1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/uio.h> 38 #include <linux/hugetlb.h> 39 #include <linux/fs_parser.h> 40 #include <linux/swapfile.h> 41 #include <linux/iversion.h> 42 #include "swap.h" 43 44 static struct vfsmount *shm_mnt; 45 46 #ifdef CONFIG_SHMEM 47 /* 48 * This virtual memory filesystem is heavily based on the ramfs. It 49 * extends ramfs by the ability to use swap and honor resource limits 50 * which makes it a completely usable filesystem. 51 */ 52 53 #include <linux/xattr.h> 54 #include <linux/exportfs.h> 55 #include <linux/posix_acl.h> 56 #include <linux/posix_acl_xattr.h> 57 #include <linux/mman.h> 58 #include <linux/string.h> 59 #include <linux/slab.h> 60 #include <linux/backing-dev.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/userfaultfd_k.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 83 #include <linux/uaccess.h> 84 85 #include "internal.h" 86 87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 89 90 /* Pretend that each entry is of this size in directory's i_size */ 91 #define BOGO_DIRENT_SIZE 20 92 93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 94 #define SHORT_SYMLINK_LEN 128 95 96 /* 97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 98 * inode->i_private (with i_rwsem making sure that it has only one user at 99 * a time): we would prefer not to enlarge the shmem inode just for that. 100 */ 101 struct shmem_falloc { 102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 103 pgoff_t start; /* start of range currently being fallocated */ 104 pgoff_t next; /* the next page offset to be fallocated */ 105 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 107 }; 108 109 struct shmem_options { 110 unsigned long long blocks; 111 unsigned long long inodes; 112 struct mempolicy *mpol; 113 kuid_t uid; 114 kgid_t gid; 115 umode_t mode; 116 bool full_inums; 117 int huge; 118 int seen; 119 #define SHMEM_SEEN_BLOCKS 1 120 #define SHMEM_SEEN_INODES 2 121 #define SHMEM_SEEN_HUGE 4 122 #define SHMEM_SEEN_INUMS 8 123 }; 124 125 #ifdef CONFIG_TMPFS 126 static unsigned long shmem_default_max_blocks(void) 127 { 128 return totalram_pages() / 2; 129 } 130 131 static unsigned long shmem_default_max_inodes(void) 132 { 133 unsigned long nr_pages = totalram_pages(); 134 135 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 136 } 137 #endif 138 139 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 140 struct folio **foliop, enum sgp_type sgp, 141 gfp_t gfp, struct vm_area_struct *vma, 142 vm_fault_t *fault_type); 143 144 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 145 { 146 return sb->s_fs_info; 147 } 148 149 /* 150 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 151 * for shared memory and for shared anonymous (/dev/zero) mappings 152 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 153 * consistent with the pre-accounting of private mappings ... 154 */ 155 static inline int shmem_acct_size(unsigned long flags, loff_t size) 156 { 157 return (flags & VM_NORESERVE) ? 158 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 159 } 160 161 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 162 { 163 if (!(flags & VM_NORESERVE)) 164 vm_unacct_memory(VM_ACCT(size)); 165 } 166 167 static inline int shmem_reacct_size(unsigned long flags, 168 loff_t oldsize, loff_t newsize) 169 { 170 if (!(flags & VM_NORESERVE)) { 171 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 172 return security_vm_enough_memory_mm(current->mm, 173 VM_ACCT(newsize) - VM_ACCT(oldsize)); 174 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 175 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 176 } 177 return 0; 178 } 179 180 /* 181 * ... whereas tmpfs objects are accounted incrementally as 182 * pages are allocated, in order to allow large sparse files. 183 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 184 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 185 */ 186 static inline int shmem_acct_block(unsigned long flags, long pages) 187 { 188 if (!(flags & VM_NORESERVE)) 189 return 0; 190 191 return security_vm_enough_memory_mm(current->mm, 192 pages * VM_ACCT(PAGE_SIZE)); 193 } 194 195 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 196 { 197 if (flags & VM_NORESERVE) 198 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 199 } 200 201 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 202 { 203 struct shmem_inode_info *info = SHMEM_I(inode); 204 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 205 206 if (shmem_acct_block(info->flags, pages)) 207 return false; 208 209 if (sbinfo->max_blocks) { 210 if (percpu_counter_compare(&sbinfo->used_blocks, 211 sbinfo->max_blocks - pages) > 0) 212 goto unacct; 213 percpu_counter_add(&sbinfo->used_blocks, pages); 214 } 215 216 return true; 217 218 unacct: 219 shmem_unacct_blocks(info->flags, pages); 220 return false; 221 } 222 223 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 224 { 225 struct shmem_inode_info *info = SHMEM_I(inode); 226 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 227 228 if (sbinfo->max_blocks) 229 percpu_counter_sub(&sbinfo->used_blocks, pages); 230 shmem_unacct_blocks(info->flags, pages); 231 } 232 233 static const struct super_operations shmem_ops; 234 const struct address_space_operations shmem_aops; 235 static const struct file_operations shmem_file_operations; 236 static const struct inode_operations shmem_inode_operations; 237 static const struct inode_operations shmem_dir_inode_operations; 238 static const struct inode_operations shmem_special_inode_operations; 239 static const struct vm_operations_struct shmem_vm_ops; 240 static struct file_system_type shmem_fs_type; 241 242 bool vma_is_shmem(struct vm_area_struct *vma) 243 { 244 return vma->vm_ops == &shmem_vm_ops; 245 } 246 247 static LIST_HEAD(shmem_swaplist); 248 static DEFINE_MUTEX(shmem_swaplist_mutex); 249 250 /* 251 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 252 * produces a novel ino for the newly allocated inode. 253 * 254 * It may also be called when making a hard link to permit the space needed by 255 * each dentry. However, in that case, no new inode number is needed since that 256 * internally draws from another pool of inode numbers (currently global 257 * get_next_ino()). This case is indicated by passing NULL as inop. 258 */ 259 #define SHMEM_INO_BATCH 1024 260 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 261 { 262 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 263 ino_t ino; 264 265 if (!(sb->s_flags & SB_KERNMOUNT)) { 266 raw_spin_lock(&sbinfo->stat_lock); 267 if (sbinfo->max_inodes) { 268 if (!sbinfo->free_inodes) { 269 raw_spin_unlock(&sbinfo->stat_lock); 270 return -ENOSPC; 271 } 272 sbinfo->free_inodes--; 273 } 274 if (inop) { 275 ino = sbinfo->next_ino++; 276 if (unlikely(is_zero_ino(ino))) 277 ino = sbinfo->next_ino++; 278 if (unlikely(!sbinfo->full_inums && 279 ino > UINT_MAX)) { 280 /* 281 * Emulate get_next_ino uint wraparound for 282 * compatibility 283 */ 284 if (IS_ENABLED(CONFIG_64BIT)) 285 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 286 __func__, MINOR(sb->s_dev)); 287 sbinfo->next_ino = 1; 288 ino = sbinfo->next_ino++; 289 } 290 *inop = ino; 291 } 292 raw_spin_unlock(&sbinfo->stat_lock); 293 } else if (inop) { 294 /* 295 * __shmem_file_setup, one of our callers, is lock-free: it 296 * doesn't hold stat_lock in shmem_reserve_inode since 297 * max_inodes is always 0, and is called from potentially 298 * unknown contexts. As such, use a per-cpu batched allocator 299 * which doesn't require the per-sb stat_lock unless we are at 300 * the batch boundary. 301 * 302 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 303 * shmem mounts are not exposed to userspace, so we don't need 304 * to worry about things like glibc compatibility. 305 */ 306 ino_t *next_ino; 307 308 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 309 ino = *next_ino; 310 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 311 raw_spin_lock(&sbinfo->stat_lock); 312 ino = sbinfo->next_ino; 313 sbinfo->next_ino += SHMEM_INO_BATCH; 314 raw_spin_unlock(&sbinfo->stat_lock); 315 if (unlikely(is_zero_ino(ino))) 316 ino++; 317 } 318 *inop = ino; 319 *next_ino = ++ino; 320 put_cpu(); 321 } 322 323 return 0; 324 } 325 326 static void shmem_free_inode(struct super_block *sb) 327 { 328 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 329 if (sbinfo->max_inodes) { 330 raw_spin_lock(&sbinfo->stat_lock); 331 sbinfo->free_inodes++; 332 raw_spin_unlock(&sbinfo->stat_lock); 333 } 334 } 335 336 /** 337 * shmem_recalc_inode - recalculate the block usage of an inode 338 * @inode: inode to recalc 339 * 340 * We have to calculate the free blocks since the mm can drop 341 * undirtied hole pages behind our back. 342 * 343 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 344 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 345 * 346 * It has to be called with the spinlock held. 347 */ 348 static void shmem_recalc_inode(struct inode *inode) 349 { 350 struct shmem_inode_info *info = SHMEM_I(inode); 351 long freed; 352 353 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 354 if (freed > 0) { 355 info->alloced -= freed; 356 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 357 shmem_inode_unacct_blocks(inode, freed); 358 } 359 } 360 361 bool shmem_charge(struct inode *inode, long pages) 362 { 363 struct shmem_inode_info *info = SHMEM_I(inode); 364 unsigned long flags; 365 366 if (!shmem_inode_acct_block(inode, pages)) 367 return false; 368 369 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 370 inode->i_mapping->nrpages += pages; 371 372 spin_lock_irqsave(&info->lock, flags); 373 info->alloced += pages; 374 inode->i_blocks += pages * BLOCKS_PER_PAGE; 375 shmem_recalc_inode(inode); 376 spin_unlock_irqrestore(&info->lock, flags); 377 378 return true; 379 } 380 381 void shmem_uncharge(struct inode *inode, long pages) 382 { 383 struct shmem_inode_info *info = SHMEM_I(inode); 384 unsigned long flags; 385 386 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 387 388 spin_lock_irqsave(&info->lock, flags); 389 info->alloced -= pages; 390 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 391 shmem_recalc_inode(inode); 392 spin_unlock_irqrestore(&info->lock, flags); 393 394 shmem_inode_unacct_blocks(inode, pages); 395 } 396 397 /* 398 * Replace item expected in xarray by a new item, while holding xa_lock. 399 */ 400 static int shmem_replace_entry(struct address_space *mapping, 401 pgoff_t index, void *expected, void *replacement) 402 { 403 XA_STATE(xas, &mapping->i_pages, index); 404 void *item; 405 406 VM_BUG_ON(!expected); 407 VM_BUG_ON(!replacement); 408 item = xas_load(&xas); 409 if (item != expected) 410 return -ENOENT; 411 xas_store(&xas, replacement); 412 return 0; 413 } 414 415 /* 416 * Sometimes, before we decide whether to proceed or to fail, we must check 417 * that an entry was not already brought back from swap by a racing thread. 418 * 419 * Checking page is not enough: by the time a SwapCache page is locked, it 420 * might be reused, and again be SwapCache, using the same swap as before. 421 */ 422 static bool shmem_confirm_swap(struct address_space *mapping, 423 pgoff_t index, swp_entry_t swap) 424 { 425 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 426 } 427 428 /* 429 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 430 * 431 * SHMEM_HUGE_NEVER: 432 * disables huge pages for the mount; 433 * SHMEM_HUGE_ALWAYS: 434 * enables huge pages for the mount; 435 * SHMEM_HUGE_WITHIN_SIZE: 436 * only allocate huge pages if the page will be fully within i_size, 437 * also respect fadvise()/madvise() hints; 438 * SHMEM_HUGE_ADVISE: 439 * only allocate huge pages if requested with fadvise()/madvise(); 440 */ 441 442 #define SHMEM_HUGE_NEVER 0 443 #define SHMEM_HUGE_ALWAYS 1 444 #define SHMEM_HUGE_WITHIN_SIZE 2 445 #define SHMEM_HUGE_ADVISE 3 446 447 /* 448 * Special values. 449 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 450 * 451 * SHMEM_HUGE_DENY: 452 * disables huge on shm_mnt and all mounts, for emergency use; 453 * SHMEM_HUGE_FORCE: 454 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 455 * 456 */ 457 #define SHMEM_HUGE_DENY (-1) 458 #define SHMEM_HUGE_FORCE (-2) 459 460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 461 /* ifdef here to avoid bloating shmem.o when not necessary */ 462 463 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 464 465 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode, 466 pgoff_t index, bool shmem_huge_force) 467 { 468 loff_t i_size; 469 470 if (!S_ISREG(inode->i_mode)) 471 return false; 472 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) || 473 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))) 474 return false; 475 if (shmem_huge_force) 476 return true; 477 if (shmem_huge == SHMEM_HUGE_FORCE) 478 return true; 479 if (shmem_huge == SHMEM_HUGE_DENY) 480 return false; 481 482 switch (SHMEM_SB(inode->i_sb)->huge) { 483 case SHMEM_HUGE_ALWAYS: 484 return true; 485 case SHMEM_HUGE_WITHIN_SIZE: 486 index = round_up(index + 1, HPAGE_PMD_NR); 487 i_size = round_up(i_size_read(inode), PAGE_SIZE); 488 if (i_size >> PAGE_SHIFT >= index) 489 return true; 490 fallthrough; 491 case SHMEM_HUGE_ADVISE: 492 if (vma && (vma->vm_flags & VM_HUGEPAGE)) 493 return true; 494 fallthrough; 495 default: 496 return false; 497 } 498 } 499 500 #if defined(CONFIG_SYSFS) 501 static int shmem_parse_huge(const char *str) 502 { 503 if (!strcmp(str, "never")) 504 return SHMEM_HUGE_NEVER; 505 if (!strcmp(str, "always")) 506 return SHMEM_HUGE_ALWAYS; 507 if (!strcmp(str, "within_size")) 508 return SHMEM_HUGE_WITHIN_SIZE; 509 if (!strcmp(str, "advise")) 510 return SHMEM_HUGE_ADVISE; 511 if (!strcmp(str, "deny")) 512 return SHMEM_HUGE_DENY; 513 if (!strcmp(str, "force")) 514 return SHMEM_HUGE_FORCE; 515 return -EINVAL; 516 } 517 #endif 518 519 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 520 static const char *shmem_format_huge(int huge) 521 { 522 switch (huge) { 523 case SHMEM_HUGE_NEVER: 524 return "never"; 525 case SHMEM_HUGE_ALWAYS: 526 return "always"; 527 case SHMEM_HUGE_WITHIN_SIZE: 528 return "within_size"; 529 case SHMEM_HUGE_ADVISE: 530 return "advise"; 531 case SHMEM_HUGE_DENY: 532 return "deny"; 533 case SHMEM_HUGE_FORCE: 534 return "force"; 535 default: 536 VM_BUG_ON(1); 537 return "bad_val"; 538 } 539 } 540 #endif 541 542 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 543 struct shrink_control *sc, unsigned long nr_to_split) 544 { 545 LIST_HEAD(list), *pos, *next; 546 LIST_HEAD(to_remove); 547 struct inode *inode; 548 struct shmem_inode_info *info; 549 struct folio *folio; 550 unsigned long batch = sc ? sc->nr_to_scan : 128; 551 int split = 0; 552 553 if (list_empty(&sbinfo->shrinklist)) 554 return SHRINK_STOP; 555 556 spin_lock(&sbinfo->shrinklist_lock); 557 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 558 info = list_entry(pos, struct shmem_inode_info, shrinklist); 559 560 /* pin the inode */ 561 inode = igrab(&info->vfs_inode); 562 563 /* inode is about to be evicted */ 564 if (!inode) { 565 list_del_init(&info->shrinklist); 566 goto next; 567 } 568 569 /* Check if there's anything to gain */ 570 if (round_up(inode->i_size, PAGE_SIZE) == 571 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 572 list_move(&info->shrinklist, &to_remove); 573 goto next; 574 } 575 576 list_move(&info->shrinklist, &list); 577 next: 578 sbinfo->shrinklist_len--; 579 if (!--batch) 580 break; 581 } 582 spin_unlock(&sbinfo->shrinklist_lock); 583 584 list_for_each_safe(pos, next, &to_remove) { 585 info = list_entry(pos, struct shmem_inode_info, shrinklist); 586 inode = &info->vfs_inode; 587 list_del_init(&info->shrinklist); 588 iput(inode); 589 } 590 591 list_for_each_safe(pos, next, &list) { 592 int ret; 593 pgoff_t index; 594 595 info = list_entry(pos, struct shmem_inode_info, shrinklist); 596 inode = &info->vfs_inode; 597 598 if (nr_to_split && split >= nr_to_split) 599 goto move_back; 600 601 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 602 folio = filemap_get_folio(inode->i_mapping, index); 603 if (!folio) 604 goto drop; 605 606 /* No huge page at the end of the file: nothing to split */ 607 if (!folio_test_large(folio)) { 608 folio_put(folio); 609 goto drop; 610 } 611 612 /* 613 * Move the inode on the list back to shrinklist if we failed 614 * to lock the page at this time. 615 * 616 * Waiting for the lock may lead to deadlock in the 617 * reclaim path. 618 */ 619 if (!folio_trylock(folio)) { 620 folio_put(folio); 621 goto move_back; 622 } 623 624 ret = split_folio(folio); 625 folio_unlock(folio); 626 folio_put(folio); 627 628 /* If split failed move the inode on the list back to shrinklist */ 629 if (ret) 630 goto move_back; 631 632 split++; 633 drop: 634 list_del_init(&info->shrinklist); 635 goto put; 636 move_back: 637 /* 638 * Make sure the inode is either on the global list or deleted 639 * from any local list before iput() since it could be deleted 640 * in another thread once we put the inode (then the local list 641 * is corrupted). 642 */ 643 spin_lock(&sbinfo->shrinklist_lock); 644 list_move(&info->shrinklist, &sbinfo->shrinklist); 645 sbinfo->shrinklist_len++; 646 spin_unlock(&sbinfo->shrinklist_lock); 647 put: 648 iput(inode); 649 } 650 651 return split; 652 } 653 654 static long shmem_unused_huge_scan(struct super_block *sb, 655 struct shrink_control *sc) 656 { 657 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 658 659 if (!READ_ONCE(sbinfo->shrinklist_len)) 660 return SHRINK_STOP; 661 662 return shmem_unused_huge_shrink(sbinfo, sc, 0); 663 } 664 665 static long shmem_unused_huge_count(struct super_block *sb, 666 struct shrink_control *sc) 667 { 668 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 669 return READ_ONCE(sbinfo->shrinklist_len); 670 } 671 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 672 673 #define shmem_huge SHMEM_HUGE_DENY 674 675 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode, 676 pgoff_t index, bool shmem_huge_force) 677 { 678 return false; 679 } 680 681 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 682 struct shrink_control *sc, unsigned long nr_to_split) 683 { 684 return 0; 685 } 686 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 687 688 /* 689 * Like filemap_add_folio, but error if expected item has gone. 690 */ 691 static int shmem_add_to_page_cache(struct folio *folio, 692 struct address_space *mapping, 693 pgoff_t index, void *expected, gfp_t gfp, 694 struct mm_struct *charge_mm) 695 { 696 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 697 long nr = folio_nr_pages(folio); 698 int error; 699 700 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 701 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 702 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 703 VM_BUG_ON(expected && folio_test_large(folio)); 704 705 folio_ref_add(folio, nr); 706 folio->mapping = mapping; 707 folio->index = index; 708 709 if (!folio_test_swapcache(folio)) { 710 error = mem_cgroup_charge(folio, charge_mm, gfp); 711 if (error) { 712 if (folio_test_pmd_mappable(folio)) { 713 count_vm_event(THP_FILE_FALLBACK); 714 count_vm_event(THP_FILE_FALLBACK_CHARGE); 715 } 716 goto error; 717 } 718 } 719 folio_throttle_swaprate(folio, gfp); 720 721 do { 722 xas_lock_irq(&xas); 723 if (expected != xas_find_conflict(&xas)) { 724 xas_set_err(&xas, -EEXIST); 725 goto unlock; 726 } 727 if (expected && xas_find_conflict(&xas)) { 728 xas_set_err(&xas, -EEXIST); 729 goto unlock; 730 } 731 xas_store(&xas, folio); 732 if (xas_error(&xas)) 733 goto unlock; 734 if (folio_test_pmd_mappable(folio)) { 735 count_vm_event(THP_FILE_ALLOC); 736 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 737 } 738 mapping->nrpages += nr; 739 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 740 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 741 unlock: 742 xas_unlock_irq(&xas); 743 } while (xas_nomem(&xas, gfp)); 744 745 if (xas_error(&xas)) { 746 error = xas_error(&xas); 747 goto error; 748 } 749 750 return 0; 751 error: 752 folio->mapping = NULL; 753 folio_ref_sub(folio, nr); 754 return error; 755 } 756 757 /* 758 * Like delete_from_page_cache, but substitutes swap for @folio. 759 */ 760 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 761 { 762 struct address_space *mapping = folio->mapping; 763 long nr = folio_nr_pages(folio); 764 int error; 765 766 xa_lock_irq(&mapping->i_pages); 767 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 768 folio->mapping = NULL; 769 mapping->nrpages -= nr; 770 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 771 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 772 xa_unlock_irq(&mapping->i_pages); 773 folio_put(folio); 774 BUG_ON(error); 775 } 776 777 /* 778 * Remove swap entry from page cache, free the swap and its page cache. 779 */ 780 static int shmem_free_swap(struct address_space *mapping, 781 pgoff_t index, void *radswap) 782 { 783 void *old; 784 785 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 786 if (old != radswap) 787 return -ENOENT; 788 free_swap_and_cache(radix_to_swp_entry(radswap)); 789 return 0; 790 } 791 792 /* 793 * Determine (in bytes) how many of the shmem object's pages mapped by the 794 * given offsets are swapped out. 795 * 796 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 797 * as long as the inode doesn't go away and racy results are not a problem. 798 */ 799 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 800 pgoff_t start, pgoff_t end) 801 { 802 XA_STATE(xas, &mapping->i_pages, start); 803 struct page *page; 804 unsigned long swapped = 0; 805 806 rcu_read_lock(); 807 xas_for_each(&xas, page, end - 1) { 808 if (xas_retry(&xas, page)) 809 continue; 810 if (xa_is_value(page)) 811 swapped++; 812 813 if (need_resched()) { 814 xas_pause(&xas); 815 cond_resched_rcu(); 816 } 817 } 818 819 rcu_read_unlock(); 820 821 return swapped << PAGE_SHIFT; 822 } 823 824 /* 825 * Determine (in bytes) how many of the shmem object's pages mapped by the 826 * given vma is swapped out. 827 * 828 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 829 * as long as the inode doesn't go away and racy results are not a problem. 830 */ 831 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 832 { 833 struct inode *inode = file_inode(vma->vm_file); 834 struct shmem_inode_info *info = SHMEM_I(inode); 835 struct address_space *mapping = inode->i_mapping; 836 unsigned long swapped; 837 838 /* Be careful as we don't hold info->lock */ 839 swapped = READ_ONCE(info->swapped); 840 841 /* 842 * The easier cases are when the shmem object has nothing in swap, or 843 * the vma maps it whole. Then we can simply use the stats that we 844 * already track. 845 */ 846 if (!swapped) 847 return 0; 848 849 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 850 return swapped << PAGE_SHIFT; 851 852 /* Here comes the more involved part */ 853 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 854 vma->vm_pgoff + vma_pages(vma)); 855 } 856 857 /* 858 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 859 */ 860 void shmem_unlock_mapping(struct address_space *mapping) 861 { 862 struct folio_batch fbatch; 863 pgoff_t index = 0; 864 865 folio_batch_init(&fbatch); 866 /* 867 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 868 */ 869 while (!mapping_unevictable(mapping) && 870 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 871 check_move_unevictable_folios(&fbatch); 872 folio_batch_release(&fbatch); 873 cond_resched(); 874 } 875 } 876 877 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 878 { 879 struct folio *folio; 880 881 /* 882 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 883 * beyond i_size, and reports fallocated pages as holes. 884 */ 885 folio = __filemap_get_folio(inode->i_mapping, index, 886 FGP_ENTRY | FGP_LOCK, 0); 887 if (!xa_is_value(folio)) 888 return folio; 889 /* 890 * But read a page back from swap if any of it is within i_size 891 * (although in some cases this is just a waste of time). 892 */ 893 folio = NULL; 894 shmem_get_folio(inode, index, &folio, SGP_READ); 895 return folio; 896 } 897 898 /* 899 * Remove range of pages and swap entries from page cache, and free them. 900 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 901 */ 902 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 903 bool unfalloc) 904 { 905 struct address_space *mapping = inode->i_mapping; 906 struct shmem_inode_info *info = SHMEM_I(inode); 907 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 908 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 909 struct folio_batch fbatch; 910 pgoff_t indices[PAGEVEC_SIZE]; 911 struct folio *folio; 912 bool same_folio; 913 long nr_swaps_freed = 0; 914 pgoff_t index; 915 int i; 916 917 if (lend == -1) 918 end = -1; /* unsigned, so actually very big */ 919 920 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 921 info->fallocend = start; 922 923 folio_batch_init(&fbatch); 924 index = start; 925 while (index < end && find_lock_entries(mapping, &index, end - 1, 926 &fbatch, indices)) { 927 for (i = 0; i < folio_batch_count(&fbatch); i++) { 928 folio = fbatch.folios[i]; 929 930 if (xa_is_value(folio)) { 931 if (unfalloc) 932 continue; 933 nr_swaps_freed += !shmem_free_swap(mapping, 934 indices[i], folio); 935 continue; 936 } 937 938 if (!unfalloc || !folio_test_uptodate(folio)) 939 truncate_inode_folio(mapping, folio); 940 folio_unlock(folio); 941 } 942 folio_batch_remove_exceptionals(&fbatch); 943 folio_batch_release(&fbatch); 944 cond_resched(); 945 } 946 947 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 948 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 949 if (folio) { 950 same_folio = lend < folio_pos(folio) + folio_size(folio); 951 folio_mark_dirty(folio); 952 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 953 start = folio->index + folio_nr_pages(folio); 954 if (same_folio) 955 end = folio->index; 956 } 957 folio_unlock(folio); 958 folio_put(folio); 959 folio = NULL; 960 } 961 962 if (!same_folio) 963 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 964 if (folio) { 965 folio_mark_dirty(folio); 966 if (!truncate_inode_partial_folio(folio, lstart, lend)) 967 end = folio->index; 968 folio_unlock(folio); 969 folio_put(folio); 970 } 971 972 index = start; 973 while (index < end) { 974 cond_resched(); 975 976 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 977 indices)) { 978 /* If all gone or hole-punch or unfalloc, we're done */ 979 if (index == start || end != -1) 980 break; 981 /* But if truncating, restart to make sure all gone */ 982 index = start; 983 continue; 984 } 985 for (i = 0; i < folio_batch_count(&fbatch); i++) { 986 folio = fbatch.folios[i]; 987 988 if (xa_is_value(folio)) { 989 if (unfalloc) 990 continue; 991 if (shmem_free_swap(mapping, indices[i], folio)) { 992 /* Swap was replaced by page: retry */ 993 index = indices[i]; 994 break; 995 } 996 nr_swaps_freed++; 997 continue; 998 } 999 1000 folio_lock(folio); 1001 1002 if (!unfalloc || !folio_test_uptodate(folio)) { 1003 if (folio_mapping(folio) != mapping) { 1004 /* Page was replaced by swap: retry */ 1005 folio_unlock(folio); 1006 index = indices[i]; 1007 break; 1008 } 1009 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1010 folio); 1011 truncate_inode_folio(mapping, folio); 1012 } 1013 folio_unlock(folio); 1014 } 1015 folio_batch_remove_exceptionals(&fbatch); 1016 folio_batch_release(&fbatch); 1017 } 1018 1019 spin_lock_irq(&info->lock); 1020 info->swapped -= nr_swaps_freed; 1021 shmem_recalc_inode(inode); 1022 spin_unlock_irq(&info->lock); 1023 } 1024 1025 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1026 { 1027 shmem_undo_range(inode, lstart, lend, false); 1028 inode->i_ctime = inode->i_mtime = current_time(inode); 1029 inode_inc_iversion(inode); 1030 } 1031 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1032 1033 static int shmem_getattr(struct user_namespace *mnt_userns, 1034 const struct path *path, struct kstat *stat, 1035 u32 request_mask, unsigned int query_flags) 1036 { 1037 struct inode *inode = path->dentry->d_inode; 1038 struct shmem_inode_info *info = SHMEM_I(inode); 1039 1040 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1041 spin_lock_irq(&info->lock); 1042 shmem_recalc_inode(inode); 1043 spin_unlock_irq(&info->lock); 1044 } 1045 if (info->fsflags & FS_APPEND_FL) 1046 stat->attributes |= STATX_ATTR_APPEND; 1047 if (info->fsflags & FS_IMMUTABLE_FL) 1048 stat->attributes |= STATX_ATTR_IMMUTABLE; 1049 if (info->fsflags & FS_NODUMP_FL) 1050 stat->attributes |= STATX_ATTR_NODUMP; 1051 stat->attributes_mask |= (STATX_ATTR_APPEND | 1052 STATX_ATTR_IMMUTABLE | 1053 STATX_ATTR_NODUMP); 1054 generic_fillattr(&init_user_ns, inode, stat); 1055 1056 if (shmem_is_huge(NULL, inode, 0, false)) 1057 stat->blksize = HPAGE_PMD_SIZE; 1058 1059 if (request_mask & STATX_BTIME) { 1060 stat->result_mask |= STATX_BTIME; 1061 stat->btime.tv_sec = info->i_crtime.tv_sec; 1062 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1063 } 1064 1065 return 0; 1066 } 1067 1068 static int shmem_setattr(struct user_namespace *mnt_userns, 1069 struct dentry *dentry, struct iattr *attr) 1070 { 1071 struct inode *inode = d_inode(dentry); 1072 struct shmem_inode_info *info = SHMEM_I(inode); 1073 int error; 1074 bool update_mtime = false; 1075 bool update_ctime = true; 1076 1077 error = setattr_prepare(&init_user_ns, dentry, attr); 1078 if (error) 1079 return error; 1080 1081 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1082 loff_t oldsize = inode->i_size; 1083 loff_t newsize = attr->ia_size; 1084 1085 /* protected by i_rwsem */ 1086 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1087 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1088 return -EPERM; 1089 1090 if (newsize != oldsize) { 1091 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1092 oldsize, newsize); 1093 if (error) 1094 return error; 1095 i_size_write(inode, newsize); 1096 update_mtime = true; 1097 } else { 1098 update_ctime = false; 1099 } 1100 if (newsize <= oldsize) { 1101 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1102 if (oldsize > holebegin) 1103 unmap_mapping_range(inode->i_mapping, 1104 holebegin, 0, 1); 1105 if (info->alloced) 1106 shmem_truncate_range(inode, 1107 newsize, (loff_t)-1); 1108 /* unmap again to remove racily COWed private pages */ 1109 if (oldsize > holebegin) 1110 unmap_mapping_range(inode->i_mapping, 1111 holebegin, 0, 1); 1112 } 1113 } 1114 1115 setattr_copy(&init_user_ns, inode, attr); 1116 if (attr->ia_valid & ATTR_MODE) 1117 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); 1118 if (!error && update_ctime) { 1119 inode->i_ctime = current_time(inode); 1120 if (update_mtime) 1121 inode->i_mtime = inode->i_ctime; 1122 inode_inc_iversion(inode); 1123 } 1124 return error; 1125 } 1126 1127 static void shmem_evict_inode(struct inode *inode) 1128 { 1129 struct shmem_inode_info *info = SHMEM_I(inode); 1130 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1131 1132 if (shmem_mapping(inode->i_mapping)) { 1133 shmem_unacct_size(info->flags, inode->i_size); 1134 inode->i_size = 0; 1135 mapping_set_exiting(inode->i_mapping); 1136 shmem_truncate_range(inode, 0, (loff_t)-1); 1137 if (!list_empty(&info->shrinklist)) { 1138 spin_lock(&sbinfo->shrinklist_lock); 1139 if (!list_empty(&info->shrinklist)) { 1140 list_del_init(&info->shrinklist); 1141 sbinfo->shrinklist_len--; 1142 } 1143 spin_unlock(&sbinfo->shrinklist_lock); 1144 } 1145 while (!list_empty(&info->swaplist)) { 1146 /* Wait while shmem_unuse() is scanning this inode... */ 1147 wait_var_event(&info->stop_eviction, 1148 !atomic_read(&info->stop_eviction)); 1149 mutex_lock(&shmem_swaplist_mutex); 1150 /* ...but beware of the race if we peeked too early */ 1151 if (!atomic_read(&info->stop_eviction)) 1152 list_del_init(&info->swaplist); 1153 mutex_unlock(&shmem_swaplist_mutex); 1154 } 1155 } 1156 1157 simple_xattrs_free(&info->xattrs); 1158 WARN_ON(inode->i_blocks); 1159 shmem_free_inode(inode->i_sb); 1160 clear_inode(inode); 1161 } 1162 1163 static int shmem_find_swap_entries(struct address_space *mapping, 1164 pgoff_t start, struct folio_batch *fbatch, 1165 pgoff_t *indices, unsigned int type) 1166 { 1167 XA_STATE(xas, &mapping->i_pages, start); 1168 struct folio *folio; 1169 swp_entry_t entry; 1170 1171 rcu_read_lock(); 1172 xas_for_each(&xas, folio, ULONG_MAX) { 1173 if (xas_retry(&xas, folio)) 1174 continue; 1175 1176 if (!xa_is_value(folio)) 1177 continue; 1178 1179 entry = radix_to_swp_entry(folio); 1180 /* 1181 * swapin error entries can be found in the mapping. But they're 1182 * deliberately ignored here as we've done everything we can do. 1183 */ 1184 if (swp_type(entry) != type) 1185 continue; 1186 1187 indices[folio_batch_count(fbatch)] = xas.xa_index; 1188 if (!folio_batch_add(fbatch, folio)) 1189 break; 1190 1191 if (need_resched()) { 1192 xas_pause(&xas); 1193 cond_resched_rcu(); 1194 } 1195 } 1196 rcu_read_unlock(); 1197 1198 return xas.xa_index; 1199 } 1200 1201 /* 1202 * Move the swapped pages for an inode to page cache. Returns the count 1203 * of pages swapped in, or the error in case of failure. 1204 */ 1205 static int shmem_unuse_swap_entries(struct inode *inode, 1206 struct folio_batch *fbatch, pgoff_t *indices) 1207 { 1208 int i = 0; 1209 int ret = 0; 1210 int error = 0; 1211 struct address_space *mapping = inode->i_mapping; 1212 1213 for (i = 0; i < folio_batch_count(fbatch); i++) { 1214 struct folio *folio = fbatch->folios[i]; 1215 1216 if (!xa_is_value(folio)) 1217 continue; 1218 error = shmem_swapin_folio(inode, indices[i], 1219 &folio, SGP_CACHE, 1220 mapping_gfp_mask(mapping), 1221 NULL, NULL); 1222 if (error == 0) { 1223 folio_unlock(folio); 1224 folio_put(folio); 1225 ret++; 1226 } 1227 if (error == -ENOMEM) 1228 break; 1229 error = 0; 1230 } 1231 return error ? error : ret; 1232 } 1233 1234 /* 1235 * If swap found in inode, free it and move page from swapcache to filecache. 1236 */ 1237 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1238 { 1239 struct address_space *mapping = inode->i_mapping; 1240 pgoff_t start = 0; 1241 struct folio_batch fbatch; 1242 pgoff_t indices[PAGEVEC_SIZE]; 1243 int ret = 0; 1244 1245 do { 1246 folio_batch_init(&fbatch); 1247 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1248 if (folio_batch_count(&fbatch) == 0) { 1249 ret = 0; 1250 break; 1251 } 1252 1253 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1254 if (ret < 0) 1255 break; 1256 1257 start = indices[folio_batch_count(&fbatch) - 1]; 1258 } while (true); 1259 1260 return ret; 1261 } 1262 1263 /* 1264 * Read all the shared memory data that resides in the swap 1265 * device 'type' back into memory, so the swap device can be 1266 * unused. 1267 */ 1268 int shmem_unuse(unsigned int type) 1269 { 1270 struct shmem_inode_info *info, *next; 1271 int error = 0; 1272 1273 if (list_empty(&shmem_swaplist)) 1274 return 0; 1275 1276 mutex_lock(&shmem_swaplist_mutex); 1277 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1278 if (!info->swapped) { 1279 list_del_init(&info->swaplist); 1280 continue; 1281 } 1282 /* 1283 * Drop the swaplist mutex while searching the inode for swap; 1284 * but before doing so, make sure shmem_evict_inode() will not 1285 * remove placeholder inode from swaplist, nor let it be freed 1286 * (igrab() would protect from unlink, but not from unmount). 1287 */ 1288 atomic_inc(&info->stop_eviction); 1289 mutex_unlock(&shmem_swaplist_mutex); 1290 1291 error = shmem_unuse_inode(&info->vfs_inode, type); 1292 cond_resched(); 1293 1294 mutex_lock(&shmem_swaplist_mutex); 1295 next = list_next_entry(info, swaplist); 1296 if (!info->swapped) 1297 list_del_init(&info->swaplist); 1298 if (atomic_dec_and_test(&info->stop_eviction)) 1299 wake_up_var(&info->stop_eviction); 1300 if (error) 1301 break; 1302 } 1303 mutex_unlock(&shmem_swaplist_mutex); 1304 1305 return error; 1306 } 1307 1308 /* 1309 * Move the page from the page cache to the swap cache. 1310 */ 1311 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1312 { 1313 struct folio *folio = page_folio(page); 1314 struct shmem_inode_info *info; 1315 struct address_space *mapping; 1316 struct inode *inode; 1317 swp_entry_t swap; 1318 pgoff_t index; 1319 1320 /* 1321 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1322 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1323 * and its shmem_writeback() needs them to be split when swapping. 1324 */ 1325 if (folio_test_large(folio)) { 1326 /* Ensure the subpages are still dirty */ 1327 folio_test_set_dirty(folio); 1328 if (split_huge_page(page) < 0) 1329 goto redirty; 1330 folio = page_folio(page); 1331 folio_clear_dirty(folio); 1332 } 1333 1334 BUG_ON(!folio_test_locked(folio)); 1335 mapping = folio->mapping; 1336 index = folio->index; 1337 inode = mapping->host; 1338 info = SHMEM_I(inode); 1339 if (info->flags & VM_LOCKED) 1340 goto redirty; 1341 if (!total_swap_pages) 1342 goto redirty; 1343 1344 /* 1345 * Our capabilities prevent regular writeback or sync from ever calling 1346 * shmem_writepage; but a stacking filesystem might use ->writepage of 1347 * its underlying filesystem, in which case tmpfs should write out to 1348 * swap only in response to memory pressure, and not for the writeback 1349 * threads or sync. 1350 */ 1351 if (!wbc->for_reclaim) { 1352 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1353 goto redirty; 1354 } 1355 1356 /* 1357 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1358 * value into swapfile.c, the only way we can correctly account for a 1359 * fallocated folio arriving here is now to initialize it and write it. 1360 * 1361 * That's okay for a folio already fallocated earlier, but if we have 1362 * not yet completed the fallocation, then (a) we want to keep track 1363 * of this folio in case we have to undo it, and (b) it may not be a 1364 * good idea to continue anyway, once we're pushing into swap. So 1365 * reactivate the folio, and let shmem_fallocate() quit when too many. 1366 */ 1367 if (!folio_test_uptodate(folio)) { 1368 if (inode->i_private) { 1369 struct shmem_falloc *shmem_falloc; 1370 spin_lock(&inode->i_lock); 1371 shmem_falloc = inode->i_private; 1372 if (shmem_falloc && 1373 !shmem_falloc->waitq && 1374 index >= shmem_falloc->start && 1375 index < shmem_falloc->next) 1376 shmem_falloc->nr_unswapped++; 1377 else 1378 shmem_falloc = NULL; 1379 spin_unlock(&inode->i_lock); 1380 if (shmem_falloc) 1381 goto redirty; 1382 } 1383 folio_zero_range(folio, 0, folio_size(folio)); 1384 flush_dcache_folio(folio); 1385 folio_mark_uptodate(folio); 1386 } 1387 1388 swap = folio_alloc_swap(folio); 1389 if (!swap.val) 1390 goto redirty; 1391 1392 /* 1393 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1394 * if it's not already there. Do it now before the folio is 1395 * moved to swap cache, when its pagelock no longer protects 1396 * the inode from eviction. But don't unlock the mutex until 1397 * we've incremented swapped, because shmem_unuse_inode() will 1398 * prune a !swapped inode from the swaplist under this mutex. 1399 */ 1400 mutex_lock(&shmem_swaplist_mutex); 1401 if (list_empty(&info->swaplist)) 1402 list_add(&info->swaplist, &shmem_swaplist); 1403 1404 if (add_to_swap_cache(folio, swap, 1405 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1406 NULL) == 0) { 1407 spin_lock_irq(&info->lock); 1408 shmem_recalc_inode(inode); 1409 info->swapped++; 1410 spin_unlock_irq(&info->lock); 1411 1412 swap_shmem_alloc(swap); 1413 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1414 1415 mutex_unlock(&shmem_swaplist_mutex); 1416 BUG_ON(folio_mapped(folio)); 1417 swap_writepage(&folio->page, wbc); 1418 return 0; 1419 } 1420 1421 mutex_unlock(&shmem_swaplist_mutex); 1422 put_swap_folio(folio, swap); 1423 redirty: 1424 folio_mark_dirty(folio); 1425 if (wbc->for_reclaim) 1426 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1427 folio_unlock(folio); 1428 return 0; 1429 } 1430 1431 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1432 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1433 { 1434 char buffer[64]; 1435 1436 if (!mpol || mpol->mode == MPOL_DEFAULT) 1437 return; /* show nothing */ 1438 1439 mpol_to_str(buffer, sizeof(buffer), mpol); 1440 1441 seq_printf(seq, ",mpol=%s", buffer); 1442 } 1443 1444 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1445 { 1446 struct mempolicy *mpol = NULL; 1447 if (sbinfo->mpol) { 1448 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1449 mpol = sbinfo->mpol; 1450 mpol_get(mpol); 1451 raw_spin_unlock(&sbinfo->stat_lock); 1452 } 1453 return mpol; 1454 } 1455 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1456 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1457 { 1458 } 1459 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1460 { 1461 return NULL; 1462 } 1463 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1464 #ifndef CONFIG_NUMA 1465 #define vm_policy vm_private_data 1466 #endif 1467 1468 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1469 struct shmem_inode_info *info, pgoff_t index) 1470 { 1471 /* Create a pseudo vma that just contains the policy */ 1472 vma_init(vma, NULL); 1473 /* Bias interleave by inode number to distribute better across nodes */ 1474 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1475 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1476 } 1477 1478 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1479 { 1480 /* Drop reference taken by mpol_shared_policy_lookup() */ 1481 mpol_cond_put(vma->vm_policy); 1482 } 1483 1484 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1485 struct shmem_inode_info *info, pgoff_t index) 1486 { 1487 struct vm_area_struct pvma; 1488 struct page *page; 1489 struct vm_fault vmf = { 1490 .vma = &pvma, 1491 }; 1492 1493 shmem_pseudo_vma_init(&pvma, info, index); 1494 page = swap_cluster_readahead(swap, gfp, &vmf); 1495 shmem_pseudo_vma_destroy(&pvma); 1496 1497 if (!page) 1498 return NULL; 1499 return page_folio(page); 1500 } 1501 1502 /* 1503 * Make sure huge_gfp is always more limited than limit_gfp. 1504 * Some of the flags set permissions, while others set limitations. 1505 */ 1506 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1507 { 1508 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1509 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1510 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1511 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1512 1513 /* Allow allocations only from the originally specified zones. */ 1514 result |= zoneflags; 1515 1516 /* 1517 * Minimize the result gfp by taking the union with the deny flags, 1518 * and the intersection of the allow flags. 1519 */ 1520 result |= (limit_gfp & denyflags); 1521 result |= (huge_gfp & limit_gfp) & allowflags; 1522 1523 return result; 1524 } 1525 1526 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1527 struct shmem_inode_info *info, pgoff_t index) 1528 { 1529 struct vm_area_struct pvma; 1530 struct address_space *mapping = info->vfs_inode.i_mapping; 1531 pgoff_t hindex; 1532 struct folio *folio; 1533 1534 hindex = round_down(index, HPAGE_PMD_NR); 1535 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1536 XA_PRESENT)) 1537 return NULL; 1538 1539 shmem_pseudo_vma_init(&pvma, info, hindex); 1540 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1541 shmem_pseudo_vma_destroy(&pvma); 1542 if (!folio) 1543 count_vm_event(THP_FILE_FALLBACK); 1544 return folio; 1545 } 1546 1547 static struct folio *shmem_alloc_folio(gfp_t gfp, 1548 struct shmem_inode_info *info, pgoff_t index) 1549 { 1550 struct vm_area_struct pvma; 1551 struct folio *folio; 1552 1553 shmem_pseudo_vma_init(&pvma, info, index); 1554 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false); 1555 shmem_pseudo_vma_destroy(&pvma); 1556 1557 return folio; 1558 } 1559 1560 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode, 1561 pgoff_t index, bool huge) 1562 { 1563 struct shmem_inode_info *info = SHMEM_I(inode); 1564 struct folio *folio; 1565 int nr; 1566 int err = -ENOSPC; 1567 1568 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1569 huge = false; 1570 nr = huge ? HPAGE_PMD_NR : 1; 1571 1572 if (!shmem_inode_acct_block(inode, nr)) 1573 goto failed; 1574 1575 if (huge) 1576 folio = shmem_alloc_hugefolio(gfp, info, index); 1577 else 1578 folio = shmem_alloc_folio(gfp, info, index); 1579 if (folio) { 1580 __folio_set_locked(folio); 1581 __folio_set_swapbacked(folio); 1582 return folio; 1583 } 1584 1585 err = -ENOMEM; 1586 shmem_inode_unacct_blocks(inode, nr); 1587 failed: 1588 return ERR_PTR(err); 1589 } 1590 1591 /* 1592 * When a page is moved from swapcache to shmem filecache (either by the 1593 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1594 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1595 * ignorance of the mapping it belongs to. If that mapping has special 1596 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1597 * we may need to copy to a suitable page before moving to filecache. 1598 * 1599 * In a future release, this may well be extended to respect cpuset and 1600 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1601 * but for now it is a simple matter of zone. 1602 */ 1603 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1604 { 1605 return folio_zonenum(folio) > gfp_zone(gfp); 1606 } 1607 1608 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1609 struct shmem_inode_info *info, pgoff_t index) 1610 { 1611 struct folio *old, *new; 1612 struct address_space *swap_mapping; 1613 swp_entry_t entry; 1614 pgoff_t swap_index; 1615 int error; 1616 1617 old = *foliop; 1618 entry = folio_swap_entry(old); 1619 swap_index = swp_offset(entry); 1620 swap_mapping = swap_address_space(entry); 1621 1622 /* 1623 * We have arrived here because our zones are constrained, so don't 1624 * limit chance of success by further cpuset and node constraints. 1625 */ 1626 gfp &= ~GFP_CONSTRAINT_MASK; 1627 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1628 new = shmem_alloc_folio(gfp, info, index); 1629 if (!new) 1630 return -ENOMEM; 1631 1632 folio_get(new); 1633 folio_copy(new, old); 1634 flush_dcache_folio(new); 1635 1636 __folio_set_locked(new); 1637 __folio_set_swapbacked(new); 1638 folio_mark_uptodate(new); 1639 folio_set_swap_entry(new, entry); 1640 folio_set_swapcache(new); 1641 1642 /* 1643 * Our caller will very soon move newpage out of swapcache, but it's 1644 * a nice clean interface for us to replace oldpage by newpage there. 1645 */ 1646 xa_lock_irq(&swap_mapping->i_pages); 1647 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1648 if (!error) { 1649 mem_cgroup_migrate(old, new); 1650 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1651 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1652 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1653 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1654 } 1655 xa_unlock_irq(&swap_mapping->i_pages); 1656 1657 if (unlikely(error)) { 1658 /* 1659 * Is this possible? I think not, now that our callers check 1660 * both PageSwapCache and page_private after getting page lock; 1661 * but be defensive. Reverse old to newpage for clear and free. 1662 */ 1663 old = new; 1664 } else { 1665 folio_add_lru(new); 1666 *foliop = new; 1667 } 1668 1669 folio_clear_swapcache(old); 1670 old->private = NULL; 1671 1672 folio_unlock(old); 1673 folio_put_refs(old, 2); 1674 return error; 1675 } 1676 1677 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1678 struct folio *folio, swp_entry_t swap) 1679 { 1680 struct address_space *mapping = inode->i_mapping; 1681 struct shmem_inode_info *info = SHMEM_I(inode); 1682 swp_entry_t swapin_error; 1683 void *old; 1684 1685 swapin_error = make_swapin_error_entry(); 1686 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1687 swp_to_radix_entry(swap), 1688 swp_to_radix_entry(swapin_error), 0); 1689 if (old != swp_to_radix_entry(swap)) 1690 return; 1691 1692 folio_wait_writeback(folio); 1693 delete_from_swap_cache(folio); 1694 spin_lock_irq(&info->lock); 1695 /* 1696 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't 1697 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in 1698 * shmem_evict_inode. 1699 */ 1700 info->alloced--; 1701 info->swapped--; 1702 shmem_recalc_inode(inode); 1703 spin_unlock_irq(&info->lock); 1704 swap_free(swap); 1705 } 1706 1707 /* 1708 * Swap in the folio pointed to by *foliop. 1709 * Caller has to make sure that *foliop contains a valid swapped folio. 1710 * Returns 0 and the folio in foliop if success. On failure, returns the 1711 * error code and NULL in *foliop. 1712 */ 1713 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1714 struct folio **foliop, enum sgp_type sgp, 1715 gfp_t gfp, struct vm_area_struct *vma, 1716 vm_fault_t *fault_type) 1717 { 1718 struct address_space *mapping = inode->i_mapping; 1719 struct shmem_inode_info *info = SHMEM_I(inode); 1720 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1721 struct folio *folio = NULL; 1722 swp_entry_t swap; 1723 int error; 1724 1725 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1726 swap = radix_to_swp_entry(*foliop); 1727 *foliop = NULL; 1728 1729 if (is_swapin_error_entry(swap)) 1730 return -EIO; 1731 1732 /* Look it up and read it in.. */ 1733 folio = swap_cache_get_folio(swap, NULL, 0); 1734 if (!folio) { 1735 /* Or update major stats only when swapin succeeds?? */ 1736 if (fault_type) { 1737 *fault_type |= VM_FAULT_MAJOR; 1738 count_vm_event(PGMAJFAULT); 1739 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1740 } 1741 /* Here we actually start the io */ 1742 folio = shmem_swapin(swap, gfp, info, index); 1743 if (!folio) { 1744 error = -ENOMEM; 1745 goto failed; 1746 } 1747 } 1748 1749 /* We have to do this with folio locked to prevent races */ 1750 folio_lock(folio); 1751 if (!folio_test_swapcache(folio) || 1752 folio_swap_entry(folio).val != swap.val || 1753 !shmem_confirm_swap(mapping, index, swap)) { 1754 error = -EEXIST; 1755 goto unlock; 1756 } 1757 if (!folio_test_uptodate(folio)) { 1758 error = -EIO; 1759 goto failed; 1760 } 1761 folio_wait_writeback(folio); 1762 1763 /* 1764 * Some architectures may have to restore extra metadata to the 1765 * folio after reading from swap. 1766 */ 1767 arch_swap_restore(swap, folio); 1768 1769 if (shmem_should_replace_folio(folio, gfp)) { 1770 error = shmem_replace_folio(&folio, gfp, info, index); 1771 if (error) 1772 goto failed; 1773 } 1774 1775 error = shmem_add_to_page_cache(folio, mapping, index, 1776 swp_to_radix_entry(swap), gfp, 1777 charge_mm); 1778 if (error) 1779 goto failed; 1780 1781 spin_lock_irq(&info->lock); 1782 info->swapped--; 1783 shmem_recalc_inode(inode); 1784 spin_unlock_irq(&info->lock); 1785 1786 if (sgp == SGP_WRITE) 1787 folio_mark_accessed(folio); 1788 1789 delete_from_swap_cache(folio); 1790 folio_mark_dirty(folio); 1791 swap_free(swap); 1792 1793 *foliop = folio; 1794 return 0; 1795 failed: 1796 if (!shmem_confirm_swap(mapping, index, swap)) 1797 error = -EEXIST; 1798 if (error == -EIO) 1799 shmem_set_folio_swapin_error(inode, index, folio, swap); 1800 unlock: 1801 if (folio) { 1802 folio_unlock(folio); 1803 folio_put(folio); 1804 } 1805 1806 return error; 1807 } 1808 1809 /* 1810 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 1811 * 1812 * If we allocate a new one we do not mark it dirty. That's up to the 1813 * vm. If we swap it in we mark it dirty since we also free the swap 1814 * entry since a page cannot live in both the swap and page cache. 1815 * 1816 * vma, vmf, and fault_type are only supplied by shmem_fault: 1817 * otherwise they are NULL. 1818 */ 1819 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 1820 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 1821 struct vm_area_struct *vma, struct vm_fault *vmf, 1822 vm_fault_t *fault_type) 1823 { 1824 struct address_space *mapping = inode->i_mapping; 1825 struct shmem_inode_info *info = SHMEM_I(inode); 1826 struct shmem_sb_info *sbinfo; 1827 struct mm_struct *charge_mm; 1828 struct folio *folio; 1829 pgoff_t hindex; 1830 gfp_t huge_gfp; 1831 int error; 1832 int once = 0; 1833 int alloced = 0; 1834 1835 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1836 return -EFBIG; 1837 repeat: 1838 if (sgp <= SGP_CACHE && 1839 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1840 return -EINVAL; 1841 } 1842 1843 sbinfo = SHMEM_SB(inode->i_sb); 1844 charge_mm = vma ? vma->vm_mm : NULL; 1845 1846 folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0); 1847 if (folio && vma && userfaultfd_minor(vma)) { 1848 if (!xa_is_value(folio)) { 1849 folio_unlock(folio); 1850 folio_put(folio); 1851 } 1852 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1853 return 0; 1854 } 1855 1856 if (xa_is_value(folio)) { 1857 error = shmem_swapin_folio(inode, index, &folio, 1858 sgp, gfp, vma, fault_type); 1859 if (error == -EEXIST) 1860 goto repeat; 1861 1862 *foliop = folio; 1863 return error; 1864 } 1865 1866 if (folio) { 1867 if (sgp == SGP_WRITE) 1868 folio_mark_accessed(folio); 1869 if (folio_test_uptodate(folio)) 1870 goto out; 1871 /* fallocated folio */ 1872 if (sgp != SGP_READ) 1873 goto clear; 1874 folio_unlock(folio); 1875 folio_put(folio); 1876 } 1877 1878 /* 1879 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 1880 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 1881 */ 1882 *foliop = NULL; 1883 if (sgp == SGP_READ) 1884 return 0; 1885 if (sgp == SGP_NOALLOC) 1886 return -ENOENT; 1887 1888 /* 1889 * Fast cache lookup and swap lookup did not find it: allocate. 1890 */ 1891 1892 if (vma && userfaultfd_missing(vma)) { 1893 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1894 return 0; 1895 } 1896 1897 if (!shmem_is_huge(vma, inode, index, false)) 1898 goto alloc_nohuge; 1899 1900 huge_gfp = vma_thp_gfp_mask(vma); 1901 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1902 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true); 1903 if (IS_ERR(folio)) { 1904 alloc_nohuge: 1905 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false); 1906 } 1907 if (IS_ERR(folio)) { 1908 int retry = 5; 1909 1910 error = PTR_ERR(folio); 1911 folio = NULL; 1912 if (error != -ENOSPC) 1913 goto unlock; 1914 /* 1915 * Try to reclaim some space by splitting a large folio 1916 * beyond i_size on the filesystem. 1917 */ 1918 while (retry--) { 1919 int ret; 1920 1921 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1922 if (ret == SHRINK_STOP) 1923 break; 1924 if (ret) 1925 goto alloc_nohuge; 1926 } 1927 goto unlock; 1928 } 1929 1930 hindex = round_down(index, folio_nr_pages(folio)); 1931 1932 if (sgp == SGP_WRITE) 1933 __folio_set_referenced(folio); 1934 1935 error = shmem_add_to_page_cache(folio, mapping, hindex, 1936 NULL, gfp & GFP_RECLAIM_MASK, 1937 charge_mm); 1938 if (error) 1939 goto unacct; 1940 folio_add_lru(folio); 1941 1942 spin_lock_irq(&info->lock); 1943 info->alloced += folio_nr_pages(folio); 1944 inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio); 1945 shmem_recalc_inode(inode); 1946 spin_unlock_irq(&info->lock); 1947 alloced = true; 1948 1949 if (folio_test_pmd_mappable(folio) && 1950 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1951 folio_next_index(folio) - 1) { 1952 /* 1953 * Part of the large folio is beyond i_size: subject 1954 * to shrink under memory pressure. 1955 */ 1956 spin_lock(&sbinfo->shrinklist_lock); 1957 /* 1958 * _careful to defend against unlocked access to 1959 * ->shrink_list in shmem_unused_huge_shrink() 1960 */ 1961 if (list_empty_careful(&info->shrinklist)) { 1962 list_add_tail(&info->shrinklist, 1963 &sbinfo->shrinklist); 1964 sbinfo->shrinklist_len++; 1965 } 1966 spin_unlock(&sbinfo->shrinklist_lock); 1967 } 1968 1969 /* 1970 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 1971 */ 1972 if (sgp == SGP_FALLOC) 1973 sgp = SGP_WRITE; 1974 clear: 1975 /* 1976 * Let SGP_WRITE caller clear ends if write does not fill folio; 1977 * but SGP_FALLOC on a folio fallocated earlier must initialize 1978 * it now, lest undo on failure cancel our earlier guarantee. 1979 */ 1980 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 1981 long i, n = folio_nr_pages(folio); 1982 1983 for (i = 0; i < n; i++) 1984 clear_highpage(folio_page(folio, i)); 1985 flush_dcache_folio(folio); 1986 folio_mark_uptodate(folio); 1987 } 1988 1989 /* Perhaps the file has been truncated since we checked */ 1990 if (sgp <= SGP_CACHE && 1991 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1992 if (alloced) { 1993 folio_clear_dirty(folio); 1994 filemap_remove_folio(folio); 1995 spin_lock_irq(&info->lock); 1996 shmem_recalc_inode(inode); 1997 spin_unlock_irq(&info->lock); 1998 } 1999 error = -EINVAL; 2000 goto unlock; 2001 } 2002 out: 2003 *foliop = folio; 2004 return 0; 2005 2006 /* 2007 * Error recovery. 2008 */ 2009 unacct: 2010 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio)); 2011 2012 if (folio_test_large(folio)) { 2013 folio_unlock(folio); 2014 folio_put(folio); 2015 goto alloc_nohuge; 2016 } 2017 unlock: 2018 if (folio) { 2019 folio_unlock(folio); 2020 folio_put(folio); 2021 } 2022 if (error == -ENOSPC && !once++) { 2023 spin_lock_irq(&info->lock); 2024 shmem_recalc_inode(inode); 2025 spin_unlock_irq(&info->lock); 2026 goto repeat; 2027 } 2028 if (error == -EEXIST) 2029 goto repeat; 2030 return error; 2031 } 2032 2033 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2034 enum sgp_type sgp) 2035 { 2036 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2037 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 2038 } 2039 2040 /* 2041 * This is like autoremove_wake_function, but it removes the wait queue 2042 * entry unconditionally - even if something else had already woken the 2043 * target. 2044 */ 2045 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2046 { 2047 int ret = default_wake_function(wait, mode, sync, key); 2048 list_del_init(&wait->entry); 2049 return ret; 2050 } 2051 2052 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2053 { 2054 struct vm_area_struct *vma = vmf->vma; 2055 struct inode *inode = file_inode(vma->vm_file); 2056 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2057 struct folio *folio = NULL; 2058 int err; 2059 vm_fault_t ret = VM_FAULT_LOCKED; 2060 2061 /* 2062 * Trinity finds that probing a hole which tmpfs is punching can 2063 * prevent the hole-punch from ever completing: which in turn 2064 * locks writers out with its hold on i_rwsem. So refrain from 2065 * faulting pages into the hole while it's being punched. Although 2066 * shmem_undo_range() does remove the additions, it may be unable to 2067 * keep up, as each new page needs its own unmap_mapping_range() call, 2068 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2069 * 2070 * It does not matter if we sometimes reach this check just before the 2071 * hole-punch begins, so that one fault then races with the punch: 2072 * we just need to make racing faults a rare case. 2073 * 2074 * The implementation below would be much simpler if we just used a 2075 * standard mutex or completion: but we cannot take i_rwsem in fault, 2076 * and bloating every shmem inode for this unlikely case would be sad. 2077 */ 2078 if (unlikely(inode->i_private)) { 2079 struct shmem_falloc *shmem_falloc; 2080 2081 spin_lock(&inode->i_lock); 2082 shmem_falloc = inode->i_private; 2083 if (shmem_falloc && 2084 shmem_falloc->waitq && 2085 vmf->pgoff >= shmem_falloc->start && 2086 vmf->pgoff < shmem_falloc->next) { 2087 struct file *fpin; 2088 wait_queue_head_t *shmem_falloc_waitq; 2089 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2090 2091 ret = VM_FAULT_NOPAGE; 2092 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2093 if (fpin) 2094 ret = VM_FAULT_RETRY; 2095 2096 shmem_falloc_waitq = shmem_falloc->waitq; 2097 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2098 TASK_UNINTERRUPTIBLE); 2099 spin_unlock(&inode->i_lock); 2100 schedule(); 2101 2102 /* 2103 * shmem_falloc_waitq points into the shmem_fallocate() 2104 * stack of the hole-punching task: shmem_falloc_waitq 2105 * is usually invalid by the time we reach here, but 2106 * finish_wait() does not dereference it in that case; 2107 * though i_lock needed lest racing with wake_up_all(). 2108 */ 2109 spin_lock(&inode->i_lock); 2110 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2111 spin_unlock(&inode->i_lock); 2112 2113 if (fpin) 2114 fput(fpin); 2115 return ret; 2116 } 2117 spin_unlock(&inode->i_lock); 2118 } 2119 2120 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2121 gfp, vma, vmf, &ret); 2122 if (err) 2123 return vmf_error(err); 2124 if (folio) 2125 vmf->page = folio_file_page(folio, vmf->pgoff); 2126 return ret; 2127 } 2128 2129 unsigned long shmem_get_unmapped_area(struct file *file, 2130 unsigned long uaddr, unsigned long len, 2131 unsigned long pgoff, unsigned long flags) 2132 { 2133 unsigned long (*get_area)(struct file *, 2134 unsigned long, unsigned long, unsigned long, unsigned long); 2135 unsigned long addr; 2136 unsigned long offset; 2137 unsigned long inflated_len; 2138 unsigned long inflated_addr; 2139 unsigned long inflated_offset; 2140 2141 if (len > TASK_SIZE) 2142 return -ENOMEM; 2143 2144 get_area = current->mm->get_unmapped_area; 2145 addr = get_area(file, uaddr, len, pgoff, flags); 2146 2147 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2148 return addr; 2149 if (IS_ERR_VALUE(addr)) 2150 return addr; 2151 if (addr & ~PAGE_MASK) 2152 return addr; 2153 if (addr > TASK_SIZE - len) 2154 return addr; 2155 2156 if (shmem_huge == SHMEM_HUGE_DENY) 2157 return addr; 2158 if (len < HPAGE_PMD_SIZE) 2159 return addr; 2160 if (flags & MAP_FIXED) 2161 return addr; 2162 /* 2163 * Our priority is to support MAP_SHARED mapped hugely; 2164 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2165 * But if caller specified an address hint and we allocated area there 2166 * successfully, respect that as before. 2167 */ 2168 if (uaddr == addr) 2169 return addr; 2170 2171 if (shmem_huge != SHMEM_HUGE_FORCE) { 2172 struct super_block *sb; 2173 2174 if (file) { 2175 VM_BUG_ON(file->f_op != &shmem_file_operations); 2176 sb = file_inode(file)->i_sb; 2177 } else { 2178 /* 2179 * Called directly from mm/mmap.c, or drivers/char/mem.c 2180 * for "/dev/zero", to create a shared anonymous object. 2181 */ 2182 if (IS_ERR(shm_mnt)) 2183 return addr; 2184 sb = shm_mnt->mnt_sb; 2185 } 2186 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2187 return addr; 2188 } 2189 2190 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2191 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2192 return addr; 2193 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2194 return addr; 2195 2196 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2197 if (inflated_len > TASK_SIZE) 2198 return addr; 2199 if (inflated_len < len) 2200 return addr; 2201 2202 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2203 if (IS_ERR_VALUE(inflated_addr)) 2204 return addr; 2205 if (inflated_addr & ~PAGE_MASK) 2206 return addr; 2207 2208 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2209 inflated_addr += offset - inflated_offset; 2210 if (inflated_offset > offset) 2211 inflated_addr += HPAGE_PMD_SIZE; 2212 2213 if (inflated_addr > TASK_SIZE - len) 2214 return addr; 2215 return inflated_addr; 2216 } 2217 2218 #ifdef CONFIG_NUMA 2219 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2220 { 2221 struct inode *inode = file_inode(vma->vm_file); 2222 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2223 } 2224 2225 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2226 unsigned long addr) 2227 { 2228 struct inode *inode = file_inode(vma->vm_file); 2229 pgoff_t index; 2230 2231 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2232 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2233 } 2234 #endif 2235 2236 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2237 { 2238 struct inode *inode = file_inode(file); 2239 struct shmem_inode_info *info = SHMEM_I(inode); 2240 int retval = -ENOMEM; 2241 2242 /* 2243 * What serializes the accesses to info->flags? 2244 * ipc_lock_object() when called from shmctl_do_lock(), 2245 * no serialization needed when called from shm_destroy(). 2246 */ 2247 if (lock && !(info->flags & VM_LOCKED)) { 2248 if (!user_shm_lock(inode->i_size, ucounts)) 2249 goto out_nomem; 2250 info->flags |= VM_LOCKED; 2251 mapping_set_unevictable(file->f_mapping); 2252 } 2253 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2254 user_shm_unlock(inode->i_size, ucounts); 2255 info->flags &= ~VM_LOCKED; 2256 mapping_clear_unevictable(file->f_mapping); 2257 } 2258 retval = 0; 2259 2260 out_nomem: 2261 return retval; 2262 } 2263 2264 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2265 { 2266 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2267 int ret; 2268 2269 ret = seal_check_future_write(info->seals, vma); 2270 if (ret) 2271 return ret; 2272 2273 /* arm64 - allow memory tagging on RAM-based files */ 2274 vma->vm_flags |= VM_MTE_ALLOWED; 2275 2276 file_accessed(file); 2277 vma->vm_ops = &shmem_vm_ops; 2278 return 0; 2279 } 2280 2281 #ifdef CONFIG_TMPFS_XATTR 2282 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2283 2284 /* 2285 * chattr's fsflags are unrelated to extended attributes, 2286 * but tmpfs has chosen to enable them under the same config option. 2287 */ 2288 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2289 { 2290 unsigned int i_flags = 0; 2291 2292 if (fsflags & FS_NOATIME_FL) 2293 i_flags |= S_NOATIME; 2294 if (fsflags & FS_APPEND_FL) 2295 i_flags |= S_APPEND; 2296 if (fsflags & FS_IMMUTABLE_FL) 2297 i_flags |= S_IMMUTABLE; 2298 /* 2299 * But FS_NODUMP_FL does not require any action in i_flags. 2300 */ 2301 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2302 } 2303 #else 2304 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2305 { 2306 } 2307 #define shmem_initxattrs NULL 2308 #endif 2309 2310 static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir, 2311 umode_t mode, dev_t dev, unsigned long flags) 2312 { 2313 struct inode *inode; 2314 struct shmem_inode_info *info; 2315 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2316 ino_t ino; 2317 2318 if (shmem_reserve_inode(sb, &ino)) 2319 return NULL; 2320 2321 inode = new_inode(sb); 2322 if (inode) { 2323 inode->i_ino = ino; 2324 inode_init_owner(&init_user_ns, inode, dir, mode); 2325 inode->i_blocks = 0; 2326 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2327 inode->i_generation = get_random_u32(); 2328 info = SHMEM_I(inode); 2329 memset(info, 0, (char *)inode - (char *)info); 2330 spin_lock_init(&info->lock); 2331 atomic_set(&info->stop_eviction, 0); 2332 info->seals = F_SEAL_SEAL; 2333 info->flags = flags & VM_NORESERVE; 2334 info->i_crtime = inode->i_mtime; 2335 info->fsflags = (dir == NULL) ? 0 : 2336 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2337 if (info->fsflags) 2338 shmem_set_inode_flags(inode, info->fsflags); 2339 INIT_LIST_HEAD(&info->shrinklist); 2340 INIT_LIST_HEAD(&info->swaplist); 2341 simple_xattrs_init(&info->xattrs); 2342 cache_no_acl(inode); 2343 mapping_set_large_folios(inode->i_mapping); 2344 2345 switch (mode & S_IFMT) { 2346 default: 2347 inode->i_op = &shmem_special_inode_operations; 2348 init_special_inode(inode, mode, dev); 2349 break; 2350 case S_IFREG: 2351 inode->i_mapping->a_ops = &shmem_aops; 2352 inode->i_op = &shmem_inode_operations; 2353 inode->i_fop = &shmem_file_operations; 2354 mpol_shared_policy_init(&info->policy, 2355 shmem_get_sbmpol(sbinfo)); 2356 break; 2357 case S_IFDIR: 2358 inc_nlink(inode); 2359 /* Some things misbehave if size == 0 on a directory */ 2360 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2361 inode->i_op = &shmem_dir_inode_operations; 2362 inode->i_fop = &simple_dir_operations; 2363 break; 2364 case S_IFLNK: 2365 /* 2366 * Must not load anything in the rbtree, 2367 * mpol_free_shared_policy will not be called. 2368 */ 2369 mpol_shared_policy_init(&info->policy, NULL); 2370 break; 2371 } 2372 2373 lockdep_annotate_inode_mutex_key(inode); 2374 } else 2375 shmem_free_inode(sb); 2376 return inode; 2377 } 2378 2379 #ifdef CONFIG_USERFAULTFD 2380 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2381 pmd_t *dst_pmd, 2382 struct vm_area_struct *dst_vma, 2383 unsigned long dst_addr, 2384 unsigned long src_addr, 2385 bool zeropage, bool wp_copy, 2386 struct page **pagep) 2387 { 2388 struct inode *inode = file_inode(dst_vma->vm_file); 2389 struct shmem_inode_info *info = SHMEM_I(inode); 2390 struct address_space *mapping = inode->i_mapping; 2391 gfp_t gfp = mapping_gfp_mask(mapping); 2392 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2393 void *page_kaddr; 2394 struct folio *folio; 2395 int ret; 2396 pgoff_t max_off; 2397 2398 if (!shmem_inode_acct_block(inode, 1)) { 2399 /* 2400 * We may have got a page, returned -ENOENT triggering a retry, 2401 * and now we find ourselves with -ENOMEM. Release the page, to 2402 * avoid a BUG_ON in our caller. 2403 */ 2404 if (unlikely(*pagep)) { 2405 put_page(*pagep); 2406 *pagep = NULL; 2407 } 2408 return -ENOMEM; 2409 } 2410 2411 if (!*pagep) { 2412 ret = -ENOMEM; 2413 folio = shmem_alloc_folio(gfp, info, pgoff); 2414 if (!folio) 2415 goto out_unacct_blocks; 2416 2417 if (!zeropage) { /* COPY */ 2418 page_kaddr = kmap_local_folio(folio, 0); 2419 /* 2420 * The read mmap_lock is held here. Despite the 2421 * mmap_lock being read recursive a deadlock is still 2422 * possible if a writer has taken a lock. For example: 2423 * 2424 * process A thread 1 takes read lock on own mmap_lock 2425 * process A thread 2 calls mmap, blocks taking write lock 2426 * process B thread 1 takes page fault, read lock on own mmap lock 2427 * process B thread 2 calls mmap, blocks taking write lock 2428 * process A thread 1 blocks taking read lock on process B 2429 * process B thread 1 blocks taking read lock on process A 2430 * 2431 * Disable page faults to prevent potential deadlock 2432 * and retry the copy outside the mmap_lock. 2433 */ 2434 pagefault_disable(); 2435 ret = copy_from_user(page_kaddr, 2436 (const void __user *)src_addr, 2437 PAGE_SIZE); 2438 pagefault_enable(); 2439 kunmap_local(page_kaddr); 2440 2441 /* fallback to copy_from_user outside mmap_lock */ 2442 if (unlikely(ret)) { 2443 *pagep = &folio->page; 2444 ret = -ENOENT; 2445 /* don't free the page */ 2446 goto out_unacct_blocks; 2447 } 2448 2449 flush_dcache_folio(folio); 2450 } else { /* ZEROPAGE */ 2451 clear_user_highpage(&folio->page, dst_addr); 2452 } 2453 } else { 2454 folio = page_folio(*pagep); 2455 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2456 *pagep = NULL; 2457 } 2458 2459 VM_BUG_ON(folio_test_locked(folio)); 2460 VM_BUG_ON(folio_test_swapbacked(folio)); 2461 __folio_set_locked(folio); 2462 __folio_set_swapbacked(folio); 2463 __folio_mark_uptodate(folio); 2464 2465 ret = -EFAULT; 2466 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2467 if (unlikely(pgoff >= max_off)) 2468 goto out_release; 2469 2470 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, 2471 gfp & GFP_RECLAIM_MASK, dst_mm); 2472 if (ret) 2473 goto out_release; 2474 2475 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 2476 &folio->page, true, wp_copy); 2477 if (ret) 2478 goto out_delete_from_cache; 2479 2480 spin_lock_irq(&info->lock); 2481 info->alloced++; 2482 inode->i_blocks += BLOCKS_PER_PAGE; 2483 shmem_recalc_inode(inode); 2484 spin_unlock_irq(&info->lock); 2485 2486 folio_unlock(folio); 2487 return 0; 2488 out_delete_from_cache: 2489 filemap_remove_folio(folio); 2490 out_release: 2491 folio_unlock(folio); 2492 folio_put(folio); 2493 out_unacct_blocks: 2494 shmem_inode_unacct_blocks(inode, 1); 2495 return ret; 2496 } 2497 #endif /* CONFIG_USERFAULTFD */ 2498 2499 #ifdef CONFIG_TMPFS 2500 static const struct inode_operations shmem_symlink_inode_operations; 2501 static const struct inode_operations shmem_short_symlink_operations; 2502 2503 static int 2504 shmem_write_begin(struct file *file, struct address_space *mapping, 2505 loff_t pos, unsigned len, 2506 struct page **pagep, void **fsdata) 2507 { 2508 struct inode *inode = mapping->host; 2509 struct shmem_inode_info *info = SHMEM_I(inode); 2510 pgoff_t index = pos >> PAGE_SHIFT; 2511 struct folio *folio; 2512 int ret = 0; 2513 2514 /* i_rwsem is held by caller */ 2515 if (unlikely(info->seals & (F_SEAL_GROW | 2516 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2517 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2518 return -EPERM; 2519 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2520 return -EPERM; 2521 } 2522 2523 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 2524 2525 if (ret) 2526 return ret; 2527 2528 *pagep = folio_file_page(folio, index); 2529 if (PageHWPoison(*pagep)) { 2530 folio_unlock(folio); 2531 folio_put(folio); 2532 *pagep = NULL; 2533 return -EIO; 2534 } 2535 2536 return 0; 2537 } 2538 2539 static int 2540 shmem_write_end(struct file *file, struct address_space *mapping, 2541 loff_t pos, unsigned len, unsigned copied, 2542 struct page *page, void *fsdata) 2543 { 2544 struct inode *inode = mapping->host; 2545 2546 if (pos + copied > inode->i_size) 2547 i_size_write(inode, pos + copied); 2548 2549 if (!PageUptodate(page)) { 2550 struct page *head = compound_head(page); 2551 if (PageTransCompound(page)) { 2552 int i; 2553 2554 for (i = 0; i < HPAGE_PMD_NR; i++) { 2555 if (head + i == page) 2556 continue; 2557 clear_highpage(head + i); 2558 flush_dcache_page(head + i); 2559 } 2560 } 2561 if (copied < PAGE_SIZE) { 2562 unsigned from = pos & (PAGE_SIZE - 1); 2563 zero_user_segments(page, 0, from, 2564 from + copied, PAGE_SIZE); 2565 } 2566 SetPageUptodate(head); 2567 } 2568 set_page_dirty(page); 2569 unlock_page(page); 2570 put_page(page); 2571 2572 return copied; 2573 } 2574 2575 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2576 { 2577 struct file *file = iocb->ki_filp; 2578 struct inode *inode = file_inode(file); 2579 struct address_space *mapping = inode->i_mapping; 2580 pgoff_t index; 2581 unsigned long offset; 2582 int error = 0; 2583 ssize_t retval = 0; 2584 loff_t *ppos = &iocb->ki_pos; 2585 2586 index = *ppos >> PAGE_SHIFT; 2587 offset = *ppos & ~PAGE_MASK; 2588 2589 for (;;) { 2590 struct folio *folio = NULL; 2591 struct page *page = NULL; 2592 pgoff_t end_index; 2593 unsigned long nr, ret; 2594 loff_t i_size = i_size_read(inode); 2595 2596 end_index = i_size >> PAGE_SHIFT; 2597 if (index > end_index) 2598 break; 2599 if (index == end_index) { 2600 nr = i_size & ~PAGE_MASK; 2601 if (nr <= offset) 2602 break; 2603 } 2604 2605 error = shmem_get_folio(inode, index, &folio, SGP_READ); 2606 if (error) { 2607 if (error == -EINVAL) 2608 error = 0; 2609 break; 2610 } 2611 if (folio) { 2612 folio_unlock(folio); 2613 2614 page = folio_file_page(folio, index); 2615 if (PageHWPoison(page)) { 2616 folio_put(folio); 2617 error = -EIO; 2618 break; 2619 } 2620 } 2621 2622 /* 2623 * We must evaluate after, since reads (unlike writes) 2624 * are called without i_rwsem protection against truncate 2625 */ 2626 nr = PAGE_SIZE; 2627 i_size = i_size_read(inode); 2628 end_index = i_size >> PAGE_SHIFT; 2629 if (index == end_index) { 2630 nr = i_size & ~PAGE_MASK; 2631 if (nr <= offset) { 2632 if (folio) 2633 folio_put(folio); 2634 break; 2635 } 2636 } 2637 nr -= offset; 2638 2639 if (folio) { 2640 /* 2641 * If users can be writing to this page using arbitrary 2642 * virtual addresses, take care about potential aliasing 2643 * before reading the page on the kernel side. 2644 */ 2645 if (mapping_writably_mapped(mapping)) 2646 flush_dcache_page(page); 2647 /* 2648 * Mark the page accessed if we read the beginning. 2649 */ 2650 if (!offset) 2651 folio_mark_accessed(folio); 2652 /* 2653 * Ok, we have the page, and it's up-to-date, so 2654 * now we can copy it to user space... 2655 */ 2656 ret = copy_page_to_iter(page, offset, nr, to); 2657 folio_put(folio); 2658 2659 } else if (user_backed_iter(to)) { 2660 /* 2661 * Copy to user tends to be so well optimized, but 2662 * clear_user() not so much, that it is noticeably 2663 * faster to copy the zero page instead of clearing. 2664 */ 2665 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2666 } else { 2667 /* 2668 * But submitting the same page twice in a row to 2669 * splice() - or others? - can result in confusion: 2670 * so don't attempt that optimization on pipes etc. 2671 */ 2672 ret = iov_iter_zero(nr, to); 2673 } 2674 2675 retval += ret; 2676 offset += ret; 2677 index += offset >> PAGE_SHIFT; 2678 offset &= ~PAGE_MASK; 2679 2680 if (!iov_iter_count(to)) 2681 break; 2682 if (ret < nr) { 2683 error = -EFAULT; 2684 break; 2685 } 2686 cond_resched(); 2687 } 2688 2689 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2690 file_accessed(file); 2691 return retval ? retval : error; 2692 } 2693 2694 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2695 { 2696 struct address_space *mapping = file->f_mapping; 2697 struct inode *inode = mapping->host; 2698 2699 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2700 return generic_file_llseek_size(file, offset, whence, 2701 MAX_LFS_FILESIZE, i_size_read(inode)); 2702 if (offset < 0) 2703 return -ENXIO; 2704 2705 inode_lock(inode); 2706 /* We're holding i_rwsem so we can access i_size directly */ 2707 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2708 if (offset >= 0) 2709 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2710 inode_unlock(inode); 2711 return offset; 2712 } 2713 2714 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2715 loff_t len) 2716 { 2717 struct inode *inode = file_inode(file); 2718 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2719 struct shmem_inode_info *info = SHMEM_I(inode); 2720 struct shmem_falloc shmem_falloc; 2721 pgoff_t start, index, end, undo_fallocend; 2722 int error; 2723 2724 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2725 return -EOPNOTSUPP; 2726 2727 inode_lock(inode); 2728 2729 if (mode & FALLOC_FL_PUNCH_HOLE) { 2730 struct address_space *mapping = file->f_mapping; 2731 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2732 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2733 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2734 2735 /* protected by i_rwsem */ 2736 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2737 error = -EPERM; 2738 goto out; 2739 } 2740 2741 shmem_falloc.waitq = &shmem_falloc_waitq; 2742 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2743 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2744 spin_lock(&inode->i_lock); 2745 inode->i_private = &shmem_falloc; 2746 spin_unlock(&inode->i_lock); 2747 2748 if ((u64)unmap_end > (u64)unmap_start) 2749 unmap_mapping_range(mapping, unmap_start, 2750 1 + unmap_end - unmap_start, 0); 2751 shmem_truncate_range(inode, offset, offset + len - 1); 2752 /* No need to unmap again: hole-punching leaves COWed pages */ 2753 2754 spin_lock(&inode->i_lock); 2755 inode->i_private = NULL; 2756 wake_up_all(&shmem_falloc_waitq); 2757 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2758 spin_unlock(&inode->i_lock); 2759 error = 0; 2760 goto out; 2761 } 2762 2763 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2764 error = inode_newsize_ok(inode, offset + len); 2765 if (error) 2766 goto out; 2767 2768 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2769 error = -EPERM; 2770 goto out; 2771 } 2772 2773 start = offset >> PAGE_SHIFT; 2774 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2775 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2776 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2777 error = -ENOSPC; 2778 goto out; 2779 } 2780 2781 shmem_falloc.waitq = NULL; 2782 shmem_falloc.start = start; 2783 shmem_falloc.next = start; 2784 shmem_falloc.nr_falloced = 0; 2785 shmem_falloc.nr_unswapped = 0; 2786 spin_lock(&inode->i_lock); 2787 inode->i_private = &shmem_falloc; 2788 spin_unlock(&inode->i_lock); 2789 2790 /* 2791 * info->fallocend is only relevant when huge pages might be 2792 * involved: to prevent split_huge_page() freeing fallocated 2793 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 2794 */ 2795 undo_fallocend = info->fallocend; 2796 if (info->fallocend < end) 2797 info->fallocend = end; 2798 2799 for (index = start; index < end; ) { 2800 struct folio *folio; 2801 2802 /* 2803 * Good, the fallocate(2) manpage permits EINTR: we may have 2804 * been interrupted because we are using up too much memory. 2805 */ 2806 if (signal_pending(current)) 2807 error = -EINTR; 2808 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2809 error = -ENOMEM; 2810 else 2811 error = shmem_get_folio(inode, index, &folio, 2812 SGP_FALLOC); 2813 if (error) { 2814 info->fallocend = undo_fallocend; 2815 /* Remove the !uptodate folios we added */ 2816 if (index > start) { 2817 shmem_undo_range(inode, 2818 (loff_t)start << PAGE_SHIFT, 2819 ((loff_t)index << PAGE_SHIFT) - 1, true); 2820 } 2821 goto undone; 2822 } 2823 2824 /* 2825 * Here is a more important optimization than it appears: 2826 * a second SGP_FALLOC on the same large folio will clear it, 2827 * making it uptodate and un-undoable if we fail later. 2828 */ 2829 index = folio_next_index(folio); 2830 /* Beware 32-bit wraparound */ 2831 if (!index) 2832 index--; 2833 2834 /* 2835 * Inform shmem_writepage() how far we have reached. 2836 * No need for lock or barrier: we have the page lock. 2837 */ 2838 if (!folio_test_uptodate(folio)) 2839 shmem_falloc.nr_falloced += index - shmem_falloc.next; 2840 shmem_falloc.next = index; 2841 2842 /* 2843 * If !uptodate, leave it that way so that freeable folios 2844 * can be recognized if we need to rollback on error later. 2845 * But mark it dirty so that memory pressure will swap rather 2846 * than free the folios we are allocating (and SGP_CACHE folios 2847 * might still be clean: we now need to mark those dirty too). 2848 */ 2849 folio_mark_dirty(folio); 2850 folio_unlock(folio); 2851 folio_put(folio); 2852 cond_resched(); 2853 } 2854 2855 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2856 i_size_write(inode, offset + len); 2857 undone: 2858 spin_lock(&inode->i_lock); 2859 inode->i_private = NULL; 2860 spin_unlock(&inode->i_lock); 2861 out: 2862 if (!error) 2863 file_modified(file); 2864 inode_unlock(inode); 2865 return error; 2866 } 2867 2868 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2869 { 2870 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2871 2872 buf->f_type = TMPFS_MAGIC; 2873 buf->f_bsize = PAGE_SIZE; 2874 buf->f_namelen = NAME_MAX; 2875 if (sbinfo->max_blocks) { 2876 buf->f_blocks = sbinfo->max_blocks; 2877 buf->f_bavail = 2878 buf->f_bfree = sbinfo->max_blocks - 2879 percpu_counter_sum(&sbinfo->used_blocks); 2880 } 2881 if (sbinfo->max_inodes) { 2882 buf->f_files = sbinfo->max_inodes; 2883 buf->f_ffree = sbinfo->free_inodes; 2884 } 2885 /* else leave those fields 0 like simple_statfs */ 2886 2887 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 2888 2889 return 0; 2890 } 2891 2892 /* 2893 * File creation. Allocate an inode, and we're done.. 2894 */ 2895 static int 2896 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2897 struct dentry *dentry, umode_t mode, dev_t dev) 2898 { 2899 struct inode *inode; 2900 int error = -ENOSPC; 2901 2902 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2903 if (inode) { 2904 error = simple_acl_create(dir, inode); 2905 if (error) 2906 goto out_iput; 2907 error = security_inode_init_security(inode, dir, 2908 &dentry->d_name, 2909 shmem_initxattrs, NULL); 2910 if (error && error != -EOPNOTSUPP) 2911 goto out_iput; 2912 2913 error = 0; 2914 dir->i_size += BOGO_DIRENT_SIZE; 2915 dir->i_ctime = dir->i_mtime = current_time(dir); 2916 inode_inc_iversion(dir); 2917 d_instantiate(dentry, inode); 2918 dget(dentry); /* Extra count - pin the dentry in core */ 2919 } 2920 return error; 2921 out_iput: 2922 iput(inode); 2923 return error; 2924 } 2925 2926 static int 2927 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 2928 struct file *file, umode_t mode) 2929 { 2930 struct inode *inode; 2931 int error = -ENOSPC; 2932 2933 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2934 if (inode) { 2935 error = security_inode_init_security(inode, dir, 2936 NULL, 2937 shmem_initxattrs, NULL); 2938 if (error && error != -EOPNOTSUPP) 2939 goto out_iput; 2940 error = simple_acl_create(dir, inode); 2941 if (error) 2942 goto out_iput; 2943 d_tmpfile(file, inode); 2944 } 2945 return finish_open_simple(file, error); 2946 out_iput: 2947 iput(inode); 2948 return error; 2949 } 2950 2951 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2952 struct dentry *dentry, umode_t mode) 2953 { 2954 int error; 2955 2956 if ((error = shmem_mknod(&init_user_ns, dir, dentry, 2957 mode | S_IFDIR, 0))) 2958 return error; 2959 inc_nlink(dir); 2960 return 0; 2961 } 2962 2963 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, 2964 struct dentry *dentry, umode_t mode, bool excl) 2965 { 2966 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 2967 } 2968 2969 /* 2970 * Link a file.. 2971 */ 2972 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2973 { 2974 struct inode *inode = d_inode(old_dentry); 2975 int ret = 0; 2976 2977 /* 2978 * No ordinary (disk based) filesystem counts links as inodes; 2979 * but each new link needs a new dentry, pinning lowmem, and 2980 * tmpfs dentries cannot be pruned until they are unlinked. 2981 * But if an O_TMPFILE file is linked into the tmpfs, the 2982 * first link must skip that, to get the accounting right. 2983 */ 2984 if (inode->i_nlink) { 2985 ret = shmem_reserve_inode(inode->i_sb, NULL); 2986 if (ret) 2987 goto out; 2988 } 2989 2990 dir->i_size += BOGO_DIRENT_SIZE; 2991 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2992 inode_inc_iversion(dir); 2993 inc_nlink(inode); 2994 ihold(inode); /* New dentry reference */ 2995 dget(dentry); /* Extra pinning count for the created dentry */ 2996 d_instantiate(dentry, inode); 2997 out: 2998 return ret; 2999 } 3000 3001 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3002 { 3003 struct inode *inode = d_inode(dentry); 3004 3005 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3006 shmem_free_inode(inode->i_sb); 3007 3008 dir->i_size -= BOGO_DIRENT_SIZE; 3009 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3010 inode_inc_iversion(dir); 3011 drop_nlink(inode); 3012 dput(dentry); /* Undo the count from "create" - this does all the work */ 3013 return 0; 3014 } 3015 3016 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3017 { 3018 if (!simple_empty(dentry)) 3019 return -ENOTEMPTY; 3020 3021 drop_nlink(d_inode(dentry)); 3022 drop_nlink(dir); 3023 return shmem_unlink(dir, dentry); 3024 } 3025 3026 static int shmem_whiteout(struct user_namespace *mnt_userns, 3027 struct inode *old_dir, struct dentry *old_dentry) 3028 { 3029 struct dentry *whiteout; 3030 int error; 3031 3032 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3033 if (!whiteout) 3034 return -ENOMEM; 3035 3036 error = shmem_mknod(&init_user_ns, old_dir, whiteout, 3037 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3038 dput(whiteout); 3039 if (error) 3040 return error; 3041 3042 /* 3043 * Cheat and hash the whiteout while the old dentry is still in 3044 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3045 * 3046 * d_lookup() will consistently find one of them at this point, 3047 * not sure which one, but that isn't even important. 3048 */ 3049 d_rehash(whiteout); 3050 return 0; 3051 } 3052 3053 /* 3054 * The VFS layer already does all the dentry stuff for rename, 3055 * we just have to decrement the usage count for the target if 3056 * it exists so that the VFS layer correctly free's it when it 3057 * gets overwritten. 3058 */ 3059 static int shmem_rename2(struct user_namespace *mnt_userns, 3060 struct inode *old_dir, struct dentry *old_dentry, 3061 struct inode *new_dir, struct dentry *new_dentry, 3062 unsigned int flags) 3063 { 3064 struct inode *inode = d_inode(old_dentry); 3065 int they_are_dirs = S_ISDIR(inode->i_mode); 3066 3067 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3068 return -EINVAL; 3069 3070 if (flags & RENAME_EXCHANGE) 3071 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 3072 3073 if (!simple_empty(new_dentry)) 3074 return -ENOTEMPTY; 3075 3076 if (flags & RENAME_WHITEOUT) { 3077 int error; 3078 3079 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); 3080 if (error) 3081 return error; 3082 } 3083 3084 if (d_really_is_positive(new_dentry)) { 3085 (void) shmem_unlink(new_dir, new_dentry); 3086 if (they_are_dirs) { 3087 drop_nlink(d_inode(new_dentry)); 3088 drop_nlink(old_dir); 3089 } 3090 } else if (they_are_dirs) { 3091 drop_nlink(old_dir); 3092 inc_nlink(new_dir); 3093 } 3094 3095 old_dir->i_size -= BOGO_DIRENT_SIZE; 3096 new_dir->i_size += BOGO_DIRENT_SIZE; 3097 old_dir->i_ctime = old_dir->i_mtime = 3098 new_dir->i_ctime = new_dir->i_mtime = 3099 inode->i_ctime = current_time(old_dir); 3100 inode_inc_iversion(old_dir); 3101 inode_inc_iversion(new_dir); 3102 return 0; 3103 } 3104 3105 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, 3106 struct dentry *dentry, const char *symname) 3107 { 3108 int error; 3109 int len; 3110 struct inode *inode; 3111 struct folio *folio; 3112 3113 len = strlen(symname) + 1; 3114 if (len > PAGE_SIZE) 3115 return -ENAMETOOLONG; 3116 3117 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3118 VM_NORESERVE); 3119 if (!inode) 3120 return -ENOSPC; 3121 3122 error = security_inode_init_security(inode, dir, &dentry->d_name, 3123 shmem_initxattrs, NULL); 3124 if (error && error != -EOPNOTSUPP) { 3125 iput(inode); 3126 return error; 3127 } 3128 3129 inode->i_size = len-1; 3130 if (len <= SHORT_SYMLINK_LEN) { 3131 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3132 if (!inode->i_link) { 3133 iput(inode); 3134 return -ENOMEM; 3135 } 3136 inode->i_op = &shmem_short_symlink_operations; 3137 } else { 3138 inode_nohighmem(inode); 3139 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3140 if (error) { 3141 iput(inode); 3142 return error; 3143 } 3144 inode->i_mapping->a_ops = &shmem_aops; 3145 inode->i_op = &shmem_symlink_inode_operations; 3146 memcpy(folio_address(folio), symname, len); 3147 folio_mark_uptodate(folio); 3148 folio_mark_dirty(folio); 3149 folio_unlock(folio); 3150 folio_put(folio); 3151 } 3152 dir->i_size += BOGO_DIRENT_SIZE; 3153 dir->i_ctime = dir->i_mtime = current_time(dir); 3154 inode_inc_iversion(dir); 3155 d_instantiate(dentry, inode); 3156 dget(dentry); 3157 return 0; 3158 } 3159 3160 static void shmem_put_link(void *arg) 3161 { 3162 folio_mark_accessed(arg); 3163 folio_put(arg); 3164 } 3165 3166 static const char *shmem_get_link(struct dentry *dentry, 3167 struct inode *inode, 3168 struct delayed_call *done) 3169 { 3170 struct folio *folio = NULL; 3171 int error; 3172 3173 if (!dentry) { 3174 folio = filemap_get_folio(inode->i_mapping, 0); 3175 if (!folio) 3176 return ERR_PTR(-ECHILD); 3177 if (PageHWPoison(folio_page(folio, 0)) || 3178 !folio_test_uptodate(folio)) { 3179 folio_put(folio); 3180 return ERR_PTR(-ECHILD); 3181 } 3182 } else { 3183 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3184 if (error) 3185 return ERR_PTR(error); 3186 if (!folio) 3187 return ERR_PTR(-ECHILD); 3188 if (PageHWPoison(folio_page(folio, 0))) { 3189 folio_unlock(folio); 3190 folio_put(folio); 3191 return ERR_PTR(-ECHILD); 3192 } 3193 folio_unlock(folio); 3194 } 3195 set_delayed_call(done, shmem_put_link, folio); 3196 return folio_address(folio); 3197 } 3198 3199 #ifdef CONFIG_TMPFS_XATTR 3200 3201 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3202 { 3203 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3204 3205 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3206 3207 return 0; 3208 } 3209 3210 static int shmem_fileattr_set(struct user_namespace *mnt_userns, 3211 struct dentry *dentry, struct fileattr *fa) 3212 { 3213 struct inode *inode = d_inode(dentry); 3214 struct shmem_inode_info *info = SHMEM_I(inode); 3215 3216 if (fileattr_has_fsx(fa)) 3217 return -EOPNOTSUPP; 3218 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3219 return -EOPNOTSUPP; 3220 3221 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3222 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3223 3224 shmem_set_inode_flags(inode, info->fsflags); 3225 inode->i_ctime = current_time(inode); 3226 inode_inc_iversion(inode); 3227 return 0; 3228 } 3229 3230 /* 3231 * Superblocks without xattr inode operations may get some security.* xattr 3232 * support from the LSM "for free". As soon as we have any other xattrs 3233 * like ACLs, we also need to implement the security.* handlers at 3234 * filesystem level, though. 3235 */ 3236 3237 /* 3238 * Callback for security_inode_init_security() for acquiring xattrs. 3239 */ 3240 static int shmem_initxattrs(struct inode *inode, 3241 const struct xattr *xattr_array, 3242 void *fs_info) 3243 { 3244 struct shmem_inode_info *info = SHMEM_I(inode); 3245 const struct xattr *xattr; 3246 struct simple_xattr *new_xattr; 3247 size_t len; 3248 3249 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3250 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3251 if (!new_xattr) 3252 return -ENOMEM; 3253 3254 len = strlen(xattr->name) + 1; 3255 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3256 GFP_KERNEL); 3257 if (!new_xattr->name) { 3258 kvfree(new_xattr); 3259 return -ENOMEM; 3260 } 3261 3262 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3263 XATTR_SECURITY_PREFIX_LEN); 3264 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3265 xattr->name, len); 3266 3267 simple_xattr_list_add(&info->xattrs, new_xattr); 3268 } 3269 3270 return 0; 3271 } 3272 3273 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3274 struct dentry *unused, struct inode *inode, 3275 const char *name, void *buffer, size_t size) 3276 { 3277 struct shmem_inode_info *info = SHMEM_I(inode); 3278 3279 name = xattr_full_name(handler, name); 3280 return simple_xattr_get(&info->xattrs, name, buffer, size); 3281 } 3282 3283 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3284 struct user_namespace *mnt_userns, 3285 struct dentry *unused, struct inode *inode, 3286 const char *name, const void *value, 3287 size_t size, int flags) 3288 { 3289 struct shmem_inode_info *info = SHMEM_I(inode); 3290 int err; 3291 3292 name = xattr_full_name(handler, name); 3293 err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3294 if (!err) { 3295 inode->i_ctime = current_time(inode); 3296 inode_inc_iversion(inode); 3297 } 3298 return err; 3299 } 3300 3301 static const struct xattr_handler shmem_security_xattr_handler = { 3302 .prefix = XATTR_SECURITY_PREFIX, 3303 .get = shmem_xattr_handler_get, 3304 .set = shmem_xattr_handler_set, 3305 }; 3306 3307 static const struct xattr_handler shmem_trusted_xattr_handler = { 3308 .prefix = XATTR_TRUSTED_PREFIX, 3309 .get = shmem_xattr_handler_get, 3310 .set = shmem_xattr_handler_set, 3311 }; 3312 3313 static const struct xattr_handler *shmem_xattr_handlers[] = { 3314 #ifdef CONFIG_TMPFS_POSIX_ACL 3315 &posix_acl_access_xattr_handler, 3316 &posix_acl_default_xattr_handler, 3317 #endif 3318 &shmem_security_xattr_handler, 3319 &shmem_trusted_xattr_handler, 3320 NULL 3321 }; 3322 3323 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3324 { 3325 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3326 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3327 } 3328 #endif /* CONFIG_TMPFS_XATTR */ 3329 3330 static const struct inode_operations shmem_short_symlink_operations = { 3331 .getattr = shmem_getattr, 3332 .get_link = simple_get_link, 3333 #ifdef CONFIG_TMPFS_XATTR 3334 .listxattr = shmem_listxattr, 3335 #endif 3336 }; 3337 3338 static const struct inode_operations shmem_symlink_inode_operations = { 3339 .getattr = shmem_getattr, 3340 .get_link = shmem_get_link, 3341 #ifdef CONFIG_TMPFS_XATTR 3342 .listxattr = shmem_listxattr, 3343 #endif 3344 }; 3345 3346 static struct dentry *shmem_get_parent(struct dentry *child) 3347 { 3348 return ERR_PTR(-ESTALE); 3349 } 3350 3351 static int shmem_match(struct inode *ino, void *vfh) 3352 { 3353 __u32 *fh = vfh; 3354 __u64 inum = fh[2]; 3355 inum = (inum << 32) | fh[1]; 3356 return ino->i_ino == inum && fh[0] == ino->i_generation; 3357 } 3358 3359 /* Find any alias of inode, but prefer a hashed alias */ 3360 static struct dentry *shmem_find_alias(struct inode *inode) 3361 { 3362 struct dentry *alias = d_find_alias(inode); 3363 3364 return alias ?: d_find_any_alias(inode); 3365 } 3366 3367 3368 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3369 struct fid *fid, int fh_len, int fh_type) 3370 { 3371 struct inode *inode; 3372 struct dentry *dentry = NULL; 3373 u64 inum; 3374 3375 if (fh_len < 3) 3376 return NULL; 3377 3378 inum = fid->raw[2]; 3379 inum = (inum << 32) | fid->raw[1]; 3380 3381 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3382 shmem_match, fid->raw); 3383 if (inode) { 3384 dentry = shmem_find_alias(inode); 3385 iput(inode); 3386 } 3387 3388 return dentry; 3389 } 3390 3391 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3392 struct inode *parent) 3393 { 3394 if (*len < 3) { 3395 *len = 3; 3396 return FILEID_INVALID; 3397 } 3398 3399 if (inode_unhashed(inode)) { 3400 /* Unfortunately insert_inode_hash is not idempotent, 3401 * so as we hash inodes here rather than at creation 3402 * time, we need a lock to ensure we only try 3403 * to do it once 3404 */ 3405 static DEFINE_SPINLOCK(lock); 3406 spin_lock(&lock); 3407 if (inode_unhashed(inode)) 3408 __insert_inode_hash(inode, 3409 inode->i_ino + inode->i_generation); 3410 spin_unlock(&lock); 3411 } 3412 3413 fh[0] = inode->i_generation; 3414 fh[1] = inode->i_ino; 3415 fh[2] = ((__u64)inode->i_ino) >> 32; 3416 3417 *len = 3; 3418 return 1; 3419 } 3420 3421 static const struct export_operations shmem_export_ops = { 3422 .get_parent = shmem_get_parent, 3423 .encode_fh = shmem_encode_fh, 3424 .fh_to_dentry = shmem_fh_to_dentry, 3425 }; 3426 3427 enum shmem_param { 3428 Opt_gid, 3429 Opt_huge, 3430 Opt_mode, 3431 Opt_mpol, 3432 Opt_nr_blocks, 3433 Opt_nr_inodes, 3434 Opt_size, 3435 Opt_uid, 3436 Opt_inode32, 3437 Opt_inode64, 3438 }; 3439 3440 static const struct constant_table shmem_param_enums_huge[] = { 3441 {"never", SHMEM_HUGE_NEVER }, 3442 {"always", SHMEM_HUGE_ALWAYS }, 3443 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3444 {"advise", SHMEM_HUGE_ADVISE }, 3445 {} 3446 }; 3447 3448 const struct fs_parameter_spec shmem_fs_parameters[] = { 3449 fsparam_u32 ("gid", Opt_gid), 3450 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3451 fsparam_u32oct("mode", Opt_mode), 3452 fsparam_string("mpol", Opt_mpol), 3453 fsparam_string("nr_blocks", Opt_nr_blocks), 3454 fsparam_string("nr_inodes", Opt_nr_inodes), 3455 fsparam_string("size", Opt_size), 3456 fsparam_u32 ("uid", Opt_uid), 3457 fsparam_flag ("inode32", Opt_inode32), 3458 fsparam_flag ("inode64", Opt_inode64), 3459 {} 3460 }; 3461 3462 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3463 { 3464 struct shmem_options *ctx = fc->fs_private; 3465 struct fs_parse_result result; 3466 unsigned long long size; 3467 char *rest; 3468 int opt; 3469 3470 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3471 if (opt < 0) 3472 return opt; 3473 3474 switch (opt) { 3475 case Opt_size: 3476 size = memparse(param->string, &rest); 3477 if (*rest == '%') { 3478 size <<= PAGE_SHIFT; 3479 size *= totalram_pages(); 3480 do_div(size, 100); 3481 rest++; 3482 } 3483 if (*rest) 3484 goto bad_value; 3485 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3486 ctx->seen |= SHMEM_SEEN_BLOCKS; 3487 break; 3488 case Opt_nr_blocks: 3489 ctx->blocks = memparse(param->string, &rest); 3490 if (*rest || ctx->blocks > S64_MAX) 3491 goto bad_value; 3492 ctx->seen |= SHMEM_SEEN_BLOCKS; 3493 break; 3494 case Opt_nr_inodes: 3495 ctx->inodes = memparse(param->string, &rest); 3496 if (*rest) 3497 goto bad_value; 3498 ctx->seen |= SHMEM_SEEN_INODES; 3499 break; 3500 case Opt_mode: 3501 ctx->mode = result.uint_32 & 07777; 3502 break; 3503 case Opt_uid: 3504 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3505 if (!uid_valid(ctx->uid)) 3506 goto bad_value; 3507 break; 3508 case Opt_gid: 3509 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3510 if (!gid_valid(ctx->gid)) 3511 goto bad_value; 3512 break; 3513 case Opt_huge: 3514 ctx->huge = result.uint_32; 3515 if (ctx->huge != SHMEM_HUGE_NEVER && 3516 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3517 has_transparent_hugepage())) 3518 goto unsupported_parameter; 3519 ctx->seen |= SHMEM_SEEN_HUGE; 3520 break; 3521 case Opt_mpol: 3522 if (IS_ENABLED(CONFIG_NUMA)) { 3523 mpol_put(ctx->mpol); 3524 ctx->mpol = NULL; 3525 if (mpol_parse_str(param->string, &ctx->mpol)) 3526 goto bad_value; 3527 break; 3528 } 3529 goto unsupported_parameter; 3530 case Opt_inode32: 3531 ctx->full_inums = false; 3532 ctx->seen |= SHMEM_SEEN_INUMS; 3533 break; 3534 case Opt_inode64: 3535 if (sizeof(ino_t) < 8) { 3536 return invalfc(fc, 3537 "Cannot use inode64 with <64bit inums in kernel\n"); 3538 } 3539 ctx->full_inums = true; 3540 ctx->seen |= SHMEM_SEEN_INUMS; 3541 break; 3542 } 3543 return 0; 3544 3545 unsupported_parameter: 3546 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3547 bad_value: 3548 return invalfc(fc, "Bad value for '%s'", param->key); 3549 } 3550 3551 static int shmem_parse_options(struct fs_context *fc, void *data) 3552 { 3553 char *options = data; 3554 3555 if (options) { 3556 int err = security_sb_eat_lsm_opts(options, &fc->security); 3557 if (err) 3558 return err; 3559 } 3560 3561 while (options != NULL) { 3562 char *this_char = options; 3563 for (;;) { 3564 /* 3565 * NUL-terminate this option: unfortunately, 3566 * mount options form a comma-separated list, 3567 * but mpol's nodelist may also contain commas. 3568 */ 3569 options = strchr(options, ','); 3570 if (options == NULL) 3571 break; 3572 options++; 3573 if (!isdigit(*options)) { 3574 options[-1] = '\0'; 3575 break; 3576 } 3577 } 3578 if (*this_char) { 3579 char *value = strchr(this_char, '='); 3580 size_t len = 0; 3581 int err; 3582 3583 if (value) { 3584 *value++ = '\0'; 3585 len = strlen(value); 3586 } 3587 err = vfs_parse_fs_string(fc, this_char, value, len); 3588 if (err < 0) 3589 return err; 3590 } 3591 } 3592 return 0; 3593 } 3594 3595 /* 3596 * Reconfigure a shmem filesystem. 3597 * 3598 * Note that we disallow change from limited->unlimited blocks/inodes while any 3599 * are in use; but we must separately disallow unlimited->limited, because in 3600 * that case we have no record of how much is already in use. 3601 */ 3602 static int shmem_reconfigure(struct fs_context *fc) 3603 { 3604 struct shmem_options *ctx = fc->fs_private; 3605 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3606 unsigned long inodes; 3607 struct mempolicy *mpol = NULL; 3608 const char *err; 3609 3610 raw_spin_lock(&sbinfo->stat_lock); 3611 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3612 3613 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3614 if (!sbinfo->max_blocks) { 3615 err = "Cannot retroactively limit size"; 3616 goto out; 3617 } 3618 if (percpu_counter_compare(&sbinfo->used_blocks, 3619 ctx->blocks) > 0) { 3620 err = "Too small a size for current use"; 3621 goto out; 3622 } 3623 } 3624 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3625 if (!sbinfo->max_inodes) { 3626 err = "Cannot retroactively limit inodes"; 3627 goto out; 3628 } 3629 if (ctx->inodes < inodes) { 3630 err = "Too few inodes for current use"; 3631 goto out; 3632 } 3633 } 3634 3635 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3636 sbinfo->next_ino > UINT_MAX) { 3637 err = "Current inum too high to switch to 32-bit inums"; 3638 goto out; 3639 } 3640 3641 if (ctx->seen & SHMEM_SEEN_HUGE) 3642 sbinfo->huge = ctx->huge; 3643 if (ctx->seen & SHMEM_SEEN_INUMS) 3644 sbinfo->full_inums = ctx->full_inums; 3645 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3646 sbinfo->max_blocks = ctx->blocks; 3647 if (ctx->seen & SHMEM_SEEN_INODES) { 3648 sbinfo->max_inodes = ctx->inodes; 3649 sbinfo->free_inodes = ctx->inodes - inodes; 3650 } 3651 3652 /* 3653 * Preserve previous mempolicy unless mpol remount option was specified. 3654 */ 3655 if (ctx->mpol) { 3656 mpol = sbinfo->mpol; 3657 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3658 ctx->mpol = NULL; 3659 } 3660 raw_spin_unlock(&sbinfo->stat_lock); 3661 mpol_put(mpol); 3662 return 0; 3663 out: 3664 raw_spin_unlock(&sbinfo->stat_lock); 3665 return invalfc(fc, "%s", err); 3666 } 3667 3668 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3669 { 3670 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3671 3672 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3673 seq_printf(seq, ",size=%luk", 3674 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3675 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3676 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3677 if (sbinfo->mode != (0777 | S_ISVTX)) 3678 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3679 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3680 seq_printf(seq, ",uid=%u", 3681 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3682 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3683 seq_printf(seq, ",gid=%u", 3684 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3685 3686 /* 3687 * Showing inode{64,32} might be useful even if it's the system default, 3688 * since then people don't have to resort to checking both here and 3689 * /proc/config.gz to confirm 64-bit inums were successfully applied 3690 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3691 * 3692 * We hide it when inode64 isn't the default and we are using 32-bit 3693 * inodes, since that probably just means the feature isn't even under 3694 * consideration. 3695 * 3696 * As such: 3697 * 3698 * +-----------------+-----------------+ 3699 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3700 * +------------------+-----------------+-----------------+ 3701 * | full_inums=true | show | show | 3702 * | full_inums=false | show | hide | 3703 * +------------------+-----------------+-----------------+ 3704 * 3705 */ 3706 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3707 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3708 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3709 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3710 if (sbinfo->huge) 3711 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3712 #endif 3713 shmem_show_mpol(seq, sbinfo->mpol); 3714 return 0; 3715 } 3716 3717 #endif /* CONFIG_TMPFS */ 3718 3719 static void shmem_put_super(struct super_block *sb) 3720 { 3721 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3722 3723 free_percpu(sbinfo->ino_batch); 3724 percpu_counter_destroy(&sbinfo->used_blocks); 3725 mpol_put(sbinfo->mpol); 3726 kfree(sbinfo); 3727 sb->s_fs_info = NULL; 3728 } 3729 3730 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3731 { 3732 struct shmem_options *ctx = fc->fs_private; 3733 struct inode *inode; 3734 struct shmem_sb_info *sbinfo; 3735 3736 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3737 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3738 L1_CACHE_BYTES), GFP_KERNEL); 3739 if (!sbinfo) 3740 return -ENOMEM; 3741 3742 sb->s_fs_info = sbinfo; 3743 3744 #ifdef CONFIG_TMPFS 3745 /* 3746 * Per default we only allow half of the physical ram per 3747 * tmpfs instance, limiting inodes to one per page of lowmem; 3748 * but the internal instance is left unlimited. 3749 */ 3750 if (!(sb->s_flags & SB_KERNMOUNT)) { 3751 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3752 ctx->blocks = shmem_default_max_blocks(); 3753 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3754 ctx->inodes = shmem_default_max_inodes(); 3755 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3756 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3757 } else { 3758 sb->s_flags |= SB_NOUSER; 3759 } 3760 sb->s_export_op = &shmem_export_ops; 3761 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 3762 #else 3763 sb->s_flags |= SB_NOUSER; 3764 #endif 3765 sbinfo->max_blocks = ctx->blocks; 3766 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3767 if (sb->s_flags & SB_KERNMOUNT) { 3768 sbinfo->ino_batch = alloc_percpu(ino_t); 3769 if (!sbinfo->ino_batch) 3770 goto failed; 3771 } 3772 sbinfo->uid = ctx->uid; 3773 sbinfo->gid = ctx->gid; 3774 sbinfo->full_inums = ctx->full_inums; 3775 sbinfo->mode = ctx->mode; 3776 sbinfo->huge = ctx->huge; 3777 sbinfo->mpol = ctx->mpol; 3778 ctx->mpol = NULL; 3779 3780 raw_spin_lock_init(&sbinfo->stat_lock); 3781 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3782 goto failed; 3783 spin_lock_init(&sbinfo->shrinklist_lock); 3784 INIT_LIST_HEAD(&sbinfo->shrinklist); 3785 3786 sb->s_maxbytes = MAX_LFS_FILESIZE; 3787 sb->s_blocksize = PAGE_SIZE; 3788 sb->s_blocksize_bits = PAGE_SHIFT; 3789 sb->s_magic = TMPFS_MAGIC; 3790 sb->s_op = &shmem_ops; 3791 sb->s_time_gran = 1; 3792 #ifdef CONFIG_TMPFS_XATTR 3793 sb->s_xattr = shmem_xattr_handlers; 3794 #endif 3795 #ifdef CONFIG_TMPFS_POSIX_ACL 3796 sb->s_flags |= SB_POSIXACL; 3797 #endif 3798 uuid_gen(&sb->s_uuid); 3799 3800 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3801 if (!inode) 3802 goto failed; 3803 inode->i_uid = sbinfo->uid; 3804 inode->i_gid = sbinfo->gid; 3805 sb->s_root = d_make_root(inode); 3806 if (!sb->s_root) 3807 goto failed; 3808 return 0; 3809 3810 failed: 3811 shmem_put_super(sb); 3812 return -ENOMEM; 3813 } 3814 3815 static int shmem_get_tree(struct fs_context *fc) 3816 { 3817 return get_tree_nodev(fc, shmem_fill_super); 3818 } 3819 3820 static void shmem_free_fc(struct fs_context *fc) 3821 { 3822 struct shmem_options *ctx = fc->fs_private; 3823 3824 if (ctx) { 3825 mpol_put(ctx->mpol); 3826 kfree(ctx); 3827 } 3828 } 3829 3830 static const struct fs_context_operations shmem_fs_context_ops = { 3831 .free = shmem_free_fc, 3832 .get_tree = shmem_get_tree, 3833 #ifdef CONFIG_TMPFS 3834 .parse_monolithic = shmem_parse_options, 3835 .parse_param = shmem_parse_one, 3836 .reconfigure = shmem_reconfigure, 3837 #endif 3838 }; 3839 3840 static struct kmem_cache *shmem_inode_cachep; 3841 3842 static struct inode *shmem_alloc_inode(struct super_block *sb) 3843 { 3844 struct shmem_inode_info *info; 3845 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 3846 if (!info) 3847 return NULL; 3848 return &info->vfs_inode; 3849 } 3850 3851 static void shmem_free_in_core_inode(struct inode *inode) 3852 { 3853 if (S_ISLNK(inode->i_mode)) 3854 kfree(inode->i_link); 3855 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3856 } 3857 3858 static void shmem_destroy_inode(struct inode *inode) 3859 { 3860 if (S_ISREG(inode->i_mode)) 3861 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3862 } 3863 3864 static void shmem_init_inode(void *foo) 3865 { 3866 struct shmem_inode_info *info = foo; 3867 inode_init_once(&info->vfs_inode); 3868 } 3869 3870 static void shmem_init_inodecache(void) 3871 { 3872 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3873 sizeof(struct shmem_inode_info), 3874 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3875 } 3876 3877 static void shmem_destroy_inodecache(void) 3878 { 3879 kmem_cache_destroy(shmem_inode_cachep); 3880 } 3881 3882 /* Keep the page in page cache instead of truncating it */ 3883 static int shmem_error_remove_page(struct address_space *mapping, 3884 struct page *page) 3885 { 3886 return 0; 3887 } 3888 3889 const struct address_space_operations shmem_aops = { 3890 .writepage = shmem_writepage, 3891 .dirty_folio = noop_dirty_folio, 3892 #ifdef CONFIG_TMPFS 3893 .write_begin = shmem_write_begin, 3894 .write_end = shmem_write_end, 3895 #endif 3896 #ifdef CONFIG_MIGRATION 3897 .migrate_folio = migrate_folio, 3898 #endif 3899 .error_remove_page = shmem_error_remove_page, 3900 }; 3901 EXPORT_SYMBOL(shmem_aops); 3902 3903 static const struct file_operations shmem_file_operations = { 3904 .mmap = shmem_mmap, 3905 .open = generic_file_open, 3906 .get_unmapped_area = shmem_get_unmapped_area, 3907 #ifdef CONFIG_TMPFS 3908 .llseek = shmem_file_llseek, 3909 .read_iter = shmem_file_read_iter, 3910 .write_iter = generic_file_write_iter, 3911 .fsync = noop_fsync, 3912 .splice_read = generic_file_splice_read, 3913 .splice_write = iter_file_splice_write, 3914 .fallocate = shmem_fallocate, 3915 #endif 3916 }; 3917 3918 static const struct inode_operations shmem_inode_operations = { 3919 .getattr = shmem_getattr, 3920 .setattr = shmem_setattr, 3921 #ifdef CONFIG_TMPFS_XATTR 3922 .listxattr = shmem_listxattr, 3923 .set_acl = simple_set_acl, 3924 .fileattr_get = shmem_fileattr_get, 3925 .fileattr_set = shmem_fileattr_set, 3926 #endif 3927 }; 3928 3929 static const struct inode_operations shmem_dir_inode_operations = { 3930 #ifdef CONFIG_TMPFS 3931 .getattr = shmem_getattr, 3932 .create = shmem_create, 3933 .lookup = simple_lookup, 3934 .link = shmem_link, 3935 .unlink = shmem_unlink, 3936 .symlink = shmem_symlink, 3937 .mkdir = shmem_mkdir, 3938 .rmdir = shmem_rmdir, 3939 .mknod = shmem_mknod, 3940 .rename = shmem_rename2, 3941 .tmpfile = shmem_tmpfile, 3942 #endif 3943 #ifdef CONFIG_TMPFS_XATTR 3944 .listxattr = shmem_listxattr, 3945 .fileattr_get = shmem_fileattr_get, 3946 .fileattr_set = shmem_fileattr_set, 3947 #endif 3948 #ifdef CONFIG_TMPFS_POSIX_ACL 3949 .setattr = shmem_setattr, 3950 .set_acl = simple_set_acl, 3951 #endif 3952 }; 3953 3954 static const struct inode_operations shmem_special_inode_operations = { 3955 .getattr = shmem_getattr, 3956 #ifdef CONFIG_TMPFS_XATTR 3957 .listxattr = shmem_listxattr, 3958 #endif 3959 #ifdef CONFIG_TMPFS_POSIX_ACL 3960 .setattr = shmem_setattr, 3961 .set_acl = simple_set_acl, 3962 #endif 3963 }; 3964 3965 static const struct super_operations shmem_ops = { 3966 .alloc_inode = shmem_alloc_inode, 3967 .free_inode = shmem_free_in_core_inode, 3968 .destroy_inode = shmem_destroy_inode, 3969 #ifdef CONFIG_TMPFS 3970 .statfs = shmem_statfs, 3971 .show_options = shmem_show_options, 3972 #endif 3973 .evict_inode = shmem_evict_inode, 3974 .drop_inode = generic_delete_inode, 3975 .put_super = shmem_put_super, 3976 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3977 .nr_cached_objects = shmem_unused_huge_count, 3978 .free_cached_objects = shmem_unused_huge_scan, 3979 #endif 3980 }; 3981 3982 static const struct vm_operations_struct shmem_vm_ops = { 3983 .fault = shmem_fault, 3984 .map_pages = filemap_map_pages, 3985 #ifdef CONFIG_NUMA 3986 .set_policy = shmem_set_policy, 3987 .get_policy = shmem_get_policy, 3988 #endif 3989 }; 3990 3991 int shmem_init_fs_context(struct fs_context *fc) 3992 { 3993 struct shmem_options *ctx; 3994 3995 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3996 if (!ctx) 3997 return -ENOMEM; 3998 3999 ctx->mode = 0777 | S_ISVTX; 4000 ctx->uid = current_fsuid(); 4001 ctx->gid = current_fsgid(); 4002 4003 fc->fs_private = ctx; 4004 fc->ops = &shmem_fs_context_ops; 4005 return 0; 4006 } 4007 4008 static struct file_system_type shmem_fs_type = { 4009 .owner = THIS_MODULE, 4010 .name = "tmpfs", 4011 .init_fs_context = shmem_init_fs_context, 4012 #ifdef CONFIG_TMPFS 4013 .parameters = shmem_fs_parameters, 4014 #endif 4015 .kill_sb = kill_litter_super, 4016 .fs_flags = FS_USERNS_MOUNT, 4017 }; 4018 4019 void __init shmem_init(void) 4020 { 4021 int error; 4022 4023 shmem_init_inodecache(); 4024 4025 error = register_filesystem(&shmem_fs_type); 4026 if (error) { 4027 pr_err("Could not register tmpfs\n"); 4028 goto out2; 4029 } 4030 4031 shm_mnt = kern_mount(&shmem_fs_type); 4032 if (IS_ERR(shm_mnt)) { 4033 error = PTR_ERR(shm_mnt); 4034 pr_err("Could not kern_mount tmpfs\n"); 4035 goto out1; 4036 } 4037 4038 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4039 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4040 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4041 else 4042 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4043 #endif 4044 return; 4045 4046 out1: 4047 unregister_filesystem(&shmem_fs_type); 4048 out2: 4049 shmem_destroy_inodecache(); 4050 shm_mnt = ERR_PTR(error); 4051 } 4052 4053 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4054 static ssize_t shmem_enabled_show(struct kobject *kobj, 4055 struct kobj_attribute *attr, char *buf) 4056 { 4057 static const int values[] = { 4058 SHMEM_HUGE_ALWAYS, 4059 SHMEM_HUGE_WITHIN_SIZE, 4060 SHMEM_HUGE_ADVISE, 4061 SHMEM_HUGE_NEVER, 4062 SHMEM_HUGE_DENY, 4063 SHMEM_HUGE_FORCE, 4064 }; 4065 int len = 0; 4066 int i; 4067 4068 for (i = 0; i < ARRAY_SIZE(values); i++) { 4069 len += sysfs_emit_at(buf, len, 4070 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4071 i ? " " : "", 4072 shmem_format_huge(values[i])); 4073 } 4074 4075 len += sysfs_emit_at(buf, len, "\n"); 4076 4077 return len; 4078 } 4079 4080 static ssize_t shmem_enabled_store(struct kobject *kobj, 4081 struct kobj_attribute *attr, const char *buf, size_t count) 4082 { 4083 char tmp[16]; 4084 int huge; 4085 4086 if (count + 1 > sizeof(tmp)) 4087 return -EINVAL; 4088 memcpy(tmp, buf, count); 4089 tmp[count] = '\0'; 4090 if (count && tmp[count - 1] == '\n') 4091 tmp[count - 1] = '\0'; 4092 4093 huge = shmem_parse_huge(tmp); 4094 if (huge == -EINVAL) 4095 return -EINVAL; 4096 if (!has_transparent_hugepage() && 4097 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4098 return -EINVAL; 4099 4100 shmem_huge = huge; 4101 if (shmem_huge > SHMEM_HUGE_DENY) 4102 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4103 return count; 4104 } 4105 4106 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4107 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4108 4109 #else /* !CONFIG_SHMEM */ 4110 4111 /* 4112 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4113 * 4114 * This is intended for small system where the benefits of the full 4115 * shmem code (swap-backed and resource-limited) are outweighed by 4116 * their complexity. On systems without swap this code should be 4117 * effectively equivalent, but much lighter weight. 4118 */ 4119 4120 static struct file_system_type shmem_fs_type = { 4121 .name = "tmpfs", 4122 .init_fs_context = ramfs_init_fs_context, 4123 .parameters = ramfs_fs_parameters, 4124 .kill_sb = kill_litter_super, 4125 .fs_flags = FS_USERNS_MOUNT, 4126 }; 4127 4128 void __init shmem_init(void) 4129 { 4130 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4131 4132 shm_mnt = kern_mount(&shmem_fs_type); 4133 BUG_ON(IS_ERR(shm_mnt)); 4134 } 4135 4136 int shmem_unuse(unsigned int type) 4137 { 4138 return 0; 4139 } 4140 4141 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4142 { 4143 return 0; 4144 } 4145 4146 void shmem_unlock_mapping(struct address_space *mapping) 4147 { 4148 } 4149 4150 #ifdef CONFIG_MMU 4151 unsigned long shmem_get_unmapped_area(struct file *file, 4152 unsigned long addr, unsigned long len, 4153 unsigned long pgoff, unsigned long flags) 4154 { 4155 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4156 } 4157 #endif 4158 4159 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4160 { 4161 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4162 } 4163 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4164 4165 #define shmem_vm_ops generic_file_vm_ops 4166 #define shmem_file_operations ramfs_file_operations 4167 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4168 #define shmem_acct_size(flags, size) 0 4169 #define shmem_unacct_size(flags, size) do {} while (0) 4170 4171 #endif /* CONFIG_SHMEM */ 4172 4173 /* common code */ 4174 4175 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4176 unsigned long flags, unsigned int i_flags) 4177 { 4178 struct inode *inode; 4179 struct file *res; 4180 4181 if (IS_ERR(mnt)) 4182 return ERR_CAST(mnt); 4183 4184 if (size < 0 || size > MAX_LFS_FILESIZE) 4185 return ERR_PTR(-EINVAL); 4186 4187 if (shmem_acct_size(flags, size)) 4188 return ERR_PTR(-ENOMEM); 4189 4190 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4191 flags); 4192 if (unlikely(!inode)) { 4193 shmem_unacct_size(flags, size); 4194 return ERR_PTR(-ENOSPC); 4195 } 4196 inode->i_flags |= i_flags; 4197 inode->i_size = size; 4198 clear_nlink(inode); /* It is unlinked */ 4199 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4200 if (!IS_ERR(res)) 4201 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4202 &shmem_file_operations); 4203 if (IS_ERR(res)) 4204 iput(inode); 4205 return res; 4206 } 4207 4208 /** 4209 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4210 * kernel internal. There will be NO LSM permission checks against the 4211 * underlying inode. So users of this interface must do LSM checks at a 4212 * higher layer. The users are the big_key and shm implementations. LSM 4213 * checks are provided at the key or shm level rather than the inode. 4214 * @name: name for dentry (to be seen in /proc/<pid>/maps 4215 * @size: size to be set for the file 4216 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4217 */ 4218 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4219 { 4220 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4221 } 4222 4223 /** 4224 * shmem_file_setup - get an unlinked file living in tmpfs 4225 * @name: name for dentry (to be seen in /proc/<pid>/maps 4226 * @size: size to be set for the file 4227 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4228 */ 4229 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4230 { 4231 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4232 } 4233 EXPORT_SYMBOL_GPL(shmem_file_setup); 4234 4235 /** 4236 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4237 * @mnt: the tmpfs mount where the file will be created 4238 * @name: name for dentry (to be seen in /proc/<pid>/maps 4239 * @size: size to be set for the file 4240 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4241 */ 4242 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4243 loff_t size, unsigned long flags) 4244 { 4245 return __shmem_file_setup(mnt, name, size, flags, 0); 4246 } 4247 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4248 4249 /** 4250 * shmem_zero_setup - setup a shared anonymous mapping 4251 * @vma: the vma to be mmapped is prepared by do_mmap 4252 */ 4253 int shmem_zero_setup(struct vm_area_struct *vma) 4254 { 4255 struct file *file; 4256 loff_t size = vma->vm_end - vma->vm_start; 4257 4258 /* 4259 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4260 * between XFS directory reading and selinux: since this file is only 4261 * accessible to the user through its mapping, use S_PRIVATE flag to 4262 * bypass file security, in the same way as shmem_kernel_file_setup(). 4263 */ 4264 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4265 if (IS_ERR(file)) 4266 return PTR_ERR(file); 4267 4268 if (vma->vm_file) 4269 fput(vma->vm_file); 4270 vma->vm_file = file; 4271 vma->vm_ops = &shmem_vm_ops; 4272 4273 return 0; 4274 } 4275 4276 /** 4277 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4278 * @mapping: the page's address_space 4279 * @index: the page index 4280 * @gfp: the page allocator flags to use if allocating 4281 * 4282 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4283 * with any new page allocations done using the specified allocation flags. 4284 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4285 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4286 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4287 * 4288 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4289 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4290 */ 4291 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4292 pgoff_t index, gfp_t gfp) 4293 { 4294 #ifdef CONFIG_SHMEM 4295 struct inode *inode = mapping->host; 4296 struct folio *folio; 4297 struct page *page; 4298 int error; 4299 4300 BUG_ON(!shmem_mapping(mapping)); 4301 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 4302 gfp, NULL, NULL, NULL); 4303 if (error) 4304 return ERR_PTR(error); 4305 4306 folio_unlock(folio); 4307 page = folio_file_page(folio, index); 4308 if (PageHWPoison(page)) { 4309 folio_put(folio); 4310 return ERR_PTR(-EIO); 4311 } 4312 4313 return page; 4314 #else 4315 /* 4316 * The tiny !SHMEM case uses ramfs without swap 4317 */ 4318 return read_cache_page_gfp(mapping, index, gfp); 4319 #endif 4320 } 4321 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4322