xref: /openbmc/linux/mm/shmem.c (revision 15520a3f046998e3f57e695743e99b0875e2dae7)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/uio.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
41 #include <linux/iversion.h>
42 #include "swap.h"
43 
44 static struct vfsmount *shm_mnt;
45 
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52 
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 
83 #include <linux/uaccess.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95 
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_rwsem making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 	pgoff_t start;		/* start of range currently being fallocated */
104 	pgoff_t next;		/* the next page offset to be fallocated */
105 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
106 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
107 };
108 
109 struct shmem_options {
110 	unsigned long long blocks;
111 	unsigned long long inodes;
112 	struct mempolicy *mpol;
113 	kuid_t uid;
114 	kgid_t gid;
115 	umode_t mode;
116 	bool full_inums;
117 	int huge;
118 	int seen;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
123 };
124 
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128 	return totalram_pages() / 2;
129 }
130 
131 static unsigned long shmem_default_max_inodes(void)
132 {
133 	unsigned long nr_pages = totalram_pages();
134 
135 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138 
139 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
140 			     struct folio **foliop, enum sgp_type sgp,
141 			     gfp_t gfp, struct vm_area_struct *vma,
142 			     vm_fault_t *fault_type);
143 
144 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
145 {
146 	return sb->s_fs_info;
147 }
148 
149 /*
150  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
151  * for shared memory and for shared anonymous (/dev/zero) mappings
152  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
153  * consistent with the pre-accounting of private mappings ...
154  */
155 static inline int shmem_acct_size(unsigned long flags, loff_t size)
156 {
157 	return (flags & VM_NORESERVE) ?
158 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
159 }
160 
161 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
162 {
163 	if (!(flags & VM_NORESERVE))
164 		vm_unacct_memory(VM_ACCT(size));
165 }
166 
167 static inline int shmem_reacct_size(unsigned long flags,
168 		loff_t oldsize, loff_t newsize)
169 {
170 	if (!(flags & VM_NORESERVE)) {
171 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
172 			return security_vm_enough_memory_mm(current->mm,
173 					VM_ACCT(newsize) - VM_ACCT(oldsize));
174 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
175 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
176 	}
177 	return 0;
178 }
179 
180 /*
181  * ... whereas tmpfs objects are accounted incrementally as
182  * pages are allocated, in order to allow large sparse files.
183  * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
184  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
185  */
186 static inline int shmem_acct_block(unsigned long flags, long pages)
187 {
188 	if (!(flags & VM_NORESERVE))
189 		return 0;
190 
191 	return security_vm_enough_memory_mm(current->mm,
192 			pages * VM_ACCT(PAGE_SIZE));
193 }
194 
195 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
196 {
197 	if (flags & VM_NORESERVE)
198 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
199 }
200 
201 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
202 {
203 	struct shmem_inode_info *info = SHMEM_I(inode);
204 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
205 
206 	if (shmem_acct_block(info->flags, pages))
207 		return false;
208 
209 	if (sbinfo->max_blocks) {
210 		if (percpu_counter_compare(&sbinfo->used_blocks,
211 					   sbinfo->max_blocks - pages) > 0)
212 			goto unacct;
213 		percpu_counter_add(&sbinfo->used_blocks, pages);
214 	}
215 
216 	return true;
217 
218 unacct:
219 	shmem_unacct_blocks(info->flags, pages);
220 	return false;
221 }
222 
223 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
224 {
225 	struct shmem_inode_info *info = SHMEM_I(inode);
226 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
227 
228 	if (sbinfo->max_blocks)
229 		percpu_counter_sub(&sbinfo->used_blocks, pages);
230 	shmem_unacct_blocks(info->flags, pages);
231 }
232 
233 static const struct super_operations shmem_ops;
234 const struct address_space_operations shmem_aops;
235 static const struct file_operations shmem_file_operations;
236 static const struct inode_operations shmem_inode_operations;
237 static const struct inode_operations shmem_dir_inode_operations;
238 static const struct inode_operations shmem_special_inode_operations;
239 static const struct vm_operations_struct shmem_vm_ops;
240 static struct file_system_type shmem_fs_type;
241 
242 bool vma_is_shmem(struct vm_area_struct *vma)
243 {
244 	return vma->vm_ops == &shmem_vm_ops;
245 }
246 
247 static LIST_HEAD(shmem_swaplist);
248 static DEFINE_MUTEX(shmem_swaplist_mutex);
249 
250 /*
251  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
252  * produces a novel ino for the newly allocated inode.
253  *
254  * It may also be called when making a hard link to permit the space needed by
255  * each dentry. However, in that case, no new inode number is needed since that
256  * internally draws from another pool of inode numbers (currently global
257  * get_next_ino()). This case is indicated by passing NULL as inop.
258  */
259 #define SHMEM_INO_BATCH 1024
260 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
261 {
262 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
263 	ino_t ino;
264 
265 	if (!(sb->s_flags & SB_KERNMOUNT)) {
266 		raw_spin_lock(&sbinfo->stat_lock);
267 		if (sbinfo->max_inodes) {
268 			if (!sbinfo->free_inodes) {
269 				raw_spin_unlock(&sbinfo->stat_lock);
270 				return -ENOSPC;
271 			}
272 			sbinfo->free_inodes--;
273 		}
274 		if (inop) {
275 			ino = sbinfo->next_ino++;
276 			if (unlikely(is_zero_ino(ino)))
277 				ino = sbinfo->next_ino++;
278 			if (unlikely(!sbinfo->full_inums &&
279 				     ino > UINT_MAX)) {
280 				/*
281 				 * Emulate get_next_ino uint wraparound for
282 				 * compatibility
283 				 */
284 				if (IS_ENABLED(CONFIG_64BIT))
285 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
286 						__func__, MINOR(sb->s_dev));
287 				sbinfo->next_ino = 1;
288 				ino = sbinfo->next_ino++;
289 			}
290 			*inop = ino;
291 		}
292 		raw_spin_unlock(&sbinfo->stat_lock);
293 	} else if (inop) {
294 		/*
295 		 * __shmem_file_setup, one of our callers, is lock-free: it
296 		 * doesn't hold stat_lock in shmem_reserve_inode since
297 		 * max_inodes is always 0, and is called from potentially
298 		 * unknown contexts. As such, use a per-cpu batched allocator
299 		 * which doesn't require the per-sb stat_lock unless we are at
300 		 * the batch boundary.
301 		 *
302 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
303 		 * shmem mounts are not exposed to userspace, so we don't need
304 		 * to worry about things like glibc compatibility.
305 		 */
306 		ino_t *next_ino;
307 
308 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
309 		ino = *next_ino;
310 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
311 			raw_spin_lock(&sbinfo->stat_lock);
312 			ino = sbinfo->next_ino;
313 			sbinfo->next_ino += SHMEM_INO_BATCH;
314 			raw_spin_unlock(&sbinfo->stat_lock);
315 			if (unlikely(is_zero_ino(ino)))
316 				ino++;
317 		}
318 		*inop = ino;
319 		*next_ino = ++ino;
320 		put_cpu();
321 	}
322 
323 	return 0;
324 }
325 
326 static void shmem_free_inode(struct super_block *sb)
327 {
328 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
329 	if (sbinfo->max_inodes) {
330 		raw_spin_lock(&sbinfo->stat_lock);
331 		sbinfo->free_inodes++;
332 		raw_spin_unlock(&sbinfo->stat_lock);
333 	}
334 }
335 
336 /**
337  * shmem_recalc_inode - recalculate the block usage of an inode
338  * @inode: inode to recalc
339  *
340  * We have to calculate the free blocks since the mm can drop
341  * undirtied hole pages behind our back.
342  *
343  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
344  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
345  *
346  * It has to be called with the spinlock held.
347  */
348 static void shmem_recalc_inode(struct inode *inode)
349 {
350 	struct shmem_inode_info *info = SHMEM_I(inode);
351 	long freed;
352 
353 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
354 	if (freed > 0) {
355 		info->alloced -= freed;
356 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
357 		shmem_inode_unacct_blocks(inode, freed);
358 	}
359 }
360 
361 bool shmem_charge(struct inode *inode, long pages)
362 {
363 	struct shmem_inode_info *info = SHMEM_I(inode);
364 	unsigned long flags;
365 
366 	if (!shmem_inode_acct_block(inode, pages))
367 		return false;
368 
369 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
370 	inode->i_mapping->nrpages += pages;
371 
372 	spin_lock_irqsave(&info->lock, flags);
373 	info->alloced += pages;
374 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
375 	shmem_recalc_inode(inode);
376 	spin_unlock_irqrestore(&info->lock, flags);
377 
378 	return true;
379 }
380 
381 void shmem_uncharge(struct inode *inode, long pages)
382 {
383 	struct shmem_inode_info *info = SHMEM_I(inode);
384 	unsigned long flags;
385 
386 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
387 
388 	spin_lock_irqsave(&info->lock, flags);
389 	info->alloced -= pages;
390 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
391 	shmem_recalc_inode(inode);
392 	spin_unlock_irqrestore(&info->lock, flags);
393 
394 	shmem_inode_unacct_blocks(inode, pages);
395 }
396 
397 /*
398  * Replace item expected in xarray by a new item, while holding xa_lock.
399  */
400 static int shmem_replace_entry(struct address_space *mapping,
401 			pgoff_t index, void *expected, void *replacement)
402 {
403 	XA_STATE(xas, &mapping->i_pages, index);
404 	void *item;
405 
406 	VM_BUG_ON(!expected);
407 	VM_BUG_ON(!replacement);
408 	item = xas_load(&xas);
409 	if (item != expected)
410 		return -ENOENT;
411 	xas_store(&xas, replacement);
412 	return 0;
413 }
414 
415 /*
416  * Sometimes, before we decide whether to proceed or to fail, we must check
417  * that an entry was not already brought back from swap by a racing thread.
418  *
419  * Checking page is not enough: by the time a SwapCache page is locked, it
420  * might be reused, and again be SwapCache, using the same swap as before.
421  */
422 static bool shmem_confirm_swap(struct address_space *mapping,
423 			       pgoff_t index, swp_entry_t swap)
424 {
425 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
426 }
427 
428 /*
429  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
430  *
431  * SHMEM_HUGE_NEVER:
432  *	disables huge pages for the mount;
433  * SHMEM_HUGE_ALWAYS:
434  *	enables huge pages for the mount;
435  * SHMEM_HUGE_WITHIN_SIZE:
436  *	only allocate huge pages if the page will be fully within i_size,
437  *	also respect fadvise()/madvise() hints;
438  * SHMEM_HUGE_ADVISE:
439  *	only allocate huge pages if requested with fadvise()/madvise();
440  */
441 
442 #define SHMEM_HUGE_NEVER	0
443 #define SHMEM_HUGE_ALWAYS	1
444 #define SHMEM_HUGE_WITHIN_SIZE	2
445 #define SHMEM_HUGE_ADVISE	3
446 
447 /*
448  * Special values.
449  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
450  *
451  * SHMEM_HUGE_DENY:
452  *	disables huge on shm_mnt and all mounts, for emergency use;
453  * SHMEM_HUGE_FORCE:
454  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
455  *
456  */
457 #define SHMEM_HUGE_DENY		(-1)
458 #define SHMEM_HUGE_FORCE	(-2)
459 
460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
461 /* ifdef here to avoid bloating shmem.o when not necessary */
462 
463 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
464 
465 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
466 		   pgoff_t index, bool shmem_huge_force)
467 {
468 	loff_t i_size;
469 
470 	if (!S_ISREG(inode->i_mode))
471 		return false;
472 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
473 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
474 		return false;
475 	if (shmem_huge_force)
476 		return true;
477 	if (shmem_huge == SHMEM_HUGE_FORCE)
478 		return true;
479 	if (shmem_huge == SHMEM_HUGE_DENY)
480 		return false;
481 
482 	switch (SHMEM_SB(inode->i_sb)->huge) {
483 	case SHMEM_HUGE_ALWAYS:
484 		return true;
485 	case SHMEM_HUGE_WITHIN_SIZE:
486 		index = round_up(index + 1, HPAGE_PMD_NR);
487 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
488 		if (i_size >> PAGE_SHIFT >= index)
489 			return true;
490 		fallthrough;
491 	case SHMEM_HUGE_ADVISE:
492 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
493 			return true;
494 		fallthrough;
495 	default:
496 		return false;
497 	}
498 }
499 
500 #if defined(CONFIG_SYSFS)
501 static int shmem_parse_huge(const char *str)
502 {
503 	if (!strcmp(str, "never"))
504 		return SHMEM_HUGE_NEVER;
505 	if (!strcmp(str, "always"))
506 		return SHMEM_HUGE_ALWAYS;
507 	if (!strcmp(str, "within_size"))
508 		return SHMEM_HUGE_WITHIN_SIZE;
509 	if (!strcmp(str, "advise"))
510 		return SHMEM_HUGE_ADVISE;
511 	if (!strcmp(str, "deny"))
512 		return SHMEM_HUGE_DENY;
513 	if (!strcmp(str, "force"))
514 		return SHMEM_HUGE_FORCE;
515 	return -EINVAL;
516 }
517 #endif
518 
519 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
520 static const char *shmem_format_huge(int huge)
521 {
522 	switch (huge) {
523 	case SHMEM_HUGE_NEVER:
524 		return "never";
525 	case SHMEM_HUGE_ALWAYS:
526 		return "always";
527 	case SHMEM_HUGE_WITHIN_SIZE:
528 		return "within_size";
529 	case SHMEM_HUGE_ADVISE:
530 		return "advise";
531 	case SHMEM_HUGE_DENY:
532 		return "deny";
533 	case SHMEM_HUGE_FORCE:
534 		return "force";
535 	default:
536 		VM_BUG_ON(1);
537 		return "bad_val";
538 	}
539 }
540 #endif
541 
542 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
543 		struct shrink_control *sc, unsigned long nr_to_split)
544 {
545 	LIST_HEAD(list), *pos, *next;
546 	LIST_HEAD(to_remove);
547 	struct inode *inode;
548 	struct shmem_inode_info *info;
549 	struct folio *folio;
550 	unsigned long batch = sc ? sc->nr_to_scan : 128;
551 	int split = 0;
552 
553 	if (list_empty(&sbinfo->shrinklist))
554 		return SHRINK_STOP;
555 
556 	spin_lock(&sbinfo->shrinklist_lock);
557 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
558 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
559 
560 		/* pin the inode */
561 		inode = igrab(&info->vfs_inode);
562 
563 		/* inode is about to be evicted */
564 		if (!inode) {
565 			list_del_init(&info->shrinklist);
566 			goto next;
567 		}
568 
569 		/* Check if there's anything to gain */
570 		if (round_up(inode->i_size, PAGE_SIZE) ==
571 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
572 			list_move(&info->shrinklist, &to_remove);
573 			goto next;
574 		}
575 
576 		list_move(&info->shrinklist, &list);
577 next:
578 		sbinfo->shrinklist_len--;
579 		if (!--batch)
580 			break;
581 	}
582 	spin_unlock(&sbinfo->shrinklist_lock);
583 
584 	list_for_each_safe(pos, next, &to_remove) {
585 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
586 		inode = &info->vfs_inode;
587 		list_del_init(&info->shrinklist);
588 		iput(inode);
589 	}
590 
591 	list_for_each_safe(pos, next, &list) {
592 		int ret;
593 		pgoff_t index;
594 
595 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
596 		inode = &info->vfs_inode;
597 
598 		if (nr_to_split && split >= nr_to_split)
599 			goto move_back;
600 
601 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
602 		folio = filemap_get_folio(inode->i_mapping, index);
603 		if (!folio)
604 			goto drop;
605 
606 		/* No huge page at the end of the file: nothing to split */
607 		if (!folio_test_large(folio)) {
608 			folio_put(folio);
609 			goto drop;
610 		}
611 
612 		/*
613 		 * Move the inode on the list back to shrinklist if we failed
614 		 * to lock the page at this time.
615 		 *
616 		 * Waiting for the lock may lead to deadlock in the
617 		 * reclaim path.
618 		 */
619 		if (!folio_trylock(folio)) {
620 			folio_put(folio);
621 			goto move_back;
622 		}
623 
624 		ret = split_folio(folio);
625 		folio_unlock(folio);
626 		folio_put(folio);
627 
628 		/* If split failed move the inode on the list back to shrinklist */
629 		if (ret)
630 			goto move_back;
631 
632 		split++;
633 drop:
634 		list_del_init(&info->shrinklist);
635 		goto put;
636 move_back:
637 		/*
638 		 * Make sure the inode is either on the global list or deleted
639 		 * from any local list before iput() since it could be deleted
640 		 * in another thread once we put the inode (then the local list
641 		 * is corrupted).
642 		 */
643 		spin_lock(&sbinfo->shrinklist_lock);
644 		list_move(&info->shrinklist, &sbinfo->shrinklist);
645 		sbinfo->shrinklist_len++;
646 		spin_unlock(&sbinfo->shrinklist_lock);
647 put:
648 		iput(inode);
649 	}
650 
651 	return split;
652 }
653 
654 static long shmem_unused_huge_scan(struct super_block *sb,
655 		struct shrink_control *sc)
656 {
657 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
658 
659 	if (!READ_ONCE(sbinfo->shrinklist_len))
660 		return SHRINK_STOP;
661 
662 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
663 }
664 
665 static long shmem_unused_huge_count(struct super_block *sb,
666 		struct shrink_control *sc)
667 {
668 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
669 	return READ_ONCE(sbinfo->shrinklist_len);
670 }
671 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
672 
673 #define shmem_huge SHMEM_HUGE_DENY
674 
675 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
676 		   pgoff_t index, bool shmem_huge_force)
677 {
678 	return false;
679 }
680 
681 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
682 		struct shrink_control *sc, unsigned long nr_to_split)
683 {
684 	return 0;
685 }
686 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
687 
688 /*
689  * Like filemap_add_folio, but error if expected item has gone.
690  */
691 static int shmem_add_to_page_cache(struct folio *folio,
692 				   struct address_space *mapping,
693 				   pgoff_t index, void *expected, gfp_t gfp,
694 				   struct mm_struct *charge_mm)
695 {
696 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
697 	long nr = folio_nr_pages(folio);
698 	int error;
699 
700 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
701 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
702 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
703 	VM_BUG_ON(expected && folio_test_large(folio));
704 
705 	folio_ref_add(folio, nr);
706 	folio->mapping = mapping;
707 	folio->index = index;
708 
709 	if (!folio_test_swapcache(folio)) {
710 		error = mem_cgroup_charge(folio, charge_mm, gfp);
711 		if (error) {
712 			if (folio_test_pmd_mappable(folio)) {
713 				count_vm_event(THP_FILE_FALLBACK);
714 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
715 			}
716 			goto error;
717 		}
718 	}
719 	folio_throttle_swaprate(folio, gfp);
720 
721 	do {
722 		xas_lock_irq(&xas);
723 		if (expected != xas_find_conflict(&xas)) {
724 			xas_set_err(&xas, -EEXIST);
725 			goto unlock;
726 		}
727 		if (expected && xas_find_conflict(&xas)) {
728 			xas_set_err(&xas, -EEXIST);
729 			goto unlock;
730 		}
731 		xas_store(&xas, folio);
732 		if (xas_error(&xas))
733 			goto unlock;
734 		if (folio_test_pmd_mappable(folio)) {
735 			count_vm_event(THP_FILE_ALLOC);
736 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
737 		}
738 		mapping->nrpages += nr;
739 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
740 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
741 unlock:
742 		xas_unlock_irq(&xas);
743 	} while (xas_nomem(&xas, gfp));
744 
745 	if (xas_error(&xas)) {
746 		error = xas_error(&xas);
747 		goto error;
748 	}
749 
750 	return 0;
751 error:
752 	folio->mapping = NULL;
753 	folio_ref_sub(folio, nr);
754 	return error;
755 }
756 
757 /*
758  * Like delete_from_page_cache, but substitutes swap for @folio.
759  */
760 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
761 {
762 	struct address_space *mapping = folio->mapping;
763 	long nr = folio_nr_pages(folio);
764 	int error;
765 
766 	xa_lock_irq(&mapping->i_pages);
767 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
768 	folio->mapping = NULL;
769 	mapping->nrpages -= nr;
770 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
771 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
772 	xa_unlock_irq(&mapping->i_pages);
773 	folio_put(folio);
774 	BUG_ON(error);
775 }
776 
777 /*
778  * Remove swap entry from page cache, free the swap and its page cache.
779  */
780 static int shmem_free_swap(struct address_space *mapping,
781 			   pgoff_t index, void *radswap)
782 {
783 	void *old;
784 
785 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
786 	if (old != radswap)
787 		return -ENOENT;
788 	free_swap_and_cache(radix_to_swp_entry(radswap));
789 	return 0;
790 }
791 
792 /*
793  * Determine (in bytes) how many of the shmem object's pages mapped by the
794  * given offsets are swapped out.
795  *
796  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
797  * as long as the inode doesn't go away and racy results are not a problem.
798  */
799 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
800 						pgoff_t start, pgoff_t end)
801 {
802 	XA_STATE(xas, &mapping->i_pages, start);
803 	struct page *page;
804 	unsigned long swapped = 0;
805 
806 	rcu_read_lock();
807 	xas_for_each(&xas, page, end - 1) {
808 		if (xas_retry(&xas, page))
809 			continue;
810 		if (xa_is_value(page))
811 			swapped++;
812 
813 		if (need_resched()) {
814 			xas_pause(&xas);
815 			cond_resched_rcu();
816 		}
817 	}
818 
819 	rcu_read_unlock();
820 
821 	return swapped << PAGE_SHIFT;
822 }
823 
824 /*
825  * Determine (in bytes) how many of the shmem object's pages mapped by the
826  * given vma is swapped out.
827  *
828  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
829  * as long as the inode doesn't go away and racy results are not a problem.
830  */
831 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
832 {
833 	struct inode *inode = file_inode(vma->vm_file);
834 	struct shmem_inode_info *info = SHMEM_I(inode);
835 	struct address_space *mapping = inode->i_mapping;
836 	unsigned long swapped;
837 
838 	/* Be careful as we don't hold info->lock */
839 	swapped = READ_ONCE(info->swapped);
840 
841 	/*
842 	 * The easier cases are when the shmem object has nothing in swap, or
843 	 * the vma maps it whole. Then we can simply use the stats that we
844 	 * already track.
845 	 */
846 	if (!swapped)
847 		return 0;
848 
849 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
850 		return swapped << PAGE_SHIFT;
851 
852 	/* Here comes the more involved part */
853 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
854 					vma->vm_pgoff + vma_pages(vma));
855 }
856 
857 /*
858  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
859  */
860 void shmem_unlock_mapping(struct address_space *mapping)
861 {
862 	struct folio_batch fbatch;
863 	pgoff_t index = 0;
864 
865 	folio_batch_init(&fbatch);
866 	/*
867 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
868 	 */
869 	while (!mapping_unevictable(mapping) &&
870 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
871 		check_move_unevictable_folios(&fbatch);
872 		folio_batch_release(&fbatch);
873 		cond_resched();
874 	}
875 }
876 
877 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
878 {
879 	struct folio *folio;
880 
881 	/*
882 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
883 	 * beyond i_size, and reports fallocated pages as holes.
884 	 */
885 	folio = __filemap_get_folio(inode->i_mapping, index,
886 					FGP_ENTRY | FGP_LOCK, 0);
887 	if (!xa_is_value(folio))
888 		return folio;
889 	/*
890 	 * But read a page back from swap if any of it is within i_size
891 	 * (although in some cases this is just a waste of time).
892 	 */
893 	folio = NULL;
894 	shmem_get_folio(inode, index, &folio, SGP_READ);
895 	return folio;
896 }
897 
898 /*
899  * Remove range of pages and swap entries from page cache, and free them.
900  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
901  */
902 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
903 								 bool unfalloc)
904 {
905 	struct address_space *mapping = inode->i_mapping;
906 	struct shmem_inode_info *info = SHMEM_I(inode);
907 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
908 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
909 	struct folio_batch fbatch;
910 	pgoff_t indices[PAGEVEC_SIZE];
911 	struct folio *folio;
912 	bool same_folio;
913 	long nr_swaps_freed = 0;
914 	pgoff_t index;
915 	int i;
916 
917 	if (lend == -1)
918 		end = -1;	/* unsigned, so actually very big */
919 
920 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
921 		info->fallocend = start;
922 
923 	folio_batch_init(&fbatch);
924 	index = start;
925 	while (index < end && find_lock_entries(mapping, &index, end - 1,
926 			&fbatch, indices)) {
927 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
928 			folio = fbatch.folios[i];
929 
930 			if (xa_is_value(folio)) {
931 				if (unfalloc)
932 					continue;
933 				nr_swaps_freed += !shmem_free_swap(mapping,
934 							indices[i], folio);
935 				continue;
936 			}
937 
938 			if (!unfalloc || !folio_test_uptodate(folio))
939 				truncate_inode_folio(mapping, folio);
940 			folio_unlock(folio);
941 		}
942 		folio_batch_remove_exceptionals(&fbatch);
943 		folio_batch_release(&fbatch);
944 		cond_resched();
945 	}
946 
947 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
948 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
949 	if (folio) {
950 		same_folio = lend < folio_pos(folio) + folio_size(folio);
951 		folio_mark_dirty(folio);
952 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
953 			start = folio->index + folio_nr_pages(folio);
954 			if (same_folio)
955 				end = folio->index;
956 		}
957 		folio_unlock(folio);
958 		folio_put(folio);
959 		folio = NULL;
960 	}
961 
962 	if (!same_folio)
963 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
964 	if (folio) {
965 		folio_mark_dirty(folio);
966 		if (!truncate_inode_partial_folio(folio, lstart, lend))
967 			end = folio->index;
968 		folio_unlock(folio);
969 		folio_put(folio);
970 	}
971 
972 	index = start;
973 	while (index < end) {
974 		cond_resched();
975 
976 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
977 				indices)) {
978 			/* If all gone or hole-punch or unfalloc, we're done */
979 			if (index == start || end != -1)
980 				break;
981 			/* But if truncating, restart to make sure all gone */
982 			index = start;
983 			continue;
984 		}
985 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
986 			folio = fbatch.folios[i];
987 
988 			if (xa_is_value(folio)) {
989 				if (unfalloc)
990 					continue;
991 				if (shmem_free_swap(mapping, indices[i], folio)) {
992 					/* Swap was replaced by page: retry */
993 					index = indices[i];
994 					break;
995 				}
996 				nr_swaps_freed++;
997 				continue;
998 			}
999 
1000 			folio_lock(folio);
1001 
1002 			if (!unfalloc || !folio_test_uptodate(folio)) {
1003 				if (folio_mapping(folio) != mapping) {
1004 					/* Page was replaced by swap: retry */
1005 					folio_unlock(folio);
1006 					index = indices[i];
1007 					break;
1008 				}
1009 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1010 						folio);
1011 				truncate_inode_folio(mapping, folio);
1012 			}
1013 			folio_unlock(folio);
1014 		}
1015 		folio_batch_remove_exceptionals(&fbatch);
1016 		folio_batch_release(&fbatch);
1017 	}
1018 
1019 	spin_lock_irq(&info->lock);
1020 	info->swapped -= nr_swaps_freed;
1021 	shmem_recalc_inode(inode);
1022 	spin_unlock_irq(&info->lock);
1023 }
1024 
1025 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1026 {
1027 	shmem_undo_range(inode, lstart, lend, false);
1028 	inode->i_ctime = inode->i_mtime = current_time(inode);
1029 	inode_inc_iversion(inode);
1030 }
1031 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1032 
1033 static int shmem_getattr(struct user_namespace *mnt_userns,
1034 			 const struct path *path, struct kstat *stat,
1035 			 u32 request_mask, unsigned int query_flags)
1036 {
1037 	struct inode *inode = path->dentry->d_inode;
1038 	struct shmem_inode_info *info = SHMEM_I(inode);
1039 
1040 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1041 		spin_lock_irq(&info->lock);
1042 		shmem_recalc_inode(inode);
1043 		spin_unlock_irq(&info->lock);
1044 	}
1045 	if (info->fsflags & FS_APPEND_FL)
1046 		stat->attributes |= STATX_ATTR_APPEND;
1047 	if (info->fsflags & FS_IMMUTABLE_FL)
1048 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1049 	if (info->fsflags & FS_NODUMP_FL)
1050 		stat->attributes |= STATX_ATTR_NODUMP;
1051 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1052 			STATX_ATTR_IMMUTABLE |
1053 			STATX_ATTR_NODUMP);
1054 	generic_fillattr(&init_user_ns, inode, stat);
1055 
1056 	if (shmem_is_huge(NULL, inode, 0, false))
1057 		stat->blksize = HPAGE_PMD_SIZE;
1058 
1059 	if (request_mask & STATX_BTIME) {
1060 		stat->result_mask |= STATX_BTIME;
1061 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1062 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1063 	}
1064 
1065 	return 0;
1066 }
1067 
1068 static int shmem_setattr(struct user_namespace *mnt_userns,
1069 			 struct dentry *dentry, struct iattr *attr)
1070 {
1071 	struct inode *inode = d_inode(dentry);
1072 	struct shmem_inode_info *info = SHMEM_I(inode);
1073 	int error;
1074 	bool update_mtime = false;
1075 	bool update_ctime = true;
1076 
1077 	error = setattr_prepare(&init_user_ns, dentry, attr);
1078 	if (error)
1079 		return error;
1080 
1081 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1082 		loff_t oldsize = inode->i_size;
1083 		loff_t newsize = attr->ia_size;
1084 
1085 		/* protected by i_rwsem */
1086 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1087 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1088 			return -EPERM;
1089 
1090 		if (newsize != oldsize) {
1091 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1092 					oldsize, newsize);
1093 			if (error)
1094 				return error;
1095 			i_size_write(inode, newsize);
1096 			update_mtime = true;
1097 		} else {
1098 			update_ctime = false;
1099 		}
1100 		if (newsize <= oldsize) {
1101 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1102 			if (oldsize > holebegin)
1103 				unmap_mapping_range(inode->i_mapping,
1104 							holebegin, 0, 1);
1105 			if (info->alloced)
1106 				shmem_truncate_range(inode,
1107 							newsize, (loff_t)-1);
1108 			/* unmap again to remove racily COWed private pages */
1109 			if (oldsize > holebegin)
1110 				unmap_mapping_range(inode->i_mapping,
1111 							holebegin, 0, 1);
1112 		}
1113 	}
1114 
1115 	setattr_copy(&init_user_ns, inode, attr);
1116 	if (attr->ia_valid & ATTR_MODE)
1117 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1118 	if (!error && update_ctime) {
1119 		inode->i_ctime = current_time(inode);
1120 		if (update_mtime)
1121 			inode->i_mtime = inode->i_ctime;
1122 		inode_inc_iversion(inode);
1123 	}
1124 	return error;
1125 }
1126 
1127 static void shmem_evict_inode(struct inode *inode)
1128 {
1129 	struct shmem_inode_info *info = SHMEM_I(inode);
1130 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1131 
1132 	if (shmem_mapping(inode->i_mapping)) {
1133 		shmem_unacct_size(info->flags, inode->i_size);
1134 		inode->i_size = 0;
1135 		mapping_set_exiting(inode->i_mapping);
1136 		shmem_truncate_range(inode, 0, (loff_t)-1);
1137 		if (!list_empty(&info->shrinklist)) {
1138 			spin_lock(&sbinfo->shrinklist_lock);
1139 			if (!list_empty(&info->shrinklist)) {
1140 				list_del_init(&info->shrinklist);
1141 				sbinfo->shrinklist_len--;
1142 			}
1143 			spin_unlock(&sbinfo->shrinklist_lock);
1144 		}
1145 		while (!list_empty(&info->swaplist)) {
1146 			/* Wait while shmem_unuse() is scanning this inode... */
1147 			wait_var_event(&info->stop_eviction,
1148 				       !atomic_read(&info->stop_eviction));
1149 			mutex_lock(&shmem_swaplist_mutex);
1150 			/* ...but beware of the race if we peeked too early */
1151 			if (!atomic_read(&info->stop_eviction))
1152 				list_del_init(&info->swaplist);
1153 			mutex_unlock(&shmem_swaplist_mutex);
1154 		}
1155 	}
1156 
1157 	simple_xattrs_free(&info->xattrs);
1158 	WARN_ON(inode->i_blocks);
1159 	shmem_free_inode(inode->i_sb);
1160 	clear_inode(inode);
1161 }
1162 
1163 static int shmem_find_swap_entries(struct address_space *mapping,
1164 				   pgoff_t start, struct folio_batch *fbatch,
1165 				   pgoff_t *indices, unsigned int type)
1166 {
1167 	XA_STATE(xas, &mapping->i_pages, start);
1168 	struct folio *folio;
1169 	swp_entry_t entry;
1170 
1171 	rcu_read_lock();
1172 	xas_for_each(&xas, folio, ULONG_MAX) {
1173 		if (xas_retry(&xas, folio))
1174 			continue;
1175 
1176 		if (!xa_is_value(folio))
1177 			continue;
1178 
1179 		entry = radix_to_swp_entry(folio);
1180 		/*
1181 		 * swapin error entries can be found in the mapping. But they're
1182 		 * deliberately ignored here as we've done everything we can do.
1183 		 */
1184 		if (swp_type(entry) != type)
1185 			continue;
1186 
1187 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1188 		if (!folio_batch_add(fbatch, folio))
1189 			break;
1190 
1191 		if (need_resched()) {
1192 			xas_pause(&xas);
1193 			cond_resched_rcu();
1194 		}
1195 	}
1196 	rcu_read_unlock();
1197 
1198 	return xas.xa_index;
1199 }
1200 
1201 /*
1202  * Move the swapped pages for an inode to page cache. Returns the count
1203  * of pages swapped in, or the error in case of failure.
1204  */
1205 static int shmem_unuse_swap_entries(struct inode *inode,
1206 		struct folio_batch *fbatch, pgoff_t *indices)
1207 {
1208 	int i = 0;
1209 	int ret = 0;
1210 	int error = 0;
1211 	struct address_space *mapping = inode->i_mapping;
1212 
1213 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1214 		struct folio *folio = fbatch->folios[i];
1215 
1216 		if (!xa_is_value(folio))
1217 			continue;
1218 		error = shmem_swapin_folio(inode, indices[i],
1219 					  &folio, SGP_CACHE,
1220 					  mapping_gfp_mask(mapping),
1221 					  NULL, NULL);
1222 		if (error == 0) {
1223 			folio_unlock(folio);
1224 			folio_put(folio);
1225 			ret++;
1226 		}
1227 		if (error == -ENOMEM)
1228 			break;
1229 		error = 0;
1230 	}
1231 	return error ? error : ret;
1232 }
1233 
1234 /*
1235  * If swap found in inode, free it and move page from swapcache to filecache.
1236  */
1237 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1238 {
1239 	struct address_space *mapping = inode->i_mapping;
1240 	pgoff_t start = 0;
1241 	struct folio_batch fbatch;
1242 	pgoff_t indices[PAGEVEC_SIZE];
1243 	int ret = 0;
1244 
1245 	do {
1246 		folio_batch_init(&fbatch);
1247 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1248 		if (folio_batch_count(&fbatch) == 0) {
1249 			ret = 0;
1250 			break;
1251 		}
1252 
1253 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1254 		if (ret < 0)
1255 			break;
1256 
1257 		start = indices[folio_batch_count(&fbatch) - 1];
1258 	} while (true);
1259 
1260 	return ret;
1261 }
1262 
1263 /*
1264  * Read all the shared memory data that resides in the swap
1265  * device 'type' back into memory, so the swap device can be
1266  * unused.
1267  */
1268 int shmem_unuse(unsigned int type)
1269 {
1270 	struct shmem_inode_info *info, *next;
1271 	int error = 0;
1272 
1273 	if (list_empty(&shmem_swaplist))
1274 		return 0;
1275 
1276 	mutex_lock(&shmem_swaplist_mutex);
1277 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1278 		if (!info->swapped) {
1279 			list_del_init(&info->swaplist);
1280 			continue;
1281 		}
1282 		/*
1283 		 * Drop the swaplist mutex while searching the inode for swap;
1284 		 * but before doing so, make sure shmem_evict_inode() will not
1285 		 * remove placeholder inode from swaplist, nor let it be freed
1286 		 * (igrab() would protect from unlink, but not from unmount).
1287 		 */
1288 		atomic_inc(&info->stop_eviction);
1289 		mutex_unlock(&shmem_swaplist_mutex);
1290 
1291 		error = shmem_unuse_inode(&info->vfs_inode, type);
1292 		cond_resched();
1293 
1294 		mutex_lock(&shmem_swaplist_mutex);
1295 		next = list_next_entry(info, swaplist);
1296 		if (!info->swapped)
1297 			list_del_init(&info->swaplist);
1298 		if (atomic_dec_and_test(&info->stop_eviction))
1299 			wake_up_var(&info->stop_eviction);
1300 		if (error)
1301 			break;
1302 	}
1303 	mutex_unlock(&shmem_swaplist_mutex);
1304 
1305 	return error;
1306 }
1307 
1308 /*
1309  * Move the page from the page cache to the swap cache.
1310  */
1311 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1312 {
1313 	struct folio *folio = page_folio(page);
1314 	struct shmem_inode_info *info;
1315 	struct address_space *mapping;
1316 	struct inode *inode;
1317 	swp_entry_t swap;
1318 	pgoff_t index;
1319 
1320 	/*
1321 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1322 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1323 	 * and its shmem_writeback() needs them to be split when swapping.
1324 	 */
1325 	if (folio_test_large(folio)) {
1326 		/* Ensure the subpages are still dirty */
1327 		folio_test_set_dirty(folio);
1328 		if (split_huge_page(page) < 0)
1329 			goto redirty;
1330 		folio = page_folio(page);
1331 		folio_clear_dirty(folio);
1332 	}
1333 
1334 	BUG_ON(!folio_test_locked(folio));
1335 	mapping = folio->mapping;
1336 	index = folio->index;
1337 	inode = mapping->host;
1338 	info = SHMEM_I(inode);
1339 	if (info->flags & VM_LOCKED)
1340 		goto redirty;
1341 	if (!total_swap_pages)
1342 		goto redirty;
1343 
1344 	/*
1345 	 * Our capabilities prevent regular writeback or sync from ever calling
1346 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1347 	 * its underlying filesystem, in which case tmpfs should write out to
1348 	 * swap only in response to memory pressure, and not for the writeback
1349 	 * threads or sync.
1350 	 */
1351 	if (!wbc->for_reclaim) {
1352 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1353 		goto redirty;
1354 	}
1355 
1356 	/*
1357 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1358 	 * value into swapfile.c, the only way we can correctly account for a
1359 	 * fallocated folio arriving here is now to initialize it and write it.
1360 	 *
1361 	 * That's okay for a folio already fallocated earlier, but if we have
1362 	 * not yet completed the fallocation, then (a) we want to keep track
1363 	 * of this folio in case we have to undo it, and (b) it may not be a
1364 	 * good idea to continue anyway, once we're pushing into swap.  So
1365 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1366 	 */
1367 	if (!folio_test_uptodate(folio)) {
1368 		if (inode->i_private) {
1369 			struct shmem_falloc *shmem_falloc;
1370 			spin_lock(&inode->i_lock);
1371 			shmem_falloc = inode->i_private;
1372 			if (shmem_falloc &&
1373 			    !shmem_falloc->waitq &&
1374 			    index >= shmem_falloc->start &&
1375 			    index < shmem_falloc->next)
1376 				shmem_falloc->nr_unswapped++;
1377 			else
1378 				shmem_falloc = NULL;
1379 			spin_unlock(&inode->i_lock);
1380 			if (shmem_falloc)
1381 				goto redirty;
1382 		}
1383 		folio_zero_range(folio, 0, folio_size(folio));
1384 		flush_dcache_folio(folio);
1385 		folio_mark_uptodate(folio);
1386 	}
1387 
1388 	swap = folio_alloc_swap(folio);
1389 	if (!swap.val)
1390 		goto redirty;
1391 
1392 	/*
1393 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1394 	 * if it's not already there.  Do it now before the folio is
1395 	 * moved to swap cache, when its pagelock no longer protects
1396 	 * the inode from eviction.  But don't unlock the mutex until
1397 	 * we've incremented swapped, because shmem_unuse_inode() will
1398 	 * prune a !swapped inode from the swaplist under this mutex.
1399 	 */
1400 	mutex_lock(&shmem_swaplist_mutex);
1401 	if (list_empty(&info->swaplist))
1402 		list_add(&info->swaplist, &shmem_swaplist);
1403 
1404 	if (add_to_swap_cache(folio, swap,
1405 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1406 			NULL) == 0) {
1407 		spin_lock_irq(&info->lock);
1408 		shmem_recalc_inode(inode);
1409 		info->swapped++;
1410 		spin_unlock_irq(&info->lock);
1411 
1412 		swap_shmem_alloc(swap);
1413 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1414 
1415 		mutex_unlock(&shmem_swaplist_mutex);
1416 		BUG_ON(folio_mapped(folio));
1417 		swap_writepage(&folio->page, wbc);
1418 		return 0;
1419 	}
1420 
1421 	mutex_unlock(&shmem_swaplist_mutex);
1422 	put_swap_folio(folio, swap);
1423 redirty:
1424 	folio_mark_dirty(folio);
1425 	if (wbc->for_reclaim)
1426 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1427 	folio_unlock(folio);
1428 	return 0;
1429 }
1430 
1431 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1432 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1433 {
1434 	char buffer[64];
1435 
1436 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1437 		return;		/* show nothing */
1438 
1439 	mpol_to_str(buffer, sizeof(buffer), mpol);
1440 
1441 	seq_printf(seq, ",mpol=%s", buffer);
1442 }
1443 
1444 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1445 {
1446 	struct mempolicy *mpol = NULL;
1447 	if (sbinfo->mpol) {
1448 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1449 		mpol = sbinfo->mpol;
1450 		mpol_get(mpol);
1451 		raw_spin_unlock(&sbinfo->stat_lock);
1452 	}
1453 	return mpol;
1454 }
1455 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1456 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1457 {
1458 }
1459 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1460 {
1461 	return NULL;
1462 }
1463 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1464 #ifndef CONFIG_NUMA
1465 #define vm_policy vm_private_data
1466 #endif
1467 
1468 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1469 		struct shmem_inode_info *info, pgoff_t index)
1470 {
1471 	/* Create a pseudo vma that just contains the policy */
1472 	vma_init(vma, NULL);
1473 	/* Bias interleave by inode number to distribute better across nodes */
1474 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1475 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1476 }
1477 
1478 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1479 {
1480 	/* Drop reference taken by mpol_shared_policy_lookup() */
1481 	mpol_cond_put(vma->vm_policy);
1482 }
1483 
1484 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1485 			struct shmem_inode_info *info, pgoff_t index)
1486 {
1487 	struct vm_area_struct pvma;
1488 	struct page *page;
1489 	struct vm_fault vmf = {
1490 		.vma = &pvma,
1491 	};
1492 
1493 	shmem_pseudo_vma_init(&pvma, info, index);
1494 	page = swap_cluster_readahead(swap, gfp, &vmf);
1495 	shmem_pseudo_vma_destroy(&pvma);
1496 
1497 	if (!page)
1498 		return NULL;
1499 	return page_folio(page);
1500 }
1501 
1502 /*
1503  * Make sure huge_gfp is always more limited than limit_gfp.
1504  * Some of the flags set permissions, while others set limitations.
1505  */
1506 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1507 {
1508 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1509 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1510 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1511 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1512 
1513 	/* Allow allocations only from the originally specified zones. */
1514 	result |= zoneflags;
1515 
1516 	/*
1517 	 * Minimize the result gfp by taking the union with the deny flags,
1518 	 * and the intersection of the allow flags.
1519 	 */
1520 	result |= (limit_gfp & denyflags);
1521 	result |= (huge_gfp & limit_gfp) & allowflags;
1522 
1523 	return result;
1524 }
1525 
1526 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1527 		struct shmem_inode_info *info, pgoff_t index)
1528 {
1529 	struct vm_area_struct pvma;
1530 	struct address_space *mapping = info->vfs_inode.i_mapping;
1531 	pgoff_t hindex;
1532 	struct folio *folio;
1533 
1534 	hindex = round_down(index, HPAGE_PMD_NR);
1535 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1536 								XA_PRESENT))
1537 		return NULL;
1538 
1539 	shmem_pseudo_vma_init(&pvma, info, hindex);
1540 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1541 	shmem_pseudo_vma_destroy(&pvma);
1542 	if (!folio)
1543 		count_vm_event(THP_FILE_FALLBACK);
1544 	return folio;
1545 }
1546 
1547 static struct folio *shmem_alloc_folio(gfp_t gfp,
1548 			struct shmem_inode_info *info, pgoff_t index)
1549 {
1550 	struct vm_area_struct pvma;
1551 	struct folio *folio;
1552 
1553 	shmem_pseudo_vma_init(&pvma, info, index);
1554 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1555 	shmem_pseudo_vma_destroy(&pvma);
1556 
1557 	return folio;
1558 }
1559 
1560 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1561 		pgoff_t index, bool huge)
1562 {
1563 	struct shmem_inode_info *info = SHMEM_I(inode);
1564 	struct folio *folio;
1565 	int nr;
1566 	int err = -ENOSPC;
1567 
1568 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1569 		huge = false;
1570 	nr = huge ? HPAGE_PMD_NR : 1;
1571 
1572 	if (!shmem_inode_acct_block(inode, nr))
1573 		goto failed;
1574 
1575 	if (huge)
1576 		folio = shmem_alloc_hugefolio(gfp, info, index);
1577 	else
1578 		folio = shmem_alloc_folio(gfp, info, index);
1579 	if (folio) {
1580 		__folio_set_locked(folio);
1581 		__folio_set_swapbacked(folio);
1582 		return folio;
1583 	}
1584 
1585 	err = -ENOMEM;
1586 	shmem_inode_unacct_blocks(inode, nr);
1587 failed:
1588 	return ERR_PTR(err);
1589 }
1590 
1591 /*
1592  * When a page is moved from swapcache to shmem filecache (either by the
1593  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1594  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1595  * ignorance of the mapping it belongs to.  If that mapping has special
1596  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1597  * we may need to copy to a suitable page before moving to filecache.
1598  *
1599  * In a future release, this may well be extended to respect cpuset and
1600  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1601  * but for now it is a simple matter of zone.
1602  */
1603 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1604 {
1605 	return folio_zonenum(folio) > gfp_zone(gfp);
1606 }
1607 
1608 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1609 				struct shmem_inode_info *info, pgoff_t index)
1610 {
1611 	struct folio *old, *new;
1612 	struct address_space *swap_mapping;
1613 	swp_entry_t entry;
1614 	pgoff_t swap_index;
1615 	int error;
1616 
1617 	old = *foliop;
1618 	entry = folio_swap_entry(old);
1619 	swap_index = swp_offset(entry);
1620 	swap_mapping = swap_address_space(entry);
1621 
1622 	/*
1623 	 * We have arrived here because our zones are constrained, so don't
1624 	 * limit chance of success by further cpuset and node constraints.
1625 	 */
1626 	gfp &= ~GFP_CONSTRAINT_MASK;
1627 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1628 	new = shmem_alloc_folio(gfp, info, index);
1629 	if (!new)
1630 		return -ENOMEM;
1631 
1632 	folio_get(new);
1633 	folio_copy(new, old);
1634 	flush_dcache_folio(new);
1635 
1636 	__folio_set_locked(new);
1637 	__folio_set_swapbacked(new);
1638 	folio_mark_uptodate(new);
1639 	folio_set_swap_entry(new, entry);
1640 	folio_set_swapcache(new);
1641 
1642 	/*
1643 	 * Our caller will very soon move newpage out of swapcache, but it's
1644 	 * a nice clean interface for us to replace oldpage by newpage there.
1645 	 */
1646 	xa_lock_irq(&swap_mapping->i_pages);
1647 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1648 	if (!error) {
1649 		mem_cgroup_migrate(old, new);
1650 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1651 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1652 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1653 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1654 	}
1655 	xa_unlock_irq(&swap_mapping->i_pages);
1656 
1657 	if (unlikely(error)) {
1658 		/*
1659 		 * Is this possible?  I think not, now that our callers check
1660 		 * both PageSwapCache and page_private after getting page lock;
1661 		 * but be defensive.  Reverse old to newpage for clear and free.
1662 		 */
1663 		old = new;
1664 	} else {
1665 		folio_add_lru(new);
1666 		*foliop = new;
1667 	}
1668 
1669 	folio_clear_swapcache(old);
1670 	old->private = NULL;
1671 
1672 	folio_unlock(old);
1673 	folio_put_refs(old, 2);
1674 	return error;
1675 }
1676 
1677 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1678 					 struct folio *folio, swp_entry_t swap)
1679 {
1680 	struct address_space *mapping = inode->i_mapping;
1681 	struct shmem_inode_info *info = SHMEM_I(inode);
1682 	swp_entry_t swapin_error;
1683 	void *old;
1684 
1685 	swapin_error = make_swapin_error_entry();
1686 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1687 			     swp_to_radix_entry(swap),
1688 			     swp_to_radix_entry(swapin_error), 0);
1689 	if (old != swp_to_radix_entry(swap))
1690 		return;
1691 
1692 	folio_wait_writeback(folio);
1693 	delete_from_swap_cache(folio);
1694 	spin_lock_irq(&info->lock);
1695 	/*
1696 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1697 	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1698 	 * shmem_evict_inode.
1699 	 */
1700 	info->alloced--;
1701 	info->swapped--;
1702 	shmem_recalc_inode(inode);
1703 	spin_unlock_irq(&info->lock);
1704 	swap_free(swap);
1705 }
1706 
1707 /*
1708  * Swap in the folio pointed to by *foliop.
1709  * Caller has to make sure that *foliop contains a valid swapped folio.
1710  * Returns 0 and the folio in foliop if success. On failure, returns the
1711  * error code and NULL in *foliop.
1712  */
1713 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1714 			     struct folio **foliop, enum sgp_type sgp,
1715 			     gfp_t gfp, struct vm_area_struct *vma,
1716 			     vm_fault_t *fault_type)
1717 {
1718 	struct address_space *mapping = inode->i_mapping;
1719 	struct shmem_inode_info *info = SHMEM_I(inode);
1720 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1721 	struct folio *folio = NULL;
1722 	swp_entry_t swap;
1723 	int error;
1724 
1725 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1726 	swap = radix_to_swp_entry(*foliop);
1727 	*foliop = NULL;
1728 
1729 	if (is_swapin_error_entry(swap))
1730 		return -EIO;
1731 
1732 	/* Look it up and read it in.. */
1733 	folio = swap_cache_get_folio(swap, NULL, 0);
1734 	if (!folio) {
1735 		/* Or update major stats only when swapin succeeds?? */
1736 		if (fault_type) {
1737 			*fault_type |= VM_FAULT_MAJOR;
1738 			count_vm_event(PGMAJFAULT);
1739 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1740 		}
1741 		/* Here we actually start the io */
1742 		folio = shmem_swapin(swap, gfp, info, index);
1743 		if (!folio) {
1744 			error = -ENOMEM;
1745 			goto failed;
1746 		}
1747 	}
1748 
1749 	/* We have to do this with folio locked to prevent races */
1750 	folio_lock(folio);
1751 	if (!folio_test_swapcache(folio) ||
1752 	    folio_swap_entry(folio).val != swap.val ||
1753 	    !shmem_confirm_swap(mapping, index, swap)) {
1754 		error = -EEXIST;
1755 		goto unlock;
1756 	}
1757 	if (!folio_test_uptodate(folio)) {
1758 		error = -EIO;
1759 		goto failed;
1760 	}
1761 	folio_wait_writeback(folio);
1762 
1763 	/*
1764 	 * Some architectures may have to restore extra metadata to the
1765 	 * folio after reading from swap.
1766 	 */
1767 	arch_swap_restore(swap, folio);
1768 
1769 	if (shmem_should_replace_folio(folio, gfp)) {
1770 		error = shmem_replace_folio(&folio, gfp, info, index);
1771 		if (error)
1772 			goto failed;
1773 	}
1774 
1775 	error = shmem_add_to_page_cache(folio, mapping, index,
1776 					swp_to_radix_entry(swap), gfp,
1777 					charge_mm);
1778 	if (error)
1779 		goto failed;
1780 
1781 	spin_lock_irq(&info->lock);
1782 	info->swapped--;
1783 	shmem_recalc_inode(inode);
1784 	spin_unlock_irq(&info->lock);
1785 
1786 	if (sgp == SGP_WRITE)
1787 		folio_mark_accessed(folio);
1788 
1789 	delete_from_swap_cache(folio);
1790 	folio_mark_dirty(folio);
1791 	swap_free(swap);
1792 
1793 	*foliop = folio;
1794 	return 0;
1795 failed:
1796 	if (!shmem_confirm_swap(mapping, index, swap))
1797 		error = -EEXIST;
1798 	if (error == -EIO)
1799 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1800 unlock:
1801 	if (folio) {
1802 		folio_unlock(folio);
1803 		folio_put(folio);
1804 	}
1805 
1806 	return error;
1807 }
1808 
1809 /*
1810  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1811  *
1812  * If we allocate a new one we do not mark it dirty. That's up to the
1813  * vm. If we swap it in we mark it dirty since we also free the swap
1814  * entry since a page cannot live in both the swap and page cache.
1815  *
1816  * vma, vmf, and fault_type are only supplied by shmem_fault:
1817  * otherwise they are NULL.
1818  */
1819 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1820 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1821 		struct vm_area_struct *vma, struct vm_fault *vmf,
1822 		vm_fault_t *fault_type)
1823 {
1824 	struct address_space *mapping = inode->i_mapping;
1825 	struct shmem_inode_info *info = SHMEM_I(inode);
1826 	struct shmem_sb_info *sbinfo;
1827 	struct mm_struct *charge_mm;
1828 	struct folio *folio;
1829 	pgoff_t hindex;
1830 	gfp_t huge_gfp;
1831 	int error;
1832 	int once = 0;
1833 	int alloced = 0;
1834 
1835 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1836 		return -EFBIG;
1837 repeat:
1838 	if (sgp <= SGP_CACHE &&
1839 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1840 		return -EINVAL;
1841 	}
1842 
1843 	sbinfo = SHMEM_SB(inode->i_sb);
1844 	charge_mm = vma ? vma->vm_mm : NULL;
1845 
1846 	folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1847 	if (folio && vma && userfaultfd_minor(vma)) {
1848 		if (!xa_is_value(folio)) {
1849 			folio_unlock(folio);
1850 			folio_put(folio);
1851 		}
1852 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1853 		return 0;
1854 	}
1855 
1856 	if (xa_is_value(folio)) {
1857 		error = shmem_swapin_folio(inode, index, &folio,
1858 					  sgp, gfp, vma, fault_type);
1859 		if (error == -EEXIST)
1860 			goto repeat;
1861 
1862 		*foliop = folio;
1863 		return error;
1864 	}
1865 
1866 	if (folio) {
1867 		if (sgp == SGP_WRITE)
1868 			folio_mark_accessed(folio);
1869 		if (folio_test_uptodate(folio))
1870 			goto out;
1871 		/* fallocated folio */
1872 		if (sgp != SGP_READ)
1873 			goto clear;
1874 		folio_unlock(folio);
1875 		folio_put(folio);
1876 	}
1877 
1878 	/*
1879 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1880 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1881 	 */
1882 	*foliop = NULL;
1883 	if (sgp == SGP_READ)
1884 		return 0;
1885 	if (sgp == SGP_NOALLOC)
1886 		return -ENOENT;
1887 
1888 	/*
1889 	 * Fast cache lookup and swap lookup did not find it: allocate.
1890 	 */
1891 
1892 	if (vma && userfaultfd_missing(vma)) {
1893 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1894 		return 0;
1895 	}
1896 
1897 	if (!shmem_is_huge(vma, inode, index, false))
1898 		goto alloc_nohuge;
1899 
1900 	huge_gfp = vma_thp_gfp_mask(vma);
1901 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1902 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1903 	if (IS_ERR(folio)) {
1904 alloc_nohuge:
1905 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1906 	}
1907 	if (IS_ERR(folio)) {
1908 		int retry = 5;
1909 
1910 		error = PTR_ERR(folio);
1911 		folio = NULL;
1912 		if (error != -ENOSPC)
1913 			goto unlock;
1914 		/*
1915 		 * Try to reclaim some space by splitting a large folio
1916 		 * beyond i_size on the filesystem.
1917 		 */
1918 		while (retry--) {
1919 			int ret;
1920 
1921 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1922 			if (ret == SHRINK_STOP)
1923 				break;
1924 			if (ret)
1925 				goto alloc_nohuge;
1926 		}
1927 		goto unlock;
1928 	}
1929 
1930 	hindex = round_down(index, folio_nr_pages(folio));
1931 
1932 	if (sgp == SGP_WRITE)
1933 		__folio_set_referenced(folio);
1934 
1935 	error = shmem_add_to_page_cache(folio, mapping, hindex,
1936 					NULL, gfp & GFP_RECLAIM_MASK,
1937 					charge_mm);
1938 	if (error)
1939 		goto unacct;
1940 	folio_add_lru(folio);
1941 
1942 	spin_lock_irq(&info->lock);
1943 	info->alloced += folio_nr_pages(folio);
1944 	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1945 	shmem_recalc_inode(inode);
1946 	spin_unlock_irq(&info->lock);
1947 	alloced = true;
1948 
1949 	if (folio_test_pmd_mappable(folio) &&
1950 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1951 					folio_next_index(folio) - 1) {
1952 		/*
1953 		 * Part of the large folio is beyond i_size: subject
1954 		 * to shrink under memory pressure.
1955 		 */
1956 		spin_lock(&sbinfo->shrinklist_lock);
1957 		/*
1958 		 * _careful to defend against unlocked access to
1959 		 * ->shrink_list in shmem_unused_huge_shrink()
1960 		 */
1961 		if (list_empty_careful(&info->shrinklist)) {
1962 			list_add_tail(&info->shrinklist,
1963 				      &sbinfo->shrinklist);
1964 			sbinfo->shrinklist_len++;
1965 		}
1966 		spin_unlock(&sbinfo->shrinklist_lock);
1967 	}
1968 
1969 	/*
1970 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
1971 	 */
1972 	if (sgp == SGP_FALLOC)
1973 		sgp = SGP_WRITE;
1974 clear:
1975 	/*
1976 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
1977 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
1978 	 * it now, lest undo on failure cancel our earlier guarantee.
1979 	 */
1980 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1981 		long i, n = folio_nr_pages(folio);
1982 
1983 		for (i = 0; i < n; i++)
1984 			clear_highpage(folio_page(folio, i));
1985 		flush_dcache_folio(folio);
1986 		folio_mark_uptodate(folio);
1987 	}
1988 
1989 	/* Perhaps the file has been truncated since we checked */
1990 	if (sgp <= SGP_CACHE &&
1991 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1992 		if (alloced) {
1993 			folio_clear_dirty(folio);
1994 			filemap_remove_folio(folio);
1995 			spin_lock_irq(&info->lock);
1996 			shmem_recalc_inode(inode);
1997 			spin_unlock_irq(&info->lock);
1998 		}
1999 		error = -EINVAL;
2000 		goto unlock;
2001 	}
2002 out:
2003 	*foliop = folio;
2004 	return 0;
2005 
2006 	/*
2007 	 * Error recovery.
2008 	 */
2009 unacct:
2010 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2011 
2012 	if (folio_test_large(folio)) {
2013 		folio_unlock(folio);
2014 		folio_put(folio);
2015 		goto alloc_nohuge;
2016 	}
2017 unlock:
2018 	if (folio) {
2019 		folio_unlock(folio);
2020 		folio_put(folio);
2021 	}
2022 	if (error == -ENOSPC && !once++) {
2023 		spin_lock_irq(&info->lock);
2024 		shmem_recalc_inode(inode);
2025 		spin_unlock_irq(&info->lock);
2026 		goto repeat;
2027 	}
2028 	if (error == -EEXIST)
2029 		goto repeat;
2030 	return error;
2031 }
2032 
2033 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2034 		enum sgp_type sgp)
2035 {
2036 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2037 			mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2038 }
2039 
2040 /*
2041  * This is like autoremove_wake_function, but it removes the wait queue
2042  * entry unconditionally - even if something else had already woken the
2043  * target.
2044  */
2045 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2046 {
2047 	int ret = default_wake_function(wait, mode, sync, key);
2048 	list_del_init(&wait->entry);
2049 	return ret;
2050 }
2051 
2052 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2053 {
2054 	struct vm_area_struct *vma = vmf->vma;
2055 	struct inode *inode = file_inode(vma->vm_file);
2056 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2057 	struct folio *folio = NULL;
2058 	int err;
2059 	vm_fault_t ret = VM_FAULT_LOCKED;
2060 
2061 	/*
2062 	 * Trinity finds that probing a hole which tmpfs is punching can
2063 	 * prevent the hole-punch from ever completing: which in turn
2064 	 * locks writers out with its hold on i_rwsem.  So refrain from
2065 	 * faulting pages into the hole while it's being punched.  Although
2066 	 * shmem_undo_range() does remove the additions, it may be unable to
2067 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2068 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2069 	 *
2070 	 * It does not matter if we sometimes reach this check just before the
2071 	 * hole-punch begins, so that one fault then races with the punch:
2072 	 * we just need to make racing faults a rare case.
2073 	 *
2074 	 * The implementation below would be much simpler if we just used a
2075 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2076 	 * and bloating every shmem inode for this unlikely case would be sad.
2077 	 */
2078 	if (unlikely(inode->i_private)) {
2079 		struct shmem_falloc *shmem_falloc;
2080 
2081 		spin_lock(&inode->i_lock);
2082 		shmem_falloc = inode->i_private;
2083 		if (shmem_falloc &&
2084 		    shmem_falloc->waitq &&
2085 		    vmf->pgoff >= shmem_falloc->start &&
2086 		    vmf->pgoff < shmem_falloc->next) {
2087 			struct file *fpin;
2088 			wait_queue_head_t *shmem_falloc_waitq;
2089 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2090 
2091 			ret = VM_FAULT_NOPAGE;
2092 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2093 			if (fpin)
2094 				ret = VM_FAULT_RETRY;
2095 
2096 			shmem_falloc_waitq = shmem_falloc->waitq;
2097 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2098 					TASK_UNINTERRUPTIBLE);
2099 			spin_unlock(&inode->i_lock);
2100 			schedule();
2101 
2102 			/*
2103 			 * shmem_falloc_waitq points into the shmem_fallocate()
2104 			 * stack of the hole-punching task: shmem_falloc_waitq
2105 			 * is usually invalid by the time we reach here, but
2106 			 * finish_wait() does not dereference it in that case;
2107 			 * though i_lock needed lest racing with wake_up_all().
2108 			 */
2109 			spin_lock(&inode->i_lock);
2110 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2111 			spin_unlock(&inode->i_lock);
2112 
2113 			if (fpin)
2114 				fput(fpin);
2115 			return ret;
2116 		}
2117 		spin_unlock(&inode->i_lock);
2118 	}
2119 
2120 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2121 				  gfp, vma, vmf, &ret);
2122 	if (err)
2123 		return vmf_error(err);
2124 	if (folio)
2125 		vmf->page = folio_file_page(folio, vmf->pgoff);
2126 	return ret;
2127 }
2128 
2129 unsigned long shmem_get_unmapped_area(struct file *file,
2130 				      unsigned long uaddr, unsigned long len,
2131 				      unsigned long pgoff, unsigned long flags)
2132 {
2133 	unsigned long (*get_area)(struct file *,
2134 		unsigned long, unsigned long, unsigned long, unsigned long);
2135 	unsigned long addr;
2136 	unsigned long offset;
2137 	unsigned long inflated_len;
2138 	unsigned long inflated_addr;
2139 	unsigned long inflated_offset;
2140 
2141 	if (len > TASK_SIZE)
2142 		return -ENOMEM;
2143 
2144 	get_area = current->mm->get_unmapped_area;
2145 	addr = get_area(file, uaddr, len, pgoff, flags);
2146 
2147 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2148 		return addr;
2149 	if (IS_ERR_VALUE(addr))
2150 		return addr;
2151 	if (addr & ~PAGE_MASK)
2152 		return addr;
2153 	if (addr > TASK_SIZE - len)
2154 		return addr;
2155 
2156 	if (shmem_huge == SHMEM_HUGE_DENY)
2157 		return addr;
2158 	if (len < HPAGE_PMD_SIZE)
2159 		return addr;
2160 	if (flags & MAP_FIXED)
2161 		return addr;
2162 	/*
2163 	 * Our priority is to support MAP_SHARED mapped hugely;
2164 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2165 	 * But if caller specified an address hint and we allocated area there
2166 	 * successfully, respect that as before.
2167 	 */
2168 	if (uaddr == addr)
2169 		return addr;
2170 
2171 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2172 		struct super_block *sb;
2173 
2174 		if (file) {
2175 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2176 			sb = file_inode(file)->i_sb;
2177 		} else {
2178 			/*
2179 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2180 			 * for "/dev/zero", to create a shared anonymous object.
2181 			 */
2182 			if (IS_ERR(shm_mnt))
2183 				return addr;
2184 			sb = shm_mnt->mnt_sb;
2185 		}
2186 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2187 			return addr;
2188 	}
2189 
2190 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2191 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2192 		return addr;
2193 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2194 		return addr;
2195 
2196 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2197 	if (inflated_len > TASK_SIZE)
2198 		return addr;
2199 	if (inflated_len < len)
2200 		return addr;
2201 
2202 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2203 	if (IS_ERR_VALUE(inflated_addr))
2204 		return addr;
2205 	if (inflated_addr & ~PAGE_MASK)
2206 		return addr;
2207 
2208 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2209 	inflated_addr += offset - inflated_offset;
2210 	if (inflated_offset > offset)
2211 		inflated_addr += HPAGE_PMD_SIZE;
2212 
2213 	if (inflated_addr > TASK_SIZE - len)
2214 		return addr;
2215 	return inflated_addr;
2216 }
2217 
2218 #ifdef CONFIG_NUMA
2219 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2220 {
2221 	struct inode *inode = file_inode(vma->vm_file);
2222 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2223 }
2224 
2225 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2226 					  unsigned long addr)
2227 {
2228 	struct inode *inode = file_inode(vma->vm_file);
2229 	pgoff_t index;
2230 
2231 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2232 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2233 }
2234 #endif
2235 
2236 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2237 {
2238 	struct inode *inode = file_inode(file);
2239 	struct shmem_inode_info *info = SHMEM_I(inode);
2240 	int retval = -ENOMEM;
2241 
2242 	/*
2243 	 * What serializes the accesses to info->flags?
2244 	 * ipc_lock_object() when called from shmctl_do_lock(),
2245 	 * no serialization needed when called from shm_destroy().
2246 	 */
2247 	if (lock && !(info->flags & VM_LOCKED)) {
2248 		if (!user_shm_lock(inode->i_size, ucounts))
2249 			goto out_nomem;
2250 		info->flags |= VM_LOCKED;
2251 		mapping_set_unevictable(file->f_mapping);
2252 	}
2253 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2254 		user_shm_unlock(inode->i_size, ucounts);
2255 		info->flags &= ~VM_LOCKED;
2256 		mapping_clear_unevictable(file->f_mapping);
2257 	}
2258 	retval = 0;
2259 
2260 out_nomem:
2261 	return retval;
2262 }
2263 
2264 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2265 {
2266 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2267 	int ret;
2268 
2269 	ret = seal_check_future_write(info->seals, vma);
2270 	if (ret)
2271 		return ret;
2272 
2273 	/* arm64 - allow memory tagging on RAM-based files */
2274 	vma->vm_flags |= VM_MTE_ALLOWED;
2275 
2276 	file_accessed(file);
2277 	vma->vm_ops = &shmem_vm_ops;
2278 	return 0;
2279 }
2280 
2281 #ifdef CONFIG_TMPFS_XATTR
2282 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2283 
2284 /*
2285  * chattr's fsflags are unrelated to extended attributes,
2286  * but tmpfs has chosen to enable them under the same config option.
2287  */
2288 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2289 {
2290 	unsigned int i_flags = 0;
2291 
2292 	if (fsflags & FS_NOATIME_FL)
2293 		i_flags |= S_NOATIME;
2294 	if (fsflags & FS_APPEND_FL)
2295 		i_flags |= S_APPEND;
2296 	if (fsflags & FS_IMMUTABLE_FL)
2297 		i_flags |= S_IMMUTABLE;
2298 	/*
2299 	 * But FS_NODUMP_FL does not require any action in i_flags.
2300 	 */
2301 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2302 }
2303 #else
2304 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2305 {
2306 }
2307 #define shmem_initxattrs NULL
2308 #endif
2309 
2310 static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir,
2311 				     umode_t mode, dev_t dev, unsigned long flags)
2312 {
2313 	struct inode *inode;
2314 	struct shmem_inode_info *info;
2315 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2316 	ino_t ino;
2317 
2318 	if (shmem_reserve_inode(sb, &ino))
2319 		return NULL;
2320 
2321 	inode = new_inode(sb);
2322 	if (inode) {
2323 		inode->i_ino = ino;
2324 		inode_init_owner(&init_user_ns, inode, dir, mode);
2325 		inode->i_blocks = 0;
2326 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2327 		inode->i_generation = get_random_u32();
2328 		info = SHMEM_I(inode);
2329 		memset(info, 0, (char *)inode - (char *)info);
2330 		spin_lock_init(&info->lock);
2331 		atomic_set(&info->stop_eviction, 0);
2332 		info->seals = F_SEAL_SEAL;
2333 		info->flags = flags & VM_NORESERVE;
2334 		info->i_crtime = inode->i_mtime;
2335 		info->fsflags = (dir == NULL) ? 0 :
2336 			SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2337 		if (info->fsflags)
2338 			shmem_set_inode_flags(inode, info->fsflags);
2339 		INIT_LIST_HEAD(&info->shrinklist);
2340 		INIT_LIST_HEAD(&info->swaplist);
2341 		simple_xattrs_init(&info->xattrs);
2342 		cache_no_acl(inode);
2343 		mapping_set_large_folios(inode->i_mapping);
2344 
2345 		switch (mode & S_IFMT) {
2346 		default:
2347 			inode->i_op = &shmem_special_inode_operations;
2348 			init_special_inode(inode, mode, dev);
2349 			break;
2350 		case S_IFREG:
2351 			inode->i_mapping->a_ops = &shmem_aops;
2352 			inode->i_op = &shmem_inode_operations;
2353 			inode->i_fop = &shmem_file_operations;
2354 			mpol_shared_policy_init(&info->policy,
2355 						 shmem_get_sbmpol(sbinfo));
2356 			break;
2357 		case S_IFDIR:
2358 			inc_nlink(inode);
2359 			/* Some things misbehave if size == 0 on a directory */
2360 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2361 			inode->i_op = &shmem_dir_inode_operations;
2362 			inode->i_fop = &simple_dir_operations;
2363 			break;
2364 		case S_IFLNK:
2365 			/*
2366 			 * Must not load anything in the rbtree,
2367 			 * mpol_free_shared_policy will not be called.
2368 			 */
2369 			mpol_shared_policy_init(&info->policy, NULL);
2370 			break;
2371 		}
2372 
2373 		lockdep_annotate_inode_mutex_key(inode);
2374 	} else
2375 		shmem_free_inode(sb);
2376 	return inode;
2377 }
2378 
2379 #ifdef CONFIG_USERFAULTFD
2380 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2381 			   pmd_t *dst_pmd,
2382 			   struct vm_area_struct *dst_vma,
2383 			   unsigned long dst_addr,
2384 			   unsigned long src_addr,
2385 			   bool zeropage, bool wp_copy,
2386 			   struct page **pagep)
2387 {
2388 	struct inode *inode = file_inode(dst_vma->vm_file);
2389 	struct shmem_inode_info *info = SHMEM_I(inode);
2390 	struct address_space *mapping = inode->i_mapping;
2391 	gfp_t gfp = mapping_gfp_mask(mapping);
2392 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2393 	void *page_kaddr;
2394 	struct folio *folio;
2395 	int ret;
2396 	pgoff_t max_off;
2397 
2398 	if (!shmem_inode_acct_block(inode, 1)) {
2399 		/*
2400 		 * We may have got a page, returned -ENOENT triggering a retry,
2401 		 * and now we find ourselves with -ENOMEM. Release the page, to
2402 		 * avoid a BUG_ON in our caller.
2403 		 */
2404 		if (unlikely(*pagep)) {
2405 			put_page(*pagep);
2406 			*pagep = NULL;
2407 		}
2408 		return -ENOMEM;
2409 	}
2410 
2411 	if (!*pagep) {
2412 		ret = -ENOMEM;
2413 		folio = shmem_alloc_folio(gfp, info, pgoff);
2414 		if (!folio)
2415 			goto out_unacct_blocks;
2416 
2417 		if (!zeropage) {	/* COPY */
2418 			page_kaddr = kmap_local_folio(folio, 0);
2419 			/*
2420 			 * The read mmap_lock is held here.  Despite the
2421 			 * mmap_lock being read recursive a deadlock is still
2422 			 * possible if a writer has taken a lock.  For example:
2423 			 *
2424 			 * process A thread 1 takes read lock on own mmap_lock
2425 			 * process A thread 2 calls mmap, blocks taking write lock
2426 			 * process B thread 1 takes page fault, read lock on own mmap lock
2427 			 * process B thread 2 calls mmap, blocks taking write lock
2428 			 * process A thread 1 blocks taking read lock on process B
2429 			 * process B thread 1 blocks taking read lock on process A
2430 			 *
2431 			 * Disable page faults to prevent potential deadlock
2432 			 * and retry the copy outside the mmap_lock.
2433 			 */
2434 			pagefault_disable();
2435 			ret = copy_from_user(page_kaddr,
2436 					     (const void __user *)src_addr,
2437 					     PAGE_SIZE);
2438 			pagefault_enable();
2439 			kunmap_local(page_kaddr);
2440 
2441 			/* fallback to copy_from_user outside mmap_lock */
2442 			if (unlikely(ret)) {
2443 				*pagep = &folio->page;
2444 				ret = -ENOENT;
2445 				/* don't free the page */
2446 				goto out_unacct_blocks;
2447 			}
2448 
2449 			flush_dcache_folio(folio);
2450 		} else {		/* ZEROPAGE */
2451 			clear_user_highpage(&folio->page, dst_addr);
2452 		}
2453 	} else {
2454 		folio = page_folio(*pagep);
2455 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2456 		*pagep = NULL;
2457 	}
2458 
2459 	VM_BUG_ON(folio_test_locked(folio));
2460 	VM_BUG_ON(folio_test_swapbacked(folio));
2461 	__folio_set_locked(folio);
2462 	__folio_set_swapbacked(folio);
2463 	__folio_mark_uptodate(folio);
2464 
2465 	ret = -EFAULT;
2466 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2467 	if (unlikely(pgoff >= max_off))
2468 		goto out_release;
2469 
2470 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2471 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2472 	if (ret)
2473 		goto out_release;
2474 
2475 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2476 				       &folio->page, true, wp_copy);
2477 	if (ret)
2478 		goto out_delete_from_cache;
2479 
2480 	spin_lock_irq(&info->lock);
2481 	info->alloced++;
2482 	inode->i_blocks += BLOCKS_PER_PAGE;
2483 	shmem_recalc_inode(inode);
2484 	spin_unlock_irq(&info->lock);
2485 
2486 	folio_unlock(folio);
2487 	return 0;
2488 out_delete_from_cache:
2489 	filemap_remove_folio(folio);
2490 out_release:
2491 	folio_unlock(folio);
2492 	folio_put(folio);
2493 out_unacct_blocks:
2494 	shmem_inode_unacct_blocks(inode, 1);
2495 	return ret;
2496 }
2497 #endif /* CONFIG_USERFAULTFD */
2498 
2499 #ifdef CONFIG_TMPFS
2500 static const struct inode_operations shmem_symlink_inode_operations;
2501 static const struct inode_operations shmem_short_symlink_operations;
2502 
2503 static int
2504 shmem_write_begin(struct file *file, struct address_space *mapping,
2505 			loff_t pos, unsigned len,
2506 			struct page **pagep, void **fsdata)
2507 {
2508 	struct inode *inode = mapping->host;
2509 	struct shmem_inode_info *info = SHMEM_I(inode);
2510 	pgoff_t index = pos >> PAGE_SHIFT;
2511 	struct folio *folio;
2512 	int ret = 0;
2513 
2514 	/* i_rwsem is held by caller */
2515 	if (unlikely(info->seals & (F_SEAL_GROW |
2516 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2517 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2518 			return -EPERM;
2519 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2520 			return -EPERM;
2521 	}
2522 
2523 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2524 
2525 	if (ret)
2526 		return ret;
2527 
2528 	*pagep = folio_file_page(folio, index);
2529 	if (PageHWPoison(*pagep)) {
2530 		folio_unlock(folio);
2531 		folio_put(folio);
2532 		*pagep = NULL;
2533 		return -EIO;
2534 	}
2535 
2536 	return 0;
2537 }
2538 
2539 static int
2540 shmem_write_end(struct file *file, struct address_space *mapping,
2541 			loff_t pos, unsigned len, unsigned copied,
2542 			struct page *page, void *fsdata)
2543 {
2544 	struct inode *inode = mapping->host;
2545 
2546 	if (pos + copied > inode->i_size)
2547 		i_size_write(inode, pos + copied);
2548 
2549 	if (!PageUptodate(page)) {
2550 		struct page *head = compound_head(page);
2551 		if (PageTransCompound(page)) {
2552 			int i;
2553 
2554 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2555 				if (head + i == page)
2556 					continue;
2557 				clear_highpage(head + i);
2558 				flush_dcache_page(head + i);
2559 			}
2560 		}
2561 		if (copied < PAGE_SIZE) {
2562 			unsigned from = pos & (PAGE_SIZE - 1);
2563 			zero_user_segments(page, 0, from,
2564 					from + copied, PAGE_SIZE);
2565 		}
2566 		SetPageUptodate(head);
2567 	}
2568 	set_page_dirty(page);
2569 	unlock_page(page);
2570 	put_page(page);
2571 
2572 	return copied;
2573 }
2574 
2575 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2576 {
2577 	struct file *file = iocb->ki_filp;
2578 	struct inode *inode = file_inode(file);
2579 	struct address_space *mapping = inode->i_mapping;
2580 	pgoff_t index;
2581 	unsigned long offset;
2582 	int error = 0;
2583 	ssize_t retval = 0;
2584 	loff_t *ppos = &iocb->ki_pos;
2585 
2586 	index = *ppos >> PAGE_SHIFT;
2587 	offset = *ppos & ~PAGE_MASK;
2588 
2589 	for (;;) {
2590 		struct folio *folio = NULL;
2591 		struct page *page = NULL;
2592 		pgoff_t end_index;
2593 		unsigned long nr, ret;
2594 		loff_t i_size = i_size_read(inode);
2595 
2596 		end_index = i_size >> PAGE_SHIFT;
2597 		if (index > end_index)
2598 			break;
2599 		if (index == end_index) {
2600 			nr = i_size & ~PAGE_MASK;
2601 			if (nr <= offset)
2602 				break;
2603 		}
2604 
2605 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2606 		if (error) {
2607 			if (error == -EINVAL)
2608 				error = 0;
2609 			break;
2610 		}
2611 		if (folio) {
2612 			folio_unlock(folio);
2613 
2614 			page = folio_file_page(folio, index);
2615 			if (PageHWPoison(page)) {
2616 				folio_put(folio);
2617 				error = -EIO;
2618 				break;
2619 			}
2620 		}
2621 
2622 		/*
2623 		 * We must evaluate after, since reads (unlike writes)
2624 		 * are called without i_rwsem protection against truncate
2625 		 */
2626 		nr = PAGE_SIZE;
2627 		i_size = i_size_read(inode);
2628 		end_index = i_size >> PAGE_SHIFT;
2629 		if (index == end_index) {
2630 			nr = i_size & ~PAGE_MASK;
2631 			if (nr <= offset) {
2632 				if (folio)
2633 					folio_put(folio);
2634 				break;
2635 			}
2636 		}
2637 		nr -= offset;
2638 
2639 		if (folio) {
2640 			/*
2641 			 * If users can be writing to this page using arbitrary
2642 			 * virtual addresses, take care about potential aliasing
2643 			 * before reading the page on the kernel side.
2644 			 */
2645 			if (mapping_writably_mapped(mapping))
2646 				flush_dcache_page(page);
2647 			/*
2648 			 * Mark the page accessed if we read the beginning.
2649 			 */
2650 			if (!offset)
2651 				folio_mark_accessed(folio);
2652 			/*
2653 			 * Ok, we have the page, and it's up-to-date, so
2654 			 * now we can copy it to user space...
2655 			 */
2656 			ret = copy_page_to_iter(page, offset, nr, to);
2657 			folio_put(folio);
2658 
2659 		} else if (user_backed_iter(to)) {
2660 			/*
2661 			 * Copy to user tends to be so well optimized, but
2662 			 * clear_user() not so much, that it is noticeably
2663 			 * faster to copy the zero page instead of clearing.
2664 			 */
2665 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2666 		} else {
2667 			/*
2668 			 * But submitting the same page twice in a row to
2669 			 * splice() - or others? - can result in confusion:
2670 			 * so don't attempt that optimization on pipes etc.
2671 			 */
2672 			ret = iov_iter_zero(nr, to);
2673 		}
2674 
2675 		retval += ret;
2676 		offset += ret;
2677 		index += offset >> PAGE_SHIFT;
2678 		offset &= ~PAGE_MASK;
2679 
2680 		if (!iov_iter_count(to))
2681 			break;
2682 		if (ret < nr) {
2683 			error = -EFAULT;
2684 			break;
2685 		}
2686 		cond_resched();
2687 	}
2688 
2689 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2690 	file_accessed(file);
2691 	return retval ? retval : error;
2692 }
2693 
2694 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2695 {
2696 	struct address_space *mapping = file->f_mapping;
2697 	struct inode *inode = mapping->host;
2698 
2699 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2700 		return generic_file_llseek_size(file, offset, whence,
2701 					MAX_LFS_FILESIZE, i_size_read(inode));
2702 	if (offset < 0)
2703 		return -ENXIO;
2704 
2705 	inode_lock(inode);
2706 	/* We're holding i_rwsem so we can access i_size directly */
2707 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2708 	if (offset >= 0)
2709 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2710 	inode_unlock(inode);
2711 	return offset;
2712 }
2713 
2714 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2715 							 loff_t len)
2716 {
2717 	struct inode *inode = file_inode(file);
2718 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2719 	struct shmem_inode_info *info = SHMEM_I(inode);
2720 	struct shmem_falloc shmem_falloc;
2721 	pgoff_t start, index, end, undo_fallocend;
2722 	int error;
2723 
2724 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2725 		return -EOPNOTSUPP;
2726 
2727 	inode_lock(inode);
2728 
2729 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2730 		struct address_space *mapping = file->f_mapping;
2731 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2732 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2733 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2734 
2735 		/* protected by i_rwsem */
2736 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2737 			error = -EPERM;
2738 			goto out;
2739 		}
2740 
2741 		shmem_falloc.waitq = &shmem_falloc_waitq;
2742 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2743 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2744 		spin_lock(&inode->i_lock);
2745 		inode->i_private = &shmem_falloc;
2746 		spin_unlock(&inode->i_lock);
2747 
2748 		if ((u64)unmap_end > (u64)unmap_start)
2749 			unmap_mapping_range(mapping, unmap_start,
2750 					    1 + unmap_end - unmap_start, 0);
2751 		shmem_truncate_range(inode, offset, offset + len - 1);
2752 		/* No need to unmap again: hole-punching leaves COWed pages */
2753 
2754 		spin_lock(&inode->i_lock);
2755 		inode->i_private = NULL;
2756 		wake_up_all(&shmem_falloc_waitq);
2757 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2758 		spin_unlock(&inode->i_lock);
2759 		error = 0;
2760 		goto out;
2761 	}
2762 
2763 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2764 	error = inode_newsize_ok(inode, offset + len);
2765 	if (error)
2766 		goto out;
2767 
2768 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2769 		error = -EPERM;
2770 		goto out;
2771 	}
2772 
2773 	start = offset >> PAGE_SHIFT;
2774 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2775 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2776 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2777 		error = -ENOSPC;
2778 		goto out;
2779 	}
2780 
2781 	shmem_falloc.waitq = NULL;
2782 	shmem_falloc.start = start;
2783 	shmem_falloc.next  = start;
2784 	shmem_falloc.nr_falloced = 0;
2785 	shmem_falloc.nr_unswapped = 0;
2786 	spin_lock(&inode->i_lock);
2787 	inode->i_private = &shmem_falloc;
2788 	spin_unlock(&inode->i_lock);
2789 
2790 	/*
2791 	 * info->fallocend is only relevant when huge pages might be
2792 	 * involved: to prevent split_huge_page() freeing fallocated
2793 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2794 	 */
2795 	undo_fallocend = info->fallocend;
2796 	if (info->fallocend < end)
2797 		info->fallocend = end;
2798 
2799 	for (index = start; index < end; ) {
2800 		struct folio *folio;
2801 
2802 		/*
2803 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2804 		 * been interrupted because we are using up too much memory.
2805 		 */
2806 		if (signal_pending(current))
2807 			error = -EINTR;
2808 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2809 			error = -ENOMEM;
2810 		else
2811 			error = shmem_get_folio(inode, index, &folio,
2812 						SGP_FALLOC);
2813 		if (error) {
2814 			info->fallocend = undo_fallocend;
2815 			/* Remove the !uptodate folios we added */
2816 			if (index > start) {
2817 				shmem_undo_range(inode,
2818 				    (loff_t)start << PAGE_SHIFT,
2819 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2820 			}
2821 			goto undone;
2822 		}
2823 
2824 		/*
2825 		 * Here is a more important optimization than it appears:
2826 		 * a second SGP_FALLOC on the same large folio will clear it,
2827 		 * making it uptodate and un-undoable if we fail later.
2828 		 */
2829 		index = folio_next_index(folio);
2830 		/* Beware 32-bit wraparound */
2831 		if (!index)
2832 			index--;
2833 
2834 		/*
2835 		 * Inform shmem_writepage() how far we have reached.
2836 		 * No need for lock or barrier: we have the page lock.
2837 		 */
2838 		if (!folio_test_uptodate(folio))
2839 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2840 		shmem_falloc.next = index;
2841 
2842 		/*
2843 		 * If !uptodate, leave it that way so that freeable folios
2844 		 * can be recognized if we need to rollback on error later.
2845 		 * But mark it dirty so that memory pressure will swap rather
2846 		 * than free the folios we are allocating (and SGP_CACHE folios
2847 		 * might still be clean: we now need to mark those dirty too).
2848 		 */
2849 		folio_mark_dirty(folio);
2850 		folio_unlock(folio);
2851 		folio_put(folio);
2852 		cond_resched();
2853 	}
2854 
2855 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2856 		i_size_write(inode, offset + len);
2857 undone:
2858 	spin_lock(&inode->i_lock);
2859 	inode->i_private = NULL;
2860 	spin_unlock(&inode->i_lock);
2861 out:
2862 	if (!error)
2863 		file_modified(file);
2864 	inode_unlock(inode);
2865 	return error;
2866 }
2867 
2868 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2869 {
2870 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2871 
2872 	buf->f_type = TMPFS_MAGIC;
2873 	buf->f_bsize = PAGE_SIZE;
2874 	buf->f_namelen = NAME_MAX;
2875 	if (sbinfo->max_blocks) {
2876 		buf->f_blocks = sbinfo->max_blocks;
2877 		buf->f_bavail =
2878 		buf->f_bfree  = sbinfo->max_blocks -
2879 				percpu_counter_sum(&sbinfo->used_blocks);
2880 	}
2881 	if (sbinfo->max_inodes) {
2882 		buf->f_files = sbinfo->max_inodes;
2883 		buf->f_ffree = sbinfo->free_inodes;
2884 	}
2885 	/* else leave those fields 0 like simple_statfs */
2886 
2887 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2888 
2889 	return 0;
2890 }
2891 
2892 /*
2893  * File creation. Allocate an inode, and we're done..
2894  */
2895 static int
2896 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2897 	    struct dentry *dentry, umode_t mode, dev_t dev)
2898 {
2899 	struct inode *inode;
2900 	int error = -ENOSPC;
2901 
2902 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2903 	if (inode) {
2904 		error = simple_acl_create(dir, inode);
2905 		if (error)
2906 			goto out_iput;
2907 		error = security_inode_init_security(inode, dir,
2908 						     &dentry->d_name,
2909 						     shmem_initxattrs, NULL);
2910 		if (error && error != -EOPNOTSUPP)
2911 			goto out_iput;
2912 
2913 		error = 0;
2914 		dir->i_size += BOGO_DIRENT_SIZE;
2915 		dir->i_ctime = dir->i_mtime = current_time(dir);
2916 		inode_inc_iversion(dir);
2917 		d_instantiate(dentry, inode);
2918 		dget(dentry); /* Extra count - pin the dentry in core */
2919 	}
2920 	return error;
2921 out_iput:
2922 	iput(inode);
2923 	return error;
2924 }
2925 
2926 static int
2927 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2928 	      struct file *file, umode_t mode)
2929 {
2930 	struct inode *inode;
2931 	int error = -ENOSPC;
2932 
2933 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2934 	if (inode) {
2935 		error = security_inode_init_security(inode, dir,
2936 						     NULL,
2937 						     shmem_initxattrs, NULL);
2938 		if (error && error != -EOPNOTSUPP)
2939 			goto out_iput;
2940 		error = simple_acl_create(dir, inode);
2941 		if (error)
2942 			goto out_iput;
2943 		d_tmpfile(file, inode);
2944 	}
2945 	return finish_open_simple(file, error);
2946 out_iput:
2947 	iput(inode);
2948 	return error;
2949 }
2950 
2951 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2952 		       struct dentry *dentry, umode_t mode)
2953 {
2954 	int error;
2955 
2956 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2957 				 mode | S_IFDIR, 0)))
2958 		return error;
2959 	inc_nlink(dir);
2960 	return 0;
2961 }
2962 
2963 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2964 			struct dentry *dentry, umode_t mode, bool excl)
2965 {
2966 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2967 }
2968 
2969 /*
2970  * Link a file..
2971  */
2972 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2973 {
2974 	struct inode *inode = d_inode(old_dentry);
2975 	int ret = 0;
2976 
2977 	/*
2978 	 * No ordinary (disk based) filesystem counts links as inodes;
2979 	 * but each new link needs a new dentry, pinning lowmem, and
2980 	 * tmpfs dentries cannot be pruned until they are unlinked.
2981 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2982 	 * first link must skip that, to get the accounting right.
2983 	 */
2984 	if (inode->i_nlink) {
2985 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2986 		if (ret)
2987 			goto out;
2988 	}
2989 
2990 	dir->i_size += BOGO_DIRENT_SIZE;
2991 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2992 	inode_inc_iversion(dir);
2993 	inc_nlink(inode);
2994 	ihold(inode);	/* New dentry reference */
2995 	dget(dentry);		/* Extra pinning count for the created dentry */
2996 	d_instantiate(dentry, inode);
2997 out:
2998 	return ret;
2999 }
3000 
3001 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3002 {
3003 	struct inode *inode = d_inode(dentry);
3004 
3005 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3006 		shmem_free_inode(inode->i_sb);
3007 
3008 	dir->i_size -= BOGO_DIRENT_SIZE;
3009 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3010 	inode_inc_iversion(dir);
3011 	drop_nlink(inode);
3012 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3013 	return 0;
3014 }
3015 
3016 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3017 {
3018 	if (!simple_empty(dentry))
3019 		return -ENOTEMPTY;
3020 
3021 	drop_nlink(d_inode(dentry));
3022 	drop_nlink(dir);
3023 	return shmem_unlink(dir, dentry);
3024 }
3025 
3026 static int shmem_whiteout(struct user_namespace *mnt_userns,
3027 			  struct inode *old_dir, struct dentry *old_dentry)
3028 {
3029 	struct dentry *whiteout;
3030 	int error;
3031 
3032 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3033 	if (!whiteout)
3034 		return -ENOMEM;
3035 
3036 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3037 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3038 	dput(whiteout);
3039 	if (error)
3040 		return error;
3041 
3042 	/*
3043 	 * Cheat and hash the whiteout while the old dentry is still in
3044 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3045 	 *
3046 	 * d_lookup() will consistently find one of them at this point,
3047 	 * not sure which one, but that isn't even important.
3048 	 */
3049 	d_rehash(whiteout);
3050 	return 0;
3051 }
3052 
3053 /*
3054  * The VFS layer already does all the dentry stuff for rename,
3055  * we just have to decrement the usage count for the target if
3056  * it exists so that the VFS layer correctly free's it when it
3057  * gets overwritten.
3058  */
3059 static int shmem_rename2(struct user_namespace *mnt_userns,
3060 			 struct inode *old_dir, struct dentry *old_dentry,
3061 			 struct inode *new_dir, struct dentry *new_dentry,
3062 			 unsigned int flags)
3063 {
3064 	struct inode *inode = d_inode(old_dentry);
3065 	int they_are_dirs = S_ISDIR(inode->i_mode);
3066 
3067 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3068 		return -EINVAL;
3069 
3070 	if (flags & RENAME_EXCHANGE)
3071 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3072 
3073 	if (!simple_empty(new_dentry))
3074 		return -ENOTEMPTY;
3075 
3076 	if (flags & RENAME_WHITEOUT) {
3077 		int error;
3078 
3079 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3080 		if (error)
3081 			return error;
3082 	}
3083 
3084 	if (d_really_is_positive(new_dentry)) {
3085 		(void) shmem_unlink(new_dir, new_dentry);
3086 		if (they_are_dirs) {
3087 			drop_nlink(d_inode(new_dentry));
3088 			drop_nlink(old_dir);
3089 		}
3090 	} else if (they_are_dirs) {
3091 		drop_nlink(old_dir);
3092 		inc_nlink(new_dir);
3093 	}
3094 
3095 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3096 	new_dir->i_size += BOGO_DIRENT_SIZE;
3097 	old_dir->i_ctime = old_dir->i_mtime =
3098 	new_dir->i_ctime = new_dir->i_mtime =
3099 	inode->i_ctime = current_time(old_dir);
3100 	inode_inc_iversion(old_dir);
3101 	inode_inc_iversion(new_dir);
3102 	return 0;
3103 }
3104 
3105 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3106 			 struct dentry *dentry, const char *symname)
3107 {
3108 	int error;
3109 	int len;
3110 	struct inode *inode;
3111 	struct folio *folio;
3112 
3113 	len = strlen(symname) + 1;
3114 	if (len > PAGE_SIZE)
3115 		return -ENAMETOOLONG;
3116 
3117 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3118 				VM_NORESERVE);
3119 	if (!inode)
3120 		return -ENOSPC;
3121 
3122 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3123 					     shmem_initxattrs, NULL);
3124 	if (error && error != -EOPNOTSUPP) {
3125 		iput(inode);
3126 		return error;
3127 	}
3128 
3129 	inode->i_size = len-1;
3130 	if (len <= SHORT_SYMLINK_LEN) {
3131 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3132 		if (!inode->i_link) {
3133 			iput(inode);
3134 			return -ENOMEM;
3135 		}
3136 		inode->i_op = &shmem_short_symlink_operations;
3137 	} else {
3138 		inode_nohighmem(inode);
3139 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3140 		if (error) {
3141 			iput(inode);
3142 			return error;
3143 		}
3144 		inode->i_mapping->a_ops = &shmem_aops;
3145 		inode->i_op = &shmem_symlink_inode_operations;
3146 		memcpy(folio_address(folio), symname, len);
3147 		folio_mark_uptodate(folio);
3148 		folio_mark_dirty(folio);
3149 		folio_unlock(folio);
3150 		folio_put(folio);
3151 	}
3152 	dir->i_size += BOGO_DIRENT_SIZE;
3153 	dir->i_ctime = dir->i_mtime = current_time(dir);
3154 	inode_inc_iversion(dir);
3155 	d_instantiate(dentry, inode);
3156 	dget(dentry);
3157 	return 0;
3158 }
3159 
3160 static void shmem_put_link(void *arg)
3161 {
3162 	folio_mark_accessed(arg);
3163 	folio_put(arg);
3164 }
3165 
3166 static const char *shmem_get_link(struct dentry *dentry,
3167 				  struct inode *inode,
3168 				  struct delayed_call *done)
3169 {
3170 	struct folio *folio = NULL;
3171 	int error;
3172 
3173 	if (!dentry) {
3174 		folio = filemap_get_folio(inode->i_mapping, 0);
3175 		if (!folio)
3176 			return ERR_PTR(-ECHILD);
3177 		if (PageHWPoison(folio_page(folio, 0)) ||
3178 		    !folio_test_uptodate(folio)) {
3179 			folio_put(folio);
3180 			return ERR_PTR(-ECHILD);
3181 		}
3182 	} else {
3183 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3184 		if (error)
3185 			return ERR_PTR(error);
3186 		if (!folio)
3187 			return ERR_PTR(-ECHILD);
3188 		if (PageHWPoison(folio_page(folio, 0))) {
3189 			folio_unlock(folio);
3190 			folio_put(folio);
3191 			return ERR_PTR(-ECHILD);
3192 		}
3193 		folio_unlock(folio);
3194 	}
3195 	set_delayed_call(done, shmem_put_link, folio);
3196 	return folio_address(folio);
3197 }
3198 
3199 #ifdef CONFIG_TMPFS_XATTR
3200 
3201 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3202 {
3203 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3204 
3205 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3206 
3207 	return 0;
3208 }
3209 
3210 static int shmem_fileattr_set(struct user_namespace *mnt_userns,
3211 			      struct dentry *dentry, struct fileattr *fa)
3212 {
3213 	struct inode *inode = d_inode(dentry);
3214 	struct shmem_inode_info *info = SHMEM_I(inode);
3215 
3216 	if (fileattr_has_fsx(fa))
3217 		return -EOPNOTSUPP;
3218 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3219 		return -EOPNOTSUPP;
3220 
3221 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3222 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3223 
3224 	shmem_set_inode_flags(inode, info->fsflags);
3225 	inode->i_ctime = current_time(inode);
3226 	inode_inc_iversion(inode);
3227 	return 0;
3228 }
3229 
3230 /*
3231  * Superblocks without xattr inode operations may get some security.* xattr
3232  * support from the LSM "for free". As soon as we have any other xattrs
3233  * like ACLs, we also need to implement the security.* handlers at
3234  * filesystem level, though.
3235  */
3236 
3237 /*
3238  * Callback for security_inode_init_security() for acquiring xattrs.
3239  */
3240 static int shmem_initxattrs(struct inode *inode,
3241 			    const struct xattr *xattr_array,
3242 			    void *fs_info)
3243 {
3244 	struct shmem_inode_info *info = SHMEM_I(inode);
3245 	const struct xattr *xattr;
3246 	struct simple_xattr *new_xattr;
3247 	size_t len;
3248 
3249 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3250 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3251 		if (!new_xattr)
3252 			return -ENOMEM;
3253 
3254 		len = strlen(xattr->name) + 1;
3255 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3256 					  GFP_KERNEL);
3257 		if (!new_xattr->name) {
3258 			kvfree(new_xattr);
3259 			return -ENOMEM;
3260 		}
3261 
3262 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3263 		       XATTR_SECURITY_PREFIX_LEN);
3264 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3265 		       xattr->name, len);
3266 
3267 		simple_xattr_list_add(&info->xattrs, new_xattr);
3268 	}
3269 
3270 	return 0;
3271 }
3272 
3273 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3274 				   struct dentry *unused, struct inode *inode,
3275 				   const char *name, void *buffer, size_t size)
3276 {
3277 	struct shmem_inode_info *info = SHMEM_I(inode);
3278 
3279 	name = xattr_full_name(handler, name);
3280 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3281 }
3282 
3283 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3284 				   struct user_namespace *mnt_userns,
3285 				   struct dentry *unused, struct inode *inode,
3286 				   const char *name, const void *value,
3287 				   size_t size, int flags)
3288 {
3289 	struct shmem_inode_info *info = SHMEM_I(inode);
3290 	int err;
3291 
3292 	name = xattr_full_name(handler, name);
3293 	err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3294 	if (!err) {
3295 		inode->i_ctime = current_time(inode);
3296 		inode_inc_iversion(inode);
3297 	}
3298 	return err;
3299 }
3300 
3301 static const struct xattr_handler shmem_security_xattr_handler = {
3302 	.prefix = XATTR_SECURITY_PREFIX,
3303 	.get = shmem_xattr_handler_get,
3304 	.set = shmem_xattr_handler_set,
3305 };
3306 
3307 static const struct xattr_handler shmem_trusted_xattr_handler = {
3308 	.prefix = XATTR_TRUSTED_PREFIX,
3309 	.get = shmem_xattr_handler_get,
3310 	.set = shmem_xattr_handler_set,
3311 };
3312 
3313 static const struct xattr_handler *shmem_xattr_handlers[] = {
3314 #ifdef CONFIG_TMPFS_POSIX_ACL
3315 	&posix_acl_access_xattr_handler,
3316 	&posix_acl_default_xattr_handler,
3317 #endif
3318 	&shmem_security_xattr_handler,
3319 	&shmem_trusted_xattr_handler,
3320 	NULL
3321 };
3322 
3323 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3324 {
3325 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3326 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3327 }
3328 #endif /* CONFIG_TMPFS_XATTR */
3329 
3330 static const struct inode_operations shmem_short_symlink_operations = {
3331 	.getattr	= shmem_getattr,
3332 	.get_link	= simple_get_link,
3333 #ifdef CONFIG_TMPFS_XATTR
3334 	.listxattr	= shmem_listxattr,
3335 #endif
3336 };
3337 
3338 static const struct inode_operations shmem_symlink_inode_operations = {
3339 	.getattr	= shmem_getattr,
3340 	.get_link	= shmem_get_link,
3341 #ifdef CONFIG_TMPFS_XATTR
3342 	.listxattr	= shmem_listxattr,
3343 #endif
3344 };
3345 
3346 static struct dentry *shmem_get_parent(struct dentry *child)
3347 {
3348 	return ERR_PTR(-ESTALE);
3349 }
3350 
3351 static int shmem_match(struct inode *ino, void *vfh)
3352 {
3353 	__u32 *fh = vfh;
3354 	__u64 inum = fh[2];
3355 	inum = (inum << 32) | fh[1];
3356 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3357 }
3358 
3359 /* Find any alias of inode, but prefer a hashed alias */
3360 static struct dentry *shmem_find_alias(struct inode *inode)
3361 {
3362 	struct dentry *alias = d_find_alias(inode);
3363 
3364 	return alias ?: d_find_any_alias(inode);
3365 }
3366 
3367 
3368 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3369 		struct fid *fid, int fh_len, int fh_type)
3370 {
3371 	struct inode *inode;
3372 	struct dentry *dentry = NULL;
3373 	u64 inum;
3374 
3375 	if (fh_len < 3)
3376 		return NULL;
3377 
3378 	inum = fid->raw[2];
3379 	inum = (inum << 32) | fid->raw[1];
3380 
3381 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3382 			shmem_match, fid->raw);
3383 	if (inode) {
3384 		dentry = shmem_find_alias(inode);
3385 		iput(inode);
3386 	}
3387 
3388 	return dentry;
3389 }
3390 
3391 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3392 				struct inode *parent)
3393 {
3394 	if (*len < 3) {
3395 		*len = 3;
3396 		return FILEID_INVALID;
3397 	}
3398 
3399 	if (inode_unhashed(inode)) {
3400 		/* Unfortunately insert_inode_hash is not idempotent,
3401 		 * so as we hash inodes here rather than at creation
3402 		 * time, we need a lock to ensure we only try
3403 		 * to do it once
3404 		 */
3405 		static DEFINE_SPINLOCK(lock);
3406 		spin_lock(&lock);
3407 		if (inode_unhashed(inode))
3408 			__insert_inode_hash(inode,
3409 					    inode->i_ino + inode->i_generation);
3410 		spin_unlock(&lock);
3411 	}
3412 
3413 	fh[0] = inode->i_generation;
3414 	fh[1] = inode->i_ino;
3415 	fh[2] = ((__u64)inode->i_ino) >> 32;
3416 
3417 	*len = 3;
3418 	return 1;
3419 }
3420 
3421 static const struct export_operations shmem_export_ops = {
3422 	.get_parent     = shmem_get_parent,
3423 	.encode_fh      = shmem_encode_fh,
3424 	.fh_to_dentry	= shmem_fh_to_dentry,
3425 };
3426 
3427 enum shmem_param {
3428 	Opt_gid,
3429 	Opt_huge,
3430 	Opt_mode,
3431 	Opt_mpol,
3432 	Opt_nr_blocks,
3433 	Opt_nr_inodes,
3434 	Opt_size,
3435 	Opt_uid,
3436 	Opt_inode32,
3437 	Opt_inode64,
3438 };
3439 
3440 static const struct constant_table shmem_param_enums_huge[] = {
3441 	{"never",	SHMEM_HUGE_NEVER },
3442 	{"always",	SHMEM_HUGE_ALWAYS },
3443 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3444 	{"advise",	SHMEM_HUGE_ADVISE },
3445 	{}
3446 };
3447 
3448 const struct fs_parameter_spec shmem_fs_parameters[] = {
3449 	fsparam_u32   ("gid",		Opt_gid),
3450 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3451 	fsparam_u32oct("mode",		Opt_mode),
3452 	fsparam_string("mpol",		Opt_mpol),
3453 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3454 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3455 	fsparam_string("size",		Opt_size),
3456 	fsparam_u32   ("uid",		Opt_uid),
3457 	fsparam_flag  ("inode32",	Opt_inode32),
3458 	fsparam_flag  ("inode64",	Opt_inode64),
3459 	{}
3460 };
3461 
3462 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3463 {
3464 	struct shmem_options *ctx = fc->fs_private;
3465 	struct fs_parse_result result;
3466 	unsigned long long size;
3467 	char *rest;
3468 	int opt;
3469 
3470 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3471 	if (opt < 0)
3472 		return opt;
3473 
3474 	switch (opt) {
3475 	case Opt_size:
3476 		size = memparse(param->string, &rest);
3477 		if (*rest == '%') {
3478 			size <<= PAGE_SHIFT;
3479 			size *= totalram_pages();
3480 			do_div(size, 100);
3481 			rest++;
3482 		}
3483 		if (*rest)
3484 			goto bad_value;
3485 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3486 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3487 		break;
3488 	case Opt_nr_blocks:
3489 		ctx->blocks = memparse(param->string, &rest);
3490 		if (*rest || ctx->blocks > S64_MAX)
3491 			goto bad_value;
3492 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3493 		break;
3494 	case Opt_nr_inodes:
3495 		ctx->inodes = memparse(param->string, &rest);
3496 		if (*rest)
3497 			goto bad_value;
3498 		ctx->seen |= SHMEM_SEEN_INODES;
3499 		break;
3500 	case Opt_mode:
3501 		ctx->mode = result.uint_32 & 07777;
3502 		break;
3503 	case Opt_uid:
3504 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3505 		if (!uid_valid(ctx->uid))
3506 			goto bad_value;
3507 		break;
3508 	case Opt_gid:
3509 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3510 		if (!gid_valid(ctx->gid))
3511 			goto bad_value;
3512 		break;
3513 	case Opt_huge:
3514 		ctx->huge = result.uint_32;
3515 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3516 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3517 		      has_transparent_hugepage()))
3518 			goto unsupported_parameter;
3519 		ctx->seen |= SHMEM_SEEN_HUGE;
3520 		break;
3521 	case Opt_mpol:
3522 		if (IS_ENABLED(CONFIG_NUMA)) {
3523 			mpol_put(ctx->mpol);
3524 			ctx->mpol = NULL;
3525 			if (mpol_parse_str(param->string, &ctx->mpol))
3526 				goto bad_value;
3527 			break;
3528 		}
3529 		goto unsupported_parameter;
3530 	case Opt_inode32:
3531 		ctx->full_inums = false;
3532 		ctx->seen |= SHMEM_SEEN_INUMS;
3533 		break;
3534 	case Opt_inode64:
3535 		if (sizeof(ino_t) < 8) {
3536 			return invalfc(fc,
3537 				       "Cannot use inode64 with <64bit inums in kernel\n");
3538 		}
3539 		ctx->full_inums = true;
3540 		ctx->seen |= SHMEM_SEEN_INUMS;
3541 		break;
3542 	}
3543 	return 0;
3544 
3545 unsupported_parameter:
3546 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3547 bad_value:
3548 	return invalfc(fc, "Bad value for '%s'", param->key);
3549 }
3550 
3551 static int shmem_parse_options(struct fs_context *fc, void *data)
3552 {
3553 	char *options = data;
3554 
3555 	if (options) {
3556 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3557 		if (err)
3558 			return err;
3559 	}
3560 
3561 	while (options != NULL) {
3562 		char *this_char = options;
3563 		for (;;) {
3564 			/*
3565 			 * NUL-terminate this option: unfortunately,
3566 			 * mount options form a comma-separated list,
3567 			 * but mpol's nodelist may also contain commas.
3568 			 */
3569 			options = strchr(options, ',');
3570 			if (options == NULL)
3571 				break;
3572 			options++;
3573 			if (!isdigit(*options)) {
3574 				options[-1] = '\0';
3575 				break;
3576 			}
3577 		}
3578 		if (*this_char) {
3579 			char *value = strchr(this_char, '=');
3580 			size_t len = 0;
3581 			int err;
3582 
3583 			if (value) {
3584 				*value++ = '\0';
3585 				len = strlen(value);
3586 			}
3587 			err = vfs_parse_fs_string(fc, this_char, value, len);
3588 			if (err < 0)
3589 				return err;
3590 		}
3591 	}
3592 	return 0;
3593 }
3594 
3595 /*
3596  * Reconfigure a shmem filesystem.
3597  *
3598  * Note that we disallow change from limited->unlimited blocks/inodes while any
3599  * are in use; but we must separately disallow unlimited->limited, because in
3600  * that case we have no record of how much is already in use.
3601  */
3602 static int shmem_reconfigure(struct fs_context *fc)
3603 {
3604 	struct shmem_options *ctx = fc->fs_private;
3605 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3606 	unsigned long inodes;
3607 	struct mempolicy *mpol = NULL;
3608 	const char *err;
3609 
3610 	raw_spin_lock(&sbinfo->stat_lock);
3611 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3612 
3613 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3614 		if (!sbinfo->max_blocks) {
3615 			err = "Cannot retroactively limit size";
3616 			goto out;
3617 		}
3618 		if (percpu_counter_compare(&sbinfo->used_blocks,
3619 					   ctx->blocks) > 0) {
3620 			err = "Too small a size for current use";
3621 			goto out;
3622 		}
3623 	}
3624 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3625 		if (!sbinfo->max_inodes) {
3626 			err = "Cannot retroactively limit inodes";
3627 			goto out;
3628 		}
3629 		if (ctx->inodes < inodes) {
3630 			err = "Too few inodes for current use";
3631 			goto out;
3632 		}
3633 	}
3634 
3635 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3636 	    sbinfo->next_ino > UINT_MAX) {
3637 		err = "Current inum too high to switch to 32-bit inums";
3638 		goto out;
3639 	}
3640 
3641 	if (ctx->seen & SHMEM_SEEN_HUGE)
3642 		sbinfo->huge = ctx->huge;
3643 	if (ctx->seen & SHMEM_SEEN_INUMS)
3644 		sbinfo->full_inums = ctx->full_inums;
3645 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3646 		sbinfo->max_blocks  = ctx->blocks;
3647 	if (ctx->seen & SHMEM_SEEN_INODES) {
3648 		sbinfo->max_inodes  = ctx->inodes;
3649 		sbinfo->free_inodes = ctx->inodes - inodes;
3650 	}
3651 
3652 	/*
3653 	 * Preserve previous mempolicy unless mpol remount option was specified.
3654 	 */
3655 	if (ctx->mpol) {
3656 		mpol = sbinfo->mpol;
3657 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3658 		ctx->mpol = NULL;
3659 	}
3660 	raw_spin_unlock(&sbinfo->stat_lock);
3661 	mpol_put(mpol);
3662 	return 0;
3663 out:
3664 	raw_spin_unlock(&sbinfo->stat_lock);
3665 	return invalfc(fc, "%s", err);
3666 }
3667 
3668 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3669 {
3670 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3671 
3672 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3673 		seq_printf(seq, ",size=%luk",
3674 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3675 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3676 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3677 	if (sbinfo->mode != (0777 | S_ISVTX))
3678 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3679 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3680 		seq_printf(seq, ",uid=%u",
3681 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3682 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3683 		seq_printf(seq, ",gid=%u",
3684 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3685 
3686 	/*
3687 	 * Showing inode{64,32} might be useful even if it's the system default,
3688 	 * since then people don't have to resort to checking both here and
3689 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3690 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3691 	 *
3692 	 * We hide it when inode64 isn't the default and we are using 32-bit
3693 	 * inodes, since that probably just means the feature isn't even under
3694 	 * consideration.
3695 	 *
3696 	 * As such:
3697 	 *
3698 	 *                     +-----------------+-----------------+
3699 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3700 	 *  +------------------+-----------------+-----------------+
3701 	 *  | full_inums=true  | show            | show            |
3702 	 *  | full_inums=false | show            | hide            |
3703 	 *  +------------------+-----------------+-----------------+
3704 	 *
3705 	 */
3706 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3707 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3708 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3709 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3710 	if (sbinfo->huge)
3711 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3712 #endif
3713 	shmem_show_mpol(seq, sbinfo->mpol);
3714 	return 0;
3715 }
3716 
3717 #endif /* CONFIG_TMPFS */
3718 
3719 static void shmem_put_super(struct super_block *sb)
3720 {
3721 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3722 
3723 	free_percpu(sbinfo->ino_batch);
3724 	percpu_counter_destroy(&sbinfo->used_blocks);
3725 	mpol_put(sbinfo->mpol);
3726 	kfree(sbinfo);
3727 	sb->s_fs_info = NULL;
3728 }
3729 
3730 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3731 {
3732 	struct shmem_options *ctx = fc->fs_private;
3733 	struct inode *inode;
3734 	struct shmem_sb_info *sbinfo;
3735 
3736 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3737 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3738 				L1_CACHE_BYTES), GFP_KERNEL);
3739 	if (!sbinfo)
3740 		return -ENOMEM;
3741 
3742 	sb->s_fs_info = sbinfo;
3743 
3744 #ifdef CONFIG_TMPFS
3745 	/*
3746 	 * Per default we only allow half of the physical ram per
3747 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3748 	 * but the internal instance is left unlimited.
3749 	 */
3750 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3751 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3752 			ctx->blocks = shmem_default_max_blocks();
3753 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3754 			ctx->inodes = shmem_default_max_inodes();
3755 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3756 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3757 	} else {
3758 		sb->s_flags |= SB_NOUSER;
3759 	}
3760 	sb->s_export_op = &shmem_export_ops;
3761 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
3762 #else
3763 	sb->s_flags |= SB_NOUSER;
3764 #endif
3765 	sbinfo->max_blocks = ctx->blocks;
3766 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3767 	if (sb->s_flags & SB_KERNMOUNT) {
3768 		sbinfo->ino_batch = alloc_percpu(ino_t);
3769 		if (!sbinfo->ino_batch)
3770 			goto failed;
3771 	}
3772 	sbinfo->uid = ctx->uid;
3773 	sbinfo->gid = ctx->gid;
3774 	sbinfo->full_inums = ctx->full_inums;
3775 	sbinfo->mode = ctx->mode;
3776 	sbinfo->huge = ctx->huge;
3777 	sbinfo->mpol = ctx->mpol;
3778 	ctx->mpol = NULL;
3779 
3780 	raw_spin_lock_init(&sbinfo->stat_lock);
3781 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3782 		goto failed;
3783 	spin_lock_init(&sbinfo->shrinklist_lock);
3784 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3785 
3786 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3787 	sb->s_blocksize = PAGE_SIZE;
3788 	sb->s_blocksize_bits = PAGE_SHIFT;
3789 	sb->s_magic = TMPFS_MAGIC;
3790 	sb->s_op = &shmem_ops;
3791 	sb->s_time_gran = 1;
3792 #ifdef CONFIG_TMPFS_XATTR
3793 	sb->s_xattr = shmem_xattr_handlers;
3794 #endif
3795 #ifdef CONFIG_TMPFS_POSIX_ACL
3796 	sb->s_flags |= SB_POSIXACL;
3797 #endif
3798 	uuid_gen(&sb->s_uuid);
3799 
3800 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3801 	if (!inode)
3802 		goto failed;
3803 	inode->i_uid = sbinfo->uid;
3804 	inode->i_gid = sbinfo->gid;
3805 	sb->s_root = d_make_root(inode);
3806 	if (!sb->s_root)
3807 		goto failed;
3808 	return 0;
3809 
3810 failed:
3811 	shmem_put_super(sb);
3812 	return -ENOMEM;
3813 }
3814 
3815 static int shmem_get_tree(struct fs_context *fc)
3816 {
3817 	return get_tree_nodev(fc, shmem_fill_super);
3818 }
3819 
3820 static void shmem_free_fc(struct fs_context *fc)
3821 {
3822 	struct shmem_options *ctx = fc->fs_private;
3823 
3824 	if (ctx) {
3825 		mpol_put(ctx->mpol);
3826 		kfree(ctx);
3827 	}
3828 }
3829 
3830 static const struct fs_context_operations shmem_fs_context_ops = {
3831 	.free			= shmem_free_fc,
3832 	.get_tree		= shmem_get_tree,
3833 #ifdef CONFIG_TMPFS
3834 	.parse_monolithic	= shmem_parse_options,
3835 	.parse_param		= shmem_parse_one,
3836 	.reconfigure		= shmem_reconfigure,
3837 #endif
3838 };
3839 
3840 static struct kmem_cache *shmem_inode_cachep;
3841 
3842 static struct inode *shmem_alloc_inode(struct super_block *sb)
3843 {
3844 	struct shmem_inode_info *info;
3845 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3846 	if (!info)
3847 		return NULL;
3848 	return &info->vfs_inode;
3849 }
3850 
3851 static void shmem_free_in_core_inode(struct inode *inode)
3852 {
3853 	if (S_ISLNK(inode->i_mode))
3854 		kfree(inode->i_link);
3855 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3856 }
3857 
3858 static void shmem_destroy_inode(struct inode *inode)
3859 {
3860 	if (S_ISREG(inode->i_mode))
3861 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3862 }
3863 
3864 static void shmem_init_inode(void *foo)
3865 {
3866 	struct shmem_inode_info *info = foo;
3867 	inode_init_once(&info->vfs_inode);
3868 }
3869 
3870 static void shmem_init_inodecache(void)
3871 {
3872 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3873 				sizeof(struct shmem_inode_info),
3874 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3875 }
3876 
3877 static void shmem_destroy_inodecache(void)
3878 {
3879 	kmem_cache_destroy(shmem_inode_cachep);
3880 }
3881 
3882 /* Keep the page in page cache instead of truncating it */
3883 static int shmem_error_remove_page(struct address_space *mapping,
3884 				   struct page *page)
3885 {
3886 	return 0;
3887 }
3888 
3889 const struct address_space_operations shmem_aops = {
3890 	.writepage	= shmem_writepage,
3891 	.dirty_folio	= noop_dirty_folio,
3892 #ifdef CONFIG_TMPFS
3893 	.write_begin	= shmem_write_begin,
3894 	.write_end	= shmem_write_end,
3895 #endif
3896 #ifdef CONFIG_MIGRATION
3897 	.migrate_folio	= migrate_folio,
3898 #endif
3899 	.error_remove_page = shmem_error_remove_page,
3900 };
3901 EXPORT_SYMBOL(shmem_aops);
3902 
3903 static const struct file_operations shmem_file_operations = {
3904 	.mmap		= shmem_mmap,
3905 	.open		= generic_file_open,
3906 	.get_unmapped_area = shmem_get_unmapped_area,
3907 #ifdef CONFIG_TMPFS
3908 	.llseek		= shmem_file_llseek,
3909 	.read_iter	= shmem_file_read_iter,
3910 	.write_iter	= generic_file_write_iter,
3911 	.fsync		= noop_fsync,
3912 	.splice_read	= generic_file_splice_read,
3913 	.splice_write	= iter_file_splice_write,
3914 	.fallocate	= shmem_fallocate,
3915 #endif
3916 };
3917 
3918 static const struct inode_operations shmem_inode_operations = {
3919 	.getattr	= shmem_getattr,
3920 	.setattr	= shmem_setattr,
3921 #ifdef CONFIG_TMPFS_XATTR
3922 	.listxattr	= shmem_listxattr,
3923 	.set_acl	= simple_set_acl,
3924 	.fileattr_get	= shmem_fileattr_get,
3925 	.fileattr_set	= shmem_fileattr_set,
3926 #endif
3927 };
3928 
3929 static const struct inode_operations shmem_dir_inode_operations = {
3930 #ifdef CONFIG_TMPFS
3931 	.getattr	= shmem_getattr,
3932 	.create		= shmem_create,
3933 	.lookup		= simple_lookup,
3934 	.link		= shmem_link,
3935 	.unlink		= shmem_unlink,
3936 	.symlink	= shmem_symlink,
3937 	.mkdir		= shmem_mkdir,
3938 	.rmdir		= shmem_rmdir,
3939 	.mknod		= shmem_mknod,
3940 	.rename		= shmem_rename2,
3941 	.tmpfile	= shmem_tmpfile,
3942 #endif
3943 #ifdef CONFIG_TMPFS_XATTR
3944 	.listxattr	= shmem_listxattr,
3945 	.fileattr_get	= shmem_fileattr_get,
3946 	.fileattr_set	= shmem_fileattr_set,
3947 #endif
3948 #ifdef CONFIG_TMPFS_POSIX_ACL
3949 	.setattr	= shmem_setattr,
3950 	.set_acl	= simple_set_acl,
3951 #endif
3952 };
3953 
3954 static const struct inode_operations shmem_special_inode_operations = {
3955 	.getattr	= shmem_getattr,
3956 #ifdef CONFIG_TMPFS_XATTR
3957 	.listxattr	= shmem_listxattr,
3958 #endif
3959 #ifdef CONFIG_TMPFS_POSIX_ACL
3960 	.setattr	= shmem_setattr,
3961 	.set_acl	= simple_set_acl,
3962 #endif
3963 };
3964 
3965 static const struct super_operations shmem_ops = {
3966 	.alloc_inode	= shmem_alloc_inode,
3967 	.free_inode	= shmem_free_in_core_inode,
3968 	.destroy_inode	= shmem_destroy_inode,
3969 #ifdef CONFIG_TMPFS
3970 	.statfs		= shmem_statfs,
3971 	.show_options	= shmem_show_options,
3972 #endif
3973 	.evict_inode	= shmem_evict_inode,
3974 	.drop_inode	= generic_delete_inode,
3975 	.put_super	= shmem_put_super,
3976 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3977 	.nr_cached_objects	= shmem_unused_huge_count,
3978 	.free_cached_objects	= shmem_unused_huge_scan,
3979 #endif
3980 };
3981 
3982 static const struct vm_operations_struct shmem_vm_ops = {
3983 	.fault		= shmem_fault,
3984 	.map_pages	= filemap_map_pages,
3985 #ifdef CONFIG_NUMA
3986 	.set_policy     = shmem_set_policy,
3987 	.get_policy     = shmem_get_policy,
3988 #endif
3989 };
3990 
3991 int shmem_init_fs_context(struct fs_context *fc)
3992 {
3993 	struct shmem_options *ctx;
3994 
3995 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3996 	if (!ctx)
3997 		return -ENOMEM;
3998 
3999 	ctx->mode = 0777 | S_ISVTX;
4000 	ctx->uid = current_fsuid();
4001 	ctx->gid = current_fsgid();
4002 
4003 	fc->fs_private = ctx;
4004 	fc->ops = &shmem_fs_context_ops;
4005 	return 0;
4006 }
4007 
4008 static struct file_system_type shmem_fs_type = {
4009 	.owner		= THIS_MODULE,
4010 	.name		= "tmpfs",
4011 	.init_fs_context = shmem_init_fs_context,
4012 #ifdef CONFIG_TMPFS
4013 	.parameters	= shmem_fs_parameters,
4014 #endif
4015 	.kill_sb	= kill_litter_super,
4016 	.fs_flags	= FS_USERNS_MOUNT,
4017 };
4018 
4019 void __init shmem_init(void)
4020 {
4021 	int error;
4022 
4023 	shmem_init_inodecache();
4024 
4025 	error = register_filesystem(&shmem_fs_type);
4026 	if (error) {
4027 		pr_err("Could not register tmpfs\n");
4028 		goto out2;
4029 	}
4030 
4031 	shm_mnt = kern_mount(&shmem_fs_type);
4032 	if (IS_ERR(shm_mnt)) {
4033 		error = PTR_ERR(shm_mnt);
4034 		pr_err("Could not kern_mount tmpfs\n");
4035 		goto out1;
4036 	}
4037 
4038 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4039 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4040 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4041 	else
4042 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4043 #endif
4044 	return;
4045 
4046 out1:
4047 	unregister_filesystem(&shmem_fs_type);
4048 out2:
4049 	shmem_destroy_inodecache();
4050 	shm_mnt = ERR_PTR(error);
4051 }
4052 
4053 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4054 static ssize_t shmem_enabled_show(struct kobject *kobj,
4055 				  struct kobj_attribute *attr, char *buf)
4056 {
4057 	static const int values[] = {
4058 		SHMEM_HUGE_ALWAYS,
4059 		SHMEM_HUGE_WITHIN_SIZE,
4060 		SHMEM_HUGE_ADVISE,
4061 		SHMEM_HUGE_NEVER,
4062 		SHMEM_HUGE_DENY,
4063 		SHMEM_HUGE_FORCE,
4064 	};
4065 	int len = 0;
4066 	int i;
4067 
4068 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4069 		len += sysfs_emit_at(buf, len,
4070 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4071 				     i ? " " : "",
4072 				     shmem_format_huge(values[i]));
4073 	}
4074 
4075 	len += sysfs_emit_at(buf, len, "\n");
4076 
4077 	return len;
4078 }
4079 
4080 static ssize_t shmem_enabled_store(struct kobject *kobj,
4081 		struct kobj_attribute *attr, const char *buf, size_t count)
4082 {
4083 	char tmp[16];
4084 	int huge;
4085 
4086 	if (count + 1 > sizeof(tmp))
4087 		return -EINVAL;
4088 	memcpy(tmp, buf, count);
4089 	tmp[count] = '\0';
4090 	if (count && tmp[count - 1] == '\n')
4091 		tmp[count - 1] = '\0';
4092 
4093 	huge = shmem_parse_huge(tmp);
4094 	if (huge == -EINVAL)
4095 		return -EINVAL;
4096 	if (!has_transparent_hugepage() &&
4097 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4098 		return -EINVAL;
4099 
4100 	shmem_huge = huge;
4101 	if (shmem_huge > SHMEM_HUGE_DENY)
4102 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4103 	return count;
4104 }
4105 
4106 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4107 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4108 
4109 #else /* !CONFIG_SHMEM */
4110 
4111 /*
4112  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4113  *
4114  * This is intended for small system where the benefits of the full
4115  * shmem code (swap-backed and resource-limited) are outweighed by
4116  * their complexity. On systems without swap this code should be
4117  * effectively equivalent, but much lighter weight.
4118  */
4119 
4120 static struct file_system_type shmem_fs_type = {
4121 	.name		= "tmpfs",
4122 	.init_fs_context = ramfs_init_fs_context,
4123 	.parameters	= ramfs_fs_parameters,
4124 	.kill_sb	= kill_litter_super,
4125 	.fs_flags	= FS_USERNS_MOUNT,
4126 };
4127 
4128 void __init shmem_init(void)
4129 {
4130 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4131 
4132 	shm_mnt = kern_mount(&shmem_fs_type);
4133 	BUG_ON(IS_ERR(shm_mnt));
4134 }
4135 
4136 int shmem_unuse(unsigned int type)
4137 {
4138 	return 0;
4139 }
4140 
4141 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4142 {
4143 	return 0;
4144 }
4145 
4146 void shmem_unlock_mapping(struct address_space *mapping)
4147 {
4148 }
4149 
4150 #ifdef CONFIG_MMU
4151 unsigned long shmem_get_unmapped_area(struct file *file,
4152 				      unsigned long addr, unsigned long len,
4153 				      unsigned long pgoff, unsigned long flags)
4154 {
4155 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4156 }
4157 #endif
4158 
4159 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4160 {
4161 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4162 }
4163 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4164 
4165 #define shmem_vm_ops				generic_file_vm_ops
4166 #define shmem_file_operations			ramfs_file_operations
4167 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4168 #define shmem_acct_size(flags, size)		0
4169 #define shmem_unacct_size(flags, size)		do {} while (0)
4170 
4171 #endif /* CONFIG_SHMEM */
4172 
4173 /* common code */
4174 
4175 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4176 				       unsigned long flags, unsigned int i_flags)
4177 {
4178 	struct inode *inode;
4179 	struct file *res;
4180 
4181 	if (IS_ERR(mnt))
4182 		return ERR_CAST(mnt);
4183 
4184 	if (size < 0 || size > MAX_LFS_FILESIZE)
4185 		return ERR_PTR(-EINVAL);
4186 
4187 	if (shmem_acct_size(flags, size))
4188 		return ERR_PTR(-ENOMEM);
4189 
4190 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4191 				flags);
4192 	if (unlikely(!inode)) {
4193 		shmem_unacct_size(flags, size);
4194 		return ERR_PTR(-ENOSPC);
4195 	}
4196 	inode->i_flags |= i_flags;
4197 	inode->i_size = size;
4198 	clear_nlink(inode);	/* It is unlinked */
4199 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4200 	if (!IS_ERR(res))
4201 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4202 				&shmem_file_operations);
4203 	if (IS_ERR(res))
4204 		iput(inode);
4205 	return res;
4206 }
4207 
4208 /**
4209  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4210  * 	kernel internal.  There will be NO LSM permission checks against the
4211  * 	underlying inode.  So users of this interface must do LSM checks at a
4212  *	higher layer.  The users are the big_key and shm implementations.  LSM
4213  *	checks are provided at the key or shm level rather than the inode.
4214  * @name: name for dentry (to be seen in /proc/<pid>/maps
4215  * @size: size to be set for the file
4216  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4217  */
4218 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4219 {
4220 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4221 }
4222 
4223 /**
4224  * shmem_file_setup - get an unlinked file living in tmpfs
4225  * @name: name for dentry (to be seen in /proc/<pid>/maps
4226  * @size: size to be set for the file
4227  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4228  */
4229 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4230 {
4231 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4232 }
4233 EXPORT_SYMBOL_GPL(shmem_file_setup);
4234 
4235 /**
4236  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4237  * @mnt: the tmpfs mount where the file will be created
4238  * @name: name for dentry (to be seen in /proc/<pid>/maps
4239  * @size: size to be set for the file
4240  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4241  */
4242 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4243 				       loff_t size, unsigned long flags)
4244 {
4245 	return __shmem_file_setup(mnt, name, size, flags, 0);
4246 }
4247 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4248 
4249 /**
4250  * shmem_zero_setup - setup a shared anonymous mapping
4251  * @vma: the vma to be mmapped is prepared by do_mmap
4252  */
4253 int shmem_zero_setup(struct vm_area_struct *vma)
4254 {
4255 	struct file *file;
4256 	loff_t size = vma->vm_end - vma->vm_start;
4257 
4258 	/*
4259 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4260 	 * between XFS directory reading and selinux: since this file is only
4261 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4262 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4263 	 */
4264 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4265 	if (IS_ERR(file))
4266 		return PTR_ERR(file);
4267 
4268 	if (vma->vm_file)
4269 		fput(vma->vm_file);
4270 	vma->vm_file = file;
4271 	vma->vm_ops = &shmem_vm_ops;
4272 
4273 	return 0;
4274 }
4275 
4276 /**
4277  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4278  * @mapping:	the page's address_space
4279  * @index:	the page index
4280  * @gfp:	the page allocator flags to use if allocating
4281  *
4282  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4283  * with any new page allocations done using the specified allocation flags.
4284  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4285  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4286  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4287  *
4288  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4289  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4290  */
4291 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4292 					 pgoff_t index, gfp_t gfp)
4293 {
4294 #ifdef CONFIG_SHMEM
4295 	struct inode *inode = mapping->host;
4296 	struct folio *folio;
4297 	struct page *page;
4298 	int error;
4299 
4300 	BUG_ON(!shmem_mapping(mapping));
4301 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4302 				  gfp, NULL, NULL, NULL);
4303 	if (error)
4304 		return ERR_PTR(error);
4305 
4306 	folio_unlock(folio);
4307 	page = folio_file_page(folio, index);
4308 	if (PageHWPoison(page)) {
4309 		folio_put(folio);
4310 		return ERR_PTR(-EIO);
4311 	}
4312 
4313 	return page;
4314 #else
4315 	/*
4316 	 * The tiny !SHMEM case uses ramfs without swap
4317 	 */
4318 	return read_cache_page_gfp(mapping, index, gfp);
4319 #endif
4320 }
4321 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4322