1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/pagemap.h> 29 #include <linux/file.h> 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/swap.h> 33 34 static struct vfsmount *shm_mnt; 35 36 #ifdef CONFIG_SHMEM 37 /* 38 * This virtual memory filesystem is heavily based on the ramfs. It 39 * extends ramfs by the ability to use swap and honor resource limits 40 * which makes it a completely usable filesystem. 41 */ 42 43 #include <linux/xattr.h> 44 #include <linux/exportfs.h> 45 #include <linux/posix_acl.h> 46 #include <linux/generic_acl.h> 47 #include <linux/mman.h> 48 #include <linux/string.h> 49 #include <linux/slab.h> 50 #include <linux/backing-dev.h> 51 #include <linux/shmem_fs.h> 52 #include <linux/writeback.h> 53 #include <linux/blkdev.h> 54 #include <linux/pagevec.h> 55 #include <linux/percpu_counter.h> 56 #include <linux/falloc.h> 57 #include <linux/splice.h> 58 #include <linux/security.h> 59 #include <linux/swapops.h> 60 #include <linux/mempolicy.h> 61 #include <linux/namei.h> 62 #include <linux/ctype.h> 63 #include <linux/migrate.h> 64 #include <linux/highmem.h> 65 #include <linux/seq_file.h> 66 #include <linux/magic.h> 67 68 #include <asm/uaccess.h> 69 #include <asm/pgtable.h> 70 71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 73 74 /* Pretend that each entry is of this size in directory's i_size */ 75 #define BOGO_DIRENT_SIZE 20 76 77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 78 #define SHORT_SYMLINK_LEN 128 79 80 struct shmem_xattr { 81 struct list_head list; /* anchored by shmem_inode_info->xattr_list */ 82 char *name; /* xattr name */ 83 size_t size; 84 char value[0]; 85 }; 86 87 /* 88 * shmem_fallocate and shmem_writepage communicate via inode->i_private 89 * (with i_mutex making sure that it has only one user at a time): 90 * we would prefer not to enlarge the shmem inode just for that. 91 */ 92 struct shmem_falloc { 93 pgoff_t start; /* start of range currently being fallocated */ 94 pgoff_t next; /* the next page offset to be fallocated */ 95 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 96 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 97 }; 98 99 /* Flag allocation requirements to shmem_getpage */ 100 enum sgp_type { 101 SGP_READ, /* don't exceed i_size, don't allocate page */ 102 SGP_CACHE, /* don't exceed i_size, may allocate page */ 103 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 104 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ 105 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ 106 }; 107 108 #ifdef CONFIG_TMPFS 109 static unsigned long shmem_default_max_blocks(void) 110 { 111 return totalram_pages / 2; 112 } 113 114 static unsigned long shmem_default_max_inodes(void) 115 { 116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 117 } 118 #endif 119 120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 121 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 122 struct shmem_inode_info *info, pgoff_t index); 123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 124 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); 125 126 static inline int shmem_getpage(struct inode *inode, pgoff_t index, 127 struct page **pagep, enum sgp_type sgp, int *fault_type) 128 { 129 return shmem_getpage_gfp(inode, index, pagep, sgp, 130 mapping_gfp_mask(inode->i_mapping), fault_type); 131 } 132 133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 134 { 135 return sb->s_fs_info; 136 } 137 138 /* 139 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 140 * for shared memory and for shared anonymous (/dev/zero) mappings 141 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 142 * consistent with the pre-accounting of private mappings ... 143 */ 144 static inline int shmem_acct_size(unsigned long flags, loff_t size) 145 { 146 return (flags & VM_NORESERVE) ? 147 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 148 } 149 150 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 151 { 152 if (!(flags & VM_NORESERVE)) 153 vm_unacct_memory(VM_ACCT(size)); 154 } 155 156 /* 157 * ... whereas tmpfs objects are accounted incrementally as 158 * pages are allocated, in order to allow huge sparse files. 159 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 160 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 161 */ 162 static inline int shmem_acct_block(unsigned long flags) 163 { 164 return (flags & VM_NORESERVE) ? 165 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0; 166 } 167 168 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 169 { 170 if (flags & VM_NORESERVE) 171 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 172 } 173 174 static const struct super_operations shmem_ops; 175 static const struct address_space_operations shmem_aops; 176 static const struct file_operations shmem_file_operations; 177 static const struct inode_operations shmem_inode_operations; 178 static const struct inode_operations shmem_dir_inode_operations; 179 static const struct inode_operations shmem_special_inode_operations; 180 static const struct vm_operations_struct shmem_vm_ops; 181 182 static struct backing_dev_info shmem_backing_dev_info __read_mostly = { 183 .ra_pages = 0, /* No readahead */ 184 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 185 }; 186 187 static LIST_HEAD(shmem_swaplist); 188 static DEFINE_MUTEX(shmem_swaplist_mutex); 189 190 static int shmem_reserve_inode(struct super_block *sb) 191 { 192 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 193 if (sbinfo->max_inodes) { 194 spin_lock(&sbinfo->stat_lock); 195 if (!sbinfo->free_inodes) { 196 spin_unlock(&sbinfo->stat_lock); 197 return -ENOSPC; 198 } 199 sbinfo->free_inodes--; 200 spin_unlock(&sbinfo->stat_lock); 201 } 202 return 0; 203 } 204 205 static void shmem_free_inode(struct super_block *sb) 206 { 207 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 208 if (sbinfo->max_inodes) { 209 spin_lock(&sbinfo->stat_lock); 210 sbinfo->free_inodes++; 211 spin_unlock(&sbinfo->stat_lock); 212 } 213 } 214 215 /** 216 * shmem_recalc_inode - recalculate the block usage of an inode 217 * @inode: inode to recalc 218 * 219 * We have to calculate the free blocks since the mm can drop 220 * undirtied hole pages behind our back. 221 * 222 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 223 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 224 * 225 * It has to be called with the spinlock held. 226 */ 227 static void shmem_recalc_inode(struct inode *inode) 228 { 229 struct shmem_inode_info *info = SHMEM_I(inode); 230 long freed; 231 232 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 233 if (freed > 0) { 234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 235 if (sbinfo->max_blocks) 236 percpu_counter_add(&sbinfo->used_blocks, -freed); 237 info->alloced -= freed; 238 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 239 shmem_unacct_blocks(info->flags, freed); 240 } 241 } 242 243 /* 244 * Replace item expected in radix tree by a new item, while holding tree lock. 245 */ 246 static int shmem_radix_tree_replace(struct address_space *mapping, 247 pgoff_t index, void *expected, void *replacement) 248 { 249 void **pslot; 250 void *item = NULL; 251 252 VM_BUG_ON(!expected); 253 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 254 if (pslot) 255 item = radix_tree_deref_slot_protected(pslot, 256 &mapping->tree_lock); 257 if (item != expected) 258 return -ENOENT; 259 if (replacement) 260 radix_tree_replace_slot(pslot, replacement); 261 else 262 radix_tree_delete(&mapping->page_tree, index); 263 return 0; 264 } 265 266 /* 267 * Like add_to_page_cache_locked, but error if expected item has gone. 268 */ 269 static int shmem_add_to_page_cache(struct page *page, 270 struct address_space *mapping, 271 pgoff_t index, gfp_t gfp, void *expected) 272 { 273 int error = 0; 274 275 VM_BUG_ON(!PageLocked(page)); 276 VM_BUG_ON(!PageSwapBacked(page)); 277 278 if (!expected) 279 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK); 280 if (!error) { 281 page_cache_get(page); 282 page->mapping = mapping; 283 page->index = index; 284 285 spin_lock_irq(&mapping->tree_lock); 286 if (!expected) 287 error = radix_tree_insert(&mapping->page_tree, 288 index, page); 289 else 290 error = shmem_radix_tree_replace(mapping, index, 291 expected, page); 292 if (!error) { 293 mapping->nrpages++; 294 __inc_zone_page_state(page, NR_FILE_PAGES); 295 __inc_zone_page_state(page, NR_SHMEM); 296 spin_unlock_irq(&mapping->tree_lock); 297 } else { 298 page->mapping = NULL; 299 spin_unlock_irq(&mapping->tree_lock); 300 page_cache_release(page); 301 } 302 if (!expected) 303 radix_tree_preload_end(); 304 } 305 if (error) 306 mem_cgroup_uncharge_cache_page(page); 307 return error; 308 } 309 310 /* 311 * Like delete_from_page_cache, but substitutes swap for page. 312 */ 313 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 314 { 315 struct address_space *mapping = page->mapping; 316 int error; 317 318 spin_lock_irq(&mapping->tree_lock); 319 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 320 page->mapping = NULL; 321 mapping->nrpages--; 322 __dec_zone_page_state(page, NR_FILE_PAGES); 323 __dec_zone_page_state(page, NR_SHMEM); 324 spin_unlock_irq(&mapping->tree_lock); 325 page_cache_release(page); 326 BUG_ON(error); 327 } 328 329 /* 330 * Like find_get_pages, but collecting swap entries as well as pages. 331 */ 332 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping, 333 pgoff_t start, unsigned int nr_pages, 334 struct page **pages, pgoff_t *indices) 335 { 336 unsigned int i; 337 unsigned int ret; 338 unsigned int nr_found; 339 340 rcu_read_lock(); 341 restart: 342 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 343 (void ***)pages, indices, start, nr_pages); 344 ret = 0; 345 for (i = 0; i < nr_found; i++) { 346 struct page *page; 347 repeat: 348 page = radix_tree_deref_slot((void **)pages[i]); 349 if (unlikely(!page)) 350 continue; 351 if (radix_tree_exception(page)) { 352 if (radix_tree_deref_retry(page)) 353 goto restart; 354 /* 355 * Otherwise, we must be storing a swap entry 356 * here as an exceptional entry: so return it 357 * without attempting to raise page count. 358 */ 359 goto export; 360 } 361 if (!page_cache_get_speculative(page)) 362 goto repeat; 363 364 /* Has the page moved? */ 365 if (unlikely(page != *((void **)pages[i]))) { 366 page_cache_release(page); 367 goto repeat; 368 } 369 export: 370 indices[ret] = indices[i]; 371 pages[ret] = page; 372 ret++; 373 } 374 if (unlikely(!ret && nr_found)) 375 goto restart; 376 rcu_read_unlock(); 377 return ret; 378 } 379 380 /* 381 * Remove swap entry from radix tree, free the swap and its page cache. 382 */ 383 static int shmem_free_swap(struct address_space *mapping, 384 pgoff_t index, void *radswap) 385 { 386 int error; 387 388 spin_lock_irq(&mapping->tree_lock); 389 error = shmem_radix_tree_replace(mapping, index, radswap, NULL); 390 spin_unlock_irq(&mapping->tree_lock); 391 if (!error) 392 free_swap_and_cache(radix_to_swp_entry(radswap)); 393 return error; 394 } 395 396 /* 397 * Pagevec may contain swap entries, so shuffle up pages before releasing. 398 */ 399 static void shmem_deswap_pagevec(struct pagevec *pvec) 400 { 401 int i, j; 402 403 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 404 struct page *page = pvec->pages[i]; 405 if (!radix_tree_exceptional_entry(page)) 406 pvec->pages[j++] = page; 407 } 408 pvec->nr = j; 409 } 410 411 /* 412 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 413 */ 414 void shmem_unlock_mapping(struct address_space *mapping) 415 { 416 struct pagevec pvec; 417 pgoff_t indices[PAGEVEC_SIZE]; 418 pgoff_t index = 0; 419 420 pagevec_init(&pvec, 0); 421 /* 422 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 423 */ 424 while (!mapping_unevictable(mapping)) { 425 /* 426 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 427 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 428 */ 429 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 430 PAGEVEC_SIZE, pvec.pages, indices); 431 if (!pvec.nr) 432 break; 433 index = indices[pvec.nr - 1] + 1; 434 shmem_deswap_pagevec(&pvec); 435 check_move_unevictable_pages(pvec.pages, pvec.nr); 436 pagevec_release(&pvec); 437 cond_resched(); 438 } 439 } 440 441 /* 442 * Remove range of pages and swap entries from radix tree, and free them. 443 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 444 */ 445 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 446 bool unfalloc) 447 { 448 struct address_space *mapping = inode->i_mapping; 449 struct shmem_inode_info *info = SHMEM_I(inode); 450 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 451 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT; 452 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1); 453 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 454 struct pagevec pvec; 455 pgoff_t indices[PAGEVEC_SIZE]; 456 long nr_swaps_freed = 0; 457 pgoff_t index; 458 int i; 459 460 if (lend == -1) 461 end = -1; /* unsigned, so actually very big */ 462 463 pagevec_init(&pvec, 0); 464 index = start; 465 while (index < end) { 466 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 467 min(end - index, (pgoff_t)PAGEVEC_SIZE), 468 pvec.pages, indices); 469 if (!pvec.nr) 470 break; 471 mem_cgroup_uncharge_start(); 472 for (i = 0; i < pagevec_count(&pvec); i++) { 473 struct page *page = pvec.pages[i]; 474 475 index = indices[i]; 476 if (index >= end) 477 break; 478 479 if (radix_tree_exceptional_entry(page)) { 480 if (unfalloc) 481 continue; 482 nr_swaps_freed += !shmem_free_swap(mapping, 483 index, page); 484 continue; 485 } 486 487 if (!trylock_page(page)) 488 continue; 489 if (!unfalloc || !PageUptodate(page)) { 490 if (page->mapping == mapping) { 491 VM_BUG_ON(PageWriteback(page)); 492 truncate_inode_page(mapping, page); 493 } 494 } 495 unlock_page(page); 496 } 497 shmem_deswap_pagevec(&pvec); 498 pagevec_release(&pvec); 499 mem_cgroup_uncharge_end(); 500 cond_resched(); 501 index++; 502 } 503 504 if (partial_start) { 505 struct page *page = NULL; 506 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); 507 if (page) { 508 unsigned int top = PAGE_CACHE_SIZE; 509 if (start > end) { 510 top = partial_end; 511 partial_end = 0; 512 } 513 zero_user_segment(page, partial_start, top); 514 set_page_dirty(page); 515 unlock_page(page); 516 page_cache_release(page); 517 } 518 } 519 if (partial_end) { 520 struct page *page = NULL; 521 shmem_getpage(inode, end, &page, SGP_READ, NULL); 522 if (page) { 523 zero_user_segment(page, 0, partial_end); 524 set_page_dirty(page); 525 unlock_page(page); 526 page_cache_release(page); 527 } 528 } 529 if (start >= end) 530 return; 531 532 index = start; 533 for ( ; ; ) { 534 cond_resched(); 535 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 536 min(end - index, (pgoff_t)PAGEVEC_SIZE), 537 pvec.pages, indices); 538 if (!pvec.nr) { 539 if (index == start || unfalloc) 540 break; 541 index = start; 542 continue; 543 } 544 if ((index == start || unfalloc) && indices[0] >= end) { 545 shmem_deswap_pagevec(&pvec); 546 pagevec_release(&pvec); 547 break; 548 } 549 mem_cgroup_uncharge_start(); 550 for (i = 0; i < pagevec_count(&pvec); i++) { 551 struct page *page = pvec.pages[i]; 552 553 index = indices[i]; 554 if (index >= end) 555 break; 556 557 if (radix_tree_exceptional_entry(page)) { 558 if (unfalloc) 559 continue; 560 nr_swaps_freed += !shmem_free_swap(mapping, 561 index, page); 562 continue; 563 } 564 565 lock_page(page); 566 if (!unfalloc || !PageUptodate(page)) { 567 if (page->mapping == mapping) { 568 VM_BUG_ON(PageWriteback(page)); 569 truncate_inode_page(mapping, page); 570 } 571 } 572 unlock_page(page); 573 } 574 shmem_deswap_pagevec(&pvec); 575 pagevec_release(&pvec); 576 mem_cgroup_uncharge_end(); 577 index++; 578 } 579 580 spin_lock(&info->lock); 581 info->swapped -= nr_swaps_freed; 582 shmem_recalc_inode(inode); 583 spin_unlock(&info->lock); 584 } 585 586 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 587 { 588 shmem_undo_range(inode, lstart, lend, false); 589 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 590 } 591 EXPORT_SYMBOL_GPL(shmem_truncate_range); 592 593 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 594 { 595 struct inode *inode = dentry->d_inode; 596 int error; 597 598 error = inode_change_ok(inode, attr); 599 if (error) 600 return error; 601 602 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 603 loff_t oldsize = inode->i_size; 604 loff_t newsize = attr->ia_size; 605 606 if (newsize != oldsize) { 607 i_size_write(inode, newsize); 608 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 609 } 610 if (newsize < oldsize) { 611 loff_t holebegin = round_up(newsize, PAGE_SIZE); 612 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 613 shmem_truncate_range(inode, newsize, (loff_t)-1); 614 /* unmap again to remove racily COWed private pages */ 615 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 616 } 617 } 618 619 setattr_copy(inode, attr); 620 #ifdef CONFIG_TMPFS_POSIX_ACL 621 if (attr->ia_valid & ATTR_MODE) 622 error = generic_acl_chmod(inode); 623 #endif 624 return error; 625 } 626 627 static void shmem_evict_inode(struct inode *inode) 628 { 629 struct shmem_inode_info *info = SHMEM_I(inode); 630 struct shmem_xattr *xattr, *nxattr; 631 632 if (inode->i_mapping->a_ops == &shmem_aops) { 633 shmem_unacct_size(info->flags, inode->i_size); 634 inode->i_size = 0; 635 shmem_truncate_range(inode, 0, (loff_t)-1); 636 if (!list_empty(&info->swaplist)) { 637 mutex_lock(&shmem_swaplist_mutex); 638 list_del_init(&info->swaplist); 639 mutex_unlock(&shmem_swaplist_mutex); 640 } 641 } else 642 kfree(info->symlink); 643 644 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) { 645 kfree(xattr->name); 646 kfree(xattr); 647 } 648 BUG_ON(inode->i_blocks); 649 shmem_free_inode(inode->i_sb); 650 clear_inode(inode); 651 } 652 653 /* 654 * If swap found in inode, free it and move page from swapcache to filecache. 655 */ 656 static int shmem_unuse_inode(struct shmem_inode_info *info, 657 swp_entry_t swap, struct page **pagep) 658 { 659 struct address_space *mapping = info->vfs_inode.i_mapping; 660 void *radswap; 661 pgoff_t index; 662 gfp_t gfp; 663 int error = 0; 664 665 radswap = swp_to_radix_entry(swap); 666 index = radix_tree_locate_item(&mapping->page_tree, radswap); 667 if (index == -1) 668 return 0; 669 670 /* 671 * Move _head_ to start search for next from here. 672 * But be careful: shmem_evict_inode checks list_empty without taking 673 * mutex, and there's an instant in list_move_tail when info->swaplist 674 * would appear empty, if it were the only one on shmem_swaplist. 675 */ 676 if (shmem_swaplist.next != &info->swaplist) 677 list_move_tail(&shmem_swaplist, &info->swaplist); 678 679 gfp = mapping_gfp_mask(mapping); 680 if (shmem_should_replace_page(*pagep, gfp)) { 681 mutex_unlock(&shmem_swaplist_mutex); 682 error = shmem_replace_page(pagep, gfp, info, index); 683 mutex_lock(&shmem_swaplist_mutex); 684 /* 685 * We needed to drop mutex to make that restrictive page 686 * allocation; but the inode might already be freed by now, 687 * and we cannot refer to inode or mapping or info to check. 688 * However, we do hold page lock on the PageSwapCache page, 689 * so can check if that still has our reference remaining. 690 */ 691 if (!page_swapcount(*pagep)) 692 error = -ENOENT; 693 } 694 695 /* 696 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 697 * but also to hold up shmem_evict_inode(): so inode cannot be freed 698 * beneath us (pagelock doesn't help until the page is in pagecache). 699 */ 700 if (!error) 701 error = shmem_add_to_page_cache(*pagep, mapping, index, 702 GFP_NOWAIT, radswap); 703 if (error != -ENOMEM) { 704 /* 705 * Truncation and eviction use free_swap_and_cache(), which 706 * only does trylock page: if we raced, best clean up here. 707 */ 708 delete_from_swap_cache(*pagep); 709 set_page_dirty(*pagep); 710 if (!error) { 711 spin_lock(&info->lock); 712 info->swapped--; 713 spin_unlock(&info->lock); 714 swap_free(swap); 715 } 716 error = 1; /* not an error, but entry was found */ 717 } 718 return error; 719 } 720 721 /* 722 * Search through swapped inodes to find and replace swap by page. 723 */ 724 int shmem_unuse(swp_entry_t swap, struct page *page) 725 { 726 struct list_head *this, *next; 727 struct shmem_inode_info *info; 728 int found = 0; 729 int error = 0; 730 731 /* 732 * There's a faint possibility that swap page was replaced before 733 * caller locked it: it will come back later with the right page. 734 */ 735 if (unlikely(!PageSwapCache(page))) 736 goto out; 737 738 /* 739 * Charge page using GFP_KERNEL while we can wait, before taking 740 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 741 * Charged back to the user (not to caller) when swap account is used. 742 */ 743 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); 744 if (error) 745 goto out; 746 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 747 748 mutex_lock(&shmem_swaplist_mutex); 749 list_for_each_safe(this, next, &shmem_swaplist) { 750 info = list_entry(this, struct shmem_inode_info, swaplist); 751 if (info->swapped) 752 found = shmem_unuse_inode(info, swap, &page); 753 else 754 list_del_init(&info->swaplist); 755 cond_resched(); 756 if (found) 757 break; 758 } 759 mutex_unlock(&shmem_swaplist_mutex); 760 761 if (found < 0) 762 error = found; 763 out: 764 unlock_page(page); 765 page_cache_release(page); 766 return error; 767 } 768 769 /* 770 * Move the page from the page cache to the swap cache. 771 */ 772 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 773 { 774 struct shmem_inode_info *info; 775 struct address_space *mapping; 776 struct inode *inode; 777 swp_entry_t swap; 778 pgoff_t index; 779 780 BUG_ON(!PageLocked(page)); 781 mapping = page->mapping; 782 index = page->index; 783 inode = mapping->host; 784 info = SHMEM_I(inode); 785 if (info->flags & VM_LOCKED) 786 goto redirty; 787 if (!total_swap_pages) 788 goto redirty; 789 790 /* 791 * shmem_backing_dev_info's capabilities prevent regular writeback or 792 * sync from ever calling shmem_writepage; but a stacking filesystem 793 * might use ->writepage of its underlying filesystem, in which case 794 * tmpfs should write out to swap only in response to memory pressure, 795 * and not for the writeback threads or sync. 796 */ 797 if (!wbc->for_reclaim) { 798 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 799 goto redirty; 800 } 801 802 /* 803 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 804 * value into swapfile.c, the only way we can correctly account for a 805 * fallocated page arriving here is now to initialize it and write it. 806 * 807 * That's okay for a page already fallocated earlier, but if we have 808 * not yet completed the fallocation, then (a) we want to keep track 809 * of this page in case we have to undo it, and (b) it may not be a 810 * good idea to continue anyway, once we're pushing into swap. So 811 * reactivate the page, and let shmem_fallocate() quit when too many. 812 */ 813 if (!PageUptodate(page)) { 814 if (inode->i_private) { 815 struct shmem_falloc *shmem_falloc; 816 spin_lock(&inode->i_lock); 817 shmem_falloc = inode->i_private; 818 if (shmem_falloc && 819 index >= shmem_falloc->start && 820 index < shmem_falloc->next) 821 shmem_falloc->nr_unswapped++; 822 else 823 shmem_falloc = NULL; 824 spin_unlock(&inode->i_lock); 825 if (shmem_falloc) 826 goto redirty; 827 } 828 clear_highpage(page); 829 flush_dcache_page(page); 830 SetPageUptodate(page); 831 } 832 833 swap = get_swap_page(); 834 if (!swap.val) 835 goto redirty; 836 837 /* 838 * Add inode to shmem_unuse()'s list of swapped-out inodes, 839 * if it's not already there. Do it now before the page is 840 * moved to swap cache, when its pagelock no longer protects 841 * the inode from eviction. But don't unlock the mutex until 842 * we've incremented swapped, because shmem_unuse_inode() will 843 * prune a !swapped inode from the swaplist under this mutex. 844 */ 845 mutex_lock(&shmem_swaplist_mutex); 846 if (list_empty(&info->swaplist)) 847 list_add_tail(&info->swaplist, &shmem_swaplist); 848 849 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 850 swap_shmem_alloc(swap); 851 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 852 853 spin_lock(&info->lock); 854 info->swapped++; 855 shmem_recalc_inode(inode); 856 spin_unlock(&info->lock); 857 858 mutex_unlock(&shmem_swaplist_mutex); 859 BUG_ON(page_mapped(page)); 860 swap_writepage(page, wbc); 861 return 0; 862 } 863 864 mutex_unlock(&shmem_swaplist_mutex); 865 swapcache_free(swap, NULL); 866 redirty: 867 set_page_dirty(page); 868 if (wbc->for_reclaim) 869 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 870 unlock_page(page); 871 return 0; 872 } 873 874 #ifdef CONFIG_NUMA 875 #ifdef CONFIG_TMPFS 876 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 877 { 878 char buffer[64]; 879 880 if (!mpol || mpol->mode == MPOL_DEFAULT) 881 return; /* show nothing */ 882 883 mpol_to_str(buffer, sizeof(buffer), mpol, 1); 884 885 seq_printf(seq, ",mpol=%s", buffer); 886 } 887 888 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 889 { 890 struct mempolicy *mpol = NULL; 891 if (sbinfo->mpol) { 892 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 893 mpol = sbinfo->mpol; 894 mpol_get(mpol); 895 spin_unlock(&sbinfo->stat_lock); 896 } 897 return mpol; 898 } 899 #endif /* CONFIG_TMPFS */ 900 901 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 902 struct shmem_inode_info *info, pgoff_t index) 903 { 904 struct mempolicy mpol, *spol; 905 struct vm_area_struct pvma; 906 907 spol = mpol_cond_copy(&mpol, 908 mpol_shared_policy_lookup(&info->policy, index)); 909 910 /* Create a pseudo vma that just contains the policy */ 911 pvma.vm_start = 0; 912 pvma.vm_pgoff = index; 913 pvma.vm_ops = NULL; 914 pvma.vm_policy = spol; 915 return swapin_readahead(swap, gfp, &pvma, 0); 916 } 917 918 static struct page *shmem_alloc_page(gfp_t gfp, 919 struct shmem_inode_info *info, pgoff_t index) 920 { 921 struct vm_area_struct pvma; 922 923 /* Create a pseudo vma that just contains the policy */ 924 pvma.vm_start = 0; 925 pvma.vm_pgoff = index; 926 pvma.vm_ops = NULL; 927 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 928 929 /* 930 * alloc_page_vma() will drop the shared policy reference 931 */ 932 return alloc_page_vma(gfp, &pvma, 0); 933 } 934 #else /* !CONFIG_NUMA */ 935 #ifdef CONFIG_TMPFS 936 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 937 { 938 } 939 #endif /* CONFIG_TMPFS */ 940 941 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 942 struct shmem_inode_info *info, pgoff_t index) 943 { 944 return swapin_readahead(swap, gfp, NULL, 0); 945 } 946 947 static inline struct page *shmem_alloc_page(gfp_t gfp, 948 struct shmem_inode_info *info, pgoff_t index) 949 { 950 return alloc_page(gfp); 951 } 952 #endif /* CONFIG_NUMA */ 953 954 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 955 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 956 { 957 return NULL; 958 } 959 #endif 960 961 /* 962 * When a page is moved from swapcache to shmem filecache (either by the 963 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 964 * shmem_unuse_inode()), it may have been read in earlier from swap, in 965 * ignorance of the mapping it belongs to. If that mapping has special 966 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 967 * we may need to copy to a suitable page before moving to filecache. 968 * 969 * In a future release, this may well be extended to respect cpuset and 970 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 971 * but for now it is a simple matter of zone. 972 */ 973 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 974 { 975 return page_zonenum(page) > gfp_zone(gfp); 976 } 977 978 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 979 struct shmem_inode_info *info, pgoff_t index) 980 { 981 struct page *oldpage, *newpage; 982 struct address_space *swap_mapping; 983 pgoff_t swap_index; 984 int error; 985 986 oldpage = *pagep; 987 swap_index = page_private(oldpage); 988 swap_mapping = page_mapping(oldpage); 989 990 /* 991 * We have arrived here because our zones are constrained, so don't 992 * limit chance of success by further cpuset and node constraints. 993 */ 994 gfp &= ~GFP_CONSTRAINT_MASK; 995 newpage = shmem_alloc_page(gfp, info, index); 996 if (!newpage) 997 return -ENOMEM; 998 VM_BUG_ON(shmem_should_replace_page(newpage, gfp)); 999 1000 *pagep = newpage; 1001 page_cache_get(newpage); 1002 copy_highpage(newpage, oldpage); 1003 1004 VM_BUG_ON(!PageLocked(oldpage)); 1005 __set_page_locked(newpage); 1006 VM_BUG_ON(!PageUptodate(oldpage)); 1007 SetPageUptodate(newpage); 1008 VM_BUG_ON(!PageSwapBacked(oldpage)); 1009 SetPageSwapBacked(newpage); 1010 VM_BUG_ON(!swap_index); 1011 set_page_private(newpage, swap_index); 1012 VM_BUG_ON(!PageSwapCache(oldpage)); 1013 SetPageSwapCache(newpage); 1014 1015 /* 1016 * Our caller will very soon move newpage out of swapcache, but it's 1017 * a nice clean interface for us to replace oldpage by newpage there. 1018 */ 1019 spin_lock_irq(&swap_mapping->tree_lock); 1020 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1021 newpage); 1022 __inc_zone_page_state(newpage, NR_FILE_PAGES); 1023 __dec_zone_page_state(oldpage, NR_FILE_PAGES); 1024 spin_unlock_irq(&swap_mapping->tree_lock); 1025 BUG_ON(error); 1026 1027 mem_cgroup_replace_page_cache(oldpage, newpage); 1028 lru_cache_add_anon(newpage); 1029 1030 ClearPageSwapCache(oldpage); 1031 set_page_private(oldpage, 0); 1032 1033 unlock_page(oldpage); 1034 page_cache_release(oldpage); 1035 page_cache_release(oldpage); 1036 return 0; 1037 } 1038 1039 /* 1040 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1041 * 1042 * If we allocate a new one we do not mark it dirty. That's up to the 1043 * vm. If we swap it in we mark it dirty since we also free the swap 1044 * entry since a page cannot live in both the swap and page cache 1045 */ 1046 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1047 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) 1048 { 1049 struct address_space *mapping = inode->i_mapping; 1050 struct shmem_inode_info *info; 1051 struct shmem_sb_info *sbinfo; 1052 struct page *page; 1053 swp_entry_t swap; 1054 int error; 1055 int once = 0; 1056 int alloced = 0; 1057 1058 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT)) 1059 return -EFBIG; 1060 repeat: 1061 swap.val = 0; 1062 page = find_lock_page(mapping, index); 1063 if (radix_tree_exceptional_entry(page)) { 1064 swap = radix_to_swp_entry(page); 1065 page = NULL; 1066 } 1067 1068 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1069 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1070 error = -EINVAL; 1071 goto failed; 1072 } 1073 1074 /* fallocated page? */ 1075 if (page && !PageUptodate(page)) { 1076 if (sgp != SGP_READ) 1077 goto clear; 1078 unlock_page(page); 1079 page_cache_release(page); 1080 page = NULL; 1081 } 1082 if (page || (sgp == SGP_READ && !swap.val)) { 1083 *pagep = page; 1084 return 0; 1085 } 1086 1087 /* 1088 * Fast cache lookup did not find it: 1089 * bring it back from swap or allocate. 1090 */ 1091 info = SHMEM_I(inode); 1092 sbinfo = SHMEM_SB(inode->i_sb); 1093 1094 if (swap.val) { 1095 /* Look it up and read it in.. */ 1096 page = lookup_swap_cache(swap); 1097 if (!page) { 1098 /* here we actually do the io */ 1099 if (fault_type) 1100 *fault_type |= VM_FAULT_MAJOR; 1101 page = shmem_swapin(swap, gfp, info, index); 1102 if (!page) { 1103 error = -ENOMEM; 1104 goto failed; 1105 } 1106 } 1107 1108 /* We have to do this with page locked to prevent races */ 1109 lock_page(page); 1110 if (!PageSwapCache(page) || page->mapping) { 1111 error = -EEXIST; /* try again */ 1112 goto failed; 1113 } 1114 if (!PageUptodate(page)) { 1115 error = -EIO; 1116 goto failed; 1117 } 1118 wait_on_page_writeback(page); 1119 1120 if (shmem_should_replace_page(page, gfp)) { 1121 error = shmem_replace_page(&page, gfp, info, index); 1122 if (error) 1123 goto failed; 1124 } 1125 1126 error = mem_cgroup_cache_charge(page, current->mm, 1127 gfp & GFP_RECLAIM_MASK); 1128 if (!error) 1129 error = shmem_add_to_page_cache(page, mapping, index, 1130 gfp, swp_to_radix_entry(swap)); 1131 if (error) 1132 goto failed; 1133 1134 spin_lock(&info->lock); 1135 info->swapped--; 1136 shmem_recalc_inode(inode); 1137 spin_unlock(&info->lock); 1138 1139 delete_from_swap_cache(page); 1140 set_page_dirty(page); 1141 swap_free(swap); 1142 1143 } else { 1144 if (shmem_acct_block(info->flags)) { 1145 error = -ENOSPC; 1146 goto failed; 1147 } 1148 if (sbinfo->max_blocks) { 1149 if (percpu_counter_compare(&sbinfo->used_blocks, 1150 sbinfo->max_blocks) >= 0) { 1151 error = -ENOSPC; 1152 goto unacct; 1153 } 1154 percpu_counter_inc(&sbinfo->used_blocks); 1155 } 1156 1157 page = shmem_alloc_page(gfp, info, index); 1158 if (!page) { 1159 error = -ENOMEM; 1160 goto decused; 1161 } 1162 1163 SetPageSwapBacked(page); 1164 __set_page_locked(page); 1165 error = mem_cgroup_cache_charge(page, current->mm, 1166 gfp & GFP_RECLAIM_MASK); 1167 if (!error) 1168 error = shmem_add_to_page_cache(page, mapping, index, 1169 gfp, NULL); 1170 if (error) 1171 goto decused; 1172 lru_cache_add_anon(page); 1173 1174 spin_lock(&info->lock); 1175 info->alloced++; 1176 inode->i_blocks += BLOCKS_PER_PAGE; 1177 shmem_recalc_inode(inode); 1178 spin_unlock(&info->lock); 1179 alloced = true; 1180 1181 /* 1182 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1183 */ 1184 if (sgp == SGP_FALLOC) 1185 sgp = SGP_WRITE; 1186 clear: 1187 /* 1188 * Let SGP_WRITE caller clear ends if write does not fill page; 1189 * but SGP_FALLOC on a page fallocated earlier must initialize 1190 * it now, lest undo on failure cancel our earlier guarantee. 1191 */ 1192 if (sgp != SGP_WRITE) { 1193 clear_highpage(page); 1194 flush_dcache_page(page); 1195 SetPageUptodate(page); 1196 } 1197 if (sgp == SGP_DIRTY) 1198 set_page_dirty(page); 1199 } 1200 1201 /* Perhaps the file has been truncated since we checked */ 1202 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1203 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1204 error = -EINVAL; 1205 if (alloced) 1206 goto trunc; 1207 else 1208 goto failed; 1209 } 1210 *pagep = page; 1211 return 0; 1212 1213 /* 1214 * Error recovery. 1215 */ 1216 trunc: 1217 info = SHMEM_I(inode); 1218 ClearPageDirty(page); 1219 delete_from_page_cache(page); 1220 spin_lock(&info->lock); 1221 info->alloced--; 1222 inode->i_blocks -= BLOCKS_PER_PAGE; 1223 spin_unlock(&info->lock); 1224 decused: 1225 sbinfo = SHMEM_SB(inode->i_sb); 1226 if (sbinfo->max_blocks) 1227 percpu_counter_add(&sbinfo->used_blocks, -1); 1228 unacct: 1229 shmem_unacct_blocks(info->flags, 1); 1230 failed: 1231 if (swap.val && error != -EINVAL) { 1232 struct page *test = find_get_page(mapping, index); 1233 if (test && !radix_tree_exceptional_entry(test)) 1234 page_cache_release(test); 1235 /* Have another try if the entry has changed */ 1236 if (test != swp_to_radix_entry(swap)) 1237 error = -EEXIST; 1238 } 1239 if (page) { 1240 unlock_page(page); 1241 page_cache_release(page); 1242 } 1243 if (error == -ENOSPC && !once++) { 1244 info = SHMEM_I(inode); 1245 spin_lock(&info->lock); 1246 shmem_recalc_inode(inode); 1247 spin_unlock(&info->lock); 1248 goto repeat; 1249 } 1250 if (error == -EEXIST) 1251 goto repeat; 1252 return error; 1253 } 1254 1255 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1256 { 1257 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1258 int error; 1259 int ret = VM_FAULT_LOCKED; 1260 1261 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1262 if (error) 1263 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1264 1265 if (ret & VM_FAULT_MAJOR) { 1266 count_vm_event(PGMAJFAULT); 1267 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1268 } 1269 return ret; 1270 } 1271 1272 #ifdef CONFIG_NUMA 1273 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 1274 { 1275 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1276 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 1277 } 1278 1279 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1280 unsigned long addr) 1281 { 1282 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1283 pgoff_t index; 1284 1285 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1286 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 1287 } 1288 #endif 1289 1290 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1291 { 1292 struct inode *inode = file->f_path.dentry->d_inode; 1293 struct shmem_inode_info *info = SHMEM_I(inode); 1294 int retval = -ENOMEM; 1295 1296 spin_lock(&info->lock); 1297 if (lock && !(info->flags & VM_LOCKED)) { 1298 if (!user_shm_lock(inode->i_size, user)) 1299 goto out_nomem; 1300 info->flags |= VM_LOCKED; 1301 mapping_set_unevictable(file->f_mapping); 1302 } 1303 if (!lock && (info->flags & VM_LOCKED) && user) { 1304 user_shm_unlock(inode->i_size, user); 1305 info->flags &= ~VM_LOCKED; 1306 mapping_clear_unevictable(file->f_mapping); 1307 } 1308 retval = 0; 1309 1310 out_nomem: 1311 spin_unlock(&info->lock); 1312 return retval; 1313 } 1314 1315 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1316 { 1317 file_accessed(file); 1318 vma->vm_ops = &shmem_vm_ops; 1319 vma->vm_flags |= VM_CAN_NONLINEAR; 1320 return 0; 1321 } 1322 1323 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1324 umode_t mode, dev_t dev, unsigned long flags) 1325 { 1326 struct inode *inode; 1327 struct shmem_inode_info *info; 1328 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1329 1330 if (shmem_reserve_inode(sb)) 1331 return NULL; 1332 1333 inode = new_inode(sb); 1334 if (inode) { 1335 inode->i_ino = get_next_ino(); 1336 inode_init_owner(inode, dir, mode); 1337 inode->i_blocks = 0; 1338 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; 1339 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1340 inode->i_generation = get_seconds(); 1341 info = SHMEM_I(inode); 1342 memset(info, 0, (char *)inode - (char *)info); 1343 spin_lock_init(&info->lock); 1344 info->flags = flags & VM_NORESERVE; 1345 INIT_LIST_HEAD(&info->swaplist); 1346 INIT_LIST_HEAD(&info->xattr_list); 1347 cache_no_acl(inode); 1348 1349 switch (mode & S_IFMT) { 1350 default: 1351 inode->i_op = &shmem_special_inode_operations; 1352 init_special_inode(inode, mode, dev); 1353 break; 1354 case S_IFREG: 1355 inode->i_mapping->a_ops = &shmem_aops; 1356 inode->i_op = &shmem_inode_operations; 1357 inode->i_fop = &shmem_file_operations; 1358 mpol_shared_policy_init(&info->policy, 1359 shmem_get_sbmpol(sbinfo)); 1360 break; 1361 case S_IFDIR: 1362 inc_nlink(inode); 1363 /* Some things misbehave if size == 0 on a directory */ 1364 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1365 inode->i_op = &shmem_dir_inode_operations; 1366 inode->i_fop = &simple_dir_operations; 1367 break; 1368 case S_IFLNK: 1369 /* 1370 * Must not load anything in the rbtree, 1371 * mpol_free_shared_policy will not be called. 1372 */ 1373 mpol_shared_policy_init(&info->policy, NULL); 1374 break; 1375 } 1376 } else 1377 shmem_free_inode(sb); 1378 return inode; 1379 } 1380 1381 #ifdef CONFIG_TMPFS 1382 static const struct inode_operations shmem_symlink_inode_operations; 1383 static const struct inode_operations shmem_short_symlink_operations; 1384 1385 #ifdef CONFIG_TMPFS_XATTR 1386 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 1387 #else 1388 #define shmem_initxattrs NULL 1389 #endif 1390 1391 static int 1392 shmem_write_begin(struct file *file, struct address_space *mapping, 1393 loff_t pos, unsigned len, unsigned flags, 1394 struct page **pagep, void **fsdata) 1395 { 1396 struct inode *inode = mapping->host; 1397 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1398 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1399 } 1400 1401 static int 1402 shmem_write_end(struct file *file, struct address_space *mapping, 1403 loff_t pos, unsigned len, unsigned copied, 1404 struct page *page, void *fsdata) 1405 { 1406 struct inode *inode = mapping->host; 1407 1408 if (pos + copied > inode->i_size) 1409 i_size_write(inode, pos + copied); 1410 1411 if (!PageUptodate(page)) { 1412 if (copied < PAGE_CACHE_SIZE) { 1413 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1414 zero_user_segments(page, 0, from, 1415 from + copied, PAGE_CACHE_SIZE); 1416 } 1417 SetPageUptodate(page); 1418 } 1419 set_page_dirty(page); 1420 unlock_page(page); 1421 page_cache_release(page); 1422 1423 return copied; 1424 } 1425 1426 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor) 1427 { 1428 struct inode *inode = filp->f_path.dentry->d_inode; 1429 struct address_space *mapping = inode->i_mapping; 1430 pgoff_t index; 1431 unsigned long offset; 1432 enum sgp_type sgp = SGP_READ; 1433 1434 /* 1435 * Might this read be for a stacking filesystem? Then when reading 1436 * holes of a sparse file, we actually need to allocate those pages, 1437 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1438 */ 1439 if (segment_eq(get_fs(), KERNEL_DS)) 1440 sgp = SGP_DIRTY; 1441 1442 index = *ppos >> PAGE_CACHE_SHIFT; 1443 offset = *ppos & ~PAGE_CACHE_MASK; 1444 1445 for (;;) { 1446 struct page *page = NULL; 1447 pgoff_t end_index; 1448 unsigned long nr, ret; 1449 loff_t i_size = i_size_read(inode); 1450 1451 end_index = i_size >> PAGE_CACHE_SHIFT; 1452 if (index > end_index) 1453 break; 1454 if (index == end_index) { 1455 nr = i_size & ~PAGE_CACHE_MASK; 1456 if (nr <= offset) 1457 break; 1458 } 1459 1460 desc->error = shmem_getpage(inode, index, &page, sgp, NULL); 1461 if (desc->error) { 1462 if (desc->error == -EINVAL) 1463 desc->error = 0; 1464 break; 1465 } 1466 if (page) 1467 unlock_page(page); 1468 1469 /* 1470 * We must evaluate after, since reads (unlike writes) 1471 * are called without i_mutex protection against truncate 1472 */ 1473 nr = PAGE_CACHE_SIZE; 1474 i_size = i_size_read(inode); 1475 end_index = i_size >> PAGE_CACHE_SHIFT; 1476 if (index == end_index) { 1477 nr = i_size & ~PAGE_CACHE_MASK; 1478 if (nr <= offset) { 1479 if (page) 1480 page_cache_release(page); 1481 break; 1482 } 1483 } 1484 nr -= offset; 1485 1486 if (page) { 1487 /* 1488 * If users can be writing to this page using arbitrary 1489 * virtual addresses, take care about potential aliasing 1490 * before reading the page on the kernel side. 1491 */ 1492 if (mapping_writably_mapped(mapping)) 1493 flush_dcache_page(page); 1494 /* 1495 * Mark the page accessed if we read the beginning. 1496 */ 1497 if (!offset) 1498 mark_page_accessed(page); 1499 } else { 1500 page = ZERO_PAGE(0); 1501 page_cache_get(page); 1502 } 1503 1504 /* 1505 * Ok, we have the page, and it's up-to-date, so 1506 * now we can copy it to user space... 1507 * 1508 * The actor routine returns how many bytes were actually used.. 1509 * NOTE! This may not be the same as how much of a user buffer 1510 * we filled up (we may be padding etc), so we can only update 1511 * "pos" here (the actor routine has to update the user buffer 1512 * pointers and the remaining count). 1513 */ 1514 ret = actor(desc, page, offset, nr); 1515 offset += ret; 1516 index += offset >> PAGE_CACHE_SHIFT; 1517 offset &= ~PAGE_CACHE_MASK; 1518 1519 page_cache_release(page); 1520 if (ret != nr || !desc->count) 1521 break; 1522 1523 cond_resched(); 1524 } 1525 1526 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1527 file_accessed(filp); 1528 } 1529 1530 static ssize_t shmem_file_aio_read(struct kiocb *iocb, 1531 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 1532 { 1533 struct file *filp = iocb->ki_filp; 1534 ssize_t retval; 1535 unsigned long seg; 1536 size_t count; 1537 loff_t *ppos = &iocb->ki_pos; 1538 1539 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1540 if (retval) 1541 return retval; 1542 1543 for (seg = 0; seg < nr_segs; seg++) { 1544 read_descriptor_t desc; 1545 1546 desc.written = 0; 1547 desc.arg.buf = iov[seg].iov_base; 1548 desc.count = iov[seg].iov_len; 1549 if (desc.count == 0) 1550 continue; 1551 desc.error = 0; 1552 do_shmem_file_read(filp, ppos, &desc, file_read_actor); 1553 retval += desc.written; 1554 if (desc.error) { 1555 retval = retval ?: desc.error; 1556 break; 1557 } 1558 if (desc.count > 0) 1559 break; 1560 } 1561 return retval; 1562 } 1563 1564 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 1565 struct pipe_inode_info *pipe, size_t len, 1566 unsigned int flags) 1567 { 1568 struct address_space *mapping = in->f_mapping; 1569 struct inode *inode = mapping->host; 1570 unsigned int loff, nr_pages, req_pages; 1571 struct page *pages[PIPE_DEF_BUFFERS]; 1572 struct partial_page partial[PIPE_DEF_BUFFERS]; 1573 struct page *page; 1574 pgoff_t index, end_index; 1575 loff_t isize, left; 1576 int error, page_nr; 1577 struct splice_pipe_desc spd = { 1578 .pages = pages, 1579 .partial = partial, 1580 .nr_pages_max = PIPE_DEF_BUFFERS, 1581 .flags = flags, 1582 .ops = &page_cache_pipe_buf_ops, 1583 .spd_release = spd_release_page, 1584 }; 1585 1586 isize = i_size_read(inode); 1587 if (unlikely(*ppos >= isize)) 1588 return 0; 1589 1590 left = isize - *ppos; 1591 if (unlikely(left < len)) 1592 len = left; 1593 1594 if (splice_grow_spd(pipe, &spd)) 1595 return -ENOMEM; 1596 1597 index = *ppos >> PAGE_CACHE_SHIFT; 1598 loff = *ppos & ~PAGE_CACHE_MASK; 1599 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1600 nr_pages = min(req_pages, pipe->buffers); 1601 1602 spd.nr_pages = find_get_pages_contig(mapping, index, 1603 nr_pages, spd.pages); 1604 index += spd.nr_pages; 1605 error = 0; 1606 1607 while (spd.nr_pages < nr_pages) { 1608 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); 1609 if (error) 1610 break; 1611 unlock_page(page); 1612 spd.pages[spd.nr_pages++] = page; 1613 index++; 1614 } 1615 1616 index = *ppos >> PAGE_CACHE_SHIFT; 1617 nr_pages = spd.nr_pages; 1618 spd.nr_pages = 0; 1619 1620 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 1621 unsigned int this_len; 1622 1623 if (!len) 1624 break; 1625 1626 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 1627 page = spd.pages[page_nr]; 1628 1629 if (!PageUptodate(page) || page->mapping != mapping) { 1630 error = shmem_getpage(inode, index, &page, 1631 SGP_CACHE, NULL); 1632 if (error) 1633 break; 1634 unlock_page(page); 1635 page_cache_release(spd.pages[page_nr]); 1636 spd.pages[page_nr] = page; 1637 } 1638 1639 isize = i_size_read(inode); 1640 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1641 if (unlikely(!isize || index > end_index)) 1642 break; 1643 1644 if (end_index == index) { 1645 unsigned int plen; 1646 1647 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1648 if (plen <= loff) 1649 break; 1650 1651 this_len = min(this_len, plen - loff); 1652 len = this_len; 1653 } 1654 1655 spd.partial[page_nr].offset = loff; 1656 spd.partial[page_nr].len = this_len; 1657 len -= this_len; 1658 loff = 0; 1659 spd.nr_pages++; 1660 index++; 1661 } 1662 1663 while (page_nr < nr_pages) 1664 page_cache_release(spd.pages[page_nr++]); 1665 1666 if (spd.nr_pages) 1667 error = splice_to_pipe(pipe, &spd); 1668 1669 splice_shrink_spd(&spd); 1670 1671 if (error > 0) { 1672 *ppos += error; 1673 file_accessed(in); 1674 } 1675 return error; 1676 } 1677 1678 /* 1679 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 1680 */ 1681 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 1682 pgoff_t index, pgoff_t end, int origin) 1683 { 1684 struct page *page; 1685 struct pagevec pvec; 1686 pgoff_t indices[PAGEVEC_SIZE]; 1687 bool done = false; 1688 int i; 1689 1690 pagevec_init(&pvec, 0); 1691 pvec.nr = 1; /* start small: we may be there already */ 1692 while (!done) { 1693 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 1694 pvec.nr, pvec.pages, indices); 1695 if (!pvec.nr) { 1696 if (origin == SEEK_DATA) 1697 index = end; 1698 break; 1699 } 1700 for (i = 0; i < pvec.nr; i++, index++) { 1701 if (index < indices[i]) { 1702 if (origin == SEEK_HOLE) { 1703 done = true; 1704 break; 1705 } 1706 index = indices[i]; 1707 } 1708 page = pvec.pages[i]; 1709 if (page && !radix_tree_exceptional_entry(page)) { 1710 if (!PageUptodate(page)) 1711 page = NULL; 1712 } 1713 if (index >= end || 1714 (page && origin == SEEK_DATA) || 1715 (!page && origin == SEEK_HOLE)) { 1716 done = true; 1717 break; 1718 } 1719 } 1720 shmem_deswap_pagevec(&pvec); 1721 pagevec_release(&pvec); 1722 pvec.nr = PAGEVEC_SIZE; 1723 cond_resched(); 1724 } 1725 return index; 1726 } 1727 1728 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int origin) 1729 { 1730 struct address_space *mapping; 1731 struct inode *inode; 1732 pgoff_t start, end; 1733 loff_t new_offset; 1734 1735 if (origin != SEEK_DATA && origin != SEEK_HOLE) 1736 return generic_file_llseek_size(file, offset, origin, 1737 MAX_LFS_FILESIZE); 1738 mapping = file->f_mapping; 1739 inode = mapping->host; 1740 mutex_lock(&inode->i_mutex); 1741 /* We're holding i_mutex so we can access i_size directly */ 1742 1743 if (offset < 0) 1744 offset = -EINVAL; 1745 else if (offset >= inode->i_size) 1746 offset = -ENXIO; 1747 else { 1748 start = offset >> PAGE_CACHE_SHIFT; 1749 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1750 new_offset = shmem_seek_hole_data(mapping, start, end, origin); 1751 new_offset <<= PAGE_CACHE_SHIFT; 1752 if (new_offset > offset) { 1753 if (new_offset < inode->i_size) 1754 offset = new_offset; 1755 else if (origin == SEEK_DATA) 1756 offset = -ENXIO; 1757 else 1758 offset = inode->i_size; 1759 } 1760 } 1761 1762 if (offset >= 0 && offset != file->f_pos) { 1763 file->f_pos = offset; 1764 file->f_version = 0; 1765 } 1766 mutex_unlock(&inode->i_mutex); 1767 return offset; 1768 } 1769 1770 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 1771 loff_t len) 1772 { 1773 struct inode *inode = file->f_path.dentry->d_inode; 1774 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1775 struct shmem_falloc shmem_falloc; 1776 pgoff_t start, index, end; 1777 int error; 1778 1779 mutex_lock(&inode->i_mutex); 1780 1781 if (mode & FALLOC_FL_PUNCH_HOLE) { 1782 struct address_space *mapping = file->f_mapping; 1783 loff_t unmap_start = round_up(offset, PAGE_SIZE); 1784 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 1785 1786 if ((u64)unmap_end > (u64)unmap_start) 1787 unmap_mapping_range(mapping, unmap_start, 1788 1 + unmap_end - unmap_start, 0); 1789 shmem_truncate_range(inode, offset, offset + len - 1); 1790 /* No need to unmap again: hole-punching leaves COWed pages */ 1791 error = 0; 1792 goto out; 1793 } 1794 1795 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 1796 error = inode_newsize_ok(inode, offset + len); 1797 if (error) 1798 goto out; 1799 1800 start = offset >> PAGE_CACHE_SHIFT; 1801 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1802 /* Try to avoid a swapstorm if len is impossible to satisfy */ 1803 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 1804 error = -ENOSPC; 1805 goto out; 1806 } 1807 1808 shmem_falloc.start = start; 1809 shmem_falloc.next = start; 1810 shmem_falloc.nr_falloced = 0; 1811 shmem_falloc.nr_unswapped = 0; 1812 spin_lock(&inode->i_lock); 1813 inode->i_private = &shmem_falloc; 1814 spin_unlock(&inode->i_lock); 1815 1816 for (index = start; index < end; index++) { 1817 struct page *page; 1818 1819 /* 1820 * Good, the fallocate(2) manpage permits EINTR: we may have 1821 * been interrupted because we are using up too much memory. 1822 */ 1823 if (signal_pending(current)) 1824 error = -EINTR; 1825 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 1826 error = -ENOMEM; 1827 else 1828 error = shmem_getpage(inode, index, &page, SGP_FALLOC, 1829 NULL); 1830 if (error) { 1831 /* Remove the !PageUptodate pages we added */ 1832 shmem_undo_range(inode, 1833 (loff_t)start << PAGE_CACHE_SHIFT, 1834 (loff_t)index << PAGE_CACHE_SHIFT, true); 1835 goto undone; 1836 } 1837 1838 /* 1839 * Inform shmem_writepage() how far we have reached. 1840 * No need for lock or barrier: we have the page lock. 1841 */ 1842 shmem_falloc.next++; 1843 if (!PageUptodate(page)) 1844 shmem_falloc.nr_falloced++; 1845 1846 /* 1847 * If !PageUptodate, leave it that way so that freeable pages 1848 * can be recognized if we need to rollback on error later. 1849 * But set_page_dirty so that memory pressure will swap rather 1850 * than free the pages we are allocating (and SGP_CACHE pages 1851 * might still be clean: we now need to mark those dirty too). 1852 */ 1853 set_page_dirty(page); 1854 unlock_page(page); 1855 page_cache_release(page); 1856 cond_resched(); 1857 } 1858 1859 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 1860 i_size_write(inode, offset + len); 1861 inode->i_ctime = CURRENT_TIME; 1862 undone: 1863 spin_lock(&inode->i_lock); 1864 inode->i_private = NULL; 1865 spin_unlock(&inode->i_lock); 1866 out: 1867 mutex_unlock(&inode->i_mutex); 1868 return error; 1869 } 1870 1871 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 1872 { 1873 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 1874 1875 buf->f_type = TMPFS_MAGIC; 1876 buf->f_bsize = PAGE_CACHE_SIZE; 1877 buf->f_namelen = NAME_MAX; 1878 if (sbinfo->max_blocks) { 1879 buf->f_blocks = sbinfo->max_blocks; 1880 buf->f_bavail = 1881 buf->f_bfree = sbinfo->max_blocks - 1882 percpu_counter_sum(&sbinfo->used_blocks); 1883 } 1884 if (sbinfo->max_inodes) { 1885 buf->f_files = sbinfo->max_inodes; 1886 buf->f_ffree = sbinfo->free_inodes; 1887 } 1888 /* else leave those fields 0 like simple_statfs */ 1889 return 0; 1890 } 1891 1892 /* 1893 * File creation. Allocate an inode, and we're done.. 1894 */ 1895 static int 1896 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1897 { 1898 struct inode *inode; 1899 int error = -ENOSPC; 1900 1901 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 1902 if (inode) { 1903 error = security_inode_init_security(inode, dir, 1904 &dentry->d_name, 1905 shmem_initxattrs, NULL); 1906 if (error) { 1907 if (error != -EOPNOTSUPP) { 1908 iput(inode); 1909 return error; 1910 } 1911 } 1912 #ifdef CONFIG_TMPFS_POSIX_ACL 1913 error = generic_acl_init(inode, dir); 1914 if (error) { 1915 iput(inode); 1916 return error; 1917 } 1918 #else 1919 error = 0; 1920 #endif 1921 dir->i_size += BOGO_DIRENT_SIZE; 1922 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1923 d_instantiate(dentry, inode); 1924 dget(dentry); /* Extra count - pin the dentry in core */ 1925 } 1926 return error; 1927 } 1928 1929 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1930 { 1931 int error; 1932 1933 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 1934 return error; 1935 inc_nlink(dir); 1936 return 0; 1937 } 1938 1939 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 1940 struct nameidata *nd) 1941 { 1942 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 1943 } 1944 1945 /* 1946 * Link a file.. 1947 */ 1948 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1949 { 1950 struct inode *inode = old_dentry->d_inode; 1951 int ret; 1952 1953 /* 1954 * No ordinary (disk based) filesystem counts links as inodes; 1955 * but each new link needs a new dentry, pinning lowmem, and 1956 * tmpfs dentries cannot be pruned until they are unlinked. 1957 */ 1958 ret = shmem_reserve_inode(inode->i_sb); 1959 if (ret) 1960 goto out; 1961 1962 dir->i_size += BOGO_DIRENT_SIZE; 1963 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1964 inc_nlink(inode); 1965 ihold(inode); /* New dentry reference */ 1966 dget(dentry); /* Extra pinning count for the created dentry */ 1967 d_instantiate(dentry, inode); 1968 out: 1969 return ret; 1970 } 1971 1972 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 1973 { 1974 struct inode *inode = dentry->d_inode; 1975 1976 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 1977 shmem_free_inode(inode->i_sb); 1978 1979 dir->i_size -= BOGO_DIRENT_SIZE; 1980 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1981 drop_nlink(inode); 1982 dput(dentry); /* Undo the count from "create" - this does all the work */ 1983 return 0; 1984 } 1985 1986 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 1987 { 1988 if (!simple_empty(dentry)) 1989 return -ENOTEMPTY; 1990 1991 drop_nlink(dentry->d_inode); 1992 drop_nlink(dir); 1993 return shmem_unlink(dir, dentry); 1994 } 1995 1996 /* 1997 * The VFS layer already does all the dentry stuff for rename, 1998 * we just have to decrement the usage count for the target if 1999 * it exists so that the VFS layer correctly free's it when it 2000 * gets overwritten. 2001 */ 2002 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2003 { 2004 struct inode *inode = old_dentry->d_inode; 2005 int they_are_dirs = S_ISDIR(inode->i_mode); 2006 2007 if (!simple_empty(new_dentry)) 2008 return -ENOTEMPTY; 2009 2010 if (new_dentry->d_inode) { 2011 (void) shmem_unlink(new_dir, new_dentry); 2012 if (they_are_dirs) 2013 drop_nlink(old_dir); 2014 } else if (they_are_dirs) { 2015 drop_nlink(old_dir); 2016 inc_nlink(new_dir); 2017 } 2018 2019 old_dir->i_size -= BOGO_DIRENT_SIZE; 2020 new_dir->i_size += BOGO_DIRENT_SIZE; 2021 old_dir->i_ctime = old_dir->i_mtime = 2022 new_dir->i_ctime = new_dir->i_mtime = 2023 inode->i_ctime = CURRENT_TIME; 2024 return 0; 2025 } 2026 2027 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2028 { 2029 int error; 2030 int len; 2031 struct inode *inode; 2032 struct page *page; 2033 char *kaddr; 2034 struct shmem_inode_info *info; 2035 2036 len = strlen(symname) + 1; 2037 if (len > PAGE_CACHE_SIZE) 2038 return -ENAMETOOLONG; 2039 2040 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 2041 if (!inode) 2042 return -ENOSPC; 2043 2044 error = security_inode_init_security(inode, dir, &dentry->d_name, 2045 shmem_initxattrs, NULL); 2046 if (error) { 2047 if (error != -EOPNOTSUPP) { 2048 iput(inode); 2049 return error; 2050 } 2051 error = 0; 2052 } 2053 2054 info = SHMEM_I(inode); 2055 inode->i_size = len-1; 2056 if (len <= SHORT_SYMLINK_LEN) { 2057 info->symlink = kmemdup(symname, len, GFP_KERNEL); 2058 if (!info->symlink) { 2059 iput(inode); 2060 return -ENOMEM; 2061 } 2062 inode->i_op = &shmem_short_symlink_operations; 2063 } else { 2064 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 2065 if (error) { 2066 iput(inode); 2067 return error; 2068 } 2069 inode->i_mapping->a_ops = &shmem_aops; 2070 inode->i_op = &shmem_symlink_inode_operations; 2071 kaddr = kmap_atomic(page); 2072 memcpy(kaddr, symname, len); 2073 kunmap_atomic(kaddr); 2074 SetPageUptodate(page); 2075 set_page_dirty(page); 2076 unlock_page(page); 2077 page_cache_release(page); 2078 } 2079 dir->i_size += BOGO_DIRENT_SIZE; 2080 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2081 d_instantiate(dentry, inode); 2082 dget(dentry); 2083 return 0; 2084 } 2085 2086 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd) 2087 { 2088 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink); 2089 return NULL; 2090 } 2091 2092 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 2093 { 2094 struct page *page = NULL; 2095 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); 2096 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page)); 2097 if (page) 2098 unlock_page(page); 2099 return page; 2100 } 2101 2102 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2103 { 2104 if (!IS_ERR(nd_get_link(nd))) { 2105 struct page *page = cookie; 2106 kunmap(page); 2107 mark_page_accessed(page); 2108 page_cache_release(page); 2109 } 2110 } 2111 2112 #ifdef CONFIG_TMPFS_XATTR 2113 /* 2114 * Superblocks without xattr inode operations may get some security.* xattr 2115 * support from the LSM "for free". As soon as we have any other xattrs 2116 * like ACLs, we also need to implement the security.* handlers at 2117 * filesystem level, though. 2118 */ 2119 2120 /* 2121 * Allocate new xattr and copy in the value; but leave the name to callers. 2122 */ 2123 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size) 2124 { 2125 struct shmem_xattr *new_xattr; 2126 size_t len; 2127 2128 /* wrap around? */ 2129 len = sizeof(*new_xattr) + size; 2130 if (len <= sizeof(*new_xattr)) 2131 return NULL; 2132 2133 new_xattr = kmalloc(len, GFP_KERNEL); 2134 if (!new_xattr) 2135 return NULL; 2136 2137 new_xattr->size = size; 2138 memcpy(new_xattr->value, value, size); 2139 return new_xattr; 2140 } 2141 2142 /* 2143 * Callback for security_inode_init_security() for acquiring xattrs. 2144 */ 2145 static int shmem_initxattrs(struct inode *inode, 2146 const struct xattr *xattr_array, 2147 void *fs_info) 2148 { 2149 struct shmem_inode_info *info = SHMEM_I(inode); 2150 const struct xattr *xattr; 2151 struct shmem_xattr *new_xattr; 2152 size_t len; 2153 2154 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 2155 new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len); 2156 if (!new_xattr) 2157 return -ENOMEM; 2158 2159 len = strlen(xattr->name) + 1; 2160 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 2161 GFP_KERNEL); 2162 if (!new_xattr->name) { 2163 kfree(new_xattr); 2164 return -ENOMEM; 2165 } 2166 2167 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 2168 XATTR_SECURITY_PREFIX_LEN); 2169 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 2170 xattr->name, len); 2171 2172 spin_lock(&info->lock); 2173 list_add(&new_xattr->list, &info->xattr_list); 2174 spin_unlock(&info->lock); 2175 } 2176 2177 return 0; 2178 } 2179 2180 static int shmem_xattr_get(struct dentry *dentry, const char *name, 2181 void *buffer, size_t size) 2182 { 2183 struct shmem_inode_info *info; 2184 struct shmem_xattr *xattr; 2185 int ret = -ENODATA; 2186 2187 info = SHMEM_I(dentry->d_inode); 2188 2189 spin_lock(&info->lock); 2190 list_for_each_entry(xattr, &info->xattr_list, list) { 2191 if (strcmp(name, xattr->name)) 2192 continue; 2193 2194 ret = xattr->size; 2195 if (buffer) { 2196 if (size < xattr->size) 2197 ret = -ERANGE; 2198 else 2199 memcpy(buffer, xattr->value, xattr->size); 2200 } 2201 break; 2202 } 2203 spin_unlock(&info->lock); 2204 return ret; 2205 } 2206 2207 static int shmem_xattr_set(struct inode *inode, const char *name, 2208 const void *value, size_t size, int flags) 2209 { 2210 struct shmem_inode_info *info = SHMEM_I(inode); 2211 struct shmem_xattr *xattr; 2212 struct shmem_xattr *new_xattr = NULL; 2213 int err = 0; 2214 2215 /* value == NULL means remove */ 2216 if (value) { 2217 new_xattr = shmem_xattr_alloc(value, size); 2218 if (!new_xattr) 2219 return -ENOMEM; 2220 2221 new_xattr->name = kstrdup(name, GFP_KERNEL); 2222 if (!new_xattr->name) { 2223 kfree(new_xattr); 2224 return -ENOMEM; 2225 } 2226 } 2227 2228 spin_lock(&info->lock); 2229 list_for_each_entry(xattr, &info->xattr_list, list) { 2230 if (!strcmp(name, xattr->name)) { 2231 if (flags & XATTR_CREATE) { 2232 xattr = new_xattr; 2233 err = -EEXIST; 2234 } else if (new_xattr) { 2235 list_replace(&xattr->list, &new_xattr->list); 2236 } else { 2237 list_del(&xattr->list); 2238 } 2239 goto out; 2240 } 2241 } 2242 if (flags & XATTR_REPLACE) { 2243 xattr = new_xattr; 2244 err = -ENODATA; 2245 } else { 2246 list_add(&new_xattr->list, &info->xattr_list); 2247 xattr = NULL; 2248 } 2249 out: 2250 spin_unlock(&info->lock); 2251 if (xattr) 2252 kfree(xattr->name); 2253 kfree(xattr); 2254 return err; 2255 } 2256 2257 static const struct xattr_handler *shmem_xattr_handlers[] = { 2258 #ifdef CONFIG_TMPFS_POSIX_ACL 2259 &generic_acl_access_handler, 2260 &generic_acl_default_handler, 2261 #endif 2262 NULL 2263 }; 2264 2265 static int shmem_xattr_validate(const char *name) 2266 { 2267 struct { const char *prefix; size_t len; } arr[] = { 2268 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN }, 2269 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN } 2270 }; 2271 int i; 2272 2273 for (i = 0; i < ARRAY_SIZE(arr); i++) { 2274 size_t preflen = arr[i].len; 2275 if (strncmp(name, arr[i].prefix, preflen) == 0) { 2276 if (!name[preflen]) 2277 return -EINVAL; 2278 return 0; 2279 } 2280 } 2281 return -EOPNOTSUPP; 2282 } 2283 2284 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name, 2285 void *buffer, size_t size) 2286 { 2287 int err; 2288 2289 /* 2290 * If this is a request for a synthetic attribute in the system.* 2291 * namespace use the generic infrastructure to resolve a handler 2292 * for it via sb->s_xattr. 2293 */ 2294 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2295 return generic_getxattr(dentry, name, buffer, size); 2296 2297 err = shmem_xattr_validate(name); 2298 if (err) 2299 return err; 2300 2301 return shmem_xattr_get(dentry, name, buffer, size); 2302 } 2303 2304 static int shmem_setxattr(struct dentry *dentry, const char *name, 2305 const void *value, size_t size, int flags) 2306 { 2307 int err; 2308 2309 /* 2310 * If this is a request for a synthetic attribute in the system.* 2311 * namespace use the generic infrastructure to resolve a handler 2312 * for it via sb->s_xattr. 2313 */ 2314 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2315 return generic_setxattr(dentry, name, value, size, flags); 2316 2317 err = shmem_xattr_validate(name); 2318 if (err) 2319 return err; 2320 2321 if (size == 0) 2322 value = ""; /* empty EA, do not remove */ 2323 2324 return shmem_xattr_set(dentry->d_inode, name, value, size, flags); 2325 2326 } 2327 2328 static int shmem_removexattr(struct dentry *dentry, const char *name) 2329 { 2330 int err; 2331 2332 /* 2333 * If this is a request for a synthetic attribute in the system.* 2334 * namespace use the generic infrastructure to resolve a handler 2335 * for it via sb->s_xattr. 2336 */ 2337 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2338 return generic_removexattr(dentry, name); 2339 2340 err = shmem_xattr_validate(name); 2341 if (err) 2342 return err; 2343 2344 return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE); 2345 } 2346 2347 static bool xattr_is_trusted(const char *name) 2348 { 2349 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN); 2350 } 2351 2352 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 2353 { 2354 bool trusted = capable(CAP_SYS_ADMIN); 2355 struct shmem_xattr *xattr; 2356 struct shmem_inode_info *info; 2357 size_t used = 0; 2358 2359 info = SHMEM_I(dentry->d_inode); 2360 2361 spin_lock(&info->lock); 2362 list_for_each_entry(xattr, &info->xattr_list, list) { 2363 size_t len; 2364 2365 /* skip "trusted." attributes for unprivileged callers */ 2366 if (!trusted && xattr_is_trusted(xattr->name)) 2367 continue; 2368 2369 len = strlen(xattr->name) + 1; 2370 used += len; 2371 if (buffer) { 2372 if (size < used) { 2373 used = -ERANGE; 2374 break; 2375 } 2376 memcpy(buffer, xattr->name, len); 2377 buffer += len; 2378 } 2379 } 2380 spin_unlock(&info->lock); 2381 2382 return used; 2383 } 2384 #endif /* CONFIG_TMPFS_XATTR */ 2385 2386 static const struct inode_operations shmem_short_symlink_operations = { 2387 .readlink = generic_readlink, 2388 .follow_link = shmem_follow_short_symlink, 2389 #ifdef CONFIG_TMPFS_XATTR 2390 .setxattr = shmem_setxattr, 2391 .getxattr = shmem_getxattr, 2392 .listxattr = shmem_listxattr, 2393 .removexattr = shmem_removexattr, 2394 #endif 2395 }; 2396 2397 static const struct inode_operations shmem_symlink_inode_operations = { 2398 .readlink = generic_readlink, 2399 .follow_link = shmem_follow_link, 2400 .put_link = shmem_put_link, 2401 #ifdef CONFIG_TMPFS_XATTR 2402 .setxattr = shmem_setxattr, 2403 .getxattr = shmem_getxattr, 2404 .listxattr = shmem_listxattr, 2405 .removexattr = shmem_removexattr, 2406 #endif 2407 }; 2408 2409 static struct dentry *shmem_get_parent(struct dentry *child) 2410 { 2411 return ERR_PTR(-ESTALE); 2412 } 2413 2414 static int shmem_match(struct inode *ino, void *vfh) 2415 { 2416 __u32 *fh = vfh; 2417 __u64 inum = fh[2]; 2418 inum = (inum << 32) | fh[1]; 2419 return ino->i_ino == inum && fh[0] == ino->i_generation; 2420 } 2421 2422 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2423 struct fid *fid, int fh_len, int fh_type) 2424 { 2425 struct inode *inode; 2426 struct dentry *dentry = NULL; 2427 u64 inum = fid->raw[2]; 2428 inum = (inum << 32) | fid->raw[1]; 2429 2430 if (fh_len < 3) 2431 return NULL; 2432 2433 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2434 shmem_match, fid->raw); 2435 if (inode) { 2436 dentry = d_find_alias(inode); 2437 iput(inode); 2438 } 2439 2440 return dentry; 2441 } 2442 2443 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 2444 struct inode *parent) 2445 { 2446 if (*len < 3) { 2447 *len = 3; 2448 return 255; 2449 } 2450 2451 if (inode_unhashed(inode)) { 2452 /* Unfortunately insert_inode_hash is not idempotent, 2453 * so as we hash inodes here rather than at creation 2454 * time, we need a lock to ensure we only try 2455 * to do it once 2456 */ 2457 static DEFINE_SPINLOCK(lock); 2458 spin_lock(&lock); 2459 if (inode_unhashed(inode)) 2460 __insert_inode_hash(inode, 2461 inode->i_ino + inode->i_generation); 2462 spin_unlock(&lock); 2463 } 2464 2465 fh[0] = inode->i_generation; 2466 fh[1] = inode->i_ino; 2467 fh[2] = ((__u64)inode->i_ino) >> 32; 2468 2469 *len = 3; 2470 return 1; 2471 } 2472 2473 static const struct export_operations shmem_export_ops = { 2474 .get_parent = shmem_get_parent, 2475 .encode_fh = shmem_encode_fh, 2476 .fh_to_dentry = shmem_fh_to_dentry, 2477 }; 2478 2479 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2480 bool remount) 2481 { 2482 char *this_char, *value, *rest; 2483 uid_t uid; 2484 gid_t gid; 2485 2486 while (options != NULL) { 2487 this_char = options; 2488 for (;;) { 2489 /* 2490 * NUL-terminate this option: unfortunately, 2491 * mount options form a comma-separated list, 2492 * but mpol's nodelist may also contain commas. 2493 */ 2494 options = strchr(options, ','); 2495 if (options == NULL) 2496 break; 2497 options++; 2498 if (!isdigit(*options)) { 2499 options[-1] = '\0'; 2500 break; 2501 } 2502 } 2503 if (!*this_char) 2504 continue; 2505 if ((value = strchr(this_char,'=')) != NULL) { 2506 *value++ = 0; 2507 } else { 2508 printk(KERN_ERR 2509 "tmpfs: No value for mount option '%s'\n", 2510 this_char); 2511 return 1; 2512 } 2513 2514 if (!strcmp(this_char,"size")) { 2515 unsigned long long size; 2516 size = memparse(value,&rest); 2517 if (*rest == '%') { 2518 size <<= PAGE_SHIFT; 2519 size *= totalram_pages; 2520 do_div(size, 100); 2521 rest++; 2522 } 2523 if (*rest) 2524 goto bad_val; 2525 sbinfo->max_blocks = 2526 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2527 } else if (!strcmp(this_char,"nr_blocks")) { 2528 sbinfo->max_blocks = memparse(value, &rest); 2529 if (*rest) 2530 goto bad_val; 2531 } else if (!strcmp(this_char,"nr_inodes")) { 2532 sbinfo->max_inodes = memparse(value, &rest); 2533 if (*rest) 2534 goto bad_val; 2535 } else if (!strcmp(this_char,"mode")) { 2536 if (remount) 2537 continue; 2538 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2539 if (*rest) 2540 goto bad_val; 2541 } else if (!strcmp(this_char,"uid")) { 2542 if (remount) 2543 continue; 2544 uid = simple_strtoul(value, &rest, 0); 2545 if (*rest) 2546 goto bad_val; 2547 sbinfo->uid = make_kuid(current_user_ns(), uid); 2548 if (!uid_valid(sbinfo->uid)) 2549 goto bad_val; 2550 } else if (!strcmp(this_char,"gid")) { 2551 if (remount) 2552 continue; 2553 gid = simple_strtoul(value, &rest, 0); 2554 if (*rest) 2555 goto bad_val; 2556 sbinfo->gid = make_kgid(current_user_ns(), gid); 2557 if (!gid_valid(sbinfo->gid)) 2558 goto bad_val; 2559 } else if (!strcmp(this_char,"mpol")) { 2560 if (mpol_parse_str(value, &sbinfo->mpol, 1)) 2561 goto bad_val; 2562 } else { 2563 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2564 this_char); 2565 return 1; 2566 } 2567 } 2568 return 0; 2569 2570 bad_val: 2571 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2572 value, this_char); 2573 return 1; 2574 2575 } 2576 2577 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2578 { 2579 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2580 struct shmem_sb_info config = *sbinfo; 2581 unsigned long inodes; 2582 int error = -EINVAL; 2583 2584 if (shmem_parse_options(data, &config, true)) 2585 return error; 2586 2587 spin_lock(&sbinfo->stat_lock); 2588 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2589 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2590 goto out; 2591 if (config.max_inodes < inodes) 2592 goto out; 2593 /* 2594 * Those tests disallow limited->unlimited while any are in use; 2595 * but we must separately disallow unlimited->limited, because 2596 * in that case we have no record of how much is already in use. 2597 */ 2598 if (config.max_blocks && !sbinfo->max_blocks) 2599 goto out; 2600 if (config.max_inodes && !sbinfo->max_inodes) 2601 goto out; 2602 2603 error = 0; 2604 sbinfo->max_blocks = config.max_blocks; 2605 sbinfo->max_inodes = config.max_inodes; 2606 sbinfo->free_inodes = config.max_inodes - inodes; 2607 2608 mpol_put(sbinfo->mpol); 2609 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2610 out: 2611 spin_unlock(&sbinfo->stat_lock); 2612 return error; 2613 } 2614 2615 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 2616 { 2617 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 2618 2619 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2620 seq_printf(seq, ",size=%luk", 2621 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2622 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2623 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2624 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2625 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 2626 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 2627 seq_printf(seq, ",uid=%u", 2628 from_kuid_munged(&init_user_ns, sbinfo->uid)); 2629 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 2630 seq_printf(seq, ",gid=%u", 2631 from_kgid_munged(&init_user_ns, sbinfo->gid)); 2632 shmem_show_mpol(seq, sbinfo->mpol); 2633 return 0; 2634 } 2635 #endif /* CONFIG_TMPFS */ 2636 2637 static void shmem_put_super(struct super_block *sb) 2638 { 2639 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2640 2641 percpu_counter_destroy(&sbinfo->used_blocks); 2642 kfree(sbinfo); 2643 sb->s_fs_info = NULL; 2644 } 2645 2646 int shmem_fill_super(struct super_block *sb, void *data, int silent) 2647 { 2648 struct inode *inode; 2649 struct shmem_sb_info *sbinfo; 2650 int err = -ENOMEM; 2651 2652 /* Round up to L1_CACHE_BYTES to resist false sharing */ 2653 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 2654 L1_CACHE_BYTES), GFP_KERNEL); 2655 if (!sbinfo) 2656 return -ENOMEM; 2657 2658 sbinfo->mode = S_IRWXUGO | S_ISVTX; 2659 sbinfo->uid = current_fsuid(); 2660 sbinfo->gid = current_fsgid(); 2661 sb->s_fs_info = sbinfo; 2662 2663 #ifdef CONFIG_TMPFS 2664 /* 2665 * Per default we only allow half of the physical ram per 2666 * tmpfs instance, limiting inodes to one per page of lowmem; 2667 * but the internal instance is left unlimited. 2668 */ 2669 if (!(sb->s_flags & MS_NOUSER)) { 2670 sbinfo->max_blocks = shmem_default_max_blocks(); 2671 sbinfo->max_inodes = shmem_default_max_inodes(); 2672 if (shmem_parse_options(data, sbinfo, false)) { 2673 err = -EINVAL; 2674 goto failed; 2675 } 2676 } 2677 sb->s_export_op = &shmem_export_ops; 2678 sb->s_flags |= MS_NOSEC; 2679 #else 2680 sb->s_flags |= MS_NOUSER; 2681 #endif 2682 2683 spin_lock_init(&sbinfo->stat_lock); 2684 if (percpu_counter_init(&sbinfo->used_blocks, 0)) 2685 goto failed; 2686 sbinfo->free_inodes = sbinfo->max_inodes; 2687 2688 sb->s_maxbytes = MAX_LFS_FILESIZE; 2689 sb->s_blocksize = PAGE_CACHE_SIZE; 2690 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 2691 sb->s_magic = TMPFS_MAGIC; 2692 sb->s_op = &shmem_ops; 2693 sb->s_time_gran = 1; 2694 #ifdef CONFIG_TMPFS_XATTR 2695 sb->s_xattr = shmem_xattr_handlers; 2696 #endif 2697 #ifdef CONFIG_TMPFS_POSIX_ACL 2698 sb->s_flags |= MS_POSIXACL; 2699 #endif 2700 2701 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 2702 if (!inode) 2703 goto failed; 2704 inode->i_uid = sbinfo->uid; 2705 inode->i_gid = sbinfo->gid; 2706 sb->s_root = d_make_root(inode); 2707 if (!sb->s_root) 2708 goto failed; 2709 return 0; 2710 2711 failed: 2712 shmem_put_super(sb); 2713 return err; 2714 } 2715 2716 static struct kmem_cache *shmem_inode_cachep; 2717 2718 static struct inode *shmem_alloc_inode(struct super_block *sb) 2719 { 2720 struct shmem_inode_info *info; 2721 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 2722 if (!info) 2723 return NULL; 2724 return &info->vfs_inode; 2725 } 2726 2727 static void shmem_destroy_callback(struct rcu_head *head) 2728 { 2729 struct inode *inode = container_of(head, struct inode, i_rcu); 2730 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 2731 } 2732 2733 static void shmem_destroy_inode(struct inode *inode) 2734 { 2735 if (S_ISREG(inode->i_mode)) 2736 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 2737 call_rcu(&inode->i_rcu, shmem_destroy_callback); 2738 } 2739 2740 static void shmem_init_inode(void *foo) 2741 { 2742 struct shmem_inode_info *info = foo; 2743 inode_init_once(&info->vfs_inode); 2744 } 2745 2746 static int shmem_init_inodecache(void) 2747 { 2748 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 2749 sizeof(struct shmem_inode_info), 2750 0, SLAB_PANIC, shmem_init_inode); 2751 return 0; 2752 } 2753 2754 static void shmem_destroy_inodecache(void) 2755 { 2756 kmem_cache_destroy(shmem_inode_cachep); 2757 } 2758 2759 static const struct address_space_operations shmem_aops = { 2760 .writepage = shmem_writepage, 2761 .set_page_dirty = __set_page_dirty_no_writeback, 2762 #ifdef CONFIG_TMPFS 2763 .write_begin = shmem_write_begin, 2764 .write_end = shmem_write_end, 2765 #endif 2766 .migratepage = migrate_page, 2767 .error_remove_page = generic_error_remove_page, 2768 }; 2769 2770 static const struct file_operations shmem_file_operations = { 2771 .mmap = shmem_mmap, 2772 #ifdef CONFIG_TMPFS 2773 .llseek = shmem_file_llseek, 2774 .read = do_sync_read, 2775 .write = do_sync_write, 2776 .aio_read = shmem_file_aio_read, 2777 .aio_write = generic_file_aio_write, 2778 .fsync = noop_fsync, 2779 .splice_read = shmem_file_splice_read, 2780 .splice_write = generic_file_splice_write, 2781 .fallocate = shmem_fallocate, 2782 #endif 2783 }; 2784 2785 static const struct inode_operations shmem_inode_operations = { 2786 .setattr = shmem_setattr, 2787 #ifdef CONFIG_TMPFS_XATTR 2788 .setxattr = shmem_setxattr, 2789 .getxattr = shmem_getxattr, 2790 .listxattr = shmem_listxattr, 2791 .removexattr = shmem_removexattr, 2792 #endif 2793 }; 2794 2795 static const struct inode_operations shmem_dir_inode_operations = { 2796 #ifdef CONFIG_TMPFS 2797 .create = shmem_create, 2798 .lookup = simple_lookup, 2799 .link = shmem_link, 2800 .unlink = shmem_unlink, 2801 .symlink = shmem_symlink, 2802 .mkdir = shmem_mkdir, 2803 .rmdir = shmem_rmdir, 2804 .mknod = shmem_mknod, 2805 .rename = shmem_rename, 2806 #endif 2807 #ifdef CONFIG_TMPFS_XATTR 2808 .setxattr = shmem_setxattr, 2809 .getxattr = shmem_getxattr, 2810 .listxattr = shmem_listxattr, 2811 .removexattr = shmem_removexattr, 2812 #endif 2813 #ifdef CONFIG_TMPFS_POSIX_ACL 2814 .setattr = shmem_setattr, 2815 #endif 2816 }; 2817 2818 static const struct inode_operations shmem_special_inode_operations = { 2819 #ifdef CONFIG_TMPFS_XATTR 2820 .setxattr = shmem_setxattr, 2821 .getxattr = shmem_getxattr, 2822 .listxattr = shmem_listxattr, 2823 .removexattr = shmem_removexattr, 2824 #endif 2825 #ifdef CONFIG_TMPFS_POSIX_ACL 2826 .setattr = shmem_setattr, 2827 #endif 2828 }; 2829 2830 static const struct super_operations shmem_ops = { 2831 .alloc_inode = shmem_alloc_inode, 2832 .destroy_inode = shmem_destroy_inode, 2833 #ifdef CONFIG_TMPFS 2834 .statfs = shmem_statfs, 2835 .remount_fs = shmem_remount_fs, 2836 .show_options = shmem_show_options, 2837 #endif 2838 .evict_inode = shmem_evict_inode, 2839 .drop_inode = generic_delete_inode, 2840 .put_super = shmem_put_super, 2841 }; 2842 2843 static const struct vm_operations_struct shmem_vm_ops = { 2844 .fault = shmem_fault, 2845 #ifdef CONFIG_NUMA 2846 .set_policy = shmem_set_policy, 2847 .get_policy = shmem_get_policy, 2848 #endif 2849 }; 2850 2851 static struct dentry *shmem_mount(struct file_system_type *fs_type, 2852 int flags, const char *dev_name, void *data) 2853 { 2854 return mount_nodev(fs_type, flags, data, shmem_fill_super); 2855 } 2856 2857 static struct file_system_type shmem_fs_type = { 2858 .owner = THIS_MODULE, 2859 .name = "tmpfs", 2860 .mount = shmem_mount, 2861 .kill_sb = kill_litter_super, 2862 }; 2863 2864 int __init shmem_init(void) 2865 { 2866 int error; 2867 2868 error = bdi_init(&shmem_backing_dev_info); 2869 if (error) 2870 goto out4; 2871 2872 error = shmem_init_inodecache(); 2873 if (error) 2874 goto out3; 2875 2876 error = register_filesystem(&shmem_fs_type); 2877 if (error) { 2878 printk(KERN_ERR "Could not register tmpfs\n"); 2879 goto out2; 2880 } 2881 2882 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER, 2883 shmem_fs_type.name, NULL); 2884 if (IS_ERR(shm_mnt)) { 2885 error = PTR_ERR(shm_mnt); 2886 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 2887 goto out1; 2888 } 2889 return 0; 2890 2891 out1: 2892 unregister_filesystem(&shmem_fs_type); 2893 out2: 2894 shmem_destroy_inodecache(); 2895 out3: 2896 bdi_destroy(&shmem_backing_dev_info); 2897 out4: 2898 shm_mnt = ERR_PTR(error); 2899 return error; 2900 } 2901 2902 #else /* !CONFIG_SHMEM */ 2903 2904 /* 2905 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 2906 * 2907 * This is intended for small system where the benefits of the full 2908 * shmem code (swap-backed and resource-limited) are outweighed by 2909 * their complexity. On systems without swap this code should be 2910 * effectively equivalent, but much lighter weight. 2911 */ 2912 2913 #include <linux/ramfs.h> 2914 2915 static struct file_system_type shmem_fs_type = { 2916 .name = "tmpfs", 2917 .mount = ramfs_mount, 2918 .kill_sb = kill_litter_super, 2919 }; 2920 2921 int __init shmem_init(void) 2922 { 2923 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 2924 2925 shm_mnt = kern_mount(&shmem_fs_type); 2926 BUG_ON(IS_ERR(shm_mnt)); 2927 2928 return 0; 2929 } 2930 2931 int shmem_unuse(swp_entry_t swap, struct page *page) 2932 { 2933 return 0; 2934 } 2935 2936 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2937 { 2938 return 0; 2939 } 2940 2941 void shmem_unlock_mapping(struct address_space *mapping) 2942 { 2943 } 2944 2945 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 2946 { 2947 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 2948 } 2949 EXPORT_SYMBOL_GPL(shmem_truncate_range); 2950 2951 #define shmem_vm_ops generic_file_vm_ops 2952 #define shmem_file_operations ramfs_file_operations 2953 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 2954 #define shmem_acct_size(flags, size) 0 2955 #define shmem_unacct_size(flags, size) do {} while (0) 2956 2957 #endif /* CONFIG_SHMEM */ 2958 2959 /* common code */ 2960 2961 /** 2962 * shmem_file_setup - get an unlinked file living in tmpfs 2963 * @name: name for dentry (to be seen in /proc/<pid>/maps 2964 * @size: size to be set for the file 2965 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 2966 */ 2967 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 2968 { 2969 int error; 2970 struct file *file; 2971 struct inode *inode; 2972 struct path path; 2973 struct dentry *root; 2974 struct qstr this; 2975 2976 if (IS_ERR(shm_mnt)) 2977 return (void *)shm_mnt; 2978 2979 if (size < 0 || size > MAX_LFS_FILESIZE) 2980 return ERR_PTR(-EINVAL); 2981 2982 if (shmem_acct_size(flags, size)) 2983 return ERR_PTR(-ENOMEM); 2984 2985 error = -ENOMEM; 2986 this.name = name; 2987 this.len = strlen(name); 2988 this.hash = 0; /* will go */ 2989 root = shm_mnt->mnt_root; 2990 path.dentry = d_alloc(root, &this); 2991 if (!path.dentry) 2992 goto put_memory; 2993 path.mnt = mntget(shm_mnt); 2994 2995 error = -ENOSPC; 2996 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 2997 if (!inode) 2998 goto put_dentry; 2999 3000 d_instantiate(path.dentry, inode); 3001 inode->i_size = size; 3002 clear_nlink(inode); /* It is unlinked */ 3003 #ifndef CONFIG_MMU 3004 error = ramfs_nommu_expand_for_mapping(inode, size); 3005 if (error) 3006 goto put_dentry; 3007 #endif 3008 3009 error = -ENFILE; 3010 file = alloc_file(&path, FMODE_WRITE | FMODE_READ, 3011 &shmem_file_operations); 3012 if (!file) 3013 goto put_dentry; 3014 3015 return file; 3016 3017 put_dentry: 3018 path_put(&path); 3019 put_memory: 3020 shmem_unacct_size(flags, size); 3021 return ERR_PTR(error); 3022 } 3023 EXPORT_SYMBOL_GPL(shmem_file_setup); 3024 3025 /** 3026 * shmem_zero_setup - setup a shared anonymous mapping 3027 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 3028 */ 3029 int shmem_zero_setup(struct vm_area_struct *vma) 3030 { 3031 struct file *file; 3032 loff_t size = vma->vm_end - vma->vm_start; 3033 3034 file = shmem_file_setup("dev/zero", size, vma->vm_flags); 3035 if (IS_ERR(file)) 3036 return PTR_ERR(file); 3037 3038 if (vma->vm_file) 3039 fput(vma->vm_file); 3040 vma->vm_file = file; 3041 vma->vm_ops = &shmem_vm_ops; 3042 vma->vm_flags |= VM_CAN_NONLINEAR; 3043 return 0; 3044 } 3045 3046 /** 3047 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 3048 * @mapping: the page's address_space 3049 * @index: the page index 3050 * @gfp: the page allocator flags to use if allocating 3051 * 3052 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 3053 * with any new page allocations done using the specified allocation flags. 3054 * But read_cache_page_gfp() uses the ->readpage() method: which does not 3055 * suit tmpfs, since it may have pages in swapcache, and needs to find those 3056 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 3057 * 3058 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 3059 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 3060 */ 3061 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 3062 pgoff_t index, gfp_t gfp) 3063 { 3064 #ifdef CONFIG_SHMEM 3065 struct inode *inode = mapping->host; 3066 struct page *page; 3067 int error; 3068 3069 BUG_ON(mapping->a_ops != &shmem_aops); 3070 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); 3071 if (error) 3072 page = ERR_PTR(error); 3073 else 3074 unlock_page(page); 3075 return page; 3076 #else 3077 /* 3078 * The tiny !SHMEM case uses ramfs without swap 3079 */ 3080 return read_cache_page_gfp(mapping, index, gfp); 3081 #endif 3082 } 3083 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 3084