xref: /openbmc/linux/mm/rmap.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_sem	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem
25  *
26  * When a page fault occurs in writing from user to file, down_read
27  * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within
28  * down_read of mmap_sem; i_sem and down_write of mmap_sem are never
29  * taken together; in truncation, i_sem is taken outermost.
30  *
31  * mm->mmap_sem
32  *   page->flags PG_locked (lock_page)
33  *     mapping->i_mmap_lock
34  *       anon_vma->lock
35  *         mm->page_table_lock
36  *           zone->lru_lock (in mark_page_accessed)
37  *           swap_list_lock (in swap_free etc's swap_info_get)
38  *             mmlist_lock (in mmput, drain_mmlist and others)
39  *             swap_device_lock (in swap_duplicate, swap_info_get)
40  *             mapping->private_lock (in __set_page_dirty_buffers)
41  *             inode_lock (in set_page_dirty's __mark_inode_dirty)
42  *               sb_lock (within inode_lock in fs/fs-writeback.c)
43  *               mapping->tree_lock (widely used, in set_page_dirty,
44  *                         in arch-dependent flush_dcache_mmap_lock,
45  *                         within inode_lock in __sync_single_inode)
46  */
47 
48 #include <linux/mm.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/slab.h>
53 #include <linux/init.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 
57 #include <asm/tlbflush.h>
58 
59 //#define RMAP_DEBUG /* can be enabled only for debugging */
60 
61 kmem_cache_t *anon_vma_cachep;
62 
63 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
64 {
65 #ifdef RMAP_DEBUG
66 	struct anon_vma *anon_vma = find_vma->anon_vma;
67 	struct vm_area_struct *vma;
68 	unsigned int mapcount = 0;
69 	int found = 0;
70 
71 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
72 		mapcount++;
73 		BUG_ON(mapcount > 100000);
74 		if (vma == find_vma)
75 			found = 1;
76 	}
77 	BUG_ON(!found);
78 #endif
79 }
80 
81 /* This must be called under the mmap_sem. */
82 int anon_vma_prepare(struct vm_area_struct *vma)
83 {
84 	struct anon_vma *anon_vma = vma->anon_vma;
85 
86 	might_sleep();
87 	if (unlikely(!anon_vma)) {
88 		struct mm_struct *mm = vma->vm_mm;
89 		struct anon_vma *allocated, *locked;
90 
91 		anon_vma = find_mergeable_anon_vma(vma);
92 		if (anon_vma) {
93 			allocated = NULL;
94 			locked = anon_vma;
95 			spin_lock(&locked->lock);
96 		} else {
97 			anon_vma = anon_vma_alloc();
98 			if (unlikely(!anon_vma))
99 				return -ENOMEM;
100 			allocated = anon_vma;
101 			locked = NULL;
102 		}
103 
104 		/* page_table_lock to protect against threads */
105 		spin_lock(&mm->page_table_lock);
106 		if (likely(!vma->anon_vma)) {
107 			vma->anon_vma = anon_vma;
108 			list_add(&vma->anon_vma_node, &anon_vma->head);
109 			allocated = NULL;
110 		}
111 		spin_unlock(&mm->page_table_lock);
112 
113 		if (locked)
114 			spin_unlock(&locked->lock);
115 		if (unlikely(allocated))
116 			anon_vma_free(allocated);
117 	}
118 	return 0;
119 }
120 
121 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
122 {
123 	BUG_ON(vma->anon_vma != next->anon_vma);
124 	list_del(&next->anon_vma_node);
125 }
126 
127 void __anon_vma_link(struct vm_area_struct *vma)
128 {
129 	struct anon_vma *anon_vma = vma->anon_vma;
130 
131 	if (anon_vma) {
132 		list_add(&vma->anon_vma_node, &anon_vma->head);
133 		validate_anon_vma(vma);
134 	}
135 }
136 
137 void anon_vma_link(struct vm_area_struct *vma)
138 {
139 	struct anon_vma *anon_vma = vma->anon_vma;
140 
141 	if (anon_vma) {
142 		spin_lock(&anon_vma->lock);
143 		list_add(&vma->anon_vma_node, &anon_vma->head);
144 		validate_anon_vma(vma);
145 		spin_unlock(&anon_vma->lock);
146 	}
147 }
148 
149 void anon_vma_unlink(struct vm_area_struct *vma)
150 {
151 	struct anon_vma *anon_vma = vma->anon_vma;
152 	int empty;
153 
154 	if (!anon_vma)
155 		return;
156 
157 	spin_lock(&anon_vma->lock);
158 	validate_anon_vma(vma);
159 	list_del(&vma->anon_vma_node);
160 
161 	/* We must garbage collect the anon_vma if it's empty */
162 	empty = list_empty(&anon_vma->head);
163 	spin_unlock(&anon_vma->lock);
164 
165 	if (empty)
166 		anon_vma_free(anon_vma);
167 }
168 
169 static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
170 {
171 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
172 						SLAB_CTOR_CONSTRUCTOR) {
173 		struct anon_vma *anon_vma = data;
174 
175 		spin_lock_init(&anon_vma->lock);
176 		INIT_LIST_HEAD(&anon_vma->head);
177 	}
178 }
179 
180 void __init anon_vma_init(void)
181 {
182 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
183 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
184 }
185 
186 /*
187  * Getting a lock on a stable anon_vma from a page off the LRU is
188  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
189  */
190 static struct anon_vma *page_lock_anon_vma(struct page *page)
191 {
192 	struct anon_vma *anon_vma = NULL;
193 	unsigned long anon_mapping;
194 
195 	rcu_read_lock();
196 	anon_mapping = (unsigned long) page->mapping;
197 	if (!(anon_mapping & PAGE_MAPPING_ANON))
198 		goto out;
199 	if (!page_mapped(page))
200 		goto out;
201 
202 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
203 	spin_lock(&anon_vma->lock);
204 out:
205 	rcu_read_unlock();
206 	return anon_vma;
207 }
208 
209 /*
210  * At what user virtual address is page expected in vma?
211  */
212 static inline unsigned long
213 vma_address(struct page *page, struct vm_area_struct *vma)
214 {
215 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
216 	unsigned long address;
217 
218 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
219 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
220 		/* page should be within any vma from prio_tree_next */
221 		BUG_ON(!PageAnon(page));
222 		return -EFAULT;
223 	}
224 	return address;
225 }
226 
227 /*
228  * At what user virtual address is page expected in vma? checking that the
229  * page matches the vma: currently only used by unuse_process, on anon pages.
230  */
231 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
232 {
233 	if (PageAnon(page)) {
234 		if ((void *)vma->anon_vma !=
235 		    (void *)page->mapping - PAGE_MAPPING_ANON)
236 			return -EFAULT;
237 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
238 		if (vma->vm_file->f_mapping != page->mapping)
239 			return -EFAULT;
240 	} else
241 		return -EFAULT;
242 	return vma_address(page, vma);
243 }
244 
245 /*
246  * Subfunctions of page_referenced: page_referenced_one called
247  * repeatedly from either page_referenced_anon or page_referenced_file.
248  */
249 static int page_referenced_one(struct page *page,
250 	struct vm_area_struct *vma, unsigned int *mapcount, int ignore_token)
251 {
252 	struct mm_struct *mm = vma->vm_mm;
253 	unsigned long address;
254 	pgd_t *pgd;
255 	pud_t *pud;
256 	pmd_t *pmd;
257 	pte_t *pte;
258 	int referenced = 0;
259 
260 	if (!get_mm_counter(mm, rss))
261 		goto out;
262 	address = vma_address(page, vma);
263 	if (address == -EFAULT)
264 		goto out;
265 
266 	spin_lock(&mm->page_table_lock);
267 
268 	pgd = pgd_offset(mm, address);
269 	if (!pgd_present(*pgd))
270 		goto out_unlock;
271 
272 	pud = pud_offset(pgd, address);
273 	if (!pud_present(*pud))
274 		goto out_unlock;
275 
276 	pmd = pmd_offset(pud, address);
277 	if (!pmd_present(*pmd))
278 		goto out_unlock;
279 
280 	pte = pte_offset_map(pmd, address);
281 	if (!pte_present(*pte))
282 		goto out_unmap;
283 
284 	if (page_to_pfn(page) != pte_pfn(*pte))
285 		goto out_unmap;
286 
287 	if (ptep_clear_flush_young(vma, address, pte))
288 		referenced++;
289 
290 	if (mm != current->mm && !ignore_token && has_swap_token(mm))
291 		referenced++;
292 
293 	(*mapcount)--;
294 
295 out_unmap:
296 	pte_unmap(pte);
297 out_unlock:
298 	spin_unlock(&mm->page_table_lock);
299 out:
300 	return referenced;
301 }
302 
303 static int page_referenced_anon(struct page *page, int ignore_token)
304 {
305 	unsigned int mapcount;
306 	struct anon_vma *anon_vma;
307 	struct vm_area_struct *vma;
308 	int referenced = 0;
309 
310 	anon_vma = page_lock_anon_vma(page);
311 	if (!anon_vma)
312 		return referenced;
313 
314 	mapcount = page_mapcount(page);
315 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
316 		referenced += page_referenced_one(page, vma, &mapcount,
317 							ignore_token);
318 		if (!mapcount)
319 			break;
320 	}
321 	spin_unlock(&anon_vma->lock);
322 	return referenced;
323 }
324 
325 /**
326  * page_referenced_file - referenced check for object-based rmap
327  * @page: the page we're checking references on.
328  *
329  * For an object-based mapped page, find all the places it is mapped and
330  * check/clear the referenced flag.  This is done by following the page->mapping
331  * pointer, then walking the chain of vmas it holds.  It returns the number
332  * of references it found.
333  *
334  * This function is only called from page_referenced for object-based pages.
335  */
336 static int page_referenced_file(struct page *page, int ignore_token)
337 {
338 	unsigned int mapcount;
339 	struct address_space *mapping = page->mapping;
340 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
341 	struct vm_area_struct *vma;
342 	struct prio_tree_iter iter;
343 	int referenced = 0;
344 
345 	/*
346 	 * The caller's checks on page->mapping and !PageAnon have made
347 	 * sure that this is a file page: the check for page->mapping
348 	 * excludes the case just before it gets set on an anon page.
349 	 */
350 	BUG_ON(PageAnon(page));
351 
352 	/*
353 	 * The page lock not only makes sure that page->mapping cannot
354 	 * suddenly be NULLified by truncation, it makes sure that the
355 	 * structure at mapping cannot be freed and reused yet,
356 	 * so we can safely take mapping->i_mmap_lock.
357 	 */
358 	BUG_ON(!PageLocked(page));
359 
360 	spin_lock(&mapping->i_mmap_lock);
361 
362 	/*
363 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
364 	 * is more likely to be accurate if we note it after spinning.
365 	 */
366 	mapcount = page_mapcount(page);
367 
368 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
369 		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
370 				  == (VM_LOCKED|VM_MAYSHARE)) {
371 			referenced++;
372 			break;
373 		}
374 		referenced += page_referenced_one(page, vma, &mapcount,
375 							ignore_token);
376 		if (!mapcount)
377 			break;
378 	}
379 
380 	spin_unlock(&mapping->i_mmap_lock);
381 	return referenced;
382 }
383 
384 /**
385  * page_referenced - test if the page was referenced
386  * @page: the page to test
387  * @is_locked: caller holds lock on the page
388  *
389  * Quick test_and_clear_referenced for all mappings to a page,
390  * returns the number of ptes which referenced the page.
391  */
392 int page_referenced(struct page *page, int is_locked, int ignore_token)
393 {
394 	int referenced = 0;
395 
396 	if (!swap_token_default_timeout)
397 		ignore_token = 1;
398 
399 	if (page_test_and_clear_young(page))
400 		referenced++;
401 
402 	if (TestClearPageReferenced(page))
403 		referenced++;
404 
405 	if (page_mapped(page) && page->mapping) {
406 		if (PageAnon(page))
407 			referenced += page_referenced_anon(page, ignore_token);
408 		else if (is_locked)
409 			referenced += page_referenced_file(page, ignore_token);
410 		else if (TestSetPageLocked(page))
411 			referenced++;
412 		else {
413 			if (page->mapping)
414 				referenced += page_referenced_file(page,
415 								ignore_token);
416 			unlock_page(page);
417 		}
418 	}
419 	return referenced;
420 }
421 
422 /**
423  * page_add_anon_rmap - add pte mapping to an anonymous page
424  * @page:	the page to add the mapping to
425  * @vma:	the vm area in which the mapping is added
426  * @address:	the user virtual address mapped
427  *
428  * The caller needs to hold the mm->page_table_lock.
429  */
430 void page_add_anon_rmap(struct page *page,
431 	struct vm_area_struct *vma, unsigned long address)
432 {
433 	struct anon_vma *anon_vma = vma->anon_vma;
434 	pgoff_t index;
435 
436 	BUG_ON(PageReserved(page));
437 	BUG_ON(!anon_vma);
438 
439 	inc_mm_counter(vma->vm_mm, anon_rss);
440 
441 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
442 	index = (address - vma->vm_start) >> PAGE_SHIFT;
443 	index += vma->vm_pgoff;
444 	index >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
445 
446 	if (atomic_inc_and_test(&page->_mapcount)) {
447 		page->index = index;
448 		page->mapping = (struct address_space *) anon_vma;
449 		inc_page_state(nr_mapped);
450 	}
451 	/* else checking page index and mapping is racy */
452 }
453 
454 /**
455  * page_add_file_rmap - add pte mapping to a file page
456  * @page: the page to add the mapping to
457  *
458  * The caller needs to hold the mm->page_table_lock.
459  */
460 void page_add_file_rmap(struct page *page)
461 {
462 	BUG_ON(PageAnon(page));
463 	if (!pfn_valid(page_to_pfn(page)) || PageReserved(page))
464 		return;
465 
466 	if (atomic_inc_and_test(&page->_mapcount))
467 		inc_page_state(nr_mapped);
468 }
469 
470 /**
471  * page_remove_rmap - take down pte mapping from a page
472  * @page: page to remove mapping from
473  *
474  * Caller needs to hold the mm->page_table_lock.
475  */
476 void page_remove_rmap(struct page *page)
477 {
478 	BUG_ON(PageReserved(page));
479 
480 	if (atomic_add_negative(-1, &page->_mapcount)) {
481 		BUG_ON(page_mapcount(page) < 0);
482 		/*
483 		 * It would be tidy to reset the PageAnon mapping here,
484 		 * but that might overwrite a racing page_add_anon_rmap
485 		 * which increments mapcount after us but sets mapping
486 		 * before us: so leave the reset to free_hot_cold_page,
487 		 * and remember that it's only reliable while mapped.
488 		 * Leaving it set also helps swapoff to reinstate ptes
489 		 * faster for those pages still in swapcache.
490 		 */
491 		if (page_test_and_clear_dirty(page))
492 			set_page_dirty(page);
493 		dec_page_state(nr_mapped);
494 	}
495 }
496 
497 /*
498  * Subfunctions of try_to_unmap: try_to_unmap_one called
499  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
500  */
501 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma)
502 {
503 	struct mm_struct *mm = vma->vm_mm;
504 	unsigned long address;
505 	pgd_t *pgd;
506 	pud_t *pud;
507 	pmd_t *pmd;
508 	pte_t *pte;
509 	pte_t pteval;
510 	int ret = SWAP_AGAIN;
511 
512 	if (!get_mm_counter(mm, rss))
513 		goto out;
514 	address = vma_address(page, vma);
515 	if (address == -EFAULT)
516 		goto out;
517 
518 	/*
519 	 * We need the page_table_lock to protect us from page faults,
520 	 * munmap, fork, etc...
521 	 */
522 	spin_lock(&mm->page_table_lock);
523 
524 	pgd = pgd_offset(mm, address);
525 	if (!pgd_present(*pgd))
526 		goto out_unlock;
527 
528 	pud = pud_offset(pgd, address);
529 	if (!pud_present(*pud))
530 		goto out_unlock;
531 
532 	pmd = pmd_offset(pud, address);
533 	if (!pmd_present(*pmd))
534 		goto out_unlock;
535 
536 	pte = pte_offset_map(pmd, address);
537 	if (!pte_present(*pte))
538 		goto out_unmap;
539 
540 	if (page_to_pfn(page) != pte_pfn(*pte))
541 		goto out_unmap;
542 
543 	/*
544 	 * If the page is mlock()d, we cannot swap it out.
545 	 * If it's recently referenced (perhaps page_referenced
546 	 * skipped over this mm) then we should reactivate it.
547 	 */
548 	if ((vma->vm_flags & (VM_LOCKED|VM_RESERVED)) ||
549 			ptep_clear_flush_young(vma, address, pte)) {
550 		ret = SWAP_FAIL;
551 		goto out_unmap;
552 	}
553 
554 	/*
555 	 * Don't pull an anonymous page out from under get_user_pages.
556 	 * GUP carefully breaks COW and raises page count (while holding
557 	 * page_table_lock, as we have here) to make sure that the page
558 	 * cannot be freed.  If we unmap that page here, a user write
559 	 * access to the virtual address will bring back the page, but
560 	 * its raised count will (ironically) be taken to mean it's not
561 	 * an exclusive swap page, do_wp_page will replace it by a copy
562 	 * page, and the user never get to see the data GUP was holding
563 	 * the original page for.
564 	 *
565 	 * This test is also useful for when swapoff (unuse_process) has
566 	 * to drop page lock: its reference to the page stops existing
567 	 * ptes from being unmapped, so swapoff can make progress.
568 	 */
569 	if (PageSwapCache(page) &&
570 	    page_count(page) != page_mapcount(page) + 2) {
571 		ret = SWAP_FAIL;
572 		goto out_unmap;
573 	}
574 
575 	/* Nuke the page table entry. */
576 	flush_cache_page(vma, address, page_to_pfn(page));
577 	pteval = ptep_clear_flush(vma, address, pte);
578 
579 	/* Move the dirty bit to the physical page now the pte is gone. */
580 	if (pte_dirty(pteval))
581 		set_page_dirty(page);
582 
583 	if (PageAnon(page)) {
584 		swp_entry_t entry = { .val = page->private };
585 		/*
586 		 * Store the swap location in the pte.
587 		 * See handle_pte_fault() ...
588 		 */
589 		BUG_ON(!PageSwapCache(page));
590 		swap_duplicate(entry);
591 		if (list_empty(&mm->mmlist)) {
592 			spin_lock(&mmlist_lock);
593 			list_add(&mm->mmlist, &init_mm.mmlist);
594 			spin_unlock(&mmlist_lock);
595 		}
596 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
597 		BUG_ON(pte_file(*pte));
598 		dec_mm_counter(mm, anon_rss);
599 	}
600 
601 	inc_mm_counter(mm, rss);
602 	page_remove_rmap(page);
603 	page_cache_release(page);
604 
605 out_unmap:
606 	pte_unmap(pte);
607 out_unlock:
608 	spin_unlock(&mm->page_table_lock);
609 out:
610 	return ret;
611 }
612 
613 /*
614  * objrmap doesn't work for nonlinear VMAs because the assumption that
615  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
616  * Consequently, given a particular page and its ->index, we cannot locate the
617  * ptes which are mapping that page without an exhaustive linear search.
618  *
619  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
620  * maps the file to which the target page belongs.  The ->vm_private_data field
621  * holds the current cursor into that scan.  Successive searches will circulate
622  * around the vma's virtual address space.
623  *
624  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
625  * more scanning pressure is placed against them as well.   Eventually pages
626  * will become fully unmapped and are eligible for eviction.
627  *
628  * For very sparsely populated VMAs this is a little inefficient - chances are
629  * there there won't be many ptes located within the scan cluster.  In this case
630  * maybe we could scan further - to the end of the pte page, perhaps.
631  */
632 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
633 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
634 
635 static void try_to_unmap_cluster(unsigned long cursor,
636 	unsigned int *mapcount, struct vm_area_struct *vma)
637 {
638 	struct mm_struct *mm = vma->vm_mm;
639 	pgd_t *pgd;
640 	pud_t *pud;
641 	pmd_t *pmd;
642 	pte_t *pte;
643 	pte_t pteval;
644 	struct page *page;
645 	unsigned long address;
646 	unsigned long end;
647 	unsigned long pfn;
648 
649 	/*
650 	 * We need the page_table_lock to protect us from page faults,
651 	 * munmap, fork, etc...
652 	 */
653 	spin_lock(&mm->page_table_lock);
654 
655 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
656 	end = address + CLUSTER_SIZE;
657 	if (address < vma->vm_start)
658 		address = vma->vm_start;
659 	if (end > vma->vm_end)
660 		end = vma->vm_end;
661 
662 	pgd = pgd_offset(mm, address);
663 	if (!pgd_present(*pgd))
664 		goto out_unlock;
665 
666 	pud = pud_offset(pgd, address);
667 	if (!pud_present(*pud))
668 		goto out_unlock;
669 
670 	pmd = pmd_offset(pud, address);
671 	if (!pmd_present(*pmd))
672 		goto out_unlock;
673 
674 	for (pte = pte_offset_map(pmd, address);
675 			address < end; pte++, address += PAGE_SIZE) {
676 
677 		if (!pte_present(*pte))
678 			continue;
679 
680 		pfn = pte_pfn(*pte);
681 		if (!pfn_valid(pfn))
682 			continue;
683 
684 		page = pfn_to_page(pfn);
685 		BUG_ON(PageAnon(page));
686 		if (PageReserved(page))
687 			continue;
688 
689 		if (ptep_clear_flush_young(vma, address, pte))
690 			continue;
691 
692 		/* Nuke the page table entry. */
693 		flush_cache_page(vma, address, pfn);
694 		pteval = ptep_clear_flush(vma, address, pte);
695 
696 		/* If nonlinear, store the file page offset in the pte. */
697 		if (page->index != linear_page_index(vma, address))
698 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
699 
700 		/* Move the dirty bit to the physical page now the pte is gone. */
701 		if (pte_dirty(pteval))
702 			set_page_dirty(page);
703 
704 		page_remove_rmap(page);
705 		page_cache_release(page);
706 		dec_mm_counter(mm, rss);
707 		(*mapcount)--;
708 	}
709 
710 	pte_unmap(pte);
711 
712 out_unlock:
713 	spin_unlock(&mm->page_table_lock);
714 }
715 
716 static int try_to_unmap_anon(struct page *page)
717 {
718 	struct anon_vma *anon_vma;
719 	struct vm_area_struct *vma;
720 	int ret = SWAP_AGAIN;
721 
722 	anon_vma = page_lock_anon_vma(page);
723 	if (!anon_vma)
724 		return ret;
725 
726 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
727 		ret = try_to_unmap_one(page, vma);
728 		if (ret == SWAP_FAIL || !page_mapped(page))
729 			break;
730 	}
731 	spin_unlock(&anon_vma->lock);
732 	return ret;
733 }
734 
735 /**
736  * try_to_unmap_file - unmap file page using the object-based rmap method
737  * @page: the page to unmap
738  *
739  * Find all the mappings of a page using the mapping pointer and the vma chains
740  * contained in the address_space struct it points to.
741  *
742  * This function is only called from try_to_unmap for object-based pages.
743  */
744 static int try_to_unmap_file(struct page *page)
745 {
746 	struct address_space *mapping = page->mapping;
747 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
748 	struct vm_area_struct *vma;
749 	struct prio_tree_iter iter;
750 	int ret = SWAP_AGAIN;
751 	unsigned long cursor;
752 	unsigned long max_nl_cursor = 0;
753 	unsigned long max_nl_size = 0;
754 	unsigned int mapcount;
755 
756 	spin_lock(&mapping->i_mmap_lock);
757 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
758 		ret = try_to_unmap_one(page, vma);
759 		if (ret == SWAP_FAIL || !page_mapped(page))
760 			goto out;
761 	}
762 
763 	if (list_empty(&mapping->i_mmap_nonlinear))
764 		goto out;
765 
766 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
767 						shared.vm_set.list) {
768 		if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
769 			continue;
770 		cursor = (unsigned long) vma->vm_private_data;
771 		if (cursor > max_nl_cursor)
772 			max_nl_cursor = cursor;
773 		cursor = vma->vm_end - vma->vm_start;
774 		if (cursor > max_nl_size)
775 			max_nl_size = cursor;
776 	}
777 
778 	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */
779 		ret = SWAP_FAIL;
780 		goto out;
781 	}
782 
783 	/*
784 	 * We don't try to search for this page in the nonlinear vmas,
785 	 * and page_referenced wouldn't have found it anyway.  Instead
786 	 * just walk the nonlinear vmas trying to age and unmap some.
787 	 * The mapcount of the page we came in with is irrelevant,
788 	 * but even so use it as a guide to how hard we should try?
789 	 */
790 	mapcount = page_mapcount(page);
791 	if (!mapcount)
792 		goto out;
793 	cond_resched_lock(&mapping->i_mmap_lock);
794 
795 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
796 	if (max_nl_cursor == 0)
797 		max_nl_cursor = CLUSTER_SIZE;
798 
799 	do {
800 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
801 						shared.vm_set.list) {
802 			if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
803 				continue;
804 			cursor = (unsigned long) vma->vm_private_data;
805 			while (get_mm_counter(vma->vm_mm, rss) &&
806 				cursor < max_nl_cursor &&
807 				cursor < vma->vm_end - vma->vm_start) {
808 				try_to_unmap_cluster(cursor, &mapcount, vma);
809 				cursor += CLUSTER_SIZE;
810 				vma->vm_private_data = (void *) cursor;
811 				if ((int)mapcount <= 0)
812 					goto out;
813 			}
814 			vma->vm_private_data = (void *) max_nl_cursor;
815 		}
816 		cond_resched_lock(&mapping->i_mmap_lock);
817 		max_nl_cursor += CLUSTER_SIZE;
818 	} while (max_nl_cursor <= max_nl_size);
819 
820 	/*
821 	 * Don't loop forever (perhaps all the remaining pages are
822 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
823 	 * vmas, now forgetting on which ones it had fallen behind.
824 	 */
825 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
826 						shared.vm_set.list) {
827 		if (!(vma->vm_flags & VM_RESERVED))
828 			vma->vm_private_data = NULL;
829 	}
830 out:
831 	spin_unlock(&mapping->i_mmap_lock);
832 	return ret;
833 }
834 
835 /**
836  * try_to_unmap - try to remove all page table mappings to a page
837  * @page: the page to get unmapped
838  *
839  * Tries to remove all the page table entries which are mapping this
840  * page, used in the pageout path.  Caller must hold the page lock.
841  * Return values are:
842  *
843  * SWAP_SUCCESS	- we succeeded in removing all mappings
844  * SWAP_AGAIN	- we missed a mapping, try again later
845  * SWAP_FAIL	- the page is unswappable
846  */
847 int try_to_unmap(struct page *page)
848 {
849 	int ret;
850 
851 	BUG_ON(PageReserved(page));
852 	BUG_ON(!PageLocked(page));
853 
854 	if (PageAnon(page))
855 		ret = try_to_unmap_anon(page);
856 	else
857 		ret = try_to_unmap_file(page);
858 
859 	if (!page_mapped(page))
860 		ret = SWAP_SUCCESS;
861 	return ret;
862 }
863