1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/frontswap.h> 40 #include <linux/fs_parser.h> 41 42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 43 44 static struct vfsmount *shm_mnt; 45 46 #ifdef CONFIG_SHMEM 47 /* 48 * This virtual memory filesystem is heavily based on the ramfs. It 49 * extends ramfs by the ability to use swap and honor resource limits 50 * which makes it a completely usable filesystem. 51 */ 52 53 #include <linux/xattr.h> 54 #include <linux/exportfs.h> 55 #include <linux/posix_acl.h> 56 #include <linux/posix_acl_xattr.h> 57 #include <linux/mman.h> 58 #include <linux/string.h> 59 #include <linux/slab.h> 60 #include <linux/backing-dev.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/writeback.h> 63 #include <linux/blkdev.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/userfaultfd_k.h> 81 #include <linux/rmap.h> 82 #include <linux/uuid.h> 83 84 #include <linux/uaccess.h> 85 86 #include "internal.h" 87 88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 95 #define SHORT_SYMLINK_LEN 128 96 97 /* 98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 99 * inode->i_private (with i_mutex making sure that it has only one user at 100 * a time): we would prefer not to enlarge the shmem inode just for that. 101 */ 102 struct shmem_falloc { 103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 104 pgoff_t start; /* start of range currently being fallocated */ 105 pgoff_t next; /* the next page offset to be fallocated */ 106 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 108 }; 109 110 struct shmem_options { 111 unsigned long long blocks; 112 unsigned long long inodes; 113 struct mempolicy *mpol; 114 kuid_t uid; 115 kgid_t gid; 116 umode_t mode; 117 bool full_inums; 118 int huge; 119 int seen; 120 #define SHMEM_SEEN_BLOCKS 1 121 #define SHMEM_SEEN_INODES 2 122 #define SHMEM_SEEN_HUGE 4 123 #define SHMEM_SEEN_INUMS 8 124 }; 125 126 #ifdef CONFIG_TMPFS 127 static unsigned long shmem_default_max_blocks(void) 128 { 129 return totalram_pages() / 2; 130 } 131 132 static unsigned long shmem_default_max_inodes(void) 133 { 134 unsigned long nr_pages = totalram_pages(); 135 136 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 137 } 138 #endif 139 140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 141 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 142 struct shmem_inode_info *info, pgoff_t index); 143 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 144 struct page **pagep, enum sgp_type sgp, 145 gfp_t gfp, struct vm_area_struct *vma, 146 vm_fault_t *fault_type); 147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 148 struct page **pagep, enum sgp_type sgp, 149 gfp_t gfp, struct vm_area_struct *vma, 150 struct vm_fault *vmf, vm_fault_t *fault_type); 151 152 int shmem_getpage(struct inode *inode, pgoff_t index, 153 struct page **pagep, enum sgp_type sgp) 154 { 155 return shmem_getpage_gfp(inode, index, pagep, sgp, 156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 157 } 158 159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 160 { 161 return sb->s_fs_info; 162 } 163 164 /* 165 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 166 * for shared memory and for shared anonymous (/dev/zero) mappings 167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 168 * consistent with the pre-accounting of private mappings ... 169 */ 170 static inline int shmem_acct_size(unsigned long flags, loff_t size) 171 { 172 return (flags & VM_NORESERVE) ? 173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 174 } 175 176 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 177 { 178 if (!(flags & VM_NORESERVE)) 179 vm_unacct_memory(VM_ACCT(size)); 180 } 181 182 static inline int shmem_reacct_size(unsigned long flags, 183 loff_t oldsize, loff_t newsize) 184 { 185 if (!(flags & VM_NORESERVE)) { 186 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 187 return security_vm_enough_memory_mm(current->mm, 188 VM_ACCT(newsize) - VM_ACCT(oldsize)); 189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 191 } 192 return 0; 193 } 194 195 /* 196 * ... whereas tmpfs objects are accounted incrementally as 197 * pages are allocated, in order to allow large sparse files. 198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 200 */ 201 static inline int shmem_acct_block(unsigned long flags, long pages) 202 { 203 if (!(flags & VM_NORESERVE)) 204 return 0; 205 206 return security_vm_enough_memory_mm(current->mm, 207 pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 211 { 212 if (flags & VM_NORESERVE) 213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 214 } 215 216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 217 { 218 struct shmem_inode_info *info = SHMEM_I(inode); 219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 220 221 if (shmem_acct_block(info->flags, pages)) 222 return false; 223 224 if (sbinfo->max_blocks) { 225 if (percpu_counter_compare(&sbinfo->used_blocks, 226 sbinfo->max_blocks - pages) > 0) 227 goto unacct; 228 percpu_counter_add(&sbinfo->used_blocks, pages); 229 } 230 231 return true; 232 233 unacct: 234 shmem_unacct_blocks(info->flags, pages); 235 return false; 236 } 237 238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 239 { 240 struct shmem_inode_info *info = SHMEM_I(inode); 241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 242 243 if (sbinfo->max_blocks) 244 percpu_counter_sub(&sbinfo->used_blocks, pages); 245 shmem_unacct_blocks(info->flags, pages); 246 } 247 248 static const struct super_operations shmem_ops; 249 const struct address_space_operations shmem_aops; 250 static const struct file_operations shmem_file_operations; 251 static const struct inode_operations shmem_inode_operations; 252 static const struct inode_operations shmem_dir_inode_operations; 253 static const struct inode_operations shmem_special_inode_operations; 254 static const struct vm_operations_struct shmem_vm_ops; 255 static struct file_system_type shmem_fs_type; 256 257 bool vma_is_shmem(struct vm_area_struct *vma) 258 { 259 return vma->vm_ops == &shmem_vm_ops; 260 } 261 262 static LIST_HEAD(shmem_swaplist); 263 static DEFINE_MUTEX(shmem_swaplist_mutex); 264 265 /* 266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 267 * produces a novel ino for the newly allocated inode. 268 * 269 * It may also be called when making a hard link to permit the space needed by 270 * each dentry. However, in that case, no new inode number is needed since that 271 * internally draws from another pool of inode numbers (currently global 272 * get_next_ino()). This case is indicated by passing NULL as inop. 273 */ 274 #define SHMEM_INO_BATCH 1024 275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 276 { 277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 278 ino_t ino; 279 280 if (!(sb->s_flags & SB_KERNMOUNT)) { 281 spin_lock(&sbinfo->stat_lock); 282 if (sbinfo->max_inodes) { 283 if (!sbinfo->free_inodes) { 284 spin_unlock(&sbinfo->stat_lock); 285 return -ENOSPC; 286 } 287 sbinfo->free_inodes--; 288 } 289 if (inop) { 290 ino = sbinfo->next_ino++; 291 if (unlikely(is_zero_ino(ino))) 292 ino = sbinfo->next_ino++; 293 if (unlikely(!sbinfo->full_inums && 294 ino > UINT_MAX)) { 295 /* 296 * Emulate get_next_ino uint wraparound for 297 * compatibility 298 */ 299 if (IS_ENABLED(CONFIG_64BIT)) 300 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 301 __func__, MINOR(sb->s_dev)); 302 sbinfo->next_ino = 1; 303 ino = sbinfo->next_ino++; 304 } 305 *inop = ino; 306 } 307 spin_unlock(&sbinfo->stat_lock); 308 } else if (inop) { 309 /* 310 * __shmem_file_setup, one of our callers, is lock-free: it 311 * doesn't hold stat_lock in shmem_reserve_inode since 312 * max_inodes is always 0, and is called from potentially 313 * unknown contexts. As such, use a per-cpu batched allocator 314 * which doesn't require the per-sb stat_lock unless we are at 315 * the batch boundary. 316 * 317 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 318 * shmem mounts are not exposed to userspace, so we don't need 319 * to worry about things like glibc compatibility. 320 */ 321 ino_t *next_ino; 322 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 323 ino = *next_ino; 324 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 325 spin_lock(&sbinfo->stat_lock); 326 ino = sbinfo->next_ino; 327 sbinfo->next_ino += SHMEM_INO_BATCH; 328 spin_unlock(&sbinfo->stat_lock); 329 if (unlikely(is_zero_ino(ino))) 330 ino++; 331 } 332 *inop = ino; 333 *next_ino = ++ino; 334 put_cpu(); 335 } 336 337 return 0; 338 } 339 340 static void shmem_free_inode(struct super_block *sb) 341 { 342 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 343 if (sbinfo->max_inodes) { 344 spin_lock(&sbinfo->stat_lock); 345 sbinfo->free_inodes++; 346 spin_unlock(&sbinfo->stat_lock); 347 } 348 } 349 350 /** 351 * shmem_recalc_inode - recalculate the block usage of an inode 352 * @inode: inode to recalc 353 * 354 * We have to calculate the free blocks since the mm can drop 355 * undirtied hole pages behind our back. 356 * 357 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 358 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 359 * 360 * It has to be called with the spinlock held. 361 */ 362 static void shmem_recalc_inode(struct inode *inode) 363 { 364 struct shmem_inode_info *info = SHMEM_I(inode); 365 long freed; 366 367 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 368 if (freed > 0) { 369 info->alloced -= freed; 370 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 371 shmem_inode_unacct_blocks(inode, freed); 372 } 373 } 374 375 bool shmem_charge(struct inode *inode, long pages) 376 { 377 struct shmem_inode_info *info = SHMEM_I(inode); 378 unsigned long flags; 379 380 if (!shmem_inode_acct_block(inode, pages)) 381 return false; 382 383 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 384 inode->i_mapping->nrpages += pages; 385 386 spin_lock_irqsave(&info->lock, flags); 387 info->alloced += pages; 388 inode->i_blocks += pages * BLOCKS_PER_PAGE; 389 shmem_recalc_inode(inode); 390 spin_unlock_irqrestore(&info->lock, flags); 391 392 return true; 393 } 394 395 void shmem_uncharge(struct inode *inode, long pages) 396 { 397 struct shmem_inode_info *info = SHMEM_I(inode); 398 unsigned long flags; 399 400 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 401 402 spin_lock_irqsave(&info->lock, flags); 403 info->alloced -= pages; 404 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 405 shmem_recalc_inode(inode); 406 spin_unlock_irqrestore(&info->lock, flags); 407 408 shmem_inode_unacct_blocks(inode, pages); 409 } 410 411 /* 412 * Replace item expected in xarray by a new item, while holding xa_lock. 413 */ 414 static int shmem_replace_entry(struct address_space *mapping, 415 pgoff_t index, void *expected, void *replacement) 416 { 417 XA_STATE(xas, &mapping->i_pages, index); 418 void *item; 419 420 VM_BUG_ON(!expected); 421 VM_BUG_ON(!replacement); 422 item = xas_load(&xas); 423 if (item != expected) 424 return -ENOENT; 425 xas_store(&xas, replacement); 426 return 0; 427 } 428 429 /* 430 * Sometimes, before we decide whether to proceed or to fail, we must check 431 * that an entry was not already brought back from swap by a racing thread. 432 * 433 * Checking page is not enough: by the time a SwapCache page is locked, it 434 * might be reused, and again be SwapCache, using the same swap as before. 435 */ 436 static bool shmem_confirm_swap(struct address_space *mapping, 437 pgoff_t index, swp_entry_t swap) 438 { 439 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 440 } 441 442 /* 443 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 444 * 445 * SHMEM_HUGE_NEVER: 446 * disables huge pages for the mount; 447 * SHMEM_HUGE_ALWAYS: 448 * enables huge pages for the mount; 449 * SHMEM_HUGE_WITHIN_SIZE: 450 * only allocate huge pages if the page will be fully within i_size, 451 * also respect fadvise()/madvise() hints; 452 * SHMEM_HUGE_ADVISE: 453 * only allocate huge pages if requested with fadvise()/madvise(); 454 */ 455 456 #define SHMEM_HUGE_NEVER 0 457 #define SHMEM_HUGE_ALWAYS 1 458 #define SHMEM_HUGE_WITHIN_SIZE 2 459 #define SHMEM_HUGE_ADVISE 3 460 461 /* 462 * Special values. 463 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 464 * 465 * SHMEM_HUGE_DENY: 466 * disables huge on shm_mnt and all mounts, for emergency use; 467 * SHMEM_HUGE_FORCE: 468 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 469 * 470 */ 471 #define SHMEM_HUGE_DENY (-1) 472 #define SHMEM_HUGE_FORCE (-2) 473 474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 475 /* ifdef here to avoid bloating shmem.o when not necessary */ 476 477 static int shmem_huge __read_mostly; 478 479 #if defined(CONFIG_SYSFS) 480 static int shmem_parse_huge(const char *str) 481 { 482 if (!strcmp(str, "never")) 483 return SHMEM_HUGE_NEVER; 484 if (!strcmp(str, "always")) 485 return SHMEM_HUGE_ALWAYS; 486 if (!strcmp(str, "within_size")) 487 return SHMEM_HUGE_WITHIN_SIZE; 488 if (!strcmp(str, "advise")) 489 return SHMEM_HUGE_ADVISE; 490 if (!strcmp(str, "deny")) 491 return SHMEM_HUGE_DENY; 492 if (!strcmp(str, "force")) 493 return SHMEM_HUGE_FORCE; 494 return -EINVAL; 495 } 496 #endif 497 498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 499 static const char *shmem_format_huge(int huge) 500 { 501 switch (huge) { 502 case SHMEM_HUGE_NEVER: 503 return "never"; 504 case SHMEM_HUGE_ALWAYS: 505 return "always"; 506 case SHMEM_HUGE_WITHIN_SIZE: 507 return "within_size"; 508 case SHMEM_HUGE_ADVISE: 509 return "advise"; 510 case SHMEM_HUGE_DENY: 511 return "deny"; 512 case SHMEM_HUGE_FORCE: 513 return "force"; 514 default: 515 VM_BUG_ON(1); 516 return "bad_val"; 517 } 518 } 519 #endif 520 521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 522 struct shrink_control *sc, unsigned long nr_to_split) 523 { 524 LIST_HEAD(list), *pos, *next; 525 LIST_HEAD(to_remove); 526 struct inode *inode; 527 struct shmem_inode_info *info; 528 struct page *page; 529 unsigned long batch = sc ? sc->nr_to_scan : 128; 530 int removed = 0, split = 0; 531 532 if (list_empty(&sbinfo->shrinklist)) 533 return SHRINK_STOP; 534 535 spin_lock(&sbinfo->shrinklist_lock); 536 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 537 info = list_entry(pos, struct shmem_inode_info, shrinklist); 538 539 /* pin the inode */ 540 inode = igrab(&info->vfs_inode); 541 542 /* inode is about to be evicted */ 543 if (!inode) { 544 list_del_init(&info->shrinklist); 545 removed++; 546 goto next; 547 } 548 549 /* Check if there's anything to gain */ 550 if (round_up(inode->i_size, PAGE_SIZE) == 551 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 552 list_move(&info->shrinklist, &to_remove); 553 removed++; 554 goto next; 555 } 556 557 list_move(&info->shrinklist, &list); 558 next: 559 if (!--batch) 560 break; 561 } 562 spin_unlock(&sbinfo->shrinklist_lock); 563 564 list_for_each_safe(pos, next, &to_remove) { 565 info = list_entry(pos, struct shmem_inode_info, shrinklist); 566 inode = &info->vfs_inode; 567 list_del_init(&info->shrinklist); 568 iput(inode); 569 } 570 571 list_for_each_safe(pos, next, &list) { 572 int ret; 573 574 info = list_entry(pos, struct shmem_inode_info, shrinklist); 575 inode = &info->vfs_inode; 576 577 if (nr_to_split && split >= nr_to_split) 578 goto leave; 579 580 page = find_get_page(inode->i_mapping, 581 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 582 if (!page) 583 goto drop; 584 585 /* No huge page at the end of the file: nothing to split */ 586 if (!PageTransHuge(page)) { 587 put_page(page); 588 goto drop; 589 } 590 591 /* 592 * Leave the inode on the list if we failed to lock 593 * the page at this time. 594 * 595 * Waiting for the lock may lead to deadlock in the 596 * reclaim path. 597 */ 598 if (!trylock_page(page)) { 599 put_page(page); 600 goto leave; 601 } 602 603 ret = split_huge_page(page); 604 unlock_page(page); 605 put_page(page); 606 607 /* If split failed leave the inode on the list */ 608 if (ret) 609 goto leave; 610 611 split++; 612 drop: 613 list_del_init(&info->shrinklist); 614 removed++; 615 leave: 616 iput(inode); 617 } 618 619 spin_lock(&sbinfo->shrinklist_lock); 620 list_splice_tail(&list, &sbinfo->shrinklist); 621 sbinfo->shrinklist_len -= removed; 622 spin_unlock(&sbinfo->shrinklist_lock); 623 624 return split; 625 } 626 627 static long shmem_unused_huge_scan(struct super_block *sb, 628 struct shrink_control *sc) 629 { 630 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 631 632 if (!READ_ONCE(sbinfo->shrinklist_len)) 633 return SHRINK_STOP; 634 635 return shmem_unused_huge_shrink(sbinfo, sc, 0); 636 } 637 638 static long shmem_unused_huge_count(struct super_block *sb, 639 struct shrink_control *sc) 640 { 641 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 642 return READ_ONCE(sbinfo->shrinklist_len); 643 } 644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 645 646 #define shmem_huge SHMEM_HUGE_DENY 647 648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 649 struct shrink_control *sc, unsigned long nr_to_split) 650 { 651 return 0; 652 } 653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 654 655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) 656 { 657 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 658 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && 659 shmem_huge != SHMEM_HUGE_DENY) 660 return true; 661 return false; 662 } 663 664 /* 665 * Like add_to_page_cache_locked, but error if expected item has gone. 666 */ 667 static int shmem_add_to_page_cache(struct page *page, 668 struct address_space *mapping, 669 pgoff_t index, void *expected, gfp_t gfp, 670 struct mm_struct *charge_mm) 671 { 672 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 673 unsigned long i = 0; 674 unsigned long nr = compound_nr(page); 675 int error; 676 677 VM_BUG_ON_PAGE(PageTail(page), page); 678 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 679 VM_BUG_ON_PAGE(!PageLocked(page), page); 680 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 681 VM_BUG_ON(expected && PageTransHuge(page)); 682 683 page_ref_add(page, nr); 684 page->mapping = mapping; 685 page->index = index; 686 687 if (!PageSwapCache(page)) { 688 error = mem_cgroup_charge(page, charge_mm, gfp); 689 if (error) { 690 if (PageTransHuge(page)) { 691 count_vm_event(THP_FILE_FALLBACK); 692 count_vm_event(THP_FILE_FALLBACK_CHARGE); 693 } 694 goto error; 695 } 696 } 697 cgroup_throttle_swaprate(page, gfp); 698 699 do { 700 void *entry; 701 xas_lock_irq(&xas); 702 entry = xas_find_conflict(&xas); 703 if (entry != expected) 704 xas_set_err(&xas, -EEXIST); 705 xas_create_range(&xas); 706 if (xas_error(&xas)) 707 goto unlock; 708 next: 709 xas_store(&xas, page); 710 if (++i < nr) { 711 xas_next(&xas); 712 goto next; 713 } 714 if (PageTransHuge(page)) { 715 count_vm_event(THP_FILE_ALLOC); 716 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr); 717 } 718 mapping->nrpages += nr; 719 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr); 720 __mod_lruvec_page_state(page, NR_SHMEM, nr); 721 unlock: 722 xas_unlock_irq(&xas); 723 } while (xas_nomem(&xas, gfp)); 724 725 if (xas_error(&xas)) { 726 error = xas_error(&xas); 727 goto error; 728 } 729 730 return 0; 731 error: 732 page->mapping = NULL; 733 page_ref_sub(page, nr); 734 return error; 735 } 736 737 /* 738 * Like delete_from_page_cache, but substitutes swap for page. 739 */ 740 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 741 { 742 struct address_space *mapping = page->mapping; 743 int error; 744 745 VM_BUG_ON_PAGE(PageCompound(page), page); 746 747 xa_lock_irq(&mapping->i_pages); 748 error = shmem_replace_entry(mapping, page->index, page, radswap); 749 page->mapping = NULL; 750 mapping->nrpages--; 751 __dec_lruvec_page_state(page, NR_FILE_PAGES); 752 __dec_lruvec_page_state(page, NR_SHMEM); 753 xa_unlock_irq(&mapping->i_pages); 754 put_page(page); 755 BUG_ON(error); 756 } 757 758 /* 759 * Remove swap entry from page cache, free the swap and its page cache. 760 */ 761 static int shmem_free_swap(struct address_space *mapping, 762 pgoff_t index, void *radswap) 763 { 764 void *old; 765 766 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 767 if (old != radswap) 768 return -ENOENT; 769 free_swap_and_cache(radix_to_swp_entry(radswap)); 770 return 0; 771 } 772 773 /* 774 * Determine (in bytes) how many of the shmem object's pages mapped by the 775 * given offsets are swapped out. 776 * 777 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 778 * as long as the inode doesn't go away and racy results are not a problem. 779 */ 780 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 781 pgoff_t start, pgoff_t end) 782 { 783 XA_STATE(xas, &mapping->i_pages, start); 784 struct page *page; 785 unsigned long swapped = 0; 786 787 rcu_read_lock(); 788 xas_for_each(&xas, page, end - 1) { 789 if (xas_retry(&xas, page)) 790 continue; 791 if (xa_is_value(page)) 792 swapped++; 793 794 if (need_resched()) { 795 xas_pause(&xas); 796 cond_resched_rcu(); 797 } 798 } 799 800 rcu_read_unlock(); 801 802 return swapped << PAGE_SHIFT; 803 } 804 805 /* 806 * Determine (in bytes) how many of the shmem object's pages mapped by the 807 * given vma is swapped out. 808 * 809 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 810 * as long as the inode doesn't go away and racy results are not a problem. 811 */ 812 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 813 { 814 struct inode *inode = file_inode(vma->vm_file); 815 struct shmem_inode_info *info = SHMEM_I(inode); 816 struct address_space *mapping = inode->i_mapping; 817 unsigned long swapped; 818 819 /* Be careful as we don't hold info->lock */ 820 swapped = READ_ONCE(info->swapped); 821 822 /* 823 * The easier cases are when the shmem object has nothing in swap, or 824 * the vma maps it whole. Then we can simply use the stats that we 825 * already track. 826 */ 827 if (!swapped) 828 return 0; 829 830 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 831 return swapped << PAGE_SHIFT; 832 833 /* Here comes the more involved part */ 834 return shmem_partial_swap_usage(mapping, 835 linear_page_index(vma, vma->vm_start), 836 linear_page_index(vma, vma->vm_end)); 837 } 838 839 /* 840 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 841 */ 842 void shmem_unlock_mapping(struct address_space *mapping) 843 { 844 struct pagevec pvec; 845 pgoff_t index = 0; 846 847 pagevec_init(&pvec); 848 /* 849 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 850 */ 851 while (!mapping_unevictable(mapping)) { 852 if (!pagevec_lookup(&pvec, mapping, &index)) 853 break; 854 check_move_unevictable_pages(&pvec); 855 pagevec_release(&pvec); 856 cond_resched(); 857 } 858 } 859 860 /* 861 * Check whether a hole-punch or truncation needs to split a huge page, 862 * returning true if no split was required, or the split has been successful. 863 * 864 * Eviction (or truncation to 0 size) should never need to split a huge page; 865 * but in rare cases might do so, if shmem_undo_range() failed to trylock on 866 * head, and then succeeded to trylock on tail. 867 * 868 * A split can only succeed when there are no additional references on the 869 * huge page: so the split below relies upon find_get_entries() having stopped 870 * when it found a subpage of the huge page, without getting further references. 871 */ 872 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end) 873 { 874 if (!PageTransCompound(page)) 875 return true; 876 877 /* Just proceed to delete a huge page wholly within the range punched */ 878 if (PageHead(page) && 879 page->index >= start && page->index + HPAGE_PMD_NR <= end) 880 return true; 881 882 /* Try to split huge page, so we can truly punch the hole or truncate */ 883 return split_huge_page(page) >= 0; 884 } 885 886 /* 887 * Remove range of pages and swap entries from page cache, and free them. 888 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 889 */ 890 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 891 bool unfalloc) 892 { 893 struct address_space *mapping = inode->i_mapping; 894 struct shmem_inode_info *info = SHMEM_I(inode); 895 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 896 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 897 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 898 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 899 struct pagevec pvec; 900 pgoff_t indices[PAGEVEC_SIZE]; 901 long nr_swaps_freed = 0; 902 pgoff_t index; 903 int i; 904 905 if (lend == -1) 906 end = -1; /* unsigned, so actually very big */ 907 908 pagevec_init(&pvec); 909 index = start; 910 while (index < end) { 911 pvec.nr = find_get_entries(mapping, index, 912 min(end - index, (pgoff_t)PAGEVEC_SIZE), 913 pvec.pages, indices); 914 if (!pvec.nr) 915 break; 916 for (i = 0; i < pagevec_count(&pvec); i++) { 917 struct page *page = pvec.pages[i]; 918 919 index = indices[i]; 920 if (index >= end) 921 break; 922 923 if (xa_is_value(page)) { 924 if (unfalloc) 925 continue; 926 nr_swaps_freed += !shmem_free_swap(mapping, 927 index, page); 928 continue; 929 } 930 931 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 932 933 if (!trylock_page(page)) 934 continue; 935 936 if ((!unfalloc || !PageUptodate(page)) && 937 page_mapping(page) == mapping) { 938 VM_BUG_ON_PAGE(PageWriteback(page), page); 939 if (shmem_punch_compound(page, start, end)) 940 truncate_inode_page(mapping, page); 941 } 942 unlock_page(page); 943 } 944 pagevec_remove_exceptionals(&pvec); 945 pagevec_release(&pvec); 946 cond_resched(); 947 index++; 948 } 949 950 if (partial_start) { 951 struct page *page = NULL; 952 shmem_getpage(inode, start - 1, &page, SGP_READ); 953 if (page) { 954 unsigned int top = PAGE_SIZE; 955 if (start > end) { 956 top = partial_end; 957 partial_end = 0; 958 } 959 zero_user_segment(page, partial_start, top); 960 set_page_dirty(page); 961 unlock_page(page); 962 put_page(page); 963 } 964 } 965 if (partial_end) { 966 struct page *page = NULL; 967 shmem_getpage(inode, end, &page, SGP_READ); 968 if (page) { 969 zero_user_segment(page, 0, partial_end); 970 set_page_dirty(page); 971 unlock_page(page); 972 put_page(page); 973 } 974 } 975 if (start >= end) 976 return; 977 978 index = start; 979 while (index < end) { 980 cond_resched(); 981 982 pvec.nr = find_get_entries(mapping, index, 983 min(end - index, (pgoff_t)PAGEVEC_SIZE), 984 pvec.pages, indices); 985 if (!pvec.nr) { 986 /* If all gone or hole-punch or unfalloc, we're done */ 987 if (index == start || end != -1) 988 break; 989 /* But if truncating, restart to make sure all gone */ 990 index = start; 991 continue; 992 } 993 for (i = 0; i < pagevec_count(&pvec); i++) { 994 struct page *page = pvec.pages[i]; 995 996 index = indices[i]; 997 if (index >= end) 998 break; 999 1000 if (xa_is_value(page)) { 1001 if (unfalloc) 1002 continue; 1003 if (shmem_free_swap(mapping, index, page)) { 1004 /* Swap was replaced by page: retry */ 1005 index--; 1006 break; 1007 } 1008 nr_swaps_freed++; 1009 continue; 1010 } 1011 1012 lock_page(page); 1013 1014 if (!unfalloc || !PageUptodate(page)) { 1015 if (page_mapping(page) != mapping) { 1016 /* Page was replaced by swap: retry */ 1017 unlock_page(page); 1018 index--; 1019 break; 1020 } 1021 VM_BUG_ON_PAGE(PageWriteback(page), page); 1022 if (shmem_punch_compound(page, start, end)) 1023 truncate_inode_page(mapping, page); 1024 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1025 /* Wipe the page and don't get stuck */ 1026 clear_highpage(page); 1027 flush_dcache_page(page); 1028 set_page_dirty(page); 1029 if (index < 1030 round_up(start, HPAGE_PMD_NR)) 1031 start = index + 1; 1032 } 1033 } 1034 unlock_page(page); 1035 } 1036 pagevec_remove_exceptionals(&pvec); 1037 pagevec_release(&pvec); 1038 index++; 1039 } 1040 1041 spin_lock_irq(&info->lock); 1042 info->swapped -= nr_swaps_freed; 1043 shmem_recalc_inode(inode); 1044 spin_unlock_irq(&info->lock); 1045 } 1046 1047 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1048 { 1049 shmem_undo_range(inode, lstart, lend, false); 1050 inode->i_ctime = inode->i_mtime = current_time(inode); 1051 } 1052 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1053 1054 static int shmem_getattr(struct user_namespace *mnt_userns, 1055 const struct path *path, struct kstat *stat, 1056 u32 request_mask, unsigned int query_flags) 1057 { 1058 struct inode *inode = path->dentry->d_inode; 1059 struct shmem_inode_info *info = SHMEM_I(inode); 1060 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); 1061 1062 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1063 spin_lock_irq(&info->lock); 1064 shmem_recalc_inode(inode); 1065 spin_unlock_irq(&info->lock); 1066 } 1067 generic_fillattr(&init_user_ns, inode, stat); 1068 1069 if (is_huge_enabled(sb_info)) 1070 stat->blksize = HPAGE_PMD_SIZE; 1071 1072 return 0; 1073 } 1074 1075 static int shmem_setattr(struct user_namespace *mnt_userns, 1076 struct dentry *dentry, struct iattr *attr) 1077 { 1078 struct inode *inode = d_inode(dentry); 1079 struct shmem_inode_info *info = SHMEM_I(inode); 1080 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1081 int error; 1082 1083 error = setattr_prepare(&init_user_ns, dentry, attr); 1084 if (error) 1085 return error; 1086 1087 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1088 loff_t oldsize = inode->i_size; 1089 loff_t newsize = attr->ia_size; 1090 1091 /* protected by i_mutex */ 1092 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1093 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1094 return -EPERM; 1095 1096 if (newsize != oldsize) { 1097 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1098 oldsize, newsize); 1099 if (error) 1100 return error; 1101 i_size_write(inode, newsize); 1102 inode->i_ctime = inode->i_mtime = current_time(inode); 1103 } 1104 if (newsize <= oldsize) { 1105 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1106 if (oldsize > holebegin) 1107 unmap_mapping_range(inode->i_mapping, 1108 holebegin, 0, 1); 1109 if (info->alloced) 1110 shmem_truncate_range(inode, 1111 newsize, (loff_t)-1); 1112 /* unmap again to remove racily COWed private pages */ 1113 if (oldsize > holebegin) 1114 unmap_mapping_range(inode->i_mapping, 1115 holebegin, 0, 1); 1116 1117 /* 1118 * Part of the huge page can be beyond i_size: subject 1119 * to shrink under memory pressure. 1120 */ 1121 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1122 spin_lock(&sbinfo->shrinklist_lock); 1123 /* 1124 * _careful to defend against unlocked access to 1125 * ->shrink_list in shmem_unused_huge_shrink() 1126 */ 1127 if (list_empty_careful(&info->shrinklist)) { 1128 list_add_tail(&info->shrinklist, 1129 &sbinfo->shrinklist); 1130 sbinfo->shrinklist_len++; 1131 } 1132 spin_unlock(&sbinfo->shrinklist_lock); 1133 } 1134 } 1135 } 1136 1137 setattr_copy(&init_user_ns, inode, attr); 1138 if (attr->ia_valid & ATTR_MODE) 1139 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); 1140 return error; 1141 } 1142 1143 static void shmem_evict_inode(struct inode *inode) 1144 { 1145 struct shmem_inode_info *info = SHMEM_I(inode); 1146 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1147 1148 if (shmem_mapping(inode->i_mapping)) { 1149 shmem_unacct_size(info->flags, inode->i_size); 1150 inode->i_size = 0; 1151 shmem_truncate_range(inode, 0, (loff_t)-1); 1152 if (!list_empty(&info->shrinklist)) { 1153 spin_lock(&sbinfo->shrinklist_lock); 1154 if (!list_empty(&info->shrinklist)) { 1155 list_del_init(&info->shrinklist); 1156 sbinfo->shrinklist_len--; 1157 } 1158 spin_unlock(&sbinfo->shrinklist_lock); 1159 } 1160 while (!list_empty(&info->swaplist)) { 1161 /* Wait while shmem_unuse() is scanning this inode... */ 1162 wait_var_event(&info->stop_eviction, 1163 !atomic_read(&info->stop_eviction)); 1164 mutex_lock(&shmem_swaplist_mutex); 1165 /* ...but beware of the race if we peeked too early */ 1166 if (!atomic_read(&info->stop_eviction)) 1167 list_del_init(&info->swaplist); 1168 mutex_unlock(&shmem_swaplist_mutex); 1169 } 1170 } 1171 1172 simple_xattrs_free(&info->xattrs); 1173 WARN_ON(inode->i_blocks); 1174 shmem_free_inode(inode->i_sb); 1175 clear_inode(inode); 1176 } 1177 1178 extern struct swap_info_struct *swap_info[]; 1179 1180 static int shmem_find_swap_entries(struct address_space *mapping, 1181 pgoff_t start, unsigned int nr_entries, 1182 struct page **entries, pgoff_t *indices, 1183 unsigned int type, bool frontswap) 1184 { 1185 XA_STATE(xas, &mapping->i_pages, start); 1186 struct page *page; 1187 swp_entry_t entry; 1188 unsigned int ret = 0; 1189 1190 if (!nr_entries) 1191 return 0; 1192 1193 rcu_read_lock(); 1194 xas_for_each(&xas, page, ULONG_MAX) { 1195 if (xas_retry(&xas, page)) 1196 continue; 1197 1198 if (!xa_is_value(page)) 1199 continue; 1200 1201 entry = radix_to_swp_entry(page); 1202 if (swp_type(entry) != type) 1203 continue; 1204 if (frontswap && 1205 !frontswap_test(swap_info[type], swp_offset(entry))) 1206 continue; 1207 1208 indices[ret] = xas.xa_index; 1209 entries[ret] = page; 1210 1211 if (need_resched()) { 1212 xas_pause(&xas); 1213 cond_resched_rcu(); 1214 } 1215 if (++ret == nr_entries) 1216 break; 1217 } 1218 rcu_read_unlock(); 1219 1220 return ret; 1221 } 1222 1223 /* 1224 * Move the swapped pages for an inode to page cache. Returns the count 1225 * of pages swapped in, or the error in case of failure. 1226 */ 1227 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1228 pgoff_t *indices) 1229 { 1230 int i = 0; 1231 int ret = 0; 1232 int error = 0; 1233 struct address_space *mapping = inode->i_mapping; 1234 1235 for (i = 0; i < pvec.nr; i++) { 1236 struct page *page = pvec.pages[i]; 1237 1238 if (!xa_is_value(page)) 1239 continue; 1240 error = shmem_swapin_page(inode, indices[i], 1241 &page, SGP_CACHE, 1242 mapping_gfp_mask(mapping), 1243 NULL, NULL); 1244 if (error == 0) { 1245 unlock_page(page); 1246 put_page(page); 1247 ret++; 1248 } 1249 if (error == -ENOMEM) 1250 break; 1251 error = 0; 1252 } 1253 return error ? error : ret; 1254 } 1255 1256 /* 1257 * If swap found in inode, free it and move page from swapcache to filecache. 1258 */ 1259 static int shmem_unuse_inode(struct inode *inode, unsigned int type, 1260 bool frontswap, unsigned long *fs_pages_to_unuse) 1261 { 1262 struct address_space *mapping = inode->i_mapping; 1263 pgoff_t start = 0; 1264 struct pagevec pvec; 1265 pgoff_t indices[PAGEVEC_SIZE]; 1266 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); 1267 int ret = 0; 1268 1269 pagevec_init(&pvec); 1270 do { 1271 unsigned int nr_entries = PAGEVEC_SIZE; 1272 1273 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) 1274 nr_entries = *fs_pages_to_unuse; 1275 1276 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1277 pvec.pages, indices, 1278 type, frontswap); 1279 if (pvec.nr == 0) { 1280 ret = 0; 1281 break; 1282 } 1283 1284 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1285 if (ret < 0) 1286 break; 1287 1288 if (frontswap_partial) { 1289 *fs_pages_to_unuse -= ret; 1290 if (*fs_pages_to_unuse == 0) { 1291 ret = FRONTSWAP_PAGES_UNUSED; 1292 break; 1293 } 1294 } 1295 1296 start = indices[pvec.nr - 1]; 1297 } while (true); 1298 1299 return ret; 1300 } 1301 1302 /* 1303 * Read all the shared memory data that resides in the swap 1304 * device 'type' back into memory, so the swap device can be 1305 * unused. 1306 */ 1307 int shmem_unuse(unsigned int type, bool frontswap, 1308 unsigned long *fs_pages_to_unuse) 1309 { 1310 struct shmem_inode_info *info, *next; 1311 int error = 0; 1312 1313 if (list_empty(&shmem_swaplist)) 1314 return 0; 1315 1316 mutex_lock(&shmem_swaplist_mutex); 1317 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1318 if (!info->swapped) { 1319 list_del_init(&info->swaplist); 1320 continue; 1321 } 1322 /* 1323 * Drop the swaplist mutex while searching the inode for swap; 1324 * but before doing so, make sure shmem_evict_inode() will not 1325 * remove placeholder inode from swaplist, nor let it be freed 1326 * (igrab() would protect from unlink, but not from unmount). 1327 */ 1328 atomic_inc(&info->stop_eviction); 1329 mutex_unlock(&shmem_swaplist_mutex); 1330 1331 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, 1332 fs_pages_to_unuse); 1333 cond_resched(); 1334 1335 mutex_lock(&shmem_swaplist_mutex); 1336 next = list_next_entry(info, swaplist); 1337 if (!info->swapped) 1338 list_del_init(&info->swaplist); 1339 if (atomic_dec_and_test(&info->stop_eviction)) 1340 wake_up_var(&info->stop_eviction); 1341 if (error) 1342 break; 1343 } 1344 mutex_unlock(&shmem_swaplist_mutex); 1345 1346 return error; 1347 } 1348 1349 /* 1350 * Move the page from the page cache to the swap cache. 1351 */ 1352 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1353 { 1354 struct shmem_inode_info *info; 1355 struct address_space *mapping; 1356 struct inode *inode; 1357 swp_entry_t swap; 1358 pgoff_t index; 1359 1360 VM_BUG_ON_PAGE(PageCompound(page), page); 1361 BUG_ON(!PageLocked(page)); 1362 mapping = page->mapping; 1363 index = page->index; 1364 inode = mapping->host; 1365 info = SHMEM_I(inode); 1366 if (info->flags & VM_LOCKED) 1367 goto redirty; 1368 if (!total_swap_pages) 1369 goto redirty; 1370 1371 /* 1372 * Our capabilities prevent regular writeback or sync from ever calling 1373 * shmem_writepage; but a stacking filesystem might use ->writepage of 1374 * its underlying filesystem, in which case tmpfs should write out to 1375 * swap only in response to memory pressure, and not for the writeback 1376 * threads or sync. 1377 */ 1378 if (!wbc->for_reclaim) { 1379 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1380 goto redirty; 1381 } 1382 1383 /* 1384 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1385 * value into swapfile.c, the only way we can correctly account for a 1386 * fallocated page arriving here is now to initialize it and write it. 1387 * 1388 * That's okay for a page already fallocated earlier, but if we have 1389 * not yet completed the fallocation, then (a) we want to keep track 1390 * of this page in case we have to undo it, and (b) it may not be a 1391 * good idea to continue anyway, once we're pushing into swap. So 1392 * reactivate the page, and let shmem_fallocate() quit when too many. 1393 */ 1394 if (!PageUptodate(page)) { 1395 if (inode->i_private) { 1396 struct shmem_falloc *shmem_falloc; 1397 spin_lock(&inode->i_lock); 1398 shmem_falloc = inode->i_private; 1399 if (shmem_falloc && 1400 !shmem_falloc->waitq && 1401 index >= shmem_falloc->start && 1402 index < shmem_falloc->next) 1403 shmem_falloc->nr_unswapped++; 1404 else 1405 shmem_falloc = NULL; 1406 spin_unlock(&inode->i_lock); 1407 if (shmem_falloc) 1408 goto redirty; 1409 } 1410 clear_highpage(page); 1411 flush_dcache_page(page); 1412 SetPageUptodate(page); 1413 } 1414 1415 swap = get_swap_page(page); 1416 if (!swap.val) 1417 goto redirty; 1418 1419 /* 1420 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1421 * if it's not already there. Do it now before the page is 1422 * moved to swap cache, when its pagelock no longer protects 1423 * the inode from eviction. But don't unlock the mutex until 1424 * we've incremented swapped, because shmem_unuse_inode() will 1425 * prune a !swapped inode from the swaplist under this mutex. 1426 */ 1427 mutex_lock(&shmem_swaplist_mutex); 1428 if (list_empty(&info->swaplist)) 1429 list_add(&info->swaplist, &shmem_swaplist); 1430 1431 if (add_to_swap_cache(page, swap, 1432 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1433 NULL) == 0) { 1434 spin_lock_irq(&info->lock); 1435 shmem_recalc_inode(inode); 1436 info->swapped++; 1437 spin_unlock_irq(&info->lock); 1438 1439 swap_shmem_alloc(swap); 1440 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1441 1442 mutex_unlock(&shmem_swaplist_mutex); 1443 BUG_ON(page_mapped(page)); 1444 swap_writepage(page, wbc); 1445 return 0; 1446 } 1447 1448 mutex_unlock(&shmem_swaplist_mutex); 1449 put_swap_page(page, swap); 1450 redirty: 1451 set_page_dirty(page); 1452 if (wbc->for_reclaim) 1453 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1454 unlock_page(page); 1455 return 0; 1456 } 1457 1458 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1459 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1460 { 1461 char buffer[64]; 1462 1463 if (!mpol || mpol->mode == MPOL_DEFAULT) 1464 return; /* show nothing */ 1465 1466 mpol_to_str(buffer, sizeof(buffer), mpol); 1467 1468 seq_printf(seq, ",mpol=%s", buffer); 1469 } 1470 1471 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1472 { 1473 struct mempolicy *mpol = NULL; 1474 if (sbinfo->mpol) { 1475 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1476 mpol = sbinfo->mpol; 1477 mpol_get(mpol); 1478 spin_unlock(&sbinfo->stat_lock); 1479 } 1480 return mpol; 1481 } 1482 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1483 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1484 { 1485 } 1486 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1487 { 1488 return NULL; 1489 } 1490 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1491 #ifndef CONFIG_NUMA 1492 #define vm_policy vm_private_data 1493 #endif 1494 1495 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1496 struct shmem_inode_info *info, pgoff_t index) 1497 { 1498 /* Create a pseudo vma that just contains the policy */ 1499 vma_init(vma, NULL); 1500 /* Bias interleave by inode number to distribute better across nodes */ 1501 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1502 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1503 } 1504 1505 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1506 { 1507 /* Drop reference taken by mpol_shared_policy_lookup() */ 1508 mpol_cond_put(vma->vm_policy); 1509 } 1510 1511 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1512 struct shmem_inode_info *info, pgoff_t index) 1513 { 1514 struct vm_area_struct pvma; 1515 struct page *page; 1516 struct vm_fault vmf = { 1517 .vma = &pvma, 1518 }; 1519 1520 shmem_pseudo_vma_init(&pvma, info, index); 1521 page = swap_cluster_readahead(swap, gfp, &vmf); 1522 shmem_pseudo_vma_destroy(&pvma); 1523 1524 return page; 1525 } 1526 1527 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1528 struct shmem_inode_info *info, pgoff_t index) 1529 { 1530 struct vm_area_struct pvma; 1531 struct address_space *mapping = info->vfs_inode.i_mapping; 1532 pgoff_t hindex; 1533 struct page *page; 1534 1535 hindex = round_down(index, HPAGE_PMD_NR); 1536 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1537 XA_PRESENT)) 1538 return NULL; 1539 1540 shmem_pseudo_vma_init(&pvma, info, hindex); 1541 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1542 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1543 shmem_pseudo_vma_destroy(&pvma); 1544 if (page) 1545 prep_transhuge_page(page); 1546 else 1547 count_vm_event(THP_FILE_FALLBACK); 1548 return page; 1549 } 1550 1551 static struct page *shmem_alloc_page(gfp_t gfp, 1552 struct shmem_inode_info *info, pgoff_t index) 1553 { 1554 struct vm_area_struct pvma; 1555 struct page *page; 1556 1557 shmem_pseudo_vma_init(&pvma, info, index); 1558 page = alloc_page_vma(gfp, &pvma, 0); 1559 shmem_pseudo_vma_destroy(&pvma); 1560 1561 return page; 1562 } 1563 1564 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1565 struct inode *inode, 1566 pgoff_t index, bool huge) 1567 { 1568 struct shmem_inode_info *info = SHMEM_I(inode); 1569 struct page *page; 1570 int nr; 1571 int err = -ENOSPC; 1572 1573 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1574 huge = false; 1575 nr = huge ? HPAGE_PMD_NR : 1; 1576 1577 if (!shmem_inode_acct_block(inode, nr)) 1578 goto failed; 1579 1580 if (huge) 1581 page = shmem_alloc_hugepage(gfp, info, index); 1582 else 1583 page = shmem_alloc_page(gfp, info, index); 1584 if (page) { 1585 __SetPageLocked(page); 1586 __SetPageSwapBacked(page); 1587 return page; 1588 } 1589 1590 err = -ENOMEM; 1591 shmem_inode_unacct_blocks(inode, nr); 1592 failed: 1593 return ERR_PTR(err); 1594 } 1595 1596 /* 1597 * When a page is moved from swapcache to shmem filecache (either by the 1598 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1599 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1600 * ignorance of the mapping it belongs to. If that mapping has special 1601 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1602 * we may need to copy to a suitable page before moving to filecache. 1603 * 1604 * In a future release, this may well be extended to respect cpuset and 1605 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1606 * but for now it is a simple matter of zone. 1607 */ 1608 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1609 { 1610 return page_zonenum(page) > gfp_zone(gfp); 1611 } 1612 1613 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1614 struct shmem_inode_info *info, pgoff_t index) 1615 { 1616 struct page *oldpage, *newpage; 1617 struct address_space *swap_mapping; 1618 swp_entry_t entry; 1619 pgoff_t swap_index; 1620 int error; 1621 1622 oldpage = *pagep; 1623 entry.val = page_private(oldpage); 1624 swap_index = swp_offset(entry); 1625 swap_mapping = page_mapping(oldpage); 1626 1627 /* 1628 * We have arrived here because our zones are constrained, so don't 1629 * limit chance of success by further cpuset and node constraints. 1630 */ 1631 gfp &= ~GFP_CONSTRAINT_MASK; 1632 newpage = shmem_alloc_page(gfp, info, index); 1633 if (!newpage) 1634 return -ENOMEM; 1635 1636 get_page(newpage); 1637 copy_highpage(newpage, oldpage); 1638 flush_dcache_page(newpage); 1639 1640 __SetPageLocked(newpage); 1641 __SetPageSwapBacked(newpage); 1642 SetPageUptodate(newpage); 1643 set_page_private(newpage, entry.val); 1644 SetPageSwapCache(newpage); 1645 1646 /* 1647 * Our caller will very soon move newpage out of swapcache, but it's 1648 * a nice clean interface for us to replace oldpage by newpage there. 1649 */ 1650 xa_lock_irq(&swap_mapping->i_pages); 1651 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1652 if (!error) { 1653 mem_cgroup_migrate(oldpage, newpage); 1654 __inc_lruvec_page_state(newpage, NR_FILE_PAGES); 1655 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); 1656 } 1657 xa_unlock_irq(&swap_mapping->i_pages); 1658 1659 if (unlikely(error)) { 1660 /* 1661 * Is this possible? I think not, now that our callers check 1662 * both PageSwapCache and page_private after getting page lock; 1663 * but be defensive. Reverse old to newpage for clear and free. 1664 */ 1665 oldpage = newpage; 1666 } else { 1667 lru_cache_add(newpage); 1668 *pagep = newpage; 1669 } 1670 1671 ClearPageSwapCache(oldpage); 1672 set_page_private(oldpage, 0); 1673 1674 unlock_page(oldpage); 1675 put_page(oldpage); 1676 put_page(oldpage); 1677 return error; 1678 } 1679 1680 /* 1681 * Swap in the page pointed to by *pagep. 1682 * Caller has to make sure that *pagep contains a valid swapped page. 1683 * Returns 0 and the page in pagep if success. On failure, returns the 1684 * error code and NULL in *pagep. 1685 */ 1686 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1687 struct page **pagep, enum sgp_type sgp, 1688 gfp_t gfp, struct vm_area_struct *vma, 1689 vm_fault_t *fault_type) 1690 { 1691 struct address_space *mapping = inode->i_mapping; 1692 struct shmem_inode_info *info = SHMEM_I(inode); 1693 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm; 1694 struct page *page; 1695 swp_entry_t swap; 1696 int error; 1697 1698 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1699 swap = radix_to_swp_entry(*pagep); 1700 *pagep = NULL; 1701 1702 /* Look it up and read it in.. */ 1703 page = lookup_swap_cache(swap, NULL, 0); 1704 if (!page) { 1705 /* Or update major stats only when swapin succeeds?? */ 1706 if (fault_type) { 1707 *fault_type |= VM_FAULT_MAJOR; 1708 count_vm_event(PGMAJFAULT); 1709 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1710 } 1711 /* Here we actually start the io */ 1712 page = shmem_swapin(swap, gfp, info, index); 1713 if (!page) { 1714 error = -ENOMEM; 1715 goto failed; 1716 } 1717 } 1718 1719 /* We have to do this with page locked to prevent races */ 1720 lock_page(page); 1721 if (!PageSwapCache(page) || page_private(page) != swap.val || 1722 !shmem_confirm_swap(mapping, index, swap)) { 1723 error = -EEXIST; 1724 goto unlock; 1725 } 1726 if (!PageUptodate(page)) { 1727 error = -EIO; 1728 goto failed; 1729 } 1730 wait_on_page_writeback(page); 1731 1732 /* 1733 * Some architectures may have to restore extra metadata to the 1734 * physical page after reading from swap. 1735 */ 1736 arch_swap_restore(swap, page); 1737 1738 if (shmem_should_replace_page(page, gfp)) { 1739 error = shmem_replace_page(&page, gfp, info, index); 1740 if (error) 1741 goto failed; 1742 } 1743 1744 error = shmem_add_to_page_cache(page, mapping, index, 1745 swp_to_radix_entry(swap), gfp, 1746 charge_mm); 1747 if (error) 1748 goto failed; 1749 1750 spin_lock_irq(&info->lock); 1751 info->swapped--; 1752 shmem_recalc_inode(inode); 1753 spin_unlock_irq(&info->lock); 1754 1755 if (sgp == SGP_WRITE) 1756 mark_page_accessed(page); 1757 1758 delete_from_swap_cache(page); 1759 set_page_dirty(page); 1760 swap_free(swap); 1761 1762 *pagep = page; 1763 return 0; 1764 failed: 1765 if (!shmem_confirm_swap(mapping, index, swap)) 1766 error = -EEXIST; 1767 unlock: 1768 if (page) { 1769 unlock_page(page); 1770 put_page(page); 1771 } 1772 1773 return error; 1774 } 1775 1776 /* 1777 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1778 * 1779 * If we allocate a new one we do not mark it dirty. That's up to the 1780 * vm. If we swap it in we mark it dirty since we also free the swap 1781 * entry since a page cannot live in both the swap and page cache. 1782 * 1783 * vmf and fault_type are only supplied by shmem_fault: 1784 * otherwise they are NULL. 1785 */ 1786 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1787 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1788 struct vm_area_struct *vma, struct vm_fault *vmf, 1789 vm_fault_t *fault_type) 1790 { 1791 struct address_space *mapping = inode->i_mapping; 1792 struct shmem_inode_info *info = SHMEM_I(inode); 1793 struct shmem_sb_info *sbinfo; 1794 struct mm_struct *charge_mm; 1795 struct page *page; 1796 enum sgp_type sgp_huge = sgp; 1797 pgoff_t hindex = index; 1798 int error; 1799 int once = 0; 1800 int alloced = 0; 1801 1802 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1803 return -EFBIG; 1804 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1805 sgp = SGP_CACHE; 1806 repeat: 1807 if (sgp <= SGP_CACHE && 1808 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1809 return -EINVAL; 1810 } 1811 1812 sbinfo = SHMEM_SB(inode->i_sb); 1813 charge_mm = vma ? vma->vm_mm : current->mm; 1814 1815 page = pagecache_get_page(mapping, index, 1816 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0); 1817 if (xa_is_value(page)) { 1818 error = shmem_swapin_page(inode, index, &page, 1819 sgp, gfp, vma, fault_type); 1820 if (error == -EEXIST) 1821 goto repeat; 1822 1823 *pagep = page; 1824 return error; 1825 } 1826 1827 if (page) 1828 hindex = page->index; 1829 if (page && sgp == SGP_WRITE) 1830 mark_page_accessed(page); 1831 1832 /* fallocated page? */ 1833 if (page && !PageUptodate(page)) { 1834 if (sgp != SGP_READ) 1835 goto clear; 1836 unlock_page(page); 1837 put_page(page); 1838 page = NULL; 1839 hindex = index; 1840 } 1841 if (page || sgp == SGP_READ) 1842 goto out; 1843 1844 /* 1845 * Fast cache lookup did not find it: 1846 * bring it back from swap or allocate. 1847 */ 1848 1849 if (vma && userfaultfd_missing(vma)) { 1850 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1851 return 0; 1852 } 1853 1854 /* shmem_symlink() */ 1855 if (!shmem_mapping(mapping)) 1856 goto alloc_nohuge; 1857 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1858 goto alloc_nohuge; 1859 if (shmem_huge == SHMEM_HUGE_FORCE) 1860 goto alloc_huge; 1861 switch (sbinfo->huge) { 1862 case SHMEM_HUGE_NEVER: 1863 goto alloc_nohuge; 1864 case SHMEM_HUGE_WITHIN_SIZE: { 1865 loff_t i_size; 1866 pgoff_t off; 1867 1868 off = round_up(index, HPAGE_PMD_NR); 1869 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1870 if (i_size >= HPAGE_PMD_SIZE && 1871 i_size >> PAGE_SHIFT >= off) 1872 goto alloc_huge; 1873 1874 fallthrough; 1875 } 1876 case SHMEM_HUGE_ADVISE: 1877 if (sgp_huge == SGP_HUGE) 1878 goto alloc_huge; 1879 /* TODO: implement fadvise() hints */ 1880 goto alloc_nohuge; 1881 } 1882 1883 alloc_huge: 1884 page = shmem_alloc_and_acct_page(gfp, inode, index, true); 1885 if (IS_ERR(page)) { 1886 alloc_nohuge: 1887 page = shmem_alloc_and_acct_page(gfp, inode, 1888 index, false); 1889 } 1890 if (IS_ERR(page)) { 1891 int retry = 5; 1892 1893 error = PTR_ERR(page); 1894 page = NULL; 1895 if (error != -ENOSPC) 1896 goto unlock; 1897 /* 1898 * Try to reclaim some space by splitting a huge page 1899 * beyond i_size on the filesystem. 1900 */ 1901 while (retry--) { 1902 int ret; 1903 1904 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1905 if (ret == SHRINK_STOP) 1906 break; 1907 if (ret) 1908 goto alloc_nohuge; 1909 } 1910 goto unlock; 1911 } 1912 1913 if (PageTransHuge(page)) 1914 hindex = round_down(index, HPAGE_PMD_NR); 1915 else 1916 hindex = index; 1917 1918 if (sgp == SGP_WRITE) 1919 __SetPageReferenced(page); 1920 1921 error = shmem_add_to_page_cache(page, mapping, hindex, 1922 NULL, gfp & GFP_RECLAIM_MASK, 1923 charge_mm); 1924 if (error) 1925 goto unacct; 1926 lru_cache_add(page); 1927 1928 spin_lock_irq(&info->lock); 1929 info->alloced += compound_nr(page); 1930 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1931 shmem_recalc_inode(inode); 1932 spin_unlock_irq(&info->lock); 1933 alloced = true; 1934 1935 if (PageTransHuge(page) && 1936 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1937 hindex + HPAGE_PMD_NR - 1) { 1938 /* 1939 * Part of the huge page is beyond i_size: subject 1940 * to shrink under memory pressure. 1941 */ 1942 spin_lock(&sbinfo->shrinklist_lock); 1943 /* 1944 * _careful to defend against unlocked access to 1945 * ->shrink_list in shmem_unused_huge_shrink() 1946 */ 1947 if (list_empty_careful(&info->shrinklist)) { 1948 list_add_tail(&info->shrinklist, 1949 &sbinfo->shrinklist); 1950 sbinfo->shrinklist_len++; 1951 } 1952 spin_unlock(&sbinfo->shrinklist_lock); 1953 } 1954 1955 /* 1956 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1957 */ 1958 if (sgp == SGP_FALLOC) 1959 sgp = SGP_WRITE; 1960 clear: 1961 /* 1962 * Let SGP_WRITE caller clear ends if write does not fill page; 1963 * but SGP_FALLOC on a page fallocated earlier must initialize 1964 * it now, lest undo on failure cancel our earlier guarantee. 1965 */ 1966 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1967 int i; 1968 1969 for (i = 0; i < compound_nr(page); i++) { 1970 clear_highpage(page + i); 1971 flush_dcache_page(page + i); 1972 } 1973 SetPageUptodate(page); 1974 } 1975 1976 /* Perhaps the file has been truncated since we checked */ 1977 if (sgp <= SGP_CACHE && 1978 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1979 if (alloced) { 1980 ClearPageDirty(page); 1981 delete_from_page_cache(page); 1982 spin_lock_irq(&info->lock); 1983 shmem_recalc_inode(inode); 1984 spin_unlock_irq(&info->lock); 1985 } 1986 error = -EINVAL; 1987 goto unlock; 1988 } 1989 out: 1990 *pagep = page + index - hindex; 1991 return 0; 1992 1993 /* 1994 * Error recovery. 1995 */ 1996 unacct: 1997 shmem_inode_unacct_blocks(inode, compound_nr(page)); 1998 1999 if (PageTransHuge(page)) { 2000 unlock_page(page); 2001 put_page(page); 2002 goto alloc_nohuge; 2003 } 2004 unlock: 2005 if (page) { 2006 unlock_page(page); 2007 put_page(page); 2008 } 2009 if (error == -ENOSPC && !once++) { 2010 spin_lock_irq(&info->lock); 2011 shmem_recalc_inode(inode); 2012 spin_unlock_irq(&info->lock); 2013 goto repeat; 2014 } 2015 if (error == -EEXIST) 2016 goto repeat; 2017 return error; 2018 } 2019 2020 /* 2021 * This is like autoremove_wake_function, but it removes the wait queue 2022 * entry unconditionally - even if something else had already woken the 2023 * target. 2024 */ 2025 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2026 { 2027 int ret = default_wake_function(wait, mode, sync, key); 2028 list_del_init(&wait->entry); 2029 return ret; 2030 } 2031 2032 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2033 { 2034 struct vm_area_struct *vma = vmf->vma; 2035 struct inode *inode = file_inode(vma->vm_file); 2036 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2037 enum sgp_type sgp; 2038 int err; 2039 vm_fault_t ret = VM_FAULT_LOCKED; 2040 2041 /* 2042 * Trinity finds that probing a hole which tmpfs is punching can 2043 * prevent the hole-punch from ever completing: which in turn 2044 * locks writers out with its hold on i_mutex. So refrain from 2045 * faulting pages into the hole while it's being punched. Although 2046 * shmem_undo_range() does remove the additions, it may be unable to 2047 * keep up, as each new page needs its own unmap_mapping_range() call, 2048 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2049 * 2050 * It does not matter if we sometimes reach this check just before the 2051 * hole-punch begins, so that one fault then races with the punch: 2052 * we just need to make racing faults a rare case. 2053 * 2054 * The implementation below would be much simpler if we just used a 2055 * standard mutex or completion: but we cannot take i_mutex in fault, 2056 * and bloating every shmem inode for this unlikely case would be sad. 2057 */ 2058 if (unlikely(inode->i_private)) { 2059 struct shmem_falloc *shmem_falloc; 2060 2061 spin_lock(&inode->i_lock); 2062 shmem_falloc = inode->i_private; 2063 if (shmem_falloc && 2064 shmem_falloc->waitq && 2065 vmf->pgoff >= shmem_falloc->start && 2066 vmf->pgoff < shmem_falloc->next) { 2067 struct file *fpin; 2068 wait_queue_head_t *shmem_falloc_waitq; 2069 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2070 2071 ret = VM_FAULT_NOPAGE; 2072 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2073 if (fpin) 2074 ret = VM_FAULT_RETRY; 2075 2076 shmem_falloc_waitq = shmem_falloc->waitq; 2077 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2078 TASK_UNINTERRUPTIBLE); 2079 spin_unlock(&inode->i_lock); 2080 schedule(); 2081 2082 /* 2083 * shmem_falloc_waitq points into the shmem_fallocate() 2084 * stack of the hole-punching task: shmem_falloc_waitq 2085 * is usually invalid by the time we reach here, but 2086 * finish_wait() does not dereference it in that case; 2087 * though i_lock needed lest racing with wake_up_all(). 2088 */ 2089 spin_lock(&inode->i_lock); 2090 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2091 spin_unlock(&inode->i_lock); 2092 2093 if (fpin) 2094 fput(fpin); 2095 return ret; 2096 } 2097 spin_unlock(&inode->i_lock); 2098 } 2099 2100 sgp = SGP_CACHE; 2101 2102 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2103 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2104 sgp = SGP_NOHUGE; 2105 else if (vma->vm_flags & VM_HUGEPAGE) 2106 sgp = SGP_HUGE; 2107 2108 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2109 gfp, vma, vmf, &ret); 2110 if (err) 2111 return vmf_error(err); 2112 return ret; 2113 } 2114 2115 unsigned long shmem_get_unmapped_area(struct file *file, 2116 unsigned long uaddr, unsigned long len, 2117 unsigned long pgoff, unsigned long flags) 2118 { 2119 unsigned long (*get_area)(struct file *, 2120 unsigned long, unsigned long, unsigned long, unsigned long); 2121 unsigned long addr; 2122 unsigned long offset; 2123 unsigned long inflated_len; 2124 unsigned long inflated_addr; 2125 unsigned long inflated_offset; 2126 2127 if (len > TASK_SIZE) 2128 return -ENOMEM; 2129 2130 get_area = current->mm->get_unmapped_area; 2131 addr = get_area(file, uaddr, len, pgoff, flags); 2132 2133 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2134 return addr; 2135 if (IS_ERR_VALUE(addr)) 2136 return addr; 2137 if (addr & ~PAGE_MASK) 2138 return addr; 2139 if (addr > TASK_SIZE - len) 2140 return addr; 2141 2142 if (shmem_huge == SHMEM_HUGE_DENY) 2143 return addr; 2144 if (len < HPAGE_PMD_SIZE) 2145 return addr; 2146 if (flags & MAP_FIXED) 2147 return addr; 2148 /* 2149 * Our priority is to support MAP_SHARED mapped hugely; 2150 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2151 * But if caller specified an address hint and we allocated area there 2152 * successfully, respect that as before. 2153 */ 2154 if (uaddr == addr) 2155 return addr; 2156 2157 if (shmem_huge != SHMEM_HUGE_FORCE) { 2158 struct super_block *sb; 2159 2160 if (file) { 2161 VM_BUG_ON(file->f_op != &shmem_file_operations); 2162 sb = file_inode(file)->i_sb; 2163 } else { 2164 /* 2165 * Called directly from mm/mmap.c, or drivers/char/mem.c 2166 * for "/dev/zero", to create a shared anonymous object. 2167 */ 2168 if (IS_ERR(shm_mnt)) 2169 return addr; 2170 sb = shm_mnt->mnt_sb; 2171 } 2172 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2173 return addr; 2174 } 2175 2176 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2177 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2178 return addr; 2179 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2180 return addr; 2181 2182 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2183 if (inflated_len > TASK_SIZE) 2184 return addr; 2185 if (inflated_len < len) 2186 return addr; 2187 2188 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2189 if (IS_ERR_VALUE(inflated_addr)) 2190 return addr; 2191 if (inflated_addr & ~PAGE_MASK) 2192 return addr; 2193 2194 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2195 inflated_addr += offset - inflated_offset; 2196 if (inflated_offset > offset) 2197 inflated_addr += HPAGE_PMD_SIZE; 2198 2199 if (inflated_addr > TASK_SIZE - len) 2200 return addr; 2201 return inflated_addr; 2202 } 2203 2204 #ifdef CONFIG_NUMA 2205 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2206 { 2207 struct inode *inode = file_inode(vma->vm_file); 2208 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2209 } 2210 2211 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2212 unsigned long addr) 2213 { 2214 struct inode *inode = file_inode(vma->vm_file); 2215 pgoff_t index; 2216 2217 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2218 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2219 } 2220 #endif 2221 2222 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2223 { 2224 struct inode *inode = file_inode(file); 2225 struct shmem_inode_info *info = SHMEM_I(inode); 2226 int retval = -ENOMEM; 2227 2228 /* 2229 * What serializes the accesses to info->flags? 2230 * ipc_lock_object() when called from shmctl_do_lock(), 2231 * no serialization needed when called from shm_destroy(). 2232 */ 2233 if (lock && !(info->flags & VM_LOCKED)) { 2234 if (!user_shm_lock(inode->i_size, user)) 2235 goto out_nomem; 2236 info->flags |= VM_LOCKED; 2237 mapping_set_unevictable(file->f_mapping); 2238 } 2239 if (!lock && (info->flags & VM_LOCKED) && user) { 2240 user_shm_unlock(inode->i_size, user); 2241 info->flags &= ~VM_LOCKED; 2242 mapping_clear_unevictable(file->f_mapping); 2243 } 2244 retval = 0; 2245 2246 out_nomem: 2247 return retval; 2248 } 2249 2250 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2251 { 2252 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2253 2254 if (info->seals & F_SEAL_FUTURE_WRITE) { 2255 /* 2256 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 2257 * "future write" seal active. 2258 */ 2259 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 2260 return -EPERM; 2261 2262 /* 2263 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 2264 * MAP_SHARED and read-only, take care to not allow mprotect to 2265 * revert protections on such mappings. Do this only for shared 2266 * mappings. For private mappings, don't need to mask 2267 * VM_MAYWRITE as we still want them to be COW-writable. 2268 */ 2269 if (vma->vm_flags & VM_SHARED) 2270 vma->vm_flags &= ~(VM_MAYWRITE); 2271 } 2272 2273 /* arm64 - allow memory tagging on RAM-based files */ 2274 vma->vm_flags |= VM_MTE_ALLOWED; 2275 2276 file_accessed(file); 2277 vma->vm_ops = &shmem_vm_ops; 2278 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 2279 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2280 (vma->vm_end & HPAGE_PMD_MASK)) { 2281 khugepaged_enter(vma, vma->vm_flags); 2282 } 2283 return 0; 2284 } 2285 2286 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2287 umode_t mode, dev_t dev, unsigned long flags) 2288 { 2289 struct inode *inode; 2290 struct shmem_inode_info *info; 2291 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2292 ino_t ino; 2293 2294 if (shmem_reserve_inode(sb, &ino)) 2295 return NULL; 2296 2297 inode = new_inode(sb); 2298 if (inode) { 2299 inode->i_ino = ino; 2300 inode_init_owner(&init_user_ns, inode, dir, mode); 2301 inode->i_blocks = 0; 2302 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2303 inode->i_generation = prandom_u32(); 2304 info = SHMEM_I(inode); 2305 memset(info, 0, (char *)inode - (char *)info); 2306 spin_lock_init(&info->lock); 2307 atomic_set(&info->stop_eviction, 0); 2308 info->seals = F_SEAL_SEAL; 2309 info->flags = flags & VM_NORESERVE; 2310 INIT_LIST_HEAD(&info->shrinklist); 2311 INIT_LIST_HEAD(&info->swaplist); 2312 simple_xattrs_init(&info->xattrs); 2313 cache_no_acl(inode); 2314 2315 switch (mode & S_IFMT) { 2316 default: 2317 inode->i_op = &shmem_special_inode_operations; 2318 init_special_inode(inode, mode, dev); 2319 break; 2320 case S_IFREG: 2321 inode->i_mapping->a_ops = &shmem_aops; 2322 inode->i_op = &shmem_inode_operations; 2323 inode->i_fop = &shmem_file_operations; 2324 mpol_shared_policy_init(&info->policy, 2325 shmem_get_sbmpol(sbinfo)); 2326 break; 2327 case S_IFDIR: 2328 inc_nlink(inode); 2329 /* Some things misbehave if size == 0 on a directory */ 2330 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2331 inode->i_op = &shmem_dir_inode_operations; 2332 inode->i_fop = &simple_dir_operations; 2333 break; 2334 case S_IFLNK: 2335 /* 2336 * Must not load anything in the rbtree, 2337 * mpol_free_shared_policy will not be called. 2338 */ 2339 mpol_shared_policy_init(&info->policy, NULL); 2340 break; 2341 } 2342 2343 lockdep_annotate_inode_mutex_key(inode); 2344 } else 2345 shmem_free_inode(sb); 2346 return inode; 2347 } 2348 2349 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2350 pmd_t *dst_pmd, 2351 struct vm_area_struct *dst_vma, 2352 unsigned long dst_addr, 2353 unsigned long src_addr, 2354 bool zeropage, 2355 struct page **pagep) 2356 { 2357 struct inode *inode = file_inode(dst_vma->vm_file); 2358 struct shmem_inode_info *info = SHMEM_I(inode); 2359 struct address_space *mapping = inode->i_mapping; 2360 gfp_t gfp = mapping_gfp_mask(mapping); 2361 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2362 spinlock_t *ptl; 2363 void *page_kaddr; 2364 struct page *page; 2365 pte_t _dst_pte, *dst_pte; 2366 int ret; 2367 pgoff_t offset, max_off; 2368 2369 ret = -ENOMEM; 2370 if (!shmem_inode_acct_block(inode, 1)) 2371 goto out; 2372 2373 if (!*pagep) { 2374 page = shmem_alloc_page(gfp, info, pgoff); 2375 if (!page) 2376 goto out_unacct_blocks; 2377 2378 if (!zeropage) { /* mcopy_atomic */ 2379 page_kaddr = kmap_atomic(page); 2380 ret = copy_from_user(page_kaddr, 2381 (const void __user *)src_addr, 2382 PAGE_SIZE); 2383 kunmap_atomic(page_kaddr); 2384 2385 /* fallback to copy_from_user outside mmap_lock */ 2386 if (unlikely(ret)) { 2387 *pagep = page; 2388 shmem_inode_unacct_blocks(inode, 1); 2389 /* don't free the page */ 2390 return -ENOENT; 2391 } 2392 } else { /* mfill_zeropage_atomic */ 2393 clear_highpage(page); 2394 } 2395 } else { 2396 page = *pagep; 2397 *pagep = NULL; 2398 } 2399 2400 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2401 __SetPageLocked(page); 2402 __SetPageSwapBacked(page); 2403 __SetPageUptodate(page); 2404 2405 ret = -EFAULT; 2406 offset = linear_page_index(dst_vma, dst_addr); 2407 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2408 if (unlikely(offset >= max_off)) 2409 goto out_release; 2410 2411 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2412 gfp & GFP_RECLAIM_MASK, dst_mm); 2413 if (ret) 2414 goto out_release; 2415 2416 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2417 if (dst_vma->vm_flags & VM_WRITE) 2418 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2419 else { 2420 /* 2421 * We don't set the pte dirty if the vma has no 2422 * VM_WRITE permission, so mark the page dirty or it 2423 * could be freed from under us. We could do it 2424 * unconditionally before unlock_page(), but doing it 2425 * only if VM_WRITE is not set is faster. 2426 */ 2427 set_page_dirty(page); 2428 } 2429 2430 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2431 2432 ret = -EFAULT; 2433 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2434 if (unlikely(offset >= max_off)) 2435 goto out_release_unlock; 2436 2437 ret = -EEXIST; 2438 if (!pte_none(*dst_pte)) 2439 goto out_release_unlock; 2440 2441 lru_cache_add(page); 2442 2443 spin_lock_irq(&info->lock); 2444 info->alloced++; 2445 inode->i_blocks += BLOCKS_PER_PAGE; 2446 shmem_recalc_inode(inode); 2447 spin_unlock_irq(&info->lock); 2448 2449 inc_mm_counter(dst_mm, mm_counter_file(page)); 2450 page_add_file_rmap(page, false); 2451 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2452 2453 /* No need to invalidate - it was non-present before */ 2454 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2455 pte_unmap_unlock(dst_pte, ptl); 2456 unlock_page(page); 2457 ret = 0; 2458 out: 2459 return ret; 2460 out_release_unlock: 2461 pte_unmap_unlock(dst_pte, ptl); 2462 ClearPageDirty(page); 2463 delete_from_page_cache(page); 2464 out_release: 2465 unlock_page(page); 2466 put_page(page); 2467 out_unacct_blocks: 2468 shmem_inode_unacct_blocks(inode, 1); 2469 goto out; 2470 } 2471 2472 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2473 pmd_t *dst_pmd, 2474 struct vm_area_struct *dst_vma, 2475 unsigned long dst_addr, 2476 unsigned long src_addr, 2477 struct page **pagep) 2478 { 2479 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2480 dst_addr, src_addr, false, pagep); 2481 } 2482 2483 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2484 pmd_t *dst_pmd, 2485 struct vm_area_struct *dst_vma, 2486 unsigned long dst_addr) 2487 { 2488 struct page *page = NULL; 2489 2490 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2491 dst_addr, 0, true, &page); 2492 } 2493 2494 #ifdef CONFIG_TMPFS 2495 static const struct inode_operations shmem_symlink_inode_operations; 2496 static const struct inode_operations shmem_short_symlink_operations; 2497 2498 #ifdef CONFIG_TMPFS_XATTR 2499 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2500 #else 2501 #define shmem_initxattrs NULL 2502 #endif 2503 2504 static int 2505 shmem_write_begin(struct file *file, struct address_space *mapping, 2506 loff_t pos, unsigned len, unsigned flags, 2507 struct page **pagep, void **fsdata) 2508 { 2509 struct inode *inode = mapping->host; 2510 struct shmem_inode_info *info = SHMEM_I(inode); 2511 pgoff_t index = pos >> PAGE_SHIFT; 2512 2513 /* i_mutex is held by caller */ 2514 if (unlikely(info->seals & (F_SEAL_GROW | 2515 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2516 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2517 return -EPERM; 2518 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2519 return -EPERM; 2520 } 2521 2522 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2523 } 2524 2525 static int 2526 shmem_write_end(struct file *file, struct address_space *mapping, 2527 loff_t pos, unsigned len, unsigned copied, 2528 struct page *page, void *fsdata) 2529 { 2530 struct inode *inode = mapping->host; 2531 2532 if (pos + copied > inode->i_size) 2533 i_size_write(inode, pos + copied); 2534 2535 if (!PageUptodate(page)) { 2536 struct page *head = compound_head(page); 2537 if (PageTransCompound(page)) { 2538 int i; 2539 2540 for (i = 0; i < HPAGE_PMD_NR; i++) { 2541 if (head + i == page) 2542 continue; 2543 clear_highpage(head + i); 2544 flush_dcache_page(head + i); 2545 } 2546 } 2547 if (copied < PAGE_SIZE) { 2548 unsigned from = pos & (PAGE_SIZE - 1); 2549 zero_user_segments(page, 0, from, 2550 from + copied, PAGE_SIZE); 2551 } 2552 SetPageUptodate(head); 2553 } 2554 set_page_dirty(page); 2555 unlock_page(page); 2556 put_page(page); 2557 2558 return copied; 2559 } 2560 2561 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2562 { 2563 struct file *file = iocb->ki_filp; 2564 struct inode *inode = file_inode(file); 2565 struct address_space *mapping = inode->i_mapping; 2566 pgoff_t index; 2567 unsigned long offset; 2568 enum sgp_type sgp = SGP_READ; 2569 int error = 0; 2570 ssize_t retval = 0; 2571 loff_t *ppos = &iocb->ki_pos; 2572 2573 /* 2574 * Might this read be for a stacking filesystem? Then when reading 2575 * holes of a sparse file, we actually need to allocate those pages, 2576 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2577 */ 2578 if (!iter_is_iovec(to)) 2579 sgp = SGP_CACHE; 2580 2581 index = *ppos >> PAGE_SHIFT; 2582 offset = *ppos & ~PAGE_MASK; 2583 2584 for (;;) { 2585 struct page *page = NULL; 2586 pgoff_t end_index; 2587 unsigned long nr, ret; 2588 loff_t i_size = i_size_read(inode); 2589 2590 end_index = i_size >> PAGE_SHIFT; 2591 if (index > end_index) 2592 break; 2593 if (index == end_index) { 2594 nr = i_size & ~PAGE_MASK; 2595 if (nr <= offset) 2596 break; 2597 } 2598 2599 error = shmem_getpage(inode, index, &page, sgp); 2600 if (error) { 2601 if (error == -EINVAL) 2602 error = 0; 2603 break; 2604 } 2605 if (page) { 2606 if (sgp == SGP_CACHE) 2607 set_page_dirty(page); 2608 unlock_page(page); 2609 } 2610 2611 /* 2612 * We must evaluate after, since reads (unlike writes) 2613 * are called without i_mutex protection against truncate 2614 */ 2615 nr = PAGE_SIZE; 2616 i_size = i_size_read(inode); 2617 end_index = i_size >> PAGE_SHIFT; 2618 if (index == end_index) { 2619 nr = i_size & ~PAGE_MASK; 2620 if (nr <= offset) { 2621 if (page) 2622 put_page(page); 2623 break; 2624 } 2625 } 2626 nr -= offset; 2627 2628 if (page) { 2629 /* 2630 * If users can be writing to this page using arbitrary 2631 * virtual addresses, take care about potential aliasing 2632 * before reading the page on the kernel side. 2633 */ 2634 if (mapping_writably_mapped(mapping)) 2635 flush_dcache_page(page); 2636 /* 2637 * Mark the page accessed if we read the beginning. 2638 */ 2639 if (!offset) 2640 mark_page_accessed(page); 2641 } else { 2642 page = ZERO_PAGE(0); 2643 get_page(page); 2644 } 2645 2646 /* 2647 * Ok, we have the page, and it's up-to-date, so 2648 * now we can copy it to user space... 2649 */ 2650 ret = copy_page_to_iter(page, offset, nr, to); 2651 retval += ret; 2652 offset += ret; 2653 index += offset >> PAGE_SHIFT; 2654 offset &= ~PAGE_MASK; 2655 2656 put_page(page); 2657 if (!iov_iter_count(to)) 2658 break; 2659 if (ret < nr) { 2660 error = -EFAULT; 2661 break; 2662 } 2663 cond_resched(); 2664 } 2665 2666 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2667 file_accessed(file); 2668 return retval ? retval : error; 2669 } 2670 2671 /* 2672 * llseek SEEK_DATA or SEEK_HOLE through the page cache. 2673 */ 2674 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2675 pgoff_t index, pgoff_t end, int whence) 2676 { 2677 struct page *page; 2678 struct pagevec pvec; 2679 pgoff_t indices[PAGEVEC_SIZE]; 2680 bool done = false; 2681 int i; 2682 2683 pagevec_init(&pvec); 2684 pvec.nr = 1; /* start small: we may be there already */ 2685 while (!done) { 2686 pvec.nr = find_get_entries(mapping, index, 2687 pvec.nr, pvec.pages, indices); 2688 if (!pvec.nr) { 2689 if (whence == SEEK_DATA) 2690 index = end; 2691 break; 2692 } 2693 for (i = 0; i < pvec.nr; i++, index++) { 2694 if (index < indices[i]) { 2695 if (whence == SEEK_HOLE) { 2696 done = true; 2697 break; 2698 } 2699 index = indices[i]; 2700 } 2701 page = pvec.pages[i]; 2702 if (page && !xa_is_value(page)) { 2703 if (!PageUptodate(page)) 2704 page = NULL; 2705 } 2706 if (index >= end || 2707 (page && whence == SEEK_DATA) || 2708 (!page && whence == SEEK_HOLE)) { 2709 done = true; 2710 break; 2711 } 2712 } 2713 pagevec_remove_exceptionals(&pvec); 2714 pagevec_release(&pvec); 2715 pvec.nr = PAGEVEC_SIZE; 2716 cond_resched(); 2717 } 2718 return index; 2719 } 2720 2721 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2722 { 2723 struct address_space *mapping = file->f_mapping; 2724 struct inode *inode = mapping->host; 2725 pgoff_t start, end; 2726 loff_t new_offset; 2727 2728 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2729 return generic_file_llseek_size(file, offset, whence, 2730 MAX_LFS_FILESIZE, i_size_read(inode)); 2731 inode_lock(inode); 2732 /* We're holding i_mutex so we can access i_size directly */ 2733 2734 if (offset < 0 || offset >= inode->i_size) 2735 offset = -ENXIO; 2736 else { 2737 start = offset >> PAGE_SHIFT; 2738 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2739 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2740 new_offset <<= PAGE_SHIFT; 2741 if (new_offset > offset) { 2742 if (new_offset < inode->i_size) 2743 offset = new_offset; 2744 else if (whence == SEEK_DATA) 2745 offset = -ENXIO; 2746 else 2747 offset = inode->i_size; 2748 } 2749 } 2750 2751 if (offset >= 0) 2752 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2753 inode_unlock(inode); 2754 return offset; 2755 } 2756 2757 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2758 loff_t len) 2759 { 2760 struct inode *inode = file_inode(file); 2761 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2762 struct shmem_inode_info *info = SHMEM_I(inode); 2763 struct shmem_falloc shmem_falloc; 2764 pgoff_t start, index, end; 2765 int error; 2766 2767 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2768 return -EOPNOTSUPP; 2769 2770 inode_lock(inode); 2771 2772 if (mode & FALLOC_FL_PUNCH_HOLE) { 2773 struct address_space *mapping = file->f_mapping; 2774 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2775 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2776 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2777 2778 /* protected by i_mutex */ 2779 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2780 error = -EPERM; 2781 goto out; 2782 } 2783 2784 shmem_falloc.waitq = &shmem_falloc_waitq; 2785 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2786 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2787 spin_lock(&inode->i_lock); 2788 inode->i_private = &shmem_falloc; 2789 spin_unlock(&inode->i_lock); 2790 2791 if ((u64)unmap_end > (u64)unmap_start) 2792 unmap_mapping_range(mapping, unmap_start, 2793 1 + unmap_end - unmap_start, 0); 2794 shmem_truncate_range(inode, offset, offset + len - 1); 2795 /* No need to unmap again: hole-punching leaves COWed pages */ 2796 2797 spin_lock(&inode->i_lock); 2798 inode->i_private = NULL; 2799 wake_up_all(&shmem_falloc_waitq); 2800 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2801 spin_unlock(&inode->i_lock); 2802 error = 0; 2803 goto out; 2804 } 2805 2806 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2807 error = inode_newsize_ok(inode, offset + len); 2808 if (error) 2809 goto out; 2810 2811 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2812 error = -EPERM; 2813 goto out; 2814 } 2815 2816 start = offset >> PAGE_SHIFT; 2817 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2818 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2819 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2820 error = -ENOSPC; 2821 goto out; 2822 } 2823 2824 shmem_falloc.waitq = NULL; 2825 shmem_falloc.start = start; 2826 shmem_falloc.next = start; 2827 shmem_falloc.nr_falloced = 0; 2828 shmem_falloc.nr_unswapped = 0; 2829 spin_lock(&inode->i_lock); 2830 inode->i_private = &shmem_falloc; 2831 spin_unlock(&inode->i_lock); 2832 2833 for (index = start; index < end; index++) { 2834 struct page *page; 2835 2836 /* 2837 * Good, the fallocate(2) manpage permits EINTR: we may have 2838 * been interrupted because we are using up too much memory. 2839 */ 2840 if (signal_pending(current)) 2841 error = -EINTR; 2842 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2843 error = -ENOMEM; 2844 else 2845 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2846 if (error) { 2847 /* Remove the !PageUptodate pages we added */ 2848 if (index > start) { 2849 shmem_undo_range(inode, 2850 (loff_t)start << PAGE_SHIFT, 2851 ((loff_t)index << PAGE_SHIFT) - 1, true); 2852 } 2853 goto undone; 2854 } 2855 2856 /* 2857 * Inform shmem_writepage() how far we have reached. 2858 * No need for lock or barrier: we have the page lock. 2859 */ 2860 shmem_falloc.next++; 2861 if (!PageUptodate(page)) 2862 shmem_falloc.nr_falloced++; 2863 2864 /* 2865 * If !PageUptodate, leave it that way so that freeable pages 2866 * can be recognized if we need to rollback on error later. 2867 * But set_page_dirty so that memory pressure will swap rather 2868 * than free the pages we are allocating (and SGP_CACHE pages 2869 * might still be clean: we now need to mark those dirty too). 2870 */ 2871 set_page_dirty(page); 2872 unlock_page(page); 2873 put_page(page); 2874 cond_resched(); 2875 } 2876 2877 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2878 i_size_write(inode, offset + len); 2879 inode->i_ctime = current_time(inode); 2880 undone: 2881 spin_lock(&inode->i_lock); 2882 inode->i_private = NULL; 2883 spin_unlock(&inode->i_lock); 2884 out: 2885 inode_unlock(inode); 2886 return error; 2887 } 2888 2889 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2890 { 2891 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2892 2893 buf->f_type = TMPFS_MAGIC; 2894 buf->f_bsize = PAGE_SIZE; 2895 buf->f_namelen = NAME_MAX; 2896 if (sbinfo->max_blocks) { 2897 buf->f_blocks = sbinfo->max_blocks; 2898 buf->f_bavail = 2899 buf->f_bfree = sbinfo->max_blocks - 2900 percpu_counter_sum(&sbinfo->used_blocks); 2901 } 2902 if (sbinfo->max_inodes) { 2903 buf->f_files = sbinfo->max_inodes; 2904 buf->f_ffree = sbinfo->free_inodes; 2905 } 2906 /* else leave those fields 0 like simple_statfs */ 2907 return 0; 2908 } 2909 2910 /* 2911 * File creation. Allocate an inode, and we're done.. 2912 */ 2913 static int 2914 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2915 struct dentry *dentry, umode_t mode, dev_t dev) 2916 { 2917 struct inode *inode; 2918 int error = -ENOSPC; 2919 2920 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2921 if (inode) { 2922 error = simple_acl_create(dir, inode); 2923 if (error) 2924 goto out_iput; 2925 error = security_inode_init_security(inode, dir, 2926 &dentry->d_name, 2927 shmem_initxattrs, NULL); 2928 if (error && error != -EOPNOTSUPP) 2929 goto out_iput; 2930 2931 error = 0; 2932 dir->i_size += BOGO_DIRENT_SIZE; 2933 dir->i_ctime = dir->i_mtime = current_time(dir); 2934 d_instantiate(dentry, inode); 2935 dget(dentry); /* Extra count - pin the dentry in core */ 2936 } 2937 return error; 2938 out_iput: 2939 iput(inode); 2940 return error; 2941 } 2942 2943 static int 2944 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 2945 struct dentry *dentry, umode_t mode) 2946 { 2947 struct inode *inode; 2948 int error = -ENOSPC; 2949 2950 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2951 if (inode) { 2952 error = security_inode_init_security(inode, dir, 2953 NULL, 2954 shmem_initxattrs, NULL); 2955 if (error && error != -EOPNOTSUPP) 2956 goto out_iput; 2957 error = simple_acl_create(dir, inode); 2958 if (error) 2959 goto out_iput; 2960 d_tmpfile(dentry, inode); 2961 } 2962 return error; 2963 out_iput: 2964 iput(inode); 2965 return error; 2966 } 2967 2968 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2969 struct dentry *dentry, umode_t mode) 2970 { 2971 int error; 2972 2973 if ((error = shmem_mknod(&init_user_ns, dir, dentry, 2974 mode | S_IFDIR, 0))) 2975 return error; 2976 inc_nlink(dir); 2977 return 0; 2978 } 2979 2980 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, 2981 struct dentry *dentry, umode_t mode, bool excl) 2982 { 2983 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 2984 } 2985 2986 /* 2987 * Link a file.. 2988 */ 2989 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2990 { 2991 struct inode *inode = d_inode(old_dentry); 2992 int ret = 0; 2993 2994 /* 2995 * No ordinary (disk based) filesystem counts links as inodes; 2996 * but each new link needs a new dentry, pinning lowmem, and 2997 * tmpfs dentries cannot be pruned until they are unlinked. 2998 * But if an O_TMPFILE file is linked into the tmpfs, the 2999 * first link must skip that, to get the accounting right. 3000 */ 3001 if (inode->i_nlink) { 3002 ret = shmem_reserve_inode(inode->i_sb, NULL); 3003 if (ret) 3004 goto out; 3005 } 3006 3007 dir->i_size += BOGO_DIRENT_SIZE; 3008 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3009 inc_nlink(inode); 3010 ihold(inode); /* New dentry reference */ 3011 dget(dentry); /* Extra pinning count for the created dentry */ 3012 d_instantiate(dentry, inode); 3013 out: 3014 return ret; 3015 } 3016 3017 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3018 { 3019 struct inode *inode = d_inode(dentry); 3020 3021 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3022 shmem_free_inode(inode->i_sb); 3023 3024 dir->i_size -= BOGO_DIRENT_SIZE; 3025 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3026 drop_nlink(inode); 3027 dput(dentry); /* Undo the count from "create" - this does all the work */ 3028 return 0; 3029 } 3030 3031 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3032 { 3033 if (!simple_empty(dentry)) 3034 return -ENOTEMPTY; 3035 3036 drop_nlink(d_inode(dentry)); 3037 drop_nlink(dir); 3038 return shmem_unlink(dir, dentry); 3039 } 3040 3041 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 3042 { 3043 bool old_is_dir = d_is_dir(old_dentry); 3044 bool new_is_dir = d_is_dir(new_dentry); 3045 3046 if (old_dir != new_dir && old_is_dir != new_is_dir) { 3047 if (old_is_dir) { 3048 drop_nlink(old_dir); 3049 inc_nlink(new_dir); 3050 } else { 3051 drop_nlink(new_dir); 3052 inc_nlink(old_dir); 3053 } 3054 } 3055 old_dir->i_ctime = old_dir->i_mtime = 3056 new_dir->i_ctime = new_dir->i_mtime = 3057 d_inode(old_dentry)->i_ctime = 3058 d_inode(new_dentry)->i_ctime = current_time(old_dir); 3059 3060 return 0; 3061 } 3062 3063 static int shmem_whiteout(struct user_namespace *mnt_userns, 3064 struct inode *old_dir, struct dentry *old_dentry) 3065 { 3066 struct dentry *whiteout; 3067 int error; 3068 3069 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3070 if (!whiteout) 3071 return -ENOMEM; 3072 3073 error = shmem_mknod(&init_user_ns, old_dir, whiteout, 3074 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3075 dput(whiteout); 3076 if (error) 3077 return error; 3078 3079 /* 3080 * Cheat and hash the whiteout while the old dentry is still in 3081 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3082 * 3083 * d_lookup() will consistently find one of them at this point, 3084 * not sure which one, but that isn't even important. 3085 */ 3086 d_rehash(whiteout); 3087 return 0; 3088 } 3089 3090 /* 3091 * The VFS layer already does all the dentry stuff for rename, 3092 * we just have to decrement the usage count for the target if 3093 * it exists so that the VFS layer correctly free's it when it 3094 * gets overwritten. 3095 */ 3096 static int shmem_rename2(struct user_namespace *mnt_userns, 3097 struct inode *old_dir, struct dentry *old_dentry, 3098 struct inode *new_dir, struct dentry *new_dentry, 3099 unsigned int flags) 3100 { 3101 struct inode *inode = d_inode(old_dentry); 3102 int they_are_dirs = S_ISDIR(inode->i_mode); 3103 3104 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3105 return -EINVAL; 3106 3107 if (flags & RENAME_EXCHANGE) 3108 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3109 3110 if (!simple_empty(new_dentry)) 3111 return -ENOTEMPTY; 3112 3113 if (flags & RENAME_WHITEOUT) { 3114 int error; 3115 3116 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); 3117 if (error) 3118 return error; 3119 } 3120 3121 if (d_really_is_positive(new_dentry)) { 3122 (void) shmem_unlink(new_dir, new_dentry); 3123 if (they_are_dirs) { 3124 drop_nlink(d_inode(new_dentry)); 3125 drop_nlink(old_dir); 3126 } 3127 } else if (they_are_dirs) { 3128 drop_nlink(old_dir); 3129 inc_nlink(new_dir); 3130 } 3131 3132 old_dir->i_size -= BOGO_DIRENT_SIZE; 3133 new_dir->i_size += BOGO_DIRENT_SIZE; 3134 old_dir->i_ctime = old_dir->i_mtime = 3135 new_dir->i_ctime = new_dir->i_mtime = 3136 inode->i_ctime = current_time(old_dir); 3137 return 0; 3138 } 3139 3140 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, 3141 struct dentry *dentry, const char *symname) 3142 { 3143 int error; 3144 int len; 3145 struct inode *inode; 3146 struct page *page; 3147 3148 len = strlen(symname) + 1; 3149 if (len > PAGE_SIZE) 3150 return -ENAMETOOLONG; 3151 3152 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3153 VM_NORESERVE); 3154 if (!inode) 3155 return -ENOSPC; 3156 3157 error = security_inode_init_security(inode, dir, &dentry->d_name, 3158 shmem_initxattrs, NULL); 3159 if (error && error != -EOPNOTSUPP) { 3160 iput(inode); 3161 return error; 3162 } 3163 3164 inode->i_size = len-1; 3165 if (len <= SHORT_SYMLINK_LEN) { 3166 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3167 if (!inode->i_link) { 3168 iput(inode); 3169 return -ENOMEM; 3170 } 3171 inode->i_op = &shmem_short_symlink_operations; 3172 } else { 3173 inode_nohighmem(inode); 3174 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3175 if (error) { 3176 iput(inode); 3177 return error; 3178 } 3179 inode->i_mapping->a_ops = &shmem_aops; 3180 inode->i_op = &shmem_symlink_inode_operations; 3181 memcpy(page_address(page), symname, len); 3182 SetPageUptodate(page); 3183 set_page_dirty(page); 3184 unlock_page(page); 3185 put_page(page); 3186 } 3187 dir->i_size += BOGO_DIRENT_SIZE; 3188 dir->i_ctime = dir->i_mtime = current_time(dir); 3189 d_instantiate(dentry, inode); 3190 dget(dentry); 3191 return 0; 3192 } 3193 3194 static void shmem_put_link(void *arg) 3195 { 3196 mark_page_accessed(arg); 3197 put_page(arg); 3198 } 3199 3200 static const char *shmem_get_link(struct dentry *dentry, 3201 struct inode *inode, 3202 struct delayed_call *done) 3203 { 3204 struct page *page = NULL; 3205 int error; 3206 if (!dentry) { 3207 page = find_get_page(inode->i_mapping, 0); 3208 if (!page) 3209 return ERR_PTR(-ECHILD); 3210 if (!PageUptodate(page)) { 3211 put_page(page); 3212 return ERR_PTR(-ECHILD); 3213 } 3214 } else { 3215 error = shmem_getpage(inode, 0, &page, SGP_READ); 3216 if (error) 3217 return ERR_PTR(error); 3218 unlock_page(page); 3219 } 3220 set_delayed_call(done, shmem_put_link, page); 3221 return page_address(page); 3222 } 3223 3224 #ifdef CONFIG_TMPFS_XATTR 3225 /* 3226 * Superblocks without xattr inode operations may get some security.* xattr 3227 * support from the LSM "for free". As soon as we have any other xattrs 3228 * like ACLs, we also need to implement the security.* handlers at 3229 * filesystem level, though. 3230 */ 3231 3232 /* 3233 * Callback for security_inode_init_security() for acquiring xattrs. 3234 */ 3235 static int shmem_initxattrs(struct inode *inode, 3236 const struct xattr *xattr_array, 3237 void *fs_info) 3238 { 3239 struct shmem_inode_info *info = SHMEM_I(inode); 3240 const struct xattr *xattr; 3241 struct simple_xattr *new_xattr; 3242 size_t len; 3243 3244 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3245 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3246 if (!new_xattr) 3247 return -ENOMEM; 3248 3249 len = strlen(xattr->name) + 1; 3250 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3251 GFP_KERNEL); 3252 if (!new_xattr->name) { 3253 kvfree(new_xattr); 3254 return -ENOMEM; 3255 } 3256 3257 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3258 XATTR_SECURITY_PREFIX_LEN); 3259 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3260 xattr->name, len); 3261 3262 simple_xattr_list_add(&info->xattrs, new_xattr); 3263 } 3264 3265 return 0; 3266 } 3267 3268 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3269 struct dentry *unused, struct inode *inode, 3270 const char *name, void *buffer, size_t size) 3271 { 3272 struct shmem_inode_info *info = SHMEM_I(inode); 3273 3274 name = xattr_full_name(handler, name); 3275 return simple_xattr_get(&info->xattrs, name, buffer, size); 3276 } 3277 3278 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3279 struct user_namespace *mnt_userns, 3280 struct dentry *unused, struct inode *inode, 3281 const char *name, const void *value, 3282 size_t size, int flags) 3283 { 3284 struct shmem_inode_info *info = SHMEM_I(inode); 3285 3286 name = xattr_full_name(handler, name); 3287 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3288 } 3289 3290 static const struct xattr_handler shmem_security_xattr_handler = { 3291 .prefix = XATTR_SECURITY_PREFIX, 3292 .get = shmem_xattr_handler_get, 3293 .set = shmem_xattr_handler_set, 3294 }; 3295 3296 static const struct xattr_handler shmem_trusted_xattr_handler = { 3297 .prefix = XATTR_TRUSTED_PREFIX, 3298 .get = shmem_xattr_handler_get, 3299 .set = shmem_xattr_handler_set, 3300 }; 3301 3302 static const struct xattr_handler *shmem_xattr_handlers[] = { 3303 #ifdef CONFIG_TMPFS_POSIX_ACL 3304 &posix_acl_access_xattr_handler, 3305 &posix_acl_default_xattr_handler, 3306 #endif 3307 &shmem_security_xattr_handler, 3308 &shmem_trusted_xattr_handler, 3309 NULL 3310 }; 3311 3312 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3313 { 3314 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3315 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3316 } 3317 #endif /* CONFIG_TMPFS_XATTR */ 3318 3319 static const struct inode_operations shmem_short_symlink_operations = { 3320 .get_link = simple_get_link, 3321 #ifdef CONFIG_TMPFS_XATTR 3322 .listxattr = shmem_listxattr, 3323 #endif 3324 }; 3325 3326 static const struct inode_operations shmem_symlink_inode_operations = { 3327 .get_link = shmem_get_link, 3328 #ifdef CONFIG_TMPFS_XATTR 3329 .listxattr = shmem_listxattr, 3330 #endif 3331 }; 3332 3333 static struct dentry *shmem_get_parent(struct dentry *child) 3334 { 3335 return ERR_PTR(-ESTALE); 3336 } 3337 3338 static int shmem_match(struct inode *ino, void *vfh) 3339 { 3340 __u32 *fh = vfh; 3341 __u64 inum = fh[2]; 3342 inum = (inum << 32) | fh[1]; 3343 return ino->i_ino == inum && fh[0] == ino->i_generation; 3344 } 3345 3346 /* Find any alias of inode, but prefer a hashed alias */ 3347 static struct dentry *shmem_find_alias(struct inode *inode) 3348 { 3349 struct dentry *alias = d_find_alias(inode); 3350 3351 return alias ?: d_find_any_alias(inode); 3352 } 3353 3354 3355 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3356 struct fid *fid, int fh_len, int fh_type) 3357 { 3358 struct inode *inode; 3359 struct dentry *dentry = NULL; 3360 u64 inum; 3361 3362 if (fh_len < 3) 3363 return NULL; 3364 3365 inum = fid->raw[2]; 3366 inum = (inum << 32) | fid->raw[1]; 3367 3368 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3369 shmem_match, fid->raw); 3370 if (inode) { 3371 dentry = shmem_find_alias(inode); 3372 iput(inode); 3373 } 3374 3375 return dentry; 3376 } 3377 3378 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3379 struct inode *parent) 3380 { 3381 if (*len < 3) { 3382 *len = 3; 3383 return FILEID_INVALID; 3384 } 3385 3386 if (inode_unhashed(inode)) { 3387 /* Unfortunately insert_inode_hash is not idempotent, 3388 * so as we hash inodes here rather than at creation 3389 * time, we need a lock to ensure we only try 3390 * to do it once 3391 */ 3392 static DEFINE_SPINLOCK(lock); 3393 spin_lock(&lock); 3394 if (inode_unhashed(inode)) 3395 __insert_inode_hash(inode, 3396 inode->i_ino + inode->i_generation); 3397 spin_unlock(&lock); 3398 } 3399 3400 fh[0] = inode->i_generation; 3401 fh[1] = inode->i_ino; 3402 fh[2] = ((__u64)inode->i_ino) >> 32; 3403 3404 *len = 3; 3405 return 1; 3406 } 3407 3408 static const struct export_operations shmem_export_ops = { 3409 .get_parent = shmem_get_parent, 3410 .encode_fh = shmem_encode_fh, 3411 .fh_to_dentry = shmem_fh_to_dentry, 3412 }; 3413 3414 enum shmem_param { 3415 Opt_gid, 3416 Opt_huge, 3417 Opt_mode, 3418 Opt_mpol, 3419 Opt_nr_blocks, 3420 Opt_nr_inodes, 3421 Opt_size, 3422 Opt_uid, 3423 Opt_inode32, 3424 Opt_inode64, 3425 }; 3426 3427 static const struct constant_table shmem_param_enums_huge[] = { 3428 {"never", SHMEM_HUGE_NEVER }, 3429 {"always", SHMEM_HUGE_ALWAYS }, 3430 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3431 {"advise", SHMEM_HUGE_ADVISE }, 3432 {} 3433 }; 3434 3435 const struct fs_parameter_spec shmem_fs_parameters[] = { 3436 fsparam_u32 ("gid", Opt_gid), 3437 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3438 fsparam_u32oct("mode", Opt_mode), 3439 fsparam_string("mpol", Opt_mpol), 3440 fsparam_string("nr_blocks", Opt_nr_blocks), 3441 fsparam_string("nr_inodes", Opt_nr_inodes), 3442 fsparam_string("size", Opt_size), 3443 fsparam_u32 ("uid", Opt_uid), 3444 fsparam_flag ("inode32", Opt_inode32), 3445 fsparam_flag ("inode64", Opt_inode64), 3446 {} 3447 }; 3448 3449 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3450 { 3451 struct shmem_options *ctx = fc->fs_private; 3452 struct fs_parse_result result; 3453 unsigned long long size; 3454 char *rest; 3455 int opt; 3456 3457 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3458 if (opt < 0) 3459 return opt; 3460 3461 switch (opt) { 3462 case Opt_size: 3463 size = memparse(param->string, &rest); 3464 if (*rest == '%') { 3465 size <<= PAGE_SHIFT; 3466 size *= totalram_pages(); 3467 do_div(size, 100); 3468 rest++; 3469 } 3470 if (*rest) 3471 goto bad_value; 3472 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3473 ctx->seen |= SHMEM_SEEN_BLOCKS; 3474 break; 3475 case Opt_nr_blocks: 3476 ctx->blocks = memparse(param->string, &rest); 3477 if (*rest) 3478 goto bad_value; 3479 ctx->seen |= SHMEM_SEEN_BLOCKS; 3480 break; 3481 case Opt_nr_inodes: 3482 ctx->inodes = memparse(param->string, &rest); 3483 if (*rest) 3484 goto bad_value; 3485 ctx->seen |= SHMEM_SEEN_INODES; 3486 break; 3487 case Opt_mode: 3488 ctx->mode = result.uint_32 & 07777; 3489 break; 3490 case Opt_uid: 3491 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3492 if (!uid_valid(ctx->uid)) 3493 goto bad_value; 3494 break; 3495 case Opt_gid: 3496 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3497 if (!gid_valid(ctx->gid)) 3498 goto bad_value; 3499 break; 3500 case Opt_huge: 3501 ctx->huge = result.uint_32; 3502 if (ctx->huge != SHMEM_HUGE_NEVER && 3503 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3504 has_transparent_hugepage())) 3505 goto unsupported_parameter; 3506 ctx->seen |= SHMEM_SEEN_HUGE; 3507 break; 3508 case Opt_mpol: 3509 if (IS_ENABLED(CONFIG_NUMA)) { 3510 mpol_put(ctx->mpol); 3511 ctx->mpol = NULL; 3512 if (mpol_parse_str(param->string, &ctx->mpol)) 3513 goto bad_value; 3514 break; 3515 } 3516 goto unsupported_parameter; 3517 case Opt_inode32: 3518 ctx->full_inums = false; 3519 ctx->seen |= SHMEM_SEEN_INUMS; 3520 break; 3521 case Opt_inode64: 3522 if (sizeof(ino_t) < 8) { 3523 return invalfc(fc, 3524 "Cannot use inode64 with <64bit inums in kernel\n"); 3525 } 3526 ctx->full_inums = true; 3527 ctx->seen |= SHMEM_SEEN_INUMS; 3528 break; 3529 } 3530 return 0; 3531 3532 unsupported_parameter: 3533 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3534 bad_value: 3535 return invalfc(fc, "Bad value for '%s'", param->key); 3536 } 3537 3538 static int shmem_parse_options(struct fs_context *fc, void *data) 3539 { 3540 char *options = data; 3541 3542 if (options) { 3543 int err = security_sb_eat_lsm_opts(options, &fc->security); 3544 if (err) 3545 return err; 3546 } 3547 3548 while (options != NULL) { 3549 char *this_char = options; 3550 for (;;) { 3551 /* 3552 * NUL-terminate this option: unfortunately, 3553 * mount options form a comma-separated list, 3554 * but mpol's nodelist may also contain commas. 3555 */ 3556 options = strchr(options, ','); 3557 if (options == NULL) 3558 break; 3559 options++; 3560 if (!isdigit(*options)) { 3561 options[-1] = '\0'; 3562 break; 3563 } 3564 } 3565 if (*this_char) { 3566 char *value = strchr(this_char,'='); 3567 size_t len = 0; 3568 int err; 3569 3570 if (value) { 3571 *value++ = '\0'; 3572 len = strlen(value); 3573 } 3574 err = vfs_parse_fs_string(fc, this_char, value, len); 3575 if (err < 0) 3576 return err; 3577 } 3578 } 3579 return 0; 3580 } 3581 3582 /* 3583 * Reconfigure a shmem filesystem. 3584 * 3585 * Note that we disallow change from limited->unlimited blocks/inodes while any 3586 * are in use; but we must separately disallow unlimited->limited, because in 3587 * that case we have no record of how much is already in use. 3588 */ 3589 static int shmem_reconfigure(struct fs_context *fc) 3590 { 3591 struct shmem_options *ctx = fc->fs_private; 3592 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3593 unsigned long inodes; 3594 const char *err; 3595 3596 spin_lock(&sbinfo->stat_lock); 3597 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3598 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3599 if (!sbinfo->max_blocks) { 3600 err = "Cannot retroactively limit size"; 3601 goto out; 3602 } 3603 if (percpu_counter_compare(&sbinfo->used_blocks, 3604 ctx->blocks) > 0) { 3605 err = "Too small a size for current use"; 3606 goto out; 3607 } 3608 } 3609 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3610 if (!sbinfo->max_inodes) { 3611 err = "Cannot retroactively limit inodes"; 3612 goto out; 3613 } 3614 if (ctx->inodes < inodes) { 3615 err = "Too few inodes for current use"; 3616 goto out; 3617 } 3618 } 3619 3620 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3621 sbinfo->next_ino > UINT_MAX) { 3622 err = "Current inum too high to switch to 32-bit inums"; 3623 goto out; 3624 } 3625 3626 if (ctx->seen & SHMEM_SEEN_HUGE) 3627 sbinfo->huge = ctx->huge; 3628 if (ctx->seen & SHMEM_SEEN_INUMS) 3629 sbinfo->full_inums = ctx->full_inums; 3630 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3631 sbinfo->max_blocks = ctx->blocks; 3632 if (ctx->seen & SHMEM_SEEN_INODES) { 3633 sbinfo->max_inodes = ctx->inodes; 3634 sbinfo->free_inodes = ctx->inodes - inodes; 3635 } 3636 3637 /* 3638 * Preserve previous mempolicy unless mpol remount option was specified. 3639 */ 3640 if (ctx->mpol) { 3641 mpol_put(sbinfo->mpol); 3642 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3643 ctx->mpol = NULL; 3644 } 3645 spin_unlock(&sbinfo->stat_lock); 3646 return 0; 3647 out: 3648 spin_unlock(&sbinfo->stat_lock); 3649 return invalfc(fc, "%s", err); 3650 } 3651 3652 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3653 { 3654 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3655 3656 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3657 seq_printf(seq, ",size=%luk", 3658 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3659 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3660 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3661 if (sbinfo->mode != (0777 | S_ISVTX)) 3662 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3663 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3664 seq_printf(seq, ",uid=%u", 3665 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3666 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3667 seq_printf(seq, ",gid=%u", 3668 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3669 3670 /* 3671 * Showing inode{64,32} might be useful even if it's the system default, 3672 * since then people don't have to resort to checking both here and 3673 * /proc/config.gz to confirm 64-bit inums were successfully applied 3674 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3675 * 3676 * We hide it when inode64 isn't the default and we are using 32-bit 3677 * inodes, since that probably just means the feature isn't even under 3678 * consideration. 3679 * 3680 * As such: 3681 * 3682 * +-----------------+-----------------+ 3683 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3684 * +------------------+-----------------+-----------------+ 3685 * | full_inums=true | show | show | 3686 * | full_inums=false | show | hide | 3687 * +------------------+-----------------+-----------------+ 3688 * 3689 */ 3690 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3691 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3692 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3693 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3694 if (sbinfo->huge) 3695 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3696 #endif 3697 shmem_show_mpol(seq, sbinfo->mpol); 3698 return 0; 3699 } 3700 3701 #endif /* CONFIG_TMPFS */ 3702 3703 static void shmem_put_super(struct super_block *sb) 3704 { 3705 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3706 3707 free_percpu(sbinfo->ino_batch); 3708 percpu_counter_destroy(&sbinfo->used_blocks); 3709 mpol_put(sbinfo->mpol); 3710 kfree(sbinfo); 3711 sb->s_fs_info = NULL; 3712 } 3713 3714 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3715 { 3716 struct shmem_options *ctx = fc->fs_private; 3717 struct inode *inode; 3718 struct shmem_sb_info *sbinfo; 3719 int err = -ENOMEM; 3720 3721 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3722 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3723 L1_CACHE_BYTES), GFP_KERNEL); 3724 if (!sbinfo) 3725 return -ENOMEM; 3726 3727 sb->s_fs_info = sbinfo; 3728 3729 #ifdef CONFIG_TMPFS 3730 /* 3731 * Per default we only allow half of the physical ram per 3732 * tmpfs instance, limiting inodes to one per page of lowmem; 3733 * but the internal instance is left unlimited. 3734 */ 3735 if (!(sb->s_flags & SB_KERNMOUNT)) { 3736 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3737 ctx->blocks = shmem_default_max_blocks(); 3738 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3739 ctx->inodes = shmem_default_max_inodes(); 3740 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3741 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3742 } else { 3743 sb->s_flags |= SB_NOUSER; 3744 } 3745 sb->s_export_op = &shmem_export_ops; 3746 sb->s_flags |= SB_NOSEC; 3747 #else 3748 sb->s_flags |= SB_NOUSER; 3749 #endif 3750 sbinfo->max_blocks = ctx->blocks; 3751 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3752 if (sb->s_flags & SB_KERNMOUNT) { 3753 sbinfo->ino_batch = alloc_percpu(ino_t); 3754 if (!sbinfo->ino_batch) 3755 goto failed; 3756 } 3757 sbinfo->uid = ctx->uid; 3758 sbinfo->gid = ctx->gid; 3759 sbinfo->full_inums = ctx->full_inums; 3760 sbinfo->mode = ctx->mode; 3761 sbinfo->huge = ctx->huge; 3762 sbinfo->mpol = ctx->mpol; 3763 ctx->mpol = NULL; 3764 3765 spin_lock_init(&sbinfo->stat_lock); 3766 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3767 goto failed; 3768 spin_lock_init(&sbinfo->shrinklist_lock); 3769 INIT_LIST_HEAD(&sbinfo->shrinklist); 3770 3771 sb->s_maxbytes = MAX_LFS_FILESIZE; 3772 sb->s_blocksize = PAGE_SIZE; 3773 sb->s_blocksize_bits = PAGE_SHIFT; 3774 sb->s_magic = TMPFS_MAGIC; 3775 sb->s_op = &shmem_ops; 3776 sb->s_time_gran = 1; 3777 #ifdef CONFIG_TMPFS_XATTR 3778 sb->s_xattr = shmem_xattr_handlers; 3779 #endif 3780 #ifdef CONFIG_TMPFS_POSIX_ACL 3781 sb->s_flags |= SB_POSIXACL; 3782 #endif 3783 uuid_gen(&sb->s_uuid); 3784 3785 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3786 if (!inode) 3787 goto failed; 3788 inode->i_uid = sbinfo->uid; 3789 inode->i_gid = sbinfo->gid; 3790 sb->s_root = d_make_root(inode); 3791 if (!sb->s_root) 3792 goto failed; 3793 return 0; 3794 3795 failed: 3796 shmem_put_super(sb); 3797 return err; 3798 } 3799 3800 static int shmem_get_tree(struct fs_context *fc) 3801 { 3802 return get_tree_nodev(fc, shmem_fill_super); 3803 } 3804 3805 static void shmem_free_fc(struct fs_context *fc) 3806 { 3807 struct shmem_options *ctx = fc->fs_private; 3808 3809 if (ctx) { 3810 mpol_put(ctx->mpol); 3811 kfree(ctx); 3812 } 3813 } 3814 3815 static const struct fs_context_operations shmem_fs_context_ops = { 3816 .free = shmem_free_fc, 3817 .get_tree = shmem_get_tree, 3818 #ifdef CONFIG_TMPFS 3819 .parse_monolithic = shmem_parse_options, 3820 .parse_param = shmem_parse_one, 3821 .reconfigure = shmem_reconfigure, 3822 #endif 3823 }; 3824 3825 static struct kmem_cache *shmem_inode_cachep; 3826 3827 static struct inode *shmem_alloc_inode(struct super_block *sb) 3828 { 3829 struct shmem_inode_info *info; 3830 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3831 if (!info) 3832 return NULL; 3833 return &info->vfs_inode; 3834 } 3835 3836 static void shmem_free_in_core_inode(struct inode *inode) 3837 { 3838 if (S_ISLNK(inode->i_mode)) 3839 kfree(inode->i_link); 3840 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3841 } 3842 3843 static void shmem_destroy_inode(struct inode *inode) 3844 { 3845 if (S_ISREG(inode->i_mode)) 3846 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3847 } 3848 3849 static void shmem_init_inode(void *foo) 3850 { 3851 struct shmem_inode_info *info = foo; 3852 inode_init_once(&info->vfs_inode); 3853 } 3854 3855 static void shmem_init_inodecache(void) 3856 { 3857 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3858 sizeof(struct shmem_inode_info), 3859 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3860 } 3861 3862 static void shmem_destroy_inodecache(void) 3863 { 3864 kmem_cache_destroy(shmem_inode_cachep); 3865 } 3866 3867 const struct address_space_operations shmem_aops = { 3868 .writepage = shmem_writepage, 3869 .set_page_dirty = __set_page_dirty_no_writeback, 3870 #ifdef CONFIG_TMPFS 3871 .write_begin = shmem_write_begin, 3872 .write_end = shmem_write_end, 3873 #endif 3874 #ifdef CONFIG_MIGRATION 3875 .migratepage = migrate_page, 3876 #endif 3877 .error_remove_page = generic_error_remove_page, 3878 }; 3879 EXPORT_SYMBOL(shmem_aops); 3880 3881 static const struct file_operations shmem_file_operations = { 3882 .mmap = shmem_mmap, 3883 .get_unmapped_area = shmem_get_unmapped_area, 3884 #ifdef CONFIG_TMPFS 3885 .llseek = shmem_file_llseek, 3886 .read_iter = shmem_file_read_iter, 3887 .write_iter = generic_file_write_iter, 3888 .fsync = noop_fsync, 3889 .splice_read = generic_file_splice_read, 3890 .splice_write = iter_file_splice_write, 3891 .fallocate = shmem_fallocate, 3892 #endif 3893 }; 3894 3895 static const struct inode_operations shmem_inode_operations = { 3896 .getattr = shmem_getattr, 3897 .setattr = shmem_setattr, 3898 #ifdef CONFIG_TMPFS_XATTR 3899 .listxattr = shmem_listxattr, 3900 .set_acl = simple_set_acl, 3901 #endif 3902 }; 3903 3904 static const struct inode_operations shmem_dir_inode_operations = { 3905 #ifdef CONFIG_TMPFS 3906 .create = shmem_create, 3907 .lookup = simple_lookup, 3908 .link = shmem_link, 3909 .unlink = shmem_unlink, 3910 .symlink = shmem_symlink, 3911 .mkdir = shmem_mkdir, 3912 .rmdir = shmem_rmdir, 3913 .mknod = shmem_mknod, 3914 .rename = shmem_rename2, 3915 .tmpfile = shmem_tmpfile, 3916 #endif 3917 #ifdef CONFIG_TMPFS_XATTR 3918 .listxattr = shmem_listxattr, 3919 #endif 3920 #ifdef CONFIG_TMPFS_POSIX_ACL 3921 .setattr = shmem_setattr, 3922 .set_acl = simple_set_acl, 3923 #endif 3924 }; 3925 3926 static const struct inode_operations shmem_special_inode_operations = { 3927 #ifdef CONFIG_TMPFS_XATTR 3928 .listxattr = shmem_listxattr, 3929 #endif 3930 #ifdef CONFIG_TMPFS_POSIX_ACL 3931 .setattr = shmem_setattr, 3932 .set_acl = simple_set_acl, 3933 #endif 3934 }; 3935 3936 static const struct super_operations shmem_ops = { 3937 .alloc_inode = shmem_alloc_inode, 3938 .free_inode = shmem_free_in_core_inode, 3939 .destroy_inode = shmem_destroy_inode, 3940 #ifdef CONFIG_TMPFS 3941 .statfs = shmem_statfs, 3942 .show_options = shmem_show_options, 3943 #endif 3944 .evict_inode = shmem_evict_inode, 3945 .drop_inode = generic_delete_inode, 3946 .put_super = shmem_put_super, 3947 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3948 .nr_cached_objects = shmem_unused_huge_count, 3949 .free_cached_objects = shmem_unused_huge_scan, 3950 #endif 3951 }; 3952 3953 static const struct vm_operations_struct shmem_vm_ops = { 3954 .fault = shmem_fault, 3955 .map_pages = filemap_map_pages, 3956 #ifdef CONFIG_NUMA 3957 .set_policy = shmem_set_policy, 3958 .get_policy = shmem_get_policy, 3959 #endif 3960 }; 3961 3962 int shmem_init_fs_context(struct fs_context *fc) 3963 { 3964 struct shmem_options *ctx; 3965 3966 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3967 if (!ctx) 3968 return -ENOMEM; 3969 3970 ctx->mode = 0777 | S_ISVTX; 3971 ctx->uid = current_fsuid(); 3972 ctx->gid = current_fsgid(); 3973 3974 fc->fs_private = ctx; 3975 fc->ops = &shmem_fs_context_ops; 3976 return 0; 3977 } 3978 3979 static struct file_system_type shmem_fs_type = { 3980 .owner = THIS_MODULE, 3981 .name = "tmpfs", 3982 .init_fs_context = shmem_init_fs_context, 3983 #ifdef CONFIG_TMPFS 3984 .parameters = shmem_fs_parameters, 3985 #endif 3986 .kill_sb = kill_litter_super, 3987 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT, 3988 }; 3989 3990 int __init shmem_init(void) 3991 { 3992 int error; 3993 3994 shmem_init_inodecache(); 3995 3996 error = register_filesystem(&shmem_fs_type); 3997 if (error) { 3998 pr_err("Could not register tmpfs\n"); 3999 goto out2; 4000 } 4001 4002 shm_mnt = kern_mount(&shmem_fs_type); 4003 if (IS_ERR(shm_mnt)) { 4004 error = PTR_ERR(shm_mnt); 4005 pr_err("Could not kern_mount tmpfs\n"); 4006 goto out1; 4007 } 4008 4009 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4010 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4011 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4012 else 4013 shmem_huge = 0; /* just in case it was patched */ 4014 #endif 4015 return 0; 4016 4017 out1: 4018 unregister_filesystem(&shmem_fs_type); 4019 out2: 4020 shmem_destroy_inodecache(); 4021 shm_mnt = ERR_PTR(error); 4022 return error; 4023 } 4024 4025 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4026 static ssize_t shmem_enabled_show(struct kobject *kobj, 4027 struct kobj_attribute *attr, char *buf) 4028 { 4029 static const int values[] = { 4030 SHMEM_HUGE_ALWAYS, 4031 SHMEM_HUGE_WITHIN_SIZE, 4032 SHMEM_HUGE_ADVISE, 4033 SHMEM_HUGE_NEVER, 4034 SHMEM_HUGE_DENY, 4035 SHMEM_HUGE_FORCE, 4036 }; 4037 int len = 0; 4038 int i; 4039 4040 for (i = 0; i < ARRAY_SIZE(values); i++) { 4041 len += sysfs_emit_at(buf, len, 4042 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4043 i ? " " : "", 4044 shmem_format_huge(values[i])); 4045 } 4046 4047 len += sysfs_emit_at(buf, len, "\n"); 4048 4049 return len; 4050 } 4051 4052 static ssize_t shmem_enabled_store(struct kobject *kobj, 4053 struct kobj_attribute *attr, const char *buf, size_t count) 4054 { 4055 char tmp[16]; 4056 int huge; 4057 4058 if (count + 1 > sizeof(tmp)) 4059 return -EINVAL; 4060 memcpy(tmp, buf, count); 4061 tmp[count] = '\0'; 4062 if (count && tmp[count - 1] == '\n') 4063 tmp[count - 1] = '\0'; 4064 4065 huge = shmem_parse_huge(tmp); 4066 if (huge == -EINVAL) 4067 return -EINVAL; 4068 if (!has_transparent_hugepage() && 4069 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4070 return -EINVAL; 4071 4072 shmem_huge = huge; 4073 if (shmem_huge > SHMEM_HUGE_DENY) 4074 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4075 return count; 4076 } 4077 4078 struct kobj_attribute shmem_enabled_attr = 4079 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 4080 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4081 4082 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4083 bool shmem_huge_enabled(struct vm_area_struct *vma) 4084 { 4085 struct inode *inode = file_inode(vma->vm_file); 4086 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4087 loff_t i_size; 4088 pgoff_t off; 4089 4090 if ((vma->vm_flags & VM_NOHUGEPAGE) || 4091 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 4092 return false; 4093 if (shmem_huge == SHMEM_HUGE_FORCE) 4094 return true; 4095 if (shmem_huge == SHMEM_HUGE_DENY) 4096 return false; 4097 switch (sbinfo->huge) { 4098 case SHMEM_HUGE_NEVER: 4099 return false; 4100 case SHMEM_HUGE_ALWAYS: 4101 return true; 4102 case SHMEM_HUGE_WITHIN_SIZE: 4103 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 4104 i_size = round_up(i_size_read(inode), PAGE_SIZE); 4105 if (i_size >= HPAGE_PMD_SIZE && 4106 i_size >> PAGE_SHIFT >= off) 4107 return true; 4108 fallthrough; 4109 case SHMEM_HUGE_ADVISE: 4110 /* TODO: implement fadvise() hints */ 4111 return (vma->vm_flags & VM_HUGEPAGE); 4112 default: 4113 VM_BUG_ON(1); 4114 return false; 4115 } 4116 } 4117 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4118 4119 #else /* !CONFIG_SHMEM */ 4120 4121 /* 4122 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4123 * 4124 * This is intended for small system where the benefits of the full 4125 * shmem code (swap-backed and resource-limited) are outweighed by 4126 * their complexity. On systems without swap this code should be 4127 * effectively equivalent, but much lighter weight. 4128 */ 4129 4130 static struct file_system_type shmem_fs_type = { 4131 .name = "tmpfs", 4132 .init_fs_context = ramfs_init_fs_context, 4133 .parameters = ramfs_fs_parameters, 4134 .kill_sb = kill_litter_super, 4135 .fs_flags = FS_USERNS_MOUNT, 4136 }; 4137 4138 int __init shmem_init(void) 4139 { 4140 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4141 4142 shm_mnt = kern_mount(&shmem_fs_type); 4143 BUG_ON(IS_ERR(shm_mnt)); 4144 4145 return 0; 4146 } 4147 4148 int shmem_unuse(unsigned int type, bool frontswap, 4149 unsigned long *fs_pages_to_unuse) 4150 { 4151 return 0; 4152 } 4153 4154 int shmem_lock(struct file *file, int lock, struct user_struct *user) 4155 { 4156 return 0; 4157 } 4158 4159 void shmem_unlock_mapping(struct address_space *mapping) 4160 { 4161 } 4162 4163 #ifdef CONFIG_MMU 4164 unsigned long shmem_get_unmapped_area(struct file *file, 4165 unsigned long addr, unsigned long len, 4166 unsigned long pgoff, unsigned long flags) 4167 { 4168 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4169 } 4170 #endif 4171 4172 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4173 { 4174 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4175 } 4176 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4177 4178 #define shmem_vm_ops generic_file_vm_ops 4179 #define shmem_file_operations ramfs_file_operations 4180 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4181 #define shmem_acct_size(flags, size) 0 4182 #define shmem_unacct_size(flags, size) do {} while (0) 4183 4184 #endif /* CONFIG_SHMEM */ 4185 4186 /* common code */ 4187 4188 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4189 unsigned long flags, unsigned int i_flags) 4190 { 4191 struct inode *inode; 4192 struct file *res; 4193 4194 if (IS_ERR(mnt)) 4195 return ERR_CAST(mnt); 4196 4197 if (size < 0 || size > MAX_LFS_FILESIZE) 4198 return ERR_PTR(-EINVAL); 4199 4200 if (shmem_acct_size(flags, size)) 4201 return ERR_PTR(-ENOMEM); 4202 4203 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4204 flags); 4205 if (unlikely(!inode)) { 4206 shmem_unacct_size(flags, size); 4207 return ERR_PTR(-ENOSPC); 4208 } 4209 inode->i_flags |= i_flags; 4210 inode->i_size = size; 4211 clear_nlink(inode); /* It is unlinked */ 4212 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4213 if (!IS_ERR(res)) 4214 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4215 &shmem_file_operations); 4216 if (IS_ERR(res)) 4217 iput(inode); 4218 return res; 4219 } 4220 4221 /** 4222 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4223 * kernel internal. There will be NO LSM permission checks against the 4224 * underlying inode. So users of this interface must do LSM checks at a 4225 * higher layer. The users are the big_key and shm implementations. LSM 4226 * checks are provided at the key or shm level rather than the inode. 4227 * @name: name for dentry (to be seen in /proc/<pid>/maps 4228 * @size: size to be set for the file 4229 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4230 */ 4231 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4232 { 4233 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4234 } 4235 4236 /** 4237 * shmem_file_setup - get an unlinked file living in tmpfs 4238 * @name: name for dentry (to be seen in /proc/<pid>/maps 4239 * @size: size to be set for the file 4240 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4241 */ 4242 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4243 { 4244 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4245 } 4246 EXPORT_SYMBOL_GPL(shmem_file_setup); 4247 4248 /** 4249 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4250 * @mnt: the tmpfs mount where the file will be created 4251 * @name: name for dentry (to be seen in /proc/<pid>/maps 4252 * @size: size to be set for the file 4253 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4254 */ 4255 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4256 loff_t size, unsigned long flags) 4257 { 4258 return __shmem_file_setup(mnt, name, size, flags, 0); 4259 } 4260 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4261 4262 /** 4263 * shmem_zero_setup - setup a shared anonymous mapping 4264 * @vma: the vma to be mmapped is prepared by do_mmap 4265 */ 4266 int shmem_zero_setup(struct vm_area_struct *vma) 4267 { 4268 struct file *file; 4269 loff_t size = vma->vm_end - vma->vm_start; 4270 4271 /* 4272 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4273 * between XFS directory reading and selinux: since this file is only 4274 * accessible to the user through its mapping, use S_PRIVATE flag to 4275 * bypass file security, in the same way as shmem_kernel_file_setup(). 4276 */ 4277 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4278 if (IS_ERR(file)) 4279 return PTR_ERR(file); 4280 4281 if (vma->vm_file) 4282 fput(vma->vm_file); 4283 vma->vm_file = file; 4284 vma->vm_ops = &shmem_vm_ops; 4285 4286 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4287 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4288 (vma->vm_end & HPAGE_PMD_MASK)) { 4289 khugepaged_enter(vma, vma->vm_flags); 4290 } 4291 4292 return 0; 4293 } 4294 4295 /** 4296 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4297 * @mapping: the page's address_space 4298 * @index: the page index 4299 * @gfp: the page allocator flags to use if allocating 4300 * 4301 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4302 * with any new page allocations done using the specified allocation flags. 4303 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4304 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4305 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4306 * 4307 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4308 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4309 */ 4310 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4311 pgoff_t index, gfp_t gfp) 4312 { 4313 #ifdef CONFIG_SHMEM 4314 struct inode *inode = mapping->host; 4315 struct page *page; 4316 int error; 4317 4318 BUG_ON(!shmem_mapping(mapping)); 4319 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4320 gfp, NULL, NULL, NULL); 4321 if (error) 4322 page = ERR_PTR(error); 4323 else 4324 unlock_page(page); 4325 return page; 4326 #else 4327 /* 4328 * The tiny !SHMEM case uses ramfs without swap 4329 */ 4330 return read_cache_page_gfp(mapping, index, gfp); 4331 #endif 4332 } 4333 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4334