xref: /openbmc/linux/mm/shmem.c (revision 2cf938aae17203426a89b5955bd1c9668657bfa8)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 
36 static struct vfsmount *shm_mnt;
37 
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44 
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72 
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75 
76 #include "internal.h"
77 
78 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
79 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
80 
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83 
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86 
87 /*
88  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89  * inode->i_private (with i_mutex making sure that it has only one user at
90  * a time): we would prefer not to enlarge the shmem inode just for that.
91  */
92 struct shmem_falloc {
93 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94 	pgoff_t start;		/* start of range currently being fallocated */
95 	pgoff_t next;		/* the next page offset to be fallocated */
96 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
97 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
98 };
99 
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102 	SGP_READ,	/* don't exceed i_size, don't allocate page */
103 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
104 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
105 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
106 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
107 };
108 
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112 	return totalram_pages / 2;
113 }
114 
115 static unsigned long shmem_default_max_inodes(void)
116 {
117 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120 
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 				struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126 
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 	struct page **pagep, enum sgp_type sgp, int *fault_type)
129 {
130 	return shmem_getpage_gfp(inode, index, pagep, sgp,
131 			mapping_gfp_mask(inode->i_mapping), fault_type);
132 }
133 
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136 	return sb->s_fs_info;
137 }
138 
139 /*
140  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141  * for shared memory and for shared anonymous (/dev/zero) mappings
142  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143  * consistent with the pre-accounting of private mappings ...
144  */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147 	return (flags & VM_NORESERVE) ?
148 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150 
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153 	if (!(flags & VM_NORESERVE))
154 		vm_unacct_memory(VM_ACCT(size));
155 }
156 
157 static inline int shmem_reacct_size(unsigned long flags,
158 		loff_t oldsize, loff_t newsize)
159 {
160 	if (!(flags & VM_NORESERVE)) {
161 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 			return security_vm_enough_memory_mm(current->mm,
163 					VM_ACCT(newsize) - VM_ACCT(oldsize));
164 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 	}
167 	return 0;
168 }
169 
170 /*
171  * ... whereas tmpfs objects are accounted incrementally as
172  * pages are allocated, in order to allow huge sparse files.
173  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175  */
176 static inline int shmem_acct_block(unsigned long flags)
177 {
178 	return (flags & VM_NORESERVE) ?
179 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
180 }
181 
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 {
184 	if (flags & VM_NORESERVE)
185 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
186 }
187 
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
195 
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198 
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 	if (sbinfo->max_inodes) {
203 		spin_lock(&sbinfo->stat_lock);
204 		if (!sbinfo->free_inodes) {
205 			spin_unlock(&sbinfo->stat_lock);
206 			return -ENOSPC;
207 		}
208 		sbinfo->free_inodes--;
209 		spin_unlock(&sbinfo->stat_lock);
210 	}
211 	return 0;
212 }
213 
214 static void shmem_free_inode(struct super_block *sb)
215 {
216 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 	if (sbinfo->max_inodes) {
218 		spin_lock(&sbinfo->stat_lock);
219 		sbinfo->free_inodes++;
220 		spin_unlock(&sbinfo->stat_lock);
221 	}
222 }
223 
224 /**
225  * shmem_recalc_inode - recalculate the block usage of an inode
226  * @inode: inode to recalc
227  *
228  * We have to calculate the free blocks since the mm can drop
229  * undirtied hole pages behind our back.
230  *
231  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
232  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233  *
234  * It has to be called with the spinlock held.
235  */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238 	struct shmem_inode_info *info = SHMEM_I(inode);
239 	long freed;
240 
241 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 	if (freed > 0) {
243 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 		if (sbinfo->max_blocks)
245 			percpu_counter_add(&sbinfo->used_blocks, -freed);
246 		info->alloced -= freed;
247 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248 		shmem_unacct_blocks(info->flags, freed);
249 	}
250 }
251 
252 /*
253  * Replace item expected in radix tree by a new item, while holding tree lock.
254  */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256 			pgoff_t index, void *expected, void *replacement)
257 {
258 	void **pslot;
259 	void *item;
260 
261 	VM_BUG_ON(!expected);
262 	VM_BUG_ON(!replacement);
263 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264 	if (!pslot)
265 		return -ENOENT;
266 	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267 	if (item != expected)
268 		return -ENOENT;
269 	radix_tree_replace_slot(pslot, replacement);
270 	return 0;
271 }
272 
273 /*
274  * Sometimes, before we decide whether to proceed or to fail, we must check
275  * that an entry was not already brought back from swap by a racing thread.
276  *
277  * Checking page is not enough: by the time a SwapCache page is locked, it
278  * might be reused, and again be SwapCache, using the same swap as before.
279  */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281 			       pgoff_t index, swp_entry_t swap)
282 {
283 	void *item;
284 
285 	rcu_read_lock();
286 	item = radix_tree_lookup(&mapping->page_tree, index);
287 	rcu_read_unlock();
288 	return item == swp_to_radix_entry(swap);
289 }
290 
291 /*
292  * Like add_to_page_cache_locked, but error if expected item has gone.
293  */
294 static int shmem_add_to_page_cache(struct page *page,
295 				   struct address_space *mapping,
296 				   pgoff_t index, void *expected)
297 {
298 	int error;
299 
300 	VM_BUG_ON_PAGE(!PageLocked(page), page);
301 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302 
303 	page_cache_get(page);
304 	page->mapping = mapping;
305 	page->index = index;
306 
307 	spin_lock_irq(&mapping->tree_lock);
308 	if (!expected)
309 		error = radix_tree_insert(&mapping->page_tree, index, page);
310 	else
311 		error = shmem_radix_tree_replace(mapping, index, expected,
312 								 page);
313 	if (!error) {
314 		mapping->nrpages++;
315 		__inc_zone_page_state(page, NR_FILE_PAGES);
316 		__inc_zone_page_state(page, NR_SHMEM);
317 		spin_unlock_irq(&mapping->tree_lock);
318 	} else {
319 		page->mapping = NULL;
320 		spin_unlock_irq(&mapping->tree_lock);
321 		page_cache_release(page);
322 	}
323 	return error;
324 }
325 
326 /*
327  * Like delete_from_page_cache, but substitutes swap for page.
328  */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331 	struct address_space *mapping = page->mapping;
332 	int error;
333 
334 	spin_lock_irq(&mapping->tree_lock);
335 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 	page->mapping = NULL;
337 	mapping->nrpages--;
338 	__dec_zone_page_state(page, NR_FILE_PAGES);
339 	__dec_zone_page_state(page, NR_SHMEM);
340 	spin_unlock_irq(&mapping->tree_lock);
341 	page_cache_release(page);
342 	BUG_ON(error);
343 }
344 
345 /*
346  * Remove swap entry from radix tree, free the swap and its page cache.
347  */
348 static int shmem_free_swap(struct address_space *mapping,
349 			   pgoff_t index, void *radswap)
350 {
351 	void *old;
352 
353 	spin_lock_irq(&mapping->tree_lock);
354 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355 	spin_unlock_irq(&mapping->tree_lock);
356 	if (old != radswap)
357 		return -ENOENT;
358 	free_swap_and_cache(radix_to_swp_entry(radswap));
359 	return 0;
360 }
361 
362 /*
363  * Determine (in bytes) how many of the shmem object's pages mapped by the
364  * given offsets are swapped out.
365  *
366  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
367  * as long as the inode doesn't go away and racy results are not a problem.
368  */
369 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
370 						pgoff_t start, pgoff_t end)
371 {
372 	struct radix_tree_iter iter;
373 	void **slot;
374 	struct page *page;
375 	unsigned long swapped = 0;
376 
377 	rcu_read_lock();
378 
379 restart:
380 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
381 		if (iter.index >= end)
382 			break;
383 
384 		page = radix_tree_deref_slot(slot);
385 
386 		if (radix_tree_deref_retry(page)) {
387 			slot = radix_tree_iter_retry(&iter);
388 			continue;
389 		}
390 
391 		if (radix_tree_exceptional_entry(page))
392 			swapped++;
393 
394 		if (need_resched()) {
395 			cond_resched_rcu();
396 			start = iter.index + 1;
397 			goto restart;
398 		}
399 	}
400 
401 	rcu_read_unlock();
402 
403 	return swapped << PAGE_SHIFT;
404 }
405 
406 /*
407  * Determine (in bytes) how many of the shmem object's pages mapped by the
408  * given vma is swapped out.
409  *
410  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
411  * as long as the inode doesn't go away and racy results are not a problem.
412  */
413 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
414 {
415 	struct inode *inode = file_inode(vma->vm_file);
416 	struct shmem_inode_info *info = SHMEM_I(inode);
417 	struct address_space *mapping = inode->i_mapping;
418 	unsigned long swapped;
419 
420 	/* Be careful as we don't hold info->lock */
421 	swapped = READ_ONCE(info->swapped);
422 
423 	/*
424 	 * The easier cases are when the shmem object has nothing in swap, or
425 	 * the vma maps it whole. Then we can simply use the stats that we
426 	 * already track.
427 	 */
428 	if (!swapped)
429 		return 0;
430 
431 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
432 		return swapped << PAGE_SHIFT;
433 
434 	/* Here comes the more involved part */
435 	return shmem_partial_swap_usage(mapping,
436 			linear_page_index(vma, vma->vm_start),
437 			linear_page_index(vma, vma->vm_end));
438 }
439 
440 /*
441  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
442  */
443 void shmem_unlock_mapping(struct address_space *mapping)
444 {
445 	struct pagevec pvec;
446 	pgoff_t indices[PAGEVEC_SIZE];
447 	pgoff_t index = 0;
448 
449 	pagevec_init(&pvec, 0);
450 	/*
451 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
452 	 */
453 	while (!mapping_unevictable(mapping)) {
454 		/*
455 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
456 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
457 		 */
458 		pvec.nr = find_get_entries(mapping, index,
459 					   PAGEVEC_SIZE, pvec.pages, indices);
460 		if (!pvec.nr)
461 			break;
462 		index = indices[pvec.nr - 1] + 1;
463 		pagevec_remove_exceptionals(&pvec);
464 		check_move_unevictable_pages(pvec.pages, pvec.nr);
465 		pagevec_release(&pvec);
466 		cond_resched();
467 	}
468 }
469 
470 /*
471  * Remove range of pages and swap entries from radix tree, and free them.
472  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
473  */
474 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
475 								 bool unfalloc)
476 {
477 	struct address_space *mapping = inode->i_mapping;
478 	struct shmem_inode_info *info = SHMEM_I(inode);
479 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
480 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
481 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
482 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
483 	struct pagevec pvec;
484 	pgoff_t indices[PAGEVEC_SIZE];
485 	long nr_swaps_freed = 0;
486 	pgoff_t index;
487 	int i;
488 
489 	if (lend == -1)
490 		end = -1;	/* unsigned, so actually very big */
491 
492 	pagevec_init(&pvec, 0);
493 	index = start;
494 	while (index < end) {
495 		pvec.nr = find_get_entries(mapping, index,
496 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
497 			pvec.pages, indices);
498 		if (!pvec.nr)
499 			break;
500 		for (i = 0; i < pagevec_count(&pvec); i++) {
501 			struct page *page = pvec.pages[i];
502 
503 			index = indices[i];
504 			if (index >= end)
505 				break;
506 
507 			if (radix_tree_exceptional_entry(page)) {
508 				if (unfalloc)
509 					continue;
510 				nr_swaps_freed += !shmem_free_swap(mapping,
511 								index, page);
512 				continue;
513 			}
514 
515 			if (!trylock_page(page))
516 				continue;
517 			if (!unfalloc || !PageUptodate(page)) {
518 				if (page->mapping == mapping) {
519 					VM_BUG_ON_PAGE(PageWriteback(page), page);
520 					truncate_inode_page(mapping, page);
521 				}
522 			}
523 			unlock_page(page);
524 		}
525 		pagevec_remove_exceptionals(&pvec);
526 		pagevec_release(&pvec);
527 		cond_resched();
528 		index++;
529 	}
530 
531 	if (partial_start) {
532 		struct page *page = NULL;
533 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
534 		if (page) {
535 			unsigned int top = PAGE_CACHE_SIZE;
536 			if (start > end) {
537 				top = partial_end;
538 				partial_end = 0;
539 			}
540 			zero_user_segment(page, partial_start, top);
541 			set_page_dirty(page);
542 			unlock_page(page);
543 			page_cache_release(page);
544 		}
545 	}
546 	if (partial_end) {
547 		struct page *page = NULL;
548 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
549 		if (page) {
550 			zero_user_segment(page, 0, partial_end);
551 			set_page_dirty(page);
552 			unlock_page(page);
553 			page_cache_release(page);
554 		}
555 	}
556 	if (start >= end)
557 		return;
558 
559 	index = start;
560 	while (index < end) {
561 		cond_resched();
562 
563 		pvec.nr = find_get_entries(mapping, index,
564 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
565 				pvec.pages, indices);
566 		if (!pvec.nr) {
567 			/* If all gone or hole-punch or unfalloc, we're done */
568 			if (index == start || end != -1)
569 				break;
570 			/* But if truncating, restart to make sure all gone */
571 			index = start;
572 			continue;
573 		}
574 		for (i = 0; i < pagevec_count(&pvec); i++) {
575 			struct page *page = pvec.pages[i];
576 
577 			index = indices[i];
578 			if (index >= end)
579 				break;
580 
581 			if (radix_tree_exceptional_entry(page)) {
582 				if (unfalloc)
583 					continue;
584 				if (shmem_free_swap(mapping, index, page)) {
585 					/* Swap was replaced by page: retry */
586 					index--;
587 					break;
588 				}
589 				nr_swaps_freed++;
590 				continue;
591 			}
592 
593 			lock_page(page);
594 			if (!unfalloc || !PageUptodate(page)) {
595 				if (page->mapping == mapping) {
596 					VM_BUG_ON_PAGE(PageWriteback(page), page);
597 					truncate_inode_page(mapping, page);
598 				} else {
599 					/* Page was replaced by swap: retry */
600 					unlock_page(page);
601 					index--;
602 					break;
603 				}
604 			}
605 			unlock_page(page);
606 		}
607 		pagevec_remove_exceptionals(&pvec);
608 		pagevec_release(&pvec);
609 		index++;
610 	}
611 
612 	spin_lock(&info->lock);
613 	info->swapped -= nr_swaps_freed;
614 	shmem_recalc_inode(inode);
615 	spin_unlock(&info->lock);
616 }
617 
618 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
619 {
620 	shmem_undo_range(inode, lstart, lend, false);
621 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
622 }
623 EXPORT_SYMBOL_GPL(shmem_truncate_range);
624 
625 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
626 			 struct kstat *stat)
627 {
628 	struct inode *inode = dentry->d_inode;
629 	struct shmem_inode_info *info = SHMEM_I(inode);
630 
631 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
632 		spin_lock(&info->lock);
633 		shmem_recalc_inode(inode);
634 		spin_unlock(&info->lock);
635 	}
636 	generic_fillattr(inode, stat);
637 	return 0;
638 }
639 
640 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
641 {
642 	struct inode *inode = d_inode(dentry);
643 	struct shmem_inode_info *info = SHMEM_I(inode);
644 	int error;
645 
646 	error = inode_change_ok(inode, attr);
647 	if (error)
648 		return error;
649 
650 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
651 		loff_t oldsize = inode->i_size;
652 		loff_t newsize = attr->ia_size;
653 
654 		/* protected by i_mutex */
655 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
656 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
657 			return -EPERM;
658 
659 		if (newsize != oldsize) {
660 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
661 					oldsize, newsize);
662 			if (error)
663 				return error;
664 			i_size_write(inode, newsize);
665 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
666 		}
667 		if (newsize <= oldsize) {
668 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
669 			if (oldsize > holebegin)
670 				unmap_mapping_range(inode->i_mapping,
671 							holebegin, 0, 1);
672 			if (info->alloced)
673 				shmem_truncate_range(inode,
674 							newsize, (loff_t)-1);
675 			/* unmap again to remove racily COWed private pages */
676 			if (oldsize > holebegin)
677 				unmap_mapping_range(inode->i_mapping,
678 							holebegin, 0, 1);
679 		}
680 	}
681 
682 	setattr_copy(inode, attr);
683 	if (attr->ia_valid & ATTR_MODE)
684 		error = posix_acl_chmod(inode, inode->i_mode);
685 	return error;
686 }
687 
688 static void shmem_evict_inode(struct inode *inode)
689 {
690 	struct shmem_inode_info *info = SHMEM_I(inode);
691 
692 	if (inode->i_mapping->a_ops == &shmem_aops) {
693 		shmem_unacct_size(info->flags, inode->i_size);
694 		inode->i_size = 0;
695 		shmem_truncate_range(inode, 0, (loff_t)-1);
696 		if (!list_empty(&info->swaplist)) {
697 			mutex_lock(&shmem_swaplist_mutex);
698 			list_del_init(&info->swaplist);
699 			mutex_unlock(&shmem_swaplist_mutex);
700 		}
701 	}
702 
703 	simple_xattrs_free(&info->xattrs);
704 	WARN_ON(inode->i_blocks);
705 	shmem_free_inode(inode->i_sb);
706 	clear_inode(inode);
707 }
708 
709 /*
710  * If swap found in inode, free it and move page from swapcache to filecache.
711  */
712 static int shmem_unuse_inode(struct shmem_inode_info *info,
713 			     swp_entry_t swap, struct page **pagep)
714 {
715 	struct address_space *mapping = info->vfs_inode.i_mapping;
716 	void *radswap;
717 	pgoff_t index;
718 	gfp_t gfp;
719 	int error = 0;
720 
721 	radswap = swp_to_radix_entry(swap);
722 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
723 	if (index == -1)
724 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
725 
726 	/*
727 	 * Move _head_ to start search for next from here.
728 	 * But be careful: shmem_evict_inode checks list_empty without taking
729 	 * mutex, and there's an instant in list_move_tail when info->swaplist
730 	 * would appear empty, if it were the only one on shmem_swaplist.
731 	 */
732 	if (shmem_swaplist.next != &info->swaplist)
733 		list_move_tail(&shmem_swaplist, &info->swaplist);
734 
735 	gfp = mapping_gfp_mask(mapping);
736 	if (shmem_should_replace_page(*pagep, gfp)) {
737 		mutex_unlock(&shmem_swaplist_mutex);
738 		error = shmem_replace_page(pagep, gfp, info, index);
739 		mutex_lock(&shmem_swaplist_mutex);
740 		/*
741 		 * We needed to drop mutex to make that restrictive page
742 		 * allocation, but the inode might have been freed while we
743 		 * dropped it: although a racing shmem_evict_inode() cannot
744 		 * complete without emptying the radix_tree, our page lock
745 		 * on this swapcache page is not enough to prevent that -
746 		 * free_swap_and_cache() of our swap entry will only
747 		 * trylock_page(), removing swap from radix_tree whatever.
748 		 *
749 		 * We must not proceed to shmem_add_to_page_cache() if the
750 		 * inode has been freed, but of course we cannot rely on
751 		 * inode or mapping or info to check that.  However, we can
752 		 * safely check if our swap entry is still in use (and here
753 		 * it can't have got reused for another page): if it's still
754 		 * in use, then the inode cannot have been freed yet, and we
755 		 * can safely proceed (if it's no longer in use, that tells
756 		 * nothing about the inode, but we don't need to unuse swap).
757 		 */
758 		if (!page_swapcount(*pagep))
759 			error = -ENOENT;
760 	}
761 
762 	/*
763 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
764 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
765 	 * beneath us (pagelock doesn't help until the page is in pagecache).
766 	 */
767 	if (!error)
768 		error = shmem_add_to_page_cache(*pagep, mapping, index,
769 						radswap);
770 	if (error != -ENOMEM) {
771 		/*
772 		 * Truncation and eviction use free_swap_and_cache(), which
773 		 * only does trylock page: if we raced, best clean up here.
774 		 */
775 		delete_from_swap_cache(*pagep);
776 		set_page_dirty(*pagep);
777 		if (!error) {
778 			spin_lock(&info->lock);
779 			info->swapped--;
780 			spin_unlock(&info->lock);
781 			swap_free(swap);
782 		}
783 	}
784 	return error;
785 }
786 
787 /*
788  * Search through swapped inodes to find and replace swap by page.
789  */
790 int shmem_unuse(swp_entry_t swap, struct page *page)
791 {
792 	struct list_head *this, *next;
793 	struct shmem_inode_info *info;
794 	struct mem_cgroup *memcg;
795 	int error = 0;
796 
797 	/*
798 	 * There's a faint possibility that swap page was replaced before
799 	 * caller locked it: caller will come back later with the right page.
800 	 */
801 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
802 		goto out;
803 
804 	/*
805 	 * Charge page using GFP_KERNEL while we can wait, before taking
806 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
807 	 * Charged back to the user (not to caller) when swap account is used.
808 	 */
809 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
810 			false);
811 	if (error)
812 		goto out;
813 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
814 	error = -EAGAIN;
815 
816 	mutex_lock(&shmem_swaplist_mutex);
817 	list_for_each_safe(this, next, &shmem_swaplist) {
818 		info = list_entry(this, struct shmem_inode_info, swaplist);
819 		if (info->swapped)
820 			error = shmem_unuse_inode(info, swap, &page);
821 		else
822 			list_del_init(&info->swaplist);
823 		cond_resched();
824 		if (error != -EAGAIN)
825 			break;
826 		/* found nothing in this: move on to search the next */
827 	}
828 	mutex_unlock(&shmem_swaplist_mutex);
829 
830 	if (error) {
831 		if (error != -ENOMEM)
832 			error = 0;
833 		mem_cgroup_cancel_charge(page, memcg, false);
834 	} else
835 		mem_cgroup_commit_charge(page, memcg, true, false);
836 out:
837 	unlock_page(page);
838 	page_cache_release(page);
839 	return error;
840 }
841 
842 /*
843  * Move the page from the page cache to the swap cache.
844  */
845 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
846 {
847 	struct shmem_inode_info *info;
848 	struct address_space *mapping;
849 	struct inode *inode;
850 	swp_entry_t swap;
851 	pgoff_t index;
852 
853 	BUG_ON(!PageLocked(page));
854 	mapping = page->mapping;
855 	index = page->index;
856 	inode = mapping->host;
857 	info = SHMEM_I(inode);
858 	if (info->flags & VM_LOCKED)
859 		goto redirty;
860 	if (!total_swap_pages)
861 		goto redirty;
862 
863 	/*
864 	 * Our capabilities prevent regular writeback or sync from ever calling
865 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
866 	 * its underlying filesystem, in which case tmpfs should write out to
867 	 * swap only in response to memory pressure, and not for the writeback
868 	 * threads or sync.
869 	 */
870 	if (!wbc->for_reclaim) {
871 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
872 		goto redirty;
873 	}
874 
875 	/*
876 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
877 	 * value into swapfile.c, the only way we can correctly account for a
878 	 * fallocated page arriving here is now to initialize it and write it.
879 	 *
880 	 * That's okay for a page already fallocated earlier, but if we have
881 	 * not yet completed the fallocation, then (a) we want to keep track
882 	 * of this page in case we have to undo it, and (b) it may not be a
883 	 * good idea to continue anyway, once we're pushing into swap.  So
884 	 * reactivate the page, and let shmem_fallocate() quit when too many.
885 	 */
886 	if (!PageUptodate(page)) {
887 		if (inode->i_private) {
888 			struct shmem_falloc *shmem_falloc;
889 			spin_lock(&inode->i_lock);
890 			shmem_falloc = inode->i_private;
891 			if (shmem_falloc &&
892 			    !shmem_falloc->waitq &&
893 			    index >= shmem_falloc->start &&
894 			    index < shmem_falloc->next)
895 				shmem_falloc->nr_unswapped++;
896 			else
897 				shmem_falloc = NULL;
898 			spin_unlock(&inode->i_lock);
899 			if (shmem_falloc)
900 				goto redirty;
901 		}
902 		clear_highpage(page);
903 		flush_dcache_page(page);
904 		SetPageUptodate(page);
905 	}
906 
907 	swap = get_swap_page();
908 	if (!swap.val)
909 		goto redirty;
910 
911 	if (mem_cgroup_try_charge_swap(page, swap))
912 		goto free_swap;
913 
914 	/*
915 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
916 	 * if it's not already there.  Do it now before the page is
917 	 * moved to swap cache, when its pagelock no longer protects
918 	 * the inode from eviction.  But don't unlock the mutex until
919 	 * we've incremented swapped, because shmem_unuse_inode() will
920 	 * prune a !swapped inode from the swaplist under this mutex.
921 	 */
922 	mutex_lock(&shmem_swaplist_mutex);
923 	if (list_empty(&info->swaplist))
924 		list_add_tail(&info->swaplist, &shmem_swaplist);
925 
926 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
927 		spin_lock(&info->lock);
928 		shmem_recalc_inode(inode);
929 		info->swapped++;
930 		spin_unlock(&info->lock);
931 
932 		swap_shmem_alloc(swap);
933 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
934 
935 		mutex_unlock(&shmem_swaplist_mutex);
936 		BUG_ON(page_mapped(page));
937 		swap_writepage(page, wbc);
938 		return 0;
939 	}
940 
941 	mutex_unlock(&shmem_swaplist_mutex);
942 free_swap:
943 	swapcache_free(swap);
944 redirty:
945 	set_page_dirty(page);
946 	if (wbc->for_reclaim)
947 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
948 	unlock_page(page);
949 	return 0;
950 }
951 
952 #ifdef CONFIG_NUMA
953 #ifdef CONFIG_TMPFS
954 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
955 {
956 	char buffer[64];
957 
958 	if (!mpol || mpol->mode == MPOL_DEFAULT)
959 		return;		/* show nothing */
960 
961 	mpol_to_str(buffer, sizeof(buffer), mpol);
962 
963 	seq_printf(seq, ",mpol=%s", buffer);
964 }
965 
966 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
967 {
968 	struct mempolicy *mpol = NULL;
969 	if (sbinfo->mpol) {
970 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
971 		mpol = sbinfo->mpol;
972 		mpol_get(mpol);
973 		spin_unlock(&sbinfo->stat_lock);
974 	}
975 	return mpol;
976 }
977 #endif /* CONFIG_TMPFS */
978 
979 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
980 			struct shmem_inode_info *info, pgoff_t index)
981 {
982 	struct vm_area_struct pvma;
983 	struct page *page;
984 
985 	/* Create a pseudo vma that just contains the policy */
986 	pvma.vm_start = 0;
987 	/* Bias interleave by inode number to distribute better across nodes */
988 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
989 	pvma.vm_ops = NULL;
990 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
991 
992 	page = swapin_readahead(swap, gfp, &pvma, 0);
993 
994 	/* Drop reference taken by mpol_shared_policy_lookup() */
995 	mpol_cond_put(pvma.vm_policy);
996 
997 	return page;
998 }
999 
1000 static struct page *shmem_alloc_page(gfp_t gfp,
1001 			struct shmem_inode_info *info, pgoff_t index)
1002 {
1003 	struct vm_area_struct pvma;
1004 	struct page *page;
1005 
1006 	/* Create a pseudo vma that just contains the policy */
1007 	pvma.vm_start = 0;
1008 	/* Bias interleave by inode number to distribute better across nodes */
1009 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1010 	pvma.vm_ops = NULL;
1011 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1012 
1013 	page = alloc_page_vma(gfp, &pvma, 0);
1014 
1015 	/* Drop reference taken by mpol_shared_policy_lookup() */
1016 	mpol_cond_put(pvma.vm_policy);
1017 
1018 	return page;
1019 }
1020 #else /* !CONFIG_NUMA */
1021 #ifdef CONFIG_TMPFS
1022 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1023 {
1024 }
1025 #endif /* CONFIG_TMPFS */
1026 
1027 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1028 			struct shmem_inode_info *info, pgoff_t index)
1029 {
1030 	return swapin_readahead(swap, gfp, NULL, 0);
1031 }
1032 
1033 static inline struct page *shmem_alloc_page(gfp_t gfp,
1034 			struct shmem_inode_info *info, pgoff_t index)
1035 {
1036 	return alloc_page(gfp);
1037 }
1038 #endif /* CONFIG_NUMA */
1039 
1040 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1041 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1042 {
1043 	return NULL;
1044 }
1045 #endif
1046 
1047 /*
1048  * When a page is moved from swapcache to shmem filecache (either by the
1049  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1050  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1051  * ignorance of the mapping it belongs to.  If that mapping has special
1052  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1053  * we may need to copy to a suitable page before moving to filecache.
1054  *
1055  * In a future release, this may well be extended to respect cpuset and
1056  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1057  * but for now it is a simple matter of zone.
1058  */
1059 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1060 {
1061 	return page_zonenum(page) > gfp_zone(gfp);
1062 }
1063 
1064 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1065 				struct shmem_inode_info *info, pgoff_t index)
1066 {
1067 	struct page *oldpage, *newpage;
1068 	struct address_space *swap_mapping;
1069 	pgoff_t swap_index;
1070 	int error;
1071 
1072 	oldpage = *pagep;
1073 	swap_index = page_private(oldpage);
1074 	swap_mapping = page_mapping(oldpage);
1075 
1076 	/*
1077 	 * We have arrived here because our zones are constrained, so don't
1078 	 * limit chance of success by further cpuset and node constraints.
1079 	 */
1080 	gfp &= ~GFP_CONSTRAINT_MASK;
1081 	newpage = shmem_alloc_page(gfp, info, index);
1082 	if (!newpage)
1083 		return -ENOMEM;
1084 
1085 	page_cache_get(newpage);
1086 	copy_highpage(newpage, oldpage);
1087 	flush_dcache_page(newpage);
1088 
1089 	__SetPageLocked(newpage);
1090 	SetPageUptodate(newpage);
1091 	SetPageSwapBacked(newpage);
1092 	set_page_private(newpage, swap_index);
1093 	SetPageSwapCache(newpage);
1094 
1095 	/*
1096 	 * Our caller will very soon move newpage out of swapcache, but it's
1097 	 * a nice clean interface for us to replace oldpage by newpage there.
1098 	 */
1099 	spin_lock_irq(&swap_mapping->tree_lock);
1100 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1101 								   newpage);
1102 	if (!error) {
1103 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1104 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1105 	}
1106 	spin_unlock_irq(&swap_mapping->tree_lock);
1107 
1108 	if (unlikely(error)) {
1109 		/*
1110 		 * Is this possible?  I think not, now that our callers check
1111 		 * both PageSwapCache and page_private after getting page lock;
1112 		 * but be defensive.  Reverse old to newpage for clear and free.
1113 		 */
1114 		oldpage = newpage;
1115 	} else {
1116 		mem_cgroup_migrate(oldpage, newpage);
1117 		lru_cache_add_anon(newpage);
1118 		*pagep = newpage;
1119 	}
1120 
1121 	ClearPageSwapCache(oldpage);
1122 	set_page_private(oldpage, 0);
1123 
1124 	unlock_page(oldpage);
1125 	page_cache_release(oldpage);
1126 	page_cache_release(oldpage);
1127 	return error;
1128 }
1129 
1130 /*
1131  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1132  *
1133  * If we allocate a new one we do not mark it dirty. That's up to the
1134  * vm. If we swap it in we mark it dirty since we also free the swap
1135  * entry since a page cannot live in both the swap and page cache
1136  */
1137 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1138 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1139 {
1140 	struct address_space *mapping = inode->i_mapping;
1141 	struct shmem_inode_info *info;
1142 	struct shmem_sb_info *sbinfo;
1143 	struct mem_cgroup *memcg;
1144 	struct page *page;
1145 	swp_entry_t swap;
1146 	int error;
1147 	int once = 0;
1148 	int alloced = 0;
1149 
1150 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1151 		return -EFBIG;
1152 repeat:
1153 	swap.val = 0;
1154 	page = find_lock_entry(mapping, index);
1155 	if (radix_tree_exceptional_entry(page)) {
1156 		swap = radix_to_swp_entry(page);
1157 		page = NULL;
1158 	}
1159 
1160 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1161 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1162 		error = -EINVAL;
1163 		goto unlock;
1164 	}
1165 
1166 	if (page && sgp == SGP_WRITE)
1167 		mark_page_accessed(page);
1168 
1169 	/* fallocated page? */
1170 	if (page && !PageUptodate(page)) {
1171 		if (sgp != SGP_READ)
1172 			goto clear;
1173 		unlock_page(page);
1174 		page_cache_release(page);
1175 		page = NULL;
1176 	}
1177 	if (page || (sgp == SGP_READ && !swap.val)) {
1178 		*pagep = page;
1179 		return 0;
1180 	}
1181 
1182 	/*
1183 	 * Fast cache lookup did not find it:
1184 	 * bring it back from swap or allocate.
1185 	 */
1186 	info = SHMEM_I(inode);
1187 	sbinfo = SHMEM_SB(inode->i_sb);
1188 
1189 	if (swap.val) {
1190 		/* Look it up and read it in.. */
1191 		page = lookup_swap_cache(swap);
1192 		if (!page) {
1193 			/* here we actually do the io */
1194 			if (fault_type)
1195 				*fault_type |= VM_FAULT_MAJOR;
1196 			page = shmem_swapin(swap, gfp, info, index);
1197 			if (!page) {
1198 				error = -ENOMEM;
1199 				goto failed;
1200 			}
1201 		}
1202 
1203 		/* We have to do this with page locked to prevent races */
1204 		lock_page(page);
1205 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1206 		    !shmem_confirm_swap(mapping, index, swap)) {
1207 			error = -EEXIST;	/* try again */
1208 			goto unlock;
1209 		}
1210 		if (!PageUptodate(page)) {
1211 			error = -EIO;
1212 			goto failed;
1213 		}
1214 		wait_on_page_writeback(page);
1215 
1216 		if (shmem_should_replace_page(page, gfp)) {
1217 			error = shmem_replace_page(&page, gfp, info, index);
1218 			if (error)
1219 				goto failed;
1220 		}
1221 
1222 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1223 				false);
1224 		if (!error) {
1225 			error = shmem_add_to_page_cache(page, mapping, index,
1226 						swp_to_radix_entry(swap));
1227 			/*
1228 			 * We already confirmed swap under page lock, and make
1229 			 * no memory allocation here, so usually no possibility
1230 			 * of error; but free_swap_and_cache() only trylocks a
1231 			 * page, so it is just possible that the entry has been
1232 			 * truncated or holepunched since swap was confirmed.
1233 			 * shmem_undo_range() will have done some of the
1234 			 * unaccounting, now delete_from_swap_cache() will do
1235 			 * the rest.
1236 			 * Reset swap.val? No, leave it so "failed" goes back to
1237 			 * "repeat": reading a hole and writing should succeed.
1238 			 */
1239 			if (error) {
1240 				mem_cgroup_cancel_charge(page, memcg, false);
1241 				delete_from_swap_cache(page);
1242 			}
1243 		}
1244 		if (error)
1245 			goto failed;
1246 
1247 		mem_cgroup_commit_charge(page, memcg, true, false);
1248 
1249 		spin_lock(&info->lock);
1250 		info->swapped--;
1251 		shmem_recalc_inode(inode);
1252 		spin_unlock(&info->lock);
1253 
1254 		if (sgp == SGP_WRITE)
1255 			mark_page_accessed(page);
1256 
1257 		delete_from_swap_cache(page);
1258 		set_page_dirty(page);
1259 		swap_free(swap);
1260 
1261 	} else {
1262 		if (shmem_acct_block(info->flags)) {
1263 			error = -ENOSPC;
1264 			goto failed;
1265 		}
1266 		if (sbinfo->max_blocks) {
1267 			if (percpu_counter_compare(&sbinfo->used_blocks,
1268 						sbinfo->max_blocks) >= 0) {
1269 				error = -ENOSPC;
1270 				goto unacct;
1271 			}
1272 			percpu_counter_inc(&sbinfo->used_blocks);
1273 		}
1274 
1275 		page = shmem_alloc_page(gfp, info, index);
1276 		if (!page) {
1277 			error = -ENOMEM;
1278 			goto decused;
1279 		}
1280 
1281 		__SetPageSwapBacked(page);
1282 		__SetPageLocked(page);
1283 		if (sgp == SGP_WRITE)
1284 			__SetPageReferenced(page);
1285 
1286 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1287 				false);
1288 		if (error)
1289 			goto decused;
1290 		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1291 		if (!error) {
1292 			error = shmem_add_to_page_cache(page, mapping, index,
1293 							NULL);
1294 			radix_tree_preload_end();
1295 		}
1296 		if (error) {
1297 			mem_cgroup_cancel_charge(page, memcg, false);
1298 			goto decused;
1299 		}
1300 		mem_cgroup_commit_charge(page, memcg, false, false);
1301 		lru_cache_add_anon(page);
1302 
1303 		spin_lock(&info->lock);
1304 		info->alloced++;
1305 		inode->i_blocks += BLOCKS_PER_PAGE;
1306 		shmem_recalc_inode(inode);
1307 		spin_unlock(&info->lock);
1308 		alloced = true;
1309 
1310 		/*
1311 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1312 		 */
1313 		if (sgp == SGP_FALLOC)
1314 			sgp = SGP_WRITE;
1315 clear:
1316 		/*
1317 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1318 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1319 		 * it now, lest undo on failure cancel our earlier guarantee.
1320 		 */
1321 		if (sgp != SGP_WRITE) {
1322 			clear_highpage(page);
1323 			flush_dcache_page(page);
1324 			SetPageUptodate(page);
1325 		}
1326 		if (sgp == SGP_DIRTY)
1327 			set_page_dirty(page);
1328 	}
1329 
1330 	/* Perhaps the file has been truncated since we checked */
1331 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1332 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1333 		if (alloced) {
1334 			ClearPageDirty(page);
1335 			delete_from_page_cache(page);
1336 			spin_lock(&info->lock);
1337 			shmem_recalc_inode(inode);
1338 			spin_unlock(&info->lock);
1339 		}
1340 		error = -EINVAL;
1341 		goto unlock;
1342 	}
1343 	*pagep = page;
1344 	return 0;
1345 
1346 	/*
1347 	 * Error recovery.
1348 	 */
1349 decused:
1350 	if (sbinfo->max_blocks)
1351 		percpu_counter_add(&sbinfo->used_blocks, -1);
1352 unacct:
1353 	shmem_unacct_blocks(info->flags, 1);
1354 failed:
1355 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1356 		error = -EEXIST;
1357 unlock:
1358 	if (page) {
1359 		unlock_page(page);
1360 		page_cache_release(page);
1361 	}
1362 	if (error == -ENOSPC && !once++) {
1363 		info = SHMEM_I(inode);
1364 		spin_lock(&info->lock);
1365 		shmem_recalc_inode(inode);
1366 		spin_unlock(&info->lock);
1367 		goto repeat;
1368 	}
1369 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1370 		goto repeat;
1371 	return error;
1372 }
1373 
1374 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1375 {
1376 	struct inode *inode = file_inode(vma->vm_file);
1377 	int error;
1378 	int ret = VM_FAULT_LOCKED;
1379 
1380 	/*
1381 	 * Trinity finds that probing a hole which tmpfs is punching can
1382 	 * prevent the hole-punch from ever completing: which in turn
1383 	 * locks writers out with its hold on i_mutex.  So refrain from
1384 	 * faulting pages into the hole while it's being punched.  Although
1385 	 * shmem_undo_range() does remove the additions, it may be unable to
1386 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1387 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1388 	 *
1389 	 * It does not matter if we sometimes reach this check just before the
1390 	 * hole-punch begins, so that one fault then races with the punch:
1391 	 * we just need to make racing faults a rare case.
1392 	 *
1393 	 * The implementation below would be much simpler if we just used a
1394 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1395 	 * and bloating every shmem inode for this unlikely case would be sad.
1396 	 */
1397 	if (unlikely(inode->i_private)) {
1398 		struct shmem_falloc *shmem_falloc;
1399 
1400 		spin_lock(&inode->i_lock);
1401 		shmem_falloc = inode->i_private;
1402 		if (shmem_falloc &&
1403 		    shmem_falloc->waitq &&
1404 		    vmf->pgoff >= shmem_falloc->start &&
1405 		    vmf->pgoff < shmem_falloc->next) {
1406 			wait_queue_head_t *shmem_falloc_waitq;
1407 			DEFINE_WAIT(shmem_fault_wait);
1408 
1409 			ret = VM_FAULT_NOPAGE;
1410 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1411 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1412 				/* It's polite to up mmap_sem if we can */
1413 				up_read(&vma->vm_mm->mmap_sem);
1414 				ret = VM_FAULT_RETRY;
1415 			}
1416 
1417 			shmem_falloc_waitq = shmem_falloc->waitq;
1418 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1419 					TASK_UNINTERRUPTIBLE);
1420 			spin_unlock(&inode->i_lock);
1421 			schedule();
1422 
1423 			/*
1424 			 * shmem_falloc_waitq points into the shmem_fallocate()
1425 			 * stack of the hole-punching task: shmem_falloc_waitq
1426 			 * is usually invalid by the time we reach here, but
1427 			 * finish_wait() does not dereference it in that case;
1428 			 * though i_lock needed lest racing with wake_up_all().
1429 			 */
1430 			spin_lock(&inode->i_lock);
1431 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1432 			spin_unlock(&inode->i_lock);
1433 			return ret;
1434 		}
1435 		spin_unlock(&inode->i_lock);
1436 	}
1437 
1438 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1439 	if (error)
1440 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1441 
1442 	if (ret & VM_FAULT_MAJOR) {
1443 		count_vm_event(PGMAJFAULT);
1444 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1445 	}
1446 	return ret;
1447 }
1448 
1449 #ifdef CONFIG_NUMA
1450 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1451 {
1452 	struct inode *inode = file_inode(vma->vm_file);
1453 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1454 }
1455 
1456 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1457 					  unsigned long addr)
1458 {
1459 	struct inode *inode = file_inode(vma->vm_file);
1460 	pgoff_t index;
1461 
1462 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1463 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1464 }
1465 #endif
1466 
1467 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1468 {
1469 	struct inode *inode = file_inode(file);
1470 	struct shmem_inode_info *info = SHMEM_I(inode);
1471 	int retval = -ENOMEM;
1472 
1473 	spin_lock(&info->lock);
1474 	if (lock && !(info->flags & VM_LOCKED)) {
1475 		if (!user_shm_lock(inode->i_size, user))
1476 			goto out_nomem;
1477 		info->flags |= VM_LOCKED;
1478 		mapping_set_unevictable(file->f_mapping);
1479 	}
1480 	if (!lock && (info->flags & VM_LOCKED) && user) {
1481 		user_shm_unlock(inode->i_size, user);
1482 		info->flags &= ~VM_LOCKED;
1483 		mapping_clear_unevictable(file->f_mapping);
1484 	}
1485 	retval = 0;
1486 
1487 out_nomem:
1488 	spin_unlock(&info->lock);
1489 	return retval;
1490 }
1491 
1492 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1493 {
1494 	file_accessed(file);
1495 	vma->vm_ops = &shmem_vm_ops;
1496 	return 0;
1497 }
1498 
1499 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1500 				     umode_t mode, dev_t dev, unsigned long flags)
1501 {
1502 	struct inode *inode;
1503 	struct shmem_inode_info *info;
1504 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1505 
1506 	if (shmem_reserve_inode(sb))
1507 		return NULL;
1508 
1509 	inode = new_inode(sb);
1510 	if (inode) {
1511 		inode->i_ino = get_next_ino();
1512 		inode_init_owner(inode, dir, mode);
1513 		inode->i_blocks = 0;
1514 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1515 		inode->i_generation = get_seconds();
1516 		info = SHMEM_I(inode);
1517 		memset(info, 0, (char *)inode - (char *)info);
1518 		spin_lock_init(&info->lock);
1519 		info->seals = F_SEAL_SEAL;
1520 		info->flags = flags & VM_NORESERVE;
1521 		INIT_LIST_HEAD(&info->swaplist);
1522 		simple_xattrs_init(&info->xattrs);
1523 		cache_no_acl(inode);
1524 
1525 		switch (mode & S_IFMT) {
1526 		default:
1527 			inode->i_op = &shmem_special_inode_operations;
1528 			init_special_inode(inode, mode, dev);
1529 			break;
1530 		case S_IFREG:
1531 			inode->i_mapping->a_ops = &shmem_aops;
1532 			inode->i_op = &shmem_inode_operations;
1533 			inode->i_fop = &shmem_file_operations;
1534 			mpol_shared_policy_init(&info->policy,
1535 						 shmem_get_sbmpol(sbinfo));
1536 			break;
1537 		case S_IFDIR:
1538 			inc_nlink(inode);
1539 			/* Some things misbehave if size == 0 on a directory */
1540 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1541 			inode->i_op = &shmem_dir_inode_operations;
1542 			inode->i_fop = &simple_dir_operations;
1543 			break;
1544 		case S_IFLNK:
1545 			/*
1546 			 * Must not load anything in the rbtree,
1547 			 * mpol_free_shared_policy will not be called.
1548 			 */
1549 			mpol_shared_policy_init(&info->policy, NULL);
1550 			break;
1551 		}
1552 	} else
1553 		shmem_free_inode(sb);
1554 	return inode;
1555 }
1556 
1557 bool shmem_mapping(struct address_space *mapping)
1558 {
1559 	if (!mapping->host)
1560 		return false;
1561 
1562 	return mapping->host->i_sb->s_op == &shmem_ops;
1563 }
1564 
1565 #ifdef CONFIG_TMPFS
1566 static const struct inode_operations shmem_symlink_inode_operations;
1567 static const struct inode_operations shmem_short_symlink_operations;
1568 
1569 #ifdef CONFIG_TMPFS_XATTR
1570 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1571 #else
1572 #define shmem_initxattrs NULL
1573 #endif
1574 
1575 static int
1576 shmem_write_begin(struct file *file, struct address_space *mapping,
1577 			loff_t pos, unsigned len, unsigned flags,
1578 			struct page **pagep, void **fsdata)
1579 {
1580 	struct inode *inode = mapping->host;
1581 	struct shmem_inode_info *info = SHMEM_I(inode);
1582 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1583 
1584 	/* i_mutex is held by caller */
1585 	if (unlikely(info->seals)) {
1586 		if (info->seals & F_SEAL_WRITE)
1587 			return -EPERM;
1588 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1589 			return -EPERM;
1590 	}
1591 
1592 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1593 }
1594 
1595 static int
1596 shmem_write_end(struct file *file, struct address_space *mapping,
1597 			loff_t pos, unsigned len, unsigned copied,
1598 			struct page *page, void *fsdata)
1599 {
1600 	struct inode *inode = mapping->host;
1601 
1602 	if (pos + copied > inode->i_size)
1603 		i_size_write(inode, pos + copied);
1604 
1605 	if (!PageUptodate(page)) {
1606 		if (copied < PAGE_CACHE_SIZE) {
1607 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1608 			zero_user_segments(page, 0, from,
1609 					from + copied, PAGE_CACHE_SIZE);
1610 		}
1611 		SetPageUptodate(page);
1612 	}
1613 	set_page_dirty(page);
1614 	unlock_page(page);
1615 	page_cache_release(page);
1616 
1617 	return copied;
1618 }
1619 
1620 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1621 {
1622 	struct file *file = iocb->ki_filp;
1623 	struct inode *inode = file_inode(file);
1624 	struct address_space *mapping = inode->i_mapping;
1625 	pgoff_t index;
1626 	unsigned long offset;
1627 	enum sgp_type sgp = SGP_READ;
1628 	int error = 0;
1629 	ssize_t retval = 0;
1630 	loff_t *ppos = &iocb->ki_pos;
1631 
1632 	/*
1633 	 * Might this read be for a stacking filesystem?  Then when reading
1634 	 * holes of a sparse file, we actually need to allocate those pages,
1635 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1636 	 */
1637 	if (!iter_is_iovec(to))
1638 		sgp = SGP_DIRTY;
1639 
1640 	index = *ppos >> PAGE_CACHE_SHIFT;
1641 	offset = *ppos & ~PAGE_CACHE_MASK;
1642 
1643 	for (;;) {
1644 		struct page *page = NULL;
1645 		pgoff_t end_index;
1646 		unsigned long nr, ret;
1647 		loff_t i_size = i_size_read(inode);
1648 
1649 		end_index = i_size >> PAGE_CACHE_SHIFT;
1650 		if (index > end_index)
1651 			break;
1652 		if (index == end_index) {
1653 			nr = i_size & ~PAGE_CACHE_MASK;
1654 			if (nr <= offset)
1655 				break;
1656 		}
1657 
1658 		error = shmem_getpage(inode, index, &page, sgp, NULL);
1659 		if (error) {
1660 			if (error == -EINVAL)
1661 				error = 0;
1662 			break;
1663 		}
1664 		if (page)
1665 			unlock_page(page);
1666 
1667 		/*
1668 		 * We must evaluate after, since reads (unlike writes)
1669 		 * are called without i_mutex protection against truncate
1670 		 */
1671 		nr = PAGE_CACHE_SIZE;
1672 		i_size = i_size_read(inode);
1673 		end_index = i_size >> PAGE_CACHE_SHIFT;
1674 		if (index == end_index) {
1675 			nr = i_size & ~PAGE_CACHE_MASK;
1676 			if (nr <= offset) {
1677 				if (page)
1678 					page_cache_release(page);
1679 				break;
1680 			}
1681 		}
1682 		nr -= offset;
1683 
1684 		if (page) {
1685 			/*
1686 			 * If users can be writing to this page using arbitrary
1687 			 * virtual addresses, take care about potential aliasing
1688 			 * before reading the page on the kernel side.
1689 			 */
1690 			if (mapping_writably_mapped(mapping))
1691 				flush_dcache_page(page);
1692 			/*
1693 			 * Mark the page accessed if we read the beginning.
1694 			 */
1695 			if (!offset)
1696 				mark_page_accessed(page);
1697 		} else {
1698 			page = ZERO_PAGE(0);
1699 			page_cache_get(page);
1700 		}
1701 
1702 		/*
1703 		 * Ok, we have the page, and it's up-to-date, so
1704 		 * now we can copy it to user space...
1705 		 */
1706 		ret = copy_page_to_iter(page, offset, nr, to);
1707 		retval += ret;
1708 		offset += ret;
1709 		index += offset >> PAGE_CACHE_SHIFT;
1710 		offset &= ~PAGE_CACHE_MASK;
1711 
1712 		page_cache_release(page);
1713 		if (!iov_iter_count(to))
1714 			break;
1715 		if (ret < nr) {
1716 			error = -EFAULT;
1717 			break;
1718 		}
1719 		cond_resched();
1720 	}
1721 
1722 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1723 	file_accessed(file);
1724 	return retval ? retval : error;
1725 }
1726 
1727 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1728 				struct pipe_inode_info *pipe, size_t len,
1729 				unsigned int flags)
1730 {
1731 	struct address_space *mapping = in->f_mapping;
1732 	struct inode *inode = mapping->host;
1733 	unsigned int loff, nr_pages, req_pages;
1734 	struct page *pages[PIPE_DEF_BUFFERS];
1735 	struct partial_page partial[PIPE_DEF_BUFFERS];
1736 	struct page *page;
1737 	pgoff_t index, end_index;
1738 	loff_t isize, left;
1739 	int error, page_nr;
1740 	struct splice_pipe_desc spd = {
1741 		.pages = pages,
1742 		.partial = partial,
1743 		.nr_pages_max = PIPE_DEF_BUFFERS,
1744 		.flags = flags,
1745 		.ops = &page_cache_pipe_buf_ops,
1746 		.spd_release = spd_release_page,
1747 	};
1748 
1749 	isize = i_size_read(inode);
1750 	if (unlikely(*ppos >= isize))
1751 		return 0;
1752 
1753 	left = isize - *ppos;
1754 	if (unlikely(left < len))
1755 		len = left;
1756 
1757 	if (splice_grow_spd(pipe, &spd))
1758 		return -ENOMEM;
1759 
1760 	index = *ppos >> PAGE_CACHE_SHIFT;
1761 	loff = *ppos & ~PAGE_CACHE_MASK;
1762 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1763 	nr_pages = min(req_pages, spd.nr_pages_max);
1764 
1765 	spd.nr_pages = find_get_pages_contig(mapping, index,
1766 						nr_pages, spd.pages);
1767 	index += spd.nr_pages;
1768 	error = 0;
1769 
1770 	while (spd.nr_pages < nr_pages) {
1771 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1772 		if (error)
1773 			break;
1774 		unlock_page(page);
1775 		spd.pages[spd.nr_pages++] = page;
1776 		index++;
1777 	}
1778 
1779 	index = *ppos >> PAGE_CACHE_SHIFT;
1780 	nr_pages = spd.nr_pages;
1781 	spd.nr_pages = 0;
1782 
1783 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1784 		unsigned int this_len;
1785 
1786 		if (!len)
1787 			break;
1788 
1789 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1790 		page = spd.pages[page_nr];
1791 
1792 		if (!PageUptodate(page) || page->mapping != mapping) {
1793 			error = shmem_getpage(inode, index, &page,
1794 							SGP_CACHE, NULL);
1795 			if (error)
1796 				break;
1797 			unlock_page(page);
1798 			page_cache_release(spd.pages[page_nr]);
1799 			spd.pages[page_nr] = page;
1800 		}
1801 
1802 		isize = i_size_read(inode);
1803 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1804 		if (unlikely(!isize || index > end_index))
1805 			break;
1806 
1807 		if (end_index == index) {
1808 			unsigned int plen;
1809 
1810 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1811 			if (plen <= loff)
1812 				break;
1813 
1814 			this_len = min(this_len, plen - loff);
1815 			len = this_len;
1816 		}
1817 
1818 		spd.partial[page_nr].offset = loff;
1819 		spd.partial[page_nr].len = this_len;
1820 		len -= this_len;
1821 		loff = 0;
1822 		spd.nr_pages++;
1823 		index++;
1824 	}
1825 
1826 	while (page_nr < nr_pages)
1827 		page_cache_release(spd.pages[page_nr++]);
1828 
1829 	if (spd.nr_pages)
1830 		error = splice_to_pipe(pipe, &spd);
1831 
1832 	splice_shrink_spd(&spd);
1833 
1834 	if (error > 0) {
1835 		*ppos += error;
1836 		file_accessed(in);
1837 	}
1838 	return error;
1839 }
1840 
1841 /*
1842  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1843  */
1844 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1845 				    pgoff_t index, pgoff_t end, int whence)
1846 {
1847 	struct page *page;
1848 	struct pagevec pvec;
1849 	pgoff_t indices[PAGEVEC_SIZE];
1850 	bool done = false;
1851 	int i;
1852 
1853 	pagevec_init(&pvec, 0);
1854 	pvec.nr = 1;		/* start small: we may be there already */
1855 	while (!done) {
1856 		pvec.nr = find_get_entries(mapping, index,
1857 					pvec.nr, pvec.pages, indices);
1858 		if (!pvec.nr) {
1859 			if (whence == SEEK_DATA)
1860 				index = end;
1861 			break;
1862 		}
1863 		for (i = 0; i < pvec.nr; i++, index++) {
1864 			if (index < indices[i]) {
1865 				if (whence == SEEK_HOLE) {
1866 					done = true;
1867 					break;
1868 				}
1869 				index = indices[i];
1870 			}
1871 			page = pvec.pages[i];
1872 			if (page && !radix_tree_exceptional_entry(page)) {
1873 				if (!PageUptodate(page))
1874 					page = NULL;
1875 			}
1876 			if (index >= end ||
1877 			    (page && whence == SEEK_DATA) ||
1878 			    (!page && whence == SEEK_HOLE)) {
1879 				done = true;
1880 				break;
1881 			}
1882 		}
1883 		pagevec_remove_exceptionals(&pvec);
1884 		pagevec_release(&pvec);
1885 		pvec.nr = PAGEVEC_SIZE;
1886 		cond_resched();
1887 	}
1888 	return index;
1889 }
1890 
1891 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1892 {
1893 	struct address_space *mapping = file->f_mapping;
1894 	struct inode *inode = mapping->host;
1895 	pgoff_t start, end;
1896 	loff_t new_offset;
1897 
1898 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1899 		return generic_file_llseek_size(file, offset, whence,
1900 					MAX_LFS_FILESIZE, i_size_read(inode));
1901 	inode_lock(inode);
1902 	/* We're holding i_mutex so we can access i_size directly */
1903 
1904 	if (offset < 0)
1905 		offset = -EINVAL;
1906 	else if (offset >= inode->i_size)
1907 		offset = -ENXIO;
1908 	else {
1909 		start = offset >> PAGE_CACHE_SHIFT;
1910 		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1911 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1912 		new_offset <<= PAGE_CACHE_SHIFT;
1913 		if (new_offset > offset) {
1914 			if (new_offset < inode->i_size)
1915 				offset = new_offset;
1916 			else if (whence == SEEK_DATA)
1917 				offset = -ENXIO;
1918 			else
1919 				offset = inode->i_size;
1920 		}
1921 	}
1922 
1923 	if (offset >= 0)
1924 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1925 	inode_unlock(inode);
1926 	return offset;
1927 }
1928 
1929 /*
1930  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1931  * so reuse a tag which we firmly believe is never set or cleared on shmem.
1932  */
1933 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1934 #define LAST_SCAN               4       /* about 150ms max */
1935 
1936 static void shmem_tag_pins(struct address_space *mapping)
1937 {
1938 	struct radix_tree_iter iter;
1939 	void **slot;
1940 	pgoff_t start;
1941 	struct page *page;
1942 
1943 	lru_add_drain();
1944 	start = 0;
1945 	rcu_read_lock();
1946 
1947 restart:
1948 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1949 		page = radix_tree_deref_slot(slot);
1950 		if (!page || radix_tree_exception(page)) {
1951 			if (radix_tree_deref_retry(page)) {
1952 				slot = radix_tree_iter_retry(&iter);
1953 				continue;
1954 			}
1955 		} else if (page_count(page) - page_mapcount(page) > 1) {
1956 			spin_lock_irq(&mapping->tree_lock);
1957 			radix_tree_tag_set(&mapping->page_tree, iter.index,
1958 					   SHMEM_TAG_PINNED);
1959 			spin_unlock_irq(&mapping->tree_lock);
1960 		}
1961 
1962 		if (need_resched()) {
1963 			cond_resched_rcu();
1964 			start = iter.index + 1;
1965 			goto restart;
1966 		}
1967 	}
1968 	rcu_read_unlock();
1969 }
1970 
1971 /*
1972  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1973  * via get_user_pages(), drivers might have some pending I/O without any active
1974  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1975  * and see whether it has an elevated ref-count. If so, we tag them and wait for
1976  * them to be dropped.
1977  * The caller must guarantee that no new user will acquire writable references
1978  * to those pages to avoid races.
1979  */
1980 static int shmem_wait_for_pins(struct address_space *mapping)
1981 {
1982 	struct radix_tree_iter iter;
1983 	void **slot;
1984 	pgoff_t start;
1985 	struct page *page;
1986 	int error, scan;
1987 
1988 	shmem_tag_pins(mapping);
1989 
1990 	error = 0;
1991 	for (scan = 0; scan <= LAST_SCAN; scan++) {
1992 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1993 			break;
1994 
1995 		if (!scan)
1996 			lru_add_drain_all();
1997 		else if (schedule_timeout_killable((HZ << scan) / 200))
1998 			scan = LAST_SCAN;
1999 
2000 		start = 0;
2001 		rcu_read_lock();
2002 restart:
2003 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2004 					   start, SHMEM_TAG_PINNED) {
2005 
2006 			page = radix_tree_deref_slot(slot);
2007 			if (radix_tree_exception(page)) {
2008 				if (radix_tree_deref_retry(page)) {
2009 					slot = radix_tree_iter_retry(&iter);
2010 					continue;
2011 				}
2012 
2013 				page = NULL;
2014 			}
2015 
2016 			if (page &&
2017 			    page_count(page) - page_mapcount(page) != 1) {
2018 				if (scan < LAST_SCAN)
2019 					goto continue_resched;
2020 
2021 				/*
2022 				 * On the last scan, we clean up all those tags
2023 				 * we inserted; but make a note that we still
2024 				 * found pages pinned.
2025 				 */
2026 				error = -EBUSY;
2027 			}
2028 
2029 			spin_lock_irq(&mapping->tree_lock);
2030 			radix_tree_tag_clear(&mapping->page_tree,
2031 					     iter.index, SHMEM_TAG_PINNED);
2032 			spin_unlock_irq(&mapping->tree_lock);
2033 continue_resched:
2034 			if (need_resched()) {
2035 				cond_resched_rcu();
2036 				start = iter.index + 1;
2037 				goto restart;
2038 			}
2039 		}
2040 		rcu_read_unlock();
2041 	}
2042 
2043 	return error;
2044 }
2045 
2046 #define F_ALL_SEALS (F_SEAL_SEAL | \
2047 		     F_SEAL_SHRINK | \
2048 		     F_SEAL_GROW | \
2049 		     F_SEAL_WRITE)
2050 
2051 int shmem_add_seals(struct file *file, unsigned int seals)
2052 {
2053 	struct inode *inode = file_inode(file);
2054 	struct shmem_inode_info *info = SHMEM_I(inode);
2055 	int error;
2056 
2057 	/*
2058 	 * SEALING
2059 	 * Sealing allows multiple parties to share a shmem-file but restrict
2060 	 * access to a specific subset of file operations. Seals can only be
2061 	 * added, but never removed. This way, mutually untrusted parties can
2062 	 * share common memory regions with a well-defined policy. A malicious
2063 	 * peer can thus never perform unwanted operations on a shared object.
2064 	 *
2065 	 * Seals are only supported on special shmem-files and always affect
2066 	 * the whole underlying inode. Once a seal is set, it may prevent some
2067 	 * kinds of access to the file. Currently, the following seals are
2068 	 * defined:
2069 	 *   SEAL_SEAL: Prevent further seals from being set on this file
2070 	 *   SEAL_SHRINK: Prevent the file from shrinking
2071 	 *   SEAL_GROW: Prevent the file from growing
2072 	 *   SEAL_WRITE: Prevent write access to the file
2073 	 *
2074 	 * As we don't require any trust relationship between two parties, we
2075 	 * must prevent seals from being removed. Therefore, sealing a file
2076 	 * only adds a given set of seals to the file, it never touches
2077 	 * existing seals. Furthermore, the "setting seals"-operation can be
2078 	 * sealed itself, which basically prevents any further seal from being
2079 	 * added.
2080 	 *
2081 	 * Semantics of sealing are only defined on volatile files. Only
2082 	 * anonymous shmem files support sealing. More importantly, seals are
2083 	 * never written to disk. Therefore, there's no plan to support it on
2084 	 * other file types.
2085 	 */
2086 
2087 	if (file->f_op != &shmem_file_operations)
2088 		return -EINVAL;
2089 	if (!(file->f_mode & FMODE_WRITE))
2090 		return -EPERM;
2091 	if (seals & ~(unsigned int)F_ALL_SEALS)
2092 		return -EINVAL;
2093 
2094 	inode_lock(inode);
2095 
2096 	if (info->seals & F_SEAL_SEAL) {
2097 		error = -EPERM;
2098 		goto unlock;
2099 	}
2100 
2101 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2102 		error = mapping_deny_writable(file->f_mapping);
2103 		if (error)
2104 			goto unlock;
2105 
2106 		error = shmem_wait_for_pins(file->f_mapping);
2107 		if (error) {
2108 			mapping_allow_writable(file->f_mapping);
2109 			goto unlock;
2110 		}
2111 	}
2112 
2113 	info->seals |= seals;
2114 	error = 0;
2115 
2116 unlock:
2117 	inode_unlock(inode);
2118 	return error;
2119 }
2120 EXPORT_SYMBOL_GPL(shmem_add_seals);
2121 
2122 int shmem_get_seals(struct file *file)
2123 {
2124 	if (file->f_op != &shmem_file_operations)
2125 		return -EINVAL;
2126 
2127 	return SHMEM_I(file_inode(file))->seals;
2128 }
2129 EXPORT_SYMBOL_GPL(shmem_get_seals);
2130 
2131 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2132 {
2133 	long error;
2134 
2135 	switch (cmd) {
2136 	case F_ADD_SEALS:
2137 		/* disallow upper 32bit */
2138 		if (arg > UINT_MAX)
2139 			return -EINVAL;
2140 
2141 		error = shmem_add_seals(file, arg);
2142 		break;
2143 	case F_GET_SEALS:
2144 		error = shmem_get_seals(file);
2145 		break;
2146 	default:
2147 		error = -EINVAL;
2148 		break;
2149 	}
2150 
2151 	return error;
2152 }
2153 
2154 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2155 							 loff_t len)
2156 {
2157 	struct inode *inode = file_inode(file);
2158 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2159 	struct shmem_inode_info *info = SHMEM_I(inode);
2160 	struct shmem_falloc shmem_falloc;
2161 	pgoff_t start, index, end;
2162 	int error;
2163 
2164 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2165 		return -EOPNOTSUPP;
2166 
2167 	inode_lock(inode);
2168 
2169 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2170 		struct address_space *mapping = file->f_mapping;
2171 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2172 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2173 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2174 
2175 		/* protected by i_mutex */
2176 		if (info->seals & F_SEAL_WRITE) {
2177 			error = -EPERM;
2178 			goto out;
2179 		}
2180 
2181 		shmem_falloc.waitq = &shmem_falloc_waitq;
2182 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2183 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2184 		spin_lock(&inode->i_lock);
2185 		inode->i_private = &shmem_falloc;
2186 		spin_unlock(&inode->i_lock);
2187 
2188 		if ((u64)unmap_end > (u64)unmap_start)
2189 			unmap_mapping_range(mapping, unmap_start,
2190 					    1 + unmap_end - unmap_start, 0);
2191 		shmem_truncate_range(inode, offset, offset + len - 1);
2192 		/* No need to unmap again: hole-punching leaves COWed pages */
2193 
2194 		spin_lock(&inode->i_lock);
2195 		inode->i_private = NULL;
2196 		wake_up_all(&shmem_falloc_waitq);
2197 		spin_unlock(&inode->i_lock);
2198 		error = 0;
2199 		goto out;
2200 	}
2201 
2202 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2203 	error = inode_newsize_ok(inode, offset + len);
2204 	if (error)
2205 		goto out;
2206 
2207 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2208 		error = -EPERM;
2209 		goto out;
2210 	}
2211 
2212 	start = offset >> PAGE_CACHE_SHIFT;
2213 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2214 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2215 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2216 		error = -ENOSPC;
2217 		goto out;
2218 	}
2219 
2220 	shmem_falloc.waitq = NULL;
2221 	shmem_falloc.start = start;
2222 	shmem_falloc.next  = start;
2223 	shmem_falloc.nr_falloced = 0;
2224 	shmem_falloc.nr_unswapped = 0;
2225 	spin_lock(&inode->i_lock);
2226 	inode->i_private = &shmem_falloc;
2227 	spin_unlock(&inode->i_lock);
2228 
2229 	for (index = start; index < end; index++) {
2230 		struct page *page;
2231 
2232 		/*
2233 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2234 		 * been interrupted because we are using up too much memory.
2235 		 */
2236 		if (signal_pending(current))
2237 			error = -EINTR;
2238 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2239 			error = -ENOMEM;
2240 		else
2241 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2242 									NULL);
2243 		if (error) {
2244 			/* Remove the !PageUptodate pages we added */
2245 			shmem_undo_range(inode,
2246 				(loff_t)start << PAGE_CACHE_SHIFT,
2247 				(loff_t)index << PAGE_CACHE_SHIFT, true);
2248 			goto undone;
2249 		}
2250 
2251 		/*
2252 		 * Inform shmem_writepage() how far we have reached.
2253 		 * No need for lock or barrier: we have the page lock.
2254 		 */
2255 		shmem_falloc.next++;
2256 		if (!PageUptodate(page))
2257 			shmem_falloc.nr_falloced++;
2258 
2259 		/*
2260 		 * If !PageUptodate, leave it that way so that freeable pages
2261 		 * can be recognized if we need to rollback on error later.
2262 		 * But set_page_dirty so that memory pressure will swap rather
2263 		 * than free the pages we are allocating (and SGP_CACHE pages
2264 		 * might still be clean: we now need to mark those dirty too).
2265 		 */
2266 		set_page_dirty(page);
2267 		unlock_page(page);
2268 		page_cache_release(page);
2269 		cond_resched();
2270 	}
2271 
2272 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2273 		i_size_write(inode, offset + len);
2274 	inode->i_ctime = CURRENT_TIME;
2275 undone:
2276 	spin_lock(&inode->i_lock);
2277 	inode->i_private = NULL;
2278 	spin_unlock(&inode->i_lock);
2279 out:
2280 	inode_unlock(inode);
2281 	return error;
2282 }
2283 
2284 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2285 {
2286 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2287 
2288 	buf->f_type = TMPFS_MAGIC;
2289 	buf->f_bsize = PAGE_CACHE_SIZE;
2290 	buf->f_namelen = NAME_MAX;
2291 	if (sbinfo->max_blocks) {
2292 		buf->f_blocks = sbinfo->max_blocks;
2293 		buf->f_bavail =
2294 		buf->f_bfree  = sbinfo->max_blocks -
2295 				percpu_counter_sum(&sbinfo->used_blocks);
2296 	}
2297 	if (sbinfo->max_inodes) {
2298 		buf->f_files = sbinfo->max_inodes;
2299 		buf->f_ffree = sbinfo->free_inodes;
2300 	}
2301 	/* else leave those fields 0 like simple_statfs */
2302 	return 0;
2303 }
2304 
2305 /*
2306  * File creation. Allocate an inode, and we're done..
2307  */
2308 static int
2309 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2310 {
2311 	struct inode *inode;
2312 	int error = -ENOSPC;
2313 
2314 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2315 	if (inode) {
2316 		error = simple_acl_create(dir, inode);
2317 		if (error)
2318 			goto out_iput;
2319 		error = security_inode_init_security(inode, dir,
2320 						     &dentry->d_name,
2321 						     shmem_initxattrs, NULL);
2322 		if (error && error != -EOPNOTSUPP)
2323 			goto out_iput;
2324 
2325 		error = 0;
2326 		dir->i_size += BOGO_DIRENT_SIZE;
2327 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2328 		d_instantiate(dentry, inode);
2329 		dget(dentry); /* Extra count - pin the dentry in core */
2330 	}
2331 	return error;
2332 out_iput:
2333 	iput(inode);
2334 	return error;
2335 }
2336 
2337 static int
2338 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2339 {
2340 	struct inode *inode;
2341 	int error = -ENOSPC;
2342 
2343 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2344 	if (inode) {
2345 		error = security_inode_init_security(inode, dir,
2346 						     NULL,
2347 						     shmem_initxattrs, NULL);
2348 		if (error && error != -EOPNOTSUPP)
2349 			goto out_iput;
2350 		error = simple_acl_create(dir, inode);
2351 		if (error)
2352 			goto out_iput;
2353 		d_tmpfile(dentry, inode);
2354 	}
2355 	return error;
2356 out_iput:
2357 	iput(inode);
2358 	return error;
2359 }
2360 
2361 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2362 {
2363 	int error;
2364 
2365 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2366 		return error;
2367 	inc_nlink(dir);
2368 	return 0;
2369 }
2370 
2371 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2372 		bool excl)
2373 {
2374 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2375 }
2376 
2377 /*
2378  * Link a file..
2379  */
2380 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2381 {
2382 	struct inode *inode = d_inode(old_dentry);
2383 	int ret;
2384 
2385 	/*
2386 	 * No ordinary (disk based) filesystem counts links as inodes;
2387 	 * but each new link needs a new dentry, pinning lowmem, and
2388 	 * tmpfs dentries cannot be pruned until they are unlinked.
2389 	 */
2390 	ret = shmem_reserve_inode(inode->i_sb);
2391 	if (ret)
2392 		goto out;
2393 
2394 	dir->i_size += BOGO_DIRENT_SIZE;
2395 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2396 	inc_nlink(inode);
2397 	ihold(inode);	/* New dentry reference */
2398 	dget(dentry);		/* Extra pinning count for the created dentry */
2399 	d_instantiate(dentry, inode);
2400 out:
2401 	return ret;
2402 }
2403 
2404 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2405 {
2406 	struct inode *inode = d_inode(dentry);
2407 
2408 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2409 		shmem_free_inode(inode->i_sb);
2410 
2411 	dir->i_size -= BOGO_DIRENT_SIZE;
2412 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2413 	drop_nlink(inode);
2414 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2415 	return 0;
2416 }
2417 
2418 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2419 {
2420 	if (!simple_empty(dentry))
2421 		return -ENOTEMPTY;
2422 
2423 	drop_nlink(d_inode(dentry));
2424 	drop_nlink(dir);
2425 	return shmem_unlink(dir, dentry);
2426 }
2427 
2428 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2429 {
2430 	bool old_is_dir = d_is_dir(old_dentry);
2431 	bool new_is_dir = d_is_dir(new_dentry);
2432 
2433 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2434 		if (old_is_dir) {
2435 			drop_nlink(old_dir);
2436 			inc_nlink(new_dir);
2437 		} else {
2438 			drop_nlink(new_dir);
2439 			inc_nlink(old_dir);
2440 		}
2441 	}
2442 	old_dir->i_ctime = old_dir->i_mtime =
2443 	new_dir->i_ctime = new_dir->i_mtime =
2444 	d_inode(old_dentry)->i_ctime =
2445 	d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2446 
2447 	return 0;
2448 }
2449 
2450 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2451 {
2452 	struct dentry *whiteout;
2453 	int error;
2454 
2455 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2456 	if (!whiteout)
2457 		return -ENOMEM;
2458 
2459 	error = shmem_mknod(old_dir, whiteout,
2460 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2461 	dput(whiteout);
2462 	if (error)
2463 		return error;
2464 
2465 	/*
2466 	 * Cheat and hash the whiteout while the old dentry is still in
2467 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2468 	 *
2469 	 * d_lookup() will consistently find one of them at this point,
2470 	 * not sure which one, but that isn't even important.
2471 	 */
2472 	d_rehash(whiteout);
2473 	return 0;
2474 }
2475 
2476 /*
2477  * The VFS layer already does all the dentry stuff for rename,
2478  * we just have to decrement the usage count for the target if
2479  * it exists so that the VFS layer correctly free's it when it
2480  * gets overwritten.
2481  */
2482 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2483 {
2484 	struct inode *inode = d_inode(old_dentry);
2485 	int they_are_dirs = S_ISDIR(inode->i_mode);
2486 
2487 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2488 		return -EINVAL;
2489 
2490 	if (flags & RENAME_EXCHANGE)
2491 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2492 
2493 	if (!simple_empty(new_dentry))
2494 		return -ENOTEMPTY;
2495 
2496 	if (flags & RENAME_WHITEOUT) {
2497 		int error;
2498 
2499 		error = shmem_whiteout(old_dir, old_dentry);
2500 		if (error)
2501 			return error;
2502 	}
2503 
2504 	if (d_really_is_positive(new_dentry)) {
2505 		(void) shmem_unlink(new_dir, new_dentry);
2506 		if (they_are_dirs) {
2507 			drop_nlink(d_inode(new_dentry));
2508 			drop_nlink(old_dir);
2509 		}
2510 	} else if (they_are_dirs) {
2511 		drop_nlink(old_dir);
2512 		inc_nlink(new_dir);
2513 	}
2514 
2515 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2516 	new_dir->i_size += BOGO_DIRENT_SIZE;
2517 	old_dir->i_ctime = old_dir->i_mtime =
2518 	new_dir->i_ctime = new_dir->i_mtime =
2519 	inode->i_ctime = CURRENT_TIME;
2520 	return 0;
2521 }
2522 
2523 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2524 {
2525 	int error;
2526 	int len;
2527 	struct inode *inode;
2528 	struct page *page;
2529 	struct shmem_inode_info *info;
2530 
2531 	len = strlen(symname) + 1;
2532 	if (len > PAGE_CACHE_SIZE)
2533 		return -ENAMETOOLONG;
2534 
2535 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2536 	if (!inode)
2537 		return -ENOSPC;
2538 
2539 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2540 					     shmem_initxattrs, NULL);
2541 	if (error) {
2542 		if (error != -EOPNOTSUPP) {
2543 			iput(inode);
2544 			return error;
2545 		}
2546 		error = 0;
2547 	}
2548 
2549 	info = SHMEM_I(inode);
2550 	inode->i_size = len-1;
2551 	if (len <= SHORT_SYMLINK_LEN) {
2552 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2553 		if (!inode->i_link) {
2554 			iput(inode);
2555 			return -ENOMEM;
2556 		}
2557 		inode->i_op = &shmem_short_symlink_operations;
2558 	} else {
2559 		inode_nohighmem(inode);
2560 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2561 		if (error) {
2562 			iput(inode);
2563 			return error;
2564 		}
2565 		inode->i_mapping->a_ops = &shmem_aops;
2566 		inode->i_op = &shmem_symlink_inode_operations;
2567 		memcpy(page_address(page), symname, len);
2568 		SetPageUptodate(page);
2569 		set_page_dirty(page);
2570 		unlock_page(page);
2571 		page_cache_release(page);
2572 	}
2573 	dir->i_size += BOGO_DIRENT_SIZE;
2574 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2575 	d_instantiate(dentry, inode);
2576 	dget(dentry);
2577 	return 0;
2578 }
2579 
2580 static void shmem_put_link(void *arg)
2581 {
2582 	mark_page_accessed(arg);
2583 	put_page(arg);
2584 }
2585 
2586 static const char *shmem_get_link(struct dentry *dentry,
2587 				  struct inode *inode,
2588 				  struct delayed_call *done)
2589 {
2590 	struct page *page = NULL;
2591 	int error;
2592 	if (!dentry) {
2593 		page = find_get_page(inode->i_mapping, 0);
2594 		if (!page)
2595 			return ERR_PTR(-ECHILD);
2596 		if (!PageUptodate(page)) {
2597 			put_page(page);
2598 			return ERR_PTR(-ECHILD);
2599 		}
2600 	} else {
2601 		error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2602 		if (error)
2603 			return ERR_PTR(error);
2604 		unlock_page(page);
2605 	}
2606 	set_delayed_call(done, shmem_put_link, page);
2607 	return page_address(page);
2608 }
2609 
2610 #ifdef CONFIG_TMPFS_XATTR
2611 /*
2612  * Superblocks without xattr inode operations may get some security.* xattr
2613  * support from the LSM "for free". As soon as we have any other xattrs
2614  * like ACLs, we also need to implement the security.* handlers at
2615  * filesystem level, though.
2616  */
2617 
2618 /*
2619  * Callback for security_inode_init_security() for acquiring xattrs.
2620  */
2621 static int shmem_initxattrs(struct inode *inode,
2622 			    const struct xattr *xattr_array,
2623 			    void *fs_info)
2624 {
2625 	struct shmem_inode_info *info = SHMEM_I(inode);
2626 	const struct xattr *xattr;
2627 	struct simple_xattr *new_xattr;
2628 	size_t len;
2629 
2630 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2631 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2632 		if (!new_xattr)
2633 			return -ENOMEM;
2634 
2635 		len = strlen(xattr->name) + 1;
2636 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2637 					  GFP_KERNEL);
2638 		if (!new_xattr->name) {
2639 			kfree(new_xattr);
2640 			return -ENOMEM;
2641 		}
2642 
2643 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2644 		       XATTR_SECURITY_PREFIX_LEN);
2645 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2646 		       xattr->name, len);
2647 
2648 		simple_xattr_list_add(&info->xattrs, new_xattr);
2649 	}
2650 
2651 	return 0;
2652 }
2653 
2654 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2655 				   struct dentry *dentry, const char *name,
2656 				   void *buffer, size_t size)
2657 {
2658 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2659 
2660 	name = xattr_full_name(handler, name);
2661 	return simple_xattr_get(&info->xattrs, name, buffer, size);
2662 }
2663 
2664 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2665 				   struct dentry *dentry, const char *name,
2666 				   const void *value, size_t size, int flags)
2667 {
2668 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2669 
2670 	name = xattr_full_name(handler, name);
2671 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2672 }
2673 
2674 static const struct xattr_handler shmem_security_xattr_handler = {
2675 	.prefix = XATTR_SECURITY_PREFIX,
2676 	.get = shmem_xattr_handler_get,
2677 	.set = shmem_xattr_handler_set,
2678 };
2679 
2680 static const struct xattr_handler shmem_trusted_xattr_handler = {
2681 	.prefix = XATTR_TRUSTED_PREFIX,
2682 	.get = shmem_xattr_handler_get,
2683 	.set = shmem_xattr_handler_set,
2684 };
2685 
2686 static const struct xattr_handler *shmem_xattr_handlers[] = {
2687 #ifdef CONFIG_TMPFS_POSIX_ACL
2688 	&posix_acl_access_xattr_handler,
2689 	&posix_acl_default_xattr_handler,
2690 #endif
2691 	&shmem_security_xattr_handler,
2692 	&shmem_trusted_xattr_handler,
2693 	NULL
2694 };
2695 
2696 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2697 {
2698 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2699 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2700 }
2701 #endif /* CONFIG_TMPFS_XATTR */
2702 
2703 static const struct inode_operations shmem_short_symlink_operations = {
2704 	.readlink	= generic_readlink,
2705 	.get_link	= simple_get_link,
2706 #ifdef CONFIG_TMPFS_XATTR
2707 	.setxattr	= generic_setxattr,
2708 	.getxattr	= generic_getxattr,
2709 	.listxattr	= shmem_listxattr,
2710 	.removexattr	= generic_removexattr,
2711 #endif
2712 };
2713 
2714 static const struct inode_operations shmem_symlink_inode_operations = {
2715 	.readlink	= generic_readlink,
2716 	.get_link	= shmem_get_link,
2717 #ifdef CONFIG_TMPFS_XATTR
2718 	.setxattr	= generic_setxattr,
2719 	.getxattr	= generic_getxattr,
2720 	.listxattr	= shmem_listxattr,
2721 	.removexattr	= generic_removexattr,
2722 #endif
2723 };
2724 
2725 static struct dentry *shmem_get_parent(struct dentry *child)
2726 {
2727 	return ERR_PTR(-ESTALE);
2728 }
2729 
2730 static int shmem_match(struct inode *ino, void *vfh)
2731 {
2732 	__u32 *fh = vfh;
2733 	__u64 inum = fh[2];
2734 	inum = (inum << 32) | fh[1];
2735 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2736 }
2737 
2738 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2739 		struct fid *fid, int fh_len, int fh_type)
2740 {
2741 	struct inode *inode;
2742 	struct dentry *dentry = NULL;
2743 	u64 inum;
2744 
2745 	if (fh_len < 3)
2746 		return NULL;
2747 
2748 	inum = fid->raw[2];
2749 	inum = (inum << 32) | fid->raw[1];
2750 
2751 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2752 			shmem_match, fid->raw);
2753 	if (inode) {
2754 		dentry = d_find_alias(inode);
2755 		iput(inode);
2756 	}
2757 
2758 	return dentry;
2759 }
2760 
2761 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2762 				struct inode *parent)
2763 {
2764 	if (*len < 3) {
2765 		*len = 3;
2766 		return FILEID_INVALID;
2767 	}
2768 
2769 	if (inode_unhashed(inode)) {
2770 		/* Unfortunately insert_inode_hash is not idempotent,
2771 		 * so as we hash inodes here rather than at creation
2772 		 * time, we need a lock to ensure we only try
2773 		 * to do it once
2774 		 */
2775 		static DEFINE_SPINLOCK(lock);
2776 		spin_lock(&lock);
2777 		if (inode_unhashed(inode))
2778 			__insert_inode_hash(inode,
2779 					    inode->i_ino + inode->i_generation);
2780 		spin_unlock(&lock);
2781 	}
2782 
2783 	fh[0] = inode->i_generation;
2784 	fh[1] = inode->i_ino;
2785 	fh[2] = ((__u64)inode->i_ino) >> 32;
2786 
2787 	*len = 3;
2788 	return 1;
2789 }
2790 
2791 static const struct export_operations shmem_export_ops = {
2792 	.get_parent     = shmem_get_parent,
2793 	.encode_fh      = shmem_encode_fh,
2794 	.fh_to_dentry	= shmem_fh_to_dentry,
2795 };
2796 
2797 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2798 			       bool remount)
2799 {
2800 	char *this_char, *value, *rest;
2801 	struct mempolicy *mpol = NULL;
2802 	uid_t uid;
2803 	gid_t gid;
2804 
2805 	while (options != NULL) {
2806 		this_char = options;
2807 		for (;;) {
2808 			/*
2809 			 * NUL-terminate this option: unfortunately,
2810 			 * mount options form a comma-separated list,
2811 			 * but mpol's nodelist may also contain commas.
2812 			 */
2813 			options = strchr(options, ',');
2814 			if (options == NULL)
2815 				break;
2816 			options++;
2817 			if (!isdigit(*options)) {
2818 				options[-1] = '\0';
2819 				break;
2820 			}
2821 		}
2822 		if (!*this_char)
2823 			continue;
2824 		if ((value = strchr(this_char,'=')) != NULL) {
2825 			*value++ = 0;
2826 		} else {
2827 			pr_err("tmpfs: No value for mount option '%s'\n",
2828 			       this_char);
2829 			goto error;
2830 		}
2831 
2832 		if (!strcmp(this_char,"size")) {
2833 			unsigned long long size;
2834 			size = memparse(value,&rest);
2835 			if (*rest == '%') {
2836 				size <<= PAGE_SHIFT;
2837 				size *= totalram_pages;
2838 				do_div(size, 100);
2839 				rest++;
2840 			}
2841 			if (*rest)
2842 				goto bad_val;
2843 			sbinfo->max_blocks =
2844 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2845 		} else if (!strcmp(this_char,"nr_blocks")) {
2846 			sbinfo->max_blocks = memparse(value, &rest);
2847 			if (*rest)
2848 				goto bad_val;
2849 		} else if (!strcmp(this_char,"nr_inodes")) {
2850 			sbinfo->max_inodes = memparse(value, &rest);
2851 			if (*rest)
2852 				goto bad_val;
2853 		} else if (!strcmp(this_char,"mode")) {
2854 			if (remount)
2855 				continue;
2856 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2857 			if (*rest)
2858 				goto bad_val;
2859 		} else if (!strcmp(this_char,"uid")) {
2860 			if (remount)
2861 				continue;
2862 			uid = simple_strtoul(value, &rest, 0);
2863 			if (*rest)
2864 				goto bad_val;
2865 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2866 			if (!uid_valid(sbinfo->uid))
2867 				goto bad_val;
2868 		} else if (!strcmp(this_char,"gid")) {
2869 			if (remount)
2870 				continue;
2871 			gid = simple_strtoul(value, &rest, 0);
2872 			if (*rest)
2873 				goto bad_val;
2874 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2875 			if (!gid_valid(sbinfo->gid))
2876 				goto bad_val;
2877 		} else if (!strcmp(this_char,"mpol")) {
2878 			mpol_put(mpol);
2879 			mpol = NULL;
2880 			if (mpol_parse_str(value, &mpol))
2881 				goto bad_val;
2882 		} else {
2883 			pr_err("tmpfs: Bad mount option %s\n", this_char);
2884 			goto error;
2885 		}
2886 	}
2887 	sbinfo->mpol = mpol;
2888 	return 0;
2889 
2890 bad_val:
2891 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
2892 	       value, this_char);
2893 error:
2894 	mpol_put(mpol);
2895 	return 1;
2896 
2897 }
2898 
2899 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2900 {
2901 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2902 	struct shmem_sb_info config = *sbinfo;
2903 	unsigned long inodes;
2904 	int error = -EINVAL;
2905 
2906 	config.mpol = NULL;
2907 	if (shmem_parse_options(data, &config, true))
2908 		return error;
2909 
2910 	spin_lock(&sbinfo->stat_lock);
2911 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2912 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2913 		goto out;
2914 	if (config.max_inodes < inodes)
2915 		goto out;
2916 	/*
2917 	 * Those tests disallow limited->unlimited while any are in use;
2918 	 * but we must separately disallow unlimited->limited, because
2919 	 * in that case we have no record of how much is already in use.
2920 	 */
2921 	if (config.max_blocks && !sbinfo->max_blocks)
2922 		goto out;
2923 	if (config.max_inodes && !sbinfo->max_inodes)
2924 		goto out;
2925 
2926 	error = 0;
2927 	sbinfo->max_blocks  = config.max_blocks;
2928 	sbinfo->max_inodes  = config.max_inodes;
2929 	sbinfo->free_inodes = config.max_inodes - inodes;
2930 
2931 	/*
2932 	 * Preserve previous mempolicy unless mpol remount option was specified.
2933 	 */
2934 	if (config.mpol) {
2935 		mpol_put(sbinfo->mpol);
2936 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2937 	}
2938 out:
2939 	spin_unlock(&sbinfo->stat_lock);
2940 	return error;
2941 }
2942 
2943 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2944 {
2945 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2946 
2947 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2948 		seq_printf(seq, ",size=%luk",
2949 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2950 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2951 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2952 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2953 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2954 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2955 		seq_printf(seq, ",uid=%u",
2956 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2957 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2958 		seq_printf(seq, ",gid=%u",
2959 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2960 	shmem_show_mpol(seq, sbinfo->mpol);
2961 	return 0;
2962 }
2963 
2964 #define MFD_NAME_PREFIX "memfd:"
2965 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2966 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2967 
2968 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2969 
2970 SYSCALL_DEFINE2(memfd_create,
2971 		const char __user *, uname,
2972 		unsigned int, flags)
2973 {
2974 	struct shmem_inode_info *info;
2975 	struct file *file;
2976 	int fd, error;
2977 	char *name;
2978 	long len;
2979 
2980 	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2981 		return -EINVAL;
2982 
2983 	/* length includes terminating zero */
2984 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2985 	if (len <= 0)
2986 		return -EFAULT;
2987 	if (len > MFD_NAME_MAX_LEN + 1)
2988 		return -EINVAL;
2989 
2990 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2991 	if (!name)
2992 		return -ENOMEM;
2993 
2994 	strcpy(name, MFD_NAME_PREFIX);
2995 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2996 		error = -EFAULT;
2997 		goto err_name;
2998 	}
2999 
3000 	/* terminating-zero may have changed after strnlen_user() returned */
3001 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3002 		error = -EFAULT;
3003 		goto err_name;
3004 	}
3005 
3006 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3007 	if (fd < 0) {
3008 		error = fd;
3009 		goto err_name;
3010 	}
3011 
3012 	file = shmem_file_setup(name, 0, VM_NORESERVE);
3013 	if (IS_ERR(file)) {
3014 		error = PTR_ERR(file);
3015 		goto err_fd;
3016 	}
3017 	info = SHMEM_I(file_inode(file));
3018 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3019 	file->f_flags |= O_RDWR | O_LARGEFILE;
3020 	if (flags & MFD_ALLOW_SEALING)
3021 		info->seals &= ~F_SEAL_SEAL;
3022 
3023 	fd_install(fd, file);
3024 	kfree(name);
3025 	return fd;
3026 
3027 err_fd:
3028 	put_unused_fd(fd);
3029 err_name:
3030 	kfree(name);
3031 	return error;
3032 }
3033 
3034 #endif /* CONFIG_TMPFS */
3035 
3036 static void shmem_put_super(struct super_block *sb)
3037 {
3038 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3039 
3040 	percpu_counter_destroy(&sbinfo->used_blocks);
3041 	mpol_put(sbinfo->mpol);
3042 	kfree(sbinfo);
3043 	sb->s_fs_info = NULL;
3044 }
3045 
3046 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3047 {
3048 	struct inode *inode;
3049 	struct shmem_sb_info *sbinfo;
3050 	int err = -ENOMEM;
3051 
3052 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3053 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3054 				L1_CACHE_BYTES), GFP_KERNEL);
3055 	if (!sbinfo)
3056 		return -ENOMEM;
3057 
3058 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3059 	sbinfo->uid = current_fsuid();
3060 	sbinfo->gid = current_fsgid();
3061 	sb->s_fs_info = sbinfo;
3062 
3063 #ifdef CONFIG_TMPFS
3064 	/*
3065 	 * Per default we only allow half of the physical ram per
3066 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3067 	 * but the internal instance is left unlimited.
3068 	 */
3069 	if (!(sb->s_flags & MS_KERNMOUNT)) {
3070 		sbinfo->max_blocks = shmem_default_max_blocks();
3071 		sbinfo->max_inodes = shmem_default_max_inodes();
3072 		if (shmem_parse_options(data, sbinfo, false)) {
3073 			err = -EINVAL;
3074 			goto failed;
3075 		}
3076 	} else {
3077 		sb->s_flags |= MS_NOUSER;
3078 	}
3079 	sb->s_export_op = &shmem_export_ops;
3080 	sb->s_flags |= MS_NOSEC;
3081 #else
3082 	sb->s_flags |= MS_NOUSER;
3083 #endif
3084 
3085 	spin_lock_init(&sbinfo->stat_lock);
3086 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3087 		goto failed;
3088 	sbinfo->free_inodes = sbinfo->max_inodes;
3089 
3090 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3091 	sb->s_blocksize = PAGE_CACHE_SIZE;
3092 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3093 	sb->s_magic = TMPFS_MAGIC;
3094 	sb->s_op = &shmem_ops;
3095 	sb->s_time_gran = 1;
3096 #ifdef CONFIG_TMPFS_XATTR
3097 	sb->s_xattr = shmem_xattr_handlers;
3098 #endif
3099 #ifdef CONFIG_TMPFS_POSIX_ACL
3100 	sb->s_flags |= MS_POSIXACL;
3101 #endif
3102 
3103 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3104 	if (!inode)
3105 		goto failed;
3106 	inode->i_uid = sbinfo->uid;
3107 	inode->i_gid = sbinfo->gid;
3108 	sb->s_root = d_make_root(inode);
3109 	if (!sb->s_root)
3110 		goto failed;
3111 	return 0;
3112 
3113 failed:
3114 	shmem_put_super(sb);
3115 	return err;
3116 }
3117 
3118 static struct kmem_cache *shmem_inode_cachep;
3119 
3120 static struct inode *shmem_alloc_inode(struct super_block *sb)
3121 {
3122 	struct shmem_inode_info *info;
3123 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3124 	if (!info)
3125 		return NULL;
3126 	return &info->vfs_inode;
3127 }
3128 
3129 static void shmem_destroy_callback(struct rcu_head *head)
3130 {
3131 	struct inode *inode = container_of(head, struct inode, i_rcu);
3132 	kfree(inode->i_link);
3133 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3134 }
3135 
3136 static void shmem_destroy_inode(struct inode *inode)
3137 {
3138 	if (S_ISREG(inode->i_mode))
3139 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3140 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3141 }
3142 
3143 static void shmem_init_inode(void *foo)
3144 {
3145 	struct shmem_inode_info *info = foo;
3146 	inode_init_once(&info->vfs_inode);
3147 }
3148 
3149 static int shmem_init_inodecache(void)
3150 {
3151 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3152 				sizeof(struct shmem_inode_info),
3153 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3154 	return 0;
3155 }
3156 
3157 static void shmem_destroy_inodecache(void)
3158 {
3159 	kmem_cache_destroy(shmem_inode_cachep);
3160 }
3161 
3162 static const struct address_space_operations shmem_aops = {
3163 	.writepage	= shmem_writepage,
3164 	.set_page_dirty	= __set_page_dirty_no_writeback,
3165 #ifdef CONFIG_TMPFS
3166 	.write_begin	= shmem_write_begin,
3167 	.write_end	= shmem_write_end,
3168 #endif
3169 #ifdef CONFIG_MIGRATION
3170 	.migratepage	= migrate_page,
3171 #endif
3172 	.error_remove_page = generic_error_remove_page,
3173 };
3174 
3175 static const struct file_operations shmem_file_operations = {
3176 	.mmap		= shmem_mmap,
3177 #ifdef CONFIG_TMPFS
3178 	.llseek		= shmem_file_llseek,
3179 	.read_iter	= shmem_file_read_iter,
3180 	.write_iter	= generic_file_write_iter,
3181 	.fsync		= noop_fsync,
3182 	.splice_read	= shmem_file_splice_read,
3183 	.splice_write	= iter_file_splice_write,
3184 	.fallocate	= shmem_fallocate,
3185 #endif
3186 };
3187 
3188 static const struct inode_operations shmem_inode_operations = {
3189 	.getattr	= shmem_getattr,
3190 	.setattr	= shmem_setattr,
3191 #ifdef CONFIG_TMPFS_XATTR
3192 	.setxattr	= generic_setxattr,
3193 	.getxattr	= generic_getxattr,
3194 	.listxattr	= shmem_listxattr,
3195 	.removexattr	= generic_removexattr,
3196 	.set_acl	= simple_set_acl,
3197 #endif
3198 };
3199 
3200 static const struct inode_operations shmem_dir_inode_operations = {
3201 #ifdef CONFIG_TMPFS
3202 	.create		= shmem_create,
3203 	.lookup		= simple_lookup,
3204 	.link		= shmem_link,
3205 	.unlink		= shmem_unlink,
3206 	.symlink	= shmem_symlink,
3207 	.mkdir		= shmem_mkdir,
3208 	.rmdir		= shmem_rmdir,
3209 	.mknod		= shmem_mknod,
3210 	.rename2	= shmem_rename2,
3211 	.tmpfile	= shmem_tmpfile,
3212 #endif
3213 #ifdef CONFIG_TMPFS_XATTR
3214 	.setxattr	= generic_setxattr,
3215 	.getxattr	= generic_getxattr,
3216 	.listxattr	= shmem_listxattr,
3217 	.removexattr	= generic_removexattr,
3218 #endif
3219 #ifdef CONFIG_TMPFS_POSIX_ACL
3220 	.setattr	= shmem_setattr,
3221 	.set_acl	= simple_set_acl,
3222 #endif
3223 };
3224 
3225 static const struct inode_operations shmem_special_inode_operations = {
3226 #ifdef CONFIG_TMPFS_XATTR
3227 	.setxattr	= generic_setxattr,
3228 	.getxattr	= generic_getxattr,
3229 	.listxattr	= shmem_listxattr,
3230 	.removexattr	= generic_removexattr,
3231 #endif
3232 #ifdef CONFIG_TMPFS_POSIX_ACL
3233 	.setattr	= shmem_setattr,
3234 	.set_acl	= simple_set_acl,
3235 #endif
3236 };
3237 
3238 static const struct super_operations shmem_ops = {
3239 	.alloc_inode	= shmem_alloc_inode,
3240 	.destroy_inode	= shmem_destroy_inode,
3241 #ifdef CONFIG_TMPFS
3242 	.statfs		= shmem_statfs,
3243 	.remount_fs	= shmem_remount_fs,
3244 	.show_options	= shmem_show_options,
3245 #endif
3246 	.evict_inode	= shmem_evict_inode,
3247 	.drop_inode	= generic_delete_inode,
3248 	.put_super	= shmem_put_super,
3249 };
3250 
3251 static const struct vm_operations_struct shmem_vm_ops = {
3252 	.fault		= shmem_fault,
3253 	.map_pages	= filemap_map_pages,
3254 #ifdef CONFIG_NUMA
3255 	.set_policy     = shmem_set_policy,
3256 	.get_policy     = shmem_get_policy,
3257 #endif
3258 };
3259 
3260 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3261 	int flags, const char *dev_name, void *data)
3262 {
3263 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3264 }
3265 
3266 static struct file_system_type shmem_fs_type = {
3267 	.owner		= THIS_MODULE,
3268 	.name		= "tmpfs",
3269 	.mount		= shmem_mount,
3270 	.kill_sb	= kill_litter_super,
3271 	.fs_flags	= FS_USERNS_MOUNT,
3272 };
3273 
3274 int __init shmem_init(void)
3275 {
3276 	int error;
3277 
3278 	/* If rootfs called this, don't re-init */
3279 	if (shmem_inode_cachep)
3280 		return 0;
3281 
3282 	error = shmem_init_inodecache();
3283 	if (error)
3284 		goto out3;
3285 
3286 	error = register_filesystem(&shmem_fs_type);
3287 	if (error) {
3288 		pr_err("Could not register tmpfs\n");
3289 		goto out2;
3290 	}
3291 
3292 	shm_mnt = kern_mount(&shmem_fs_type);
3293 	if (IS_ERR(shm_mnt)) {
3294 		error = PTR_ERR(shm_mnt);
3295 		pr_err("Could not kern_mount tmpfs\n");
3296 		goto out1;
3297 	}
3298 	return 0;
3299 
3300 out1:
3301 	unregister_filesystem(&shmem_fs_type);
3302 out2:
3303 	shmem_destroy_inodecache();
3304 out3:
3305 	shm_mnt = ERR_PTR(error);
3306 	return error;
3307 }
3308 
3309 #else /* !CONFIG_SHMEM */
3310 
3311 /*
3312  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3313  *
3314  * This is intended for small system where the benefits of the full
3315  * shmem code (swap-backed and resource-limited) are outweighed by
3316  * their complexity. On systems without swap this code should be
3317  * effectively equivalent, but much lighter weight.
3318  */
3319 
3320 static struct file_system_type shmem_fs_type = {
3321 	.name		= "tmpfs",
3322 	.mount		= ramfs_mount,
3323 	.kill_sb	= kill_litter_super,
3324 	.fs_flags	= FS_USERNS_MOUNT,
3325 };
3326 
3327 int __init shmem_init(void)
3328 {
3329 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3330 
3331 	shm_mnt = kern_mount(&shmem_fs_type);
3332 	BUG_ON(IS_ERR(shm_mnt));
3333 
3334 	return 0;
3335 }
3336 
3337 int shmem_unuse(swp_entry_t swap, struct page *page)
3338 {
3339 	return 0;
3340 }
3341 
3342 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3343 {
3344 	return 0;
3345 }
3346 
3347 void shmem_unlock_mapping(struct address_space *mapping)
3348 {
3349 }
3350 
3351 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3352 {
3353 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3354 }
3355 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3356 
3357 #define shmem_vm_ops				generic_file_vm_ops
3358 #define shmem_file_operations			ramfs_file_operations
3359 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3360 #define shmem_acct_size(flags, size)		0
3361 #define shmem_unacct_size(flags, size)		do {} while (0)
3362 
3363 #endif /* CONFIG_SHMEM */
3364 
3365 /* common code */
3366 
3367 static struct dentry_operations anon_ops = {
3368 	.d_dname = simple_dname
3369 };
3370 
3371 static struct file *__shmem_file_setup(const char *name, loff_t size,
3372 				       unsigned long flags, unsigned int i_flags)
3373 {
3374 	struct file *res;
3375 	struct inode *inode;
3376 	struct path path;
3377 	struct super_block *sb;
3378 	struct qstr this;
3379 
3380 	if (IS_ERR(shm_mnt))
3381 		return ERR_CAST(shm_mnt);
3382 
3383 	if (size < 0 || size > MAX_LFS_FILESIZE)
3384 		return ERR_PTR(-EINVAL);
3385 
3386 	if (shmem_acct_size(flags, size))
3387 		return ERR_PTR(-ENOMEM);
3388 
3389 	res = ERR_PTR(-ENOMEM);
3390 	this.name = name;
3391 	this.len = strlen(name);
3392 	this.hash = 0; /* will go */
3393 	sb = shm_mnt->mnt_sb;
3394 	path.mnt = mntget(shm_mnt);
3395 	path.dentry = d_alloc_pseudo(sb, &this);
3396 	if (!path.dentry)
3397 		goto put_memory;
3398 	d_set_d_op(path.dentry, &anon_ops);
3399 
3400 	res = ERR_PTR(-ENOSPC);
3401 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3402 	if (!inode)
3403 		goto put_memory;
3404 
3405 	inode->i_flags |= i_flags;
3406 	d_instantiate(path.dentry, inode);
3407 	inode->i_size = size;
3408 	clear_nlink(inode);	/* It is unlinked */
3409 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3410 	if (IS_ERR(res))
3411 		goto put_path;
3412 
3413 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3414 		  &shmem_file_operations);
3415 	if (IS_ERR(res))
3416 		goto put_path;
3417 
3418 	return res;
3419 
3420 put_memory:
3421 	shmem_unacct_size(flags, size);
3422 put_path:
3423 	path_put(&path);
3424 	return res;
3425 }
3426 
3427 /**
3428  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3429  * 	kernel internal.  There will be NO LSM permission checks against the
3430  * 	underlying inode.  So users of this interface must do LSM checks at a
3431  *	higher layer.  The users are the big_key and shm implementations.  LSM
3432  *	checks are provided at the key or shm level rather than the inode.
3433  * @name: name for dentry (to be seen in /proc/<pid>/maps
3434  * @size: size to be set for the file
3435  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3436  */
3437 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3438 {
3439 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
3440 }
3441 
3442 /**
3443  * shmem_file_setup - get an unlinked file living in tmpfs
3444  * @name: name for dentry (to be seen in /proc/<pid>/maps
3445  * @size: size to be set for the file
3446  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3447  */
3448 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3449 {
3450 	return __shmem_file_setup(name, size, flags, 0);
3451 }
3452 EXPORT_SYMBOL_GPL(shmem_file_setup);
3453 
3454 /**
3455  * shmem_zero_setup - setup a shared anonymous mapping
3456  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3457  */
3458 int shmem_zero_setup(struct vm_area_struct *vma)
3459 {
3460 	struct file *file;
3461 	loff_t size = vma->vm_end - vma->vm_start;
3462 
3463 	/*
3464 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3465 	 * between XFS directory reading and selinux: since this file is only
3466 	 * accessible to the user through its mapping, use S_PRIVATE flag to
3467 	 * bypass file security, in the same way as shmem_kernel_file_setup().
3468 	 */
3469 	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3470 	if (IS_ERR(file))
3471 		return PTR_ERR(file);
3472 
3473 	if (vma->vm_file)
3474 		fput(vma->vm_file);
3475 	vma->vm_file = file;
3476 	vma->vm_ops = &shmem_vm_ops;
3477 	return 0;
3478 }
3479 
3480 /**
3481  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3482  * @mapping:	the page's address_space
3483  * @index:	the page index
3484  * @gfp:	the page allocator flags to use if allocating
3485  *
3486  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3487  * with any new page allocations done using the specified allocation flags.
3488  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3489  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3490  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3491  *
3492  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3493  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3494  */
3495 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3496 					 pgoff_t index, gfp_t gfp)
3497 {
3498 #ifdef CONFIG_SHMEM
3499 	struct inode *inode = mapping->host;
3500 	struct page *page;
3501 	int error;
3502 
3503 	BUG_ON(mapping->a_ops != &shmem_aops);
3504 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3505 	if (error)
3506 		page = ERR_PTR(error);
3507 	else
3508 		unlock_page(page);
3509 	return page;
3510 #else
3511 	/*
3512 	 * The tiny !SHMEM case uses ramfs without swap
3513 	 */
3514 	return read_cache_page_gfp(mapping, index, gfp);
3515 #endif
3516 }
3517 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3518