1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/frontswap.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 43 static struct vfsmount *shm_mnt; 44 45 #ifdef CONFIG_SHMEM 46 /* 47 * This virtual memory filesystem is heavily based on the ramfs. It 48 * extends ramfs by the ability to use swap and honor resource limits 49 * which makes it a completely usable filesystem. 50 */ 51 52 #include <linux/xattr.h> 53 #include <linux/exportfs.h> 54 #include <linux/posix_acl.h> 55 #include <linux/posix_acl_xattr.h> 56 #include <linux/mman.h> 57 #include <linux/string.h> 58 #include <linux/slab.h> 59 #include <linux/backing-dev.h> 60 #include <linux/shmem_fs.h> 61 #include <linux/writeback.h> 62 #include <linux/blkdev.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/userfaultfd_k.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 83 #include <linux/uaccess.h> 84 85 #include "internal.h" 86 87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 89 90 /* Pretend that each entry is of this size in directory's i_size */ 91 #define BOGO_DIRENT_SIZE 20 92 93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 94 #define SHORT_SYMLINK_LEN 128 95 96 /* 97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 98 * inode->i_private (with i_mutex making sure that it has only one user at 99 * a time): we would prefer not to enlarge the shmem inode just for that. 100 */ 101 struct shmem_falloc { 102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 103 pgoff_t start; /* start of range currently being fallocated */ 104 pgoff_t next; /* the next page offset to be fallocated */ 105 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 107 }; 108 109 struct shmem_options { 110 unsigned long long blocks; 111 unsigned long long inodes; 112 struct mempolicy *mpol; 113 kuid_t uid; 114 kgid_t gid; 115 umode_t mode; 116 bool full_inums; 117 int huge; 118 int seen; 119 #define SHMEM_SEEN_BLOCKS 1 120 #define SHMEM_SEEN_INODES 2 121 #define SHMEM_SEEN_HUGE 4 122 #define SHMEM_SEEN_INUMS 8 123 }; 124 125 #ifdef CONFIG_TMPFS 126 static unsigned long shmem_default_max_blocks(void) 127 { 128 return totalram_pages() / 2; 129 } 130 131 static unsigned long shmem_default_max_inodes(void) 132 { 133 unsigned long nr_pages = totalram_pages(); 134 135 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 136 } 137 #endif 138 139 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 140 struct page **pagep, enum sgp_type sgp, 141 gfp_t gfp, struct vm_area_struct *vma, 142 vm_fault_t *fault_type); 143 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 144 struct page **pagep, enum sgp_type sgp, 145 gfp_t gfp, struct vm_area_struct *vma, 146 struct vm_fault *vmf, vm_fault_t *fault_type); 147 148 int shmem_getpage(struct inode *inode, pgoff_t index, 149 struct page **pagep, enum sgp_type sgp) 150 { 151 return shmem_getpage_gfp(inode, index, pagep, sgp, 152 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 153 } 154 155 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 156 { 157 return sb->s_fs_info; 158 } 159 160 /* 161 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 162 * for shared memory and for shared anonymous (/dev/zero) mappings 163 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 164 * consistent with the pre-accounting of private mappings ... 165 */ 166 static inline int shmem_acct_size(unsigned long flags, loff_t size) 167 { 168 return (flags & VM_NORESERVE) ? 169 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 170 } 171 172 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 173 { 174 if (!(flags & VM_NORESERVE)) 175 vm_unacct_memory(VM_ACCT(size)); 176 } 177 178 static inline int shmem_reacct_size(unsigned long flags, 179 loff_t oldsize, loff_t newsize) 180 { 181 if (!(flags & VM_NORESERVE)) { 182 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 183 return security_vm_enough_memory_mm(current->mm, 184 VM_ACCT(newsize) - VM_ACCT(oldsize)); 185 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 186 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 187 } 188 return 0; 189 } 190 191 /* 192 * ... whereas tmpfs objects are accounted incrementally as 193 * pages are allocated, in order to allow large sparse files. 194 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 195 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 196 */ 197 static inline int shmem_acct_block(unsigned long flags, long pages) 198 { 199 if (!(flags & VM_NORESERVE)) 200 return 0; 201 202 return security_vm_enough_memory_mm(current->mm, 203 pages * VM_ACCT(PAGE_SIZE)); 204 } 205 206 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 207 { 208 if (flags & VM_NORESERVE) 209 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 210 } 211 212 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 213 { 214 struct shmem_inode_info *info = SHMEM_I(inode); 215 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 216 217 if (shmem_acct_block(info->flags, pages)) 218 return false; 219 220 if (sbinfo->max_blocks) { 221 if (percpu_counter_compare(&sbinfo->used_blocks, 222 sbinfo->max_blocks - pages) > 0) 223 goto unacct; 224 percpu_counter_add(&sbinfo->used_blocks, pages); 225 } 226 227 return true; 228 229 unacct: 230 shmem_unacct_blocks(info->flags, pages); 231 return false; 232 } 233 234 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 235 { 236 struct shmem_inode_info *info = SHMEM_I(inode); 237 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 238 239 if (sbinfo->max_blocks) 240 percpu_counter_sub(&sbinfo->used_blocks, pages); 241 shmem_unacct_blocks(info->flags, pages); 242 } 243 244 static const struct super_operations shmem_ops; 245 const struct address_space_operations shmem_aops; 246 static const struct file_operations shmem_file_operations; 247 static const struct inode_operations shmem_inode_operations; 248 static const struct inode_operations shmem_dir_inode_operations; 249 static const struct inode_operations shmem_special_inode_operations; 250 static const struct vm_operations_struct shmem_vm_ops; 251 static struct file_system_type shmem_fs_type; 252 253 bool vma_is_shmem(struct vm_area_struct *vma) 254 { 255 return vma->vm_ops == &shmem_vm_ops; 256 } 257 258 static LIST_HEAD(shmem_swaplist); 259 static DEFINE_MUTEX(shmem_swaplist_mutex); 260 261 /* 262 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 263 * produces a novel ino for the newly allocated inode. 264 * 265 * It may also be called when making a hard link to permit the space needed by 266 * each dentry. However, in that case, no new inode number is needed since that 267 * internally draws from another pool of inode numbers (currently global 268 * get_next_ino()). This case is indicated by passing NULL as inop. 269 */ 270 #define SHMEM_INO_BATCH 1024 271 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 272 { 273 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 274 ino_t ino; 275 276 if (!(sb->s_flags & SB_KERNMOUNT)) { 277 raw_spin_lock(&sbinfo->stat_lock); 278 if (sbinfo->max_inodes) { 279 if (!sbinfo->free_inodes) { 280 raw_spin_unlock(&sbinfo->stat_lock); 281 return -ENOSPC; 282 } 283 sbinfo->free_inodes--; 284 } 285 if (inop) { 286 ino = sbinfo->next_ino++; 287 if (unlikely(is_zero_ino(ino))) 288 ino = sbinfo->next_ino++; 289 if (unlikely(!sbinfo->full_inums && 290 ino > UINT_MAX)) { 291 /* 292 * Emulate get_next_ino uint wraparound for 293 * compatibility 294 */ 295 if (IS_ENABLED(CONFIG_64BIT)) 296 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 297 __func__, MINOR(sb->s_dev)); 298 sbinfo->next_ino = 1; 299 ino = sbinfo->next_ino++; 300 } 301 *inop = ino; 302 } 303 raw_spin_unlock(&sbinfo->stat_lock); 304 } else if (inop) { 305 /* 306 * __shmem_file_setup, one of our callers, is lock-free: it 307 * doesn't hold stat_lock in shmem_reserve_inode since 308 * max_inodes is always 0, and is called from potentially 309 * unknown contexts. As such, use a per-cpu batched allocator 310 * which doesn't require the per-sb stat_lock unless we are at 311 * the batch boundary. 312 * 313 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 314 * shmem mounts are not exposed to userspace, so we don't need 315 * to worry about things like glibc compatibility. 316 */ 317 ino_t *next_ino; 318 319 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 320 ino = *next_ino; 321 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 322 raw_spin_lock(&sbinfo->stat_lock); 323 ino = sbinfo->next_ino; 324 sbinfo->next_ino += SHMEM_INO_BATCH; 325 raw_spin_unlock(&sbinfo->stat_lock); 326 if (unlikely(is_zero_ino(ino))) 327 ino++; 328 } 329 *inop = ino; 330 *next_ino = ++ino; 331 put_cpu(); 332 } 333 334 return 0; 335 } 336 337 static void shmem_free_inode(struct super_block *sb) 338 { 339 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 340 if (sbinfo->max_inodes) { 341 raw_spin_lock(&sbinfo->stat_lock); 342 sbinfo->free_inodes++; 343 raw_spin_unlock(&sbinfo->stat_lock); 344 } 345 } 346 347 /** 348 * shmem_recalc_inode - recalculate the block usage of an inode 349 * @inode: inode to recalc 350 * 351 * We have to calculate the free blocks since the mm can drop 352 * undirtied hole pages behind our back. 353 * 354 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 355 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 356 * 357 * It has to be called with the spinlock held. 358 */ 359 static void shmem_recalc_inode(struct inode *inode) 360 { 361 struct shmem_inode_info *info = SHMEM_I(inode); 362 long freed; 363 364 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 365 if (freed > 0) { 366 info->alloced -= freed; 367 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 368 shmem_inode_unacct_blocks(inode, freed); 369 } 370 } 371 372 bool shmem_charge(struct inode *inode, long pages) 373 { 374 struct shmem_inode_info *info = SHMEM_I(inode); 375 unsigned long flags; 376 377 if (!shmem_inode_acct_block(inode, pages)) 378 return false; 379 380 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 381 inode->i_mapping->nrpages += pages; 382 383 spin_lock_irqsave(&info->lock, flags); 384 info->alloced += pages; 385 inode->i_blocks += pages * BLOCKS_PER_PAGE; 386 shmem_recalc_inode(inode); 387 spin_unlock_irqrestore(&info->lock, flags); 388 389 return true; 390 } 391 392 void shmem_uncharge(struct inode *inode, long pages) 393 { 394 struct shmem_inode_info *info = SHMEM_I(inode); 395 unsigned long flags; 396 397 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 398 399 spin_lock_irqsave(&info->lock, flags); 400 info->alloced -= pages; 401 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 402 shmem_recalc_inode(inode); 403 spin_unlock_irqrestore(&info->lock, flags); 404 405 shmem_inode_unacct_blocks(inode, pages); 406 } 407 408 /* 409 * Replace item expected in xarray by a new item, while holding xa_lock. 410 */ 411 static int shmem_replace_entry(struct address_space *mapping, 412 pgoff_t index, void *expected, void *replacement) 413 { 414 XA_STATE(xas, &mapping->i_pages, index); 415 void *item; 416 417 VM_BUG_ON(!expected); 418 VM_BUG_ON(!replacement); 419 item = xas_load(&xas); 420 if (item != expected) 421 return -ENOENT; 422 xas_store(&xas, replacement); 423 return 0; 424 } 425 426 /* 427 * Sometimes, before we decide whether to proceed or to fail, we must check 428 * that an entry was not already brought back from swap by a racing thread. 429 * 430 * Checking page is not enough: by the time a SwapCache page is locked, it 431 * might be reused, and again be SwapCache, using the same swap as before. 432 */ 433 static bool shmem_confirm_swap(struct address_space *mapping, 434 pgoff_t index, swp_entry_t swap) 435 { 436 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 437 } 438 439 /* 440 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 441 * 442 * SHMEM_HUGE_NEVER: 443 * disables huge pages for the mount; 444 * SHMEM_HUGE_ALWAYS: 445 * enables huge pages for the mount; 446 * SHMEM_HUGE_WITHIN_SIZE: 447 * only allocate huge pages if the page will be fully within i_size, 448 * also respect fadvise()/madvise() hints; 449 * SHMEM_HUGE_ADVISE: 450 * only allocate huge pages if requested with fadvise()/madvise(); 451 */ 452 453 #define SHMEM_HUGE_NEVER 0 454 #define SHMEM_HUGE_ALWAYS 1 455 #define SHMEM_HUGE_WITHIN_SIZE 2 456 #define SHMEM_HUGE_ADVISE 3 457 458 /* 459 * Special values. 460 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 461 * 462 * SHMEM_HUGE_DENY: 463 * disables huge on shm_mnt and all mounts, for emergency use; 464 * SHMEM_HUGE_FORCE: 465 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 466 * 467 */ 468 #define SHMEM_HUGE_DENY (-1) 469 #define SHMEM_HUGE_FORCE (-2) 470 471 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 472 /* ifdef here to avoid bloating shmem.o when not necessary */ 473 474 static int shmem_huge __read_mostly; 475 476 #if defined(CONFIG_SYSFS) 477 static int shmem_parse_huge(const char *str) 478 { 479 if (!strcmp(str, "never")) 480 return SHMEM_HUGE_NEVER; 481 if (!strcmp(str, "always")) 482 return SHMEM_HUGE_ALWAYS; 483 if (!strcmp(str, "within_size")) 484 return SHMEM_HUGE_WITHIN_SIZE; 485 if (!strcmp(str, "advise")) 486 return SHMEM_HUGE_ADVISE; 487 if (!strcmp(str, "deny")) 488 return SHMEM_HUGE_DENY; 489 if (!strcmp(str, "force")) 490 return SHMEM_HUGE_FORCE; 491 return -EINVAL; 492 } 493 #endif 494 495 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 496 static const char *shmem_format_huge(int huge) 497 { 498 switch (huge) { 499 case SHMEM_HUGE_NEVER: 500 return "never"; 501 case SHMEM_HUGE_ALWAYS: 502 return "always"; 503 case SHMEM_HUGE_WITHIN_SIZE: 504 return "within_size"; 505 case SHMEM_HUGE_ADVISE: 506 return "advise"; 507 case SHMEM_HUGE_DENY: 508 return "deny"; 509 case SHMEM_HUGE_FORCE: 510 return "force"; 511 default: 512 VM_BUG_ON(1); 513 return "bad_val"; 514 } 515 } 516 #endif 517 518 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 519 struct shrink_control *sc, unsigned long nr_to_split) 520 { 521 LIST_HEAD(list), *pos, *next; 522 LIST_HEAD(to_remove); 523 struct inode *inode; 524 struct shmem_inode_info *info; 525 struct page *page; 526 unsigned long batch = sc ? sc->nr_to_scan : 128; 527 int removed = 0, split = 0; 528 529 if (list_empty(&sbinfo->shrinklist)) 530 return SHRINK_STOP; 531 532 spin_lock(&sbinfo->shrinklist_lock); 533 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 534 info = list_entry(pos, struct shmem_inode_info, shrinklist); 535 536 /* pin the inode */ 537 inode = igrab(&info->vfs_inode); 538 539 /* inode is about to be evicted */ 540 if (!inode) { 541 list_del_init(&info->shrinklist); 542 removed++; 543 goto next; 544 } 545 546 /* Check if there's anything to gain */ 547 if (round_up(inode->i_size, PAGE_SIZE) == 548 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 549 list_move(&info->shrinklist, &to_remove); 550 removed++; 551 goto next; 552 } 553 554 list_move(&info->shrinklist, &list); 555 next: 556 if (!--batch) 557 break; 558 } 559 spin_unlock(&sbinfo->shrinklist_lock); 560 561 list_for_each_safe(pos, next, &to_remove) { 562 info = list_entry(pos, struct shmem_inode_info, shrinklist); 563 inode = &info->vfs_inode; 564 list_del_init(&info->shrinklist); 565 iput(inode); 566 } 567 568 list_for_each_safe(pos, next, &list) { 569 int ret; 570 571 info = list_entry(pos, struct shmem_inode_info, shrinklist); 572 inode = &info->vfs_inode; 573 574 if (nr_to_split && split >= nr_to_split) 575 goto leave; 576 577 page = find_get_page(inode->i_mapping, 578 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 579 if (!page) 580 goto drop; 581 582 /* No huge page at the end of the file: nothing to split */ 583 if (!PageTransHuge(page)) { 584 put_page(page); 585 goto drop; 586 } 587 588 /* 589 * Leave the inode on the list if we failed to lock 590 * the page at this time. 591 * 592 * Waiting for the lock may lead to deadlock in the 593 * reclaim path. 594 */ 595 if (!trylock_page(page)) { 596 put_page(page); 597 goto leave; 598 } 599 600 ret = split_huge_page(page); 601 unlock_page(page); 602 put_page(page); 603 604 /* If split failed leave the inode on the list */ 605 if (ret) 606 goto leave; 607 608 split++; 609 drop: 610 list_del_init(&info->shrinklist); 611 removed++; 612 leave: 613 iput(inode); 614 } 615 616 spin_lock(&sbinfo->shrinklist_lock); 617 list_splice_tail(&list, &sbinfo->shrinklist); 618 sbinfo->shrinklist_len -= removed; 619 spin_unlock(&sbinfo->shrinklist_lock); 620 621 return split; 622 } 623 624 static long shmem_unused_huge_scan(struct super_block *sb, 625 struct shrink_control *sc) 626 { 627 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 628 629 if (!READ_ONCE(sbinfo->shrinklist_len)) 630 return SHRINK_STOP; 631 632 return shmem_unused_huge_shrink(sbinfo, sc, 0); 633 } 634 635 static long shmem_unused_huge_count(struct super_block *sb, 636 struct shrink_control *sc) 637 { 638 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 639 return READ_ONCE(sbinfo->shrinklist_len); 640 } 641 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 642 643 #define shmem_huge SHMEM_HUGE_DENY 644 645 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 646 struct shrink_control *sc, unsigned long nr_to_split) 647 { 648 return 0; 649 } 650 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 651 652 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) 653 { 654 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 655 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && 656 shmem_huge != SHMEM_HUGE_DENY) 657 return true; 658 return false; 659 } 660 661 /* 662 * Like add_to_page_cache_locked, but error if expected item has gone. 663 */ 664 static int shmem_add_to_page_cache(struct page *page, 665 struct address_space *mapping, 666 pgoff_t index, void *expected, gfp_t gfp, 667 struct mm_struct *charge_mm) 668 { 669 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 670 unsigned long i = 0; 671 unsigned long nr = compound_nr(page); 672 int error; 673 674 VM_BUG_ON_PAGE(PageTail(page), page); 675 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 676 VM_BUG_ON_PAGE(!PageLocked(page), page); 677 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 678 VM_BUG_ON(expected && PageTransHuge(page)); 679 680 page_ref_add(page, nr); 681 page->mapping = mapping; 682 page->index = index; 683 684 if (!PageSwapCache(page)) { 685 error = mem_cgroup_charge(page, charge_mm, gfp); 686 if (error) { 687 if (PageTransHuge(page)) { 688 count_vm_event(THP_FILE_FALLBACK); 689 count_vm_event(THP_FILE_FALLBACK_CHARGE); 690 } 691 goto error; 692 } 693 } 694 cgroup_throttle_swaprate(page, gfp); 695 696 do { 697 void *entry; 698 xas_lock_irq(&xas); 699 entry = xas_find_conflict(&xas); 700 if (entry != expected) 701 xas_set_err(&xas, -EEXIST); 702 xas_create_range(&xas); 703 if (xas_error(&xas)) 704 goto unlock; 705 next: 706 xas_store(&xas, page); 707 if (++i < nr) { 708 xas_next(&xas); 709 goto next; 710 } 711 if (PageTransHuge(page)) { 712 count_vm_event(THP_FILE_ALLOC); 713 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr); 714 } 715 mapping->nrpages += nr; 716 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr); 717 __mod_lruvec_page_state(page, NR_SHMEM, nr); 718 unlock: 719 xas_unlock_irq(&xas); 720 } while (xas_nomem(&xas, gfp)); 721 722 if (xas_error(&xas)) { 723 error = xas_error(&xas); 724 goto error; 725 } 726 727 return 0; 728 error: 729 page->mapping = NULL; 730 page_ref_sub(page, nr); 731 return error; 732 } 733 734 /* 735 * Like delete_from_page_cache, but substitutes swap for page. 736 */ 737 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 738 { 739 struct address_space *mapping = page->mapping; 740 int error; 741 742 VM_BUG_ON_PAGE(PageCompound(page), page); 743 744 xa_lock_irq(&mapping->i_pages); 745 error = shmem_replace_entry(mapping, page->index, page, radswap); 746 page->mapping = NULL; 747 mapping->nrpages--; 748 __dec_lruvec_page_state(page, NR_FILE_PAGES); 749 __dec_lruvec_page_state(page, NR_SHMEM); 750 xa_unlock_irq(&mapping->i_pages); 751 put_page(page); 752 BUG_ON(error); 753 } 754 755 /* 756 * Remove swap entry from page cache, free the swap and its page cache. 757 */ 758 static int shmem_free_swap(struct address_space *mapping, 759 pgoff_t index, void *radswap) 760 { 761 void *old; 762 763 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 764 if (old != radswap) 765 return -ENOENT; 766 free_swap_and_cache(radix_to_swp_entry(radswap)); 767 return 0; 768 } 769 770 /* 771 * Determine (in bytes) how many of the shmem object's pages mapped by the 772 * given offsets are swapped out. 773 * 774 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 775 * as long as the inode doesn't go away and racy results are not a problem. 776 */ 777 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 778 pgoff_t start, pgoff_t end) 779 { 780 XA_STATE(xas, &mapping->i_pages, start); 781 struct page *page; 782 unsigned long swapped = 0; 783 784 rcu_read_lock(); 785 xas_for_each(&xas, page, end - 1) { 786 if (xas_retry(&xas, page)) 787 continue; 788 if (xa_is_value(page)) 789 swapped++; 790 791 if (need_resched()) { 792 xas_pause(&xas); 793 cond_resched_rcu(); 794 } 795 } 796 797 rcu_read_unlock(); 798 799 return swapped << PAGE_SHIFT; 800 } 801 802 /* 803 * Determine (in bytes) how many of the shmem object's pages mapped by the 804 * given vma is swapped out. 805 * 806 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 807 * as long as the inode doesn't go away and racy results are not a problem. 808 */ 809 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 810 { 811 struct inode *inode = file_inode(vma->vm_file); 812 struct shmem_inode_info *info = SHMEM_I(inode); 813 struct address_space *mapping = inode->i_mapping; 814 unsigned long swapped; 815 816 /* Be careful as we don't hold info->lock */ 817 swapped = READ_ONCE(info->swapped); 818 819 /* 820 * The easier cases are when the shmem object has nothing in swap, or 821 * the vma maps it whole. Then we can simply use the stats that we 822 * already track. 823 */ 824 if (!swapped) 825 return 0; 826 827 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 828 return swapped << PAGE_SHIFT; 829 830 /* Here comes the more involved part */ 831 return shmem_partial_swap_usage(mapping, 832 linear_page_index(vma, vma->vm_start), 833 linear_page_index(vma, vma->vm_end)); 834 } 835 836 /* 837 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 838 */ 839 void shmem_unlock_mapping(struct address_space *mapping) 840 { 841 struct pagevec pvec; 842 pgoff_t index = 0; 843 844 pagevec_init(&pvec); 845 /* 846 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 847 */ 848 while (!mapping_unevictable(mapping)) { 849 if (!pagevec_lookup(&pvec, mapping, &index)) 850 break; 851 check_move_unevictable_pages(&pvec); 852 pagevec_release(&pvec); 853 cond_resched(); 854 } 855 } 856 857 /* 858 * Check whether a hole-punch or truncation needs to split a huge page, 859 * returning true if no split was required, or the split has been successful. 860 * 861 * Eviction (or truncation to 0 size) should never need to split a huge page; 862 * but in rare cases might do so, if shmem_undo_range() failed to trylock on 863 * head, and then succeeded to trylock on tail. 864 * 865 * A split can only succeed when there are no additional references on the 866 * huge page: so the split below relies upon find_get_entries() having stopped 867 * when it found a subpage of the huge page, without getting further references. 868 */ 869 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end) 870 { 871 if (!PageTransCompound(page)) 872 return true; 873 874 /* Just proceed to delete a huge page wholly within the range punched */ 875 if (PageHead(page) && 876 page->index >= start && page->index + HPAGE_PMD_NR <= end) 877 return true; 878 879 /* Try to split huge page, so we can truly punch the hole or truncate */ 880 return split_huge_page(page) >= 0; 881 } 882 883 /* 884 * Remove range of pages and swap entries from page cache, and free them. 885 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 886 */ 887 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 888 bool unfalloc) 889 { 890 struct address_space *mapping = inode->i_mapping; 891 struct shmem_inode_info *info = SHMEM_I(inode); 892 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 893 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 894 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 895 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 896 struct pagevec pvec; 897 pgoff_t indices[PAGEVEC_SIZE]; 898 long nr_swaps_freed = 0; 899 pgoff_t index; 900 int i; 901 902 if (lend == -1) 903 end = -1; /* unsigned, so actually very big */ 904 905 pagevec_init(&pvec); 906 index = start; 907 while (index < end && find_lock_entries(mapping, index, end - 1, 908 &pvec, indices)) { 909 for (i = 0; i < pagevec_count(&pvec); i++) { 910 struct page *page = pvec.pages[i]; 911 912 index = indices[i]; 913 914 if (xa_is_value(page)) { 915 if (unfalloc) 916 continue; 917 nr_swaps_freed += !shmem_free_swap(mapping, 918 index, page); 919 continue; 920 } 921 index += thp_nr_pages(page) - 1; 922 923 if (!unfalloc || !PageUptodate(page)) 924 truncate_inode_page(mapping, page); 925 unlock_page(page); 926 } 927 pagevec_remove_exceptionals(&pvec); 928 pagevec_release(&pvec); 929 cond_resched(); 930 index++; 931 } 932 933 if (partial_start) { 934 struct page *page = NULL; 935 shmem_getpage(inode, start - 1, &page, SGP_READ); 936 if (page) { 937 unsigned int top = PAGE_SIZE; 938 if (start > end) { 939 top = partial_end; 940 partial_end = 0; 941 } 942 zero_user_segment(page, partial_start, top); 943 set_page_dirty(page); 944 unlock_page(page); 945 put_page(page); 946 } 947 } 948 if (partial_end) { 949 struct page *page = NULL; 950 shmem_getpage(inode, end, &page, SGP_READ); 951 if (page) { 952 zero_user_segment(page, 0, partial_end); 953 set_page_dirty(page); 954 unlock_page(page); 955 put_page(page); 956 } 957 } 958 if (start >= end) 959 return; 960 961 index = start; 962 while (index < end) { 963 cond_resched(); 964 965 if (!find_get_entries(mapping, index, end - 1, &pvec, 966 indices)) { 967 /* If all gone or hole-punch or unfalloc, we're done */ 968 if (index == start || end != -1) 969 break; 970 /* But if truncating, restart to make sure all gone */ 971 index = start; 972 continue; 973 } 974 for (i = 0; i < pagevec_count(&pvec); i++) { 975 struct page *page = pvec.pages[i]; 976 977 index = indices[i]; 978 if (xa_is_value(page)) { 979 if (unfalloc) 980 continue; 981 if (shmem_free_swap(mapping, index, page)) { 982 /* Swap was replaced by page: retry */ 983 index--; 984 break; 985 } 986 nr_swaps_freed++; 987 continue; 988 } 989 990 lock_page(page); 991 992 if (!unfalloc || !PageUptodate(page)) { 993 if (page_mapping(page) != mapping) { 994 /* Page was replaced by swap: retry */ 995 unlock_page(page); 996 index--; 997 break; 998 } 999 VM_BUG_ON_PAGE(PageWriteback(page), page); 1000 if (shmem_punch_compound(page, start, end)) 1001 truncate_inode_page(mapping, page); 1002 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1003 /* Wipe the page and don't get stuck */ 1004 clear_highpage(page); 1005 flush_dcache_page(page); 1006 set_page_dirty(page); 1007 if (index < 1008 round_up(start, HPAGE_PMD_NR)) 1009 start = index + 1; 1010 } 1011 } 1012 unlock_page(page); 1013 } 1014 pagevec_remove_exceptionals(&pvec); 1015 pagevec_release(&pvec); 1016 index++; 1017 } 1018 1019 spin_lock_irq(&info->lock); 1020 info->swapped -= nr_swaps_freed; 1021 shmem_recalc_inode(inode); 1022 spin_unlock_irq(&info->lock); 1023 } 1024 1025 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1026 { 1027 shmem_undo_range(inode, lstart, lend, false); 1028 inode->i_ctime = inode->i_mtime = current_time(inode); 1029 } 1030 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1031 1032 static int shmem_getattr(struct user_namespace *mnt_userns, 1033 const struct path *path, struct kstat *stat, 1034 u32 request_mask, unsigned int query_flags) 1035 { 1036 struct inode *inode = path->dentry->d_inode; 1037 struct shmem_inode_info *info = SHMEM_I(inode); 1038 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); 1039 1040 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1041 spin_lock_irq(&info->lock); 1042 shmem_recalc_inode(inode); 1043 spin_unlock_irq(&info->lock); 1044 } 1045 generic_fillattr(&init_user_ns, inode, stat); 1046 1047 if (is_huge_enabled(sb_info)) 1048 stat->blksize = HPAGE_PMD_SIZE; 1049 1050 return 0; 1051 } 1052 1053 static int shmem_setattr(struct user_namespace *mnt_userns, 1054 struct dentry *dentry, struct iattr *attr) 1055 { 1056 struct inode *inode = d_inode(dentry); 1057 struct shmem_inode_info *info = SHMEM_I(inode); 1058 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1059 int error; 1060 1061 error = setattr_prepare(&init_user_ns, dentry, attr); 1062 if (error) 1063 return error; 1064 1065 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1066 loff_t oldsize = inode->i_size; 1067 loff_t newsize = attr->ia_size; 1068 1069 /* protected by i_mutex */ 1070 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1071 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1072 return -EPERM; 1073 1074 if (newsize != oldsize) { 1075 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1076 oldsize, newsize); 1077 if (error) 1078 return error; 1079 i_size_write(inode, newsize); 1080 inode->i_ctime = inode->i_mtime = current_time(inode); 1081 } 1082 if (newsize <= oldsize) { 1083 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1084 if (oldsize > holebegin) 1085 unmap_mapping_range(inode->i_mapping, 1086 holebegin, 0, 1); 1087 if (info->alloced) 1088 shmem_truncate_range(inode, 1089 newsize, (loff_t)-1); 1090 /* unmap again to remove racily COWed private pages */ 1091 if (oldsize > holebegin) 1092 unmap_mapping_range(inode->i_mapping, 1093 holebegin, 0, 1); 1094 1095 /* 1096 * Part of the huge page can be beyond i_size: subject 1097 * to shrink under memory pressure. 1098 */ 1099 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1100 spin_lock(&sbinfo->shrinklist_lock); 1101 /* 1102 * _careful to defend against unlocked access to 1103 * ->shrink_list in shmem_unused_huge_shrink() 1104 */ 1105 if (list_empty_careful(&info->shrinklist)) { 1106 list_add_tail(&info->shrinklist, 1107 &sbinfo->shrinklist); 1108 sbinfo->shrinklist_len++; 1109 } 1110 spin_unlock(&sbinfo->shrinklist_lock); 1111 } 1112 } 1113 } 1114 1115 setattr_copy(&init_user_ns, inode, attr); 1116 if (attr->ia_valid & ATTR_MODE) 1117 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); 1118 return error; 1119 } 1120 1121 static void shmem_evict_inode(struct inode *inode) 1122 { 1123 struct shmem_inode_info *info = SHMEM_I(inode); 1124 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1125 1126 if (shmem_mapping(inode->i_mapping)) { 1127 shmem_unacct_size(info->flags, inode->i_size); 1128 inode->i_size = 0; 1129 shmem_truncate_range(inode, 0, (loff_t)-1); 1130 if (!list_empty(&info->shrinklist)) { 1131 spin_lock(&sbinfo->shrinklist_lock); 1132 if (!list_empty(&info->shrinklist)) { 1133 list_del_init(&info->shrinklist); 1134 sbinfo->shrinklist_len--; 1135 } 1136 spin_unlock(&sbinfo->shrinklist_lock); 1137 } 1138 while (!list_empty(&info->swaplist)) { 1139 /* Wait while shmem_unuse() is scanning this inode... */ 1140 wait_var_event(&info->stop_eviction, 1141 !atomic_read(&info->stop_eviction)); 1142 mutex_lock(&shmem_swaplist_mutex); 1143 /* ...but beware of the race if we peeked too early */ 1144 if (!atomic_read(&info->stop_eviction)) 1145 list_del_init(&info->swaplist); 1146 mutex_unlock(&shmem_swaplist_mutex); 1147 } 1148 } 1149 1150 simple_xattrs_free(&info->xattrs); 1151 WARN_ON(inode->i_blocks); 1152 shmem_free_inode(inode->i_sb); 1153 clear_inode(inode); 1154 } 1155 1156 static int shmem_find_swap_entries(struct address_space *mapping, 1157 pgoff_t start, unsigned int nr_entries, 1158 struct page **entries, pgoff_t *indices, 1159 unsigned int type, bool frontswap) 1160 { 1161 XA_STATE(xas, &mapping->i_pages, start); 1162 struct page *page; 1163 swp_entry_t entry; 1164 unsigned int ret = 0; 1165 1166 if (!nr_entries) 1167 return 0; 1168 1169 rcu_read_lock(); 1170 xas_for_each(&xas, page, ULONG_MAX) { 1171 if (xas_retry(&xas, page)) 1172 continue; 1173 1174 if (!xa_is_value(page)) 1175 continue; 1176 1177 entry = radix_to_swp_entry(page); 1178 if (swp_type(entry) != type) 1179 continue; 1180 if (frontswap && 1181 !frontswap_test(swap_info[type], swp_offset(entry))) 1182 continue; 1183 1184 indices[ret] = xas.xa_index; 1185 entries[ret] = page; 1186 1187 if (need_resched()) { 1188 xas_pause(&xas); 1189 cond_resched_rcu(); 1190 } 1191 if (++ret == nr_entries) 1192 break; 1193 } 1194 rcu_read_unlock(); 1195 1196 return ret; 1197 } 1198 1199 /* 1200 * Move the swapped pages for an inode to page cache. Returns the count 1201 * of pages swapped in, or the error in case of failure. 1202 */ 1203 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1204 pgoff_t *indices) 1205 { 1206 int i = 0; 1207 int ret = 0; 1208 int error = 0; 1209 struct address_space *mapping = inode->i_mapping; 1210 1211 for (i = 0; i < pvec.nr; i++) { 1212 struct page *page = pvec.pages[i]; 1213 1214 if (!xa_is_value(page)) 1215 continue; 1216 error = shmem_swapin_page(inode, indices[i], 1217 &page, SGP_CACHE, 1218 mapping_gfp_mask(mapping), 1219 NULL, NULL); 1220 if (error == 0) { 1221 unlock_page(page); 1222 put_page(page); 1223 ret++; 1224 } 1225 if (error == -ENOMEM) 1226 break; 1227 error = 0; 1228 } 1229 return error ? error : ret; 1230 } 1231 1232 /* 1233 * If swap found in inode, free it and move page from swapcache to filecache. 1234 */ 1235 static int shmem_unuse_inode(struct inode *inode, unsigned int type, 1236 bool frontswap, unsigned long *fs_pages_to_unuse) 1237 { 1238 struct address_space *mapping = inode->i_mapping; 1239 pgoff_t start = 0; 1240 struct pagevec pvec; 1241 pgoff_t indices[PAGEVEC_SIZE]; 1242 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); 1243 int ret = 0; 1244 1245 pagevec_init(&pvec); 1246 do { 1247 unsigned int nr_entries = PAGEVEC_SIZE; 1248 1249 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) 1250 nr_entries = *fs_pages_to_unuse; 1251 1252 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1253 pvec.pages, indices, 1254 type, frontswap); 1255 if (pvec.nr == 0) { 1256 ret = 0; 1257 break; 1258 } 1259 1260 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1261 if (ret < 0) 1262 break; 1263 1264 if (frontswap_partial) { 1265 *fs_pages_to_unuse -= ret; 1266 if (*fs_pages_to_unuse == 0) { 1267 ret = FRONTSWAP_PAGES_UNUSED; 1268 break; 1269 } 1270 } 1271 1272 start = indices[pvec.nr - 1]; 1273 } while (true); 1274 1275 return ret; 1276 } 1277 1278 /* 1279 * Read all the shared memory data that resides in the swap 1280 * device 'type' back into memory, so the swap device can be 1281 * unused. 1282 */ 1283 int shmem_unuse(unsigned int type, bool frontswap, 1284 unsigned long *fs_pages_to_unuse) 1285 { 1286 struct shmem_inode_info *info, *next; 1287 int error = 0; 1288 1289 if (list_empty(&shmem_swaplist)) 1290 return 0; 1291 1292 mutex_lock(&shmem_swaplist_mutex); 1293 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1294 if (!info->swapped) { 1295 list_del_init(&info->swaplist); 1296 continue; 1297 } 1298 /* 1299 * Drop the swaplist mutex while searching the inode for swap; 1300 * but before doing so, make sure shmem_evict_inode() will not 1301 * remove placeholder inode from swaplist, nor let it be freed 1302 * (igrab() would protect from unlink, but not from unmount). 1303 */ 1304 atomic_inc(&info->stop_eviction); 1305 mutex_unlock(&shmem_swaplist_mutex); 1306 1307 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, 1308 fs_pages_to_unuse); 1309 cond_resched(); 1310 1311 mutex_lock(&shmem_swaplist_mutex); 1312 next = list_next_entry(info, swaplist); 1313 if (!info->swapped) 1314 list_del_init(&info->swaplist); 1315 if (atomic_dec_and_test(&info->stop_eviction)) 1316 wake_up_var(&info->stop_eviction); 1317 if (error) 1318 break; 1319 } 1320 mutex_unlock(&shmem_swaplist_mutex); 1321 1322 return error; 1323 } 1324 1325 /* 1326 * Move the page from the page cache to the swap cache. 1327 */ 1328 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1329 { 1330 struct shmem_inode_info *info; 1331 struct address_space *mapping; 1332 struct inode *inode; 1333 swp_entry_t swap; 1334 pgoff_t index; 1335 1336 VM_BUG_ON_PAGE(PageCompound(page), page); 1337 BUG_ON(!PageLocked(page)); 1338 mapping = page->mapping; 1339 index = page->index; 1340 inode = mapping->host; 1341 info = SHMEM_I(inode); 1342 if (info->flags & VM_LOCKED) 1343 goto redirty; 1344 if (!total_swap_pages) 1345 goto redirty; 1346 1347 /* 1348 * Our capabilities prevent regular writeback or sync from ever calling 1349 * shmem_writepage; but a stacking filesystem might use ->writepage of 1350 * its underlying filesystem, in which case tmpfs should write out to 1351 * swap only in response to memory pressure, and not for the writeback 1352 * threads or sync. 1353 */ 1354 if (!wbc->for_reclaim) { 1355 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1356 goto redirty; 1357 } 1358 1359 /* 1360 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1361 * value into swapfile.c, the only way we can correctly account for a 1362 * fallocated page arriving here is now to initialize it and write it. 1363 * 1364 * That's okay for a page already fallocated earlier, but if we have 1365 * not yet completed the fallocation, then (a) we want to keep track 1366 * of this page in case we have to undo it, and (b) it may not be a 1367 * good idea to continue anyway, once we're pushing into swap. So 1368 * reactivate the page, and let shmem_fallocate() quit when too many. 1369 */ 1370 if (!PageUptodate(page)) { 1371 if (inode->i_private) { 1372 struct shmem_falloc *shmem_falloc; 1373 spin_lock(&inode->i_lock); 1374 shmem_falloc = inode->i_private; 1375 if (shmem_falloc && 1376 !shmem_falloc->waitq && 1377 index >= shmem_falloc->start && 1378 index < shmem_falloc->next) 1379 shmem_falloc->nr_unswapped++; 1380 else 1381 shmem_falloc = NULL; 1382 spin_unlock(&inode->i_lock); 1383 if (shmem_falloc) 1384 goto redirty; 1385 } 1386 clear_highpage(page); 1387 flush_dcache_page(page); 1388 SetPageUptodate(page); 1389 } 1390 1391 swap = get_swap_page(page); 1392 if (!swap.val) 1393 goto redirty; 1394 1395 /* 1396 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1397 * if it's not already there. Do it now before the page is 1398 * moved to swap cache, when its pagelock no longer protects 1399 * the inode from eviction. But don't unlock the mutex until 1400 * we've incremented swapped, because shmem_unuse_inode() will 1401 * prune a !swapped inode from the swaplist under this mutex. 1402 */ 1403 mutex_lock(&shmem_swaplist_mutex); 1404 if (list_empty(&info->swaplist)) 1405 list_add(&info->swaplist, &shmem_swaplist); 1406 1407 if (add_to_swap_cache(page, swap, 1408 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1409 NULL) == 0) { 1410 spin_lock_irq(&info->lock); 1411 shmem_recalc_inode(inode); 1412 info->swapped++; 1413 spin_unlock_irq(&info->lock); 1414 1415 swap_shmem_alloc(swap); 1416 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1417 1418 mutex_unlock(&shmem_swaplist_mutex); 1419 BUG_ON(page_mapped(page)); 1420 swap_writepage(page, wbc); 1421 return 0; 1422 } 1423 1424 mutex_unlock(&shmem_swaplist_mutex); 1425 put_swap_page(page, swap); 1426 redirty: 1427 set_page_dirty(page); 1428 if (wbc->for_reclaim) 1429 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1430 unlock_page(page); 1431 return 0; 1432 } 1433 1434 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1435 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1436 { 1437 char buffer[64]; 1438 1439 if (!mpol || mpol->mode == MPOL_DEFAULT) 1440 return; /* show nothing */ 1441 1442 mpol_to_str(buffer, sizeof(buffer), mpol); 1443 1444 seq_printf(seq, ",mpol=%s", buffer); 1445 } 1446 1447 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1448 { 1449 struct mempolicy *mpol = NULL; 1450 if (sbinfo->mpol) { 1451 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1452 mpol = sbinfo->mpol; 1453 mpol_get(mpol); 1454 raw_spin_unlock(&sbinfo->stat_lock); 1455 } 1456 return mpol; 1457 } 1458 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1459 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1460 { 1461 } 1462 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1463 { 1464 return NULL; 1465 } 1466 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1467 #ifndef CONFIG_NUMA 1468 #define vm_policy vm_private_data 1469 #endif 1470 1471 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1472 struct shmem_inode_info *info, pgoff_t index) 1473 { 1474 /* Create a pseudo vma that just contains the policy */ 1475 vma_init(vma, NULL); 1476 /* Bias interleave by inode number to distribute better across nodes */ 1477 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1478 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1479 } 1480 1481 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1482 { 1483 /* Drop reference taken by mpol_shared_policy_lookup() */ 1484 mpol_cond_put(vma->vm_policy); 1485 } 1486 1487 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1488 struct shmem_inode_info *info, pgoff_t index) 1489 { 1490 struct vm_area_struct pvma; 1491 struct page *page; 1492 struct vm_fault vmf = { 1493 .vma = &pvma, 1494 }; 1495 1496 shmem_pseudo_vma_init(&pvma, info, index); 1497 page = swap_cluster_readahead(swap, gfp, &vmf); 1498 shmem_pseudo_vma_destroy(&pvma); 1499 1500 return page; 1501 } 1502 1503 /* 1504 * Make sure huge_gfp is always more limited than limit_gfp. 1505 * Some of the flags set permissions, while others set limitations. 1506 */ 1507 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1508 { 1509 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1510 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1511 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1512 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1513 1514 /* Allow allocations only from the originally specified zones. */ 1515 result |= zoneflags; 1516 1517 /* 1518 * Minimize the result gfp by taking the union with the deny flags, 1519 * and the intersection of the allow flags. 1520 */ 1521 result |= (limit_gfp & denyflags); 1522 result |= (huge_gfp & limit_gfp) & allowflags; 1523 1524 return result; 1525 } 1526 1527 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1528 struct shmem_inode_info *info, pgoff_t index) 1529 { 1530 struct vm_area_struct pvma; 1531 struct address_space *mapping = info->vfs_inode.i_mapping; 1532 pgoff_t hindex; 1533 struct page *page; 1534 1535 hindex = round_down(index, HPAGE_PMD_NR); 1536 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1537 XA_PRESENT)) 1538 return NULL; 1539 1540 shmem_pseudo_vma_init(&pvma, info, hindex); 1541 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), 1542 true); 1543 shmem_pseudo_vma_destroy(&pvma); 1544 if (page) 1545 prep_transhuge_page(page); 1546 else 1547 count_vm_event(THP_FILE_FALLBACK); 1548 return page; 1549 } 1550 1551 static struct page *shmem_alloc_page(gfp_t gfp, 1552 struct shmem_inode_info *info, pgoff_t index) 1553 { 1554 struct vm_area_struct pvma; 1555 struct page *page; 1556 1557 shmem_pseudo_vma_init(&pvma, info, index); 1558 page = alloc_page_vma(gfp, &pvma, 0); 1559 shmem_pseudo_vma_destroy(&pvma); 1560 1561 return page; 1562 } 1563 1564 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1565 struct inode *inode, 1566 pgoff_t index, bool huge) 1567 { 1568 struct shmem_inode_info *info = SHMEM_I(inode); 1569 struct page *page; 1570 int nr; 1571 int err = -ENOSPC; 1572 1573 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1574 huge = false; 1575 nr = huge ? HPAGE_PMD_NR : 1; 1576 1577 if (!shmem_inode_acct_block(inode, nr)) 1578 goto failed; 1579 1580 if (huge) 1581 page = shmem_alloc_hugepage(gfp, info, index); 1582 else 1583 page = shmem_alloc_page(gfp, info, index); 1584 if (page) { 1585 __SetPageLocked(page); 1586 __SetPageSwapBacked(page); 1587 return page; 1588 } 1589 1590 err = -ENOMEM; 1591 shmem_inode_unacct_blocks(inode, nr); 1592 failed: 1593 return ERR_PTR(err); 1594 } 1595 1596 /* 1597 * When a page is moved from swapcache to shmem filecache (either by the 1598 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1599 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1600 * ignorance of the mapping it belongs to. If that mapping has special 1601 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1602 * we may need to copy to a suitable page before moving to filecache. 1603 * 1604 * In a future release, this may well be extended to respect cpuset and 1605 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1606 * but for now it is a simple matter of zone. 1607 */ 1608 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1609 { 1610 return page_zonenum(page) > gfp_zone(gfp); 1611 } 1612 1613 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1614 struct shmem_inode_info *info, pgoff_t index) 1615 { 1616 struct page *oldpage, *newpage; 1617 struct address_space *swap_mapping; 1618 swp_entry_t entry; 1619 pgoff_t swap_index; 1620 int error; 1621 1622 oldpage = *pagep; 1623 entry.val = page_private(oldpage); 1624 swap_index = swp_offset(entry); 1625 swap_mapping = page_mapping(oldpage); 1626 1627 /* 1628 * We have arrived here because our zones are constrained, so don't 1629 * limit chance of success by further cpuset and node constraints. 1630 */ 1631 gfp &= ~GFP_CONSTRAINT_MASK; 1632 newpage = shmem_alloc_page(gfp, info, index); 1633 if (!newpage) 1634 return -ENOMEM; 1635 1636 get_page(newpage); 1637 copy_highpage(newpage, oldpage); 1638 flush_dcache_page(newpage); 1639 1640 __SetPageLocked(newpage); 1641 __SetPageSwapBacked(newpage); 1642 SetPageUptodate(newpage); 1643 set_page_private(newpage, entry.val); 1644 SetPageSwapCache(newpage); 1645 1646 /* 1647 * Our caller will very soon move newpage out of swapcache, but it's 1648 * a nice clean interface for us to replace oldpage by newpage there. 1649 */ 1650 xa_lock_irq(&swap_mapping->i_pages); 1651 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1652 if (!error) { 1653 mem_cgroup_migrate(oldpage, newpage); 1654 __inc_lruvec_page_state(newpage, NR_FILE_PAGES); 1655 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); 1656 } 1657 xa_unlock_irq(&swap_mapping->i_pages); 1658 1659 if (unlikely(error)) { 1660 /* 1661 * Is this possible? I think not, now that our callers check 1662 * both PageSwapCache and page_private after getting page lock; 1663 * but be defensive. Reverse old to newpage for clear and free. 1664 */ 1665 oldpage = newpage; 1666 } else { 1667 lru_cache_add(newpage); 1668 *pagep = newpage; 1669 } 1670 1671 ClearPageSwapCache(oldpage); 1672 set_page_private(oldpage, 0); 1673 1674 unlock_page(oldpage); 1675 put_page(oldpage); 1676 put_page(oldpage); 1677 return error; 1678 } 1679 1680 /* 1681 * Swap in the page pointed to by *pagep. 1682 * Caller has to make sure that *pagep contains a valid swapped page. 1683 * Returns 0 and the page in pagep if success. On failure, returns the 1684 * error code and NULL in *pagep. 1685 */ 1686 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1687 struct page **pagep, enum sgp_type sgp, 1688 gfp_t gfp, struct vm_area_struct *vma, 1689 vm_fault_t *fault_type) 1690 { 1691 struct address_space *mapping = inode->i_mapping; 1692 struct shmem_inode_info *info = SHMEM_I(inode); 1693 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1694 struct page *page; 1695 swp_entry_t swap; 1696 int error; 1697 1698 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1699 swap = radix_to_swp_entry(*pagep); 1700 *pagep = NULL; 1701 1702 /* Look it up and read it in.. */ 1703 page = lookup_swap_cache(swap, NULL, 0); 1704 if (!page) { 1705 /* Or update major stats only when swapin succeeds?? */ 1706 if (fault_type) { 1707 *fault_type |= VM_FAULT_MAJOR; 1708 count_vm_event(PGMAJFAULT); 1709 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1710 } 1711 /* Here we actually start the io */ 1712 page = shmem_swapin(swap, gfp, info, index); 1713 if (!page) { 1714 error = -ENOMEM; 1715 goto failed; 1716 } 1717 } 1718 1719 /* We have to do this with page locked to prevent races */ 1720 lock_page(page); 1721 if (!PageSwapCache(page) || page_private(page) != swap.val || 1722 !shmem_confirm_swap(mapping, index, swap)) { 1723 error = -EEXIST; 1724 goto unlock; 1725 } 1726 if (!PageUptodate(page)) { 1727 error = -EIO; 1728 goto failed; 1729 } 1730 wait_on_page_writeback(page); 1731 1732 /* 1733 * Some architectures may have to restore extra metadata to the 1734 * physical page after reading from swap. 1735 */ 1736 arch_swap_restore(swap, page); 1737 1738 if (shmem_should_replace_page(page, gfp)) { 1739 error = shmem_replace_page(&page, gfp, info, index); 1740 if (error) 1741 goto failed; 1742 } 1743 1744 error = shmem_add_to_page_cache(page, mapping, index, 1745 swp_to_radix_entry(swap), gfp, 1746 charge_mm); 1747 if (error) 1748 goto failed; 1749 1750 spin_lock_irq(&info->lock); 1751 info->swapped--; 1752 shmem_recalc_inode(inode); 1753 spin_unlock_irq(&info->lock); 1754 1755 if (sgp == SGP_WRITE) 1756 mark_page_accessed(page); 1757 1758 delete_from_swap_cache(page); 1759 set_page_dirty(page); 1760 swap_free(swap); 1761 1762 *pagep = page; 1763 return 0; 1764 failed: 1765 if (!shmem_confirm_swap(mapping, index, swap)) 1766 error = -EEXIST; 1767 unlock: 1768 if (page) { 1769 unlock_page(page); 1770 put_page(page); 1771 } 1772 1773 return error; 1774 } 1775 1776 /* 1777 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1778 * 1779 * If we allocate a new one we do not mark it dirty. That's up to the 1780 * vm. If we swap it in we mark it dirty since we also free the swap 1781 * entry since a page cannot live in both the swap and page cache. 1782 * 1783 * vma, vmf, and fault_type are only supplied by shmem_fault: 1784 * otherwise they are NULL. 1785 */ 1786 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1787 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1788 struct vm_area_struct *vma, struct vm_fault *vmf, 1789 vm_fault_t *fault_type) 1790 { 1791 struct address_space *mapping = inode->i_mapping; 1792 struct shmem_inode_info *info = SHMEM_I(inode); 1793 struct shmem_sb_info *sbinfo; 1794 struct mm_struct *charge_mm; 1795 struct page *page; 1796 enum sgp_type sgp_huge = sgp; 1797 pgoff_t hindex = index; 1798 gfp_t huge_gfp; 1799 int error; 1800 int once = 0; 1801 int alloced = 0; 1802 1803 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1804 return -EFBIG; 1805 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1806 sgp = SGP_CACHE; 1807 repeat: 1808 if (sgp <= SGP_CACHE && 1809 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1810 return -EINVAL; 1811 } 1812 1813 sbinfo = SHMEM_SB(inode->i_sb); 1814 charge_mm = vma ? vma->vm_mm : NULL; 1815 1816 page = pagecache_get_page(mapping, index, 1817 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0); 1818 1819 if (page && vma && userfaultfd_minor(vma)) { 1820 if (!xa_is_value(page)) { 1821 unlock_page(page); 1822 put_page(page); 1823 } 1824 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1825 return 0; 1826 } 1827 1828 if (xa_is_value(page)) { 1829 error = shmem_swapin_page(inode, index, &page, 1830 sgp, gfp, vma, fault_type); 1831 if (error == -EEXIST) 1832 goto repeat; 1833 1834 *pagep = page; 1835 return error; 1836 } 1837 1838 if (page) 1839 hindex = page->index; 1840 if (page && sgp == SGP_WRITE) 1841 mark_page_accessed(page); 1842 1843 /* fallocated page? */ 1844 if (page && !PageUptodate(page)) { 1845 if (sgp != SGP_READ) 1846 goto clear; 1847 unlock_page(page); 1848 put_page(page); 1849 page = NULL; 1850 hindex = index; 1851 } 1852 if (page || sgp == SGP_READ) 1853 goto out; 1854 1855 /* 1856 * Fast cache lookup did not find it: 1857 * bring it back from swap or allocate. 1858 */ 1859 1860 if (vma && userfaultfd_missing(vma)) { 1861 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1862 return 0; 1863 } 1864 1865 /* shmem_symlink() */ 1866 if (!shmem_mapping(mapping)) 1867 goto alloc_nohuge; 1868 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1869 goto alloc_nohuge; 1870 if (shmem_huge == SHMEM_HUGE_FORCE) 1871 goto alloc_huge; 1872 switch (sbinfo->huge) { 1873 case SHMEM_HUGE_NEVER: 1874 goto alloc_nohuge; 1875 case SHMEM_HUGE_WITHIN_SIZE: { 1876 loff_t i_size; 1877 pgoff_t off; 1878 1879 off = round_up(index, HPAGE_PMD_NR); 1880 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1881 if (i_size >= HPAGE_PMD_SIZE && 1882 i_size >> PAGE_SHIFT >= off) 1883 goto alloc_huge; 1884 1885 fallthrough; 1886 } 1887 case SHMEM_HUGE_ADVISE: 1888 if (sgp_huge == SGP_HUGE) 1889 goto alloc_huge; 1890 /* TODO: implement fadvise() hints */ 1891 goto alloc_nohuge; 1892 } 1893 1894 alloc_huge: 1895 huge_gfp = vma_thp_gfp_mask(vma); 1896 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1897 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true); 1898 if (IS_ERR(page)) { 1899 alloc_nohuge: 1900 page = shmem_alloc_and_acct_page(gfp, inode, 1901 index, false); 1902 } 1903 if (IS_ERR(page)) { 1904 int retry = 5; 1905 1906 error = PTR_ERR(page); 1907 page = NULL; 1908 if (error != -ENOSPC) 1909 goto unlock; 1910 /* 1911 * Try to reclaim some space by splitting a huge page 1912 * beyond i_size on the filesystem. 1913 */ 1914 while (retry--) { 1915 int ret; 1916 1917 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1918 if (ret == SHRINK_STOP) 1919 break; 1920 if (ret) 1921 goto alloc_nohuge; 1922 } 1923 goto unlock; 1924 } 1925 1926 if (PageTransHuge(page)) 1927 hindex = round_down(index, HPAGE_PMD_NR); 1928 else 1929 hindex = index; 1930 1931 if (sgp == SGP_WRITE) 1932 __SetPageReferenced(page); 1933 1934 error = shmem_add_to_page_cache(page, mapping, hindex, 1935 NULL, gfp & GFP_RECLAIM_MASK, 1936 charge_mm); 1937 if (error) 1938 goto unacct; 1939 lru_cache_add(page); 1940 1941 spin_lock_irq(&info->lock); 1942 info->alloced += compound_nr(page); 1943 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1944 shmem_recalc_inode(inode); 1945 spin_unlock_irq(&info->lock); 1946 alloced = true; 1947 1948 if (PageTransHuge(page) && 1949 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1950 hindex + HPAGE_PMD_NR - 1) { 1951 /* 1952 * Part of the huge page is beyond i_size: subject 1953 * to shrink under memory pressure. 1954 */ 1955 spin_lock(&sbinfo->shrinklist_lock); 1956 /* 1957 * _careful to defend against unlocked access to 1958 * ->shrink_list in shmem_unused_huge_shrink() 1959 */ 1960 if (list_empty_careful(&info->shrinklist)) { 1961 list_add_tail(&info->shrinklist, 1962 &sbinfo->shrinklist); 1963 sbinfo->shrinklist_len++; 1964 } 1965 spin_unlock(&sbinfo->shrinklist_lock); 1966 } 1967 1968 /* 1969 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1970 */ 1971 if (sgp == SGP_FALLOC) 1972 sgp = SGP_WRITE; 1973 clear: 1974 /* 1975 * Let SGP_WRITE caller clear ends if write does not fill page; 1976 * but SGP_FALLOC on a page fallocated earlier must initialize 1977 * it now, lest undo on failure cancel our earlier guarantee. 1978 */ 1979 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1980 int i; 1981 1982 for (i = 0; i < compound_nr(page); i++) { 1983 clear_highpage(page + i); 1984 flush_dcache_page(page + i); 1985 } 1986 SetPageUptodate(page); 1987 } 1988 1989 /* Perhaps the file has been truncated since we checked */ 1990 if (sgp <= SGP_CACHE && 1991 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1992 if (alloced) { 1993 ClearPageDirty(page); 1994 delete_from_page_cache(page); 1995 spin_lock_irq(&info->lock); 1996 shmem_recalc_inode(inode); 1997 spin_unlock_irq(&info->lock); 1998 } 1999 error = -EINVAL; 2000 goto unlock; 2001 } 2002 out: 2003 *pagep = page + index - hindex; 2004 return 0; 2005 2006 /* 2007 * Error recovery. 2008 */ 2009 unacct: 2010 shmem_inode_unacct_blocks(inode, compound_nr(page)); 2011 2012 if (PageTransHuge(page)) { 2013 unlock_page(page); 2014 put_page(page); 2015 goto alloc_nohuge; 2016 } 2017 unlock: 2018 if (page) { 2019 unlock_page(page); 2020 put_page(page); 2021 } 2022 if (error == -ENOSPC && !once++) { 2023 spin_lock_irq(&info->lock); 2024 shmem_recalc_inode(inode); 2025 spin_unlock_irq(&info->lock); 2026 goto repeat; 2027 } 2028 if (error == -EEXIST) 2029 goto repeat; 2030 return error; 2031 } 2032 2033 /* 2034 * This is like autoremove_wake_function, but it removes the wait queue 2035 * entry unconditionally - even if something else had already woken the 2036 * target. 2037 */ 2038 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2039 { 2040 int ret = default_wake_function(wait, mode, sync, key); 2041 list_del_init(&wait->entry); 2042 return ret; 2043 } 2044 2045 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2046 { 2047 struct vm_area_struct *vma = vmf->vma; 2048 struct inode *inode = file_inode(vma->vm_file); 2049 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2050 enum sgp_type sgp; 2051 int err; 2052 vm_fault_t ret = VM_FAULT_LOCKED; 2053 2054 /* 2055 * Trinity finds that probing a hole which tmpfs is punching can 2056 * prevent the hole-punch from ever completing: which in turn 2057 * locks writers out with its hold on i_mutex. So refrain from 2058 * faulting pages into the hole while it's being punched. Although 2059 * shmem_undo_range() does remove the additions, it may be unable to 2060 * keep up, as each new page needs its own unmap_mapping_range() call, 2061 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2062 * 2063 * It does not matter if we sometimes reach this check just before the 2064 * hole-punch begins, so that one fault then races with the punch: 2065 * we just need to make racing faults a rare case. 2066 * 2067 * The implementation below would be much simpler if we just used a 2068 * standard mutex or completion: but we cannot take i_mutex in fault, 2069 * and bloating every shmem inode for this unlikely case would be sad. 2070 */ 2071 if (unlikely(inode->i_private)) { 2072 struct shmem_falloc *shmem_falloc; 2073 2074 spin_lock(&inode->i_lock); 2075 shmem_falloc = inode->i_private; 2076 if (shmem_falloc && 2077 shmem_falloc->waitq && 2078 vmf->pgoff >= shmem_falloc->start && 2079 vmf->pgoff < shmem_falloc->next) { 2080 struct file *fpin; 2081 wait_queue_head_t *shmem_falloc_waitq; 2082 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2083 2084 ret = VM_FAULT_NOPAGE; 2085 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2086 if (fpin) 2087 ret = VM_FAULT_RETRY; 2088 2089 shmem_falloc_waitq = shmem_falloc->waitq; 2090 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2091 TASK_UNINTERRUPTIBLE); 2092 spin_unlock(&inode->i_lock); 2093 schedule(); 2094 2095 /* 2096 * shmem_falloc_waitq points into the shmem_fallocate() 2097 * stack of the hole-punching task: shmem_falloc_waitq 2098 * is usually invalid by the time we reach here, but 2099 * finish_wait() does not dereference it in that case; 2100 * though i_lock needed lest racing with wake_up_all(). 2101 */ 2102 spin_lock(&inode->i_lock); 2103 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2104 spin_unlock(&inode->i_lock); 2105 2106 if (fpin) 2107 fput(fpin); 2108 return ret; 2109 } 2110 spin_unlock(&inode->i_lock); 2111 } 2112 2113 sgp = SGP_CACHE; 2114 2115 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2116 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2117 sgp = SGP_NOHUGE; 2118 else if (vma->vm_flags & VM_HUGEPAGE) 2119 sgp = SGP_HUGE; 2120 2121 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2122 gfp, vma, vmf, &ret); 2123 if (err) 2124 return vmf_error(err); 2125 return ret; 2126 } 2127 2128 unsigned long shmem_get_unmapped_area(struct file *file, 2129 unsigned long uaddr, unsigned long len, 2130 unsigned long pgoff, unsigned long flags) 2131 { 2132 unsigned long (*get_area)(struct file *, 2133 unsigned long, unsigned long, unsigned long, unsigned long); 2134 unsigned long addr; 2135 unsigned long offset; 2136 unsigned long inflated_len; 2137 unsigned long inflated_addr; 2138 unsigned long inflated_offset; 2139 2140 if (len > TASK_SIZE) 2141 return -ENOMEM; 2142 2143 get_area = current->mm->get_unmapped_area; 2144 addr = get_area(file, uaddr, len, pgoff, flags); 2145 2146 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2147 return addr; 2148 if (IS_ERR_VALUE(addr)) 2149 return addr; 2150 if (addr & ~PAGE_MASK) 2151 return addr; 2152 if (addr > TASK_SIZE - len) 2153 return addr; 2154 2155 if (shmem_huge == SHMEM_HUGE_DENY) 2156 return addr; 2157 if (len < HPAGE_PMD_SIZE) 2158 return addr; 2159 if (flags & MAP_FIXED) 2160 return addr; 2161 /* 2162 * Our priority is to support MAP_SHARED mapped hugely; 2163 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2164 * But if caller specified an address hint and we allocated area there 2165 * successfully, respect that as before. 2166 */ 2167 if (uaddr == addr) 2168 return addr; 2169 2170 if (shmem_huge != SHMEM_HUGE_FORCE) { 2171 struct super_block *sb; 2172 2173 if (file) { 2174 VM_BUG_ON(file->f_op != &shmem_file_operations); 2175 sb = file_inode(file)->i_sb; 2176 } else { 2177 /* 2178 * Called directly from mm/mmap.c, or drivers/char/mem.c 2179 * for "/dev/zero", to create a shared anonymous object. 2180 */ 2181 if (IS_ERR(shm_mnt)) 2182 return addr; 2183 sb = shm_mnt->mnt_sb; 2184 } 2185 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2186 return addr; 2187 } 2188 2189 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2190 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2191 return addr; 2192 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2193 return addr; 2194 2195 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2196 if (inflated_len > TASK_SIZE) 2197 return addr; 2198 if (inflated_len < len) 2199 return addr; 2200 2201 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2202 if (IS_ERR_VALUE(inflated_addr)) 2203 return addr; 2204 if (inflated_addr & ~PAGE_MASK) 2205 return addr; 2206 2207 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2208 inflated_addr += offset - inflated_offset; 2209 if (inflated_offset > offset) 2210 inflated_addr += HPAGE_PMD_SIZE; 2211 2212 if (inflated_addr > TASK_SIZE - len) 2213 return addr; 2214 return inflated_addr; 2215 } 2216 2217 #ifdef CONFIG_NUMA 2218 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2219 { 2220 struct inode *inode = file_inode(vma->vm_file); 2221 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2222 } 2223 2224 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2225 unsigned long addr) 2226 { 2227 struct inode *inode = file_inode(vma->vm_file); 2228 pgoff_t index; 2229 2230 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2231 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2232 } 2233 #endif 2234 2235 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2236 { 2237 struct inode *inode = file_inode(file); 2238 struct shmem_inode_info *info = SHMEM_I(inode); 2239 int retval = -ENOMEM; 2240 2241 /* 2242 * What serializes the accesses to info->flags? 2243 * ipc_lock_object() when called from shmctl_do_lock(), 2244 * no serialization needed when called from shm_destroy(). 2245 */ 2246 if (lock && !(info->flags & VM_LOCKED)) { 2247 if (!user_shm_lock(inode->i_size, ucounts)) 2248 goto out_nomem; 2249 info->flags |= VM_LOCKED; 2250 mapping_set_unevictable(file->f_mapping); 2251 } 2252 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2253 user_shm_unlock(inode->i_size, ucounts); 2254 info->flags &= ~VM_LOCKED; 2255 mapping_clear_unevictable(file->f_mapping); 2256 } 2257 retval = 0; 2258 2259 out_nomem: 2260 return retval; 2261 } 2262 2263 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2264 { 2265 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2266 int ret; 2267 2268 ret = seal_check_future_write(info->seals, vma); 2269 if (ret) 2270 return ret; 2271 2272 /* arm64 - allow memory tagging on RAM-based files */ 2273 vma->vm_flags |= VM_MTE_ALLOWED; 2274 2275 file_accessed(file); 2276 vma->vm_ops = &shmem_vm_ops; 2277 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 2278 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2279 (vma->vm_end & HPAGE_PMD_MASK)) { 2280 khugepaged_enter(vma, vma->vm_flags); 2281 } 2282 return 0; 2283 } 2284 2285 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2286 umode_t mode, dev_t dev, unsigned long flags) 2287 { 2288 struct inode *inode; 2289 struct shmem_inode_info *info; 2290 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2291 ino_t ino; 2292 2293 if (shmem_reserve_inode(sb, &ino)) 2294 return NULL; 2295 2296 inode = new_inode(sb); 2297 if (inode) { 2298 inode->i_ino = ino; 2299 inode_init_owner(&init_user_ns, inode, dir, mode); 2300 inode->i_blocks = 0; 2301 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2302 inode->i_generation = prandom_u32(); 2303 info = SHMEM_I(inode); 2304 memset(info, 0, (char *)inode - (char *)info); 2305 spin_lock_init(&info->lock); 2306 atomic_set(&info->stop_eviction, 0); 2307 info->seals = F_SEAL_SEAL; 2308 info->flags = flags & VM_NORESERVE; 2309 INIT_LIST_HEAD(&info->shrinklist); 2310 INIT_LIST_HEAD(&info->swaplist); 2311 simple_xattrs_init(&info->xattrs); 2312 cache_no_acl(inode); 2313 2314 switch (mode & S_IFMT) { 2315 default: 2316 inode->i_op = &shmem_special_inode_operations; 2317 init_special_inode(inode, mode, dev); 2318 break; 2319 case S_IFREG: 2320 inode->i_mapping->a_ops = &shmem_aops; 2321 inode->i_op = &shmem_inode_operations; 2322 inode->i_fop = &shmem_file_operations; 2323 mpol_shared_policy_init(&info->policy, 2324 shmem_get_sbmpol(sbinfo)); 2325 break; 2326 case S_IFDIR: 2327 inc_nlink(inode); 2328 /* Some things misbehave if size == 0 on a directory */ 2329 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2330 inode->i_op = &shmem_dir_inode_operations; 2331 inode->i_fop = &simple_dir_operations; 2332 break; 2333 case S_IFLNK: 2334 /* 2335 * Must not load anything in the rbtree, 2336 * mpol_free_shared_policy will not be called. 2337 */ 2338 mpol_shared_policy_init(&info->policy, NULL); 2339 break; 2340 } 2341 2342 lockdep_annotate_inode_mutex_key(inode); 2343 } else 2344 shmem_free_inode(sb); 2345 return inode; 2346 } 2347 2348 #ifdef CONFIG_USERFAULTFD 2349 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2350 pmd_t *dst_pmd, 2351 struct vm_area_struct *dst_vma, 2352 unsigned long dst_addr, 2353 unsigned long src_addr, 2354 bool zeropage, 2355 struct page **pagep) 2356 { 2357 struct inode *inode = file_inode(dst_vma->vm_file); 2358 struct shmem_inode_info *info = SHMEM_I(inode); 2359 struct address_space *mapping = inode->i_mapping; 2360 gfp_t gfp = mapping_gfp_mask(mapping); 2361 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2362 void *page_kaddr; 2363 struct page *page; 2364 int ret; 2365 pgoff_t max_off; 2366 2367 if (!shmem_inode_acct_block(inode, 1)) { 2368 /* 2369 * We may have got a page, returned -ENOENT triggering a retry, 2370 * and now we find ourselves with -ENOMEM. Release the page, to 2371 * avoid a BUG_ON in our caller. 2372 */ 2373 if (unlikely(*pagep)) { 2374 put_page(*pagep); 2375 *pagep = NULL; 2376 } 2377 return -ENOMEM; 2378 } 2379 2380 if (!*pagep) { 2381 ret = -ENOMEM; 2382 page = shmem_alloc_page(gfp, info, pgoff); 2383 if (!page) 2384 goto out_unacct_blocks; 2385 2386 if (!zeropage) { /* COPY */ 2387 page_kaddr = kmap_atomic(page); 2388 ret = copy_from_user(page_kaddr, 2389 (const void __user *)src_addr, 2390 PAGE_SIZE); 2391 kunmap_atomic(page_kaddr); 2392 2393 /* fallback to copy_from_user outside mmap_lock */ 2394 if (unlikely(ret)) { 2395 *pagep = page; 2396 ret = -ENOENT; 2397 /* don't free the page */ 2398 goto out_unacct_blocks; 2399 } 2400 } else { /* ZEROPAGE */ 2401 clear_highpage(page); 2402 } 2403 } else { 2404 page = *pagep; 2405 *pagep = NULL; 2406 } 2407 2408 VM_BUG_ON(PageLocked(page)); 2409 VM_BUG_ON(PageSwapBacked(page)); 2410 __SetPageLocked(page); 2411 __SetPageSwapBacked(page); 2412 __SetPageUptodate(page); 2413 2414 ret = -EFAULT; 2415 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2416 if (unlikely(pgoff >= max_off)) 2417 goto out_release; 2418 2419 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2420 gfp & GFP_RECLAIM_MASK, dst_mm); 2421 if (ret) 2422 goto out_release; 2423 2424 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 2425 page, true, false); 2426 if (ret) 2427 goto out_delete_from_cache; 2428 2429 spin_lock_irq(&info->lock); 2430 info->alloced++; 2431 inode->i_blocks += BLOCKS_PER_PAGE; 2432 shmem_recalc_inode(inode); 2433 spin_unlock_irq(&info->lock); 2434 2435 SetPageDirty(page); 2436 unlock_page(page); 2437 return 0; 2438 out_delete_from_cache: 2439 delete_from_page_cache(page); 2440 out_release: 2441 unlock_page(page); 2442 put_page(page); 2443 out_unacct_blocks: 2444 shmem_inode_unacct_blocks(inode, 1); 2445 return ret; 2446 } 2447 #endif /* CONFIG_USERFAULTFD */ 2448 2449 #ifdef CONFIG_TMPFS 2450 static const struct inode_operations shmem_symlink_inode_operations; 2451 static const struct inode_operations shmem_short_symlink_operations; 2452 2453 #ifdef CONFIG_TMPFS_XATTR 2454 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2455 #else 2456 #define shmem_initxattrs NULL 2457 #endif 2458 2459 static int 2460 shmem_write_begin(struct file *file, struct address_space *mapping, 2461 loff_t pos, unsigned len, unsigned flags, 2462 struct page **pagep, void **fsdata) 2463 { 2464 struct inode *inode = mapping->host; 2465 struct shmem_inode_info *info = SHMEM_I(inode); 2466 pgoff_t index = pos >> PAGE_SHIFT; 2467 2468 /* i_mutex is held by caller */ 2469 if (unlikely(info->seals & (F_SEAL_GROW | 2470 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2471 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2472 return -EPERM; 2473 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2474 return -EPERM; 2475 } 2476 2477 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2478 } 2479 2480 static int 2481 shmem_write_end(struct file *file, struct address_space *mapping, 2482 loff_t pos, unsigned len, unsigned copied, 2483 struct page *page, void *fsdata) 2484 { 2485 struct inode *inode = mapping->host; 2486 2487 if (pos + copied > inode->i_size) 2488 i_size_write(inode, pos + copied); 2489 2490 if (!PageUptodate(page)) { 2491 struct page *head = compound_head(page); 2492 if (PageTransCompound(page)) { 2493 int i; 2494 2495 for (i = 0; i < HPAGE_PMD_NR; i++) { 2496 if (head + i == page) 2497 continue; 2498 clear_highpage(head + i); 2499 flush_dcache_page(head + i); 2500 } 2501 } 2502 if (copied < PAGE_SIZE) { 2503 unsigned from = pos & (PAGE_SIZE - 1); 2504 zero_user_segments(page, 0, from, 2505 from + copied, PAGE_SIZE); 2506 } 2507 SetPageUptodate(head); 2508 } 2509 set_page_dirty(page); 2510 unlock_page(page); 2511 put_page(page); 2512 2513 return copied; 2514 } 2515 2516 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2517 { 2518 struct file *file = iocb->ki_filp; 2519 struct inode *inode = file_inode(file); 2520 struct address_space *mapping = inode->i_mapping; 2521 pgoff_t index; 2522 unsigned long offset; 2523 enum sgp_type sgp = SGP_READ; 2524 int error = 0; 2525 ssize_t retval = 0; 2526 loff_t *ppos = &iocb->ki_pos; 2527 2528 /* 2529 * Might this read be for a stacking filesystem? Then when reading 2530 * holes of a sparse file, we actually need to allocate those pages, 2531 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2532 */ 2533 if (!iter_is_iovec(to)) 2534 sgp = SGP_CACHE; 2535 2536 index = *ppos >> PAGE_SHIFT; 2537 offset = *ppos & ~PAGE_MASK; 2538 2539 for (;;) { 2540 struct page *page = NULL; 2541 pgoff_t end_index; 2542 unsigned long nr, ret; 2543 loff_t i_size = i_size_read(inode); 2544 2545 end_index = i_size >> PAGE_SHIFT; 2546 if (index > end_index) 2547 break; 2548 if (index == end_index) { 2549 nr = i_size & ~PAGE_MASK; 2550 if (nr <= offset) 2551 break; 2552 } 2553 2554 error = shmem_getpage(inode, index, &page, sgp); 2555 if (error) { 2556 if (error == -EINVAL) 2557 error = 0; 2558 break; 2559 } 2560 if (page) { 2561 if (sgp == SGP_CACHE) 2562 set_page_dirty(page); 2563 unlock_page(page); 2564 } 2565 2566 /* 2567 * We must evaluate after, since reads (unlike writes) 2568 * are called without i_mutex protection against truncate 2569 */ 2570 nr = PAGE_SIZE; 2571 i_size = i_size_read(inode); 2572 end_index = i_size >> PAGE_SHIFT; 2573 if (index == end_index) { 2574 nr = i_size & ~PAGE_MASK; 2575 if (nr <= offset) { 2576 if (page) 2577 put_page(page); 2578 break; 2579 } 2580 } 2581 nr -= offset; 2582 2583 if (page) { 2584 /* 2585 * If users can be writing to this page using arbitrary 2586 * virtual addresses, take care about potential aliasing 2587 * before reading the page on the kernel side. 2588 */ 2589 if (mapping_writably_mapped(mapping)) 2590 flush_dcache_page(page); 2591 /* 2592 * Mark the page accessed if we read the beginning. 2593 */ 2594 if (!offset) 2595 mark_page_accessed(page); 2596 } else { 2597 page = ZERO_PAGE(0); 2598 get_page(page); 2599 } 2600 2601 /* 2602 * Ok, we have the page, and it's up-to-date, so 2603 * now we can copy it to user space... 2604 */ 2605 ret = copy_page_to_iter(page, offset, nr, to); 2606 retval += ret; 2607 offset += ret; 2608 index += offset >> PAGE_SHIFT; 2609 offset &= ~PAGE_MASK; 2610 2611 put_page(page); 2612 if (!iov_iter_count(to)) 2613 break; 2614 if (ret < nr) { 2615 error = -EFAULT; 2616 break; 2617 } 2618 cond_resched(); 2619 } 2620 2621 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2622 file_accessed(file); 2623 return retval ? retval : error; 2624 } 2625 2626 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2627 { 2628 struct address_space *mapping = file->f_mapping; 2629 struct inode *inode = mapping->host; 2630 2631 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2632 return generic_file_llseek_size(file, offset, whence, 2633 MAX_LFS_FILESIZE, i_size_read(inode)); 2634 if (offset < 0) 2635 return -ENXIO; 2636 2637 inode_lock(inode); 2638 /* We're holding i_mutex so we can access i_size directly */ 2639 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2640 if (offset >= 0) 2641 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2642 inode_unlock(inode); 2643 return offset; 2644 } 2645 2646 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2647 loff_t len) 2648 { 2649 struct inode *inode = file_inode(file); 2650 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2651 struct shmem_inode_info *info = SHMEM_I(inode); 2652 struct shmem_falloc shmem_falloc; 2653 pgoff_t start, index, end; 2654 int error; 2655 2656 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2657 return -EOPNOTSUPP; 2658 2659 inode_lock(inode); 2660 2661 if (mode & FALLOC_FL_PUNCH_HOLE) { 2662 struct address_space *mapping = file->f_mapping; 2663 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2664 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2665 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2666 2667 /* protected by i_mutex */ 2668 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2669 error = -EPERM; 2670 goto out; 2671 } 2672 2673 shmem_falloc.waitq = &shmem_falloc_waitq; 2674 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2675 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2676 spin_lock(&inode->i_lock); 2677 inode->i_private = &shmem_falloc; 2678 spin_unlock(&inode->i_lock); 2679 2680 if ((u64)unmap_end > (u64)unmap_start) 2681 unmap_mapping_range(mapping, unmap_start, 2682 1 + unmap_end - unmap_start, 0); 2683 shmem_truncate_range(inode, offset, offset + len - 1); 2684 /* No need to unmap again: hole-punching leaves COWed pages */ 2685 2686 spin_lock(&inode->i_lock); 2687 inode->i_private = NULL; 2688 wake_up_all(&shmem_falloc_waitq); 2689 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2690 spin_unlock(&inode->i_lock); 2691 error = 0; 2692 goto out; 2693 } 2694 2695 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2696 error = inode_newsize_ok(inode, offset + len); 2697 if (error) 2698 goto out; 2699 2700 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2701 error = -EPERM; 2702 goto out; 2703 } 2704 2705 start = offset >> PAGE_SHIFT; 2706 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2707 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2708 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2709 error = -ENOSPC; 2710 goto out; 2711 } 2712 2713 shmem_falloc.waitq = NULL; 2714 shmem_falloc.start = start; 2715 shmem_falloc.next = start; 2716 shmem_falloc.nr_falloced = 0; 2717 shmem_falloc.nr_unswapped = 0; 2718 spin_lock(&inode->i_lock); 2719 inode->i_private = &shmem_falloc; 2720 spin_unlock(&inode->i_lock); 2721 2722 for (index = start; index < end; index++) { 2723 struct page *page; 2724 2725 /* 2726 * Good, the fallocate(2) manpage permits EINTR: we may have 2727 * been interrupted because we are using up too much memory. 2728 */ 2729 if (signal_pending(current)) 2730 error = -EINTR; 2731 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2732 error = -ENOMEM; 2733 else 2734 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2735 if (error) { 2736 /* Remove the !PageUptodate pages we added */ 2737 if (index > start) { 2738 shmem_undo_range(inode, 2739 (loff_t)start << PAGE_SHIFT, 2740 ((loff_t)index << PAGE_SHIFT) - 1, true); 2741 } 2742 goto undone; 2743 } 2744 2745 /* 2746 * Inform shmem_writepage() how far we have reached. 2747 * No need for lock or barrier: we have the page lock. 2748 */ 2749 shmem_falloc.next++; 2750 if (!PageUptodate(page)) 2751 shmem_falloc.nr_falloced++; 2752 2753 /* 2754 * If !PageUptodate, leave it that way so that freeable pages 2755 * can be recognized if we need to rollback on error later. 2756 * But set_page_dirty so that memory pressure will swap rather 2757 * than free the pages we are allocating (and SGP_CACHE pages 2758 * might still be clean: we now need to mark those dirty too). 2759 */ 2760 set_page_dirty(page); 2761 unlock_page(page); 2762 put_page(page); 2763 cond_resched(); 2764 } 2765 2766 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2767 i_size_write(inode, offset + len); 2768 inode->i_ctime = current_time(inode); 2769 undone: 2770 spin_lock(&inode->i_lock); 2771 inode->i_private = NULL; 2772 spin_unlock(&inode->i_lock); 2773 out: 2774 inode_unlock(inode); 2775 return error; 2776 } 2777 2778 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2779 { 2780 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2781 2782 buf->f_type = TMPFS_MAGIC; 2783 buf->f_bsize = PAGE_SIZE; 2784 buf->f_namelen = NAME_MAX; 2785 if (sbinfo->max_blocks) { 2786 buf->f_blocks = sbinfo->max_blocks; 2787 buf->f_bavail = 2788 buf->f_bfree = sbinfo->max_blocks - 2789 percpu_counter_sum(&sbinfo->used_blocks); 2790 } 2791 if (sbinfo->max_inodes) { 2792 buf->f_files = sbinfo->max_inodes; 2793 buf->f_ffree = sbinfo->free_inodes; 2794 } 2795 /* else leave those fields 0 like simple_statfs */ 2796 2797 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 2798 2799 return 0; 2800 } 2801 2802 /* 2803 * File creation. Allocate an inode, and we're done.. 2804 */ 2805 static int 2806 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2807 struct dentry *dentry, umode_t mode, dev_t dev) 2808 { 2809 struct inode *inode; 2810 int error = -ENOSPC; 2811 2812 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2813 if (inode) { 2814 error = simple_acl_create(dir, inode); 2815 if (error) 2816 goto out_iput; 2817 error = security_inode_init_security(inode, dir, 2818 &dentry->d_name, 2819 shmem_initxattrs, NULL); 2820 if (error && error != -EOPNOTSUPP) 2821 goto out_iput; 2822 2823 error = 0; 2824 dir->i_size += BOGO_DIRENT_SIZE; 2825 dir->i_ctime = dir->i_mtime = current_time(dir); 2826 d_instantiate(dentry, inode); 2827 dget(dentry); /* Extra count - pin the dentry in core */ 2828 } 2829 return error; 2830 out_iput: 2831 iput(inode); 2832 return error; 2833 } 2834 2835 static int 2836 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 2837 struct dentry *dentry, umode_t mode) 2838 { 2839 struct inode *inode; 2840 int error = -ENOSPC; 2841 2842 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2843 if (inode) { 2844 error = security_inode_init_security(inode, dir, 2845 NULL, 2846 shmem_initxattrs, NULL); 2847 if (error && error != -EOPNOTSUPP) 2848 goto out_iput; 2849 error = simple_acl_create(dir, inode); 2850 if (error) 2851 goto out_iput; 2852 d_tmpfile(dentry, inode); 2853 } 2854 return error; 2855 out_iput: 2856 iput(inode); 2857 return error; 2858 } 2859 2860 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2861 struct dentry *dentry, umode_t mode) 2862 { 2863 int error; 2864 2865 if ((error = shmem_mknod(&init_user_ns, dir, dentry, 2866 mode | S_IFDIR, 0))) 2867 return error; 2868 inc_nlink(dir); 2869 return 0; 2870 } 2871 2872 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, 2873 struct dentry *dentry, umode_t mode, bool excl) 2874 { 2875 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 2876 } 2877 2878 /* 2879 * Link a file.. 2880 */ 2881 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2882 { 2883 struct inode *inode = d_inode(old_dentry); 2884 int ret = 0; 2885 2886 /* 2887 * No ordinary (disk based) filesystem counts links as inodes; 2888 * but each new link needs a new dentry, pinning lowmem, and 2889 * tmpfs dentries cannot be pruned until they are unlinked. 2890 * But if an O_TMPFILE file is linked into the tmpfs, the 2891 * first link must skip that, to get the accounting right. 2892 */ 2893 if (inode->i_nlink) { 2894 ret = shmem_reserve_inode(inode->i_sb, NULL); 2895 if (ret) 2896 goto out; 2897 } 2898 2899 dir->i_size += BOGO_DIRENT_SIZE; 2900 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2901 inc_nlink(inode); 2902 ihold(inode); /* New dentry reference */ 2903 dget(dentry); /* Extra pinning count for the created dentry */ 2904 d_instantiate(dentry, inode); 2905 out: 2906 return ret; 2907 } 2908 2909 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2910 { 2911 struct inode *inode = d_inode(dentry); 2912 2913 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2914 shmem_free_inode(inode->i_sb); 2915 2916 dir->i_size -= BOGO_DIRENT_SIZE; 2917 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2918 drop_nlink(inode); 2919 dput(dentry); /* Undo the count from "create" - this does all the work */ 2920 return 0; 2921 } 2922 2923 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2924 { 2925 if (!simple_empty(dentry)) 2926 return -ENOTEMPTY; 2927 2928 drop_nlink(d_inode(dentry)); 2929 drop_nlink(dir); 2930 return shmem_unlink(dir, dentry); 2931 } 2932 2933 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2934 { 2935 bool old_is_dir = d_is_dir(old_dentry); 2936 bool new_is_dir = d_is_dir(new_dentry); 2937 2938 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2939 if (old_is_dir) { 2940 drop_nlink(old_dir); 2941 inc_nlink(new_dir); 2942 } else { 2943 drop_nlink(new_dir); 2944 inc_nlink(old_dir); 2945 } 2946 } 2947 old_dir->i_ctime = old_dir->i_mtime = 2948 new_dir->i_ctime = new_dir->i_mtime = 2949 d_inode(old_dentry)->i_ctime = 2950 d_inode(new_dentry)->i_ctime = current_time(old_dir); 2951 2952 return 0; 2953 } 2954 2955 static int shmem_whiteout(struct user_namespace *mnt_userns, 2956 struct inode *old_dir, struct dentry *old_dentry) 2957 { 2958 struct dentry *whiteout; 2959 int error; 2960 2961 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2962 if (!whiteout) 2963 return -ENOMEM; 2964 2965 error = shmem_mknod(&init_user_ns, old_dir, whiteout, 2966 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2967 dput(whiteout); 2968 if (error) 2969 return error; 2970 2971 /* 2972 * Cheat and hash the whiteout while the old dentry is still in 2973 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2974 * 2975 * d_lookup() will consistently find one of them at this point, 2976 * not sure which one, but that isn't even important. 2977 */ 2978 d_rehash(whiteout); 2979 return 0; 2980 } 2981 2982 /* 2983 * The VFS layer already does all the dentry stuff for rename, 2984 * we just have to decrement the usage count for the target if 2985 * it exists so that the VFS layer correctly free's it when it 2986 * gets overwritten. 2987 */ 2988 static int shmem_rename2(struct user_namespace *mnt_userns, 2989 struct inode *old_dir, struct dentry *old_dentry, 2990 struct inode *new_dir, struct dentry *new_dentry, 2991 unsigned int flags) 2992 { 2993 struct inode *inode = d_inode(old_dentry); 2994 int they_are_dirs = S_ISDIR(inode->i_mode); 2995 2996 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2997 return -EINVAL; 2998 2999 if (flags & RENAME_EXCHANGE) 3000 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3001 3002 if (!simple_empty(new_dentry)) 3003 return -ENOTEMPTY; 3004 3005 if (flags & RENAME_WHITEOUT) { 3006 int error; 3007 3008 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); 3009 if (error) 3010 return error; 3011 } 3012 3013 if (d_really_is_positive(new_dentry)) { 3014 (void) shmem_unlink(new_dir, new_dentry); 3015 if (they_are_dirs) { 3016 drop_nlink(d_inode(new_dentry)); 3017 drop_nlink(old_dir); 3018 } 3019 } else if (they_are_dirs) { 3020 drop_nlink(old_dir); 3021 inc_nlink(new_dir); 3022 } 3023 3024 old_dir->i_size -= BOGO_DIRENT_SIZE; 3025 new_dir->i_size += BOGO_DIRENT_SIZE; 3026 old_dir->i_ctime = old_dir->i_mtime = 3027 new_dir->i_ctime = new_dir->i_mtime = 3028 inode->i_ctime = current_time(old_dir); 3029 return 0; 3030 } 3031 3032 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, 3033 struct dentry *dentry, const char *symname) 3034 { 3035 int error; 3036 int len; 3037 struct inode *inode; 3038 struct page *page; 3039 3040 len = strlen(symname) + 1; 3041 if (len > PAGE_SIZE) 3042 return -ENAMETOOLONG; 3043 3044 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3045 VM_NORESERVE); 3046 if (!inode) 3047 return -ENOSPC; 3048 3049 error = security_inode_init_security(inode, dir, &dentry->d_name, 3050 shmem_initxattrs, NULL); 3051 if (error && error != -EOPNOTSUPP) { 3052 iput(inode); 3053 return error; 3054 } 3055 3056 inode->i_size = len-1; 3057 if (len <= SHORT_SYMLINK_LEN) { 3058 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3059 if (!inode->i_link) { 3060 iput(inode); 3061 return -ENOMEM; 3062 } 3063 inode->i_op = &shmem_short_symlink_operations; 3064 } else { 3065 inode_nohighmem(inode); 3066 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3067 if (error) { 3068 iput(inode); 3069 return error; 3070 } 3071 inode->i_mapping->a_ops = &shmem_aops; 3072 inode->i_op = &shmem_symlink_inode_operations; 3073 memcpy(page_address(page), symname, len); 3074 SetPageUptodate(page); 3075 set_page_dirty(page); 3076 unlock_page(page); 3077 put_page(page); 3078 } 3079 dir->i_size += BOGO_DIRENT_SIZE; 3080 dir->i_ctime = dir->i_mtime = current_time(dir); 3081 d_instantiate(dentry, inode); 3082 dget(dentry); 3083 return 0; 3084 } 3085 3086 static void shmem_put_link(void *arg) 3087 { 3088 mark_page_accessed(arg); 3089 put_page(arg); 3090 } 3091 3092 static const char *shmem_get_link(struct dentry *dentry, 3093 struct inode *inode, 3094 struct delayed_call *done) 3095 { 3096 struct page *page = NULL; 3097 int error; 3098 if (!dentry) { 3099 page = find_get_page(inode->i_mapping, 0); 3100 if (!page) 3101 return ERR_PTR(-ECHILD); 3102 if (!PageUptodate(page)) { 3103 put_page(page); 3104 return ERR_PTR(-ECHILD); 3105 } 3106 } else { 3107 error = shmem_getpage(inode, 0, &page, SGP_READ); 3108 if (error) 3109 return ERR_PTR(error); 3110 unlock_page(page); 3111 } 3112 set_delayed_call(done, shmem_put_link, page); 3113 return page_address(page); 3114 } 3115 3116 #ifdef CONFIG_TMPFS_XATTR 3117 /* 3118 * Superblocks without xattr inode operations may get some security.* xattr 3119 * support from the LSM "for free". As soon as we have any other xattrs 3120 * like ACLs, we also need to implement the security.* handlers at 3121 * filesystem level, though. 3122 */ 3123 3124 /* 3125 * Callback for security_inode_init_security() for acquiring xattrs. 3126 */ 3127 static int shmem_initxattrs(struct inode *inode, 3128 const struct xattr *xattr_array, 3129 void *fs_info) 3130 { 3131 struct shmem_inode_info *info = SHMEM_I(inode); 3132 const struct xattr *xattr; 3133 struct simple_xattr *new_xattr; 3134 size_t len; 3135 3136 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3137 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3138 if (!new_xattr) 3139 return -ENOMEM; 3140 3141 len = strlen(xattr->name) + 1; 3142 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3143 GFP_KERNEL); 3144 if (!new_xattr->name) { 3145 kvfree(new_xattr); 3146 return -ENOMEM; 3147 } 3148 3149 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3150 XATTR_SECURITY_PREFIX_LEN); 3151 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3152 xattr->name, len); 3153 3154 simple_xattr_list_add(&info->xattrs, new_xattr); 3155 } 3156 3157 return 0; 3158 } 3159 3160 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3161 struct dentry *unused, struct inode *inode, 3162 const char *name, void *buffer, size_t size) 3163 { 3164 struct shmem_inode_info *info = SHMEM_I(inode); 3165 3166 name = xattr_full_name(handler, name); 3167 return simple_xattr_get(&info->xattrs, name, buffer, size); 3168 } 3169 3170 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3171 struct user_namespace *mnt_userns, 3172 struct dentry *unused, struct inode *inode, 3173 const char *name, const void *value, 3174 size_t size, int flags) 3175 { 3176 struct shmem_inode_info *info = SHMEM_I(inode); 3177 3178 name = xattr_full_name(handler, name); 3179 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3180 } 3181 3182 static const struct xattr_handler shmem_security_xattr_handler = { 3183 .prefix = XATTR_SECURITY_PREFIX, 3184 .get = shmem_xattr_handler_get, 3185 .set = shmem_xattr_handler_set, 3186 }; 3187 3188 static const struct xattr_handler shmem_trusted_xattr_handler = { 3189 .prefix = XATTR_TRUSTED_PREFIX, 3190 .get = shmem_xattr_handler_get, 3191 .set = shmem_xattr_handler_set, 3192 }; 3193 3194 static const struct xattr_handler *shmem_xattr_handlers[] = { 3195 #ifdef CONFIG_TMPFS_POSIX_ACL 3196 &posix_acl_access_xattr_handler, 3197 &posix_acl_default_xattr_handler, 3198 #endif 3199 &shmem_security_xattr_handler, 3200 &shmem_trusted_xattr_handler, 3201 NULL 3202 }; 3203 3204 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3205 { 3206 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3207 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3208 } 3209 #endif /* CONFIG_TMPFS_XATTR */ 3210 3211 static const struct inode_operations shmem_short_symlink_operations = { 3212 .get_link = simple_get_link, 3213 #ifdef CONFIG_TMPFS_XATTR 3214 .listxattr = shmem_listxattr, 3215 #endif 3216 }; 3217 3218 static const struct inode_operations shmem_symlink_inode_operations = { 3219 .get_link = shmem_get_link, 3220 #ifdef CONFIG_TMPFS_XATTR 3221 .listxattr = shmem_listxattr, 3222 #endif 3223 }; 3224 3225 static struct dentry *shmem_get_parent(struct dentry *child) 3226 { 3227 return ERR_PTR(-ESTALE); 3228 } 3229 3230 static int shmem_match(struct inode *ino, void *vfh) 3231 { 3232 __u32 *fh = vfh; 3233 __u64 inum = fh[2]; 3234 inum = (inum << 32) | fh[1]; 3235 return ino->i_ino == inum && fh[0] == ino->i_generation; 3236 } 3237 3238 /* Find any alias of inode, but prefer a hashed alias */ 3239 static struct dentry *shmem_find_alias(struct inode *inode) 3240 { 3241 struct dentry *alias = d_find_alias(inode); 3242 3243 return alias ?: d_find_any_alias(inode); 3244 } 3245 3246 3247 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3248 struct fid *fid, int fh_len, int fh_type) 3249 { 3250 struct inode *inode; 3251 struct dentry *dentry = NULL; 3252 u64 inum; 3253 3254 if (fh_len < 3) 3255 return NULL; 3256 3257 inum = fid->raw[2]; 3258 inum = (inum << 32) | fid->raw[1]; 3259 3260 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3261 shmem_match, fid->raw); 3262 if (inode) { 3263 dentry = shmem_find_alias(inode); 3264 iput(inode); 3265 } 3266 3267 return dentry; 3268 } 3269 3270 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3271 struct inode *parent) 3272 { 3273 if (*len < 3) { 3274 *len = 3; 3275 return FILEID_INVALID; 3276 } 3277 3278 if (inode_unhashed(inode)) { 3279 /* Unfortunately insert_inode_hash is not idempotent, 3280 * so as we hash inodes here rather than at creation 3281 * time, we need a lock to ensure we only try 3282 * to do it once 3283 */ 3284 static DEFINE_SPINLOCK(lock); 3285 spin_lock(&lock); 3286 if (inode_unhashed(inode)) 3287 __insert_inode_hash(inode, 3288 inode->i_ino + inode->i_generation); 3289 spin_unlock(&lock); 3290 } 3291 3292 fh[0] = inode->i_generation; 3293 fh[1] = inode->i_ino; 3294 fh[2] = ((__u64)inode->i_ino) >> 32; 3295 3296 *len = 3; 3297 return 1; 3298 } 3299 3300 static const struct export_operations shmem_export_ops = { 3301 .get_parent = shmem_get_parent, 3302 .encode_fh = shmem_encode_fh, 3303 .fh_to_dentry = shmem_fh_to_dentry, 3304 }; 3305 3306 enum shmem_param { 3307 Opt_gid, 3308 Opt_huge, 3309 Opt_mode, 3310 Opt_mpol, 3311 Opt_nr_blocks, 3312 Opt_nr_inodes, 3313 Opt_size, 3314 Opt_uid, 3315 Opt_inode32, 3316 Opt_inode64, 3317 }; 3318 3319 static const struct constant_table shmem_param_enums_huge[] = { 3320 {"never", SHMEM_HUGE_NEVER }, 3321 {"always", SHMEM_HUGE_ALWAYS }, 3322 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3323 {"advise", SHMEM_HUGE_ADVISE }, 3324 {} 3325 }; 3326 3327 const struct fs_parameter_spec shmem_fs_parameters[] = { 3328 fsparam_u32 ("gid", Opt_gid), 3329 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3330 fsparam_u32oct("mode", Opt_mode), 3331 fsparam_string("mpol", Opt_mpol), 3332 fsparam_string("nr_blocks", Opt_nr_blocks), 3333 fsparam_string("nr_inodes", Opt_nr_inodes), 3334 fsparam_string("size", Opt_size), 3335 fsparam_u32 ("uid", Opt_uid), 3336 fsparam_flag ("inode32", Opt_inode32), 3337 fsparam_flag ("inode64", Opt_inode64), 3338 {} 3339 }; 3340 3341 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3342 { 3343 struct shmem_options *ctx = fc->fs_private; 3344 struct fs_parse_result result; 3345 unsigned long long size; 3346 char *rest; 3347 int opt; 3348 3349 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3350 if (opt < 0) 3351 return opt; 3352 3353 switch (opt) { 3354 case Opt_size: 3355 size = memparse(param->string, &rest); 3356 if (*rest == '%') { 3357 size <<= PAGE_SHIFT; 3358 size *= totalram_pages(); 3359 do_div(size, 100); 3360 rest++; 3361 } 3362 if (*rest) 3363 goto bad_value; 3364 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3365 ctx->seen |= SHMEM_SEEN_BLOCKS; 3366 break; 3367 case Opt_nr_blocks: 3368 ctx->blocks = memparse(param->string, &rest); 3369 if (*rest) 3370 goto bad_value; 3371 ctx->seen |= SHMEM_SEEN_BLOCKS; 3372 break; 3373 case Opt_nr_inodes: 3374 ctx->inodes = memparse(param->string, &rest); 3375 if (*rest) 3376 goto bad_value; 3377 ctx->seen |= SHMEM_SEEN_INODES; 3378 break; 3379 case Opt_mode: 3380 ctx->mode = result.uint_32 & 07777; 3381 break; 3382 case Opt_uid: 3383 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3384 if (!uid_valid(ctx->uid)) 3385 goto bad_value; 3386 break; 3387 case Opt_gid: 3388 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3389 if (!gid_valid(ctx->gid)) 3390 goto bad_value; 3391 break; 3392 case Opt_huge: 3393 ctx->huge = result.uint_32; 3394 if (ctx->huge != SHMEM_HUGE_NEVER && 3395 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3396 has_transparent_hugepage())) 3397 goto unsupported_parameter; 3398 ctx->seen |= SHMEM_SEEN_HUGE; 3399 break; 3400 case Opt_mpol: 3401 if (IS_ENABLED(CONFIG_NUMA)) { 3402 mpol_put(ctx->mpol); 3403 ctx->mpol = NULL; 3404 if (mpol_parse_str(param->string, &ctx->mpol)) 3405 goto bad_value; 3406 break; 3407 } 3408 goto unsupported_parameter; 3409 case Opt_inode32: 3410 ctx->full_inums = false; 3411 ctx->seen |= SHMEM_SEEN_INUMS; 3412 break; 3413 case Opt_inode64: 3414 if (sizeof(ino_t) < 8) { 3415 return invalfc(fc, 3416 "Cannot use inode64 with <64bit inums in kernel\n"); 3417 } 3418 ctx->full_inums = true; 3419 ctx->seen |= SHMEM_SEEN_INUMS; 3420 break; 3421 } 3422 return 0; 3423 3424 unsupported_parameter: 3425 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3426 bad_value: 3427 return invalfc(fc, "Bad value for '%s'", param->key); 3428 } 3429 3430 static int shmem_parse_options(struct fs_context *fc, void *data) 3431 { 3432 char *options = data; 3433 3434 if (options) { 3435 int err = security_sb_eat_lsm_opts(options, &fc->security); 3436 if (err) 3437 return err; 3438 } 3439 3440 while (options != NULL) { 3441 char *this_char = options; 3442 for (;;) { 3443 /* 3444 * NUL-terminate this option: unfortunately, 3445 * mount options form a comma-separated list, 3446 * but mpol's nodelist may also contain commas. 3447 */ 3448 options = strchr(options, ','); 3449 if (options == NULL) 3450 break; 3451 options++; 3452 if (!isdigit(*options)) { 3453 options[-1] = '\0'; 3454 break; 3455 } 3456 } 3457 if (*this_char) { 3458 char *value = strchr(this_char, '='); 3459 size_t len = 0; 3460 int err; 3461 3462 if (value) { 3463 *value++ = '\0'; 3464 len = strlen(value); 3465 } 3466 err = vfs_parse_fs_string(fc, this_char, value, len); 3467 if (err < 0) 3468 return err; 3469 } 3470 } 3471 return 0; 3472 } 3473 3474 /* 3475 * Reconfigure a shmem filesystem. 3476 * 3477 * Note that we disallow change from limited->unlimited blocks/inodes while any 3478 * are in use; but we must separately disallow unlimited->limited, because in 3479 * that case we have no record of how much is already in use. 3480 */ 3481 static int shmem_reconfigure(struct fs_context *fc) 3482 { 3483 struct shmem_options *ctx = fc->fs_private; 3484 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3485 unsigned long inodes; 3486 struct mempolicy *mpol = NULL; 3487 const char *err; 3488 3489 raw_spin_lock(&sbinfo->stat_lock); 3490 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3491 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3492 if (!sbinfo->max_blocks) { 3493 err = "Cannot retroactively limit size"; 3494 goto out; 3495 } 3496 if (percpu_counter_compare(&sbinfo->used_blocks, 3497 ctx->blocks) > 0) { 3498 err = "Too small a size for current use"; 3499 goto out; 3500 } 3501 } 3502 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3503 if (!sbinfo->max_inodes) { 3504 err = "Cannot retroactively limit inodes"; 3505 goto out; 3506 } 3507 if (ctx->inodes < inodes) { 3508 err = "Too few inodes for current use"; 3509 goto out; 3510 } 3511 } 3512 3513 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3514 sbinfo->next_ino > UINT_MAX) { 3515 err = "Current inum too high to switch to 32-bit inums"; 3516 goto out; 3517 } 3518 3519 if (ctx->seen & SHMEM_SEEN_HUGE) 3520 sbinfo->huge = ctx->huge; 3521 if (ctx->seen & SHMEM_SEEN_INUMS) 3522 sbinfo->full_inums = ctx->full_inums; 3523 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3524 sbinfo->max_blocks = ctx->blocks; 3525 if (ctx->seen & SHMEM_SEEN_INODES) { 3526 sbinfo->max_inodes = ctx->inodes; 3527 sbinfo->free_inodes = ctx->inodes - inodes; 3528 } 3529 3530 /* 3531 * Preserve previous mempolicy unless mpol remount option was specified. 3532 */ 3533 if (ctx->mpol) { 3534 mpol = sbinfo->mpol; 3535 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3536 ctx->mpol = NULL; 3537 } 3538 raw_spin_unlock(&sbinfo->stat_lock); 3539 mpol_put(mpol); 3540 return 0; 3541 out: 3542 raw_spin_unlock(&sbinfo->stat_lock); 3543 return invalfc(fc, "%s", err); 3544 } 3545 3546 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3547 { 3548 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3549 3550 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3551 seq_printf(seq, ",size=%luk", 3552 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3553 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3554 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3555 if (sbinfo->mode != (0777 | S_ISVTX)) 3556 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3557 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3558 seq_printf(seq, ",uid=%u", 3559 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3560 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3561 seq_printf(seq, ",gid=%u", 3562 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3563 3564 /* 3565 * Showing inode{64,32} might be useful even if it's the system default, 3566 * since then people don't have to resort to checking both here and 3567 * /proc/config.gz to confirm 64-bit inums were successfully applied 3568 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3569 * 3570 * We hide it when inode64 isn't the default and we are using 32-bit 3571 * inodes, since that probably just means the feature isn't even under 3572 * consideration. 3573 * 3574 * As such: 3575 * 3576 * +-----------------+-----------------+ 3577 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3578 * +------------------+-----------------+-----------------+ 3579 * | full_inums=true | show | show | 3580 * | full_inums=false | show | hide | 3581 * +------------------+-----------------+-----------------+ 3582 * 3583 */ 3584 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3585 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3586 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3587 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3588 if (sbinfo->huge) 3589 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3590 #endif 3591 shmem_show_mpol(seq, sbinfo->mpol); 3592 return 0; 3593 } 3594 3595 #endif /* CONFIG_TMPFS */ 3596 3597 static void shmem_put_super(struct super_block *sb) 3598 { 3599 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3600 3601 free_percpu(sbinfo->ino_batch); 3602 percpu_counter_destroy(&sbinfo->used_blocks); 3603 mpol_put(sbinfo->mpol); 3604 kfree(sbinfo); 3605 sb->s_fs_info = NULL; 3606 } 3607 3608 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3609 { 3610 struct shmem_options *ctx = fc->fs_private; 3611 struct inode *inode; 3612 struct shmem_sb_info *sbinfo; 3613 3614 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3615 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3616 L1_CACHE_BYTES), GFP_KERNEL); 3617 if (!sbinfo) 3618 return -ENOMEM; 3619 3620 sb->s_fs_info = sbinfo; 3621 3622 #ifdef CONFIG_TMPFS 3623 /* 3624 * Per default we only allow half of the physical ram per 3625 * tmpfs instance, limiting inodes to one per page of lowmem; 3626 * but the internal instance is left unlimited. 3627 */ 3628 if (!(sb->s_flags & SB_KERNMOUNT)) { 3629 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3630 ctx->blocks = shmem_default_max_blocks(); 3631 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3632 ctx->inodes = shmem_default_max_inodes(); 3633 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3634 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3635 } else { 3636 sb->s_flags |= SB_NOUSER; 3637 } 3638 sb->s_export_op = &shmem_export_ops; 3639 sb->s_flags |= SB_NOSEC; 3640 #else 3641 sb->s_flags |= SB_NOUSER; 3642 #endif 3643 sbinfo->max_blocks = ctx->blocks; 3644 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3645 if (sb->s_flags & SB_KERNMOUNT) { 3646 sbinfo->ino_batch = alloc_percpu(ino_t); 3647 if (!sbinfo->ino_batch) 3648 goto failed; 3649 } 3650 sbinfo->uid = ctx->uid; 3651 sbinfo->gid = ctx->gid; 3652 sbinfo->full_inums = ctx->full_inums; 3653 sbinfo->mode = ctx->mode; 3654 sbinfo->huge = ctx->huge; 3655 sbinfo->mpol = ctx->mpol; 3656 ctx->mpol = NULL; 3657 3658 raw_spin_lock_init(&sbinfo->stat_lock); 3659 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3660 goto failed; 3661 spin_lock_init(&sbinfo->shrinklist_lock); 3662 INIT_LIST_HEAD(&sbinfo->shrinklist); 3663 3664 sb->s_maxbytes = MAX_LFS_FILESIZE; 3665 sb->s_blocksize = PAGE_SIZE; 3666 sb->s_blocksize_bits = PAGE_SHIFT; 3667 sb->s_magic = TMPFS_MAGIC; 3668 sb->s_op = &shmem_ops; 3669 sb->s_time_gran = 1; 3670 #ifdef CONFIG_TMPFS_XATTR 3671 sb->s_xattr = shmem_xattr_handlers; 3672 #endif 3673 #ifdef CONFIG_TMPFS_POSIX_ACL 3674 sb->s_flags |= SB_POSIXACL; 3675 #endif 3676 uuid_gen(&sb->s_uuid); 3677 3678 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3679 if (!inode) 3680 goto failed; 3681 inode->i_uid = sbinfo->uid; 3682 inode->i_gid = sbinfo->gid; 3683 sb->s_root = d_make_root(inode); 3684 if (!sb->s_root) 3685 goto failed; 3686 return 0; 3687 3688 failed: 3689 shmem_put_super(sb); 3690 return -ENOMEM; 3691 } 3692 3693 static int shmem_get_tree(struct fs_context *fc) 3694 { 3695 return get_tree_nodev(fc, shmem_fill_super); 3696 } 3697 3698 static void shmem_free_fc(struct fs_context *fc) 3699 { 3700 struct shmem_options *ctx = fc->fs_private; 3701 3702 if (ctx) { 3703 mpol_put(ctx->mpol); 3704 kfree(ctx); 3705 } 3706 } 3707 3708 static const struct fs_context_operations shmem_fs_context_ops = { 3709 .free = shmem_free_fc, 3710 .get_tree = shmem_get_tree, 3711 #ifdef CONFIG_TMPFS 3712 .parse_monolithic = shmem_parse_options, 3713 .parse_param = shmem_parse_one, 3714 .reconfigure = shmem_reconfigure, 3715 #endif 3716 }; 3717 3718 static struct kmem_cache *shmem_inode_cachep; 3719 3720 static struct inode *shmem_alloc_inode(struct super_block *sb) 3721 { 3722 struct shmem_inode_info *info; 3723 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3724 if (!info) 3725 return NULL; 3726 return &info->vfs_inode; 3727 } 3728 3729 static void shmem_free_in_core_inode(struct inode *inode) 3730 { 3731 if (S_ISLNK(inode->i_mode)) 3732 kfree(inode->i_link); 3733 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3734 } 3735 3736 static void shmem_destroy_inode(struct inode *inode) 3737 { 3738 if (S_ISREG(inode->i_mode)) 3739 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3740 } 3741 3742 static void shmem_init_inode(void *foo) 3743 { 3744 struct shmem_inode_info *info = foo; 3745 inode_init_once(&info->vfs_inode); 3746 } 3747 3748 static void shmem_init_inodecache(void) 3749 { 3750 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3751 sizeof(struct shmem_inode_info), 3752 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3753 } 3754 3755 static void shmem_destroy_inodecache(void) 3756 { 3757 kmem_cache_destroy(shmem_inode_cachep); 3758 } 3759 3760 const struct address_space_operations shmem_aops = { 3761 .writepage = shmem_writepage, 3762 .set_page_dirty = __set_page_dirty_no_writeback, 3763 #ifdef CONFIG_TMPFS 3764 .write_begin = shmem_write_begin, 3765 .write_end = shmem_write_end, 3766 #endif 3767 #ifdef CONFIG_MIGRATION 3768 .migratepage = migrate_page, 3769 #endif 3770 .error_remove_page = generic_error_remove_page, 3771 }; 3772 EXPORT_SYMBOL(shmem_aops); 3773 3774 static const struct file_operations shmem_file_operations = { 3775 .mmap = shmem_mmap, 3776 .get_unmapped_area = shmem_get_unmapped_area, 3777 #ifdef CONFIG_TMPFS 3778 .llseek = shmem_file_llseek, 3779 .read_iter = shmem_file_read_iter, 3780 .write_iter = generic_file_write_iter, 3781 .fsync = noop_fsync, 3782 .splice_read = generic_file_splice_read, 3783 .splice_write = iter_file_splice_write, 3784 .fallocate = shmem_fallocate, 3785 #endif 3786 }; 3787 3788 static const struct inode_operations shmem_inode_operations = { 3789 .getattr = shmem_getattr, 3790 .setattr = shmem_setattr, 3791 #ifdef CONFIG_TMPFS_XATTR 3792 .listxattr = shmem_listxattr, 3793 .set_acl = simple_set_acl, 3794 #endif 3795 }; 3796 3797 static const struct inode_operations shmem_dir_inode_operations = { 3798 #ifdef CONFIG_TMPFS 3799 .create = shmem_create, 3800 .lookup = simple_lookup, 3801 .link = shmem_link, 3802 .unlink = shmem_unlink, 3803 .symlink = shmem_symlink, 3804 .mkdir = shmem_mkdir, 3805 .rmdir = shmem_rmdir, 3806 .mknod = shmem_mknod, 3807 .rename = shmem_rename2, 3808 .tmpfile = shmem_tmpfile, 3809 #endif 3810 #ifdef CONFIG_TMPFS_XATTR 3811 .listxattr = shmem_listxattr, 3812 #endif 3813 #ifdef CONFIG_TMPFS_POSIX_ACL 3814 .setattr = shmem_setattr, 3815 .set_acl = simple_set_acl, 3816 #endif 3817 }; 3818 3819 static const struct inode_operations shmem_special_inode_operations = { 3820 #ifdef CONFIG_TMPFS_XATTR 3821 .listxattr = shmem_listxattr, 3822 #endif 3823 #ifdef CONFIG_TMPFS_POSIX_ACL 3824 .setattr = shmem_setattr, 3825 .set_acl = simple_set_acl, 3826 #endif 3827 }; 3828 3829 static const struct super_operations shmem_ops = { 3830 .alloc_inode = shmem_alloc_inode, 3831 .free_inode = shmem_free_in_core_inode, 3832 .destroy_inode = shmem_destroy_inode, 3833 #ifdef CONFIG_TMPFS 3834 .statfs = shmem_statfs, 3835 .show_options = shmem_show_options, 3836 #endif 3837 .evict_inode = shmem_evict_inode, 3838 .drop_inode = generic_delete_inode, 3839 .put_super = shmem_put_super, 3840 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3841 .nr_cached_objects = shmem_unused_huge_count, 3842 .free_cached_objects = shmem_unused_huge_scan, 3843 #endif 3844 }; 3845 3846 static const struct vm_operations_struct shmem_vm_ops = { 3847 .fault = shmem_fault, 3848 .map_pages = filemap_map_pages, 3849 #ifdef CONFIG_NUMA 3850 .set_policy = shmem_set_policy, 3851 .get_policy = shmem_get_policy, 3852 #endif 3853 }; 3854 3855 int shmem_init_fs_context(struct fs_context *fc) 3856 { 3857 struct shmem_options *ctx; 3858 3859 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3860 if (!ctx) 3861 return -ENOMEM; 3862 3863 ctx->mode = 0777 | S_ISVTX; 3864 ctx->uid = current_fsuid(); 3865 ctx->gid = current_fsgid(); 3866 3867 fc->fs_private = ctx; 3868 fc->ops = &shmem_fs_context_ops; 3869 return 0; 3870 } 3871 3872 static struct file_system_type shmem_fs_type = { 3873 .owner = THIS_MODULE, 3874 .name = "tmpfs", 3875 .init_fs_context = shmem_init_fs_context, 3876 #ifdef CONFIG_TMPFS 3877 .parameters = shmem_fs_parameters, 3878 #endif 3879 .kill_sb = kill_litter_super, 3880 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT, 3881 }; 3882 3883 int __init shmem_init(void) 3884 { 3885 int error; 3886 3887 shmem_init_inodecache(); 3888 3889 error = register_filesystem(&shmem_fs_type); 3890 if (error) { 3891 pr_err("Could not register tmpfs\n"); 3892 goto out2; 3893 } 3894 3895 shm_mnt = kern_mount(&shmem_fs_type); 3896 if (IS_ERR(shm_mnt)) { 3897 error = PTR_ERR(shm_mnt); 3898 pr_err("Could not kern_mount tmpfs\n"); 3899 goto out1; 3900 } 3901 3902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3903 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3904 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3905 else 3906 shmem_huge = 0; /* just in case it was patched */ 3907 #endif 3908 return 0; 3909 3910 out1: 3911 unregister_filesystem(&shmem_fs_type); 3912 out2: 3913 shmem_destroy_inodecache(); 3914 shm_mnt = ERR_PTR(error); 3915 return error; 3916 } 3917 3918 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 3919 static ssize_t shmem_enabled_show(struct kobject *kobj, 3920 struct kobj_attribute *attr, char *buf) 3921 { 3922 static const int values[] = { 3923 SHMEM_HUGE_ALWAYS, 3924 SHMEM_HUGE_WITHIN_SIZE, 3925 SHMEM_HUGE_ADVISE, 3926 SHMEM_HUGE_NEVER, 3927 SHMEM_HUGE_DENY, 3928 SHMEM_HUGE_FORCE, 3929 }; 3930 int len = 0; 3931 int i; 3932 3933 for (i = 0; i < ARRAY_SIZE(values); i++) { 3934 len += sysfs_emit_at(buf, len, 3935 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 3936 i ? " " : "", 3937 shmem_format_huge(values[i])); 3938 } 3939 3940 len += sysfs_emit_at(buf, len, "\n"); 3941 3942 return len; 3943 } 3944 3945 static ssize_t shmem_enabled_store(struct kobject *kobj, 3946 struct kobj_attribute *attr, const char *buf, size_t count) 3947 { 3948 char tmp[16]; 3949 int huge; 3950 3951 if (count + 1 > sizeof(tmp)) 3952 return -EINVAL; 3953 memcpy(tmp, buf, count); 3954 tmp[count] = '\0'; 3955 if (count && tmp[count - 1] == '\n') 3956 tmp[count - 1] = '\0'; 3957 3958 huge = shmem_parse_huge(tmp); 3959 if (huge == -EINVAL) 3960 return -EINVAL; 3961 if (!has_transparent_hugepage() && 3962 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3963 return -EINVAL; 3964 3965 shmem_huge = huge; 3966 if (shmem_huge > SHMEM_HUGE_DENY) 3967 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3968 return count; 3969 } 3970 3971 struct kobj_attribute shmem_enabled_attr = 3972 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3973 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 3974 3975 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3976 bool shmem_huge_enabled(struct vm_area_struct *vma) 3977 { 3978 struct inode *inode = file_inode(vma->vm_file); 3979 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3980 loff_t i_size; 3981 pgoff_t off; 3982 3983 if (!transhuge_vma_enabled(vma, vma->vm_flags)) 3984 return false; 3985 if (shmem_huge == SHMEM_HUGE_FORCE) 3986 return true; 3987 if (shmem_huge == SHMEM_HUGE_DENY) 3988 return false; 3989 switch (sbinfo->huge) { 3990 case SHMEM_HUGE_NEVER: 3991 return false; 3992 case SHMEM_HUGE_ALWAYS: 3993 return true; 3994 case SHMEM_HUGE_WITHIN_SIZE: 3995 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 3996 i_size = round_up(i_size_read(inode), PAGE_SIZE); 3997 if (i_size >= HPAGE_PMD_SIZE && 3998 i_size >> PAGE_SHIFT >= off) 3999 return true; 4000 fallthrough; 4001 case SHMEM_HUGE_ADVISE: 4002 /* TODO: implement fadvise() hints */ 4003 return (vma->vm_flags & VM_HUGEPAGE); 4004 default: 4005 VM_BUG_ON(1); 4006 return false; 4007 } 4008 } 4009 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4010 4011 #else /* !CONFIG_SHMEM */ 4012 4013 /* 4014 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4015 * 4016 * This is intended for small system where the benefits of the full 4017 * shmem code (swap-backed and resource-limited) are outweighed by 4018 * their complexity. On systems without swap this code should be 4019 * effectively equivalent, but much lighter weight. 4020 */ 4021 4022 static struct file_system_type shmem_fs_type = { 4023 .name = "tmpfs", 4024 .init_fs_context = ramfs_init_fs_context, 4025 .parameters = ramfs_fs_parameters, 4026 .kill_sb = kill_litter_super, 4027 .fs_flags = FS_USERNS_MOUNT, 4028 }; 4029 4030 int __init shmem_init(void) 4031 { 4032 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4033 4034 shm_mnt = kern_mount(&shmem_fs_type); 4035 BUG_ON(IS_ERR(shm_mnt)); 4036 4037 return 0; 4038 } 4039 4040 int shmem_unuse(unsigned int type, bool frontswap, 4041 unsigned long *fs_pages_to_unuse) 4042 { 4043 return 0; 4044 } 4045 4046 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4047 { 4048 return 0; 4049 } 4050 4051 void shmem_unlock_mapping(struct address_space *mapping) 4052 { 4053 } 4054 4055 #ifdef CONFIG_MMU 4056 unsigned long shmem_get_unmapped_area(struct file *file, 4057 unsigned long addr, unsigned long len, 4058 unsigned long pgoff, unsigned long flags) 4059 { 4060 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4061 } 4062 #endif 4063 4064 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4065 { 4066 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4067 } 4068 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4069 4070 #define shmem_vm_ops generic_file_vm_ops 4071 #define shmem_file_operations ramfs_file_operations 4072 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4073 #define shmem_acct_size(flags, size) 0 4074 #define shmem_unacct_size(flags, size) do {} while (0) 4075 4076 #endif /* CONFIG_SHMEM */ 4077 4078 /* common code */ 4079 4080 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4081 unsigned long flags, unsigned int i_flags) 4082 { 4083 struct inode *inode; 4084 struct file *res; 4085 4086 if (IS_ERR(mnt)) 4087 return ERR_CAST(mnt); 4088 4089 if (size < 0 || size > MAX_LFS_FILESIZE) 4090 return ERR_PTR(-EINVAL); 4091 4092 if (shmem_acct_size(flags, size)) 4093 return ERR_PTR(-ENOMEM); 4094 4095 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4096 flags); 4097 if (unlikely(!inode)) { 4098 shmem_unacct_size(flags, size); 4099 return ERR_PTR(-ENOSPC); 4100 } 4101 inode->i_flags |= i_flags; 4102 inode->i_size = size; 4103 clear_nlink(inode); /* It is unlinked */ 4104 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4105 if (!IS_ERR(res)) 4106 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4107 &shmem_file_operations); 4108 if (IS_ERR(res)) 4109 iput(inode); 4110 return res; 4111 } 4112 4113 /** 4114 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4115 * kernel internal. There will be NO LSM permission checks against the 4116 * underlying inode. So users of this interface must do LSM checks at a 4117 * higher layer. The users are the big_key and shm implementations. LSM 4118 * checks are provided at the key or shm level rather than the inode. 4119 * @name: name for dentry (to be seen in /proc/<pid>/maps 4120 * @size: size to be set for the file 4121 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4122 */ 4123 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4124 { 4125 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4126 } 4127 4128 /** 4129 * shmem_file_setup - get an unlinked file living in tmpfs 4130 * @name: name for dentry (to be seen in /proc/<pid>/maps 4131 * @size: size to be set for the file 4132 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4133 */ 4134 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4135 { 4136 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4137 } 4138 EXPORT_SYMBOL_GPL(shmem_file_setup); 4139 4140 /** 4141 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4142 * @mnt: the tmpfs mount where the file will be created 4143 * @name: name for dentry (to be seen in /proc/<pid>/maps 4144 * @size: size to be set for the file 4145 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4146 */ 4147 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4148 loff_t size, unsigned long flags) 4149 { 4150 return __shmem_file_setup(mnt, name, size, flags, 0); 4151 } 4152 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4153 4154 /** 4155 * shmem_zero_setup - setup a shared anonymous mapping 4156 * @vma: the vma to be mmapped is prepared by do_mmap 4157 */ 4158 int shmem_zero_setup(struct vm_area_struct *vma) 4159 { 4160 struct file *file; 4161 loff_t size = vma->vm_end - vma->vm_start; 4162 4163 /* 4164 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4165 * between XFS directory reading and selinux: since this file is only 4166 * accessible to the user through its mapping, use S_PRIVATE flag to 4167 * bypass file security, in the same way as shmem_kernel_file_setup(). 4168 */ 4169 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4170 if (IS_ERR(file)) 4171 return PTR_ERR(file); 4172 4173 if (vma->vm_file) 4174 fput(vma->vm_file); 4175 vma->vm_file = file; 4176 vma->vm_ops = &shmem_vm_ops; 4177 4178 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4179 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4180 (vma->vm_end & HPAGE_PMD_MASK)) { 4181 khugepaged_enter(vma, vma->vm_flags); 4182 } 4183 4184 return 0; 4185 } 4186 4187 /** 4188 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4189 * @mapping: the page's address_space 4190 * @index: the page index 4191 * @gfp: the page allocator flags to use if allocating 4192 * 4193 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4194 * with any new page allocations done using the specified allocation flags. 4195 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4196 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4197 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4198 * 4199 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4200 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4201 */ 4202 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4203 pgoff_t index, gfp_t gfp) 4204 { 4205 #ifdef CONFIG_SHMEM 4206 struct inode *inode = mapping->host; 4207 struct page *page; 4208 int error; 4209 4210 BUG_ON(!shmem_mapping(mapping)); 4211 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4212 gfp, NULL, NULL, NULL); 4213 if (error) 4214 page = ERR_PTR(error); 4215 else 4216 unlock_page(page); 4217 return page; 4218 #else 4219 /* 4220 * The tiny !SHMEM case uses ramfs without swap 4221 */ 4222 return read_cache_page_gfp(mapping, index, gfp); 4223 #endif 4224 } 4225 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4226