xref: /openbmc/linux/mm/page_alloc.c (revision e325c90ffc13b698fa2814102e05275b21c26bec)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <linux/memory.h>
52 #include <trace/events/kmem.h>
53 #include <linux/ftrace_event.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 #include "internal.h"
58 
59 /*
60  * Array of node states.
61  */
62 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
63 	[N_POSSIBLE] = NODE_MASK_ALL,
64 	[N_ONLINE] = { { [0] = 1UL } },
65 #ifndef CONFIG_NUMA
66 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
67 #ifdef CONFIG_HIGHMEM
68 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
69 #endif
70 	[N_CPU] = { { [0] = 1UL } },
71 #endif	/* NUMA */
72 };
73 EXPORT_SYMBOL(node_states);
74 
75 unsigned long totalram_pages __read_mostly;
76 unsigned long totalreserve_pages __read_mostly;
77 int percpu_pagelist_fraction;
78 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
79 
80 #ifdef CONFIG_PM_SLEEP
81 /*
82  * The following functions are used by the suspend/hibernate code to temporarily
83  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
84  * while devices are suspended.  To avoid races with the suspend/hibernate code,
85  * they should always be called with pm_mutex held (gfp_allowed_mask also should
86  * only be modified with pm_mutex held, unless the suspend/hibernate code is
87  * guaranteed not to run in parallel with that modification).
88  */
89 void set_gfp_allowed_mask(gfp_t mask)
90 {
91 	WARN_ON(!mutex_is_locked(&pm_mutex));
92 	gfp_allowed_mask = mask;
93 }
94 
95 gfp_t clear_gfp_allowed_mask(gfp_t mask)
96 {
97 	gfp_t ret = gfp_allowed_mask;
98 
99 	WARN_ON(!mutex_is_locked(&pm_mutex));
100 	gfp_allowed_mask &= ~mask;
101 	return ret;
102 }
103 #endif /* CONFIG_PM_SLEEP */
104 
105 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
106 int pageblock_order __read_mostly;
107 #endif
108 
109 static void __free_pages_ok(struct page *page, unsigned int order);
110 
111 /*
112  * results with 256, 32 in the lowmem_reserve sysctl:
113  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
114  *	1G machine -> (16M dma, 784M normal, 224M high)
115  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
116  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
117  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
118  *
119  * TBD: should special case ZONE_DMA32 machines here - in those we normally
120  * don't need any ZONE_NORMAL reservation
121  */
122 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
123 #ifdef CONFIG_ZONE_DMA
124 	 256,
125 #endif
126 #ifdef CONFIG_ZONE_DMA32
127 	 256,
128 #endif
129 #ifdef CONFIG_HIGHMEM
130 	 32,
131 #endif
132 	 32,
133 };
134 
135 EXPORT_SYMBOL(totalram_pages);
136 
137 static char * const zone_names[MAX_NR_ZONES] = {
138 #ifdef CONFIG_ZONE_DMA
139 	 "DMA",
140 #endif
141 #ifdef CONFIG_ZONE_DMA32
142 	 "DMA32",
143 #endif
144 	 "Normal",
145 #ifdef CONFIG_HIGHMEM
146 	 "HighMem",
147 #endif
148 	 "Movable",
149 };
150 
151 int min_free_kbytes = 1024;
152 
153 static unsigned long __meminitdata nr_kernel_pages;
154 static unsigned long __meminitdata nr_all_pages;
155 static unsigned long __meminitdata dma_reserve;
156 
157 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
158   /*
159    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
160    * ranges of memory (RAM) that may be registered with add_active_range().
161    * Ranges passed to add_active_range() will be merged if possible
162    * so the number of times add_active_range() can be called is
163    * related to the number of nodes and the number of holes
164    */
165   #ifdef CONFIG_MAX_ACTIVE_REGIONS
166     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
167     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
168   #else
169     #if MAX_NUMNODES >= 32
170       /* If there can be many nodes, allow up to 50 holes per node */
171       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
172     #else
173       /* By default, allow up to 256 distinct regions */
174       #define MAX_ACTIVE_REGIONS 256
175     #endif
176   #endif
177 
178   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
179   static int __meminitdata nr_nodemap_entries;
180   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
181   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
182   static unsigned long __initdata required_kernelcore;
183   static unsigned long __initdata required_movablecore;
184   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
185 
186   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
187   int movable_zone;
188   EXPORT_SYMBOL(movable_zone);
189 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
190 
191 #if MAX_NUMNODES > 1
192 int nr_node_ids __read_mostly = MAX_NUMNODES;
193 int nr_online_nodes __read_mostly = 1;
194 EXPORT_SYMBOL(nr_node_ids);
195 EXPORT_SYMBOL(nr_online_nodes);
196 #endif
197 
198 int page_group_by_mobility_disabled __read_mostly;
199 
200 static void set_pageblock_migratetype(struct page *page, int migratetype)
201 {
202 
203 	if (unlikely(page_group_by_mobility_disabled))
204 		migratetype = MIGRATE_UNMOVABLE;
205 
206 	set_pageblock_flags_group(page, (unsigned long)migratetype,
207 					PB_migrate, PB_migrate_end);
208 }
209 
210 bool oom_killer_disabled __read_mostly;
211 
212 #ifdef CONFIG_DEBUG_VM
213 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
214 {
215 	int ret = 0;
216 	unsigned seq;
217 	unsigned long pfn = page_to_pfn(page);
218 
219 	do {
220 		seq = zone_span_seqbegin(zone);
221 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
222 			ret = 1;
223 		else if (pfn < zone->zone_start_pfn)
224 			ret = 1;
225 	} while (zone_span_seqretry(zone, seq));
226 
227 	return ret;
228 }
229 
230 static int page_is_consistent(struct zone *zone, struct page *page)
231 {
232 	if (!pfn_valid_within(page_to_pfn(page)))
233 		return 0;
234 	if (zone != page_zone(page))
235 		return 0;
236 
237 	return 1;
238 }
239 /*
240  * Temporary debugging check for pages not lying within a given zone.
241  */
242 static int bad_range(struct zone *zone, struct page *page)
243 {
244 	if (page_outside_zone_boundaries(zone, page))
245 		return 1;
246 	if (!page_is_consistent(zone, page))
247 		return 1;
248 
249 	return 0;
250 }
251 #else
252 static inline int bad_range(struct zone *zone, struct page *page)
253 {
254 	return 0;
255 }
256 #endif
257 
258 static void bad_page(struct page *page)
259 {
260 	static unsigned long resume;
261 	static unsigned long nr_shown;
262 	static unsigned long nr_unshown;
263 
264 	/* Don't complain about poisoned pages */
265 	if (PageHWPoison(page)) {
266 		__ClearPageBuddy(page);
267 		return;
268 	}
269 
270 	/*
271 	 * Allow a burst of 60 reports, then keep quiet for that minute;
272 	 * or allow a steady drip of one report per second.
273 	 */
274 	if (nr_shown == 60) {
275 		if (time_before(jiffies, resume)) {
276 			nr_unshown++;
277 			goto out;
278 		}
279 		if (nr_unshown) {
280 			printk(KERN_ALERT
281 			      "BUG: Bad page state: %lu messages suppressed\n",
282 				nr_unshown);
283 			nr_unshown = 0;
284 		}
285 		nr_shown = 0;
286 	}
287 	if (nr_shown++ == 0)
288 		resume = jiffies + 60 * HZ;
289 
290 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
291 		current->comm, page_to_pfn(page));
292 	dump_page(page);
293 
294 	dump_stack();
295 out:
296 	/* Leave bad fields for debug, except PageBuddy could make trouble */
297 	__ClearPageBuddy(page);
298 	add_taint(TAINT_BAD_PAGE);
299 }
300 
301 /*
302  * Higher-order pages are called "compound pages".  They are structured thusly:
303  *
304  * The first PAGE_SIZE page is called the "head page".
305  *
306  * The remaining PAGE_SIZE pages are called "tail pages".
307  *
308  * All pages have PG_compound set.  All pages have their ->private pointing at
309  * the head page (even the head page has this).
310  *
311  * The first tail page's ->lru.next holds the address of the compound page's
312  * put_page() function.  Its ->lru.prev holds the order of allocation.
313  * This usage means that zero-order pages may not be compound.
314  */
315 
316 static void free_compound_page(struct page *page)
317 {
318 	__free_pages_ok(page, compound_order(page));
319 }
320 
321 void prep_compound_page(struct page *page, unsigned long order)
322 {
323 	int i;
324 	int nr_pages = 1 << order;
325 
326 	set_compound_page_dtor(page, free_compound_page);
327 	set_compound_order(page, order);
328 	__SetPageHead(page);
329 	for (i = 1; i < nr_pages; i++) {
330 		struct page *p = page + i;
331 
332 		__SetPageTail(p);
333 		p->first_page = page;
334 	}
335 }
336 
337 static int destroy_compound_page(struct page *page, unsigned long order)
338 {
339 	int i;
340 	int nr_pages = 1 << order;
341 	int bad = 0;
342 
343 	if (unlikely(compound_order(page) != order) ||
344 	    unlikely(!PageHead(page))) {
345 		bad_page(page);
346 		bad++;
347 	}
348 
349 	__ClearPageHead(page);
350 
351 	for (i = 1; i < nr_pages; i++) {
352 		struct page *p = page + i;
353 
354 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
355 			bad_page(page);
356 			bad++;
357 		}
358 		__ClearPageTail(p);
359 	}
360 
361 	return bad;
362 }
363 
364 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
365 {
366 	int i;
367 
368 	/*
369 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
370 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
371 	 */
372 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
373 	for (i = 0; i < (1 << order); i++)
374 		clear_highpage(page + i);
375 }
376 
377 static inline void set_page_order(struct page *page, int order)
378 {
379 	set_page_private(page, order);
380 	__SetPageBuddy(page);
381 }
382 
383 static inline void rmv_page_order(struct page *page)
384 {
385 	__ClearPageBuddy(page);
386 	set_page_private(page, 0);
387 }
388 
389 /*
390  * Locate the struct page for both the matching buddy in our
391  * pair (buddy1) and the combined O(n+1) page they form (page).
392  *
393  * 1) Any buddy B1 will have an order O twin B2 which satisfies
394  * the following equation:
395  *     B2 = B1 ^ (1 << O)
396  * For example, if the starting buddy (buddy2) is #8 its order
397  * 1 buddy is #10:
398  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
399  *
400  * 2) Any buddy B will have an order O+1 parent P which
401  * satisfies the following equation:
402  *     P = B & ~(1 << O)
403  *
404  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
405  */
406 static inline struct page *
407 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
408 {
409 	unsigned long buddy_idx = page_idx ^ (1 << order);
410 
411 	return page + (buddy_idx - page_idx);
412 }
413 
414 static inline unsigned long
415 __find_combined_index(unsigned long page_idx, unsigned int order)
416 {
417 	return (page_idx & ~(1 << order));
418 }
419 
420 /*
421  * This function checks whether a page is free && is the buddy
422  * we can do coalesce a page and its buddy if
423  * (a) the buddy is not in a hole &&
424  * (b) the buddy is in the buddy system &&
425  * (c) a page and its buddy have the same order &&
426  * (d) a page and its buddy are in the same zone.
427  *
428  * For recording whether a page is in the buddy system, we use PG_buddy.
429  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
430  *
431  * For recording page's order, we use page_private(page).
432  */
433 static inline int page_is_buddy(struct page *page, struct page *buddy,
434 								int order)
435 {
436 	if (!pfn_valid_within(page_to_pfn(buddy)))
437 		return 0;
438 
439 	if (page_zone_id(page) != page_zone_id(buddy))
440 		return 0;
441 
442 	if (PageBuddy(buddy) && page_order(buddy) == order) {
443 		VM_BUG_ON(page_count(buddy) != 0);
444 		return 1;
445 	}
446 	return 0;
447 }
448 
449 /*
450  * Freeing function for a buddy system allocator.
451  *
452  * The concept of a buddy system is to maintain direct-mapped table
453  * (containing bit values) for memory blocks of various "orders".
454  * The bottom level table contains the map for the smallest allocatable
455  * units of memory (here, pages), and each level above it describes
456  * pairs of units from the levels below, hence, "buddies".
457  * At a high level, all that happens here is marking the table entry
458  * at the bottom level available, and propagating the changes upward
459  * as necessary, plus some accounting needed to play nicely with other
460  * parts of the VM system.
461  * At each level, we keep a list of pages, which are heads of continuous
462  * free pages of length of (1 << order) and marked with PG_buddy. Page's
463  * order is recorded in page_private(page) field.
464  * So when we are allocating or freeing one, we can derive the state of the
465  * other.  That is, if we allocate a small block, and both were
466  * free, the remainder of the region must be split into blocks.
467  * If a block is freed, and its buddy is also free, then this
468  * triggers coalescing into a block of larger size.
469  *
470  * -- wli
471  */
472 
473 static inline void __free_one_page(struct page *page,
474 		struct zone *zone, unsigned int order,
475 		int migratetype)
476 {
477 	unsigned long page_idx;
478 	unsigned long combined_idx;
479 	struct page *buddy;
480 
481 	if (unlikely(PageCompound(page)))
482 		if (unlikely(destroy_compound_page(page, order)))
483 			return;
484 
485 	VM_BUG_ON(migratetype == -1);
486 
487 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
488 
489 	VM_BUG_ON(page_idx & ((1 << order) - 1));
490 	VM_BUG_ON(bad_range(zone, page));
491 
492 	while (order < MAX_ORDER-1) {
493 		buddy = __page_find_buddy(page, page_idx, order);
494 		if (!page_is_buddy(page, buddy, order))
495 			break;
496 
497 		/* Our buddy is free, merge with it and move up one order. */
498 		list_del(&buddy->lru);
499 		zone->free_area[order].nr_free--;
500 		rmv_page_order(buddy);
501 		combined_idx = __find_combined_index(page_idx, order);
502 		page = page + (combined_idx - page_idx);
503 		page_idx = combined_idx;
504 		order++;
505 	}
506 	set_page_order(page, order);
507 
508 	/*
509 	 * If this is not the largest possible page, check if the buddy
510 	 * of the next-highest order is free. If it is, it's possible
511 	 * that pages are being freed that will coalesce soon. In case,
512 	 * that is happening, add the free page to the tail of the list
513 	 * so it's less likely to be used soon and more likely to be merged
514 	 * as a higher order page
515 	 */
516 	if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
517 		struct page *higher_page, *higher_buddy;
518 		combined_idx = __find_combined_index(page_idx, order);
519 		higher_page = page + combined_idx - page_idx;
520 		higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
521 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
522 			list_add_tail(&page->lru,
523 				&zone->free_area[order].free_list[migratetype]);
524 			goto out;
525 		}
526 	}
527 
528 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
529 out:
530 	zone->free_area[order].nr_free++;
531 }
532 
533 /*
534  * free_page_mlock() -- clean up attempts to free and mlocked() page.
535  * Page should not be on lru, so no need to fix that up.
536  * free_pages_check() will verify...
537  */
538 static inline void free_page_mlock(struct page *page)
539 {
540 	__dec_zone_page_state(page, NR_MLOCK);
541 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
542 }
543 
544 static inline int free_pages_check(struct page *page)
545 {
546 	if (unlikely(page_mapcount(page) |
547 		(page->mapping != NULL)  |
548 		(atomic_read(&page->_count) != 0) |
549 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
550 		bad_page(page);
551 		return 1;
552 	}
553 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
554 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
555 	return 0;
556 }
557 
558 /*
559  * Frees a number of pages from the PCP lists
560  * Assumes all pages on list are in same zone, and of same order.
561  * count is the number of pages to free.
562  *
563  * If the zone was previously in an "all pages pinned" state then look to
564  * see if this freeing clears that state.
565  *
566  * And clear the zone's pages_scanned counter, to hold off the "all pages are
567  * pinned" detection logic.
568  */
569 static void free_pcppages_bulk(struct zone *zone, int count,
570 					struct per_cpu_pages *pcp)
571 {
572 	int migratetype = 0;
573 	int batch_free = 0;
574 
575 	spin_lock(&zone->lock);
576 	zone->all_unreclaimable = 0;
577 	zone->pages_scanned = 0;
578 
579 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
580 	while (count) {
581 		struct page *page;
582 		struct list_head *list;
583 
584 		/*
585 		 * Remove pages from lists in a round-robin fashion. A
586 		 * batch_free count is maintained that is incremented when an
587 		 * empty list is encountered.  This is so more pages are freed
588 		 * off fuller lists instead of spinning excessively around empty
589 		 * lists
590 		 */
591 		do {
592 			batch_free++;
593 			if (++migratetype == MIGRATE_PCPTYPES)
594 				migratetype = 0;
595 			list = &pcp->lists[migratetype];
596 		} while (list_empty(list));
597 
598 		do {
599 			page = list_entry(list->prev, struct page, lru);
600 			/* must delete as __free_one_page list manipulates */
601 			list_del(&page->lru);
602 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
603 			__free_one_page(page, zone, 0, page_private(page));
604 			trace_mm_page_pcpu_drain(page, 0, page_private(page));
605 		} while (--count && --batch_free && !list_empty(list));
606 	}
607 	spin_unlock(&zone->lock);
608 }
609 
610 static void free_one_page(struct zone *zone, struct page *page, int order,
611 				int migratetype)
612 {
613 	spin_lock(&zone->lock);
614 	zone->all_unreclaimable = 0;
615 	zone->pages_scanned = 0;
616 
617 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
618 	__free_one_page(page, zone, order, migratetype);
619 	spin_unlock(&zone->lock);
620 }
621 
622 static void __free_pages_ok(struct page *page, unsigned int order)
623 {
624 	unsigned long flags;
625 	int i;
626 	int bad = 0;
627 	int wasMlocked = __TestClearPageMlocked(page);
628 
629 	trace_mm_page_free_direct(page, order);
630 	kmemcheck_free_shadow(page, order);
631 
632 	for (i = 0 ; i < (1 << order) ; ++i)
633 		bad += free_pages_check(page + i);
634 	if (bad)
635 		return;
636 
637 	if (!PageHighMem(page)) {
638 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
639 		debug_check_no_obj_freed(page_address(page),
640 					   PAGE_SIZE << order);
641 	}
642 	arch_free_page(page, order);
643 	kernel_map_pages(page, 1 << order, 0);
644 
645 	local_irq_save(flags);
646 	if (unlikely(wasMlocked))
647 		free_page_mlock(page);
648 	__count_vm_events(PGFREE, 1 << order);
649 	free_one_page(page_zone(page), page, order,
650 					get_pageblock_migratetype(page));
651 	local_irq_restore(flags);
652 }
653 
654 /*
655  * permit the bootmem allocator to evade page validation on high-order frees
656  */
657 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
658 {
659 	if (order == 0) {
660 		__ClearPageReserved(page);
661 		set_page_count(page, 0);
662 		set_page_refcounted(page);
663 		__free_page(page);
664 	} else {
665 		int loop;
666 
667 		prefetchw(page);
668 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
669 			struct page *p = &page[loop];
670 
671 			if (loop + 1 < BITS_PER_LONG)
672 				prefetchw(p + 1);
673 			__ClearPageReserved(p);
674 			set_page_count(p, 0);
675 		}
676 
677 		set_page_refcounted(page);
678 		__free_pages(page, order);
679 	}
680 }
681 
682 
683 /*
684  * The order of subdivision here is critical for the IO subsystem.
685  * Please do not alter this order without good reasons and regression
686  * testing. Specifically, as large blocks of memory are subdivided,
687  * the order in which smaller blocks are delivered depends on the order
688  * they're subdivided in this function. This is the primary factor
689  * influencing the order in which pages are delivered to the IO
690  * subsystem according to empirical testing, and this is also justified
691  * by considering the behavior of a buddy system containing a single
692  * large block of memory acted on by a series of small allocations.
693  * This behavior is a critical factor in sglist merging's success.
694  *
695  * -- wli
696  */
697 static inline void expand(struct zone *zone, struct page *page,
698 	int low, int high, struct free_area *area,
699 	int migratetype)
700 {
701 	unsigned long size = 1 << high;
702 
703 	while (high > low) {
704 		area--;
705 		high--;
706 		size >>= 1;
707 		VM_BUG_ON(bad_range(zone, &page[size]));
708 		list_add(&page[size].lru, &area->free_list[migratetype]);
709 		area->nr_free++;
710 		set_page_order(&page[size], high);
711 	}
712 }
713 
714 /*
715  * This page is about to be returned from the page allocator
716  */
717 static inline int check_new_page(struct page *page)
718 {
719 	if (unlikely(page_mapcount(page) |
720 		(page->mapping != NULL)  |
721 		(atomic_read(&page->_count) != 0)  |
722 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
723 		bad_page(page);
724 		return 1;
725 	}
726 	return 0;
727 }
728 
729 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
730 {
731 	int i;
732 
733 	for (i = 0; i < (1 << order); i++) {
734 		struct page *p = page + i;
735 		if (unlikely(check_new_page(p)))
736 			return 1;
737 	}
738 
739 	set_page_private(page, 0);
740 	set_page_refcounted(page);
741 
742 	arch_alloc_page(page, order);
743 	kernel_map_pages(page, 1 << order, 1);
744 
745 	if (gfp_flags & __GFP_ZERO)
746 		prep_zero_page(page, order, gfp_flags);
747 
748 	if (order && (gfp_flags & __GFP_COMP))
749 		prep_compound_page(page, order);
750 
751 	return 0;
752 }
753 
754 /*
755  * Go through the free lists for the given migratetype and remove
756  * the smallest available page from the freelists
757  */
758 static inline
759 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
760 						int migratetype)
761 {
762 	unsigned int current_order;
763 	struct free_area * area;
764 	struct page *page;
765 
766 	/* Find a page of the appropriate size in the preferred list */
767 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
768 		area = &(zone->free_area[current_order]);
769 		if (list_empty(&area->free_list[migratetype]))
770 			continue;
771 
772 		page = list_entry(area->free_list[migratetype].next,
773 							struct page, lru);
774 		list_del(&page->lru);
775 		rmv_page_order(page);
776 		area->nr_free--;
777 		expand(zone, page, order, current_order, area, migratetype);
778 		return page;
779 	}
780 
781 	return NULL;
782 }
783 
784 
785 /*
786  * This array describes the order lists are fallen back to when
787  * the free lists for the desirable migrate type are depleted
788  */
789 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
790 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
791 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
792 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
793 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
794 };
795 
796 /*
797  * Move the free pages in a range to the free lists of the requested type.
798  * Note that start_page and end_pages are not aligned on a pageblock
799  * boundary. If alignment is required, use move_freepages_block()
800  */
801 static int move_freepages(struct zone *zone,
802 			  struct page *start_page, struct page *end_page,
803 			  int migratetype)
804 {
805 	struct page *page;
806 	unsigned long order;
807 	int pages_moved = 0;
808 
809 #ifndef CONFIG_HOLES_IN_ZONE
810 	/*
811 	 * page_zone is not safe to call in this context when
812 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
813 	 * anyway as we check zone boundaries in move_freepages_block().
814 	 * Remove at a later date when no bug reports exist related to
815 	 * grouping pages by mobility
816 	 */
817 	BUG_ON(page_zone(start_page) != page_zone(end_page));
818 #endif
819 
820 	for (page = start_page; page <= end_page;) {
821 		/* Make sure we are not inadvertently changing nodes */
822 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
823 
824 		if (!pfn_valid_within(page_to_pfn(page))) {
825 			page++;
826 			continue;
827 		}
828 
829 		if (!PageBuddy(page)) {
830 			page++;
831 			continue;
832 		}
833 
834 		order = page_order(page);
835 		list_del(&page->lru);
836 		list_add(&page->lru,
837 			&zone->free_area[order].free_list[migratetype]);
838 		page += 1 << order;
839 		pages_moved += 1 << order;
840 	}
841 
842 	return pages_moved;
843 }
844 
845 static int move_freepages_block(struct zone *zone, struct page *page,
846 				int migratetype)
847 {
848 	unsigned long start_pfn, end_pfn;
849 	struct page *start_page, *end_page;
850 
851 	start_pfn = page_to_pfn(page);
852 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
853 	start_page = pfn_to_page(start_pfn);
854 	end_page = start_page + pageblock_nr_pages - 1;
855 	end_pfn = start_pfn + pageblock_nr_pages - 1;
856 
857 	/* Do not cross zone boundaries */
858 	if (start_pfn < zone->zone_start_pfn)
859 		start_page = page;
860 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
861 		return 0;
862 
863 	return move_freepages(zone, start_page, end_page, migratetype);
864 }
865 
866 static void change_pageblock_range(struct page *pageblock_page,
867 					int start_order, int migratetype)
868 {
869 	int nr_pageblocks = 1 << (start_order - pageblock_order);
870 
871 	while (nr_pageblocks--) {
872 		set_pageblock_migratetype(pageblock_page, migratetype);
873 		pageblock_page += pageblock_nr_pages;
874 	}
875 }
876 
877 /* Remove an element from the buddy allocator from the fallback list */
878 static inline struct page *
879 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
880 {
881 	struct free_area * area;
882 	int current_order;
883 	struct page *page;
884 	int migratetype, i;
885 
886 	/* Find the largest possible block of pages in the other list */
887 	for (current_order = MAX_ORDER-1; current_order >= order;
888 						--current_order) {
889 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
890 			migratetype = fallbacks[start_migratetype][i];
891 
892 			/* MIGRATE_RESERVE handled later if necessary */
893 			if (migratetype == MIGRATE_RESERVE)
894 				continue;
895 
896 			area = &(zone->free_area[current_order]);
897 			if (list_empty(&area->free_list[migratetype]))
898 				continue;
899 
900 			page = list_entry(area->free_list[migratetype].next,
901 					struct page, lru);
902 			area->nr_free--;
903 
904 			/*
905 			 * If breaking a large block of pages, move all free
906 			 * pages to the preferred allocation list. If falling
907 			 * back for a reclaimable kernel allocation, be more
908 			 * agressive about taking ownership of free pages
909 			 */
910 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
911 					start_migratetype == MIGRATE_RECLAIMABLE ||
912 					page_group_by_mobility_disabled) {
913 				unsigned long pages;
914 				pages = move_freepages_block(zone, page,
915 								start_migratetype);
916 
917 				/* Claim the whole block if over half of it is free */
918 				if (pages >= (1 << (pageblock_order-1)) ||
919 						page_group_by_mobility_disabled)
920 					set_pageblock_migratetype(page,
921 								start_migratetype);
922 
923 				migratetype = start_migratetype;
924 			}
925 
926 			/* Remove the page from the freelists */
927 			list_del(&page->lru);
928 			rmv_page_order(page);
929 
930 			/* Take ownership for orders >= pageblock_order */
931 			if (current_order >= pageblock_order)
932 				change_pageblock_range(page, current_order,
933 							start_migratetype);
934 
935 			expand(zone, page, order, current_order, area, migratetype);
936 
937 			trace_mm_page_alloc_extfrag(page, order, current_order,
938 				start_migratetype, migratetype);
939 
940 			return page;
941 		}
942 	}
943 
944 	return NULL;
945 }
946 
947 /*
948  * Do the hard work of removing an element from the buddy allocator.
949  * Call me with the zone->lock already held.
950  */
951 static struct page *__rmqueue(struct zone *zone, unsigned int order,
952 						int migratetype)
953 {
954 	struct page *page;
955 
956 retry_reserve:
957 	page = __rmqueue_smallest(zone, order, migratetype);
958 
959 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
960 		page = __rmqueue_fallback(zone, order, migratetype);
961 
962 		/*
963 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
964 		 * is used because __rmqueue_smallest is an inline function
965 		 * and we want just one call site
966 		 */
967 		if (!page) {
968 			migratetype = MIGRATE_RESERVE;
969 			goto retry_reserve;
970 		}
971 	}
972 
973 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
974 	return page;
975 }
976 
977 /*
978  * Obtain a specified number of elements from the buddy allocator, all under
979  * a single hold of the lock, for efficiency.  Add them to the supplied list.
980  * Returns the number of new pages which were placed at *list.
981  */
982 static int rmqueue_bulk(struct zone *zone, unsigned int order,
983 			unsigned long count, struct list_head *list,
984 			int migratetype, int cold)
985 {
986 	int i;
987 
988 	spin_lock(&zone->lock);
989 	for (i = 0; i < count; ++i) {
990 		struct page *page = __rmqueue(zone, order, migratetype);
991 		if (unlikely(page == NULL))
992 			break;
993 
994 		/*
995 		 * Split buddy pages returned by expand() are received here
996 		 * in physical page order. The page is added to the callers and
997 		 * list and the list head then moves forward. From the callers
998 		 * perspective, the linked list is ordered by page number in
999 		 * some conditions. This is useful for IO devices that can
1000 		 * merge IO requests if the physical pages are ordered
1001 		 * properly.
1002 		 */
1003 		if (likely(cold == 0))
1004 			list_add(&page->lru, list);
1005 		else
1006 			list_add_tail(&page->lru, list);
1007 		set_page_private(page, migratetype);
1008 		list = &page->lru;
1009 	}
1010 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1011 	spin_unlock(&zone->lock);
1012 	return i;
1013 }
1014 
1015 #ifdef CONFIG_NUMA
1016 /*
1017  * Called from the vmstat counter updater to drain pagesets of this
1018  * currently executing processor on remote nodes after they have
1019  * expired.
1020  *
1021  * Note that this function must be called with the thread pinned to
1022  * a single processor.
1023  */
1024 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1025 {
1026 	unsigned long flags;
1027 	int to_drain;
1028 
1029 	local_irq_save(flags);
1030 	if (pcp->count >= pcp->batch)
1031 		to_drain = pcp->batch;
1032 	else
1033 		to_drain = pcp->count;
1034 	free_pcppages_bulk(zone, to_drain, pcp);
1035 	pcp->count -= to_drain;
1036 	local_irq_restore(flags);
1037 }
1038 #endif
1039 
1040 /*
1041  * Drain pages of the indicated processor.
1042  *
1043  * The processor must either be the current processor and the
1044  * thread pinned to the current processor or a processor that
1045  * is not online.
1046  */
1047 static void drain_pages(unsigned int cpu)
1048 {
1049 	unsigned long flags;
1050 	struct zone *zone;
1051 
1052 	for_each_populated_zone(zone) {
1053 		struct per_cpu_pageset *pset;
1054 		struct per_cpu_pages *pcp;
1055 
1056 		local_irq_save(flags);
1057 		pset = per_cpu_ptr(zone->pageset, cpu);
1058 
1059 		pcp = &pset->pcp;
1060 		free_pcppages_bulk(zone, pcp->count, pcp);
1061 		pcp->count = 0;
1062 		local_irq_restore(flags);
1063 	}
1064 }
1065 
1066 /*
1067  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1068  */
1069 void drain_local_pages(void *arg)
1070 {
1071 	drain_pages(smp_processor_id());
1072 }
1073 
1074 /*
1075  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1076  */
1077 void drain_all_pages(void)
1078 {
1079 	on_each_cpu(drain_local_pages, NULL, 1);
1080 }
1081 
1082 #ifdef CONFIG_HIBERNATION
1083 
1084 void mark_free_pages(struct zone *zone)
1085 {
1086 	unsigned long pfn, max_zone_pfn;
1087 	unsigned long flags;
1088 	int order, t;
1089 	struct list_head *curr;
1090 
1091 	if (!zone->spanned_pages)
1092 		return;
1093 
1094 	spin_lock_irqsave(&zone->lock, flags);
1095 
1096 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1097 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1098 		if (pfn_valid(pfn)) {
1099 			struct page *page = pfn_to_page(pfn);
1100 
1101 			if (!swsusp_page_is_forbidden(page))
1102 				swsusp_unset_page_free(page);
1103 		}
1104 
1105 	for_each_migratetype_order(order, t) {
1106 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1107 			unsigned long i;
1108 
1109 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1110 			for (i = 0; i < (1UL << order); i++)
1111 				swsusp_set_page_free(pfn_to_page(pfn + i));
1112 		}
1113 	}
1114 	spin_unlock_irqrestore(&zone->lock, flags);
1115 }
1116 #endif /* CONFIG_PM */
1117 
1118 /*
1119  * Free a 0-order page
1120  * cold == 1 ? free a cold page : free a hot page
1121  */
1122 void free_hot_cold_page(struct page *page, int cold)
1123 {
1124 	struct zone *zone = page_zone(page);
1125 	struct per_cpu_pages *pcp;
1126 	unsigned long flags;
1127 	int migratetype;
1128 	int wasMlocked = __TestClearPageMlocked(page);
1129 
1130 	trace_mm_page_free_direct(page, 0);
1131 	kmemcheck_free_shadow(page, 0);
1132 
1133 	if (PageAnon(page))
1134 		page->mapping = NULL;
1135 	if (free_pages_check(page))
1136 		return;
1137 
1138 	if (!PageHighMem(page)) {
1139 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1140 		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1141 	}
1142 	arch_free_page(page, 0);
1143 	kernel_map_pages(page, 1, 0);
1144 
1145 	migratetype = get_pageblock_migratetype(page);
1146 	set_page_private(page, migratetype);
1147 	local_irq_save(flags);
1148 	if (unlikely(wasMlocked))
1149 		free_page_mlock(page);
1150 	__count_vm_event(PGFREE);
1151 
1152 	/*
1153 	 * We only track unmovable, reclaimable and movable on pcp lists.
1154 	 * Free ISOLATE pages back to the allocator because they are being
1155 	 * offlined but treat RESERVE as movable pages so we can get those
1156 	 * areas back if necessary. Otherwise, we may have to free
1157 	 * excessively into the page allocator
1158 	 */
1159 	if (migratetype >= MIGRATE_PCPTYPES) {
1160 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1161 			free_one_page(zone, page, 0, migratetype);
1162 			goto out;
1163 		}
1164 		migratetype = MIGRATE_MOVABLE;
1165 	}
1166 
1167 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1168 	if (cold)
1169 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1170 	else
1171 		list_add(&page->lru, &pcp->lists[migratetype]);
1172 	pcp->count++;
1173 	if (pcp->count >= pcp->high) {
1174 		free_pcppages_bulk(zone, pcp->batch, pcp);
1175 		pcp->count -= pcp->batch;
1176 	}
1177 
1178 out:
1179 	local_irq_restore(flags);
1180 }
1181 
1182 /*
1183  * split_page takes a non-compound higher-order page, and splits it into
1184  * n (1<<order) sub-pages: page[0..n]
1185  * Each sub-page must be freed individually.
1186  *
1187  * Note: this is probably too low level an operation for use in drivers.
1188  * Please consult with lkml before using this in your driver.
1189  */
1190 void split_page(struct page *page, unsigned int order)
1191 {
1192 	int i;
1193 
1194 	VM_BUG_ON(PageCompound(page));
1195 	VM_BUG_ON(!page_count(page));
1196 
1197 #ifdef CONFIG_KMEMCHECK
1198 	/*
1199 	 * Split shadow pages too, because free(page[0]) would
1200 	 * otherwise free the whole shadow.
1201 	 */
1202 	if (kmemcheck_page_is_tracked(page))
1203 		split_page(virt_to_page(page[0].shadow), order);
1204 #endif
1205 
1206 	for (i = 1; i < (1 << order); i++)
1207 		set_page_refcounted(page + i);
1208 }
1209 
1210 /*
1211  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1212  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1213  * or two.
1214  */
1215 static inline
1216 struct page *buffered_rmqueue(struct zone *preferred_zone,
1217 			struct zone *zone, int order, gfp_t gfp_flags,
1218 			int migratetype)
1219 {
1220 	unsigned long flags;
1221 	struct page *page;
1222 	int cold = !!(gfp_flags & __GFP_COLD);
1223 
1224 again:
1225 	if (likely(order == 0)) {
1226 		struct per_cpu_pages *pcp;
1227 		struct list_head *list;
1228 
1229 		local_irq_save(flags);
1230 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1231 		list = &pcp->lists[migratetype];
1232 		if (list_empty(list)) {
1233 			pcp->count += rmqueue_bulk(zone, 0,
1234 					pcp->batch, list,
1235 					migratetype, cold);
1236 			if (unlikely(list_empty(list)))
1237 				goto failed;
1238 		}
1239 
1240 		if (cold)
1241 			page = list_entry(list->prev, struct page, lru);
1242 		else
1243 			page = list_entry(list->next, struct page, lru);
1244 
1245 		list_del(&page->lru);
1246 		pcp->count--;
1247 	} else {
1248 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1249 			/*
1250 			 * __GFP_NOFAIL is not to be used in new code.
1251 			 *
1252 			 * All __GFP_NOFAIL callers should be fixed so that they
1253 			 * properly detect and handle allocation failures.
1254 			 *
1255 			 * We most definitely don't want callers attempting to
1256 			 * allocate greater than order-1 page units with
1257 			 * __GFP_NOFAIL.
1258 			 */
1259 			WARN_ON_ONCE(order > 1);
1260 		}
1261 		spin_lock_irqsave(&zone->lock, flags);
1262 		page = __rmqueue(zone, order, migratetype);
1263 		spin_unlock(&zone->lock);
1264 		if (!page)
1265 			goto failed;
1266 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1267 	}
1268 
1269 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1270 	zone_statistics(preferred_zone, zone);
1271 	local_irq_restore(flags);
1272 
1273 	VM_BUG_ON(bad_range(zone, page));
1274 	if (prep_new_page(page, order, gfp_flags))
1275 		goto again;
1276 	return page;
1277 
1278 failed:
1279 	local_irq_restore(flags);
1280 	return NULL;
1281 }
1282 
1283 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1284 #define ALLOC_WMARK_MIN		WMARK_MIN
1285 #define ALLOC_WMARK_LOW		WMARK_LOW
1286 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1287 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1288 
1289 /* Mask to get the watermark bits */
1290 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1291 
1292 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1293 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1294 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1295 
1296 #ifdef CONFIG_FAIL_PAGE_ALLOC
1297 
1298 static struct fail_page_alloc_attr {
1299 	struct fault_attr attr;
1300 
1301 	u32 ignore_gfp_highmem;
1302 	u32 ignore_gfp_wait;
1303 	u32 min_order;
1304 
1305 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1306 
1307 	struct dentry *ignore_gfp_highmem_file;
1308 	struct dentry *ignore_gfp_wait_file;
1309 	struct dentry *min_order_file;
1310 
1311 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1312 
1313 } fail_page_alloc = {
1314 	.attr = FAULT_ATTR_INITIALIZER,
1315 	.ignore_gfp_wait = 1,
1316 	.ignore_gfp_highmem = 1,
1317 	.min_order = 1,
1318 };
1319 
1320 static int __init setup_fail_page_alloc(char *str)
1321 {
1322 	return setup_fault_attr(&fail_page_alloc.attr, str);
1323 }
1324 __setup("fail_page_alloc=", setup_fail_page_alloc);
1325 
1326 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1327 {
1328 	if (order < fail_page_alloc.min_order)
1329 		return 0;
1330 	if (gfp_mask & __GFP_NOFAIL)
1331 		return 0;
1332 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1333 		return 0;
1334 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1335 		return 0;
1336 
1337 	return should_fail(&fail_page_alloc.attr, 1 << order);
1338 }
1339 
1340 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1341 
1342 static int __init fail_page_alloc_debugfs(void)
1343 {
1344 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1345 	struct dentry *dir;
1346 	int err;
1347 
1348 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1349 				       "fail_page_alloc");
1350 	if (err)
1351 		return err;
1352 	dir = fail_page_alloc.attr.dentries.dir;
1353 
1354 	fail_page_alloc.ignore_gfp_wait_file =
1355 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1356 				      &fail_page_alloc.ignore_gfp_wait);
1357 
1358 	fail_page_alloc.ignore_gfp_highmem_file =
1359 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1360 				      &fail_page_alloc.ignore_gfp_highmem);
1361 	fail_page_alloc.min_order_file =
1362 		debugfs_create_u32("min-order", mode, dir,
1363 				   &fail_page_alloc.min_order);
1364 
1365 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1366             !fail_page_alloc.ignore_gfp_highmem_file ||
1367             !fail_page_alloc.min_order_file) {
1368 		err = -ENOMEM;
1369 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1370 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1371 		debugfs_remove(fail_page_alloc.min_order_file);
1372 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1373 	}
1374 
1375 	return err;
1376 }
1377 
1378 late_initcall(fail_page_alloc_debugfs);
1379 
1380 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1381 
1382 #else /* CONFIG_FAIL_PAGE_ALLOC */
1383 
1384 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1385 {
1386 	return 0;
1387 }
1388 
1389 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1390 
1391 /*
1392  * Return 1 if free pages are above 'mark'. This takes into account the order
1393  * of the allocation.
1394  */
1395 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1396 		      int classzone_idx, int alloc_flags)
1397 {
1398 	/* free_pages my go negative - that's OK */
1399 	long min = mark;
1400 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1401 	int o;
1402 
1403 	if (alloc_flags & ALLOC_HIGH)
1404 		min -= min / 2;
1405 	if (alloc_flags & ALLOC_HARDER)
1406 		min -= min / 4;
1407 
1408 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1409 		return 0;
1410 	for (o = 0; o < order; o++) {
1411 		/* At the next order, this order's pages become unavailable */
1412 		free_pages -= z->free_area[o].nr_free << o;
1413 
1414 		/* Require fewer higher order pages to be free */
1415 		min >>= 1;
1416 
1417 		if (free_pages <= min)
1418 			return 0;
1419 	}
1420 	return 1;
1421 }
1422 
1423 #ifdef CONFIG_NUMA
1424 /*
1425  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1426  * skip over zones that are not allowed by the cpuset, or that have
1427  * been recently (in last second) found to be nearly full.  See further
1428  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1429  * that have to skip over a lot of full or unallowed zones.
1430  *
1431  * If the zonelist cache is present in the passed in zonelist, then
1432  * returns a pointer to the allowed node mask (either the current
1433  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1434  *
1435  * If the zonelist cache is not available for this zonelist, does
1436  * nothing and returns NULL.
1437  *
1438  * If the fullzones BITMAP in the zonelist cache is stale (more than
1439  * a second since last zap'd) then we zap it out (clear its bits.)
1440  *
1441  * We hold off even calling zlc_setup, until after we've checked the
1442  * first zone in the zonelist, on the theory that most allocations will
1443  * be satisfied from that first zone, so best to examine that zone as
1444  * quickly as we can.
1445  */
1446 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1447 {
1448 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1449 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1450 
1451 	zlc = zonelist->zlcache_ptr;
1452 	if (!zlc)
1453 		return NULL;
1454 
1455 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1456 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1457 		zlc->last_full_zap = jiffies;
1458 	}
1459 
1460 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1461 					&cpuset_current_mems_allowed :
1462 					&node_states[N_HIGH_MEMORY];
1463 	return allowednodes;
1464 }
1465 
1466 /*
1467  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1468  * if it is worth looking at further for free memory:
1469  *  1) Check that the zone isn't thought to be full (doesn't have its
1470  *     bit set in the zonelist_cache fullzones BITMAP).
1471  *  2) Check that the zones node (obtained from the zonelist_cache
1472  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1473  * Return true (non-zero) if zone is worth looking at further, or
1474  * else return false (zero) if it is not.
1475  *
1476  * This check -ignores- the distinction between various watermarks,
1477  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1478  * found to be full for any variation of these watermarks, it will
1479  * be considered full for up to one second by all requests, unless
1480  * we are so low on memory on all allowed nodes that we are forced
1481  * into the second scan of the zonelist.
1482  *
1483  * In the second scan we ignore this zonelist cache and exactly
1484  * apply the watermarks to all zones, even it is slower to do so.
1485  * We are low on memory in the second scan, and should leave no stone
1486  * unturned looking for a free page.
1487  */
1488 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1489 						nodemask_t *allowednodes)
1490 {
1491 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1492 	int i;				/* index of *z in zonelist zones */
1493 	int n;				/* node that zone *z is on */
1494 
1495 	zlc = zonelist->zlcache_ptr;
1496 	if (!zlc)
1497 		return 1;
1498 
1499 	i = z - zonelist->_zonerefs;
1500 	n = zlc->z_to_n[i];
1501 
1502 	/* This zone is worth trying if it is allowed but not full */
1503 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1504 }
1505 
1506 /*
1507  * Given 'z' scanning a zonelist, set the corresponding bit in
1508  * zlc->fullzones, so that subsequent attempts to allocate a page
1509  * from that zone don't waste time re-examining it.
1510  */
1511 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1512 {
1513 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1514 	int i;				/* index of *z in zonelist zones */
1515 
1516 	zlc = zonelist->zlcache_ptr;
1517 	if (!zlc)
1518 		return;
1519 
1520 	i = z - zonelist->_zonerefs;
1521 
1522 	set_bit(i, zlc->fullzones);
1523 }
1524 
1525 #else	/* CONFIG_NUMA */
1526 
1527 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1528 {
1529 	return NULL;
1530 }
1531 
1532 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1533 				nodemask_t *allowednodes)
1534 {
1535 	return 1;
1536 }
1537 
1538 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1539 {
1540 }
1541 #endif	/* CONFIG_NUMA */
1542 
1543 /*
1544  * get_page_from_freelist goes through the zonelist trying to allocate
1545  * a page.
1546  */
1547 static struct page *
1548 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1549 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1550 		struct zone *preferred_zone, int migratetype)
1551 {
1552 	struct zoneref *z;
1553 	struct page *page = NULL;
1554 	int classzone_idx;
1555 	struct zone *zone;
1556 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1557 	int zlc_active = 0;		/* set if using zonelist_cache */
1558 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1559 
1560 	classzone_idx = zone_idx(preferred_zone);
1561 zonelist_scan:
1562 	/*
1563 	 * Scan zonelist, looking for a zone with enough free.
1564 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1565 	 */
1566 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1567 						high_zoneidx, nodemask) {
1568 		if (NUMA_BUILD && zlc_active &&
1569 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1570 				continue;
1571 		if ((alloc_flags & ALLOC_CPUSET) &&
1572 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1573 				goto try_next_zone;
1574 
1575 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1576 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1577 			unsigned long mark;
1578 			int ret;
1579 
1580 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1581 			if (zone_watermark_ok(zone, order, mark,
1582 				    classzone_idx, alloc_flags))
1583 				goto try_this_zone;
1584 
1585 			if (zone_reclaim_mode == 0)
1586 				goto this_zone_full;
1587 
1588 			ret = zone_reclaim(zone, gfp_mask, order);
1589 			switch (ret) {
1590 			case ZONE_RECLAIM_NOSCAN:
1591 				/* did not scan */
1592 				goto try_next_zone;
1593 			case ZONE_RECLAIM_FULL:
1594 				/* scanned but unreclaimable */
1595 				goto this_zone_full;
1596 			default:
1597 				/* did we reclaim enough */
1598 				if (!zone_watermark_ok(zone, order, mark,
1599 						classzone_idx, alloc_flags))
1600 					goto this_zone_full;
1601 			}
1602 		}
1603 
1604 try_this_zone:
1605 		page = buffered_rmqueue(preferred_zone, zone, order,
1606 						gfp_mask, migratetype);
1607 		if (page)
1608 			break;
1609 this_zone_full:
1610 		if (NUMA_BUILD)
1611 			zlc_mark_zone_full(zonelist, z);
1612 try_next_zone:
1613 		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1614 			/*
1615 			 * we do zlc_setup after the first zone is tried but only
1616 			 * if there are multiple nodes make it worthwhile
1617 			 */
1618 			allowednodes = zlc_setup(zonelist, alloc_flags);
1619 			zlc_active = 1;
1620 			did_zlc_setup = 1;
1621 		}
1622 	}
1623 
1624 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1625 		/* Disable zlc cache for second zonelist scan */
1626 		zlc_active = 0;
1627 		goto zonelist_scan;
1628 	}
1629 	return page;
1630 }
1631 
1632 static inline int
1633 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1634 				unsigned long pages_reclaimed)
1635 {
1636 	/* Do not loop if specifically requested */
1637 	if (gfp_mask & __GFP_NORETRY)
1638 		return 0;
1639 
1640 	/*
1641 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1642 	 * means __GFP_NOFAIL, but that may not be true in other
1643 	 * implementations.
1644 	 */
1645 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1646 		return 1;
1647 
1648 	/*
1649 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1650 	 * specified, then we retry until we no longer reclaim any pages
1651 	 * (above), or we've reclaimed an order of pages at least as
1652 	 * large as the allocation's order. In both cases, if the
1653 	 * allocation still fails, we stop retrying.
1654 	 */
1655 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1656 		return 1;
1657 
1658 	/*
1659 	 * Don't let big-order allocations loop unless the caller
1660 	 * explicitly requests that.
1661 	 */
1662 	if (gfp_mask & __GFP_NOFAIL)
1663 		return 1;
1664 
1665 	return 0;
1666 }
1667 
1668 static inline struct page *
1669 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1670 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1671 	nodemask_t *nodemask, struct zone *preferred_zone,
1672 	int migratetype)
1673 {
1674 	struct page *page;
1675 
1676 	/* Acquire the OOM killer lock for the zones in zonelist */
1677 	if (!try_set_zone_oom(zonelist, gfp_mask)) {
1678 		schedule_timeout_uninterruptible(1);
1679 		return NULL;
1680 	}
1681 
1682 	/*
1683 	 * Go through the zonelist yet one more time, keep very high watermark
1684 	 * here, this is only to catch a parallel oom killing, we must fail if
1685 	 * we're still under heavy pressure.
1686 	 */
1687 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1688 		order, zonelist, high_zoneidx,
1689 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1690 		preferred_zone, migratetype);
1691 	if (page)
1692 		goto out;
1693 
1694 	if (!(gfp_mask & __GFP_NOFAIL)) {
1695 		/* The OOM killer will not help higher order allocs */
1696 		if (order > PAGE_ALLOC_COSTLY_ORDER)
1697 			goto out;
1698 		/*
1699 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1700 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1701 		 * The caller should handle page allocation failure by itself if
1702 		 * it specifies __GFP_THISNODE.
1703 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1704 		 */
1705 		if (gfp_mask & __GFP_THISNODE)
1706 			goto out;
1707 	}
1708 	/* Exhausted what can be done so it's blamo time */
1709 	out_of_memory(zonelist, gfp_mask, order, nodemask);
1710 
1711 out:
1712 	clear_zonelist_oom(zonelist, gfp_mask);
1713 	return page;
1714 }
1715 
1716 /* The really slow allocator path where we enter direct reclaim */
1717 static inline struct page *
1718 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1719 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1720 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1721 	int migratetype, unsigned long *did_some_progress)
1722 {
1723 	struct page *page = NULL;
1724 	struct reclaim_state reclaim_state;
1725 	struct task_struct *p = current;
1726 
1727 	cond_resched();
1728 
1729 	/* We now go into synchronous reclaim */
1730 	cpuset_memory_pressure_bump();
1731 	p->flags |= PF_MEMALLOC;
1732 	lockdep_set_current_reclaim_state(gfp_mask);
1733 	reclaim_state.reclaimed_slab = 0;
1734 	p->reclaim_state = &reclaim_state;
1735 
1736 	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1737 
1738 	p->reclaim_state = NULL;
1739 	lockdep_clear_current_reclaim_state();
1740 	p->flags &= ~PF_MEMALLOC;
1741 
1742 	cond_resched();
1743 
1744 	if (order != 0)
1745 		drain_all_pages();
1746 
1747 	if (likely(*did_some_progress))
1748 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1749 					zonelist, high_zoneidx,
1750 					alloc_flags, preferred_zone,
1751 					migratetype);
1752 	return page;
1753 }
1754 
1755 /*
1756  * This is called in the allocator slow-path if the allocation request is of
1757  * sufficient urgency to ignore watermarks and take other desperate measures
1758  */
1759 static inline struct page *
1760 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1761 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1762 	nodemask_t *nodemask, struct zone *preferred_zone,
1763 	int migratetype)
1764 {
1765 	struct page *page;
1766 
1767 	do {
1768 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1769 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1770 			preferred_zone, migratetype);
1771 
1772 		if (!page && gfp_mask & __GFP_NOFAIL)
1773 			congestion_wait(BLK_RW_ASYNC, HZ/50);
1774 	} while (!page && (gfp_mask & __GFP_NOFAIL));
1775 
1776 	return page;
1777 }
1778 
1779 static inline
1780 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1781 						enum zone_type high_zoneidx)
1782 {
1783 	struct zoneref *z;
1784 	struct zone *zone;
1785 
1786 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1787 		wakeup_kswapd(zone, order);
1788 }
1789 
1790 static inline int
1791 gfp_to_alloc_flags(gfp_t gfp_mask)
1792 {
1793 	struct task_struct *p = current;
1794 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1795 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1796 
1797 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1798 	BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1799 
1800 	/*
1801 	 * The caller may dip into page reserves a bit more if the caller
1802 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1803 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1804 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1805 	 */
1806 	alloc_flags |= (gfp_mask & __GFP_HIGH);
1807 
1808 	if (!wait) {
1809 		alloc_flags |= ALLOC_HARDER;
1810 		/*
1811 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1812 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1813 		 */
1814 		alloc_flags &= ~ALLOC_CPUSET;
1815 	} else if (unlikely(rt_task(p)) && !in_interrupt())
1816 		alloc_flags |= ALLOC_HARDER;
1817 
1818 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1819 		if (!in_interrupt() &&
1820 		    ((p->flags & PF_MEMALLOC) ||
1821 		     unlikely(test_thread_flag(TIF_MEMDIE))))
1822 			alloc_flags |= ALLOC_NO_WATERMARKS;
1823 	}
1824 
1825 	return alloc_flags;
1826 }
1827 
1828 static inline struct page *
1829 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1830 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1831 	nodemask_t *nodemask, struct zone *preferred_zone,
1832 	int migratetype)
1833 {
1834 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1835 	struct page *page = NULL;
1836 	int alloc_flags;
1837 	unsigned long pages_reclaimed = 0;
1838 	unsigned long did_some_progress;
1839 	struct task_struct *p = current;
1840 
1841 	/*
1842 	 * In the slowpath, we sanity check order to avoid ever trying to
1843 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1844 	 * be using allocators in order of preference for an area that is
1845 	 * too large.
1846 	 */
1847 	if (order >= MAX_ORDER) {
1848 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1849 		return NULL;
1850 	}
1851 
1852 	/*
1853 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1854 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1855 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1856 	 * using a larger set of nodes after it has established that the
1857 	 * allowed per node queues are empty and that nodes are
1858 	 * over allocated.
1859 	 */
1860 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1861 		goto nopage;
1862 
1863 restart:
1864 	wake_all_kswapd(order, zonelist, high_zoneidx);
1865 
1866 	/*
1867 	 * OK, we're below the kswapd watermark and have kicked background
1868 	 * reclaim. Now things get more complex, so set up alloc_flags according
1869 	 * to how we want to proceed.
1870 	 */
1871 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
1872 
1873 	/* This is the last chance, in general, before the goto nopage. */
1874 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1875 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1876 			preferred_zone, migratetype);
1877 	if (page)
1878 		goto got_pg;
1879 
1880 rebalance:
1881 	/* Allocate without watermarks if the context allows */
1882 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
1883 		page = __alloc_pages_high_priority(gfp_mask, order,
1884 				zonelist, high_zoneidx, nodemask,
1885 				preferred_zone, migratetype);
1886 		if (page)
1887 			goto got_pg;
1888 	}
1889 
1890 	/* Atomic allocations - we can't balance anything */
1891 	if (!wait)
1892 		goto nopage;
1893 
1894 	/* Avoid recursion of direct reclaim */
1895 	if (p->flags & PF_MEMALLOC)
1896 		goto nopage;
1897 
1898 	/* Avoid allocations with no watermarks from looping endlessly */
1899 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1900 		goto nopage;
1901 
1902 	/* Try direct reclaim and then allocating */
1903 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
1904 					zonelist, high_zoneidx,
1905 					nodemask,
1906 					alloc_flags, preferred_zone,
1907 					migratetype, &did_some_progress);
1908 	if (page)
1909 		goto got_pg;
1910 
1911 	/*
1912 	 * If we failed to make any progress reclaiming, then we are
1913 	 * running out of options and have to consider going OOM
1914 	 */
1915 	if (!did_some_progress) {
1916 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1917 			if (oom_killer_disabled)
1918 				goto nopage;
1919 			page = __alloc_pages_may_oom(gfp_mask, order,
1920 					zonelist, high_zoneidx,
1921 					nodemask, preferred_zone,
1922 					migratetype);
1923 			if (page)
1924 				goto got_pg;
1925 
1926 			/*
1927 			 * The OOM killer does not trigger for high-order
1928 			 * ~__GFP_NOFAIL allocations so if no progress is being
1929 			 * made, there are no other options and retrying is
1930 			 * unlikely to help.
1931 			 */
1932 			if (order > PAGE_ALLOC_COSTLY_ORDER &&
1933 						!(gfp_mask & __GFP_NOFAIL))
1934 				goto nopage;
1935 
1936 			goto restart;
1937 		}
1938 	}
1939 
1940 	/* Check if we should retry the allocation */
1941 	pages_reclaimed += did_some_progress;
1942 	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1943 		/* Wait for some write requests to complete then retry */
1944 		congestion_wait(BLK_RW_ASYNC, HZ/50);
1945 		goto rebalance;
1946 	}
1947 
1948 nopage:
1949 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1950 		printk(KERN_WARNING "%s: page allocation failure."
1951 			" order:%d, mode:0x%x\n",
1952 			p->comm, order, gfp_mask);
1953 		dump_stack();
1954 		show_mem();
1955 	}
1956 	return page;
1957 got_pg:
1958 	if (kmemcheck_enabled)
1959 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1960 	return page;
1961 
1962 }
1963 
1964 /*
1965  * This is the 'heart' of the zoned buddy allocator.
1966  */
1967 struct page *
1968 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1969 			struct zonelist *zonelist, nodemask_t *nodemask)
1970 {
1971 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1972 	struct zone *preferred_zone;
1973 	struct page *page;
1974 	int migratetype = allocflags_to_migratetype(gfp_mask);
1975 
1976 	gfp_mask &= gfp_allowed_mask;
1977 
1978 	lockdep_trace_alloc(gfp_mask);
1979 
1980 	might_sleep_if(gfp_mask & __GFP_WAIT);
1981 
1982 	if (should_fail_alloc_page(gfp_mask, order))
1983 		return NULL;
1984 
1985 	/*
1986 	 * Check the zones suitable for the gfp_mask contain at least one
1987 	 * valid zone. It's possible to have an empty zonelist as a result
1988 	 * of GFP_THISNODE and a memoryless node
1989 	 */
1990 	if (unlikely(!zonelist->_zonerefs->zone))
1991 		return NULL;
1992 
1993 	get_mems_allowed();
1994 	/* The preferred zone is used for statistics later */
1995 	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1996 	if (!preferred_zone) {
1997 		put_mems_allowed();
1998 		return NULL;
1999 	}
2000 
2001 	/* First allocation attempt */
2002 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2003 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2004 			preferred_zone, migratetype);
2005 	if (unlikely(!page))
2006 		page = __alloc_pages_slowpath(gfp_mask, order,
2007 				zonelist, high_zoneidx, nodemask,
2008 				preferred_zone, migratetype);
2009 	put_mems_allowed();
2010 
2011 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2012 	return page;
2013 }
2014 EXPORT_SYMBOL(__alloc_pages_nodemask);
2015 
2016 /*
2017  * Common helper functions.
2018  */
2019 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2020 {
2021 	struct page *page;
2022 
2023 	/*
2024 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2025 	 * a highmem page
2026 	 */
2027 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2028 
2029 	page = alloc_pages(gfp_mask, order);
2030 	if (!page)
2031 		return 0;
2032 	return (unsigned long) page_address(page);
2033 }
2034 EXPORT_SYMBOL(__get_free_pages);
2035 
2036 unsigned long get_zeroed_page(gfp_t gfp_mask)
2037 {
2038 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2039 }
2040 EXPORT_SYMBOL(get_zeroed_page);
2041 
2042 void __pagevec_free(struct pagevec *pvec)
2043 {
2044 	int i = pagevec_count(pvec);
2045 
2046 	while (--i >= 0) {
2047 		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2048 		free_hot_cold_page(pvec->pages[i], pvec->cold);
2049 	}
2050 }
2051 
2052 void __free_pages(struct page *page, unsigned int order)
2053 {
2054 	if (put_page_testzero(page)) {
2055 		if (order == 0)
2056 			free_hot_cold_page(page, 0);
2057 		else
2058 			__free_pages_ok(page, order);
2059 	}
2060 }
2061 
2062 EXPORT_SYMBOL(__free_pages);
2063 
2064 void free_pages(unsigned long addr, unsigned int order)
2065 {
2066 	if (addr != 0) {
2067 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2068 		__free_pages(virt_to_page((void *)addr), order);
2069 	}
2070 }
2071 
2072 EXPORT_SYMBOL(free_pages);
2073 
2074 /**
2075  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2076  * @size: the number of bytes to allocate
2077  * @gfp_mask: GFP flags for the allocation
2078  *
2079  * This function is similar to alloc_pages(), except that it allocates the
2080  * minimum number of pages to satisfy the request.  alloc_pages() can only
2081  * allocate memory in power-of-two pages.
2082  *
2083  * This function is also limited by MAX_ORDER.
2084  *
2085  * Memory allocated by this function must be released by free_pages_exact().
2086  */
2087 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2088 {
2089 	unsigned int order = get_order(size);
2090 	unsigned long addr;
2091 
2092 	addr = __get_free_pages(gfp_mask, order);
2093 	if (addr) {
2094 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2095 		unsigned long used = addr + PAGE_ALIGN(size);
2096 
2097 		split_page(virt_to_page((void *)addr), order);
2098 		while (used < alloc_end) {
2099 			free_page(used);
2100 			used += PAGE_SIZE;
2101 		}
2102 	}
2103 
2104 	return (void *)addr;
2105 }
2106 EXPORT_SYMBOL(alloc_pages_exact);
2107 
2108 /**
2109  * free_pages_exact - release memory allocated via alloc_pages_exact()
2110  * @virt: the value returned by alloc_pages_exact.
2111  * @size: size of allocation, same value as passed to alloc_pages_exact().
2112  *
2113  * Release the memory allocated by a previous call to alloc_pages_exact.
2114  */
2115 void free_pages_exact(void *virt, size_t size)
2116 {
2117 	unsigned long addr = (unsigned long)virt;
2118 	unsigned long end = addr + PAGE_ALIGN(size);
2119 
2120 	while (addr < end) {
2121 		free_page(addr);
2122 		addr += PAGE_SIZE;
2123 	}
2124 }
2125 EXPORT_SYMBOL(free_pages_exact);
2126 
2127 static unsigned int nr_free_zone_pages(int offset)
2128 {
2129 	struct zoneref *z;
2130 	struct zone *zone;
2131 
2132 	/* Just pick one node, since fallback list is circular */
2133 	unsigned int sum = 0;
2134 
2135 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2136 
2137 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2138 		unsigned long size = zone->present_pages;
2139 		unsigned long high = high_wmark_pages(zone);
2140 		if (size > high)
2141 			sum += size - high;
2142 	}
2143 
2144 	return sum;
2145 }
2146 
2147 /*
2148  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2149  */
2150 unsigned int nr_free_buffer_pages(void)
2151 {
2152 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2153 }
2154 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2155 
2156 /*
2157  * Amount of free RAM allocatable within all zones
2158  */
2159 unsigned int nr_free_pagecache_pages(void)
2160 {
2161 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2162 }
2163 
2164 static inline void show_node(struct zone *zone)
2165 {
2166 	if (NUMA_BUILD)
2167 		printk("Node %d ", zone_to_nid(zone));
2168 }
2169 
2170 void si_meminfo(struct sysinfo *val)
2171 {
2172 	val->totalram = totalram_pages;
2173 	val->sharedram = 0;
2174 	val->freeram = global_page_state(NR_FREE_PAGES);
2175 	val->bufferram = nr_blockdev_pages();
2176 	val->totalhigh = totalhigh_pages;
2177 	val->freehigh = nr_free_highpages();
2178 	val->mem_unit = PAGE_SIZE;
2179 }
2180 
2181 EXPORT_SYMBOL(si_meminfo);
2182 
2183 #ifdef CONFIG_NUMA
2184 void si_meminfo_node(struct sysinfo *val, int nid)
2185 {
2186 	pg_data_t *pgdat = NODE_DATA(nid);
2187 
2188 	val->totalram = pgdat->node_present_pages;
2189 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2190 #ifdef CONFIG_HIGHMEM
2191 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2192 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2193 			NR_FREE_PAGES);
2194 #else
2195 	val->totalhigh = 0;
2196 	val->freehigh = 0;
2197 #endif
2198 	val->mem_unit = PAGE_SIZE;
2199 }
2200 #endif
2201 
2202 #define K(x) ((x) << (PAGE_SHIFT-10))
2203 
2204 /*
2205  * Show free area list (used inside shift_scroll-lock stuff)
2206  * We also calculate the percentage fragmentation. We do this by counting the
2207  * memory on each free list with the exception of the first item on the list.
2208  */
2209 void show_free_areas(void)
2210 {
2211 	int cpu;
2212 	struct zone *zone;
2213 
2214 	for_each_populated_zone(zone) {
2215 		show_node(zone);
2216 		printk("%s per-cpu:\n", zone->name);
2217 
2218 		for_each_online_cpu(cpu) {
2219 			struct per_cpu_pageset *pageset;
2220 
2221 			pageset = per_cpu_ptr(zone->pageset, cpu);
2222 
2223 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2224 			       cpu, pageset->pcp.high,
2225 			       pageset->pcp.batch, pageset->pcp.count);
2226 		}
2227 	}
2228 
2229 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2230 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2231 		" unevictable:%lu"
2232 		" dirty:%lu writeback:%lu unstable:%lu\n"
2233 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2234 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2235 		global_page_state(NR_ACTIVE_ANON),
2236 		global_page_state(NR_INACTIVE_ANON),
2237 		global_page_state(NR_ISOLATED_ANON),
2238 		global_page_state(NR_ACTIVE_FILE),
2239 		global_page_state(NR_INACTIVE_FILE),
2240 		global_page_state(NR_ISOLATED_FILE),
2241 		global_page_state(NR_UNEVICTABLE),
2242 		global_page_state(NR_FILE_DIRTY),
2243 		global_page_state(NR_WRITEBACK),
2244 		global_page_state(NR_UNSTABLE_NFS),
2245 		global_page_state(NR_FREE_PAGES),
2246 		global_page_state(NR_SLAB_RECLAIMABLE),
2247 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2248 		global_page_state(NR_FILE_MAPPED),
2249 		global_page_state(NR_SHMEM),
2250 		global_page_state(NR_PAGETABLE),
2251 		global_page_state(NR_BOUNCE));
2252 
2253 	for_each_populated_zone(zone) {
2254 		int i;
2255 
2256 		show_node(zone);
2257 		printk("%s"
2258 			" free:%lukB"
2259 			" min:%lukB"
2260 			" low:%lukB"
2261 			" high:%lukB"
2262 			" active_anon:%lukB"
2263 			" inactive_anon:%lukB"
2264 			" active_file:%lukB"
2265 			" inactive_file:%lukB"
2266 			" unevictable:%lukB"
2267 			" isolated(anon):%lukB"
2268 			" isolated(file):%lukB"
2269 			" present:%lukB"
2270 			" mlocked:%lukB"
2271 			" dirty:%lukB"
2272 			" writeback:%lukB"
2273 			" mapped:%lukB"
2274 			" shmem:%lukB"
2275 			" slab_reclaimable:%lukB"
2276 			" slab_unreclaimable:%lukB"
2277 			" kernel_stack:%lukB"
2278 			" pagetables:%lukB"
2279 			" unstable:%lukB"
2280 			" bounce:%lukB"
2281 			" writeback_tmp:%lukB"
2282 			" pages_scanned:%lu"
2283 			" all_unreclaimable? %s"
2284 			"\n",
2285 			zone->name,
2286 			K(zone_page_state(zone, NR_FREE_PAGES)),
2287 			K(min_wmark_pages(zone)),
2288 			K(low_wmark_pages(zone)),
2289 			K(high_wmark_pages(zone)),
2290 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2291 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2292 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2293 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2294 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2295 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2296 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2297 			K(zone->present_pages),
2298 			K(zone_page_state(zone, NR_MLOCK)),
2299 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2300 			K(zone_page_state(zone, NR_WRITEBACK)),
2301 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2302 			K(zone_page_state(zone, NR_SHMEM)),
2303 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2304 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2305 			zone_page_state(zone, NR_KERNEL_STACK) *
2306 				THREAD_SIZE / 1024,
2307 			K(zone_page_state(zone, NR_PAGETABLE)),
2308 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2309 			K(zone_page_state(zone, NR_BOUNCE)),
2310 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2311 			zone->pages_scanned,
2312 			(zone->all_unreclaimable ? "yes" : "no")
2313 			);
2314 		printk("lowmem_reserve[]:");
2315 		for (i = 0; i < MAX_NR_ZONES; i++)
2316 			printk(" %lu", zone->lowmem_reserve[i]);
2317 		printk("\n");
2318 	}
2319 
2320 	for_each_populated_zone(zone) {
2321  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2322 
2323 		show_node(zone);
2324 		printk("%s: ", zone->name);
2325 
2326 		spin_lock_irqsave(&zone->lock, flags);
2327 		for (order = 0; order < MAX_ORDER; order++) {
2328 			nr[order] = zone->free_area[order].nr_free;
2329 			total += nr[order] << order;
2330 		}
2331 		spin_unlock_irqrestore(&zone->lock, flags);
2332 		for (order = 0; order < MAX_ORDER; order++)
2333 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2334 		printk("= %lukB\n", K(total));
2335 	}
2336 
2337 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2338 
2339 	show_swap_cache_info();
2340 }
2341 
2342 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2343 {
2344 	zoneref->zone = zone;
2345 	zoneref->zone_idx = zone_idx(zone);
2346 }
2347 
2348 /*
2349  * Builds allocation fallback zone lists.
2350  *
2351  * Add all populated zones of a node to the zonelist.
2352  */
2353 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2354 				int nr_zones, enum zone_type zone_type)
2355 {
2356 	struct zone *zone;
2357 
2358 	BUG_ON(zone_type >= MAX_NR_ZONES);
2359 	zone_type++;
2360 
2361 	do {
2362 		zone_type--;
2363 		zone = pgdat->node_zones + zone_type;
2364 		if (populated_zone(zone)) {
2365 			zoneref_set_zone(zone,
2366 				&zonelist->_zonerefs[nr_zones++]);
2367 			check_highest_zone(zone_type);
2368 		}
2369 
2370 	} while (zone_type);
2371 	return nr_zones;
2372 }
2373 
2374 
2375 /*
2376  *  zonelist_order:
2377  *  0 = automatic detection of better ordering.
2378  *  1 = order by ([node] distance, -zonetype)
2379  *  2 = order by (-zonetype, [node] distance)
2380  *
2381  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2382  *  the same zonelist. So only NUMA can configure this param.
2383  */
2384 #define ZONELIST_ORDER_DEFAULT  0
2385 #define ZONELIST_ORDER_NODE     1
2386 #define ZONELIST_ORDER_ZONE     2
2387 
2388 /* zonelist order in the kernel.
2389  * set_zonelist_order() will set this to NODE or ZONE.
2390  */
2391 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2392 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2393 
2394 
2395 #ifdef CONFIG_NUMA
2396 /* The value user specified ....changed by config */
2397 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2398 /* string for sysctl */
2399 #define NUMA_ZONELIST_ORDER_LEN	16
2400 char numa_zonelist_order[16] = "default";
2401 
2402 /*
2403  * interface for configure zonelist ordering.
2404  * command line option "numa_zonelist_order"
2405  *	= "[dD]efault	- default, automatic configuration.
2406  *	= "[nN]ode 	- order by node locality, then by zone within node
2407  *	= "[zZ]one      - order by zone, then by locality within zone
2408  */
2409 
2410 static int __parse_numa_zonelist_order(char *s)
2411 {
2412 	if (*s == 'd' || *s == 'D') {
2413 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2414 	} else if (*s == 'n' || *s == 'N') {
2415 		user_zonelist_order = ZONELIST_ORDER_NODE;
2416 	} else if (*s == 'z' || *s == 'Z') {
2417 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2418 	} else {
2419 		printk(KERN_WARNING
2420 			"Ignoring invalid numa_zonelist_order value:  "
2421 			"%s\n", s);
2422 		return -EINVAL;
2423 	}
2424 	return 0;
2425 }
2426 
2427 static __init int setup_numa_zonelist_order(char *s)
2428 {
2429 	if (s)
2430 		return __parse_numa_zonelist_order(s);
2431 	return 0;
2432 }
2433 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2434 
2435 /*
2436  * sysctl handler for numa_zonelist_order
2437  */
2438 int numa_zonelist_order_handler(ctl_table *table, int write,
2439 		void __user *buffer, size_t *length,
2440 		loff_t *ppos)
2441 {
2442 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2443 	int ret;
2444 	static DEFINE_MUTEX(zl_order_mutex);
2445 
2446 	mutex_lock(&zl_order_mutex);
2447 	if (write)
2448 		strcpy(saved_string, (char*)table->data);
2449 	ret = proc_dostring(table, write, buffer, length, ppos);
2450 	if (ret)
2451 		goto out;
2452 	if (write) {
2453 		int oldval = user_zonelist_order;
2454 		if (__parse_numa_zonelist_order((char*)table->data)) {
2455 			/*
2456 			 * bogus value.  restore saved string
2457 			 */
2458 			strncpy((char*)table->data, saved_string,
2459 				NUMA_ZONELIST_ORDER_LEN);
2460 			user_zonelist_order = oldval;
2461 		} else if (oldval != user_zonelist_order)
2462 			build_all_zonelists();
2463 	}
2464 out:
2465 	mutex_unlock(&zl_order_mutex);
2466 	return ret;
2467 }
2468 
2469 
2470 #define MAX_NODE_LOAD (nr_online_nodes)
2471 static int node_load[MAX_NUMNODES];
2472 
2473 /**
2474  * find_next_best_node - find the next node that should appear in a given node's fallback list
2475  * @node: node whose fallback list we're appending
2476  * @used_node_mask: nodemask_t of already used nodes
2477  *
2478  * We use a number of factors to determine which is the next node that should
2479  * appear on a given node's fallback list.  The node should not have appeared
2480  * already in @node's fallback list, and it should be the next closest node
2481  * according to the distance array (which contains arbitrary distance values
2482  * from each node to each node in the system), and should also prefer nodes
2483  * with no CPUs, since presumably they'll have very little allocation pressure
2484  * on them otherwise.
2485  * It returns -1 if no node is found.
2486  */
2487 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2488 {
2489 	int n, val;
2490 	int min_val = INT_MAX;
2491 	int best_node = -1;
2492 	const struct cpumask *tmp = cpumask_of_node(0);
2493 
2494 	/* Use the local node if we haven't already */
2495 	if (!node_isset(node, *used_node_mask)) {
2496 		node_set(node, *used_node_mask);
2497 		return node;
2498 	}
2499 
2500 	for_each_node_state(n, N_HIGH_MEMORY) {
2501 
2502 		/* Don't want a node to appear more than once */
2503 		if (node_isset(n, *used_node_mask))
2504 			continue;
2505 
2506 		/* Use the distance array to find the distance */
2507 		val = node_distance(node, n);
2508 
2509 		/* Penalize nodes under us ("prefer the next node") */
2510 		val += (n < node);
2511 
2512 		/* Give preference to headless and unused nodes */
2513 		tmp = cpumask_of_node(n);
2514 		if (!cpumask_empty(tmp))
2515 			val += PENALTY_FOR_NODE_WITH_CPUS;
2516 
2517 		/* Slight preference for less loaded node */
2518 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2519 		val += node_load[n];
2520 
2521 		if (val < min_val) {
2522 			min_val = val;
2523 			best_node = n;
2524 		}
2525 	}
2526 
2527 	if (best_node >= 0)
2528 		node_set(best_node, *used_node_mask);
2529 
2530 	return best_node;
2531 }
2532 
2533 
2534 /*
2535  * Build zonelists ordered by node and zones within node.
2536  * This results in maximum locality--normal zone overflows into local
2537  * DMA zone, if any--but risks exhausting DMA zone.
2538  */
2539 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2540 {
2541 	int j;
2542 	struct zonelist *zonelist;
2543 
2544 	zonelist = &pgdat->node_zonelists[0];
2545 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2546 		;
2547 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2548 							MAX_NR_ZONES - 1);
2549 	zonelist->_zonerefs[j].zone = NULL;
2550 	zonelist->_zonerefs[j].zone_idx = 0;
2551 }
2552 
2553 /*
2554  * Build gfp_thisnode zonelists
2555  */
2556 static void build_thisnode_zonelists(pg_data_t *pgdat)
2557 {
2558 	int j;
2559 	struct zonelist *zonelist;
2560 
2561 	zonelist = &pgdat->node_zonelists[1];
2562 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2563 	zonelist->_zonerefs[j].zone = NULL;
2564 	zonelist->_zonerefs[j].zone_idx = 0;
2565 }
2566 
2567 /*
2568  * Build zonelists ordered by zone and nodes within zones.
2569  * This results in conserving DMA zone[s] until all Normal memory is
2570  * exhausted, but results in overflowing to remote node while memory
2571  * may still exist in local DMA zone.
2572  */
2573 static int node_order[MAX_NUMNODES];
2574 
2575 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2576 {
2577 	int pos, j, node;
2578 	int zone_type;		/* needs to be signed */
2579 	struct zone *z;
2580 	struct zonelist *zonelist;
2581 
2582 	zonelist = &pgdat->node_zonelists[0];
2583 	pos = 0;
2584 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2585 		for (j = 0; j < nr_nodes; j++) {
2586 			node = node_order[j];
2587 			z = &NODE_DATA(node)->node_zones[zone_type];
2588 			if (populated_zone(z)) {
2589 				zoneref_set_zone(z,
2590 					&zonelist->_zonerefs[pos++]);
2591 				check_highest_zone(zone_type);
2592 			}
2593 		}
2594 	}
2595 	zonelist->_zonerefs[pos].zone = NULL;
2596 	zonelist->_zonerefs[pos].zone_idx = 0;
2597 }
2598 
2599 static int default_zonelist_order(void)
2600 {
2601 	int nid, zone_type;
2602 	unsigned long low_kmem_size,total_size;
2603 	struct zone *z;
2604 	int average_size;
2605 	/*
2606          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2607 	 * If they are really small and used heavily, the system can fall
2608 	 * into OOM very easily.
2609 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2610 	 */
2611 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2612 	low_kmem_size = 0;
2613 	total_size = 0;
2614 	for_each_online_node(nid) {
2615 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2616 			z = &NODE_DATA(nid)->node_zones[zone_type];
2617 			if (populated_zone(z)) {
2618 				if (zone_type < ZONE_NORMAL)
2619 					low_kmem_size += z->present_pages;
2620 				total_size += z->present_pages;
2621 			} else if (zone_type == ZONE_NORMAL) {
2622 				/*
2623 				 * If any node has only lowmem, then node order
2624 				 * is preferred to allow kernel allocations
2625 				 * locally; otherwise, they can easily infringe
2626 				 * on other nodes when there is an abundance of
2627 				 * lowmem available to allocate from.
2628 				 */
2629 				return ZONELIST_ORDER_NODE;
2630 			}
2631 		}
2632 	}
2633 	if (!low_kmem_size ||  /* there are no DMA area. */
2634 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2635 		return ZONELIST_ORDER_NODE;
2636 	/*
2637 	 * look into each node's config.
2638   	 * If there is a node whose DMA/DMA32 memory is very big area on
2639  	 * local memory, NODE_ORDER may be suitable.
2640          */
2641 	average_size = total_size /
2642 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2643 	for_each_online_node(nid) {
2644 		low_kmem_size = 0;
2645 		total_size = 0;
2646 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2647 			z = &NODE_DATA(nid)->node_zones[zone_type];
2648 			if (populated_zone(z)) {
2649 				if (zone_type < ZONE_NORMAL)
2650 					low_kmem_size += z->present_pages;
2651 				total_size += z->present_pages;
2652 			}
2653 		}
2654 		if (low_kmem_size &&
2655 		    total_size > average_size && /* ignore small node */
2656 		    low_kmem_size > total_size * 70/100)
2657 			return ZONELIST_ORDER_NODE;
2658 	}
2659 	return ZONELIST_ORDER_ZONE;
2660 }
2661 
2662 static void set_zonelist_order(void)
2663 {
2664 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2665 		current_zonelist_order = default_zonelist_order();
2666 	else
2667 		current_zonelist_order = user_zonelist_order;
2668 }
2669 
2670 static void build_zonelists(pg_data_t *pgdat)
2671 {
2672 	int j, node, load;
2673 	enum zone_type i;
2674 	nodemask_t used_mask;
2675 	int local_node, prev_node;
2676 	struct zonelist *zonelist;
2677 	int order = current_zonelist_order;
2678 
2679 	/* initialize zonelists */
2680 	for (i = 0; i < MAX_ZONELISTS; i++) {
2681 		zonelist = pgdat->node_zonelists + i;
2682 		zonelist->_zonerefs[0].zone = NULL;
2683 		zonelist->_zonerefs[0].zone_idx = 0;
2684 	}
2685 
2686 	/* NUMA-aware ordering of nodes */
2687 	local_node = pgdat->node_id;
2688 	load = nr_online_nodes;
2689 	prev_node = local_node;
2690 	nodes_clear(used_mask);
2691 
2692 	memset(node_order, 0, sizeof(node_order));
2693 	j = 0;
2694 
2695 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2696 		int distance = node_distance(local_node, node);
2697 
2698 		/*
2699 		 * If another node is sufficiently far away then it is better
2700 		 * to reclaim pages in a zone before going off node.
2701 		 */
2702 		if (distance > RECLAIM_DISTANCE)
2703 			zone_reclaim_mode = 1;
2704 
2705 		/*
2706 		 * We don't want to pressure a particular node.
2707 		 * So adding penalty to the first node in same
2708 		 * distance group to make it round-robin.
2709 		 */
2710 		if (distance != node_distance(local_node, prev_node))
2711 			node_load[node] = load;
2712 
2713 		prev_node = node;
2714 		load--;
2715 		if (order == ZONELIST_ORDER_NODE)
2716 			build_zonelists_in_node_order(pgdat, node);
2717 		else
2718 			node_order[j++] = node;	/* remember order */
2719 	}
2720 
2721 	if (order == ZONELIST_ORDER_ZONE) {
2722 		/* calculate node order -- i.e., DMA last! */
2723 		build_zonelists_in_zone_order(pgdat, j);
2724 	}
2725 
2726 	build_thisnode_zonelists(pgdat);
2727 }
2728 
2729 /* Construct the zonelist performance cache - see further mmzone.h */
2730 static void build_zonelist_cache(pg_data_t *pgdat)
2731 {
2732 	struct zonelist *zonelist;
2733 	struct zonelist_cache *zlc;
2734 	struct zoneref *z;
2735 
2736 	zonelist = &pgdat->node_zonelists[0];
2737 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2738 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2739 	for (z = zonelist->_zonerefs; z->zone; z++)
2740 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2741 }
2742 
2743 
2744 #else	/* CONFIG_NUMA */
2745 
2746 static void set_zonelist_order(void)
2747 {
2748 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2749 }
2750 
2751 static void build_zonelists(pg_data_t *pgdat)
2752 {
2753 	int node, local_node;
2754 	enum zone_type j;
2755 	struct zonelist *zonelist;
2756 
2757 	local_node = pgdat->node_id;
2758 
2759 	zonelist = &pgdat->node_zonelists[0];
2760 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2761 
2762 	/*
2763 	 * Now we build the zonelist so that it contains the zones
2764 	 * of all the other nodes.
2765 	 * We don't want to pressure a particular node, so when
2766 	 * building the zones for node N, we make sure that the
2767 	 * zones coming right after the local ones are those from
2768 	 * node N+1 (modulo N)
2769 	 */
2770 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2771 		if (!node_online(node))
2772 			continue;
2773 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2774 							MAX_NR_ZONES - 1);
2775 	}
2776 	for (node = 0; node < local_node; node++) {
2777 		if (!node_online(node))
2778 			continue;
2779 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2780 							MAX_NR_ZONES - 1);
2781 	}
2782 
2783 	zonelist->_zonerefs[j].zone = NULL;
2784 	zonelist->_zonerefs[j].zone_idx = 0;
2785 }
2786 
2787 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2788 static void build_zonelist_cache(pg_data_t *pgdat)
2789 {
2790 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2791 }
2792 
2793 #endif	/* CONFIG_NUMA */
2794 
2795 /*
2796  * Boot pageset table. One per cpu which is going to be used for all
2797  * zones and all nodes. The parameters will be set in such a way
2798  * that an item put on a list will immediately be handed over to
2799  * the buddy list. This is safe since pageset manipulation is done
2800  * with interrupts disabled.
2801  *
2802  * The boot_pagesets must be kept even after bootup is complete for
2803  * unused processors and/or zones. They do play a role for bootstrapping
2804  * hotplugged processors.
2805  *
2806  * zoneinfo_show() and maybe other functions do
2807  * not check if the processor is online before following the pageset pointer.
2808  * Other parts of the kernel may not check if the zone is available.
2809  */
2810 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2811 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2812 
2813 /* return values int ....just for stop_machine() */
2814 static int __build_all_zonelists(void *dummy)
2815 {
2816 	int nid;
2817 	int cpu;
2818 
2819 #ifdef CONFIG_NUMA
2820 	memset(node_load, 0, sizeof(node_load));
2821 #endif
2822 	for_each_online_node(nid) {
2823 		pg_data_t *pgdat = NODE_DATA(nid);
2824 
2825 		build_zonelists(pgdat);
2826 		build_zonelist_cache(pgdat);
2827 	}
2828 
2829 	/*
2830 	 * Initialize the boot_pagesets that are going to be used
2831 	 * for bootstrapping processors. The real pagesets for
2832 	 * each zone will be allocated later when the per cpu
2833 	 * allocator is available.
2834 	 *
2835 	 * boot_pagesets are used also for bootstrapping offline
2836 	 * cpus if the system is already booted because the pagesets
2837 	 * are needed to initialize allocators on a specific cpu too.
2838 	 * F.e. the percpu allocator needs the page allocator which
2839 	 * needs the percpu allocator in order to allocate its pagesets
2840 	 * (a chicken-egg dilemma).
2841 	 */
2842 	for_each_possible_cpu(cpu)
2843 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
2844 
2845 	return 0;
2846 }
2847 
2848 void build_all_zonelists(void)
2849 {
2850 	set_zonelist_order();
2851 
2852 	if (system_state == SYSTEM_BOOTING) {
2853 		__build_all_zonelists(NULL);
2854 		mminit_verify_zonelist();
2855 		cpuset_init_current_mems_allowed();
2856 	} else {
2857 		/* we have to stop all cpus to guarantee there is no user
2858 		   of zonelist */
2859 		stop_machine(__build_all_zonelists, NULL, NULL);
2860 		/* cpuset refresh routine should be here */
2861 	}
2862 	vm_total_pages = nr_free_pagecache_pages();
2863 	/*
2864 	 * Disable grouping by mobility if the number of pages in the
2865 	 * system is too low to allow the mechanism to work. It would be
2866 	 * more accurate, but expensive to check per-zone. This check is
2867 	 * made on memory-hotadd so a system can start with mobility
2868 	 * disabled and enable it later
2869 	 */
2870 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2871 		page_group_by_mobility_disabled = 1;
2872 	else
2873 		page_group_by_mobility_disabled = 0;
2874 
2875 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2876 		"Total pages: %ld\n",
2877 			nr_online_nodes,
2878 			zonelist_order_name[current_zonelist_order],
2879 			page_group_by_mobility_disabled ? "off" : "on",
2880 			vm_total_pages);
2881 #ifdef CONFIG_NUMA
2882 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2883 #endif
2884 }
2885 
2886 /*
2887  * Helper functions to size the waitqueue hash table.
2888  * Essentially these want to choose hash table sizes sufficiently
2889  * large so that collisions trying to wait on pages are rare.
2890  * But in fact, the number of active page waitqueues on typical
2891  * systems is ridiculously low, less than 200. So this is even
2892  * conservative, even though it seems large.
2893  *
2894  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2895  * waitqueues, i.e. the size of the waitq table given the number of pages.
2896  */
2897 #define PAGES_PER_WAITQUEUE	256
2898 
2899 #ifndef CONFIG_MEMORY_HOTPLUG
2900 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2901 {
2902 	unsigned long size = 1;
2903 
2904 	pages /= PAGES_PER_WAITQUEUE;
2905 
2906 	while (size < pages)
2907 		size <<= 1;
2908 
2909 	/*
2910 	 * Once we have dozens or even hundreds of threads sleeping
2911 	 * on IO we've got bigger problems than wait queue collision.
2912 	 * Limit the size of the wait table to a reasonable size.
2913 	 */
2914 	size = min(size, 4096UL);
2915 
2916 	return max(size, 4UL);
2917 }
2918 #else
2919 /*
2920  * A zone's size might be changed by hot-add, so it is not possible to determine
2921  * a suitable size for its wait_table.  So we use the maximum size now.
2922  *
2923  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2924  *
2925  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2926  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2927  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2928  *
2929  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2930  * or more by the traditional way. (See above).  It equals:
2931  *
2932  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2933  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2934  *    powerpc (64K page size)             : =  (32G +16M)byte.
2935  */
2936 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2937 {
2938 	return 4096UL;
2939 }
2940 #endif
2941 
2942 /*
2943  * This is an integer logarithm so that shifts can be used later
2944  * to extract the more random high bits from the multiplicative
2945  * hash function before the remainder is taken.
2946  */
2947 static inline unsigned long wait_table_bits(unsigned long size)
2948 {
2949 	return ffz(~size);
2950 }
2951 
2952 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2953 
2954 /*
2955  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2956  * of blocks reserved is based on min_wmark_pages(zone). The memory within
2957  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2958  * higher will lead to a bigger reserve which will get freed as contiguous
2959  * blocks as reclaim kicks in
2960  */
2961 static void setup_zone_migrate_reserve(struct zone *zone)
2962 {
2963 	unsigned long start_pfn, pfn, end_pfn;
2964 	struct page *page;
2965 	unsigned long block_migratetype;
2966 	int reserve;
2967 
2968 	/* Get the start pfn, end pfn and the number of blocks to reserve */
2969 	start_pfn = zone->zone_start_pfn;
2970 	end_pfn = start_pfn + zone->spanned_pages;
2971 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2972 							pageblock_order;
2973 
2974 	/*
2975 	 * Reserve blocks are generally in place to help high-order atomic
2976 	 * allocations that are short-lived. A min_free_kbytes value that
2977 	 * would result in more than 2 reserve blocks for atomic allocations
2978 	 * is assumed to be in place to help anti-fragmentation for the
2979 	 * future allocation of hugepages at runtime.
2980 	 */
2981 	reserve = min(2, reserve);
2982 
2983 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2984 		if (!pfn_valid(pfn))
2985 			continue;
2986 		page = pfn_to_page(pfn);
2987 
2988 		/* Watch out for overlapping nodes */
2989 		if (page_to_nid(page) != zone_to_nid(zone))
2990 			continue;
2991 
2992 		/* Blocks with reserved pages will never free, skip them. */
2993 		if (PageReserved(page))
2994 			continue;
2995 
2996 		block_migratetype = get_pageblock_migratetype(page);
2997 
2998 		/* If this block is reserved, account for it */
2999 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3000 			reserve--;
3001 			continue;
3002 		}
3003 
3004 		/* Suitable for reserving if this block is movable */
3005 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3006 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
3007 			move_freepages_block(zone, page, MIGRATE_RESERVE);
3008 			reserve--;
3009 			continue;
3010 		}
3011 
3012 		/*
3013 		 * If the reserve is met and this is a previous reserved block,
3014 		 * take it back
3015 		 */
3016 		if (block_migratetype == MIGRATE_RESERVE) {
3017 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3018 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3019 		}
3020 	}
3021 }
3022 
3023 /*
3024  * Initially all pages are reserved - free ones are freed
3025  * up by free_all_bootmem() once the early boot process is
3026  * done. Non-atomic initialization, single-pass.
3027  */
3028 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3029 		unsigned long start_pfn, enum memmap_context context)
3030 {
3031 	struct page *page;
3032 	unsigned long end_pfn = start_pfn + size;
3033 	unsigned long pfn;
3034 	struct zone *z;
3035 
3036 	if (highest_memmap_pfn < end_pfn - 1)
3037 		highest_memmap_pfn = end_pfn - 1;
3038 
3039 	z = &NODE_DATA(nid)->node_zones[zone];
3040 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3041 		/*
3042 		 * There can be holes in boot-time mem_map[]s
3043 		 * handed to this function.  They do not
3044 		 * exist on hotplugged memory.
3045 		 */
3046 		if (context == MEMMAP_EARLY) {
3047 			if (!early_pfn_valid(pfn))
3048 				continue;
3049 			if (!early_pfn_in_nid(pfn, nid))
3050 				continue;
3051 		}
3052 		page = pfn_to_page(pfn);
3053 		set_page_links(page, zone, nid, pfn);
3054 		mminit_verify_page_links(page, zone, nid, pfn);
3055 		init_page_count(page);
3056 		reset_page_mapcount(page);
3057 		SetPageReserved(page);
3058 		/*
3059 		 * Mark the block movable so that blocks are reserved for
3060 		 * movable at startup. This will force kernel allocations
3061 		 * to reserve their blocks rather than leaking throughout
3062 		 * the address space during boot when many long-lived
3063 		 * kernel allocations are made. Later some blocks near
3064 		 * the start are marked MIGRATE_RESERVE by
3065 		 * setup_zone_migrate_reserve()
3066 		 *
3067 		 * bitmap is created for zone's valid pfn range. but memmap
3068 		 * can be created for invalid pages (for alignment)
3069 		 * check here not to call set_pageblock_migratetype() against
3070 		 * pfn out of zone.
3071 		 */
3072 		if ((z->zone_start_pfn <= pfn)
3073 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3074 		    && !(pfn & (pageblock_nr_pages - 1)))
3075 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3076 
3077 		INIT_LIST_HEAD(&page->lru);
3078 #ifdef WANT_PAGE_VIRTUAL
3079 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3080 		if (!is_highmem_idx(zone))
3081 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3082 #endif
3083 	}
3084 }
3085 
3086 static void __meminit zone_init_free_lists(struct zone *zone)
3087 {
3088 	int order, t;
3089 	for_each_migratetype_order(order, t) {
3090 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3091 		zone->free_area[order].nr_free = 0;
3092 	}
3093 }
3094 
3095 #ifndef __HAVE_ARCH_MEMMAP_INIT
3096 #define memmap_init(size, nid, zone, start_pfn) \
3097 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3098 #endif
3099 
3100 static int zone_batchsize(struct zone *zone)
3101 {
3102 #ifdef CONFIG_MMU
3103 	int batch;
3104 
3105 	/*
3106 	 * The per-cpu-pages pools are set to around 1000th of the
3107 	 * size of the zone.  But no more than 1/2 of a meg.
3108 	 *
3109 	 * OK, so we don't know how big the cache is.  So guess.
3110 	 */
3111 	batch = zone->present_pages / 1024;
3112 	if (batch * PAGE_SIZE > 512 * 1024)
3113 		batch = (512 * 1024) / PAGE_SIZE;
3114 	batch /= 4;		/* We effectively *= 4 below */
3115 	if (batch < 1)
3116 		batch = 1;
3117 
3118 	/*
3119 	 * Clamp the batch to a 2^n - 1 value. Having a power
3120 	 * of 2 value was found to be more likely to have
3121 	 * suboptimal cache aliasing properties in some cases.
3122 	 *
3123 	 * For example if 2 tasks are alternately allocating
3124 	 * batches of pages, one task can end up with a lot
3125 	 * of pages of one half of the possible page colors
3126 	 * and the other with pages of the other colors.
3127 	 */
3128 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3129 
3130 	return batch;
3131 
3132 #else
3133 	/* The deferral and batching of frees should be suppressed under NOMMU
3134 	 * conditions.
3135 	 *
3136 	 * The problem is that NOMMU needs to be able to allocate large chunks
3137 	 * of contiguous memory as there's no hardware page translation to
3138 	 * assemble apparent contiguous memory from discontiguous pages.
3139 	 *
3140 	 * Queueing large contiguous runs of pages for batching, however,
3141 	 * causes the pages to actually be freed in smaller chunks.  As there
3142 	 * can be a significant delay between the individual batches being
3143 	 * recycled, this leads to the once large chunks of space being
3144 	 * fragmented and becoming unavailable for high-order allocations.
3145 	 */
3146 	return 0;
3147 #endif
3148 }
3149 
3150 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3151 {
3152 	struct per_cpu_pages *pcp;
3153 	int migratetype;
3154 
3155 	memset(p, 0, sizeof(*p));
3156 
3157 	pcp = &p->pcp;
3158 	pcp->count = 0;
3159 	pcp->high = 6 * batch;
3160 	pcp->batch = max(1UL, 1 * batch);
3161 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3162 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3163 }
3164 
3165 /*
3166  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3167  * to the value high for the pageset p.
3168  */
3169 
3170 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3171 				unsigned long high)
3172 {
3173 	struct per_cpu_pages *pcp;
3174 
3175 	pcp = &p->pcp;
3176 	pcp->high = high;
3177 	pcp->batch = max(1UL, high/4);
3178 	if ((high/4) > (PAGE_SHIFT * 8))
3179 		pcp->batch = PAGE_SHIFT * 8;
3180 }
3181 
3182 /*
3183  * Allocate per cpu pagesets and initialize them.
3184  * Before this call only boot pagesets were available.
3185  * Boot pagesets will no longer be used by this processorr
3186  * after setup_per_cpu_pageset().
3187  */
3188 void __init setup_per_cpu_pageset(void)
3189 {
3190 	struct zone *zone;
3191 	int cpu;
3192 
3193 	for_each_populated_zone(zone) {
3194 		zone->pageset = alloc_percpu(struct per_cpu_pageset);
3195 
3196 		for_each_possible_cpu(cpu) {
3197 			struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3198 
3199 			setup_pageset(pcp, zone_batchsize(zone));
3200 
3201 			if (percpu_pagelist_fraction)
3202 				setup_pagelist_highmark(pcp,
3203 					(zone->present_pages /
3204 						percpu_pagelist_fraction));
3205 		}
3206 	}
3207 }
3208 
3209 static noinline __init_refok
3210 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3211 {
3212 	int i;
3213 	struct pglist_data *pgdat = zone->zone_pgdat;
3214 	size_t alloc_size;
3215 
3216 	/*
3217 	 * The per-page waitqueue mechanism uses hashed waitqueues
3218 	 * per zone.
3219 	 */
3220 	zone->wait_table_hash_nr_entries =
3221 		 wait_table_hash_nr_entries(zone_size_pages);
3222 	zone->wait_table_bits =
3223 		wait_table_bits(zone->wait_table_hash_nr_entries);
3224 	alloc_size = zone->wait_table_hash_nr_entries
3225 					* sizeof(wait_queue_head_t);
3226 
3227 	if (!slab_is_available()) {
3228 		zone->wait_table = (wait_queue_head_t *)
3229 			alloc_bootmem_node(pgdat, alloc_size);
3230 	} else {
3231 		/*
3232 		 * This case means that a zone whose size was 0 gets new memory
3233 		 * via memory hot-add.
3234 		 * But it may be the case that a new node was hot-added.  In
3235 		 * this case vmalloc() will not be able to use this new node's
3236 		 * memory - this wait_table must be initialized to use this new
3237 		 * node itself as well.
3238 		 * To use this new node's memory, further consideration will be
3239 		 * necessary.
3240 		 */
3241 		zone->wait_table = vmalloc(alloc_size);
3242 	}
3243 	if (!zone->wait_table)
3244 		return -ENOMEM;
3245 
3246 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3247 		init_waitqueue_head(zone->wait_table + i);
3248 
3249 	return 0;
3250 }
3251 
3252 static int __zone_pcp_update(void *data)
3253 {
3254 	struct zone *zone = data;
3255 	int cpu;
3256 	unsigned long batch = zone_batchsize(zone), flags;
3257 
3258 	for_each_possible_cpu(cpu) {
3259 		struct per_cpu_pageset *pset;
3260 		struct per_cpu_pages *pcp;
3261 
3262 		pset = per_cpu_ptr(zone->pageset, cpu);
3263 		pcp = &pset->pcp;
3264 
3265 		local_irq_save(flags);
3266 		free_pcppages_bulk(zone, pcp->count, pcp);
3267 		setup_pageset(pset, batch);
3268 		local_irq_restore(flags);
3269 	}
3270 	return 0;
3271 }
3272 
3273 void zone_pcp_update(struct zone *zone)
3274 {
3275 	stop_machine(__zone_pcp_update, zone, NULL);
3276 }
3277 
3278 static __meminit void zone_pcp_init(struct zone *zone)
3279 {
3280 	/*
3281 	 * per cpu subsystem is not up at this point. The following code
3282 	 * relies on the ability of the linker to provide the
3283 	 * offset of a (static) per cpu variable into the per cpu area.
3284 	 */
3285 	zone->pageset = &boot_pageset;
3286 
3287 	if (zone->present_pages)
3288 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3289 			zone->name, zone->present_pages,
3290 					 zone_batchsize(zone));
3291 }
3292 
3293 __meminit int init_currently_empty_zone(struct zone *zone,
3294 					unsigned long zone_start_pfn,
3295 					unsigned long size,
3296 					enum memmap_context context)
3297 {
3298 	struct pglist_data *pgdat = zone->zone_pgdat;
3299 	int ret;
3300 	ret = zone_wait_table_init(zone, size);
3301 	if (ret)
3302 		return ret;
3303 	pgdat->nr_zones = zone_idx(zone) + 1;
3304 
3305 	zone->zone_start_pfn = zone_start_pfn;
3306 
3307 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3308 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3309 			pgdat->node_id,
3310 			(unsigned long)zone_idx(zone),
3311 			zone_start_pfn, (zone_start_pfn + size));
3312 
3313 	zone_init_free_lists(zone);
3314 
3315 	return 0;
3316 }
3317 
3318 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3319 /*
3320  * Basic iterator support. Return the first range of PFNs for a node
3321  * Note: nid == MAX_NUMNODES returns first region regardless of node
3322  */
3323 static int __meminit first_active_region_index_in_nid(int nid)
3324 {
3325 	int i;
3326 
3327 	for (i = 0; i < nr_nodemap_entries; i++)
3328 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3329 			return i;
3330 
3331 	return -1;
3332 }
3333 
3334 /*
3335  * Basic iterator support. Return the next active range of PFNs for a node
3336  * Note: nid == MAX_NUMNODES returns next region regardless of node
3337  */
3338 static int __meminit next_active_region_index_in_nid(int index, int nid)
3339 {
3340 	for (index = index + 1; index < nr_nodemap_entries; index++)
3341 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3342 			return index;
3343 
3344 	return -1;
3345 }
3346 
3347 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3348 /*
3349  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3350  * Architectures may implement their own version but if add_active_range()
3351  * was used and there are no special requirements, this is a convenient
3352  * alternative
3353  */
3354 int __meminit __early_pfn_to_nid(unsigned long pfn)
3355 {
3356 	int i;
3357 
3358 	for (i = 0; i < nr_nodemap_entries; i++) {
3359 		unsigned long start_pfn = early_node_map[i].start_pfn;
3360 		unsigned long end_pfn = early_node_map[i].end_pfn;
3361 
3362 		if (start_pfn <= pfn && pfn < end_pfn)
3363 			return early_node_map[i].nid;
3364 	}
3365 	/* This is a memory hole */
3366 	return -1;
3367 }
3368 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3369 
3370 int __meminit early_pfn_to_nid(unsigned long pfn)
3371 {
3372 	int nid;
3373 
3374 	nid = __early_pfn_to_nid(pfn);
3375 	if (nid >= 0)
3376 		return nid;
3377 	/* just returns 0 */
3378 	return 0;
3379 }
3380 
3381 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3382 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3383 {
3384 	int nid;
3385 
3386 	nid = __early_pfn_to_nid(pfn);
3387 	if (nid >= 0 && nid != node)
3388 		return false;
3389 	return true;
3390 }
3391 #endif
3392 
3393 /* Basic iterator support to walk early_node_map[] */
3394 #define for_each_active_range_index_in_nid(i, nid) \
3395 	for (i = first_active_region_index_in_nid(nid); i != -1; \
3396 				i = next_active_region_index_in_nid(i, nid))
3397 
3398 /**
3399  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3400  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3401  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3402  *
3403  * If an architecture guarantees that all ranges registered with
3404  * add_active_ranges() contain no holes and may be freed, this
3405  * this function may be used instead of calling free_bootmem() manually.
3406  */
3407 void __init free_bootmem_with_active_regions(int nid,
3408 						unsigned long max_low_pfn)
3409 {
3410 	int i;
3411 
3412 	for_each_active_range_index_in_nid(i, nid) {
3413 		unsigned long size_pages = 0;
3414 		unsigned long end_pfn = early_node_map[i].end_pfn;
3415 
3416 		if (early_node_map[i].start_pfn >= max_low_pfn)
3417 			continue;
3418 
3419 		if (end_pfn > max_low_pfn)
3420 			end_pfn = max_low_pfn;
3421 
3422 		size_pages = end_pfn - early_node_map[i].start_pfn;
3423 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3424 				PFN_PHYS(early_node_map[i].start_pfn),
3425 				size_pages << PAGE_SHIFT);
3426 	}
3427 }
3428 
3429 int __init add_from_early_node_map(struct range *range, int az,
3430 				   int nr_range, int nid)
3431 {
3432 	int i;
3433 	u64 start, end;
3434 
3435 	/* need to go over early_node_map to find out good range for node */
3436 	for_each_active_range_index_in_nid(i, nid) {
3437 		start = early_node_map[i].start_pfn;
3438 		end = early_node_map[i].end_pfn;
3439 		nr_range = add_range(range, az, nr_range, start, end);
3440 	}
3441 	return nr_range;
3442 }
3443 
3444 #ifdef CONFIG_NO_BOOTMEM
3445 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3446 					u64 goal, u64 limit)
3447 {
3448 	int i;
3449 	void *ptr;
3450 
3451 	/* need to go over early_node_map to find out good range for node */
3452 	for_each_active_range_index_in_nid(i, nid) {
3453 		u64 addr;
3454 		u64 ei_start, ei_last;
3455 
3456 		ei_last = early_node_map[i].end_pfn;
3457 		ei_last <<= PAGE_SHIFT;
3458 		ei_start = early_node_map[i].start_pfn;
3459 		ei_start <<= PAGE_SHIFT;
3460 		addr = find_early_area(ei_start, ei_last,
3461 					 goal, limit, size, align);
3462 
3463 		if (addr == -1ULL)
3464 			continue;
3465 
3466 #if 0
3467 		printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3468 				nid,
3469 				ei_start, ei_last, goal, limit, size,
3470 				align, addr);
3471 #endif
3472 
3473 		ptr = phys_to_virt(addr);
3474 		memset(ptr, 0, size);
3475 		reserve_early_without_check(addr, addr + size, "BOOTMEM");
3476 		return ptr;
3477 	}
3478 
3479 	return NULL;
3480 }
3481 #endif
3482 
3483 
3484 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3485 {
3486 	int i;
3487 	int ret;
3488 
3489 	for_each_active_range_index_in_nid(i, nid) {
3490 		ret = work_fn(early_node_map[i].start_pfn,
3491 			      early_node_map[i].end_pfn, data);
3492 		if (ret)
3493 			break;
3494 	}
3495 }
3496 /**
3497  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3498  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3499  *
3500  * If an architecture guarantees that all ranges registered with
3501  * add_active_ranges() contain no holes and may be freed, this
3502  * function may be used instead of calling memory_present() manually.
3503  */
3504 void __init sparse_memory_present_with_active_regions(int nid)
3505 {
3506 	int i;
3507 
3508 	for_each_active_range_index_in_nid(i, nid)
3509 		memory_present(early_node_map[i].nid,
3510 				early_node_map[i].start_pfn,
3511 				early_node_map[i].end_pfn);
3512 }
3513 
3514 /**
3515  * get_pfn_range_for_nid - Return the start and end page frames for a node
3516  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3517  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3518  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3519  *
3520  * It returns the start and end page frame of a node based on information
3521  * provided by an arch calling add_active_range(). If called for a node
3522  * with no available memory, a warning is printed and the start and end
3523  * PFNs will be 0.
3524  */
3525 void __meminit get_pfn_range_for_nid(unsigned int nid,
3526 			unsigned long *start_pfn, unsigned long *end_pfn)
3527 {
3528 	int i;
3529 	*start_pfn = -1UL;
3530 	*end_pfn = 0;
3531 
3532 	for_each_active_range_index_in_nid(i, nid) {
3533 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3534 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3535 	}
3536 
3537 	if (*start_pfn == -1UL)
3538 		*start_pfn = 0;
3539 }
3540 
3541 /*
3542  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3543  * assumption is made that zones within a node are ordered in monotonic
3544  * increasing memory addresses so that the "highest" populated zone is used
3545  */
3546 static void __init find_usable_zone_for_movable(void)
3547 {
3548 	int zone_index;
3549 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3550 		if (zone_index == ZONE_MOVABLE)
3551 			continue;
3552 
3553 		if (arch_zone_highest_possible_pfn[zone_index] >
3554 				arch_zone_lowest_possible_pfn[zone_index])
3555 			break;
3556 	}
3557 
3558 	VM_BUG_ON(zone_index == -1);
3559 	movable_zone = zone_index;
3560 }
3561 
3562 /*
3563  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3564  * because it is sized independant of architecture. Unlike the other zones,
3565  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3566  * in each node depending on the size of each node and how evenly kernelcore
3567  * is distributed. This helper function adjusts the zone ranges
3568  * provided by the architecture for a given node by using the end of the
3569  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3570  * zones within a node are in order of monotonic increases memory addresses
3571  */
3572 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3573 					unsigned long zone_type,
3574 					unsigned long node_start_pfn,
3575 					unsigned long node_end_pfn,
3576 					unsigned long *zone_start_pfn,
3577 					unsigned long *zone_end_pfn)
3578 {
3579 	/* Only adjust if ZONE_MOVABLE is on this node */
3580 	if (zone_movable_pfn[nid]) {
3581 		/* Size ZONE_MOVABLE */
3582 		if (zone_type == ZONE_MOVABLE) {
3583 			*zone_start_pfn = zone_movable_pfn[nid];
3584 			*zone_end_pfn = min(node_end_pfn,
3585 				arch_zone_highest_possible_pfn[movable_zone]);
3586 
3587 		/* Adjust for ZONE_MOVABLE starting within this range */
3588 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3589 				*zone_end_pfn > zone_movable_pfn[nid]) {
3590 			*zone_end_pfn = zone_movable_pfn[nid];
3591 
3592 		/* Check if this whole range is within ZONE_MOVABLE */
3593 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3594 			*zone_start_pfn = *zone_end_pfn;
3595 	}
3596 }
3597 
3598 /*
3599  * Return the number of pages a zone spans in a node, including holes
3600  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3601  */
3602 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3603 					unsigned long zone_type,
3604 					unsigned long *ignored)
3605 {
3606 	unsigned long node_start_pfn, node_end_pfn;
3607 	unsigned long zone_start_pfn, zone_end_pfn;
3608 
3609 	/* Get the start and end of the node and zone */
3610 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3611 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3612 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3613 	adjust_zone_range_for_zone_movable(nid, zone_type,
3614 				node_start_pfn, node_end_pfn,
3615 				&zone_start_pfn, &zone_end_pfn);
3616 
3617 	/* Check that this node has pages within the zone's required range */
3618 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3619 		return 0;
3620 
3621 	/* Move the zone boundaries inside the node if necessary */
3622 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3623 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3624 
3625 	/* Return the spanned pages */
3626 	return zone_end_pfn - zone_start_pfn;
3627 }
3628 
3629 /*
3630  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3631  * then all holes in the requested range will be accounted for.
3632  */
3633 unsigned long __meminit __absent_pages_in_range(int nid,
3634 				unsigned long range_start_pfn,
3635 				unsigned long range_end_pfn)
3636 {
3637 	int i = 0;
3638 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3639 	unsigned long start_pfn;
3640 
3641 	/* Find the end_pfn of the first active range of pfns in the node */
3642 	i = first_active_region_index_in_nid(nid);
3643 	if (i == -1)
3644 		return 0;
3645 
3646 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3647 
3648 	/* Account for ranges before physical memory on this node */
3649 	if (early_node_map[i].start_pfn > range_start_pfn)
3650 		hole_pages = prev_end_pfn - range_start_pfn;
3651 
3652 	/* Find all holes for the zone within the node */
3653 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3654 
3655 		/* No need to continue if prev_end_pfn is outside the zone */
3656 		if (prev_end_pfn >= range_end_pfn)
3657 			break;
3658 
3659 		/* Make sure the end of the zone is not within the hole */
3660 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3661 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3662 
3663 		/* Update the hole size cound and move on */
3664 		if (start_pfn > range_start_pfn) {
3665 			BUG_ON(prev_end_pfn > start_pfn);
3666 			hole_pages += start_pfn - prev_end_pfn;
3667 		}
3668 		prev_end_pfn = early_node_map[i].end_pfn;
3669 	}
3670 
3671 	/* Account for ranges past physical memory on this node */
3672 	if (range_end_pfn > prev_end_pfn)
3673 		hole_pages += range_end_pfn -
3674 				max(range_start_pfn, prev_end_pfn);
3675 
3676 	return hole_pages;
3677 }
3678 
3679 /**
3680  * absent_pages_in_range - Return number of page frames in holes within a range
3681  * @start_pfn: The start PFN to start searching for holes
3682  * @end_pfn: The end PFN to stop searching for holes
3683  *
3684  * It returns the number of pages frames in memory holes within a range.
3685  */
3686 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3687 							unsigned long end_pfn)
3688 {
3689 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3690 }
3691 
3692 /* Return the number of page frames in holes in a zone on a node */
3693 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3694 					unsigned long zone_type,
3695 					unsigned long *ignored)
3696 {
3697 	unsigned long node_start_pfn, node_end_pfn;
3698 	unsigned long zone_start_pfn, zone_end_pfn;
3699 
3700 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3701 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3702 							node_start_pfn);
3703 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3704 							node_end_pfn);
3705 
3706 	adjust_zone_range_for_zone_movable(nid, zone_type,
3707 			node_start_pfn, node_end_pfn,
3708 			&zone_start_pfn, &zone_end_pfn);
3709 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3710 }
3711 
3712 #else
3713 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3714 					unsigned long zone_type,
3715 					unsigned long *zones_size)
3716 {
3717 	return zones_size[zone_type];
3718 }
3719 
3720 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3721 						unsigned long zone_type,
3722 						unsigned long *zholes_size)
3723 {
3724 	if (!zholes_size)
3725 		return 0;
3726 
3727 	return zholes_size[zone_type];
3728 }
3729 
3730 #endif
3731 
3732 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3733 		unsigned long *zones_size, unsigned long *zholes_size)
3734 {
3735 	unsigned long realtotalpages, totalpages = 0;
3736 	enum zone_type i;
3737 
3738 	for (i = 0; i < MAX_NR_ZONES; i++)
3739 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3740 								zones_size);
3741 	pgdat->node_spanned_pages = totalpages;
3742 
3743 	realtotalpages = totalpages;
3744 	for (i = 0; i < MAX_NR_ZONES; i++)
3745 		realtotalpages -=
3746 			zone_absent_pages_in_node(pgdat->node_id, i,
3747 								zholes_size);
3748 	pgdat->node_present_pages = realtotalpages;
3749 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3750 							realtotalpages);
3751 }
3752 
3753 #ifndef CONFIG_SPARSEMEM
3754 /*
3755  * Calculate the size of the zone->blockflags rounded to an unsigned long
3756  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3757  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3758  * round what is now in bits to nearest long in bits, then return it in
3759  * bytes.
3760  */
3761 static unsigned long __init usemap_size(unsigned long zonesize)
3762 {
3763 	unsigned long usemapsize;
3764 
3765 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3766 	usemapsize = usemapsize >> pageblock_order;
3767 	usemapsize *= NR_PAGEBLOCK_BITS;
3768 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3769 
3770 	return usemapsize / 8;
3771 }
3772 
3773 static void __init setup_usemap(struct pglist_data *pgdat,
3774 				struct zone *zone, unsigned long zonesize)
3775 {
3776 	unsigned long usemapsize = usemap_size(zonesize);
3777 	zone->pageblock_flags = NULL;
3778 	if (usemapsize)
3779 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3780 }
3781 #else
3782 static void inline setup_usemap(struct pglist_data *pgdat,
3783 				struct zone *zone, unsigned long zonesize) {}
3784 #endif /* CONFIG_SPARSEMEM */
3785 
3786 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3787 
3788 /* Return a sensible default order for the pageblock size. */
3789 static inline int pageblock_default_order(void)
3790 {
3791 	if (HPAGE_SHIFT > PAGE_SHIFT)
3792 		return HUGETLB_PAGE_ORDER;
3793 
3794 	return MAX_ORDER-1;
3795 }
3796 
3797 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3798 static inline void __init set_pageblock_order(unsigned int order)
3799 {
3800 	/* Check that pageblock_nr_pages has not already been setup */
3801 	if (pageblock_order)
3802 		return;
3803 
3804 	/*
3805 	 * Assume the largest contiguous order of interest is a huge page.
3806 	 * This value may be variable depending on boot parameters on IA64
3807 	 */
3808 	pageblock_order = order;
3809 }
3810 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3811 
3812 /*
3813  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3814  * and pageblock_default_order() are unused as pageblock_order is set
3815  * at compile-time. See include/linux/pageblock-flags.h for the values of
3816  * pageblock_order based on the kernel config
3817  */
3818 static inline int pageblock_default_order(unsigned int order)
3819 {
3820 	return MAX_ORDER-1;
3821 }
3822 #define set_pageblock_order(x)	do {} while (0)
3823 
3824 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3825 
3826 /*
3827  * Set up the zone data structures:
3828  *   - mark all pages reserved
3829  *   - mark all memory queues empty
3830  *   - clear the memory bitmaps
3831  */
3832 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3833 		unsigned long *zones_size, unsigned long *zholes_size)
3834 {
3835 	enum zone_type j;
3836 	int nid = pgdat->node_id;
3837 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3838 	int ret;
3839 
3840 	pgdat_resize_init(pgdat);
3841 	pgdat->nr_zones = 0;
3842 	init_waitqueue_head(&pgdat->kswapd_wait);
3843 	pgdat->kswapd_max_order = 0;
3844 	pgdat_page_cgroup_init(pgdat);
3845 
3846 	for (j = 0; j < MAX_NR_ZONES; j++) {
3847 		struct zone *zone = pgdat->node_zones + j;
3848 		unsigned long size, realsize, memmap_pages;
3849 		enum lru_list l;
3850 
3851 		size = zone_spanned_pages_in_node(nid, j, zones_size);
3852 		realsize = size - zone_absent_pages_in_node(nid, j,
3853 								zholes_size);
3854 
3855 		/*
3856 		 * Adjust realsize so that it accounts for how much memory
3857 		 * is used by this zone for memmap. This affects the watermark
3858 		 * and per-cpu initialisations
3859 		 */
3860 		memmap_pages =
3861 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3862 		if (realsize >= memmap_pages) {
3863 			realsize -= memmap_pages;
3864 			if (memmap_pages)
3865 				printk(KERN_DEBUG
3866 				       "  %s zone: %lu pages used for memmap\n",
3867 				       zone_names[j], memmap_pages);
3868 		} else
3869 			printk(KERN_WARNING
3870 				"  %s zone: %lu pages exceeds realsize %lu\n",
3871 				zone_names[j], memmap_pages, realsize);
3872 
3873 		/* Account for reserved pages */
3874 		if (j == 0 && realsize > dma_reserve) {
3875 			realsize -= dma_reserve;
3876 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3877 					zone_names[0], dma_reserve);
3878 		}
3879 
3880 		if (!is_highmem_idx(j))
3881 			nr_kernel_pages += realsize;
3882 		nr_all_pages += realsize;
3883 
3884 		zone->spanned_pages = size;
3885 		zone->present_pages = realsize;
3886 #ifdef CONFIG_NUMA
3887 		zone->node = nid;
3888 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3889 						/ 100;
3890 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3891 #endif
3892 		zone->name = zone_names[j];
3893 		spin_lock_init(&zone->lock);
3894 		spin_lock_init(&zone->lru_lock);
3895 		zone_seqlock_init(zone);
3896 		zone->zone_pgdat = pgdat;
3897 
3898 		zone->prev_priority = DEF_PRIORITY;
3899 
3900 		zone_pcp_init(zone);
3901 		for_each_lru(l) {
3902 			INIT_LIST_HEAD(&zone->lru[l].list);
3903 			zone->reclaim_stat.nr_saved_scan[l] = 0;
3904 		}
3905 		zone->reclaim_stat.recent_rotated[0] = 0;
3906 		zone->reclaim_stat.recent_rotated[1] = 0;
3907 		zone->reclaim_stat.recent_scanned[0] = 0;
3908 		zone->reclaim_stat.recent_scanned[1] = 0;
3909 		zap_zone_vm_stats(zone);
3910 		zone->flags = 0;
3911 		if (!size)
3912 			continue;
3913 
3914 		set_pageblock_order(pageblock_default_order());
3915 		setup_usemap(pgdat, zone, size);
3916 		ret = init_currently_empty_zone(zone, zone_start_pfn,
3917 						size, MEMMAP_EARLY);
3918 		BUG_ON(ret);
3919 		memmap_init(size, nid, j, zone_start_pfn);
3920 		zone_start_pfn += size;
3921 	}
3922 }
3923 
3924 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3925 {
3926 	/* Skip empty nodes */
3927 	if (!pgdat->node_spanned_pages)
3928 		return;
3929 
3930 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3931 	/* ia64 gets its own node_mem_map, before this, without bootmem */
3932 	if (!pgdat->node_mem_map) {
3933 		unsigned long size, start, end;
3934 		struct page *map;
3935 
3936 		/*
3937 		 * The zone's endpoints aren't required to be MAX_ORDER
3938 		 * aligned but the node_mem_map endpoints must be in order
3939 		 * for the buddy allocator to function correctly.
3940 		 */
3941 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3942 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3943 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3944 		size =  (end - start) * sizeof(struct page);
3945 		map = alloc_remap(pgdat->node_id, size);
3946 		if (!map)
3947 			map = alloc_bootmem_node(pgdat, size);
3948 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3949 	}
3950 #ifndef CONFIG_NEED_MULTIPLE_NODES
3951 	/*
3952 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3953 	 */
3954 	if (pgdat == NODE_DATA(0)) {
3955 		mem_map = NODE_DATA(0)->node_mem_map;
3956 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3957 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3958 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3959 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3960 	}
3961 #endif
3962 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3963 }
3964 
3965 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3966 		unsigned long node_start_pfn, unsigned long *zholes_size)
3967 {
3968 	pg_data_t *pgdat = NODE_DATA(nid);
3969 
3970 	pgdat->node_id = nid;
3971 	pgdat->node_start_pfn = node_start_pfn;
3972 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3973 
3974 	alloc_node_mem_map(pgdat);
3975 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3976 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3977 		nid, (unsigned long)pgdat,
3978 		(unsigned long)pgdat->node_mem_map);
3979 #endif
3980 
3981 	free_area_init_core(pgdat, zones_size, zholes_size);
3982 }
3983 
3984 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3985 
3986 #if MAX_NUMNODES > 1
3987 /*
3988  * Figure out the number of possible node ids.
3989  */
3990 static void __init setup_nr_node_ids(void)
3991 {
3992 	unsigned int node;
3993 	unsigned int highest = 0;
3994 
3995 	for_each_node_mask(node, node_possible_map)
3996 		highest = node;
3997 	nr_node_ids = highest + 1;
3998 }
3999 #else
4000 static inline void setup_nr_node_ids(void)
4001 {
4002 }
4003 #endif
4004 
4005 /**
4006  * add_active_range - Register a range of PFNs backed by physical memory
4007  * @nid: The node ID the range resides on
4008  * @start_pfn: The start PFN of the available physical memory
4009  * @end_pfn: The end PFN of the available physical memory
4010  *
4011  * These ranges are stored in an early_node_map[] and later used by
4012  * free_area_init_nodes() to calculate zone sizes and holes. If the
4013  * range spans a memory hole, it is up to the architecture to ensure
4014  * the memory is not freed by the bootmem allocator. If possible
4015  * the range being registered will be merged with existing ranges.
4016  */
4017 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4018 						unsigned long end_pfn)
4019 {
4020 	int i;
4021 
4022 	mminit_dprintk(MMINIT_TRACE, "memory_register",
4023 			"Entering add_active_range(%d, %#lx, %#lx) "
4024 			"%d entries of %d used\n",
4025 			nid, start_pfn, end_pfn,
4026 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4027 
4028 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4029 
4030 	/* Merge with existing active regions if possible */
4031 	for (i = 0; i < nr_nodemap_entries; i++) {
4032 		if (early_node_map[i].nid != nid)
4033 			continue;
4034 
4035 		/* Skip if an existing region covers this new one */
4036 		if (start_pfn >= early_node_map[i].start_pfn &&
4037 				end_pfn <= early_node_map[i].end_pfn)
4038 			return;
4039 
4040 		/* Merge forward if suitable */
4041 		if (start_pfn <= early_node_map[i].end_pfn &&
4042 				end_pfn > early_node_map[i].end_pfn) {
4043 			early_node_map[i].end_pfn = end_pfn;
4044 			return;
4045 		}
4046 
4047 		/* Merge backward if suitable */
4048 		if (start_pfn < early_node_map[i].start_pfn &&
4049 				end_pfn >= early_node_map[i].start_pfn) {
4050 			early_node_map[i].start_pfn = start_pfn;
4051 			return;
4052 		}
4053 	}
4054 
4055 	/* Check that early_node_map is large enough */
4056 	if (i >= MAX_ACTIVE_REGIONS) {
4057 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4058 							MAX_ACTIVE_REGIONS);
4059 		return;
4060 	}
4061 
4062 	early_node_map[i].nid = nid;
4063 	early_node_map[i].start_pfn = start_pfn;
4064 	early_node_map[i].end_pfn = end_pfn;
4065 	nr_nodemap_entries = i + 1;
4066 }
4067 
4068 /**
4069  * remove_active_range - Shrink an existing registered range of PFNs
4070  * @nid: The node id the range is on that should be shrunk
4071  * @start_pfn: The new PFN of the range
4072  * @end_pfn: The new PFN of the range
4073  *
4074  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4075  * The map is kept near the end physical page range that has already been
4076  * registered. This function allows an arch to shrink an existing registered
4077  * range.
4078  */
4079 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4080 				unsigned long end_pfn)
4081 {
4082 	int i, j;
4083 	int removed = 0;
4084 
4085 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4086 			  nid, start_pfn, end_pfn);
4087 
4088 	/* Find the old active region end and shrink */
4089 	for_each_active_range_index_in_nid(i, nid) {
4090 		if (early_node_map[i].start_pfn >= start_pfn &&
4091 		    early_node_map[i].end_pfn <= end_pfn) {
4092 			/* clear it */
4093 			early_node_map[i].start_pfn = 0;
4094 			early_node_map[i].end_pfn = 0;
4095 			removed = 1;
4096 			continue;
4097 		}
4098 		if (early_node_map[i].start_pfn < start_pfn &&
4099 		    early_node_map[i].end_pfn > start_pfn) {
4100 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4101 			early_node_map[i].end_pfn = start_pfn;
4102 			if (temp_end_pfn > end_pfn)
4103 				add_active_range(nid, end_pfn, temp_end_pfn);
4104 			continue;
4105 		}
4106 		if (early_node_map[i].start_pfn >= start_pfn &&
4107 		    early_node_map[i].end_pfn > end_pfn &&
4108 		    early_node_map[i].start_pfn < end_pfn) {
4109 			early_node_map[i].start_pfn = end_pfn;
4110 			continue;
4111 		}
4112 	}
4113 
4114 	if (!removed)
4115 		return;
4116 
4117 	/* remove the blank ones */
4118 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4119 		if (early_node_map[i].nid != nid)
4120 			continue;
4121 		if (early_node_map[i].end_pfn)
4122 			continue;
4123 		/* we found it, get rid of it */
4124 		for (j = i; j < nr_nodemap_entries - 1; j++)
4125 			memcpy(&early_node_map[j], &early_node_map[j+1],
4126 				sizeof(early_node_map[j]));
4127 		j = nr_nodemap_entries - 1;
4128 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4129 		nr_nodemap_entries--;
4130 	}
4131 }
4132 
4133 /**
4134  * remove_all_active_ranges - Remove all currently registered regions
4135  *
4136  * During discovery, it may be found that a table like SRAT is invalid
4137  * and an alternative discovery method must be used. This function removes
4138  * all currently registered regions.
4139  */
4140 void __init remove_all_active_ranges(void)
4141 {
4142 	memset(early_node_map, 0, sizeof(early_node_map));
4143 	nr_nodemap_entries = 0;
4144 }
4145 
4146 /* Compare two active node_active_regions */
4147 static int __init cmp_node_active_region(const void *a, const void *b)
4148 {
4149 	struct node_active_region *arange = (struct node_active_region *)a;
4150 	struct node_active_region *brange = (struct node_active_region *)b;
4151 
4152 	/* Done this way to avoid overflows */
4153 	if (arange->start_pfn > brange->start_pfn)
4154 		return 1;
4155 	if (arange->start_pfn < brange->start_pfn)
4156 		return -1;
4157 
4158 	return 0;
4159 }
4160 
4161 /* sort the node_map by start_pfn */
4162 void __init sort_node_map(void)
4163 {
4164 	sort(early_node_map, (size_t)nr_nodemap_entries,
4165 			sizeof(struct node_active_region),
4166 			cmp_node_active_region, NULL);
4167 }
4168 
4169 /* Find the lowest pfn for a node */
4170 static unsigned long __init find_min_pfn_for_node(int nid)
4171 {
4172 	int i;
4173 	unsigned long min_pfn = ULONG_MAX;
4174 
4175 	/* Assuming a sorted map, the first range found has the starting pfn */
4176 	for_each_active_range_index_in_nid(i, nid)
4177 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4178 
4179 	if (min_pfn == ULONG_MAX) {
4180 		printk(KERN_WARNING
4181 			"Could not find start_pfn for node %d\n", nid);
4182 		return 0;
4183 	}
4184 
4185 	return min_pfn;
4186 }
4187 
4188 /**
4189  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4190  *
4191  * It returns the minimum PFN based on information provided via
4192  * add_active_range().
4193  */
4194 unsigned long __init find_min_pfn_with_active_regions(void)
4195 {
4196 	return find_min_pfn_for_node(MAX_NUMNODES);
4197 }
4198 
4199 /*
4200  * early_calculate_totalpages()
4201  * Sum pages in active regions for movable zone.
4202  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4203  */
4204 static unsigned long __init early_calculate_totalpages(void)
4205 {
4206 	int i;
4207 	unsigned long totalpages = 0;
4208 
4209 	for (i = 0; i < nr_nodemap_entries; i++) {
4210 		unsigned long pages = early_node_map[i].end_pfn -
4211 						early_node_map[i].start_pfn;
4212 		totalpages += pages;
4213 		if (pages)
4214 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4215 	}
4216   	return totalpages;
4217 }
4218 
4219 /*
4220  * Find the PFN the Movable zone begins in each node. Kernel memory
4221  * is spread evenly between nodes as long as the nodes have enough
4222  * memory. When they don't, some nodes will have more kernelcore than
4223  * others
4224  */
4225 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4226 {
4227 	int i, nid;
4228 	unsigned long usable_startpfn;
4229 	unsigned long kernelcore_node, kernelcore_remaining;
4230 	/* save the state before borrow the nodemask */
4231 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4232 	unsigned long totalpages = early_calculate_totalpages();
4233 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4234 
4235 	/*
4236 	 * If movablecore was specified, calculate what size of
4237 	 * kernelcore that corresponds so that memory usable for
4238 	 * any allocation type is evenly spread. If both kernelcore
4239 	 * and movablecore are specified, then the value of kernelcore
4240 	 * will be used for required_kernelcore if it's greater than
4241 	 * what movablecore would have allowed.
4242 	 */
4243 	if (required_movablecore) {
4244 		unsigned long corepages;
4245 
4246 		/*
4247 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4248 		 * was requested by the user
4249 		 */
4250 		required_movablecore =
4251 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4252 		corepages = totalpages - required_movablecore;
4253 
4254 		required_kernelcore = max(required_kernelcore, corepages);
4255 	}
4256 
4257 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4258 	if (!required_kernelcore)
4259 		goto out;
4260 
4261 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4262 	find_usable_zone_for_movable();
4263 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4264 
4265 restart:
4266 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4267 	kernelcore_node = required_kernelcore / usable_nodes;
4268 	for_each_node_state(nid, N_HIGH_MEMORY) {
4269 		/*
4270 		 * Recalculate kernelcore_node if the division per node
4271 		 * now exceeds what is necessary to satisfy the requested
4272 		 * amount of memory for the kernel
4273 		 */
4274 		if (required_kernelcore < kernelcore_node)
4275 			kernelcore_node = required_kernelcore / usable_nodes;
4276 
4277 		/*
4278 		 * As the map is walked, we track how much memory is usable
4279 		 * by the kernel using kernelcore_remaining. When it is
4280 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4281 		 */
4282 		kernelcore_remaining = kernelcore_node;
4283 
4284 		/* Go through each range of PFNs within this node */
4285 		for_each_active_range_index_in_nid(i, nid) {
4286 			unsigned long start_pfn, end_pfn;
4287 			unsigned long size_pages;
4288 
4289 			start_pfn = max(early_node_map[i].start_pfn,
4290 						zone_movable_pfn[nid]);
4291 			end_pfn = early_node_map[i].end_pfn;
4292 			if (start_pfn >= end_pfn)
4293 				continue;
4294 
4295 			/* Account for what is only usable for kernelcore */
4296 			if (start_pfn < usable_startpfn) {
4297 				unsigned long kernel_pages;
4298 				kernel_pages = min(end_pfn, usable_startpfn)
4299 								- start_pfn;
4300 
4301 				kernelcore_remaining -= min(kernel_pages,
4302 							kernelcore_remaining);
4303 				required_kernelcore -= min(kernel_pages,
4304 							required_kernelcore);
4305 
4306 				/* Continue if range is now fully accounted */
4307 				if (end_pfn <= usable_startpfn) {
4308 
4309 					/*
4310 					 * Push zone_movable_pfn to the end so
4311 					 * that if we have to rebalance
4312 					 * kernelcore across nodes, we will
4313 					 * not double account here
4314 					 */
4315 					zone_movable_pfn[nid] = end_pfn;
4316 					continue;
4317 				}
4318 				start_pfn = usable_startpfn;
4319 			}
4320 
4321 			/*
4322 			 * The usable PFN range for ZONE_MOVABLE is from
4323 			 * start_pfn->end_pfn. Calculate size_pages as the
4324 			 * number of pages used as kernelcore
4325 			 */
4326 			size_pages = end_pfn - start_pfn;
4327 			if (size_pages > kernelcore_remaining)
4328 				size_pages = kernelcore_remaining;
4329 			zone_movable_pfn[nid] = start_pfn + size_pages;
4330 
4331 			/*
4332 			 * Some kernelcore has been met, update counts and
4333 			 * break if the kernelcore for this node has been
4334 			 * satisified
4335 			 */
4336 			required_kernelcore -= min(required_kernelcore,
4337 								size_pages);
4338 			kernelcore_remaining -= size_pages;
4339 			if (!kernelcore_remaining)
4340 				break;
4341 		}
4342 	}
4343 
4344 	/*
4345 	 * If there is still required_kernelcore, we do another pass with one
4346 	 * less node in the count. This will push zone_movable_pfn[nid] further
4347 	 * along on the nodes that still have memory until kernelcore is
4348 	 * satisified
4349 	 */
4350 	usable_nodes--;
4351 	if (usable_nodes && required_kernelcore > usable_nodes)
4352 		goto restart;
4353 
4354 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4355 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4356 		zone_movable_pfn[nid] =
4357 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4358 
4359 out:
4360 	/* restore the node_state */
4361 	node_states[N_HIGH_MEMORY] = saved_node_state;
4362 }
4363 
4364 /* Any regular memory on that node ? */
4365 static void check_for_regular_memory(pg_data_t *pgdat)
4366 {
4367 #ifdef CONFIG_HIGHMEM
4368 	enum zone_type zone_type;
4369 
4370 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4371 		struct zone *zone = &pgdat->node_zones[zone_type];
4372 		if (zone->present_pages)
4373 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4374 	}
4375 #endif
4376 }
4377 
4378 /**
4379  * free_area_init_nodes - Initialise all pg_data_t and zone data
4380  * @max_zone_pfn: an array of max PFNs for each zone
4381  *
4382  * This will call free_area_init_node() for each active node in the system.
4383  * Using the page ranges provided by add_active_range(), the size of each
4384  * zone in each node and their holes is calculated. If the maximum PFN
4385  * between two adjacent zones match, it is assumed that the zone is empty.
4386  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4387  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4388  * starts where the previous one ended. For example, ZONE_DMA32 starts
4389  * at arch_max_dma_pfn.
4390  */
4391 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4392 {
4393 	unsigned long nid;
4394 	int i;
4395 
4396 	/* Sort early_node_map as initialisation assumes it is sorted */
4397 	sort_node_map();
4398 
4399 	/* Record where the zone boundaries are */
4400 	memset(arch_zone_lowest_possible_pfn, 0,
4401 				sizeof(arch_zone_lowest_possible_pfn));
4402 	memset(arch_zone_highest_possible_pfn, 0,
4403 				sizeof(arch_zone_highest_possible_pfn));
4404 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4405 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4406 	for (i = 1; i < MAX_NR_ZONES; i++) {
4407 		if (i == ZONE_MOVABLE)
4408 			continue;
4409 		arch_zone_lowest_possible_pfn[i] =
4410 			arch_zone_highest_possible_pfn[i-1];
4411 		arch_zone_highest_possible_pfn[i] =
4412 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4413 	}
4414 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4415 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4416 
4417 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4418 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4419 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4420 
4421 	/* Print out the zone ranges */
4422 	printk("Zone PFN ranges:\n");
4423 	for (i = 0; i < MAX_NR_ZONES; i++) {
4424 		if (i == ZONE_MOVABLE)
4425 			continue;
4426 		printk("  %-8s ", zone_names[i]);
4427 		if (arch_zone_lowest_possible_pfn[i] ==
4428 				arch_zone_highest_possible_pfn[i])
4429 			printk("empty\n");
4430 		else
4431 			printk("%0#10lx -> %0#10lx\n",
4432 				arch_zone_lowest_possible_pfn[i],
4433 				arch_zone_highest_possible_pfn[i]);
4434 	}
4435 
4436 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4437 	printk("Movable zone start PFN for each node\n");
4438 	for (i = 0; i < MAX_NUMNODES; i++) {
4439 		if (zone_movable_pfn[i])
4440 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4441 	}
4442 
4443 	/* Print out the early_node_map[] */
4444 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4445 	for (i = 0; i < nr_nodemap_entries; i++)
4446 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4447 						early_node_map[i].start_pfn,
4448 						early_node_map[i].end_pfn);
4449 
4450 	/* Initialise every node */
4451 	mminit_verify_pageflags_layout();
4452 	setup_nr_node_ids();
4453 	for_each_online_node(nid) {
4454 		pg_data_t *pgdat = NODE_DATA(nid);
4455 		free_area_init_node(nid, NULL,
4456 				find_min_pfn_for_node(nid), NULL);
4457 
4458 		/* Any memory on that node */
4459 		if (pgdat->node_present_pages)
4460 			node_set_state(nid, N_HIGH_MEMORY);
4461 		check_for_regular_memory(pgdat);
4462 	}
4463 }
4464 
4465 static int __init cmdline_parse_core(char *p, unsigned long *core)
4466 {
4467 	unsigned long long coremem;
4468 	if (!p)
4469 		return -EINVAL;
4470 
4471 	coremem = memparse(p, &p);
4472 	*core = coremem >> PAGE_SHIFT;
4473 
4474 	/* Paranoid check that UL is enough for the coremem value */
4475 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4476 
4477 	return 0;
4478 }
4479 
4480 /*
4481  * kernelcore=size sets the amount of memory for use for allocations that
4482  * cannot be reclaimed or migrated.
4483  */
4484 static int __init cmdline_parse_kernelcore(char *p)
4485 {
4486 	return cmdline_parse_core(p, &required_kernelcore);
4487 }
4488 
4489 /*
4490  * movablecore=size sets the amount of memory for use for allocations that
4491  * can be reclaimed or migrated.
4492  */
4493 static int __init cmdline_parse_movablecore(char *p)
4494 {
4495 	return cmdline_parse_core(p, &required_movablecore);
4496 }
4497 
4498 early_param("kernelcore", cmdline_parse_kernelcore);
4499 early_param("movablecore", cmdline_parse_movablecore);
4500 
4501 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4502 
4503 /**
4504  * set_dma_reserve - set the specified number of pages reserved in the first zone
4505  * @new_dma_reserve: The number of pages to mark reserved
4506  *
4507  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4508  * In the DMA zone, a significant percentage may be consumed by kernel image
4509  * and other unfreeable allocations which can skew the watermarks badly. This
4510  * function may optionally be used to account for unfreeable pages in the
4511  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4512  * smaller per-cpu batchsize.
4513  */
4514 void __init set_dma_reserve(unsigned long new_dma_reserve)
4515 {
4516 	dma_reserve = new_dma_reserve;
4517 }
4518 
4519 #ifndef CONFIG_NEED_MULTIPLE_NODES
4520 struct pglist_data __refdata contig_page_data = {
4521 #ifndef CONFIG_NO_BOOTMEM
4522  .bdata = &bootmem_node_data[0]
4523 #endif
4524  };
4525 EXPORT_SYMBOL(contig_page_data);
4526 #endif
4527 
4528 void __init free_area_init(unsigned long *zones_size)
4529 {
4530 	free_area_init_node(0, zones_size,
4531 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4532 }
4533 
4534 static int page_alloc_cpu_notify(struct notifier_block *self,
4535 				 unsigned long action, void *hcpu)
4536 {
4537 	int cpu = (unsigned long)hcpu;
4538 
4539 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4540 		drain_pages(cpu);
4541 
4542 		/*
4543 		 * Spill the event counters of the dead processor
4544 		 * into the current processors event counters.
4545 		 * This artificially elevates the count of the current
4546 		 * processor.
4547 		 */
4548 		vm_events_fold_cpu(cpu);
4549 
4550 		/*
4551 		 * Zero the differential counters of the dead processor
4552 		 * so that the vm statistics are consistent.
4553 		 *
4554 		 * This is only okay since the processor is dead and cannot
4555 		 * race with what we are doing.
4556 		 */
4557 		refresh_cpu_vm_stats(cpu);
4558 	}
4559 	return NOTIFY_OK;
4560 }
4561 
4562 void __init page_alloc_init(void)
4563 {
4564 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4565 }
4566 
4567 /*
4568  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4569  *	or min_free_kbytes changes.
4570  */
4571 static void calculate_totalreserve_pages(void)
4572 {
4573 	struct pglist_data *pgdat;
4574 	unsigned long reserve_pages = 0;
4575 	enum zone_type i, j;
4576 
4577 	for_each_online_pgdat(pgdat) {
4578 		for (i = 0; i < MAX_NR_ZONES; i++) {
4579 			struct zone *zone = pgdat->node_zones + i;
4580 			unsigned long max = 0;
4581 
4582 			/* Find valid and maximum lowmem_reserve in the zone */
4583 			for (j = i; j < MAX_NR_ZONES; j++) {
4584 				if (zone->lowmem_reserve[j] > max)
4585 					max = zone->lowmem_reserve[j];
4586 			}
4587 
4588 			/* we treat the high watermark as reserved pages. */
4589 			max += high_wmark_pages(zone);
4590 
4591 			if (max > zone->present_pages)
4592 				max = zone->present_pages;
4593 			reserve_pages += max;
4594 		}
4595 	}
4596 	totalreserve_pages = reserve_pages;
4597 }
4598 
4599 /*
4600  * setup_per_zone_lowmem_reserve - called whenever
4601  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4602  *	has a correct pages reserved value, so an adequate number of
4603  *	pages are left in the zone after a successful __alloc_pages().
4604  */
4605 static void setup_per_zone_lowmem_reserve(void)
4606 {
4607 	struct pglist_data *pgdat;
4608 	enum zone_type j, idx;
4609 
4610 	for_each_online_pgdat(pgdat) {
4611 		for (j = 0; j < MAX_NR_ZONES; j++) {
4612 			struct zone *zone = pgdat->node_zones + j;
4613 			unsigned long present_pages = zone->present_pages;
4614 
4615 			zone->lowmem_reserve[j] = 0;
4616 
4617 			idx = j;
4618 			while (idx) {
4619 				struct zone *lower_zone;
4620 
4621 				idx--;
4622 
4623 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4624 					sysctl_lowmem_reserve_ratio[idx] = 1;
4625 
4626 				lower_zone = pgdat->node_zones + idx;
4627 				lower_zone->lowmem_reserve[j] = present_pages /
4628 					sysctl_lowmem_reserve_ratio[idx];
4629 				present_pages += lower_zone->present_pages;
4630 			}
4631 		}
4632 	}
4633 
4634 	/* update totalreserve_pages */
4635 	calculate_totalreserve_pages();
4636 }
4637 
4638 /**
4639  * setup_per_zone_wmarks - called when min_free_kbytes changes
4640  * or when memory is hot-{added|removed}
4641  *
4642  * Ensures that the watermark[min,low,high] values for each zone are set
4643  * correctly with respect to min_free_kbytes.
4644  */
4645 void setup_per_zone_wmarks(void)
4646 {
4647 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4648 	unsigned long lowmem_pages = 0;
4649 	struct zone *zone;
4650 	unsigned long flags;
4651 
4652 	/* Calculate total number of !ZONE_HIGHMEM pages */
4653 	for_each_zone(zone) {
4654 		if (!is_highmem(zone))
4655 			lowmem_pages += zone->present_pages;
4656 	}
4657 
4658 	for_each_zone(zone) {
4659 		u64 tmp;
4660 
4661 		spin_lock_irqsave(&zone->lock, flags);
4662 		tmp = (u64)pages_min * zone->present_pages;
4663 		do_div(tmp, lowmem_pages);
4664 		if (is_highmem(zone)) {
4665 			/*
4666 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4667 			 * need highmem pages, so cap pages_min to a small
4668 			 * value here.
4669 			 *
4670 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4671 			 * deltas controls asynch page reclaim, and so should
4672 			 * not be capped for highmem.
4673 			 */
4674 			int min_pages;
4675 
4676 			min_pages = zone->present_pages / 1024;
4677 			if (min_pages < SWAP_CLUSTER_MAX)
4678 				min_pages = SWAP_CLUSTER_MAX;
4679 			if (min_pages > 128)
4680 				min_pages = 128;
4681 			zone->watermark[WMARK_MIN] = min_pages;
4682 		} else {
4683 			/*
4684 			 * If it's a lowmem zone, reserve a number of pages
4685 			 * proportionate to the zone's size.
4686 			 */
4687 			zone->watermark[WMARK_MIN] = tmp;
4688 		}
4689 
4690 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4691 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4692 		setup_zone_migrate_reserve(zone);
4693 		spin_unlock_irqrestore(&zone->lock, flags);
4694 	}
4695 
4696 	/* update totalreserve_pages */
4697 	calculate_totalreserve_pages();
4698 }
4699 
4700 /*
4701  * The inactive anon list should be small enough that the VM never has to
4702  * do too much work, but large enough that each inactive page has a chance
4703  * to be referenced again before it is swapped out.
4704  *
4705  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4706  * INACTIVE_ANON pages on this zone's LRU, maintained by the
4707  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4708  * the anonymous pages are kept on the inactive list.
4709  *
4710  * total     target    max
4711  * memory    ratio     inactive anon
4712  * -------------------------------------
4713  *   10MB       1         5MB
4714  *  100MB       1        50MB
4715  *    1GB       3       250MB
4716  *   10GB      10       0.9GB
4717  *  100GB      31         3GB
4718  *    1TB     101        10GB
4719  *   10TB     320        32GB
4720  */
4721 void calculate_zone_inactive_ratio(struct zone *zone)
4722 {
4723 	unsigned int gb, ratio;
4724 
4725 	/* Zone size in gigabytes */
4726 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4727 	if (gb)
4728 		ratio = int_sqrt(10 * gb);
4729 	else
4730 		ratio = 1;
4731 
4732 	zone->inactive_ratio = ratio;
4733 }
4734 
4735 static void __init setup_per_zone_inactive_ratio(void)
4736 {
4737 	struct zone *zone;
4738 
4739 	for_each_zone(zone)
4740 		calculate_zone_inactive_ratio(zone);
4741 }
4742 
4743 /*
4744  * Initialise min_free_kbytes.
4745  *
4746  * For small machines we want it small (128k min).  For large machines
4747  * we want it large (64MB max).  But it is not linear, because network
4748  * bandwidth does not increase linearly with machine size.  We use
4749  *
4750  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4751  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4752  *
4753  * which yields
4754  *
4755  * 16MB:	512k
4756  * 32MB:	724k
4757  * 64MB:	1024k
4758  * 128MB:	1448k
4759  * 256MB:	2048k
4760  * 512MB:	2896k
4761  * 1024MB:	4096k
4762  * 2048MB:	5792k
4763  * 4096MB:	8192k
4764  * 8192MB:	11584k
4765  * 16384MB:	16384k
4766  */
4767 static int __init init_per_zone_wmark_min(void)
4768 {
4769 	unsigned long lowmem_kbytes;
4770 
4771 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4772 
4773 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4774 	if (min_free_kbytes < 128)
4775 		min_free_kbytes = 128;
4776 	if (min_free_kbytes > 65536)
4777 		min_free_kbytes = 65536;
4778 	setup_per_zone_wmarks();
4779 	setup_per_zone_lowmem_reserve();
4780 	setup_per_zone_inactive_ratio();
4781 	return 0;
4782 }
4783 module_init(init_per_zone_wmark_min)
4784 
4785 /*
4786  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4787  *	that we can call two helper functions whenever min_free_kbytes
4788  *	changes.
4789  */
4790 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4791 	void __user *buffer, size_t *length, loff_t *ppos)
4792 {
4793 	proc_dointvec(table, write, buffer, length, ppos);
4794 	if (write)
4795 		setup_per_zone_wmarks();
4796 	return 0;
4797 }
4798 
4799 #ifdef CONFIG_NUMA
4800 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4801 	void __user *buffer, size_t *length, loff_t *ppos)
4802 {
4803 	struct zone *zone;
4804 	int rc;
4805 
4806 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4807 	if (rc)
4808 		return rc;
4809 
4810 	for_each_zone(zone)
4811 		zone->min_unmapped_pages = (zone->present_pages *
4812 				sysctl_min_unmapped_ratio) / 100;
4813 	return 0;
4814 }
4815 
4816 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4817 	void __user *buffer, size_t *length, loff_t *ppos)
4818 {
4819 	struct zone *zone;
4820 	int rc;
4821 
4822 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4823 	if (rc)
4824 		return rc;
4825 
4826 	for_each_zone(zone)
4827 		zone->min_slab_pages = (zone->present_pages *
4828 				sysctl_min_slab_ratio) / 100;
4829 	return 0;
4830 }
4831 #endif
4832 
4833 /*
4834  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4835  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4836  *	whenever sysctl_lowmem_reserve_ratio changes.
4837  *
4838  * The reserve ratio obviously has absolutely no relation with the
4839  * minimum watermarks. The lowmem reserve ratio can only make sense
4840  * if in function of the boot time zone sizes.
4841  */
4842 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4843 	void __user *buffer, size_t *length, loff_t *ppos)
4844 {
4845 	proc_dointvec_minmax(table, write, buffer, length, ppos);
4846 	setup_per_zone_lowmem_reserve();
4847 	return 0;
4848 }
4849 
4850 /*
4851  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4852  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4853  * can have before it gets flushed back to buddy allocator.
4854  */
4855 
4856 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4857 	void __user *buffer, size_t *length, loff_t *ppos)
4858 {
4859 	struct zone *zone;
4860 	unsigned int cpu;
4861 	int ret;
4862 
4863 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4864 	if (!write || (ret == -EINVAL))
4865 		return ret;
4866 	for_each_populated_zone(zone) {
4867 		for_each_possible_cpu(cpu) {
4868 			unsigned long  high;
4869 			high = zone->present_pages / percpu_pagelist_fraction;
4870 			setup_pagelist_highmark(
4871 				per_cpu_ptr(zone->pageset, cpu), high);
4872 		}
4873 	}
4874 	return 0;
4875 }
4876 
4877 int hashdist = HASHDIST_DEFAULT;
4878 
4879 #ifdef CONFIG_NUMA
4880 static int __init set_hashdist(char *str)
4881 {
4882 	if (!str)
4883 		return 0;
4884 	hashdist = simple_strtoul(str, &str, 0);
4885 	return 1;
4886 }
4887 __setup("hashdist=", set_hashdist);
4888 #endif
4889 
4890 /*
4891  * allocate a large system hash table from bootmem
4892  * - it is assumed that the hash table must contain an exact power-of-2
4893  *   quantity of entries
4894  * - limit is the number of hash buckets, not the total allocation size
4895  */
4896 void *__init alloc_large_system_hash(const char *tablename,
4897 				     unsigned long bucketsize,
4898 				     unsigned long numentries,
4899 				     int scale,
4900 				     int flags,
4901 				     unsigned int *_hash_shift,
4902 				     unsigned int *_hash_mask,
4903 				     unsigned long limit)
4904 {
4905 	unsigned long long max = limit;
4906 	unsigned long log2qty, size;
4907 	void *table = NULL;
4908 
4909 	/* allow the kernel cmdline to have a say */
4910 	if (!numentries) {
4911 		/* round applicable memory size up to nearest megabyte */
4912 		numentries = nr_kernel_pages;
4913 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4914 		numentries >>= 20 - PAGE_SHIFT;
4915 		numentries <<= 20 - PAGE_SHIFT;
4916 
4917 		/* limit to 1 bucket per 2^scale bytes of low memory */
4918 		if (scale > PAGE_SHIFT)
4919 			numentries >>= (scale - PAGE_SHIFT);
4920 		else
4921 			numentries <<= (PAGE_SHIFT - scale);
4922 
4923 		/* Make sure we've got at least a 0-order allocation.. */
4924 		if (unlikely(flags & HASH_SMALL)) {
4925 			/* Makes no sense without HASH_EARLY */
4926 			WARN_ON(!(flags & HASH_EARLY));
4927 			if (!(numentries >> *_hash_shift)) {
4928 				numentries = 1UL << *_hash_shift;
4929 				BUG_ON(!numentries);
4930 			}
4931 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4932 			numentries = PAGE_SIZE / bucketsize;
4933 	}
4934 	numentries = roundup_pow_of_two(numentries);
4935 
4936 	/* limit allocation size to 1/16 total memory by default */
4937 	if (max == 0) {
4938 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4939 		do_div(max, bucketsize);
4940 	}
4941 
4942 	if (numentries > max)
4943 		numentries = max;
4944 
4945 	log2qty = ilog2(numentries);
4946 
4947 	do {
4948 		size = bucketsize << log2qty;
4949 		if (flags & HASH_EARLY)
4950 			table = alloc_bootmem_nopanic(size);
4951 		else if (hashdist)
4952 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4953 		else {
4954 			/*
4955 			 * If bucketsize is not a power-of-two, we may free
4956 			 * some pages at the end of hash table which
4957 			 * alloc_pages_exact() automatically does
4958 			 */
4959 			if (get_order(size) < MAX_ORDER) {
4960 				table = alloc_pages_exact(size, GFP_ATOMIC);
4961 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4962 			}
4963 		}
4964 	} while (!table && size > PAGE_SIZE && --log2qty);
4965 
4966 	if (!table)
4967 		panic("Failed to allocate %s hash table\n", tablename);
4968 
4969 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4970 	       tablename,
4971 	       (1U << log2qty),
4972 	       ilog2(size) - PAGE_SHIFT,
4973 	       size);
4974 
4975 	if (_hash_shift)
4976 		*_hash_shift = log2qty;
4977 	if (_hash_mask)
4978 		*_hash_mask = (1 << log2qty) - 1;
4979 
4980 	return table;
4981 }
4982 
4983 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4984 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4985 							unsigned long pfn)
4986 {
4987 #ifdef CONFIG_SPARSEMEM
4988 	return __pfn_to_section(pfn)->pageblock_flags;
4989 #else
4990 	return zone->pageblock_flags;
4991 #endif /* CONFIG_SPARSEMEM */
4992 }
4993 
4994 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4995 {
4996 #ifdef CONFIG_SPARSEMEM
4997 	pfn &= (PAGES_PER_SECTION-1);
4998 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4999 #else
5000 	pfn = pfn - zone->zone_start_pfn;
5001 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5002 #endif /* CONFIG_SPARSEMEM */
5003 }
5004 
5005 /**
5006  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5007  * @page: The page within the block of interest
5008  * @start_bitidx: The first bit of interest to retrieve
5009  * @end_bitidx: The last bit of interest
5010  * returns pageblock_bits flags
5011  */
5012 unsigned long get_pageblock_flags_group(struct page *page,
5013 					int start_bitidx, int end_bitidx)
5014 {
5015 	struct zone *zone;
5016 	unsigned long *bitmap;
5017 	unsigned long pfn, bitidx;
5018 	unsigned long flags = 0;
5019 	unsigned long value = 1;
5020 
5021 	zone = page_zone(page);
5022 	pfn = page_to_pfn(page);
5023 	bitmap = get_pageblock_bitmap(zone, pfn);
5024 	bitidx = pfn_to_bitidx(zone, pfn);
5025 
5026 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5027 		if (test_bit(bitidx + start_bitidx, bitmap))
5028 			flags |= value;
5029 
5030 	return flags;
5031 }
5032 
5033 /**
5034  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5035  * @page: The page within the block of interest
5036  * @start_bitidx: The first bit of interest
5037  * @end_bitidx: The last bit of interest
5038  * @flags: The flags to set
5039  */
5040 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5041 					int start_bitidx, int end_bitidx)
5042 {
5043 	struct zone *zone;
5044 	unsigned long *bitmap;
5045 	unsigned long pfn, bitidx;
5046 	unsigned long value = 1;
5047 
5048 	zone = page_zone(page);
5049 	pfn = page_to_pfn(page);
5050 	bitmap = get_pageblock_bitmap(zone, pfn);
5051 	bitidx = pfn_to_bitidx(zone, pfn);
5052 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5053 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5054 
5055 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5056 		if (flags & value)
5057 			__set_bit(bitidx + start_bitidx, bitmap);
5058 		else
5059 			__clear_bit(bitidx + start_bitidx, bitmap);
5060 }
5061 
5062 /*
5063  * This is designed as sub function...plz see page_isolation.c also.
5064  * set/clear page block's type to be ISOLATE.
5065  * page allocater never alloc memory from ISOLATE block.
5066  */
5067 
5068 int set_migratetype_isolate(struct page *page)
5069 {
5070 	struct zone *zone;
5071 	struct page *curr_page;
5072 	unsigned long flags, pfn, iter;
5073 	unsigned long immobile = 0;
5074 	struct memory_isolate_notify arg;
5075 	int notifier_ret;
5076 	int ret = -EBUSY;
5077 	int zone_idx;
5078 
5079 	zone = page_zone(page);
5080 	zone_idx = zone_idx(zone);
5081 
5082 	spin_lock_irqsave(&zone->lock, flags);
5083 	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5084 	    zone_idx == ZONE_MOVABLE) {
5085 		ret = 0;
5086 		goto out;
5087 	}
5088 
5089 	pfn = page_to_pfn(page);
5090 	arg.start_pfn = pfn;
5091 	arg.nr_pages = pageblock_nr_pages;
5092 	arg.pages_found = 0;
5093 
5094 	/*
5095 	 * It may be possible to isolate a pageblock even if the
5096 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5097 	 * notifier chain is used by balloon drivers to return the
5098 	 * number of pages in a range that are held by the balloon
5099 	 * driver to shrink memory. If all the pages are accounted for
5100 	 * by balloons, are free, or on the LRU, isolation can continue.
5101 	 * Later, for example, when memory hotplug notifier runs, these
5102 	 * pages reported as "can be isolated" should be isolated(freed)
5103 	 * by the balloon driver through the memory notifier chain.
5104 	 */
5105 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5106 	notifier_ret = notifier_to_errno(notifier_ret);
5107 	if (notifier_ret || !arg.pages_found)
5108 		goto out;
5109 
5110 	for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5111 		if (!pfn_valid_within(pfn))
5112 			continue;
5113 
5114 		curr_page = pfn_to_page(iter);
5115 		if (!page_count(curr_page) || PageLRU(curr_page))
5116 			continue;
5117 
5118 		immobile++;
5119 	}
5120 
5121 	if (arg.pages_found == immobile)
5122 		ret = 0;
5123 
5124 out:
5125 	if (!ret) {
5126 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5127 		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5128 	}
5129 
5130 	spin_unlock_irqrestore(&zone->lock, flags);
5131 	if (!ret)
5132 		drain_all_pages();
5133 	return ret;
5134 }
5135 
5136 void unset_migratetype_isolate(struct page *page)
5137 {
5138 	struct zone *zone;
5139 	unsigned long flags;
5140 	zone = page_zone(page);
5141 	spin_lock_irqsave(&zone->lock, flags);
5142 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5143 		goto out;
5144 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5145 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5146 out:
5147 	spin_unlock_irqrestore(&zone->lock, flags);
5148 }
5149 
5150 #ifdef CONFIG_MEMORY_HOTREMOVE
5151 /*
5152  * All pages in the range must be isolated before calling this.
5153  */
5154 void
5155 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5156 {
5157 	struct page *page;
5158 	struct zone *zone;
5159 	int order, i;
5160 	unsigned long pfn;
5161 	unsigned long flags;
5162 	/* find the first valid pfn */
5163 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5164 		if (pfn_valid(pfn))
5165 			break;
5166 	if (pfn == end_pfn)
5167 		return;
5168 	zone = page_zone(pfn_to_page(pfn));
5169 	spin_lock_irqsave(&zone->lock, flags);
5170 	pfn = start_pfn;
5171 	while (pfn < end_pfn) {
5172 		if (!pfn_valid(pfn)) {
5173 			pfn++;
5174 			continue;
5175 		}
5176 		page = pfn_to_page(pfn);
5177 		BUG_ON(page_count(page));
5178 		BUG_ON(!PageBuddy(page));
5179 		order = page_order(page);
5180 #ifdef CONFIG_DEBUG_VM
5181 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5182 		       pfn, 1 << order, end_pfn);
5183 #endif
5184 		list_del(&page->lru);
5185 		rmv_page_order(page);
5186 		zone->free_area[order].nr_free--;
5187 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5188 				      - (1UL << order));
5189 		for (i = 0; i < (1 << order); i++)
5190 			SetPageReserved((page+i));
5191 		pfn += (1 << order);
5192 	}
5193 	spin_unlock_irqrestore(&zone->lock, flags);
5194 }
5195 #endif
5196 
5197 #ifdef CONFIG_MEMORY_FAILURE
5198 bool is_free_buddy_page(struct page *page)
5199 {
5200 	struct zone *zone = page_zone(page);
5201 	unsigned long pfn = page_to_pfn(page);
5202 	unsigned long flags;
5203 	int order;
5204 
5205 	spin_lock_irqsave(&zone->lock, flags);
5206 	for (order = 0; order < MAX_ORDER; order++) {
5207 		struct page *page_head = page - (pfn & ((1 << order) - 1));
5208 
5209 		if (PageBuddy(page_head) && page_order(page_head) >= order)
5210 			break;
5211 	}
5212 	spin_unlock_irqrestore(&zone->lock, flags);
5213 
5214 	return order < MAX_ORDER;
5215 }
5216 #endif
5217 
5218 static struct trace_print_flags pageflag_names[] = {
5219 	{1UL << PG_locked,		"locked"	},
5220 	{1UL << PG_error,		"error"		},
5221 	{1UL << PG_referenced,		"referenced"	},
5222 	{1UL << PG_uptodate,		"uptodate"	},
5223 	{1UL << PG_dirty,		"dirty"		},
5224 	{1UL << PG_lru,			"lru"		},
5225 	{1UL << PG_active,		"active"	},
5226 	{1UL << PG_slab,		"slab"		},
5227 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5228 	{1UL << PG_arch_1,		"arch_1"	},
5229 	{1UL << PG_reserved,		"reserved"	},
5230 	{1UL << PG_private,		"private"	},
5231 	{1UL << PG_private_2,		"private_2"	},
5232 	{1UL << PG_writeback,		"writeback"	},
5233 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5234 	{1UL << PG_head,		"head"		},
5235 	{1UL << PG_tail,		"tail"		},
5236 #else
5237 	{1UL << PG_compound,		"compound"	},
5238 #endif
5239 	{1UL << PG_swapcache,		"swapcache"	},
5240 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5241 	{1UL << PG_reclaim,		"reclaim"	},
5242 	{1UL << PG_buddy,		"buddy"		},
5243 	{1UL << PG_swapbacked,		"swapbacked"	},
5244 	{1UL << PG_unevictable,		"unevictable"	},
5245 #ifdef CONFIG_MMU
5246 	{1UL << PG_mlocked,		"mlocked"	},
5247 #endif
5248 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5249 	{1UL << PG_uncached,		"uncached"	},
5250 #endif
5251 #ifdef CONFIG_MEMORY_FAILURE
5252 	{1UL << PG_hwpoison,		"hwpoison"	},
5253 #endif
5254 	{-1UL,				NULL		},
5255 };
5256 
5257 static void dump_page_flags(unsigned long flags)
5258 {
5259 	const char *delim = "";
5260 	unsigned long mask;
5261 	int i;
5262 
5263 	printk(KERN_ALERT "page flags: %#lx(", flags);
5264 
5265 	/* remove zone id */
5266 	flags &= (1UL << NR_PAGEFLAGS) - 1;
5267 
5268 	for (i = 0; pageflag_names[i].name && flags; i++) {
5269 
5270 		mask = pageflag_names[i].mask;
5271 		if ((flags & mask) != mask)
5272 			continue;
5273 
5274 		flags &= ~mask;
5275 		printk("%s%s", delim, pageflag_names[i].name);
5276 		delim = "|";
5277 	}
5278 
5279 	/* check for left over flags */
5280 	if (flags)
5281 		printk("%s%#lx", delim, flags);
5282 
5283 	printk(")\n");
5284 }
5285 
5286 void dump_page(struct page *page)
5287 {
5288 	printk(KERN_ALERT
5289 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5290 		page, page_count(page), page_mapcount(page),
5291 		page->mapping, page->index);
5292 	dump_page_flags(page->flags);
5293 }
5294