1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include "swap.h" 44 45 static struct vfsmount *shm_mnt; 46 47 #ifdef CONFIG_SHMEM 48 /* 49 * This virtual memory filesystem is heavily based on the ramfs. It 50 * extends ramfs by the ability to use swap and honor resource limits 51 * which makes it a completely usable filesystem. 52 */ 53 54 #include <linux/xattr.h> 55 #include <linux/exportfs.h> 56 #include <linux/posix_acl.h> 57 #include <linux/posix_acl_xattr.h> 58 #include <linux/mman.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/backing-dev.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 #include <linux/quotaops.h> 82 83 #include <linux/uaccess.h> 84 85 #include "internal.h" 86 87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 89 90 /* Pretend that each entry is of this size in directory's i_size */ 91 #define BOGO_DIRENT_SIZE 20 92 93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 94 #define SHORT_SYMLINK_LEN 128 95 96 /* 97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 98 * inode->i_private (with i_rwsem making sure that it has only one user at 99 * a time): we would prefer not to enlarge the shmem inode just for that. 100 */ 101 struct shmem_falloc { 102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 103 pgoff_t start; /* start of range currently being fallocated */ 104 pgoff_t next; /* the next page offset to be fallocated */ 105 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 107 }; 108 109 struct shmem_options { 110 unsigned long long blocks; 111 unsigned long long inodes; 112 struct mempolicy *mpol; 113 kuid_t uid; 114 kgid_t gid; 115 umode_t mode; 116 bool full_inums; 117 int huge; 118 int seen; 119 bool noswap; 120 unsigned short quota_types; 121 struct shmem_quota_limits qlimits; 122 #define SHMEM_SEEN_BLOCKS 1 123 #define SHMEM_SEEN_INODES 2 124 #define SHMEM_SEEN_HUGE 4 125 #define SHMEM_SEEN_INUMS 8 126 #define SHMEM_SEEN_NOSWAP 16 127 #define SHMEM_SEEN_QUOTA 32 128 }; 129 130 #ifdef CONFIG_TMPFS 131 static unsigned long shmem_default_max_blocks(void) 132 { 133 return totalram_pages() / 2; 134 } 135 136 static unsigned long shmem_default_max_inodes(void) 137 { 138 unsigned long nr_pages = totalram_pages(); 139 140 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 141 } 142 #endif 143 144 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 145 struct folio **foliop, enum sgp_type sgp, 146 gfp_t gfp, struct vm_area_struct *vma, 147 vm_fault_t *fault_type); 148 149 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 150 { 151 return sb->s_fs_info; 152 } 153 154 /* 155 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 156 * for shared memory and for shared anonymous (/dev/zero) mappings 157 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 158 * consistent with the pre-accounting of private mappings ... 159 */ 160 static inline int shmem_acct_size(unsigned long flags, loff_t size) 161 { 162 return (flags & VM_NORESERVE) ? 163 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 164 } 165 166 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 167 { 168 if (!(flags & VM_NORESERVE)) 169 vm_unacct_memory(VM_ACCT(size)); 170 } 171 172 static inline int shmem_reacct_size(unsigned long flags, 173 loff_t oldsize, loff_t newsize) 174 { 175 if (!(flags & VM_NORESERVE)) { 176 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 177 return security_vm_enough_memory_mm(current->mm, 178 VM_ACCT(newsize) - VM_ACCT(oldsize)); 179 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 180 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 181 } 182 return 0; 183 } 184 185 /* 186 * ... whereas tmpfs objects are accounted incrementally as 187 * pages are allocated, in order to allow large sparse files. 188 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 189 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 190 */ 191 static inline int shmem_acct_block(unsigned long flags, long pages) 192 { 193 if (!(flags & VM_NORESERVE)) 194 return 0; 195 196 return security_vm_enough_memory_mm(current->mm, 197 pages * VM_ACCT(PAGE_SIZE)); 198 } 199 200 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 201 { 202 if (flags & VM_NORESERVE) 203 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 204 } 205 206 static int shmem_inode_acct_block(struct inode *inode, long pages) 207 { 208 struct shmem_inode_info *info = SHMEM_I(inode); 209 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 210 int err = -ENOSPC; 211 212 if (shmem_acct_block(info->flags, pages)) 213 return err; 214 215 might_sleep(); /* when quotas */ 216 if (sbinfo->max_blocks) { 217 if (percpu_counter_compare(&sbinfo->used_blocks, 218 sbinfo->max_blocks - pages) > 0) 219 goto unacct; 220 221 err = dquot_alloc_block_nodirty(inode, pages); 222 if (err) 223 goto unacct; 224 225 percpu_counter_add(&sbinfo->used_blocks, pages); 226 } else { 227 err = dquot_alloc_block_nodirty(inode, pages); 228 if (err) 229 goto unacct; 230 } 231 232 return 0; 233 234 unacct: 235 shmem_unacct_blocks(info->flags, pages); 236 return err; 237 } 238 239 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 240 { 241 struct shmem_inode_info *info = SHMEM_I(inode); 242 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 243 244 might_sleep(); /* when quotas */ 245 dquot_free_block_nodirty(inode, pages); 246 247 if (sbinfo->max_blocks) 248 percpu_counter_sub(&sbinfo->used_blocks, pages); 249 shmem_unacct_blocks(info->flags, pages); 250 } 251 252 static const struct super_operations shmem_ops; 253 const struct address_space_operations shmem_aops; 254 static const struct file_operations shmem_file_operations; 255 static const struct inode_operations shmem_inode_operations; 256 static const struct inode_operations shmem_dir_inode_operations; 257 static const struct inode_operations shmem_special_inode_operations; 258 static const struct vm_operations_struct shmem_vm_ops; 259 static const struct vm_operations_struct shmem_anon_vm_ops; 260 static struct file_system_type shmem_fs_type; 261 262 bool vma_is_anon_shmem(struct vm_area_struct *vma) 263 { 264 return vma->vm_ops == &shmem_anon_vm_ops; 265 } 266 267 bool vma_is_shmem(struct vm_area_struct *vma) 268 { 269 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 270 } 271 272 static LIST_HEAD(shmem_swaplist); 273 static DEFINE_MUTEX(shmem_swaplist_mutex); 274 275 #ifdef CONFIG_TMPFS_QUOTA 276 277 static int shmem_enable_quotas(struct super_block *sb, 278 unsigned short quota_types) 279 { 280 int type, err = 0; 281 282 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 283 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 284 if (!(quota_types & (1 << type))) 285 continue; 286 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 287 DQUOT_USAGE_ENABLED | 288 DQUOT_LIMITS_ENABLED); 289 if (err) 290 goto out_err; 291 } 292 return 0; 293 294 out_err: 295 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 296 type, err); 297 for (type--; type >= 0; type--) 298 dquot_quota_off(sb, type); 299 return err; 300 } 301 302 static void shmem_disable_quotas(struct super_block *sb) 303 { 304 int type; 305 306 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 307 dquot_quota_off(sb, type); 308 } 309 310 static struct dquot **shmem_get_dquots(struct inode *inode) 311 { 312 return SHMEM_I(inode)->i_dquot; 313 } 314 #endif /* CONFIG_TMPFS_QUOTA */ 315 316 /* 317 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 318 * produces a novel ino for the newly allocated inode. 319 * 320 * It may also be called when making a hard link to permit the space needed by 321 * each dentry. However, in that case, no new inode number is needed since that 322 * internally draws from another pool of inode numbers (currently global 323 * get_next_ino()). This case is indicated by passing NULL as inop. 324 */ 325 #define SHMEM_INO_BATCH 1024 326 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 327 { 328 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 329 ino_t ino; 330 331 if (!(sb->s_flags & SB_KERNMOUNT)) { 332 raw_spin_lock(&sbinfo->stat_lock); 333 if (sbinfo->max_inodes) { 334 if (!sbinfo->free_inodes) { 335 raw_spin_unlock(&sbinfo->stat_lock); 336 return -ENOSPC; 337 } 338 sbinfo->free_inodes--; 339 } 340 if (inop) { 341 ino = sbinfo->next_ino++; 342 if (unlikely(is_zero_ino(ino))) 343 ino = sbinfo->next_ino++; 344 if (unlikely(!sbinfo->full_inums && 345 ino > UINT_MAX)) { 346 /* 347 * Emulate get_next_ino uint wraparound for 348 * compatibility 349 */ 350 if (IS_ENABLED(CONFIG_64BIT)) 351 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 352 __func__, MINOR(sb->s_dev)); 353 sbinfo->next_ino = 1; 354 ino = sbinfo->next_ino++; 355 } 356 *inop = ino; 357 } 358 raw_spin_unlock(&sbinfo->stat_lock); 359 } else if (inop) { 360 /* 361 * __shmem_file_setup, one of our callers, is lock-free: it 362 * doesn't hold stat_lock in shmem_reserve_inode since 363 * max_inodes is always 0, and is called from potentially 364 * unknown contexts. As such, use a per-cpu batched allocator 365 * which doesn't require the per-sb stat_lock unless we are at 366 * the batch boundary. 367 * 368 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 369 * shmem mounts are not exposed to userspace, so we don't need 370 * to worry about things like glibc compatibility. 371 */ 372 ino_t *next_ino; 373 374 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 375 ino = *next_ino; 376 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 377 raw_spin_lock(&sbinfo->stat_lock); 378 ino = sbinfo->next_ino; 379 sbinfo->next_ino += SHMEM_INO_BATCH; 380 raw_spin_unlock(&sbinfo->stat_lock); 381 if (unlikely(is_zero_ino(ino))) 382 ino++; 383 } 384 *inop = ino; 385 *next_ino = ++ino; 386 put_cpu(); 387 } 388 389 return 0; 390 } 391 392 static void shmem_free_inode(struct super_block *sb) 393 { 394 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 395 if (sbinfo->max_inodes) { 396 raw_spin_lock(&sbinfo->stat_lock); 397 sbinfo->free_inodes++; 398 raw_spin_unlock(&sbinfo->stat_lock); 399 } 400 } 401 402 /** 403 * shmem_recalc_inode - recalculate the block usage of an inode 404 * @inode: inode to recalc 405 * @alloced: the change in number of pages allocated to inode 406 * @swapped: the change in number of pages swapped from inode 407 * 408 * We have to calculate the free blocks since the mm can drop 409 * undirtied hole pages behind our back. 410 * 411 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 412 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 413 */ 414 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 415 { 416 struct shmem_inode_info *info = SHMEM_I(inode); 417 long freed; 418 419 spin_lock(&info->lock); 420 info->alloced += alloced; 421 info->swapped += swapped; 422 freed = info->alloced - info->swapped - 423 READ_ONCE(inode->i_mapping->nrpages); 424 /* 425 * Special case: whereas normally shmem_recalc_inode() is called 426 * after i_mapping->nrpages has already been adjusted (up or down), 427 * shmem_writepage() has to raise swapped before nrpages is lowered - 428 * to stop a racing shmem_recalc_inode() from thinking that a page has 429 * been freed. Compensate here, to avoid the need for a followup call. 430 */ 431 if (swapped > 0) 432 freed += swapped; 433 if (freed > 0) 434 info->alloced -= freed; 435 spin_unlock(&info->lock); 436 437 /* The quota case may block */ 438 if (freed > 0) 439 shmem_inode_unacct_blocks(inode, freed); 440 } 441 442 bool shmem_charge(struct inode *inode, long pages) 443 { 444 struct address_space *mapping = inode->i_mapping; 445 446 if (shmem_inode_acct_block(inode, pages)) 447 return false; 448 449 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 450 xa_lock_irq(&mapping->i_pages); 451 mapping->nrpages += pages; 452 xa_unlock_irq(&mapping->i_pages); 453 454 shmem_recalc_inode(inode, pages, 0); 455 return true; 456 } 457 458 void shmem_uncharge(struct inode *inode, long pages) 459 { 460 /* pages argument is currently unused: keep it to help debugging */ 461 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 462 463 shmem_recalc_inode(inode, 0, 0); 464 } 465 466 /* 467 * Replace item expected in xarray by a new item, while holding xa_lock. 468 */ 469 static int shmem_replace_entry(struct address_space *mapping, 470 pgoff_t index, void *expected, void *replacement) 471 { 472 XA_STATE(xas, &mapping->i_pages, index); 473 void *item; 474 475 VM_BUG_ON(!expected); 476 VM_BUG_ON(!replacement); 477 item = xas_load(&xas); 478 if (item != expected) 479 return -ENOENT; 480 xas_store(&xas, replacement); 481 return 0; 482 } 483 484 /* 485 * Sometimes, before we decide whether to proceed or to fail, we must check 486 * that an entry was not already brought back from swap by a racing thread. 487 * 488 * Checking page is not enough: by the time a SwapCache page is locked, it 489 * might be reused, and again be SwapCache, using the same swap as before. 490 */ 491 static bool shmem_confirm_swap(struct address_space *mapping, 492 pgoff_t index, swp_entry_t swap) 493 { 494 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 495 } 496 497 /* 498 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 499 * 500 * SHMEM_HUGE_NEVER: 501 * disables huge pages for the mount; 502 * SHMEM_HUGE_ALWAYS: 503 * enables huge pages for the mount; 504 * SHMEM_HUGE_WITHIN_SIZE: 505 * only allocate huge pages if the page will be fully within i_size, 506 * also respect fadvise()/madvise() hints; 507 * SHMEM_HUGE_ADVISE: 508 * only allocate huge pages if requested with fadvise()/madvise(); 509 */ 510 511 #define SHMEM_HUGE_NEVER 0 512 #define SHMEM_HUGE_ALWAYS 1 513 #define SHMEM_HUGE_WITHIN_SIZE 2 514 #define SHMEM_HUGE_ADVISE 3 515 516 /* 517 * Special values. 518 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 519 * 520 * SHMEM_HUGE_DENY: 521 * disables huge on shm_mnt and all mounts, for emergency use; 522 * SHMEM_HUGE_FORCE: 523 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 524 * 525 */ 526 #define SHMEM_HUGE_DENY (-1) 527 #define SHMEM_HUGE_FORCE (-2) 528 529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 530 /* ifdef here to avoid bloating shmem.o when not necessary */ 531 532 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 533 534 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force, 535 struct mm_struct *mm, unsigned long vm_flags) 536 { 537 loff_t i_size; 538 539 if (!S_ISREG(inode->i_mode)) 540 return false; 541 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags))) 542 return false; 543 if (shmem_huge == SHMEM_HUGE_DENY) 544 return false; 545 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 546 return true; 547 548 switch (SHMEM_SB(inode->i_sb)->huge) { 549 case SHMEM_HUGE_ALWAYS: 550 return true; 551 case SHMEM_HUGE_WITHIN_SIZE: 552 index = round_up(index + 1, HPAGE_PMD_NR); 553 i_size = round_up(i_size_read(inode), PAGE_SIZE); 554 if (i_size >> PAGE_SHIFT >= index) 555 return true; 556 fallthrough; 557 case SHMEM_HUGE_ADVISE: 558 if (mm && (vm_flags & VM_HUGEPAGE)) 559 return true; 560 fallthrough; 561 default: 562 return false; 563 } 564 } 565 566 #if defined(CONFIG_SYSFS) 567 static int shmem_parse_huge(const char *str) 568 { 569 if (!strcmp(str, "never")) 570 return SHMEM_HUGE_NEVER; 571 if (!strcmp(str, "always")) 572 return SHMEM_HUGE_ALWAYS; 573 if (!strcmp(str, "within_size")) 574 return SHMEM_HUGE_WITHIN_SIZE; 575 if (!strcmp(str, "advise")) 576 return SHMEM_HUGE_ADVISE; 577 if (!strcmp(str, "deny")) 578 return SHMEM_HUGE_DENY; 579 if (!strcmp(str, "force")) 580 return SHMEM_HUGE_FORCE; 581 return -EINVAL; 582 } 583 #endif 584 585 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 586 static const char *shmem_format_huge(int huge) 587 { 588 switch (huge) { 589 case SHMEM_HUGE_NEVER: 590 return "never"; 591 case SHMEM_HUGE_ALWAYS: 592 return "always"; 593 case SHMEM_HUGE_WITHIN_SIZE: 594 return "within_size"; 595 case SHMEM_HUGE_ADVISE: 596 return "advise"; 597 case SHMEM_HUGE_DENY: 598 return "deny"; 599 case SHMEM_HUGE_FORCE: 600 return "force"; 601 default: 602 VM_BUG_ON(1); 603 return "bad_val"; 604 } 605 } 606 #endif 607 608 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 609 struct shrink_control *sc, unsigned long nr_to_split) 610 { 611 LIST_HEAD(list), *pos, *next; 612 LIST_HEAD(to_remove); 613 struct inode *inode; 614 struct shmem_inode_info *info; 615 struct folio *folio; 616 unsigned long batch = sc ? sc->nr_to_scan : 128; 617 int split = 0; 618 619 if (list_empty(&sbinfo->shrinklist)) 620 return SHRINK_STOP; 621 622 spin_lock(&sbinfo->shrinklist_lock); 623 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 624 info = list_entry(pos, struct shmem_inode_info, shrinklist); 625 626 /* pin the inode */ 627 inode = igrab(&info->vfs_inode); 628 629 /* inode is about to be evicted */ 630 if (!inode) { 631 list_del_init(&info->shrinklist); 632 goto next; 633 } 634 635 /* Check if there's anything to gain */ 636 if (round_up(inode->i_size, PAGE_SIZE) == 637 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 638 list_move(&info->shrinklist, &to_remove); 639 goto next; 640 } 641 642 list_move(&info->shrinklist, &list); 643 next: 644 sbinfo->shrinklist_len--; 645 if (!--batch) 646 break; 647 } 648 spin_unlock(&sbinfo->shrinklist_lock); 649 650 list_for_each_safe(pos, next, &to_remove) { 651 info = list_entry(pos, struct shmem_inode_info, shrinklist); 652 inode = &info->vfs_inode; 653 list_del_init(&info->shrinklist); 654 iput(inode); 655 } 656 657 list_for_each_safe(pos, next, &list) { 658 int ret; 659 pgoff_t index; 660 661 info = list_entry(pos, struct shmem_inode_info, shrinklist); 662 inode = &info->vfs_inode; 663 664 if (nr_to_split && split >= nr_to_split) 665 goto move_back; 666 667 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 668 folio = filemap_get_folio(inode->i_mapping, index); 669 if (IS_ERR(folio)) 670 goto drop; 671 672 /* No huge page at the end of the file: nothing to split */ 673 if (!folio_test_large(folio)) { 674 folio_put(folio); 675 goto drop; 676 } 677 678 /* 679 * Move the inode on the list back to shrinklist if we failed 680 * to lock the page at this time. 681 * 682 * Waiting for the lock may lead to deadlock in the 683 * reclaim path. 684 */ 685 if (!folio_trylock(folio)) { 686 folio_put(folio); 687 goto move_back; 688 } 689 690 ret = split_folio(folio); 691 folio_unlock(folio); 692 folio_put(folio); 693 694 /* If split failed move the inode on the list back to shrinklist */ 695 if (ret) 696 goto move_back; 697 698 split++; 699 drop: 700 list_del_init(&info->shrinklist); 701 goto put; 702 move_back: 703 /* 704 * Make sure the inode is either on the global list or deleted 705 * from any local list before iput() since it could be deleted 706 * in another thread once we put the inode (then the local list 707 * is corrupted). 708 */ 709 spin_lock(&sbinfo->shrinklist_lock); 710 list_move(&info->shrinklist, &sbinfo->shrinklist); 711 sbinfo->shrinklist_len++; 712 spin_unlock(&sbinfo->shrinklist_lock); 713 put: 714 iput(inode); 715 } 716 717 return split; 718 } 719 720 static long shmem_unused_huge_scan(struct super_block *sb, 721 struct shrink_control *sc) 722 { 723 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 724 725 if (!READ_ONCE(sbinfo->shrinklist_len)) 726 return SHRINK_STOP; 727 728 return shmem_unused_huge_shrink(sbinfo, sc, 0); 729 } 730 731 static long shmem_unused_huge_count(struct super_block *sb, 732 struct shrink_control *sc) 733 { 734 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 735 return READ_ONCE(sbinfo->shrinklist_len); 736 } 737 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 738 739 #define shmem_huge SHMEM_HUGE_DENY 740 741 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force, 742 struct mm_struct *mm, unsigned long vm_flags) 743 { 744 return false; 745 } 746 747 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 748 struct shrink_control *sc, unsigned long nr_to_split) 749 { 750 return 0; 751 } 752 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 753 754 /* 755 * Like filemap_add_folio, but error if expected item has gone. 756 */ 757 static int shmem_add_to_page_cache(struct folio *folio, 758 struct address_space *mapping, 759 pgoff_t index, void *expected, gfp_t gfp, 760 struct mm_struct *charge_mm) 761 { 762 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 763 long nr = folio_nr_pages(folio); 764 int error; 765 766 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 767 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 768 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 769 VM_BUG_ON(expected && folio_test_large(folio)); 770 771 folio_ref_add(folio, nr); 772 folio->mapping = mapping; 773 folio->index = index; 774 775 if (!folio_test_swapcache(folio)) { 776 error = mem_cgroup_charge(folio, charge_mm, gfp); 777 if (error) { 778 if (folio_test_pmd_mappable(folio)) { 779 count_vm_event(THP_FILE_FALLBACK); 780 count_vm_event(THP_FILE_FALLBACK_CHARGE); 781 } 782 goto error; 783 } 784 } 785 folio_throttle_swaprate(folio, gfp); 786 787 do { 788 xas_lock_irq(&xas); 789 if (expected != xas_find_conflict(&xas)) { 790 xas_set_err(&xas, -EEXIST); 791 goto unlock; 792 } 793 if (expected && xas_find_conflict(&xas)) { 794 xas_set_err(&xas, -EEXIST); 795 goto unlock; 796 } 797 xas_store(&xas, folio); 798 if (xas_error(&xas)) 799 goto unlock; 800 if (folio_test_pmd_mappable(folio)) { 801 count_vm_event(THP_FILE_ALLOC); 802 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 803 } 804 mapping->nrpages += nr; 805 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 806 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 807 unlock: 808 xas_unlock_irq(&xas); 809 } while (xas_nomem(&xas, gfp)); 810 811 if (xas_error(&xas)) { 812 error = xas_error(&xas); 813 goto error; 814 } 815 816 return 0; 817 error: 818 folio->mapping = NULL; 819 folio_ref_sub(folio, nr); 820 return error; 821 } 822 823 /* 824 * Like delete_from_page_cache, but substitutes swap for @folio. 825 */ 826 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 827 { 828 struct address_space *mapping = folio->mapping; 829 long nr = folio_nr_pages(folio); 830 int error; 831 832 xa_lock_irq(&mapping->i_pages); 833 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 834 folio->mapping = NULL; 835 mapping->nrpages -= nr; 836 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 837 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 838 xa_unlock_irq(&mapping->i_pages); 839 folio_put(folio); 840 BUG_ON(error); 841 } 842 843 /* 844 * Remove swap entry from page cache, free the swap and its page cache. 845 */ 846 static int shmem_free_swap(struct address_space *mapping, 847 pgoff_t index, void *radswap) 848 { 849 void *old; 850 851 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 852 if (old != radswap) 853 return -ENOENT; 854 free_swap_and_cache(radix_to_swp_entry(radswap)); 855 return 0; 856 } 857 858 /* 859 * Determine (in bytes) how many of the shmem object's pages mapped by the 860 * given offsets are swapped out. 861 * 862 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 863 * as long as the inode doesn't go away and racy results are not a problem. 864 */ 865 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 866 pgoff_t start, pgoff_t end) 867 { 868 XA_STATE(xas, &mapping->i_pages, start); 869 struct page *page; 870 unsigned long swapped = 0; 871 872 rcu_read_lock(); 873 xas_for_each(&xas, page, end - 1) { 874 if (xas_retry(&xas, page)) 875 continue; 876 if (xa_is_value(page)) 877 swapped++; 878 879 if (need_resched()) { 880 xas_pause(&xas); 881 cond_resched_rcu(); 882 } 883 } 884 885 rcu_read_unlock(); 886 887 return swapped << PAGE_SHIFT; 888 } 889 890 /* 891 * Determine (in bytes) how many of the shmem object's pages mapped by the 892 * given vma is swapped out. 893 * 894 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 895 * as long as the inode doesn't go away and racy results are not a problem. 896 */ 897 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 898 { 899 struct inode *inode = file_inode(vma->vm_file); 900 struct shmem_inode_info *info = SHMEM_I(inode); 901 struct address_space *mapping = inode->i_mapping; 902 unsigned long swapped; 903 904 /* Be careful as we don't hold info->lock */ 905 swapped = READ_ONCE(info->swapped); 906 907 /* 908 * The easier cases are when the shmem object has nothing in swap, or 909 * the vma maps it whole. Then we can simply use the stats that we 910 * already track. 911 */ 912 if (!swapped) 913 return 0; 914 915 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 916 return swapped << PAGE_SHIFT; 917 918 /* Here comes the more involved part */ 919 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 920 vma->vm_pgoff + vma_pages(vma)); 921 } 922 923 /* 924 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 925 */ 926 void shmem_unlock_mapping(struct address_space *mapping) 927 { 928 struct folio_batch fbatch; 929 pgoff_t index = 0; 930 931 folio_batch_init(&fbatch); 932 /* 933 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 934 */ 935 while (!mapping_unevictable(mapping) && 936 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 937 check_move_unevictable_folios(&fbatch); 938 folio_batch_release(&fbatch); 939 cond_resched(); 940 } 941 } 942 943 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 944 { 945 struct folio *folio; 946 947 /* 948 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 949 * beyond i_size, and reports fallocated folios as holes. 950 */ 951 folio = filemap_get_entry(inode->i_mapping, index); 952 if (!folio) 953 return folio; 954 if (!xa_is_value(folio)) { 955 folio_lock(folio); 956 if (folio->mapping == inode->i_mapping) 957 return folio; 958 /* The folio has been swapped out */ 959 folio_unlock(folio); 960 folio_put(folio); 961 } 962 /* 963 * But read a folio back from swap if any of it is within i_size 964 * (although in some cases this is just a waste of time). 965 */ 966 folio = NULL; 967 shmem_get_folio(inode, index, &folio, SGP_READ); 968 return folio; 969 } 970 971 /* 972 * Remove range of pages and swap entries from page cache, and free them. 973 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 974 */ 975 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 976 bool unfalloc) 977 { 978 struct address_space *mapping = inode->i_mapping; 979 struct shmem_inode_info *info = SHMEM_I(inode); 980 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 981 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 982 struct folio_batch fbatch; 983 pgoff_t indices[PAGEVEC_SIZE]; 984 struct folio *folio; 985 bool same_folio; 986 long nr_swaps_freed = 0; 987 pgoff_t index; 988 int i; 989 990 if (lend == -1) 991 end = -1; /* unsigned, so actually very big */ 992 993 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 994 info->fallocend = start; 995 996 folio_batch_init(&fbatch); 997 index = start; 998 while (index < end && find_lock_entries(mapping, &index, end - 1, 999 &fbatch, indices)) { 1000 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1001 folio = fbatch.folios[i]; 1002 1003 if (xa_is_value(folio)) { 1004 if (unfalloc) 1005 continue; 1006 nr_swaps_freed += !shmem_free_swap(mapping, 1007 indices[i], folio); 1008 continue; 1009 } 1010 1011 if (!unfalloc || !folio_test_uptodate(folio)) 1012 truncate_inode_folio(mapping, folio); 1013 folio_unlock(folio); 1014 } 1015 folio_batch_remove_exceptionals(&fbatch); 1016 folio_batch_release(&fbatch); 1017 cond_resched(); 1018 } 1019 1020 /* 1021 * When undoing a failed fallocate, we want none of the partial folio 1022 * zeroing and splitting below, but shall want to truncate the whole 1023 * folio when !uptodate indicates that it was added by this fallocate, 1024 * even when [lstart, lend] covers only a part of the folio. 1025 */ 1026 if (unfalloc) 1027 goto whole_folios; 1028 1029 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1030 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1031 if (folio) { 1032 same_folio = lend < folio_pos(folio) + folio_size(folio); 1033 folio_mark_dirty(folio); 1034 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1035 start = folio->index + folio_nr_pages(folio); 1036 if (same_folio) 1037 end = folio->index; 1038 } 1039 folio_unlock(folio); 1040 folio_put(folio); 1041 folio = NULL; 1042 } 1043 1044 if (!same_folio) 1045 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1046 if (folio) { 1047 folio_mark_dirty(folio); 1048 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1049 end = folio->index; 1050 folio_unlock(folio); 1051 folio_put(folio); 1052 } 1053 1054 whole_folios: 1055 1056 index = start; 1057 while (index < end) { 1058 cond_resched(); 1059 1060 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1061 indices)) { 1062 /* If all gone or hole-punch or unfalloc, we're done */ 1063 if (index == start || end != -1) 1064 break; 1065 /* But if truncating, restart to make sure all gone */ 1066 index = start; 1067 continue; 1068 } 1069 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1070 folio = fbatch.folios[i]; 1071 1072 if (xa_is_value(folio)) { 1073 if (unfalloc) 1074 continue; 1075 if (shmem_free_swap(mapping, indices[i], folio)) { 1076 /* Swap was replaced by page: retry */ 1077 index = indices[i]; 1078 break; 1079 } 1080 nr_swaps_freed++; 1081 continue; 1082 } 1083 1084 folio_lock(folio); 1085 1086 if (!unfalloc || !folio_test_uptodate(folio)) { 1087 if (folio_mapping(folio) != mapping) { 1088 /* Page was replaced by swap: retry */ 1089 folio_unlock(folio); 1090 index = indices[i]; 1091 break; 1092 } 1093 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1094 folio); 1095 truncate_inode_folio(mapping, folio); 1096 } 1097 folio_unlock(folio); 1098 } 1099 folio_batch_remove_exceptionals(&fbatch); 1100 folio_batch_release(&fbatch); 1101 } 1102 1103 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1104 } 1105 1106 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1107 { 1108 shmem_undo_range(inode, lstart, lend, false); 1109 inode->i_ctime = inode->i_mtime = current_time(inode); 1110 inode_inc_iversion(inode); 1111 } 1112 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1113 1114 static int shmem_getattr(struct mnt_idmap *idmap, 1115 const struct path *path, struct kstat *stat, 1116 u32 request_mask, unsigned int query_flags) 1117 { 1118 struct inode *inode = path->dentry->d_inode; 1119 struct shmem_inode_info *info = SHMEM_I(inode); 1120 1121 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1122 shmem_recalc_inode(inode, 0, 0); 1123 1124 if (info->fsflags & FS_APPEND_FL) 1125 stat->attributes |= STATX_ATTR_APPEND; 1126 if (info->fsflags & FS_IMMUTABLE_FL) 1127 stat->attributes |= STATX_ATTR_IMMUTABLE; 1128 if (info->fsflags & FS_NODUMP_FL) 1129 stat->attributes |= STATX_ATTR_NODUMP; 1130 stat->attributes_mask |= (STATX_ATTR_APPEND | 1131 STATX_ATTR_IMMUTABLE | 1132 STATX_ATTR_NODUMP); 1133 generic_fillattr(idmap, inode, stat); 1134 1135 if (shmem_is_huge(inode, 0, false, NULL, 0)) 1136 stat->blksize = HPAGE_PMD_SIZE; 1137 1138 if (request_mask & STATX_BTIME) { 1139 stat->result_mask |= STATX_BTIME; 1140 stat->btime.tv_sec = info->i_crtime.tv_sec; 1141 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1142 } 1143 1144 return 0; 1145 } 1146 1147 static int shmem_setattr(struct mnt_idmap *idmap, 1148 struct dentry *dentry, struct iattr *attr) 1149 { 1150 struct inode *inode = d_inode(dentry); 1151 struct shmem_inode_info *info = SHMEM_I(inode); 1152 int error; 1153 bool update_mtime = false; 1154 bool update_ctime = true; 1155 1156 error = setattr_prepare(idmap, dentry, attr); 1157 if (error) 1158 return error; 1159 1160 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1161 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1162 return -EPERM; 1163 } 1164 } 1165 1166 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1167 loff_t oldsize = inode->i_size; 1168 loff_t newsize = attr->ia_size; 1169 1170 /* protected by i_rwsem */ 1171 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1172 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1173 return -EPERM; 1174 1175 if (newsize != oldsize) { 1176 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1177 oldsize, newsize); 1178 if (error) 1179 return error; 1180 i_size_write(inode, newsize); 1181 update_mtime = true; 1182 } else { 1183 update_ctime = false; 1184 } 1185 if (newsize <= oldsize) { 1186 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1187 if (oldsize > holebegin) 1188 unmap_mapping_range(inode->i_mapping, 1189 holebegin, 0, 1); 1190 if (info->alloced) 1191 shmem_truncate_range(inode, 1192 newsize, (loff_t)-1); 1193 /* unmap again to remove racily COWed private pages */ 1194 if (oldsize > holebegin) 1195 unmap_mapping_range(inode->i_mapping, 1196 holebegin, 0, 1); 1197 } 1198 } 1199 1200 if (is_quota_modification(idmap, inode, attr)) { 1201 error = dquot_initialize(inode); 1202 if (error) 1203 return error; 1204 } 1205 1206 /* Transfer quota accounting */ 1207 if (i_uid_needs_update(idmap, attr, inode) || 1208 i_gid_needs_update(idmap, attr, inode)) { 1209 error = dquot_transfer(idmap, inode, attr); 1210 1211 if (error) 1212 return error; 1213 } 1214 1215 setattr_copy(idmap, inode, attr); 1216 if (attr->ia_valid & ATTR_MODE) 1217 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1218 if (!error && update_ctime) { 1219 inode->i_ctime = current_time(inode); 1220 if (update_mtime) 1221 inode->i_mtime = inode->i_ctime; 1222 inode_inc_iversion(inode); 1223 } 1224 return error; 1225 } 1226 1227 static void shmem_evict_inode(struct inode *inode) 1228 { 1229 struct shmem_inode_info *info = SHMEM_I(inode); 1230 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1231 1232 if (shmem_mapping(inode->i_mapping)) { 1233 shmem_unacct_size(info->flags, inode->i_size); 1234 inode->i_size = 0; 1235 mapping_set_exiting(inode->i_mapping); 1236 shmem_truncate_range(inode, 0, (loff_t)-1); 1237 if (!list_empty(&info->shrinklist)) { 1238 spin_lock(&sbinfo->shrinklist_lock); 1239 if (!list_empty(&info->shrinklist)) { 1240 list_del_init(&info->shrinklist); 1241 sbinfo->shrinklist_len--; 1242 } 1243 spin_unlock(&sbinfo->shrinklist_lock); 1244 } 1245 while (!list_empty(&info->swaplist)) { 1246 /* Wait while shmem_unuse() is scanning this inode... */ 1247 wait_var_event(&info->stop_eviction, 1248 !atomic_read(&info->stop_eviction)); 1249 mutex_lock(&shmem_swaplist_mutex); 1250 /* ...but beware of the race if we peeked too early */ 1251 if (!atomic_read(&info->stop_eviction)) 1252 list_del_init(&info->swaplist); 1253 mutex_unlock(&shmem_swaplist_mutex); 1254 } 1255 } 1256 1257 simple_xattrs_free(&info->xattrs); 1258 WARN_ON(inode->i_blocks); 1259 shmem_free_inode(inode->i_sb); 1260 clear_inode(inode); 1261 #ifdef CONFIG_TMPFS_QUOTA 1262 dquot_free_inode(inode); 1263 dquot_drop(inode); 1264 #endif 1265 } 1266 1267 static int shmem_find_swap_entries(struct address_space *mapping, 1268 pgoff_t start, struct folio_batch *fbatch, 1269 pgoff_t *indices, unsigned int type) 1270 { 1271 XA_STATE(xas, &mapping->i_pages, start); 1272 struct folio *folio; 1273 swp_entry_t entry; 1274 1275 rcu_read_lock(); 1276 xas_for_each(&xas, folio, ULONG_MAX) { 1277 if (xas_retry(&xas, folio)) 1278 continue; 1279 1280 if (!xa_is_value(folio)) 1281 continue; 1282 1283 entry = radix_to_swp_entry(folio); 1284 /* 1285 * swapin error entries can be found in the mapping. But they're 1286 * deliberately ignored here as we've done everything we can do. 1287 */ 1288 if (swp_type(entry) != type) 1289 continue; 1290 1291 indices[folio_batch_count(fbatch)] = xas.xa_index; 1292 if (!folio_batch_add(fbatch, folio)) 1293 break; 1294 1295 if (need_resched()) { 1296 xas_pause(&xas); 1297 cond_resched_rcu(); 1298 } 1299 } 1300 rcu_read_unlock(); 1301 1302 return xas.xa_index; 1303 } 1304 1305 /* 1306 * Move the swapped pages for an inode to page cache. Returns the count 1307 * of pages swapped in, or the error in case of failure. 1308 */ 1309 static int shmem_unuse_swap_entries(struct inode *inode, 1310 struct folio_batch *fbatch, pgoff_t *indices) 1311 { 1312 int i = 0; 1313 int ret = 0; 1314 int error = 0; 1315 struct address_space *mapping = inode->i_mapping; 1316 1317 for (i = 0; i < folio_batch_count(fbatch); i++) { 1318 struct folio *folio = fbatch->folios[i]; 1319 1320 if (!xa_is_value(folio)) 1321 continue; 1322 error = shmem_swapin_folio(inode, indices[i], 1323 &folio, SGP_CACHE, 1324 mapping_gfp_mask(mapping), 1325 NULL, NULL); 1326 if (error == 0) { 1327 folio_unlock(folio); 1328 folio_put(folio); 1329 ret++; 1330 } 1331 if (error == -ENOMEM) 1332 break; 1333 error = 0; 1334 } 1335 return error ? error : ret; 1336 } 1337 1338 /* 1339 * If swap found in inode, free it and move page from swapcache to filecache. 1340 */ 1341 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1342 { 1343 struct address_space *mapping = inode->i_mapping; 1344 pgoff_t start = 0; 1345 struct folio_batch fbatch; 1346 pgoff_t indices[PAGEVEC_SIZE]; 1347 int ret = 0; 1348 1349 do { 1350 folio_batch_init(&fbatch); 1351 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1352 if (folio_batch_count(&fbatch) == 0) { 1353 ret = 0; 1354 break; 1355 } 1356 1357 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1358 if (ret < 0) 1359 break; 1360 1361 start = indices[folio_batch_count(&fbatch) - 1]; 1362 } while (true); 1363 1364 return ret; 1365 } 1366 1367 /* 1368 * Read all the shared memory data that resides in the swap 1369 * device 'type' back into memory, so the swap device can be 1370 * unused. 1371 */ 1372 int shmem_unuse(unsigned int type) 1373 { 1374 struct shmem_inode_info *info, *next; 1375 int error = 0; 1376 1377 if (list_empty(&shmem_swaplist)) 1378 return 0; 1379 1380 mutex_lock(&shmem_swaplist_mutex); 1381 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1382 if (!info->swapped) { 1383 list_del_init(&info->swaplist); 1384 continue; 1385 } 1386 /* 1387 * Drop the swaplist mutex while searching the inode for swap; 1388 * but before doing so, make sure shmem_evict_inode() will not 1389 * remove placeholder inode from swaplist, nor let it be freed 1390 * (igrab() would protect from unlink, but not from unmount). 1391 */ 1392 atomic_inc(&info->stop_eviction); 1393 mutex_unlock(&shmem_swaplist_mutex); 1394 1395 error = shmem_unuse_inode(&info->vfs_inode, type); 1396 cond_resched(); 1397 1398 mutex_lock(&shmem_swaplist_mutex); 1399 next = list_next_entry(info, swaplist); 1400 if (!info->swapped) 1401 list_del_init(&info->swaplist); 1402 if (atomic_dec_and_test(&info->stop_eviction)) 1403 wake_up_var(&info->stop_eviction); 1404 if (error) 1405 break; 1406 } 1407 mutex_unlock(&shmem_swaplist_mutex); 1408 1409 return error; 1410 } 1411 1412 /* 1413 * Move the page from the page cache to the swap cache. 1414 */ 1415 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1416 { 1417 struct folio *folio = page_folio(page); 1418 struct address_space *mapping = folio->mapping; 1419 struct inode *inode = mapping->host; 1420 struct shmem_inode_info *info = SHMEM_I(inode); 1421 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1422 swp_entry_t swap; 1423 pgoff_t index; 1424 1425 /* 1426 * Our capabilities prevent regular writeback or sync from ever calling 1427 * shmem_writepage; but a stacking filesystem might use ->writepage of 1428 * its underlying filesystem, in which case tmpfs should write out to 1429 * swap only in response to memory pressure, and not for the writeback 1430 * threads or sync. 1431 */ 1432 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1433 goto redirty; 1434 1435 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1436 goto redirty; 1437 1438 if (!total_swap_pages) 1439 goto redirty; 1440 1441 /* 1442 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1443 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1444 * and its shmem_writeback() needs them to be split when swapping. 1445 */ 1446 if (folio_test_large(folio)) { 1447 /* Ensure the subpages are still dirty */ 1448 folio_test_set_dirty(folio); 1449 if (split_huge_page(page) < 0) 1450 goto redirty; 1451 folio = page_folio(page); 1452 folio_clear_dirty(folio); 1453 } 1454 1455 index = folio->index; 1456 1457 /* 1458 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1459 * value into swapfile.c, the only way we can correctly account for a 1460 * fallocated folio arriving here is now to initialize it and write it. 1461 * 1462 * That's okay for a folio already fallocated earlier, but if we have 1463 * not yet completed the fallocation, then (a) we want to keep track 1464 * of this folio in case we have to undo it, and (b) it may not be a 1465 * good idea to continue anyway, once we're pushing into swap. So 1466 * reactivate the folio, and let shmem_fallocate() quit when too many. 1467 */ 1468 if (!folio_test_uptodate(folio)) { 1469 if (inode->i_private) { 1470 struct shmem_falloc *shmem_falloc; 1471 spin_lock(&inode->i_lock); 1472 shmem_falloc = inode->i_private; 1473 if (shmem_falloc && 1474 !shmem_falloc->waitq && 1475 index >= shmem_falloc->start && 1476 index < shmem_falloc->next) 1477 shmem_falloc->nr_unswapped++; 1478 else 1479 shmem_falloc = NULL; 1480 spin_unlock(&inode->i_lock); 1481 if (shmem_falloc) 1482 goto redirty; 1483 } 1484 folio_zero_range(folio, 0, folio_size(folio)); 1485 flush_dcache_folio(folio); 1486 folio_mark_uptodate(folio); 1487 } 1488 1489 swap = folio_alloc_swap(folio); 1490 if (!swap.val) 1491 goto redirty; 1492 1493 /* 1494 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1495 * if it's not already there. Do it now before the folio is 1496 * moved to swap cache, when its pagelock no longer protects 1497 * the inode from eviction. But don't unlock the mutex until 1498 * we've incremented swapped, because shmem_unuse_inode() will 1499 * prune a !swapped inode from the swaplist under this mutex. 1500 */ 1501 mutex_lock(&shmem_swaplist_mutex); 1502 if (list_empty(&info->swaplist)) 1503 list_add(&info->swaplist, &shmem_swaplist); 1504 1505 if (add_to_swap_cache(folio, swap, 1506 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1507 NULL) == 0) { 1508 shmem_recalc_inode(inode, 0, 1); 1509 swap_shmem_alloc(swap); 1510 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1511 1512 mutex_unlock(&shmem_swaplist_mutex); 1513 BUG_ON(folio_mapped(folio)); 1514 swap_writepage(&folio->page, wbc); 1515 return 0; 1516 } 1517 1518 mutex_unlock(&shmem_swaplist_mutex); 1519 put_swap_folio(folio, swap); 1520 redirty: 1521 folio_mark_dirty(folio); 1522 if (wbc->for_reclaim) 1523 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1524 folio_unlock(folio); 1525 return 0; 1526 } 1527 1528 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1529 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1530 { 1531 char buffer[64]; 1532 1533 if (!mpol || mpol->mode == MPOL_DEFAULT) 1534 return; /* show nothing */ 1535 1536 mpol_to_str(buffer, sizeof(buffer), mpol); 1537 1538 seq_printf(seq, ",mpol=%s", buffer); 1539 } 1540 1541 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1542 { 1543 struct mempolicy *mpol = NULL; 1544 if (sbinfo->mpol) { 1545 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1546 mpol = sbinfo->mpol; 1547 mpol_get(mpol); 1548 raw_spin_unlock(&sbinfo->stat_lock); 1549 } 1550 return mpol; 1551 } 1552 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1553 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1554 { 1555 } 1556 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1557 { 1558 return NULL; 1559 } 1560 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1561 #ifndef CONFIG_NUMA 1562 #define vm_policy vm_private_data 1563 #endif 1564 1565 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1566 struct shmem_inode_info *info, pgoff_t index) 1567 { 1568 /* Create a pseudo vma that just contains the policy */ 1569 vma_init(vma, NULL); 1570 /* Bias interleave by inode number to distribute better across nodes */ 1571 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1572 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1573 } 1574 1575 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1576 { 1577 /* Drop reference taken by mpol_shared_policy_lookup() */ 1578 mpol_cond_put(vma->vm_policy); 1579 } 1580 1581 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1582 struct shmem_inode_info *info, pgoff_t index) 1583 { 1584 struct vm_area_struct pvma; 1585 struct page *page; 1586 struct vm_fault vmf = { 1587 .vma = &pvma, 1588 }; 1589 1590 shmem_pseudo_vma_init(&pvma, info, index); 1591 page = swap_cluster_readahead(swap, gfp, &vmf); 1592 shmem_pseudo_vma_destroy(&pvma); 1593 1594 if (!page) 1595 return NULL; 1596 return page_folio(page); 1597 } 1598 1599 /* 1600 * Make sure huge_gfp is always more limited than limit_gfp. 1601 * Some of the flags set permissions, while others set limitations. 1602 */ 1603 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1604 { 1605 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1606 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1607 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1608 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1609 1610 /* Allow allocations only from the originally specified zones. */ 1611 result |= zoneflags; 1612 1613 /* 1614 * Minimize the result gfp by taking the union with the deny flags, 1615 * and the intersection of the allow flags. 1616 */ 1617 result |= (limit_gfp & denyflags); 1618 result |= (huge_gfp & limit_gfp) & allowflags; 1619 1620 return result; 1621 } 1622 1623 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1624 struct shmem_inode_info *info, pgoff_t index) 1625 { 1626 struct vm_area_struct pvma; 1627 struct address_space *mapping = info->vfs_inode.i_mapping; 1628 pgoff_t hindex; 1629 struct folio *folio; 1630 1631 hindex = round_down(index, HPAGE_PMD_NR); 1632 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1633 XA_PRESENT)) 1634 return NULL; 1635 1636 shmem_pseudo_vma_init(&pvma, info, hindex); 1637 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1638 shmem_pseudo_vma_destroy(&pvma); 1639 if (!folio) 1640 count_vm_event(THP_FILE_FALLBACK); 1641 return folio; 1642 } 1643 1644 static struct folio *shmem_alloc_folio(gfp_t gfp, 1645 struct shmem_inode_info *info, pgoff_t index) 1646 { 1647 struct vm_area_struct pvma; 1648 struct folio *folio; 1649 1650 shmem_pseudo_vma_init(&pvma, info, index); 1651 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false); 1652 shmem_pseudo_vma_destroy(&pvma); 1653 1654 return folio; 1655 } 1656 1657 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode, 1658 pgoff_t index, bool huge) 1659 { 1660 struct shmem_inode_info *info = SHMEM_I(inode); 1661 struct folio *folio; 1662 int nr; 1663 int err; 1664 1665 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1666 huge = false; 1667 nr = huge ? HPAGE_PMD_NR : 1; 1668 1669 err = shmem_inode_acct_block(inode, nr); 1670 if (err) 1671 goto failed; 1672 1673 if (huge) 1674 folio = shmem_alloc_hugefolio(gfp, info, index); 1675 else 1676 folio = shmem_alloc_folio(gfp, info, index); 1677 if (folio) { 1678 __folio_set_locked(folio); 1679 __folio_set_swapbacked(folio); 1680 return folio; 1681 } 1682 1683 err = -ENOMEM; 1684 shmem_inode_unacct_blocks(inode, nr); 1685 failed: 1686 return ERR_PTR(err); 1687 } 1688 1689 /* 1690 * When a page is moved from swapcache to shmem filecache (either by the 1691 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1692 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1693 * ignorance of the mapping it belongs to. If that mapping has special 1694 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1695 * we may need to copy to a suitable page before moving to filecache. 1696 * 1697 * In a future release, this may well be extended to respect cpuset and 1698 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1699 * but for now it is a simple matter of zone. 1700 */ 1701 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1702 { 1703 return folio_zonenum(folio) > gfp_zone(gfp); 1704 } 1705 1706 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1707 struct shmem_inode_info *info, pgoff_t index) 1708 { 1709 struct folio *old, *new; 1710 struct address_space *swap_mapping; 1711 swp_entry_t entry; 1712 pgoff_t swap_index; 1713 int error; 1714 1715 old = *foliop; 1716 entry = folio_swap_entry(old); 1717 swap_index = swp_offset(entry); 1718 swap_mapping = swap_address_space(entry); 1719 1720 /* 1721 * We have arrived here because our zones are constrained, so don't 1722 * limit chance of success by further cpuset and node constraints. 1723 */ 1724 gfp &= ~GFP_CONSTRAINT_MASK; 1725 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1726 new = shmem_alloc_folio(gfp, info, index); 1727 if (!new) 1728 return -ENOMEM; 1729 1730 folio_get(new); 1731 folio_copy(new, old); 1732 flush_dcache_folio(new); 1733 1734 __folio_set_locked(new); 1735 __folio_set_swapbacked(new); 1736 folio_mark_uptodate(new); 1737 folio_set_swap_entry(new, entry); 1738 folio_set_swapcache(new); 1739 1740 /* 1741 * Our caller will very soon move newpage out of swapcache, but it's 1742 * a nice clean interface for us to replace oldpage by newpage there. 1743 */ 1744 xa_lock_irq(&swap_mapping->i_pages); 1745 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1746 if (!error) { 1747 mem_cgroup_migrate(old, new); 1748 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1749 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1750 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1751 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1752 } 1753 xa_unlock_irq(&swap_mapping->i_pages); 1754 1755 if (unlikely(error)) { 1756 /* 1757 * Is this possible? I think not, now that our callers check 1758 * both PageSwapCache and page_private after getting page lock; 1759 * but be defensive. Reverse old to newpage for clear and free. 1760 */ 1761 old = new; 1762 } else { 1763 folio_add_lru(new); 1764 *foliop = new; 1765 } 1766 1767 folio_clear_swapcache(old); 1768 old->private = NULL; 1769 1770 folio_unlock(old); 1771 folio_put_refs(old, 2); 1772 return error; 1773 } 1774 1775 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1776 struct folio *folio, swp_entry_t swap) 1777 { 1778 struct address_space *mapping = inode->i_mapping; 1779 swp_entry_t swapin_error; 1780 void *old; 1781 1782 swapin_error = make_swapin_error_entry(); 1783 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1784 swp_to_radix_entry(swap), 1785 swp_to_radix_entry(swapin_error), 0); 1786 if (old != swp_to_radix_entry(swap)) 1787 return; 1788 1789 folio_wait_writeback(folio); 1790 delete_from_swap_cache(folio); 1791 /* 1792 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 1793 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 1794 * in shmem_evict_inode(). 1795 */ 1796 shmem_recalc_inode(inode, -1, -1); 1797 swap_free(swap); 1798 } 1799 1800 /* 1801 * Swap in the folio pointed to by *foliop. 1802 * Caller has to make sure that *foliop contains a valid swapped folio. 1803 * Returns 0 and the folio in foliop if success. On failure, returns the 1804 * error code and NULL in *foliop. 1805 */ 1806 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1807 struct folio **foliop, enum sgp_type sgp, 1808 gfp_t gfp, struct vm_area_struct *vma, 1809 vm_fault_t *fault_type) 1810 { 1811 struct address_space *mapping = inode->i_mapping; 1812 struct shmem_inode_info *info = SHMEM_I(inode); 1813 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1814 struct swap_info_struct *si; 1815 struct folio *folio = NULL; 1816 swp_entry_t swap; 1817 int error; 1818 1819 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1820 swap = radix_to_swp_entry(*foliop); 1821 *foliop = NULL; 1822 1823 if (is_swapin_error_entry(swap)) 1824 return -EIO; 1825 1826 si = get_swap_device(swap); 1827 if (!si) { 1828 if (!shmem_confirm_swap(mapping, index, swap)) 1829 return -EEXIST; 1830 else 1831 return -EINVAL; 1832 } 1833 1834 /* Look it up and read it in.. */ 1835 folio = swap_cache_get_folio(swap, NULL, 0); 1836 if (!folio) { 1837 /* Or update major stats only when swapin succeeds?? */ 1838 if (fault_type) { 1839 *fault_type |= VM_FAULT_MAJOR; 1840 count_vm_event(PGMAJFAULT); 1841 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1842 } 1843 /* Here we actually start the io */ 1844 folio = shmem_swapin(swap, gfp, info, index); 1845 if (!folio) { 1846 error = -ENOMEM; 1847 goto failed; 1848 } 1849 } 1850 1851 /* We have to do this with folio locked to prevent races */ 1852 folio_lock(folio); 1853 if (!folio_test_swapcache(folio) || 1854 folio_swap_entry(folio).val != swap.val || 1855 !shmem_confirm_swap(mapping, index, swap)) { 1856 error = -EEXIST; 1857 goto unlock; 1858 } 1859 if (!folio_test_uptodate(folio)) { 1860 error = -EIO; 1861 goto failed; 1862 } 1863 folio_wait_writeback(folio); 1864 1865 /* 1866 * Some architectures may have to restore extra metadata to the 1867 * folio after reading from swap. 1868 */ 1869 arch_swap_restore(swap, folio); 1870 1871 if (shmem_should_replace_folio(folio, gfp)) { 1872 error = shmem_replace_folio(&folio, gfp, info, index); 1873 if (error) 1874 goto failed; 1875 } 1876 1877 error = shmem_add_to_page_cache(folio, mapping, index, 1878 swp_to_radix_entry(swap), gfp, 1879 charge_mm); 1880 if (error) 1881 goto failed; 1882 1883 shmem_recalc_inode(inode, 0, -1); 1884 1885 if (sgp == SGP_WRITE) 1886 folio_mark_accessed(folio); 1887 1888 delete_from_swap_cache(folio); 1889 folio_mark_dirty(folio); 1890 swap_free(swap); 1891 put_swap_device(si); 1892 1893 *foliop = folio; 1894 return 0; 1895 failed: 1896 if (!shmem_confirm_swap(mapping, index, swap)) 1897 error = -EEXIST; 1898 if (error == -EIO) 1899 shmem_set_folio_swapin_error(inode, index, folio, swap); 1900 unlock: 1901 if (folio) { 1902 folio_unlock(folio); 1903 folio_put(folio); 1904 } 1905 put_swap_device(si); 1906 1907 return error; 1908 } 1909 1910 /* 1911 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 1912 * 1913 * If we allocate a new one we do not mark it dirty. That's up to the 1914 * vm. If we swap it in we mark it dirty since we also free the swap 1915 * entry since a page cannot live in both the swap and page cache. 1916 * 1917 * vma, vmf, and fault_type are only supplied by shmem_fault: 1918 * otherwise they are NULL. 1919 */ 1920 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 1921 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 1922 struct vm_area_struct *vma, struct vm_fault *vmf, 1923 vm_fault_t *fault_type) 1924 { 1925 struct address_space *mapping = inode->i_mapping; 1926 struct shmem_inode_info *info = SHMEM_I(inode); 1927 struct shmem_sb_info *sbinfo; 1928 struct mm_struct *charge_mm; 1929 struct folio *folio; 1930 pgoff_t hindex; 1931 gfp_t huge_gfp; 1932 int error; 1933 int once = 0; 1934 int alloced = 0; 1935 1936 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1937 return -EFBIG; 1938 repeat: 1939 if (sgp <= SGP_CACHE && 1940 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1941 return -EINVAL; 1942 } 1943 1944 sbinfo = SHMEM_SB(inode->i_sb); 1945 charge_mm = vma ? vma->vm_mm : NULL; 1946 1947 folio = filemap_get_entry(mapping, index); 1948 if (folio && vma && userfaultfd_minor(vma)) { 1949 if (!xa_is_value(folio)) 1950 folio_put(folio); 1951 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1952 return 0; 1953 } 1954 1955 if (xa_is_value(folio)) { 1956 error = shmem_swapin_folio(inode, index, &folio, 1957 sgp, gfp, vma, fault_type); 1958 if (error == -EEXIST) 1959 goto repeat; 1960 1961 *foliop = folio; 1962 return error; 1963 } 1964 1965 if (folio) { 1966 folio_lock(folio); 1967 1968 /* Has the folio been truncated or swapped out? */ 1969 if (unlikely(folio->mapping != mapping)) { 1970 folio_unlock(folio); 1971 folio_put(folio); 1972 goto repeat; 1973 } 1974 if (sgp == SGP_WRITE) 1975 folio_mark_accessed(folio); 1976 if (folio_test_uptodate(folio)) 1977 goto out; 1978 /* fallocated folio */ 1979 if (sgp != SGP_READ) 1980 goto clear; 1981 folio_unlock(folio); 1982 folio_put(folio); 1983 } 1984 1985 /* 1986 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 1987 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 1988 */ 1989 *foliop = NULL; 1990 if (sgp == SGP_READ) 1991 return 0; 1992 if (sgp == SGP_NOALLOC) 1993 return -ENOENT; 1994 1995 /* 1996 * Fast cache lookup and swap lookup did not find it: allocate. 1997 */ 1998 1999 if (vma && userfaultfd_missing(vma)) { 2000 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2001 return 0; 2002 } 2003 2004 if (!shmem_is_huge(inode, index, false, 2005 vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0)) 2006 goto alloc_nohuge; 2007 2008 huge_gfp = vma_thp_gfp_mask(vma); 2009 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2010 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true); 2011 if (IS_ERR(folio)) { 2012 alloc_nohuge: 2013 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false); 2014 } 2015 if (IS_ERR(folio)) { 2016 int retry = 5; 2017 2018 error = PTR_ERR(folio); 2019 folio = NULL; 2020 if (error != -ENOSPC) 2021 goto unlock; 2022 /* 2023 * Try to reclaim some space by splitting a large folio 2024 * beyond i_size on the filesystem. 2025 */ 2026 while (retry--) { 2027 int ret; 2028 2029 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 2030 if (ret == SHRINK_STOP) 2031 break; 2032 if (ret) 2033 goto alloc_nohuge; 2034 } 2035 goto unlock; 2036 } 2037 2038 hindex = round_down(index, folio_nr_pages(folio)); 2039 2040 if (sgp == SGP_WRITE) 2041 __folio_set_referenced(folio); 2042 2043 error = shmem_add_to_page_cache(folio, mapping, hindex, 2044 NULL, gfp & GFP_RECLAIM_MASK, 2045 charge_mm); 2046 if (error) 2047 goto unacct; 2048 2049 folio_add_lru(folio); 2050 shmem_recalc_inode(inode, folio_nr_pages(folio), 0); 2051 alloced = true; 2052 2053 if (folio_test_pmd_mappable(folio) && 2054 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2055 folio_next_index(folio) - 1) { 2056 /* 2057 * Part of the large folio is beyond i_size: subject 2058 * to shrink under memory pressure. 2059 */ 2060 spin_lock(&sbinfo->shrinklist_lock); 2061 /* 2062 * _careful to defend against unlocked access to 2063 * ->shrink_list in shmem_unused_huge_shrink() 2064 */ 2065 if (list_empty_careful(&info->shrinklist)) { 2066 list_add_tail(&info->shrinklist, 2067 &sbinfo->shrinklist); 2068 sbinfo->shrinklist_len++; 2069 } 2070 spin_unlock(&sbinfo->shrinklist_lock); 2071 } 2072 2073 /* 2074 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2075 */ 2076 if (sgp == SGP_FALLOC) 2077 sgp = SGP_WRITE; 2078 clear: 2079 /* 2080 * Let SGP_WRITE caller clear ends if write does not fill folio; 2081 * but SGP_FALLOC on a folio fallocated earlier must initialize 2082 * it now, lest undo on failure cancel our earlier guarantee. 2083 */ 2084 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2085 long i, n = folio_nr_pages(folio); 2086 2087 for (i = 0; i < n; i++) 2088 clear_highpage(folio_page(folio, i)); 2089 flush_dcache_folio(folio); 2090 folio_mark_uptodate(folio); 2091 } 2092 2093 /* Perhaps the file has been truncated since we checked */ 2094 if (sgp <= SGP_CACHE && 2095 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2096 if (alloced) { 2097 folio_clear_dirty(folio); 2098 filemap_remove_folio(folio); 2099 shmem_recalc_inode(inode, 0, 0); 2100 } 2101 error = -EINVAL; 2102 goto unlock; 2103 } 2104 out: 2105 *foliop = folio; 2106 return 0; 2107 2108 /* 2109 * Error recovery. 2110 */ 2111 unacct: 2112 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio)); 2113 2114 if (folio_test_large(folio)) { 2115 folio_unlock(folio); 2116 folio_put(folio); 2117 goto alloc_nohuge; 2118 } 2119 unlock: 2120 if (folio) { 2121 folio_unlock(folio); 2122 folio_put(folio); 2123 } 2124 if (error == -ENOSPC && !once++) { 2125 shmem_recalc_inode(inode, 0, 0); 2126 goto repeat; 2127 } 2128 if (error == -EEXIST) 2129 goto repeat; 2130 return error; 2131 } 2132 2133 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2134 enum sgp_type sgp) 2135 { 2136 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2137 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 2138 } 2139 2140 /* 2141 * This is like autoremove_wake_function, but it removes the wait queue 2142 * entry unconditionally - even if something else had already woken the 2143 * target. 2144 */ 2145 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2146 { 2147 int ret = default_wake_function(wait, mode, sync, key); 2148 list_del_init(&wait->entry); 2149 return ret; 2150 } 2151 2152 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2153 { 2154 struct vm_area_struct *vma = vmf->vma; 2155 struct inode *inode = file_inode(vma->vm_file); 2156 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2157 struct folio *folio = NULL; 2158 int err; 2159 vm_fault_t ret = VM_FAULT_LOCKED; 2160 2161 /* 2162 * Trinity finds that probing a hole which tmpfs is punching can 2163 * prevent the hole-punch from ever completing: which in turn 2164 * locks writers out with its hold on i_rwsem. So refrain from 2165 * faulting pages into the hole while it's being punched. Although 2166 * shmem_undo_range() does remove the additions, it may be unable to 2167 * keep up, as each new page needs its own unmap_mapping_range() call, 2168 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2169 * 2170 * It does not matter if we sometimes reach this check just before the 2171 * hole-punch begins, so that one fault then races with the punch: 2172 * we just need to make racing faults a rare case. 2173 * 2174 * The implementation below would be much simpler if we just used a 2175 * standard mutex or completion: but we cannot take i_rwsem in fault, 2176 * and bloating every shmem inode for this unlikely case would be sad. 2177 */ 2178 if (unlikely(inode->i_private)) { 2179 struct shmem_falloc *shmem_falloc; 2180 2181 spin_lock(&inode->i_lock); 2182 shmem_falloc = inode->i_private; 2183 if (shmem_falloc && 2184 shmem_falloc->waitq && 2185 vmf->pgoff >= shmem_falloc->start && 2186 vmf->pgoff < shmem_falloc->next) { 2187 struct file *fpin; 2188 wait_queue_head_t *shmem_falloc_waitq; 2189 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2190 2191 ret = VM_FAULT_NOPAGE; 2192 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2193 if (fpin) 2194 ret = VM_FAULT_RETRY; 2195 2196 shmem_falloc_waitq = shmem_falloc->waitq; 2197 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2198 TASK_UNINTERRUPTIBLE); 2199 spin_unlock(&inode->i_lock); 2200 schedule(); 2201 2202 /* 2203 * shmem_falloc_waitq points into the shmem_fallocate() 2204 * stack of the hole-punching task: shmem_falloc_waitq 2205 * is usually invalid by the time we reach here, but 2206 * finish_wait() does not dereference it in that case; 2207 * though i_lock needed lest racing with wake_up_all(). 2208 */ 2209 spin_lock(&inode->i_lock); 2210 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2211 spin_unlock(&inode->i_lock); 2212 2213 if (fpin) 2214 fput(fpin); 2215 return ret; 2216 } 2217 spin_unlock(&inode->i_lock); 2218 } 2219 2220 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2221 gfp, vma, vmf, &ret); 2222 if (err) 2223 return vmf_error(err); 2224 if (folio) 2225 vmf->page = folio_file_page(folio, vmf->pgoff); 2226 return ret; 2227 } 2228 2229 unsigned long shmem_get_unmapped_area(struct file *file, 2230 unsigned long uaddr, unsigned long len, 2231 unsigned long pgoff, unsigned long flags) 2232 { 2233 unsigned long (*get_area)(struct file *, 2234 unsigned long, unsigned long, unsigned long, unsigned long); 2235 unsigned long addr; 2236 unsigned long offset; 2237 unsigned long inflated_len; 2238 unsigned long inflated_addr; 2239 unsigned long inflated_offset; 2240 2241 if (len > TASK_SIZE) 2242 return -ENOMEM; 2243 2244 get_area = current->mm->get_unmapped_area; 2245 addr = get_area(file, uaddr, len, pgoff, flags); 2246 2247 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2248 return addr; 2249 if (IS_ERR_VALUE(addr)) 2250 return addr; 2251 if (addr & ~PAGE_MASK) 2252 return addr; 2253 if (addr > TASK_SIZE - len) 2254 return addr; 2255 2256 if (shmem_huge == SHMEM_HUGE_DENY) 2257 return addr; 2258 if (len < HPAGE_PMD_SIZE) 2259 return addr; 2260 if (flags & MAP_FIXED) 2261 return addr; 2262 /* 2263 * Our priority is to support MAP_SHARED mapped hugely; 2264 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2265 * But if caller specified an address hint and we allocated area there 2266 * successfully, respect that as before. 2267 */ 2268 if (uaddr == addr) 2269 return addr; 2270 2271 if (shmem_huge != SHMEM_HUGE_FORCE) { 2272 struct super_block *sb; 2273 2274 if (file) { 2275 VM_BUG_ON(file->f_op != &shmem_file_operations); 2276 sb = file_inode(file)->i_sb; 2277 } else { 2278 /* 2279 * Called directly from mm/mmap.c, or drivers/char/mem.c 2280 * for "/dev/zero", to create a shared anonymous object. 2281 */ 2282 if (IS_ERR(shm_mnt)) 2283 return addr; 2284 sb = shm_mnt->mnt_sb; 2285 } 2286 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2287 return addr; 2288 } 2289 2290 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2291 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2292 return addr; 2293 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2294 return addr; 2295 2296 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2297 if (inflated_len > TASK_SIZE) 2298 return addr; 2299 if (inflated_len < len) 2300 return addr; 2301 2302 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2303 if (IS_ERR_VALUE(inflated_addr)) 2304 return addr; 2305 if (inflated_addr & ~PAGE_MASK) 2306 return addr; 2307 2308 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2309 inflated_addr += offset - inflated_offset; 2310 if (inflated_offset > offset) 2311 inflated_addr += HPAGE_PMD_SIZE; 2312 2313 if (inflated_addr > TASK_SIZE - len) 2314 return addr; 2315 return inflated_addr; 2316 } 2317 2318 #ifdef CONFIG_NUMA 2319 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2320 { 2321 struct inode *inode = file_inode(vma->vm_file); 2322 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2323 } 2324 2325 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2326 unsigned long addr) 2327 { 2328 struct inode *inode = file_inode(vma->vm_file); 2329 pgoff_t index; 2330 2331 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2332 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2333 } 2334 #endif 2335 2336 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2337 { 2338 struct inode *inode = file_inode(file); 2339 struct shmem_inode_info *info = SHMEM_I(inode); 2340 int retval = -ENOMEM; 2341 2342 /* 2343 * What serializes the accesses to info->flags? 2344 * ipc_lock_object() when called from shmctl_do_lock(), 2345 * no serialization needed when called from shm_destroy(). 2346 */ 2347 if (lock && !(info->flags & VM_LOCKED)) { 2348 if (!user_shm_lock(inode->i_size, ucounts)) 2349 goto out_nomem; 2350 info->flags |= VM_LOCKED; 2351 mapping_set_unevictable(file->f_mapping); 2352 } 2353 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2354 user_shm_unlock(inode->i_size, ucounts); 2355 info->flags &= ~VM_LOCKED; 2356 mapping_clear_unevictable(file->f_mapping); 2357 } 2358 retval = 0; 2359 2360 out_nomem: 2361 return retval; 2362 } 2363 2364 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2365 { 2366 struct inode *inode = file_inode(file); 2367 struct shmem_inode_info *info = SHMEM_I(inode); 2368 int ret; 2369 2370 ret = seal_check_future_write(info->seals, vma); 2371 if (ret) 2372 return ret; 2373 2374 /* arm64 - allow memory tagging on RAM-based files */ 2375 vm_flags_set(vma, VM_MTE_ALLOWED); 2376 2377 file_accessed(file); 2378 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2379 if (inode->i_nlink) 2380 vma->vm_ops = &shmem_vm_ops; 2381 else 2382 vma->vm_ops = &shmem_anon_vm_ops; 2383 return 0; 2384 } 2385 2386 #ifdef CONFIG_TMPFS_XATTR 2387 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2388 2389 /* 2390 * chattr's fsflags are unrelated to extended attributes, 2391 * but tmpfs has chosen to enable them under the same config option. 2392 */ 2393 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2394 { 2395 unsigned int i_flags = 0; 2396 2397 if (fsflags & FS_NOATIME_FL) 2398 i_flags |= S_NOATIME; 2399 if (fsflags & FS_APPEND_FL) 2400 i_flags |= S_APPEND; 2401 if (fsflags & FS_IMMUTABLE_FL) 2402 i_flags |= S_IMMUTABLE; 2403 /* 2404 * But FS_NODUMP_FL does not require any action in i_flags. 2405 */ 2406 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2407 } 2408 #else 2409 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2410 { 2411 } 2412 #define shmem_initxattrs NULL 2413 #endif 2414 2415 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 2416 { 2417 return &SHMEM_I(inode)->dir_offsets; 2418 } 2419 2420 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 2421 struct super_block *sb, 2422 struct inode *dir, umode_t mode, 2423 dev_t dev, unsigned long flags) 2424 { 2425 struct inode *inode; 2426 struct shmem_inode_info *info; 2427 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2428 ino_t ino; 2429 int err; 2430 2431 err = shmem_reserve_inode(sb, &ino); 2432 if (err) 2433 return ERR_PTR(err); 2434 2435 2436 inode = new_inode(sb); 2437 2438 if (!inode) { 2439 shmem_free_inode(sb); 2440 return ERR_PTR(-ENOSPC); 2441 } 2442 2443 inode->i_ino = ino; 2444 inode_init_owner(idmap, inode, dir, mode); 2445 inode->i_blocks = 0; 2446 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2447 inode->i_generation = get_random_u32(); 2448 info = SHMEM_I(inode); 2449 memset(info, 0, (char *)inode - (char *)info); 2450 spin_lock_init(&info->lock); 2451 atomic_set(&info->stop_eviction, 0); 2452 info->seals = F_SEAL_SEAL; 2453 info->flags = flags & VM_NORESERVE; 2454 info->i_crtime = inode->i_mtime; 2455 info->fsflags = (dir == NULL) ? 0 : 2456 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2457 if (info->fsflags) 2458 shmem_set_inode_flags(inode, info->fsflags); 2459 INIT_LIST_HEAD(&info->shrinklist); 2460 INIT_LIST_HEAD(&info->swaplist); 2461 INIT_LIST_HEAD(&info->swaplist); 2462 if (sbinfo->noswap) 2463 mapping_set_unevictable(inode->i_mapping); 2464 simple_xattrs_init(&info->xattrs); 2465 cache_no_acl(inode); 2466 mapping_set_large_folios(inode->i_mapping); 2467 2468 switch (mode & S_IFMT) { 2469 default: 2470 inode->i_op = &shmem_special_inode_operations; 2471 init_special_inode(inode, mode, dev); 2472 break; 2473 case S_IFREG: 2474 inode->i_mapping->a_ops = &shmem_aops; 2475 inode->i_op = &shmem_inode_operations; 2476 inode->i_fop = &shmem_file_operations; 2477 mpol_shared_policy_init(&info->policy, 2478 shmem_get_sbmpol(sbinfo)); 2479 break; 2480 case S_IFDIR: 2481 inc_nlink(inode); 2482 /* Some things misbehave if size == 0 on a directory */ 2483 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2484 inode->i_op = &shmem_dir_inode_operations; 2485 inode->i_fop = &simple_offset_dir_operations; 2486 simple_offset_init(shmem_get_offset_ctx(inode)); 2487 break; 2488 case S_IFLNK: 2489 /* 2490 * Must not load anything in the rbtree, 2491 * mpol_free_shared_policy will not be called. 2492 */ 2493 mpol_shared_policy_init(&info->policy, NULL); 2494 break; 2495 } 2496 2497 lockdep_annotate_inode_mutex_key(inode); 2498 return inode; 2499 } 2500 2501 #ifdef CONFIG_TMPFS_QUOTA 2502 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2503 struct super_block *sb, struct inode *dir, 2504 umode_t mode, dev_t dev, unsigned long flags) 2505 { 2506 int err; 2507 struct inode *inode; 2508 2509 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2510 if (IS_ERR(inode)) 2511 return inode; 2512 2513 err = dquot_initialize(inode); 2514 if (err) 2515 goto errout; 2516 2517 err = dquot_alloc_inode(inode); 2518 if (err) { 2519 dquot_drop(inode); 2520 goto errout; 2521 } 2522 return inode; 2523 2524 errout: 2525 inode->i_flags |= S_NOQUOTA; 2526 iput(inode); 2527 return ERR_PTR(err); 2528 } 2529 #else 2530 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2531 struct super_block *sb, struct inode *dir, 2532 umode_t mode, dev_t dev, unsigned long flags) 2533 { 2534 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2535 } 2536 #endif /* CONFIG_TMPFS_QUOTA */ 2537 2538 #ifdef CONFIG_USERFAULTFD 2539 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 2540 struct vm_area_struct *dst_vma, 2541 unsigned long dst_addr, 2542 unsigned long src_addr, 2543 uffd_flags_t flags, 2544 struct folio **foliop) 2545 { 2546 struct inode *inode = file_inode(dst_vma->vm_file); 2547 struct shmem_inode_info *info = SHMEM_I(inode); 2548 struct address_space *mapping = inode->i_mapping; 2549 gfp_t gfp = mapping_gfp_mask(mapping); 2550 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2551 void *page_kaddr; 2552 struct folio *folio; 2553 int ret; 2554 pgoff_t max_off; 2555 2556 if (shmem_inode_acct_block(inode, 1)) { 2557 /* 2558 * We may have got a page, returned -ENOENT triggering a retry, 2559 * and now we find ourselves with -ENOMEM. Release the page, to 2560 * avoid a BUG_ON in our caller. 2561 */ 2562 if (unlikely(*foliop)) { 2563 folio_put(*foliop); 2564 *foliop = NULL; 2565 } 2566 return -ENOMEM; 2567 } 2568 2569 if (!*foliop) { 2570 ret = -ENOMEM; 2571 folio = shmem_alloc_folio(gfp, info, pgoff); 2572 if (!folio) 2573 goto out_unacct_blocks; 2574 2575 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 2576 page_kaddr = kmap_local_folio(folio, 0); 2577 /* 2578 * The read mmap_lock is held here. Despite the 2579 * mmap_lock being read recursive a deadlock is still 2580 * possible if a writer has taken a lock. For example: 2581 * 2582 * process A thread 1 takes read lock on own mmap_lock 2583 * process A thread 2 calls mmap, blocks taking write lock 2584 * process B thread 1 takes page fault, read lock on own mmap lock 2585 * process B thread 2 calls mmap, blocks taking write lock 2586 * process A thread 1 blocks taking read lock on process B 2587 * process B thread 1 blocks taking read lock on process A 2588 * 2589 * Disable page faults to prevent potential deadlock 2590 * and retry the copy outside the mmap_lock. 2591 */ 2592 pagefault_disable(); 2593 ret = copy_from_user(page_kaddr, 2594 (const void __user *)src_addr, 2595 PAGE_SIZE); 2596 pagefault_enable(); 2597 kunmap_local(page_kaddr); 2598 2599 /* fallback to copy_from_user outside mmap_lock */ 2600 if (unlikely(ret)) { 2601 *foliop = folio; 2602 ret = -ENOENT; 2603 /* don't free the page */ 2604 goto out_unacct_blocks; 2605 } 2606 2607 flush_dcache_folio(folio); 2608 } else { /* ZEROPAGE */ 2609 clear_user_highpage(&folio->page, dst_addr); 2610 } 2611 } else { 2612 folio = *foliop; 2613 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2614 *foliop = NULL; 2615 } 2616 2617 VM_BUG_ON(folio_test_locked(folio)); 2618 VM_BUG_ON(folio_test_swapbacked(folio)); 2619 __folio_set_locked(folio); 2620 __folio_set_swapbacked(folio); 2621 __folio_mark_uptodate(folio); 2622 2623 ret = -EFAULT; 2624 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2625 if (unlikely(pgoff >= max_off)) 2626 goto out_release; 2627 2628 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, 2629 gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm); 2630 if (ret) 2631 goto out_release; 2632 2633 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 2634 &folio->page, true, flags); 2635 if (ret) 2636 goto out_delete_from_cache; 2637 2638 shmem_recalc_inode(inode, 1, 0); 2639 folio_unlock(folio); 2640 return 0; 2641 out_delete_from_cache: 2642 filemap_remove_folio(folio); 2643 out_release: 2644 folio_unlock(folio); 2645 folio_put(folio); 2646 out_unacct_blocks: 2647 shmem_inode_unacct_blocks(inode, 1); 2648 return ret; 2649 } 2650 #endif /* CONFIG_USERFAULTFD */ 2651 2652 #ifdef CONFIG_TMPFS 2653 static const struct inode_operations shmem_symlink_inode_operations; 2654 static const struct inode_operations shmem_short_symlink_operations; 2655 2656 static int 2657 shmem_write_begin(struct file *file, struct address_space *mapping, 2658 loff_t pos, unsigned len, 2659 struct page **pagep, void **fsdata) 2660 { 2661 struct inode *inode = mapping->host; 2662 struct shmem_inode_info *info = SHMEM_I(inode); 2663 pgoff_t index = pos >> PAGE_SHIFT; 2664 struct folio *folio; 2665 int ret = 0; 2666 2667 /* i_rwsem is held by caller */ 2668 if (unlikely(info->seals & (F_SEAL_GROW | 2669 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2670 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2671 return -EPERM; 2672 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2673 return -EPERM; 2674 } 2675 2676 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 2677 2678 if (ret) 2679 return ret; 2680 2681 *pagep = folio_file_page(folio, index); 2682 if (PageHWPoison(*pagep)) { 2683 folio_unlock(folio); 2684 folio_put(folio); 2685 *pagep = NULL; 2686 return -EIO; 2687 } 2688 2689 return 0; 2690 } 2691 2692 static int 2693 shmem_write_end(struct file *file, struct address_space *mapping, 2694 loff_t pos, unsigned len, unsigned copied, 2695 struct page *page, void *fsdata) 2696 { 2697 struct folio *folio = page_folio(page); 2698 struct inode *inode = mapping->host; 2699 2700 if (pos + copied > inode->i_size) 2701 i_size_write(inode, pos + copied); 2702 2703 if (!folio_test_uptodate(folio)) { 2704 if (copied < folio_size(folio)) { 2705 size_t from = offset_in_folio(folio, pos); 2706 folio_zero_segments(folio, 0, from, 2707 from + copied, folio_size(folio)); 2708 } 2709 folio_mark_uptodate(folio); 2710 } 2711 folio_mark_dirty(folio); 2712 folio_unlock(folio); 2713 folio_put(folio); 2714 2715 return copied; 2716 } 2717 2718 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2719 { 2720 struct file *file = iocb->ki_filp; 2721 struct inode *inode = file_inode(file); 2722 struct address_space *mapping = inode->i_mapping; 2723 pgoff_t index; 2724 unsigned long offset; 2725 int error = 0; 2726 ssize_t retval = 0; 2727 loff_t *ppos = &iocb->ki_pos; 2728 2729 index = *ppos >> PAGE_SHIFT; 2730 offset = *ppos & ~PAGE_MASK; 2731 2732 for (;;) { 2733 struct folio *folio = NULL; 2734 struct page *page = NULL; 2735 pgoff_t end_index; 2736 unsigned long nr, ret; 2737 loff_t i_size = i_size_read(inode); 2738 2739 end_index = i_size >> PAGE_SHIFT; 2740 if (index > end_index) 2741 break; 2742 if (index == end_index) { 2743 nr = i_size & ~PAGE_MASK; 2744 if (nr <= offset) 2745 break; 2746 } 2747 2748 error = shmem_get_folio(inode, index, &folio, SGP_READ); 2749 if (error) { 2750 if (error == -EINVAL) 2751 error = 0; 2752 break; 2753 } 2754 if (folio) { 2755 folio_unlock(folio); 2756 2757 page = folio_file_page(folio, index); 2758 if (PageHWPoison(page)) { 2759 folio_put(folio); 2760 error = -EIO; 2761 break; 2762 } 2763 } 2764 2765 /* 2766 * We must evaluate after, since reads (unlike writes) 2767 * are called without i_rwsem protection against truncate 2768 */ 2769 nr = PAGE_SIZE; 2770 i_size = i_size_read(inode); 2771 end_index = i_size >> PAGE_SHIFT; 2772 if (index == end_index) { 2773 nr = i_size & ~PAGE_MASK; 2774 if (nr <= offset) { 2775 if (folio) 2776 folio_put(folio); 2777 break; 2778 } 2779 } 2780 nr -= offset; 2781 2782 if (folio) { 2783 /* 2784 * If users can be writing to this page using arbitrary 2785 * virtual addresses, take care about potential aliasing 2786 * before reading the page on the kernel side. 2787 */ 2788 if (mapping_writably_mapped(mapping)) 2789 flush_dcache_page(page); 2790 /* 2791 * Mark the page accessed if we read the beginning. 2792 */ 2793 if (!offset) 2794 folio_mark_accessed(folio); 2795 /* 2796 * Ok, we have the page, and it's up-to-date, so 2797 * now we can copy it to user space... 2798 */ 2799 ret = copy_page_to_iter(page, offset, nr, to); 2800 folio_put(folio); 2801 2802 } else if (user_backed_iter(to)) { 2803 /* 2804 * Copy to user tends to be so well optimized, but 2805 * clear_user() not so much, that it is noticeably 2806 * faster to copy the zero page instead of clearing. 2807 */ 2808 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2809 } else { 2810 /* 2811 * But submitting the same page twice in a row to 2812 * splice() - or others? - can result in confusion: 2813 * so don't attempt that optimization on pipes etc. 2814 */ 2815 ret = iov_iter_zero(nr, to); 2816 } 2817 2818 retval += ret; 2819 offset += ret; 2820 index += offset >> PAGE_SHIFT; 2821 offset &= ~PAGE_MASK; 2822 2823 if (!iov_iter_count(to)) 2824 break; 2825 if (ret < nr) { 2826 error = -EFAULT; 2827 break; 2828 } 2829 cond_resched(); 2830 } 2831 2832 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2833 file_accessed(file); 2834 return retval ? retval : error; 2835 } 2836 2837 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 2838 struct pipe_buffer *buf) 2839 { 2840 return true; 2841 } 2842 2843 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 2844 struct pipe_buffer *buf) 2845 { 2846 } 2847 2848 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 2849 struct pipe_buffer *buf) 2850 { 2851 return false; 2852 } 2853 2854 static const struct pipe_buf_operations zero_pipe_buf_ops = { 2855 .release = zero_pipe_buf_release, 2856 .try_steal = zero_pipe_buf_try_steal, 2857 .get = zero_pipe_buf_get, 2858 }; 2859 2860 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 2861 loff_t fpos, size_t size) 2862 { 2863 size_t offset = fpos & ~PAGE_MASK; 2864 2865 size = min_t(size_t, size, PAGE_SIZE - offset); 2866 2867 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2868 struct pipe_buffer *buf = pipe_head_buf(pipe); 2869 2870 *buf = (struct pipe_buffer) { 2871 .ops = &zero_pipe_buf_ops, 2872 .page = ZERO_PAGE(0), 2873 .offset = offset, 2874 .len = size, 2875 }; 2876 pipe->head++; 2877 } 2878 2879 return size; 2880 } 2881 2882 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 2883 struct pipe_inode_info *pipe, 2884 size_t len, unsigned int flags) 2885 { 2886 struct inode *inode = file_inode(in); 2887 struct address_space *mapping = inode->i_mapping; 2888 struct folio *folio = NULL; 2889 size_t total_spliced = 0, used, npages, n, part; 2890 loff_t isize; 2891 int error = 0; 2892 2893 /* Work out how much data we can actually add into the pipe */ 2894 used = pipe_occupancy(pipe->head, pipe->tail); 2895 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2896 len = min_t(size_t, len, npages * PAGE_SIZE); 2897 2898 do { 2899 if (*ppos >= i_size_read(inode)) 2900 break; 2901 2902 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio, 2903 SGP_READ); 2904 if (error) { 2905 if (error == -EINVAL) 2906 error = 0; 2907 break; 2908 } 2909 if (folio) { 2910 folio_unlock(folio); 2911 2912 if (folio_test_hwpoison(folio) || 2913 (folio_test_large(folio) && 2914 folio_test_has_hwpoisoned(folio))) { 2915 error = -EIO; 2916 break; 2917 } 2918 } 2919 2920 /* 2921 * i_size must be checked after we know the pages are Uptodate. 2922 * 2923 * Checking i_size after the check allows us to calculate 2924 * the correct value for "nr", which means the zero-filled 2925 * part of the page is not copied back to userspace (unless 2926 * another truncate extends the file - this is desired though). 2927 */ 2928 isize = i_size_read(inode); 2929 if (unlikely(*ppos >= isize)) 2930 break; 2931 part = min_t(loff_t, isize - *ppos, len); 2932 2933 if (folio) { 2934 /* 2935 * If users can be writing to this page using arbitrary 2936 * virtual addresses, take care about potential aliasing 2937 * before reading the page on the kernel side. 2938 */ 2939 if (mapping_writably_mapped(mapping)) 2940 flush_dcache_folio(folio); 2941 folio_mark_accessed(folio); 2942 /* 2943 * Ok, we have the page, and it's up-to-date, so we can 2944 * now splice it into the pipe. 2945 */ 2946 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 2947 folio_put(folio); 2948 folio = NULL; 2949 } else { 2950 n = splice_zeropage_into_pipe(pipe, *ppos, part); 2951 } 2952 2953 if (!n) 2954 break; 2955 len -= n; 2956 total_spliced += n; 2957 *ppos += n; 2958 in->f_ra.prev_pos = *ppos; 2959 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 2960 break; 2961 2962 cond_resched(); 2963 } while (len); 2964 2965 if (folio) 2966 folio_put(folio); 2967 2968 file_accessed(in); 2969 return total_spliced ? total_spliced : error; 2970 } 2971 2972 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2973 { 2974 struct address_space *mapping = file->f_mapping; 2975 struct inode *inode = mapping->host; 2976 2977 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2978 return generic_file_llseek_size(file, offset, whence, 2979 MAX_LFS_FILESIZE, i_size_read(inode)); 2980 if (offset < 0) 2981 return -ENXIO; 2982 2983 inode_lock(inode); 2984 /* We're holding i_rwsem so we can access i_size directly */ 2985 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2986 if (offset >= 0) 2987 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2988 inode_unlock(inode); 2989 return offset; 2990 } 2991 2992 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2993 loff_t len) 2994 { 2995 struct inode *inode = file_inode(file); 2996 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2997 struct shmem_inode_info *info = SHMEM_I(inode); 2998 struct shmem_falloc shmem_falloc; 2999 pgoff_t start, index, end, undo_fallocend; 3000 int error; 3001 3002 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3003 return -EOPNOTSUPP; 3004 3005 inode_lock(inode); 3006 3007 if (mode & FALLOC_FL_PUNCH_HOLE) { 3008 struct address_space *mapping = file->f_mapping; 3009 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3010 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3011 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3012 3013 /* protected by i_rwsem */ 3014 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3015 error = -EPERM; 3016 goto out; 3017 } 3018 3019 shmem_falloc.waitq = &shmem_falloc_waitq; 3020 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3021 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3022 spin_lock(&inode->i_lock); 3023 inode->i_private = &shmem_falloc; 3024 spin_unlock(&inode->i_lock); 3025 3026 if ((u64)unmap_end > (u64)unmap_start) 3027 unmap_mapping_range(mapping, unmap_start, 3028 1 + unmap_end - unmap_start, 0); 3029 shmem_truncate_range(inode, offset, offset + len - 1); 3030 /* No need to unmap again: hole-punching leaves COWed pages */ 3031 3032 spin_lock(&inode->i_lock); 3033 inode->i_private = NULL; 3034 wake_up_all(&shmem_falloc_waitq); 3035 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3036 spin_unlock(&inode->i_lock); 3037 error = 0; 3038 goto out; 3039 } 3040 3041 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3042 error = inode_newsize_ok(inode, offset + len); 3043 if (error) 3044 goto out; 3045 3046 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3047 error = -EPERM; 3048 goto out; 3049 } 3050 3051 start = offset >> PAGE_SHIFT; 3052 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3053 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3054 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3055 error = -ENOSPC; 3056 goto out; 3057 } 3058 3059 shmem_falloc.waitq = NULL; 3060 shmem_falloc.start = start; 3061 shmem_falloc.next = start; 3062 shmem_falloc.nr_falloced = 0; 3063 shmem_falloc.nr_unswapped = 0; 3064 spin_lock(&inode->i_lock); 3065 inode->i_private = &shmem_falloc; 3066 spin_unlock(&inode->i_lock); 3067 3068 /* 3069 * info->fallocend is only relevant when huge pages might be 3070 * involved: to prevent split_huge_page() freeing fallocated 3071 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3072 */ 3073 undo_fallocend = info->fallocend; 3074 if (info->fallocend < end) 3075 info->fallocend = end; 3076 3077 for (index = start; index < end; ) { 3078 struct folio *folio; 3079 3080 /* 3081 * Good, the fallocate(2) manpage permits EINTR: we may have 3082 * been interrupted because we are using up too much memory. 3083 */ 3084 if (signal_pending(current)) 3085 error = -EINTR; 3086 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3087 error = -ENOMEM; 3088 else 3089 error = shmem_get_folio(inode, index, &folio, 3090 SGP_FALLOC); 3091 if (error) { 3092 info->fallocend = undo_fallocend; 3093 /* Remove the !uptodate folios we added */ 3094 if (index > start) { 3095 shmem_undo_range(inode, 3096 (loff_t)start << PAGE_SHIFT, 3097 ((loff_t)index << PAGE_SHIFT) - 1, true); 3098 } 3099 goto undone; 3100 } 3101 3102 /* 3103 * Here is a more important optimization than it appears: 3104 * a second SGP_FALLOC on the same large folio will clear it, 3105 * making it uptodate and un-undoable if we fail later. 3106 */ 3107 index = folio_next_index(folio); 3108 /* Beware 32-bit wraparound */ 3109 if (!index) 3110 index--; 3111 3112 /* 3113 * Inform shmem_writepage() how far we have reached. 3114 * No need for lock or barrier: we have the page lock. 3115 */ 3116 if (!folio_test_uptodate(folio)) 3117 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3118 shmem_falloc.next = index; 3119 3120 /* 3121 * If !uptodate, leave it that way so that freeable folios 3122 * can be recognized if we need to rollback on error later. 3123 * But mark it dirty so that memory pressure will swap rather 3124 * than free the folios we are allocating (and SGP_CACHE folios 3125 * might still be clean: we now need to mark those dirty too). 3126 */ 3127 folio_mark_dirty(folio); 3128 folio_unlock(folio); 3129 folio_put(folio); 3130 cond_resched(); 3131 } 3132 3133 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3134 i_size_write(inode, offset + len); 3135 undone: 3136 spin_lock(&inode->i_lock); 3137 inode->i_private = NULL; 3138 spin_unlock(&inode->i_lock); 3139 out: 3140 if (!error) 3141 file_modified(file); 3142 inode_unlock(inode); 3143 return error; 3144 } 3145 3146 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3147 { 3148 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3149 3150 buf->f_type = TMPFS_MAGIC; 3151 buf->f_bsize = PAGE_SIZE; 3152 buf->f_namelen = NAME_MAX; 3153 if (sbinfo->max_blocks) { 3154 buf->f_blocks = sbinfo->max_blocks; 3155 buf->f_bavail = 3156 buf->f_bfree = sbinfo->max_blocks - 3157 percpu_counter_sum(&sbinfo->used_blocks); 3158 } 3159 if (sbinfo->max_inodes) { 3160 buf->f_files = sbinfo->max_inodes; 3161 buf->f_ffree = sbinfo->free_inodes; 3162 } 3163 /* else leave those fields 0 like simple_statfs */ 3164 3165 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3166 3167 return 0; 3168 } 3169 3170 /* 3171 * File creation. Allocate an inode, and we're done.. 3172 */ 3173 static int 3174 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3175 struct dentry *dentry, umode_t mode, dev_t dev) 3176 { 3177 struct inode *inode; 3178 int error; 3179 3180 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3181 3182 if (IS_ERR(inode)) 3183 return PTR_ERR(inode); 3184 3185 error = simple_acl_create(dir, inode); 3186 if (error) 3187 goto out_iput; 3188 error = security_inode_init_security(inode, dir, 3189 &dentry->d_name, 3190 shmem_initxattrs, NULL); 3191 if (error && error != -EOPNOTSUPP) 3192 goto out_iput; 3193 3194 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3195 if (error) 3196 goto out_iput; 3197 3198 dir->i_size += BOGO_DIRENT_SIZE; 3199 dir->i_ctime = dir->i_mtime = current_time(dir); 3200 inode_inc_iversion(dir); 3201 d_instantiate(dentry, inode); 3202 dget(dentry); /* Extra count - pin the dentry in core */ 3203 return error; 3204 3205 out_iput: 3206 iput(inode); 3207 return error; 3208 } 3209 3210 static int 3211 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3212 struct file *file, umode_t mode) 3213 { 3214 struct inode *inode; 3215 int error; 3216 3217 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3218 3219 if (IS_ERR(inode)) { 3220 error = PTR_ERR(inode); 3221 goto err_out; 3222 } 3223 3224 error = security_inode_init_security(inode, dir, 3225 NULL, 3226 shmem_initxattrs, NULL); 3227 if (error && error != -EOPNOTSUPP) 3228 goto out_iput; 3229 error = simple_acl_create(dir, inode); 3230 if (error) 3231 goto out_iput; 3232 d_tmpfile(file, inode); 3233 3234 err_out: 3235 return finish_open_simple(file, error); 3236 out_iput: 3237 iput(inode); 3238 return error; 3239 } 3240 3241 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3242 struct dentry *dentry, umode_t mode) 3243 { 3244 int error; 3245 3246 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3247 if (error) 3248 return error; 3249 inc_nlink(dir); 3250 return 0; 3251 } 3252 3253 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3254 struct dentry *dentry, umode_t mode, bool excl) 3255 { 3256 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3257 } 3258 3259 /* 3260 * Link a file.. 3261 */ 3262 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 3263 { 3264 struct inode *inode = d_inode(old_dentry); 3265 int ret = 0; 3266 3267 /* 3268 * No ordinary (disk based) filesystem counts links as inodes; 3269 * but each new link needs a new dentry, pinning lowmem, and 3270 * tmpfs dentries cannot be pruned until they are unlinked. 3271 * But if an O_TMPFILE file is linked into the tmpfs, the 3272 * first link must skip that, to get the accounting right. 3273 */ 3274 if (inode->i_nlink) { 3275 ret = shmem_reserve_inode(inode->i_sb, NULL); 3276 if (ret) 3277 goto out; 3278 } 3279 3280 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3281 if (ret) { 3282 if (inode->i_nlink) 3283 shmem_free_inode(inode->i_sb); 3284 goto out; 3285 } 3286 3287 dir->i_size += BOGO_DIRENT_SIZE; 3288 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3289 inode_inc_iversion(dir); 3290 inc_nlink(inode); 3291 ihold(inode); /* New dentry reference */ 3292 dget(dentry); /* Extra pinning count for the created dentry */ 3293 d_instantiate(dentry, inode); 3294 out: 3295 return ret; 3296 } 3297 3298 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3299 { 3300 struct inode *inode = d_inode(dentry); 3301 3302 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3303 shmem_free_inode(inode->i_sb); 3304 3305 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3306 3307 dir->i_size -= BOGO_DIRENT_SIZE; 3308 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3309 inode_inc_iversion(dir); 3310 drop_nlink(inode); 3311 dput(dentry); /* Undo the count from "create" - this does all the work */ 3312 return 0; 3313 } 3314 3315 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3316 { 3317 if (!simple_empty(dentry)) 3318 return -ENOTEMPTY; 3319 3320 drop_nlink(d_inode(dentry)); 3321 drop_nlink(dir); 3322 return shmem_unlink(dir, dentry); 3323 } 3324 3325 static int shmem_whiteout(struct mnt_idmap *idmap, 3326 struct inode *old_dir, struct dentry *old_dentry) 3327 { 3328 struct dentry *whiteout; 3329 int error; 3330 3331 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3332 if (!whiteout) 3333 return -ENOMEM; 3334 3335 error = shmem_mknod(idmap, old_dir, whiteout, 3336 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3337 dput(whiteout); 3338 if (error) 3339 return error; 3340 3341 /* 3342 * Cheat and hash the whiteout while the old dentry is still in 3343 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3344 * 3345 * d_lookup() will consistently find one of them at this point, 3346 * not sure which one, but that isn't even important. 3347 */ 3348 d_rehash(whiteout); 3349 return 0; 3350 } 3351 3352 /* 3353 * The VFS layer already does all the dentry stuff for rename, 3354 * we just have to decrement the usage count for the target if 3355 * it exists so that the VFS layer correctly free's it when it 3356 * gets overwritten. 3357 */ 3358 static int shmem_rename2(struct mnt_idmap *idmap, 3359 struct inode *old_dir, struct dentry *old_dentry, 3360 struct inode *new_dir, struct dentry *new_dentry, 3361 unsigned int flags) 3362 { 3363 struct inode *inode = d_inode(old_dentry); 3364 int they_are_dirs = S_ISDIR(inode->i_mode); 3365 int error; 3366 3367 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3368 return -EINVAL; 3369 3370 if (flags & RENAME_EXCHANGE) 3371 return simple_offset_rename_exchange(old_dir, old_dentry, 3372 new_dir, new_dentry); 3373 3374 if (!simple_empty(new_dentry)) 3375 return -ENOTEMPTY; 3376 3377 if (flags & RENAME_WHITEOUT) { 3378 error = shmem_whiteout(idmap, old_dir, old_dentry); 3379 if (error) 3380 return error; 3381 } 3382 3383 simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry); 3384 error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry); 3385 if (error) 3386 return error; 3387 3388 if (d_really_is_positive(new_dentry)) { 3389 (void) shmem_unlink(new_dir, new_dentry); 3390 if (they_are_dirs) { 3391 drop_nlink(d_inode(new_dentry)); 3392 drop_nlink(old_dir); 3393 } 3394 } else if (they_are_dirs) { 3395 drop_nlink(old_dir); 3396 inc_nlink(new_dir); 3397 } 3398 3399 old_dir->i_size -= BOGO_DIRENT_SIZE; 3400 new_dir->i_size += BOGO_DIRENT_SIZE; 3401 old_dir->i_ctime = old_dir->i_mtime = 3402 new_dir->i_ctime = new_dir->i_mtime = 3403 inode->i_ctime = current_time(old_dir); 3404 inode_inc_iversion(old_dir); 3405 inode_inc_iversion(new_dir); 3406 return 0; 3407 } 3408 3409 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3410 struct dentry *dentry, const char *symname) 3411 { 3412 int error; 3413 int len; 3414 struct inode *inode; 3415 struct folio *folio; 3416 3417 len = strlen(symname) + 1; 3418 if (len > PAGE_SIZE) 3419 return -ENAMETOOLONG; 3420 3421 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3422 VM_NORESERVE); 3423 3424 if (IS_ERR(inode)) 3425 return PTR_ERR(inode); 3426 3427 error = security_inode_init_security(inode, dir, &dentry->d_name, 3428 shmem_initxattrs, NULL); 3429 if (error && error != -EOPNOTSUPP) 3430 goto out_iput; 3431 3432 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3433 if (error) 3434 goto out_iput; 3435 3436 inode->i_size = len-1; 3437 if (len <= SHORT_SYMLINK_LEN) { 3438 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3439 if (!inode->i_link) { 3440 error = -ENOMEM; 3441 goto out_remove_offset; 3442 } 3443 inode->i_op = &shmem_short_symlink_operations; 3444 } else { 3445 inode_nohighmem(inode); 3446 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3447 if (error) 3448 goto out_remove_offset; 3449 inode->i_mapping->a_ops = &shmem_aops; 3450 inode->i_op = &shmem_symlink_inode_operations; 3451 memcpy(folio_address(folio), symname, len); 3452 folio_mark_uptodate(folio); 3453 folio_mark_dirty(folio); 3454 folio_unlock(folio); 3455 folio_put(folio); 3456 } 3457 dir->i_size += BOGO_DIRENT_SIZE; 3458 dir->i_ctime = dir->i_mtime = current_time(dir); 3459 inode_inc_iversion(dir); 3460 d_instantiate(dentry, inode); 3461 dget(dentry); 3462 return 0; 3463 3464 out_remove_offset: 3465 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3466 out_iput: 3467 iput(inode); 3468 return error; 3469 } 3470 3471 static void shmem_put_link(void *arg) 3472 { 3473 folio_mark_accessed(arg); 3474 folio_put(arg); 3475 } 3476 3477 static const char *shmem_get_link(struct dentry *dentry, 3478 struct inode *inode, 3479 struct delayed_call *done) 3480 { 3481 struct folio *folio = NULL; 3482 int error; 3483 3484 if (!dentry) { 3485 folio = filemap_get_folio(inode->i_mapping, 0); 3486 if (IS_ERR(folio)) 3487 return ERR_PTR(-ECHILD); 3488 if (PageHWPoison(folio_page(folio, 0)) || 3489 !folio_test_uptodate(folio)) { 3490 folio_put(folio); 3491 return ERR_PTR(-ECHILD); 3492 } 3493 } else { 3494 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3495 if (error) 3496 return ERR_PTR(error); 3497 if (!folio) 3498 return ERR_PTR(-ECHILD); 3499 if (PageHWPoison(folio_page(folio, 0))) { 3500 folio_unlock(folio); 3501 folio_put(folio); 3502 return ERR_PTR(-ECHILD); 3503 } 3504 folio_unlock(folio); 3505 } 3506 set_delayed_call(done, shmem_put_link, folio); 3507 return folio_address(folio); 3508 } 3509 3510 #ifdef CONFIG_TMPFS_XATTR 3511 3512 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3513 { 3514 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3515 3516 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3517 3518 return 0; 3519 } 3520 3521 static int shmem_fileattr_set(struct mnt_idmap *idmap, 3522 struct dentry *dentry, struct fileattr *fa) 3523 { 3524 struct inode *inode = d_inode(dentry); 3525 struct shmem_inode_info *info = SHMEM_I(inode); 3526 3527 if (fileattr_has_fsx(fa)) 3528 return -EOPNOTSUPP; 3529 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3530 return -EOPNOTSUPP; 3531 3532 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3533 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3534 3535 shmem_set_inode_flags(inode, info->fsflags); 3536 inode->i_ctime = current_time(inode); 3537 inode_inc_iversion(inode); 3538 return 0; 3539 } 3540 3541 /* 3542 * Superblocks without xattr inode operations may get some security.* xattr 3543 * support from the LSM "for free". As soon as we have any other xattrs 3544 * like ACLs, we also need to implement the security.* handlers at 3545 * filesystem level, though. 3546 */ 3547 3548 /* 3549 * Callback for security_inode_init_security() for acquiring xattrs. 3550 */ 3551 static int shmem_initxattrs(struct inode *inode, 3552 const struct xattr *xattr_array, 3553 void *fs_info) 3554 { 3555 struct shmem_inode_info *info = SHMEM_I(inode); 3556 const struct xattr *xattr; 3557 struct simple_xattr *new_xattr; 3558 size_t len; 3559 3560 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3561 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3562 if (!new_xattr) 3563 return -ENOMEM; 3564 3565 len = strlen(xattr->name) + 1; 3566 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3567 GFP_KERNEL); 3568 if (!new_xattr->name) { 3569 kvfree(new_xattr); 3570 return -ENOMEM; 3571 } 3572 3573 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3574 XATTR_SECURITY_PREFIX_LEN); 3575 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3576 xattr->name, len); 3577 3578 simple_xattr_add(&info->xattrs, new_xattr); 3579 } 3580 3581 return 0; 3582 } 3583 3584 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3585 struct dentry *unused, struct inode *inode, 3586 const char *name, void *buffer, size_t size) 3587 { 3588 struct shmem_inode_info *info = SHMEM_I(inode); 3589 3590 name = xattr_full_name(handler, name); 3591 return simple_xattr_get(&info->xattrs, name, buffer, size); 3592 } 3593 3594 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3595 struct mnt_idmap *idmap, 3596 struct dentry *unused, struct inode *inode, 3597 const char *name, const void *value, 3598 size_t size, int flags) 3599 { 3600 struct shmem_inode_info *info = SHMEM_I(inode); 3601 struct simple_xattr *old_xattr; 3602 3603 name = xattr_full_name(handler, name); 3604 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 3605 if (!IS_ERR(old_xattr)) { 3606 simple_xattr_free(old_xattr); 3607 old_xattr = NULL; 3608 inode->i_ctime = current_time(inode); 3609 inode_inc_iversion(inode); 3610 } 3611 return PTR_ERR(old_xattr); 3612 } 3613 3614 static const struct xattr_handler shmem_security_xattr_handler = { 3615 .prefix = XATTR_SECURITY_PREFIX, 3616 .get = shmem_xattr_handler_get, 3617 .set = shmem_xattr_handler_set, 3618 }; 3619 3620 static const struct xattr_handler shmem_trusted_xattr_handler = { 3621 .prefix = XATTR_TRUSTED_PREFIX, 3622 .get = shmem_xattr_handler_get, 3623 .set = shmem_xattr_handler_set, 3624 }; 3625 3626 static const struct xattr_handler *shmem_xattr_handlers[] = { 3627 &shmem_security_xattr_handler, 3628 &shmem_trusted_xattr_handler, 3629 NULL 3630 }; 3631 3632 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3633 { 3634 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3635 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3636 } 3637 #endif /* CONFIG_TMPFS_XATTR */ 3638 3639 static const struct inode_operations shmem_short_symlink_operations = { 3640 .getattr = shmem_getattr, 3641 .setattr = shmem_setattr, 3642 .get_link = simple_get_link, 3643 #ifdef CONFIG_TMPFS_XATTR 3644 .listxattr = shmem_listxattr, 3645 #endif 3646 }; 3647 3648 static const struct inode_operations shmem_symlink_inode_operations = { 3649 .getattr = shmem_getattr, 3650 .setattr = shmem_setattr, 3651 .get_link = shmem_get_link, 3652 #ifdef CONFIG_TMPFS_XATTR 3653 .listxattr = shmem_listxattr, 3654 #endif 3655 }; 3656 3657 static struct dentry *shmem_get_parent(struct dentry *child) 3658 { 3659 return ERR_PTR(-ESTALE); 3660 } 3661 3662 static int shmem_match(struct inode *ino, void *vfh) 3663 { 3664 __u32 *fh = vfh; 3665 __u64 inum = fh[2]; 3666 inum = (inum << 32) | fh[1]; 3667 return ino->i_ino == inum && fh[0] == ino->i_generation; 3668 } 3669 3670 /* Find any alias of inode, but prefer a hashed alias */ 3671 static struct dentry *shmem_find_alias(struct inode *inode) 3672 { 3673 struct dentry *alias = d_find_alias(inode); 3674 3675 return alias ?: d_find_any_alias(inode); 3676 } 3677 3678 3679 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3680 struct fid *fid, int fh_len, int fh_type) 3681 { 3682 struct inode *inode; 3683 struct dentry *dentry = NULL; 3684 u64 inum; 3685 3686 if (fh_len < 3) 3687 return NULL; 3688 3689 inum = fid->raw[2]; 3690 inum = (inum << 32) | fid->raw[1]; 3691 3692 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3693 shmem_match, fid->raw); 3694 if (inode) { 3695 dentry = shmem_find_alias(inode); 3696 iput(inode); 3697 } 3698 3699 return dentry; 3700 } 3701 3702 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3703 struct inode *parent) 3704 { 3705 if (*len < 3) { 3706 *len = 3; 3707 return FILEID_INVALID; 3708 } 3709 3710 if (inode_unhashed(inode)) { 3711 /* Unfortunately insert_inode_hash is not idempotent, 3712 * so as we hash inodes here rather than at creation 3713 * time, we need a lock to ensure we only try 3714 * to do it once 3715 */ 3716 static DEFINE_SPINLOCK(lock); 3717 spin_lock(&lock); 3718 if (inode_unhashed(inode)) 3719 __insert_inode_hash(inode, 3720 inode->i_ino + inode->i_generation); 3721 spin_unlock(&lock); 3722 } 3723 3724 fh[0] = inode->i_generation; 3725 fh[1] = inode->i_ino; 3726 fh[2] = ((__u64)inode->i_ino) >> 32; 3727 3728 *len = 3; 3729 return 1; 3730 } 3731 3732 static const struct export_operations shmem_export_ops = { 3733 .get_parent = shmem_get_parent, 3734 .encode_fh = shmem_encode_fh, 3735 .fh_to_dentry = shmem_fh_to_dentry, 3736 }; 3737 3738 enum shmem_param { 3739 Opt_gid, 3740 Opt_huge, 3741 Opt_mode, 3742 Opt_mpol, 3743 Opt_nr_blocks, 3744 Opt_nr_inodes, 3745 Opt_size, 3746 Opt_uid, 3747 Opt_inode32, 3748 Opt_inode64, 3749 Opt_noswap, 3750 Opt_quota, 3751 Opt_usrquota, 3752 Opt_grpquota, 3753 Opt_usrquota_block_hardlimit, 3754 Opt_usrquota_inode_hardlimit, 3755 Opt_grpquota_block_hardlimit, 3756 Opt_grpquota_inode_hardlimit, 3757 }; 3758 3759 static const struct constant_table shmem_param_enums_huge[] = { 3760 {"never", SHMEM_HUGE_NEVER }, 3761 {"always", SHMEM_HUGE_ALWAYS }, 3762 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3763 {"advise", SHMEM_HUGE_ADVISE }, 3764 {} 3765 }; 3766 3767 const struct fs_parameter_spec shmem_fs_parameters[] = { 3768 fsparam_u32 ("gid", Opt_gid), 3769 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3770 fsparam_u32oct("mode", Opt_mode), 3771 fsparam_string("mpol", Opt_mpol), 3772 fsparam_string("nr_blocks", Opt_nr_blocks), 3773 fsparam_string("nr_inodes", Opt_nr_inodes), 3774 fsparam_string("size", Opt_size), 3775 fsparam_u32 ("uid", Opt_uid), 3776 fsparam_flag ("inode32", Opt_inode32), 3777 fsparam_flag ("inode64", Opt_inode64), 3778 fsparam_flag ("noswap", Opt_noswap), 3779 #ifdef CONFIG_TMPFS_QUOTA 3780 fsparam_flag ("quota", Opt_quota), 3781 fsparam_flag ("usrquota", Opt_usrquota), 3782 fsparam_flag ("grpquota", Opt_grpquota), 3783 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 3784 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 3785 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 3786 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 3787 #endif 3788 {} 3789 }; 3790 3791 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3792 { 3793 struct shmem_options *ctx = fc->fs_private; 3794 struct fs_parse_result result; 3795 unsigned long long size; 3796 char *rest; 3797 int opt; 3798 kuid_t kuid; 3799 kgid_t kgid; 3800 3801 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3802 if (opt < 0) 3803 return opt; 3804 3805 switch (opt) { 3806 case Opt_size: 3807 size = memparse(param->string, &rest); 3808 if (*rest == '%') { 3809 size <<= PAGE_SHIFT; 3810 size *= totalram_pages(); 3811 do_div(size, 100); 3812 rest++; 3813 } 3814 if (*rest) 3815 goto bad_value; 3816 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3817 ctx->seen |= SHMEM_SEEN_BLOCKS; 3818 break; 3819 case Opt_nr_blocks: 3820 ctx->blocks = memparse(param->string, &rest); 3821 if (*rest || ctx->blocks > S64_MAX) 3822 goto bad_value; 3823 ctx->seen |= SHMEM_SEEN_BLOCKS; 3824 break; 3825 case Opt_nr_inodes: 3826 ctx->inodes = memparse(param->string, &rest); 3827 if (*rest) 3828 goto bad_value; 3829 ctx->seen |= SHMEM_SEEN_INODES; 3830 break; 3831 case Opt_mode: 3832 ctx->mode = result.uint_32 & 07777; 3833 break; 3834 case Opt_uid: 3835 kuid = make_kuid(current_user_ns(), result.uint_32); 3836 if (!uid_valid(kuid)) 3837 goto bad_value; 3838 3839 /* 3840 * The requested uid must be representable in the 3841 * filesystem's idmapping. 3842 */ 3843 if (!kuid_has_mapping(fc->user_ns, kuid)) 3844 goto bad_value; 3845 3846 ctx->uid = kuid; 3847 break; 3848 case Opt_gid: 3849 kgid = make_kgid(current_user_ns(), result.uint_32); 3850 if (!gid_valid(kgid)) 3851 goto bad_value; 3852 3853 /* 3854 * The requested gid must be representable in the 3855 * filesystem's idmapping. 3856 */ 3857 if (!kgid_has_mapping(fc->user_ns, kgid)) 3858 goto bad_value; 3859 3860 ctx->gid = kgid; 3861 break; 3862 case Opt_huge: 3863 ctx->huge = result.uint_32; 3864 if (ctx->huge != SHMEM_HUGE_NEVER && 3865 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3866 has_transparent_hugepage())) 3867 goto unsupported_parameter; 3868 ctx->seen |= SHMEM_SEEN_HUGE; 3869 break; 3870 case Opt_mpol: 3871 if (IS_ENABLED(CONFIG_NUMA)) { 3872 mpol_put(ctx->mpol); 3873 ctx->mpol = NULL; 3874 if (mpol_parse_str(param->string, &ctx->mpol)) 3875 goto bad_value; 3876 break; 3877 } 3878 goto unsupported_parameter; 3879 case Opt_inode32: 3880 ctx->full_inums = false; 3881 ctx->seen |= SHMEM_SEEN_INUMS; 3882 break; 3883 case Opt_inode64: 3884 if (sizeof(ino_t) < 8) { 3885 return invalfc(fc, 3886 "Cannot use inode64 with <64bit inums in kernel\n"); 3887 } 3888 ctx->full_inums = true; 3889 ctx->seen |= SHMEM_SEEN_INUMS; 3890 break; 3891 case Opt_noswap: 3892 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 3893 return invalfc(fc, 3894 "Turning off swap in unprivileged tmpfs mounts unsupported"); 3895 } 3896 ctx->noswap = true; 3897 ctx->seen |= SHMEM_SEEN_NOSWAP; 3898 break; 3899 case Opt_quota: 3900 if (fc->user_ns != &init_user_ns) 3901 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 3902 ctx->seen |= SHMEM_SEEN_QUOTA; 3903 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 3904 break; 3905 case Opt_usrquota: 3906 if (fc->user_ns != &init_user_ns) 3907 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 3908 ctx->seen |= SHMEM_SEEN_QUOTA; 3909 ctx->quota_types |= QTYPE_MASK_USR; 3910 break; 3911 case Opt_grpquota: 3912 if (fc->user_ns != &init_user_ns) 3913 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 3914 ctx->seen |= SHMEM_SEEN_QUOTA; 3915 ctx->quota_types |= QTYPE_MASK_GRP; 3916 break; 3917 case Opt_usrquota_block_hardlimit: 3918 size = memparse(param->string, &rest); 3919 if (*rest || !size) 3920 goto bad_value; 3921 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 3922 return invalfc(fc, 3923 "User quota block hardlimit too large."); 3924 ctx->qlimits.usrquota_bhardlimit = size; 3925 break; 3926 case Opt_grpquota_block_hardlimit: 3927 size = memparse(param->string, &rest); 3928 if (*rest || !size) 3929 goto bad_value; 3930 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 3931 return invalfc(fc, 3932 "Group quota block hardlimit too large."); 3933 ctx->qlimits.grpquota_bhardlimit = size; 3934 break; 3935 case Opt_usrquota_inode_hardlimit: 3936 size = memparse(param->string, &rest); 3937 if (*rest || !size) 3938 goto bad_value; 3939 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 3940 return invalfc(fc, 3941 "User quota inode hardlimit too large."); 3942 ctx->qlimits.usrquota_ihardlimit = size; 3943 break; 3944 case Opt_grpquota_inode_hardlimit: 3945 size = memparse(param->string, &rest); 3946 if (*rest || !size) 3947 goto bad_value; 3948 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 3949 return invalfc(fc, 3950 "Group quota inode hardlimit too large."); 3951 ctx->qlimits.grpquota_ihardlimit = size; 3952 break; 3953 } 3954 return 0; 3955 3956 unsupported_parameter: 3957 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3958 bad_value: 3959 return invalfc(fc, "Bad value for '%s'", param->key); 3960 } 3961 3962 static int shmem_parse_options(struct fs_context *fc, void *data) 3963 { 3964 char *options = data; 3965 3966 if (options) { 3967 int err = security_sb_eat_lsm_opts(options, &fc->security); 3968 if (err) 3969 return err; 3970 } 3971 3972 while (options != NULL) { 3973 char *this_char = options; 3974 for (;;) { 3975 /* 3976 * NUL-terminate this option: unfortunately, 3977 * mount options form a comma-separated list, 3978 * but mpol's nodelist may also contain commas. 3979 */ 3980 options = strchr(options, ','); 3981 if (options == NULL) 3982 break; 3983 options++; 3984 if (!isdigit(*options)) { 3985 options[-1] = '\0'; 3986 break; 3987 } 3988 } 3989 if (*this_char) { 3990 char *value = strchr(this_char, '='); 3991 size_t len = 0; 3992 int err; 3993 3994 if (value) { 3995 *value++ = '\0'; 3996 len = strlen(value); 3997 } 3998 err = vfs_parse_fs_string(fc, this_char, value, len); 3999 if (err < 0) 4000 return err; 4001 } 4002 } 4003 return 0; 4004 } 4005 4006 /* 4007 * Reconfigure a shmem filesystem. 4008 * 4009 * Note that we disallow change from limited->unlimited blocks/inodes while any 4010 * are in use; but we must separately disallow unlimited->limited, because in 4011 * that case we have no record of how much is already in use. 4012 */ 4013 static int shmem_reconfigure(struct fs_context *fc) 4014 { 4015 struct shmem_options *ctx = fc->fs_private; 4016 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4017 unsigned long inodes; 4018 struct mempolicy *mpol = NULL; 4019 const char *err; 4020 4021 raw_spin_lock(&sbinfo->stat_lock); 4022 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 4023 4024 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4025 if (!sbinfo->max_blocks) { 4026 err = "Cannot retroactively limit size"; 4027 goto out; 4028 } 4029 if (percpu_counter_compare(&sbinfo->used_blocks, 4030 ctx->blocks) > 0) { 4031 err = "Too small a size for current use"; 4032 goto out; 4033 } 4034 } 4035 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4036 if (!sbinfo->max_inodes) { 4037 err = "Cannot retroactively limit inodes"; 4038 goto out; 4039 } 4040 if (ctx->inodes < inodes) { 4041 err = "Too few inodes for current use"; 4042 goto out; 4043 } 4044 } 4045 4046 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4047 sbinfo->next_ino > UINT_MAX) { 4048 err = "Current inum too high to switch to 32-bit inums"; 4049 goto out; 4050 } 4051 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4052 err = "Cannot disable swap on remount"; 4053 goto out; 4054 } 4055 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4056 err = "Cannot enable swap on remount if it was disabled on first mount"; 4057 goto out; 4058 } 4059 4060 if (ctx->seen & SHMEM_SEEN_QUOTA && 4061 !sb_any_quota_loaded(fc->root->d_sb)) { 4062 err = "Cannot enable quota on remount"; 4063 goto out; 4064 } 4065 4066 #ifdef CONFIG_TMPFS_QUOTA 4067 #define CHANGED_LIMIT(name) \ 4068 (ctx->qlimits.name## hardlimit && \ 4069 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4070 4071 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4072 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4073 err = "Cannot change global quota limit on remount"; 4074 goto out; 4075 } 4076 #endif /* CONFIG_TMPFS_QUOTA */ 4077 4078 if (ctx->seen & SHMEM_SEEN_HUGE) 4079 sbinfo->huge = ctx->huge; 4080 if (ctx->seen & SHMEM_SEEN_INUMS) 4081 sbinfo->full_inums = ctx->full_inums; 4082 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4083 sbinfo->max_blocks = ctx->blocks; 4084 if (ctx->seen & SHMEM_SEEN_INODES) { 4085 sbinfo->max_inodes = ctx->inodes; 4086 sbinfo->free_inodes = ctx->inodes - inodes; 4087 } 4088 4089 /* 4090 * Preserve previous mempolicy unless mpol remount option was specified. 4091 */ 4092 if (ctx->mpol) { 4093 mpol = sbinfo->mpol; 4094 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4095 ctx->mpol = NULL; 4096 } 4097 4098 if (ctx->noswap) 4099 sbinfo->noswap = true; 4100 4101 raw_spin_unlock(&sbinfo->stat_lock); 4102 mpol_put(mpol); 4103 return 0; 4104 out: 4105 raw_spin_unlock(&sbinfo->stat_lock); 4106 return invalfc(fc, "%s", err); 4107 } 4108 4109 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4110 { 4111 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4112 struct mempolicy *mpol; 4113 4114 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4115 seq_printf(seq, ",size=%luk", 4116 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 4117 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4118 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4119 if (sbinfo->mode != (0777 | S_ISVTX)) 4120 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4121 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4122 seq_printf(seq, ",uid=%u", 4123 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4124 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4125 seq_printf(seq, ",gid=%u", 4126 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4127 4128 /* 4129 * Showing inode{64,32} might be useful even if it's the system default, 4130 * since then people don't have to resort to checking both here and 4131 * /proc/config.gz to confirm 64-bit inums were successfully applied 4132 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4133 * 4134 * We hide it when inode64 isn't the default and we are using 32-bit 4135 * inodes, since that probably just means the feature isn't even under 4136 * consideration. 4137 * 4138 * As such: 4139 * 4140 * +-----------------+-----------------+ 4141 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4142 * +------------------+-----------------+-----------------+ 4143 * | full_inums=true | show | show | 4144 * | full_inums=false | show | hide | 4145 * +------------------+-----------------+-----------------+ 4146 * 4147 */ 4148 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4149 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4150 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4151 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4152 if (sbinfo->huge) 4153 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4154 #endif 4155 mpol = shmem_get_sbmpol(sbinfo); 4156 shmem_show_mpol(seq, mpol); 4157 mpol_put(mpol); 4158 if (sbinfo->noswap) 4159 seq_printf(seq, ",noswap"); 4160 return 0; 4161 } 4162 4163 #endif /* CONFIG_TMPFS */ 4164 4165 static void shmem_put_super(struct super_block *sb) 4166 { 4167 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4168 4169 #ifdef CONFIG_TMPFS_QUOTA 4170 shmem_disable_quotas(sb); 4171 #endif 4172 free_percpu(sbinfo->ino_batch); 4173 percpu_counter_destroy(&sbinfo->used_blocks); 4174 mpol_put(sbinfo->mpol); 4175 kfree(sbinfo); 4176 sb->s_fs_info = NULL; 4177 } 4178 4179 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4180 { 4181 struct shmem_options *ctx = fc->fs_private; 4182 struct inode *inode; 4183 struct shmem_sb_info *sbinfo; 4184 int error = -ENOMEM; 4185 4186 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4187 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4188 L1_CACHE_BYTES), GFP_KERNEL); 4189 if (!sbinfo) 4190 return error; 4191 4192 sb->s_fs_info = sbinfo; 4193 4194 #ifdef CONFIG_TMPFS 4195 /* 4196 * Per default we only allow half of the physical ram per 4197 * tmpfs instance, limiting inodes to one per page of lowmem; 4198 * but the internal instance is left unlimited. 4199 */ 4200 if (!(sb->s_flags & SB_KERNMOUNT)) { 4201 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 4202 ctx->blocks = shmem_default_max_blocks(); 4203 if (!(ctx->seen & SHMEM_SEEN_INODES)) 4204 ctx->inodes = shmem_default_max_inodes(); 4205 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 4206 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 4207 sbinfo->noswap = ctx->noswap; 4208 } else { 4209 sb->s_flags |= SB_NOUSER; 4210 } 4211 sb->s_export_op = &shmem_export_ops; 4212 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 4213 #else 4214 sb->s_flags |= SB_NOUSER; 4215 #endif 4216 sbinfo->max_blocks = ctx->blocks; 4217 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 4218 if (sb->s_flags & SB_KERNMOUNT) { 4219 sbinfo->ino_batch = alloc_percpu(ino_t); 4220 if (!sbinfo->ino_batch) 4221 goto failed; 4222 } 4223 sbinfo->uid = ctx->uid; 4224 sbinfo->gid = ctx->gid; 4225 sbinfo->full_inums = ctx->full_inums; 4226 sbinfo->mode = ctx->mode; 4227 sbinfo->huge = ctx->huge; 4228 sbinfo->mpol = ctx->mpol; 4229 ctx->mpol = NULL; 4230 4231 raw_spin_lock_init(&sbinfo->stat_lock); 4232 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 4233 goto failed; 4234 spin_lock_init(&sbinfo->shrinklist_lock); 4235 INIT_LIST_HEAD(&sbinfo->shrinklist); 4236 4237 sb->s_maxbytes = MAX_LFS_FILESIZE; 4238 sb->s_blocksize = PAGE_SIZE; 4239 sb->s_blocksize_bits = PAGE_SHIFT; 4240 sb->s_magic = TMPFS_MAGIC; 4241 sb->s_op = &shmem_ops; 4242 sb->s_time_gran = 1; 4243 #ifdef CONFIG_TMPFS_XATTR 4244 sb->s_xattr = shmem_xattr_handlers; 4245 #endif 4246 #ifdef CONFIG_TMPFS_POSIX_ACL 4247 sb->s_flags |= SB_POSIXACL; 4248 #endif 4249 uuid_gen(&sb->s_uuid); 4250 4251 #ifdef CONFIG_TMPFS_QUOTA 4252 if (ctx->seen & SHMEM_SEEN_QUOTA) { 4253 sb->dq_op = &shmem_quota_operations; 4254 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4255 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4256 4257 /* Copy the default limits from ctx into sbinfo */ 4258 memcpy(&sbinfo->qlimits, &ctx->qlimits, 4259 sizeof(struct shmem_quota_limits)); 4260 4261 if (shmem_enable_quotas(sb, ctx->quota_types)) 4262 goto failed; 4263 } 4264 #endif /* CONFIG_TMPFS_QUOTA */ 4265 4266 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0, 4267 VM_NORESERVE); 4268 if (IS_ERR(inode)) { 4269 error = PTR_ERR(inode); 4270 goto failed; 4271 } 4272 inode->i_uid = sbinfo->uid; 4273 inode->i_gid = sbinfo->gid; 4274 sb->s_root = d_make_root(inode); 4275 if (!sb->s_root) 4276 goto failed; 4277 return 0; 4278 4279 failed: 4280 shmem_put_super(sb); 4281 return error; 4282 } 4283 4284 static int shmem_get_tree(struct fs_context *fc) 4285 { 4286 return get_tree_nodev(fc, shmem_fill_super); 4287 } 4288 4289 static void shmem_free_fc(struct fs_context *fc) 4290 { 4291 struct shmem_options *ctx = fc->fs_private; 4292 4293 if (ctx) { 4294 mpol_put(ctx->mpol); 4295 kfree(ctx); 4296 } 4297 } 4298 4299 static const struct fs_context_operations shmem_fs_context_ops = { 4300 .free = shmem_free_fc, 4301 .get_tree = shmem_get_tree, 4302 #ifdef CONFIG_TMPFS 4303 .parse_monolithic = shmem_parse_options, 4304 .parse_param = shmem_parse_one, 4305 .reconfigure = shmem_reconfigure, 4306 #endif 4307 }; 4308 4309 static struct kmem_cache *shmem_inode_cachep; 4310 4311 static struct inode *shmem_alloc_inode(struct super_block *sb) 4312 { 4313 struct shmem_inode_info *info; 4314 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 4315 if (!info) 4316 return NULL; 4317 return &info->vfs_inode; 4318 } 4319 4320 static void shmem_free_in_core_inode(struct inode *inode) 4321 { 4322 if (S_ISLNK(inode->i_mode)) 4323 kfree(inode->i_link); 4324 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 4325 } 4326 4327 static void shmem_destroy_inode(struct inode *inode) 4328 { 4329 if (S_ISREG(inode->i_mode)) 4330 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 4331 if (S_ISDIR(inode->i_mode)) 4332 simple_offset_destroy(shmem_get_offset_ctx(inode)); 4333 } 4334 4335 static void shmem_init_inode(void *foo) 4336 { 4337 struct shmem_inode_info *info = foo; 4338 inode_init_once(&info->vfs_inode); 4339 } 4340 4341 static void shmem_init_inodecache(void) 4342 { 4343 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 4344 sizeof(struct shmem_inode_info), 4345 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 4346 } 4347 4348 static void shmem_destroy_inodecache(void) 4349 { 4350 kmem_cache_destroy(shmem_inode_cachep); 4351 } 4352 4353 /* Keep the page in page cache instead of truncating it */ 4354 static int shmem_error_remove_page(struct address_space *mapping, 4355 struct page *page) 4356 { 4357 return 0; 4358 } 4359 4360 const struct address_space_operations shmem_aops = { 4361 .writepage = shmem_writepage, 4362 .dirty_folio = noop_dirty_folio, 4363 #ifdef CONFIG_TMPFS 4364 .write_begin = shmem_write_begin, 4365 .write_end = shmem_write_end, 4366 #endif 4367 #ifdef CONFIG_MIGRATION 4368 .migrate_folio = migrate_folio, 4369 #endif 4370 .error_remove_page = shmem_error_remove_page, 4371 }; 4372 EXPORT_SYMBOL(shmem_aops); 4373 4374 static const struct file_operations shmem_file_operations = { 4375 .mmap = shmem_mmap, 4376 .open = generic_file_open, 4377 .get_unmapped_area = shmem_get_unmapped_area, 4378 #ifdef CONFIG_TMPFS 4379 .llseek = shmem_file_llseek, 4380 .read_iter = shmem_file_read_iter, 4381 .write_iter = generic_file_write_iter, 4382 .fsync = noop_fsync, 4383 .splice_read = shmem_file_splice_read, 4384 .splice_write = iter_file_splice_write, 4385 .fallocate = shmem_fallocate, 4386 #endif 4387 }; 4388 4389 static const struct inode_operations shmem_inode_operations = { 4390 .getattr = shmem_getattr, 4391 .setattr = shmem_setattr, 4392 #ifdef CONFIG_TMPFS_XATTR 4393 .listxattr = shmem_listxattr, 4394 .set_acl = simple_set_acl, 4395 .fileattr_get = shmem_fileattr_get, 4396 .fileattr_set = shmem_fileattr_set, 4397 #endif 4398 }; 4399 4400 static const struct inode_operations shmem_dir_inode_operations = { 4401 #ifdef CONFIG_TMPFS 4402 .getattr = shmem_getattr, 4403 .create = shmem_create, 4404 .lookup = simple_lookup, 4405 .link = shmem_link, 4406 .unlink = shmem_unlink, 4407 .symlink = shmem_symlink, 4408 .mkdir = shmem_mkdir, 4409 .rmdir = shmem_rmdir, 4410 .mknod = shmem_mknod, 4411 .rename = shmem_rename2, 4412 .tmpfile = shmem_tmpfile, 4413 .get_offset_ctx = shmem_get_offset_ctx, 4414 #endif 4415 #ifdef CONFIG_TMPFS_XATTR 4416 .listxattr = shmem_listxattr, 4417 .fileattr_get = shmem_fileattr_get, 4418 .fileattr_set = shmem_fileattr_set, 4419 #endif 4420 #ifdef CONFIG_TMPFS_POSIX_ACL 4421 .setattr = shmem_setattr, 4422 .set_acl = simple_set_acl, 4423 #endif 4424 }; 4425 4426 static const struct inode_operations shmem_special_inode_operations = { 4427 .getattr = shmem_getattr, 4428 #ifdef CONFIG_TMPFS_XATTR 4429 .listxattr = shmem_listxattr, 4430 #endif 4431 #ifdef CONFIG_TMPFS_POSIX_ACL 4432 .setattr = shmem_setattr, 4433 .set_acl = simple_set_acl, 4434 #endif 4435 }; 4436 4437 static const struct super_operations shmem_ops = { 4438 .alloc_inode = shmem_alloc_inode, 4439 .free_inode = shmem_free_in_core_inode, 4440 .destroy_inode = shmem_destroy_inode, 4441 #ifdef CONFIG_TMPFS 4442 .statfs = shmem_statfs, 4443 .show_options = shmem_show_options, 4444 #endif 4445 #ifdef CONFIG_TMPFS_QUOTA 4446 .get_dquots = shmem_get_dquots, 4447 #endif 4448 .evict_inode = shmem_evict_inode, 4449 .drop_inode = generic_delete_inode, 4450 .put_super = shmem_put_super, 4451 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4452 .nr_cached_objects = shmem_unused_huge_count, 4453 .free_cached_objects = shmem_unused_huge_scan, 4454 #endif 4455 }; 4456 4457 static const struct vm_operations_struct shmem_vm_ops = { 4458 .fault = shmem_fault, 4459 .map_pages = filemap_map_pages, 4460 #ifdef CONFIG_NUMA 4461 .set_policy = shmem_set_policy, 4462 .get_policy = shmem_get_policy, 4463 #endif 4464 }; 4465 4466 static const struct vm_operations_struct shmem_anon_vm_ops = { 4467 .fault = shmem_fault, 4468 .map_pages = filemap_map_pages, 4469 #ifdef CONFIG_NUMA 4470 .set_policy = shmem_set_policy, 4471 .get_policy = shmem_get_policy, 4472 #endif 4473 }; 4474 4475 int shmem_init_fs_context(struct fs_context *fc) 4476 { 4477 struct shmem_options *ctx; 4478 4479 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4480 if (!ctx) 4481 return -ENOMEM; 4482 4483 ctx->mode = 0777 | S_ISVTX; 4484 ctx->uid = current_fsuid(); 4485 ctx->gid = current_fsgid(); 4486 4487 fc->fs_private = ctx; 4488 fc->ops = &shmem_fs_context_ops; 4489 return 0; 4490 } 4491 4492 static struct file_system_type shmem_fs_type = { 4493 .owner = THIS_MODULE, 4494 .name = "tmpfs", 4495 .init_fs_context = shmem_init_fs_context, 4496 #ifdef CONFIG_TMPFS 4497 .parameters = shmem_fs_parameters, 4498 #endif 4499 .kill_sb = kill_litter_super, 4500 #ifdef CONFIG_SHMEM 4501 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP, 4502 #else 4503 .fs_flags = FS_USERNS_MOUNT, 4504 #endif 4505 }; 4506 4507 void __init shmem_init(void) 4508 { 4509 int error; 4510 4511 shmem_init_inodecache(); 4512 4513 #ifdef CONFIG_TMPFS_QUOTA 4514 error = register_quota_format(&shmem_quota_format); 4515 if (error < 0) { 4516 pr_err("Could not register quota format\n"); 4517 goto out3; 4518 } 4519 #endif 4520 4521 error = register_filesystem(&shmem_fs_type); 4522 if (error) { 4523 pr_err("Could not register tmpfs\n"); 4524 goto out2; 4525 } 4526 4527 shm_mnt = kern_mount(&shmem_fs_type); 4528 if (IS_ERR(shm_mnt)) { 4529 error = PTR_ERR(shm_mnt); 4530 pr_err("Could not kern_mount tmpfs\n"); 4531 goto out1; 4532 } 4533 4534 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4535 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4536 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4537 else 4538 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4539 #endif 4540 return; 4541 4542 out1: 4543 unregister_filesystem(&shmem_fs_type); 4544 out2: 4545 #ifdef CONFIG_TMPFS_QUOTA 4546 unregister_quota_format(&shmem_quota_format); 4547 out3: 4548 #endif 4549 shmem_destroy_inodecache(); 4550 shm_mnt = ERR_PTR(error); 4551 } 4552 4553 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4554 static ssize_t shmem_enabled_show(struct kobject *kobj, 4555 struct kobj_attribute *attr, char *buf) 4556 { 4557 static const int values[] = { 4558 SHMEM_HUGE_ALWAYS, 4559 SHMEM_HUGE_WITHIN_SIZE, 4560 SHMEM_HUGE_ADVISE, 4561 SHMEM_HUGE_NEVER, 4562 SHMEM_HUGE_DENY, 4563 SHMEM_HUGE_FORCE, 4564 }; 4565 int len = 0; 4566 int i; 4567 4568 for (i = 0; i < ARRAY_SIZE(values); i++) { 4569 len += sysfs_emit_at(buf, len, 4570 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4571 i ? " " : "", 4572 shmem_format_huge(values[i])); 4573 } 4574 4575 len += sysfs_emit_at(buf, len, "\n"); 4576 4577 return len; 4578 } 4579 4580 static ssize_t shmem_enabled_store(struct kobject *kobj, 4581 struct kobj_attribute *attr, const char *buf, size_t count) 4582 { 4583 char tmp[16]; 4584 int huge; 4585 4586 if (count + 1 > sizeof(tmp)) 4587 return -EINVAL; 4588 memcpy(tmp, buf, count); 4589 tmp[count] = '\0'; 4590 if (count && tmp[count - 1] == '\n') 4591 tmp[count - 1] = '\0'; 4592 4593 huge = shmem_parse_huge(tmp); 4594 if (huge == -EINVAL) 4595 return -EINVAL; 4596 if (!has_transparent_hugepage() && 4597 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4598 return -EINVAL; 4599 4600 shmem_huge = huge; 4601 if (shmem_huge > SHMEM_HUGE_DENY) 4602 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4603 return count; 4604 } 4605 4606 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4607 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4608 4609 #else /* !CONFIG_SHMEM */ 4610 4611 /* 4612 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4613 * 4614 * This is intended for small system where the benefits of the full 4615 * shmem code (swap-backed and resource-limited) are outweighed by 4616 * their complexity. On systems without swap this code should be 4617 * effectively equivalent, but much lighter weight. 4618 */ 4619 4620 static struct file_system_type shmem_fs_type = { 4621 .name = "tmpfs", 4622 .init_fs_context = ramfs_init_fs_context, 4623 .parameters = ramfs_fs_parameters, 4624 .kill_sb = ramfs_kill_sb, 4625 .fs_flags = FS_USERNS_MOUNT, 4626 }; 4627 4628 void __init shmem_init(void) 4629 { 4630 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4631 4632 shm_mnt = kern_mount(&shmem_fs_type); 4633 BUG_ON(IS_ERR(shm_mnt)); 4634 } 4635 4636 int shmem_unuse(unsigned int type) 4637 { 4638 return 0; 4639 } 4640 4641 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4642 { 4643 return 0; 4644 } 4645 4646 void shmem_unlock_mapping(struct address_space *mapping) 4647 { 4648 } 4649 4650 #ifdef CONFIG_MMU 4651 unsigned long shmem_get_unmapped_area(struct file *file, 4652 unsigned long addr, unsigned long len, 4653 unsigned long pgoff, unsigned long flags) 4654 { 4655 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4656 } 4657 #endif 4658 4659 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4660 { 4661 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4662 } 4663 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4664 4665 #define shmem_vm_ops generic_file_vm_ops 4666 #define shmem_anon_vm_ops generic_file_vm_ops 4667 #define shmem_file_operations ramfs_file_operations 4668 #define shmem_acct_size(flags, size) 0 4669 #define shmem_unacct_size(flags, size) do {} while (0) 4670 4671 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb, struct inode *dir, 4672 umode_t mode, dev_t dev, unsigned long flags) 4673 { 4674 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 4675 return inode ? inode : ERR_PTR(-ENOSPC); 4676 } 4677 4678 #endif /* CONFIG_SHMEM */ 4679 4680 /* common code */ 4681 4682 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4683 unsigned long flags, unsigned int i_flags) 4684 { 4685 struct inode *inode; 4686 struct file *res; 4687 4688 if (IS_ERR(mnt)) 4689 return ERR_CAST(mnt); 4690 4691 if (size < 0 || size > MAX_LFS_FILESIZE) 4692 return ERR_PTR(-EINVAL); 4693 4694 if (shmem_acct_size(flags, size)) 4695 return ERR_PTR(-ENOMEM); 4696 4697 if (is_idmapped_mnt(mnt)) 4698 return ERR_PTR(-EINVAL); 4699 4700 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 4701 S_IFREG | S_IRWXUGO, 0, flags); 4702 4703 if (IS_ERR(inode)) { 4704 shmem_unacct_size(flags, size); 4705 return ERR_CAST(inode); 4706 } 4707 inode->i_flags |= i_flags; 4708 inode->i_size = size; 4709 clear_nlink(inode); /* It is unlinked */ 4710 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4711 if (!IS_ERR(res)) 4712 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4713 &shmem_file_operations); 4714 if (IS_ERR(res)) 4715 iput(inode); 4716 return res; 4717 } 4718 4719 /** 4720 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4721 * kernel internal. There will be NO LSM permission checks against the 4722 * underlying inode. So users of this interface must do LSM checks at a 4723 * higher layer. The users are the big_key and shm implementations. LSM 4724 * checks are provided at the key or shm level rather than the inode. 4725 * @name: name for dentry (to be seen in /proc/<pid>/maps 4726 * @size: size to be set for the file 4727 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4728 */ 4729 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4730 { 4731 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4732 } 4733 4734 /** 4735 * shmem_file_setup - get an unlinked file living in tmpfs 4736 * @name: name for dentry (to be seen in /proc/<pid>/maps 4737 * @size: size to be set for the file 4738 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4739 */ 4740 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4741 { 4742 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4743 } 4744 EXPORT_SYMBOL_GPL(shmem_file_setup); 4745 4746 /** 4747 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4748 * @mnt: the tmpfs mount where the file will be created 4749 * @name: name for dentry (to be seen in /proc/<pid>/maps 4750 * @size: size to be set for the file 4751 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4752 */ 4753 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4754 loff_t size, unsigned long flags) 4755 { 4756 return __shmem_file_setup(mnt, name, size, flags, 0); 4757 } 4758 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4759 4760 /** 4761 * shmem_zero_setup - setup a shared anonymous mapping 4762 * @vma: the vma to be mmapped is prepared by do_mmap 4763 */ 4764 int shmem_zero_setup(struct vm_area_struct *vma) 4765 { 4766 struct file *file; 4767 loff_t size = vma->vm_end - vma->vm_start; 4768 4769 /* 4770 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4771 * between XFS directory reading and selinux: since this file is only 4772 * accessible to the user through its mapping, use S_PRIVATE flag to 4773 * bypass file security, in the same way as shmem_kernel_file_setup(). 4774 */ 4775 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4776 if (IS_ERR(file)) 4777 return PTR_ERR(file); 4778 4779 if (vma->vm_file) 4780 fput(vma->vm_file); 4781 vma->vm_file = file; 4782 vma->vm_ops = &shmem_anon_vm_ops; 4783 4784 return 0; 4785 } 4786 4787 /** 4788 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 4789 * @mapping: the folio's address_space 4790 * @index: the folio index 4791 * @gfp: the page allocator flags to use if allocating 4792 * 4793 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4794 * with any new page allocations done using the specified allocation flags. 4795 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4796 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4797 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4798 * 4799 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4800 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4801 */ 4802 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 4803 pgoff_t index, gfp_t gfp) 4804 { 4805 #ifdef CONFIG_SHMEM 4806 struct inode *inode = mapping->host; 4807 struct folio *folio; 4808 int error; 4809 4810 BUG_ON(!shmem_mapping(mapping)); 4811 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 4812 gfp, NULL, NULL, NULL); 4813 if (error) 4814 return ERR_PTR(error); 4815 4816 folio_unlock(folio); 4817 return folio; 4818 #else 4819 /* 4820 * The tiny !SHMEM case uses ramfs without swap 4821 */ 4822 return mapping_read_folio_gfp(mapping, index, gfp); 4823 #endif 4824 } 4825 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 4826 4827 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4828 pgoff_t index, gfp_t gfp) 4829 { 4830 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 4831 struct page *page; 4832 4833 if (IS_ERR(folio)) 4834 return &folio->page; 4835 4836 page = folio_file_page(folio, index); 4837 if (PageHWPoison(page)) { 4838 folio_put(folio); 4839 return ERR_PTR(-EIO); 4840 } 4841 4842 return page; 4843 } 4844 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4845