xref: /openbmc/linux/mm/shmem.c (revision 3460f6e5c1ed94c2ab7c1ccc032a5bebd88deaa7)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43 
44 static struct vfsmount *shm_mnt;
45 
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52 
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83 
84 #include <linux/uaccess.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96 
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 	pgoff_t start;		/* start of range currently being fallocated */
105 	pgoff_t next;		/* the next page offset to be fallocated */
106 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
107 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
108 };
109 
110 struct shmem_options {
111 	unsigned long long blocks;
112 	unsigned long long inodes;
113 	struct mempolicy *mpol;
114 	kuid_t uid;
115 	kgid_t gid;
116 	umode_t mode;
117 	bool full_inums;
118 	int huge;
119 	int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125 
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129 	return totalram_pages() / 2;
130 }
131 
132 static unsigned long shmem_default_max_inodes(void)
133 {
134 	unsigned long nr_pages = totalram_pages();
135 
136 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139 
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 				struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 			     struct page **pagep, enum sgp_type sgp,
145 			     gfp_t gfp, struct vm_area_struct *vma,
146 			     vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148 		struct page **pagep, enum sgp_type sgp,
149 		gfp_t gfp, struct vm_area_struct *vma,
150 		struct vm_fault *vmf, vm_fault_t *fault_type);
151 
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153 		struct page **pagep, enum sgp_type sgp)
154 {
155 	return shmem_getpage_gfp(inode, index, pagep, sgp,
156 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158 
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161 	return sb->s_fs_info;
162 }
163 
164 /*
165  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166  * for shared memory and for shared anonymous (/dev/zero) mappings
167  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168  * consistent with the pre-accounting of private mappings ...
169  */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172 	return (flags & VM_NORESERVE) ?
173 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175 
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178 	if (!(flags & VM_NORESERVE))
179 		vm_unacct_memory(VM_ACCT(size));
180 }
181 
182 static inline int shmem_reacct_size(unsigned long flags,
183 		loff_t oldsize, loff_t newsize)
184 {
185 	if (!(flags & VM_NORESERVE)) {
186 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 			return security_vm_enough_memory_mm(current->mm,
188 					VM_ACCT(newsize) - VM_ACCT(oldsize));
189 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 	}
192 	return 0;
193 }
194 
195 /*
196  * ... whereas tmpfs objects are accounted incrementally as
197  * pages are allocated, in order to allow large sparse files.
198  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200  */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203 	if (!(flags & VM_NORESERVE))
204 		return 0;
205 
206 	return security_vm_enough_memory_mm(current->mm,
207 			pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 	if (flags & VM_NORESERVE)
213 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215 
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218 	struct shmem_inode_info *info = SHMEM_I(inode);
219 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220 
221 	if (shmem_acct_block(info->flags, pages))
222 		return false;
223 
224 	if (sbinfo->max_blocks) {
225 		if (percpu_counter_compare(&sbinfo->used_blocks,
226 					   sbinfo->max_blocks - pages) > 0)
227 			goto unacct;
228 		percpu_counter_add(&sbinfo->used_blocks, pages);
229 	}
230 
231 	return true;
232 
233 unacct:
234 	shmem_unacct_blocks(info->flags, pages);
235 	return false;
236 }
237 
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240 	struct shmem_inode_info *info = SHMEM_I(inode);
241 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 
243 	if (sbinfo->max_blocks)
244 		percpu_counter_sub(&sbinfo->used_blocks, pages);
245 	shmem_unacct_blocks(info->flags, pages);
246 }
247 
248 static const struct super_operations shmem_ops;
249 const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256 
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259 	return vma->vm_ops == &shmem_vm_ops;
260 }
261 
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264 
265 /*
266  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267  * produces a novel ino for the newly allocated inode.
268  *
269  * It may also be called when making a hard link to permit the space needed by
270  * each dentry. However, in that case, no new inode number is needed since that
271  * internally draws from another pool of inode numbers (currently global
272  * get_next_ino()). This case is indicated by passing NULL as inop.
273  */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278 	ino_t ino;
279 
280 	if (!(sb->s_flags & SB_KERNMOUNT)) {
281 		spin_lock(&sbinfo->stat_lock);
282 		if (sbinfo->max_inodes) {
283 			if (!sbinfo->free_inodes) {
284 				spin_unlock(&sbinfo->stat_lock);
285 				return -ENOSPC;
286 			}
287 			sbinfo->free_inodes--;
288 		}
289 		if (inop) {
290 			ino = sbinfo->next_ino++;
291 			if (unlikely(is_zero_ino(ino)))
292 				ino = sbinfo->next_ino++;
293 			if (unlikely(!sbinfo->full_inums &&
294 				     ino > UINT_MAX)) {
295 				/*
296 				 * Emulate get_next_ino uint wraparound for
297 				 * compatibility
298 				 */
299 				if (IS_ENABLED(CONFIG_64BIT))
300 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301 						__func__, MINOR(sb->s_dev));
302 				sbinfo->next_ino = 1;
303 				ino = sbinfo->next_ino++;
304 			}
305 			*inop = ino;
306 		}
307 		spin_unlock(&sbinfo->stat_lock);
308 	} else if (inop) {
309 		/*
310 		 * __shmem_file_setup, one of our callers, is lock-free: it
311 		 * doesn't hold stat_lock in shmem_reserve_inode since
312 		 * max_inodes is always 0, and is called from potentially
313 		 * unknown contexts. As such, use a per-cpu batched allocator
314 		 * which doesn't require the per-sb stat_lock unless we are at
315 		 * the batch boundary.
316 		 *
317 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318 		 * shmem mounts are not exposed to userspace, so we don't need
319 		 * to worry about things like glibc compatibility.
320 		 */
321 		ino_t *next_ino;
322 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323 		ino = *next_ino;
324 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325 			spin_lock(&sbinfo->stat_lock);
326 			ino = sbinfo->next_ino;
327 			sbinfo->next_ino += SHMEM_INO_BATCH;
328 			spin_unlock(&sbinfo->stat_lock);
329 			if (unlikely(is_zero_ino(ino)))
330 				ino++;
331 		}
332 		*inop = ino;
333 		*next_ino = ++ino;
334 		put_cpu();
335 	}
336 
337 	return 0;
338 }
339 
340 static void shmem_free_inode(struct super_block *sb)
341 {
342 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343 	if (sbinfo->max_inodes) {
344 		spin_lock(&sbinfo->stat_lock);
345 		sbinfo->free_inodes++;
346 		spin_unlock(&sbinfo->stat_lock);
347 	}
348 }
349 
350 /**
351  * shmem_recalc_inode - recalculate the block usage of an inode
352  * @inode: inode to recalc
353  *
354  * We have to calculate the free blocks since the mm can drop
355  * undirtied hole pages behind our back.
356  *
357  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
358  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359  *
360  * It has to be called with the spinlock held.
361  */
362 static void shmem_recalc_inode(struct inode *inode)
363 {
364 	struct shmem_inode_info *info = SHMEM_I(inode);
365 	long freed;
366 
367 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368 	if (freed > 0) {
369 		info->alloced -= freed;
370 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
371 		shmem_inode_unacct_blocks(inode, freed);
372 	}
373 }
374 
375 bool shmem_charge(struct inode *inode, long pages)
376 {
377 	struct shmem_inode_info *info = SHMEM_I(inode);
378 	unsigned long flags;
379 
380 	if (!shmem_inode_acct_block(inode, pages))
381 		return false;
382 
383 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384 	inode->i_mapping->nrpages += pages;
385 
386 	spin_lock_irqsave(&info->lock, flags);
387 	info->alloced += pages;
388 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
389 	shmem_recalc_inode(inode);
390 	spin_unlock_irqrestore(&info->lock, flags);
391 
392 	return true;
393 }
394 
395 void shmem_uncharge(struct inode *inode, long pages)
396 {
397 	struct shmem_inode_info *info = SHMEM_I(inode);
398 	unsigned long flags;
399 
400 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
401 
402 	spin_lock_irqsave(&info->lock, flags);
403 	info->alloced -= pages;
404 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405 	shmem_recalc_inode(inode);
406 	spin_unlock_irqrestore(&info->lock, flags);
407 
408 	shmem_inode_unacct_blocks(inode, pages);
409 }
410 
411 /*
412  * Replace item expected in xarray by a new item, while holding xa_lock.
413  */
414 static int shmem_replace_entry(struct address_space *mapping,
415 			pgoff_t index, void *expected, void *replacement)
416 {
417 	XA_STATE(xas, &mapping->i_pages, index);
418 	void *item;
419 
420 	VM_BUG_ON(!expected);
421 	VM_BUG_ON(!replacement);
422 	item = xas_load(&xas);
423 	if (item != expected)
424 		return -ENOENT;
425 	xas_store(&xas, replacement);
426 	return 0;
427 }
428 
429 /*
430  * Sometimes, before we decide whether to proceed or to fail, we must check
431  * that an entry was not already brought back from swap by a racing thread.
432  *
433  * Checking page is not enough: by the time a SwapCache page is locked, it
434  * might be reused, and again be SwapCache, using the same swap as before.
435  */
436 static bool shmem_confirm_swap(struct address_space *mapping,
437 			       pgoff_t index, swp_entry_t swap)
438 {
439 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
440 }
441 
442 /*
443  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444  *
445  * SHMEM_HUGE_NEVER:
446  *	disables huge pages for the mount;
447  * SHMEM_HUGE_ALWAYS:
448  *	enables huge pages for the mount;
449  * SHMEM_HUGE_WITHIN_SIZE:
450  *	only allocate huge pages if the page will be fully within i_size,
451  *	also respect fadvise()/madvise() hints;
452  * SHMEM_HUGE_ADVISE:
453  *	only allocate huge pages if requested with fadvise()/madvise();
454  */
455 
456 #define SHMEM_HUGE_NEVER	0
457 #define SHMEM_HUGE_ALWAYS	1
458 #define SHMEM_HUGE_WITHIN_SIZE	2
459 #define SHMEM_HUGE_ADVISE	3
460 
461 /*
462  * Special values.
463  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464  *
465  * SHMEM_HUGE_DENY:
466  *	disables huge on shm_mnt and all mounts, for emergency use;
467  * SHMEM_HUGE_FORCE:
468  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469  *
470  */
471 #define SHMEM_HUGE_DENY		(-1)
472 #define SHMEM_HUGE_FORCE	(-2)
473 
474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 /* ifdef here to avoid bloating shmem.o when not necessary */
476 
477 static int shmem_huge __read_mostly;
478 
479 #if defined(CONFIG_SYSFS)
480 static int shmem_parse_huge(const char *str)
481 {
482 	if (!strcmp(str, "never"))
483 		return SHMEM_HUGE_NEVER;
484 	if (!strcmp(str, "always"))
485 		return SHMEM_HUGE_ALWAYS;
486 	if (!strcmp(str, "within_size"))
487 		return SHMEM_HUGE_WITHIN_SIZE;
488 	if (!strcmp(str, "advise"))
489 		return SHMEM_HUGE_ADVISE;
490 	if (!strcmp(str, "deny"))
491 		return SHMEM_HUGE_DENY;
492 	if (!strcmp(str, "force"))
493 		return SHMEM_HUGE_FORCE;
494 	return -EINVAL;
495 }
496 #endif
497 
498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
499 static const char *shmem_format_huge(int huge)
500 {
501 	switch (huge) {
502 	case SHMEM_HUGE_NEVER:
503 		return "never";
504 	case SHMEM_HUGE_ALWAYS:
505 		return "always";
506 	case SHMEM_HUGE_WITHIN_SIZE:
507 		return "within_size";
508 	case SHMEM_HUGE_ADVISE:
509 		return "advise";
510 	case SHMEM_HUGE_DENY:
511 		return "deny";
512 	case SHMEM_HUGE_FORCE:
513 		return "force";
514 	default:
515 		VM_BUG_ON(1);
516 		return "bad_val";
517 	}
518 }
519 #endif
520 
521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 		struct shrink_control *sc, unsigned long nr_to_split)
523 {
524 	LIST_HEAD(list), *pos, *next;
525 	LIST_HEAD(to_remove);
526 	struct inode *inode;
527 	struct shmem_inode_info *info;
528 	struct page *page;
529 	unsigned long batch = sc ? sc->nr_to_scan : 128;
530 	int removed = 0, split = 0;
531 
532 	if (list_empty(&sbinfo->shrinklist))
533 		return SHRINK_STOP;
534 
535 	spin_lock(&sbinfo->shrinklist_lock);
536 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
538 
539 		/* pin the inode */
540 		inode = igrab(&info->vfs_inode);
541 
542 		/* inode is about to be evicted */
543 		if (!inode) {
544 			list_del_init(&info->shrinklist);
545 			removed++;
546 			goto next;
547 		}
548 
549 		/* Check if there's anything to gain */
550 		if (round_up(inode->i_size, PAGE_SIZE) ==
551 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
552 			list_move(&info->shrinklist, &to_remove);
553 			removed++;
554 			goto next;
555 		}
556 
557 		list_move(&info->shrinklist, &list);
558 next:
559 		if (!--batch)
560 			break;
561 	}
562 	spin_unlock(&sbinfo->shrinklist_lock);
563 
564 	list_for_each_safe(pos, next, &to_remove) {
565 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 		inode = &info->vfs_inode;
567 		list_del_init(&info->shrinklist);
568 		iput(inode);
569 	}
570 
571 	list_for_each_safe(pos, next, &list) {
572 		int ret;
573 
574 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
575 		inode = &info->vfs_inode;
576 
577 		if (nr_to_split && split >= nr_to_split)
578 			goto leave;
579 
580 		page = find_get_page(inode->i_mapping,
581 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582 		if (!page)
583 			goto drop;
584 
585 		/* No huge page at the end of the file: nothing to split */
586 		if (!PageTransHuge(page)) {
587 			put_page(page);
588 			goto drop;
589 		}
590 
591 		/*
592 		 * Leave the inode on the list if we failed to lock
593 		 * the page at this time.
594 		 *
595 		 * Waiting for the lock may lead to deadlock in the
596 		 * reclaim path.
597 		 */
598 		if (!trylock_page(page)) {
599 			put_page(page);
600 			goto leave;
601 		}
602 
603 		ret = split_huge_page(page);
604 		unlock_page(page);
605 		put_page(page);
606 
607 		/* If split failed leave the inode on the list */
608 		if (ret)
609 			goto leave;
610 
611 		split++;
612 drop:
613 		list_del_init(&info->shrinklist);
614 		removed++;
615 leave:
616 		iput(inode);
617 	}
618 
619 	spin_lock(&sbinfo->shrinklist_lock);
620 	list_splice_tail(&list, &sbinfo->shrinklist);
621 	sbinfo->shrinklist_len -= removed;
622 	spin_unlock(&sbinfo->shrinklist_lock);
623 
624 	return split;
625 }
626 
627 static long shmem_unused_huge_scan(struct super_block *sb,
628 		struct shrink_control *sc)
629 {
630 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631 
632 	if (!READ_ONCE(sbinfo->shrinklist_len))
633 		return SHRINK_STOP;
634 
635 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
636 }
637 
638 static long shmem_unused_huge_count(struct super_block *sb,
639 		struct shrink_control *sc)
640 {
641 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642 	return READ_ONCE(sbinfo->shrinklist_len);
643 }
644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
645 
646 #define shmem_huge SHMEM_HUGE_DENY
647 
648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649 		struct shrink_control *sc, unsigned long nr_to_split)
650 {
651 	return 0;
652 }
653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
654 
655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656 {
657 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
658 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659 	    shmem_huge != SHMEM_HUGE_DENY)
660 		return true;
661 	return false;
662 }
663 
664 /*
665  * Like add_to_page_cache_locked, but error if expected item has gone.
666  */
667 static int shmem_add_to_page_cache(struct page *page,
668 				   struct address_space *mapping,
669 				   pgoff_t index, void *expected, gfp_t gfp,
670 				   struct mm_struct *charge_mm)
671 {
672 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673 	unsigned long i = 0;
674 	unsigned long nr = compound_nr(page);
675 	int error;
676 
677 	VM_BUG_ON_PAGE(PageTail(page), page);
678 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
679 	VM_BUG_ON_PAGE(!PageLocked(page), page);
680 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
681 	VM_BUG_ON(expected && PageTransHuge(page));
682 
683 	page_ref_add(page, nr);
684 	page->mapping = mapping;
685 	page->index = index;
686 
687 	if (!PageSwapCache(page)) {
688 		error = mem_cgroup_charge(page, charge_mm, gfp);
689 		if (error) {
690 			if (PageTransHuge(page)) {
691 				count_vm_event(THP_FILE_FALLBACK);
692 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
693 			}
694 			goto error;
695 		}
696 	}
697 	cgroup_throttle_swaprate(page, gfp);
698 
699 	do {
700 		void *entry;
701 		xas_lock_irq(&xas);
702 		entry = xas_find_conflict(&xas);
703 		if (entry != expected)
704 			xas_set_err(&xas, -EEXIST);
705 		xas_create_range(&xas);
706 		if (xas_error(&xas))
707 			goto unlock;
708 next:
709 		xas_store(&xas, page);
710 		if (++i < nr) {
711 			xas_next(&xas);
712 			goto next;
713 		}
714 		if (PageTransHuge(page)) {
715 			count_vm_event(THP_FILE_ALLOC);
716 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
717 		}
718 		mapping->nrpages += nr;
719 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
721 unlock:
722 		xas_unlock_irq(&xas);
723 	} while (xas_nomem(&xas, gfp));
724 
725 	if (xas_error(&xas)) {
726 		error = xas_error(&xas);
727 		goto error;
728 	}
729 
730 	return 0;
731 error:
732 	page->mapping = NULL;
733 	page_ref_sub(page, nr);
734 	return error;
735 }
736 
737 /*
738  * Like delete_from_page_cache, but substitutes swap for page.
739  */
740 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
741 {
742 	struct address_space *mapping = page->mapping;
743 	int error;
744 
745 	VM_BUG_ON_PAGE(PageCompound(page), page);
746 
747 	xa_lock_irq(&mapping->i_pages);
748 	error = shmem_replace_entry(mapping, page->index, page, radswap);
749 	page->mapping = NULL;
750 	mapping->nrpages--;
751 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
752 	__dec_lruvec_page_state(page, NR_SHMEM);
753 	xa_unlock_irq(&mapping->i_pages);
754 	put_page(page);
755 	BUG_ON(error);
756 }
757 
758 /*
759  * Remove swap entry from page cache, free the swap and its page cache.
760  */
761 static int shmem_free_swap(struct address_space *mapping,
762 			   pgoff_t index, void *radswap)
763 {
764 	void *old;
765 
766 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
767 	if (old != radswap)
768 		return -ENOENT;
769 	free_swap_and_cache(radix_to_swp_entry(radswap));
770 	return 0;
771 }
772 
773 /*
774  * Determine (in bytes) how many of the shmem object's pages mapped by the
775  * given offsets are swapped out.
776  *
777  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
778  * as long as the inode doesn't go away and racy results are not a problem.
779  */
780 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781 						pgoff_t start, pgoff_t end)
782 {
783 	XA_STATE(xas, &mapping->i_pages, start);
784 	struct page *page;
785 	unsigned long swapped = 0;
786 
787 	rcu_read_lock();
788 	xas_for_each(&xas, page, end - 1) {
789 		if (xas_retry(&xas, page))
790 			continue;
791 		if (xa_is_value(page))
792 			swapped++;
793 
794 		if (need_resched()) {
795 			xas_pause(&xas);
796 			cond_resched_rcu();
797 		}
798 	}
799 
800 	rcu_read_unlock();
801 
802 	return swapped << PAGE_SHIFT;
803 }
804 
805 /*
806  * Determine (in bytes) how many of the shmem object's pages mapped by the
807  * given vma is swapped out.
808  *
809  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
810  * as long as the inode doesn't go away and racy results are not a problem.
811  */
812 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
813 {
814 	struct inode *inode = file_inode(vma->vm_file);
815 	struct shmem_inode_info *info = SHMEM_I(inode);
816 	struct address_space *mapping = inode->i_mapping;
817 	unsigned long swapped;
818 
819 	/* Be careful as we don't hold info->lock */
820 	swapped = READ_ONCE(info->swapped);
821 
822 	/*
823 	 * The easier cases are when the shmem object has nothing in swap, or
824 	 * the vma maps it whole. Then we can simply use the stats that we
825 	 * already track.
826 	 */
827 	if (!swapped)
828 		return 0;
829 
830 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831 		return swapped << PAGE_SHIFT;
832 
833 	/* Here comes the more involved part */
834 	return shmem_partial_swap_usage(mapping,
835 			linear_page_index(vma, vma->vm_start),
836 			linear_page_index(vma, vma->vm_end));
837 }
838 
839 /*
840  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
841  */
842 void shmem_unlock_mapping(struct address_space *mapping)
843 {
844 	struct pagevec pvec;
845 	pgoff_t index = 0;
846 
847 	pagevec_init(&pvec);
848 	/*
849 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
850 	 */
851 	while (!mapping_unevictable(mapping)) {
852 		if (!pagevec_lookup(&pvec, mapping, &index))
853 			break;
854 		check_move_unevictable_pages(&pvec);
855 		pagevec_release(&pvec);
856 		cond_resched();
857 	}
858 }
859 
860 /*
861  * Check whether a hole-punch or truncation needs to split a huge page,
862  * returning true if no split was required, or the split has been successful.
863  *
864  * Eviction (or truncation to 0 size) should never need to split a huge page;
865  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
866  * head, and then succeeded to trylock on tail.
867  *
868  * A split can only succeed when there are no additional references on the
869  * huge page: so the split below relies upon find_get_entries() having stopped
870  * when it found a subpage of the huge page, without getting further references.
871  */
872 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
873 {
874 	if (!PageTransCompound(page))
875 		return true;
876 
877 	/* Just proceed to delete a huge page wholly within the range punched */
878 	if (PageHead(page) &&
879 	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
880 		return true;
881 
882 	/* Try to split huge page, so we can truly punch the hole or truncate */
883 	return split_huge_page(page) >= 0;
884 }
885 
886 /*
887  * Remove range of pages and swap entries from page cache, and free them.
888  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
889  */
890 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
891 								 bool unfalloc)
892 {
893 	struct address_space *mapping = inode->i_mapping;
894 	struct shmem_inode_info *info = SHMEM_I(inode);
895 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
896 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
897 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
898 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
899 	struct pagevec pvec;
900 	pgoff_t indices[PAGEVEC_SIZE];
901 	long nr_swaps_freed = 0;
902 	pgoff_t index;
903 	int i;
904 
905 	if (lend == -1)
906 		end = -1;	/* unsigned, so actually very big */
907 
908 	pagevec_init(&pvec);
909 	index = start;
910 	while (index < end && find_lock_entries(mapping, index, end - 1,
911 			&pvec, indices)) {
912 		for (i = 0; i < pagevec_count(&pvec); i++) {
913 			struct page *page = pvec.pages[i];
914 
915 			index = indices[i];
916 
917 			if (xa_is_value(page)) {
918 				if (unfalloc)
919 					continue;
920 				nr_swaps_freed += !shmem_free_swap(mapping,
921 								index, page);
922 				continue;
923 			}
924 			index += thp_nr_pages(page) - 1;
925 
926 			if (!unfalloc || !PageUptodate(page))
927 				truncate_inode_page(mapping, page);
928 			unlock_page(page);
929 		}
930 		pagevec_remove_exceptionals(&pvec);
931 		pagevec_release(&pvec);
932 		cond_resched();
933 		index++;
934 	}
935 
936 	if (partial_start) {
937 		struct page *page = NULL;
938 		shmem_getpage(inode, start - 1, &page, SGP_READ);
939 		if (page) {
940 			unsigned int top = PAGE_SIZE;
941 			if (start > end) {
942 				top = partial_end;
943 				partial_end = 0;
944 			}
945 			zero_user_segment(page, partial_start, top);
946 			set_page_dirty(page);
947 			unlock_page(page);
948 			put_page(page);
949 		}
950 	}
951 	if (partial_end) {
952 		struct page *page = NULL;
953 		shmem_getpage(inode, end, &page, SGP_READ);
954 		if (page) {
955 			zero_user_segment(page, 0, partial_end);
956 			set_page_dirty(page);
957 			unlock_page(page);
958 			put_page(page);
959 		}
960 	}
961 	if (start >= end)
962 		return;
963 
964 	index = start;
965 	while (index < end) {
966 		cond_resched();
967 
968 		if (!find_get_entries(mapping, index, end - 1, &pvec,
969 				indices)) {
970 			/* If all gone or hole-punch or unfalloc, we're done */
971 			if (index == start || end != -1)
972 				break;
973 			/* But if truncating, restart to make sure all gone */
974 			index = start;
975 			continue;
976 		}
977 		for (i = 0; i < pagevec_count(&pvec); i++) {
978 			struct page *page = pvec.pages[i];
979 
980 			index = indices[i];
981 			if (xa_is_value(page)) {
982 				if (unfalloc)
983 					continue;
984 				if (shmem_free_swap(mapping, index, page)) {
985 					/* Swap was replaced by page: retry */
986 					index--;
987 					break;
988 				}
989 				nr_swaps_freed++;
990 				continue;
991 			}
992 
993 			lock_page(page);
994 
995 			if (!unfalloc || !PageUptodate(page)) {
996 				if (page_mapping(page) != mapping) {
997 					/* Page was replaced by swap: retry */
998 					unlock_page(page);
999 					index--;
1000 					break;
1001 				}
1002 				VM_BUG_ON_PAGE(PageWriteback(page), page);
1003 				if (shmem_punch_compound(page, start, end))
1004 					truncate_inode_page(mapping, page);
1005 				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1006 					/* Wipe the page and don't get stuck */
1007 					clear_highpage(page);
1008 					flush_dcache_page(page);
1009 					set_page_dirty(page);
1010 					if (index <
1011 					    round_up(start, HPAGE_PMD_NR))
1012 						start = index + 1;
1013 				}
1014 			}
1015 			unlock_page(page);
1016 		}
1017 		pagevec_remove_exceptionals(&pvec);
1018 		pagevec_release(&pvec);
1019 		index++;
1020 	}
1021 
1022 	spin_lock_irq(&info->lock);
1023 	info->swapped -= nr_swaps_freed;
1024 	shmem_recalc_inode(inode);
1025 	spin_unlock_irq(&info->lock);
1026 }
1027 
1028 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1029 {
1030 	shmem_undo_range(inode, lstart, lend, false);
1031 	inode->i_ctime = inode->i_mtime = current_time(inode);
1032 }
1033 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1034 
1035 static int shmem_getattr(struct user_namespace *mnt_userns,
1036 			 const struct path *path, struct kstat *stat,
1037 			 u32 request_mask, unsigned int query_flags)
1038 {
1039 	struct inode *inode = path->dentry->d_inode;
1040 	struct shmem_inode_info *info = SHMEM_I(inode);
1041 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1042 
1043 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1044 		spin_lock_irq(&info->lock);
1045 		shmem_recalc_inode(inode);
1046 		spin_unlock_irq(&info->lock);
1047 	}
1048 	generic_fillattr(&init_user_ns, inode, stat);
1049 
1050 	if (is_huge_enabled(sb_info))
1051 		stat->blksize = HPAGE_PMD_SIZE;
1052 
1053 	return 0;
1054 }
1055 
1056 static int shmem_setattr(struct user_namespace *mnt_userns,
1057 			 struct dentry *dentry, struct iattr *attr)
1058 {
1059 	struct inode *inode = d_inode(dentry);
1060 	struct shmem_inode_info *info = SHMEM_I(inode);
1061 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1062 	int error;
1063 
1064 	error = setattr_prepare(&init_user_ns, dentry, attr);
1065 	if (error)
1066 		return error;
1067 
1068 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1069 		loff_t oldsize = inode->i_size;
1070 		loff_t newsize = attr->ia_size;
1071 
1072 		/* protected by i_mutex */
1073 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1074 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1075 			return -EPERM;
1076 
1077 		if (newsize != oldsize) {
1078 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1079 					oldsize, newsize);
1080 			if (error)
1081 				return error;
1082 			i_size_write(inode, newsize);
1083 			inode->i_ctime = inode->i_mtime = current_time(inode);
1084 		}
1085 		if (newsize <= oldsize) {
1086 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1087 			if (oldsize > holebegin)
1088 				unmap_mapping_range(inode->i_mapping,
1089 							holebegin, 0, 1);
1090 			if (info->alloced)
1091 				shmem_truncate_range(inode,
1092 							newsize, (loff_t)-1);
1093 			/* unmap again to remove racily COWed private pages */
1094 			if (oldsize > holebegin)
1095 				unmap_mapping_range(inode->i_mapping,
1096 							holebegin, 0, 1);
1097 
1098 			/*
1099 			 * Part of the huge page can be beyond i_size: subject
1100 			 * to shrink under memory pressure.
1101 			 */
1102 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1103 				spin_lock(&sbinfo->shrinklist_lock);
1104 				/*
1105 				 * _careful to defend against unlocked access to
1106 				 * ->shrink_list in shmem_unused_huge_shrink()
1107 				 */
1108 				if (list_empty_careful(&info->shrinklist)) {
1109 					list_add_tail(&info->shrinklist,
1110 							&sbinfo->shrinklist);
1111 					sbinfo->shrinklist_len++;
1112 				}
1113 				spin_unlock(&sbinfo->shrinklist_lock);
1114 			}
1115 		}
1116 	}
1117 
1118 	setattr_copy(&init_user_ns, inode, attr);
1119 	if (attr->ia_valid & ATTR_MODE)
1120 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1121 	return error;
1122 }
1123 
1124 static void shmem_evict_inode(struct inode *inode)
1125 {
1126 	struct shmem_inode_info *info = SHMEM_I(inode);
1127 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1128 
1129 	if (shmem_mapping(inode->i_mapping)) {
1130 		shmem_unacct_size(info->flags, inode->i_size);
1131 		inode->i_size = 0;
1132 		shmem_truncate_range(inode, 0, (loff_t)-1);
1133 		if (!list_empty(&info->shrinklist)) {
1134 			spin_lock(&sbinfo->shrinklist_lock);
1135 			if (!list_empty(&info->shrinklist)) {
1136 				list_del_init(&info->shrinklist);
1137 				sbinfo->shrinklist_len--;
1138 			}
1139 			spin_unlock(&sbinfo->shrinklist_lock);
1140 		}
1141 		while (!list_empty(&info->swaplist)) {
1142 			/* Wait while shmem_unuse() is scanning this inode... */
1143 			wait_var_event(&info->stop_eviction,
1144 				       !atomic_read(&info->stop_eviction));
1145 			mutex_lock(&shmem_swaplist_mutex);
1146 			/* ...but beware of the race if we peeked too early */
1147 			if (!atomic_read(&info->stop_eviction))
1148 				list_del_init(&info->swaplist);
1149 			mutex_unlock(&shmem_swaplist_mutex);
1150 		}
1151 	}
1152 
1153 	simple_xattrs_free(&info->xattrs);
1154 	WARN_ON(inode->i_blocks);
1155 	shmem_free_inode(inode->i_sb);
1156 	clear_inode(inode);
1157 }
1158 
1159 extern struct swap_info_struct *swap_info[];
1160 
1161 static int shmem_find_swap_entries(struct address_space *mapping,
1162 				   pgoff_t start, unsigned int nr_entries,
1163 				   struct page **entries, pgoff_t *indices,
1164 				   unsigned int type, bool frontswap)
1165 {
1166 	XA_STATE(xas, &mapping->i_pages, start);
1167 	struct page *page;
1168 	swp_entry_t entry;
1169 	unsigned int ret = 0;
1170 
1171 	if (!nr_entries)
1172 		return 0;
1173 
1174 	rcu_read_lock();
1175 	xas_for_each(&xas, page, ULONG_MAX) {
1176 		if (xas_retry(&xas, page))
1177 			continue;
1178 
1179 		if (!xa_is_value(page))
1180 			continue;
1181 
1182 		entry = radix_to_swp_entry(page);
1183 		if (swp_type(entry) != type)
1184 			continue;
1185 		if (frontswap &&
1186 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1187 			continue;
1188 
1189 		indices[ret] = xas.xa_index;
1190 		entries[ret] = page;
1191 
1192 		if (need_resched()) {
1193 			xas_pause(&xas);
1194 			cond_resched_rcu();
1195 		}
1196 		if (++ret == nr_entries)
1197 			break;
1198 	}
1199 	rcu_read_unlock();
1200 
1201 	return ret;
1202 }
1203 
1204 /*
1205  * Move the swapped pages for an inode to page cache. Returns the count
1206  * of pages swapped in, or the error in case of failure.
1207  */
1208 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1209 				    pgoff_t *indices)
1210 {
1211 	int i = 0;
1212 	int ret = 0;
1213 	int error = 0;
1214 	struct address_space *mapping = inode->i_mapping;
1215 
1216 	for (i = 0; i < pvec.nr; i++) {
1217 		struct page *page = pvec.pages[i];
1218 
1219 		if (!xa_is_value(page))
1220 			continue;
1221 		error = shmem_swapin_page(inode, indices[i],
1222 					  &page, SGP_CACHE,
1223 					  mapping_gfp_mask(mapping),
1224 					  NULL, NULL);
1225 		if (error == 0) {
1226 			unlock_page(page);
1227 			put_page(page);
1228 			ret++;
1229 		}
1230 		if (error == -ENOMEM)
1231 			break;
1232 		error = 0;
1233 	}
1234 	return error ? error : ret;
1235 }
1236 
1237 /*
1238  * If swap found in inode, free it and move page from swapcache to filecache.
1239  */
1240 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1241 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1242 {
1243 	struct address_space *mapping = inode->i_mapping;
1244 	pgoff_t start = 0;
1245 	struct pagevec pvec;
1246 	pgoff_t indices[PAGEVEC_SIZE];
1247 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1248 	int ret = 0;
1249 
1250 	pagevec_init(&pvec);
1251 	do {
1252 		unsigned int nr_entries = PAGEVEC_SIZE;
1253 
1254 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1255 			nr_entries = *fs_pages_to_unuse;
1256 
1257 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1258 						  pvec.pages, indices,
1259 						  type, frontswap);
1260 		if (pvec.nr == 0) {
1261 			ret = 0;
1262 			break;
1263 		}
1264 
1265 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1266 		if (ret < 0)
1267 			break;
1268 
1269 		if (frontswap_partial) {
1270 			*fs_pages_to_unuse -= ret;
1271 			if (*fs_pages_to_unuse == 0) {
1272 				ret = FRONTSWAP_PAGES_UNUSED;
1273 				break;
1274 			}
1275 		}
1276 
1277 		start = indices[pvec.nr - 1];
1278 	} while (true);
1279 
1280 	return ret;
1281 }
1282 
1283 /*
1284  * Read all the shared memory data that resides in the swap
1285  * device 'type' back into memory, so the swap device can be
1286  * unused.
1287  */
1288 int shmem_unuse(unsigned int type, bool frontswap,
1289 		unsigned long *fs_pages_to_unuse)
1290 {
1291 	struct shmem_inode_info *info, *next;
1292 	int error = 0;
1293 
1294 	if (list_empty(&shmem_swaplist))
1295 		return 0;
1296 
1297 	mutex_lock(&shmem_swaplist_mutex);
1298 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1299 		if (!info->swapped) {
1300 			list_del_init(&info->swaplist);
1301 			continue;
1302 		}
1303 		/*
1304 		 * Drop the swaplist mutex while searching the inode for swap;
1305 		 * but before doing so, make sure shmem_evict_inode() will not
1306 		 * remove placeholder inode from swaplist, nor let it be freed
1307 		 * (igrab() would protect from unlink, but not from unmount).
1308 		 */
1309 		atomic_inc(&info->stop_eviction);
1310 		mutex_unlock(&shmem_swaplist_mutex);
1311 
1312 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1313 					  fs_pages_to_unuse);
1314 		cond_resched();
1315 
1316 		mutex_lock(&shmem_swaplist_mutex);
1317 		next = list_next_entry(info, swaplist);
1318 		if (!info->swapped)
1319 			list_del_init(&info->swaplist);
1320 		if (atomic_dec_and_test(&info->stop_eviction))
1321 			wake_up_var(&info->stop_eviction);
1322 		if (error)
1323 			break;
1324 	}
1325 	mutex_unlock(&shmem_swaplist_mutex);
1326 
1327 	return error;
1328 }
1329 
1330 /*
1331  * Move the page from the page cache to the swap cache.
1332  */
1333 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1334 {
1335 	struct shmem_inode_info *info;
1336 	struct address_space *mapping;
1337 	struct inode *inode;
1338 	swp_entry_t swap;
1339 	pgoff_t index;
1340 
1341 	VM_BUG_ON_PAGE(PageCompound(page), page);
1342 	BUG_ON(!PageLocked(page));
1343 	mapping = page->mapping;
1344 	index = page->index;
1345 	inode = mapping->host;
1346 	info = SHMEM_I(inode);
1347 	if (info->flags & VM_LOCKED)
1348 		goto redirty;
1349 	if (!total_swap_pages)
1350 		goto redirty;
1351 
1352 	/*
1353 	 * Our capabilities prevent regular writeback or sync from ever calling
1354 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1355 	 * its underlying filesystem, in which case tmpfs should write out to
1356 	 * swap only in response to memory pressure, and not for the writeback
1357 	 * threads or sync.
1358 	 */
1359 	if (!wbc->for_reclaim) {
1360 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1361 		goto redirty;
1362 	}
1363 
1364 	/*
1365 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1366 	 * value into swapfile.c, the only way we can correctly account for a
1367 	 * fallocated page arriving here is now to initialize it and write it.
1368 	 *
1369 	 * That's okay for a page already fallocated earlier, but if we have
1370 	 * not yet completed the fallocation, then (a) we want to keep track
1371 	 * of this page in case we have to undo it, and (b) it may not be a
1372 	 * good idea to continue anyway, once we're pushing into swap.  So
1373 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1374 	 */
1375 	if (!PageUptodate(page)) {
1376 		if (inode->i_private) {
1377 			struct shmem_falloc *shmem_falloc;
1378 			spin_lock(&inode->i_lock);
1379 			shmem_falloc = inode->i_private;
1380 			if (shmem_falloc &&
1381 			    !shmem_falloc->waitq &&
1382 			    index >= shmem_falloc->start &&
1383 			    index < shmem_falloc->next)
1384 				shmem_falloc->nr_unswapped++;
1385 			else
1386 				shmem_falloc = NULL;
1387 			spin_unlock(&inode->i_lock);
1388 			if (shmem_falloc)
1389 				goto redirty;
1390 		}
1391 		clear_highpage(page);
1392 		flush_dcache_page(page);
1393 		SetPageUptodate(page);
1394 	}
1395 
1396 	swap = get_swap_page(page);
1397 	if (!swap.val)
1398 		goto redirty;
1399 
1400 	/*
1401 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1402 	 * if it's not already there.  Do it now before the page is
1403 	 * moved to swap cache, when its pagelock no longer protects
1404 	 * the inode from eviction.  But don't unlock the mutex until
1405 	 * we've incremented swapped, because shmem_unuse_inode() will
1406 	 * prune a !swapped inode from the swaplist under this mutex.
1407 	 */
1408 	mutex_lock(&shmem_swaplist_mutex);
1409 	if (list_empty(&info->swaplist))
1410 		list_add(&info->swaplist, &shmem_swaplist);
1411 
1412 	if (add_to_swap_cache(page, swap,
1413 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1414 			NULL) == 0) {
1415 		spin_lock_irq(&info->lock);
1416 		shmem_recalc_inode(inode);
1417 		info->swapped++;
1418 		spin_unlock_irq(&info->lock);
1419 
1420 		swap_shmem_alloc(swap);
1421 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1422 
1423 		mutex_unlock(&shmem_swaplist_mutex);
1424 		BUG_ON(page_mapped(page));
1425 		swap_writepage(page, wbc);
1426 		return 0;
1427 	}
1428 
1429 	mutex_unlock(&shmem_swaplist_mutex);
1430 	put_swap_page(page, swap);
1431 redirty:
1432 	set_page_dirty(page);
1433 	if (wbc->for_reclaim)
1434 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1435 	unlock_page(page);
1436 	return 0;
1437 }
1438 
1439 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1440 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1441 {
1442 	char buffer[64];
1443 
1444 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1445 		return;		/* show nothing */
1446 
1447 	mpol_to_str(buffer, sizeof(buffer), mpol);
1448 
1449 	seq_printf(seq, ",mpol=%s", buffer);
1450 }
1451 
1452 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1453 {
1454 	struct mempolicy *mpol = NULL;
1455 	if (sbinfo->mpol) {
1456 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1457 		mpol = sbinfo->mpol;
1458 		mpol_get(mpol);
1459 		spin_unlock(&sbinfo->stat_lock);
1460 	}
1461 	return mpol;
1462 }
1463 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1464 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1465 {
1466 }
1467 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1468 {
1469 	return NULL;
1470 }
1471 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1472 #ifndef CONFIG_NUMA
1473 #define vm_policy vm_private_data
1474 #endif
1475 
1476 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1477 		struct shmem_inode_info *info, pgoff_t index)
1478 {
1479 	/* Create a pseudo vma that just contains the policy */
1480 	vma_init(vma, NULL);
1481 	/* Bias interleave by inode number to distribute better across nodes */
1482 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1483 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1484 }
1485 
1486 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1487 {
1488 	/* Drop reference taken by mpol_shared_policy_lookup() */
1489 	mpol_cond_put(vma->vm_policy);
1490 }
1491 
1492 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1493 			struct shmem_inode_info *info, pgoff_t index)
1494 {
1495 	struct vm_area_struct pvma;
1496 	struct page *page;
1497 	struct vm_fault vmf = {
1498 		.vma = &pvma,
1499 	};
1500 
1501 	shmem_pseudo_vma_init(&pvma, info, index);
1502 	page = swap_cluster_readahead(swap, gfp, &vmf);
1503 	shmem_pseudo_vma_destroy(&pvma);
1504 
1505 	return page;
1506 }
1507 
1508 /*
1509  * Make sure huge_gfp is always more limited than limit_gfp.
1510  * Some of the flags set permissions, while others set limitations.
1511  */
1512 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1513 {
1514 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1515 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1516 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1517 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1518 
1519 	/* Allow allocations only from the originally specified zones. */
1520 	result |= zoneflags;
1521 
1522 	/*
1523 	 * Minimize the result gfp by taking the union with the deny flags,
1524 	 * and the intersection of the allow flags.
1525 	 */
1526 	result |= (limit_gfp & denyflags);
1527 	result |= (huge_gfp & limit_gfp) & allowflags;
1528 
1529 	return result;
1530 }
1531 
1532 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1533 		struct shmem_inode_info *info, pgoff_t index)
1534 {
1535 	struct vm_area_struct pvma;
1536 	struct address_space *mapping = info->vfs_inode.i_mapping;
1537 	pgoff_t hindex;
1538 	struct page *page;
1539 
1540 	hindex = round_down(index, HPAGE_PMD_NR);
1541 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1542 								XA_PRESENT))
1543 		return NULL;
1544 
1545 	shmem_pseudo_vma_init(&pvma, info, hindex);
1546 	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1547 			       true);
1548 	shmem_pseudo_vma_destroy(&pvma);
1549 	if (page)
1550 		prep_transhuge_page(page);
1551 	else
1552 		count_vm_event(THP_FILE_FALLBACK);
1553 	return page;
1554 }
1555 
1556 static struct page *shmem_alloc_page(gfp_t gfp,
1557 			struct shmem_inode_info *info, pgoff_t index)
1558 {
1559 	struct vm_area_struct pvma;
1560 	struct page *page;
1561 
1562 	shmem_pseudo_vma_init(&pvma, info, index);
1563 	page = alloc_page_vma(gfp, &pvma, 0);
1564 	shmem_pseudo_vma_destroy(&pvma);
1565 
1566 	return page;
1567 }
1568 
1569 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1570 		struct inode *inode,
1571 		pgoff_t index, bool huge)
1572 {
1573 	struct shmem_inode_info *info = SHMEM_I(inode);
1574 	struct page *page;
1575 	int nr;
1576 	int err = -ENOSPC;
1577 
1578 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1579 		huge = false;
1580 	nr = huge ? HPAGE_PMD_NR : 1;
1581 
1582 	if (!shmem_inode_acct_block(inode, nr))
1583 		goto failed;
1584 
1585 	if (huge)
1586 		page = shmem_alloc_hugepage(gfp, info, index);
1587 	else
1588 		page = shmem_alloc_page(gfp, info, index);
1589 	if (page) {
1590 		__SetPageLocked(page);
1591 		__SetPageSwapBacked(page);
1592 		return page;
1593 	}
1594 
1595 	err = -ENOMEM;
1596 	shmem_inode_unacct_blocks(inode, nr);
1597 failed:
1598 	return ERR_PTR(err);
1599 }
1600 
1601 /*
1602  * When a page is moved from swapcache to shmem filecache (either by the
1603  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1604  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1605  * ignorance of the mapping it belongs to.  If that mapping has special
1606  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1607  * we may need to copy to a suitable page before moving to filecache.
1608  *
1609  * In a future release, this may well be extended to respect cpuset and
1610  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1611  * but for now it is a simple matter of zone.
1612  */
1613 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1614 {
1615 	return page_zonenum(page) > gfp_zone(gfp);
1616 }
1617 
1618 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1619 				struct shmem_inode_info *info, pgoff_t index)
1620 {
1621 	struct page *oldpage, *newpage;
1622 	struct address_space *swap_mapping;
1623 	swp_entry_t entry;
1624 	pgoff_t swap_index;
1625 	int error;
1626 
1627 	oldpage = *pagep;
1628 	entry.val = page_private(oldpage);
1629 	swap_index = swp_offset(entry);
1630 	swap_mapping = page_mapping(oldpage);
1631 
1632 	/*
1633 	 * We have arrived here because our zones are constrained, so don't
1634 	 * limit chance of success by further cpuset and node constraints.
1635 	 */
1636 	gfp &= ~GFP_CONSTRAINT_MASK;
1637 	newpage = shmem_alloc_page(gfp, info, index);
1638 	if (!newpage)
1639 		return -ENOMEM;
1640 
1641 	get_page(newpage);
1642 	copy_highpage(newpage, oldpage);
1643 	flush_dcache_page(newpage);
1644 
1645 	__SetPageLocked(newpage);
1646 	__SetPageSwapBacked(newpage);
1647 	SetPageUptodate(newpage);
1648 	set_page_private(newpage, entry.val);
1649 	SetPageSwapCache(newpage);
1650 
1651 	/*
1652 	 * Our caller will very soon move newpage out of swapcache, but it's
1653 	 * a nice clean interface for us to replace oldpage by newpage there.
1654 	 */
1655 	xa_lock_irq(&swap_mapping->i_pages);
1656 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1657 	if (!error) {
1658 		mem_cgroup_migrate(oldpage, newpage);
1659 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1660 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1661 	}
1662 	xa_unlock_irq(&swap_mapping->i_pages);
1663 
1664 	if (unlikely(error)) {
1665 		/*
1666 		 * Is this possible?  I think not, now that our callers check
1667 		 * both PageSwapCache and page_private after getting page lock;
1668 		 * but be defensive.  Reverse old to newpage for clear and free.
1669 		 */
1670 		oldpage = newpage;
1671 	} else {
1672 		lru_cache_add(newpage);
1673 		*pagep = newpage;
1674 	}
1675 
1676 	ClearPageSwapCache(oldpage);
1677 	set_page_private(oldpage, 0);
1678 
1679 	unlock_page(oldpage);
1680 	put_page(oldpage);
1681 	put_page(oldpage);
1682 	return error;
1683 }
1684 
1685 /*
1686  * Swap in the page pointed to by *pagep.
1687  * Caller has to make sure that *pagep contains a valid swapped page.
1688  * Returns 0 and the page in pagep if success. On failure, returns the
1689  * error code and NULL in *pagep.
1690  */
1691 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1692 			     struct page **pagep, enum sgp_type sgp,
1693 			     gfp_t gfp, struct vm_area_struct *vma,
1694 			     vm_fault_t *fault_type)
1695 {
1696 	struct address_space *mapping = inode->i_mapping;
1697 	struct shmem_inode_info *info = SHMEM_I(inode);
1698 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1699 	struct swap_info_struct *si;
1700 	struct page *page = NULL;
1701 	swp_entry_t swap;
1702 	int error;
1703 
1704 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1705 	swap = radix_to_swp_entry(*pagep);
1706 	*pagep = NULL;
1707 
1708 	/* Prevent swapoff from happening to us. */
1709 	si = get_swap_device(swap);
1710 	if (!si) {
1711 		error = EINVAL;
1712 		goto failed;
1713 	}
1714 	/* Look it up and read it in.. */
1715 	page = lookup_swap_cache(swap, NULL, 0);
1716 	if (!page) {
1717 		/* Or update major stats only when swapin succeeds?? */
1718 		if (fault_type) {
1719 			*fault_type |= VM_FAULT_MAJOR;
1720 			count_vm_event(PGMAJFAULT);
1721 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1722 		}
1723 		/* Here we actually start the io */
1724 		page = shmem_swapin(swap, gfp, info, index);
1725 		if (!page) {
1726 			error = -ENOMEM;
1727 			goto failed;
1728 		}
1729 	}
1730 
1731 	/* We have to do this with page locked to prevent races */
1732 	lock_page(page);
1733 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1734 	    !shmem_confirm_swap(mapping, index, swap)) {
1735 		error = -EEXIST;
1736 		goto unlock;
1737 	}
1738 	if (!PageUptodate(page)) {
1739 		error = -EIO;
1740 		goto failed;
1741 	}
1742 	wait_on_page_writeback(page);
1743 
1744 	/*
1745 	 * Some architectures may have to restore extra metadata to the
1746 	 * physical page after reading from swap.
1747 	 */
1748 	arch_swap_restore(swap, page);
1749 
1750 	if (shmem_should_replace_page(page, gfp)) {
1751 		error = shmem_replace_page(&page, gfp, info, index);
1752 		if (error)
1753 			goto failed;
1754 	}
1755 
1756 	error = shmem_add_to_page_cache(page, mapping, index,
1757 					swp_to_radix_entry(swap), gfp,
1758 					charge_mm);
1759 	if (error)
1760 		goto failed;
1761 
1762 	spin_lock_irq(&info->lock);
1763 	info->swapped--;
1764 	shmem_recalc_inode(inode);
1765 	spin_unlock_irq(&info->lock);
1766 
1767 	if (sgp == SGP_WRITE)
1768 		mark_page_accessed(page);
1769 
1770 	delete_from_swap_cache(page);
1771 	set_page_dirty(page);
1772 	swap_free(swap);
1773 
1774 	*pagep = page;
1775 	if (si)
1776 		put_swap_device(si);
1777 	return 0;
1778 failed:
1779 	if (!shmem_confirm_swap(mapping, index, swap))
1780 		error = -EEXIST;
1781 unlock:
1782 	if (page) {
1783 		unlock_page(page);
1784 		put_page(page);
1785 	}
1786 
1787 	if (si)
1788 		put_swap_device(si);
1789 
1790 	return error;
1791 }
1792 
1793 /*
1794  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1795  *
1796  * If we allocate a new one we do not mark it dirty. That's up to the
1797  * vm. If we swap it in we mark it dirty since we also free the swap
1798  * entry since a page cannot live in both the swap and page cache.
1799  *
1800  * vmf and fault_type are only supplied by shmem_fault:
1801  * otherwise they are NULL.
1802  */
1803 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1804 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1805 	struct vm_area_struct *vma, struct vm_fault *vmf,
1806 			vm_fault_t *fault_type)
1807 {
1808 	struct address_space *mapping = inode->i_mapping;
1809 	struct shmem_inode_info *info = SHMEM_I(inode);
1810 	struct shmem_sb_info *sbinfo;
1811 	struct mm_struct *charge_mm;
1812 	struct page *page;
1813 	enum sgp_type sgp_huge = sgp;
1814 	pgoff_t hindex = index;
1815 	gfp_t huge_gfp;
1816 	int error;
1817 	int once = 0;
1818 	int alloced = 0;
1819 
1820 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1821 		return -EFBIG;
1822 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1823 		sgp = SGP_CACHE;
1824 repeat:
1825 	if (sgp <= SGP_CACHE &&
1826 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1827 		return -EINVAL;
1828 	}
1829 
1830 	sbinfo = SHMEM_SB(inode->i_sb);
1831 	charge_mm = vma ? vma->vm_mm : NULL;
1832 
1833 	page = pagecache_get_page(mapping, index,
1834 					FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1835 	if (xa_is_value(page)) {
1836 		error = shmem_swapin_page(inode, index, &page,
1837 					  sgp, gfp, vma, fault_type);
1838 		if (error == -EEXIST)
1839 			goto repeat;
1840 
1841 		*pagep = page;
1842 		return error;
1843 	}
1844 
1845 	if (page)
1846 		hindex = page->index;
1847 	if (page && sgp == SGP_WRITE)
1848 		mark_page_accessed(page);
1849 
1850 	/* fallocated page? */
1851 	if (page && !PageUptodate(page)) {
1852 		if (sgp != SGP_READ)
1853 			goto clear;
1854 		unlock_page(page);
1855 		put_page(page);
1856 		page = NULL;
1857 		hindex = index;
1858 	}
1859 	if (page || sgp == SGP_READ)
1860 		goto out;
1861 
1862 	/*
1863 	 * Fast cache lookup did not find it:
1864 	 * bring it back from swap or allocate.
1865 	 */
1866 
1867 	if (vma && userfaultfd_missing(vma)) {
1868 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1869 		return 0;
1870 	}
1871 
1872 	/* shmem_symlink() */
1873 	if (!shmem_mapping(mapping))
1874 		goto alloc_nohuge;
1875 	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1876 		goto alloc_nohuge;
1877 	if (shmem_huge == SHMEM_HUGE_FORCE)
1878 		goto alloc_huge;
1879 	switch (sbinfo->huge) {
1880 	case SHMEM_HUGE_NEVER:
1881 		goto alloc_nohuge;
1882 	case SHMEM_HUGE_WITHIN_SIZE: {
1883 		loff_t i_size;
1884 		pgoff_t off;
1885 
1886 		off = round_up(index, HPAGE_PMD_NR);
1887 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1888 		if (i_size >= HPAGE_PMD_SIZE &&
1889 		    i_size >> PAGE_SHIFT >= off)
1890 			goto alloc_huge;
1891 
1892 		fallthrough;
1893 	}
1894 	case SHMEM_HUGE_ADVISE:
1895 		if (sgp_huge == SGP_HUGE)
1896 			goto alloc_huge;
1897 		/* TODO: implement fadvise() hints */
1898 		goto alloc_nohuge;
1899 	}
1900 
1901 alloc_huge:
1902 	huge_gfp = vma_thp_gfp_mask(vma);
1903 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1904 	page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1905 	if (IS_ERR(page)) {
1906 alloc_nohuge:
1907 		page = shmem_alloc_and_acct_page(gfp, inode,
1908 						 index, false);
1909 	}
1910 	if (IS_ERR(page)) {
1911 		int retry = 5;
1912 
1913 		error = PTR_ERR(page);
1914 		page = NULL;
1915 		if (error != -ENOSPC)
1916 			goto unlock;
1917 		/*
1918 		 * Try to reclaim some space by splitting a huge page
1919 		 * beyond i_size on the filesystem.
1920 		 */
1921 		while (retry--) {
1922 			int ret;
1923 
1924 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1925 			if (ret == SHRINK_STOP)
1926 				break;
1927 			if (ret)
1928 				goto alloc_nohuge;
1929 		}
1930 		goto unlock;
1931 	}
1932 
1933 	if (PageTransHuge(page))
1934 		hindex = round_down(index, HPAGE_PMD_NR);
1935 	else
1936 		hindex = index;
1937 
1938 	if (sgp == SGP_WRITE)
1939 		__SetPageReferenced(page);
1940 
1941 	error = shmem_add_to_page_cache(page, mapping, hindex,
1942 					NULL, gfp & GFP_RECLAIM_MASK,
1943 					charge_mm);
1944 	if (error)
1945 		goto unacct;
1946 	lru_cache_add(page);
1947 
1948 	spin_lock_irq(&info->lock);
1949 	info->alloced += compound_nr(page);
1950 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1951 	shmem_recalc_inode(inode);
1952 	spin_unlock_irq(&info->lock);
1953 	alloced = true;
1954 
1955 	if (PageTransHuge(page) &&
1956 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1957 			hindex + HPAGE_PMD_NR - 1) {
1958 		/*
1959 		 * Part of the huge page is beyond i_size: subject
1960 		 * to shrink under memory pressure.
1961 		 */
1962 		spin_lock(&sbinfo->shrinklist_lock);
1963 		/*
1964 		 * _careful to defend against unlocked access to
1965 		 * ->shrink_list in shmem_unused_huge_shrink()
1966 		 */
1967 		if (list_empty_careful(&info->shrinklist)) {
1968 			list_add_tail(&info->shrinklist,
1969 				      &sbinfo->shrinklist);
1970 			sbinfo->shrinklist_len++;
1971 		}
1972 		spin_unlock(&sbinfo->shrinklist_lock);
1973 	}
1974 
1975 	/*
1976 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1977 	 */
1978 	if (sgp == SGP_FALLOC)
1979 		sgp = SGP_WRITE;
1980 clear:
1981 	/*
1982 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1983 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1984 	 * it now, lest undo on failure cancel our earlier guarantee.
1985 	 */
1986 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1987 		int i;
1988 
1989 		for (i = 0; i < compound_nr(page); i++) {
1990 			clear_highpage(page + i);
1991 			flush_dcache_page(page + i);
1992 		}
1993 		SetPageUptodate(page);
1994 	}
1995 
1996 	/* Perhaps the file has been truncated since we checked */
1997 	if (sgp <= SGP_CACHE &&
1998 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1999 		if (alloced) {
2000 			ClearPageDirty(page);
2001 			delete_from_page_cache(page);
2002 			spin_lock_irq(&info->lock);
2003 			shmem_recalc_inode(inode);
2004 			spin_unlock_irq(&info->lock);
2005 		}
2006 		error = -EINVAL;
2007 		goto unlock;
2008 	}
2009 out:
2010 	*pagep = page + index - hindex;
2011 	return 0;
2012 
2013 	/*
2014 	 * Error recovery.
2015 	 */
2016 unacct:
2017 	shmem_inode_unacct_blocks(inode, compound_nr(page));
2018 
2019 	if (PageTransHuge(page)) {
2020 		unlock_page(page);
2021 		put_page(page);
2022 		goto alloc_nohuge;
2023 	}
2024 unlock:
2025 	if (page) {
2026 		unlock_page(page);
2027 		put_page(page);
2028 	}
2029 	if (error == -ENOSPC && !once++) {
2030 		spin_lock_irq(&info->lock);
2031 		shmem_recalc_inode(inode);
2032 		spin_unlock_irq(&info->lock);
2033 		goto repeat;
2034 	}
2035 	if (error == -EEXIST)
2036 		goto repeat;
2037 	return error;
2038 }
2039 
2040 /*
2041  * This is like autoremove_wake_function, but it removes the wait queue
2042  * entry unconditionally - even if something else had already woken the
2043  * target.
2044  */
2045 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2046 {
2047 	int ret = default_wake_function(wait, mode, sync, key);
2048 	list_del_init(&wait->entry);
2049 	return ret;
2050 }
2051 
2052 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2053 {
2054 	struct vm_area_struct *vma = vmf->vma;
2055 	struct inode *inode = file_inode(vma->vm_file);
2056 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2057 	enum sgp_type sgp;
2058 	int err;
2059 	vm_fault_t ret = VM_FAULT_LOCKED;
2060 
2061 	/*
2062 	 * Trinity finds that probing a hole which tmpfs is punching can
2063 	 * prevent the hole-punch from ever completing: which in turn
2064 	 * locks writers out with its hold on i_mutex.  So refrain from
2065 	 * faulting pages into the hole while it's being punched.  Although
2066 	 * shmem_undo_range() does remove the additions, it may be unable to
2067 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2068 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2069 	 *
2070 	 * It does not matter if we sometimes reach this check just before the
2071 	 * hole-punch begins, so that one fault then races with the punch:
2072 	 * we just need to make racing faults a rare case.
2073 	 *
2074 	 * The implementation below would be much simpler if we just used a
2075 	 * standard mutex or completion: but we cannot take i_mutex in fault,
2076 	 * and bloating every shmem inode for this unlikely case would be sad.
2077 	 */
2078 	if (unlikely(inode->i_private)) {
2079 		struct shmem_falloc *shmem_falloc;
2080 
2081 		spin_lock(&inode->i_lock);
2082 		shmem_falloc = inode->i_private;
2083 		if (shmem_falloc &&
2084 		    shmem_falloc->waitq &&
2085 		    vmf->pgoff >= shmem_falloc->start &&
2086 		    vmf->pgoff < shmem_falloc->next) {
2087 			struct file *fpin;
2088 			wait_queue_head_t *shmem_falloc_waitq;
2089 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2090 
2091 			ret = VM_FAULT_NOPAGE;
2092 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2093 			if (fpin)
2094 				ret = VM_FAULT_RETRY;
2095 
2096 			shmem_falloc_waitq = shmem_falloc->waitq;
2097 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2098 					TASK_UNINTERRUPTIBLE);
2099 			spin_unlock(&inode->i_lock);
2100 			schedule();
2101 
2102 			/*
2103 			 * shmem_falloc_waitq points into the shmem_fallocate()
2104 			 * stack of the hole-punching task: shmem_falloc_waitq
2105 			 * is usually invalid by the time we reach here, but
2106 			 * finish_wait() does not dereference it in that case;
2107 			 * though i_lock needed lest racing with wake_up_all().
2108 			 */
2109 			spin_lock(&inode->i_lock);
2110 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2111 			spin_unlock(&inode->i_lock);
2112 
2113 			if (fpin)
2114 				fput(fpin);
2115 			return ret;
2116 		}
2117 		spin_unlock(&inode->i_lock);
2118 	}
2119 
2120 	sgp = SGP_CACHE;
2121 
2122 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2123 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2124 		sgp = SGP_NOHUGE;
2125 	else if (vma->vm_flags & VM_HUGEPAGE)
2126 		sgp = SGP_HUGE;
2127 
2128 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2129 				  gfp, vma, vmf, &ret);
2130 	if (err)
2131 		return vmf_error(err);
2132 	return ret;
2133 }
2134 
2135 unsigned long shmem_get_unmapped_area(struct file *file,
2136 				      unsigned long uaddr, unsigned long len,
2137 				      unsigned long pgoff, unsigned long flags)
2138 {
2139 	unsigned long (*get_area)(struct file *,
2140 		unsigned long, unsigned long, unsigned long, unsigned long);
2141 	unsigned long addr;
2142 	unsigned long offset;
2143 	unsigned long inflated_len;
2144 	unsigned long inflated_addr;
2145 	unsigned long inflated_offset;
2146 
2147 	if (len > TASK_SIZE)
2148 		return -ENOMEM;
2149 
2150 	get_area = current->mm->get_unmapped_area;
2151 	addr = get_area(file, uaddr, len, pgoff, flags);
2152 
2153 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2154 		return addr;
2155 	if (IS_ERR_VALUE(addr))
2156 		return addr;
2157 	if (addr & ~PAGE_MASK)
2158 		return addr;
2159 	if (addr > TASK_SIZE - len)
2160 		return addr;
2161 
2162 	if (shmem_huge == SHMEM_HUGE_DENY)
2163 		return addr;
2164 	if (len < HPAGE_PMD_SIZE)
2165 		return addr;
2166 	if (flags & MAP_FIXED)
2167 		return addr;
2168 	/*
2169 	 * Our priority is to support MAP_SHARED mapped hugely;
2170 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2171 	 * But if caller specified an address hint and we allocated area there
2172 	 * successfully, respect that as before.
2173 	 */
2174 	if (uaddr == addr)
2175 		return addr;
2176 
2177 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2178 		struct super_block *sb;
2179 
2180 		if (file) {
2181 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2182 			sb = file_inode(file)->i_sb;
2183 		} else {
2184 			/*
2185 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2186 			 * for "/dev/zero", to create a shared anonymous object.
2187 			 */
2188 			if (IS_ERR(shm_mnt))
2189 				return addr;
2190 			sb = shm_mnt->mnt_sb;
2191 		}
2192 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2193 			return addr;
2194 	}
2195 
2196 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2197 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2198 		return addr;
2199 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2200 		return addr;
2201 
2202 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2203 	if (inflated_len > TASK_SIZE)
2204 		return addr;
2205 	if (inflated_len < len)
2206 		return addr;
2207 
2208 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2209 	if (IS_ERR_VALUE(inflated_addr))
2210 		return addr;
2211 	if (inflated_addr & ~PAGE_MASK)
2212 		return addr;
2213 
2214 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2215 	inflated_addr += offset - inflated_offset;
2216 	if (inflated_offset > offset)
2217 		inflated_addr += HPAGE_PMD_SIZE;
2218 
2219 	if (inflated_addr > TASK_SIZE - len)
2220 		return addr;
2221 	return inflated_addr;
2222 }
2223 
2224 #ifdef CONFIG_NUMA
2225 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2226 {
2227 	struct inode *inode = file_inode(vma->vm_file);
2228 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2229 }
2230 
2231 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2232 					  unsigned long addr)
2233 {
2234 	struct inode *inode = file_inode(vma->vm_file);
2235 	pgoff_t index;
2236 
2237 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2238 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2239 }
2240 #endif
2241 
2242 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2243 {
2244 	struct inode *inode = file_inode(file);
2245 	struct shmem_inode_info *info = SHMEM_I(inode);
2246 	int retval = -ENOMEM;
2247 
2248 	/*
2249 	 * What serializes the accesses to info->flags?
2250 	 * ipc_lock_object() when called from shmctl_do_lock(),
2251 	 * no serialization needed when called from shm_destroy().
2252 	 */
2253 	if (lock && !(info->flags & VM_LOCKED)) {
2254 		if (!user_shm_lock(inode->i_size, user))
2255 			goto out_nomem;
2256 		info->flags |= VM_LOCKED;
2257 		mapping_set_unevictable(file->f_mapping);
2258 	}
2259 	if (!lock && (info->flags & VM_LOCKED) && user) {
2260 		user_shm_unlock(inode->i_size, user);
2261 		info->flags &= ~VM_LOCKED;
2262 		mapping_clear_unevictable(file->f_mapping);
2263 	}
2264 	retval = 0;
2265 
2266 out_nomem:
2267 	return retval;
2268 }
2269 
2270 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2271 {
2272 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2273 	int ret;
2274 
2275 	ret = seal_check_future_write(info->seals, vma);
2276 	if (ret)
2277 		return ret;
2278 
2279 	/* arm64 - allow memory tagging on RAM-based files */
2280 	vma->vm_flags |= VM_MTE_ALLOWED;
2281 
2282 	file_accessed(file);
2283 	vma->vm_ops = &shmem_vm_ops;
2284 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2285 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2286 			(vma->vm_end & HPAGE_PMD_MASK)) {
2287 		khugepaged_enter(vma, vma->vm_flags);
2288 	}
2289 	return 0;
2290 }
2291 
2292 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2293 				     umode_t mode, dev_t dev, unsigned long flags)
2294 {
2295 	struct inode *inode;
2296 	struct shmem_inode_info *info;
2297 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2298 	ino_t ino;
2299 
2300 	if (shmem_reserve_inode(sb, &ino))
2301 		return NULL;
2302 
2303 	inode = new_inode(sb);
2304 	if (inode) {
2305 		inode->i_ino = ino;
2306 		inode_init_owner(&init_user_ns, inode, dir, mode);
2307 		inode->i_blocks = 0;
2308 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2309 		inode->i_generation = prandom_u32();
2310 		info = SHMEM_I(inode);
2311 		memset(info, 0, (char *)inode - (char *)info);
2312 		spin_lock_init(&info->lock);
2313 		atomic_set(&info->stop_eviction, 0);
2314 		info->seals = F_SEAL_SEAL;
2315 		info->flags = flags & VM_NORESERVE;
2316 		INIT_LIST_HEAD(&info->shrinklist);
2317 		INIT_LIST_HEAD(&info->swaplist);
2318 		simple_xattrs_init(&info->xattrs);
2319 		cache_no_acl(inode);
2320 
2321 		switch (mode & S_IFMT) {
2322 		default:
2323 			inode->i_op = &shmem_special_inode_operations;
2324 			init_special_inode(inode, mode, dev);
2325 			break;
2326 		case S_IFREG:
2327 			inode->i_mapping->a_ops = &shmem_aops;
2328 			inode->i_op = &shmem_inode_operations;
2329 			inode->i_fop = &shmem_file_operations;
2330 			mpol_shared_policy_init(&info->policy,
2331 						 shmem_get_sbmpol(sbinfo));
2332 			break;
2333 		case S_IFDIR:
2334 			inc_nlink(inode);
2335 			/* Some things misbehave if size == 0 on a directory */
2336 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2337 			inode->i_op = &shmem_dir_inode_operations;
2338 			inode->i_fop = &simple_dir_operations;
2339 			break;
2340 		case S_IFLNK:
2341 			/*
2342 			 * Must not load anything in the rbtree,
2343 			 * mpol_free_shared_policy will not be called.
2344 			 */
2345 			mpol_shared_policy_init(&info->policy, NULL);
2346 			break;
2347 		}
2348 
2349 		lockdep_annotate_inode_mutex_key(inode);
2350 	} else
2351 		shmem_free_inode(sb);
2352 	return inode;
2353 }
2354 
2355 #ifdef CONFIG_USERFAULTFD
2356 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2357 			   pmd_t *dst_pmd,
2358 			   struct vm_area_struct *dst_vma,
2359 			   unsigned long dst_addr,
2360 			   unsigned long src_addr,
2361 			   bool zeropage,
2362 			   struct page **pagep)
2363 {
2364 	struct inode *inode = file_inode(dst_vma->vm_file);
2365 	struct shmem_inode_info *info = SHMEM_I(inode);
2366 	struct address_space *mapping = inode->i_mapping;
2367 	gfp_t gfp = mapping_gfp_mask(mapping);
2368 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2369 	spinlock_t *ptl;
2370 	void *page_kaddr;
2371 	struct page *page;
2372 	pte_t _dst_pte, *dst_pte;
2373 	int ret;
2374 	pgoff_t max_off;
2375 
2376 	ret = -ENOMEM;
2377 	if (!shmem_inode_acct_block(inode, 1)) {
2378 		/*
2379 		 * We may have got a page, returned -ENOENT triggering a retry,
2380 		 * and now we find ourselves with -ENOMEM. Release the page, to
2381 		 * avoid a BUG_ON in our caller.
2382 		 */
2383 		if (unlikely(*pagep)) {
2384 			put_page(*pagep);
2385 			*pagep = NULL;
2386 		}
2387 		goto out;
2388 	}
2389 
2390 	if (!*pagep) {
2391 		page = shmem_alloc_page(gfp, info, pgoff);
2392 		if (!page)
2393 			goto out_unacct_blocks;
2394 
2395 		if (!zeropage) {	/* COPY */
2396 			page_kaddr = kmap_atomic(page);
2397 			ret = copy_from_user(page_kaddr,
2398 					     (const void __user *)src_addr,
2399 					     PAGE_SIZE);
2400 			kunmap_atomic(page_kaddr);
2401 
2402 			/* fallback to copy_from_user outside mmap_lock */
2403 			if (unlikely(ret)) {
2404 				*pagep = page;
2405 				shmem_inode_unacct_blocks(inode, 1);
2406 				/* don't free the page */
2407 				return -ENOENT;
2408 			}
2409 		} else {		/* ZEROPAGE */
2410 			clear_highpage(page);
2411 		}
2412 	} else {
2413 		page = *pagep;
2414 		*pagep = NULL;
2415 	}
2416 
2417 	VM_BUG_ON(PageLocked(page));
2418 	VM_BUG_ON(PageSwapBacked(page));
2419 	__SetPageLocked(page);
2420 	__SetPageSwapBacked(page);
2421 	__SetPageUptodate(page);
2422 
2423 	ret = -EFAULT;
2424 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2425 	if (unlikely(pgoff >= max_off))
2426 		goto out_release;
2427 
2428 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2429 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2430 	if (ret)
2431 		goto out_release;
2432 
2433 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2434 	if (dst_vma->vm_flags & VM_WRITE)
2435 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2436 	else {
2437 		/*
2438 		 * We don't set the pte dirty if the vma has no
2439 		 * VM_WRITE permission, so mark the page dirty or it
2440 		 * could be freed from under us. We could do it
2441 		 * unconditionally before unlock_page(), but doing it
2442 		 * only if VM_WRITE is not set is faster.
2443 		 */
2444 		set_page_dirty(page);
2445 	}
2446 
2447 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2448 
2449 	ret = -EFAULT;
2450 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2451 	if (unlikely(pgoff >= max_off))
2452 		goto out_release_unlock;
2453 
2454 	ret = -EEXIST;
2455 	if (!pte_none(*dst_pte))
2456 		goto out_release_unlock;
2457 
2458 	lru_cache_add(page);
2459 
2460 	spin_lock_irq(&info->lock);
2461 	info->alloced++;
2462 	inode->i_blocks += BLOCKS_PER_PAGE;
2463 	shmem_recalc_inode(inode);
2464 	spin_unlock_irq(&info->lock);
2465 
2466 	inc_mm_counter(dst_mm, mm_counter_file(page));
2467 	page_add_file_rmap(page, false);
2468 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2469 
2470 	/* No need to invalidate - it was non-present before */
2471 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2472 	pte_unmap_unlock(dst_pte, ptl);
2473 	unlock_page(page);
2474 	ret = 0;
2475 out:
2476 	return ret;
2477 out_release_unlock:
2478 	pte_unmap_unlock(dst_pte, ptl);
2479 	ClearPageDirty(page);
2480 	delete_from_page_cache(page);
2481 out_release:
2482 	unlock_page(page);
2483 	put_page(page);
2484 out_unacct_blocks:
2485 	shmem_inode_unacct_blocks(inode, 1);
2486 	goto out;
2487 }
2488 #endif /* CONFIG_USERFAULTFD */
2489 
2490 #ifdef CONFIG_TMPFS
2491 static const struct inode_operations shmem_symlink_inode_operations;
2492 static const struct inode_operations shmem_short_symlink_operations;
2493 
2494 #ifdef CONFIG_TMPFS_XATTR
2495 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2496 #else
2497 #define shmem_initxattrs NULL
2498 #endif
2499 
2500 static int
2501 shmem_write_begin(struct file *file, struct address_space *mapping,
2502 			loff_t pos, unsigned len, unsigned flags,
2503 			struct page **pagep, void **fsdata)
2504 {
2505 	struct inode *inode = mapping->host;
2506 	struct shmem_inode_info *info = SHMEM_I(inode);
2507 	pgoff_t index = pos >> PAGE_SHIFT;
2508 
2509 	/* i_mutex is held by caller */
2510 	if (unlikely(info->seals & (F_SEAL_GROW |
2511 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2512 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2513 			return -EPERM;
2514 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2515 			return -EPERM;
2516 	}
2517 
2518 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2519 }
2520 
2521 static int
2522 shmem_write_end(struct file *file, struct address_space *mapping,
2523 			loff_t pos, unsigned len, unsigned copied,
2524 			struct page *page, void *fsdata)
2525 {
2526 	struct inode *inode = mapping->host;
2527 
2528 	if (pos + copied > inode->i_size)
2529 		i_size_write(inode, pos + copied);
2530 
2531 	if (!PageUptodate(page)) {
2532 		struct page *head = compound_head(page);
2533 		if (PageTransCompound(page)) {
2534 			int i;
2535 
2536 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2537 				if (head + i == page)
2538 					continue;
2539 				clear_highpage(head + i);
2540 				flush_dcache_page(head + i);
2541 			}
2542 		}
2543 		if (copied < PAGE_SIZE) {
2544 			unsigned from = pos & (PAGE_SIZE - 1);
2545 			zero_user_segments(page, 0, from,
2546 					from + copied, PAGE_SIZE);
2547 		}
2548 		SetPageUptodate(head);
2549 	}
2550 	set_page_dirty(page);
2551 	unlock_page(page);
2552 	put_page(page);
2553 
2554 	return copied;
2555 }
2556 
2557 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2558 {
2559 	struct file *file = iocb->ki_filp;
2560 	struct inode *inode = file_inode(file);
2561 	struct address_space *mapping = inode->i_mapping;
2562 	pgoff_t index;
2563 	unsigned long offset;
2564 	enum sgp_type sgp = SGP_READ;
2565 	int error = 0;
2566 	ssize_t retval = 0;
2567 	loff_t *ppos = &iocb->ki_pos;
2568 
2569 	/*
2570 	 * Might this read be for a stacking filesystem?  Then when reading
2571 	 * holes of a sparse file, we actually need to allocate those pages,
2572 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2573 	 */
2574 	if (!iter_is_iovec(to))
2575 		sgp = SGP_CACHE;
2576 
2577 	index = *ppos >> PAGE_SHIFT;
2578 	offset = *ppos & ~PAGE_MASK;
2579 
2580 	for (;;) {
2581 		struct page *page = NULL;
2582 		pgoff_t end_index;
2583 		unsigned long nr, ret;
2584 		loff_t i_size = i_size_read(inode);
2585 
2586 		end_index = i_size >> PAGE_SHIFT;
2587 		if (index > end_index)
2588 			break;
2589 		if (index == end_index) {
2590 			nr = i_size & ~PAGE_MASK;
2591 			if (nr <= offset)
2592 				break;
2593 		}
2594 
2595 		error = shmem_getpage(inode, index, &page, sgp);
2596 		if (error) {
2597 			if (error == -EINVAL)
2598 				error = 0;
2599 			break;
2600 		}
2601 		if (page) {
2602 			if (sgp == SGP_CACHE)
2603 				set_page_dirty(page);
2604 			unlock_page(page);
2605 		}
2606 
2607 		/*
2608 		 * We must evaluate after, since reads (unlike writes)
2609 		 * are called without i_mutex protection against truncate
2610 		 */
2611 		nr = PAGE_SIZE;
2612 		i_size = i_size_read(inode);
2613 		end_index = i_size >> PAGE_SHIFT;
2614 		if (index == end_index) {
2615 			nr = i_size & ~PAGE_MASK;
2616 			if (nr <= offset) {
2617 				if (page)
2618 					put_page(page);
2619 				break;
2620 			}
2621 		}
2622 		nr -= offset;
2623 
2624 		if (page) {
2625 			/*
2626 			 * If users can be writing to this page using arbitrary
2627 			 * virtual addresses, take care about potential aliasing
2628 			 * before reading the page on the kernel side.
2629 			 */
2630 			if (mapping_writably_mapped(mapping))
2631 				flush_dcache_page(page);
2632 			/*
2633 			 * Mark the page accessed if we read the beginning.
2634 			 */
2635 			if (!offset)
2636 				mark_page_accessed(page);
2637 		} else {
2638 			page = ZERO_PAGE(0);
2639 			get_page(page);
2640 		}
2641 
2642 		/*
2643 		 * Ok, we have the page, and it's up-to-date, so
2644 		 * now we can copy it to user space...
2645 		 */
2646 		ret = copy_page_to_iter(page, offset, nr, to);
2647 		retval += ret;
2648 		offset += ret;
2649 		index += offset >> PAGE_SHIFT;
2650 		offset &= ~PAGE_MASK;
2651 
2652 		put_page(page);
2653 		if (!iov_iter_count(to))
2654 			break;
2655 		if (ret < nr) {
2656 			error = -EFAULT;
2657 			break;
2658 		}
2659 		cond_resched();
2660 	}
2661 
2662 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2663 	file_accessed(file);
2664 	return retval ? retval : error;
2665 }
2666 
2667 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2668 {
2669 	struct address_space *mapping = file->f_mapping;
2670 	struct inode *inode = mapping->host;
2671 
2672 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2673 		return generic_file_llseek_size(file, offset, whence,
2674 					MAX_LFS_FILESIZE, i_size_read(inode));
2675 	if (offset < 0)
2676 		return -ENXIO;
2677 
2678 	inode_lock(inode);
2679 	/* We're holding i_mutex so we can access i_size directly */
2680 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2681 	if (offset >= 0)
2682 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2683 	inode_unlock(inode);
2684 	return offset;
2685 }
2686 
2687 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2688 							 loff_t len)
2689 {
2690 	struct inode *inode = file_inode(file);
2691 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2692 	struct shmem_inode_info *info = SHMEM_I(inode);
2693 	struct shmem_falloc shmem_falloc;
2694 	pgoff_t start, index, end;
2695 	int error;
2696 
2697 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2698 		return -EOPNOTSUPP;
2699 
2700 	inode_lock(inode);
2701 
2702 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2703 		struct address_space *mapping = file->f_mapping;
2704 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2705 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2706 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2707 
2708 		/* protected by i_mutex */
2709 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2710 			error = -EPERM;
2711 			goto out;
2712 		}
2713 
2714 		shmem_falloc.waitq = &shmem_falloc_waitq;
2715 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2716 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2717 		spin_lock(&inode->i_lock);
2718 		inode->i_private = &shmem_falloc;
2719 		spin_unlock(&inode->i_lock);
2720 
2721 		if ((u64)unmap_end > (u64)unmap_start)
2722 			unmap_mapping_range(mapping, unmap_start,
2723 					    1 + unmap_end - unmap_start, 0);
2724 		shmem_truncate_range(inode, offset, offset + len - 1);
2725 		/* No need to unmap again: hole-punching leaves COWed pages */
2726 
2727 		spin_lock(&inode->i_lock);
2728 		inode->i_private = NULL;
2729 		wake_up_all(&shmem_falloc_waitq);
2730 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2731 		spin_unlock(&inode->i_lock);
2732 		error = 0;
2733 		goto out;
2734 	}
2735 
2736 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2737 	error = inode_newsize_ok(inode, offset + len);
2738 	if (error)
2739 		goto out;
2740 
2741 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2742 		error = -EPERM;
2743 		goto out;
2744 	}
2745 
2746 	start = offset >> PAGE_SHIFT;
2747 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2748 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2749 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2750 		error = -ENOSPC;
2751 		goto out;
2752 	}
2753 
2754 	shmem_falloc.waitq = NULL;
2755 	shmem_falloc.start = start;
2756 	shmem_falloc.next  = start;
2757 	shmem_falloc.nr_falloced = 0;
2758 	shmem_falloc.nr_unswapped = 0;
2759 	spin_lock(&inode->i_lock);
2760 	inode->i_private = &shmem_falloc;
2761 	spin_unlock(&inode->i_lock);
2762 
2763 	for (index = start; index < end; index++) {
2764 		struct page *page;
2765 
2766 		/*
2767 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2768 		 * been interrupted because we are using up too much memory.
2769 		 */
2770 		if (signal_pending(current))
2771 			error = -EINTR;
2772 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2773 			error = -ENOMEM;
2774 		else
2775 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2776 		if (error) {
2777 			/* Remove the !PageUptodate pages we added */
2778 			if (index > start) {
2779 				shmem_undo_range(inode,
2780 				    (loff_t)start << PAGE_SHIFT,
2781 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2782 			}
2783 			goto undone;
2784 		}
2785 
2786 		/*
2787 		 * Inform shmem_writepage() how far we have reached.
2788 		 * No need for lock or barrier: we have the page lock.
2789 		 */
2790 		shmem_falloc.next++;
2791 		if (!PageUptodate(page))
2792 			shmem_falloc.nr_falloced++;
2793 
2794 		/*
2795 		 * If !PageUptodate, leave it that way so that freeable pages
2796 		 * can be recognized if we need to rollback on error later.
2797 		 * But set_page_dirty so that memory pressure will swap rather
2798 		 * than free the pages we are allocating (and SGP_CACHE pages
2799 		 * might still be clean: we now need to mark those dirty too).
2800 		 */
2801 		set_page_dirty(page);
2802 		unlock_page(page);
2803 		put_page(page);
2804 		cond_resched();
2805 	}
2806 
2807 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2808 		i_size_write(inode, offset + len);
2809 	inode->i_ctime = current_time(inode);
2810 undone:
2811 	spin_lock(&inode->i_lock);
2812 	inode->i_private = NULL;
2813 	spin_unlock(&inode->i_lock);
2814 out:
2815 	inode_unlock(inode);
2816 	return error;
2817 }
2818 
2819 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2820 {
2821 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2822 
2823 	buf->f_type = TMPFS_MAGIC;
2824 	buf->f_bsize = PAGE_SIZE;
2825 	buf->f_namelen = NAME_MAX;
2826 	if (sbinfo->max_blocks) {
2827 		buf->f_blocks = sbinfo->max_blocks;
2828 		buf->f_bavail =
2829 		buf->f_bfree  = sbinfo->max_blocks -
2830 				percpu_counter_sum(&sbinfo->used_blocks);
2831 	}
2832 	if (sbinfo->max_inodes) {
2833 		buf->f_files = sbinfo->max_inodes;
2834 		buf->f_ffree = sbinfo->free_inodes;
2835 	}
2836 	/* else leave those fields 0 like simple_statfs */
2837 
2838 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2839 
2840 	return 0;
2841 }
2842 
2843 /*
2844  * File creation. Allocate an inode, and we're done..
2845  */
2846 static int
2847 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2848 	    struct dentry *dentry, umode_t mode, dev_t dev)
2849 {
2850 	struct inode *inode;
2851 	int error = -ENOSPC;
2852 
2853 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2854 	if (inode) {
2855 		error = simple_acl_create(dir, inode);
2856 		if (error)
2857 			goto out_iput;
2858 		error = security_inode_init_security(inode, dir,
2859 						     &dentry->d_name,
2860 						     shmem_initxattrs, NULL);
2861 		if (error && error != -EOPNOTSUPP)
2862 			goto out_iput;
2863 
2864 		error = 0;
2865 		dir->i_size += BOGO_DIRENT_SIZE;
2866 		dir->i_ctime = dir->i_mtime = current_time(dir);
2867 		d_instantiate(dentry, inode);
2868 		dget(dentry); /* Extra count - pin the dentry in core */
2869 	}
2870 	return error;
2871 out_iput:
2872 	iput(inode);
2873 	return error;
2874 }
2875 
2876 static int
2877 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2878 	      struct dentry *dentry, umode_t mode)
2879 {
2880 	struct inode *inode;
2881 	int error = -ENOSPC;
2882 
2883 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2884 	if (inode) {
2885 		error = security_inode_init_security(inode, dir,
2886 						     NULL,
2887 						     shmem_initxattrs, NULL);
2888 		if (error && error != -EOPNOTSUPP)
2889 			goto out_iput;
2890 		error = simple_acl_create(dir, inode);
2891 		if (error)
2892 			goto out_iput;
2893 		d_tmpfile(dentry, inode);
2894 	}
2895 	return error;
2896 out_iput:
2897 	iput(inode);
2898 	return error;
2899 }
2900 
2901 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2902 		       struct dentry *dentry, umode_t mode)
2903 {
2904 	int error;
2905 
2906 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2907 				 mode | S_IFDIR, 0)))
2908 		return error;
2909 	inc_nlink(dir);
2910 	return 0;
2911 }
2912 
2913 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2914 			struct dentry *dentry, umode_t mode, bool excl)
2915 {
2916 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2917 }
2918 
2919 /*
2920  * Link a file..
2921  */
2922 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2923 {
2924 	struct inode *inode = d_inode(old_dentry);
2925 	int ret = 0;
2926 
2927 	/*
2928 	 * No ordinary (disk based) filesystem counts links as inodes;
2929 	 * but each new link needs a new dentry, pinning lowmem, and
2930 	 * tmpfs dentries cannot be pruned until they are unlinked.
2931 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2932 	 * first link must skip that, to get the accounting right.
2933 	 */
2934 	if (inode->i_nlink) {
2935 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2936 		if (ret)
2937 			goto out;
2938 	}
2939 
2940 	dir->i_size += BOGO_DIRENT_SIZE;
2941 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2942 	inc_nlink(inode);
2943 	ihold(inode);	/* New dentry reference */
2944 	dget(dentry);		/* Extra pinning count for the created dentry */
2945 	d_instantiate(dentry, inode);
2946 out:
2947 	return ret;
2948 }
2949 
2950 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2951 {
2952 	struct inode *inode = d_inode(dentry);
2953 
2954 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2955 		shmem_free_inode(inode->i_sb);
2956 
2957 	dir->i_size -= BOGO_DIRENT_SIZE;
2958 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2959 	drop_nlink(inode);
2960 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2961 	return 0;
2962 }
2963 
2964 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2965 {
2966 	if (!simple_empty(dentry))
2967 		return -ENOTEMPTY;
2968 
2969 	drop_nlink(d_inode(dentry));
2970 	drop_nlink(dir);
2971 	return shmem_unlink(dir, dentry);
2972 }
2973 
2974 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2975 {
2976 	bool old_is_dir = d_is_dir(old_dentry);
2977 	bool new_is_dir = d_is_dir(new_dentry);
2978 
2979 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2980 		if (old_is_dir) {
2981 			drop_nlink(old_dir);
2982 			inc_nlink(new_dir);
2983 		} else {
2984 			drop_nlink(new_dir);
2985 			inc_nlink(old_dir);
2986 		}
2987 	}
2988 	old_dir->i_ctime = old_dir->i_mtime =
2989 	new_dir->i_ctime = new_dir->i_mtime =
2990 	d_inode(old_dentry)->i_ctime =
2991 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2992 
2993 	return 0;
2994 }
2995 
2996 static int shmem_whiteout(struct user_namespace *mnt_userns,
2997 			  struct inode *old_dir, struct dentry *old_dentry)
2998 {
2999 	struct dentry *whiteout;
3000 	int error;
3001 
3002 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3003 	if (!whiteout)
3004 		return -ENOMEM;
3005 
3006 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3007 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3008 	dput(whiteout);
3009 	if (error)
3010 		return error;
3011 
3012 	/*
3013 	 * Cheat and hash the whiteout while the old dentry is still in
3014 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3015 	 *
3016 	 * d_lookup() will consistently find one of them at this point,
3017 	 * not sure which one, but that isn't even important.
3018 	 */
3019 	d_rehash(whiteout);
3020 	return 0;
3021 }
3022 
3023 /*
3024  * The VFS layer already does all the dentry stuff for rename,
3025  * we just have to decrement the usage count for the target if
3026  * it exists so that the VFS layer correctly free's it when it
3027  * gets overwritten.
3028  */
3029 static int shmem_rename2(struct user_namespace *mnt_userns,
3030 			 struct inode *old_dir, struct dentry *old_dentry,
3031 			 struct inode *new_dir, struct dentry *new_dentry,
3032 			 unsigned int flags)
3033 {
3034 	struct inode *inode = d_inode(old_dentry);
3035 	int they_are_dirs = S_ISDIR(inode->i_mode);
3036 
3037 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3038 		return -EINVAL;
3039 
3040 	if (flags & RENAME_EXCHANGE)
3041 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3042 
3043 	if (!simple_empty(new_dentry))
3044 		return -ENOTEMPTY;
3045 
3046 	if (flags & RENAME_WHITEOUT) {
3047 		int error;
3048 
3049 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3050 		if (error)
3051 			return error;
3052 	}
3053 
3054 	if (d_really_is_positive(new_dentry)) {
3055 		(void) shmem_unlink(new_dir, new_dentry);
3056 		if (they_are_dirs) {
3057 			drop_nlink(d_inode(new_dentry));
3058 			drop_nlink(old_dir);
3059 		}
3060 	} else if (they_are_dirs) {
3061 		drop_nlink(old_dir);
3062 		inc_nlink(new_dir);
3063 	}
3064 
3065 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3066 	new_dir->i_size += BOGO_DIRENT_SIZE;
3067 	old_dir->i_ctime = old_dir->i_mtime =
3068 	new_dir->i_ctime = new_dir->i_mtime =
3069 	inode->i_ctime = current_time(old_dir);
3070 	return 0;
3071 }
3072 
3073 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3074 			 struct dentry *dentry, const char *symname)
3075 {
3076 	int error;
3077 	int len;
3078 	struct inode *inode;
3079 	struct page *page;
3080 
3081 	len = strlen(symname) + 1;
3082 	if (len > PAGE_SIZE)
3083 		return -ENAMETOOLONG;
3084 
3085 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3086 				VM_NORESERVE);
3087 	if (!inode)
3088 		return -ENOSPC;
3089 
3090 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3091 					     shmem_initxattrs, NULL);
3092 	if (error && error != -EOPNOTSUPP) {
3093 		iput(inode);
3094 		return error;
3095 	}
3096 
3097 	inode->i_size = len-1;
3098 	if (len <= SHORT_SYMLINK_LEN) {
3099 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3100 		if (!inode->i_link) {
3101 			iput(inode);
3102 			return -ENOMEM;
3103 		}
3104 		inode->i_op = &shmem_short_symlink_operations;
3105 	} else {
3106 		inode_nohighmem(inode);
3107 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3108 		if (error) {
3109 			iput(inode);
3110 			return error;
3111 		}
3112 		inode->i_mapping->a_ops = &shmem_aops;
3113 		inode->i_op = &shmem_symlink_inode_operations;
3114 		memcpy(page_address(page), symname, len);
3115 		SetPageUptodate(page);
3116 		set_page_dirty(page);
3117 		unlock_page(page);
3118 		put_page(page);
3119 	}
3120 	dir->i_size += BOGO_DIRENT_SIZE;
3121 	dir->i_ctime = dir->i_mtime = current_time(dir);
3122 	d_instantiate(dentry, inode);
3123 	dget(dentry);
3124 	return 0;
3125 }
3126 
3127 static void shmem_put_link(void *arg)
3128 {
3129 	mark_page_accessed(arg);
3130 	put_page(arg);
3131 }
3132 
3133 static const char *shmem_get_link(struct dentry *dentry,
3134 				  struct inode *inode,
3135 				  struct delayed_call *done)
3136 {
3137 	struct page *page = NULL;
3138 	int error;
3139 	if (!dentry) {
3140 		page = find_get_page(inode->i_mapping, 0);
3141 		if (!page)
3142 			return ERR_PTR(-ECHILD);
3143 		if (!PageUptodate(page)) {
3144 			put_page(page);
3145 			return ERR_PTR(-ECHILD);
3146 		}
3147 	} else {
3148 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3149 		if (error)
3150 			return ERR_PTR(error);
3151 		unlock_page(page);
3152 	}
3153 	set_delayed_call(done, shmem_put_link, page);
3154 	return page_address(page);
3155 }
3156 
3157 #ifdef CONFIG_TMPFS_XATTR
3158 /*
3159  * Superblocks without xattr inode operations may get some security.* xattr
3160  * support from the LSM "for free". As soon as we have any other xattrs
3161  * like ACLs, we also need to implement the security.* handlers at
3162  * filesystem level, though.
3163  */
3164 
3165 /*
3166  * Callback for security_inode_init_security() for acquiring xattrs.
3167  */
3168 static int shmem_initxattrs(struct inode *inode,
3169 			    const struct xattr *xattr_array,
3170 			    void *fs_info)
3171 {
3172 	struct shmem_inode_info *info = SHMEM_I(inode);
3173 	const struct xattr *xattr;
3174 	struct simple_xattr *new_xattr;
3175 	size_t len;
3176 
3177 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3178 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3179 		if (!new_xattr)
3180 			return -ENOMEM;
3181 
3182 		len = strlen(xattr->name) + 1;
3183 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3184 					  GFP_KERNEL);
3185 		if (!new_xattr->name) {
3186 			kvfree(new_xattr);
3187 			return -ENOMEM;
3188 		}
3189 
3190 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3191 		       XATTR_SECURITY_PREFIX_LEN);
3192 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3193 		       xattr->name, len);
3194 
3195 		simple_xattr_list_add(&info->xattrs, new_xattr);
3196 	}
3197 
3198 	return 0;
3199 }
3200 
3201 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3202 				   struct dentry *unused, struct inode *inode,
3203 				   const char *name, void *buffer, size_t size)
3204 {
3205 	struct shmem_inode_info *info = SHMEM_I(inode);
3206 
3207 	name = xattr_full_name(handler, name);
3208 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3209 }
3210 
3211 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3212 				   struct user_namespace *mnt_userns,
3213 				   struct dentry *unused, struct inode *inode,
3214 				   const char *name, const void *value,
3215 				   size_t size, int flags)
3216 {
3217 	struct shmem_inode_info *info = SHMEM_I(inode);
3218 
3219 	name = xattr_full_name(handler, name);
3220 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3221 }
3222 
3223 static const struct xattr_handler shmem_security_xattr_handler = {
3224 	.prefix = XATTR_SECURITY_PREFIX,
3225 	.get = shmem_xattr_handler_get,
3226 	.set = shmem_xattr_handler_set,
3227 };
3228 
3229 static const struct xattr_handler shmem_trusted_xattr_handler = {
3230 	.prefix = XATTR_TRUSTED_PREFIX,
3231 	.get = shmem_xattr_handler_get,
3232 	.set = shmem_xattr_handler_set,
3233 };
3234 
3235 static const struct xattr_handler *shmem_xattr_handlers[] = {
3236 #ifdef CONFIG_TMPFS_POSIX_ACL
3237 	&posix_acl_access_xattr_handler,
3238 	&posix_acl_default_xattr_handler,
3239 #endif
3240 	&shmem_security_xattr_handler,
3241 	&shmem_trusted_xattr_handler,
3242 	NULL
3243 };
3244 
3245 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3246 {
3247 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3248 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3249 }
3250 #endif /* CONFIG_TMPFS_XATTR */
3251 
3252 static const struct inode_operations shmem_short_symlink_operations = {
3253 	.get_link	= simple_get_link,
3254 #ifdef CONFIG_TMPFS_XATTR
3255 	.listxattr	= shmem_listxattr,
3256 #endif
3257 };
3258 
3259 static const struct inode_operations shmem_symlink_inode_operations = {
3260 	.get_link	= shmem_get_link,
3261 #ifdef CONFIG_TMPFS_XATTR
3262 	.listxattr	= shmem_listxattr,
3263 #endif
3264 };
3265 
3266 static struct dentry *shmem_get_parent(struct dentry *child)
3267 {
3268 	return ERR_PTR(-ESTALE);
3269 }
3270 
3271 static int shmem_match(struct inode *ino, void *vfh)
3272 {
3273 	__u32 *fh = vfh;
3274 	__u64 inum = fh[2];
3275 	inum = (inum << 32) | fh[1];
3276 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3277 }
3278 
3279 /* Find any alias of inode, but prefer a hashed alias */
3280 static struct dentry *shmem_find_alias(struct inode *inode)
3281 {
3282 	struct dentry *alias = d_find_alias(inode);
3283 
3284 	return alias ?: d_find_any_alias(inode);
3285 }
3286 
3287 
3288 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3289 		struct fid *fid, int fh_len, int fh_type)
3290 {
3291 	struct inode *inode;
3292 	struct dentry *dentry = NULL;
3293 	u64 inum;
3294 
3295 	if (fh_len < 3)
3296 		return NULL;
3297 
3298 	inum = fid->raw[2];
3299 	inum = (inum << 32) | fid->raw[1];
3300 
3301 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3302 			shmem_match, fid->raw);
3303 	if (inode) {
3304 		dentry = shmem_find_alias(inode);
3305 		iput(inode);
3306 	}
3307 
3308 	return dentry;
3309 }
3310 
3311 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3312 				struct inode *parent)
3313 {
3314 	if (*len < 3) {
3315 		*len = 3;
3316 		return FILEID_INVALID;
3317 	}
3318 
3319 	if (inode_unhashed(inode)) {
3320 		/* Unfortunately insert_inode_hash is not idempotent,
3321 		 * so as we hash inodes here rather than at creation
3322 		 * time, we need a lock to ensure we only try
3323 		 * to do it once
3324 		 */
3325 		static DEFINE_SPINLOCK(lock);
3326 		spin_lock(&lock);
3327 		if (inode_unhashed(inode))
3328 			__insert_inode_hash(inode,
3329 					    inode->i_ino + inode->i_generation);
3330 		spin_unlock(&lock);
3331 	}
3332 
3333 	fh[0] = inode->i_generation;
3334 	fh[1] = inode->i_ino;
3335 	fh[2] = ((__u64)inode->i_ino) >> 32;
3336 
3337 	*len = 3;
3338 	return 1;
3339 }
3340 
3341 static const struct export_operations shmem_export_ops = {
3342 	.get_parent     = shmem_get_parent,
3343 	.encode_fh      = shmem_encode_fh,
3344 	.fh_to_dentry	= shmem_fh_to_dentry,
3345 };
3346 
3347 enum shmem_param {
3348 	Opt_gid,
3349 	Opt_huge,
3350 	Opt_mode,
3351 	Opt_mpol,
3352 	Opt_nr_blocks,
3353 	Opt_nr_inodes,
3354 	Opt_size,
3355 	Opt_uid,
3356 	Opt_inode32,
3357 	Opt_inode64,
3358 };
3359 
3360 static const struct constant_table shmem_param_enums_huge[] = {
3361 	{"never",	SHMEM_HUGE_NEVER },
3362 	{"always",	SHMEM_HUGE_ALWAYS },
3363 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3364 	{"advise",	SHMEM_HUGE_ADVISE },
3365 	{}
3366 };
3367 
3368 const struct fs_parameter_spec shmem_fs_parameters[] = {
3369 	fsparam_u32   ("gid",		Opt_gid),
3370 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3371 	fsparam_u32oct("mode",		Opt_mode),
3372 	fsparam_string("mpol",		Opt_mpol),
3373 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3374 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3375 	fsparam_string("size",		Opt_size),
3376 	fsparam_u32   ("uid",		Opt_uid),
3377 	fsparam_flag  ("inode32",	Opt_inode32),
3378 	fsparam_flag  ("inode64",	Opt_inode64),
3379 	{}
3380 };
3381 
3382 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3383 {
3384 	struct shmem_options *ctx = fc->fs_private;
3385 	struct fs_parse_result result;
3386 	unsigned long long size;
3387 	char *rest;
3388 	int opt;
3389 
3390 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3391 	if (opt < 0)
3392 		return opt;
3393 
3394 	switch (opt) {
3395 	case Opt_size:
3396 		size = memparse(param->string, &rest);
3397 		if (*rest == '%') {
3398 			size <<= PAGE_SHIFT;
3399 			size *= totalram_pages();
3400 			do_div(size, 100);
3401 			rest++;
3402 		}
3403 		if (*rest)
3404 			goto bad_value;
3405 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3406 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3407 		break;
3408 	case Opt_nr_blocks:
3409 		ctx->blocks = memparse(param->string, &rest);
3410 		if (*rest)
3411 			goto bad_value;
3412 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3413 		break;
3414 	case Opt_nr_inodes:
3415 		ctx->inodes = memparse(param->string, &rest);
3416 		if (*rest)
3417 			goto bad_value;
3418 		ctx->seen |= SHMEM_SEEN_INODES;
3419 		break;
3420 	case Opt_mode:
3421 		ctx->mode = result.uint_32 & 07777;
3422 		break;
3423 	case Opt_uid:
3424 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3425 		if (!uid_valid(ctx->uid))
3426 			goto bad_value;
3427 		break;
3428 	case Opt_gid:
3429 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3430 		if (!gid_valid(ctx->gid))
3431 			goto bad_value;
3432 		break;
3433 	case Opt_huge:
3434 		ctx->huge = result.uint_32;
3435 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3436 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3437 		      has_transparent_hugepage()))
3438 			goto unsupported_parameter;
3439 		ctx->seen |= SHMEM_SEEN_HUGE;
3440 		break;
3441 	case Opt_mpol:
3442 		if (IS_ENABLED(CONFIG_NUMA)) {
3443 			mpol_put(ctx->mpol);
3444 			ctx->mpol = NULL;
3445 			if (mpol_parse_str(param->string, &ctx->mpol))
3446 				goto bad_value;
3447 			break;
3448 		}
3449 		goto unsupported_parameter;
3450 	case Opt_inode32:
3451 		ctx->full_inums = false;
3452 		ctx->seen |= SHMEM_SEEN_INUMS;
3453 		break;
3454 	case Opt_inode64:
3455 		if (sizeof(ino_t) < 8) {
3456 			return invalfc(fc,
3457 				       "Cannot use inode64 with <64bit inums in kernel\n");
3458 		}
3459 		ctx->full_inums = true;
3460 		ctx->seen |= SHMEM_SEEN_INUMS;
3461 		break;
3462 	}
3463 	return 0;
3464 
3465 unsupported_parameter:
3466 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3467 bad_value:
3468 	return invalfc(fc, "Bad value for '%s'", param->key);
3469 }
3470 
3471 static int shmem_parse_options(struct fs_context *fc, void *data)
3472 {
3473 	char *options = data;
3474 
3475 	if (options) {
3476 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3477 		if (err)
3478 			return err;
3479 	}
3480 
3481 	while (options != NULL) {
3482 		char *this_char = options;
3483 		for (;;) {
3484 			/*
3485 			 * NUL-terminate this option: unfortunately,
3486 			 * mount options form a comma-separated list,
3487 			 * but mpol's nodelist may also contain commas.
3488 			 */
3489 			options = strchr(options, ',');
3490 			if (options == NULL)
3491 				break;
3492 			options++;
3493 			if (!isdigit(*options)) {
3494 				options[-1] = '\0';
3495 				break;
3496 			}
3497 		}
3498 		if (*this_char) {
3499 			char *value = strchr(this_char, '=');
3500 			size_t len = 0;
3501 			int err;
3502 
3503 			if (value) {
3504 				*value++ = '\0';
3505 				len = strlen(value);
3506 			}
3507 			err = vfs_parse_fs_string(fc, this_char, value, len);
3508 			if (err < 0)
3509 				return err;
3510 		}
3511 	}
3512 	return 0;
3513 }
3514 
3515 /*
3516  * Reconfigure a shmem filesystem.
3517  *
3518  * Note that we disallow change from limited->unlimited blocks/inodes while any
3519  * are in use; but we must separately disallow unlimited->limited, because in
3520  * that case we have no record of how much is already in use.
3521  */
3522 static int shmem_reconfigure(struct fs_context *fc)
3523 {
3524 	struct shmem_options *ctx = fc->fs_private;
3525 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3526 	unsigned long inodes;
3527 	const char *err;
3528 
3529 	spin_lock(&sbinfo->stat_lock);
3530 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3531 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3532 		if (!sbinfo->max_blocks) {
3533 			err = "Cannot retroactively limit size";
3534 			goto out;
3535 		}
3536 		if (percpu_counter_compare(&sbinfo->used_blocks,
3537 					   ctx->blocks) > 0) {
3538 			err = "Too small a size for current use";
3539 			goto out;
3540 		}
3541 	}
3542 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3543 		if (!sbinfo->max_inodes) {
3544 			err = "Cannot retroactively limit inodes";
3545 			goto out;
3546 		}
3547 		if (ctx->inodes < inodes) {
3548 			err = "Too few inodes for current use";
3549 			goto out;
3550 		}
3551 	}
3552 
3553 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3554 	    sbinfo->next_ino > UINT_MAX) {
3555 		err = "Current inum too high to switch to 32-bit inums";
3556 		goto out;
3557 	}
3558 
3559 	if (ctx->seen & SHMEM_SEEN_HUGE)
3560 		sbinfo->huge = ctx->huge;
3561 	if (ctx->seen & SHMEM_SEEN_INUMS)
3562 		sbinfo->full_inums = ctx->full_inums;
3563 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3564 		sbinfo->max_blocks  = ctx->blocks;
3565 	if (ctx->seen & SHMEM_SEEN_INODES) {
3566 		sbinfo->max_inodes  = ctx->inodes;
3567 		sbinfo->free_inodes = ctx->inodes - inodes;
3568 	}
3569 
3570 	/*
3571 	 * Preserve previous mempolicy unless mpol remount option was specified.
3572 	 */
3573 	if (ctx->mpol) {
3574 		mpol_put(sbinfo->mpol);
3575 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3576 		ctx->mpol = NULL;
3577 	}
3578 	spin_unlock(&sbinfo->stat_lock);
3579 	return 0;
3580 out:
3581 	spin_unlock(&sbinfo->stat_lock);
3582 	return invalfc(fc, "%s", err);
3583 }
3584 
3585 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3586 {
3587 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3588 
3589 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3590 		seq_printf(seq, ",size=%luk",
3591 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3592 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3593 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3594 	if (sbinfo->mode != (0777 | S_ISVTX))
3595 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3596 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3597 		seq_printf(seq, ",uid=%u",
3598 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3599 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3600 		seq_printf(seq, ",gid=%u",
3601 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3602 
3603 	/*
3604 	 * Showing inode{64,32} might be useful even if it's the system default,
3605 	 * since then people don't have to resort to checking both here and
3606 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3607 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3608 	 *
3609 	 * We hide it when inode64 isn't the default and we are using 32-bit
3610 	 * inodes, since that probably just means the feature isn't even under
3611 	 * consideration.
3612 	 *
3613 	 * As such:
3614 	 *
3615 	 *                     +-----------------+-----------------+
3616 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3617 	 *  +------------------+-----------------+-----------------+
3618 	 *  | full_inums=true  | show            | show            |
3619 	 *  | full_inums=false | show            | hide            |
3620 	 *  +------------------+-----------------+-----------------+
3621 	 *
3622 	 */
3623 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3624 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3625 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3626 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3627 	if (sbinfo->huge)
3628 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3629 #endif
3630 	shmem_show_mpol(seq, sbinfo->mpol);
3631 	return 0;
3632 }
3633 
3634 #endif /* CONFIG_TMPFS */
3635 
3636 static void shmem_put_super(struct super_block *sb)
3637 {
3638 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3639 
3640 	free_percpu(sbinfo->ino_batch);
3641 	percpu_counter_destroy(&sbinfo->used_blocks);
3642 	mpol_put(sbinfo->mpol);
3643 	kfree(sbinfo);
3644 	sb->s_fs_info = NULL;
3645 }
3646 
3647 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3648 {
3649 	struct shmem_options *ctx = fc->fs_private;
3650 	struct inode *inode;
3651 	struct shmem_sb_info *sbinfo;
3652 	int err = -ENOMEM;
3653 
3654 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3655 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3656 				L1_CACHE_BYTES), GFP_KERNEL);
3657 	if (!sbinfo)
3658 		return -ENOMEM;
3659 
3660 	sb->s_fs_info = sbinfo;
3661 
3662 #ifdef CONFIG_TMPFS
3663 	/*
3664 	 * Per default we only allow half of the physical ram per
3665 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3666 	 * but the internal instance is left unlimited.
3667 	 */
3668 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3669 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3670 			ctx->blocks = shmem_default_max_blocks();
3671 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3672 			ctx->inodes = shmem_default_max_inodes();
3673 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3674 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3675 	} else {
3676 		sb->s_flags |= SB_NOUSER;
3677 	}
3678 	sb->s_export_op = &shmem_export_ops;
3679 	sb->s_flags |= SB_NOSEC;
3680 #else
3681 	sb->s_flags |= SB_NOUSER;
3682 #endif
3683 	sbinfo->max_blocks = ctx->blocks;
3684 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3685 	if (sb->s_flags & SB_KERNMOUNT) {
3686 		sbinfo->ino_batch = alloc_percpu(ino_t);
3687 		if (!sbinfo->ino_batch)
3688 			goto failed;
3689 	}
3690 	sbinfo->uid = ctx->uid;
3691 	sbinfo->gid = ctx->gid;
3692 	sbinfo->full_inums = ctx->full_inums;
3693 	sbinfo->mode = ctx->mode;
3694 	sbinfo->huge = ctx->huge;
3695 	sbinfo->mpol = ctx->mpol;
3696 	ctx->mpol = NULL;
3697 
3698 	spin_lock_init(&sbinfo->stat_lock);
3699 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3700 		goto failed;
3701 	spin_lock_init(&sbinfo->shrinklist_lock);
3702 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3703 
3704 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3705 	sb->s_blocksize = PAGE_SIZE;
3706 	sb->s_blocksize_bits = PAGE_SHIFT;
3707 	sb->s_magic = TMPFS_MAGIC;
3708 	sb->s_op = &shmem_ops;
3709 	sb->s_time_gran = 1;
3710 #ifdef CONFIG_TMPFS_XATTR
3711 	sb->s_xattr = shmem_xattr_handlers;
3712 #endif
3713 #ifdef CONFIG_TMPFS_POSIX_ACL
3714 	sb->s_flags |= SB_POSIXACL;
3715 #endif
3716 	uuid_gen(&sb->s_uuid);
3717 
3718 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3719 	if (!inode)
3720 		goto failed;
3721 	inode->i_uid = sbinfo->uid;
3722 	inode->i_gid = sbinfo->gid;
3723 	sb->s_root = d_make_root(inode);
3724 	if (!sb->s_root)
3725 		goto failed;
3726 	return 0;
3727 
3728 failed:
3729 	shmem_put_super(sb);
3730 	return err;
3731 }
3732 
3733 static int shmem_get_tree(struct fs_context *fc)
3734 {
3735 	return get_tree_nodev(fc, shmem_fill_super);
3736 }
3737 
3738 static void shmem_free_fc(struct fs_context *fc)
3739 {
3740 	struct shmem_options *ctx = fc->fs_private;
3741 
3742 	if (ctx) {
3743 		mpol_put(ctx->mpol);
3744 		kfree(ctx);
3745 	}
3746 }
3747 
3748 static const struct fs_context_operations shmem_fs_context_ops = {
3749 	.free			= shmem_free_fc,
3750 	.get_tree		= shmem_get_tree,
3751 #ifdef CONFIG_TMPFS
3752 	.parse_monolithic	= shmem_parse_options,
3753 	.parse_param		= shmem_parse_one,
3754 	.reconfigure		= shmem_reconfigure,
3755 #endif
3756 };
3757 
3758 static struct kmem_cache *shmem_inode_cachep;
3759 
3760 static struct inode *shmem_alloc_inode(struct super_block *sb)
3761 {
3762 	struct shmem_inode_info *info;
3763 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3764 	if (!info)
3765 		return NULL;
3766 	return &info->vfs_inode;
3767 }
3768 
3769 static void shmem_free_in_core_inode(struct inode *inode)
3770 {
3771 	if (S_ISLNK(inode->i_mode))
3772 		kfree(inode->i_link);
3773 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3774 }
3775 
3776 static void shmem_destroy_inode(struct inode *inode)
3777 {
3778 	if (S_ISREG(inode->i_mode))
3779 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3780 }
3781 
3782 static void shmem_init_inode(void *foo)
3783 {
3784 	struct shmem_inode_info *info = foo;
3785 	inode_init_once(&info->vfs_inode);
3786 }
3787 
3788 static void shmem_init_inodecache(void)
3789 {
3790 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3791 				sizeof(struct shmem_inode_info),
3792 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3793 }
3794 
3795 static void shmem_destroy_inodecache(void)
3796 {
3797 	kmem_cache_destroy(shmem_inode_cachep);
3798 }
3799 
3800 const struct address_space_operations shmem_aops = {
3801 	.writepage	= shmem_writepage,
3802 	.set_page_dirty	= __set_page_dirty_no_writeback,
3803 #ifdef CONFIG_TMPFS
3804 	.write_begin	= shmem_write_begin,
3805 	.write_end	= shmem_write_end,
3806 #endif
3807 #ifdef CONFIG_MIGRATION
3808 	.migratepage	= migrate_page,
3809 #endif
3810 	.error_remove_page = generic_error_remove_page,
3811 };
3812 EXPORT_SYMBOL(shmem_aops);
3813 
3814 static const struct file_operations shmem_file_operations = {
3815 	.mmap		= shmem_mmap,
3816 	.get_unmapped_area = shmem_get_unmapped_area,
3817 #ifdef CONFIG_TMPFS
3818 	.llseek		= shmem_file_llseek,
3819 	.read_iter	= shmem_file_read_iter,
3820 	.write_iter	= generic_file_write_iter,
3821 	.fsync		= noop_fsync,
3822 	.splice_read	= generic_file_splice_read,
3823 	.splice_write	= iter_file_splice_write,
3824 	.fallocate	= shmem_fallocate,
3825 #endif
3826 };
3827 
3828 static const struct inode_operations shmem_inode_operations = {
3829 	.getattr	= shmem_getattr,
3830 	.setattr	= shmem_setattr,
3831 #ifdef CONFIG_TMPFS_XATTR
3832 	.listxattr	= shmem_listxattr,
3833 	.set_acl	= simple_set_acl,
3834 #endif
3835 };
3836 
3837 static const struct inode_operations shmem_dir_inode_operations = {
3838 #ifdef CONFIG_TMPFS
3839 	.create		= shmem_create,
3840 	.lookup		= simple_lookup,
3841 	.link		= shmem_link,
3842 	.unlink		= shmem_unlink,
3843 	.symlink	= shmem_symlink,
3844 	.mkdir		= shmem_mkdir,
3845 	.rmdir		= shmem_rmdir,
3846 	.mknod		= shmem_mknod,
3847 	.rename		= shmem_rename2,
3848 	.tmpfile	= shmem_tmpfile,
3849 #endif
3850 #ifdef CONFIG_TMPFS_XATTR
3851 	.listxattr	= shmem_listxattr,
3852 #endif
3853 #ifdef CONFIG_TMPFS_POSIX_ACL
3854 	.setattr	= shmem_setattr,
3855 	.set_acl	= simple_set_acl,
3856 #endif
3857 };
3858 
3859 static const struct inode_operations shmem_special_inode_operations = {
3860 #ifdef CONFIG_TMPFS_XATTR
3861 	.listxattr	= shmem_listxattr,
3862 #endif
3863 #ifdef CONFIG_TMPFS_POSIX_ACL
3864 	.setattr	= shmem_setattr,
3865 	.set_acl	= simple_set_acl,
3866 #endif
3867 };
3868 
3869 static const struct super_operations shmem_ops = {
3870 	.alloc_inode	= shmem_alloc_inode,
3871 	.free_inode	= shmem_free_in_core_inode,
3872 	.destroy_inode	= shmem_destroy_inode,
3873 #ifdef CONFIG_TMPFS
3874 	.statfs		= shmem_statfs,
3875 	.show_options	= shmem_show_options,
3876 #endif
3877 	.evict_inode	= shmem_evict_inode,
3878 	.drop_inode	= generic_delete_inode,
3879 	.put_super	= shmem_put_super,
3880 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3881 	.nr_cached_objects	= shmem_unused_huge_count,
3882 	.free_cached_objects	= shmem_unused_huge_scan,
3883 #endif
3884 };
3885 
3886 static const struct vm_operations_struct shmem_vm_ops = {
3887 	.fault		= shmem_fault,
3888 	.map_pages	= filemap_map_pages,
3889 #ifdef CONFIG_NUMA
3890 	.set_policy     = shmem_set_policy,
3891 	.get_policy     = shmem_get_policy,
3892 #endif
3893 };
3894 
3895 int shmem_init_fs_context(struct fs_context *fc)
3896 {
3897 	struct shmem_options *ctx;
3898 
3899 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3900 	if (!ctx)
3901 		return -ENOMEM;
3902 
3903 	ctx->mode = 0777 | S_ISVTX;
3904 	ctx->uid = current_fsuid();
3905 	ctx->gid = current_fsgid();
3906 
3907 	fc->fs_private = ctx;
3908 	fc->ops = &shmem_fs_context_ops;
3909 	return 0;
3910 }
3911 
3912 static struct file_system_type shmem_fs_type = {
3913 	.owner		= THIS_MODULE,
3914 	.name		= "tmpfs",
3915 	.init_fs_context = shmem_init_fs_context,
3916 #ifdef CONFIG_TMPFS
3917 	.parameters	= shmem_fs_parameters,
3918 #endif
3919 	.kill_sb	= kill_litter_super,
3920 	.fs_flags	= FS_USERNS_MOUNT | FS_THP_SUPPORT,
3921 };
3922 
3923 int __init shmem_init(void)
3924 {
3925 	int error;
3926 
3927 	shmem_init_inodecache();
3928 
3929 	error = register_filesystem(&shmem_fs_type);
3930 	if (error) {
3931 		pr_err("Could not register tmpfs\n");
3932 		goto out2;
3933 	}
3934 
3935 	shm_mnt = kern_mount(&shmem_fs_type);
3936 	if (IS_ERR(shm_mnt)) {
3937 		error = PTR_ERR(shm_mnt);
3938 		pr_err("Could not kern_mount tmpfs\n");
3939 		goto out1;
3940 	}
3941 
3942 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3943 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3944 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3945 	else
3946 		shmem_huge = 0; /* just in case it was patched */
3947 #endif
3948 	return 0;
3949 
3950 out1:
3951 	unregister_filesystem(&shmem_fs_type);
3952 out2:
3953 	shmem_destroy_inodecache();
3954 	shm_mnt = ERR_PTR(error);
3955 	return error;
3956 }
3957 
3958 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3959 static ssize_t shmem_enabled_show(struct kobject *kobj,
3960 				  struct kobj_attribute *attr, char *buf)
3961 {
3962 	static const int values[] = {
3963 		SHMEM_HUGE_ALWAYS,
3964 		SHMEM_HUGE_WITHIN_SIZE,
3965 		SHMEM_HUGE_ADVISE,
3966 		SHMEM_HUGE_NEVER,
3967 		SHMEM_HUGE_DENY,
3968 		SHMEM_HUGE_FORCE,
3969 	};
3970 	int len = 0;
3971 	int i;
3972 
3973 	for (i = 0; i < ARRAY_SIZE(values); i++) {
3974 		len += sysfs_emit_at(buf, len,
3975 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3976 				     i ? " " : "",
3977 				     shmem_format_huge(values[i]));
3978 	}
3979 
3980 	len += sysfs_emit_at(buf, len, "\n");
3981 
3982 	return len;
3983 }
3984 
3985 static ssize_t shmem_enabled_store(struct kobject *kobj,
3986 		struct kobj_attribute *attr, const char *buf, size_t count)
3987 {
3988 	char tmp[16];
3989 	int huge;
3990 
3991 	if (count + 1 > sizeof(tmp))
3992 		return -EINVAL;
3993 	memcpy(tmp, buf, count);
3994 	tmp[count] = '\0';
3995 	if (count && tmp[count - 1] == '\n')
3996 		tmp[count - 1] = '\0';
3997 
3998 	huge = shmem_parse_huge(tmp);
3999 	if (huge == -EINVAL)
4000 		return -EINVAL;
4001 	if (!has_transparent_hugepage() &&
4002 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4003 		return -EINVAL;
4004 
4005 	shmem_huge = huge;
4006 	if (shmem_huge > SHMEM_HUGE_DENY)
4007 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4008 	return count;
4009 }
4010 
4011 struct kobj_attribute shmem_enabled_attr =
4012 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4013 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4014 
4015 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4016 bool shmem_huge_enabled(struct vm_area_struct *vma)
4017 {
4018 	struct inode *inode = file_inode(vma->vm_file);
4019 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4020 	loff_t i_size;
4021 	pgoff_t off;
4022 
4023 	if (!transhuge_vma_enabled(vma, vma->vm_flags))
4024 		return false;
4025 	if (shmem_huge == SHMEM_HUGE_FORCE)
4026 		return true;
4027 	if (shmem_huge == SHMEM_HUGE_DENY)
4028 		return false;
4029 	switch (sbinfo->huge) {
4030 		case SHMEM_HUGE_NEVER:
4031 			return false;
4032 		case SHMEM_HUGE_ALWAYS:
4033 			return true;
4034 		case SHMEM_HUGE_WITHIN_SIZE:
4035 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4036 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4037 			if (i_size >= HPAGE_PMD_SIZE &&
4038 					i_size >> PAGE_SHIFT >= off)
4039 				return true;
4040 			fallthrough;
4041 		case SHMEM_HUGE_ADVISE:
4042 			/* TODO: implement fadvise() hints */
4043 			return (vma->vm_flags & VM_HUGEPAGE);
4044 		default:
4045 			VM_BUG_ON(1);
4046 			return false;
4047 	}
4048 }
4049 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4050 
4051 #else /* !CONFIG_SHMEM */
4052 
4053 /*
4054  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4055  *
4056  * This is intended for small system where the benefits of the full
4057  * shmem code (swap-backed and resource-limited) are outweighed by
4058  * their complexity. On systems without swap this code should be
4059  * effectively equivalent, but much lighter weight.
4060  */
4061 
4062 static struct file_system_type shmem_fs_type = {
4063 	.name		= "tmpfs",
4064 	.init_fs_context = ramfs_init_fs_context,
4065 	.parameters	= ramfs_fs_parameters,
4066 	.kill_sb	= kill_litter_super,
4067 	.fs_flags	= FS_USERNS_MOUNT,
4068 };
4069 
4070 int __init shmem_init(void)
4071 {
4072 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4073 
4074 	shm_mnt = kern_mount(&shmem_fs_type);
4075 	BUG_ON(IS_ERR(shm_mnt));
4076 
4077 	return 0;
4078 }
4079 
4080 int shmem_unuse(unsigned int type, bool frontswap,
4081 		unsigned long *fs_pages_to_unuse)
4082 {
4083 	return 0;
4084 }
4085 
4086 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4087 {
4088 	return 0;
4089 }
4090 
4091 void shmem_unlock_mapping(struct address_space *mapping)
4092 {
4093 }
4094 
4095 #ifdef CONFIG_MMU
4096 unsigned long shmem_get_unmapped_area(struct file *file,
4097 				      unsigned long addr, unsigned long len,
4098 				      unsigned long pgoff, unsigned long flags)
4099 {
4100 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4101 }
4102 #endif
4103 
4104 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4105 {
4106 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4107 }
4108 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4109 
4110 #define shmem_vm_ops				generic_file_vm_ops
4111 #define shmem_file_operations			ramfs_file_operations
4112 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4113 #define shmem_acct_size(flags, size)		0
4114 #define shmem_unacct_size(flags, size)		do {} while (0)
4115 
4116 #endif /* CONFIG_SHMEM */
4117 
4118 /* common code */
4119 
4120 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4121 				       unsigned long flags, unsigned int i_flags)
4122 {
4123 	struct inode *inode;
4124 	struct file *res;
4125 
4126 	if (IS_ERR(mnt))
4127 		return ERR_CAST(mnt);
4128 
4129 	if (size < 0 || size > MAX_LFS_FILESIZE)
4130 		return ERR_PTR(-EINVAL);
4131 
4132 	if (shmem_acct_size(flags, size))
4133 		return ERR_PTR(-ENOMEM);
4134 
4135 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4136 				flags);
4137 	if (unlikely(!inode)) {
4138 		shmem_unacct_size(flags, size);
4139 		return ERR_PTR(-ENOSPC);
4140 	}
4141 	inode->i_flags |= i_flags;
4142 	inode->i_size = size;
4143 	clear_nlink(inode);	/* It is unlinked */
4144 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4145 	if (!IS_ERR(res))
4146 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4147 				&shmem_file_operations);
4148 	if (IS_ERR(res))
4149 		iput(inode);
4150 	return res;
4151 }
4152 
4153 /**
4154  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4155  * 	kernel internal.  There will be NO LSM permission checks against the
4156  * 	underlying inode.  So users of this interface must do LSM checks at a
4157  *	higher layer.  The users are the big_key and shm implementations.  LSM
4158  *	checks are provided at the key or shm level rather than the inode.
4159  * @name: name for dentry (to be seen in /proc/<pid>/maps
4160  * @size: size to be set for the file
4161  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4162  */
4163 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4164 {
4165 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4166 }
4167 
4168 /**
4169  * shmem_file_setup - get an unlinked file living in tmpfs
4170  * @name: name for dentry (to be seen in /proc/<pid>/maps
4171  * @size: size to be set for the file
4172  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4173  */
4174 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4175 {
4176 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4177 }
4178 EXPORT_SYMBOL_GPL(shmem_file_setup);
4179 
4180 /**
4181  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4182  * @mnt: the tmpfs mount where the file will be created
4183  * @name: name for dentry (to be seen in /proc/<pid>/maps
4184  * @size: size to be set for the file
4185  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4186  */
4187 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4188 				       loff_t size, unsigned long flags)
4189 {
4190 	return __shmem_file_setup(mnt, name, size, flags, 0);
4191 }
4192 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4193 
4194 /**
4195  * shmem_zero_setup - setup a shared anonymous mapping
4196  * @vma: the vma to be mmapped is prepared by do_mmap
4197  */
4198 int shmem_zero_setup(struct vm_area_struct *vma)
4199 {
4200 	struct file *file;
4201 	loff_t size = vma->vm_end - vma->vm_start;
4202 
4203 	/*
4204 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4205 	 * between XFS directory reading and selinux: since this file is only
4206 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4207 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4208 	 */
4209 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4210 	if (IS_ERR(file))
4211 		return PTR_ERR(file);
4212 
4213 	if (vma->vm_file)
4214 		fput(vma->vm_file);
4215 	vma->vm_file = file;
4216 	vma->vm_ops = &shmem_vm_ops;
4217 
4218 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4219 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4220 			(vma->vm_end & HPAGE_PMD_MASK)) {
4221 		khugepaged_enter(vma, vma->vm_flags);
4222 	}
4223 
4224 	return 0;
4225 }
4226 
4227 /**
4228  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4229  * @mapping:	the page's address_space
4230  * @index:	the page index
4231  * @gfp:	the page allocator flags to use if allocating
4232  *
4233  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4234  * with any new page allocations done using the specified allocation flags.
4235  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4236  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4237  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4238  *
4239  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4240  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4241  */
4242 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4243 					 pgoff_t index, gfp_t gfp)
4244 {
4245 #ifdef CONFIG_SHMEM
4246 	struct inode *inode = mapping->host;
4247 	struct page *page;
4248 	int error;
4249 
4250 	BUG_ON(!shmem_mapping(mapping));
4251 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4252 				  gfp, NULL, NULL, NULL);
4253 	if (error)
4254 		page = ERR_PTR(error);
4255 	else
4256 		unlock_page(page);
4257 	return page;
4258 #else
4259 	/*
4260 	 * The tiny !SHMEM case uses ramfs without swap
4261 	 */
4262 	return read_cache_page_gfp(mapping, index, gfp);
4263 #endif
4264 }
4265 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4266