xref: /openbmc/linux/mm/page_alloc.c (revision cca448fe92246fb59efe55ba2e048ded0971a9af)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40 
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
43 #include "internal.h"
44 
45 /*
46  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
47  * initializer cleaner
48  */
49 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
50 EXPORT_SYMBOL(node_online_map);
51 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
52 EXPORT_SYMBOL(node_possible_map);
53 unsigned long totalram_pages __read_mostly;
54 unsigned long totalhigh_pages __read_mostly;
55 unsigned long totalreserve_pages __read_mostly;
56 long nr_swap_pages;
57 int percpu_pagelist_fraction;
58 
59 static void __free_pages_ok(struct page *page, unsigned int order);
60 
61 /*
62  * results with 256, 32 in the lowmem_reserve sysctl:
63  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
64  *	1G machine -> (16M dma, 784M normal, 224M high)
65  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
66  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
67  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
68  *
69  * TBD: should special case ZONE_DMA32 machines here - in those we normally
70  * don't need any ZONE_NORMAL reservation
71  */
72 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
73 
74 EXPORT_SYMBOL(totalram_pages);
75 
76 /*
77  * Used by page_zone() to look up the address of the struct zone whose
78  * id is encoded in the upper bits of page->flags
79  */
80 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
81 EXPORT_SYMBOL(zone_table);
82 
83 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
84 int min_free_kbytes = 1024;
85 
86 unsigned long __meminitdata nr_kernel_pages;
87 unsigned long __meminitdata nr_all_pages;
88 
89 #ifdef CONFIG_DEBUG_VM
90 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
91 {
92 	int ret = 0;
93 	unsigned seq;
94 	unsigned long pfn = page_to_pfn(page);
95 
96 	do {
97 		seq = zone_span_seqbegin(zone);
98 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
99 			ret = 1;
100 		else if (pfn < zone->zone_start_pfn)
101 			ret = 1;
102 	} while (zone_span_seqretry(zone, seq));
103 
104 	return ret;
105 }
106 
107 static int page_is_consistent(struct zone *zone, struct page *page)
108 {
109 #ifdef CONFIG_HOLES_IN_ZONE
110 	if (!pfn_valid(page_to_pfn(page)))
111 		return 0;
112 #endif
113 	if (zone != page_zone(page))
114 		return 0;
115 
116 	return 1;
117 }
118 /*
119  * Temporary debugging check for pages not lying within a given zone.
120  */
121 static int bad_range(struct zone *zone, struct page *page)
122 {
123 	if (page_outside_zone_boundaries(zone, page))
124 		return 1;
125 	if (!page_is_consistent(zone, page))
126 		return 1;
127 
128 	return 0;
129 }
130 
131 #else
132 static inline int bad_range(struct zone *zone, struct page *page)
133 {
134 	return 0;
135 }
136 #endif
137 
138 static void bad_page(struct page *page)
139 {
140 	printk(KERN_EMERG "Bad page state in process '%s'\n"
141 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
142 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
143 		KERN_EMERG "Backtrace:\n",
144 		current->comm, page, (int)(2*sizeof(unsigned long)),
145 		(unsigned long)page->flags, page->mapping,
146 		page_mapcount(page), page_count(page));
147 	dump_stack();
148 	page->flags &= ~(1 << PG_lru	|
149 			1 << PG_private |
150 			1 << PG_locked	|
151 			1 << PG_active	|
152 			1 << PG_dirty	|
153 			1 << PG_reclaim |
154 			1 << PG_slab    |
155 			1 << PG_swapcache |
156 			1 << PG_writeback |
157 			1 << PG_buddy );
158 	set_page_count(page, 0);
159 	reset_page_mapcount(page);
160 	page->mapping = NULL;
161 	add_taint(TAINT_BAD_PAGE);
162 }
163 
164 /*
165  * Higher-order pages are called "compound pages".  They are structured thusly:
166  *
167  * The first PAGE_SIZE page is called the "head page".
168  *
169  * The remaining PAGE_SIZE pages are called "tail pages".
170  *
171  * All pages have PG_compound set.  All pages have their ->private pointing at
172  * the head page (even the head page has this).
173  *
174  * The first tail page's ->lru.next holds the address of the compound page's
175  * put_page() function.  Its ->lru.prev holds the order of allocation.
176  * This usage means that zero-order pages may not be compound.
177  */
178 
179 static void free_compound_page(struct page *page)
180 {
181 	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
182 }
183 
184 static void prep_compound_page(struct page *page, unsigned long order)
185 {
186 	int i;
187 	int nr_pages = 1 << order;
188 
189 	page[1].lru.next = (void *)free_compound_page;	/* set dtor */
190 	page[1].lru.prev = (void *)order;
191 	for (i = 0; i < nr_pages; i++) {
192 		struct page *p = page + i;
193 
194 		__SetPageCompound(p);
195 		set_page_private(p, (unsigned long)page);
196 	}
197 }
198 
199 static void destroy_compound_page(struct page *page, unsigned long order)
200 {
201 	int i;
202 	int nr_pages = 1 << order;
203 
204 	if (unlikely((unsigned long)page[1].lru.prev != order))
205 		bad_page(page);
206 
207 	for (i = 0; i < nr_pages; i++) {
208 		struct page *p = page + i;
209 
210 		if (unlikely(!PageCompound(p) |
211 				(page_private(p) != (unsigned long)page)))
212 			bad_page(page);
213 		__ClearPageCompound(p);
214 	}
215 }
216 
217 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
218 {
219 	int i;
220 
221 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
222 	/*
223 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
224 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
225 	 */
226 	BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
227 	for (i = 0; i < (1 << order); i++)
228 		clear_highpage(page + i);
229 }
230 
231 /*
232  * function for dealing with page's order in buddy system.
233  * zone->lock is already acquired when we use these.
234  * So, we don't need atomic page->flags operations here.
235  */
236 static inline unsigned long page_order(struct page *page)
237 {
238 	return page_private(page);
239 }
240 
241 static inline void set_page_order(struct page *page, int order)
242 {
243 	set_page_private(page, order);
244 	__SetPageBuddy(page);
245 }
246 
247 static inline void rmv_page_order(struct page *page)
248 {
249 	__ClearPageBuddy(page);
250 	set_page_private(page, 0);
251 }
252 
253 /*
254  * Locate the struct page for both the matching buddy in our
255  * pair (buddy1) and the combined O(n+1) page they form (page).
256  *
257  * 1) Any buddy B1 will have an order O twin B2 which satisfies
258  * the following equation:
259  *     B2 = B1 ^ (1 << O)
260  * For example, if the starting buddy (buddy2) is #8 its order
261  * 1 buddy is #10:
262  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
263  *
264  * 2) Any buddy B will have an order O+1 parent P which
265  * satisfies the following equation:
266  *     P = B & ~(1 << O)
267  *
268  * Assumption: *_mem_map is contigious at least up to MAX_ORDER
269  */
270 static inline struct page *
271 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
272 {
273 	unsigned long buddy_idx = page_idx ^ (1 << order);
274 
275 	return page + (buddy_idx - page_idx);
276 }
277 
278 static inline unsigned long
279 __find_combined_index(unsigned long page_idx, unsigned int order)
280 {
281 	return (page_idx & ~(1 << order));
282 }
283 
284 /*
285  * This function checks whether a page is free && is the buddy
286  * we can do coalesce a page and its buddy if
287  * (a) the buddy is not in a hole &&
288  * (b) the buddy is in the buddy system &&
289  * (c) a page and its buddy have the same order &&
290  * (d) a page and its buddy are in the same zone.
291  *
292  * For recording whether a page is in the buddy system, we use PG_buddy.
293  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
294  *
295  * For recording page's order, we use page_private(page).
296  */
297 static inline int page_is_buddy(struct page *page, struct page *buddy,
298 								int order)
299 {
300 #ifdef CONFIG_HOLES_IN_ZONE
301 	if (!pfn_valid(page_to_pfn(buddy)))
302 		return 0;
303 #endif
304 
305 	if (page_zone_id(page) != page_zone_id(buddy))
306 		return 0;
307 
308 	if (PageBuddy(buddy) && page_order(buddy) == order) {
309 		BUG_ON(page_count(buddy) != 0);
310 		return 1;
311 	}
312 	return 0;
313 }
314 
315 /*
316  * Freeing function for a buddy system allocator.
317  *
318  * The concept of a buddy system is to maintain direct-mapped table
319  * (containing bit values) for memory blocks of various "orders".
320  * The bottom level table contains the map for the smallest allocatable
321  * units of memory (here, pages), and each level above it describes
322  * pairs of units from the levels below, hence, "buddies".
323  * At a high level, all that happens here is marking the table entry
324  * at the bottom level available, and propagating the changes upward
325  * as necessary, plus some accounting needed to play nicely with other
326  * parts of the VM system.
327  * At each level, we keep a list of pages, which are heads of continuous
328  * free pages of length of (1 << order) and marked with PG_buddy. Page's
329  * order is recorded in page_private(page) field.
330  * So when we are allocating or freeing one, we can derive the state of the
331  * other.  That is, if we allocate a small block, and both were
332  * free, the remainder of the region must be split into blocks.
333  * If a block is freed, and its buddy is also free, then this
334  * triggers coalescing into a block of larger size.
335  *
336  * -- wli
337  */
338 
339 static inline void __free_one_page(struct page *page,
340 		struct zone *zone, unsigned int order)
341 {
342 	unsigned long page_idx;
343 	int order_size = 1 << order;
344 
345 	if (unlikely(PageCompound(page)))
346 		destroy_compound_page(page, order);
347 
348 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
349 
350 	BUG_ON(page_idx & (order_size - 1));
351 	BUG_ON(bad_range(zone, page));
352 
353 	zone->free_pages += order_size;
354 	while (order < MAX_ORDER-1) {
355 		unsigned long combined_idx;
356 		struct free_area *area;
357 		struct page *buddy;
358 
359 		buddy = __page_find_buddy(page, page_idx, order);
360 		if (!page_is_buddy(page, buddy, order))
361 			break;		/* Move the buddy up one level. */
362 
363 		list_del(&buddy->lru);
364 		area = zone->free_area + order;
365 		area->nr_free--;
366 		rmv_page_order(buddy);
367 		combined_idx = __find_combined_index(page_idx, order);
368 		page = page + (combined_idx - page_idx);
369 		page_idx = combined_idx;
370 		order++;
371 	}
372 	set_page_order(page, order);
373 	list_add(&page->lru, &zone->free_area[order].free_list);
374 	zone->free_area[order].nr_free++;
375 }
376 
377 static inline int free_pages_check(struct page *page)
378 {
379 	if (unlikely(page_mapcount(page) |
380 		(page->mapping != NULL)  |
381 		(page_count(page) != 0)  |
382 		(page->flags & (
383 			1 << PG_lru	|
384 			1 << PG_private |
385 			1 << PG_locked	|
386 			1 << PG_active	|
387 			1 << PG_reclaim	|
388 			1 << PG_slab	|
389 			1 << PG_swapcache |
390 			1 << PG_writeback |
391 			1 << PG_reserved |
392 			1 << PG_buddy ))))
393 		bad_page(page);
394 	if (PageDirty(page))
395 		__ClearPageDirty(page);
396 	/*
397 	 * For now, we report if PG_reserved was found set, but do not
398 	 * clear it, and do not free the page.  But we shall soon need
399 	 * to do more, for when the ZERO_PAGE count wraps negative.
400 	 */
401 	return PageReserved(page);
402 }
403 
404 /*
405  * Frees a list of pages.
406  * Assumes all pages on list are in same zone, and of same order.
407  * count is the number of pages to free.
408  *
409  * If the zone was previously in an "all pages pinned" state then look to
410  * see if this freeing clears that state.
411  *
412  * And clear the zone's pages_scanned counter, to hold off the "all pages are
413  * pinned" detection logic.
414  */
415 static void free_pages_bulk(struct zone *zone, int count,
416 					struct list_head *list, int order)
417 {
418 	spin_lock(&zone->lock);
419 	zone->all_unreclaimable = 0;
420 	zone->pages_scanned = 0;
421 	while (count--) {
422 		struct page *page;
423 
424 		BUG_ON(list_empty(list));
425 		page = list_entry(list->prev, struct page, lru);
426 		/* have to delete it as __free_one_page list manipulates */
427 		list_del(&page->lru);
428 		__free_one_page(page, zone, order);
429 	}
430 	spin_unlock(&zone->lock);
431 }
432 
433 static void free_one_page(struct zone *zone, struct page *page, int order)
434 {
435 	LIST_HEAD(list);
436 	list_add(&page->lru, &list);
437 	free_pages_bulk(zone, 1, &list, order);
438 }
439 
440 static void __free_pages_ok(struct page *page, unsigned int order)
441 {
442 	unsigned long flags;
443 	int i;
444 	int reserved = 0;
445 
446 	arch_free_page(page, order);
447 	if (!PageHighMem(page))
448 		mutex_debug_check_no_locks_freed(page_address(page),
449 						 PAGE_SIZE<<order);
450 
451 	for (i = 0 ; i < (1 << order) ; ++i)
452 		reserved += free_pages_check(page + i);
453 	if (reserved)
454 		return;
455 
456 	kernel_map_pages(page, 1 << order, 0);
457 	local_irq_save(flags);
458 	__mod_page_state(pgfree, 1 << order);
459 	free_one_page(page_zone(page), page, order);
460 	local_irq_restore(flags);
461 }
462 
463 /*
464  * permit the bootmem allocator to evade page validation on high-order frees
465  */
466 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
467 {
468 	if (order == 0) {
469 		__ClearPageReserved(page);
470 		set_page_count(page, 0);
471 		set_page_refcounted(page);
472 		__free_page(page);
473 	} else {
474 		int loop;
475 
476 		prefetchw(page);
477 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
478 			struct page *p = &page[loop];
479 
480 			if (loop + 1 < BITS_PER_LONG)
481 				prefetchw(p + 1);
482 			__ClearPageReserved(p);
483 			set_page_count(p, 0);
484 		}
485 
486 		set_page_refcounted(page);
487 		__free_pages(page, order);
488 	}
489 }
490 
491 
492 /*
493  * The order of subdivision here is critical for the IO subsystem.
494  * Please do not alter this order without good reasons and regression
495  * testing. Specifically, as large blocks of memory are subdivided,
496  * the order in which smaller blocks are delivered depends on the order
497  * they're subdivided in this function. This is the primary factor
498  * influencing the order in which pages are delivered to the IO
499  * subsystem according to empirical testing, and this is also justified
500  * by considering the behavior of a buddy system containing a single
501  * large block of memory acted on by a series of small allocations.
502  * This behavior is a critical factor in sglist merging's success.
503  *
504  * -- wli
505  */
506 static inline void expand(struct zone *zone, struct page *page,
507  	int low, int high, struct free_area *area)
508 {
509 	unsigned long size = 1 << high;
510 
511 	while (high > low) {
512 		area--;
513 		high--;
514 		size >>= 1;
515 		BUG_ON(bad_range(zone, &page[size]));
516 		list_add(&page[size].lru, &area->free_list);
517 		area->nr_free++;
518 		set_page_order(&page[size], high);
519 	}
520 }
521 
522 /*
523  * This page is about to be returned from the page allocator
524  */
525 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
526 {
527 	if (unlikely(page_mapcount(page) |
528 		(page->mapping != NULL)  |
529 		(page_count(page) != 0)  |
530 		(page->flags & (
531 			1 << PG_lru	|
532 			1 << PG_private	|
533 			1 << PG_locked	|
534 			1 << PG_active	|
535 			1 << PG_dirty	|
536 			1 << PG_reclaim	|
537 			1 << PG_slab    |
538 			1 << PG_swapcache |
539 			1 << PG_writeback |
540 			1 << PG_reserved |
541 			1 << PG_buddy ))))
542 		bad_page(page);
543 
544 	/*
545 	 * For now, we report if PG_reserved was found set, but do not
546 	 * clear it, and do not allocate the page: as a safety net.
547 	 */
548 	if (PageReserved(page))
549 		return 1;
550 
551 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
552 			1 << PG_referenced | 1 << PG_arch_1 |
553 			1 << PG_checked | 1 << PG_mappedtodisk);
554 	set_page_private(page, 0);
555 	set_page_refcounted(page);
556 	kernel_map_pages(page, 1 << order, 1);
557 
558 	if (gfp_flags & __GFP_ZERO)
559 		prep_zero_page(page, order, gfp_flags);
560 
561 	if (order && (gfp_flags & __GFP_COMP))
562 		prep_compound_page(page, order);
563 
564 	return 0;
565 }
566 
567 /*
568  * Do the hard work of removing an element from the buddy allocator.
569  * Call me with the zone->lock already held.
570  */
571 static struct page *__rmqueue(struct zone *zone, unsigned int order)
572 {
573 	struct free_area * area;
574 	unsigned int current_order;
575 	struct page *page;
576 
577 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
578 		area = zone->free_area + current_order;
579 		if (list_empty(&area->free_list))
580 			continue;
581 
582 		page = list_entry(area->free_list.next, struct page, lru);
583 		list_del(&page->lru);
584 		rmv_page_order(page);
585 		area->nr_free--;
586 		zone->free_pages -= 1UL << order;
587 		expand(zone, page, order, current_order, area);
588 		return page;
589 	}
590 
591 	return NULL;
592 }
593 
594 /*
595  * Obtain a specified number of elements from the buddy allocator, all under
596  * a single hold of the lock, for efficiency.  Add them to the supplied list.
597  * Returns the number of new pages which were placed at *list.
598  */
599 static int rmqueue_bulk(struct zone *zone, unsigned int order,
600 			unsigned long count, struct list_head *list)
601 {
602 	int i;
603 
604 	spin_lock(&zone->lock);
605 	for (i = 0; i < count; ++i) {
606 		struct page *page = __rmqueue(zone, order);
607 		if (unlikely(page == NULL))
608 			break;
609 		list_add_tail(&page->lru, list);
610 	}
611 	spin_unlock(&zone->lock);
612 	return i;
613 }
614 
615 #ifdef CONFIG_NUMA
616 /*
617  * Called from the slab reaper to drain pagesets on a particular node that
618  * belong to the currently executing processor.
619  * Note that this function must be called with the thread pinned to
620  * a single processor.
621  */
622 void drain_node_pages(int nodeid)
623 {
624 	int i, z;
625 	unsigned long flags;
626 
627 	for (z = 0; z < MAX_NR_ZONES; z++) {
628 		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
629 		struct per_cpu_pageset *pset;
630 
631 		pset = zone_pcp(zone, smp_processor_id());
632 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
633 			struct per_cpu_pages *pcp;
634 
635 			pcp = &pset->pcp[i];
636 			if (pcp->count) {
637 				local_irq_save(flags);
638 				free_pages_bulk(zone, pcp->count, &pcp->list, 0);
639 				pcp->count = 0;
640 				local_irq_restore(flags);
641 			}
642 		}
643 	}
644 }
645 #endif
646 
647 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
648 static void __drain_pages(unsigned int cpu)
649 {
650 	unsigned long flags;
651 	struct zone *zone;
652 	int i;
653 
654 	for_each_zone(zone) {
655 		struct per_cpu_pageset *pset;
656 
657 		pset = zone_pcp(zone, cpu);
658 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
659 			struct per_cpu_pages *pcp;
660 
661 			pcp = &pset->pcp[i];
662 			local_irq_save(flags);
663 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
664 			pcp->count = 0;
665 			local_irq_restore(flags);
666 		}
667 	}
668 }
669 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
670 
671 #ifdef CONFIG_PM
672 
673 void mark_free_pages(struct zone *zone)
674 {
675 	unsigned long zone_pfn, flags;
676 	int order;
677 	struct list_head *curr;
678 
679 	if (!zone->spanned_pages)
680 		return;
681 
682 	spin_lock_irqsave(&zone->lock, flags);
683 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
684 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
685 
686 	for (order = MAX_ORDER - 1; order >= 0; --order)
687 		list_for_each(curr, &zone->free_area[order].free_list) {
688 			unsigned long start_pfn, i;
689 
690 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
691 
692 			for (i=0; i < (1<<order); i++)
693 				SetPageNosaveFree(pfn_to_page(start_pfn+i));
694 	}
695 	spin_unlock_irqrestore(&zone->lock, flags);
696 }
697 
698 /*
699  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
700  */
701 void drain_local_pages(void)
702 {
703 	unsigned long flags;
704 
705 	local_irq_save(flags);
706 	__drain_pages(smp_processor_id());
707 	local_irq_restore(flags);
708 }
709 #endif /* CONFIG_PM */
710 
711 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
712 {
713 #ifdef CONFIG_NUMA
714 	pg_data_t *pg = z->zone_pgdat;
715 	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
716 	struct per_cpu_pageset *p;
717 
718 	p = zone_pcp(z, cpu);
719 	if (pg == orig) {
720 		p->numa_hit++;
721 	} else {
722 		p->numa_miss++;
723 		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
724 	}
725 	if (pg == NODE_DATA(numa_node_id()))
726 		p->local_node++;
727 	else
728 		p->other_node++;
729 #endif
730 }
731 
732 /*
733  * Free a 0-order page
734  */
735 static void fastcall free_hot_cold_page(struct page *page, int cold)
736 {
737 	struct zone *zone = page_zone(page);
738 	struct per_cpu_pages *pcp;
739 	unsigned long flags;
740 
741 	arch_free_page(page, 0);
742 
743 	if (PageAnon(page))
744 		page->mapping = NULL;
745 	if (free_pages_check(page))
746 		return;
747 
748 	kernel_map_pages(page, 1, 0);
749 
750 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
751 	local_irq_save(flags);
752 	__inc_page_state(pgfree);
753 	list_add(&page->lru, &pcp->list);
754 	pcp->count++;
755 	if (pcp->count >= pcp->high) {
756 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
757 		pcp->count -= pcp->batch;
758 	}
759 	local_irq_restore(flags);
760 	put_cpu();
761 }
762 
763 void fastcall free_hot_page(struct page *page)
764 {
765 	free_hot_cold_page(page, 0);
766 }
767 
768 void fastcall free_cold_page(struct page *page)
769 {
770 	free_hot_cold_page(page, 1);
771 }
772 
773 /*
774  * split_page takes a non-compound higher-order page, and splits it into
775  * n (1<<order) sub-pages: page[0..n]
776  * Each sub-page must be freed individually.
777  *
778  * Note: this is probably too low level an operation for use in drivers.
779  * Please consult with lkml before using this in your driver.
780  */
781 void split_page(struct page *page, unsigned int order)
782 {
783 	int i;
784 
785 	BUG_ON(PageCompound(page));
786 	BUG_ON(!page_count(page));
787 	for (i = 1; i < (1 << order); i++)
788 		set_page_refcounted(page + i);
789 }
790 
791 /*
792  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
793  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
794  * or two.
795  */
796 static struct page *buffered_rmqueue(struct zonelist *zonelist,
797 			struct zone *zone, int order, gfp_t gfp_flags)
798 {
799 	unsigned long flags;
800 	struct page *page;
801 	int cold = !!(gfp_flags & __GFP_COLD);
802 	int cpu;
803 
804 again:
805 	cpu  = get_cpu();
806 	if (likely(order == 0)) {
807 		struct per_cpu_pages *pcp;
808 
809 		pcp = &zone_pcp(zone, cpu)->pcp[cold];
810 		local_irq_save(flags);
811 		if (!pcp->count) {
812 			pcp->count += rmqueue_bulk(zone, 0,
813 						pcp->batch, &pcp->list);
814 			if (unlikely(!pcp->count))
815 				goto failed;
816 		}
817 		page = list_entry(pcp->list.next, struct page, lru);
818 		list_del(&page->lru);
819 		pcp->count--;
820 	} else {
821 		spin_lock_irqsave(&zone->lock, flags);
822 		page = __rmqueue(zone, order);
823 		spin_unlock(&zone->lock);
824 		if (!page)
825 			goto failed;
826 	}
827 
828 	__mod_page_state_zone(zone, pgalloc, 1 << order);
829 	zone_statistics(zonelist, zone, cpu);
830 	local_irq_restore(flags);
831 	put_cpu();
832 
833 	BUG_ON(bad_range(zone, page));
834 	if (prep_new_page(page, order, gfp_flags))
835 		goto again;
836 	return page;
837 
838 failed:
839 	local_irq_restore(flags);
840 	put_cpu();
841 	return NULL;
842 }
843 
844 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
845 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
846 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
847 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
848 #define ALLOC_HARDER		0x10 /* try to alloc harder */
849 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
850 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
851 
852 /*
853  * Return 1 if free pages are above 'mark'. This takes into account the order
854  * of the allocation.
855  */
856 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
857 		      int classzone_idx, int alloc_flags)
858 {
859 	/* free_pages my go negative - that's OK */
860 	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
861 	int o;
862 
863 	if (alloc_flags & ALLOC_HIGH)
864 		min -= min / 2;
865 	if (alloc_flags & ALLOC_HARDER)
866 		min -= min / 4;
867 
868 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
869 		return 0;
870 	for (o = 0; o < order; o++) {
871 		/* At the next order, this order's pages become unavailable */
872 		free_pages -= z->free_area[o].nr_free << o;
873 
874 		/* Require fewer higher order pages to be free */
875 		min >>= 1;
876 
877 		if (free_pages <= min)
878 			return 0;
879 	}
880 	return 1;
881 }
882 
883 /*
884  * get_page_from_freeliest goes through the zonelist trying to allocate
885  * a page.
886  */
887 static struct page *
888 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
889 		struct zonelist *zonelist, int alloc_flags)
890 {
891 	struct zone **z = zonelist->zones;
892 	struct page *page = NULL;
893 	int classzone_idx = zone_idx(*z);
894 
895 	/*
896 	 * Go through the zonelist once, looking for a zone with enough free.
897 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
898 	 */
899 	do {
900 		if ((alloc_flags & ALLOC_CPUSET) &&
901 				!cpuset_zone_allowed(*z, gfp_mask))
902 			continue;
903 
904 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
905 			unsigned long mark;
906 			if (alloc_flags & ALLOC_WMARK_MIN)
907 				mark = (*z)->pages_min;
908 			else if (alloc_flags & ALLOC_WMARK_LOW)
909 				mark = (*z)->pages_low;
910 			else
911 				mark = (*z)->pages_high;
912 			if (!zone_watermark_ok(*z, order, mark,
913 				    classzone_idx, alloc_flags))
914 				if (!zone_reclaim_mode ||
915 				    !zone_reclaim(*z, gfp_mask, order))
916 					continue;
917 		}
918 
919 		page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
920 		if (page) {
921 			break;
922 		}
923 	} while (*(++z) != NULL);
924 	return page;
925 }
926 
927 /*
928  * This is the 'heart' of the zoned buddy allocator.
929  */
930 struct page * fastcall
931 __alloc_pages(gfp_t gfp_mask, unsigned int order,
932 		struct zonelist *zonelist)
933 {
934 	const gfp_t wait = gfp_mask & __GFP_WAIT;
935 	struct zone **z;
936 	struct page *page;
937 	struct reclaim_state reclaim_state;
938 	struct task_struct *p = current;
939 	int do_retry;
940 	int alloc_flags;
941 	int did_some_progress;
942 
943 	might_sleep_if(wait);
944 
945 restart:
946 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
947 
948 	if (unlikely(*z == NULL)) {
949 		/* Should this ever happen?? */
950 		return NULL;
951 	}
952 
953 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
954 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
955 	if (page)
956 		goto got_pg;
957 
958 	do {
959 		if (cpuset_zone_allowed(*z, gfp_mask|__GFP_HARDWALL))
960 			wakeup_kswapd(*z, order);
961 	} while (*(++z));
962 
963 	/*
964 	 * OK, we're below the kswapd watermark and have kicked background
965 	 * reclaim. Now things get more complex, so set up alloc_flags according
966 	 * to how we want to proceed.
967 	 *
968 	 * The caller may dip into page reserves a bit more if the caller
969 	 * cannot run direct reclaim, or if the caller has realtime scheduling
970 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
971 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
972 	 */
973 	alloc_flags = ALLOC_WMARK_MIN;
974 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
975 		alloc_flags |= ALLOC_HARDER;
976 	if (gfp_mask & __GFP_HIGH)
977 		alloc_flags |= ALLOC_HIGH;
978 	if (wait)
979 		alloc_flags |= ALLOC_CPUSET;
980 
981 	/*
982 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
983 	 * coming from realtime tasks go deeper into reserves.
984 	 *
985 	 * This is the last chance, in general, before the goto nopage.
986 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
987 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
988 	 */
989 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
990 	if (page)
991 		goto got_pg;
992 
993 	/* This allocation should allow future memory freeing. */
994 
995 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
996 			&& !in_interrupt()) {
997 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
998 nofail_alloc:
999 			/* go through the zonelist yet again, ignoring mins */
1000 			page = get_page_from_freelist(gfp_mask, order,
1001 				zonelist, ALLOC_NO_WATERMARKS);
1002 			if (page)
1003 				goto got_pg;
1004 			if (gfp_mask & __GFP_NOFAIL) {
1005 				blk_congestion_wait(WRITE, HZ/50);
1006 				goto nofail_alloc;
1007 			}
1008 		}
1009 		goto nopage;
1010 	}
1011 
1012 	/* Atomic allocations - we can't balance anything */
1013 	if (!wait)
1014 		goto nopage;
1015 
1016 rebalance:
1017 	cond_resched();
1018 
1019 	/* We now go into synchronous reclaim */
1020 	cpuset_memory_pressure_bump();
1021 	p->flags |= PF_MEMALLOC;
1022 	reclaim_state.reclaimed_slab = 0;
1023 	p->reclaim_state = &reclaim_state;
1024 
1025 	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1026 
1027 	p->reclaim_state = NULL;
1028 	p->flags &= ~PF_MEMALLOC;
1029 
1030 	cond_resched();
1031 
1032 	if (likely(did_some_progress)) {
1033 		page = get_page_from_freelist(gfp_mask, order,
1034 						zonelist, alloc_flags);
1035 		if (page)
1036 			goto got_pg;
1037 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1038 		/*
1039 		 * Go through the zonelist yet one more time, keep
1040 		 * very high watermark here, this is only to catch
1041 		 * a parallel oom killing, we must fail if we're still
1042 		 * under heavy pressure.
1043 		 */
1044 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1045 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1046 		if (page)
1047 			goto got_pg;
1048 
1049 		out_of_memory(zonelist, gfp_mask, order);
1050 		goto restart;
1051 	}
1052 
1053 	/*
1054 	 * Don't let big-order allocations loop unless the caller explicitly
1055 	 * requests that.  Wait for some write requests to complete then retry.
1056 	 *
1057 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1058 	 * <= 3, but that may not be true in other implementations.
1059 	 */
1060 	do_retry = 0;
1061 	if (!(gfp_mask & __GFP_NORETRY)) {
1062 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1063 			do_retry = 1;
1064 		if (gfp_mask & __GFP_NOFAIL)
1065 			do_retry = 1;
1066 	}
1067 	if (do_retry) {
1068 		blk_congestion_wait(WRITE, HZ/50);
1069 		goto rebalance;
1070 	}
1071 
1072 nopage:
1073 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1074 		printk(KERN_WARNING "%s: page allocation failure."
1075 			" order:%d, mode:0x%x\n",
1076 			p->comm, order, gfp_mask);
1077 		dump_stack();
1078 		show_mem();
1079 	}
1080 got_pg:
1081 	return page;
1082 }
1083 
1084 EXPORT_SYMBOL(__alloc_pages);
1085 
1086 /*
1087  * Common helper functions.
1088  */
1089 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1090 {
1091 	struct page * page;
1092 	page = alloc_pages(gfp_mask, order);
1093 	if (!page)
1094 		return 0;
1095 	return (unsigned long) page_address(page);
1096 }
1097 
1098 EXPORT_SYMBOL(__get_free_pages);
1099 
1100 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1101 {
1102 	struct page * page;
1103 
1104 	/*
1105 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1106 	 * a highmem page
1107 	 */
1108 	BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1109 
1110 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1111 	if (page)
1112 		return (unsigned long) page_address(page);
1113 	return 0;
1114 }
1115 
1116 EXPORT_SYMBOL(get_zeroed_page);
1117 
1118 void __pagevec_free(struct pagevec *pvec)
1119 {
1120 	int i = pagevec_count(pvec);
1121 
1122 	while (--i >= 0)
1123 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1124 }
1125 
1126 fastcall void __free_pages(struct page *page, unsigned int order)
1127 {
1128 	if (put_page_testzero(page)) {
1129 		if (order == 0)
1130 			free_hot_page(page);
1131 		else
1132 			__free_pages_ok(page, order);
1133 	}
1134 }
1135 
1136 EXPORT_SYMBOL(__free_pages);
1137 
1138 fastcall void free_pages(unsigned long addr, unsigned int order)
1139 {
1140 	if (addr != 0) {
1141 		BUG_ON(!virt_addr_valid((void *)addr));
1142 		__free_pages(virt_to_page((void *)addr), order);
1143 	}
1144 }
1145 
1146 EXPORT_SYMBOL(free_pages);
1147 
1148 /*
1149  * Total amount of free (allocatable) RAM:
1150  */
1151 unsigned int nr_free_pages(void)
1152 {
1153 	unsigned int sum = 0;
1154 	struct zone *zone;
1155 
1156 	for_each_zone(zone)
1157 		sum += zone->free_pages;
1158 
1159 	return sum;
1160 }
1161 
1162 EXPORT_SYMBOL(nr_free_pages);
1163 
1164 #ifdef CONFIG_NUMA
1165 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1166 {
1167 	unsigned int i, sum = 0;
1168 
1169 	for (i = 0; i < MAX_NR_ZONES; i++)
1170 		sum += pgdat->node_zones[i].free_pages;
1171 
1172 	return sum;
1173 }
1174 #endif
1175 
1176 static unsigned int nr_free_zone_pages(int offset)
1177 {
1178 	/* Just pick one node, since fallback list is circular */
1179 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1180 	unsigned int sum = 0;
1181 
1182 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1183 	struct zone **zonep = zonelist->zones;
1184 	struct zone *zone;
1185 
1186 	for (zone = *zonep++; zone; zone = *zonep++) {
1187 		unsigned long size = zone->present_pages;
1188 		unsigned long high = zone->pages_high;
1189 		if (size > high)
1190 			sum += size - high;
1191 	}
1192 
1193 	return sum;
1194 }
1195 
1196 /*
1197  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1198  */
1199 unsigned int nr_free_buffer_pages(void)
1200 {
1201 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1202 }
1203 
1204 /*
1205  * Amount of free RAM allocatable within all zones
1206  */
1207 unsigned int nr_free_pagecache_pages(void)
1208 {
1209 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1210 }
1211 
1212 #ifdef CONFIG_HIGHMEM
1213 unsigned int nr_free_highpages (void)
1214 {
1215 	pg_data_t *pgdat;
1216 	unsigned int pages = 0;
1217 
1218 	for_each_online_pgdat(pgdat)
1219 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1220 
1221 	return pages;
1222 }
1223 #endif
1224 
1225 #ifdef CONFIG_NUMA
1226 static void show_node(struct zone *zone)
1227 {
1228 	printk("Node %d ", zone->zone_pgdat->node_id);
1229 }
1230 #else
1231 #define show_node(zone)	do { } while (0)
1232 #endif
1233 
1234 /*
1235  * Accumulate the page_state information across all CPUs.
1236  * The result is unavoidably approximate - it can change
1237  * during and after execution of this function.
1238  */
1239 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1240 
1241 atomic_t nr_pagecache = ATOMIC_INIT(0);
1242 EXPORT_SYMBOL(nr_pagecache);
1243 #ifdef CONFIG_SMP
1244 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1245 #endif
1246 
1247 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1248 {
1249 	unsigned cpu;
1250 
1251 	memset(ret, 0, nr * sizeof(unsigned long));
1252 	cpus_and(*cpumask, *cpumask, cpu_online_map);
1253 
1254 	for_each_cpu_mask(cpu, *cpumask) {
1255 		unsigned long *in;
1256 		unsigned long *out;
1257 		unsigned off;
1258 		unsigned next_cpu;
1259 
1260 		in = (unsigned long *)&per_cpu(page_states, cpu);
1261 
1262 		next_cpu = next_cpu(cpu, *cpumask);
1263 		if (likely(next_cpu < NR_CPUS))
1264 			prefetch(&per_cpu(page_states, next_cpu));
1265 
1266 		out = (unsigned long *)ret;
1267 		for (off = 0; off < nr; off++)
1268 			*out++ += *in++;
1269 	}
1270 }
1271 
1272 void get_page_state_node(struct page_state *ret, int node)
1273 {
1274 	int nr;
1275 	cpumask_t mask = node_to_cpumask(node);
1276 
1277 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1278 	nr /= sizeof(unsigned long);
1279 
1280 	__get_page_state(ret, nr+1, &mask);
1281 }
1282 
1283 void get_page_state(struct page_state *ret)
1284 {
1285 	int nr;
1286 	cpumask_t mask = CPU_MASK_ALL;
1287 
1288 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1289 	nr /= sizeof(unsigned long);
1290 
1291 	__get_page_state(ret, nr + 1, &mask);
1292 }
1293 
1294 void get_full_page_state(struct page_state *ret)
1295 {
1296 	cpumask_t mask = CPU_MASK_ALL;
1297 
1298 	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1299 }
1300 
1301 unsigned long read_page_state_offset(unsigned long offset)
1302 {
1303 	unsigned long ret = 0;
1304 	int cpu;
1305 
1306 	for_each_online_cpu(cpu) {
1307 		unsigned long in;
1308 
1309 		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1310 		ret += *((unsigned long *)in);
1311 	}
1312 	return ret;
1313 }
1314 
1315 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1316 {
1317 	void *ptr;
1318 
1319 	ptr = &__get_cpu_var(page_states);
1320 	*(unsigned long *)(ptr + offset) += delta;
1321 }
1322 EXPORT_SYMBOL(__mod_page_state_offset);
1323 
1324 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1325 {
1326 	unsigned long flags;
1327 	void *ptr;
1328 
1329 	local_irq_save(flags);
1330 	ptr = &__get_cpu_var(page_states);
1331 	*(unsigned long *)(ptr + offset) += delta;
1332 	local_irq_restore(flags);
1333 }
1334 EXPORT_SYMBOL(mod_page_state_offset);
1335 
1336 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1337 			unsigned long *free, struct pglist_data *pgdat)
1338 {
1339 	struct zone *zones = pgdat->node_zones;
1340 	int i;
1341 
1342 	*active = 0;
1343 	*inactive = 0;
1344 	*free = 0;
1345 	for (i = 0; i < MAX_NR_ZONES; i++) {
1346 		*active += zones[i].nr_active;
1347 		*inactive += zones[i].nr_inactive;
1348 		*free += zones[i].free_pages;
1349 	}
1350 }
1351 
1352 void get_zone_counts(unsigned long *active,
1353 		unsigned long *inactive, unsigned long *free)
1354 {
1355 	struct pglist_data *pgdat;
1356 
1357 	*active = 0;
1358 	*inactive = 0;
1359 	*free = 0;
1360 	for_each_online_pgdat(pgdat) {
1361 		unsigned long l, m, n;
1362 		__get_zone_counts(&l, &m, &n, pgdat);
1363 		*active += l;
1364 		*inactive += m;
1365 		*free += n;
1366 	}
1367 }
1368 
1369 void si_meminfo(struct sysinfo *val)
1370 {
1371 	val->totalram = totalram_pages;
1372 	val->sharedram = 0;
1373 	val->freeram = nr_free_pages();
1374 	val->bufferram = nr_blockdev_pages();
1375 #ifdef CONFIG_HIGHMEM
1376 	val->totalhigh = totalhigh_pages;
1377 	val->freehigh = nr_free_highpages();
1378 #else
1379 	val->totalhigh = 0;
1380 	val->freehigh = 0;
1381 #endif
1382 	val->mem_unit = PAGE_SIZE;
1383 }
1384 
1385 EXPORT_SYMBOL(si_meminfo);
1386 
1387 #ifdef CONFIG_NUMA
1388 void si_meminfo_node(struct sysinfo *val, int nid)
1389 {
1390 	pg_data_t *pgdat = NODE_DATA(nid);
1391 
1392 	val->totalram = pgdat->node_present_pages;
1393 	val->freeram = nr_free_pages_pgdat(pgdat);
1394 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1395 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1396 	val->mem_unit = PAGE_SIZE;
1397 }
1398 #endif
1399 
1400 #define K(x) ((x) << (PAGE_SHIFT-10))
1401 
1402 /*
1403  * Show free area list (used inside shift_scroll-lock stuff)
1404  * We also calculate the percentage fragmentation. We do this by counting the
1405  * memory on each free list with the exception of the first item on the list.
1406  */
1407 void show_free_areas(void)
1408 {
1409 	struct page_state ps;
1410 	int cpu, temperature;
1411 	unsigned long active;
1412 	unsigned long inactive;
1413 	unsigned long free;
1414 	struct zone *zone;
1415 
1416 	for_each_zone(zone) {
1417 		show_node(zone);
1418 		printk("%s per-cpu:", zone->name);
1419 
1420 		if (!populated_zone(zone)) {
1421 			printk(" empty\n");
1422 			continue;
1423 		} else
1424 			printk("\n");
1425 
1426 		for_each_online_cpu(cpu) {
1427 			struct per_cpu_pageset *pageset;
1428 
1429 			pageset = zone_pcp(zone, cpu);
1430 
1431 			for (temperature = 0; temperature < 2; temperature++)
1432 				printk("cpu %d %s: high %d, batch %d used:%d\n",
1433 					cpu,
1434 					temperature ? "cold" : "hot",
1435 					pageset->pcp[temperature].high,
1436 					pageset->pcp[temperature].batch,
1437 					pageset->pcp[temperature].count);
1438 		}
1439 	}
1440 
1441 	get_page_state(&ps);
1442 	get_zone_counts(&active, &inactive, &free);
1443 
1444 	printk("Free pages: %11ukB (%ukB HighMem)\n",
1445 		K(nr_free_pages()),
1446 		K(nr_free_highpages()));
1447 
1448 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1449 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1450 		active,
1451 		inactive,
1452 		ps.nr_dirty,
1453 		ps.nr_writeback,
1454 		ps.nr_unstable,
1455 		nr_free_pages(),
1456 		ps.nr_slab,
1457 		ps.nr_mapped,
1458 		ps.nr_page_table_pages);
1459 
1460 	for_each_zone(zone) {
1461 		int i;
1462 
1463 		show_node(zone);
1464 		printk("%s"
1465 			" free:%lukB"
1466 			" min:%lukB"
1467 			" low:%lukB"
1468 			" high:%lukB"
1469 			" active:%lukB"
1470 			" inactive:%lukB"
1471 			" present:%lukB"
1472 			" pages_scanned:%lu"
1473 			" all_unreclaimable? %s"
1474 			"\n",
1475 			zone->name,
1476 			K(zone->free_pages),
1477 			K(zone->pages_min),
1478 			K(zone->pages_low),
1479 			K(zone->pages_high),
1480 			K(zone->nr_active),
1481 			K(zone->nr_inactive),
1482 			K(zone->present_pages),
1483 			zone->pages_scanned,
1484 			(zone->all_unreclaimable ? "yes" : "no")
1485 			);
1486 		printk("lowmem_reserve[]:");
1487 		for (i = 0; i < MAX_NR_ZONES; i++)
1488 			printk(" %lu", zone->lowmem_reserve[i]);
1489 		printk("\n");
1490 	}
1491 
1492 	for_each_zone(zone) {
1493  		unsigned long nr, flags, order, total = 0;
1494 
1495 		show_node(zone);
1496 		printk("%s: ", zone->name);
1497 		if (!populated_zone(zone)) {
1498 			printk("empty\n");
1499 			continue;
1500 		}
1501 
1502 		spin_lock_irqsave(&zone->lock, flags);
1503 		for (order = 0; order < MAX_ORDER; order++) {
1504 			nr = zone->free_area[order].nr_free;
1505 			total += nr << order;
1506 			printk("%lu*%lukB ", nr, K(1UL) << order);
1507 		}
1508 		spin_unlock_irqrestore(&zone->lock, flags);
1509 		printk("= %lukB\n", K(total));
1510 	}
1511 
1512 	show_swap_cache_info();
1513 }
1514 
1515 /*
1516  * Builds allocation fallback zone lists.
1517  *
1518  * Add all populated zones of a node to the zonelist.
1519  */
1520 static int __meminit build_zonelists_node(pg_data_t *pgdat,
1521 			struct zonelist *zonelist, int nr_zones, int zone_type)
1522 {
1523 	struct zone *zone;
1524 
1525 	BUG_ON(zone_type > ZONE_HIGHMEM);
1526 
1527 	do {
1528 		zone = pgdat->node_zones + zone_type;
1529 		if (populated_zone(zone)) {
1530 #ifndef CONFIG_HIGHMEM
1531 			BUG_ON(zone_type > ZONE_NORMAL);
1532 #endif
1533 			zonelist->zones[nr_zones++] = zone;
1534 			check_highest_zone(zone_type);
1535 		}
1536 		zone_type--;
1537 
1538 	} while (zone_type >= 0);
1539 	return nr_zones;
1540 }
1541 
1542 static inline int highest_zone(int zone_bits)
1543 {
1544 	int res = ZONE_NORMAL;
1545 	if (zone_bits & (__force int)__GFP_HIGHMEM)
1546 		res = ZONE_HIGHMEM;
1547 	if (zone_bits & (__force int)__GFP_DMA32)
1548 		res = ZONE_DMA32;
1549 	if (zone_bits & (__force int)__GFP_DMA)
1550 		res = ZONE_DMA;
1551 	return res;
1552 }
1553 
1554 #ifdef CONFIG_NUMA
1555 #define MAX_NODE_LOAD (num_online_nodes())
1556 static int __meminitdata node_load[MAX_NUMNODES];
1557 /**
1558  * find_next_best_node - find the next node that should appear in a given node's fallback list
1559  * @node: node whose fallback list we're appending
1560  * @used_node_mask: nodemask_t of already used nodes
1561  *
1562  * We use a number of factors to determine which is the next node that should
1563  * appear on a given node's fallback list.  The node should not have appeared
1564  * already in @node's fallback list, and it should be the next closest node
1565  * according to the distance array (which contains arbitrary distance values
1566  * from each node to each node in the system), and should also prefer nodes
1567  * with no CPUs, since presumably they'll have very little allocation pressure
1568  * on them otherwise.
1569  * It returns -1 if no node is found.
1570  */
1571 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1572 {
1573 	int n, val;
1574 	int min_val = INT_MAX;
1575 	int best_node = -1;
1576 
1577 	/* Use the local node if we haven't already */
1578 	if (!node_isset(node, *used_node_mask)) {
1579 		node_set(node, *used_node_mask);
1580 		return node;
1581 	}
1582 
1583 	for_each_online_node(n) {
1584 		cpumask_t tmp;
1585 
1586 		/* Don't want a node to appear more than once */
1587 		if (node_isset(n, *used_node_mask))
1588 			continue;
1589 
1590 		/* Use the distance array to find the distance */
1591 		val = node_distance(node, n);
1592 
1593 		/* Penalize nodes under us ("prefer the next node") */
1594 		val += (n < node);
1595 
1596 		/* Give preference to headless and unused nodes */
1597 		tmp = node_to_cpumask(n);
1598 		if (!cpus_empty(tmp))
1599 			val += PENALTY_FOR_NODE_WITH_CPUS;
1600 
1601 		/* Slight preference for less loaded node */
1602 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1603 		val += node_load[n];
1604 
1605 		if (val < min_val) {
1606 			min_val = val;
1607 			best_node = n;
1608 		}
1609 	}
1610 
1611 	if (best_node >= 0)
1612 		node_set(best_node, *used_node_mask);
1613 
1614 	return best_node;
1615 }
1616 
1617 static void __meminit build_zonelists(pg_data_t *pgdat)
1618 {
1619 	int i, j, k, node, local_node;
1620 	int prev_node, load;
1621 	struct zonelist *zonelist;
1622 	nodemask_t used_mask;
1623 
1624 	/* initialize zonelists */
1625 	for (i = 0; i < GFP_ZONETYPES; i++) {
1626 		zonelist = pgdat->node_zonelists + i;
1627 		zonelist->zones[0] = NULL;
1628 	}
1629 
1630 	/* NUMA-aware ordering of nodes */
1631 	local_node = pgdat->node_id;
1632 	load = num_online_nodes();
1633 	prev_node = local_node;
1634 	nodes_clear(used_mask);
1635 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1636 		int distance = node_distance(local_node, node);
1637 
1638 		/*
1639 		 * If another node is sufficiently far away then it is better
1640 		 * to reclaim pages in a zone before going off node.
1641 		 */
1642 		if (distance > RECLAIM_DISTANCE)
1643 			zone_reclaim_mode = 1;
1644 
1645 		/*
1646 		 * We don't want to pressure a particular node.
1647 		 * So adding penalty to the first node in same
1648 		 * distance group to make it round-robin.
1649 		 */
1650 
1651 		if (distance != node_distance(local_node, prev_node))
1652 			node_load[node] += load;
1653 		prev_node = node;
1654 		load--;
1655 		for (i = 0; i < GFP_ZONETYPES; i++) {
1656 			zonelist = pgdat->node_zonelists + i;
1657 			for (j = 0; zonelist->zones[j] != NULL; j++);
1658 
1659 			k = highest_zone(i);
1660 
1661 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1662 			zonelist->zones[j] = NULL;
1663 		}
1664 	}
1665 }
1666 
1667 #else	/* CONFIG_NUMA */
1668 
1669 static void __meminit build_zonelists(pg_data_t *pgdat)
1670 {
1671 	int i, j, k, node, local_node;
1672 
1673 	local_node = pgdat->node_id;
1674 	for (i = 0; i < GFP_ZONETYPES; i++) {
1675 		struct zonelist *zonelist;
1676 
1677 		zonelist = pgdat->node_zonelists + i;
1678 
1679 		j = 0;
1680 		k = highest_zone(i);
1681  		j = build_zonelists_node(pgdat, zonelist, j, k);
1682  		/*
1683  		 * Now we build the zonelist so that it contains the zones
1684  		 * of all the other nodes.
1685  		 * We don't want to pressure a particular node, so when
1686  		 * building the zones for node N, we make sure that the
1687  		 * zones coming right after the local ones are those from
1688  		 * node N+1 (modulo N)
1689  		 */
1690 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1691 			if (!node_online(node))
1692 				continue;
1693 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1694 		}
1695 		for (node = 0; node < local_node; node++) {
1696 			if (!node_online(node))
1697 				continue;
1698 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1699 		}
1700 
1701 		zonelist->zones[j] = NULL;
1702 	}
1703 }
1704 
1705 #endif	/* CONFIG_NUMA */
1706 
1707 void __init build_all_zonelists(void)
1708 {
1709 	int i;
1710 
1711 	for_each_online_node(i)
1712 		build_zonelists(NODE_DATA(i));
1713 	printk("Built %i zonelists\n", num_online_nodes());
1714 	cpuset_init_current_mems_allowed();
1715 }
1716 
1717 /*
1718  * Helper functions to size the waitqueue hash table.
1719  * Essentially these want to choose hash table sizes sufficiently
1720  * large so that collisions trying to wait on pages are rare.
1721  * But in fact, the number of active page waitqueues on typical
1722  * systems is ridiculously low, less than 200. So this is even
1723  * conservative, even though it seems large.
1724  *
1725  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1726  * waitqueues, i.e. the size of the waitq table given the number of pages.
1727  */
1728 #define PAGES_PER_WAITQUEUE	256
1729 
1730 #ifndef CONFIG_MEMORY_HOTPLUG
1731 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1732 {
1733 	unsigned long size = 1;
1734 
1735 	pages /= PAGES_PER_WAITQUEUE;
1736 
1737 	while (size < pages)
1738 		size <<= 1;
1739 
1740 	/*
1741 	 * Once we have dozens or even hundreds of threads sleeping
1742 	 * on IO we've got bigger problems than wait queue collision.
1743 	 * Limit the size of the wait table to a reasonable size.
1744 	 */
1745 	size = min(size, 4096UL);
1746 
1747 	return max(size, 4UL);
1748 }
1749 #else
1750 /*
1751  * A zone's size might be changed by hot-add, so it is not possible to determine
1752  * a suitable size for its wait_table.  So we use the maximum size now.
1753  *
1754  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
1755  *
1756  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
1757  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1758  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
1759  *
1760  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1761  * or more by the traditional way. (See above).  It equals:
1762  *
1763  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
1764  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
1765  *    powerpc (64K page size)             : =  (32G +16M)byte.
1766  */
1767 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1768 {
1769 	return 4096UL;
1770 }
1771 #endif
1772 
1773 /*
1774  * This is an integer logarithm so that shifts can be used later
1775  * to extract the more random high bits from the multiplicative
1776  * hash function before the remainder is taken.
1777  */
1778 static inline unsigned long wait_table_bits(unsigned long size)
1779 {
1780 	return ffz(~size);
1781 }
1782 
1783 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1784 
1785 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1786 		unsigned long *zones_size, unsigned long *zholes_size)
1787 {
1788 	unsigned long realtotalpages, totalpages = 0;
1789 	int i;
1790 
1791 	for (i = 0; i < MAX_NR_ZONES; i++)
1792 		totalpages += zones_size[i];
1793 	pgdat->node_spanned_pages = totalpages;
1794 
1795 	realtotalpages = totalpages;
1796 	if (zholes_size)
1797 		for (i = 0; i < MAX_NR_ZONES; i++)
1798 			realtotalpages -= zholes_size[i];
1799 	pgdat->node_present_pages = realtotalpages;
1800 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1801 }
1802 
1803 
1804 /*
1805  * Initially all pages are reserved - free ones are freed
1806  * up by free_all_bootmem() once the early boot process is
1807  * done. Non-atomic initialization, single-pass.
1808  */
1809 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1810 		unsigned long start_pfn)
1811 {
1812 	struct page *page;
1813 	unsigned long end_pfn = start_pfn + size;
1814 	unsigned long pfn;
1815 
1816 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1817 		if (!early_pfn_valid(pfn))
1818 			continue;
1819 		page = pfn_to_page(pfn);
1820 		set_page_links(page, zone, nid, pfn);
1821 		init_page_count(page);
1822 		reset_page_mapcount(page);
1823 		SetPageReserved(page);
1824 		INIT_LIST_HEAD(&page->lru);
1825 #ifdef WANT_PAGE_VIRTUAL
1826 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1827 		if (!is_highmem_idx(zone))
1828 			set_page_address(page, __va(pfn << PAGE_SHIFT));
1829 #endif
1830 	}
1831 }
1832 
1833 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1834 				unsigned long size)
1835 {
1836 	int order;
1837 	for (order = 0; order < MAX_ORDER ; order++) {
1838 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1839 		zone->free_area[order].nr_free = 0;
1840 	}
1841 }
1842 
1843 #define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1844 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1845 		unsigned long size)
1846 {
1847 	unsigned long snum = pfn_to_section_nr(pfn);
1848 	unsigned long end = pfn_to_section_nr(pfn + size);
1849 
1850 	if (FLAGS_HAS_NODE)
1851 		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1852 	else
1853 		for (; snum <= end; snum++)
1854 			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1855 }
1856 
1857 #ifndef __HAVE_ARCH_MEMMAP_INIT
1858 #define memmap_init(size, nid, zone, start_pfn) \
1859 	memmap_init_zone((size), (nid), (zone), (start_pfn))
1860 #endif
1861 
1862 static int __cpuinit zone_batchsize(struct zone *zone)
1863 {
1864 	int batch;
1865 
1866 	/*
1867 	 * The per-cpu-pages pools are set to around 1000th of the
1868 	 * size of the zone.  But no more than 1/2 of a meg.
1869 	 *
1870 	 * OK, so we don't know how big the cache is.  So guess.
1871 	 */
1872 	batch = zone->present_pages / 1024;
1873 	if (batch * PAGE_SIZE > 512 * 1024)
1874 		batch = (512 * 1024) / PAGE_SIZE;
1875 	batch /= 4;		/* We effectively *= 4 below */
1876 	if (batch < 1)
1877 		batch = 1;
1878 
1879 	/*
1880 	 * Clamp the batch to a 2^n - 1 value. Having a power
1881 	 * of 2 value was found to be more likely to have
1882 	 * suboptimal cache aliasing properties in some cases.
1883 	 *
1884 	 * For example if 2 tasks are alternately allocating
1885 	 * batches of pages, one task can end up with a lot
1886 	 * of pages of one half of the possible page colors
1887 	 * and the other with pages of the other colors.
1888 	 */
1889 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1890 
1891 	return batch;
1892 }
1893 
1894 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1895 {
1896 	struct per_cpu_pages *pcp;
1897 
1898 	memset(p, 0, sizeof(*p));
1899 
1900 	pcp = &p->pcp[0];		/* hot */
1901 	pcp->count = 0;
1902 	pcp->high = 6 * batch;
1903 	pcp->batch = max(1UL, 1 * batch);
1904 	INIT_LIST_HEAD(&pcp->list);
1905 
1906 	pcp = &p->pcp[1];		/* cold*/
1907 	pcp->count = 0;
1908 	pcp->high = 2 * batch;
1909 	pcp->batch = max(1UL, batch/2);
1910 	INIT_LIST_HEAD(&pcp->list);
1911 }
1912 
1913 /*
1914  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1915  * to the value high for the pageset p.
1916  */
1917 
1918 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1919 				unsigned long high)
1920 {
1921 	struct per_cpu_pages *pcp;
1922 
1923 	pcp = &p->pcp[0]; /* hot list */
1924 	pcp->high = high;
1925 	pcp->batch = max(1UL, high/4);
1926 	if ((high/4) > (PAGE_SHIFT * 8))
1927 		pcp->batch = PAGE_SHIFT * 8;
1928 }
1929 
1930 
1931 #ifdef CONFIG_NUMA
1932 /*
1933  * Boot pageset table. One per cpu which is going to be used for all
1934  * zones and all nodes. The parameters will be set in such a way
1935  * that an item put on a list will immediately be handed over to
1936  * the buddy list. This is safe since pageset manipulation is done
1937  * with interrupts disabled.
1938  *
1939  * Some NUMA counter updates may also be caught by the boot pagesets.
1940  *
1941  * The boot_pagesets must be kept even after bootup is complete for
1942  * unused processors and/or zones. They do play a role for bootstrapping
1943  * hotplugged processors.
1944  *
1945  * zoneinfo_show() and maybe other functions do
1946  * not check if the processor is online before following the pageset pointer.
1947  * Other parts of the kernel may not check if the zone is available.
1948  */
1949 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1950 
1951 /*
1952  * Dynamically allocate memory for the
1953  * per cpu pageset array in struct zone.
1954  */
1955 static int __cpuinit process_zones(int cpu)
1956 {
1957 	struct zone *zone, *dzone;
1958 
1959 	for_each_zone(zone) {
1960 
1961 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1962 					 GFP_KERNEL, cpu_to_node(cpu));
1963 		if (!zone_pcp(zone, cpu))
1964 			goto bad;
1965 
1966 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1967 
1968 		if (percpu_pagelist_fraction)
1969 			setup_pagelist_highmark(zone_pcp(zone, cpu),
1970 			 	(zone->present_pages / percpu_pagelist_fraction));
1971 	}
1972 
1973 	return 0;
1974 bad:
1975 	for_each_zone(dzone) {
1976 		if (dzone == zone)
1977 			break;
1978 		kfree(zone_pcp(dzone, cpu));
1979 		zone_pcp(dzone, cpu) = NULL;
1980 	}
1981 	return -ENOMEM;
1982 }
1983 
1984 static inline void free_zone_pagesets(int cpu)
1985 {
1986 	struct zone *zone;
1987 
1988 	for_each_zone(zone) {
1989 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1990 
1991 		zone_pcp(zone, cpu) = NULL;
1992 		kfree(pset);
1993 	}
1994 }
1995 
1996 static int pageset_cpuup_callback(struct notifier_block *nfb,
1997 		unsigned long action,
1998 		void *hcpu)
1999 {
2000 	int cpu = (long)hcpu;
2001 	int ret = NOTIFY_OK;
2002 
2003 	switch (action) {
2004 		case CPU_UP_PREPARE:
2005 			if (process_zones(cpu))
2006 				ret = NOTIFY_BAD;
2007 			break;
2008 		case CPU_UP_CANCELED:
2009 		case CPU_DEAD:
2010 			free_zone_pagesets(cpu);
2011 			break;
2012 		default:
2013 			break;
2014 	}
2015 	return ret;
2016 }
2017 
2018 static struct notifier_block pageset_notifier =
2019 	{ &pageset_cpuup_callback, NULL, 0 };
2020 
2021 void __init setup_per_cpu_pageset(void)
2022 {
2023 	int err;
2024 
2025 	/* Initialize per_cpu_pageset for cpu 0.
2026 	 * A cpuup callback will do this for every cpu
2027 	 * as it comes online
2028 	 */
2029 	err = process_zones(smp_processor_id());
2030 	BUG_ON(err);
2031 	register_cpu_notifier(&pageset_notifier);
2032 }
2033 
2034 #endif
2035 
2036 static __meminit
2037 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2038 {
2039 	int i;
2040 	struct pglist_data *pgdat = zone->zone_pgdat;
2041 	size_t alloc_size;
2042 
2043 	/*
2044 	 * The per-page waitqueue mechanism uses hashed waitqueues
2045 	 * per zone.
2046 	 */
2047 	zone->wait_table_hash_nr_entries =
2048 		 wait_table_hash_nr_entries(zone_size_pages);
2049 	zone->wait_table_bits =
2050 		wait_table_bits(zone->wait_table_hash_nr_entries);
2051 	alloc_size = zone->wait_table_hash_nr_entries
2052 					* sizeof(wait_queue_head_t);
2053 
2054  	if (system_state == SYSTEM_BOOTING) {
2055 		zone->wait_table = (wait_queue_head_t *)
2056 			alloc_bootmem_node(pgdat, alloc_size);
2057 	} else {
2058 		/*
2059 		 * This case means that a zone whose size was 0 gets new memory
2060 		 * via memory hot-add.
2061 		 * But it may be the case that a new node was hot-added.  In
2062 		 * this case vmalloc() will not be able to use this new node's
2063 		 * memory - this wait_table must be initialized to use this new
2064 		 * node itself as well.
2065 		 * To use this new node's memory, further consideration will be
2066 		 * necessary.
2067 		 */
2068 		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2069 	}
2070 	if (!zone->wait_table)
2071 		return -ENOMEM;
2072 
2073 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2074 		init_waitqueue_head(zone->wait_table + i);
2075 
2076 	return 0;
2077 }
2078 
2079 static __meminit void zone_pcp_init(struct zone *zone)
2080 {
2081 	int cpu;
2082 	unsigned long batch = zone_batchsize(zone);
2083 
2084 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2085 #ifdef CONFIG_NUMA
2086 		/* Early boot. Slab allocator not functional yet */
2087 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2088 		setup_pageset(&boot_pageset[cpu],0);
2089 #else
2090 		setup_pageset(zone_pcp(zone,cpu), batch);
2091 #endif
2092 	}
2093 	if (zone->present_pages)
2094 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2095 			zone->name, zone->present_pages, batch);
2096 }
2097 
2098 __meminit int init_currently_empty_zone(struct zone *zone,
2099 					unsigned long zone_start_pfn,
2100 					unsigned long size)
2101 {
2102 	struct pglist_data *pgdat = zone->zone_pgdat;
2103 	int ret;
2104 	ret = zone_wait_table_init(zone, size);
2105 	if (ret)
2106 		return ret;
2107 	pgdat->nr_zones = zone_idx(zone) + 1;
2108 
2109 	zone->zone_start_pfn = zone_start_pfn;
2110 
2111 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2112 
2113 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2114 
2115 	return 0;
2116 }
2117 
2118 /*
2119  * Set up the zone data structures:
2120  *   - mark all pages reserved
2121  *   - mark all memory queues empty
2122  *   - clear the memory bitmaps
2123  */
2124 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2125 		unsigned long *zones_size, unsigned long *zholes_size)
2126 {
2127 	unsigned long j;
2128 	int nid = pgdat->node_id;
2129 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2130 	int ret;
2131 
2132 	pgdat_resize_init(pgdat);
2133 	pgdat->nr_zones = 0;
2134 	init_waitqueue_head(&pgdat->kswapd_wait);
2135 	pgdat->kswapd_max_order = 0;
2136 
2137 	for (j = 0; j < MAX_NR_ZONES; j++) {
2138 		struct zone *zone = pgdat->node_zones + j;
2139 		unsigned long size, realsize;
2140 
2141 		realsize = size = zones_size[j];
2142 		if (zholes_size)
2143 			realsize -= zholes_size[j];
2144 
2145 		if (j < ZONE_HIGHMEM)
2146 			nr_kernel_pages += realsize;
2147 		nr_all_pages += realsize;
2148 
2149 		zone->spanned_pages = size;
2150 		zone->present_pages = realsize;
2151 		zone->name = zone_names[j];
2152 		spin_lock_init(&zone->lock);
2153 		spin_lock_init(&zone->lru_lock);
2154 		zone_seqlock_init(zone);
2155 		zone->zone_pgdat = pgdat;
2156 		zone->free_pages = 0;
2157 
2158 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2159 
2160 		zone_pcp_init(zone);
2161 		INIT_LIST_HEAD(&zone->active_list);
2162 		INIT_LIST_HEAD(&zone->inactive_list);
2163 		zone->nr_scan_active = 0;
2164 		zone->nr_scan_inactive = 0;
2165 		zone->nr_active = 0;
2166 		zone->nr_inactive = 0;
2167 		atomic_set(&zone->reclaim_in_progress, 0);
2168 		if (!size)
2169 			continue;
2170 
2171 		zonetable_add(zone, nid, j, zone_start_pfn, size);
2172 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2173 		BUG_ON(ret);
2174 		zone_start_pfn += size;
2175 	}
2176 }
2177 
2178 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2179 {
2180 	/* Skip empty nodes */
2181 	if (!pgdat->node_spanned_pages)
2182 		return;
2183 
2184 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2185 	/* ia64 gets its own node_mem_map, before this, without bootmem */
2186 	if (!pgdat->node_mem_map) {
2187 		unsigned long size, start, end;
2188 		struct page *map;
2189 
2190 		/*
2191 		 * The zone's endpoints aren't required to be MAX_ORDER
2192 		 * aligned but the node_mem_map endpoints must be in order
2193 		 * for the buddy allocator to function correctly.
2194 		 */
2195 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2196 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2197 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2198 		size =  (end - start) * sizeof(struct page);
2199 		map = alloc_remap(pgdat->node_id, size);
2200 		if (!map)
2201 			map = alloc_bootmem_node(pgdat, size);
2202 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2203 	}
2204 #ifdef CONFIG_FLATMEM
2205 	/*
2206 	 * With no DISCONTIG, the global mem_map is just set as node 0's
2207 	 */
2208 	if (pgdat == NODE_DATA(0))
2209 		mem_map = NODE_DATA(0)->node_mem_map;
2210 #endif
2211 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2212 }
2213 
2214 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2215 		unsigned long *zones_size, unsigned long node_start_pfn,
2216 		unsigned long *zholes_size)
2217 {
2218 	pgdat->node_id = nid;
2219 	pgdat->node_start_pfn = node_start_pfn;
2220 	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2221 
2222 	alloc_node_mem_map(pgdat);
2223 
2224 	free_area_init_core(pgdat, zones_size, zholes_size);
2225 }
2226 
2227 #ifndef CONFIG_NEED_MULTIPLE_NODES
2228 static bootmem_data_t contig_bootmem_data;
2229 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2230 
2231 EXPORT_SYMBOL(contig_page_data);
2232 #endif
2233 
2234 void __init free_area_init(unsigned long *zones_size)
2235 {
2236 	free_area_init_node(0, NODE_DATA(0), zones_size,
2237 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2238 }
2239 
2240 #ifdef CONFIG_PROC_FS
2241 
2242 #include <linux/seq_file.h>
2243 
2244 static void *frag_start(struct seq_file *m, loff_t *pos)
2245 {
2246 	pg_data_t *pgdat;
2247 	loff_t node = *pos;
2248 	for (pgdat = first_online_pgdat();
2249 	     pgdat && node;
2250 	     pgdat = next_online_pgdat(pgdat))
2251 		--node;
2252 
2253 	return pgdat;
2254 }
2255 
2256 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2257 {
2258 	pg_data_t *pgdat = (pg_data_t *)arg;
2259 
2260 	(*pos)++;
2261 	return next_online_pgdat(pgdat);
2262 }
2263 
2264 static void frag_stop(struct seq_file *m, void *arg)
2265 {
2266 }
2267 
2268 /*
2269  * This walks the free areas for each zone.
2270  */
2271 static int frag_show(struct seq_file *m, void *arg)
2272 {
2273 	pg_data_t *pgdat = (pg_data_t *)arg;
2274 	struct zone *zone;
2275 	struct zone *node_zones = pgdat->node_zones;
2276 	unsigned long flags;
2277 	int order;
2278 
2279 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2280 		if (!populated_zone(zone))
2281 			continue;
2282 
2283 		spin_lock_irqsave(&zone->lock, flags);
2284 		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2285 		for (order = 0; order < MAX_ORDER; ++order)
2286 			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2287 		spin_unlock_irqrestore(&zone->lock, flags);
2288 		seq_putc(m, '\n');
2289 	}
2290 	return 0;
2291 }
2292 
2293 struct seq_operations fragmentation_op = {
2294 	.start	= frag_start,
2295 	.next	= frag_next,
2296 	.stop	= frag_stop,
2297 	.show	= frag_show,
2298 };
2299 
2300 /*
2301  * Output information about zones in @pgdat.
2302  */
2303 static int zoneinfo_show(struct seq_file *m, void *arg)
2304 {
2305 	pg_data_t *pgdat = arg;
2306 	struct zone *zone;
2307 	struct zone *node_zones = pgdat->node_zones;
2308 	unsigned long flags;
2309 
2310 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2311 		int i;
2312 
2313 		if (!populated_zone(zone))
2314 			continue;
2315 
2316 		spin_lock_irqsave(&zone->lock, flags);
2317 		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2318 		seq_printf(m,
2319 			   "\n  pages free     %lu"
2320 			   "\n        min      %lu"
2321 			   "\n        low      %lu"
2322 			   "\n        high     %lu"
2323 			   "\n        active   %lu"
2324 			   "\n        inactive %lu"
2325 			   "\n        scanned  %lu (a: %lu i: %lu)"
2326 			   "\n        spanned  %lu"
2327 			   "\n        present  %lu",
2328 			   zone->free_pages,
2329 			   zone->pages_min,
2330 			   zone->pages_low,
2331 			   zone->pages_high,
2332 			   zone->nr_active,
2333 			   zone->nr_inactive,
2334 			   zone->pages_scanned,
2335 			   zone->nr_scan_active, zone->nr_scan_inactive,
2336 			   zone->spanned_pages,
2337 			   zone->present_pages);
2338 		seq_printf(m,
2339 			   "\n        protection: (%lu",
2340 			   zone->lowmem_reserve[0]);
2341 		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2342 			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2343 		seq_printf(m,
2344 			   ")"
2345 			   "\n  pagesets");
2346 		for_each_online_cpu(i) {
2347 			struct per_cpu_pageset *pageset;
2348 			int j;
2349 
2350 			pageset = zone_pcp(zone, i);
2351 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2352 				if (pageset->pcp[j].count)
2353 					break;
2354 			}
2355 			if (j == ARRAY_SIZE(pageset->pcp))
2356 				continue;
2357 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2358 				seq_printf(m,
2359 					   "\n    cpu: %i pcp: %i"
2360 					   "\n              count: %i"
2361 					   "\n              high:  %i"
2362 					   "\n              batch: %i",
2363 					   i, j,
2364 					   pageset->pcp[j].count,
2365 					   pageset->pcp[j].high,
2366 					   pageset->pcp[j].batch);
2367 			}
2368 #ifdef CONFIG_NUMA
2369 			seq_printf(m,
2370 				   "\n            numa_hit:       %lu"
2371 				   "\n            numa_miss:      %lu"
2372 				   "\n            numa_foreign:   %lu"
2373 				   "\n            interleave_hit: %lu"
2374 				   "\n            local_node:     %lu"
2375 				   "\n            other_node:     %lu",
2376 				   pageset->numa_hit,
2377 				   pageset->numa_miss,
2378 				   pageset->numa_foreign,
2379 				   pageset->interleave_hit,
2380 				   pageset->local_node,
2381 				   pageset->other_node);
2382 #endif
2383 		}
2384 		seq_printf(m,
2385 			   "\n  all_unreclaimable: %u"
2386 			   "\n  prev_priority:     %i"
2387 			   "\n  temp_priority:     %i"
2388 			   "\n  start_pfn:         %lu",
2389 			   zone->all_unreclaimable,
2390 			   zone->prev_priority,
2391 			   zone->temp_priority,
2392 			   zone->zone_start_pfn);
2393 		spin_unlock_irqrestore(&zone->lock, flags);
2394 		seq_putc(m, '\n');
2395 	}
2396 	return 0;
2397 }
2398 
2399 struct seq_operations zoneinfo_op = {
2400 	.start	= frag_start, /* iterate over all zones. The same as in
2401 			       * fragmentation. */
2402 	.next	= frag_next,
2403 	.stop	= frag_stop,
2404 	.show	= zoneinfo_show,
2405 };
2406 
2407 static char *vmstat_text[] = {
2408 	"nr_dirty",
2409 	"nr_writeback",
2410 	"nr_unstable",
2411 	"nr_page_table_pages",
2412 	"nr_mapped",
2413 	"nr_slab",
2414 
2415 	"pgpgin",
2416 	"pgpgout",
2417 	"pswpin",
2418 	"pswpout",
2419 
2420 	"pgalloc_high",
2421 	"pgalloc_normal",
2422 	"pgalloc_dma32",
2423 	"pgalloc_dma",
2424 
2425 	"pgfree",
2426 	"pgactivate",
2427 	"pgdeactivate",
2428 
2429 	"pgfault",
2430 	"pgmajfault",
2431 
2432 	"pgrefill_high",
2433 	"pgrefill_normal",
2434 	"pgrefill_dma32",
2435 	"pgrefill_dma",
2436 
2437 	"pgsteal_high",
2438 	"pgsteal_normal",
2439 	"pgsteal_dma32",
2440 	"pgsteal_dma",
2441 
2442 	"pgscan_kswapd_high",
2443 	"pgscan_kswapd_normal",
2444 	"pgscan_kswapd_dma32",
2445 	"pgscan_kswapd_dma",
2446 
2447 	"pgscan_direct_high",
2448 	"pgscan_direct_normal",
2449 	"pgscan_direct_dma32",
2450 	"pgscan_direct_dma",
2451 
2452 	"pginodesteal",
2453 	"slabs_scanned",
2454 	"kswapd_steal",
2455 	"kswapd_inodesteal",
2456 	"pageoutrun",
2457 	"allocstall",
2458 
2459 	"pgrotated",
2460 	"nr_bounce",
2461 };
2462 
2463 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2464 {
2465 	struct page_state *ps;
2466 
2467 	if (*pos >= ARRAY_SIZE(vmstat_text))
2468 		return NULL;
2469 
2470 	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2471 	m->private = ps;
2472 	if (!ps)
2473 		return ERR_PTR(-ENOMEM);
2474 	get_full_page_state(ps);
2475 	ps->pgpgin /= 2;		/* sectors -> kbytes */
2476 	ps->pgpgout /= 2;
2477 	return (unsigned long *)ps + *pos;
2478 }
2479 
2480 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2481 {
2482 	(*pos)++;
2483 	if (*pos >= ARRAY_SIZE(vmstat_text))
2484 		return NULL;
2485 	return (unsigned long *)m->private + *pos;
2486 }
2487 
2488 static int vmstat_show(struct seq_file *m, void *arg)
2489 {
2490 	unsigned long *l = arg;
2491 	unsigned long off = l - (unsigned long *)m->private;
2492 
2493 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2494 	return 0;
2495 }
2496 
2497 static void vmstat_stop(struct seq_file *m, void *arg)
2498 {
2499 	kfree(m->private);
2500 	m->private = NULL;
2501 }
2502 
2503 struct seq_operations vmstat_op = {
2504 	.start	= vmstat_start,
2505 	.next	= vmstat_next,
2506 	.stop	= vmstat_stop,
2507 	.show	= vmstat_show,
2508 };
2509 
2510 #endif /* CONFIG_PROC_FS */
2511 
2512 #ifdef CONFIG_HOTPLUG_CPU
2513 static int page_alloc_cpu_notify(struct notifier_block *self,
2514 				 unsigned long action, void *hcpu)
2515 {
2516 	int cpu = (unsigned long)hcpu;
2517 	long *count;
2518 	unsigned long *src, *dest;
2519 
2520 	if (action == CPU_DEAD) {
2521 		int i;
2522 
2523 		/* Drain local pagecache count. */
2524 		count = &per_cpu(nr_pagecache_local, cpu);
2525 		atomic_add(*count, &nr_pagecache);
2526 		*count = 0;
2527 		local_irq_disable();
2528 		__drain_pages(cpu);
2529 
2530 		/* Add dead cpu's page_states to our own. */
2531 		dest = (unsigned long *)&__get_cpu_var(page_states);
2532 		src = (unsigned long *)&per_cpu(page_states, cpu);
2533 
2534 		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2535 				i++) {
2536 			dest[i] += src[i];
2537 			src[i] = 0;
2538 		}
2539 
2540 		local_irq_enable();
2541 	}
2542 	return NOTIFY_OK;
2543 }
2544 #endif /* CONFIG_HOTPLUG_CPU */
2545 
2546 void __init page_alloc_init(void)
2547 {
2548 	hotcpu_notifier(page_alloc_cpu_notify, 0);
2549 }
2550 
2551 /*
2552  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2553  *	or min_free_kbytes changes.
2554  */
2555 static void calculate_totalreserve_pages(void)
2556 {
2557 	struct pglist_data *pgdat;
2558 	unsigned long reserve_pages = 0;
2559 	int i, j;
2560 
2561 	for_each_online_pgdat(pgdat) {
2562 		for (i = 0; i < MAX_NR_ZONES; i++) {
2563 			struct zone *zone = pgdat->node_zones + i;
2564 			unsigned long max = 0;
2565 
2566 			/* Find valid and maximum lowmem_reserve in the zone */
2567 			for (j = i; j < MAX_NR_ZONES; j++) {
2568 				if (zone->lowmem_reserve[j] > max)
2569 					max = zone->lowmem_reserve[j];
2570 			}
2571 
2572 			/* we treat pages_high as reserved pages. */
2573 			max += zone->pages_high;
2574 
2575 			if (max > zone->present_pages)
2576 				max = zone->present_pages;
2577 			reserve_pages += max;
2578 		}
2579 	}
2580 	totalreserve_pages = reserve_pages;
2581 }
2582 
2583 /*
2584  * setup_per_zone_lowmem_reserve - called whenever
2585  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2586  *	has a correct pages reserved value, so an adequate number of
2587  *	pages are left in the zone after a successful __alloc_pages().
2588  */
2589 static void setup_per_zone_lowmem_reserve(void)
2590 {
2591 	struct pglist_data *pgdat;
2592 	int j, idx;
2593 
2594 	for_each_online_pgdat(pgdat) {
2595 		for (j = 0; j < MAX_NR_ZONES; j++) {
2596 			struct zone *zone = pgdat->node_zones + j;
2597 			unsigned long present_pages = zone->present_pages;
2598 
2599 			zone->lowmem_reserve[j] = 0;
2600 
2601 			for (idx = j-1; idx >= 0; idx--) {
2602 				struct zone *lower_zone;
2603 
2604 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2605 					sysctl_lowmem_reserve_ratio[idx] = 1;
2606 
2607 				lower_zone = pgdat->node_zones + idx;
2608 				lower_zone->lowmem_reserve[j] = present_pages /
2609 					sysctl_lowmem_reserve_ratio[idx];
2610 				present_pages += lower_zone->present_pages;
2611 			}
2612 		}
2613 	}
2614 
2615 	/* update totalreserve_pages */
2616 	calculate_totalreserve_pages();
2617 }
2618 
2619 /*
2620  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2621  *	that the pages_{min,low,high} values for each zone are set correctly
2622  *	with respect to min_free_kbytes.
2623  */
2624 void setup_per_zone_pages_min(void)
2625 {
2626 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2627 	unsigned long lowmem_pages = 0;
2628 	struct zone *zone;
2629 	unsigned long flags;
2630 
2631 	/* Calculate total number of !ZONE_HIGHMEM pages */
2632 	for_each_zone(zone) {
2633 		if (!is_highmem(zone))
2634 			lowmem_pages += zone->present_pages;
2635 	}
2636 
2637 	for_each_zone(zone) {
2638 		u64 tmp;
2639 
2640 		spin_lock_irqsave(&zone->lru_lock, flags);
2641 		tmp = (u64)pages_min * zone->present_pages;
2642 		do_div(tmp, lowmem_pages);
2643 		if (is_highmem(zone)) {
2644 			/*
2645 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2646 			 * need highmem pages, so cap pages_min to a small
2647 			 * value here.
2648 			 *
2649 			 * The (pages_high-pages_low) and (pages_low-pages_min)
2650 			 * deltas controls asynch page reclaim, and so should
2651 			 * not be capped for highmem.
2652 			 */
2653 			int min_pages;
2654 
2655 			min_pages = zone->present_pages / 1024;
2656 			if (min_pages < SWAP_CLUSTER_MAX)
2657 				min_pages = SWAP_CLUSTER_MAX;
2658 			if (min_pages > 128)
2659 				min_pages = 128;
2660 			zone->pages_min = min_pages;
2661 		} else {
2662 			/*
2663 			 * If it's a lowmem zone, reserve a number of pages
2664 			 * proportionate to the zone's size.
2665 			 */
2666 			zone->pages_min = tmp;
2667 		}
2668 
2669 		zone->pages_low   = zone->pages_min + (tmp >> 2);
2670 		zone->pages_high  = zone->pages_min + (tmp >> 1);
2671 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2672 	}
2673 
2674 	/* update totalreserve_pages */
2675 	calculate_totalreserve_pages();
2676 }
2677 
2678 /*
2679  * Initialise min_free_kbytes.
2680  *
2681  * For small machines we want it small (128k min).  For large machines
2682  * we want it large (64MB max).  But it is not linear, because network
2683  * bandwidth does not increase linearly with machine size.  We use
2684  *
2685  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2686  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2687  *
2688  * which yields
2689  *
2690  * 16MB:	512k
2691  * 32MB:	724k
2692  * 64MB:	1024k
2693  * 128MB:	1448k
2694  * 256MB:	2048k
2695  * 512MB:	2896k
2696  * 1024MB:	4096k
2697  * 2048MB:	5792k
2698  * 4096MB:	8192k
2699  * 8192MB:	11584k
2700  * 16384MB:	16384k
2701  */
2702 static int __init init_per_zone_pages_min(void)
2703 {
2704 	unsigned long lowmem_kbytes;
2705 
2706 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2707 
2708 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2709 	if (min_free_kbytes < 128)
2710 		min_free_kbytes = 128;
2711 	if (min_free_kbytes > 65536)
2712 		min_free_kbytes = 65536;
2713 	setup_per_zone_pages_min();
2714 	setup_per_zone_lowmem_reserve();
2715 	return 0;
2716 }
2717 module_init(init_per_zone_pages_min)
2718 
2719 /*
2720  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2721  *	that we can call two helper functions whenever min_free_kbytes
2722  *	changes.
2723  */
2724 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2725 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2726 {
2727 	proc_dointvec(table, write, file, buffer, length, ppos);
2728 	setup_per_zone_pages_min();
2729 	return 0;
2730 }
2731 
2732 /*
2733  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2734  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2735  *	whenever sysctl_lowmem_reserve_ratio changes.
2736  *
2737  * The reserve ratio obviously has absolutely no relation with the
2738  * pages_min watermarks. The lowmem reserve ratio can only make sense
2739  * if in function of the boot time zone sizes.
2740  */
2741 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2742 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2743 {
2744 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2745 	setup_per_zone_lowmem_reserve();
2746 	return 0;
2747 }
2748 
2749 /*
2750  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2751  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
2752  * can have before it gets flushed back to buddy allocator.
2753  */
2754 
2755 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2756 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2757 {
2758 	struct zone *zone;
2759 	unsigned int cpu;
2760 	int ret;
2761 
2762 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2763 	if (!write || (ret == -EINVAL))
2764 		return ret;
2765 	for_each_zone(zone) {
2766 		for_each_online_cpu(cpu) {
2767 			unsigned long  high;
2768 			high = zone->present_pages / percpu_pagelist_fraction;
2769 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2770 		}
2771 	}
2772 	return 0;
2773 }
2774 
2775 __initdata int hashdist = HASHDIST_DEFAULT;
2776 
2777 #ifdef CONFIG_NUMA
2778 static int __init set_hashdist(char *str)
2779 {
2780 	if (!str)
2781 		return 0;
2782 	hashdist = simple_strtoul(str, &str, 0);
2783 	return 1;
2784 }
2785 __setup("hashdist=", set_hashdist);
2786 #endif
2787 
2788 /*
2789  * allocate a large system hash table from bootmem
2790  * - it is assumed that the hash table must contain an exact power-of-2
2791  *   quantity of entries
2792  * - limit is the number of hash buckets, not the total allocation size
2793  */
2794 void *__init alloc_large_system_hash(const char *tablename,
2795 				     unsigned long bucketsize,
2796 				     unsigned long numentries,
2797 				     int scale,
2798 				     int flags,
2799 				     unsigned int *_hash_shift,
2800 				     unsigned int *_hash_mask,
2801 				     unsigned long limit)
2802 {
2803 	unsigned long long max = limit;
2804 	unsigned long log2qty, size;
2805 	void *table = NULL;
2806 
2807 	/* allow the kernel cmdline to have a say */
2808 	if (!numentries) {
2809 		/* round applicable memory size up to nearest megabyte */
2810 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2811 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2812 		numentries >>= 20 - PAGE_SHIFT;
2813 		numentries <<= 20 - PAGE_SHIFT;
2814 
2815 		/* limit to 1 bucket per 2^scale bytes of low memory */
2816 		if (scale > PAGE_SHIFT)
2817 			numentries >>= (scale - PAGE_SHIFT);
2818 		else
2819 			numentries <<= (PAGE_SHIFT - scale);
2820 	}
2821 	numentries = roundup_pow_of_two(numentries);
2822 
2823 	/* limit allocation size to 1/16 total memory by default */
2824 	if (max == 0) {
2825 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2826 		do_div(max, bucketsize);
2827 	}
2828 
2829 	if (numentries > max)
2830 		numentries = max;
2831 
2832 	log2qty = long_log2(numentries);
2833 
2834 	do {
2835 		size = bucketsize << log2qty;
2836 		if (flags & HASH_EARLY)
2837 			table = alloc_bootmem(size);
2838 		else if (hashdist)
2839 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2840 		else {
2841 			unsigned long order;
2842 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2843 				;
2844 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2845 		}
2846 	} while (!table && size > PAGE_SIZE && --log2qty);
2847 
2848 	if (!table)
2849 		panic("Failed to allocate %s hash table\n", tablename);
2850 
2851 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2852 	       tablename,
2853 	       (1U << log2qty),
2854 	       long_log2(size) - PAGE_SHIFT,
2855 	       size);
2856 
2857 	if (_hash_shift)
2858 		*_hash_shift = log2qty;
2859 	if (_hash_mask)
2860 		*_hash_mask = (1 << log2qty) - 1;
2861 
2862 	return table;
2863 }
2864 
2865 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2866 /*
2867  * pfn <-> page translation. out-of-line version.
2868  * (see asm-generic/memory_model.h)
2869  */
2870 #if defined(CONFIG_FLATMEM)
2871 struct page *pfn_to_page(unsigned long pfn)
2872 {
2873 	return mem_map + (pfn - ARCH_PFN_OFFSET);
2874 }
2875 unsigned long page_to_pfn(struct page *page)
2876 {
2877 	return (page - mem_map) + ARCH_PFN_OFFSET;
2878 }
2879 #elif defined(CONFIG_DISCONTIGMEM)
2880 struct page *pfn_to_page(unsigned long pfn)
2881 {
2882 	int nid = arch_pfn_to_nid(pfn);
2883 	return NODE_DATA(nid)->node_mem_map + arch_local_page_offset(pfn,nid);
2884 }
2885 unsigned long page_to_pfn(struct page *page)
2886 {
2887 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
2888 	return (page - pgdat->node_mem_map) + pgdat->node_start_pfn;
2889 }
2890 #elif defined(CONFIG_SPARSEMEM)
2891 struct page *pfn_to_page(unsigned long pfn)
2892 {
2893 	return __section_mem_map_addr(__pfn_to_section(pfn)) + pfn;
2894 }
2895 
2896 unsigned long page_to_pfn(struct page *page)
2897 {
2898 	long section_id = page_to_section(page);
2899 	return page - __section_mem_map_addr(__nr_to_section(section_id));
2900 }
2901 #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */
2902 EXPORT_SYMBOL(pfn_to_page);
2903 EXPORT_SYMBOL(page_to_pfn);
2904 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
2905