xref: /openbmc/linux/mm/shmem.c (revision 2b91c4a870c9830eaf95e744454c9c218cccb736)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44 
45 static struct vfsmount *shm_mnt;
46 
47 #ifdef CONFIG_SHMEM
48 /*
49  * This virtual memory filesystem is heavily based on the ramfs. It
50  * extends ramfs by the ability to use swap and honor resource limits
51  * which makes it a completely usable filesystem.
52  */
53 
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 
83 #include <linux/uaccess.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95 
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_rwsem making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 	pgoff_t start;		/* start of range currently being fallocated */
104 	pgoff_t next;		/* the next page offset to be fallocated */
105 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
106 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
107 };
108 
109 struct shmem_options {
110 	unsigned long long blocks;
111 	unsigned long long inodes;
112 	struct mempolicy *mpol;
113 	kuid_t uid;
114 	kgid_t gid;
115 	umode_t mode;
116 	bool full_inums;
117 	int huge;
118 	int seen;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
123 };
124 
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128 	return totalram_pages() / 2;
129 }
130 
131 static unsigned long shmem_default_max_inodes(void)
132 {
133 	unsigned long nr_pages = totalram_pages();
134 
135 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138 
139 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
140 			     struct folio **foliop, enum sgp_type sgp,
141 			     gfp_t gfp, struct vm_area_struct *vma,
142 			     vm_fault_t *fault_type);
143 
144 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
145 {
146 	return sb->s_fs_info;
147 }
148 
149 /*
150  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
151  * for shared memory and for shared anonymous (/dev/zero) mappings
152  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
153  * consistent with the pre-accounting of private mappings ...
154  */
155 static inline int shmem_acct_size(unsigned long flags, loff_t size)
156 {
157 	return (flags & VM_NORESERVE) ?
158 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
159 }
160 
161 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
162 {
163 	if (!(flags & VM_NORESERVE))
164 		vm_unacct_memory(VM_ACCT(size));
165 }
166 
167 static inline int shmem_reacct_size(unsigned long flags,
168 		loff_t oldsize, loff_t newsize)
169 {
170 	if (!(flags & VM_NORESERVE)) {
171 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
172 			return security_vm_enough_memory_mm(current->mm,
173 					VM_ACCT(newsize) - VM_ACCT(oldsize));
174 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
175 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
176 	}
177 	return 0;
178 }
179 
180 /*
181  * ... whereas tmpfs objects are accounted incrementally as
182  * pages are allocated, in order to allow large sparse files.
183  * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
184  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
185  */
186 static inline int shmem_acct_block(unsigned long flags, long pages)
187 {
188 	if (!(flags & VM_NORESERVE))
189 		return 0;
190 
191 	return security_vm_enough_memory_mm(current->mm,
192 			pages * VM_ACCT(PAGE_SIZE));
193 }
194 
195 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
196 {
197 	if (flags & VM_NORESERVE)
198 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
199 }
200 
201 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
202 {
203 	struct shmem_inode_info *info = SHMEM_I(inode);
204 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
205 
206 	if (shmem_acct_block(info->flags, pages))
207 		return false;
208 
209 	if (sbinfo->max_blocks) {
210 		if (percpu_counter_compare(&sbinfo->used_blocks,
211 					   sbinfo->max_blocks - pages) > 0)
212 			goto unacct;
213 		percpu_counter_add(&sbinfo->used_blocks, pages);
214 	}
215 
216 	return true;
217 
218 unacct:
219 	shmem_unacct_blocks(info->flags, pages);
220 	return false;
221 }
222 
223 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
224 {
225 	struct shmem_inode_info *info = SHMEM_I(inode);
226 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
227 
228 	if (sbinfo->max_blocks)
229 		percpu_counter_sub(&sbinfo->used_blocks, pages);
230 	shmem_unacct_blocks(info->flags, pages);
231 }
232 
233 static const struct super_operations shmem_ops;
234 const struct address_space_operations shmem_aops;
235 static const struct file_operations shmem_file_operations;
236 static const struct inode_operations shmem_inode_operations;
237 static const struct inode_operations shmem_dir_inode_operations;
238 static const struct inode_operations shmem_special_inode_operations;
239 static const struct vm_operations_struct shmem_vm_ops;
240 static const struct vm_operations_struct shmem_anon_vm_ops;
241 static struct file_system_type shmem_fs_type;
242 
243 bool vma_is_anon_shmem(struct vm_area_struct *vma)
244 {
245 	return vma->vm_ops == &shmem_anon_vm_ops;
246 }
247 
248 bool vma_is_shmem(struct vm_area_struct *vma)
249 {
250 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
251 }
252 
253 static LIST_HEAD(shmem_swaplist);
254 static DEFINE_MUTEX(shmem_swaplist_mutex);
255 
256 /*
257  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
258  * produces a novel ino for the newly allocated inode.
259  *
260  * It may also be called when making a hard link to permit the space needed by
261  * each dentry. However, in that case, no new inode number is needed since that
262  * internally draws from another pool of inode numbers (currently global
263  * get_next_ino()). This case is indicated by passing NULL as inop.
264  */
265 #define SHMEM_INO_BATCH 1024
266 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
267 {
268 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
269 	ino_t ino;
270 
271 	if (!(sb->s_flags & SB_KERNMOUNT)) {
272 		raw_spin_lock(&sbinfo->stat_lock);
273 		if (sbinfo->max_inodes) {
274 			if (!sbinfo->free_inodes) {
275 				raw_spin_unlock(&sbinfo->stat_lock);
276 				return -ENOSPC;
277 			}
278 			sbinfo->free_inodes--;
279 		}
280 		if (inop) {
281 			ino = sbinfo->next_ino++;
282 			if (unlikely(is_zero_ino(ino)))
283 				ino = sbinfo->next_ino++;
284 			if (unlikely(!sbinfo->full_inums &&
285 				     ino > UINT_MAX)) {
286 				/*
287 				 * Emulate get_next_ino uint wraparound for
288 				 * compatibility
289 				 */
290 				if (IS_ENABLED(CONFIG_64BIT))
291 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
292 						__func__, MINOR(sb->s_dev));
293 				sbinfo->next_ino = 1;
294 				ino = sbinfo->next_ino++;
295 			}
296 			*inop = ino;
297 		}
298 		raw_spin_unlock(&sbinfo->stat_lock);
299 	} else if (inop) {
300 		/*
301 		 * __shmem_file_setup, one of our callers, is lock-free: it
302 		 * doesn't hold stat_lock in shmem_reserve_inode since
303 		 * max_inodes is always 0, and is called from potentially
304 		 * unknown contexts. As such, use a per-cpu batched allocator
305 		 * which doesn't require the per-sb stat_lock unless we are at
306 		 * the batch boundary.
307 		 *
308 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
309 		 * shmem mounts are not exposed to userspace, so we don't need
310 		 * to worry about things like glibc compatibility.
311 		 */
312 		ino_t *next_ino;
313 
314 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
315 		ino = *next_ino;
316 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
317 			raw_spin_lock(&sbinfo->stat_lock);
318 			ino = sbinfo->next_ino;
319 			sbinfo->next_ino += SHMEM_INO_BATCH;
320 			raw_spin_unlock(&sbinfo->stat_lock);
321 			if (unlikely(is_zero_ino(ino)))
322 				ino++;
323 		}
324 		*inop = ino;
325 		*next_ino = ++ino;
326 		put_cpu();
327 	}
328 
329 	return 0;
330 }
331 
332 static void shmem_free_inode(struct super_block *sb)
333 {
334 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
335 	if (sbinfo->max_inodes) {
336 		raw_spin_lock(&sbinfo->stat_lock);
337 		sbinfo->free_inodes++;
338 		raw_spin_unlock(&sbinfo->stat_lock);
339 	}
340 }
341 
342 /**
343  * shmem_recalc_inode - recalculate the block usage of an inode
344  * @inode: inode to recalc
345  *
346  * We have to calculate the free blocks since the mm can drop
347  * undirtied hole pages behind our back.
348  *
349  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
350  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
351  *
352  * It has to be called with the spinlock held.
353  */
354 static void shmem_recalc_inode(struct inode *inode)
355 {
356 	struct shmem_inode_info *info = SHMEM_I(inode);
357 	long freed;
358 
359 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
360 	if (freed > 0) {
361 		info->alloced -= freed;
362 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
363 		shmem_inode_unacct_blocks(inode, freed);
364 	}
365 }
366 
367 bool shmem_charge(struct inode *inode, long pages)
368 {
369 	struct shmem_inode_info *info = SHMEM_I(inode);
370 	unsigned long flags;
371 
372 	if (!shmem_inode_acct_block(inode, pages))
373 		return false;
374 
375 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
376 	inode->i_mapping->nrpages += pages;
377 
378 	spin_lock_irqsave(&info->lock, flags);
379 	info->alloced += pages;
380 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
381 	shmem_recalc_inode(inode);
382 	spin_unlock_irqrestore(&info->lock, flags);
383 
384 	return true;
385 }
386 
387 void shmem_uncharge(struct inode *inode, long pages)
388 {
389 	struct shmem_inode_info *info = SHMEM_I(inode);
390 	unsigned long flags;
391 
392 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
393 
394 	spin_lock_irqsave(&info->lock, flags);
395 	info->alloced -= pages;
396 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
397 	shmem_recalc_inode(inode);
398 	spin_unlock_irqrestore(&info->lock, flags);
399 
400 	shmem_inode_unacct_blocks(inode, pages);
401 }
402 
403 /*
404  * Replace item expected in xarray by a new item, while holding xa_lock.
405  */
406 static int shmem_replace_entry(struct address_space *mapping,
407 			pgoff_t index, void *expected, void *replacement)
408 {
409 	XA_STATE(xas, &mapping->i_pages, index);
410 	void *item;
411 
412 	VM_BUG_ON(!expected);
413 	VM_BUG_ON(!replacement);
414 	item = xas_load(&xas);
415 	if (item != expected)
416 		return -ENOENT;
417 	xas_store(&xas, replacement);
418 	return 0;
419 }
420 
421 /*
422  * Sometimes, before we decide whether to proceed or to fail, we must check
423  * that an entry was not already brought back from swap by a racing thread.
424  *
425  * Checking page is not enough: by the time a SwapCache page is locked, it
426  * might be reused, and again be SwapCache, using the same swap as before.
427  */
428 static bool shmem_confirm_swap(struct address_space *mapping,
429 			       pgoff_t index, swp_entry_t swap)
430 {
431 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
432 }
433 
434 /*
435  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
436  *
437  * SHMEM_HUGE_NEVER:
438  *	disables huge pages for the mount;
439  * SHMEM_HUGE_ALWAYS:
440  *	enables huge pages for the mount;
441  * SHMEM_HUGE_WITHIN_SIZE:
442  *	only allocate huge pages if the page will be fully within i_size,
443  *	also respect fadvise()/madvise() hints;
444  * SHMEM_HUGE_ADVISE:
445  *	only allocate huge pages if requested with fadvise()/madvise();
446  */
447 
448 #define SHMEM_HUGE_NEVER	0
449 #define SHMEM_HUGE_ALWAYS	1
450 #define SHMEM_HUGE_WITHIN_SIZE	2
451 #define SHMEM_HUGE_ADVISE	3
452 
453 /*
454  * Special values.
455  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
456  *
457  * SHMEM_HUGE_DENY:
458  *	disables huge on shm_mnt and all mounts, for emergency use;
459  * SHMEM_HUGE_FORCE:
460  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
461  *
462  */
463 #define SHMEM_HUGE_DENY		(-1)
464 #define SHMEM_HUGE_FORCE	(-2)
465 
466 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
467 /* ifdef here to avoid bloating shmem.o when not necessary */
468 
469 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
470 
471 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
472 		   struct mm_struct *mm, unsigned long vm_flags)
473 {
474 	loff_t i_size;
475 
476 	if (!S_ISREG(inode->i_mode))
477 		return false;
478 	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
479 		return false;
480 	if (shmem_huge == SHMEM_HUGE_DENY)
481 		return false;
482 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
483 		return true;
484 
485 	switch (SHMEM_SB(inode->i_sb)->huge) {
486 	case SHMEM_HUGE_ALWAYS:
487 		return true;
488 	case SHMEM_HUGE_WITHIN_SIZE:
489 		index = round_up(index + 1, HPAGE_PMD_NR);
490 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
491 		if (i_size >> PAGE_SHIFT >= index)
492 			return true;
493 		fallthrough;
494 	case SHMEM_HUGE_ADVISE:
495 		if (mm && (vm_flags & VM_HUGEPAGE))
496 			return true;
497 		fallthrough;
498 	default:
499 		return false;
500 	}
501 }
502 
503 #if defined(CONFIG_SYSFS)
504 static int shmem_parse_huge(const char *str)
505 {
506 	if (!strcmp(str, "never"))
507 		return SHMEM_HUGE_NEVER;
508 	if (!strcmp(str, "always"))
509 		return SHMEM_HUGE_ALWAYS;
510 	if (!strcmp(str, "within_size"))
511 		return SHMEM_HUGE_WITHIN_SIZE;
512 	if (!strcmp(str, "advise"))
513 		return SHMEM_HUGE_ADVISE;
514 	if (!strcmp(str, "deny"))
515 		return SHMEM_HUGE_DENY;
516 	if (!strcmp(str, "force"))
517 		return SHMEM_HUGE_FORCE;
518 	return -EINVAL;
519 }
520 #endif
521 
522 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
523 static const char *shmem_format_huge(int huge)
524 {
525 	switch (huge) {
526 	case SHMEM_HUGE_NEVER:
527 		return "never";
528 	case SHMEM_HUGE_ALWAYS:
529 		return "always";
530 	case SHMEM_HUGE_WITHIN_SIZE:
531 		return "within_size";
532 	case SHMEM_HUGE_ADVISE:
533 		return "advise";
534 	case SHMEM_HUGE_DENY:
535 		return "deny";
536 	case SHMEM_HUGE_FORCE:
537 		return "force";
538 	default:
539 		VM_BUG_ON(1);
540 		return "bad_val";
541 	}
542 }
543 #endif
544 
545 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
546 		struct shrink_control *sc, unsigned long nr_to_split)
547 {
548 	LIST_HEAD(list), *pos, *next;
549 	LIST_HEAD(to_remove);
550 	struct inode *inode;
551 	struct shmem_inode_info *info;
552 	struct folio *folio;
553 	unsigned long batch = sc ? sc->nr_to_scan : 128;
554 	int split = 0;
555 
556 	if (list_empty(&sbinfo->shrinklist))
557 		return SHRINK_STOP;
558 
559 	spin_lock(&sbinfo->shrinklist_lock);
560 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
561 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
562 
563 		/* pin the inode */
564 		inode = igrab(&info->vfs_inode);
565 
566 		/* inode is about to be evicted */
567 		if (!inode) {
568 			list_del_init(&info->shrinklist);
569 			goto next;
570 		}
571 
572 		/* Check if there's anything to gain */
573 		if (round_up(inode->i_size, PAGE_SIZE) ==
574 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
575 			list_move(&info->shrinklist, &to_remove);
576 			goto next;
577 		}
578 
579 		list_move(&info->shrinklist, &list);
580 next:
581 		sbinfo->shrinklist_len--;
582 		if (!--batch)
583 			break;
584 	}
585 	spin_unlock(&sbinfo->shrinklist_lock);
586 
587 	list_for_each_safe(pos, next, &to_remove) {
588 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
589 		inode = &info->vfs_inode;
590 		list_del_init(&info->shrinklist);
591 		iput(inode);
592 	}
593 
594 	list_for_each_safe(pos, next, &list) {
595 		int ret;
596 		pgoff_t index;
597 
598 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
599 		inode = &info->vfs_inode;
600 
601 		if (nr_to_split && split >= nr_to_split)
602 			goto move_back;
603 
604 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
605 		folio = filemap_get_folio(inode->i_mapping, index);
606 		if (!folio)
607 			goto drop;
608 
609 		/* No huge page at the end of the file: nothing to split */
610 		if (!folio_test_large(folio)) {
611 			folio_put(folio);
612 			goto drop;
613 		}
614 
615 		/*
616 		 * Move the inode on the list back to shrinklist if we failed
617 		 * to lock the page at this time.
618 		 *
619 		 * Waiting for the lock may lead to deadlock in the
620 		 * reclaim path.
621 		 */
622 		if (!folio_trylock(folio)) {
623 			folio_put(folio);
624 			goto move_back;
625 		}
626 
627 		ret = split_folio(folio);
628 		folio_unlock(folio);
629 		folio_put(folio);
630 
631 		/* If split failed move the inode on the list back to shrinklist */
632 		if (ret)
633 			goto move_back;
634 
635 		split++;
636 drop:
637 		list_del_init(&info->shrinklist);
638 		goto put;
639 move_back:
640 		/*
641 		 * Make sure the inode is either on the global list or deleted
642 		 * from any local list before iput() since it could be deleted
643 		 * in another thread once we put the inode (then the local list
644 		 * is corrupted).
645 		 */
646 		spin_lock(&sbinfo->shrinklist_lock);
647 		list_move(&info->shrinklist, &sbinfo->shrinklist);
648 		sbinfo->shrinklist_len++;
649 		spin_unlock(&sbinfo->shrinklist_lock);
650 put:
651 		iput(inode);
652 	}
653 
654 	return split;
655 }
656 
657 static long shmem_unused_huge_scan(struct super_block *sb,
658 		struct shrink_control *sc)
659 {
660 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
661 
662 	if (!READ_ONCE(sbinfo->shrinklist_len))
663 		return SHRINK_STOP;
664 
665 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
666 }
667 
668 static long shmem_unused_huge_count(struct super_block *sb,
669 		struct shrink_control *sc)
670 {
671 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
672 	return READ_ONCE(sbinfo->shrinklist_len);
673 }
674 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
675 
676 #define shmem_huge SHMEM_HUGE_DENY
677 
678 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
679 		   struct mm_struct *mm, unsigned long vm_flags)
680 {
681 	return false;
682 }
683 
684 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
685 		struct shrink_control *sc, unsigned long nr_to_split)
686 {
687 	return 0;
688 }
689 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
690 
691 /*
692  * Like filemap_add_folio, but error if expected item has gone.
693  */
694 static int shmem_add_to_page_cache(struct folio *folio,
695 				   struct address_space *mapping,
696 				   pgoff_t index, void *expected, gfp_t gfp,
697 				   struct mm_struct *charge_mm)
698 {
699 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
700 	long nr = folio_nr_pages(folio);
701 	int error;
702 
703 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
704 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
705 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
706 	VM_BUG_ON(expected && folio_test_large(folio));
707 
708 	folio_ref_add(folio, nr);
709 	folio->mapping = mapping;
710 	folio->index = index;
711 
712 	if (!folio_test_swapcache(folio)) {
713 		error = mem_cgroup_charge(folio, charge_mm, gfp);
714 		if (error) {
715 			if (folio_test_pmd_mappable(folio)) {
716 				count_vm_event(THP_FILE_FALLBACK);
717 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
718 			}
719 			goto error;
720 		}
721 	}
722 	folio_throttle_swaprate(folio, gfp);
723 
724 	do {
725 		xas_lock_irq(&xas);
726 		if (expected != xas_find_conflict(&xas)) {
727 			xas_set_err(&xas, -EEXIST);
728 			goto unlock;
729 		}
730 		if (expected && xas_find_conflict(&xas)) {
731 			xas_set_err(&xas, -EEXIST);
732 			goto unlock;
733 		}
734 		xas_store(&xas, folio);
735 		if (xas_error(&xas))
736 			goto unlock;
737 		if (folio_test_pmd_mappable(folio)) {
738 			count_vm_event(THP_FILE_ALLOC);
739 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
740 		}
741 		mapping->nrpages += nr;
742 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
743 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
744 unlock:
745 		xas_unlock_irq(&xas);
746 	} while (xas_nomem(&xas, gfp));
747 
748 	if (xas_error(&xas)) {
749 		error = xas_error(&xas);
750 		goto error;
751 	}
752 
753 	return 0;
754 error:
755 	folio->mapping = NULL;
756 	folio_ref_sub(folio, nr);
757 	return error;
758 }
759 
760 /*
761  * Like delete_from_page_cache, but substitutes swap for @folio.
762  */
763 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
764 {
765 	struct address_space *mapping = folio->mapping;
766 	long nr = folio_nr_pages(folio);
767 	int error;
768 
769 	xa_lock_irq(&mapping->i_pages);
770 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
771 	folio->mapping = NULL;
772 	mapping->nrpages -= nr;
773 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
774 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
775 	xa_unlock_irq(&mapping->i_pages);
776 	folio_put(folio);
777 	BUG_ON(error);
778 }
779 
780 /*
781  * Remove swap entry from page cache, free the swap and its page cache.
782  */
783 static int shmem_free_swap(struct address_space *mapping,
784 			   pgoff_t index, void *radswap)
785 {
786 	void *old;
787 
788 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
789 	if (old != radswap)
790 		return -ENOENT;
791 	free_swap_and_cache(radix_to_swp_entry(radswap));
792 	return 0;
793 }
794 
795 /*
796  * Determine (in bytes) how many of the shmem object's pages mapped by the
797  * given offsets are swapped out.
798  *
799  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
800  * as long as the inode doesn't go away and racy results are not a problem.
801  */
802 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
803 						pgoff_t start, pgoff_t end)
804 {
805 	XA_STATE(xas, &mapping->i_pages, start);
806 	struct page *page;
807 	unsigned long swapped = 0;
808 
809 	rcu_read_lock();
810 	xas_for_each(&xas, page, end - 1) {
811 		if (xas_retry(&xas, page))
812 			continue;
813 		if (xa_is_value(page))
814 			swapped++;
815 
816 		if (need_resched()) {
817 			xas_pause(&xas);
818 			cond_resched_rcu();
819 		}
820 	}
821 
822 	rcu_read_unlock();
823 
824 	return swapped << PAGE_SHIFT;
825 }
826 
827 /*
828  * Determine (in bytes) how many of the shmem object's pages mapped by the
829  * given vma is swapped out.
830  *
831  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
832  * as long as the inode doesn't go away and racy results are not a problem.
833  */
834 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
835 {
836 	struct inode *inode = file_inode(vma->vm_file);
837 	struct shmem_inode_info *info = SHMEM_I(inode);
838 	struct address_space *mapping = inode->i_mapping;
839 	unsigned long swapped;
840 
841 	/* Be careful as we don't hold info->lock */
842 	swapped = READ_ONCE(info->swapped);
843 
844 	/*
845 	 * The easier cases are when the shmem object has nothing in swap, or
846 	 * the vma maps it whole. Then we can simply use the stats that we
847 	 * already track.
848 	 */
849 	if (!swapped)
850 		return 0;
851 
852 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
853 		return swapped << PAGE_SHIFT;
854 
855 	/* Here comes the more involved part */
856 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
857 					vma->vm_pgoff + vma_pages(vma));
858 }
859 
860 /*
861  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
862  */
863 void shmem_unlock_mapping(struct address_space *mapping)
864 {
865 	struct folio_batch fbatch;
866 	pgoff_t index = 0;
867 
868 	folio_batch_init(&fbatch);
869 	/*
870 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
871 	 */
872 	while (!mapping_unevictable(mapping) &&
873 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
874 		check_move_unevictable_folios(&fbatch);
875 		folio_batch_release(&fbatch);
876 		cond_resched();
877 	}
878 }
879 
880 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
881 {
882 	struct folio *folio;
883 
884 	/*
885 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
886 	 * beyond i_size, and reports fallocated pages as holes.
887 	 */
888 	folio = __filemap_get_folio(inode->i_mapping, index,
889 					FGP_ENTRY | FGP_LOCK, 0);
890 	if (!xa_is_value(folio))
891 		return folio;
892 	/*
893 	 * But read a page back from swap if any of it is within i_size
894 	 * (although in some cases this is just a waste of time).
895 	 */
896 	folio = NULL;
897 	shmem_get_folio(inode, index, &folio, SGP_READ);
898 	return folio;
899 }
900 
901 /*
902  * Remove range of pages and swap entries from page cache, and free them.
903  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
904  */
905 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
906 								 bool unfalloc)
907 {
908 	struct address_space *mapping = inode->i_mapping;
909 	struct shmem_inode_info *info = SHMEM_I(inode);
910 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
911 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
912 	struct folio_batch fbatch;
913 	pgoff_t indices[PAGEVEC_SIZE];
914 	struct folio *folio;
915 	bool same_folio;
916 	long nr_swaps_freed = 0;
917 	pgoff_t index;
918 	int i;
919 
920 	if (lend == -1)
921 		end = -1;	/* unsigned, so actually very big */
922 
923 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
924 		info->fallocend = start;
925 
926 	folio_batch_init(&fbatch);
927 	index = start;
928 	while (index < end && find_lock_entries(mapping, &index, end - 1,
929 			&fbatch, indices)) {
930 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
931 			folio = fbatch.folios[i];
932 
933 			if (xa_is_value(folio)) {
934 				if (unfalloc)
935 					continue;
936 				nr_swaps_freed += !shmem_free_swap(mapping,
937 							indices[i], folio);
938 				continue;
939 			}
940 
941 			if (!unfalloc || !folio_test_uptodate(folio))
942 				truncate_inode_folio(mapping, folio);
943 			folio_unlock(folio);
944 		}
945 		folio_batch_remove_exceptionals(&fbatch);
946 		folio_batch_release(&fbatch);
947 		cond_resched();
948 	}
949 
950 	/*
951 	 * When undoing a failed fallocate, we want none of the partial folio
952 	 * zeroing and splitting below, but shall want to truncate the whole
953 	 * folio when !uptodate indicates that it was added by this fallocate,
954 	 * even when [lstart, lend] covers only a part of the folio.
955 	 */
956 	if (unfalloc)
957 		goto whole_folios;
958 
959 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
960 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
961 	if (folio) {
962 		same_folio = lend < folio_pos(folio) + folio_size(folio);
963 		folio_mark_dirty(folio);
964 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
965 			start = folio->index + folio_nr_pages(folio);
966 			if (same_folio)
967 				end = folio->index;
968 		}
969 		folio_unlock(folio);
970 		folio_put(folio);
971 		folio = NULL;
972 	}
973 
974 	if (!same_folio)
975 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
976 	if (folio) {
977 		folio_mark_dirty(folio);
978 		if (!truncate_inode_partial_folio(folio, lstart, lend))
979 			end = folio->index;
980 		folio_unlock(folio);
981 		folio_put(folio);
982 	}
983 
984 whole_folios:
985 
986 	index = start;
987 	while (index < end) {
988 		cond_resched();
989 
990 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
991 				indices)) {
992 			/* If all gone or hole-punch or unfalloc, we're done */
993 			if (index == start || end != -1)
994 				break;
995 			/* But if truncating, restart to make sure all gone */
996 			index = start;
997 			continue;
998 		}
999 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1000 			folio = fbatch.folios[i];
1001 
1002 			if (xa_is_value(folio)) {
1003 				if (unfalloc)
1004 					continue;
1005 				if (shmem_free_swap(mapping, indices[i], folio)) {
1006 					/* Swap was replaced by page: retry */
1007 					index = indices[i];
1008 					break;
1009 				}
1010 				nr_swaps_freed++;
1011 				continue;
1012 			}
1013 
1014 			folio_lock(folio);
1015 
1016 			if (!unfalloc || !folio_test_uptodate(folio)) {
1017 				if (folio_mapping(folio) != mapping) {
1018 					/* Page was replaced by swap: retry */
1019 					folio_unlock(folio);
1020 					index = indices[i];
1021 					break;
1022 				}
1023 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1024 						folio);
1025 				truncate_inode_folio(mapping, folio);
1026 			}
1027 			folio_unlock(folio);
1028 		}
1029 		folio_batch_remove_exceptionals(&fbatch);
1030 		folio_batch_release(&fbatch);
1031 	}
1032 
1033 	spin_lock_irq(&info->lock);
1034 	info->swapped -= nr_swaps_freed;
1035 	shmem_recalc_inode(inode);
1036 	spin_unlock_irq(&info->lock);
1037 }
1038 
1039 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1040 {
1041 	shmem_undo_range(inode, lstart, lend, false);
1042 	inode->i_ctime = inode->i_mtime = current_time(inode);
1043 	inode_inc_iversion(inode);
1044 }
1045 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1046 
1047 static int shmem_getattr(struct mnt_idmap *idmap,
1048 			 const struct path *path, struct kstat *stat,
1049 			 u32 request_mask, unsigned int query_flags)
1050 {
1051 	struct inode *inode = path->dentry->d_inode;
1052 	struct shmem_inode_info *info = SHMEM_I(inode);
1053 
1054 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1055 		spin_lock_irq(&info->lock);
1056 		shmem_recalc_inode(inode);
1057 		spin_unlock_irq(&info->lock);
1058 	}
1059 	if (info->fsflags & FS_APPEND_FL)
1060 		stat->attributes |= STATX_ATTR_APPEND;
1061 	if (info->fsflags & FS_IMMUTABLE_FL)
1062 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1063 	if (info->fsflags & FS_NODUMP_FL)
1064 		stat->attributes |= STATX_ATTR_NODUMP;
1065 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1066 			STATX_ATTR_IMMUTABLE |
1067 			STATX_ATTR_NODUMP);
1068 	generic_fillattr(idmap, inode, stat);
1069 
1070 	if (shmem_is_huge(inode, 0, false, NULL, 0))
1071 		stat->blksize = HPAGE_PMD_SIZE;
1072 
1073 	if (request_mask & STATX_BTIME) {
1074 		stat->result_mask |= STATX_BTIME;
1075 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1076 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1077 	}
1078 
1079 	return 0;
1080 }
1081 
1082 static int shmem_setattr(struct mnt_idmap *idmap,
1083 			 struct dentry *dentry, struct iattr *attr)
1084 {
1085 	struct inode *inode = d_inode(dentry);
1086 	struct shmem_inode_info *info = SHMEM_I(inode);
1087 	int error;
1088 	bool update_mtime = false;
1089 	bool update_ctime = true;
1090 
1091 	error = setattr_prepare(idmap, dentry, attr);
1092 	if (error)
1093 		return error;
1094 
1095 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1096 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1097 			return -EPERM;
1098 		}
1099 	}
1100 
1101 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1102 		loff_t oldsize = inode->i_size;
1103 		loff_t newsize = attr->ia_size;
1104 
1105 		/* protected by i_rwsem */
1106 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1107 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1108 			return -EPERM;
1109 
1110 		if (newsize != oldsize) {
1111 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1112 					oldsize, newsize);
1113 			if (error)
1114 				return error;
1115 			i_size_write(inode, newsize);
1116 			update_mtime = true;
1117 		} else {
1118 			update_ctime = false;
1119 		}
1120 		if (newsize <= oldsize) {
1121 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1122 			if (oldsize > holebegin)
1123 				unmap_mapping_range(inode->i_mapping,
1124 							holebegin, 0, 1);
1125 			if (info->alloced)
1126 				shmem_truncate_range(inode,
1127 							newsize, (loff_t)-1);
1128 			/* unmap again to remove racily COWed private pages */
1129 			if (oldsize > holebegin)
1130 				unmap_mapping_range(inode->i_mapping,
1131 							holebegin, 0, 1);
1132 		}
1133 	}
1134 
1135 	setattr_copy(idmap, inode, attr);
1136 	if (attr->ia_valid & ATTR_MODE)
1137 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1138 	if (!error && update_ctime) {
1139 		inode->i_ctime = current_time(inode);
1140 		if (update_mtime)
1141 			inode->i_mtime = inode->i_ctime;
1142 		inode_inc_iversion(inode);
1143 	}
1144 	return error;
1145 }
1146 
1147 static void shmem_evict_inode(struct inode *inode)
1148 {
1149 	struct shmem_inode_info *info = SHMEM_I(inode);
1150 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1151 
1152 	if (shmem_mapping(inode->i_mapping)) {
1153 		shmem_unacct_size(info->flags, inode->i_size);
1154 		inode->i_size = 0;
1155 		mapping_set_exiting(inode->i_mapping);
1156 		shmem_truncate_range(inode, 0, (loff_t)-1);
1157 		if (!list_empty(&info->shrinklist)) {
1158 			spin_lock(&sbinfo->shrinklist_lock);
1159 			if (!list_empty(&info->shrinklist)) {
1160 				list_del_init(&info->shrinklist);
1161 				sbinfo->shrinklist_len--;
1162 			}
1163 			spin_unlock(&sbinfo->shrinklist_lock);
1164 		}
1165 		while (!list_empty(&info->swaplist)) {
1166 			/* Wait while shmem_unuse() is scanning this inode... */
1167 			wait_var_event(&info->stop_eviction,
1168 				       !atomic_read(&info->stop_eviction));
1169 			mutex_lock(&shmem_swaplist_mutex);
1170 			/* ...but beware of the race if we peeked too early */
1171 			if (!atomic_read(&info->stop_eviction))
1172 				list_del_init(&info->swaplist);
1173 			mutex_unlock(&shmem_swaplist_mutex);
1174 		}
1175 	}
1176 
1177 	simple_xattrs_free(&info->xattrs);
1178 	WARN_ON(inode->i_blocks);
1179 	shmem_free_inode(inode->i_sb);
1180 	clear_inode(inode);
1181 }
1182 
1183 static int shmem_find_swap_entries(struct address_space *mapping,
1184 				   pgoff_t start, struct folio_batch *fbatch,
1185 				   pgoff_t *indices, unsigned int type)
1186 {
1187 	XA_STATE(xas, &mapping->i_pages, start);
1188 	struct folio *folio;
1189 	swp_entry_t entry;
1190 
1191 	rcu_read_lock();
1192 	xas_for_each(&xas, folio, ULONG_MAX) {
1193 		if (xas_retry(&xas, folio))
1194 			continue;
1195 
1196 		if (!xa_is_value(folio))
1197 			continue;
1198 
1199 		entry = radix_to_swp_entry(folio);
1200 		/*
1201 		 * swapin error entries can be found in the mapping. But they're
1202 		 * deliberately ignored here as we've done everything we can do.
1203 		 */
1204 		if (swp_type(entry) != type)
1205 			continue;
1206 
1207 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1208 		if (!folio_batch_add(fbatch, folio))
1209 			break;
1210 
1211 		if (need_resched()) {
1212 			xas_pause(&xas);
1213 			cond_resched_rcu();
1214 		}
1215 	}
1216 	rcu_read_unlock();
1217 
1218 	return xas.xa_index;
1219 }
1220 
1221 /*
1222  * Move the swapped pages for an inode to page cache. Returns the count
1223  * of pages swapped in, or the error in case of failure.
1224  */
1225 static int shmem_unuse_swap_entries(struct inode *inode,
1226 		struct folio_batch *fbatch, pgoff_t *indices)
1227 {
1228 	int i = 0;
1229 	int ret = 0;
1230 	int error = 0;
1231 	struct address_space *mapping = inode->i_mapping;
1232 
1233 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1234 		struct folio *folio = fbatch->folios[i];
1235 
1236 		if (!xa_is_value(folio))
1237 			continue;
1238 		error = shmem_swapin_folio(inode, indices[i],
1239 					  &folio, SGP_CACHE,
1240 					  mapping_gfp_mask(mapping),
1241 					  NULL, NULL);
1242 		if (error == 0) {
1243 			folio_unlock(folio);
1244 			folio_put(folio);
1245 			ret++;
1246 		}
1247 		if (error == -ENOMEM)
1248 			break;
1249 		error = 0;
1250 	}
1251 	return error ? error : ret;
1252 }
1253 
1254 /*
1255  * If swap found in inode, free it and move page from swapcache to filecache.
1256  */
1257 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1258 {
1259 	struct address_space *mapping = inode->i_mapping;
1260 	pgoff_t start = 0;
1261 	struct folio_batch fbatch;
1262 	pgoff_t indices[PAGEVEC_SIZE];
1263 	int ret = 0;
1264 
1265 	do {
1266 		folio_batch_init(&fbatch);
1267 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1268 		if (folio_batch_count(&fbatch) == 0) {
1269 			ret = 0;
1270 			break;
1271 		}
1272 
1273 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1274 		if (ret < 0)
1275 			break;
1276 
1277 		start = indices[folio_batch_count(&fbatch) - 1];
1278 	} while (true);
1279 
1280 	return ret;
1281 }
1282 
1283 /*
1284  * Read all the shared memory data that resides in the swap
1285  * device 'type' back into memory, so the swap device can be
1286  * unused.
1287  */
1288 int shmem_unuse(unsigned int type)
1289 {
1290 	struct shmem_inode_info *info, *next;
1291 	int error = 0;
1292 
1293 	if (list_empty(&shmem_swaplist))
1294 		return 0;
1295 
1296 	mutex_lock(&shmem_swaplist_mutex);
1297 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1298 		if (!info->swapped) {
1299 			list_del_init(&info->swaplist);
1300 			continue;
1301 		}
1302 		/*
1303 		 * Drop the swaplist mutex while searching the inode for swap;
1304 		 * but before doing so, make sure shmem_evict_inode() will not
1305 		 * remove placeholder inode from swaplist, nor let it be freed
1306 		 * (igrab() would protect from unlink, but not from unmount).
1307 		 */
1308 		atomic_inc(&info->stop_eviction);
1309 		mutex_unlock(&shmem_swaplist_mutex);
1310 
1311 		error = shmem_unuse_inode(&info->vfs_inode, type);
1312 		cond_resched();
1313 
1314 		mutex_lock(&shmem_swaplist_mutex);
1315 		next = list_next_entry(info, swaplist);
1316 		if (!info->swapped)
1317 			list_del_init(&info->swaplist);
1318 		if (atomic_dec_and_test(&info->stop_eviction))
1319 			wake_up_var(&info->stop_eviction);
1320 		if (error)
1321 			break;
1322 	}
1323 	mutex_unlock(&shmem_swaplist_mutex);
1324 
1325 	return error;
1326 }
1327 
1328 /*
1329  * Move the page from the page cache to the swap cache.
1330  */
1331 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1332 {
1333 	struct folio *folio = page_folio(page);
1334 	struct shmem_inode_info *info;
1335 	struct address_space *mapping;
1336 	struct inode *inode;
1337 	swp_entry_t swap;
1338 	pgoff_t index;
1339 
1340 	/*
1341 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1342 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1343 	 * and its shmem_writeback() needs them to be split when swapping.
1344 	 */
1345 	if (folio_test_large(folio)) {
1346 		/* Ensure the subpages are still dirty */
1347 		folio_test_set_dirty(folio);
1348 		if (split_huge_page(page) < 0)
1349 			goto redirty;
1350 		folio = page_folio(page);
1351 		folio_clear_dirty(folio);
1352 	}
1353 
1354 	BUG_ON(!folio_test_locked(folio));
1355 	mapping = folio->mapping;
1356 	index = folio->index;
1357 	inode = mapping->host;
1358 	info = SHMEM_I(inode);
1359 	if (info->flags & VM_LOCKED)
1360 		goto redirty;
1361 	if (!total_swap_pages)
1362 		goto redirty;
1363 
1364 	/*
1365 	 * Our capabilities prevent regular writeback or sync from ever calling
1366 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1367 	 * its underlying filesystem, in which case tmpfs should write out to
1368 	 * swap only in response to memory pressure, and not for the writeback
1369 	 * threads or sync.
1370 	 */
1371 	if (!wbc->for_reclaim) {
1372 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1373 		goto redirty;
1374 	}
1375 
1376 	/*
1377 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1378 	 * value into swapfile.c, the only way we can correctly account for a
1379 	 * fallocated folio arriving here is now to initialize it and write it.
1380 	 *
1381 	 * That's okay for a folio already fallocated earlier, but if we have
1382 	 * not yet completed the fallocation, then (a) we want to keep track
1383 	 * of this folio in case we have to undo it, and (b) it may not be a
1384 	 * good idea to continue anyway, once we're pushing into swap.  So
1385 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1386 	 */
1387 	if (!folio_test_uptodate(folio)) {
1388 		if (inode->i_private) {
1389 			struct shmem_falloc *shmem_falloc;
1390 			spin_lock(&inode->i_lock);
1391 			shmem_falloc = inode->i_private;
1392 			if (shmem_falloc &&
1393 			    !shmem_falloc->waitq &&
1394 			    index >= shmem_falloc->start &&
1395 			    index < shmem_falloc->next)
1396 				shmem_falloc->nr_unswapped++;
1397 			else
1398 				shmem_falloc = NULL;
1399 			spin_unlock(&inode->i_lock);
1400 			if (shmem_falloc)
1401 				goto redirty;
1402 		}
1403 		folio_zero_range(folio, 0, folio_size(folio));
1404 		flush_dcache_folio(folio);
1405 		folio_mark_uptodate(folio);
1406 	}
1407 
1408 	swap = folio_alloc_swap(folio);
1409 	if (!swap.val)
1410 		goto redirty;
1411 
1412 	/*
1413 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1414 	 * if it's not already there.  Do it now before the folio is
1415 	 * moved to swap cache, when its pagelock no longer protects
1416 	 * the inode from eviction.  But don't unlock the mutex until
1417 	 * we've incremented swapped, because shmem_unuse_inode() will
1418 	 * prune a !swapped inode from the swaplist under this mutex.
1419 	 */
1420 	mutex_lock(&shmem_swaplist_mutex);
1421 	if (list_empty(&info->swaplist))
1422 		list_add(&info->swaplist, &shmem_swaplist);
1423 
1424 	if (add_to_swap_cache(folio, swap,
1425 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1426 			NULL) == 0) {
1427 		spin_lock_irq(&info->lock);
1428 		shmem_recalc_inode(inode);
1429 		info->swapped++;
1430 		spin_unlock_irq(&info->lock);
1431 
1432 		swap_shmem_alloc(swap);
1433 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1434 
1435 		mutex_unlock(&shmem_swaplist_mutex);
1436 		BUG_ON(folio_mapped(folio));
1437 		swap_writepage(&folio->page, wbc);
1438 		return 0;
1439 	}
1440 
1441 	mutex_unlock(&shmem_swaplist_mutex);
1442 	put_swap_folio(folio, swap);
1443 redirty:
1444 	folio_mark_dirty(folio);
1445 	if (wbc->for_reclaim)
1446 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1447 	folio_unlock(folio);
1448 	return 0;
1449 }
1450 
1451 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1452 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1453 {
1454 	char buffer[64];
1455 
1456 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1457 		return;		/* show nothing */
1458 
1459 	mpol_to_str(buffer, sizeof(buffer), mpol);
1460 
1461 	seq_printf(seq, ",mpol=%s", buffer);
1462 }
1463 
1464 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1465 {
1466 	struct mempolicy *mpol = NULL;
1467 	if (sbinfo->mpol) {
1468 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1469 		mpol = sbinfo->mpol;
1470 		mpol_get(mpol);
1471 		raw_spin_unlock(&sbinfo->stat_lock);
1472 	}
1473 	return mpol;
1474 }
1475 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1476 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1477 {
1478 }
1479 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1480 {
1481 	return NULL;
1482 }
1483 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1484 #ifndef CONFIG_NUMA
1485 #define vm_policy vm_private_data
1486 #endif
1487 
1488 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1489 		struct shmem_inode_info *info, pgoff_t index)
1490 {
1491 	/* Create a pseudo vma that just contains the policy */
1492 	vma_init(vma, NULL);
1493 	/* Bias interleave by inode number to distribute better across nodes */
1494 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1495 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1496 }
1497 
1498 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1499 {
1500 	/* Drop reference taken by mpol_shared_policy_lookup() */
1501 	mpol_cond_put(vma->vm_policy);
1502 }
1503 
1504 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1505 			struct shmem_inode_info *info, pgoff_t index)
1506 {
1507 	struct vm_area_struct pvma;
1508 	struct page *page;
1509 	struct vm_fault vmf = {
1510 		.vma = &pvma,
1511 	};
1512 
1513 	shmem_pseudo_vma_init(&pvma, info, index);
1514 	page = swap_cluster_readahead(swap, gfp, &vmf);
1515 	shmem_pseudo_vma_destroy(&pvma);
1516 
1517 	if (!page)
1518 		return NULL;
1519 	return page_folio(page);
1520 }
1521 
1522 /*
1523  * Make sure huge_gfp is always more limited than limit_gfp.
1524  * Some of the flags set permissions, while others set limitations.
1525  */
1526 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1527 {
1528 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1529 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1530 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1531 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1532 
1533 	/* Allow allocations only from the originally specified zones. */
1534 	result |= zoneflags;
1535 
1536 	/*
1537 	 * Minimize the result gfp by taking the union with the deny flags,
1538 	 * and the intersection of the allow flags.
1539 	 */
1540 	result |= (limit_gfp & denyflags);
1541 	result |= (huge_gfp & limit_gfp) & allowflags;
1542 
1543 	return result;
1544 }
1545 
1546 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1547 		struct shmem_inode_info *info, pgoff_t index)
1548 {
1549 	struct vm_area_struct pvma;
1550 	struct address_space *mapping = info->vfs_inode.i_mapping;
1551 	pgoff_t hindex;
1552 	struct folio *folio;
1553 
1554 	hindex = round_down(index, HPAGE_PMD_NR);
1555 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1556 								XA_PRESENT))
1557 		return NULL;
1558 
1559 	shmem_pseudo_vma_init(&pvma, info, hindex);
1560 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1561 	shmem_pseudo_vma_destroy(&pvma);
1562 	if (!folio)
1563 		count_vm_event(THP_FILE_FALLBACK);
1564 	return folio;
1565 }
1566 
1567 static struct folio *shmem_alloc_folio(gfp_t gfp,
1568 			struct shmem_inode_info *info, pgoff_t index)
1569 {
1570 	struct vm_area_struct pvma;
1571 	struct folio *folio;
1572 
1573 	shmem_pseudo_vma_init(&pvma, info, index);
1574 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1575 	shmem_pseudo_vma_destroy(&pvma);
1576 
1577 	return folio;
1578 }
1579 
1580 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1581 		pgoff_t index, bool huge)
1582 {
1583 	struct shmem_inode_info *info = SHMEM_I(inode);
1584 	struct folio *folio;
1585 	int nr;
1586 	int err = -ENOSPC;
1587 
1588 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1589 		huge = false;
1590 	nr = huge ? HPAGE_PMD_NR : 1;
1591 
1592 	if (!shmem_inode_acct_block(inode, nr))
1593 		goto failed;
1594 
1595 	if (huge)
1596 		folio = shmem_alloc_hugefolio(gfp, info, index);
1597 	else
1598 		folio = shmem_alloc_folio(gfp, info, index);
1599 	if (folio) {
1600 		__folio_set_locked(folio);
1601 		__folio_set_swapbacked(folio);
1602 		return folio;
1603 	}
1604 
1605 	err = -ENOMEM;
1606 	shmem_inode_unacct_blocks(inode, nr);
1607 failed:
1608 	return ERR_PTR(err);
1609 }
1610 
1611 /*
1612  * When a page is moved from swapcache to shmem filecache (either by the
1613  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1614  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1615  * ignorance of the mapping it belongs to.  If that mapping has special
1616  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1617  * we may need to copy to a suitable page before moving to filecache.
1618  *
1619  * In a future release, this may well be extended to respect cpuset and
1620  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1621  * but for now it is a simple matter of zone.
1622  */
1623 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1624 {
1625 	return folio_zonenum(folio) > gfp_zone(gfp);
1626 }
1627 
1628 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1629 				struct shmem_inode_info *info, pgoff_t index)
1630 {
1631 	struct folio *old, *new;
1632 	struct address_space *swap_mapping;
1633 	swp_entry_t entry;
1634 	pgoff_t swap_index;
1635 	int error;
1636 
1637 	old = *foliop;
1638 	entry = folio_swap_entry(old);
1639 	swap_index = swp_offset(entry);
1640 	swap_mapping = swap_address_space(entry);
1641 
1642 	/*
1643 	 * We have arrived here because our zones are constrained, so don't
1644 	 * limit chance of success by further cpuset and node constraints.
1645 	 */
1646 	gfp &= ~GFP_CONSTRAINT_MASK;
1647 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1648 	new = shmem_alloc_folio(gfp, info, index);
1649 	if (!new)
1650 		return -ENOMEM;
1651 
1652 	folio_get(new);
1653 	folio_copy(new, old);
1654 	flush_dcache_folio(new);
1655 
1656 	__folio_set_locked(new);
1657 	__folio_set_swapbacked(new);
1658 	folio_mark_uptodate(new);
1659 	folio_set_swap_entry(new, entry);
1660 	folio_set_swapcache(new);
1661 
1662 	/*
1663 	 * Our caller will very soon move newpage out of swapcache, but it's
1664 	 * a nice clean interface for us to replace oldpage by newpage there.
1665 	 */
1666 	xa_lock_irq(&swap_mapping->i_pages);
1667 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1668 	if (!error) {
1669 		mem_cgroup_migrate(old, new);
1670 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1671 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1672 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1673 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1674 	}
1675 	xa_unlock_irq(&swap_mapping->i_pages);
1676 
1677 	if (unlikely(error)) {
1678 		/*
1679 		 * Is this possible?  I think not, now that our callers check
1680 		 * both PageSwapCache and page_private after getting page lock;
1681 		 * but be defensive.  Reverse old to newpage for clear and free.
1682 		 */
1683 		old = new;
1684 	} else {
1685 		folio_add_lru(new);
1686 		*foliop = new;
1687 	}
1688 
1689 	folio_clear_swapcache(old);
1690 	old->private = NULL;
1691 
1692 	folio_unlock(old);
1693 	folio_put_refs(old, 2);
1694 	return error;
1695 }
1696 
1697 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1698 					 struct folio *folio, swp_entry_t swap)
1699 {
1700 	struct address_space *mapping = inode->i_mapping;
1701 	struct shmem_inode_info *info = SHMEM_I(inode);
1702 	swp_entry_t swapin_error;
1703 	void *old;
1704 
1705 	swapin_error = make_swapin_error_entry();
1706 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1707 			     swp_to_radix_entry(swap),
1708 			     swp_to_radix_entry(swapin_error), 0);
1709 	if (old != swp_to_radix_entry(swap))
1710 		return;
1711 
1712 	folio_wait_writeback(folio);
1713 	delete_from_swap_cache(folio);
1714 	spin_lock_irq(&info->lock);
1715 	/*
1716 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1717 	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1718 	 * shmem_evict_inode.
1719 	 */
1720 	info->alloced--;
1721 	info->swapped--;
1722 	shmem_recalc_inode(inode);
1723 	spin_unlock_irq(&info->lock);
1724 	swap_free(swap);
1725 }
1726 
1727 /*
1728  * Swap in the folio pointed to by *foliop.
1729  * Caller has to make sure that *foliop contains a valid swapped folio.
1730  * Returns 0 and the folio in foliop if success. On failure, returns the
1731  * error code and NULL in *foliop.
1732  */
1733 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1734 			     struct folio **foliop, enum sgp_type sgp,
1735 			     gfp_t gfp, struct vm_area_struct *vma,
1736 			     vm_fault_t *fault_type)
1737 {
1738 	struct address_space *mapping = inode->i_mapping;
1739 	struct shmem_inode_info *info = SHMEM_I(inode);
1740 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1741 	struct swap_info_struct *si;
1742 	struct folio *folio = NULL;
1743 	swp_entry_t swap;
1744 	int error;
1745 
1746 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1747 	swap = radix_to_swp_entry(*foliop);
1748 	*foliop = NULL;
1749 
1750 	if (is_swapin_error_entry(swap))
1751 		return -EIO;
1752 
1753 	si = get_swap_device(swap);
1754 	if (!si) {
1755 		if (!shmem_confirm_swap(mapping, index, swap))
1756 			return -EEXIST;
1757 		else
1758 			return -EINVAL;
1759 	}
1760 
1761 	/* Look it up and read it in.. */
1762 	folio = swap_cache_get_folio(swap, NULL, 0);
1763 	if (!folio) {
1764 		/* Or update major stats only when swapin succeeds?? */
1765 		if (fault_type) {
1766 			*fault_type |= VM_FAULT_MAJOR;
1767 			count_vm_event(PGMAJFAULT);
1768 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1769 		}
1770 		/* Here we actually start the io */
1771 		folio = shmem_swapin(swap, gfp, info, index);
1772 		if (!folio) {
1773 			error = -ENOMEM;
1774 			goto failed;
1775 		}
1776 	}
1777 
1778 	/* We have to do this with folio locked to prevent races */
1779 	folio_lock(folio);
1780 	if (!folio_test_swapcache(folio) ||
1781 	    folio_swap_entry(folio).val != swap.val ||
1782 	    !shmem_confirm_swap(mapping, index, swap)) {
1783 		error = -EEXIST;
1784 		goto unlock;
1785 	}
1786 	if (!folio_test_uptodate(folio)) {
1787 		error = -EIO;
1788 		goto failed;
1789 	}
1790 	folio_wait_writeback(folio);
1791 
1792 	/*
1793 	 * Some architectures may have to restore extra metadata to the
1794 	 * folio after reading from swap.
1795 	 */
1796 	arch_swap_restore(swap, folio);
1797 
1798 	if (shmem_should_replace_folio(folio, gfp)) {
1799 		error = shmem_replace_folio(&folio, gfp, info, index);
1800 		if (error)
1801 			goto failed;
1802 	}
1803 
1804 	error = shmem_add_to_page_cache(folio, mapping, index,
1805 					swp_to_radix_entry(swap), gfp,
1806 					charge_mm);
1807 	if (error)
1808 		goto failed;
1809 
1810 	spin_lock_irq(&info->lock);
1811 	info->swapped--;
1812 	shmem_recalc_inode(inode);
1813 	spin_unlock_irq(&info->lock);
1814 
1815 	if (sgp == SGP_WRITE)
1816 		folio_mark_accessed(folio);
1817 
1818 	delete_from_swap_cache(folio);
1819 	folio_mark_dirty(folio);
1820 	swap_free(swap);
1821 	put_swap_device(si);
1822 
1823 	*foliop = folio;
1824 	return 0;
1825 failed:
1826 	if (!shmem_confirm_swap(mapping, index, swap))
1827 		error = -EEXIST;
1828 	if (error == -EIO)
1829 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1830 unlock:
1831 	if (folio) {
1832 		folio_unlock(folio);
1833 		folio_put(folio);
1834 	}
1835 	put_swap_device(si);
1836 
1837 	return error;
1838 }
1839 
1840 /*
1841  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1842  *
1843  * If we allocate a new one we do not mark it dirty. That's up to the
1844  * vm. If we swap it in we mark it dirty since we also free the swap
1845  * entry since a page cannot live in both the swap and page cache.
1846  *
1847  * vma, vmf, and fault_type are only supplied by shmem_fault:
1848  * otherwise they are NULL.
1849  */
1850 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1851 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1852 		struct vm_area_struct *vma, struct vm_fault *vmf,
1853 		vm_fault_t *fault_type)
1854 {
1855 	struct address_space *mapping = inode->i_mapping;
1856 	struct shmem_inode_info *info = SHMEM_I(inode);
1857 	struct shmem_sb_info *sbinfo;
1858 	struct mm_struct *charge_mm;
1859 	struct folio *folio;
1860 	pgoff_t hindex;
1861 	gfp_t huge_gfp;
1862 	int error;
1863 	int once = 0;
1864 	int alloced = 0;
1865 
1866 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1867 		return -EFBIG;
1868 repeat:
1869 	if (sgp <= SGP_CACHE &&
1870 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1871 		return -EINVAL;
1872 	}
1873 
1874 	sbinfo = SHMEM_SB(inode->i_sb);
1875 	charge_mm = vma ? vma->vm_mm : NULL;
1876 
1877 	folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1878 	if (folio && vma && userfaultfd_minor(vma)) {
1879 		if (!xa_is_value(folio)) {
1880 			folio_unlock(folio);
1881 			folio_put(folio);
1882 		}
1883 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1884 		return 0;
1885 	}
1886 
1887 	if (xa_is_value(folio)) {
1888 		error = shmem_swapin_folio(inode, index, &folio,
1889 					  sgp, gfp, vma, fault_type);
1890 		if (error == -EEXIST)
1891 			goto repeat;
1892 
1893 		*foliop = folio;
1894 		return error;
1895 	}
1896 
1897 	if (folio) {
1898 		if (sgp == SGP_WRITE)
1899 			folio_mark_accessed(folio);
1900 		if (folio_test_uptodate(folio))
1901 			goto out;
1902 		/* fallocated folio */
1903 		if (sgp != SGP_READ)
1904 			goto clear;
1905 		folio_unlock(folio);
1906 		folio_put(folio);
1907 	}
1908 
1909 	/*
1910 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1911 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1912 	 */
1913 	*foliop = NULL;
1914 	if (sgp == SGP_READ)
1915 		return 0;
1916 	if (sgp == SGP_NOALLOC)
1917 		return -ENOENT;
1918 
1919 	/*
1920 	 * Fast cache lookup and swap lookup did not find it: allocate.
1921 	 */
1922 
1923 	if (vma && userfaultfd_missing(vma)) {
1924 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1925 		return 0;
1926 	}
1927 
1928 	if (!shmem_is_huge(inode, index, false,
1929 			   vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0))
1930 		goto alloc_nohuge;
1931 
1932 	huge_gfp = vma_thp_gfp_mask(vma);
1933 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1934 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1935 	if (IS_ERR(folio)) {
1936 alloc_nohuge:
1937 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1938 	}
1939 	if (IS_ERR(folio)) {
1940 		int retry = 5;
1941 
1942 		error = PTR_ERR(folio);
1943 		folio = NULL;
1944 		if (error != -ENOSPC)
1945 			goto unlock;
1946 		/*
1947 		 * Try to reclaim some space by splitting a large folio
1948 		 * beyond i_size on the filesystem.
1949 		 */
1950 		while (retry--) {
1951 			int ret;
1952 
1953 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1954 			if (ret == SHRINK_STOP)
1955 				break;
1956 			if (ret)
1957 				goto alloc_nohuge;
1958 		}
1959 		goto unlock;
1960 	}
1961 
1962 	hindex = round_down(index, folio_nr_pages(folio));
1963 
1964 	if (sgp == SGP_WRITE)
1965 		__folio_set_referenced(folio);
1966 
1967 	error = shmem_add_to_page_cache(folio, mapping, hindex,
1968 					NULL, gfp & GFP_RECLAIM_MASK,
1969 					charge_mm);
1970 	if (error)
1971 		goto unacct;
1972 	folio_add_lru(folio);
1973 
1974 	spin_lock_irq(&info->lock);
1975 	info->alloced += folio_nr_pages(folio);
1976 	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1977 	shmem_recalc_inode(inode);
1978 	spin_unlock_irq(&info->lock);
1979 	alloced = true;
1980 
1981 	if (folio_test_pmd_mappable(folio) &&
1982 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1983 					folio_next_index(folio) - 1) {
1984 		/*
1985 		 * Part of the large folio is beyond i_size: subject
1986 		 * to shrink under memory pressure.
1987 		 */
1988 		spin_lock(&sbinfo->shrinklist_lock);
1989 		/*
1990 		 * _careful to defend against unlocked access to
1991 		 * ->shrink_list in shmem_unused_huge_shrink()
1992 		 */
1993 		if (list_empty_careful(&info->shrinklist)) {
1994 			list_add_tail(&info->shrinklist,
1995 				      &sbinfo->shrinklist);
1996 			sbinfo->shrinklist_len++;
1997 		}
1998 		spin_unlock(&sbinfo->shrinklist_lock);
1999 	}
2000 
2001 	/*
2002 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2003 	 */
2004 	if (sgp == SGP_FALLOC)
2005 		sgp = SGP_WRITE;
2006 clear:
2007 	/*
2008 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2009 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2010 	 * it now, lest undo on failure cancel our earlier guarantee.
2011 	 */
2012 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2013 		long i, n = folio_nr_pages(folio);
2014 
2015 		for (i = 0; i < n; i++)
2016 			clear_highpage(folio_page(folio, i));
2017 		flush_dcache_folio(folio);
2018 		folio_mark_uptodate(folio);
2019 	}
2020 
2021 	/* Perhaps the file has been truncated since we checked */
2022 	if (sgp <= SGP_CACHE &&
2023 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2024 		if (alloced) {
2025 			folio_clear_dirty(folio);
2026 			filemap_remove_folio(folio);
2027 			spin_lock_irq(&info->lock);
2028 			shmem_recalc_inode(inode);
2029 			spin_unlock_irq(&info->lock);
2030 		}
2031 		error = -EINVAL;
2032 		goto unlock;
2033 	}
2034 out:
2035 	*foliop = folio;
2036 	return 0;
2037 
2038 	/*
2039 	 * Error recovery.
2040 	 */
2041 unacct:
2042 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2043 
2044 	if (folio_test_large(folio)) {
2045 		folio_unlock(folio);
2046 		folio_put(folio);
2047 		goto alloc_nohuge;
2048 	}
2049 unlock:
2050 	if (folio) {
2051 		folio_unlock(folio);
2052 		folio_put(folio);
2053 	}
2054 	if (error == -ENOSPC && !once++) {
2055 		spin_lock_irq(&info->lock);
2056 		shmem_recalc_inode(inode);
2057 		spin_unlock_irq(&info->lock);
2058 		goto repeat;
2059 	}
2060 	if (error == -EEXIST)
2061 		goto repeat;
2062 	return error;
2063 }
2064 
2065 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2066 		enum sgp_type sgp)
2067 {
2068 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2069 			mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2070 }
2071 
2072 /*
2073  * This is like autoremove_wake_function, but it removes the wait queue
2074  * entry unconditionally - even if something else had already woken the
2075  * target.
2076  */
2077 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2078 {
2079 	int ret = default_wake_function(wait, mode, sync, key);
2080 	list_del_init(&wait->entry);
2081 	return ret;
2082 }
2083 
2084 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2085 {
2086 	struct vm_area_struct *vma = vmf->vma;
2087 	struct inode *inode = file_inode(vma->vm_file);
2088 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2089 	struct folio *folio = NULL;
2090 	int err;
2091 	vm_fault_t ret = VM_FAULT_LOCKED;
2092 
2093 	/*
2094 	 * Trinity finds that probing a hole which tmpfs is punching can
2095 	 * prevent the hole-punch from ever completing: which in turn
2096 	 * locks writers out with its hold on i_rwsem.  So refrain from
2097 	 * faulting pages into the hole while it's being punched.  Although
2098 	 * shmem_undo_range() does remove the additions, it may be unable to
2099 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2100 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2101 	 *
2102 	 * It does not matter if we sometimes reach this check just before the
2103 	 * hole-punch begins, so that one fault then races with the punch:
2104 	 * we just need to make racing faults a rare case.
2105 	 *
2106 	 * The implementation below would be much simpler if we just used a
2107 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2108 	 * and bloating every shmem inode for this unlikely case would be sad.
2109 	 */
2110 	if (unlikely(inode->i_private)) {
2111 		struct shmem_falloc *shmem_falloc;
2112 
2113 		spin_lock(&inode->i_lock);
2114 		shmem_falloc = inode->i_private;
2115 		if (shmem_falloc &&
2116 		    shmem_falloc->waitq &&
2117 		    vmf->pgoff >= shmem_falloc->start &&
2118 		    vmf->pgoff < shmem_falloc->next) {
2119 			struct file *fpin;
2120 			wait_queue_head_t *shmem_falloc_waitq;
2121 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2122 
2123 			ret = VM_FAULT_NOPAGE;
2124 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2125 			if (fpin)
2126 				ret = VM_FAULT_RETRY;
2127 
2128 			shmem_falloc_waitq = shmem_falloc->waitq;
2129 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2130 					TASK_UNINTERRUPTIBLE);
2131 			spin_unlock(&inode->i_lock);
2132 			schedule();
2133 
2134 			/*
2135 			 * shmem_falloc_waitq points into the shmem_fallocate()
2136 			 * stack of the hole-punching task: shmem_falloc_waitq
2137 			 * is usually invalid by the time we reach here, but
2138 			 * finish_wait() does not dereference it in that case;
2139 			 * though i_lock needed lest racing with wake_up_all().
2140 			 */
2141 			spin_lock(&inode->i_lock);
2142 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2143 			spin_unlock(&inode->i_lock);
2144 
2145 			if (fpin)
2146 				fput(fpin);
2147 			return ret;
2148 		}
2149 		spin_unlock(&inode->i_lock);
2150 	}
2151 
2152 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2153 				  gfp, vma, vmf, &ret);
2154 	if (err)
2155 		return vmf_error(err);
2156 	if (folio)
2157 		vmf->page = folio_file_page(folio, vmf->pgoff);
2158 	return ret;
2159 }
2160 
2161 unsigned long shmem_get_unmapped_area(struct file *file,
2162 				      unsigned long uaddr, unsigned long len,
2163 				      unsigned long pgoff, unsigned long flags)
2164 {
2165 	unsigned long (*get_area)(struct file *,
2166 		unsigned long, unsigned long, unsigned long, unsigned long);
2167 	unsigned long addr;
2168 	unsigned long offset;
2169 	unsigned long inflated_len;
2170 	unsigned long inflated_addr;
2171 	unsigned long inflated_offset;
2172 
2173 	if (len > TASK_SIZE)
2174 		return -ENOMEM;
2175 
2176 	get_area = current->mm->get_unmapped_area;
2177 	addr = get_area(file, uaddr, len, pgoff, flags);
2178 
2179 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2180 		return addr;
2181 	if (IS_ERR_VALUE(addr))
2182 		return addr;
2183 	if (addr & ~PAGE_MASK)
2184 		return addr;
2185 	if (addr > TASK_SIZE - len)
2186 		return addr;
2187 
2188 	if (shmem_huge == SHMEM_HUGE_DENY)
2189 		return addr;
2190 	if (len < HPAGE_PMD_SIZE)
2191 		return addr;
2192 	if (flags & MAP_FIXED)
2193 		return addr;
2194 	/*
2195 	 * Our priority is to support MAP_SHARED mapped hugely;
2196 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2197 	 * But if caller specified an address hint and we allocated area there
2198 	 * successfully, respect that as before.
2199 	 */
2200 	if (uaddr == addr)
2201 		return addr;
2202 
2203 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2204 		struct super_block *sb;
2205 
2206 		if (file) {
2207 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2208 			sb = file_inode(file)->i_sb;
2209 		} else {
2210 			/*
2211 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2212 			 * for "/dev/zero", to create a shared anonymous object.
2213 			 */
2214 			if (IS_ERR(shm_mnt))
2215 				return addr;
2216 			sb = shm_mnt->mnt_sb;
2217 		}
2218 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2219 			return addr;
2220 	}
2221 
2222 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2223 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2224 		return addr;
2225 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2226 		return addr;
2227 
2228 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2229 	if (inflated_len > TASK_SIZE)
2230 		return addr;
2231 	if (inflated_len < len)
2232 		return addr;
2233 
2234 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2235 	if (IS_ERR_VALUE(inflated_addr))
2236 		return addr;
2237 	if (inflated_addr & ~PAGE_MASK)
2238 		return addr;
2239 
2240 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2241 	inflated_addr += offset - inflated_offset;
2242 	if (inflated_offset > offset)
2243 		inflated_addr += HPAGE_PMD_SIZE;
2244 
2245 	if (inflated_addr > TASK_SIZE - len)
2246 		return addr;
2247 	return inflated_addr;
2248 }
2249 
2250 #ifdef CONFIG_NUMA
2251 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2252 {
2253 	struct inode *inode = file_inode(vma->vm_file);
2254 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2255 }
2256 
2257 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2258 					  unsigned long addr)
2259 {
2260 	struct inode *inode = file_inode(vma->vm_file);
2261 	pgoff_t index;
2262 
2263 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2264 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2265 }
2266 #endif
2267 
2268 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2269 {
2270 	struct inode *inode = file_inode(file);
2271 	struct shmem_inode_info *info = SHMEM_I(inode);
2272 	int retval = -ENOMEM;
2273 
2274 	/*
2275 	 * What serializes the accesses to info->flags?
2276 	 * ipc_lock_object() when called from shmctl_do_lock(),
2277 	 * no serialization needed when called from shm_destroy().
2278 	 */
2279 	if (lock && !(info->flags & VM_LOCKED)) {
2280 		if (!user_shm_lock(inode->i_size, ucounts))
2281 			goto out_nomem;
2282 		info->flags |= VM_LOCKED;
2283 		mapping_set_unevictable(file->f_mapping);
2284 	}
2285 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2286 		user_shm_unlock(inode->i_size, ucounts);
2287 		info->flags &= ~VM_LOCKED;
2288 		mapping_clear_unevictable(file->f_mapping);
2289 	}
2290 	retval = 0;
2291 
2292 out_nomem:
2293 	return retval;
2294 }
2295 
2296 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2297 {
2298 	struct inode *inode = file_inode(file);
2299 	struct shmem_inode_info *info = SHMEM_I(inode);
2300 	int ret;
2301 
2302 	ret = seal_check_future_write(info->seals, vma);
2303 	if (ret)
2304 		return ret;
2305 
2306 	/* arm64 - allow memory tagging on RAM-based files */
2307 	vm_flags_set(vma, VM_MTE_ALLOWED);
2308 
2309 	file_accessed(file);
2310 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2311 	if (inode->i_nlink)
2312 		vma->vm_ops = &shmem_vm_ops;
2313 	else
2314 		vma->vm_ops = &shmem_anon_vm_ops;
2315 	return 0;
2316 }
2317 
2318 #ifdef CONFIG_TMPFS_XATTR
2319 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2320 
2321 /*
2322  * chattr's fsflags are unrelated to extended attributes,
2323  * but tmpfs has chosen to enable them under the same config option.
2324  */
2325 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2326 {
2327 	unsigned int i_flags = 0;
2328 
2329 	if (fsflags & FS_NOATIME_FL)
2330 		i_flags |= S_NOATIME;
2331 	if (fsflags & FS_APPEND_FL)
2332 		i_flags |= S_APPEND;
2333 	if (fsflags & FS_IMMUTABLE_FL)
2334 		i_flags |= S_IMMUTABLE;
2335 	/*
2336 	 * But FS_NODUMP_FL does not require any action in i_flags.
2337 	 */
2338 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2339 }
2340 #else
2341 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2342 {
2343 }
2344 #define shmem_initxattrs NULL
2345 #endif
2346 
2347 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb,
2348 				     struct inode *dir, umode_t mode, dev_t dev,
2349 				     unsigned long flags)
2350 {
2351 	struct inode *inode;
2352 	struct shmem_inode_info *info;
2353 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2354 	ino_t ino;
2355 
2356 	if (shmem_reserve_inode(sb, &ino))
2357 		return NULL;
2358 
2359 	inode = new_inode(sb);
2360 	if (inode) {
2361 		inode->i_ino = ino;
2362 		inode_init_owner(idmap, inode, dir, mode);
2363 		inode->i_blocks = 0;
2364 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2365 		inode->i_generation = get_random_u32();
2366 		info = SHMEM_I(inode);
2367 		memset(info, 0, (char *)inode - (char *)info);
2368 		spin_lock_init(&info->lock);
2369 		atomic_set(&info->stop_eviction, 0);
2370 		info->seals = F_SEAL_SEAL;
2371 		info->flags = flags & VM_NORESERVE;
2372 		info->i_crtime = inode->i_mtime;
2373 		info->fsflags = (dir == NULL) ? 0 :
2374 			SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2375 		if (info->fsflags)
2376 			shmem_set_inode_flags(inode, info->fsflags);
2377 		INIT_LIST_HEAD(&info->shrinklist);
2378 		INIT_LIST_HEAD(&info->swaplist);
2379 		simple_xattrs_init(&info->xattrs);
2380 		cache_no_acl(inode);
2381 		mapping_set_large_folios(inode->i_mapping);
2382 
2383 		switch (mode & S_IFMT) {
2384 		default:
2385 			inode->i_op = &shmem_special_inode_operations;
2386 			init_special_inode(inode, mode, dev);
2387 			break;
2388 		case S_IFREG:
2389 			inode->i_mapping->a_ops = &shmem_aops;
2390 			inode->i_op = &shmem_inode_operations;
2391 			inode->i_fop = &shmem_file_operations;
2392 			mpol_shared_policy_init(&info->policy,
2393 						 shmem_get_sbmpol(sbinfo));
2394 			break;
2395 		case S_IFDIR:
2396 			inc_nlink(inode);
2397 			/* Some things misbehave if size == 0 on a directory */
2398 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2399 			inode->i_op = &shmem_dir_inode_operations;
2400 			inode->i_fop = &simple_dir_operations;
2401 			break;
2402 		case S_IFLNK:
2403 			/*
2404 			 * Must not load anything in the rbtree,
2405 			 * mpol_free_shared_policy will not be called.
2406 			 */
2407 			mpol_shared_policy_init(&info->policy, NULL);
2408 			break;
2409 		}
2410 
2411 		lockdep_annotate_inode_mutex_key(inode);
2412 	} else
2413 		shmem_free_inode(sb);
2414 	return inode;
2415 }
2416 
2417 #ifdef CONFIG_USERFAULTFD
2418 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2419 			   pmd_t *dst_pmd,
2420 			   struct vm_area_struct *dst_vma,
2421 			   unsigned long dst_addr,
2422 			   unsigned long src_addr,
2423 			   bool zeropage, bool wp_copy,
2424 			   struct page **pagep)
2425 {
2426 	struct inode *inode = file_inode(dst_vma->vm_file);
2427 	struct shmem_inode_info *info = SHMEM_I(inode);
2428 	struct address_space *mapping = inode->i_mapping;
2429 	gfp_t gfp = mapping_gfp_mask(mapping);
2430 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2431 	void *page_kaddr;
2432 	struct folio *folio;
2433 	int ret;
2434 	pgoff_t max_off;
2435 
2436 	if (!shmem_inode_acct_block(inode, 1)) {
2437 		/*
2438 		 * We may have got a page, returned -ENOENT triggering a retry,
2439 		 * and now we find ourselves with -ENOMEM. Release the page, to
2440 		 * avoid a BUG_ON in our caller.
2441 		 */
2442 		if (unlikely(*pagep)) {
2443 			put_page(*pagep);
2444 			*pagep = NULL;
2445 		}
2446 		return -ENOMEM;
2447 	}
2448 
2449 	if (!*pagep) {
2450 		ret = -ENOMEM;
2451 		folio = shmem_alloc_folio(gfp, info, pgoff);
2452 		if (!folio)
2453 			goto out_unacct_blocks;
2454 
2455 		if (!zeropage) {	/* COPY */
2456 			page_kaddr = kmap_local_folio(folio, 0);
2457 			/*
2458 			 * The read mmap_lock is held here.  Despite the
2459 			 * mmap_lock being read recursive a deadlock is still
2460 			 * possible if a writer has taken a lock.  For example:
2461 			 *
2462 			 * process A thread 1 takes read lock on own mmap_lock
2463 			 * process A thread 2 calls mmap, blocks taking write lock
2464 			 * process B thread 1 takes page fault, read lock on own mmap lock
2465 			 * process B thread 2 calls mmap, blocks taking write lock
2466 			 * process A thread 1 blocks taking read lock on process B
2467 			 * process B thread 1 blocks taking read lock on process A
2468 			 *
2469 			 * Disable page faults to prevent potential deadlock
2470 			 * and retry the copy outside the mmap_lock.
2471 			 */
2472 			pagefault_disable();
2473 			ret = copy_from_user(page_kaddr,
2474 					     (const void __user *)src_addr,
2475 					     PAGE_SIZE);
2476 			pagefault_enable();
2477 			kunmap_local(page_kaddr);
2478 
2479 			/* fallback to copy_from_user outside mmap_lock */
2480 			if (unlikely(ret)) {
2481 				*pagep = &folio->page;
2482 				ret = -ENOENT;
2483 				/* don't free the page */
2484 				goto out_unacct_blocks;
2485 			}
2486 
2487 			flush_dcache_folio(folio);
2488 		} else {		/* ZEROPAGE */
2489 			clear_user_highpage(&folio->page, dst_addr);
2490 		}
2491 	} else {
2492 		folio = page_folio(*pagep);
2493 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2494 		*pagep = NULL;
2495 	}
2496 
2497 	VM_BUG_ON(folio_test_locked(folio));
2498 	VM_BUG_ON(folio_test_swapbacked(folio));
2499 	__folio_set_locked(folio);
2500 	__folio_set_swapbacked(folio);
2501 	__folio_mark_uptodate(folio);
2502 
2503 	ret = -EFAULT;
2504 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2505 	if (unlikely(pgoff >= max_off))
2506 		goto out_release;
2507 
2508 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2509 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2510 	if (ret)
2511 		goto out_release;
2512 
2513 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2514 				       &folio->page, true, wp_copy);
2515 	if (ret)
2516 		goto out_delete_from_cache;
2517 
2518 	spin_lock_irq(&info->lock);
2519 	info->alloced++;
2520 	inode->i_blocks += BLOCKS_PER_PAGE;
2521 	shmem_recalc_inode(inode);
2522 	spin_unlock_irq(&info->lock);
2523 
2524 	folio_unlock(folio);
2525 	return 0;
2526 out_delete_from_cache:
2527 	filemap_remove_folio(folio);
2528 out_release:
2529 	folio_unlock(folio);
2530 	folio_put(folio);
2531 out_unacct_blocks:
2532 	shmem_inode_unacct_blocks(inode, 1);
2533 	return ret;
2534 }
2535 #endif /* CONFIG_USERFAULTFD */
2536 
2537 #ifdef CONFIG_TMPFS
2538 static const struct inode_operations shmem_symlink_inode_operations;
2539 static const struct inode_operations shmem_short_symlink_operations;
2540 
2541 static int
2542 shmem_write_begin(struct file *file, struct address_space *mapping,
2543 			loff_t pos, unsigned len,
2544 			struct page **pagep, void **fsdata)
2545 {
2546 	struct inode *inode = mapping->host;
2547 	struct shmem_inode_info *info = SHMEM_I(inode);
2548 	pgoff_t index = pos >> PAGE_SHIFT;
2549 	struct folio *folio;
2550 	int ret = 0;
2551 
2552 	/* i_rwsem is held by caller */
2553 	if (unlikely(info->seals & (F_SEAL_GROW |
2554 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2555 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2556 			return -EPERM;
2557 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2558 			return -EPERM;
2559 	}
2560 
2561 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2562 
2563 	if (ret)
2564 		return ret;
2565 
2566 	*pagep = folio_file_page(folio, index);
2567 	if (PageHWPoison(*pagep)) {
2568 		folio_unlock(folio);
2569 		folio_put(folio);
2570 		*pagep = NULL;
2571 		return -EIO;
2572 	}
2573 
2574 	return 0;
2575 }
2576 
2577 static int
2578 shmem_write_end(struct file *file, struct address_space *mapping,
2579 			loff_t pos, unsigned len, unsigned copied,
2580 			struct page *page, void *fsdata)
2581 {
2582 	struct folio *folio = page_folio(page);
2583 	struct inode *inode = mapping->host;
2584 
2585 	if (pos + copied > inode->i_size)
2586 		i_size_write(inode, pos + copied);
2587 
2588 	if (!folio_test_uptodate(folio)) {
2589 		if (copied < folio_size(folio)) {
2590 			size_t from = offset_in_folio(folio, pos);
2591 			folio_zero_segments(folio, 0, from,
2592 					from + copied, folio_size(folio));
2593 		}
2594 		folio_mark_uptodate(folio);
2595 	}
2596 	folio_mark_dirty(folio);
2597 	folio_unlock(folio);
2598 	folio_put(folio);
2599 
2600 	return copied;
2601 }
2602 
2603 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2604 {
2605 	struct file *file = iocb->ki_filp;
2606 	struct inode *inode = file_inode(file);
2607 	struct address_space *mapping = inode->i_mapping;
2608 	pgoff_t index;
2609 	unsigned long offset;
2610 	int error = 0;
2611 	ssize_t retval = 0;
2612 	loff_t *ppos = &iocb->ki_pos;
2613 
2614 	index = *ppos >> PAGE_SHIFT;
2615 	offset = *ppos & ~PAGE_MASK;
2616 
2617 	for (;;) {
2618 		struct folio *folio = NULL;
2619 		struct page *page = NULL;
2620 		pgoff_t end_index;
2621 		unsigned long nr, ret;
2622 		loff_t i_size = i_size_read(inode);
2623 
2624 		end_index = i_size >> PAGE_SHIFT;
2625 		if (index > end_index)
2626 			break;
2627 		if (index == end_index) {
2628 			nr = i_size & ~PAGE_MASK;
2629 			if (nr <= offset)
2630 				break;
2631 		}
2632 
2633 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2634 		if (error) {
2635 			if (error == -EINVAL)
2636 				error = 0;
2637 			break;
2638 		}
2639 		if (folio) {
2640 			folio_unlock(folio);
2641 
2642 			page = folio_file_page(folio, index);
2643 			if (PageHWPoison(page)) {
2644 				folio_put(folio);
2645 				error = -EIO;
2646 				break;
2647 			}
2648 		}
2649 
2650 		/*
2651 		 * We must evaluate after, since reads (unlike writes)
2652 		 * are called without i_rwsem protection against truncate
2653 		 */
2654 		nr = PAGE_SIZE;
2655 		i_size = i_size_read(inode);
2656 		end_index = i_size >> PAGE_SHIFT;
2657 		if (index == end_index) {
2658 			nr = i_size & ~PAGE_MASK;
2659 			if (nr <= offset) {
2660 				if (folio)
2661 					folio_put(folio);
2662 				break;
2663 			}
2664 		}
2665 		nr -= offset;
2666 
2667 		if (folio) {
2668 			/*
2669 			 * If users can be writing to this page using arbitrary
2670 			 * virtual addresses, take care about potential aliasing
2671 			 * before reading the page on the kernel side.
2672 			 */
2673 			if (mapping_writably_mapped(mapping))
2674 				flush_dcache_page(page);
2675 			/*
2676 			 * Mark the page accessed if we read the beginning.
2677 			 */
2678 			if (!offset)
2679 				folio_mark_accessed(folio);
2680 			/*
2681 			 * Ok, we have the page, and it's up-to-date, so
2682 			 * now we can copy it to user space...
2683 			 */
2684 			ret = copy_page_to_iter(page, offset, nr, to);
2685 			folio_put(folio);
2686 
2687 		} else if (user_backed_iter(to)) {
2688 			/*
2689 			 * Copy to user tends to be so well optimized, but
2690 			 * clear_user() not so much, that it is noticeably
2691 			 * faster to copy the zero page instead of clearing.
2692 			 */
2693 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2694 		} else {
2695 			/*
2696 			 * But submitting the same page twice in a row to
2697 			 * splice() - or others? - can result in confusion:
2698 			 * so don't attempt that optimization on pipes etc.
2699 			 */
2700 			ret = iov_iter_zero(nr, to);
2701 		}
2702 
2703 		retval += ret;
2704 		offset += ret;
2705 		index += offset >> PAGE_SHIFT;
2706 		offset &= ~PAGE_MASK;
2707 
2708 		if (!iov_iter_count(to))
2709 			break;
2710 		if (ret < nr) {
2711 			error = -EFAULT;
2712 			break;
2713 		}
2714 		cond_resched();
2715 	}
2716 
2717 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2718 	file_accessed(file);
2719 	return retval ? retval : error;
2720 }
2721 
2722 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2723 {
2724 	struct address_space *mapping = file->f_mapping;
2725 	struct inode *inode = mapping->host;
2726 
2727 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2728 		return generic_file_llseek_size(file, offset, whence,
2729 					MAX_LFS_FILESIZE, i_size_read(inode));
2730 	if (offset < 0)
2731 		return -ENXIO;
2732 
2733 	inode_lock(inode);
2734 	/* We're holding i_rwsem so we can access i_size directly */
2735 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2736 	if (offset >= 0)
2737 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2738 	inode_unlock(inode);
2739 	return offset;
2740 }
2741 
2742 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2743 							 loff_t len)
2744 {
2745 	struct inode *inode = file_inode(file);
2746 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2747 	struct shmem_inode_info *info = SHMEM_I(inode);
2748 	struct shmem_falloc shmem_falloc;
2749 	pgoff_t start, index, end, undo_fallocend;
2750 	int error;
2751 
2752 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2753 		return -EOPNOTSUPP;
2754 
2755 	inode_lock(inode);
2756 
2757 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2758 		struct address_space *mapping = file->f_mapping;
2759 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2760 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2761 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2762 
2763 		/* protected by i_rwsem */
2764 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2765 			error = -EPERM;
2766 			goto out;
2767 		}
2768 
2769 		shmem_falloc.waitq = &shmem_falloc_waitq;
2770 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2771 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2772 		spin_lock(&inode->i_lock);
2773 		inode->i_private = &shmem_falloc;
2774 		spin_unlock(&inode->i_lock);
2775 
2776 		if ((u64)unmap_end > (u64)unmap_start)
2777 			unmap_mapping_range(mapping, unmap_start,
2778 					    1 + unmap_end - unmap_start, 0);
2779 		shmem_truncate_range(inode, offset, offset + len - 1);
2780 		/* No need to unmap again: hole-punching leaves COWed pages */
2781 
2782 		spin_lock(&inode->i_lock);
2783 		inode->i_private = NULL;
2784 		wake_up_all(&shmem_falloc_waitq);
2785 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2786 		spin_unlock(&inode->i_lock);
2787 		error = 0;
2788 		goto out;
2789 	}
2790 
2791 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2792 	error = inode_newsize_ok(inode, offset + len);
2793 	if (error)
2794 		goto out;
2795 
2796 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2797 		error = -EPERM;
2798 		goto out;
2799 	}
2800 
2801 	start = offset >> PAGE_SHIFT;
2802 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2803 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2804 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2805 		error = -ENOSPC;
2806 		goto out;
2807 	}
2808 
2809 	shmem_falloc.waitq = NULL;
2810 	shmem_falloc.start = start;
2811 	shmem_falloc.next  = start;
2812 	shmem_falloc.nr_falloced = 0;
2813 	shmem_falloc.nr_unswapped = 0;
2814 	spin_lock(&inode->i_lock);
2815 	inode->i_private = &shmem_falloc;
2816 	spin_unlock(&inode->i_lock);
2817 
2818 	/*
2819 	 * info->fallocend is only relevant when huge pages might be
2820 	 * involved: to prevent split_huge_page() freeing fallocated
2821 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2822 	 */
2823 	undo_fallocend = info->fallocend;
2824 	if (info->fallocend < end)
2825 		info->fallocend = end;
2826 
2827 	for (index = start; index < end; ) {
2828 		struct folio *folio;
2829 
2830 		/*
2831 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2832 		 * been interrupted because we are using up too much memory.
2833 		 */
2834 		if (signal_pending(current))
2835 			error = -EINTR;
2836 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2837 			error = -ENOMEM;
2838 		else
2839 			error = shmem_get_folio(inode, index, &folio,
2840 						SGP_FALLOC);
2841 		if (error) {
2842 			info->fallocend = undo_fallocend;
2843 			/* Remove the !uptodate folios we added */
2844 			if (index > start) {
2845 				shmem_undo_range(inode,
2846 				    (loff_t)start << PAGE_SHIFT,
2847 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2848 			}
2849 			goto undone;
2850 		}
2851 
2852 		/*
2853 		 * Here is a more important optimization than it appears:
2854 		 * a second SGP_FALLOC on the same large folio will clear it,
2855 		 * making it uptodate and un-undoable if we fail later.
2856 		 */
2857 		index = folio_next_index(folio);
2858 		/* Beware 32-bit wraparound */
2859 		if (!index)
2860 			index--;
2861 
2862 		/*
2863 		 * Inform shmem_writepage() how far we have reached.
2864 		 * No need for lock or barrier: we have the page lock.
2865 		 */
2866 		if (!folio_test_uptodate(folio))
2867 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2868 		shmem_falloc.next = index;
2869 
2870 		/*
2871 		 * If !uptodate, leave it that way so that freeable folios
2872 		 * can be recognized if we need to rollback on error later.
2873 		 * But mark it dirty so that memory pressure will swap rather
2874 		 * than free the folios we are allocating (and SGP_CACHE folios
2875 		 * might still be clean: we now need to mark those dirty too).
2876 		 */
2877 		folio_mark_dirty(folio);
2878 		folio_unlock(folio);
2879 		folio_put(folio);
2880 		cond_resched();
2881 	}
2882 
2883 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2884 		i_size_write(inode, offset + len);
2885 undone:
2886 	spin_lock(&inode->i_lock);
2887 	inode->i_private = NULL;
2888 	spin_unlock(&inode->i_lock);
2889 out:
2890 	if (!error)
2891 		file_modified(file);
2892 	inode_unlock(inode);
2893 	return error;
2894 }
2895 
2896 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2897 {
2898 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2899 
2900 	buf->f_type = TMPFS_MAGIC;
2901 	buf->f_bsize = PAGE_SIZE;
2902 	buf->f_namelen = NAME_MAX;
2903 	if (sbinfo->max_blocks) {
2904 		buf->f_blocks = sbinfo->max_blocks;
2905 		buf->f_bavail =
2906 		buf->f_bfree  = sbinfo->max_blocks -
2907 				percpu_counter_sum(&sbinfo->used_blocks);
2908 	}
2909 	if (sbinfo->max_inodes) {
2910 		buf->f_files = sbinfo->max_inodes;
2911 		buf->f_ffree = sbinfo->free_inodes;
2912 	}
2913 	/* else leave those fields 0 like simple_statfs */
2914 
2915 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2916 
2917 	return 0;
2918 }
2919 
2920 /*
2921  * File creation. Allocate an inode, and we're done..
2922  */
2923 static int
2924 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
2925 	    struct dentry *dentry, umode_t mode, dev_t dev)
2926 {
2927 	struct inode *inode;
2928 	int error = -ENOSPC;
2929 
2930 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
2931 	if (inode) {
2932 		error = simple_acl_create(dir, inode);
2933 		if (error)
2934 			goto out_iput;
2935 		error = security_inode_init_security(inode, dir,
2936 						     &dentry->d_name,
2937 						     shmem_initxattrs, NULL);
2938 		if (error && error != -EOPNOTSUPP)
2939 			goto out_iput;
2940 
2941 		error = 0;
2942 		dir->i_size += BOGO_DIRENT_SIZE;
2943 		dir->i_ctime = dir->i_mtime = current_time(dir);
2944 		inode_inc_iversion(dir);
2945 		d_instantiate(dentry, inode);
2946 		dget(dentry); /* Extra count - pin the dentry in core */
2947 	}
2948 	return error;
2949 out_iput:
2950 	iput(inode);
2951 	return error;
2952 }
2953 
2954 static int
2955 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
2956 	      struct file *file, umode_t mode)
2957 {
2958 	struct inode *inode;
2959 	int error = -ENOSPC;
2960 
2961 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
2962 	if (inode) {
2963 		error = security_inode_init_security(inode, dir,
2964 						     NULL,
2965 						     shmem_initxattrs, NULL);
2966 		if (error && error != -EOPNOTSUPP)
2967 			goto out_iput;
2968 		error = simple_acl_create(dir, inode);
2969 		if (error)
2970 			goto out_iput;
2971 		d_tmpfile(file, inode);
2972 	}
2973 	return finish_open_simple(file, error);
2974 out_iput:
2975 	iput(inode);
2976 	return error;
2977 }
2978 
2979 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2980 		       struct dentry *dentry, umode_t mode)
2981 {
2982 	int error;
2983 
2984 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
2985 	if (error)
2986 		return error;
2987 	inc_nlink(dir);
2988 	return 0;
2989 }
2990 
2991 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
2992 			struct dentry *dentry, umode_t mode, bool excl)
2993 {
2994 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
2995 }
2996 
2997 /*
2998  * Link a file..
2999  */
3000 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3001 {
3002 	struct inode *inode = d_inode(old_dentry);
3003 	int ret = 0;
3004 
3005 	/*
3006 	 * No ordinary (disk based) filesystem counts links as inodes;
3007 	 * but each new link needs a new dentry, pinning lowmem, and
3008 	 * tmpfs dentries cannot be pruned until they are unlinked.
3009 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3010 	 * first link must skip that, to get the accounting right.
3011 	 */
3012 	if (inode->i_nlink) {
3013 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3014 		if (ret)
3015 			goto out;
3016 	}
3017 
3018 	dir->i_size += BOGO_DIRENT_SIZE;
3019 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3020 	inode_inc_iversion(dir);
3021 	inc_nlink(inode);
3022 	ihold(inode);	/* New dentry reference */
3023 	dget(dentry);		/* Extra pinning count for the created dentry */
3024 	d_instantiate(dentry, inode);
3025 out:
3026 	return ret;
3027 }
3028 
3029 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3030 {
3031 	struct inode *inode = d_inode(dentry);
3032 
3033 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3034 		shmem_free_inode(inode->i_sb);
3035 
3036 	dir->i_size -= BOGO_DIRENT_SIZE;
3037 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3038 	inode_inc_iversion(dir);
3039 	drop_nlink(inode);
3040 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3041 	return 0;
3042 }
3043 
3044 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3045 {
3046 	if (!simple_empty(dentry))
3047 		return -ENOTEMPTY;
3048 
3049 	drop_nlink(d_inode(dentry));
3050 	drop_nlink(dir);
3051 	return shmem_unlink(dir, dentry);
3052 }
3053 
3054 static int shmem_whiteout(struct mnt_idmap *idmap,
3055 			  struct inode *old_dir, struct dentry *old_dentry)
3056 {
3057 	struct dentry *whiteout;
3058 	int error;
3059 
3060 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3061 	if (!whiteout)
3062 		return -ENOMEM;
3063 
3064 	error = shmem_mknod(idmap, old_dir, whiteout,
3065 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3066 	dput(whiteout);
3067 	if (error)
3068 		return error;
3069 
3070 	/*
3071 	 * Cheat and hash the whiteout while the old dentry is still in
3072 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3073 	 *
3074 	 * d_lookup() will consistently find one of them at this point,
3075 	 * not sure which one, but that isn't even important.
3076 	 */
3077 	d_rehash(whiteout);
3078 	return 0;
3079 }
3080 
3081 /*
3082  * The VFS layer already does all the dentry stuff for rename,
3083  * we just have to decrement the usage count for the target if
3084  * it exists so that the VFS layer correctly free's it when it
3085  * gets overwritten.
3086  */
3087 static int shmem_rename2(struct mnt_idmap *idmap,
3088 			 struct inode *old_dir, struct dentry *old_dentry,
3089 			 struct inode *new_dir, struct dentry *new_dentry,
3090 			 unsigned int flags)
3091 {
3092 	struct inode *inode = d_inode(old_dentry);
3093 	int they_are_dirs = S_ISDIR(inode->i_mode);
3094 
3095 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3096 		return -EINVAL;
3097 
3098 	if (flags & RENAME_EXCHANGE)
3099 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3100 
3101 	if (!simple_empty(new_dentry))
3102 		return -ENOTEMPTY;
3103 
3104 	if (flags & RENAME_WHITEOUT) {
3105 		int error;
3106 
3107 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3108 		if (error)
3109 			return error;
3110 	}
3111 
3112 	if (d_really_is_positive(new_dentry)) {
3113 		(void) shmem_unlink(new_dir, new_dentry);
3114 		if (they_are_dirs) {
3115 			drop_nlink(d_inode(new_dentry));
3116 			drop_nlink(old_dir);
3117 		}
3118 	} else if (they_are_dirs) {
3119 		drop_nlink(old_dir);
3120 		inc_nlink(new_dir);
3121 	}
3122 
3123 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3124 	new_dir->i_size += BOGO_DIRENT_SIZE;
3125 	old_dir->i_ctime = old_dir->i_mtime =
3126 	new_dir->i_ctime = new_dir->i_mtime =
3127 	inode->i_ctime = current_time(old_dir);
3128 	inode_inc_iversion(old_dir);
3129 	inode_inc_iversion(new_dir);
3130 	return 0;
3131 }
3132 
3133 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3134 			 struct dentry *dentry, const char *symname)
3135 {
3136 	int error;
3137 	int len;
3138 	struct inode *inode;
3139 	struct folio *folio;
3140 
3141 	len = strlen(symname) + 1;
3142 	if (len > PAGE_SIZE)
3143 		return -ENAMETOOLONG;
3144 
3145 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3146 				VM_NORESERVE);
3147 	if (!inode)
3148 		return -ENOSPC;
3149 
3150 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3151 					     shmem_initxattrs, NULL);
3152 	if (error && error != -EOPNOTSUPP) {
3153 		iput(inode);
3154 		return error;
3155 	}
3156 
3157 	inode->i_size = len-1;
3158 	if (len <= SHORT_SYMLINK_LEN) {
3159 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3160 		if (!inode->i_link) {
3161 			iput(inode);
3162 			return -ENOMEM;
3163 		}
3164 		inode->i_op = &shmem_short_symlink_operations;
3165 	} else {
3166 		inode_nohighmem(inode);
3167 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3168 		if (error) {
3169 			iput(inode);
3170 			return error;
3171 		}
3172 		inode->i_mapping->a_ops = &shmem_aops;
3173 		inode->i_op = &shmem_symlink_inode_operations;
3174 		memcpy(folio_address(folio), symname, len);
3175 		folio_mark_uptodate(folio);
3176 		folio_mark_dirty(folio);
3177 		folio_unlock(folio);
3178 		folio_put(folio);
3179 	}
3180 	dir->i_size += BOGO_DIRENT_SIZE;
3181 	dir->i_ctime = dir->i_mtime = current_time(dir);
3182 	inode_inc_iversion(dir);
3183 	d_instantiate(dentry, inode);
3184 	dget(dentry);
3185 	return 0;
3186 }
3187 
3188 static void shmem_put_link(void *arg)
3189 {
3190 	folio_mark_accessed(arg);
3191 	folio_put(arg);
3192 }
3193 
3194 static const char *shmem_get_link(struct dentry *dentry,
3195 				  struct inode *inode,
3196 				  struct delayed_call *done)
3197 {
3198 	struct folio *folio = NULL;
3199 	int error;
3200 
3201 	if (!dentry) {
3202 		folio = filemap_get_folio(inode->i_mapping, 0);
3203 		if (!folio)
3204 			return ERR_PTR(-ECHILD);
3205 		if (PageHWPoison(folio_page(folio, 0)) ||
3206 		    !folio_test_uptodate(folio)) {
3207 			folio_put(folio);
3208 			return ERR_PTR(-ECHILD);
3209 		}
3210 	} else {
3211 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3212 		if (error)
3213 			return ERR_PTR(error);
3214 		if (!folio)
3215 			return ERR_PTR(-ECHILD);
3216 		if (PageHWPoison(folio_page(folio, 0))) {
3217 			folio_unlock(folio);
3218 			folio_put(folio);
3219 			return ERR_PTR(-ECHILD);
3220 		}
3221 		folio_unlock(folio);
3222 	}
3223 	set_delayed_call(done, shmem_put_link, folio);
3224 	return folio_address(folio);
3225 }
3226 
3227 #ifdef CONFIG_TMPFS_XATTR
3228 
3229 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3230 {
3231 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3232 
3233 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3234 
3235 	return 0;
3236 }
3237 
3238 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3239 			      struct dentry *dentry, struct fileattr *fa)
3240 {
3241 	struct inode *inode = d_inode(dentry);
3242 	struct shmem_inode_info *info = SHMEM_I(inode);
3243 
3244 	if (fileattr_has_fsx(fa))
3245 		return -EOPNOTSUPP;
3246 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3247 		return -EOPNOTSUPP;
3248 
3249 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3250 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3251 
3252 	shmem_set_inode_flags(inode, info->fsflags);
3253 	inode->i_ctime = current_time(inode);
3254 	inode_inc_iversion(inode);
3255 	return 0;
3256 }
3257 
3258 /*
3259  * Superblocks without xattr inode operations may get some security.* xattr
3260  * support from the LSM "for free". As soon as we have any other xattrs
3261  * like ACLs, we also need to implement the security.* handlers at
3262  * filesystem level, though.
3263  */
3264 
3265 /*
3266  * Callback for security_inode_init_security() for acquiring xattrs.
3267  */
3268 static int shmem_initxattrs(struct inode *inode,
3269 			    const struct xattr *xattr_array,
3270 			    void *fs_info)
3271 {
3272 	struct shmem_inode_info *info = SHMEM_I(inode);
3273 	const struct xattr *xattr;
3274 	struct simple_xattr *new_xattr;
3275 	size_t len;
3276 
3277 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3278 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3279 		if (!new_xattr)
3280 			return -ENOMEM;
3281 
3282 		len = strlen(xattr->name) + 1;
3283 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3284 					  GFP_KERNEL);
3285 		if (!new_xattr->name) {
3286 			kvfree(new_xattr);
3287 			return -ENOMEM;
3288 		}
3289 
3290 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3291 		       XATTR_SECURITY_PREFIX_LEN);
3292 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3293 		       xattr->name, len);
3294 
3295 		simple_xattr_add(&info->xattrs, new_xattr);
3296 	}
3297 
3298 	return 0;
3299 }
3300 
3301 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3302 				   struct dentry *unused, struct inode *inode,
3303 				   const char *name, void *buffer, size_t size)
3304 {
3305 	struct shmem_inode_info *info = SHMEM_I(inode);
3306 
3307 	name = xattr_full_name(handler, name);
3308 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3309 }
3310 
3311 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3312 				   struct mnt_idmap *idmap,
3313 				   struct dentry *unused, struct inode *inode,
3314 				   const char *name, const void *value,
3315 				   size_t size, int flags)
3316 {
3317 	struct shmem_inode_info *info = SHMEM_I(inode);
3318 	int err;
3319 
3320 	name = xattr_full_name(handler, name);
3321 	err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3322 	if (!err) {
3323 		inode->i_ctime = current_time(inode);
3324 		inode_inc_iversion(inode);
3325 	}
3326 	return err;
3327 }
3328 
3329 static const struct xattr_handler shmem_security_xattr_handler = {
3330 	.prefix = XATTR_SECURITY_PREFIX,
3331 	.get = shmem_xattr_handler_get,
3332 	.set = shmem_xattr_handler_set,
3333 };
3334 
3335 static const struct xattr_handler shmem_trusted_xattr_handler = {
3336 	.prefix = XATTR_TRUSTED_PREFIX,
3337 	.get = shmem_xattr_handler_get,
3338 	.set = shmem_xattr_handler_set,
3339 };
3340 
3341 static const struct xattr_handler *shmem_xattr_handlers[] = {
3342 #ifdef CONFIG_TMPFS_POSIX_ACL
3343 	&posix_acl_access_xattr_handler,
3344 	&posix_acl_default_xattr_handler,
3345 #endif
3346 	&shmem_security_xattr_handler,
3347 	&shmem_trusted_xattr_handler,
3348 	NULL
3349 };
3350 
3351 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3352 {
3353 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3354 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3355 }
3356 #endif /* CONFIG_TMPFS_XATTR */
3357 
3358 static const struct inode_operations shmem_short_symlink_operations = {
3359 	.getattr	= shmem_getattr,
3360 	.get_link	= simple_get_link,
3361 #ifdef CONFIG_TMPFS_XATTR
3362 	.listxattr	= shmem_listxattr,
3363 #endif
3364 };
3365 
3366 static const struct inode_operations shmem_symlink_inode_operations = {
3367 	.getattr	= shmem_getattr,
3368 	.get_link	= shmem_get_link,
3369 #ifdef CONFIG_TMPFS_XATTR
3370 	.listxattr	= shmem_listxattr,
3371 #endif
3372 };
3373 
3374 static struct dentry *shmem_get_parent(struct dentry *child)
3375 {
3376 	return ERR_PTR(-ESTALE);
3377 }
3378 
3379 static int shmem_match(struct inode *ino, void *vfh)
3380 {
3381 	__u32 *fh = vfh;
3382 	__u64 inum = fh[2];
3383 	inum = (inum << 32) | fh[1];
3384 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3385 }
3386 
3387 /* Find any alias of inode, but prefer a hashed alias */
3388 static struct dentry *shmem_find_alias(struct inode *inode)
3389 {
3390 	struct dentry *alias = d_find_alias(inode);
3391 
3392 	return alias ?: d_find_any_alias(inode);
3393 }
3394 
3395 
3396 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3397 		struct fid *fid, int fh_len, int fh_type)
3398 {
3399 	struct inode *inode;
3400 	struct dentry *dentry = NULL;
3401 	u64 inum;
3402 
3403 	if (fh_len < 3)
3404 		return NULL;
3405 
3406 	inum = fid->raw[2];
3407 	inum = (inum << 32) | fid->raw[1];
3408 
3409 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3410 			shmem_match, fid->raw);
3411 	if (inode) {
3412 		dentry = shmem_find_alias(inode);
3413 		iput(inode);
3414 	}
3415 
3416 	return dentry;
3417 }
3418 
3419 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3420 				struct inode *parent)
3421 {
3422 	if (*len < 3) {
3423 		*len = 3;
3424 		return FILEID_INVALID;
3425 	}
3426 
3427 	if (inode_unhashed(inode)) {
3428 		/* Unfortunately insert_inode_hash is not idempotent,
3429 		 * so as we hash inodes here rather than at creation
3430 		 * time, we need a lock to ensure we only try
3431 		 * to do it once
3432 		 */
3433 		static DEFINE_SPINLOCK(lock);
3434 		spin_lock(&lock);
3435 		if (inode_unhashed(inode))
3436 			__insert_inode_hash(inode,
3437 					    inode->i_ino + inode->i_generation);
3438 		spin_unlock(&lock);
3439 	}
3440 
3441 	fh[0] = inode->i_generation;
3442 	fh[1] = inode->i_ino;
3443 	fh[2] = ((__u64)inode->i_ino) >> 32;
3444 
3445 	*len = 3;
3446 	return 1;
3447 }
3448 
3449 static const struct export_operations shmem_export_ops = {
3450 	.get_parent     = shmem_get_parent,
3451 	.encode_fh      = shmem_encode_fh,
3452 	.fh_to_dentry	= shmem_fh_to_dentry,
3453 };
3454 
3455 enum shmem_param {
3456 	Opt_gid,
3457 	Opt_huge,
3458 	Opt_mode,
3459 	Opt_mpol,
3460 	Opt_nr_blocks,
3461 	Opt_nr_inodes,
3462 	Opt_size,
3463 	Opt_uid,
3464 	Opt_inode32,
3465 	Opt_inode64,
3466 };
3467 
3468 static const struct constant_table shmem_param_enums_huge[] = {
3469 	{"never",	SHMEM_HUGE_NEVER },
3470 	{"always",	SHMEM_HUGE_ALWAYS },
3471 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3472 	{"advise",	SHMEM_HUGE_ADVISE },
3473 	{}
3474 };
3475 
3476 const struct fs_parameter_spec shmem_fs_parameters[] = {
3477 	fsparam_u32   ("gid",		Opt_gid),
3478 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3479 	fsparam_u32oct("mode",		Opt_mode),
3480 	fsparam_string("mpol",		Opt_mpol),
3481 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3482 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3483 	fsparam_string("size",		Opt_size),
3484 	fsparam_u32   ("uid",		Opt_uid),
3485 	fsparam_flag  ("inode32",	Opt_inode32),
3486 	fsparam_flag  ("inode64",	Opt_inode64),
3487 	{}
3488 };
3489 
3490 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3491 {
3492 	struct shmem_options *ctx = fc->fs_private;
3493 	struct fs_parse_result result;
3494 	unsigned long long size;
3495 	char *rest;
3496 	int opt;
3497 
3498 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3499 	if (opt < 0)
3500 		return opt;
3501 
3502 	switch (opt) {
3503 	case Opt_size:
3504 		size = memparse(param->string, &rest);
3505 		if (*rest == '%') {
3506 			size <<= PAGE_SHIFT;
3507 			size *= totalram_pages();
3508 			do_div(size, 100);
3509 			rest++;
3510 		}
3511 		if (*rest)
3512 			goto bad_value;
3513 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3514 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3515 		break;
3516 	case Opt_nr_blocks:
3517 		ctx->blocks = memparse(param->string, &rest);
3518 		if (*rest || ctx->blocks > S64_MAX)
3519 			goto bad_value;
3520 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3521 		break;
3522 	case Opt_nr_inodes:
3523 		ctx->inodes = memparse(param->string, &rest);
3524 		if (*rest)
3525 			goto bad_value;
3526 		ctx->seen |= SHMEM_SEEN_INODES;
3527 		break;
3528 	case Opt_mode:
3529 		ctx->mode = result.uint_32 & 07777;
3530 		break;
3531 	case Opt_uid:
3532 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3533 		if (!uid_valid(ctx->uid))
3534 			goto bad_value;
3535 		break;
3536 	case Opt_gid:
3537 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3538 		if (!gid_valid(ctx->gid))
3539 			goto bad_value;
3540 		break;
3541 	case Opt_huge:
3542 		ctx->huge = result.uint_32;
3543 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3544 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3545 		      has_transparent_hugepage()))
3546 			goto unsupported_parameter;
3547 		ctx->seen |= SHMEM_SEEN_HUGE;
3548 		break;
3549 	case Opt_mpol:
3550 		if (IS_ENABLED(CONFIG_NUMA)) {
3551 			mpol_put(ctx->mpol);
3552 			ctx->mpol = NULL;
3553 			if (mpol_parse_str(param->string, &ctx->mpol))
3554 				goto bad_value;
3555 			break;
3556 		}
3557 		goto unsupported_parameter;
3558 	case Opt_inode32:
3559 		ctx->full_inums = false;
3560 		ctx->seen |= SHMEM_SEEN_INUMS;
3561 		break;
3562 	case Opt_inode64:
3563 		if (sizeof(ino_t) < 8) {
3564 			return invalfc(fc,
3565 				       "Cannot use inode64 with <64bit inums in kernel\n");
3566 		}
3567 		ctx->full_inums = true;
3568 		ctx->seen |= SHMEM_SEEN_INUMS;
3569 		break;
3570 	}
3571 	return 0;
3572 
3573 unsupported_parameter:
3574 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3575 bad_value:
3576 	return invalfc(fc, "Bad value for '%s'", param->key);
3577 }
3578 
3579 static int shmem_parse_options(struct fs_context *fc, void *data)
3580 {
3581 	char *options = data;
3582 
3583 	if (options) {
3584 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3585 		if (err)
3586 			return err;
3587 	}
3588 
3589 	while (options != NULL) {
3590 		char *this_char = options;
3591 		for (;;) {
3592 			/*
3593 			 * NUL-terminate this option: unfortunately,
3594 			 * mount options form a comma-separated list,
3595 			 * but mpol's nodelist may also contain commas.
3596 			 */
3597 			options = strchr(options, ',');
3598 			if (options == NULL)
3599 				break;
3600 			options++;
3601 			if (!isdigit(*options)) {
3602 				options[-1] = '\0';
3603 				break;
3604 			}
3605 		}
3606 		if (*this_char) {
3607 			char *value = strchr(this_char, '=');
3608 			size_t len = 0;
3609 			int err;
3610 
3611 			if (value) {
3612 				*value++ = '\0';
3613 				len = strlen(value);
3614 			}
3615 			err = vfs_parse_fs_string(fc, this_char, value, len);
3616 			if (err < 0)
3617 				return err;
3618 		}
3619 	}
3620 	return 0;
3621 }
3622 
3623 /*
3624  * Reconfigure a shmem filesystem.
3625  *
3626  * Note that we disallow change from limited->unlimited blocks/inodes while any
3627  * are in use; but we must separately disallow unlimited->limited, because in
3628  * that case we have no record of how much is already in use.
3629  */
3630 static int shmem_reconfigure(struct fs_context *fc)
3631 {
3632 	struct shmem_options *ctx = fc->fs_private;
3633 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3634 	unsigned long inodes;
3635 	struct mempolicy *mpol = NULL;
3636 	const char *err;
3637 
3638 	raw_spin_lock(&sbinfo->stat_lock);
3639 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3640 
3641 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3642 		if (!sbinfo->max_blocks) {
3643 			err = "Cannot retroactively limit size";
3644 			goto out;
3645 		}
3646 		if (percpu_counter_compare(&sbinfo->used_blocks,
3647 					   ctx->blocks) > 0) {
3648 			err = "Too small a size for current use";
3649 			goto out;
3650 		}
3651 	}
3652 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3653 		if (!sbinfo->max_inodes) {
3654 			err = "Cannot retroactively limit inodes";
3655 			goto out;
3656 		}
3657 		if (ctx->inodes < inodes) {
3658 			err = "Too few inodes for current use";
3659 			goto out;
3660 		}
3661 	}
3662 
3663 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3664 	    sbinfo->next_ino > UINT_MAX) {
3665 		err = "Current inum too high to switch to 32-bit inums";
3666 		goto out;
3667 	}
3668 
3669 	if (ctx->seen & SHMEM_SEEN_HUGE)
3670 		sbinfo->huge = ctx->huge;
3671 	if (ctx->seen & SHMEM_SEEN_INUMS)
3672 		sbinfo->full_inums = ctx->full_inums;
3673 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3674 		sbinfo->max_blocks  = ctx->blocks;
3675 	if (ctx->seen & SHMEM_SEEN_INODES) {
3676 		sbinfo->max_inodes  = ctx->inodes;
3677 		sbinfo->free_inodes = ctx->inodes - inodes;
3678 	}
3679 
3680 	/*
3681 	 * Preserve previous mempolicy unless mpol remount option was specified.
3682 	 */
3683 	if (ctx->mpol) {
3684 		mpol = sbinfo->mpol;
3685 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3686 		ctx->mpol = NULL;
3687 	}
3688 	raw_spin_unlock(&sbinfo->stat_lock);
3689 	mpol_put(mpol);
3690 	return 0;
3691 out:
3692 	raw_spin_unlock(&sbinfo->stat_lock);
3693 	return invalfc(fc, "%s", err);
3694 }
3695 
3696 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3697 {
3698 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3699 
3700 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3701 		seq_printf(seq, ",size=%luk",
3702 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3703 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3704 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3705 	if (sbinfo->mode != (0777 | S_ISVTX))
3706 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3707 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3708 		seq_printf(seq, ",uid=%u",
3709 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3710 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3711 		seq_printf(seq, ",gid=%u",
3712 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3713 
3714 	/*
3715 	 * Showing inode{64,32} might be useful even if it's the system default,
3716 	 * since then people don't have to resort to checking both here and
3717 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3718 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3719 	 *
3720 	 * We hide it when inode64 isn't the default and we are using 32-bit
3721 	 * inodes, since that probably just means the feature isn't even under
3722 	 * consideration.
3723 	 *
3724 	 * As such:
3725 	 *
3726 	 *                     +-----------------+-----------------+
3727 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3728 	 *  +------------------+-----------------+-----------------+
3729 	 *  | full_inums=true  | show            | show            |
3730 	 *  | full_inums=false | show            | hide            |
3731 	 *  +------------------+-----------------+-----------------+
3732 	 *
3733 	 */
3734 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3735 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3736 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3737 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3738 	if (sbinfo->huge)
3739 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3740 #endif
3741 	shmem_show_mpol(seq, sbinfo->mpol);
3742 	return 0;
3743 }
3744 
3745 #endif /* CONFIG_TMPFS */
3746 
3747 static void shmem_put_super(struct super_block *sb)
3748 {
3749 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3750 
3751 	free_percpu(sbinfo->ino_batch);
3752 	percpu_counter_destroy(&sbinfo->used_blocks);
3753 	mpol_put(sbinfo->mpol);
3754 	kfree(sbinfo);
3755 	sb->s_fs_info = NULL;
3756 }
3757 
3758 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3759 {
3760 	struct shmem_options *ctx = fc->fs_private;
3761 	struct inode *inode;
3762 	struct shmem_sb_info *sbinfo;
3763 
3764 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3765 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3766 				L1_CACHE_BYTES), GFP_KERNEL);
3767 	if (!sbinfo)
3768 		return -ENOMEM;
3769 
3770 	sb->s_fs_info = sbinfo;
3771 
3772 #ifdef CONFIG_TMPFS
3773 	/*
3774 	 * Per default we only allow half of the physical ram per
3775 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3776 	 * but the internal instance is left unlimited.
3777 	 */
3778 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3779 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3780 			ctx->blocks = shmem_default_max_blocks();
3781 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3782 			ctx->inodes = shmem_default_max_inodes();
3783 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3784 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3785 	} else {
3786 		sb->s_flags |= SB_NOUSER;
3787 	}
3788 	sb->s_export_op = &shmem_export_ops;
3789 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
3790 #else
3791 	sb->s_flags |= SB_NOUSER;
3792 #endif
3793 	sbinfo->max_blocks = ctx->blocks;
3794 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3795 	if (sb->s_flags & SB_KERNMOUNT) {
3796 		sbinfo->ino_batch = alloc_percpu(ino_t);
3797 		if (!sbinfo->ino_batch)
3798 			goto failed;
3799 	}
3800 	sbinfo->uid = ctx->uid;
3801 	sbinfo->gid = ctx->gid;
3802 	sbinfo->full_inums = ctx->full_inums;
3803 	sbinfo->mode = ctx->mode;
3804 	sbinfo->huge = ctx->huge;
3805 	sbinfo->mpol = ctx->mpol;
3806 	ctx->mpol = NULL;
3807 
3808 	raw_spin_lock_init(&sbinfo->stat_lock);
3809 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3810 		goto failed;
3811 	spin_lock_init(&sbinfo->shrinklist_lock);
3812 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3813 
3814 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3815 	sb->s_blocksize = PAGE_SIZE;
3816 	sb->s_blocksize_bits = PAGE_SHIFT;
3817 	sb->s_magic = TMPFS_MAGIC;
3818 	sb->s_op = &shmem_ops;
3819 	sb->s_time_gran = 1;
3820 #ifdef CONFIG_TMPFS_XATTR
3821 	sb->s_xattr = shmem_xattr_handlers;
3822 #endif
3823 #ifdef CONFIG_TMPFS_POSIX_ACL
3824 	sb->s_flags |= SB_POSIXACL;
3825 #endif
3826 	uuid_gen(&sb->s_uuid);
3827 
3828 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0,
3829 				VM_NORESERVE);
3830 	if (!inode)
3831 		goto failed;
3832 	inode->i_uid = sbinfo->uid;
3833 	inode->i_gid = sbinfo->gid;
3834 	sb->s_root = d_make_root(inode);
3835 	if (!sb->s_root)
3836 		goto failed;
3837 	return 0;
3838 
3839 failed:
3840 	shmem_put_super(sb);
3841 	return -ENOMEM;
3842 }
3843 
3844 static int shmem_get_tree(struct fs_context *fc)
3845 {
3846 	return get_tree_nodev(fc, shmem_fill_super);
3847 }
3848 
3849 static void shmem_free_fc(struct fs_context *fc)
3850 {
3851 	struct shmem_options *ctx = fc->fs_private;
3852 
3853 	if (ctx) {
3854 		mpol_put(ctx->mpol);
3855 		kfree(ctx);
3856 	}
3857 }
3858 
3859 static const struct fs_context_operations shmem_fs_context_ops = {
3860 	.free			= shmem_free_fc,
3861 	.get_tree		= shmem_get_tree,
3862 #ifdef CONFIG_TMPFS
3863 	.parse_monolithic	= shmem_parse_options,
3864 	.parse_param		= shmem_parse_one,
3865 	.reconfigure		= shmem_reconfigure,
3866 #endif
3867 };
3868 
3869 static struct kmem_cache *shmem_inode_cachep;
3870 
3871 static struct inode *shmem_alloc_inode(struct super_block *sb)
3872 {
3873 	struct shmem_inode_info *info;
3874 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3875 	if (!info)
3876 		return NULL;
3877 	return &info->vfs_inode;
3878 }
3879 
3880 static void shmem_free_in_core_inode(struct inode *inode)
3881 {
3882 	if (S_ISLNK(inode->i_mode))
3883 		kfree(inode->i_link);
3884 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3885 }
3886 
3887 static void shmem_destroy_inode(struct inode *inode)
3888 {
3889 	if (S_ISREG(inode->i_mode))
3890 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3891 }
3892 
3893 static void shmem_init_inode(void *foo)
3894 {
3895 	struct shmem_inode_info *info = foo;
3896 	inode_init_once(&info->vfs_inode);
3897 }
3898 
3899 static void shmem_init_inodecache(void)
3900 {
3901 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3902 				sizeof(struct shmem_inode_info),
3903 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3904 }
3905 
3906 static void shmem_destroy_inodecache(void)
3907 {
3908 	kmem_cache_destroy(shmem_inode_cachep);
3909 }
3910 
3911 /* Keep the page in page cache instead of truncating it */
3912 static int shmem_error_remove_page(struct address_space *mapping,
3913 				   struct page *page)
3914 {
3915 	return 0;
3916 }
3917 
3918 const struct address_space_operations shmem_aops = {
3919 	.writepage	= shmem_writepage,
3920 	.dirty_folio	= noop_dirty_folio,
3921 #ifdef CONFIG_TMPFS
3922 	.write_begin	= shmem_write_begin,
3923 	.write_end	= shmem_write_end,
3924 #endif
3925 #ifdef CONFIG_MIGRATION
3926 	.migrate_folio	= migrate_folio,
3927 #endif
3928 	.error_remove_page = shmem_error_remove_page,
3929 };
3930 EXPORT_SYMBOL(shmem_aops);
3931 
3932 static const struct file_operations shmem_file_operations = {
3933 	.mmap		= shmem_mmap,
3934 	.open		= generic_file_open,
3935 	.get_unmapped_area = shmem_get_unmapped_area,
3936 #ifdef CONFIG_TMPFS
3937 	.llseek		= shmem_file_llseek,
3938 	.read_iter	= shmem_file_read_iter,
3939 	.write_iter	= generic_file_write_iter,
3940 	.fsync		= noop_fsync,
3941 	.splice_read	= generic_file_splice_read,
3942 	.splice_write	= iter_file_splice_write,
3943 	.fallocate	= shmem_fallocate,
3944 #endif
3945 };
3946 
3947 static const struct inode_operations shmem_inode_operations = {
3948 	.getattr	= shmem_getattr,
3949 	.setattr	= shmem_setattr,
3950 #ifdef CONFIG_TMPFS_XATTR
3951 	.listxattr	= shmem_listxattr,
3952 	.set_acl	= simple_set_acl,
3953 	.fileattr_get	= shmem_fileattr_get,
3954 	.fileattr_set	= shmem_fileattr_set,
3955 #endif
3956 };
3957 
3958 static const struct inode_operations shmem_dir_inode_operations = {
3959 #ifdef CONFIG_TMPFS
3960 	.getattr	= shmem_getattr,
3961 	.create		= shmem_create,
3962 	.lookup		= simple_lookup,
3963 	.link		= shmem_link,
3964 	.unlink		= shmem_unlink,
3965 	.symlink	= shmem_symlink,
3966 	.mkdir		= shmem_mkdir,
3967 	.rmdir		= shmem_rmdir,
3968 	.mknod		= shmem_mknod,
3969 	.rename		= shmem_rename2,
3970 	.tmpfile	= shmem_tmpfile,
3971 #endif
3972 #ifdef CONFIG_TMPFS_XATTR
3973 	.listxattr	= shmem_listxattr,
3974 	.fileattr_get	= shmem_fileattr_get,
3975 	.fileattr_set	= shmem_fileattr_set,
3976 #endif
3977 #ifdef CONFIG_TMPFS_POSIX_ACL
3978 	.setattr	= shmem_setattr,
3979 	.set_acl	= simple_set_acl,
3980 #endif
3981 };
3982 
3983 static const struct inode_operations shmem_special_inode_operations = {
3984 	.getattr	= shmem_getattr,
3985 #ifdef CONFIG_TMPFS_XATTR
3986 	.listxattr	= shmem_listxattr,
3987 #endif
3988 #ifdef CONFIG_TMPFS_POSIX_ACL
3989 	.setattr	= shmem_setattr,
3990 	.set_acl	= simple_set_acl,
3991 #endif
3992 };
3993 
3994 static const struct super_operations shmem_ops = {
3995 	.alloc_inode	= shmem_alloc_inode,
3996 	.free_inode	= shmem_free_in_core_inode,
3997 	.destroy_inode	= shmem_destroy_inode,
3998 #ifdef CONFIG_TMPFS
3999 	.statfs		= shmem_statfs,
4000 	.show_options	= shmem_show_options,
4001 #endif
4002 	.evict_inode	= shmem_evict_inode,
4003 	.drop_inode	= generic_delete_inode,
4004 	.put_super	= shmem_put_super,
4005 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4006 	.nr_cached_objects	= shmem_unused_huge_count,
4007 	.free_cached_objects	= shmem_unused_huge_scan,
4008 #endif
4009 };
4010 
4011 static const struct vm_operations_struct shmem_vm_ops = {
4012 	.fault		= shmem_fault,
4013 	.map_pages	= filemap_map_pages,
4014 #ifdef CONFIG_NUMA
4015 	.set_policy     = shmem_set_policy,
4016 	.get_policy     = shmem_get_policy,
4017 #endif
4018 };
4019 
4020 static const struct vm_operations_struct shmem_anon_vm_ops = {
4021 	.fault		= shmem_fault,
4022 	.map_pages	= filemap_map_pages,
4023 #ifdef CONFIG_NUMA
4024 	.set_policy     = shmem_set_policy,
4025 	.get_policy     = shmem_get_policy,
4026 #endif
4027 };
4028 
4029 int shmem_init_fs_context(struct fs_context *fc)
4030 {
4031 	struct shmem_options *ctx;
4032 
4033 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4034 	if (!ctx)
4035 		return -ENOMEM;
4036 
4037 	ctx->mode = 0777 | S_ISVTX;
4038 	ctx->uid = current_fsuid();
4039 	ctx->gid = current_fsgid();
4040 
4041 	fc->fs_private = ctx;
4042 	fc->ops = &shmem_fs_context_ops;
4043 	return 0;
4044 }
4045 
4046 static struct file_system_type shmem_fs_type = {
4047 	.owner		= THIS_MODULE,
4048 	.name		= "tmpfs",
4049 	.init_fs_context = shmem_init_fs_context,
4050 #ifdef CONFIG_TMPFS
4051 	.parameters	= shmem_fs_parameters,
4052 #endif
4053 	.kill_sb	= kill_litter_super,
4054 #ifdef CONFIG_SHMEM
4055 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4056 #else
4057 	.fs_flags	= FS_USERNS_MOUNT,
4058 #endif
4059 };
4060 
4061 void __init shmem_init(void)
4062 {
4063 	int error;
4064 
4065 	shmem_init_inodecache();
4066 
4067 	error = register_filesystem(&shmem_fs_type);
4068 	if (error) {
4069 		pr_err("Could not register tmpfs\n");
4070 		goto out2;
4071 	}
4072 
4073 	shm_mnt = kern_mount(&shmem_fs_type);
4074 	if (IS_ERR(shm_mnt)) {
4075 		error = PTR_ERR(shm_mnt);
4076 		pr_err("Could not kern_mount tmpfs\n");
4077 		goto out1;
4078 	}
4079 
4080 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4081 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4082 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4083 	else
4084 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4085 #endif
4086 	return;
4087 
4088 out1:
4089 	unregister_filesystem(&shmem_fs_type);
4090 out2:
4091 	shmem_destroy_inodecache();
4092 	shm_mnt = ERR_PTR(error);
4093 }
4094 
4095 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4096 static ssize_t shmem_enabled_show(struct kobject *kobj,
4097 				  struct kobj_attribute *attr, char *buf)
4098 {
4099 	static const int values[] = {
4100 		SHMEM_HUGE_ALWAYS,
4101 		SHMEM_HUGE_WITHIN_SIZE,
4102 		SHMEM_HUGE_ADVISE,
4103 		SHMEM_HUGE_NEVER,
4104 		SHMEM_HUGE_DENY,
4105 		SHMEM_HUGE_FORCE,
4106 	};
4107 	int len = 0;
4108 	int i;
4109 
4110 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4111 		len += sysfs_emit_at(buf, len,
4112 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4113 				     i ? " " : "",
4114 				     shmem_format_huge(values[i]));
4115 	}
4116 
4117 	len += sysfs_emit_at(buf, len, "\n");
4118 
4119 	return len;
4120 }
4121 
4122 static ssize_t shmem_enabled_store(struct kobject *kobj,
4123 		struct kobj_attribute *attr, const char *buf, size_t count)
4124 {
4125 	char tmp[16];
4126 	int huge;
4127 
4128 	if (count + 1 > sizeof(tmp))
4129 		return -EINVAL;
4130 	memcpy(tmp, buf, count);
4131 	tmp[count] = '\0';
4132 	if (count && tmp[count - 1] == '\n')
4133 		tmp[count - 1] = '\0';
4134 
4135 	huge = shmem_parse_huge(tmp);
4136 	if (huge == -EINVAL)
4137 		return -EINVAL;
4138 	if (!has_transparent_hugepage() &&
4139 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4140 		return -EINVAL;
4141 
4142 	shmem_huge = huge;
4143 	if (shmem_huge > SHMEM_HUGE_DENY)
4144 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4145 	return count;
4146 }
4147 
4148 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4149 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4150 
4151 #else /* !CONFIG_SHMEM */
4152 
4153 /*
4154  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4155  *
4156  * This is intended for small system where the benefits of the full
4157  * shmem code (swap-backed and resource-limited) are outweighed by
4158  * their complexity. On systems without swap this code should be
4159  * effectively equivalent, but much lighter weight.
4160  */
4161 
4162 static struct file_system_type shmem_fs_type = {
4163 	.name		= "tmpfs",
4164 	.init_fs_context = ramfs_init_fs_context,
4165 	.parameters	= ramfs_fs_parameters,
4166 	.kill_sb	= kill_litter_super,
4167 	.fs_flags	= FS_USERNS_MOUNT,
4168 };
4169 
4170 void __init shmem_init(void)
4171 {
4172 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4173 
4174 	shm_mnt = kern_mount(&shmem_fs_type);
4175 	BUG_ON(IS_ERR(shm_mnt));
4176 }
4177 
4178 int shmem_unuse(unsigned int type)
4179 {
4180 	return 0;
4181 }
4182 
4183 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4184 {
4185 	return 0;
4186 }
4187 
4188 void shmem_unlock_mapping(struct address_space *mapping)
4189 {
4190 }
4191 
4192 #ifdef CONFIG_MMU
4193 unsigned long shmem_get_unmapped_area(struct file *file,
4194 				      unsigned long addr, unsigned long len,
4195 				      unsigned long pgoff, unsigned long flags)
4196 {
4197 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4198 }
4199 #endif
4200 
4201 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4202 {
4203 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4204 }
4205 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4206 
4207 #define shmem_vm_ops				generic_file_vm_ops
4208 #define shmem_anon_vm_ops			generic_file_vm_ops
4209 #define shmem_file_operations			ramfs_file_operations
4210 #define shmem_get_inode(idmap, sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4211 #define shmem_acct_size(flags, size)		0
4212 #define shmem_unacct_size(flags, size)		do {} while (0)
4213 
4214 #endif /* CONFIG_SHMEM */
4215 
4216 /* common code */
4217 
4218 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4219 				       unsigned long flags, unsigned int i_flags)
4220 {
4221 	struct inode *inode;
4222 	struct file *res;
4223 
4224 	if (IS_ERR(mnt))
4225 		return ERR_CAST(mnt);
4226 
4227 	if (size < 0 || size > MAX_LFS_FILESIZE)
4228 		return ERR_PTR(-EINVAL);
4229 
4230 	if (shmem_acct_size(flags, size))
4231 		return ERR_PTR(-ENOMEM);
4232 
4233 	if (is_idmapped_mnt(mnt))
4234 		return ERR_PTR(-EINVAL);
4235 
4236 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4237 				S_IFREG | S_IRWXUGO, 0, flags);
4238 	if (unlikely(!inode)) {
4239 		shmem_unacct_size(flags, size);
4240 		return ERR_PTR(-ENOSPC);
4241 	}
4242 	inode->i_flags |= i_flags;
4243 	inode->i_size = size;
4244 	clear_nlink(inode);	/* It is unlinked */
4245 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4246 	if (!IS_ERR(res))
4247 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4248 				&shmem_file_operations);
4249 	if (IS_ERR(res))
4250 		iput(inode);
4251 	return res;
4252 }
4253 
4254 /**
4255  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4256  * 	kernel internal.  There will be NO LSM permission checks against the
4257  * 	underlying inode.  So users of this interface must do LSM checks at a
4258  *	higher layer.  The users are the big_key and shm implementations.  LSM
4259  *	checks are provided at the key or shm level rather than the inode.
4260  * @name: name for dentry (to be seen in /proc/<pid>/maps
4261  * @size: size to be set for the file
4262  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4263  */
4264 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4265 {
4266 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4267 }
4268 
4269 /**
4270  * shmem_file_setup - get an unlinked file living in tmpfs
4271  * @name: name for dentry (to be seen in /proc/<pid>/maps
4272  * @size: size to be set for the file
4273  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4274  */
4275 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4276 {
4277 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4278 }
4279 EXPORT_SYMBOL_GPL(shmem_file_setup);
4280 
4281 /**
4282  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4283  * @mnt: the tmpfs mount where the file will be created
4284  * @name: name for dentry (to be seen in /proc/<pid>/maps
4285  * @size: size to be set for the file
4286  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4287  */
4288 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4289 				       loff_t size, unsigned long flags)
4290 {
4291 	return __shmem_file_setup(mnt, name, size, flags, 0);
4292 }
4293 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4294 
4295 /**
4296  * shmem_zero_setup - setup a shared anonymous mapping
4297  * @vma: the vma to be mmapped is prepared by do_mmap
4298  */
4299 int shmem_zero_setup(struct vm_area_struct *vma)
4300 {
4301 	struct file *file;
4302 	loff_t size = vma->vm_end - vma->vm_start;
4303 
4304 	/*
4305 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4306 	 * between XFS directory reading and selinux: since this file is only
4307 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4308 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4309 	 */
4310 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4311 	if (IS_ERR(file))
4312 		return PTR_ERR(file);
4313 
4314 	if (vma->vm_file)
4315 		fput(vma->vm_file);
4316 	vma->vm_file = file;
4317 	vma->vm_ops = &shmem_anon_vm_ops;
4318 
4319 	return 0;
4320 }
4321 
4322 /**
4323  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4324  * @mapping:	the folio's address_space
4325  * @index:	the folio index
4326  * @gfp:	the page allocator flags to use if allocating
4327  *
4328  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4329  * with any new page allocations done using the specified allocation flags.
4330  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4331  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4332  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4333  *
4334  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4335  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4336  */
4337 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4338 		pgoff_t index, gfp_t gfp)
4339 {
4340 #ifdef CONFIG_SHMEM
4341 	struct inode *inode = mapping->host;
4342 	struct folio *folio;
4343 	int error;
4344 
4345 	BUG_ON(!shmem_mapping(mapping));
4346 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4347 				  gfp, NULL, NULL, NULL);
4348 	if (error)
4349 		return ERR_PTR(error);
4350 
4351 	folio_unlock(folio);
4352 	return folio;
4353 #else
4354 	/*
4355 	 * The tiny !SHMEM case uses ramfs without swap
4356 	 */
4357 	return mapping_read_folio_gfp(mapping, index, gfp);
4358 #endif
4359 }
4360 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4361 
4362 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4363 					 pgoff_t index, gfp_t gfp)
4364 {
4365 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4366 	struct page *page;
4367 
4368 	if (IS_ERR(folio))
4369 		return &folio->page;
4370 
4371 	page = folio_file_page(folio, index);
4372 	if (PageHWPoison(page)) {
4373 		folio_put(folio);
4374 		return ERR_PTR(-EIO);
4375 	}
4376 
4377 	return page;
4378 }
4379 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4380