xref: /openbmc/linux/mm/shmem.c (revision 5b04c6890f0dc7ea6c85b9adebc883c55c667d97)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * This file is released under the GPL.
18  */
19 
20 /*
21  * This virtual memory filesystem is heavily based on the ramfs. It
22  * extends ramfs by the ability to use swap and honor resource limits
23  * which makes it a completely usable filesystem.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
52 
53 #include <asm/uaccess.h>
54 #include <asm/div64.h>
55 #include <asm/pgtable.h>
56 
57 /* This magic number is used in glibc for posix shared memory */
58 #define TMPFS_MAGIC	0x01021994
59 
60 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
63 
64 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
66 
67 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
68 
69 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70 #define SHMEM_PAGEIN	 VM_READ
71 #define SHMEM_TRUNCATE	 VM_WRITE
72 
73 /* Definition to limit shmem_truncate's steps between cond_rescheds */
74 #define LATENCY_LIMIT	 64
75 
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78 
79 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80 enum sgp_type {
81 	SGP_READ,	/* don't exceed i_size, don't allocate page */
82 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
83 	SGP_WRITE,	/* may exceed i_size, may allocate page */
84 };
85 
86 static int shmem_getpage(struct inode *inode, unsigned long idx,
87 			 struct page **pagep, enum sgp_type sgp, int *type);
88 
89 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
90 {
91 	/*
92 	 * The above definition of ENTRIES_PER_PAGE, and the use of
93 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
94 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
95 	 *
96 	 * Mobility flags are masked out as swap vectors cannot move
97 	 */
98 	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
99 				PAGE_CACHE_SHIFT-PAGE_SHIFT);
100 }
101 
102 static inline void shmem_dir_free(struct page *page)
103 {
104 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
105 }
106 
107 static struct page **shmem_dir_map(struct page *page)
108 {
109 	return (struct page **)kmap_atomic(page, KM_USER0);
110 }
111 
112 static inline void shmem_dir_unmap(struct page **dir)
113 {
114 	kunmap_atomic(dir, KM_USER0);
115 }
116 
117 static swp_entry_t *shmem_swp_map(struct page *page)
118 {
119 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
120 }
121 
122 static inline void shmem_swp_balance_unmap(void)
123 {
124 	/*
125 	 * When passing a pointer to an i_direct entry, to code which
126 	 * also handles indirect entries and so will shmem_swp_unmap,
127 	 * we must arrange for the preempt count to remain in balance.
128 	 * What kmap_atomic of a lowmem page does depends on config
129 	 * and architecture, so pretend to kmap_atomic some lowmem page.
130 	 */
131 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
132 }
133 
134 static inline void shmem_swp_unmap(swp_entry_t *entry)
135 {
136 	kunmap_atomic(entry, KM_USER1);
137 }
138 
139 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
140 {
141 	return sb->s_fs_info;
142 }
143 
144 /*
145  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
146  * for shared memory and for shared anonymous (/dev/zero) mappings
147  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
148  * consistent with the pre-accounting of private mappings ...
149  */
150 static inline int shmem_acct_size(unsigned long flags, loff_t size)
151 {
152 	return (flags & VM_ACCOUNT)?
153 		security_vm_enough_memory(VM_ACCT(size)): 0;
154 }
155 
156 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
157 {
158 	if (flags & VM_ACCOUNT)
159 		vm_unacct_memory(VM_ACCT(size));
160 }
161 
162 /*
163  * ... whereas tmpfs objects are accounted incrementally as
164  * pages are allocated, in order to allow huge sparse files.
165  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
166  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
167  */
168 static inline int shmem_acct_block(unsigned long flags)
169 {
170 	return (flags & VM_ACCOUNT)?
171 		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
172 }
173 
174 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
175 {
176 	if (!(flags & VM_ACCOUNT))
177 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
178 }
179 
180 static const struct super_operations shmem_ops;
181 static const struct address_space_operations shmem_aops;
182 static const struct file_operations shmem_file_operations;
183 static const struct inode_operations shmem_inode_operations;
184 static const struct inode_operations shmem_dir_inode_operations;
185 static const struct inode_operations shmem_special_inode_operations;
186 static struct vm_operations_struct shmem_vm_ops;
187 
188 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
189 	.ra_pages	= 0,	/* No readahead */
190 	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
191 	.unplug_io_fn	= default_unplug_io_fn,
192 };
193 
194 static LIST_HEAD(shmem_swaplist);
195 static DEFINE_SPINLOCK(shmem_swaplist_lock);
196 
197 static void shmem_free_blocks(struct inode *inode, long pages)
198 {
199 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
200 	if (sbinfo->max_blocks) {
201 		spin_lock(&sbinfo->stat_lock);
202 		sbinfo->free_blocks += pages;
203 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
204 		spin_unlock(&sbinfo->stat_lock);
205 	}
206 }
207 
208 static int shmem_reserve_inode(struct super_block *sb)
209 {
210 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
211 	if (sbinfo->max_inodes) {
212 		spin_lock(&sbinfo->stat_lock);
213 		if (!sbinfo->free_inodes) {
214 			spin_unlock(&sbinfo->stat_lock);
215 			return -ENOSPC;
216 		}
217 		sbinfo->free_inodes--;
218 		spin_unlock(&sbinfo->stat_lock);
219 	}
220 	return 0;
221 }
222 
223 static void shmem_free_inode(struct super_block *sb)
224 {
225 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
226 	if (sbinfo->max_inodes) {
227 		spin_lock(&sbinfo->stat_lock);
228 		sbinfo->free_inodes++;
229 		spin_unlock(&sbinfo->stat_lock);
230 	}
231 }
232 
233 /*
234  * shmem_recalc_inode - recalculate the size of an inode
235  *
236  * @inode: inode to recalc
237  *
238  * We have to calculate the free blocks since the mm can drop
239  * undirtied hole pages behind our back.
240  *
241  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
242  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
243  *
244  * It has to be called with the spinlock held.
245  */
246 static void shmem_recalc_inode(struct inode *inode)
247 {
248 	struct shmem_inode_info *info = SHMEM_I(inode);
249 	long freed;
250 
251 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
252 	if (freed > 0) {
253 		info->alloced -= freed;
254 		shmem_unacct_blocks(info->flags, freed);
255 		shmem_free_blocks(inode, freed);
256 	}
257 }
258 
259 /*
260  * shmem_swp_entry - find the swap vector position in the info structure
261  *
262  * @info:  info structure for the inode
263  * @index: index of the page to find
264  * @page:  optional page to add to the structure. Has to be preset to
265  *         all zeros
266  *
267  * If there is no space allocated yet it will return NULL when
268  * page is NULL, else it will use the page for the needed block,
269  * setting it to NULL on return to indicate that it has been used.
270  *
271  * The swap vector is organized the following way:
272  *
273  * There are SHMEM_NR_DIRECT entries directly stored in the
274  * shmem_inode_info structure. So small files do not need an addional
275  * allocation.
276  *
277  * For pages with index > SHMEM_NR_DIRECT there is the pointer
278  * i_indirect which points to a page which holds in the first half
279  * doubly indirect blocks, in the second half triple indirect blocks:
280  *
281  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
282  * following layout (for SHMEM_NR_DIRECT == 16):
283  *
284  * i_indirect -> dir --> 16-19
285  * 	      |	     +-> 20-23
286  * 	      |
287  * 	      +-->dir2 --> 24-27
288  * 	      |	       +-> 28-31
289  * 	      |	       +-> 32-35
290  * 	      |	       +-> 36-39
291  * 	      |
292  * 	      +-->dir3 --> 40-43
293  * 	       	       +-> 44-47
294  * 	      	       +-> 48-51
295  * 	      	       +-> 52-55
296  */
297 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
298 {
299 	unsigned long offset;
300 	struct page **dir;
301 	struct page *subdir;
302 
303 	if (index < SHMEM_NR_DIRECT) {
304 		shmem_swp_balance_unmap();
305 		return info->i_direct+index;
306 	}
307 	if (!info->i_indirect) {
308 		if (page) {
309 			info->i_indirect = *page;
310 			*page = NULL;
311 		}
312 		return NULL;			/* need another page */
313 	}
314 
315 	index -= SHMEM_NR_DIRECT;
316 	offset = index % ENTRIES_PER_PAGE;
317 	index /= ENTRIES_PER_PAGE;
318 	dir = shmem_dir_map(info->i_indirect);
319 
320 	if (index >= ENTRIES_PER_PAGE/2) {
321 		index -= ENTRIES_PER_PAGE/2;
322 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
323 		index %= ENTRIES_PER_PAGE;
324 		subdir = *dir;
325 		if (!subdir) {
326 			if (page) {
327 				*dir = *page;
328 				*page = NULL;
329 			}
330 			shmem_dir_unmap(dir);
331 			return NULL;		/* need another page */
332 		}
333 		shmem_dir_unmap(dir);
334 		dir = shmem_dir_map(subdir);
335 	}
336 
337 	dir += index;
338 	subdir = *dir;
339 	if (!subdir) {
340 		if (!page || !(subdir = *page)) {
341 			shmem_dir_unmap(dir);
342 			return NULL;		/* need a page */
343 		}
344 		*dir = subdir;
345 		*page = NULL;
346 	}
347 	shmem_dir_unmap(dir);
348 	return shmem_swp_map(subdir) + offset;
349 }
350 
351 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
352 {
353 	long incdec = value? 1: -1;
354 
355 	entry->val = value;
356 	info->swapped += incdec;
357 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
358 		struct page *page = kmap_atomic_to_page(entry);
359 		set_page_private(page, page_private(page) + incdec);
360 	}
361 }
362 
363 /*
364  * shmem_swp_alloc - get the position of the swap entry for the page.
365  *                   If it does not exist allocate the entry.
366  *
367  * @info:	info structure for the inode
368  * @index:	index of the page to find
369  * @sgp:	check and recheck i_size? skip allocation?
370  */
371 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
372 {
373 	struct inode *inode = &info->vfs_inode;
374 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
375 	struct page *page = NULL;
376 	swp_entry_t *entry;
377 
378 	if (sgp != SGP_WRITE &&
379 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
380 		return ERR_PTR(-EINVAL);
381 
382 	while (!(entry = shmem_swp_entry(info, index, &page))) {
383 		if (sgp == SGP_READ)
384 			return shmem_swp_map(ZERO_PAGE(0));
385 		/*
386 		 * Test free_blocks against 1 not 0, since we have 1 data
387 		 * page (and perhaps indirect index pages) yet to allocate:
388 		 * a waste to allocate index if we cannot allocate data.
389 		 */
390 		if (sbinfo->max_blocks) {
391 			spin_lock(&sbinfo->stat_lock);
392 			if (sbinfo->free_blocks <= 1) {
393 				spin_unlock(&sbinfo->stat_lock);
394 				return ERR_PTR(-ENOSPC);
395 			}
396 			sbinfo->free_blocks--;
397 			inode->i_blocks += BLOCKS_PER_PAGE;
398 			spin_unlock(&sbinfo->stat_lock);
399 		}
400 
401 		spin_unlock(&info->lock);
402 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
403 		if (page)
404 			set_page_private(page, 0);
405 		spin_lock(&info->lock);
406 
407 		if (!page) {
408 			shmem_free_blocks(inode, 1);
409 			return ERR_PTR(-ENOMEM);
410 		}
411 		if (sgp != SGP_WRITE &&
412 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
413 			entry = ERR_PTR(-EINVAL);
414 			break;
415 		}
416 		if (info->next_index <= index)
417 			info->next_index = index + 1;
418 	}
419 	if (page) {
420 		/* another task gave its page, or truncated the file */
421 		shmem_free_blocks(inode, 1);
422 		shmem_dir_free(page);
423 	}
424 	if (info->next_index <= index && !IS_ERR(entry))
425 		info->next_index = index + 1;
426 	return entry;
427 }
428 
429 /*
430  * shmem_free_swp - free some swap entries in a directory
431  *
432  * @dir:        pointer to the directory
433  * @edir:       pointer after last entry of the directory
434  * @punch_lock: pointer to spinlock when needed for the holepunch case
435  */
436 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
437 						spinlock_t *punch_lock)
438 {
439 	spinlock_t *punch_unlock = NULL;
440 	swp_entry_t *ptr;
441 	int freed = 0;
442 
443 	for (ptr = dir; ptr < edir; ptr++) {
444 		if (ptr->val) {
445 			if (unlikely(punch_lock)) {
446 				punch_unlock = punch_lock;
447 				punch_lock = NULL;
448 				spin_lock(punch_unlock);
449 				if (!ptr->val)
450 					continue;
451 			}
452 			free_swap_and_cache(*ptr);
453 			*ptr = (swp_entry_t){0};
454 			freed++;
455 		}
456 	}
457 	if (punch_unlock)
458 		spin_unlock(punch_unlock);
459 	return freed;
460 }
461 
462 static int shmem_map_and_free_swp(struct page *subdir, int offset,
463 		int limit, struct page ***dir, spinlock_t *punch_lock)
464 {
465 	swp_entry_t *ptr;
466 	int freed = 0;
467 
468 	ptr = shmem_swp_map(subdir);
469 	for (; offset < limit; offset += LATENCY_LIMIT) {
470 		int size = limit - offset;
471 		if (size > LATENCY_LIMIT)
472 			size = LATENCY_LIMIT;
473 		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
474 							punch_lock);
475 		if (need_resched()) {
476 			shmem_swp_unmap(ptr);
477 			if (*dir) {
478 				shmem_dir_unmap(*dir);
479 				*dir = NULL;
480 			}
481 			cond_resched();
482 			ptr = shmem_swp_map(subdir);
483 		}
484 	}
485 	shmem_swp_unmap(ptr);
486 	return freed;
487 }
488 
489 static void shmem_free_pages(struct list_head *next)
490 {
491 	struct page *page;
492 	int freed = 0;
493 
494 	do {
495 		page = container_of(next, struct page, lru);
496 		next = next->next;
497 		shmem_dir_free(page);
498 		freed++;
499 		if (freed >= LATENCY_LIMIT) {
500 			cond_resched();
501 			freed = 0;
502 		}
503 	} while (next);
504 }
505 
506 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
507 {
508 	struct shmem_inode_info *info = SHMEM_I(inode);
509 	unsigned long idx;
510 	unsigned long size;
511 	unsigned long limit;
512 	unsigned long stage;
513 	unsigned long diroff;
514 	struct page **dir;
515 	struct page *topdir;
516 	struct page *middir;
517 	struct page *subdir;
518 	swp_entry_t *ptr;
519 	LIST_HEAD(pages_to_free);
520 	long nr_pages_to_free = 0;
521 	long nr_swaps_freed = 0;
522 	int offset;
523 	int freed;
524 	int punch_hole;
525 	spinlock_t *needs_lock;
526 	spinlock_t *punch_lock;
527 	unsigned long upper_limit;
528 
529 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
530 	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
531 	if (idx >= info->next_index)
532 		return;
533 
534 	spin_lock(&info->lock);
535 	info->flags |= SHMEM_TRUNCATE;
536 	if (likely(end == (loff_t) -1)) {
537 		limit = info->next_index;
538 		upper_limit = SHMEM_MAX_INDEX;
539 		info->next_index = idx;
540 		needs_lock = NULL;
541 		punch_hole = 0;
542 	} else {
543 		if (end + 1 >= inode->i_size) {	/* we may free a little more */
544 			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
545 							PAGE_CACHE_SHIFT;
546 			upper_limit = SHMEM_MAX_INDEX;
547 		} else {
548 			limit = (end + 1) >> PAGE_CACHE_SHIFT;
549 			upper_limit = limit;
550 		}
551 		needs_lock = &info->lock;
552 		punch_hole = 1;
553 	}
554 
555 	topdir = info->i_indirect;
556 	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
557 		info->i_indirect = NULL;
558 		nr_pages_to_free++;
559 		list_add(&topdir->lru, &pages_to_free);
560 	}
561 	spin_unlock(&info->lock);
562 
563 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
564 		ptr = info->i_direct;
565 		size = limit;
566 		if (size > SHMEM_NR_DIRECT)
567 			size = SHMEM_NR_DIRECT;
568 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
569 	}
570 
571 	/*
572 	 * If there are no indirect blocks or we are punching a hole
573 	 * below indirect blocks, nothing to be done.
574 	 */
575 	if (!topdir || limit <= SHMEM_NR_DIRECT)
576 		goto done2;
577 
578 	/*
579 	 * The truncation case has already dropped info->lock, and we're safe
580 	 * because i_size and next_index have already been lowered, preventing
581 	 * access beyond.  But in the punch_hole case, we still need to take
582 	 * the lock when updating the swap directory, because there might be
583 	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
584 	 * shmem_writepage.  However, whenever we find we can remove a whole
585 	 * directory page (not at the misaligned start or end of the range),
586 	 * we first NULLify its pointer in the level above, and then have no
587 	 * need to take the lock when updating its contents: needs_lock and
588 	 * punch_lock (either pointing to info->lock or NULL) manage this.
589 	 */
590 
591 	upper_limit -= SHMEM_NR_DIRECT;
592 	limit -= SHMEM_NR_DIRECT;
593 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
594 	offset = idx % ENTRIES_PER_PAGE;
595 	idx -= offset;
596 
597 	dir = shmem_dir_map(topdir);
598 	stage = ENTRIES_PER_PAGEPAGE/2;
599 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
600 		middir = topdir;
601 		diroff = idx/ENTRIES_PER_PAGE;
602 	} else {
603 		dir += ENTRIES_PER_PAGE/2;
604 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
605 		while (stage <= idx)
606 			stage += ENTRIES_PER_PAGEPAGE;
607 		middir = *dir;
608 		if (*dir) {
609 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
610 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
611 			if (!diroff && !offset && upper_limit >= stage) {
612 				if (needs_lock) {
613 					spin_lock(needs_lock);
614 					*dir = NULL;
615 					spin_unlock(needs_lock);
616 					needs_lock = NULL;
617 				} else
618 					*dir = NULL;
619 				nr_pages_to_free++;
620 				list_add(&middir->lru, &pages_to_free);
621 			}
622 			shmem_dir_unmap(dir);
623 			dir = shmem_dir_map(middir);
624 		} else {
625 			diroff = 0;
626 			offset = 0;
627 			idx = stage;
628 		}
629 	}
630 
631 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
632 		if (unlikely(idx == stage)) {
633 			shmem_dir_unmap(dir);
634 			dir = shmem_dir_map(topdir) +
635 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
636 			while (!*dir) {
637 				dir++;
638 				idx += ENTRIES_PER_PAGEPAGE;
639 				if (idx >= limit)
640 					goto done1;
641 			}
642 			stage = idx + ENTRIES_PER_PAGEPAGE;
643 			middir = *dir;
644 			if (punch_hole)
645 				needs_lock = &info->lock;
646 			if (upper_limit >= stage) {
647 				if (needs_lock) {
648 					spin_lock(needs_lock);
649 					*dir = NULL;
650 					spin_unlock(needs_lock);
651 					needs_lock = NULL;
652 				} else
653 					*dir = NULL;
654 				nr_pages_to_free++;
655 				list_add(&middir->lru, &pages_to_free);
656 			}
657 			shmem_dir_unmap(dir);
658 			cond_resched();
659 			dir = shmem_dir_map(middir);
660 			diroff = 0;
661 		}
662 		punch_lock = needs_lock;
663 		subdir = dir[diroff];
664 		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
665 			if (needs_lock) {
666 				spin_lock(needs_lock);
667 				dir[diroff] = NULL;
668 				spin_unlock(needs_lock);
669 				punch_lock = NULL;
670 			} else
671 				dir[diroff] = NULL;
672 			nr_pages_to_free++;
673 			list_add(&subdir->lru, &pages_to_free);
674 		}
675 		if (subdir && page_private(subdir) /* has swap entries */) {
676 			size = limit - idx;
677 			if (size > ENTRIES_PER_PAGE)
678 				size = ENTRIES_PER_PAGE;
679 			freed = shmem_map_and_free_swp(subdir,
680 					offset, size, &dir, punch_lock);
681 			if (!dir)
682 				dir = shmem_dir_map(middir);
683 			nr_swaps_freed += freed;
684 			if (offset || punch_lock) {
685 				spin_lock(&info->lock);
686 				set_page_private(subdir,
687 					page_private(subdir) - freed);
688 				spin_unlock(&info->lock);
689 			} else
690 				BUG_ON(page_private(subdir) != freed);
691 		}
692 		offset = 0;
693 	}
694 done1:
695 	shmem_dir_unmap(dir);
696 done2:
697 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
698 		/*
699 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
700 		 * may have swizzled a page in from swap since vmtruncate or
701 		 * generic_delete_inode did it, before we lowered next_index.
702 		 * Also, though shmem_getpage checks i_size before adding to
703 		 * cache, no recheck after: so fix the narrow window there too.
704 		 *
705 		 * Recalling truncate_inode_pages_range and unmap_mapping_range
706 		 * every time for punch_hole (which never got a chance to clear
707 		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
708 		 * yet hardly ever necessary: try to optimize them out later.
709 		 */
710 		truncate_inode_pages_range(inode->i_mapping, start, end);
711 		if (punch_hole)
712 			unmap_mapping_range(inode->i_mapping, start,
713 							end - start, 1);
714 	}
715 
716 	spin_lock(&info->lock);
717 	info->flags &= ~SHMEM_TRUNCATE;
718 	info->swapped -= nr_swaps_freed;
719 	if (nr_pages_to_free)
720 		shmem_free_blocks(inode, nr_pages_to_free);
721 	shmem_recalc_inode(inode);
722 	spin_unlock(&info->lock);
723 
724 	/*
725 	 * Empty swap vector directory pages to be freed?
726 	 */
727 	if (!list_empty(&pages_to_free)) {
728 		pages_to_free.prev->next = NULL;
729 		shmem_free_pages(pages_to_free.next);
730 	}
731 }
732 
733 static void shmem_truncate(struct inode *inode)
734 {
735 	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
736 }
737 
738 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
739 {
740 	struct inode *inode = dentry->d_inode;
741 	struct page *page = NULL;
742 	int error;
743 
744 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
745 		if (attr->ia_size < inode->i_size) {
746 			/*
747 			 * If truncating down to a partial page, then
748 			 * if that page is already allocated, hold it
749 			 * in memory until the truncation is over, so
750 			 * truncate_partial_page cannnot miss it were
751 			 * it assigned to swap.
752 			 */
753 			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
754 				(void) shmem_getpage(inode,
755 					attr->ia_size>>PAGE_CACHE_SHIFT,
756 						&page, SGP_READ, NULL);
757 				if (page)
758 					unlock_page(page);
759 			}
760 			/*
761 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
762 			 * detect if any pages might have been added to cache
763 			 * after truncate_inode_pages.  But we needn't bother
764 			 * if it's being fully truncated to zero-length: the
765 			 * nrpages check is efficient enough in that case.
766 			 */
767 			if (attr->ia_size) {
768 				struct shmem_inode_info *info = SHMEM_I(inode);
769 				spin_lock(&info->lock);
770 				info->flags &= ~SHMEM_PAGEIN;
771 				spin_unlock(&info->lock);
772 			}
773 		}
774 	}
775 
776 	error = inode_change_ok(inode, attr);
777 	if (!error)
778 		error = inode_setattr(inode, attr);
779 #ifdef CONFIG_TMPFS_POSIX_ACL
780 	if (!error && (attr->ia_valid & ATTR_MODE))
781 		error = generic_acl_chmod(inode, &shmem_acl_ops);
782 #endif
783 	if (page)
784 		page_cache_release(page);
785 	return error;
786 }
787 
788 static void shmem_delete_inode(struct inode *inode)
789 {
790 	struct shmem_inode_info *info = SHMEM_I(inode);
791 
792 	if (inode->i_op->truncate == shmem_truncate) {
793 		truncate_inode_pages(inode->i_mapping, 0);
794 		shmem_unacct_size(info->flags, inode->i_size);
795 		inode->i_size = 0;
796 		shmem_truncate(inode);
797 		if (!list_empty(&info->swaplist)) {
798 			spin_lock(&shmem_swaplist_lock);
799 			list_del_init(&info->swaplist);
800 			spin_unlock(&shmem_swaplist_lock);
801 		}
802 	}
803 	BUG_ON(inode->i_blocks);
804 	shmem_free_inode(inode->i_sb);
805 	clear_inode(inode);
806 }
807 
808 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
809 {
810 	swp_entry_t *ptr;
811 
812 	for (ptr = dir; ptr < edir; ptr++) {
813 		if (ptr->val == entry.val)
814 			return ptr - dir;
815 	}
816 	return -1;
817 }
818 
819 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
820 {
821 	struct inode *inode;
822 	unsigned long idx;
823 	unsigned long size;
824 	unsigned long limit;
825 	unsigned long stage;
826 	struct page **dir;
827 	struct page *subdir;
828 	swp_entry_t *ptr;
829 	int offset;
830 
831 	idx = 0;
832 	ptr = info->i_direct;
833 	spin_lock(&info->lock);
834 	limit = info->next_index;
835 	size = limit;
836 	if (size > SHMEM_NR_DIRECT)
837 		size = SHMEM_NR_DIRECT;
838 	offset = shmem_find_swp(entry, ptr, ptr+size);
839 	if (offset >= 0) {
840 		shmem_swp_balance_unmap();
841 		goto found;
842 	}
843 	if (!info->i_indirect)
844 		goto lost2;
845 
846 	dir = shmem_dir_map(info->i_indirect);
847 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
848 
849 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
850 		if (unlikely(idx == stage)) {
851 			shmem_dir_unmap(dir-1);
852 			dir = shmem_dir_map(info->i_indirect) +
853 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
854 			while (!*dir) {
855 				dir++;
856 				idx += ENTRIES_PER_PAGEPAGE;
857 				if (idx >= limit)
858 					goto lost1;
859 			}
860 			stage = idx + ENTRIES_PER_PAGEPAGE;
861 			subdir = *dir;
862 			shmem_dir_unmap(dir);
863 			dir = shmem_dir_map(subdir);
864 		}
865 		subdir = *dir;
866 		if (subdir && page_private(subdir)) {
867 			ptr = shmem_swp_map(subdir);
868 			size = limit - idx;
869 			if (size > ENTRIES_PER_PAGE)
870 				size = ENTRIES_PER_PAGE;
871 			offset = shmem_find_swp(entry, ptr, ptr+size);
872 			if (offset >= 0) {
873 				shmem_dir_unmap(dir);
874 				goto found;
875 			}
876 			shmem_swp_unmap(ptr);
877 		}
878 	}
879 lost1:
880 	shmem_dir_unmap(dir-1);
881 lost2:
882 	spin_unlock(&info->lock);
883 	return 0;
884 found:
885 	idx += offset;
886 	inode = &info->vfs_inode;
887 	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
888 		info->flags |= SHMEM_PAGEIN;
889 		shmem_swp_set(info, ptr + offset, 0);
890 	}
891 	shmem_swp_unmap(ptr);
892 	spin_unlock(&info->lock);
893 	/*
894 	 * Decrement swap count even when the entry is left behind:
895 	 * try_to_unuse will skip over mms, then reincrement count.
896 	 */
897 	swap_free(entry);
898 	return 1;
899 }
900 
901 /*
902  * shmem_unuse() search for an eventually swapped out shmem page.
903  */
904 int shmem_unuse(swp_entry_t entry, struct page *page)
905 {
906 	struct list_head *p, *next;
907 	struct shmem_inode_info *info;
908 	int found = 0;
909 
910 	spin_lock(&shmem_swaplist_lock);
911 	list_for_each_safe(p, next, &shmem_swaplist) {
912 		info = list_entry(p, struct shmem_inode_info, swaplist);
913 		if (!info->swapped)
914 			list_del_init(&info->swaplist);
915 		else if (shmem_unuse_inode(info, entry, page)) {
916 			/* move head to start search for next from here */
917 			list_move_tail(&shmem_swaplist, &info->swaplist);
918 			found = 1;
919 			break;
920 		}
921 	}
922 	spin_unlock(&shmem_swaplist_lock);
923 	return found;
924 }
925 
926 /*
927  * Move the page from the page cache to the swap cache.
928  */
929 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
930 {
931 	struct shmem_inode_info *info;
932 	swp_entry_t *entry, swap;
933 	struct address_space *mapping;
934 	unsigned long index;
935 	struct inode *inode;
936 
937 	BUG_ON(!PageLocked(page));
938 	/*
939 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
940 	 * sync from ever calling shmem_writepage; but a stacking filesystem
941 	 * may use the ->writepage of its underlying filesystem, in which case
942 	 * we want to do nothing when that underlying filesystem is tmpfs
943 	 * (writing out to swap is useful as a response to memory pressure, but
944 	 * of no use to stabilize the data) - just redirty the page, unlock it
945 	 * and claim success in this case.  AOP_WRITEPAGE_ACTIVATE, and the
946 	 * page_mapped check below, must be avoided unless we're in reclaim.
947 	 */
948 	if (!wbc->for_reclaim) {
949 		set_page_dirty(page);
950 		unlock_page(page);
951 		return 0;
952 	}
953 	BUG_ON(page_mapped(page));
954 
955 	mapping = page->mapping;
956 	index = page->index;
957 	inode = mapping->host;
958 	info = SHMEM_I(inode);
959 	if (info->flags & VM_LOCKED)
960 		goto redirty;
961 	swap = get_swap_page();
962 	if (!swap.val)
963 		goto redirty;
964 
965 	spin_lock(&info->lock);
966 	shmem_recalc_inode(inode);
967 	if (index >= info->next_index) {
968 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
969 		goto unlock;
970 	}
971 	entry = shmem_swp_entry(info, index, NULL);
972 	BUG_ON(!entry);
973 	BUG_ON(entry->val);
974 
975 	if (move_to_swap_cache(page, swap) == 0) {
976 		shmem_swp_set(info, entry, swap.val);
977 		shmem_swp_unmap(entry);
978 		spin_unlock(&info->lock);
979 		if (list_empty(&info->swaplist)) {
980 			spin_lock(&shmem_swaplist_lock);
981 			/* move instead of add in case we're racing */
982 			list_move_tail(&info->swaplist, &shmem_swaplist);
983 			spin_unlock(&shmem_swaplist_lock);
984 		}
985 		unlock_page(page);
986 		return 0;
987 	}
988 
989 	shmem_swp_unmap(entry);
990 unlock:
991 	spin_unlock(&info->lock);
992 	swap_free(swap);
993 redirty:
994 	set_page_dirty(page);
995 	return AOP_WRITEPAGE_ACTIVATE;	/* Return with the page locked */
996 }
997 
998 #ifdef CONFIG_NUMA
999 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1000 {
1001 	char *nodelist = strchr(value, ':');
1002 	int err = 1;
1003 
1004 	if (nodelist) {
1005 		/* NUL-terminate policy string */
1006 		*nodelist++ = '\0';
1007 		if (nodelist_parse(nodelist, *policy_nodes))
1008 			goto out;
1009 		if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
1010 			goto out;
1011 	}
1012 	if (!strcmp(value, "default")) {
1013 		*policy = MPOL_DEFAULT;
1014 		/* Don't allow a nodelist */
1015 		if (!nodelist)
1016 			err = 0;
1017 	} else if (!strcmp(value, "prefer")) {
1018 		*policy = MPOL_PREFERRED;
1019 		/* Insist on a nodelist of one node only */
1020 		if (nodelist) {
1021 			char *rest = nodelist;
1022 			while (isdigit(*rest))
1023 				rest++;
1024 			if (!*rest)
1025 				err = 0;
1026 		}
1027 	} else if (!strcmp(value, "bind")) {
1028 		*policy = MPOL_BIND;
1029 		/* Insist on a nodelist */
1030 		if (nodelist)
1031 			err = 0;
1032 	} else if (!strcmp(value, "interleave")) {
1033 		*policy = MPOL_INTERLEAVE;
1034 		/*
1035 		 * Default to online nodes with memory if no nodelist
1036 		 */
1037 		if (!nodelist)
1038 			*policy_nodes = node_states[N_HIGH_MEMORY];
1039 		err = 0;
1040 	}
1041 out:
1042 	/* Restore string for error message */
1043 	if (nodelist)
1044 		*--nodelist = ':';
1045 	return err;
1046 }
1047 
1048 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1049 			struct shmem_inode_info *info, unsigned long idx)
1050 {
1051 	struct vm_area_struct pvma;
1052 	struct page *page;
1053 
1054 	/* Create a pseudo vma that just contains the policy */
1055 	pvma.vm_start = 0;
1056 	pvma.vm_pgoff = idx;
1057 	pvma.vm_ops = NULL;
1058 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1059 	page = swapin_readahead(entry, gfp, &pvma, 0);
1060 	mpol_free(pvma.vm_policy);
1061 	return page;
1062 }
1063 
1064 static struct page *shmem_alloc_page(gfp_t gfp,
1065 			struct shmem_inode_info *info, unsigned long idx)
1066 {
1067 	struct vm_area_struct pvma;
1068 	struct page *page;
1069 
1070 	/* Create a pseudo vma that just contains the policy */
1071 	pvma.vm_start = 0;
1072 	pvma.vm_pgoff = idx;
1073 	pvma.vm_ops = NULL;
1074 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1075 	page = alloc_page_vma(gfp, &pvma, 0);
1076 	mpol_free(pvma.vm_policy);
1077 	return page;
1078 }
1079 #else
1080 static inline int shmem_parse_mpol(char *value, int *policy,
1081 						nodemask_t *policy_nodes)
1082 {
1083 	return 1;
1084 }
1085 
1086 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1087 			struct shmem_inode_info *info, unsigned long idx)
1088 {
1089 	return swapin_readahead(entry, gfp, NULL, 0);
1090 }
1091 
1092 static inline struct page *shmem_alloc_page(gfp_t gfp,
1093 			struct shmem_inode_info *info, unsigned long idx)
1094 {
1095 	return alloc_page(gfp);
1096 }
1097 #endif
1098 
1099 /*
1100  * shmem_getpage - either get the page from swap or allocate a new one
1101  *
1102  * If we allocate a new one we do not mark it dirty. That's up to the
1103  * vm. If we swap it in we mark it dirty since we also free the swap
1104  * entry since a page cannot live in both the swap and page cache
1105  */
1106 static int shmem_getpage(struct inode *inode, unsigned long idx,
1107 			struct page **pagep, enum sgp_type sgp, int *type)
1108 {
1109 	struct address_space *mapping = inode->i_mapping;
1110 	struct shmem_inode_info *info = SHMEM_I(inode);
1111 	struct shmem_sb_info *sbinfo;
1112 	struct page *filepage = *pagep;
1113 	struct page *swappage;
1114 	swp_entry_t *entry;
1115 	swp_entry_t swap;
1116 	gfp_t gfp;
1117 	int error;
1118 
1119 	if (idx >= SHMEM_MAX_INDEX)
1120 		return -EFBIG;
1121 
1122 	if (type)
1123 		*type = 0;
1124 
1125 	/*
1126 	 * Normally, filepage is NULL on entry, and either found
1127 	 * uptodate immediately, or allocated and zeroed, or read
1128 	 * in under swappage, which is then assigned to filepage.
1129 	 * But shmem_readpage (required for splice) passes in a locked
1130 	 * filepage, which may be found not uptodate by other callers
1131 	 * too, and may need to be copied from the swappage read in.
1132 	 */
1133 repeat:
1134 	if (!filepage)
1135 		filepage = find_lock_page(mapping, idx);
1136 	if (filepage && PageUptodate(filepage))
1137 		goto done;
1138 	error = 0;
1139 	gfp = mapping_gfp_mask(mapping);
1140 
1141 	spin_lock(&info->lock);
1142 	shmem_recalc_inode(inode);
1143 	entry = shmem_swp_alloc(info, idx, sgp);
1144 	if (IS_ERR(entry)) {
1145 		spin_unlock(&info->lock);
1146 		error = PTR_ERR(entry);
1147 		goto failed;
1148 	}
1149 	swap = *entry;
1150 
1151 	if (swap.val) {
1152 		/* Look it up and read it in.. */
1153 		swappage = lookup_swap_cache(swap);
1154 		if (!swappage) {
1155 			shmem_swp_unmap(entry);
1156 			/* here we actually do the io */
1157 			if (type && !(*type & VM_FAULT_MAJOR)) {
1158 				__count_vm_event(PGMAJFAULT);
1159 				*type |= VM_FAULT_MAJOR;
1160 			}
1161 			spin_unlock(&info->lock);
1162 			swappage = shmem_swapin(swap, gfp, info, idx);
1163 			if (!swappage) {
1164 				spin_lock(&info->lock);
1165 				entry = shmem_swp_alloc(info, idx, sgp);
1166 				if (IS_ERR(entry))
1167 					error = PTR_ERR(entry);
1168 				else {
1169 					if (entry->val == swap.val)
1170 						error = -ENOMEM;
1171 					shmem_swp_unmap(entry);
1172 				}
1173 				spin_unlock(&info->lock);
1174 				if (error)
1175 					goto failed;
1176 				goto repeat;
1177 			}
1178 			wait_on_page_locked(swappage);
1179 			page_cache_release(swappage);
1180 			goto repeat;
1181 		}
1182 
1183 		/* We have to do this with page locked to prevent races */
1184 		if (TestSetPageLocked(swappage)) {
1185 			shmem_swp_unmap(entry);
1186 			spin_unlock(&info->lock);
1187 			wait_on_page_locked(swappage);
1188 			page_cache_release(swappage);
1189 			goto repeat;
1190 		}
1191 		if (PageWriteback(swappage)) {
1192 			shmem_swp_unmap(entry);
1193 			spin_unlock(&info->lock);
1194 			wait_on_page_writeback(swappage);
1195 			unlock_page(swappage);
1196 			page_cache_release(swappage);
1197 			goto repeat;
1198 		}
1199 		if (!PageUptodate(swappage)) {
1200 			shmem_swp_unmap(entry);
1201 			spin_unlock(&info->lock);
1202 			unlock_page(swappage);
1203 			page_cache_release(swappage);
1204 			error = -EIO;
1205 			goto failed;
1206 		}
1207 
1208 		if (filepage) {
1209 			shmem_swp_set(info, entry, 0);
1210 			shmem_swp_unmap(entry);
1211 			delete_from_swap_cache(swappage);
1212 			spin_unlock(&info->lock);
1213 			copy_highpage(filepage, swappage);
1214 			unlock_page(swappage);
1215 			page_cache_release(swappage);
1216 			flush_dcache_page(filepage);
1217 			SetPageUptodate(filepage);
1218 			set_page_dirty(filepage);
1219 			swap_free(swap);
1220 		} else if (!(error = move_from_swap_cache(
1221 				swappage, idx, mapping))) {
1222 			info->flags |= SHMEM_PAGEIN;
1223 			shmem_swp_set(info, entry, 0);
1224 			shmem_swp_unmap(entry);
1225 			spin_unlock(&info->lock);
1226 			filepage = swappage;
1227 			swap_free(swap);
1228 		} else {
1229 			shmem_swp_unmap(entry);
1230 			spin_unlock(&info->lock);
1231 			unlock_page(swappage);
1232 			page_cache_release(swappage);
1233 			if (error == -ENOMEM) {
1234 				/* let kswapd refresh zone for GFP_ATOMICs */
1235 				congestion_wait(WRITE, HZ/50);
1236 			}
1237 			goto repeat;
1238 		}
1239 	} else if (sgp == SGP_READ && !filepage) {
1240 		shmem_swp_unmap(entry);
1241 		filepage = find_get_page(mapping, idx);
1242 		if (filepage &&
1243 		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1244 			spin_unlock(&info->lock);
1245 			wait_on_page_locked(filepage);
1246 			page_cache_release(filepage);
1247 			filepage = NULL;
1248 			goto repeat;
1249 		}
1250 		spin_unlock(&info->lock);
1251 	} else {
1252 		shmem_swp_unmap(entry);
1253 		sbinfo = SHMEM_SB(inode->i_sb);
1254 		if (sbinfo->max_blocks) {
1255 			spin_lock(&sbinfo->stat_lock);
1256 			if (sbinfo->free_blocks == 0 ||
1257 			    shmem_acct_block(info->flags)) {
1258 				spin_unlock(&sbinfo->stat_lock);
1259 				spin_unlock(&info->lock);
1260 				error = -ENOSPC;
1261 				goto failed;
1262 			}
1263 			sbinfo->free_blocks--;
1264 			inode->i_blocks += BLOCKS_PER_PAGE;
1265 			spin_unlock(&sbinfo->stat_lock);
1266 		} else if (shmem_acct_block(info->flags)) {
1267 			spin_unlock(&info->lock);
1268 			error = -ENOSPC;
1269 			goto failed;
1270 		}
1271 
1272 		if (!filepage) {
1273 			spin_unlock(&info->lock);
1274 			filepage = shmem_alloc_page(gfp, info, idx);
1275 			if (!filepage) {
1276 				shmem_unacct_blocks(info->flags, 1);
1277 				shmem_free_blocks(inode, 1);
1278 				error = -ENOMEM;
1279 				goto failed;
1280 			}
1281 
1282 			spin_lock(&info->lock);
1283 			entry = shmem_swp_alloc(info, idx, sgp);
1284 			if (IS_ERR(entry))
1285 				error = PTR_ERR(entry);
1286 			else {
1287 				swap = *entry;
1288 				shmem_swp_unmap(entry);
1289 			}
1290 			if (error || swap.val || 0 != add_to_page_cache_lru(
1291 					filepage, mapping, idx, GFP_ATOMIC)) {
1292 				spin_unlock(&info->lock);
1293 				page_cache_release(filepage);
1294 				shmem_unacct_blocks(info->flags, 1);
1295 				shmem_free_blocks(inode, 1);
1296 				filepage = NULL;
1297 				if (error)
1298 					goto failed;
1299 				goto repeat;
1300 			}
1301 			info->flags |= SHMEM_PAGEIN;
1302 		}
1303 
1304 		info->alloced++;
1305 		spin_unlock(&info->lock);
1306 		clear_highpage(filepage);
1307 		flush_dcache_page(filepage);
1308 		SetPageUptodate(filepage);
1309 	}
1310 done:
1311 	*pagep = filepage;
1312 	return 0;
1313 
1314 failed:
1315 	if (*pagep != filepage) {
1316 		unlock_page(filepage);
1317 		page_cache_release(filepage);
1318 	}
1319 	return error;
1320 }
1321 
1322 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1323 {
1324 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1325 	int error;
1326 	int ret;
1327 
1328 	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1329 		return VM_FAULT_SIGBUS;
1330 
1331 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1332 	if (error)
1333 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1334 
1335 	mark_page_accessed(vmf->page);
1336 	return ret | VM_FAULT_LOCKED;
1337 }
1338 
1339 #ifdef CONFIG_NUMA
1340 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1341 {
1342 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1343 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1344 }
1345 
1346 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1347 					  unsigned long addr)
1348 {
1349 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1350 	unsigned long idx;
1351 
1352 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1353 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1354 }
1355 #endif
1356 
1357 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1358 {
1359 	struct inode *inode = file->f_path.dentry->d_inode;
1360 	struct shmem_inode_info *info = SHMEM_I(inode);
1361 	int retval = -ENOMEM;
1362 
1363 	spin_lock(&info->lock);
1364 	if (lock && !(info->flags & VM_LOCKED)) {
1365 		if (!user_shm_lock(inode->i_size, user))
1366 			goto out_nomem;
1367 		info->flags |= VM_LOCKED;
1368 	}
1369 	if (!lock && (info->flags & VM_LOCKED) && user) {
1370 		user_shm_unlock(inode->i_size, user);
1371 		info->flags &= ~VM_LOCKED;
1372 	}
1373 	retval = 0;
1374 out_nomem:
1375 	spin_unlock(&info->lock);
1376 	return retval;
1377 }
1378 
1379 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1380 {
1381 	file_accessed(file);
1382 	vma->vm_ops = &shmem_vm_ops;
1383 	vma->vm_flags |= VM_CAN_NONLINEAR;
1384 	return 0;
1385 }
1386 
1387 static struct inode *
1388 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1389 {
1390 	struct inode *inode;
1391 	struct shmem_inode_info *info;
1392 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1393 
1394 	if (shmem_reserve_inode(sb))
1395 		return NULL;
1396 
1397 	inode = new_inode(sb);
1398 	if (inode) {
1399 		inode->i_mode = mode;
1400 		inode->i_uid = current->fsuid;
1401 		inode->i_gid = current->fsgid;
1402 		inode->i_blocks = 0;
1403 		inode->i_mapping->a_ops = &shmem_aops;
1404 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1405 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1406 		inode->i_generation = get_seconds();
1407 		info = SHMEM_I(inode);
1408 		memset(info, 0, (char *)inode - (char *)info);
1409 		spin_lock_init(&info->lock);
1410 		INIT_LIST_HEAD(&info->swaplist);
1411 
1412 		switch (mode & S_IFMT) {
1413 		default:
1414 			inode->i_op = &shmem_special_inode_operations;
1415 			init_special_inode(inode, mode, dev);
1416 			break;
1417 		case S_IFREG:
1418 			inode->i_op = &shmem_inode_operations;
1419 			inode->i_fop = &shmem_file_operations;
1420 			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1421 							&sbinfo->policy_nodes);
1422 			break;
1423 		case S_IFDIR:
1424 			inc_nlink(inode);
1425 			/* Some things misbehave if size == 0 on a directory */
1426 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1427 			inode->i_op = &shmem_dir_inode_operations;
1428 			inode->i_fop = &simple_dir_operations;
1429 			break;
1430 		case S_IFLNK:
1431 			/*
1432 			 * Must not load anything in the rbtree,
1433 			 * mpol_free_shared_policy will not be called.
1434 			 */
1435 			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1436 						NULL);
1437 			break;
1438 		}
1439 	} else
1440 		shmem_free_inode(sb);
1441 	return inode;
1442 }
1443 
1444 #ifdef CONFIG_TMPFS
1445 static const struct inode_operations shmem_symlink_inode_operations;
1446 static const struct inode_operations shmem_symlink_inline_operations;
1447 
1448 /*
1449  * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1450  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1451  * below the loop driver, in the generic fashion that many filesystems support.
1452  */
1453 static int shmem_readpage(struct file *file, struct page *page)
1454 {
1455 	struct inode *inode = page->mapping->host;
1456 	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1457 	unlock_page(page);
1458 	return error;
1459 }
1460 
1461 static int
1462 shmem_write_begin(struct file *file, struct address_space *mapping,
1463 			loff_t pos, unsigned len, unsigned flags,
1464 			struct page **pagep, void **fsdata)
1465 {
1466 	struct inode *inode = mapping->host;
1467 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1468 	*pagep = NULL;
1469 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1470 }
1471 
1472 static int
1473 shmem_write_end(struct file *file, struct address_space *mapping,
1474 			loff_t pos, unsigned len, unsigned copied,
1475 			struct page *page, void *fsdata)
1476 {
1477 	struct inode *inode = mapping->host;
1478 
1479 	if (pos + copied > inode->i_size)
1480 		i_size_write(inode, pos + copied);
1481 
1482 	unlock_page(page);
1483 	set_page_dirty(page);
1484 	page_cache_release(page);
1485 
1486 	return copied;
1487 }
1488 
1489 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1490 {
1491 	struct inode *inode = filp->f_path.dentry->d_inode;
1492 	struct address_space *mapping = inode->i_mapping;
1493 	unsigned long index, offset;
1494 
1495 	index = *ppos >> PAGE_CACHE_SHIFT;
1496 	offset = *ppos & ~PAGE_CACHE_MASK;
1497 
1498 	for (;;) {
1499 		struct page *page = NULL;
1500 		unsigned long end_index, nr, ret;
1501 		loff_t i_size = i_size_read(inode);
1502 
1503 		end_index = i_size >> PAGE_CACHE_SHIFT;
1504 		if (index > end_index)
1505 			break;
1506 		if (index == end_index) {
1507 			nr = i_size & ~PAGE_CACHE_MASK;
1508 			if (nr <= offset)
1509 				break;
1510 		}
1511 
1512 		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1513 		if (desc->error) {
1514 			if (desc->error == -EINVAL)
1515 				desc->error = 0;
1516 			break;
1517 		}
1518 		if (page)
1519 			unlock_page(page);
1520 
1521 		/*
1522 		 * We must evaluate after, since reads (unlike writes)
1523 		 * are called without i_mutex protection against truncate
1524 		 */
1525 		nr = PAGE_CACHE_SIZE;
1526 		i_size = i_size_read(inode);
1527 		end_index = i_size >> PAGE_CACHE_SHIFT;
1528 		if (index == end_index) {
1529 			nr = i_size & ~PAGE_CACHE_MASK;
1530 			if (nr <= offset) {
1531 				if (page)
1532 					page_cache_release(page);
1533 				break;
1534 			}
1535 		}
1536 		nr -= offset;
1537 
1538 		if (page) {
1539 			/*
1540 			 * If users can be writing to this page using arbitrary
1541 			 * virtual addresses, take care about potential aliasing
1542 			 * before reading the page on the kernel side.
1543 			 */
1544 			if (mapping_writably_mapped(mapping))
1545 				flush_dcache_page(page);
1546 			/*
1547 			 * Mark the page accessed if we read the beginning.
1548 			 */
1549 			if (!offset)
1550 				mark_page_accessed(page);
1551 		} else {
1552 			page = ZERO_PAGE(0);
1553 			page_cache_get(page);
1554 		}
1555 
1556 		/*
1557 		 * Ok, we have the page, and it's up-to-date, so
1558 		 * now we can copy it to user space...
1559 		 *
1560 		 * The actor routine returns how many bytes were actually used..
1561 		 * NOTE! This may not be the same as how much of a user buffer
1562 		 * we filled up (we may be padding etc), so we can only update
1563 		 * "pos" here (the actor routine has to update the user buffer
1564 		 * pointers and the remaining count).
1565 		 */
1566 		ret = actor(desc, page, offset, nr);
1567 		offset += ret;
1568 		index += offset >> PAGE_CACHE_SHIFT;
1569 		offset &= ~PAGE_CACHE_MASK;
1570 
1571 		page_cache_release(page);
1572 		if (ret != nr || !desc->count)
1573 			break;
1574 
1575 		cond_resched();
1576 	}
1577 
1578 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1579 	file_accessed(filp);
1580 }
1581 
1582 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1583 {
1584 	read_descriptor_t desc;
1585 
1586 	if ((ssize_t) count < 0)
1587 		return -EINVAL;
1588 	if (!access_ok(VERIFY_WRITE, buf, count))
1589 		return -EFAULT;
1590 	if (!count)
1591 		return 0;
1592 
1593 	desc.written = 0;
1594 	desc.count = count;
1595 	desc.arg.buf = buf;
1596 	desc.error = 0;
1597 
1598 	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1599 	if (desc.written)
1600 		return desc.written;
1601 	return desc.error;
1602 }
1603 
1604 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1605 {
1606 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1607 
1608 	buf->f_type = TMPFS_MAGIC;
1609 	buf->f_bsize = PAGE_CACHE_SIZE;
1610 	buf->f_namelen = NAME_MAX;
1611 	spin_lock(&sbinfo->stat_lock);
1612 	if (sbinfo->max_blocks) {
1613 		buf->f_blocks = sbinfo->max_blocks;
1614 		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1615 	}
1616 	if (sbinfo->max_inodes) {
1617 		buf->f_files = sbinfo->max_inodes;
1618 		buf->f_ffree = sbinfo->free_inodes;
1619 	}
1620 	/* else leave those fields 0 like simple_statfs */
1621 	spin_unlock(&sbinfo->stat_lock);
1622 	return 0;
1623 }
1624 
1625 /*
1626  * File creation. Allocate an inode, and we're done..
1627  */
1628 static int
1629 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1630 {
1631 	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1632 	int error = -ENOSPC;
1633 
1634 	if (inode) {
1635 		error = security_inode_init_security(inode, dir, NULL, NULL,
1636 						     NULL);
1637 		if (error) {
1638 			if (error != -EOPNOTSUPP) {
1639 				iput(inode);
1640 				return error;
1641 			}
1642 		}
1643 		error = shmem_acl_init(inode, dir);
1644 		if (error) {
1645 			iput(inode);
1646 			return error;
1647 		}
1648 		if (dir->i_mode & S_ISGID) {
1649 			inode->i_gid = dir->i_gid;
1650 			if (S_ISDIR(mode))
1651 				inode->i_mode |= S_ISGID;
1652 		}
1653 		dir->i_size += BOGO_DIRENT_SIZE;
1654 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1655 		d_instantiate(dentry, inode);
1656 		dget(dentry); /* Extra count - pin the dentry in core */
1657 	}
1658 	return error;
1659 }
1660 
1661 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1662 {
1663 	int error;
1664 
1665 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1666 		return error;
1667 	inc_nlink(dir);
1668 	return 0;
1669 }
1670 
1671 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1672 		struct nameidata *nd)
1673 {
1674 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1675 }
1676 
1677 /*
1678  * Link a file..
1679  */
1680 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1681 {
1682 	struct inode *inode = old_dentry->d_inode;
1683 	int ret;
1684 
1685 	/*
1686 	 * No ordinary (disk based) filesystem counts links as inodes;
1687 	 * but each new link needs a new dentry, pinning lowmem, and
1688 	 * tmpfs dentries cannot be pruned until they are unlinked.
1689 	 */
1690 	ret = shmem_reserve_inode(inode->i_sb);
1691 	if (ret)
1692 		goto out;
1693 
1694 	dir->i_size += BOGO_DIRENT_SIZE;
1695 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1696 	inc_nlink(inode);
1697 	atomic_inc(&inode->i_count);	/* New dentry reference */
1698 	dget(dentry);		/* Extra pinning count for the created dentry */
1699 	d_instantiate(dentry, inode);
1700 out:
1701 	return ret;
1702 }
1703 
1704 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1705 {
1706 	struct inode *inode = dentry->d_inode;
1707 
1708 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1709 		shmem_free_inode(inode->i_sb);
1710 
1711 	dir->i_size -= BOGO_DIRENT_SIZE;
1712 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1713 	drop_nlink(inode);
1714 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1715 	return 0;
1716 }
1717 
1718 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1719 {
1720 	if (!simple_empty(dentry))
1721 		return -ENOTEMPTY;
1722 
1723 	drop_nlink(dentry->d_inode);
1724 	drop_nlink(dir);
1725 	return shmem_unlink(dir, dentry);
1726 }
1727 
1728 /*
1729  * The VFS layer already does all the dentry stuff for rename,
1730  * we just have to decrement the usage count for the target if
1731  * it exists so that the VFS layer correctly free's it when it
1732  * gets overwritten.
1733  */
1734 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1735 {
1736 	struct inode *inode = old_dentry->d_inode;
1737 	int they_are_dirs = S_ISDIR(inode->i_mode);
1738 
1739 	if (!simple_empty(new_dentry))
1740 		return -ENOTEMPTY;
1741 
1742 	if (new_dentry->d_inode) {
1743 		(void) shmem_unlink(new_dir, new_dentry);
1744 		if (they_are_dirs)
1745 			drop_nlink(old_dir);
1746 	} else if (they_are_dirs) {
1747 		drop_nlink(old_dir);
1748 		inc_nlink(new_dir);
1749 	}
1750 
1751 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1752 	new_dir->i_size += BOGO_DIRENT_SIZE;
1753 	old_dir->i_ctime = old_dir->i_mtime =
1754 	new_dir->i_ctime = new_dir->i_mtime =
1755 	inode->i_ctime = CURRENT_TIME;
1756 	return 0;
1757 }
1758 
1759 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1760 {
1761 	int error;
1762 	int len;
1763 	struct inode *inode;
1764 	struct page *page = NULL;
1765 	char *kaddr;
1766 	struct shmem_inode_info *info;
1767 
1768 	len = strlen(symname) + 1;
1769 	if (len > PAGE_CACHE_SIZE)
1770 		return -ENAMETOOLONG;
1771 
1772 	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1773 	if (!inode)
1774 		return -ENOSPC;
1775 
1776 	error = security_inode_init_security(inode, dir, NULL, NULL,
1777 					     NULL);
1778 	if (error) {
1779 		if (error != -EOPNOTSUPP) {
1780 			iput(inode);
1781 			return error;
1782 		}
1783 		error = 0;
1784 	}
1785 
1786 	info = SHMEM_I(inode);
1787 	inode->i_size = len-1;
1788 	if (len <= (char *)inode - (char *)info) {
1789 		/* do it inline */
1790 		memcpy(info, symname, len);
1791 		inode->i_op = &shmem_symlink_inline_operations;
1792 	} else {
1793 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1794 		if (error) {
1795 			iput(inode);
1796 			return error;
1797 		}
1798 		unlock_page(page);
1799 		inode->i_op = &shmem_symlink_inode_operations;
1800 		kaddr = kmap_atomic(page, KM_USER0);
1801 		memcpy(kaddr, symname, len);
1802 		kunmap_atomic(kaddr, KM_USER0);
1803 		set_page_dirty(page);
1804 		page_cache_release(page);
1805 	}
1806 	if (dir->i_mode & S_ISGID)
1807 		inode->i_gid = dir->i_gid;
1808 	dir->i_size += BOGO_DIRENT_SIZE;
1809 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1810 	d_instantiate(dentry, inode);
1811 	dget(dentry);
1812 	return 0;
1813 }
1814 
1815 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1816 {
1817 	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1818 	return NULL;
1819 }
1820 
1821 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1822 {
1823 	struct page *page = NULL;
1824 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1825 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1826 	if (page)
1827 		unlock_page(page);
1828 	return page;
1829 }
1830 
1831 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1832 {
1833 	if (!IS_ERR(nd_get_link(nd))) {
1834 		struct page *page = cookie;
1835 		kunmap(page);
1836 		mark_page_accessed(page);
1837 		page_cache_release(page);
1838 	}
1839 }
1840 
1841 static const struct inode_operations shmem_symlink_inline_operations = {
1842 	.readlink	= generic_readlink,
1843 	.follow_link	= shmem_follow_link_inline,
1844 };
1845 
1846 static const struct inode_operations shmem_symlink_inode_operations = {
1847 	.truncate	= shmem_truncate,
1848 	.readlink	= generic_readlink,
1849 	.follow_link	= shmem_follow_link,
1850 	.put_link	= shmem_put_link,
1851 };
1852 
1853 #ifdef CONFIG_TMPFS_POSIX_ACL
1854 /**
1855  * Superblocks without xattr inode operations will get security.* xattr
1856  * support from the VFS "for free". As soon as we have any other xattrs
1857  * like ACLs, we also need to implement the security.* handlers at
1858  * filesystem level, though.
1859  */
1860 
1861 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1862 					size_t list_len, const char *name,
1863 					size_t name_len)
1864 {
1865 	return security_inode_listsecurity(inode, list, list_len);
1866 }
1867 
1868 static int shmem_xattr_security_get(struct inode *inode, const char *name,
1869 				    void *buffer, size_t size)
1870 {
1871 	if (strcmp(name, "") == 0)
1872 		return -EINVAL;
1873 	return security_inode_getsecurity(inode, name, buffer, size,
1874 					  -EOPNOTSUPP);
1875 }
1876 
1877 static int shmem_xattr_security_set(struct inode *inode, const char *name,
1878 				    const void *value, size_t size, int flags)
1879 {
1880 	if (strcmp(name, "") == 0)
1881 		return -EINVAL;
1882 	return security_inode_setsecurity(inode, name, value, size, flags);
1883 }
1884 
1885 static struct xattr_handler shmem_xattr_security_handler = {
1886 	.prefix = XATTR_SECURITY_PREFIX,
1887 	.list   = shmem_xattr_security_list,
1888 	.get    = shmem_xattr_security_get,
1889 	.set    = shmem_xattr_security_set,
1890 };
1891 
1892 static struct xattr_handler *shmem_xattr_handlers[] = {
1893 	&shmem_xattr_acl_access_handler,
1894 	&shmem_xattr_acl_default_handler,
1895 	&shmem_xattr_security_handler,
1896 	NULL
1897 };
1898 #endif
1899 
1900 static struct dentry *shmem_get_parent(struct dentry *child)
1901 {
1902 	return ERR_PTR(-ESTALE);
1903 }
1904 
1905 static int shmem_match(struct inode *ino, void *vfh)
1906 {
1907 	__u32 *fh = vfh;
1908 	__u64 inum = fh[2];
1909 	inum = (inum << 32) | fh[1];
1910 	return ino->i_ino == inum && fh[0] == ino->i_generation;
1911 }
1912 
1913 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1914 		struct fid *fid, int fh_len, int fh_type)
1915 {
1916 	struct inode *inode;
1917 	struct dentry *dentry = NULL;
1918 	u64 inum = fid->raw[2];
1919 	inum = (inum << 32) | fid->raw[1];
1920 
1921 	if (fh_len < 3)
1922 		return NULL;
1923 
1924 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1925 			shmem_match, fid->raw);
1926 	if (inode) {
1927 		dentry = d_find_alias(inode);
1928 		iput(inode);
1929 	}
1930 
1931 	return dentry;
1932 }
1933 
1934 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
1935 				int connectable)
1936 {
1937 	struct inode *inode = dentry->d_inode;
1938 
1939 	if (*len < 3)
1940 		return 255;
1941 
1942 	if (hlist_unhashed(&inode->i_hash)) {
1943 		/* Unfortunately insert_inode_hash is not idempotent,
1944 		 * so as we hash inodes here rather than at creation
1945 		 * time, we need a lock to ensure we only try
1946 		 * to do it once
1947 		 */
1948 		static DEFINE_SPINLOCK(lock);
1949 		spin_lock(&lock);
1950 		if (hlist_unhashed(&inode->i_hash))
1951 			__insert_inode_hash(inode,
1952 					    inode->i_ino + inode->i_generation);
1953 		spin_unlock(&lock);
1954 	}
1955 
1956 	fh[0] = inode->i_generation;
1957 	fh[1] = inode->i_ino;
1958 	fh[2] = ((__u64)inode->i_ino) >> 32;
1959 
1960 	*len = 3;
1961 	return 1;
1962 }
1963 
1964 static const struct export_operations shmem_export_ops = {
1965 	.get_parent     = shmem_get_parent,
1966 	.encode_fh      = shmem_encode_fh,
1967 	.fh_to_dentry	= shmem_fh_to_dentry,
1968 };
1969 
1970 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
1971 	gid_t *gid, unsigned long *blocks, unsigned long *inodes,
1972 	int *policy, nodemask_t *policy_nodes)
1973 {
1974 	char *this_char, *value, *rest;
1975 
1976 	while (options != NULL) {
1977 		this_char = options;
1978 		for (;;) {
1979 			/*
1980 			 * NUL-terminate this option: unfortunately,
1981 			 * mount options form a comma-separated list,
1982 			 * but mpol's nodelist may also contain commas.
1983 			 */
1984 			options = strchr(options, ',');
1985 			if (options == NULL)
1986 				break;
1987 			options++;
1988 			if (!isdigit(*options)) {
1989 				options[-1] = '\0';
1990 				break;
1991 			}
1992 		}
1993 		if (!*this_char)
1994 			continue;
1995 		if ((value = strchr(this_char,'=')) != NULL) {
1996 			*value++ = 0;
1997 		} else {
1998 			printk(KERN_ERR
1999 			    "tmpfs: No value for mount option '%s'\n",
2000 			    this_char);
2001 			return 1;
2002 		}
2003 
2004 		if (!strcmp(this_char,"size")) {
2005 			unsigned long long size;
2006 			size = memparse(value,&rest);
2007 			if (*rest == '%') {
2008 				size <<= PAGE_SHIFT;
2009 				size *= totalram_pages;
2010 				do_div(size, 100);
2011 				rest++;
2012 			}
2013 			if (*rest)
2014 				goto bad_val;
2015 			*blocks = size >> PAGE_CACHE_SHIFT;
2016 		} else if (!strcmp(this_char,"nr_blocks")) {
2017 			*blocks = memparse(value,&rest);
2018 			if (*rest)
2019 				goto bad_val;
2020 		} else if (!strcmp(this_char,"nr_inodes")) {
2021 			*inodes = memparse(value,&rest);
2022 			if (*rest)
2023 				goto bad_val;
2024 		} else if (!strcmp(this_char,"mode")) {
2025 			if (!mode)
2026 				continue;
2027 			*mode = simple_strtoul(value,&rest,8);
2028 			if (*rest)
2029 				goto bad_val;
2030 		} else if (!strcmp(this_char,"uid")) {
2031 			if (!uid)
2032 				continue;
2033 			*uid = simple_strtoul(value,&rest,0);
2034 			if (*rest)
2035 				goto bad_val;
2036 		} else if (!strcmp(this_char,"gid")) {
2037 			if (!gid)
2038 				continue;
2039 			*gid = simple_strtoul(value,&rest,0);
2040 			if (*rest)
2041 				goto bad_val;
2042 		} else if (!strcmp(this_char,"mpol")) {
2043 			if (shmem_parse_mpol(value,policy,policy_nodes))
2044 				goto bad_val;
2045 		} else {
2046 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2047 			       this_char);
2048 			return 1;
2049 		}
2050 	}
2051 	return 0;
2052 
2053 bad_val:
2054 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2055 	       value, this_char);
2056 	return 1;
2057 
2058 }
2059 
2060 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2061 {
2062 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2063 	unsigned long max_blocks = sbinfo->max_blocks;
2064 	unsigned long max_inodes = sbinfo->max_inodes;
2065 	int policy = sbinfo->policy;
2066 	nodemask_t policy_nodes = sbinfo->policy_nodes;
2067 	unsigned long blocks;
2068 	unsigned long inodes;
2069 	int error = -EINVAL;
2070 
2071 	if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2072 				&max_inodes, &policy, &policy_nodes))
2073 		return error;
2074 
2075 	spin_lock(&sbinfo->stat_lock);
2076 	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2077 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2078 	if (max_blocks < blocks)
2079 		goto out;
2080 	if (max_inodes < inodes)
2081 		goto out;
2082 	/*
2083 	 * Those tests also disallow limited->unlimited while any are in
2084 	 * use, so i_blocks will always be zero when max_blocks is zero;
2085 	 * but we must separately disallow unlimited->limited, because
2086 	 * in that case we have no record of how much is already in use.
2087 	 */
2088 	if (max_blocks && !sbinfo->max_blocks)
2089 		goto out;
2090 	if (max_inodes && !sbinfo->max_inodes)
2091 		goto out;
2092 
2093 	error = 0;
2094 	sbinfo->max_blocks  = max_blocks;
2095 	sbinfo->free_blocks = max_blocks - blocks;
2096 	sbinfo->max_inodes  = max_inodes;
2097 	sbinfo->free_inodes = max_inodes - inodes;
2098 	sbinfo->policy = policy;
2099 	sbinfo->policy_nodes = policy_nodes;
2100 out:
2101 	spin_unlock(&sbinfo->stat_lock);
2102 	return error;
2103 }
2104 #endif
2105 
2106 static void shmem_put_super(struct super_block *sb)
2107 {
2108 	kfree(sb->s_fs_info);
2109 	sb->s_fs_info = NULL;
2110 }
2111 
2112 static int shmem_fill_super(struct super_block *sb,
2113 			    void *data, int silent)
2114 {
2115 	struct inode *inode;
2116 	struct dentry *root;
2117 	int mode   = S_IRWXUGO | S_ISVTX;
2118 	uid_t uid = current->fsuid;
2119 	gid_t gid = current->fsgid;
2120 	int err = -ENOMEM;
2121 	struct shmem_sb_info *sbinfo;
2122 	unsigned long blocks = 0;
2123 	unsigned long inodes = 0;
2124 	int policy = MPOL_DEFAULT;
2125 	nodemask_t policy_nodes = node_states[N_HIGH_MEMORY];
2126 
2127 #ifdef CONFIG_TMPFS
2128 	/*
2129 	 * Per default we only allow half of the physical ram per
2130 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2131 	 * but the internal instance is left unlimited.
2132 	 */
2133 	if (!(sb->s_flags & MS_NOUSER)) {
2134 		blocks = totalram_pages / 2;
2135 		inodes = totalram_pages - totalhigh_pages;
2136 		if (inodes > blocks)
2137 			inodes = blocks;
2138 		if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2139 					&inodes, &policy, &policy_nodes))
2140 			return -EINVAL;
2141 	}
2142 	sb->s_export_op = &shmem_export_ops;
2143 #else
2144 	sb->s_flags |= MS_NOUSER;
2145 #endif
2146 
2147 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2148 	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2149 				L1_CACHE_BYTES), GFP_KERNEL);
2150 	if (!sbinfo)
2151 		return -ENOMEM;
2152 
2153 	spin_lock_init(&sbinfo->stat_lock);
2154 	sbinfo->max_blocks = blocks;
2155 	sbinfo->free_blocks = blocks;
2156 	sbinfo->max_inodes = inodes;
2157 	sbinfo->free_inodes = inodes;
2158 	sbinfo->policy = policy;
2159 	sbinfo->policy_nodes = policy_nodes;
2160 
2161 	sb->s_fs_info = sbinfo;
2162 	sb->s_maxbytes = SHMEM_MAX_BYTES;
2163 	sb->s_blocksize = PAGE_CACHE_SIZE;
2164 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2165 	sb->s_magic = TMPFS_MAGIC;
2166 	sb->s_op = &shmem_ops;
2167 	sb->s_time_gran = 1;
2168 #ifdef CONFIG_TMPFS_POSIX_ACL
2169 	sb->s_xattr = shmem_xattr_handlers;
2170 	sb->s_flags |= MS_POSIXACL;
2171 #endif
2172 
2173 	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2174 	if (!inode)
2175 		goto failed;
2176 	inode->i_uid = uid;
2177 	inode->i_gid = gid;
2178 	root = d_alloc_root(inode);
2179 	if (!root)
2180 		goto failed_iput;
2181 	sb->s_root = root;
2182 	return 0;
2183 
2184 failed_iput:
2185 	iput(inode);
2186 failed:
2187 	shmem_put_super(sb);
2188 	return err;
2189 }
2190 
2191 static struct kmem_cache *shmem_inode_cachep;
2192 
2193 static struct inode *shmem_alloc_inode(struct super_block *sb)
2194 {
2195 	struct shmem_inode_info *p;
2196 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2197 	if (!p)
2198 		return NULL;
2199 	return &p->vfs_inode;
2200 }
2201 
2202 static void shmem_destroy_inode(struct inode *inode)
2203 {
2204 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2205 		/* only struct inode is valid if it's an inline symlink */
2206 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2207 	}
2208 	shmem_acl_destroy_inode(inode);
2209 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2210 }
2211 
2212 static void init_once(struct kmem_cache *cachep, void *foo)
2213 {
2214 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2215 
2216 	inode_init_once(&p->vfs_inode);
2217 #ifdef CONFIG_TMPFS_POSIX_ACL
2218 	p->i_acl = NULL;
2219 	p->i_default_acl = NULL;
2220 #endif
2221 }
2222 
2223 static int init_inodecache(void)
2224 {
2225 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2226 				sizeof(struct shmem_inode_info),
2227 				0, SLAB_PANIC, init_once);
2228 	return 0;
2229 }
2230 
2231 static void destroy_inodecache(void)
2232 {
2233 	kmem_cache_destroy(shmem_inode_cachep);
2234 }
2235 
2236 static const struct address_space_operations shmem_aops = {
2237 	.writepage	= shmem_writepage,
2238 	.set_page_dirty	= __set_page_dirty_no_writeback,
2239 #ifdef CONFIG_TMPFS
2240 	.readpage	= shmem_readpage,
2241 	.write_begin	= shmem_write_begin,
2242 	.write_end	= shmem_write_end,
2243 #endif
2244 	.migratepage	= migrate_page,
2245 };
2246 
2247 static const struct file_operations shmem_file_operations = {
2248 	.mmap		= shmem_mmap,
2249 #ifdef CONFIG_TMPFS
2250 	.llseek		= generic_file_llseek,
2251 	.read		= shmem_file_read,
2252 	.write		= do_sync_write,
2253 	.aio_write	= generic_file_aio_write,
2254 	.fsync		= simple_sync_file,
2255 	.splice_read	= generic_file_splice_read,
2256 	.splice_write	= generic_file_splice_write,
2257 #endif
2258 };
2259 
2260 static const struct inode_operations shmem_inode_operations = {
2261 	.truncate	= shmem_truncate,
2262 	.setattr	= shmem_notify_change,
2263 	.truncate_range	= shmem_truncate_range,
2264 #ifdef CONFIG_TMPFS_POSIX_ACL
2265 	.setxattr	= generic_setxattr,
2266 	.getxattr	= generic_getxattr,
2267 	.listxattr	= generic_listxattr,
2268 	.removexattr	= generic_removexattr,
2269 	.permission	= shmem_permission,
2270 #endif
2271 
2272 };
2273 
2274 static const struct inode_operations shmem_dir_inode_operations = {
2275 #ifdef CONFIG_TMPFS
2276 	.create		= shmem_create,
2277 	.lookup		= simple_lookup,
2278 	.link		= shmem_link,
2279 	.unlink		= shmem_unlink,
2280 	.symlink	= shmem_symlink,
2281 	.mkdir		= shmem_mkdir,
2282 	.rmdir		= shmem_rmdir,
2283 	.mknod		= shmem_mknod,
2284 	.rename		= shmem_rename,
2285 #endif
2286 #ifdef CONFIG_TMPFS_POSIX_ACL
2287 	.setattr	= shmem_notify_change,
2288 	.setxattr	= generic_setxattr,
2289 	.getxattr	= generic_getxattr,
2290 	.listxattr	= generic_listxattr,
2291 	.removexattr	= generic_removexattr,
2292 	.permission	= shmem_permission,
2293 #endif
2294 };
2295 
2296 static const struct inode_operations shmem_special_inode_operations = {
2297 #ifdef CONFIG_TMPFS_POSIX_ACL
2298 	.setattr	= shmem_notify_change,
2299 	.setxattr	= generic_setxattr,
2300 	.getxattr	= generic_getxattr,
2301 	.listxattr	= generic_listxattr,
2302 	.removexattr	= generic_removexattr,
2303 	.permission	= shmem_permission,
2304 #endif
2305 };
2306 
2307 static const struct super_operations shmem_ops = {
2308 	.alloc_inode	= shmem_alloc_inode,
2309 	.destroy_inode	= shmem_destroy_inode,
2310 #ifdef CONFIG_TMPFS
2311 	.statfs		= shmem_statfs,
2312 	.remount_fs	= shmem_remount_fs,
2313 #endif
2314 	.delete_inode	= shmem_delete_inode,
2315 	.drop_inode	= generic_delete_inode,
2316 	.put_super	= shmem_put_super,
2317 };
2318 
2319 static struct vm_operations_struct shmem_vm_ops = {
2320 	.fault		= shmem_fault,
2321 #ifdef CONFIG_NUMA
2322 	.set_policy     = shmem_set_policy,
2323 	.get_policy     = shmem_get_policy,
2324 #endif
2325 };
2326 
2327 
2328 static int shmem_get_sb(struct file_system_type *fs_type,
2329 	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2330 {
2331 	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2332 }
2333 
2334 static struct file_system_type tmpfs_fs_type = {
2335 	.owner		= THIS_MODULE,
2336 	.name		= "tmpfs",
2337 	.get_sb		= shmem_get_sb,
2338 	.kill_sb	= kill_litter_super,
2339 };
2340 static struct vfsmount *shm_mnt;
2341 
2342 static int __init init_tmpfs(void)
2343 {
2344 	int error;
2345 
2346 	error = bdi_init(&shmem_backing_dev_info);
2347 	if (error)
2348 		goto out4;
2349 
2350 	error = init_inodecache();
2351 	if (error)
2352 		goto out3;
2353 
2354 	error = register_filesystem(&tmpfs_fs_type);
2355 	if (error) {
2356 		printk(KERN_ERR "Could not register tmpfs\n");
2357 		goto out2;
2358 	}
2359 
2360 	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2361 				tmpfs_fs_type.name, NULL);
2362 	if (IS_ERR(shm_mnt)) {
2363 		error = PTR_ERR(shm_mnt);
2364 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2365 		goto out1;
2366 	}
2367 	return 0;
2368 
2369 out1:
2370 	unregister_filesystem(&tmpfs_fs_type);
2371 out2:
2372 	destroy_inodecache();
2373 out3:
2374 	bdi_destroy(&shmem_backing_dev_info);
2375 out4:
2376 	shm_mnt = ERR_PTR(error);
2377 	return error;
2378 }
2379 module_init(init_tmpfs)
2380 
2381 /*
2382  * shmem_file_setup - get an unlinked file living in tmpfs
2383  *
2384  * @name: name for dentry (to be seen in /proc/<pid>/maps
2385  * @size: size to be set for the file
2386  *
2387  */
2388 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2389 {
2390 	int error;
2391 	struct file *file;
2392 	struct inode *inode;
2393 	struct dentry *dentry, *root;
2394 	struct qstr this;
2395 
2396 	if (IS_ERR(shm_mnt))
2397 		return (void *)shm_mnt;
2398 
2399 	if (size < 0 || size > SHMEM_MAX_BYTES)
2400 		return ERR_PTR(-EINVAL);
2401 
2402 	if (shmem_acct_size(flags, size))
2403 		return ERR_PTR(-ENOMEM);
2404 
2405 	error = -ENOMEM;
2406 	this.name = name;
2407 	this.len = strlen(name);
2408 	this.hash = 0; /* will go */
2409 	root = shm_mnt->mnt_root;
2410 	dentry = d_alloc(root, &this);
2411 	if (!dentry)
2412 		goto put_memory;
2413 
2414 	error = -ENFILE;
2415 	file = get_empty_filp();
2416 	if (!file)
2417 		goto put_dentry;
2418 
2419 	error = -ENOSPC;
2420 	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2421 	if (!inode)
2422 		goto close_file;
2423 
2424 	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2425 	d_instantiate(dentry, inode);
2426 	inode->i_size = size;
2427 	inode->i_nlink = 0;	/* It is unlinked */
2428 	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2429 			&shmem_file_operations);
2430 	return file;
2431 
2432 close_file:
2433 	put_filp(file);
2434 put_dentry:
2435 	dput(dentry);
2436 put_memory:
2437 	shmem_unacct_size(flags, size);
2438 	return ERR_PTR(error);
2439 }
2440 
2441 /*
2442  * shmem_zero_setup - setup a shared anonymous mapping
2443  *
2444  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2445  */
2446 int shmem_zero_setup(struct vm_area_struct *vma)
2447 {
2448 	struct file *file;
2449 	loff_t size = vma->vm_end - vma->vm_start;
2450 
2451 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2452 	if (IS_ERR(file))
2453 		return PTR_ERR(file);
2454 
2455 	if (vma->vm_file)
2456 		fput(vma->vm_file);
2457 	vma->vm_file = file;
2458 	vma->vm_ops = &shmem_vm_ops;
2459 	return 0;
2460 }
2461