xref: /openbmc/linux/mm/shmem.c (revision 86a2f3f2d99e9765d13a55ee2e4364deb6cdf794)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 
43 static struct vfsmount *shm_mnt;
44 
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51 
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/blkdev.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 
83 #include <linux/uaccess.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95 
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_mutex making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 	pgoff_t start;		/* start of range currently being fallocated */
104 	pgoff_t next;		/* the next page offset to be fallocated */
105 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
106 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
107 };
108 
109 struct shmem_options {
110 	unsigned long long blocks;
111 	unsigned long long inodes;
112 	struct mempolicy *mpol;
113 	kuid_t uid;
114 	kgid_t gid;
115 	umode_t mode;
116 	bool full_inums;
117 	int huge;
118 	int seen;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
123 };
124 
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128 	return totalram_pages() / 2;
129 }
130 
131 static unsigned long shmem_default_max_inodes(void)
132 {
133 	unsigned long nr_pages = totalram_pages();
134 
135 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138 
139 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
140 			     struct page **pagep, enum sgp_type sgp,
141 			     gfp_t gfp, struct vm_area_struct *vma,
142 			     vm_fault_t *fault_type);
143 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
144 		struct page **pagep, enum sgp_type sgp,
145 		gfp_t gfp, struct vm_area_struct *vma,
146 		struct vm_fault *vmf, vm_fault_t *fault_type);
147 
148 int shmem_getpage(struct inode *inode, pgoff_t index,
149 		struct page **pagep, enum sgp_type sgp)
150 {
151 	return shmem_getpage_gfp(inode, index, pagep, sgp,
152 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
153 }
154 
155 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
156 {
157 	return sb->s_fs_info;
158 }
159 
160 /*
161  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
162  * for shared memory and for shared anonymous (/dev/zero) mappings
163  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
164  * consistent with the pre-accounting of private mappings ...
165  */
166 static inline int shmem_acct_size(unsigned long flags, loff_t size)
167 {
168 	return (flags & VM_NORESERVE) ?
169 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
170 }
171 
172 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
173 {
174 	if (!(flags & VM_NORESERVE))
175 		vm_unacct_memory(VM_ACCT(size));
176 }
177 
178 static inline int shmem_reacct_size(unsigned long flags,
179 		loff_t oldsize, loff_t newsize)
180 {
181 	if (!(flags & VM_NORESERVE)) {
182 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
183 			return security_vm_enough_memory_mm(current->mm,
184 					VM_ACCT(newsize) - VM_ACCT(oldsize));
185 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
186 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
187 	}
188 	return 0;
189 }
190 
191 /*
192  * ... whereas tmpfs objects are accounted incrementally as
193  * pages are allocated, in order to allow large sparse files.
194  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
195  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
196  */
197 static inline int shmem_acct_block(unsigned long flags, long pages)
198 {
199 	if (!(flags & VM_NORESERVE))
200 		return 0;
201 
202 	return security_vm_enough_memory_mm(current->mm,
203 			pages * VM_ACCT(PAGE_SIZE));
204 }
205 
206 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
207 {
208 	if (flags & VM_NORESERVE)
209 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
210 }
211 
212 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
213 {
214 	struct shmem_inode_info *info = SHMEM_I(inode);
215 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
216 
217 	if (shmem_acct_block(info->flags, pages))
218 		return false;
219 
220 	if (sbinfo->max_blocks) {
221 		if (percpu_counter_compare(&sbinfo->used_blocks,
222 					   sbinfo->max_blocks - pages) > 0)
223 			goto unacct;
224 		percpu_counter_add(&sbinfo->used_blocks, pages);
225 	}
226 
227 	return true;
228 
229 unacct:
230 	shmem_unacct_blocks(info->flags, pages);
231 	return false;
232 }
233 
234 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
235 {
236 	struct shmem_inode_info *info = SHMEM_I(inode);
237 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
238 
239 	if (sbinfo->max_blocks)
240 		percpu_counter_sub(&sbinfo->used_blocks, pages);
241 	shmem_unacct_blocks(info->flags, pages);
242 }
243 
244 static const struct super_operations shmem_ops;
245 const struct address_space_operations shmem_aops;
246 static const struct file_operations shmem_file_operations;
247 static const struct inode_operations shmem_inode_operations;
248 static const struct inode_operations shmem_dir_inode_operations;
249 static const struct inode_operations shmem_special_inode_operations;
250 static const struct vm_operations_struct shmem_vm_ops;
251 static struct file_system_type shmem_fs_type;
252 
253 bool vma_is_shmem(struct vm_area_struct *vma)
254 {
255 	return vma->vm_ops == &shmem_vm_ops;
256 }
257 
258 static LIST_HEAD(shmem_swaplist);
259 static DEFINE_MUTEX(shmem_swaplist_mutex);
260 
261 /*
262  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
263  * produces a novel ino for the newly allocated inode.
264  *
265  * It may also be called when making a hard link to permit the space needed by
266  * each dentry. However, in that case, no new inode number is needed since that
267  * internally draws from another pool of inode numbers (currently global
268  * get_next_ino()). This case is indicated by passing NULL as inop.
269  */
270 #define SHMEM_INO_BATCH 1024
271 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
272 {
273 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
274 	ino_t ino;
275 
276 	if (!(sb->s_flags & SB_KERNMOUNT)) {
277 		raw_spin_lock(&sbinfo->stat_lock);
278 		if (sbinfo->max_inodes) {
279 			if (!sbinfo->free_inodes) {
280 				raw_spin_unlock(&sbinfo->stat_lock);
281 				return -ENOSPC;
282 			}
283 			sbinfo->free_inodes--;
284 		}
285 		if (inop) {
286 			ino = sbinfo->next_ino++;
287 			if (unlikely(is_zero_ino(ino)))
288 				ino = sbinfo->next_ino++;
289 			if (unlikely(!sbinfo->full_inums &&
290 				     ino > UINT_MAX)) {
291 				/*
292 				 * Emulate get_next_ino uint wraparound for
293 				 * compatibility
294 				 */
295 				if (IS_ENABLED(CONFIG_64BIT))
296 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
297 						__func__, MINOR(sb->s_dev));
298 				sbinfo->next_ino = 1;
299 				ino = sbinfo->next_ino++;
300 			}
301 			*inop = ino;
302 		}
303 		raw_spin_unlock(&sbinfo->stat_lock);
304 	} else if (inop) {
305 		/*
306 		 * __shmem_file_setup, one of our callers, is lock-free: it
307 		 * doesn't hold stat_lock in shmem_reserve_inode since
308 		 * max_inodes is always 0, and is called from potentially
309 		 * unknown contexts. As such, use a per-cpu batched allocator
310 		 * which doesn't require the per-sb stat_lock unless we are at
311 		 * the batch boundary.
312 		 *
313 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
314 		 * shmem mounts are not exposed to userspace, so we don't need
315 		 * to worry about things like glibc compatibility.
316 		 */
317 		ino_t *next_ino;
318 
319 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
320 		ino = *next_ino;
321 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
322 			raw_spin_lock(&sbinfo->stat_lock);
323 			ino = sbinfo->next_ino;
324 			sbinfo->next_ino += SHMEM_INO_BATCH;
325 			raw_spin_unlock(&sbinfo->stat_lock);
326 			if (unlikely(is_zero_ino(ino)))
327 				ino++;
328 		}
329 		*inop = ino;
330 		*next_ino = ++ino;
331 		put_cpu();
332 	}
333 
334 	return 0;
335 }
336 
337 static void shmem_free_inode(struct super_block *sb)
338 {
339 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
340 	if (sbinfo->max_inodes) {
341 		raw_spin_lock(&sbinfo->stat_lock);
342 		sbinfo->free_inodes++;
343 		raw_spin_unlock(&sbinfo->stat_lock);
344 	}
345 }
346 
347 /**
348  * shmem_recalc_inode - recalculate the block usage of an inode
349  * @inode: inode to recalc
350  *
351  * We have to calculate the free blocks since the mm can drop
352  * undirtied hole pages behind our back.
353  *
354  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
355  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
356  *
357  * It has to be called with the spinlock held.
358  */
359 static void shmem_recalc_inode(struct inode *inode)
360 {
361 	struct shmem_inode_info *info = SHMEM_I(inode);
362 	long freed;
363 
364 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
365 	if (freed > 0) {
366 		info->alloced -= freed;
367 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
368 		shmem_inode_unacct_blocks(inode, freed);
369 	}
370 }
371 
372 bool shmem_charge(struct inode *inode, long pages)
373 {
374 	struct shmem_inode_info *info = SHMEM_I(inode);
375 	unsigned long flags;
376 
377 	if (!shmem_inode_acct_block(inode, pages))
378 		return false;
379 
380 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
381 	inode->i_mapping->nrpages += pages;
382 
383 	spin_lock_irqsave(&info->lock, flags);
384 	info->alloced += pages;
385 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
386 	shmem_recalc_inode(inode);
387 	spin_unlock_irqrestore(&info->lock, flags);
388 
389 	return true;
390 }
391 
392 void shmem_uncharge(struct inode *inode, long pages)
393 {
394 	struct shmem_inode_info *info = SHMEM_I(inode);
395 	unsigned long flags;
396 
397 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
398 
399 	spin_lock_irqsave(&info->lock, flags);
400 	info->alloced -= pages;
401 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
402 	shmem_recalc_inode(inode);
403 	spin_unlock_irqrestore(&info->lock, flags);
404 
405 	shmem_inode_unacct_blocks(inode, pages);
406 }
407 
408 /*
409  * Replace item expected in xarray by a new item, while holding xa_lock.
410  */
411 static int shmem_replace_entry(struct address_space *mapping,
412 			pgoff_t index, void *expected, void *replacement)
413 {
414 	XA_STATE(xas, &mapping->i_pages, index);
415 	void *item;
416 
417 	VM_BUG_ON(!expected);
418 	VM_BUG_ON(!replacement);
419 	item = xas_load(&xas);
420 	if (item != expected)
421 		return -ENOENT;
422 	xas_store(&xas, replacement);
423 	return 0;
424 }
425 
426 /*
427  * Sometimes, before we decide whether to proceed or to fail, we must check
428  * that an entry was not already brought back from swap by a racing thread.
429  *
430  * Checking page is not enough: by the time a SwapCache page is locked, it
431  * might be reused, and again be SwapCache, using the same swap as before.
432  */
433 static bool shmem_confirm_swap(struct address_space *mapping,
434 			       pgoff_t index, swp_entry_t swap)
435 {
436 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
437 }
438 
439 /*
440  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
441  *
442  * SHMEM_HUGE_NEVER:
443  *	disables huge pages for the mount;
444  * SHMEM_HUGE_ALWAYS:
445  *	enables huge pages for the mount;
446  * SHMEM_HUGE_WITHIN_SIZE:
447  *	only allocate huge pages if the page will be fully within i_size,
448  *	also respect fadvise()/madvise() hints;
449  * SHMEM_HUGE_ADVISE:
450  *	only allocate huge pages if requested with fadvise()/madvise();
451  */
452 
453 #define SHMEM_HUGE_NEVER	0
454 #define SHMEM_HUGE_ALWAYS	1
455 #define SHMEM_HUGE_WITHIN_SIZE	2
456 #define SHMEM_HUGE_ADVISE	3
457 
458 /*
459  * Special values.
460  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
461  *
462  * SHMEM_HUGE_DENY:
463  *	disables huge on shm_mnt and all mounts, for emergency use;
464  * SHMEM_HUGE_FORCE:
465  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
466  *
467  */
468 #define SHMEM_HUGE_DENY		(-1)
469 #define SHMEM_HUGE_FORCE	(-2)
470 
471 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
472 /* ifdef here to avoid bloating shmem.o when not necessary */
473 
474 static int shmem_huge __read_mostly;
475 
476 #if defined(CONFIG_SYSFS)
477 static int shmem_parse_huge(const char *str)
478 {
479 	if (!strcmp(str, "never"))
480 		return SHMEM_HUGE_NEVER;
481 	if (!strcmp(str, "always"))
482 		return SHMEM_HUGE_ALWAYS;
483 	if (!strcmp(str, "within_size"))
484 		return SHMEM_HUGE_WITHIN_SIZE;
485 	if (!strcmp(str, "advise"))
486 		return SHMEM_HUGE_ADVISE;
487 	if (!strcmp(str, "deny"))
488 		return SHMEM_HUGE_DENY;
489 	if (!strcmp(str, "force"))
490 		return SHMEM_HUGE_FORCE;
491 	return -EINVAL;
492 }
493 #endif
494 
495 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
496 static const char *shmem_format_huge(int huge)
497 {
498 	switch (huge) {
499 	case SHMEM_HUGE_NEVER:
500 		return "never";
501 	case SHMEM_HUGE_ALWAYS:
502 		return "always";
503 	case SHMEM_HUGE_WITHIN_SIZE:
504 		return "within_size";
505 	case SHMEM_HUGE_ADVISE:
506 		return "advise";
507 	case SHMEM_HUGE_DENY:
508 		return "deny";
509 	case SHMEM_HUGE_FORCE:
510 		return "force";
511 	default:
512 		VM_BUG_ON(1);
513 		return "bad_val";
514 	}
515 }
516 #endif
517 
518 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
519 		struct shrink_control *sc, unsigned long nr_to_split)
520 {
521 	LIST_HEAD(list), *pos, *next;
522 	LIST_HEAD(to_remove);
523 	struct inode *inode;
524 	struct shmem_inode_info *info;
525 	struct page *page;
526 	unsigned long batch = sc ? sc->nr_to_scan : 128;
527 	int removed = 0, split = 0;
528 
529 	if (list_empty(&sbinfo->shrinklist))
530 		return SHRINK_STOP;
531 
532 	spin_lock(&sbinfo->shrinklist_lock);
533 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
534 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
535 
536 		/* pin the inode */
537 		inode = igrab(&info->vfs_inode);
538 
539 		/* inode is about to be evicted */
540 		if (!inode) {
541 			list_del_init(&info->shrinklist);
542 			removed++;
543 			goto next;
544 		}
545 
546 		/* Check if there's anything to gain */
547 		if (round_up(inode->i_size, PAGE_SIZE) ==
548 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
549 			list_move(&info->shrinklist, &to_remove);
550 			removed++;
551 			goto next;
552 		}
553 
554 		list_move(&info->shrinklist, &list);
555 next:
556 		if (!--batch)
557 			break;
558 	}
559 	spin_unlock(&sbinfo->shrinklist_lock);
560 
561 	list_for_each_safe(pos, next, &to_remove) {
562 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
563 		inode = &info->vfs_inode;
564 		list_del_init(&info->shrinklist);
565 		iput(inode);
566 	}
567 
568 	list_for_each_safe(pos, next, &list) {
569 		int ret;
570 
571 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
572 		inode = &info->vfs_inode;
573 
574 		if (nr_to_split && split >= nr_to_split)
575 			goto leave;
576 
577 		page = find_get_page(inode->i_mapping,
578 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
579 		if (!page)
580 			goto drop;
581 
582 		/* No huge page at the end of the file: nothing to split */
583 		if (!PageTransHuge(page)) {
584 			put_page(page);
585 			goto drop;
586 		}
587 
588 		/*
589 		 * Leave the inode on the list if we failed to lock
590 		 * the page at this time.
591 		 *
592 		 * Waiting for the lock may lead to deadlock in the
593 		 * reclaim path.
594 		 */
595 		if (!trylock_page(page)) {
596 			put_page(page);
597 			goto leave;
598 		}
599 
600 		ret = split_huge_page(page);
601 		unlock_page(page);
602 		put_page(page);
603 
604 		/* If split failed leave the inode on the list */
605 		if (ret)
606 			goto leave;
607 
608 		split++;
609 drop:
610 		list_del_init(&info->shrinklist);
611 		removed++;
612 leave:
613 		iput(inode);
614 	}
615 
616 	spin_lock(&sbinfo->shrinklist_lock);
617 	list_splice_tail(&list, &sbinfo->shrinklist);
618 	sbinfo->shrinklist_len -= removed;
619 	spin_unlock(&sbinfo->shrinklist_lock);
620 
621 	return split;
622 }
623 
624 static long shmem_unused_huge_scan(struct super_block *sb,
625 		struct shrink_control *sc)
626 {
627 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
628 
629 	if (!READ_ONCE(sbinfo->shrinklist_len))
630 		return SHRINK_STOP;
631 
632 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
633 }
634 
635 static long shmem_unused_huge_count(struct super_block *sb,
636 		struct shrink_control *sc)
637 {
638 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
639 	return READ_ONCE(sbinfo->shrinklist_len);
640 }
641 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
642 
643 #define shmem_huge SHMEM_HUGE_DENY
644 
645 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
646 		struct shrink_control *sc, unsigned long nr_to_split)
647 {
648 	return 0;
649 }
650 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
651 
652 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
653 {
654 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
655 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
656 	    shmem_huge != SHMEM_HUGE_DENY)
657 		return true;
658 	return false;
659 }
660 
661 /*
662  * Like add_to_page_cache_locked, but error if expected item has gone.
663  */
664 static int shmem_add_to_page_cache(struct page *page,
665 				   struct address_space *mapping,
666 				   pgoff_t index, void *expected, gfp_t gfp,
667 				   struct mm_struct *charge_mm)
668 {
669 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
670 	unsigned long i = 0;
671 	unsigned long nr = compound_nr(page);
672 	int error;
673 
674 	VM_BUG_ON_PAGE(PageTail(page), page);
675 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
676 	VM_BUG_ON_PAGE(!PageLocked(page), page);
677 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
678 	VM_BUG_ON(expected && PageTransHuge(page));
679 
680 	page_ref_add(page, nr);
681 	page->mapping = mapping;
682 	page->index = index;
683 
684 	if (!PageSwapCache(page)) {
685 		error = mem_cgroup_charge(page, charge_mm, gfp);
686 		if (error) {
687 			if (PageTransHuge(page)) {
688 				count_vm_event(THP_FILE_FALLBACK);
689 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
690 			}
691 			goto error;
692 		}
693 	}
694 	cgroup_throttle_swaprate(page, gfp);
695 
696 	do {
697 		void *entry;
698 		xas_lock_irq(&xas);
699 		entry = xas_find_conflict(&xas);
700 		if (entry != expected)
701 			xas_set_err(&xas, -EEXIST);
702 		xas_create_range(&xas);
703 		if (xas_error(&xas))
704 			goto unlock;
705 next:
706 		xas_store(&xas, page);
707 		if (++i < nr) {
708 			xas_next(&xas);
709 			goto next;
710 		}
711 		if (PageTransHuge(page)) {
712 			count_vm_event(THP_FILE_ALLOC);
713 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
714 		}
715 		mapping->nrpages += nr;
716 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
717 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
718 unlock:
719 		xas_unlock_irq(&xas);
720 	} while (xas_nomem(&xas, gfp));
721 
722 	if (xas_error(&xas)) {
723 		error = xas_error(&xas);
724 		goto error;
725 	}
726 
727 	return 0;
728 error:
729 	page->mapping = NULL;
730 	page_ref_sub(page, nr);
731 	return error;
732 }
733 
734 /*
735  * Like delete_from_page_cache, but substitutes swap for page.
736  */
737 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
738 {
739 	struct address_space *mapping = page->mapping;
740 	int error;
741 
742 	VM_BUG_ON_PAGE(PageCompound(page), page);
743 
744 	xa_lock_irq(&mapping->i_pages);
745 	error = shmem_replace_entry(mapping, page->index, page, radswap);
746 	page->mapping = NULL;
747 	mapping->nrpages--;
748 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
749 	__dec_lruvec_page_state(page, NR_SHMEM);
750 	xa_unlock_irq(&mapping->i_pages);
751 	put_page(page);
752 	BUG_ON(error);
753 }
754 
755 /*
756  * Remove swap entry from page cache, free the swap and its page cache.
757  */
758 static int shmem_free_swap(struct address_space *mapping,
759 			   pgoff_t index, void *radswap)
760 {
761 	void *old;
762 
763 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
764 	if (old != radswap)
765 		return -ENOENT;
766 	free_swap_and_cache(radix_to_swp_entry(radswap));
767 	return 0;
768 }
769 
770 /*
771  * Determine (in bytes) how many of the shmem object's pages mapped by the
772  * given offsets are swapped out.
773  *
774  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
775  * as long as the inode doesn't go away and racy results are not a problem.
776  */
777 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
778 						pgoff_t start, pgoff_t end)
779 {
780 	XA_STATE(xas, &mapping->i_pages, start);
781 	struct page *page;
782 	unsigned long swapped = 0;
783 
784 	rcu_read_lock();
785 	xas_for_each(&xas, page, end - 1) {
786 		if (xas_retry(&xas, page))
787 			continue;
788 		if (xa_is_value(page))
789 			swapped++;
790 
791 		if (need_resched()) {
792 			xas_pause(&xas);
793 			cond_resched_rcu();
794 		}
795 	}
796 
797 	rcu_read_unlock();
798 
799 	return swapped << PAGE_SHIFT;
800 }
801 
802 /*
803  * Determine (in bytes) how many of the shmem object's pages mapped by the
804  * given vma is swapped out.
805  *
806  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
807  * as long as the inode doesn't go away and racy results are not a problem.
808  */
809 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
810 {
811 	struct inode *inode = file_inode(vma->vm_file);
812 	struct shmem_inode_info *info = SHMEM_I(inode);
813 	struct address_space *mapping = inode->i_mapping;
814 	unsigned long swapped;
815 
816 	/* Be careful as we don't hold info->lock */
817 	swapped = READ_ONCE(info->swapped);
818 
819 	/*
820 	 * The easier cases are when the shmem object has nothing in swap, or
821 	 * the vma maps it whole. Then we can simply use the stats that we
822 	 * already track.
823 	 */
824 	if (!swapped)
825 		return 0;
826 
827 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
828 		return swapped << PAGE_SHIFT;
829 
830 	/* Here comes the more involved part */
831 	return shmem_partial_swap_usage(mapping,
832 			linear_page_index(vma, vma->vm_start),
833 			linear_page_index(vma, vma->vm_end));
834 }
835 
836 /*
837  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
838  */
839 void shmem_unlock_mapping(struct address_space *mapping)
840 {
841 	struct pagevec pvec;
842 	pgoff_t index = 0;
843 
844 	pagevec_init(&pvec);
845 	/*
846 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
847 	 */
848 	while (!mapping_unevictable(mapping)) {
849 		if (!pagevec_lookup(&pvec, mapping, &index))
850 			break;
851 		check_move_unevictable_pages(&pvec);
852 		pagevec_release(&pvec);
853 		cond_resched();
854 	}
855 }
856 
857 /*
858  * Check whether a hole-punch or truncation needs to split a huge page,
859  * returning true if no split was required, or the split has been successful.
860  *
861  * Eviction (or truncation to 0 size) should never need to split a huge page;
862  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
863  * head, and then succeeded to trylock on tail.
864  *
865  * A split can only succeed when there are no additional references on the
866  * huge page: so the split below relies upon find_get_entries() having stopped
867  * when it found a subpage of the huge page, without getting further references.
868  */
869 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
870 {
871 	if (!PageTransCompound(page))
872 		return true;
873 
874 	/* Just proceed to delete a huge page wholly within the range punched */
875 	if (PageHead(page) &&
876 	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
877 		return true;
878 
879 	/* Try to split huge page, so we can truly punch the hole or truncate */
880 	return split_huge_page(page) >= 0;
881 }
882 
883 /*
884  * Remove range of pages and swap entries from page cache, and free them.
885  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
886  */
887 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
888 								 bool unfalloc)
889 {
890 	struct address_space *mapping = inode->i_mapping;
891 	struct shmem_inode_info *info = SHMEM_I(inode);
892 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
893 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
894 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
895 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
896 	struct pagevec pvec;
897 	pgoff_t indices[PAGEVEC_SIZE];
898 	long nr_swaps_freed = 0;
899 	pgoff_t index;
900 	int i;
901 
902 	if (lend == -1)
903 		end = -1;	/* unsigned, so actually very big */
904 
905 	pagevec_init(&pvec);
906 	index = start;
907 	while (index < end && find_lock_entries(mapping, index, end - 1,
908 			&pvec, indices)) {
909 		for (i = 0; i < pagevec_count(&pvec); i++) {
910 			struct page *page = pvec.pages[i];
911 
912 			index = indices[i];
913 
914 			if (xa_is_value(page)) {
915 				if (unfalloc)
916 					continue;
917 				nr_swaps_freed += !shmem_free_swap(mapping,
918 								index, page);
919 				continue;
920 			}
921 			index += thp_nr_pages(page) - 1;
922 
923 			if (!unfalloc || !PageUptodate(page))
924 				truncate_inode_page(mapping, page);
925 			unlock_page(page);
926 		}
927 		pagevec_remove_exceptionals(&pvec);
928 		pagevec_release(&pvec);
929 		cond_resched();
930 		index++;
931 	}
932 
933 	if (partial_start) {
934 		struct page *page = NULL;
935 		shmem_getpage(inode, start - 1, &page, SGP_READ);
936 		if (page) {
937 			unsigned int top = PAGE_SIZE;
938 			if (start > end) {
939 				top = partial_end;
940 				partial_end = 0;
941 			}
942 			zero_user_segment(page, partial_start, top);
943 			set_page_dirty(page);
944 			unlock_page(page);
945 			put_page(page);
946 		}
947 	}
948 	if (partial_end) {
949 		struct page *page = NULL;
950 		shmem_getpage(inode, end, &page, SGP_READ);
951 		if (page) {
952 			zero_user_segment(page, 0, partial_end);
953 			set_page_dirty(page);
954 			unlock_page(page);
955 			put_page(page);
956 		}
957 	}
958 	if (start >= end)
959 		return;
960 
961 	index = start;
962 	while (index < end) {
963 		cond_resched();
964 
965 		if (!find_get_entries(mapping, index, end - 1, &pvec,
966 				indices)) {
967 			/* If all gone or hole-punch or unfalloc, we're done */
968 			if (index == start || end != -1)
969 				break;
970 			/* But if truncating, restart to make sure all gone */
971 			index = start;
972 			continue;
973 		}
974 		for (i = 0; i < pagevec_count(&pvec); i++) {
975 			struct page *page = pvec.pages[i];
976 
977 			index = indices[i];
978 			if (xa_is_value(page)) {
979 				if (unfalloc)
980 					continue;
981 				if (shmem_free_swap(mapping, index, page)) {
982 					/* Swap was replaced by page: retry */
983 					index--;
984 					break;
985 				}
986 				nr_swaps_freed++;
987 				continue;
988 			}
989 
990 			lock_page(page);
991 
992 			if (!unfalloc || !PageUptodate(page)) {
993 				if (page_mapping(page) != mapping) {
994 					/* Page was replaced by swap: retry */
995 					unlock_page(page);
996 					index--;
997 					break;
998 				}
999 				VM_BUG_ON_PAGE(PageWriteback(page), page);
1000 				if (shmem_punch_compound(page, start, end))
1001 					truncate_inode_page(mapping, page);
1002 				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1003 					/* Wipe the page and don't get stuck */
1004 					clear_highpage(page);
1005 					flush_dcache_page(page);
1006 					set_page_dirty(page);
1007 					if (index <
1008 					    round_up(start, HPAGE_PMD_NR))
1009 						start = index + 1;
1010 				}
1011 			}
1012 			unlock_page(page);
1013 		}
1014 		pagevec_remove_exceptionals(&pvec);
1015 		pagevec_release(&pvec);
1016 		index++;
1017 	}
1018 
1019 	spin_lock_irq(&info->lock);
1020 	info->swapped -= nr_swaps_freed;
1021 	shmem_recalc_inode(inode);
1022 	spin_unlock_irq(&info->lock);
1023 }
1024 
1025 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1026 {
1027 	shmem_undo_range(inode, lstart, lend, false);
1028 	inode->i_ctime = inode->i_mtime = current_time(inode);
1029 }
1030 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1031 
1032 static int shmem_getattr(struct user_namespace *mnt_userns,
1033 			 const struct path *path, struct kstat *stat,
1034 			 u32 request_mask, unsigned int query_flags)
1035 {
1036 	struct inode *inode = path->dentry->d_inode;
1037 	struct shmem_inode_info *info = SHMEM_I(inode);
1038 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1039 
1040 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1041 		spin_lock_irq(&info->lock);
1042 		shmem_recalc_inode(inode);
1043 		spin_unlock_irq(&info->lock);
1044 	}
1045 	generic_fillattr(&init_user_ns, inode, stat);
1046 
1047 	if (is_huge_enabled(sb_info))
1048 		stat->blksize = HPAGE_PMD_SIZE;
1049 
1050 	return 0;
1051 }
1052 
1053 static int shmem_setattr(struct user_namespace *mnt_userns,
1054 			 struct dentry *dentry, struct iattr *attr)
1055 {
1056 	struct inode *inode = d_inode(dentry);
1057 	struct shmem_inode_info *info = SHMEM_I(inode);
1058 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1059 	int error;
1060 
1061 	error = setattr_prepare(&init_user_ns, dentry, attr);
1062 	if (error)
1063 		return error;
1064 
1065 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1066 		loff_t oldsize = inode->i_size;
1067 		loff_t newsize = attr->ia_size;
1068 
1069 		/* protected by i_mutex */
1070 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1071 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1072 			return -EPERM;
1073 
1074 		if (newsize != oldsize) {
1075 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1076 					oldsize, newsize);
1077 			if (error)
1078 				return error;
1079 			i_size_write(inode, newsize);
1080 			inode->i_ctime = inode->i_mtime = current_time(inode);
1081 		}
1082 		if (newsize <= oldsize) {
1083 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1084 			if (oldsize > holebegin)
1085 				unmap_mapping_range(inode->i_mapping,
1086 							holebegin, 0, 1);
1087 			if (info->alloced)
1088 				shmem_truncate_range(inode,
1089 							newsize, (loff_t)-1);
1090 			/* unmap again to remove racily COWed private pages */
1091 			if (oldsize > holebegin)
1092 				unmap_mapping_range(inode->i_mapping,
1093 							holebegin, 0, 1);
1094 
1095 			/*
1096 			 * Part of the huge page can be beyond i_size: subject
1097 			 * to shrink under memory pressure.
1098 			 */
1099 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1100 				spin_lock(&sbinfo->shrinklist_lock);
1101 				/*
1102 				 * _careful to defend against unlocked access to
1103 				 * ->shrink_list in shmem_unused_huge_shrink()
1104 				 */
1105 				if (list_empty_careful(&info->shrinklist)) {
1106 					list_add_tail(&info->shrinklist,
1107 							&sbinfo->shrinklist);
1108 					sbinfo->shrinklist_len++;
1109 				}
1110 				spin_unlock(&sbinfo->shrinklist_lock);
1111 			}
1112 		}
1113 	}
1114 
1115 	setattr_copy(&init_user_ns, inode, attr);
1116 	if (attr->ia_valid & ATTR_MODE)
1117 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1118 	return error;
1119 }
1120 
1121 static void shmem_evict_inode(struct inode *inode)
1122 {
1123 	struct shmem_inode_info *info = SHMEM_I(inode);
1124 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1125 
1126 	if (shmem_mapping(inode->i_mapping)) {
1127 		shmem_unacct_size(info->flags, inode->i_size);
1128 		inode->i_size = 0;
1129 		shmem_truncate_range(inode, 0, (loff_t)-1);
1130 		if (!list_empty(&info->shrinklist)) {
1131 			spin_lock(&sbinfo->shrinklist_lock);
1132 			if (!list_empty(&info->shrinklist)) {
1133 				list_del_init(&info->shrinklist);
1134 				sbinfo->shrinklist_len--;
1135 			}
1136 			spin_unlock(&sbinfo->shrinklist_lock);
1137 		}
1138 		while (!list_empty(&info->swaplist)) {
1139 			/* Wait while shmem_unuse() is scanning this inode... */
1140 			wait_var_event(&info->stop_eviction,
1141 				       !atomic_read(&info->stop_eviction));
1142 			mutex_lock(&shmem_swaplist_mutex);
1143 			/* ...but beware of the race if we peeked too early */
1144 			if (!atomic_read(&info->stop_eviction))
1145 				list_del_init(&info->swaplist);
1146 			mutex_unlock(&shmem_swaplist_mutex);
1147 		}
1148 	}
1149 
1150 	simple_xattrs_free(&info->xattrs);
1151 	WARN_ON(inode->i_blocks);
1152 	shmem_free_inode(inode->i_sb);
1153 	clear_inode(inode);
1154 }
1155 
1156 static int shmem_find_swap_entries(struct address_space *mapping,
1157 				   pgoff_t start, unsigned int nr_entries,
1158 				   struct page **entries, pgoff_t *indices,
1159 				   unsigned int type, bool frontswap)
1160 {
1161 	XA_STATE(xas, &mapping->i_pages, start);
1162 	struct page *page;
1163 	swp_entry_t entry;
1164 	unsigned int ret = 0;
1165 
1166 	if (!nr_entries)
1167 		return 0;
1168 
1169 	rcu_read_lock();
1170 	xas_for_each(&xas, page, ULONG_MAX) {
1171 		if (xas_retry(&xas, page))
1172 			continue;
1173 
1174 		if (!xa_is_value(page))
1175 			continue;
1176 
1177 		entry = radix_to_swp_entry(page);
1178 		if (swp_type(entry) != type)
1179 			continue;
1180 		if (frontswap &&
1181 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1182 			continue;
1183 
1184 		indices[ret] = xas.xa_index;
1185 		entries[ret] = page;
1186 
1187 		if (need_resched()) {
1188 			xas_pause(&xas);
1189 			cond_resched_rcu();
1190 		}
1191 		if (++ret == nr_entries)
1192 			break;
1193 	}
1194 	rcu_read_unlock();
1195 
1196 	return ret;
1197 }
1198 
1199 /*
1200  * Move the swapped pages for an inode to page cache. Returns the count
1201  * of pages swapped in, or the error in case of failure.
1202  */
1203 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1204 				    pgoff_t *indices)
1205 {
1206 	int i = 0;
1207 	int ret = 0;
1208 	int error = 0;
1209 	struct address_space *mapping = inode->i_mapping;
1210 
1211 	for (i = 0; i < pvec.nr; i++) {
1212 		struct page *page = pvec.pages[i];
1213 
1214 		if (!xa_is_value(page))
1215 			continue;
1216 		error = shmem_swapin_page(inode, indices[i],
1217 					  &page, SGP_CACHE,
1218 					  mapping_gfp_mask(mapping),
1219 					  NULL, NULL);
1220 		if (error == 0) {
1221 			unlock_page(page);
1222 			put_page(page);
1223 			ret++;
1224 		}
1225 		if (error == -ENOMEM)
1226 			break;
1227 		error = 0;
1228 	}
1229 	return error ? error : ret;
1230 }
1231 
1232 /*
1233  * If swap found in inode, free it and move page from swapcache to filecache.
1234  */
1235 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1236 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1237 {
1238 	struct address_space *mapping = inode->i_mapping;
1239 	pgoff_t start = 0;
1240 	struct pagevec pvec;
1241 	pgoff_t indices[PAGEVEC_SIZE];
1242 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1243 	int ret = 0;
1244 
1245 	pagevec_init(&pvec);
1246 	do {
1247 		unsigned int nr_entries = PAGEVEC_SIZE;
1248 
1249 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1250 			nr_entries = *fs_pages_to_unuse;
1251 
1252 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1253 						  pvec.pages, indices,
1254 						  type, frontswap);
1255 		if (pvec.nr == 0) {
1256 			ret = 0;
1257 			break;
1258 		}
1259 
1260 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1261 		if (ret < 0)
1262 			break;
1263 
1264 		if (frontswap_partial) {
1265 			*fs_pages_to_unuse -= ret;
1266 			if (*fs_pages_to_unuse == 0) {
1267 				ret = FRONTSWAP_PAGES_UNUSED;
1268 				break;
1269 			}
1270 		}
1271 
1272 		start = indices[pvec.nr - 1];
1273 	} while (true);
1274 
1275 	return ret;
1276 }
1277 
1278 /*
1279  * Read all the shared memory data that resides in the swap
1280  * device 'type' back into memory, so the swap device can be
1281  * unused.
1282  */
1283 int shmem_unuse(unsigned int type, bool frontswap,
1284 		unsigned long *fs_pages_to_unuse)
1285 {
1286 	struct shmem_inode_info *info, *next;
1287 	int error = 0;
1288 
1289 	if (list_empty(&shmem_swaplist))
1290 		return 0;
1291 
1292 	mutex_lock(&shmem_swaplist_mutex);
1293 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1294 		if (!info->swapped) {
1295 			list_del_init(&info->swaplist);
1296 			continue;
1297 		}
1298 		/*
1299 		 * Drop the swaplist mutex while searching the inode for swap;
1300 		 * but before doing so, make sure shmem_evict_inode() will not
1301 		 * remove placeholder inode from swaplist, nor let it be freed
1302 		 * (igrab() would protect from unlink, but not from unmount).
1303 		 */
1304 		atomic_inc(&info->stop_eviction);
1305 		mutex_unlock(&shmem_swaplist_mutex);
1306 
1307 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1308 					  fs_pages_to_unuse);
1309 		cond_resched();
1310 
1311 		mutex_lock(&shmem_swaplist_mutex);
1312 		next = list_next_entry(info, swaplist);
1313 		if (!info->swapped)
1314 			list_del_init(&info->swaplist);
1315 		if (atomic_dec_and_test(&info->stop_eviction))
1316 			wake_up_var(&info->stop_eviction);
1317 		if (error)
1318 			break;
1319 	}
1320 	mutex_unlock(&shmem_swaplist_mutex);
1321 
1322 	return error;
1323 }
1324 
1325 /*
1326  * Move the page from the page cache to the swap cache.
1327  */
1328 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1329 {
1330 	struct shmem_inode_info *info;
1331 	struct address_space *mapping;
1332 	struct inode *inode;
1333 	swp_entry_t swap;
1334 	pgoff_t index;
1335 
1336 	VM_BUG_ON_PAGE(PageCompound(page), page);
1337 	BUG_ON(!PageLocked(page));
1338 	mapping = page->mapping;
1339 	index = page->index;
1340 	inode = mapping->host;
1341 	info = SHMEM_I(inode);
1342 	if (info->flags & VM_LOCKED)
1343 		goto redirty;
1344 	if (!total_swap_pages)
1345 		goto redirty;
1346 
1347 	/*
1348 	 * Our capabilities prevent regular writeback or sync from ever calling
1349 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1350 	 * its underlying filesystem, in which case tmpfs should write out to
1351 	 * swap only in response to memory pressure, and not for the writeback
1352 	 * threads or sync.
1353 	 */
1354 	if (!wbc->for_reclaim) {
1355 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1356 		goto redirty;
1357 	}
1358 
1359 	/*
1360 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1361 	 * value into swapfile.c, the only way we can correctly account for a
1362 	 * fallocated page arriving here is now to initialize it and write it.
1363 	 *
1364 	 * That's okay for a page already fallocated earlier, but if we have
1365 	 * not yet completed the fallocation, then (a) we want to keep track
1366 	 * of this page in case we have to undo it, and (b) it may not be a
1367 	 * good idea to continue anyway, once we're pushing into swap.  So
1368 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1369 	 */
1370 	if (!PageUptodate(page)) {
1371 		if (inode->i_private) {
1372 			struct shmem_falloc *shmem_falloc;
1373 			spin_lock(&inode->i_lock);
1374 			shmem_falloc = inode->i_private;
1375 			if (shmem_falloc &&
1376 			    !shmem_falloc->waitq &&
1377 			    index >= shmem_falloc->start &&
1378 			    index < shmem_falloc->next)
1379 				shmem_falloc->nr_unswapped++;
1380 			else
1381 				shmem_falloc = NULL;
1382 			spin_unlock(&inode->i_lock);
1383 			if (shmem_falloc)
1384 				goto redirty;
1385 		}
1386 		clear_highpage(page);
1387 		flush_dcache_page(page);
1388 		SetPageUptodate(page);
1389 	}
1390 
1391 	swap = get_swap_page(page);
1392 	if (!swap.val)
1393 		goto redirty;
1394 
1395 	/*
1396 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1397 	 * if it's not already there.  Do it now before the page is
1398 	 * moved to swap cache, when its pagelock no longer protects
1399 	 * the inode from eviction.  But don't unlock the mutex until
1400 	 * we've incremented swapped, because shmem_unuse_inode() will
1401 	 * prune a !swapped inode from the swaplist under this mutex.
1402 	 */
1403 	mutex_lock(&shmem_swaplist_mutex);
1404 	if (list_empty(&info->swaplist))
1405 		list_add(&info->swaplist, &shmem_swaplist);
1406 
1407 	if (add_to_swap_cache(page, swap,
1408 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1409 			NULL) == 0) {
1410 		spin_lock_irq(&info->lock);
1411 		shmem_recalc_inode(inode);
1412 		info->swapped++;
1413 		spin_unlock_irq(&info->lock);
1414 
1415 		swap_shmem_alloc(swap);
1416 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1417 
1418 		mutex_unlock(&shmem_swaplist_mutex);
1419 		BUG_ON(page_mapped(page));
1420 		swap_writepage(page, wbc);
1421 		return 0;
1422 	}
1423 
1424 	mutex_unlock(&shmem_swaplist_mutex);
1425 	put_swap_page(page, swap);
1426 redirty:
1427 	set_page_dirty(page);
1428 	if (wbc->for_reclaim)
1429 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1430 	unlock_page(page);
1431 	return 0;
1432 }
1433 
1434 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1435 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1436 {
1437 	char buffer[64];
1438 
1439 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1440 		return;		/* show nothing */
1441 
1442 	mpol_to_str(buffer, sizeof(buffer), mpol);
1443 
1444 	seq_printf(seq, ",mpol=%s", buffer);
1445 }
1446 
1447 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1448 {
1449 	struct mempolicy *mpol = NULL;
1450 	if (sbinfo->mpol) {
1451 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1452 		mpol = sbinfo->mpol;
1453 		mpol_get(mpol);
1454 		raw_spin_unlock(&sbinfo->stat_lock);
1455 	}
1456 	return mpol;
1457 }
1458 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1459 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1460 {
1461 }
1462 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1463 {
1464 	return NULL;
1465 }
1466 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1467 #ifndef CONFIG_NUMA
1468 #define vm_policy vm_private_data
1469 #endif
1470 
1471 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1472 		struct shmem_inode_info *info, pgoff_t index)
1473 {
1474 	/* Create a pseudo vma that just contains the policy */
1475 	vma_init(vma, NULL);
1476 	/* Bias interleave by inode number to distribute better across nodes */
1477 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1478 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1479 }
1480 
1481 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1482 {
1483 	/* Drop reference taken by mpol_shared_policy_lookup() */
1484 	mpol_cond_put(vma->vm_policy);
1485 }
1486 
1487 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1488 			struct shmem_inode_info *info, pgoff_t index)
1489 {
1490 	struct vm_area_struct pvma;
1491 	struct page *page;
1492 	struct vm_fault vmf = {
1493 		.vma = &pvma,
1494 	};
1495 
1496 	shmem_pseudo_vma_init(&pvma, info, index);
1497 	page = swap_cluster_readahead(swap, gfp, &vmf);
1498 	shmem_pseudo_vma_destroy(&pvma);
1499 
1500 	return page;
1501 }
1502 
1503 /*
1504  * Make sure huge_gfp is always more limited than limit_gfp.
1505  * Some of the flags set permissions, while others set limitations.
1506  */
1507 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1508 {
1509 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1510 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1511 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1512 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1513 
1514 	/* Allow allocations only from the originally specified zones. */
1515 	result |= zoneflags;
1516 
1517 	/*
1518 	 * Minimize the result gfp by taking the union with the deny flags,
1519 	 * and the intersection of the allow flags.
1520 	 */
1521 	result |= (limit_gfp & denyflags);
1522 	result |= (huge_gfp & limit_gfp) & allowflags;
1523 
1524 	return result;
1525 }
1526 
1527 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1528 		struct shmem_inode_info *info, pgoff_t index)
1529 {
1530 	struct vm_area_struct pvma;
1531 	struct address_space *mapping = info->vfs_inode.i_mapping;
1532 	pgoff_t hindex;
1533 	struct page *page;
1534 
1535 	hindex = round_down(index, HPAGE_PMD_NR);
1536 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1537 								XA_PRESENT))
1538 		return NULL;
1539 
1540 	shmem_pseudo_vma_init(&pvma, info, hindex);
1541 	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1542 			       true);
1543 	shmem_pseudo_vma_destroy(&pvma);
1544 	if (page)
1545 		prep_transhuge_page(page);
1546 	else
1547 		count_vm_event(THP_FILE_FALLBACK);
1548 	return page;
1549 }
1550 
1551 static struct page *shmem_alloc_page(gfp_t gfp,
1552 			struct shmem_inode_info *info, pgoff_t index)
1553 {
1554 	struct vm_area_struct pvma;
1555 	struct page *page;
1556 
1557 	shmem_pseudo_vma_init(&pvma, info, index);
1558 	page = alloc_page_vma(gfp, &pvma, 0);
1559 	shmem_pseudo_vma_destroy(&pvma);
1560 
1561 	return page;
1562 }
1563 
1564 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1565 		struct inode *inode,
1566 		pgoff_t index, bool huge)
1567 {
1568 	struct shmem_inode_info *info = SHMEM_I(inode);
1569 	struct page *page;
1570 	int nr;
1571 	int err = -ENOSPC;
1572 
1573 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1574 		huge = false;
1575 	nr = huge ? HPAGE_PMD_NR : 1;
1576 
1577 	if (!shmem_inode_acct_block(inode, nr))
1578 		goto failed;
1579 
1580 	if (huge)
1581 		page = shmem_alloc_hugepage(gfp, info, index);
1582 	else
1583 		page = shmem_alloc_page(gfp, info, index);
1584 	if (page) {
1585 		__SetPageLocked(page);
1586 		__SetPageSwapBacked(page);
1587 		return page;
1588 	}
1589 
1590 	err = -ENOMEM;
1591 	shmem_inode_unacct_blocks(inode, nr);
1592 failed:
1593 	return ERR_PTR(err);
1594 }
1595 
1596 /*
1597  * When a page is moved from swapcache to shmem filecache (either by the
1598  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1599  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1600  * ignorance of the mapping it belongs to.  If that mapping has special
1601  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1602  * we may need to copy to a suitable page before moving to filecache.
1603  *
1604  * In a future release, this may well be extended to respect cpuset and
1605  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1606  * but for now it is a simple matter of zone.
1607  */
1608 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1609 {
1610 	return page_zonenum(page) > gfp_zone(gfp);
1611 }
1612 
1613 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1614 				struct shmem_inode_info *info, pgoff_t index)
1615 {
1616 	struct page *oldpage, *newpage;
1617 	struct address_space *swap_mapping;
1618 	swp_entry_t entry;
1619 	pgoff_t swap_index;
1620 	int error;
1621 
1622 	oldpage = *pagep;
1623 	entry.val = page_private(oldpage);
1624 	swap_index = swp_offset(entry);
1625 	swap_mapping = page_mapping(oldpage);
1626 
1627 	/*
1628 	 * We have arrived here because our zones are constrained, so don't
1629 	 * limit chance of success by further cpuset and node constraints.
1630 	 */
1631 	gfp &= ~GFP_CONSTRAINT_MASK;
1632 	newpage = shmem_alloc_page(gfp, info, index);
1633 	if (!newpage)
1634 		return -ENOMEM;
1635 
1636 	get_page(newpage);
1637 	copy_highpage(newpage, oldpage);
1638 	flush_dcache_page(newpage);
1639 
1640 	__SetPageLocked(newpage);
1641 	__SetPageSwapBacked(newpage);
1642 	SetPageUptodate(newpage);
1643 	set_page_private(newpage, entry.val);
1644 	SetPageSwapCache(newpage);
1645 
1646 	/*
1647 	 * Our caller will very soon move newpage out of swapcache, but it's
1648 	 * a nice clean interface for us to replace oldpage by newpage there.
1649 	 */
1650 	xa_lock_irq(&swap_mapping->i_pages);
1651 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1652 	if (!error) {
1653 		mem_cgroup_migrate(oldpage, newpage);
1654 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1655 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1656 	}
1657 	xa_unlock_irq(&swap_mapping->i_pages);
1658 
1659 	if (unlikely(error)) {
1660 		/*
1661 		 * Is this possible?  I think not, now that our callers check
1662 		 * both PageSwapCache and page_private after getting page lock;
1663 		 * but be defensive.  Reverse old to newpage for clear and free.
1664 		 */
1665 		oldpage = newpage;
1666 	} else {
1667 		lru_cache_add(newpage);
1668 		*pagep = newpage;
1669 	}
1670 
1671 	ClearPageSwapCache(oldpage);
1672 	set_page_private(oldpage, 0);
1673 
1674 	unlock_page(oldpage);
1675 	put_page(oldpage);
1676 	put_page(oldpage);
1677 	return error;
1678 }
1679 
1680 /*
1681  * Swap in the page pointed to by *pagep.
1682  * Caller has to make sure that *pagep contains a valid swapped page.
1683  * Returns 0 and the page in pagep if success. On failure, returns the
1684  * error code and NULL in *pagep.
1685  */
1686 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1687 			     struct page **pagep, enum sgp_type sgp,
1688 			     gfp_t gfp, struct vm_area_struct *vma,
1689 			     vm_fault_t *fault_type)
1690 {
1691 	struct address_space *mapping = inode->i_mapping;
1692 	struct shmem_inode_info *info = SHMEM_I(inode);
1693 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1694 	struct page *page;
1695 	swp_entry_t swap;
1696 	int error;
1697 
1698 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1699 	swap = radix_to_swp_entry(*pagep);
1700 	*pagep = NULL;
1701 
1702 	/* Look it up and read it in.. */
1703 	page = lookup_swap_cache(swap, NULL, 0);
1704 	if (!page) {
1705 		/* Or update major stats only when swapin succeeds?? */
1706 		if (fault_type) {
1707 			*fault_type |= VM_FAULT_MAJOR;
1708 			count_vm_event(PGMAJFAULT);
1709 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1710 		}
1711 		/* Here we actually start the io */
1712 		page = shmem_swapin(swap, gfp, info, index);
1713 		if (!page) {
1714 			error = -ENOMEM;
1715 			goto failed;
1716 		}
1717 	}
1718 
1719 	/* We have to do this with page locked to prevent races */
1720 	lock_page(page);
1721 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1722 	    !shmem_confirm_swap(mapping, index, swap)) {
1723 		error = -EEXIST;
1724 		goto unlock;
1725 	}
1726 	if (!PageUptodate(page)) {
1727 		error = -EIO;
1728 		goto failed;
1729 	}
1730 	wait_on_page_writeback(page);
1731 
1732 	/*
1733 	 * Some architectures may have to restore extra metadata to the
1734 	 * physical page after reading from swap.
1735 	 */
1736 	arch_swap_restore(swap, page);
1737 
1738 	if (shmem_should_replace_page(page, gfp)) {
1739 		error = shmem_replace_page(&page, gfp, info, index);
1740 		if (error)
1741 			goto failed;
1742 	}
1743 
1744 	error = shmem_add_to_page_cache(page, mapping, index,
1745 					swp_to_radix_entry(swap), gfp,
1746 					charge_mm);
1747 	if (error)
1748 		goto failed;
1749 
1750 	spin_lock_irq(&info->lock);
1751 	info->swapped--;
1752 	shmem_recalc_inode(inode);
1753 	spin_unlock_irq(&info->lock);
1754 
1755 	if (sgp == SGP_WRITE)
1756 		mark_page_accessed(page);
1757 
1758 	delete_from_swap_cache(page);
1759 	set_page_dirty(page);
1760 	swap_free(swap);
1761 
1762 	*pagep = page;
1763 	return 0;
1764 failed:
1765 	if (!shmem_confirm_swap(mapping, index, swap))
1766 		error = -EEXIST;
1767 unlock:
1768 	if (page) {
1769 		unlock_page(page);
1770 		put_page(page);
1771 	}
1772 
1773 	return error;
1774 }
1775 
1776 /*
1777  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1778  *
1779  * If we allocate a new one we do not mark it dirty. That's up to the
1780  * vm. If we swap it in we mark it dirty since we also free the swap
1781  * entry since a page cannot live in both the swap and page cache.
1782  *
1783  * vma, vmf, and fault_type are only supplied by shmem_fault:
1784  * otherwise they are NULL.
1785  */
1786 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1787 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1788 	struct vm_area_struct *vma, struct vm_fault *vmf,
1789 			vm_fault_t *fault_type)
1790 {
1791 	struct address_space *mapping = inode->i_mapping;
1792 	struct shmem_inode_info *info = SHMEM_I(inode);
1793 	struct shmem_sb_info *sbinfo;
1794 	struct mm_struct *charge_mm;
1795 	struct page *page;
1796 	enum sgp_type sgp_huge = sgp;
1797 	pgoff_t hindex = index;
1798 	gfp_t huge_gfp;
1799 	int error;
1800 	int once = 0;
1801 	int alloced = 0;
1802 
1803 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1804 		return -EFBIG;
1805 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1806 		sgp = SGP_CACHE;
1807 repeat:
1808 	if (sgp <= SGP_CACHE &&
1809 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1810 		return -EINVAL;
1811 	}
1812 
1813 	sbinfo = SHMEM_SB(inode->i_sb);
1814 	charge_mm = vma ? vma->vm_mm : NULL;
1815 
1816 	page = pagecache_get_page(mapping, index,
1817 					FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1818 
1819 	if (page && vma && userfaultfd_minor(vma)) {
1820 		if (!xa_is_value(page)) {
1821 			unlock_page(page);
1822 			put_page(page);
1823 		}
1824 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1825 		return 0;
1826 	}
1827 
1828 	if (xa_is_value(page)) {
1829 		error = shmem_swapin_page(inode, index, &page,
1830 					  sgp, gfp, vma, fault_type);
1831 		if (error == -EEXIST)
1832 			goto repeat;
1833 
1834 		*pagep = page;
1835 		return error;
1836 	}
1837 
1838 	if (page)
1839 		hindex = page->index;
1840 	if (page && sgp == SGP_WRITE)
1841 		mark_page_accessed(page);
1842 
1843 	/* fallocated page? */
1844 	if (page && !PageUptodate(page)) {
1845 		if (sgp != SGP_READ)
1846 			goto clear;
1847 		unlock_page(page);
1848 		put_page(page);
1849 		page = NULL;
1850 		hindex = index;
1851 	}
1852 	if (page || sgp == SGP_READ)
1853 		goto out;
1854 
1855 	/*
1856 	 * Fast cache lookup did not find it:
1857 	 * bring it back from swap or allocate.
1858 	 */
1859 
1860 	if (vma && userfaultfd_missing(vma)) {
1861 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1862 		return 0;
1863 	}
1864 
1865 	/* shmem_symlink() */
1866 	if (!shmem_mapping(mapping))
1867 		goto alloc_nohuge;
1868 	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1869 		goto alloc_nohuge;
1870 	if (shmem_huge == SHMEM_HUGE_FORCE)
1871 		goto alloc_huge;
1872 	switch (sbinfo->huge) {
1873 	case SHMEM_HUGE_NEVER:
1874 		goto alloc_nohuge;
1875 	case SHMEM_HUGE_WITHIN_SIZE: {
1876 		loff_t i_size;
1877 		pgoff_t off;
1878 
1879 		off = round_up(index, HPAGE_PMD_NR);
1880 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1881 		if (i_size >= HPAGE_PMD_SIZE &&
1882 		    i_size >> PAGE_SHIFT >= off)
1883 			goto alloc_huge;
1884 
1885 		fallthrough;
1886 	}
1887 	case SHMEM_HUGE_ADVISE:
1888 		if (sgp_huge == SGP_HUGE)
1889 			goto alloc_huge;
1890 		/* TODO: implement fadvise() hints */
1891 		goto alloc_nohuge;
1892 	}
1893 
1894 alloc_huge:
1895 	huge_gfp = vma_thp_gfp_mask(vma);
1896 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1897 	page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1898 	if (IS_ERR(page)) {
1899 alloc_nohuge:
1900 		page = shmem_alloc_and_acct_page(gfp, inode,
1901 						 index, false);
1902 	}
1903 	if (IS_ERR(page)) {
1904 		int retry = 5;
1905 
1906 		error = PTR_ERR(page);
1907 		page = NULL;
1908 		if (error != -ENOSPC)
1909 			goto unlock;
1910 		/*
1911 		 * Try to reclaim some space by splitting a huge page
1912 		 * beyond i_size on the filesystem.
1913 		 */
1914 		while (retry--) {
1915 			int ret;
1916 
1917 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1918 			if (ret == SHRINK_STOP)
1919 				break;
1920 			if (ret)
1921 				goto alloc_nohuge;
1922 		}
1923 		goto unlock;
1924 	}
1925 
1926 	if (PageTransHuge(page))
1927 		hindex = round_down(index, HPAGE_PMD_NR);
1928 	else
1929 		hindex = index;
1930 
1931 	if (sgp == SGP_WRITE)
1932 		__SetPageReferenced(page);
1933 
1934 	error = shmem_add_to_page_cache(page, mapping, hindex,
1935 					NULL, gfp & GFP_RECLAIM_MASK,
1936 					charge_mm);
1937 	if (error)
1938 		goto unacct;
1939 	lru_cache_add(page);
1940 
1941 	spin_lock_irq(&info->lock);
1942 	info->alloced += compound_nr(page);
1943 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1944 	shmem_recalc_inode(inode);
1945 	spin_unlock_irq(&info->lock);
1946 	alloced = true;
1947 
1948 	if (PageTransHuge(page) &&
1949 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1950 			hindex + HPAGE_PMD_NR - 1) {
1951 		/*
1952 		 * Part of the huge page is beyond i_size: subject
1953 		 * to shrink under memory pressure.
1954 		 */
1955 		spin_lock(&sbinfo->shrinklist_lock);
1956 		/*
1957 		 * _careful to defend against unlocked access to
1958 		 * ->shrink_list in shmem_unused_huge_shrink()
1959 		 */
1960 		if (list_empty_careful(&info->shrinklist)) {
1961 			list_add_tail(&info->shrinklist,
1962 				      &sbinfo->shrinklist);
1963 			sbinfo->shrinklist_len++;
1964 		}
1965 		spin_unlock(&sbinfo->shrinklist_lock);
1966 	}
1967 
1968 	/*
1969 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1970 	 */
1971 	if (sgp == SGP_FALLOC)
1972 		sgp = SGP_WRITE;
1973 clear:
1974 	/*
1975 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1976 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1977 	 * it now, lest undo on failure cancel our earlier guarantee.
1978 	 */
1979 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1980 		int i;
1981 
1982 		for (i = 0; i < compound_nr(page); i++) {
1983 			clear_highpage(page + i);
1984 			flush_dcache_page(page + i);
1985 		}
1986 		SetPageUptodate(page);
1987 	}
1988 
1989 	/* Perhaps the file has been truncated since we checked */
1990 	if (sgp <= SGP_CACHE &&
1991 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1992 		if (alloced) {
1993 			ClearPageDirty(page);
1994 			delete_from_page_cache(page);
1995 			spin_lock_irq(&info->lock);
1996 			shmem_recalc_inode(inode);
1997 			spin_unlock_irq(&info->lock);
1998 		}
1999 		error = -EINVAL;
2000 		goto unlock;
2001 	}
2002 out:
2003 	*pagep = page + index - hindex;
2004 	return 0;
2005 
2006 	/*
2007 	 * Error recovery.
2008 	 */
2009 unacct:
2010 	shmem_inode_unacct_blocks(inode, compound_nr(page));
2011 
2012 	if (PageTransHuge(page)) {
2013 		unlock_page(page);
2014 		put_page(page);
2015 		goto alloc_nohuge;
2016 	}
2017 unlock:
2018 	if (page) {
2019 		unlock_page(page);
2020 		put_page(page);
2021 	}
2022 	if (error == -ENOSPC && !once++) {
2023 		spin_lock_irq(&info->lock);
2024 		shmem_recalc_inode(inode);
2025 		spin_unlock_irq(&info->lock);
2026 		goto repeat;
2027 	}
2028 	if (error == -EEXIST)
2029 		goto repeat;
2030 	return error;
2031 }
2032 
2033 /*
2034  * This is like autoremove_wake_function, but it removes the wait queue
2035  * entry unconditionally - even if something else had already woken the
2036  * target.
2037  */
2038 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2039 {
2040 	int ret = default_wake_function(wait, mode, sync, key);
2041 	list_del_init(&wait->entry);
2042 	return ret;
2043 }
2044 
2045 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2046 {
2047 	struct vm_area_struct *vma = vmf->vma;
2048 	struct inode *inode = file_inode(vma->vm_file);
2049 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2050 	enum sgp_type sgp;
2051 	int err;
2052 	vm_fault_t ret = VM_FAULT_LOCKED;
2053 
2054 	/*
2055 	 * Trinity finds that probing a hole which tmpfs is punching can
2056 	 * prevent the hole-punch from ever completing: which in turn
2057 	 * locks writers out with its hold on i_mutex.  So refrain from
2058 	 * faulting pages into the hole while it's being punched.  Although
2059 	 * shmem_undo_range() does remove the additions, it may be unable to
2060 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2061 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2062 	 *
2063 	 * It does not matter if we sometimes reach this check just before the
2064 	 * hole-punch begins, so that one fault then races with the punch:
2065 	 * we just need to make racing faults a rare case.
2066 	 *
2067 	 * The implementation below would be much simpler if we just used a
2068 	 * standard mutex or completion: but we cannot take i_mutex in fault,
2069 	 * and bloating every shmem inode for this unlikely case would be sad.
2070 	 */
2071 	if (unlikely(inode->i_private)) {
2072 		struct shmem_falloc *shmem_falloc;
2073 
2074 		spin_lock(&inode->i_lock);
2075 		shmem_falloc = inode->i_private;
2076 		if (shmem_falloc &&
2077 		    shmem_falloc->waitq &&
2078 		    vmf->pgoff >= shmem_falloc->start &&
2079 		    vmf->pgoff < shmem_falloc->next) {
2080 			struct file *fpin;
2081 			wait_queue_head_t *shmem_falloc_waitq;
2082 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2083 
2084 			ret = VM_FAULT_NOPAGE;
2085 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2086 			if (fpin)
2087 				ret = VM_FAULT_RETRY;
2088 
2089 			shmem_falloc_waitq = shmem_falloc->waitq;
2090 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2091 					TASK_UNINTERRUPTIBLE);
2092 			spin_unlock(&inode->i_lock);
2093 			schedule();
2094 
2095 			/*
2096 			 * shmem_falloc_waitq points into the shmem_fallocate()
2097 			 * stack of the hole-punching task: shmem_falloc_waitq
2098 			 * is usually invalid by the time we reach here, but
2099 			 * finish_wait() does not dereference it in that case;
2100 			 * though i_lock needed lest racing with wake_up_all().
2101 			 */
2102 			spin_lock(&inode->i_lock);
2103 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2104 			spin_unlock(&inode->i_lock);
2105 
2106 			if (fpin)
2107 				fput(fpin);
2108 			return ret;
2109 		}
2110 		spin_unlock(&inode->i_lock);
2111 	}
2112 
2113 	sgp = SGP_CACHE;
2114 
2115 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2116 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2117 		sgp = SGP_NOHUGE;
2118 	else if (vma->vm_flags & VM_HUGEPAGE)
2119 		sgp = SGP_HUGE;
2120 
2121 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2122 				  gfp, vma, vmf, &ret);
2123 	if (err)
2124 		return vmf_error(err);
2125 	return ret;
2126 }
2127 
2128 unsigned long shmem_get_unmapped_area(struct file *file,
2129 				      unsigned long uaddr, unsigned long len,
2130 				      unsigned long pgoff, unsigned long flags)
2131 {
2132 	unsigned long (*get_area)(struct file *,
2133 		unsigned long, unsigned long, unsigned long, unsigned long);
2134 	unsigned long addr;
2135 	unsigned long offset;
2136 	unsigned long inflated_len;
2137 	unsigned long inflated_addr;
2138 	unsigned long inflated_offset;
2139 
2140 	if (len > TASK_SIZE)
2141 		return -ENOMEM;
2142 
2143 	get_area = current->mm->get_unmapped_area;
2144 	addr = get_area(file, uaddr, len, pgoff, flags);
2145 
2146 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2147 		return addr;
2148 	if (IS_ERR_VALUE(addr))
2149 		return addr;
2150 	if (addr & ~PAGE_MASK)
2151 		return addr;
2152 	if (addr > TASK_SIZE - len)
2153 		return addr;
2154 
2155 	if (shmem_huge == SHMEM_HUGE_DENY)
2156 		return addr;
2157 	if (len < HPAGE_PMD_SIZE)
2158 		return addr;
2159 	if (flags & MAP_FIXED)
2160 		return addr;
2161 	/*
2162 	 * Our priority is to support MAP_SHARED mapped hugely;
2163 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2164 	 * But if caller specified an address hint and we allocated area there
2165 	 * successfully, respect that as before.
2166 	 */
2167 	if (uaddr == addr)
2168 		return addr;
2169 
2170 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2171 		struct super_block *sb;
2172 
2173 		if (file) {
2174 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2175 			sb = file_inode(file)->i_sb;
2176 		} else {
2177 			/*
2178 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2179 			 * for "/dev/zero", to create a shared anonymous object.
2180 			 */
2181 			if (IS_ERR(shm_mnt))
2182 				return addr;
2183 			sb = shm_mnt->mnt_sb;
2184 		}
2185 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2186 			return addr;
2187 	}
2188 
2189 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2190 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2191 		return addr;
2192 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2193 		return addr;
2194 
2195 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2196 	if (inflated_len > TASK_SIZE)
2197 		return addr;
2198 	if (inflated_len < len)
2199 		return addr;
2200 
2201 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2202 	if (IS_ERR_VALUE(inflated_addr))
2203 		return addr;
2204 	if (inflated_addr & ~PAGE_MASK)
2205 		return addr;
2206 
2207 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2208 	inflated_addr += offset - inflated_offset;
2209 	if (inflated_offset > offset)
2210 		inflated_addr += HPAGE_PMD_SIZE;
2211 
2212 	if (inflated_addr > TASK_SIZE - len)
2213 		return addr;
2214 	return inflated_addr;
2215 }
2216 
2217 #ifdef CONFIG_NUMA
2218 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2219 {
2220 	struct inode *inode = file_inode(vma->vm_file);
2221 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2222 }
2223 
2224 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2225 					  unsigned long addr)
2226 {
2227 	struct inode *inode = file_inode(vma->vm_file);
2228 	pgoff_t index;
2229 
2230 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2231 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2232 }
2233 #endif
2234 
2235 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2236 {
2237 	struct inode *inode = file_inode(file);
2238 	struct shmem_inode_info *info = SHMEM_I(inode);
2239 	int retval = -ENOMEM;
2240 
2241 	/*
2242 	 * What serializes the accesses to info->flags?
2243 	 * ipc_lock_object() when called from shmctl_do_lock(),
2244 	 * no serialization needed when called from shm_destroy().
2245 	 */
2246 	if (lock && !(info->flags & VM_LOCKED)) {
2247 		if (!user_shm_lock(inode->i_size, ucounts))
2248 			goto out_nomem;
2249 		info->flags |= VM_LOCKED;
2250 		mapping_set_unevictable(file->f_mapping);
2251 	}
2252 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2253 		user_shm_unlock(inode->i_size, ucounts);
2254 		info->flags &= ~VM_LOCKED;
2255 		mapping_clear_unevictable(file->f_mapping);
2256 	}
2257 	retval = 0;
2258 
2259 out_nomem:
2260 	return retval;
2261 }
2262 
2263 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2264 {
2265 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2266 	int ret;
2267 
2268 	ret = seal_check_future_write(info->seals, vma);
2269 	if (ret)
2270 		return ret;
2271 
2272 	/* arm64 - allow memory tagging on RAM-based files */
2273 	vma->vm_flags |= VM_MTE_ALLOWED;
2274 
2275 	file_accessed(file);
2276 	vma->vm_ops = &shmem_vm_ops;
2277 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2278 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2279 			(vma->vm_end & HPAGE_PMD_MASK)) {
2280 		khugepaged_enter(vma, vma->vm_flags);
2281 	}
2282 	return 0;
2283 }
2284 
2285 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2286 				     umode_t mode, dev_t dev, unsigned long flags)
2287 {
2288 	struct inode *inode;
2289 	struct shmem_inode_info *info;
2290 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2291 	ino_t ino;
2292 
2293 	if (shmem_reserve_inode(sb, &ino))
2294 		return NULL;
2295 
2296 	inode = new_inode(sb);
2297 	if (inode) {
2298 		inode->i_ino = ino;
2299 		inode_init_owner(&init_user_ns, inode, dir, mode);
2300 		inode->i_blocks = 0;
2301 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2302 		inode->i_generation = prandom_u32();
2303 		info = SHMEM_I(inode);
2304 		memset(info, 0, (char *)inode - (char *)info);
2305 		spin_lock_init(&info->lock);
2306 		atomic_set(&info->stop_eviction, 0);
2307 		info->seals = F_SEAL_SEAL;
2308 		info->flags = flags & VM_NORESERVE;
2309 		INIT_LIST_HEAD(&info->shrinklist);
2310 		INIT_LIST_HEAD(&info->swaplist);
2311 		simple_xattrs_init(&info->xattrs);
2312 		cache_no_acl(inode);
2313 
2314 		switch (mode & S_IFMT) {
2315 		default:
2316 			inode->i_op = &shmem_special_inode_operations;
2317 			init_special_inode(inode, mode, dev);
2318 			break;
2319 		case S_IFREG:
2320 			inode->i_mapping->a_ops = &shmem_aops;
2321 			inode->i_op = &shmem_inode_operations;
2322 			inode->i_fop = &shmem_file_operations;
2323 			mpol_shared_policy_init(&info->policy,
2324 						 shmem_get_sbmpol(sbinfo));
2325 			break;
2326 		case S_IFDIR:
2327 			inc_nlink(inode);
2328 			/* Some things misbehave if size == 0 on a directory */
2329 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2330 			inode->i_op = &shmem_dir_inode_operations;
2331 			inode->i_fop = &simple_dir_operations;
2332 			break;
2333 		case S_IFLNK:
2334 			/*
2335 			 * Must not load anything in the rbtree,
2336 			 * mpol_free_shared_policy will not be called.
2337 			 */
2338 			mpol_shared_policy_init(&info->policy, NULL);
2339 			break;
2340 		}
2341 
2342 		lockdep_annotate_inode_mutex_key(inode);
2343 	} else
2344 		shmem_free_inode(sb);
2345 	return inode;
2346 }
2347 
2348 #ifdef CONFIG_USERFAULTFD
2349 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2350 			   pmd_t *dst_pmd,
2351 			   struct vm_area_struct *dst_vma,
2352 			   unsigned long dst_addr,
2353 			   unsigned long src_addr,
2354 			   bool zeropage,
2355 			   struct page **pagep)
2356 {
2357 	struct inode *inode = file_inode(dst_vma->vm_file);
2358 	struct shmem_inode_info *info = SHMEM_I(inode);
2359 	struct address_space *mapping = inode->i_mapping;
2360 	gfp_t gfp = mapping_gfp_mask(mapping);
2361 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2362 	void *page_kaddr;
2363 	struct page *page;
2364 	int ret;
2365 	pgoff_t max_off;
2366 
2367 	if (!shmem_inode_acct_block(inode, 1)) {
2368 		/*
2369 		 * We may have got a page, returned -ENOENT triggering a retry,
2370 		 * and now we find ourselves with -ENOMEM. Release the page, to
2371 		 * avoid a BUG_ON in our caller.
2372 		 */
2373 		if (unlikely(*pagep)) {
2374 			put_page(*pagep);
2375 			*pagep = NULL;
2376 		}
2377 		return -ENOMEM;
2378 	}
2379 
2380 	if (!*pagep) {
2381 		ret = -ENOMEM;
2382 		page = shmem_alloc_page(gfp, info, pgoff);
2383 		if (!page)
2384 			goto out_unacct_blocks;
2385 
2386 		if (!zeropage) {	/* COPY */
2387 			page_kaddr = kmap_atomic(page);
2388 			ret = copy_from_user(page_kaddr,
2389 					     (const void __user *)src_addr,
2390 					     PAGE_SIZE);
2391 			kunmap_atomic(page_kaddr);
2392 
2393 			/* fallback to copy_from_user outside mmap_lock */
2394 			if (unlikely(ret)) {
2395 				*pagep = page;
2396 				ret = -ENOENT;
2397 				/* don't free the page */
2398 				goto out_unacct_blocks;
2399 			}
2400 		} else {		/* ZEROPAGE */
2401 			clear_highpage(page);
2402 		}
2403 	} else {
2404 		page = *pagep;
2405 		*pagep = NULL;
2406 	}
2407 
2408 	VM_BUG_ON(PageLocked(page));
2409 	VM_BUG_ON(PageSwapBacked(page));
2410 	__SetPageLocked(page);
2411 	__SetPageSwapBacked(page);
2412 	__SetPageUptodate(page);
2413 
2414 	ret = -EFAULT;
2415 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2416 	if (unlikely(pgoff >= max_off))
2417 		goto out_release;
2418 
2419 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2420 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2421 	if (ret)
2422 		goto out_release;
2423 
2424 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2425 				       page, true, false);
2426 	if (ret)
2427 		goto out_delete_from_cache;
2428 
2429 	spin_lock_irq(&info->lock);
2430 	info->alloced++;
2431 	inode->i_blocks += BLOCKS_PER_PAGE;
2432 	shmem_recalc_inode(inode);
2433 	spin_unlock_irq(&info->lock);
2434 
2435 	SetPageDirty(page);
2436 	unlock_page(page);
2437 	return 0;
2438 out_delete_from_cache:
2439 	delete_from_page_cache(page);
2440 out_release:
2441 	unlock_page(page);
2442 	put_page(page);
2443 out_unacct_blocks:
2444 	shmem_inode_unacct_blocks(inode, 1);
2445 	return ret;
2446 }
2447 #endif /* CONFIG_USERFAULTFD */
2448 
2449 #ifdef CONFIG_TMPFS
2450 static const struct inode_operations shmem_symlink_inode_operations;
2451 static const struct inode_operations shmem_short_symlink_operations;
2452 
2453 #ifdef CONFIG_TMPFS_XATTR
2454 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2455 #else
2456 #define shmem_initxattrs NULL
2457 #endif
2458 
2459 static int
2460 shmem_write_begin(struct file *file, struct address_space *mapping,
2461 			loff_t pos, unsigned len, unsigned flags,
2462 			struct page **pagep, void **fsdata)
2463 {
2464 	struct inode *inode = mapping->host;
2465 	struct shmem_inode_info *info = SHMEM_I(inode);
2466 	pgoff_t index = pos >> PAGE_SHIFT;
2467 
2468 	/* i_mutex is held by caller */
2469 	if (unlikely(info->seals & (F_SEAL_GROW |
2470 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2471 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2472 			return -EPERM;
2473 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2474 			return -EPERM;
2475 	}
2476 
2477 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2478 }
2479 
2480 static int
2481 shmem_write_end(struct file *file, struct address_space *mapping,
2482 			loff_t pos, unsigned len, unsigned copied,
2483 			struct page *page, void *fsdata)
2484 {
2485 	struct inode *inode = mapping->host;
2486 
2487 	if (pos + copied > inode->i_size)
2488 		i_size_write(inode, pos + copied);
2489 
2490 	if (!PageUptodate(page)) {
2491 		struct page *head = compound_head(page);
2492 		if (PageTransCompound(page)) {
2493 			int i;
2494 
2495 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2496 				if (head + i == page)
2497 					continue;
2498 				clear_highpage(head + i);
2499 				flush_dcache_page(head + i);
2500 			}
2501 		}
2502 		if (copied < PAGE_SIZE) {
2503 			unsigned from = pos & (PAGE_SIZE - 1);
2504 			zero_user_segments(page, 0, from,
2505 					from + copied, PAGE_SIZE);
2506 		}
2507 		SetPageUptodate(head);
2508 	}
2509 	set_page_dirty(page);
2510 	unlock_page(page);
2511 	put_page(page);
2512 
2513 	return copied;
2514 }
2515 
2516 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2517 {
2518 	struct file *file = iocb->ki_filp;
2519 	struct inode *inode = file_inode(file);
2520 	struct address_space *mapping = inode->i_mapping;
2521 	pgoff_t index;
2522 	unsigned long offset;
2523 	enum sgp_type sgp = SGP_READ;
2524 	int error = 0;
2525 	ssize_t retval = 0;
2526 	loff_t *ppos = &iocb->ki_pos;
2527 
2528 	/*
2529 	 * Might this read be for a stacking filesystem?  Then when reading
2530 	 * holes of a sparse file, we actually need to allocate those pages,
2531 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2532 	 */
2533 	if (!iter_is_iovec(to))
2534 		sgp = SGP_CACHE;
2535 
2536 	index = *ppos >> PAGE_SHIFT;
2537 	offset = *ppos & ~PAGE_MASK;
2538 
2539 	for (;;) {
2540 		struct page *page = NULL;
2541 		pgoff_t end_index;
2542 		unsigned long nr, ret;
2543 		loff_t i_size = i_size_read(inode);
2544 
2545 		end_index = i_size >> PAGE_SHIFT;
2546 		if (index > end_index)
2547 			break;
2548 		if (index == end_index) {
2549 			nr = i_size & ~PAGE_MASK;
2550 			if (nr <= offset)
2551 				break;
2552 		}
2553 
2554 		error = shmem_getpage(inode, index, &page, sgp);
2555 		if (error) {
2556 			if (error == -EINVAL)
2557 				error = 0;
2558 			break;
2559 		}
2560 		if (page) {
2561 			if (sgp == SGP_CACHE)
2562 				set_page_dirty(page);
2563 			unlock_page(page);
2564 		}
2565 
2566 		/*
2567 		 * We must evaluate after, since reads (unlike writes)
2568 		 * are called without i_mutex protection against truncate
2569 		 */
2570 		nr = PAGE_SIZE;
2571 		i_size = i_size_read(inode);
2572 		end_index = i_size >> PAGE_SHIFT;
2573 		if (index == end_index) {
2574 			nr = i_size & ~PAGE_MASK;
2575 			if (nr <= offset) {
2576 				if (page)
2577 					put_page(page);
2578 				break;
2579 			}
2580 		}
2581 		nr -= offset;
2582 
2583 		if (page) {
2584 			/*
2585 			 * If users can be writing to this page using arbitrary
2586 			 * virtual addresses, take care about potential aliasing
2587 			 * before reading the page on the kernel side.
2588 			 */
2589 			if (mapping_writably_mapped(mapping))
2590 				flush_dcache_page(page);
2591 			/*
2592 			 * Mark the page accessed if we read the beginning.
2593 			 */
2594 			if (!offset)
2595 				mark_page_accessed(page);
2596 		} else {
2597 			page = ZERO_PAGE(0);
2598 			get_page(page);
2599 		}
2600 
2601 		/*
2602 		 * Ok, we have the page, and it's up-to-date, so
2603 		 * now we can copy it to user space...
2604 		 */
2605 		ret = copy_page_to_iter(page, offset, nr, to);
2606 		retval += ret;
2607 		offset += ret;
2608 		index += offset >> PAGE_SHIFT;
2609 		offset &= ~PAGE_MASK;
2610 
2611 		put_page(page);
2612 		if (!iov_iter_count(to))
2613 			break;
2614 		if (ret < nr) {
2615 			error = -EFAULT;
2616 			break;
2617 		}
2618 		cond_resched();
2619 	}
2620 
2621 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2622 	file_accessed(file);
2623 	return retval ? retval : error;
2624 }
2625 
2626 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2627 {
2628 	struct address_space *mapping = file->f_mapping;
2629 	struct inode *inode = mapping->host;
2630 
2631 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2632 		return generic_file_llseek_size(file, offset, whence,
2633 					MAX_LFS_FILESIZE, i_size_read(inode));
2634 	if (offset < 0)
2635 		return -ENXIO;
2636 
2637 	inode_lock(inode);
2638 	/* We're holding i_mutex so we can access i_size directly */
2639 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2640 	if (offset >= 0)
2641 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2642 	inode_unlock(inode);
2643 	return offset;
2644 }
2645 
2646 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2647 							 loff_t len)
2648 {
2649 	struct inode *inode = file_inode(file);
2650 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2651 	struct shmem_inode_info *info = SHMEM_I(inode);
2652 	struct shmem_falloc shmem_falloc;
2653 	pgoff_t start, index, end;
2654 	int error;
2655 
2656 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2657 		return -EOPNOTSUPP;
2658 
2659 	inode_lock(inode);
2660 
2661 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2662 		struct address_space *mapping = file->f_mapping;
2663 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2664 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2665 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2666 
2667 		/* protected by i_mutex */
2668 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2669 			error = -EPERM;
2670 			goto out;
2671 		}
2672 
2673 		shmem_falloc.waitq = &shmem_falloc_waitq;
2674 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2675 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2676 		spin_lock(&inode->i_lock);
2677 		inode->i_private = &shmem_falloc;
2678 		spin_unlock(&inode->i_lock);
2679 
2680 		if ((u64)unmap_end > (u64)unmap_start)
2681 			unmap_mapping_range(mapping, unmap_start,
2682 					    1 + unmap_end - unmap_start, 0);
2683 		shmem_truncate_range(inode, offset, offset + len - 1);
2684 		/* No need to unmap again: hole-punching leaves COWed pages */
2685 
2686 		spin_lock(&inode->i_lock);
2687 		inode->i_private = NULL;
2688 		wake_up_all(&shmem_falloc_waitq);
2689 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2690 		spin_unlock(&inode->i_lock);
2691 		error = 0;
2692 		goto out;
2693 	}
2694 
2695 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2696 	error = inode_newsize_ok(inode, offset + len);
2697 	if (error)
2698 		goto out;
2699 
2700 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2701 		error = -EPERM;
2702 		goto out;
2703 	}
2704 
2705 	start = offset >> PAGE_SHIFT;
2706 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2707 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2708 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2709 		error = -ENOSPC;
2710 		goto out;
2711 	}
2712 
2713 	shmem_falloc.waitq = NULL;
2714 	shmem_falloc.start = start;
2715 	shmem_falloc.next  = start;
2716 	shmem_falloc.nr_falloced = 0;
2717 	shmem_falloc.nr_unswapped = 0;
2718 	spin_lock(&inode->i_lock);
2719 	inode->i_private = &shmem_falloc;
2720 	spin_unlock(&inode->i_lock);
2721 
2722 	for (index = start; index < end; index++) {
2723 		struct page *page;
2724 
2725 		/*
2726 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2727 		 * been interrupted because we are using up too much memory.
2728 		 */
2729 		if (signal_pending(current))
2730 			error = -EINTR;
2731 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2732 			error = -ENOMEM;
2733 		else
2734 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2735 		if (error) {
2736 			/* Remove the !PageUptodate pages we added */
2737 			if (index > start) {
2738 				shmem_undo_range(inode,
2739 				    (loff_t)start << PAGE_SHIFT,
2740 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2741 			}
2742 			goto undone;
2743 		}
2744 
2745 		/*
2746 		 * Inform shmem_writepage() how far we have reached.
2747 		 * No need for lock or barrier: we have the page lock.
2748 		 */
2749 		shmem_falloc.next++;
2750 		if (!PageUptodate(page))
2751 			shmem_falloc.nr_falloced++;
2752 
2753 		/*
2754 		 * If !PageUptodate, leave it that way so that freeable pages
2755 		 * can be recognized if we need to rollback on error later.
2756 		 * But set_page_dirty so that memory pressure will swap rather
2757 		 * than free the pages we are allocating (and SGP_CACHE pages
2758 		 * might still be clean: we now need to mark those dirty too).
2759 		 */
2760 		set_page_dirty(page);
2761 		unlock_page(page);
2762 		put_page(page);
2763 		cond_resched();
2764 	}
2765 
2766 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2767 		i_size_write(inode, offset + len);
2768 	inode->i_ctime = current_time(inode);
2769 undone:
2770 	spin_lock(&inode->i_lock);
2771 	inode->i_private = NULL;
2772 	spin_unlock(&inode->i_lock);
2773 out:
2774 	inode_unlock(inode);
2775 	return error;
2776 }
2777 
2778 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2779 {
2780 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2781 
2782 	buf->f_type = TMPFS_MAGIC;
2783 	buf->f_bsize = PAGE_SIZE;
2784 	buf->f_namelen = NAME_MAX;
2785 	if (sbinfo->max_blocks) {
2786 		buf->f_blocks = sbinfo->max_blocks;
2787 		buf->f_bavail =
2788 		buf->f_bfree  = sbinfo->max_blocks -
2789 				percpu_counter_sum(&sbinfo->used_blocks);
2790 	}
2791 	if (sbinfo->max_inodes) {
2792 		buf->f_files = sbinfo->max_inodes;
2793 		buf->f_ffree = sbinfo->free_inodes;
2794 	}
2795 	/* else leave those fields 0 like simple_statfs */
2796 
2797 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2798 
2799 	return 0;
2800 }
2801 
2802 /*
2803  * File creation. Allocate an inode, and we're done..
2804  */
2805 static int
2806 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2807 	    struct dentry *dentry, umode_t mode, dev_t dev)
2808 {
2809 	struct inode *inode;
2810 	int error = -ENOSPC;
2811 
2812 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2813 	if (inode) {
2814 		error = simple_acl_create(dir, inode);
2815 		if (error)
2816 			goto out_iput;
2817 		error = security_inode_init_security(inode, dir,
2818 						     &dentry->d_name,
2819 						     shmem_initxattrs, NULL);
2820 		if (error && error != -EOPNOTSUPP)
2821 			goto out_iput;
2822 
2823 		error = 0;
2824 		dir->i_size += BOGO_DIRENT_SIZE;
2825 		dir->i_ctime = dir->i_mtime = current_time(dir);
2826 		d_instantiate(dentry, inode);
2827 		dget(dentry); /* Extra count - pin the dentry in core */
2828 	}
2829 	return error;
2830 out_iput:
2831 	iput(inode);
2832 	return error;
2833 }
2834 
2835 static int
2836 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2837 	      struct dentry *dentry, umode_t mode)
2838 {
2839 	struct inode *inode;
2840 	int error = -ENOSPC;
2841 
2842 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2843 	if (inode) {
2844 		error = security_inode_init_security(inode, dir,
2845 						     NULL,
2846 						     shmem_initxattrs, NULL);
2847 		if (error && error != -EOPNOTSUPP)
2848 			goto out_iput;
2849 		error = simple_acl_create(dir, inode);
2850 		if (error)
2851 			goto out_iput;
2852 		d_tmpfile(dentry, inode);
2853 	}
2854 	return error;
2855 out_iput:
2856 	iput(inode);
2857 	return error;
2858 }
2859 
2860 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2861 		       struct dentry *dentry, umode_t mode)
2862 {
2863 	int error;
2864 
2865 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2866 				 mode | S_IFDIR, 0)))
2867 		return error;
2868 	inc_nlink(dir);
2869 	return 0;
2870 }
2871 
2872 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2873 			struct dentry *dentry, umode_t mode, bool excl)
2874 {
2875 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2876 }
2877 
2878 /*
2879  * Link a file..
2880  */
2881 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2882 {
2883 	struct inode *inode = d_inode(old_dentry);
2884 	int ret = 0;
2885 
2886 	/*
2887 	 * No ordinary (disk based) filesystem counts links as inodes;
2888 	 * but each new link needs a new dentry, pinning lowmem, and
2889 	 * tmpfs dentries cannot be pruned until they are unlinked.
2890 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2891 	 * first link must skip that, to get the accounting right.
2892 	 */
2893 	if (inode->i_nlink) {
2894 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2895 		if (ret)
2896 			goto out;
2897 	}
2898 
2899 	dir->i_size += BOGO_DIRENT_SIZE;
2900 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2901 	inc_nlink(inode);
2902 	ihold(inode);	/* New dentry reference */
2903 	dget(dentry);		/* Extra pinning count for the created dentry */
2904 	d_instantiate(dentry, inode);
2905 out:
2906 	return ret;
2907 }
2908 
2909 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2910 {
2911 	struct inode *inode = d_inode(dentry);
2912 
2913 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2914 		shmem_free_inode(inode->i_sb);
2915 
2916 	dir->i_size -= BOGO_DIRENT_SIZE;
2917 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2918 	drop_nlink(inode);
2919 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2920 	return 0;
2921 }
2922 
2923 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2924 {
2925 	if (!simple_empty(dentry))
2926 		return -ENOTEMPTY;
2927 
2928 	drop_nlink(d_inode(dentry));
2929 	drop_nlink(dir);
2930 	return shmem_unlink(dir, dentry);
2931 }
2932 
2933 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2934 {
2935 	bool old_is_dir = d_is_dir(old_dentry);
2936 	bool new_is_dir = d_is_dir(new_dentry);
2937 
2938 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2939 		if (old_is_dir) {
2940 			drop_nlink(old_dir);
2941 			inc_nlink(new_dir);
2942 		} else {
2943 			drop_nlink(new_dir);
2944 			inc_nlink(old_dir);
2945 		}
2946 	}
2947 	old_dir->i_ctime = old_dir->i_mtime =
2948 	new_dir->i_ctime = new_dir->i_mtime =
2949 	d_inode(old_dentry)->i_ctime =
2950 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2951 
2952 	return 0;
2953 }
2954 
2955 static int shmem_whiteout(struct user_namespace *mnt_userns,
2956 			  struct inode *old_dir, struct dentry *old_dentry)
2957 {
2958 	struct dentry *whiteout;
2959 	int error;
2960 
2961 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2962 	if (!whiteout)
2963 		return -ENOMEM;
2964 
2965 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2966 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2967 	dput(whiteout);
2968 	if (error)
2969 		return error;
2970 
2971 	/*
2972 	 * Cheat and hash the whiteout while the old dentry is still in
2973 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2974 	 *
2975 	 * d_lookup() will consistently find one of them at this point,
2976 	 * not sure which one, but that isn't even important.
2977 	 */
2978 	d_rehash(whiteout);
2979 	return 0;
2980 }
2981 
2982 /*
2983  * The VFS layer already does all the dentry stuff for rename,
2984  * we just have to decrement the usage count for the target if
2985  * it exists so that the VFS layer correctly free's it when it
2986  * gets overwritten.
2987  */
2988 static int shmem_rename2(struct user_namespace *mnt_userns,
2989 			 struct inode *old_dir, struct dentry *old_dentry,
2990 			 struct inode *new_dir, struct dentry *new_dentry,
2991 			 unsigned int flags)
2992 {
2993 	struct inode *inode = d_inode(old_dentry);
2994 	int they_are_dirs = S_ISDIR(inode->i_mode);
2995 
2996 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2997 		return -EINVAL;
2998 
2999 	if (flags & RENAME_EXCHANGE)
3000 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3001 
3002 	if (!simple_empty(new_dentry))
3003 		return -ENOTEMPTY;
3004 
3005 	if (flags & RENAME_WHITEOUT) {
3006 		int error;
3007 
3008 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3009 		if (error)
3010 			return error;
3011 	}
3012 
3013 	if (d_really_is_positive(new_dentry)) {
3014 		(void) shmem_unlink(new_dir, new_dentry);
3015 		if (they_are_dirs) {
3016 			drop_nlink(d_inode(new_dentry));
3017 			drop_nlink(old_dir);
3018 		}
3019 	} else if (they_are_dirs) {
3020 		drop_nlink(old_dir);
3021 		inc_nlink(new_dir);
3022 	}
3023 
3024 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3025 	new_dir->i_size += BOGO_DIRENT_SIZE;
3026 	old_dir->i_ctime = old_dir->i_mtime =
3027 	new_dir->i_ctime = new_dir->i_mtime =
3028 	inode->i_ctime = current_time(old_dir);
3029 	return 0;
3030 }
3031 
3032 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3033 			 struct dentry *dentry, const char *symname)
3034 {
3035 	int error;
3036 	int len;
3037 	struct inode *inode;
3038 	struct page *page;
3039 
3040 	len = strlen(symname) + 1;
3041 	if (len > PAGE_SIZE)
3042 		return -ENAMETOOLONG;
3043 
3044 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3045 				VM_NORESERVE);
3046 	if (!inode)
3047 		return -ENOSPC;
3048 
3049 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3050 					     shmem_initxattrs, NULL);
3051 	if (error && error != -EOPNOTSUPP) {
3052 		iput(inode);
3053 		return error;
3054 	}
3055 
3056 	inode->i_size = len-1;
3057 	if (len <= SHORT_SYMLINK_LEN) {
3058 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3059 		if (!inode->i_link) {
3060 			iput(inode);
3061 			return -ENOMEM;
3062 		}
3063 		inode->i_op = &shmem_short_symlink_operations;
3064 	} else {
3065 		inode_nohighmem(inode);
3066 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3067 		if (error) {
3068 			iput(inode);
3069 			return error;
3070 		}
3071 		inode->i_mapping->a_ops = &shmem_aops;
3072 		inode->i_op = &shmem_symlink_inode_operations;
3073 		memcpy(page_address(page), symname, len);
3074 		SetPageUptodate(page);
3075 		set_page_dirty(page);
3076 		unlock_page(page);
3077 		put_page(page);
3078 	}
3079 	dir->i_size += BOGO_DIRENT_SIZE;
3080 	dir->i_ctime = dir->i_mtime = current_time(dir);
3081 	d_instantiate(dentry, inode);
3082 	dget(dentry);
3083 	return 0;
3084 }
3085 
3086 static void shmem_put_link(void *arg)
3087 {
3088 	mark_page_accessed(arg);
3089 	put_page(arg);
3090 }
3091 
3092 static const char *shmem_get_link(struct dentry *dentry,
3093 				  struct inode *inode,
3094 				  struct delayed_call *done)
3095 {
3096 	struct page *page = NULL;
3097 	int error;
3098 	if (!dentry) {
3099 		page = find_get_page(inode->i_mapping, 0);
3100 		if (!page)
3101 			return ERR_PTR(-ECHILD);
3102 		if (!PageUptodate(page)) {
3103 			put_page(page);
3104 			return ERR_PTR(-ECHILD);
3105 		}
3106 	} else {
3107 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3108 		if (error)
3109 			return ERR_PTR(error);
3110 		unlock_page(page);
3111 	}
3112 	set_delayed_call(done, shmem_put_link, page);
3113 	return page_address(page);
3114 }
3115 
3116 #ifdef CONFIG_TMPFS_XATTR
3117 /*
3118  * Superblocks without xattr inode operations may get some security.* xattr
3119  * support from the LSM "for free". As soon as we have any other xattrs
3120  * like ACLs, we also need to implement the security.* handlers at
3121  * filesystem level, though.
3122  */
3123 
3124 /*
3125  * Callback for security_inode_init_security() for acquiring xattrs.
3126  */
3127 static int shmem_initxattrs(struct inode *inode,
3128 			    const struct xattr *xattr_array,
3129 			    void *fs_info)
3130 {
3131 	struct shmem_inode_info *info = SHMEM_I(inode);
3132 	const struct xattr *xattr;
3133 	struct simple_xattr *new_xattr;
3134 	size_t len;
3135 
3136 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3137 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3138 		if (!new_xattr)
3139 			return -ENOMEM;
3140 
3141 		len = strlen(xattr->name) + 1;
3142 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3143 					  GFP_KERNEL);
3144 		if (!new_xattr->name) {
3145 			kvfree(new_xattr);
3146 			return -ENOMEM;
3147 		}
3148 
3149 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3150 		       XATTR_SECURITY_PREFIX_LEN);
3151 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3152 		       xattr->name, len);
3153 
3154 		simple_xattr_list_add(&info->xattrs, new_xattr);
3155 	}
3156 
3157 	return 0;
3158 }
3159 
3160 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3161 				   struct dentry *unused, struct inode *inode,
3162 				   const char *name, void *buffer, size_t size)
3163 {
3164 	struct shmem_inode_info *info = SHMEM_I(inode);
3165 
3166 	name = xattr_full_name(handler, name);
3167 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3168 }
3169 
3170 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3171 				   struct user_namespace *mnt_userns,
3172 				   struct dentry *unused, struct inode *inode,
3173 				   const char *name, const void *value,
3174 				   size_t size, int flags)
3175 {
3176 	struct shmem_inode_info *info = SHMEM_I(inode);
3177 
3178 	name = xattr_full_name(handler, name);
3179 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3180 }
3181 
3182 static const struct xattr_handler shmem_security_xattr_handler = {
3183 	.prefix = XATTR_SECURITY_PREFIX,
3184 	.get = shmem_xattr_handler_get,
3185 	.set = shmem_xattr_handler_set,
3186 };
3187 
3188 static const struct xattr_handler shmem_trusted_xattr_handler = {
3189 	.prefix = XATTR_TRUSTED_PREFIX,
3190 	.get = shmem_xattr_handler_get,
3191 	.set = shmem_xattr_handler_set,
3192 };
3193 
3194 static const struct xattr_handler *shmem_xattr_handlers[] = {
3195 #ifdef CONFIG_TMPFS_POSIX_ACL
3196 	&posix_acl_access_xattr_handler,
3197 	&posix_acl_default_xattr_handler,
3198 #endif
3199 	&shmem_security_xattr_handler,
3200 	&shmem_trusted_xattr_handler,
3201 	NULL
3202 };
3203 
3204 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3205 {
3206 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3207 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3208 }
3209 #endif /* CONFIG_TMPFS_XATTR */
3210 
3211 static const struct inode_operations shmem_short_symlink_operations = {
3212 	.get_link	= simple_get_link,
3213 #ifdef CONFIG_TMPFS_XATTR
3214 	.listxattr	= shmem_listxattr,
3215 #endif
3216 };
3217 
3218 static const struct inode_operations shmem_symlink_inode_operations = {
3219 	.get_link	= shmem_get_link,
3220 #ifdef CONFIG_TMPFS_XATTR
3221 	.listxattr	= shmem_listxattr,
3222 #endif
3223 };
3224 
3225 static struct dentry *shmem_get_parent(struct dentry *child)
3226 {
3227 	return ERR_PTR(-ESTALE);
3228 }
3229 
3230 static int shmem_match(struct inode *ino, void *vfh)
3231 {
3232 	__u32 *fh = vfh;
3233 	__u64 inum = fh[2];
3234 	inum = (inum << 32) | fh[1];
3235 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3236 }
3237 
3238 /* Find any alias of inode, but prefer a hashed alias */
3239 static struct dentry *shmem_find_alias(struct inode *inode)
3240 {
3241 	struct dentry *alias = d_find_alias(inode);
3242 
3243 	return alias ?: d_find_any_alias(inode);
3244 }
3245 
3246 
3247 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3248 		struct fid *fid, int fh_len, int fh_type)
3249 {
3250 	struct inode *inode;
3251 	struct dentry *dentry = NULL;
3252 	u64 inum;
3253 
3254 	if (fh_len < 3)
3255 		return NULL;
3256 
3257 	inum = fid->raw[2];
3258 	inum = (inum << 32) | fid->raw[1];
3259 
3260 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3261 			shmem_match, fid->raw);
3262 	if (inode) {
3263 		dentry = shmem_find_alias(inode);
3264 		iput(inode);
3265 	}
3266 
3267 	return dentry;
3268 }
3269 
3270 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3271 				struct inode *parent)
3272 {
3273 	if (*len < 3) {
3274 		*len = 3;
3275 		return FILEID_INVALID;
3276 	}
3277 
3278 	if (inode_unhashed(inode)) {
3279 		/* Unfortunately insert_inode_hash is not idempotent,
3280 		 * so as we hash inodes here rather than at creation
3281 		 * time, we need a lock to ensure we only try
3282 		 * to do it once
3283 		 */
3284 		static DEFINE_SPINLOCK(lock);
3285 		spin_lock(&lock);
3286 		if (inode_unhashed(inode))
3287 			__insert_inode_hash(inode,
3288 					    inode->i_ino + inode->i_generation);
3289 		spin_unlock(&lock);
3290 	}
3291 
3292 	fh[0] = inode->i_generation;
3293 	fh[1] = inode->i_ino;
3294 	fh[2] = ((__u64)inode->i_ino) >> 32;
3295 
3296 	*len = 3;
3297 	return 1;
3298 }
3299 
3300 static const struct export_operations shmem_export_ops = {
3301 	.get_parent     = shmem_get_parent,
3302 	.encode_fh      = shmem_encode_fh,
3303 	.fh_to_dentry	= shmem_fh_to_dentry,
3304 };
3305 
3306 enum shmem_param {
3307 	Opt_gid,
3308 	Opt_huge,
3309 	Opt_mode,
3310 	Opt_mpol,
3311 	Opt_nr_blocks,
3312 	Opt_nr_inodes,
3313 	Opt_size,
3314 	Opt_uid,
3315 	Opt_inode32,
3316 	Opt_inode64,
3317 };
3318 
3319 static const struct constant_table shmem_param_enums_huge[] = {
3320 	{"never",	SHMEM_HUGE_NEVER },
3321 	{"always",	SHMEM_HUGE_ALWAYS },
3322 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3323 	{"advise",	SHMEM_HUGE_ADVISE },
3324 	{}
3325 };
3326 
3327 const struct fs_parameter_spec shmem_fs_parameters[] = {
3328 	fsparam_u32   ("gid",		Opt_gid),
3329 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3330 	fsparam_u32oct("mode",		Opt_mode),
3331 	fsparam_string("mpol",		Opt_mpol),
3332 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3333 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3334 	fsparam_string("size",		Opt_size),
3335 	fsparam_u32   ("uid",		Opt_uid),
3336 	fsparam_flag  ("inode32",	Opt_inode32),
3337 	fsparam_flag  ("inode64",	Opt_inode64),
3338 	{}
3339 };
3340 
3341 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3342 {
3343 	struct shmem_options *ctx = fc->fs_private;
3344 	struct fs_parse_result result;
3345 	unsigned long long size;
3346 	char *rest;
3347 	int opt;
3348 
3349 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3350 	if (opt < 0)
3351 		return opt;
3352 
3353 	switch (opt) {
3354 	case Opt_size:
3355 		size = memparse(param->string, &rest);
3356 		if (*rest == '%') {
3357 			size <<= PAGE_SHIFT;
3358 			size *= totalram_pages();
3359 			do_div(size, 100);
3360 			rest++;
3361 		}
3362 		if (*rest)
3363 			goto bad_value;
3364 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3365 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3366 		break;
3367 	case Opt_nr_blocks:
3368 		ctx->blocks = memparse(param->string, &rest);
3369 		if (*rest)
3370 			goto bad_value;
3371 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3372 		break;
3373 	case Opt_nr_inodes:
3374 		ctx->inodes = memparse(param->string, &rest);
3375 		if (*rest)
3376 			goto bad_value;
3377 		ctx->seen |= SHMEM_SEEN_INODES;
3378 		break;
3379 	case Opt_mode:
3380 		ctx->mode = result.uint_32 & 07777;
3381 		break;
3382 	case Opt_uid:
3383 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3384 		if (!uid_valid(ctx->uid))
3385 			goto bad_value;
3386 		break;
3387 	case Opt_gid:
3388 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3389 		if (!gid_valid(ctx->gid))
3390 			goto bad_value;
3391 		break;
3392 	case Opt_huge:
3393 		ctx->huge = result.uint_32;
3394 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3395 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3396 		      has_transparent_hugepage()))
3397 			goto unsupported_parameter;
3398 		ctx->seen |= SHMEM_SEEN_HUGE;
3399 		break;
3400 	case Opt_mpol:
3401 		if (IS_ENABLED(CONFIG_NUMA)) {
3402 			mpol_put(ctx->mpol);
3403 			ctx->mpol = NULL;
3404 			if (mpol_parse_str(param->string, &ctx->mpol))
3405 				goto bad_value;
3406 			break;
3407 		}
3408 		goto unsupported_parameter;
3409 	case Opt_inode32:
3410 		ctx->full_inums = false;
3411 		ctx->seen |= SHMEM_SEEN_INUMS;
3412 		break;
3413 	case Opt_inode64:
3414 		if (sizeof(ino_t) < 8) {
3415 			return invalfc(fc,
3416 				       "Cannot use inode64 with <64bit inums in kernel\n");
3417 		}
3418 		ctx->full_inums = true;
3419 		ctx->seen |= SHMEM_SEEN_INUMS;
3420 		break;
3421 	}
3422 	return 0;
3423 
3424 unsupported_parameter:
3425 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3426 bad_value:
3427 	return invalfc(fc, "Bad value for '%s'", param->key);
3428 }
3429 
3430 static int shmem_parse_options(struct fs_context *fc, void *data)
3431 {
3432 	char *options = data;
3433 
3434 	if (options) {
3435 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3436 		if (err)
3437 			return err;
3438 	}
3439 
3440 	while (options != NULL) {
3441 		char *this_char = options;
3442 		for (;;) {
3443 			/*
3444 			 * NUL-terminate this option: unfortunately,
3445 			 * mount options form a comma-separated list,
3446 			 * but mpol's nodelist may also contain commas.
3447 			 */
3448 			options = strchr(options, ',');
3449 			if (options == NULL)
3450 				break;
3451 			options++;
3452 			if (!isdigit(*options)) {
3453 				options[-1] = '\0';
3454 				break;
3455 			}
3456 		}
3457 		if (*this_char) {
3458 			char *value = strchr(this_char, '=');
3459 			size_t len = 0;
3460 			int err;
3461 
3462 			if (value) {
3463 				*value++ = '\0';
3464 				len = strlen(value);
3465 			}
3466 			err = vfs_parse_fs_string(fc, this_char, value, len);
3467 			if (err < 0)
3468 				return err;
3469 		}
3470 	}
3471 	return 0;
3472 }
3473 
3474 /*
3475  * Reconfigure a shmem filesystem.
3476  *
3477  * Note that we disallow change from limited->unlimited blocks/inodes while any
3478  * are in use; but we must separately disallow unlimited->limited, because in
3479  * that case we have no record of how much is already in use.
3480  */
3481 static int shmem_reconfigure(struct fs_context *fc)
3482 {
3483 	struct shmem_options *ctx = fc->fs_private;
3484 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3485 	unsigned long inodes;
3486 	struct mempolicy *mpol = NULL;
3487 	const char *err;
3488 
3489 	raw_spin_lock(&sbinfo->stat_lock);
3490 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3491 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3492 		if (!sbinfo->max_blocks) {
3493 			err = "Cannot retroactively limit size";
3494 			goto out;
3495 		}
3496 		if (percpu_counter_compare(&sbinfo->used_blocks,
3497 					   ctx->blocks) > 0) {
3498 			err = "Too small a size for current use";
3499 			goto out;
3500 		}
3501 	}
3502 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3503 		if (!sbinfo->max_inodes) {
3504 			err = "Cannot retroactively limit inodes";
3505 			goto out;
3506 		}
3507 		if (ctx->inodes < inodes) {
3508 			err = "Too few inodes for current use";
3509 			goto out;
3510 		}
3511 	}
3512 
3513 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3514 	    sbinfo->next_ino > UINT_MAX) {
3515 		err = "Current inum too high to switch to 32-bit inums";
3516 		goto out;
3517 	}
3518 
3519 	if (ctx->seen & SHMEM_SEEN_HUGE)
3520 		sbinfo->huge = ctx->huge;
3521 	if (ctx->seen & SHMEM_SEEN_INUMS)
3522 		sbinfo->full_inums = ctx->full_inums;
3523 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3524 		sbinfo->max_blocks  = ctx->blocks;
3525 	if (ctx->seen & SHMEM_SEEN_INODES) {
3526 		sbinfo->max_inodes  = ctx->inodes;
3527 		sbinfo->free_inodes = ctx->inodes - inodes;
3528 	}
3529 
3530 	/*
3531 	 * Preserve previous mempolicy unless mpol remount option was specified.
3532 	 */
3533 	if (ctx->mpol) {
3534 		mpol = sbinfo->mpol;
3535 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3536 		ctx->mpol = NULL;
3537 	}
3538 	raw_spin_unlock(&sbinfo->stat_lock);
3539 	mpol_put(mpol);
3540 	return 0;
3541 out:
3542 	raw_spin_unlock(&sbinfo->stat_lock);
3543 	return invalfc(fc, "%s", err);
3544 }
3545 
3546 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3547 {
3548 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3549 
3550 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3551 		seq_printf(seq, ",size=%luk",
3552 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3553 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3554 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3555 	if (sbinfo->mode != (0777 | S_ISVTX))
3556 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3557 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3558 		seq_printf(seq, ",uid=%u",
3559 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3560 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3561 		seq_printf(seq, ",gid=%u",
3562 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3563 
3564 	/*
3565 	 * Showing inode{64,32} might be useful even if it's the system default,
3566 	 * since then people don't have to resort to checking both here and
3567 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3568 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3569 	 *
3570 	 * We hide it when inode64 isn't the default and we are using 32-bit
3571 	 * inodes, since that probably just means the feature isn't even under
3572 	 * consideration.
3573 	 *
3574 	 * As such:
3575 	 *
3576 	 *                     +-----------------+-----------------+
3577 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3578 	 *  +------------------+-----------------+-----------------+
3579 	 *  | full_inums=true  | show            | show            |
3580 	 *  | full_inums=false | show            | hide            |
3581 	 *  +------------------+-----------------+-----------------+
3582 	 *
3583 	 */
3584 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3585 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3586 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3587 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3588 	if (sbinfo->huge)
3589 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3590 #endif
3591 	shmem_show_mpol(seq, sbinfo->mpol);
3592 	return 0;
3593 }
3594 
3595 #endif /* CONFIG_TMPFS */
3596 
3597 static void shmem_put_super(struct super_block *sb)
3598 {
3599 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3600 
3601 	free_percpu(sbinfo->ino_batch);
3602 	percpu_counter_destroy(&sbinfo->used_blocks);
3603 	mpol_put(sbinfo->mpol);
3604 	kfree(sbinfo);
3605 	sb->s_fs_info = NULL;
3606 }
3607 
3608 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3609 {
3610 	struct shmem_options *ctx = fc->fs_private;
3611 	struct inode *inode;
3612 	struct shmem_sb_info *sbinfo;
3613 
3614 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3615 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3616 				L1_CACHE_BYTES), GFP_KERNEL);
3617 	if (!sbinfo)
3618 		return -ENOMEM;
3619 
3620 	sb->s_fs_info = sbinfo;
3621 
3622 #ifdef CONFIG_TMPFS
3623 	/*
3624 	 * Per default we only allow half of the physical ram per
3625 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3626 	 * but the internal instance is left unlimited.
3627 	 */
3628 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3629 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3630 			ctx->blocks = shmem_default_max_blocks();
3631 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3632 			ctx->inodes = shmem_default_max_inodes();
3633 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3634 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3635 	} else {
3636 		sb->s_flags |= SB_NOUSER;
3637 	}
3638 	sb->s_export_op = &shmem_export_ops;
3639 	sb->s_flags |= SB_NOSEC;
3640 #else
3641 	sb->s_flags |= SB_NOUSER;
3642 #endif
3643 	sbinfo->max_blocks = ctx->blocks;
3644 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3645 	if (sb->s_flags & SB_KERNMOUNT) {
3646 		sbinfo->ino_batch = alloc_percpu(ino_t);
3647 		if (!sbinfo->ino_batch)
3648 			goto failed;
3649 	}
3650 	sbinfo->uid = ctx->uid;
3651 	sbinfo->gid = ctx->gid;
3652 	sbinfo->full_inums = ctx->full_inums;
3653 	sbinfo->mode = ctx->mode;
3654 	sbinfo->huge = ctx->huge;
3655 	sbinfo->mpol = ctx->mpol;
3656 	ctx->mpol = NULL;
3657 
3658 	raw_spin_lock_init(&sbinfo->stat_lock);
3659 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3660 		goto failed;
3661 	spin_lock_init(&sbinfo->shrinklist_lock);
3662 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3663 
3664 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3665 	sb->s_blocksize = PAGE_SIZE;
3666 	sb->s_blocksize_bits = PAGE_SHIFT;
3667 	sb->s_magic = TMPFS_MAGIC;
3668 	sb->s_op = &shmem_ops;
3669 	sb->s_time_gran = 1;
3670 #ifdef CONFIG_TMPFS_XATTR
3671 	sb->s_xattr = shmem_xattr_handlers;
3672 #endif
3673 #ifdef CONFIG_TMPFS_POSIX_ACL
3674 	sb->s_flags |= SB_POSIXACL;
3675 #endif
3676 	uuid_gen(&sb->s_uuid);
3677 
3678 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3679 	if (!inode)
3680 		goto failed;
3681 	inode->i_uid = sbinfo->uid;
3682 	inode->i_gid = sbinfo->gid;
3683 	sb->s_root = d_make_root(inode);
3684 	if (!sb->s_root)
3685 		goto failed;
3686 	return 0;
3687 
3688 failed:
3689 	shmem_put_super(sb);
3690 	return -ENOMEM;
3691 }
3692 
3693 static int shmem_get_tree(struct fs_context *fc)
3694 {
3695 	return get_tree_nodev(fc, shmem_fill_super);
3696 }
3697 
3698 static void shmem_free_fc(struct fs_context *fc)
3699 {
3700 	struct shmem_options *ctx = fc->fs_private;
3701 
3702 	if (ctx) {
3703 		mpol_put(ctx->mpol);
3704 		kfree(ctx);
3705 	}
3706 }
3707 
3708 static const struct fs_context_operations shmem_fs_context_ops = {
3709 	.free			= shmem_free_fc,
3710 	.get_tree		= shmem_get_tree,
3711 #ifdef CONFIG_TMPFS
3712 	.parse_monolithic	= shmem_parse_options,
3713 	.parse_param		= shmem_parse_one,
3714 	.reconfigure		= shmem_reconfigure,
3715 #endif
3716 };
3717 
3718 static struct kmem_cache *shmem_inode_cachep;
3719 
3720 static struct inode *shmem_alloc_inode(struct super_block *sb)
3721 {
3722 	struct shmem_inode_info *info;
3723 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3724 	if (!info)
3725 		return NULL;
3726 	return &info->vfs_inode;
3727 }
3728 
3729 static void shmem_free_in_core_inode(struct inode *inode)
3730 {
3731 	if (S_ISLNK(inode->i_mode))
3732 		kfree(inode->i_link);
3733 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3734 }
3735 
3736 static void shmem_destroy_inode(struct inode *inode)
3737 {
3738 	if (S_ISREG(inode->i_mode))
3739 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3740 }
3741 
3742 static void shmem_init_inode(void *foo)
3743 {
3744 	struct shmem_inode_info *info = foo;
3745 	inode_init_once(&info->vfs_inode);
3746 }
3747 
3748 static void shmem_init_inodecache(void)
3749 {
3750 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3751 				sizeof(struct shmem_inode_info),
3752 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3753 }
3754 
3755 static void shmem_destroy_inodecache(void)
3756 {
3757 	kmem_cache_destroy(shmem_inode_cachep);
3758 }
3759 
3760 const struct address_space_operations shmem_aops = {
3761 	.writepage	= shmem_writepage,
3762 	.set_page_dirty	= __set_page_dirty_no_writeback,
3763 #ifdef CONFIG_TMPFS
3764 	.write_begin	= shmem_write_begin,
3765 	.write_end	= shmem_write_end,
3766 #endif
3767 #ifdef CONFIG_MIGRATION
3768 	.migratepage	= migrate_page,
3769 #endif
3770 	.error_remove_page = generic_error_remove_page,
3771 };
3772 EXPORT_SYMBOL(shmem_aops);
3773 
3774 static const struct file_operations shmem_file_operations = {
3775 	.mmap		= shmem_mmap,
3776 	.get_unmapped_area = shmem_get_unmapped_area,
3777 #ifdef CONFIG_TMPFS
3778 	.llseek		= shmem_file_llseek,
3779 	.read_iter	= shmem_file_read_iter,
3780 	.write_iter	= generic_file_write_iter,
3781 	.fsync		= noop_fsync,
3782 	.splice_read	= generic_file_splice_read,
3783 	.splice_write	= iter_file_splice_write,
3784 	.fallocate	= shmem_fallocate,
3785 #endif
3786 };
3787 
3788 static const struct inode_operations shmem_inode_operations = {
3789 	.getattr	= shmem_getattr,
3790 	.setattr	= shmem_setattr,
3791 #ifdef CONFIG_TMPFS_XATTR
3792 	.listxattr	= shmem_listxattr,
3793 	.set_acl	= simple_set_acl,
3794 #endif
3795 };
3796 
3797 static const struct inode_operations shmem_dir_inode_operations = {
3798 #ifdef CONFIG_TMPFS
3799 	.create		= shmem_create,
3800 	.lookup		= simple_lookup,
3801 	.link		= shmem_link,
3802 	.unlink		= shmem_unlink,
3803 	.symlink	= shmem_symlink,
3804 	.mkdir		= shmem_mkdir,
3805 	.rmdir		= shmem_rmdir,
3806 	.mknod		= shmem_mknod,
3807 	.rename		= shmem_rename2,
3808 	.tmpfile	= shmem_tmpfile,
3809 #endif
3810 #ifdef CONFIG_TMPFS_XATTR
3811 	.listxattr	= shmem_listxattr,
3812 #endif
3813 #ifdef CONFIG_TMPFS_POSIX_ACL
3814 	.setattr	= shmem_setattr,
3815 	.set_acl	= simple_set_acl,
3816 #endif
3817 };
3818 
3819 static const struct inode_operations shmem_special_inode_operations = {
3820 #ifdef CONFIG_TMPFS_XATTR
3821 	.listxattr	= shmem_listxattr,
3822 #endif
3823 #ifdef CONFIG_TMPFS_POSIX_ACL
3824 	.setattr	= shmem_setattr,
3825 	.set_acl	= simple_set_acl,
3826 #endif
3827 };
3828 
3829 static const struct super_operations shmem_ops = {
3830 	.alloc_inode	= shmem_alloc_inode,
3831 	.free_inode	= shmem_free_in_core_inode,
3832 	.destroy_inode	= shmem_destroy_inode,
3833 #ifdef CONFIG_TMPFS
3834 	.statfs		= shmem_statfs,
3835 	.show_options	= shmem_show_options,
3836 #endif
3837 	.evict_inode	= shmem_evict_inode,
3838 	.drop_inode	= generic_delete_inode,
3839 	.put_super	= shmem_put_super,
3840 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3841 	.nr_cached_objects	= shmem_unused_huge_count,
3842 	.free_cached_objects	= shmem_unused_huge_scan,
3843 #endif
3844 };
3845 
3846 static const struct vm_operations_struct shmem_vm_ops = {
3847 	.fault		= shmem_fault,
3848 	.map_pages	= filemap_map_pages,
3849 #ifdef CONFIG_NUMA
3850 	.set_policy     = shmem_set_policy,
3851 	.get_policy     = shmem_get_policy,
3852 #endif
3853 };
3854 
3855 int shmem_init_fs_context(struct fs_context *fc)
3856 {
3857 	struct shmem_options *ctx;
3858 
3859 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3860 	if (!ctx)
3861 		return -ENOMEM;
3862 
3863 	ctx->mode = 0777 | S_ISVTX;
3864 	ctx->uid = current_fsuid();
3865 	ctx->gid = current_fsgid();
3866 
3867 	fc->fs_private = ctx;
3868 	fc->ops = &shmem_fs_context_ops;
3869 	return 0;
3870 }
3871 
3872 static struct file_system_type shmem_fs_type = {
3873 	.owner		= THIS_MODULE,
3874 	.name		= "tmpfs",
3875 	.init_fs_context = shmem_init_fs_context,
3876 #ifdef CONFIG_TMPFS
3877 	.parameters	= shmem_fs_parameters,
3878 #endif
3879 	.kill_sb	= kill_litter_super,
3880 	.fs_flags	= FS_USERNS_MOUNT | FS_THP_SUPPORT,
3881 };
3882 
3883 int __init shmem_init(void)
3884 {
3885 	int error;
3886 
3887 	shmem_init_inodecache();
3888 
3889 	error = register_filesystem(&shmem_fs_type);
3890 	if (error) {
3891 		pr_err("Could not register tmpfs\n");
3892 		goto out2;
3893 	}
3894 
3895 	shm_mnt = kern_mount(&shmem_fs_type);
3896 	if (IS_ERR(shm_mnt)) {
3897 		error = PTR_ERR(shm_mnt);
3898 		pr_err("Could not kern_mount tmpfs\n");
3899 		goto out1;
3900 	}
3901 
3902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3903 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3904 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3905 	else
3906 		shmem_huge = 0; /* just in case it was patched */
3907 #endif
3908 	return 0;
3909 
3910 out1:
3911 	unregister_filesystem(&shmem_fs_type);
3912 out2:
3913 	shmem_destroy_inodecache();
3914 	shm_mnt = ERR_PTR(error);
3915 	return error;
3916 }
3917 
3918 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3919 static ssize_t shmem_enabled_show(struct kobject *kobj,
3920 				  struct kobj_attribute *attr, char *buf)
3921 {
3922 	static const int values[] = {
3923 		SHMEM_HUGE_ALWAYS,
3924 		SHMEM_HUGE_WITHIN_SIZE,
3925 		SHMEM_HUGE_ADVISE,
3926 		SHMEM_HUGE_NEVER,
3927 		SHMEM_HUGE_DENY,
3928 		SHMEM_HUGE_FORCE,
3929 	};
3930 	int len = 0;
3931 	int i;
3932 
3933 	for (i = 0; i < ARRAY_SIZE(values); i++) {
3934 		len += sysfs_emit_at(buf, len,
3935 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3936 				     i ? " " : "",
3937 				     shmem_format_huge(values[i]));
3938 	}
3939 
3940 	len += sysfs_emit_at(buf, len, "\n");
3941 
3942 	return len;
3943 }
3944 
3945 static ssize_t shmem_enabled_store(struct kobject *kobj,
3946 		struct kobj_attribute *attr, const char *buf, size_t count)
3947 {
3948 	char tmp[16];
3949 	int huge;
3950 
3951 	if (count + 1 > sizeof(tmp))
3952 		return -EINVAL;
3953 	memcpy(tmp, buf, count);
3954 	tmp[count] = '\0';
3955 	if (count && tmp[count - 1] == '\n')
3956 		tmp[count - 1] = '\0';
3957 
3958 	huge = shmem_parse_huge(tmp);
3959 	if (huge == -EINVAL)
3960 		return -EINVAL;
3961 	if (!has_transparent_hugepage() &&
3962 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3963 		return -EINVAL;
3964 
3965 	shmem_huge = huge;
3966 	if (shmem_huge > SHMEM_HUGE_DENY)
3967 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3968 	return count;
3969 }
3970 
3971 struct kobj_attribute shmem_enabled_attr =
3972 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3973 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3974 
3975 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3976 bool shmem_huge_enabled(struct vm_area_struct *vma)
3977 {
3978 	struct inode *inode = file_inode(vma->vm_file);
3979 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3980 	loff_t i_size;
3981 	pgoff_t off;
3982 
3983 	if (!transhuge_vma_enabled(vma, vma->vm_flags))
3984 		return false;
3985 	if (shmem_huge == SHMEM_HUGE_FORCE)
3986 		return true;
3987 	if (shmem_huge == SHMEM_HUGE_DENY)
3988 		return false;
3989 	switch (sbinfo->huge) {
3990 		case SHMEM_HUGE_NEVER:
3991 			return false;
3992 		case SHMEM_HUGE_ALWAYS:
3993 			return true;
3994 		case SHMEM_HUGE_WITHIN_SIZE:
3995 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3996 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
3997 			if (i_size >= HPAGE_PMD_SIZE &&
3998 					i_size >> PAGE_SHIFT >= off)
3999 				return true;
4000 			fallthrough;
4001 		case SHMEM_HUGE_ADVISE:
4002 			/* TODO: implement fadvise() hints */
4003 			return (vma->vm_flags & VM_HUGEPAGE);
4004 		default:
4005 			VM_BUG_ON(1);
4006 			return false;
4007 	}
4008 }
4009 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4010 
4011 #else /* !CONFIG_SHMEM */
4012 
4013 /*
4014  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4015  *
4016  * This is intended for small system where the benefits of the full
4017  * shmem code (swap-backed and resource-limited) are outweighed by
4018  * their complexity. On systems without swap this code should be
4019  * effectively equivalent, but much lighter weight.
4020  */
4021 
4022 static struct file_system_type shmem_fs_type = {
4023 	.name		= "tmpfs",
4024 	.init_fs_context = ramfs_init_fs_context,
4025 	.parameters	= ramfs_fs_parameters,
4026 	.kill_sb	= kill_litter_super,
4027 	.fs_flags	= FS_USERNS_MOUNT,
4028 };
4029 
4030 int __init shmem_init(void)
4031 {
4032 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4033 
4034 	shm_mnt = kern_mount(&shmem_fs_type);
4035 	BUG_ON(IS_ERR(shm_mnt));
4036 
4037 	return 0;
4038 }
4039 
4040 int shmem_unuse(unsigned int type, bool frontswap,
4041 		unsigned long *fs_pages_to_unuse)
4042 {
4043 	return 0;
4044 }
4045 
4046 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4047 {
4048 	return 0;
4049 }
4050 
4051 void shmem_unlock_mapping(struct address_space *mapping)
4052 {
4053 }
4054 
4055 #ifdef CONFIG_MMU
4056 unsigned long shmem_get_unmapped_area(struct file *file,
4057 				      unsigned long addr, unsigned long len,
4058 				      unsigned long pgoff, unsigned long flags)
4059 {
4060 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4061 }
4062 #endif
4063 
4064 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4065 {
4066 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4067 }
4068 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4069 
4070 #define shmem_vm_ops				generic_file_vm_ops
4071 #define shmem_file_operations			ramfs_file_operations
4072 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4073 #define shmem_acct_size(flags, size)		0
4074 #define shmem_unacct_size(flags, size)		do {} while (0)
4075 
4076 #endif /* CONFIG_SHMEM */
4077 
4078 /* common code */
4079 
4080 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4081 				       unsigned long flags, unsigned int i_flags)
4082 {
4083 	struct inode *inode;
4084 	struct file *res;
4085 
4086 	if (IS_ERR(mnt))
4087 		return ERR_CAST(mnt);
4088 
4089 	if (size < 0 || size > MAX_LFS_FILESIZE)
4090 		return ERR_PTR(-EINVAL);
4091 
4092 	if (shmem_acct_size(flags, size))
4093 		return ERR_PTR(-ENOMEM);
4094 
4095 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4096 				flags);
4097 	if (unlikely(!inode)) {
4098 		shmem_unacct_size(flags, size);
4099 		return ERR_PTR(-ENOSPC);
4100 	}
4101 	inode->i_flags |= i_flags;
4102 	inode->i_size = size;
4103 	clear_nlink(inode);	/* It is unlinked */
4104 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4105 	if (!IS_ERR(res))
4106 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4107 				&shmem_file_operations);
4108 	if (IS_ERR(res))
4109 		iput(inode);
4110 	return res;
4111 }
4112 
4113 /**
4114  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4115  * 	kernel internal.  There will be NO LSM permission checks against the
4116  * 	underlying inode.  So users of this interface must do LSM checks at a
4117  *	higher layer.  The users are the big_key and shm implementations.  LSM
4118  *	checks are provided at the key or shm level rather than the inode.
4119  * @name: name for dentry (to be seen in /proc/<pid>/maps
4120  * @size: size to be set for the file
4121  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4122  */
4123 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4124 {
4125 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4126 }
4127 
4128 /**
4129  * shmem_file_setup - get an unlinked file living in tmpfs
4130  * @name: name for dentry (to be seen in /proc/<pid>/maps
4131  * @size: size to be set for the file
4132  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4133  */
4134 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4135 {
4136 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4137 }
4138 EXPORT_SYMBOL_GPL(shmem_file_setup);
4139 
4140 /**
4141  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4142  * @mnt: the tmpfs mount where the file will be created
4143  * @name: name for dentry (to be seen in /proc/<pid>/maps
4144  * @size: size to be set for the file
4145  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4146  */
4147 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4148 				       loff_t size, unsigned long flags)
4149 {
4150 	return __shmem_file_setup(mnt, name, size, flags, 0);
4151 }
4152 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4153 
4154 /**
4155  * shmem_zero_setup - setup a shared anonymous mapping
4156  * @vma: the vma to be mmapped is prepared by do_mmap
4157  */
4158 int shmem_zero_setup(struct vm_area_struct *vma)
4159 {
4160 	struct file *file;
4161 	loff_t size = vma->vm_end - vma->vm_start;
4162 
4163 	/*
4164 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4165 	 * between XFS directory reading and selinux: since this file is only
4166 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4167 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4168 	 */
4169 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4170 	if (IS_ERR(file))
4171 		return PTR_ERR(file);
4172 
4173 	if (vma->vm_file)
4174 		fput(vma->vm_file);
4175 	vma->vm_file = file;
4176 	vma->vm_ops = &shmem_vm_ops;
4177 
4178 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4179 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4180 			(vma->vm_end & HPAGE_PMD_MASK)) {
4181 		khugepaged_enter(vma, vma->vm_flags);
4182 	}
4183 
4184 	return 0;
4185 }
4186 
4187 /**
4188  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4189  * @mapping:	the page's address_space
4190  * @index:	the page index
4191  * @gfp:	the page allocator flags to use if allocating
4192  *
4193  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4194  * with any new page allocations done using the specified allocation flags.
4195  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4196  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4197  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4198  *
4199  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4200  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4201  */
4202 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4203 					 pgoff_t index, gfp_t gfp)
4204 {
4205 #ifdef CONFIG_SHMEM
4206 	struct inode *inode = mapping->host;
4207 	struct page *page;
4208 	int error;
4209 
4210 	BUG_ON(!shmem_mapping(mapping));
4211 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4212 				  gfp, NULL, NULL, NULL);
4213 	if (error)
4214 		page = ERR_PTR(error);
4215 	else
4216 		unlock_page(page);
4217 	return page;
4218 #else
4219 	/*
4220 	 * The tiny !SHMEM case uses ramfs without swap
4221 	 */
4222 	return read_cache_page_gfp(mapping, index, gfp);
4223 #endif
4224 }
4225 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4226