1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/export.h> 33 #include <linux/swap.h> 34 #include <linux/uio.h> 35 #include <linux/khugepaged.h> 36 37 static struct vfsmount *shm_mnt; 38 39 #ifdef CONFIG_SHMEM 40 /* 41 * This virtual memory filesystem is heavily based on the ramfs. It 42 * extends ramfs by the ability to use swap and honor resource limits 43 * which makes it a completely usable filesystem. 44 */ 45 46 #include <linux/xattr.h> 47 #include <linux/exportfs.h> 48 #include <linux/posix_acl.h> 49 #include <linux/posix_acl_xattr.h> 50 #include <linux/mman.h> 51 #include <linux/string.h> 52 #include <linux/slab.h> 53 #include <linux/backing-dev.h> 54 #include <linux/shmem_fs.h> 55 #include <linux/writeback.h> 56 #include <linux/blkdev.h> 57 #include <linux/pagevec.h> 58 #include <linux/percpu_counter.h> 59 #include <linux/falloc.h> 60 #include <linux/splice.h> 61 #include <linux/security.h> 62 #include <linux/swapops.h> 63 #include <linux/mempolicy.h> 64 #include <linux/namei.h> 65 #include <linux/ctype.h> 66 #include <linux/migrate.h> 67 #include <linux/highmem.h> 68 #include <linux/seq_file.h> 69 #include <linux/magic.h> 70 #include <linux/syscalls.h> 71 #include <linux/fcntl.h> 72 #include <uapi/linux/memfd.h> 73 74 #include <asm/uaccess.h> 75 #include <asm/pgtable.h> 76 77 #include "internal.h" 78 79 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 80 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 81 82 /* Pretend that each entry is of this size in directory's i_size */ 83 #define BOGO_DIRENT_SIZE 20 84 85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 86 #define SHORT_SYMLINK_LEN 128 87 88 /* 89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 90 * inode->i_private (with i_mutex making sure that it has only one user at 91 * a time): we would prefer not to enlarge the shmem inode just for that. 92 */ 93 struct shmem_falloc { 94 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 95 pgoff_t start; /* start of range currently being fallocated */ 96 pgoff_t next; /* the next page offset to be fallocated */ 97 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 98 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 99 }; 100 101 #ifdef CONFIG_TMPFS 102 static unsigned long shmem_default_max_blocks(void) 103 { 104 return totalram_pages / 2; 105 } 106 107 static unsigned long shmem_default_max_inodes(void) 108 { 109 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 110 } 111 #endif 112 113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 114 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 115 struct shmem_inode_info *info, pgoff_t index); 116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 117 struct page **pagep, enum sgp_type sgp, 118 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type); 119 120 int shmem_getpage(struct inode *inode, pgoff_t index, 121 struct page **pagep, enum sgp_type sgp) 122 { 123 return shmem_getpage_gfp(inode, index, pagep, sgp, 124 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 125 } 126 127 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 128 { 129 return sb->s_fs_info; 130 } 131 132 /* 133 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 134 * for shared memory and for shared anonymous (/dev/zero) mappings 135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 136 * consistent with the pre-accounting of private mappings ... 137 */ 138 static inline int shmem_acct_size(unsigned long flags, loff_t size) 139 { 140 return (flags & VM_NORESERVE) ? 141 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 142 } 143 144 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 145 { 146 if (!(flags & VM_NORESERVE)) 147 vm_unacct_memory(VM_ACCT(size)); 148 } 149 150 static inline int shmem_reacct_size(unsigned long flags, 151 loff_t oldsize, loff_t newsize) 152 { 153 if (!(flags & VM_NORESERVE)) { 154 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 155 return security_vm_enough_memory_mm(current->mm, 156 VM_ACCT(newsize) - VM_ACCT(oldsize)); 157 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 158 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 159 } 160 return 0; 161 } 162 163 /* 164 * ... whereas tmpfs objects are accounted incrementally as 165 * pages are allocated, in order to allow large sparse files. 166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 168 */ 169 static inline int shmem_acct_block(unsigned long flags, long pages) 170 { 171 if (!(flags & VM_NORESERVE)) 172 return 0; 173 174 return security_vm_enough_memory_mm(current->mm, 175 pages * VM_ACCT(PAGE_SIZE)); 176 } 177 178 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 179 { 180 if (flags & VM_NORESERVE) 181 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 182 } 183 184 static const struct super_operations shmem_ops; 185 static const struct address_space_operations shmem_aops; 186 static const struct file_operations shmem_file_operations; 187 static const struct inode_operations shmem_inode_operations; 188 static const struct inode_operations shmem_dir_inode_operations; 189 static const struct inode_operations shmem_special_inode_operations; 190 static const struct vm_operations_struct shmem_vm_ops; 191 static struct file_system_type shmem_fs_type; 192 193 static LIST_HEAD(shmem_swaplist); 194 static DEFINE_MUTEX(shmem_swaplist_mutex); 195 196 static int shmem_reserve_inode(struct super_block *sb) 197 { 198 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 199 if (sbinfo->max_inodes) { 200 spin_lock(&sbinfo->stat_lock); 201 if (!sbinfo->free_inodes) { 202 spin_unlock(&sbinfo->stat_lock); 203 return -ENOSPC; 204 } 205 sbinfo->free_inodes--; 206 spin_unlock(&sbinfo->stat_lock); 207 } 208 return 0; 209 } 210 211 static void shmem_free_inode(struct super_block *sb) 212 { 213 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 214 if (sbinfo->max_inodes) { 215 spin_lock(&sbinfo->stat_lock); 216 sbinfo->free_inodes++; 217 spin_unlock(&sbinfo->stat_lock); 218 } 219 } 220 221 /** 222 * shmem_recalc_inode - recalculate the block usage of an inode 223 * @inode: inode to recalc 224 * 225 * We have to calculate the free blocks since the mm can drop 226 * undirtied hole pages behind our back. 227 * 228 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 229 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 230 * 231 * It has to be called with the spinlock held. 232 */ 233 static void shmem_recalc_inode(struct inode *inode) 234 { 235 struct shmem_inode_info *info = SHMEM_I(inode); 236 long freed; 237 238 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 239 if (freed > 0) { 240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 241 if (sbinfo->max_blocks) 242 percpu_counter_add(&sbinfo->used_blocks, -freed); 243 info->alloced -= freed; 244 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 245 shmem_unacct_blocks(info->flags, freed); 246 } 247 } 248 249 bool shmem_charge(struct inode *inode, long pages) 250 { 251 struct shmem_inode_info *info = SHMEM_I(inode); 252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 253 unsigned long flags; 254 255 if (shmem_acct_block(info->flags, pages)) 256 return false; 257 spin_lock_irqsave(&info->lock, flags); 258 info->alloced += pages; 259 inode->i_blocks += pages * BLOCKS_PER_PAGE; 260 shmem_recalc_inode(inode); 261 spin_unlock_irqrestore(&info->lock, flags); 262 inode->i_mapping->nrpages += pages; 263 264 if (!sbinfo->max_blocks) 265 return true; 266 if (percpu_counter_compare(&sbinfo->used_blocks, 267 sbinfo->max_blocks - pages) > 0) { 268 inode->i_mapping->nrpages -= pages; 269 spin_lock_irqsave(&info->lock, flags); 270 info->alloced -= pages; 271 shmem_recalc_inode(inode); 272 spin_unlock_irqrestore(&info->lock, flags); 273 shmem_unacct_blocks(info->flags, pages); 274 return false; 275 } 276 percpu_counter_add(&sbinfo->used_blocks, pages); 277 return true; 278 } 279 280 void shmem_uncharge(struct inode *inode, long pages) 281 { 282 struct shmem_inode_info *info = SHMEM_I(inode); 283 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 284 unsigned long flags; 285 286 spin_lock_irqsave(&info->lock, flags); 287 info->alloced -= pages; 288 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 289 shmem_recalc_inode(inode); 290 spin_unlock_irqrestore(&info->lock, flags); 291 292 if (sbinfo->max_blocks) 293 percpu_counter_sub(&sbinfo->used_blocks, pages); 294 shmem_unacct_blocks(info->flags, pages); 295 } 296 297 /* 298 * Replace item expected in radix tree by a new item, while holding tree lock. 299 */ 300 static int shmem_radix_tree_replace(struct address_space *mapping, 301 pgoff_t index, void *expected, void *replacement) 302 { 303 void **pslot; 304 void *item; 305 306 VM_BUG_ON(!expected); 307 VM_BUG_ON(!replacement); 308 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 309 if (!pslot) 310 return -ENOENT; 311 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock); 312 if (item != expected) 313 return -ENOENT; 314 radix_tree_replace_slot(pslot, replacement); 315 return 0; 316 } 317 318 /* 319 * Sometimes, before we decide whether to proceed or to fail, we must check 320 * that an entry was not already brought back from swap by a racing thread. 321 * 322 * Checking page is not enough: by the time a SwapCache page is locked, it 323 * might be reused, and again be SwapCache, using the same swap as before. 324 */ 325 static bool shmem_confirm_swap(struct address_space *mapping, 326 pgoff_t index, swp_entry_t swap) 327 { 328 void *item; 329 330 rcu_read_lock(); 331 item = radix_tree_lookup(&mapping->page_tree, index); 332 rcu_read_unlock(); 333 return item == swp_to_radix_entry(swap); 334 } 335 336 /* 337 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 338 * 339 * SHMEM_HUGE_NEVER: 340 * disables huge pages for the mount; 341 * SHMEM_HUGE_ALWAYS: 342 * enables huge pages for the mount; 343 * SHMEM_HUGE_WITHIN_SIZE: 344 * only allocate huge pages if the page will be fully within i_size, 345 * also respect fadvise()/madvise() hints; 346 * SHMEM_HUGE_ADVISE: 347 * only allocate huge pages if requested with fadvise()/madvise(); 348 */ 349 350 #define SHMEM_HUGE_NEVER 0 351 #define SHMEM_HUGE_ALWAYS 1 352 #define SHMEM_HUGE_WITHIN_SIZE 2 353 #define SHMEM_HUGE_ADVISE 3 354 355 /* 356 * Special values. 357 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 358 * 359 * SHMEM_HUGE_DENY: 360 * disables huge on shm_mnt and all mounts, for emergency use; 361 * SHMEM_HUGE_FORCE: 362 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 363 * 364 */ 365 #define SHMEM_HUGE_DENY (-1) 366 #define SHMEM_HUGE_FORCE (-2) 367 368 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 369 /* ifdef here to avoid bloating shmem.o when not necessary */ 370 371 int shmem_huge __read_mostly; 372 373 static int shmem_parse_huge(const char *str) 374 { 375 if (!strcmp(str, "never")) 376 return SHMEM_HUGE_NEVER; 377 if (!strcmp(str, "always")) 378 return SHMEM_HUGE_ALWAYS; 379 if (!strcmp(str, "within_size")) 380 return SHMEM_HUGE_WITHIN_SIZE; 381 if (!strcmp(str, "advise")) 382 return SHMEM_HUGE_ADVISE; 383 if (!strcmp(str, "deny")) 384 return SHMEM_HUGE_DENY; 385 if (!strcmp(str, "force")) 386 return SHMEM_HUGE_FORCE; 387 return -EINVAL; 388 } 389 390 static const char *shmem_format_huge(int huge) 391 { 392 switch (huge) { 393 case SHMEM_HUGE_NEVER: 394 return "never"; 395 case SHMEM_HUGE_ALWAYS: 396 return "always"; 397 case SHMEM_HUGE_WITHIN_SIZE: 398 return "within_size"; 399 case SHMEM_HUGE_ADVISE: 400 return "advise"; 401 case SHMEM_HUGE_DENY: 402 return "deny"; 403 case SHMEM_HUGE_FORCE: 404 return "force"; 405 default: 406 VM_BUG_ON(1); 407 return "bad_val"; 408 } 409 } 410 411 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 412 struct shrink_control *sc, unsigned long nr_to_split) 413 { 414 LIST_HEAD(list), *pos, *next; 415 struct inode *inode; 416 struct shmem_inode_info *info; 417 struct page *page; 418 unsigned long batch = sc ? sc->nr_to_scan : 128; 419 int removed = 0, split = 0; 420 421 if (list_empty(&sbinfo->shrinklist)) 422 return SHRINK_STOP; 423 424 spin_lock(&sbinfo->shrinklist_lock); 425 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 426 info = list_entry(pos, struct shmem_inode_info, shrinklist); 427 428 /* pin the inode */ 429 inode = igrab(&info->vfs_inode); 430 431 /* inode is about to be evicted */ 432 if (!inode) { 433 list_del_init(&info->shrinklist); 434 removed++; 435 goto next; 436 } 437 438 /* Check if there's anything to gain */ 439 if (round_up(inode->i_size, PAGE_SIZE) == 440 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 441 list_del_init(&info->shrinklist); 442 removed++; 443 iput(inode); 444 goto next; 445 } 446 447 list_move(&info->shrinklist, &list); 448 next: 449 if (!--batch) 450 break; 451 } 452 spin_unlock(&sbinfo->shrinklist_lock); 453 454 list_for_each_safe(pos, next, &list) { 455 int ret; 456 457 info = list_entry(pos, struct shmem_inode_info, shrinklist); 458 inode = &info->vfs_inode; 459 460 if (nr_to_split && split >= nr_to_split) { 461 iput(inode); 462 continue; 463 } 464 465 page = find_lock_page(inode->i_mapping, 466 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 467 if (!page) 468 goto drop; 469 470 if (!PageTransHuge(page)) { 471 unlock_page(page); 472 put_page(page); 473 goto drop; 474 } 475 476 ret = split_huge_page(page); 477 unlock_page(page); 478 put_page(page); 479 480 if (ret) { 481 /* split failed: leave it on the list */ 482 iput(inode); 483 continue; 484 } 485 486 split++; 487 drop: 488 list_del_init(&info->shrinklist); 489 removed++; 490 iput(inode); 491 } 492 493 spin_lock(&sbinfo->shrinklist_lock); 494 list_splice_tail(&list, &sbinfo->shrinklist); 495 sbinfo->shrinklist_len -= removed; 496 spin_unlock(&sbinfo->shrinklist_lock); 497 498 return split; 499 } 500 501 static long shmem_unused_huge_scan(struct super_block *sb, 502 struct shrink_control *sc) 503 { 504 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 505 506 if (!READ_ONCE(sbinfo->shrinklist_len)) 507 return SHRINK_STOP; 508 509 return shmem_unused_huge_shrink(sbinfo, sc, 0); 510 } 511 512 static long shmem_unused_huge_count(struct super_block *sb, 513 struct shrink_control *sc) 514 { 515 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 516 return READ_ONCE(sbinfo->shrinklist_len); 517 } 518 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 519 520 #define shmem_huge SHMEM_HUGE_DENY 521 522 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 523 struct shrink_control *sc, unsigned long nr_to_split) 524 { 525 return 0; 526 } 527 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 528 529 /* 530 * Like add_to_page_cache_locked, but error if expected item has gone. 531 */ 532 static int shmem_add_to_page_cache(struct page *page, 533 struct address_space *mapping, 534 pgoff_t index, void *expected) 535 { 536 int error, nr = hpage_nr_pages(page); 537 538 VM_BUG_ON_PAGE(PageTail(page), page); 539 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 540 VM_BUG_ON_PAGE(!PageLocked(page), page); 541 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 542 VM_BUG_ON(expected && PageTransHuge(page)); 543 544 page_ref_add(page, nr); 545 page->mapping = mapping; 546 page->index = index; 547 548 spin_lock_irq(&mapping->tree_lock); 549 if (PageTransHuge(page)) { 550 void __rcu **results; 551 pgoff_t idx; 552 int i; 553 554 error = 0; 555 if (radix_tree_gang_lookup_slot(&mapping->page_tree, 556 &results, &idx, index, 1) && 557 idx < index + HPAGE_PMD_NR) { 558 error = -EEXIST; 559 } 560 561 if (!error) { 562 for (i = 0; i < HPAGE_PMD_NR; i++) { 563 error = radix_tree_insert(&mapping->page_tree, 564 index + i, page + i); 565 VM_BUG_ON(error); 566 } 567 count_vm_event(THP_FILE_ALLOC); 568 } 569 } else if (!expected) { 570 error = radix_tree_insert(&mapping->page_tree, index, page); 571 } else { 572 error = shmem_radix_tree_replace(mapping, index, expected, 573 page); 574 } 575 576 if (!error) { 577 mapping->nrpages += nr; 578 if (PageTransHuge(page)) 579 __inc_node_page_state(page, NR_SHMEM_THPS); 580 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 581 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 582 spin_unlock_irq(&mapping->tree_lock); 583 } else { 584 page->mapping = NULL; 585 spin_unlock_irq(&mapping->tree_lock); 586 page_ref_sub(page, nr); 587 } 588 return error; 589 } 590 591 /* 592 * Like delete_from_page_cache, but substitutes swap for page. 593 */ 594 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 595 { 596 struct address_space *mapping = page->mapping; 597 int error; 598 599 VM_BUG_ON_PAGE(PageCompound(page), page); 600 601 spin_lock_irq(&mapping->tree_lock); 602 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 603 page->mapping = NULL; 604 mapping->nrpages--; 605 __dec_node_page_state(page, NR_FILE_PAGES); 606 __dec_node_page_state(page, NR_SHMEM); 607 spin_unlock_irq(&mapping->tree_lock); 608 put_page(page); 609 BUG_ON(error); 610 } 611 612 /* 613 * Remove swap entry from radix tree, free the swap and its page cache. 614 */ 615 static int shmem_free_swap(struct address_space *mapping, 616 pgoff_t index, void *radswap) 617 { 618 void *old; 619 620 spin_lock_irq(&mapping->tree_lock); 621 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 622 spin_unlock_irq(&mapping->tree_lock); 623 if (old != radswap) 624 return -ENOENT; 625 free_swap_and_cache(radix_to_swp_entry(radswap)); 626 return 0; 627 } 628 629 /* 630 * Determine (in bytes) how many of the shmem object's pages mapped by the 631 * given offsets are swapped out. 632 * 633 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 634 * as long as the inode doesn't go away and racy results are not a problem. 635 */ 636 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 637 pgoff_t start, pgoff_t end) 638 { 639 struct radix_tree_iter iter; 640 void **slot; 641 struct page *page; 642 unsigned long swapped = 0; 643 644 rcu_read_lock(); 645 646 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 647 if (iter.index >= end) 648 break; 649 650 page = radix_tree_deref_slot(slot); 651 652 if (radix_tree_deref_retry(page)) { 653 slot = radix_tree_iter_retry(&iter); 654 continue; 655 } 656 657 if (radix_tree_exceptional_entry(page)) 658 swapped++; 659 660 if (need_resched()) { 661 cond_resched_rcu(); 662 slot = radix_tree_iter_next(&iter); 663 } 664 } 665 666 rcu_read_unlock(); 667 668 return swapped << PAGE_SHIFT; 669 } 670 671 /* 672 * Determine (in bytes) how many of the shmem object's pages mapped by the 673 * given vma is swapped out. 674 * 675 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 676 * as long as the inode doesn't go away and racy results are not a problem. 677 */ 678 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 679 { 680 struct inode *inode = file_inode(vma->vm_file); 681 struct shmem_inode_info *info = SHMEM_I(inode); 682 struct address_space *mapping = inode->i_mapping; 683 unsigned long swapped; 684 685 /* Be careful as we don't hold info->lock */ 686 swapped = READ_ONCE(info->swapped); 687 688 /* 689 * The easier cases are when the shmem object has nothing in swap, or 690 * the vma maps it whole. Then we can simply use the stats that we 691 * already track. 692 */ 693 if (!swapped) 694 return 0; 695 696 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 697 return swapped << PAGE_SHIFT; 698 699 /* Here comes the more involved part */ 700 return shmem_partial_swap_usage(mapping, 701 linear_page_index(vma, vma->vm_start), 702 linear_page_index(vma, vma->vm_end)); 703 } 704 705 /* 706 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 707 */ 708 void shmem_unlock_mapping(struct address_space *mapping) 709 { 710 struct pagevec pvec; 711 pgoff_t indices[PAGEVEC_SIZE]; 712 pgoff_t index = 0; 713 714 pagevec_init(&pvec, 0); 715 /* 716 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 717 */ 718 while (!mapping_unevictable(mapping)) { 719 /* 720 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 721 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 722 */ 723 pvec.nr = find_get_entries(mapping, index, 724 PAGEVEC_SIZE, pvec.pages, indices); 725 if (!pvec.nr) 726 break; 727 index = indices[pvec.nr - 1] + 1; 728 pagevec_remove_exceptionals(&pvec); 729 check_move_unevictable_pages(pvec.pages, pvec.nr); 730 pagevec_release(&pvec); 731 cond_resched(); 732 } 733 } 734 735 /* 736 * Remove range of pages and swap entries from radix tree, and free them. 737 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 738 */ 739 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 740 bool unfalloc) 741 { 742 struct address_space *mapping = inode->i_mapping; 743 struct shmem_inode_info *info = SHMEM_I(inode); 744 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 745 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 746 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 747 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 748 struct pagevec pvec; 749 pgoff_t indices[PAGEVEC_SIZE]; 750 long nr_swaps_freed = 0; 751 pgoff_t index; 752 int i; 753 754 if (lend == -1) 755 end = -1; /* unsigned, so actually very big */ 756 757 pagevec_init(&pvec, 0); 758 index = start; 759 while (index < end) { 760 pvec.nr = find_get_entries(mapping, index, 761 min(end - index, (pgoff_t)PAGEVEC_SIZE), 762 pvec.pages, indices); 763 if (!pvec.nr) 764 break; 765 for (i = 0; i < pagevec_count(&pvec); i++) { 766 struct page *page = pvec.pages[i]; 767 768 index = indices[i]; 769 if (index >= end) 770 break; 771 772 if (radix_tree_exceptional_entry(page)) { 773 if (unfalloc) 774 continue; 775 nr_swaps_freed += !shmem_free_swap(mapping, 776 index, page); 777 continue; 778 } 779 780 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 781 782 if (!trylock_page(page)) 783 continue; 784 785 if (PageTransTail(page)) { 786 /* Middle of THP: zero out the page */ 787 clear_highpage(page); 788 unlock_page(page); 789 continue; 790 } else if (PageTransHuge(page)) { 791 if (index == round_down(end, HPAGE_PMD_NR)) { 792 /* 793 * Range ends in the middle of THP: 794 * zero out the page 795 */ 796 clear_highpage(page); 797 unlock_page(page); 798 continue; 799 } 800 index += HPAGE_PMD_NR - 1; 801 i += HPAGE_PMD_NR - 1; 802 } 803 804 if (!unfalloc || !PageUptodate(page)) { 805 VM_BUG_ON_PAGE(PageTail(page), page); 806 if (page_mapping(page) == mapping) { 807 VM_BUG_ON_PAGE(PageWriteback(page), page); 808 truncate_inode_page(mapping, page); 809 } 810 } 811 unlock_page(page); 812 } 813 pagevec_remove_exceptionals(&pvec); 814 pagevec_release(&pvec); 815 cond_resched(); 816 index++; 817 } 818 819 if (partial_start) { 820 struct page *page = NULL; 821 shmem_getpage(inode, start - 1, &page, SGP_READ); 822 if (page) { 823 unsigned int top = PAGE_SIZE; 824 if (start > end) { 825 top = partial_end; 826 partial_end = 0; 827 } 828 zero_user_segment(page, partial_start, top); 829 set_page_dirty(page); 830 unlock_page(page); 831 put_page(page); 832 } 833 } 834 if (partial_end) { 835 struct page *page = NULL; 836 shmem_getpage(inode, end, &page, SGP_READ); 837 if (page) { 838 zero_user_segment(page, 0, partial_end); 839 set_page_dirty(page); 840 unlock_page(page); 841 put_page(page); 842 } 843 } 844 if (start >= end) 845 return; 846 847 index = start; 848 while (index < end) { 849 cond_resched(); 850 851 pvec.nr = find_get_entries(mapping, index, 852 min(end - index, (pgoff_t)PAGEVEC_SIZE), 853 pvec.pages, indices); 854 if (!pvec.nr) { 855 /* If all gone or hole-punch or unfalloc, we're done */ 856 if (index == start || end != -1) 857 break; 858 /* But if truncating, restart to make sure all gone */ 859 index = start; 860 continue; 861 } 862 for (i = 0; i < pagevec_count(&pvec); i++) { 863 struct page *page = pvec.pages[i]; 864 865 index = indices[i]; 866 if (index >= end) 867 break; 868 869 if (radix_tree_exceptional_entry(page)) { 870 if (unfalloc) 871 continue; 872 if (shmem_free_swap(mapping, index, page)) { 873 /* Swap was replaced by page: retry */ 874 index--; 875 break; 876 } 877 nr_swaps_freed++; 878 continue; 879 } 880 881 lock_page(page); 882 883 if (PageTransTail(page)) { 884 /* Middle of THP: zero out the page */ 885 clear_highpage(page); 886 unlock_page(page); 887 /* 888 * Partial thp truncate due 'start' in middle 889 * of THP: don't need to look on these pages 890 * again on !pvec.nr restart. 891 */ 892 if (index != round_down(end, HPAGE_PMD_NR)) 893 start++; 894 continue; 895 } else if (PageTransHuge(page)) { 896 if (index == round_down(end, HPAGE_PMD_NR)) { 897 /* 898 * Range ends in the middle of THP: 899 * zero out the page 900 */ 901 clear_highpage(page); 902 unlock_page(page); 903 continue; 904 } 905 index += HPAGE_PMD_NR - 1; 906 i += HPAGE_PMD_NR - 1; 907 } 908 909 if (!unfalloc || !PageUptodate(page)) { 910 VM_BUG_ON_PAGE(PageTail(page), page); 911 if (page_mapping(page) == mapping) { 912 VM_BUG_ON_PAGE(PageWriteback(page), page); 913 truncate_inode_page(mapping, page); 914 } else { 915 /* Page was replaced by swap: retry */ 916 unlock_page(page); 917 index--; 918 break; 919 } 920 } 921 unlock_page(page); 922 } 923 pagevec_remove_exceptionals(&pvec); 924 pagevec_release(&pvec); 925 index++; 926 } 927 928 spin_lock_irq(&info->lock); 929 info->swapped -= nr_swaps_freed; 930 shmem_recalc_inode(inode); 931 spin_unlock_irq(&info->lock); 932 } 933 934 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 935 { 936 shmem_undo_range(inode, lstart, lend, false); 937 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 938 } 939 EXPORT_SYMBOL_GPL(shmem_truncate_range); 940 941 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry, 942 struct kstat *stat) 943 { 944 struct inode *inode = dentry->d_inode; 945 struct shmem_inode_info *info = SHMEM_I(inode); 946 947 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 948 spin_lock_irq(&info->lock); 949 shmem_recalc_inode(inode); 950 spin_unlock_irq(&info->lock); 951 } 952 generic_fillattr(inode, stat); 953 return 0; 954 } 955 956 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 957 { 958 struct inode *inode = d_inode(dentry); 959 struct shmem_inode_info *info = SHMEM_I(inode); 960 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 961 int error; 962 963 error = inode_change_ok(inode, attr); 964 if (error) 965 return error; 966 967 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 968 loff_t oldsize = inode->i_size; 969 loff_t newsize = attr->ia_size; 970 971 /* protected by i_mutex */ 972 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 973 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 974 return -EPERM; 975 976 if (newsize != oldsize) { 977 error = shmem_reacct_size(SHMEM_I(inode)->flags, 978 oldsize, newsize); 979 if (error) 980 return error; 981 i_size_write(inode, newsize); 982 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 983 } 984 if (newsize <= oldsize) { 985 loff_t holebegin = round_up(newsize, PAGE_SIZE); 986 if (oldsize > holebegin) 987 unmap_mapping_range(inode->i_mapping, 988 holebegin, 0, 1); 989 if (info->alloced) 990 shmem_truncate_range(inode, 991 newsize, (loff_t)-1); 992 /* unmap again to remove racily COWed private pages */ 993 if (oldsize > holebegin) 994 unmap_mapping_range(inode->i_mapping, 995 holebegin, 0, 1); 996 997 /* 998 * Part of the huge page can be beyond i_size: subject 999 * to shrink under memory pressure. 1000 */ 1001 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 1002 spin_lock(&sbinfo->shrinklist_lock); 1003 if (list_empty(&info->shrinklist)) { 1004 list_add_tail(&info->shrinklist, 1005 &sbinfo->shrinklist); 1006 sbinfo->shrinklist_len++; 1007 } 1008 spin_unlock(&sbinfo->shrinklist_lock); 1009 } 1010 } 1011 } 1012 1013 setattr_copy(inode, attr); 1014 if (attr->ia_valid & ATTR_MODE) 1015 error = posix_acl_chmod(inode, inode->i_mode); 1016 return error; 1017 } 1018 1019 static void shmem_evict_inode(struct inode *inode) 1020 { 1021 struct shmem_inode_info *info = SHMEM_I(inode); 1022 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1023 1024 if (inode->i_mapping->a_ops == &shmem_aops) { 1025 shmem_unacct_size(info->flags, inode->i_size); 1026 inode->i_size = 0; 1027 shmem_truncate_range(inode, 0, (loff_t)-1); 1028 if (!list_empty(&info->shrinklist)) { 1029 spin_lock(&sbinfo->shrinklist_lock); 1030 if (!list_empty(&info->shrinklist)) { 1031 list_del_init(&info->shrinklist); 1032 sbinfo->shrinklist_len--; 1033 } 1034 spin_unlock(&sbinfo->shrinklist_lock); 1035 } 1036 if (!list_empty(&info->swaplist)) { 1037 mutex_lock(&shmem_swaplist_mutex); 1038 list_del_init(&info->swaplist); 1039 mutex_unlock(&shmem_swaplist_mutex); 1040 } 1041 } 1042 1043 simple_xattrs_free(&info->xattrs); 1044 WARN_ON(inode->i_blocks); 1045 shmem_free_inode(inode->i_sb); 1046 clear_inode(inode); 1047 } 1048 1049 /* 1050 * If swap found in inode, free it and move page from swapcache to filecache. 1051 */ 1052 static int shmem_unuse_inode(struct shmem_inode_info *info, 1053 swp_entry_t swap, struct page **pagep) 1054 { 1055 struct address_space *mapping = info->vfs_inode.i_mapping; 1056 void *radswap; 1057 pgoff_t index; 1058 gfp_t gfp; 1059 int error = 0; 1060 1061 radswap = swp_to_radix_entry(swap); 1062 index = radix_tree_locate_item(&mapping->page_tree, radswap); 1063 if (index == -1) 1064 return -EAGAIN; /* tell shmem_unuse we found nothing */ 1065 1066 /* 1067 * Move _head_ to start search for next from here. 1068 * But be careful: shmem_evict_inode checks list_empty without taking 1069 * mutex, and there's an instant in list_move_tail when info->swaplist 1070 * would appear empty, if it were the only one on shmem_swaplist. 1071 */ 1072 if (shmem_swaplist.next != &info->swaplist) 1073 list_move_tail(&shmem_swaplist, &info->swaplist); 1074 1075 gfp = mapping_gfp_mask(mapping); 1076 if (shmem_should_replace_page(*pagep, gfp)) { 1077 mutex_unlock(&shmem_swaplist_mutex); 1078 error = shmem_replace_page(pagep, gfp, info, index); 1079 mutex_lock(&shmem_swaplist_mutex); 1080 /* 1081 * We needed to drop mutex to make that restrictive page 1082 * allocation, but the inode might have been freed while we 1083 * dropped it: although a racing shmem_evict_inode() cannot 1084 * complete without emptying the radix_tree, our page lock 1085 * on this swapcache page is not enough to prevent that - 1086 * free_swap_and_cache() of our swap entry will only 1087 * trylock_page(), removing swap from radix_tree whatever. 1088 * 1089 * We must not proceed to shmem_add_to_page_cache() if the 1090 * inode has been freed, but of course we cannot rely on 1091 * inode or mapping or info to check that. However, we can 1092 * safely check if our swap entry is still in use (and here 1093 * it can't have got reused for another page): if it's still 1094 * in use, then the inode cannot have been freed yet, and we 1095 * can safely proceed (if it's no longer in use, that tells 1096 * nothing about the inode, but we don't need to unuse swap). 1097 */ 1098 if (!page_swapcount(*pagep)) 1099 error = -ENOENT; 1100 } 1101 1102 /* 1103 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 1104 * but also to hold up shmem_evict_inode(): so inode cannot be freed 1105 * beneath us (pagelock doesn't help until the page is in pagecache). 1106 */ 1107 if (!error) 1108 error = shmem_add_to_page_cache(*pagep, mapping, index, 1109 radswap); 1110 if (error != -ENOMEM) { 1111 /* 1112 * Truncation and eviction use free_swap_and_cache(), which 1113 * only does trylock page: if we raced, best clean up here. 1114 */ 1115 delete_from_swap_cache(*pagep); 1116 set_page_dirty(*pagep); 1117 if (!error) { 1118 spin_lock_irq(&info->lock); 1119 info->swapped--; 1120 spin_unlock_irq(&info->lock); 1121 swap_free(swap); 1122 } 1123 } 1124 return error; 1125 } 1126 1127 /* 1128 * Search through swapped inodes to find and replace swap by page. 1129 */ 1130 int shmem_unuse(swp_entry_t swap, struct page *page) 1131 { 1132 struct list_head *this, *next; 1133 struct shmem_inode_info *info; 1134 struct mem_cgroup *memcg; 1135 int error = 0; 1136 1137 /* 1138 * There's a faint possibility that swap page was replaced before 1139 * caller locked it: caller will come back later with the right page. 1140 */ 1141 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 1142 goto out; 1143 1144 /* 1145 * Charge page using GFP_KERNEL while we can wait, before taking 1146 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 1147 * Charged back to the user (not to caller) when swap account is used. 1148 */ 1149 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg, 1150 false); 1151 if (error) 1152 goto out; 1153 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 1154 error = -EAGAIN; 1155 1156 mutex_lock(&shmem_swaplist_mutex); 1157 list_for_each_safe(this, next, &shmem_swaplist) { 1158 info = list_entry(this, struct shmem_inode_info, swaplist); 1159 if (info->swapped) 1160 error = shmem_unuse_inode(info, swap, &page); 1161 else 1162 list_del_init(&info->swaplist); 1163 cond_resched(); 1164 if (error != -EAGAIN) 1165 break; 1166 /* found nothing in this: move on to search the next */ 1167 } 1168 mutex_unlock(&shmem_swaplist_mutex); 1169 1170 if (error) { 1171 if (error != -ENOMEM) 1172 error = 0; 1173 mem_cgroup_cancel_charge(page, memcg, false); 1174 } else 1175 mem_cgroup_commit_charge(page, memcg, true, false); 1176 out: 1177 unlock_page(page); 1178 put_page(page); 1179 return error; 1180 } 1181 1182 /* 1183 * Move the page from the page cache to the swap cache. 1184 */ 1185 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1186 { 1187 struct shmem_inode_info *info; 1188 struct address_space *mapping; 1189 struct inode *inode; 1190 swp_entry_t swap; 1191 pgoff_t index; 1192 1193 VM_BUG_ON_PAGE(PageCompound(page), page); 1194 BUG_ON(!PageLocked(page)); 1195 mapping = page->mapping; 1196 index = page->index; 1197 inode = mapping->host; 1198 info = SHMEM_I(inode); 1199 if (info->flags & VM_LOCKED) 1200 goto redirty; 1201 if (!total_swap_pages) 1202 goto redirty; 1203 1204 /* 1205 * Our capabilities prevent regular writeback or sync from ever calling 1206 * shmem_writepage; but a stacking filesystem might use ->writepage of 1207 * its underlying filesystem, in which case tmpfs should write out to 1208 * swap only in response to memory pressure, and not for the writeback 1209 * threads or sync. 1210 */ 1211 if (!wbc->for_reclaim) { 1212 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1213 goto redirty; 1214 } 1215 1216 /* 1217 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1218 * value into swapfile.c, the only way we can correctly account for a 1219 * fallocated page arriving here is now to initialize it and write it. 1220 * 1221 * That's okay for a page already fallocated earlier, but if we have 1222 * not yet completed the fallocation, then (a) we want to keep track 1223 * of this page in case we have to undo it, and (b) it may not be a 1224 * good idea to continue anyway, once we're pushing into swap. So 1225 * reactivate the page, and let shmem_fallocate() quit when too many. 1226 */ 1227 if (!PageUptodate(page)) { 1228 if (inode->i_private) { 1229 struct shmem_falloc *shmem_falloc; 1230 spin_lock(&inode->i_lock); 1231 shmem_falloc = inode->i_private; 1232 if (shmem_falloc && 1233 !shmem_falloc->waitq && 1234 index >= shmem_falloc->start && 1235 index < shmem_falloc->next) 1236 shmem_falloc->nr_unswapped++; 1237 else 1238 shmem_falloc = NULL; 1239 spin_unlock(&inode->i_lock); 1240 if (shmem_falloc) 1241 goto redirty; 1242 } 1243 clear_highpage(page); 1244 flush_dcache_page(page); 1245 SetPageUptodate(page); 1246 } 1247 1248 swap = get_swap_page(); 1249 if (!swap.val) 1250 goto redirty; 1251 1252 if (mem_cgroup_try_charge_swap(page, swap)) 1253 goto free_swap; 1254 1255 /* 1256 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1257 * if it's not already there. Do it now before the page is 1258 * moved to swap cache, when its pagelock no longer protects 1259 * the inode from eviction. But don't unlock the mutex until 1260 * we've incremented swapped, because shmem_unuse_inode() will 1261 * prune a !swapped inode from the swaplist under this mutex. 1262 */ 1263 mutex_lock(&shmem_swaplist_mutex); 1264 if (list_empty(&info->swaplist)) 1265 list_add_tail(&info->swaplist, &shmem_swaplist); 1266 1267 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1268 spin_lock_irq(&info->lock); 1269 shmem_recalc_inode(inode); 1270 info->swapped++; 1271 spin_unlock_irq(&info->lock); 1272 1273 swap_shmem_alloc(swap); 1274 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1275 1276 mutex_unlock(&shmem_swaplist_mutex); 1277 BUG_ON(page_mapped(page)); 1278 swap_writepage(page, wbc); 1279 return 0; 1280 } 1281 1282 mutex_unlock(&shmem_swaplist_mutex); 1283 free_swap: 1284 swapcache_free(swap); 1285 redirty: 1286 set_page_dirty(page); 1287 if (wbc->for_reclaim) 1288 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1289 unlock_page(page); 1290 return 0; 1291 } 1292 1293 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1294 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1295 { 1296 char buffer[64]; 1297 1298 if (!mpol || mpol->mode == MPOL_DEFAULT) 1299 return; /* show nothing */ 1300 1301 mpol_to_str(buffer, sizeof(buffer), mpol); 1302 1303 seq_printf(seq, ",mpol=%s", buffer); 1304 } 1305 1306 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1307 { 1308 struct mempolicy *mpol = NULL; 1309 if (sbinfo->mpol) { 1310 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1311 mpol = sbinfo->mpol; 1312 mpol_get(mpol); 1313 spin_unlock(&sbinfo->stat_lock); 1314 } 1315 return mpol; 1316 } 1317 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1318 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1319 { 1320 } 1321 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1322 { 1323 return NULL; 1324 } 1325 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1326 #ifndef CONFIG_NUMA 1327 #define vm_policy vm_private_data 1328 #endif 1329 1330 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1331 struct shmem_inode_info *info, pgoff_t index) 1332 { 1333 /* Create a pseudo vma that just contains the policy */ 1334 vma->vm_start = 0; 1335 /* Bias interleave by inode number to distribute better across nodes */ 1336 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1337 vma->vm_ops = NULL; 1338 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1339 } 1340 1341 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1342 { 1343 /* Drop reference taken by mpol_shared_policy_lookup() */ 1344 mpol_cond_put(vma->vm_policy); 1345 } 1346 1347 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1348 struct shmem_inode_info *info, pgoff_t index) 1349 { 1350 struct vm_area_struct pvma; 1351 struct page *page; 1352 1353 shmem_pseudo_vma_init(&pvma, info, index); 1354 page = swapin_readahead(swap, gfp, &pvma, 0); 1355 shmem_pseudo_vma_destroy(&pvma); 1356 1357 return page; 1358 } 1359 1360 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1361 struct shmem_inode_info *info, pgoff_t index) 1362 { 1363 struct vm_area_struct pvma; 1364 struct inode *inode = &info->vfs_inode; 1365 struct address_space *mapping = inode->i_mapping; 1366 pgoff_t idx, hindex; 1367 void __rcu **results; 1368 struct page *page; 1369 1370 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1371 return NULL; 1372 1373 hindex = round_down(index, HPAGE_PMD_NR); 1374 rcu_read_lock(); 1375 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx, 1376 hindex, 1) && idx < hindex + HPAGE_PMD_NR) { 1377 rcu_read_unlock(); 1378 return NULL; 1379 } 1380 rcu_read_unlock(); 1381 1382 shmem_pseudo_vma_init(&pvma, info, hindex); 1383 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1384 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1385 shmem_pseudo_vma_destroy(&pvma); 1386 if (page) 1387 prep_transhuge_page(page); 1388 return page; 1389 } 1390 1391 static struct page *shmem_alloc_page(gfp_t gfp, 1392 struct shmem_inode_info *info, pgoff_t index) 1393 { 1394 struct vm_area_struct pvma; 1395 struct page *page; 1396 1397 shmem_pseudo_vma_init(&pvma, info, index); 1398 page = alloc_page_vma(gfp, &pvma, 0); 1399 shmem_pseudo_vma_destroy(&pvma); 1400 1401 return page; 1402 } 1403 1404 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1405 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo, 1406 pgoff_t index, bool huge) 1407 { 1408 struct page *page; 1409 int nr; 1410 int err = -ENOSPC; 1411 1412 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1413 huge = false; 1414 nr = huge ? HPAGE_PMD_NR : 1; 1415 1416 if (shmem_acct_block(info->flags, nr)) 1417 goto failed; 1418 if (sbinfo->max_blocks) { 1419 if (percpu_counter_compare(&sbinfo->used_blocks, 1420 sbinfo->max_blocks - nr) > 0) 1421 goto unacct; 1422 percpu_counter_add(&sbinfo->used_blocks, nr); 1423 } 1424 1425 if (huge) 1426 page = shmem_alloc_hugepage(gfp, info, index); 1427 else 1428 page = shmem_alloc_page(gfp, info, index); 1429 if (page) { 1430 __SetPageLocked(page); 1431 __SetPageSwapBacked(page); 1432 return page; 1433 } 1434 1435 err = -ENOMEM; 1436 if (sbinfo->max_blocks) 1437 percpu_counter_add(&sbinfo->used_blocks, -nr); 1438 unacct: 1439 shmem_unacct_blocks(info->flags, nr); 1440 failed: 1441 return ERR_PTR(err); 1442 } 1443 1444 /* 1445 * When a page is moved from swapcache to shmem filecache (either by the 1446 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1447 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1448 * ignorance of the mapping it belongs to. If that mapping has special 1449 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1450 * we may need to copy to a suitable page before moving to filecache. 1451 * 1452 * In a future release, this may well be extended to respect cpuset and 1453 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1454 * but for now it is a simple matter of zone. 1455 */ 1456 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1457 { 1458 return page_zonenum(page) > gfp_zone(gfp); 1459 } 1460 1461 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1462 struct shmem_inode_info *info, pgoff_t index) 1463 { 1464 struct page *oldpage, *newpage; 1465 struct address_space *swap_mapping; 1466 pgoff_t swap_index; 1467 int error; 1468 1469 oldpage = *pagep; 1470 swap_index = page_private(oldpage); 1471 swap_mapping = page_mapping(oldpage); 1472 1473 /* 1474 * We have arrived here because our zones are constrained, so don't 1475 * limit chance of success by further cpuset and node constraints. 1476 */ 1477 gfp &= ~GFP_CONSTRAINT_MASK; 1478 newpage = shmem_alloc_page(gfp, info, index); 1479 if (!newpage) 1480 return -ENOMEM; 1481 1482 get_page(newpage); 1483 copy_highpage(newpage, oldpage); 1484 flush_dcache_page(newpage); 1485 1486 SetPageUptodate(newpage); 1487 set_page_private(newpage, swap_index); 1488 SetPageSwapCache(newpage); 1489 1490 /* 1491 * Our caller will very soon move newpage out of swapcache, but it's 1492 * a nice clean interface for us to replace oldpage by newpage there. 1493 */ 1494 spin_lock_irq(&swap_mapping->tree_lock); 1495 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1496 newpage); 1497 if (!error) { 1498 __inc_node_page_state(newpage, NR_FILE_PAGES); 1499 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1500 } 1501 spin_unlock_irq(&swap_mapping->tree_lock); 1502 1503 if (unlikely(error)) { 1504 /* 1505 * Is this possible? I think not, now that our callers check 1506 * both PageSwapCache and page_private after getting page lock; 1507 * but be defensive. Reverse old to newpage for clear and free. 1508 */ 1509 oldpage = newpage; 1510 } else { 1511 mem_cgroup_migrate(oldpage, newpage); 1512 lru_cache_add_anon(newpage); 1513 *pagep = newpage; 1514 } 1515 1516 ClearPageSwapCache(oldpage); 1517 set_page_private(oldpage, 0); 1518 1519 unlock_page(oldpage); 1520 put_page(oldpage); 1521 put_page(oldpage); 1522 return error; 1523 } 1524 1525 /* 1526 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1527 * 1528 * If we allocate a new one we do not mark it dirty. That's up to the 1529 * vm. If we swap it in we mark it dirty since we also free the swap 1530 * entry since a page cannot live in both the swap and page cache. 1531 * 1532 * fault_mm and fault_type are only supplied by shmem_fault: 1533 * otherwise they are NULL. 1534 */ 1535 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1536 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1537 struct mm_struct *fault_mm, int *fault_type) 1538 { 1539 struct address_space *mapping = inode->i_mapping; 1540 struct shmem_inode_info *info; 1541 struct shmem_sb_info *sbinfo; 1542 struct mm_struct *charge_mm; 1543 struct mem_cgroup *memcg; 1544 struct page *page; 1545 swp_entry_t swap; 1546 enum sgp_type sgp_huge = sgp; 1547 pgoff_t hindex = index; 1548 int error; 1549 int once = 0; 1550 int alloced = 0; 1551 1552 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1553 return -EFBIG; 1554 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1555 sgp = SGP_CACHE; 1556 repeat: 1557 swap.val = 0; 1558 page = find_lock_entry(mapping, index); 1559 if (radix_tree_exceptional_entry(page)) { 1560 swap = radix_to_swp_entry(page); 1561 page = NULL; 1562 } 1563 1564 if (sgp <= SGP_CACHE && 1565 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1566 error = -EINVAL; 1567 goto unlock; 1568 } 1569 1570 if (page && sgp == SGP_WRITE) 1571 mark_page_accessed(page); 1572 1573 /* fallocated page? */ 1574 if (page && !PageUptodate(page)) { 1575 if (sgp != SGP_READ) 1576 goto clear; 1577 unlock_page(page); 1578 put_page(page); 1579 page = NULL; 1580 } 1581 if (page || (sgp == SGP_READ && !swap.val)) { 1582 *pagep = page; 1583 return 0; 1584 } 1585 1586 /* 1587 * Fast cache lookup did not find it: 1588 * bring it back from swap or allocate. 1589 */ 1590 info = SHMEM_I(inode); 1591 sbinfo = SHMEM_SB(inode->i_sb); 1592 charge_mm = fault_mm ? : current->mm; 1593 1594 if (swap.val) { 1595 /* Look it up and read it in.. */ 1596 page = lookup_swap_cache(swap); 1597 if (!page) { 1598 /* Or update major stats only when swapin succeeds?? */ 1599 if (fault_type) { 1600 *fault_type |= VM_FAULT_MAJOR; 1601 count_vm_event(PGMAJFAULT); 1602 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT); 1603 } 1604 /* Here we actually start the io */ 1605 page = shmem_swapin(swap, gfp, info, index); 1606 if (!page) { 1607 error = -ENOMEM; 1608 goto failed; 1609 } 1610 } 1611 1612 /* We have to do this with page locked to prevent races */ 1613 lock_page(page); 1614 if (!PageSwapCache(page) || page_private(page) != swap.val || 1615 !shmem_confirm_swap(mapping, index, swap)) { 1616 error = -EEXIST; /* try again */ 1617 goto unlock; 1618 } 1619 if (!PageUptodate(page)) { 1620 error = -EIO; 1621 goto failed; 1622 } 1623 wait_on_page_writeback(page); 1624 1625 if (shmem_should_replace_page(page, gfp)) { 1626 error = shmem_replace_page(&page, gfp, info, index); 1627 if (error) 1628 goto failed; 1629 } 1630 1631 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1632 false); 1633 if (!error) { 1634 error = shmem_add_to_page_cache(page, mapping, index, 1635 swp_to_radix_entry(swap)); 1636 /* 1637 * We already confirmed swap under page lock, and make 1638 * no memory allocation here, so usually no possibility 1639 * of error; but free_swap_and_cache() only trylocks a 1640 * page, so it is just possible that the entry has been 1641 * truncated or holepunched since swap was confirmed. 1642 * shmem_undo_range() will have done some of the 1643 * unaccounting, now delete_from_swap_cache() will do 1644 * the rest. 1645 * Reset swap.val? No, leave it so "failed" goes back to 1646 * "repeat": reading a hole and writing should succeed. 1647 */ 1648 if (error) { 1649 mem_cgroup_cancel_charge(page, memcg, false); 1650 delete_from_swap_cache(page); 1651 } 1652 } 1653 if (error) 1654 goto failed; 1655 1656 mem_cgroup_commit_charge(page, memcg, true, false); 1657 1658 spin_lock_irq(&info->lock); 1659 info->swapped--; 1660 shmem_recalc_inode(inode); 1661 spin_unlock_irq(&info->lock); 1662 1663 if (sgp == SGP_WRITE) 1664 mark_page_accessed(page); 1665 1666 delete_from_swap_cache(page); 1667 set_page_dirty(page); 1668 swap_free(swap); 1669 1670 } else { 1671 /* shmem_symlink() */ 1672 if (mapping->a_ops != &shmem_aops) 1673 goto alloc_nohuge; 1674 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1675 goto alloc_nohuge; 1676 if (shmem_huge == SHMEM_HUGE_FORCE) 1677 goto alloc_huge; 1678 switch (sbinfo->huge) { 1679 loff_t i_size; 1680 pgoff_t off; 1681 case SHMEM_HUGE_NEVER: 1682 goto alloc_nohuge; 1683 case SHMEM_HUGE_WITHIN_SIZE: 1684 off = round_up(index, HPAGE_PMD_NR); 1685 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1686 if (i_size >= HPAGE_PMD_SIZE && 1687 i_size >> PAGE_SHIFT >= off) 1688 goto alloc_huge; 1689 /* fallthrough */ 1690 case SHMEM_HUGE_ADVISE: 1691 if (sgp_huge == SGP_HUGE) 1692 goto alloc_huge; 1693 /* TODO: implement fadvise() hints */ 1694 goto alloc_nohuge; 1695 } 1696 1697 alloc_huge: 1698 page = shmem_alloc_and_acct_page(gfp, info, sbinfo, 1699 index, true); 1700 if (IS_ERR(page)) { 1701 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo, 1702 index, false); 1703 } 1704 if (IS_ERR(page)) { 1705 int retry = 5; 1706 error = PTR_ERR(page); 1707 page = NULL; 1708 if (error != -ENOSPC) 1709 goto failed; 1710 /* 1711 * Try to reclaim some spece by splitting a huge page 1712 * beyond i_size on the filesystem. 1713 */ 1714 while (retry--) { 1715 int ret; 1716 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1717 if (ret == SHRINK_STOP) 1718 break; 1719 if (ret) 1720 goto alloc_nohuge; 1721 } 1722 goto failed; 1723 } 1724 1725 if (PageTransHuge(page)) 1726 hindex = round_down(index, HPAGE_PMD_NR); 1727 else 1728 hindex = index; 1729 1730 if (sgp == SGP_WRITE) 1731 __SetPageReferenced(page); 1732 1733 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1734 PageTransHuge(page)); 1735 if (error) 1736 goto unacct; 1737 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK, 1738 compound_order(page)); 1739 if (!error) { 1740 error = shmem_add_to_page_cache(page, mapping, hindex, 1741 NULL); 1742 radix_tree_preload_end(); 1743 } 1744 if (error) { 1745 mem_cgroup_cancel_charge(page, memcg, 1746 PageTransHuge(page)); 1747 goto unacct; 1748 } 1749 mem_cgroup_commit_charge(page, memcg, false, 1750 PageTransHuge(page)); 1751 lru_cache_add_anon(page); 1752 1753 spin_lock_irq(&info->lock); 1754 info->alloced += 1 << compound_order(page); 1755 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1756 shmem_recalc_inode(inode); 1757 spin_unlock_irq(&info->lock); 1758 alloced = true; 1759 1760 if (PageTransHuge(page) && 1761 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1762 hindex + HPAGE_PMD_NR - 1) { 1763 /* 1764 * Part of the huge page is beyond i_size: subject 1765 * to shrink under memory pressure. 1766 */ 1767 spin_lock(&sbinfo->shrinklist_lock); 1768 if (list_empty(&info->shrinklist)) { 1769 list_add_tail(&info->shrinklist, 1770 &sbinfo->shrinklist); 1771 sbinfo->shrinklist_len++; 1772 } 1773 spin_unlock(&sbinfo->shrinklist_lock); 1774 } 1775 1776 /* 1777 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1778 */ 1779 if (sgp == SGP_FALLOC) 1780 sgp = SGP_WRITE; 1781 clear: 1782 /* 1783 * Let SGP_WRITE caller clear ends if write does not fill page; 1784 * but SGP_FALLOC on a page fallocated earlier must initialize 1785 * it now, lest undo on failure cancel our earlier guarantee. 1786 */ 1787 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1788 struct page *head = compound_head(page); 1789 int i; 1790 1791 for (i = 0; i < (1 << compound_order(head)); i++) { 1792 clear_highpage(head + i); 1793 flush_dcache_page(head + i); 1794 } 1795 SetPageUptodate(head); 1796 } 1797 } 1798 1799 /* Perhaps the file has been truncated since we checked */ 1800 if (sgp <= SGP_CACHE && 1801 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1802 if (alloced) { 1803 ClearPageDirty(page); 1804 delete_from_page_cache(page); 1805 spin_lock_irq(&info->lock); 1806 shmem_recalc_inode(inode); 1807 spin_unlock_irq(&info->lock); 1808 } 1809 error = -EINVAL; 1810 goto unlock; 1811 } 1812 *pagep = page + index - hindex; 1813 return 0; 1814 1815 /* 1816 * Error recovery. 1817 */ 1818 unacct: 1819 if (sbinfo->max_blocks) 1820 percpu_counter_sub(&sbinfo->used_blocks, 1821 1 << compound_order(page)); 1822 shmem_unacct_blocks(info->flags, 1 << compound_order(page)); 1823 1824 if (PageTransHuge(page)) { 1825 unlock_page(page); 1826 put_page(page); 1827 goto alloc_nohuge; 1828 } 1829 failed: 1830 if (swap.val && !shmem_confirm_swap(mapping, index, swap)) 1831 error = -EEXIST; 1832 unlock: 1833 if (page) { 1834 unlock_page(page); 1835 put_page(page); 1836 } 1837 if (error == -ENOSPC && !once++) { 1838 info = SHMEM_I(inode); 1839 spin_lock_irq(&info->lock); 1840 shmem_recalc_inode(inode); 1841 spin_unlock_irq(&info->lock); 1842 goto repeat; 1843 } 1844 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1845 goto repeat; 1846 return error; 1847 } 1848 1849 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1850 { 1851 struct inode *inode = file_inode(vma->vm_file); 1852 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1853 enum sgp_type sgp; 1854 int error; 1855 int ret = VM_FAULT_LOCKED; 1856 1857 /* 1858 * Trinity finds that probing a hole which tmpfs is punching can 1859 * prevent the hole-punch from ever completing: which in turn 1860 * locks writers out with its hold on i_mutex. So refrain from 1861 * faulting pages into the hole while it's being punched. Although 1862 * shmem_undo_range() does remove the additions, it may be unable to 1863 * keep up, as each new page needs its own unmap_mapping_range() call, 1864 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1865 * 1866 * It does not matter if we sometimes reach this check just before the 1867 * hole-punch begins, so that one fault then races with the punch: 1868 * we just need to make racing faults a rare case. 1869 * 1870 * The implementation below would be much simpler if we just used a 1871 * standard mutex or completion: but we cannot take i_mutex in fault, 1872 * and bloating every shmem inode for this unlikely case would be sad. 1873 */ 1874 if (unlikely(inode->i_private)) { 1875 struct shmem_falloc *shmem_falloc; 1876 1877 spin_lock(&inode->i_lock); 1878 shmem_falloc = inode->i_private; 1879 if (shmem_falloc && 1880 shmem_falloc->waitq && 1881 vmf->pgoff >= shmem_falloc->start && 1882 vmf->pgoff < shmem_falloc->next) { 1883 wait_queue_head_t *shmem_falloc_waitq; 1884 DEFINE_WAIT(shmem_fault_wait); 1885 1886 ret = VM_FAULT_NOPAGE; 1887 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1888 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1889 /* It's polite to up mmap_sem if we can */ 1890 up_read(&vma->vm_mm->mmap_sem); 1891 ret = VM_FAULT_RETRY; 1892 } 1893 1894 shmem_falloc_waitq = shmem_falloc->waitq; 1895 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1896 TASK_UNINTERRUPTIBLE); 1897 spin_unlock(&inode->i_lock); 1898 schedule(); 1899 1900 /* 1901 * shmem_falloc_waitq points into the shmem_fallocate() 1902 * stack of the hole-punching task: shmem_falloc_waitq 1903 * is usually invalid by the time we reach here, but 1904 * finish_wait() does not dereference it in that case; 1905 * though i_lock needed lest racing with wake_up_all(). 1906 */ 1907 spin_lock(&inode->i_lock); 1908 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1909 spin_unlock(&inode->i_lock); 1910 return ret; 1911 } 1912 spin_unlock(&inode->i_lock); 1913 } 1914 1915 sgp = SGP_CACHE; 1916 if (vma->vm_flags & VM_HUGEPAGE) 1917 sgp = SGP_HUGE; 1918 else if (vma->vm_flags & VM_NOHUGEPAGE) 1919 sgp = SGP_NOHUGE; 1920 1921 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 1922 gfp, vma->vm_mm, &ret); 1923 if (error) 1924 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1925 return ret; 1926 } 1927 1928 unsigned long shmem_get_unmapped_area(struct file *file, 1929 unsigned long uaddr, unsigned long len, 1930 unsigned long pgoff, unsigned long flags) 1931 { 1932 unsigned long (*get_area)(struct file *, 1933 unsigned long, unsigned long, unsigned long, unsigned long); 1934 unsigned long addr; 1935 unsigned long offset; 1936 unsigned long inflated_len; 1937 unsigned long inflated_addr; 1938 unsigned long inflated_offset; 1939 1940 if (len > TASK_SIZE) 1941 return -ENOMEM; 1942 1943 get_area = current->mm->get_unmapped_area; 1944 addr = get_area(file, uaddr, len, pgoff, flags); 1945 1946 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1947 return addr; 1948 if (IS_ERR_VALUE(addr)) 1949 return addr; 1950 if (addr & ~PAGE_MASK) 1951 return addr; 1952 if (addr > TASK_SIZE - len) 1953 return addr; 1954 1955 if (shmem_huge == SHMEM_HUGE_DENY) 1956 return addr; 1957 if (len < HPAGE_PMD_SIZE) 1958 return addr; 1959 if (flags & MAP_FIXED) 1960 return addr; 1961 /* 1962 * Our priority is to support MAP_SHARED mapped hugely; 1963 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 1964 * But if caller specified an address hint, respect that as before. 1965 */ 1966 if (uaddr) 1967 return addr; 1968 1969 if (shmem_huge != SHMEM_HUGE_FORCE) { 1970 struct super_block *sb; 1971 1972 if (file) { 1973 VM_BUG_ON(file->f_op != &shmem_file_operations); 1974 sb = file_inode(file)->i_sb; 1975 } else { 1976 /* 1977 * Called directly from mm/mmap.c, or drivers/char/mem.c 1978 * for "/dev/zero", to create a shared anonymous object. 1979 */ 1980 if (IS_ERR(shm_mnt)) 1981 return addr; 1982 sb = shm_mnt->mnt_sb; 1983 } 1984 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 1985 return addr; 1986 } 1987 1988 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 1989 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 1990 return addr; 1991 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 1992 return addr; 1993 1994 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 1995 if (inflated_len > TASK_SIZE) 1996 return addr; 1997 if (inflated_len < len) 1998 return addr; 1999 2000 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags); 2001 if (IS_ERR_VALUE(inflated_addr)) 2002 return addr; 2003 if (inflated_addr & ~PAGE_MASK) 2004 return addr; 2005 2006 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2007 inflated_addr += offset - inflated_offset; 2008 if (inflated_offset > offset) 2009 inflated_addr += HPAGE_PMD_SIZE; 2010 2011 if (inflated_addr > TASK_SIZE - len) 2012 return addr; 2013 return inflated_addr; 2014 } 2015 2016 #ifdef CONFIG_NUMA 2017 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2018 { 2019 struct inode *inode = file_inode(vma->vm_file); 2020 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2021 } 2022 2023 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2024 unsigned long addr) 2025 { 2026 struct inode *inode = file_inode(vma->vm_file); 2027 pgoff_t index; 2028 2029 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2030 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2031 } 2032 #endif 2033 2034 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2035 { 2036 struct inode *inode = file_inode(file); 2037 struct shmem_inode_info *info = SHMEM_I(inode); 2038 int retval = -ENOMEM; 2039 2040 spin_lock_irq(&info->lock); 2041 if (lock && !(info->flags & VM_LOCKED)) { 2042 if (!user_shm_lock(inode->i_size, user)) 2043 goto out_nomem; 2044 info->flags |= VM_LOCKED; 2045 mapping_set_unevictable(file->f_mapping); 2046 } 2047 if (!lock && (info->flags & VM_LOCKED) && user) { 2048 user_shm_unlock(inode->i_size, user); 2049 info->flags &= ~VM_LOCKED; 2050 mapping_clear_unevictable(file->f_mapping); 2051 } 2052 retval = 0; 2053 2054 out_nomem: 2055 spin_unlock_irq(&info->lock); 2056 return retval; 2057 } 2058 2059 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2060 { 2061 file_accessed(file); 2062 vma->vm_ops = &shmem_vm_ops; 2063 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 2064 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2065 (vma->vm_end & HPAGE_PMD_MASK)) { 2066 khugepaged_enter(vma, vma->vm_flags); 2067 } 2068 return 0; 2069 } 2070 2071 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2072 umode_t mode, dev_t dev, unsigned long flags) 2073 { 2074 struct inode *inode; 2075 struct shmem_inode_info *info; 2076 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2077 2078 if (shmem_reserve_inode(sb)) 2079 return NULL; 2080 2081 inode = new_inode(sb); 2082 if (inode) { 2083 inode->i_ino = get_next_ino(); 2084 inode_init_owner(inode, dir, mode); 2085 inode->i_blocks = 0; 2086 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2087 inode->i_generation = get_seconds(); 2088 info = SHMEM_I(inode); 2089 memset(info, 0, (char *)inode - (char *)info); 2090 spin_lock_init(&info->lock); 2091 info->seals = F_SEAL_SEAL; 2092 info->flags = flags & VM_NORESERVE; 2093 INIT_LIST_HEAD(&info->shrinklist); 2094 INIT_LIST_HEAD(&info->swaplist); 2095 simple_xattrs_init(&info->xattrs); 2096 cache_no_acl(inode); 2097 2098 switch (mode & S_IFMT) { 2099 default: 2100 inode->i_op = &shmem_special_inode_operations; 2101 init_special_inode(inode, mode, dev); 2102 break; 2103 case S_IFREG: 2104 inode->i_mapping->a_ops = &shmem_aops; 2105 inode->i_op = &shmem_inode_operations; 2106 inode->i_fop = &shmem_file_operations; 2107 mpol_shared_policy_init(&info->policy, 2108 shmem_get_sbmpol(sbinfo)); 2109 break; 2110 case S_IFDIR: 2111 inc_nlink(inode); 2112 /* Some things misbehave if size == 0 on a directory */ 2113 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2114 inode->i_op = &shmem_dir_inode_operations; 2115 inode->i_fop = &simple_dir_operations; 2116 break; 2117 case S_IFLNK: 2118 /* 2119 * Must not load anything in the rbtree, 2120 * mpol_free_shared_policy will not be called. 2121 */ 2122 mpol_shared_policy_init(&info->policy, NULL); 2123 break; 2124 } 2125 } else 2126 shmem_free_inode(sb); 2127 return inode; 2128 } 2129 2130 bool shmem_mapping(struct address_space *mapping) 2131 { 2132 if (!mapping->host) 2133 return false; 2134 2135 return mapping->host->i_sb->s_op == &shmem_ops; 2136 } 2137 2138 #ifdef CONFIG_TMPFS 2139 static const struct inode_operations shmem_symlink_inode_operations; 2140 static const struct inode_operations shmem_short_symlink_operations; 2141 2142 #ifdef CONFIG_TMPFS_XATTR 2143 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2144 #else 2145 #define shmem_initxattrs NULL 2146 #endif 2147 2148 static int 2149 shmem_write_begin(struct file *file, struct address_space *mapping, 2150 loff_t pos, unsigned len, unsigned flags, 2151 struct page **pagep, void **fsdata) 2152 { 2153 struct inode *inode = mapping->host; 2154 struct shmem_inode_info *info = SHMEM_I(inode); 2155 pgoff_t index = pos >> PAGE_SHIFT; 2156 2157 /* i_mutex is held by caller */ 2158 if (unlikely(info->seals)) { 2159 if (info->seals & F_SEAL_WRITE) 2160 return -EPERM; 2161 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2162 return -EPERM; 2163 } 2164 2165 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2166 } 2167 2168 static int 2169 shmem_write_end(struct file *file, struct address_space *mapping, 2170 loff_t pos, unsigned len, unsigned copied, 2171 struct page *page, void *fsdata) 2172 { 2173 struct inode *inode = mapping->host; 2174 2175 if (pos + copied > inode->i_size) 2176 i_size_write(inode, pos + copied); 2177 2178 if (!PageUptodate(page)) { 2179 struct page *head = compound_head(page); 2180 if (PageTransCompound(page)) { 2181 int i; 2182 2183 for (i = 0; i < HPAGE_PMD_NR; i++) { 2184 if (head + i == page) 2185 continue; 2186 clear_highpage(head + i); 2187 flush_dcache_page(head + i); 2188 } 2189 } 2190 if (copied < PAGE_SIZE) { 2191 unsigned from = pos & (PAGE_SIZE - 1); 2192 zero_user_segments(page, 0, from, 2193 from + copied, PAGE_SIZE); 2194 } 2195 SetPageUptodate(head); 2196 } 2197 set_page_dirty(page); 2198 unlock_page(page); 2199 put_page(page); 2200 2201 return copied; 2202 } 2203 2204 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2205 { 2206 struct file *file = iocb->ki_filp; 2207 struct inode *inode = file_inode(file); 2208 struct address_space *mapping = inode->i_mapping; 2209 pgoff_t index; 2210 unsigned long offset; 2211 enum sgp_type sgp = SGP_READ; 2212 int error = 0; 2213 ssize_t retval = 0; 2214 loff_t *ppos = &iocb->ki_pos; 2215 2216 /* 2217 * Might this read be for a stacking filesystem? Then when reading 2218 * holes of a sparse file, we actually need to allocate those pages, 2219 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2220 */ 2221 if (!iter_is_iovec(to)) 2222 sgp = SGP_CACHE; 2223 2224 index = *ppos >> PAGE_SHIFT; 2225 offset = *ppos & ~PAGE_MASK; 2226 2227 for (;;) { 2228 struct page *page = NULL; 2229 pgoff_t end_index; 2230 unsigned long nr, ret; 2231 loff_t i_size = i_size_read(inode); 2232 2233 end_index = i_size >> PAGE_SHIFT; 2234 if (index > end_index) 2235 break; 2236 if (index == end_index) { 2237 nr = i_size & ~PAGE_MASK; 2238 if (nr <= offset) 2239 break; 2240 } 2241 2242 error = shmem_getpage(inode, index, &page, sgp); 2243 if (error) { 2244 if (error == -EINVAL) 2245 error = 0; 2246 break; 2247 } 2248 if (page) { 2249 if (sgp == SGP_CACHE) 2250 set_page_dirty(page); 2251 unlock_page(page); 2252 } 2253 2254 /* 2255 * We must evaluate after, since reads (unlike writes) 2256 * are called without i_mutex protection against truncate 2257 */ 2258 nr = PAGE_SIZE; 2259 i_size = i_size_read(inode); 2260 end_index = i_size >> PAGE_SHIFT; 2261 if (index == end_index) { 2262 nr = i_size & ~PAGE_MASK; 2263 if (nr <= offset) { 2264 if (page) 2265 put_page(page); 2266 break; 2267 } 2268 } 2269 nr -= offset; 2270 2271 if (page) { 2272 /* 2273 * If users can be writing to this page using arbitrary 2274 * virtual addresses, take care about potential aliasing 2275 * before reading the page on the kernel side. 2276 */ 2277 if (mapping_writably_mapped(mapping)) 2278 flush_dcache_page(page); 2279 /* 2280 * Mark the page accessed if we read the beginning. 2281 */ 2282 if (!offset) 2283 mark_page_accessed(page); 2284 } else { 2285 page = ZERO_PAGE(0); 2286 get_page(page); 2287 } 2288 2289 /* 2290 * Ok, we have the page, and it's up-to-date, so 2291 * now we can copy it to user space... 2292 */ 2293 ret = copy_page_to_iter(page, offset, nr, to); 2294 retval += ret; 2295 offset += ret; 2296 index += offset >> PAGE_SHIFT; 2297 offset &= ~PAGE_MASK; 2298 2299 put_page(page); 2300 if (!iov_iter_count(to)) 2301 break; 2302 if (ret < nr) { 2303 error = -EFAULT; 2304 break; 2305 } 2306 cond_resched(); 2307 } 2308 2309 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2310 file_accessed(file); 2311 return retval ? retval : error; 2312 } 2313 2314 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 2315 struct pipe_inode_info *pipe, size_t len, 2316 unsigned int flags) 2317 { 2318 struct address_space *mapping = in->f_mapping; 2319 struct inode *inode = mapping->host; 2320 unsigned int loff, nr_pages, req_pages; 2321 struct page *pages[PIPE_DEF_BUFFERS]; 2322 struct partial_page partial[PIPE_DEF_BUFFERS]; 2323 struct page *page; 2324 pgoff_t index, end_index; 2325 loff_t isize, left; 2326 int error, page_nr; 2327 struct splice_pipe_desc spd = { 2328 .pages = pages, 2329 .partial = partial, 2330 .nr_pages_max = PIPE_DEF_BUFFERS, 2331 .flags = flags, 2332 .ops = &page_cache_pipe_buf_ops, 2333 .spd_release = spd_release_page, 2334 }; 2335 2336 isize = i_size_read(inode); 2337 if (unlikely(*ppos >= isize)) 2338 return 0; 2339 2340 left = isize - *ppos; 2341 if (unlikely(left < len)) 2342 len = left; 2343 2344 if (splice_grow_spd(pipe, &spd)) 2345 return -ENOMEM; 2346 2347 index = *ppos >> PAGE_SHIFT; 2348 loff = *ppos & ~PAGE_MASK; 2349 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT; 2350 nr_pages = min(req_pages, spd.nr_pages_max); 2351 2352 spd.nr_pages = find_get_pages_contig(mapping, index, 2353 nr_pages, spd.pages); 2354 index += spd.nr_pages; 2355 error = 0; 2356 2357 while (spd.nr_pages < nr_pages) { 2358 error = shmem_getpage(inode, index, &page, SGP_CACHE); 2359 if (error) 2360 break; 2361 unlock_page(page); 2362 spd.pages[spd.nr_pages++] = page; 2363 index++; 2364 } 2365 2366 index = *ppos >> PAGE_SHIFT; 2367 nr_pages = spd.nr_pages; 2368 spd.nr_pages = 0; 2369 2370 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 2371 unsigned int this_len; 2372 2373 if (!len) 2374 break; 2375 2376 this_len = min_t(unsigned long, len, PAGE_SIZE - loff); 2377 page = spd.pages[page_nr]; 2378 2379 if (!PageUptodate(page) || page->mapping != mapping) { 2380 error = shmem_getpage(inode, index, &page, SGP_CACHE); 2381 if (error) 2382 break; 2383 unlock_page(page); 2384 put_page(spd.pages[page_nr]); 2385 spd.pages[page_nr] = page; 2386 } 2387 2388 isize = i_size_read(inode); 2389 end_index = (isize - 1) >> PAGE_SHIFT; 2390 if (unlikely(!isize || index > end_index)) 2391 break; 2392 2393 if (end_index == index) { 2394 unsigned int plen; 2395 2396 plen = ((isize - 1) & ~PAGE_MASK) + 1; 2397 if (plen <= loff) 2398 break; 2399 2400 this_len = min(this_len, plen - loff); 2401 len = this_len; 2402 } 2403 2404 spd.partial[page_nr].offset = loff; 2405 spd.partial[page_nr].len = this_len; 2406 len -= this_len; 2407 loff = 0; 2408 spd.nr_pages++; 2409 index++; 2410 } 2411 2412 while (page_nr < nr_pages) 2413 put_page(spd.pages[page_nr++]); 2414 2415 if (spd.nr_pages) 2416 error = splice_to_pipe(pipe, &spd); 2417 2418 splice_shrink_spd(&spd); 2419 2420 if (error > 0) { 2421 *ppos += error; 2422 file_accessed(in); 2423 } 2424 return error; 2425 } 2426 2427 /* 2428 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 2429 */ 2430 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2431 pgoff_t index, pgoff_t end, int whence) 2432 { 2433 struct page *page; 2434 struct pagevec pvec; 2435 pgoff_t indices[PAGEVEC_SIZE]; 2436 bool done = false; 2437 int i; 2438 2439 pagevec_init(&pvec, 0); 2440 pvec.nr = 1; /* start small: we may be there already */ 2441 while (!done) { 2442 pvec.nr = find_get_entries(mapping, index, 2443 pvec.nr, pvec.pages, indices); 2444 if (!pvec.nr) { 2445 if (whence == SEEK_DATA) 2446 index = end; 2447 break; 2448 } 2449 for (i = 0; i < pvec.nr; i++, index++) { 2450 if (index < indices[i]) { 2451 if (whence == SEEK_HOLE) { 2452 done = true; 2453 break; 2454 } 2455 index = indices[i]; 2456 } 2457 page = pvec.pages[i]; 2458 if (page && !radix_tree_exceptional_entry(page)) { 2459 if (!PageUptodate(page)) 2460 page = NULL; 2461 } 2462 if (index >= end || 2463 (page && whence == SEEK_DATA) || 2464 (!page && whence == SEEK_HOLE)) { 2465 done = true; 2466 break; 2467 } 2468 } 2469 pagevec_remove_exceptionals(&pvec); 2470 pagevec_release(&pvec); 2471 pvec.nr = PAGEVEC_SIZE; 2472 cond_resched(); 2473 } 2474 return index; 2475 } 2476 2477 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2478 { 2479 struct address_space *mapping = file->f_mapping; 2480 struct inode *inode = mapping->host; 2481 pgoff_t start, end; 2482 loff_t new_offset; 2483 2484 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2485 return generic_file_llseek_size(file, offset, whence, 2486 MAX_LFS_FILESIZE, i_size_read(inode)); 2487 inode_lock(inode); 2488 /* We're holding i_mutex so we can access i_size directly */ 2489 2490 if (offset < 0) 2491 offset = -EINVAL; 2492 else if (offset >= inode->i_size) 2493 offset = -ENXIO; 2494 else { 2495 start = offset >> PAGE_SHIFT; 2496 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2497 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2498 new_offset <<= PAGE_SHIFT; 2499 if (new_offset > offset) { 2500 if (new_offset < inode->i_size) 2501 offset = new_offset; 2502 else if (whence == SEEK_DATA) 2503 offset = -ENXIO; 2504 else 2505 offset = inode->i_size; 2506 } 2507 } 2508 2509 if (offset >= 0) 2510 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2511 inode_unlock(inode); 2512 return offset; 2513 } 2514 2515 /* 2516 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 2517 * so reuse a tag which we firmly believe is never set or cleared on shmem. 2518 */ 2519 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 2520 #define LAST_SCAN 4 /* about 150ms max */ 2521 2522 static void shmem_tag_pins(struct address_space *mapping) 2523 { 2524 struct radix_tree_iter iter; 2525 void **slot; 2526 pgoff_t start; 2527 struct page *page; 2528 2529 lru_add_drain(); 2530 start = 0; 2531 rcu_read_lock(); 2532 2533 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 2534 page = radix_tree_deref_slot(slot); 2535 if (!page || radix_tree_exception(page)) { 2536 if (radix_tree_deref_retry(page)) { 2537 slot = radix_tree_iter_retry(&iter); 2538 continue; 2539 } 2540 } else if (page_count(page) - page_mapcount(page) > 1) { 2541 spin_lock_irq(&mapping->tree_lock); 2542 radix_tree_tag_set(&mapping->page_tree, iter.index, 2543 SHMEM_TAG_PINNED); 2544 spin_unlock_irq(&mapping->tree_lock); 2545 } 2546 2547 if (need_resched()) { 2548 cond_resched_rcu(); 2549 slot = radix_tree_iter_next(&iter); 2550 } 2551 } 2552 rcu_read_unlock(); 2553 } 2554 2555 /* 2556 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 2557 * via get_user_pages(), drivers might have some pending I/O without any active 2558 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 2559 * and see whether it has an elevated ref-count. If so, we tag them and wait for 2560 * them to be dropped. 2561 * The caller must guarantee that no new user will acquire writable references 2562 * to those pages to avoid races. 2563 */ 2564 static int shmem_wait_for_pins(struct address_space *mapping) 2565 { 2566 struct radix_tree_iter iter; 2567 void **slot; 2568 pgoff_t start; 2569 struct page *page; 2570 int error, scan; 2571 2572 shmem_tag_pins(mapping); 2573 2574 error = 0; 2575 for (scan = 0; scan <= LAST_SCAN; scan++) { 2576 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) 2577 break; 2578 2579 if (!scan) 2580 lru_add_drain_all(); 2581 else if (schedule_timeout_killable((HZ << scan) / 200)) 2582 scan = LAST_SCAN; 2583 2584 start = 0; 2585 rcu_read_lock(); 2586 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 2587 start, SHMEM_TAG_PINNED) { 2588 2589 page = radix_tree_deref_slot(slot); 2590 if (radix_tree_exception(page)) { 2591 if (radix_tree_deref_retry(page)) { 2592 slot = radix_tree_iter_retry(&iter); 2593 continue; 2594 } 2595 2596 page = NULL; 2597 } 2598 2599 if (page && 2600 page_count(page) - page_mapcount(page) != 1) { 2601 if (scan < LAST_SCAN) 2602 goto continue_resched; 2603 2604 /* 2605 * On the last scan, we clean up all those tags 2606 * we inserted; but make a note that we still 2607 * found pages pinned. 2608 */ 2609 error = -EBUSY; 2610 } 2611 2612 spin_lock_irq(&mapping->tree_lock); 2613 radix_tree_tag_clear(&mapping->page_tree, 2614 iter.index, SHMEM_TAG_PINNED); 2615 spin_unlock_irq(&mapping->tree_lock); 2616 continue_resched: 2617 if (need_resched()) { 2618 cond_resched_rcu(); 2619 slot = radix_tree_iter_next(&iter); 2620 } 2621 } 2622 rcu_read_unlock(); 2623 } 2624 2625 return error; 2626 } 2627 2628 #define F_ALL_SEALS (F_SEAL_SEAL | \ 2629 F_SEAL_SHRINK | \ 2630 F_SEAL_GROW | \ 2631 F_SEAL_WRITE) 2632 2633 int shmem_add_seals(struct file *file, unsigned int seals) 2634 { 2635 struct inode *inode = file_inode(file); 2636 struct shmem_inode_info *info = SHMEM_I(inode); 2637 int error; 2638 2639 /* 2640 * SEALING 2641 * Sealing allows multiple parties to share a shmem-file but restrict 2642 * access to a specific subset of file operations. Seals can only be 2643 * added, but never removed. This way, mutually untrusted parties can 2644 * share common memory regions with a well-defined policy. A malicious 2645 * peer can thus never perform unwanted operations on a shared object. 2646 * 2647 * Seals are only supported on special shmem-files and always affect 2648 * the whole underlying inode. Once a seal is set, it may prevent some 2649 * kinds of access to the file. Currently, the following seals are 2650 * defined: 2651 * SEAL_SEAL: Prevent further seals from being set on this file 2652 * SEAL_SHRINK: Prevent the file from shrinking 2653 * SEAL_GROW: Prevent the file from growing 2654 * SEAL_WRITE: Prevent write access to the file 2655 * 2656 * As we don't require any trust relationship between two parties, we 2657 * must prevent seals from being removed. Therefore, sealing a file 2658 * only adds a given set of seals to the file, it never touches 2659 * existing seals. Furthermore, the "setting seals"-operation can be 2660 * sealed itself, which basically prevents any further seal from being 2661 * added. 2662 * 2663 * Semantics of sealing are only defined on volatile files. Only 2664 * anonymous shmem files support sealing. More importantly, seals are 2665 * never written to disk. Therefore, there's no plan to support it on 2666 * other file types. 2667 */ 2668 2669 if (file->f_op != &shmem_file_operations) 2670 return -EINVAL; 2671 if (!(file->f_mode & FMODE_WRITE)) 2672 return -EPERM; 2673 if (seals & ~(unsigned int)F_ALL_SEALS) 2674 return -EINVAL; 2675 2676 inode_lock(inode); 2677 2678 if (info->seals & F_SEAL_SEAL) { 2679 error = -EPERM; 2680 goto unlock; 2681 } 2682 2683 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) { 2684 error = mapping_deny_writable(file->f_mapping); 2685 if (error) 2686 goto unlock; 2687 2688 error = shmem_wait_for_pins(file->f_mapping); 2689 if (error) { 2690 mapping_allow_writable(file->f_mapping); 2691 goto unlock; 2692 } 2693 } 2694 2695 info->seals |= seals; 2696 error = 0; 2697 2698 unlock: 2699 inode_unlock(inode); 2700 return error; 2701 } 2702 EXPORT_SYMBOL_GPL(shmem_add_seals); 2703 2704 int shmem_get_seals(struct file *file) 2705 { 2706 if (file->f_op != &shmem_file_operations) 2707 return -EINVAL; 2708 2709 return SHMEM_I(file_inode(file))->seals; 2710 } 2711 EXPORT_SYMBOL_GPL(shmem_get_seals); 2712 2713 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2714 { 2715 long error; 2716 2717 switch (cmd) { 2718 case F_ADD_SEALS: 2719 /* disallow upper 32bit */ 2720 if (arg > UINT_MAX) 2721 return -EINVAL; 2722 2723 error = shmem_add_seals(file, arg); 2724 break; 2725 case F_GET_SEALS: 2726 error = shmem_get_seals(file); 2727 break; 2728 default: 2729 error = -EINVAL; 2730 break; 2731 } 2732 2733 return error; 2734 } 2735 2736 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2737 loff_t len) 2738 { 2739 struct inode *inode = file_inode(file); 2740 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2741 struct shmem_inode_info *info = SHMEM_I(inode); 2742 struct shmem_falloc shmem_falloc; 2743 pgoff_t start, index, end; 2744 int error; 2745 2746 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2747 return -EOPNOTSUPP; 2748 2749 inode_lock(inode); 2750 2751 if (mode & FALLOC_FL_PUNCH_HOLE) { 2752 struct address_space *mapping = file->f_mapping; 2753 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2754 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2755 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2756 2757 /* protected by i_mutex */ 2758 if (info->seals & F_SEAL_WRITE) { 2759 error = -EPERM; 2760 goto out; 2761 } 2762 2763 shmem_falloc.waitq = &shmem_falloc_waitq; 2764 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2765 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2766 spin_lock(&inode->i_lock); 2767 inode->i_private = &shmem_falloc; 2768 spin_unlock(&inode->i_lock); 2769 2770 if ((u64)unmap_end > (u64)unmap_start) 2771 unmap_mapping_range(mapping, unmap_start, 2772 1 + unmap_end - unmap_start, 0); 2773 shmem_truncate_range(inode, offset, offset + len - 1); 2774 /* No need to unmap again: hole-punching leaves COWed pages */ 2775 2776 spin_lock(&inode->i_lock); 2777 inode->i_private = NULL; 2778 wake_up_all(&shmem_falloc_waitq); 2779 spin_unlock(&inode->i_lock); 2780 error = 0; 2781 goto out; 2782 } 2783 2784 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2785 error = inode_newsize_ok(inode, offset + len); 2786 if (error) 2787 goto out; 2788 2789 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2790 error = -EPERM; 2791 goto out; 2792 } 2793 2794 start = offset >> PAGE_SHIFT; 2795 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2796 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2797 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2798 error = -ENOSPC; 2799 goto out; 2800 } 2801 2802 shmem_falloc.waitq = NULL; 2803 shmem_falloc.start = start; 2804 shmem_falloc.next = start; 2805 shmem_falloc.nr_falloced = 0; 2806 shmem_falloc.nr_unswapped = 0; 2807 spin_lock(&inode->i_lock); 2808 inode->i_private = &shmem_falloc; 2809 spin_unlock(&inode->i_lock); 2810 2811 for (index = start; index < end; index++) { 2812 struct page *page; 2813 2814 /* 2815 * Good, the fallocate(2) manpage permits EINTR: we may have 2816 * been interrupted because we are using up too much memory. 2817 */ 2818 if (signal_pending(current)) 2819 error = -EINTR; 2820 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2821 error = -ENOMEM; 2822 else 2823 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2824 if (error) { 2825 /* Remove the !PageUptodate pages we added */ 2826 if (index > start) { 2827 shmem_undo_range(inode, 2828 (loff_t)start << PAGE_SHIFT, 2829 ((loff_t)index << PAGE_SHIFT) - 1, true); 2830 } 2831 goto undone; 2832 } 2833 2834 /* 2835 * Inform shmem_writepage() how far we have reached. 2836 * No need for lock or barrier: we have the page lock. 2837 */ 2838 shmem_falloc.next++; 2839 if (!PageUptodate(page)) 2840 shmem_falloc.nr_falloced++; 2841 2842 /* 2843 * If !PageUptodate, leave it that way so that freeable pages 2844 * can be recognized if we need to rollback on error later. 2845 * But set_page_dirty so that memory pressure will swap rather 2846 * than free the pages we are allocating (and SGP_CACHE pages 2847 * might still be clean: we now need to mark those dirty too). 2848 */ 2849 set_page_dirty(page); 2850 unlock_page(page); 2851 put_page(page); 2852 cond_resched(); 2853 } 2854 2855 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2856 i_size_write(inode, offset + len); 2857 inode->i_ctime = CURRENT_TIME; 2858 undone: 2859 spin_lock(&inode->i_lock); 2860 inode->i_private = NULL; 2861 spin_unlock(&inode->i_lock); 2862 out: 2863 inode_unlock(inode); 2864 return error; 2865 } 2866 2867 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2868 { 2869 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2870 2871 buf->f_type = TMPFS_MAGIC; 2872 buf->f_bsize = PAGE_SIZE; 2873 buf->f_namelen = NAME_MAX; 2874 if (sbinfo->max_blocks) { 2875 buf->f_blocks = sbinfo->max_blocks; 2876 buf->f_bavail = 2877 buf->f_bfree = sbinfo->max_blocks - 2878 percpu_counter_sum(&sbinfo->used_blocks); 2879 } 2880 if (sbinfo->max_inodes) { 2881 buf->f_files = sbinfo->max_inodes; 2882 buf->f_ffree = sbinfo->free_inodes; 2883 } 2884 /* else leave those fields 0 like simple_statfs */ 2885 return 0; 2886 } 2887 2888 /* 2889 * File creation. Allocate an inode, and we're done.. 2890 */ 2891 static int 2892 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2893 { 2894 struct inode *inode; 2895 int error = -ENOSPC; 2896 2897 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2898 if (inode) { 2899 error = simple_acl_create(dir, inode); 2900 if (error) 2901 goto out_iput; 2902 error = security_inode_init_security(inode, dir, 2903 &dentry->d_name, 2904 shmem_initxattrs, NULL); 2905 if (error && error != -EOPNOTSUPP) 2906 goto out_iput; 2907 2908 error = 0; 2909 dir->i_size += BOGO_DIRENT_SIZE; 2910 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2911 d_instantiate(dentry, inode); 2912 dget(dentry); /* Extra count - pin the dentry in core */ 2913 } 2914 return error; 2915 out_iput: 2916 iput(inode); 2917 return error; 2918 } 2919 2920 static int 2921 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2922 { 2923 struct inode *inode; 2924 int error = -ENOSPC; 2925 2926 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2927 if (inode) { 2928 error = security_inode_init_security(inode, dir, 2929 NULL, 2930 shmem_initxattrs, NULL); 2931 if (error && error != -EOPNOTSUPP) 2932 goto out_iput; 2933 error = simple_acl_create(dir, inode); 2934 if (error) 2935 goto out_iput; 2936 d_tmpfile(dentry, inode); 2937 } 2938 return error; 2939 out_iput: 2940 iput(inode); 2941 return error; 2942 } 2943 2944 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2945 { 2946 int error; 2947 2948 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2949 return error; 2950 inc_nlink(dir); 2951 return 0; 2952 } 2953 2954 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2955 bool excl) 2956 { 2957 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2958 } 2959 2960 /* 2961 * Link a file.. 2962 */ 2963 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2964 { 2965 struct inode *inode = d_inode(old_dentry); 2966 int ret; 2967 2968 /* 2969 * No ordinary (disk based) filesystem counts links as inodes; 2970 * but each new link needs a new dentry, pinning lowmem, and 2971 * tmpfs dentries cannot be pruned until they are unlinked. 2972 */ 2973 ret = shmem_reserve_inode(inode->i_sb); 2974 if (ret) 2975 goto out; 2976 2977 dir->i_size += BOGO_DIRENT_SIZE; 2978 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2979 inc_nlink(inode); 2980 ihold(inode); /* New dentry reference */ 2981 dget(dentry); /* Extra pinning count for the created dentry */ 2982 d_instantiate(dentry, inode); 2983 out: 2984 return ret; 2985 } 2986 2987 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2988 { 2989 struct inode *inode = d_inode(dentry); 2990 2991 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2992 shmem_free_inode(inode->i_sb); 2993 2994 dir->i_size -= BOGO_DIRENT_SIZE; 2995 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2996 drop_nlink(inode); 2997 dput(dentry); /* Undo the count from "create" - this does all the work */ 2998 return 0; 2999 } 3000 3001 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3002 { 3003 if (!simple_empty(dentry)) 3004 return -ENOTEMPTY; 3005 3006 drop_nlink(d_inode(dentry)); 3007 drop_nlink(dir); 3008 return shmem_unlink(dir, dentry); 3009 } 3010 3011 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 3012 { 3013 bool old_is_dir = d_is_dir(old_dentry); 3014 bool new_is_dir = d_is_dir(new_dentry); 3015 3016 if (old_dir != new_dir && old_is_dir != new_is_dir) { 3017 if (old_is_dir) { 3018 drop_nlink(old_dir); 3019 inc_nlink(new_dir); 3020 } else { 3021 drop_nlink(new_dir); 3022 inc_nlink(old_dir); 3023 } 3024 } 3025 old_dir->i_ctime = old_dir->i_mtime = 3026 new_dir->i_ctime = new_dir->i_mtime = 3027 d_inode(old_dentry)->i_ctime = 3028 d_inode(new_dentry)->i_ctime = CURRENT_TIME; 3029 3030 return 0; 3031 } 3032 3033 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 3034 { 3035 struct dentry *whiteout; 3036 int error; 3037 3038 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3039 if (!whiteout) 3040 return -ENOMEM; 3041 3042 error = shmem_mknod(old_dir, whiteout, 3043 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3044 dput(whiteout); 3045 if (error) 3046 return error; 3047 3048 /* 3049 * Cheat and hash the whiteout while the old dentry is still in 3050 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3051 * 3052 * d_lookup() will consistently find one of them at this point, 3053 * not sure which one, but that isn't even important. 3054 */ 3055 d_rehash(whiteout); 3056 return 0; 3057 } 3058 3059 /* 3060 * The VFS layer already does all the dentry stuff for rename, 3061 * we just have to decrement the usage count for the target if 3062 * it exists so that the VFS layer correctly free's it when it 3063 * gets overwritten. 3064 */ 3065 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3066 { 3067 struct inode *inode = d_inode(old_dentry); 3068 int they_are_dirs = S_ISDIR(inode->i_mode); 3069 3070 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3071 return -EINVAL; 3072 3073 if (flags & RENAME_EXCHANGE) 3074 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3075 3076 if (!simple_empty(new_dentry)) 3077 return -ENOTEMPTY; 3078 3079 if (flags & RENAME_WHITEOUT) { 3080 int error; 3081 3082 error = shmem_whiteout(old_dir, old_dentry); 3083 if (error) 3084 return error; 3085 } 3086 3087 if (d_really_is_positive(new_dentry)) { 3088 (void) shmem_unlink(new_dir, new_dentry); 3089 if (they_are_dirs) { 3090 drop_nlink(d_inode(new_dentry)); 3091 drop_nlink(old_dir); 3092 } 3093 } else if (they_are_dirs) { 3094 drop_nlink(old_dir); 3095 inc_nlink(new_dir); 3096 } 3097 3098 old_dir->i_size -= BOGO_DIRENT_SIZE; 3099 new_dir->i_size += BOGO_DIRENT_SIZE; 3100 old_dir->i_ctime = old_dir->i_mtime = 3101 new_dir->i_ctime = new_dir->i_mtime = 3102 inode->i_ctime = CURRENT_TIME; 3103 return 0; 3104 } 3105 3106 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3107 { 3108 int error; 3109 int len; 3110 struct inode *inode; 3111 struct page *page; 3112 struct shmem_inode_info *info; 3113 3114 len = strlen(symname) + 1; 3115 if (len > PAGE_SIZE) 3116 return -ENAMETOOLONG; 3117 3118 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 3119 if (!inode) 3120 return -ENOSPC; 3121 3122 error = security_inode_init_security(inode, dir, &dentry->d_name, 3123 shmem_initxattrs, NULL); 3124 if (error) { 3125 if (error != -EOPNOTSUPP) { 3126 iput(inode); 3127 return error; 3128 } 3129 error = 0; 3130 } 3131 3132 info = SHMEM_I(inode); 3133 inode->i_size = len-1; 3134 if (len <= SHORT_SYMLINK_LEN) { 3135 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3136 if (!inode->i_link) { 3137 iput(inode); 3138 return -ENOMEM; 3139 } 3140 inode->i_op = &shmem_short_symlink_operations; 3141 } else { 3142 inode_nohighmem(inode); 3143 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3144 if (error) { 3145 iput(inode); 3146 return error; 3147 } 3148 inode->i_mapping->a_ops = &shmem_aops; 3149 inode->i_op = &shmem_symlink_inode_operations; 3150 memcpy(page_address(page), symname, len); 3151 SetPageUptodate(page); 3152 set_page_dirty(page); 3153 unlock_page(page); 3154 put_page(page); 3155 } 3156 dir->i_size += BOGO_DIRENT_SIZE; 3157 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 3158 d_instantiate(dentry, inode); 3159 dget(dentry); 3160 return 0; 3161 } 3162 3163 static void shmem_put_link(void *arg) 3164 { 3165 mark_page_accessed(arg); 3166 put_page(arg); 3167 } 3168 3169 static const char *shmem_get_link(struct dentry *dentry, 3170 struct inode *inode, 3171 struct delayed_call *done) 3172 { 3173 struct page *page = NULL; 3174 int error; 3175 if (!dentry) { 3176 page = find_get_page(inode->i_mapping, 0); 3177 if (!page) 3178 return ERR_PTR(-ECHILD); 3179 if (!PageUptodate(page)) { 3180 put_page(page); 3181 return ERR_PTR(-ECHILD); 3182 } 3183 } else { 3184 error = shmem_getpage(inode, 0, &page, SGP_READ); 3185 if (error) 3186 return ERR_PTR(error); 3187 unlock_page(page); 3188 } 3189 set_delayed_call(done, shmem_put_link, page); 3190 return page_address(page); 3191 } 3192 3193 #ifdef CONFIG_TMPFS_XATTR 3194 /* 3195 * Superblocks without xattr inode operations may get some security.* xattr 3196 * support from the LSM "for free". As soon as we have any other xattrs 3197 * like ACLs, we also need to implement the security.* handlers at 3198 * filesystem level, though. 3199 */ 3200 3201 /* 3202 * Callback for security_inode_init_security() for acquiring xattrs. 3203 */ 3204 static int shmem_initxattrs(struct inode *inode, 3205 const struct xattr *xattr_array, 3206 void *fs_info) 3207 { 3208 struct shmem_inode_info *info = SHMEM_I(inode); 3209 const struct xattr *xattr; 3210 struct simple_xattr *new_xattr; 3211 size_t len; 3212 3213 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3214 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3215 if (!new_xattr) 3216 return -ENOMEM; 3217 3218 len = strlen(xattr->name) + 1; 3219 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3220 GFP_KERNEL); 3221 if (!new_xattr->name) { 3222 kfree(new_xattr); 3223 return -ENOMEM; 3224 } 3225 3226 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3227 XATTR_SECURITY_PREFIX_LEN); 3228 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3229 xattr->name, len); 3230 3231 simple_xattr_list_add(&info->xattrs, new_xattr); 3232 } 3233 3234 return 0; 3235 } 3236 3237 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3238 struct dentry *unused, struct inode *inode, 3239 const char *name, void *buffer, size_t size) 3240 { 3241 struct shmem_inode_info *info = SHMEM_I(inode); 3242 3243 name = xattr_full_name(handler, name); 3244 return simple_xattr_get(&info->xattrs, name, buffer, size); 3245 } 3246 3247 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3248 struct dentry *unused, struct inode *inode, 3249 const char *name, const void *value, 3250 size_t size, int flags) 3251 { 3252 struct shmem_inode_info *info = SHMEM_I(inode); 3253 3254 name = xattr_full_name(handler, name); 3255 return simple_xattr_set(&info->xattrs, name, value, size, flags); 3256 } 3257 3258 static const struct xattr_handler shmem_security_xattr_handler = { 3259 .prefix = XATTR_SECURITY_PREFIX, 3260 .get = shmem_xattr_handler_get, 3261 .set = shmem_xattr_handler_set, 3262 }; 3263 3264 static const struct xattr_handler shmem_trusted_xattr_handler = { 3265 .prefix = XATTR_TRUSTED_PREFIX, 3266 .get = shmem_xattr_handler_get, 3267 .set = shmem_xattr_handler_set, 3268 }; 3269 3270 static const struct xattr_handler *shmem_xattr_handlers[] = { 3271 #ifdef CONFIG_TMPFS_POSIX_ACL 3272 &posix_acl_access_xattr_handler, 3273 &posix_acl_default_xattr_handler, 3274 #endif 3275 &shmem_security_xattr_handler, 3276 &shmem_trusted_xattr_handler, 3277 NULL 3278 }; 3279 3280 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3281 { 3282 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3283 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3284 } 3285 #endif /* CONFIG_TMPFS_XATTR */ 3286 3287 static const struct inode_operations shmem_short_symlink_operations = { 3288 .readlink = generic_readlink, 3289 .get_link = simple_get_link, 3290 #ifdef CONFIG_TMPFS_XATTR 3291 .setxattr = generic_setxattr, 3292 .getxattr = generic_getxattr, 3293 .listxattr = shmem_listxattr, 3294 .removexattr = generic_removexattr, 3295 #endif 3296 }; 3297 3298 static const struct inode_operations shmem_symlink_inode_operations = { 3299 .readlink = generic_readlink, 3300 .get_link = shmem_get_link, 3301 #ifdef CONFIG_TMPFS_XATTR 3302 .setxattr = generic_setxattr, 3303 .getxattr = generic_getxattr, 3304 .listxattr = shmem_listxattr, 3305 .removexattr = generic_removexattr, 3306 #endif 3307 }; 3308 3309 static struct dentry *shmem_get_parent(struct dentry *child) 3310 { 3311 return ERR_PTR(-ESTALE); 3312 } 3313 3314 static int shmem_match(struct inode *ino, void *vfh) 3315 { 3316 __u32 *fh = vfh; 3317 __u64 inum = fh[2]; 3318 inum = (inum << 32) | fh[1]; 3319 return ino->i_ino == inum && fh[0] == ino->i_generation; 3320 } 3321 3322 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3323 struct fid *fid, int fh_len, int fh_type) 3324 { 3325 struct inode *inode; 3326 struct dentry *dentry = NULL; 3327 u64 inum; 3328 3329 if (fh_len < 3) 3330 return NULL; 3331 3332 inum = fid->raw[2]; 3333 inum = (inum << 32) | fid->raw[1]; 3334 3335 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3336 shmem_match, fid->raw); 3337 if (inode) { 3338 dentry = d_find_alias(inode); 3339 iput(inode); 3340 } 3341 3342 return dentry; 3343 } 3344 3345 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3346 struct inode *parent) 3347 { 3348 if (*len < 3) { 3349 *len = 3; 3350 return FILEID_INVALID; 3351 } 3352 3353 if (inode_unhashed(inode)) { 3354 /* Unfortunately insert_inode_hash is not idempotent, 3355 * so as we hash inodes here rather than at creation 3356 * time, we need a lock to ensure we only try 3357 * to do it once 3358 */ 3359 static DEFINE_SPINLOCK(lock); 3360 spin_lock(&lock); 3361 if (inode_unhashed(inode)) 3362 __insert_inode_hash(inode, 3363 inode->i_ino + inode->i_generation); 3364 spin_unlock(&lock); 3365 } 3366 3367 fh[0] = inode->i_generation; 3368 fh[1] = inode->i_ino; 3369 fh[2] = ((__u64)inode->i_ino) >> 32; 3370 3371 *len = 3; 3372 return 1; 3373 } 3374 3375 static const struct export_operations shmem_export_ops = { 3376 .get_parent = shmem_get_parent, 3377 .encode_fh = shmem_encode_fh, 3378 .fh_to_dentry = shmem_fh_to_dentry, 3379 }; 3380 3381 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 3382 bool remount) 3383 { 3384 char *this_char, *value, *rest; 3385 struct mempolicy *mpol = NULL; 3386 uid_t uid; 3387 gid_t gid; 3388 3389 while (options != NULL) { 3390 this_char = options; 3391 for (;;) { 3392 /* 3393 * NUL-terminate this option: unfortunately, 3394 * mount options form a comma-separated list, 3395 * but mpol's nodelist may also contain commas. 3396 */ 3397 options = strchr(options, ','); 3398 if (options == NULL) 3399 break; 3400 options++; 3401 if (!isdigit(*options)) { 3402 options[-1] = '\0'; 3403 break; 3404 } 3405 } 3406 if (!*this_char) 3407 continue; 3408 if ((value = strchr(this_char,'=')) != NULL) { 3409 *value++ = 0; 3410 } else { 3411 pr_err("tmpfs: No value for mount option '%s'\n", 3412 this_char); 3413 goto error; 3414 } 3415 3416 if (!strcmp(this_char,"size")) { 3417 unsigned long long size; 3418 size = memparse(value,&rest); 3419 if (*rest == '%') { 3420 size <<= PAGE_SHIFT; 3421 size *= totalram_pages; 3422 do_div(size, 100); 3423 rest++; 3424 } 3425 if (*rest) 3426 goto bad_val; 3427 sbinfo->max_blocks = 3428 DIV_ROUND_UP(size, PAGE_SIZE); 3429 } else if (!strcmp(this_char,"nr_blocks")) { 3430 sbinfo->max_blocks = memparse(value, &rest); 3431 if (*rest) 3432 goto bad_val; 3433 } else if (!strcmp(this_char,"nr_inodes")) { 3434 sbinfo->max_inodes = memparse(value, &rest); 3435 if (*rest) 3436 goto bad_val; 3437 } else if (!strcmp(this_char,"mode")) { 3438 if (remount) 3439 continue; 3440 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 3441 if (*rest) 3442 goto bad_val; 3443 } else if (!strcmp(this_char,"uid")) { 3444 if (remount) 3445 continue; 3446 uid = simple_strtoul(value, &rest, 0); 3447 if (*rest) 3448 goto bad_val; 3449 sbinfo->uid = make_kuid(current_user_ns(), uid); 3450 if (!uid_valid(sbinfo->uid)) 3451 goto bad_val; 3452 } else if (!strcmp(this_char,"gid")) { 3453 if (remount) 3454 continue; 3455 gid = simple_strtoul(value, &rest, 0); 3456 if (*rest) 3457 goto bad_val; 3458 sbinfo->gid = make_kgid(current_user_ns(), gid); 3459 if (!gid_valid(sbinfo->gid)) 3460 goto bad_val; 3461 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3462 } else if (!strcmp(this_char, "huge")) { 3463 int huge; 3464 huge = shmem_parse_huge(value); 3465 if (huge < 0) 3466 goto bad_val; 3467 if (!has_transparent_hugepage() && 3468 huge != SHMEM_HUGE_NEVER) 3469 goto bad_val; 3470 sbinfo->huge = huge; 3471 #endif 3472 #ifdef CONFIG_NUMA 3473 } else if (!strcmp(this_char,"mpol")) { 3474 mpol_put(mpol); 3475 mpol = NULL; 3476 if (mpol_parse_str(value, &mpol)) 3477 goto bad_val; 3478 #endif 3479 } else { 3480 pr_err("tmpfs: Bad mount option %s\n", this_char); 3481 goto error; 3482 } 3483 } 3484 sbinfo->mpol = mpol; 3485 return 0; 3486 3487 bad_val: 3488 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", 3489 value, this_char); 3490 error: 3491 mpol_put(mpol); 3492 return 1; 3493 3494 } 3495 3496 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 3497 { 3498 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3499 struct shmem_sb_info config = *sbinfo; 3500 unsigned long inodes; 3501 int error = -EINVAL; 3502 3503 config.mpol = NULL; 3504 if (shmem_parse_options(data, &config, true)) 3505 return error; 3506 3507 spin_lock(&sbinfo->stat_lock); 3508 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3509 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 3510 goto out; 3511 if (config.max_inodes < inodes) 3512 goto out; 3513 /* 3514 * Those tests disallow limited->unlimited while any are in use; 3515 * but we must separately disallow unlimited->limited, because 3516 * in that case we have no record of how much is already in use. 3517 */ 3518 if (config.max_blocks && !sbinfo->max_blocks) 3519 goto out; 3520 if (config.max_inodes && !sbinfo->max_inodes) 3521 goto out; 3522 3523 error = 0; 3524 sbinfo->huge = config.huge; 3525 sbinfo->max_blocks = config.max_blocks; 3526 sbinfo->max_inodes = config.max_inodes; 3527 sbinfo->free_inodes = config.max_inodes - inodes; 3528 3529 /* 3530 * Preserve previous mempolicy unless mpol remount option was specified. 3531 */ 3532 if (config.mpol) { 3533 mpol_put(sbinfo->mpol); 3534 sbinfo->mpol = config.mpol; /* transfers initial ref */ 3535 } 3536 out: 3537 spin_unlock(&sbinfo->stat_lock); 3538 return error; 3539 } 3540 3541 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3542 { 3543 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3544 3545 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3546 seq_printf(seq, ",size=%luk", 3547 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3548 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3549 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3550 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 3551 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3552 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3553 seq_printf(seq, ",uid=%u", 3554 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3555 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3556 seq_printf(seq, ",gid=%u", 3557 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3558 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3559 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3560 if (sbinfo->huge) 3561 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3562 #endif 3563 shmem_show_mpol(seq, sbinfo->mpol); 3564 return 0; 3565 } 3566 3567 #define MFD_NAME_PREFIX "memfd:" 3568 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 3569 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 3570 3571 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING) 3572 3573 SYSCALL_DEFINE2(memfd_create, 3574 const char __user *, uname, 3575 unsigned int, flags) 3576 { 3577 struct shmem_inode_info *info; 3578 struct file *file; 3579 int fd, error; 3580 char *name; 3581 long len; 3582 3583 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 3584 return -EINVAL; 3585 3586 /* length includes terminating zero */ 3587 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 3588 if (len <= 0) 3589 return -EFAULT; 3590 if (len > MFD_NAME_MAX_LEN + 1) 3591 return -EINVAL; 3592 3593 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY); 3594 if (!name) 3595 return -ENOMEM; 3596 3597 strcpy(name, MFD_NAME_PREFIX); 3598 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 3599 error = -EFAULT; 3600 goto err_name; 3601 } 3602 3603 /* terminating-zero may have changed after strnlen_user() returned */ 3604 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 3605 error = -EFAULT; 3606 goto err_name; 3607 } 3608 3609 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 3610 if (fd < 0) { 3611 error = fd; 3612 goto err_name; 3613 } 3614 3615 file = shmem_file_setup(name, 0, VM_NORESERVE); 3616 if (IS_ERR(file)) { 3617 error = PTR_ERR(file); 3618 goto err_fd; 3619 } 3620 info = SHMEM_I(file_inode(file)); 3621 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 3622 file->f_flags |= O_RDWR | O_LARGEFILE; 3623 if (flags & MFD_ALLOW_SEALING) 3624 info->seals &= ~F_SEAL_SEAL; 3625 3626 fd_install(fd, file); 3627 kfree(name); 3628 return fd; 3629 3630 err_fd: 3631 put_unused_fd(fd); 3632 err_name: 3633 kfree(name); 3634 return error; 3635 } 3636 3637 #endif /* CONFIG_TMPFS */ 3638 3639 static void shmem_put_super(struct super_block *sb) 3640 { 3641 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3642 3643 percpu_counter_destroy(&sbinfo->used_blocks); 3644 mpol_put(sbinfo->mpol); 3645 kfree(sbinfo); 3646 sb->s_fs_info = NULL; 3647 } 3648 3649 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3650 { 3651 struct inode *inode; 3652 struct shmem_sb_info *sbinfo; 3653 int err = -ENOMEM; 3654 3655 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3656 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3657 L1_CACHE_BYTES), GFP_KERNEL); 3658 if (!sbinfo) 3659 return -ENOMEM; 3660 3661 sbinfo->mode = S_IRWXUGO | S_ISVTX; 3662 sbinfo->uid = current_fsuid(); 3663 sbinfo->gid = current_fsgid(); 3664 sb->s_fs_info = sbinfo; 3665 3666 #ifdef CONFIG_TMPFS 3667 /* 3668 * Per default we only allow half of the physical ram per 3669 * tmpfs instance, limiting inodes to one per page of lowmem; 3670 * but the internal instance is left unlimited. 3671 */ 3672 if (!(sb->s_flags & MS_KERNMOUNT)) { 3673 sbinfo->max_blocks = shmem_default_max_blocks(); 3674 sbinfo->max_inodes = shmem_default_max_inodes(); 3675 if (shmem_parse_options(data, sbinfo, false)) { 3676 err = -EINVAL; 3677 goto failed; 3678 } 3679 } else { 3680 sb->s_flags |= MS_NOUSER; 3681 } 3682 sb->s_export_op = &shmem_export_ops; 3683 sb->s_flags |= MS_NOSEC; 3684 #else 3685 sb->s_flags |= MS_NOUSER; 3686 #endif 3687 3688 spin_lock_init(&sbinfo->stat_lock); 3689 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3690 goto failed; 3691 sbinfo->free_inodes = sbinfo->max_inodes; 3692 spin_lock_init(&sbinfo->shrinklist_lock); 3693 INIT_LIST_HEAD(&sbinfo->shrinklist); 3694 3695 sb->s_maxbytes = MAX_LFS_FILESIZE; 3696 sb->s_blocksize = PAGE_SIZE; 3697 sb->s_blocksize_bits = PAGE_SHIFT; 3698 sb->s_magic = TMPFS_MAGIC; 3699 sb->s_op = &shmem_ops; 3700 sb->s_time_gran = 1; 3701 #ifdef CONFIG_TMPFS_XATTR 3702 sb->s_xattr = shmem_xattr_handlers; 3703 #endif 3704 #ifdef CONFIG_TMPFS_POSIX_ACL 3705 sb->s_flags |= MS_POSIXACL; 3706 #endif 3707 3708 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3709 if (!inode) 3710 goto failed; 3711 inode->i_uid = sbinfo->uid; 3712 inode->i_gid = sbinfo->gid; 3713 sb->s_root = d_make_root(inode); 3714 if (!sb->s_root) 3715 goto failed; 3716 return 0; 3717 3718 failed: 3719 shmem_put_super(sb); 3720 return err; 3721 } 3722 3723 static struct kmem_cache *shmem_inode_cachep; 3724 3725 static struct inode *shmem_alloc_inode(struct super_block *sb) 3726 { 3727 struct shmem_inode_info *info; 3728 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3729 if (!info) 3730 return NULL; 3731 return &info->vfs_inode; 3732 } 3733 3734 static void shmem_destroy_callback(struct rcu_head *head) 3735 { 3736 struct inode *inode = container_of(head, struct inode, i_rcu); 3737 if (S_ISLNK(inode->i_mode)) 3738 kfree(inode->i_link); 3739 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3740 } 3741 3742 static void shmem_destroy_inode(struct inode *inode) 3743 { 3744 if (S_ISREG(inode->i_mode)) 3745 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3746 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3747 } 3748 3749 static void shmem_init_inode(void *foo) 3750 { 3751 struct shmem_inode_info *info = foo; 3752 inode_init_once(&info->vfs_inode); 3753 } 3754 3755 static int shmem_init_inodecache(void) 3756 { 3757 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3758 sizeof(struct shmem_inode_info), 3759 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3760 return 0; 3761 } 3762 3763 static void shmem_destroy_inodecache(void) 3764 { 3765 kmem_cache_destroy(shmem_inode_cachep); 3766 } 3767 3768 static const struct address_space_operations shmem_aops = { 3769 .writepage = shmem_writepage, 3770 .set_page_dirty = __set_page_dirty_no_writeback, 3771 #ifdef CONFIG_TMPFS 3772 .write_begin = shmem_write_begin, 3773 .write_end = shmem_write_end, 3774 #endif 3775 #ifdef CONFIG_MIGRATION 3776 .migratepage = migrate_page, 3777 #endif 3778 .error_remove_page = generic_error_remove_page, 3779 }; 3780 3781 static const struct file_operations shmem_file_operations = { 3782 .mmap = shmem_mmap, 3783 .get_unmapped_area = shmem_get_unmapped_area, 3784 #ifdef CONFIG_TMPFS 3785 .llseek = shmem_file_llseek, 3786 .read_iter = shmem_file_read_iter, 3787 .write_iter = generic_file_write_iter, 3788 .fsync = noop_fsync, 3789 .splice_read = shmem_file_splice_read, 3790 .splice_write = iter_file_splice_write, 3791 .fallocate = shmem_fallocate, 3792 #endif 3793 }; 3794 3795 static const struct inode_operations shmem_inode_operations = { 3796 .getattr = shmem_getattr, 3797 .setattr = shmem_setattr, 3798 #ifdef CONFIG_TMPFS_XATTR 3799 .setxattr = generic_setxattr, 3800 .getxattr = generic_getxattr, 3801 .listxattr = shmem_listxattr, 3802 .removexattr = generic_removexattr, 3803 .set_acl = simple_set_acl, 3804 #endif 3805 }; 3806 3807 static const struct inode_operations shmem_dir_inode_operations = { 3808 #ifdef CONFIG_TMPFS 3809 .create = shmem_create, 3810 .lookup = simple_lookup, 3811 .link = shmem_link, 3812 .unlink = shmem_unlink, 3813 .symlink = shmem_symlink, 3814 .mkdir = shmem_mkdir, 3815 .rmdir = shmem_rmdir, 3816 .mknod = shmem_mknod, 3817 .rename2 = shmem_rename2, 3818 .tmpfile = shmem_tmpfile, 3819 #endif 3820 #ifdef CONFIG_TMPFS_XATTR 3821 .setxattr = generic_setxattr, 3822 .getxattr = generic_getxattr, 3823 .listxattr = shmem_listxattr, 3824 .removexattr = generic_removexattr, 3825 #endif 3826 #ifdef CONFIG_TMPFS_POSIX_ACL 3827 .setattr = shmem_setattr, 3828 .set_acl = simple_set_acl, 3829 #endif 3830 }; 3831 3832 static const struct inode_operations shmem_special_inode_operations = { 3833 #ifdef CONFIG_TMPFS_XATTR 3834 .setxattr = generic_setxattr, 3835 .getxattr = generic_getxattr, 3836 .listxattr = shmem_listxattr, 3837 .removexattr = generic_removexattr, 3838 #endif 3839 #ifdef CONFIG_TMPFS_POSIX_ACL 3840 .setattr = shmem_setattr, 3841 .set_acl = simple_set_acl, 3842 #endif 3843 }; 3844 3845 static const struct super_operations shmem_ops = { 3846 .alloc_inode = shmem_alloc_inode, 3847 .destroy_inode = shmem_destroy_inode, 3848 #ifdef CONFIG_TMPFS 3849 .statfs = shmem_statfs, 3850 .remount_fs = shmem_remount_fs, 3851 .show_options = shmem_show_options, 3852 #endif 3853 .evict_inode = shmem_evict_inode, 3854 .drop_inode = generic_delete_inode, 3855 .put_super = shmem_put_super, 3856 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3857 .nr_cached_objects = shmem_unused_huge_count, 3858 .free_cached_objects = shmem_unused_huge_scan, 3859 #endif 3860 }; 3861 3862 static const struct vm_operations_struct shmem_vm_ops = { 3863 .fault = shmem_fault, 3864 .map_pages = filemap_map_pages, 3865 #ifdef CONFIG_NUMA 3866 .set_policy = shmem_set_policy, 3867 .get_policy = shmem_get_policy, 3868 #endif 3869 }; 3870 3871 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3872 int flags, const char *dev_name, void *data) 3873 { 3874 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3875 } 3876 3877 static struct file_system_type shmem_fs_type = { 3878 .owner = THIS_MODULE, 3879 .name = "tmpfs", 3880 .mount = shmem_mount, 3881 .kill_sb = kill_litter_super, 3882 .fs_flags = FS_USERNS_MOUNT, 3883 }; 3884 3885 int __init shmem_init(void) 3886 { 3887 int error; 3888 3889 /* If rootfs called this, don't re-init */ 3890 if (shmem_inode_cachep) 3891 return 0; 3892 3893 error = shmem_init_inodecache(); 3894 if (error) 3895 goto out3; 3896 3897 error = register_filesystem(&shmem_fs_type); 3898 if (error) { 3899 pr_err("Could not register tmpfs\n"); 3900 goto out2; 3901 } 3902 3903 shm_mnt = kern_mount(&shmem_fs_type); 3904 if (IS_ERR(shm_mnt)) { 3905 error = PTR_ERR(shm_mnt); 3906 pr_err("Could not kern_mount tmpfs\n"); 3907 goto out1; 3908 } 3909 3910 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3911 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY) 3912 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3913 else 3914 shmem_huge = 0; /* just in case it was patched */ 3915 #endif 3916 return 0; 3917 3918 out1: 3919 unregister_filesystem(&shmem_fs_type); 3920 out2: 3921 shmem_destroy_inodecache(); 3922 out3: 3923 shm_mnt = ERR_PTR(error); 3924 return error; 3925 } 3926 3927 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) 3928 static ssize_t shmem_enabled_show(struct kobject *kobj, 3929 struct kobj_attribute *attr, char *buf) 3930 { 3931 int values[] = { 3932 SHMEM_HUGE_ALWAYS, 3933 SHMEM_HUGE_WITHIN_SIZE, 3934 SHMEM_HUGE_ADVISE, 3935 SHMEM_HUGE_NEVER, 3936 SHMEM_HUGE_DENY, 3937 SHMEM_HUGE_FORCE, 3938 }; 3939 int i, count; 3940 3941 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 3942 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 3943 3944 count += sprintf(buf + count, fmt, 3945 shmem_format_huge(values[i])); 3946 } 3947 buf[count - 1] = '\n'; 3948 return count; 3949 } 3950 3951 static ssize_t shmem_enabled_store(struct kobject *kobj, 3952 struct kobj_attribute *attr, const char *buf, size_t count) 3953 { 3954 char tmp[16]; 3955 int huge; 3956 3957 if (count + 1 > sizeof(tmp)) 3958 return -EINVAL; 3959 memcpy(tmp, buf, count); 3960 tmp[count] = '\0'; 3961 if (count && tmp[count - 1] == '\n') 3962 tmp[count - 1] = '\0'; 3963 3964 huge = shmem_parse_huge(tmp); 3965 if (huge == -EINVAL) 3966 return -EINVAL; 3967 if (!has_transparent_hugepage() && 3968 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3969 return -EINVAL; 3970 3971 shmem_huge = huge; 3972 if (shmem_huge < SHMEM_HUGE_DENY) 3973 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3974 return count; 3975 } 3976 3977 struct kobj_attribute shmem_enabled_attr = 3978 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3979 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ 3980 3981 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3982 bool shmem_huge_enabled(struct vm_area_struct *vma) 3983 { 3984 struct inode *inode = file_inode(vma->vm_file); 3985 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3986 loff_t i_size; 3987 pgoff_t off; 3988 3989 if (shmem_huge == SHMEM_HUGE_FORCE) 3990 return true; 3991 if (shmem_huge == SHMEM_HUGE_DENY) 3992 return false; 3993 switch (sbinfo->huge) { 3994 case SHMEM_HUGE_NEVER: 3995 return false; 3996 case SHMEM_HUGE_ALWAYS: 3997 return true; 3998 case SHMEM_HUGE_WITHIN_SIZE: 3999 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 4000 i_size = round_up(i_size_read(inode), PAGE_SIZE); 4001 if (i_size >= HPAGE_PMD_SIZE && 4002 i_size >> PAGE_SHIFT >= off) 4003 return true; 4004 case SHMEM_HUGE_ADVISE: 4005 /* TODO: implement fadvise() hints */ 4006 return (vma->vm_flags & VM_HUGEPAGE); 4007 default: 4008 VM_BUG_ON(1); 4009 return false; 4010 } 4011 } 4012 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 4013 4014 #else /* !CONFIG_SHMEM */ 4015 4016 /* 4017 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4018 * 4019 * This is intended for small system where the benefits of the full 4020 * shmem code (swap-backed and resource-limited) are outweighed by 4021 * their complexity. On systems without swap this code should be 4022 * effectively equivalent, but much lighter weight. 4023 */ 4024 4025 static struct file_system_type shmem_fs_type = { 4026 .name = "tmpfs", 4027 .mount = ramfs_mount, 4028 .kill_sb = kill_litter_super, 4029 .fs_flags = FS_USERNS_MOUNT, 4030 }; 4031 4032 int __init shmem_init(void) 4033 { 4034 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4035 4036 shm_mnt = kern_mount(&shmem_fs_type); 4037 BUG_ON(IS_ERR(shm_mnt)); 4038 4039 return 0; 4040 } 4041 4042 int shmem_unuse(swp_entry_t swap, struct page *page) 4043 { 4044 return 0; 4045 } 4046 4047 int shmem_lock(struct file *file, int lock, struct user_struct *user) 4048 { 4049 return 0; 4050 } 4051 4052 void shmem_unlock_mapping(struct address_space *mapping) 4053 { 4054 } 4055 4056 #ifdef CONFIG_MMU 4057 unsigned long shmem_get_unmapped_area(struct file *file, 4058 unsigned long addr, unsigned long len, 4059 unsigned long pgoff, unsigned long flags) 4060 { 4061 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4062 } 4063 #endif 4064 4065 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4066 { 4067 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4068 } 4069 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4070 4071 #define shmem_vm_ops generic_file_vm_ops 4072 #define shmem_file_operations ramfs_file_operations 4073 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4074 #define shmem_acct_size(flags, size) 0 4075 #define shmem_unacct_size(flags, size) do {} while (0) 4076 4077 #endif /* CONFIG_SHMEM */ 4078 4079 /* common code */ 4080 4081 static const struct dentry_operations anon_ops = { 4082 .d_dname = simple_dname 4083 }; 4084 4085 static struct file *__shmem_file_setup(const char *name, loff_t size, 4086 unsigned long flags, unsigned int i_flags) 4087 { 4088 struct file *res; 4089 struct inode *inode; 4090 struct path path; 4091 struct super_block *sb; 4092 struct qstr this; 4093 4094 if (IS_ERR(shm_mnt)) 4095 return ERR_CAST(shm_mnt); 4096 4097 if (size < 0 || size > MAX_LFS_FILESIZE) 4098 return ERR_PTR(-EINVAL); 4099 4100 if (shmem_acct_size(flags, size)) 4101 return ERR_PTR(-ENOMEM); 4102 4103 res = ERR_PTR(-ENOMEM); 4104 this.name = name; 4105 this.len = strlen(name); 4106 this.hash = 0; /* will go */ 4107 sb = shm_mnt->mnt_sb; 4108 path.mnt = mntget(shm_mnt); 4109 path.dentry = d_alloc_pseudo(sb, &this); 4110 if (!path.dentry) 4111 goto put_memory; 4112 d_set_d_op(path.dentry, &anon_ops); 4113 4114 res = ERR_PTR(-ENOSPC); 4115 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 4116 if (!inode) 4117 goto put_memory; 4118 4119 inode->i_flags |= i_flags; 4120 d_instantiate(path.dentry, inode); 4121 inode->i_size = size; 4122 clear_nlink(inode); /* It is unlinked */ 4123 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4124 if (IS_ERR(res)) 4125 goto put_path; 4126 4127 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 4128 &shmem_file_operations); 4129 if (IS_ERR(res)) 4130 goto put_path; 4131 4132 return res; 4133 4134 put_memory: 4135 shmem_unacct_size(flags, size); 4136 put_path: 4137 path_put(&path); 4138 return res; 4139 } 4140 4141 /** 4142 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4143 * kernel internal. There will be NO LSM permission checks against the 4144 * underlying inode. So users of this interface must do LSM checks at a 4145 * higher layer. The users are the big_key and shm implementations. LSM 4146 * checks are provided at the key or shm level rather than the inode. 4147 * @name: name for dentry (to be seen in /proc/<pid>/maps 4148 * @size: size to be set for the file 4149 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4150 */ 4151 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4152 { 4153 return __shmem_file_setup(name, size, flags, S_PRIVATE); 4154 } 4155 4156 /** 4157 * shmem_file_setup - get an unlinked file living in tmpfs 4158 * @name: name for dentry (to be seen in /proc/<pid>/maps 4159 * @size: size to be set for the file 4160 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4161 */ 4162 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4163 { 4164 return __shmem_file_setup(name, size, flags, 0); 4165 } 4166 EXPORT_SYMBOL_GPL(shmem_file_setup); 4167 4168 /** 4169 * shmem_zero_setup - setup a shared anonymous mapping 4170 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4171 */ 4172 int shmem_zero_setup(struct vm_area_struct *vma) 4173 { 4174 struct file *file; 4175 loff_t size = vma->vm_end - vma->vm_start; 4176 4177 /* 4178 * Cloning a new file under mmap_sem leads to a lock ordering conflict 4179 * between XFS directory reading and selinux: since this file is only 4180 * accessible to the user through its mapping, use S_PRIVATE flag to 4181 * bypass file security, in the same way as shmem_kernel_file_setup(). 4182 */ 4183 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE); 4184 if (IS_ERR(file)) 4185 return PTR_ERR(file); 4186 4187 if (vma->vm_file) 4188 fput(vma->vm_file); 4189 vma->vm_file = file; 4190 vma->vm_ops = &shmem_vm_ops; 4191 4192 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 4193 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4194 (vma->vm_end & HPAGE_PMD_MASK)) { 4195 khugepaged_enter(vma, vma->vm_flags); 4196 } 4197 4198 return 0; 4199 } 4200 4201 /** 4202 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4203 * @mapping: the page's address_space 4204 * @index: the page index 4205 * @gfp: the page allocator flags to use if allocating 4206 * 4207 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4208 * with any new page allocations done using the specified allocation flags. 4209 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4210 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4211 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4212 * 4213 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4214 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4215 */ 4216 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4217 pgoff_t index, gfp_t gfp) 4218 { 4219 #ifdef CONFIG_SHMEM 4220 struct inode *inode = mapping->host; 4221 struct page *page; 4222 int error; 4223 4224 BUG_ON(mapping->a_ops != &shmem_aops); 4225 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4226 gfp, NULL, NULL); 4227 if (error) 4228 page = ERR_PTR(error); 4229 else 4230 unlock_page(page); 4231 return page; 4232 #else 4233 /* 4234 * The tiny !SHMEM case uses ramfs without swap 4235 */ 4236 return read_cache_page_gfp(mapping, index, gfp); 4237 #endif 4238 } 4239 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4240