xref: /openbmc/linux/mm/shmem.c (revision 17cf28afea2a1112f240a3a2da8af883be024811)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33 
34 static struct vfsmount *shm_mnt;
35 
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42 
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
67 
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
70 
71 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73 
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
76 
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
79 
80 struct shmem_xattr {
81 	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
82 	char *name;		/* xattr name */
83 	size_t size;
84 	char value[0];
85 };
86 
87 /* Flag allocation requirements to shmem_getpage */
88 enum sgp_type {
89 	SGP_READ,	/* don't exceed i_size, don't allocate page */
90 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
91 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
92 	SGP_WRITE,	/* may exceed i_size, may allocate page */
93 };
94 
95 #ifdef CONFIG_TMPFS
96 static unsigned long shmem_default_max_blocks(void)
97 {
98 	return totalram_pages / 2;
99 }
100 
101 static unsigned long shmem_default_max_inodes(void)
102 {
103 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
104 }
105 #endif
106 
107 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
108 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
109 				struct shmem_inode_info *info, pgoff_t index);
110 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
111 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
112 
113 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
114 	struct page **pagep, enum sgp_type sgp, int *fault_type)
115 {
116 	return shmem_getpage_gfp(inode, index, pagep, sgp,
117 			mapping_gfp_mask(inode->i_mapping), fault_type);
118 }
119 
120 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
121 {
122 	return sb->s_fs_info;
123 }
124 
125 /*
126  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
127  * for shared memory and for shared anonymous (/dev/zero) mappings
128  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
129  * consistent with the pre-accounting of private mappings ...
130  */
131 static inline int shmem_acct_size(unsigned long flags, loff_t size)
132 {
133 	return (flags & VM_NORESERVE) ?
134 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
135 }
136 
137 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
138 {
139 	if (!(flags & VM_NORESERVE))
140 		vm_unacct_memory(VM_ACCT(size));
141 }
142 
143 /*
144  * ... whereas tmpfs objects are accounted incrementally as
145  * pages are allocated, in order to allow huge sparse files.
146  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
147  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
148  */
149 static inline int shmem_acct_block(unsigned long flags)
150 {
151 	return (flags & VM_NORESERVE) ?
152 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
153 }
154 
155 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
156 {
157 	if (flags & VM_NORESERVE)
158 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
159 }
160 
161 static const struct super_operations shmem_ops;
162 static const struct address_space_operations shmem_aops;
163 static const struct file_operations shmem_file_operations;
164 static const struct inode_operations shmem_inode_operations;
165 static const struct inode_operations shmem_dir_inode_operations;
166 static const struct inode_operations shmem_special_inode_operations;
167 static const struct vm_operations_struct shmem_vm_ops;
168 
169 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
170 	.ra_pages	= 0,	/* No readahead */
171 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
172 };
173 
174 static LIST_HEAD(shmem_swaplist);
175 static DEFINE_MUTEX(shmem_swaplist_mutex);
176 
177 static int shmem_reserve_inode(struct super_block *sb)
178 {
179 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
180 	if (sbinfo->max_inodes) {
181 		spin_lock(&sbinfo->stat_lock);
182 		if (!sbinfo->free_inodes) {
183 			spin_unlock(&sbinfo->stat_lock);
184 			return -ENOSPC;
185 		}
186 		sbinfo->free_inodes--;
187 		spin_unlock(&sbinfo->stat_lock);
188 	}
189 	return 0;
190 }
191 
192 static void shmem_free_inode(struct super_block *sb)
193 {
194 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
195 	if (sbinfo->max_inodes) {
196 		spin_lock(&sbinfo->stat_lock);
197 		sbinfo->free_inodes++;
198 		spin_unlock(&sbinfo->stat_lock);
199 	}
200 }
201 
202 /**
203  * shmem_recalc_inode - recalculate the block usage of an inode
204  * @inode: inode to recalc
205  *
206  * We have to calculate the free blocks since the mm can drop
207  * undirtied hole pages behind our back.
208  *
209  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
210  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
211  *
212  * It has to be called with the spinlock held.
213  */
214 static void shmem_recalc_inode(struct inode *inode)
215 {
216 	struct shmem_inode_info *info = SHMEM_I(inode);
217 	long freed;
218 
219 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
220 	if (freed > 0) {
221 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
222 		if (sbinfo->max_blocks)
223 			percpu_counter_add(&sbinfo->used_blocks, -freed);
224 		info->alloced -= freed;
225 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
226 		shmem_unacct_blocks(info->flags, freed);
227 	}
228 }
229 
230 /*
231  * Replace item expected in radix tree by a new item, while holding tree lock.
232  */
233 static int shmem_radix_tree_replace(struct address_space *mapping,
234 			pgoff_t index, void *expected, void *replacement)
235 {
236 	void **pslot;
237 	void *item = NULL;
238 
239 	VM_BUG_ON(!expected);
240 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
241 	if (pslot)
242 		item = radix_tree_deref_slot_protected(pslot,
243 							&mapping->tree_lock);
244 	if (item != expected)
245 		return -ENOENT;
246 	if (replacement)
247 		radix_tree_replace_slot(pslot, replacement);
248 	else
249 		radix_tree_delete(&mapping->page_tree, index);
250 	return 0;
251 }
252 
253 /*
254  * Like add_to_page_cache_locked, but error if expected item has gone.
255  */
256 static int shmem_add_to_page_cache(struct page *page,
257 				   struct address_space *mapping,
258 				   pgoff_t index, gfp_t gfp, void *expected)
259 {
260 	int error = 0;
261 
262 	VM_BUG_ON(!PageLocked(page));
263 	VM_BUG_ON(!PageSwapBacked(page));
264 
265 	if (!expected)
266 		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
267 	if (!error) {
268 		page_cache_get(page);
269 		page->mapping = mapping;
270 		page->index = index;
271 
272 		spin_lock_irq(&mapping->tree_lock);
273 		if (!expected)
274 			error = radix_tree_insert(&mapping->page_tree,
275 							index, page);
276 		else
277 			error = shmem_radix_tree_replace(mapping, index,
278 							expected, page);
279 		if (!error) {
280 			mapping->nrpages++;
281 			__inc_zone_page_state(page, NR_FILE_PAGES);
282 			__inc_zone_page_state(page, NR_SHMEM);
283 			spin_unlock_irq(&mapping->tree_lock);
284 		} else {
285 			page->mapping = NULL;
286 			spin_unlock_irq(&mapping->tree_lock);
287 			page_cache_release(page);
288 		}
289 		if (!expected)
290 			radix_tree_preload_end();
291 	}
292 	if (error)
293 		mem_cgroup_uncharge_cache_page(page);
294 	return error;
295 }
296 
297 /*
298  * Like delete_from_page_cache, but substitutes swap for page.
299  */
300 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
301 {
302 	struct address_space *mapping = page->mapping;
303 	int error;
304 
305 	spin_lock_irq(&mapping->tree_lock);
306 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
307 	page->mapping = NULL;
308 	mapping->nrpages--;
309 	__dec_zone_page_state(page, NR_FILE_PAGES);
310 	__dec_zone_page_state(page, NR_SHMEM);
311 	spin_unlock_irq(&mapping->tree_lock);
312 	page_cache_release(page);
313 	BUG_ON(error);
314 }
315 
316 /*
317  * Like find_get_pages, but collecting swap entries as well as pages.
318  */
319 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
320 					pgoff_t start, unsigned int nr_pages,
321 					struct page **pages, pgoff_t *indices)
322 {
323 	unsigned int i;
324 	unsigned int ret;
325 	unsigned int nr_found;
326 
327 	rcu_read_lock();
328 restart:
329 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
330 				(void ***)pages, indices, start, nr_pages);
331 	ret = 0;
332 	for (i = 0; i < nr_found; i++) {
333 		struct page *page;
334 repeat:
335 		page = radix_tree_deref_slot((void **)pages[i]);
336 		if (unlikely(!page))
337 			continue;
338 		if (radix_tree_exception(page)) {
339 			if (radix_tree_deref_retry(page))
340 				goto restart;
341 			/*
342 			 * Otherwise, we must be storing a swap entry
343 			 * here as an exceptional entry: so return it
344 			 * without attempting to raise page count.
345 			 */
346 			goto export;
347 		}
348 		if (!page_cache_get_speculative(page))
349 			goto repeat;
350 
351 		/* Has the page moved? */
352 		if (unlikely(page != *((void **)pages[i]))) {
353 			page_cache_release(page);
354 			goto repeat;
355 		}
356 export:
357 		indices[ret] = indices[i];
358 		pages[ret] = page;
359 		ret++;
360 	}
361 	if (unlikely(!ret && nr_found))
362 		goto restart;
363 	rcu_read_unlock();
364 	return ret;
365 }
366 
367 /*
368  * Remove swap entry from radix tree, free the swap and its page cache.
369  */
370 static int shmem_free_swap(struct address_space *mapping,
371 			   pgoff_t index, void *radswap)
372 {
373 	int error;
374 
375 	spin_lock_irq(&mapping->tree_lock);
376 	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
377 	spin_unlock_irq(&mapping->tree_lock);
378 	if (!error)
379 		free_swap_and_cache(radix_to_swp_entry(radswap));
380 	return error;
381 }
382 
383 /*
384  * Pagevec may contain swap entries, so shuffle up pages before releasing.
385  */
386 static void shmem_deswap_pagevec(struct pagevec *pvec)
387 {
388 	int i, j;
389 
390 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
391 		struct page *page = pvec->pages[i];
392 		if (!radix_tree_exceptional_entry(page))
393 			pvec->pages[j++] = page;
394 	}
395 	pvec->nr = j;
396 }
397 
398 /*
399  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
400  */
401 void shmem_unlock_mapping(struct address_space *mapping)
402 {
403 	struct pagevec pvec;
404 	pgoff_t indices[PAGEVEC_SIZE];
405 	pgoff_t index = 0;
406 
407 	pagevec_init(&pvec, 0);
408 	/*
409 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
410 	 */
411 	while (!mapping_unevictable(mapping)) {
412 		/*
413 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
414 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
415 		 */
416 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
417 					PAGEVEC_SIZE, pvec.pages, indices);
418 		if (!pvec.nr)
419 			break;
420 		index = indices[pvec.nr - 1] + 1;
421 		shmem_deswap_pagevec(&pvec);
422 		check_move_unevictable_pages(pvec.pages, pvec.nr);
423 		pagevec_release(&pvec);
424 		cond_resched();
425 	}
426 }
427 
428 /*
429  * Remove range of pages and swap entries from radix tree, and free them.
430  */
431 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
432 {
433 	struct address_space *mapping = inode->i_mapping;
434 	struct shmem_inode_info *info = SHMEM_I(inode);
435 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
436 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
437 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
438 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
439 	struct pagevec pvec;
440 	pgoff_t indices[PAGEVEC_SIZE];
441 	long nr_swaps_freed = 0;
442 	pgoff_t index;
443 	int i;
444 
445 	if (lend == -1)
446 		end = -1;	/* unsigned, so actually very big */
447 
448 	pagevec_init(&pvec, 0);
449 	index = start;
450 	while (index < end) {
451 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
452 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
453 							pvec.pages, indices);
454 		if (!pvec.nr)
455 			break;
456 		mem_cgroup_uncharge_start();
457 		for (i = 0; i < pagevec_count(&pvec); i++) {
458 			struct page *page = pvec.pages[i];
459 
460 			index = indices[i];
461 			if (index >= end)
462 				break;
463 
464 			if (radix_tree_exceptional_entry(page)) {
465 				nr_swaps_freed += !shmem_free_swap(mapping,
466 								index, page);
467 				continue;
468 			}
469 
470 			if (!trylock_page(page))
471 				continue;
472 			if (page->mapping == mapping) {
473 				VM_BUG_ON(PageWriteback(page));
474 				truncate_inode_page(mapping, page);
475 			}
476 			unlock_page(page);
477 		}
478 		shmem_deswap_pagevec(&pvec);
479 		pagevec_release(&pvec);
480 		mem_cgroup_uncharge_end();
481 		cond_resched();
482 		index++;
483 	}
484 
485 	if (partial_start) {
486 		struct page *page = NULL;
487 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
488 		if (page) {
489 			unsigned int top = PAGE_CACHE_SIZE;
490 			if (start > end) {
491 				top = partial_end;
492 				partial_end = 0;
493 			}
494 			zero_user_segment(page, partial_start, top);
495 			set_page_dirty(page);
496 			unlock_page(page);
497 			page_cache_release(page);
498 		}
499 	}
500 	if (partial_end) {
501 		struct page *page = NULL;
502 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
503 		if (page) {
504 			zero_user_segment(page, 0, partial_end);
505 			set_page_dirty(page);
506 			unlock_page(page);
507 			page_cache_release(page);
508 		}
509 	}
510 	if (start >= end)
511 		return;
512 
513 	index = start;
514 	for ( ; ; ) {
515 		cond_resched();
516 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
517 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
518 							pvec.pages, indices);
519 		if (!pvec.nr) {
520 			if (index == start)
521 				break;
522 			index = start;
523 			continue;
524 		}
525 		if (index == start && indices[0] >= end) {
526 			shmem_deswap_pagevec(&pvec);
527 			pagevec_release(&pvec);
528 			break;
529 		}
530 		mem_cgroup_uncharge_start();
531 		for (i = 0; i < pagevec_count(&pvec); i++) {
532 			struct page *page = pvec.pages[i];
533 
534 			index = indices[i];
535 			if (index >= end)
536 				break;
537 
538 			if (radix_tree_exceptional_entry(page)) {
539 				nr_swaps_freed += !shmem_free_swap(mapping,
540 								index, page);
541 				continue;
542 			}
543 
544 			lock_page(page);
545 			if (page->mapping == mapping) {
546 				VM_BUG_ON(PageWriteback(page));
547 				truncate_inode_page(mapping, page);
548 			}
549 			unlock_page(page);
550 		}
551 		shmem_deswap_pagevec(&pvec);
552 		pagevec_release(&pvec);
553 		mem_cgroup_uncharge_end();
554 		index++;
555 	}
556 
557 	spin_lock(&info->lock);
558 	info->swapped -= nr_swaps_freed;
559 	shmem_recalc_inode(inode);
560 	spin_unlock(&info->lock);
561 
562 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
563 }
564 EXPORT_SYMBOL_GPL(shmem_truncate_range);
565 
566 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
567 {
568 	struct inode *inode = dentry->d_inode;
569 	int error;
570 
571 	error = inode_change_ok(inode, attr);
572 	if (error)
573 		return error;
574 
575 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
576 		loff_t oldsize = inode->i_size;
577 		loff_t newsize = attr->ia_size;
578 
579 		if (newsize != oldsize) {
580 			i_size_write(inode, newsize);
581 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
582 		}
583 		if (newsize < oldsize) {
584 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
585 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
586 			shmem_truncate_range(inode, newsize, (loff_t)-1);
587 			/* unmap again to remove racily COWed private pages */
588 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
589 		}
590 	}
591 
592 	setattr_copy(inode, attr);
593 #ifdef CONFIG_TMPFS_POSIX_ACL
594 	if (attr->ia_valid & ATTR_MODE)
595 		error = generic_acl_chmod(inode);
596 #endif
597 	return error;
598 }
599 
600 static void shmem_evict_inode(struct inode *inode)
601 {
602 	struct shmem_inode_info *info = SHMEM_I(inode);
603 	struct shmem_xattr *xattr, *nxattr;
604 
605 	if (inode->i_mapping->a_ops == &shmem_aops) {
606 		shmem_unacct_size(info->flags, inode->i_size);
607 		inode->i_size = 0;
608 		shmem_truncate_range(inode, 0, (loff_t)-1);
609 		if (!list_empty(&info->swaplist)) {
610 			mutex_lock(&shmem_swaplist_mutex);
611 			list_del_init(&info->swaplist);
612 			mutex_unlock(&shmem_swaplist_mutex);
613 		}
614 	} else
615 		kfree(info->symlink);
616 
617 	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
618 		kfree(xattr->name);
619 		kfree(xattr);
620 	}
621 	BUG_ON(inode->i_blocks);
622 	shmem_free_inode(inode->i_sb);
623 	clear_inode(inode);
624 }
625 
626 /*
627  * If swap found in inode, free it and move page from swapcache to filecache.
628  */
629 static int shmem_unuse_inode(struct shmem_inode_info *info,
630 			     swp_entry_t swap, struct page **pagep)
631 {
632 	struct address_space *mapping = info->vfs_inode.i_mapping;
633 	void *radswap;
634 	pgoff_t index;
635 	gfp_t gfp;
636 	int error = 0;
637 
638 	radswap = swp_to_radix_entry(swap);
639 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
640 	if (index == -1)
641 		return 0;
642 
643 	/*
644 	 * Move _head_ to start search for next from here.
645 	 * But be careful: shmem_evict_inode checks list_empty without taking
646 	 * mutex, and there's an instant in list_move_tail when info->swaplist
647 	 * would appear empty, if it were the only one on shmem_swaplist.
648 	 */
649 	if (shmem_swaplist.next != &info->swaplist)
650 		list_move_tail(&shmem_swaplist, &info->swaplist);
651 
652 	gfp = mapping_gfp_mask(mapping);
653 	if (shmem_should_replace_page(*pagep, gfp)) {
654 		mutex_unlock(&shmem_swaplist_mutex);
655 		error = shmem_replace_page(pagep, gfp, info, index);
656 		mutex_lock(&shmem_swaplist_mutex);
657 		/*
658 		 * We needed to drop mutex to make that restrictive page
659 		 * allocation; but the inode might already be freed by now,
660 		 * and we cannot refer to inode or mapping or info to check.
661 		 * However, we do hold page lock on the PageSwapCache page,
662 		 * so can check if that still has our reference remaining.
663 		 */
664 		if (!page_swapcount(*pagep))
665 			error = -ENOENT;
666 	}
667 
668 	/*
669 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
670 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
671 	 * beneath us (pagelock doesn't help until the page is in pagecache).
672 	 */
673 	if (!error)
674 		error = shmem_add_to_page_cache(*pagep, mapping, index,
675 						GFP_NOWAIT, radswap);
676 	if (error != -ENOMEM) {
677 		/*
678 		 * Truncation and eviction use free_swap_and_cache(), which
679 		 * only does trylock page: if we raced, best clean up here.
680 		 */
681 		delete_from_swap_cache(*pagep);
682 		set_page_dirty(*pagep);
683 		if (!error) {
684 			spin_lock(&info->lock);
685 			info->swapped--;
686 			spin_unlock(&info->lock);
687 			swap_free(swap);
688 		}
689 		error = 1;	/* not an error, but entry was found */
690 	}
691 	return error;
692 }
693 
694 /*
695  * Search through swapped inodes to find and replace swap by page.
696  */
697 int shmem_unuse(swp_entry_t swap, struct page *page)
698 {
699 	struct list_head *this, *next;
700 	struct shmem_inode_info *info;
701 	int found = 0;
702 	int error = 0;
703 
704 	/*
705 	 * There's a faint possibility that swap page was replaced before
706 	 * caller locked it: it will come back later with the right page.
707 	 */
708 	if (unlikely(!PageSwapCache(page)))
709 		goto out;
710 
711 	/*
712 	 * Charge page using GFP_KERNEL while we can wait, before taking
713 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
714 	 * Charged back to the user (not to caller) when swap account is used.
715 	 */
716 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
717 	if (error)
718 		goto out;
719 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
720 
721 	mutex_lock(&shmem_swaplist_mutex);
722 	list_for_each_safe(this, next, &shmem_swaplist) {
723 		info = list_entry(this, struct shmem_inode_info, swaplist);
724 		if (info->swapped)
725 			found = shmem_unuse_inode(info, swap, &page);
726 		else
727 			list_del_init(&info->swaplist);
728 		cond_resched();
729 		if (found)
730 			break;
731 	}
732 	mutex_unlock(&shmem_swaplist_mutex);
733 
734 	if (found < 0)
735 		error = found;
736 out:
737 	unlock_page(page);
738 	page_cache_release(page);
739 	return error;
740 }
741 
742 /*
743  * Move the page from the page cache to the swap cache.
744  */
745 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
746 {
747 	struct shmem_inode_info *info;
748 	struct address_space *mapping;
749 	struct inode *inode;
750 	swp_entry_t swap;
751 	pgoff_t index;
752 
753 	BUG_ON(!PageLocked(page));
754 	mapping = page->mapping;
755 	index = page->index;
756 	inode = mapping->host;
757 	info = SHMEM_I(inode);
758 	if (info->flags & VM_LOCKED)
759 		goto redirty;
760 	if (!total_swap_pages)
761 		goto redirty;
762 
763 	/*
764 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
765 	 * sync from ever calling shmem_writepage; but a stacking filesystem
766 	 * might use ->writepage of its underlying filesystem, in which case
767 	 * tmpfs should write out to swap only in response to memory pressure,
768 	 * and not for the writeback threads or sync.
769 	 */
770 	if (!wbc->for_reclaim) {
771 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
772 		goto redirty;
773 	}
774 	swap = get_swap_page();
775 	if (!swap.val)
776 		goto redirty;
777 
778 	/*
779 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
780 	 * if it's not already there.  Do it now before the page is
781 	 * moved to swap cache, when its pagelock no longer protects
782 	 * the inode from eviction.  But don't unlock the mutex until
783 	 * we've incremented swapped, because shmem_unuse_inode() will
784 	 * prune a !swapped inode from the swaplist under this mutex.
785 	 */
786 	mutex_lock(&shmem_swaplist_mutex);
787 	if (list_empty(&info->swaplist))
788 		list_add_tail(&info->swaplist, &shmem_swaplist);
789 
790 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
791 		swap_shmem_alloc(swap);
792 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
793 
794 		spin_lock(&info->lock);
795 		info->swapped++;
796 		shmem_recalc_inode(inode);
797 		spin_unlock(&info->lock);
798 
799 		mutex_unlock(&shmem_swaplist_mutex);
800 		BUG_ON(page_mapped(page));
801 		swap_writepage(page, wbc);
802 		return 0;
803 	}
804 
805 	mutex_unlock(&shmem_swaplist_mutex);
806 	swapcache_free(swap, NULL);
807 redirty:
808 	set_page_dirty(page);
809 	if (wbc->for_reclaim)
810 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
811 	unlock_page(page);
812 	return 0;
813 }
814 
815 #ifdef CONFIG_NUMA
816 #ifdef CONFIG_TMPFS
817 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
818 {
819 	char buffer[64];
820 
821 	if (!mpol || mpol->mode == MPOL_DEFAULT)
822 		return;		/* show nothing */
823 
824 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
825 
826 	seq_printf(seq, ",mpol=%s", buffer);
827 }
828 
829 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
830 {
831 	struct mempolicy *mpol = NULL;
832 	if (sbinfo->mpol) {
833 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
834 		mpol = sbinfo->mpol;
835 		mpol_get(mpol);
836 		spin_unlock(&sbinfo->stat_lock);
837 	}
838 	return mpol;
839 }
840 #endif /* CONFIG_TMPFS */
841 
842 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
843 			struct shmem_inode_info *info, pgoff_t index)
844 {
845 	struct mempolicy mpol, *spol;
846 	struct vm_area_struct pvma;
847 
848 	spol = mpol_cond_copy(&mpol,
849 			mpol_shared_policy_lookup(&info->policy, index));
850 
851 	/* Create a pseudo vma that just contains the policy */
852 	pvma.vm_start = 0;
853 	pvma.vm_pgoff = index;
854 	pvma.vm_ops = NULL;
855 	pvma.vm_policy = spol;
856 	return swapin_readahead(swap, gfp, &pvma, 0);
857 }
858 
859 static struct page *shmem_alloc_page(gfp_t gfp,
860 			struct shmem_inode_info *info, pgoff_t index)
861 {
862 	struct vm_area_struct pvma;
863 
864 	/* Create a pseudo vma that just contains the policy */
865 	pvma.vm_start = 0;
866 	pvma.vm_pgoff = index;
867 	pvma.vm_ops = NULL;
868 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
869 
870 	/*
871 	 * alloc_page_vma() will drop the shared policy reference
872 	 */
873 	return alloc_page_vma(gfp, &pvma, 0);
874 }
875 #else /* !CONFIG_NUMA */
876 #ifdef CONFIG_TMPFS
877 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
878 {
879 }
880 #endif /* CONFIG_TMPFS */
881 
882 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
883 			struct shmem_inode_info *info, pgoff_t index)
884 {
885 	return swapin_readahead(swap, gfp, NULL, 0);
886 }
887 
888 static inline struct page *shmem_alloc_page(gfp_t gfp,
889 			struct shmem_inode_info *info, pgoff_t index)
890 {
891 	return alloc_page(gfp);
892 }
893 #endif /* CONFIG_NUMA */
894 
895 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
896 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
897 {
898 	return NULL;
899 }
900 #endif
901 
902 /*
903  * When a page is moved from swapcache to shmem filecache (either by the
904  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
905  * shmem_unuse_inode()), it may have been read in earlier from swap, in
906  * ignorance of the mapping it belongs to.  If that mapping has special
907  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
908  * we may need to copy to a suitable page before moving to filecache.
909  *
910  * In a future release, this may well be extended to respect cpuset and
911  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
912  * but for now it is a simple matter of zone.
913  */
914 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
915 {
916 	return page_zonenum(page) > gfp_zone(gfp);
917 }
918 
919 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
920 				struct shmem_inode_info *info, pgoff_t index)
921 {
922 	struct page *oldpage, *newpage;
923 	struct address_space *swap_mapping;
924 	pgoff_t swap_index;
925 	int error;
926 
927 	oldpage = *pagep;
928 	swap_index = page_private(oldpage);
929 	swap_mapping = page_mapping(oldpage);
930 
931 	/*
932 	 * We have arrived here because our zones are constrained, so don't
933 	 * limit chance of success by further cpuset and node constraints.
934 	 */
935 	gfp &= ~GFP_CONSTRAINT_MASK;
936 	newpage = shmem_alloc_page(gfp, info, index);
937 	if (!newpage)
938 		return -ENOMEM;
939 	VM_BUG_ON(shmem_should_replace_page(newpage, gfp));
940 
941 	*pagep = newpage;
942 	page_cache_get(newpage);
943 	copy_highpage(newpage, oldpage);
944 
945 	VM_BUG_ON(!PageLocked(oldpage));
946 	__set_page_locked(newpage);
947 	VM_BUG_ON(!PageUptodate(oldpage));
948 	SetPageUptodate(newpage);
949 	VM_BUG_ON(!PageSwapBacked(oldpage));
950 	SetPageSwapBacked(newpage);
951 	VM_BUG_ON(!swap_index);
952 	set_page_private(newpage, swap_index);
953 	VM_BUG_ON(!PageSwapCache(oldpage));
954 	SetPageSwapCache(newpage);
955 
956 	/*
957 	 * Our caller will very soon move newpage out of swapcache, but it's
958 	 * a nice clean interface for us to replace oldpage by newpage there.
959 	 */
960 	spin_lock_irq(&swap_mapping->tree_lock);
961 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
962 								   newpage);
963 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
964 	__dec_zone_page_state(oldpage, NR_FILE_PAGES);
965 	spin_unlock_irq(&swap_mapping->tree_lock);
966 	BUG_ON(error);
967 
968 	mem_cgroup_replace_page_cache(oldpage, newpage);
969 	lru_cache_add_anon(newpage);
970 
971 	ClearPageSwapCache(oldpage);
972 	set_page_private(oldpage, 0);
973 
974 	unlock_page(oldpage);
975 	page_cache_release(oldpage);
976 	page_cache_release(oldpage);
977 	return 0;
978 }
979 
980 /*
981  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
982  *
983  * If we allocate a new one we do not mark it dirty. That's up to the
984  * vm. If we swap it in we mark it dirty since we also free the swap
985  * entry since a page cannot live in both the swap and page cache
986  */
987 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
988 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
989 {
990 	struct address_space *mapping = inode->i_mapping;
991 	struct shmem_inode_info *info;
992 	struct shmem_sb_info *sbinfo;
993 	struct page *page;
994 	swp_entry_t swap;
995 	int error;
996 	int once = 0;
997 
998 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
999 		return -EFBIG;
1000 repeat:
1001 	swap.val = 0;
1002 	page = find_lock_page(mapping, index);
1003 	if (radix_tree_exceptional_entry(page)) {
1004 		swap = radix_to_swp_entry(page);
1005 		page = NULL;
1006 	}
1007 
1008 	if (sgp != SGP_WRITE &&
1009 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1010 		error = -EINVAL;
1011 		goto failed;
1012 	}
1013 
1014 	if (page || (sgp == SGP_READ && !swap.val)) {
1015 		/*
1016 		 * Once we can get the page lock, it must be uptodate:
1017 		 * if there were an error in reading back from swap,
1018 		 * the page would not be inserted into the filecache.
1019 		 */
1020 		BUG_ON(page && !PageUptodate(page));
1021 		*pagep = page;
1022 		return 0;
1023 	}
1024 
1025 	/*
1026 	 * Fast cache lookup did not find it:
1027 	 * bring it back from swap or allocate.
1028 	 */
1029 	info = SHMEM_I(inode);
1030 	sbinfo = SHMEM_SB(inode->i_sb);
1031 
1032 	if (swap.val) {
1033 		/* Look it up and read it in.. */
1034 		page = lookup_swap_cache(swap);
1035 		if (!page) {
1036 			/* here we actually do the io */
1037 			if (fault_type)
1038 				*fault_type |= VM_FAULT_MAJOR;
1039 			page = shmem_swapin(swap, gfp, info, index);
1040 			if (!page) {
1041 				error = -ENOMEM;
1042 				goto failed;
1043 			}
1044 		}
1045 
1046 		/* We have to do this with page locked to prevent races */
1047 		lock_page(page);
1048 		if (!PageSwapCache(page) || page->mapping) {
1049 			error = -EEXIST;	/* try again */
1050 			goto failed;
1051 		}
1052 		if (!PageUptodate(page)) {
1053 			error = -EIO;
1054 			goto failed;
1055 		}
1056 		wait_on_page_writeback(page);
1057 
1058 		if (shmem_should_replace_page(page, gfp)) {
1059 			error = shmem_replace_page(&page, gfp, info, index);
1060 			if (error)
1061 				goto failed;
1062 		}
1063 
1064 		error = mem_cgroup_cache_charge(page, current->mm,
1065 						gfp & GFP_RECLAIM_MASK);
1066 		if (!error)
1067 			error = shmem_add_to_page_cache(page, mapping, index,
1068 						gfp, swp_to_radix_entry(swap));
1069 		if (error)
1070 			goto failed;
1071 
1072 		spin_lock(&info->lock);
1073 		info->swapped--;
1074 		shmem_recalc_inode(inode);
1075 		spin_unlock(&info->lock);
1076 
1077 		delete_from_swap_cache(page);
1078 		set_page_dirty(page);
1079 		swap_free(swap);
1080 
1081 	} else {
1082 		if (shmem_acct_block(info->flags)) {
1083 			error = -ENOSPC;
1084 			goto failed;
1085 		}
1086 		if (sbinfo->max_blocks) {
1087 			if (percpu_counter_compare(&sbinfo->used_blocks,
1088 						sbinfo->max_blocks) >= 0) {
1089 				error = -ENOSPC;
1090 				goto unacct;
1091 			}
1092 			percpu_counter_inc(&sbinfo->used_blocks);
1093 		}
1094 
1095 		page = shmem_alloc_page(gfp, info, index);
1096 		if (!page) {
1097 			error = -ENOMEM;
1098 			goto decused;
1099 		}
1100 
1101 		SetPageSwapBacked(page);
1102 		__set_page_locked(page);
1103 		error = mem_cgroup_cache_charge(page, current->mm,
1104 						gfp & GFP_RECLAIM_MASK);
1105 		if (!error)
1106 			error = shmem_add_to_page_cache(page, mapping, index,
1107 						gfp, NULL);
1108 		if (error)
1109 			goto decused;
1110 		lru_cache_add_anon(page);
1111 
1112 		spin_lock(&info->lock);
1113 		info->alloced++;
1114 		inode->i_blocks += BLOCKS_PER_PAGE;
1115 		shmem_recalc_inode(inode);
1116 		spin_unlock(&info->lock);
1117 
1118 		/*
1119 		 * Let SGP_WRITE caller clear ends if write does not fill page
1120 		 */
1121 		if (sgp != SGP_WRITE) {
1122 			clear_highpage(page);
1123 			flush_dcache_page(page);
1124 			SetPageUptodate(page);
1125 		}
1126 		if (sgp == SGP_DIRTY)
1127 			set_page_dirty(page);
1128 	}
1129 
1130 	/* Perhaps the file has been truncated since we checked */
1131 	if (sgp != SGP_WRITE &&
1132 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1133 		error = -EINVAL;
1134 		goto trunc;
1135 	}
1136 	*pagep = page;
1137 	return 0;
1138 
1139 	/*
1140 	 * Error recovery.
1141 	 */
1142 trunc:
1143 	ClearPageDirty(page);
1144 	delete_from_page_cache(page);
1145 	spin_lock(&info->lock);
1146 	info->alloced--;
1147 	inode->i_blocks -= BLOCKS_PER_PAGE;
1148 	spin_unlock(&info->lock);
1149 decused:
1150 	if (sbinfo->max_blocks)
1151 		percpu_counter_add(&sbinfo->used_blocks, -1);
1152 unacct:
1153 	shmem_unacct_blocks(info->flags, 1);
1154 failed:
1155 	if (swap.val && error != -EINVAL) {
1156 		struct page *test = find_get_page(mapping, index);
1157 		if (test && !radix_tree_exceptional_entry(test))
1158 			page_cache_release(test);
1159 		/* Have another try if the entry has changed */
1160 		if (test != swp_to_radix_entry(swap))
1161 			error = -EEXIST;
1162 	}
1163 	if (page) {
1164 		unlock_page(page);
1165 		page_cache_release(page);
1166 	}
1167 	if (error == -ENOSPC && !once++) {
1168 		info = SHMEM_I(inode);
1169 		spin_lock(&info->lock);
1170 		shmem_recalc_inode(inode);
1171 		spin_unlock(&info->lock);
1172 		goto repeat;
1173 	}
1174 	if (error == -EEXIST)
1175 		goto repeat;
1176 	return error;
1177 }
1178 
1179 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1180 {
1181 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1182 	int error;
1183 	int ret = VM_FAULT_LOCKED;
1184 
1185 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1186 	if (error)
1187 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1188 
1189 	if (ret & VM_FAULT_MAJOR) {
1190 		count_vm_event(PGMAJFAULT);
1191 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1192 	}
1193 	return ret;
1194 }
1195 
1196 #ifdef CONFIG_NUMA
1197 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1198 {
1199 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1200 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1201 }
1202 
1203 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1204 					  unsigned long addr)
1205 {
1206 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1207 	pgoff_t index;
1208 
1209 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1210 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1211 }
1212 #endif
1213 
1214 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1215 {
1216 	struct inode *inode = file->f_path.dentry->d_inode;
1217 	struct shmem_inode_info *info = SHMEM_I(inode);
1218 	int retval = -ENOMEM;
1219 
1220 	spin_lock(&info->lock);
1221 	if (lock && !(info->flags & VM_LOCKED)) {
1222 		if (!user_shm_lock(inode->i_size, user))
1223 			goto out_nomem;
1224 		info->flags |= VM_LOCKED;
1225 		mapping_set_unevictable(file->f_mapping);
1226 	}
1227 	if (!lock && (info->flags & VM_LOCKED) && user) {
1228 		user_shm_unlock(inode->i_size, user);
1229 		info->flags &= ~VM_LOCKED;
1230 		mapping_clear_unevictable(file->f_mapping);
1231 	}
1232 	retval = 0;
1233 
1234 out_nomem:
1235 	spin_unlock(&info->lock);
1236 	return retval;
1237 }
1238 
1239 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1240 {
1241 	file_accessed(file);
1242 	vma->vm_ops = &shmem_vm_ops;
1243 	vma->vm_flags |= VM_CAN_NONLINEAR;
1244 	return 0;
1245 }
1246 
1247 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1248 				     umode_t mode, dev_t dev, unsigned long flags)
1249 {
1250 	struct inode *inode;
1251 	struct shmem_inode_info *info;
1252 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1253 
1254 	if (shmem_reserve_inode(sb))
1255 		return NULL;
1256 
1257 	inode = new_inode(sb);
1258 	if (inode) {
1259 		inode->i_ino = get_next_ino();
1260 		inode_init_owner(inode, dir, mode);
1261 		inode->i_blocks = 0;
1262 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1263 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1264 		inode->i_generation = get_seconds();
1265 		info = SHMEM_I(inode);
1266 		memset(info, 0, (char *)inode - (char *)info);
1267 		spin_lock_init(&info->lock);
1268 		info->flags = flags & VM_NORESERVE;
1269 		INIT_LIST_HEAD(&info->swaplist);
1270 		INIT_LIST_HEAD(&info->xattr_list);
1271 		cache_no_acl(inode);
1272 
1273 		switch (mode & S_IFMT) {
1274 		default:
1275 			inode->i_op = &shmem_special_inode_operations;
1276 			init_special_inode(inode, mode, dev);
1277 			break;
1278 		case S_IFREG:
1279 			inode->i_mapping->a_ops = &shmem_aops;
1280 			inode->i_op = &shmem_inode_operations;
1281 			inode->i_fop = &shmem_file_operations;
1282 			mpol_shared_policy_init(&info->policy,
1283 						 shmem_get_sbmpol(sbinfo));
1284 			break;
1285 		case S_IFDIR:
1286 			inc_nlink(inode);
1287 			/* Some things misbehave if size == 0 on a directory */
1288 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1289 			inode->i_op = &shmem_dir_inode_operations;
1290 			inode->i_fop = &simple_dir_operations;
1291 			break;
1292 		case S_IFLNK:
1293 			/*
1294 			 * Must not load anything in the rbtree,
1295 			 * mpol_free_shared_policy will not be called.
1296 			 */
1297 			mpol_shared_policy_init(&info->policy, NULL);
1298 			break;
1299 		}
1300 	} else
1301 		shmem_free_inode(sb);
1302 	return inode;
1303 }
1304 
1305 #ifdef CONFIG_TMPFS
1306 static const struct inode_operations shmem_symlink_inode_operations;
1307 static const struct inode_operations shmem_short_symlink_operations;
1308 
1309 #ifdef CONFIG_TMPFS_XATTR
1310 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1311 #else
1312 #define shmem_initxattrs NULL
1313 #endif
1314 
1315 static int
1316 shmem_write_begin(struct file *file, struct address_space *mapping,
1317 			loff_t pos, unsigned len, unsigned flags,
1318 			struct page **pagep, void **fsdata)
1319 {
1320 	struct inode *inode = mapping->host;
1321 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1322 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1323 }
1324 
1325 static int
1326 shmem_write_end(struct file *file, struct address_space *mapping,
1327 			loff_t pos, unsigned len, unsigned copied,
1328 			struct page *page, void *fsdata)
1329 {
1330 	struct inode *inode = mapping->host;
1331 
1332 	if (pos + copied > inode->i_size)
1333 		i_size_write(inode, pos + copied);
1334 
1335 	if (!PageUptodate(page)) {
1336 		if (copied < PAGE_CACHE_SIZE) {
1337 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1338 			zero_user_segments(page, 0, from,
1339 					from + copied, PAGE_CACHE_SIZE);
1340 		}
1341 		SetPageUptodate(page);
1342 	}
1343 	set_page_dirty(page);
1344 	unlock_page(page);
1345 	page_cache_release(page);
1346 
1347 	return copied;
1348 }
1349 
1350 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1351 {
1352 	struct inode *inode = filp->f_path.dentry->d_inode;
1353 	struct address_space *mapping = inode->i_mapping;
1354 	pgoff_t index;
1355 	unsigned long offset;
1356 	enum sgp_type sgp = SGP_READ;
1357 
1358 	/*
1359 	 * Might this read be for a stacking filesystem?  Then when reading
1360 	 * holes of a sparse file, we actually need to allocate those pages,
1361 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1362 	 */
1363 	if (segment_eq(get_fs(), KERNEL_DS))
1364 		sgp = SGP_DIRTY;
1365 
1366 	index = *ppos >> PAGE_CACHE_SHIFT;
1367 	offset = *ppos & ~PAGE_CACHE_MASK;
1368 
1369 	for (;;) {
1370 		struct page *page = NULL;
1371 		pgoff_t end_index;
1372 		unsigned long nr, ret;
1373 		loff_t i_size = i_size_read(inode);
1374 
1375 		end_index = i_size >> PAGE_CACHE_SHIFT;
1376 		if (index > end_index)
1377 			break;
1378 		if (index == end_index) {
1379 			nr = i_size & ~PAGE_CACHE_MASK;
1380 			if (nr <= offset)
1381 				break;
1382 		}
1383 
1384 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1385 		if (desc->error) {
1386 			if (desc->error == -EINVAL)
1387 				desc->error = 0;
1388 			break;
1389 		}
1390 		if (page)
1391 			unlock_page(page);
1392 
1393 		/*
1394 		 * We must evaluate after, since reads (unlike writes)
1395 		 * are called without i_mutex protection against truncate
1396 		 */
1397 		nr = PAGE_CACHE_SIZE;
1398 		i_size = i_size_read(inode);
1399 		end_index = i_size >> PAGE_CACHE_SHIFT;
1400 		if (index == end_index) {
1401 			nr = i_size & ~PAGE_CACHE_MASK;
1402 			if (nr <= offset) {
1403 				if (page)
1404 					page_cache_release(page);
1405 				break;
1406 			}
1407 		}
1408 		nr -= offset;
1409 
1410 		if (page) {
1411 			/*
1412 			 * If users can be writing to this page using arbitrary
1413 			 * virtual addresses, take care about potential aliasing
1414 			 * before reading the page on the kernel side.
1415 			 */
1416 			if (mapping_writably_mapped(mapping))
1417 				flush_dcache_page(page);
1418 			/*
1419 			 * Mark the page accessed if we read the beginning.
1420 			 */
1421 			if (!offset)
1422 				mark_page_accessed(page);
1423 		} else {
1424 			page = ZERO_PAGE(0);
1425 			page_cache_get(page);
1426 		}
1427 
1428 		/*
1429 		 * Ok, we have the page, and it's up-to-date, so
1430 		 * now we can copy it to user space...
1431 		 *
1432 		 * The actor routine returns how many bytes were actually used..
1433 		 * NOTE! This may not be the same as how much of a user buffer
1434 		 * we filled up (we may be padding etc), so we can only update
1435 		 * "pos" here (the actor routine has to update the user buffer
1436 		 * pointers and the remaining count).
1437 		 */
1438 		ret = actor(desc, page, offset, nr);
1439 		offset += ret;
1440 		index += offset >> PAGE_CACHE_SHIFT;
1441 		offset &= ~PAGE_CACHE_MASK;
1442 
1443 		page_cache_release(page);
1444 		if (ret != nr || !desc->count)
1445 			break;
1446 
1447 		cond_resched();
1448 	}
1449 
1450 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1451 	file_accessed(filp);
1452 }
1453 
1454 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1455 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1456 {
1457 	struct file *filp = iocb->ki_filp;
1458 	ssize_t retval;
1459 	unsigned long seg;
1460 	size_t count;
1461 	loff_t *ppos = &iocb->ki_pos;
1462 
1463 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1464 	if (retval)
1465 		return retval;
1466 
1467 	for (seg = 0; seg < nr_segs; seg++) {
1468 		read_descriptor_t desc;
1469 
1470 		desc.written = 0;
1471 		desc.arg.buf = iov[seg].iov_base;
1472 		desc.count = iov[seg].iov_len;
1473 		if (desc.count == 0)
1474 			continue;
1475 		desc.error = 0;
1476 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1477 		retval += desc.written;
1478 		if (desc.error) {
1479 			retval = retval ?: desc.error;
1480 			break;
1481 		}
1482 		if (desc.count > 0)
1483 			break;
1484 	}
1485 	return retval;
1486 }
1487 
1488 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1489 				struct pipe_inode_info *pipe, size_t len,
1490 				unsigned int flags)
1491 {
1492 	struct address_space *mapping = in->f_mapping;
1493 	struct inode *inode = mapping->host;
1494 	unsigned int loff, nr_pages, req_pages;
1495 	struct page *pages[PIPE_DEF_BUFFERS];
1496 	struct partial_page partial[PIPE_DEF_BUFFERS];
1497 	struct page *page;
1498 	pgoff_t index, end_index;
1499 	loff_t isize, left;
1500 	int error, page_nr;
1501 	struct splice_pipe_desc spd = {
1502 		.pages = pages,
1503 		.partial = partial,
1504 		.flags = flags,
1505 		.ops = &page_cache_pipe_buf_ops,
1506 		.spd_release = spd_release_page,
1507 	};
1508 
1509 	isize = i_size_read(inode);
1510 	if (unlikely(*ppos >= isize))
1511 		return 0;
1512 
1513 	left = isize - *ppos;
1514 	if (unlikely(left < len))
1515 		len = left;
1516 
1517 	if (splice_grow_spd(pipe, &spd))
1518 		return -ENOMEM;
1519 
1520 	index = *ppos >> PAGE_CACHE_SHIFT;
1521 	loff = *ppos & ~PAGE_CACHE_MASK;
1522 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1523 	nr_pages = min(req_pages, pipe->buffers);
1524 
1525 	spd.nr_pages = find_get_pages_contig(mapping, index,
1526 						nr_pages, spd.pages);
1527 	index += spd.nr_pages;
1528 	error = 0;
1529 
1530 	while (spd.nr_pages < nr_pages) {
1531 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1532 		if (error)
1533 			break;
1534 		unlock_page(page);
1535 		spd.pages[spd.nr_pages++] = page;
1536 		index++;
1537 	}
1538 
1539 	index = *ppos >> PAGE_CACHE_SHIFT;
1540 	nr_pages = spd.nr_pages;
1541 	spd.nr_pages = 0;
1542 
1543 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1544 		unsigned int this_len;
1545 
1546 		if (!len)
1547 			break;
1548 
1549 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1550 		page = spd.pages[page_nr];
1551 
1552 		if (!PageUptodate(page) || page->mapping != mapping) {
1553 			error = shmem_getpage(inode, index, &page,
1554 							SGP_CACHE, NULL);
1555 			if (error)
1556 				break;
1557 			unlock_page(page);
1558 			page_cache_release(spd.pages[page_nr]);
1559 			spd.pages[page_nr] = page;
1560 		}
1561 
1562 		isize = i_size_read(inode);
1563 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1564 		if (unlikely(!isize || index > end_index))
1565 			break;
1566 
1567 		if (end_index == index) {
1568 			unsigned int plen;
1569 
1570 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1571 			if (plen <= loff)
1572 				break;
1573 
1574 			this_len = min(this_len, plen - loff);
1575 			len = this_len;
1576 		}
1577 
1578 		spd.partial[page_nr].offset = loff;
1579 		spd.partial[page_nr].len = this_len;
1580 		len -= this_len;
1581 		loff = 0;
1582 		spd.nr_pages++;
1583 		index++;
1584 	}
1585 
1586 	while (page_nr < nr_pages)
1587 		page_cache_release(spd.pages[page_nr++]);
1588 
1589 	if (spd.nr_pages)
1590 		error = splice_to_pipe(pipe, &spd);
1591 
1592 	splice_shrink_spd(pipe, &spd);
1593 
1594 	if (error > 0) {
1595 		*ppos += error;
1596 		file_accessed(in);
1597 	}
1598 	return error;
1599 }
1600 
1601 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1602 							 loff_t len)
1603 {
1604 	struct inode *inode = file->f_path.dentry->d_inode;
1605 	int error = -EOPNOTSUPP;
1606 
1607 	mutex_lock(&inode->i_mutex);
1608 
1609 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1610 		struct address_space *mapping = file->f_mapping;
1611 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1612 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1613 
1614 		if ((u64)unmap_end > (u64)unmap_start)
1615 			unmap_mapping_range(mapping, unmap_start,
1616 					    1 + unmap_end - unmap_start, 0);
1617 		shmem_truncate_range(inode, offset, offset + len - 1);
1618 		/* No need to unmap again: hole-punching leaves COWed pages */
1619 		error = 0;
1620 	}
1621 
1622 	mutex_unlock(&inode->i_mutex);
1623 	return error;
1624 }
1625 
1626 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1627 {
1628 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1629 
1630 	buf->f_type = TMPFS_MAGIC;
1631 	buf->f_bsize = PAGE_CACHE_SIZE;
1632 	buf->f_namelen = NAME_MAX;
1633 	if (sbinfo->max_blocks) {
1634 		buf->f_blocks = sbinfo->max_blocks;
1635 		buf->f_bavail =
1636 		buf->f_bfree  = sbinfo->max_blocks -
1637 				percpu_counter_sum(&sbinfo->used_blocks);
1638 	}
1639 	if (sbinfo->max_inodes) {
1640 		buf->f_files = sbinfo->max_inodes;
1641 		buf->f_ffree = sbinfo->free_inodes;
1642 	}
1643 	/* else leave those fields 0 like simple_statfs */
1644 	return 0;
1645 }
1646 
1647 /*
1648  * File creation. Allocate an inode, and we're done..
1649  */
1650 static int
1651 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1652 {
1653 	struct inode *inode;
1654 	int error = -ENOSPC;
1655 
1656 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1657 	if (inode) {
1658 		error = security_inode_init_security(inode, dir,
1659 						     &dentry->d_name,
1660 						     shmem_initxattrs, NULL);
1661 		if (error) {
1662 			if (error != -EOPNOTSUPP) {
1663 				iput(inode);
1664 				return error;
1665 			}
1666 		}
1667 #ifdef CONFIG_TMPFS_POSIX_ACL
1668 		error = generic_acl_init(inode, dir);
1669 		if (error) {
1670 			iput(inode);
1671 			return error;
1672 		}
1673 #else
1674 		error = 0;
1675 #endif
1676 		dir->i_size += BOGO_DIRENT_SIZE;
1677 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1678 		d_instantiate(dentry, inode);
1679 		dget(dentry); /* Extra count - pin the dentry in core */
1680 	}
1681 	return error;
1682 }
1683 
1684 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1685 {
1686 	int error;
1687 
1688 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1689 		return error;
1690 	inc_nlink(dir);
1691 	return 0;
1692 }
1693 
1694 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1695 		struct nameidata *nd)
1696 {
1697 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1698 }
1699 
1700 /*
1701  * Link a file..
1702  */
1703 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1704 {
1705 	struct inode *inode = old_dentry->d_inode;
1706 	int ret;
1707 
1708 	/*
1709 	 * No ordinary (disk based) filesystem counts links as inodes;
1710 	 * but each new link needs a new dentry, pinning lowmem, and
1711 	 * tmpfs dentries cannot be pruned until they are unlinked.
1712 	 */
1713 	ret = shmem_reserve_inode(inode->i_sb);
1714 	if (ret)
1715 		goto out;
1716 
1717 	dir->i_size += BOGO_DIRENT_SIZE;
1718 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1719 	inc_nlink(inode);
1720 	ihold(inode);	/* New dentry reference */
1721 	dget(dentry);		/* Extra pinning count for the created dentry */
1722 	d_instantiate(dentry, inode);
1723 out:
1724 	return ret;
1725 }
1726 
1727 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1728 {
1729 	struct inode *inode = dentry->d_inode;
1730 
1731 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1732 		shmem_free_inode(inode->i_sb);
1733 
1734 	dir->i_size -= BOGO_DIRENT_SIZE;
1735 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1736 	drop_nlink(inode);
1737 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1738 	return 0;
1739 }
1740 
1741 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1742 {
1743 	if (!simple_empty(dentry))
1744 		return -ENOTEMPTY;
1745 
1746 	drop_nlink(dentry->d_inode);
1747 	drop_nlink(dir);
1748 	return shmem_unlink(dir, dentry);
1749 }
1750 
1751 /*
1752  * The VFS layer already does all the dentry stuff for rename,
1753  * we just have to decrement the usage count for the target if
1754  * it exists so that the VFS layer correctly free's it when it
1755  * gets overwritten.
1756  */
1757 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1758 {
1759 	struct inode *inode = old_dentry->d_inode;
1760 	int they_are_dirs = S_ISDIR(inode->i_mode);
1761 
1762 	if (!simple_empty(new_dentry))
1763 		return -ENOTEMPTY;
1764 
1765 	if (new_dentry->d_inode) {
1766 		(void) shmem_unlink(new_dir, new_dentry);
1767 		if (they_are_dirs)
1768 			drop_nlink(old_dir);
1769 	} else if (they_are_dirs) {
1770 		drop_nlink(old_dir);
1771 		inc_nlink(new_dir);
1772 	}
1773 
1774 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1775 	new_dir->i_size += BOGO_DIRENT_SIZE;
1776 	old_dir->i_ctime = old_dir->i_mtime =
1777 	new_dir->i_ctime = new_dir->i_mtime =
1778 	inode->i_ctime = CURRENT_TIME;
1779 	return 0;
1780 }
1781 
1782 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1783 {
1784 	int error;
1785 	int len;
1786 	struct inode *inode;
1787 	struct page *page;
1788 	char *kaddr;
1789 	struct shmem_inode_info *info;
1790 
1791 	len = strlen(symname) + 1;
1792 	if (len > PAGE_CACHE_SIZE)
1793 		return -ENAMETOOLONG;
1794 
1795 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1796 	if (!inode)
1797 		return -ENOSPC;
1798 
1799 	error = security_inode_init_security(inode, dir, &dentry->d_name,
1800 					     shmem_initxattrs, NULL);
1801 	if (error) {
1802 		if (error != -EOPNOTSUPP) {
1803 			iput(inode);
1804 			return error;
1805 		}
1806 		error = 0;
1807 	}
1808 
1809 	info = SHMEM_I(inode);
1810 	inode->i_size = len-1;
1811 	if (len <= SHORT_SYMLINK_LEN) {
1812 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
1813 		if (!info->symlink) {
1814 			iput(inode);
1815 			return -ENOMEM;
1816 		}
1817 		inode->i_op = &shmem_short_symlink_operations;
1818 	} else {
1819 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1820 		if (error) {
1821 			iput(inode);
1822 			return error;
1823 		}
1824 		inode->i_mapping->a_ops = &shmem_aops;
1825 		inode->i_op = &shmem_symlink_inode_operations;
1826 		kaddr = kmap_atomic(page);
1827 		memcpy(kaddr, symname, len);
1828 		kunmap_atomic(kaddr);
1829 		SetPageUptodate(page);
1830 		set_page_dirty(page);
1831 		unlock_page(page);
1832 		page_cache_release(page);
1833 	}
1834 	dir->i_size += BOGO_DIRENT_SIZE;
1835 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1836 	d_instantiate(dentry, inode);
1837 	dget(dentry);
1838 	return 0;
1839 }
1840 
1841 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1842 {
1843 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
1844 	return NULL;
1845 }
1846 
1847 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1848 {
1849 	struct page *page = NULL;
1850 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1851 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1852 	if (page)
1853 		unlock_page(page);
1854 	return page;
1855 }
1856 
1857 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1858 {
1859 	if (!IS_ERR(nd_get_link(nd))) {
1860 		struct page *page = cookie;
1861 		kunmap(page);
1862 		mark_page_accessed(page);
1863 		page_cache_release(page);
1864 	}
1865 }
1866 
1867 #ifdef CONFIG_TMPFS_XATTR
1868 /*
1869  * Superblocks without xattr inode operations may get some security.* xattr
1870  * support from the LSM "for free". As soon as we have any other xattrs
1871  * like ACLs, we also need to implement the security.* handlers at
1872  * filesystem level, though.
1873  */
1874 
1875 /*
1876  * Allocate new xattr and copy in the value; but leave the name to callers.
1877  */
1878 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
1879 {
1880 	struct shmem_xattr *new_xattr;
1881 	size_t len;
1882 
1883 	/* wrap around? */
1884 	len = sizeof(*new_xattr) + size;
1885 	if (len <= sizeof(*new_xattr))
1886 		return NULL;
1887 
1888 	new_xattr = kmalloc(len, GFP_KERNEL);
1889 	if (!new_xattr)
1890 		return NULL;
1891 
1892 	new_xattr->size = size;
1893 	memcpy(new_xattr->value, value, size);
1894 	return new_xattr;
1895 }
1896 
1897 /*
1898  * Callback for security_inode_init_security() for acquiring xattrs.
1899  */
1900 static int shmem_initxattrs(struct inode *inode,
1901 			    const struct xattr *xattr_array,
1902 			    void *fs_info)
1903 {
1904 	struct shmem_inode_info *info = SHMEM_I(inode);
1905 	const struct xattr *xattr;
1906 	struct shmem_xattr *new_xattr;
1907 	size_t len;
1908 
1909 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
1910 		new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
1911 		if (!new_xattr)
1912 			return -ENOMEM;
1913 
1914 		len = strlen(xattr->name) + 1;
1915 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
1916 					  GFP_KERNEL);
1917 		if (!new_xattr->name) {
1918 			kfree(new_xattr);
1919 			return -ENOMEM;
1920 		}
1921 
1922 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
1923 		       XATTR_SECURITY_PREFIX_LEN);
1924 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
1925 		       xattr->name, len);
1926 
1927 		spin_lock(&info->lock);
1928 		list_add(&new_xattr->list, &info->xattr_list);
1929 		spin_unlock(&info->lock);
1930 	}
1931 
1932 	return 0;
1933 }
1934 
1935 static int shmem_xattr_get(struct dentry *dentry, const char *name,
1936 			   void *buffer, size_t size)
1937 {
1938 	struct shmem_inode_info *info;
1939 	struct shmem_xattr *xattr;
1940 	int ret = -ENODATA;
1941 
1942 	info = SHMEM_I(dentry->d_inode);
1943 
1944 	spin_lock(&info->lock);
1945 	list_for_each_entry(xattr, &info->xattr_list, list) {
1946 		if (strcmp(name, xattr->name))
1947 			continue;
1948 
1949 		ret = xattr->size;
1950 		if (buffer) {
1951 			if (size < xattr->size)
1952 				ret = -ERANGE;
1953 			else
1954 				memcpy(buffer, xattr->value, xattr->size);
1955 		}
1956 		break;
1957 	}
1958 	spin_unlock(&info->lock);
1959 	return ret;
1960 }
1961 
1962 static int shmem_xattr_set(struct inode *inode, const char *name,
1963 			   const void *value, size_t size, int flags)
1964 {
1965 	struct shmem_inode_info *info = SHMEM_I(inode);
1966 	struct shmem_xattr *xattr;
1967 	struct shmem_xattr *new_xattr = NULL;
1968 	int err = 0;
1969 
1970 	/* value == NULL means remove */
1971 	if (value) {
1972 		new_xattr = shmem_xattr_alloc(value, size);
1973 		if (!new_xattr)
1974 			return -ENOMEM;
1975 
1976 		new_xattr->name = kstrdup(name, GFP_KERNEL);
1977 		if (!new_xattr->name) {
1978 			kfree(new_xattr);
1979 			return -ENOMEM;
1980 		}
1981 	}
1982 
1983 	spin_lock(&info->lock);
1984 	list_for_each_entry(xattr, &info->xattr_list, list) {
1985 		if (!strcmp(name, xattr->name)) {
1986 			if (flags & XATTR_CREATE) {
1987 				xattr = new_xattr;
1988 				err = -EEXIST;
1989 			} else if (new_xattr) {
1990 				list_replace(&xattr->list, &new_xattr->list);
1991 			} else {
1992 				list_del(&xattr->list);
1993 			}
1994 			goto out;
1995 		}
1996 	}
1997 	if (flags & XATTR_REPLACE) {
1998 		xattr = new_xattr;
1999 		err = -ENODATA;
2000 	} else {
2001 		list_add(&new_xattr->list, &info->xattr_list);
2002 		xattr = NULL;
2003 	}
2004 out:
2005 	spin_unlock(&info->lock);
2006 	if (xattr)
2007 		kfree(xattr->name);
2008 	kfree(xattr);
2009 	return err;
2010 }
2011 
2012 static const struct xattr_handler *shmem_xattr_handlers[] = {
2013 #ifdef CONFIG_TMPFS_POSIX_ACL
2014 	&generic_acl_access_handler,
2015 	&generic_acl_default_handler,
2016 #endif
2017 	NULL
2018 };
2019 
2020 static int shmem_xattr_validate(const char *name)
2021 {
2022 	struct { const char *prefix; size_t len; } arr[] = {
2023 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2024 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2025 	};
2026 	int i;
2027 
2028 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2029 		size_t preflen = arr[i].len;
2030 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2031 			if (!name[preflen])
2032 				return -EINVAL;
2033 			return 0;
2034 		}
2035 	}
2036 	return -EOPNOTSUPP;
2037 }
2038 
2039 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2040 			      void *buffer, size_t size)
2041 {
2042 	int err;
2043 
2044 	/*
2045 	 * If this is a request for a synthetic attribute in the system.*
2046 	 * namespace use the generic infrastructure to resolve a handler
2047 	 * for it via sb->s_xattr.
2048 	 */
2049 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2050 		return generic_getxattr(dentry, name, buffer, size);
2051 
2052 	err = shmem_xattr_validate(name);
2053 	if (err)
2054 		return err;
2055 
2056 	return shmem_xattr_get(dentry, name, buffer, size);
2057 }
2058 
2059 static int shmem_setxattr(struct dentry *dentry, const char *name,
2060 			  const void *value, size_t size, int flags)
2061 {
2062 	int err;
2063 
2064 	/*
2065 	 * If this is a request for a synthetic attribute in the system.*
2066 	 * namespace use the generic infrastructure to resolve a handler
2067 	 * for it via sb->s_xattr.
2068 	 */
2069 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2070 		return generic_setxattr(dentry, name, value, size, flags);
2071 
2072 	err = shmem_xattr_validate(name);
2073 	if (err)
2074 		return err;
2075 
2076 	if (size == 0)
2077 		value = "";  /* empty EA, do not remove */
2078 
2079 	return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
2080 
2081 }
2082 
2083 static int shmem_removexattr(struct dentry *dentry, const char *name)
2084 {
2085 	int err;
2086 
2087 	/*
2088 	 * If this is a request for a synthetic attribute in the system.*
2089 	 * namespace use the generic infrastructure to resolve a handler
2090 	 * for it via sb->s_xattr.
2091 	 */
2092 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2093 		return generic_removexattr(dentry, name);
2094 
2095 	err = shmem_xattr_validate(name);
2096 	if (err)
2097 		return err;
2098 
2099 	return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
2100 }
2101 
2102 static bool xattr_is_trusted(const char *name)
2103 {
2104 	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2105 }
2106 
2107 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2108 {
2109 	bool trusted = capable(CAP_SYS_ADMIN);
2110 	struct shmem_xattr *xattr;
2111 	struct shmem_inode_info *info;
2112 	size_t used = 0;
2113 
2114 	info = SHMEM_I(dentry->d_inode);
2115 
2116 	spin_lock(&info->lock);
2117 	list_for_each_entry(xattr, &info->xattr_list, list) {
2118 		size_t len;
2119 
2120 		/* skip "trusted." attributes for unprivileged callers */
2121 		if (!trusted && xattr_is_trusted(xattr->name))
2122 			continue;
2123 
2124 		len = strlen(xattr->name) + 1;
2125 		used += len;
2126 		if (buffer) {
2127 			if (size < used) {
2128 				used = -ERANGE;
2129 				break;
2130 			}
2131 			memcpy(buffer, xattr->name, len);
2132 			buffer += len;
2133 		}
2134 	}
2135 	spin_unlock(&info->lock);
2136 
2137 	return used;
2138 }
2139 #endif /* CONFIG_TMPFS_XATTR */
2140 
2141 static const struct inode_operations shmem_short_symlink_operations = {
2142 	.readlink	= generic_readlink,
2143 	.follow_link	= shmem_follow_short_symlink,
2144 #ifdef CONFIG_TMPFS_XATTR
2145 	.setxattr	= shmem_setxattr,
2146 	.getxattr	= shmem_getxattr,
2147 	.listxattr	= shmem_listxattr,
2148 	.removexattr	= shmem_removexattr,
2149 #endif
2150 };
2151 
2152 static const struct inode_operations shmem_symlink_inode_operations = {
2153 	.readlink	= generic_readlink,
2154 	.follow_link	= shmem_follow_link,
2155 	.put_link	= shmem_put_link,
2156 #ifdef CONFIG_TMPFS_XATTR
2157 	.setxattr	= shmem_setxattr,
2158 	.getxattr	= shmem_getxattr,
2159 	.listxattr	= shmem_listxattr,
2160 	.removexattr	= shmem_removexattr,
2161 #endif
2162 };
2163 
2164 static struct dentry *shmem_get_parent(struct dentry *child)
2165 {
2166 	return ERR_PTR(-ESTALE);
2167 }
2168 
2169 static int shmem_match(struct inode *ino, void *vfh)
2170 {
2171 	__u32 *fh = vfh;
2172 	__u64 inum = fh[2];
2173 	inum = (inum << 32) | fh[1];
2174 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2175 }
2176 
2177 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2178 		struct fid *fid, int fh_len, int fh_type)
2179 {
2180 	struct inode *inode;
2181 	struct dentry *dentry = NULL;
2182 	u64 inum = fid->raw[2];
2183 	inum = (inum << 32) | fid->raw[1];
2184 
2185 	if (fh_len < 3)
2186 		return NULL;
2187 
2188 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2189 			shmem_match, fid->raw);
2190 	if (inode) {
2191 		dentry = d_find_alias(inode);
2192 		iput(inode);
2193 	}
2194 
2195 	return dentry;
2196 }
2197 
2198 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2199 				int connectable)
2200 {
2201 	struct inode *inode = dentry->d_inode;
2202 
2203 	if (*len < 3) {
2204 		*len = 3;
2205 		return 255;
2206 	}
2207 
2208 	if (inode_unhashed(inode)) {
2209 		/* Unfortunately insert_inode_hash is not idempotent,
2210 		 * so as we hash inodes here rather than at creation
2211 		 * time, we need a lock to ensure we only try
2212 		 * to do it once
2213 		 */
2214 		static DEFINE_SPINLOCK(lock);
2215 		spin_lock(&lock);
2216 		if (inode_unhashed(inode))
2217 			__insert_inode_hash(inode,
2218 					    inode->i_ino + inode->i_generation);
2219 		spin_unlock(&lock);
2220 	}
2221 
2222 	fh[0] = inode->i_generation;
2223 	fh[1] = inode->i_ino;
2224 	fh[2] = ((__u64)inode->i_ino) >> 32;
2225 
2226 	*len = 3;
2227 	return 1;
2228 }
2229 
2230 static const struct export_operations shmem_export_ops = {
2231 	.get_parent     = shmem_get_parent,
2232 	.encode_fh      = shmem_encode_fh,
2233 	.fh_to_dentry	= shmem_fh_to_dentry,
2234 };
2235 
2236 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2237 			       bool remount)
2238 {
2239 	char *this_char, *value, *rest;
2240 	uid_t uid;
2241 	gid_t gid;
2242 
2243 	while (options != NULL) {
2244 		this_char = options;
2245 		for (;;) {
2246 			/*
2247 			 * NUL-terminate this option: unfortunately,
2248 			 * mount options form a comma-separated list,
2249 			 * but mpol's nodelist may also contain commas.
2250 			 */
2251 			options = strchr(options, ',');
2252 			if (options == NULL)
2253 				break;
2254 			options++;
2255 			if (!isdigit(*options)) {
2256 				options[-1] = '\0';
2257 				break;
2258 			}
2259 		}
2260 		if (!*this_char)
2261 			continue;
2262 		if ((value = strchr(this_char,'=')) != NULL) {
2263 			*value++ = 0;
2264 		} else {
2265 			printk(KERN_ERR
2266 			    "tmpfs: No value for mount option '%s'\n",
2267 			    this_char);
2268 			return 1;
2269 		}
2270 
2271 		if (!strcmp(this_char,"size")) {
2272 			unsigned long long size;
2273 			size = memparse(value,&rest);
2274 			if (*rest == '%') {
2275 				size <<= PAGE_SHIFT;
2276 				size *= totalram_pages;
2277 				do_div(size, 100);
2278 				rest++;
2279 			}
2280 			if (*rest)
2281 				goto bad_val;
2282 			sbinfo->max_blocks =
2283 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2284 		} else if (!strcmp(this_char,"nr_blocks")) {
2285 			sbinfo->max_blocks = memparse(value, &rest);
2286 			if (*rest)
2287 				goto bad_val;
2288 		} else if (!strcmp(this_char,"nr_inodes")) {
2289 			sbinfo->max_inodes = memparse(value, &rest);
2290 			if (*rest)
2291 				goto bad_val;
2292 		} else if (!strcmp(this_char,"mode")) {
2293 			if (remount)
2294 				continue;
2295 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2296 			if (*rest)
2297 				goto bad_val;
2298 		} else if (!strcmp(this_char,"uid")) {
2299 			if (remount)
2300 				continue;
2301 			uid = simple_strtoul(value, &rest, 0);
2302 			if (*rest)
2303 				goto bad_val;
2304 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2305 			if (!uid_valid(sbinfo->uid))
2306 				goto bad_val;
2307 		} else if (!strcmp(this_char,"gid")) {
2308 			if (remount)
2309 				continue;
2310 			gid = simple_strtoul(value, &rest, 0);
2311 			if (*rest)
2312 				goto bad_val;
2313 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2314 			if (!gid_valid(sbinfo->gid))
2315 				goto bad_val;
2316 		} else if (!strcmp(this_char,"mpol")) {
2317 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2318 				goto bad_val;
2319 		} else {
2320 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2321 			       this_char);
2322 			return 1;
2323 		}
2324 	}
2325 	return 0;
2326 
2327 bad_val:
2328 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2329 	       value, this_char);
2330 	return 1;
2331 
2332 }
2333 
2334 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2335 {
2336 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2337 	struct shmem_sb_info config = *sbinfo;
2338 	unsigned long inodes;
2339 	int error = -EINVAL;
2340 
2341 	if (shmem_parse_options(data, &config, true))
2342 		return error;
2343 
2344 	spin_lock(&sbinfo->stat_lock);
2345 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2346 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2347 		goto out;
2348 	if (config.max_inodes < inodes)
2349 		goto out;
2350 	/*
2351 	 * Those tests disallow limited->unlimited while any are in use;
2352 	 * but we must separately disallow unlimited->limited, because
2353 	 * in that case we have no record of how much is already in use.
2354 	 */
2355 	if (config.max_blocks && !sbinfo->max_blocks)
2356 		goto out;
2357 	if (config.max_inodes && !sbinfo->max_inodes)
2358 		goto out;
2359 
2360 	error = 0;
2361 	sbinfo->max_blocks  = config.max_blocks;
2362 	sbinfo->max_inodes  = config.max_inodes;
2363 	sbinfo->free_inodes = config.max_inodes - inodes;
2364 
2365 	mpol_put(sbinfo->mpol);
2366 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2367 out:
2368 	spin_unlock(&sbinfo->stat_lock);
2369 	return error;
2370 }
2371 
2372 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2373 {
2374 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2375 
2376 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2377 		seq_printf(seq, ",size=%luk",
2378 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2379 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2380 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2381 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2382 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2383 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2384 		seq_printf(seq, ",uid=%u",
2385 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2386 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2387 		seq_printf(seq, ",gid=%u",
2388 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2389 	shmem_show_mpol(seq, sbinfo->mpol);
2390 	return 0;
2391 }
2392 #endif /* CONFIG_TMPFS */
2393 
2394 static void shmem_put_super(struct super_block *sb)
2395 {
2396 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2397 
2398 	percpu_counter_destroy(&sbinfo->used_blocks);
2399 	kfree(sbinfo);
2400 	sb->s_fs_info = NULL;
2401 }
2402 
2403 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2404 {
2405 	struct inode *inode;
2406 	struct shmem_sb_info *sbinfo;
2407 	int err = -ENOMEM;
2408 
2409 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2410 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2411 				L1_CACHE_BYTES), GFP_KERNEL);
2412 	if (!sbinfo)
2413 		return -ENOMEM;
2414 
2415 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2416 	sbinfo->uid = current_fsuid();
2417 	sbinfo->gid = current_fsgid();
2418 	sb->s_fs_info = sbinfo;
2419 
2420 #ifdef CONFIG_TMPFS
2421 	/*
2422 	 * Per default we only allow half of the physical ram per
2423 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2424 	 * but the internal instance is left unlimited.
2425 	 */
2426 	if (!(sb->s_flags & MS_NOUSER)) {
2427 		sbinfo->max_blocks = shmem_default_max_blocks();
2428 		sbinfo->max_inodes = shmem_default_max_inodes();
2429 		if (shmem_parse_options(data, sbinfo, false)) {
2430 			err = -EINVAL;
2431 			goto failed;
2432 		}
2433 	}
2434 	sb->s_export_op = &shmem_export_ops;
2435 	sb->s_flags |= MS_NOSEC;
2436 #else
2437 	sb->s_flags |= MS_NOUSER;
2438 #endif
2439 
2440 	spin_lock_init(&sbinfo->stat_lock);
2441 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2442 		goto failed;
2443 	sbinfo->free_inodes = sbinfo->max_inodes;
2444 
2445 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2446 	sb->s_blocksize = PAGE_CACHE_SIZE;
2447 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2448 	sb->s_magic = TMPFS_MAGIC;
2449 	sb->s_op = &shmem_ops;
2450 	sb->s_time_gran = 1;
2451 #ifdef CONFIG_TMPFS_XATTR
2452 	sb->s_xattr = shmem_xattr_handlers;
2453 #endif
2454 #ifdef CONFIG_TMPFS_POSIX_ACL
2455 	sb->s_flags |= MS_POSIXACL;
2456 #endif
2457 
2458 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2459 	if (!inode)
2460 		goto failed;
2461 	inode->i_uid = sbinfo->uid;
2462 	inode->i_gid = sbinfo->gid;
2463 	sb->s_root = d_make_root(inode);
2464 	if (!sb->s_root)
2465 		goto failed;
2466 	return 0;
2467 
2468 failed:
2469 	shmem_put_super(sb);
2470 	return err;
2471 }
2472 
2473 static struct kmem_cache *shmem_inode_cachep;
2474 
2475 static struct inode *shmem_alloc_inode(struct super_block *sb)
2476 {
2477 	struct shmem_inode_info *info;
2478 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2479 	if (!info)
2480 		return NULL;
2481 	return &info->vfs_inode;
2482 }
2483 
2484 static void shmem_destroy_callback(struct rcu_head *head)
2485 {
2486 	struct inode *inode = container_of(head, struct inode, i_rcu);
2487 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2488 }
2489 
2490 static void shmem_destroy_inode(struct inode *inode)
2491 {
2492 	if (S_ISREG(inode->i_mode))
2493 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2494 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2495 }
2496 
2497 static void shmem_init_inode(void *foo)
2498 {
2499 	struct shmem_inode_info *info = foo;
2500 	inode_init_once(&info->vfs_inode);
2501 }
2502 
2503 static int shmem_init_inodecache(void)
2504 {
2505 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2506 				sizeof(struct shmem_inode_info),
2507 				0, SLAB_PANIC, shmem_init_inode);
2508 	return 0;
2509 }
2510 
2511 static void shmem_destroy_inodecache(void)
2512 {
2513 	kmem_cache_destroy(shmem_inode_cachep);
2514 }
2515 
2516 static const struct address_space_operations shmem_aops = {
2517 	.writepage	= shmem_writepage,
2518 	.set_page_dirty	= __set_page_dirty_no_writeback,
2519 #ifdef CONFIG_TMPFS
2520 	.write_begin	= shmem_write_begin,
2521 	.write_end	= shmem_write_end,
2522 #endif
2523 	.migratepage	= migrate_page,
2524 	.error_remove_page = generic_error_remove_page,
2525 };
2526 
2527 static const struct file_operations shmem_file_operations = {
2528 	.mmap		= shmem_mmap,
2529 #ifdef CONFIG_TMPFS
2530 	.llseek		= generic_file_llseek,
2531 	.read		= do_sync_read,
2532 	.write		= do_sync_write,
2533 	.aio_read	= shmem_file_aio_read,
2534 	.aio_write	= generic_file_aio_write,
2535 	.fsync		= noop_fsync,
2536 	.splice_read	= shmem_file_splice_read,
2537 	.splice_write	= generic_file_splice_write,
2538 	.fallocate	= shmem_fallocate,
2539 #endif
2540 };
2541 
2542 static const struct inode_operations shmem_inode_operations = {
2543 	.setattr	= shmem_setattr,
2544 #ifdef CONFIG_TMPFS_XATTR
2545 	.setxattr	= shmem_setxattr,
2546 	.getxattr	= shmem_getxattr,
2547 	.listxattr	= shmem_listxattr,
2548 	.removexattr	= shmem_removexattr,
2549 #endif
2550 };
2551 
2552 static const struct inode_operations shmem_dir_inode_operations = {
2553 #ifdef CONFIG_TMPFS
2554 	.create		= shmem_create,
2555 	.lookup		= simple_lookup,
2556 	.link		= shmem_link,
2557 	.unlink		= shmem_unlink,
2558 	.symlink	= shmem_symlink,
2559 	.mkdir		= shmem_mkdir,
2560 	.rmdir		= shmem_rmdir,
2561 	.mknod		= shmem_mknod,
2562 	.rename		= shmem_rename,
2563 #endif
2564 #ifdef CONFIG_TMPFS_XATTR
2565 	.setxattr	= shmem_setxattr,
2566 	.getxattr	= shmem_getxattr,
2567 	.listxattr	= shmem_listxattr,
2568 	.removexattr	= shmem_removexattr,
2569 #endif
2570 #ifdef CONFIG_TMPFS_POSIX_ACL
2571 	.setattr	= shmem_setattr,
2572 #endif
2573 };
2574 
2575 static const struct inode_operations shmem_special_inode_operations = {
2576 #ifdef CONFIG_TMPFS_XATTR
2577 	.setxattr	= shmem_setxattr,
2578 	.getxattr	= shmem_getxattr,
2579 	.listxattr	= shmem_listxattr,
2580 	.removexattr	= shmem_removexattr,
2581 #endif
2582 #ifdef CONFIG_TMPFS_POSIX_ACL
2583 	.setattr	= shmem_setattr,
2584 #endif
2585 };
2586 
2587 static const struct super_operations shmem_ops = {
2588 	.alloc_inode	= shmem_alloc_inode,
2589 	.destroy_inode	= shmem_destroy_inode,
2590 #ifdef CONFIG_TMPFS
2591 	.statfs		= shmem_statfs,
2592 	.remount_fs	= shmem_remount_fs,
2593 	.show_options	= shmem_show_options,
2594 #endif
2595 	.evict_inode	= shmem_evict_inode,
2596 	.drop_inode	= generic_delete_inode,
2597 	.put_super	= shmem_put_super,
2598 };
2599 
2600 static const struct vm_operations_struct shmem_vm_ops = {
2601 	.fault		= shmem_fault,
2602 #ifdef CONFIG_NUMA
2603 	.set_policy     = shmem_set_policy,
2604 	.get_policy     = shmem_get_policy,
2605 #endif
2606 };
2607 
2608 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2609 	int flags, const char *dev_name, void *data)
2610 {
2611 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2612 }
2613 
2614 static struct file_system_type shmem_fs_type = {
2615 	.owner		= THIS_MODULE,
2616 	.name		= "tmpfs",
2617 	.mount		= shmem_mount,
2618 	.kill_sb	= kill_litter_super,
2619 };
2620 
2621 int __init shmem_init(void)
2622 {
2623 	int error;
2624 
2625 	error = bdi_init(&shmem_backing_dev_info);
2626 	if (error)
2627 		goto out4;
2628 
2629 	error = shmem_init_inodecache();
2630 	if (error)
2631 		goto out3;
2632 
2633 	error = register_filesystem(&shmem_fs_type);
2634 	if (error) {
2635 		printk(KERN_ERR "Could not register tmpfs\n");
2636 		goto out2;
2637 	}
2638 
2639 	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2640 				 shmem_fs_type.name, NULL);
2641 	if (IS_ERR(shm_mnt)) {
2642 		error = PTR_ERR(shm_mnt);
2643 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2644 		goto out1;
2645 	}
2646 	return 0;
2647 
2648 out1:
2649 	unregister_filesystem(&shmem_fs_type);
2650 out2:
2651 	shmem_destroy_inodecache();
2652 out3:
2653 	bdi_destroy(&shmem_backing_dev_info);
2654 out4:
2655 	shm_mnt = ERR_PTR(error);
2656 	return error;
2657 }
2658 
2659 #else /* !CONFIG_SHMEM */
2660 
2661 /*
2662  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2663  *
2664  * This is intended for small system where the benefits of the full
2665  * shmem code (swap-backed and resource-limited) are outweighed by
2666  * their complexity. On systems without swap this code should be
2667  * effectively equivalent, but much lighter weight.
2668  */
2669 
2670 #include <linux/ramfs.h>
2671 
2672 static struct file_system_type shmem_fs_type = {
2673 	.name		= "tmpfs",
2674 	.mount		= ramfs_mount,
2675 	.kill_sb	= kill_litter_super,
2676 };
2677 
2678 int __init shmem_init(void)
2679 {
2680 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2681 
2682 	shm_mnt = kern_mount(&shmem_fs_type);
2683 	BUG_ON(IS_ERR(shm_mnt));
2684 
2685 	return 0;
2686 }
2687 
2688 int shmem_unuse(swp_entry_t swap, struct page *page)
2689 {
2690 	return 0;
2691 }
2692 
2693 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2694 {
2695 	return 0;
2696 }
2697 
2698 void shmem_unlock_mapping(struct address_space *mapping)
2699 {
2700 }
2701 
2702 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2703 {
2704 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2705 }
2706 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2707 
2708 #define shmem_vm_ops				generic_file_vm_ops
2709 #define shmem_file_operations			ramfs_file_operations
2710 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2711 #define shmem_acct_size(flags, size)		0
2712 #define shmem_unacct_size(flags, size)		do {} while (0)
2713 
2714 #endif /* CONFIG_SHMEM */
2715 
2716 /* common code */
2717 
2718 /**
2719  * shmem_file_setup - get an unlinked file living in tmpfs
2720  * @name: name for dentry (to be seen in /proc/<pid>/maps
2721  * @size: size to be set for the file
2722  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2723  */
2724 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2725 {
2726 	int error;
2727 	struct file *file;
2728 	struct inode *inode;
2729 	struct path path;
2730 	struct dentry *root;
2731 	struct qstr this;
2732 
2733 	if (IS_ERR(shm_mnt))
2734 		return (void *)shm_mnt;
2735 
2736 	if (size < 0 || size > MAX_LFS_FILESIZE)
2737 		return ERR_PTR(-EINVAL);
2738 
2739 	if (shmem_acct_size(flags, size))
2740 		return ERR_PTR(-ENOMEM);
2741 
2742 	error = -ENOMEM;
2743 	this.name = name;
2744 	this.len = strlen(name);
2745 	this.hash = 0; /* will go */
2746 	root = shm_mnt->mnt_root;
2747 	path.dentry = d_alloc(root, &this);
2748 	if (!path.dentry)
2749 		goto put_memory;
2750 	path.mnt = mntget(shm_mnt);
2751 
2752 	error = -ENOSPC;
2753 	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2754 	if (!inode)
2755 		goto put_dentry;
2756 
2757 	d_instantiate(path.dentry, inode);
2758 	inode->i_size = size;
2759 	clear_nlink(inode);	/* It is unlinked */
2760 #ifndef CONFIG_MMU
2761 	error = ramfs_nommu_expand_for_mapping(inode, size);
2762 	if (error)
2763 		goto put_dentry;
2764 #endif
2765 
2766 	error = -ENFILE;
2767 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2768 		  &shmem_file_operations);
2769 	if (!file)
2770 		goto put_dentry;
2771 
2772 	return file;
2773 
2774 put_dentry:
2775 	path_put(&path);
2776 put_memory:
2777 	shmem_unacct_size(flags, size);
2778 	return ERR_PTR(error);
2779 }
2780 EXPORT_SYMBOL_GPL(shmem_file_setup);
2781 
2782 /**
2783  * shmem_zero_setup - setup a shared anonymous mapping
2784  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2785  */
2786 int shmem_zero_setup(struct vm_area_struct *vma)
2787 {
2788 	struct file *file;
2789 	loff_t size = vma->vm_end - vma->vm_start;
2790 
2791 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2792 	if (IS_ERR(file))
2793 		return PTR_ERR(file);
2794 
2795 	if (vma->vm_file)
2796 		fput(vma->vm_file);
2797 	vma->vm_file = file;
2798 	vma->vm_ops = &shmem_vm_ops;
2799 	vma->vm_flags |= VM_CAN_NONLINEAR;
2800 	return 0;
2801 }
2802 
2803 /**
2804  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2805  * @mapping:	the page's address_space
2806  * @index:	the page index
2807  * @gfp:	the page allocator flags to use if allocating
2808  *
2809  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2810  * with any new page allocations done using the specified allocation flags.
2811  * But read_cache_page_gfp() uses the ->readpage() method: which does not
2812  * suit tmpfs, since it may have pages in swapcache, and needs to find those
2813  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2814  *
2815  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2816  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2817  */
2818 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2819 					 pgoff_t index, gfp_t gfp)
2820 {
2821 #ifdef CONFIG_SHMEM
2822 	struct inode *inode = mapping->host;
2823 	struct page *page;
2824 	int error;
2825 
2826 	BUG_ON(mapping->a_ops != &shmem_aops);
2827 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2828 	if (error)
2829 		page = ERR_PTR(error);
2830 	else
2831 		unlock_page(page);
2832 	return page;
2833 #else
2834 	/*
2835 	 * The tiny !SHMEM case uses ramfs without swap
2836 	 */
2837 	return read_cache_page_gfp(mapping, index, gfp);
2838 #endif
2839 }
2840 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
2841