xref: /openbmc/linux/mm/shmem.c (revision 1f370a23f2a3101886953add4bd7f529e3bba016)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * This file is released under the GPL.
18  */
19 
20 /*
21  * This virtual memory filesystem is heavily based on the ramfs. It
22  * extends ramfs by the ability to use swap and honor resource limits
23  * which makes it a completely usable filesystem.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/generic_acl.h>
31 #include <linux/mm.h>
32 #include <linux/mman.h>
33 #include <linux/file.h>
34 #include <linux/swap.h>
35 #include <linux/pagemap.h>
36 #include <linux/string.h>
37 #include <linux/slab.h>
38 #include <linux/backing-dev.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/mount.h>
41 #include <linux/writeback.h>
42 #include <linux/vfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/security.h>
45 #include <linux/swapops.h>
46 #include <linux/mempolicy.h>
47 #include <linux/namei.h>
48 #include <linux/ctype.h>
49 #include <linux/migrate.h>
50 #include <linux/highmem.h>
51 #include <linux/backing-dev.h>
52 
53 #include <asm/uaccess.h>
54 #include <asm/div64.h>
55 #include <asm/pgtable.h>
56 
57 /* This magic number is used in glibc for posix shared memory */
58 #define TMPFS_MAGIC	0x01021994
59 
60 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
63 
64 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
66 
67 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
68 
69 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70 #define SHMEM_PAGEIN	 VM_READ
71 #define SHMEM_TRUNCATE	 VM_WRITE
72 
73 /* Definition to limit shmem_truncate's steps between cond_rescheds */
74 #define LATENCY_LIMIT	 64
75 
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78 
79 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80 enum sgp_type {
81 	SGP_QUICK,	/* don't try more than file page cache lookup */
82 	SGP_READ,	/* don't exceed i_size, don't allocate page */
83 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
84 	SGP_WRITE,	/* may exceed i_size, may allocate page */
85 };
86 
87 static int shmem_getpage(struct inode *inode, unsigned long idx,
88 			 struct page **pagep, enum sgp_type sgp, int *type);
89 
90 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
91 {
92 	/*
93 	 * The above definition of ENTRIES_PER_PAGE, and the use of
94 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
95 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
96 	 */
97 	return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT);
98 }
99 
100 static inline void shmem_dir_free(struct page *page)
101 {
102 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
103 }
104 
105 static struct page **shmem_dir_map(struct page *page)
106 {
107 	return (struct page **)kmap_atomic(page, KM_USER0);
108 }
109 
110 static inline void shmem_dir_unmap(struct page **dir)
111 {
112 	kunmap_atomic(dir, KM_USER0);
113 }
114 
115 static swp_entry_t *shmem_swp_map(struct page *page)
116 {
117 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
118 }
119 
120 static inline void shmem_swp_balance_unmap(void)
121 {
122 	/*
123 	 * When passing a pointer to an i_direct entry, to code which
124 	 * also handles indirect entries and so will shmem_swp_unmap,
125 	 * we must arrange for the preempt count to remain in balance.
126 	 * What kmap_atomic of a lowmem page does depends on config
127 	 * and architecture, so pretend to kmap_atomic some lowmem page.
128 	 */
129 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
130 }
131 
132 static inline void shmem_swp_unmap(swp_entry_t *entry)
133 {
134 	kunmap_atomic(entry, KM_USER1);
135 }
136 
137 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
138 {
139 	return sb->s_fs_info;
140 }
141 
142 /*
143  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
144  * for shared memory and for shared anonymous (/dev/zero) mappings
145  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
146  * consistent with the pre-accounting of private mappings ...
147  */
148 static inline int shmem_acct_size(unsigned long flags, loff_t size)
149 {
150 	return (flags & VM_ACCOUNT)?
151 		security_vm_enough_memory(VM_ACCT(size)): 0;
152 }
153 
154 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
155 {
156 	if (flags & VM_ACCOUNT)
157 		vm_unacct_memory(VM_ACCT(size));
158 }
159 
160 /*
161  * ... whereas tmpfs objects are accounted incrementally as
162  * pages are allocated, in order to allow huge sparse files.
163  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
164  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
165  */
166 static inline int shmem_acct_block(unsigned long flags)
167 {
168 	return (flags & VM_ACCOUNT)?
169 		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
170 }
171 
172 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
173 {
174 	if (!(flags & VM_ACCOUNT))
175 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
176 }
177 
178 static struct super_operations shmem_ops;
179 static const struct address_space_operations shmem_aops;
180 static struct file_operations shmem_file_operations;
181 static struct inode_operations shmem_inode_operations;
182 static struct inode_operations shmem_dir_inode_operations;
183 static struct inode_operations shmem_special_inode_operations;
184 static struct vm_operations_struct shmem_vm_ops;
185 
186 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
187 	.ra_pages	= 0,	/* No readahead */
188 	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
189 	.unplug_io_fn	= default_unplug_io_fn,
190 };
191 
192 static LIST_HEAD(shmem_swaplist);
193 static DEFINE_SPINLOCK(shmem_swaplist_lock);
194 
195 static void shmem_free_blocks(struct inode *inode, long pages)
196 {
197 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
198 	if (sbinfo->max_blocks) {
199 		spin_lock(&sbinfo->stat_lock);
200 		sbinfo->free_blocks += pages;
201 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
202 		spin_unlock(&sbinfo->stat_lock);
203 	}
204 }
205 
206 /*
207  * shmem_recalc_inode - recalculate the size of an inode
208  *
209  * @inode: inode to recalc
210  *
211  * We have to calculate the free blocks since the mm can drop
212  * undirtied hole pages behind our back.
213  *
214  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
215  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
216  *
217  * It has to be called with the spinlock held.
218  */
219 static void shmem_recalc_inode(struct inode *inode)
220 {
221 	struct shmem_inode_info *info = SHMEM_I(inode);
222 	long freed;
223 
224 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
225 	if (freed > 0) {
226 		info->alloced -= freed;
227 		shmem_unacct_blocks(info->flags, freed);
228 		shmem_free_blocks(inode, freed);
229 	}
230 }
231 
232 /*
233  * shmem_swp_entry - find the swap vector position in the info structure
234  *
235  * @info:  info structure for the inode
236  * @index: index of the page to find
237  * @page:  optional page to add to the structure. Has to be preset to
238  *         all zeros
239  *
240  * If there is no space allocated yet it will return NULL when
241  * page is NULL, else it will use the page for the needed block,
242  * setting it to NULL on return to indicate that it has been used.
243  *
244  * The swap vector is organized the following way:
245  *
246  * There are SHMEM_NR_DIRECT entries directly stored in the
247  * shmem_inode_info structure. So small files do not need an addional
248  * allocation.
249  *
250  * For pages with index > SHMEM_NR_DIRECT there is the pointer
251  * i_indirect which points to a page which holds in the first half
252  * doubly indirect blocks, in the second half triple indirect blocks:
253  *
254  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
255  * following layout (for SHMEM_NR_DIRECT == 16):
256  *
257  * i_indirect -> dir --> 16-19
258  * 	      |	     +-> 20-23
259  * 	      |
260  * 	      +-->dir2 --> 24-27
261  * 	      |	       +-> 28-31
262  * 	      |	       +-> 32-35
263  * 	      |	       +-> 36-39
264  * 	      |
265  * 	      +-->dir3 --> 40-43
266  * 	       	       +-> 44-47
267  * 	      	       +-> 48-51
268  * 	      	       +-> 52-55
269  */
270 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
271 {
272 	unsigned long offset;
273 	struct page **dir;
274 	struct page *subdir;
275 
276 	if (index < SHMEM_NR_DIRECT) {
277 		shmem_swp_balance_unmap();
278 		return info->i_direct+index;
279 	}
280 	if (!info->i_indirect) {
281 		if (page) {
282 			info->i_indirect = *page;
283 			*page = NULL;
284 		}
285 		return NULL;			/* need another page */
286 	}
287 
288 	index -= SHMEM_NR_DIRECT;
289 	offset = index % ENTRIES_PER_PAGE;
290 	index /= ENTRIES_PER_PAGE;
291 	dir = shmem_dir_map(info->i_indirect);
292 
293 	if (index >= ENTRIES_PER_PAGE/2) {
294 		index -= ENTRIES_PER_PAGE/2;
295 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
296 		index %= ENTRIES_PER_PAGE;
297 		subdir = *dir;
298 		if (!subdir) {
299 			if (page) {
300 				*dir = *page;
301 				*page = NULL;
302 			}
303 			shmem_dir_unmap(dir);
304 			return NULL;		/* need another page */
305 		}
306 		shmem_dir_unmap(dir);
307 		dir = shmem_dir_map(subdir);
308 	}
309 
310 	dir += index;
311 	subdir = *dir;
312 	if (!subdir) {
313 		if (!page || !(subdir = *page)) {
314 			shmem_dir_unmap(dir);
315 			return NULL;		/* need a page */
316 		}
317 		*dir = subdir;
318 		*page = NULL;
319 	}
320 	shmem_dir_unmap(dir);
321 	return shmem_swp_map(subdir) + offset;
322 }
323 
324 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
325 {
326 	long incdec = value? 1: -1;
327 
328 	entry->val = value;
329 	info->swapped += incdec;
330 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
331 		struct page *page = kmap_atomic_to_page(entry);
332 		set_page_private(page, page_private(page) + incdec);
333 	}
334 }
335 
336 /*
337  * shmem_swp_alloc - get the position of the swap entry for the page.
338  *                   If it does not exist allocate the entry.
339  *
340  * @info:	info structure for the inode
341  * @index:	index of the page to find
342  * @sgp:	check and recheck i_size? skip allocation?
343  */
344 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
345 {
346 	struct inode *inode = &info->vfs_inode;
347 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
348 	struct page *page = NULL;
349 	swp_entry_t *entry;
350 
351 	if (sgp != SGP_WRITE &&
352 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
353 		return ERR_PTR(-EINVAL);
354 
355 	while (!(entry = shmem_swp_entry(info, index, &page))) {
356 		if (sgp == SGP_READ)
357 			return shmem_swp_map(ZERO_PAGE(0));
358 		/*
359 		 * Test free_blocks against 1 not 0, since we have 1 data
360 		 * page (and perhaps indirect index pages) yet to allocate:
361 		 * a waste to allocate index if we cannot allocate data.
362 		 */
363 		if (sbinfo->max_blocks) {
364 			spin_lock(&sbinfo->stat_lock);
365 			if (sbinfo->free_blocks <= 1) {
366 				spin_unlock(&sbinfo->stat_lock);
367 				return ERR_PTR(-ENOSPC);
368 			}
369 			sbinfo->free_blocks--;
370 			inode->i_blocks += BLOCKS_PER_PAGE;
371 			spin_unlock(&sbinfo->stat_lock);
372 		}
373 
374 		spin_unlock(&info->lock);
375 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO);
376 		if (page)
377 			set_page_private(page, 0);
378 		spin_lock(&info->lock);
379 
380 		if (!page) {
381 			shmem_free_blocks(inode, 1);
382 			return ERR_PTR(-ENOMEM);
383 		}
384 		if (sgp != SGP_WRITE &&
385 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
386 			entry = ERR_PTR(-EINVAL);
387 			break;
388 		}
389 		if (info->next_index <= index)
390 			info->next_index = index + 1;
391 	}
392 	if (page) {
393 		/* another task gave its page, or truncated the file */
394 		shmem_free_blocks(inode, 1);
395 		shmem_dir_free(page);
396 	}
397 	if (info->next_index <= index && !IS_ERR(entry))
398 		info->next_index = index + 1;
399 	return entry;
400 }
401 
402 /*
403  * shmem_free_swp - free some swap entries in a directory
404  *
405  * @dir:   pointer to the directory
406  * @edir:  pointer after last entry of the directory
407  */
408 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir)
409 {
410 	swp_entry_t *ptr;
411 	int freed = 0;
412 
413 	for (ptr = dir; ptr < edir; ptr++) {
414 		if (ptr->val) {
415 			free_swap_and_cache(*ptr);
416 			*ptr = (swp_entry_t){0};
417 			freed++;
418 		}
419 	}
420 	return freed;
421 }
422 
423 static int shmem_map_and_free_swp(struct page *subdir,
424 		int offset, int limit, struct page ***dir)
425 {
426 	swp_entry_t *ptr;
427 	int freed = 0;
428 
429 	ptr = shmem_swp_map(subdir);
430 	for (; offset < limit; offset += LATENCY_LIMIT) {
431 		int size = limit - offset;
432 		if (size > LATENCY_LIMIT)
433 			size = LATENCY_LIMIT;
434 		freed += shmem_free_swp(ptr+offset, ptr+offset+size);
435 		if (need_resched()) {
436 			shmem_swp_unmap(ptr);
437 			if (*dir) {
438 				shmem_dir_unmap(*dir);
439 				*dir = NULL;
440 			}
441 			cond_resched();
442 			ptr = shmem_swp_map(subdir);
443 		}
444 	}
445 	shmem_swp_unmap(ptr);
446 	return freed;
447 }
448 
449 static void shmem_free_pages(struct list_head *next)
450 {
451 	struct page *page;
452 	int freed = 0;
453 
454 	do {
455 		page = container_of(next, struct page, lru);
456 		next = next->next;
457 		shmem_dir_free(page);
458 		freed++;
459 		if (freed >= LATENCY_LIMIT) {
460 			cond_resched();
461 			freed = 0;
462 		}
463 	} while (next);
464 }
465 
466 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
467 {
468 	struct shmem_inode_info *info = SHMEM_I(inode);
469 	unsigned long idx;
470 	unsigned long size;
471 	unsigned long limit;
472 	unsigned long stage;
473 	unsigned long diroff;
474 	struct page **dir;
475 	struct page *topdir;
476 	struct page *middir;
477 	struct page *subdir;
478 	swp_entry_t *ptr;
479 	LIST_HEAD(pages_to_free);
480 	long nr_pages_to_free = 0;
481 	long nr_swaps_freed = 0;
482 	int offset;
483 	int freed;
484 	int punch_hole = 0;
485 
486 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
487 	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
488 	if (idx >= info->next_index)
489 		return;
490 
491 	spin_lock(&info->lock);
492 	info->flags |= SHMEM_TRUNCATE;
493 	if (likely(end == (loff_t) -1)) {
494 		limit = info->next_index;
495 		info->next_index = idx;
496 	} else {
497 		limit = (end + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
498 		if (limit > info->next_index)
499 			limit = info->next_index;
500 		punch_hole = 1;
501 	}
502 
503 	topdir = info->i_indirect;
504 	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
505 		info->i_indirect = NULL;
506 		nr_pages_to_free++;
507 		list_add(&topdir->lru, &pages_to_free);
508 	}
509 	spin_unlock(&info->lock);
510 
511 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
512 		ptr = info->i_direct;
513 		size = limit;
514 		if (size > SHMEM_NR_DIRECT)
515 			size = SHMEM_NR_DIRECT;
516 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size);
517 	}
518 	if (!topdir)
519 		goto done2;
520 
521 	BUG_ON(limit <= SHMEM_NR_DIRECT);
522 	limit -= SHMEM_NR_DIRECT;
523 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
524 	offset = idx % ENTRIES_PER_PAGE;
525 	idx -= offset;
526 
527 	dir = shmem_dir_map(topdir);
528 	stage = ENTRIES_PER_PAGEPAGE/2;
529 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
530 		middir = topdir;
531 		diroff = idx/ENTRIES_PER_PAGE;
532 	} else {
533 		dir += ENTRIES_PER_PAGE/2;
534 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
535 		while (stage <= idx)
536 			stage += ENTRIES_PER_PAGEPAGE;
537 		middir = *dir;
538 		if (*dir) {
539 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
540 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
541 			if (!diroff && !offset) {
542 				*dir = NULL;
543 				nr_pages_to_free++;
544 				list_add(&middir->lru, &pages_to_free);
545 			}
546 			shmem_dir_unmap(dir);
547 			dir = shmem_dir_map(middir);
548 		} else {
549 			diroff = 0;
550 			offset = 0;
551 			idx = stage;
552 		}
553 	}
554 
555 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
556 		if (unlikely(idx == stage)) {
557 			shmem_dir_unmap(dir);
558 			dir = shmem_dir_map(topdir) +
559 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
560 			while (!*dir) {
561 				dir++;
562 				idx += ENTRIES_PER_PAGEPAGE;
563 				if (idx >= limit)
564 					goto done1;
565 			}
566 			stage = idx + ENTRIES_PER_PAGEPAGE;
567 			middir = *dir;
568 			*dir = NULL;
569 			nr_pages_to_free++;
570 			list_add(&middir->lru, &pages_to_free);
571 			shmem_dir_unmap(dir);
572 			cond_resched();
573 			dir = shmem_dir_map(middir);
574 			diroff = 0;
575 		}
576 		subdir = dir[diroff];
577 		if (subdir && page_private(subdir)) {
578 			size = limit - idx;
579 			if (size > ENTRIES_PER_PAGE)
580 				size = ENTRIES_PER_PAGE;
581 			freed = shmem_map_and_free_swp(subdir,
582 						offset, size, &dir);
583 			if (!dir)
584 				dir = shmem_dir_map(middir);
585 			nr_swaps_freed += freed;
586 			if (offset)
587 				spin_lock(&info->lock);
588 			set_page_private(subdir, page_private(subdir) - freed);
589 			if (offset)
590 				spin_unlock(&info->lock);
591 			if (!punch_hole)
592 				BUG_ON(page_private(subdir) > offset);
593 		}
594 		if (offset)
595 			offset = 0;
596 		else if (subdir && !page_private(subdir)) {
597 			dir[diroff] = NULL;
598 			nr_pages_to_free++;
599 			list_add(&subdir->lru, &pages_to_free);
600 		}
601 	}
602 done1:
603 	shmem_dir_unmap(dir);
604 done2:
605 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
606 		/*
607 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
608 		 * may have swizzled a page in from swap since vmtruncate or
609 		 * generic_delete_inode did it, before we lowered next_index.
610 		 * Also, though shmem_getpage checks i_size before adding to
611 		 * cache, no recheck after: so fix the narrow window there too.
612 		 */
613 		truncate_inode_pages_range(inode->i_mapping, start, end);
614 	}
615 
616 	spin_lock(&info->lock);
617 	info->flags &= ~SHMEM_TRUNCATE;
618 	info->swapped -= nr_swaps_freed;
619 	if (nr_pages_to_free)
620 		shmem_free_blocks(inode, nr_pages_to_free);
621 	shmem_recalc_inode(inode);
622 	spin_unlock(&info->lock);
623 
624 	/*
625 	 * Empty swap vector directory pages to be freed?
626 	 */
627 	if (!list_empty(&pages_to_free)) {
628 		pages_to_free.prev->next = NULL;
629 		shmem_free_pages(pages_to_free.next);
630 	}
631 }
632 
633 static void shmem_truncate(struct inode *inode)
634 {
635 	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
636 }
637 
638 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
639 {
640 	struct inode *inode = dentry->d_inode;
641 	struct page *page = NULL;
642 	int error;
643 
644 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
645 		if (attr->ia_size < inode->i_size) {
646 			/*
647 			 * If truncating down to a partial page, then
648 			 * if that page is already allocated, hold it
649 			 * in memory until the truncation is over, so
650 			 * truncate_partial_page cannnot miss it were
651 			 * it assigned to swap.
652 			 */
653 			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
654 				(void) shmem_getpage(inode,
655 					attr->ia_size>>PAGE_CACHE_SHIFT,
656 						&page, SGP_READ, NULL);
657 			}
658 			/*
659 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
660 			 * detect if any pages might have been added to cache
661 			 * after truncate_inode_pages.  But we needn't bother
662 			 * if it's being fully truncated to zero-length: the
663 			 * nrpages check is efficient enough in that case.
664 			 */
665 			if (attr->ia_size) {
666 				struct shmem_inode_info *info = SHMEM_I(inode);
667 				spin_lock(&info->lock);
668 				info->flags &= ~SHMEM_PAGEIN;
669 				spin_unlock(&info->lock);
670 			}
671 		}
672 	}
673 
674 	error = inode_change_ok(inode, attr);
675 	if (!error)
676 		error = inode_setattr(inode, attr);
677 #ifdef CONFIG_TMPFS_POSIX_ACL
678 	if (!error && (attr->ia_valid & ATTR_MODE))
679 		error = generic_acl_chmod(inode, &shmem_acl_ops);
680 #endif
681 	if (page)
682 		page_cache_release(page);
683 	return error;
684 }
685 
686 static void shmem_delete_inode(struct inode *inode)
687 {
688 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
689 	struct shmem_inode_info *info = SHMEM_I(inode);
690 
691 	if (inode->i_op->truncate == shmem_truncate) {
692 		truncate_inode_pages(inode->i_mapping, 0);
693 		shmem_unacct_size(info->flags, inode->i_size);
694 		inode->i_size = 0;
695 		shmem_truncate(inode);
696 		if (!list_empty(&info->swaplist)) {
697 			spin_lock(&shmem_swaplist_lock);
698 			list_del_init(&info->swaplist);
699 			spin_unlock(&shmem_swaplist_lock);
700 		}
701 	}
702 	BUG_ON(inode->i_blocks);
703 	if (sbinfo->max_inodes) {
704 		spin_lock(&sbinfo->stat_lock);
705 		sbinfo->free_inodes++;
706 		spin_unlock(&sbinfo->stat_lock);
707 	}
708 	clear_inode(inode);
709 }
710 
711 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
712 {
713 	swp_entry_t *ptr;
714 
715 	for (ptr = dir; ptr < edir; ptr++) {
716 		if (ptr->val == entry.val)
717 			return ptr - dir;
718 	}
719 	return -1;
720 }
721 
722 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
723 {
724 	struct inode *inode;
725 	unsigned long idx;
726 	unsigned long size;
727 	unsigned long limit;
728 	unsigned long stage;
729 	struct page **dir;
730 	struct page *subdir;
731 	swp_entry_t *ptr;
732 	int offset;
733 
734 	idx = 0;
735 	ptr = info->i_direct;
736 	spin_lock(&info->lock);
737 	limit = info->next_index;
738 	size = limit;
739 	if (size > SHMEM_NR_DIRECT)
740 		size = SHMEM_NR_DIRECT;
741 	offset = shmem_find_swp(entry, ptr, ptr+size);
742 	if (offset >= 0) {
743 		shmem_swp_balance_unmap();
744 		goto found;
745 	}
746 	if (!info->i_indirect)
747 		goto lost2;
748 
749 	dir = shmem_dir_map(info->i_indirect);
750 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
751 
752 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
753 		if (unlikely(idx == stage)) {
754 			shmem_dir_unmap(dir-1);
755 			dir = shmem_dir_map(info->i_indirect) +
756 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
757 			while (!*dir) {
758 				dir++;
759 				idx += ENTRIES_PER_PAGEPAGE;
760 				if (idx >= limit)
761 					goto lost1;
762 			}
763 			stage = idx + ENTRIES_PER_PAGEPAGE;
764 			subdir = *dir;
765 			shmem_dir_unmap(dir);
766 			dir = shmem_dir_map(subdir);
767 		}
768 		subdir = *dir;
769 		if (subdir && page_private(subdir)) {
770 			ptr = shmem_swp_map(subdir);
771 			size = limit - idx;
772 			if (size > ENTRIES_PER_PAGE)
773 				size = ENTRIES_PER_PAGE;
774 			offset = shmem_find_swp(entry, ptr, ptr+size);
775 			if (offset >= 0) {
776 				shmem_dir_unmap(dir);
777 				goto found;
778 			}
779 			shmem_swp_unmap(ptr);
780 		}
781 	}
782 lost1:
783 	shmem_dir_unmap(dir-1);
784 lost2:
785 	spin_unlock(&info->lock);
786 	return 0;
787 found:
788 	idx += offset;
789 	inode = &info->vfs_inode;
790 	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
791 		info->flags |= SHMEM_PAGEIN;
792 		shmem_swp_set(info, ptr + offset, 0);
793 	}
794 	shmem_swp_unmap(ptr);
795 	spin_unlock(&info->lock);
796 	/*
797 	 * Decrement swap count even when the entry is left behind:
798 	 * try_to_unuse will skip over mms, then reincrement count.
799 	 */
800 	swap_free(entry);
801 	return 1;
802 }
803 
804 /*
805  * shmem_unuse() search for an eventually swapped out shmem page.
806  */
807 int shmem_unuse(swp_entry_t entry, struct page *page)
808 {
809 	struct list_head *p, *next;
810 	struct shmem_inode_info *info;
811 	int found = 0;
812 
813 	spin_lock(&shmem_swaplist_lock);
814 	list_for_each_safe(p, next, &shmem_swaplist) {
815 		info = list_entry(p, struct shmem_inode_info, swaplist);
816 		if (!info->swapped)
817 			list_del_init(&info->swaplist);
818 		else if (shmem_unuse_inode(info, entry, page)) {
819 			/* move head to start search for next from here */
820 			list_move_tail(&shmem_swaplist, &info->swaplist);
821 			found = 1;
822 			break;
823 		}
824 	}
825 	spin_unlock(&shmem_swaplist_lock);
826 	return found;
827 }
828 
829 /*
830  * Move the page from the page cache to the swap cache.
831  */
832 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
833 {
834 	struct shmem_inode_info *info;
835 	swp_entry_t *entry, swap;
836 	struct address_space *mapping;
837 	unsigned long index;
838 	struct inode *inode;
839 
840 	BUG_ON(!PageLocked(page));
841 	BUG_ON(page_mapped(page));
842 
843 	mapping = page->mapping;
844 	index = page->index;
845 	inode = mapping->host;
846 	info = SHMEM_I(inode);
847 	if (info->flags & VM_LOCKED)
848 		goto redirty;
849 	swap = get_swap_page();
850 	if (!swap.val)
851 		goto redirty;
852 
853 	spin_lock(&info->lock);
854 	shmem_recalc_inode(inode);
855 	if (index >= info->next_index) {
856 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
857 		goto unlock;
858 	}
859 	entry = shmem_swp_entry(info, index, NULL);
860 	BUG_ON(!entry);
861 	BUG_ON(entry->val);
862 
863 	if (move_to_swap_cache(page, swap) == 0) {
864 		shmem_swp_set(info, entry, swap.val);
865 		shmem_swp_unmap(entry);
866 		spin_unlock(&info->lock);
867 		if (list_empty(&info->swaplist)) {
868 			spin_lock(&shmem_swaplist_lock);
869 			/* move instead of add in case we're racing */
870 			list_move_tail(&info->swaplist, &shmem_swaplist);
871 			spin_unlock(&shmem_swaplist_lock);
872 		}
873 		unlock_page(page);
874 		return 0;
875 	}
876 
877 	shmem_swp_unmap(entry);
878 unlock:
879 	spin_unlock(&info->lock);
880 	swap_free(swap);
881 redirty:
882 	set_page_dirty(page);
883 	return AOP_WRITEPAGE_ACTIVATE;	/* Return with the page locked */
884 }
885 
886 #ifdef CONFIG_NUMA
887 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
888 {
889 	char *nodelist = strchr(value, ':');
890 	int err = 1;
891 
892 	if (nodelist) {
893 		/* NUL-terminate policy string */
894 		*nodelist++ = '\0';
895 		if (nodelist_parse(nodelist, *policy_nodes))
896 			goto out;
897 	}
898 	if (!strcmp(value, "default")) {
899 		*policy = MPOL_DEFAULT;
900 		/* Don't allow a nodelist */
901 		if (!nodelist)
902 			err = 0;
903 	} else if (!strcmp(value, "prefer")) {
904 		*policy = MPOL_PREFERRED;
905 		/* Insist on a nodelist of one node only */
906 		if (nodelist) {
907 			char *rest = nodelist;
908 			while (isdigit(*rest))
909 				rest++;
910 			if (!*rest)
911 				err = 0;
912 		}
913 	} else if (!strcmp(value, "bind")) {
914 		*policy = MPOL_BIND;
915 		/* Insist on a nodelist */
916 		if (nodelist)
917 			err = 0;
918 	} else if (!strcmp(value, "interleave")) {
919 		*policy = MPOL_INTERLEAVE;
920 		/* Default to nodes online if no nodelist */
921 		if (!nodelist)
922 			*policy_nodes = node_online_map;
923 		err = 0;
924 	}
925 out:
926 	/* Restore string for error message */
927 	if (nodelist)
928 		*--nodelist = ':';
929 	return err;
930 }
931 
932 static struct page *shmem_swapin_async(struct shared_policy *p,
933 				       swp_entry_t entry, unsigned long idx)
934 {
935 	struct page *page;
936 	struct vm_area_struct pvma;
937 
938 	/* Create a pseudo vma that just contains the policy */
939 	memset(&pvma, 0, sizeof(struct vm_area_struct));
940 	pvma.vm_end = PAGE_SIZE;
941 	pvma.vm_pgoff = idx;
942 	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
943 	page = read_swap_cache_async(entry, &pvma, 0);
944 	mpol_free(pvma.vm_policy);
945 	return page;
946 }
947 
948 struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
949 			  unsigned long idx)
950 {
951 	struct shared_policy *p = &info->policy;
952 	int i, num;
953 	struct page *page;
954 	unsigned long offset;
955 
956 	num = valid_swaphandles(entry, &offset);
957 	for (i = 0; i < num; offset++, i++) {
958 		page = shmem_swapin_async(p,
959 				swp_entry(swp_type(entry), offset), idx);
960 		if (!page)
961 			break;
962 		page_cache_release(page);
963 	}
964 	lru_add_drain();	/* Push any new pages onto the LRU now */
965 	return shmem_swapin_async(p, entry, idx);
966 }
967 
968 static struct page *
969 shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
970 		 unsigned long idx)
971 {
972 	struct vm_area_struct pvma;
973 	struct page *page;
974 
975 	memset(&pvma, 0, sizeof(struct vm_area_struct));
976 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
977 	pvma.vm_pgoff = idx;
978 	pvma.vm_end = PAGE_SIZE;
979 	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
980 	mpol_free(pvma.vm_policy);
981 	return page;
982 }
983 #else
984 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
985 {
986 	return 1;
987 }
988 
989 static inline struct page *
990 shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
991 {
992 	swapin_readahead(entry, 0, NULL);
993 	return read_swap_cache_async(entry, NULL, 0);
994 }
995 
996 static inline struct page *
997 shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
998 {
999 	return alloc_page(gfp | __GFP_ZERO);
1000 }
1001 #endif
1002 
1003 /*
1004  * shmem_getpage - either get the page from swap or allocate a new one
1005  *
1006  * If we allocate a new one we do not mark it dirty. That's up to the
1007  * vm. If we swap it in we mark it dirty since we also free the swap
1008  * entry since a page cannot live in both the swap and page cache
1009  */
1010 static int shmem_getpage(struct inode *inode, unsigned long idx,
1011 			struct page **pagep, enum sgp_type sgp, int *type)
1012 {
1013 	struct address_space *mapping = inode->i_mapping;
1014 	struct shmem_inode_info *info = SHMEM_I(inode);
1015 	struct shmem_sb_info *sbinfo;
1016 	struct page *filepage = *pagep;
1017 	struct page *swappage;
1018 	swp_entry_t *entry;
1019 	swp_entry_t swap;
1020 	int error;
1021 
1022 	if (idx >= SHMEM_MAX_INDEX)
1023 		return -EFBIG;
1024 	/*
1025 	 * Normally, filepage is NULL on entry, and either found
1026 	 * uptodate immediately, or allocated and zeroed, or read
1027 	 * in under swappage, which is then assigned to filepage.
1028 	 * But shmem_prepare_write passes in a locked filepage,
1029 	 * which may be found not uptodate by other callers too,
1030 	 * and may need to be copied from the swappage read in.
1031 	 */
1032 repeat:
1033 	if (!filepage)
1034 		filepage = find_lock_page(mapping, idx);
1035 	if (filepage && PageUptodate(filepage))
1036 		goto done;
1037 	error = 0;
1038 	if (sgp == SGP_QUICK)
1039 		goto failed;
1040 
1041 	spin_lock(&info->lock);
1042 	shmem_recalc_inode(inode);
1043 	entry = shmem_swp_alloc(info, idx, sgp);
1044 	if (IS_ERR(entry)) {
1045 		spin_unlock(&info->lock);
1046 		error = PTR_ERR(entry);
1047 		goto failed;
1048 	}
1049 	swap = *entry;
1050 
1051 	if (swap.val) {
1052 		/* Look it up and read it in.. */
1053 		swappage = lookup_swap_cache(swap);
1054 		if (!swappage) {
1055 			shmem_swp_unmap(entry);
1056 			/* here we actually do the io */
1057 			if (type && *type == VM_FAULT_MINOR) {
1058 				__count_vm_event(PGMAJFAULT);
1059 				*type = VM_FAULT_MAJOR;
1060 			}
1061 			spin_unlock(&info->lock);
1062 			swappage = shmem_swapin(info, swap, idx);
1063 			if (!swappage) {
1064 				spin_lock(&info->lock);
1065 				entry = shmem_swp_alloc(info, idx, sgp);
1066 				if (IS_ERR(entry))
1067 					error = PTR_ERR(entry);
1068 				else {
1069 					if (entry->val == swap.val)
1070 						error = -ENOMEM;
1071 					shmem_swp_unmap(entry);
1072 				}
1073 				spin_unlock(&info->lock);
1074 				if (error)
1075 					goto failed;
1076 				goto repeat;
1077 			}
1078 			wait_on_page_locked(swappage);
1079 			page_cache_release(swappage);
1080 			goto repeat;
1081 		}
1082 
1083 		/* We have to do this with page locked to prevent races */
1084 		if (TestSetPageLocked(swappage)) {
1085 			shmem_swp_unmap(entry);
1086 			spin_unlock(&info->lock);
1087 			wait_on_page_locked(swappage);
1088 			page_cache_release(swappage);
1089 			goto repeat;
1090 		}
1091 		if (PageWriteback(swappage)) {
1092 			shmem_swp_unmap(entry);
1093 			spin_unlock(&info->lock);
1094 			wait_on_page_writeback(swappage);
1095 			unlock_page(swappage);
1096 			page_cache_release(swappage);
1097 			goto repeat;
1098 		}
1099 		if (!PageUptodate(swappage)) {
1100 			shmem_swp_unmap(entry);
1101 			spin_unlock(&info->lock);
1102 			unlock_page(swappage);
1103 			page_cache_release(swappage);
1104 			error = -EIO;
1105 			goto failed;
1106 		}
1107 
1108 		if (filepage) {
1109 			shmem_swp_set(info, entry, 0);
1110 			shmem_swp_unmap(entry);
1111 			delete_from_swap_cache(swappage);
1112 			spin_unlock(&info->lock);
1113 			copy_highpage(filepage, swappage);
1114 			unlock_page(swappage);
1115 			page_cache_release(swappage);
1116 			flush_dcache_page(filepage);
1117 			SetPageUptodate(filepage);
1118 			set_page_dirty(filepage);
1119 			swap_free(swap);
1120 		} else if (!(error = move_from_swap_cache(
1121 				swappage, idx, mapping))) {
1122 			info->flags |= SHMEM_PAGEIN;
1123 			shmem_swp_set(info, entry, 0);
1124 			shmem_swp_unmap(entry);
1125 			spin_unlock(&info->lock);
1126 			filepage = swappage;
1127 			swap_free(swap);
1128 		} else {
1129 			shmem_swp_unmap(entry);
1130 			spin_unlock(&info->lock);
1131 			unlock_page(swappage);
1132 			page_cache_release(swappage);
1133 			if (error == -ENOMEM) {
1134 				/* let kswapd refresh zone for GFP_ATOMICs */
1135 				congestion_wait(WRITE, HZ/50);
1136 			}
1137 			goto repeat;
1138 		}
1139 	} else if (sgp == SGP_READ && !filepage) {
1140 		shmem_swp_unmap(entry);
1141 		filepage = find_get_page(mapping, idx);
1142 		if (filepage &&
1143 		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1144 			spin_unlock(&info->lock);
1145 			wait_on_page_locked(filepage);
1146 			page_cache_release(filepage);
1147 			filepage = NULL;
1148 			goto repeat;
1149 		}
1150 		spin_unlock(&info->lock);
1151 	} else {
1152 		shmem_swp_unmap(entry);
1153 		sbinfo = SHMEM_SB(inode->i_sb);
1154 		if (sbinfo->max_blocks) {
1155 			spin_lock(&sbinfo->stat_lock);
1156 			if (sbinfo->free_blocks == 0 ||
1157 			    shmem_acct_block(info->flags)) {
1158 				spin_unlock(&sbinfo->stat_lock);
1159 				spin_unlock(&info->lock);
1160 				error = -ENOSPC;
1161 				goto failed;
1162 			}
1163 			sbinfo->free_blocks--;
1164 			inode->i_blocks += BLOCKS_PER_PAGE;
1165 			spin_unlock(&sbinfo->stat_lock);
1166 		} else if (shmem_acct_block(info->flags)) {
1167 			spin_unlock(&info->lock);
1168 			error = -ENOSPC;
1169 			goto failed;
1170 		}
1171 
1172 		if (!filepage) {
1173 			spin_unlock(&info->lock);
1174 			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1175 						    info,
1176 						    idx);
1177 			if (!filepage) {
1178 				shmem_unacct_blocks(info->flags, 1);
1179 				shmem_free_blocks(inode, 1);
1180 				error = -ENOMEM;
1181 				goto failed;
1182 			}
1183 
1184 			spin_lock(&info->lock);
1185 			entry = shmem_swp_alloc(info, idx, sgp);
1186 			if (IS_ERR(entry))
1187 				error = PTR_ERR(entry);
1188 			else {
1189 				swap = *entry;
1190 				shmem_swp_unmap(entry);
1191 			}
1192 			if (error || swap.val || 0 != add_to_page_cache_lru(
1193 					filepage, mapping, idx, GFP_ATOMIC)) {
1194 				spin_unlock(&info->lock);
1195 				page_cache_release(filepage);
1196 				shmem_unacct_blocks(info->flags, 1);
1197 				shmem_free_blocks(inode, 1);
1198 				filepage = NULL;
1199 				if (error)
1200 					goto failed;
1201 				goto repeat;
1202 			}
1203 			info->flags |= SHMEM_PAGEIN;
1204 		}
1205 
1206 		info->alloced++;
1207 		spin_unlock(&info->lock);
1208 		flush_dcache_page(filepage);
1209 		SetPageUptodate(filepage);
1210 	}
1211 done:
1212 	if (*pagep != filepage) {
1213 		unlock_page(filepage);
1214 		*pagep = filepage;
1215 	}
1216 	return 0;
1217 
1218 failed:
1219 	if (*pagep != filepage) {
1220 		unlock_page(filepage);
1221 		page_cache_release(filepage);
1222 	}
1223 	return error;
1224 }
1225 
1226 struct page *shmem_nopage(struct vm_area_struct *vma, unsigned long address, int *type)
1227 {
1228 	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1229 	struct page *page = NULL;
1230 	unsigned long idx;
1231 	int error;
1232 
1233 	idx = (address - vma->vm_start) >> PAGE_SHIFT;
1234 	idx += vma->vm_pgoff;
1235 	idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1236 	if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1237 		return NOPAGE_SIGBUS;
1238 
1239 	error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1240 	if (error)
1241 		return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1242 
1243 	mark_page_accessed(page);
1244 	return page;
1245 }
1246 
1247 static int shmem_populate(struct vm_area_struct *vma,
1248 	unsigned long addr, unsigned long len,
1249 	pgprot_t prot, unsigned long pgoff, int nonblock)
1250 {
1251 	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1252 	struct mm_struct *mm = vma->vm_mm;
1253 	enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1254 	unsigned long size;
1255 
1256 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1257 	if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1258 		return -EINVAL;
1259 
1260 	while ((long) len > 0) {
1261 		struct page *page = NULL;
1262 		int err;
1263 		/*
1264 		 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1265 		 */
1266 		err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1267 		if (err)
1268 			return err;
1269 		/* Page may still be null, but only if nonblock was set. */
1270 		if (page) {
1271 			mark_page_accessed(page);
1272 			err = install_page(mm, vma, addr, page, prot);
1273 			if (err) {
1274 				page_cache_release(page);
1275 				return err;
1276 			}
1277 		} else if (vma->vm_flags & VM_NONLINEAR) {
1278 			/* No page was found just because we can't read it in
1279 			 * now (being here implies nonblock != 0), but the page
1280 			 * may exist, so set the PTE to fault it in later. */
1281     			err = install_file_pte(mm, vma, addr, pgoff, prot);
1282 			if (err)
1283 	    			return err;
1284 		}
1285 
1286 		len -= PAGE_SIZE;
1287 		addr += PAGE_SIZE;
1288 		pgoff++;
1289 	}
1290 	return 0;
1291 }
1292 
1293 #ifdef CONFIG_NUMA
1294 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1295 {
1296 	struct inode *i = vma->vm_file->f_dentry->d_inode;
1297 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1298 }
1299 
1300 struct mempolicy *
1301 shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1302 {
1303 	struct inode *i = vma->vm_file->f_dentry->d_inode;
1304 	unsigned long idx;
1305 
1306 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1307 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1308 }
1309 #endif
1310 
1311 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1312 {
1313 	struct inode *inode = file->f_dentry->d_inode;
1314 	struct shmem_inode_info *info = SHMEM_I(inode);
1315 	int retval = -ENOMEM;
1316 
1317 	spin_lock(&info->lock);
1318 	if (lock && !(info->flags & VM_LOCKED)) {
1319 		if (!user_shm_lock(inode->i_size, user))
1320 			goto out_nomem;
1321 		info->flags |= VM_LOCKED;
1322 	}
1323 	if (!lock && (info->flags & VM_LOCKED) && user) {
1324 		user_shm_unlock(inode->i_size, user);
1325 		info->flags &= ~VM_LOCKED;
1326 	}
1327 	retval = 0;
1328 out_nomem:
1329 	spin_unlock(&info->lock);
1330 	return retval;
1331 }
1332 
1333 int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1334 {
1335 	file_accessed(file);
1336 	vma->vm_ops = &shmem_vm_ops;
1337 	return 0;
1338 }
1339 
1340 static struct inode *
1341 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1342 {
1343 	struct inode *inode;
1344 	struct shmem_inode_info *info;
1345 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1346 
1347 	if (sbinfo->max_inodes) {
1348 		spin_lock(&sbinfo->stat_lock);
1349 		if (!sbinfo->free_inodes) {
1350 			spin_unlock(&sbinfo->stat_lock);
1351 			return NULL;
1352 		}
1353 		sbinfo->free_inodes--;
1354 		spin_unlock(&sbinfo->stat_lock);
1355 	}
1356 
1357 	inode = new_inode(sb);
1358 	if (inode) {
1359 		inode->i_mode = mode;
1360 		inode->i_uid = current->fsuid;
1361 		inode->i_gid = current->fsgid;
1362 		inode->i_blocks = 0;
1363 		inode->i_mapping->a_ops = &shmem_aops;
1364 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1365 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1366 		inode->i_generation = get_seconds();
1367 		info = SHMEM_I(inode);
1368 		memset(info, 0, (char *)inode - (char *)info);
1369 		spin_lock_init(&info->lock);
1370 		INIT_LIST_HEAD(&info->swaplist);
1371 
1372 		switch (mode & S_IFMT) {
1373 		default:
1374 			inode->i_op = &shmem_special_inode_operations;
1375 			init_special_inode(inode, mode, dev);
1376 			break;
1377 		case S_IFREG:
1378 			inode->i_op = &shmem_inode_operations;
1379 			inode->i_fop = &shmem_file_operations;
1380 			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1381 							&sbinfo->policy_nodes);
1382 			break;
1383 		case S_IFDIR:
1384 			inc_nlink(inode);
1385 			/* Some things misbehave if size == 0 on a directory */
1386 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1387 			inode->i_op = &shmem_dir_inode_operations;
1388 			inode->i_fop = &simple_dir_operations;
1389 			break;
1390 		case S_IFLNK:
1391 			/*
1392 			 * Must not load anything in the rbtree,
1393 			 * mpol_free_shared_policy will not be called.
1394 			 */
1395 			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1396 						NULL);
1397 			break;
1398 		}
1399 	} else if (sbinfo->max_inodes) {
1400 		spin_lock(&sbinfo->stat_lock);
1401 		sbinfo->free_inodes++;
1402 		spin_unlock(&sbinfo->stat_lock);
1403 	}
1404 	return inode;
1405 }
1406 
1407 #ifdef CONFIG_TMPFS
1408 static struct inode_operations shmem_symlink_inode_operations;
1409 static struct inode_operations shmem_symlink_inline_operations;
1410 
1411 /*
1412  * Normally tmpfs makes no use of shmem_prepare_write, but it
1413  * lets a tmpfs file be used read-write below the loop driver.
1414  */
1415 static int
1416 shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1417 {
1418 	struct inode *inode = page->mapping->host;
1419 	return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1420 }
1421 
1422 static ssize_t
1423 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1424 {
1425 	struct inode	*inode = file->f_dentry->d_inode;
1426 	loff_t		pos;
1427 	unsigned long	written;
1428 	ssize_t		err;
1429 
1430 	if ((ssize_t) count < 0)
1431 		return -EINVAL;
1432 
1433 	if (!access_ok(VERIFY_READ, buf, count))
1434 		return -EFAULT;
1435 
1436 	mutex_lock(&inode->i_mutex);
1437 
1438 	pos = *ppos;
1439 	written = 0;
1440 
1441 	err = generic_write_checks(file, &pos, &count, 0);
1442 	if (err || !count)
1443 		goto out;
1444 
1445 	err = remove_suid(file->f_dentry);
1446 	if (err)
1447 		goto out;
1448 
1449 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1450 
1451 	do {
1452 		struct page *page = NULL;
1453 		unsigned long bytes, index, offset;
1454 		char *kaddr;
1455 		int left;
1456 
1457 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1458 		index = pos >> PAGE_CACHE_SHIFT;
1459 		bytes = PAGE_CACHE_SIZE - offset;
1460 		if (bytes > count)
1461 			bytes = count;
1462 
1463 		/*
1464 		 * We don't hold page lock across copy from user -
1465 		 * what would it guard against? - so no deadlock here.
1466 		 * But it still may be a good idea to prefault below.
1467 		 */
1468 
1469 		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1470 		if (err)
1471 			break;
1472 
1473 		left = bytes;
1474 		if (PageHighMem(page)) {
1475 			volatile unsigned char dummy;
1476 			__get_user(dummy, buf);
1477 			__get_user(dummy, buf + bytes - 1);
1478 
1479 			kaddr = kmap_atomic(page, KM_USER0);
1480 			left = __copy_from_user_inatomic(kaddr + offset,
1481 							buf, bytes);
1482 			kunmap_atomic(kaddr, KM_USER0);
1483 		}
1484 		if (left) {
1485 			kaddr = kmap(page);
1486 			left = __copy_from_user(kaddr + offset, buf, bytes);
1487 			kunmap(page);
1488 		}
1489 
1490 		written += bytes;
1491 		count -= bytes;
1492 		pos += bytes;
1493 		buf += bytes;
1494 		if (pos > inode->i_size)
1495 			i_size_write(inode, pos);
1496 
1497 		flush_dcache_page(page);
1498 		set_page_dirty(page);
1499 		mark_page_accessed(page);
1500 		page_cache_release(page);
1501 
1502 		if (left) {
1503 			pos -= left;
1504 			written -= left;
1505 			err = -EFAULT;
1506 			break;
1507 		}
1508 
1509 		/*
1510 		 * Our dirty pages are not counted in nr_dirty,
1511 		 * and we do not attempt to balance dirty pages.
1512 		 */
1513 
1514 		cond_resched();
1515 	} while (count);
1516 
1517 	*ppos = pos;
1518 	if (written)
1519 		err = written;
1520 out:
1521 	mutex_unlock(&inode->i_mutex);
1522 	return err;
1523 }
1524 
1525 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1526 {
1527 	struct inode *inode = filp->f_dentry->d_inode;
1528 	struct address_space *mapping = inode->i_mapping;
1529 	unsigned long index, offset;
1530 
1531 	index = *ppos >> PAGE_CACHE_SHIFT;
1532 	offset = *ppos & ~PAGE_CACHE_MASK;
1533 
1534 	for (;;) {
1535 		struct page *page = NULL;
1536 		unsigned long end_index, nr, ret;
1537 		loff_t i_size = i_size_read(inode);
1538 
1539 		end_index = i_size >> PAGE_CACHE_SHIFT;
1540 		if (index > end_index)
1541 			break;
1542 		if (index == end_index) {
1543 			nr = i_size & ~PAGE_CACHE_MASK;
1544 			if (nr <= offset)
1545 				break;
1546 		}
1547 
1548 		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1549 		if (desc->error) {
1550 			if (desc->error == -EINVAL)
1551 				desc->error = 0;
1552 			break;
1553 		}
1554 
1555 		/*
1556 		 * We must evaluate after, since reads (unlike writes)
1557 		 * are called without i_mutex protection against truncate
1558 		 */
1559 		nr = PAGE_CACHE_SIZE;
1560 		i_size = i_size_read(inode);
1561 		end_index = i_size >> PAGE_CACHE_SHIFT;
1562 		if (index == end_index) {
1563 			nr = i_size & ~PAGE_CACHE_MASK;
1564 			if (nr <= offset) {
1565 				if (page)
1566 					page_cache_release(page);
1567 				break;
1568 			}
1569 		}
1570 		nr -= offset;
1571 
1572 		if (page) {
1573 			/*
1574 			 * If users can be writing to this page using arbitrary
1575 			 * virtual addresses, take care about potential aliasing
1576 			 * before reading the page on the kernel side.
1577 			 */
1578 			if (mapping_writably_mapped(mapping))
1579 				flush_dcache_page(page);
1580 			/*
1581 			 * Mark the page accessed if we read the beginning.
1582 			 */
1583 			if (!offset)
1584 				mark_page_accessed(page);
1585 		} else {
1586 			page = ZERO_PAGE(0);
1587 			page_cache_get(page);
1588 		}
1589 
1590 		/*
1591 		 * Ok, we have the page, and it's up-to-date, so
1592 		 * now we can copy it to user space...
1593 		 *
1594 		 * The actor routine returns how many bytes were actually used..
1595 		 * NOTE! This may not be the same as how much of a user buffer
1596 		 * we filled up (we may be padding etc), so we can only update
1597 		 * "pos" here (the actor routine has to update the user buffer
1598 		 * pointers and the remaining count).
1599 		 */
1600 		ret = actor(desc, page, offset, nr);
1601 		offset += ret;
1602 		index += offset >> PAGE_CACHE_SHIFT;
1603 		offset &= ~PAGE_CACHE_MASK;
1604 
1605 		page_cache_release(page);
1606 		if (ret != nr || !desc->count)
1607 			break;
1608 
1609 		cond_resched();
1610 	}
1611 
1612 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1613 	file_accessed(filp);
1614 }
1615 
1616 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1617 {
1618 	read_descriptor_t desc;
1619 
1620 	if ((ssize_t) count < 0)
1621 		return -EINVAL;
1622 	if (!access_ok(VERIFY_WRITE, buf, count))
1623 		return -EFAULT;
1624 	if (!count)
1625 		return 0;
1626 
1627 	desc.written = 0;
1628 	desc.count = count;
1629 	desc.arg.buf = buf;
1630 	desc.error = 0;
1631 
1632 	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1633 	if (desc.written)
1634 		return desc.written;
1635 	return desc.error;
1636 }
1637 
1638 static ssize_t shmem_file_sendfile(struct file *in_file, loff_t *ppos,
1639 			 size_t count, read_actor_t actor, void *target)
1640 {
1641 	read_descriptor_t desc;
1642 
1643 	if (!count)
1644 		return 0;
1645 
1646 	desc.written = 0;
1647 	desc.count = count;
1648 	desc.arg.data = target;
1649 	desc.error = 0;
1650 
1651 	do_shmem_file_read(in_file, ppos, &desc, actor);
1652 	if (desc.written)
1653 		return desc.written;
1654 	return desc.error;
1655 }
1656 
1657 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1658 {
1659 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1660 
1661 	buf->f_type = TMPFS_MAGIC;
1662 	buf->f_bsize = PAGE_CACHE_SIZE;
1663 	buf->f_namelen = NAME_MAX;
1664 	spin_lock(&sbinfo->stat_lock);
1665 	if (sbinfo->max_blocks) {
1666 		buf->f_blocks = sbinfo->max_blocks;
1667 		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1668 	}
1669 	if (sbinfo->max_inodes) {
1670 		buf->f_files = sbinfo->max_inodes;
1671 		buf->f_ffree = sbinfo->free_inodes;
1672 	}
1673 	/* else leave those fields 0 like simple_statfs */
1674 	spin_unlock(&sbinfo->stat_lock);
1675 	return 0;
1676 }
1677 
1678 /*
1679  * File creation. Allocate an inode, and we're done..
1680  */
1681 static int
1682 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1683 {
1684 	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1685 	int error = -ENOSPC;
1686 
1687 	if (inode) {
1688 		error = security_inode_init_security(inode, dir, NULL, NULL,
1689 						     NULL);
1690 		if (error) {
1691 			if (error != -EOPNOTSUPP) {
1692 				iput(inode);
1693 				return error;
1694 			}
1695 		}
1696 		error = shmem_acl_init(inode, dir);
1697 		if (error) {
1698 			iput(inode);
1699 			return error;
1700 		}
1701 		if (dir->i_mode & S_ISGID) {
1702 			inode->i_gid = dir->i_gid;
1703 			if (S_ISDIR(mode))
1704 				inode->i_mode |= S_ISGID;
1705 		}
1706 		dir->i_size += BOGO_DIRENT_SIZE;
1707 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1708 		d_instantiate(dentry, inode);
1709 		dget(dentry); /* Extra count - pin the dentry in core */
1710 	}
1711 	return error;
1712 }
1713 
1714 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1715 {
1716 	int error;
1717 
1718 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1719 		return error;
1720 	inc_nlink(dir);
1721 	return 0;
1722 }
1723 
1724 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1725 		struct nameidata *nd)
1726 {
1727 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1728 }
1729 
1730 /*
1731  * Link a file..
1732  */
1733 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1734 {
1735 	struct inode *inode = old_dentry->d_inode;
1736 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1737 
1738 	/*
1739 	 * No ordinary (disk based) filesystem counts links as inodes;
1740 	 * but each new link needs a new dentry, pinning lowmem, and
1741 	 * tmpfs dentries cannot be pruned until they are unlinked.
1742 	 */
1743 	if (sbinfo->max_inodes) {
1744 		spin_lock(&sbinfo->stat_lock);
1745 		if (!sbinfo->free_inodes) {
1746 			spin_unlock(&sbinfo->stat_lock);
1747 			return -ENOSPC;
1748 		}
1749 		sbinfo->free_inodes--;
1750 		spin_unlock(&sbinfo->stat_lock);
1751 	}
1752 
1753 	dir->i_size += BOGO_DIRENT_SIZE;
1754 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1755 	inc_nlink(inode);
1756 	atomic_inc(&inode->i_count);	/* New dentry reference */
1757 	dget(dentry);		/* Extra pinning count for the created dentry */
1758 	d_instantiate(dentry, inode);
1759 	return 0;
1760 }
1761 
1762 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1763 {
1764 	struct inode *inode = dentry->d_inode;
1765 
1766 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1767 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1768 		if (sbinfo->max_inodes) {
1769 			spin_lock(&sbinfo->stat_lock);
1770 			sbinfo->free_inodes++;
1771 			spin_unlock(&sbinfo->stat_lock);
1772 		}
1773 	}
1774 
1775 	dir->i_size -= BOGO_DIRENT_SIZE;
1776 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1777 	drop_nlink(inode);
1778 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1779 	return 0;
1780 }
1781 
1782 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1783 {
1784 	if (!simple_empty(dentry))
1785 		return -ENOTEMPTY;
1786 
1787 	drop_nlink(dentry->d_inode);
1788 	drop_nlink(dir);
1789 	return shmem_unlink(dir, dentry);
1790 }
1791 
1792 /*
1793  * The VFS layer already does all the dentry stuff for rename,
1794  * we just have to decrement the usage count for the target if
1795  * it exists so that the VFS layer correctly free's it when it
1796  * gets overwritten.
1797  */
1798 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1799 {
1800 	struct inode *inode = old_dentry->d_inode;
1801 	int they_are_dirs = S_ISDIR(inode->i_mode);
1802 
1803 	if (!simple_empty(new_dentry))
1804 		return -ENOTEMPTY;
1805 
1806 	if (new_dentry->d_inode) {
1807 		(void) shmem_unlink(new_dir, new_dentry);
1808 		if (they_are_dirs)
1809 			drop_nlink(old_dir);
1810 	} else if (they_are_dirs) {
1811 		drop_nlink(old_dir);
1812 		inc_nlink(new_dir);
1813 	}
1814 
1815 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1816 	new_dir->i_size += BOGO_DIRENT_SIZE;
1817 	old_dir->i_ctime = old_dir->i_mtime =
1818 	new_dir->i_ctime = new_dir->i_mtime =
1819 	inode->i_ctime = CURRENT_TIME;
1820 	return 0;
1821 }
1822 
1823 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1824 {
1825 	int error;
1826 	int len;
1827 	struct inode *inode;
1828 	struct page *page = NULL;
1829 	char *kaddr;
1830 	struct shmem_inode_info *info;
1831 
1832 	len = strlen(symname) + 1;
1833 	if (len > PAGE_CACHE_SIZE)
1834 		return -ENAMETOOLONG;
1835 
1836 	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1837 	if (!inode)
1838 		return -ENOSPC;
1839 
1840 	error = security_inode_init_security(inode, dir, NULL, NULL,
1841 					     NULL);
1842 	if (error) {
1843 		if (error != -EOPNOTSUPP) {
1844 			iput(inode);
1845 			return error;
1846 		}
1847 		error = 0;
1848 	}
1849 
1850 	info = SHMEM_I(inode);
1851 	inode->i_size = len-1;
1852 	if (len <= (char *)inode - (char *)info) {
1853 		/* do it inline */
1854 		memcpy(info, symname, len);
1855 		inode->i_op = &shmem_symlink_inline_operations;
1856 	} else {
1857 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1858 		if (error) {
1859 			iput(inode);
1860 			return error;
1861 		}
1862 		inode->i_op = &shmem_symlink_inode_operations;
1863 		kaddr = kmap_atomic(page, KM_USER0);
1864 		memcpy(kaddr, symname, len);
1865 		kunmap_atomic(kaddr, KM_USER0);
1866 		set_page_dirty(page);
1867 		page_cache_release(page);
1868 	}
1869 	if (dir->i_mode & S_ISGID)
1870 		inode->i_gid = dir->i_gid;
1871 	dir->i_size += BOGO_DIRENT_SIZE;
1872 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1873 	d_instantiate(dentry, inode);
1874 	dget(dentry);
1875 	return 0;
1876 }
1877 
1878 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1879 {
1880 	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1881 	return NULL;
1882 }
1883 
1884 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1885 {
1886 	struct page *page = NULL;
1887 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1888 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1889 	return page;
1890 }
1891 
1892 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1893 {
1894 	if (!IS_ERR(nd_get_link(nd))) {
1895 		struct page *page = cookie;
1896 		kunmap(page);
1897 		mark_page_accessed(page);
1898 		page_cache_release(page);
1899 	}
1900 }
1901 
1902 static struct inode_operations shmem_symlink_inline_operations = {
1903 	.readlink	= generic_readlink,
1904 	.follow_link	= shmem_follow_link_inline,
1905 };
1906 
1907 static struct inode_operations shmem_symlink_inode_operations = {
1908 	.truncate	= shmem_truncate,
1909 	.readlink	= generic_readlink,
1910 	.follow_link	= shmem_follow_link,
1911 	.put_link	= shmem_put_link,
1912 };
1913 
1914 #ifdef CONFIG_TMPFS_POSIX_ACL
1915 /**
1916  * Superblocks without xattr inode operations will get security.* xattr
1917  * support from the VFS "for free". As soon as we have any other xattrs
1918  * like ACLs, we also need to implement the security.* handlers at
1919  * filesystem level, though.
1920  */
1921 
1922 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1923 					size_t list_len, const char *name,
1924 					size_t name_len)
1925 {
1926 	return security_inode_listsecurity(inode, list, list_len);
1927 }
1928 
1929 static int shmem_xattr_security_get(struct inode *inode, const char *name,
1930 				    void *buffer, size_t size)
1931 {
1932 	if (strcmp(name, "") == 0)
1933 		return -EINVAL;
1934 	return security_inode_getsecurity(inode, name, buffer, size,
1935 					  -EOPNOTSUPP);
1936 }
1937 
1938 static int shmem_xattr_security_set(struct inode *inode, const char *name,
1939 				    const void *value, size_t size, int flags)
1940 {
1941 	if (strcmp(name, "") == 0)
1942 		return -EINVAL;
1943 	return security_inode_setsecurity(inode, name, value, size, flags);
1944 }
1945 
1946 static struct xattr_handler shmem_xattr_security_handler = {
1947 	.prefix = XATTR_SECURITY_PREFIX,
1948 	.list   = shmem_xattr_security_list,
1949 	.get    = shmem_xattr_security_get,
1950 	.set    = shmem_xattr_security_set,
1951 };
1952 
1953 static struct xattr_handler *shmem_xattr_handlers[] = {
1954 	&shmem_xattr_acl_access_handler,
1955 	&shmem_xattr_acl_default_handler,
1956 	&shmem_xattr_security_handler,
1957 	NULL
1958 };
1959 #endif
1960 
1961 static struct dentry *shmem_get_parent(struct dentry *child)
1962 {
1963 	return ERR_PTR(-ESTALE);
1964 }
1965 
1966 static int shmem_match(struct inode *ino, void *vfh)
1967 {
1968 	__u32 *fh = vfh;
1969 	__u64 inum = fh[2];
1970 	inum = (inum << 32) | fh[1];
1971 	return ino->i_ino == inum && fh[0] == ino->i_generation;
1972 }
1973 
1974 static struct dentry *shmem_get_dentry(struct super_block *sb, void *vfh)
1975 {
1976 	struct dentry *de = NULL;
1977 	struct inode *inode;
1978 	__u32 *fh = vfh;
1979 	__u64 inum = fh[2];
1980 	inum = (inum << 32) | fh[1];
1981 
1982 	inode = ilookup5(sb, (unsigned long)(inum+fh[0]), shmem_match, vfh);
1983 	if (inode) {
1984 		de = d_find_alias(inode);
1985 		iput(inode);
1986 	}
1987 
1988 	return de? de: ERR_PTR(-ESTALE);
1989 }
1990 
1991 static struct dentry *shmem_decode_fh(struct super_block *sb, __u32 *fh,
1992 		int len, int type,
1993 		int (*acceptable)(void *context, struct dentry *de),
1994 		void *context)
1995 {
1996 	if (len < 3)
1997 		return ERR_PTR(-ESTALE);
1998 
1999 	return sb->s_export_op->find_exported_dentry(sb, fh, NULL, acceptable,
2000 							context);
2001 }
2002 
2003 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2004 				int connectable)
2005 {
2006 	struct inode *inode = dentry->d_inode;
2007 
2008 	if (*len < 3)
2009 		return 255;
2010 
2011 	if (hlist_unhashed(&inode->i_hash)) {
2012 		/* Unfortunately insert_inode_hash is not idempotent,
2013 		 * so as we hash inodes here rather than at creation
2014 		 * time, we need a lock to ensure we only try
2015 		 * to do it once
2016 		 */
2017 		static DEFINE_SPINLOCK(lock);
2018 		spin_lock(&lock);
2019 		if (hlist_unhashed(&inode->i_hash))
2020 			__insert_inode_hash(inode,
2021 					    inode->i_ino + inode->i_generation);
2022 		spin_unlock(&lock);
2023 	}
2024 
2025 	fh[0] = inode->i_generation;
2026 	fh[1] = inode->i_ino;
2027 	fh[2] = ((__u64)inode->i_ino) >> 32;
2028 
2029 	*len = 3;
2030 	return 1;
2031 }
2032 
2033 static struct export_operations shmem_export_ops = {
2034 	.get_parent     = shmem_get_parent,
2035 	.get_dentry     = shmem_get_dentry,
2036 	.encode_fh      = shmem_encode_fh,
2037 	.decode_fh      = shmem_decode_fh,
2038 };
2039 
2040 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2041 	gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2042 	int *policy, nodemask_t *policy_nodes)
2043 {
2044 	char *this_char, *value, *rest;
2045 
2046 	while (options != NULL) {
2047 		this_char = options;
2048 		for (;;) {
2049 			/*
2050 			 * NUL-terminate this option: unfortunately,
2051 			 * mount options form a comma-separated list,
2052 			 * but mpol's nodelist may also contain commas.
2053 			 */
2054 			options = strchr(options, ',');
2055 			if (options == NULL)
2056 				break;
2057 			options++;
2058 			if (!isdigit(*options)) {
2059 				options[-1] = '\0';
2060 				break;
2061 			}
2062 		}
2063 		if (!*this_char)
2064 			continue;
2065 		if ((value = strchr(this_char,'=')) != NULL) {
2066 			*value++ = 0;
2067 		} else {
2068 			printk(KERN_ERR
2069 			    "tmpfs: No value for mount option '%s'\n",
2070 			    this_char);
2071 			return 1;
2072 		}
2073 
2074 		if (!strcmp(this_char,"size")) {
2075 			unsigned long long size;
2076 			size = memparse(value,&rest);
2077 			if (*rest == '%') {
2078 				size <<= PAGE_SHIFT;
2079 				size *= totalram_pages;
2080 				do_div(size, 100);
2081 				rest++;
2082 			}
2083 			if (*rest)
2084 				goto bad_val;
2085 			*blocks = size >> PAGE_CACHE_SHIFT;
2086 		} else if (!strcmp(this_char,"nr_blocks")) {
2087 			*blocks = memparse(value,&rest);
2088 			if (*rest)
2089 				goto bad_val;
2090 		} else if (!strcmp(this_char,"nr_inodes")) {
2091 			*inodes = memparse(value,&rest);
2092 			if (*rest)
2093 				goto bad_val;
2094 		} else if (!strcmp(this_char,"mode")) {
2095 			if (!mode)
2096 				continue;
2097 			*mode = simple_strtoul(value,&rest,8);
2098 			if (*rest)
2099 				goto bad_val;
2100 		} else if (!strcmp(this_char,"uid")) {
2101 			if (!uid)
2102 				continue;
2103 			*uid = simple_strtoul(value,&rest,0);
2104 			if (*rest)
2105 				goto bad_val;
2106 		} else if (!strcmp(this_char,"gid")) {
2107 			if (!gid)
2108 				continue;
2109 			*gid = simple_strtoul(value,&rest,0);
2110 			if (*rest)
2111 				goto bad_val;
2112 		} else if (!strcmp(this_char,"mpol")) {
2113 			if (shmem_parse_mpol(value,policy,policy_nodes))
2114 				goto bad_val;
2115 		} else {
2116 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2117 			       this_char);
2118 			return 1;
2119 		}
2120 	}
2121 	return 0;
2122 
2123 bad_val:
2124 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2125 	       value, this_char);
2126 	return 1;
2127 
2128 }
2129 
2130 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2131 {
2132 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2133 	unsigned long max_blocks = sbinfo->max_blocks;
2134 	unsigned long max_inodes = sbinfo->max_inodes;
2135 	int policy = sbinfo->policy;
2136 	nodemask_t policy_nodes = sbinfo->policy_nodes;
2137 	unsigned long blocks;
2138 	unsigned long inodes;
2139 	int error = -EINVAL;
2140 
2141 	if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2142 				&max_inodes, &policy, &policy_nodes))
2143 		return error;
2144 
2145 	spin_lock(&sbinfo->stat_lock);
2146 	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2147 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2148 	if (max_blocks < blocks)
2149 		goto out;
2150 	if (max_inodes < inodes)
2151 		goto out;
2152 	/*
2153 	 * Those tests also disallow limited->unlimited while any are in
2154 	 * use, so i_blocks will always be zero when max_blocks is zero;
2155 	 * but we must separately disallow unlimited->limited, because
2156 	 * in that case we have no record of how much is already in use.
2157 	 */
2158 	if (max_blocks && !sbinfo->max_blocks)
2159 		goto out;
2160 	if (max_inodes && !sbinfo->max_inodes)
2161 		goto out;
2162 
2163 	error = 0;
2164 	sbinfo->max_blocks  = max_blocks;
2165 	sbinfo->free_blocks = max_blocks - blocks;
2166 	sbinfo->max_inodes  = max_inodes;
2167 	sbinfo->free_inodes = max_inodes - inodes;
2168 	sbinfo->policy = policy;
2169 	sbinfo->policy_nodes = policy_nodes;
2170 out:
2171 	spin_unlock(&sbinfo->stat_lock);
2172 	return error;
2173 }
2174 #endif
2175 
2176 static void shmem_put_super(struct super_block *sb)
2177 {
2178 	kfree(sb->s_fs_info);
2179 	sb->s_fs_info = NULL;
2180 }
2181 
2182 static int shmem_fill_super(struct super_block *sb,
2183 			    void *data, int silent)
2184 {
2185 	struct inode *inode;
2186 	struct dentry *root;
2187 	int mode   = S_IRWXUGO | S_ISVTX;
2188 	uid_t uid = current->fsuid;
2189 	gid_t gid = current->fsgid;
2190 	int err = -ENOMEM;
2191 	struct shmem_sb_info *sbinfo;
2192 	unsigned long blocks = 0;
2193 	unsigned long inodes = 0;
2194 	int policy = MPOL_DEFAULT;
2195 	nodemask_t policy_nodes = node_online_map;
2196 
2197 #ifdef CONFIG_TMPFS
2198 	/*
2199 	 * Per default we only allow half of the physical ram per
2200 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2201 	 * but the internal instance is left unlimited.
2202 	 */
2203 	if (!(sb->s_flags & MS_NOUSER)) {
2204 		blocks = totalram_pages / 2;
2205 		inodes = totalram_pages - totalhigh_pages;
2206 		if (inodes > blocks)
2207 			inodes = blocks;
2208 		if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2209 					&inodes, &policy, &policy_nodes))
2210 			return -EINVAL;
2211 	}
2212 	sb->s_export_op = &shmem_export_ops;
2213 #else
2214 	sb->s_flags |= MS_NOUSER;
2215 #endif
2216 
2217 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2218 	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2219 				L1_CACHE_BYTES), GFP_KERNEL);
2220 	if (!sbinfo)
2221 		return -ENOMEM;
2222 
2223 	spin_lock_init(&sbinfo->stat_lock);
2224 	sbinfo->max_blocks = blocks;
2225 	sbinfo->free_blocks = blocks;
2226 	sbinfo->max_inodes = inodes;
2227 	sbinfo->free_inodes = inodes;
2228 	sbinfo->policy = policy;
2229 	sbinfo->policy_nodes = policy_nodes;
2230 
2231 	sb->s_fs_info = sbinfo;
2232 	sb->s_maxbytes = SHMEM_MAX_BYTES;
2233 	sb->s_blocksize = PAGE_CACHE_SIZE;
2234 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2235 	sb->s_magic = TMPFS_MAGIC;
2236 	sb->s_op = &shmem_ops;
2237 	sb->s_time_gran = 1;
2238 #ifdef CONFIG_TMPFS_POSIX_ACL
2239 	sb->s_xattr = shmem_xattr_handlers;
2240 	sb->s_flags |= MS_POSIXACL;
2241 #endif
2242 
2243 	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2244 	if (!inode)
2245 		goto failed;
2246 	inode->i_uid = uid;
2247 	inode->i_gid = gid;
2248 	root = d_alloc_root(inode);
2249 	if (!root)
2250 		goto failed_iput;
2251 	sb->s_root = root;
2252 	return 0;
2253 
2254 failed_iput:
2255 	iput(inode);
2256 failed:
2257 	shmem_put_super(sb);
2258 	return err;
2259 }
2260 
2261 static struct kmem_cache *shmem_inode_cachep;
2262 
2263 static struct inode *shmem_alloc_inode(struct super_block *sb)
2264 {
2265 	struct shmem_inode_info *p;
2266 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2267 	if (!p)
2268 		return NULL;
2269 	return &p->vfs_inode;
2270 }
2271 
2272 static void shmem_destroy_inode(struct inode *inode)
2273 {
2274 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2275 		/* only struct inode is valid if it's an inline symlink */
2276 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2277 	}
2278 	shmem_acl_destroy_inode(inode);
2279 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2280 }
2281 
2282 static void init_once(void *foo, struct kmem_cache *cachep,
2283 		      unsigned long flags)
2284 {
2285 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2286 
2287 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2288 	    SLAB_CTOR_CONSTRUCTOR) {
2289 		inode_init_once(&p->vfs_inode);
2290 #ifdef CONFIG_TMPFS_POSIX_ACL
2291 		p->i_acl = NULL;
2292 		p->i_default_acl = NULL;
2293 #endif
2294 	}
2295 }
2296 
2297 static int init_inodecache(void)
2298 {
2299 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2300 				sizeof(struct shmem_inode_info),
2301 				0, 0, init_once, NULL);
2302 	if (shmem_inode_cachep == NULL)
2303 		return -ENOMEM;
2304 	return 0;
2305 }
2306 
2307 static void destroy_inodecache(void)
2308 {
2309 	kmem_cache_destroy(shmem_inode_cachep);
2310 }
2311 
2312 static const struct address_space_operations shmem_aops = {
2313 	.writepage	= shmem_writepage,
2314 	.set_page_dirty	= __set_page_dirty_nobuffers,
2315 #ifdef CONFIG_TMPFS
2316 	.prepare_write	= shmem_prepare_write,
2317 	.commit_write	= simple_commit_write,
2318 #endif
2319 	.migratepage	= migrate_page,
2320 };
2321 
2322 static struct file_operations shmem_file_operations = {
2323 	.mmap		= shmem_mmap,
2324 #ifdef CONFIG_TMPFS
2325 	.llseek		= generic_file_llseek,
2326 	.read		= shmem_file_read,
2327 	.write		= shmem_file_write,
2328 	.fsync		= simple_sync_file,
2329 	.sendfile	= shmem_file_sendfile,
2330 #endif
2331 };
2332 
2333 static struct inode_operations shmem_inode_operations = {
2334 	.truncate	= shmem_truncate,
2335 	.setattr	= shmem_notify_change,
2336 	.truncate_range	= shmem_truncate_range,
2337 #ifdef CONFIG_TMPFS_POSIX_ACL
2338 	.setxattr	= generic_setxattr,
2339 	.getxattr	= generic_getxattr,
2340 	.listxattr	= generic_listxattr,
2341 	.removexattr	= generic_removexattr,
2342 	.permission	= shmem_permission,
2343 #endif
2344 
2345 };
2346 
2347 static struct inode_operations shmem_dir_inode_operations = {
2348 #ifdef CONFIG_TMPFS
2349 	.create		= shmem_create,
2350 	.lookup		= simple_lookup,
2351 	.link		= shmem_link,
2352 	.unlink		= shmem_unlink,
2353 	.symlink	= shmem_symlink,
2354 	.mkdir		= shmem_mkdir,
2355 	.rmdir		= shmem_rmdir,
2356 	.mknod		= shmem_mknod,
2357 	.rename		= shmem_rename,
2358 #endif
2359 #ifdef CONFIG_TMPFS_POSIX_ACL
2360 	.setattr	= shmem_notify_change,
2361 	.setxattr	= generic_setxattr,
2362 	.getxattr	= generic_getxattr,
2363 	.listxattr	= generic_listxattr,
2364 	.removexattr	= generic_removexattr,
2365 	.permission	= shmem_permission,
2366 #endif
2367 };
2368 
2369 static struct inode_operations shmem_special_inode_operations = {
2370 #ifdef CONFIG_TMPFS_POSIX_ACL
2371 	.setattr	= shmem_notify_change,
2372 	.setxattr	= generic_setxattr,
2373 	.getxattr	= generic_getxattr,
2374 	.listxattr	= generic_listxattr,
2375 	.removexattr	= generic_removexattr,
2376 	.permission	= shmem_permission,
2377 #endif
2378 };
2379 
2380 static struct super_operations shmem_ops = {
2381 	.alloc_inode	= shmem_alloc_inode,
2382 	.destroy_inode	= shmem_destroy_inode,
2383 #ifdef CONFIG_TMPFS
2384 	.statfs		= shmem_statfs,
2385 	.remount_fs	= shmem_remount_fs,
2386 #endif
2387 	.delete_inode	= shmem_delete_inode,
2388 	.drop_inode	= generic_delete_inode,
2389 	.put_super	= shmem_put_super,
2390 };
2391 
2392 static struct vm_operations_struct shmem_vm_ops = {
2393 	.nopage		= shmem_nopage,
2394 	.populate	= shmem_populate,
2395 #ifdef CONFIG_NUMA
2396 	.set_policy     = shmem_set_policy,
2397 	.get_policy     = shmem_get_policy,
2398 #endif
2399 };
2400 
2401 
2402 static int shmem_get_sb(struct file_system_type *fs_type,
2403 	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2404 {
2405 	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2406 }
2407 
2408 static struct file_system_type tmpfs_fs_type = {
2409 	.owner		= THIS_MODULE,
2410 	.name		= "tmpfs",
2411 	.get_sb		= shmem_get_sb,
2412 	.kill_sb	= kill_litter_super,
2413 };
2414 static struct vfsmount *shm_mnt;
2415 
2416 static int __init init_tmpfs(void)
2417 {
2418 	int error;
2419 
2420 	error = init_inodecache();
2421 	if (error)
2422 		goto out3;
2423 
2424 	error = register_filesystem(&tmpfs_fs_type);
2425 	if (error) {
2426 		printk(KERN_ERR "Could not register tmpfs\n");
2427 		goto out2;
2428 	}
2429 
2430 	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2431 				tmpfs_fs_type.name, NULL);
2432 	if (IS_ERR(shm_mnt)) {
2433 		error = PTR_ERR(shm_mnt);
2434 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2435 		goto out1;
2436 	}
2437 	return 0;
2438 
2439 out1:
2440 	unregister_filesystem(&tmpfs_fs_type);
2441 out2:
2442 	destroy_inodecache();
2443 out3:
2444 	shm_mnt = ERR_PTR(error);
2445 	return error;
2446 }
2447 module_init(init_tmpfs)
2448 
2449 /*
2450  * shmem_file_setup - get an unlinked file living in tmpfs
2451  *
2452  * @name: name for dentry (to be seen in /proc/<pid>/maps
2453  * @size: size to be set for the file
2454  *
2455  */
2456 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2457 {
2458 	int error;
2459 	struct file *file;
2460 	struct inode *inode;
2461 	struct dentry *dentry, *root;
2462 	struct qstr this;
2463 
2464 	if (IS_ERR(shm_mnt))
2465 		return (void *)shm_mnt;
2466 
2467 	if (size < 0 || size > SHMEM_MAX_BYTES)
2468 		return ERR_PTR(-EINVAL);
2469 
2470 	if (shmem_acct_size(flags, size))
2471 		return ERR_PTR(-ENOMEM);
2472 
2473 	error = -ENOMEM;
2474 	this.name = name;
2475 	this.len = strlen(name);
2476 	this.hash = 0; /* will go */
2477 	root = shm_mnt->mnt_root;
2478 	dentry = d_alloc(root, &this);
2479 	if (!dentry)
2480 		goto put_memory;
2481 
2482 	error = -ENFILE;
2483 	file = get_empty_filp();
2484 	if (!file)
2485 		goto put_dentry;
2486 
2487 	error = -ENOSPC;
2488 	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2489 	if (!inode)
2490 		goto close_file;
2491 
2492 	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2493 	d_instantiate(dentry, inode);
2494 	inode->i_size = size;
2495 	inode->i_nlink = 0;	/* It is unlinked */
2496 	file->f_vfsmnt = mntget(shm_mnt);
2497 	file->f_dentry = dentry;
2498 	file->f_mapping = inode->i_mapping;
2499 	file->f_op = &shmem_file_operations;
2500 	file->f_mode = FMODE_WRITE | FMODE_READ;
2501 	return file;
2502 
2503 close_file:
2504 	put_filp(file);
2505 put_dentry:
2506 	dput(dentry);
2507 put_memory:
2508 	shmem_unacct_size(flags, size);
2509 	return ERR_PTR(error);
2510 }
2511 
2512 /*
2513  * shmem_zero_setup - setup a shared anonymous mapping
2514  *
2515  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2516  */
2517 int shmem_zero_setup(struct vm_area_struct *vma)
2518 {
2519 	struct file *file;
2520 	loff_t size = vma->vm_end - vma->vm_start;
2521 
2522 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2523 	if (IS_ERR(file))
2524 		return PTR_ERR(file);
2525 
2526 	if (vma->vm_file)
2527 		fput(vma->vm_file);
2528 	vma->vm_file = file;
2529 	vma->vm_ops = &shmem_vm_ops;
2530 	return 0;
2531 }
2532