1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_sem (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem 25 * 26 * When a page fault occurs in writing from user to file, down_read 27 * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within 28 * down_read of mmap_sem; i_sem and down_write of mmap_sem are never 29 * taken together; in truncation, i_sem is taken outermost. 30 * 31 * mm->mmap_sem 32 * page->flags PG_locked (lock_page) 33 * mapping->i_mmap_lock 34 * anon_vma->lock 35 * mm->page_table_lock 36 * zone->lru_lock (in mark_page_accessed) 37 * swap_list_lock (in swap_free etc's swap_info_get) 38 * mmlist_lock (in mmput, drain_mmlist and others) 39 * swap_device_lock (in swap_duplicate, swap_info_get) 40 * mapping->private_lock (in __set_page_dirty_buffers) 41 * inode_lock (in set_page_dirty's __mark_inode_dirty) 42 * sb_lock (within inode_lock in fs/fs-writeback.c) 43 * mapping->tree_lock (widely used, in set_page_dirty, 44 * in arch-dependent flush_dcache_mmap_lock, 45 * within inode_lock in __sync_single_inode) 46 */ 47 48 #include <linux/mm.h> 49 #include <linux/pagemap.h> 50 #include <linux/swap.h> 51 #include <linux/swapops.h> 52 #include <linux/slab.h> 53 #include <linux/init.h> 54 #include <linux/rmap.h> 55 #include <linux/rcupdate.h> 56 57 #include <asm/tlbflush.h> 58 59 //#define RMAP_DEBUG /* can be enabled only for debugging */ 60 61 kmem_cache_t *anon_vma_cachep; 62 63 static inline void validate_anon_vma(struct vm_area_struct *find_vma) 64 { 65 #ifdef RMAP_DEBUG 66 struct anon_vma *anon_vma = find_vma->anon_vma; 67 struct vm_area_struct *vma; 68 unsigned int mapcount = 0; 69 int found = 0; 70 71 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 72 mapcount++; 73 BUG_ON(mapcount > 100000); 74 if (vma == find_vma) 75 found = 1; 76 } 77 BUG_ON(!found); 78 #endif 79 } 80 81 /* This must be called under the mmap_sem. */ 82 int anon_vma_prepare(struct vm_area_struct *vma) 83 { 84 struct anon_vma *anon_vma = vma->anon_vma; 85 86 might_sleep(); 87 if (unlikely(!anon_vma)) { 88 struct mm_struct *mm = vma->vm_mm; 89 struct anon_vma *allocated, *locked; 90 91 anon_vma = find_mergeable_anon_vma(vma); 92 if (anon_vma) { 93 allocated = NULL; 94 locked = anon_vma; 95 spin_lock(&locked->lock); 96 } else { 97 anon_vma = anon_vma_alloc(); 98 if (unlikely(!anon_vma)) 99 return -ENOMEM; 100 allocated = anon_vma; 101 locked = NULL; 102 } 103 104 /* page_table_lock to protect against threads */ 105 spin_lock(&mm->page_table_lock); 106 if (likely(!vma->anon_vma)) { 107 vma->anon_vma = anon_vma; 108 list_add(&vma->anon_vma_node, &anon_vma->head); 109 allocated = NULL; 110 } 111 spin_unlock(&mm->page_table_lock); 112 113 if (locked) 114 spin_unlock(&locked->lock); 115 if (unlikely(allocated)) 116 anon_vma_free(allocated); 117 } 118 return 0; 119 } 120 121 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) 122 { 123 BUG_ON(vma->anon_vma != next->anon_vma); 124 list_del(&next->anon_vma_node); 125 } 126 127 void __anon_vma_link(struct vm_area_struct *vma) 128 { 129 struct anon_vma *anon_vma = vma->anon_vma; 130 131 if (anon_vma) { 132 list_add(&vma->anon_vma_node, &anon_vma->head); 133 validate_anon_vma(vma); 134 } 135 } 136 137 void anon_vma_link(struct vm_area_struct *vma) 138 { 139 struct anon_vma *anon_vma = vma->anon_vma; 140 141 if (anon_vma) { 142 spin_lock(&anon_vma->lock); 143 list_add(&vma->anon_vma_node, &anon_vma->head); 144 validate_anon_vma(vma); 145 spin_unlock(&anon_vma->lock); 146 } 147 } 148 149 void anon_vma_unlink(struct vm_area_struct *vma) 150 { 151 struct anon_vma *anon_vma = vma->anon_vma; 152 int empty; 153 154 if (!anon_vma) 155 return; 156 157 spin_lock(&anon_vma->lock); 158 validate_anon_vma(vma); 159 list_del(&vma->anon_vma_node); 160 161 /* We must garbage collect the anon_vma if it's empty */ 162 empty = list_empty(&anon_vma->head); 163 spin_unlock(&anon_vma->lock); 164 165 if (empty) 166 anon_vma_free(anon_vma); 167 } 168 169 static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags) 170 { 171 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 172 SLAB_CTOR_CONSTRUCTOR) { 173 struct anon_vma *anon_vma = data; 174 175 spin_lock_init(&anon_vma->lock); 176 INIT_LIST_HEAD(&anon_vma->head); 177 } 178 } 179 180 void __init anon_vma_init(void) 181 { 182 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 183 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL); 184 } 185 186 /* 187 * Getting a lock on a stable anon_vma from a page off the LRU is 188 * tricky: page_lock_anon_vma rely on RCU to guard against the races. 189 */ 190 static struct anon_vma *page_lock_anon_vma(struct page *page) 191 { 192 struct anon_vma *anon_vma = NULL; 193 unsigned long anon_mapping; 194 195 rcu_read_lock(); 196 anon_mapping = (unsigned long) page->mapping; 197 if (!(anon_mapping & PAGE_MAPPING_ANON)) 198 goto out; 199 if (!page_mapped(page)) 200 goto out; 201 202 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 203 spin_lock(&anon_vma->lock); 204 out: 205 rcu_read_unlock(); 206 return anon_vma; 207 } 208 209 /* 210 * At what user virtual address is page expected in vma? 211 */ 212 static inline unsigned long 213 vma_address(struct page *page, struct vm_area_struct *vma) 214 { 215 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 216 unsigned long address; 217 218 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 219 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 220 /* page should be within any vma from prio_tree_next */ 221 BUG_ON(!PageAnon(page)); 222 return -EFAULT; 223 } 224 return address; 225 } 226 227 /* 228 * At what user virtual address is page expected in vma? checking that the 229 * page matches the vma: currently only used by unuse_process, on anon pages. 230 */ 231 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 232 { 233 if (PageAnon(page)) { 234 if ((void *)vma->anon_vma != 235 (void *)page->mapping - PAGE_MAPPING_ANON) 236 return -EFAULT; 237 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 238 if (vma->vm_file->f_mapping != page->mapping) 239 return -EFAULT; 240 } else 241 return -EFAULT; 242 return vma_address(page, vma); 243 } 244 245 /* 246 * Subfunctions of page_referenced: page_referenced_one called 247 * repeatedly from either page_referenced_anon or page_referenced_file. 248 */ 249 static int page_referenced_one(struct page *page, 250 struct vm_area_struct *vma, unsigned int *mapcount, int ignore_token) 251 { 252 struct mm_struct *mm = vma->vm_mm; 253 unsigned long address; 254 pgd_t *pgd; 255 pud_t *pud; 256 pmd_t *pmd; 257 pte_t *pte; 258 int referenced = 0; 259 260 if (!get_mm_counter(mm, rss)) 261 goto out; 262 address = vma_address(page, vma); 263 if (address == -EFAULT) 264 goto out; 265 266 spin_lock(&mm->page_table_lock); 267 268 pgd = pgd_offset(mm, address); 269 if (!pgd_present(*pgd)) 270 goto out_unlock; 271 272 pud = pud_offset(pgd, address); 273 if (!pud_present(*pud)) 274 goto out_unlock; 275 276 pmd = pmd_offset(pud, address); 277 if (!pmd_present(*pmd)) 278 goto out_unlock; 279 280 pte = pte_offset_map(pmd, address); 281 if (!pte_present(*pte)) 282 goto out_unmap; 283 284 if (page_to_pfn(page) != pte_pfn(*pte)) 285 goto out_unmap; 286 287 if (ptep_clear_flush_young(vma, address, pte)) 288 referenced++; 289 290 if (mm != current->mm && !ignore_token && has_swap_token(mm)) 291 referenced++; 292 293 (*mapcount)--; 294 295 out_unmap: 296 pte_unmap(pte); 297 out_unlock: 298 spin_unlock(&mm->page_table_lock); 299 out: 300 return referenced; 301 } 302 303 static int page_referenced_anon(struct page *page, int ignore_token) 304 { 305 unsigned int mapcount; 306 struct anon_vma *anon_vma; 307 struct vm_area_struct *vma; 308 int referenced = 0; 309 310 anon_vma = page_lock_anon_vma(page); 311 if (!anon_vma) 312 return referenced; 313 314 mapcount = page_mapcount(page); 315 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 316 referenced += page_referenced_one(page, vma, &mapcount, 317 ignore_token); 318 if (!mapcount) 319 break; 320 } 321 spin_unlock(&anon_vma->lock); 322 return referenced; 323 } 324 325 /** 326 * page_referenced_file - referenced check for object-based rmap 327 * @page: the page we're checking references on. 328 * 329 * For an object-based mapped page, find all the places it is mapped and 330 * check/clear the referenced flag. This is done by following the page->mapping 331 * pointer, then walking the chain of vmas it holds. It returns the number 332 * of references it found. 333 * 334 * This function is only called from page_referenced for object-based pages. 335 */ 336 static int page_referenced_file(struct page *page, int ignore_token) 337 { 338 unsigned int mapcount; 339 struct address_space *mapping = page->mapping; 340 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 341 struct vm_area_struct *vma; 342 struct prio_tree_iter iter; 343 int referenced = 0; 344 345 /* 346 * The caller's checks on page->mapping and !PageAnon have made 347 * sure that this is a file page: the check for page->mapping 348 * excludes the case just before it gets set on an anon page. 349 */ 350 BUG_ON(PageAnon(page)); 351 352 /* 353 * The page lock not only makes sure that page->mapping cannot 354 * suddenly be NULLified by truncation, it makes sure that the 355 * structure at mapping cannot be freed and reused yet, 356 * so we can safely take mapping->i_mmap_lock. 357 */ 358 BUG_ON(!PageLocked(page)); 359 360 spin_lock(&mapping->i_mmap_lock); 361 362 /* 363 * i_mmap_lock does not stabilize mapcount at all, but mapcount 364 * is more likely to be accurate if we note it after spinning. 365 */ 366 mapcount = page_mapcount(page); 367 368 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 369 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE)) 370 == (VM_LOCKED|VM_MAYSHARE)) { 371 referenced++; 372 break; 373 } 374 referenced += page_referenced_one(page, vma, &mapcount, 375 ignore_token); 376 if (!mapcount) 377 break; 378 } 379 380 spin_unlock(&mapping->i_mmap_lock); 381 return referenced; 382 } 383 384 /** 385 * page_referenced - test if the page was referenced 386 * @page: the page to test 387 * @is_locked: caller holds lock on the page 388 * 389 * Quick test_and_clear_referenced for all mappings to a page, 390 * returns the number of ptes which referenced the page. 391 */ 392 int page_referenced(struct page *page, int is_locked, int ignore_token) 393 { 394 int referenced = 0; 395 396 if (!swap_token_default_timeout) 397 ignore_token = 1; 398 399 if (page_test_and_clear_young(page)) 400 referenced++; 401 402 if (TestClearPageReferenced(page)) 403 referenced++; 404 405 if (page_mapped(page) && page->mapping) { 406 if (PageAnon(page)) 407 referenced += page_referenced_anon(page, ignore_token); 408 else if (is_locked) 409 referenced += page_referenced_file(page, ignore_token); 410 else if (TestSetPageLocked(page)) 411 referenced++; 412 else { 413 if (page->mapping) 414 referenced += page_referenced_file(page, 415 ignore_token); 416 unlock_page(page); 417 } 418 } 419 return referenced; 420 } 421 422 /** 423 * page_add_anon_rmap - add pte mapping to an anonymous page 424 * @page: the page to add the mapping to 425 * @vma: the vm area in which the mapping is added 426 * @address: the user virtual address mapped 427 * 428 * The caller needs to hold the mm->page_table_lock. 429 */ 430 void page_add_anon_rmap(struct page *page, 431 struct vm_area_struct *vma, unsigned long address) 432 { 433 struct anon_vma *anon_vma = vma->anon_vma; 434 pgoff_t index; 435 436 BUG_ON(PageReserved(page)); 437 BUG_ON(!anon_vma); 438 439 inc_mm_counter(vma->vm_mm, anon_rss); 440 441 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 442 index = (address - vma->vm_start) >> PAGE_SHIFT; 443 index += vma->vm_pgoff; 444 index >>= PAGE_CACHE_SHIFT - PAGE_SHIFT; 445 446 if (atomic_inc_and_test(&page->_mapcount)) { 447 page->index = index; 448 page->mapping = (struct address_space *) anon_vma; 449 inc_page_state(nr_mapped); 450 } 451 /* else checking page index and mapping is racy */ 452 } 453 454 /** 455 * page_add_file_rmap - add pte mapping to a file page 456 * @page: the page to add the mapping to 457 * 458 * The caller needs to hold the mm->page_table_lock. 459 */ 460 void page_add_file_rmap(struct page *page) 461 { 462 BUG_ON(PageAnon(page)); 463 if (!pfn_valid(page_to_pfn(page)) || PageReserved(page)) 464 return; 465 466 if (atomic_inc_and_test(&page->_mapcount)) 467 inc_page_state(nr_mapped); 468 } 469 470 /** 471 * page_remove_rmap - take down pte mapping from a page 472 * @page: page to remove mapping from 473 * 474 * Caller needs to hold the mm->page_table_lock. 475 */ 476 void page_remove_rmap(struct page *page) 477 { 478 BUG_ON(PageReserved(page)); 479 480 if (atomic_add_negative(-1, &page->_mapcount)) { 481 BUG_ON(page_mapcount(page) < 0); 482 /* 483 * It would be tidy to reset the PageAnon mapping here, 484 * but that might overwrite a racing page_add_anon_rmap 485 * which increments mapcount after us but sets mapping 486 * before us: so leave the reset to free_hot_cold_page, 487 * and remember that it's only reliable while mapped. 488 * Leaving it set also helps swapoff to reinstate ptes 489 * faster for those pages still in swapcache. 490 */ 491 if (page_test_and_clear_dirty(page)) 492 set_page_dirty(page); 493 dec_page_state(nr_mapped); 494 } 495 } 496 497 /* 498 * Subfunctions of try_to_unmap: try_to_unmap_one called 499 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 500 */ 501 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma) 502 { 503 struct mm_struct *mm = vma->vm_mm; 504 unsigned long address; 505 pgd_t *pgd; 506 pud_t *pud; 507 pmd_t *pmd; 508 pte_t *pte; 509 pte_t pteval; 510 int ret = SWAP_AGAIN; 511 512 if (!get_mm_counter(mm, rss)) 513 goto out; 514 address = vma_address(page, vma); 515 if (address == -EFAULT) 516 goto out; 517 518 /* 519 * We need the page_table_lock to protect us from page faults, 520 * munmap, fork, etc... 521 */ 522 spin_lock(&mm->page_table_lock); 523 524 pgd = pgd_offset(mm, address); 525 if (!pgd_present(*pgd)) 526 goto out_unlock; 527 528 pud = pud_offset(pgd, address); 529 if (!pud_present(*pud)) 530 goto out_unlock; 531 532 pmd = pmd_offset(pud, address); 533 if (!pmd_present(*pmd)) 534 goto out_unlock; 535 536 pte = pte_offset_map(pmd, address); 537 if (!pte_present(*pte)) 538 goto out_unmap; 539 540 if (page_to_pfn(page) != pte_pfn(*pte)) 541 goto out_unmap; 542 543 /* 544 * If the page is mlock()d, we cannot swap it out. 545 * If it's recently referenced (perhaps page_referenced 546 * skipped over this mm) then we should reactivate it. 547 */ 548 if ((vma->vm_flags & (VM_LOCKED|VM_RESERVED)) || 549 ptep_clear_flush_young(vma, address, pte)) { 550 ret = SWAP_FAIL; 551 goto out_unmap; 552 } 553 554 /* 555 * Don't pull an anonymous page out from under get_user_pages. 556 * GUP carefully breaks COW and raises page count (while holding 557 * page_table_lock, as we have here) to make sure that the page 558 * cannot be freed. If we unmap that page here, a user write 559 * access to the virtual address will bring back the page, but 560 * its raised count will (ironically) be taken to mean it's not 561 * an exclusive swap page, do_wp_page will replace it by a copy 562 * page, and the user never get to see the data GUP was holding 563 * the original page for. 564 * 565 * This test is also useful for when swapoff (unuse_process) has 566 * to drop page lock: its reference to the page stops existing 567 * ptes from being unmapped, so swapoff can make progress. 568 */ 569 if (PageSwapCache(page) && 570 page_count(page) != page_mapcount(page) + 2) { 571 ret = SWAP_FAIL; 572 goto out_unmap; 573 } 574 575 /* Nuke the page table entry. */ 576 flush_cache_page(vma, address, page_to_pfn(page)); 577 pteval = ptep_clear_flush(vma, address, pte); 578 579 /* Move the dirty bit to the physical page now the pte is gone. */ 580 if (pte_dirty(pteval)) 581 set_page_dirty(page); 582 583 if (PageAnon(page)) { 584 swp_entry_t entry = { .val = page->private }; 585 /* 586 * Store the swap location in the pte. 587 * See handle_pte_fault() ... 588 */ 589 BUG_ON(!PageSwapCache(page)); 590 swap_duplicate(entry); 591 if (list_empty(&mm->mmlist)) { 592 spin_lock(&mmlist_lock); 593 list_add(&mm->mmlist, &init_mm.mmlist); 594 spin_unlock(&mmlist_lock); 595 } 596 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 597 BUG_ON(pte_file(*pte)); 598 dec_mm_counter(mm, anon_rss); 599 } 600 601 inc_mm_counter(mm, rss); 602 page_remove_rmap(page); 603 page_cache_release(page); 604 605 out_unmap: 606 pte_unmap(pte); 607 out_unlock: 608 spin_unlock(&mm->page_table_lock); 609 out: 610 return ret; 611 } 612 613 /* 614 * objrmap doesn't work for nonlinear VMAs because the assumption that 615 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 616 * Consequently, given a particular page and its ->index, we cannot locate the 617 * ptes which are mapping that page without an exhaustive linear search. 618 * 619 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 620 * maps the file to which the target page belongs. The ->vm_private_data field 621 * holds the current cursor into that scan. Successive searches will circulate 622 * around the vma's virtual address space. 623 * 624 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 625 * more scanning pressure is placed against them as well. Eventually pages 626 * will become fully unmapped and are eligible for eviction. 627 * 628 * For very sparsely populated VMAs this is a little inefficient - chances are 629 * there there won't be many ptes located within the scan cluster. In this case 630 * maybe we could scan further - to the end of the pte page, perhaps. 631 */ 632 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 633 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 634 635 static void try_to_unmap_cluster(unsigned long cursor, 636 unsigned int *mapcount, struct vm_area_struct *vma) 637 { 638 struct mm_struct *mm = vma->vm_mm; 639 pgd_t *pgd; 640 pud_t *pud; 641 pmd_t *pmd; 642 pte_t *pte; 643 pte_t pteval; 644 struct page *page; 645 unsigned long address; 646 unsigned long end; 647 unsigned long pfn; 648 649 /* 650 * We need the page_table_lock to protect us from page faults, 651 * munmap, fork, etc... 652 */ 653 spin_lock(&mm->page_table_lock); 654 655 address = (vma->vm_start + cursor) & CLUSTER_MASK; 656 end = address + CLUSTER_SIZE; 657 if (address < vma->vm_start) 658 address = vma->vm_start; 659 if (end > vma->vm_end) 660 end = vma->vm_end; 661 662 pgd = pgd_offset(mm, address); 663 if (!pgd_present(*pgd)) 664 goto out_unlock; 665 666 pud = pud_offset(pgd, address); 667 if (!pud_present(*pud)) 668 goto out_unlock; 669 670 pmd = pmd_offset(pud, address); 671 if (!pmd_present(*pmd)) 672 goto out_unlock; 673 674 for (pte = pte_offset_map(pmd, address); 675 address < end; pte++, address += PAGE_SIZE) { 676 677 if (!pte_present(*pte)) 678 continue; 679 680 pfn = pte_pfn(*pte); 681 if (!pfn_valid(pfn)) 682 continue; 683 684 page = pfn_to_page(pfn); 685 BUG_ON(PageAnon(page)); 686 if (PageReserved(page)) 687 continue; 688 689 if (ptep_clear_flush_young(vma, address, pte)) 690 continue; 691 692 /* Nuke the page table entry. */ 693 flush_cache_page(vma, address, pfn); 694 pteval = ptep_clear_flush(vma, address, pte); 695 696 /* If nonlinear, store the file page offset in the pte. */ 697 if (page->index != linear_page_index(vma, address)) 698 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 699 700 /* Move the dirty bit to the physical page now the pte is gone. */ 701 if (pte_dirty(pteval)) 702 set_page_dirty(page); 703 704 page_remove_rmap(page); 705 page_cache_release(page); 706 dec_mm_counter(mm, rss); 707 (*mapcount)--; 708 } 709 710 pte_unmap(pte); 711 712 out_unlock: 713 spin_unlock(&mm->page_table_lock); 714 } 715 716 static int try_to_unmap_anon(struct page *page) 717 { 718 struct anon_vma *anon_vma; 719 struct vm_area_struct *vma; 720 int ret = SWAP_AGAIN; 721 722 anon_vma = page_lock_anon_vma(page); 723 if (!anon_vma) 724 return ret; 725 726 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 727 ret = try_to_unmap_one(page, vma); 728 if (ret == SWAP_FAIL || !page_mapped(page)) 729 break; 730 } 731 spin_unlock(&anon_vma->lock); 732 return ret; 733 } 734 735 /** 736 * try_to_unmap_file - unmap file page using the object-based rmap method 737 * @page: the page to unmap 738 * 739 * Find all the mappings of a page using the mapping pointer and the vma chains 740 * contained in the address_space struct it points to. 741 * 742 * This function is only called from try_to_unmap for object-based pages. 743 */ 744 static int try_to_unmap_file(struct page *page) 745 { 746 struct address_space *mapping = page->mapping; 747 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 748 struct vm_area_struct *vma; 749 struct prio_tree_iter iter; 750 int ret = SWAP_AGAIN; 751 unsigned long cursor; 752 unsigned long max_nl_cursor = 0; 753 unsigned long max_nl_size = 0; 754 unsigned int mapcount; 755 756 spin_lock(&mapping->i_mmap_lock); 757 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 758 ret = try_to_unmap_one(page, vma); 759 if (ret == SWAP_FAIL || !page_mapped(page)) 760 goto out; 761 } 762 763 if (list_empty(&mapping->i_mmap_nonlinear)) 764 goto out; 765 766 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 767 shared.vm_set.list) { 768 if (vma->vm_flags & (VM_LOCKED|VM_RESERVED)) 769 continue; 770 cursor = (unsigned long) vma->vm_private_data; 771 if (cursor > max_nl_cursor) 772 max_nl_cursor = cursor; 773 cursor = vma->vm_end - vma->vm_start; 774 if (cursor > max_nl_size) 775 max_nl_size = cursor; 776 } 777 778 if (max_nl_size == 0) { /* any nonlinears locked or reserved */ 779 ret = SWAP_FAIL; 780 goto out; 781 } 782 783 /* 784 * We don't try to search for this page in the nonlinear vmas, 785 * and page_referenced wouldn't have found it anyway. Instead 786 * just walk the nonlinear vmas trying to age and unmap some. 787 * The mapcount of the page we came in with is irrelevant, 788 * but even so use it as a guide to how hard we should try? 789 */ 790 mapcount = page_mapcount(page); 791 if (!mapcount) 792 goto out; 793 cond_resched_lock(&mapping->i_mmap_lock); 794 795 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 796 if (max_nl_cursor == 0) 797 max_nl_cursor = CLUSTER_SIZE; 798 799 do { 800 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 801 shared.vm_set.list) { 802 if (vma->vm_flags & (VM_LOCKED|VM_RESERVED)) 803 continue; 804 cursor = (unsigned long) vma->vm_private_data; 805 while (get_mm_counter(vma->vm_mm, rss) && 806 cursor < max_nl_cursor && 807 cursor < vma->vm_end - vma->vm_start) { 808 try_to_unmap_cluster(cursor, &mapcount, vma); 809 cursor += CLUSTER_SIZE; 810 vma->vm_private_data = (void *) cursor; 811 if ((int)mapcount <= 0) 812 goto out; 813 } 814 vma->vm_private_data = (void *) max_nl_cursor; 815 } 816 cond_resched_lock(&mapping->i_mmap_lock); 817 max_nl_cursor += CLUSTER_SIZE; 818 } while (max_nl_cursor <= max_nl_size); 819 820 /* 821 * Don't loop forever (perhaps all the remaining pages are 822 * in locked vmas). Reset cursor on all unreserved nonlinear 823 * vmas, now forgetting on which ones it had fallen behind. 824 */ 825 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 826 shared.vm_set.list) { 827 if (!(vma->vm_flags & VM_RESERVED)) 828 vma->vm_private_data = NULL; 829 } 830 out: 831 spin_unlock(&mapping->i_mmap_lock); 832 return ret; 833 } 834 835 /** 836 * try_to_unmap - try to remove all page table mappings to a page 837 * @page: the page to get unmapped 838 * 839 * Tries to remove all the page table entries which are mapping this 840 * page, used in the pageout path. Caller must hold the page lock. 841 * Return values are: 842 * 843 * SWAP_SUCCESS - we succeeded in removing all mappings 844 * SWAP_AGAIN - we missed a mapping, try again later 845 * SWAP_FAIL - the page is unswappable 846 */ 847 int try_to_unmap(struct page *page) 848 { 849 int ret; 850 851 BUG_ON(PageReserved(page)); 852 BUG_ON(!PageLocked(page)); 853 854 if (PageAnon(page)) 855 ret = try_to_unmap_anon(page); 856 else 857 ret = try_to_unmap_file(page); 858 859 if (!page_mapped(page)) 860 ret = SWAP_SUCCESS; 861 return ret; 862 } 863