xref: /openbmc/linux/mm/shmem.c (revision 7ad0414bded6e8678840368be5cc72b9957a4478)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/uio.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
41 #include "swap.h"
42 
43 static struct vfsmount *shm_mnt;
44 
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51 
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 
82 #include <linux/uaccess.h>
83 
84 #include "internal.h"
85 
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88 
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91 
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94 
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_rwsem making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 	pgoff_t start;		/* start of range currently being fallocated */
103 	pgoff_t next;		/* the next page offset to be fallocated */
104 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
105 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
106 };
107 
108 struct shmem_options {
109 	unsigned long long blocks;
110 	unsigned long long inodes;
111 	struct mempolicy *mpol;
112 	kuid_t uid;
113 	kgid_t gid;
114 	umode_t mode;
115 	bool full_inums;
116 	int huge;
117 	int seen;
118 #define SHMEM_SEEN_BLOCKS 1
119 #define SHMEM_SEEN_INODES 2
120 #define SHMEM_SEEN_HUGE 4
121 #define SHMEM_SEEN_INUMS 8
122 };
123 
124 #ifdef CONFIG_TMPFS
125 static unsigned long shmem_default_max_blocks(void)
126 {
127 	return totalram_pages() / 2;
128 }
129 
130 static unsigned long shmem_default_max_inodes(void)
131 {
132 	unsigned long nr_pages = totalram_pages();
133 
134 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
135 }
136 #endif
137 
138 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
139 			     struct folio **foliop, enum sgp_type sgp,
140 			     gfp_t gfp, struct vm_area_struct *vma,
141 			     vm_fault_t *fault_type);
142 
143 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
144 {
145 	return sb->s_fs_info;
146 }
147 
148 /*
149  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
150  * for shared memory and for shared anonymous (/dev/zero) mappings
151  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
152  * consistent with the pre-accounting of private mappings ...
153  */
154 static inline int shmem_acct_size(unsigned long flags, loff_t size)
155 {
156 	return (flags & VM_NORESERVE) ?
157 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
158 }
159 
160 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
161 {
162 	if (!(flags & VM_NORESERVE))
163 		vm_unacct_memory(VM_ACCT(size));
164 }
165 
166 static inline int shmem_reacct_size(unsigned long flags,
167 		loff_t oldsize, loff_t newsize)
168 {
169 	if (!(flags & VM_NORESERVE)) {
170 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
171 			return security_vm_enough_memory_mm(current->mm,
172 					VM_ACCT(newsize) - VM_ACCT(oldsize));
173 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
174 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
175 	}
176 	return 0;
177 }
178 
179 /*
180  * ... whereas tmpfs objects are accounted incrementally as
181  * pages are allocated, in order to allow large sparse files.
182  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
183  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
184  */
185 static inline int shmem_acct_block(unsigned long flags, long pages)
186 {
187 	if (!(flags & VM_NORESERVE))
188 		return 0;
189 
190 	return security_vm_enough_memory_mm(current->mm,
191 			pages * VM_ACCT(PAGE_SIZE));
192 }
193 
194 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
195 {
196 	if (flags & VM_NORESERVE)
197 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
198 }
199 
200 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
201 {
202 	struct shmem_inode_info *info = SHMEM_I(inode);
203 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
204 
205 	if (shmem_acct_block(info->flags, pages))
206 		return false;
207 
208 	if (sbinfo->max_blocks) {
209 		if (percpu_counter_compare(&sbinfo->used_blocks,
210 					   sbinfo->max_blocks - pages) > 0)
211 			goto unacct;
212 		percpu_counter_add(&sbinfo->used_blocks, pages);
213 	}
214 
215 	return true;
216 
217 unacct:
218 	shmem_unacct_blocks(info->flags, pages);
219 	return false;
220 }
221 
222 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
223 {
224 	struct shmem_inode_info *info = SHMEM_I(inode);
225 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
226 
227 	if (sbinfo->max_blocks)
228 		percpu_counter_sub(&sbinfo->used_blocks, pages);
229 	shmem_unacct_blocks(info->flags, pages);
230 }
231 
232 static const struct super_operations shmem_ops;
233 const struct address_space_operations shmem_aops;
234 static const struct file_operations shmem_file_operations;
235 static const struct inode_operations shmem_inode_operations;
236 static const struct inode_operations shmem_dir_inode_operations;
237 static const struct inode_operations shmem_special_inode_operations;
238 static const struct vm_operations_struct shmem_vm_ops;
239 static struct file_system_type shmem_fs_type;
240 
241 bool vma_is_shmem(struct vm_area_struct *vma)
242 {
243 	return vma->vm_ops == &shmem_vm_ops;
244 }
245 
246 static LIST_HEAD(shmem_swaplist);
247 static DEFINE_MUTEX(shmem_swaplist_mutex);
248 
249 /*
250  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
251  * produces a novel ino for the newly allocated inode.
252  *
253  * It may also be called when making a hard link to permit the space needed by
254  * each dentry. However, in that case, no new inode number is needed since that
255  * internally draws from another pool of inode numbers (currently global
256  * get_next_ino()). This case is indicated by passing NULL as inop.
257  */
258 #define SHMEM_INO_BATCH 1024
259 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
260 {
261 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
262 	ino_t ino;
263 
264 	if (!(sb->s_flags & SB_KERNMOUNT)) {
265 		raw_spin_lock(&sbinfo->stat_lock);
266 		if (sbinfo->max_inodes) {
267 			if (!sbinfo->free_inodes) {
268 				raw_spin_unlock(&sbinfo->stat_lock);
269 				return -ENOSPC;
270 			}
271 			sbinfo->free_inodes--;
272 		}
273 		if (inop) {
274 			ino = sbinfo->next_ino++;
275 			if (unlikely(is_zero_ino(ino)))
276 				ino = sbinfo->next_ino++;
277 			if (unlikely(!sbinfo->full_inums &&
278 				     ino > UINT_MAX)) {
279 				/*
280 				 * Emulate get_next_ino uint wraparound for
281 				 * compatibility
282 				 */
283 				if (IS_ENABLED(CONFIG_64BIT))
284 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
285 						__func__, MINOR(sb->s_dev));
286 				sbinfo->next_ino = 1;
287 				ino = sbinfo->next_ino++;
288 			}
289 			*inop = ino;
290 		}
291 		raw_spin_unlock(&sbinfo->stat_lock);
292 	} else if (inop) {
293 		/*
294 		 * __shmem_file_setup, one of our callers, is lock-free: it
295 		 * doesn't hold stat_lock in shmem_reserve_inode since
296 		 * max_inodes is always 0, and is called from potentially
297 		 * unknown contexts. As such, use a per-cpu batched allocator
298 		 * which doesn't require the per-sb stat_lock unless we are at
299 		 * the batch boundary.
300 		 *
301 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
302 		 * shmem mounts are not exposed to userspace, so we don't need
303 		 * to worry about things like glibc compatibility.
304 		 */
305 		ino_t *next_ino;
306 
307 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
308 		ino = *next_ino;
309 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
310 			raw_spin_lock(&sbinfo->stat_lock);
311 			ino = sbinfo->next_ino;
312 			sbinfo->next_ino += SHMEM_INO_BATCH;
313 			raw_spin_unlock(&sbinfo->stat_lock);
314 			if (unlikely(is_zero_ino(ino)))
315 				ino++;
316 		}
317 		*inop = ino;
318 		*next_ino = ++ino;
319 		put_cpu();
320 	}
321 
322 	return 0;
323 }
324 
325 static void shmem_free_inode(struct super_block *sb)
326 {
327 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
328 	if (sbinfo->max_inodes) {
329 		raw_spin_lock(&sbinfo->stat_lock);
330 		sbinfo->free_inodes++;
331 		raw_spin_unlock(&sbinfo->stat_lock);
332 	}
333 }
334 
335 /**
336  * shmem_recalc_inode - recalculate the block usage of an inode
337  * @inode: inode to recalc
338  *
339  * We have to calculate the free blocks since the mm can drop
340  * undirtied hole pages behind our back.
341  *
342  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
343  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
344  *
345  * It has to be called with the spinlock held.
346  */
347 static void shmem_recalc_inode(struct inode *inode)
348 {
349 	struct shmem_inode_info *info = SHMEM_I(inode);
350 	long freed;
351 
352 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
353 	if (freed > 0) {
354 		info->alloced -= freed;
355 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
356 		shmem_inode_unacct_blocks(inode, freed);
357 	}
358 }
359 
360 bool shmem_charge(struct inode *inode, long pages)
361 {
362 	struct shmem_inode_info *info = SHMEM_I(inode);
363 	unsigned long flags;
364 
365 	if (!shmem_inode_acct_block(inode, pages))
366 		return false;
367 
368 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
369 	inode->i_mapping->nrpages += pages;
370 
371 	spin_lock_irqsave(&info->lock, flags);
372 	info->alloced += pages;
373 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
374 	shmem_recalc_inode(inode);
375 	spin_unlock_irqrestore(&info->lock, flags);
376 
377 	return true;
378 }
379 
380 void shmem_uncharge(struct inode *inode, long pages)
381 {
382 	struct shmem_inode_info *info = SHMEM_I(inode);
383 	unsigned long flags;
384 
385 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
386 
387 	spin_lock_irqsave(&info->lock, flags);
388 	info->alloced -= pages;
389 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
390 	shmem_recalc_inode(inode);
391 	spin_unlock_irqrestore(&info->lock, flags);
392 
393 	shmem_inode_unacct_blocks(inode, pages);
394 }
395 
396 /*
397  * Replace item expected in xarray by a new item, while holding xa_lock.
398  */
399 static int shmem_replace_entry(struct address_space *mapping,
400 			pgoff_t index, void *expected, void *replacement)
401 {
402 	XA_STATE(xas, &mapping->i_pages, index);
403 	void *item;
404 
405 	VM_BUG_ON(!expected);
406 	VM_BUG_ON(!replacement);
407 	item = xas_load(&xas);
408 	if (item != expected)
409 		return -ENOENT;
410 	xas_store(&xas, replacement);
411 	return 0;
412 }
413 
414 /*
415  * Sometimes, before we decide whether to proceed or to fail, we must check
416  * that an entry was not already brought back from swap by a racing thread.
417  *
418  * Checking page is not enough: by the time a SwapCache page is locked, it
419  * might be reused, and again be SwapCache, using the same swap as before.
420  */
421 static bool shmem_confirm_swap(struct address_space *mapping,
422 			       pgoff_t index, swp_entry_t swap)
423 {
424 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
425 }
426 
427 /*
428  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
429  *
430  * SHMEM_HUGE_NEVER:
431  *	disables huge pages for the mount;
432  * SHMEM_HUGE_ALWAYS:
433  *	enables huge pages for the mount;
434  * SHMEM_HUGE_WITHIN_SIZE:
435  *	only allocate huge pages if the page will be fully within i_size,
436  *	also respect fadvise()/madvise() hints;
437  * SHMEM_HUGE_ADVISE:
438  *	only allocate huge pages if requested with fadvise()/madvise();
439  */
440 
441 #define SHMEM_HUGE_NEVER	0
442 #define SHMEM_HUGE_ALWAYS	1
443 #define SHMEM_HUGE_WITHIN_SIZE	2
444 #define SHMEM_HUGE_ADVISE	3
445 
446 /*
447  * Special values.
448  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
449  *
450  * SHMEM_HUGE_DENY:
451  *	disables huge on shm_mnt and all mounts, for emergency use;
452  * SHMEM_HUGE_FORCE:
453  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
454  *
455  */
456 #define SHMEM_HUGE_DENY		(-1)
457 #define SHMEM_HUGE_FORCE	(-2)
458 
459 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
460 /* ifdef here to avoid bloating shmem.o when not necessary */
461 
462 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
463 
464 bool shmem_is_huge(struct vm_area_struct *vma,
465 		   struct inode *inode, pgoff_t index)
466 {
467 	loff_t i_size;
468 
469 	if (!S_ISREG(inode->i_mode))
470 		return false;
471 	if (shmem_huge == SHMEM_HUGE_DENY)
472 		return false;
473 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
474 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
475 		return false;
476 	if (shmem_huge == SHMEM_HUGE_FORCE)
477 		return true;
478 
479 	switch (SHMEM_SB(inode->i_sb)->huge) {
480 	case SHMEM_HUGE_ALWAYS:
481 		return true;
482 	case SHMEM_HUGE_WITHIN_SIZE:
483 		index = round_up(index + 1, HPAGE_PMD_NR);
484 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
485 		if (i_size >> PAGE_SHIFT >= index)
486 			return true;
487 		fallthrough;
488 	case SHMEM_HUGE_ADVISE:
489 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
490 			return true;
491 		fallthrough;
492 	default:
493 		return false;
494 	}
495 }
496 
497 #if defined(CONFIG_SYSFS)
498 static int shmem_parse_huge(const char *str)
499 {
500 	if (!strcmp(str, "never"))
501 		return SHMEM_HUGE_NEVER;
502 	if (!strcmp(str, "always"))
503 		return SHMEM_HUGE_ALWAYS;
504 	if (!strcmp(str, "within_size"))
505 		return SHMEM_HUGE_WITHIN_SIZE;
506 	if (!strcmp(str, "advise"))
507 		return SHMEM_HUGE_ADVISE;
508 	if (!strcmp(str, "deny"))
509 		return SHMEM_HUGE_DENY;
510 	if (!strcmp(str, "force"))
511 		return SHMEM_HUGE_FORCE;
512 	return -EINVAL;
513 }
514 #endif
515 
516 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
517 static const char *shmem_format_huge(int huge)
518 {
519 	switch (huge) {
520 	case SHMEM_HUGE_NEVER:
521 		return "never";
522 	case SHMEM_HUGE_ALWAYS:
523 		return "always";
524 	case SHMEM_HUGE_WITHIN_SIZE:
525 		return "within_size";
526 	case SHMEM_HUGE_ADVISE:
527 		return "advise";
528 	case SHMEM_HUGE_DENY:
529 		return "deny";
530 	case SHMEM_HUGE_FORCE:
531 		return "force";
532 	default:
533 		VM_BUG_ON(1);
534 		return "bad_val";
535 	}
536 }
537 #endif
538 
539 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
540 		struct shrink_control *sc, unsigned long nr_to_split)
541 {
542 	LIST_HEAD(list), *pos, *next;
543 	LIST_HEAD(to_remove);
544 	struct inode *inode;
545 	struct shmem_inode_info *info;
546 	struct folio *folio;
547 	unsigned long batch = sc ? sc->nr_to_scan : 128;
548 	int split = 0;
549 
550 	if (list_empty(&sbinfo->shrinklist))
551 		return SHRINK_STOP;
552 
553 	spin_lock(&sbinfo->shrinklist_lock);
554 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
555 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
556 
557 		/* pin the inode */
558 		inode = igrab(&info->vfs_inode);
559 
560 		/* inode is about to be evicted */
561 		if (!inode) {
562 			list_del_init(&info->shrinklist);
563 			goto next;
564 		}
565 
566 		/* Check if there's anything to gain */
567 		if (round_up(inode->i_size, PAGE_SIZE) ==
568 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
569 			list_move(&info->shrinklist, &to_remove);
570 			goto next;
571 		}
572 
573 		list_move(&info->shrinklist, &list);
574 next:
575 		sbinfo->shrinklist_len--;
576 		if (!--batch)
577 			break;
578 	}
579 	spin_unlock(&sbinfo->shrinklist_lock);
580 
581 	list_for_each_safe(pos, next, &to_remove) {
582 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
583 		inode = &info->vfs_inode;
584 		list_del_init(&info->shrinklist);
585 		iput(inode);
586 	}
587 
588 	list_for_each_safe(pos, next, &list) {
589 		int ret;
590 		pgoff_t index;
591 
592 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 		inode = &info->vfs_inode;
594 
595 		if (nr_to_split && split >= nr_to_split)
596 			goto move_back;
597 
598 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
599 		folio = filemap_get_folio(inode->i_mapping, index);
600 		if (!folio)
601 			goto drop;
602 
603 		/* No huge page at the end of the file: nothing to split */
604 		if (!folio_test_large(folio)) {
605 			folio_put(folio);
606 			goto drop;
607 		}
608 
609 		/*
610 		 * Move the inode on the list back to shrinklist if we failed
611 		 * to lock the page at this time.
612 		 *
613 		 * Waiting for the lock may lead to deadlock in the
614 		 * reclaim path.
615 		 */
616 		if (!folio_trylock(folio)) {
617 			folio_put(folio);
618 			goto move_back;
619 		}
620 
621 		ret = split_folio(folio);
622 		folio_unlock(folio);
623 		folio_put(folio);
624 
625 		/* If split failed move the inode on the list back to shrinklist */
626 		if (ret)
627 			goto move_back;
628 
629 		split++;
630 drop:
631 		list_del_init(&info->shrinklist);
632 		goto put;
633 move_back:
634 		/*
635 		 * Make sure the inode is either on the global list or deleted
636 		 * from any local list before iput() since it could be deleted
637 		 * in another thread once we put the inode (then the local list
638 		 * is corrupted).
639 		 */
640 		spin_lock(&sbinfo->shrinklist_lock);
641 		list_move(&info->shrinklist, &sbinfo->shrinklist);
642 		sbinfo->shrinklist_len++;
643 		spin_unlock(&sbinfo->shrinklist_lock);
644 put:
645 		iput(inode);
646 	}
647 
648 	return split;
649 }
650 
651 static long shmem_unused_huge_scan(struct super_block *sb,
652 		struct shrink_control *sc)
653 {
654 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
655 
656 	if (!READ_ONCE(sbinfo->shrinklist_len))
657 		return SHRINK_STOP;
658 
659 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
660 }
661 
662 static long shmem_unused_huge_count(struct super_block *sb,
663 		struct shrink_control *sc)
664 {
665 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
666 	return READ_ONCE(sbinfo->shrinklist_len);
667 }
668 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
669 
670 #define shmem_huge SHMEM_HUGE_DENY
671 
672 bool shmem_is_huge(struct vm_area_struct *vma,
673 		   struct inode *inode, pgoff_t index)
674 {
675 	return false;
676 }
677 
678 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
679 		struct shrink_control *sc, unsigned long nr_to_split)
680 {
681 	return 0;
682 }
683 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
684 
685 /*
686  * Like filemap_add_folio, but error if expected item has gone.
687  */
688 static int shmem_add_to_page_cache(struct folio *folio,
689 				   struct address_space *mapping,
690 				   pgoff_t index, void *expected, gfp_t gfp,
691 				   struct mm_struct *charge_mm)
692 {
693 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
694 	long nr = folio_nr_pages(folio);
695 	int error;
696 
697 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
698 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
699 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
700 	VM_BUG_ON(expected && folio_test_large(folio));
701 
702 	folio_ref_add(folio, nr);
703 	folio->mapping = mapping;
704 	folio->index = index;
705 
706 	if (!folio_test_swapcache(folio)) {
707 		error = mem_cgroup_charge(folio, charge_mm, gfp);
708 		if (error) {
709 			if (folio_test_pmd_mappable(folio)) {
710 				count_vm_event(THP_FILE_FALLBACK);
711 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
712 			}
713 			goto error;
714 		}
715 	}
716 	folio_throttle_swaprate(folio, gfp);
717 
718 	do {
719 		xas_lock_irq(&xas);
720 		if (expected != xas_find_conflict(&xas)) {
721 			xas_set_err(&xas, -EEXIST);
722 			goto unlock;
723 		}
724 		if (expected && xas_find_conflict(&xas)) {
725 			xas_set_err(&xas, -EEXIST);
726 			goto unlock;
727 		}
728 		xas_store(&xas, folio);
729 		if (xas_error(&xas))
730 			goto unlock;
731 		if (folio_test_pmd_mappable(folio)) {
732 			count_vm_event(THP_FILE_ALLOC);
733 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
734 		}
735 		mapping->nrpages += nr;
736 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
737 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
738 unlock:
739 		xas_unlock_irq(&xas);
740 	} while (xas_nomem(&xas, gfp));
741 
742 	if (xas_error(&xas)) {
743 		error = xas_error(&xas);
744 		goto error;
745 	}
746 
747 	return 0;
748 error:
749 	folio->mapping = NULL;
750 	folio_ref_sub(folio, nr);
751 	return error;
752 }
753 
754 /*
755  * Like delete_from_page_cache, but substitutes swap for @folio.
756  */
757 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
758 {
759 	struct address_space *mapping = folio->mapping;
760 	long nr = folio_nr_pages(folio);
761 	int error;
762 
763 	xa_lock_irq(&mapping->i_pages);
764 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
765 	folio->mapping = NULL;
766 	mapping->nrpages -= nr;
767 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
768 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
769 	xa_unlock_irq(&mapping->i_pages);
770 	folio_put(folio);
771 	BUG_ON(error);
772 }
773 
774 /*
775  * Remove swap entry from page cache, free the swap and its page cache.
776  */
777 static int shmem_free_swap(struct address_space *mapping,
778 			   pgoff_t index, void *radswap)
779 {
780 	void *old;
781 
782 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
783 	if (old != radswap)
784 		return -ENOENT;
785 	free_swap_and_cache(radix_to_swp_entry(radswap));
786 	return 0;
787 }
788 
789 /*
790  * Determine (in bytes) how many of the shmem object's pages mapped by the
791  * given offsets are swapped out.
792  *
793  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
794  * as long as the inode doesn't go away and racy results are not a problem.
795  */
796 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
797 						pgoff_t start, pgoff_t end)
798 {
799 	XA_STATE(xas, &mapping->i_pages, start);
800 	struct page *page;
801 	unsigned long swapped = 0;
802 
803 	rcu_read_lock();
804 	xas_for_each(&xas, page, end - 1) {
805 		if (xas_retry(&xas, page))
806 			continue;
807 		if (xa_is_value(page))
808 			swapped++;
809 
810 		if (need_resched()) {
811 			xas_pause(&xas);
812 			cond_resched_rcu();
813 		}
814 	}
815 
816 	rcu_read_unlock();
817 
818 	return swapped << PAGE_SHIFT;
819 }
820 
821 /*
822  * Determine (in bytes) how many of the shmem object's pages mapped by the
823  * given vma is swapped out.
824  *
825  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
826  * as long as the inode doesn't go away and racy results are not a problem.
827  */
828 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
829 {
830 	struct inode *inode = file_inode(vma->vm_file);
831 	struct shmem_inode_info *info = SHMEM_I(inode);
832 	struct address_space *mapping = inode->i_mapping;
833 	unsigned long swapped;
834 
835 	/* Be careful as we don't hold info->lock */
836 	swapped = READ_ONCE(info->swapped);
837 
838 	/*
839 	 * The easier cases are when the shmem object has nothing in swap, or
840 	 * the vma maps it whole. Then we can simply use the stats that we
841 	 * already track.
842 	 */
843 	if (!swapped)
844 		return 0;
845 
846 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
847 		return swapped << PAGE_SHIFT;
848 
849 	/* Here comes the more involved part */
850 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
851 					vma->vm_pgoff + vma_pages(vma));
852 }
853 
854 /*
855  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
856  */
857 void shmem_unlock_mapping(struct address_space *mapping)
858 {
859 	struct folio_batch fbatch;
860 	pgoff_t index = 0;
861 
862 	folio_batch_init(&fbatch);
863 	/*
864 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
865 	 */
866 	while (!mapping_unevictable(mapping) &&
867 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
868 		check_move_unevictable_folios(&fbatch);
869 		folio_batch_release(&fbatch);
870 		cond_resched();
871 	}
872 }
873 
874 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
875 {
876 	struct folio *folio;
877 
878 	/*
879 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
880 	 * beyond i_size, and reports fallocated pages as holes.
881 	 */
882 	folio = __filemap_get_folio(inode->i_mapping, index,
883 					FGP_ENTRY | FGP_LOCK, 0);
884 	if (!xa_is_value(folio))
885 		return folio;
886 	/*
887 	 * But read a page back from swap if any of it is within i_size
888 	 * (although in some cases this is just a waste of time).
889 	 */
890 	folio = NULL;
891 	shmem_get_folio(inode, index, &folio, SGP_READ);
892 	return folio;
893 }
894 
895 /*
896  * Remove range of pages and swap entries from page cache, and free them.
897  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
898  */
899 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
900 								 bool unfalloc)
901 {
902 	struct address_space *mapping = inode->i_mapping;
903 	struct shmem_inode_info *info = SHMEM_I(inode);
904 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
905 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
906 	struct folio_batch fbatch;
907 	pgoff_t indices[PAGEVEC_SIZE];
908 	struct folio *folio;
909 	bool same_folio;
910 	long nr_swaps_freed = 0;
911 	pgoff_t index;
912 	int i;
913 
914 	if (lend == -1)
915 		end = -1;	/* unsigned, so actually very big */
916 
917 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
918 		info->fallocend = start;
919 
920 	folio_batch_init(&fbatch);
921 	index = start;
922 	while (index < end && find_lock_entries(mapping, index, end - 1,
923 			&fbatch, indices)) {
924 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
925 			folio = fbatch.folios[i];
926 
927 			index = indices[i];
928 
929 			if (xa_is_value(folio)) {
930 				if (unfalloc)
931 					continue;
932 				nr_swaps_freed += !shmem_free_swap(mapping,
933 								index, folio);
934 				continue;
935 			}
936 			index += folio_nr_pages(folio) - 1;
937 
938 			if (!unfalloc || !folio_test_uptodate(folio))
939 				truncate_inode_folio(mapping, folio);
940 			folio_unlock(folio);
941 		}
942 		folio_batch_remove_exceptionals(&fbatch);
943 		folio_batch_release(&fbatch);
944 		cond_resched();
945 		index++;
946 	}
947 
948 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
949 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
950 	if (folio) {
951 		same_folio = lend < folio_pos(folio) + folio_size(folio);
952 		folio_mark_dirty(folio);
953 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
954 			start = folio->index + folio_nr_pages(folio);
955 			if (same_folio)
956 				end = folio->index;
957 		}
958 		folio_unlock(folio);
959 		folio_put(folio);
960 		folio = NULL;
961 	}
962 
963 	if (!same_folio)
964 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
965 	if (folio) {
966 		folio_mark_dirty(folio);
967 		if (!truncate_inode_partial_folio(folio, lstart, lend))
968 			end = folio->index;
969 		folio_unlock(folio);
970 		folio_put(folio);
971 	}
972 
973 	index = start;
974 	while (index < end) {
975 		cond_resched();
976 
977 		if (!find_get_entries(mapping, index, end - 1, &fbatch,
978 				indices)) {
979 			/* If all gone or hole-punch or unfalloc, we're done */
980 			if (index == start || end != -1)
981 				break;
982 			/* But if truncating, restart to make sure all gone */
983 			index = start;
984 			continue;
985 		}
986 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
987 			folio = fbatch.folios[i];
988 
989 			index = indices[i];
990 			if (xa_is_value(folio)) {
991 				if (unfalloc)
992 					continue;
993 				if (shmem_free_swap(mapping, index, folio)) {
994 					/* Swap was replaced by page: retry */
995 					index--;
996 					break;
997 				}
998 				nr_swaps_freed++;
999 				continue;
1000 			}
1001 
1002 			folio_lock(folio);
1003 
1004 			if (!unfalloc || !folio_test_uptodate(folio)) {
1005 				if (folio_mapping(folio) != mapping) {
1006 					/* Page was replaced by swap: retry */
1007 					folio_unlock(folio);
1008 					index--;
1009 					break;
1010 				}
1011 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1012 						folio);
1013 				truncate_inode_folio(mapping, folio);
1014 			}
1015 			index = folio->index + folio_nr_pages(folio) - 1;
1016 			folio_unlock(folio);
1017 		}
1018 		folio_batch_remove_exceptionals(&fbatch);
1019 		folio_batch_release(&fbatch);
1020 		index++;
1021 	}
1022 
1023 	spin_lock_irq(&info->lock);
1024 	info->swapped -= nr_swaps_freed;
1025 	shmem_recalc_inode(inode);
1026 	spin_unlock_irq(&info->lock);
1027 }
1028 
1029 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1030 {
1031 	shmem_undo_range(inode, lstart, lend, false);
1032 	inode->i_ctime = inode->i_mtime = current_time(inode);
1033 }
1034 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1035 
1036 static int shmem_getattr(struct user_namespace *mnt_userns,
1037 			 const struct path *path, struct kstat *stat,
1038 			 u32 request_mask, unsigned int query_flags)
1039 {
1040 	struct inode *inode = path->dentry->d_inode;
1041 	struct shmem_inode_info *info = SHMEM_I(inode);
1042 
1043 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1044 		spin_lock_irq(&info->lock);
1045 		shmem_recalc_inode(inode);
1046 		spin_unlock_irq(&info->lock);
1047 	}
1048 	if (info->fsflags & FS_APPEND_FL)
1049 		stat->attributes |= STATX_ATTR_APPEND;
1050 	if (info->fsflags & FS_IMMUTABLE_FL)
1051 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1052 	if (info->fsflags & FS_NODUMP_FL)
1053 		stat->attributes |= STATX_ATTR_NODUMP;
1054 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1055 			STATX_ATTR_IMMUTABLE |
1056 			STATX_ATTR_NODUMP);
1057 	generic_fillattr(&init_user_ns, inode, stat);
1058 
1059 	if (shmem_is_huge(NULL, inode, 0))
1060 		stat->blksize = HPAGE_PMD_SIZE;
1061 
1062 	if (request_mask & STATX_BTIME) {
1063 		stat->result_mask |= STATX_BTIME;
1064 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1065 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1066 	}
1067 
1068 	return 0;
1069 }
1070 
1071 static int shmem_setattr(struct user_namespace *mnt_userns,
1072 			 struct dentry *dentry, struct iattr *attr)
1073 {
1074 	struct inode *inode = d_inode(dentry);
1075 	struct shmem_inode_info *info = SHMEM_I(inode);
1076 	int error;
1077 
1078 	error = setattr_prepare(&init_user_ns, dentry, attr);
1079 	if (error)
1080 		return error;
1081 
1082 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1083 		loff_t oldsize = inode->i_size;
1084 		loff_t newsize = attr->ia_size;
1085 
1086 		/* protected by i_rwsem */
1087 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1088 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1089 			return -EPERM;
1090 
1091 		if (newsize != oldsize) {
1092 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1093 					oldsize, newsize);
1094 			if (error)
1095 				return error;
1096 			i_size_write(inode, newsize);
1097 			inode->i_ctime = inode->i_mtime = current_time(inode);
1098 		}
1099 		if (newsize <= oldsize) {
1100 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1101 			if (oldsize > holebegin)
1102 				unmap_mapping_range(inode->i_mapping,
1103 							holebegin, 0, 1);
1104 			if (info->alloced)
1105 				shmem_truncate_range(inode,
1106 							newsize, (loff_t)-1);
1107 			/* unmap again to remove racily COWed private pages */
1108 			if (oldsize > holebegin)
1109 				unmap_mapping_range(inode->i_mapping,
1110 							holebegin, 0, 1);
1111 		}
1112 	}
1113 
1114 	setattr_copy(&init_user_ns, inode, attr);
1115 	if (attr->ia_valid & ATTR_MODE)
1116 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1117 	return error;
1118 }
1119 
1120 static void shmem_evict_inode(struct inode *inode)
1121 {
1122 	struct shmem_inode_info *info = SHMEM_I(inode);
1123 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1124 
1125 	if (shmem_mapping(inode->i_mapping)) {
1126 		shmem_unacct_size(info->flags, inode->i_size);
1127 		inode->i_size = 0;
1128 		mapping_set_exiting(inode->i_mapping);
1129 		shmem_truncate_range(inode, 0, (loff_t)-1);
1130 		if (!list_empty(&info->shrinklist)) {
1131 			spin_lock(&sbinfo->shrinklist_lock);
1132 			if (!list_empty(&info->shrinklist)) {
1133 				list_del_init(&info->shrinklist);
1134 				sbinfo->shrinklist_len--;
1135 			}
1136 			spin_unlock(&sbinfo->shrinklist_lock);
1137 		}
1138 		while (!list_empty(&info->swaplist)) {
1139 			/* Wait while shmem_unuse() is scanning this inode... */
1140 			wait_var_event(&info->stop_eviction,
1141 				       !atomic_read(&info->stop_eviction));
1142 			mutex_lock(&shmem_swaplist_mutex);
1143 			/* ...but beware of the race if we peeked too early */
1144 			if (!atomic_read(&info->stop_eviction))
1145 				list_del_init(&info->swaplist);
1146 			mutex_unlock(&shmem_swaplist_mutex);
1147 		}
1148 	}
1149 
1150 	simple_xattrs_free(&info->xattrs);
1151 	WARN_ON(inode->i_blocks);
1152 	shmem_free_inode(inode->i_sb);
1153 	clear_inode(inode);
1154 }
1155 
1156 static int shmem_find_swap_entries(struct address_space *mapping,
1157 				   pgoff_t start, struct folio_batch *fbatch,
1158 				   pgoff_t *indices, unsigned int type)
1159 {
1160 	XA_STATE(xas, &mapping->i_pages, start);
1161 	struct folio *folio;
1162 	swp_entry_t entry;
1163 
1164 	rcu_read_lock();
1165 	xas_for_each(&xas, folio, ULONG_MAX) {
1166 		if (xas_retry(&xas, folio))
1167 			continue;
1168 
1169 		if (!xa_is_value(folio))
1170 			continue;
1171 
1172 		entry = radix_to_swp_entry(folio);
1173 		/*
1174 		 * swapin error entries can be found in the mapping. But they're
1175 		 * deliberately ignored here as we've done everything we can do.
1176 		 */
1177 		if (swp_type(entry) != type)
1178 			continue;
1179 
1180 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1181 		if (!folio_batch_add(fbatch, folio))
1182 			break;
1183 
1184 		if (need_resched()) {
1185 			xas_pause(&xas);
1186 			cond_resched_rcu();
1187 		}
1188 	}
1189 	rcu_read_unlock();
1190 
1191 	return xas.xa_index;
1192 }
1193 
1194 /*
1195  * Move the swapped pages for an inode to page cache. Returns the count
1196  * of pages swapped in, or the error in case of failure.
1197  */
1198 static int shmem_unuse_swap_entries(struct inode *inode,
1199 		struct folio_batch *fbatch, pgoff_t *indices)
1200 {
1201 	int i = 0;
1202 	int ret = 0;
1203 	int error = 0;
1204 	struct address_space *mapping = inode->i_mapping;
1205 
1206 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1207 		struct folio *folio = fbatch->folios[i];
1208 
1209 		if (!xa_is_value(folio))
1210 			continue;
1211 		error = shmem_swapin_folio(inode, indices[i],
1212 					  &folio, SGP_CACHE,
1213 					  mapping_gfp_mask(mapping),
1214 					  NULL, NULL);
1215 		if (error == 0) {
1216 			folio_unlock(folio);
1217 			folio_put(folio);
1218 			ret++;
1219 		}
1220 		if (error == -ENOMEM)
1221 			break;
1222 		error = 0;
1223 	}
1224 	return error ? error : ret;
1225 }
1226 
1227 /*
1228  * If swap found in inode, free it and move page from swapcache to filecache.
1229  */
1230 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1231 {
1232 	struct address_space *mapping = inode->i_mapping;
1233 	pgoff_t start = 0;
1234 	struct folio_batch fbatch;
1235 	pgoff_t indices[PAGEVEC_SIZE];
1236 	int ret = 0;
1237 
1238 	do {
1239 		folio_batch_init(&fbatch);
1240 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1241 		if (folio_batch_count(&fbatch) == 0) {
1242 			ret = 0;
1243 			break;
1244 		}
1245 
1246 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1247 		if (ret < 0)
1248 			break;
1249 
1250 		start = indices[folio_batch_count(&fbatch) - 1];
1251 	} while (true);
1252 
1253 	return ret;
1254 }
1255 
1256 /*
1257  * Read all the shared memory data that resides in the swap
1258  * device 'type' back into memory, so the swap device can be
1259  * unused.
1260  */
1261 int shmem_unuse(unsigned int type)
1262 {
1263 	struct shmem_inode_info *info, *next;
1264 	int error = 0;
1265 
1266 	if (list_empty(&shmem_swaplist))
1267 		return 0;
1268 
1269 	mutex_lock(&shmem_swaplist_mutex);
1270 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1271 		if (!info->swapped) {
1272 			list_del_init(&info->swaplist);
1273 			continue;
1274 		}
1275 		/*
1276 		 * Drop the swaplist mutex while searching the inode for swap;
1277 		 * but before doing so, make sure shmem_evict_inode() will not
1278 		 * remove placeholder inode from swaplist, nor let it be freed
1279 		 * (igrab() would protect from unlink, but not from unmount).
1280 		 */
1281 		atomic_inc(&info->stop_eviction);
1282 		mutex_unlock(&shmem_swaplist_mutex);
1283 
1284 		error = shmem_unuse_inode(&info->vfs_inode, type);
1285 		cond_resched();
1286 
1287 		mutex_lock(&shmem_swaplist_mutex);
1288 		next = list_next_entry(info, swaplist);
1289 		if (!info->swapped)
1290 			list_del_init(&info->swaplist);
1291 		if (atomic_dec_and_test(&info->stop_eviction))
1292 			wake_up_var(&info->stop_eviction);
1293 		if (error)
1294 			break;
1295 	}
1296 	mutex_unlock(&shmem_swaplist_mutex);
1297 
1298 	return error;
1299 }
1300 
1301 /*
1302  * Move the page from the page cache to the swap cache.
1303  */
1304 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1305 {
1306 	struct folio *folio = page_folio(page);
1307 	struct shmem_inode_info *info;
1308 	struct address_space *mapping;
1309 	struct inode *inode;
1310 	swp_entry_t swap;
1311 	pgoff_t index;
1312 
1313 	/*
1314 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1315 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1316 	 * and its shmem_writeback() needs them to be split when swapping.
1317 	 */
1318 	if (folio_test_large(folio)) {
1319 		/* Ensure the subpages are still dirty */
1320 		folio_test_set_dirty(folio);
1321 		if (split_huge_page(page) < 0)
1322 			goto redirty;
1323 		folio = page_folio(page);
1324 		folio_clear_dirty(folio);
1325 	}
1326 
1327 	BUG_ON(!folio_test_locked(folio));
1328 	mapping = folio->mapping;
1329 	index = folio->index;
1330 	inode = mapping->host;
1331 	info = SHMEM_I(inode);
1332 	if (info->flags & VM_LOCKED)
1333 		goto redirty;
1334 	if (!total_swap_pages)
1335 		goto redirty;
1336 
1337 	/*
1338 	 * Our capabilities prevent regular writeback or sync from ever calling
1339 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1340 	 * its underlying filesystem, in which case tmpfs should write out to
1341 	 * swap only in response to memory pressure, and not for the writeback
1342 	 * threads or sync.
1343 	 */
1344 	if (!wbc->for_reclaim) {
1345 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1346 		goto redirty;
1347 	}
1348 
1349 	/*
1350 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1351 	 * value into swapfile.c, the only way we can correctly account for a
1352 	 * fallocated folio arriving here is now to initialize it and write it.
1353 	 *
1354 	 * That's okay for a folio already fallocated earlier, but if we have
1355 	 * not yet completed the fallocation, then (a) we want to keep track
1356 	 * of this folio in case we have to undo it, and (b) it may not be a
1357 	 * good idea to continue anyway, once we're pushing into swap.  So
1358 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1359 	 */
1360 	if (!folio_test_uptodate(folio)) {
1361 		if (inode->i_private) {
1362 			struct shmem_falloc *shmem_falloc;
1363 			spin_lock(&inode->i_lock);
1364 			shmem_falloc = inode->i_private;
1365 			if (shmem_falloc &&
1366 			    !shmem_falloc->waitq &&
1367 			    index >= shmem_falloc->start &&
1368 			    index < shmem_falloc->next)
1369 				shmem_falloc->nr_unswapped++;
1370 			else
1371 				shmem_falloc = NULL;
1372 			spin_unlock(&inode->i_lock);
1373 			if (shmem_falloc)
1374 				goto redirty;
1375 		}
1376 		folio_zero_range(folio, 0, folio_size(folio));
1377 		flush_dcache_folio(folio);
1378 		folio_mark_uptodate(folio);
1379 	}
1380 
1381 	swap = folio_alloc_swap(folio);
1382 	if (!swap.val)
1383 		goto redirty;
1384 
1385 	/*
1386 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1387 	 * if it's not already there.  Do it now before the folio is
1388 	 * moved to swap cache, when its pagelock no longer protects
1389 	 * the inode from eviction.  But don't unlock the mutex until
1390 	 * we've incremented swapped, because shmem_unuse_inode() will
1391 	 * prune a !swapped inode from the swaplist under this mutex.
1392 	 */
1393 	mutex_lock(&shmem_swaplist_mutex);
1394 	if (list_empty(&info->swaplist))
1395 		list_add(&info->swaplist, &shmem_swaplist);
1396 
1397 	if (add_to_swap_cache(folio, swap,
1398 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1399 			NULL) == 0) {
1400 		spin_lock_irq(&info->lock);
1401 		shmem_recalc_inode(inode);
1402 		info->swapped++;
1403 		spin_unlock_irq(&info->lock);
1404 
1405 		swap_shmem_alloc(swap);
1406 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1407 
1408 		mutex_unlock(&shmem_swaplist_mutex);
1409 		BUG_ON(folio_mapped(folio));
1410 		swap_writepage(&folio->page, wbc);
1411 		return 0;
1412 	}
1413 
1414 	mutex_unlock(&shmem_swaplist_mutex);
1415 	put_swap_folio(folio, swap);
1416 redirty:
1417 	folio_mark_dirty(folio);
1418 	if (wbc->for_reclaim)
1419 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1420 	folio_unlock(folio);
1421 	return 0;
1422 }
1423 
1424 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1425 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1426 {
1427 	char buffer[64];
1428 
1429 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1430 		return;		/* show nothing */
1431 
1432 	mpol_to_str(buffer, sizeof(buffer), mpol);
1433 
1434 	seq_printf(seq, ",mpol=%s", buffer);
1435 }
1436 
1437 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1438 {
1439 	struct mempolicy *mpol = NULL;
1440 	if (sbinfo->mpol) {
1441 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1442 		mpol = sbinfo->mpol;
1443 		mpol_get(mpol);
1444 		raw_spin_unlock(&sbinfo->stat_lock);
1445 	}
1446 	return mpol;
1447 }
1448 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1449 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1450 {
1451 }
1452 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1453 {
1454 	return NULL;
1455 }
1456 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1457 #ifndef CONFIG_NUMA
1458 #define vm_policy vm_private_data
1459 #endif
1460 
1461 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1462 		struct shmem_inode_info *info, pgoff_t index)
1463 {
1464 	/* Create a pseudo vma that just contains the policy */
1465 	vma_init(vma, NULL);
1466 	/* Bias interleave by inode number to distribute better across nodes */
1467 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1468 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1469 }
1470 
1471 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1472 {
1473 	/* Drop reference taken by mpol_shared_policy_lookup() */
1474 	mpol_cond_put(vma->vm_policy);
1475 }
1476 
1477 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1478 			struct shmem_inode_info *info, pgoff_t index)
1479 {
1480 	struct vm_area_struct pvma;
1481 	struct page *page;
1482 	struct vm_fault vmf = {
1483 		.vma = &pvma,
1484 	};
1485 
1486 	shmem_pseudo_vma_init(&pvma, info, index);
1487 	page = swap_cluster_readahead(swap, gfp, &vmf);
1488 	shmem_pseudo_vma_destroy(&pvma);
1489 
1490 	if (!page)
1491 		return NULL;
1492 	return page_folio(page);
1493 }
1494 
1495 /*
1496  * Make sure huge_gfp is always more limited than limit_gfp.
1497  * Some of the flags set permissions, while others set limitations.
1498  */
1499 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1500 {
1501 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1502 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1503 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1504 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1505 
1506 	/* Allow allocations only from the originally specified zones. */
1507 	result |= zoneflags;
1508 
1509 	/*
1510 	 * Minimize the result gfp by taking the union with the deny flags,
1511 	 * and the intersection of the allow flags.
1512 	 */
1513 	result |= (limit_gfp & denyflags);
1514 	result |= (huge_gfp & limit_gfp) & allowflags;
1515 
1516 	return result;
1517 }
1518 
1519 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1520 		struct shmem_inode_info *info, pgoff_t index)
1521 {
1522 	struct vm_area_struct pvma;
1523 	struct address_space *mapping = info->vfs_inode.i_mapping;
1524 	pgoff_t hindex;
1525 	struct folio *folio;
1526 
1527 	hindex = round_down(index, HPAGE_PMD_NR);
1528 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1529 								XA_PRESENT))
1530 		return NULL;
1531 
1532 	shmem_pseudo_vma_init(&pvma, info, hindex);
1533 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1534 	shmem_pseudo_vma_destroy(&pvma);
1535 	if (!folio)
1536 		count_vm_event(THP_FILE_FALLBACK);
1537 	return folio;
1538 }
1539 
1540 static struct folio *shmem_alloc_folio(gfp_t gfp,
1541 			struct shmem_inode_info *info, pgoff_t index)
1542 {
1543 	struct vm_area_struct pvma;
1544 	struct folio *folio;
1545 
1546 	shmem_pseudo_vma_init(&pvma, info, index);
1547 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1548 	shmem_pseudo_vma_destroy(&pvma);
1549 
1550 	return folio;
1551 }
1552 
1553 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1554 		pgoff_t index, bool huge)
1555 {
1556 	struct shmem_inode_info *info = SHMEM_I(inode);
1557 	struct folio *folio;
1558 	int nr;
1559 	int err = -ENOSPC;
1560 
1561 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1562 		huge = false;
1563 	nr = huge ? HPAGE_PMD_NR : 1;
1564 
1565 	if (!shmem_inode_acct_block(inode, nr))
1566 		goto failed;
1567 
1568 	if (huge)
1569 		folio = shmem_alloc_hugefolio(gfp, info, index);
1570 	else
1571 		folio = shmem_alloc_folio(gfp, info, index);
1572 	if (folio) {
1573 		__folio_set_locked(folio);
1574 		__folio_set_swapbacked(folio);
1575 		return folio;
1576 	}
1577 
1578 	err = -ENOMEM;
1579 	shmem_inode_unacct_blocks(inode, nr);
1580 failed:
1581 	return ERR_PTR(err);
1582 }
1583 
1584 /*
1585  * When a page is moved from swapcache to shmem filecache (either by the
1586  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1587  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1588  * ignorance of the mapping it belongs to.  If that mapping has special
1589  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1590  * we may need to copy to a suitable page before moving to filecache.
1591  *
1592  * In a future release, this may well be extended to respect cpuset and
1593  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1594  * but for now it is a simple matter of zone.
1595  */
1596 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1597 {
1598 	return folio_zonenum(folio) > gfp_zone(gfp);
1599 }
1600 
1601 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1602 				struct shmem_inode_info *info, pgoff_t index)
1603 {
1604 	struct folio *old, *new;
1605 	struct address_space *swap_mapping;
1606 	swp_entry_t entry;
1607 	pgoff_t swap_index;
1608 	int error;
1609 
1610 	old = *foliop;
1611 	entry = folio_swap_entry(old);
1612 	swap_index = swp_offset(entry);
1613 	swap_mapping = swap_address_space(entry);
1614 
1615 	/*
1616 	 * We have arrived here because our zones are constrained, so don't
1617 	 * limit chance of success by further cpuset and node constraints.
1618 	 */
1619 	gfp &= ~GFP_CONSTRAINT_MASK;
1620 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1621 	new = shmem_alloc_folio(gfp, info, index);
1622 	if (!new)
1623 		return -ENOMEM;
1624 
1625 	folio_get(new);
1626 	folio_copy(new, old);
1627 	flush_dcache_folio(new);
1628 
1629 	__folio_set_locked(new);
1630 	__folio_set_swapbacked(new);
1631 	folio_mark_uptodate(new);
1632 	folio_set_swap_entry(new, entry);
1633 	folio_set_swapcache(new);
1634 
1635 	/*
1636 	 * Our caller will very soon move newpage out of swapcache, but it's
1637 	 * a nice clean interface for us to replace oldpage by newpage there.
1638 	 */
1639 	xa_lock_irq(&swap_mapping->i_pages);
1640 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1641 	if (!error) {
1642 		mem_cgroup_migrate(old, new);
1643 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1644 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1645 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1646 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1647 	}
1648 	xa_unlock_irq(&swap_mapping->i_pages);
1649 
1650 	if (unlikely(error)) {
1651 		/*
1652 		 * Is this possible?  I think not, now that our callers check
1653 		 * both PageSwapCache and page_private after getting page lock;
1654 		 * but be defensive.  Reverse old to newpage for clear and free.
1655 		 */
1656 		old = new;
1657 	} else {
1658 		folio_add_lru(new);
1659 		*foliop = new;
1660 	}
1661 
1662 	folio_clear_swapcache(old);
1663 	old->private = NULL;
1664 
1665 	folio_unlock(old);
1666 	folio_put_refs(old, 2);
1667 	return error;
1668 }
1669 
1670 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1671 					 struct folio *folio, swp_entry_t swap)
1672 {
1673 	struct address_space *mapping = inode->i_mapping;
1674 	struct shmem_inode_info *info = SHMEM_I(inode);
1675 	swp_entry_t swapin_error;
1676 	void *old;
1677 
1678 	swapin_error = make_swapin_error_entry(&folio->page);
1679 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1680 			     swp_to_radix_entry(swap),
1681 			     swp_to_radix_entry(swapin_error), 0);
1682 	if (old != swp_to_radix_entry(swap))
1683 		return;
1684 
1685 	folio_wait_writeback(folio);
1686 	delete_from_swap_cache(folio);
1687 	spin_lock_irq(&info->lock);
1688 	/*
1689 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1690 	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1691 	 * shmem_evict_inode.
1692 	 */
1693 	info->alloced--;
1694 	info->swapped--;
1695 	shmem_recalc_inode(inode);
1696 	spin_unlock_irq(&info->lock);
1697 	swap_free(swap);
1698 }
1699 
1700 /*
1701  * Swap in the folio pointed to by *foliop.
1702  * Caller has to make sure that *foliop contains a valid swapped folio.
1703  * Returns 0 and the folio in foliop if success. On failure, returns the
1704  * error code and NULL in *foliop.
1705  */
1706 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1707 			     struct folio **foliop, enum sgp_type sgp,
1708 			     gfp_t gfp, struct vm_area_struct *vma,
1709 			     vm_fault_t *fault_type)
1710 {
1711 	struct address_space *mapping = inode->i_mapping;
1712 	struct shmem_inode_info *info = SHMEM_I(inode);
1713 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1714 	struct folio *folio = NULL;
1715 	swp_entry_t swap;
1716 	int error;
1717 
1718 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1719 	swap = radix_to_swp_entry(*foliop);
1720 	*foliop = NULL;
1721 
1722 	if (is_swapin_error_entry(swap))
1723 		return -EIO;
1724 
1725 	/* Look it up and read it in.. */
1726 	folio = swap_cache_get_folio(swap, NULL, 0);
1727 	if (!folio) {
1728 		/* Or update major stats only when swapin succeeds?? */
1729 		if (fault_type) {
1730 			*fault_type |= VM_FAULT_MAJOR;
1731 			count_vm_event(PGMAJFAULT);
1732 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1733 		}
1734 		/* Here we actually start the io */
1735 		folio = shmem_swapin(swap, gfp, info, index);
1736 		if (!folio) {
1737 			error = -ENOMEM;
1738 			goto failed;
1739 		}
1740 	}
1741 
1742 	/* We have to do this with folio locked to prevent races */
1743 	folio_lock(folio);
1744 	if (!folio_test_swapcache(folio) ||
1745 	    folio_swap_entry(folio).val != swap.val ||
1746 	    !shmem_confirm_swap(mapping, index, swap)) {
1747 		error = -EEXIST;
1748 		goto unlock;
1749 	}
1750 	if (!folio_test_uptodate(folio)) {
1751 		error = -EIO;
1752 		goto failed;
1753 	}
1754 	folio_wait_writeback(folio);
1755 
1756 	/*
1757 	 * Some architectures may have to restore extra metadata to the
1758 	 * folio after reading from swap.
1759 	 */
1760 	arch_swap_restore(swap, folio);
1761 
1762 	if (shmem_should_replace_folio(folio, gfp)) {
1763 		error = shmem_replace_folio(&folio, gfp, info, index);
1764 		if (error)
1765 			goto failed;
1766 	}
1767 
1768 	error = shmem_add_to_page_cache(folio, mapping, index,
1769 					swp_to_radix_entry(swap), gfp,
1770 					charge_mm);
1771 	if (error)
1772 		goto failed;
1773 
1774 	spin_lock_irq(&info->lock);
1775 	info->swapped--;
1776 	shmem_recalc_inode(inode);
1777 	spin_unlock_irq(&info->lock);
1778 
1779 	if (sgp == SGP_WRITE)
1780 		folio_mark_accessed(folio);
1781 
1782 	delete_from_swap_cache(folio);
1783 	folio_mark_dirty(folio);
1784 	swap_free(swap);
1785 
1786 	*foliop = folio;
1787 	return 0;
1788 failed:
1789 	if (!shmem_confirm_swap(mapping, index, swap))
1790 		error = -EEXIST;
1791 	if (error == -EIO)
1792 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1793 unlock:
1794 	if (folio) {
1795 		folio_unlock(folio);
1796 		folio_put(folio);
1797 	}
1798 
1799 	return error;
1800 }
1801 
1802 /*
1803  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1804  *
1805  * If we allocate a new one we do not mark it dirty. That's up to the
1806  * vm. If we swap it in we mark it dirty since we also free the swap
1807  * entry since a page cannot live in both the swap and page cache.
1808  *
1809  * vma, vmf, and fault_type are only supplied by shmem_fault:
1810  * otherwise they are NULL.
1811  */
1812 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1813 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1814 		struct vm_area_struct *vma, struct vm_fault *vmf,
1815 		vm_fault_t *fault_type)
1816 {
1817 	struct address_space *mapping = inode->i_mapping;
1818 	struct shmem_inode_info *info = SHMEM_I(inode);
1819 	struct shmem_sb_info *sbinfo;
1820 	struct mm_struct *charge_mm;
1821 	struct folio *folio;
1822 	pgoff_t hindex = index;
1823 	gfp_t huge_gfp;
1824 	int error;
1825 	int once = 0;
1826 	int alloced = 0;
1827 
1828 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1829 		return -EFBIG;
1830 repeat:
1831 	if (sgp <= SGP_CACHE &&
1832 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1833 		return -EINVAL;
1834 	}
1835 
1836 	sbinfo = SHMEM_SB(inode->i_sb);
1837 	charge_mm = vma ? vma->vm_mm : NULL;
1838 
1839 	folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1840 	if (folio && vma && userfaultfd_minor(vma)) {
1841 		if (!xa_is_value(folio)) {
1842 			folio_unlock(folio);
1843 			folio_put(folio);
1844 		}
1845 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1846 		return 0;
1847 	}
1848 
1849 	if (xa_is_value(folio)) {
1850 		error = shmem_swapin_folio(inode, index, &folio,
1851 					  sgp, gfp, vma, fault_type);
1852 		if (error == -EEXIST)
1853 			goto repeat;
1854 
1855 		*foliop = folio;
1856 		return error;
1857 	}
1858 
1859 	if (folio) {
1860 		hindex = folio->index;
1861 		if (sgp == SGP_WRITE)
1862 			folio_mark_accessed(folio);
1863 		if (folio_test_uptodate(folio))
1864 			goto out;
1865 		/* fallocated folio */
1866 		if (sgp != SGP_READ)
1867 			goto clear;
1868 		folio_unlock(folio);
1869 		folio_put(folio);
1870 	}
1871 
1872 	/*
1873 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1874 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1875 	 */
1876 	*foliop = NULL;
1877 	if (sgp == SGP_READ)
1878 		return 0;
1879 	if (sgp == SGP_NOALLOC)
1880 		return -ENOENT;
1881 
1882 	/*
1883 	 * Fast cache lookup and swap lookup did not find it: allocate.
1884 	 */
1885 
1886 	if (vma && userfaultfd_missing(vma)) {
1887 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1888 		return 0;
1889 	}
1890 
1891 	if (!shmem_is_huge(vma, inode, index))
1892 		goto alloc_nohuge;
1893 
1894 	huge_gfp = vma_thp_gfp_mask(vma);
1895 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1896 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1897 	if (IS_ERR(folio)) {
1898 alloc_nohuge:
1899 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1900 	}
1901 	if (IS_ERR(folio)) {
1902 		int retry = 5;
1903 
1904 		error = PTR_ERR(folio);
1905 		folio = NULL;
1906 		if (error != -ENOSPC)
1907 			goto unlock;
1908 		/*
1909 		 * Try to reclaim some space by splitting a large folio
1910 		 * beyond i_size on the filesystem.
1911 		 */
1912 		while (retry--) {
1913 			int ret;
1914 
1915 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1916 			if (ret == SHRINK_STOP)
1917 				break;
1918 			if (ret)
1919 				goto alloc_nohuge;
1920 		}
1921 		goto unlock;
1922 	}
1923 
1924 	hindex = round_down(index, folio_nr_pages(folio));
1925 
1926 	if (sgp == SGP_WRITE)
1927 		__folio_set_referenced(folio);
1928 
1929 	error = shmem_add_to_page_cache(folio, mapping, hindex,
1930 					NULL, gfp & GFP_RECLAIM_MASK,
1931 					charge_mm);
1932 	if (error)
1933 		goto unacct;
1934 	folio_add_lru(folio);
1935 
1936 	spin_lock_irq(&info->lock);
1937 	info->alloced += folio_nr_pages(folio);
1938 	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1939 	shmem_recalc_inode(inode);
1940 	spin_unlock_irq(&info->lock);
1941 	alloced = true;
1942 
1943 	if (folio_test_pmd_mappable(folio) &&
1944 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1945 					folio_next_index(folio) - 1) {
1946 		/*
1947 		 * Part of the large folio is beyond i_size: subject
1948 		 * to shrink under memory pressure.
1949 		 */
1950 		spin_lock(&sbinfo->shrinklist_lock);
1951 		/*
1952 		 * _careful to defend against unlocked access to
1953 		 * ->shrink_list in shmem_unused_huge_shrink()
1954 		 */
1955 		if (list_empty_careful(&info->shrinklist)) {
1956 			list_add_tail(&info->shrinklist,
1957 				      &sbinfo->shrinklist);
1958 			sbinfo->shrinklist_len++;
1959 		}
1960 		spin_unlock(&sbinfo->shrinklist_lock);
1961 	}
1962 
1963 	/*
1964 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
1965 	 */
1966 	if (sgp == SGP_FALLOC)
1967 		sgp = SGP_WRITE;
1968 clear:
1969 	/*
1970 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
1971 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
1972 	 * it now, lest undo on failure cancel our earlier guarantee.
1973 	 */
1974 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1975 		long i, n = folio_nr_pages(folio);
1976 
1977 		for (i = 0; i < n; i++)
1978 			clear_highpage(folio_page(folio, i));
1979 		flush_dcache_folio(folio);
1980 		folio_mark_uptodate(folio);
1981 	}
1982 
1983 	/* Perhaps the file has been truncated since we checked */
1984 	if (sgp <= SGP_CACHE &&
1985 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1986 		if (alloced) {
1987 			folio_clear_dirty(folio);
1988 			filemap_remove_folio(folio);
1989 			spin_lock_irq(&info->lock);
1990 			shmem_recalc_inode(inode);
1991 			spin_unlock_irq(&info->lock);
1992 		}
1993 		error = -EINVAL;
1994 		goto unlock;
1995 	}
1996 out:
1997 	*foliop = folio;
1998 	return 0;
1999 
2000 	/*
2001 	 * Error recovery.
2002 	 */
2003 unacct:
2004 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2005 
2006 	if (folio_test_large(folio)) {
2007 		folio_unlock(folio);
2008 		folio_put(folio);
2009 		goto alloc_nohuge;
2010 	}
2011 unlock:
2012 	if (folio) {
2013 		folio_unlock(folio);
2014 		folio_put(folio);
2015 	}
2016 	if (error == -ENOSPC && !once++) {
2017 		spin_lock_irq(&info->lock);
2018 		shmem_recalc_inode(inode);
2019 		spin_unlock_irq(&info->lock);
2020 		goto repeat;
2021 	}
2022 	if (error == -EEXIST)
2023 		goto repeat;
2024 	return error;
2025 }
2026 
2027 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2028 		enum sgp_type sgp)
2029 {
2030 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2031 			mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2032 }
2033 
2034 int shmem_getpage(struct inode *inode, pgoff_t index,
2035 		struct page **pagep, enum sgp_type sgp)
2036 {
2037 	struct folio *folio = NULL;
2038 	int ret = shmem_get_folio(inode, index, &folio, sgp);
2039 
2040 	if (folio)
2041 		*pagep = folio_file_page(folio, index);
2042 	else
2043 		*pagep = NULL;
2044 	return ret;
2045 }
2046 
2047 /*
2048  * This is like autoremove_wake_function, but it removes the wait queue
2049  * entry unconditionally - even if something else had already woken the
2050  * target.
2051  */
2052 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2053 {
2054 	int ret = default_wake_function(wait, mode, sync, key);
2055 	list_del_init(&wait->entry);
2056 	return ret;
2057 }
2058 
2059 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2060 {
2061 	struct vm_area_struct *vma = vmf->vma;
2062 	struct inode *inode = file_inode(vma->vm_file);
2063 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2064 	struct folio *folio = NULL;
2065 	int err;
2066 	vm_fault_t ret = VM_FAULT_LOCKED;
2067 
2068 	/*
2069 	 * Trinity finds that probing a hole which tmpfs is punching can
2070 	 * prevent the hole-punch from ever completing: which in turn
2071 	 * locks writers out with its hold on i_rwsem.  So refrain from
2072 	 * faulting pages into the hole while it's being punched.  Although
2073 	 * shmem_undo_range() does remove the additions, it may be unable to
2074 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2075 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2076 	 *
2077 	 * It does not matter if we sometimes reach this check just before the
2078 	 * hole-punch begins, so that one fault then races with the punch:
2079 	 * we just need to make racing faults a rare case.
2080 	 *
2081 	 * The implementation below would be much simpler if we just used a
2082 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2083 	 * and bloating every shmem inode for this unlikely case would be sad.
2084 	 */
2085 	if (unlikely(inode->i_private)) {
2086 		struct shmem_falloc *shmem_falloc;
2087 
2088 		spin_lock(&inode->i_lock);
2089 		shmem_falloc = inode->i_private;
2090 		if (shmem_falloc &&
2091 		    shmem_falloc->waitq &&
2092 		    vmf->pgoff >= shmem_falloc->start &&
2093 		    vmf->pgoff < shmem_falloc->next) {
2094 			struct file *fpin;
2095 			wait_queue_head_t *shmem_falloc_waitq;
2096 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2097 
2098 			ret = VM_FAULT_NOPAGE;
2099 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2100 			if (fpin)
2101 				ret = VM_FAULT_RETRY;
2102 
2103 			shmem_falloc_waitq = shmem_falloc->waitq;
2104 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2105 					TASK_UNINTERRUPTIBLE);
2106 			spin_unlock(&inode->i_lock);
2107 			schedule();
2108 
2109 			/*
2110 			 * shmem_falloc_waitq points into the shmem_fallocate()
2111 			 * stack of the hole-punching task: shmem_falloc_waitq
2112 			 * is usually invalid by the time we reach here, but
2113 			 * finish_wait() does not dereference it in that case;
2114 			 * though i_lock needed lest racing with wake_up_all().
2115 			 */
2116 			spin_lock(&inode->i_lock);
2117 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2118 			spin_unlock(&inode->i_lock);
2119 
2120 			if (fpin)
2121 				fput(fpin);
2122 			return ret;
2123 		}
2124 		spin_unlock(&inode->i_lock);
2125 	}
2126 
2127 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2128 				  gfp, vma, vmf, &ret);
2129 	if (err)
2130 		return vmf_error(err);
2131 	if (folio)
2132 		vmf->page = folio_file_page(folio, vmf->pgoff);
2133 	return ret;
2134 }
2135 
2136 unsigned long shmem_get_unmapped_area(struct file *file,
2137 				      unsigned long uaddr, unsigned long len,
2138 				      unsigned long pgoff, unsigned long flags)
2139 {
2140 	unsigned long (*get_area)(struct file *,
2141 		unsigned long, unsigned long, unsigned long, unsigned long);
2142 	unsigned long addr;
2143 	unsigned long offset;
2144 	unsigned long inflated_len;
2145 	unsigned long inflated_addr;
2146 	unsigned long inflated_offset;
2147 
2148 	if (len > TASK_SIZE)
2149 		return -ENOMEM;
2150 
2151 	get_area = current->mm->get_unmapped_area;
2152 	addr = get_area(file, uaddr, len, pgoff, flags);
2153 
2154 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2155 		return addr;
2156 	if (IS_ERR_VALUE(addr))
2157 		return addr;
2158 	if (addr & ~PAGE_MASK)
2159 		return addr;
2160 	if (addr > TASK_SIZE - len)
2161 		return addr;
2162 
2163 	if (shmem_huge == SHMEM_HUGE_DENY)
2164 		return addr;
2165 	if (len < HPAGE_PMD_SIZE)
2166 		return addr;
2167 	if (flags & MAP_FIXED)
2168 		return addr;
2169 	/*
2170 	 * Our priority is to support MAP_SHARED mapped hugely;
2171 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2172 	 * But if caller specified an address hint and we allocated area there
2173 	 * successfully, respect that as before.
2174 	 */
2175 	if (uaddr == addr)
2176 		return addr;
2177 
2178 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2179 		struct super_block *sb;
2180 
2181 		if (file) {
2182 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2183 			sb = file_inode(file)->i_sb;
2184 		} else {
2185 			/*
2186 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2187 			 * for "/dev/zero", to create a shared anonymous object.
2188 			 */
2189 			if (IS_ERR(shm_mnt))
2190 				return addr;
2191 			sb = shm_mnt->mnt_sb;
2192 		}
2193 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2194 			return addr;
2195 	}
2196 
2197 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2198 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2199 		return addr;
2200 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2201 		return addr;
2202 
2203 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2204 	if (inflated_len > TASK_SIZE)
2205 		return addr;
2206 	if (inflated_len < len)
2207 		return addr;
2208 
2209 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2210 	if (IS_ERR_VALUE(inflated_addr))
2211 		return addr;
2212 	if (inflated_addr & ~PAGE_MASK)
2213 		return addr;
2214 
2215 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2216 	inflated_addr += offset - inflated_offset;
2217 	if (inflated_offset > offset)
2218 		inflated_addr += HPAGE_PMD_SIZE;
2219 
2220 	if (inflated_addr > TASK_SIZE - len)
2221 		return addr;
2222 	return inflated_addr;
2223 }
2224 
2225 #ifdef CONFIG_NUMA
2226 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2227 {
2228 	struct inode *inode = file_inode(vma->vm_file);
2229 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2230 }
2231 
2232 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2233 					  unsigned long addr)
2234 {
2235 	struct inode *inode = file_inode(vma->vm_file);
2236 	pgoff_t index;
2237 
2238 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2239 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2240 }
2241 #endif
2242 
2243 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2244 {
2245 	struct inode *inode = file_inode(file);
2246 	struct shmem_inode_info *info = SHMEM_I(inode);
2247 	int retval = -ENOMEM;
2248 
2249 	/*
2250 	 * What serializes the accesses to info->flags?
2251 	 * ipc_lock_object() when called from shmctl_do_lock(),
2252 	 * no serialization needed when called from shm_destroy().
2253 	 */
2254 	if (lock && !(info->flags & VM_LOCKED)) {
2255 		if (!user_shm_lock(inode->i_size, ucounts))
2256 			goto out_nomem;
2257 		info->flags |= VM_LOCKED;
2258 		mapping_set_unevictable(file->f_mapping);
2259 	}
2260 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2261 		user_shm_unlock(inode->i_size, ucounts);
2262 		info->flags &= ~VM_LOCKED;
2263 		mapping_clear_unevictable(file->f_mapping);
2264 	}
2265 	retval = 0;
2266 
2267 out_nomem:
2268 	return retval;
2269 }
2270 
2271 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2272 {
2273 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2274 	int ret;
2275 
2276 	ret = seal_check_future_write(info->seals, vma);
2277 	if (ret)
2278 		return ret;
2279 
2280 	/* arm64 - allow memory tagging on RAM-based files */
2281 	vma->vm_flags |= VM_MTE_ALLOWED;
2282 
2283 	file_accessed(file);
2284 	vma->vm_ops = &shmem_vm_ops;
2285 	return 0;
2286 }
2287 
2288 #ifdef CONFIG_TMPFS_XATTR
2289 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2290 
2291 /*
2292  * chattr's fsflags are unrelated to extended attributes,
2293  * but tmpfs has chosen to enable them under the same config option.
2294  */
2295 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2296 {
2297 	unsigned int i_flags = 0;
2298 
2299 	if (fsflags & FS_NOATIME_FL)
2300 		i_flags |= S_NOATIME;
2301 	if (fsflags & FS_APPEND_FL)
2302 		i_flags |= S_APPEND;
2303 	if (fsflags & FS_IMMUTABLE_FL)
2304 		i_flags |= S_IMMUTABLE;
2305 	/*
2306 	 * But FS_NODUMP_FL does not require any action in i_flags.
2307 	 */
2308 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2309 }
2310 #else
2311 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2312 {
2313 }
2314 #define shmem_initxattrs NULL
2315 #endif
2316 
2317 static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir,
2318 				     umode_t mode, dev_t dev, unsigned long flags)
2319 {
2320 	struct inode *inode;
2321 	struct shmem_inode_info *info;
2322 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2323 	ino_t ino;
2324 
2325 	if (shmem_reserve_inode(sb, &ino))
2326 		return NULL;
2327 
2328 	inode = new_inode(sb);
2329 	if (inode) {
2330 		inode->i_ino = ino;
2331 		inode_init_owner(&init_user_ns, inode, dir, mode);
2332 		inode->i_blocks = 0;
2333 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2334 		inode->i_generation = prandom_u32();
2335 		info = SHMEM_I(inode);
2336 		memset(info, 0, (char *)inode - (char *)info);
2337 		spin_lock_init(&info->lock);
2338 		atomic_set(&info->stop_eviction, 0);
2339 		info->seals = F_SEAL_SEAL;
2340 		info->flags = flags & VM_NORESERVE;
2341 		info->i_crtime = inode->i_mtime;
2342 		info->fsflags = (dir == NULL) ? 0 :
2343 			SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2344 		if (info->fsflags)
2345 			shmem_set_inode_flags(inode, info->fsflags);
2346 		INIT_LIST_HEAD(&info->shrinklist);
2347 		INIT_LIST_HEAD(&info->swaplist);
2348 		simple_xattrs_init(&info->xattrs);
2349 		cache_no_acl(inode);
2350 		mapping_set_large_folios(inode->i_mapping);
2351 
2352 		switch (mode & S_IFMT) {
2353 		default:
2354 			inode->i_op = &shmem_special_inode_operations;
2355 			init_special_inode(inode, mode, dev);
2356 			break;
2357 		case S_IFREG:
2358 			inode->i_mapping->a_ops = &shmem_aops;
2359 			inode->i_op = &shmem_inode_operations;
2360 			inode->i_fop = &shmem_file_operations;
2361 			mpol_shared_policy_init(&info->policy,
2362 						 shmem_get_sbmpol(sbinfo));
2363 			break;
2364 		case S_IFDIR:
2365 			inc_nlink(inode);
2366 			/* Some things misbehave if size == 0 on a directory */
2367 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2368 			inode->i_op = &shmem_dir_inode_operations;
2369 			inode->i_fop = &simple_dir_operations;
2370 			break;
2371 		case S_IFLNK:
2372 			/*
2373 			 * Must not load anything in the rbtree,
2374 			 * mpol_free_shared_policy will not be called.
2375 			 */
2376 			mpol_shared_policy_init(&info->policy, NULL);
2377 			break;
2378 		}
2379 
2380 		lockdep_annotate_inode_mutex_key(inode);
2381 	} else
2382 		shmem_free_inode(sb);
2383 	return inode;
2384 }
2385 
2386 #ifdef CONFIG_USERFAULTFD
2387 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2388 			   pmd_t *dst_pmd,
2389 			   struct vm_area_struct *dst_vma,
2390 			   unsigned long dst_addr,
2391 			   unsigned long src_addr,
2392 			   bool zeropage, bool wp_copy,
2393 			   struct page **pagep)
2394 {
2395 	struct inode *inode = file_inode(dst_vma->vm_file);
2396 	struct shmem_inode_info *info = SHMEM_I(inode);
2397 	struct address_space *mapping = inode->i_mapping;
2398 	gfp_t gfp = mapping_gfp_mask(mapping);
2399 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2400 	void *page_kaddr;
2401 	struct folio *folio;
2402 	int ret;
2403 	pgoff_t max_off;
2404 
2405 	if (!shmem_inode_acct_block(inode, 1)) {
2406 		/*
2407 		 * We may have got a page, returned -ENOENT triggering a retry,
2408 		 * and now we find ourselves with -ENOMEM. Release the page, to
2409 		 * avoid a BUG_ON in our caller.
2410 		 */
2411 		if (unlikely(*pagep)) {
2412 			put_page(*pagep);
2413 			*pagep = NULL;
2414 		}
2415 		return -ENOMEM;
2416 	}
2417 
2418 	if (!*pagep) {
2419 		ret = -ENOMEM;
2420 		folio = shmem_alloc_folio(gfp, info, pgoff);
2421 		if (!folio)
2422 			goto out_unacct_blocks;
2423 
2424 		if (!zeropage) {	/* COPY */
2425 			page_kaddr = kmap_local_folio(folio, 0);
2426 			ret = copy_from_user(page_kaddr,
2427 					     (const void __user *)src_addr,
2428 					     PAGE_SIZE);
2429 			kunmap_local(page_kaddr);
2430 
2431 			/* fallback to copy_from_user outside mmap_lock */
2432 			if (unlikely(ret)) {
2433 				*pagep = &folio->page;
2434 				ret = -ENOENT;
2435 				/* don't free the page */
2436 				goto out_unacct_blocks;
2437 			}
2438 
2439 			flush_dcache_folio(folio);
2440 		} else {		/* ZEROPAGE */
2441 			clear_user_highpage(&folio->page, dst_addr);
2442 		}
2443 	} else {
2444 		folio = page_folio(*pagep);
2445 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2446 		*pagep = NULL;
2447 	}
2448 
2449 	VM_BUG_ON(folio_test_locked(folio));
2450 	VM_BUG_ON(folio_test_swapbacked(folio));
2451 	__folio_set_locked(folio);
2452 	__folio_set_swapbacked(folio);
2453 	__folio_mark_uptodate(folio);
2454 
2455 	ret = -EFAULT;
2456 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2457 	if (unlikely(pgoff >= max_off))
2458 		goto out_release;
2459 
2460 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2461 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2462 	if (ret)
2463 		goto out_release;
2464 
2465 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2466 				       &folio->page, true, wp_copy);
2467 	if (ret)
2468 		goto out_delete_from_cache;
2469 
2470 	spin_lock_irq(&info->lock);
2471 	info->alloced++;
2472 	inode->i_blocks += BLOCKS_PER_PAGE;
2473 	shmem_recalc_inode(inode);
2474 	spin_unlock_irq(&info->lock);
2475 
2476 	folio_unlock(folio);
2477 	return 0;
2478 out_delete_from_cache:
2479 	filemap_remove_folio(folio);
2480 out_release:
2481 	folio_unlock(folio);
2482 	folio_put(folio);
2483 out_unacct_blocks:
2484 	shmem_inode_unacct_blocks(inode, 1);
2485 	return ret;
2486 }
2487 #endif /* CONFIG_USERFAULTFD */
2488 
2489 #ifdef CONFIG_TMPFS
2490 static const struct inode_operations shmem_symlink_inode_operations;
2491 static const struct inode_operations shmem_short_symlink_operations;
2492 
2493 static int
2494 shmem_write_begin(struct file *file, struct address_space *mapping,
2495 			loff_t pos, unsigned len,
2496 			struct page **pagep, void **fsdata)
2497 {
2498 	struct inode *inode = mapping->host;
2499 	struct shmem_inode_info *info = SHMEM_I(inode);
2500 	pgoff_t index = pos >> PAGE_SHIFT;
2501 	struct folio *folio;
2502 	int ret = 0;
2503 
2504 	/* i_rwsem is held by caller */
2505 	if (unlikely(info->seals & (F_SEAL_GROW |
2506 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2507 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2508 			return -EPERM;
2509 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2510 			return -EPERM;
2511 	}
2512 
2513 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2514 
2515 	if (ret)
2516 		return ret;
2517 
2518 	*pagep = folio_file_page(folio, index);
2519 	if (PageHWPoison(*pagep)) {
2520 		folio_unlock(folio);
2521 		folio_put(folio);
2522 		*pagep = NULL;
2523 		return -EIO;
2524 	}
2525 
2526 	return 0;
2527 }
2528 
2529 static int
2530 shmem_write_end(struct file *file, struct address_space *mapping,
2531 			loff_t pos, unsigned len, unsigned copied,
2532 			struct page *page, void *fsdata)
2533 {
2534 	struct inode *inode = mapping->host;
2535 
2536 	if (pos + copied > inode->i_size)
2537 		i_size_write(inode, pos + copied);
2538 
2539 	if (!PageUptodate(page)) {
2540 		struct page *head = compound_head(page);
2541 		if (PageTransCompound(page)) {
2542 			int i;
2543 
2544 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2545 				if (head + i == page)
2546 					continue;
2547 				clear_highpage(head + i);
2548 				flush_dcache_page(head + i);
2549 			}
2550 		}
2551 		if (copied < PAGE_SIZE) {
2552 			unsigned from = pos & (PAGE_SIZE - 1);
2553 			zero_user_segments(page, 0, from,
2554 					from + copied, PAGE_SIZE);
2555 		}
2556 		SetPageUptodate(head);
2557 	}
2558 	set_page_dirty(page);
2559 	unlock_page(page);
2560 	put_page(page);
2561 
2562 	return copied;
2563 }
2564 
2565 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2566 {
2567 	struct file *file = iocb->ki_filp;
2568 	struct inode *inode = file_inode(file);
2569 	struct address_space *mapping = inode->i_mapping;
2570 	pgoff_t index;
2571 	unsigned long offset;
2572 	int error = 0;
2573 	ssize_t retval = 0;
2574 	loff_t *ppos = &iocb->ki_pos;
2575 
2576 	index = *ppos >> PAGE_SHIFT;
2577 	offset = *ppos & ~PAGE_MASK;
2578 
2579 	for (;;) {
2580 		struct folio *folio = NULL;
2581 		struct page *page = NULL;
2582 		pgoff_t end_index;
2583 		unsigned long nr, ret;
2584 		loff_t i_size = i_size_read(inode);
2585 
2586 		end_index = i_size >> PAGE_SHIFT;
2587 		if (index > end_index)
2588 			break;
2589 		if (index == end_index) {
2590 			nr = i_size & ~PAGE_MASK;
2591 			if (nr <= offset)
2592 				break;
2593 		}
2594 
2595 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2596 		if (error) {
2597 			if (error == -EINVAL)
2598 				error = 0;
2599 			break;
2600 		}
2601 		if (folio) {
2602 			folio_unlock(folio);
2603 
2604 			page = folio_file_page(folio, index);
2605 			if (PageHWPoison(page)) {
2606 				folio_put(folio);
2607 				error = -EIO;
2608 				break;
2609 			}
2610 		}
2611 
2612 		/*
2613 		 * We must evaluate after, since reads (unlike writes)
2614 		 * are called without i_rwsem protection against truncate
2615 		 */
2616 		nr = PAGE_SIZE;
2617 		i_size = i_size_read(inode);
2618 		end_index = i_size >> PAGE_SHIFT;
2619 		if (index == end_index) {
2620 			nr = i_size & ~PAGE_MASK;
2621 			if (nr <= offset) {
2622 				if (folio)
2623 					folio_put(folio);
2624 				break;
2625 			}
2626 		}
2627 		nr -= offset;
2628 
2629 		if (folio) {
2630 			/*
2631 			 * If users can be writing to this page using arbitrary
2632 			 * virtual addresses, take care about potential aliasing
2633 			 * before reading the page on the kernel side.
2634 			 */
2635 			if (mapping_writably_mapped(mapping))
2636 				flush_dcache_page(page);
2637 			/*
2638 			 * Mark the page accessed if we read the beginning.
2639 			 */
2640 			if (!offset)
2641 				folio_mark_accessed(folio);
2642 			/*
2643 			 * Ok, we have the page, and it's up-to-date, so
2644 			 * now we can copy it to user space...
2645 			 */
2646 			ret = copy_page_to_iter(page, offset, nr, to);
2647 			folio_put(folio);
2648 
2649 		} else if (user_backed_iter(to)) {
2650 			/*
2651 			 * Copy to user tends to be so well optimized, but
2652 			 * clear_user() not so much, that it is noticeably
2653 			 * faster to copy the zero page instead of clearing.
2654 			 */
2655 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2656 		} else {
2657 			/*
2658 			 * But submitting the same page twice in a row to
2659 			 * splice() - or others? - can result in confusion:
2660 			 * so don't attempt that optimization on pipes etc.
2661 			 */
2662 			ret = iov_iter_zero(nr, to);
2663 		}
2664 
2665 		retval += ret;
2666 		offset += ret;
2667 		index += offset >> PAGE_SHIFT;
2668 		offset &= ~PAGE_MASK;
2669 
2670 		if (!iov_iter_count(to))
2671 			break;
2672 		if (ret < nr) {
2673 			error = -EFAULT;
2674 			break;
2675 		}
2676 		cond_resched();
2677 	}
2678 
2679 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2680 	file_accessed(file);
2681 	return retval ? retval : error;
2682 }
2683 
2684 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2685 {
2686 	struct address_space *mapping = file->f_mapping;
2687 	struct inode *inode = mapping->host;
2688 
2689 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2690 		return generic_file_llseek_size(file, offset, whence,
2691 					MAX_LFS_FILESIZE, i_size_read(inode));
2692 	if (offset < 0)
2693 		return -ENXIO;
2694 
2695 	inode_lock(inode);
2696 	/* We're holding i_rwsem so we can access i_size directly */
2697 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2698 	if (offset >= 0)
2699 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2700 	inode_unlock(inode);
2701 	return offset;
2702 }
2703 
2704 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2705 							 loff_t len)
2706 {
2707 	struct inode *inode = file_inode(file);
2708 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2709 	struct shmem_inode_info *info = SHMEM_I(inode);
2710 	struct shmem_falloc shmem_falloc;
2711 	pgoff_t start, index, end, undo_fallocend;
2712 	int error;
2713 
2714 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2715 		return -EOPNOTSUPP;
2716 
2717 	inode_lock(inode);
2718 
2719 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2720 		struct address_space *mapping = file->f_mapping;
2721 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2722 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2723 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2724 
2725 		/* protected by i_rwsem */
2726 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2727 			error = -EPERM;
2728 			goto out;
2729 		}
2730 
2731 		shmem_falloc.waitq = &shmem_falloc_waitq;
2732 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2733 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2734 		spin_lock(&inode->i_lock);
2735 		inode->i_private = &shmem_falloc;
2736 		spin_unlock(&inode->i_lock);
2737 
2738 		if ((u64)unmap_end > (u64)unmap_start)
2739 			unmap_mapping_range(mapping, unmap_start,
2740 					    1 + unmap_end - unmap_start, 0);
2741 		shmem_truncate_range(inode, offset, offset + len - 1);
2742 		/* No need to unmap again: hole-punching leaves COWed pages */
2743 
2744 		spin_lock(&inode->i_lock);
2745 		inode->i_private = NULL;
2746 		wake_up_all(&shmem_falloc_waitq);
2747 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2748 		spin_unlock(&inode->i_lock);
2749 		error = 0;
2750 		goto out;
2751 	}
2752 
2753 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2754 	error = inode_newsize_ok(inode, offset + len);
2755 	if (error)
2756 		goto out;
2757 
2758 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2759 		error = -EPERM;
2760 		goto out;
2761 	}
2762 
2763 	start = offset >> PAGE_SHIFT;
2764 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2765 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2766 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2767 		error = -ENOSPC;
2768 		goto out;
2769 	}
2770 
2771 	shmem_falloc.waitq = NULL;
2772 	shmem_falloc.start = start;
2773 	shmem_falloc.next  = start;
2774 	shmem_falloc.nr_falloced = 0;
2775 	shmem_falloc.nr_unswapped = 0;
2776 	spin_lock(&inode->i_lock);
2777 	inode->i_private = &shmem_falloc;
2778 	spin_unlock(&inode->i_lock);
2779 
2780 	/*
2781 	 * info->fallocend is only relevant when huge pages might be
2782 	 * involved: to prevent split_huge_page() freeing fallocated
2783 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2784 	 */
2785 	undo_fallocend = info->fallocend;
2786 	if (info->fallocend < end)
2787 		info->fallocend = end;
2788 
2789 	for (index = start; index < end; ) {
2790 		struct folio *folio;
2791 
2792 		/*
2793 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2794 		 * been interrupted because we are using up too much memory.
2795 		 */
2796 		if (signal_pending(current))
2797 			error = -EINTR;
2798 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2799 			error = -ENOMEM;
2800 		else
2801 			error = shmem_get_folio(inode, index, &folio,
2802 						SGP_FALLOC);
2803 		if (error) {
2804 			info->fallocend = undo_fallocend;
2805 			/* Remove the !uptodate folios we added */
2806 			if (index > start) {
2807 				shmem_undo_range(inode,
2808 				    (loff_t)start << PAGE_SHIFT,
2809 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2810 			}
2811 			goto undone;
2812 		}
2813 
2814 		/*
2815 		 * Here is a more important optimization than it appears:
2816 		 * a second SGP_FALLOC on the same large folio will clear it,
2817 		 * making it uptodate and un-undoable if we fail later.
2818 		 */
2819 		index = folio_next_index(folio);
2820 		/* Beware 32-bit wraparound */
2821 		if (!index)
2822 			index--;
2823 
2824 		/*
2825 		 * Inform shmem_writepage() how far we have reached.
2826 		 * No need for lock or barrier: we have the page lock.
2827 		 */
2828 		if (!folio_test_uptodate(folio))
2829 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2830 		shmem_falloc.next = index;
2831 
2832 		/*
2833 		 * If !uptodate, leave it that way so that freeable folios
2834 		 * can be recognized if we need to rollback on error later.
2835 		 * But mark it dirty so that memory pressure will swap rather
2836 		 * than free the folios we are allocating (and SGP_CACHE folios
2837 		 * might still be clean: we now need to mark those dirty too).
2838 		 */
2839 		folio_mark_dirty(folio);
2840 		folio_unlock(folio);
2841 		folio_put(folio);
2842 		cond_resched();
2843 	}
2844 
2845 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2846 		i_size_write(inode, offset + len);
2847 undone:
2848 	spin_lock(&inode->i_lock);
2849 	inode->i_private = NULL;
2850 	spin_unlock(&inode->i_lock);
2851 out:
2852 	if (!error)
2853 		file_modified(file);
2854 	inode_unlock(inode);
2855 	return error;
2856 }
2857 
2858 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2859 {
2860 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2861 
2862 	buf->f_type = TMPFS_MAGIC;
2863 	buf->f_bsize = PAGE_SIZE;
2864 	buf->f_namelen = NAME_MAX;
2865 	if (sbinfo->max_blocks) {
2866 		buf->f_blocks = sbinfo->max_blocks;
2867 		buf->f_bavail =
2868 		buf->f_bfree  = sbinfo->max_blocks -
2869 				percpu_counter_sum(&sbinfo->used_blocks);
2870 	}
2871 	if (sbinfo->max_inodes) {
2872 		buf->f_files = sbinfo->max_inodes;
2873 		buf->f_ffree = sbinfo->free_inodes;
2874 	}
2875 	/* else leave those fields 0 like simple_statfs */
2876 
2877 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2878 
2879 	return 0;
2880 }
2881 
2882 /*
2883  * File creation. Allocate an inode, and we're done..
2884  */
2885 static int
2886 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2887 	    struct dentry *dentry, umode_t mode, dev_t dev)
2888 {
2889 	struct inode *inode;
2890 	int error = -ENOSPC;
2891 
2892 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2893 	if (inode) {
2894 		error = simple_acl_create(dir, inode);
2895 		if (error)
2896 			goto out_iput;
2897 		error = security_inode_init_security(inode, dir,
2898 						     &dentry->d_name,
2899 						     shmem_initxattrs, NULL);
2900 		if (error && error != -EOPNOTSUPP)
2901 			goto out_iput;
2902 
2903 		error = 0;
2904 		dir->i_size += BOGO_DIRENT_SIZE;
2905 		dir->i_ctime = dir->i_mtime = current_time(dir);
2906 		d_instantiate(dentry, inode);
2907 		dget(dentry); /* Extra count - pin the dentry in core */
2908 	}
2909 	return error;
2910 out_iput:
2911 	iput(inode);
2912 	return error;
2913 }
2914 
2915 static int
2916 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2917 	      struct dentry *dentry, umode_t mode)
2918 {
2919 	struct inode *inode;
2920 	int error = -ENOSPC;
2921 
2922 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2923 	if (inode) {
2924 		error = security_inode_init_security(inode, dir,
2925 						     NULL,
2926 						     shmem_initxattrs, NULL);
2927 		if (error && error != -EOPNOTSUPP)
2928 			goto out_iput;
2929 		error = simple_acl_create(dir, inode);
2930 		if (error)
2931 			goto out_iput;
2932 		d_tmpfile(dentry, inode);
2933 	}
2934 	return error;
2935 out_iput:
2936 	iput(inode);
2937 	return error;
2938 }
2939 
2940 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2941 		       struct dentry *dentry, umode_t mode)
2942 {
2943 	int error;
2944 
2945 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2946 				 mode | S_IFDIR, 0)))
2947 		return error;
2948 	inc_nlink(dir);
2949 	return 0;
2950 }
2951 
2952 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2953 			struct dentry *dentry, umode_t mode, bool excl)
2954 {
2955 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2956 }
2957 
2958 /*
2959  * Link a file..
2960  */
2961 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2962 {
2963 	struct inode *inode = d_inode(old_dentry);
2964 	int ret = 0;
2965 
2966 	/*
2967 	 * No ordinary (disk based) filesystem counts links as inodes;
2968 	 * but each new link needs a new dentry, pinning lowmem, and
2969 	 * tmpfs dentries cannot be pruned until they are unlinked.
2970 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2971 	 * first link must skip that, to get the accounting right.
2972 	 */
2973 	if (inode->i_nlink) {
2974 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2975 		if (ret)
2976 			goto out;
2977 	}
2978 
2979 	dir->i_size += BOGO_DIRENT_SIZE;
2980 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2981 	inc_nlink(inode);
2982 	ihold(inode);	/* New dentry reference */
2983 	dget(dentry);		/* Extra pinning count for the created dentry */
2984 	d_instantiate(dentry, inode);
2985 out:
2986 	return ret;
2987 }
2988 
2989 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2990 {
2991 	struct inode *inode = d_inode(dentry);
2992 
2993 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2994 		shmem_free_inode(inode->i_sb);
2995 
2996 	dir->i_size -= BOGO_DIRENT_SIZE;
2997 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2998 	drop_nlink(inode);
2999 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3000 	return 0;
3001 }
3002 
3003 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3004 {
3005 	if (!simple_empty(dentry))
3006 		return -ENOTEMPTY;
3007 
3008 	drop_nlink(d_inode(dentry));
3009 	drop_nlink(dir);
3010 	return shmem_unlink(dir, dentry);
3011 }
3012 
3013 static int shmem_whiteout(struct user_namespace *mnt_userns,
3014 			  struct inode *old_dir, struct dentry *old_dentry)
3015 {
3016 	struct dentry *whiteout;
3017 	int error;
3018 
3019 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3020 	if (!whiteout)
3021 		return -ENOMEM;
3022 
3023 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3024 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3025 	dput(whiteout);
3026 	if (error)
3027 		return error;
3028 
3029 	/*
3030 	 * Cheat and hash the whiteout while the old dentry is still in
3031 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3032 	 *
3033 	 * d_lookup() will consistently find one of them at this point,
3034 	 * not sure which one, but that isn't even important.
3035 	 */
3036 	d_rehash(whiteout);
3037 	return 0;
3038 }
3039 
3040 /*
3041  * The VFS layer already does all the dentry stuff for rename,
3042  * we just have to decrement the usage count for the target if
3043  * it exists so that the VFS layer correctly free's it when it
3044  * gets overwritten.
3045  */
3046 static int shmem_rename2(struct user_namespace *mnt_userns,
3047 			 struct inode *old_dir, struct dentry *old_dentry,
3048 			 struct inode *new_dir, struct dentry *new_dentry,
3049 			 unsigned int flags)
3050 {
3051 	struct inode *inode = d_inode(old_dentry);
3052 	int they_are_dirs = S_ISDIR(inode->i_mode);
3053 
3054 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3055 		return -EINVAL;
3056 
3057 	if (flags & RENAME_EXCHANGE)
3058 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3059 
3060 	if (!simple_empty(new_dentry))
3061 		return -ENOTEMPTY;
3062 
3063 	if (flags & RENAME_WHITEOUT) {
3064 		int error;
3065 
3066 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3067 		if (error)
3068 			return error;
3069 	}
3070 
3071 	if (d_really_is_positive(new_dentry)) {
3072 		(void) shmem_unlink(new_dir, new_dentry);
3073 		if (they_are_dirs) {
3074 			drop_nlink(d_inode(new_dentry));
3075 			drop_nlink(old_dir);
3076 		}
3077 	} else if (they_are_dirs) {
3078 		drop_nlink(old_dir);
3079 		inc_nlink(new_dir);
3080 	}
3081 
3082 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3083 	new_dir->i_size += BOGO_DIRENT_SIZE;
3084 	old_dir->i_ctime = old_dir->i_mtime =
3085 	new_dir->i_ctime = new_dir->i_mtime =
3086 	inode->i_ctime = current_time(old_dir);
3087 	return 0;
3088 }
3089 
3090 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3091 			 struct dentry *dentry, const char *symname)
3092 {
3093 	int error;
3094 	int len;
3095 	struct inode *inode;
3096 	struct folio *folio;
3097 
3098 	len = strlen(symname) + 1;
3099 	if (len > PAGE_SIZE)
3100 		return -ENAMETOOLONG;
3101 
3102 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3103 				VM_NORESERVE);
3104 	if (!inode)
3105 		return -ENOSPC;
3106 
3107 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3108 					     shmem_initxattrs, NULL);
3109 	if (error && error != -EOPNOTSUPP) {
3110 		iput(inode);
3111 		return error;
3112 	}
3113 
3114 	inode->i_size = len-1;
3115 	if (len <= SHORT_SYMLINK_LEN) {
3116 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3117 		if (!inode->i_link) {
3118 			iput(inode);
3119 			return -ENOMEM;
3120 		}
3121 		inode->i_op = &shmem_short_symlink_operations;
3122 	} else {
3123 		inode_nohighmem(inode);
3124 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3125 		if (error) {
3126 			iput(inode);
3127 			return error;
3128 		}
3129 		inode->i_mapping->a_ops = &shmem_aops;
3130 		inode->i_op = &shmem_symlink_inode_operations;
3131 		memcpy(folio_address(folio), symname, len);
3132 		folio_mark_uptodate(folio);
3133 		folio_mark_dirty(folio);
3134 		folio_unlock(folio);
3135 		folio_put(folio);
3136 	}
3137 	dir->i_size += BOGO_DIRENT_SIZE;
3138 	dir->i_ctime = dir->i_mtime = current_time(dir);
3139 	d_instantiate(dentry, inode);
3140 	dget(dentry);
3141 	return 0;
3142 }
3143 
3144 static void shmem_put_link(void *arg)
3145 {
3146 	mark_page_accessed(arg);
3147 	put_page(arg);
3148 }
3149 
3150 static const char *shmem_get_link(struct dentry *dentry,
3151 				  struct inode *inode,
3152 				  struct delayed_call *done)
3153 {
3154 	struct page *page = NULL;
3155 	int error;
3156 	if (!dentry) {
3157 		page = find_get_page(inode->i_mapping, 0);
3158 		if (!page)
3159 			return ERR_PTR(-ECHILD);
3160 		if (PageHWPoison(page) ||
3161 		    !PageUptodate(page)) {
3162 			put_page(page);
3163 			return ERR_PTR(-ECHILD);
3164 		}
3165 	} else {
3166 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3167 		if (error)
3168 			return ERR_PTR(error);
3169 		if (!page)
3170 			return ERR_PTR(-ECHILD);
3171 		if (PageHWPoison(page)) {
3172 			unlock_page(page);
3173 			put_page(page);
3174 			return ERR_PTR(-ECHILD);
3175 		}
3176 		unlock_page(page);
3177 	}
3178 	set_delayed_call(done, shmem_put_link, page);
3179 	return page_address(page);
3180 }
3181 
3182 #ifdef CONFIG_TMPFS_XATTR
3183 
3184 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3185 {
3186 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3187 
3188 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3189 
3190 	return 0;
3191 }
3192 
3193 static int shmem_fileattr_set(struct user_namespace *mnt_userns,
3194 			      struct dentry *dentry, struct fileattr *fa)
3195 {
3196 	struct inode *inode = d_inode(dentry);
3197 	struct shmem_inode_info *info = SHMEM_I(inode);
3198 
3199 	if (fileattr_has_fsx(fa))
3200 		return -EOPNOTSUPP;
3201 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3202 		return -EOPNOTSUPP;
3203 
3204 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3205 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3206 
3207 	shmem_set_inode_flags(inode, info->fsflags);
3208 	inode->i_ctime = current_time(inode);
3209 	return 0;
3210 }
3211 
3212 /*
3213  * Superblocks without xattr inode operations may get some security.* xattr
3214  * support from the LSM "for free". As soon as we have any other xattrs
3215  * like ACLs, we also need to implement the security.* handlers at
3216  * filesystem level, though.
3217  */
3218 
3219 /*
3220  * Callback for security_inode_init_security() for acquiring xattrs.
3221  */
3222 static int shmem_initxattrs(struct inode *inode,
3223 			    const struct xattr *xattr_array,
3224 			    void *fs_info)
3225 {
3226 	struct shmem_inode_info *info = SHMEM_I(inode);
3227 	const struct xattr *xattr;
3228 	struct simple_xattr *new_xattr;
3229 	size_t len;
3230 
3231 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3232 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3233 		if (!new_xattr)
3234 			return -ENOMEM;
3235 
3236 		len = strlen(xattr->name) + 1;
3237 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3238 					  GFP_KERNEL);
3239 		if (!new_xattr->name) {
3240 			kvfree(new_xattr);
3241 			return -ENOMEM;
3242 		}
3243 
3244 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3245 		       XATTR_SECURITY_PREFIX_LEN);
3246 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3247 		       xattr->name, len);
3248 
3249 		simple_xattr_list_add(&info->xattrs, new_xattr);
3250 	}
3251 
3252 	return 0;
3253 }
3254 
3255 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3256 				   struct dentry *unused, struct inode *inode,
3257 				   const char *name, void *buffer, size_t size)
3258 {
3259 	struct shmem_inode_info *info = SHMEM_I(inode);
3260 
3261 	name = xattr_full_name(handler, name);
3262 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3263 }
3264 
3265 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3266 				   struct user_namespace *mnt_userns,
3267 				   struct dentry *unused, struct inode *inode,
3268 				   const char *name, const void *value,
3269 				   size_t size, int flags)
3270 {
3271 	struct shmem_inode_info *info = SHMEM_I(inode);
3272 
3273 	name = xattr_full_name(handler, name);
3274 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3275 }
3276 
3277 static const struct xattr_handler shmem_security_xattr_handler = {
3278 	.prefix = XATTR_SECURITY_PREFIX,
3279 	.get = shmem_xattr_handler_get,
3280 	.set = shmem_xattr_handler_set,
3281 };
3282 
3283 static const struct xattr_handler shmem_trusted_xattr_handler = {
3284 	.prefix = XATTR_TRUSTED_PREFIX,
3285 	.get = shmem_xattr_handler_get,
3286 	.set = shmem_xattr_handler_set,
3287 };
3288 
3289 static const struct xattr_handler *shmem_xattr_handlers[] = {
3290 #ifdef CONFIG_TMPFS_POSIX_ACL
3291 	&posix_acl_access_xattr_handler,
3292 	&posix_acl_default_xattr_handler,
3293 #endif
3294 	&shmem_security_xattr_handler,
3295 	&shmem_trusted_xattr_handler,
3296 	NULL
3297 };
3298 
3299 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3300 {
3301 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3302 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3303 }
3304 #endif /* CONFIG_TMPFS_XATTR */
3305 
3306 static const struct inode_operations shmem_short_symlink_operations = {
3307 	.getattr	= shmem_getattr,
3308 	.get_link	= simple_get_link,
3309 #ifdef CONFIG_TMPFS_XATTR
3310 	.listxattr	= shmem_listxattr,
3311 #endif
3312 };
3313 
3314 static const struct inode_operations shmem_symlink_inode_operations = {
3315 	.getattr	= shmem_getattr,
3316 	.get_link	= shmem_get_link,
3317 #ifdef CONFIG_TMPFS_XATTR
3318 	.listxattr	= shmem_listxattr,
3319 #endif
3320 };
3321 
3322 static struct dentry *shmem_get_parent(struct dentry *child)
3323 {
3324 	return ERR_PTR(-ESTALE);
3325 }
3326 
3327 static int shmem_match(struct inode *ino, void *vfh)
3328 {
3329 	__u32 *fh = vfh;
3330 	__u64 inum = fh[2];
3331 	inum = (inum << 32) | fh[1];
3332 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3333 }
3334 
3335 /* Find any alias of inode, but prefer a hashed alias */
3336 static struct dentry *shmem_find_alias(struct inode *inode)
3337 {
3338 	struct dentry *alias = d_find_alias(inode);
3339 
3340 	return alias ?: d_find_any_alias(inode);
3341 }
3342 
3343 
3344 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3345 		struct fid *fid, int fh_len, int fh_type)
3346 {
3347 	struct inode *inode;
3348 	struct dentry *dentry = NULL;
3349 	u64 inum;
3350 
3351 	if (fh_len < 3)
3352 		return NULL;
3353 
3354 	inum = fid->raw[2];
3355 	inum = (inum << 32) | fid->raw[1];
3356 
3357 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3358 			shmem_match, fid->raw);
3359 	if (inode) {
3360 		dentry = shmem_find_alias(inode);
3361 		iput(inode);
3362 	}
3363 
3364 	return dentry;
3365 }
3366 
3367 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3368 				struct inode *parent)
3369 {
3370 	if (*len < 3) {
3371 		*len = 3;
3372 		return FILEID_INVALID;
3373 	}
3374 
3375 	if (inode_unhashed(inode)) {
3376 		/* Unfortunately insert_inode_hash is not idempotent,
3377 		 * so as we hash inodes here rather than at creation
3378 		 * time, we need a lock to ensure we only try
3379 		 * to do it once
3380 		 */
3381 		static DEFINE_SPINLOCK(lock);
3382 		spin_lock(&lock);
3383 		if (inode_unhashed(inode))
3384 			__insert_inode_hash(inode,
3385 					    inode->i_ino + inode->i_generation);
3386 		spin_unlock(&lock);
3387 	}
3388 
3389 	fh[0] = inode->i_generation;
3390 	fh[1] = inode->i_ino;
3391 	fh[2] = ((__u64)inode->i_ino) >> 32;
3392 
3393 	*len = 3;
3394 	return 1;
3395 }
3396 
3397 static const struct export_operations shmem_export_ops = {
3398 	.get_parent     = shmem_get_parent,
3399 	.encode_fh      = shmem_encode_fh,
3400 	.fh_to_dentry	= shmem_fh_to_dentry,
3401 };
3402 
3403 enum shmem_param {
3404 	Opt_gid,
3405 	Opt_huge,
3406 	Opt_mode,
3407 	Opt_mpol,
3408 	Opt_nr_blocks,
3409 	Opt_nr_inodes,
3410 	Opt_size,
3411 	Opt_uid,
3412 	Opt_inode32,
3413 	Opt_inode64,
3414 };
3415 
3416 static const struct constant_table shmem_param_enums_huge[] = {
3417 	{"never",	SHMEM_HUGE_NEVER },
3418 	{"always",	SHMEM_HUGE_ALWAYS },
3419 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3420 	{"advise",	SHMEM_HUGE_ADVISE },
3421 	{}
3422 };
3423 
3424 const struct fs_parameter_spec shmem_fs_parameters[] = {
3425 	fsparam_u32   ("gid",		Opt_gid),
3426 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3427 	fsparam_u32oct("mode",		Opt_mode),
3428 	fsparam_string("mpol",		Opt_mpol),
3429 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3430 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3431 	fsparam_string("size",		Opt_size),
3432 	fsparam_u32   ("uid",		Opt_uid),
3433 	fsparam_flag  ("inode32",	Opt_inode32),
3434 	fsparam_flag  ("inode64",	Opt_inode64),
3435 	{}
3436 };
3437 
3438 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3439 {
3440 	struct shmem_options *ctx = fc->fs_private;
3441 	struct fs_parse_result result;
3442 	unsigned long long size;
3443 	char *rest;
3444 	int opt;
3445 
3446 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3447 	if (opt < 0)
3448 		return opt;
3449 
3450 	switch (opt) {
3451 	case Opt_size:
3452 		size = memparse(param->string, &rest);
3453 		if (*rest == '%') {
3454 			size <<= PAGE_SHIFT;
3455 			size *= totalram_pages();
3456 			do_div(size, 100);
3457 			rest++;
3458 		}
3459 		if (*rest)
3460 			goto bad_value;
3461 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3462 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3463 		break;
3464 	case Opt_nr_blocks:
3465 		ctx->blocks = memparse(param->string, &rest);
3466 		if (*rest || ctx->blocks > S64_MAX)
3467 			goto bad_value;
3468 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3469 		break;
3470 	case Opt_nr_inodes:
3471 		ctx->inodes = memparse(param->string, &rest);
3472 		if (*rest)
3473 			goto bad_value;
3474 		ctx->seen |= SHMEM_SEEN_INODES;
3475 		break;
3476 	case Opt_mode:
3477 		ctx->mode = result.uint_32 & 07777;
3478 		break;
3479 	case Opt_uid:
3480 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3481 		if (!uid_valid(ctx->uid))
3482 			goto bad_value;
3483 		break;
3484 	case Opt_gid:
3485 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3486 		if (!gid_valid(ctx->gid))
3487 			goto bad_value;
3488 		break;
3489 	case Opt_huge:
3490 		ctx->huge = result.uint_32;
3491 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3492 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3493 		      has_transparent_hugepage()))
3494 			goto unsupported_parameter;
3495 		ctx->seen |= SHMEM_SEEN_HUGE;
3496 		break;
3497 	case Opt_mpol:
3498 		if (IS_ENABLED(CONFIG_NUMA)) {
3499 			mpol_put(ctx->mpol);
3500 			ctx->mpol = NULL;
3501 			if (mpol_parse_str(param->string, &ctx->mpol))
3502 				goto bad_value;
3503 			break;
3504 		}
3505 		goto unsupported_parameter;
3506 	case Opt_inode32:
3507 		ctx->full_inums = false;
3508 		ctx->seen |= SHMEM_SEEN_INUMS;
3509 		break;
3510 	case Opt_inode64:
3511 		if (sizeof(ino_t) < 8) {
3512 			return invalfc(fc,
3513 				       "Cannot use inode64 with <64bit inums in kernel\n");
3514 		}
3515 		ctx->full_inums = true;
3516 		ctx->seen |= SHMEM_SEEN_INUMS;
3517 		break;
3518 	}
3519 	return 0;
3520 
3521 unsupported_parameter:
3522 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3523 bad_value:
3524 	return invalfc(fc, "Bad value for '%s'", param->key);
3525 }
3526 
3527 static int shmem_parse_options(struct fs_context *fc, void *data)
3528 {
3529 	char *options = data;
3530 
3531 	if (options) {
3532 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3533 		if (err)
3534 			return err;
3535 	}
3536 
3537 	while (options != NULL) {
3538 		char *this_char = options;
3539 		for (;;) {
3540 			/*
3541 			 * NUL-terminate this option: unfortunately,
3542 			 * mount options form a comma-separated list,
3543 			 * but mpol's nodelist may also contain commas.
3544 			 */
3545 			options = strchr(options, ',');
3546 			if (options == NULL)
3547 				break;
3548 			options++;
3549 			if (!isdigit(*options)) {
3550 				options[-1] = '\0';
3551 				break;
3552 			}
3553 		}
3554 		if (*this_char) {
3555 			char *value = strchr(this_char, '=');
3556 			size_t len = 0;
3557 			int err;
3558 
3559 			if (value) {
3560 				*value++ = '\0';
3561 				len = strlen(value);
3562 			}
3563 			err = vfs_parse_fs_string(fc, this_char, value, len);
3564 			if (err < 0)
3565 				return err;
3566 		}
3567 	}
3568 	return 0;
3569 }
3570 
3571 /*
3572  * Reconfigure a shmem filesystem.
3573  *
3574  * Note that we disallow change from limited->unlimited blocks/inodes while any
3575  * are in use; but we must separately disallow unlimited->limited, because in
3576  * that case we have no record of how much is already in use.
3577  */
3578 static int shmem_reconfigure(struct fs_context *fc)
3579 {
3580 	struct shmem_options *ctx = fc->fs_private;
3581 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3582 	unsigned long inodes;
3583 	struct mempolicy *mpol = NULL;
3584 	const char *err;
3585 
3586 	raw_spin_lock(&sbinfo->stat_lock);
3587 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3588 
3589 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3590 		if (!sbinfo->max_blocks) {
3591 			err = "Cannot retroactively limit size";
3592 			goto out;
3593 		}
3594 		if (percpu_counter_compare(&sbinfo->used_blocks,
3595 					   ctx->blocks) > 0) {
3596 			err = "Too small a size for current use";
3597 			goto out;
3598 		}
3599 	}
3600 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3601 		if (!sbinfo->max_inodes) {
3602 			err = "Cannot retroactively limit inodes";
3603 			goto out;
3604 		}
3605 		if (ctx->inodes < inodes) {
3606 			err = "Too few inodes for current use";
3607 			goto out;
3608 		}
3609 	}
3610 
3611 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3612 	    sbinfo->next_ino > UINT_MAX) {
3613 		err = "Current inum too high to switch to 32-bit inums";
3614 		goto out;
3615 	}
3616 
3617 	if (ctx->seen & SHMEM_SEEN_HUGE)
3618 		sbinfo->huge = ctx->huge;
3619 	if (ctx->seen & SHMEM_SEEN_INUMS)
3620 		sbinfo->full_inums = ctx->full_inums;
3621 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3622 		sbinfo->max_blocks  = ctx->blocks;
3623 	if (ctx->seen & SHMEM_SEEN_INODES) {
3624 		sbinfo->max_inodes  = ctx->inodes;
3625 		sbinfo->free_inodes = ctx->inodes - inodes;
3626 	}
3627 
3628 	/*
3629 	 * Preserve previous mempolicy unless mpol remount option was specified.
3630 	 */
3631 	if (ctx->mpol) {
3632 		mpol = sbinfo->mpol;
3633 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3634 		ctx->mpol = NULL;
3635 	}
3636 	raw_spin_unlock(&sbinfo->stat_lock);
3637 	mpol_put(mpol);
3638 	return 0;
3639 out:
3640 	raw_spin_unlock(&sbinfo->stat_lock);
3641 	return invalfc(fc, "%s", err);
3642 }
3643 
3644 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3645 {
3646 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3647 
3648 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3649 		seq_printf(seq, ",size=%luk",
3650 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3651 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3652 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3653 	if (sbinfo->mode != (0777 | S_ISVTX))
3654 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3655 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3656 		seq_printf(seq, ",uid=%u",
3657 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3658 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3659 		seq_printf(seq, ",gid=%u",
3660 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3661 
3662 	/*
3663 	 * Showing inode{64,32} might be useful even if it's the system default,
3664 	 * since then people don't have to resort to checking both here and
3665 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3666 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3667 	 *
3668 	 * We hide it when inode64 isn't the default and we are using 32-bit
3669 	 * inodes, since that probably just means the feature isn't even under
3670 	 * consideration.
3671 	 *
3672 	 * As such:
3673 	 *
3674 	 *                     +-----------------+-----------------+
3675 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3676 	 *  +------------------+-----------------+-----------------+
3677 	 *  | full_inums=true  | show            | show            |
3678 	 *  | full_inums=false | show            | hide            |
3679 	 *  +------------------+-----------------+-----------------+
3680 	 *
3681 	 */
3682 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3683 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3684 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3685 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3686 	if (sbinfo->huge)
3687 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3688 #endif
3689 	shmem_show_mpol(seq, sbinfo->mpol);
3690 	return 0;
3691 }
3692 
3693 #endif /* CONFIG_TMPFS */
3694 
3695 static void shmem_put_super(struct super_block *sb)
3696 {
3697 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3698 
3699 	free_percpu(sbinfo->ino_batch);
3700 	percpu_counter_destroy(&sbinfo->used_blocks);
3701 	mpol_put(sbinfo->mpol);
3702 	kfree(sbinfo);
3703 	sb->s_fs_info = NULL;
3704 }
3705 
3706 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3707 {
3708 	struct shmem_options *ctx = fc->fs_private;
3709 	struct inode *inode;
3710 	struct shmem_sb_info *sbinfo;
3711 
3712 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3713 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3714 				L1_CACHE_BYTES), GFP_KERNEL);
3715 	if (!sbinfo)
3716 		return -ENOMEM;
3717 
3718 	sb->s_fs_info = sbinfo;
3719 
3720 #ifdef CONFIG_TMPFS
3721 	/*
3722 	 * Per default we only allow half of the physical ram per
3723 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3724 	 * but the internal instance is left unlimited.
3725 	 */
3726 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3727 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3728 			ctx->blocks = shmem_default_max_blocks();
3729 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3730 			ctx->inodes = shmem_default_max_inodes();
3731 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3732 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3733 	} else {
3734 		sb->s_flags |= SB_NOUSER;
3735 	}
3736 	sb->s_export_op = &shmem_export_ops;
3737 	sb->s_flags |= SB_NOSEC;
3738 #else
3739 	sb->s_flags |= SB_NOUSER;
3740 #endif
3741 	sbinfo->max_blocks = ctx->blocks;
3742 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3743 	if (sb->s_flags & SB_KERNMOUNT) {
3744 		sbinfo->ino_batch = alloc_percpu(ino_t);
3745 		if (!sbinfo->ino_batch)
3746 			goto failed;
3747 	}
3748 	sbinfo->uid = ctx->uid;
3749 	sbinfo->gid = ctx->gid;
3750 	sbinfo->full_inums = ctx->full_inums;
3751 	sbinfo->mode = ctx->mode;
3752 	sbinfo->huge = ctx->huge;
3753 	sbinfo->mpol = ctx->mpol;
3754 	ctx->mpol = NULL;
3755 
3756 	raw_spin_lock_init(&sbinfo->stat_lock);
3757 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3758 		goto failed;
3759 	spin_lock_init(&sbinfo->shrinklist_lock);
3760 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3761 
3762 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3763 	sb->s_blocksize = PAGE_SIZE;
3764 	sb->s_blocksize_bits = PAGE_SHIFT;
3765 	sb->s_magic = TMPFS_MAGIC;
3766 	sb->s_op = &shmem_ops;
3767 	sb->s_time_gran = 1;
3768 #ifdef CONFIG_TMPFS_XATTR
3769 	sb->s_xattr = shmem_xattr_handlers;
3770 #endif
3771 #ifdef CONFIG_TMPFS_POSIX_ACL
3772 	sb->s_flags |= SB_POSIXACL;
3773 #endif
3774 	uuid_gen(&sb->s_uuid);
3775 
3776 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3777 	if (!inode)
3778 		goto failed;
3779 	inode->i_uid = sbinfo->uid;
3780 	inode->i_gid = sbinfo->gid;
3781 	sb->s_root = d_make_root(inode);
3782 	if (!sb->s_root)
3783 		goto failed;
3784 	return 0;
3785 
3786 failed:
3787 	shmem_put_super(sb);
3788 	return -ENOMEM;
3789 }
3790 
3791 static int shmem_get_tree(struct fs_context *fc)
3792 {
3793 	return get_tree_nodev(fc, shmem_fill_super);
3794 }
3795 
3796 static void shmem_free_fc(struct fs_context *fc)
3797 {
3798 	struct shmem_options *ctx = fc->fs_private;
3799 
3800 	if (ctx) {
3801 		mpol_put(ctx->mpol);
3802 		kfree(ctx);
3803 	}
3804 }
3805 
3806 static const struct fs_context_operations shmem_fs_context_ops = {
3807 	.free			= shmem_free_fc,
3808 	.get_tree		= shmem_get_tree,
3809 #ifdef CONFIG_TMPFS
3810 	.parse_monolithic	= shmem_parse_options,
3811 	.parse_param		= shmem_parse_one,
3812 	.reconfigure		= shmem_reconfigure,
3813 #endif
3814 };
3815 
3816 static struct kmem_cache *shmem_inode_cachep;
3817 
3818 static struct inode *shmem_alloc_inode(struct super_block *sb)
3819 {
3820 	struct shmem_inode_info *info;
3821 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3822 	if (!info)
3823 		return NULL;
3824 	return &info->vfs_inode;
3825 }
3826 
3827 static void shmem_free_in_core_inode(struct inode *inode)
3828 {
3829 	if (S_ISLNK(inode->i_mode))
3830 		kfree(inode->i_link);
3831 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3832 }
3833 
3834 static void shmem_destroy_inode(struct inode *inode)
3835 {
3836 	if (S_ISREG(inode->i_mode))
3837 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3838 }
3839 
3840 static void shmem_init_inode(void *foo)
3841 {
3842 	struct shmem_inode_info *info = foo;
3843 	inode_init_once(&info->vfs_inode);
3844 }
3845 
3846 static void shmem_init_inodecache(void)
3847 {
3848 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3849 				sizeof(struct shmem_inode_info),
3850 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3851 }
3852 
3853 static void shmem_destroy_inodecache(void)
3854 {
3855 	kmem_cache_destroy(shmem_inode_cachep);
3856 }
3857 
3858 /* Keep the page in page cache instead of truncating it */
3859 static int shmem_error_remove_page(struct address_space *mapping,
3860 				   struct page *page)
3861 {
3862 	return 0;
3863 }
3864 
3865 const struct address_space_operations shmem_aops = {
3866 	.writepage	= shmem_writepage,
3867 	.dirty_folio	= noop_dirty_folio,
3868 #ifdef CONFIG_TMPFS
3869 	.write_begin	= shmem_write_begin,
3870 	.write_end	= shmem_write_end,
3871 #endif
3872 #ifdef CONFIG_MIGRATION
3873 	.migrate_folio	= migrate_folio,
3874 #endif
3875 	.error_remove_page = shmem_error_remove_page,
3876 };
3877 EXPORT_SYMBOL(shmem_aops);
3878 
3879 static const struct file_operations shmem_file_operations = {
3880 	.mmap		= shmem_mmap,
3881 	.get_unmapped_area = shmem_get_unmapped_area,
3882 #ifdef CONFIG_TMPFS
3883 	.llseek		= shmem_file_llseek,
3884 	.read_iter	= shmem_file_read_iter,
3885 	.write_iter	= generic_file_write_iter,
3886 	.fsync		= noop_fsync,
3887 	.splice_read	= generic_file_splice_read,
3888 	.splice_write	= iter_file_splice_write,
3889 	.fallocate	= shmem_fallocate,
3890 #endif
3891 };
3892 
3893 static const struct inode_operations shmem_inode_operations = {
3894 	.getattr	= shmem_getattr,
3895 	.setattr	= shmem_setattr,
3896 #ifdef CONFIG_TMPFS_XATTR
3897 	.listxattr	= shmem_listxattr,
3898 	.set_acl	= simple_set_acl,
3899 	.fileattr_get	= shmem_fileattr_get,
3900 	.fileattr_set	= shmem_fileattr_set,
3901 #endif
3902 };
3903 
3904 static const struct inode_operations shmem_dir_inode_operations = {
3905 #ifdef CONFIG_TMPFS
3906 	.getattr	= shmem_getattr,
3907 	.create		= shmem_create,
3908 	.lookup		= simple_lookup,
3909 	.link		= shmem_link,
3910 	.unlink		= shmem_unlink,
3911 	.symlink	= shmem_symlink,
3912 	.mkdir		= shmem_mkdir,
3913 	.rmdir		= shmem_rmdir,
3914 	.mknod		= shmem_mknod,
3915 	.rename		= shmem_rename2,
3916 	.tmpfile	= shmem_tmpfile,
3917 #endif
3918 #ifdef CONFIG_TMPFS_XATTR
3919 	.listxattr	= shmem_listxattr,
3920 	.fileattr_get	= shmem_fileattr_get,
3921 	.fileattr_set	= shmem_fileattr_set,
3922 #endif
3923 #ifdef CONFIG_TMPFS_POSIX_ACL
3924 	.setattr	= shmem_setattr,
3925 	.set_acl	= simple_set_acl,
3926 #endif
3927 };
3928 
3929 static const struct inode_operations shmem_special_inode_operations = {
3930 	.getattr	= shmem_getattr,
3931 #ifdef CONFIG_TMPFS_XATTR
3932 	.listxattr	= shmem_listxattr,
3933 #endif
3934 #ifdef CONFIG_TMPFS_POSIX_ACL
3935 	.setattr	= shmem_setattr,
3936 	.set_acl	= simple_set_acl,
3937 #endif
3938 };
3939 
3940 static const struct super_operations shmem_ops = {
3941 	.alloc_inode	= shmem_alloc_inode,
3942 	.free_inode	= shmem_free_in_core_inode,
3943 	.destroy_inode	= shmem_destroy_inode,
3944 #ifdef CONFIG_TMPFS
3945 	.statfs		= shmem_statfs,
3946 	.show_options	= shmem_show_options,
3947 #endif
3948 	.evict_inode	= shmem_evict_inode,
3949 	.drop_inode	= generic_delete_inode,
3950 	.put_super	= shmem_put_super,
3951 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3952 	.nr_cached_objects	= shmem_unused_huge_count,
3953 	.free_cached_objects	= shmem_unused_huge_scan,
3954 #endif
3955 };
3956 
3957 static const struct vm_operations_struct shmem_vm_ops = {
3958 	.fault		= shmem_fault,
3959 	.map_pages	= filemap_map_pages,
3960 #ifdef CONFIG_NUMA
3961 	.set_policy     = shmem_set_policy,
3962 	.get_policy     = shmem_get_policy,
3963 #endif
3964 };
3965 
3966 int shmem_init_fs_context(struct fs_context *fc)
3967 {
3968 	struct shmem_options *ctx;
3969 
3970 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3971 	if (!ctx)
3972 		return -ENOMEM;
3973 
3974 	ctx->mode = 0777 | S_ISVTX;
3975 	ctx->uid = current_fsuid();
3976 	ctx->gid = current_fsgid();
3977 
3978 	fc->fs_private = ctx;
3979 	fc->ops = &shmem_fs_context_ops;
3980 	return 0;
3981 }
3982 
3983 static struct file_system_type shmem_fs_type = {
3984 	.owner		= THIS_MODULE,
3985 	.name		= "tmpfs",
3986 	.init_fs_context = shmem_init_fs_context,
3987 #ifdef CONFIG_TMPFS
3988 	.parameters	= shmem_fs_parameters,
3989 #endif
3990 	.kill_sb	= kill_litter_super,
3991 	.fs_flags	= FS_USERNS_MOUNT,
3992 };
3993 
3994 void __init shmem_init(void)
3995 {
3996 	int error;
3997 
3998 	shmem_init_inodecache();
3999 
4000 	error = register_filesystem(&shmem_fs_type);
4001 	if (error) {
4002 		pr_err("Could not register tmpfs\n");
4003 		goto out2;
4004 	}
4005 
4006 	shm_mnt = kern_mount(&shmem_fs_type);
4007 	if (IS_ERR(shm_mnt)) {
4008 		error = PTR_ERR(shm_mnt);
4009 		pr_err("Could not kern_mount tmpfs\n");
4010 		goto out1;
4011 	}
4012 
4013 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4014 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4015 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4016 	else
4017 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4018 #endif
4019 	return;
4020 
4021 out1:
4022 	unregister_filesystem(&shmem_fs_type);
4023 out2:
4024 	shmem_destroy_inodecache();
4025 	shm_mnt = ERR_PTR(error);
4026 }
4027 
4028 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4029 static ssize_t shmem_enabled_show(struct kobject *kobj,
4030 				  struct kobj_attribute *attr, char *buf)
4031 {
4032 	static const int values[] = {
4033 		SHMEM_HUGE_ALWAYS,
4034 		SHMEM_HUGE_WITHIN_SIZE,
4035 		SHMEM_HUGE_ADVISE,
4036 		SHMEM_HUGE_NEVER,
4037 		SHMEM_HUGE_DENY,
4038 		SHMEM_HUGE_FORCE,
4039 	};
4040 	int len = 0;
4041 	int i;
4042 
4043 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4044 		len += sysfs_emit_at(buf, len,
4045 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4046 				     i ? " " : "",
4047 				     shmem_format_huge(values[i]));
4048 	}
4049 
4050 	len += sysfs_emit_at(buf, len, "\n");
4051 
4052 	return len;
4053 }
4054 
4055 static ssize_t shmem_enabled_store(struct kobject *kobj,
4056 		struct kobj_attribute *attr, const char *buf, size_t count)
4057 {
4058 	char tmp[16];
4059 	int huge;
4060 
4061 	if (count + 1 > sizeof(tmp))
4062 		return -EINVAL;
4063 	memcpy(tmp, buf, count);
4064 	tmp[count] = '\0';
4065 	if (count && tmp[count - 1] == '\n')
4066 		tmp[count - 1] = '\0';
4067 
4068 	huge = shmem_parse_huge(tmp);
4069 	if (huge == -EINVAL)
4070 		return -EINVAL;
4071 	if (!has_transparent_hugepage() &&
4072 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4073 		return -EINVAL;
4074 
4075 	shmem_huge = huge;
4076 	if (shmem_huge > SHMEM_HUGE_DENY)
4077 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4078 	return count;
4079 }
4080 
4081 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4082 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4083 
4084 #else /* !CONFIG_SHMEM */
4085 
4086 /*
4087  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4088  *
4089  * This is intended for small system where the benefits of the full
4090  * shmem code (swap-backed and resource-limited) are outweighed by
4091  * their complexity. On systems without swap this code should be
4092  * effectively equivalent, but much lighter weight.
4093  */
4094 
4095 static struct file_system_type shmem_fs_type = {
4096 	.name		= "tmpfs",
4097 	.init_fs_context = ramfs_init_fs_context,
4098 	.parameters	= ramfs_fs_parameters,
4099 	.kill_sb	= kill_litter_super,
4100 	.fs_flags	= FS_USERNS_MOUNT,
4101 };
4102 
4103 void __init shmem_init(void)
4104 {
4105 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4106 
4107 	shm_mnt = kern_mount(&shmem_fs_type);
4108 	BUG_ON(IS_ERR(shm_mnt));
4109 }
4110 
4111 int shmem_unuse(unsigned int type)
4112 {
4113 	return 0;
4114 }
4115 
4116 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4117 {
4118 	return 0;
4119 }
4120 
4121 void shmem_unlock_mapping(struct address_space *mapping)
4122 {
4123 }
4124 
4125 #ifdef CONFIG_MMU
4126 unsigned long shmem_get_unmapped_area(struct file *file,
4127 				      unsigned long addr, unsigned long len,
4128 				      unsigned long pgoff, unsigned long flags)
4129 {
4130 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4131 }
4132 #endif
4133 
4134 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4135 {
4136 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4137 }
4138 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4139 
4140 #define shmem_vm_ops				generic_file_vm_ops
4141 #define shmem_file_operations			ramfs_file_operations
4142 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4143 #define shmem_acct_size(flags, size)		0
4144 #define shmem_unacct_size(flags, size)		do {} while (0)
4145 
4146 #endif /* CONFIG_SHMEM */
4147 
4148 /* common code */
4149 
4150 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4151 				       unsigned long flags, unsigned int i_flags)
4152 {
4153 	struct inode *inode;
4154 	struct file *res;
4155 
4156 	if (IS_ERR(mnt))
4157 		return ERR_CAST(mnt);
4158 
4159 	if (size < 0 || size > MAX_LFS_FILESIZE)
4160 		return ERR_PTR(-EINVAL);
4161 
4162 	if (shmem_acct_size(flags, size))
4163 		return ERR_PTR(-ENOMEM);
4164 
4165 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4166 				flags);
4167 	if (unlikely(!inode)) {
4168 		shmem_unacct_size(flags, size);
4169 		return ERR_PTR(-ENOSPC);
4170 	}
4171 	inode->i_flags |= i_flags;
4172 	inode->i_size = size;
4173 	clear_nlink(inode);	/* It is unlinked */
4174 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4175 	if (!IS_ERR(res))
4176 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4177 				&shmem_file_operations);
4178 	if (IS_ERR(res))
4179 		iput(inode);
4180 	return res;
4181 }
4182 
4183 /**
4184  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4185  * 	kernel internal.  There will be NO LSM permission checks against the
4186  * 	underlying inode.  So users of this interface must do LSM checks at a
4187  *	higher layer.  The users are the big_key and shm implementations.  LSM
4188  *	checks are provided at the key or shm level rather than the inode.
4189  * @name: name for dentry (to be seen in /proc/<pid>/maps
4190  * @size: size to be set for the file
4191  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4192  */
4193 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4194 {
4195 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4196 }
4197 
4198 /**
4199  * shmem_file_setup - get an unlinked file living in tmpfs
4200  * @name: name for dentry (to be seen in /proc/<pid>/maps
4201  * @size: size to be set for the file
4202  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4203  */
4204 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4205 {
4206 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4207 }
4208 EXPORT_SYMBOL_GPL(shmem_file_setup);
4209 
4210 /**
4211  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4212  * @mnt: the tmpfs mount where the file will be created
4213  * @name: name for dentry (to be seen in /proc/<pid>/maps
4214  * @size: size to be set for the file
4215  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4216  */
4217 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4218 				       loff_t size, unsigned long flags)
4219 {
4220 	return __shmem_file_setup(mnt, name, size, flags, 0);
4221 }
4222 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4223 
4224 /**
4225  * shmem_zero_setup - setup a shared anonymous mapping
4226  * @vma: the vma to be mmapped is prepared by do_mmap
4227  */
4228 int shmem_zero_setup(struct vm_area_struct *vma)
4229 {
4230 	struct file *file;
4231 	loff_t size = vma->vm_end - vma->vm_start;
4232 
4233 	/*
4234 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4235 	 * between XFS directory reading and selinux: since this file is only
4236 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4237 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4238 	 */
4239 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4240 	if (IS_ERR(file))
4241 		return PTR_ERR(file);
4242 
4243 	if (vma->vm_file)
4244 		fput(vma->vm_file);
4245 	vma->vm_file = file;
4246 	vma->vm_ops = &shmem_vm_ops;
4247 
4248 	return 0;
4249 }
4250 
4251 /**
4252  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4253  * @mapping:	the page's address_space
4254  * @index:	the page index
4255  * @gfp:	the page allocator flags to use if allocating
4256  *
4257  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4258  * with any new page allocations done using the specified allocation flags.
4259  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4260  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4261  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4262  *
4263  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4264  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4265  */
4266 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4267 					 pgoff_t index, gfp_t gfp)
4268 {
4269 #ifdef CONFIG_SHMEM
4270 	struct inode *inode = mapping->host;
4271 	struct folio *folio;
4272 	struct page *page;
4273 	int error;
4274 
4275 	BUG_ON(!shmem_mapping(mapping));
4276 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4277 				  gfp, NULL, NULL, NULL);
4278 	if (error)
4279 		return ERR_PTR(error);
4280 
4281 	folio_unlock(folio);
4282 	page = folio_file_page(folio, index);
4283 	if (PageHWPoison(page)) {
4284 		folio_put(folio);
4285 		return ERR_PTR(-EIO);
4286 	}
4287 
4288 	return page;
4289 #else
4290 	/*
4291 	 * The tiny !SHMEM case uses ramfs without swap
4292 	 */
4293 	return read_cache_page_gfp(mapping, index, gfp);
4294 #endif
4295 }
4296 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4297