1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/pagemap.h> 29 #include <linux/file.h> 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/swap.h> 33 34 static struct vfsmount *shm_mnt; 35 36 #ifdef CONFIG_SHMEM 37 /* 38 * This virtual memory filesystem is heavily based on the ramfs. It 39 * extends ramfs by the ability to use swap and honor resource limits 40 * which makes it a completely usable filesystem. 41 */ 42 43 #include <linux/xattr.h> 44 #include <linux/exportfs.h> 45 #include <linux/posix_acl.h> 46 #include <linux/generic_acl.h> 47 #include <linux/mman.h> 48 #include <linux/string.h> 49 #include <linux/slab.h> 50 #include <linux/backing-dev.h> 51 #include <linux/shmem_fs.h> 52 #include <linux/writeback.h> 53 #include <linux/blkdev.h> 54 #include <linux/pagevec.h> 55 #include <linux/percpu_counter.h> 56 #include <linux/falloc.h> 57 #include <linux/splice.h> 58 #include <linux/security.h> 59 #include <linux/swapops.h> 60 #include <linux/mempolicy.h> 61 #include <linux/namei.h> 62 #include <linux/ctype.h> 63 #include <linux/migrate.h> 64 #include <linux/highmem.h> 65 #include <linux/seq_file.h> 66 #include <linux/magic.h> 67 68 #include <asm/uaccess.h> 69 #include <asm/pgtable.h> 70 71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 73 74 /* Pretend that each entry is of this size in directory's i_size */ 75 #define BOGO_DIRENT_SIZE 20 76 77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 78 #define SHORT_SYMLINK_LEN 128 79 80 struct shmem_xattr { 81 struct list_head list; /* anchored by shmem_inode_info->xattr_list */ 82 char *name; /* xattr name */ 83 size_t size; 84 char value[0]; 85 }; 86 87 /* Flag allocation requirements to shmem_getpage */ 88 enum sgp_type { 89 SGP_READ, /* don't exceed i_size, don't allocate page */ 90 SGP_CACHE, /* don't exceed i_size, may allocate page */ 91 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 92 SGP_WRITE, /* may exceed i_size, may allocate page */ 93 }; 94 95 #ifdef CONFIG_TMPFS 96 static unsigned long shmem_default_max_blocks(void) 97 { 98 return totalram_pages / 2; 99 } 100 101 static unsigned long shmem_default_max_inodes(void) 102 { 103 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 104 } 105 #endif 106 107 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 108 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 109 struct shmem_inode_info *info, pgoff_t index); 110 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 111 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); 112 113 static inline int shmem_getpage(struct inode *inode, pgoff_t index, 114 struct page **pagep, enum sgp_type sgp, int *fault_type) 115 { 116 return shmem_getpage_gfp(inode, index, pagep, sgp, 117 mapping_gfp_mask(inode->i_mapping), fault_type); 118 } 119 120 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 121 { 122 return sb->s_fs_info; 123 } 124 125 /* 126 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 127 * for shared memory and for shared anonymous (/dev/zero) mappings 128 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 129 * consistent with the pre-accounting of private mappings ... 130 */ 131 static inline int shmem_acct_size(unsigned long flags, loff_t size) 132 { 133 return (flags & VM_NORESERVE) ? 134 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 135 } 136 137 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 138 { 139 if (!(flags & VM_NORESERVE)) 140 vm_unacct_memory(VM_ACCT(size)); 141 } 142 143 /* 144 * ... whereas tmpfs objects are accounted incrementally as 145 * pages are allocated, in order to allow huge sparse files. 146 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 147 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 148 */ 149 static inline int shmem_acct_block(unsigned long flags) 150 { 151 return (flags & VM_NORESERVE) ? 152 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0; 153 } 154 155 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 156 { 157 if (flags & VM_NORESERVE) 158 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 159 } 160 161 static const struct super_operations shmem_ops; 162 static const struct address_space_operations shmem_aops; 163 static const struct file_operations shmem_file_operations; 164 static const struct inode_operations shmem_inode_operations; 165 static const struct inode_operations shmem_dir_inode_operations; 166 static const struct inode_operations shmem_special_inode_operations; 167 static const struct vm_operations_struct shmem_vm_ops; 168 169 static struct backing_dev_info shmem_backing_dev_info __read_mostly = { 170 .ra_pages = 0, /* No readahead */ 171 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 172 }; 173 174 static LIST_HEAD(shmem_swaplist); 175 static DEFINE_MUTEX(shmem_swaplist_mutex); 176 177 static int shmem_reserve_inode(struct super_block *sb) 178 { 179 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 180 if (sbinfo->max_inodes) { 181 spin_lock(&sbinfo->stat_lock); 182 if (!sbinfo->free_inodes) { 183 spin_unlock(&sbinfo->stat_lock); 184 return -ENOSPC; 185 } 186 sbinfo->free_inodes--; 187 spin_unlock(&sbinfo->stat_lock); 188 } 189 return 0; 190 } 191 192 static void shmem_free_inode(struct super_block *sb) 193 { 194 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 195 if (sbinfo->max_inodes) { 196 spin_lock(&sbinfo->stat_lock); 197 sbinfo->free_inodes++; 198 spin_unlock(&sbinfo->stat_lock); 199 } 200 } 201 202 /** 203 * shmem_recalc_inode - recalculate the block usage of an inode 204 * @inode: inode to recalc 205 * 206 * We have to calculate the free blocks since the mm can drop 207 * undirtied hole pages behind our back. 208 * 209 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 210 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 211 * 212 * It has to be called with the spinlock held. 213 */ 214 static void shmem_recalc_inode(struct inode *inode) 215 { 216 struct shmem_inode_info *info = SHMEM_I(inode); 217 long freed; 218 219 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 220 if (freed > 0) { 221 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 222 if (sbinfo->max_blocks) 223 percpu_counter_add(&sbinfo->used_blocks, -freed); 224 info->alloced -= freed; 225 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 226 shmem_unacct_blocks(info->flags, freed); 227 } 228 } 229 230 /* 231 * Replace item expected in radix tree by a new item, while holding tree lock. 232 */ 233 static int shmem_radix_tree_replace(struct address_space *mapping, 234 pgoff_t index, void *expected, void *replacement) 235 { 236 void **pslot; 237 void *item = NULL; 238 239 VM_BUG_ON(!expected); 240 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 241 if (pslot) 242 item = radix_tree_deref_slot_protected(pslot, 243 &mapping->tree_lock); 244 if (item != expected) 245 return -ENOENT; 246 if (replacement) 247 radix_tree_replace_slot(pslot, replacement); 248 else 249 radix_tree_delete(&mapping->page_tree, index); 250 return 0; 251 } 252 253 /* 254 * Like add_to_page_cache_locked, but error if expected item has gone. 255 */ 256 static int shmem_add_to_page_cache(struct page *page, 257 struct address_space *mapping, 258 pgoff_t index, gfp_t gfp, void *expected) 259 { 260 int error = 0; 261 262 VM_BUG_ON(!PageLocked(page)); 263 VM_BUG_ON(!PageSwapBacked(page)); 264 265 if (!expected) 266 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK); 267 if (!error) { 268 page_cache_get(page); 269 page->mapping = mapping; 270 page->index = index; 271 272 spin_lock_irq(&mapping->tree_lock); 273 if (!expected) 274 error = radix_tree_insert(&mapping->page_tree, 275 index, page); 276 else 277 error = shmem_radix_tree_replace(mapping, index, 278 expected, page); 279 if (!error) { 280 mapping->nrpages++; 281 __inc_zone_page_state(page, NR_FILE_PAGES); 282 __inc_zone_page_state(page, NR_SHMEM); 283 spin_unlock_irq(&mapping->tree_lock); 284 } else { 285 page->mapping = NULL; 286 spin_unlock_irq(&mapping->tree_lock); 287 page_cache_release(page); 288 } 289 if (!expected) 290 radix_tree_preload_end(); 291 } 292 if (error) 293 mem_cgroup_uncharge_cache_page(page); 294 return error; 295 } 296 297 /* 298 * Like delete_from_page_cache, but substitutes swap for page. 299 */ 300 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 301 { 302 struct address_space *mapping = page->mapping; 303 int error; 304 305 spin_lock_irq(&mapping->tree_lock); 306 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 307 page->mapping = NULL; 308 mapping->nrpages--; 309 __dec_zone_page_state(page, NR_FILE_PAGES); 310 __dec_zone_page_state(page, NR_SHMEM); 311 spin_unlock_irq(&mapping->tree_lock); 312 page_cache_release(page); 313 BUG_ON(error); 314 } 315 316 /* 317 * Like find_get_pages, but collecting swap entries as well as pages. 318 */ 319 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping, 320 pgoff_t start, unsigned int nr_pages, 321 struct page **pages, pgoff_t *indices) 322 { 323 unsigned int i; 324 unsigned int ret; 325 unsigned int nr_found; 326 327 rcu_read_lock(); 328 restart: 329 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 330 (void ***)pages, indices, start, nr_pages); 331 ret = 0; 332 for (i = 0; i < nr_found; i++) { 333 struct page *page; 334 repeat: 335 page = radix_tree_deref_slot((void **)pages[i]); 336 if (unlikely(!page)) 337 continue; 338 if (radix_tree_exception(page)) { 339 if (radix_tree_deref_retry(page)) 340 goto restart; 341 /* 342 * Otherwise, we must be storing a swap entry 343 * here as an exceptional entry: so return it 344 * without attempting to raise page count. 345 */ 346 goto export; 347 } 348 if (!page_cache_get_speculative(page)) 349 goto repeat; 350 351 /* Has the page moved? */ 352 if (unlikely(page != *((void **)pages[i]))) { 353 page_cache_release(page); 354 goto repeat; 355 } 356 export: 357 indices[ret] = indices[i]; 358 pages[ret] = page; 359 ret++; 360 } 361 if (unlikely(!ret && nr_found)) 362 goto restart; 363 rcu_read_unlock(); 364 return ret; 365 } 366 367 /* 368 * Remove swap entry from radix tree, free the swap and its page cache. 369 */ 370 static int shmem_free_swap(struct address_space *mapping, 371 pgoff_t index, void *radswap) 372 { 373 int error; 374 375 spin_lock_irq(&mapping->tree_lock); 376 error = shmem_radix_tree_replace(mapping, index, radswap, NULL); 377 spin_unlock_irq(&mapping->tree_lock); 378 if (!error) 379 free_swap_and_cache(radix_to_swp_entry(radswap)); 380 return error; 381 } 382 383 /* 384 * Pagevec may contain swap entries, so shuffle up pages before releasing. 385 */ 386 static void shmem_deswap_pagevec(struct pagevec *pvec) 387 { 388 int i, j; 389 390 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 391 struct page *page = pvec->pages[i]; 392 if (!radix_tree_exceptional_entry(page)) 393 pvec->pages[j++] = page; 394 } 395 pvec->nr = j; 396 } 397 398 /* 399 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 400 */ 401 void shmem_unlock_mapping(struct address_space *mapping) 402 { 403 struct pagevec pvec; 404 pgoff_t indices[PAGEVEC_SIZE]; 405 pgoff_t index = 0; 406 407 pagevec_init(&pvec, 0); 408 /* 409 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 410 */ 411 while (!mapping_unevictable(mapping)) { 412 /* 413 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 414 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 415 */ 416 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 417 PAGEVEC_SIZE, pvec.pages, indices); 418 if (!pvec.nr) 419 break; 420 index = indices[pvec.nr - 1] + 1; 421 shmem_deswap_pagevec(&pvec); 422 check_move_unevictable_pages(pvec.pages, pvec.nr); 423 pagevec_release(&pvec); 424 cond_resched(); 425 } 426 } 427 428 /* 429 * Remove range of pages and swap entries from radix tree, and free them. 430 */ 431 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 432 { 433 struct address_space *mapping = inode->i_mapping; 434 struct shmem_inode_info *info = SHMEM_I(inode); 435 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 436 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT; 437 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1); 438 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 439 struct pagevec pvec; 440 pgoff_t indices[PAGEVEC_SIZE]; 441 long nr_swaps_freed = 0; 442 pgoff_t index; 443 int i; 444 445 if (lend == -1) 446 end = -1; /* unsigned, so actually very big */ 447 448 pagevec_init(&pvec, 0); 449 index = start; 450 while (index < end) { 451 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 452 min(end - index, (pgoff_t)PAGEVEC_SIZE), 453 pvec.pages, indices); 454 if (!pvec.nr) 455 break; 456 mem_cgroup_uncharge_start(); 457 for (i = 0; i < pagevec_count(&pvec); i++) { 458 struct page *page = pvec.pages[i]; 459 460 index = indices[i]; 461 if (index >= end) 462 break; 463 464 if (radix_tree_exceptional_entry(page)) { 465 nr_swaps_freed += !shmem_free_swap(mapping, 466 index, page); 467 continue; 468 } 469 470 if (!trylock_page(page)) 471 continue; 472 if (page->mapping == mapping) { 473 VM_BUG_ON(PageWriteback(page)); 474 truncate_inode_page(mapping, page); 475 } 476 unlock_page(page); 477 } 478 shmem_deswap_pagevec(&pvec); 479 pagevec_release(&pvec); 480 mem_cgroup_uncharge_end(); 481 cond_resched(); 482 index++; 483 } 484 485 if (partial_start) { 486 struct page *page = NULL; 487 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); 488 if (page) { 489 unsigned int top = PAGE_CACHE_SIZE; 490 if (start > end) { 491 top = partial_end; 492 partial_end = 0; 493 } 494 zero_user_segment(page, partial_start, top); 495 set_page_dirty(page); 496 unlock_page(page); 497 page_cache_release(page); 498 } 499 } 500 if (partial_end) { 501 struct page *page = NULL; 502 shmem_getpage(inode, end, &page, SGP_READ, NULL); 503 if (page) { 504 zero_user_segment(page, 0, partial_end); 505 set_page_dirty(page); 506 unlock_page(page); 507 page_cache_release(page); 508 } 509 } 510 if (start >= end) 511 return; 512 513 index = start; 514 for ( ; ; ) { 515 cond_resched(); 516 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 517 min(end - index, (pgoff_t)PAGEVEC_SIZE), 518 pvec.pages, indices); 519 if (!pvec.nr) { 520 if (index == start) 521 break; 522 index = start; 523 continue; 524 } 525 if (index == start && indices[0] >= end) { 526 shmem_deswap_pagevec(&pvec); 527 pagevec_release(&pvec); 528 break; 529 } 530 mem_cgroup_uncharge_start(); 531 for (i = 0; i < pagevec_count(&pvec); i++) { 532 struct page *page = pvec.pages[i]; 533 534 index = indices[i]; 535 if (index >= end) 536 break; 537 538 if (radix_tree_exceptional_entry(page)) { 539 nr_swaps_freed += !shmem_free_swap(mapping, 540 index, page); 541 continue; 542 } 543 544 lock_page(page); 545 if (page->mapping == mapping) { 546 VM_BUG_ON(PageWriteback(page)); 547 truncate_inode_page(mapping, page); 548 } 549 unlock_page(page); 550 } 551 shmem_deswap_pagevec(&pvec); 552 pagevec_release(&pvec); 553 mem_cgroup_uncharge_end(); 554 index++; 555 } 556 557 spin_lock(&info->lock); 558 info->swapped -= nr_swaps_freed; 559 shmem_recalc_inode(inode); 560 spin_unlock(&info->lock); 561 562 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 563 } 564 EXPORT_SYMBOL_GPL(shmem_truncate_range); 565 566 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 567 { 568 struct inode *inode = dentry->d_inode; 569 int error; 570 571 error = inode_change_ok(inode, attr); 572 if (error) 573 return error; 574 575 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 576 loff_t oldsize = inode->i_size; 577 loff_t newsize = attr->ia_size; 578 579 if (newsize != oldsize) { 580 i_size_write(inode, newsize); 581 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 582 } 583 if (newsize < oldsize) { 584 loff_t holebegin = round_up(newsize, PAGE_SIZE); 585 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 586 shmem_truncate_range(inode, newsize, (loff_t)-1); 587 /* unmap again to remove racily COWed private pages */ 588 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 589 } 590 } 591 592 setattr_copy(inode, attr); 593 #ifdef CONFIG_TMPFS_POSIX_ACL 594 if (attr->ia_valid & ATTR_MODE) 595 error = generic_acl_chmod(inode); 596 #endif 597 return error; 598 } 599 600 static void shmem_evict_inode(struct inode *inode) 601 { 602 struct shmem_inode_info *info = SHMEM_I(inode); 603 struct shmem_xattr *xattr, *nxattr; 604 605 if (inode->i_mapping->a_ops == &shmem_aops) { 606 shmem_unacct_size(info->flags, inode->i_size); 607 inode->i_size = 0; 608 shmem_truncate_range(inode, 0, (loff_t)-1); 609 if (!list_empty(&info->swaplist)) { 610 mutex_lock(&shmem_swaplist_mutex); 611 list_del_init(&info->swaplist); 612 mutex_unlock(&shmem_swaplist_mutex); 613 } 614 } else 615 kfree(info->symlink); 616 617 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) { 618 kfree(xattr->name); 619 kfree(xattr); 620 } 621 BUG_ON(inode->i_blocks); 622 shmem_free_inode(inode->i_sb); 623 clear_inode(inode); 624 } 625 626 /* 627 * If swap found in inode, free it and move page from swapcache to filecache. 628 */ 629 static int shmem_unuse_inode(struct shmem_inode_info *info, 630 swp_entry_t swap, struct page **pagep) 631 { 632 struct address_space *mapping = info->vfs_inode.i_mapping; 633 void *radswap; 634 pgoff_t index; 635 gfp_t gfp; 636 int error = 0; 637 638 radswap = swp_to_radix_entry(swap); 639 index = radix_tree_locate_item(&mapping->page_tree, radswap); 640 if (index == -1) 641 return 0; 642 643 /* 644 * Move _head_ to start search for next from here. 645 * But be careful: shmem_evict_inode checks list_empty without taking 646 * mutex, and there's an instant in list_move_tail when info->swaplist 647 * would appear empty, if it were the only one on shmem_swaplist. 648 */ 649 if (shmem_swaplist.next != &info->swaplist) 650 list_move_tail(&shmem_swaplist, &info->swaplist); 651 652 gfp = mapping_gfp_mask(mapping); 653 if (shmem_should_replace_page(*pagep, gfp)) { 654 mutex_unlock(&shmem_swaplist_mutex); 655 error = shmem_replace_page(pagep, gfp, info, index); 656 mutex_lock(&shmem_swaplist_mutex); 657 /* 658 * We needed to drop mutex to make that restrictive page 659 * allocation; but the inode might already be freed by now, 660 * and we cannot refer to inode or mapping or info to check. 661 * However, we do hold page lock on the PageSwapCache page, 662 * so can check if that still has our reference remaining. 663 */ 664 if (!page_swapcount(*pagep)) 665 error = -ENOENT; 666 } 667 668 /* 669 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 670 * but also to hold up shmem_evict_inode(): so inode cannot be freed 671 * beneath us (pagelock doesn't help until the page is in pagecache). 672 */ 673 if (!error) 674 error = shmem_add_to_page_cache(*pagep, mapping, index, 675 GFP_NOWAIT, radswap); 676 if (error != -ENOMEM) { 677 /* 678 * Truncation and eviction use free_swap_and_cache(), which 679 * only does trylock page: if we raced, best clean up here. 680 */ 681 delete_from_swap_cache(*pagep); 682 set_page_dirty(*pagep); 683 if (!error) { 684 spin_lock(&info->lock); 685 info->swapped--; 686 spin_unlock(&info->lock); 687 swap_free(swap); 688 } 689 error = 1; /* not an error, but entry was found */ 690 } 691 return error; 692 } 693 694 /* 695 * Search through swapped inodes to find and replace swap by page. 696 */ 697 int shmem_unuse(swp_entry_t swap, struct page *page) 698 { 699 struct list_head *this, *next; 700 struct shmem_inode_info *info; 701 int found = 0; 702 int error = 0; 703 704 /* 705 * There's a faint possibility that swap page was replaced before 706 * caller locked it: it will come back later with the right page. 707 */ 708 if (unlikely(!PageSwapCache(page))) 709 goto out; 710 711 /* 712 * Charge page using GFP_KERNEL while we can wait, before taking 713 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 714 * Charged back to the user (not to caller) when swap account is used. 715 */ 716 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); 717 if (error) 718 goto out; 719 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 720 721 mutex_lock(&shmem_swaplist_mutex); 722 list_for_each_safe(this, next, &shmem_swaplist) { 723 info = list_entry(this, struct shmem_inode_info, swaplist); 724 if (info->swapped) 725 found = shmem_unuse_inode(info, swap, &page); 726 else 727 list_del_init(&info->swaplist); 728 cond_resched(); 729 if (found) 730 break; 731 } 732 mutex_unlock(&shmem_swaplist_mutex); 733 734 if (found < 0) 735 error = found; 736 out: 737 unlock_page(page); 738 page_cache_release(page); 739 return error; 740 } 741 742 /* 743 * Move the page from the page cache to the swap cache. 744 */ 745 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 746 { 747 struct shmem_inode_info *info; 748 struct address_space *mapping; 749 struct inode *inode; 750 swp_entry_t swap; 751 pgoff_t index; 752 753 BUG_ON(!PageLocked(page)); 754 mapping = page->mapping; 755 index = page->index; 756 inode = mapping->host; 757 info = SHMEM_I(inode); 758 if (info->flags & VM_LOCKED) 759 goto redirty; 760 if (!total_swap_pages) 761 goto redirty; 762 763 /* 764 * shmem_backing_dev_info's capabilities prevent regular writeback or 765 * sync from ever calling shmem_writepage; but a stacking filesystem 766 * might use ->writepage of its underlying filesystem, in which case 767 * tmpfs should write out to swap only in response to memory pressure, 768 * and not for the writeback threads or sync. 769 */ 770 if (!wbc->for_reclaim) { 771 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 772 goto redirty; 773 } 774 swap = get_swap_page(); 775 if (!swap.val) 776 goto redirty; 777 778 /* 779 * Add inode to shmem_unuse()'s list of swapped-out inodes, 780 * if it's not already there. Do it now before the page is 781 * moved to swap cache, when its pagelock no longer protects 782 * the inode from eviction. But don't unlock the mutex until 783 * we've incremented swapped, because shmem_unuse_inode() will 784 * prune a !swapped inode from the swaplist under this mutex. 785 */ 786 mutex_lock(&shmem_swaplist_mutex); 787 if (list_empty(&info->swaplist)) 788 list_add_tail(&info->swaplist, &shmem_swaplist); 789 790 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 791 swap_shmem_alloc(swap); 792 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 793 794 spin_lock(&info->lock); 795 info->swapped++; 796 shmem_recalc_inode(inode); 797 spin_unlock(&info->lock); 798 799 mutex_unlock(&shmem_swaplist_mutex); 800 BUG_ON(page_mapped(page)); 801 swap_writepage(page, wbc); 802 return 0; 803 } 804 805 mutex_unlock(&shmem_swaplist_mutex); 806 swapcache_free(swap, NULL); 807 redirty: 808 set_page_dirty(page); 809 if (wbc->for_reclaim) 810 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 811 unlock_page(page); 812 return 0; 813 } 814 815 #ifdef CONFIG_NUMA 816 #ifdef CONFIG_TMPFS 817 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 818 { 819 char buffer[64]; 820 821 if (!mpol || mpol->mode == MPOL_DEFAULT) 822 return; /* show nothing */ 823 824 mpol_to_str(buffer, sizeof(buffer), mpol, 1); 825 826 seq_printf(seq, ",mpol=%s", buffer); 827 } 828 829 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 830 { 831 struct mempolicy *mpol = NULL; 832 if (sbinfo->mpol) { 833 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 834 mpol = sbinfo->mpol; 835 mpol_get(mpol); 836 spin_unlock(&sbinfo->stat_lock); 837 } 838 return mpol; 839 } 840 #endif /* CONFIG_TMPFS */ 841 842 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 843 struct shmem_inode_info *info, pgoff_t index) 844 { 845 struct mempolicy mpol, *spol; 846 struct vm_area_struct pvma; 847 848 spol = mpol_cond_copy(&mpol, 849 mpol_shared_policy_lookup(&info->policy, index)); 850 851 /* Create a pseudo vma that just contains the policy */ 852 pvma.vm_start = 0; 853 pvma.vm_pgoff = index; 854 pvma.vm_ops = NULL; 855 pvma.vm_policy = spol; 856 return swapin_readahead(swap, gfp, &pvma, 0); 857 } 858 859 static struct page *shmem_alloc_page(gfp_t gfp, 860 struct shmem_inode_info *info, pgoff_t index) 861 { 862 struct vm_area_struct pvma; 863 864 /* Create a pseudo vma that just contains the policy */ 865 pvma.vm_start = 0; 866 pvma.vm_pgoff = index; 867 pvma.vm_ops = NULL; 868 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 869 870 /* 871 * alloc_page_vma() will drop the shared policy reference 872 */ 873 return alloc_page_vma(gfp, &pvma, 0); 874 } 875 #else /* !CONFIG_NUMA */ 876 #ifdef CONFIG_TMPFS 877 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 878 { 879 } 880 #endif /* CONFIG_TMPFS */ 881 882 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 883 struct shmem_inode_info *info, pgoff_t index) 884 { 885 return swapin_readahead(swap, gfp, NULL, 0); 886 } 887 888 static inline struct page *shmem_alloc_page(gfp_t gfp, 889 struct shmem_inode_info *info, pgoff_t index) 890 { 891 return alloc_page(gfp); 892 } 893 #endif /* CONFIG_NUMA */ 894 895 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 896 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 897 { 898 return NULL; 899 } 900 #endif 901 902 /* 903 * When a page is moved from swapcache to shmem filecache (either by the 904 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 905 * shmem_unuse_inode()), it may have been read in earlier from swap, in 906 * ignorance of the mapping it belongs to. If that mapping has special 907 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 908 * we may need to copy to a suitable page before moving to filecache. 909 * 910 * In a future release, this may well be extended to respect cpuset and 911 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 912 * but for now it is a simple matter of zone. 913 */ 914 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 915 { 916 return page_zonenum(page) > gfp_zone(gfp); 917 } 918 919 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 920 struct shmem_inode_info *info, pgoff_t index) 921 { 922 struct page *oldpage, *newpage; 923 struct address_space *swap_mapping; 924 pgoff_t swap_index; 925 int error; 926 927 oldpage = *pagep; 928 swap_index = page_private(oldpage); 929 swap_mapping = page_mapping(oldpage); 930 931 /* 932 * We have arrived here because our zones are constrained, so don't 933 * limit chance of success by further cpuset and node constraints. 934 */ 935 gfp &= ~GFP_CONSTRAINT_MASK; 936 newpage = shmem_alloc_page(gfp, info, index); 937 if (!newpage) 938 return -ENOMEM; 939 VM_BUG_ON(shmem_should_replace_page(newpage, gfp)); 940 941 *pagep = newpage; 942 page_cache_get(newpage); 943 copy_highpage(newpage, oldpage); 944 945 VM_BUG_ON(!PageLocked(oldpage)); 946 __set_page_locked(newpage); 947 VM_BUG_ON(!PageUptodate(oldpage)); 948 SetPageUptodate(newpage); 949 VM_BUG_ON(!PageSwapBacked(oldpage)); 950 SetPageSwapBacked(newpage); 951 VM_BUG_ON(!swap_index); 952 set_page_private(newpage, swap_index); 953 VM_BUG_ON(!PageSwapCache(oldpage)); 954 SetPageSwapCache(newpage); 955 956 /* 957 * Our caller will very soon move newpage out of swapcache, but it's 958 * a nice clean interface for us to replace oldpage by newpage there. 959 */ 960 spin_lock_irq(&swap_mapping->tree_lock); 961 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 962 newpage); 963 __inc_zone_page_state(newpage, NR_FILE_PAGES); 964 __dec_zone_page_state(oldpage, NR_FILE_PAGES); 965 spin_unlock_irq(&swap_mapping->tree_lock); 966 BUG_ON(error); 967 968 mem_cgroup_replace_page_cache(oldpage, newpage); 969 lru_cache_add_anon(newpage); 970 971 ClearPageSwapCache(oldpage); 972 set_page_private(oldpage, 0); 973 974 unlock_page(oldpage); 975 page_cache_release(oldpage); 976 page_cache_release(oldpage); 977 return 0; 978 } 979 980 /* 981 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 982 * 983 * If we allocate a new one we do not mark it dirty. That's up to the 984 * vm. If we swap it in we mark it dirty since we also free the swap 985 * entry since a page cannot live in both the swap and page cache 986 */ 987 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 988 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) 989 { 990 struct address_space *mapping = inode->i_mapping; 991 struct shmem_inode_info *info; 992 struct shmem_sb_info *sbinfo; 993 struct page *page; 994 swp_entry_t swap; 995 int error; 996 int once = 0; 997 998 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT)) 999 return -EFBIG; 1000 repeat: 1001 swap.val = 0; 1002 page = find_lock_page(mapping, index); 1003 if (radix_tree_exceptional_entry(page)) { 1004 swap = radix_to_swp_entry(page); 1005 page = NULL; 1006 } 1007 1008 if (sgp != SGP_WRITE && 1009 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1010 error = -EINVAL; 1011 goto failed; 1012 } 1013 1014 if (page || (sgp == SGP_READ && !swap.val)) { 1015 /* 1016 * Once we can get the page lock, it must be uptodate: 1017 * if there were an error in reading back from swap, 1018 * the page would not be inserted into the filecache. 1019 */ 1020 BUG_ON(page && !PageUptodate(page)); 1021 *pagep = page; 1022 return 0; 1023 } 1024 1025 /* 1026 * Fast cache lookup did not find it: 1027 * bring it back from swap or allocate. 1028 */ 1029 info = SHMEM_I(inode); 1030 sbinfo = SHMEM_SB(inode->i_sb); 1031 1032 if (swap.val) { 1033 /* Look it up and read it in.. */ 1034 page = lookup_swap_cache(swap); 1035 if (!page) { 1036 /* here we actually do the io */ 1037 if (fault_type) 1038 *fault_type |= VM_FAULT_MAJOR; 1039 page = shmem_swapin(swap, gfp, info, index); 1040 if (!page) { 1041 error = -ENOMEM; 1042 goto failed; 1043 } 1044 } 1045 1046 /* We have to do this with page locked to prevent races */ 1047 lock_page(page); 1048 if (!PageSwapCache(page) || page->mapping) { 1049 error = -EEXIST; /* try again */ 1050 goto failed; 1051 } 1052 if (!PageUptodate(page)) { 1053 error = -EIO; 1054 goto failed; 1055 } 1056 wait_on_page_writeback(page); 1057 1058 if (shmem_should_replace_page(page, gfp)) { 1059 error = shmem_replace_page(&page, gfp, info, index); 1060 if (error) 1061 goto failed; 1062 } 1063 1064 error = mem_cgroup_cache_charge(page, current->mm, 1065 gfp & GFP_RECLAIM_MASK); 1066 if (!error) 1067 error = shmem_add_to_page_cache(page, mapping, index, 1068 gfp, swp_to_radix_entry(swap)); 1069 if (error) 1070 goto failed; 1071 1072 spin_lock(&info->lock); 1073 info->swapped--; 1074 shmem_recalc_inode(inode); 1075 spin_unlock(&info->lock); 1076 1077 delete_from_swap_cache(page); 1078 set_page_dirty(page); 1079 swap_free(swap); 1080 1081 } else { 1082 if (shmem_acct_block(info->flags)) { 1083 error = -ENOSPC; 1084 goto failed; 1085 } 1086 if (sbinfo->max_blocks) { 1087 if (percpu_counter_compare(&sbinfo->used_blocks, 1088 sbinfo->max_blocks) >= 0) { 1089 error = -ENOSPC; 1090 goto unacct; 1091 } 1092 percpu_counter_inc(&sbinfo->used_blocks); 1093 } 1094 1095 page = shmem_alloc_page(gfp, info, index); 1096 if (!page) { 1097 error = -ENOMEM; 1098 goto decused; 1099 } 1100 1101 SetPageSwapBacked(page); 1102 __set_page_locked(page); 1103 error = mem_cgroup_cache_charge(page, current->mm, 1104 gfp & GFP_RECLAIM_MASK); 1105 if (!error) 1106 error = shmem_add_to_page_cache(page, mapping, index, 1107 gfp, NULL); 1108 if (error) 1109 goto decused; 1110 lru_cache_add_anon(page); 1111 1112 spin_lock(&info->lock); 1113 info->alloced++; 1114 inode->i_blocks += BLOCKS_PER_PAGE; 1115 shmem_recalc_inode(inode); 1116 spin_unlock(&info->lock); 1117 1118 /* 1119 * Let SGP_WRITE caller clear ends if write does not fill page 1120 */ 1121 if (sgp != SGP_WRITE) { 1122 clear_highpage(page); 1123 flush_dcache_page(page); 1124 SetPageUptodate(page); 1125 } 1126 if (sgp == SGP_DIRTY) 1127 set_page_dirty(page); 1128 } 1129 1130 /* Perhaps the file has been truncated since we checked */ 1131 if (sgp != SGP_WRITE && 1132 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1133 error = -EINVAL; 1134 goto trunc; 1135 } 1136 *pagep = page; 1137 return 0; 1138 1139 /* 1140 * Error recovery. 1141 */ 1142 trunc: 1143 ClearPageDirty(page); 1144 delete_from_page_cache(page); 1145 spin_lock(&info->lock); 1146 info->alloced--; 1147 inode->i_blocks -= BLOCKS_PER_PAGE; 1148 spin_unlock(&info->lock); 1149 decused: 1150 if (sbinfo->max_blocks) 1151 percpu_counter_add(&sbinfo->used_blocks, -1); 1152 unacct: 1153 shmem_unacct_blocks(info->flags, 1); 1154 failed: 1155 if (swap.val && error != -EINVAL) { 1156 struct page *test = find_get_page(mapping, index); 1157 if (test && !radix_tree_exceptional_entry(test)) 1158 page_cache_release(test); 1159 /* Have another try if the entry has changed */ 1160 if (test != swp_to_radix_entry(swap)) 1161 error = -EEXIST; 1162 } 1163 if (page) { 1164 unlock_page(page); 1165 page_cache_release(page); 1166 } 1167 if (error == -ENOSPC && !once++) { 1168 info = SHMEM_I(inode); 1169 spin_lock(&info->lock); 1170 shmem_recalc_inode(inode); 1171 spin_unlock(&info->lock); 1172 goto repeat; 1173 } 1174 if (error == -EEXIST) 1175 goto repeat; 1176 return error; 1177 } 1178 1179 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1180 { 1181 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1182 int error; 1183 int ret = VM_FAULT_LOCKED; 1184 1185 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1186 if (error) 1187 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1188 1189 if (ret & VM_FAULT_MAJOR) { 1190 count_vm_event(PGMAJFAULT); 1191 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1192 } 1193 return ret; 1194 } 1195 1196 #ifdef CONFIG_NUMA 1197 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 1198 { 1199 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1200 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 1201 } 1202 1203 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1204 unsigned long addr) 1205 { 1206 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1207 pgoff_t index; 1208 1209 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1210 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 1211 } 1212 #endif 1213 1214 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1215 { 1216 struct inode *inode = file->f_path.dentry->d_inode; 1217 struct shmem_inode_info *info = SHMEM_I(inode); 1218 int retval = -ENOMEM; 1219 1220 spin_lock(&info->lock); 1221 if (lock && !(info->flags & VM_LOCKED)) { 1222 if (!user_shm_lock(inode->i_size, user)) 1223 goto out_nomem; 1224 info->flags |= VM_LOCKED; 1225 mapping_set_unevictable(file->f_mapping); 1226 } 1227 if (!lock && (info->flags & VM_LOCKED) && user) { 1228 user_shm_unlock(inode->i_size, user); 1229 info->flags &= ~VM_LOCKED; 1230 mapping_clear_unevictable(file->f_mapping); 1231 } 1232 retval = 0; 1233 1234 out_nomem: 1235 spin_unlock(&info->lock); 1236 return retval; 1237 } 1238 1239 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1240 { 1241 file_accessed(file); 1242 vma->vm_ops = &shmem_vm_ops; 1243 vma->vm_flags |= VM_CAN_NONLINEAR; 1244 return 0; 1245 } 1246 1247 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1248 umode_t mode, dev_t dev, unsigned long flags) 1249 { 1250 struct inode *inode; 1251 struct shmem_inode_info *info; 1252 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1253 1254 if (shmem_reserve_inode(sb)) 1255 return NULL; 1256 1257 inode = new_inode(sb); 1258 if (inode) { 1259 inode->i_ino = get_next_ino(); 1260 inode_init_owner(inode, dir, mode); 1261 inode->i_blocks = 0; 1262 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; 1263 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1264 inode->i_generation = get_seconds(); 1265 info = SHMEM_I(inode); 1266 memset(info, 0, (char *)inode - (char *)info); 1267 spin_lock_init(&info->lock); 1268 info->flags = flags & VM_NORESERVE; 1269 INIT_LIST_HEAD(&info->swaplist); 1270 INIT_LIST_HEAD(&info->xattr_list); 1271 cache_no_acl(inode); 1272 1273 switch (mode & S_IFMT) { 1274 default: 1275 inode->i_op = &shmem_special_inode_operations; 1276 init_special_inode(inode, mode, dev); 1277 break; 1278 case S_IFREG: 1279 inode->i_mapping->a_ops = &shmem_aops; 1280 inode->i_op = &shmem_inode_operations; 1281 inode->i_fop = &shmem_file_operations; 1282 mpol_shared_policy_init(&info->policy, 1283 shmem_get_sbmpol(sbinfo)); 1284 break; 1285 case S_IFDIR: 1286 inc_nlink(inode); 1287 /* Some things misbehave if size == 0 on a directory */ 1288 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1289 inode->i_op = &shmem_dir_inode_operations; 1290 inode->i_fop = &simple_dir_operations; 1291 break; 1292 case S_IFLNK: 1293 /* 1294 * Must not load anything in the rbtree, 1295 * mpol_free_shared_policy will not be called. 1296 */ 1297 mpol_shared_policy_init(&info->policy, NULL); 1298 break; 1299 } 1300 } else 1301 shmem_free_inode(sb); 1302 return inode; 1303 } 1304 1305 #ifdef CONFIG_TMPFS 1306 static const struct inode_operations shmem_symlink_inode_operations; 1307 static const struct inode_operations shmem_short_symlink_operations; 1308 1309 #ifdef CONFIG_TMPFS_XATTR 1310 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 1311 #else 1312 #define shmem_initxattrs NULL 1313 #endif 1314 1315 static int 1316 shmem_write_begin(struct file *file, struct address_space *mapping, 1317 loff_t pos, unsigned len, unsigned flags, 1318 struct page **pagep, void **fsdata) 1319 { 1320 struct inode *inode = mapping->host; 1321 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1322 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1323 } 1324 1325 static int 1326 shmem_write_end(struct file *file, struct address_space *mapping, 1327 loff_t pos, unsigned len, unsigned copied, 1328 struct page *page, void *fsdata) 1329 { 1330 struct inode *inode = mapping->host; 1331 1332 if (pos + copied > inode->i_size) 1333 i_size_write(inode, pos + copied); 1334 1335 if (!PageUptodate(page)) { 1336 if (copied < PAGE_CACHE_SIZE) { 1337 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1338 zero_user_segments(page, 0, from, 1339 from + copied, PAGE_CACHE_SIZE); 1340 } 1341 SetPageUptodate(page); 1342 } 1343 set_page_dirty(page); 1344 unlock_page(page); 1345 page_cache_release(page); 1346 1347 return copied; 1348 } 1349 1350 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor) 1351 { 1352 struct inode *inode = filp->f_path.dentry->d_inode; 1353 struct address_space *mapping = inode->i_mapping; 1354 pgoff_t index; 1355 unsigned long offset; 1356 enum sgp_type sgp = SGP_READ; 1357 1358 /* 1359 * Might this read be for a stacking filesystem? Then when reading 1360 * holes of a sparse file, we actually need to allocate those pages, 1361 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1362 */ 1363 if (segment_eq(get_fs(), KERNEL_DS)) 1364 sgp = SGP_DIRTY; 1365 1366 index = *ppos >> PAGE_CACHE_SHIFT; 1367 offset = *ppos & ~PAGE_CACHE_MASK; 1368 1369 for (;;) { 1370 struct page *page = NULL; 1371 pgoff_t end_index; 1372 unsigned long nr, ret; 1373 loff_t i_size = i_size_read(inode); 1374 1375 end_index = i_size >> PAGE_CACHE_SHIFT; 1376 if (index > end_index) 1377 break; 1378 if (index == end_index) { 1379 nr = i_size & ~PAGE_CACHE_MASK; 1380 if (nr <= offset) 1381 break; 1382 } 1383 1384 desc->error = shmem_getpage(inode, index, &page, sgp, NULL); 1385 if (desc->error) { 1386 if (desc->error == -EINVAL) 1387 desc->error = 0; 1388 break; 1389 } 1390 if (page) 1391 unlock_page(page); 1392 1393 /* 1394 * We must evaluate after, since reads (unlike writes) 1395 * are called without i_mutex protection against truncate 1396 */ 1397 nr = PAGE_CACHE_SIZE; 1398 i_size = i_size_read(inode); 1399 end_index = i_size >> PAGE_CACHE_SHIFT; 1400 if (index == end_index) { 1401 nr = i_size & ~PAGE_CACHE_MASK; 1402 if (nr <= offset) { 1403 if (page) 1404 page_cache_release(page); 1405 break; 1406 } 1407 } 1408 nr -= offset; 1409 1410 if (page) { 1411 /* 1412 * If users can be writing to this page using arbitrary 1413 * virtual addresses, take care about potential aliasing 1414 * before reading the page on the kernel side. 1415 */ 1416 if (mapping_writably_mapped(mapping)) 1417 flush_dcache_page(page); 1418 /* 1419 * Mark the page accessed if we read the beginning. 1420 */ 1421 if (!offset) 1422 mark_page_accessed(page); 1423 } else { 1424 page = ZERO_PAGE(0); 1425 page_cache_get(page); 1426 } 1427 1428 /* 1429 * Ok, we have the page, and it's up-to-date, so 1430 * now we can copy it to user space... 1431 * 1432 * The actor routine returns how many bytes were actually used.. 1433 * NOTE! This may not be the same as how much of a user buffer 1434 * we filled up (we may be padding etc), so we can only update 1435 * "pos" here (the actor routine has to update the user buffer 1436 * pointers and the remaining count). 1437 */ 1438 ret = actor(desc, page, offset, nr); 1439 offset += ret; 1440 index += offset >> PAGE_CACHE_SHIFT; 1441 offset &= ~PAGE_CACHE_MASK; 1442 1443 page_cache_release(page); 1444 if (ret != nr || !desc->count) 1445 break; 1446 1447 cond_resched(); 1448 } 1449 1450 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1451 file_accessed(filp); 1452 } 1453 1454 static ssize_t shmem_file_aio_read(struct kiocb *iocb, 1455 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 1456 { 1457 struct file *filp = iocb->ki_filp; 1458 ssize_t retval; 1459 unsigned long seg; 1460 size_t count; 1461 loff_t *ppos = &iocb->ki_pos; 1462 1463 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1464 if (retval) 1465 return retval; 1466 1467 for (seg = 0; seg < nr_segs; seg++) { 1468 read_descriptor_t desc; 1469 1470 desc.written = 0; 1471 desc.arg.buf = iov[seg].iov_base; 1472 desc.count = iov[seg].iov_len; 1473 if (desc.count == 0) 1474 continue; 1475 desc.error = 0; 1476 do_shmem_file_read(filp, ppos, &desc, file_read_actor); 1477 retval += desc.written; 1478 if (desc.error) { 1479 retval = retval ?: desc.error; 1480 break; 1481 } 1482 if (desc.count > 0) 1483 break; 1484 } 1485 return retval; 1486 } 1487 1488 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 1489 struct pipe_inode_info *pipe, size_t len, 1490 unsigned int flags) 1491 { 1492 struct address_space *mapping = in->f_mapping; 1493 struct inode *inode = mapping->host; 1494 unsigned int loff, nr_pages, req_pages; 1495 struct page *pages[PIPE_DEF_BUFFERS]; 1496 struct partial_page partial[PIPE_DEF_BUFFERS]; 1497 struct page *page; 1498 pgoff_t index, end_index; 1499 loff_t isize, left; 1500 int error, page_nr; 1501 struct splice_pipe_desc spd = { 1502 .pages = pages, 1503 .partial = partial, 1504 .flags = flags, 1505 .ops = &page_cache_pipe_buf_ops, 1506 .spd_release = spd_release_page, 1507 }; 1508 1509 isize = i_size_read(inode); 1510 if (unlikely(*ppos >= isize)) 1511 return 0; 1512 1513 left = isize - *ppos; 1514 if (unlikely(left < len)) 1515 len = left; 1516 1517 if (splice_grow_spd(pipe, &spd)) 1518 return -ENOMEM; 1519 1520 index = *ppos >> PAGE_CACHE_SHIFT; 1521 loff = *ppos & ~PAGE_CACHE_MASK; 1522 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1523 nr_pages = min(req_pages, pipe->buffers); 1524 1525 spd.nr_pages = find_get_pages_contig(mapping, index, 1526 nr_pages, spd.pages); 1527 index += spd.nr_pages; 1528 error = 0; 1529 1530 while (spd.nr_pages < nr_pages) { 1531 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); 1532 if (error) 1533 break; 1534 unlock_page(page); 1535 spd.pages[spd.nr_pages++] = page; 1536 index++; 1537 } 1538 1539 index = *ppos >> PAGE_CACHE_SHIFT; 1540 nr_pages = spd.nr_pages; 1541 spd.nr_pages = 0; 1542 1543 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 1544 unsigned int this_len; 1545 1546 if (!len) 1547 break; 1548 1549 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 1550 page = spd.pages[page_nr]; 1551 1552 if (!PageUptodate(page) || page->mapping != mapping) { 1553 error = shmem_getpage(inode, index, &page, 1554 SGP_CACHE, NULL); 1555 if (error) 1556 break; 1557 unlock_page(page); 1558 page_cache_release(spd.pages[page_nr]); 1559 spd.pages[page_nr] = page; 1560 } 1561 1562 isize = i_size_read(inode); 1563 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1564 if (unlikely(!isize || index > end_index)) 1565 break; 1566 1567 if (end_index == index) { 1568 unsigned int plen; 1569 1570 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1571 if (plen <= loff) 1572 break; 1573 1574 this_len = min(this_len, plen - loff); 1575 len = this_len; 1576 } 1577 1578 spd.partial[page_nr].offset = loff; 1579 spd.partial[page_nr].len = this_len; 1580 len -= this_len; 1581 loff = 0; 1582 spd.nr_pages++; 1583 index++; 1584 } 1585 1586 while (page_nr < nr_pages) 1587 page_cache_release(spd.pages[page_nr++]); 1588 1589 if (spd.nr_pages) 1590 error = splice_to_pipe(pipe, &spd); 1591 1592 splice_shrink_spd(pipe, &spd); 1593 1594 if (error > 0) { 1595 *ppos += error; 1596 file_accessed(in); 1597 } 1598 return error; 1599 } 1600 1601 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 1602 loff_t len) 1603 { 1604 struct inode *inode = file->f_path.dentry->d_inode; 1605 int error = -EOPNOTSUPP; 1606 1607 mutex_lock(&inode->i_mutex); 1608 1609 if (mode & FALLOC_FL_PUNCH_HOLE) { 1610 struct address_space *mapping = file->f_mapping; 1611 loff_t unmap_start = round_up(offset, PAGE_SIZE); 1612 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 1613 1614 if ((u64)unmap_end > (u64)unmap_start) 1615 unmap_mapping_range(mapping, unmap_start, 1616 1 + unmap_end - unmap_start, 0); 1617 shmem_truncate_range(inode, offset, offset + len - 1); 1618 /* No need to unmap again: hole-punching leaves COWed pages */ 1619 error = 0; 1620 } 1621 1622 mutex_unlock(&inode->i_mutex); 1623 return error; 1624 } 1625 1626 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 1627 { 1628 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 1629 1630 buf->f_type = TMPFS_MAGIC; 1631 buf->f_bsize = PAGE_CACHE_SIZE; 1632 buf->f_namelen = NAME_MAX; 1633 if (sbinfo->max_blocks) { 1634 buf->f_blocks = sbinfo->max_blocks; 1635 buf->f_bavail = 1636 buf->f_bfree = sbinfo->max_blocks - 1637 percpu_counter_sum(&sbinfo->used_blocks); 1638 } 1639 if (sbinfo->max_inodes) { 1640 buf->f_files = sbinfo->max_inodes; 1641 buf->f_ffree = sbinfo->free_inodes; 1642 } 1643 /* else leave those fields 0 like simple_statfs */ 1644 return 0; 1645 } 1646 1647 /* 1648 * File creation. Allocate an inode, and we're done.. 1649 */ 1650 static int 1651 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1652 { 1653 struct inode *inode; 1654 int error = -ENOSPC; 1655 1656 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 1657 if (inode) { 1658 error = security_inode_init_security(inode, dir, 1659 &dentry->d_name, 1660 shmem_initxattrs, NULL); 1661 if (error) { 1662 if (error != -EOPNOTSUPP) { 1663 iput(inode); 1664 return error; 1665 } 1666 } 1667 #ifdef CONFIG_TMPFS_POSIX_ACL 1668 error = generic_acl_init(inode, dir); 1669 if (error) { 1670 iput(inode); 1671 return error; 1672 } 1673 #else 1674 error = 0; 1675 #endif 1676 dir->i_size += BOGO_DIRENT_SIZE; 1677 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1678 d_instantiate(dentry, inode); 1679 dget(dentry); /* Extra count - pin the dentry in core */ 1680 } 1681 return error; 1682 } 1683 1684 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1685 { 1686 int error; 1687 1688 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 1689 return error; 1690 inc_nlink(dir); 1691 return 0; 1692 } 1693 1694 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 1695 struct nameidata *nd) 1696 { 1697 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 1698 } 1699 1700 /* 1701 * Link a file.. 1702 */ 1703 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1704 { 1705 struct inode *inode = old_dentry->d_inode; 1706 int ret; 1707 1708 /* 1709 * No ordinary (disk based) filesystem counts links as inodes; 1710 * but each new link needs a new dentry, pinning lowmem, and 1711 * tmpfs dentries cannot be pruned until they are unlinked. 1712 */ 1713 ret = shmem_reserve_inode(inode->i_sb); 1714 if (ret) 1715 goto out; 1716 1717 dir->i_size += BOGO_DIRENT_SIZE; 1718 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1719 inc_nlink(inode); 1720 ihold(inode); /* New dentry reference */ 1721 dget(dentry); /* Extra pinning count for the created dentry */ 1722 d_instantiate(dentry, inode); 1723 out: 1724 return ret; 1725 } 1726 1727 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 1728 { 1729 struct inode *inode = dentry->d_inode; 1730 1731 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 1732 shmem_free_inode(inode->i_sb); 1733 1734 dir->i_size -= BOGO_DIRENT_SIZE; 1735 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1736 drop_nlink(inode); 1737 dput(dentry); /* Undo the count from "create" - this does all the work */ 1738 return 0; 1739 } 1740 1741 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 1742 { 1743 if (!simple_empty(dentry)) 1744 return -ENOTEMPTY; 1745 1746 drop_nlink(dentry->d_inode); 1747 drop_nlink(dir); 1748 return shmem_unlink(dir, dentry); 1749 } 1750 1751 /* 1752 * The VFS layer already does all the dentry stuff for rename, 1753 * we just have to decrement the usage count for the target if 1754 * it exists so that the VFS layer correctly free's it when it 1755 * gets overwritten. 1756 */ 1757 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 1758 { 1759 struct inode *inode = old_dentry->d_inode; 1760 int they_are_dirs = S_ISDIR(inode->i_mode); 1761 1762 if (!simple_empty(new_dentry)) 1763 return -ENOTEMPTY; 1764 1765 if (new_dentry->d_inode) { 1766 (void) shmem_unlink(new_dir, new_dentry); 1767 if (they_are_dirs) 1768 drop_nlink(old_dir); 1769 } else if (they_are_dirs) { 1770 drop_nlink(old_dir); 1771 inc_nlink(new_dir); 1772 } 1773 1774 old_dir->i_size -= BOGO_DIRENT_SIZE; 1775 new_dir->i_size += BOGO_DIRENT_SIZE; 1776 old_dir->i_ctime = old_dir->i_mtime = 1777 new_dir->i_ctime = new_dir->i_mtime = 1778 inode->i_ctime = CURRENT_TIME; 1779 return 0; 1780 } 1781 1782 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1783 { 1784 int error; 1785 int len; 1786 struct inode *inode; 1787 struct page *page; 1788 char *kaddr; 1789 struct shmem_inode_info *info; 1790 1791 len = strlen(symname) + 1; 1792 if (len > PAGE_CACHE_SIZE) 1793 return -ENAMETOOLONG; 1794 1795 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 1796 if (!inode) 1797 return -ENOSPC; 1798 1799 error = security_inode_init_security(inode, dir, &dentry->d_name, 1800 shmem_initxattrs, NULL); 1801 if (error) { 1802 if (error != -EOPNOTSUPP) { 1803 iput(inode); 1804 return error; 1805 } 1806 error = 0; 1807 } 1808 1809 info = SHMEM_I(inode); 1810 inode->i_size = len-1; 1811 if (len <= SHORT_SYMLINK_LEN) { 1812 info->symlink = kmemdup(symname, len, GFP_KERNEL); 1813 if (!info->symlink) { 1814 iput(inode); 1815 return -ENOMEM; 1816 } 1817 inode->i_op = &shmem_short_symlink_operations; 1818 } else { 1819 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 1820 if (error) { 1821 iput(inode); 1822 return error; 1823 } 1824 inode->i_mapping->a_ops = &shmem_aops; 1825 inode->i_op = &shmem_symlink_inode_operations; 1826 kaddr = kmap_atomic(page); 1827 memcpy(kaddr, symname, len); 1828 kunmap_atomic(kaddr); 1829 SetPageUptodate(page); 1830 set_page_dirty(page); 1831 unlock_page(page); 1832 page_cache_release(page); 1833 } 1834 dir->i_size += BOGO_DIRENT_SIZE; 1835 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1836 d_instantiate(dentry, inode); 1837 dget(dentry); 1838 return 0; 1839 } 1840 1841 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd) 1842 { 1843 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink); 1844 return NULL; 1845 } 1846 1847 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 1848 { 1849 struct page *page = NULL; 1850 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); 1851 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page)); 1852 if (page) 1853 unlock_page(page); 1854 return page; 1855 } 1856 1857 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 1858 { 1859 if (!IS_ERR(nd_get_link(nd))) { 1860 struct page *page = cookie; 1861 kunmap(page); 1862 mark_page_accessed(page); 1863 page_cache_release(page); 1864 } 1865 } 1866 1867 #ifdef CONFIG_TMPFS_XATTR 1868 /* 1869 * Superblocks without xattr inode operations may get some security.* xattr 1870 * support from the LSM "for free". As soon as we have any other xattrs 1871 * like ACLs, we also need to implement the security.* handlers at 1872 * filesystem level, though. 1873 */ 1874 1875 /* 1876 * Allocate new xattr and copy in the value; but leave the name to callers. 1877 */ 1878 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size) 1879 { 1880 struct shmem_xattr *new_xattr; 1881 size_t len; 1882 1883 /* wrap around? */ 1884 len = sizeof(*new_xattr) + size; 1885 if (len <= sizeof(*new_xattr)) 1886 return NULL; 1887 1888 new_xattr = kmalloc(len, GFP_KERNEL); 1889 if (!new_xattr) 1890 return NULL; 1891 1892 new_xattr->size = size; 1893 memcpy(new_xattr->value, value, size); 1894 return new_xattr; 1895 } 1896 1897 /* 1898 * Callback for security_inode_init_security() for acquiring xattrs. 1899 */ 1900 static int shmem_initxattrs(struct inode *inode, 1901 const struct xattr *xattr_array, 1902 void *fs_info) 1903 { 1904 struct shmem_inode_info *info = SHMEM_I(inode); 1905 const struct xattr *xattr; 1906 struct shmem_xattr *new_xattr; 1907 size_t len; 1908 1909 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 1910 new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len); 1911 if (!new_xattr) 1912 return -ENOMEM; 1913 1914 len = strlen(xattr->name) + 1; 1915 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 1916 GFP_KERNEL); 1917 if (!new_xattr->name) { 1918 kfree(new_xattr); 1919 return -ENOMEM; 1920 } 1921 1922 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 1923 XATTR_SECURITY_PREFIX_LEN); 1924 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 1925 xattr->name, len); 1926 1927 spin_lock(&info->lock); 1928 list_add(&new_xattr->list, &info->xattr_list); 1929 spin_unlock(&info->lock); 1930 } 1931 1932 return 0; 1933 } 1934 1935 static int shmem_xattr_get(struct dentry *dentry, const char *name, 1936 void *buffer, size_t size) 1937 { 1938 struct shmem_inode_info *info; 1939 struct shmem_xattr *xattr; 1940 int ret = -ENODATA; 1941 1942 info = SHMEM_I(dentry->d_inode); 1943 1944 spin_lock(&info->lock); 1945 list_for_each_entry(xattr, &info->xattr_list, list) { 1946 if (strcmp(name, xattr->name)) 1947 continue; 1948 1949 ret = xattr->size; 1950 if (buffer) { 1951 if (size < xattr->size) 1952 ret = -ERANGE; 1953 else 1954 memcpy(buffer, xattr->value, xattr->size); 1955 } 1956 break; 1957 } 1958 spin_unlock(&info->lock); 1959 return ret; 1960 } 1961 1962 static int shmem_xattr_set(struct inode *inode, const char *name, 1963 const void *value, size_t size, int flags) 1964 { 1965 struct shmem_inode_info *info = SHMEM_I(inode); 1966 struct shmem_xattr *xattr; 1967 struct shmem_xattr *new_xattr = NULL; 1968 int err = 0; 1969 1970 /* value == NULL means remove */ 1971 if (value) { 1972 new_xattr = shmem_xattr_alloc(value, size); 1973 if (!new_xattr) 1974 return -ENOMEM; 1975 1976 new_xattr->name = kstrdup(name, GFP_KERNEL); 1977 if (!new_xattr->name) { 1978 kfree(new_xattr); 1979 return -ENOMEM; 1980 } 1981 } 1982 1983 spin_lock(&info->lock); 1984 list_for_each_entry(xattr, &info->xattr_list, list) { 1985 if (!strcmp(name, xattr->name)) { 1986 if (flags & XATTR_CREATE) { 1987 xattr = new_xattr; 1988 err = -EEXIST; 1989 } else if (new_xattr) { 1990 list_replace(&xattr->list, &new_xattr->list); 1991 } else { 1992 list_del(&xattr->list); 1993 } 1994 goto out; 1995 } 1996 } 1997 if (flags & XATTR_REPLACE) { 1998 xattr = new_xattr; 1999 err = -ENODATA; 2000 } else { 2001 list_add(&new_xattr->list, &info->xattr_list); 2002 xattr = NULL; 2003 } 2004 out: 2005 spin_unlock(&info->lock); 2006 if (xattr) 2007 kfree(xattr->name); 2008 kfree(xattr); 2009 return err; 2010 } 2011 2012 static const struct xattr_handler *shmem_xattr_handlers[] = { 2013 #ifdef CONFIG_TMPFS_POSIX_ACL 2014 &generic_acl_access_handler, 2015 &generic_acl_default_handler, 2016 #endif 2017 NULL 2018 }; 2019 2020 static int shmem_xattr_validate(const char *name) 2021 { 2022 struct { const char *prefix; size_t len; } arr[] = { 2023 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN }, 2024 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN } 2025 }; 2026 int i; 2027 2028 for (i = 0; i < ARRAY_SIZE(arr); i++) { 2029 size_t preflen = arr[i].len; 2030 if (strncmp(name, arr[i].prefix, preflen) == 0) { 2031 if (!name[preflen]) 2032 return -EINVAL; 2033 return 0; 2034 } 2035 } 2036 return -EOPNOTSUPP; 2037 } 2038 2039 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name, 2040 void *buffer, size_t size) 2041 { 2042 int err; 2043 2044 /* 2045 * If this is a request for a synthetic attribute in the system.* 2046 * namespace use the generic infrastructure to resolve a handler 2047 * for it via sb->s_xattr. 2048 */ 2049 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2050 return generic_getxattr(dentry, name, buffer, size); 2051 2052 err = shmem_xattr_validate(name); 2053 if (err) 2054 return err; 2055 2056 return shmem_xattr_get(dentry, name, buffer, size); 2057 } 2058 2059 static int shmem_setxattr(struct dentry *dentry, const char *name, 2060 const void *value, size_t size, int flags) 2061 { 2062 int err; 2063 2064 /* 2065 * If this is a request for a synthetic attribute in the system.* 2066 * namespace use the generic infrastructure to resolve a handler 2067 * for it via sb->s_xattr. 2068 */ 2069 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2070 return generic_setxattr(dentry, name, value, size, flags); 2071 2072 err = shmem_xattr_validate(name); 2073 if (err) 2074 return err; 2075 2076 if (size == 0) 2077 value = ""; /* empty EA, do not remove */ 2078 2079 return shmem_xattr_set(dentry->d_inode, name, value, size, flags); 2080 2081 } 2082 2083 static int shmem_removexattr(struct dentry *dentry, const char *name) 2084 { 2085 int err; 2086 2087 /* 2088 * If this is a request for a synthetic attribute in the system.* 2089 * namespace use the generic infrastructure to resolve a handler 2090 * for it via sb->s_xattr. 2091 */ 2092 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2093 return generic_removexattr(dentry, name); 2094 2095 err = shmem_xattr_validate(name); 2096 if (err) 2097 return err; 2098 2099 return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE); 2100 } 2101 2102 static bool xattr_is_trusted(const char *name) 2103 { 2104 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN); 2105 } 2106 2107 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 2108 { 2109 bool trusted = capable(CAP_SYS_ADMIN); 2110 struct shmem_xattr *xattr; 2111 struct shmem_inode_info *info; 2112 size_t used = 0; 2113 2114 info = SHMEM_I(dentry->d_inode); 2115 2116 spin_lock(&info->lock); 2117 list_for_each_entry(xattr, &info->xattr_list, list) { 2118 size_t len; 2119 2120 /* skip "trusted." attributes for unprivileged callers */ 2121 if (!trusted && xattr_is_trusted(xattr->name)) 2122 continue; 2123 2124 len = strlen(xattr->name) + 1; 2125 used += len; 2126 if (buffer) { 2127 if (size < used) { 2128 used = -ERANGE; 2129 break; 2130 } 2131 memcpy(buffer, xattr->name, len); 2132 buffer += len; 2133 } 2134 } 2135 spin_unlock(&info->lock); 2136 2137 return used; 2138 } 2139 #endif /* CONFIG_TMPFS_XATTR */ 2140 2141 static const struct inode_operations shmem_short_symlink_operations = { 2142 .readlink = generic_readlink, 2143 .follow_link = shmem_follow_short_symlink, 2144 #ifdef CONFIG_TMPFS_XATTR 2145 .setxattr = shmem_setxattr, 2146 .getxattr = shmem_getxattr, 2147 .listxattr = shmem_listxattr, 2148 .removexattr = shmem_removexattr, 2149 #endif 2150 }; 2151 2152 static const struct inode_operations shmem_symlink_inode_operations = { 2153 .readlink = generic_readlink, 2154 .follow_link = shmem_follow_link, 2155 .put_link = shmem_put_link, 2156 #ifdef CONFIG_TMPFS_XATTR 2157 .setxattr = shmem_setxattr, 2158 .getxattr = shmem_getxattr, 2159 .listxattr = shmem_listxattr, 2160 .removexattr = shmem_removexattr, 2161 #endif 2162 }; 2163 2164 static struct dentry *shmem_get_parent(struct dentry *child) 2165 { 2166 return ERR_PTR(-ESTALE); 2167 } 2168 2169 static int shmem_match(struct inode *ino, void *vfh) 2170 { 2171 __u32 *fh = vfh; 2172 __u64 inum = fh[2]; 2173 inum = (inum << 32) | fh[1]; 2174 return ino->i_ino == inum && fh[0] == ino->i_generation; 2175 } 2176 2177 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2178 struct fid *fid, int fh_len, int fh_type) 2179 { 2180 struct inode *inode; 2181 struct dentry *dentry = NULL; 2182 u64 inum = fid->raw[2]; 2183 inum = (inum << 32) | fid->raw[1]; 2184 2185 if (fh_len < 3) 2186 return NULL; 2187 2188 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2189 shmem_match, fid->raw); 2190 if (inode) { 2191 dentry = d_find_alias(inode); 2192 iput(inode); 2193 } 2194 2195 return dentry; 2196 } 2197 2198 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len, 2199 int connectable) 2200 { 2201 struct inode *inode = dentry->d_inode; 2202 2203 if (*len < 3) { 2204 *len = 3; 2205 return 255; 2206 } 2207 2208 if (inode_unhashed(inode)) { 2209 /* Unfortunately insert_inode_hash is not idempotent, 2210 * so as we hash inodes here rather than at creation 2211 * time, we need a lock to ensure we only try 2212 * to do it once 2213 */ 2214 static DEFINE_SPINLOCK(lock); 2215 spin_lock(&lock); 2216 if (inode_unhashed(inode)) 2217 __insert_inode_hash(inode, 2218 inode->i_ino + inode->i_generation); 2219 spin_unlock(&lock); 2220 } 2221 2222 fh[0] = inode->i_generation; 2223 fh[1] = inode->i_ino; 2224 fh[2] = ((__u64)inode->i_ino) >> 32; 2225 2226 *len = 3; 2227 return 1; 2228 } 2229 2230 static const struct export_operations shmem_export_ops = { 2231 .get_parent = shmem_get_parent, 2232 .encode_fh = shmem_encode_fh, 2233 .fh_to_dentry = shmem_fh_to_dentry, 2234 }; 2235 2236 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2237 bool remount) 2238 { 2239 char *this_char, *value, *rest; 2240 uid_t uid; 2241 gid_t gid; 2242 2243 while (options != NULL) { 2244 this_char = options; 2245 for (;;) { 2246 /* 2247 * NUL-terminate this option: unfortunately, 2248 * mount options form a comma-separated list, 2249 * but mpol's nodelist may also contain commas. 2250 */ 2251 options = strchr(options, ','); 2252 if (options == NULL) 2253 break; 2254 options++; 2255 if (!isdigit(*options)) { 2256 options[-1] = '\0'; 2257 break; 2258 } 2259 } 2260 if (!*this_char) 2261 continue; 2262 if ((value = strchr(this_char,'=')) != NULL) { 2263 *value++ = 0; 2264 } else { 2265 printk(KERN_ERR 2266 "tmpfs: No value for mount option '%s'\n", 2267 this_char); 2268 return 1; 2269 } 2270 2271 if (!strcmp(this_char,"size")) { 2272 unsigned long long size; 2273 size = memparse(value,&rest); 2274 if (*rest == '%') { 2275 size <<= PAGE_SHIFT; 2276 size *= totalram_pages; 2277 do_div(size, 100); 2278 rest++; 2279 } 2280 if (*rest) 2281 goto bad_val; 2282 sbinfo->max_blocks = 2283 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2284 } else if (!strcmp(this_char,"nr_blocks")) { 2285 sbinfo->max_blocks = memparse(value, &rest); 2286 if (*rest) 2287 goto bad_val; 2288 } else if (!strcmp(this_char,"nr_inodes")) { 2289 sbinfo->max_inodes = memparse(value, &rest); 2290 if (*rest) 2291 goto bad_val; 2292 } else if (!strcmp(this_char,"mode")) { 2293 if (remount) 2294 continue; 2295 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2296 if (*rest) 2297 goto bad_val; 2298 } else if (!strcmp(this_char,"uid")) { 2299 if (remount) 2300 continue; 2301 uid = simple_strtoul(value, &rest, 0); 2302 if (*rest) 2303 goto bad_val; 2304 sbinfo->uid = make_kuid(current_user_ns(), uid); 2305 if (!uid_valid(sbinfo->uid)) 2306 goto bad_val; 2307 } else if (!strcmp(this_char,"gid")) { 2308 if (remount) 2309 continue; 2310 gid = simple_strtoul(value, &rest, 0); 2311 if (*rest) 2312 goto bad_val; 2313 sbinfo->gid = make_kgid(current_user_ns(), gid); 2314 if (!gid_valid(sbinfo->gid)) 2315 goto bad_val; 2316 } else if (!strcmp(this_char,"mpol")) { 2317 if (mpol_parse_str(value, &sbinfo->mpol, 1)) 2318 goto bad_val; 2319 } else { 2320 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2321 this_char); 2322 return 1; 2323 } 2324 } 2325 return 0; 2326 2327 bad_val: 2328 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2329 value, this_char); 2330 return 1; 2331 2332 } 2333 2334 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2335 { 2336 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2337 struct shmem_sb_info config = *sbinfo; 2338 unsigned long inodes; 2339 int error = -EINVAL; 2340 2341 if (shmem_parse_options(data, &config, true)) 2342 return error; 2343 2344 spin_lock(&sbinfo->stat_lock); 2345 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2346 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2347 goto out; 2348 if (config.max_inodes < inodes) 2349 goto out; 2350 /* 2351 * Those tests disallow limited->unlimited while any are in use; 2352 * but we must separately disallow unlimited->limited, because 2353 * in that case we have no record of how much is already in use. 2354 */ 2355 if (config.max_blocks && !sbinfo->max_blocks) 2356 goto out; 2357 if (config.max_inodes && !sbinfo->max_inodes) 2358 goto out; 2359 2360 error = 0; 2361 sbinfo->max_blocks = config.max_blocks; 2362 sbinfo->max_inodes = config.max_inodes; 2363 sbinfo->free_inodes = config.max_inodes - inodes; 2364 2365 mpol_put(sbinfo->mpol); 2366 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2367 out: 2368 spin_unlock(&sbinfo->stat_lock); 2369 return error; 2370 } 2371 2372 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 2373 { 2374 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 2375 2376 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2377 seq_printf(seq, ",size=%luk", 2378 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2379 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2380 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2381 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2382 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 2383 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 2384 seq_printf(seq, ",uid=%u", 2385 from_kuid_munged(&init_user_ns, sbinfo->uid)); 2386 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 2387 seq_printf(seq, ",gid=%u", 2388 from_kgid_munged(&init_user_ns, sbinfo->gid)); 2389 shmem_show_mpol(seq, sbinfo->mpol); 2390 return 0; 2391 } 2392 #endif /* CONFIG_TMPFS */ 2393 2394 static void shmem_put_super(struct super_block *sb) 2395 { 2396 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2397 2398 percpu_counter_destroy(&sbinfo->used_blocks); 2399 kfree(sbinfo); 2400 sb->s_fs_info = NULL; 2401 } 2402 2403 int shmem_fill_super(struct super_block *sb, void *data, int silent) 2404 { 2405 struct inode *inode; 2406 struct shmem_sb_info *sbinfo; 2407 int err = -ENOMEM; 2408 2409 /* Round up to L1_CACHE_BYTES to resist false sharing */ 2410 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 2411 L1_CACHE_BYTES), GFP_KERNEL); 2412 if (!sbinfo) 2413 return -ENOMEM; 2414 2415 sbinfo->mode = S_IRWXUGO | S_ISVTX; 2416 sbinfo->uid = current_fsuid(); 2417 sbinfo->gid = current_fsgid(); 2418 sb->s_fs_info = sbinfo; 2419 2420 #ifdef CONFIG_TMPFS 2421 /* 2422 * Per default we only allow half of the physical ram per 2423 * tmpfs instance, limiting inodes to one per page of lowmem; 2424 * but the internal instance is left unlimited. 2425 */ 2426 if (!(sb->s_flags & MS_NOUSER)) { 2427 sbinfo->max_blocks = shmem_default_max_blocks(); 2428 sbinfo->max_inodes = shmem_default_max_inodes(); 2429 if (shmem_parse_options(data, sbinfo, false)) { 2430 err = -EINVAL; 2431 goto failed; 2432 } 2433 } 2434 sb->s_export_op = &shmem_export_ops; 2435 sb->s_flags |= MS_NOSEC; 2436 #else 2437 sb->s_flags |= MS_NOUSER; 2438 #endif 2439 2440 spin_lock_init(&sbinfo->stat_lock); 2441 if (percpu_counter_init(&sbinfo->used_blocks, 0)) 2442 goto failed; 2443 sbinfo->free_inodes = sbinfo->max_inodes; 2444 2445 sb->s_maxbytes = MAX_LFS_FILESIZE; 2446 sb->s_blocksize = PAGE_CACHE_SIZE; 2447 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 2448 sb->s_magic = TMPFS_MAGIC; 2449 sb->s_op = &shmem_ops; 2450 sb->s_time_gran = 1; 2451 #ifdef CONFIG_TMPFS_XATTR 2452 sb->s_xattr = shmem_xattr_handlers; 2453 #endif 2454 #ifdef CONFIG_TMPFS_POSIX_ACL 2455 sb->s_flags |= MS_POSIXACL; 2456 #endif 2457 2458 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 2459 if (!inode) 2460 goto failed; 2461 inode->i_uid = sbinfo->uid; 2462 inode->i_gid = sbinfo->gid; 2463 sb->s_root = d_make_root(inode); 2464 if (!sb->s_root) 2465 goto failed; 2466 return 0; 2467 2468 failed: 2469 shmem_put_super(sb); 2470 return err; 2471 } 2472 2473 static struct kmem_cache *shmem_inode_cachep; 2474 2475 static struct inode *shmem_alloc_inode(struct super_block *sb) 2476 { 2477 struct shmem_inode_info *info; 2478 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 2479 if (!info) 2480 return NULL; 2481 return &info->vfs_inode; 2482 } 2483 2484 static void shmem_destroy_callback(struct rcu_head *head) 2485 { 2486 struct inode *inode = container_of(head, struct inode, i_rcu); 2487 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 2488 } 2489 2490 static void shmem_destroy_inode(struct inode *inode) 2491 { 2492 if (S_ISREG(inode->i_mode)) 2493 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 2494 call_rcu(&inode->i_rcu, shmem_destroy_callback); 2495 } 2496 2497 static void shmem_init_inode(void *foo) 2498 { 2499 struct shmem_inode_info *info = foo; 2500 inode_init_once(&info->vfs_inode); 2501 } 2502 2503 static int shmem_init_inodecache(void) 2504 { 2505 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 2506 sizeof(struct shmem_inode_info), 2507 0, SLAB_PANIC, shmem_init_inode); 2508 return 0; 2509 } 2510 2511 static void shmem_destroy_inodecache(void) 2512 { 2513 kmem_cache_destroy(shmem_inode_cachep); 2514 } 2515 2516 static const struct address_space_operations shmem_aops = { 2517 .writepage = shmem_writepage, 2518 .set_page_dirty = __set_page_dirty_no_writeback, 2519 #ifdef CONFIG_TMPFS 2520 .write_begin = shmem_write_begin, 2521 .write_end = shmem_write_end, 2522 #endif 2523 .migratepage = migrate_page, 2524 .error_remove_page = generic_error_remove_page, 2525 }; 2526 2527 static const struct file_operations shmem_file_operations = { 2528 .mmap = shmem_mmap, 2529 #ifdef CONFIG_TMPFS 2530 .llseek = generic_file_llseek, 2531 .read = do_sync_read, 2532 .write = do_sync_write, 2533 .aio_read = shmem_file_aio_read, 2534 .aio_write = generic_file_aio_write, 2535 .fsync = noop_fsync, 2536 .splice_read = shmem_file_splice_read, 2537 .splice_write = generic_file_splice_write, 2538 .fallocate = shmem_fallocate, 2539 #endif 2540 }; 2541 2542 static const struct inode_operations shmem_inode_operations = { 2543 .setattr = shmem_setattr, 2544 #ifdef CONFIG_TMPFS_XATTR 2545 .setxattr = shmem_setxattr, 2546 .getxattr = shmem_getxattr, 2547 .listxattr = shmem_listxattr, 2548 .removexattr = shmem_removexattr, 2549 #endif 2550 }; 2551 2552 static const struct inode_operations shmem_dir_inode_operations = { 2553 #ifdef CONFIG_TMPFS 2554 .create = shmem_create, 2555 .lookup = simple_lookup, 2556 .link = shmem_link, 2557 .unlink = shmem_unlink, 2558 .symlink = shmem_symlink, 2559 .mkdir = shmem_mkdir, 2560 .rmdir = shmem_rmdir, 2561 .mknod = shmem_mknod, 2562 .rename = shmem_rename, 2563 #endif 2564 #ifdef CONFIG_TMPFS_XATTR 2565 .setxattr = shmem_setxattr, 2566 .getxattr = shmem_getxattr, 2567 .listxattr = shmem_listxattr, 2568 .removexattr = shmem_removexattr, 2569 #endif 2570 #ifdef CONFIG_TMPFS_POSIX_ACL 2571 .setattr = shmem_setattr, 2572 #endif 2573 }; 2574 2575 static const struct inode_operations shmem_special_inode_operations = { 2576 #ifdef CONFIG_TMPFS_XATTR 2577 .setxattr = shmem_setxattr, 2578 .getxattr = shmem_getxattr, 2579 .listxattr = shmem_listxattr, 2580 .removexattr = shmem_removexattr, 2581 #endif 2582 #ifdef CONFIG_TMPFS_POSIX_ACL 2583 .setattr = shmem_setattr, 2584 #endif 2585 }; 2586 2587 static const struct super_operations shmem_ops = { 2588 .alloc_inode = shmem_alloc_inode, 2589 .destroy_inode = shmem_destroy_inode, 2590 #ifdef CONFIG_TMPFS 2591 .statfs = shmem_statfs, 2592 .remount_fs = shmem_remount_fs, 2593 .show_options = shmem_show_options, 2594 #endif 2595 .evict_inode = shmem_evict_inode, 2596 .drop_inode = generic_delete_inode, 2597 .put_super = shmem_put_super, 2598 }; 2599 2600 static const struct vm_operations_struct shmem_vm_ops = { 2601 .fault = shmem_fault, 2602 #ifdef CONFIG_NUMA 2603 .set_policy = shmem_set_policy, 2604 .get_policy = shmem_get_policy, 2605 #endif 2606 }; 2607 2608 static struct dentry *shmem_mount(struct file_system_type *fs_type, 2609 int flags, const char *dev_name, void *data) 2610 { 2611 return mount_nodev(fs_type, flags, data, shmem_fill_super); 2612 } 2613 2614 static struct file_system_type shmem_fs_type = { 2615 .owner = THIS_MODULE, 2616 .name = "tmpfs", 2617 .mount = shmem_mount, 2618 .kill_sb = kill_litter_super, 2619 }; 2620 2621 int __init shmem_init(void) 2622 { 2623 int error; 2624 2625 error = bdi_init(&shmem_backing_dev_info); 2626 if (error) 2627 goto out4; 2628 2629 error = shmem_init_inodecache(); 2630 if (error) 2631 goto out3; 2632 2633 error = register_filesystem(&shmem_fs_type); 2634 if (error) { 2635 printk(KERN_ERR "Could not register tmpfs\n"); 2636 goto out2; 2637 } 2638 2639 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER, 2640 shmem_fs_type.name, NULL); 2641 if (IS_ERR(shm_mnt)) { 2642 error = PTR_ERR(shm_mnt); 2643 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 2644 goto out1; 2645 } 2646 return 0; 2647 2648 out1: 2649 unregister_filesystem(&shmem_fs_type); 2650 out2: 2651 shmem_destroy_inodecache(); 2652 out3: 2653 bdi_destroy(&shmem_backing_dev_info); 2654 out4: 2655 shm_mnt = ERR_PTR(error); 2656 return error; 2657 } 2658 2659 #else /* !CONFIG_SHMEM */ 2660 2661 /* 2662 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 2663 * 2664 * This is intended for small system where the benefits of the full 2665 * shmem code (swap-backed and resource-limited) are outweighed by 2666 * their complexity. On systems without swap this code should be 2667 * effectively equivalent, but much lighter weight. 2668 */ 2669 2670 #include <linux/ramfs.h> 2671 2672 static struct file_system_type shmem_fs_type = { 2673 .name = "tmpfs", 2674 .mount = ramfs_mount, 2675 .kill_sb = kill_litter_super, 2676 }; 2677 2678 int __init shmem_init(void) 2679 { 2680 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 2681 2682 shm_mnt = kern_mount(&shmem_fs_type); 2683 BUG_ON(IS_ERR(shm_mnt)); 2684 2685 return 0; 2686 } 2687 2688 int shmem_unuse(swp_entry_t swap, struct page *page) 2689 { 2690 return 0; 2691 } 2692 2693 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2694 { 2695 return 0; 2696 } 2697 2698 void shmem_unlock_mapping(struct address_space *mapping) 2699 { 2700 } 2701 2702 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 2703 { 2704 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 2705 } 2706 EXPORT_SYMBOL_GPL(shmem_truncate_range); 2707 2708 #define shmem_vm_ops generic_file_vm_ops 2709 #define shmem_file_operations ramfs_file_operations 2710 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 2711 #define shmem_acct_size(flags, size) 0 2712 #define shmem_unacct_size(flags, size) do {} while (0) 2713 2714 #endif /* CONFIG_SHMEM */ 2715 2716 /* common code */ 2717 2718 /** 2719 * shmem_file_setup - get an unlinked file living in tmpfs 2720 * @name: name for dentry (to be seen in /proc/<pid>/maps 2721 * @size: size to be set for the file 2722 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 2723 */ 2724 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 2725 { 2726 int error; 2727 struct file *file; 2728 struct inode *inode; 2729 struct path path; 2730 struct dentry *root; 2731 struct qstr this; 2732 2733 if (IS_ERR(shm_mnt)) 2734 return (void *)shm_mnt; 2735 2736 if (size < 0 || size > MAX_LFS_FILESIZE) 2737 return ERR_PTR(-EINVAL); 2738 2739 if (shmem_acct_size(flags, size)) 2740 return ERR_PTR(-ENOMEM); 2741 2742 error = -ENOMEM; 2743 this.name = name; 2744 this.len = strlen(name); 2745 this.hash = 0; /* will go */ 2746 root = shm_mnt->mnt_root; 2747 path.dentry = d_alloc(root, &this); 2748 if (!path.dentry) 2749 goto put_memory; 2750 path.mnt = mntget(shm_mnt); 2751 2752 error = -ENOSPC; 2753 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 2754 if (!inode) 2755 goto put_dentry; 2756 2757 d_instantiate(path.dentry, inode); 2758 inode->i_size = size; 2759 clear_nlink(inode); /* It is unlinked */ 2760 #ifndef CONFIG_MMU 2761 error = ramfs_nommu_expand_for_mapping(inode, size); 2762 if (error) 2763 goto put_dentry; 2764 #endif 2765 2766 error = -ENFILE; 2767 file = alloc_file(&path, FMODE_WRITE | FMODE_READ, 2768 &shmem_file_operations); 2769 if (!file) 2770 goto put_dentry; 2771 2772 return file; 2773 2774 put_dentry: 2775 path_put(&path); 2776 put_memory: 2777 shmem_unacct_size(flags, size); 2778 return ERR_PTR(error); 2779 } 2780 EXPORT_SYMBOL_GPL(shmem_file_setup); 2781 2782 /** 2783 * shmem_zero_setup - setup a shared anonymous mapping 2784 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 2785 */ 2786 int shmem_zero_setup(struct vm_area_struct *vma) 2787 { 2788 struct file *file; 2789 loff_t size = vma->vm_end - vma->vm_start; 2790 2791 file = shmem_file_setup("dev/zero", size, vma->vm_flags); 2792 if (IS_ERR(file)) 2793 return PTR_ERR(file); 2794 2795 if (vma->vm_file) 2796 fput(vma->vm_file); 2797 vma->vm_file = file; 2798 vma->vm_ops = &shmem_vm_ops; 2799 vma->vm_flags |= VM_CAN_NONLINEAR; 2800 return 0; 2801 } 2802 2803 /** 2804 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 2805 * @mapping: the page's address_space 2806 * @index: the page index 2807 * @gfp: the page allocator flags to use if allocating 2808 * 2809 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 2810 * with any new page allocations done using the specified allocation flags. 2811 * But read_cache_page_gfp() uses the ->readpage() method: which does not 2812 * suit tmpfs, since it may have pages in swapcache, and needs to find those 2813 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 2814 * 2815 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 2816 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 2817 */ 2818 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 2819 pgoff_t index, gfp_t gfp) 2820 { 2821 #ifdef CONFIG_SHMEM 2822 struct inode *inode = mapping->host; 2823 struct page *page; 2824 int error; 2825 2826 BUG_ON(mapping->a_ops != &shmem_aops); 2827 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); 2828 if (error) 2829 page = ERR_PTR(error); 2830 else 2831 unlock_page(page); 2832 return page; 2833 #else 2834 /* 2835 * The tiny !SHMEM case uses ramfs without swap 2836 */ 2837 return read_cache_page_gfp(mapping, index, gfp); 2838 #endif 2839 } 2840 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 2841