xref: /openbmc/linux/mm/shmem.c (revision 047fe3605235888f3ebcda0c728cb31937eadfe6)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33 
34 static struct vfsmount *shm_mnt;
35 
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42 
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
67 
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
70 
71 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73 
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
76 
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
79 
80 struct shmem_xattr {
81 	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
82 	char *name;		/* xattr name */
83 	size_t size;
84 	char value[0];
85 };
86 
87 /*
88  * shmem_fallocate and shmem_writepage communicate via inode->i_private
89  * (with i_mutex making sure that it has only one user at a time):
90  * we would prefer not to enlarge the shmem inode just for that.
91  */
92 struct shmem_falloc {
93 	pgoff_t start;		/* start of range currently being fallocated */
94 	pgoff_t next;		/* the next page offset to be fallocated */
95 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
96 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
97 };
98 
99 /* Flag allocation requirements to shmem_getpage */
100 enum sgp_type {
101 	SGP_READ,	/* don't exceed i_size, don't allocate page */
102 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
103 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
104 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
105 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
106 };
107 
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 	return totalram_pages / 2;
112 }
113 
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119 
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 				struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
125 
126 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
127 	struct page **pagep, enum sgp_type sgp, int *fault_type)
128 {
129 	return shmem_getpage_gfp(inode, index, pagep, sgp,
130 			mapping_gfp_mask(inode->i_mapping), fault_type);
131 }
132 
133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
134 {
135 	return sb->s_fs_info;
136 }
137 
138 /*
139  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140  * for shared memory and for shared anonymous (/dev/zero) mappings
141  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142  * consistent with the pre-accounting of private mappings ...
143  */
144 static inline int shmem_acct_size(unsigned long flags, loff_t size)
145 {
146 	return (flags & VM_NORESERVE) ?
147 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
148 }
149 
150 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
151 {
152 	if (!(flags & VM_NORESERVE))
153 		vm_unacct_memory(VM_ACCT(size));
154 }
155 
156 /*
157  * ... whereas tmpfs objects are accounted incrementally as
158  * pages are allocated, in order to allow huge sparse files.
159  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
160  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
161  */
162 static inline int shmem_acct_block(unsigned long flags)
163 {
164 	return (flags & VM_NORESERVE) ?
165 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
166 }
167 
168 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
169 {
170 	if (flags & VM_NORESERVE)
171 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
172 }
173 
174 static const struct super_operations shmem_ops;
175 static const struct address_space_operations shmem_aops;
176 static const struct file_operations shmem_file_operations;
177 static const struct inode_operations shmem_inode_operations;
178 static const struct inode_operations shmem_dir_inode_operations;
179 static const struct inode_operations shmem_special_inode_operations;
180 static const struct vm_operations_struct shmem_vm_ops;
181 
182 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
183 	.ra_pages	= 0,	/* No readahead */
184 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
185 };
186 
187 static LIST_HEAD(shmem_swaplist);
188 static DEFINE_MUTEX(shmem_swaplist_mutex);
189 
190 static int shmem_reserve_inode(struct super_block *sb)
191 {
192 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
193 	if (sbinfo->max_inodes) {
194 		spin_lock(&sbinfo->stat_lock);
195 		if (!sbinfo->free_inodes) {
196 			spin_unlock(&sbinfo->stat_lock);
197 			return -ENOSPC;
198 		}
199 		sbinfo->free_inodes--;
200 		spin_unlock(&sbinfo->stat_lock);
201 	}
202 	return 0;
203 }
204 
205 static void shmem_free_inode(struct super_block *sb)
206 {
207 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
208 	if (sbinfo->max_inodes) {
209 		spin_lock(&sbinfo->stat_lock);
210 		sbinfo->free_inodes++;
211 		spin_unlock(&sbinfo->stat_lock);
212 	}
213 }
214 
215 /**
216  * shmem_recalc_inode - recalculate the block usage of an inode
217  * @inode: inode to recalc
218  *
219  * We have to calculate the free blocks since the mm can drop
220  * undirtied hole pages behind our back.
221  *
222  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
223  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
224  *
225  * It has to be called with the spinlock held.
226  */
227 static void shmem_recalc_inode(struct inode *inode)
228 {
229 	struct shmem_inode_info *info = SHMEM_I(inode);
230 	long freed;
231 
232 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
233 	if (freed > 0) {
234 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 		if (sbinfo->max_blocks)
236 			percpu_counter_add(&sbinfo->used_blocks, -freed);
237 		info->alloced -= freed;
238 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
239 		shmem_unacct_blocks(info->flags, freed);
240 	}
241 }
242 
243 /*
244  * Replace item expected in radix tree by a new item, while holding tree lock.
245  */
246 static int shmem_radix_tree_replace(struct address_space *mapping,
247 			pgoff_t index, void *expected, void *replacement)
248 {
249 	void **pslot;
250 	void *item = NULL;
251 
252 	VM_BUG_ON(!expected);
253 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
254 	if (pslot)
255 		item = radix_tree_deref_slot_protected(pslot,
256 							&mapping->tree_lock);
257 	if (item != expected)
258 		return -ENOENT;
259 	if (replacement)
260 		radix_tree_replace_slot(pslot, replacement);
261 	else
262 		radix_tree_delete(&mapping->page_tree, index);
263 	return 0;
264 }
265 
266 /*
267  * Like add_to_page_cache_locked, but error if expected item has gone.
268  */
269 static int shmem_add_to_page_cache(struct page *page,
270 				   struct address_space *mapping,
271 				   pgoff_t index, gfp_t gfp, void *expected)
272 {
273 	int error = 0;
274 
275 	VM_BUG_ON(!PageLocked(page));
276 	VM_BUG_ON(!PageSwapBacked(page));
277 
278 	if (!expected)
279 		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
280 	if (!error) {
281 		page_cache_get(page);
282 		page->mapping = mapping;
283 		page->index = index;
284 
285 		spin_lock_irq(&mapping->tree_lock);
286 		if (!expected)
287 			error = radix_tree_insert(&mapping->page_tree,
288 							index, page);
289 		else
290 			error = shmem_radix_tree_replace(mapping, index,
291 							expected, page);
292 		if (!error) {
293 			mapping->nrpages++;
294 			__inc_zone_page_state(page, NR_FILE_PAGES);
295 			__inc_zone_page_state(page, NR_SHMEM);
296 			spin_unlock_irq(&mapping->tree_lock);
297 		} else {
298 			page->mapping = NULL;
299 			spin_unlock_irq(&mapping->tree_lock);
300 			page_cache_release(page);
301 		}
302 		if (!expected)
303 			radix_tree_preload_end();
304 	}
305 	if (error)
306 		mem_cgroup_uncharge_cache_page(page);
307 	return error;
308 }
309 
310 /*
311  * Like delete_from_page_cache, but substitutes swap for page.
312  */
313 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
314 {
315 	struct address_space *mapping = page->mapping;
316 	int error;
317 
318 	spin_lock_irq(&mapping->tree_lock);
319 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
320 	page->mapping = NULL;
321 	mapping->nrpages--;
322 	__dec_zone_page_state(page, NR_FILE_PAGES);
323 	__dec_zone_page_state(page, NR_SHMEM);
324 	spin_unlock_irq(&mapping->tree_lock);
325 	page_cache_release(page);
326 	BUG_ON(error);
327 }
328 
329 /*
330  * Like find_get_pages, but collecting swap entries as well as pages.
331  */
332 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
333 					pgoff_t start, unsigned int nr_pages,
334 					struct page **pages, pgoff_t *indices)
335 {
336 	unsigned int i;
337 	unsigned int ret;
338 	unsigned int nr_found;
339 
340 	rcu_read_lock();
341 restart:
342 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
343 				(void ***)pages, indices, start, nr_pages);
344 	ret = 0;
345 	for (i = 0; i < nr_found; i++) {
346 		struct page *page;
347 repeat:
348 		page = radix_tree_deref_slot((void **)pages[i]);
349 		if (unlikely(!page))
350 			continue;
351 		if (radix_tree_exception(page)) {
352 			if (radix_tree_deref_retry(page))
353 				goto restart;
354 			/*
355 			 * Otherwise, we must be storing a swap entry
356 			 * here as an exceptional entry: so return it
357 			 * without attempting to raise page count.
358 			 */
359 			goto export;
360 		}
361 		if (!page_cache_get_speculative(page))
362 			goto repeat;
363 
364 		/* Has the page moved? */
365 		if (unlikely(page != *((void **)pages[i]))) {
366 			page_cache_release(page);
367 			goto repeat;
368 		}
369 export:
370 		indices[ret] = indices[i];
371 		pages[ret] = page;
372 		ret++;
373 	}
374 	if (unlikely(!ret && nr_found))
375 		goto restart;
376 	rcu_read_unlock();
377 	return ret;
378 }
379 
380 /*
381  * Remove swap entry from radix tree, free the swap and its page cache.
382  */
383 static int shmem_free_swap(struct address_space *mapping,
384 			   pgoff_t index, void *radswap)
385 {
386 	int error;
387 
388 	spin_lock_irq(&mapping->tree_lock);
389 	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
390 	spin_unlock_irq(&mapping->tree_lock);
391 	if (!error)
392 		free_swap_and_cache(radix_to_swp_entry(radswap));
393 	return error;
394 }
395 
396 /*
397  * Pagevec may contain swap entries, so shuffle up pages before releasing.
398  */
399 static void shmem_deswap_pagevec(struct pagevec *pvec)
400 {
401 	int i, j;
402 
403 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
404 		struct page *page = pvec->pages[i];
405 		if (!radix_tree_exceptional_entry(page))
406 			pvec->pages[j++] = page;
407 	}
408 	pvec->nr = j;
409 }
410 
411 /*
412  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
413  */
414 void shmem_unlock_mapping(struct address_space *mapping)
415 {
416 	struct pagevec pvec;
417 	pgoff_t indices[PAGEVEC_SIZE];
418 	pgoff_t index = 0;
419 
420 	pagevec_init(&pvec, 0);
421 	/*
422 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
423 	 */
424 	while (!mapping_unevictable(mapping)) {
425 		/*
426 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
427 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
428 		 */
429 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
430 					PAGEVEC_SIZE, pvec.pages, indices);
431 		if (!pvec.nr)
432 			break;
433 		index = indices[pvec.nr - 1] + 1;
434 		shmem_deswap_pagevec(&pvec);
435 		check_move_unevictable_pages(pvec.pages, pvec.nr);
436 		pagevec_release(&pvec);
437 		cond_resched();
438 	}
439 }
440 
441 /*
442  * Remove range of pages and swap entries from radix tree, and free them.
443  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
444  */
445 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
446 								 bool unfalloc)
447 {
448 	struct address_space *mapping = inode->i_mapping;
449 	struct shmem_inode_info *info = SHMEM_I(inode);
450 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
451 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
452 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
453 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
454 	struct pagevec pvec;
455 	pgoff_t indices[PAGEVEC_SIZE];
456 	long nr_swaps_freed = 0;
457 	pgoff_t index;
458 	int i;
459 
460 	if (lend == -1)
461 		end = -1;	/* unsigned, so actually very big */
462 
463 	pagevec_init(&pvec, 0);
464 	index = start;
465 	while (index < end) {
466 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
467 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
468 							pvec.pages, indices);
469 		if (!pvec.nr)
470 			break;
471 		mem_cgroup_uncharge_start();
472 		for (i = 0; i < pagevec_count(&pvec); i++) {
473 			struct page *page = pvec.pages[i];
474 
475 			index = indices[i];
476 			if (index >= end)
477 				break;
478 
479 			if (radix_tree_exceptional_entry(page)) {
480 				if (unfalloc)
481 					continue;
482 				nr_swaps_freed += !shmem_free_swap(mapping,
483 								index, page);
484 				continue;
485 			}
486 
487 			if (!trylock_page(page))
488 				continue;
489 			if (!unfalloc || !PageUptodate(page)) {
490 				if (page->mapping == mapping) {
491 					VM_BUG_ON(PageWriteback(page));
492 					truncate_inode_page(mapping, page);
493 				}
494 			}
495 			unlock_page(page);
496 		}
497 		shmem_deswap_pagevec(&pvec);
498 		pagevec_release(&pvec);
499 		mem_cgroup_uncharge_end();
500 		cond_resched();
501 		index++;
502 	}
503 
504 	if (partial_start) {
505 		struct page *page = NULL;
506 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
507 		if (page) {
508 			unsigned int top = PAGE_CACHE_SIZE;
509 			if (start > end) {
510 				top = partial_end;
511 				partial_end = 0;
512 			}
513 			zero_user_segment(page, partial_start, top);
514 			set_page_dirty(page);
515 			unlock_page(page);
516 			page_cache_release(page);
517 		}
518 	}
519 	if (partial_end) {
520 		struct page *page = NULL;
521 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
522 		if (page) {
523 			zero_user_segment(page, 0, partial_end);
524 			set_page_dirty(page);
525 			unlock_page(page);
526 			page_cache_release(page);
527 		}
528 	}
529 	if (start >= end)
530 		return;
531 
532 	index = start;
533 	for ( ; ; ) {
534 		cond_resched();
535 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
536 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
537 							pvec.pages, indices);
538 		if (!pvec.nr) {
539 			if (index == start || unfalloc)
540 				break;
541 			index = start;
542 			continue;
543 		}
544 		if ((index == start || unfalloc) && indices[0] >= end) {
545 			shmem_deswap_pagevec(&pvec);
546 			pagevec_release(&pvec);
547 			break;
548 		}
549 		mem_cgroup_uncharge_start();
550 		for (i = 0; i < pagevec_count(&pvec); i++) {
551 			struct page *page = pvec.pages[i];
552 
553 			index = indices[i];
554 			if (index >= end)
555 				break;
556 
557 			if (radix_tree_exceptional_entry(page)) {
558 				if (unfalloc)
559 					continue;
560 				nr_swaps_freed += !shmem_free_swap(mapping,
561 								index, page);
562 				continue;
563 			}
564 
565 			lock_page(page);
566 			if (!unfalloc || !PageUptodate(page)) {
567 				if (page->mapping == mapping) {
568 					VM_BUG_ON(PageWriteback(page));
569 					truncate_inode_page(mapping, page);
570 				}
571 			}
572 			unlock_page(page);
573 		}
574 		shmem_deswap_pagevec(&pvec);
575 		pagevec_release(&pvec);
576 		mem_cgroup_uncharge_end();
577 		index++;
578 	}
579 
580 	spin_lock(&info->lock);
581 	info->swapped -= nr_swaps_freed;
582 	shmem_recalc_inode(inode);
583 	spin_unlock(&info->lock);
584 }
585 
586 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
587 {
588 	shmem_undo_range(inode, lstart, lend, false);
589 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
590 }
591 EXPORT_SYMBOL_GPL(shmem_truncate_range);
592 
593 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
594 {
595 	struct inode *inode = dentry->d_inode;
596 	int error;
597 
598 	error = inode_change_ok(inode, attr);
599 	if (error)
600 		return error;
601 
602 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
603 		loff_t oldsize = inode->i_size;
604 		loff_t newsize = attr->ia_size;
605 
606 		if (newsize != oldsize) {
607 			i_size_write(inode, newsize);
608 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
609 		}
610 		if (newsize < oldsize) {
611 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
612 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
613 			shmem_truncate_range(inode, newsize, (loff_t)-1);
614 			/* unmap again to remove racily COWed private pages */
615 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
616 		}
617 	}
618 
619 	setattr_copy(inode, attr);
620 #ifdef CONFIG_TMPFS_POSIX_ACL
621 	if (attr->ia_valid & ATTR_MODE)
622 		error = generic_acl_chmod(inode);
623 #endif
624 	return error;
625 }
626 
627 static void shmem_evict_inode(struct inode *inode)
628 {
629 	struct shmem_inode_info *info = SHMEM_I(inode);
630 	struct shmem_xattr *xattr, *nxattr;
631 
632 	if (inode->i_mapping->a_ops == &shmem_aops) {
633 		shmem_unacct_size(info->flags, inode->i_size);
634 		inode->i_size = 0;
635 		shmem_truncate_range(inode, 0, (loff_t)-1);
636 		if (!list_empty(&info->swaplist)) {
637 			mutex_lock(&shmem_swaplist_mutex);
638 			list_del_init(&info->swaplist);
639 			mutex_unlock(&shmem_swaplist_mutex);
640 		}
641 	} else
642 		kfree(info->symlink);
643 
644 	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
645 		kfree(xattr->name);
646 		kfree(xattr);
647 	}
648 	BUG_ON(inode->i_blocks);
649 	shmem_free_inode(inode->i_sb);
650 	clear_inode(inode);
651 }
652 
653 /*
654  * If swap found in inode, free it and move page from swapcache to filecache.
655  */
656 static int shmem_unuse_inode(struct shmem_inode_info *info,
657 			     swp_entry_t swap, struct page **pagep)
658 {
659 	struct address_space *mapping = info->vfs_inode.i_mapping;
660 	void *radswap;
661 	pgoff_t index;
662 	gfp_t gfp;
663 	int error = 0;
664 
665 	radswap = swp_to_radix_entry(swap);
666 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
667 	if (index == -1)
668 		return 0;
669 
670 	/*
671 	 * Move _head_ to start search for next from here.
672 	 * But be careful: shmem_evict_inode checks list_empty without taking
673 	 * mutex, and there's an instant in list_move_tail when info->swaplist
674 	 * would appear empty, if it were the only one on shmem_swaplist.
675 	 */
676 	if (shmem_swaplist.next != &info->swaplist)
677 		list_move_tail(&shmem_swaplist, &info->swaplist);
678 
679 	gfp = mapping_gfp_mask(mapping);
680 	if (shmem_should_replace_page(*pagep, gfp)) {
681 		mutex_unlock(&shmem_swaplist_mutex);
682 		error = shmem_replace_page(pagep, gfp, info, index);
683 		mutex_lock(&shmem_swaplist_mutex);
684 		/*
685 		 * We needed to drop mutex to make that restrictive page
686 		 * allocation; but the inode might already be freed by now,
687 		 * and we cannot refer to inode or mapping or info to check.
688 		 * However, we do hold page lock on the PageSwapCache page,
689 		 * so can check if that still has our reference remaining.
690 		 */
691 		if (!page_swapcount(*pagep))
692 			error = -ENOENT;
693 	}
694 
695 	/*
696 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
697 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
698 	 * beneath us (pagelock doesn't help until the page is in pagecache).
699 	 */
700 	if (!error)
701 		error = shmem_add_to_page_cache(*pagep, mapping, index,
702 						GFP_NOWAIT, radswap);
703 	if (error != -ENOMEM) {
704 		/*
705 		 * Truncation and eviction use free_swap_and_cache(), which
706 		 * only does trylock page: if we raced, best clean up here.
707 		 */
708 		delete_from_swap_cache(*pagep);
709 		set_page_dirty(*pagep);
710 		if (!error) {
711 			spin_lock(&info->lock);
712 			info->swapped--;
713 			spin_unlock(&info->lock);
714 			swap_free(swap);
715 		}
716 		error = 1;	/* not an error, but entry was found */
717 	}
718 	return error;
719 }
720 
721 /*
722  * Search through swapped inodes to find and replace swap by page.
723  */
724 int shmem_unuse(swp_entry_t swap, struct page *page)
725 {
726 	struct list_head *this, *next;
727 	struct shmem_inode_info *info;
728 	int found = 0;
729 	int error = 0;
730 
731 	/*
732 	 * There's a faint possibility that swap page was replaced before
733 	 * caller locked it: it will come back later with the right page.
734 	 */
735 	if (unlikely(!PageSwapCache(page)))
736 		goto out;
737 
738 	/*
739 	 * Charge page using GFP_KERNEL while we can wait, before taking
740 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
741 	 * Charged back to the user (not to caller) when swap account is used.
742 	 */
743 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
744 	if (error)
745 		goto out;
746 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
747 
748 	mutex_lock(&shmem_swaplist_mutex);
749 	list_for_each_safe(this, next, &shmem_swaplist) {
750 		info = list_entry(this, struct shmem_inode_info, swaplist);
751 		if (info->swapped)
752 			found = shmem_unuse_inode(info, swap, &page);
753 		else
754 			list_del_init(&info->swaplist);
755 		cond_resched();
756 		if (found)
757 			break;
758 	}
759 	mutex_unlock(&shmem_swaplist_mutex);
760 
761 	if (found < 0)
762 		error = found;
763 out:
764 	unlock_page(page);
765 	page_cache_release(page);
766 	return error;
767 }
768 
769 /*
770  * Move the page from the page cache to the swap cache.
771  */
772 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
773 {
774 	struct shmem_inode_info *info;
775 	struct address_space *mapping;
776 	struct inode *inode;
777 	swp_entry_t swap;
778 	pgoff_t index;
779 
780 	BUG_ON(!PageLocked(page));
781 	mapping = page->mapping;
782 	index = page->index;
783 	inode = mapping->host;
784 	info = SHMEM_I(inode);
785 	if (info->flags & VM_LOCKED)
786 		goto redirty;
787 	if (!total_swap_pages)
788 		goto redirty;
789 
790 	/*
791 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
792 	 * sync from ever calling shmem_writepage; but a stacking filesystem
793 	 * might use ->writepage of its underlying filesystem, in which case
794 	 * tmpfs should write out to swap only in response to memory pressure,
795 	 * and not for the writeback threads or sync.
796 	 */
797 	if (!wbc->for_reclaim) {
798 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
799 		goto redirty;
800 	}
801 
802 	/*
803 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
804 	 * value into swapfile.c, the only way we can correctly account for a
805 	 * fallocated page arriving here is now to initialize it and write it.
806 	 *
807 	 * That's okay for a page already fallocated earlier, but if we have
808 	 * not yet completed the fallocation, then (a) we want to keep track
809 	 * of this page in case we have to undo it, and (b) it may not be a
810 	 * good idea to continue anyway, once we're pushing into swap.  So
811 	 * reactivate the page, and let shmem_fallocate() quit when too many.
812 	 */
813 	if (!PageUptodate(page)) {
814 		if (inode->i_private) {
815 			struct shmem_falloc *shmem_falloc;
816 			spin_lock(&inode->i_lock);
817 			shmem_falloc = inode->i_private;
818 			if (shmem_falloc &&
819 			    index >= shmem_falloc->start &&
820 			    index < shmem_falloc->next)
821 				shmem_falloc->nr_unswapped++;
822 			else
823 				shmem_falloc = NULL;
824 			spin_unlock(&inode->i_lock);
825 			if (shmem_falloc)
826 				goto redirty;
827 		}
828 		clear_highpage(page);
829 		flush_dcache_page(page);
830 		SetPageUptodate(page);
831 	}
832 
833 	swap = get_swap_page();
834 	if (!swap.val)
835 		goto redirty;
836 
837 	/*
838 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
839 	 * if it's not already there.  Do it now before the page is
840 	 * moved to swap cache, when its pagelock no longer protects
841 	 * the inode from eviction.  But don't unlock the mutex until
842 	 * we've incremented swapped, because shmem_unuse_inode() will
843 	 * prune a !swapped inode from the swaplist under this mutex.
844 	 */
845 	mutex_lock(&shmem_swaplist_mutex);
846 	if (list_empty(&info->swaplist))
847 		list_add_tail(&info->swaplist, &shmem_swaplist);
848 
849 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
850 		swap_shmem_alloc(swap);
851 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
852 
853 		spin_lock(&info->lock);
854 		info->swapped++;
855 		shmem_recalc_inode(inode);
856 		spin_unlock(&info->lock);
857 
858 		mutex_unlock(&shmem_swaplist_mutex);
859 		BUG_ON(page_mapped(page));
860 		swap_writepage(page, wbc);
861 		return 0;
862 	}
863 
864 	mutex_unlock(&shmem_swaplist_mutex);
865 	swapcache_free(swap, NULL);
866 redirty:
867 	set_page_dirty(page);
868 	if (wbc->for_reclaim)
869 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
870 	unlock_page(page);
871 	return 0;
872 }
873 
874 #ifdef CONFIG_NUMA
875 #ifdef CONFIG_TMPFS
876 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
877 {
878 	char buffer[64];
879 
880 	if (!mpol || mpol->mode == MPOL_DEFAULT)
881 		return;		/* show nothing */
882 
883 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
884 
885 	seq_printf(seq, ",mpol=%s", buffer);
886 }
887 
888 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
889 {
890 	struct mempolicy *mpol = NULL;
891 	if (sbinfo->mpol) {
892 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
893 		mpol = sbinfo->mpol;
894 		mpol_get(mpol);
895 		spin_unlock(&sbinfo->stat_lock);
896 	}
897 	return mpol;
898 }
899 #endif /* CONFIG_TMPFS */
900 
901 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
902 			struct shmem_inode_info *info, pgoff_t index)
903 {
904 	struct mempolicy mpol, *spol;
905 	struct vm_area_struct pvma;
906 
907 	spol = mpol_cond_copy(&mpol,
908 			mpol_shared_policy_lookup(&info->policy, index));
909 
910 	/* Create a pseudo vma that just contains the policy */
911 	pvma.vm_start = 0;
912 	pvma.vm_pgoff = index;
913 	pvma.vm_ops = NULL;
914 	pvma.vm_policy = spol;
915 	return swapin_readahead(swap, gfp, &pvma, 0);
916 }
917 
918 static struct page *shmem_alloc_page(gfp_t gfp,
919 			struct shmem_inode_info *info, pgoff_t index)
920 {
921 	struct vm_area_struct pvma;
922 
923 	/* Create a pseudo vma that just contains the policy */
924 	pvma.vm_start = 0;
925 	pvma.vm_pgoff = index;
926 	pvma.vm_ops = NULL;
927 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
928 
929 	/*
930 	 * alloc_page_vma() will drop the shared policy reference
931 	 */
932 	return alloc_page_vma(gfp, &pvma, 0);
933 }
934 #else /* !CONFIG_NUMA */
935 #ifdef CONFIG_TMPFS
936 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
937 {
938 }
939 #endif /* CONFIG_TMPFS */
940 
941 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
942 			struct shmem_inode_info *info, pgoff_t index)
943 {
944 	return swapin_readahead(swap, gfp, NULL, 0);
945 }
946 
947 static inline struct page *shmem_alloc_page(gfp_t gfp,
948 			struct shmem_inode_info *info, pgoff_t index)
949 {
950 	return alloc_page(gfp);
951 }
952 #endif /* CONFIG_NUMA */
953 
954 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
955 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
956 {
957 	return NULL;
958 }
959 #endif
960 
961 /*
962  * When a page is moved from swapcache to shmem filecache (either by the
963  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
964  * shmem_unuse_inode()), it may have been read in earlier from swap, in
965  * ignorance of the mapping it belongs to.  If that mapping has special
966  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
967  * we may need to copy to a suitable page before moving to filecache.
968  *
969  * In a future release, this may well be extended to respect cpuset and
970  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
971  * but for now it is a simple matter of zone.
972  */
973 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
974 {
975 	return page_zonenum(page) > gfp_zone(gfp);
976 }
977 
978 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
979 				struct shmem_inode_info *info, pgoff_t index)
980 {
981 	struct page *oldpage, *newpage;
982 	struct address_space *swap_mapping;
983 	pgoff_t swap_index;
984 	int error;
985 
986 	oldpage = *pagep;
987 	swap_index = page_private(oldpage);
988 	swap_mapping = page_mapping(oldpage);
989 
990 	/*
991 	 * We have arrived here because our zones are constrained, so don't
992 	 * limit chance of success by further cpuset and node constraints.
993 	 */
994 	gfp &= ~GFP_CONSTRAINT_MASK;
995 	newpage = shmem_alloc_page(gfp, info, index);
996 	if (!newpage)
997 		return -ENOMEM;
998 	VM_BUG_ON(shmem_should_replace_page(newpage, gfp));
999 
1000 	*pagep = newpage;
1001 	page_cache_get(newpage);
1002 	copy_highpage(newpage, oldpage);
1003 
1004 	VM_BUG_ON(!PageLocked(oldpage));
1005 	__set_page_locked(newpage);
1006 	VM_BUG_ON(!PageUptodate(oldpage));
1007 	SetPageUptodate(newpage);
1008 	VM_BUG_ON(!PageSwapBacked(oldpage));
1009 	SetPageSwapBacked(newpage);
1010 	VM_BUG_ON(!swap_index);
1011 	set_page_private(newpage, swap_index);
1012 	VM_BUG_ON(!PageSwapCache(oldpage));
1013 	SetPageSwapCache(newpage);
1014 
1015 	/*
1016 	 * Our caller will very soon move newpage out of swapcache, but it's
1017 	 * a nice clean interface for us to replace oldpage by newpage there.
1018 	 */
1019 	spin_lock_irq(&swap_mapping->tree_lock);
1020 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1021 								   newpage);
1022 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
1023 	__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1024 	spin_unlock_irq(&swap_mapping->tree_lock);
1025 	BUG_ON(error);
1026 
1027 	mem_cgroup_replace_page_cache(oldpage, newpage);
1028 	lru_cache_add_anon(newpage);
1029 
1030 	ClearPageSwapCache(oldpage);
1031 	set_page_private(oldpage, 0);
1032 
1033 	unlock_page(oldpage);
1034 	page_cache_release(oldpage);
1035 	page_cache_release(oldpage);
1036 	return 0;
1037 }
1038 
1039 /*
1040  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1041  *
1042  * If we allocate a new one we do not mark it dirty. That's up to the
1043  * vm. If we swap it in we mark it dirty since we also free the swap
1044  * entry since a page cannot live in both the swap and page cache
1045  */
1046 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1047 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1048 {
1049 	struct address_space *mapping = inode->i_mapping;
1050 	struct shmem_inode_info *info;
1051 	struct shmem_sb_info *sbinfo;
1052 	struct page *page;
1053 	swp_entry_t swap;
1054 	int error;
1055 	int once = 0;
1056 	int alloced = 0;
1057 
1058 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1059 		return -EFBIG;
1060 repeat:
1061 	swap.val = 0;
1062 	page = find_lock_page(mapping, index);
1063 	if (radix_tree_exceptional_entry(page)) {
1064 		swap = radix_to_swp_entry(page);
1065 		page = NULL;
1066 	}
1067 
1068 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1069 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1070 		error = -EINVAL;
1071 		goto failed;
1072 	}
1073 
1074 	/* fallocated page? */
1075 	if (page && !PageUptodate(page)) {
1076 		if (sgp != SGP_READ)
1077 			goto clear;
1078 		unlock_page(page);
1079 		page_cache_release(page);
1080 		page = NULL;
1081 	}
1082 	if (page || (sgp == SGP_READ && !swap.val)) {
1083 		*pagep = page;
1084 		return 0;
1085 	}
1086 
1087 	/*
1088 	 * Fast cache lookup did not find it:
1089 	 * bring it back from swap or allocate.
1090 	 */
1091 	info = SHMEM_I(inode);
1092 	sbinfo = SHMEM_SB(inode->i_sb);
1093 
1094 	if (swap.val) {
1095 		/* Look it up and read it in.. */
1096 		page = lookup_swap_cache(swap);
1097 		if (!page) {
1098 			/* here we actually do the io */
1099 			if (fault_type)
1100 				*fault_type |= VM_FAULT_MAJOR;
1101 			page = shmem_swapin(swap, gfp, info, index);
1102 			if (!page) {
1103 				error = -ENOMEM;
1104 				goto failed;
1105 			}
1106 		}
1107 
1108 		/* We have to do this with page locked to prevent races */
1109 		lock_page(page);
1110 		if (!PageSwapCache(page) || page->mapping) {
1111 			error = -EEXIST;	/* try again */
1112 			goto failed;
1113 		}
1114 		if (!PageUptodate(page)) {
1115 			error = -EIO;
1116 			goto failed;
1117 		}
1118 		wait_on_page_writeback(page);
1119 
1120 		if (shmem_should_replace_page(page, gfp)) {
1121 			error = shmem_replace_page(&page, gfp, info, index);
1122 			if (error)
1123 				goto failed;
1124 		}
1125 
1126 		error = mem_cgroup_cache_charge(page, current->mm,
1127 						gfp & GFP_RECLAIM_MASK);
1128 		if (!error)
1129 			error = shmem_add_to_page_cache(page, mapping, index,
1130 						gfp, swp_to_radix_entry(swap));
1131 		if (error)
1132 			goto failed;
1133 
1134 		spin_lock(&info->lock);
1135 		info->swapped--;
1136 		shmem_recalc_inode(inode);
1137 		spin_unlock(&info->lock);
1138 
1139 		delete_from_swap_cache(page);
1140 		set_page_dirty(page);
1141 		swap_free(swap);
1142 
1143 	} else {
1144 		if (shmem_acct_block(info->flags)) {
1145 			error = -ENOSPC;
1146 			goto failed;
1147 		}
1148 		if (sbinfo->max_blocks) {
1149 			if (percpu_counter_compare(&sbinfo->used_blocks,
1150 						sbinfo->max_blocks) >= 0) {
1151 				error = -ENOSPC;
1152 				goto unacct;
1153 			}
1154 			percpu_counter_inc(&sbinfo->used_blocks);
1155 		}
1156 
1157 		page = shmem_alloc_page(gfp, info, index);
1158 		if (!page) {
1159 			error = -ENOMEM;
1160 			goto decused;
1161 		}
1162 
1163 		SetPageSwapBacked(page);
1164 		__set_page_locked(page);
1165 		error = mem_cgroup_cache_charge(page, current->mm,
1166 						gfp & GFP_RECLAIM_MASK);
1167 		if (!error)
1168 			error = shmem_add_to_page_cache(page, mapping, index,
1169 						gfp, NULL);
1170 		if (error)
1171 			goto decused;
1172 		lru_cache_add_anon(page);
1173 
1174 		spin_lock(&info->lock);
1175 		info->alloced++;
1176 		inode->i_blocks += BLOCKS_PER_PAGE;
1177 		shmem_recalc_inode(inode);
1178 		spin_unlock(&info->lock);
1179 		alloced = true;
1180 
1181 		/*
1182 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1183 		 */
1184 		if (sgp == SGP_FALLOC)
1185 			sgp = SGP_WRITE;
1186 clear:
1187 		/*
1188 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1189 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1190 		 * it now, lest undo on failure cancel our earlier guarantee.
1191 		 */
1192 		if (sgp != SGP_WRITE) {
1193 			clear_highpage(page);
1194 			flush_dcache_page(page);
1195 			SetPageUptodate(page);
1196 		}
1197 		if (sgp == SGP_DIRTY)
1198 			set_page_dirty(page);
1199 	}
1200 
1201 	/* Perhaps the file has been truncated since we checked */
1202 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1203 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1204 		error = -EINVAL;
1205 		if (alloced)
1206 			goto trunc;
1207 		else
1208 			goto failed;
1209 	}
1210 	*pagep = page;
1211 	return 0;
1212 
1213 	/*
1214 	 * Error recovery.
1215 	 */
1216 trunc:
1217 	info = SHMEM_I(inode);
1218 	ClearPageDirty(page);
1219 	delete_from_page_cache(page);
1220 	spin_lock(&info->lock);
1221 	info->alloced--;
1222 	inode->i_blocks -= BLOCKS_PER_PAGE;
1223 	spin_unlock(&info->lock);
1224 decused:
1225 	sbinfo = SHMEM_SB(inode->i_sb);
1226 	if (sbinfo->max_blocks)
1227 		percpu_counter_add(&sbinfo->used_blocks, -1);
1228 unacct:
1229 	shmem_unacct_blocks(info->flags, 1);
1230 failed:
1231 	if (swap.val && error != -EINVAL) {
1232 		struct page *test = find_get_page(mapping, index);
1233 		if (test && !radix_tree_exceptional_entry(test))
1234 			page_cache_release(test);
1235 		/* Have another try if the entry has changed */
1236 		if (test != swp_to_radix_entry(swap))
1237 			error = -EEXIST;
1238 	}
1239 	if (page) {
1240 		unlock_page(page);
1241 		page_cache_release(page);
1242 	}
1243 	if (error == -ENOSPC && !once++) {
1244 		info = SHMEM_I(inode);
1245 		spin_lock(&info->lock);
1246 		shmem_recalc_inode(inode);
1247 		spin_unlock(&info->lock);
1248 		goto repeat;
1249 	}
1250 	if (error == -EEXIST)
1251 		goto repeat;
1252 	return error;
1253 }
1254 
1255 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1256 {
1257 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1258 	int error;
1259 	int ret = VM_FAULT_LOCKED;
1260 
1261 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1262 	if (error)
1263 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1264 
1265 	if (ret & VM_FAULT_MAJOR) {
1266 		count_vm_event(PGMAJFAULT);
1267 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1268 	}
1269 	return ret;
1270 }
1271 
1272 #ifdef CONFIG_NUMA
1273 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1274 {
1275 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1276 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1277 }
1278 
1279 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1280 					  unsigned long addr)
1281 {
1282 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1283 	pgoff_t index;
1284 
1285 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1286 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1287 }
1288 #endif
1289 
1290 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1291 {
1292 	struct inode *inode = file->f_path.dentry->d_inode;
1293 	struct shmem_inode_info *info = SHMEM_I(inode);
1294 	int retval = -ENOMEM;
1295 
1296 	spin_lock(&info->lock);
1297 	if (lock && !(info->flags & VM_LOCKED)) {
1298 		if (!user_shm_lock(inode->i_size, user))
1299 			goto out_nomem;
1300 		info->flags |= VM_LOCKED;
1301 		mapping_set_unevictable(file->f_mapping);
1302 	}
1303 	if (!lock && (info->flags & VM_LOCKED) && user) {
1304 		user_shm_unlock(inode->i_size, user);
1305 		info->flags &= ~VM_LOCKED;
1306 		mapping_clear_unevictable(file->f_mapping);
1307 	}
1308 	retval = 0;
1309 
1310 out_nomem:
1311 	spin_unlock(&info->lock);
1312 	return retval;
1313 }
1314 
1315 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1316 {
1317 	file_accessed(file);
1318 	vma->vm_ops = &shmem_vm_ops;
1319 	vma->vm_flags |= VM_CAN_NONLINEAR;
1320 	return 0;
1321 }
1322 
1323 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1324 				     umode_t mode, dev_t dev, unsigned long flags)
1325 {
1326 	struct inode *inode;
1327 	struct shmem_inode_info *info;
1328 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1329 
1330 	if (shmem_reserve_inode(sb))
1331 		return NULL;
1332 
1333 	inode = new_inode(sb);
1334 	if (inode) {
1335 		inode->i_ino = get_next_ino();
1336 		inode_init_owner(inode, dir, mode);
1337 		inode->i_blocks = 0;
1338 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1339 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1340 		inode->i_generation = get_seconds();
1341 		info = SHMEM_I(inode);
1342 		memset(info, 0, (char *)inode - (char *)info);
1343 		spin_lock_init(&info->lock);
1344 		info->flags = flags & VM_NORESERVE;
1345 		INIT_LIST_HEAD(&info->swaplist);
1346 		INIT_LIST_HEAD(&info->xattr_list);
1347 		cache_no_acl(inode);
1348 
1349 		switch (mode & S_IFMT) {
1350 		default:
1351 			inode->i_op = &shmem_special_inode_operations;
1352 			init_special_inode(inode, mode, dev);
1353 			break;
1354 		case S_IFREG:
1355 			inode->i_mapping->a_ops = &shmem_aops;
1356 			inode->i_op = &shmem_inode_operations;
1357 			inode->i_fop = &shmem_file_operations;
1358 			mpol_shared_policy_init(&info->policy,
1359 						 shmem_get_sbmpol(sbinfo));
1360 			break;
1361 		case S_IFDIR:
1362 			inc_nlink(inode);
1363 			/* Some things misbehave if size == 0 on a directory */
1364 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1365 			inode->i_op = &shmem_dir_inode_operations;
1366 			inode->i_fop = &simple_dir_operations;
1367 			break;
1368 		case S_IFLNK:
1369 			/*
1370 			 * Must not load anything in the rbtree,
1371 			 * mpol_free_shared_policy will not be called.
1372 			 */
1373 			mpol_shared_policy_init(&info->policy, NULL);
1374 			break;
1375 		}
1376 	} else
1377 		shmem_free_inode(sb);
1378 	return inode;
1379 }
1380 
1381 #ifdef CONFIG_TMPFS
1382 static const struct inode_operations shmem_symlink_inode_operations;
1383 static const struct inode_operations shmem_short_symlink_operations;
1384 
1385 #ifdef CONFIG_TMPFS_XATTR
1386 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1387 #else
1388 #define shmem_initxattrs NULL
1389 #endif
1390 
1391 static int
1392 shmem_write_begin(struct file *file, struct address_space *mapping,
1393 			loff_t pos, unsigned len, unsigned flags,
1394 			struct page **pagep, void **fsdata)
1395 {
1396 	struct inode *inode = mapping->host;
1397 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1398 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1399 }
1400 
1401 static int
1402 shmem_write_end(struct file *file, struct address_space *mapping,
1403 			loff_t pos, unsigned len, unsigned copied,
1404 			struct page *page, void *fsdata)
1405 {
1406 	struct inode *inode = mapping->host;
1407 
1408 	if (pos + copied > inode->i_size)
1409 		i_size_write(inode, pos + copied);
1410 
1411 	if (!PageUptodate(page)) {
1412 		if (copied < PAGE_CACHE_SIZE) {
1413 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1414 			zero_user_segments(page, 0, from,
1415 					from + copied, PAGE_CACHE_SIZE);
1416 		}
1417 		SetPageUptodate(page);
1418 	}
1419 	set_page_dirty(page);
1420 	unlock_page(page);
1421 	page_cache_release(page);
1422 
1423 	return copied;
1424 }
1425 
1426 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1427 {
1428 	struct inode *inode = filp->f_path.dentry->d_inode;
1429 	struct address_space *mapping = inode->i_mapping;
1430 	pgoff_t index;
1431 	unsigned long offset;
1432 	enum sgp_type sgp = SGP_READ;
1433 
1434 	/*
1435 	 * Might this read be for a stacking filesystem?  Then when reading
1436 	 * holes of a sparse file, we actually need to allocate those pages,
1437 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1438 	 */
1439 	if (segment_eq(get_fs(), KERNEL_DS))
1440 		sgp = SGP_DIRTY;
1441 
1442 	index = *ppos >> PAGE_CACHE_SHIFT;
1443 	offset = *ppos & ~PAGE_CACHE_MASK;
1444 
1445 	for (;;) {
1446 		struct page *page = NULL;
1447 		pgoff_t end_index;
1448 		unsigned long nr, ret;
1449 		loff_t i_size = i_size_read(inode);
1450 
1451 		end_index = i_size >> PAGE_CACHE_SHIFT;
1452 		if (index > end_index)
1453 			break;
1454 		if (index == end_index) {
1455 			nr = i_size & ~PAGE_CACHE_MASK;
1456 			if (nr <= offset)
1457 				break;
1458 		}
1459 
1460 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1461 		if (desc->error) {
1462 			if (desc->error == -EINVAL)
1463 				desc->error = 0;
1464 			break;
1465 		}
1466 		if (page)
1467 			unlock_page(page);
1468 
1469 		/*
1470 		 * We must evaluate after, since reads (unlike writes)
1471 		 * are called without i_mutex protection against truncate
1472 		 */
1473 		nr = PAGE_CACHE_SIZE;
1474 		i_size = i_size_read(inode);
1475 		end_index = i_size >> PAGE_CACHE_SHIFT;
1476 		if (index == end_index) {
1477 			nr = i_size & ~PAGE_CACHE_MASK;
1478 			if (nr <= offset) {
1479 				if (page)
1480 					page_cache_release(page);
1481 				break;
1482 			}
1483 		}
1484 		nr -= offset;
1485 
1486 		if (page) {
1487 			/*
1488 			 * If users can be writing to this page using arbitrary
1489 			 * virtual addresses, take care about potential aliasing
1490 			 * before reading the page on the kernel side.
1491 			 */
1492 			if (mapping_writably_mapped(mapping))
1493 				flush_dcache_page(page);
1494 			/*
1495 			 * Mark the page accessed if we read the beginning.
1496 			 */
1497 			if (!offset)
1498 				mark_page_accessed(page);
1499 		} else {
1500 			page = ZERO_PAGE(0);
1501 			page_cache_get(page);
1502 		}
1503 
1504 		/*
1505 		 * Ok, we have the page, and it's up-to-date, so
1506 		 * now we can copy it to user space...
1507 		 *
1508 		 * The actor routine returns how many bytes were actually used..
1509 		 * NOTE! This may not be the same as how much of a user buffer
1510 		 * we filled up (we may be padding etc), so we can only update
1511 		 * "pos" here (the actor routine has to update the user buffer
1512 		 * pointers and the remaining count).
1513 		 */
1514 		ret = actor(desc, page, offset, nr);
1515 		offset += ret;
1516 		index += offset >> PAGE_CACHE_SHIFT;
1517 		offset &= ~PAGE_CACHE_MASK;
1518 
1519 		page_cache_release(page);
1520 		if (ret != nr || !desc->count)
1521 			break;
1522 
1523 		cond_resched();
1524 	}
1525 
1526 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1527 	file_accessed(filp);
1528 }
1529 
1530 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1531 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1532 {
1533 	struct file *filp = iocb->ki_filp;
1534 	ssize_t retval;
1535 	unsigned long seg;
1536 	size_t count;
1537 	loff_t *ppos = &iocb->ki_pos;
1538 
1539 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1540 	if (retval)
1541 		return retval;
1542 
1543 	for (seg = 0; seg < nr_segs; seg++) {
1544 		read_descriptor_t desc;
1545 
1546 		desc.written = 0;
1547 		desc.arg.buf = iov[seg].iov_base;
1548 		desc.count = iov[seg].iov_len;
1549 		if (desc.count == 0)
1550 			continue;
1551 		desc.error = 0;
1552 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1553 		retval += desc.written;
1554 		if (desc.error) {
1555 			retval = retval ?: desc.error;
1556 			break;
1557 		}
1558 		if (desc.count > 0)
1559 			break;
1560 	}
1561 	return retval;
1562 }
1563 
1564 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1565 				struct pipe_inode_info *pipe, size_t len,
1566 				unsigned int flags)
1567 {
1568 	struct address_space *mapping = in->f_mapping;
1569 	struct inode *inode = mapping->host;
1570 	unsigned int loff, nr_pages, req_pages;
1571 	struct page *pages[PIPE_DEF_BUFFERS];
1572 	struct partial_page partial[PIPE_DEF_BUFFERS];
1573 	struct page *page;
1574 	pgoff_t index, end_index;
1575 	loff_t isize, left;
1576 	int error, page_nr;
1577 	struct splice_pipe_desc spd = {
1578 		.pages = pages,
1579 		.partial = partial,
1580 		.nr_pages_max = PIPE_DEF_BUFFERS,
1581 		.flags = flags,
1582 		.ops = &page_cache_pipe_buf_ops,
1583 		.spd_release = spd_release_page,
1584 	};
1585 
1586 	isize = i_size_read(inode);
1587 	if (unlikely(*ppos >= isize))
1588 		return 0;
1589 
1590 	left = isize - *ppos;
1591 	if (unlikely(left < len))
1592 		len = left;
1593 
1594 	if (splice_grow_spd(pipe, &spd))
1595 		return -ENOMEM;
1596 
1597 	index = *ppos >> PAGE_CACHE_SHIFT;
1598 	loff = *ppos & ~PAGE_CACHE_MASK;
1599 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1600 	nr_pages = min(req_pages, pipe->buffers);
1601 
1602 	spd.nr_pages = find_get_pages_contig(mapping, index,
1603 						nr_pages, spd.pages);
1604 	index += spd.nr_pages;
1605 	error = 0;
1606 
1607 	while (spd.nr_pages < nr_pages) {
1608 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1609 		if (error)
1610 			break;
1611 		unlock_page(page);
1612 		spd.pages[spd.nr_pages++] = page;
1613 		index++;
1614 	}
1615 
1616 	index = *ppos >> PAGE_CACHE_SHIFT;
1617 	nr_pages = spd.nr_pages;
1618 	spd.nr_pages = 0;
1619 
1620 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1621 		unsigned int this_len;
1622 
1623 		if (!len)
1624 			break;
1625 
1626 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1627 		page = spd.pages[page_nr];
1628 
1629 		if (!PageUptodate(page) || page->mapping != mapping) {
1630 			error = shmem_getpage(inode, index, &page,
1631 							SGP_CACHE, NULL);
1632 			if (error)
1633 				break;
1634 			unlock_page(page);
1635 			page_cache_release(spd.pages[page_nr]);
1636 			spd.pages[page_nr] = page;
1637 		}
1638 
1639 		isize = i_size_read(inode);
1640 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1641 		if (unlikely(!isize || index > end_index))
1642 			break;
1643 
1644 		if (end_index == index) {
1645 			unsigned int plen;
1646 
1647 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1648 			if (plen <= loff)
1649 				break;
1650 
1651 			this_len = min(this_len, plen - loff);
1652 			len = this_len;
1653 		}
1654 
1655 		spd.partial[page_nr].offset = loff;
1656 		spd.partial[page_nr].len = this_len;
1657 		len -= this_len;
1658 		loff = 0;
1659 		spd.nr_pages++;
1660 		index++;
1661 	}
1662 
1663 	while (page_nr < nr_pages)
1664 		page_cache_release(spd.pages[page_nr++]);
1665 
1666 	if (spd.nr_pages)
1667 		error = splice_to_pipe(pipe, &spd);
1668 
1669 	splice_shrink_spd(&spd);
1670 
1671 	if (error > 0) {
1672 		*ppos += error;
1673 		file_accessed(in);
1674 	}
1675 	return error;
1676 }
1677 
1678 /*
1679  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1680  */
1681 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1682 				    pgoff_t index, pgoff_t end, int origin)
1683 {
1684 	struct page *page;
1685 	struct pagevec pvec;
1686 	pgoff_t indices[PAGEVEC_SIZE];
1687 	bool done = false;
1688 	int i;
1689 
1690 	pagevec_init(&pvec, 0);
1691 	pvec.nr = 1;		/* start small: we may be there already */
1692 	while (!done) {
1693 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1694 					pvec.nr, pvec.pages, indices);
1695 		if (!pvec.nr) {
1696 			if (origin == SEEK_DATA)
1697 				index = end;
1698 			break;
1699 		}
1700 		for (i = 0; i < pvec.nr; i++, index++) {
1701 			if (index < indices[i]) {
1702 				if (origin == SEEK_HOLE) {
1703 					done = true;
1704 					break;
1705 				}
1706 				index = indices[i];
1707 			}
1708 			page = pvec.pages[i];
1709 			if (page && !radix_tree_exceptional_entry(page)) {
1710 				if (!PageUptodate(page))
1711 					page = NULL;
1712 			}
1713 			if (index >= end ||
1714 			    (page && origin == SEEK_DATA) ||
1715 			    (!page && origin == SEEK_HOLE)) {
1716 				done = true;
1717 				break;
1718 			}
1719 		}
1720 		shmem_deswap_pagevec(&pvec);
1721 		pagevec_release(&pvec);
1722 		pvec.nr = PAGEVEC_SIZE;
1723 		cond_resched();
1724 	}
1725 	return index;
1726 }
1727 
1728 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int origin)
1729 {
1730 	struct address_space *mapping;
1731 	struct inode *inode;
1732 	pgoff_t start, end;
1733 	loff_t new_offset;
1734 
1735 	if (origin != SEEK_DATA && origin != SEEK_HOLE)
1736 		return generic_file_llseek_size(file, offset, origin,
1737 							MAX_LFS_FILESIZE);
1738 	mapping = file->f_mapping;
1739 	inode = mapping->host;
1740 	mutex_lock(&inode->i_mutex);
1741 	/* We're holding i_mutex so we can access i_size directly */
1742 
1743 	if (offset < 0)
1744 		offset = -EINVAL;
1745 	else if (offset >= inode->i_size)
1746 		offset = -ENXIO;
1747 	else {
1748 		start = offset >> PAGE_CACHE_SHIFT;
1749 		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1750 		new_offset = shmem_seek_hole_data(mapping, start, end, origin);
1751 		new_offset <<= PAGE_CACHE_SHIFT;
1752 		if (new_offset > offset) {
1753 			if (new_offset < inode->i_size)
1754 				offset = new_offset;
1755 			else if (origin == SEEK_DATA)
1756 				offset = -ENXIO;
1757 			else
1758 				offset = inode->i_size;
1759 		}
1760 	}
1761 
1762 	if (offset >= 0 && offset != file->f_pos) {
1763 		file->f_pos = offset;
1764 		file->f_version = 0;
1765 	}
1766 	mutex_unlock(&inode->i_mutex);
1767 	return offset;
1768 }
1769 
1770 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1771 							 loff_t len)
1772 {
1773 	struct inode *inode = file->f_path.dentry->d_inode;
1774 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1775 	struct shmem_falloc shmem_falloc;
1776 	pgoff_t start, index, end;
1777 	int error;
1778 
1779 	mutex_lock(&inode->i_mutex);
1780 
1781 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1782 		struct address_space *mapping = file->f_mapping;
1783 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1784 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1785 
1786 		if ((u64)unmap_end > (u64)unmap_start)
1787 			unmap_mapping_range(mapping, unmap_start,
1788 					    1 + unmap_end - unmap_start, 0);
1789 		shmem_truncate_range(inode, offset, offset + len - 1);
1790 		/* No need to unmap again: hole-punching leaves COWed pages */
1791 		error = 0;
1792 		goto out;
1793 	}
1794 
1795 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1796 	error = inode_newsize_ok(inode, offset + len);
1797 	if (error)
1798 		goto out;
1799 
1800 	start = offset >> PAGE_CACHE_SHIFT;
1801 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1802 	/* Try to avoid a swapstorm if len is impossible to satisfy */
1803 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1804 		error = -ENOSPC;
1805 		goto out;
1806 	}
1807 
1808 	shmem_falloc.start = start;
1809 	shmem_falloc.next  = start;
1810 	shmem_falloc.nr_falloced = 0;
1811 	shmem_falloc.nr_unswapped = 0;
1812 	spin_lock(&inode->i_lock);
1813 	inode->i_private = &shmem_falloc;
1814 	spin_unlock(&inode->i_lock);
1815 
1816 	for (index = start; index < end; index++) {
1817 		struct page *page;
1818 
1819 		/*
1820 		 * Good, the fallocate(2) manpage permits EINTR: we may have
1821 		 * been interrupted because we are using up too much memory.
1822 		 */
1823 		if (signal_pending(current))
1824 			error = -EINTR;
1825 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1826 			error = -ENOMEM;
1827 		else
1828 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1829 									NULL);
1830 		if (error) {
1831 			/* Remove the !PageUptodate pages we added */
1832 			shmem_undo_range(inode,
1833 				(loff_t)start << PAGE_CACHE_SHIFT,
1834 				(loff_t)index << PAGE_CACHE_SHIFT, true);
1835 			goto undone;
1836 		}
1837 
1838 		/*
1839 		 * Inform shmem_writepage() how far we have reached.
1840 		 * No need for lock or barrier: we have the page lock.
1841 		 */
1842 		shmem_falloc.next++;
1843 		if (!PageUptodate(page))
1844 			shmem_falloc.nr_falloced++;
1845 
1846 		/*
1847 		 * If !PageUptodate, leave it that way so that freeable pages
1848 		 * can be recognized if we need to rollback on error later.
1849 		 * But set_page_dirty so that memory pressure will swap rather
1850 		 * than free the pages we are allocating (and SGP_CACHE pages
1851 		 * might still be clean: we now need to mark those dirty too).
1852 		 */
1853 		set_page_dirty(page);
1854 		unlock_page(page);
1855 		page_cache_release(page);
1856 		cond_resched();
1857 	}
1858 
1859 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1860 		i_size_write(inode, offset + len);
1861 	inode->i_ctime = CURRENT_TIME;
1862 undone:
1863 	spin_lock(&inode->i_lock);
1864 	inode->i_private = NULL;
1865 	spin_unlock(&inode->i_lock);
1866 out:
1867 	mutex_unlock(&inode->i_mutex);
1868 	return error;
1869 }
1870 
1871 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1872 {
1873 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1874 
1875 	buf->f_type = TMPFS_MAGIC;
1876 	buf->f_bsize = PAGE_CACHE_SIZE;
1877 	buf->f_namelen = NAME_MAX;
1878 	if (sbinfo->max_blocks) {
1879 		buf->f_blocks = sbinfo->max_blocks;
1880 		buf->f_bavail =
1881 		buf->f_bfree  = sbinfo->max_blocks -
1882 				percpu_counter_sum(&sbinfo->used_blocks);
1883 	}
1884 	if (sbinfo->max_inodes) {
1885 		buf->f_files = sbinfo->max_inodes;
1886 		buf->f_ffree = sbinfo->free_inodes;
1887 	}
1888 	/* else leave those fields 0 like simple_statfs */
1889 	return 0;
1890 }
1891 
1892 /*
1893  * File creation. Allocate an inode, and we're done..
1894  */
1895 static int
1896 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1897 {
1898 	struct inode *inode;
1899 	int error = -ENOSPC;
1900 
1901 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1902 	if (inode) {
1903 		error = security_inode_init_security(inode, dir,
1904 						     &dentry->d_name,
1905 						     shmem_initxattrs, NULL);
1906 		if (error) {
1907 			if (error != -EOPNOTSUPP) {
1908 				iput(inode);
1909 				return error;
1910 			}
1911 		}
1912 #ifdef CONFIG_TMPFS_POSIX_ACL
1913 		error = generic_acl_init(inode, dir);
1914 		if (error) {
1915 			iput(inode);
1916 			return error;
1917 		}
1918 #else
1919 		error = 0;
1920 #endif
1921 		dir->i_size += BOGO_DIRENT_SIZE;
1922 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1923 		d_instantiate(dentry, inode);
1924 		dget(dentry); /* Extra count - pin the dentry in core */
1925 	}
1926 	return error;
1927 }
1928 
1929 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1930 {
1931 	int error;
1932 
1933 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1934 		return error;
1935 	inc_nlink(dir);
1936 	return 0;
1937 }
1938 
1939 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1940 		struct nameidata *nd)
1941 {
1942 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1943 }
1944 
1945 /*
1946  * Link a file..
1947  */
1948 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1949 {
1950 	struct inode *inode = old_dentry->d_inode;
1951 	int ret;
1952 
1953 	/*
1954 	 * No ordinary (disk based) filesystem counts links as inodes;
1955 	 * but each new link needs a new dentry, pinning lowmem, and
1956 	 * tmpfs dentries cannot be pruned until they are unlinked.
1957 	 */
1958 	ret = shmem_reserve_inode(inode->i_sb);
1959 	if (ret)
1960 		goto out;
1961 
1962 	dir->i_size += BOGO_DIRENT_SIZE;
1963 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1964 	inc_nlink(inode);
1965 	ihold(inode);	/* New dentry reference */
1966 	dget(dentry);		/* Extra pinning count for the created dentry */
1967 	d_instantiate(dentry, inode);
1968 out:
1969 	return ret;
1970 }
1971 
1972 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1973 {
1974 	struct inode *inode = dentry->d_inode;
1975 
1976 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1977 		shmem_free_inode(inode->i_sb);
1978 
1979 	dir->i_size -= BOGO_DIRENT_SIZE;
1980 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1981 	drop_nlink(inode);
1982 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1983 	return 0;
1984 }
1985 
1986 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1987 {
1988 	if (!simple_empty(dentry))
1989 		return -ENOTEMPTY;
1990 
1991 	drop_nlink(dentry->d_inode);
1992 	drop_nlink(dir);
1993 	return shmem_unlink(dir, dentry);
1994 }
1995 
1996 /*
1997  * The VFS layer already does all the dentry stuff for rename,
1998  * we just have to decrement the usage count for the target if
1999  * it exists so that the VFS layer correctly free's it when it
2000  * gets overwritten.
2001  */
2002 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2003 {
2004 	struct inode *inode = old_dentry->d_inode;
2005 	int they_are_dirs = S_ISDIR(inode->i_mode);
2006 
2007 	if (!simple_empty(new_dentry))
2008 		return -ENOTEMPTY;
2009 
2010 	if (new_dentry->d_inode) {
2011 		(void) shmem_unlink(new_dir, new_dentry);
2012 		if (they_are_dirs)
2013 			drop_nlink(old_dir);
2014 	} else if (they_are_dirs) {
2015 		drop_nlink(old_dir);
2016 		inc_nlink(new_dir);
2017 	}
2018 
2019 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2020 	new_dir->i_size += BOGO_DIRENT_SIZE;
2021 	old_dir->i_ctime = old_dir->i_mtime =
2022 	new_dir->i_ctime = new_dir->i_mtime =
2023 	inode->i_ctime = CURRENT_TIME;
2024 	return 0;
2025 }
2026 
2027 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2028 {
2029 	int error;
2030 	int len;
2031 	struct inode *inode;
2032 	struct page *page;
2033 	char *kaddr;
2034 	struct shmem_inode_info *info;
2035 
2036 	len = strlen(symname) + 1;
2037 	if (len > PAGE_CACHE_SIZE)
2038 		return -ENAMETOOLONG;
2039 
2040 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2041 	if (!inode)
2042 		return -ENOSPC;
2043 
2044 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2045 					     shmem_initxattrs, NULL);
2046 	if (error) {
2047 		if (error != -EOPNOTSUPP) {
2048 			iput(inode);
2049 			return error;
2050 		}
2051 		error = 0;
2052 	}
2053 
2054 	info = SHMEM_I(inode);
2055 	inode->i_size = len-1;
2056 	if (len <= SHORT_SYMLINK_LEN) {
2057 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2058 		if (!info->symlink) {
2059 			iput(inode);
2060 			return -ENOMEM;
2061 		}
2062 		inode->i_op = &shmem_short_symlink_operations;
2063 	} else {
2064 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2065 		if (error) {
2066 			iput(inode);
2067 			return error;
2068 		}
2069 		inode->i_mapping->a_ops = &shmem_aops;
2070 		inode->i_op = &shmem_symlink_inode_operations;
2071 		kaddr = kmap_atomic(page);
2072 		memcpy(kaddr, symname, len);
2073 		kunmap_atomic(kaddr);
2074 		SetPageUptodate(page);
2075 		set_page_dirty(page);
2076 		unlock_page(page);
2077 		page_cache_release(page);
2078 	}
2079 	dir->i_size += BOGO_DIRENT_SIZE;
2080 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2081 	d_instantiate(dentry, inode);
2082 	dget(dentry);
2083 	return 0;
2084 }
2085 
2086 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2087 {
2088 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2089 	return NULL;
2090 }
2091 
2092 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2093 {
2094 	struct page *page = NULL;
2095 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2096 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2097 	if (page)
2098 		unlock_page(page);
2099 	return page;
2100 }
2101 
2102 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2103 {
2104 	if (!IS_ERR(nd_get_link(nd))) {
2105 		struct page *page = cookie;
2106 		kunmap(page);
2107 		mark_page_accessed(page);
2108 		page_cache_release(page);
2109 	}
2110 }
2111 
2112 #ifdef CONFIG_TMPFS_XATTR
2113 /*
2114  * Superblocks without xattr inode operations may get some security.* xattr
2115  * support from the LSM "for free". As soon as we have any other xattrs
2116  * like ACLs, we also need to implement the security.* handlers at
2117  * filesystem level, though.
2118  */
2119 
2120 /*
2121  * Allocate new xattr and copy in the value; but leave the name to callers.
2122  */
2123 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
2124 {
2125 	struct shmem_xattr *new_xattr;
2126 	size_t len;
2127 
2128 	/* wrap around? */
2129 	len = sizeof(*new_xattr) + size;
2130 	if (len <= sizeof(*new_xattr))
2131 		return NULL;
2132 
2133 	new_xattr = kmalloc(len, GFP_KERNEL);
2134 	if (!new_xattr)
2135 		return NULL;
2136 
2137 	new_xattr->size = size;
2138 	memcpy(new_xattr->value, value, size);
2139 	return new_xattr;
2140 }
2141 
2142 /*
2143  * Callback for security_inode_init_security() for acquiring xattrs.
2144  */
2145 static int shmem_initxattrs(struct inode *inode,
2146 			    const struct xattr *xattr_array,
2147 			    void *fs_info)
2148 {
2149 	struct shmem_inode_info *info = SHMEM_I(inode);
2150 	const struct xattr *xattr;
2151 	struct shmem_xattr *new_xattr;
2152 	size_t len;
2153 
2154 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2155 		new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
2156 		if (!new_xattr)
2157 			return -ENOMEM;
2158 
2159 		len = strlen(xattr->name) + 1;
2160 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2161 					  GFP_KERNEL);
2162 		if (!new_xattr->name) {
2163 			kfree(new_xattr);
2164 			return -ENOMEM;
2165 		}
2166 
2167 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2168 		       XATTR_SECURITY_PREFIX_LEN);
2169 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2170 		       xattr->name, len);
2171 
2172 		spin_lock(&info->lock);
2173 		list_add(&new_xattr->list, &info->xattr_list);
2174 		spin_unlock(&info->lock);
2175 	}
2176 
2177 	return 0;
2178 }
2179 
2180 static int shmem_xattr_get(struct dentry *dentry, const char *name,
2181 			   void *buffer, size_t size)
2182 {
2183 	struct shmem_inode_info *info;
2184 	struct shmem_xattr *xattr;
2185 	int ret = -ENODATA;
2186 
2187 	info = SHMEM_I(dentry->d_inode);
2188 
2189 	spin_lock(&info->lock);
2190 	list_for_each_entry(xattr, &info->xattr_list, list) {
2191 		if (strcmp(name, xattr->name))
2192 			continue;
2193 
2194 		ret = xattr->size;
2195 		if (buffer) {
2196 			if (size < xattr->size)
2197 				ret = -ERANGE;
2198 			else
2199 				memcpy(buffer, xattr->value, xattr->size);
2200 		}
2201 		break;
2202 	}
2203 	spin_unlock(&info->lock);
2204 	return ret;
2205 }
2206 
2207 static int shmem_xattr_set(struct inode *inode, const char *name,
2208 			   const void *value, size_t size, int flags)
2209 {
2210 	struct shmem_inode_info *info = SHMEM_I(inode);
2211 	struct shmem_xattr *xattr;
2212 	struct shmem_xattr *new_xattr = NULL;
2213 	int err = 0;
2214 
2215 	/* value == NULL means remove */
2216 	if (value) {
2217 		new_xattr = shmem_xattr_alloc(value, size);
2218 		if (!new_xattr)
2219 			return -ENOMEM;
2220 
2221 		new_xattr->name = kstrdup(name, GFP_KERNEL);
2222 		if (!new_xattr->name) {
2223 			kfree(new_xattr);
2224 			return -ENOMEM;
2225 		}
2226 	}
2227 
2228 	spin_lock(&info->lock);
2229 	list_for_each_entry(xattr, &info->xattr_list, list) {
2230 		if (!strcmp(name, xattr->name)) {
2231 			if (flags & XATTR_CREATE) {
2232 				xattr = new_xattr;
2233 				err = -EEXIST;
2234 			} else if (new_xattr) {
2235 				list_replace(&xattr->list, &new_xattr->list);
2236 			} else {
2237 				list_del(&xattr->list);
2238 			}
2239 			goto out;
2240 		}
2241 	}
2242 	if (flags & XATTR_REPLACE) {
2243 		xattr = new_xattr;
2244 		err = -ENODATA;
2245 	} else {
2246 		list_add(&new_xattr->list, &info->xattr_list);
2247 		xattr = NULL;
2248 	}
2249 out:
2250 	spin_unlock(&info->lock);
2251 	if (xattr)
2252 		kfree(xattr->name);
2253 	kfree(xattr);
2254 	return err;
2255 }
2256 
2257 static const struct xattr_handler *shmem_xattr_handlers[] = {
2258 #ifdef CONFIG_TMPFS_POSIX_ACL
2259 	&generic_acl_access_handler,
2260 	&generic_acl_default_handler,
2261 #endif
2262 	NULL
2263 };
2264 
2265 static int shmem_xattr_validate(const char *name)
2266 {
2267 	struct { const char *prefix; size_t len; } arr[] = {
2268 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2269 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2270 	};
2271 	int i;
2272 
2273 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2274 		size_t preflen = arr[i].len;
2275 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2276 			if (!name[preflen])
2277 				return -EINVAL;
2278 			return 0;
2279 		}
2280 	}
2281 	return -EOPNOTSUPP;
2282 }
2283 
2284 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2285 			      void *buffer, size_t size)
2286 {
2287 	int err;
2288 
2289 	/*
2290 	 * If this is a request for a synthetic attribute in the system.*
2291 	 * namespace use the generic infrastructure to resolve a handler
2292 	 * for it via sb->s_xattr.
2293 	 */
2294 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2295 		return generic_getxattr(dentry, name, buffer, size);
2296 
2297 	err = shmem_xattr_validate(name);
2298 	if (err)
2299 		return err;
2300 
2301 	return shmem_xattr_get(dentry, name, buffer, size);
2302 }
2303 
2304 static int shmem_setxattr(struct dentry *dentry, const char *name,
2305 			  const void *value, size_t size, int flags)
2306 {
2307 	int err;
2308 
2309 	/*
2310 	 * If this is a request for a synthetic attribute in the system.*
2311 	 * namespace use the generic infrastructure to resolve a handler
2312 	 * for it via sb->s_xattr.
2313 	 */
2314 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2315 		return generic_setxattr(dentry, name, value, size, flags);
2316 
2317 	err = shmem_xattr_validate(name);
2318 	if (err)
2319 		return err;
2320 
2321 	if (size == 0)
2322 		value = "";  /* empty EA, do not remove */
2323 
2324 	return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
2325 
2326 }
2327 
2328 static int shmem_removexattr(struct dentry *dentry, const char *name)
2329 {
2330 	int err;
2331 
2332 	/*
2333 	 * If this is a request for a synthetic attribute in the system.*
2334 	 * namespace use the generic infrastructure to resolve a handler
2335 	 * for it via sb->s_xattr.
2336 	 */
2337 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2338 		return generic_removexattr(dentry, name);
2339 
2340 	err = shmem_xattr_validate(name);
2341 	if (err)
2342 		return err;
2343 
2344 	return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
2345 }
2346 
2347 static bool xattr_is_trusted(const char *name)
2348 {
2349 	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2350 }
2351 
2352 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2353 {
2354 	bool trusted = capable(CAP_SYS_ADMIN);
2355 	struct shmem_xattr *xattr;
2356 	struct shmem_inode_info *info;
2357 	size_t used = 0;
2358 
2359 	info = SHMEM_I(dentry->d_inode);
2360 
2361 	spin_lock(&info->lock);
2362 	list_for_each_entry(xattr, &info->xattr_list, list) {
2363 		size_t len;
2364 
2365 		/* skip "trusted." attributes for unprivileged callers */
2366 		if (!trusted && xattr_is_trusted(xattr->name))
2367 			continue;
2368 
2369 		len = strlen(xattr->name) + 1;
2370 		used += len;
2371 		if (buffer) {
2372 			if (size < used) {
2373 				used = -ERANGE;
2374 				break;
2375 			}
2376 			memcpy(buffer, xattr->name, len);
2377 			buffer += len;
2378 		}
2379 	}
2380 	spin_unlock(&info->lock);
2381 
2382 	return used;
2383 }
2384 #endif /* CONFIG_TMPFS_XATTR */
2385 
2386 static const struct inode_operations shmem_short_symlink_operations = {
2387 	.readlink	= generic_readlink,
2388 	.follow_link	= shmem_follow_short_symlink,
2389 #ifdef CONFIG_TMPFS_XATTR
2390 	.setxattr	= shmem_setxattr,
2391 	.getxattr	= shmem_getxattr,
2392 	.listxattr	= shmem_listxattr,
2393 	.removexattr	= shmem_removexattr,
2394 #endif
2395 };
2396 
2397 static const struct inode_operations shmem_symlink_inode_operations = {
2398 	.readlink	= generic_readlink,
2399 	.follow_link	= shmem_follow_link,
2400 	.put_link	= shmem_put_link,
2401 #ifdef CONFIG_TMPFS_XATTR
2402 	.setxattr	= shmem_setxattr,
2403 	.getxattr	= shmem_getxattr,
2404 	.listxattr	= shmem_listxattr,
2405 	.removexattr	= shmem_removexattr,
2406 #endif
2407 };
2408 
2409 static struct dentry *shmem_get_parent(struct dentry *child)
2410 {
2411 	return ERR_PTR(-ESTALE);
2412 }
2413 
2414 static int shmem_match(struct inode *ino, void *vfh)
2415 {
2416 	__u32 *fh = vfh;
2417 	__u64 inum = fh[2];
2418 	inum = (inum << 32) | fh[1];
2419 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2420 }
2421 
2422 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2423 		struct fid *fid, int fh_len, int fh_type)
2424 {
2425 	struct inode *inode;
2426 	struct dentry *dentry = NULL;
2427 	u64 inum = fid->raw[2];
2428 	inum = (inum << 32) | fid->raw[1];
2429 
2430 	if (fh_len < 3)
2431 		return NULL;
2432 
2433 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2434 			shmem_match, fid->raw);
2435 	if (inode) {
2436 		dentry = d_find_alias(inode);
2437 		iput(inode);
2438 	}
2439 
2440 	return dentry;
2441 }
2442 
2443 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2444 				struct inode *parent)
2445 {
2446 	if (*len < 3) {
2447 		*len = 3;
2448 		return 255;
2449 	}
2450 
2451 	if (inode_unhashed(inode)) {
2452 		/* Unfortunately insert_inode_hash is not idempotent,
2453 		 * so as we hash inodes here rather than at creation
2454 		 * time, we need a lock to ensure we only try
2455 		 * to do it once
2456 		 */
2457 		static DEFINE_SPINLOCK(lock);
2458 		spin_lock(&lock);
2459 		if (inode_unhashed(inode))
2460 			__insert_inode_hash(inode,
2461 					    inode->i_ino + inode->i_generation);
2462 		spin_unlock(&lock);
2463 	}
2464 
2465 	fh[0] = inode->i_generation;
2466 	fh[1] = inode->i_ino;
2467 	fh[2] = ((__u64)inode->i_ino) >> 32;
2468 
2469 	*len = 3;
2470 	return 1;
2471 }
2472 
2473 static const struct export_operations shmem_export_ops = {
2474 	.get_parent     = shmem_get_parent,
2475 	.encode_fh      = shmem_encode_fh,
2476 	.fh_to_dentry	= shmem_fh_to_dentry,
2477 };
2478 
2479 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2480 			       bool remount)
2481 {
2482 	char *this_char, *value, *rest;
2483 	uid_t uid;
2484 	gid_t gid;
2485 
2486 	while (options != NULL) {
2487 		this_char = options;
2488 		for (;;) {
2489 			/*
2490 			 * NUL-terminate this option: unfortunately,
2491 			 * mount options form a comma-separated list,
2492 			 * but mpol's nodelist may also contain commas.
2493 			 */
2494 			options = strchr(options, ',');
2495 			if (options == NULL)
2496 				break;
2497 			options++;
2498 			if (!isdigit(*options)) {
2499 				options[-1] = '\0';
2500 				break;
2501 			}
2502 		}
2503 		if (!*this_char)
2504 			continue;
2505 		if ((value = strchr(this_char,'=')) != NULL) {
2506 			*value++ = 0;
2507 		} else {
2508 			printk(KERN_ERR
2509 			    "tmpfs: No value for mount option '%s'\n",
2510 			    this_char);
2511 			return 1;
2512 		}
2513 
2514 		if (!strcmp(this_char,"size")) {
2515 			unsigned long long size;
2516 			size = memparse(value,&rest);
2517 			if (*rest == '%') {
2518 				size <<= PAGE_SHIFT;
2519 				size *= totalram_pages;
2520 				do_div(size, 100);
2521 				rest++;
2522 			}
2523 			if (*rest)
2524 				goto bad_val;
2525 			sbinfo->max_blocks =
2526 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2527 		} else if (!strcmp(this_char,"nr_blocks")) {
2528 			sbinfo->max_blocks = memparse(value, &rest);
2529 			if (*rest)
2530 				goto bad_val;
2531 		} else if (!strcmp(this_char,"nr_inodes")) {
2532 			sbinfo->max_inodes = memparse(value, &rest);
2533 			if (*rest)
2534 				goto bad_val;
2535 		} else if (!strcmp(this_char,"mode")) {
2536 			if (remount)
2537 				continue;
2538 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2539 			if (*rest)
2540 				goto bad_val;
2541 		} else if (!strcmp(this_char,"uid")) {
2542 			if (remount)
2543 				continue;
2544 			uid = simple_strtoul(value, &rest, 0);
2545 			if (*rest)
2546 				goto bad_val;
2547 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2548 			if (!uid_valid(sbinfo->uid))
2549 				goto bad_val;
2550 		} else if (!strcmp(this_char,"gid")) {
2551 			if (remount)
2552 				continue;
2553 			gid = simple_strtoul(value, &rest, 0);
2554 			if (*rest)
2555 				goto bad_val;
2556 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2557 			if (!gid_valid(sbinfo->gid))
2558 				goto bad_val;
2559 		} else if (!strcmp(this_char,"mpol")) {
2560 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2561 				goto bad_val;
2562 		} else {
2563 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2564 			       this_char);
2565 			return 1;
2566 		}
2567 	}
2568 	return 0;
2569 
2570 bad_val:
2571 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2572 	       value, this_char);
2573 	return 1;
2574 
2575 }
2576 
2577 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2578 {
2579 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2580 	struct shmem_sb_info config = *sbinfo;
2581 	unsigned long inodes;
2582 	int error = -EINVAL;
2583 
2584 	if (shmem_parse_options(data, &config, true))
2585 		return error;
2586 
2587 	spin_lock(&sbinfo->stat_lock);
2588 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2589 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2590 		goto out;
2591 	if (config.max_inodes < inodes)
2592 		goto out;
2593 	/*
2594 	 * Those tests disallow limited->unlimited while any are in use;
2595 	 * but we must separately disallow unlimited->limited, because
2596 	 * in that case we have no record of how much is already in use.
2597 	 */
2598 	if (config.max_blocks && !sbinfo->max_blocks)
2599 		goto out;
2600 	if (config.max_inodes && !sbinfo->max_inodes)
2601 		goto out;
2602 
2603 	error = 0;
2604 	sbinfo->max_blocks  = config.max_blocks;
2605 	sbinfo->max_inodes  = config.max_inodes;
2606 	sbinfo->free_inodes = config.max_inodes - inodes;
2607 
2608 	mpol_put(sbinfo->mpol);
2609 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2610 out:
2611 	spin_unlock(&sbinfo->stat_lock);
2612 	return error;
2613 }
2614 
2615 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2616 {
2617 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2618 
2619 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2620 		seq_printf(seq, ",size=%luk",
2621 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2622 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2623 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2624 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2625 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2626 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2627 		seq_printf(seq, ",uid=%u",
2628 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2629 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2630 		seq_printf(seq, ",gid=%u",
2631 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2632 	shmem_show_mpol(seq, sbinfo->mpol);
2633 	return 0;
2634 }
2635 #endif /* CONFIG_TMPFS */
2636 
2637 static void shmem_put_super(struct super_block *sb)
2638 {
2639 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2640 
2641 	percpu_counter_destroy(&sbinfo->used_blocks);
2642 	kfree(sbinfo);
2643 	sb->s_fs_info = NULL;
2644 }
2645 
2646 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2647 {
2648 	struct inode *inode;
2649 	struct shmem_sb_info *sbinfo;
2650 	int err = -ENOMEM;
2651 
2652 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2653 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2654 				L1_CACHE_BYTES), GFP_KERNEL);
2655 	if (!sbinfo)
2656 		return -ENOMEM;
2657 
2658 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2659 	sbinfo->uid = current_fsuid();
2660 	sbinfo->gid = current_fsgid();
2661 	sb->s_fs_info = sbinfo;
2662 
2663 #ifdef CONFIG_TMPFS
2664 	/*
2665 	 * Per default we only allow half of the physical ram per
2666 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2667 	 * but the internal instance is left unlimited.
2668 	 */
2669 	if (!(sb->s_flags & MS_NOUSER)) {
2670 		sbinfo->max_blocks = shmem_default_max_blocks();
2671 		sbinfo->max_inodes = shmem_default_max_inodes();
2672 		if (shmem_parse_options(data, sbinfo, false)) {
2673 			err = -EINVAL;
2674 			goto failed;
2675 		}
2676 	}
2677 	sb->s_export_op = &shmem_export_ops;
2678 	sb->s_flags |= MS_NOSEC;
2679 #else
2680 	sb->s_flags |= MS_NOUSER;
2681 #endif
2682 
2683 	spin_lock_init(&sbinfo->stat_lock);
2684 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2685 		goto failed;
2686 	sbinfo->free_inodes = sbinfo->max_inodes;
2687 
2688 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2689 	sb->s_blocksize = PAGE_CACHE_SIZE;
2690 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2691 	sb->s_magic = TMPFS_MAGIC;
2692 	sb->s_op = &shmem_ops;
2693 	sb->s_time_gran = 1;
2694 #ifdef CONFIG_TMPFS_XATTR
2695 	sb->s_xattr = shmem_xattr_handlers;
2696 #endif
2697 #ifdef CONFIG_TMPFS_POSIX_ACL
2698 	sb->s_flags |= MS_POSIXACL;
2699 #endif
2700 
2701 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2702 	if (!inode)
2703 		goto failed;
2704 	inode->i_uid = sbinfo->uid;
2705 	inode->i_gid = sbinfo->gid;
2706 	sb->s_root = d_make_root(inode);
2707 	if (!sb->s_root)
2708 		goto failed;
2709 	return 0;
2710 
2711 failed:
2712 	shmem_put_super(sb);
2713 	return err;
2714 }
2715 
2716 static struct kmem_cache *shmem_inode_cachep;
2717 
2718 static struct inode *shmem_alloc_inode(struct super_block *sb)
2719 {
2720 	struct shmem_inode_info *info;
2721 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2722 	if (!info)
2723 		return NULL;
2724 	return &info->vfs_inode;
2725 }
2726 
2727 static void shmem_destroy_callback(struct rcu_head *head)
2728 {
2729 	struct inode *inode = container_of(head, struct inode, i_rcu);
2730 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2731 }
2732 
2733 static void shmem_destroy_inode(struct inode *inode)
2734 {
2735 	if (S_ISREG(inode->i_mode))
2736 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2737 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2738 }
2739 
2740 static void shmem_init_inode(void *foo)
2741 {
2742 	struct shmem_inode_info *info = foo;
2743 	inode_init_once(&info->vfs_inode);
2744 }
2745 
2746 static int shmem_init_inodecache(void)
2747 {
2748 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2749 				sizeof(struct shmem_inode_info),
2750 				0, SLAB_PANIC, shmem_init_inode);
2751 	return 0;
2752 }
2753 
2754 static void shmem_destroy_inodecache(void)
2755 {
2756 	kmem_cache_destroy(shmem_inode_cachep);
2757 }
2758 
2759 static const struct address_space_operations shmem_aops = {
2760 	.writepage	= shmem_writepage,
2761 	.set_page_dirty	= __set_page_dirty_no_writeback,
2762 #ifdef CONFIG_TMPFS
2763 	.write_begin	= shmem_write_begin,
2764 	.write_end	= shmem_write_end,
2765 #endif
2766 	.migratepage	= migrate_page,
2767 	.error_remove_page = generic_error_remove_page,
2768 };
2769 
2770 static const struct file_operations shmem_file_operations = {
2771 	.mmap		= shmem_mmap,
2772 #ifdef CONFIG_TMPFS
2773 	.llseek		= shmem_file_llseek,
2774 	.read		= do_sync_read,
2775 	.write		= do_sync_write,
2776 	.aio_read	= shmem_file_aio_read,
2777 	.aio_write	= generic_file_aio_write,
2778 	.fsync		= noop_fsync,
2779 	.splice_read	= shmem_file_splice_read,
2780 	.splice_write	= generic_file_splice_write,
2781 	.fallocate	= shmem_fallocate,
2782 #endif
2783 };
2784 
2785 static const struct inode_operations shmem_inode_operations = {
2786 	.setattr	= shmem_setattr,
2787 #ifdef CONFIG_TMPFS_XATTR
2788 	.setxattr	= shmem_setxattr,
2789 	.getxattr	= shmem_getxattr,
2790 	.listxattr	= shmem_listxattr,
2791 	.removexattr	= shmem_removexattr,
2792 #endif
2793 };
2794 
2795 static const struct inode_operations shmem_dir_inode_operations = {
2796 #ifdef CONFIG_TMPFS
2797 	.create		= shmem_create,
2798 	.lookup		= simple_lookup,
2799 	.link		= shmem_link,
2800 	.unlink		= shmem_unlink,
2801 	.symlink	= shmem_symlink,
2802 	.mkdir		= shmem_mkdir,
2803 	.rmdir		= shmem_rmdir,
2804 	.mknod		= shmem_mknod,
2805 	.rename		= shmem_rename,
2806 #endif
2807 #ifdef CONFIG_TMPFS_XATTR
2808 	.setxattr	= shmem_setxattr,
2809 	.getxattr	= shmem_getxattr,
2810 	.listxattr	= shmem_listxattr,
2811 	.removexattr	= shmem_removexattr,
2812 #endif
2813 #ifdef CONFIG_TMPFS_POSIX_ACL
2814 	.setattr	= shmem_setattr,
2815 #endif
2816 };
2817 
2818 static const struct inode_operations shmem_special_inode_operations = {
2819 #ifdef CONFIG_TMPFS_XATTR
2820 	.setxattr	= shmem_setxattr,
2821 	.getxattr	= shmem_getxattr,
2822 	.listxattr	= shmem_listxattr,
2823 	.removexattr	= shmem_removexattr,
2824 #endif
2825 #ifdef CONFIG_TMPFS_POSIX_ACL
2826 	.setattr	= shmem_setattr,
2827 #endif
2828 };
2829 
2830 static const struct super_operations shmem_ops = {
2831 	.alloc_inode	= shmem_alloc_inode,
2832 	.destroy_inode	= shmem_destroy_inode,
2833 #ifdef CONFIG_TMPFS
2834 	.statfs		= shmem_statfs,
2835 	.remount_fs	= shmem_remount_fs,
2836 	.show_options	= shmem_show_options,
2837 #endif
2838 	.evict_inode	= shmem_evict_inode,
2839 	.drop_inode	= generic_delete_inode,
2840 	.put_super	= shmem_put_super,
2841 };
2842 
2843 static const struct vm_operations_struct shmem_vm_ops = {
2844 	.fault		= shmem_fault,
2845 #ifdef CONFIG_NUMA
2846 	.set_policy     = shmem_set_policy,
2847 	.get_policy     = shmem_get_policy,
2848 #endif
2849 };
2850 
2851 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2852 	int flags, const char *dev_name, void *data)
2853 {
2854 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2855 }
2856 
2857 static struct file_system_type shmem_fs_type = {
2858 	.owner		= THIS_MODULE,
2859 	.name		= "tmpfs",
2860 	.mount		= shmem_mount,
2861 	.kill_sb	= kill_litter_super,
2862 };
2863 
2864 int __init shmem_init(void)
2865 {
2866 	int error;
2867 
2868 	error = bdi_init(&shmem_backing_dev_info);
2869 	if (error)
2870 		goto out4;
2871 
2872 	error = shmem_init_inodecache();
2873 	if (error)
2874 		goto out3;
2875 
2876 	error = register_filesystem(&shmem_fs_type);
2877 	if (error) {
2878 		printk(KERN_ERR "Could not register tmpfs\n");
2879 		goto out2;
2880 	}
2881 
2882 	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2883 				 shmem_fs_type.name, NULL);
2884 	if (IS_ERR(shm_mnt)) {
2885 		error = PTR_ERR(shm_mnt);
2886 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2887 		goto out1;
2888 	}
2889 	return 0;
2890 
2891 out1:
2892 	unregister_filesystem(&shmem_fs_type);
2893 out2:
2894 	shmem_destroy_inodecache();
2895 out3:
2896 	bdi_destroy(&shmem_backing_dev_info);
2897 out4:
2898 	shm_mnt = ERR_PTR(error);
2899 	return error;
2900 }
2901 
2902 #else /* !CONFIG_SHMEM */
2903 
2904 /*
2905  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2906  *
2907  * This is intended for small system where the benefits of the full
2908  * shmem code (swap-backed and resource-limited) are outweighed by
2909  * their complexity. On systems without swap this code should be
2910  * effectively equivalent, but much lighter weight.
2911  */
2912 
2913 #include <linux/ramfs.h>
2914 
2915 static struct file_system_type shmem_fs_type = {
2916 	.name		= "tmpfs",
2917 	.mount		= ramfs_mount,
2918 	.kill_sb	= kill_litter_super,
2919 };
2920 
2921 int __init shmem_init(void)
2922 {
2923 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2924 
2925 	shm_mnt = kern_mount(&shmem_fs_type);
2926 	BUG_ON(IS_ERR(shm_mnt));
2927 
2928 	return 0;
2929 }
2930 
2931 int shmem_unuse(swp_entry_t swap, struct page *page)
2932 {
2933 	return 0;
2934 }
2935 
2936 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2937 {
2938 	return 0;
2939 }
2940 
2941 void shmem_unlock_mapping(struct address_space *mapping)
2942 {
2943 }
2944 
2945 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2946 {
2947 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2948 }
2949 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2950 
2951 #define shmem_vm_ops				generic_file_vm_ops
2952 #define shmem_file_operations			ramfs_file_operations
2953 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2954 #define shmem_acct_size(flags, size)		0
2955 #define shmem_unacct_size(flags, size)		do {} while (0)
2956 
2957 #endif /* CONFIG_SHMEM */
2958 
2959 /* common code */
2960 
2961 /**
2962  * shmem_file_setup - get an unlinked file living in tmpfs
2963  * @name: name for dentry (to be seen in /proc/<pid>/maps
2964  * @size: size to be set for the file
2965  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2966  */
2967 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2968 {
2969 	int error;
2970 	struct file *file;
2971 	struct inode *inode;
2972 	struct path path;
2973 	struct dentry *root;
2974 	struct qstr this;
2975 
2976 	if (IS_ERR(shm_mnt))
2977 		return (void *)shm_mnt;
2978 
2979 	if (size < 0 || size > MAX_LFS_FILESIZE)
2980 		return ERR_PTR(-EINVAL);
2981 
2982 	if (shmem_acct_size(flags, size))
2983 		return ERR_PTR(-ENOMEM);
2984 
2985 	error = -ENOMEM;
2986 	this.name = name;
2987 	this.len = strlen(name);
2988 	this.hash = 0; /* will go */
2989 	root = shm_mnt->mnt_root;
2990 	path.dentry = d_alloc(root, &this);
2991 	if (!path.dentry)
2992 		goto put_memory;
2993 	path.mnt = mntget(shm_mnt);
2994 
2995 	error = -ENOSPC;
2996 	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2997 	if (!inode)
2998 		goto put_dentry;
2999 
3000 	d_instantiate(path.dentry, inode);
3001 	inode->i_size = size;
3002 	clear_nlink(inode);	/* It is unlinked */
3003 #ifndef CONFIG_MMU
3004 	error = ramfs_nommu_expand_for_mapping(inode, size);
3005 	if (error)
3006 		goto put_dentry;
3007 #endif
3008 
3009 	error = -ENFILE;
3010 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3011 		  &shmem_file_operations);
3012 	if (!file)
3013 		goto put_dentry;
3014 
3015 	return file;
3016 
3017 put_dentry:
3018 	path_put(&path);
3019 put_memory:
3020 	shmem_unacct_size(flags, size);
3021 	return ERR_PTR(error);
3022 }
3023 EXPORT_SYMBOL_GPL(shmem_file_setup);
3024 
3025 /**
3026  * shmem_zero_setup - setup a shared anonymous mapping
3027  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3028  */
3029 int shmem_zero_setup(struct vm_area_struct *vma)
3030 {
3031 	struct file *file;
3032 	loff_t size = vma->vm_end - vma->vm_start;
3033 
3034 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3035 	if (IS_ERR(file))
3036 		return PTR_ERR(file);
3037 
3038 	if (vma->vm_file)
3039 		fput(vma->vm_file);
3040 	vma->vm_file = file;
3041 	vma->vm_ops = &shmem_vm_ops;
3042 	vma->vm_flags |= VM_CAN_NONLINEAR;
3043 	return 0;
3044 }
3045 
3046 /**
3047  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3048  * @mapping:	the page's address_space
3049  * @index:	the page index
3050  * @gfp:	the page allocator flags to use if allocating
3051  *
3052  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3053  * with any new page allocations done using the specified allocation flags.
3054  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3055  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3056  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3057  *
3058  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3059  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3060  */
3061 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3062 					 pgoff_t index, gfp_t gfp)
3063 {
3064 #ifdef CONFIG_SHMEM
3065 	struct inode *inode = mapping->host;
3066 	struct page *page;
3067 	int error;
3068 
3069 	BUG_ON(mapping->a_ops != &shmem_aops);
3070 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3071 	if (error)
3072 		page = ERR_PTR(error);
3073 	else
3074 		unlock_page(page);
3075 	return page;
3076 #else
3077 	/*
3078 	 * The tiny !SHMEM case uses ramfs without swap
3079 	 */
3080 	return read_cache_page_gfp(mapping, index, gfp);
3081 #endif
3082 }
3083 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3084