1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/config.h> 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/interrupt.h> 22 #include <linux/pagemap.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/suspend.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/slab.h> 31 #include <linux/notifier.h> 32 #include <linux/topology.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmalloc.h> 39 #include <linux/mempolicy.h> 40 41 #include <asm/tlbflush.h> 42 #include <asm/div64.h> 43 #include "internal.h" 44 45 /* 46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this 47 * initializer cleaner 48 */ 49 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; 50 EXPORT_SYMBOL(node_online_map); 51 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; 52 EXPORT_SYMBOL(node_possible_map); 53 unsigned long totalram_pages __read_mostly; 54 unsigned long totalhigh_pages __read_mostly; 55 unsigned long totalreserve_pages __read_mostly; 56 long nr_swap_pages; 57 int percpu_pagelist_fraction; 58 59 static void __free_pages_ok(struct page *page, unsigned int order); 60 61 /* 62 * results with 256, 32 in the lowmem_reserve sysctl: 63 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 64 * 1G machine -> (16M dma, 784M normal, 224M high) 65 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 66 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 67 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 68 * 69 * TBD: should special case ZONE_DMA32 machines here - in those we normally 70 * don't need any ZONE_NORMAL reservation 71 */ 72 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 }; 73 74 EXPORT_SYMBOL(totalram_pages); 75 76 /* 77 * Used by page_zone() to look up the address of the struct zone whose 78 * id is encoded in the upper bits of page->flags 79 */ 80 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly; 81 EXPORT_SYMBOL(zone_table); 82 83 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" }; 84 int min_free_kbytes = 1024; 85 86 unsigned long __meminitdata nr_kernel_pages; 87 unsigned long __meminitdata nr_all_pages; 88 89 #ifdef CONFIG_DEBUG_VM 90 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 91 { 92 int ret = 0; 93 unsigned seq; 94 unsigned long pfn = page_to_pfn(page); 95 96 do { 97 seq = zone_span_seqbegin(zone); 98 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 99 ret = 1; 100 else if (pfn < zone->zone_start_pfn) 101 ret = 1; 102 } while (zone_span_seqretry(zone, seq)); 103 104 return ret; 105 } 106 107 static int page_is_consistent(struct zone *zone, struct page *page) 108 { 109 #ifdef CONFIG_HOLES_IN_ZONE 110 if (!pfn_valid(page_to_pfn(page))) 111 return 0; 112 #endif 113 if (zone != page_zone(page)) 114 return 0; 115 116 return 1; 117 } 118 /* 119 * Temporary debugging check for pages not lying within a given zone. 120 */ 121 static int bad_range(struct zone *zone, struct page *page) 122 { 123 if (page_outside_zone_boundaries(zone, page)) 124 return 1; 125 if (!page_is_consistent(zone, page)) 126 return 1; 127 128 return 0; 129 } 130 131 #else 132 static inline int bad_range(struct zone *zone, struct page *page) 133 { 134 return 0; 135 } 136 #endif 137 138 static void bad_page(struct page *page) 139 { 140 printk(KERN_EMERG "Bad page state in process '%s'\n" 141 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" 142 KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 143 KERN_EMERG "Backtrace:\n", 144 current->comm, page, (int)(2*sizeof(unsigned long)), 145 (unsigned long)page->flags, page->mapping, 146 page_mapcount(page), page_count(page)); 147 dump_stack(); 148 page->flags &= ~(1 << PG_lru | 149 1 << PG_private | 150 1 << PG_locked | 151 1 << PG_active | 152 1 << PG_dirty | 153 1 << PG_reclaim | 154 1 << PG_slab | 155 1 << PG_swapcache | 156 1 << PG_writeback | 157 1 << PG_buddy ); 158 set_page_count(page, 0); 159 reset_page_mapcount(page); 160 page->mapping = NULL; 161 add_taint(TAINT_BAD_PAGE); 162 } 163 164 /* 165 * Higher-order pages are called "compound pages". They are structured thusly: 166 * 167 * The first PAGE_SIZE page is called the "head page". 168 * 169 * The remaining PAGE_SIZE pages are called "tail pages". 170 * 171 * All pages have PG_compound set. All pages have their ->private pointing at 172 * the head page (even the head page has this). 173 * 174 * The first tail page's ->lru.next holds the address of the compound page's 175 * put_page() function. Its ->lru.prev holds the order of allocation. 176 * This usage means that zero-order pages may not be compound. 177 */ 178 179 static void free_compound_page(struct page *page) 180 { 181 __free_pages_ok(page, (unsigned long)page[1].lru.prev); 182 } 183 184 static void prep_compound_page(struct page *page, unsigned long order) 185 { 186 int i; 187 int nr_pages = 1 << order; 188 189 page[1].lru.next = (void *)free_compound_page; /* set dtor */ 190 page[1].lru.prev = (void *)order; 191 for (i = 0; i < nr_pages; i++) { 192 struct page *p = page + i; 193 194 __SetPageCompound(p); 195 set_page_private(p, (unsigned long)page); 196 } 197 } 198 199 static void destroy_compound_page(struct page *page, unsigned long order) 200 { 201 int i; 202 int nr_pages = 1 << order; 203 204 if (unlikely((unsigned long)page[1].lru.prev != order)) 205 bad_page(page); 206 207 for (i = 0; i < nr_pages; i++) { 208 struct page *p = page + i; 209 210 if (unlikely(!PageCompound(p) | 211 (page_private(p) != (unsigned long)page))) 212 bad_page(page); 213 __ClearPageCompound(p); 214 } 215 } 216 217 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 218 { 219 int i; 220 221 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); 222 /* 223 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 224 * and __GFP_HIGHMEM from hard or soft interrupt context. 225 */ 226 BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 227 for (i = 0; i < (1 << order); i++) 228 clear_highpage(page + i); 229 } 230 231 /* 232 * function for dealing with page's order in buddy system. 233 * zone->lock is already acquired when we use these. 234 * So, we don't need atomic page->flags operations here. 235 */ 236 static inline unsigned long page_order(struct page *page) 237 { 238 return page_private(page); 239 } 240 241 static inline void set_page_order(struct page *page, int order) 242 { 243 set_page_private(page, order); 244 __SetPageBuddy(page); 245 } 246 247 static inline void rmv_page_order(struct page *page) 248 { 249 __ClearPageBuddy(page); 250 set_page_private(page, 0); 251 } 252 253 /* 254 * Locate the struct page for both the matching buddy in our 255 * pair (buddy1) and the combined O(n+1) page they form (page). 256 * 257 * 1) Any buddy B1 will have an order O twin B2 which satisfies 258 * the following equation: 259 * B2 = B1 ^ (1 << O) 260 * For example, if the starting buddy (buddy2) is #8 its order 261 * 1 buddy is #10: 262 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 263 * 264 * 2) Any buddy B will have an order O+1 parent P which 265 * satisfies the following equation: 266 * P = B & ~(1 << O) 267 * 268 * Assumption: *_mem_map is contigious at least up to MAX_ORDER 269 */ 270 static inline struct page * 271 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 272 { 273 unsigned long buddy_idx = page_idx ^ (1 << order); 274 275 return page + (buddy_idx - page_idx); 276 } 277 278 static inline unsigned long 279 __find_combined_index(unsigned long page_idx, unsigned int order) 280 { 281 return (page_idx & ~(1 << order)); 282 } 283 284 /* 285 * This function checks whether a page is free && is the buddy 286 * we can do coalesce a page and its buddy if 287 * (a) the buddy is not in a hole && 288 * (b) the buddy is in the buddy system && 289 * (c) a page and its buddy have the same order && 290 * (d) a page and its buddy are in the same zone. 291 * 292 * For recording whether a page is in the buddy system, we use PG_buddy. 293 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 294 * 295 * For recording page's order, we use page_private(page). 296 */ 297 static inline int page_is_buddy(struct page *page, struct page *buddy, 298 int order) 299 { 300 #ifdef CONFIG_HOLES_IN_ZONE 301 if (!pfn_valid(page_to_pfn(buddy))) 302 return 0; 303 #endif 304 305 if (page_zone_id(page) != page_zone_id(buddy)) 306 return 0; 307 308 if (PageBuddy(buddy) && page_order(buddy) == order) { 309 BUG_ON(page_count(buddy) != 0); 310 return 1; 311 } 312 return 0; 313 } 314 315 /* 316 * Freeing function for a buddy system allocator. 317 * 318 * The concept of a buddy system is to maintain direct-mapped table 319 * (containing bit values) for memory blocks of various "orders". 320 * The bottom level table contains the map for the smallest allocatable 321 * units of memory (here, pages), and each level above it describes 322 * pairs of units from the levels below, hence, "buddies". 323 * At a high level, all that happens here is marking the table entry 324 * at the bottom level available, and propagating the changes upward 325 * as necessary, plus some accounting needed to play nicely with other 326 * parts of the VM system. 327 * At each level, we keep a list of pages, which are heads of continuous 328 * free pages of length of (1 << order) and marked with PG_buddy. Page's 329 * order is recorded in page_private(page) field. 330 * So when we are allocating or freeing one, we can derive the state of the 331 * other. That is, if we allocate a small block, and both were 332 * free, the remainder of the region must be split into blocks. 333 * If a block is freed, and its buddy is also free, then this 334 * triggers coalescing into a block of larger size. 335 * 336 * -- wli 337 */ 338 339 static inline void __free_one_page(struct page *page, 340 struct zone *zone, unsigned int order) 341 { 342 unsigned long page_idx; 343 int order_size = 1 << order; 344 345 if (unlikely(PageCompound(page))) 346 destroy_compound_page(page, order); 347 348 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 349 350 BUG_ON(page_idx & (order_size - 1)); 351 BUG_ON(bad_range(zone, page)); 352 353 zone->free_pages += order_size; 354 while (order < MAX_ORDER-1) { 355 unsigned long combined_idx; 356 struct free_area *area; 357 struct page *buddy; 358 359 buddy = __page_find_buddy(page, page_idx, order); 360 if (!page_is_buddy(page, buddy, order)) 361 break; /* Move the buddy up one level. */ 362 363 list_del(&buddy->lru); 364 area = zone->free_area + order; 365 area->nr_free--; 366 rmv_page_order(buddy); 367 combined_idx = __find_combined_index(page_idx, order); 368 page = page + (combined_idx - page_idx); 369 page_idx = combined_idx; 370 order++; 371 } 372 set_page_order(page, order); 373 list_add(&page->lru, &zone->free_area[order].free_list); 374 zone->free_area[order].nr_free++; 375 } 376 377 static inline int free_pages_check(struct page *page) 378 { 379 if (unlikely(page_mapcount(page) | 380 (page->mapping != NULL) | 381 (page_count(page) != 0) | 382 (page->flags & ( 383 1 << PG_lru | 384 1 << PG_private | 385 1 << PG_locked | 386 1 << PG_active | 387 1 << PG_reclaim | 388 1 << PG_slab | 389 1 << PG_swapcache | 390 1 << PG_writeback | 391 1 << PG_reserved | 392 1 << PG_buddy )))) 393 bad_page(page); 394 if (PageDirty(page)) 395 __ClearPageDirty(page); 396 /* 397 * For now, we report if PG_reserved was found set, but do not 398 * clear it, and do not free the page. But we shall soon need 399 * to do more, for when the ZERO_PAGE count wraps negative. 400 */ 401 return PageReserved(page); 402 } 403 404 /* 405 * Frees a list of pages. 406 * Assumes all pages on list are in same zone, and of same order. 407 * count is the number of pages to free. 408 * 409 * If the zone was previously in an "all pages pinned" state then look to 410 * see if this freeing clears that state. 411 * 412 * And clear the zone's pages_scanned counter, to hold off the "all pages are 413 * pinned" detection logic. 414 */ 415 static void free_pages_bulk(struct zone *zone, int count, 416 struct list_head *list, int order) 417 { 418 spin_lock(&zone->lock); 419 zone->all_unreclaimable = 0; 420 zone->pages_scanned = 0; 421 while (count--) { 422 struct page *page; 423 424 BUG_ON(list_empty(list)); 425 page = list_entry(list->prev, struct page, lru); 426 /* have to delete it as __free_one_page list manipulates */ 427 list_del(&page->lru); 428 __free_one_page(page, zone, order); 429 } 430 spin_unlock(&zone->lock); 431 } 432 433 static void free_one_page(struct zone *zone, struct page *page, int order) 434 { 435 LIST_HEAD(list); 436 list_add(&page->lru, &list); 437 free_pages_bulk(zone, 1, &list, order); 438 } 439 440 static void __free_pages_ok(struct page *page, unsigned int order) 441 { 442 unsigned long flags; 443 int i; 444 int reserved = 0; 445 446 arch_free_page(page, order); 447 if (!PageHighMem(page)) 448 mutex_debug_check_no_locks_freed(page_address(page), 449 PAGE_SIZE<<order); 450 451 for (i = 0 ; i < (1 << order) ; ++i) 452 reserved += free_pages_check(page + i); 453 if (reserved) 454 return; 455 456 kernel_map_pages(page, 1 << order, 0); 457 local_irq_save(flags); 458 __mod_page_state(pgfree, 1 << order); 459 free_one_page(page_zone(page), page, order); 460 local_irq_restore(flags); 461 } 462 463 /* 464 * permit the bootmem allocator to evade page validation on high-order frees 465 */ 466 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) 467 { 468 if (order == 0) { 469 __ClearPageReserved(page); 470 set_page_count(page, 0); 471 set_page_refcounted(page); 472 __free_page(page); 473 } else { 474 int loop; 475 476 prefetchw(page); 477 for (loop = 0; loop < BITS_PER_LONG; loop++) { 478 struct page *p = &page[loop]; 479 480 if (loop + 1 < BITS_PER_LONG) 481 prefetchw(p + 1); 482 __ClearPageReserved(p); 483 set_page_count(p, 0); 484 } 485 486 set_page_refcounted(page); 487 __free_pages(page, order); 488 } 489 } 490 491 492 /* 493 * The order of subdivision here is critical for the IO subsystem. 494 * Please do not alter this order without good reasons and regression 495 * testing. Specifically, as large blocks of memory are subdivided, 496 * the order in which smaller blocks are delivered depends on the order 497 * they're subdivided in this function. This is the primary factor 498 * influencing the order in which pages are delivered to the IO 499 * subsystem according to empirical testing, and this is also justified 500 * by considering the behavior of a buddy system containing a single 501 * large block of memory acted on by a series of small allocations. 502 * This behavior is a critical factor in sglist merging's success. 503 * 504 * -- wli 505 */ 506 static inline void expand(struct zone *zone, struct page *page, 507 int low, int high, struct free_area *area) 508 { 509 unsigned long size = 1 << high; 510 511 while (high > low) { 512 area--; 513 high--; 514 size >>= 1; 515 BUG_ON(bad_range(zone, &page[size])); 516 list_add(&page[size].lru, &area->free_list); 517 area->nr_free++; 518 set_page_order(&page[size], high); 519 } 520 } 521 522 /* 523 * This page is about to be returned from the page allocator 524 */ 525 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 526 { 527 if (unlikely(page_mapcount(page) | 528 (page->mapping != NULL) | 529 (page_count(page) != 0) | 530 (page->flags & ( 531 1 << PG_lru | 532 1 << PG_private | 533 1 << PG_locked | 534 1 << PG_active | 535 1 << PG_dirty | 536 1 << PG_reclaim | 537 1 << PG_slab | 538 1 << PG_swapcache | 539 1 << PG_writeback | 540 1 << PG_reserved | 541 1 << PG_buddy )))) 542 bad_page(page); 543 544 /* 545 * For now, we report if PG_reserved was found set, but do not 546 * clear it, and do not allocate the page: as a safety net. 547 */ 548 if (PageReserved(page)) 549 return 1; 550 551 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 552 1 << PG_referenced | 1 << PG_arch_1 | 553 1 << PG_checked | 1 << PG_mappedtodisk); 554 set_page_private(page, 0); 555 set_page_refcounted(page); 556 kernel_map_pages(page, 1 << order, 1); 557 558 if (gfp_flags & __GFP_ZERO) 559 prep_zero_page(page, order, gfp_flags); 560 561 if (order && (gfp_flags & __GFP_COMP)) 562 prep_compound_page(page, order); 563 564 return 0; 565 } 566 567 /* 568 * Do the hard work of removing an element from the buddy allocator. 569 * Call me with the zone->lock already held. 570 */ 571 static struct page *__rmqueue(struct zone *zone, unsigned int order) 572 { 573 struct free_area * area; 574 unsigned int current_order; 575 struct page *page; 576 577 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 578 area = zone->free_area + current_order; 579 if (list_empty(&area->free_list)) 580 continue; 581 582 page = list_entry(area->free_list.next, struct page, lru); 583 list_del(&page->lru); 584 rmv_page_order(page); 585 area->nr_free--; 586 zone->free_pages -= 1UL << order; 587 expand(zone, page, order, current_order, area); 588 return page; 589 } 590 591 return NULL; 592 } 593 594 /* 595 * Obtain a specified number of elements from the buddy allocator, all under 596 * a single hold of the lock, for efficiency. Add them to the supplied list. 597 * Returns the number of new pages which were placed at *list. 598 */ 599 static int rmqueue_bulk(struct zone *zone, unsigned int order, 600 unsigned long count, struct list_head *list) 601 { 602 int i; 603 604 spin_lock(&zone->lock); 605 for (i = 0; i < count; ++i) { 606 struct page *page = __rmqueue(zone, order); 607 if (unlikely(page == NULL)) 608 break; 609 list_add_tail(&page->lru, list); 610 } 611 spin_unlock(&zone->lock); 612 return i; 613 } 614 615 #ifdef CONFIG_NUMA 616 /* 617 * Called from the slab reaper to drain pagesets on a particular node that 618 * belong to the currently executing processor. 619 * Note that this function must be called with the thread pinned to 620 * a single processor. 621 */ 622 void drain_node_pages(int nodeid) 623 { 624 int i, z; 625 unsigned long flags; 626 627 for (z = 0; z < MAX_NR_ZONES; z++) { 628 struct zone *zone = NODE_DATA(nodeid)->node_zones + z; 629 struct per_cpu_pageset *pset; 630 631 pset = zone_pcp(zone, smp_processor_id()); 632 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 633 struct per_cpu_pages *pcp; 634 635 pcp = &pset->pcp[i]; 636 if (pcp->count) { 637 local_irq_save(flags); 638 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 639 pcp->count = 0; 640 local_irq_restore(flags); 641 } 642 } 643 } 644 } 645 #endif 646 647 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) 648 static void __drain_pages(unsigned int cpu) 649 { 650 unsigned long flags; 651 struct zone *zone; 652 int i; 653 654 for_each_zone(zone) { 655 struct per_cpu_pageset *pset; 656 657 pset = zone_pcp(zone, cpu); 658 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 659 struct per_cpu_pages *pcp; 660 661 pcp = &pset->pcp[i]; 662 local_irq_save(flags); 663 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 664 pcp->count = 0; 665 local_irq_restore(flags); 666 } 667 } 668 } 669 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ 670 671 #ifdef CONFIG_PM 672 673 void mark_free_pages(struct zone *zone) 674 { 675 unsigned long zone_pfn, flags; 676 int order; 677 struct list_head *curr; 678 679 if (!zone->spanned_pages) 680 return; 681 682 spin_lock_irqsave(&zone->lock, flags); 683 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) 684 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); 685 686 for (order = MAX_ORDER - 1; order >= 0; --order) 687 list_for_each(curr, &zone->free_area[order].free_list) { 688 unsigned long start_pfn, i; 689 690 start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); 691 692 for (i=0; i < (1<<order); i++) 693 SetPageNosaveFree(pfn_to_page(start_pfn+i)); 694 } 695 spin_unlock_irqrestore(&zone->lock, flags); 696 } 697 698 /* 699 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 700 */ 701 void drain_local_pages(void) 702 { 703 unsigned long flags; 704 705 local_irq_save(flags); 706 __drain_pages(smp_processor_id()); 707 local_irq_restore(flags); 708 } 709 #endif /* CONFIG_PM */ 710 711 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu) 712 { 713 #ifdef CONFIG_NUMA 714 pg_data_t *pg = z->zone_pgdat; 715 pg_data_t *orig = zonelist->zones[0]->zone_pgdat; 716 struct per_cpu_pageset *p; 717 718 p = zone_pcp(z, cpu); 719 if (pg == orig) { 720 p->numa_hit++; 721 } else { 722 p->numa_miss++; 723 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++; 724 } 725 if (pg == NODE_DATA(numa_node_id())) 726 p->local_node++; 727 else 728 p->other_node++; 729 #endif 730 } 731 732 /* 733 * Free a 0-order page 734 */ 735 static void fastcall free_hot_cold_page(struct page *page, int cold) 736 { 737 struct zone *zone = page_zone(page); 738 struct per_cpu_pages *pcp; 739 unsigned long flags; 740 741 arch_free_page(page, 0); 742 743 if (PageAnon(page)) 744 page->mapping = NULL; 745 if (free_pages_check(page)) 746 return; 747 748 kernel_map_pages(page, 1, 0); 749 750 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 751 local_irq_save(flags); 752 __inc_page_state(pgfree); 753 list_add(&page->lru, &pcp->list); 754 pcp->count++; 755 if (pcp->count >= pcp->high) { 756 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 757 pcp->count -= pcp->batch; 758 } 759 local_irq_restore(flags); 760 put_cpu(); 761 } 762 763 void fastcall free_hot_page(struct page *page) 764 { 765 free_hot_cold_page(page, 0); 766 } 767 768 void fastcall free_cold_page(struct page *page) 769 { 770 free_hot_cold_page(page, 1); 771 } 772 773 /* 774 * split_page takes a non-compound higher-order page, and splits it into 775 * n (1<<order) sub-pages: page[0..n] 776 * Each sub-page must be freed individually. 777 * 778 * Note: this is probably too low level an operation for use in drivers. 779 * Please consult with lkml before using this in your driver. 780 */ 781 void split_page(struct page *page, unsigned int order) 782 { 783 int i; 784 785 BUG_ON(PageCompound(page)); 786 BUG_ON(!page_count(page)); 787 for (i = 1; i < (1 << order); i++) 788 set_page_refcounted(page + i); 789 } 790 791 /* 792 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 793 * we cheat by calling it from here, in the order > 0 path. Saves a branch 794 * or two. 795 */ 796 static struct page *buffered_rmqueue(struct zonelist *zonelist, 797 struct zone *zone, int order, gfp_t gfp_flags) 798 { 799 unsigned long flags; 800 struct page *page; 801 int cold = !!(gfp_flags & __GFP_COLD); 802 int cpu; 803 804 again: 805 cpu = get_cpu(); 806 if (likely(order == 0)) { 807 struct per_cpu_pages *pcp; 808 809 pcp = &zone_pcp(zone, cpu)->pcp[cold]; 810 local_irq_save(flags); 811 if (!pcp->count) { 812 pcp->count += rmqueue_bulk(zone, 0, 813 pcp->batch, &pcp->list); 814 if (unlikely(!pcp->count)) 815 goto failed; 816 } 817 page = list_entry(pcp->list.next, struct page, lru); 818 list_del(&page->lru); 819 pcp->count--; 820 } else { 821 spin_lock_irqsave(&zone->lock, flags); 822 page = __rmqueue(zone, order); 823 spin_unlock(&zone->lock); 824 if (!page) 825 goto failed; 826 } 827 828 __mod_page_state_zone(zone, pgalloc, 1 << order); 829 zone_statistics(zonelist, zone, cpu); 830 local_irq_restore(flags); 831 put_cpu(); 832 833 BUG_ON(bad_range(zone, page)); 834 if (prep_new_page(page, order, gfp_flags)) 835 goto again; 836 return page; 837 838 failed: 839 local_irq_restore(flags); 840 put_cpu(); 841 return NULL; 842 } 843 844 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 845 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 846 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 847 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 848 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 849 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 850 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 851 852 /* 853 * Return 1 if free pages are above 'mark'. This takes into account the order 854 * of the allocation. 855 */ 856 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 857 int classzone_idx, int alloc_flags) 858 { 859 /* free_pages my go negative - that's OK */ 860 long min = mark, free_pages = z->free_pages - (1 << order) + 1; 861 int o; 862 863 if (alloc_flags & ALLOC_HIGH) 864 min -= min / 2; 865 if (alloc_flags & ALLOC_HARDER) 866 min -= min / 4; 867 868 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 869 return 0; 870 for (o = 0; o < order; o++) { 871 /* At the next order, this order's pages become unavailable */ 872 free_pages -= z->free_area[o].nr_free << o; 873 874 /* Require fewer higher order pages to be free */ 875 min >>= 1; 876 877 if (free_pages <= min) 878 return 0; 879 } 880 return 1; 881 } 882 883 /* 884 * get_page_from_freeliest goes through the zonelist trying to allocate 885 * a page. 886 */ 887 static struct page * 888 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, 889 struct zonelist *zonelist, int alloc_flags) 890 { 891 struct zone **z = zonelist->zones; 892 struct page *page = NULL; 893 int classzone_idx = zone_idx(*z); 894 895 /* 896 * Go through the zonelist once, looking for a zone with enough free. 897 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 898 */ 899 do { 900 if ((alloc_flags & ALLOC_CPUSET) && 901 !cpuset_zone_allowed(*z, gfp_mask)) 902 continue; 903 904 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 905 unsigned long mark; 906 if (alloc_flags & ALLOC_WMARK_MIN) 907 mark = (*z)->pages_min; 908 else if (alloc_flags & ALLOC_WMARK_LOW) 909 mark = (*z)->pages_low; 910 else 911 mark = (*z)->pages_high; 912 if (!zone_watermark_ok(*z, order, mark, 913 classzone_idx, alloc_flags)) 914 if (!zone_reclaim_mode || 915 !zone_reclaim(*z, gfp_mask, order)) 916 continue; 917 } 918 919 page = buffered_rmqueue(zonelist, *z, order, gfp_mask); 920 if (page) { 921 break; 922 } 923 } while (*(++z) != NULL); 924 return page; 925 } 926 927 /* 928 * This is the 'heart' of the zoned buddy allocator. 929 */ 930 struct page * fastcall 931 __alloc_pages(gfp_t gfp_mask, unsigned int order, 932 struct zonelist *zonelist) 933 { 934 const gfp_t wait = gfp_mask & __GFP_WAIT; 935 struct zone **z; 936 struct page *page; 937 struct reclaim_state reclaim_state; 938 struct task_struct *p = current; 939 int do_retry; 940 int alloc_flags; 941 int did_some_progress; 942 943 might_sleep_if(wait); 944 945 restart: 946 z = zonelist->zones; /* the list of zones suitable for gfp_mask */ 947 948 if (unlikely(*z == NULL)) { 949 /* Should this ever happen?? */ 950 return NULL; 951 } 952 953 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 954 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); 955 if (page) 956 goto got_pg; 957 958 do { 959 if (cpuset_zone_allowed(*z, gfp_mask|__GFP_HARDWALL)) 960 wakeup_kswapd(*z, order); 961 } while (*(++z)); 962 963 /* 964 * OK, we're below the kswapd watermark and have kicked background 965 * reclaim. Now things get more complex, so set up alloc_flags according 966 * to how we want to proceed. 967 * 968 * The caller may dip into page reserves a bit more if the caller 969 * cannot run direct reclaim, or if the caller has realtime scheduling 970 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 971 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 972 */ 973 alloc_flags = ALLOC_WMARK_MIN; 974 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 975 alloc_flags |= ALLOC_HARDER; 976 if (gfp_mask & __GFP_HIGH) 977 alloc_flags |= ALLOC_HIGH; 978 if (wait) 979 alloc_flags |= ALLOC_CPUSET; 980 981 /* 982 * Go through the zonelist again. Let __GFP_HIGH and allocations 983 * coming from realtime tasks go deeper into reserves. 984 * 985 * This is the last chance, in general, before the goto nopage. 986 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 987 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 988 */ 989 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); 990 if (page) 991 goto got_pg; 992 993 /* This allocation should allow future memory freeing. */ 994 995 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 996 && !in_interrupt()) { 997 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 998 nofail_alloc: 999 /* go through the zonelist yet again, ignoring mins */ 1000 page = get_page_from_freelist(gfp_mask, order, 1001 zonelist, ALLOC_NO_WATERMARKS); 1002 if (page) 1003 goto got_pg; 1004 if (gfp_mask & __GFP_NOFAIL) { 1005 blk_congestion_wait(WRITE, HZ/50); 1006 goto nofail_alloc; 1007 } 1008 } 1009 goto nopage; 1010 } 1011 1012 /* Atomic allocations - we can't balance anything */ 1013 if (!wait) 1014 goto nopage; 1015 1016 rebalance: 1017 cond_resched(); 1018 1019 /* We now go into synchronous reclaim */ 1020 cpuset_memory_pressure_bump(); 1021 p->flags |= PF_MEMALLOC; 1022 reclaim_state.reclaimed_slab = 0; 1023 p->reclaim_state = &reclaim_state; 1024 1025 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask); 1026 1027 p->reclaim_state = NULL; 1028 p->flags &= ~PF_MEMALLOC; 1029 1030 cond_resched(); 1031 1032 if (likely(did_some_progress)) { 1033 page = get_page_from_freelist(gfp_mask, order, 1034 zonelist, alloc_flags); 1035 if (page) 1036 goto got_pg; 1037 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1038 /* 1039 * Go through the zonelist yet one more time, keep 1040 * very high watermark here, this is only to catch 1041 * a parallel oom killing, we must fail if we're still 1042 * under heavy pressure. 1043 */ 1044 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1045 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1046 if (page) 1047 goto got_pg; 1048 1049 out_of_memory(zonelist, gfp_mask, order); 1050 goto restart; 1051 } 1052 1053 /* 1054 * Don't let big-order allocations loop unless the caller explicitly 1055 * requests that. Wait for some write requests to complete then retry. 1056 * 1057 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 1058 * <= 3, but that may not be true in other implementations. 1059 */ 1060 do_retry = 0; 1061 if (!(gfp_mask & __GFP_NORETRY)) { 1062 if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) 1063 do_retry = 1; 1064 if (gfp_mask & __GFP_NOFAIL) 1065 do_retry = 1; 1066 } 1067 if (do_retry) { 1068 blk_congestion_wait(WRITE, HZ/50); 1069 goto rebalance; 1070 } 1071 1072 nopage: 1073 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1074 printk(KERN_WARNING "%s: page allocation failure." 1075 " order:%d, mode:0x%x\n", 1076 p->comm, order, gfp_mask); 1077 dump_stack(); 1078 show_mem(); 1079 } 1080 got_pg: 1081 return page; 1082 } 1083 1084 EXPORT_SYMBOL(__alloc_pages); 1085 1086 /* 1087 * Common helper functions. 1088 */ 1089 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1090 { 1091 struct page * page; 1092 page = alloc_pages(gfp_mask, order); 1093 if (!page) 1094 return 0; 1095 return (unsigned long) page_address(page); 1096 } 1097 1098 EXPORT_SYMBOL(__get_free_pages); 1099 1100 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) 1101 { 1102 struct page * page; 1103 1104 /* 1105 * get_zeroed_page() returns a 32-bit address, which cannot represent 1106 * a highmem page 1107 */ 1108 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1109 1110 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1111 if (page) 1112 return (unsigned long) page_address(page); 1113 return 0; 1114 } 1115 1116 EXPORT_SYMBOL(get_zeroed_page); 1117 1118 void __pagevec_free(struct pagevec *pvec) 1119 { 1120 int i = pagevec_count(pvec); 1121 1122 while (--i >= 0) 1123 free_hot_cold_page(pvec->pages[i], pvec->cold); 1124 } 1125 1126 fastcall void __free_pages(struct page *page, unsigned int order) 1127 { 1128 if (put_page_testzero(page)) { 1129 if (order == 0) 1130 free_hot_page(page); 1131 else 1132 __free_pages_ok(page, order); 1133 } 1134 } 1135 1136 EXPORT_SYMBOL(__free_pages); 1137 1138 fastcall void free_pages(unsigned long addr, unsigned int order) 1139 { 1140 if (addr != 0) { 1141 BUG_ON(!virt_addr_valid((void *)addr)); 1142 __free_pages(virt_to_page((void *)addr), order); 1143 } 1144 } 1145 1146 EXPORT_SYMBOL(free_pages); 1147 1148 /* 1149 * Total amount of free (allocatable) RAM: 1150 */ 1151 unsigned int nr_free_pages(void) 1152 { 1153 unsigned int sum = 0; 1154 struct zone *zone; 1155 1156 for_each_zone(zone) 1157 sum += zone->free_pages; 1158 1159 return sum; 1160 } 1161 1162 EXPORT_SYMBOL(nr_free_pages); 1163 1164 #ifdef CONFIG_NUMA 1165 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) 1166 { 1167 unsigned int i, sum = 0; 1168 1169 for (i = 0; i < MAX_NR_ZONES; i++) 1170 sum += pgdat->node_zones[i].free_pages; 1171 1172 return sum; 1173 } 1174 #endif 1175 1176 static unsigned int nr_free_zone_pages(int offset) 1177 { 1178 /* Just pick one node, since fallback list is circular */ 1179 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1180 unsigned int sum = 0; 1181 1182 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1183 struct zone **zonep = zonelist->zones; 1184 struct zone *zone; 1185 1186 for (zone = *zonep++; zone; zone = *zonep++) { 1187 unsigned long size = zone->present_pages; 1188 unsigned long high = zone->pages_high; 1189 if (size > high) 1190 sum += size - high; 1191 } 1192 1193 return sum; 1194 } 1195 1196 /* 1197 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1198 */ 1199 unsigned int nr_free_buffer_pages(void) 1200 { 1201 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1202 } 1203 1204 /* 1205 * Amount of free RAM allocatable within all zones 1206 */ 1207 unsigned int nr_free_pagecache_pages(void) 1208 { 1209 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); 1210 } 1211 1212 #ifdef CONFIG_HIGHMEM 1213 unsigned int nr_free_highpages (void) 1214 { 1215 pg_data_t *pgdat; 1216 unsigned int pages = 0; 1217 1218 for_each_online_pgdat(pgdat) 1219 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1220 1221 return pages; 1222 } 1223 #endif 1224 1225 #ifdef CONFIG_NUMA 1226 static void show_node(struct zone *zone) 1227 { 1228 printk("Node %d ", zone->zone_pgdat->node_id); 1229 } 1230 #else 1231 #define show_node(zone) do { } while (0) 1232 #endif 1233 1234 /* 1235 * Accumulate the page_state information across all CPUs. 1236 * The result is unavoidably approximate - it can change 1237 * during and after execution of this function. 1238 */ 1239 static DEFINE_PER_CPU(struct page_state, page_states) = {0}; 1240 1241 atomic_t nr_pagecache = ATOMIC_INIT(0); 1242 EXPORT_SYMBOL(nr_pagecache); 1243 #ifdef CONFIG_SMP 1244 DEFINE_PER_CPU(long, nr_pagecache_local) = 0; 1245 #endif 1246 1247 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask) 1248 { 1249 unsigned cpu; 1250 1251 memset(ret, 0, nr * sizeof(unsigned long)); 1252 cpus_and(*cpumask, *cpumask, cpu_online_map); 1253 1254 for_each_cpu_mask(cpu, *cpumask) { 1255 unsigned long *in; 1256 unsigned long *out; 1257 unsigned off; 1258 unsigned next_cpu; 1259 1260 in = (unsigned long *)&per_cpu(page_states, cpu); 1261 1262 next_cpu = next_cpu(cpu, *cpumask); 1263 if (likely(next_cpu < NR_CPUS)) 1264 prefetch(&per_cpu(page_states, next_cpu)); 1265 1266 out = (unsigned long *)ret; 1267 for (off = 0; off < nr; off++) 1268 *out++ += *in++; 1269 } 1270 } 1271 1272 void get_page_state_node(struct page_state *ret, int node) 1273 { 1274 int nr; 1275 cpumask_t mask = node_to_cpumask(node); 1276 1277 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1278 nr /= sizeof(unsigned long); 1279 1280 __get_page_state(ret, nr+1, &mask); 1281 } 1282 1283 void get_page_state(struct page_state *ret) 1284 { 1285 int nr; 1286 cpumask_t mask = CPU_MASK_ALL; 1287 1288 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1289 nr /= sizeof(unsigned long); 1290 1291 __get_page_state(ret, nr + 1, &mask); 1292 } 1293 1294 void get_full_page_state(struct page_state *ret) 1295 { 1296 cpumask_t mask = CPU_MASK_ALL; 1297 1298 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask); 1299 } 1300 1301 unsigned long read_page_state_offset(unsigned long offset) 1302 { 1303 unsigned long ret = 0; 1304 int cpu; 1305 1306 for_each_online_cpu(cpu) { 1307 unsigned long in; 1308 1309 in = (unsigned long)&per_cpu(page_states, cpu) + offset; 1310 ret += *((unsigned long *)in); 1311 } 1312 return ret; 1313 } 1314 1315 void __mod_page_state_offset(unsigned long offset, unsigned long delta) 1316 { 1317 void *ptr; 1318 1319 ptr = &__get_cpu_var(page_states); 1320 *(unsigned long *)(ptr + offset) += delta; 1321 } 1322 EXPORT_SYMBOL(__mod_page_state_offset); 1323 1324 void mod_page_state_offset(unsigned long offset, unsigned long delta) 1325 { 1326 unsigned long flags; 1327 void *ptr; 1328 1329 local_irq_save(flags); 1330 ptr = &__get_cpu_var(page_states); 1331 *(unsigned long *)(ptr + offset) += delta; 1332 local_irq_restore(flags); 1333 } 1334 EXPORT_SYMBOL(mod_page_state_offset); 1335 1336 void __get_zone_counts(unsigned long *active, unsigned long *inactive, 1337 unsigned long *free, struct pglist_data *pgdat) 1338 { 1339 struct zone *zones = pgdat->node_zones; 1340 int i; 1341 1342 *active = 0; 1343 *inactive = 0; 1344 *free = 0; 1345 for (i = 0; i < MAX_NR_ZONES; i++) { 1346 *active += zones[i].nr_active; 1347 *inactive += zones[i].nr_inactive; 1348 *free += zones[i].free_pages; 1349 } 1350 } 1351 1352 void get_zone_counts(unsigned long *active, 1353 unsigned long *inactive, unsigned long *free) 1354 { 1355 struct pglist_data *pgdat; 1356 1357 *active = 0; 1358 *inactive = 0; 1359 *free = 0; 1360 for_each_online_pgdat(pgdat) { 1361 unsigned long l, m, n; 1362 __get_zone_counts(&l, &m, &n, pgdat); 1363 *active += l; 1364 *inactive += m; 1365 *free += n; 1366 } 1367 } 1368 1369 void si_meminfo(struct sysinfo *val) 1370 { 1371 val->totalram = totalram_pages; 1372 val->sharedram = 0; 1373 val->freeram = nr_free_pages(); 1374 val->bufferram = nr_blockdev_pages(); 1375 #ifdef CONFIG_HIGHMEM 1376 val->totalhigh = totalhigh_pages; 1377 val->freehigh = nr_free_highpages(); 1378 #else 1379 val->totalhigh = 0; 1380 val->freehigh = 0; 1381 #endif 1382 val->mem_unit = PAGE_SIZE; 1383 } 1384 1385 EXPORT_SYMBOL(si_meminfo); 1386 1387 #ifdef CONFIG_NUMA 1388 void si_meminfo_node(struct sysinfo *val, int nid) 1389 { 1390 pg_data_t *pgdat = NODE_DATA(nid); 1391 1392 val->totalram = pgdat->node_present_pages; 1393 val->freeram = nr_free_pages_pgdat(pgdat); 1394 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1395 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1396 val->mem_unit = PAGE_SIZE; 1397 } 1398 #endif 1399 1400 #define K(x) ((x) << (PAGE_SHIFT-10)) 1401 1402 /* 1403 * Show free area list (used inside shift_scroll-lock stuff) 1404 * We also calculate the percentage fragmentation. We do this by counting the 1405 * memory on each free list with the exception of the first item on the list. 1406 */ 1407 void show_free_areas(void) 1408 { 1409 struct page_state ps; 1410 int cpu, temperature; 1411 unsigned long active; 1412 unsigned long inactive; 1413 unsigned long free; 1414 struct zone *zone; 1415 1416 for_each_zone(zone) { 1417 show_node(zone); 1418 printk("%s per-cpu:", zone->name); 1419 1420 if (!populated_zone(zone)) { 1421 printk(" empty\n"); 1422 continue; 1423 } else 1424 printk("\n"); 1425 1426 for_each_online_cpu(cpu) { 1427 struct per_cpu_pageset *pageset; 1428 1429 pageset = zone_pcp(zone, cpu); 1430 1431 for (temperature = 0; temperature < 2; temperature++) 1432 printk("cpu %d %s: high %d, batch %d used:%d\n", 1433 cpu, 1434 temperature ? "cold" : "hot", 1435 pageset->pcp[temperature].high, 1436 pageset->pcp[temperature].batch, 1437 pageset->pcp[temperature].count); 1438 } 1439 } 1440 1441 get_page_state(&ps); 1442 get_zone_counts(&active, &inactive, &free); 1443 1444 printk("Free pages: %11ukB (%ukB HighMem)\n", 1445 K(nr_free_pages()), 1446 K(nr_free_highpages())); 1447 1448 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " 1449 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", 1450 active, 1451 inactive, 1452 ps.nr_dirty, 1453 ps.nr_writeback, 1454 ps.nr_unstable, 1455 nr_free_pages(), 1456 ps.nr_slab, 1457 ps.nr_mapped, 1458 ps.nr_page_table_pages); 1459 1460 for_each_zone(zone) { 1461 int i; 1462 1463 show_node(zone); 1464 printk("%s" 1465 " free:%lukB" 1466 " min:%lukB" 1467 " low:%lukB" 1468 " high:%lukB" 1469 " active:%lukB" 1470 " inactive:%lukB" 1471 " present:%lukB" 1472 " pages_scanned:%lu" 1473 " all_unreclaimable? %s" 1474 "\n", 1475 zone->name, 1476 K(zone->free_pages), 1477 K(zone->pages_min), 1478 K(zone->pages_low), 1479 K(zone->pages_high), 1480 K(zone->nr_active), 1481 K(zone->nr_inactive), 1482 K(zone->present_pages), 1483 zone->pages_scanned, 1484 (zone->all_unreclaimable ? "yes" : "no") 1485 ); 1486 printk("lowmem_reserve[]:"); 1487 for (i = 0; i < MAX_NR_ZONES; i++) 1488 printk(" %lu", zone->lowmem_reserve[i]); 1489 printk("\n"); 1490 } 1491 1492 for_each_zone(zone) { 1493 unsigned long nr, flags, order, total = 0; 1494 1495 show_node(zone); 1496 printk("%s: ", zone->name); 1497 if (!populated_zone(zone)) { 1498 printk("empty\n"); 1499 continue; 1500 } 1501 1502 spin_lock_irqsave(&zone->lock, flags); 1503 for (order = 0; order < MAX_ORDER; order++) { 1504 nr = zone->free_area[order].nr_free; 1505 total += nr << order; 1506 printk("%lu*%lukB ", nr, K(1UL) << order); 1507 } 1508 spin_unlock_irqrestore(&zone->lock, flags); 1509 printk("= %lukB\n", K(total)); 1510 } 1511 1512 show_swap_cache_info(); 1513 } 1514 1515 /* 1516 * Builds allocation fallback zone lists. 1517 * 1518 * Add all populated zones of a node to the zonelist. 1519 */ 1520 static int __meminit build_zonelists_node(pg_data_t *pgdat, 1521 struct zonelist *zonelist, int nr_zones, int zone_type) 1522 { 1523 struct zone *zone; 1524 1525 BUG_ON(zone_type > ZONE_HIGHMEM); 1526 1527 do { 1528 zone = pgdat->node_zones + zone_type; 1529 if (populated_zone(zone)) { 1530 #ifndef CONFIG_HIGHMEM 1531 BUG_ON(zone_type > ZONE_NORMAL); 1532 #endif 1533 zonelist->zones[nr_zones++] = zone; 1534 check_highest_zone(zone_type); 1535 } 1536 zone_type--; 1537 1538 } while (zone_type >= 0); 1539 return nr_zones; 1540 } 1541 1542 static inline int highest_zone(int zone_bits) 1543 { 1544 int res = ZONE_NORMAL; 1545 if (zone_bits & (__force int)__GFP_HIGHMEM) 1546 res = ZONE_HIGHMEM; 1547 if (zone_bits & (__force int)__GFP_DMA32) 1548 res = ZONE_DMA32; 1549 if (zone_bits & (__force int)__GFP_DMA) 1550 res = ZONE_DMA; 1551 return res; 1552 } 1553 1554 #ifdef CONFIG_NUMA 1555 #define MAX_NODE_LOAD (num_online_nodes()) 1556 static int __meminitdata node_load[MAX_NUMNODES]; 1557 /** 1558 * find_next_best_node - find the next node that should appear in a given node's fallback list 1559 * @node: node whose fallback list we're appending 1560 * @used_node_mask: nodemask_t of already used nodes 1561 * 1562 * We use a number of factors to determine which is the next node that should 1563 * appear on a given node's fallback list. The node should not have appeared 1564 * already in @node's fallback list, and it should be the next closest node 1565 * according to the distance array (which contains arbitrary distance values 1566 * from each node to each node in the system), and should also prefer nodes 1567 * with no CPUs, since presumably they'll have very little allocation pressure 1568 * on them otherwise. 1569 * It returns -1 if no node is found. 1570 */ 1571 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask) 1572 { 1573 int n, val; 1574 int min_val = INT_MAX; 1575 int best_node = -1; 1576 1577 /* Use the local node if we haven't already */ 1578 if (!node_isset(node, *used_node_mask)) { 1579 node_set(node, *used_node_mask); 1580 return node; 1581 } 1582 1583 for_each_online_node(n) { 1584 cpumask_t tmp; 1585 1586 /* Don't want a node to appear more than once */ 1587 if (node_isset(n, *used_node_mask)) 1588 continue; 1589 1590 /* Use the distance array to find the distance */ 1591 val = node_distance(node, n); 1592 1593 /* Penalize nodes under us ("prefer the next node") */ 1594 val += (n < node); 1595 1596 /* Give preference to headless and unused nodes */ 1597 tmp = node_to_cpumask(n); 1598 if (!cpus_empty(tmp)) 1599 val += PENALTY_FOR_NODE_WITH_CPUS; 1600 1601 /* Slight preference for less loaded node */ 1602 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 1603 val += node_load[n]; 1604 1605 if (val < min_val) { 1606 min_val = val; 1607 best_node = n; 1608 } 1609 } 1610 1611 if (best_node >= 0) 1612 node_set(best_node, *used_node_mask); 1613 1614 return best_node; 1615 } 1616 1617 static void __meminit build_zonelists(pg_data_t *pgdat) 1618 { 1619 int i, j, k, node, local_node; 1620 int prev_node, load; 1621 struct zonelist *zonelist; 1622 nodemask_t used_mask; 1623 1624 /* initialize zonelists */ 1625 for (i = 0; i < GFP_ZONETYPES; i++) { 1626 zonelist = pgdat->node_zonelists + i; 1627 zonelist->zones[0] = NULL; 1628 } 1629 1630 /* NUMA-aware ordering of nodes */ 1631 local_node = pgdat->node_id; 1632 load = num_online_nodes(); 1633 prev_node = local_node; 1634 nodes_clear(used_mask); 1635 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 1636 int distance = node_distance(local_node, node); 1637 1638 /* 1639 * If another node is sufficiently far away then it is better 1640 * to reclaim pages in a zone before going off node. 1641 */ 1642 if (distance > RECLAIM_DISTANCE) 1643 zone_reclaim_mode = 1; 1644 1645 /* 1646 * We don't want to pressure a particular node. 1647 * So adding penalty to the first node in same 1648 * distance group to make it round-robin. 1649 */ 1650 1651 if (distance != node_distance(local_node, prev_node)) 1652 node_load[node] += load; 1653 prev_node = node; 1654 load--; 1655 for (i = 0; i < GFP_ZONETYPES; i++) { 1656 zonelist = pgdat->node_zonelists + i; 1657 for (j = 0; zonelist->zones[j] != NULL; j++); 1658 1659 k = highest_zone(i); 1660 1661 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1662 zonelist->zones[j] = NULL; 1663 } 1664 } 1665 } 1666 1667 #else /* CONFIG_NUMA */ 1668 1669 static void __meminit build_zonelists(pg_data_t *pgdat) 1670 { 1671 int i, j, k, node, local_node; 1672 1673 local_node = pgdat->node_id; 1674 for (i = 0; i < GFP_ZONETYPES; i++) { 1675 struct zonelist *zonelist; 1676 1677 zonelist = pgdat->node_zonelists + i; 1678 1679 j = 0; 1680 k = highest_zone(i); 1681 j = build_zonelists_node(pgdat, zonelist, j, k); 1682 /* 1683 * Now we build the zonelist so that it contains the zones 1684 * of all the other nodes. 1685 * We don't want to pressure a particular node, so when 1686 * building the zones for node N, we make sure that the 1687 * zones coming right after the local ones are those from 1688 * node N+1 (modulo N) 1689 */ 1690 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 1691 if (!node_online(node)) 1692 continue; 1693 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1694 } 1695 for (node = 0; node < local_node; node++) { 1696 if (!node_online(node)) 1697 continue; 1698 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1699 } 1700 1701 zonelist->zones[j] = NULL; 1702 } 1703 } 1704 1705 #endif /* CONFIG_NUMA */ 1706 1707 void __init build_all_zonelists(void) 1708 { 1709 int i; 1710 1711 for_each_online_node(i) 1712 build_zonelists(NODE_DATA(i)); 1713 printk("Built %i zonelists\n", num_online_nodes()); 1714 cpuset_init_current_mems_allowed(); 1715 } 1716 1717 /* 1718 * Helper functions to size the waitqueue hash table. 1719 * Essentially these want to choose hash table sizes sufficiently 1720 * large so that collisions trying to wait on pages are rare. 1721 * But in fact, the number of active page waitqueues on typical 1722 * systems is ridiculously low, less than 200. So this is even 1723 * conservative, even though it seems large. 1724 * 1725 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 1726 * waitqueues, i.e. the size of the waitq table given the number of pages. 1727 */ 1728 #define PAGES_PER_WAITQUEUE 256 1729 1730 #ifndef CONFIG_MEMORY_HOTPLUG 1731 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 1732 { 1733 unsigned long size = 1; 1734 1735 pages /= PAGES_PER_WAITQUEUE; 1736 1737 while (size < pages) 1738 size <<= 1; 1739 1740 /* 1741 * Once we have dozens or even hundreds of threads sleeping 1742 * on IO we've got bigger problems than wait queue collision. 1743 * Limit the size of the wait table to a reasonable size. 1744 */ 1745 size = min(size, 4096UL); 1746 1747 return max(size, 4UL); 1748 } 1749 #else 1750 /* 1751 * A zone's size might be changed by hot-add, so it is not possible to determine 1752 * a suitable size for its wait_table. So we use the maximum size now. 1753 * 1754 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 1755 * 1756 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 1757 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 1758 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 1759 * 1760 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 1761 * or more by the traditional way. (See above). It equals: 1762 * 1763 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 1764 * ia64(16K page size) : = ( 8G + 4M)byte. 1765 * powerpc (64K page size) : = (32G +16M)byte. 1766 */ 1767 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 1768 { 1769 return 4096UL; 1770 } 1771 #endif 1772 1773 /* 1774 * This is an integer logarithm so that shifts can be used later 1775 * to extract the more random high bits from the multiplicative 1776 * hash function before the remainder is taken. 1777 */ 1778 static inline unsigned long wait_table_bits(unsigned long size) 1779 { 1780 return ffz(~size); 1781 } 1782 1783 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 1784 1785 static void __init calculate_zone_totalpages(struct pglist_data *pgdat, 1786 unsigned long *zones_size, unsigned long *zholes_size) 1787 { 1788 unsigned long realtotalpages, totalpages = 0; 1789 int i; 1790 1791 for (i = 0; i < MAX_NR_ZONES; i++) 1792 totalpages += zones_size[i]; 1793 pgdat->node_spanned_pages = totalpages; 1794 1795 realtotalpages = totalpages; 1796 if (zholes_size) 1797 for (i = 0; i < MAX_NR_ZONES; i++) 1798 realtotalpages -= zholes_size[i]; 1799 pgdat->node_present_pages = realtotalpages; 1800 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1801 } 1802 1803 1804 /* 1805 * Initially all pages are reserved - free ones are freed 1806 * up by free_all_bootmem() once the early boot process is 1807 * done. Non-atomic initialization, single-pass. 1808 */ 1809 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 1810 unsigned long start_pfn) 1811 { 1812 struct page *page; 1813 unsigned long end_pfn = start_pfn + size; 1814 unsigned long pfn; 1815 1816 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1817 if (!early_pfn_valid(pfn)) 1818 continue; 1819 page = pfn_to_page(pfn); 1820 set_page_links(page, zone, nid, pfn); 1821 init_page_count(page); 1822 reset_page_mapcount(page); 1823 SetPageReserved(page); 1824 INIT_LIST_HEAD(&page->lru); 1825 #ifdef WANT_PAGE_VIRTUAL 1826 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1827 if (!is_highmem_idx(zone)) 1828 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1829 #endif 1830 } 1831 } 1832 1833 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, 1834 unsigned long size) 1835 { 1836 int order; 1837 for (order = 0; order < MAX_ORDER ; order++) { 1838 INIT_LIST_HEAD(&zone->free_area[order].free_list); 1839 zone->free_area[order].nr_free = 0; 1840 } 1841 } 1842 1843 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr) 1844 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, 1845 unsigned long size) 1846 { 1847 unsigned long snum = pfn_to_section_nr(pfn); 1848 unsigned long end = pfn_to_section_nr(pfn + size); 1849 1850 if (FLAGS_HAS_NODE) 1851 zone_table[ZONETABLE_INDEX(nid, zid)] = zone; 1852 else 1853 for (; snum <= end; snum++) 1854 zone_table[ZONETABLE_INDEX(snum, zid)] = zone; 1855 } 1856 1857 #ifndef __HAVE_ARCH_MEMMAP_INIT 1858 #define memmap_init(size, nid, zone, start_pfn) \ 1859 memmap_init_zone((size), (nid), (zone), (start_pfn)) 1860 #endif 1861 1862 static int __cpuinit zone_batchsize(struct zone *zone) 1863 { 1864 int batch; 1865 1866 /* 1867 * The per-cpu-pages pools are set to around 1000th of the 1868 * size of the zone. But no more than 1/2 of a meg. 1869 * 1870 * OK, so we don't know how big the cache is. So guess. 1871 */ 1872 batch = zone->present_pages / 1024; 1873 if (batch * PAGE_SIZE > 512 * 1024) 1874 batch = (512 * 1024) / PAGE_SIZE; 1875 batch /= 4; /* We effectively *= 4 below */ 1876 if (batch < 1) 1877 batch = 1; 1878 1879 /* 1880 * Clamp the batch to a 2^n - 1 value. Having a power 1881 * of 2 value was found to be more likely to have 1882 * suboptimal cache aliasing properties in some cases. 1883 * 1884 * For example if 2 tasks are alternately allocating 1885 * batches of pages, one task can end up with a lot 1886 * of pages of one half of the possible page colors 1887 * and the other with pages of the other colors. 1888 */ 1889 batch = (1 << (fls(batch + batch/2)-1)) - 1; 1890 1891 return batch; 1892 } 1893 1894 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 1895 { 1896 struct per_cpu_pages *pcp; 1897 1898 memset(p, 0, sizeof(*p)); 1899 1900 pcp = &p->pcp[0]; /* hot */ 1901 pcp->count = 0; 1902 pcp->high = 6 * batch; 1903 pcp->batch = max(1UL, 1 * batch); 1904 INIT_LIST_HEAD(&pcp->list); 1905 1906 pcp = &p->pcp[1]; /* cold*/ 1907 pcp->count = 0; 1908 pcp->high = 2 * batch; 1909 pcp->batch = max(1UL, batch/2); 1910 INIT_LIST_HEAD(&pcp->list); 1911 } 1912 1913 /* 1914 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 1915 * to the value high for the pageset p. 1916 */ 1917 1918 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 1919 unsigned long high) 1920 { 1921 struct per_cpu_pages *pcp; 1922 1923 pcp = &p->pcp[0]; /* hot list */ 1924 pcp->high = high; 1925 pcp->batch = max(1UL, high/4); 1926 if ((high/4) > (PAGE_SHIFT * 8)) 1927 pcp->batch = PAGE_SHIFT * 8; 1928 } 1929 1930 1931 #ifdef CONFIG_NUMA 1932 /* 1933 * Boot pageset table. One per cpu which is going to be used for all 1934 * zones and all nodes. The parameters will be set in such a way 1935 * that an item put on a list will immediately be handed over to 1936 * the buddy list. This is safe since pageset manipulation is done 1937 * with interrupts disabled. 1938 * 1939 * Some NUMA counter updates may also be caught by the boot pagesets. 1940 * 1941 * The boot_pagesets must be kept even after bootup is complete for 1942 * unused processors and/or zones. They do play a role for bootstrapping 1943 * hotplugged processors. 1944 * 1945 * zoneinfo_show() and maybe other functions do 1946 * not check if the processor is online before following the pageset pointer. 1947 * Other parts of the kernel may not check if the zone is available. 1948 */ 1949 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 1950 1951 /* 1952 * Dynamically allocate memory for the 1953 * per cpu pageset array in struct zone. 1954 */ 1955 static int __cpuinit process_zones(int cpu) 1956 { 1957 struct zone *zone, *dzone; 1958 1959 for_each_zone(zone) { 1960 1961 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 1962 GFP_KERNEL, cpu_to_node(cpu)); 1963 if (!zone_pcp(zone, cpu)) 1964 goto bad; 1965 1966 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 1967 1968 if (percpu_pagelist_fraction) 1969 setup_pagelist_highmark(zone_pcp(zone, cpu), 1970 (zone->present_pages / percpu_pagelist_fraction)); 1971 } 1972 1973 return 0; 1974 bad: 1975 for_each_zone(dzone) { 1976 if (dzone == zone) 1977 break; 1978 kfree(zone_pcp(dzone, cpu)); 1979 zone_pcp(dzone, cpu) = NULL; 1980 } 1981 return -ENOMEM; 1982 } 1983 1984 static inline void free_zone_pagesets(int cpu) 1985 { 1986 struct zone *zone; 1987 1988 for_each_zone(zone) { 1989 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 1990 1991 zone_pcp(zone, cpu) = NULL; 1992 kfree(pset); 1993 } 1994 } 1995 1996 static int pageset_cpuup_callback(struct notifier_block *nfb, 1997 unsigned long action, 1998 void *hcpu) 1999 { 2000 int cpu = (long)hcpu; 2001 int ret = NOTIFY_OK; 2002 2003 switch (action) { 2004 case CPU_UP_PREPARE: 2005 if (process_zones(cpu)) 2006 ret = NOTIFY_BAD; 2007 break; 2008 case CPU_UP_CANCELED: 2009 case CPU_DEAD: 2010 free_zone_pagesets(cpu); 2011 break; 2012 default: 2013 break; 2014 } 2015 return ret; 2016 } 2017 2018 static struct notifier_block pageset_notifier = 2019 { &pageset_cpuup_callback, NULL, 0 }; 2020 2021 void __init setup_per_cpu_pageset(void) 2022 { 2023 int err; 2024 2025 /* Initialize per_cpu_pageset for cpu 0. 2026 * A cpuup callback will do this for every cpu 2027 * as it comes online 2028 */ 2029 err = process_zones(smp_processor_id()); 2030 BUG_ON(err); 2031 register_cpu_notifier(&pageset_notifier); 2032 } 2033 2034 #endif 2035 2036 static __meminit 2037 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 2038 { 2039 int i; 2040 struct pglist_data *pgdat = zone->zone_pgdat; 2041 size_t alloc_size; 2042 2043 /* 2044 * The per-page waitqueue mechanism uses hashed waitqueues 2045 * per zone. 2046 */ 2047 zone->wait_table_hash_nr_entries = 2048 wait_table_hash_nr_entries(zone_size_pages); 2049 zone->wait_table_bits = 2050 wait_table_bits(zone->wait_table_hash_nr_entries); 2051 alloc_size = zone->wait_table_hash_nr_entries 2052 * sizeof(wait_queue_head_t); 2053 2054 if (system_state == SYSTEM_BOOTING) { 2055 zone->wait_table = (wait_queue_head_t *) 2056 alloc_bootmem_node(pgdat, alloc_size); 2057 } else { 2058 /* 2059 * This case means that a zone whose size was 0 gets new memory 2060 * via memory hot-add. 2061 * But it may be the case that a new node was hot-added. In 2062 * this case vmalloc() will not be able to use this new node's 2063 * memory - this wait_table must be initialized to use this new 2064 * node itself as well. 2065 * To use this new node's memory, further consideration will be 2066 * necessary. 2067 */ 2068 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size); 2069 } 2070 if (!zone->wait_table) 2071 return -ENOMEM; 2072 2073 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 2074 init_waitqueue_head(zone->wait_table + i); 2075 2076 return 0; 2077 } 2078 2079 static __meminit void zone_pcp_init(struct zone *zone) 2080 { 2081 int cpu; 2082 unsigned long batch = zone_batchsize(zone); 2083 2084 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2085 #ifdef CONFIG_NUMA 2086 /* Early boot. Slab allocator not functional yet */ 2087 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2088 setup_pageset(&boot_pageset[cpu],0); 2089 #else 2090 setup_pageset(zone_pcp(zone,cpu), batch); 2091 #endif 2092 } 2093 if (zone->present_pages) 2094 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2095 zone->name, zone->present_pages, batch); 2096 } 2097 2098 __meminit int init_currently_empty_zone(struct zone *zone, 2099 unsigned long zone_start_pfn, 2100 unsigned long size) 2101 { 2102 struct pglist_data *pgdat = zone->zone_pgdat; 2103 int ret; 2104 ret = zone_wait_table_init(zone, size); 2105 if (ret) 2106 return ret; 2107 pgdat->nr_zones = zone_idx(zone) + 1; 2108 2109 zone->zone_start_pfn = zone_start_pfn; 2110 2111 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); 2112 2113 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 2114 2115 return 0; 2116 } 2117 2118 /* 2119 * Set up the zone data structures: 2120 * - mark all pages reserved 2121 * - mark all memory queues empty 2122 * - clear the memory bitmaps 2123 */ 2124 static void __meminit free_area_init_core(struct pglist_data *pgdat, 2125 unsigned long *zones_size, unsigned long *zholes_size) 2126 { 2127 unsigned long j; 2128 int nid = pgdat->node_id; 2129 unsigned long zone_start_pfn = pgdat->node_start_pfn; 2130 int ret; 2131 2132 pgdat_resize_init(pgdat); 2133 pgdat->nr_zones = 0; 2134 init_waitqueue_head(&pgdat->kswapd_wait); 2135 pgdat->kswapd_max_order = 0; 2136 2137 for (j = 0; j < MAX_NR_ZONES; j++) { 2138 struct zone *zone = pgdat->node_zones + j; 2139 unsigned long size, realsize; 2140 2141 realsize = size = zones_size[j]; 2142 if (zholes_size) 2143 realsize -= zholes_size[j]; 2144 2145 if (j < ZONE_HIGHMEM) 2146 nr_kernel_pages += realsize; 2147 nr_all_pages += realsize; 2148 2149 zone->spanned_pages = size; 2150 zone->present_pages = realsize; 2151 zone->name = zone_names[j]; 2152 spin_lock_init(&zone->lock); 2153 spin_lock_init(&zone->lru_lock); 2154 zone_seqlock_init(zone); 2155 zone->zone_pgdat = pgdat; 2156 zone->free_pages = 0; 2157 2158 zone->temp_priority = zone->prev_priority = DEF_PRIORITY; 2159 2160 zone_pcp_init(zone); 2161 INIT_LIST_HEAD(&zone->active_list); 2162 INIT_LIST_HEAD(&zone->inactive_list); 2163 zone->nr_scan_active = 0; 2164 zone->nr_scan_inactive = 0; 2165 zone->nr_active = 0; 2166 zone->nr_inactive = 0; 2167 atomic_set(&zone->reclaim_in_progress, 0); 2168 if (!size) 2169 continue; 2170 2171 zonetable_add(zone, nid, j, zone_start_pfn, size); 2172 ret = init_currently_empty_zone(zone, zone_start_pfn, size); 2173 BUG_ON(ret); 2174 zone_start_pfn += size; 2175 } 2176 } 2177 2178 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 2179 { 2180 /* Skip empty nodes */ 2181 if (!pgdat->node_spanned_pages) 2182 return; 2183 2184 #ifdef CONFIG_FLAT_NODE_MEM_MAP 2185 /* ia64 gets its own node_mem_map, before this, without bootmem */ 2186 if (!pgdat->node_mem_map) { 2187 unsigned long size, start, end; 2188 struct page *map; 2189 2190 /* 2191 * The zone's endpoints aren't required to be MAX_ORDER 2192 * aligned but the node_mem_map endpoints must be in order 2193 * for the buddy allocator to function correctly. 2194 */ 2195 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 2196 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 2197 end = ALIGN(end, MAX_ORDER_NR_PAGES); 2198 size = (end - start) * sizeof(struct page); 2199 map = alloc_remap(pgdat->node_id, size); 2200 if (!map) 2201 map = alloc_bootmem_node(pgdat, size); 2202 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 2203 } 2204 #ifdef CONFIG_FLATMEM 2205 /* 2206 * With no DISCONTIG, the global mem_map is just set as node 0's 2207 */ 2208 if (pgdat == NODE_DATA(0)) 2209 mem_map = NODE_DATA(0)->node_mem_map; 2210 #endif 2211 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 2212 } 2213 2214 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat, 2215 unsigned long *zones_size, unsigned long node_start_pfn, 2216 unsigned long *zholes_size) 2217 { 2218 pgdat->node_id = nid; 2219 pgdat->node_start_pfn = node_start_pfn; 2220 calculate_zone_totalpages(pgdat, zones_size, zholes_size); 2221 2222 alloc_node_mem_map(pgdat); 2223 2224 free_area_init_core(pgdat, zones_size, zholes_size); 2225 } 2226 2227 #ifndef CONFIG_NEED_MULTIPLE_NODES 2228 static bootmem_data_t contig_bootmem_data; 2229 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 2230 2231 EXPORT_SYMBOL(contig_page_data); 2232 #endif 2233 2234 void __init free_area_init(unsigned long *zones_size) 2235 { 2236 free_area_init_node(0, NODE_DATA(0), zones_size, 2237 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 2238 } 2239 2240 #ifdef CONFIG_PROC_FS 2241 2242 #include <linux/seq_file.h> 2243 2244 static void *frag_start(struct seq_file *m, loff_t *pos) 2245 { 2246 pg_data_t *pgdat; 2247 loff_t node = *pos; 2248 for (pgdat = first_online_pgdat(); 2249 pgdat && node; 2250 pgdat = next_online_pgdat(pgdat)) 2251 --node; 2252 2253 return pgdat; 2254 } 2255 2256 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 2257 { 2258 pg_data_t *pgdat = (pg_data_t *)arg; 2259 2260 (*pos)++; 2261 return next_online_pgdat(pgdat); 2262 } 2263 2264 static void frag_stop(struct seq_file *m, void *arg) 2265 { 2266 } 2267 2268 /* 2269 * This walks the free areas for each zone. 2270 */ 2271 static int frag_show(struct seq_file *m, void *arg) 2272 { 2273 pg_data_t *pgdat = (pg_data_t *)arg; 2274 struct zone *zone; 2275 struct zone *node_zones = pgdat->node_zones; 2276 unsigned long flags; 2277 int order; 2278 2279 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2280 if (!populated_zone(zone)) 2281 continue; 2282 2283 spin_lock_irqsave(&zone->lock, flags); 2284 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 2285 for (order = 0; order < MAX_ORDER; ++order) 2286 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 2287 spin_unlock_irqrestore(&zone->lock, flags); 2288 seq_putc(m, '\n'); 2289 } 2290 return 0; 2291 } 2292 2293 struct seq_operations fragmentation_op = { 2294 .start = frag_start, 2295 .next = frag_next, 2296 .stop = frag_stop, 2297 .show = frag_show, 2298 }; 2299 2300 /* 2301 * Output information about zones in @pgdat. 2302 */ 2303 static int zoneinfo_show(struct seq_file *m, void *arg) 2304 { 2305 pg_data_t *pgdat = arg; 2306 struct zone *zone; 2307 struct zone *node_zones = pgdat->node_zones; 2308 unsigned long flags; 2309 2310 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) { 2311 int i; 2312 2313 if (!populated_zone(zone)) 2314 continue; 2315 2316 spin_lock_irqsave(&zone->lock, flags); 2317 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 2318 seq_printf(m, 2319 "\n pages free %lu" 2320 "\n min %lu" 2321 "\n low %lu" 2322 "\n high %lu" 2323 "\n active %lu" 2324 "\n inactive %lu" 2325 "\n scanned %lu (a: %lu i: %lu)" 2326 "\n spanned %lu" 2327 "\n present %lu", 2328 zone->free_pages, 2329 zone->pages_min, 2330 zone->pages_low, 2331 zone->pages_high, 2332 zone->nr_active, 2333 zone->nr_inactive, 2334 zone->pages_scanned, 2335 zone->nr_scan_active, zone->nr_scan_inactive, 2336 zone->spanned_pages, 2337 zone->present_pages); 2338 seq_printf(m, 2339 "\n protection: (%lu", 2340 zone->lowmem_reserve[0]); 2341 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 2342 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 2343 seq_printf(m, 2344 ")" 2345 "\n pagesets"); 2346 for_each_online_cpu(i) { 2347 struct per_cpu_pageset *pageset; 2348 int j; 2349 2350 pageset = zone_pcp(zone, i); 2351 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2352 if (pageset->pcp[j].count) 2353 break; 2354 } 2355 if (j == ARRAY_SIZE(pageset->pcp)) 2356 continue; 2357 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2358 seq_printf(m, 2359 "\n cpu: %i pcp: %i" 2360 "\n count: %i" 2361 "\n high: %i" 2362 "\n batch: %i", 2363 i, j, 2364 pageset->pcp[j].count, 2365 pageset->pcp[j].high, 2366 pageset->pcp[j].batch); 2367 } 2368 #ifdef CONFIG_NUMA 2369 seq_printf(m, 2370 "\n numa_hit: %lu" 2371 "\n numa_miss: %lu" 2372 "\n numa_foreign: %lu" 2373 "\n interleave_hit: %lu" 2374 "\n local_node: %lu" 2375 "\n other_node: %lu", 2376 pageset->numa_hit, 2377 pageset->numa_miss, 2378 pageset->numa_foreign, 2379 pageset->interleave_hit, 2380 pageset->local_node, 2381 pageset->other_node); 2382 #endif 2383 } 2384 seq_printf(m, 2385 "\n all_unreclaimable: %u" 2386 "\n prev_priority: %i" 2387 "\n temp_priority: %i" 2388 "\n start_pfn: %lu", 2389 zone->all_unreclaimable, 2390 zone->prev_priority, 2391 zone->temp_priority, 2392 zone->zone_start_pfn); 2393 spin_unlock_irqrestore(&zone->lock, flags); 2394 seq_putc(m, '\n'); 2395 } 2396 return 0; 2397 } 2398 2399 struct seq_operations zoneinfo_op = { 2400 .start = frag_start, /* iterate over all zones. The same as in 2401 * fragmentation. */ 2402 .next = frag_next, 2403 .stop = frag_stop, 2404 .show = zoneinfo_show, 2405 }; 2406 2407 static char *vmstat_text[] = { 2408 "nr_dirty", 2409 "nr_writeback", 2410 "nr_unstable", 2411 "nr_page_table_pages", 2412 "nr_mapped", 2413 "nr_slab", 2414 2415 "pgpgin", 2416 "pgpgout", 2417 "pswpin", 2418 "pswpout", 2419 2420 "pgalloc_high", 2421 "pgalloc_normal", 2422 "pgalloc_dma32", 2423 "pgalloc_dma", 2424 2425 "pgfree", 2426 "pgactivate", 2427 "pgdeactivate", 2428 2429 "pgfault", 2430 "pgmajfault", 2431 2432 "pgrefill_high", 2433 "pgrefill_normal", 2434 "pgrefill_dma32", 2435 "pgrefill_dma", 2436 2437 "pgsteal_high", 2438 "pgsteal_normal", 2439 "pgsteal_dma32", 2440 "pgsteal_dma", 2441 2442 "pgscan_kswapd_high", 2443 "pgscan_kswapd_normal", 2444 "pgscan_kswapd_dma32", 2445 "pgscan_kswapd_dma", 2446 2447 "pgscan_direct_high", 2448 "pgscan_direct_normal", 2449 "pgscan_direct_dma32", 2450 "pgscan_direct_dma", 2451 2452 "pginodesteal", 2453 "slabs_scanned", 2454 "kswapd_steal", 2455 "kswapd_inodesteal", 2456 "pageoutrun", 2457 "allocstall", 2458 2459 "pgrotated", 2460 "nr_bounce", 2461 }; 2462 2463 static void *vmstat_start(struct seq_file *m, loff_t *pos) 2464 { 2465 struct page_state *ps; 2466 2467 if (*pos >= ARRAY_SIZE(vmstat_text)) 2468 return NULL; 2469 2470 ps = kmalloc(sizeof(*ps), GFP_KERNEL); 2471 m->private = ps; 2472 if (!ps) 2473 return ERR_PTR(-ENOMEM); 2474 get_full_page_state(ps); 2475 ps->pgpgin /= 2; /* sectors -> kbytes */ 2476 ps->pgpgout /= 2; 2477 return (unsigned long *)ps + *pos; 2478 } 2479 2480 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 2481 { 2482 (*pos)++; 2483 if (*pos >= ARRAY_SIZE(vmstat_text)) 2484 return NULL; 2485 return (unsigned long *)m->private + *pos; 2486 } 2487 2488 static int vmstat_show(struct seq_file *m, void *arg) 2489 { 2490 unsigned long *l = arg; 2491 unsigned long off = l - (unsigned long *)m->private; 2492 2493 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 2494 return 0; 2495 } 2496 2497 static void vmstat_stop(struct seq_file *m, void *arg) 2498 { 2499 kfree(m->private); 2500 m->private = NULL; 2501 } 2502 2503 struct seq_operations vmstat_op = { 2504 .start = vmstat_start, 2505 .next = vmstat_next, 2506 .stop = vmstat_stop, 2507 .show = vmstat_show, 2508 }; 2509 2510 #endif /* CONFIG_PROC_FS */ 2511 2512 #ifdef CONFIG_HOTPLUG_CPU 2513 static int page_alloc_cpu_notify(struct notifier_block *self, 2514 unsigned long action, void *hcpu) 2515 { 2516 int cpu = (unsigned long)hcpu; 2517 long *count; 2518 unsigned long *src, *dest; 2519 2520 if (action == CPU_DEAD) { 2521 int i; 2522 2523 /* Drain local pagecache count. */ 2524 count = &per_cpu(nr_pagecache_local, cpu); 2525 atomic_add(*count, &nr_pagecache); 2526 *count = 0; 2527 local_irq_disable(); 2528 __drain_pages(cpu); 2529 2530 /* Add dead cpu's page_states to our own. */ 2531 dest = (unsigned long *)&__get_cpu_var(page_states); 2532 src = (unsigned long *)&per_cpu(page_states, cpu); 2533 2534 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long); 2535 i++) { 2536 dest[i] += src[i]; 2537 src[i] = 0; 2538 } 2539 2540 local_irq_enable(); 2541 } 2542 return NOTIFY_OK; 2543 } 2544 #endif /* CONFIG_HOTPLUG_CPU */ 2545 2546 void __init page_alloc_init(void) 2547 { 2548 hotcpu_notifier(page_alloc_cpu_notify, 0); 2549 } 2550 2551 /* 2552 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 2553 * or min_free_kbytes changes. 2554 */ 2555 static void calculate_totalreserve_pages(void) 2556 { 2557 struct pglist_data *pgdat; 2558 unsigned long reserve_pages = 0; 2559 int i, j; 2560 2561 for_each_online_pgdat(pgdat) { 2562 for (i = 0; i < MAX_NR_ZONES; i++) { 2563 struct zone *zone = pgdat->node_zones + i; 2564 unsigned long max = 0; 2565 2566 /* Find valid and maximum lowmem_reserve in the zone */ 2567 for (j = i; j < MAX_NR_ZONES; j++) { 2568 if (zone->lowmem_reserve[j] > max) 2569 max = zone->lowmem_reserve[j]; 2570 } 2571 2572 /* we treat pages_high as reserved pages. */ 2573 max += zone->pages_high; 2574 2575 if (max > zone->present_pages) 2576 max = zone->present_pages; 2577 reserve_pages += max; 2578 } 2579 } 2580 totalreserve_pages = reserve_pages; 2581 } 2582 2583 /* 2584 * setup_per_zone_lowmem_reserve - called whenever 2585 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 2586 * has a correct pages reserved value, so an adequate number of 2587 * pages are left in the zone after a successful __alloc_pages(). 2588 */ 2589 static void setup_per_zone_lowmem_reserve(void) 2590 { 2591 struct pglist_data *pgdat; 2592 int j, idx; 2593 2594 for_each_online_pgdat(pgdat) { 2595 for (j = 0; j < MAX_NR_ZONES; j++) { 2596 struct zone *zone = pgdat->node_zones + j; 2597 unsigned long present_pages = zone->present_pages; 2598 2599 zone->lowmem_reserve[j] = 0; 2600 2601 for (idx = j-1; idx >= 0; idx--) { 2602 struct zone *lower_zone; 2603 2604 if (sysctl_lowmem_reserve_ratio[idx] < 1) 2605 sysctl_lowmem_reserve_ratio[idx] = 1; 2606 2607 lower_zone = pgdat->node_zones + idx; 2608 lower_zone->lowmem_reserve[j] = present_pages / 2609 sysctl_lowmem_reserve_ratio[idx]; 2610 present_pages += lower_zone->present_pages; 2611 } 2612 } 2613 } 2614 2615 /* update totalreserve_pages */ 2616 calculate_totalreserve_pages(); 2617 } 2618 2619 /* 2620 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures 2621 * that the pages_{min,low,high} values for each zone are set correctly 2622 * with respect to min_free_kbytes. 2623 */ 2624 void setup_per_zone_pages_min(void) 2625 { 2626 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 2627 unsigned long lowmem_pages = 0; 2628 struct zone *zone; 2629 unsigned long flags; 2630 2631 /* Calculate total number of !ZONE_HIGHMEM pages */ 2632 for_each_zone(zone) { 2633 if (!is_highmem(zone)) 2634 lowmem_pages += zone->present_pages; 2635 } 2636 2637 for_each_zone(zone) { 2638 u64 tmp; 2639 2640 spin_lock_irqsave(&zone->lru_lock, flags); 2641 tmp = (u64)pages_min * zone->present_pages; 2642 do_div(tmp, lowmem_pages); 2643 if (is_highmem(zone)) { 2644 /* 2645 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 2646 * need highmem pages, so cap pages_min to a small 2647 * value here. 2648 * 2649 * The (pages_high-pages_low) and (pages_low-pages_min) 2650 * deltas controls asynch page reclaim, and so should 2651 * not be capped for highmem. 2652 */ 2653 int min_pages; 2654 2655 min_pages = zone->present_pages / 1024; 2656 if (min_pages < SWAP_CLUSTER_MAX) 2657 min_pages = SWAP_CLUSTER_MAX; 2658 if (min_pages > 128) 2659 min_pages = 128; 2660 zone->pages_min = min_pages; 2661 } else { 2662 /* 2663 * If it's a lowmem zone, reserve a number of pages 2664 * proportionate to the zone's size. 2665 */ 2666 zone->pages_min = tmp; 2667 } 2668 2669 zone->pages_low = zone->pages_min + (tmp >> 2); 2670 zone->pages_high = zone->pages_min + (tmp >> 1); 2671 spin_unlock_irqrestore(&zone->lru_lock, flags); 2672 } 2673 2674 /* update totalreserve_pages */ 2675 calculate_totalreserve_pages(); 2676 } 2677 2678 /* 2679 * Initialise min_free_kbytes. 2680 * 2681 * For small machines we want it small (128k min). For large machines 2682 * we want it large (64MB max). But it is not linear, because network 2683 * bandwidth does not increase linearly with machine size. We use 2684 * 2685 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 2686 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 2687 * 2688 * which yields 2689 * 2690 * 16MB: 512k 2691 * 32MB: 724k 2692 * 64MB: 1024k 2693 * 128MB: 1448k 2694 * 256MB: 2048k 2695 * 512MB: 2896k 2696 * 1024MB: 4096k 2697 * 2048MB: 5792k 2698 * 4096MB: 8192k 2699 * 8192MB: 11584k 2700 * 16384MB: 16384k 2701 */ 2702 static int __init init_per_zone_pages_min(void) 2703 { 2704 unsigned long lowmem_kbytes; 2705 2706 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 2707 2708 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 2709 if (min_free_kbytes < 128) 2710 min_free_kbytes = 128; 2711 if (min_free_kbytes > 65536) 2712 min_free_kbytes = 65536; 2713 setup_per_zone_pages_min(); 2714 setup_per_zone_lowmem_reserve(); 2715 return 0; 2716 } 2717 module_init(init_per_zone_pages_min) 2718 2719 /* 2720 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 2721 * that we can call two helper functions whenever min_free_kbytes 2722 * changes. 2723 */ 2724 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 2725 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2726 { 2727 proc_dointvec(table, write, file, buffer, length, ppos); 2728 setup_per_zone_pages_min(); 2729 return 0; 2730 } 2731 2732 /* 2733 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 2734 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 2735 * whenever sysctl_lowmem_reserve_ratio changes. 2736 * 2737 * The reserve ratio obviously has absolutely no relation with the 2738 * pages_min watermarks. The lowmem reserve ratio can only make sense 2739 * if in function of the boot time zone sizes. 2740 */ 2741 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 2742 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2743 { 2744 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2745 setup_per_zone_lowmem_reserve(); 2746 return 0; 2747 } 2748 2749 /* 2750 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 2751 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 2752 * can have before it gets flushed back to buddy allocator. 2753 */ 2754 2755 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 2756 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2757 { 2758 struct zone *zone; 2759 unsigned int cpu; 2760 int ret; 2761 2762 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2763 if (!write || (ret == -EINVAL)) 2764 return ret; 2765 for_each_zone(zone) { 2766 for_each_online_cpu(cpu) { 2767 unsigned long high; 2768 high = zone->present_pages / percpu_pagelist_fraction; 2769 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 2770 } 2771 } 2772 return 0; 2773 } 2774 2775 __initdata int hashdist = HASHDIST_DEFAULT; 2776 2777 #ifdef CONFIG_NUMA 2778 static int __init set_hashdist(char *str) 2779 { 2780 if (!str) 2781 return 0; 2782 hashdist = simple_strtoul(str, &str, 0); 2783 return 1; 2784 } 2785 __setup("hashdist=", set_hashdist); 2786 #endif 2787 2788 /* 2789 * allocate a large system hash table from bootmem 2790 * - it is assumed that the hash table must contain an exact power-of-2 2791 * quantity of entries 2792 * - limit is the number of hash buckets, not the total allocation size 2793 */ 2794 void *__init alloc_large_system_hash(const char *tablename, 2795 unsigned long bucketsize, 2796 unsigned long numentries, 2797 int scale, 2798 int flags, 2799 unsigned int *_hash_shift, 2800 unsigned int *_hash_mask, 2801 unsigned long limit) 2802 { 2803 unsigned long long max = limit; 2804 unsigned long log2qty, size; 2805 void *table = NULL; 2806 2807 /* allow the kernel cmdline to have a say */ 2808 if (!numentries) { 2809 /* round applicable memory size up to nearest megabyte */ 2810 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; 2811 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 2812 numentries >>= 20 - PAGE_SHIFT; 2813 numentries <<= 20 - PAGE_SHIFT; 2814 2815 /* limit to 1 bucket per 2^scale bytes of low memory */ 2816 if (scale > PAGE_SHIFT) 2817 numentries >>= (scale - PAGE_SHIFT); 2818 else 2819 numentries <<= (PAGE_SHIFT - scale); 2820 } 2821 numentries = roundup_pow_of_two(numentries); 2822 2823 /* limit allocation size to 1/16 total memory by default */ 2824 if (max == 0) { 2825 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2826 do_div(max, bucketsize); 2827 } 2828 2829 if (numentries > max) 2830 numentries = max; 2831 2832 log2qty = long_log2(numentries); 2833 2834 do { 2835 size = bucketsize << log2qty; 2836 if (flags & HASH_EARLY) 2837 table = alloc_bootmem(size); 2838 else if (hashdist) 2839 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 2840 else { 2841 unsigned long order; 2842 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 2843 ; 2844 table = (void*) __get_free_pages(GFP_ATOMIC, order); 2845 } 2846 } while (!table && size > PAGE_SIZE && --log2qty); 2847 2848 if (!table) 2849 panic("Failed to allocate %s hash table\n", tablename); 2850 2851 printk("%s hash table entries: %d (order: %d, %lu bytes)\n", 2852 tablename, 2853 (1U << log2qty), 2854 long_log2(size) - PAGE_SHIFT, 2855 size); 2856 2857 if (_hash_shift) 2858 *_hash_shift = log2qty; 2859 if (_hash_mask) 2860 *_hash_mask = (1 << log2qty) - 1; 2861 2862 return table; 2863 } 2864 2865 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE 2866 /* 2867 * pfn <-> page translation. out-of-line version. 2868 * (see asm-generic/memory_model.h) 2869 */ 2870 #if defined(CONFIG_FLATMEM) 2871 struct page *pfn_to_page(unsigned long pfn) 2872 { 2873 return mem_map + (pfn - ARCH_PFN_OFFSET); 2874 } 2875 unsigned long page_to_pfn(struct page *page) 2876 { 2877 return (page - mem_map) + ARCH_PFN_OFFSET; 2878 } 2879 #elif defined(CONFIG_DISCONTIGMEM) 2880 struct page *pfn_to_page(unsigned long pfn) 2881 { 2882 int nid = arch_pfn_to_nid(pfn); 2883 return NODE_DATA(nid)->node_mem_map + arch_local_page_offset(pfn,nid); 2884 } 2885 unsigned long page_to_pfn(struct page *page) 2886 { 2887 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 2888 return (page - pgdat->node_mem_map) + pgdat->node_start_pfn; 2889 } 2890 #elif defined(CONFIG_SPARSEMEM) 2891 struct page *pfn_to_page(unsigned long pfn) 2892 { 2893 return __section_mem_map_addr(__pfn_to_section(pfn)) + pfn; 2894 } 2895 2896 unsigned long page_to_pfn(struct page *page) 2897 { 2898 long section_id = page_to_section(page); 2899 return page - __section_mem_map_addr(__nr_to_section(section_id)); 2900 } 2901 #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */ 2902 EXPORT_SYMBOL(pfn_to_page); 2903 EXPORT_SYMBOL(page_to_pfn); 2904 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ 2905