1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/kmemcheck.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/slab.h> 32 #include <linux/oom.h> 33 #include <linux/notifier.h> 34 #include <linux/topology.h> 35 #include <linux/sysctl.h> 36 #include <linux/cpu.h> 37 #include <linux/cpuset.h> 38 #include <linux/memory_hotplug.h> 39 #include <linux/nodemask.h> 40 #include <linux/vmalloc.h> 41 #include <linux/mempolicy.h> 42 #include <linux/stop_machine.h> 43 #include <linux/sort.h> 44 #include <linux/pfn.h> 45 #include <linux/backing-dev.h> 46 #include <linux/fault-inject.h> 47 #include <linux/page-isolation.h> 48 #include <linux/page_cgroup.h> 49 #include <linux/debugobjects.h> 50 #include <linux/kmemleak.h> 51 #include <linux/memory.h> 52 #include <trace/events/kmem.h> 53 #include <linux/ftrace_event.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 #include "internal.h" 58 59 /* 60 * Array of node states. 61 */ 62 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 63 [N_POSSIBLE] = NODE_MASK_ALL, 64 [N_ONLINE] = { { [0] = 1UL } }, 65 #ifndef CONFIG_NUMA 66 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 67 #ifdef CONFIG_HIGHMEM 68 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 69 #endif 70 [N_CPU] = { { [0] = 1UL } }, 71 #endif /* NUMA */ 72 }; 73 EXPORT_SYMBOL(node_states); 74 75 unsigned long totalram_pages __read_mostly; 76 unsigned long totalreserve_pages __read_mostly; 77 int percpu_pagelist_fraction; 78 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 79 80 #ifdef CONFIG_PM_SLEEP 81 /* 82 * The following functions are used by the suspend/hibernate code to temporarily 83 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 84 * while devices are suspended. To avoid races with the suspend/hibernate code, 85 * they should always be called with pm_mutex held (gfp_allowed_mask also should 86 * only be modified with pm_mutex held, unless the suspend/hibernate code is 87 * guaranteed not to run in parallel with that modification). 88 */ 89 void set_gfp_allowed_mask(gfp_t mask) 90 { 91 WARN_ON(!mutex_is_locked(&pm_mutex)); 92 gfp_allowed_mask = mask; 93 } 94 95 gfp_t clear_gfp_allowed_mask(gfp_t mask) 96 { 97 gfp_t ret = gfp_allowed_mask; 98 99 WARN_ON(!mutex_is_locked(&pm_mutex)); 100 gfp_allowed_mask &= ~mask; 101 return ret; 102 } 103 #endif /* CONFIG_PM_SLEEP */ 104 105 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 106 int pageblock_order __read_mostly; 107 #endif 108 109 static void __free_pages_ok(struct page *page, unsigned int order); 110 111 /* 112 * results with 256, 32 in the lowmem_reserve sysctl: 113 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 114 * 1G machine -> (16M dma, 784M normal, 224M high) 115 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 116 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 117 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 118 * 119 * TBD: should special case ZONE_DMA32 machines here - in those we normally 120 * don't need any ZONE_NORMAL reservation 121 */ 122 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 123 #ifdef CONFIG_ZONE_DMA 124 256, 125 #endif 126 #ifdef CONFIG_ZONE_DMA32 127 256, 128 #endif 129 #ifdef CONFIG_HIGHMEM 130 32, 131 #endif 132 32, 133 }; 134 135 EXPORT_SYMBOL(totalram_pages); 136 137 static char * const zone_names[MAX_NR_ZONES] = { 138 #ifdef CONFIG_ZONE_DMA 139 "DMA", 140 #endif 141 #ifdef CONFIG_ZONE_DMA32 142 "DMA32", 143 #endif 144 "Normal", 145 #ifdef CONFIG_HIGHMEM 146 "HighMem", 147 #endif 148 "Movable", 149 }; 150 151 int min_free_kbytes = 1024; 152 153 static unsigned long __meminitdata nr_kernel_pages; 154 static unsigned long __meminitdata nr_all_pages; 155 static unsigned long __meminitdata dma_reserve; 156 157 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 158 /* 159 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 160 * ranges of memory (RAM) that may be registered with add_active_range(). 161 * Ranges passed to add_active_range() will be merged if possible 162 * so the number of times add_active_range() can be called is 163 * related to the number of nodes and the number of holes 164 */ 165 #ifdef CONFIG_MAX_ACTIVE_REGIONS 166 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 167 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 168 #else 169 #if MAX_NUMNODES >= 32 170 /* If there can be many nodes, allow up to 50 holes per node */ 171 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 172 #else 173 /* By default, allow up to 256 distinct regions */ 174 #define MAX_ACTIVE_REGIONS 256 175 #endif 176 #endif 177 178 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 179 static int __meminitdata nr_nodemap_entries; 180 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 181 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 182 static unsigned long __initdata required_kernelcore; 183 static unsigned long __initdata required_movablecore; 184 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 185 186 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 187 int movable_zone; 188 EXPORT_SYMBOL(movable_zone); 189 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 190 191 #if MAX_NUMNODES > 1 192 int nr_node_ids __read_mostly = MAX_NUMNODES; 193 int nr_online_nodes __read_mostly = 1; 194 EXPORT_SYMBOL(nr_node_ids); 195 EXPORT_SYMBOL(nr_online_nodes); 196 #endif 197 198 int page_group_by_mobility_disabled __read_mostly; 199 200 static void set_pageblock_migratetype(struct page *page, int migratetype) 201 { 202 203 if (unlikely(page_group_by_mobility_disabled)) 204 migratetype = MIGRATE_UNMOVABLE; 205 206 set_pageblock_flags_group(page, (unsigned long)migratetype, 207 PB_migrate, PB_migrate_end); 208 } 209 210 bool oom_killer_disabled __read_mostly; 211 212 #ifdef CONFIG_DEBUG_VM 213 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 214 { 215 int ret = 0; 216 unsigned seq; 217 unsigned long pfn = page_to_pfn(page); 218 219 do { 220 seq = zone_span_seqbegin(zone); 221 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 222 ret = 1; 223 else if (pfn < zone->zone_start_pfn) 224 ret = 1; 225 } while (zone_span_seqretry(zone, seq)); 226 227 return ret; 228 } 229 230 static int page_is_consistent(struct zone *zone, struct page *page) 231 { 232 if (!pfn_valid_within(page_to_pfn(page))) 233 return 0; 234 if (zone != page_zone(page)) 235 return 0; 236 237 return 1; 238 } 239 /* 240 * Temporary debugging check for pages not lying within a given zone. 241 */ 242 static int bad_range(struct zone *zone, struct page *page) 243 { 244 if (page_outside_zone_boundaries(zone, page)) 245 return 1; 246 if (!page_is_consistent(zone, page)) 247 return 1; 248 249 return 0; 250 } 251 #else 252 static inline int bad_range(struct zone *zone, struct page *page) 253 { 254 return 0; 255 } 256 #endif 257 258 static void bad_page(struct page *page) 259 { 260 static unsigned long resume; 261 static unsigned long nr_shown; 262 static unsigned long nr_unshown; 263 264 /* Don't complain about poisoned pages */ 265 if (PageHWPoison(page)) { 266 __ClearPageBuddy(page); 267 return; 268 } 269 270 /* 271 * Allow a burst of 60 reports, then keep quiet for that minute; 272 * or allow a steady drip of one report per second. 273 */ 274 if (nr_shown == 60) { 275 if (time_before(jiffies, resume)) { 276 nr_unshown++; 277 goto out; 278 } 279 if (nr_unshown) { 280 printk(KERN_ALERT 281 "BUG: Bad page state: %lu messages suppressed\n", 282 nr_unshown); 283 nr_unshown = 0; 284 } 285 nr_shown = 0; 286 } 287 if (nr_shown++ == 0) 288 resume = jiffies + 60 * HZ; 289 290 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 291 current->comm, page_to_pfn(page)); 292 dump_page(page); 293 294 dump_stack(); 295 out: 296 /* Leave bad fields for debug, except PageBuddy could make trouble */ 297 __ClearPageBuddy(page); 298 add_taint(TAINT_BAD_PAGE); 299 } 300 301 /* 302 * Higher-order pages are called "compound pages". They are structured thusly: 303 * 304 * The first PAGE_SIZE page is called the "head page". 305 * 306 * The remaining PAGE_SIZE pages are called "tail pages". 307 * 308 * All pages have PG_compound set. All pages have their ->private pointing at 309 * the head page (even the head page has this). 310 * 311 * The first tail page's ->lru.next holds the address of the compound page's 312 * put_page() function. Its ->lru.prev holds the order of allocation. 313 * This usage means that zero-order pages may not be compound. 314 */ 315 316 static void free_compound_page(struct page *page) 317 { 318 __free_pages_ok(page, compound_order(page)); 319 } 320 321 void prep_compound_page(struct page *page, unsigned long order) 322 { 323 int i; 324 int nr_pages = 1 << order; 325 326 set_compound_page_dtor(page, free_compound_page); 327 set_compound_order(page, order); 328 __SetPageHead(page); 329 for (i = 1; i < nr_pages; i++) { 330 struct page *p = page + i; 331 332 __SetPageTail(p); 333 p->first_page = page; 334 } 335 } 336 337 static int destroy_compound_page(struct page *page, unsigned long order) 338 { 339 int i; 340 int nr_pages = 1 << order; 341 int bad = 0; 342 343 if (unlikely(compound_order(page) != order) || 344 unlikely(!PageHead(page))) { 345 bad_page(page); 346 bad++; 347 } 348 349 __ClearPageHead(page); 350 351 for (i = 1; i < nr_pages; i++) { 352 struct page *p = page + i; 353 354 if (unlikely(!PageTail(p) || (p->first_page != page))) { 355 bad_page(page); 356 bad++; 357 } 358 __ClearPageTail(p); 359 } 360 361 return bad; 362 } 363 364 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 365 { 366 int i; 367 368 /* 369 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 370 * and __GFP_HIGHMEM from hard or soft interrupt context. 371 */ 372 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 373 for (i = 0; i < (1 << order); i++) 374 clear_highpage(page + i); 375 } 376 377 static inline void set_page_order(struct page *page, int order) 378 { 379 set_page_private(page, order); 380 __SetPageBuddy(page); 381 } 382 383 static inline void rmv_page_order(struct page *page) 384 { 385 __ClearPageBuddy(page); 386 set_page_private(page, 0); 387 } 388 389 /* 390 * Locate the struct page for both the matching buddy in our 391 * pair (buddy1) and the combined O(n+1) page they form (page). 392 * 393 * 1) Any buddy B1 will have an order O twin B2 which satisfies 394 * the following equation: 395 * B2 = B1 ^ (1 << O) 396 * For example, if the starting buddy (buddy2) is #8 its order 397 * 1 buddy is #10: 398 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 399 * 400 * 2) Any buddy B will have an order O+1 parent P which 401 * satisfies the following equation: 402 * P = B & ~(1 << O) 403 * 404 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 405 */ 406 static inline struct page * 407 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 408 { 409 unsigned long buddy_idx = page_idx ^ (1 << order); 410 411 return page + (buddy_idx - page_idx); 412 } 413 414 static inline unsigned long 415 __find_combined_index(unsigned long page_idx, unsigned int order) 416 { 417 return (page_idx & ~(1 << order)); 418 } 419 420 /* 421 * This function checks whether a page is free && is the buddy 422 * we can do coalesce a page and its buddy if 423 * (a) the buddy is not in a hole && 424 * (b) the buddy is in the buddy system && 425 * (c) a page and its buddy have the same order && 426 * (d) a page and its buddy are in the same zone. 427 * 428 * For recording whether a page is in the buddy system, we use PG_buddy. 429 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 430 * 431 * For recording page's order, we use page_private(page). 432 */ 433 static inline int page_is_buddy(struct page *page, struct page *buddy, 434 int order) 435 { 436 if (!pfn_valid_within(page_to_pfn(buddy))) 437 return 0; 438 439 if (page_zone_id(page) != page_zone_id(buddy)) 440 return 0; 441 442 if (PageBuddy(buddy) && page_order(buddy) == order) { 443 VM_BUG_ON(page_count(buddy) != 0); 444 return 1; 445 } 446 return 0; 447 } 448 449 /* 450 * Freeing function for a buddy system allocator. 451 * 452 * The concept of a buddy system is to maintain direct-mapped table 453 * (containing bit values) for memory blocks of various "orders". 454 * The bottom level table contains the map for the smallest allocatable 455 * units of memory (here, pages), and each level above it describes 456 * pairs of units from the levels below, hence, "buddies". 457 * At a high level, all that happens here is marking the table entry 458 * at the bottom level available, and propagating the changes upward 459 * as necessary, plus some accounting needed to play nicely with other 460 * parts of the VM system. 461 * At each level, we keep a list of pages, which are heads of continuous 462 * free pages of length of (1 << order) and marked with PG_buddy. Page's 463 * order is recorded in page_private(page) field. 464 * So when we are allocating or freeing one, we can derive the state of the 465 * other. That is, if we allocate a small block, and both were 466 * free, the remainder of the region must be split into blocks. 467 * If a block is freed, and its buddy is also free, then this 468 * triggers coalescing into a block of larger size. 469 * 470 * -- wli 471 */ 472 473 static inline void __free_one_page(struct page *page, 474 struct zone *zone, unsigned int order, 475 int migratetype) 476 { 477 unsigned long page_idx; 478 unsigned long combined_idx; 479 struct page *buddy; 480 481 if (unlikely(PageCompound(page))) 482 if (unlikely(destroy_compound_page(page, order))) 483 return; 484 485 VM_BUG_ON(migratetype == -1); 486 487 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 488 489 VM_BUG_ON(page_idx & ((1 << order) - 1)); 490 VM_BUG_ON(bad_range(zone, page)); 491 492 while (order < MAX_ORDER-1) { 493 buddy = __page_find_buddy(page, page_idx, order); 494 if (!page_is_buddy(page, buddy, order)) 495 break; 496 497 /* Our buddy is free, merge with it and move up one order. */ 498 list_del(&buddy->lru); 499 zone->free_area[order].nr_free--; 500 rmv_page_order(buddy); 501 combined_idx = __find_combined_index(page_idx, order); 502 page = page + (combined_idx - page_idx); 503 page_idx = combined_idx; 504 order++; 505 } 506 set_page_order(page, order); 507 508 /* 509 * If this is not the largest possible page, check if the buddy 510 * of the next-highest order is free. If it is, it's possible 511 * that pages are being freed that will coalesce soon. In case, 512 * that is happening, add the free page to the tail of the list 513 * so it's less likely to be used soon and more likely to be merged 514 * as a higher order page 515 */ 516 if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) { 517 struct page *higher_page, *higher_buddy; 518 combined_idx = __find_combined_index(page_idx, order); 519 higher_page = page + combined_idx - page_idx; 520 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1); 521 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 522 list_add_tail(&page->lru, 523 &zone->free_area[order].free_list[migratetype]); 524 goto out; 525 } 526 } 527 528 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 529 out: 530 zone->free_area[order].nr_free++; 531 } 532 533 /* 534 * free_page_mlock() -- clean up attempts to free and mlocked() page. 535 * Page should not be on lru, so no need to fix that up. 536 * free_pages_check() will verify... 537 */ 538 static inline void free_page_mlock(struct page *page) 539 { 540 __dec_zone_page_state(page, NR_MLOCK); 541 __count_vm_event(UNEVICTABLE_MLOCKFREED); 542 } 543 544 static inline int free_pages_check(struct page *page) 545 { 546 if (unlikely(page_mapcount(page) | 547 (page->mapping != NULL) | 548 (atomic_read(&page->_count) != 0) | 549 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) { 550 bad_page(page); 551 return 1; 552 } 553 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 554 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 555 return 0; 556 } 557 558 /* 559 * Frees a number of pages from the PCP lists 560 * Assumes all pages on list are in same zone, and of same order. 561 * count is the number of pages to free. 562 * 563 * If the zone was previously in an "all pages pinned" state then look to 564 * see if this freeing clears that state. 565 * 566 * And clear the zone's pages_scanned counter, to hold off the "all pages are 567 * pinned" detection logic. 568 */ 569 static void free_pcppages_bulk(struct zone *zone, int count, 570 struct per_cpu_pages *pcp) 571 { 572 int migratetype = 0; 573 int batch_free = 0; 574 575 spin_lock(&zone->lock); 576 zone->all_unreclaimable = 0; 577 zone->pages_scanned = 0; 578 579 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 580 while (count) { 581 struct page *page; 582 struct list_head *list; 583 584 /* 585 * Remove pages from lists in a round-robin fashion. A 586 * batch_free count is maintained that is incremented when an 587 * empty list is encountered. This is so more pages are freed 588 * off fuller lists instead of spinning excessively around empty 589 * lists 590 */ 591 do { 592 batch_free++; 593 if (++migratetype == MIGRATE_PCPTYPES) 594 migratetype = 0; 595 list = &pcp->lists[migratetype]; 596 } while (list_empty(list)); 597 598 do { 599 page = list_entry(list->prev, struct page, lru); 600 /* must delete as __free_one_page list manipulates */ 601 list_del(&page->lru); 602 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 603 __free_one_page(page, zone, 0, page_private(page)); 604 trace_mm_page_pcpu_drain(page, 0, page_private(page)); 605 } while (--count && --batch_free && !list_empty(list)); 606 } 607 spin_unlock(&zone->lock); 608 } 609 610 static void free_one_page(struct zone *zone, struct page *page, int order, 611 int migratetype) 612 { 613 spin_lock(&zone->lock); 614 zone->all_unreclaimable = 0; 615 zone->pages_scanned = 0; 616 617 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 618 __free_one_page(page, zone, order, migratetype); 619 spin_unlock(&zone->lock); 620 } 621 622 static void __free_pages_ok(struct page *page, unsigned int order) 623 { 624 unsigned long flags; 625 int i; 626 int bad = 0; 627 int wasMlocked = __TestClearPageMlocked(page); 628 629 trace_mm_page_free_direct(page, order); 630 kmemcheck_free_shadow(page, order); 631 632 for (i = 0 ; i < (1 << order) ; ++i) 633 bad += free_pages_check(page + i); 634 if (bad) 635 return; 636 637 if (!PageHighMem(page)) { 638 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 639 debug_check_no_obj_freed(page_address(page), 640 PAGE_SIZE << order); 641 } 642 arch_free_page(page, order); 643 kernel_map_pages(page, 1 << order, 0); 644 645 local_irq_save(flags); 646 if (unlikely(wasMlocked)) 647 free_page_mlock(page); 648 __count_vm_events(PGFREE, 1 << order); 649 free_one_page(page_zone(page), page, order, 650 get_pageblock_migratetype(page)); 651 local_irq_restore(flags); 652 } 653 654 /* 655 * permit the bootmem allocator to evade page validation on high-order frees 656 */ 657 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 658 { 659 if (order == 0) { 660 __ClearPageReserved(page); 661 set_page_count(page, 0); 662 set_page_refcounted(page); 663 __free_page(page); 664 } else { 665 int loop; 666 667 prefetchw(page); 668 for (loop = 0; loop < BITS_PER_LONG; loop++) { 669 struct page *p = &page[loop]; 670 671 if (loop + 1 < BITS_PER_LONG) 672 prefetchw(p + 1); 673 __ClearPageReserved(p); 674 set_page_count(p, 0); 675 } 676 677 set_page_refcounted(page); 678 __free_pages(page, order); 679 } 680 } 681 682 683 /* 684 * The order of subdivision here is critical for the IO subsystem. 685 * Please do not alter this order without good reasons and regression 686 * testing. Specifically, as large blocks of memory are subdivided, 687 * the order in which smaller blocks are delivered depends on the order 688 * they're subdivided in this function. This is the primary factor 689 * influencing the order in which pages are delivered to the IO 690 * subsystem according to empirical testing, and this is also justified 691 * by considering the behavior of a buddy system containing a single 692 * large block of memory acted on by a series of small allocations. 693 * This behavior is a critical factor in sglist merging's success. 694 * 695 * -- wli 696 */ 697 static inline void expand(struct zone *zone, struct page *page, 698 int low, int high, struct free_area *area, 699 int migratetype) 700 { 701 unsigned long size = 1 << high; 702 703 while (high > low) { 704 area--; 705 high--; 706 size >>= 1; 707 VM_BUG_ON(bad_range(zone, &page[size])); 708 list_add(&page[size].lru, &area->free_list[migratetype]); 709 area->nr_free++; 710 set_page_order(&page[size], high); 711 } 712 } 713 714 /* 715 * This page is about to be returned from the page allocator 716 */ 717 static inline int check_new_page(struct page *page) 718 { 719 if (unlikely(page_mapcount(page) | 720 (page->mapping != NULL) | 721 (atomic_read(&page->_count) != 0) | 722 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) { 723 bad_page(page); 724 return 1; 725 } 726 return 0; 727 } 728 729 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 730 { 731 int i; 732 733 for (i = 0; i < (1 << order); i++) { 734 struct page *p = page + i; 735 if (unlikely(check_new_page(p))) 736 return 1; 737 } 738 739 set_page_private(page, 0); 740 set_page_refcounted(page); 741 742 arch_alloc_page(page, order); 743 kernel_map_pages(page, 1 << order, 1); 744 745 if (gfp_flags & __GFP_ZERO) 746 prep_zero_page(page, order, gfp_flags); 747 748 if (order && (gfp_flags & __GFP_COMP)) 749 prep_compound_page(page, order); 750 751 return 0; 752 } 753 754 /* 755 * Go through the free lists for the given migratetype and remove 756 * the smallest available page from the freelists 757 */ 758 static inline 759 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 760 int migratetype) 761 { 762 unsigned int current_order; 763 struct free_area * area; 764 struct page *page; 765 766 /* Find a page of the appropriate size in the preferred list */ 767 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 768 area = &(zone->free_area[current_order]); 769 if (list_empty(&area->free_list[migratetype])) 770 continue; 771 772 page = list_entry(area->free_list[migratetype].next, 773 struct page, lru); 774 list_del(&page->lru); 775 rmv_page_order(page); 776 area->nr_free--; 777 expand(zone, page, order, current_order, area, migratetype); 778 return page; 779 } 780 781 return NULL; 782 } 783 784 785 /* 786 * This array describes the order lists are fallen back to when 787 * the free lists for the desirable migrate type are depleted 788 */ 789 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 790 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 791 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 792 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 793 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 794 }; 795 796 /* 797 * Move the free pages in a range to the free lists of the requested type. 798 * Note that start_page and end_pages are not aligned on a pageblock 799 * boundary. If alignment is required, use move_freepages_block() 800 */ 801 static int move_freepages(struct zone *zone, 802 struct page *start_page, struct page *end_page, 803 int migratetype) 804 { 805 struct page *page; 806 unsigned long order; 807 int pages_moved = 0; 808 809 #ifndef CONFIG_HOLES_IN_ZONE 810 /* 811 * page_zone is not safe to call in this context when 812 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 813 * anyway as we check zone boundaries in move_freepages_block(). 814 * Remove at a later date when no bug reports exist related to 815 * grouping pages by mobility 816 */ 817 BUG_ON(page_zone(start_page) != page_zone(end_page)); 818 #endif 819 820 for (page = start_page; page <= end_page;) { 821 /* Make sure we are not inadvertently changing nodes */ 822 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 823 824 if (!pfn_valid_within(page_to_pfn(page))) { 825 page++; 826 continue; 827 } 828 829 if (!PageBuddy(page)) { 830 page++; 831 continue; 832 } 833 834 order = page_order(page); 835 list_del(&page->lru); 836 list_add(&page->lru, 837 &zone->free_area[order].free_list[migratetype]); 838 page += 1 << order; 839 pages_moved += 1 << order; 840 } 841 842 return pages_moved; 843 } 844 845 static int move_freepages_block(struct zone *zone, struct page *page, 846 int migratetype) 847 { 848 unsigned long start_pfn, end_pfn; 849 struct page *start_page, *end_page; 850 851 start_pfn = page_to_pfn(page); 852 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 853 start_page = pfn_to_page(start_pfn); 854 end_page = start_page + pageblock_nr_pages - 1; 855 end_pfn = start_pfn + pageblock_nr_pages - 1; 856 857 /* Do not cross zone boundaries */ 858 if (start_pfn < zone->zone_start_pfn) 859 start_page = page; 860 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 861 return 0; 862 863 return move_freepages(zone, start_page, end_page, migratetype); 864 } 865 866 static void change_pageblock_range(struct page *pageblock_page, 867 int start_order, int migratetype) 868 { 869 int nr_pageblocks = 1 << (start_order - pageblock_order); 870 871 while (nr_pageblocks--) { 872 set_pageblock_migratetype(pageblock_page, migratetype); 873 pageblock_page += pageblock_nr_pages; 874 } 875 } 876 877 /* Remove an element from the buddy allocator from the fallback list */ 878 static inline struct page * 879 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 880 { 881 struct free_area * area; 882 int current_order; 883 struct page *page; 884 int migratetype, i; 885 886 /* Find the largest possible block of pages in the other list */ 887 for (current_order = MAX_ORDER-1; current_order >= order; 888 --current_order) { 889 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 890 migratetype = fallbacks[start_migratetype][i]; 891 892 /* MIGRATE_RESERVE handled later if necessary */ 893 if (migratetype == MIGRATE_RESERVE) 894 continue; 895 896 area = &(zone->free_area[current_order]); 897 if (list_empty(&area->free_list[migratetype])) 898 continue; 899 900 page = list_entry(area->free_list[migratetype].next, 901 struct page, lru); 902 area->nr_free--; 903 904 /* 905 * If breaking a large block of pages, move all free 906 * pages to the preferred allocation list. If falling 907 * back for a reclaimable kernel allocation, be more 908 * agressive about taking ownership of free pages 909 */ 910 if (unlikely(current_order >= (pageblock_order >> 1)) || 911 start_migratetype == MIGRATE_RECLAIMABLE || 912 page_group_by_mobility_disabled) { 913 unsigned long pages; 914 pages = move_freepages_block(zone, page, 915 start_migratetype); 916 917 /* Claim the whole block if over half of it is free */ 918 if (pages >= (1 << (pageblock_order-1)) || 919 page_group_by_mobility_disabled) 920 set_pageblock_migratetype(page, 921 start_migratetype); 922 923 migratetype = start_migratetype; 924 } 925 926 /* Remove the page from the freelists */ 927 list_del(&page->lru); 928 rmv_page_order(page); 929 930 /* Take ownership for orders >= pageblock_order */ 931 if (current_order >= pageblock_order) 932 change_pageblock_range(page, current_order, 933 start_migratetype); 934 935 expand(zone, page, order, current_order, area, migratetype); 936 937 trace_mm_page_alloc_extfrag(page, order, current_order, 938 start_migratetype, migratetype); 939 940 return page; 941 } 942 } 943 944 return NULL; 945 } 946 947 /* 948 * Do the hard work of removing an element from the buddy allocator. 949 * Call me with the zone->lock already held. 950 */ 951 static struct page *__rmqueue(struct zone *zone, unsigned int order, 952 int migratetype) 953 { 954 struct page *page; 955 956 retry_reserve: 957 page = __rmqueue_smallest(zone, order, migratetype); 958 959 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 960 page = __rmqueue_fallback(zone, order, migratetype); 961 962 /* 963 * Use MIGRATE_RESERVE rather than fail an allocation. goto 964 * is used because __rmqueue_smallest is an inline function 965 * and we want just one call site 966 */ 967 if (!page) { 968 migratetype = MIGRATE_RESERVE; 969 goto retry_reserve; 970 } 971 } 972 973 trace_mm_page_alloc_zone_locked(page, order, migratetype); 974 return page; 975 } 976 977 /* 978 * Obtain a specified number of elements from the buddy allocator, all under 979 * a single hold of the lock, for efficiency. Add them to the supplied list. 980 * Returns the number of new pages which were placed at *list. 981 */ 982 static int rmqueue_bulk(struct zone *zone, unsigned int order, 983 unsigned long count, struct list_head *list, 984 int migratetype, int cold) 985 { 986 int i; 987 988 spin_lock(&zone->lock); 989 for (i = 0; i < count; ++i) { 990 struct page *page = __rmqueue(zone, order, migratetype); 991 if (unlikely(page == NULL)) 992 break; 993 994 /* 995 * Split buddy pages returned by expand() are received here 996 * in physical page order. The page is added to the callers and 997 * list and the list head then moves forward. From the callers 998 * perspective, the linked list is ordered by page number in 999 * some conditions. This is useful for IO devices that can 1000 * merge IO requests if the physical pages are ordered 1001 * properly. 1002 */ 1003 if (likely(cold == 0)) 1004 list_add(&page->lru, list); 1005 else 1006 list_add_tail(&page->lru, list); 1007 set_page_private(page, migratetype); 1008 list = &page->lru; 1009 } 1010 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1011 spin_unlock(&zone->lock); 1012 return i; 1013 } 1014 1015 #ifdef CONFIG_NUMA 1016 /* 1017 * Called from the vmstat counter updater to drain pagesets of this 1018 * currently executing processor on remote nodes after they have 1019 * expired. 1020 * 1021 * Note that this function must be called with the thread pinned to 1022 * a single processor. 1023 */ 1024 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1025 { 1026 unsigned long flags; 1027 int to_drain; 1028 1029 local_irq_save(flags); 1030 if (pcp->count >= pcp->batch) 1031 to_drain = pcp->batch; 1032 else 1033 to_drain = pcp->count; 1034 free_pcppages_bulk(zone, to_drain, pcp); 1035 pcp->count -= to_drain; 1036 local_irq_restore(flags); 1037 } 1038 #endif 1039 1040 /* 1041 * Drain pages of the indicated processor. 1042 * 1043 * The processor must either be the current processor and the 1044 * thread pinned to the current processor or a processor that 1045 * is not online. 1046 */ 1047 static void drain_pages(unsigned int cpu) 1048 { 1049 unsigned long flags; 1050 struct zone *zone; 1051 1052 for_each_populated_zone(zone) { 1053 struct per_cpu_pageset *pset; 1054 struct per_cpu_pages *pcp; 1055 1056 local_irq_save(flags); 1057 pset = per_cpu_ptr(zone->pageset, cpu); 1058 1059 pcp = &pset->pcp; 1060 free_pcppages_bulk(zone, pcp->count, pcp); 1061 pcp->count = 0; 1062 local_irq_restore(flags); 1063 } 1064 } 1065 1066 /* 1067 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1068 */ 1069 void drain_local_pages(void *arg) 1070 { 1071 drain_pages(smp_processor_id()); 1072 } 1073 1074 /* 1075 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 1076 */ 1077 void drain_all_pages(void) 1078 { 1079 on_each_cpu(drain_local_pages, NULL, 1); 1080 } 1081 1082 #ifdef CONFIG_HIBERNATION 1083 1084 void mark_free_pages(struct zone *zone) 1085 { 1086 unsigned long pfn, max_zone_pfn; 1087 unsigned long flags; 1088 int order, t; 1089 struct list_head *curr; 1090 1091 if (!zone->spanned_pages) 1092 return; 1093 1094 spin_lock_irqsave(&zone->lock, flags); 1095 1096 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1097 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1098 if (pfn_valid(pfn)) { 1099 struct page *page = pfn_to_page(pfn); 1100 1101 if (!swsusp_page_is_forbidden(page)) 1102 swsusp_unset_page_free(page); 1103 } 1104 1105 for_each_migratetype_order(order, t) { 1106 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1107 unsigned long i; 1108 1109 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1110 for (i = 0; i < (1UL << order); i++) 1111 swsusp_set_page_free(pfn_to_page(pfn + i)); 1112 } 1113 } 1114 spin_unlock_irqrestore(&zone->lock, flags); 1115 } 1116 #endif /* CONFIG_PM */ 1117 1118 /* 1119 * Free a 0-order page 1120 * cold == 1 ? free a cold page : free a hot page 1121 */ 1122 void free_hot_cold_page(struct page *page, int cold) 1123 { 1124 struct zone *zone = page_zone(page); 1125 struct per_cpu_pages *pcp; 1126 unsigned long flags; 1127 int migratetype; 1128 int wasMlocked = __TestClearPageMlocked(page); 1129 1130 trace_mm_page_free_direct(page, 0); 1131 kmemcheck_free_shadow(page, 0); 1132 1133 if (PageAnon(page)) 1134 page->mapping = NULL; 1135 if (free_pages_check(page)) 1136 return; 1137 1138 if (!PageHighMem(page)) { 1139 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 1140 debug_check_no_obj_freed(page_address(page), PAGE_SIZE); 1141 } 1142 arch_free_page(page, 0); 1143 kernel_map_pages(page, 1, 0); 1144 1145 migratetype = get_pageblock_migratetype(page); 1146 set_page_private(page, migratetype); 1147 local_irq_save(flags); 1148 if (unlikely(wasMlocked)) 1149 free_page_mlock(page); 1150 __count_vm_event(PGFREE); 1151 1152 /* 1153 * We only track unmovable, reclaimable and movable on pcp lists. 1154 * Free ISOLATE pages back to the allocator because they are being 1155 * offlined but treat RESERVE as movable pages so we can get those 1156 * areas back if necessary. Otherwise, we may have to free 1157 * excessively into the page allocator 1158 */ 1159 if (migratetype >= MIGRATE_PCPTYPES) { 1160 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1161 free_one_page(zone, page, 0, migratetype); 1162 goto out; 1163 } 1164 migratetype = MIGRATE_MOVABLE; 1165 } 1166 1167 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1168 if (cold) 1169 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1170 else 1171 list_add(&page->lru, &pcp->lists[migratetype]); 1172 pcp->count++; 1173 if (pcp->count >= pcp->high) { 1174 free_pcppages_bulk(zone, pcp->batch, pcp); 1175 pcp->count -= pcp->batch; 1176 } 1177 1178 out: 1179 local_irq_restore(flags); 1180 } 1181 1182 /* 1183 * split_page takes a non-compound higher-order page, and splits it into 1184 * n (1<<order) sub-pages: page[0..n] 1185 * Each sub-page must be freed individually. 1186 * 1187 * Note: this is probably too low level an operation for use in drivers. 1188 * Please consult with lkml before using this in your driver. 1189 */ 1190 void split_page(struct page *page, unsigned int order) 1191 { 1192 int i; 1193 1194 VM_BUG_ON(PageCompound(page)); 1195 VM_BUG_ON(!page_count(page)); 1196 1197 #ifdef CONFIG_KMEMCHECK 1198 /* 1199 * Split shadow pages too, because free(page[0]) would 1200 * otherwise free the whole shadow. 1201 */ 1202 if (kmemcheck_page_is_tracked(page)) 1203 split_page(virt_to_page(page[0].shadow), order); 1204 #endif 1205 1206 for (i = 1; i < (1 << order); i++) 1207 set_page_refcounted(page + i); 1208 } 1209 1210 /* 1211 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1212 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1213 * or two. 1214 */ 1215 static inline 1216 struct page *buffered_rmqueue(struct zone *preferred_zone, 1217 struct zone *zone, int order, gfp_t gfp_flags, 1218 int migratetype) 1219 { 1220 unsigned long flags; 1221 struct page *page; 1222 int cold = !!(gfp_flags & __GFP_COLD); 1223 1224 again: 1225 if (likely(order == 0)) { 1226 struct per_cpu_pages *pcp; 1227 struct list_head *list; 1228 1229 local_irq_save(flags); 1230 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1231 list = &pcp->lists[migratetype]; 1232 if (list_empty(list)) { 1233 pcp->count += rmqueue_bulk(zone, 0, 1234 pcp->batch, list, 1235 migratetype, cold); 1236 if (unlikely(list_empty(list))) 1237 goto failed; 1238 } 1239 1240 if (cold) 1241 page = list_entry(list->prev, struct page, lru); 1242 else 1243 page = list_entry(list->next, struct page, lru); 1244 1245 list_del(&page->lru); 1246 pcp->count--; 1247 } else { 1248 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1249 /* 1250 * __GFP_NOFAIL is not to be used in new code. 1251 * 1252 * All __GFP_NOFAIL callers should be fixed so that they 1253 * properly detect and handle allocation failures. 1254 * 1255 * We most definitely don't want callers attempting to 1256 * allocate greater than order-1 page units with 1257 * __GFP_NOFAIL. 1258 */ 1259 WARN_ON_ONCE(order > 1); 1260 } 1261 spin_lock_irqsave(&zone->lock, flags); 1262 page = __rmqueue(zone, order, migratetype); 1263 spin_unlock(&zone->lock); 1264 if (!page) 1265 goto failed; 1266 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1267 } 1268 1269 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1270 zone_statistics(preferred_zone, zone); 1271 local_irq_restore(flags); 1272 1273 VM_BUG_ON(bad_range(zone, page)); 1274 if (prep_new_page(page, order, gfp_flags)) 1275 goto again; 1276 return page; 1277 1278 failed: 1279 local_irq_restore(flags); 1280 return NULL; 1281 } 1282 1283 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1284 #define ALLOC_WMARK_MIN WMARK_MIN 1285 #define ALLOC_WMARK_LOW WMARK_LOW 1286 #define ALLOC_WMARK_HIGH WMARK_HIGH 1287 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1288 1289 /* Mask to get the watermark bits */ 1290 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1291 1292 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1293 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1294 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1295 1296 #ifdef CONFIG_FAIL_PAGE_ALLOC 1297 1298 static struct fail_page_alloc_attr { 1299 struct fault_attr attr; 1300 1301 u32 ignore_gfp_highmem; 1302 u32 ignore_gfp_wait; 1303 u32 min_order; 1304 1305 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1306 1307 struct dentry *ignore_gfp_highmem_file; 1308 struct dentry *ignore_gfp_wait_file; 1309 struct dentry *min_order_file; 1310 1311 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1312 1313 } fail_page_alloc = { 1314 .attr = FAULT_ATTR_INITIALIZER, 1315 .ignore_gfp_wait = 1, 1316 .ignore_gfp_highmem = 1, 1317 .min_order = 1, 1318 }; 1319 1320 static int __init setup_fail_page_alloc(char *str) 1321 { 1322 return setup_fault_attr(&fail_page_alloc.attr, str); 1323 } 1324 __setup("fail_page_alloc=", setup_fail_page_alloc); 1325 1326 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1327 { 1328 if (order < fail_page_alloc.min_order) 1329 return 0; 1330 if (gfp_mask & __GFP_NOFAIL) 1331 return 0; 1332 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1333 return 0; 1334 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1335 return 0; 1336 1337 return should_fail(&fail_page_alloc.attr, 1 << order); 1338 } 1339 1340 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1341 1342 static int __init fail_page_alloc_debugfs(void) 1343 { 1344 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1345 struct dentry *dir; 1346 int err; 1347 1348 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1349 "fail_page_alloc"); 1350 if (err) 1351 return err; 1352 dir = fail_page_alloc.attr.dentries.dir; 1353 1354 fail_page_alloc.ignore_gfp_wait_file = 1355 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1356 &fail_page_alloc.ignore_gfp_wait); 1357 1358 fail_page_alloc.ignore_gfp_highmem_file = 1359 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1360 &fail_page_alloc.ignore_gfp_highmem); 1361 fail_page_alloc.min_order_file = 1362 debugfs_create_u32("min-order", mode, dir, 1363 &fail_page_alloc.min_order); 1364 1365 if (!fail_page_alloc.ignore_gfp_wait_file || 1366 !fail_page_alloc.ignore_gfp_highmem_file || 1367 !fail_page_alloc.min_order_file) { 1368 err = -ENOMEM; 1369 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1370 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1371 debugfs_remove(fail_page_alloc.min_order_file); 1372 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1373 } 1374 1375 return err; 1376 } 1377 1378 late_initcall(fail_page_alloc_debugfs); 1379 1380 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1381 1382 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1383 1384 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1385 { 1386 return 0; 1387 } 1388 1389 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1390 1391 /* 1392 * Return 1 if free pages are above 'mark'. This takes into account the order 1393 * of the allocation. 1394 */ 1395 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1396 int classzone_idx, int alloc_flags) 1397 { 1398 /* free_pages my go negative - that's OK */ 1399 long min = mark; 1400 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1401 int o; 1402 1403 if (alloc_flags & ALLOC_HIGH) 1404 min -= min / 2; 1405 if (alloc_flags & ALLOC_HARDER) 1406 min -= min / 4; 1407 1408 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1409 return 0; 1410 for (o = 0; o < order; o++) { 1411 /* At the next order, this order's pages become unavailable */ 1412 free_pages -= z->free_area[o].nr_free << o; 1413 1414 /* Require fewer higher order pages to be free */ 1415 min >>= 1; 1416 1417 if (free_pages <= min) 1418 return 0; 1419 } 1420 return 1; 1421 } 1422 1423 #ifdef CONFIG_NUMA 1424 /* 1425 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1426 * skip over zones that are not allowed by the cpuset, or that have 1427 * been recently (in last second) found to be nearly full. See further 1428 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1429 * that have to skip over a lot of full or unallowed zones. 1430 * 1431 * If the zonelist cache is present in the passed in zonelist, then 1432 * returns a pointer to the allowed node mask (either the current 1433 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1434 * 1435 * If the zonelist cache is not available for this zonelist, does 1436 * nothing and returns NULL. 1437 * 1438 * If the fullzones BITMAP in the zonelist cache is stale (more than 1439 * a second since last zap'd) then we zap it out (clear its bits.) 1440 * 1441 * We hold off even calling zlc_setup, until after we've checked the 1442 * first zone in the zonelist, on the theory that most allocations will 1443 * be satisfied from that first zone, so best to examine that zone as 1444 * quickly as we can. 1445 */ 1446 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1447 { 1448 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1449 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1450 1451 zlc = zonelist->zlcache_ptr; 1452 if (!zlc) 1453 return NULL; 1454 1455 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1456 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1457 zlc->last_full_zap = jiffies; 1458 } 1459 1460 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1461 &cpuset_current_mems_allowed : 1462 &node_states[N_HIGH_MEMORY]; 1463 return allowednodes; 1464 } 1465 1466 /* 1467 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1468 * if it is worth looking at further for free memory: 1469 * 1) Check that the zone isn't thought to be full (doesn't have its 1470 * bit set in the zonelist_cache fullzones BITMAP). 1471 * 2) Check that the zones node (obtained from the zonelist_cache 1472 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1473 * Return true (non-zero) if zone is worth looking at further, or 1474 * else return false (zero) if it is not. 1475 * 1476 * This check -ignores- the distinction between various watermarks, 1477 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1478 * found to be full for any variation of these watermarks, it will 1479 * be considered full for up to one second by all requests, unless 1480 * we are so low on memory on all allowed nodes that we are forced 1481 * into the second scan of the zonelist. 1482 * 1483 * In the second scan we ignore this zonelist cache and exactly 1484 * apply the watermarks to all zones, even it is slower to do so. 1485 * We are low on memory in the second scan, and should leave no stone 1486 * unturned looking for a free page. 1487 */ 1488 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1489 nodemask_t *allowednodes) 1490 { 1491 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1492 int i; /* index of *z in zonelist zones */ 1493 int n; /* node that zone *z is on */ 1494 1495 zlc = zonelist->zlcache_ptr; 1496 if (!zlc) 1497 return 1; 1498 1499 i = z - zonelist->_zonerefs; 1500 n = zlc->z_to_n[i]; 1501 1502 /* This zone is worth trying if it is allowed but not full */ 1503 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1504 } 1505 1506 /* 1507 * Given 'z' scanning a zonelist, set the corresponding bit in 1508 * zlc->fullzones, so that subsequent attempts to allocate a page 1509 * from that zone don't waste time re-examining it. 1510 */ 1511 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1512 { 1513 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1514 int i; /* index of *z in zonelist zones */ 1515 1516 zlc = zonelist->zlcache_ptr; 1517 if (!zlc) 1518 return; 1519 1520 i = z - zonelist->_zonerefs; 1521 1522 set_bit(i, zlc->fullzones); 1523 } 1524 1525 #else /* CONFIG_NUMA */ 1526 1527 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1528 { 1529 return NULL; 1530 } 1531 1532 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1533 nodemask_t *allowednodes) 1534 { 1535 return 1; 1536 } 1537 1538 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1539 { 1540 } 1541 #endif /* CONFIG_NUMA */ 1542 1543 /* 1544 * get_page_from_freelist goes through the zonelist trying to allocate 1545 * a page. 1546 */ 1547 static struct page * 1548 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1549 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1550 struct zone *preferred_zone, int migratetype) 1551 { 1552 struct zoneref *z; 1553 struct page *page = NULL; 1554 int classzone_idx; 1555 struct zone *zone; 1556 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1557 int zlc_active = 0; /* set if using zonelist_cache */ 1558 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1559 1560 classzone_idx = zone_idx(preferred_zone); 1561 zonelist_scan: 1562 /* 1563 * Scan zonelist, looking for a zone with enough free. 1564 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1565 */ 1566 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1567 high_zoneidx, nodemask) { 1568 if (NUMA_BUILD && zlc_active && 1569 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1570 continue; 1571 if ((alloc_flags & ALLOC_CPUSET) && 1572 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1573 goto try_next_zone; 1574 1575 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1576 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1577 unsigned long mark; 1578 int ret; 1579 1580 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1581 if (zone_watermark_ok(zone, order, mark, 1582 classzone_idx, alloc_flags)) 1583 goto try_this_zone; 1584 1585 if (zone_reclaim_mode == 0) 1586 goto this_zone_full; 1587 1588 ret = zone_reclaim(zone, gfp_mask, order); 1589 switch (ret) { 1590 case ZONE_RECLAIM_NOSCAN: 1591 /* did not scan */ 1592 goto try_next_zone; 1593 case ZONE_RECLAIM_FULL: 1594 /* scanned but unreclaimable */ 1595 goto this_zone_full; 1596 default: 1597 /* did we reclaim enough */ 1598 if (!zone_watermark_ok(zone, order, mark, 1599 classzone_idx, alloc_flags)) 1600 goto this_zone_full; 1601 } 1602 } 1603 1604 try_this_zone: 1605 page = buffered_rmqueue(preferred_zone, zone, order, 1606 gfp_mask, migratetype); 1607 if (page) 1608 break; 1609 this_zone_full: 1610 if (NUMA_BUILD) 1611 zlc_mark_zone_full(zonelist, z); 1612 try_next_zone: 1613 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1614 /* 1615 * we do zlc_setup after the first zone is tried but only 1616 * if there are multiple nodes make it worthwhile 1617 */ 1618 allowednodes = zlc_setup(zonelist, alloc_flags); 1619 zlc_active = 1; 1620 did_zlc_setup = 1; 1621 } 1622 } 1623 1624 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1625 /* Disable zlc cache for second zonelist scan */ 1626 zlc_active = 0; 1627 goto zonelist_scan; 1628 } 1629 return page; 1630 } 1631 1632 static inline int 1633 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1634 unsigned long pages_reclaimed) 1635 { 1636 /* Do not loop if specifically requested */ 1637 if (gfp_mask & __GFP_NORETRY) 1638 return 0; 1639 1640 /* 1641 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1642 * means __GFP_NOFAIL, but that may not be true in other 1643 * implementations. 1644 */ 1645 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1646 return 1; 1647 1648 /* 1649 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1650 * specified, then we retry until we no longer reclaim any pages 1651 * (above), or we've reclaimed an order of pages at least as 1652 * large as the allocation's order. In both cases, if the 1653 * allocation still fails, we stop retrying. 1654 */ 1655 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1656 return 1; 1657 1658 /* 1659 * Don't let big-order allocations loop unless the caller 1660 * explicitly requests that. 1661 */ 1662 if (gfp_mask & __GFP_NOFAIL) 1663 return 1; 1664 1665 return 0; 1666 } 1667 1668 static inline struct page * 1669 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1670 struct zonelist *zonelist, enum zone_type high_zoneidx, 1671 nodemask_t *nodemask, struct zone *preferred_zone, 1672 int migratetype) 1673 { 1674 struct page *page; 1675 1676 /* Acquire the OOM killer lock for the zones in zonelist */ 1677 if (!try_set_zone_oom(zonelist, gfp_mask)) { 1678 schedule_timeout_uninterruptible(1); 1679 return NULL; 1680 } 1681 1682 /* 1683 * Go through the zonelist yet one more time, keep very high watermark 1684 * here, this is only to catch a parallel oom killing, we must fail if 1685 * we're still under heavy pressure. 1686 */ 1687 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1688 order, zonelist, high_zoneidx, 1689 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1690 preferred_zone, migratetype); 1691 if (page) 1692 goto out; 1693 1694 if (!(gfp_mask & __GFP_NOFAIL)) { 1695 /* The OOM killer will not help higher order allocs */ 1696 if (order > PAGE_ALLOC_COSTLY_ORDER) 1697 goto out; 1698 /* 1699 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 1700 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 1701 * The caller should handle page allocation failure by itself if 1702 * it specifies __GFP_THISNODE. 1703 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 1704 */ 1705 if (gfp_mask & __GFP_THISNODE) 1706 goto out; 1707 } 1708 /* Exhausted what can be done so it's blamo time */ 1709 out_of_memory(zonelist, gfp_mask, order, nodemask); 1710 1711 out: 1712 clear_zonelist_oom(zonelist, gfp_mask); 1713 return page; 1714 } 1715 1716 /* The really slow allocator path where we enter direct reclaim */ 1717 static inline struct page * 1718 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 1719 struct zonelist *zonelist, enum zone_type high_zoneidx, 1720 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1721 int migratetype, unsigned long *did_some_progress) 1722 { 1723 struct page *page = NULL; 1724 struct reclaim_state reclaim_state; 1725 struct task_struct *p = current; 1726 1727 cond_resched(); 1728 1729 /* We now go into synchronous reclaim */ 1730 cpuset_memory_pressure_bump(); 1731 p->flags |= PF_MEMALLOC; 1732 lockdep_set_current_reclaim_state(gfp_mask); 1733 reclaim_state.reclaimed_slab = 0; 1734 p->reclaim_state = &reclaim_state; 1735 1736 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 1737 1738 p->reclaim_state = NULL; 1739 lockdep_clear_current_reclaim_state(); 1740 p->flags &= ~PF_MEMALLOC; 1741 1742 cond_resched(); 1743 1744 if (order != 0) 1745 drain_all_pages(); 1746 1747 if (likely(*did_some_progress)) 1748 page = get_page_from_freelist(gfp_mask, nodemask, order, 1749 zonelist, high_zoneidx, 1750 alloc_flags, preferred_zone, 1751 migratetype); 1752 return page; 1753 } 1754 1755 /* 1756 * This is called in the allocator slow-path if the allocation request is of 1757 * sufficient urgency to ignore watermarks and take other desperate measures 1758 */ 1759 static inline struct page * 1760 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 1761 struct zonelist *zonelist, enum zone_type high_zoneidx, 1762 nodemask_t *nodemask, struct zone *preferred_zone, 1763 int migratetype) 1764 { 1765 struct page *page; 1766 1767 do { 1768 page = get_page_from_freelist(gfp_mask, nodemask, order, 1769 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 1770 preferred_zone, migratetype); 1771 1772 if (!page && gfp_mask & __GFP_NOFAIL) 1773 congestion_wait(BLK_RW_ASYNC, HZ/50); 1774 } while (!page && (gfp_mask & __GFP_NOFAIL)); 1775 1776 return page; 1777 } 1778 1779 static inline 1780 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 1781 enum zone_type high_zoneidx) 1782 { 1783 struct zoneref *z; 1784 struct zone *zone; 1785 1786 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1787 wakeup_kswapd(zone, order); 1788 } 1789 1790 static inline int 1791 gfp_to_alloc_flags(gfp_t gfp_mask) 1792 { 1793 struct task_struct *p = current; 1794 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 1795 const gfp_t wait = gfp_mask & __GFP_WAIT; 1796 1797 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 1798 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH); 1799 1800 /* 1801 * The caller may dip into page reserves a bit more if the caller 1802 * cannot run direct reclaim, or if the caller has realtime scheduling 1803 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1804 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1805 */ 1806 alloc_flags |= (gfp_mask & __GFP_HIGH); 1807 1808 if (!wait) { 1809 alloc_flags |= ALLOC_HARDER; 1810 /* 1811 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1812 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1813 */ 1814 alloc_flags &= ~ALLOC_CPUSET; 1815 } else if (unlikely(rt_task(p)) && !in_interrupt()) 1816 alloc_flags |= ALLOC_HARDER; 1817 1818 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 1819 if (!in_interrupt() && 1820 ((p->flags & PF_MEMALLOC) || 1821 unlikely(test_thread_flag(TIF_MEMDIE)))) 1822 alloc_flags |= ALLOC_NO_WATERMARKS; 1823 } 1824 1825 return alloc_flags; 1826 } 1827 1828 static inline struct page * 1829 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 1830 struct zonelist *zonelist, enum zone_type high_zoneidx, 1831 nodemask_t *nodemask, struct zone *preferred_zone, 1832 int migratetype) 1833 { 1834 const gfp_t wait = gfp_mask & __GFP_WAIT; 1835 struct page *page = NULL; 1836 int alloc_flags; 1837 unsigned long pages_reclaimed = 0; 1838 unsigned long did_some_progress; 1839 struct task_struct *p = current; 1840 1841 /* 1842 * In the slowpath, we sanity check order to avoid ever trying to 1843 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 1844 * be using allocators in order of preference for an area that is 1845 * too large. 1846 */ 1847 if (order >= MAX_ORDER) { 1848 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 1849 return NULL; 1850 } 1851 1852 /* 1853 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1854 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1855 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1856 * using a larger set of nodes after it has established that the 1857 * allowed per node queues are empty and that nodes are 1858 * over allocated. 1859 */ 1860 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1861 goto nopage; 1862 1863 restart: 1864 wake_all_kswapd(order, zonelist, high_zoneidx); 1865 1866 /* 1867 * OK, we're below the kswapd watermark and have kicked background 1868 * reclaim. Now things get more complex, so set up alloc_flags according 1869 * to how we want to proceed. 1870 */ 1871 alloc_flags = gfp_to_alloc_flags(gfp_mask); 1872 1873 /* This is the last chance, in general, before the goto nopage. */ 1874 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 1875 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 1876 preferred_zone, migratetype); 1877 if (page) 1878 goto got_pg; 1879 1880 rebalance: 1881 /* Allocate without watermarks if the context allows */ 1882 if (alloc_flags & ALLOC_NO_WATERMARKS) { 1883 page = __alloc_pages_high_priority(gfp_mask, order, 1884 zonelist, high_zoneidx, nodemask, 1885 preferred_zone, migratetype); 1886 if (page) 1887 goto got_pg; 1888 } 1889 1890 /* Atomic allocations - we can't balance anything */ 1891 if (!wait) 1892 goto nopage; 1893 1894 /* Avoid recursion of direct reclaim */ 1895 if (p->flags & PF_MEMALLOC) 1896 goto nopage; 1897 1898 /* Avoid allocations with no watermarks from looping endlessly */ 1899 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 1900 goto nopage; 1901 1902 /* Try direct reclaim and then allocating */ 1903 page = __alloc_pages_direct_reclaim(gfp_mask, order, 1904 zonelist, high_zoneidx, 1905 nodemask, 1906 alloc_flags, preferred_zone, 1907 migratetype, &did_some_progress); 1908 if (page) 1909 goto got_pg; 1910 1911 /* 1912 * If we failed to make any progress reclaiming, then we are 1913 * running out of options and have to consider going OOM 1914 */ 1915 if (!did_some_progress) { 1916 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1917 if (oom_killer_disabled) 1918 goto nopage; 1919 page = __alloc_pages_may_oom(gfp_mask, order, 1920 zonelist, high_zoneidx, 1921 nodemask, preferred_zone, 1922 migratetype); 1923 if (page) 1924 goto got_pg; 1925 1926 /* 1927 * The OOM killer does not trigger for high-order 1928 * ~__GFP_NOFAIL allocations so if no progress is being 1929 * made, there are no other options and retrying is 1930 * unlikely to help. 1931 */ 1932 if (order > PAGE_ALLOC_COSTLY_ORDER && 1933 !(gfp_mask & __GFP_NOFAIL)) 1934 goto nopage; 1935 1936 goto restart; 1937 } 1938 } 1939 1940 /* Check if we should retry the allocation */ 1941 pages_reclaimed += did_some_progress; 1942 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { 1943 /* Wait for some write requests to complete then retry */ 1944 congestion_wait(BLK_RW_ASYNC, HZ/50); 1945 goto rebalance; 1946 } 1947 1948 nopage: 1949 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1950 printk(KERN_WARNING "%s: page allocation failure." 1951 " order:%d, mode:0x%x\n", 1952 p->comm, order, gfp_mask); 1953 dump_stack(); 1954 show_mem(); 1955 } 1956 return page; 1957 got_pg: 1958 if (kmemcheck_enabled) 1959 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 1960 return page; 1961 1962 } 1963 1964 /* 1965 * This is the 'heart' of the zoned buddy allocator. 1966 */ 1967 struct page * 1968 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 1969 struct zonelist *zonelist, nodemask_t *nodemask) 1970 { 1971 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1972 struct zone *preferred_zone; 1973 struct page *page; 1974 int migratetype = allocflags_to_migratetype(gfp_mask); 1975 1976 gfp_mask &= gfp_allowed_mask; 1977 1978 lockdep_trace_alloc(gfp_mask); 1979 1980 might_sleep_if(gfp_mask & __GFP_WAIT); 1981 1982 if (should_fail_alloc_page(gfp_mask, order)) 1983 return NULL; 1984 1985 /* 1986 * Check the zones suitable for the gfp_mask contain at least one 1987 * valid zone. It's possible to have an empty zonelist as a result 1988 * of GFP_THISNODE and a memoryless node 1989 */ 1990 if (unlikely(!zonelist->_zonerefs->zone)) 1991 return NULL; 1992 1993 get_mems_allowed(); 1994 /* The preferred zone is used for statistics later */ 1995 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone); 1996 if (!preferred_zone) { 1997 put_mems_allowed(); 1998 return NULL; 1999 } 2000 2001 /* First allocation attempt */ 2002 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2003 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 2004 preferred_zone, migratetype); 2005 if (unlikely(!page)) 2006 page = __alloc_pages_slowpath(gfp_mask, order, 2007 zonelist, high_zoneidx, nodemask, 2008 preferred_zone, migratetype); 2009 put_mems_allowed(); 2010 2011 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2012 return page; 2013 } 2014 EXPORT_SYMBOL(__alloc_pages_nodemask); 2015 2016 /* 2017 * Common helper functions. 2018 */ 2019 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2020 { 2021 struct page *page; 2022 2023 /* 2024 * __get_free_pages() returns a 32-bit address, which cannot represent 2025 * a highmem page 2026 */ 2027 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2028 2029 page = alloc_pages(gfp_mask, order); 2030 if (!page) 2031 return 0; 2032 return (unsigned long) page_address(page); 2033 } 2034 EXPORT_SYMBOL(__get_free_pages); 2035 2036 unsigned long get_zeroed_page(gfp_t gfp_mask) 2037 { 2038 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2039 } 2040 EXPORT_SYMBOL(get_zeroed_page); 2041 2042 void __pagevec_free(struct pagevec *pvec) 2043 { 2044 int i = pagevec_count(pvec); 2045 2046 while (--i >= 0) { 2047 trace_mm_pagevec_free(pvec->pages[i], pvec->cold); 2048 free_hot_cold_page(pvec->pages[i], pvec->cold); 2049 } 2050 } 2051 2052 void __free_pages(struct page *page, unsigned int order) 2053 { 2054 if (put_page_testzero(page)) { 2055 if (order == 0) 2056 free_hot_cold_page(page, 0); 2057 else 2058 __free_pages_ok(page, order); 2059 } 2060 } 2061 2062 EXPORT_SYMBOL(__free_pages); 2063 2064 void free_pages(unsigned long addr, unsigned int order) 2065 { 2066 if (addr != 0) { 2067 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2068 __free_pages(virt_to_page((void *)addr), order); 2069 } 2070 } 2071 2072 EXPORT_SYMBOL(free_pages); 2073 2074 /** 2075 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2076 * @size: the number of bytes to allocate 2077 * @gfp_mask: GFP flags for the allocation 2078 * 2079 * This function is similar to alloc_pages(), except that it allocates the 2080 * minimum number of pages to satisfy the request. alloc_pages() can only 2081 * allocate memory in power-of-two pages. 2082 * 2083 * This function is also limited by MAX_ORDER. 2084 * 2085 * Memory allocated by this function must be released by free_pages_exact(). 2086 */ 2087 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2088 { 2089 unsigned int order = get_order(size); 2090 unsigned long addr; 2091 2092 addr = __get_free_pages(gfp_mask, order); 2093 if (addr) { 2094 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2095 unsigned long used = addr + PAGE_ALIGN(size); 2096 2097 split_page(virt_to_page((void *)addr), order); 2098 while (used < alloc_end) { 2099 free_page(used); 2100 used += PAGE_SIZE; 2101 } 2102 } 2103 2104 return (void *)addr; 2105 } 2106 EXPORT_SYMBOL(alloc_pages_exact); 2107 2108 /** 2109 * free_pages_exact - release memory allocated via alloc_pages_exact() 2110 * @virt: the value returned by alloc_pages_exact. 2111 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2112 * 2113 * Release the memory allocated by a previous call to alloc_pages_exact. 2114 */ 2115 void free_pages_exact(void *virt, size_t size) 2116 { 2117 unsigned long addr = (unsigned long)virt; 2118 unsigned long end = addr + PAGE_ALIGN(size); 2119 2120 while (addr < end) { 2121 free_page(addr); 2122 addr += PAGE_SIZE; 2123 } 2124 } 2125 EXPORT_SYMBOL(free_pages_exact); 2126 2127 static unsigned int nr_free_zone_pages(int offset) 2128 { 2129 struct zoneref *z; 2130 struct zone *zone; 2131 2132 /* Just pick one node, since fallback list is circular */ 2133 unsigned int sum = 0; 2134 2135 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2136 2137 for_each_zone_zonelist(zone, z, zonelist, offset) { 2138 unsigned long size = zone->present_pages; 2139 unsigned long high = high_wmark_pages(zone); 2140 if (size > high) 2141 sum += size - high; 2142 } 2143 2144 return sum; 2145 } 2146 2147 /* 2148 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2149 */ 2150 unsigned int nr_free_buffer_pages(void) 2151 { 2152 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2153 } 2154 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2155 2156 /* 2157 * Amount of free RAM allocatable within all zones 2158 */ 2159 unsigned int nr_free_pagecache_pages(void) 2160 { 2161 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2162 } 2163 2164 static inline void show_node(struct zone *zone) 2165 { 2166 if (NUMA_BUILD) 2167 printk("Node %d ", zone_to_nid(zone)); 2168 } 2169 2170 void si_meminfo(struct sysinfo *val) 2171 { 2172 val->totalram = totalram_pages; 2173 val->sharedram = 0; 2174 val->freeram = global_page_state(NR_FREE_PAGES); 2175 val->bufferram = nr_blockdev_pages(); 2176 val->totalhigh = totalhigh_pages; 2177 val->freehigh = nr_free_highpages(); 2178 val->mem_unit = PAGE_SIZE; 2179 } 2180 2181 EXPORT_SYMBOL(si_meminfo); 2182 2183 #ifdef CONFIG_NUMA 2184 void si_meminfo_node(struct sysinfo *val, int nid) 2185 { 2186 pg_data_t *pgdat = NODE_DATA(nid); 2187 2188 val->totalram = pgdat->node_present_pages; 2189 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2190 #ifdef CONFIG_HIGHMEM 2191 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2192 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2193 NR_FREE_PAGES); 2194 #else 2195 val->totalhigh = 0; 2196 val->freehigh = 0; 2197 #endif 2198 val->mem_unit = PAGE_SIZE; 2199 } 2200 #endif 2201 2202 #define K(x) ((x) << (PAGE_SHIFT-10)) 2203 2204 /* 2205 * Show free area list (used inside shift_scroll-lock stuff) 2206 * We also calculate the percentage fragmentation. We do this by counting the 2207 * memory on each free list with the exception of the first item on the list. 2208 */ 2209 void show_free_areas(void) 2210 { 2211 int cpu; 2212 struct zone *zone; 2213 2214 for_each_populated_zone(zone) { 2215 show_node(zone); 2216 printk("%s per-cpu:\n", zone->name); 2217 2218 for_each_online_cpu(cpu) { 2219 struct per_cpu_pageset *pageset; 2220 2221 pageset = per_cpu_ptr(zone->pageset, cpu); 2222 2223 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2224 cpu, pageset->pcp.high, 2225 pageset->pcp.batch, pageset->pcp.count); 2226 } 2227 } 2228 2229 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2230 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2231 " unevictable:%lu" 2232 " dirty:%lu writeback:%lu unstable:%lu\n" 2233 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2234 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2235 global_page_state(NR_ACTIVE_ANON), 2236 global_page_state(NR_INACTIVE_ANON), 2237 global_page_state(NR_ISOLATED_ANON), 2238 global_page_state(NR_ACTIVE_FILE), 2239 global_page_state(NR_INACTIVE_FILE), 2240 global_page_state(NR_ISOLATED_FILE), 2241 global_page_state(NR_UNEVICTABLE), 2242 global_page_state(NR_FILE_DIRTY), 2243 global_page_state(NR_WRITEBACK), 2244 global_page_state(NR_UNSTABLE_NFS), 2245 global_page_state(NR_FREE_PAGES), 2246 global_page_state(NR_SLAB_RECLAIMABLE), 2247 global_page_state(NR_SLAB_UNRECLAIMABLE), 2248 global_page_state(NR_FILE_MAPPED), 2249 global_page_state(NR_SHMEM), 2250 global_page_state(NR_PAGETABLE), 2251 global_page_state(NR_BOUNCE)); 2252 2253 for_each_populated_zone(zone) { 2254 int i; 2255 2256 show_node(zone); 2257 printk("%s" 2258 " free:%lukB" 2259 " min:%lukB" 2260 " low:%lukB" 2261 " high:%lukB" 2262 " active_anon:%lukB" 2263 " inactive_anon:%lukB" 2264 " active_file:%lukB" 2265 " inactive_file:%lukB" 2266 " unevictable:%lukB" 2267 " isolated(anon):%lukB" 2268 " isolated(file):%lukB" 2269 " present:%lukB" 2270 " mlocked:%lukB" 2271 " dirty:%lukB" 2272 " writeback:%lukB" 2273 " mapped:%lukB" 2274 " shmem:%lukB" 2275 " slab_reclaimable:%lukB" 2276 " slab_unreclaimable:%lukB" 2277 " kernel_stack:%lukB" 2278 " pagetables:%lukB" 2279 " unstable:%lukB" 2280 " bounce:%lukB" 2281 " writeback_tmp:%lukB" 2282 " pages_scanned:%lu" 2283 " all_unreclaimable? %s" 2284 "\n", 2285 zone->name, 2286 K(zone_page_state(zone, NR_FREE_PAGES)), 2287 K(min_wmark_pages(zone)), 2288 K(low_wmark_pages(zone)), 2289 K(high_wmark_pages(zone)), 2290 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2291 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2292 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2293 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2294 K(zone_page_state(zone, NR_UNEVICTABLE)), 2295 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2296 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2297 K(zone->present_pages), 2298 K(zone_page_state(zone, NR_MLOCK)), 2299 K(zone_page_state(zone, NR_FILE_DIRTY)), 2300 K(zone_page_state(zone, NR_WRITEBACK)), 2301 K(zone_page_state(zone, NR_FILE_MAPPED)), 2302 K(zone_page_state(zone, NR_SHMEM)), 2303 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2304 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2305 zone_page_state(zone, NR_KERNEL_STACK) * 2306 THREAD_SIZE / 1024, 2307 K(zone_page_state(zone, NR_PAGETABLE)), 2308 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2309 K(zone_page_state(zone, NR_BOUNCE)), 2310 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2311 zone->pages_scanned, 2312 (zone->all_unreclaimable ? "yes" : "no") 2313 ); 2314 printk("lowmem_reserve[]:"); 2315 for (i = 0; i < MAX_NR_ZONES; i++) 2316 printk(" %lu", zone->lowmem_reserve[i]); 2317 printk("\n"); 2318 } 2319 2320 for_each_populated_zone(zone) { 2321 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2322 2323 show_node(zone); 2324 printk("%s: ", zone->name); 2325 2326 spin_lock_irqsave(&zone->lock, flags); 2327 for (order = 0; order < MAX_ORDER; order++) { 2328 nr[order] = zone->free_area[order].nr_free; 2329 total += nr[order] << order; 2330 } 2331 spin_unlock_irqrestore(&zone->lock, flags); 2332 for (order = 0; order < MAX_ORDER; order++) 2333 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2334 printk("= %lukB\n", K(total)); 2335 } 2336 2337 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2338 2339 show_swap_cache_info(); 2340 } 2341 2342 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2343 { 2344 zoneref->zone = zone; 2345 zoneref->zone_idx = zone_idx(zone); 2346 } 2347 2348 /* 2349 * Builds allocation fallback zone lists. 2350 * 2351 * Add all populated zones of a node to the zonelist. 2352 */ 2353 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2354 int nr_zones, enum zone_type zone_type) 2355 { 2356 struct zone *zone; 2357 2358 BUG_ON(zone_type >= MAX_NR_ZONES); 2359 zone_type++; 2360 2361 do { 2362 zone_type--; 2363 zone = pgdat->node_zones + zone_type; 2364 if (populated_zone(zone)) { 2365 zoneref_set_zone(zone, 2366 &zonelist->_zonerefs[nr_zones++]); 2367 check_highest_zone(zone_type); 2368 } 2369 2370 } while (zone_type); 2371 return nr_zones; 2372 } 2373 2374 2375 /* 2376 * zonelist_order: 2377 * 0 = automatic detection of better ordering. 2378 * 1 = order by ([node] distance, -zonetype) 2379 * 2 = order by (-zonetype, [node] distance) 2380 * 2381 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2382 * the same zonelist. So only NUMA can configure this param. 2383 */ 2384 #define ZONELIST_ORDER_DEFAULT 0 2385 #define ZONELIST_ORDER_NODE 1 2386 #define ZONELIST_ORDER_ZONE 2 2387 2388 /* zonelist order in the kernel. 2389 * set_zonelist_order() will set this to NODE or ZONE. 2390 */ 2391 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2392 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2393 2394 2395 #ifdef CONFIG_NUMA 2396 /* The value user specified ....changed by config */ 2397 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2398 /* string for sysctl */ 2399 #define NUMA_ZONELIST_ORDER_LEN 16 2400 char numa_zonelist_order[16] = "default"; 2401 2402 /* 2403 * interface for configure zonelist ordering. 2404 * command line option "numa_zonelist_order" 2405 * = "[dD]efault - default, automatic configuration. 2406 * = "[nN]ode - order by node locality, then by zone within node 2407 * = "[zZ]one - order by zone, then by locality within zone 2408 */ 2409 2410 static int __parse_numa_zonelist_order(char *s) 2411 { 2412 if (*s == 'd' || *s == 'D') { 2413 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2414 } else if (*s == 'n' || *s == 'N') { 2415 user_zonelist_order = ZONELIST_ORDER_NODE; 2416 } else if (*s == 'z' || *s == 'Z') { 2417 user_zonelist_order = ZONELIST_ORDER_ZONE; 2418 } else { 2419 printk(KERN_WARNING 2420 "Ignoring invalid numa_zonelist_order value: " 2421 "%s\n", s); 2422 return -EINVAL; 2423 } 2424 return 0; 2425 } 2426 2427 static __init int setup_numa_zonelist_order(char *s) 2428 { 2429 if (s) 2430 return __parse_numa_zonelist_order(s); 2431 return 0; 2432 } 2433 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2434 2435 /* 2436 * sysctl handler for numa_zonelist_order 2437 */ 2438 int numa_zonelist_order_handler(ctl_table *table, int write, 2439 void __user *buffer, size_t *length, 2440 loff_t *ppos) 2441 { 2442 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2443 int ret; 2444 static DEFINE_MUTEX(zl_order_mutex); 2445 2446 mutex_lock(&zl_order_mutex); 2447 if (write) 2448 strcpy(saved_string, (char*)table->data); 2449 ret = proc_dostring(table, write, buffer, length, ppos); 2450 if (ret) 2451 goto out; 2452 if (write) { 2453 int oldval = user_zonelist_order; 2454 if (__parse_numa_zonelist_order((char*)table->data)) { 2455 /* 2456 * bogus value. restore saved string 2457 */ 2458 strncpy((char*)table->data, saved_string, 2459 NUMA_ZONELIST_ORDER_LEN); 2460 user_zonelist_order = oldval; 2461 } else if (oldval != user_zonelist_order) 2462 build_all_zonelists(); 2463 } 2464 out: 2465 mutex_unlock(&zl_order_mutex); 2466 return ret; 2467 } 2468 2469 2470 #define MAX_NODE_LOAD (nr_online_nodes) 2471 static int node_load[MAX_NUMNODES]; 2472 2473 /** 2474 * find_next_best_node - find the next node that should appear in a given node's fallback list 2475 * @node: node whose fallback list we're appending 2476 * @used_node_mask: nodemask_t of already used nodes 2477 * 2478 * We use a number of factors to determine which is the next node that should 2479 * appear on a given node's fallback list. The node should not have appeared 2480 * already in @node's fallback list, and it should be the next closest node 2481 * according to the distance array (which contains arbitrary distance values 2482 * from each node to each node in the system), and should also prefer nodes 2483 * with no CPUs, since presumably they'll have very little allocation pressure 2484 * on them otherwise. 2485 * It returns -1 if no node is found. 2486 */ 2487 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2488 { 2489 int n, val; 2490 int min_val = INT_MAX; 2491 int best_node = -1; 2492 const struct cpumask *tmp = cpumask_of_node(0); 2493 2494 /* Use the local node if we haven't already */ 2495 if (!node_isset(node, *used_node_mask)) { 2496 node_set(node, *used_node_mask); 2497 return node; 2498 } 2499 2500 for_each_node_state(n, N_HIGH_MEMORY) { 2501 2502 /* Don't want a node to appear more than once */ 2503 if (node_isset(n, *used_node_mask)) 2504 continue; 2505 2506 /* Use the distance array to find the distance */ 2507 val = node_distance(node, n); 2508 2509 /* Penalize nodes under us ("prefer the next node") */ 2510 val += (n < node); 2511 2512 /* Give preference to headless and unused nodes */ 2513 tmp = cpumask_of_node(n); 2514 if (!cpumask_empty(tmp)) 2515 val += PENALTY_FOR_NODE_WITH_CPUS; 2516 2517 /* Slight preference for less loaded node */ 2518 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2519 val += node_load[n]; 2520 2521 if (val < min_val) { 2522 min_val = val; 2523 best_node = n; 2524 } 2525 } 2526 2527 if (best_node >= 0) 2528 node_set(best_node, *used_node_mask); 2529 2530 return best_node; 2531 } 2532 2533 2534 /* 2535 * Build zonelists ordered by node and zones within node. 2536 * This results in maximum locality--normal zone overflows into local 2537 * DMA zone, if any--but risks exhausting DMA zone. 2538 */ 2539 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2540 { 2541 int j; 2542 struct zonelist *zonelist; 2543 2544 zonelist = &pgdat->node_zonelists[0]; 2545 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2546 ; 2547 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2548 MAX_NR_ZONES - 1); 2549 zonelist->_zonerefs[j].zone = NULL; 2550 zonelist->_zonerefs[j].zone_idx = 0; 2551 } 2552 2553 /* 2554 * Build gfp_thisnode zonelists 2555 */ 2556 static void build_thisnode_zonelists(pg_data_t *pgdat) 2557 { 2558 int j; 2559 struct zonelist *zonelist; 2560 2561 zonelist = &pgdat->node_zonelists[1]; 2562 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2563 zonelist->_zonerefs[j].zone = NULL; 2564 zonelist->_zonerefs[j].zone_idx = 0; 2565 } 2566 2567 /* 2568 * Build zonelists ordered by zone and nodes within zones. 2569 * This results in conserving DMA zone[s] until all Normal memory is 2570 * exhausted, but results in overflowing to remote node while memory 2571 * may still exist in local DMA zone. 2572 */ 2573 static int node_order[MAX_NUMNODES]; 2574 2575 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2576 { 2577 int pos, j, node; 2578 int zone_type; /* needs to be signed */ 2579 struct zone *z; 2580 struct zonelist *zonelist; 2581 2582 zonelist = &pgdat->node_zonelists[0]; 2583 pos = 0; 2584 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2585 for (j = 0; j < nr_nodes; j++) { 2586 node = node_order[j]; 2587 z = &NODE_DATA(node)->node_zones[zone_type]; 2588 if (populated_zone(z)) { 2589 zoneref_set_zone(z, 2590 &zonelist->_zonerefs[pos++]); 2591 check_highest_zone(zone_type); 2592 } 2593 } 2594 } 2595 zonelist->_zonerefs[pos].zone = NULL; 2596 zonelist->_zonerefs[pos].zone_idx = 0; 2597 } 2598 2599 static int default_zonelist_order(void) 2600 { 2601 int nid, zone_type; 2602 unsigned long low_kmem_size,total_size; 2603 struct zone *z; 2604 int average_size; 2605 /* 2606 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 2607 * If they are really small and used heavily, the system can fall 2608 * into OOM very easily. 2609 * This function detect ZONE_DMA/DMA32 size and configures zone order. 2610 */ 2611 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2612 low_kmem_size = 0; 2613 total_size = 0; 2614 for_each_online_node(nid) { 2615 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2616 z = &NODE_DATA(nid)->node_zones[zone_type]; 2617 if (populated_zone(z)) { 2618 if (zone_type < ZONE_NORMAL) 2619 low_kmem_size += z->present_pages; 2620 total_size += z->present_pages; 2621 } else if (zone_type == ZONE_NORMAL) { 2622 /* 2623 * If any node has only lowmem, then node order 2624 * is preferred to allow kernel allocations 2625 * locally; otherwise, they can easily infringe 2626 * on other nodes when there is an abundance of 2627 * lowmem available to allocate from. 2628 */ 2629 return ZONELIST_ORDER_NODE; 2630 } 2631 } 2632 } 2633 if (!low_kmem_size || /* there are no DMA area. */ 2634 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2635 return ZONELIST_ORDER_NODE; 2636 /* 2637 * look into each node's config. 2638 * If there is a node whose DMA/DMA32 memory is very big area on 2639 * local memory, NODE_ORDER may be suitable. 2640 */ 2641 average_size = total_size / 2642 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2643 for_each_online_node(nid) { 2644 low_kmem_size = 0; 2645 total_size = 0; 2646 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2647 z = &NODE_DATA(nid)->node_zones[zone_type]; 2648 if (populated_zone(z)) { 2649 if (zone_type < ZONE_NORMAL) 2650 low_kmem_size += z->present_pages; 2651 total_size += z->present_pages; 2652 } 2653 } 2654 if (low_kmem_size && 2655 total_size > average_size && /* ignore small node */ 2656 low_kmem_size > total_size * 70/100) 2657 return ZONELIST_ORDER_NODE; 2658 } 2659 return ZONELIST_ORDER_ZONE; 2660 } 2661 2662 static void set_zonelist_order(void) 2663 { 2664 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2665 current_zonelist_order = default_zonelist_order(); 2666 else 2667 current_zonelist_order = user_zonelist_order; 2668 } 2669 2670 static void build_zonelists(pg_data_t *pgdat) 2671 { 2672 int j, node, load; 2673 enum zone_type i; 2674 nodemask_t used_mask; 2675 int local_node, prev_node; 2676 struct zonelist *zonelist; 2677 int order = current_zonelist_order; 2678 2679 /* initialize zonelists */ 2680 for (i = 0; i < MAX_ZONELISTS; i++) { 2681 zonelist = pgdat->node_zonelists + i; 2682 zonelist->_zonerefs[0].zone = NULL; 2683 zonelist->_zonerefs[0].zone_idx = 0; 2684 } 2685 2686 /* NUMA-aware ordering of nodes */ 2687 local_node = pgdat->node_id; 2688 load = nr_online_nodes; 2689 prev_node = local_node; 2690 nodes_clear(used_mask); 2691 2692 memset(node_order, 0, sizeof(node_order)); 2693 j = 0; 2694 2695 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2696 int distance = node_distance(local_node, node); 2697 2698 /* 2699 * If another node is sufficiently far away then it is better 2700 * to reclaim pages in a zone before going off node. 2701 */ 2702 if (distance > RECLAIM_DISTANCE) 2703 zone_reclaim_mode = 1; 2704 2705 /* 2706 * We don't want to pressure a particular node. 2707 * So adding penalty to the first node in same 2708 * distance group to make it round-robin. 2709 */ 2710 if (distance != node_distance(local_node, prev_node)) 2711 node_load[node] = load; 2712 2713 prev_node = node; 2714 load--; 2715 if (order == ZONELIST_ORDER_NODE) 2716 build_zonelists_in_node_order(pgdat, node); 2717 else 2718 node_order[j++] = node; /* remember order */ 2719 } 2720 2721 if (order == ZONELIST_ORDER_ZONE) { 2722 /* calculate node order -- i.e., DMA last! */ 2723 build_zonelists_in_zone_order(pgdat, j); 2724 } 2725 2726 build_thisnode_zonelists(pgdat); 2727 } 2728 2729 /* Construct the zonelist performance cache - see further mmzone.h */ 2730 static void build_zonelist_cache(pg_data_t *pgdat) 2731 { 2732 struct zonelist *zonelist; 2733 struct zonelist_cache *zlc; 2734 struct zoneref *z; 2735 2736 zonelist = &pgdat->node_zonelists[0]; 2737 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2738 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2739 for (z = zonelist->_zonerefs; z->zone; z++) 2740 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2741 } 2742 2743 2744 #else /* CONFIG_NUMA */ 2745 2746 static void set_zonelist_order(void) 2747 { 2748 current_zonelist_order = ZONELIST_ORDER_ZONE; 2749 } 2750 2751 static void build_zonelists(pg_data_t *pgdat) 2752 { 2753 int node, local_node; 2754 enum zone_type j; 2755 struct zonelist *zonelist; 2756 2757 local_node = pgdat->node_id; 2758 2759 zonelist = &pgdat->node_zonelists[0]; 2760 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2761 2762 /* 2763 * Now we build the zonelist so that it contains the zones 2764 * of all the other nodes. 2765 * We don't want to pressure a particular node, so when 2766 * building the zones for node N, we make sure that the 2767 * zones coming right after the local ones are those from 2768 * node N+1 (modulo N) 2769 */ 2770 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2771 if (!node_online(node)) 2772 continue; 2773 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2774 MAX_NR_ZONES - 1); 2775 } 2776 for (node = 0; node < local_node; node++) { 2777 if (!node_online(node)) 2778 continue; 2779 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2780 MAX_NR_ZONES - 1); 2781 } 2782 2783 zonelist->_zonerefs[j].zone = NULL; 2784 zonelist->_zonerefs[j].zone_idx = 0; 2785 } 2786 2787 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2788 static void build_zonelist_cache(pg_data_t *pgdat) 2789 { 2790 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2791 } 2792 2793 #endif /* CONFIG_NUMA */ 2794 2795 /* 2796 * Boot pageset table. One per cpu which is going to be used for all 2797 * zones and all nodes. The parameters will be set in such a way 2798 * that an item put on a list will immediately be handed over to 2799 * the buddy list. This is safe since pageset manipulation is done 2800 * with interrupts disabled. 2801 * 2802 * The boot_pagesets must be kept even after bootup is complete for 2803 * unused processors and/or zones. They do play a role for bootstrapping 2804 * hotplugged processors. 2805 * 2806 * zoneinfo_show() and maybe other functions do 2807 * not check if the processor is online before following the pageset pointer. 2808 * Other parts of the kernel may not check if the zone is available. 2809 */ 2810 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 2811 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 2812 2813 /* return values int ....just for stop_machine() */ 2814 static int __build_all_zonelists(void *dummy) 2815 { 2816 int nid; 2817 int cpu; 2818 2819 #ifdef CONFIG_NUMA 2820 memset(node_load, 0, sizeof(node_load)); 2821 #endif 2822 for_each_online_node(nid) { 2823 pg_data_t *pgdat = NODE_DATA(nid); 2824 2825 build_zonelists(pgdat); 2826 build_zonelist_cache(pgdat); 2827 } 2828 2829 /* 2830 * Initialize the boot_pagesets that are going to be used 2831 * for bootstrapping processors. The real pagesets for 2832 * each zone will be allocated later when the per cpu 2833 * allocator is available. 2834 * 2835 * boot_pagesets are used also for bootstrapping offline 2836 * cpus if the system is already booted because the pagesets 2837 * are needed to initialize allocators on a specific cpu too. 2838 * F.e. the percpu allocator needs the page allocator which 2839 * needs the percpu allocator in order to allocate its pagesets 2840 * (a chicken-egg dilemma). 2841 */ 2842 for_each_possible_cpu(cpu) 2843 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 2844 2845 return 0; 2846 } 2847 2848 void build_all_zonelists(void) 2849 { 2850 set_zonelist_order(); 2851 2852 if (system_state == SYSTEM_BOOTING) { 2853 __build_all_zonelists(NULL); 2854 mminit_verify_zonelist(); 2855 cpuset_init_current_mems_allowed(); 2856 } else { 2857 /* we have to stop all cpus to guarantee there is no user 2858 of zonelist */ 2859 stop_machine(__build_all_zonelists, NULL, NULL); 2860 /* cpuset refresh routine should be here */ 2861 } 2862 vm_total_pages = nr_free_pagecache_pages(); 2863 /* 2864 * Disable grouping by mobility if the number of pages in the 2865 * system is too low to allow the mechanism to work. It would be 2866 * more accurate, but expensive to check per-zone. This check is 2867 * made on memory-hotadd so a system can start with mobility 2868 * disabled and enable it later 2869 */ 2870 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 2871 page_group_by_mobility_disabled = 1; 2872 else 2873 page_group_by_mobility_disabled = 0; 2874 2875 printk("Built %i zonelists in %s order, mobility grouping %s. " 2876 "Total pages: %ld\n", 2877 nr_online_nodes, 2878 zonelist_order_name[current_zonelist_order], 2879 page_group_by_mobility_disabled ? "off" : "on", 2880 vm_total_pages); 2881 #ifdef CONFIG_NUMA 2882 printk("Policy zone: %s\n", zone_names[policy_zone]); 2883 #endif 2884 } 2885 2886 /* 2887 * Helper functions to size the waitqueue hash table. 2888 * Essentially these want to choose hash table sizes sufficiently 2889 * large so that collisions trying to wait on pages are rare. 2890 * But in fact, the number of active page waitqueues on typical 2891 * systems is ridiculously low, less than 200. So this is even 2892 * conservative, even though it seems large. 2893 * 2894 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 2895 * waitqueues, i.e. the size of the waitq table given the number of pages. 2896 */ 2897 #define PAGES_PER_WAITQUEUE 256 2898 2899 #ifndef CONFIG_MEMORY_HOTPLUG 2900 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2901 { 2902 unsigned long size = 1; 2903 2904 pages /= PAGES_PER_WAITQUEUE; 2905 2906 while (size < pages) 2907 size <<= 1; 2908 2909 /* 2910 * Once we have dozens or even hundreds of threads sleeping 2911 * on IO we've got bigger problems than wait queue collision. 2912 * Limit the size of the wait table to a reasonable size. 2913 */ 2914 size = min(size, 4096UL); 2915 2916 return max(size, 4UL); 2917 } 2918 #else 2919 /* 2920 * A zone's size might be changed by hot-add, so it is not possible to determine 2921 * a suitable size for its wait_table. So we use the maximum size now. 2922 * 2923 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 2924 * 2925 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 2926 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 2927 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 2928 * 2929 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 2930 * or more by the traditional way. (See above). It equals: 2931 * 2932 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 2933 * ia64(16K page size) : = ( 8G + 4M)byte. 2934 * powerpc (64K page size) : = (32G +16M)byte. 2935 */ 2936 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2937 { 2938 return 4096UL; 2939 } 2940 #endif 2941 2942 /* 2943 * This is an integer logarithm so that shifts can be used later 2944 * to extract the more random high bits from the multiplicative 2945 * hash function before the remainder is taken. 2946 */ 2947 static inline unsigned long wait_table_bits(unsigned long size) 2948 { 2949 return ffz(~size); 2950 } 2951 2952 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 2953 2954 /* 2955 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 2956 * of blocks reserved is based on min_wmark_pages(zone). The memory within 2957 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 2958 * higher will lead to a bigger reserve which will get freed as contiguous 2959 * blocks as reclaim kicks in 2960 */ 2961 static void setup_zone_migrate_reserve(struct zone *zone) 2962 { 2963 unsigned long start_pfn, pfn, end_pfn; 2964 struct page *page; 2965 unsigned long block_migratetype; 2966 int reserve; 2967 2968 /* Get the start pfn, end pfn and the number of blocks to reserve */ 2969 start_pfn = zone->zone_start_pfn; 2970 end_pfn = start_pfn + zone->spanned_pages; 2971 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 2972 pageblock_order; 2973 2974 /* 2975 * Reserve blocks are generally in place to help high-order atomic 2976 * allocations that are short-lived. A min_free_kbytes value that 2977 * would result in more than 2 reserve blocks for atomic allocations 2978 * is assumed to be in place to help anti-fragmentation for the 2979 * future allocation of hugepages at runtime. 2980 */ 2981 reserve = min(2, reserve); 2982 2983 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 2984 if (!pfn_valid(pfn)) 2985 continue; 2986 page = pfn_to_page(pfn); 2987 2988 /* Watch out for overlapping nodes */ 2989 if (page_to_nid(page) != zone_to_nid(zone)) 2990 continue; 2991 2992 /* Blocks with reserved pages will never free, skip them. */ 2993 if (PageReserved(page)) 2994 continue; 2995 2996 block_migratetype = get_pageblock_migratetype(page); 2997 2998 /* If this block is reserved, account for it */ 2999 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 3000 reserve--; 3001 continue; 3002 } 3003 3004 /* Suitable for reserving if this block is movable */ 3005 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 3006 set_pageblock_migratetype(page, MIGRATE_RESERVE); 3007 move_freepages_block(zone, page, MIGRATE_RESERVE); 3008 reserve--; 3009 continue; 3010 } 3011 3012 /* 3013 * If the reserve is met and this is a previous reserved block, 3014 * take it back 3015 */ 3016 if (block_migratetype == MIGRATE_RESERVE) { 3017 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3018 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3019 } 3020 } 3021 } 3022 3023 /* 3024 * Initially all pages are reserved - free ones are freed 3025 * up by free_all_bootmem() once the early boot process is 3026 * done. Non-atomic initialization, single-pass. 3027 */ 3028 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3029 unsigned long start_pfn, enum memmap_context context) 3030 { 3031 struct page *page; 3032 unsigned long end_pfn = start_pfn + size; 3033 unsigned long pfn; 3034 struct zone *z; 3035 3036 if (highest_memmap_pfn < end_pfn - 1) 3037 highest_memmap_pfn = end_pfn - 1; 3038 3039 z = &NODE_DATA(nid)->node_zones[zone]; 3040 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3041 /* 3042 * There can be holes in boot-time mem_map[]s 3043 * handed to this function. They do not 3044 * exist on hotplugged memory. 3045 */ 3046 if (context == MEMMAP_EARLY) { 3047 if (!early_pfn_valid(pfn)) 3048 continue; 3049 if (!early_pfn_in_nid(pfn, nid)) 3050 continue; 3051 } 3052 page = pfn_to_page(pfn); 3053 set_page_links(page, zone, nid, pfn); 3054 mminit_verify_page_links(page, zone, nid, pfn); 3055 init_page_count(page); 3056 reset_page_mapcount(page); 3057 SetPageReserved(page); 3058 /* 3059 * Mark the block movable so that blocks are reserved for 3060 * movable at startup. This will force kernel allocations 3061 * to reserve their blocks rather than leaking throughout 3062 * the address space during boot when many long-lived 3063 * kernel allocations are made. Later some blocks near 3064 * the start are marked MIGRATE_RESERVE by 3065 * setup_zone_migrate_reserve() 3066 * 3067 * bitmap is created for zone's valid pfn range. but memmap 3068 * can be created for invalid pages (for alignment) 3069 * check here not to call set_pageblock_migratetype() against 3070 * pfn out of zone. 3071 */ 3072 if ((z->zone_start_pfn <= pfn) 3073 && (pfn < z->zone_start_pfn + z->spanned_pages) 3074 && !(pfn & (pageblock_nr_pages - 1))) 3075 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3076 3077 INIT_LIST_HEAD(&page->lru); 3078 #ifdef WANT_PAGE_VIRTUAL 3079 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3080 if (!is_highmem_idx(zone)) 3081 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3082 #endif 3083 } 3084 } 3085 3086 static void __meminit zone_init_free_lists(struct zone *zone) 3087 { 3088 int order, t; 3089 for_each_migratetype_order(order, t) { 3090 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3091 zone->free_area[order].nr_free = 0; 3092 } 3093 } 3094 3095 #ifndef __HAVE_ARCH_MEMMAP_INIT 3096 #define memmap_init(size, nid, zone, start_pfn) \ 3097 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3098 #endif 3099 3100 static int zone_batchsize(struct zone *zone) 3101 { 3102 #ifdef CONFIG_MMU 3103 int batch; 3104 3105 /* 3106 * The per-cpu-pages pools are set to around 1000th of the 3107 * size of the zone. But no more than 1/2 of a meg. 3108 * 3109 * OK, so we don't know how big the cache is. So guess. 3110 */ 3111 batch = zone->present_pages / 1024; 3112 if (batch * PAGE_SIZE > 512 * 1024) 3113 batch = (512 * 1024) / PAGE_SIZE; 3114 batch /= 4; /* We effectively *= 4 below */ 3115 if (batch < 1) 3116 batch = 1; 3117 3118 /* 3119 * Clamp the batch to a 2^n - 1 value. Having a power 3120 * of 2 value was found to be more likely to have 3121 * suboptimal cache aliasing properties in some cases. 3122 * 3123 * For example if 2 tasks are alternately allocating 3124 * batches of pages, one task can end up with a lot 3125 * of pages of one half of the possible page colors 3126 * and the other with pages of the other colors. 3127 */ 3128 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3129 3130 return batch; 3131 3132 #else 3133 /* The deferral and batching of frees should be suppressed under NOMMU 3134 * conditions. 3135 * 3136 * The problem is that NOMMU needs to be able to allocate large chunks 3137 * of contiguous memory as there's no hardware page translation to 3138 * assemble apparent contiguous memory from discontiguous pages. 3139 * 3140 * Queueing large contiguous runs of pages for batching, however, 3141 * causes the pages to actually be freed in smaller chunks. As there 3142 * can be a significant delay between the individual batches being 3143 * recycled, this leads to the once large chunks of space being 3144 * fragmented and becoming unavailable for high-order allocations. 3145 */ 3146 return 0; 3147 #endif 3148 } 3149 3150 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3151 { 3152 struct per_cpu_pages *pcp; 3153 int migratetype; 3154 3155 memset(p, 0, sizeof(*p)); 3156 3157 pcp = &p->pcp; 3158 pcp->count = 0; 3159 pcp->high = 6 * batch; 3160 pcp->batch = max(1UL, 1 * batch); 3161 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3162 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3163 } 3164 3165 /* 3166 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3167 * to the value high for the pageset p. 3168 */ 3169 3170 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3171 unsigned long high) 3172 { 3173 struct per_cpu_pages *pcp; 3174 3175 pcp = &p->pcp; 3176 pcp->high = high; 3177 pcp->batch = max(1UL, high/4); 3178 if ((high/4) > (PAGE_SHIFT * 8)) 3179 pcp->batch = PAGE_SHIFT * 8; 3180 } 3181 3182 /* 3183 * Allocate per cpu pagesets and initialize them. 3184 * Before this call only boot pagesets were available. 3185 * Boot pagesets will no longer be used by this processorr 3186 * after setup_per_cpu_pageset(). 3187 */ 3188 void __init setup_per_cpu_pageset(void) 3189 { 3190 struct zone *zone; 3191 int cpu; 3192 3193 for_each_populated_zone(zone) { 3194 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3195 3196 for_each_possible_cpu(cpu) { 3197 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3198 3199 setup_pageset(pcp, zone_batchsize(zone)); 3200 3201 if (percpu_pagelist_fraction) 3202 setup_pagelist_highmark(pcp, 3203 (zone->present_pages / 3204 percpu_pagelist_fraction)); 3205 } 3206 } 3207 } 3208 3209 static noinline __init_refok 3210 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3211 { 3212 int i; 3213 struct pglist_data *pgdat = zone->zone_pgdat; 3214 size_t alloc_size; 3215 3216 /* 3217 * The per-page waitqueue mechanism uses hashed waitqueues 3218 * per zone. 3219 */ 3220 zone->wait_table_hash_nr_entries = 3221 wait_table_hash_nr_entries(zone_size_pages); 3222 zone->wait_table_bits = 3223 wait_table_bits(zone->wait_table_hash_nr_entries); 3224 alloc_size = zone->wait_table_hash_nr_entries 3225 * sizeof(wait_queue_head_t); 3226 3227 if (!slab_is_available()) { 3228 zone->wait_table = (wait_queue_head_t *) 3229 alloc_bootmem_node(pgdat, alloc_size); 3230 } else { 3231 /* 3232 * This case means that a zone whose size was 0 gets new memory 3233 * via memory hot-add. 3234 * But it may be the case that a new node was hot-added. In 3235 * this case vmalloc() will not be able to use this new node's 3236 * memory - this wait_table must be initialized to use this new 3237 * node itself as well. 3238 * To use this new node's memory, further consideration will be 3239 * necessary. 3240 */ 3241 zone->wait_table = vmalloc(alloc_size); 3242 } 3243 if (!zone->wait_table) 3244 return -ENOMEM; 3245 3246 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3247 init_waitqueue_head(zone->wait_table + i); 3248 3249 return 0; 3250 } 3251 3252 static int __zone_pcp_update(void *data) 3253 { 3254 struct zone *zone = data; 3255 int cpu; 3256 unsigned long batch = zone_batchsize(zone), flags; 3257 3258 for_each_possible_cpu(cpu) { 3259 struct per_cpu_pageset *pset; 3260 struct per_cpu_pages *pcp; 3261 3262 pset = per_cpu_ptr(zone->pageset, cpu); 3263 pcp = &pset->pcp; 3264 3265 local_irq_save(flags); 3266 free_pcppages_bulk(zone, pcp->count, pcp); 3267 setup_pageset(pset, batch); 3268 local_irq_restore(flags); 3269 } 3270 return 0; 3271 } 3272 3273 void zone_pcp_update(struct zone *zone) 3274 { 3275 stop_machine(__zone_pcp_update, zone, NULL); 3276 } 3277 3278 static __meminit void zone_pcp_init(struct zone *zone) 3279 { 3280 /* 3281 * per cpu subsystem is not up at this point. The following code 3282 * relies on the ability of the linker to provide the 3283 * offset of a (static) per cpu variable into the per cpu area. 3284 */ 3285 zone->pageset = &boot_pageset; 3286 3287 if (zone->present_pages) 3288 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 3289 zone->name, zone->present_pages, 3290 zone_batchsize(zone)); 3291 } 3292 3293 __meminit int init_currently_empty_zone(struct zone *zone, 3294 unsigned long zone_start_pfn, 3295 unsigned long size, 3296 enum memmap_context context) 3297 { 3298 struct pglist_data *pgdat = zone->zone_pgdat; 3299 int ret; 3300 ret = zone_wait_table_init(zone, size); 3301 if (ret) 3302 return ret; 3303 pgdat->nr_zones = zone_idx(zone) + 1; 3304 3305 zone->zone_start_pfn = zone_start_pfn; 3306 3307 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3308 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3309 pgdat->node_id, 3310 (unsigned long)zone_idx(zone), 3311 zone_start_pfn, (zone_start_pfn + size)); 3312 3313 zone_init_free_lists(zone); 3314 3315 return 0; 3316 } 3317 3318 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3319 /* 3320 * Basic iterator support. Return the first range of PFNs for a node 3321 * Note: nid == MAX_NUMNODES returns first region regardless of node 3322 */ 3323 static int __meminit first_active_region_index_in_nid(int nid) 3324 { 3325 int i; 3326 3327 for (i = 0; i < nr_nodemap_entries; i++) 3328 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3329 return i; 3330 3331 return -1; 3332 } 3333 3334 /* 3335 * Basic iterator support. Return the next active range of PFNs for a node 3336 * Note: nid == MAX_NUMNODES returns next region regardless of node 3337 */ 3338 static int __meminit next_active_region_index_in_nid(int index, int nid) 3339 { 3340 for (index = index + 1; index < nr_nodemap_entries; index++) 3341 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3342 return index; 3343 3344 return -1; 3345 } 3346 3347 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3348 /* 3349 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3350 * Architectures may implement their own version but if add_active_range() 3351 * was used and there are no special requirements, this is a convenient 3352 * alternative 3353 */ 3354 int __meminit __early_pfn_to_nid(unsigned long pfn) 3355 { 3356 int i; 3357 3358 for (i = 0; i < nr_nodemap_entries; i++) { 3359 unsigned long start_pfn = early_node_map[i].start_pfn; 3360 unsigned long end_pfn = early_node_map[i].end_pfn; 3361 3362 if (start_pfn <= pfn && pfn < end_pfn) 3363 return early_node_map[i].nid; 3364 } 3365 /* This is a memory hole */ 3366 return -1; 3367 } 3368 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3369 3370 int __meminit early_pfn_to_nid(unsigned long pfn) 3371 { 3372 int nid; 3373 3374 nid = __early_pfn_to_nid(pfn); 3375 if (nid >= 0) 3376 return nid; 3377 /* just returns 0 */ 3378 return 0; 3379 } 3380 3381 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3382 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3383 { 3384 int nid; 3385 3386 nid = __early_pfn_to_nid(pfn); 3387 if (nid >= 0 && nid != node) 3388 return false; 3389 return true; 3390 } 3391 #endif 3392 3393 /* Basic iterator support to walk early_node_map[] */ 3394 #define for_each_active_range_index_in_nid(i, nid) \ 3395 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3396 i = next_active_region_index_in_nid(i, nid)) 3397 3398 /** 3399 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3400 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3401 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3402 * 3403 * If an architecture guarantees that all ranges registered with 3404 * add_active_ranges() contain no holes and may be freed, this 3405 * this function may be used instead of calling free_bootmem() manually. 3406 */ 3407 void __init free_bootmem_with_active_regions(int nid, 3408 unsigned long max_low_pfn) 3409 { 3410 int i; 3411 3412 for_each_active_range_index_in_nid(i, nid) { 3413 unsigned long size_pages = 0; 3414 unsigned long end_pfn = early_node_map[i].end_pfn; 3415 3416 if (early_node_map[i].start_pfn >= max_low_pfn) 3417 continue; 3418 3419 if (end_pfn > max_low_pfn) 3420 end_pfn = max_low_pfn; 3421 3422 size_pages = end_pfn - early_node_map[i].start_pfn; 3423 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3424 PFN_PHYS(early_node_map[i].start_pfn), 3425 size_pages << PAGE_SHIFT); 3426 } 3427 } 3428 3429 int __init add_from_early_node_map(struct range *range, int az, 3430 int nr_range, int nid) 3431 { 3432 int i; 3433 u64 start, end; 3434 3435 /* need to go over early_node_map to find out good range for node */ 3436 for_each_active_range_index_in_nid(i, nid) { 3437 start = early_node_map[i].start_pfn; 3438 end = early_node_map[i].end_pfn; 3439 nr_range = add_range(range, az, nr_range, start, end); 3440 } 3441 return nr_range; 3442 } 3443 3444 #ifdef CONFIG_NO_BOOTMEM 3445 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align, 3446 u64 goal, u64 limit) 3447 { 3448 int i; 3449 void *ptr; 3450 3451 /* need to go over early_node_map to find out good range for node */ 3452 for_each_active_range_index_in_nid(i, nid) { 3453 u64 addr; 3454 u64 ei_start, ei_last; 3455 3456 ei_last = early_node_map[i].end_pfn; 3457 ei_last <<= PAGE_SHIFT; 3458 ei_start = early_node_map[i].start_pfn; 3459 ei_start <<= PAGE_SHIFT; 3460 addr = find_early_area(ei_start, ei_last, 3461 goal, limit, size, align); 3462 3463 if (addr == -1ULL) 3464 continue; 3465 3466 #if 0 3467 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n", 3468 nid, 3469 ei_start, ei_last, goal, limit, size, 3470 align, addr); 3471 #endif 3472 3473 ptr = phys_to_virt(addr); 3474 memset(ptr, 0, size); 3475 reserve_early_without_check(addr, addr + size, "BOOTMEM"); 3476 return ptr; 3477 } 3478 3479 return NULL; 3480 } 3481 #endif 3482 3483 3484 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3485 { 3486 int i; 3487 int ret; 3488 3489 for_each_active_range_index_in_nid(i, nid) { 3490 ret = work_fn(early_node_map[i].start_pfn, 3491 early_node_map[i].end_pfn, data); 3492 if (ret) 3493 break; 3494 } 3495 } 3496 /** 3497 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3498 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3499 * 3500 * If an architecture guarantees that all ranges registered with 3501 * add_active_ranges() contain no holes and may be freed, this 3502 * function may be used instead of calling memory_present() manually. 3503 */ 3504 void __init sparse_memory_present_with_active_regions(int nid) 3505 { 3506 int i; 3507 3508 for_each_active_range_index_in_nid(i, nid) 3509 memory_present(early_node_map[i].nid, 3510 early_node_map[i].start_pfn, 3511 early_node_map[i].end_pfn); 3512 } 3513 3514 /** 3515 * get_pfn_range_for_nid - Return the start and end page frames for a node 3516 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3517 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3518 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3519 * 3520 * It returns the start and end page frame of a node based on information 3521 * provided by an arch calling add_active_range(). If called for a node 3522 * with no available memory, a warning is printed and the start and end 3523 * PFNs will be 0. 3524 */ 3525 void __meminit get_pfn_range_for_nid(unsigned int nid, 3526 unsigned long *start_pfn, unsigned long *end_pfn) 3527 { 3528 int i; 3529 *start_pfn = -1UL; 3530 *end_pfn = 0; 3531 3532 for_each_active_range_index_in_nid(i, nid) { 3533 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3534 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3535 } 3536 3537 if (*start_pfn == -1UL) 3538 *start_pfn = 0; 3539 } 3540 3541 /* 3542 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3543 * assumption is made that zones within a node are ordered in monotonic 3544 * increasing memory addresses so that the "highest" populated zone is used 3545 */ 3546 static void __init find_usable_zone_for_movable(void) 3547 { 3548 int zone_index; 3549 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3550 if (zone_index == ZONE_MOVABLE) 3551 continue; 3552 3553 if (arch_zone_highest_possible_pfn[zone_index] > 3554 arch_zone_lowest_possible_pfn[zone_index]) 3555 break; 3556 } 3557 3558 VM_BUG_ON(zone_index == -1); 3559 movable_zone = zone_index; 3560 } 3561 3562 /* 3563 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3564 * because it is sized independant of architecture. Unlike the other zones, 3565 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3566 * in each node depending on the size of each node and how evenly kernelcore 3567 * is distributed. This helper function adjusts the zone ranges 3568 * provided by the architecture for a given node by using the end of the 3569 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3570 * zones within a node are in order of monotonic increases memory addresses 3571 */ 3572 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3573 unsigned long zone_type, 3574 unsigned long node_start_pfn, 3575 unsigned long node_end_pfn, 3576 unsigned long *zone_start_pfn, 3577 unsigned long *zone_end_pfn) 3578 { 3579 /* Only adjust if ZONE_MOVABLE is on this node */ 3580 if (zone_movable_pfn[nid]) { 3581 /* Size ZONE_MOVABLE */ 3582 if (zone_type == ZONE_MOVABLE) { 3583 *zone_start_pfn = zone_movable_pfn[nid]; 3584 *zone_end_pfn = min(node_end_pfn, 3585 arch_zone_highest_possible_pfn[movable_zone]); 3586 3587 /* Adjust for ZONE_MOVABLE starting within this range */ 3588 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3589 *zone_end_pfn > zone_movable_pfn[nid]) { 3590 *zone_end_pfn = zone_movable_pfn[nid]; 3591 3592 /* Check if this whole range is within ZONE_MOVABLE */ 3593 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3594 *zone_start_pfn = *zone_end_pfn; 3595 } 3596 } 3597 3598 /* 3599 * Return the number of pages a zone spans in a node, including holes 3600 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3601 */ 3602 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3603 unsigned long zone_type, 3604 unsigned long *ignored) 3605 { 3606 unsigned long node_start_pfn, node_end_pfn; 3607 unsigned long zone_start_pfn, zone_end_pfn; 3608 3609 /* Get the start and end of the node and zone */ 3610 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3611 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3612 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3613 adjust_zone_range_for_zone_movable(nid, zone_type, 3614 node_start_pfn, node_end_pfn, 3615 &zone_start_pfn, &zone_end_pfn); 3616 3617 /* Check that this node has pages within the zone's required range */ 3618 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3619 return 0; 3620 3621 /* Move the zone boundaries inside the node if necessary */ 3622 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3623 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3624 3625 /* Return the spanned pages */ 3626 return zone_end_pfn - zone_start_pfn; 3627 } 3628 3629 /* 3630 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3631 * then all holes in the requested range will be accounted for. 3632 */ 3633 unsigned long __meminit __absent_pages_in_range(int nid, 3634 unsigned long range_start_pfn, 3635 unsigned long range_end_pfn) 3636 { 3637 int i = 0; 3638 unsigned long prev_end_pfn = 0, hole_pages = 0; 3639 unsigned long start_pfn; 3640 3641 /* Find the end_pfn of the first active range of pfns in the node */ 3642 i = first_active_region_index_in_nid(nid); 3643 if (i == -1) 3644 return 0; 3645 3646 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3647 3648 /* Account for ranges before physical memory on this node */ 3649 if (early_node_map[i].start_pfn > range_start_pfn) 3650 hole_pages = prev_end_pfn - range_start_pfn; 3651 3652 /* Find all holes for the zone within the node */ 3653 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3654 3655 /* No need to continue if prev_end_pfn is outside the zone */ 3656 if (prev_end_pfn >= range_end_pfn) 3657 break; 3658 3659 /* Make sure the end of the zone is not within the hole */ 3660 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3661 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3662 3663 /* Update the hole size cound and move on */ 3664 if (start_pfn > range_start_pfn) { 3665 BUG_ON(prev_end_pfn > start_pfn); 3666 hole_pages += start_pfn - prev_end_pfn; 3667 } 3668 prev_end_pfn = early_node_map[i].end_pfn; 3669 } 3670 3671 /* Account for ranges past physical memory on this node */ 3672 if (range_end_pfn > prev_end_pfn) 3673 hole_pages += range_end_pfn - 3674 max(range_start_pfn, prev_end_pfn); 3675 3676 return hole_pages; 3677 } 3678 3679 /** 3680 * absent_pages_in_range - Return number of page frames in holes within a range 3681 * @start_pfn: The start PFN to start searching for holes 3682 * @end_pfn: The end PFN to stop searching for holes 3683 * 3684 * It returns the number of pages frames in memory holes within a range. 3685 */ 3686 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3687 unsigned long end_pfn) 3688 { 3689 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3690 } 3691 3692 /* Return the number of page frames in holes in a zone on a node */ 3693 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3694 unsigned long zone_type, 3695 unsigned long *ignored) 3696 { 3697 unsigned long node_start_pfn, node_end_pfn; 3698 unsigned long zone_start_pfn, zone_end_pfn; 3699 3700 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3701 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3702 node_start_pfn); 3703 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3704 node_end_pfn); 3705 3706 adjust_zone_range_for_zone_movable(nid, zone_type, 3707 node_start_pfn, node_end_pfn, 3708 &zone_start_pfn, &zone_end_pfn); 3709 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3710 } 3711 3712 #else 3713 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3714 unsigned long zone_type, 3715 unsigned long *zones_size) 3716 { 3717 return zones_size[zone_type]; 3718 } 3719 3720 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3721 unsigned long zone_type, 3722 unsigned long *zholes_size) 3723 { 3724 if (!zholes_size) 3725 return 0; 3726 3727 return zholes_size[zone_type]; 3728 } 3729 3730 #endif 3731 3732 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3733 unsigned long *zones_size, unsigned long *zholes_size) 3734 { 3735 unsigned long realtotalpages, totalpages = 0; 3736 enum zone_type i; 3737 3738 for (i = 0; i < MAX_NR_ZONES; i++) 3739 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3740 zones_size); 3741 pgdat->node_spanned_pages = totalpages; 3742 3743 realtotalpages = totalpages; 3744 for (i = 0; i < MAX_NR_ZONES; i++) 3745 realtotalpages -= 3746 zone_absent_pages_in_node(pgdat->node_id, i, 3747 zholes_size); 3748 pgdat->node_present_pages = realtotalpages; 3749 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3750 realtotalpages); 3751 } 3752 3753 #ifndef CONFIG_SPARSEMEM 3754 /* 3755 * Calculate the size of the zone->blockflags rounded to an unsigned long 3756 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3757 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3758 * round what is now in bits to nearest long in bits, then return it in 3759 * bytes. 3760 */ 3761 static unsigned long __init usemap_size(unsigned long zonesize) 3762 { 3763 unsigned long usemapsize; 3764 3765 usemapsize = roundup(zonesize, pageblock_nr_pages); 3766 usemapsize = usemapsize >> pageblock_order; 3767 usemapsize *= NR_PAGEBLOCK_BITS; 3768 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 3769 3770 return usemapsize / 8; 3771 } 3772 3773 static void __init setup_usemap(struct pglist_data *pgdat, 3774 struct zone *zone, unsigned long zonesize) 3775 { 3776 unsigned long usemapsize = usemap_size(zonesize); 3777 zone->pageblock_flags = NULL; 3778 if (usemapsize) 3779 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 3780 } 3781 #else 3782 static void inline setup_usemap(struct pglist_data *pgdat, 3783 struct zone *zone, unsigned long zonesize) {} 3784 #endif /* CONFIG_SPARSEMEM */ 3785 3786 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 3787 3788 /* Return a sensible default order for the pageblock size. */ 3789 static inline int pageblock_default_order(void) 3790 { 3791 if (HPAGE_SHIFT > PAGE_SHIFT) 3792 return HUGETLB_PAGE_ORDER; 3793 3794 return MAX_ORDER-1; 3795 } 3796 3797 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 3798 static inline void __init set_pageblock_order(unsigned int order) 3799 { 3800 /* Check that pageblock_nr_pages has not already been setup */ 3801 if (pageblock_order) 3802 return; 3803 3804 /* 3805 * Assume the largest contiguous order of interest is a huge page. 3806 * This value may be variable depending on boot parameters on IA64 3807 */ 3808 pageblock_order = order; 3809 } 3810 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3811 3812 /* 3813 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 3814 * and pageblock_default_order() are unused as pageblock_order is set 3815 * at compile-time. See include/linux/pageblock-flags.h for the values of 3816 * pageblock_order based on the kernel config 3817 */ 3818 static inline int pageblock_default_order(unsigned int order) 3819 { 3820 return MAX_ORDER-1; 3821 } 3822 #define set_pageblock_order(x) do {} while (0) 3823 3824 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3825 3826 /* 3827 * Set up the zone data structures: 3828 * - mark all pages reserved 3829 * - mark all memory queues empty 3830 * - clear the memory bitmaps 3831 */ 3832 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 3833 unsigned long *zones_size, unsigned long *zholes_size) 3834 { 3835 enum zone_type j; 3836 int nid = pgdat->node_id; 3837 unsigned long zone_start_pfn = pgdat->node_start_pfn; 3838 int ret; 3839 3840 pgdat_resize_init(pgdat); 3841 pgdat->nr_zones = 0; 3842 init_waitqueue_head(&pgdat->kswapd_wait); 3843 pgdat->kswapd_max_order = 0; 3844 pgdat_page_cgroup_init(pgdat); 3845 3846 for (j = 0; j < MAX_NR_ZONES; j++) { 3847 struct zone *zone = pgdat->node_zones + j; 3848 unsigned long size, realsize, memmap_pages; 3849 enum lru_list l; 3850 3851 size = zone_spanned_pages_in_node(nid, j, zones_size); 3852 realsize = size - zone_absent_pages_in_node(nid, j, 3853 zholes_size); 3854 3855 /* 3856 * Adjust realsize so that it accounts for how much memory 3857 * is used by this zone for memmap. This affects the watermark 3858 * and per-cpu initialisations 3859 */ 3860 memmap_pages = 3861 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 3862 if (realsize >= memmap_pages) { 3863 realsize -= memmap_pages; 3864 if (memmap_pages) 3865 printk(KERN_DEBUG 3866 " %s zone: %lu pages used for memmap\n", 3867 zone_names[j], memmap_pages); 3868 } else 3869 printk(KERN_WARNING 3870 " %s zone: %lu pages exceeds realsize %lu\n", 3871 zone_names[j], memmap_pages, realsize); 3872 3873 /* Account for reserved pages */ 3874 if (j == 0 && realsize > dma_reserve) { 3875 realsize -= dma_reserve; 3876 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 3877 zone_names[0], dma_reserve); 3878 } 3879 3880 if (!is_highmem_idx(j)) 3881 nr_kernel_pages += realsize; 3882 nr_all_pages += realsize; 3883 3884 zone->spanned_pages = size; 3885 zone->present_pages = realsize; 3886 #ifdef CONFIG_NUMA 3887 zone->node = nid; 3888 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 3889 / 100; 3890 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 3891 #endif 3892 zone->name = zone_names[j]; 3893 spin_lock_init(&zone->lock); 3894 spin_lock_init(&zone->lru_lock); 3895 zone_seqlock_init(zone); 3896 zone->zone_pgdat = pgdat; 3897 3898 zone->prev_priority = DEF_PRIORITY; 3899 3900 zone_pcp_init(zone); 3901 for_each_lru(l) { 3902 INIT_LIST_HEAD(&zone->lru[l].list); 3903 zone->reclaim_stat.nr_saved_scan[l] = 0; 3904 } 3905 zone->reclaim_stat.recent_rotated[0] = 0; 3906 zone->reclaim_stat.recent_rotated[1] = 0; 3907 zone->reclaim_stat.recent_scanned[0] = 0; 3908 zone->reclaim_stat.recent_scanned[1] = 0; 3909 zap_zone_vm_stats(zone); 3910 zone->flags = 0; 3911 if (!size) 3912 continue; 3913 3914 set_pageblock_order(pageblock_default_order()); 3915 setup_usemap(pgdat, zone, size); 3916 ret = init_currently_empty_zone(zone, zone_start_pfn, 3917 size, MEMMAP_EARLY); 3918 BUG_ON(ret); 3919 memmap_init(size, nid, j, zone_start_pfn); 3920 zone_start_pfn += size; 3921 } 3922 } 3923 3924 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 3925 { 3926 /* Skip empty nodes */ 3927 if (!pgdat->node_spanned_pages) 3928 return; 3929 3930 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3931 /* ia64 gets its own node_mem_map, before this, without bootmem */ 3932 if (!pgdat->node_mem_map) { 3933 unsigned long size, start, end; 3934 struct page *map; 3935 3936 /* 3937 * The zone's endpoints aren't required to be MAX_ORDER 3938 * aligned but the node_mem_map endpoints must be in order 3939 * for the buddy allocator to function correctly. 3940 */ 3941 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 3942 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 3943 end = ALIGN(end, MAX_ORDER_NR_PAGES); 3944 size = (end - start) * sizeof(struct page); 3945 map = alloc_remap(pgdat->node_id, size); 3946 if (!map) 3947 map = alloc_bootmem_node(pgdat, size); 3948 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 3949 } 3950 #ifndef CONFIG_NEED_MULTIPLE_NODES 3951 /* 3952 * With no DISCONTIG, the global mem_map is just set as node 0's 3953 */ 3954 if (pgdat == NODE_DATA(0)) { 3955 mem_map = NODE_DATA(0)->node_mem_map; 3956 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3957 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 3958 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 3959 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 3960 } 3961 #endif 3962 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 3963 } 3964 3965 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 3966 unsigned long node_start_pfn, unsigned long *zholes_size) 3967 { 3968 pg_data_t *pgdat = NODE_DATA(nid); 3969 3970 pgdat->node_id = nid; 3971 pgdat->node_start_pfn = node_start_pfn; 3972 calculate_node_totalpages(pgdat, zones_size, zholes_size); 3973 3974 alloc_node_mem_map(pgdat); 3975 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3976 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 3977 nid, (unsigned long)pgdat, 3978 (unsigned long)pgdat->node_mem_map); 3979 #endif 3980 3981 free_area_init_core(pgdat, zones_size, zholes_size); 3982 } 3983 3984 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3985 3986 #if MAX_NUMNODES > 1 3987 /* 3988 * Figure out the number of possible node ids. 3989 */ 3990 static void __init setup_nr_node_ids(void) 3991 { 3992 unsigned int node; 3993 unsigned int highest = 0; 3994 3995 for_each_node_mask(node, node_possible_map) 3996 highest = node; 3997 nr_node_ids = highest + 1; 3998 } 3999 #else 4000 static inline void setup_nr_node_ids(void) 4001 { 4002 } 4003 #endif 4004 4005 /** 4006 * add_active_range - Register a range of PFNs backed by physical memory 4007 * @nid: The node ID the range resides on 4008 * @start_pfn: The start PFN of the available physical memory 4009 * @end_pfn: The end PFN of the available physical memory 4010 * 4011 * These ranges are stored in an early_node_map[] and later used by 4012 * free_area_init_nodes() to calculate zone sizes and holes. If the 4013 * range spans a memory hole, it is up to the architecture to ensure 4014 * the memory is not freed by the bootmem allocator. If possible 4015 * the range being registered will be merged with existing ranges. 4016 */ 4017 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 4018 unsigned long end_pfn) 4019 { 4020 int i; 4021 4022 mminit_dprintk(MMINIT_TRACE, "memory_register", 4023 "Entering add_active_range(%d, %#lx, %#lx) " 4024 "%d entries of %d used\n", 4025 nid, start_pfn, end_pfn, 4026 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 4027 4028 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 4029 4030 /* Merge with existing active regions if possible */ 4031 for (i = 0; i < nr_nodemap_entries; i++) { 4032 if (early_node_map[i].nid != nid) 4033 continue; 4034 4035 /* Skip if an existing region covers this new one */ 4036 if (start_pfn >= early_node_map[i].start_pfn && 4037 end_pfn <= early_node_map[i].end_pfn) 4038 return; 4039 4040 /* Merge forward if suitable */ 4041 if (start_pfn <= early_node_map[i].end_pfn && 4042 end_pfn > early_node_map[i].end_pfn) { 4043 early_node_map[i].end_pfn = end_pfn; 4044 return; 4045 } 4046 4047 /* Merge backward if suitable */ 4048 if (start_pfn < early_node_map[i].start_pfn && 4049 end_pfn >= early_node_map[i].start_pfn) { 4050 early_node_map[i].start_pfn = start_pfn; 4051 return; 4052 } 4053 } 4054 4055 /* Check that early_node_map is large enough */ 4056 if (i >= MAX_ACTIVE_REGIONS) { 4057 printk(KERN_CRIT "More than %d memory regions, truncating\n", 4058 MAX_ACTIVE_REGIONS); 4059 return; 4060 } 4061 4062 early_node_map[i].nid = nid; 4063 early_node_map[i].start_pfn = start_pfn; 4064 early_node_map[i].end_pfn = end_pfn; 4065 nr_nodemap_entries = i + 1; 4066 } 4067 4068 /** 4069 * remove_active_range - Shrink an existing registered range of PFNs 4070 * @nid: The node id the range is on that should be shrunk 4071 * @start_pfn: The new PFN of the range 4072 * @end_pfn: The new PFN of the range 4073 * 4074 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 4075 * The map is kept near the end physical page range that has already been 4076 * registered. This function allows an arch to shrink an existing registered 4077 * range. 4078 */ 4079 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 4080 unsigned long end_pfn) 4081 { 4082 int i, j; 4083 int removed = 0; 4084 4085 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 4086 nid, start_pfn, end_pfn); 4087 4088 /* Find the old active region end and shrink */ 4089 for_each_active_range_index_in_nid(i, nid) { 4090 if (early_node_map[i].start_pfn >= start_pfn && 4091 early_node_map[i].end_pfn <= end_pfn) { 4092 /* clear it */ 4093 early_node_map[i].start_pfn = 0; 4094 early_node_map[i].end_pfn = 0; 4095 removed = 1; 4096 continue; 4097 } 4098 if (early_node_map[i].start_pfn < start_pfn && 4099 early_node_map[i].end_pfn > start_pfn) { 4100 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 4101 early_node_map[i].end_pfn = start_pfn; 4102 if (temp_end_pfn > end_pfn) 4103 add_active_range(nid, end_pfn, temp_end_pfn); 4104 continue; 4105 } 4106 if (early_node_map[i].start_pfn >= start_pfn && 4107 early_node_map[i].end_pfn > end_pfn && 4108 early_node_map[i].start_pfn < end_pfn) { 4109 early_node_map[i].start_pfn = end_pfn; 4110 continue; 4111 } 4112 } 4113 4114 if (!removed) 4115 return; 4116 4117 /* remove the blank ones */ 4118 for (i = nr_nodemap_entries - 1; i > 0; i--) { 4119 if (early_node_map[i].nid != nid) 4120 continue; 4121 if (early_node_map[i].end_pfn) 4122 continue; 4123 /* we found it, get rid of it */ 4124 for (j = i; j < nr_nodemap_entries - 1; j++) 4125 memcpy(&early_node_map[j], &early_node_map[j+1], 4126 sizeof(early_node_map[j])); 4127 j = nr_nodemap_entries - 1; 4128 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 4129 nr_nodemap_entries--; 4130 } 4131 } 4132 4133 /** 4134 * remove_all_active_ranges - Remove all currently registered regions 4135 * 4136 * During discovery, it may be found that a table like SRAT is invalid 4137 * and an alternative discovery method must be used. This function removes 4138 * all currently registered regions. 4139 */ 4140 void __init remove_all_active_ranges(void) 4141 { 4142 memset(early_node_map, 0, sizeof(early_node_map)); 4143 nr_nodemap_entries = 0; 4144 } 4145 4146 /* Compare two active node_active_regions */ 4147 static int __init cmp_node_active_region(const void *a, const void *b) 4148 { 4149 struct node_active_region *arange = (struct node_active_region *)a; 4150 struct node_active_region *brange = (struct node_active_region *)b; 4151 4152 /* Done this way to avoid overflows */ 4153 if (arange->start_pfn > brange->start_pfn) 4154 return 1; 4155 if (arange->start_pfn < brange->start_pfn) 4156 return -1; 4157 4158 return 0; 4159 } 4160 4161 /* sort the node_map by start_pfn */ 4162 void __init sort_node_map(void) 4163 { 4164 sort(early_node_map, (size_t)nr_nodemap_entries, 4165 sizeof(struct node_active_region), 4166 cmp_node_active_region, NULL); 4167 } 4168 4169 /* Find the lowest pfn for a node */ 4170 static unsigned long __init find_min_pfn_for_node(int nid) 4171 { 4172 int i; 4173 unsigned long min_pfn = ULONG_MAX; 4174 4175 /* Assuming a sorted map, the first range found has the starting pfn */ 4176 for_each_active_range_index_in_nid(i, nid) 4177 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 4178 4179 if (min_pfn == ULONG_MAX) { 4180 printk(KERN_WARNING 4181 "Could not find start_pfn for node %d\n", nid); 4182 return 0; 4183 } 4184 4185 return min_pfn; 4186 } 4187 4188 /** 4189 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4190 * 4191 * It returns the minimum PFN based on information provided via 4192 * add_active_range(). 4193 */ 4194 unsigned long __init find_min_pfn_with_active_regions(void) 4195 { 4196 return find_min_pfn_for_node(MAX_NUMNODES); 4197 } 4198 4199 /* 4200 * early_calculate_totalpages() 4201 * Sum pages in active regions for movable zone. 4202 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4203 */ 4204 static unsigned long __init early_calculate_totalpages(void) 4205 { 4206 int i; 4207 unsigned long totalpages = 0; 4208 4209 for (i = 0; i < nr_nodemap_entries; i++) { 4210 unsigned long pages = early_node_map[i].end_pfn - 4211 early_node_map[i].start_pfn; 4212 totalpages += pages; 4213 if (pages) 4214 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 4215 } 4216 return totalpages; 4217 } 4218 4219 /* 4220 * Find the PFN the Movable zone begins in each node. Kernel memory 4221 * is spread evenly between nodes as long as the nodes have enough 4222 * memory. When they don't, some nodes will have more kernelcore than 4223 * others 4224 */ 4225 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4226 { 4227 int i, nid; 4228 unsigned long usable_startpfn; 4229 unsigned long kernelcore_node, kernelcore_remaining; 4230 /* save the state before borrow the nodemask */ 4231 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4232 unsigned long totalpages = early_calculate_totalpages(); 4233 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4234 4235 /* 4236 * If movablecore was specified, calculate what size of 4237 * kernelcore that corresponds so that memory usable for 4238 * any allocation type is evenly spread. If both kernelcore 4239 * and movablecore are specified, then the value of kernelcore 4240 * will be used for required_kernelcore if it's greater than 4241 * what movablecore would have allowed. 4242 */ 4243 if (required_movablecore) { 4244 unsigned long corepages; 4245 4246 /* 4247 * Round-up so that ZONE_MOVABLE is at least as large as what 4248 * was requested by the user 4249 */ 4250 required_movablecore = 4251 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4252 corepages = totalpages - required_movablecore; 4253 4254 required_kernelcore = max(required_kernelcore, corepages); 4255 } 4256 4257 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4258 if (!required_kernelcore) 4259 goto out; 4260 4261 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4262 find_usable_zone_for_movable(); 4263 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4264 4265 restart: 4266 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4267 kernelcore_node = required_kernelcore / usable_nodes; 4268 for_each_node_state(nid, N_HIGH_MEMORY) { 4269 /* 4270 * Recalculate kernelcore_node if the division per node 4271 * now exceeds what is necessary to satisfy the requested 4272 * amount of memory for the kernel 4273 */ 4274 if (required_kernelcore < kernelcore_node) 4275 kernelcore_node = required_kernelcore / usable_nodes; 4276 4277 /* 4278 * As the map is walked, we track how much memory is usable 4279 * by the kernel using kernelcore_remaining. When it is 4280 * 0, the rest of the node is usable by ZONE_MOVABLE 4281 */ 4282 kernelcore_remaining = kernelcore_node; 4283 4284 /* Go through each range of PFNs within this node */ 4285 for_each_active_range_index_in_nid(i, nid) { 4286 unsigned long start_pfn, end_pfn; 4287 unsigned long size_pages; 4288 4289 start_pfn = max(early_node_map[i].start_pfn, 4290 zone_movable_pfn[nid]); 4291 end_pfn = early_node_map[i].end_pfn; 4292 if (start_pfn >= end_pfn) 4293 continue; 4294 4295 /* Account for what is only usable for kernelcore */ 4296 if (start_pfn < usable_startpfn) { 4297 unsigned long kernel_pages; 4298 kernel_pages = min(end_pfn, usable_startpfn) 4299 - start_pfn; 4300 4301 kernelcore_remaining -= min(kernel_pages, 4302 kernelcore_remaining); 4303 required_kernelcore -= min(kernel_pages, 4304 required_kernelcore); 4305 4306 /* Continue if range is now fully accounted */ 4307 if (end_pfn <= usable_startpfn) { 4308 4309 /* 4310 * Push zone_movable_pfn to the end so 4311 * that if we have to rebalance 4312 * kernelcore across nodes, we will 4313 * not double account here 4314 */ 4315 zone_movable_pfn[nid] = end_pfn; 4316 continue; 4317 } 4318 start_pfn = usable_startpfn; 4319 } 4320 4321 /* 4322 * The usable PFN range for ZONE_MOVABLE is from 4323 * start_pfn->end_pfn. Calculate size_pages as the 4324 * number of pages used as kernelcore 4325 */ 4326 size_pages = end_pfn - start_pfn; 4327 if (size_pages > kernelcore_remaining) 4328 size_pages = kernelcore_remaining; 4329 zone_movable_pfn[nid] = start_pfn + size_pages; 4330 4331 /* 4332 * Some kernelcore has been met, update counts and 4333 * break if the kernelcore for this node has been 4334 * satisified 4335 */ 4336 required_kernelcore -= min(required_kernelcore, 4337 size_pages); 4338 kernelcore_remaining -= size_pages; 4339 if (!kernelcore_remaining) 4340 break; 4341 } 4342 } 4343 4344 /* 4345 * If there is still required_kernelcore, we do another pass with one 4346 * less node in the count. This will push zone_movable_pfn[nid] further 4347 * along on the nodes that still have memory until kernelcore is 4348 * satisified 4349 */ 4350 usable_nodes--; 4351 if (usable_nodes && required_kernelcore > usable_nodes) 4352 goto restart; 4353 4354 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4355 for (nid = 0; nid < MAX_NUMNODES; nid++) 4356 zone_movable_pfn[nid] = 4357 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4358 4359 out: 4360 /* restore the node_state */ 4361 node_states[N_HIGH_MEMORY] = saved_node_state; 4362 } 4363 4364 /* Any regular memory on that node ? */ 4365 static void check_for_regular_memory(pg_data_t *pgdat) 4366 { 4367 #ifdef CONFIG_HIGHMEM 4368 enum zone_type zone_type; 4369 4370 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4371 struct zone *zone = &pgdat->node_zones[zone_type]; 4372 if (zone->present_pages) 4373 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4374 } 4375 #endif 4376 } 4377 4378 /** 4379 * free_area_init_nodes - Initialise all pg_data_t and zone data 4380 * @max_zone_pfn: an array of max PFNs for each zone 4381 * 4382 * This will call free_area_init_node() for each active node in the system. 4383 * Using the page ranges provided by add_active_range(), the size of each 4384 * zone in each node and their holes is calculated. If the maximum PFN 4385 * between two adjacent zones match, it is assumed that the zone is empty. 4386 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4387 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4388 * starts where the previous one ended. For example, ZONE_DMA32 starts 4389 * at arch_max_dma_pfn. 4390 */ 4391 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4392 { 4393 unsigned long nid; 4394 int i; 4395 4396 /* Sort early_node_map as initialisation assumes it is sorted */ 4397 sort_node_map(); 4398 4399 /* Record where the zone boundaries are */ 4400 memset(arch_zone_lowest_possible_pfn, 0, 4401 sizeof(arch_zone_lowest_possible_pfn)); 4402 memset(arch_zone_highest_possible_pfn, 0, 4403 sizeof(arch_zone_highest_possible_pfn)); 4404 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4405 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4406 for (i = 1; i < MAX_NR_ZONES; i++) { 4407 if (i == ZONE_MOVABLE) 4408 continue; 4409 arch_zone_lowest_possible_pfn[i] = 4410 arch_zone_highest_possible_pfn[i-1]; 4411 arch_zone_highest_possible_pfn[i] = 4412 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4413 } 4414 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4415 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4416 4417 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4418 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4419 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4420 4421 /* Print out the zone ranges */ 4422 printk("Zone PFN ranges:\n"); 4423 for (i = 0; i < MAX_NR_ZONES; i++) { 4424 if (i == ZONE_MOVABLE) 4425 continue; 4426 printk(" %-8s ", zone_names[i]); 4427 if (arch_zone_lowest_possible_pfn[i] == 4428 arch_zone_highest_possible_pfn[i]) 4429 printk("empty\n"); 4430 else 4431 printk("%0#10lx -> %0#10lx\n", 4432 arch_zone_lowest_possible_pfn[i], 4433 arch_zone_highest_possible_pfn[i]); 4434 } 4435 4436 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4437 printk("Movable zone start PFN for each node\n"); 4438 for (i = 0; i < MAX_NUMNODES; i++) { 4439 if (zone_movable_pfn[i]) 4440 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4441 } 4442 4443 /* Print out the early_node_map[] */ 4444 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4445 for (i = 0; i < nr_nodemap_entries; i++) 4446 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4447 early_node_map[i].start_pfn, 4448 early_node_map[i].end_pfn); 4449 4450 /* Initialise every node */ 4451 mminit_verify_pageflags_layout(); 4452 setup_nr_node_ids(); 4453 for_each_online_node(nid) { 4454 pg_data_t *pgdat = NODE_DATA(nid); 4455 free_area_init_node(nid, NULL, 4456 find_min_pfn_for_node(nid), NULL); 4457 4458 /* Any memory on that node */ 4459 if (pgdat->node_present_pages) 4460 node_set_state(nid, N_HIGH_MEMORY); 4461 check_for_regular_memory(pgdat); 4462 } 4463 } 4464 4465 static int __init cmdline_parse_core(char *p, unsigned long *core) 4466 { 4467 unsigned long long coremem; 4468 if (!p) 4469 return -EINVAL; 4470 4471 coremem = memparse(p, &p); 4472 *core = coremem >> PAGE_SHIFT; 4473 4474 /* Paranoid check that UL is enough for the coremem value */ 4475 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4476 4477 return 0; 4478 } 4479 4480 /* 4481 * kernelcore=size sets the amount of memory for use for allocations that 4482 * cannot be reclaimed or migrated. 4483 */ 4484 static int __init cmdline_parse_kernelcore(char *p) 4485 { 4486 return cmdline_parse_core(p, &required_kernelcore); 4487 } 4488 4489 /* 4490 * movablecore=size sets the amount of memory for use for allocations that 4491 * can be reclaimed or migrated. 4492 */ 4493 static int __init cmdline_parse_movablecore(char *p) 4494 { 4495 return cmdline_parse_core(p, &required_movablecore); 4496 } 4497 4498 early_param("kernelcore", cmdline_parse_kernelcore); 4499 early_param("movablecore", cmdline_parse_movablecore); 4500 4501 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4502 4503 /** 4504 * set_dma_reserve - set the specified number of pages reserved in the first zone 4505 * @new_dma_reserve: The number of pages to mark reserved 4506 * 4507 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4508 * In the DMA zone, a significant percentage may be consumed by kernel image 4509 * and other unfreeable allocations which can skew the watermarks badly. This 4510 * function may optionally be used to account for unfreeable pages in the 4511 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4512 * smaller per-cpu batchsize. 4513 */ 4514 void __init set_dma_reserve(unsigned long new_dma_reserve) 4515 { 4516 dma_reserve = new_dma_reserve; 4517 } 4518 4519 #ifndef CONFIG_NEED_MULTIPLE_NODES 4520 struct pglist_data __refdata contig_page_data = { 4521 #ifndef CONFIG_NO_BOOTMEM 4522 .bdata = &bootmem_node_data[0] 4523 #endif 4524 }; 4525 EXPORT_SYMBOL(contig_page_data); 4526 #endif 4527 4528 void __init free_area_init(unsigned long *zones_size) 4529 { 4530 free_area_init_node(0, zones_size, 4531 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4532 } 4533 4534 static int page_alloc_cpu_notify(struct notifier_block *self, 4535 unsigned long action, void *hcpu) 4536 { 4537 int cpu = (unsigned long)hcpu; 4538 4539 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4540 drain_pages(cpu); 4541 4542 /* 4543 * Spill the event counters of the dead processor 4544 * into the current processors event counters. 4545 * This artificially elevates the count of the current 4546 * processor. 4547 */ 4548 vm_events_fold_cpu(cpu); 4549 4550 /* 4551 * Zero the differential counters of the dead processor 4552 * so that the vm statistics are consistent. 4553 * 4554 * This is only okay since the processor is dead and cannot 4555 * race with what we are doing. 4556 */ 4557 refresh_cpu_vm_stats(cpu); 4558 } 4559 return NOTIFY_OK; 4560 } 4561 4562 void __init page_alloc_init(void) 4563 { 4564 hotcpu_notifier(page_alloc_cpu_notify, 0); 4565 } 4566 4567 /* 4568 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4569 * or min_free_kbytes changes. 4570 */ 4571 static void calculate_totalreserve_pages(void) 4572 { 4573 struct pglist_data *pgdat; 4574 unsigned long reserve_pages = 0; 4575 enum zone_type i, j; 4576 4577 for_each_online_pgdat(pgdat) { 4578 for (i = 0; i < MAX_NR_ZONES; i++) { 4579 struct zone *zone = pgdat->node_zones + i; 4580 unsigned long max = 0; 4581 4582 /* Find valid and maximum lowmem_reserve in the zone */ 4583 for (j = i; j < MAX_NR_ZONES; j++) { 4584 if (zone->lowmem_reserve[j] > max) 4585 max = zone->lowmem_reserve[j]; 4586 } 4587 4588 /* we treat the high watermark as reserved pages. */ 4589 max += high_wmark_pages(zone); 4590 4591 if (max > zone->present_pages) 4592 max = zone->present_pages; 4593 reserve_pages += max; 4594 } 4595 } 4596 totalreserve_pages = reserve_pages; 4597 } 4598 4599 /* 4600 * setup_per_zone_lowmem_reserve - called whenever 4601 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4602 * has a correct pages reserved value, so an adequate number of 4603 * pages are left in the zone after a successful __alloc_pages(). 4604 */ 4605 static void setup_per_zone_lowmem_reserve(void) 4606 { 4607 struct pglist_data *pgdat; 4608 enum zone_type j, idx; 4609 4610 for_each_online_pgdat(pgdat) { 4611 for (j = 0; j < MAX_NR_ZONES; j++) { 4612 struct zone *zone = pgdat->node_zones + j; 4613 unsigned long present_pages = zone->present_pages; 4614 4615 zone->lowmem_reserve[j] = 0; 4616 4617 idx = j; 4618 while (idx) { 4619 struct zone *lower_zone; 4620 4621 idx--; 4622 4623 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4624 sysctl_lowmem_reserve_ratio[idx] = 1; 4625 4626 lower_zone = pgdat->node_zones + idx; 4627 lower_zone->lowmem_reserve[j] = present_pages / 4628 sysctl_lowmem_reserve_ratio[idx]; 4629 present_pages += lower_zone->present_pages; 4630 } 4631 } 4632 } 4633 4634 /* update totalreserve_pages */ 4635 calculate_totalreserve_pages(); 4636 } 4637 4638 /** 4639 * setup_per_zone_wmarks - called when min_free_kbytes changes 4640 * or when memory is hot-{added|removed} 4641 * 4642 * Ensures that the watermark[min,low,high] values for each zone are set 4643 * correctly with respect to min_free_kbytes. 4644 */ 4645 void setup_per_zone_wmarks(void) 4646 { 4647 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4648 unsigned long lowmem_pages = 0; 4649 struct zone *zone; 4650 unsigned long flags; 4651 4652 /* Calculate total number of !ZONE_HIGHMEM pages */ 4653 for_each_zone(zone) { 4654 if (!is_highmem(zone)) 4655 lowmem_pages += zone->present_pages; 4656 } 4657 4658 for_each_zone(zone) { 4659 u64 tmp; 4660 4661 spin_lock_irqsave(&zone->lock, flags); 4662 tmp = (u64)pages_min * zone->present_pages; 4663 do_div(tmp, lowmem_pages); 4664 if (is_highmem(zone)) { 4665 /* 4666 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4667 * need highmem pages, so cap pages_min to a small 4668 * value here. 4669 * 4670 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 4671 * deltas controls asynch page reclaim, and so should 4672 * not be capped for highmem. 4673 */ 4674 int min_pages; 4675 4676 min_pages = zone->present_pages / 1024; 4677 if (min_pages < SWAP_CLUSTER_MAX) 4678 min_pages = SWAP_CLUSTER_MAX; 4679 if (min_pages > 128) 4680 min_pages = 128; 4681 zone->watermark[WMARK_MIN] = min_pages; 4682 } else { 4683 /* 4684 * If it's a lowmem zone, reserve a number of pages 4685 * proportionate to the zone's size. 4686 */ 4687 zone->watermark[WMARK_MIN] = tmp; 4688 } 4689 4690 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 4691 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 4692 setup_zone_migrate_reserve(zone); 4693 spin_unlock_irqrestore(&zone->lock, flags); 4694 } 4695 4696 /* update totalreserve_pages */ 4697 calculate_totalreserve_pages(); 4698 } 4699 4700 /* 4701 * The inactive anon list should be small enough that the VM never has to 4702 * do too much work, but large enough that each inactive page has a chance 4703 * to be referenced again before it is swapped out. 4704 * 4705 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 4706 * INACTIVE_ANON pages on this zone's LRU, maintained by the 4707 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 4708 * the anonymous pages are kept on the inactive list. 4709 * 4710 * total target max 4711 * memory ratio inactive anon 4712 * ------------------------------------- 4713 * 10MB 1 5MB 4714 * 100MB 1 50MB 4715 * 1GB 3 250MB 4716 * 10GB 10 0.9GB 4717 * 100GB 31 3GB 4718 * 1TB 101 10GB 4719 * 10TB 320 32GB 4720 */ 4721 void calculate_zone_inactive_ratio(struct zone *zone) 4722 { 4723 unsigned int gb, ratio; 4724 4725 /* Zone size in gigabytes */ 4726 gb = zone->present_pages >> (30 - PAGE_SHIFT); 4727 if (gb) 4728 ratio = int_sqrt(10 * gb); 4729 else 4730 ratio = 1; 4731 4732 zone->inactive_ratio = ratio; 4733 } 4734 4735 static void __init setup_per_zone_inactive_ratio(void) 4736 { 4737 struct zone *zone; 4738 4739 for_each_zone(zone) 4740 calculate_zone_inactive_ratio(zone); 4741 } 4742 4743 /* 4744 * Initialise min_free_kbytes. 4745 * 4746 * For small machines we want it small (128k min). For large machines 4747 * we want it large (64MB max). But it is not linear, because network 4748 * bandwidth does not increase linearly with machine size. We use 4749 * 4750 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4751 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4752 * 4753 * which yields 4754 * 4755 * 16MB: 512k 4756 * 32MB: 724k 4757 * 64MB: 1024k 4758 * 128MB: 1448k 4759 * 256MB: 2048k 4760 * 512MB: 2896k 4761 * 1024MB: 4096k 4762 * 2048MB: 5792k 4763 * 4096MB: 8192k 4764 * 8192MB: 11584k 4765 * 16384MB: 16384k 4766 */ 4767 static int __init init_per_zone_wmark_min(void) 4768 { 4769 unsigned long lowmem_kbytes; 4770 4771 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4772 4773 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4774 if (min_free_kbytes < 128) 4775 min_free_kbytes = 128; 4776 if (min_free_kbytes > 65536) 4777 min_free_kbytes = 65536; 4778 setup_per_zone_wmarks(); 4779 setup_per_zone_lowmem_reserve(); 4780 setup_per_zone_inactive_ratio(); 4781 return 0; 4782 } 4783 module_init(init_per_zone_wmark_min) 4784 4785 /* 4786 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 4787 * that we can call two helper functions whenever min_free_kbytes 4788 * changes. 4789 */ 4790 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 4791 void __user *buffer, size_t *length, loff_t *ppos) 4792 { 4793 proc_dointvec(table, write, buffer, length, ppos); 4794 if (write) 4795 setup_per_zone_wmarks(); 4796 return 0; 4797 } 4798 4799 #ifdef CONFIG_NUMA 4800 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 4801 void __user *buffer, size_t *length, loff_t *ppos) 4802 { 4803 struct zone *zone; 4804 int rc; 4805 4806 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 4807 if (rc) 4808 return rc; 4809 4810 for_each_zone(zone) 4811 zone->min_unmapped_pages = (zone->present_pages * 4812 sysctl_min_unmapped_ratio) / 100; 4813 return 0; 4814 } 4815 4816 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 4817 void __user *buffer, size_t *length, loff_t *ppos) 4818 { 4819 struct zone *zone; 4820 int rc; 4821 4822 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 4823 if (rc) 4824 return rc; 4825 4826 for_each_zone(zone) 4827 zone->min_slab_pages = (zone->present_pages * 4828 sysctl_min_slab_ratio) / 100; 4829 return 0; 4830 } 4831 #endif 4832 4833 /* 4834 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 4835 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 4836 * whenever sysctl_lowmem_reserve_ratio changes. 4837 * 4838 * The reserve ratio obviously has absolutely no relation with the 4839 * minimum watermarks. The lowmem reserve ratio can only make sense 4840 * if in function of the boot time zone sizes. 4841 */ 4842 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 4843 void __user *buffer, size_t *length, loff_t *ppos) 4844 { 4845 proc_dointvec_minmax(table, write, buffer, length, ppos); 4846 setup_per_zone_lowmem_reserve(); 4847 return 0; 4848 } 4849 4850 /* 4851 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 4852 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 4853 * can have before it gets flushed back to buddy allocator. 4854 */ 4855 4856 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 4857 void __user *buffer, size_t *length, loff_t *ppos) 4858 { 4859 struct zone *zone; 4860 unsigned int cpu; 4861 int ret; 4862 4863 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 4864 if (!write || (ret == -EINVAL)) 4865 return ret; 4866 for_each_populated_zone(zone) { 4867 for_each_possible_cpu(cpu) { 4868 unsigned long high; 4869 high = zone->present_pages / percpu_pagelist_fraction; 4870 setup_pagelist_highmark( 4871 per_cpu_ptr(zone->pageset, cpu), high); 4872 } 4873 } 4874 return 0; 4875 } 4876 4877 int hashdist = HASHDIST_DEFAULT; 4878 4879 #ifdef CONFIG_NUMA 4880 static int __init set_hashdist(char *str) 4881 { 4882 if (!str) 4883 return 0; 4884 hashdist = simple_strtoul(str, &str, 0); 4885 return 1; 4886 } 4887 __setup("hashdist=", set_hashdist); 4888 #endif 4889 4890 /* 4891 * allocate a large system hash table from bootmem 4892 * - it is assumed that the hash table must contain an exact power-of-2 4893 * quantity of entries 4894 * - limit is the number of hash buckets, not the total allocation size 4895 */ 4896 void *__init alloc_large_system_hash(const char *tablename, 4897 unsigned long bucketsize, 4898 unsigned long numentries, 4899 int scale, 4900 int flags, 4901 unsigned int *_hash_shift, 4902 unsigned int *_hash_mask, 4903 unsigned long limit) 4904 { 4905 unsigned long long max = limit; 4906 unsigned long log2qty, size; 4907 void *table = NULL; 4908 4909 /* allow the kernel cmdline to have a say */ 4910 if (!numentries) { 4911 /* round applicable memory size up to nearest megabyte */ 4912 numentries = nr_kernel_pages; 4913 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 4914 numentries >>= 20 - PAGE_SHIFT; 4915 numentries <<= 20 - PAGE_SHIFT; 4916 4917 /* limit to 1 bucket per 2^scale bytes of low memory */ 4918 if (scale > PAGE_SHIFT) 4919 numentries >>= (scale - PAGE_SHIFT); 4920 else 4921 numentries <<= (PAGE_SHIFT - scale); 4922 4923 /* Make sure we've got at least a 0-order allocation.. */ 4924 if (unlikely(flags & HASH_SMALL)) { 4925 /* Makes no sense without HASH_EARLY */ 4926 WARN_ON(!(flags & HASH_EARLY)); 4927 if (!(numentries >> *_hash_shift)) { 4928 numentries = 1UL << *_hash_shift; 4929 BUG_ON(!numentries); 4930 } 4931 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 4932 numentries = PAGE_SIZE / bucketsize; 4933 } 4934 numentries = roundup_pow_of_two(numentries); 4935 4936 /* limit allocation size to 1/16 total memory by default */ 4937 if (max == 0) { 4938 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 4939 do_div(max, bucketsize); 4940 } 4941 4942 if (numentries > max) 4943 numentries = max; 4944 4945 log2qty = ilog2(numentries); 4946 4947 do { 4948 size = bucketsize << log2qty; 4949 if (flags & HASH_EARLY) 4950 table = alloc_bootmem_nopanic(size); 4951 else if (hashdist) 4952 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 4953 else { 4954 /* 4955 * If bucketsize is not a power-of-two, we may free 4956 * some pages at the end of hash table which 4957 * alloc_pages_exact() automatically does 4958 */ 4959 if (get_order(size) < MAX_ORDER) { 4960 table = alloc_pages_exact(size, GFP_ATOMIC); 4961 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 4962 } 4963 } 4964 } while (!table && size > PAGE_SIZE && --log2qty); 4965 4966 if (!table) 4967 panic("Failed to allocate %s hash table\n", tablename); 4968 4969 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", 4970 tablename, 4971 (1U << log2qty), 4972 ilog2(size) - PAGE_SHIFT, 4973 size); 4974 4975 if (_hash_shift) 4976 *_hash_shift = log2qty; 4977 if (_hash_mask) 4978 *_hash_mask = (1 << log2qty) - 1; 4979 4980 return table; 4981 } 4982 4983 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 4984 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 4985 unsigned long pfn) 4986 { 4987 #ifdef CONFIG_SPARSEMEM 4988 return __pfn_to_section(pfn)->pageblock_flags; 4989 #else 4990 return zone->pageblock_flags; 4991 #endif /* CONFIG_SPARSEMEM */ 4992 } 4993 4994 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 4995 { 4996 #ifdef CONFIG_SPARSEMEM 4997 pfn &= (PAGES_PER_SECTION-1); 4998 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4999 #else 5000 pfn = pfn - zone->zone_start_pfn; 5001 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5002 #endif /* CONFIG_SPARSEMEM */ 5003 } 5004 5005 /** 5006 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5007 * @page: The page within the block of interest 5008 * @start_bitidx: The first bit of interest to retrieve 5009 * @end_bitidx: The last bit of interest 5010 * returns pageblock_bits flags 5011 */ 5012 unsigned long get_pageblock_flags_group(struct page *page, 5013 int start_bitidx, int end_bitidx) 5014 { 5015 struct zone *zone; 5016 unsigned long *bitmap; 5017 unsigned long pfn, bitidx; 5018 unsigned long flags = 0; 5019 unsigned long value = 1; 5020 5021 zone = page_zone(page); 5022 pfn = page_to_pfn(page); 5023 bitmap = get_pageblock_bitmap(zone, pfn); 5024 bitidx = pfn_to_bitidx(zone, pfn); 5025 5026 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5027 if (test_bit(bitidx + start_bitidx, bitmap)) 5028 flags |= value; 5029 5030 return flags; 5031 } 5032 5033 /** 5034 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5035 * @page: The page within the block of interest 5036 * @start_bitidx: The first bit of interest 5037 * @end_bitidx: The last bit of interest 5038 * @flags: The flags to set 5039 */ 5040 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5041 int start_bitidx, int end_bitidx) 5042 { 5043 struct zone *zone; 5044 unsigned long *bitmap; 5045 unsigned long pfn, bitidx; 5046 unsigned long value = 1; 5047 5048 zone = page_zone(page); 5049 pfn = page_to_pfn(page); 5050 bitmap = get_pageblock_bitmap(zone, pfn); 5051 bitidx = pfn_to_bitidx(zone, pfn); 5052 VM_BUG_ON(pfn < zone->zone_start_pfn); 5053 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5054 5055 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5056 if (flags & value) 5057 __set_bit(bitidx + start_bitidx, bitmap); 5058 else 5059 __clear_bit(bitidx + start_bitidx, bitmap); 5060 } 5061 5062 /* 5063 * This is designed as sub function...plz see page_isolation.c also. 5064 * set/clear page block's type to be ISOLATE. 5065 * page allocater never alloc memory from ISOLATE block. 5066 */ 5067 5068 int set_migratetype_isolate(struct page *page) 5069 { 5070 struct zone *zone; 5071 struct page *curr_page; 5072 unsigned long flags, pfn, iter; 5073 unsigned long immobile = 0; 5074 struct memory_isolate_notify arg; 5075 int notifier_ret; 5076 int ret = -EBUSY; 5077 int zone_idx; 5078 5079 zone = page_zone(page); 5080 zone_idx = zone_idx(zone); 5081 5082 spin_lock_irqsave(&zone->lock, flags); 5083 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE || 5084 zone_idx == ZONE_MOVABLE) { 5085 ret = 0; 5086 goto out; 5087 } 5088 5089 pfn = page_to_pfn(page); 5090 arg.start_pfn = pfn; 5091 arg.nr_pages = pageblock_nr_pages; 5092 arg.pages_found = 0; 5093 5094 /* 5095 * It may be possible to isolate a pageblock even if the 5096 * migratetype is not MIGRATE_MOVABLE. The memory isolation 5097 * notifier chain is used by balloon drivers to return the 5098 * number of pages in a range that are held by the balloon 5099 * driver to shrink memory. If all the pages are accounted for 5100 * by balloons, are free, or on the LRU, isolation can continue. 5101 * Later, for example, when memory hotplug notifier runs, these 5102 * pages reported as "can be isolated" should be isolated(freed) 5103 * by the balloon driver through the memory notifier chain. 5104 */ 5105 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); 5106 notifier_ret = notifier_to_errno(notifier_ret); 5107 if (notifier_ret || !arg.pages_found) 5108 goto out; 5109 5110 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) { 5111 if (!pfn_valid_within(pfn)) 5112 continue; 5113 5114 curr_page = pfn_to_page(iter); 5115 if (!page_count(curr_page) || PageLRU(curr_page)) 5116 continue; 5117 5118 immobile++; 5119 } 5120 5121 if (arg.pages_found == immobile) 5122 ret = 0; 5123 5124 out: 5125 if (!ret) { 5126 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5127 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5128 } 5129 5130 spin_unlock_irqrestore(&zone->lock, flags); 5131 if (!ret) 5132 drain_all_pages(); 5133 return ret; 5134 } 5135 5136 void unset_migratetype_isolate(struct page *page) 5137 { 5138 struct zone *zone; 5139 unsigned long flags; 5140 zone = page_zone(page); 5141 spin_lock_irqsave(&zone->lock, flags); 5142 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5143 goto out; 5144 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5145 move_freepages_block(zone, page, MIGRATE_MOVABLE); 5146 out: 5147 spin_unlock_irqrestore(&zone->lock, flags); 5148 } 5149 5150 #ifdef CONFIG_MEMORY_HOTREMOVE 5151 /* 5152 * All pages in the range must be isolated before calling this. 5153 */ 5154 void 5155 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5156 { 5157 struct page *page; 5158 struct zone *zone; 5159 int order, i; 5160 unsigned long pfn; 5161 unsigned long flags; 5162 /* find the first valid pfn */ 5163 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5164 if (pfn_valid(pfn)) 5165 break; 5166 if (pfn == end_pfn) 5167 return; 5168 zone = page_zone(pfn_to_page(pfn)); 5169 spin_lock_irqsave(&zone->lock, flags); 5170 pfn = start_pfn; 5171 while (pfn < end_pfn) { 5172 if (!pfn_valid(pfn)) { 5173 pfn++; 5174 continue; 5175 } 5176 page = pfn_to_page(pfn); 5177 BUG_ON(page_count(page)); 5178 BUG_ON(!PageBuddy(page)); 5179 order = page_order(page); 5180 #ifdef CONFIG_DEBUG_VM 5181 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5182 pfn, 1 << order, end_pfn); 5183 #endif 5184 list_del(&page->lru); 5185 rmv_page_order(page); 5186 zone->free_area[order].nr_free--; 5187 __mod_zone_page_state(zone, NR_FREE_PAGES, 5188 - (1UL << order)); 5189 for (i = 0; i < (1 << order); i++) 5190 SetPageReserved((page+i)); 5191 pfn += (1 << order); 5192 } 5193 spin_unlock_irqrestore(&zone->lock, flags); 5194 } 5195 #endif 5196 5197 #ifdef CONFIG_MEMORY_FAILURE 5198 bool is_free_buddy_page(struct page *page) 5199 { 5200 struct zone *zone = page_zone(page); 5201 unsigned long pfn = page_to_pfn(page); 5202 unsigned long flags; 5203 int order; 5204 5205 spin_lock_irqsave(&zone->lock, flags); 5206 for (order = 0; order < MAX_ORDER; order++) { 5207 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5208 5209 if (PageBuddy(page_head) && page_order(page_head) >= order) 5210 break; 5211 } 5212 spin_unlock_irqrestore(&zone->lock, flags); 5213 5214 return order < MAX_ORDER; 5215 } 5216 #endif 5217 5218 static struct trace_print_flags pageflag_names[] = { 5219 {1UL << PG_locked, "locked" }, 5220 {1UL << PG_error, "error" }, 5221 {1UL << PG_referenced, "referenced" }, 5222 {1UL << PG_uptodate, "uptodate" }, 5223 {1UL << PG_dirty, "dirty" }, 5224 {1UL << PG_lru, "lru" }, 5225 {1UL << PG_active, "active" }, 5226 {1UL << PG_slab, "slab" }, 5227 {1UL << PG_owner_priv_1, "owner_priv_1" }, 5228 {1UL << PG_arch_1, "arch_1" }, 5229 {1UL << PG_reserved, "reserved" }, 5230 {1UL << PG_private, "private" }, 5231 {1UL << PG_private_2, "private_2" }, 5232 {1UL << PG_writeback, "writeback" }, 5233 #ifdef CONFIG_PAGEFLAGS_EXTENDED 5234 {1UL << PG_head, "head" }, 5235 {1UL << PG_tail, "tail" }, 5236 #else 5237 {1UL << PG_compound, "compound" }, 5238 #endif 5239 {1UL << PG_swapcache, "swapcache" }, 5240 {1UL << PG_mappedtodisk, "mappedtodisk" }, 5241 {1UL << PG_reclaim, "reclaim" }, 5242 {1UL << PG_buddy, "buddy" }, 5243 {1UL << PG_swapbacked, "swapbacked" }, 5244 {1UL << PG_unevictable, "unevictable" }, 5245 #ifdef CONFIG_MMU 5246 {1UL << PG_mlocked, "mlocked" }, 5247 #endif 5248 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 5249 {1UL << PG_uncached, "uncached" }, 5250 #endif 5251 #ifdef CONFIG_MEMORY_FAILURE 5252 {1UL << PG_hwpoison, "hwpoison" }, 5253 #endif 5254 {-1UL, NULL }, 5255 }; 5256 5257 static void dump_page_flags(unsigned long flags) 5258 { 5259 const char *delim = ""; 5260 unsigned long mask; 5261 int i; 5262 5263 printk(KERN_ALERT "page flags: %#lx(", flags); 5264 5265 /* remove zone id */ 5266 flags &= (1UL << NR_PAGEFLAGS) - 1; 5267 5268 for (i = 0; pageflag_names[i].name && flags; i++) { 5269 5270 mask = pageflag_names[i].mask; 5271 if ((flags & mask) != mask) 5272 continue; 5273 5274 flags &= ~mask; 5275 printk("%s%s", delim, pageflag_names[i].name); 5276 delim = "|"; 5277 } 5278 5279 /* check for left over flags */ 5280 if (flags) 5281 printk("%s%#lx", delim, flags); 5282 5283 printk(")\n"); 5284 } 5285 5286 void dump_page(struct page *page) 5287 { 5288 printk(KERN_ALERT 5289 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 5290 page, page_count(page), page_mapcount(page), 5291 page->mapping, page->index); 5292 dump_page_flags(page->flags); 5293 } 5294