1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/pagemap.h> 29 #include <linux/file.h> 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/swap.h> 33 34 static struct vfsmount *shm_mnt; 35 36 #ifdef CONFIG_SHMEM 37 /* 38 * This virtual memory filesystem is heavily based on the ramfs. It 39 * extends ramfs by the ability to use swap and honor resource limits 40 * which makes it a completely usable filesystem. 41 */ 42 43 #include <linux/xattr.h> 44 #include <linux/exportfs.h> 45 #include <linux/posix_acl.h> 46 #include <linux/generic_acl.h> 47 #include <linux/mman.h> 48 #include <linux/string.h> 49 #include <linux/slab.h> 50 #include <linux/backing-dev.h> 51 #include <linux/shmem_fs.h> 52 #include <linux/writeback.h> 53 #include <linux/blkdev.h> 54 #include <linux/pagevec.h> 55 #include <linux/percpu_counter.h> 56 #include <linux/falloc.h> 57 #include <linux/splice.h> 58 #include <linux/security.h> 59 #include <linux/swapops.h> 60 #include <linux/mempolicy.h> 61 #include <linux/namei.h> 62 #include <linux/ctype.h> 63 #include <linux/migrate.h> 64 #include <linux/highmem.h> 65 #include <linux/seq_file.h> 66 #include <linux/magic.h> 67 68 #include <asm/uaccess.h> 69 #include <asm/pgtable.h> 70 71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 73 74 /* Pretend that each entry is of this size in directory's i_size */ 75 #define BOGO_DIRENT_SIZE 20 76 77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 78 #define SHORT_SYMLINK_LEN 128 79 80 struct shmem_xattr { 81 struct list_head list; /* anchored by shmem_inode_info->xattr_list */ 82 char *name; /* xattr name */ 83 size_t size; 84 char value[0]; 85 }; 86 87 /* Flag allocation requirements to shmem_getpage */ 88 enum sgp_type { 89 SGP_READ, /* don't exceed i_size, don't allocate page */ 90 SGP_CACHE, /* don't exceed i_size, may allocate page */ 91 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 92 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ 93 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ 94 }; 95 96 #ifdef CONFIG_TMPFS 97 static unsigned long shmem_default_max_blocks(void) 98 { 99 return totalram_pages / 2; 100 } 101 102 static unsigned long shmem_default_max_inodes(void) 103 { 104 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 105 } 106 #endif 107 108 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 109 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 110 struct shmem_inode_info *info, pgoff_t index); 111 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 112 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); 113 114 static inline int shmem_getpage(struct inode *inode, pgoff_t index, 115 struct page **pagep, enum sgp_type sgp, int *fault_type) 116 { 117 return shmem_getpage_gfp(inode, index, pagep, sgp, 118 mapping_gfp_mask(inode->i_mapping), fault_type); 119 } 120 121 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 122 { 123 return sb->s_fs_info; 124 } 125 126 /* 127 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 128 * for shared memory and for shared anonymous (/dev/zero) mappings 129 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 130 * consistent with the pre-accounting of private mappings ... 131 */ 132 static inline int shmem_acct_size(unsigned long flags, loff_t size) 133 { 134 return (flags & VM_NORESERVE) ? 135 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 136 } 137 138 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 139 { 140 if (!(flags & VM_NORESERVE)) 141 vm_unacct_memory(VM_ACCT(size)); 142 } 143 144 /* 145 * ... whereas tmpfs objects are accounted incrementally as 146 * pages are allocated, in order to allow huge sparse files. 147 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 148 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 149 */ 150 static inline int shmem_acct_block(unsigned long flags) 151 { 152 return (flags & VM_NORESERVE) ? 153 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0; 154 } 155 156 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 157 { 158 if (flags & VM_NORESERVE) 159 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 160 } 161 162 static const struct super_operations shmem_ops; 163 static const struct address_space_operations shmem_aops; 164 static const struct file_operations shmem_file_operations; 165 static const struct inode_operations shmem_inode_operations; 166 static const struct inode_operations shmem_dir_inode_operations; 167 static const struct inode_operations shmem_special_inode_operations; 168 static const struct vm_operations_struct shmem_vm_ops; 169 170 static struct backing_dev_info shmem_backing_dev_info __read_mostly = { 171 .ra_pages = 0, /* No readahead */ 172 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 173 }; 174 175 static LIST_HEAD(shmem_swaplist); 176 static DEFINE_MUTEX(shmem_swaplist_mutex); 177 178 static int shmem_reserve_inode(struct super_block *sb) 179 { 180 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 181 if (sbinfo->max_inodes) { 182 spin_lock(&sbinfo->stat_lock); 183 if (!sbinfo->free_inodes) { 184 spin_unlock(&sbinfo->stat_lock); 185 return -ENOSPC; 186 } 187 sbinfo->free_inodes--; 188 spin_unlock(&sbinfo->stat_lock); 189 } 190 return 0; 191 } 192 193 static void shmem_free_inode(struct super_block *sb) 194 { 195 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 196 if (sbinfo->max_inodes) { 197 spin_lock(&sbinfo->stat_lock); 198 sbinfo->free_inodes++; 199 spin_unlock(&sbinfo->stat_lock); 200 } 201 } 202 203 /** 204 * shmem_recalc_inode - recalculate the block usage of an inode 205 * @inode: inode to recalc 206 * 207 * We have to calculate the free blocks since the mm can drop 208 * undirtied hole pages behind our back. 209 * 210 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 211 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 212 * 213 * It has to be called with the spinlock held. 214 */ 215 static void shmem_recalc_inode(struct inode *inode) 216 { 217 struct shmem_inode_info *info = SHMEM_I(inode); 218 long freed; 219 220 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 221 if (freed > 0) { 222 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 223 if (sbinfo->max_blocks) 224 percpu_counter_add(&sbinfo->used_blocks, -freed); 225 info->alloced -= freed; 226 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 227 shmem_unacct_blocks(info->flags, freed); 228 } 229 } 230 231 /* 232 * Replace item expected in radix tree by a new item, while holding tree lock. 233 */ 234 static int shmem_radix_tree_replace(struct address_space *mapping, 235 pgoff_t index, void *expected, void *replacement) 236 { 237 void **pslot; 238 void *item = NULL; 239 240 VM_BUG_ON(!expected); 241 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 242 if (pslot) 243 item = radix_tree_deref_slot_protected(pslot, 244 &mapping->tree_lock); 245 if (item != expected) 246 return -ENOENT; 247 if (replacement) 248 radix_tree_replace_slot(pslot, replacement); 249 else 250 radix_tree_delete(&mapping->page_tree, index); 251 return 0; 252 } 253 254 /* 255 * Like add_to_page_cache_locked, but error if expected item has gone. 256 */ 257 static int shmem_add_to_page_cache(struct page *page, 258 struct address_space *mapping, 259 pgoff_t index, gfp_t gfp, void *expected) 260 { 261 int error = 0; 262 263 VM_BUG_ON(!PageLocked(page)); 264 VM_BUG_ON(!PageSwapBacked(page)); 265 266 if (!expected) 267 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK); 268 if (!error) { 269 page_cache_get(page); 270 page->mapping = mapping; 271 page->index = index; 272 273 spin_lock_irq(&mapping->tree_lock); 274 if (!expected) 275 error = radix_tree_insert(&mapping->page_tree, 276 index, page); 277 else 278 error = shmem_radix_tree_replace(mapping, index, 279 expected, page); 280 if (!error) { 281 mapping->nrpages++; 282 __inc_zone_page_state(page, NR_FILE_PAGES); 283 __inc_zone_page_state(page, NR_SHMEM); 284 spin_unlock_irq(&mapping->tree_lock); 285 } else { 286 page->mapping = NULL; 287 spin_unlock_irq(&mapping->tree_lock); 288 page_cache_release(page); 289 } 290 if (!expected) 291 radix_tree_preload_end(); 292 } 293 if (error) 294 mem_cgroup_uncharge_cache_page(page); 295 return error; 296 } 297 298 /* 299 * Like delete_from_page_cache, but substitutes swap for page. 300 */ 301 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 302 { 303 struct address_space *mapping = page->mapping; 304 int error; 305 306 spin_lock_irq(&mapping->tree_lock); 307 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 308 page->mapping = NULL; 309 mapping->nrpages--; 310 __dec_zone_page_state(page, NR_FILE_PAGES); 311 __dec_zone_page_state(page, NR_SHMEM); 312 spin_unlock_irq(&mapping->tree_lock); 313 page_cache_release(page); 314 BUG_ON(error); 315 } 316 317 /* 318 * Like find_get_pages, but collecting swap entries as well as pages. 319 */ 320 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping, 321 pgoff_t start, unsigned int nr_pages, 322 struct page **pages, pgoff_t *indices) 323 { 324 unsigned int i; 325 unsigned int ret; 326 unsigned int nr_found; 327 328 rcu_read_lock(); 329 restart: 330 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 331 (void ***)pages, indices, start, nr_pages); 332 ret = 0; 333 for (i = 0; i < nr_found; i++) { 334 struct page *page; 335 repeat: 336 page = radix_tree_deref_slot((void **)pages[i]); 337 if (unlikely(!page)) 338 continue; 339 if (radix_tree_exception(page)) { 340 if (radix_tree_deref_retry(page)) 341 goto restart; 342 /* 343 * Otherwise, we must be storing a swap entry 344 * here as an exceptional entry: so return it 345 * without attempting to raise page count. 346 */ 347 goto export; 348 } 349 if (!page_cache_get_speculative(page)) 350 goto repeat; 351 352 /* Has the page moved? */ 353 if (unlikely(page != *((void **)pages[i]))) { 354 page_cache_release(page); 355 goto repeat; 356 } 357 export: 358 indices[ret] = indices[i]; 359 pages[ret] = page; 360 ret++; 361 } 362 if (unlikely(!ret && nr_found)) 363 goto restart; 364 rcu_read_unlock(); 365 return ret; 366 } 367 368 /* 369 * Remove swap entry from radix tree, free the swap and its page cache. 370 */ 371 static int shmem_free_swap(struct address_space *mapping, 372 pgoff_t index, void *radswap) 373 { 374 int error; 375 376 spin_lock_irq(&mapping->tree_lock); 377 error = shmem_radix_tree_replace(mapping, index, radswap, NULL); 378 spin_unlock_irq(&mapping->tree_lock); 379 if (!error) 380 free_swap_and_cache(radix_to_swp_entry(radswap)); 381 return error; 382 } 383 384 /* 385 * Pagevec may contain swap entries, so shuffle up pages before releasing. 386 */ 387 static void shmem_deswap_pagevec(struct pagevec *pvec) 388 { 389 int i, j; 390 391 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 392 struct page *page = pvec->pages[i]; 393 if (!radix_tree_exceptional_entry(page)) 394 pvec->pages[j++] = page; 395 } 396 pvec->nr = j; 397 } 398 399 /* 400 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 401 */ 402 void shmem_unlock_mapping(struct address_space *mapping) 403 { 404 struct pagevec pvec; 405 pgoff_t indices[PAGEVEC_SIZE]; 406 pgoff_t index = 0; 407 408 pagevec_init(&pvec, 0); 409 /* 410 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 411 */ 412 while (!mapping_unevictable(mapping)) { 413 /* 414 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 415 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 416 */ 417 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 418 PAGEVEC_SIZE, pvec.pages, indices); 419 if (!pvec.nr) 420 break; 421 index = indices[pvec.nr - 1] + 1; 422 shmem_deswap_pagevec(&pvec); 423 check_move_unevictable_pages(pvec.pages, pvec.nr); 424 pagevec_release(&pvec); 425 cond_resched(); 426 } 427 } 428 429 /* 430 * Remove range of pages and swap entries from radix tree, and free them. 431 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 432 */ 433 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 434 bool unfalloc) 435 { 436 struct address_space *mapping = inode->i_mapping; 437 struct shmem_inode_info *info = SHMEM_I(inode); 438 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 439 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT; 440 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1); 441 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 442 struct pagevec pvec; 443 pgoff_t indices[PAGEVEC_SIZE]; 444 long nr_swaps_freed = 0; 445 pgoff_t index; 446 int i; 447 448 if (lend == -1) 449 end = -1; /* unsigned, so actually very big */ 450 451 pagevec_init(&pvec, 0); 452 index = start; 453 while (index < end) { 454 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 455 min(end - index, (pgoff_t)PAGEVEC_SIZE), 456 pvec.pages, indices); 457 if (!pvec.nr) 458 break; 459 mem_cgroup_uncharge_start(); 460 for (i = 0; i < pagevec_count(&pvec); i++) { 461 struct page *page = pvec.pages[i]; 462 463 index = indices[i]; 464 if (index >= end) 465 break; 466 467 if (radix_tree_exceptional_entry(page)) { 468 if (unfalloc) 469 continue; 470 nr_swaps_freed += !shmem_free_swap(mapping, 471 index, page); 472 continue; 473 } 474 475 if (!trylock_page(page)) 476 continue; 477 if (!unfalloc || !PageUptodate(page)) { 478 if (page->mapping == mapping) { 479 VM_BUG_ON(PageWriteback(page)); 480 truncate_inode_page(mapping, page); 481 } 482 } 483 unlock_page(page); 484 } 485 shmem_deswap_pagevec(&pvec); 486 pagevec_release(&pvec); 487 mem_cgroup_uncharge_end(); 488 cond_resched(); 489 index++; 490 } 491 492 if (partial_start) { 493 struct page *page = NULL; 494 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); 495 if (page) { 496 unsigned int top = PAGE_CACHE_SIZE; 497 if (start > end) { 498 top = partial_end; 499 partial_end = 0; 500 } 501 zero_user_segment(page, partial_start, top); 502 set_page_dirty(page); 503 unlock_page(page); 504 page_cache_release(page); 505 } 506 } 507 if (partial_end) { 508 struct page *page = NULL; 509 shmem_getpage(inode, end, &page, SGP_READ, NULL); 510 if (page) { 511 zero_user_segment(page, 0, partial_end); 512 set_page_dirty(page); 513 unlock_page(page); 514 page_cache_release(page); 515 } 516 } 517 if (start >= end) 518 return; 519 520 index = start; 521 for ( ; ; ) { 522 cond_resched(); 523 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 524 min(end - index, (pgoff_t)PAGEVEC_SIZE), 525 pvec.pages, indices); 526 if (!pvec.nr) { 527 if (index == start || unfalloc) 528 break; 529 index = start; 530 continue; 531 } 532 if ((index == start || unfalloc) && indices[0] >= end) { 533 shmem_deswap_pagevec(&pvec); 534 pagevec_release(&pvec); 535 break; 536 } 537 mem_cgroup_uncharge_start(); 538 for (i = 0; i < pagevec_count(&pvec); i++) { 539 struct page *page = pvec.pages[i]; 540 541 index = indices[i]; 542 if (index >= end) 543 break; 544 545 if (radix_tree_exceptional_entry(page)) { 546 if (unfalloc) 547 continue; 548 nr_swaps_freed += !shmem_free_swap(mapping, 549 index, page); 550 continue; 551 } 552 553 lock_page(page); 554 if (!unfalloc || !PageUptodate(page)) { 555 if (page->mapping == mapping) { 556 VM_BUG_ON(PageWriteback(page)); 557 truncate_inode_page(mapping, page); 558 } 559 } 560 unlock_page(page); 561 } 562 shmem_deswap_pagevec(&pvec); 563 pagevec_release(&pvec); 564 mem_cgroup_uncharge_end(); 565 index++; 566 } 567 568 spin_lock(&info->lock); 569 info->swapped -= nr_swaps_freed; 570 shmem_recalc_inode(inode); 571 spin_unlock(&info->lock); 572 } 573 574 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 575 { 576 shmem_undo_range(inode, lstart, lend, false); 577 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 578 } 579 EXPORT_SYMBOL_GPL(shmem_truncate_range); 580 581 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 582 { 583 struct inode *inode = dentry->d_inode; 584 int error; 585 586 error = inode_change_ok(inode, attr); 587 if (error) 588 return error; 589 590 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 591 loff_t oldsize = inode->i_size; 592 loff_t newsize = attr->ia_size; 593 594 if (newsize != oldsize) { 595 i_size_write(inode, newsize); 596 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 597 } 598 if (newsize < oldsize) { 599 loff_t holebegin = round_up(newsize, PAGE_SIZE); 600 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 601 shmem_truncate_range(inode, newsize, (loff_t)-1); 602 /* unmap again to remove racily COWed private pages */ 603 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 604 } 605 } 606 607 setattr_copy(inode, attr); 608 #ifdef CONFIG_TMPFS_POSIX_ACL 609 if (attr->ia_valid & ATTR_MODE) 610 error = generic_acl_chmod(inode); 611 #endif 612 return error; 613 } 614 615 static void shmem_evict_inode(struct inode *inode) 616 { 617 struct shmem_inode_info *info = SHMEM_I(inode); 618 struct shmem_xattr *xattr, *nxattr; 619 620 if (inode->i_mapping->a_ops == &shmem_aops) { 621 shmem_unacct_size(info->flags, inode->i_size); 622 inode->i_size = 0; 623 shmem_truncate_range(inode, 0, (loff_t)-1); 624 if (!list_empty(&info->swaplist)) { 625 mutex_lock(&shmem_swaplist_mutex); 626 list_del_init(&info->swaplist); 627 mutex_unlock(&shmem_swaplist_mutex); 628 } 629 } else 630 kfree(info->symlink); 631 632 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) { 633 kfree(xattr->name); 634 kfree(xattr); 635 } 636 BUG_ON(inode->i_blocks); 637 shmem_free_inode(inode->i_sb); 638 clear_inode(inode); 639 } 640 641 /* 642 * If swap found in inode, free it and move page from swapcache to filecache. 643 */ 644 static int shmem_unuse_inode(struct shmem_inode_info *info, 645 swp_entry_t swap, struct page **pagep) 646 { 647 struct address_space *mapping = info->vfs_inode.i_mapping; 648 void *radswap; 649 pgoff_t index; 650 gfp_t gfp; 651 int error = 0; 652 653 radswap = swp_to_radix_entry(swap); 654 index = radix_tree_locate_item(&mapping->page_tree, radswap); 655 if (index == -1) 656 return 0; 657 658 /* 659 * Move _head_ to start search for next from here. 660 * But be careful: shmem_evict_inode checks list_empty without taking 661 * mutex, and there's an instant in list_move_tail when info->swaplist 662 * would appear empty, if it were the only one on shmem_swaplist. 663 */ 664 if (shmem_swaplist.next != &info->swaplist) 665 list_move_tail(&shmem_swaplist, &info->swaplist); 666 667 gfp = mapping_gfp_mask(mapping); 668 if (shmem_should_replace_page(*pagep, gfp)) { 669 mutex_unlock(&shmem_swaplist_mutex); 670 error = shmem_replace_page(pagep, gfp, info, index); 671 mutex_lock(&shmem_swaplist_mutex); 672 /* 673 * We needed to drop mutex to make that restrictive page 674 * allocation; but the inode might already be freed by now, 675 * and we cannot refer to inode or mapping or info to check. 676 * However, we do hold page lock on the PageSwapCache page, 677 * so can check if that still has our reference remaining. 678 */ 679 if (!page_swapcount(*pagep)) 680 error = -ENOENT; 681 } 682 683 /* 684 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 685 * but also to hold up shmem_evict_inode(): so inode cannot be freed 686 * beneath us (pagelock doesn't help until the page is in pagecache). 687 */ 688 if (!error) 689 error = shmem_add_to_page_cache(*pagep, mapping, index, 690 GFP_NOWAIT, radswap); 691 if (error != -ENOMEM) { 692 /* 693 * Truncation and eviction use free_swap_and_cache(), which 694 * only does trylock page: if we raced, best clean up here. 695 */ 696 delete_from_swap_cache(*pagep); 697 set_page_dirty(*pagep); 698 if (!error) { 699 spin_lock(&info->lock); 700 info->swapped--; 701 spin_unlock(&info->lock); 702 swap_free(swap); 703 } 704 error = 1; /* not an error, but entry was found */ 705 } 706 return error; 707 } 708 709 /* 710 * Search through swapped inodes to find and replace swap by page. 711 */ 712 int shmem_unuse(swp_entry_t swap, struct page *page) 713 { 714 struct list_head *this, *next; 715 struct shmem_inode_info *info; 716 int found = 0; 717 int error = 0; 718 719 /* 720 * There's a faint possibility that swap page was replaced before 721 * caller locked it: it will come back later with the right page. 722 */ 723 if (unlikely(!PageSwapCache(page))) 724 goto out; 725 726 /* 727 * Charge page using GFP_KERNEL while we can wait, before taking 728 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 729 * Charged back to the user (not to caller) when swap account is used. 730 */ 731 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); 732 if (error) 733 goto out; 734 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 735 736 mutex_lock(&shmem_swaplist_mutex); 737 list_for_each_safe(this, next, &shmem_swaplist) { 738 info = list_entry(this, struct shmem_inode_info, swaplist); 739 if (info->swapped) 740 found = shmem_unuse_inode(info, swap, &page); 741 else 742 list_del_init(&info->swaplist); 743 cond_resched(); 744 if (found) 745 break; 746 } 747 mutex_unlock(&shmem_swaplist_mutex); 748 749 if (found < 0) 750 error = found; 751 out: 752 unlock_page(page); 753 page_cache_release(page); 754 return error; 755 } 756 757 /* 758 * Move the page from the page cache to the swap cache. 759 */ 760 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 761 { 762 struct shmem_inode_info *info; 763 struct address_space *mapping; 764 struct inode *inode; 765 swp_entry_t swap; 766 pgoff_t index; 767 768 BUG_ON(!PageLocked(page)); 769 mapping = page->mapping; 770 index = page->index; 771 inode = mapping->host; 772 info = SHMEM_I(inode); 773 if (info->flags & VM_LOCKED) 774 goto redirty; 775 if (!total_swap_pages) 776 goto redirty; 777 778 /* 779 * shmem_backing_dev_info's capabilities prevent regular writeback or 780 * sync from ever calling shmem_writepage; but a stacking filesystem 781 * might use ->writepage of its underlying filesystem, in which case 782 * tmpfs should write out to swap only in response to memory pressure, 783 * and not for the writeback threads or sync. 784 */ 785 if (!wbc->for_reclaim) { 786 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 787 goto redirty; 788 } 789 790 /* 791 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 792 * value into swapfile.c, the only way we can correctly account for a 793 * fallocated page arriving here is now to initialize it and write it. 794 */ 795 if (!PageUptodate(page)) { 796 clear_highpage(page); 797 flush_dcache_page(page); 798 SetPageUptodate(page); 799 } 800 801 swap = get_swap_page(); 802 if (!swap.val) 803 goto redirty; 804 805 /* 806 * Add inode to shmem_unuse()'s list of swapped-out inodes, 807 * if it's not already there. Do it now before the page is 808 * moved to swap cache, when its pagelock no longer protects 809 * the inode from eviction. But don't unlock the mutex until 810 * we've incremented swapped, because shmem_unuse_inode() will 811 * prune a !swapped inode from the swaplist under this mutex. 812 */ 813 mutex_lock(&shmem_swaplist_mutex); 814 if (list_empty(&info->swaplist)) 815 list_add_tail(&info->swaplist, &shmem_swaplist); 816 817 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 818 swap_shmem_alloc(swap); 819 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 820 821 spin_lock(&info->lock); 822 info->swapped++; 823 shmem_recalc_inode(inode); 824 spin_unlock(&info->lock); 825 826 mutex_unlock(&shmem_swaplist_mutex); 827 BUG_ON(page_mapped(page)); 828 swap_writepage(page, wbc); 829 return 0; 830 } 831 832 mutex_unlock(&shmem_swaplist_mutex); 833 swapcache_free(swap, NULL); 834 redirty: 835 set_page_dirty(page); 836 if (wbc->for_reclaim) 837 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 838 unlock_page(page); 839 return 0; 840 } 841 842 #ifdef CONFIG_NUMA 843 #ifdef CONFIG_TMPFS 844 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 845 { 846 char buffer[64]; 847 848 if (!mpol || mpol->mode == MPOL_DEFAULT) 849 return; /* show nothing */ 850 851 mpol_to_str(buffer, sizeof(buffer), mpol, 1); 852 853 seq_printf(seq, ",mpol=%s", buffer); 854 } 855 856 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 857 { 858 struct mempolicy *mpol = NULL; 859 if (sbinfo->mpol) { 860 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 861 mpol = sbinfo->mpol; 862 mpol_get(mpol); 863 spin_unlock(&sbinfo->stat_lock); 864 } 865 return mpol; 866 } 867 #endif /* CONFIG_TMPFS */ 868 869 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 870 struct shmem_inode_info *info, pgoff_t index) 871 { 872 struct mempolicy mpol, *spol; 873 struct vm_area_struct pvma; 874 875 spol = mpol_cond_copy(&mpol, 876 mpol_shared_policy_lookup(&info->policy, index)); 877 878 /* Create a pseudo vma that just contains the policy */ 879 pvma.vm_start = 0; 880 pvma.vm_pgoff = index; 881 pvma.vm_ops = NULL; 882 pvma.vm_policy = spol; 883 return swapin_readahead(swap, gfp, &pvma, 0); 884 } 885 886 static struct page *shmem_alloc_page(gfp_t gfp, 887 struct shmem_inode_info *info, pgoff_t index) 888 { 889 struct vm_area_struct pvma; 890 891 /* Create a pseudo vma that just contains the policy */ 892 pvma.vm_start = 0; 893 pvma.vm_pgoff = index; 894 pvma.vm_ops = NULL; 895 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 896 897 /* 898 * alloc_page_vma() will drop the shared policy reference 899 */ 900 return alloc_page_vma(gfp, &pvma, 0); 901 } 902 #else /* !CONFIG_NUMA */ 903 #ifdef CONFIG_TMPFS 904 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 905 { 906 } 907 #endif /* CONFIG_TMPFS */ 908 909 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 910 struct shmem_inode_info *info, pgoff_t index) 911 { 912 return swapin_readahead(swap, gfp, NULL, 0); 913 } 914 915 static inline struct page *shmem_alloc_page(gfp_t gfp, 916 struct shmem_inode_info *info, pgoff_t index) 917 { 918 return alloc_page(gfp); 919 } 920 #endif /* CONFIG_NUMA */ 921 922 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 923 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 924 { 925 return NULL; 926 } 927 #endif 928 929 /* 930 * When a page is moved from swapcache to shmem filecache (either by the 931 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 932 * shmem_unuse_inode()), it may have been read in earlier from swap, in 933 * ignorance of the mapping it belongs to. If that mapping has special 934 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 935 * we may need to copy to a suitable page before moving to filecache. 936 * 937 * In a future release, this may well be extended to respect cpuset and 938 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 939 * but for now it is a simple matter of zone. 940 */ 941 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 942 { 943 return page_zonenum(page) > gfp_zone(gfp); 944 } 945 946 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 947 struct shmem_inode_info *info, pgoff_t index) 948 { 949 struct page *oldpage, *newpage; 950 struct address_space *swap_mapping; 951 pgoff_t swap_index; 952 int error; 953 954 oldpage = *pagep; 955 swap_index = page_private(oldpage); 956 swap_mapping = page_mapping(oldpage); 957 958 /* 959 * We have arrived here because our zones are constrained, so don't 960 * limit chance of success by further cpuset and node constraints. 961 */ 962 gfp &= ~GFP_CONSTRAINT_MASK; 963 newpage = shmem_alloc_page(gfp, info, index); 964 if (!newpage) 965 return -ENOMEM; 966 VM_BUG_ON(shmem_should_replace_page(newpage, gfp)); 967 968 *pagep = newpage; 969 page_cache_get(newpage); 970 copy_highpage(newpage, oldpage); 971 972 VM_BUG_ON(!PageLocked(oldpage)); 973 __set_page_locked(newpage); 974 VM_BUG_ON(!PageUptodate(oldpage)); 975 SetPageUptodate(newpage); 976 VM_BUG_ON(!PageSwapBacked(oldpage)); 977 SetPageSwapBacked(newpage); 978 VM_BUG_ON(!swap_index); 979 set_page_private(newpage, swap_index); 980 VM_BUG_ON(!PageSwapCache(oldpage)); 981 SetPageSwapCache(newpage); 982 983 /* 984 * Our caller will very soon move newpage out of swapcache, but it's 985 * a nice clean interface for us to replace oldpage by newpage there. 986 */ 987 spin_lock_irq(&swap_mapping->tree_lock); 988 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 989 newpage); 990 __inc_zone_page_state(newpage, NR_FILE_PAGES); 991 __dec_zone_page_state(oldpage, NR_FILE_PAGES); 992 spin_unlock_irq(&swap_mapping->tree_lock); 993 BUG_ON(error); 994 995 mem_cgroup_replace_page_cache(oldpage, newpage); 996 lru_cache_add_anon(newpage); 997 998 ClearPageSwapCache(oldpage); 999 set_page_private(oldpage, 0); 1000 1001 unlock_page(oldpage); 1002 page_cache_release(oldpage); 1003 page_cache_release(oldpage); 1004 return 0; 1005 } 1006 1007 /* 1008 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1009 * 1010 * If we allocate a new one we do not mark it dirty. That's up to the 1011 * vm. If we swap it in we mark it dirty since we also free the swap 1012 * entry since a page cannot live in both the swap and page cache 1013 */ 1014 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1015 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) 1016 { 1017 struct address_space *mapping = inode->i_mapping; 1018 struct shmem_inode_info *info; 1019 struct shmem_sb_info *sbinfo; 1020 struct page *page; 1021 swp_entry_t swap; 1022 int error; 1023 int once = 0; 1024 int alloced = 0; 1025 1026 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT)) 1027 return -EFBIG; 1028 repeat: 1029 swap.val = 0; 1030 page = find_lock_page(mapping, index); 1031 if (radix_tree_exceptional_entry(page)) { 1032 swap = radix_to_swp_entry(page); 1033 page = NULL; 1034 } 1035 1036 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1037 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1038 error = -EINVAL; 1039 goto failed; 1040 } 1041 1042 /* fallocated page? */ 1043 if (page && !PageUptodate(page)) { 1044 if (sgp != SGP_READ) 1045 goto clear; 1046 unlock_page(page); 1047 page_cache_release(page); 1048 page = NULL; 1049 } 1050 if (page || (sgp == SGP_READ && !swap.val)) { 1051 *pagep = page; 1052 return 0; 1053 } 1054 1055 /* 1056 * Fast cache lookup did not find it: 1057 * bring it back from swap or allocate. 1058 */ 1059 info = SHMEM_I(inode); 1060 sbinfo = SHMEM_SB(inode->i_sb); 1061 1062 if (swap.val) { 1063 /* Look it up and read it in.. */ 1064 page = lookup_swap_cache(swap); 1065 if (!page) { 1066 /* here we actually do the io */ 1067 if (fault_type) 1068 *fault_type |= VM_FAULT_MAJOR; 1069 page = shmem_swapin(swap, gfp, info, index); 1070 if (!page) { 1071 error = -ENOMEM; 1072 goto failed; 1073 } 1074 } 1075 1076 /* We have to do this with page locked to prevent races */ 1077 lock_page(page); 1078 if (!PageSwapCache(page) || page->mapping) { 1079 error = -EEXIST; /* try again */ 1080 goto failed; 1081 } 1082 if (!PageUptodate(page)) { 1083 error = -EIO; 1084 goto failed; 1085 } 1086 wait_on_page_writeback(page); 1087 1088 if (shmem_should_replace_page(page, gfp)) { 1089 error = shmem_replace_page(&page, gfp, info, index); 1090 if (error) 1091 goto failed; 1092 } 1093 1094 error = mem_cgroup_cache_charge(page, current->mm, 1095 gfp & GFP_RECLAIM_MASK); 1096 if (!error) 1097 error = shmem_add_to_page_cache(page, mapping, index, 1098 gfp, swp_to_radix_entry(swap)); 1099 if (error) 1100 goto failed; 1101 1102 spin_lock(&info->lock); 1103 info->swapped--; 1104 shmem_recalc_inode(inode); 1105 spin_unlock(&info->lock); 1106 1107 delete_from_swap_cache(page); 1108 set_page_dirty(page); 1109 swap_free(swap); 1110 1111 } else { 1112 if (shmem_acct_block(info->flags)) { 1113 error = -ENOSPC; 1114 goto failed; 1115 } 1116 if (sbinfo->max_blocks) { 1117 if (percpu_counter_compare(&sbinfo->used_blocks, 1118 sbinfo->max_blocks) >= 0) { 1119 error = -ENOSPC; 1120 goto unacct; 1121 } 1122 percpu_counter_inc(&sbinfo->used_blocks); 1123 } 1124 1125 page = shmem_alloc_page(gfp, info, index); 1126 if (!page) { 1127 error = -ENOMEM; 1128 goto decused; 1129 } 1130 1131 SetPageSwapBacked(page); 1132 __set_page_locked(page); 1133 error = mem_cgroup_cache_charge(page, current->mm, 1134 gfp & GFP_RECLAIM_MASK); 1135 if (!error) 1136 error = shmem_add_to_page_cache(page, mapping, index, 1137 gfp, NULL); 1138 if (error) 1139 goto decused; 1140 lru_cache_add_anon(page); 1141 1142 spin_lock(&info->lock); 1143 info->alloced++; 1144 inode->i_blocks += BLOCKS_PER_PAGE; 1145 shmem_recalc_inode(inode); 1146 spin_unlock(&info->lock); 1147 alloced = true; 1148 1149 /* 1150 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1151 */ 1152 if (sgp == SGP_FALLOC) 1153 sgp = SGP_WRITE; 1154 clear: 1155 /* 1156 * Let SGP_WRITE caller clear ends if write does not fill page; 1157 * but SGP_FALLOC on a page fallocated earlier must initialize 1158 * it now, lest undo on failure cancel our earlier guarantee. 1159 */ 1160 if (sgp != SGP_WRITE) { 1161 clear_highpage(page); 1162 flush_dcache_page(page); 1163 SetPageUptodate(page); 1164 } 1165 if (sgp == SGP_DIRTY) 1166 set_page_dirty(page); 1167 } 1168 1169 /* Perhaps the file has been truncated since we checked */ 1170 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1171 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1172 error = -EINVAL; 1173 if (alloced) 1174 goto trunc; 1175 else 1176 goto failed; 1177 } 1178 *pagep = page; 1179 return 0; 1180 1181 /* 1182 * Error recovery. 1183 */ 1184 trunc: 1185 info = SHMEM_I(inode); 1186 ClearPageDirty(page); 1187 delete_from_page_cache(page); 1188 spin_lock(&info->lock); 1189 info->alloced--; 1190 inode->i_blocks -= BLOCKS_PER_PAGE; 1191 spin_unlock(&info->lock); 1192 decused: 1193 sbinfo = SHMEM_SB(inode->i_sb); 1194 if (sbinfo->max_blocks) 1195 percpu_counter_add(&sbinfo->used_blocks, -1); 1196 unacct: 1197 shmem_unacct_blocks(info->flags, 1); 1198 failed: 1199 if (swap.val && error != -EINVAL) { 1200 struct page *test = find_get_page(mapping, index); 1201 if (test && !radix_tree_exceptional_entry(test)) 1202 page_cache_release(test); 1203 /* Have another try if the entry has changed */ 1204 if (test != swp_to_radix_entry(swap)) 1205 error = -EEXIST; 1206 } 1207 if (page) { 1208 unlock_page(page); 1209 page_cache_release(page); 1210 } 1211 if (error == -ENOSPC && !once++) { 1212 info = SHMEM_I(inode); 1213 spin_lock(&info->lock); 1214 shmem_recalc_inode(inode); 1215 spin_unlock(&info->lock); 1216 goto repeat; 1217 } 1218 if (error == -EEXIST) 1219 goto repeat; 1220 return error; 1221 } 1222 1223 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1224 { 1225 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1226 int error; 1227 int ret = VM_FAULT_LOCKED; 1228 1229 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1230 if (error) 1231 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1232 1233 if (ret & VM_FAULT_MAJOR) { 1234 count_vm_event(PGMAJFAULT); 1235 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1236 } 1237 return ret; 1238 } 1239 1240 #ifdef CONFIG_NUMA 1241 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 1242 { 1243 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1244 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 1245 } 1246 1247 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1248 unsigned long addr) 1249 { 1250 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1251 pgoff_t index; 1252 1253 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1254 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 1255 } 1256 #endif 1257 1258 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1259 { 1260 struct inode *inode = file->f_path.dentry->d_inode; 1261 struct shmem_inode_info *info = SHMEM_I(inode); 1262 int retval = -ENOMEM; 1263 1264 spin_lock(&info->lock); 1265 if (lock && !(info->flags & VM_LOCKED)) { 1266 if (!user_shm_lock(inode->i_size, user)) 1267 goto out_nomem; 1268 info->flags |= VM_LOCKED; 1269 mapping_set_unevictable(file->f_mapping); 1270 } 1271 if (!lock && (info->flags & VM_LOCKED) && user) { 1272 user_shm_unlock(inode->i_size, user); 1273 info->flags &= ~VM_LOCKED; 1274 mapping_clear_unevictable(file->f_mapping); 1275 } 1276 retval = 0; 1277 1278 out_nomem: 1279 spin_unlock(&info->lock); 1280 return retval; 1281 } 1282 1283 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1284 { 1285 file_accessed(file); 1286 vma->vm_ops = &shmem_vm_ops; 1287 vma->vm_flags |= VM_CAN_NONLINEAR; 1288 return 0; 1289 } 1290 1291 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1292 umode_t mode, dev_t dev, unsigned long flags) 1293 { 1294 struct inode *inode; 1295 struct shmem_inode_info *info; 1296 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1297 1298 if (shmem_reserve_inode(sb)) 1299 return NULL; 1300 1301 inode = new_inode(sb); 1302 if (inode) { 1303 inode->i_ino = get_next_ino(); 1304 inode_init_owner(inode, dir, mode); 1305 inode->i_blocks = 0; 1306 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; 1307 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1308 inode->i_generation = get_seconds(); 1309 info = SHMEM_I(inode); 1310 memset(info, 0, (char *)inode - (char *)info); 1311 spin_lock_init(&info->lock); 1312 info->flags = flags & VM_NORESERVE; 1313 INIT_LIST_HEAD(&info->swaplist); 1314 INIT_LIST_HEAD(&info->xattr_list); 1315 cache_no_acl(inode); 1316 1317 switch (mode & S_IFMT) { 1318 default: 1319 inode->i_op = &shmem_special_inode_operations; 1320 init_special_inode(inode, mode, dev); 1321 break; 1322 case S_IFREG: 1323 inode->i_mapping->a_ops = &shmem_aops; 1324 inode->i_op = &shmem_inode_operations; 1325 inode->i_fop = &shmem_file_operations; 1326 mpol_shared_policy_init(&info->policy, 1327 shmem_get_sbmpol(sbinfo)); 1328 break; 1329 case S_IFDIR: 1330 inc_nlink(inode); 1331 /* Some things misbehave if size == 0 on a directory */ 1332 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1333 inode->i_op = &shmem_dir_inode_operations; 1334 inode->i_fop = &simple_dir_operations; 1335 break; 1336 case S_IFLNK: 1337 /* 1338 * Must not load anything in the rbtree, 1339 * mpol_free_shared_policy will not be called. 1340 */ 1341 mpol_shared_policy_init(&info->policy, NULL); 1342 break; 1343 } 1344 } else 1345 shmem_free_inode(sb); 1346 return inode; 1347 } 1348 1349 #ifdef CONFIG_TMPFS 1350 static const struct inode_operations shmem_symlink_inode_operations; 1351 static const struct inode_operations shmem_short_symlink_operations; 1352 1353 #ifdef CONFIG_TMPFS_XATTR 1354 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 1355 #else 1356 #define shmem_initxattrs NULL 1357 #endif 1358 1359 static int 1360 shmem_write_begin(struct file *file, struct address_space *mapping, 1361 loff_t pos, unsigned len, unsigned flags, 1362 struct page **pagep, void **fsdata) 1363 { 1364 struct inode *inode = mapping->host; 1365 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1366 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1367 } 1368 1369 static int 1370 shmem_write_end(struct file *file, struct address_space *mapping, 1371 loff_t pos, unsigned len, unsigned copied, 1372 struct page *page, void *fsdata) 1373 { 1374 struct inode *inode = mapping->host; 1375 1376 if (pos + copied > inode->i_size) 1377 i_size_write(inode, pos + copied); 1378 1379 if (!PageUptodate(page)) { 1380 if (copied < PAGE_CACHE_SIZE) { 1381 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1382 zero_user_segments(page, 0, from, 1383 from + copied, PAGE_CACHE_SIZE); 1384 } 1385 SetPageUptodate(page); 1386 } 1387 set_page_dirty(page); 1388 unlock_page(page); 1389 page_cache_release(page); 1390 1391 return copied; 1392 } 1393 1394 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor) 1395 { 1396 struct inode *inode = filp->f_path.dentry->d_inode; 1397 struct address_space *mapping = inode->i_mapping; 1398 pgoff_t index; 1399 unsigned long offset; 1400 enum sgp_type sgp = SGP_READ; 1401 1402 /* 1403 * Might this read be for a stacking filesystem? Then when reading 1404 * holes of a sparse file, we actually need to allocate those pages, 1405 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1406 */ 1407 if (segment_eq(get_fs(), KERNEL_DS)) 1408 sgp = SGP_DIRTY; 1409 1410 index = *ppos >> PAGE_CACHE_SHIFT; 1411 offset = *ppos & ~PAGE_CACHE_MASK; 1412 1413 for (;;) { 1414 struct page *page = NULL; 1415 pgoff_t end_index; 1416 unsigned long nr, ret; 1417 loff_t i_size = i_size_read(inode); 1418 1419 end_index = i_size >> PAGE_CACHE_SHIFT; 1420 if (index > end_index) 1421 break; 1422 if (index == end_index) { 1423 nr = i_size & ~PAGE_CACHE_MASK; 1424 if (nr <= offset) 1425 break; 1426 } 1427 1428 desc->error = shmem_getpage(inode, index, &page, sgp, NULL); 1429 if (desc->error) { 1430 if (desc->error == -EINVAL) 1431 desc->error = 0; 1432 break; 1433 } 1434 if (page) 1435 unlock_page(page); 1436 1437 /* 1438 * We must evaluate after, since reads (unlike writes) 1439 * are called without i_mutex protection against truncate 1440 */ 1441 nr = PAGE_CACHE_SIZE; 1442 i_size = i_size_read(inode); 1443 end_index = i_size >> PAGE_CACHE_SHIFT; 1444 if (index == end_index) { 1445 nr = i_size & ~PAGE_CACHE_MASK; 1446 if (nr <= offset) { 1447 if (page) 1448 page_cache_release(page); 1449 break; 1450 } 1451 } 1452 nr -= offset; 1453 1454 if (page) { 1455 /* 1456 * If users can be writing to this page using arbitrary 1457 * virtual addresses, take care about potential aliasing 1458 * before reading the page on the kernel side. 1459 */ 1460 if (mapping_writably_mapped(mapping)) 1461 flush_dcache_page(page); 1462 /* 1463 * Mark the page accessed if we read the beginning. 1464 */ 1465 if (!offset) 1466 mark_page_accessed(page); 1467 } else { 1468 page = ZERO_PAGE(0); 1469 page_cache_get(page); 1470 } 1471 1472 /* 1473 * Ok, we have the page, and it's up-to-date, so 1474 * now we can copy it to user space... 1475 * 1476 * The actor routine returns how many bytes were actually used.. 1477 * NOTE! This may not be the same as how much of a user buffer 1478 * we filled up (we may be padding etc), so we can only update 1479 * "pos" here (the actor routine has to update the user buffer 1480 * pointers and the remaining count). 1481 */ 1482 ret = actor(desc, page, offset, nr); 1483 offset += ret; 1484 index += offset >> PAGE_CACHE_SHIFT; 1485 offset &= ~PAGE_CACHE_MASK; 1486 1487 page_cache_release(page); 1488 if (ret != nr || !desc->count) 1489 break; 1490 1491 cond_resched(); 1492 } 1493 1494 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1495 file_accessed(filp); 1496 } 1497 1498 static ssize_t shmem_file_aio_read(struct kiocb *iocb, 1499 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 1500 { 1501 struct file *filp = iocb->ki_filp; 1502 ssize_t retval; 1503 unsigned long seg; 1504 size_t count; 1505 loff_t *ppos = &iocb->ki_pos; 1506 1507 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1508 if (retval) 1509 return retval; 1510 1511 for (seg = 0; seg < nr_segs; seg++) { 1512 read_descriptor_t desc; 1513 1514 desc.written = 0; 1515 desc.arg.buf = iov[seg].iov_base; 1516 desc.count = iov[seg].iov_len; 1517 if (desc.count == 0) 1518 continue; 1519 desc.error = 0; 1520 do_shmem_file_read(filp, ppos, &desc, file_read_actor); 1521 retval += desc.written; 1522 if (desc.error) { 1523 retval = retval ?: desc.error; 1524 break; 1525 } 1526 if (desc.count > 0) 1527 break; 1528 } 1529 return retval; 1530 } 1531 1532 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 1533 struct pipe_inode_info *pipe, size_t len, 1534 unsigned int flags) 1535 { 1536 struct address_space *mapping = in->f_mapping; 1537 struct inode *inode = mapping->host; 1538 unsigned int loff, nr_pages, req_pages; 1539 struct page *pages[PIPE_DEF_BUFFERS]; 1540 struct partial_page partial[PIPE_DEF_BUFFERS]; 1541 struct page *page; 1542 pgoff_t index, end_index; 1543 loff_t isize, left; 1544 int error, page_nr; 1545 struct splice_pipe_desc spd = { 1546 .pages = pages, 1547 .partial = partial, 1548 .flags = flags, 1549 .ops = &page_cache_pipe_buf_ops, 1550 .spd_release = spd_release_page, 1551 }; 1552 1553 isize = i_size_read(inode); 1554 if (unlikely(*ppos >= isize)) 1555 return 0; 1556 1557 left = isize - *ppos; 1558 if (unlikely(left < len)) 1559 len = left; 1560 1561 if (splice_grow_spd(pipe, &spd)) 1562 return -ENOMEM; 1563 1564 index = *ppos >> PAGE_CACHE_SHIFT; 1565 loff = *ppos & ~PAGE_CACHE_MASK; 1566 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1567 nr_pages = min(req_pages, pipe->buffers); 1568 1569 spd.nr_pages = find_get_pages_contig(mapping, index, 1570 nr_pages, spd.pages); 1571 index += spd.nr_pages; 1572 error = 0; 1573 1574 while (spd.nr_pages < nr_pages) { 1575 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); 1576 if (error) 1577 break; 1578 unlock_page(page); 1579 spd.pages[spd.nr_pages++] = page; 1580 index++; 1581 } 1582 1583 index = *ppos >> PAGE_CACHE_SHIFT; 1584 nr_pages = spd.nr_pages; 1585 spd.nr_pages = 0; 1586 1587 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 1588 unsigned int this_len; 1589 1590 if (!len) 1591 break; 1592 1593 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 1594 page = spd.pages[page_nr]; 1595 1596 if (!PageUptodate(page) || page->mapping != mapping) { 1597 error = shmem_getpage(inode, index, &page, 1598 SGP_CACHE, NULL); 1599 if (error) 1600 break; 1601 unlock_page(page); 1602 page_cache_release(spd.pages[page_nr]); 1603 spd.pages[page_nr] = page; 1604 } 1605 1606 isize = i_size_read(inode); 1607 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1608 if (unlikely(!isize || index > end_index)) 1609 break; 1610 1611 if (end_index == index) { 1612 unsigned int plen; 1613 1614 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1615 if (plen <= loff) 1616 break; 1617 1618 this_len = min(this_len, plen - loff); 1619 len = this_len; 1620 } 1621 1622 spd.partial[page_nr].offset = loff; 1623 spd.partial[page_nr].len = this_len; 1624 len -= this_len; 1625 loff = 0; 1626 spd.nr_pages++; 1627 index++; 1628 } 1629 1630 while (page_nr < nr_pages) 1631 page_cache_release(spd.pages[page_nr++]); 1632 1633 if (spd.nr_pages) 1634 error = splice_to_pipe(pipe, &spd); 1635 1636 splice_shrink_spd(pipe, &spd); 1637 1638 if (error > 0) { 1639 *ppos += error; 1640 file_accessed(in); 1641 } 1642 return error; 1643 } 1644 1645 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 1646 loff_t len) 1647 { 1648 struct inode *inode = file->f_path.dentry->d_inode; 1649 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1650 pgoff_t start, index, end; 1651 int error; 1652 1653 mutex_lock(&inode->i_mutex); 1654 1655 if (mode & FALLOC_FL_PUNCH_HOLE) { 1656 struct address_space *mapping = file->f_mapping; 1657 loff_t unmap_start = round_up(offset, PAGE_SIZE); 1658 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 1659 1660 if ((u64)unmap_end > (u64)unmap_start) 1661 unmap_mapping_range(mapping, unmap_start, 1662 1 + unmap_end - unmap_start, 0); 1663 shmem_truncate_range(inode, offset, offset + len - 1); 1664 /* No need to unmap again: hole-punching leaves COWed pages */ 1665 error = 0; 1666 goto out; 1667 } 1668 1669 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 1670 error = inode_newsize_ok(inode, offset + len); 1671 if (error) 1672 goto out; 1673 1674 start = offset >> PAGE_CACHE_SHIFT; 1675 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1676 /* Try to avoid a swapstorm if len is impossible to satisfy */ 1677 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 1678 error = -ENOSPC; 1679 goto out; 1680 } 1681 1682 for (index = start; index < end; index++) { 1683 struct page *page; 1684 1685 /* 1686 * Good, the fallocate(2) manpage permits EINTR: we may have 1687 * been interrupted because we are using up too much memory. 1688 */ 1689 if (signal_pending(current)) 1690 error = -EINTR; 1691 else 1692 error = shmem_getpage(inode, index, &page, SGP_FALLOC, 1693 NULL); 1694 if (error) { 1695 /* Remove the !PageUptodate pages we added */ 1696 shmem_undo_range(inode, 1697 (loff_t)start << PAGE_CACHE_SHIFT, 1698 (loff_t)index << PAGE_CACHE_SHIFT, true); 1699 goto ctime; 1700 } 1701 1702 /* 1703 * If !PageUptodate, leave it that way so that freeable pages 1704 * can be recognized if we need to rollback on error later. 1705 * But set_page_dirty so that memory pressure will swap rather 1706 * than free the pages we are allocating (and SGP_CACHE pages 1707 * might still be clean: we now need to mark those dirty too). 1708 */ 1709 set_page_dirty(page); 1710 unlock_page(page); 1711 page_cache_release(page); 1712 cond_resched(); 1713 } 1714 1715 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 1716 i_size_write(inode, offset + len); 1717 ctime: 1718 inode->i_ctime = CURRENT_TIME; 1719 out: 1720 mutex_unlock(&inode->i_mutex); 1721 return error; 1722 } 1723 1724 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 1725 { 1726 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 1727 1728 buf->f_type = TMPFS_MAGIC; 1729 buf->f_bsize = PAGE_CACHE_SIZE; 1730 buf->f_namelen = NAME_MAX; 1731 if (sbinfo->max_blocks) { 1732 buf->f_blocks = sbinfo->max_blocks; 1733 buf->f_bavail = 1734 buf->f_bfree = sbinfo->max_blocks - 1735 percpu_counter_sum(&sbinfo->used_blocks); 1736 } 1737 if (sbinfo->max_inodes) { 1738 buf->f_files = sbinfo->max_inodes; 1739 buf->f_ffree = sbinfo->free_inodes; 1740 } 1741 /* else leave those fields 0 like simple_statfs */ 1742 return 0; 1743 } 1744 1745 /* 1746 * File creation. Allocate an inode, and we're done.. 1747 */ 1748 static int 1749 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1750 { 1751 struct inode *inode; 1752 int error = -ENOSPC; 1753 1754 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 1755 if (inode) { 1756 error = security_inode_init_security(inode, dir, 1757 &dentry->d_name, 1758 shmem_initxattrs, NULL); 1759 if (error) { 1760 if (error != -EOPNOTSUPP) { 1761 iput(inode); 1762 return error; 1763 } 1764 } 1765 #ifdef CONFIG_TMPFS_POSIX_ACL 1766 error = generic_acl_init(inode, dir); 1767 if (error) { 1768 iput(inode); 1769 return error; 1770 } 1771 #else 1772 error = 0; 1773 #endif 1774 dir->i_size += BOGO_DIRENT_SIZE; 1775 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1776 d_instantiate(dentry, inode); 1777 dget(dentry); /* Extra count - pin the dentry in core */ 1778 } 1779 return error; 1780 } 1781 1782 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1783 { 1784 int error; 1785 1786 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 1787 return error; 1788 inc_nlink(dir); 1789 return 0; 1790 } 1791 1792 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 1793 struct nameidata *nd) 1794 { 1795 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 1796 } 1797 1798 /* 1799 * Link a file.. 1800 */ 1801 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1802 { 1803 struct inode *inode = old_dentry->d_inode; 1804 int ret; 1805 1806 /* 1807 * No ordinary (disk based) filesystem counts links as inodes; 1808 * but each new link needs a new dentry, pinning lowmem, and 1809 * tmpfs dentries cannot be pruned until they are unlinked. 1810 */ 1811 ret = shmem_reserve_inode(inode->i_sb); 1812 if (ret) 1813 goto out; 1814 1815 dir->i_size += BOGO_DIRENT_SIZE; 1816 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1817 inc_nlink(inode); 1818 ihold(inode); /* New dentry reference */ 1819 dget(dentry); /* Extra pinning count for the created dentry */ 1820 d_instantiate(dentry, inode); 1821 out: 1822 return ret; 1823 } 1824 1825 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 1826 { 1827 struct inode *inode = dentry->d_inode; 1828 1829 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 1830 shmem_free_inode(inode->i_sb); 1831 1832 dir->i_size -= BOGO_DIRENT_SIZE; 1833 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1834 drop_nlink(inode); 1835 dput(dentry); /* Undo the count from "create" - this does all the work */ 1836 return 0; 1837 } 1838 1839 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 1840 { 1841 if (!simple_empty(dentry)) 1842 return -ENOTEMPTY; 1843 1844 drop_nlink(dentry->d_inode); 1845 drop_nlink(dir); 1846 return shmem_unlink(dir, dentry); 1847 } 1848 1849 /* 1850 * The VFS layer already does all the dentry stuff for rename, 1851 * we just have to decrement the usage count for the target if 1852 * it exists so that the VFS layer correctly free's it when it 1853 * gets overwritten. 1854 */ 1855 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 1856 { 1857 struct inode *inode = old_dentry->d_inode; 1858 int they_are_dirs = S_ISDIR(inode->i_mode); 1859 1860 if (!simple_empty(new_dentry)) 1861 return -ENOTEMPTY; 1862 1863 if (new_dentry->d_inode) { 1864 (void) shmem_unlink(new_dir, new_dentry); 1865 if (they_are_dirs) 1866 drop_nlink(old_dir); 1867 } else if (they_are_dirs) { 1868 drop_nlink(old_dir); 1869 inc_nlink(new_dir); 1870 } 1871 1872 old_dir->i_size -= BOGO_DIRENT_SIZE; 1873 new_dir->i_size += BOGO_DIRENT_SIZE; 1874 old_dir->i_ctime = old_dir->i_mtime = 1875 new_dir->i_ctime = new_dir->i_mtime = 1876 inode->i_ctime = CURRENT_TIME; 1877 return 0; 1878 } 1879 1880 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1881 { 1882 int error; 1883 int len; 1884 struct inode *inode; 1885 struct page *page; 1886 char *kaddr; 1887 struct shmem_inode_info *info; 1888 1889 len = strlen(symname) + 1; 1890 if (len > PAGE_CACHE_SIZE) 1891 return -ENAMETOOLONG; 1892 1893 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 1894 if (!inode) 1895 return -ENOSPC; 1896 1897 error = security_inode_init_security(inode, dir, &dentry->d_name, 1898 shmem_initxattrs, NULL); 1899 if (error) { 1900 if (error != -EOPNOTSUPP) { 1901 iput(inode); 1902 return error; 1903 } 1904 error = 0; 1905 } 1906 1907 info = SHMEM_I(inode); 1908 inode->i_size = len-1; 1909 if (len <= SHORT_SYMLINK_LEN) { 1910 info->symlink = kmemdup(symname, len, GFP_KERNEL); 1911 if (!info->symlink) { 1912 iput(inode); 1913 return -ENOMEM; 1914 } 1915 inode->i_op = &shmem_short_symlink_operations; 1916 } else { 1917 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 1918 if (error) { 1919 iput(inode); 1920 return error; 1921 } 1922 inode->i_mapping->a_ops = &shmem_aops; 1923 inode->i_op = &shmem_symlink_inode_operations; 1924 kaddr = kmap_atomic(page); 1925 memcpy(kaddr, symname, len); 1926 kunmap_atomic(kaddr); 1927 SetPageUptodate(page); 1928 set_page_dirty(page); 1929 unlock_page(page); 1930 page_cache_release(page); 1931 } 1932 dir->i_size += BOGO_DIRENT_SIZE; 1933 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1934 d_instantiate(dentry, inode); 1935 dget(dentry); 1936 return 0; 1937 } 1938 1939 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd) 1940 { 1941 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink); 1942 return NULL; 1943 } 1944 1945 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 1946 { 1947 struct page *page = NULL; 1948 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); 1949 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page)); 1950 if (page) 1951 unlock_page(page); 1952 return page; 1953 } 1954 1955 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 1956 { 1957 if (!IS_ERR(nd_get_link(nd))) { 1958 struct page *page = cookie; 1959 kunmap(page); 1960 mark_page_accessed(page); 1961 page_cache_release(page); 1962 } 1963 } 1964 1965 #ifdef CONFIG_TMPFS_XATTR 1966 /* 1967 * Superblocks without xattr inode operations may get some security.* xattr 1968 * support from the LSM "for free". As soon as we have any other xattrs 1969 * like ACLs, we also need to implement the security.* handlers at 1970 * filesystem level, though. 1971 */ 1972 1973 /* 1974 * Allocate new xattr and copy in the value; but leave the name to callers. 1975 */ 1976 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size) 1977 { 1978 struct shmem_xattr *new_xattr; 1979 size_t len; 1980 1981 /* wrap around? */ 1982 len = sizeof(*new_xattr) + size; 1983 if (len <= sizeof(*new_xattr)) 1984 return NULL; 1985 1986 new_xattr = kmalloc(len, GFP_KERNEL); 1987 if (!new_xattr) 1988 return NULL; 1989 1990 new_xattr->size = size; 1991 memcpy(new_xattr->value, value, size); 1992 return new_xattr; 1993 } 1994 1995 /* 1996 * Callback for security_inode_init_security() for acquiring xattrs. 1997 */ 1998 static int shmem_initxattrs(struct inode *inode, 1999 const struct xattr *xattr_array, 2000 void *fs_info) 2001 { 2002 struct shmem_inode_info *info = SHMEM_I(inode); 2003 const struct xattr *xattr; 2004 struct shmem_xattr *new_xattr; 2005 size_t len; 2006 2007 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 2008 new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len); 2009 if (!new_xattr) 2010 return -ENOMEM; 2011 2012 len = strlen(xattr->name) + 1; 2013 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 2014 GFP_KERNEL); 2015 if (!new_xattr->name) { 2016 kfree(new_xattr); 2017 return -ENOMEM; 2018 } 2019 2020 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 2021 XATTR_SECURITY_PREFIX_LEN); 2022 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 2023 xattr->name, len); 2024 2025 spin_lock(&info->lock); 2026 list_add(&new_xattr->list, &info->xattr_list); 2027 spin_unlock(&info->lock); 2028 } 2029 2030 return 0; 2031 } 2032 2033 static int shmem_xattr_get(struct dentry *dentry, const char *name, 2034 void *buffer, size_t size) 2035 { 2036 struct shmem_inode_info *info; 2037 struct shmem_xattr *xattr; 2038 int ret = -ENODATA; 2039 2040 info = SHMEM_I(dentry->d_inode); 2041 2042 spin_lock(&info->lock); 2043 list_for_each_entry(xattr, &info->xattr_list, list) { 2044 if (strcmp(name, xattr->name)) 2045 continue; 2046 2047 ret = xattr->size; 2048 if (buffer) { 2049 if (size < xattr->size) 2050 ret = -ERANGE; 2051 else 2052 memcpy(buffer, xattr->value, xattr->size); 2053 } 2054 break; 2055 } 2056 spin_unlock(&info->lock); 2057 return ret; 2058 } 2059 2060 static int shmem_xattr_set(struct inode *inode, const char *name, 2061 const void *value, size_t size, int flags) 2062 { 2063 struct shmem_inode_info *info = SHMEM_I(inode); 2064 struct shmem_xattr *xattr; 2065 struct shmem_xattr *new_xattr = NULL; 2066 int err = 0; 2067 2068 /* value == NULL means remove */ 2069 if (value) { 2070 new_xattr = shmem_xattr_alloc(value, size); 2071 if (!new_xattr) 2072 return -ENOMEM; 2073 2074 new_xattr->name = kstrdup(name, GFP_KERNEL); 2075 if (!new_xattr->name) { 2076 kfree(new_xattr); 2077 return -ENOMEM; 2078 } 2079 } 2080 2081 spin_lock(&info->lock); 2082 list_for_each_entry(xattr, &info->xattr_list, list) { 2083 if (!strcmp(name, xattr->name)) { 2084 if (flags & XATTR_CREATE) { 2085 xattr = new_xattr; 2086 err = -EEXIST; 2087 } else if (new_xattr) { 2088 list_replace(&xattr->list, &new_xattr->list); 2089 } else { 2090 list_del(&xattr->list); 2091 } 2092 goto out; 2093 } 2094 } 2095 if (flags & XATTR_REPLACE) { 2096 xattr = new_xattr; 2097 err = -ENODATA; 2098 } else { 2099 list_add(&new_xattr->list, &info->xattr_list); 2100 xattr = NULL; 2101 } 2102 out: 2103 spin_unlock(&info->lock); 2104 if (xattr) 2105 kfree(xattr->name); 2106 kfree(xattr); 2107 return err; 2108 } 2109 2110 static const struct xattr_handler *shmem_xattr_handlers[] = { 2111 #ifdef CONFIG_TMPFS_POSIX_ACL 2112 &generic_acl_access_handler, 2113 &generic_acl_default_handler, 2114 #endif 2115 NULL 2116 }; 2117 2118 static int shmem_xattr_validate(const char *name) 2119 { 2120 struct { const char *prefix; size_t len; } arr[] = { 2121 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN }, 2122 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN } 2123 }; 2124 int i; 2125 2126 for (i = 0; i < ARRAY_SIZE(arr); i++) { 2127 size_t preflen = arr[i].len; 2128 if (strncmp(name, arr[i].prefix, preflen) == 0) { 2129 if (!name[preflen]) 2130 return -EINVAL; 2131 return 0; 2132 } 2133 } 2134 return -EOPNOTSUPP; 2135 } 2136 2137 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name, 2138 void *buffer, size_t size) 2139 { 2140 int err; 2141 2142 /* 2143 * If this is a request for a synthetic attribute in the system.* 2144 * namespace use the generic infrastructure to resolve a handler 2145 * for it via sb->s_xattr. 2146 */ 2147 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2148 return generic_getxattr(dentry, name, buffer, size); 2149 2150 err = shmem_xattr_validate(name); 2151 if (err) 2152 return err; 2153 2154 return shmem_xattr_get(dentry, name, buffer, size); 2155 } 2156 2157 static int shmem_setxattr(struct dentry *dentry, const char *name, 2158 const void *value, size_t size, int flags) 2159 { 2160 int err; 2161 2162 /* 2163 * If this is a request for a synthetic attribute in the system.* 2164 * namespace use the generic infrastructure to resolve a handler 2165 * for it via sb->s_xattr. 2166 */ 2167 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2168 return generic_setxattr(dentry, name, value, size, flags); 2169 2170 err = shmem_xattr_validate(name); 2171 if (err) 2172 return err; 2173 2174 if (size == 0) 2175 value = ""; /* empty EA, do not remove */ 2176 2177 return shmem_xattr_set(dentry->d_inode, name, value, size, flags); 2178 2179 } 2180 2181 static int shmem_removexattr(struct dentry *dentry, const char *name) 2182 { 2183 int err; 2184 2185 /* 2186 * If this is a request for a synthetic attribute in the system.* 2187 * namespace use the generic infrastructure to resolve a handler 2188 * for it via sb->s_xattr. 2189 */ 2190 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2191 return generic_removexattr(dentry, name); 2192 2193 err = shmem_xattr_validate(name); 2194 if (err) 2195 return err; 2196 2197 return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE); 2198 } 2199 2200 static bool xattr_is_trusted(const char *name) 2201 { 2202 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN); 2203 } 2204 2205 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 2206 { 2207 bool trusted = capable(CAP_SYS_ADMIN); 2208 struct shmem_xattr *xattr; 2209 struct shmem_inode_info *info; 2210 size_t used = 0; 2211 2212 info = SHMEM_I(dentry->d_inode); 2213 2214 spin_lock(&info->lock); 2215 list_for_each_entry(xattr, &info->xattr_list, list) { 2216 size_t len; 2217 2218 /* skip "trusted." attributes for unprivileged callers */ 2219 if (!trusted && xattr_is_trusted(xattr->name)) 2220 continue; 2221 2222 len = strlen(xattr->name) + 1; 2223 used += len; 2224 if (buffer) { 2225 if (size < used) { 2226 used = -ERANGE; 2227 break; 2228 } 2229 memcpy(buffer, xattr->name, len); 2230 buffer += len; 2231 } 2232 } 2233 spin_unlock(&info->lock); 2234 2235 return used; 2236 } 2237 #endif /* CONFIG_TMPFS_XATTR */ 2238 2239 static const struct inode_operations shmem_short_symlink_operations = { 2240 .readlink = generic_readlink, 2241 .follow_link = shmem_follow_short_symlink, 2242 #ifdef CONFIG_TMPFS_XATTR 2243 .setxattr = shmem_setxattr, 2244 .getxattr = shmem_getxattr, 2245 .listxattr = shmem_listxattr, 2246 .removexattr = shmem_removexattr, 2247 #endif 2248 }; 2249 2250 static const struct inode_operations shmem_symlink_inode_operations = { 2251 .readlink = generic_readlink, 2252 .follow_link = shmem_follow_link, 2253 .put_link = shmem_put_link, 2254 #ifdef CONFIG_TMPFS_XATTR 2255 .setxattr = shmem_setxattr, 2256 .getxattr = shmem_getxattr, 2257 .listxattr = shmem_listxattr, 2258 .removexattr = shmem_removexattr, 2259 #endif 2260 }; 2261 2262 static struct dentry *shmem_get_parent(struct dentry *child) 2263 { 2264 return ERR_PTR(-ESTALE); 2265 } 2266 2267 static int shmem_match(struct inode *ino, void *vfh) 2268 { 2269 __u32 *fh = vfh; 2270 __u64 inum = fh[2]; 2271 inum = (inum << 32) | fh[1]; 2272 return ino->i_ino == inum && fh[0] == ino->i_generation; 2273 } 2274 2275 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2276 struct fid *fid, int fh_len, int fh_type) 2277 { 2278 struct inode *inode; 2279 struct dentry *dentry = NULL; 2280 u64 inum = fid->raw[2]; 2281 inum = (inum << 32) | fid->raw[1]; 2282 2283 if (fh_len < 3) 2284 return NULL; 2285 2286 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2287 shmem_match, fid->raw); 2288 if (inode) { 2289 dentry = d_find_alias(inode); 2290 iput(inode); 2291 } 2292 2293 return dentry; 2294 } 2295 2296 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len, 2297 int connectable) 2298 { 2299 struct inode *inode = dentry->d_inode; 2300 2301 if (*len < 3) { 2302 *len = 3; 2303 return 255; 2304 } 2305 2306 if (inode_unhashed(inode)) { 2307 /* Unfortunately insert_inode_hash is not idempotent, 2308 * so as we hash inodes here rather than at creation 2309 * time, we need a lock to ensure we only try 2310 * to do it once 2311 */ 2312 static DEFINE_SPINLOCK(lock); 2313 spin_lock(&lock); 2314 if (inode_unhashed(inode)) 2315 __insert_inode_hash(inode, 2316 inode->i_ino + inode->i_generation); 2317 spin_unlock(&lock); 2318 } 2319 2320 fh[0] = inode->i_generation; 2321 fh[1] = inode->i_ino; 2322 fh[2] = ((__u64)inode->i_ino) >> 32; 2323 2324 *len = 3; 2325 return 1; 2326 } 2327 2328 static const struct export_operations shmem_export_ops = { 2329 .get_parent = shmem_get_parent, 2330 .encode_fh = shmem_encode_fh, 2331 .fh_to_dentry = shmem_fh_to_dentry, 2332 }; 2333 2334 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2335 bool remount) 2336 { 2337 char *this_char, *value, *rest; 2338 uid_t uid; 2339 gid_t gid; 2340 2341 while (options != NULL) { 2342 this_char = options; 2343 for (;;) { 2344 /* 2345 * NUL-terminate this option: unfortunately, 2346 * mount options form a comma-separated list, 2347 * but mpol's nodelist may also contain commas. 2348 */ 2349 options = strchr(options, ','); 2350 if (options == NULL) 2351 break; 2352 options++; 2353 if (!isdigit(*options)) { 2354 options[-1] = '\0'; 2355 break; 2356 } 2357 } 2358 if (!*this_char) 2359 continue; 2360 if ((value = strchr(this_char,'=')) != NULL) { 2361 *value++ = 0; 2362 } else { 2363 printk(KERN_ERR 2364 "tmpfs: No value for mount option '%s'\n", 2365 this_char); 2366 return 1; 2367 } 2368 2369 if (!strcmp(this_char,"size")) { 2370 unsigned long long size; 2371 size = memparse(value,&rest); 2372 if (*rest == '%') { 2373 size <<= PAGE_SHIFT; 2374 size *= totalram_pages; 2375 do_div(size, 100); 2376 rest++; 2377 } 2378 if (*rest) 2379 goto bad_val; 2380 sbinfo->max_blocks = 2381 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2382 } else if (!strcmp(this_char,"nr_blocks")) { 2383 sbinfo->max_blocks = memparse(value, &rest); 2384 if (*rest) 2385 goto bad_val; 2386 } else if (!strcmp(this_char,"nr_inodes")) { 2387 sbinfo->max_inodes = memparse(value, &rest); 2388 if (*rest) 2389 goto bad_val; 2390 } else if (!strcmp(this_char,"mode")) { 2391 if (remount) 2392 continue; 2393 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2394 if (*rest) 2395 goto bad_val; 2396 } else if (!strcmp(this_char,"uid")) { 2397 if (remount) 2398 continue; 2399 uid = simple_strtoul(value, &rest, 0); 2400 if (*rest) 2401 goto bad_val; 2402 sbinfo->uid = make_kuid(current_user_ns(), uid); 2403 if (!uid_valid(sbinfo->uid)) 2404 goto bad_val; 2405 } else if (!strcmp(this_char,"gid")) { 2406 if (remount) 2407 continue; 2408 gid = simple_strtoul(value, &rest, 0); 2409 if (*rest) 2410 goto bad_val; 2411 sbinfo->gid = make_kgid(current_user_ns(), gid); 2412 if (!gid_valid(sbinfo->gid)) 2413 goto bad_val; 2414 } else if (!strcmp(this_char,"mpol")) { 2415 if (mpol_parse_str(value, &sbinfo->mpol, 1)) 2416 goto bad_val; 2417 } else { 2418 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2419 this_char); 2420 return 1; 2421 } 2422 } 2423 return 0; 2424 2425 bad_val: 2426 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2427 value, this_char); 2428 return 1; 2429 2430 } 2431 2432 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2433 { 2434 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2435 struct shmem_sb_info config = *sbinfo; 2436 unsigned long inodes; 2437 int error = -EINVAL; 2438 2439 if (shmem_parse_options(data, &config, true)) 2440 return error; 2441 2442 spin_lock(&sbinfo->stat_lock); 2443 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2444 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2445 goto out; 2446 if (config.max_inodes < inodes) 2447 goto out; 2448 /* 2449 * Those tests disallow limited->unlimited while any are in use; 2450 * but we must separately disallow unlimited->limited, because 2451 * in that case we have no record of how much is already in use. 2452 */ 2453 if (config.max_blocks && !sbinfo->max_blocks) 2454 goto out; 2455 if (config.max_inodes && !sbinfo->max_inodes) 2456 goto out; 2457 2458 error = 0; 2459 sbinfo->max_blocks = config.max_blocks; 2460 sbinfo->max_inodes = config.max_inodes; 2461 sbinfo->free_inodes = config.max_inodes - inodes; 2462 2463 mpol_put(sbinfo->mpol); 2464 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2465 out: 2466 spin_unlock(&sbinfo->stat_lock); 2467 return error; 2468 } 2469 2470 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 2471 { 2472 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 2473 2474 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2475 seq_printf(seq, ",size=%luk", 2476 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2477 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2478 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2479 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2480 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 2481 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 2482 seq_printf(seq, ",uid=%u", 2483 from_kuid_munged(&init_user_ns, sbinfo->uid)); 2484 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 2485 seq_printf(seq, ",gid=%u", 2486 from_kgid_munged(&init_user_ns, sbinfo->gid)); 2487 shmem_show_mpol(seq, sbinfo->mpol); 2488 return 0; 2489 } 2490 #endif /* CONFIG_TMPFS */ 2491 2492 static void shmem_put_super(struct super_block *sb) 2493 { 2494 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2495 2496 percpu_counter_destroy(&sbinfo->used_blocks); 2497 kfree(sbinfo); 2498 sb->s_fs_info = NULL; 2499 } 2500 2501 int shmem_fill_super(struct super_block *sb, void *data, int silent) 2502 { 2503 struct inode *inode; 2504 struct shmem_sb_info *sbinfo; 2505 int err = -ENOMEM; 2506 2507 /* Round up to L1_CACHE_BYTES to resist false sharing */ 2508 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 2509 L1_CACHE_BYTES), GFP_KERNEL); 2510 if (!sbinfo) 2511 return -ENOMEM; 2512 2513 sbinfo->mode = S_IRWXUGO | S_ISVTX; 2514 sbinfo->uid = current_fsuid(); 2515 sbinfo->gid = current_fsgid(); 2516 sb->s_fs_info = sbinfo; 2517 2518 #ifdef CONFIG_TMPFS 2519 /* 2520 * Per default we only allow half of the physical ram per 2521 * tmpfs instance, limiting inodes to one per page of lowmem; 2522 * but the internal instance is left unlimited. 2523 */ 2524 if (!(sb->s_flags & MS_NOUSER)) { 2525 sbinfo->max_blocks = shmem_default_max_blocks(); 2526 sbinfo->max_inodes = shmem_default_max_inodes(); 2527 if (shmem_parse_options(data, sbinfo, false)) { 2528 err = -EINVAL; 2529 goto failed; 2530 } 2531 } 2532 sb->s_export_op = &shmem_export_ops; 2533 sb->s_flags |= MS_NOSEC; 2534 #else 2535 sb->s_flags |= MS_NOUSER; 2536 #endif 2537 2538 spin_lock_init(&sbinfo->stat_lock); 2539 if (percpu_counter_init(&sbinfo->used_blocks, 0)) 2540 goto failed; 2541 sbinfo->free_inodes = sbinfo->max_inodes; 2542 2543 sb->s_maxbytes = MAX_LFS_FILESIZE; 2544 sb->s_blocksize = PAGE_CACHE_SIZE; 2545 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 2546 sb->s_magic = TMPFS_MAGIC; 2547 sb->s_op = &shmem_ops; 2548 sb->s_time_gran = 1; 2549 #ifdef CONFIG_TMPFS_XATTR 2550 sb->s_xattr = shmem_xattr_handlers; 2551 #endif 2552 #ifdef CONFIG_TMPFS_POSIX_ACL 2553 sb->s_flags |= MS_POSIXACL; 2554 #endif 2555 2556 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 2557 if (!inode) 2558 goto failed; 2559 inode->i_uid = sbinfo->uid; 2560 inode->i_gid = sbinfo->gid; 2561 sb->s_root = d_make_root(inode); 2562 if (!sb->s_root) 2563 goto failed; 2564 return 0; 2565 2566 failed: 2567 shmem_put_super(sb); 2568 return err; 2569 } 2570 2571 static struct kmem_cache *shmem_inode_cachep; 2572 2573 static struct inode *shmem_alloc_inode(struct super_block *sb) 2574 { 2575 struct shmem_inode_info *info; 2576 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 2577 if (!info) 2578 return NULL; 2579 return &info->vfs_inode; 2580 } 2581 2582 static void shmem_destroy_callback(struct rcu_head *head) 2583 { 2584 struct inode *inode = container_of(head, struct inode, i_rcu); 2585 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 2586 } 2587 2588 static void shmem_destroy_inode(struct inode *inode) 2589 { 2590 if (S_ISREG(inode->i_mode)) 2591 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 2592 call_rcu(&inode->i_rcu, shmem_destroy_callback); 2593 } 2594 2595 static void shmem_init_inode(void *foo) 2596 { 2597 struct shmem_inode_info *info = foo; 2598 inode_init_once(&info->vfs_inode); 2599 } 2600 2601 static int shmem_init_inodecache(void) 2602 { 2603 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 2604 sizeof(struct shmem_inode_info), 2605 0, SLAB_PANIC, shmem_init_inode); 2606 return 0; 2607 } 2608 2609 static void shmem_destroy_inodecache(void) 2610 { 2611 kmem_cache_destroy(shmem_inode_cachep); 2612 } 2613 2614 static const struct address_space_operations shmem_aops = { 2615 .writepage = shmem_writepage, 2616 .set_page_dirty = __set_page_dirty_no_writeback, 2617 #ifdef CONFIG_TMPFS 2618 .write_begin = shmem_write_begin, 2619 .write_end = shmem_write_end, 2620 #endif 2621 .migratepage = migrate_page, 2622 .error_remove_page = generic_error_remove_page, 2623 }; 2624 2625 static const struct file_operations shmem_file_operations = { 2626 .mmap = shmem_mmap, 2627 #ifdef CONFIG_TMPFS 2628 .llseek = generic_file_llseek, 2629 .read = do_sync_read, 2630 .write = do_sync_write, 2631 .aio_read = shmem_file_aio_read, 2632 .aio_write = generic_file_aio_write, 2633 .fsync = noop_fsync, 2634 .splice_read = shmem_file_splice_read, 2635 .splice_write = generic_file_splice_write, 2636 .fallocate = shmem_fallocate, 2637 #endif 2638 }; 2639 2640 static const struct inode_operations shmem_inode_operations = { 2641 .setattr = shmem_setattr, 2642 #ifdef CONFIG_TMPFS_XATTR 2643 .setxattr = shmem_setxattr, 2644 .getxattr = shmem_getxattr, 2645 .listxattr = shmem_listxattr, 2646 .removexattr = shmem_removexattr, 2647 #endif 2648 }; 2649 2650 static const struct inode_operations shmem_dir_inode_operations = { 2651 #ifdef CONFIG_TMPFS 2652 .create = shmem_create, 2653 .lookup = simple_lookup, 2654 .link = shmem_link, 2655 .unlink = shmem_unlink, 2656 .symlink = shmem_symlink, 2657 .mkdir = shmem_mkdir, 2658 .rmdir = shmem_rmdir, 2659 .mknod = shmem_mknod, 2660 .rename = shmem_rename, 2661 #endif 2662 #ifdef CONFIG_TMPFS_XATTR 2663 .setxattr = shmem_setxattr, 2664 .getxattr = shmem_getxattr, 2665 .listxattr = shmem_listxattr, 2666 .removexattr = shmem_removexattr, 2667 #endif 2668 #ifdef CONFIG_TMPFS_POSIX_ACL 2669 .setattr = shmem_setattr, 2670 #endif 2671 }; 2672 2673 static const struct inode_operations shmem_special_inode_operations = { 2674 #ifdef CONFIG_TMPFS_XATTR 2675 .setxattr = shmem_setxattr, 2676 .getxattr = shmem_getxattr, 2677 .listxattr = shmem_listxattr, 2678 .removexattr = shmem_removexattr, 2679 #endif 2680 #ifdef CONFIG_TMPFS_POSIX_ACL 2681 .setattr = shmem_setattr, 2682 #endif 2683 }; 2684 2685 static const struct super_operations shmem_ops = { 2686 .alloc_inode = shmem_alloc_inode, 2687 .destroy_inode = shmem_destroy_inode, 2688 #ifdef CONFIG_TMPFS 2689 .statfs = shmem_statfs, 2690 .remount_fs = shmem_remount_fs, 2691 .show_options = shmem_show_options, 2692 #endif 2693 .evict_inode = shmem_evict_inode, 2694 .drop_inode = generic_delete_inode, 2695 .put_super = shmem_put_super, 2696 }; 2697 2698 static const struct vm_operations_struct shmem_vm_ops = { 2699 .fault = shmem_fault, 2700 #ifdef CONFIG_NUMA 2701 .set_policy = shmem_set_policy, 2702 .get_policy = shmem_get_policy, 2703 #endif 2704 }; 2705 2706 static struct dentry *shmem_mount(struct file_system_type *fs_type, 2707 int flags, const char *dev_name, void *data) 2708 { 2709 return mount_nodev(fs_type, flags, data, shmem_fill_super); 2710 } 2711 2712 static struct file_system_type shmem_fs_type = { 2713 .owner = THIS_MODULE, 2714 .name = "tmpfs", 2715 .mount = shmem_mount, 2716 .kill_sb = kill_litter_super, 2717 }; 2718 2719 int __init shmem_init(void) 2720 { 2721 int error; 2722 2723 error = bdi_init(&shmem_backing_dev_info); 2724 if (error) 2725 goto out4; 2726 2727 error = shmem_init_inodecache(); 2728 if (error) 2729 goto out3; 2730 2731 error = register_filesystem(&shmem_fs_type); 2732 if (error) { 2733 printk(KERN_ERR "Could not register tmpfs\n"); 2734 goto out2; 2735 } 2736 2737 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER, 2738 shmem_fs_type.name, NULL); 2739 if (IS_ERR(shm_mnt)) { 2740 error = PTR_ERR(shm_mnt); 2741 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 2742 goto out1; 2743 } 2744 return 0; 2745 2746 out1: 2747 unregister_filesystem(&shmem_fs_type); 2748 out2: 2749 shmem_destroy_inodecache(); 2750 out3: 2751 bdi_destroy(&shmem_backing_dev_info); 2752 out4: 2753 shm_mnt = ERR_PTR(error); 2754 return error; 2755 } 2756 2757 #else /* !CONFIG_SHMEM */ 2758 2759 /* 2760 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 2761 * 2762 * This is intended for small system where the benefits of the full 2763 * shmem code (swap-backed and resource-limited) are outweighed by 2764 * their complexity. On systems without swap this code should be 2765 * effectively equivalent, but much lighter weight. 2766 */ 2767 2768 #include <linux/ramfs.h> 2769 2770 static struct file_system_type shmem_fs_type = { 2771 .name = "tmpfs", 2772 .mount = ramfs_mount, 2773 .kill_sb = kill_litter_super, 2774 }; 2775 2776 int __init shmem_init(void) 2777 { 2778 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 2779 2780 shm_mnt = kern_mount(&shmem_fs_type); 2781 BUG_ON(IS_ERR(shm_mnt)); 2782 2783 return 0; 2784 } 2785 2786 int shmem_unuse(swp_entry_t swap, struct page *page) 2787 { 2788 return 0; 2789 } 2790 2791 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2792 { 2793 return 0; 2794 } 2795 2796 void shmem_unlock_mapping(struct address_space *mapping) 2797 { 2798 } 2799 2800 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 2801 { 2802 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 2803 } 2804 EXPORT_SYMBOL_GPL(shmem_truncate_range); 2805 2806 #define shmem_vm_ops generic_file_vm_ops 2807 #define shmem_file_operations ramfs_file_operations 2808 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 2809 #define shmem_acct_size(flags, size) 0 2810 #define shmem_unacct_size(flags, size) do {} while (0) 2811 2812 #endif /* CONFIG_SHMEM */ 2813 2814 /* common code */ 2815 2816 /** 2817 * shmem_file_setup - get an unlinked file living in tmpfs 2818 * @name: name for dentry (to be seen in /proc/<pid>/maps 2819 * @size: size to be set for the file 2820 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 2821 */ 2822 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 2823 { 2824 int error; 2825 struct file *file; 2826 struct inode *inode; 2827 struct path path; 2828 struct dentry *root; 2829 struct qstr this; 2830 2831 if (IS_ERR(shm_mnt)) 2832 return (void *)shm_mnt; 2833 2834 if (size < 0 || size > MAX_LFS_FILESIZE) 2835 return ERR_PTR(-EINVAL); 2836 2837 if (shmem_acct_size(flags, size)) 2838 return ERR_PTR(-ENOMEM); 2839 2840 error = -ENOMEM; 2841 this.name = name; 2842 this.len = strlen(name); 2843 this.hash = 0; /* will go */ 2844 root = shm_mnt->mnt_root; 2845 path.dentry = d_alloc(root, &this); 2846 if (!path.dentry) 2847 goto put_memory; 2848 path.mnt = mntget(shm_mnt); 2849 2850 error = -ENOSPC; 2851 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 2852 if (!inode) 2853 goto put_dentry; 2854 2855 d_instantiate(path.dentry, inode); 2856 inode->i_size = size; 2857 clear_nlink(inode); /* It is unlinked */ 2858 #ifndef CONFIG_MMU 2859 error = ramfs_nommu_expand_for_mapping(inode, size); 2860 if (error) 2861 goto put_dentry; 2862 #endif 2863 2864 error = -ENFILE; 2865 file = alloc_file(&path, FMODE_WRITE | FMODE_READ, 2866 &shmem_file_operations); 2867 if (!file) 2868 goto put_dentry; 2869 2870 return file; 2871 2872 put_dentry: 2873 path_put(&path); 2874 put_memory: 2875 shmem_unacct_size(flags, size); 2876 return ERR_PTR(error); 2877 } 2878 EXPORT_SYMBOL_GPL(shmem_file_setup); 2879 2880 /** 2881 * shmem_zero_setup - setup a shared anonymous mapping 2882 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 2883 */ 2884 int shmem_zero_setup(struct vm_area_struct *vma) 2885 { 2886 struct file *file; 2887 loff_t size = vma->vm_end - vma->vm_start; 2888 2889 file = shmem_file_setup("dev/zero", size, vma->vm_flags); 2890 if (IS_ERR(file)) 2891 return PTR_ERR(file); 2892 2893 if (vma->vm_file) 2894 fput(vma->vm_file); 2895 vma->vm_file = file; 2896 vma->vm_ops = &shmem_vm_ops; 2897 vma->vm_flags |= VM_CAN_NONLINEAR; 2898 return 0; 2899 } 2900 2901 /** 2902 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 2903 * @mapping: the page's address_space 2904 * @index: the page index 2905 * @gfp: the page allocator flags to use if allocating 2906 * 2907 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 2908 * with any new page allocations done using the specified allocation flags. 2909 * But read_cache_page_gfp() uses the ->readpage() method: which does not 2910 * suit tmpfs, since it may have pages in swapcache, and needs to find those 2911 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 2912 * 2913 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 2914 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 2915 */ 2916 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 2917 pgoff_t index, gfp_t gfp) 2918 { 2919 #ifdef CONFIG_SHMEM 2920 struct inode *inode = mapping->host; 2921 struct page *page; 2922 int error; 2923 2924 BUG_ON(mapping->a_ops != &shmem_aops); 2925 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); 2926 if (error) 2927 page = ERR_PTR(error); 2928 else 2929 unlock_page(page); 2930 return page; 2931 #else 2932 /* 2933 * The tiny !SHMEM case uses ramfs without swap 2934 */ 2935 return read_cache_page_gfp(mapping, index, gfp); 2936 #endif 2937 } 2938 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 2939