum = (inum << 32) | fh[1];
2334 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2335 }
2336 
2337 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2338 		struct fid *fid, int fh_len, int fh_type)
2339 {
2340 	struct inode *inode;
2341 	struct dentry *dentry = NULL;
2342 	u64 inum;
2343 
2344 	if (fh_len < 3)
2345 		return NULL;
2346 
2347 	inum = fid->raw[2];
2348 	inum = (inum << 32) | fid->raw[1];
2349 
2350 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2351 			shmem_match, fid->raw);
2352 	if (inode) {
2353 		dentry = d_find_alias(inode);
2354 		iput(inode);
2355 	}
2356 
2357 	return dentry;
2358 }
2359 
2360 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2361 				struct inode *parent)
2362 {
2363 	if (*len < 3) {
2364 		*len = 3;
2365 		return FILEID_INVALID;
2366 	}
2367 
2368 	if (inode_unhashed(inode)) {
2369 		/* Unfortunately insert_inode_hash is not idempotent,
2370 		 * so as we hash inodes here rather than at creation
2371 		 * time, we need a lock to ensure we only try
2372 		 * to do it once
2373 		 */
2374 		static DEFINE_SPINLOCK(lock);
2375 		spin_lock(&lock);
2376 		if (inode_unhashed(inode))
2377 			__insert_inode_hash(inode,
2378 					    inode->i_ino + inode->i_generation);
2379 		spin_unlock(&lock);
2380 	}
2381 
2382 	fh[0] = inode->i_generation;
2383 	fh[1] = inode->i_ino;
2384 	fh[2] = ((__u64)inode->i_ino) >> 32;
2385 
2386 	*len = 3;
2387 	return 1;
2388 }
2389 
2390 static const struct export_operations shmem_export_ops = {
2391 	.get_parent     = shmem_get_parent,
2392 	.encode_fh      = shmem_encode_fh,
2393 	.fh_to_dentry	= shmem_fh_to_dentry,
2394 };
2395 
2396 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2397 			       bool remount)
2398 {
2399 	char *this_char, *value, *rest;
2400 	struct mempolicy *mpol = NULL;
2401 	uid_t uid;
2402 	gid_t gid;
2403 
2404 	while (options != NULL) {
2405 		this_char = options;
2406 		for (;;) {
2407 			/*
2408 			 * NUL-terminate this option: unfortunately,
2409 			 * mount options form a comma-separated list,
2410 			 * but mpol's nodelist may also contain commas.
2411 			 */
2412 			options = strchr(options, ',');
2413 			if (options == NULL)
2414 				break;
2415 			options++;
2416 			if (!isdigit(*options)) {
2417 				options[-1] = '\0';
2418 				break;
2419 			}
2420 		}
2421 		if (!*this_char)
2422 			continue;
2423 		if ((value = strchr(this_char,'=')) != NULL) {
2424 			*value++ = 0;
2425 		} else {
2426 			printk(KERN_ERR
2427 			    "tmpfs: No value for mount option '%s'\n",
2428 			    this_char);
2429 			goto error;
2430 		}
2431 
2432 		if (!strcmp(this_char,"size")) {
2433 			unsigned long long size;
2434 			size = memparse(value,&rest);
2435 			if (*rest == '%') {
2436 				size <<= PAGE_SHIFT;
2437 				size *= totalram_pages;
2438 				do_div(size, 100);
2439 				rest++;
2440 			}
2441 			if (*rest)
2442 				goto bad_val;
2443 			sbinfo->max_blocks =
2444 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2445 		} else if (!strcmp(this_char,"nr_blocks")) {
2446 			sbinfo->max_blocks = memparse(value, &rest);
2447 			if (*rest)
2448 				goto bad_val;
2449 		} else if (!strcmp(this_char,"nr_inodes")) {
2450 			sbinfo->max_inodes = memparse(value, &rest);
2451 			if (*rest)
2452 				goto bad_val;
2453 		} else if (!strcmp(this_char,"mode")) {
2454 			if (remount)
2455 				continue;
2456 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2457 			if (*rest)
2458 				goto bad_val;
2459 		} else if (!strcmp(this_char,"uid")) {
2460 			if (remount)
2461 				continue;
2462 			uid = simple_strtoul(value, &rest, 0);
2463 			if (*rest)
2464 				goto bad_val;
2465 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2466 			if (!uid_valid(sbinfo->uid))
2467 				goto bad_val;
2468 		} else if (!strcmp(this_char,"gid")) {
2469 			if (remount)
2470 				continue;
2471 			gid = simple_strtoul(value, &rest, 0);
2472 			if (*rest)
2473 				goto bad_val;
2474 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2475 			if (!gid_valid(sbinfo->gid))
2476 				goto bad_val;
2477 		} else if (!strcmp(this_char,"mpol")) {
2478 			mpol_put(mpol);
2479 			mpol = NULL;
2480 			if (mpol_parse_str(value, &mpol))
2481 				goto bad_val;
2482 		} else {
2483 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2484 			       this_char);
2485 			goto error;
2486 		}
2487 	}
2488 	sbinfo->mpol = mpol;
2489 	return 0;
2490 
2491 bad_val:
2492 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2493 	       value, this_char);
2494 error:
2495 	mpol_put(mpol);
2496 	return 1;
2497 
2498 }
2499 
2500 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2501 {
2502 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2503 	struct shmem_sb_info config = *sbinfo;
2504 	unsigned long inodes;
2505 	int error = -EINVAL;
2506 
2507 	config.mpol = NULL;
2508 	if (shmem_parse_options(data, &config, true))
2509 		return error;
2510 
2511 	spin_lock(&sbinfo->stat_lock);
2512 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2513 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2514 		goto out;
2515 	if (config.max_inodes < inodes)
2516 		goto out;
2517 	/*
2518 	 * Those tests disallow limited->unlimited while any are in use;
2519 	 * but we must separately disallow unlimited->limited, because
2520 	 * in that case we have no record of how much is already in use.
2521 	 */
2522 	if (config.max_blocks && !sbinfo->max_blocks)
2523 		goto out;
2524 	if (config.max_inodes && !sbinfo->max_inodes)
2525 		goto out;
2526 
2527 	error = 0;
2528 	sbinfo->max_blocks  = config.max_blocks;
2529 	sbinfo->max_inodes  = config.max_inodes;
2530 	sbinfo->free_inodes = config.max_inodes - inodes;
2531 
2532 	/*
2533 	 * Preserve previous mempolicy unless mpol remount option was specified.
2534 	 */
2535 	if (config.mpol) {
2536 		mpol_put(sbinfo->mpol);
2537 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2538 	}
2539 out:
2540 	spin_unlock(&sbinfo->stat_lock);
2541 	return error;
2542 }
2543 
2544 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2545 {
2546 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2547 
2548 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2549 		seq_printf(seq, ",size=%luk",
2550 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2551 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2552 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2553 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2554 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2555 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2556 		seq_printf(seq, ",uid=%u",
2557 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2558 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2559 		seq_printf(seq, ",gid=%u",
2560 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2561 	shmem_show_mpol(seq, sbinfo->mpol);
2562 	return 0;
2563 }
2564 #endif /* CONFIG_TMPFS */
2565 
2566 static void shmem_put_super(struct super_block *sb)
2567 {
2568 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2569 
2570 	percpu_counter_destroy(&sbinfo->used_blocks);
2571 	mpol_put(sbinfo->mpol);
2572 	kfree(sbinfo);
2573 	sb->s_fs_info = NULL;
2574 }
2575 
2576 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2577 {
2578 	struct inode *inode;
2579 	struct shmem_sb_info *sbinfo;
2580 	int err = -ENOMEM;
2581 
2582 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2583 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2584 				L1_CACHE_BYTES), GFP_KERNEL);
2585 	if (!sbinfo)
2586 		return -ENOMEM;
2587 
2588 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2589 	sbinfo->uid = current_fsuid();
2590 	sbinfo->gid = current_fsgid();
2591 	sb->s_fs_info = sbinfo;
2592 
2593 #ifdef CONFIG_TMPFS
2594 	/*
2595 	 * Per default we only allow half of the physical ram per
2596 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2597 	 * but the internal instance is left unlimited.
2598 	 */
2599 	if (!(sb->s_flags & MS_KERNMOUNT)) {
2600 		sbinfo->max_blocks = shmem_default_max_blocks();
2601 		sbinfo->max_inodes = shmem_default_max_inodes();
2602 		if (shmem_parse_options(data, sbinfo, false)) {
2603 			err = -EINVAL;
2604 			goto failed;
2605 		}
2606 	} else {
2607 		sb->s_flags |= MS_NOUSER;
2608 	}
2609 	sb->s_export_op = &shmem_export_ops;
2610 	sb->s_flags |= MS_NOSEC;
2611 #else
2612 	sb->s_flags |= MS_NOUSER;
2613 #endif
2614 
2615 	spin_lock_init(&sbinfo->stat_lock);
2616 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2617 		goto failed;
2618 	sbinfo->free_inodes = sbinfo->max_inodes;
2619 
2620 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2621 	sb->s_blocksize = PAGE_CACHE_SIZE;
2622 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2623 	sb->s_magic = TMPFS_MAGIC;
2624 	sb->s_op = &shmem_ops;
2625 	sb->s_time_gran = 1;
2626 #ifdef CONFIG_TMPFS_XATTR
2627 	sb->s_xattr = shmem_xattr_handlers;
2628 #endif
2629 #ifdef CONFIG_TMPFS_POSIX_ACL
2630 	sb->s_flags |= MS_POSIXACL;
2631 #endif
2632 
2633 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2634 	if (!inode)
2635 		goto failed;
2636 	inode->i_uid = sbinfo->uid;
2637 	inode->i_gid = sbinfo->gid;
2638 	sb->s_root = d_make_root(inode);
2639 	if (!sb->s_root)
2640 		goto failed;
2641 	return 0;
2642 
2643 failed:
2644 	shmem_put_super(sb);
2645 	return err;
2646 }
2647 
2648 static struct kmem_cache *shmem_inode_cachep;
2649 
2650 static struct inode *shmem_alloc_inode(struct super_block *sb)
2651 {
2652 	struct shmem_inode_info *info;
2653 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2654 	if (!info)
2655 		return NULL;
2656 	return &info->vfs_inode;
2657 }
2658 
2659 static void shmem_destroy_callback(struct rcu_head *head)
2660 {
2661 	struct inode *inode = container_of(head, struct inode, i_rcu);
2662 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2663 }
2664 
2665 static void shmem_destroy_inode(struct inode *inode)
2666 {
2667 	if (S_ISREG(inode->i_mode))
2668 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2669 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2670 }
2671 
2672 static void shmem_init_inode(void *foo)
2673 {
2674 	struct shmem_inode_info *info = foo;
2675 	inode_init_once(&info->vfs_inode);
2676 }
2677 
2678 static int shmem_init_inodecache(void)
2679 {
2680 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2681 				sizeof(struct shmem_inode_info),
2682 				0, SLAB_PANIC, shmem_init_inode);
2683 	return 0;
2684 }
2685 
2686 static void shmem_destroy_inodecache(void)
2687 {
2688 	kmem_cache_destroy(shmem_inode_cachep);
2689 }
2690 
2691 static const struct address_space_operations shmem_aops = {
2692 	.writepage	= shmem_writepage,
2693 	.set_page_dirty	= __set_page_dirty_no_writeback,
2694 #ifdef CONFIG_TMPFS
2695 	.write_begin	= shmem_write_begin,
2696 	.write_end	= shmem_write_end,
2697 #endif
2698 	.migratepage	= migrate_page,
2699 	.error_remove_page = generic_error_remove_page,
2700 };
2701 
2702 static const struct file_operations shmem_file_operations = {
2703 	.mmap		= shmem_mmap,
2704 #ifdef CONFIG_TMPFS
2705 	.llseek		= shmem_file_llseek,
2706 	.read		= new_sync_read,
2707 	.write		= new_sync_write,
2708 	.read_iter	= shmem_file_read_iter,
2709 	.write_iter	= generic_file_write_iter,
2710 	.fsync		= noop_fsync,
2711 	.splice_read	= shmem_file_splice_read,
2712 	.splice_write	= iter_file_splice_write,
2713 	.fallocate	= shmem_fallocate,
2714 #endif
2715 };
2716 
2717 static const struct inode_operations shmem_inode_operations = {
2718 	.setattr	= shmem_setattr,
2719 #ifdef CONFIG_TMPFS_XATTR
2720 	.setxattr	= shmem_setxattr,
2721 	.getxattr	= shmem_getxattr,
2722 	.listxattr	= shmem_listxattr,
2723 	.removexattr	= shmem_removexattr,
2724 	.set_acl	= simple_set_acl,
2725 #endif
2726 };
2727 
2728 static const struct inode_operations shmem_dir_inode_operations = {
2729 #ifdef CONFIG_TMPFS
2730 	.create		= shmem_create,
2731 	.lookup		= simple_lookup,
2732 	.link		= shmem_link,
2733 	.unlink		= shmem_unlink,
2734 	.symlink	= shmem_symlink,
2735 	.mkdir		= shmem_mkdir,
2736 	.rmdir		= shmem_rmdir,
2737 	.mknod		= shmem_mknod,
2738 	.rename		= shmem_rename,
2739 	.tmpfile	= shmem_tmpfile,
2740 #endif
2741 #ifdef CONFIG_TMPFS_XATTR
2742 	.setxattr	= shmem_setxattr,
2743 	.getxattr	= shmem_getxattr,
2744 	.listxattr	= shmem_listxattr,
2745 	.removexattr	= shmem_removexattr,
2746 #endif
2747 #ifdef CONFIG_TMPFS_POSIX_ACL
2748 	.setattr	= shmem_setattr,
2749 	.set_acl	= simple_set_acl,
2750 #endif
2751 };
2752 
2753 static const struct inode_operations shmem_special_inode_operations = {
2754 #ifdef CONFIG_TMPFS_XATTR
2755 	.setxattr	= shmem_setxattr,
2756 	.getxattr	= shmem_getxattr,
2757 	.listxattr	= shmem_listxattr,
2758 	.removexattr	= shmem_removexattr,
2759 #endif
2760 #ifdef CONFIG_TMPFS_POSIX_ACL
2761 	.setattr	= shmem_setattr,
2762 	.set_acl	= simple_set_acl,
2763 #endif
2764 };
2765 
2766 static const struct super_operations shmem_ops = {
2767 	.alloc_inode	= shmem_alloc_inode,
2768 	.destroy_inode	= shmem_destroy_inode,
2769 #ifdef CONFIG_TMPFS
2770 	.statfs		= shmem_statfs,
2771 	.remount_fs	= shmem_remount_fs,
2772 	.show_options	= shmem_show_options,
2773 #endif
2774 	.evict_inode	= shmem_evict_inode,
2775 	.drop_inode	= generic_delete_inode,
2776 	.put_super	= shmem_put_super,
2777 };
2778 
2779 static const struct vm_operations_struct shmem_vm_ops = {
2780 	.fault		= shmem_fault,
2781 	.map_pages	= filemap_map_pages,
2782 #ifdef CONFIG_NUMA
2783 	.set_policy     = shmem_set_policy,
2784 	.get_policy     = shmem_get_policy,
2785 #endif
2786 	.remap_pages	= generic_file_remap_pages,
2787 };
2788 
2789 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2790 	int flags, const char *dev_name, void *data)
2791 {
2792 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2793 }
2794 
2795 static struct file_system_type shmem_fs_type = {
2796 	.owner		= THIS_MODULE,
2797 	.name		= "tmpfs",
2798 	.mount		= shmem_mount,
2799 	.kill_sb	= kill_litter_super,
2800 	.fs_flags	= FS_USERNS_MOUNT,
2801 };
2802 
2803 int __init shmem_init(void)
2804 {
2805 	int error;
2806 
2807 	/* If rootfs called this, don't re-init */
2808 	if (shmem_inode_cachep)
2809 		return 0;
2810 
2811 	error = bdi_init(&shmem_backing_dev_info);
2812 	if (error)
2813 		goto out4;
2814 
2815 	error = shmem_init_inodecache();
2816 	if (error)
2817 		goto out3;
2818 
2819 	error = register_filesystem(&shmem_fs_type);
2820 	if (error) {
2821 		printk(KERN_ERR "Could not register tmpfs\n");
2822 		goto out2;
2823 	}
2824 
2825 	shm_mnt = kern_mount(&shmem_fs_type);
2826 	if (IS_ERR(shm_mnt)) {
2827 		error = PTR_ERR(shm_mnt);
2828 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2829 		goto out1;
2830 	}
2831 	return 0;
2832 
2833 out1:
2834 	unregister_filesystem(&shmem_fs_type);
2835 out2:
2836 	shmem_destroy_inodecache();
2837 out3:
2838 	bdi_destroy(&shmem_backing_dev_info);
2839 out4:
2840 	shm_mnt = ERR_PTR(error);
2841 	return error;
2842 }
2843 
2844 #else /* !CONFIG_SHMEM */
2845 
2846 /*
2847  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2848  *
2849  * This is intended for small system where the benefits of the full
2850  * shmem code (swap-backed and resource-limited) are outweighed by
2851  * their complexity. On systems without swap this code should be
2852  * effectively equivalent, but much lighter weight.
2853  */
2854 
2855 static struct file_system_type shmem_fs_type = {
2856 	.name		= "tmpfs",
2857 	.mount		= ramfs_mount,
2858 	.kill_sb	= kill_litter_super,
2859 	.fs_flags	= FS_USERNS_MOUNT,
2860 };
2861 
2862 int __init shmem_init(void)
2863 {
2864 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2865 
2866 	shm_mnt = kern_mount(&shmem_fs_type);
2867 	BUG_ON(IS_ERR(shm_mnt));
2868 
2869 	return 0;
2870 }
2871 
2872 int shmem_unuse(swp_entry_t swap, struct page *page)
2873 {
2874 	return 0;
2875 }
2876 
2877 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2878 {
2879 	return 0;
2880 }
2881 
2882 void shmem_unlock_mapping(struct address_space *mapping)
2883 {
2884 }
2885 
2886 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2887 {
2888 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2889 }
2890 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2891 
2892 #define shmem_vm_ops				generic_file_vm_ops
2893 #define shmem_file_operations			ramfs_file_operations
2894 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2895 #define shmem_acct_size(flags, size)		0
2896 #define shmem_unacct_size(flags, size)		do {} while (0)
2897 
2898 #endif /* CONFIG_SHMEM */
2899 
2900 /* common code */
2901 
2902 static struct dentry_operations anon_ops = {
2903 	.d_dname = simple_dname
2904 };
2905 
2906 static struct file *__shmem_file_setup(const char *name, loff_t size,
2907 				       unsigned long flags, unsigned int i_flags)
2908 {
2909 	struct file *res;
2910 	struct inode *inode;
2911 	struct path path;
2912 	struct super_block *sb;
2913 	struct qstr this;
2914 
2915 	if (IS_ERR(shm_mnt))
2916 		return ERR_CAST(shm_mnt);
2917 
2918 	if (size < 0 || size > MAX_LFS_FILESIZE)
2919 		return ERR_PTR(-EINVAL);
2920 
2921 	if (shmem_acct_size(flags, size))
2922 		return ERR_PTR(-ENOMEM);
2923 
2924 	res = ERR_PTR(-ENOMEM);
2925 	this.name = name;
2926 	this.len = strlen(name);
2927 	this.hash = 0; /* will go */
2928 	sb = shm_mnt->mnt_sb;
2929 	path.dentry = d_alloc_pseudo(sb, &this);
2930 	if (!path.dentry)
2931 		goto put_memory;
2932 	d_set_d_op(path.dentry, &anon_ops);
2933 	path.mnt = mntget(shm_mnt);
2934 
2935 	res = ERR_PTR(-ENOSPC);
2936 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2937 	if (!inode)
2938 		goto put_dentry;
2939 
2940 	inode->i_flags |= i_flags;
2941 	d_instantiate(path.dentry, inode);
2942 	inode->i_size = size;
2943 	clear_nlink(inode);	/* It is unlinked */
2944 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2945 	if (IS_ERR(res))
2946 		goto put_dentry;
2947 
2948 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2949 		  &shmem_file_operations);
2950 	if (IS_ERR(res))
2951 		goto put_dentry;
2952 
2953 	return res;
2954 
2955 put_dentry:
2956 	path_put(&path);
2957 put_memory:
2958 	shmem_unacct_size(flags, size);
2959 	return res;
2960 }
2961 
2962 /**
2963  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2964  * 	kernel internal.  There will be NO LSM permission checks against the
2965  * 	underlying inode.  So users of this interface must do LSM checks at a
2966  * 	higher layer.  The one user is the big_key implementation.  LSM checks
2967  * 	are provided at the key level rather than the inode level.
2968  * @name: name for dentry (to be seen in /proc/<pid>/maps
2969  * @size: size to be set for the file
2970  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2971  */
2972 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2973 {
2974 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
2975 }
2976 
2977 /**
2978  * shmem_file_setup - get an unlinked file living in tmpfs
2979  * @name: name for dentry (to be seen in /proc/<pid>/maps
2980  * @size: size to be set for the file
2981  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2982  */
2983 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2984 {
2985 	return __shmem_file_setup(name, size, flags, 0);
2986 }
2987 EXPORT_SYMBOL_GPL(shmem_file_setup);
2988 
2989 /**
2990  * shmem_zero_setup - setup a shared anonymous mapping
2991  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2992  */
2993 int shmem_zero_setup(struct vm_area_struct *vma)
2994 {
2995 	struct file *file;
2996 	loff_t size = vma->vm_end - vma->vm_start;
2997 
2998 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2999 	if (IS_ERR(file))
3000 		return PTR_ERR(file);
3001 
3002 	if (vma->vm_file)
3003 		fput(vma->vm_file);
3004 	vma->vm_file = file;
3005 	vma->vm_ops = &shmem_vm_ops;
3006 	return 0;
3007 }
3008 
3009 /**
3010  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3011  * @mapping:	the page's address_space
3012  * @index:	the page index
3013  * @gfp:	the page allocator flags to use if allocating
3014  *
3015  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3016  * with any new page allocations done using the specified allocation flags.
3017  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3018  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3019  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3020  *
3021  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3022  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3023  */
3024 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3025 					 pgoff_t index, gfp_t gfp)
3026 {
3027 #ifdef CONFIG_SHMEM
3028 	struct inode *inode = mapping->host;
3029 	struct page *page;
3030 	int error;
3031 
3032 	BUG_ON(mapping->a_ops != &shmem_aops);
3033 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3034 	if (error)
3035 		page = ERR_PTR(error);
3036 	else
3037 		unlock_page(page);
3038 	return page;
3039 #else
3040 	/*
3041 	 * The tiny !SHMEM case uses ramfs without swap
3042 	 */
3043 	return read_cache_page_gfp(mapping, index, gfp);
3044 #endif
3045 }
3046 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3047