1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/page_io.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, 8 * Asynchronous swapping added 30.12.95. Stephen Tweedie 9 * Removed race in async swapping. 14.4.1996. Bruno Haible 10 * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie 11 * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/gfp.h> 17 #include <linux/pagemap.h> 18 #include <linux/swap.h> 19 #include <linux/bio.h> 20 #include <linux/swapops.h> 21 #include <linux/writeback.h> 22 #include <linux/frontswap.h> 23 #include <linux/blkdev.h> 24 #include <linux/psi.h> 25 #include <linux/uio.h> 26 #include <linux/sched/task.h> 27 #include <linux/delayacct.h> 28 #include "swap.h" 29 30 static void end_swap_bio_write(struct bio *bio) 31 { 32 struct page *page = bio_first_page_all(bio); 33 34 if (bio->bi_status) { 35 SetPageError(page); 36 /* 37 * We failed to write the page out to swap-space. 38 * Re-dirty the page in order to avoid it being reclaimed. 39 * Also print a dire warning that things will go BAD (tm) 40 * very quickly. 41 * 42 * Also clear PG_reclaim to avoid folio_rotate_reclaimable() 43 */ 44 set_page_dirty(page); 45 pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n", 46 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 47 (unsigned long long)bio->bi_iter.bi_sector); 48 ClearPageReclaim(page); 49 } 50 end_page_writeback(page); 51 bio_put(bio); 52 } 53 54 static void end_swap_bio_read(struct bio *bio) 55 { 56 struct page *page = bio_first_page_all(bio); 57 struct task_struct *waiter = bio->bi_private; 58 59 if (bio->bi_status) { 60 SetPageError(page); 61 ClearPageUptodate(page); 62 pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n", 63 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 64 (unsigned long long)bio->bi_iter.bi_sector); 65 goto out; 66 } 67 68 SetPageUptodate(page); 69 out: 70 unlock_page(page); 71 WRITE_ONCE(bio->bi_private, NULL); 72 bio_put(bio); 73 if (waiter) { 74 blk_wake_io_task(waiter); 75 put_task_struct(waiter); 76 } 77 } 78 79 int generic_swapfile_activate(struct swap_info_struct *sis, 80 struct file *swap_file, 81 sector_t *span) 82 { 83 struct address_space *mapping = swap_file->f_mapping; 84 struct inode *inode = mapping->host; 85 unsigned blocks_per_page; 86 unsigned long page_no; 87 unsigned blkbits; 88 sector_t probe_block; 89 sector_t last_block; 90 sector_t lowest_block = -1; 91 sector_t highest_block = 0; 92 int nr_extents = 0; 93 int ret; 94 95 blkbits = inode->i_blkbits; 96 blocks_per_page = PAGE_SIZE >> blkbits; 97 98 /* 99 * Map all the blocks into the extent tree. This code doesn't try 100 * to be very smart. 101 */ 102 probe_block = 0; 103 page_no = 0; 104 last_block = i_size_read(inode) >> blkbits; 105 while ((probe_block + blocks_per_page) <= last_block && 106 page_no < sis->max) { 107 unsigned block_in_page; 108 sector_t first_block; 109 110 cond_resched(); 111 112 first_block = probe_block; 113 ret = bmap(inode, &first_block); 114 if (ret || !first_block) 115 goto bad_bmap; 116 117 /* 118 * It must be PAGE_SIZE aligned on-disk 119 */ 120 if (first_block & (blocks_per_page - 1)) { 121 probe_block++; 122 goto reprobe; 123 } 124 125 for (block_in_page = 1; block_in_page < blocks_per_page; 126 block_in_page++) { 127 sector_t block; 128 129 block = probe_block + block_in_page; 130 ret = bmap(inode, &block); 131 if (ret || !block) 132 goto bad_bmap; 133 134 if (block != first_block + block_in_page) { 135 /* Discontiguity */ 136 probe_block++; 137 goto reprobe; 138 } 139 } 140 141 first_block >>= (PAGE_SHIFT - blkbits); 142 if (page_no) { /* exclude the header page */ 143 if (first_block < lowest_block) 144 lowest_block = first_block; 145 if (first_block > highest_block) 146 highest_block = first_block; 147 } 148 149 /* 150 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 151 */ 152 ret = add_swap_extent(sis, page_no, 1, first_block); 153 if (ret < 0) 154 goto out; 155 nr_extents += ret; 156 page_no++; 157 probe_block += blocks_per_page; 158 reprobe: 159 continue; 160 } 161 ret = nr_extents; 162 *span = 1 + highest_block - lowest_block; 163 if (page_no == 0) 164 page_no = 1; /* force Empty message */ 165 sis->max = page_no; 166 sis->pages = page_no - 1; 167 sis->highest_bit = page_no - 1; 168 out: 169 return ret; 170 bad_bmap: 171 pr_err("swapon: swapfile has holes\n"); 172 ret = -EINVAL; 173 goto out; 174 } 175 176 /* 177 * We may have stale swap cache pages in memory: notice 178 * them here and get rid of the unnecessary final write. 179 */ 180 int swap_writepage(struct page *page, struct writeback_control *wbc) 181 { 182 struct folio *folio = page_folio(page); 183 int ret = 0; 184 185 if (folio_free_swap(folio)) { 186 folio_unlock(folio); 187 goto out; 188 } 189 /* 190 * Arch code may have to preserve more data than just the page 191 * contents, e.g. memory tags. 192 */ 193 ret = arch_prepare_to_swap(&folio->page); 194 if (ret) { 195 folio_mark_dirty(folio); 196 folio_unlock(folio); 197 goto out; 198 } 199 if (frontswap_store(&folio->page) == 0) { 200 folio_start_writeback(folio); 201 folio_unlock(folio); 202 folio_end_writeback(folio); 203 goto out; 204 } 205 ret = __swap_writepage(&folio->page, wbc); 206 out: 207 return ret; 208 } 209 210 static inline void count_swpout_vm_event(struct page *page) 211 { 212 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 213 if (unlikely(PageTransHuge(page))) 214 count_vm_event(THP_SWPOUT); 215 #endif 216 count_vm_events(PSWPOUT, thp_nr_pages(page)); 217 } 218 219 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 220 static void bio_associate_blkg_from_page(struct bio *bio, struct page *page) 221 { 222 struct cgroup_subsys_state *css; 223 struct mem_cgroup *memcg; 224 225 memcg = page_memcg(page); 226 if (!memcg) 227 return; 228 229 rcu_read_lock(); 230 css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys); 231 bio_associate_blkg_from_css(bio, css); 232 rcu_read_unlock(); 233 } 234 #else 235 #define bio_associate_blkg_from_page(bio, page) do { } while (0) 236 #endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */ 237 238 struct swap_iocb { 239 struct kiocb iocb; 240 struct bio_vec bvec[SWAP_CLUSTER_MAX]; 241 int pages; 242 int len; 243 }; 244 static mempool_t *sio_pool; 245 246 int sio_pool_init(void) 247 { 248 if (!sio_pool) { 249 mempool_t *pool = mempool_create_kmalloc_pool( 250 SWAP_CLUSTER_MAX, sizeof(struct swap_iocb)); 251 if (cmpxchg(&sio_pool, NULL, pool)) 252 mempool_destroy(pool); 253 } 254 if (!sio_pool) 255 return -ENOMEM; 256 return 0; 257 } 258 259 static void sio_write_complete(struct kiocb *iocb, long ret) 260 { 261 struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb); 262 struct page *page = sio->bvec[0].bv_page; 263 int p; 264 265 if (ret != sio->len) { 266 /* 267 * In the case of swap-over-nfs, this can be a 268 * temporary failure if the system has limited 269 * memory for allocating transmit buffers. 270 * Mark the page dirty and avoid 271 * folio_rotate_reclaimable but rate-limit the 272 * messages but do not flag PageError like 273 * the normal direct-to-bio case as it could 274 * be temporary. 275 */ 276 pr_err_ratelimited("Write error %ld on dio swapfile (%llu)\n", 277 ret, page_file_offset(page)); 278 for (p = 0; p < sio->pages; p++) { 279 page = sio->bvec[p].bv_page; 280 set_page_dirty(page); 281 ClearPageReclaim(page); 282 } 283 } else { 284 for (p = 0; p < sio->pages; p++) 285 count_swpout_vm_event(sio->bvec[p].bv_page); 286 } 287 288 for (p = 0; p < sio->pages; p++) 289 end_page_writeback(sio->bvec[p].bv_page); 290 291 mempool_free(sio, sio_pool); 292 } 293 294 static int swap_writepage_fs(struct page *page, struct writeback_control *wbc) 295 { 296 struct swap_iocb *sio = NULL; 297 struct swap_info_struct *sis = page_swap_info(page); 298 struct file *swap_file = sis->swap_file; 299 loff_t pos = page_file_offset(page); 300 301 set_page_writeback(page); 302 unlock_page(page); 303 if (wbc->swap_plug) 304 sio = *wbc->swap_plug; 305 if (sio) { 306 if (sio->iocb.ki_filp != swap_file || 307 sio->iocb.ki_pos + sio->len != pos) { 308 swap_write_unplug(sio); 309 sio = NULL; 310 } 311 } 312 if (!sio) { 313 sio = mempool_alloc(sio_pool, GFP_NOIO); 314 init_sync_kiocb(&sio->iocb, swap_file); 315 sio->iocb.ki_complete = sio_write_complete; 316 sio->iocb.ki_pos = pos; 317 sio->pages = 0; 318 sio->len = 0; 319 } 320 sio->bvec[sio->pages].bv_page = page; 321 sio->bvec[sio->pages].bv_len = thp_size(page); 322 sio->bvec[sio->pages].bv_offset = 0; 323 sio->len += thp_size(page); 324 sio->pages += 1; 325 if (sio->pages == ARRAY_SIZE(sio->bvec) || !wbc->swap_plug) { 326 swap_write_unplug(sio); 327 sio = NULL; 328 } 329 if (wbc->swap_plug) 330 *wbc->swap_plug = sio; 331 332 return 0; 333 } 334 335 int __swap_writepage(struct page *page, struct writeback_control *wbc) 336 { 337 struct bio *bio; 338 int ret; 339 struct swap_info_struct *sis = page_swap_info(page); 340 341 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 342 /* 343 * ->flags can be updated non-atomicially (scan_swap_map_slots), 344 * but that will never affect SWP_FS_OPS, so the data_race 345 * is safe. 346 */ 347 if (data_race(sis->flags & SWP_FS_OPS)) 348 return swap_writepage_fs(page, wbc); 349 350 ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc); 351 if (!ret) { 352 count_swpout_vm_event(page); 353 return 0; 354 } 355 356 bio = bio_alloc(sis->bdev, 1, 357 REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc), 358 GFP_NOIO); 359 bio->bi_iter.bi_sector = swap_page_sector(page); 360 bio->bi_end_io = end_swap_bio_write; 361 bio_add_page(bio, page, thp_size(page), 0); 362 363 bio_associate_blkg_from_page(bio, page); 364 count_swpout_vm_event(page); 365 set_page_writeback(page); 366 unlock_page(page); 367 submit_bio(bio); 368 369 return 0; 370 } 371 372 void swap_write_unplug(struct swap_iocb *sio) 373 { 374 struct iov_iter from; 375 struct address_space *mapping = sio->iocb.ki_filp->f_mapping; 376 int ret; 377 378 iov_iter_bvec(&from, ITER_SOURCE, sio->bvec, sio->pages, sio->len); 379 ret = mapping->a_ops->swap_rw(&sio->iocb, &from); 380 if (ret != -EIOCBQUEUED) 381 sio_write_complete(&sio->iocb, ret); 382 } 383 384 static void sio_read_complete(struct kiocb *iocb, long ret) 385 { 386 struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb); 387 int p; 388 389 if (ret == sio->len) { 390 for (p = 0; p < sio->pages; p++) { 391 struct page *page = sio->bvec[p].bv_page; 392 393 SetPageUptodate(page); 394 unlock_page(page); 395 } 396 count_vm_events(PSWPIN, sio->pages); 397 } else { 398 for (p = 0; p < sio->pages; p++) { 399 struct page *page = sio->bvec[p].bv_page; 400 401 SetPageError(page); 402 ClearPageUptodate(page); 403 unlock_page(page); 404 } 405 pr_alert_ratelimited("Read-error on swap-device\n"); 406 } 407 mempool_free(sio, sio_pool); 408 } 409 410 static void swap_readpage_fs(struct page *page, 411 struct swap_iocb **plug) 412 { 413 struct swap_info_struct *sis = page_swap_info(page); 414 struct swap_iocb *sio = NULL; 415 loff_t pos = page_file_offset(page); 416 417 if (plug) 418 sio = *plug; 419 if (sio) { 420 if (sio->iocb.ki_filp != sis->swap_file || 421 sio->iocb.ki_pos + sio->len != pos) { 422 swap_read_unplug(sio); 423 sio = NULL; 424 } 425 } 426 if (!sio) { 427 sio = mempool_alloc(sio_pool, GFP_KERNEL); 428 init_sync_kiocb(&sio->iocb, sis->swap_file); 429 sio->iocb.ki_pos = pos; 430 sio->iocb.ki_complete = sio_read_complete; 431 sio->pages = 0; 432 sio->len = 0; 433 } 434 sio->bvec[sio->pages].bv_page = page; 435 sio->bvec[sio->pages].bv_len = thp_size(page); 436 sio->bvec[sio->pages].bv_offset = 0; 437 sio->len += thp_size(page); 438 sio->pages += 1; 439 if (sio->pages == ARRAY_SIZE(sio->bvec) || !plug) { 440 swap_read_unplug(sio); 441 sio = NULL; 442 } 443 if (plug) 444 *plug = sio; 445 } 446 447 static void swap_readpage_bdev(struct page *page, bool synchronous, 448 struct swap_info_struct *sis) 449 { 450 struct bio *bio; 451 452 if ((sis->flags & SWP_SYNCHRONOUS_IO) && 453 !bdev_read_page(sis->bdev, swap_page_sector(page), page)) { 454 count_vm_event(PSWPIN); 455 return; 456 } 457 458 bio = bio_alloc(sis->bdev, 1, REQ_OP_READ, GFP_KERNEL); 459 bio->bi_iter.bi_sector = swap_page_sector(page); 460 bio->bi_end_io = end_swap_bio_read; 461 bio_add_page(bio, page, thp_size(page), 0); 462 /* 463 * Keep this task valid during swap readpage because the oom killer may 464 * attempt to access it in the page fault retry time check. 465 */ 466 if (synchronous) { 467 get_task_struct(current); 468 bio->bi_private = current; 469 } 470 count_vm_event(PSWPIN); 471 bio_get(bio); 472 submit_bio(bio); 473 while (synchronous) { 474 set_current_state(TASK_UNINTERRUPTIBLE); 475 if (!READ_ONCE(bio->bi_private)) 476 break; 477 478 blk_io_schedule(); 479 } 480 __set_current_state(TASK_RUNNING); 481 bio_put(bio); 482 } 483 484 void swap_readpage(struct page *page, bool synchronous, struct swap_iocb **plug) 485 { 486 struct swap_info_struct *sis = page_swap_info(page); 487 bool workingset = PageWorkingset(page); 488 unsigned long pflags; 489 bool in_thrashing; 490 491 VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page); 492 VM_BUG_ON_PAGE(!PageLocked(page), page); 493 VM_BUG_ON_PAGE(PageUptodate(page), page); 494 495 /* 496 * Count submission time as memory stall and delay. When the device 497 * is congested, or the submitting cgroup IO-throttled, submission 498 * can be a significant part of overall IO time. 499 */ 500 if (workingset) { 501 delayacct_thrashing_start(&in_thrashing); 502 psi_memstall_enter(&pflags); 503 } 504 delayacct_swapin_start(); 505 506 if (frontswap_load(page) == 0) { 507 SetPageUptodate(page); 508 unlock_page(page); 509 } else if (data_race(sis->flags & SWP_FS_OPS)) { 510 swap_readpage_fs(page, plug); 511 } else { 512 swap_readpage_bdev(page, synchronous, sis); 513 } 514 515 if (workingset) { 516 delayacct_thrashing_end(&in_thrashing); 517 psi_memstall_leave(&pflags); 518 } 519 delayacct_swapin_end(); 520 } 521 522 void __swap_read_unplug(struct swap_iocb *sio) 523 { 524 struct iov_iter from; 525 struct address_space *mapping = sio->iocb.ki_filp->f_mapping; 526 int ret; 527 528 iov_iter_bvec(&from, ITER_DEST, sio->bvec, sio->pages, sio->len); 529 ret = mapping->a_ops->swap_rw(&sio->iocb, &from); 530 if (ret != -EIOCBQUEUED) 531 sio_read_complete(&sio->iocb, ret); 532 } 533