1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/export.h> 33 #include <linux/swap.h> 34 #include <linux/uio.h> 35 36 static struct vfsmount *shm_mnt; 37 38 #ifdef CONFIG_SHMEM 39 /* 40 * This virtual memory filesystem is heavily based on the ramfs. It 41 * extends ramfs by the ability to use swap and honor resource limits 42 * which makes it a completely usable filesystem. 43 */ 44 45 #include <linux/xattr.h> 46 #include <linux/exportfs.h> 47 #include <linux/posix_acl.h> 48 #include <linux/posix_acl_xattr.h> 49 #include <linux/mman.h> 50 #include <linux/string.h> 51 #include <linux/slab.h> 52 #include <linux/backing-dev.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/writeback.h> 55 #include <linux/blkdev.h> 56 #include <linux/pagevec.h> 57 #include <linux/percpu_counter.h> 58 #include <linux/falloc.h> 59 #include <linux/splice.h> 60 #include <linux/security.h> 61 #include <linux/swapops.h> 62 #include <linux/mempolicy.h> 63 #include <linux/namei.h> 64 #include <linux/ctype.h> 65 #include <linux/migrate.h> 66 #include <linux/highmem.h> 67 #include <linux/seq_file.h> 68 #include <linux/magic.h> 69 #include <linux/syscalls.h> 70 #include <linux/fcntl.h> 71 #include <uapi/linux/memfd.h> 72 73 #include <asm/uaccess.h> 74 #include <asm/pgtable.h> 75 76 #include "internal.h" 77 78 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 79 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 80 81 /* Pretend that each entry is of this size in directory's i_size */ 82 #define BOGO_DIRENT_SIZE 20 83 84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 85 #define SHORT_SYMLINK_LEN 128 86 87 /* 88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 89 * inode->i_private (with i_mutex making sure that it has only one user at 90 * a time): we would prefer not to enlarge the shmem inode just for that. 91 */ 92 struct shmem_falloc { 93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 94 pgoff_t start; /* start of range currently being fallocated */ 95 pgoff_t next; /* the next page offset to be fallocated */ 96 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 98 }; 99 100 /* Flag allocation requirements to shmem_getpage */ 101 enum sgp_type { 102 SGP_READ, /* don't exceed i_size, don't allocate page */ 103 SGP_CACHE, /* don't exceed i_size, may allocate page */ 104 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 105 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ 106 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ 107 }; 108 109 #ifdef CONFIG_TMPFS 110 static unsigned long shmem_default_max_blocks(void) 111 { 112 return totalram_pages / 2; 113 } 114 115 static unsigned long shmem_default_max_inodes(void) 116 { 117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 118 } 119 #endif 120 121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 122 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 123 struct shmem_inode_info *info, pgoff_t index); 124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 125 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); 126 127 static inline int shmem_getpage(struct inode *inode, pgoff_t index, 128 struct page **pagep, enum sgp_type sgp, int *fault_type) 129 { 130 return shmem_getpage_gfp(inode, index, pagep, sgp, 131 mapping_gfp_mask(inode->i_mapping), fault_type); 132 } 133 134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 135 { 136 return sb->s_fs_info; 137 } 138 139 /* 140 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 141 * for shared memory and for shared anonymous (/dev/zero) mappings 142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 143 * consistent with the pre-accounting of private mappings ... 144 */ 145 static inline int shmem_acct_size(unsigned long flags, loff_t size) 146 { 147 return (flags & VM_NORESERVE) ? 148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 149 } 150 151 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 152 { 153 if (!(flags & VM_NORESERVE)) 154 vm_unacct_memory(VM_ACCT(size)); 155 } 156 157 static inline int shmem_reacct_size(unsigned long flags, 158 loff_t oldsize, loff_t newsize) 159 { 160 if (!(flags & VM_NORESERVE)) { 161 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 162 return security_vm_enough_memory_mm(current->mm, 163 VM_ACCT(newsize) - VM_ACCT(oldsize)); 164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 166 } 167 return 0; 168 } 169 170 /* 171 * ... whereas tmpfs objects are accounted incrementally as 172 * pages are allocated, in order to allow huge sparse files. 173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 175 */ 176 static inline int shmem_acct_block(unsigned long flags) 177 { 178 return (flags & VM_NORESERVE) ? 179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0; 180 } 181 182 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 183 { 184 if (flags & VM_NORESERVE) 185 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 186 } 187 188 static const struct super_operations shmem_ops; 189 static const struct address_space_operations shmem_aops; 190 static const struct file_operations shmem_file_operations; 191 static const struct inode_operations shmem_inode_operations; 192 static const struct inode_operations shmem_dir_inode_operations; 193 static const struct inode_operations shmem_special_inode_operations; 194 static const struct vm_operations_struct shmem_vm_ops; 195 196 static LIST_HEAD(shmem_swaplist); 197 static DEFINE_MUTEX(shmem_swaplist_mutex); 198 199 static int shmem_reserve_inode(struct super_block *sb) 200 { 201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 202 if (sbinfo->max_inodes) { 203 spin_lock(&sbinfo->stat_lock); 204 if (!sbinfo->free_inodes) { 205 spin_unlock(&sbinfo->stat_lock); 206 return -ENOSPC; 207 } 208 sbinfo->free_inodes--; 209 spin_unlock(&sbinfo->stat_lock); 210 } 211 return 0; 212 } 213 214 static void shmem_free_inode(struct super_block *sb) 215 { 216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 217 if (sbinfo->max_inodes) { 218 spin_lock(&sbinfo->stat_lock); 219 sbinfo->free_inodes++; 220 spin_unlock(&sbinfo->stat_lock); 221 } 222 } 223 224 /** 225 * shmem_recalc_inode - recalculate the block usage of an inode 226 * @inode: inode to recalc 227 * 228 * We have to calculate the free blocks since the mm can drop 229 * undirtied hole pages behind our back. 230 * 231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 233 * 234 * It has to be called with the spinlock held. 235 */ 236 static void shmem_recalc_inode(struct inode *inode) 237 { 238 struct shmem_inode_info *info = SHMEM_I(inode); 239 long freed; 240 241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 242 if (freed > 0) { 243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 244 if (sbinfo->max_blocks) 245 percpu_counter_add(&sbinfo->used_blocks, -freed); 246 info->alloced -= freed; 247 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 248 shmem_unacct_blocks(info->flags, freed); 249 } 250 } 251 252 /* 253 * Replace item expected in radix tree by a new item, while holding tree lock. 254 */ 255 static int shmem_radix_tree_replace(struct address_space *mapping, 256 pgoff_t index, void *expected, void *replacement) 257 { 258 void **pslot; 259 void *item; 260 261 VM_BUG_ON(!expected); 262 VM_BUG_ON(!replacement); 263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 264 if (!pslot) 265 return -ENOENT; 266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock); 267 if (item != expected) 268 return -ENOENT; 269 radix_tree_replace_slot(pslot, replacement); 270 return 0; 271 } 272 273 /* 274 * Sometimes, before we decide whether to proceed or to fail, we must check 275 * that an entry was not already brought back from swap by a racing thread. 276 * 277 * Checking page is not enough: by the time a SwapCache page is locked, it 278 * might be reused, and again be SwapCache, using the same swap as before. 279 */ 280 static bool shmem_confirm_swap(struct address_space *mapping, 281 pgoff_t index, swp_entry_t swap) 282 { 283 void *item; 284 285 rcu_read_lock(); 286 item = radix_tree_lookup(&mapping->page_tree, index); 287 rcu_read_unlock(); 288 return item == swp_to_radix_entry(swap); 289 } 290 291 /* 292 * Like add_to_page_cache_locked, but error if expected item has gone. 293 */ 294 static int shmem_add_to_page_cache(struct page *page, 295 struct address_space *mapping, 296 pgoff_t index, void *expected) 297 { 298 int error; 299 300 VM_BUG_ON_PAGE(!PageLocked(page), page); 301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 302 303 page_cache_get(page); 304 page->mapping = mapping; 305 page->index = index; 306 307 spin_lock_irq(&mapping->tree_lock); 308 if (!expected) 309 error = radix_tree_insert(&mapping->page_tree, index, page); 310 else 311 error = shmem_radix_tree_replace(mapping, index, expected, 312 page); 313 if (!error) { 314 mapping->nrpages++; 315 __inc_zone_page_state(page, NR_FILE_PAGES); 316 __inc_zone_page_state(page, NR_SHMEM); 317 spin_unlock_irq(&mapping->tree_lock); 318 } else { 319 page->mapping = NULL; 320 spin_unlock_irq(&mapping->tree_lock); 321 page_cache_release(page); 322 } 323 return error; 324 } 325 326 /* 327 * Like delete_from_page_cache, but substitutes swap for page. 328 */ 329 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 330 { 331 struct address_space *mapping = page->mapping; 332 int error; 333 334 spin_lock_irq(&mapping->tree_lock); 335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 336 page->mapping = NULL; 337 mapping->nrpages--; 338 __dec_zone_page_state(page, NR_FILE_PAGES); 339 __dec_zone_page_state(page, NR_SHMEM); 340 spin_unlock_irq(&mapping->tree_lock); 341 page_cache_release(page); 342 BUG_ON(error); 343 } 344 345 /* 346 * Remove swap entry from radix tree, free the swap and its page cache. 347 */ 348 static int shmem_free_swap(struct address_space *mapping, 349 pgoff_t index, void *radswap) 350 { 351 void *old; 352 353 spin_lock_irq(&mapping->tree_lock); 354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 355 spin_unlock_irq(&mapping->tree_lock); 356 if (old != radswap) 357 return -ENOENT; 358 free_swap_and_cache(radix_to_swp_entry(radswap)); 359 return 0; 360 } 361 362 /* 363 * Determine (in bytes) how many of the shmem object's pages mapped by the 364 * given offsets are swapped out. 365 * 366 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 367 * as long as the inode doesn't go away and racy results are not a problem. 368 */ 369 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 370 pgoff_t start, pgoff_t end) 371 { 372 struct radix_tree_iter iter; 373 void **slot; 374 struct page *page; 375 unsigned long swapped = 0; 376 377 rcu_read_lock(); 378 379 restart: 380 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 381 if (iter.index >= end) 382 break; 383 384 page = radix_tree_deref_slot(slot); 385 386 if (radix_tree_deref_retry(page)) { 387 slot = radix_tree_iter_retry(&iter); 388 continue; 389 } 390 391 if (radix_tree_exceptional_entry(page)) 392 swapped++; 393 394 if (need_resched()) { 395 cond_resched_rcu(); 396 start = iter.index + 1; 397 goto restart; 398 } 399 } 400 401 rcu_read_unlock(); 402 403 return swapped << PAGE_SHIFT; 404 } 405 406 /* 407 * Determine (in bytes) how many of the shmem object's pages mapped by the 408 * given vma is swapped out. 409 * 410 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 411 * as long as the inode doesn't go away and racy results are not a problem. 412 */ 413 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 414 { 415 struct inode *inode = file_inode(vma->vm_file); 416 struct shmem_inode_info *info = SHMEM_I(inode); 417 struct address_space *mapping = inode->i_mapping; 418 unsigned long swapped; 419 420 /* Be careful as we don't hold info->lock */ 421 swapped = READ_ONCE(info->swapped); 422 423 /* 424 * The easier cases are when the shmem object has nothing in swap, or 425 * the vma maps it whole. Then we can simply use the stats that we 426 * already track. 427 */ 428 if (!swapped) 429 return 0; 430 431 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 432 return swapped << PAGE_SHIFT; 433 434 /* Here comes the more involved part */ 435 return shmem_partial_swap_usage(mapping, 436 linear_page_index(vma, vma->vm_start), 437 linear_page_index(vma, vma->vm_end)); 438 } 439 440 /* 441 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 442 */ 443 void shmem_unlock_mapping(struct address_space *mapping) 444 { 445 struct pagevec pvec; 446 pgoff_t indices[PAGEVEC_SIZE]; 447 pgoff_t index = 0; 448 449 pagevec_init(&pvec, 0); 450 /* 451 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 452 */ 453 while (!mapping_unevictable(mapping)) { 454 /* 455 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 456 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 457 */ 458 pvec.nr = find_get_entries(mapping, index, 459 PAGEVEC_SIZE, pvec.pages, indices); 460 if (!pvec.nr) 461 break; 462 index = indices[pvec.nr - 1] + 1; 463 pagevec_remove_exceptionals(&pvec); 464 check_move_unevictable_pages(pvec.pages, pvec.nr); 465 pagevec_release(&pvec); 466 cond_resched(); 467 } 468 } 469 470 /* 471 * Remove range of pages and swap entries from radix tree, and free them. 472 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 473 */ 474 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 475 bool unfalloc) 476 { 477 struct address_space *mapping = inode->i_mapping; 478 struct shmem_inode_info *info = SHMEM_I(inode); 479 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 480 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT; 481 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1); 482 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 483 struct pagevec pvec; 484 pgoff_t indices[PAGEVEC_SIZE]; 485 long nr_swaps_freed = 0; 486 pgoff_t index; 487 int i; 488 489 if (lend == -1) 490 end = -1; /* unsigned, so actually very big */ 491 492 pagevec_init(&pvec, 0); 493 index = start; 494 while (index < end) { 495 pvec.nr = find_get_entries(mapping, index, 496 min(end - index, (pgoff_t)PAGEVEC_SIZE), 497 pvec.pages, indices); 498 if (!pvec.nr) 499 break; 500 for (i = 0; i < pagevec_count(&pvec); i++) { 501 struct page *page = pvec.pages[i]; 502 503 index = indices[i]; 504 if (index >= end) 505 break; 506 507 if (radix_tree_exceptional_entry(page)) { 508 if (unfalloc) 509 continue; 510 nr_swaps_freed += !shmem_free_swap(mapping, 511 index, page); 512 continue; 513 } 514 515 if (!trylock_page(page)) 516 continue; 517 if (!unfalloc || !PageUptodate(page)) { 518 if (page->mapping == mapping) { 519 VM_BUG_ON_PAGE(PageWriteback(page), page); 520 truncate_inode_page(mapping, page); 521 } 522 } 523 unlock_page(page); 524 } 525 pagevec_remove_exceptionals(&pvec); 526 pagevec_release(&pvec); 527 cond_resched(); 528 index++; 529 } 530 531 if (partial_start) { 532 struct page *page = NULL; 533 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); 534 if (page) { 535 unsigned int top = PAGE_CACHE_SIZE; 536 if (start > end) { 537 top = partial_end; 538 partial_end = 0; 539 } 540 zero_user_segment(page, partial_start, top); 541 set_page_dirty(page); 542 unlock_page(page); 543 page_cache_release(page); 544 } 545 } 546 if (partial_end) { 547 struct page *page = NULL; 548 shmem_getpage(inode, end, &page, SGP_READ, NULL); 549 if (page) { 550 zero_user_segment(page, 0, partial_end); 551 set_page_dirty(page); 552 unlock_page(page); 553 page_cache_release(page); 554 } 555 } 556 if (start >= end) 557 return; 558 559 index = start; 560 while (index < end) { 561 cond_resched(); 562 563 pvec.nr = find_get_entries(mapping, index, 564 min(end - index, (pgoff_t)PAGEVEC_SIZE), 565 pvec.pages, indices); 566 if (!pvec.nr) { 567 /* If all gone or hole-punch or unfalloc, we're done */ 568 if (index == start || end != -1) 569 break; 570 /* But if truncating, restart to make sure all gone */ 571 index = start; 572 continue; 573 } 574 for (i = 0; i < pagevec_count(&pvec); i++) { 575 struct page *page = pvec.pages[i]; 576 577 index = indices[i]; 578 if (index >= end) 579 break; 580 581 if (radix_tree_exceptional_entry(page)) { 582 if (unfalloc) 583 continue; 584 if (shmem_free_swap(mapping, index, page)) { 585 /* Swap was replaced by page: retry */ 586 index--; 587 break; 588 } 589 nr_swaps_freed++; 590 continue; 591 } 592 593 lock_page(page); 594 if (!unfalloc || !PageUptodate(page)) { 595 if (page->mapping == mapping) { 596 VM_BUG_ON_PAGE(PageWriteback(page), page); 597 truncate_inode_page(mapping, page); 598 } else { 599 /* Page was replaced by swap: retry */ 600 unlock_page(page); 601 index--; 602 break; 603 } 604 } 605 unlock_page(page); 606 } 607 pagevec_remove_exceptionals(&pvec); 608 pagevec_release(&pvec); 609 index++; 610 } 611 612 spin_lock(&info->lock); 613 info->swapped -= nr_swaps_freed; 614 shmem_recalc_inode(inode); 615 spin_unlock(&info->lock); 616 } 617 618 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 619 { 620 shmem_undo_range(inode, lstart, lend, false); 621 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 622 } 623 EXPORT_SYMBOL_GPL(shmem_truncate_range); 624 625 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry, 626 struct kstat *stat) 627 { 628 struct inode *inode = dentry->d_inode; 629 struct shmem_inode_info *info = SHMEM_I(inode); 630 631 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 632 spin_lock(&info->lock); 633 shmem_recalc_inode(inode); 634 spin_unlock(&info->lock); 635 } 636 generic_fillattr(inode, stat); 637 return 0; 638 } 639 640 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 641 { 642 struct inode *inode = d_inode(dentry); 643 struct shmem_inode_info *info = SHMEM_I(inode); 644 int error; 645 646 error = inode_change_ok(inode, attr); 647 if (error) 648 return error; 649 650 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 651 loff_t oldsize = inode->i_size; 652 loff_t newsize = attr->ia_size; 653 654 /* protected by i_mutex */ 655 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 656 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 657 return -EPERM; 658 659 if (newsize != oldsize) { 660 error = shmem_reacct_size(SHMEM_I(inode)->flags, 661 oldsize, newsize); 662 if (error) 663 return error; 664 i_size_write(inode, newsize); 665 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 666 } 667 if (newsize <= oldsize) { 668 loff_t holebegin = round_up(newsize, PAGE_SIZE); 669 if (oldsize > holebegin) 670 unmap_mapping_range(inode->i_mapping, 671 holebegin, 0, 1); 672 if (info->alloced) 673 shmem_truncate_range(inode, 674 newsize, (loff_t)-1); 675 /* unmap again to remove racily COWed private pages */ 676 if (oldsize > holebegin) 677 unmap_mapping_range(inode->i_mapping, 678 holebegin, 0, 1); 679 } 680 } 681 682 setattr_copy(inode, attr); 683 if (attr->ia_valid & ATTR_MODE) 684 error = posix_acl_chmod(inode, inode->i_mode); 685 return error; 686 } 687 688 static void shmem_evict_inode(struct inode *inode) 689 { 690 struct shmem_inode_info *info = SHMEM_I(inode); 691 692 if (inode->i_mapping->a_ops == &shmem_aops) { 693 shmem_unacct_size(info->flags, inode->i_size); 694 inode->i_size = 0; 695 shmem_truncate_range(inode, 0, (loff_t)-1); 696 if (!list_empty(&info->swaplist)) { 697 mutex_lock(&shmem_swaplist_mutex); 698 list_del_init(&info->swaplist); 699 mutex_unlock(&shmem_swaplist_mutex); 700 } 701 } 702 703 simple_xattrs_free(&info->xattrs); 704 WARN_ON(inode->i_blocks); 705 shmem_free_inode(inode->i_sb); 706 clear_inode(inode); 707 } 708 709 /* 710 * If swap found in inode, free it and move page from swapcache to filecache. 711 */ 712 static int shmem_unuse_inode(struct shmem_inode_info *info, 713 swp_entry_t swap, struct page **pagep) 714 { 715 struct address_space *mapping = info->vfs_inode.i_mapping; 716 void *radswap; 717 pgoff_t index; 718 gfp_t gfp; 719 int error = 0; 720 721 radswap = swp_to_radix_entry(swap); 722 index = radix_tree_locate_item(&mapping->page_tree, radswap); 723 if (index == -1) 724 return -EAGAIN; /* tell shmem_unuse we found nothing */ 725 726 /* 727 * Move _head_ to start search for next from here. 728 * But be careful: shmem_evict_inode checks list_empty without taking 729 * mutex, and there's an instant in list_move_tail when info->swaplist 730 * would appear empty, if it were the only one on shmem_swaplist. 731 */ 732 if (shmem_swaplist.next != &info->swaplist) 733 list_move_tail(&shmem_swaplist, &info->swaplist); 734 735 gfp = mapping_gfp_mask(mapping); 736 if (shmem_should_replace_page(*pagep, gfp)) { 737 mutex_unlock(&shmem_swaplist_mutex); 738 error = shmem_replace_page(pagep, gfp, info, index); 739 mutex_lock(&shmem_swaplist_mutex); 740 /* 741 * We needed to drop mutex to make that restrictive page 742 * allocation, but the inode might have been freed while we 743 * dropped it: although a racing shmem_evict_inode() cannot 744 * complete without emptying the radix_tree, our page lock 745 * on this swapcache page is not enough to prevent that - 746 * free_swap_and_cache() of our swap entry will only 747 * trylock_page(), removing swap from radix_tree whatever. 748 * 749 * We must not proceed to shmem_add_to_page_cache() if the 750 * inode has been freed, but of course we cannot rely on 751 * inode or mapping or info to check that. However, we can 752 * safely check if our swap entry is still in use (and here 753 * it can't have got reused for another page): if it's still 754 * in use, then the inode cannot have been freed yet, and we 755 * can safely proceed (if it's no longer in use, that tells 756 * nothing about the inode, but we don't need to unuse swap). 757 */ 758 if (!page_swapcount(*pagep)) 759 error = -ENOENT; 760 } 761 762 /* 763 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 764 * but also to hold up shmem_evict_inode(): so inode cannot be freed 765 * beneath us (pagelock doesn't help until the page is in pagecache). 766 */ 767 if (!error) 768 error = shmem_add_to_page_cache(*pagep, mapping, index, 769 radswap); 770 if (error != -ENOMEM) { 771 /* 772 * Truncation and eviction use free_swap_and_cache(), which 773 * only does trylock page: if we raced, best clean up here. 774 */ 775 delete_from_swap_cache(*pagep); 776 set_page_dirty(*pagep); 777 if (!error) { 778 spin_lock(&info->lock); 779 info->swapped--; 780 spin_unlock(&info->lock); 781 swap_free(swap); 782 } 783 } 784 return error; 785 } 786 787 /* 788 * Search through swapped inodes to find and replace swap by page. 789 */ 790 int shmem_unuse(swp_entry_t swap, struct page *page) 791 { 792 struct list_head *this, *next; 793 struct shmem_inode_info *info; 794 struct mem_cgroup *memcg; 795 int error = 0; 796 797 /* 798 * There's a faint possibility that swap page was replaced before 799 * caller locked it: caller will come back later with the right page. 800 */ 801 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 802 goto out; 803 804 /* 805 * Charge page using GFP_KERNEL while we can wait, before taking 806 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 807 * Charged back to the user (not to caller) when swap account is used. 808 */ 809 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg, 810 false); 811 if (error) 812 goto out; 813 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 814 error = -EAGAIN; 815 816 mutex_lock(&shmem_swaplist_mutex); 817 list_for_each_safe(this, next, &shmem_swaplist) { 818 info = list_entry(this, struct shmem_inode_info, swaplist); 819 if (info->swapped) 820 error = shmem_unuse_inode(info, swap, &page); 821 else 822 list_del_init(&info->swaplist); 823 cond_resched(); 824 if (error != -EAGAIN) 825 break; 826 /* found nothing in this: move on to search the next */ 827 } 828 mutex_unlock(&shmem_swaplist_mutex); 829 830 if (error) { 831 if (error != -ENOMEM) 832 error = 0; 833 mem_cgroup_cancel_charge(page, memcg, false); 834 } else 835 mem_cgroup_commit_charge(page, memcg, true, false); 836 out: 837 unlock_page(page); 838 page_cache_release(page); 839 return error; 840 } 841 842 /* 843 * Move the page from the page cache to the swap cache. 844 */ 845 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 846 { 847 struct shmem_inode_info *info; 848 struct address_space *mapping; 849 struct inode *inode; 850 swp_entry_t swap; 851 pgoff_t index; 852 853 BUG_ON(!PageLocked(page)); 854 mapping = page->mapping; 855 index = page->index; 856 inode = mapping->host; 857 info = SHMEM_I(inode); 858 if (info->flags & VM_LOCKED) 859 goto redirty; 860 if (!total_swap_pages) 861 goto redirty; 862 863 /* 864 * Our capabilities prevent regular writeback or sync from ever calling 865 * shmem_writepage; but a stacking filesystem might use ->writepage of 866 * its underlying filesystem, in which case tmpfs should write out to 867 * swap only in response to memory pressure, and not for the writeback 868 * threads or sync. 869 */ 870 if (!wbc->for_reclaim) { 871 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 872 goto redirty; 873 } 874 875 /* 876 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 877 * value into swapfile.c, the only way we can correctly account for a 878 * fallocated page arriving here is now to initialize it and write it. 879 * 880 * That's okay for a page already fallocated earlier, but if we have 881 * not yet completed the fallocation, then (a) we want to keep track 882 * of this page in case we have to undo it, and (b) it may not be a 883 * good idea to continue anyway, once we're pushing into swap. So 884 * reactivate the page, and let shmem_fallocate() quit when too many. 885 */ 886 if (!PageUptodate(page)) { 887 if (inode->i_private) { 888 struct shmem_falloc *shmem_falloc; 889 spin_lock(&inode->i_lock); 890 shmem_falloc = inode->i_private; 891 if (shmem_falloc && 892 !shmem_falloc->waitq && 893 index >= shmem_falloc->start && 894 index < shmem_falloc->next) 895 shmem_falloc->nr_unswapped++; 896 else 897 shmem_falloc = NULL; 898 spin_unlock(&inode->i_lock); 899 if (shmem_falloc) 900 goto redirty; 901 } 902 clear_highpage(page); 903 flush_dcache_page(page); 904 SetPageUptodate(page); 905 } 906 907 swap = get_swap_page(); 908 if (!swap.val) 909 goto redirty; 910 911 if (mem_cgroup_try_charge_swap(page, swap)) 912 goto free_swap; 913 914 /* 915 * Add inode to shmem_unuse()'s list of swapped-out inodes, 916 * if it's not already there. Do it now before the page is 917 * moved to swap cache, when its pagelock no longer protects 918 * the inode from eviction. But don't unlock the mutex until 919 * we've incremented swapped, because shmem_unuse_inode() will 920 * prune a !swapped inode from the swaplist under this mutex. 921 */ 922 mutex_lock(&shmem_swaplist_mutex); 923 if (list_empty(&info->swaplist)) 924 list_add_tail(&info->swaplist, &shmem_swaplist); 925 926 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 927 spin_lock(&info->lock); 928 shmem_recalc_inode(inode); 929 info->swapped++; 930 spin_unlock(&info->lock); 931 932 swap_shmem_alloc(swap); 933 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 934 935 mutex_unlock(&shmem_swaplist_mutex); 936 BUG_ON(page_mapped(page)); 937 swap_writepage(page, wbc); 938 return 0; 939 } 940 941 mutex_unlock(&shmem_swaplist_mutex); 942 free_swap: 943 swapcache_free(swap); 944 redirty: 945 set_page_dirty(page); 946 if (wbc->for_reclaim) 947 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 948 unlock_page(page); 949 return 0; 950 } 951 952 #ifdef CONFIG_NUMA 953 #ifdef CONFIG_TMPFS 954 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 955 { 956 char buffer[64]; 957 958 if (!mpol || mpol->mode == MPOL_DEFAULT) 959 return; /* show nothing */ 960 961 mpol_to_str(buffer, sizeof(buffer), mpol); 962 963 seq_printf(seq, ",mpol=%s", buffer); 964 } 965 966 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 967 { 968 struct mempolicy *mpol = NULL; 969 if (sbinfo->mpol) { 970 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 971 mpol = sbinfo->mpol; 972 mpol_get(mpol); 973 spin_unlock(&sbinfo->stat_lock); 974 } 975 return mpol; 976 } 977 #endif /* CONFIG_TMPFS */ 978 979 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 980 struct shmem_inode_info *info, pgoff_t index) 981 { 982 struct vm_area_struct pvma; 983 struct page *page; 984 985 /* Create a pseudo vma that just contains the policy */ 986 pvma.vm_start = 0; 987 /* Bias interleave by inode number to distribute better across nodes */ 988 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 989 pvma.vm_ops = NULL; 990 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 991 992 page = swapin_readahead(swap, gfp, &pvma, 0); 993 994 /* Drop reference taken by mpol_shared_policy_lookup() */ 995 mpol_cond_put(pvma.vm_policy); 996 997 return page; 998 } 999 1000 static struct page *shmem_alloc_page(gfp_t gfp, 1001 struct shmem_inode_info *info, pgoff_t index) 1002 { 1003 struct vm_area_struct pvma; 1004 struct page *page; 1005 1006 /* Create a pseudo vma that just contains the policy */ 1007 pvma.vm_start = 0; 1008 /* Bias interleave by inode number to distribute better across nodes */ 1009 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 1010 pvma.vm_ops = NULL; 1011 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1012 1013 page = alloc_page_vma(gfp, &pvma, 0); 1014 1015 /* Drop reference taken by mpol_shared_policy_lookup() */ 1016 mpol_cond_put(pvma.vm_policy); 1017 1018 return page; 1019 } 1020 #else /* !CONFIG_NUMA */ 1021 #ifdef CONFIG_TMPFS 1022 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1023 { 1024 } 1025 #endif /* CONFIG_TMPFS */ 1026 1027 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1028 struct shmem_inode_info *info, pgoff_t index) 1029 { 1030 return swapin_readahead(swap, gfp, NULL, 0); 1031 } 1032 1033 static inline struct page *shmem_alloc_page(gfp_t gfp, 1034 struct shmem_inode_info *info, pgoff_t index) 1035 { 1036 return alloc_page(gfp); 1037 } 1038 #endif /* CONFIG_NUMA */ 1039 1040 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 1041 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1042 { 1043 return NULL; 1044 } 1045 #endif 1046 1047 /* 1048 * When a page is moved from swapcache to shmem filecache (either by the 1049 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1050 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1051 * ignorance of the mapping it belongs to. If that mapping has special 1052 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1053 * we may need to copy to a suitable page before moving to filecache. 1054 * 1055 * In a future release, this may well be extended to respect cpuset and 1056 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1057 * but for now it is a simple matter of zone. 1058 */ 1059 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1060 { 1061 return page_zonenum(page) > gfp_zone(gfp); 1062 } 1063 1064 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1065 struct shmem_inode_info *info, pgoff_t index) 1066 { 1067 struct page *oldpage, *newpage; 1068 struct address_space *swap_mapping; 1069 pgoff_t swap_index; 1070 int error; 1071 1072 oldpage = *pagep; 1073 swap_index = page_private(oldpage); 1074 swap_mapping = page_mapping(oldpage); 1075 1076 /* 1077 * We have arrived here because our zones are constrained, so don't 1078 * limit chance of success by further cpuset and node constraints. 1079 */ 1080 gfp &= ~GFP_CONSTRAINT_MASK; 1081 newpage = shmem_alloc_page(gfp, info, index); 1082 if (!newpage) 1083 return -ENOMEM; 1084 1085 page_cache_get(newpage); 1086 copy_highpage(newpage, oldpage); 1087 flush_dcache_page(newpage); 1088 1089 __SetPageLocked(newpage); 1090 SetPageUptodate(newpage); 1091 SetPageSwapBacked(newpage); 1092 set_page_private(newpage, swap_index); 1093 SetPageSwapCache(newpage); 1094 1095 /* 1096 * Our caller will very soon move newpage out of swapcache, but it's 1097 * a nice clean interface for us to replace oldpage by newpage there. 1098 */ 1099 spin_lock_irq(&swap_mapping->tree_lock); 1100 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1101 newpage); 1102 if (!error) { 1103 __inc_zone_page_state(newpage, NR_FILE_PAGES); 1104 __dec_zone_page_state(oldpage, NR_FILE_PAGES); 1105 } 1106 spin_unlock_irq(&swap_mapping->tree_lock); 1107 1108 if (unlikely(error)) { 1109 /* 1110 * Is this possible? I think not, now that our callers check 1111 * both PageSwapCache and page_private after getting page lock; 1112 * but be defensive. Reverse old to newpage for clear and free. 1113 */ 1114 oldpage = newpage; 1115 } else { 1116 mem_cgroup_migrate(oldpage, newpage); 1117 lru_cache_add_anon(newpage); 1118 *pagep = newpage; 1119 } 1120 1121 ClearPageSwapCache(oldpage); 1122 set_page_private(oldpage, 0); 1123 1124 unlock_page(oldpage); 1125 page_cache_release(oldpage); 1126 page_cache_release(oldpage); 1127 return error; 1128 } 1129 1130 /* 1131 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1132 * 1133 * If we allocate a new one we do not mark it dirty. That's up to the 1134 * vm. If we swap it in we mark it dirty since we also free the swap 1135 * entry since a page cannot live in both the swap and page cache 1136 */ 1137 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1138 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) 1139 { 1140 struct address_space *mapping = inode->i_mapping; 1141 struct shmem_inode_info *info; 1142 struct shmem_sb_info *sbinfo; 1143 struct mem_cgroup *memcg; 1144 struct page *page; 1145 swp_entry_t swap; 1146 int error; 1147 int once = 0; 1148 int alloced = 0; 1149 1150 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT)) 1151 return -EFBIG; 1152 repeat: 1153 swap.val = 0; 1154 page = find_lock_entry(mapping, index); 1155 if (radix_tree_exceptional_entry(page)) { 1156 swap = radix_to_swp_entry(page); 1157 page = NULL; 1158 } 1159 1160 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1161 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1162 error = -EINVAL; 1163 goto unlock; 1164 } 1165 1166 if (page && sgp == SGP_WRITE) 1167 mark_page_accessed(page); 1168 1169 /* fallocated page? */ 1170 if (page && !PageUptodate(page)) { 1171 if (sgp != SGP_READ) 1172 goto clear; 1173 unlock_page(page); 1174 page_cache_release(page); 1175 page = NULL; 1176 } 1177 if (page || (sgp == SGP_READ && !swap.val)) { 1178 *pagep = page; 1179 return 0; 1180 } 1181 1182 /* 1183 * Fast cache lookup did not find it: 1184 * bring it back from swap or allocate. 1185 */ 1186 info = SHMEM_I(inode); 1187 sbinfo = SHMEM_SB(inode->i_sb); 1188 1189 if (swap.val) { 1190 /* Look it up and read it in.. */ 1191 page = lookup_swap_cache(swap); 1192 if (!page) { 1193 /* here we actually do the io */ 1194 if (fault_type) 1195 *fault_type |= VM_FAULT_MAJOR; 1196 page = shmem_swapin(swap, gfp, info, index); 1197 if (!page) { 1198 error = -ENOMEM; 1199 goto failed; 1200 } 1201 } 1202 1203 /* We have to do this with page locked to prevent races */ 1204 lock_page(page); 1205 if (!PageSwapCache(page) || page_private(page) != swap.val || 1206 !shmem_confirm_swap(mapping, index, swap)) { 1207 error = -EEXIST; /* try again */ 1208 goto unlock; 1209 } 1210 if (!PageUptodate(page)) { 1211 error = -EIO; 1212 goto failed; 1213 } 1214 wait_on_page_writeback(page); 1215 1216 if (shmem_should_replace_page(page, gfp)) { 1217 error = shmem_replace_page(&page, gfp, info, index); 1218 if (error) 1219 goto failed; 1220 } 1221 1222 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg, 1223 false); 1224 if (!error) { 1225 error = shmem_add_to_page_cache(page, mapping, index, 1226 swp_to_radix_entry(swap)); 1227 /* 1228 * We already confirmed swap under page lock, and make 1229 * no memory allocation here, so usually no possibility 1230 * of error; but free_swap_and_cache() only trylocks a 1231 * page, so it is just possible that the entry has been 1232 * truncated or holepunched since swap was confirmed. 1233 * shmem_undo_range() will have done some of the 1234 * unaccounting, now delete_from_swap_cache() will do 1235 * the rest. 1236 * Reset swap.val? No, leave it so "failed" goes back to 1237 * "repeat": reading a hole and writing should succeed. 1238 */ 1239 if (error) { 1240 mem_cgroup_cancel_charge(page, memcg, false); 1241 delete_from_swap_cache(page); 1242 } 1243 } 1244 if (error) 1245 goto failed; 1246 1247 mem_cgroup_commit_charge(page, memcg, true, false); 1248 1249 spin_lock(&info->lock); 1250 info->swapped--; 1251 shmem_recalc_inode(inode); 1252 spin_unlock(&info->lock); 1253 1254 if (sgp == SGP_WRITE) 1255 mark_page_accessed(page); 1256 1257 delete_from_swap_cache(page); 1258 set_page_dirty(page); 1259 swap_free(swap); 1260 1261 } else { 1262 if (shmem_acct_block(info->flags)) { 1263 error = -ENOSPC; 1264 goto failed; 1265 } 1266 if (sbinfo->max_blocks) { 1267 if (percpu_counter_compare(&sbinfo->used_blocks, 1268 sbinfo->max_blocks) >= 0) { 1269 error = -ENOSPC; 1270 goto unacct; 1271 } 1272 percpu_counter_inc(&sbinfo->used_blocks); 1273 } 1274 1275 page = shmem_alloc_page(gfp, info, index); 1276 if (!page) { 1277 error = -ENOMEM; 1278 goto decused; 1279 } 1280 1281 __SetPageSwapBacked(page); 1282 __SetPageLocked(page); 1283 if (sgp == SGP_WRITE) 1284 __SetPageReferenced(page); 1285 1286 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg, 1287 false); 1288 if (error) 1289 goto decused; 1290 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 1291 if (!error) { 1292 error = shmem_add_to_page_cache(page, mapping, index, 1293 NULL); 1294 radix_tree_preload_end(); 1295 } 1296 if (error) { 1297 mem_cgroup_cancel_charge(page, memcg, false); 1298 goto decused; 1299 } 1300 mem_cgroup_commit_charge(page, memcg, false, false); 1301 lru_cache_add_anon(page); 1302 1303 spin_lock(&info->lock); 1304 info->alloced++; 1305 inode->i_blocks += BLOCKS_PER_PAGE; 1306 shmem_recalc_inode(inode); 1307 spin_unlock(&info->lock); 1308 alloced = true; 1309 1310 /* 1311 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1312 */ 1313 if (sgp == SGP_FALLOC) 1314 sgp = SGP_WRITE; 1315 clear: 1316 /* 1317 * Let SGP_WRITE caller clear ends if write does not fill page; 1318 * but SGP_FALLOC on a page fallocated earlier must initialize 1319 * it now, lest undo on failure cancel our earlier guarantee. 1320 */ 1321 if (sgp != SGP_WRITE) { 1322 clear_highpage(page); 1323 flush_dcache_page(page); 1324 SetPageUptodate(page); 1325 } 1326 if (sgp == SGP_DIRTY) 1327 set_page_dirty(page); 1328 } 1329 1330 /* Perhaps the file has been truncated since we checked */ 1331 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1332 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1333 if (alloced) { 1334 ClearPageDirty(page); 1335 delete_from_page_cache(page); 1336 spin_lock(&info->lock); 1337 shmem_recalc_inode(inode); 1338 spin_unlock(&info->lock); 1339 } 1340 error = -EINVAL; 1341 goto unlock; 1342 } 1343 *pagep = page; 1344 return 0; 1345 1346 /* 1347 * Error recovery. 1348 */ 1349 decused: 1350 if (sbinfo->max_blocks) 1351 percpu_counter_add(&sbinfo->used_blocks, -1); 1352 unacct: 1353 shmem_unacct_blocks(info->flags, 1); 1354 failed: 1355 if (swap.val && !shmem_confirm_swap(mapping, index, swap)) 1356 error = -EEXIST; 1357 unlock: 1358 if (page) { 1359 unlock_page(page); 1360 page_cache_release(page); 1361 } 1362 if (error == -ENOSPC && !once++) { 1363 info = SHMEM_I(inode); 1364 spin_lock(&info->lock); 1365 shmem_recalc_inode(inode); 1366 spin_unlock(&info->lock); 1367 goto repeat; 1368 } 1369 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1370 goto repeat; 1371 return error; 1372 } 1373 1374 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1375 { 1376 struct inode *inode = file_inode(vma->vm_file); 1377 int error; 1378 int ret = VM_FAULT_LOCKED; 1379 1380 /* 1381 * Trinity finds that probing a hole which tmpfs is punching can 1382 * prevent the hole-punch from ever completing: which in turn 1383 * locks writers out with its hold on i_mutex. So refrain from 1384 * faulting pages into the hole while it's being punched. Although 1385 * shmem_undo_range() does remove the additions, it may be unable to 1386 * keep up, as each new page needs its own unmap_mapping_range() call, 1387 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1388 * 1389 * It does not matter if we sometimes reach this check just before the 1390 * hole-punch begins, so that one fault then races with the punch: 1391 * we just need to make racing faults a rare case. 1392 * 1393 * The implementation below would be much simpler if we just used a 1394 * standard mutex or completion: but we cannot take i_mutex in fault, 1395 * and bloating every shmem inode for this unlikely case would be sad. 1396 */ 1397 if (unlikely(inode->i_private)) { 1398 struct shmem_falloc *shmem_falloc; 1399 1400 spin_lock(&inode->i_lock); 1401 shmem_falloc = inode->i_private; 1402 if (shmem_falloc && 1403 shmem_falloc->waitq && 1404 vmf->pgoff >= shmem_falloc->start && 1405 vmf->pgoff < shmem_falloc->next) { 1406 wait_queue_head_t *shmem_falloc_waitq; 1407 DEFINE_WAIT(shmem_fault_wait); 1408 1409 ret = VM_FAULT_NOPAGE; 1410 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1411 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1412 /* It's polite to up mmap_sem if we can */ 1413 up_read(&vma->vm_mm->mmap_sem); 1414 ret = VM_FAULT_RETRY; 1415 } 1416 1417 shmem_falloc_waitq = shmem_falloc->waitq; 1418 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1419 TASK_UNINTERRUPTIBLE); 1420 spin_unlock(&inode->i_lock); 1421 schedule(); 1422 1423 /* 1424 * shmem_falloc_waitq points into the shmem_fallocate() 1425 * stack of the hole-punching task: shmem_falloc_waitq 1426 * is usually invalid by the time we reach here, but 1427 * finish_wait() does not dereference it in that case; 1428 * though i_lock needed lest racing with wake_up_all(). 1429 */ 1430 spin_lock(&inode->i_lock); 1431 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1432 spin_unlock(&inode->i_lock); 1433 return ret; 1434 } 1435 spin_unlock(&inode->i_lock); 1436 } 1437 1438 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1439 if (error) 1440 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1441 1442 if (ret & VM_FAULT_MAJOR) { 1443 count_vm_event(PGMAJFAULT); 1444 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1445 } 1446 return ret; 1447 } 1448 1449 #ifdef CONFIG_NUMA 1450 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 1451 { 1452 struct inode *inode = file_inode(vma->vm_file); 1453 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 1454 } 1455 1456 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1457 unsigned long addr) 1458 { 1459 struct inode *inode = file_inode(vma->vm_file); 1460 pgoff_t index; 1461 1462 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1463 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 1464 } 1465 #endif 1466 1467 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1468 { 1469 struct inode *inode = file_inode(file); 1470 struct shmem_inode_info *info = SHMEM_I(inode); 1471 int retval = -ENOMEM; 1472 1473 spin_lock(&info->lock); 1474 if (lock && !(info->flags & VM_LOCKED)) { 1475 if (!user_shm_lock(inode->i_size, user)) 1476 goto out_nomem; 1477 info->flags |= VM_LOCKED; 1478 mapping_set_unevictable(file->f_mapping); 1479 } 1480 if (!lock && (info->flags & VM_LOCKED) && user) { 1481 user_shm_unlock(inode->i_size, user); 1482 info->flags &= ~VM_LOCKED; 1483 mapping_clear_unevictable(file->f_mapping); 1484 } 1485 retval = 0; 1486 1487 out_nomem: 1488 spin_unlock(&info->lock); 1489 return retval; 1490 } 1491 1492 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1493 { 1494 file_accessed(file); 1495 vma->vm_ops = &shmem_vm_ops; 1496 return 0; 1497 } 1498 1499 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1500 umode_t mode, dev_t dev, unsigned long flags) 1501 { 1502 struct inode *inode; 1503 struct shmem_inode_info *info; 1504 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1505 1506 if (shmem_reserve_inode(sb)) 1507 return NULL; 1508 1509 inode = new_inode(sb); 1510 if (inode) { 1511 inode->i_ino = get_next_ino(); 1512 inode_init_owner(inode, dir, mode); 1513 inode->i_blocks = 0; 1514 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1515 inode->i_generation = get_seconds(); 1516 info = SHMEM_I(inode); 1517 memset(info, 0, (char *)inode - (char *)info); 1518 spin_lock_init(&info->lock); 1519 info->seals = F_SEAL_SEAL; 1520 info->flags = flags & VM_NORESERVE; 1521 INIT_LIST_HEAD(&info->swaplist); 1522 simple_xattrs_init(&info->xattrs); 1523 cache_no_acl(inode); 1524 1525 switch (mode & S_IFMT) { 1526 default: 1527 inode->i_op = &shmem_special_inode_operations; 1528 init_special_inode(inode, mode, dev); 1529 break; 1530 case S_IFREG: 1531 inode->i_mapping->a_ops = &shmem_aops; 1532 inode->i_op = &shmem_inode_operations; 1533 inode->i_fop = &shmem_file_operations; 1534 mpol_shared_policy_init(&info->policy, 1535 shmem_get_sbmpol(sbinfo)); 1536 break; 1537 case S_IFDIR: 1538 inc_nlink(inode); 1539 /* Some things misbehave if size == 0 on a directory */ 1540 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1541 inode->i_op = &shmem_dir_inode_operations; 1542 inode->i_fop = &simple_dir_operations; 1543 break; 1544 case S_IFLNK: 1545 /* 1546 * Must not load anything in the rbtree, 1547 * mpol_free_shared_policy will not be called. 1548 */ 1549 mpol_shared_policy_init(&info->policy, NULL); 1550 break; 1551 } 1552 } else 1553 shmem_free_inode(sb); 1554 return inode; 1555 } 1556 1557 bool shmem_mapping(struct address_space *mapping) 1558 { 1559 if (!mapping->host) 1560 return false; 1561 1562 return mapping->host->i_sb->s_op == &shmem_ops; 1563 } 1564 1565 #ifdef CONFIG_TMPFS 1566 static const struct inode_operations shmem_symlink_inode_operations; 1567 static const struct inode_operations shmem_short_symlink_operations; 1568 1569 #ifdef CONFIG_TMPFS_XATTR 1570 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 1571 #else 1572 #define shmem_initxattrs NULL 1573 #endif 1574 1575 static int 1576 shmem_write_begin(struct file *file, struct address_space *mapping, 1577 loff_t pos, unsigned len, unsigned flags, 1578 struct page **pagep, void **fsdata) 1579 { 1580 struct inode *inode = mapping->host; 1581 struct shmem_inode_info *info = SHMEM_I(inode); 1582 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1583 1584 /* i_mutex is held by caller */ 1585 if (unlikely(info->seals)) { 1586 if (info->seals & F_SEAL_WRITE) 1587 return -EPERM; 1588 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 1589 return -EPERM; 1590 } 1591 1592 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1593 } 1594 1595 static int 1596 shmem_write_end(struct file *file, struct address_space *mapping, 1597 loff_t pos, unsigned len, unsigned copied, 1598 struct page *page, void *fsdata) 1599 { 1600 struct inode *inode = mapping->host; 1601 1602 if (pos + copied > inode->i_size) 1603 i_size_write(inode, pos + copied); 1604 1605 if (!PageUptodate(page)) { 1606 if (copied < PAGE_CACHE_SIZE) { 1607 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1608 zero_user_segments(page, 0, from, 1609 from + copied, PAGE_CACHE_SIZE); 1610 } 1611 SetPageUptodate(page); 1612 } 1613 set_page_dirty(page); 1614 unlock_page(page); 1615 page_cache_release(page); 1616 1617 return copied; 1618 } 1619 1620 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1621 { 1622 struct file *file = iocb->ki_filp; 1623 struct inode *inode = file_inode(file); 1624 struct address_space *mapping = inode->i_mapping; 1625 pgoff_t index; 1626 unsigned long offset; 1627 enum sgp_type sgp = SGP_READ; 1628 int error = 0; 1629 ssize_t retval = 0; 1630 loff_t *ppos = &iocb->ki_pos; 1631 1632 /* 1633 * Might this read be for a stacking filesystem? Then when reading 1634 * holes of a sparse file, we actually need to allocate those pages, 1635 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1636 */ 1637 if (!iter_is_iovec(to)) 1638 sgp = SGP_DIRTY; 1639 1640 index = *ppos >> PAGE_CACHE_SHIFT; 1641 offset = *ppos & ~PAGE_CACHE_MASK; 1642 1643 for (;;) { 1644 struct page *page = NULL; 1645 pgoff_t end_index; 1646 unsigned long nr, ret; 1647 loff_t i_size = i_size_read(inode); 1648 1649 end_index = i_size >> PAGE_CACHE_SHIFT; 1650 if (index > end_index) 1651 break; 1652 if (index == end_index) { 1653 nr = i_size & ~PAGE_CACHE_MASK; 1654 if (nr <= offset) 1655 break; 1656 } 1657 1658 error = shmem_getpage(inode, index, &page, sgp, NULL); 1659 if (error) { 1660 if (error == -EINVAL) 1661 error = 0; 1662 break; 1663 } 1664 if (page) 1665 unlock_page(page); 1666 1667 /* 1668 * We must evaluate after, since reads (unlike writes) 1669 * are called without i_mutex protection against truncate 1670 */ 1671 nr = PAGE_CACHE_SIZE; 1672 i_size = i_size_read(inode); 1673 end_index = i_size >> PAGE_CACHE_SHIFT; 1674 if (index == end_index) { 1675 nr = i_size & ~PAGE_CACHE_MASK; 1676 if (nr <= offset) { 1677 if (page) 1678 page_cache_release(page); 1679 break; 1680 } 1681 } 1682 nr -= offset; 1683 1684 if (page) { 1685 /* 1686 * If users can be writing to this page using arbitrary 1687 * virtual addresses, take care about potential aliasing 1688 * before reading the page on the kernel side. 1689 */ 1690 if (mapping_writably_mapped(mapping)) 1691 flush_dcache_page(page); 1692 /* 1693 * Mark the page accessed if we read the beginning. 1694 */ 1695 if (!offset) 1696 mark_page_accessed(page); 1697 } else { 1698 page = ZERO_PAGE(0); 1699 page_cache_get(page); 1700 } 1701 1702 /* 1703 * Ok, we have the page, and it's up-to-date, so 1704 * now we can copy it to user space... 1705 */ 1706 ret = copy_page_to_iter(page, offset, nr, to); 1707 retval += ret; 1708 offset += ret; 1709 index += offset >> PAGE_CACHE_SHIFT; 1710 offset &= ~PAGE_CACHE_MASK; 1711 1712 page_cache_release(page); 1713 if (!iov_iter_count(to)) 1714 break; 1715 if (ret < nr) { 1716 error = -EFAULT; 1717 break; 1718 } 1719 cond_resched(); 1720 } 1721 1722 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1723 file_accessed(file); 1724 return retval ? retval : error; 1725 } 1726 1727 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 1728 struct pipe_inode_info *pipe, size_t len, 1729 unsigned int flags) 1730 { 1731 struct address_space *mapping = in->f_mapping; 1732 struct inode *inode = mapping->host; 1733 unsigned int loff, nr_pages, req_pages; 1734 struct page *pages[PIPE_DEF_BUFFERS]; 1735 struct partial_page partial[PIPE_DEF_BUFFERS]; 1736 struct page *page; 1737 pgoff_t index, end_index; 1738 loff_t isize, left; 1739 int error, page_nr; 1740 struct splice_pipe_desc spd = { 1741 .pages = pages, 1742 .partial = partial, 1743 .nr_pages_max = PIPE_DEF_BUFFERS, 1744 .flags = flags, 1745 .ops = &page_cache_pipe_buf_ops, 1746 .spd_release = spd_release_page, 1747 }; 1748 1749 isize = i_size_read(inode); 1750 if (unlikely(*ppos >= isize)) 1751 return 0; 1752 1753 left = isize - *ppos; 1754 if (unlikely(left < len)) 1755 len = left; 1756 1757 if (splice_grow_spd(pipe, &spd)) 1758 return -ENOMEM; 1759 1760 index = *ppos >> PAGE_CACHE_SHIFT; 1761 loff = *ppos & ~PAGE_CACHE_MASK; 1762 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1763 nr_pages = min(req_pages, spd.nr_pages_max); 1764 1765 spd.nr_pages = find_get_pages_contig(mapping, index, 1766 nr_pages, spd.pages); 1767 index += spd.nr_pages; 1768 error = 0; 1769 1770 while (spd.nr_pages < nr_pages) { 1771 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); 1772 if (error) 1773 break; 1774 unlock_page(page); 1775 spd.pages[spd.nr_pages++] = page; 1776 index++; 1777 } 1778 1779 index = *ppos >> PAGE_CACHE_SHIFT; 1780 nr_pages = spd.nr_pages; 1781 spd.nr_pages = 0; 1782 1783 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 1784 unsigned int this_len; 1785 1786 if (!len) 1787 break; 1788 1789 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 1790 page = spd.pages[page_nr]; 1791 1792 if (!PageUptodate(page) || page->mapping != mapping) { 1793 error = shmem_getpage(inode, index, &page, 1794 SGP_CACHE, NULL); 1795 if (error) 1796 break; 1797 unlock_page(page); 1798 page_cache_release(spd.pages[page_nr]); 1799 spd.pages[page_nr] = page; 1800 } 1801 1802 isize = i_size_read(inode); 1803 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1804 if (unlikely(!isize || index > end_index)) 1805 break; 1806 1807 if (end_index == index) { 1808 unsigned int plen; 1809 1810 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1811 if (plen <= loff) 1812 break; 1813 1814 this_len = min(this_len, plen - loff); 1815 len = this_len; 1816 } 1817 1818 spd.partial[page_nr].offset = loff; 1819 spd.partial[page_nr].len = this_len; 1820 len -= this_len; 1821 loff = 0; 1822 spd.nr_pages++; 1823 index++; 1824 } 1825 1826 while (page_nr < nr_pages) 1827 page_cache_release(spd.pages[page_nr++]); 1828 1829 if (spd.nr_pages) 1830 error = splice_to_pipe(pipe, &spd); 1831 1832 splice_shrink_spd(&spd); 1833 1834 if (error > 0) { 1835 *ppos += error; 1836 file_accessed(in); 1837 } 1838 return error; 1839 } 1840 1841 /* 1842 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 1843 */ 1844 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 1845 pgoff_t index, pgoff_t end, int whence) 1846 { 1847 struct page *page; 1848 struct pagevec pvec; 1849 pgoff_t indices[PAGEVEC_SIZE]; 1850 bool done = false; 1851 int i; 1852 1853 pagevec_init(&pvec, 0); 1854 pvec.nr = 1; /* start small: we may be there already */ 1855 while (!done) { 1856 pvec.nr = find_get_entries(mapping, index, 1857 pvec.nr, pvec.pages, indices); 1858 if (!pvec.nr) { 1859 if (whence == SEEK_DATA) 1860 index = end; 1861 break; 1862 } 1863 for (i = 0; i < pvec.nr; i++, index++) { 1864 if (index < indices[i]) { 1865 if (whence == SEEK_HOLE) { 1866 done = true; 1867 break; 1868 } 1869 index = indices[i]; 1870 } 1871 page = pvec.pages[i]; 1872 if (page && !radix_tree_exceptional_entry(page)) { 1873 if (!PageUptodate(page)) 1874 page = NULL; 1875 } 1876 if (index >= end || 1877 (page && whence == SEEK_DATA) || 1878 (!page && whence == SEEK_HOLE)) { 1879 done = true; 1880 break; 1881 } 1882 } 1883 pagevec_remove_exceptionals(&pvec); 1884 pagevec_release(&pvec); 1885 pvec.nr = PAGEVEC_SIZE; 1886 cond_resched(); 1887 } 1888 return index; 1889 } 1890 1891 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 1892 { 1893 struct address_space *mapping = file->f_mapping; 1894 struct inode *inode = mapping->host; 1895 pgoff_t start, end; 1896 loff_t new_offset; 1897 1898 if (whence != SEEK_DATA && whence != SEEK_HOLE) 1899 return generic_file_llseek_size(file, offset, whence, 1900 MAX_LFS_FILESIZE, i_size_read(inode)); 1901 inode_lock(inode); 1902 /* We're holding i_mutex so we can access i_size directly */ 1903 1904 if (offset < 0) 1905 offset = -EINVAL; 1906 else if (offset >= inode->i_size) 1907 offset = -ENXIO; 1908 else { 1909 start = offset >> PAGE_CACHE_SHIFT; 1910 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1911 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 1912 new_offset <<= PAGE_CACHE_SHIFT; 1913 if (new_offset > offset) { 1914 if (new_offset < inode->i_size) 1915 offset = new_offset; 1916 else if (whence == SEEK_DATA) 1917 offset = -ENXIO; 1918 else 1919 offset = inode->i_size; 1920 } 1921 } 1922 1923 if (offset >= 0) 1924 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 1925 inode_unlock(inode); 1926 return offset; 1927 } 1928 1929 /* 1930 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 1931 * so reuse a tag which we firmly believe is never set or cleared on shmem. 1932 */ 1933 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 1934 #define LAST_SCAN 4 /* about 150ms max */ 1935 1936 static void shmem_tag_pins(struct address_space *mapping) 1937 { 1938 struct radix_tree_iter iter; 1939 void **slot; 1940 pgoff_t start; 1941 struct page *page; 1942 1943 lru_add_drain(); 1944 start = 0; 1945 rcu_read_lock(); 1946 1947 restart: 1948 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1949 page = radix_tree_deref_slot(slot); 1950 if (!page || radix_tree_exception(page)) { 1951 if (radix_tree_deref_retry(page)) { 1952 slot = radix_tree_iter_retry(&iter); 1953 continue; 1954 } 1955 } else if (page_count(page) - page_mapcount(page) > 1) { 1956 spin_lock_irq(&mapping->tree_lock); 1957 radix_tree_tag_set(&mapping->page_tree, iter.index, 1958 SHMEM_TAG_PINNED); 1959 spin_unlock_irq(&mapping->tree_lock); 1960 } 1961 1962 if (need_resched()) { 1963 cond_resched_rcu(); 1964 start = iter.index + 1; 1965 goto restart; 1966 } 1967 } 1968 rcu_read_unlock(); 1969 } 1970 1971 /* 1972 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 1973 * via get_user_pages(), drivers might have some pending I/O without any active 1974 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 1975 * and see whether it has an elevated ref-count. If so, we tag them and wait for 1976 * them to be dropped. 1977 * The caller must guarantee that no new user will acquire writable references 1978 * to those pages to avoid races. 1979 */ 1980 static int shmem_wait_for_pins(struct address_space *mapping) 1981 { 1982 struct radix_tree_iter iter; 1983 void **slot; 1984 pgoff_t start; 1985 struct page *page; 1986 int error, scan; 1987 1988 shmem_tag_pins(mapping); 1989 1990 error = 0; 1991 for (scan = 0; scan <= LAST_SCAN; scan++) { 1992 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) 1993 break; 1994 1995 if (!scan) 1996 lru_add_drain_all(); 1997 else if (schedule_timeout_killable((HZ << scan) / 200)) 1998 scan = LAST_SCAN; 1999 2000 start = 0; 2001 rcu_read_lock(); 2002 restart: 2003 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 2004 start, SHMEM_TAG_PINNED) { 2005 2006 page = radix_tree_deref_slot(slot); 2007 if (radix_tree_exception(page)) { 2008 if (radix_tree_deref_retry(page)) { 2009 slot = radix_tree_iter_retry(&iter); 2010 continue; 2011 } 2012 2013 page = NULL; 2014 } 2015 2016 if (page && 2017 page_count(page) - page_mapcount(page) != 1) { 2018 if (scan < LAST_SCAN) 2019 goto continue_resched; 2020 2021 /* 2022 * On the last scan, we clean up all those tags 2023 * we inserted; but make a note that we still 2024 * found pages pinned. 2025 */ 2026 error = -EBUSY; 2027 } 2028 2029 spin_lock_irq(&mapping->tree_lock); 2030 radix_tree_tag_clear(&mapping->page_tree, 2031 iter.index, SHMEM_TAG_PINNED); 2032 spin_unlock_irq(&mapping->tree_lock); 2033 continue_resched: 2034 if (need_resched()) { 2035 cond_resched_rcu(); 2036 start = iter.index + 1; 2037 goto restart; 2038 } 2039 } 2040 rcu_read_unlock(); 2041 } 2042 2043 return error; 2044 } 2045 2046 #define F_ALL_SEALS (F_SEAL_SEAL | \ 2047 F_SEAL_SHRINK | \ 2048 F_SEAL_GROW | \ 2049 F_SEAL_WRITE) 2050 2051 int shmem_add_seals(struct file *file, unsigned int seals) 2052 { 2053 struct inode *inode = file_inode(file); 2054 struct shmem_inode_info *info = SHMEM_I(inode); 2055 int error; 2056 2057 /* 2058 * SEALING 2059 * Sealing allows multiple parties to share a shmem-file but restrict 2060 * access to a specific subset of file operations. Seals can only be 2061 * added, but never removed. This way, mutually untrusted parties can 2062 * share common memory regions with a well-defined policy. A malicious 2063 * peer can thus never perform unwanted operations on a shared object. 2064 * 2065 * Seals are only supported on special shmem-files and always affect 2066 * the whole underlying inode. Once a seal is set, it may prevent some 2067 * kinds of access to the file. Currently, the following seals are 2068 * defined: 2069 * SEAL_SEAL: Prevent further seals from being set on this file 2070 * SEAL_SHRINK: Prevent the file from shrinking 2071 * SEAL_GROW: Prevent the file from growing 2072 * SEAL_WRITE: Prevent write access to the file 2073 * 2074 * As we don't require any trust relationship between two parties, we 2075 * must prevent seals from being removed. Therefore, sealing a file 2076 * only adds a given set of seals to the file, it never touches 2077 * existing seals. Furthermore, the "setting seals"-operation can be 2078 * sealed itself, which basically prevents any further seal from being 2079 * added. 2080 * 2081 * Semantics of sealing are only defined on volatile files. Only 2082 * anonymous shmem files support sealing. More importantly, seals are 2083 * never written to disk. Therefore, there's no plan to support it on 2084 * other file types. 2085 */ 2086 2087 if (file->f_op != &shmem_file_operations) 2088 return -EINVAL; 2089 if (!(file->f_mode & FMODE_WRITE)) 2090 return -EPERM; 2091 if (seals & ~(unsigned int)F_ALL_SEALS) 2092 return -EINVAL; 2093 2094 inode_lock(inode); 2095 2096 if (info->seals & F_SEAL_SEAL) { 2097 error = -EPERM; 2098 goto unlock; 2099 } 2100 2101 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) { 2102 error = mapping_deny_writable(file->f_mapping); 2103 if (error) 2104 goto unlock; 2105 2106 error = shmem_wait_for_pins(file->f_mapping); 2107 if (error) { 2108 mapping_allow_writable(file->f_mapping); 2109 goto unlock; 2110 } 2111 } 2112 2113 info->seals |= seals; 2114 error = 0; 2115 2116 unlock: 2117 inode_unlock(inode); 2118 return error; 2119 } 2120 EXPORT_SYMBOL_GPL(shmem_add_seals); 2121 2122 int shmem_get_seals(struct file *file) 2123 { 2124 if (file->f_op != &shmem_file_operations) 2125 return -EINVAL; 2126 2127 return SHMEM_I(file_inode(file))->seals; 2128 } 2129 EXPORT_SYMBOL_GPL(shmem_get_seals); 2130 2131 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2132 { 2133 long error; 2134 2135 switch (cmd) { 2136 case F_ADD_SEALS: 2137 /* disallow upper 32bit */ 2138 if (arg > UINT_MAX) 2139 return -EINVAL; 2140 2141 error = shmem_add_seals(file, arg); 2142 break; 2143 case F_GET_SEALS: 2144 error = shmem_get_seals(file); 2145 break; 2146 default: 2147 error = -EINVAL; 2148 break; 2149 } 2150 2151 return error; 2152 } 2153 2154 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2155 loff_t len) 2156 { 2157 struct inode *inode = file_inode(file); 2158 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2159 struct shmem_inode_info *info = SHMEM_I(inode); 2160 struct shmem_falloc shmem_falloc; 2161 pgoff_t start, index, end; 2162 int error; 2163 2164 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2165 return -EOPNOTSUPP; 2166 2167 inode_lock(inode); 2168 2169 if (mode & FALLOC_FL_PUNCH_HOLE) { 2170 struct address_space *mapping = file->f_mapping; 2171 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2172 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2173 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2174 2175 /* protected by i_mutex */ 2176 if (info->seals & F_SEAL_WRITE) { 2177 error = -EPERM; 2178 goto out; 2179 } 2180 2181 shmem_falloc.waitq = &shmem_falloc_waitq; 2182 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2183 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2184 spin_lock(&inode->i_lock); 2185 inode->i_private = &shmem_falloc; 2186 spin_unlock(&inode->i_lock); 2187 2188 if ((u64)unmap_end > (u64)unmap_start) 2189 unmap_mapping_range(mapping, unmap_start, 2190 1 + unmap_end - unmap_start, 0); 2191 shmem_truncate_range(inode, offset, offset + len - 1); 2192 /* No need to unmap again: hole-punching leaves COWed pages */ 2193 2194 spin_lock(&inode->i_lock); 2195 inode->i_private = NULL; 2196 wake_up_all(&shmem_falloc_waitq); 2197 spin_unlock(&inode->i_lock); 2198 error = 0; 2199 goto out; 2200 } 2201 2202 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2203 error = inode_newsize_ok(inode, offset + len); 2204 if (error) 2205 goto out; 2206 2207 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2208 error = -EPERM; 2209 goto out; 2210 } 2211 2212 start = offset >> PAGE_CACHE_SHIFT; 2213 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 2214 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2215 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2216 error = -ENOSPC; 2217 goto out; 2218 } 2219 2220 shmem_falloc.waitq = NULL; 2221 shmem_falloc.start = start; 2222 shmem_falloc.next = start; 2223 shmem_falloc.nr_falloced = 0; 2224 shmem_falloc.nr_unswapped = 0; 2225 spin_lock(&inode->i_lock); 2226 inode->i_private = &shmem_falloc; 2227 spin_unlock(&inode->i_lock); 2228 2229 for (index = start; index < end; index++) { 2230 struct page *page; 2231 2232 /* 2233 * Good, the fallocate(2) manpage permits EINTR: we may have 2234 * been interrupted because we are using up too much memory. 2235 */ 2236 if (signal_pending(current)) 2237 error = -EINTR; 2238 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2239 error = -ENOMEM; 2240 else 2241 error = shmem_getpage(inode, index, &page, SGP_FALLOC, 2242 NULL); 2243 if (error) { 2244 /* Remove the !PageUptodate pages we added */ 2245 shmem_undo_range(inode, 2246 (loff_t)start << PAGE_CACHE_SHIFT, 2247 (loff_t)index << PAGE_CACHE_SHIFT, true); 2248 goto undone; 2249 } 2250 2251 /* 2252 * Inform shmem_writepage() how far we have reached. 2253 * No need for lock or barrier: we have the page lock. 2254 */ 2255 shmem_falloc.next++; 2256 if (!PageUptodate(page)) 2257 shmem_falloc.nr_falloced++; 2258 2259 /* 2260 * If !PageUptodate, leave it that way so that freeable pages 2261 * can be recognized if we need to rollback on error later. 2262 * But set_page_dirty so that memory pressure will swap rather 2263 * than free the pages we are allocating (and SGP_CACHE pages 2264 * might still be clean: we now need to mark those dirty too). 2265 */ 2266 set_page_dirty(page); 2267 unlock_page(page); 2268 page_cache_release(page); 2269 cond_resched(); 2270 } 2271 2272 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2273 i_size_write(inode, offset + len); 2274 inode->i_ctime = CURRENT_TIME; 2275 undone: 2276 spin_lock(&inode->i_lock); 2277 inode->i_private = NULL; 2278 spin_unlock(&inode->i_lock); 2279 out: 2280 inode_unlock(inode); 2281 return error; 2282 } 2283 2284 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2285 { 2286 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2287 2288 buf->f_type = TMPFS_MAGIC; 2289 buf->f_bsize = PAGE_CACHE_SIZE; 2290 buf->f_namelen = NAME_MAX; 2291 if (sbinfo->max_blocks) { 2292 buf->f_blocks = sbinfo->max_blocks; 2293 buf->f_bavail = 2294 buf->f_bfree = sbinfo->max_blocks - 2295 percpu_counter_sum(&sbinfo->used_blocks); 2296 } 2297 if (sbinfo->max_inodes) { 2298 buf->f_files = sbinfo->max_inodes; 2299 buf->f_ffree = sbinfo->free_inodes; 2300 } 2301 /* else leave those fields 0 like simple_statfs */ 2302 return 0; 2303 } 2304 2305 /* 2306 * File creation. Allocate an inode, and we're done.. 2307 */ 2308 static int 2309 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2310 { 2311 struct inode *inode; 2312 int error = -ENOSPC; 2313 2314 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2315 if (inode) { 2316 error = simple_acl_create(dir, inode); 2317 if (error) 2318 goto out_iput; 2319 error = security_inode_init_security(inode, dir, 2320 &dentry->d_name, 2321 shmem_initxattrs, NULL); 2322 if (error && error != -EOPNOTSUPP) 2323 goto out_iput; 2324 2325 error = 0; 2326 dir->i_size += BOGO_DIRENT_SIZE; 2327 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2328 d_instantiate(dentry, inode); 2329 dget(dentry); /* Extra count - pin the dentry in core */ 2330 } 2331 return error; 2332 out_iput: 2333 iput(inode); 2334 return error; 2335 } 2336 2337 static int 2338 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2339 { 2340 struct inode *inode; 2341 int error = -ENOSPC; 2342 2343 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2344 if (inode) { 2345 error = security_inode_init_security(inode, dir, 2346 NULL, 2347 shmem_initxattrs, NULL); 2348 if (error && error != -EOPNOTSUPP) 2349 goto out_iput; 2350 error = simple_acl_create(dir, inode); 2351 if (error) 2352 goto out_iput; 2353 d_tmpfile(dentry, inode); 2354 } 2355 return error; 2356 out_iput: 2357 iput(inode); 2358 return error; 2359 } 2360 2361 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2362 { 2363 int error; 2364 2365 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2366 return error; 2367 inc_nlink(dir); 2368 return 0; 2369 } 2370 2371 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2372 bool excl) 2373 { 2374 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2375 } 2376 2377 /* 2378 * Link a file.. 2379 */ 2380 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2381 { 2382 struct inode *inode = d_inode(old_dentry); 2383 int ret; 2384 2385 /* 2386 * No ordinary (disk based) filesystem counts links as inodes; 2387 * but each new link needs a new dentry, pinning lowmem, and 2388 * tmpfs dentries cannot be pruned until they are unlinked. 2389 */ 2390 ret = shmem_reserve_inode(inode->i_sb); 2391 if (ret) 2392 goto out; 2393 2394 dir->i_size += BOGO_DIRENT_SIZE; 2395 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2396 inc_nlink(inode); 2397 ihold(inode); /* New dentry reference */ 2398 dget(dentry); /* Extra pinning count for the created dentry */ 2399 d_instantiate(dentry, inode); 2400 out: 2401 return ret; 2402 } 2403 2404 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2405 { 2406 struct inode *inode = d_inode(dentry); 2407 2408 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2409 shmem_free_inode(inode->i_sb); 2410 2411 dir->i_size -= BOGO_DIRENT_SIZE; 2412 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2413 drop_nlink(inode); 2414 dput(dentry); /* Undo the count from "create" - this does all the work */ 2415 return 0; 2416 } 2417 2418 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2419 { 2420 if (!simple_empty(dentry)) 2421 return -ENOTEMPTY; 2422 2423 drop_nlink(d_inode(dentry)); 2424 drop_nlink(dir); 2425 return shmem_unlink(dir, dentry); 2426 } 2427 2428 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2429 { 2430 bool old_is_dir = d_is_dir(old_dentry); 2431 bool new_is_dir = d_is_dir(new_dentry); 2432 2433 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2434 if (old_is_dir) { 2435 drop_nlink(old_dir); 2436 inc_nlink(new_dir); 2437 } else { 2438 drop_nlink(new_dir); 2439 inc_nlink(old_dir); 2440 } 2441 } 2442 old_dir->i_ctime = old_dir->i_mtime = 2443 new_dir->i_ctime = new_dir->i_mtime = 2444 d_inode(old_dentry)->i_ctime = 2445 d_inode(new_dentry)->i_ctime = CURRENT_TIME; 2446 2447 return 0; 2448 } 2449 2450 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 2451 { 2452 struct dentry *whiteout; 2453 int error; 2454 2455 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2456 if (!whiteout) 2457 return -ENOMEM; 2458 2459 error = shmem_mknod(old_dir, whiteout, 2460 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2461 dput(whiteout); 2462 if (error) 2463 return error; 2464 2465 /* 2466 * Cheat and hash the whiteout while the old dentry is still in 2467 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2468 * 2469 * d_lookup() will consistently find one of them at this point, 2470 * not sure which one, but that isn't even important. 2471 */ 2472 d_rehash(whiteout); 2473 return 0; 2474 } 2475 2476 /* 2477 * The VFS layer already does all the dentry stuff for rename, 2478 * we just have to decrement the usage count for the target if 2479 * it exists so that the VFS layer correctly free's it when it 2480 * gets overwritten. 2481 */ 2482 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 2483 { 2484 struct inode *inode = d_inode(old_dentry); 2485 int they_are_dirs = S_ISDIR(inode->i_mode); 2486 2487 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2488 return -EINVAL; 2489 2490 if (flags & RENAME_EXCHANGE) 2491 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 2492 2493 if (!simple_empty(new_dentry)) 2494 return -ENOTEMPTY; 2495 2496 if (flags & RENAME_WHITEOUT) { 2497 int error; 2498 2499 error = shmem_whiteout(old_dir, old_dentry); 2500 if (error) 2501 return error; 2502 } 2503 2504 if (d_really_is_positive(new_dentry)) { 2505 (void) shmem_unlink(new_dir, new_dentry); 2506 if (they_are_dirs) { 2507 drop_nlink(d_inode(new_dentry)); 2508 drop_nlink(old_dir); 2509 } 2510 } else if (they_are_dirs) { 2511 drop_nlink(old_dir); 2512 inc_nlink(new_dir); 2513 } 2514 2515 old_dir->i_size -= BOGO_DIRENT_SIZE; 2516 new_dir->i_size += BOGO_DIRENT_SIZE; 2517 old_dir->i_ctime = old_dir->i_mtime = 2518 new_dir->i_ctime = new_dir->i_mtime = 2519 inode->i_ctime = CURRENT_TIME; 2520 return 0; 2521 } 2522 2523 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2524 { 2525 int error; 2526 int len; 2527 struct inode *inode; 2528 struct page *page; 2529 struct shmem_inode_info *info; 2530 2531 len = strlen(symname) + 1; 2532 if (len > PAGE_CACHE_SIZE) 2533 return -ENAMETOOLONG; 2534 2535 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 2536 if (!inode) 2537 return -ENOSPC; 2538 2539 error = security_inode_init_security(inode, dir, &dentry->d_name, 2540 shmem_initxattrs, NULL); 2541 if (error) { 2542 if (error != -EOPNOTSUPP) { 2543 iput(inode); 2544 return error; 2545 } 2546 error = 0; 2547 } 2548 2549 info = SHMEM_I(inode); 2550 inode->i_size = len-1; 2551 if (len <= SHORT_SYMLINK_LEN) { 2552 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 2553 if (!inode->i_link) { 2554 iput(inode); 2555 return -ENOMEM; 2556 } 2557 inode->i_op = &shmem_short_symlink_operations; 2558 } else { 2559 inode_nohighmem(inode); 2560 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 2561 if (error) { 2562 iput(inode); 2563 return error; 2564 } 2565 inode->i_mapping->a_ops = &shmem_aops; 2566 inode->i_op = &shmem_symlink_inode_operations; 2567 memcpy(page_address(page), symname, len); 2568 SetPageUptodate(page); 2569 set_page_dirty(page); 2570 unlock_page(page); 2571 page_cache_release(page); 2572 } 2573 dir->i_size += BOGO_DIRENT_SIZE; 2574 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2575 d_instantiate(dentry, inode); 2576 dget(dentry); 2577 return 0; 2578 } 2579 2580 static void shmem_put_link(void *arg) 2581 { 2582 mark_page_accessed(arg); 2583 put_page(arg); 2584 } 2585 2586 static const char *shmem_get_link(struct dentry *dentry, 2587 struct inode *inode, 2588 struct delayed_call *done) 2589 { 2590 struct page *page = NULL; 2591 int error; 2592 if (!dentry) { 2593 page = find_get_page(inode->i_mapping, 0); 2594 if (!page) 2595 return ERR_PTR(-ECHILD); 2596 if (!PageUptodate(page)) { 2597 put_page(page); 2598 return ERR_PTR(-ECHILD); 2599 } 2600 } else { 2601 error = shmem_getpage(inode, 0, &page, SGP_READ, NULL); 2602 if (error) 2603 return ERR_PTR(error); 2604 unlock_page(page); 2605 } 2606 set_delayed_call(done, shmem_put_link, page); 2607 return page_address(page); 2608 } 2609 2610 #ifdef CONFIG_TMPFS_XATTR 2611 /* 2612 * Superblocks without xattr inode operations may get some security.* xattr 2613 * support from the LSM "for free". As soon as we have any other xattrs 2614 * like ACLs, we also need to implement the security.* handlers at 2615 * filesystem level, though. 2616 */ 2617 2618 /* 2619 * Callback for security_inode_init_security() for acquiring xattrs. 2620 */ 2621 static int shmem_initxattrs(struct inode *inode, 2622 const struct xattr *xattr_array, 2623 void *fs_info) 2624 { 2625 struct shmem_inode_info *info = SHMEM_I(inode); 2626 const struct xattr *xattr; 2627 struct simple_xattr *new_xattr; 2628 size_t len; 2629 2630 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 2631 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 2632 if (!new_xattr) 2633 return -ENOMEM; 2634 2635 len = strlen(xattr->name) + 1; 2636 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 2637 GFP_KERNEL); 2638 if (!new_xattr->name) { 2639 kfree(new_xattr); 2640 return -ENOMEM; 2641 } 2642 2643 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 2644 XATTR_SECURITY_PREFIX_LEN); 2645 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 2646 xattr->name, len); 2647 2648 simple_xattr_list_add(&info->xattrs, new_xattr); 2649 } 2650 2651 return 0; 2652 } 2653 2654 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 2655 struct dentry *dentry, const char *name, 2656 void *buffer, size_t size) 2657 { 2658 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2659 2660 name = xattr_full_name(handler, name); 2661 return simple_xattr_get(&info->xattrs, name, buffer, size); 2662 } 2663 2664 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 2665 struct dentry *dentry, const char *name, 2666 const void *value, size_t size, int flags) 2667 { 2668 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2669 2670 name = xattr_full_name(handler, name); 2671 return simple_xattr_set(&info->xattrs, name, value, size, flags); 2672 } 2673 2674 static const struct xattr_handler shmem_security_xattr_handler = { 2675 .prefix = XATTR_SECURITY_PREFIX, 2676 .get = shmem_xattr_handler_get, 2677 .set = shmem_xattr_handler_set, 2678 }; 2679 2680 static const struct xattr_handler shmem_trusted_xattr_handler = { 2681 .prefix = XATTR_TRUSTED_PREFIX, 2682 .get = shmem_xattr_handler_get, 2683 .set = shmem_xattr_handler_set, 2684 }; 2685 2686 static const struct xattr_handler *shmem_xattr_handlers[] = { 2687 #ifdef CONFIG_TMPFS_POSIX_ACL 2688 &posix_acl_access_xattr_handler, 2689 &posix_acl_default_xattr_handler, 2690 #endif 2691 &shmem_security_xattr_handler, 2692 &shmem_trusted_xattr_handler, 2693 NULL 2694 }; 2695 2696 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 2697 { 2698 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2699 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 2700 } 2701 #endif /* CONFIG_TMPFS_XATTR */ 2702 2703 static const struct inode_operations shmem_short_symlink_operations = { 2704 .readlink = generic_readlink, 2705 .get_link = simple_get_link, 2706 #ifdef CONFIG_TMPFS_XATTR 2707 .setxattr = generic_setxattr, 2708 .getxattr = generic_getxattr, 2709 .listxattr = shmem_listxattr, 2710 .removexattr = generic_removexattr, 2711 #endif 2712 }; 2713 2714 static const struct inode_operations shmem_symlink_inode_operations = { 2715 .readlink = generic_readlink, 2716 .get_link = shmem_get_link, 2717 #ifdef CONFIG_TMPFS_XATTR 2718 .setxattr = generic_setxattr, 2719 .getxattr = generic_getxattr, 2720 .listxattr = shmem_listxattr, 2721 .removexattr = generic_removexattr, 2722 #endif 2723 }; 2724 2725 static struct dentry *shmem_get_parent(struct dentry *child) 2726 { 2727 return ERR_PTR(-ESTALE); 2728 } 2729 2730 static int shmem_match(struct inode *ino, void *vfh) 2731 { 2732 __u32 *fh = vfh; 2733 __u64 inum = fh[2]; 2734 inum = (inum << 32) | fh[1]; 2735 return ino->i_ino == inum && fh[0] == ino->i_generation; 2736 } 2737 2738 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2739 struct fid *fid, int fh_len, int fh_type) 2740 { 2741 struct inode *inode; 2742 struct dentry *dentry = NULL; 2743 u64 inum; 2744 2745 if (fh_len < 3) 2746 return NULL; 2747 2748 inum = fid->raw[2]; 2749 inum = (inum << 32) | fid->raw[1]; 2750 2751 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2752 shmem_match, fid->raw); 2753 if (inode) { 2754 dentry = d_find_alias(inode); 2755 iput(inode); 2756 } 2757 2758 return dentry; 2759 } 2760 2761 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 2762 struct inode *parent) 2763 { 2764 if (*len < 3) { 2765 *len = 3; 2766 return FILEID_INVALID; 2767 } 2768 2769 if (inode_unhashed(inode)) { 2770 /* Unfortunately insert_inode_hash is not idempotent, 2771 * so as we hash inodes here rather than at creation 2772 * time, we need a lock to ensure we only try 2773 * to do it once 2774 */ 2775 static DEFINE_SPINLOCK(lock); 2776 spin_lock(&lock); 2777 if (inode_unhashed(inode)) 2778 __insert_inode_hash(inode, 2779 inode->i_ino + inode->i_generation); 2780 spin_unlock(&lock); 2781 } 2782 2783 fh[0] = inode->i_generation; 2784 fh[1] = inode->i_ino; 2785 fh[2] = ((__u64)inode->i_ino) >> 32; 2786 2787 *len = 3; 2788 return 1; 2789 } 2790 2791 static const struct export_operations shmem_export_ops = { 2792 .get_parent = shmem_get_parent, 2793 .encode_fh = shmem_encode_fh, 2794 .fh_to_dentry = shmem_fh_to_dentry, 2795 }; 2796 2797 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2798 bool remount) 2799 { 2800 char *this_char, *value, *rest; 2801 struct mempolicy *mpol = NULL; 2802 uid_t uid; 2803 gid_t gid; 2804 2805 while (options != NULL) { 2806 this_char = options; 2807 for (;;) { 2808 /* 2809 * NUL-terminate this option: unfortunately, 2810 * mount options form a comma-separated list, 2811 * but mpol's nodelist may also contain commas. 2812 */ 2813 options = strchr(options, ','); 2814 if (options == NULL) 2815 break; 2816 options++; 2817 if (!isdigit(*options)) { 2818 options[-1] = '\0'; 2819 break; 2820 } 2821 } 2822 if (!*this_char) 2823 continue; 2824 if ((value = strchr(this_char,'=')) != NULL) { 2825 *value++ = 0; 2826 } else { 2827 pr_err("tmpfs: No value for mount option '%s'\n", 2828 this_char); 2829 goto error; 2830 } 2831 2832 if (!strcmp(this_char,"size")) { 2833 unsigned long long size; 2834 size = memparse(value,&rest); 2835 if (*rest == '%') { 2836 size <<= PAGE_SHIFT; 2837 size *= totalram_pages; 2838 do_div(size, 100); 2839 rest++; 2840 } 2841 if (*rest) 2842 goto bad_val; 2843 sbinfo->max_blocks = 2844 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2845 } else if (!strcmp(this_char,"nr_blocks")) { 2846 sbinfo->max_blocks = memparse(value, &rest); 2847 if (*rest) 2848 goto bad_val; 2849 } else if (!strcmp(this_char,"nr_inodes")) { 2850 sbinfo->max_inodes = memparse(value, &rest); 2851 if (*rest) 2852 goto bad_val; 2853 } else if (!strcmp(this_char,"mode")) { 2854 if (remount) 2855 continue; 2856 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2857 if (*rest) 2858 goto bad_val; 2859 } else if (!strcmp(this_char,"uid")) { 2860 if (remount) 2861 continue; 2862 uid = simple_strtoul(value, &rest, 0); 2863 if (*rest) 2864 goto bad_val; 2865 sbinfo->uid = make_kuid(current_user_ns(), uid); 2866 if (!uid_valid(sbinfo->uid)) 2867 goto bad_val; 2868 } else if (!strcmp(this_char,"gid")) { 2869 if (remount) 2870 continue; 2871 gid = simple_strtoul(value, &rest, 0); 2872 if (*rest) 2873 goto bad_val; 2874 sbinfo->gid = make_kgid(current_user_ns(), gid); 2875 if (!gid_valid(sbinfo->gid)) 2876 goto bad_val; 2877 } else if (!strcmp(this_char,"mpol")) { 2878 mpol_put(mpol); 2879 mpol = NULL; 2880 if (mpol_parse_str(value, &mpol)) 2881 goto bad_val; 2882 } else { 2883 pr_err("tmpfs: Bad mount option %s\n", this_char); 2884 goto error; 2885 } 2886 } 2887 sbinfo->mpol = mpol; 2888 return 0; 2889 2890 bad_val: 2891 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", 2892 value, this_char); 2893 error: 2894 mpol_put(mpol); 2895 return 1; 2896 2897 } 2898 2899 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2900 { 2901 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2902 struct shmem_sb_info config = *sbinfo; 2903 unsigned long inodes; 2904 int error = -EINVAL; 2905 2906 config.mpol = NULL; 2907 if (shmem_parse_options(data, &config, true)) 2908 return error; 2909 2910 spin_lock(&sbinfo->stat_lock); 2911 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2912 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2913 goto out; 2914 if (config.max_inodes < inodes) 2915 goto out; 2916 /* 2917 * Those tests disallow limited->unlimited while any are in use; 2918 * but we must separately disallow unlimited->limited, because 2919 * in that case we have no record of how much is already in use. 2920 */ 2921 if (config.max_blocks && !sbinfo->max_blocks) 2922 goto out; 2923 if (config.max_inodes && !sbinfo->max_inodes) 2924 goto out; 2925 2926 error = 0; 2927 sbinfo->max_blocks = config.max_blocks; 2928 sbinfo->max_inodes = config.max_inodes; 2929 sbinfo->free_inodes = config.max_inodes - inodes; 2930 2931 /* 2932 * Preserve previous mempolicy unless mpol remount option was specified. 2933 */ 2934 if (config.mpol) { 2935 mpol_put(sbinfo->mpol); 2936 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2937 } 2938 out: 2939 spin_unlock(&sbinfo->stat_lock); 2940 return error; 2941 } 2942 2943 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 2944 { 2945 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 2946 2947 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2948 seq_printf(seq, ",size=%luk", 2949 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2950 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2951 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2952 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2953 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 2954 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 2955 seq_printf(seq, ",uid=%u", 2956 from_kuid_munged(&init_user_ns, sbinfo->uid)); 2957 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 2958 seq_printf(seq, ",gid=%u", 2959 from_kgid_munged(&init_user_ns, sbinfo->gid)); 2960 shmem_show_mpol(seq, sbinfo->mpol); 2961 return 0; 2962 } 2963 2964 #define MFD_NAME_PREFIX "memfd:" 2965 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 2966 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 2967 2968 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING) 2969 2970 SYSCALL_DEFINE2(memfd_create, 2971 const char __user *, uname, 2972 unsigned int, flags) 2973 { 2974 struct shmem_inode_info *info; 2975 struct file *file; 2976 int fd, error; 2977 char *name; 2978 long len; 2979 2980 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 2981 return -EINVAL; 2982 2983 /* length includes terminating zero */ 2984 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 2985 if (len <= 0) 2986 return -EFAULT; 2987 if (len > MFD_NAME_MAX_LEN + 1) 2988 return -EINVAL; 2989 2990 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY); 2991 if (!name) 2992 return -ENOMEM; 2993 2994 strcpy(name, MFD_NAME_PREFIX); 2995 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 2996 error = -EFAULT; 2997 goto err_name; 2998 } 2999 3000 /* terminating-zero may have changed after strnlen_user() returned */ 3001 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 3002 error = -EFAULT; 3003 goto err_name; 3004 } 3005 3006 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 3007 if (fd < 0) { 3008 error = fd; 3009 goto err_name; 3010 } 3011 3012 file = shmem_file_setup(name, 0, VM_NORESERVE); 3013 if (IS_ERR(file)) { 3014 error = PTR_ERR(file); 3015 goto err_fd; 3016 } 3017 info = SHMEM_I(file_inode(file)); 3018 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 3019 file->f_flags |= O_RDWR | O_LARGEFILE; 3020 if (flags & MFD_ALLOW_SEALING) 3021 info->seals &= ~F_SEAL_SEAL; 3022 3023 fd_install(fd, file); 3024 kfree(name); 3025 return fd; 3026 3027 err_fd: 3028 put_unused_fd(fd); 3029 err_name: 3030 kfree(name); 3031 return error; 3032 } 3033 3034 #endif /* CONFIG_TMPFS */ 3035 3036 static void shmem_put_super(struct super_block *sb) 3037 { 3038 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3039 3040 percpu_counter_destroy(&sbinfo->used_blocks); 3041 mpol_put(sbinfo->mpol); 3042 kfree(sbinfo); 3043 sb->s_fs_info = NULL; 3044 } 3045 3046 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3047 { 3048 struct inode *inode; 3049 struct shmem_sb_info *sbinfo; 3050 int err = -ENOMEM; 3051 3052 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3053 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3054 L1_CACHE_BYTES), GFP_KERNEL); 3055 if (!sbinfo) 3056 return -ENOMEM; 3057 3058 sbinfo->mode = S_IRWXUGO | S_ISVTX; 3059 sbinfo->uid = current_fsuid(); 3060 sbinfo->gid = current_fsgid(); 3061 sb->s_fs_info = sbinfo; 3062 3063 #ifdef CONFIG_TMPFS 3064 /* 3065 * Per default we only allow half of the physical ram per 3066 * tmpfs instance, limiting inodes to one per page of lowmem; 3067 * but the internal instance is left unlimited. 3068 */ 3069 if (!(sb->s_flags & MS_KERNMOUNT)) { 3070 sbinfo->max_blocks = shmem_default_max_blocks(); 3071 sbinfo->max_inodes = shmem_default_max_inodes(); 3072 if (shmem_parse_options(data, sbinfo, false)) { 3073 err = -EINVAL; 3074 goto failed; 3075 } 3076 } else { 3077 sb->s_flags |= MS_NOUSER; 3078 } 3079 sb->s_export_op = &shmem_export_ops; 3080 sb->s_flags |= MS_NOSEC; 3081 #else 3082 sb->s_flags |= MS_NOUSER; 3083 #endif 3084 3085 spin_lock_init(&sbinfo->stat_lock); 3086 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3087 goto failed; 3088 sbinfo->free_inodes = sbinfo->max_inodes; 3089 3090 sb->s_maxbytes = MAX_LFS_FILESIZE; 3091 sb->s_blocksize = PAGE_CACHE_SIZE; 3092 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 3093 sb->s_magic = TMPFS_MAGIC; 3094 sb->s_op = &shmem_ops; 3095 sb->s_time_gran = 1; 3096 #ifdef CONFIG_TMPFS_XATTR 3097 sb->s_xattr = shmem_xattr_handlers; 3098 #endif 3099 #ifdef CONFIG_TMPFS_POSIX_ACL 3100 sb->s_flags |= MS_POSIXACL; 3101 #endif 3102 3103 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3104 if (!inode) 3105 goto failed; 3106 inode->i_uid = sbinfo->uid; 3107 inode->i_gid = sbinfo->gid; 3108 sb->s_root = d_make_root(inode); 3109 if (!sb->s_root) 3110 goto failed; 3111 return 0; 3112 3113 failed: 3114 shmem_put_super(sb); 3115 return err; 3116 } 3117 3118 static struct kmem_cache *shmem_inode_cachep; 3119 3120 static struct inode *shmem_alloc_inode(struct super_block *sb) 3121 { 3122 struct shmem_inode_info *info; 3123 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3124 if (!info) 3125 return NULL; 3126 return &info->vfs_inode; 3127 } 3128 3129 static void shmem_destroy_callback(struct rcu_head *head) 3130 { 3131 struct inode *inode = container_of(head, struct inode, i_rcu); 3132 kfree(inode->i_link); 3133 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3134 } 3135 3136 static void shmem_destroy_inode(struct inode *inode) 3137 { 3138 if (S_ISREG(inode->i_mode)) 3139 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3140 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3141 } 3142 3143 static void shmem_init_inode(void *foo) 3144 { 3145 struct shmem_inode_info *info = foo; 3146 inode_init_once(&info->vfs_inode); 3147 } 3148 3149 static int shmem_init_inodecache(void) 3150 { 3151 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3152 sizeof(struct shmem_inode_info), 3153 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3154 return 0; 3155 } 3156 3157 static void shmem_destroy_inodecache(void) 3158 { 3159 kmem_cache_destroy(shmem_inode_cachep); 3160 } 3161 3162 static const struct address_space_operations shmem_aops = { 3163 .writepage = shmem_writepage, 3164 .set_page_dirty = __set_page_dirty_no_writeback, 3165 #ifdef CONFIG_TMPFS 3166 .write_begin = shmem_write_begin, 3167 .write_end = shmem_write_end, 3168 #endif 3169 #ifdef CONFIG_MIGRATION 3170 .migratepage = migrate_page, 3171 #endif 3172 .error_remove_page = generic_error_remove_page, 3173 }; 3174 3175 static const struct file_operations shmem_file_operations = { 3176 .mmap = shmem_mmap, 3177 #ifdef CONFIG_TMPFS 3178 .llseek = shmem_file_llseek, 3179 .read_iter = shmem_file_read_iter, 3180 .write_iter = generic_file_write_iter, 3181 .fsync = noop_fsync, 3182 .splice_read = shmem_file_splice_read, 3183 .splice_write = iter_file_splice_write, 3184 .fallocate = shmem_fallocate, 3185 #endif 3186 }; 3187 3188 static const struct inode_operations shmem_inode_operations = { 3189 .getattr = shmem_getattr, 3190 .setattr = shmem_setattr, 3191 #ifdef CONFIG_TMPFS_XATTR 3192 .setxattr = generic_setxattr, 3193 .getxattr = generic_getxattr, 3194 .listxattr = shmem_listxattr, 3195 .removexattr = generic_removexattr, 3196 .set_acl = simple_set_acl, 3197 #endif 3198 }; 3199 3200 static const struct inode_operations shmem_dir_inode_operations = { 3201 #ifdef CONFIG_TMPFS 3202 .create = shmem_create, 3203 .lookup = simple_lookup, 3204 .link = shmem_link, 3205 .unlink = shmem_unlink, 3206 .symlink = shmem_symlink, 3207 .mkdir = shmem_mkdir, 3208 .rmdir = shmem_rmdir, 3209 .mknod = shmem_mknod, 3210 .rename2 = shmem_rename2, 3211 .tmpfile = shmem_tmpfile, 3212 #endif 3213 #ifdef CONFIG_TMPFS_XATTR 3214 .setxattr = generic_setxattr, 3215 .getxattr = generic_getxattr, 3216 .listxattr = shmem_listxattr, 3217 .removexattr = generic_removexattr, 3218 #endif 3219 #ifdef CONFIG_TMPFS_POSIX_ACL 3220 .setattr = shmem_setattr, 3221 .set_acl = simple_set_acl, 3222 #endif 3223 }; 3224 3225 static const struct inode_operations shmem_special_inode_operations = { 3226 #ifdef CONFIG_TMPFS_XATTR 3227 .setxattr = generic_setxattr, 3228 .getxattr = generic_getxattr, 3229 .listxattr = shmem_listxattr, 3230 .removexattr = generic_removexattr, 3231 #endif 3232 #ifdef CONFIG_TMPFS_POSIX_ACL 3233 .setattr = shmem_setattr, 3234 .set_acl = simple_set_acl, 3235 #endif 3236 }; 3237 3238 static const struct super_operations shmem_ops = { 3239 .alloc_inode = shmem_alloc_inode, 3240 .destroy_inode = shmem_destroy_inode, 3241 #ifdef CONFIG_TMPFS 3242 .statfs = shmem_statfs, 3243 .remount_fs = shmem_remount_fs, 3244 .show_options = shmem_show_options, 3245 #endif 3246 .evict_inode = shmem_evict_inode, 3247 .drop_inode = generic_delete_inode, 3248 .put_super = shmem_put_super, 3249 }; 3250 3251 static const struct vm_operations_struct shmem_vm_ops = { 3252 .fault = shmem_fault, 3253 .map_pages = filemap_map_pages, 3254 #ifdef CONFIG_NUMA 3255 .set_policy = shmem_set_policy, 3256 .get_policy = shmem_get_policy, 3257 #endif 3258 }; 3259 3260 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3261 int flags, const char *dev_name, void *data) 3262 { 3263 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3264 } 3265 3266 static struct file_system_type shmem_fs_type = { 3267 .owner = THIS_MODULE, 3268 .name = "tmpfs", 3269 .mount = shmem_mount, 3270 .kill_sb = kill_litter_super, 3271 .fs_flags = FS_USERNS_MOUNT, 3272 }; 3273 3274 int __init shmem_init(void) 3275 { 3276 int error; 3277 3278 /* If rootfs called this, don't re-init */ 3279 if (shmem_inode_cachep) 3280 return 0; 3281 3282 error = shmem_init_inodecache(); 3283 if (error) 3284 goto out3; 3285 3286 error = register_filesystem(&shmem_fs_type); 3287 if (error) { 3288 pr_err("Could not register tmpfs\n"); 3289 goto out2; 3290 } 3291 3292 shm_mnt = kern_mount(&shmem_fs_type); 3293 if (IS_ERR(shm_mnt)) { 3294 error = PTR_ERR(shm_mnt); 3295 pr_err("Could not kern_mount tmpfs\n"); 3296 goto out1; 3297 } 3298 return 0; 3299 3300 out1: 3301 unregister_filesystem(&shmem_fs_type); 3302 out2: 3303 shmem_destroy_inodecache(); 3304 out3: 3305 shm_mnt = ERR_PTR(error); 3306 return error; 3307 } 3308 3309 #else /* !CONFIG_SHMEM */ 3310 3311 /* 3312 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3313 * 3314 * This is intended for small system where the benefits of the full 3315 * shmem code (swap-backed and resource-limited) are outweighed by 3316 * their complexity. On systems without swap this code should be 3317 * effectively equivalent, but much lighter weight. 3318 */ 3319 3320 static struct file_system_type shmem_fs_type = { 3321 .name = "tmpfs", 3322 .mount = ramfs_mount, 3323 .kill_sb = kill_litter_super, 3324 .fs_flags = FS_USERNS_MOUNT, 3325 }; 3326 3327 int __init shmem_init(void) 3328 { 3329 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3330 3331 shm_mnt = kern_mount(&shmem_fs_type); 3332 BUG_ON(IS_ERR(shm_mnt)); 3333 3334 return 0; 3335 } 3336 3337 int shmem_unuse(swp_entry_t swap, struct page *page) 3338 { 3339 return 0; 3340 } 3341 3342 int shmem_lock(struct file *file, int lock, struct user_struct *user) 3343 { 3344 return 0; 3345 } 3346 3347 void shmem_unlock_mapping(struct address_space *mapping) 3348 { 3349 } 3350 3351 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 3352 { 3353 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 3354 } 3355 EXPORT_SYMBOL_GPL(shmem_truncate_range); 3356 3357 #define shmem_vm_ops generic_file_vm_ops 3358 #define shmem_file_operations ramfs_file_operations 3359 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 3360 #define shmem_acct_size(flags, size) 0 3361 #define shmem_unacct_size(flags, size) do {} while (0) 3362 3363 #endif /* CONFIG_SHMEM */ 3364 3365 /* common code */ 3366 3367 static struct dentry_operations anon_ops = { 3368 .d_dname = simple_dname 3369 }; 3370 3371 static struct file *__shmem_file_setup(const char *name, loff_t size, 3372 unsigned long flags, unsigned int i_flags) 3373 { 3374 struct file *res; 3375 struct inode *inode; 3376 struct path path; 3377 struct super_block *sb; 3378 struct qstr this; 3379 3380 if (IS_ERR(shm_mnt)) 3381 return ERR_CAST(shm_mnt); 3382 3383 if (size < 0 || size > MAX_LFS_FILESIZE) 3384 return ERR_PTR(-EINVAL); 3385 3386 if (shmem_acct_size(flags, size)) 3387 return ERR_PTR(-ENOMEM); 3388 3389 res = ERR_PTR(-ENOMEM); 3390 this.name = name; 3391 this.len = strlen(name); 3392 this.hash = 0; /* will go */ 3393 sb = shm_mnt->mnt_sb; 3394 path.mnt = mntget(shm_mnt); 3395 path.dentry = d_alloc_pseudo(sb, &this); 3396 if (!path.dentry) 3397 goto put_memory; 3398 d_set_d_op(path.dentry, &anon_ops); 3399 3400 res = ERR_PTR(-ENOSPC); 3401 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 3402 if (!inode) 3403 goto put_memory; 3404 3405 inode->i_flags |= i_flags; 3406 d_instantiate(path.dentry, inode); 3407 inode->i_size = size; 3408 clear_nlink(inode); /* It is unlinked */ 3409 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 3410 if (IS_ERR(res)) 3411 goto put_path; 3412 3413 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 3414 &shmem_file_operations); 3415 if (IS_ERR(res)) 3416 goto put_path; 3417 3418 return res; 3419 3420 put_memory: 3421 shmem_unacct_size(flags, size); 3422 put_path: 3423 path_put(&path); 3424 return res; 3425 } 3426 3427 /** 3428 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 3429 * kernel internal. There will be NO LSM permission checks against the 3430 * underlying inode. So users of this interface must do LSM checks at a 3431 * higher layer. The users are the big_key and shm implementations. LSM 3432 * checks are provided at the key or shm level rather than the inode. 3433 * @name: name for dentry (to be seen in /proc/<pid>/maps 3434 * @size: size to be set for the file 3435 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3436 */ 3437 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 3438 { 3439 return __shmem_file_setup(name, size, flags, S_PRIVATE); 3440 } 3441 3442 /** 3443 * shmem_file_setup - get an unlinked file living in tmpfs 3444 * @name: name for dentry (to be seen in /proc/<pid>/maps 3445 * @size: size to be set for the file 3446 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3447 */ 3448 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 3449 { 3450 return __shmem_file_setup(name, size, flags, 0); 3451 } 3452 EXPORT_SYMBOL_GPL(shmem_file_setup); 3453 3454 /** 3455 * shmem_zero_setup - setup a shared anonymous mapping 3456 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 3457 */ 3458 int shmem_zero_setup(struct vm_area_struct *vma) 3459 { 3460 struct file *file; 3461 loff_t size = vma->vm_end - vma->vm_start; 3462 3463 /* 3464 * Cloning a new file under mmap_sem leads to a lock ordering conflict 3465 * between XFS directory reading and selinux: since this file is only 3466 * accessible to the user through its mapping, use S_PRIVATE flag to 3467 * bypass file security, in the same way as shmem_kernel_file_setup(). 3468 */ 3469 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE); 3470 if (IS_ERR(file)) 3471 return PTR_ERR(file); 3472 3473 if (vma->vm_file) 3474 fput(vma->vm_file); 3475 vma->vm_file = file; 3476 vma->vm_ops = &shmem_vm_ops; 3477 return 0; 3478 } 3479 3480 /** 3481 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 3482 * @mapping: the page's address_space 3483 * @index: the page index 3484 * @gfp: the page allocator flags to use if allocating 3485 * 3486 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 3487 * with any new page allocations done using the specified allocation flags. 3488 * But read_cache_page_gfp() uses the ->readpage() method: which does not 3489 * suit tmpfs, since it may have pages in swapcache, and needs to find those 3490 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 3491 * 3492 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 3493 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 3494 */ 3495 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 3496 pgoff_t index, gfp_t gfp) 3497 { 3498 #ifdef CONFIG_SHMEM 3499 struct inode *inode = mapping->host; 3500 struct page *page; 3501 int error; 3502 3503 BUG_ON(mapping->a_ops != &shmem_aops); 3504 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); 3505 if (error) 3506 page = ERR_PTR(error); 3507 else 3508 unlock_page(page); 3509 return page; 3510 #else 3511 /* 3512 * The tiny !SHMEM case uses ramfs without swap 3513 */ 3514 return read_cache_page_gfp(mapping, index, gfp); 3515 #endif 3516 } 3517 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 3518