1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include "swap.h" 44 45 static struct vfsmount *shm_mnt; 46 47 #ifdef CONFIG_SHMEM 48 /* 49 * This virtual memory filesystem is heavily based on the ramfs. It 50 * extends ramfs by the ability to use swap and honor resource limits 51 * which makes it a completely usable filesystem. 52 */ 53 54 #include <linux/xattr.h> 55 #include <linux/exportfs.h> 56 #include <linux/posix_acl.h> 57 #include <linux/posix_acl_xattr.h> 58 #include <linux/mman.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/backing-dev.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 #include <linux/quotaops.h> 82 83 #include <linux/uaccess.h> 84 85 #include "internal.h" 86 87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 89 90 /* Pretend that each entry is of this size in directory's i_size */ 91 #define BOGO_DIRENT_SIZE 20 92 93 /* Pretend that one inode + its dentry occupy this much memory */ 94 #define BOGO_INODE_SIZE 1024 95 96 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 97 #define SHORT_SYMLINK_LEN 128 98 99 /* 100 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 101 * inode->i_private (with i_rwsem making sure that it has only one user at 102 * a time): we would prefer not to enlarge the shmem inode just for that. 103 */ 104 struct shmem_falloc { 105 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 106 pgoff_t start; /* start of range currently being fallocated */ 107 pgoff_t next; /* the next page offset to be fallocated */ 108 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 109 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 110 }; 111 112 struct shmem_options { 113 unsigned long long blocks; 114 unsigned long long inodes; 115 struct mempolicy *mpol; 116 kuid_t uid; 117 kgid_t gid; 118 umode_t mode; 119 bool full_inums; 120 int huge; 121 int seen; 122 bool noswap; 123 unsigned short quota_types; 124 struct shmem_quota_limits qlimits; 125 #define SHMEM_SEEN_BLOCKS 1 126 #define SHMEM_SEEN_INODES 2 127 #define SHMEM_SEEN_HUGE 4 128 #define SHMEM_SEEN_INUMS 8 129 #define SHMEM_SEEN_NOSWAP 16 130 #define SHMEM_SEEN_QUOTA 32 131 }; 132 133 #ifdef CONFIG_TMPFS 134 static unsigned long shmem_default_max_blocks(void) 135 { 136 return totalram_pages() / 2; 137 } 138 139 static unsigned long shmem_default_max_inodes(void) 140 { 141 unsigned long nr_pages = totalram_pages(); 142 143 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 144 ULONG_MAX / BOGO_INODE_SIZE); 145 } 146 #endif 147 148 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 149 struct folio **foliop, enum sgp_type sgp, 150 gfp_t gfp, struct vm_area_struct *vma, 151 vm_fault_t *fault_type); 152 153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 154 { 155 return sb->s_fs_info; 156 } 157 158 /* 159 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 160 * for shared memory and for shared anonymous (/dev/zero) mappings 161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 162 * consistent with the pre-accounting of private mappings ... 163 */ 164 static inline int shmem_acct_size(unsigned long flags, loff_t size) 165 { 166 return (flags & VM_NORESERVE) ? 167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 168 } 169 170 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 171 { 172 if (!(flags & VM_NORESERVE)) 173 vm_unacct_memory(VM_ACCT(size)); 174 } 175 176 static inline int shmem_reacct_size(unsigned long flags, 177 loff_t oldsize, loff_t newsize) 178 { 179 if (!(flags & VM_NORESERVE)) { 180 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 181 return security_vm_enough_memory_mm(current->mm, 182 VM_ACCT(newsize) - VM_ACCT(oldsize)); 183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 185 } 186 return 0; 187 } 188 189 /* 190 * ... whereas tmpfs objects are accounted incrementally as 191 * pages are allocated, in order to allow large sparse files. 192 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 194 */ 195 static inline int shmem_acct_block(unsigned long flags, long pages) 196 { 197 if (!(flags & VM_NORESERVE)) 198 return 0; 199 200 return security_vm_enough_memory_mm(current->mm, 201 pages * VM_ACCT(PAGE_SIZE)); 202 } 203 204 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 205 { 206 if (flags & VM_NORESERVE) 207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static int shmem_inode_acct_block(struct inode *inode, long pages) 211 { 212 struct shmem_inode_info *info = SHMEM_I(inode); 213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 214 int err = -ENOSPC; 215 216 if (shmem_acct_block(info->flags, pages)) 217 return err; 218 219 might_sleep(); /* when quotas */ 220 if (sbinfo->max_blocks) { 221 if (percpu_counter_compare(&sbinfo->used_blocks, 222 sbinfo->max_blocks - pages) > 0) 223 goto unacct; 224 225 err = dquot_alloc_block_nodirty(inode, pages); 226 if (err) 227 goto unacct; 228 229 percpu_counter_add(&sbinfo->used_blocks, pages); 230 } else { 231 err = dquot_alloc_block_nodirty(inode, pages); 232 if (err) 233 goto unacct; 234 } 235 236 return 0; 237 238 unacct: 239 shmem_unacct_blocks(info->flags, pages); 240 return err; 241 } 242 243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 244 { 245 struct shmem_inode_info *info = SHMEM_I(inode); 246 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 247 248 might_sleep(); /* when quotas */ 249 dquot_free_block_nodirty(inode, pages); 250 251 if (sbinfo->max_blocks) 252 percpu_counter_sub(&sbinfo->used_blocks, pages); 253 shmem_unacct_blocks(info->flags, pages); 254 } 255 256 static const struct super_operations shmem_ops; 257 const struct address_space_operations shmem_aops; 258 static const struct file_operations shmem_file_operations; 259 static const struct inode_operations shmem_inode_operations; 260 static const struct inode_operations shmem_dir_inode_operations; 261 static const struct inode_operations shmem_special_inode_operations; 262 static const struct vm_operations_struct shmem_vm_ops; 263 static const struct vm_operations_struct shmem_anon_vm_ops; 264 static struct file_system_type shmem_fs_type; 265 266 bool vma_is_anon_shmem(struct vm_area_struct *vma) 267 { 268 return vma->vm_ops == &shmem_anon_vm_ops; 269 } 270 271 bool vma_is_shmem(struct vm_area_struct *vma) 272 { 273 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 274 } 275 276 static LIST_HEAD(shmem_swaplist); 277 static DEFINE_MUTEX(shmem_swaplist_mutex); 278 279 #ifdef CONFIG_TMPFS_QUOTA 280 281 static int shmem_enable_quotas(struct super_block *sb, 282 unsigned short quota_types) 283 { 284 int type, err = 0; 285 286 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 287 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 288 if (!(quota_types & (1 << type))) 289 continue; 290 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 291 DQUOT_USAGE_ENABLED | 292 DQUOT_LIMITS_ENABLED); 293 if (err) 294 goto out_err; 295 } 296 return 0; 297 298 out_err: 299 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 300 type, err); 301 for (type--; type >= 0; type--) 302 dquot_quota_off(sb, type); 303 return err; 304 } 305 306 static void shmem_disable_quotas(struct super_block *sb) 307 { 308 int type; 309 310 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 311 dquot_quota_off(sb, type); 312 } 313 314 static struct dquot **shmem_get_dquots(struct inode *inode) 315 { 316 return SHMEM_I(inode)->i_dquot; 317 } 318 #endif /* CONFIG_TMPFS_QUOTA */ 319 320 /* 321 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 322 * produces a novel ino for the newly allocated inode. 323 * 324 * It may also be called when making a hard link to permit the space needed by 325 * each dentry. However, in that case, no new inode number is needed since that 326 * internally draws from another pool of inode numbers (currently global 327 * get_next_ino()). This case is indicated by passing NULL as inop. 328 */ 329 #define SHMEM_INO_BATCH 1024 330 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 331 { 332 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 333 ino_t ino; 334 335 if (!(sb->s_flags & SB_KERNMOUNT)) { 336 raw_spin_lock(&sbinfo->stat_lock); 337 if (sbinfo->max_inodes) { 338 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 339 raw_spin_unlock(&sbinfo->stat_lock); 340 return -ENOSPC; 341 } 342 sbinfo->free_ispace -= BOGO_INODE_SIZE; 343 } 344 if (inop) { 345 ino = sbinfo->next_ino++; 346 if (unlikely(is_zero_ino(ino))) 347 ino = sbinfo->next_ino++; 348 if (unlikely(!sbinfo->full_inums && 349 ino > UINT_MAX)) { 350 /* 351 * Emulate get_next_ino uint wraparound for 352 * compatibility 353 */ 354 if (IS_ENABLED(CONFIG_64BIT)) 355 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 356 __func__, MINOR(sb->s_dev)); 357 sbinfo->next_ino = 1; 358 ino = sbinfo->next_ino++; 359 } 360 *inop = ino; 361 } 362 raw_spin_unlock(&sbinfo->stat_lock); 363 } else if (inop) { 364 /* 365 * __shmem_file_setup, one of our callers, is lock-free: it 366 * doesn't hold stat_lock in shmem_reserve_inode since 367 * max_inodes is always 0, and is called from potentially 368 * unknown contexts. As such, use a per-cpu batched allocator 369 * which doesn't require the per-sb stat_lock unless we are at 370 * the batch boundary. 371 * 372 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 373 * shmem mounts are not exposed to userspace, so we don't need 374 * to worry about things like glibc compatibility. 375 */ 376 ino_t *next_ino; 377 378 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 379 ino = *next_ino; 380 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 381 raw_spin_lock(&sbinfo->stat_lock); 382 ino = sbinfo->next_ino; 383 sbinfo->next_ino += SHMEM_INO_BATCH; 384 raw_spin_unlock(&sbinfo->stat_lock); 385 if (unlikely(is_zero_ino(ino))) 386 ino++; 387 } 388 *inop = ino; 389 *next_ino = ++ino; 390 put_cpu(); 391 } 392 393 return 0; 394 } 395 396 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 397 { 398 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 399 if (sbinfo->max_inodes) { 400 raw_spin_lock(&sbinfo->stat_lock); 401 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 402 raw_spin_unlock(&sbinfo->stat_lock); 403 } 404 } 405 406 /** 407 * shmem_recalc_inode - recalculate the block usage of an inode 408 * @inode: inode to recalc 409 * @alloced: the change in number of pages allocated to inode 410 * @swapped: the change in number of pages swapped from inode 411 * 412 * We have to calculate the free blocks since the mm can drop 413 * undirtied hole pages behind our back. 414 * 415 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 416 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 417 */ 418 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 419 { 420 struct shmem_inode_info *info = SHMEM_I(inode); 421 long freed; 422 423 spin_lock(&info->lock); 424 info->alloced += alloced; 425 info->swapped += swapped; 426 freed = info->alloced - info->swapped - 427 READ_ONCE(inode->i_mapping->nrpages); 428 /* 429 * Special case: whereas normally shmem_recalc_inode() is called 430 * after i_mapping->nrpages has already been adjusted (up or down), 431 * shmem_writepage() has to raise swapped before nrpages is lowered - 432 * to stop a racing shmem_recalc_inode() from thinking that a page has 433 * been freed. Compensate here, to avoid the need for a followup call. 434 */ 435 if (swapped > 0) 436 freed += swapped; 437 if (freed > 0) 438 info->alloced -= freed; 439 spin_unlock(&info->lock); 440 441 /* The quota case may block */ 442 if (freed > 0) 443 shmem_inode_unacct_blocks(inode, freed); 444 } 445 446 bool shmem_charge(struct inode *inode, long pages) 447 { 448 struct address_space *mapping = inode->i_mapping; 449 450 if (shmem_inode_acct_block(inode, pages)) 451 return false; 452 453 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 454 xa_lock_irq(&mapping->i_pages); 455 mapping->nrpages += pages; 456 xa_unlock_irq(&mapping->i_pages); 457 458 shmem_recalc_inode(inode, pages, 0); 459 return true; 460 } 461 462 void shmem_uncharge(struct inode *inode, long pages) 463 { 464 /* pages argument is currently unused: keep it to help debugging */ 465 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 466 467 shmem_recalc_inode(inode, 0, 0); 468 } 469 470 /* 471 * Replace item expected in xarray by a new item, while holding xa_lock. 472 */ 473 static int shmem_replace_entry(struct address_space *mapping, 474 pgoff_t index, void *expected, void *replacement) 475 { 476 XA_STATE(xas, &mapping->i_pages, index); 477 void *item; 478 479 VM_BUG_ON(!expected); 480 VM_BUG_ON(!replacement); 481 item = xas_load(&xas); 482 if (item != expected) 483 return -ENOENT; 484 xas_store(&xas, replacement); 485 return 0; 486 } 487 488 /* 489 * Sometimes, before we decide whether to proceed or to fail, we must check 490 * that an entry was not already brought back from swap by a racing thread. 491 * 492 * Checking page is not enough: by the time a SwapCache page is locked, it 493 * might be reused, and again be SwapCache, using the same swap as before. 494 */ 495 static bool shmem_confirm_swap(struct address_space *mapping, 496 pgoff_t index, swp_entry_t swap) 497 { 498 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 499 } 500 501 /* 502 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 503 * 504 * SHMEM_HUGE_NEVER: 505 * disables huge pages for the mount; 506 * SHMEM_HUGE_ALWAYS: 507 * enables huge pages for the mount; 508 * SHMEM_HUGE_WITHIN_SIZE: 509 * only allocate huge pages if the page will be fully within i_size, 510 * also respect fadvise()/madvise() hints; 511 * SHMEM_HUGE_ADVISE: 512 * only allocate huge pages if requested with fadvise()/madvise(); 513 */ 514 515 #define SHMEM_HUGE_NEVER 0 516 #define SHMEM_HUGE_ALWAYS 1 517 #define SHMEM_HUGE_WITHIN_SIZE 2 518 #define SHMEM_HUGE_ADVISE 3 519 520 /* 521 * Special values. 522 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 523 * 524 * SHMEM_HUGE_DENY: 525 * disables huge on shm_mnt and all mounts, for emergency use; 526 * SHMEM_HUGE_FORCE: 527 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 528 * 529 */ 530 #define SHMEM_HUGE_DENY (-1) 531 #define SHMEM_HUGE_FORCE (-2) 532 533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 534 /* ifdef here to avoid bloating shmem.o when not necessary */ 535 536 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 537 538 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force, 539 struct mm_struct *mm, unsigned long vm_flags) 540 { 541 loff_t i_size; 542 543 if (!S_ISREG(inode->i_mode)) 544 return false; 545 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags))) 546 return false; 547 if (shmem_huge == SHMEM_HUGE_DENY) 548 return false; 549 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 550 return true; 551 552 switch (SHMEM_SB(inode->i_sb)->huge) { 553 case SHMEM_HUGE_ALWAYS: 554 return true; 555 case SHMEM_HUGE_WITHIN_SIZE: 556 index = round_up(index + 1, HPAGE_PMD_NR); 557 i_size = round_up(i_size_read(inode), PAGE_SIZE); 558 if (i_size >> PAGE_SHIFT >= index) 559 return true; 560 fallthrough; 561 case SHMEM_HUGE_ADVISE: 562 if (mm && (vm_flags & VM_HUGEPAGE)) 563 return true; 564 fallthrough; 565 default: 566 return false; 567 } 568 } 569 570 #if defined(CONFIG_SYSFS) 571 static int shmem_parse_huge(const char *str) 572 { 573 if (!strcmp(str, "never")) 574 return SHMEM_HUGE_NEVER; 575 if (!strcmp(str, "always")) 576 return SHMEM_HUGE_ALWAYS; 577 if (!strcmp(str, "within_size")) 578 return SHMEM_HUGE_WITHIN_SIZE; 579 if (!strcmp(str, "advise")) 580 return SHMEM_HUGE_ADVISE; 581 if (!strcmp(str, "deny")) 582 return SHMEM_HUGE_DENY; 583 if (!strcmp(str, "force")) 584 return SHMEM_HUGE_FORCE; 585 return -EINVAL; 586 } 587 #endif 588 589 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 590 static const char *shmem_format_huge(int huge) 591 { 592 switch (huge) { 593 case SHMEM_HUGE_NEVER: 594 return "never"; 595 case SHMEM_HUGE_ALWAYS: 596 return "always"; 597 case SHMEM_HUGE_WITHIN_SIZE: 598 return "within_size"; 599 case SHMEM_HUGE_ADVISE: 600 return "advise"; 601 case SHMEM_HUGE_DENY: 602 return "deny"; 603 case SHMEM_HUGE_FORCE: 604 return "force"; 605 default: 606 VM_BUG_ON(1); 607 return "bad_val"; 608 } 609 } 610 #endif 611 612 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 613 struct shrink_control *sc, unsigned long nr_to_split) 614 { 615 LIST_HEAD(list), *pos, *next; 616 LIST_HEAD(to_remove); 617 struct inode *inode; 618 struct shmem_inode_info *info; 619 struct folio *folio; 620 unsigned long batch = sc ? sc->nr_to_scan : 128; 621 int split = 0; 622 623 if (list_empty(&sbinfo->shrinklist)) 624 return SHRINK_STOP; 625 626 spin_lock(&sbinfo->shrinklist_lock); 627 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 628 info = list_entry(pos, struct shmem_inode_info, shrinklist); 629 630 /* pin the inode */ 631 inode = igrab(&info->vfs_inode); 632 633 /* inode is about to be evicted */ 634 if (!inode) { 635 list_del_init(&info->shrinklist); 636 goto next; 637 } 638 639 /* Check if there's anything to gain */ 640 if (round_up(inode->i_size, PAGE_SIZE) == 641 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 642 list_move(&info->shrinklist, &to_remove); 643 goto next; 644 } 645 646 list_move(&info->shrinklist, &list); 647 next: 648 sbinfo->shrinklist_len--; 649 if (!--batch) 650 break; 651 } 652 spin_unlock(&sbinfo->shrinklist_lock); 653 654 list_for_each_safe(pos, next, &to_remove) { 655 info = list_entry(pos, struct shmem_inode_info, shrinklist); 656 inode = &info->vfs_inode; 657 list_del_init(&info->shrinklist); 658 iput(inode); 659 } 660 661 list_for_each_safe(pos, next, &list) { 662 int ret; 663 pgoff_t index; 664 665 info = list_entry(pos, struct shmem_inode_info, shrinklist); 666 inode = &info->vfs_inode; 667 668 if (nr_to_split && split >= nr_to_split) 669 goto move_back; 670 671 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 672 folio = filemap_get_folio(inode->i_mapping, index); 673 if (IS_ERR(folio)) 674 goto drop; 675 676 /* No huge page at the end of the file: nothing to split */ 677 if (!folio_test_large(folio)) { 678 folio_put(folio); 679 goto drop; 680 } 681 682 /* 683 * Move the inode on the list back to shrinklist if we failed 684 * to lock the page at this time. 685 * 686 * Waiting for the lock may lead to deadlock in the 687 * reclaim path. 688 */ 689 if (!folio_trylock(folio)) { 690 folio_put(folio); 691 goto move_back; 692 } 693 694 ret = split_folio(folio); 695 folio_unlock(folio); 696 folio_put(folio); 697 698 /* If split failed move the inode on the list back to shrinklist */ 699 if (ret) 700 goto move_back; 701 702 split++; 703 drop: 704 list_del_init(&info->shrinklist); 705 goto put; 706 move_back: 707 /* 708 * Make sure the inode is either on the global list or deleted 709 * from any local list before iput() since it could be deleted 710 * in another thread once we put the inode (then the local list 711 * is corrupted). 712 */ 713 spin_lock(&sbinfo->shrinklist_lock); 714 list_move(&info->shrinklist, &sbinfo->shrinklist); 715 sbinfo->shrinklist_len++; 716 spin_unlock(&sbinfo->shrinklist_lock); 717 put: 718 iput(inode); 719 } 720 721 return split; 722 } 723 724 static long shmem_unused_huge_scan(struct super_block *sb, 725 struct shrink_control *sc) 726 { 727 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 728 729 if (!READ_ONCE(sbinfo->shrinklist_len)) 730 return SHRINK_STOP; 731 732 return shmem_unused_huge_shrink(sbinfo, sc, 0); 733 } 734 735 static long shmem_unused_huge_count(struct super_block *sb, 736 struct shrink_control *sc) 737 { 738 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 739 return READ_ONCE(sbinfo->shrinklist_len); 740 } 741 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 742 743 #define shmem_huge SHMEM_HUGE_DENY 744 745 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force, 746 struct mm_struct *mm, unsigned long vm_flags) 747 { 748 return false; 749 } 750 751 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 752 struct shrink_control *sc, unsigned long nr_to_split) 753 { 754 return 0; 755 } 756 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 757 758 /* 759 * Like filemap_add_folio, but error if expected item has gone. 760 */ 761 static int shmem_add_to_page_cache(struct folio *folio, 762 struct address_space *mapping, 763 pgoff_t index, void *expected, gfp_t gfp, 764 struct mm_struct *charge_mm) 765 { 766 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 767 long nr = folio_nr_pages(folio); 768 int error; 769 770 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 771 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 772 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 773 VM_BUG_ON(expected && folio_test_large(folio)); 774 775 folio_ref_add(folio, nr); 776 folio->mapping = mapping; 777 folio->index = index; 778 779 if (!folio_test_swapcache(folio)) { 780 error = mem_cgroup_charge(folio, charge_mm, gfp); 781 if (error) { 782 if (folio_test_pmd_mappable(folio)) { 783 count_vm_event(THP_FILE_FALLBACK); 784 count_vm_event(THP_FILE_FALLBACK_CHARGE); 785 } 786 goto error; 787 } 788 } 789 folio_throttle_swaprate(folio, gfp); 790 791 do { 792 xas_lock_irq(&xas); 793 if (expected != xas_find_conflict(&xas)) { 794 xas_set_err(&xas, -EEXIST); 795 goto unlock; 796 } 797 if (expected && xas_find_conflict(&xas)) { 798 xas_set_err(&xas, -EEXIST); 799 goto unlock; 800 } 801 xas_store(&xas, folio); 802 if (xas_error(&xas)) 803 goto unlock; 804 if (folio_test_pmd_mappable(folio)) { 805 count_vm_event(THP_FILE_ALLOC); 806 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 807 } 808 mapping->nrpages += nr; 809 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 810 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 811 unlock: 812 xas_unlock_irq(&xas); 813 } while (xas_nomem(&xas, gfp)); 814 815 if (xas_error(&xas)) { 816 error = xas_error(&xas); 817 goto error; 818 } 819 820 return 0; 821 error: 822 folio->mapping = NULL; 823 folio_ref_sub(folio, nr); 824 return error; 825 } 826 827 /* 828 * Like delete_from_page_cache, but substitutes swap for @folio. 829 */ 830 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 831 { 832 struct address_space *mapping = folio->mapping; 833 long nr = folio_nr_pages(folio); 834 int error; 835 836 xa_lock_irq(&mapping->i_pages); 837 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 838 folio->mapping = NULL; 839 mapping->nrpages -= nr; 840 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 841 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 842 xa_unlock_irq(&mapping->i_pages); 843 folio_put(folio); 844 BUG_ON(error); 845 } 846 847 /* 848 * Remove swap entry from page cache, free the swap and its page cache. 849 */ 850 static int shmem_free_swap(struct address_space *mapping, 851 pgoff_t index, void *radswap) 852 { 853 void *old; 854 855 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 856 if (old != radswap) 857 return -ENOENT; 858 free_swap_and_cache(radix_to_swp_entry(radswap)); 859 return 0; 860 } 861 862 /* 863 * Determine (in bytes) how many of the shmem object's pages mapped by the 864 * given offsets are swapped out. 865 * 866 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 867 * as long as the inode doesn't go away and racy results are not a problem. 868 */ 869 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 870 pgoff_t start, pgoff_t end) 871 { 872 XA_STATE(xas, &mapping->i_pages, start); 873 struct page *page; 874 unsigned long swapped = 0; 875 876 rcu_read_lock(); 877 xas_for_each(&xas, page, end - 1) { 878 if (xas_retry(&xas, page)) 879 continue; 880 if (xa_is_value(page)) 881 swapped++; 882 883 if (need_resched()) { 884 xas_pause(&xas); 885 cond_resched_rcu(); 886 } 887 } 888 889 rcu_read_unlock(); 890 891 return swapped << PAGE_SHIFT; 892 } 893 894 /* 895 * Determine (in bytes) how many of the shmem object's pages mapped by the 896 * given vma is swapped out. 897 * 898 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 899 * as long as the inode doesn't go away and racy results are not a problem. 900 */ 901 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 902 { 903 struct inode *inode = file_inode(vma->vm_file); 904 struct shmem_inode_info *info = SHMEM_I(inode); 905 struct address_space *mapping = inode->i_mapping; 906 unsigned long swapped; 907 908 /* Be careful as we don't hold info->lock */ 909 swapped = READ_ONCE(info->swapped); 910 911 /* 912 * The easier cases are when the shmem object has nothing in swap, or 913 * the vma maps it whole. Then we can simply use the stats that we 914 * already track. 915 */ 916 if (!swapped) 917 return 0; 918 919 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 920 return swapped << PAGE_SHIFT; 921 922 /* Here comes the more involved part */ 923 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 924 vma->vm_pgoff + vma_pages(vma)); 925 } 926 927 /* 928 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 929 */ 930 void shmem_unlock_mapping(struct address_space *mapping) 931 { 932 struct folio_batch fbatch; 933 pgoff_t index = 0; 934 935 folio_batch_init(&fbatch); 936 /* 937 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 938 */ 939 while (!mapping_unevictable(mapping) && 940 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 941 check_move_unevictable_folios(&fbatch); 942 folio_batch_release(&fbatch); 943 cond_resched(); 944 } 945 } 946 947 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 948 { 949 struct folio *folio; 950 951 /* 952 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 953 * beyond i_size, and reports fallocated folios as holes. 954 */ 955 folio = filemap_get_entry(inode->i_mapping, index); 956 if (!folio) 957 return folio; 958 if (!xa_is_value(folio)) { 959 folio_lock(folio); 960 if (folio->mapping == inode->i_mapping) 961 return folio; 962 /* The folio has been swapped out */ 963 folio_unlock(folio); 964 folio_put(folio); 965 } 966 /* 967 * But read a folio back from swap if any of it is within i_size 968 * (although in some cases this is just a waste of time). 969 */ 970 folio = NULL; 971 shmem_get_folio(inode, index, &folio, SGP_READ); 972 return folio; 973 } 974 975 /* 976 * Remove range of pages and swap entries from page cache, and free them. 977 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 978 */ 979 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 980 bool unfalloc) 981 { 982 struct address_space *mapping = inode->i_mapping; 983 struct shmem_inode_info *info = SHMEM_I(inode); 984 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 985 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 986 struct folio_batch fbatch; 987 pgoff_t indices[PAGEVEC_SIZE]; 988 struct folio *folio; 989 bool same_folio; 990 long nr_swaps_freed = 0; 991 pgoff_t index; 992 int i; 993 994 if (lend == -1) 995 end = -1; /* unsigned, so actually very big */ 996 997 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 998 info->fallocend = start; 999 1000 folio_batch_init(&fbatch); 1001 index = start; 1002 while (index < end && find_lock_entries(mapping, &index, end - 1, 1003 &fbatch, indices)) { 1004 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1005 folio = fbatch.folios[i]; 1006 1007 if (xa_is_value(folio)) { 1008 if (unfalloc) 1009 continue; 1010 nr_swaps_freed += !shmem_free_swap(mapping, 1011 indices[i], folio); 1012 continue; 1013 } 1014 1015 if (!unfalloc || !folio_test_uptodate(folio)) 1016 truncate_inode_folio(mapping, folio); 1017 folio_unlock(folio); 1018 } 1019 folio_batch_remove_exceptionals(&fbatch); 1020 folio_batch_release(&fbatch); 1021 cond_resched(); 1022 } 1023 1024 /* 1025 * When undoing a failed fallocate, we want none of the partial folio 1026 * zeroing and splitting below, but shall want to truncate the whole 1027 * folio when !uptodate indicates that it was added by this fallocate, 1028 * even when [lstart, lend] covers only a part of the folio. 1029 */ 1030 if (unfalloc) 1031 goto whole_folios; 1032 1033 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1034 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1035 if (folio) { 1036 same_folio = lend < folio_pos(folio) + folio_size(folio); 1037 folio_mark_dirty(folio); 1038 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1039 start = folio->index + folio_nr_pages(folio); 1040 if (same_folio) 1041 end = folio->index; 1042 } 1043 folio_unlock(folio); 1044 folio_put(folio); 1045 folio = NULL; 1046 } 1047 1048 if (!same_folio) 1049 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1050 if (folio) { 1051 folio_mark_dirty(folio); 1052 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1053 end = folio->index; 1054 folio_unlock(folio); 1055 folio_put(folio); 1056 } 1057 1058 whole_folios: 1059 1060 index = start; 1061 while (index < end) { 1062 cond_resched(); 1063 1064 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1065 indices)) { 1066 /* If all gone or hole-punch or unfalloc, we're done */ 1067 if (index == start || end != -1) 1068 break; 1069 /* But if truncating, restart to make sure all gone */ 1070 index = start; 1071 continue; 1072 } 1073 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1074 folio = fbatch.folios[i]; 1075 1076 if (xa_is_value(folio)) { 1077 if (unfalloc) 1078 continue; 1079 if (shmem_free_swap(mapping, indices[i], folio)) { 1080 /* Swap was replaced by page: retry */ 1081 index = indices[i]; 1082 break; 1083 } 1084 nr_swaps_freed++; 1085 continue; 1086 } 1087 1088 folio_lock(folio); 1089 1090 if (!unfalloc || !folio_test_uptodate(folio)) { 1091 if (folio_mapping(folio) != mapping) { 1092 /* Page was replaced by swap: retry */ 1093 folio_unlock(folio); 1094 index = indices[i]; 1095 break; 1096 } 1097 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1098 folio); 1099 truncate_inode_folio(mapping, folio); 1100 } 1101 folio_unlock(folio); 1102 } 1103 folio_batch_remove_exceptionals(&fbatch); 1104 folio_batch_release(&fbatch); 1105 } 1106 1107 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1108 } 1109 1110 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1111 { 1112 shmem_undo_range(inode, lstart, lend, false); 1113 inode->i_ctime = inode->i_mtime = current_time(inode); 1114 inode_inc_iversion(inode); 1115 } 1116 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1117 1118 static int shmem_getattr(struct mnt_idmap *idmap, 1119 const struct path *path, struct kstat *stat, 1120 u32 request_mask, unsigned int query_flags) 1121 { 1122 struct inode *inode = path->dentry->d_inode; 1123 struct shmem_inode_info *info = SHMEM_I(inode); 1124 1125 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1126 shmem_recalc_inode(inode, 0, 0); 1127 1128 if (info->fsflags & FS_APPEND_FL) 1129 stat->attributes |= STATX_ATTR_APPEND; 1130 if (info->fsflags & FS_IMMUTABLE_FL) 1131 stat->attributes |= STATX_ATTR_IMMUTABLE; 1132 if (info->fsflags & FS_NODUMP_FL) 1133 stat->attributes |= STATX_ATTR_NODUMP; 1134 stat->attributes_mask |= (STATX_ATTR_APPEND | 1135 STATX_ATTR_IMMUTABLE | 1136 STATX_ATTR_NODUMP); 1137 generic_fillattr(idmap, inode, stat); 1138 1139 if (shmem_is_huge(inode, 0, false, NULL, 0)) 1140 stat->blksize = HPAGE_PMD_SIZE; 1141 1142 if (request_mask & STATX_BTIME) { 1143 stat->result_mask |= STATX_BTIME; 1144 stat->btime.tv_sec = info->i_crtime.tv_sec; 1145 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1146 } 1147 1148 return 0; 1149 } 1150 1151 static int shmem_setattr(struct mnt_idmap *idmap, 1152 struct dentry *dentry, struct iattr *attr) 1153 { 1154 struct inode *inode = d_inode(dentry); 1155 struct shmem_inode_info *info = SHMEM_I(inode); 1156 int error; 1157 bool update_mtime = false; 1158 bool update_ctime = true; 1159 1160 error = setattr_prepare(idmap, dentry, attr); 1161 if (error) 1162 return error; 1163 1164 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1165 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1166 return -EPERM; 1167 } 1168 } 1169 1170 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1171 loff_t oldsize = inode->i_size; 1172 loff_t newsize = attr->ia_size; 1173 1174 /* protected by i_rwsem */ 1175 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1176 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1177 return -EPERM; 1178 1179 if (newsize != oldsize) { 1180 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1181 oldsize, newsize); 1182 if (error) 1183 return error; 1184 i_size_write(inode, newsize); 1185 update_mtime = true; 1186 } else { 1187 update_ctime = false; 1188 } 1189 if (newsize <= oldsize) { 1190 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1191 if (oldsize > holebegin) 1192 unmap_mapping_range(inode->i_mapping, 1193 holebegin, 0, 1); 1194 if (info->alloced) 1195 shmem_truncate_range(inode, 1196 newsize, (loff_t)-1); 1197 /* unmap again to remove racily COWed private pages */ 1198 if (oldsize > holebegin) 1199 unmap_mapping_range(inode->i_mapping, 1200 holebegin, 0, 1); 1201 } 1202 } 1203 1204 if (is_quota_modification(idmap, inode, attr)) { 1205 error = dquot_initialize(inode); 1206 if (error) 1207 return error; 1208 } 1209 1210 /* Transfer quota accounting */ 1211 if (i_uid_needs_update(idmap, attr, inode) || 1212 i_gid_needs_update(idmap, attr, inode)) { 1213 error = dquot_transfer(idmap, inode, attr); 1214 1215 if (error) 1216 return error; 1217 } 1218 1219 setattr_copy(idmap, inode, attr); 1220 if (attr->ia_valid & ATTR_MODE) 1221 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1222 if (!error && update_ctime) { 1223 inode->i_ctime = current_time(inode); 1224 if (update_mtime) 1225 inode->i_mtime = inode->i_ctime; 1226 inode_inc_iversion(inode); 1227 } 1228 return error; 1229 } 1230 1231 static void shmem_evict_inode(struct inode *inode) 1232 { 1233 struct shmem_inode_info *info = SHMEM_I(inode); 1234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1235 size_t freed = 0; 1236 1237 if (shmem_mapping(inode->i_mapping)) { 1238 shmem_unacct_size(info->flags, inode->i_size); 1239 inode->i_size = 0; 1240 mapping_set_exiting(inode->i_mapping); 1241 shmem_truncate_range(inode, 0, (loff_t)-1); 1242 if (!list_empty(&info->shrinklist)) { 1243 spin_lock(&sbinfo->shrinklist_lock); 1244 if (!list_empty(&info->shrinklist)) { 1245 list_del_init(&info->shrinklist); 1246 sbinfo->shrinklist_len--; 1247 } 1248 spin_unlock(&sbinfo->shrinklist_lock); 1249 } 1250 while (!list_empty(&info->swaplist)) { 1251 /* Wait while shmem_unuse() is scanning this inode... */ 1252 wait_var_event(&info->stop_eviction, 1253 !atomic_read(&info->stop_eviction)); 1254 mutex_lock(&shmem_swaplist_mutex); 1255 /* ...but beware of the race if we peeked too early */ 1256 if (!atomic_read(&info->stop_eviction)) 1257 list_del_init(&info->swaplist); 1258 mutex_unlock(&shmem_swaplist_mutex); 1259 } 1260 } 1261 1262 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1263 shmem_free_inode(inode->i_sb, freed); 1264 WARN_ON(inode->i_blocks); 1265 clear_inode(inode); 1266 #ifdef CONFIG_TMPFS_QUOTA 1267 dquot_free_inode(inode); 1268 dquot_drop(inode); 1269 #endif 1270 } 1271 1272 static int shmem_find_swap_entries(struct address_space *mapping, 1273 pgoff_t start, struct folio_batch *fbatch, 1274 pgoff_t *indices, unsigned int type) 1275 { 1276 XA_STATE(xas, &mapping->i_pages, start); 1277 struct folio *folio; 1278 swp_entry_t entry; 1279 1280 rcu_read_lock(); 1281 xas_for_each(&xas, folio, ULONG_MAX) { 1282 if (xas_retry(&xas, folio)) 1283 continue; 1284 1285 if (!xa_is_value(folio)) 1286 continue; 1287 1288 entry = radix_to_swp_entry(folio); 1289 /* 1290 * swapin error entries can be found in the mapping. But they're 1291 * deliberately ignored here as we've done everything we can do. 1292 */ 1293 if (swp_type(entry) != type) 1294 continue; 1295 1296 indices[folio_batch_count(fbatch)] = xas.xa_index; 1297 if (!folio_batch_add(fbatch, folio)) 1298 break; 1299 1300 if (need_resched()) { 1301 xas_pause(&xas); 1302 cond_resched_rcu(); 1303 } 1304 } 1305 rcu_read_unlock(); 1306 1307 return xas.xa_index; 1308 } 1309 1310 /* 1311 * Move the swapped pages for an inode to page cache. Returns the count 1312 * of pages swapped in, or the error in case of failure. 1313 */ 1314 static int shmem_unuse_swap_entries(struct inode *inode, 1315 struct folio_batch *fbatch, pgoff_t *indices) 1316 { 1317 int i = 0; 1318 int ret = 0; 1319 int error = 0; 1320 struct address_space *mapping = inode->i_mapping; 1321 1322 for (i = 0; i < folio_batch_count(fbatch); i++) { 1323 struct folio *folio = fbatch->folios[i]; 1324 1325 if (!xa_is_value(folio)) 1326 continue; 1327 error = shmem_swapin_folio(inode, indices[i], 1328 &folio, SGP_CACHE, 1329 mapping_gfp_mask(mapping), 1330 NULL, NULL); 1331 if (error == 0) { 1332 folio_unlock(folio); 1333 folio_put(folio); 1334 ret++; 1335 } 1336 if (error == -ENOMEM) 1337 break; 1338 error = 0; 1339 } 1340 return error ? error : ret; 1341 } 1342 1343 /* 1344 * If swap found in inode, free it and move page from swapcache to filecache. 1345 */ 1346 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1347 { 1348 struct address_space *mapping = inode->i_mapping; 1349 pgoff_t start = 0; 1350 struct folio_batch fbatch; 1351 pgoff_t indices[PAGEVEC_SIZE]; 1352 int ret = 0; 1353 1354 do { 1355 folio_batch_init(&fbatch); 1356 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1357 if (folio_batch_count(&fbatch) == 0) { 1358 ret = 0; 1359 break; 1360 } 1361 1362 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1363 if (ret < 0) 1364 break; 1365 1366 start = indices[folio_batch_count(&fbatch) - 1]; 1367 } while (true); 1368 1369 return ret; 1370 } 1371 1372 /* 1373 * Read all the shared memory data that resides in the swap 1374 * device 'type' back into memory, so the swap device can be 1375 * unused. 1376 */ 1377 int shmem_unuse(unsigned int type) 1378 { 1379 struct shmem_inode_info *info, *next; 1380 int error = 0; 1381 1382 if (list_empty(&shmem_swaplist)) 1383 return 0; 1384 1385 mutex_lock(&shmem_swaplist_mutex); 1386 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1387 if (!info->swapped) { 1388 list_del_init(&info->swaplist); 1389 continue; 1390 } 1391 /* 1392 * Drop the swaplist mutex while searching the inode for swap; 1393 * but before doing so, make sure shmem_evict_inode() will not 1394 * remove placeholder inode from swaplist, nor let it be freed 1395 * (igrab() would protect from unlink, but not from unmount). 1396 */ 1397 atomic_inc(&info->stop_eviction); 1398 mutex_unlock(&shmem_swaplist_mutex); 1399 1400 error = shmem_unuse_inode(&info->vfs_inode, type); 1401 cond_resched(); 1402 1403 mutex_lock(&shmem_swaplist_mutex); 1404 next = list_next_entry(info, swaplist); 1405 if (!info->swapped) 1406 list_del_init(&info->swaplist); 1407 if (atomic_dec_and_test(&info->stop_eviction)) 1408 wake_up_var(&info->stop_eviction); 1409 if (error) 1410 break; 1411 } 1412 mutex_unlock(&shmem_swaplist_mutex); 1413 1414 return error; 1415 } 1416 1417 /* 1418 * Move the page from the page cache to the swap cache. 1419 */ 1420 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1421 { 1422 struct folio *folio = page_folio(page); 1423 struct address_space *mapping = folio->mapping; 1424 struct inode *inode = mapping->host; 1425 struct shmem_inode_info *info = SHMEM_I(inode); 1426 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1427 swp_entry_t swap; 1428 pgoff_t index; 1429 1430 /* 1431 * Our capabilities prevent regular writeback or sync from ever calling 1432 * shmem_writepage; but a stacking filesystem might use ->writepage of 1433 * its underlying filesystem, in which case tmpfs should write out to 1434 * swap only in response to memory pressure, and not for the writeback 1435 * threads or sync. 1436 */ 1437 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1438 goto redirty; 1439 1440 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1441 goto redirty; 1442 1443 if (!total_swap_pages) 1444 goto redirty; 1445 1446 /* 1447 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1448 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1449 * and its shmem_writeback() needs them to be split when swapping. 1450 */ 1451 if (folio_test_large(folio)) { 1452 /* Ensure the subpages are still dirty */ 1453 folio_test_set_dirty(folio); 1454 if (split_huge_page(page) < 0) 1455 goto redirty; 1456 folio = page_folio(page); 1457 folio_clear_dirty(folio); 1458 } 1459 1460 index = folio->index; 1461 1462 /* 1463 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1464 * value into swapfile.c, the only way we can correctly account for a 1465 * fallocated folio arriving here is now to initialize it and write it. 1466 * 1467 * That's okay for a folio already fallocated earlier, but if we have 1468 * not yet completed the fallocation, then (a) we want to keep track 1469 * of this folio in case we have to undo it, and (b) it may not be a 1470 * good idea to continue anyway, once we're pushing into swap. So 1471 * reactivate the folio, and let shmem_fallocate() quit when too many. 1472 */ 1473 if (!folio_test_uptodate(folio)) { 1474 if (inode->i_private) { 1475 struct shmem_falloc *shmem_falloc; 1476 spin_lock(&inode->i_lock); 1477 shmem_falloc = inode->i_private; 1478 if (shmem_falloc && 1479 !shmem_falloc->waitq && 1480 index >= shmem_falloc->start && 1481 index < shmem_falloc->next) 1482 shmem_falloc->nr_unswapped++; 1483 else 1484 shmem_falloc = NULL; 1485 spin_unlock(&inode->i_lock); 1486 if (shmem_falloc) 1487 goto redirty; 1488 } 1489 folio_zero_range(folio, 0, folio_size(folio)); 1490 flush_dcache_folio(folio); 1491 folio_mark_uptodate(folio); 1492 } 1493 1494 swap = folio_alloc_swap(folio); 1495 if (!swap.val) 1496 goto redirty; 1497 1498 /* 1499 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1500 * if it's not already there. Do it now before the folio is 1501 * moved to swap cache, when its pagelock no longer protects 1502 * the inode from eviction. But don't unlock the mutex until 1503 * we've incremented swapped, because shmem_unuse_inode() will 1504 * prune a !swapped inode from the swaplist under this mutex. 1505 */ 1506 mutex_lock(&shmem_swaplist_mutex); 1507 if (list_empty(&info->swaplist)) 1508 list_add(&info->swaplist, &shmem_swaplist); 1509 1510 if (add_to_swap_cache(folio, swap, 1511 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1512 NULL) == 0) { 1513 shmem_recalc_inode(inode, 0, 1); 1514 swap_shmem_alloc(swap); 1515 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1516 1517 mutex_unlock(&shmem_swaplist_mutex); 1518 BUG_ON(folio_mapped(folio)); 1519 swap_writepage(&folio->page, wbc); 1520 return 0; 1521 } 1522 1523 mutex_unlock(&shmem_swaplist_mutex); 1524 put_swap_folio(folio, swap); 1525 redirty: 1526 folio_mark_dirty(folio); 1527 if (wbc->for_reclaim) 1528 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1529 folio_unlock(folio); 1530 return 0; 1531 } 1532 1533 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1534 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1535 { 1536 char buffer[64]; 1537 1538 if (!mpol || mpol->mode == MPOL_DEFAULT) 1539 return; /* show nothing */ 1540 1541 mpol_to_str(buffer, sizeof(buffer), mpol); 1542 1543 seq_printf(seq, ",mpol=%s", buffer); 1544 } 1545 1546 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1547 { 1548 struct mempolicy *mpol = NULL; 1549 if (sbinfo->mpol) { 1550 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1551 mpol = sbinfo->mpol; 1552 mpol_get(mpol); 1553 raw_spin_unlock(&sbinfo->stat_lock); 1554 } 1555 return mpol; 1556 } 1557 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1558 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1559 { 1560 } 1561 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1562 { 1563 return NULL; 1564 } 1565 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1566 #ifndef CONFIG_NUMA 1567 #define vm_policy vm_private_data 1568 #endif 1569 1570 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1571 struct shmem_inode_info *info, pgoff_t index) 1572 { 1573 /* Create a pseudo vma that just contains the policy */ 1574 vma_init(vma, NULL); 1575 /* Bias interleave by inode number to distribute better across nodes */ 1576 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1577 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1578 } 1579 1580 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1581 { 1582 /* Drop reference taken by mpol_shared_policy_lookup() */ 1583 mpol_cond_put(vma->vm_policy); 1584 } 1585 1586 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1587 struct shmem_inode_info *info, pgoff_t index) 1588 { 1589 struct vm_area_struct pvma; 1590 struct page *page; 1591 struct vm_fault vmf = { 1592 .vma = &pvma, 1593 }; 1594 1595 shmem_pseudo_vma_init(&pvma, info, index); 1596 page = swap_cluster_readahead(swap, gfp, &vmf); 1597 shmem_pseudo_vma_destroy(&pvma); 1598 1599 if (!page) 1600 return NULL; 1601 return page_folio(page); 1602 } 1603 1604 /* 1605 * Make sure huge_gfp is always more limited than limit_gfp. 1606 * Some of the flags set permissions, while others set limitations. 1607 */ 1608 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1609 { 1610 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1611 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1612 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1613 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1614 1615 /* Allow allocations only from the originally specified zones. */ 1616 result |= zoneflags; 1617 1618 /* 1619 * Minimize the result gfp by taking the union with the deny flags, 1620 * and the intersection of the allow flags. 1621 */ 1622 result |= (limit_gfp & denyflags); 1623 result |= (huge_gfp & limit_gfp) & allowflags; 1624 1625 return result; 1626 } 1627 1628 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1629 struct shmem_inode_info *info, pgoff_t index) 1630 { 1631 struct vm_area_struct pvma; 1632 struct address_space *mapping = info->vfs_inode.i_mapping; 1633 pgoff_t hindex; 1634 struct folio *folio; 1635 1636 hindex = round_down(index, HPAGE_PMD_NR); 1637 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1638 XA_PRESENT)) 1639 return NULL; 1640 1641 shmem_pseudo_vma_init(&pvma, info, hindex); 1642 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1643 shmem_pseudo_vma_destroy(&pvma); 1644 if (!folio) 1645 count_vm_event(THP_FILE_FALLBACK); 1646 return folio; 1647 } 1648 1649 static struct folio *shmem_alloc_folio(gfp_t gfp, 1650 struct shmem_inode_info *info, pgoff_t index) 1651 { 1652 struct vm_area_struct pvma; 1653 struct folio *folio; 1654 1655 shmem_pseudo_vma_init(&pvma, info, index); 1656 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false); 1657 shmem_pseudo_vma_destroy(&pvma); 1658 1659 return folio; 1660 } 1661 1662 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode, 1663 pgoff_t index, bool huge) 1664 { 1665 struct shmem_inode_info *info = SHMEM_I(inode); 1666 struct folio *folio; 1667 int nr; 1668 int err; 1669 1670 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1671 huge = false; 1672 nr = huge ? HPAGE_PMD_NR : 1; 1673 1674 err = shmem_inode_acct_block(inode, nr); 1675 if (err) 1676 goto failed; 1677 1678 if (huge) 1679 folio = shmem_alloc_hugefolio(gfp, info, index); 1680 else 1681 folio = shmem_alloc_folio(gfp, info, index); 1682 if (folio) { 1683 __folio_set_locked(folio); 1684 __folio_set_swapbacked(folio); 1685 return folio; 1686 } 1687 1688 err = -ENOMEM; 1689 shmem_inode_unacct_blocks(inode, nr); 1690 failed: 1691 return ERR_PTR(err); 1692 } 1693 1694 /* 1695 * When a page is moved from swapcache to shmem filecache (either by the 1696 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1697 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1698 * ignorance of the mapping it belongs to. If that mapping has special 1699 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1700 * we may need to copy to a suitable page before moving to filecache. 1701 * 1702 * In a future release, this may well be extended to respect cpuset and 1703 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1704 * but for now it is a simple matter of zone. 1705 */ 1706 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1707 { 1708 return folio_zonenum(folio) > gfp_zone(gfp); 1709 } 1710 1711 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1712 struct shmem_inode_info *info, pgoff_t index) 1713 { 1714 struct folio *old, *new; 1715 struct address_space *swap_mapping; 1716 swp_entry_t entry; 1717 pgoff_t swap_index; 1718 int error; 1719 1720 old = *foliop; 1721 entry = folio_swap_entry(old); 1722 swap_index = swp_offset(entry); 1723 swap_mapping = swap_address_space(entry); 1724 1725 /* 1726 * We have arrived here because our zones are constrained, so don't 1727 * limit chance of success by further cpuset and node constraints. 1728 */ 1729 gfp &= ~GFP_CONSTRAINT_MASK; 1730 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1731 new = shmem_alloc_folio(gfp, info, index); 1732 if (!new) 1733 return -ENOMEM; 1734 1735 folio_get(new); 1736 folio_copy(new, old); 1737 flush_dcache_folio(new); 1738 1739 __folio_set_locked(new); 1740 __folio_set_swapbacked(new); 1741 folio_mark_uptodate(new); 1742 folio_set_swap_entry(new, entry); 1743 folio_set_swapcache(new); 1744 1745 /* 1746 * Our caller will very soon move newpage out of swapcache, but it's 1747 * a nice clean interface for us to replace oldpage by newpage there. 1748 */ 1749 xa_lock_irq(&swap_mapping->i_pages); 1750 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1751 if (!error) { 1752 mem_cgroup_migrate(old, new); 1753 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1754 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1755 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1756 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1757 } 1758 xa_unlock_irq(&swap_mapping->i_pages); 1759 1760 if (unlikely(error)) { 1761 /* 1762 * Is this possible? I think not, now that our callers check 1763 * both PageSwapCache and page_private after getting page lock; 1764 * but be defensive. Reverse old to newpage for clear and free. 1765 */ 1766 old = new; 1767 } else { 1768 folio_add_lru(new); 1769 *foliop = new; 1770 } 1771 1772 folio_clear_swapcache(old); 1773 old->private = NULL; 1774 1775 folio_unlock(old); 1776 folio_put_refs(old, 2); 1777 return error; 1778 } 1779 1780 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1781 struct folio *folio, swp_entry_t swap) 1782 { 1783 struct address_space *mapping = inode->i_mapping; 1784 swp_entry_t swapin_error; 1785 void *old; 1786 1787 swapin_error = make_swapin_error_entry(); 1788 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1789 swp_to_radix_entry(swap), 1790 swp_to_radix_entry(swapin_error), 0); 1791 if (old != swp_to_radix_entry(swap)) 1792 return; 1793 1794 folio_wait_writeback(folio); 1795 delete_from_swap_cache(folio); 1796 /* 1797 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 1798 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 1799 * in shmem_evict_inode(). 1800 */ 1801 shmem_recalc_inode(inode, -1, -1); 1802 swap_free(swap); 1803 } 1804 1805 /* 1806 * Swap in the folio pointed to by *foliop. 1807 * Caller has to make sure that *foliop contains a valid swapped folio. 1808 * Returns 0 and the folio in foliop if success. On failure, returns the 1809 * error code and NULL in *foliop. 1810 */ 1811 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1812 struct folio **foliop, enum sgp_type sgp, 1813 gfp_t gfp, struct vm_area_struct *vma, 1814 vm_fault_t *fault_type) 1815 { 1816 struct address_space *mapping = inode->i_mapping; 1817 struct shmem_inode_info *info = SHMEM_I(inode); 1818 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1819 struct swap_info_struct *si; 1820 struct folio *folio = NULL; 1821 swp_entry_t swap; 1822 int error; 1823 1824 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1825 swap = radix_to_swp_entry(*foliop); 1826 *foliop = NULL; 1827 1828 if (is_swapin_error_entry(swap)) 1829 return -EIO; 1830 1831 si = get_swap_device(swap); 1832 if (!si) { 1833 if (!shmem_confirm_swap(mapping, index, swap)) 1834 return -EEXIST; 1835 else 1836 return -EINVAL; 1837 } 1838 1839 /* Look it up and read it in.. */ 1840 folio = swap_cache_get_folio(swap, NULL, 0); 1841 if (!folio) { 1842 /* Or update major stats only when swapin succeeds?? */ 1843 if (fault_type) { 1844 *fault_type |= VM_FAULT_MAJOR; 1845 count_vm_event(PGMAJFAULT); 1846 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1847 } 1848 /* Here we actually start the io */ 1849 folio = shmem_swapin(swap, gfp, info, index); 1850 if (!folio) { 1851 error = -ENOMEM; 1852 goto failed; 1853 } 1854 } 1855 1856 /* We have to do this with folio locked to prevent races */ 1857 folio_lock(folio); 1858 if (!folio_test_swapcache(folio) || 1859 folio_swap_entry(folio).val != swap.val || 1860 !shmem_confirm_swap(mapping, index, swap)) { 1861 error = -EEXIST; 1862 goto unlock; 1863 } 1864 if (!folio_test_uptodate(folio)) { 1865 error = -EIO; 1866 goto failed; 1867 } 1868 folio_wait_writeback(folio); 1869 1870 /* 1871 * Some architectures may have to restore extra metadata to the 1872 * folio after reading from swap. 1873 */ 1874 arch_swap_restore(swap, folio); 1875 1876 if (shmem_should_replace_folio(folio, gfp)) { 1877 error = shmem_replace_folio(&folio, gfp, info, index); 1878 if (error) 1879 goto failed; 1880 } 1881 1882 error = shmem_add_to_page_cache(folio, mapping, index, 1883 swp_to_radix_entry(swap), gfp, 1884 charge_mm); 1885 if (error) 1886 goto failed; 1887 1888 shmem_recalc_inode(inode, 0, -1); 1889 1890 if (sgp == SGP_WRITE) 1891 folio_mark_accessed(folio); 1892 1893 delete_from_swap_cache(folio); 1894 folio_mark_dirty(folio); 1895 swap_free(swap); 1896 put_swap_device(si); 1897 1898 *foliop = folio; 1899 return 0; 1900 failed: 1901 if (!shmem_confirm_swap(mapping, index, swap)) 1902 error = -EEXIST; 1903 if (error == -EIO) 1904 shmem_set_folio_swapin_error(inode, index, folio, swap); 1905 unlock: 1906 if (folio) { 1907 folio_unlock(folio); 1908 folio_put(folio); 1909 } 1910 put_swap_device(si); 1911 1912 return error; 1913 } 1914 1915 /* 1916 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 1917 * 1918 * If we allocate a new one we do not mark it dirty. That's up to the 1919 * vm. If we swap it in we mark it dirty since we also free the swap 1920 * entry since a page cannot live in both the swap and page cache. 1921 * 1922 * vma, vmf, and fault_type are only supplied by shmem_fault: 1923 * otherwise they are NULL. 1924 */ 1925 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 1926 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 1927 struct vm_area_struct *vma, struct vm_fault *vmf, 1928 vm_fault_t *fault_type) 1929 { 1930 struct address_space *mapping = inode->i_mapping; 1931 struct shmem_inode_info *info = SHMEM_I(inode); 1932 struct shmem_sb_info *sbinfo; 1933 struct mm_struct *charge_mm; 1934 struct folio *folio; 1935 pgoff_t hindex; 1936 gfp_t huge_gfp; 1937 int error; 1938 int once = 0; 1939 int alloced = 0; 1940 1941 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1942 return -EFBIG; 1943 repeat: 1944 if (sgp <= SGP_CACHE && 1945 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1946 return -EINVAL; 1947 } 1948 1949 sbinfo = SHMEM_SB(inode->i_sb); 1950 charge_mm = vma ? vma->vm_mm : NULL; 1951 1952 folio = filemap_get_entry(mapping, index); 1953 if (folio && vma && userfaultfd_minor(vma)) { 1954 if (!xa_is_value(folio)) 1955 folio_put(folio); 1956 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1957 return 0; 1958 } 1959 1960 if (xa_is_value(folio)) { 1961 error = shmem_swapin_folio(inode, index, &folio, 1962 sgp, gfp, vma, fault_type); 1963 if (error == -EEXIST) 1964 goto repeat; 1965 1966 *foliop = folio; 1967 return error; 1968 } 1969 1970 if (folio) { 1971 folio_lock(folio); 1972 1973 /* Has the folio been truncated or swapped out? */ 1974 if (unlikely(folio->mapping != mapping)) { 1975 folio_unlock(folio); 1976 folio_put(folio); 1977 goto repeat; 1978 } 1979 if (sgp == SGP_WRITE) 1980 folio_mark_accessed(folio); 1981 if (folio_test_uptodate(folio)) 1982 goto out; 1983 /* fallocated folio */ 1984 if (sgp != SGP_READ) 1985 goto clear; 1986 folio_unlock(folio); 1987 folio_put(folio); 1988 } 1989 1990 /* 1991 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 1992 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 1993 */ 1994 *foliop = NULL; 1995 if (sgp == SGP_READ) 1996 return 0; 1997 if (sgp == SGP_NOALLOC) 1998 return -ENOENT; 1999 2000 /* 2001 * Fast cache lookup and swap lookup did not find it: allocate. 2002 */ 2003 2004 if (vma && userfaultfd_missing(vma)) { 2005 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2006 return 0; 2007 } 2008 2009 if (!shmem_is_huge(inode, index, false, 2010 vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0)) 2011 goto alloc_nohuge; 2012 2013 huge_gfp = vma_thp_gfp_mask(vma); 2014 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2015 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true); 2016 if (IS_ERR(folio)) { 2017 alloc_nohuge: 2018 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false); 2019 } 2020 if (IS_ERR(folio)) { 2021 int retry = 5; 2022 2023 error = PTR_ERR(folio); 2024 folio = NULL; 2025 if (error != -ENOSPC) 2026 goto unlock; 2027 /* 2028 * Try to reclaim some space by splitting a large folio 2029 * beyond i_size on the filesystem. 2030 */ 2031 while (retry--) { 2032 int ret; 2033 2034 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 2035 if (ret == SHRINK_STOP) 2036 break; 2037 if (ret) 2038 goto alloc_nohuge; 2039 } 2040 goto unlock; 2041 } 2042 2043 hindex = round_down(index, folio_nr_pages(folio)); 2044 2045 if (sgp == SGP_WRITE) 2046 __folio_set_referenced(folio); 2047 2048 error = shmem_add_to_page_cache(folio, mapping, hindex, 2049 NULL, gfp & GFP_RECLAIM_MASK, 2050 charge_mm); 2051 if (error) 2052 goto unacct; 2053 2054 folio_add_lru(folio); 2055 shmem_recalc_inode(inode, folio_nr_pages(folio), 0); 2056 alloced = true; 2057 2058 if (folio_test_pmd_mappable(folio) && 2059 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2060 folio_next_index(folio) - 1) { 2061 /* 2062 * Part of the large folio is beyond i_size: subject 2063 * to shrink under memory pressure. 2064 */ 2065 spin_lock(&sbinfo->shrinklist_lock); 2066 /* 2067 * _careful to defend against unlocked access to 2068 * ->shrink_list in shmem_unused_huge_shrink() 2069 */ 2070 if (list_empty_careful(&info->shrinklist)) { 2071 list_add_tail(&info->shrinklist, 2072 &sbinfo->shrinklist); 2073 sbinfo->shrinklist_len++; 2074 } 2075 spin_unlock(&sbinfo->shrinklist_lock); 2076 } 2077 2078 /* 2079 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2080 */ 2081 if (sgp == SGP_FALLOC) 2082 sgp = SGP_WRITE; 2083 clear: 2084 /* 2085 * Let SGP_WRITE caller clear ends if write does not fill folio; 2086 * but SGP_FALLOC on a folio fallocated earlier must initialize 2087 * it now, lest undo on failure cancel our earlier guarantee. 2088 */ 2089 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2090 long i, n = folio_nr_pages(folio); 2091 2092 for (i = 0; i < n; i++) 2093 clear_highpage(folio_page(folio, i)); 2094 flush_dcache_folio(folio); 2095 folio_mark_uptodate(folio); 2096 } 2097 2098 /* Perhaps the file has been truncated since we checked */ 2099 if (sgp <= SGP_CACHE && 2100 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2101 if (alloced) { 2102 folio_clear_dirty(folio); 2103 filemap_remove_folio(folio); 2104 shmem_recalc_inode(inode, 0, 0); 2105 } 2106 error = -EINVAL; 2107 goto unlock; 2108 } 2109 out: 2110 *foliop = folio; 2111 return 0; 2112 2113 /* 2114 * Error recovery. 2115 */ 2116 unacct: 2117 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio)); 2118 2119 if (folio_test_large(folio)) { 2120 folio_unlock(folio); 2121 folio_put(folio); 2122 goto alloc_nohuge; 2123 } 2124 unlock: 2125 if (folio) { 2126 folio_unlock(folio); 2127 folio_put(folio); 2128 } 2129 if (error == -ENOSPC && !once++) { 2130 shmem_recalc_inode(inode, 0, 0); 2131 goto repeat; 2132 } 2133 if (error == -EEXIST) 2134 goto repeat; 2135 return error; 2136 } 2137 2138 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2139 enum sgp_type sgp) 2140 { 2141 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2142 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 2143 } 2144 2145 /* 2146 * This is like autoremove_wake_function, but it removes the wait queue 2147 * entry unconditionally - even if something else had already woken the 2148 * target. 2149 */ 2150 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2151 { 2152 int ret = default_wake_function(wait, mode, sync, key); 2153 list_del_init(&wait->entry); 2154 return ret; 2155 } 2156 2157 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2158 { 2159 struct vm_area_struct *vma = vmf->vma; 2160 struct inode *inode = file_inode(vma->vm_file); 2161 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2162 struct folio *folio = NULL; 2163 int err; 2164 vm_fault_t ret = VM_FAULT_LOCKED; 2165 2166 /* 2167 * Trinity finds that probing a hole which tmpfs is punching can 2168 * prevent the hole-punch from ever completing: which in turn 2169 * locks writers out with its hold on i_rwsem. So refrain from 2170 * faulting pages into the hole while it's being punched. Although 2171 * shmem_undo_range() does remove the additions, it may be unable to 2172 * keep up, as each new page needs its own unmap_mapping_range() call, 2173 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2174 * 2175 * It does not matter if we sometimes reach this check just before the 2176 * hole-punch begins, so that one fault then races with the punch: 2177 * we just need to make racing faults a rare case. 2178 * 2179 * The implementation below would be much simpler if we just used a 2180 * standard mutex or completion: but we cannot take i_rwsem in fault, 2181 * and bloating every shmem inode for this unlikely case would be sad. 2182 */ 2183 if (unlikely(inode->i_private)) { 2184 struct shmem_falloc *shmem_falloc; 2185 2186 spin_lock(&inode->i_lock); 2187 shmem_falloc = inode->i_private; 2188 if (shmem_falloc && 2189 shmem_falloc->waitq && 2190 vmf->pgoff >= shmem_falloc->start && 2191 vmf->pgoff < shmem_falloc->next) { 2192 struct file *fpin; 2193 wait_queue_head_t *shmem_falloc_waitq; 2194 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2195 2196 ret = VM_FAULT_NOPAGE; 2197 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2198 if (fpin) 2199 ret = VM_FAULT_RETRY; 2200 2201 shmem_falloc_waitq = shmem_falloc->waitq; 2202 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2203 TASK_UNINTERRUPTIBLE); 2204 spin_unlock(&inode->i_lock); 2205 schedule(); 2206 2207 /* 2208 * shmem_falloc_waitq points into the shmem_fallocate() 2209 * stack of the hole-punching task: shmem_falloc_waitq 2210 * is usually invalid by the time we reach here, but 2211 * finish_wait() does not dereference it in that case; 2212 * though i_lock needed lest racing with wake_up_all(). 2213 */ 2214 spin_lock(&inode->i_lock); 2215 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2216 spin_unlock(&inode->i_lock); 2217 2218 if (fpin) 2219 fput(fpin); 2220 return ret; 2221 } 2222 spin_unlock(&inode->i_lock); 2223 } 2224 2225 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2226 gfp, vma, vmf, &ret); 2227 if (err) 2228 return vmf_error(err); 2229 if (folio) 2230 vmf->page = folio_file_page(folio, vmf->pgoff); 2231 return ret; 2232 } 2233 2234 unsigned long shmem_get_unmapped_area(struct file *file, 2235 unsigned long uaddr, unsigned long len, 2236 unsigned long pgoff, unsigned long flags) 2237 { 2238 unsigned long (*get_area)(struct file *, 2239 unsigned long, unsigned long, unsigned long, unsigned long); 2240 unsigned long addr; 2241 unsigned long offset; 2242 unsigned long inflated_len; 2243 unsigned long inflated_addr; 2244 unsigned long inflated_offset; 2245 2246 if (len > TASK_SIZE) 2247 return -ENOMEM; 2248 2249 get_area = current->mm->get_unmapped_area; 2250 addr = get_area(file, uaddr, len, pgoff, flags); 2251 2252 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2253 return addr; 2254 if (IS_ERR_VALUE(addr)) 2255 return addr; 2256 if (addr & ~PAGE_MASK) 2257 return addr; 2258 if (addr > TASK_SIZE - len) 2259 return addr; 2260 2261 if (shmem_huge == SHMEM_HUGE_DENY) 2262 return addr; 2263 if (len < HPAGE_PMD_SIZE) 2264 return addr; 2265 if (flags & MAP_FIXED) 2266 return addr; 2267 /* 2268 * Our priority is to support MAP_SHARED mapped hugely; 2269 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2270 * But if caller specified an address hint and we allocated area there 2271 * successfully, respect that as before. 2272 */ 2273 if (uaddr == addr) 2274 return addr; 2275 2276 if (shmem_huge != SHMEM_HUGE_FORCE) { 2277 struct super_block *sb; 2278 2279 if (file) { 2280 VM_BUG_ON(file->f_op != &shmem_file_operations); 2281 sb = file_inode(file)->i_sb; 2282 } else { 2283 /* 2284 * Called directly from mm/mmap.c, or drivers/char/mem.c 2285 * for "/dev/zero", to create a shared anonymous object. 2286 */ 2287 if (IS_ERR(shm_mnt)) 2288 return addr; 2289 sb = shm_mnt->mnt_sb; 2290 } 2291 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2292 return addr; 2293 } 2294 2295 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2296 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2297 return addr; 2298 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2299 return addr; 2300 2301 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2302 if (inflated_len > TASK_SIZE) 2303 return addr; 2304 if (inflated_len < len) 2305 return addr; 2306 2307 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2308 if (IS_ERR_VALUE(inflated_addr)) 2309 return addr; 2310 if (inflated_addr & ~PAGE_MASK) 2311 return addr; 2312 2313 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2314 inflated_addr += offset - inflated_offset; 2315 if (inflated_offset > offset) 2316 inflated_addr += HPAGE_PMD_SIZE; 2317 2318 if (inflated_addr > TASK_SIZE - len) 2319 return addr; 2320 return inflated_addr; 2321 } 2322 2323 #ifdef CONFIG_NUMA 2324 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2325 { 2326 struct inode *inode = file_inode(vma->vm_file); 2327 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2328 } 2329 2330 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2331 unsigned long addr) 2332 { 2333 struct inode *inode = file_inode(vma->vm_file); 2334 pgoff_t index; 2335 2336 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2337 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2338 } 2339 #endif 2340 2341 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2342 { 2343 struct inode *inode = file_inode(file); 2344 struct shmem_inode_info *info = SHMEM_I(inode); 2345 int retval = -ENOMEM; 2346 2347 /* 2348 * What serializes the accesses to info->flags? 2349 * ipc_lock_object() when called from shmctl_do_lock(), 2350 * no serialization needed when called from shm_destroy(). 2351 */ 2352 if (lock && !(info->flags & VM_LOCKED)) { 2353 if (!user_shm_lock(inode->i_size, ucounts)) 2354 goto out_nomem; 2355 info->flags |= VM_LOCKED; 2356 mapping_set_unevictable(file->f_mapping); 2357 } 2358 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2359 user_shm_unlock(inode->i_size, ucounts); 2360 info->flags &= ~VM_LOCKED; 2361 mapping_clear_unevictable(file->f_mapping); 2362 } 2363 retval = 0; 2364 2365 out_nomem: 2366 return retval; 2367 } 2368 2369 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2370 { 2371 struct inode *inode = file_inode(file); 2372 struct shmem_inode_info *info = SHMEM_I(inode); 2373 int ret; 2374 2375 ret = seal_check_future_write(info->seals, vma); 2376 if (ret) 2377 return ret; 2378 2379 /* arm64 - allow memory tagging on RAM-based files */ 2380 vm_flags_set(vma, VM_MTE_ALLOWED); 2381 2382 file_accessed(file); 2383 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2384 if (inode->i_nlink) 2385 vma->vm_ops = &shmem_vm_ops; 2386 else 2387 vma->vm_ops = &shmem_anon_vm_ops; 2388 return 0; 2389 } 2390 2391 static int shmem_file_open(struct inode *inode, struct file *file) 2392 { 2393 file->f_mode |= FMODE_CAN_ODIRECT; 2394 return generic_file_open(inode, file); 2395 } 2396 2397 #ifdef CONFIG_TMPFS_XATTR 2398 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2399 2400 /* 2401 * chattr's fsflags are unrelated to extended attributes, 2402 * but tmpfs has chosen to enable them under the same config option. 2403 */ 2404 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2405 { 2406 unsigned int i_flags = 0; 2407 2408 if (fsflags & FS_NOATIME_FL) 2409 i_flags |= S_NOATIME; 2410 if (fsflags & FS_APPEND_FL) 2411 i_flags |= S_APPEND; 2412 if (fsflags & FS_IMMUTABLE_FL) 2413 i_flags |= S_IMMUTABLE; 2414 /* 2415 * But FS_NODUMP_FL does not require any action in i_flags. 2416 */ 2417 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2418 } 2419 #else 2420 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2421 { 2422 } 2423 #define shmem_initxattrs NULL 2424 #endif 2425 2426 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 2427 { 2428 return &SHMEM_I(inode)->dir_offsets; 2429 } 2430 2431 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 2432 struct super_block *sb, 2433 struct inode *dir, umode_t mode, 2434 dev_t dev, unsigned long flags) 2435 { 2436 struct inode *inode; 2437 struct shmem_inode_info *info; 2438 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2439 ino_t ino; 2440 int err; 2441 2442 err = shmem_reserve_inode(sb, &ino); 2443 if (err) 2444 return ERR_PTR(err); 2445 2446 2447 inode = new_inode(sb); 2448 2449 if (!inode) { 2450 shmem_free_inode(sb, 0); 2451 return ERR_PTR(-ENOSPC); 2452 } 2453 2454 inode->i_ino = ino; 2455 inode_init_owner(idmap, inode, dir, mode); 2456 inode->i_blocks = 0; 2457 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2458 inode->i_generation = get_random_u32(); 2459 info = SHMEM_I(inode); 2460 memset(info, 0, (char *)inode - (char *)info); 2461 spin_lock_init(&info->lock); 2462 atomic_set(&info->stop_eviction, 0); 2463 info->seals = F_SEAL_SEAL; 2464 info->flags = flags & VM_NORESERVE; 2465 info->i_crtime = inode->i_mtime; 2466 info->fsflags = (dir == NULL) ? 0 : 2467 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2468 if (info->fsflags) 2469 shmem_set_inode_flags(inode, info->fsflags); 2470 INIT_LIST_HEAD(&info->shrinklist); 2471 INIT_LIST_HEAD(&info->swaplist); 2472 INIT_LIST_HEAD(&info->swaplist); 2473 if (sbinfo->noswap) 2474 mapping_set_unevictable(inode->i_mapping); 2475 simple_xattrs_init(&info->xattrs); 2476 cache_no_acl(inode); 2477 mapping_set_large_folios(inode->i_mapping); 2478 2479 switch (mode & S_IFMT) { 2480 default: 2481 inode->i_op = &shmem_special_inode_operations; 2482 init_special_inode(inode, mode, dev); 2483 break; 2484 case S_IFREG: 2485 inode->i_mapping->a_ops = &shmem_aops; 2486 inode->i_op = &shmem_inode_operations; 2487 inode->i_fop = &shmem_file_operations; 2488 mpol_shared_policy_init(&info->policy, 2489 shmem_get_sbmpol(sbinfo)); 2490 break; 2491 case S_IFDIR: 2492 inc_nlink(inode); 2493 /* Some things misbehave if size == 0 on a directory */ 2494 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2495 inode->i_op = &shmem_dir_inode_operations; 2496 inode->i_fop = &simple_offset_dir_operations; 2497 simple_offset_init(shmem_get_offset_ctx(inode)); 2498 break; 2499 case S_IFLNK: 2500 /* 2501 * Must not load anything in the rbtree, 2502 * mpol_free_shared_policy will not be called. 2503 */ 2504 mpol_shared_policy_init(&info->policy, NULL); 2505 break; 2506 } 2507 2508 lockdep_annotate_inode_mutex_key(inode); 2509 return inode; 2510 } 2511 2512 #ifdef CONFIG_TMPFS_QUOTA 2513 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2514 struct super_block *sb, struct inode *dir, 2515 umode_t mode, dev_t dev, unsigned long flags) 2516 { 2517 int err; 2518 struct inode *inode; 2519 2520 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2521 if (IS_ERR(inode)) 2522 return inode; 2523 2524 err = dquot_initialize(inode); 2525 if (err) 2526 goto errout; 2527 2528 err = dquot_alloc_inode(inode); 2529 if (err) { 2530 dquot_drop(inode); 2531 goto errout; 2532 } 2533 return inode; 2534 2535 errout: 2536 inode->i_flags |= S_NOQUOTA; 2537 iput(inode); 2538 return ERR_PTR(err); 2539 } 2540 #else 2541 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2542 struct super_block *sb, struct inode *dir, 2543 umode_t mode, dev_t dev, unsigned long flags) 2544 { 2545 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2546 } 2547 #endif /* CONFIG_TMPFS_QUOTA */ 2548 2549 #ifdef CONFIG_USERFAULTFD 2550 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 2551 struct vm_area_struct *dst_vma, 2552 unsigned long dst_addr, 2553 unsigned long src_addr, 2554 uffd_flags_t flags, 2555 struct folio **foliop) 2556 { 2557 struct inode *inode = file_inode(dst_vma->vm_file); 2558 struct shmem_inode_info *info = SHMEM_I(inode); 2559 struct address_space *mapping = inode->i_mapping; 2560 gfp_t gfp = mapping_gfp_mask(mapping); 2561 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2562 void *page_kaddr; 2563 struct folio *folio; 2564 int ret; 2565 pgoff_t max_off; 2566 2567 if (shmem_inode_acct_block(inode, 1)) { 2568 /* 2569 * We may have got a page, returned -ENOENT triggering a retry, 2570 * and now we find ourselves with -ENOMEM. Release the page, to 2571 * avoid a BUG_ON in our caller. 2572 */ 2573 if (unlikely(*foliop)) { 2574 folio_put(*foliop); 2575 *foliop = NULL; 2576 } 2577 return -ENOMEM; 2578 } 2579 2580 if (!*foliop) { 2581 ret = -ENOMEM; 2582 folio = shmem_alloc_folio(gfp, info, pgoff); 2583 if (!folio) 2584 goto out_unacct_blocks; 2585 2586 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 2587 page_kaddr = kmap_local_folio(folio, 0); 2588 /* 2589 * The read mmap_lock is held here. Despite the 2590 * mmap_lock being read recursive a deadlock is still 2591 * possible if a writer has taken a lock. For example: 2592 * 2593 * process A thread 1 takes read lock on own mmap_lock 2594 * process A thread 2 calls mmap, blocks taking write lock 2595 * process B thread 1 takes page fault, read lock on own mmap lock 2596 * process B thread 2 calls mmap, blocks taking write lock 2597 * process A thread 1 blocks taking read lock on process B 2598 * process B thread 1 blocks taking read lock on process A 2599 * 2600 * Disable page faults to prevent potential deadlock 2601 * and retry the copy outside the mmap_lock. 2602 */ 2603 pagefault_disable(); 2604 ret = copy_from_user(page_kaddr, 2605 (const void __user *)src_addr, 2606 PAGE_SIZE); 2607 pagefault_enable(); 2608 kunmap_local(page_kaddr); 2609 2610 /* fallback to copy_from_user outside mmap_lock */ 2611 if (unlikely(ret)) { 2612 *foliop = folio; 2613 ret = -ENOENT; 2614 /* don't free the page */ 2615 goto out_unacct_blocks; 2616 } 2617 2618 flush_dcache_folio(folio); 2619 } else { /* ZEROPAGE */ 2620 clear_user_highpage(&folio->page, dst_addr); 2621 } 2622 } else { 2623 folio = *foliop; 2624 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2625 *foliop = NULL; 2626 } 2627 2628 VM_BUG_ON(folio_test_locked(folio)); 2629 VM_BUG_ON(folio_test_swapbacked(folio)); 2630 __folio_set_locked(folio); 2631 __folio_set_swapbacked(folio); 2632 __folio_mark_uptodate(folio); 2633 2634 ret = -EFAULT; 2635 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2636 if (unlikely(pgoff >= max_off)) 2637 goto out_release; 2638 2639 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, 2640 gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm); 2641 if (ret) 2642 goto out_release; 2643 2644 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 2645 &folio->page, true, flags); 2646 if (ret) 2647 goto out_delete_from_cache; 2648 2649 shmem_recalc_inode(inode, 1, 0); 2650 folio_unlock(folio); 2651 return 0; 2652 out_delete_from_cache: 2653 filemap_remove_folio(folio); 2654 out_release: 2655 folio_unlock(folio); 2656 folio_put(folio); 2657 out_unacct_blocks: 2658 shmem_inode_unacct_blocks(inode, 1); 2659 return ret; 2660 } 2661 #endif /* CONFIG_USERFAULTFD */ 2662 2663 #ifdef CONFIG_TMPFS 2664 static const struct inode_operations shmem_symlink_inode_operations; 2665 static const struct inode_operations shmem_short_symlink_operations; 2666 2667 static int 2668 shmem_write_begin(struct file *file, struct address_space *mapping, 2669 loff_t pos, unsigned len, 2670 struct page **pagep, void **fsdata) 2671 { 2672 struct inode *inode = mapping->host; 2673 struct shmem_inode_info *info = SHMEM_I(inode); 2674 pgoff_t index = pos >> PAGE_SHIFT; 2675 struct folio *folio; 2676 int ret = 0; 2677 2678 /* i_rwsem is held by caller */ 2679 if (unlikely(info->seals & (F_SEAL_GROW | 2680 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2681 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2682 return -EPERM; 2683 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2684 return -EPERM; 2685 } 2686 2687 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 2688 2689 if (ret) 2690 return ret; 2691 2692 *pagep = folio_file_page(folio, index); 2693 if (PageHWPoison(*pagep)) { 2694 folio_unlock(folio); 2695 folio_put(folio); 2696 *pagep = NULL; 2697 return -EIO; 2698 } 2699 2700 return 0; 2701 } 2702 2703 static int 2704 shmem_write_end(struct file *file, struct address_space *mapping, 2705 loff_t pos, unsigned len, unsigned copied, 2706 struct page *page, void *fsdata) 2707 { 2708 struct folio *folio = page_folio(page); 2709 struct inode *inode = mapping->host; 2710 2711 if (pos + copied > inode->i_size) 2712 i_size_write(inode, pos + copied); 2713 2714 if (!folio_test_uptodate(folio)) { 2715 if (copied < folio_size(folio)) { 2716 size_t from = offset_in_folio(folio, pos); 2717 folio_zero_segments(folio, 0, from, 2718 from + copied, folio_size(folio)); 2719 } 2720 folio_mark_uptodate(folio); 2721 } 2722 folio_mark_dirty(folio); 2723 folio_unlock(folio); 2724 folio_put(folio); 2725 2726 return copied; 2727 } 2728 2729 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2730 { 2731 struct file *file = iocb->ki_filp; 2732 struct inode *inode = file_inode(file); 2733 struct address_space *mapping = inode->i_mapping; 2734 pgoff_t index; 2735 unsigned long offset; 2736 int error = 0; 2737 ssize_t retval = 0; 2738 loff_t *ppos = &iocb->ki_pos; 2739 2740 index = *ppos >> PAGE_SHIFT; 2741 offset = *ppos & ~PAGE_MASK; 2742 2743 for (;;) { 2744 struct folio *folio = NULL; 2745 struct page *page = NULL; 2746 pgoff_t end_index; 2747 unsigned long nr, ret; 2748 loff_t i_size = i_size_read(inode); 2749 2750 end_index = i_size >> PAGE_SHIFT; 2751 if (index > end_index) 2752 break; 2753 if (index == end_index) { 2754 nr = i_size & ~PAGE_MASK; 2755 if (nr <= offset) 2756 break; 2757 } 2758 2759 error = shmem_get_folio(inode, index, &folio, SGP_READ); 2760 if (error) { 2761 if (error == -EINVAL) 2762 error = 0; 2763 break; 2764 } 2765 if (folio) { 2766 folio_unlock(folio); 2767 2768 page = folio_file_page(folio, index); 2769 if (PageHWPoison(page)) { 2770 folio_put(folio); 2771 error = -EIO; 2772 break; 2773 } 2774 } 2775 2776 /* 2777 * We must evaluate after, since reads (unlike writes) 2778 * are called without i_rwsem protection against truncate 2779 */ 2780 nr = PAGE_SIZE; 2781 i_size = i_size_read(inode); 2782 end_index = i_size >> PAGE_SHIFT; 2783 if (index == end_index) { 2784 nr = i_size & ~PAGE_MASK; 2785 if (nr <= offset) { 2786 if (folio) 2787 folio_put(folio); 2788 break; 2789 } 2790 } 2791 nr -= offset; 2792 2793 if (folio) { 2794 /* 2795 * If users can be writing to this page using arbitrary 2796 * virtual addresses, take care about potential aliasing 2797 * before reading the page on the kernel side. 2798 */ 2799 if (mapping_writably_mapped(mapping)) 2800 flush_dcache_page(page); 2801 /* 2802 * Mark the page accessed if we read the beginning. 2803 */ 2804 if (!offset) 2805 folio_mark_accessed(folio); 2806 /* 2807 * Ok, we have the page, and it's up-to-date, so 2808 * now we can copy it to user space... 2809 */ 2810 ret = copy_page_to_iter(page, offset, nr, to); 2811 folio_put(folio); 2812 2813 } else if (user_backed_iter(to)) { 2814 /* 2815 * Copy to user tends to be so well optimized, but 2816 * clear_user() not so much, that it is noticeably 2817 * faster to copy the zero page instead of clearing. 2818 */ 2819 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2820 } else { 2821 /* 2822 * But submitting the same page twice in a row to 2823 * splice() - or others? - can result in confusion: 2824 * so don't attempt that optimization on pipes etc. 2825 */ 2826 ret = iov_iter_zero(nr, to); 2827 } 2828 2829 retval += ret; 2830 offset += ret; 2831 index += offset >> PAGE_SHIFT; 2832 offset &= ~PAGE_MASK; 2833 2834 if (!iov_iter_count(to)) 2835 break; 2836 if (ret < nr) { 2837 error = -EFAULT; 2838 break; 2839 } 2840 cond_resched(); 2841 } 2842 2843 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2844 file_accessed(file); 2845 return retval ? retval : error; 2846 } 2847 2848 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2849 { 2850 struct file *file = iocb->ki_filp; 2851 struct inode *inode = file->f_mapping->host; 2852 ssize_t ret; 2853 2854 inode_lock(inode); 2855 ret = generic_write_checks(iocb, from); 2856 if (ret <= 0) 2857 goto unlock; 2858 ret = file_remove_privs(file); 2859 if (ret) 2860 goto unlock; 2861 ret = file_update_time(file); 2862 if (ret) 2863 goto unlock; 2864 ret = generic_perform_write(iocb, from); 2865 unlock: 2866 inode_unlock(inode); 2867 return ret; 2868 } 2869 2870 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 2871 struct pipe_buffer *buf) 2872 { 2873 return true; 2874 } 2875 2876 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 2877 struct pipe_buffer *buf) 2878 { 2879 } 2880 2881 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 2882 struct pipe_buffer *buf) 2883 { 2884 return false; 2885 } 2886 2887 static const struct pipe_buf_operations zero_pipe_buf_ops = { 2888 .release = zero_pipe_buf_release, 2889 .try_steal = zero_pipe_buf_try_steal, 2890 .get = zero_pipe_buf_get, 2891 }; 2892 2893 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 2894 loff_t fpos, size_t size) 2895 { 2896 size_t offset = fpos & ~PAGE_MASK; 2897 2898 size = min_t(size_t, size, PAGE_SIZE - offset); 2899 2900 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2901 struct pipe_buffer *buf = pipe_head_buf(pipe); 2902 2903 *buf = (struct pipe_buffer) { 2904 .ops = &zero_pipe_buf_ops, 2905 .page = ZERO_PAGE(0), 2906 .offset = offset, 2907 .len = size, 2908 }; 2909 pipe->head++; 2910 } 2911 2912 return size; 2913 } 2914 2915 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 2916 struct pipe_inode_info *pipe, 2917 size_t len, unsigned int flags) 2918 { 2919 struct inode *inode = file_inode(in); 2920 struct address_space *mapping = inode->i_mapping; 2921 struct folio *folio = NULL; 2922 size_t total_spliced = 0, used, npages, n, part; 2923 loff_t isize; 2924 int error = 0; 2925 2926 /* Work out how much data we can actually add into the pipe */ 2927 used = pipe_occupancy(pipe->head, pipe->tail); 2928 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2929 len = min_t(size_t, len, npages * PAGE_SIZE); 2930 2931 do { 2932 if (*ppos >= i_size_read(inode)) 2933 break; 2934 2935 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio, 2936 SGP_READ); 2937 if (error) { 2938 if (error == -EINVAL) 2939 error = 0; 2940 break; 2941 } 2942 if (folio) { 2943 folio_unlock(folio); 2944 2945 if (folio_test_hwpoison(folio) || 2946 (folio_test_large(folio) && 2947 folio_test_has_hwpoisoned(folio))) { 2948 error = -EIO; 2949 break; 2950 } 2951 } 2952 2953 /* 2954 * i_size must be checked after we know the pages are Uptodate. 2955 * 2956 * Checking i_size after the check allows us to calculate 2957 * the correct value for "nr", which means the zero-filled 2958 * part of the page is not copied back to userspace (unless 2959 * another truncate extends the file - this is desired though). 2960 */ 2961 isize = i_size_read(inode); 2962 if (unlikely(*ppos >= isize)) 2963 break; 2964 part = min_t(loff_t, isize - *ppos, len); 2965 2966 if (folio) { 2967 /* 2968 * If users can be writing to this page using arbitrary 2969 * virtual addresses, take care about potential aliasing 2970 * before reading the page on the kernel side. 2971 */ 2972 if (mapping_writably_mapped(mapping)) 2973 flush_dcache_folio(folio); 2974 folio_mark_accessed(folio); 2975 /* 2976 * Ok, we have the page, and it's up-to-date, so we can 2977 * now splice it into the pipe. 2978 */ 2979 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 2980 folio_put(folio); 2981 folio = NULL; 2982 } else { 2983 n = splice_zeropage_into_pipe(pipe, *ppos, part); 2984 } 2985 2986 if (!n) 2987 break; 2988 len -= n; 2989 total_spliced += n; 2990 *ppos += n; 2991 in->f_ra.prev_pos = *ppos; 2992 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 2993 break; 2994 2995 cond_resched(); 2996 } while (len); 2997 2998 if (folio) 2999 folio_put(folio); 3000 3001 file_accessed(in); 3002 return total_spliced ? total_spliced : error; 3003 } 3004 3005 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3006 { 3007 struct address_space *mapping = file->f_mapping; 3008 struct inode *inode = mapping->host; 3009 3010 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3011 return generic_file_llseek_size(file, offset, whence, 3012 MAX_LFS_FILESIZE, i_size_read(inode)); 3013 if (offset < 0) 3014 return -ENXIO; 3015 3016 inode_lock(inode); 3017 /* We're holding i_rwsem so we can access i_size directly */ 3018 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3019 if (offset >= 0) 3020 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3021 inode_unlock(inode); 3022 return offset; 3023 } 3024 3025 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3026 loff_t len) 3027 { 3028 struct inode *inode = file_inode(file); 3029 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3030 struct shmem_inode_info *info = SHMEM_I(inode); 3031 struct shmem_falloc shmem_falloc; 3032 pgoff_t start, index, end, undo_fallocend; 3033 int error; 3034 3035 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3036 return -EOPNOTSUPP; 3037 3038 inode_lock(inode); 3039 3040 if (mode & FALLOC_FL_PUNCH_HOLE) { 3041 struct address_space *mapping = file->f_mapping; 3042 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3043 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3044 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3045 3046 /* protected by i_rwsem */ 3047 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3048 error = -EPERM; 3049 goto out; 3050 } 3051 3052 shmem_falloc.waitq = &shmem_falloc_waitq; 3053 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3054 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3055 spin_lock(&inode->i_lock); 3056 inode->i_private = &shmem_falloc; 3057 spin_unlock(&inode->i_lock); 3058 3059 if ((u64)unmap_end > (u64)unmap_start) 3060 unmap_mapping_range(mapping, unmap_start, 3061 1 + unmap_end - unmap_start, 0); 3062 shmem_truncate_range(inode, offset, offset + len - 1); 3063 /* No need to unmap again: hole-punching leaves COWed pages */ 3064 3065 spin_lock(&inode->i_lock); 3066 inode->i_private = NULL; 3067 wake_up_all(&shmem_falloc_waitq); 3068 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3069 spin_unlock(&inode->i_lock); 3070 error = 0; 3071 goto out; 3072 } 3073 3074 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3075 error = inode_newsize_ok(inode, offset + len); 3076 if (error) 3077 goto out; 3078 3079 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3080 error = -EPERM; 3081 goto out; 3082 } 3083 3084 start = offset >> PAGE_SHIFT; 3085 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3086 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3087 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3088 error = -ENOSPC; 3089 goto out; 3090 } 3091 3092 shmem_falloc.waitq = NULL; 3093 shmem_falloc.start = start; 3094 shmem_falloc.next = start; 3095 shmem_falloc.nr_falloced = 0; 3096 shmem_falloc.nr_unswapped = 0; 3097 spin_lock(&inode->i_lock); 3098 inode->i_private = &shmem_falloc; 3099 spin_unlock(&inode->i_lock); 3100 3101 /* 3102 * info->fallocend is only relevant when huge pages might be 3103 * involved: to prevent split_huge_page() freeing fallocated 3104 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3105 */ 3106 undo_fallocend = info->fallocend; 3107 if (info->fallocend < end) 3108 info->fallocend = end; 3109 3110 for (index = start; index < end; ) { 3111 struct folio *folio; 3112 3113 /* 3114 * Good, the fallocate(2) manpage permits EINTR: we may have 3115 * been interrupted because we are using up too much memory. 3116 */ 3117 if (signal_pending(current)) 3118 error = -EINTR; 3119 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3120 error = -ENOMEM; 3121 else 3122 error = shmem_get_folio(inode, index, &folio, 3123 SGP_FALLOC); 3124 if (error) { 3125 info->fallocend = undo_fallocend; 3126 /* Remove the !uptodate folios we added */ 3127 if (index > start) { 3128 shmem_undo_range(inode, 3129 (loff_t)start << PAGE_SHIFT, 3130 ((loff_t)index << PAGE_SHIFT) - 1, true); 3131 } 3132 goto undone; 3133 } 3134 3135 /* 3136 * Here is a more important optimization than it appears: 3137 * a second SGP_FALLOC on the same large folio will clear it, 3138 * making it uptodate and un-undoable if we fail later. 3139 */ 3140 index = folio_next_index(folio); 3141 /* Beware 32-bit wraparound */ 3142 if (!index) 3143 index--; 3144 3145 /* 3146 * Inform shmem_writepage() how far we have reached. 3147 * No need for lock or barrier: we have the page lock. 3148 */ 3149 if (!folio_test_uptodate(folio)) 3150 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3151 shmem_falloc.next = index; 3152 3153 /* 3154 * If !uptodate, leave it that way so that freeable folios 3155 * can be recognized if we need to rollback on error later. 3156 * But mark it dirty so that memory pressure will swap rather 3157 * than free the folios we are allocating (and SGP_CACHE folios 3158 * might still be clean: we now need to mark those dirty too). 3159 */ 3160 folio_mark_dirty(folio); 3161 folio_unlock(folio); 3162 folio_put(folio); 3163 cond_resched(); 3164 } 3165 3166 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3167 i_size_write(inode, offset + len); 3168 undone: 3169 spin_lock(&inode->i_lock); 3170 inode->i_private = NULL; 3171 spin_unlock(&inode->i_lock); 3172 out: 3173 if (!error) 3174 file_modified(file); 3175 inode_unlock(inode); 3176 return error; 3177 } 3178 3179 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3180 { 3181 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3182 3183 buf->f_type = TMPFS_MAGIC; 3184 buf->f_bsize = PAGE_SIZE; 3185 buf->f_namelen = NAME_MAX; 3186 if (sbinfo->max_blocks) { 3187 buf->f_blocks = sbinfo->max_blocks; 3188 buf->f_bavail = 3189 buf->f_bfree = sbinfo->max_blocks - 3190 percpu_counter_sum(&sbinfo->used_blocks); 3191 } 3192 if (sbinfo->max_inodes) { 3193 buf->f_files = sbinfo->max_inodes; 3194 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3195 } 3196 /* else leave those fields 0 like simple_statfs */ 3197 3198 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3199 3200 return 0; 3201 } 3202 3203 /* 3204 * File creation. Allocate an inode, and we're done.. 3205 */ 3206 static int 3207 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3208 struct dentry *dentry, umode_t mode, dev_t dev) 3209 { 3210 struct inode *inode; 3211 int error; 3212 3213 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3214 3215 if (IS_ERR(inode)) 3216 return PTR_ERR(inode); 3217 3218 error = simple_acl_create(dir, inode); 3219 if (error) 3220 goto out_iput; 3221 error = security_inode_init_security(inode, dir, 3222 &dentry->d_name, 3223 shmem_initxattrs, NULL); 3224 if (error && error != -EOPNOTSUPP) 3225 goto out_iput; 3226 3227 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3228 if (error) 3229 goto out_iput; 3230 3231 dir->i_size += BOGO_DIRENT_SIZE; 3232 dir->i_ctime = dir->i_mtime = current_time(dir); 3233 inode_inc_iversion(dir); 3234 d_instantiate(dentry, inode); 3235 dget(dentry); /* Extra count - pin the dentry in core */ 3236 return error; 3237 3238 out_iput: 3239 iput(inode); 3240 return error; 3241 } 3242 3243 static int 3244 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3245 struct file *file, umode_t mode) 3246 { 3247 struct inode *inode; 3248 int error; 3249 3250 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3251 3252 if (IS_ERR(inode)) { 3253 error = PTR_ERR(inode); 3254 goto err_out; 3255 } 3256 3257 error = security_inode_init_security(inode, dir, 3258 NULL, 3259 shmem_initxattrs, NULL); 3260 if (error && error != -EOPNOTSUPP) 3261 goto out_iput; 3262 error = simple_acl_create(dir, inode); 3263 if (error) 3264 goto out_iput; 3265 d_tmpfile(file, inode); 3266 3267 err_out: 3268 return finish_open_simple(file, error); 3269 out_iput: 3270 iput(inode); 3271 return error; 3272 } 3273 3274 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3275 struct dentry *dentry, umode_t mode) 3276 { 3277 int error; 3278 3279 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3280 if (error) 3281 return error; 3282 inc_nlink(dir); 3283 return 0; 3284 } 3285 3286 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3287 struct dentry *dentry, umode_t mode, bool excl) 3288 { 3289 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3290 } 3291 3292 /* 3293 * Link a file.. 3294 */ 3295 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 3296 { 3297 struct inode *inode = d_inode(old_dentry); 3298 int ret = 0; 3299 3300 /* 3301 * No ordinary (disk based) filesystem counts links as inodes; 3302 * but each new link needs a new dentry, pinning lowmem, and 3303 * tmpfs dentries cannot be pruned until they are unlinked. 3304 * But if an O_TMPFILE file is linked into the tmpfs, the 3305 * first link must skip that, to get the accounting right. 3306 */ 3307 if (inode->i_nlink) { 3308 ret = shmem_reserve_inode(inode->i_sb, NULL); 3309 if (ret) 3310 goto out; 3311 } 3312 3313 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3314 if (ret) { 3315 if (inode->i_nlink) 3316 shmem_free_inode(inode->i_sb, 0); 3317 goto out; 3318 } 3319 3320 dir->i_size += BOGO_DIRENT_SIZE; 3321 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3322 inode_inc_iversion(dir); 3323 inc_nlink(inode); 3324 ihold(inode); /* New dentry reference */ 3325 dget(dentry); /* Extra pinning count for the created dentry */ 3326 d_instantiate(dentry, inode); 3327 out: 3328 return ret; 3329 } 3330 3331 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3332 { 3333 struct inode *inode = d_inode(dentry); 3334 3335 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3336 shmem_free_inode(inode->i_sb, 0); 3337 3338 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3339 3340 dir->i_size -= BOGO_DIRENT_SIZE; 3341 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3342 inode_inc_iversion(dir); 3343 drop_nlink(inode); 3344 dput(dentry); /* Undo the count from "create" - this does all the work */ 3345 return 0; 3346 } 3347 3348 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3349 { 3350 if (!simple_empty(dentry)) 3351 return -ENOTEMPTY; 3352 3353 drop_nlink(d_inode(dentry)); 3354 drop_nlink(dir); 3355 return shmem_unlink(dir, dentry); 3356 } 3357 3358 static int shmem_whiteout(struct mnt_idmap *idmap, 3359 struct inode *old_dir, struct dentry *old_dentry) 3360 { 3361 struct dentry *whiteout; 3362 int error; 3363 3364 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3365 if (!whiteout) 3366 return -ENOMEM; 3367 3368 error = shmem_mknod(idmap, old_dir, whiteout, 3369 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3370 dput(whiteout); 3371 if (error) 3372 return error; 3373 3374 /* 3375 * Cheat and hash the whiteout while the old dentry is still in 3376 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3377 * 3378 * d_lookup() will consistently find one of them at this point, 3379 * not sure which one, but that isn't even important. 3380 */ 3381 d_rehash(whiteout); 3382 return 0; 3383 } 3384 3385 /* 3386 * The VFS layer already does all the dentry stuff for rename, 3387 * we just have to decrement the usage count for the target if 3388 * it exists so that the VFS layer correctly free's it when it 3389 * gets overwritten. 3390 */ 3391 static int shmem_rename2(struct mnt_idmap *idmap, 3392 struct inode *old_dir, struct dentry *old_dentry, 3393 struct inode *new_dir, struct dentry *new_dentry, 3394 unsigned int flags) 3395 { 3396 struct inode *inode = d_inode(old_dentry); 3397 int they_are_dirs = S_ISDIR(inode->i_mode); 3398 int error; 3399 3400 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3401 return -EINVAL; 3402 3403 if (flags & RENAME_EXCHANGE) 3404 return simple_offset_rename_exchange(old_dir, old_dentry, 3405 new_dir, new_dentry); 3406 3407 if (!simple_empty(new_dentry)) 3408 return -ENOTEMPTY; 3409 3410 if (flags & RENAME_WHITEOUT) { 3411 error = shmem_whiteout(idmap, old_dir, old_dentry); 3412 if (error) 3413 return error; 3414 } 3415 3416 simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry); 3417 error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry); 3418 if (error) 3419 return error; 3420 3421 if (d_really_is_positive(new_dentry)) { 3422 (void) shmem_unlink(new_dir, new_dentry); 3423 if (they_are_dirs) { 3424 drop_nlink(d_inode(new_dentry)); 3425 drop_nlink(old_dir); 3426 } 3427 } else if (they_are_dirs) { 3428 drop_nlink(old_dir); 3429 inc_nlink(new_dir); 3430 } 3431 3432 old_dir->i_size -= BOGO_DIRENT_SIZE; 3433 new_dir->i_size += BOGO_DIRENT_SIZE; 3434 old_dir->i_ctime = old_dir->i_mtime = 3435 new_dir->i_ctime = new_dir->i_mtime = 3436 inode->i_ctime = current_time(old_dir); 3437 inode_inc_iversion(old_dir); 3438 inode_inc_iversion(new_dir); 3439 return 0; 3440 } 3441 3442 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3443 struct dentry *dentry, const char *symname) 3444 { 3445 int error; 3446 int len; 3447 struct inode *inode; 3448 struct folio *folio; 3449 3450 len = strlen(symname) + 1; 3451 if (len > PAGE_SIZE) 3452 return -ENAMETOOLONG; 3453 3454 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3455 VM_NORESERVE); 3456 3457 if (IS_ERR(inode)) 3458 return PTR_ERR(inode); 3459 3460 error = security_inode_init_security(inode, dir, &dentry->d_name, 3461 shmem_initxattrs, NULL); 3462 if (error && error != -EOPNOTSUPP) 3463 goto out_iput; 3464 3465 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3466 if (error) 3467 goto out_iput; 3468 3469 inode->i_size = len-1; 3470 if (len <= SHORT_SYMLINK_LEN) { 3471 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3472 if (!inode->i_link) { 3473 error = -ENOMEM; 3474 goto out_remove_offset; 3475 } 3476 inode->i_op = &shmem_short_symlink_operations; 3477 } else { 3478 inode_nohighmem(inode); 3479 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3480 if (error) 3481 goto out_remove_offset; 3482 inode->i_mapping->a_ops = &shmem_aops; 3483 inode->i_op = &shmem_symlink_inode_operations; 3484 memcpy(folio_address(folio), symname, len); 3485 folio_mark_uptodate(folio); 3486 folio_mark_dirty(folio); 3487 folio_unlock(folio); 3488 folio_put(folio); 3489 } 3490 dir->i_size += BOGO_DIRENT_SIZE; 3491 dir->i_ctime = dir->i_mtime = current_time(dir); 3492 inode_inc_iversion(dir); 3493 d_instantiate(dentry, inode); 3494 dget(dentry); 3495 return 0; 3496 3497 out_remove_offset: 3498 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3499 out_iput: 3500 iput(inode); 3501 return error; 3502 } 3503 3504 static void shmem_put_link(void *arg) 3505 { 3506 folio_mark_accessed(arg); 3507 folio_put(arg); 3508 } 3509 3510 static const char *shmem_get_link(struct dentry *dentry, 3511 struct inode *inode, 3512 struct delayed_call *done) 3513 { 3514 struct folio *folio = NULL; 3515 int error; 3516 3517 if (!dentry) { 3518 folio = filemap_get_folio(inode->i_mapping, 0); 3519 if (IS_ERR(folio)) 3520 return ERR_PTR(-ECHILD); 3521 if (PageHWPoison(folio_page(folio, 0)) || 3522 !folio_test_uptodate(folio)) { 3523 folio_put(folio); 3524 return ERR_PTR(-ECHILD); 3525 } 3526 } else { 3527 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3528 if (error) 3529 return ERR_PTR(error); 3530 if (!folio) 3531 return ERR_PTR(-ECHILD); 3532 if (PageHWPoison(folio_page(folio, 0))) { 3533 folio_unlock(folio); 3534 folio_put(folio); 3535 return ERR_PTR(-ECHILD); 3536 } 3537 folio_unlock(folio); 3538 } 3539 set_delayed_call(done, shmem_put_link, folio); 3540 return folio_address(folio); 3541 } 3542 3543 #ifdef CONFIG_TMPFS_XATTR 3544 3545 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3546 { 3547 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3548 3549 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3550 3551 return 0; 3552 } 3553 3554 static int shmem_fileattr_set(struct mnt_idmap *idmap, 3555 struct dentry *dentry, struct fileattr *fa) 3556 { 3557 struct inode *inode = d_inode(dentry); 3558 struct shmem_inode_info *info = SHMEM_I(inode); 3559 3560 if (fileattr_has_fsx(fa)) 3561 return -EOPNOTSUPP; 3562 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3563 return -EOPNOTSUPP; 3564 3565 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3566 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3567 3568 shmem_set_inode_flags(inode, info->fsflags); 3569 inode->i_ctime = current_time(inode); 3570 inode_inc_iversion(inode); 3571 return 0; 3572 } 3573 3574 /* 3575 * Superblocks without xattr inode operations may get some security.* xattr 3576 * support from the LSM "for free". As soon as we have any other xattrs 3577 * like ACLs, we also need to implement the security.* handlers at 3578 * filesystem level, though. 3579 */ 3580 3581 /* 3582 * Callback for security_inode_init_security() for acquiring xattrs. 3583 */ 3584 static int shmem_initxattrs(struct inode *inode, 3585 const struct xattr *xattr_array, 3586 void *fs_info) 3587 { 3588 struct shmem_inode_info *info = SHMEM_I(inode); 3589 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3590 const struct xattr *xattr; 3591 struct simple_xattr *new_xattr; 3592 size_t ispace = 0; 3593 size_t len; 3594 3595 if (sbinfo->max_inodes) { 3596 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3597 ispace += simple_xattr_space(xattr->name, 3598 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 3599 } 3600 if (ispace) { 3601 raw_spin_lock(&sbinfo->stat_lock); 3602 if (sbinfo->free_ispace < ispace) 3603 ispace = 0; 3604 else 3605 sbinfo->free_ispace -= ispace; 3606 raw_spin_unlock(&sbinfo->stat_lock); 3607 if (!ispace) 3608 return -ENOSPC; 3609 } 3610 } 3611 3612 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3613 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3614 if (!new_xattr) 3615 break; 3616 3617 len = strlen(xattr->name) + 1; 3618 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3619 GFP_KERNEL_ACCOUNT); 3620 if (!new_xattr->name) { 3621 kvfree(new_xattr); 3622 break; 3623 } 3624 3625 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3626 XATTR_SECURITY_PREFIX_LEN); 3627 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3628 xattr->name, len); 3629 3630 simple_xattr_add(&info->xattrs, new_xattr); 3631 } 3632 3633 if (xattr->name != NULL) { 3634 if (ispace) { 3635 raw_spin_lock(&sbinfo->stat_lock); 3636 sbinfo->free_ispace += ispace; 3637 raw_spin_unlock(&sbinfo->stat_lock); 3638 } 3639 simple_xattrs_free(&info->xattrs, NULL); 3640 return -ENOMEM; 3641 } 3642 3643 return 0; 3644 } 3645 3646 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3647 struct dentry *unused, struct inode *inode, 3648 const char *name, void *buffer, size_t size) 3649 { 3650 struct shmem_inode_info *info = SHMEM_I(inode); 3651 3652 name = xattr_full_name(handler, name); 3653 return simple_xattr_get(&info->xattrs, name, buffer, size); 3654 } 3655 3656 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3657 struct mnt_idmap *idmap, 3658 struct dentry *unused, struct inode *inode, 3659 const char *name, const void *value, 3660 size_t size, int flags) 3661 { 3662 struct shmem_inode_info *info = SHMEM_I(inode); 3663 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3664 struct simple_xattr *old_xattr; 3665 size_t ispace = 0; 3666 3667 name = xattr_full_name(handler, name); 3668 if (value && sbinfo->max_inodes) { 3669 ispace = simple_xattr_space(name, size); 3670 raw_spin_lock(&sbinfo->stat_lock); 3671 if (sbinfo->free_ispace < ispace) 3672 ispace = 0; 3673 else 3674 sbinfo->free_ispace -= ispace; 3675 raw_spin_unlock(&sbinfo->stat_lock); 3676 if (!ispace) 3677 return -ENOSPC; 3678 } 3679 3680 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 3681 if (!IS_ERR(old_xattr)) { 3682 ispace = 0; 3683 if (old_xattr && sbinfo->max_inodes) 3684 ispace = simple_xattr_space(old_xattr->name, 3685 old_xattr->size); 3686 simple_xattr_free(old_xattr); 3687 old_xattr = NULL; 3688 inode->i_ctime = current_time(inode); 3689 inode_inc_iversion(inode); 3690 } 3691 if (ispace) { 3692 raw_spin_lock(&sbinfo->stat_lock); 3693 sbinfo->free_ispace += ispace; 3694 raw_spin_unlock(&sbinfo->stat_lock); 3695 } 3696 return PTR_ERR(old_xattr); 3697 } 3698 3699 static const struct xattr_handler shmem_security_xattr_handler = { 3700 .prefix = XATTR_SECURITY_PREFIX, 3701 .get = shmem_xattr_handler_get, 3702 .set = shmem_xattr_handler_set, 3703 }; 3704 3705 static const struct xattr_handler shmem_trusted_xattr_handler = { 3706 .prefix = XATTR_TRUSTED_PREFIX, 3707 .get = shmem_xattr_handler_get, 3708 .set = shmem_xattr_handler_set, 3709 }; 3710 3711 static const struct xattr_handler shmem_user_xattr_handler = { 3712 .prefix = XATTR_USER_PREFIX, 3713 .get = shmem_xattr_handler_get, 3714 .set = shmem_xattr_handler_set, 3715 }; 3716 3717 static const struct xattr_handler *shmem_xattr_handlers[] = { 3718 &shmem_security_xattr_handler, 3719 &shmem_trusted_xattr_handler, 3720 &shmem_user_xattr_handler, 3721 NULL 3722 }; 3723 3724 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3725 { 3726 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3727 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3728 } 3729 #endif /* CONFIG_TMPFS_XATTR */ 3730 3731 static const struct inode_operations shmem_short_symlink_operations = { 3732 .getattr = shmem_getattr, 3733 .setattr = shmem_setattr, 3734 .get_link = simple_get_link, 3735 #ifdef CONFIG_TMPFS_XATTR 3736 .listxattr = shmem_listxattr, 3737 #endif 3738 }; 3739 3740 static const struct inode_operations shmem_symlink_inode_operations = { 3741 .getattr = shmem_getattr, 3742 .setattr = shmem_setattr, 3743 .get_link = shmem_get_link, 3744 #ifdef CONFIG_TMPFS_XATTR 3745 .listxattr = shmem_listxattr, 3746 #endif 3747 }; 3748 3749 static struct dentry *shmem_get_parent(struct dentry *child) 3750 { 3751 return ERR_PTR(-ESTALE); 3752 } 3753 3754 static int shmem_match(struct inode *ino, void *vfh) 3755 { 3756 __u32 *fh = vfh; 3757 __u64 inum = fh[2]; 3758 inum = (inum << 32) | fh[1]; 3759 return ino->i_ino == inum && fh[0] == ino->i_generation; 3760 } 3761 3762 /* Find any alias of inode, but prefer a hashed alias */ 3763 static struct dentry *shmem_find_alias(struct inode *inode) 3764 { 3765 struct dentry *alias = d_find_alias(inode); 3766 3767 return alias ?: d_find_any_alias(inode); 3768 } 3769 3770 3771 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3772 struct fid *fid, int fh_len, int fh_type) 3773 { 3774 struct inode *inode; 3775 struct dentry *dentry = NULL; 3776 u64 inum; 3777 3778 if (fh_len < 3) 3779 return NULL; 3780 3781 inum = fid->raw[2]; 3782 inum = (inum << 32) | fid->raw[1]; 3783 3784 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3785 shmem_match, fid->raw); 3786 if (inode) { 3787 dentry = shmem_find_alias(inode); 3788 iput(inode); 3789 } 3790 3791 return dentry; 3792 } 3793 3794 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3795 struct inode *parent) 3796 { 3797 if (*len < 3) { 3798 *len = 3; 3799 return FILEID_INVALID; 3800 } 3801 3802 if (inode_unhashed(inode)) { 3803 /* Unfortunately insert_inode_hash is not idempotent, 3804 * so as we hash inodes here rather than at creation 3805 * time, we need a lock to ensure we only try 3806 * to do it once 3807 */ 3808 static DEFINE_SPINLOCK(lock); 3809 spin_lock(&lock); 3810 if (inode_unhashed(inode)) 3811 __insert_inode_hash(inode, 3812 inode->i_ino + inode->i_generation); 3813 spin_unlock(&lock); 3814 } 3815 3816 fh[0] = inode->i_generation; 3817 fh[1] = inode->i_ino; 3818 fh[2] = ((__u64)inode->i_ino) >> 32; 3819 3820 *len = 3; 3821 return 1; 3822 } 3823 3824 static const struct export_operations shmem_export_ops = { 3825 .get_parent = shmem_get_parent, 3826 .encode_fh = shmem_encode_fh, 3827 .fh_to_dentry = shmem_fh_to_dentry, 3828 }; 3829 3830 enum shmem_param { 3831 Opt_gid, 3832 Opt_huge, 3833 Opt_mode, 3834 Opt_mpol, 3835 Opt_nr_blocks, 3836 Opt_nr_inodes, 3837 Opt_size, 3838 Opt_uid, 3839 Opt_inode32, 3840 Opt_inode64, 3841 Opt_noswap, 3842 Opt_quota, 3843 Opt_usrquota, 3844 Opt_grpquota, 3845 Opt_usrquota_block_hardlimit, 3846 Opt_usrquota_inode_hardlimit, 3847 Opt_grpquota_block_hardlimit, 3848 Opt_grpquota_inode_hardlimit, 3849 }; 3850 3851 static const struct constant_table shmem_param_enums_huge[] = { 3852 {"never", SHMEM_HUGE_NEVER }, 3853 {"always", SHMEM_HUGE_ALWAYS }, 3854 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3855 {"advise", SHMEM_HUGE_ADVISE }, 3856 {} 3857 }; 3858 3859 const struct fs_parameter_spec shmem_fs_parameters[] = { 3860 fsparam_u32 ("gid", Opt_gid), 3861 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3862 fsparam_u32oct("mode", Opt_mode), 3863 fsparam_string("mpol", Opt_mpol), 3864 fsparam_string("nr_blocks", Opt_nr_blocks), 3865 fsparam_string("nr_inodes", Opt_nr_inodes), 3866 fsparam_string("size", Opt_size), 3867 fsparam_u32 ("uid", Opt_uid), 3868 fsparam_flag ("inode32", Opt_inode32), 3869 fsparam_flag ("inode64", Opt_inode64), 3870 fsparam_flag ("noswap", Opt_noswap), 3871 #ifdef CONFIG_TMPFS_QUOTA 3872 fsparam_flag ("quota", Opt_quota), 3873 fsparam_flag ("usrquota", Opt_usrquota), 3874 fsparam_flag ("grpquota", Opt_grpquota), 3875 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 3876 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 3877 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 3878 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 3879 #endif 3880 {} 3881 }; 3882 3883 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3884 { 3885 struct shmem_options *ctx = fc->fs_private; 3886 struct fs_parse_result result; 3887 unsigned long long size; 3888 char *rest; 3889 int opt; 3890 kuid_t kuid; 3891 kgid_t kgid; 3892 3893 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3894 if (opt < 0) 3895 return opt; 3896 3897 switch (opt) { 3898 case Opt_size: 3899 size = memparse(param->string, &rest); 3900 if (*rest == '%') { 3901 size <<= PAGE_SHIFT; 3902 size *= totalram_pages(); 3903 do_div(size, 100); 3904 rest++; 3905 } 3906 if (*rest) 3907 goto bad_value; 3908 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3909 ctx->seen |= SHMEM_SEEN_BLOCKS; 3910 break; 3911 case Opt_nr_blocks: 3912 ctx->blocks = memparse(param->string, &rest); 3913 if (*rest || ctx->blocks > LONG_MAX) 3914 goto bad_value; 3915 ctx->seen |= SHMEM_SEEN_BLOCKS; 3916 break; 3917 case Opt_nr_inodes: 3918 ctx->inodes = memparse(param->string, &rest); 3919 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 3920 goto bad_value; 3921 ctx->seen |= SHMEM_SEEN_INODES; 3922 break; 3923 case Opt_mode: 3924 ctx->mode = result.uint_32 & 07777; 3925 break; 3926 case Opt_uid: 3927 kuid = make_kuid(current_user_ns(), result.uint_32); 3928 if (!uid_valid(kuid)) 3929 goto bad_value; 3930 3931 /* 3932 * The requested uid must be representable in the 3933 * filesystem's idmapping. 3934 */ 3935 if (!kuid_has_mapping(fc->user_ns, kuid)) 3936 goto bad_value; 3937 3938 ctx->uid = kuid; 3939 break; 3940 case Opt_gid: 3941 kgid = make_kgid(current_user_ns(), result.uint_32); 3942 if (!gid_valid(kgid)) 3943 goto bad_value; 3944 3945 /* 3946 * The requested gid must be representable in the 3947 * filesystem's idmapping. 3948 */ 3949 if (!kgid_has_mapping(fc->user_ns, kgid)) 3950 goto bad_value; 3951 3952 ctx->gid = kgid; 3953 break; 3954 case Opt_huge: 3955 ctx->huge = result.uint_32; 3956 if (ctx->huge != SHMEM_HUGE_NEVER && 3957 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3958 has_transparent_hugepage())) 3959 goto unsupported_parameter; 3960 ctx->seen |= SHMEM_SEEN_HUGE; 3961 break; 3962 case Opt_mpol: 3963 if (IS_ENABLED(CONFIG_NUMA)) { 3964 mpol_put(ctx->mpol); 3965 ctx->mpol = NULL; 3966 if (mpol_parse_str(param->string, &ctx->mpol)) 3967 goto bad_value; 3968 break; 3969 } 3970 goto unsupported_parameter; 3971 case Opt_inode32: 3972 ctx->full_inums = false; 3973 ctx->seen |= SHMEM_SEEN_INUMS; 3974 break; 3975 case Opt_inode64: 3976 if (sizeof(ino_t) < 8) { 3977 return invalfc(fc, 3978 "Cannot use inode64 with <64bit inums in kernel\n"); 3979 } 3980 ctx->full_inums = true; 3981 ctx->seen |= SHMEM_SEEN_INUMS; 3982 break; 3983 case Opt_noswap: 3984 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 3985 return invalfc(fc, 3986 "Turning off swap in unprivileged tmpfs mounts unsupported"); 3987 } 3988 ctx->noswap = true; 3989 ctx->seen |= SHMEM_SEEN_NOSWAP; 3990 break; 3991 case Opt_quota: 3992 if (fc->user_ns != &init_user_ns) 3993 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 3994 ctx->seen |= SHMEM_SEEN_QUOTA; 3995 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 3996 break; 3997 case Opt_usrquota: 3998 if (fc->user_ns != &init_user_ns) 3999 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4000 ctx->seen |= SHMEM_SEEN_QUOTA; 4001 ctx->quota_types |= QTYPE_MASK_USR; 4002 break; 4003 case Opt_grpquota: 4004 if (fc->user_ns != &init_user_ns) 4005 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4006 ctx->seen |= SHMEM_SEEN_QUOTA; 4007 ctx->quota_types |= QTYPE_MASK_GRP; 4008 break; 4009 case Opt_usrquota_block_hardlimit: 4010 size = memparse(param->string, &rest); 4011 if (*rest || !size) 4012 goto bad_value; 4013 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4014 return invalfc(fc, 4015 "User quota block hardlimit too large."); 4016 ctx->qlimits.usrquota_bhardlimit = size; 4017 break; 4018 case Opt_grpquota_block_hardlimit: 4019 size = memparse(param->string, &rest); 4020 if (*rest || !size) 4021 goto bad_value; 4022 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4023 return invalfc(fc, 4024 "Group quota block hardlimit too large."); 4025 ctx->qlimits.grpquota_bhardlimit = size; 4026 break; 4027 case Opt_usrquota_inode_hardlimit: 4028 size = memparse(param->string, &rest); 4029 if (*rest || !size) 4030 goto bad_value; 4031 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4032 return invalfc(fc, 4033 "User quota inode hardlimit too large."); 4034 ctx->qlimits.usrquota_ihardlimit = size; 4035 break; 4036 case Opt_grpquota_inode_hardlimit: 4037 size = memparse(param->string, &rest); 4038 if (*rest || !size) 4039 goto bad_value; 4040 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4041 return invalfc(fc, 4042 "Group quota inode hardlimit too large."); 4043 ctx->qlimits.grpquota_ihardlimit = size; 4044 break; 4045 } 4046 return 0; 4047 4048 unsupported_parameter: 4049 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4050 bad_value: 4051 return invalfc(fc, "Bad value for '%s'", param->key); 4052 } 4053 4054 static int shmem_parse_options(struct fs_context *fc, void *data) 4055 { 4056 char *options = data; 4057 4058 if (options) { 4059 int err = security_sb_eat_lsm_opts(options, &fc->security); 4060 if (err) 4061 return err; 4062 } 4063 4064 while (options != NULL) { 4065 char *this_char = options; 4066 for (;;) { 4067 /* 4068 * NUL-terminate this option: unfortunately, 4069 * mount options form a comma-separated list, 4070 * but mpol's nodelist may also contain commas. 4071 */ 4072 options = strchr(options, ','); 4073 if (options == NULL) 4074 break; 4075 options++; 4076 if (!isdigit(*options)) { 4077 options[-1] = '\0'; 4078 break; 4079 } 4080 } 4081 if (*this_char) { 4082 char *value = strchr(this_char, '='); 4083 size_t len = 0; 4084 int err; 4085 4086 if (value) { 4087 *value++ = '\0'; 4088 len = strlen(value); 4089 } 4090 err = vfs_parse_fs_string(fc, this_char, value, len); 4091 if (err < 0) 4092 return err; 4093 } 4094 } 4095 return 0; 4096 } 4097 4098 /* 4099 * Reconfigure a shmem filesystem. 4100 */ 4101 static int shmem_reconfigure(struct fs_context *fc) 4102 { 4103 struct shmem_options *ctx = fc->fs_private; 4104 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4105 unsigned long used_isp; 4106 struct mempolicy *mpol = NULL; 4107 const char *err; 4108 4109 raw_spin_lock(&sbinfo->stat_lock); 4110 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4111 4112 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4113 if (!sbinfo->max_blocks) { 4114 err = "Cannot retroactively limit size"; 4115 goto out; 4116 } 4117 if (percpu_counter_compare(&sbinfo->used_blocks, 4118 ctx->blocks) > 0) { 4119 err = "Too small a size for current use"; 4120 goto out; 4121 } 4122 } 4123 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4124 if (!sbinfo->max_inodes) { 4125 err = "Cannot retroactively limit inodes"; 4126 goto out; 4127 } 4128 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4129 err = "Too few inodes for current use"; 4130 goto out; 4131 } 4132 } 4133 4134 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4135 sbinfo->next_ino > UINT_MAX) { 4136 err = "Current inum too high to switch to 32-bit inums"; 4137 goto out; 4138 } 4139 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4140 err = "Cannot disable swap on remount"; 4141 goto out; 4142 } 4143 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4144 err = "Cannot enable swap on remount if it was disabled on first mount"; 4145 goto out; 4146 } 4147 4148 if (ctx->seen & SHMEM_SEEN_QUOTA && 4149 !sb_any_quota_loaded(fc->root->d_sb)) { 4150 err = "Cannot enable quota on remount"; 4151 goto out; 4152 } 4153 4154 #ifdef CONFIG_TMPFS_QUOTA 4155 #define CHANGED_LIMIT(name) \ 4156 (ctx->qlimits.name## hardlimit && \ 4157 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4158 4159 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4160 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4161 err = "Cannot change global quota limit on remount"; 4162 goto out; 4163 } 4164 #endif /* CONFIG_TMPFS_QUOTA */ 4165 4166 if (ctx->seen & SHMEM_SEEN_HUGE) 4167 sbinfo->huge = ctx->huge; 4168 if (ctx->seen & SHMEM_SEEN_INUMS) 4169 sbinfo->full_inums = ctx->full_inums; 4170 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4171 sbinfo->max_blocks = ctx->blocks; 4172 if (ctx->seen & SHMEM_SEEN_INODES) { 4173 sbinfo->max_inodes = ctx->inodes; 4174 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4175 } 4176 4177 /* 4178 * Preserve previous mempolicy unless mpol remount option was specified. 4179 */ 4180 if (ctx->mpol) { 4181 mpol = sbinfo->mpol; 4182 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4183 ctx->mpol = NULL; 4184 } 4185 4186 if (ctx->noswap) 4187 sbinfo->noswap = true; 4188 4189 raw_spin_unlock(&sbinfo->stat_lock); 4190 mpol_put(mpol); 4191 return 0; 4192 out: 4193 raw_spin_unlock(&sbinfo->stat_lock); 4194 return invalfc(fc, "%s", err); 4195 } 4196 4197 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4198 { 4199 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4200 struct mempolicy *mpol; 4201 4202 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4203 seq_printf(seq, ",size=%luk", 4204 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 4205 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4206 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4207 if (sbinfo->mode != (0777 | S_ISVTX)) 4208 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4209 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4210 seq_printf(seq, ",uid=%u", 4211 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4212 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4213 seq_printf(seq, ",gid=%u", 4214 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4215 4216 /* 4217 * Showing inode{64,32} might be useful even if it's the system default, 4218 * since then people don't have to resort to checking both here and 4219 * /proc/config.gz to confirm 64-bit inums were successfully applied 4220 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4221 * 4222 * We hide it when inode64 isn't the default and we are using 32-bit 4223 * inodes, since that probably just means the feature isn't even under 4224 * consideration. 4225 * 4226 * As such: 4227 * 4228 * +-----------------+-----------------+ 4229 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4230 * +------------------+-----------------+-----------------+ 4231 * | full_inums=true | show | show | 4232 * | full_inums=false | show | hide | 4233 * +------------------+-----------------+-----------------+ 4234 * 4235 */ 4236 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4237 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4238 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4239 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4240 if (sbinfo->huge) 4241 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4242 #endif 4243 mpol = shmem_get_sbmpol(sbinfo); 4244 shmem_show_mpol(seq, mpol); 4245 mpol_put(mpol); 4246 if (sbinfo->noswap) 4247 seq_printf(seq, ",noswap"); 4248 return 0; 4249 } 4250 4251 #endif /* CONFIG_TMPFS */ 4252 4253 static void shmem_put_super(struct super_block *sb) 4254 { 4255 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4256 4257 #ifdef CONFIG_TMPFS_QUOTA 4258 shmem_disable_quotas(sb); 4259 #endif 4260 free_percpu(sbinfo->ino_batch); 4261 percpu_counter_destroy(&sbinfo->used_blocks); 4262 mpol_put(sbinfo->mpol); 4263 kfree(sbinfo); 4264 sb->s_fs_info = NULL; 4265 } 4266 4267 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4268 { 4269 struct shmem_options *ctx = fc->fs_private; 4270 struct inode *inode; 4271 struct shmem_sb_info *sbinfo; 4272 int error = -ENOMEM; 4273 4274 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4275 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4276 L1_CACHE_BYTES), GFP_KERNEL); 4277 if (!sbinfo) 4278 return error; 4279 4280 sb->s_fs_info = sbinfo; 4281 4282 #ifdef CONFIG_TMPFS 4283 /* 4284 * Per default we only allow half of the physical ram per 4285 * tmpfs instance, limiting inodes to one per page of lowmem; 4286 * but the internal instance is left unlimited. 4287 */ 4288 if (!(sb->s_flags & SB_KERNMOUNT)) { 4289 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 4290 ctx->blocks = shmem_default_max_blocks(); 4291 if (!(ctx->seen & SHMEM_SEEN_INODES)) 4292 ctx->inodes = shmem_default_max_inodes(); 4293 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 4294 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 4295 sbinfo->noswap = ctx->noswap; 4296 } else { 4297 sb->s_flags |= SB_NOUSER; 4298 } 4299 sb->s_export_op = &shmem_export_ops; 4300 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 4301 #else 4302 sb->s_flags |= SB_NOUSER; 4303 #endif 4304 sbinfo->max_blocks = ctx->blocks; 4305 sbinfo->max_inodes = ctx->inodes; 4306 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 4307 if (sb->s_flags & SB_KERNMOUNT) { 4308 sbinfo->ino_batch = alloc_percpu(ino_t); 4309 if (!sbinfo->ino_batch) 4310 goto failed; 4311 } 4312 sbinfo->uid = ctx->uid; 4313 sbinfo->gid = ctx->gid; 4314 sbinfo->full_inums = ctx->full_inums; 4315 sbinfo->mode = ctx->mode; 4316 sbinfo->huge = ctx->huge; 4317 sbinfo->mpol = ctx->mpol; 4318 ctx->mpol = NULL; 4319 4320 raw_spin_lock_init(&sbinfo->stat_lock); 4321 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 4322 goto failed; 4323 spin_lock_init(&sbinfo->shrinklist_lock); 4324 INIT_LIST_HEAD(&sbinfo->shrinklist); 4325 4326 sb->s_maxbytes = MAX_LFS_FILESIZE; 4327 sb->s_blocksize = PAGE_SIZE; 4328 sb->s_blocksize_bits = PAGE_SHIFT; 4329 sb->s_magic = TMPFS_MAGIC; 4330 sb->s_op = &shmem_ops; 4331 sb->s_time_gran = 1; 4332 #ifdef CONFIG_TMPFS_XATTR 4333 sb->s_xattr = shmem_xattr_handlers; 4334 #endif 4335 #ifdef CONFIG_TMPFS_POSIX_ACL 4336 sb->s_flags |= SB_POSIXACL; 4337 #endif 4338 uuid_gen(&sb->s_uuid); 4339 4340 #ifdef CONFIG_TMPFS_QUOTA 4341 if (ctx->seen & SHMEM_SEEN_QUOTA) { 4342 sb->dq_op = &shmem_quota_operations; 4343 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4344 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4345 4346 /* Copy the default limits from ctx into sbinfo */ 4347 memcpy(&sbinfo->qlimits, &ctx->qlimits, 4348 sizeof(struct shmem_quota_limits)); 4349 4350 if (shmem_enable_quotas(sb, ctx->quota_types)) 4351 goto failed; 4352 } 4353 #endif /* CONFIG_TMPFS_QUOTA */ 4354 4355 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0, 4356 VM_NORESERVE); 4357 if (IS_ERR(inode)) { 4358 error = PTR_ERR(inode); 4359 goto failed; 4360 } 4361 inode->i_uid = sbinfo->uid; 4362 inode->i_gid = sbinfo->gid; 4363 sb->s_root = d_make_root(inode); 4364 if (!sb->s_root) 4365 goto failed; 4366 return 0; 4367 4368 failed: 4369 shmem_put_super(sb); 4370 return error; 4371 } 4372 4373 static int shmem_get_tree(struct fs_context *fc) 4374 { 4375 return get_tree_nodev(fc, shmem_fill_super); 4376 } 4377 4378 static void shmem_free_fc(struct fs_context *fc) 4379 { 4380 struct shmem_options *ctx = fc->fs_private; 4381 4382 if (ctx) { 4383 mpol_put(ctx->mpol); 4384 kfree(ctx); 4385 } 4386 } 4387 4388 static const struct fs_context_operations shmem_fs_context_ops = { 4389 .free = shmem_free_fc, 4390 .get_tree = shmem_get_tree, 4391 #ifdef CONFIG_TMPFS 4392 .parse_monolithic = shmem_parse_options, 4393 .parse_param = shmem_parse_one, 4394 .reconfigure = shmem_reconfigure, 4395 #endif 4396 }; 4397 4398 static struct kmem_cache *shmem_inode_cachep; 4399 4400 static struct inode *shmem_alloc_inode(struct super_block *sb) 4401 { 4402 struct shmem_inode_info *info; 4403 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 4404 if (!info) 4405 return NULL; 4406 return &info->vfs_inode; 4407 } 4408 4409 static void shmem_free_in_core_inode(struct inode *inode) 4410 { 4411 if (S_ISLNK(inode->i_mode)) 4412 kfree(inode->i_link); 4413 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 4414 } 4415 4416 static void shmem_destroy_inode(struct inode *inode) 4417 { 4418 if (S_ISREG(inode->i_mode)) 4419 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 4420 if (S_ISDIR(inode->i_mode)) 4421 simple_offset_destroy(shmem_get_offset_ctx(inode)); 4422 } 4423 4424 static void shmem_init_inode(void *foo) 4425 { 4426 struct shmem_inode_info *info = foo; 4427 inode_init_once(&info->vfs_inode); 4428 } 4429 4430 static void shmem_init_inodecache(void) 4431 { 4432 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 4433 sizeof(struct shmem_inode_info), 4434 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 4435 } 4436 4437 static void shmem_destroy_inodecache(void) 4438 { 4439 kmem_cache_destroy(shmem_inode_cachep); 4440 } 4441 4442 /* Keep the page in page cache instead of truncating it */ 4443 static int shmem_error_remove_page(struct address_space *mapping, 4444 struct page *page) 4445 { 4446 return 0; 4447 } 4448 4449 const struct address_space_operations shmem_aops = { 4450 .writepage = shmem_writepage, 4451 .dirty_folio = noop_dirty_folio, 4452 #ifdef CONFIG_TMPFS 4453 .write_begin = shmem_write_begin, 4454 .write_end = shmem_write_end, 4455 #endif 4456 #ifdef CONFIG_MIGRATION 4457 .migrate_folio = migrate_folio, 4458 #endif 4459 .error_remove_page = shmem_error_remove_page, 4460 }; 4461 EXPORT_SYMBOL(shmem_aops); 4462 4463 static const struct file_operations shmem_file_operations = { 4464 .mmap = shmem_mmap, 4465 .open = shmem_file_open, 4466 .get_unmapped_area = shmem_get_unmapped_area, 4467 #ifdef CONFIG_TMPFS 4468 .llseek = shmem_file_llseek, 4469 .read_iter = shmem_file_read_iter, 4470 .write_iter = shmem_file_write_iter, 4471 .fsync = noop_fsync, 4472 .splice_read = shmem_file_splice_read, 4473 .splice_write = iter_file_splice_write, 4474 .fallocate = shmem_fallocate, 4475 #endif 4476 }; 4477 4478 static const struct inode_operations shmem_inode_operations = { 4479 .getattr = shmem_getattr, 4480 .setattr = shmem_setattr, 4481 #ifdef CONFIG_TMPFS_XATTR 4482 .listxattr = shmem_listxattr, 4483 .set_acl = simple_set_acl, 4484 .fileattr_get = shmem_fileattr_get, 4485 .fileattr_set = shmem_fileattr_set, 4486 #endif 4487 }; 4488 4489 static const struct inode_operations shmem_dir_inode_operations = { 4490 #ifdef CONFIG_TMPFS 4491 .getattr = shmem_getattr, 4492 .create = shmem_create, 4493 .lookup = simple_lookup, 4494 .link = shmem_link, 4495 .unlink = shmem_unlink, 4496 .symlink = shmem_symlink, 4497 .mkdir = shmem_mkdir, 4498 .rmdir = shmem_rmdir, 4499 .mknod = shmem_mknod, 4500 .rename = shmem_rename2, 4501 .tmpfile = shmem_tmpfile, 4502 .get_offset_ctx = shmem_get_offset_ctx, 4503 #endif 4504 #ifdef CONFIG_TMPFS_XATTR 4505 .listxattr = shmem_listxattr, 4506 .fileattr_get = shmem_fileattr_get, 4507 .fileattr_set = shmem_fileattr_set, 4508 #endif 4509 #ifdef CONFIG_TMPFS_POSIX_ACL 4510 .setattr = shmem_setattr, 4511 .set_acl = simple_set_acl, 4512 #endif 4513 }; 4514 4515 static const struct inode_operations shmem_special_inode_operations = { 4516 .getattr = shmem_getattr, 4517 #ifdef CONFIG_TMPFS_XATTR 4518 .listxattr = shmem_listxattr, 4519 #endif 4520 #ifdef CONFIG_TMPFS_POSIX_ACL 4521 .setattr = shmem_setattr, 4522 .set_acl = simple_set_acl, 4523 #endif 4524 }; 4525 4526 static const struct super_operations shmem_ops = { 4527 .alloc_inode = shmem_alloc_inode, 4528 .free_inode = shmem_free_in_core_inode, 4529 .destroy_inode = shmem_destroy_inode, 4530 #ifdef CONFIG_TMPFS 4531 .statfs = shmem_statfs, 4532 .show_options = shmem_show_options, 4533 #endif 4534 #ifdef CONFIG_TMPFS_QUOTA 4535 .get_dquots = shmem_get_dquots, 4536 #endif 4537 .evict_inode = shmem_evict_inode, 4538 .drop_inode = generic_delete_inode, 4539 .put_super = shmem_put_super, 4540 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4541 .nr_cached_objects = shmem_unused_huge_count, 4542 .free_cached_objects = shmem_unused_huge_scan, 4543 #endif 4544 }; 4545 4546 static const struct vm_operations_struct shmem_vm_ops = { 4547 .fault = shmem_fault, 4548 .map_pages = filemap_map_pages, 4549 #ifdef CONFIG_NUMA 4550 .set_policy = shmem_set_policy, 4551 .get_policy = shmem_get_policy, 4552 #endif 4553 }; 4554 4555 static const struct vm_operations_struct shmem_anon_vm_ops = { 4556 .fault = shmem_fault, 4557 .map_pages = filemap_map_pages, 4558 #ifdef CONFIG_NUMA 4559 .set_policy = shmem_set_policy, 4560 .get_policy = shmem_get_policy, 4561 #endif 4562 }; 4563 4564 int shmem_init_fs_context(struct fs_context *fc) 4565 { 4566 struct shmem_options *ctx; 4567 4568 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4569 if (!ctx) 4570 return -ENOMEM; 4571 4572 ctx->mode = 0777 | S_ISVTX; 4573 ctx->uid = current_fsuid(); 4574 ctx->gid = current_fsgid(); 4575 4576 fc->fs_private = ctx; 4577 fc->ops = &shmem_fs_context_ops; 4578 return 0; 4579 } 4580 4581 static struct file_system_type shmem_fs_type = { 4582 .owner = THIS_MODULE, 4583 .name = "tmpfs", 4584 .init_fs_context = shmem_init_fs_context, 4585 #ifdef CONFIG_TMPFS 4586 .parameters = shmem_fs_parameters, 4587 #endif 4588 .kill_sb = kill_litter_super, 4589 #ifdef CONFIG_SHMEM 4590 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP, 4591 #else 4592 .fs_flags = FS_USERNS_MOUNT, 4593 #endif 4594 }; 4595 4596 void __init shmem_init(void) 4597 { 4598 int error; 4599 4600 shmem_init_inodecache(); 4601 4602 #ifdef CONFIG_TMPFS_QUOTA 4603 error = register_quota_format(&shmem_quota_format); 4604 if (error < 0) { 4605 pr_err("Could not register quota format\n"); 4606 goto out3; 4607 } 4608 #endif 4609 4610 error = register_filesystem(&shmem_fs_type); 4611 if (error) { 4612 pr_err("Could not register tmpfs\n"); 4613 goto out2; 4614 } 4615 4616 shm_mnt = kern_mount(&shmem_fs_type); 4617 if (IS_ERR(shm_mnt)) { 4618 error = PTR_ERR(shm_mnt); 4619 pr_err("Could not kern_mount tmpfs\n"); 4620 goto out1; 4621 } 4622 4623 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4624 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4625 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4626 else 4627 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4628 #endif 4629 return; 4630 4631 out1: 4632 unregister_filesystem(&shmem_fs_type); 4633 out2: 4634 #ifdef CONFIG_TMPFS_QUOTA 4635 unregister_quota_format(&shmem_quota_format); 4636 out3: 4637 #endif 4638 shmem_destroy_inodecache(); 4639 shm_mnt = ERR_PTR(error); 4640 } 4641 4642 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4643 static ssize_t shmem_enabled_show(struct kobject *kobj, 4644 struct kobj_attribute *attr, char *buf) 4645 { 4646 static const int values[] = { 4647 SHMEM_HUGE_ALWAYS, 4648 SHMEM_HUGE_WITHIN_SIZE, 4649 SHMEM_HUGE_ADVISE, 4650 SHMEM_HUGE_NEVER, 4651 SHMEM_HUGE_DENY, 4652 SHMEM_HUGE_FORCE, 4653 }; 4654 int len = 0; 4655 int i; 4656 4657 for (i = 0; i < ARRAY_SIZE(values); i++) { 4658 len += sysfs_emit_at(buf, len, 4659 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4660 i ? " " : "", 4661 shmem_format_huge(values[i])); 4662 } 4663 4664 len += sysfs_emit_at(buf, len, "\n"); 4665 4666 return len; 4667 } 4668 4669 static ssize_t shmem_enabled_store(struct kobject *kobj, 4670 struct kobj_attribute *attr, const char *buf, size_t count) 4671 { 4672 char tmp[16]; 4673 int huge; 4674 4675 if (count + 1 > sizeof(tmp)) 4676 return -EINVAL; 4677 memcpy(tmp, buf, count); 4678 tmp[count] = '\0'; 4679 if (count && tmp[count - 1] == '\n') 4680 tmp[count - 1] = '\0'; 4681 4682 huge = shmem_parse_huge(tmp); 4683 if (huge == -EINVAL) 4684 return -EINVAL; 4685 if (!has_transparent_hugepage() && 4686 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4687 return -EINVAL; 4688 4689 shmem_huge = huge; 4690 if (shmem_huge > SHMEM_HUGE_DENY) 4691 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4692 return count; 4693 } 4694 4695 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4696 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4697 4698 #else /* !CONFIG_SHMEM */ 4699 4700 /* 4701 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4702 * 4703 * This is intended for small system where the benefits of the full 4704 * shmem code (swap-backed and resource-limited) are outweighed by 4705 * their complexity. On systems without swap this code should be 4706 * effectively equivalent, but much lighter weight. 4707 */ 4708 4709 static struct file_system_type shmem_fs_type = { 4710 .name = "tmpfs", 4711 .init_fs_context = ramfs_init_fs_context, 4712 .parameters = ramfs_fs_parameters, 4713 .kill_sb = ramfs_kill_sb, 4714 .fs_flags = FS_USERNS_MOUNT, 4715 }; 4716 4717 void __init shmem_init(void) 4718 { 4719 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4720 4721 shm_mnt = kern_mount(&shmem_fs_type); 4722 BUG_ON(IS_ERR(shm_mnt)); 4723 } 4724 4725 int shmem_unuse(unsigned int type) 4726 { 4727 return 0; 4728 } 4729 4730 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4731 { 4732 return 0; 4733 } 4734 4735 void shmem_unlock_mapping(struct address_space *mapping) 4736 { 4737 } 4738 4739 #ifdef CONFIG_MMU 4740 unsigned long shmem_get_unmapped_area(struct file *file, 4741 unsigned long addr, unsigned long len, 4742 unsigned long pgoff, unsigned long flags) 4743 { 4744 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4745 } 4746 #endif 4747 4748 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4749 { 4750 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4751 } 4752 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4753 4754 #define shmem_vm_ops generic_file_vm_ops 4755 #define shmem_anon_vm_ops generic_file_vm_ops 4756 #define shmem_file_operations ramfs_file_operations 4757 #define shmem_acct_size(flags, size) 0 4758 #define shmem_unacct_size(flags, size) do {} while (0) 4759 4760 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb, struct inode *dir, 4761 umode_t mode, dev_t dev, unsigned long flags) 4762 { 4763 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 4764 return inode ? inode : ERR_PTR(-ENOSPC); 4765 } 4766 4767 #endif /* CONFIG_SHMEM */ 4768 4769 /* common code */ 4770 4771 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4772 unsigned long flags, unsigned int i_flags) 4773 { 4774 struct inode *inode; 4775 struct file *res; 4776 4777 if (IS_ERR(mnt)) 4778 return ERR_CAST(mnt); 4779 4780 if (size < 0 || size > MAX_LFS_FILESIZE) 4781 return ERR_PTR(-EINVAL); 4782 4783 if (shmem_acct_size(flags, size)) 4784 return ERR_PTR(-ENOMEM); 4785 4786 if (is_idmapped_mnt(mnt)) 4787 return ERR_PTR(-EINVAL); 4788 4789 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 4790 S_IFREG | S_IRWXUGO, 0, flags); 4791 4792 if (IS_ERR(inode)) { 4793 shmem_unacct_size(flags, size); 4794 return ERR_CAST(inode); 4795 } 4796 inode->i_flags |= i_flags; 4797 inode->i_size = size; 4798 clear_nlink(inode); /* It is unlinked */ 4799 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4800 if (!IS_ERR(res)) 4801 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4802 &shmem_file_operations); 4803 if (IS_ERR(res)) 4804 iput(inode); 4805 return res; 4806 } 4807 4808 /** 4809 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4810 * kernel internal. There will be NO LSM permission checks against the 4811 * underlying inode. So users of this interface must do LSM checks at a 4812 * higher layer. The users are the big_key and shm implementations. LSM 4813 * checks are provided at the key or shm level rather than the inode. 4814 * @name: name for dentry (to be seen in /proc/<pid>/maps 4815 * @size: size to be set for the file 4816 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4817 */ 4818 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4819 { 4820 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4821 } 4822 4823 /** 4824 * shmem_file_setup - get an unlinked file living in tmpfs 4825 * @name: name for dentry (to be seen in /proc/<pid>/maps 4826 * @size: size to be set for the file 4827 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4828 */ 4829 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4830 { 4831 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4832 } 4833 EXPORT_SYMBOL_GPL(shmem_file_setup); 4834 4835 /** 4836 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4837 * @mnt: the tmpfs mount where the file will be created 4838 * @name: name for dentry (to be seen in /proc/<pid>/maps 4839 * @size: size to be set for the file 4840 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4841 */ 4842 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4843 loff_t size, unsigned long flags) 4844 { 4845 return __shmem_file_setup(mnt, name, size, flags, 0); 4846 } 4847 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4848 4849 /** 4850 * shmem_zero_setup - setup a shared anonymous mapping 4851 * @vma: the vma to be mmapped is prepared by do_mmap 4852 */ 4853 int shmem_zero_setup(struct vm_area_struct *vma) 4854 { 4855 struct file *file; 4856 loff_t size = vma->vm_end - vma->vm_start; 4857 4858 /* 4859 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4860 * between XFS directory reading and selinux: since this file is only 4861 * accessible to the user through its mapping, use S_PRIVATE flag to 4862 * bypass file security, in the same way as shmem_kernel_file_setup(). 4863 */ 4864 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4865 if (IS_ERR(file)) 4866 return PTR_ERR(file); 4867 4868 if (vma->vm_file) 4869 fput(vma->vm_file); 4870 vma->vm_file = file; 4871 vma->vm_ops = &shmem_anon_vm_ops; 4872 4873 return 0; 4874 } 4875 4876 /** 4877 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 4878 * @mapping: the folio's address_space 4879 * @index: the folio index 4880 * @gfp: the page allocator flags to use if allocating 4881 * 4882 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4883 * with any new page allocations done using the specified allocation flags. 4884 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4885 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4886 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4887 * 4888 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4889 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4890 */ 4891 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 4892 pgoff_t index, gfp_t gfp) 4893 { 4894 #ifdef CONFIG_SHMEM 4895 struct inode *inode = mapping->host; 4896 struct folio *folio; 4897 int error; 4898 4899 BUG_ON(!shmem_mapping(mapping)); 4900 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 4901 gfp, NULL, NULL, NULL); 4902 if (error) 4903 return ERR_PTR(error); 4904 4905 folio_unlock(folio); 4906 return folio; 4907 #else 4908 /* 4909 * The tiny !SHMEM case uses ramfs without swap 4910 */ 4911 return mapping_read_folio_gfp(mapping, index, gfp); 4912 #endif 4913 } 4914 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 4915 4916 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4917 pgoff_t index, gfp_t gfp) 4918 { 4919 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 4920 struct page *page; 4921 4922 if (IS_ERR(folio)) 4923 return &folio->page; 4924 4925 page = folio_file_page(folio, index); 4926 if (PageHWPoison(page)) { 4927 folio_put(folio); 4928 return ERR_PTR(-EIO); 4929 } 4930 4931 return page; 4932 } 4933 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4934