1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/pagemap.h> 29 #include <linux/file.h> 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/swap.h> 33 34 static struct vfsmount *shm_mnt; 35 36 #ifdef CONFIG_SHMEM 37 /* 38 * This virtual memory filesystem is heavily based on the ramfs. It 39 * extends ramfs by the ability to use swap and honor resource limits 40 * which makes it a completely usable filesystem. 41 */ 42 43 #include <linux/xattr.h> 44 #include <linux/exportfs.h> 45 #include <linux/posix_acl.h> 46 #include <linux/generic_acl.h> 47 #include <linux/mman.h> 48 #include <linux/string.h> 49 #include <linux/slab.h> 50 #include <linux/backing-dev.h> 51 #include <linux/shmem_fs.h> 52 #include <linux/writeback.h> 53 #include <linux/blkdev.h> 54 #include <linux/pagevec.h> 55 #include <linux/percpu_counter.h> 56 #include <linux/falloc.h> 57 #include <linux/splice.h> 58 #include <linux/security.h> 59 #include <linux/swapops.h> 60 #include <linux/mempolicy.h> 61 #include <linux/namei.h> 62 #include <linux/ctype.h> 63 #include <linux/migrate.h> 64 #include <linux/highmem.h> 65 #include <linux/seq_file.h> 66 #include <linux/magic.h> 67 68 #include <asm/uaccess.h> 69 #include <asm/pgtable.h> 70 71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 73 74 /* Pretend that each entry is of this size in directory's i_size */ 75 #define BOGO_DIRENT_SIZE 20 76 77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 78 #define SHORT_SYMLINK_LEN 128 79 80 struct shmem_xattr { 81 struct list_head list; /* anchored by shmem_inode_info->xattr_list */ 82 char *name; /* xattr name */ 83 size_t size; 84 char value[0]; 85 }; 86 87 /* 88 * shmem_fallocate and shmem_writepage communicate via inode->i_private 89 * (with i_mutex making sure that it has only one user at a time): 90 * we would prefer not to enlarge the shmem inode just for that. 91 */ 92 struct shmem_falloc { 93 pgoff_t start; /* start of range currently being fallocated */ 94 pgoff_t next; /* the next page offset to be fallocated */ 95 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 96 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 97 }; 98 99 /* Flag allocation requirements to shmem_getpage */ 100 enum sgp_type { 101 SGP_READ, /* don't exceed i_size, don't allocate page */ 102 SGP_CACHE, /* don't exceed i_size, may allocate page */ 103 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 104 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ 105 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ 106 }; 107 108 #ifdef CONFIG_TMPFS 109 static unsigned long shmem_default_max_blocks(void) 110 { 111 return totalram_pages / 2; 112 } 113 114 static unsigned long shmem_default_max_inodes(void) 115 { 116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 117 } 118 #endif 119 120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 121 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 122 struct shmem_inode_info *info, pgoff_t index); 123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 124 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); 125 126 static inline int shmem_getpage(struct inode *inode, pgoff_t index, 127 struct page **pagep, enum sgp_type sgp, int *fault_type) 128 { 129 return shmem_getpage_gfp(inode, index, pagep, sgp, 130 mapping_gfp_mask(inode->i_mapping), fault_type); 131 } 132 133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 134 { 135 return sb->s_fs_info; 136 } 137 138 /* 139 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 140 * for shared memory and for shared anonymous (/dev/zero) mappings 141 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 142 * consistent with the pre-accounting of private mappings ... 143 */ 144 static inline int shmem_acct_size(unsigned long flags, loff_t size) 145 { 146 return (flags & VM_NORESERVE) ? 147 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 148 } 149 150 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 151 { 152 if (!(flags & VM_NORESERVE)) 153 vm_unacct_memory(VM_ACCT(size)); 154 } 155 156 /* 157 * ... whereas tmpfs objects are accounted incrementally as 158 * pages are allocated, in order to allow huge sparse files. 159 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 160 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 161 */ 162 static inline int shmem_acct_block(unsigned long flags) 163 { 164 return (flags & VM_NORESERVE) ? 165 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0; 166 } 167 168 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 169 { 170 if (flags & VM_NORESERVE) 171 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 172 } 173 174 static const struct super_operations shmem_ops; 175 static const struct address_space_operations shmem_aops; 176 static const struct file_operations shmem_file_operations; 177 static const struct inode_operations shmem_inode_operations; 178 static const struct inode_operations shmem_dir_inode_operations; 179 static const struct inode_operations shmem_special_inode_operations; 180 static const struct vm_operations_struct shmem_vm_ops; 181 182 static struct backing_dev_info shmem_backing_dev_info __read_mostly = { 183 .ra_pages = 0, /* No readahead */ 184 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 185 }; 186 187 static LIST_HEAD(shmem_swaplist); 188 static DEFINE_MUTEX(shmem_swaplist_mutex); 189 190 static int shmem_reserve_inode(struct super_block *sb) 191 { 192 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 193 if (sbinfo->max_inodes) { 194 spin_lock(&sbinfo->stat_lock); 195 if (!sbinfo->free_inodes) { 196 spin_unlock(&sbinfo->stat_lock); 197 return -ENOSPC; 198 } 199 sbinfo->free_inodes--; 200 spin_unlock(&sbinfo->stat_lock); 201 } 202 return 0; 203 } 204 205 static void shmem_free_inode(struct super_block *sb) 206 { 207 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 208 if (sbinfo->max_inodes) { 209 spin_lock(&sbinfo->stat_lock); 210 sbinfo->free_inodes++; 211 spin_unlock(&sbinfo->stat_lock); 212 } 213 } 214 215 /** 216 * shmem_recalc_inode - recalculate the block usage of an inode 217 * @inode: inode to recalc 218 * 219 * We have to calculate the free blocks since the mm can drop 220 * undirtied hole pages behind our back. 221 * 222 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 223 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 224 * 225 * It has to be called with the spinlock held. 226 */ 227 static void shmem_recalc_inode(struct inode *inode) 228 { 229 struct shmem_inode_info *info = SHMEM_I(inode); 230 long freed; 231 232 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 233 if (freed > 0) { 234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 235 if (sbinfo->max_blocks) 236 percpu_counter_add(&sbinfo->used_blocks, -freed); 237 info->alloced -= freed; 238 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 239 shmem_unacct_blocks(info->flags, freed); 240 } 241 } 242 243 /* 244 * Replace item expected in radix tree by a new item, while holding tree lock. 245 */ 246 static int shmem_radix_tree_replace(struct address_space *mapping, 247 pgoff_t index, void *expected, void *replacement) 248 { 249 void **pslot; 250 void *item = NULL; 251 252 VM_BUG_ON(!expected); 253 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 254 if (pslot) 255 item = radix_tree_deref_slot_protected(pslot, 256 &mapping->tree_lock); 257 if (item != expected) 258 return -ENOENT; 259 if (replacement) 260 radix_tree_replace_slot(pslot, replacement); 261 else 262 radix_tree_delete(&mapping->page_tree, index); 263 return 0; 264 } 265 266 /* 267 * Like add_to_page_cache_locked, but error if expected item has gone. 268 */ 269 static int shmem_add_to_page_cache(struct page *page, 270 struct address_space *mapping, 271 pgoff_t index, gfp_t gfp, void *expected) 272 { 273 int error = 0; 274 275 VM_BUG_ON(!PageLocked(page)); 276 VM_BUG_ON(!PageSwapBacked(page)); 277 278 if (!expected) 279 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK); 280 if (!error) { 281 page_cache_get(page); 282 page->mapping = mapping; 283 page->index = index; 284 285 spin_lock_irq(&mapping->tree_lock); 286 if (!expected) 287 error = radix_tree_insert(&mapping->page_tree, 288 index, page); 289 else 290 error = shmem_radix_tree_replace(mapping, index, 291 expected, page); 292 if (!error) { 293 mapping->nrpages++; 294 __inc_zone_page_state(page, NR_FILE_PAGES); 295 __inc_zone_page_state(page, NR_SHMEM); 296 spin_unlock_irq(&mapping->tree_lock); 297 } else { 298 page->mapping = NULL; 299 spin_unlock_irq(&mapping->tree_lock); 300 page_cache_release(page); 301 } 302 if (!expected) 303 radix_tree_preload_end(); 304 } 305 if (error) 306 mem_cgroup_uncharge_cache_page(page); 307 return error; 308 } 309 310 /* 311 * Like delete_from_page_cache, but substitutes swap for page. 312 */ 313 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 314 { 315 struct address_space *mapping = page->mapping; 316 int error; 317 318 spin_lock_irq(&mapping->tree_lock); 319 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 320 page->mapping = NULL; 321 mapping->nrpages--; 322 __dec_zone_page_state(page, NR_FILE_PAGES); 323 __dec_zone_page_state(page, NR_SHMEM); 324 spin_unlock_irq(&mapping->tree_lock); 325 page_cache_release(page); 326 BUG_ON(error); 327 } 328 329 /* 330 * Like find_get_pages, but collecting swap entries as well as pages. 331 */ 332 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping, 333 pgoff_t start, unsigned int nr_pages, 334 struct page **pages, pgoff_t *indices) 335 { 336 unsigned int i; 337 unsigned int ret; 338 unsigned int nr_found; 339 340 rcu_read_lock(); 341 restart: 342 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 343 (void ***)pages, indices, start, nr_pages); 344 ret = 0; 345 for (i = 0; i < nr_found; i++) { 346 struct page *page; 347 repeat: 348 page = radix_tree_deref_slot((void **)pages[i]); 349 if (unlikely(!page)) 350 continue; 351 if (radix_tree_exception(page)) { 352 if (radix_tree_deref_retry(page)) 353 goto restart; 354 /* 355 * Otherwise, we must be storing a swap entry 356 * here as an exceptional entry: so return it 357 * without attempting to raise page count. 358 */ 359 goto export; 360 } 361 if (!page_cache_get_speculative(page)) 362 goto repeat; 363 364 /* Has the page moved? */ 365 if (unlikely(page != *((void **)pages[i]))) { 366 page_cache_release(page); 367 goto repeat; 368 } 369 export: 370 indices[ret] = indices[i]; 371 pages[ret] = page; 372 ret++; 373 } 374 if (unlikely(!ret && nr_found)) 375 goto restart; 376 rcu_read_unlock(); 377 return ret; 378 } 379 380 /* 381 * Remove swap entry from radix tree, free the swap and its page cache. 382 */ 383 static int shmem_free_swap(struct address_space *mapping, 384 pgoff_t index, void *radswap) 385 { 386 int error; 387 388 spin_lock_irq(&mapping->tree_lock); 389 error = shmem_radix_tree_replace(mapping, index, radswap, NULL); 390 spin_unlock_irq(&mapping->tree_lock); 391 if (!error) 392 free_swap_and_cache(radix_to_swp_entry(radswap)); 393 return error; 394 } 395 396 /* 397 * Pagevec may contain swap entries, so shuffle up pages before releasing. 398 */ 399 static void shmem_deswap_pagevec(struct pagevec *pvec) 400 { 401 int i, j; 402 403 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 404 struct page *page = pvec->pages[i]; 405 if (!radix_tree_exceptional_entry(page)) 406 pvec->pages[j++] = page; 407 } 408 pvec->nr = j; 409 } 410 411 /* 412 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 413 */ 414 void shmem_unlock_mapping(struct address_space *mapping) 415 { 416 struct pagevec pvec; 417 pgoff_t indices[PAGEVEC_SIZE]; 418 pgoff_t index = 0; 419 420 pagevec_init(&pvec, 0); 421 /* 422 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 423 */ 424 while (!mapping_unevictable(mapping)) { 425 /* 426 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 427 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 428 */ 429 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 430 PAGEVEC_SIZE, pvec.pages, indices); 431 if (!pvec.nr) 432 break; 433 index = indices[pvec.nr - 1] + 1; 434 shmem_deswap_pagevec(&pvec); 435 check_move_unevictable_pages(pvec.pages, pvec.nr); 436 pagevec_release(&pvec); 437 cond_resched(); 438 } 439 } 440 441 /* 442 * Remove range of pages and swap entries from radix tree, and free them. 443 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 444 */ 445 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 446 bool unfalloc) 447 { 448 struct address_space *mapping = inode->i_mapping; 449 struct shmem_inode_info *info = SHMEM_I(inode); 450 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 451 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT; 452 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1); 453 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 454 struct pagevec pvec; 455 pgoff_t indices[PAGEVEC_SIZE]; 456 long nr_swaps_freed = 0; 457 pgoff_t index; 458 int i; 459 460 if (lend == -1) 461 end = -1; /* unsigned, so actually very big */ 462 463 pagevec_init(&pvec, 0); 464 index = start; 465 while (index < end) { 466 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 467 min(end - index, (pgoff_t)PAGEVEC_SIZE), 468 pvec.pages, indices); 469 if (!pvec.nr) 470 break; 471 mem_cgroup_uncharge_start(); 472 for (i = 0; i < pagevec_count(&pvec); i++) { 473 struct page *page = pvec.pages[i]; 474 475 index = indices[i]; 476 if (index >= end) 477 break; 478 479 if (radix_tree_exceptional_entry(page)) { 480 if (unfalloc) 481 continue; 482 nr_swaps_freed += !shmem_free_swap(mapping, 483 index, page); 484 continue; 485 } 486 487 if (!trylock_page(page)) 488 continue; 489 if (!unfalloc || !PageUptodate(page)) { 490 if (page->mapping == mapping) { 491 VM_BUG_ON(PageWriteback(page)); 492 truncate_inode_page(mapping, page); 493 } 494 } 495 unlock_page(page); 496 } 497 shmem_deswap_pagevec(&pvec); 498 pagevec_release(&pvec); 499 mem_cgroup_uncharge_end(); 500 cond_resched(); 501 index++; 502 } 503 504 if (partial_start) { 505 struct page *page = NULL; 506 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); 507 if (page) { 508 unsigned int top = PAGE_CACHE_SIZE; 509 if (start > end) { 510 top = partial_end; 511 partial_end = 0; 512 } 513 zero_user_segment(page, partial_start, top); 514 set_page_dirty(page); 515 unlock_page(page); 516 page_cache_release(page); 517 } 518 } 519 if (partial_end) { 520 struct page *page = NULL; 521 shmem_getpage(inode, end, &page, SGP_READ, NULL); 522 if (page) { 523 zero_user_segment(page, 0, partial_end); 524 set_page_dirty(page); 525 unlock_page(page); 526 page_cache_release(page); 527 } 528 } 529 if (start >= end) 530 return; 531 532 index = start; 533 for ( ; ; ) { 534 cond_resched(); 535 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 536 min(end - index, (pgoff_t)PAGEVEC_SIZE), 537 pvec.pages, indices); 538 if (!pvec.nr) { 539 if (index == start || unfalloc) 540 break; 541 index = start; 542 continue; 543 } 544 if ((index == start || unfalloc) && indices[0] >= end) { 545 shmem_deswap_pagevec(&pvec); 546 pagevec_release(&pvec); 547 break; 548 } 549 mem_cgroup_uncharge_start(); 550 for (i = 0; i < pagevec_count(&pvec); i++) { 551 struct page *page = pvec.pages[i]; 552 553 index = indices[i]; 554 if (index >= end) 555 break; 556 557 if (radix_tree_exceptional_entry(page)) { 558 if (unfalloc) 559 continue; 560 nr_swaps_freed += !shmem_free_swap(mapping, 561 index, page); 562 continue; 563 } 564 565 lock_page(page); 566 if (!unfalloc || !PageUptodate(page)) { 567 if (page->mapping == mapping) { 568 VM_BUG_ON(PageWriteback(page)); 569 truncate_inode_page(mapping, page); 570 } 571 } 572 unlock_page(page); 573 } 574 shmem_deswap_pagevec(&pvec); 575 pagevec_release(&pvec); 576 mem_cgroup_uncharge_end(); 577 index++; 578 } 579 580 spin_lock(&info->lock); 581 info->swapped -= nr_swaps_freed; 582 shmem_recalc_inode(inode); 583 spin_unlock(&info->lock); 584 } 585 586 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 587 { 588 shmem_undo_range(inode, lstart, lend, false); 589 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 590 } 591 EXPORT_SYMBOL_GPL(shmem_truncate_range); 592 593 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 594 { 595 struct inode *inode = dentry->d_inode; 596 int error; 597 598 error = inode_change_ok(inode, attr); 599 if (error) 600 return error; 601 602 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 603 loff_t oldsize = inode->i_size; 604 loff_t newsize = attr->ia_size; 605 606 if (newsize != oldsize) { 607 i_size_write(inode, newsize); 608 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 609 } 610 if (newsize < oldsize) { 611 loff_t holebegin = round_up(newsize, PAGE_SIZE); 612 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 613 shmem_truncate_range(inode, newsize, (loff_t)-1); 614 /* unmap again to remove racily COWed private pages */ 615 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 616 } 617 } 618 619 setattr_copy(inode, attr); 620 #ifdef CONFIG_TMPFS_POSIX_ACL 621 if (attr->ia_valid & ATTR_MODE) 622 error = generic_acl_chmod(inode); 623 #endif 624 return error; 625 } 626 627 static void shmem_evict_inode(struct inode *inode) 628 { 629 struct shmem_inode_info *info = SHMEM_I(inode); 630 struct shmem_xattr *xattr, *nxattr; 631 632 if (inode->i_mapping->a_ops == &shmem_aops) { 633 shmem_unacct_size(info->flags, inode->i_size); 634 inode->i_size = 0; 635 shmem_truncate_range(inode, 0, (loff_t)-1); 636 if (!list_empty(&info->swaplist)) { 637 mutex_lock(&shmem_swaplist_mutex); 638 list_del_init(&info->swaplist); 639 mutex_unlock(&shmem_swaplist_mutex); 640 } 641 } else 642 kfree(info->symlink); 643 644 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) { 645 kfree(xattr->name); 646 kfree(xattr); 647 } 648 BUG_ON(inode->i_blocks); 649 shmem_free_inode(inode->i_sb); 650 clear_inode(inode); 651 } 652 653 /* 654 * If swap found in inode, free it and move page from swapcache to filecache. 655 */ 656 static int shmem_unuse_inode(struct shmem_inode_info *info, 657 swp_entry_t swap, struct page **pagep) 658 { 659 struct address_space *mapping = info->vfs_inode.i_mapping; 660 void *radswap; 661 pgoff_t index; 662 gfp_t gfp; 663 int error = 0; 664 665 radswap = swp_to_radix_entry(swap); 666 index = radix_tree_locate_item(&mapping->page_tree, radswap); 667 if (index == -1) 668 return 0; 669 670 /* 671 * Move _head_ to start search for next from here. 672 * But be careful: shmem_evict_inode checks list_empty without taking 673 * mutex, and there's an instant in list_move_tail when info->swaplist 674 * would appear empty, if it were the only one on shmem_swaplist. 675 */ 676 if (shmem_swaplist.next != &info->swaplist) 677 list_move_tail(&shmem_swaplist, &info->swaplist); 678 679 gfp = mapping_gfp_mask(mapping); 680 if (shmem_should_replace_page(*pagep, gfp)) { 681 mutex_unlock(&shmem_swaplist_mutex); 682 error = shmem_replace_page(pagep, gfp, info, index); 683 mutex_lock(&shmem_swaplist_mutex); 684 /* 685 * We needed to drop mutex to make that restrictive page 686 * allocation; but the inode might already be freed by now, 687 * and we cannot refer to inode or mapping or info to check. 688 * However, we do hold page lock on the PageSwapCache page, 689 * so can check if that still has our reference remaining. 690 */ 691 if (!page_swapcount(*pagep)) 692 error = -ENOENT; 693 } 694 695 /* 696 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 697 * but also to hold up shmem_evict_inode(): so inode cannot be freed 698 * beneath us (pagelock doesn't help until the page is in pagecache). 699 */ 700 if (!error) 701 error = shmem_add_to_page_cache(*pagep, mapping, index, 702 GFP_NOWAIT, radswap); 703 if (error != -ENOMEM) { 704 /* 705 * Truncation and eviction use free_swap_and_cache(), which 706 * only does trylock page: if we raced, best clean up here. 707 */ 708 delete_from_swap_cache(*pagep); 709 set_page_dirty(*pagep); 710 if (!error) { 711 spin_lock(&info->lock); 712 info->swapped--; 713 spin_unlock(&info->lock); 714 swap_free(swap); 715 } 716 error = 1; /* not an error, but entry was found */ 717 } 718 return error; 719 } 720 721 /* 722 * Search through swapped inodes to find and replace swap by page. 723 */ 724 int shmem_unuse(swp_entry_t swap, struct page *page) 725 { 726 struct list_head *this, *next; 727 struct shmem_inode_info *info; 728 int found = 0; 729 int error = 0; 730 731 /* 732 * There's a faint possibility that swap page was replaced before 733 * caller locked it: it will come back later with the right page. 734 */ 735 if (unlikely(!PageSwapCache(page))) 736 goto out; 737 738 /* 739 * Charge page using GFP_KERNEL while we can wait, before taking 740 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 741 * Charged back to the user (not to caller) when swap account is used. 742 */ 743 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); 744 if (error) 745 goto out; 746 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 747 748 mutex_lock(&shmem_swaplist_mutex); 749 list_for_each_safe(this, next, &shmem_swaplist) { 750 info = list_entry(this, struct shmem_inode_info, swaplist); 751 if (info->swapped) 752 found = shmem_unuse_inode(info, swap, &page); 753 else 754 list_del_init(&info->swaplist); 755 cond_resched(); 756 if (found) 757 break; 758 } 759 mutex_unlock(&shmem_swaplist_mutex); 760 761 if (found < 0) 762 error = found; 763 out: 764 unlock_page(page); 765 page_cache_release(page); 766 return error; 767 } 768 769 /* 770 * Move the page from the page cache to the swap cache. 771 */ 772 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 773 { 774 struct shmem_inode_info *info; 775 struct address_space *mapping; 776 struct inode *inode; 777 swp_entry_t swap; 778 pgoff_t index; 779 780 BUG_ON(!PageLocked(page)); 781 mapping = page->mapping; 782 index = page->index; 783 inode = mapping->host; 784 info = SHMEM_I(inode); 785 if (info->flags & VM_LOCKED) 786 goto redirty; 787 if (!total_swap_pages) 788 goto redirty; 789 790 /* 791 * shmem_backing_dev_info's capabilities prevent regular writeback or 792 * sync from ever calling shmem_writepage; but a stacking filesystem 793 * might use ->writepage of its underlying filesystem, in which case 794 * tmpfs should write out to swap only in response to memory pressure, 795 * and not for the writeback threads or sync. 796 */ 797 if (!wbc->for_reclaim) { 798 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 799 goto redirty; 800 } 801 802 /* 803 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 804 * value into swapfile.c, the only way we can correctly account for a 805 * fallocated page arriving here is now to initialize it and write it. 806 * 807 * That's okay for a page already fallocated earlier, but if we have 808 * not yet completed the fallocation, then (a) we want to keep track 809 * of this page in case we have to undo it, and (b) it may not be a 810 * good idea to continue anyway, once we're pushing into swap. So 811 * reactivate the page, and let shmem_fallocate() quit when too many. 812 */ 813 if (!PageUptodate(page)) { 814 if (inode->i_private) { 815 struct shmem_falloc *shmem_falloc; 816 spin_lock(&inode->i_lock); 817 shmem_falloc = inode->i_private; 818 if (shmem_falloc && 819 index >= shmem_falloc->start && 820 index < shmem_falloc->next) 821 shmem_falloc->nr_unswapped++; 822 else 823 shmem_falloc = NULL; 824 spin_unlock(&inode->i_lock); 825 if (shmem_falloc) 826 goto redirty; 827 } 828 clear_highpage(page); 829 flush_dcache_page(page); 830 SetPageUptodate(page); 831 } 832 833 swap = get_swap_page(); 834 if (!swap.val) 835 goto redirty; 836 837 /* 838 * Add inode to shmem_unuse()'s list of swapped-out inodes, 839 * if it's not already there. Do it now before the page is 840 * moved to swap cache, when its pagelock no longer protects 841 * the inode from eviction. But don't unlock the mutex until 842 * we've incremented swapped, because shmem_unuse_inode() will 843 * prune a !swapped inode from the swaplist under this mutex. 844 */ 845 mutex_lock(&shmem_swaplist_mutex); 846 if (list_empty(&info->swaplist)) 847 list_add_tail(&info->swaplist, &shmem_swaplist); 848 849 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 850 swap_shmem_alloc(swap); 851 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 852 853 spin_lock(&info->lock); 854 info->swapped++; 855 shmem_recalc_inode(inode); 856 spin_unlock(&info->lock); 857 858 mutex_unlock(&shmem_swaplist_mutex); 859 BUG_ON(page_mapped(page)); 860 swap_writepage(page, wbc); 861 return 0; 862 } 863 864 mutex_unlock(&shmem_swaplist_mutex); 865 swapcache_free(swap, NULL); 866 redirty: 867 set_page_dirty(page); 868 if (wbc->for_reclaim) 869 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 870 unlock_page(page); 871 return 0; 872 } 873 874 #ifdef CONFIG_NUMA 875 #ifdef CONFIG_TMPFS 876 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 877 { 878 char buffer[64]; 879 880 if (!mpol || mpol->mode == MPOL_DEFAULT) 881 return; /* show nothing */ 882 883 mpol_to_str(buffer, sizeof(buffer), mpol, 1); 884 885 seq_printf(seq, ",mpol=%s", buffer); 886 } 887 888 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 889 { 890 struct mempolicy *mpol = NULL; 891 if (sbinfo->mpol) { 892 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 893 mpol = sbinfo->mpol; 894 mpol_get(mpol); 895 spin_unlock(&sbinfo->stat_lock); 896 } 897 return mpol; 898 } 899 #endif /* CONFIG_TMPFS */ 900 901 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 902 struct shmem_inode_info *info, pgoff_t index) 903 { 904 struct mempolicy mpol, *spol; 905 struct vm_area_struct pvma; 906 907 spol = mpol_cond_copy(&mpol, 908 mpol_shared_policy_lookup(&info->policy, index)); 909 910 /* Create a pseudo vma that just contains the policy */ 911 pvma.vm_start = 0; 912 pvma.vm_pgoff = index; 913 pvma.vm_ops = NULL; 914 pvma.vm_policy = spol; 915 return swapin_readahead(swap, gfp, &pvma, 0); 916 } 917 918 static struct page *shmem_alloc_page(gfp_t gfp, 919 struct shmem_inode_info *info, pgoff_t index) 920 { 921 struct vm_area_struct pvma; 922 923 /* Create a pseudo vma that just contains the policy */ 924 pvma.vm_start = 0; 925 pvma.vm_pgoff = index; 926 pvma.vm_ops = NULL; 927 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 928 929 /* 930 * alloc_page_vma() will drop the shared policy reference 931 */ 932 return alloc_page_vma(gfp, &pvma, 0); 933 } 934 #else /* !CONFIG_NUMA */ 935 #ifdef CONFIG_TMPFS 936 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 937 { 938 } 939 #endif /* CONFIG_TMPFS */ 940 941 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 942 struct shmem_inode_info *info, pgoff_t index) 943 { 944 return swapin_readahead(swap, gfp, NULL, 0); 945 } 946 947 static inline struct page *shmem_alloc_page(gfp_t gfp, 948 struct shmem_inode_info *info, pgoff_t index) 949 { 950 return alloc_page(gfp); 951 } 952 #endif /* CONFIG_NUMA */ 953 954 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 955 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 956 { 957 return NULL; 958 } 959 #endif 960 961 /* 962 * When a page is moved from swapcache to shmem filecache (either by the 963 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 964 * shmem_unuse_inode()), it may have been read in earlier from swap, in 965 * ignorance of the mapping it belongs to. If that mapping has special 966 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 967 * we may need to copy to a suitable page before moving to filecache. 968 * 969 * In a future release, this may well be extended to respect cpuset and 970 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 971 * but for now it is a simple matter of zone. 972 */ 973 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 974 { 975 return page_zonenum(page) > gfp_zone(gfp); 976 } 977 978 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 979 struct shmem_inode_info *info, pgoff_t index) 980 { 981 struct page *oldpage, *newpage; 982 struct address_space *swap_mapping; 983 pgoff_t swap_index; 984 int error; 985 986 oldpage = *pagep; 987 swap_index = page_private(oldpage); 988 swap_mapping = page_mapping(oldpage); 989 990 /* 991 * We have arrived here because our zones are constrained, so don't 992 * limit chance of success by further cpuset and node constraints. 993 */ 994 gfp &= ~GFP_CONSTRAINT_MASK; 995 newpage = shmem_alloc_page(gfp, info, index); 996 if (!newpage) 997 return -ENOMEM; 998 VM_BUG_ON(shmem_should_replace_page(newpage, gfp)); 999 1000 *pagep = newpage; 1001 page_cache_get(newpage); 1002 copy_highpage(newpage, oldpage); 1003 1004 VM_BUG_ON(!PageLocked(oldpage)); 1005 __set_page_locked(newpage); 1006 VM_BUG_ON(!PageUptodate(oldpage)); 1007 SetPageUptodate(newpage); 1008 VM_BUG_ON(!PageSwapBacked(oldpage)); 1009 SetPageSwapBacked(newpage); 1010 VM_BUG_ON(!swap_index); 1011 set_page_private(newpage, swap_index); 1012 VM_BUG_ON(!PageSwapCache(oldpage)); 1013 SetPageSwapCache(newpage); 1014 1015 /* 1016 * Our caller will very soon move newpage out of swapcache, but it's 1017 * a nice clean interface for us to replace oldpage by newpage there. 1018 */ 1019 spin_lock_irq(&swap_mapping->tree_lock); 1020 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1021 newpage); 1022 __inc_zone_page_state(newpage, NR_FILE_PAGES); 1023 __dec_zone_page_state(oldpage, NR_FILE_PAGES); 1024 spin_unlock_irq(&swap_mapping->tree_lock); 1025 BUG_ON(error); 1026 1027 mem_cgroup_replace_page_cache(oldpage, newpage); 1028 lru_cache_add_anon(newpage); 1029 1030 ClearPageSwapCache(oldpage); 1031 set_page_private(oldpage, 0); 1032 1033 unlock_page(oldpage); 1034 page_cache_release(oldpage); 1035 page_cache_release(oldpage); 1036 return 0; 1037 } 1038 1039 /* 1040 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1041 * 1042 * If we allocate a new one we do not mark it dirty. That's up to the 1043 * vm. If we swap it in we mark it dirty since we also free the swap 1044 * entry since a page cannot live in both the swap and page cache 1045 */ 1046 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1047 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) 1048 { 1049 struct address_space *mapping = inode->i_mapping; 1050 struct shmem_inode_info *info; 1051 struct shmem_sb_info *sbinfo; 1052 struct page *page; 1053 swp_entry_t swap; 1054 int error; 1055 int once = 0; 1056 int alloced = 0; 1057 1058 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT)) 1059 return -EFBIG; 1060 repeat: 1061 swap.val = 0; 1062 page = find_lock_page(mapping, index); 1063 if (radix_tree_exceptional_entry(page)) { 1064 swap = radix_to_swp_entry(page); 1065 page = NULL; 1066 } 1067 1068 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1069 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1070 error = -EINVAL; 1071 goto failed; 1072 } 1073 1074 /* fallocated page? */ 1075 if (page && !PageUptodate(page)) { 1076 if (sgp != SGP_READ) 1077 goto clear; 1078 unlock_page(page); 1079 page_cache_release(page); 1080 page = NULL; 1081 } 1082 if (page || (sgp == SGP_READ && !swap.val)) { 1083 *pagep = page; 1084 return 0; 1085 } 1086 1087 /* 1088 * Fast cache lookup did not find it: 1089 * bring it back from swap or allocate. 1090 */ 1091 info = SHMEM_I(inode); 1092 sbinfo = SHMEM_SB(inode->i_sb); 1093 1094 if (swap.val) { 1095 /* Look it up and read it in.. */ 1096 page = lookup_swap_cache(swap); 1097 if (!page) { 1098 /* here we actually do the io */ 1099 if (fault_type) 1100 *fault_type |= VM_FAULT_MAJOR; 1101 page = shmem_swapin(swap, gfp, info, index); 1102 if (!page) { 1103 error = -ENOMEM; 1104 goto failed; 1105 } 1106 } 1107 1108 /* We have to do this with page locked to prevent races */ 1109 lock_page(page); 1110 if (!PageSwapCache(page) || page->mapping) { 1111 error = -EEXIST; /* try again */ 1112 goto failed; 1113 } 1114 if (!PageUptodate(page)) { 1115 error = -EIO; 1116 goto failed; 1117 } 1118 wait_on_page_writeback(page); 1119 1120 if (shmem_should_replace_page(page, gfp)) { 1121 error = shmem_replace_page(&page, gfp, info, index); 1122 if (error) 1123 goto failed; 1124 } 1125 1126 error = mem_cgroup_cache_charge(page, current->mm, 1127 gfp & GFP_RECLAIM_MASK); 1128 if (!error) 1129 error = shmem_add_to_page_cache(page, mapping, index, 1130 gfp, swp_to_radix_entry(swap)); 1131 if (error) 1132 goto failed; 1133 1134 spin_lock(&info->lock); 1135 info->swapped--; 1136 shmem_recalc_inode(inode); 1137 spin_unlock(&info->lock); 1138 1139 delete_from_swap_cache(page); 1140 set_page_dirty(page); 1141 swap_free(swap); 1142 1143 } else { 1144 if (shmem_acct_block(info->flags)) { 1145 error = -ENOSPC; 1146 goto failed; 1147 } 1148 if (sbinfo->max_blocks) { 1149 if (percpu_counter_compare(&sbinfo->used_blocks, 1150 sbinfo->max_blocks) >= 0) { 1151 error = -ENOSPC; 1152 goto unacct; 1153 } 1154 percpu_counter_inc(&sbinfo->used_blocks); 1155 } 1156 1157 page = shmem_alloc_page(gfp, info, index); 1158 if (!page) { 1159 error = -ENOMEM; 1160 goto decused; 1161 } 1162 1163 SetPageSwapBacked(page); 1164 __set_page_locked(page); 1165 error = mem_cgroup_cache_charge(page, current->mm, 1166 gfp & GFP_RECLAIM_MASK); 1167 if (!error) 1168 error = shmem_add_to_page_cache(page, mapping, index, 1169 gfp, NULL); 1170 if (error) 1171 goto decused; 1172 lru_cache_add_anon(page); 1173 1174 spin_lock(&info->lock); 1175 info->alloced++; 1176 inode->i_blocks += BLOCKS_PER_PAGE; 1177 shmem_recalc_inode(inode); 1178 spin_unlock(&info->lock); 1179 alloced = true; 1180 1181 /* 1182 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1183 */ 1184 if (sgp == SGP_FALLOC) 1185 sgp = SGP_WRITE; 1186 clear: 1187 /* 1188 * Let SGP_WRITE caller clear ends if write does not fill page; 1189 * but SGP_FALLOC on a page fallocated earlier must initialize 1190 * it now, lest undo on failure cancel our earlier guarantee. 1191 */ 1192 if (sgp != SGP_WRITE) { 1193 clear_highpage(page); 1194 flush_dcache_page(page); 1195 SetPageUptodate(page); 1196 } 1197 if (sgp == SGP_DIRTY) 1198 set_page_dirty(page); 1199 } 1200 1201 /* Perhaps the file has been truncated since we checked */ 1202 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1203 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1204 error = -EINVAL; 1205 if (alloced) 1206 goto trunc; 1207 else 1208 goto failed; 1209 } 1210 *pagep = page; 1211 return 0; 1212 1213 /* 1214 * Error recovery. 1215 */ 1216 trunc: 1217 info = SHMEM_I(inode); 1218 ClearPageDirty(page); 1219 delete_from_page_cache(page); 1220 spin_lock(&info->lock); 1221 info->alloced--; 1222 inode->i_blocks -= BLOCKS_PER_PAGE; 1223 spin_unlock(&info->lock); 1224 decused: 1225 sbinfo = SHMEM_SB(inode->i_sb); 1226 if (sbinfo->max_blocks) 1227 percpu_counter_add(&sbinfo->used_blocks, -1); 1228 unacct: 1229 shmem_unacct_blocks(info->flags, 1); 1230 failed: 1231 if (swap.val && error != -EINVAL) { 1232 struct page *test = find_get_page(mapping, index); 1233 if (test && !radix_tree_exceptional_entry(test)) 1234 page_cache_release(test); 1235 /* Have another try if the entry has changed */ 1236 if (test != swp_to_radix_entry(swap)) 1237 error = -EEXIST; 1238 } 1239 if (page) { 1240 unlock_page(page); 1241 page_cache_release(page); 1242 } 1243 if (error == -ENOSPC && !once++) { 1244 info = SHMEM_I(inode); 1245 spin_lock(&info->lock); 1246 shmem_recalc_inode(inode); 1247 spin_unlock(&info->lock); 1248 goto repeat; 1249 } 1250 if (error == -EEXIST) 1251 goto repeat; 1252 return error; 1253 } 1254 1255 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1256 { 1257 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1258 int error; 1259 int ret = VM_FAULT_LOCKED; 1260 1261 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1262 if (error) 1263 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1264 1265 if (ret & VM_FAULT_MAJOR) { 1266 count_vm_event(PGMAJFAULT); 1267 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1268 } 1269 return ret; 1270 } 1271 1272 #ifdef CONFIG_NUMA 1273 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 1274 { 1275 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1276 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 1277 } 1278 1279 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1280 unsigned long addr) 1281 { 1282 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1283 pgoff_t index; 1284 1285 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1286 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 1287 } 1288 #endif 1289 1290 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1291 { 1292 struct inode *inode = file->f_path.dentry->d_inode; 1293 struct shmem_inode_info *info = SHMEM_I(inode); 1294 int retval = -ENOMEM; 1295 1296 spin_lock(&info->lock); 1297 if (lock && !(info->flags & VM_LOCKED)) { 1298 if (!user_shm_lock(inode->i_size, user)) 1299 goto out_nomem; 1300 info->flags |= VM_LOCKED; 1301 mapping_set_unevictable(file->f_mapping); 1302 } 1303 if (!lock && (info->flags & VM_LOCKED) && user) { 1304 user_shm_unlock(inode->i_size, user); 1305 info->flags &= ~VM_LOCKED; 1306 mapping_clear_unevictable(file->f_mapping); 1307 } 1308 retval = 0; 1309 1310 out_nomem: 1311 spin_unlock(&info->lock); 1312 return retval; 1313 } 1314 1315 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1316 { 1317 file_accessed(file); 1318 vma->vm_ops = &shmem_vm_ops; 1319 vma->vm_flags |= VM_CAN_NONLINEAR; 1320 return 0; 1321 } 1322 1323 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1324 umode_t mode, dev_t dev, unsigned long flags) 1325 { 1326 struct inode *inode; 1327 struct shmem_inode_info *info; 1328 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1329 1330 if (shmem_reserve_inode(sb)) 1331 return NULL; 1332 1333 inode = new_inode(sb); 1334 if (inode) { 1335 inode->i_ino = get_next_ino(); 1336 inode_init_owner(inode, dir, mode); 1337 inode->i_blocks = 0; 1338 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; 1339 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1340 inode->i_generation = get_seconds(); 1341 info = SHMEM_I(inode); 1342 memset(info, 0, (char *)inode - (char *)info); 1343 spin_lock_init(&info->lock); 1344 info->flags = flags & VM_NORESERVE; 1345 INIT_LIST_HEAD(&info->swaplist); 1346 INIT_LIST_HEAD(&info->xattr_list); 1347 cache_no_acl(inode); 1348 1349 switch (mode & S_IFMT) { 1350 default: 1351 inode->i_op = &shmem_special_inode_operations; 1352 init_special_inode(inode, mode, dev); 1353 break; 1354 case S_IFREG: 1355 inode->i_mapping->a_ops = &shmem_aops; 1356 inode->i_op = &shmem_inode_operations; 1357 inode->i_fop = &shmem_file_operations; 1358 mpol_shared_policy_init(&info->policy, 1359 shmem_get_sbmpol(sbinfo)); 1360 break; 1361 case S_IFDIR: 1362 inc_nlink(inode); 1363 /* Some things misbehave if size == 0 on a directory */ 1364 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1365 inode->i_op = &shmem_dir_inode_operations; 1366 inode->i_fop = &simple_dir_operations; 1367 break; 1368 case S_IFLNK: 1369 /* 1370 * Must not load anything in the rbtree, 1371 * mpol_free_shared_policy will not be called. 1372 */ 1373 mpol_shared_policy_init(&info->policy, NULL); 1374 break; 1375 } 1376 } else 1377 shmem_free_inode(sb); 1378 return inode; 1379 } 1380 1381 #ifdef CONFIG_TMPFS 1382 static const struct inode_operations shmem_symlink_inode_operations; 1383 static const struct inode_operations shmem_short_symlink_operations; 1384 1385 #ifdef CONFIG_TMPFS_XATTR 1386 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 1387 #else 1388 #define shmem_initxattrs NULL 1389 #endif 1390 1391 static int 1392 shmem_write_begin(struct file *file, struct address_space *mapping, 1393 loff_t pos, unsigned len, unsigned flags, 1394 struct page **pagep, void **fsdata) 1395 { 1396 struct inode *inode = mapping->host; 1397 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1398 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1399 } 1400 1401 static int 1402 shmem_write_end(struct file *file, struct address_space *mapping, 1403 loff_t pos, unsigned len, unsigned copied, 1404 struct page *page, void *fsdata) 1405 { 1406 struct inode *inode = mapping->host; 1407 1408 if (pos + copied > inode->i_size) 1409 i_size_write(inode, pos + copied); 1410 1411 if (!PageUptodate(page)) { 1412 if (copied < PAGE_CACHE_SIZE) { 1413 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1414 zero_user_segments(page, 0, from, 1415 from + copied, PAGE_CACHE_SIZE); 1416 } 1417 SetPageUptodate(page); 1418 } 1419 set_page_dirty(page); 1420 unlock_page(page); 1421 page_cache_release(page); 1422 1423 return copied; 1424 } 1425 1426 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor) 1427 { 1428 struct inode *inode = filp->f_path.dentry->d_inode; 1429 struct address_space *mapping = inode->i_mapping; 1430 pgoff_t index; 1431 unsigned long offset; 1432 enum sgp_type sgp = SGP_READ; 1433 1434 /* 1435 * Might this read be for a stacking filesystem? Then when reading 1436 * holes of a sparse file, we actually need to allocate those pages, 1437 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1438 */ 1439 if (segment_eq(get_fs(), KERNEL_DS)) 1440 sgp = SGP_DIRTY; 1441 1442 index = *ppos >> PAGE_CACHE_SHIFT; 1443 offset = *ppos & ~PAGE_CACHE_MASK; 1444 1445 for (;;) { 1446 struct page *page = NULL; 1447 pgoff_t end_index; 1448 unsigned long nr, ret; 1449 loff_t i_size = i_size_read(inode); 1450 1451 end_index = i_size >> PAGE_CACHE_SHIFT; 1452 if (index > end_index) 1453 break; 1454 if (index == end_index) { 1455 nr = i_size & ~PAGE_CACHE_MASK; 1456 if (nr <= offset) 1457 break; 1458 } 1459 1460 desc->error = shmem_getpage(inode, index, &page, sgp, NULL); 1461 if (desc->error) { 1462 if (desc->error == -EINVAL) 1463 desc->error = 0; 1464 break; 1465 } 1466 if (page) 1467 unlock_page(page); 1468 1469 /* 1470 * We must evaluate after, since reads (unlike writes) 1471 * are called without i_mutex protection against truncate 1472 */ 1473 nr = PAGE_CACHE_SIZE; 1474 i_size = i_size_read(inode); 1475 end_index = i_size >> PAGE_CACHE_SHIFT; 1476 if (index == end_index) { 1477 nr = i_size & ~PAGE_CACHE_MASK; 1478 if (nr <= offset) { 1479 if (page) 1480 page_cache_release(page); 1481 break; 1482 } 1483 } 1484 nr -= offset; 1485 1486 if (page) { 1487 /* 1488 * If users can be writing to this page using arbitrary 1489 * virtual addresses, take care about potential aliasing 1490 * before reading the page on the kernel side. 1491 */ 1492 if (mapping_writably_mapped(mapping)) 1493 flush_dcache_page(page); 1494 /* 1495 * Mark the page accessed if we read the beginning. 1496 */ 1497 if (!offset) 1498 mark_page_accessed(page); 1499 } else { 1500 page = ZERO_PAGE(0); 1501 page_cache_get(page); 1502 } 1503 1504 /* 1505 * Ok, we have the page, and it's up-to-date, so 1506 * now we can copy it to user space... 1507 * 1508 * The actor routine returns how many bytes were actually used.. 1509 * NOTE! This may not be the same as how much of a user buffer 1510 * we filled up (we may be padding etc), so we can only update 1511 * "pos" here (the actor routine has to update the user buffer 1512 * pointers and the remaining count). 1513 */ 1514 ret = actor(desc, page, offset, nr); 1515 offset += ret; 1516 index += offset >> PAGE_CACHE_SHIFT; 1517 offset &= ~PAGE_CACHE_MASK; 1518 1519 page_cache_release(page); 1520 if (ret != nr || !desc->count) 1521 break; 1522 1523 cond_resched(); 1524 } 1525 1526 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1527 file_accessed(filp); 1528 } 1529 1530 static ssize_t shmem_file_aio_read(struct kiocb *iocb, 1531 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 1532 { 1533 struct file *filp = iocb->ki_filp; 1534 ssize_t retval; 1535 unsigned long seg; 1536 size_t count; 1537 loff_t *ppos = &iocb->ki_pos; 1538 1539 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1540 if (retval) 1541 return retval; 1542 1543 for (seg = 0; seg < nr_segs; seg++) { 1544 read_descriptor_t desc; 1545 1546 desc.written = 0; 1547 desc.arg.buf = iov[seg].iov_base; 1548 desc.count = iov[seg].iov_len; 1549 if (desc.count == 0) 1550 continue; 1551 desc.error = 0; 1552 do_shmem_file_read(filp, ppos, &desc, file_read_actor); 1553 retval += desc.written; 1554 if (desc.error) { 1555 retval = retval ?: desc.error; 1556 break; 1557 } 1558 if (desc.count > 0) 1559 break; 1560 } 1561 return retval; 1562 } 1563 1564 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 1565 struct pipe_inode_info *pipe, size_t len, 1566 unsigned int flags) 1567 { 1568 struct address_space *mapping = in->f_mapping; 1569 struct inode *inode = mapping->host; 1570 unsigned int loff, nr_pages, req_pages; 1571 struct page *pages[PIPE_DEF_BUFFERS]; 1572 struct partial_page partial[PIPE_DEF_BUFFERS]; 1573 struct page *page; 1574 pgoff_t index, end_index; 1575 loff_t isize, left; 1576 int error, page_nr; 1577 struct splice_pipe_desc spd = { 1578 .pages = pages, 1579 .partial = partial, 1580 .flags = flags, 1581 .ops = &page_cache_pipe_buf_ops, 1582 .spd_release = spd_release_page, 1583 }; 1584 1585 isize = i_size_read(inode); 1586 if (unlikely(*ppos >= isize)) 1587 return 0; 1588 1589 left = isize - *ppos; 1590 if (unlikely(left < len)) 1591 len = left; 1592 1593 if (splice_grow_spd(pipe, &spd)) 1594 return -ENOMEM; 1595 1596 index = *ppos >> PAGE_CACHE_SHIFT; 1597 loff = *ppos & ~PAGE_CACHE_MASK; 1598 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1599 nr_pages = min(req_pages, pipe->buffers); 1600 1601 spd.nr_pages = find_get_pages_contig(mapping, index, 1602 nr_pages, spd.pages); 1603 index += spd.nr_pages; 1604 error = 0; 1605 1606 while (spd.nr_pages < nr_pages) { 1607 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); 1608 if (error) 1609 break; 1610 unlock_page(page); 1611 spd.pages[spd.nr_pages++] = page; 1612 index++; 1613 } 1614 1615 index = *ppos >> PAGE_CACHE_SHIFT; 1616 nr_pages = spd.nr_pages; 1617 spd.nr_pages = 0; 1618 1619 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 1620 unsigned int this_len; 1621 1622 if (!len) 1623 break; 1624 1625 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 1626 page = spd.pages[page_nr]; 1627 1628 if (!PageUptodate(page) || page->mapping != mapping) { 1629 error = shmem_getpage(inode, index, &page, 1630 SGP_CACHE, NULL); 1631 if (error) 1632 break; 1633 unlock_page(page); 1634 page_cache_release(spd.pages[page_nr]); 1635 spd.pages[page_nr] = page; 1636 } 1637 1638 isize = i_size_read(inode); 1639 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1640 if (unlikely(!isize || index > end_index)) 1641 break; 1642 1643 if (end_index == index) { 1644 unsigned int plen; 1645 1646 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1647 if (plen <= loff) 1648 break; 1649 1650 this_len = min(this_len, plen - loff); 1651 len = this_len; 1652 } 1653 1654 spd.partial[page_nr].offset = loff; 1655 spd.partial[page_nr].len = this_len; 1656 len -= this_len; 1657 loff = 0; 1658 spd.nr_pages++; 1659 index++; 1660 } 1661 1662 while (page_nr < nr_pages) 1663 page_cache_release(spd.pages[page_nr++]); 1664 1665 if (spd.nr_pages) 1666 error = splice_to_pipe(pipe, &spd); 1667 1668 splice_shrink_spd(pipe, &spd); 1669 1670 if (error > 0) { 1671 *ppos += error; 1672 file_accessed(in); 1673 } 1674 return error; 1675 } 1676 1677 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 1678 loff_t len) 1679 { 1680 struct inode *inode = file->f_path.dentry->d_inode; 1681 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1682 struct shmem_falloc shmem_falloc; 1683 pgoff_t start, index, end; 1684 int error; 1685 1686 mutex_lock(&inode->i_mutex); 1687 1688 if (mode & FALLOC_FL_PUNCH_HOLE) { 1689 struct address_space *mapping = file->f_mapping; 1690 loff_t unmap_start = round_up(offset, PAGE_SIZE); 1691 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 1692 1693 if ((u64)unmap_end > (u64)unmap_start) 1694 unmap_mapping_range(mapping, unmap_start, 1695 1 + unmap_end - unmap_start, 0); 1696 shmem_truncate_range(inode, offset, offset + len - 1); 1697 /* No need to unmap again: hole-punching leaves COWed pages */ 1698 error = 0; 1699 goto out; 1700 } 1701 1702 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 1703 error = inode_newsize_ok(inode, offset + len); 1704 if (error) 1705 goto out; 1706 1707 start = offset >> PAGE_CACHE_SHIFT; 1708 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1709 /* Try to avoid a swapstorm if len is impossible to satisfy */ 1710 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 1711 error = -ENOSPC; 1712 goto out; 1713 } 1714 1715 shmem_falloc.start = start; 1716 shmem_falloc.next = start; 1717 shmem_falloc.nr_falloced = 0; 1718 shmem_falloc.nr_unswapped = 0; 1719 spin_lock(&inode->i_lock); 1720 inode->i_private = &shmem_falloc; 1721 spin_unlock(&inode->i_lock); 1722 1723 for (index = start; index < end; index++) { 1724 struct page *page; 1725 1726 /* 1727 * Good, the fallocate(2) manpage permits EINTR: we may have 1728 * been interrupted because we are using up too much memory. 1729 */ 1730 if (signal_pending(current)) 1731 error = -EINTR; 1732 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 1733 error = -ENOMEM; 1734 else 1735 error = shmem_getpage(inode, index, &page, SGP_FALLOC, 1736 NULL); 1737 if (error) { 1738 /* Remove the !PageUptodate pages we added */ 1739 shmem_undo_range(inode, 1740 (loff_t)start << PAGE_CACHE_SHIFT, 1741 (loff_t)index << PAGE_CACHE_SHIFT, true); 1742 goto undone; 1743 } 1744 1745 /* 1746 * Inform shmem_writepage() how far we have reached. 1747 * No need for lock or barrier: we have the page lock. 1748 */ 1749 shmem_falloc.next++; 1750 if (!PageUptodate(page)) 1751 shmem_falloc.nr_falloced++; 1752 1753 /* 1754 * If !PageUptodate, leave it that way so that freeable pages 1755 * can be recognized if we need to rollback on error later. 1756 * But set_page_dirty so that memory pressure will swap rather 1757 * than free the pages we are allocating (and SGP_CACHE pages 1758 * might still be clean: we now need to mark those dirty too). 1759 */ 1760 set_page_dirty(page); 1761 unlock_page(page); 1762 page_cache_release(page); 1763 cond_resched(); 1764 } 1765 1766 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 1767 i_size_write(inode, offset + len); 1768 inode->i_ctime = CURRENT_TIME; 1769 undone: 1770 spin_lock(&inode->i_lock); 1771 inode->i_private = NULL; 1772 spin_unlock(&inode->i_lock); 1773 out: 1774 mutex_unlock(&inode->i_mutex); 1775 return error; 1776 } 1777 1778 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 1779 { 1780 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 1781 1782 buf->f_type = TMPFS_MAGIC; 1783 buf->f_bsize = PAGE_CACHE_SIZE; 1784 buf->f_namelen = NAME_MAX; 1785 if (sbinfo->max_blocks) { 1786 buf->f_blocks = sbinfo->max_blocks; 1787 buf->f_bavail = 1788 buf->f_bfree = sbinfo->max_blocks - 1789 percpu_counter_sum(&sbinfo->used_blocks); 1790 } 1791 if (sbinfo->max_inodes) { 1792 buf->f_files = sbinfo->max_inodes; 1793 buf->f_ffree = sbinfo->free_inodes; 1794 } 1795 /* else leave those fields 0 like simple_statfs */ 1796 return 0; 1797 } 1798 1799 /* 1800 * File creation. Allocate an inode, and we're done.. 1801 */ 1802 static int 1803 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1804 { 1805 struct inode *inode; 1806 int error = -ENOSPC; 1807 1808 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 1809 if (inode) { 1810 error = security_inode_init_security(inode, dir, 1811 &dentry->d_name, 1812 shmem_initxattrs, NULL); 1813 if (error) { 1814 if (error != -EOPNOTSUPP) { 1815 iput(inode); 1816 return error; 1817 } 1818 } 1819 #ifdef CONFIG_TMPFS_POSIX_ACL 1820 error = generic_acl_init(inode, dir); 1821 if (error) { 1822 iput(inode); 1823 return error; 1824 } 1825 #else 1826 error = 0; 1827 #endif 1828 dir->i_size += BOGO_DIRENT_SIZE; 1829 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1830 d_instantiate(dentry, inode); 1831 dget(dentry); /* Extra count - pin the dentry in core */ 1832 } 1833 return error; 1834 } 1835 1836 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1837 { 1838 int error; 1839 1840 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 1841 return error; 1842 inc_nlink(dir); 1843 return 0; 1844 } 1845 1846 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 1847 struct nameidata *nd) 1848 { 1849 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 1850 } 1851 1852 /* 1853 * Link a file.. 1854 */ 1855 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1856 { 1857 struct inode *inode = old_dentry->d_inode; 1858 int ret; 1859 1860 /* 1861 * No ordinary (disk based) filesystem counts links as inodes; 1862 * but each new link needs a new dentry, pinning lowmem, and 1863 * tmpfs dentries cannot be pruned until they are unlinked. 1864 */ 1865 ret = shmem_reserve_inode(inode->i_sb); 1866 if (ret) 1867 goto out; 1868 1869 dir->i_size += BOGO_DIRENT_SIZE; 1870 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1871 inc_nlink(inode); 1872 ihold(inode); /* New dentry reference */ 1873 dget(dentry); /* Extra pinning count for the created dentry */ 1874 d_instantiate(dentry, inode); 1875 out: 1876 return ret; 1877 } 1878 1879 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 1880 { 1881 struct inode *inode = dentry->d_inode; 1882 1883 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 1884 shmem_free_inode(inode->i_sb); 1885 1886 dir->i_size -= BOGO_DIRENT_SIZE; 1887 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1888 drop_nlink(inode); 1889 dput(dentry); /* Undo the count from "create" - this does all the work */ 1890 return 0; 1891 } 1892 1893 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 1894 { 1895 if (!simple_empty(dentry)) 1896 return -ENOTEMPTY; 1897 1898 drop_nlink(dentry->d_inode); 1899 drop_nlink(dir); 1900 return shmem_unlink(dir, dentry); 1901 } 1902 1903 /* 1904 * The VFS layer already does all the dentry stuff for rename, 1905 * we just have to decrement the usage count for the target if 1906 * it exists so that the VFS layer correctly free's it when it 1907 * gets overwritten. 1908 */ 1909 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 1910 { 1911 struct inode *inode = old_dentry->d_inode; 1912 int they_are_dirs = S_ISDIR(inode->i_mode); 1913 1914 if (!simple_empty(new_dentry)) 1915 return -ENOTEMPTY; 1916 1917 if (new_dentry->d_inode) { 1918 (void) shmem_unlink(new_dir, new_dentry); 1919 if (they_are_dirs) 1920 drop_nlink(old_dir); 1921 } else if (they_are_dirs) { 1922 drop_nlink(old_dir); 1923 inc_nlink(new_dir); 1924 } 1925 1926 old_dir->i_size -= BOGO_DIRENT_SIZE; 1927 new_dir->i_size += BOGO_DIRENT_SIZE; 1928 old_dir->i_ctime = old_dir->i_mtime = 1929 new_dir->i_ctime = new_dir->i_mtime = 1930 inode->i_ctime = CURRENT_TIME; 1931 return 0; 1932 } 1933 1934 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1935 { 1936 int error; 1937 int len; 1938 struct inode *inode; 1939 struct page *page; 1940 char *kaddr; 1941 struct shmem_inode_info *info; 1942 1943 len = strlen(symname) + 1; 1944 if (len > PAGE_CACHE_SIZE) 1945 return -ENAMETOOLONG; 1946 1947 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 1948 if (!inode) 1949 return -ENOSPC; 1950 1951 error = security_inode_init_security(inode, dir, &dentry->d_name, 1952 shmem_initxattrs, NULL); 1953 if (error) { 1954 if (error != -EOPNOTSUPP) { 1955 iput(inode); 1956 return error; 1957 } 1958 error = 0; 1959 } 1960 1961 info = SHMEM_I(inode); 1962 inode->i_size = len-1; 1963 if (len <= SHORT_SYMLINK_LEN) { 1964 info->symlink = kmemdup(symname, len, GFP_KERNEL); 1965 if (!info->symlink) { 1966 iput(inode); 1967 return -ENOMEM; 1968 } 1969 inode->i_op = &shmem_short_symlink_operations; 1970 } else { 1971 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 1972 if (error) { 1973 iput(inode); 1974 return error; 1975 } 1976 inode->i_mapping->a_ops = &shmem_aops; 1977 inode->i_op = &shmem_symlink_inode_operations; 1978 kaddr = kmap_atomic(page); 1979 memcpy(kaddr, symname, len); 1980 kunmap_atomic(kaddr); 1981 SetPageUptodate(page); 1982 set_page_dirty(page); 1983 unlock_page(page); 1984 page_cache_release(page); 1985 } 1986 dir->i_size += BOGO_DIRENT_SIZE; 1987 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1988 d_instantiate(dentry, inode); 1989 dget(dentry); 1990 return 0; 1991 } 1992 1993 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd) 1994 { 1995 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink); 1996 return NULL; 1997 } 1998 1999 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 2000 { 2001 struct page *page = NULL; 2002 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); 2003 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page)); 2004 if (page) 2005 unlock_page(page); 2006 return page; 2007 } 2008 2009 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2010 { 2011 if (!IS_ERR(nd_get_link(nd))) { 2012 struct page *page = cookie; 2013 kunmap(page); 2014 mark_page_accessed(page); 2015 page_cache_release(page); 2016 } 2017 } 2018 2019 #ifdef CONFIG_TMPFS_XATTR 2020 /* 2021 * Superblocks without xattr inode operations may get some security.* xattr 2022 * support from the LSM "for free". As soon as we have any other xattrs 2023 * like ACLs, we also need to implement the security.* handlers at 2024 * filesystem level, though. 2025 */ 2026 2027 /* 2028 * Allocate new xattr and copy in the value; but leave the name to callers. 2029 */ 2030 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size) 2031 { 2032 struct shmem_xattr *new_xattr; 2033 size_t len; 2034 2035 /* wrap around? */ 2036 len = sizeof(*new_xattr) + size; 2037 if (len <= sizeof(*new_xattr)) 2038 return NULL; 2039 2040 new_xattr = kmalloc(len, GFP_KERNEL); 2041 if (!new_xattr) 2042 return NULL; 2043 2044 new_xattr->size = size; 2045 memcpy(new_xattr->value, value, size); 2046 return new_xattr; 2047 } 2048 2049 /* 2050 * Callback for security_inode_init_security() for acquiring xattrs. 2051 */ 2052 static int shmem_initxattrs(struct inode *inode, 2053 const struct xattr *xattr_array, 2054 void *fs_info) 2055 { 2056 struct shmem_inode_info *info = SHMEM_I(inode); 2057 const struct xattr *xattr; 2058 struct shmem_xattr *new_xattr; 2059 size_t len; 2060 2061 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 2062 new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len); 2063 if (!new_xattr) 2064 return -ENOMEM; 2065 2066 len = strlen(xattr->name) + 1; 2067 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 2068 GFP_KERNEL); 2069 if (!new_xattr->name) { 2070 kfree(new_xattr); 2071 return -ENOMEM; 2072 } 2073 2074 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 2075 XATTR_SECURITY_PREFIX_LEN); 2076 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 2077 xattr->name, len); 2078 2079 spin_lock(&info->lock); 2080 list_add(&new_xattr->list, &info->xattr_list); 2081 spin_unlock(&info->lock); 2082 } 2083 2084 return 0; 2085 } 2086 2087 static int shmem_xattr_get(struct dentry *dentry, const char *name, 2088 void *buffer, size_t size) 2089 { 2090 struct shmem_inode_info *info; 2091 struct shmem_xattr *xattr; 2092 int ret = -ENODATA; 2093 2094 info = SHMEM_I(dentry->d_inode); 2095 2096 spin_lock(&info->lock); 2097 list_for_each_entry(xattr, &info->xattr_list, list) { 2098 if (strcmp(name, xattr->name)) 2099 continue; 2100 2101 ret = xattr->size; 2102 if (buffer) { 2103 if (size < xattr->size) 2104 ret = -ERANGE; 2105 else 2106 memcpy(buffer, xattr->value, xattr->size); 2107 } 2108 break; 2109 } 2110 spin_unlock(&info->lock); 2111 return ret; 2112 } 2113 2114 static int shmem_xattr_set(struct inode *inode, const char *name, 2115 const void *value, size_t size, int flags) 2116 { 2117 struct shmem_inode_info *info = SHMEM_I(inode); 2118 struct shmem_xattr *xattr; 2119 struct shmem_xattr *new_xattr = NULL; 2120 int err = 0; 2121 2122 /* value == NULL means remove */ 2123 if (value) { 2124 new_xattr = shmem_xattr_alloc(value, size); 2125 if (!new_xattr) 2126 return -ENOMEM; 2127 2128 new_xattr->name = kstrdup(name, GFP_KERNEL); 2129 if (!new_xattr->name) { 2130 kfree(new_xattr); 2131 return -ENOMEM; 2132 } 2133 } 2134 2135 spin_lock(&info->lock); 2136 list_for_each_entry(xattr, &info->xattr_list, list) { 2137 if (!strcmp(name, xattr->name)) { 2138 if (flags & XATTR_CREATE) { 2139 xattr = new_xattr; 2140 err = -EEXIST; 2141 } else if (new_xattr) { 2142 list_replace(&xattr->list, &new_xattr->list); 2143 } else { 2144 list_del(&xattr->list); 2145 } 2146 goto out; 2147 } 2148 } 2149 if (flags & XATTR_REPLACE) { 2150 xattr = new_xattr; 2151 err = -ENODATA; 2152 } else { 2153 list_add(&new_xattr->list, &info->xattr_list); 2154 xattr = NULL; 2155 } 2156 out: 2157 spin_unlock(&info->lock); 2158 if (xattr) 2159 kfree(xattr->name); 2160 kfree(xattr); 2161 return err; 2162 } 2163 2164 static const struct xattr_handler *shmem_xattr_handlers[] = { 2165 #ifdef CONFIG_TMPFS_POSIX_ACL 2166 &generic_acl_access_handler, 2167 &generic_acl_default_handler, 2168 #endif 2169 NULL 2170 }; 2171 2172 static int shmem_xattr_validate(const char *name) 2173 { 2174 struct { const char *prefix; size_t len; } arr[] = { 2175 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN }, 2176 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN } 2177 }; 2178 int i; 2179 2180 for (i = 0; i < ARRAY_SIZE(arr); i++) { 2181 size_t preflen = arr[i].len; 2182 if (strncmp(name, arr[i].prefix, preflen) == 0) { 2183 if (!name[preflen]) 2184 return -EINVAL; 2185 return 0; 2186 } 2187 } 2188 return -EOPNOTSUPP; 2189 } 2190 2191 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name, 2192 void *buffer, size_t size) 2193 { 2194 int err; 2195 2196 /* 2197 * If this is a request for a synthetic attribute in the system.* 2198 * namespace use the generic infrastructure to resolve a handler 2199 * for it via sb->s_xattr. 2200 */ 2201 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2202 return generic_getxattr(dentry, name, buffer, size); 2203 2204 err = shmem_xattr_validate(name); 2205 if (err) 2206 return err; 2207 2208 return shmem_xattr_get(dentry, name, buffer, size); 2209 } 2210 2211 static int shmem_setxattr(struct dentry *dentry, const char *name, 2212 const void *value, size_t size, int flags) 2213 { 2214 int err; 2215 2216 /* 2217 * If this is a request for a synthetic attribute in the system.* 2218 * namespace use the generic infrastructure to resolve a handler 2219 * for it via sb->s_xattr. 2220 */ 2221 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2222 return generic_setxattr(dentry, name, value, size, flags); 2223 2224 err = shmem_xattr_validate(name); 2225 if (err) 2226 return err; 2227 2228 if (size == 0) 2229 value = ""; /* empty EA, do not remove */ 2230 2231 return shmem_xattr_set(dentry->d_inode, name, value, size, flags); 2232 2233 } 2234 2235 static int shmem_removexattr(struct dentry *dentry, const char *name) 2236 { 2237 int err; 2238 2239 /* 2240 * If this is a request for a synthetic attribute in the system.* 2241 * namespace use the generic infrastructure to resolve a handler 2242 * for it via sb->s_xattr. 2243 */ 2244 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2245 return generic_removexattr(dentry, name); 2246 2247 err = shmem_xattr_validate(name); 2248 if (err) 2249 return err; 2250 2251 return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE); 2252 } 2253 2254 static bool xattr_is_trusted(const char *name) 2255 { 2256 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN); 2257 } 2258 2259 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 2260 { 2261 bool trusted = capable(CAP_SYS_ADMIN); 2262 struct shmem_xattr *xattr; 2263 struct shmem_inode_info *info; 2264 size_t used = 0; 2265 2266 info = SHMEM_I(dentry->d_inode); 2267 2268 spin_lock(&info->lock); 2269 list_for_each_entry(xattr, &info->xattr_list, list) { 2270 size_t len; 2271 2272 /* skip "trusted." attributes for unprivileged callers */ 2273 if (!trusted && xattr_is_trusted(xattr->name)) 2274 continue; 2275 2276 len = strlen(xattr->name) + 1; 2277 used += len; 2278 if (buffer) { 2279 if (size < used) { 2280 used = -ERANGE; 2281 break; 2282 } 2283 memcpy(buffer, xattr->name, len); 2284 buffer += len; 2285 } 2286 } 2287 spin_unlock(&info->lock); 2288 2289 return used; 2290 } 2291 #endif /* CONFIG_TMPFS_XATTR */ 2292 2293 static const struct inode_operations shmem_short_symlink_operations = { 2294 .readlink = generic_readlink, 2295 .follow_link = shmem_follow_short_symlink, 2296 #ifdef CONFIG_TMPFS_XATTR 2297 .setxattr = shmem_setxattr, 2298 .getxattr = shmem_getxattr, 2299 .listxattr = shmem_listxattr, 2300 .removexattr = shmem_removexattr, 2301 #endif 2302 }; 2303 2304 static const struct inode_operations shmem_symlink_inode_operations = { 2305 .readlink = generic_readlink, 2306 .follow_link = shmem_follow_link, 2307 .put_link = shmem_put_link, 2308 #ifdef CONFIG_TMPFS_XATTR 2309 .setxattr = shmem_setxattr, 2310 .getxattr = shmem_getxattr, 2311 .listxattr = shmem_listxattr, 2312 .removexattr = shmem_removexattr, 2313 #endif 2314 }; 2315 2316 static struct dentry *shmem_get_parent(struct dentry *child) 2317 { 2318 return ERR_PTR(-ESTALE); 2319 } 2320 2321 static int shmem_match(struct inode *ino, void *vfh) 2322 { 2323 __u32 *fh = vfh; 2324 __u64 inum = fh[2]; 2325 inum = (inum << 32) | fh[1]; 2326 return ino->i_ino == inum && fh[0] == ino->i_generation; 2327 } 2328 2329 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2330 struct fid *fid, int fh_len, int fh_type) 2331 { 2332 struct inode *inode; 2333 struct dentry *dentry = NULL; 2334 u64 inum = fid->raw[2]; 2335 inum = (inum << 32) | fid->raw[1]; 2336 2337 if (fh_len < 3) 2338 return NULL; 2339 2340 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2341 shmem_match, fid->raw); 2342 if (inode) { 2343 dentry = d_find_alias(inode); 2344 iput(inode); 2345 } 2346 2347 return dentry; 2348 } 2349 2350 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len, 2351 int connectable) 2352 { 2353 struct inode *inode = dentry->d_inode; 2354 2355 if (*len < 3) { 2356 *len = 3; 2357 return 255; 2358 } 2359 2360 if (inode_unhashed(inode)) { 2361 /* Unfortunately insert_inode_hash is not idempotent, 2362 * so as we hash inodes here rather than at creation 2363 * time, we need a lock to ensure we only try 2364 * to do it once 2365 */ 2366 static DEFINE_SPINLOCK(lock); 2367 spin_lock(&lock); 2368 if (inode_unhashed(inode)) 2369 __insert_inode_hash(inode, 2370 inode->i_ino + inode->i_generation); 2371 spin_unlock(&lock); 2372 } 2373 2374 fh[0] = inode->i_generation; 2375 fh[1] = inode->i_ino; 2376 fh[2] = ((__u64)inode->i_ino) >> 32; 2377 2378 *len = 3; 2379 return 1; 2380 } 2381 2382 static const struct export_operations shmem_export_ops = { 2383 .get_parent = shmem_get_parent, 2384 .encode_fh = shmem_encode_fh, 2385 .fh_to_dentry = shmem_fh_to_dentry, 2386 }; 2387 2388 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2389 bool remount) 2390 { 2391 char *this_char, *value, *rest; 2392 uid_t uid; 2393 gid_t gid; 2394 2395 while (options != NULL) { 2396 this_char = options; 2397 for (;;) { 2398 /* 2399 * NUL-terminate this option: unfortunately, 2400 * mount options form a comma-separated list, 2401 * but mpol's nodelist may also contain commas. 2402 */ 2403 options = strchr(options, ','); 2404 if (options == NULL) 2405 break; 2406 options++; 2407 if (!isdigit(*options)) { 2408 options[-1] = '\0'; 2409 break; 2410 } 2411 } 2412 if (!*this_char) 2413 continue; 2414 if ((value = strchr(this_char,'=')) != NULL) { 2415 *value++ = 0; 2416 } else { 2417 printk(KERN_ERR 2418 "tmpfs: No value for mount option '%s'\n", 2419 this_char); 2420 return 1; 2421 } 2422 2423 if (!strcmp(this_char,"size")) { 2424 unsigned long long size; 2425 size = memparse(value,&rest); 2426 if (*rest == '%') { 2427 size <<= PAGE_SHIFT; 2428 size *= totalram_pages; 2429 do_div(size, 100); 2430 rest++; 2431 } 2432 if (*rest) 2433 goto bad_val; 2434 sbinfo->max_blocks = 2435 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2436 } else if (!strcmp(this_char,"nr_blocks")) { 2437 sbinfo->max_blocks = memparse(value, &rest); 2438 if (*rest) 2439 goto bad_val; 2440 } else if (!strcmp(this_char,"nr_inodes")) { 2441 sbinfo->max_inodes = memparse(value, &rest); 2442 if (*rest) 2443 goto bad_val; 2444 } else if (!strcmp(this_char,"mode")) { 2445 if (remount) 2446 continue; 2447 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2448 if (*rest) 2449 goto bad_val; 2450 } else if (!strcmp(this_char,"uid")) { 2451 if (remount) 2452 continue; 2453 uid = simple_strtoul(value, &rest, 0); 2454 if (*rest) 2455 goto bad_val; 2456 sbinfo->uid = make_kuid(current_user_ns(), uid); 2457 if (!uid_valid(sbinfo->uid)) 2458 goto bad_val; 2459 } else if (!strcmp(this_char,"gid")) { 2460 if (remount) 2461 continue; 2462 gid = simple_strtoul(value, &rest, 0); 2463 if (*rest) 2464 goto bad_val; 2465 sbinfo->gid = make_kgid(current_user_ns(), gid); 2466 if (!gid_valid(sbinfo->gid)) 2467 goto bad_val; 2468 } else if (!strcmp(this_char,"mpol")) { 2469 if (mpol_parse_str(value, &sbinfo->mpol, 1)) 2470 goto bad_val; 2471 } else { 2472 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2473 this_char); 2474 return 1; 2475 } 2476 } 2477 return 0; 2478 2479 bad_val: 2480 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2481 value, this_char); 2482 return 1; 2483 2484 } 2485 2486 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2487 { 2488 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2489 struct shmem_sb_info config = *sbinfo; 2490 unsigned long inodes; 2491 int error = -EINVAL; 2492 2493 if (shmem_parse_options(data, &config, true)) 2494 return error; 2495 2496 spin_lock(&sbinfo->stat_lock); 2497 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2498 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2499 goto out; 2500 if (config.max_inodes < inodes) 2501 goto out; 2502 /* 2503 * Those tests disallow limited->unlimited while any are in use; 2504 * but we must separately disallow unlimited->limited, because 2505 * in that case we have no record of how much is already in use. 2506 */ 2507 if (config.max_blocks && !sbinfo->max_blocks) 2508 goto out; 2509 if (config.max_inodes && !sbinfo->max_inodes) 2510 goto out; 2511 2512 error = 0; 2513 sbinfo->max_blocks = config.max_blocks; 2514 sbinfo->max_inodes = config.max_inodes; 2515 sbinfo->free_inodes = config.max_inodes - inodes; 2516 2517 mpol_put(sbinfo->mpol); 2518 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2519 out: 2520 spin_unlock(&sbinfo->stat_lock); 2521 return error; 2522 } 2523 2524 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 2525 { 2526 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 2527 2528 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2529 seq_printf(seq, ",size=%luk", 2530 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2531 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2532 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2533 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2534 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 2535 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 2536 seq_printf(seq, ",uid=%u", 2537 from_kuid_munged(&init_user_ns, sbinfo->uid)); 2538 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 2539 seq_printf(seq, ",gid=%u", 2540 from_kgid_munged(&init_user_ns, sbinfo->gid)); 2541 shmem_show_mpol(seq, sbinfo->mpol); 2542 return 0; 2543 } 2544 #endif /* CONFIG_TMPFS */ 2545 2546 static void shmem_put_super(struct super_block *sb) 2547 { 2548 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2549 2550 percpu_counter_destroy(&sbinfo->used_blocks); 2551 kfree(sbinfo); 2552 sb->s_fs_info = NULL; 2553 } 2554 2555 int shmem_fill_super(struct super_block *sb, void *data, int silent) 2556 { 2557 struct inode *inode; 2558 struct shmem_sb_info *sbinfo; 2559 int err = -ENOMEM; 2560 2561 /* Round up to L1_CACHE_BYTES to resist false sharing */ 2562 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 2563 L1_CACHE_BYTES), GFP_KERNEL); 2564 if (!sbinfo) 2565 return -ENOMEM; 2566 2567 sbinfo->mode = S_IRWXUGO | S_ISVTX; 2568 sbinfo->uid = current_fsuid(); 2569 sbinfo->gid = current_fsgid(); 2570 sb->s_fs_info = sbinfo; 2571 2572 #ifdef CONFIG_TMPFS 2573 /* 2574 * Per default we only allow half of the physical ram per 2575 * tmpfs instance, limiting inodes to one per page of lowmem; 2576 * but the internal instance is left unlimited. 2577 */ 2578 if (!(sb->s_flags & MS_NOUSER)) { 2579 sbinfo->max_blocks = shmem_default_max_blocks(); 2580 sbinfo->max_inodes = shmem_default_max_inodes(); 2581 if (shmem_parse_options(data, sbinfo, false)) { 2582 err = -EINVAL; 2583 goto failed; 2584 } 2585 } 2586 sb->s_export_op = &shmem_export_ops; 2587 sb->s_flags |= MS_NOSEC; 2588 #else 2589 sb->s_flags |= MS_NOUSER; 2590 #endif 2591 2592 spin_lock_init(&sbinfo->stat_lock); 2593 if (percpu_counter_init(&sbinfo->used_blocks, 0)) 2594 goto failed; 2595 sbinfo->free_inodes = sbinfo->max_inodes; 2596 2597 sb->s_maxbytes = MAX_LFS_FILESIZE; 2598 sb->s_blocksize = PAGE_CACHE_SIZE; 2599 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 2600 sb->s_magic = TMPFS_MAGIC; 2601 sb->s_op = &shmem_ops; 2602 sb->s_time_gran = 1; 2603 #ifdef CONFIG_TMPFS_XATTR 2604 sb->s_xattr = shmem_xattr_handlers; 2605 #endif 2606 #ifdef CONFIG_TMPFS_POSIX_ACL 2607 sb->s_flags |= MS_POSIXACL; 2608 #endif 2609 2610 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 2611 if (!inode) 2612 goto failed; 2613 inode->i_uid = sbinfo->uid; 2614 inode->i_gid = sbinfo->gid; 2615 sb->s_root = d_make_root(inode); 2616 if (!sb->s_root) 2617 goto failed; 2618 return 0; 2619 2620 failed: 2621 shmem_put_super(sb); 2622 return err; 2623 } 2624 2625 static struct kmem_cache *shmem_inode_cachep; 2626 2627 static struct inode *shmem_alloc_inode(struct super_block *sb) 2628 { 2629 struct shmem_inode_info *info; 2630 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 2631 if (!info) 2632 return NULL; 2633 return &info->vfs_inode; 2634 } 2635 2636 static void shmem_destroy_callback(struct rcu_head *head) 2637 { 2638 struct inode *inode = container_of(head, struct inode, i_rcu); 2639 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 2640 } 2641 2642 static void shmem_destroy_inode(struct inode *inode) 2643 { 2644 if (S_ISREG(inode->i_mode)) 2645 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 2646 call_rcu(&inode->i_rcu, shmem_destroy_callback); 2647 } 2648 2649 static void shmem_init_inode(void *foo) 2650 { 2651 struct shmem_inode_info *info = foo; 2652 inode_init_once(&info->vfs_inode); 2653 } 2654 2655 static int shmem_init_inodecache(void) 2656 { 2657 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 2658 sizeof(struct shmem_inode_info), 2659 0, SLAB_PANIC, shmem_init_inode); 2660 return 0; 2661 } 2662 2663 static void shmem_destroy_inodecache(void) 2664 { 2665 kmem_cache_destroy(shmem_inode_cachep); 2666 } 2667 2668 static const struct address_space_operations shmem_aops = { 2669 .writepage = shmem_writepage, 2670 .set_page_dirty = __set_page_dirty_no_writeback, 2671 #ifdef CONFIG_TMPFS 2672 .write_begin = shmem_write_begin, 2673 .write_end = shmem_write_end, 2674 #endif 2675 .migratepage = migrate_page, 2676 .error_remove_page = generic_error_remove_page, 2677 }; 2678 2679 static const struct file_operations shmem_file_operations = { 2680 .mmap = shmem_mmap, 2681 #ifdef CONFIG_TMPFS 2682 .llseek = generic_file_llseek, 2683 .read = do_sync_read, 2684 .write = do_sync_write, 2685 .aio_read = shmem_file_aio_read, 2686 .aio_write = generic_file_aio_write, 2687 .fsync = noop_fsync, 2688 .splice_read = shmem_file_splice_read, 2689 .splice_write = generic_file_splice_write, 2690 .fallocate = shmem_fallocate, 2691 #endif 2692 }; 2693 2694 static const struct inode_operations shmem_inode_operations = { 2695 .setattr = shmem_setattr, 2696 #ifdef CONFIG_TMPFS_XATTR 2697 .setxattr = shmem_setxattr, 2698 .getxattr = shmem_getxattr, 2699 .listxattr = shmem_listxattr, 2700 .removexattr = shmem_removexattr, 2701 #endif 2702 }; 2703 2704 static const struct inode_operations shmem_dir_inode_operations = { 2705 #ifdef CONFIG_TMPFS 2706 .create = shmem_create, 2707 .lookup = simple_lookup, 2708 .link = shmem_link, 2709 .unlink = shmem_unlink, 2710 .symlink = shmem_symlink, 2711 .mkdir = shmem_mkdir, 2712 .rmdir = shmem_rmdir, 2713 .mknod = shmem_mknod, 2714 .rename = shmem_rename, 2715 #endif 2716 #ifdef CONFIG_TMPFS_XATTR 2717 .setxattr = shmem_setxattr, 2718 .getxattr = shmem_getxattr, 2719 .listxattr = shmem_listxattr, 2720 .removexattr = shmem_removexattr, 2721 #endif 2722 #ifdef CONFIG_TMPFS_POSIX_ACL 2723 .setattr = shmem_setattr, 2724 #endif 2725 }; 2726 2727 static const struct inode_operations shmem_special_inode_operations = { 2728 #ifdef CONFIG_TMPFS_XATTR 2729 .setxattr = shmem_setxattr, 2730 .getxattr = shmem_getxattr, 2731 .listxattr = shmem_listxattr, 2732 .removexattr = shmem_removexattr, 2733 #endif 2734 #ifdef CONFIG_TMPFS_POSIX_ACL 2735 .setattr = shmem_setattr, 2736 #endif 2737 }; 2738 2739 static const struct super_operations shmem_ops = { 2740 .alloc_inode = shmem_alloc_inode, 2741 .destroy_inode = shmem_destroy_inode, 2742 #ifdef CONFIG_TMPFS 2743 .statfs = shmem_statfs, 2744 .remount_fs = shmem_remount_fs, 2745 .show_options = shmem_show_options, 2746 #endif 2747 .evict_inode = shmem_evict_inode, 2748 .drop_inode = generic_delete_inode, 2749 .put_super = shmem_put_super, 2750 }; 2751 2752 static const struct vm_operations_struct shmem_vm_ops = { 2753 .fault = shmem_fault, 2754 #ifdef CONFIG_NUMA 2755 .set_policy = shmem_set_policy, 2756 .get_policy = shmem_get_policy, 2757 #endif 2758 }; 2759 2760 static struct dentry *shmem_mount(struct file_system_type *fs_type, 2761 int flags, const char *dev_name, void *data) 2762 { 2763 return mount_nodev(fs_type, flags, data, shmem_fill_super); 2764 } 2765 2766 static struct file_system_type shmem_fs_type = { 2767 .owner = THIS_MODULE, 2768 .name = "tmpfs", 2769 .mount = shmem_mount, 2770 .kill_sb = kill_litter_super, 2771 }; 2772 2773 int __init shmem_init(void) 2774 { 2775 int error; 2776 2777 error = bdi_init(&shmem_backing_dev_info); 2778 if (error) 2779 goto out4; 2780 2781 error = shmem_init_inodecache(); 2782 if (error) 2783 goto out3; 2784 2785 error = register_filesystem(&shmem_fs_type); 2786 if (error) { 2787 printk(KERN_ERR "Could not register tmpfs\n"); 2788 goto out2; 2789 } 2790 2791 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER, 2792 shmem_fs_type.name, NULL); 2793 if (IS_ERR(shm_mnt)) { 2794 error = PTR_ERR(shm_mnt); 2795 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 2796 goto out1; 2797 } 2798 return 0; 2799 2800 out1: 2801 unregister_filesystem(&shmem_fs_type); 2802 out2: 2803 shmem_destroy_inodecache(); 2804 out3: 2805 bdi_destroy(&shmem_backing_dev_info); 2806 out4: 2807 shm_mnt = ERR_PTR(error); 2808 return error; 2809 } 2810 2811 #else /* !CONFIG_SHMEM */ 2812 2813 /* 2814 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 2815 * 2816 * This is intended for small system where the benefits of the full 2817 * shmem code (swap-backed and resource-limited) are outweighed by 2818 * their complexity. On systems without swap this code should be 2819 * effectively equivalent, but much lighter weight. 2820 */ 2821 2822 #include <linux/ramfs.h> 2823 2824 static struct file_system_type shmem_fs_type = { 2825 .name = "tmpfs", 2826 .mount = ramfs_mount, 2827 .kill_sb = kill_litter_super, 2828 }; 2829 2830 int __init shmem_init(void) 2831 { 2832 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 2833 2834 shm_mnt = kern_mount(&shmem_fs_type); 2835 BUG_ON(IS_ERR(shm_mnt)); 2836 2837 return 0; 2838 } 2839 2840 int shmem_unuse(swp_entry_t swap, struct page *page) 2841 { 2842 return 0; 2843 } 2844 2845 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2846 { 2847 return 0; 2848 } 2849 2850 void shmem_unlock_mapping(struct address_space *mapping) 2851 { 2852 } 2853 2854 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 2855 { 2856 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 2857 } 2858 EXPORT_SYMBOL_GPL(shmem_truncate_range); 2859 2860 #define shmem_vm_ops generic_file_vm_ops 2861 #define shmem_file_operations ramfs_file_operations 2862 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 2863 #define shmem_acct_size(flags, size) 0 2864 #define shmem_unacct_size(flags, size) do {} while (0) 2865 2866 #endif /* CONFIG_SHMEM */ 2867 2868 /* common code */ 2869 2870 /** 2871 * shmem_file_setup - get an unlinked file living in tmpfs 2872 * @name: name for dentry (to be seen in /proc/<pid>/maps 2873 * @size: size to be set for the file 2874 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 2875 */ 2876 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 2877 { 2878 int error; 2879 struct file *file; 2880 struct inode *inode; 2881 struct path path; 2882 struct dentry *root; 2883 struct qstr this; 2884 2885 if (IS_ERR(shm_mnt)) 2886 return (void *)shm_mnt; 2887 2888 if (size < 0 || size > MAX_LFS_FILESIZE) 2889 return ERR_PTR(-EINVAL); 2890 2891 if (shmem_acct_size(flags, size)) 2892 return ERR_PTR(-ENOMEM); 2893 2894 error = -ENOMEM; 2895 this.name = name; 2896 this.len = strlen(name); 2897 this.hash = 0; /* will go */ 2898 root = shm_mnt->mnt_root; 2899 path.dentry = d_alloc(root, &this); 2900 if (!path.dentry) 2901 goto put_memory; 2902 path.mnt = mntget(shm_mnt); 2903 2904 error = -ENOSPC; 2905 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 2906 if (!inode) 2907 goto put_dentry; 2908 2909 d_instantiate(path.dentry, inode); 2910 inode->i_size = size; 2911 clear_nlink(inode); /* It is unlinked */ 2912 #ifndef CONFIG_MMU 2913 error = ramfs_nommu_expand_for_mapping(inode, size); 2914 if (error) 2915 goto put_dentry; 2916 #endif 2917 2918 error = -ENFILE; 2919 file = alloc_file(&path, FMODE_WRITE | FMODE_READ, 2920 &shmem_file_operations); 2921 if (!file) 2922 goto put_dentry; 2923 2924 return file; 2925 2926 put_dentry: 2927 path_put(&path); 2928 put_memory: 2929 shmem_unacct_size(flags, size); 2930 return ERR_PTR(error); 2931 } 2932 EXPORT_SYMBOL_GPL(shmem_file_setup); 2933 2934 /** 2935 * shmem_zero_setup - setup a shared anonymous mapping 2936 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 2937 */ 2938 int shmem_zero_setup(struct vm_area_struct *vma) 2939 { 2940 struct file *file; 2941 loff_t size = vma->vm_end - vma->vm_start; 2942 2943 file = shmem_file_setup("dev/zero", size, vma->vm_flags); 2944 if (IS_ERR(file)) 2945 return PTR_ERR(file); 2946 2947 if (vma->vm_file) 2948 fput(vma->vm_file); 2949 vma->vm_file = file; 2950 vma->vm_ops = &shmem_vm_ops; 2951 vma->vm_flags |= VM_CAN_NONLINEAR; 2952 return 0; 2953 } 2954 2955 /** 2956 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 2957 * @mapping: the page's address_space 2958 * @index: the page index 2959 * @gfp: the page allocator flags to use if allocating 2960 * 2961 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 2962 * with any new page allocations done using the specified allocation flags. 2963 * But read_cache_page_gfp() uses the ->readpage() method: which does not 2964 * suit tmpfs, since it may have pages in swapcache, and needs to find those 2965 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 2966 * 2967 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 2968 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 2969 */ 2970 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 2971 pgoff_t index, gfp_t gfp) 2972 { 2973 #ifdef CONFIG_SHMEM 2974 struct inode *inode = mapping->host; 2975 struct page *page; 2976 int error; 2977 2978 BUG_ON(mapping->a_ops != &shmem_aops); 2979 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); 2980 if (error) 2981 page = ERR_PTR(error); 2982 else 2983 unlock_page(page); 2984 return page; 2985 #else 2986 /* 2987 * The tiny !SHMEM case uses ramfs without swap 2988 */ 2989 return read_cache_page_gfp(mapping, index, gfp); 2990 #endif 2991 } 2992 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 2993