1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/sched/mm.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/lockdep.h> 69 #include <linux/nmi.h> 70 #include <linux/psi.h> 71 72 #include <asm/sections.h> 73 #include <asm/tlbflush.h> 74 #include <asm/div64.h> 75 #include "internal.h" 76 #include "shuffle.h" 77 78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 79 static DEFINE_MUTEX(pcp_batch_high_lock); 80 #define MIN_PERCPU_PAGELIST_FRACTION (8) 81 82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 83 DEFINE_PER_CPU(int, numa_node); 84 EXPORT_PER_CPU_SYMBOL(numa_node); 85 #endif 86 87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 88 89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 90 /* 91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 94 * defined in <linux/topology.h>. 95 */ 96 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 97 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 98 #endif 99 100 /* work_structs for global per-cpu drains */ 101 struct pcpu_drain { 102 struct zone *zone; 103 struct work_struct work; 104 }; 105 DEFINE_MUTEX(pcpu_drain_mutex); 106 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 107 108 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 109 volatile unsigned long latent_entropy __latent_entropy; 110 EXPORT_SYMBOL(latent_entropy); 111 #endif 112 113 /* 114 * Array of node states. 115 */ 116 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 117 [N_POSSIBLE] = NODE_MASK_ALL, 118 [N_ONLINE] = { { [0] = 1UL } }, 119 #ifndef CONFIG_NUMA 120 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 121 #ifdef CONFIG_HIGHMEM 122 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 123 #endif 124 [N_MEMORY] = { { [0] = 1UL } }, 125 [N_CPU] = { { [0] = 1UL } }, 126 #endif /* NUMA */ 127 }; 128 EXPORT_SYMBOL(node_states); 129 130 atomic_long_t _totalram_pages __read_mostly; 131 EXPORT_SYMBOL(_totalram_pages); 132 unsigned long totalreserve_pages __read_mostly; 133 unsigned long totalcma_pages __read_mostly; 134 135 int percpu_pagelist_fraction; 136 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 137 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 138 DEFINE_STATIC_KEY_TRUE(init_on_alloc); 139 #else 140 DEFINE_STATIC_KEY_FALSE(init_on_alloc); 141 #endif 142 EXPORT_SYMBOL(init_on_alloc); 143 144 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 145 DEFINE_STATIC_KEY_TRUE(init_on_free); 146 #else 147 DEFINE_STATIC_KEY_FALSE(init_on_free); 148 #endif 149 EXPORT_SYMBOL(init_on_free); 150 151 static int __init early_init_on_alloc(char *buf) 152 { 153 int ret; 154 bool bool_result; 155 156 if (!buf) 157 return -EINVAL; 158 ret = kstrtobool(buf, &bool_result); 159 if (bool_result && page_poisoning_enabled()) 160 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n"); 161 if (bool_result) 162 static_branch_enable(&init_on_alloc); 163 else 164 static_branch_disable(&init_on_alloc); 165 return ret; 166 } 167 early_param("init_on_alloc", early_init_on_alloc); 168 169 static int __init early_init_on_free(char *buf) 170 { 171 int ret; 172 bool bool_result; 173 174 if (!buf) 175 return -EINVAL; 176 ret = kstrtobool(buf, &bool_result); 177 if (bool_result && page_poisoning_enabled()) 178 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n"); 179 if (bool_result) 180 static_branch_enable(&init_on_free); 181 else 182 static_branch_disable(&init_on_free); 183 return ret; 184 } 185 early_param("init_on_free", early_init_on_free); 186 187 /* 188 * A cached value of the page's pageblock's migratetype, used when the page is 189 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 190 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 191 * Also the migratetype set in the page does not necessarily match the pcplist 192 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 193 * other index - this ensures that it will be put on the correct CMA freelist. 194 */ 195 static inline int get_pcppage_migratetype(struct page *page) 196 { 197 return page->index; 198 } 199 200 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 201 { 202 page->index = migratetype; 203 } 204 205 #ifdef CONFIG_PM_SLEEP 206 /* 207 * The following functions are used by the suspend/hibernate code to temporarily 208 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 209 * while devices are suspended. To avoid races with the suspend/hibernate code, 210 * they should always be called with system_transition_mutex held 211 * (gfp_allowed_mask also should only be modified with system_transition_mutex 212 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 213 * with that modification). 214 */ 215 216 static gfp_t saved_gfp_mask; 217 218 void pm_restore_gfp_mask(void) 219 { 220 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 221 if (saved_gfp_mask) { 222 gfp_allowed_mask = saved_gfp_mask; 223 saved_gfp_mask = 0; 224 } 225 } 226 227 void pm_restrict_gfp_mask(void) 228 { 229 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 230 WARN_ON(saved_gfp_mask); 231 saved_gfp_mask = gfp_allowed_mask; 232 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 233 } 234 235 bool pm_suspended_storage(void) 236 { 237 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 238 return false; 239 return true; 240 } 241 #endif /* CONFIG_PM_SLEEP */ 242 243 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 244 unsigned int pageblock_order __read_mostly; 245 #endif 246 247 static void __free_pages_ok(struct page *page, unsigned int order); 248 249 /* 250 * results with 256, 32 in the lowmem_reserve sysctl: 251 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 252 * 1G machine -> (16M dma, 784M normal, 224M high) 253 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 254 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 255 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 256 * 257 * TBD: should special case ZONE_DMA32 machines here - in those we normally 258 * don't need any ZONE_NORMAL reservation 259 */ 260 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 261 #ifdef CONFIG_ZONE_DMA 262 [ZONE_DMA] = 256, 263 #endif 264 #ifdef CONFIG_ZONE_DMA32 265 [ZONE_DMA32] = 256, 266 #endif 267 [ZONE_NORMAL] = 32, 268 #ifdef CONFIG_HIGHMEM 269 [ZONE_HIGHMEM] = 0, 270 #endif 271 [ZONE_MOVABLE] = 0, 272 }; 273 274 static char * const zone_names[MAX_NR_ZONES] = { 275 #ifdef CONFIG_ZONE_DMA 276 "DMA", 277 #endif 278 #ifdef CONFIG_ZONE_DMA32 279 "DMA32", 280 #endif 281 "Normal", 282 #ifdef CONFIG_HIGHMEM 283 "HighMem", 284 #endif 285 "Movable", 286 #ifdef CONFIG_ZONE_DEVICE 287 "Device", 288 #endif 289 }; 290 291 const char * const migratetype_names[MIGRATE_TYPES] = { 292 "Unmovable", 293 "Movable", 294 "Reclaimable", 295 "HighAtomic", 296 #ifdef CONFIG_CMA 297 "CMA", 298 #endif 299 #ifdef CONFIG_MEMORY_ISOLATION 300 "Isolate", 301 #endif 302 }; 303 304 compound_page_dtor * const compound_page_dtors[] = { 305 NULL, 306 free_compound_page, 307 #ifdef CONFIG_HUGETLB_PAGE 308 free_huge_page, 309 #endif 310 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 311 free_transhuge_page, 312 #endif 313 }; 314 315 int min_free_kbytes = 1024; 316 int user_min_free_kbytes = -1; 317 #ifdef CONFIG_DISCONTIGMEM 318 /* 319 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 320 * are not on separate NUMA nodes. Functionally this works but with 321 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 322 * quite small. By default, do not boost watermarks on discontigmem as in 323 * many cases very high-order allocations like THP are likely to be 324 * unsupported and the premature reclaim offsets the advantage of long-term 325 * fragmentation avoidance. 326 */ 327 int watermark_boost_factor __read_mostly; 328 #else 329 int watermark_boost_factor __read_mostly = 15000; 330 #endif 331 int watermark_scale_factor = 10; 332 333 static unsigned long nr_kernel_pages __initdata; 334 static unsigned long nr_all_pages __initdata; 335 static unsigned long dma_reserve __initdata; 336 337 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 338 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 339 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 340 static unsigned long required_kernelcore __initdata; 341 static unsigned long required_kernelcore_percent __initdata; 342 static unsigned long required_movablecore __initdata; 343 static unsigned long required_movablecore_percent __initdata; 344 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 345 static bool mirrored_kernelcore __meminitdata; 346 347 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 348 int movable_zone; 349 EXPORT_SYMBOL(movable_zone); 350 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 351 352 #if MAX_NUMNODES > 1 353 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 354 unsigned int nr_online_nodes __read_mostly = 1; 355 EXPORT_SYMBOL(nr_node_ids); 356 EXPORT_SYMBOL(nr_online_nodes); 357 #endif 358 359 int page_group_by_mobility_disabled __read_mostly; 360 361 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 362 /* 363 * During boot we initialize deferred pages on-demand, as needed, but once 364 * page_alloc_init_late() has finished, the deferred pages are all initialized, 365 * and we can permanently disable that path. 366 */ 367 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 368 369 /* 370 * Calling kasan_free_pages() only after deferred memory initialization 371 * has completed. Poisoning pages during deferred memory init will greatly 372 * lengthen the process and cause problem in large memory systems as the 373 * deferred pages initialization is done with interrupt disabled. 374 * 375 * Assuming that there will be no reference to those newly initialized 376 * pages before they are ever allocated, this should have no effect on 377 * KASAN memory tracking as the poison will be properly inserted at page 378 * allocation time. The only corner case is when pages are allocated by 379 * on-demand allocation and then freed again before the deferred pages 380 * initialization is done, but this is not likely to happen. 381 */ 382 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 383 { 384 if (!static_branch_unlikely(&deferred_pages)) 385 kasan_free_pages(page, order); 386 } 387 388 /* Returns true if the struct page for the pfn is uninitialised */ 389 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 390 { 391 int nid = early_pfn_to_nid(pfn); 392 393 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 394 return true; 395 396 return false; 397 } 398 399 /* 400 * Returns true when the remaining initialisation should be deferred until 401 * later in the boot cycle when it can be parallelised. 402 */ 403 static bool __meminit 404 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 405 { 406 static unsigned long prev_end_pfn, nr_initialised; 407 408 /* 409 * prev_end_pfn static that contains the end of previous zone 410 * No need to protect because called very early in boot before smp_init. 411 */ 412 if (prev_end_pfn != end_pfn) { 413 prev_end_pfn = end_pfn; 414 nr_initialised = 0; 415 } 416 417 /* Always populate low zones for address-constrained allocations */ 418 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 419 return false; 420 421 /* 422 * We start only with one section of pages, more pages are added as 423 * needed until the rest of deferred pages are initialized. 424 */ 425 nr_initialised++; 426 if ((nr_initialised > PAGES_PER_SECTION) && 427 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 428 NODE_DATA(nid)->first_deferred_pfn = pfn; 429 return true; 430 } 431 return false; 432 } 433 #else 434 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 435 436 static inline bool early_page_uninitialised(unsigned long pfn) 437 { 438 return false; 439 } 440 441 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 442 { 443 return false; 444 } 445 #endif 446 447 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 448 static inline unsigned long *get_pageblock_bitmap(struct page *page, 449 unsigned long pfn) 450 { 451 #ifdef CONFIG_SPARSEMEM 452 return section_to_usemap(__pfn_to_section(pfn)); 453 #else 454 return page_zone(page)->pageblock_flags; 455 #endif /* CONFIG_SPARSEMEM */ 456 } 457 458 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 459 { 460 #ifdef CONFIG_SPARSEMEM 461 pfn &= (PAGES_PER_SECTION-1); 462 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 463 #else 464 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 465 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 466 #endif /* CONFIG_SPARSEMEM */ 467 } 468 469 /** 470 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 471 * @page: The page within the block of interest 472 * @pfn: The target page frame number 473 * @end_bitidx: The last bit of interest to retrieve 474 * @mask: mask of bits that the caller is interested in 475 * 476 * Return: pageblock_bits flags 477 */ 478 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 479 unsigned long pfn, 480 unsigned long end_bitidx, 481 unsigned long mask) 482 { 483 unsigned long *bitmap; 484 unsigned long bitidx, word_bitidx; 485 unsigned long word; 486 487 bitmap = get_pageblock_bitmap(page, pfn); 488 bitidx = pfn_to_bitidx(page, pfn); 489 word_bitidx = bitidx / BITS_PER_LONG; 490 bitidx &= (BITS_PER_LONG-1); 491 492 word = bitmap[word_bitidx]; 493 bitidx += end_bitidx; 494 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 495 } 496 497 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 498 unsigned long end_bitidx, 499 unsigned long mask) 500 { 501 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 502 } 503 504 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 505 { 506 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 507 } 508 509 /** 510 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 511 * @page: The page within the block of interest 512 * @flags: The flags to set 513 * @pfn: The target page frame number 514 * @end_bitidx: The last bit of interest 515 * @mask: mask of bits that the caller is interested in 516 */ 517 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 518 unsigned long pfn, 519 unsigned long end_bitidx, 520 unsigned long mask) 521 { 522 unsigned long *bitmap; 523 unsigned long bitidx, word_bitidx; 524 unsigned long old_word, word; 525 526 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 527 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 528 529 bitmap = get_pageblock_bitmap(page, pfn); 530 bitidx = pfn_to_bitidx(page, pfn); 531 word_bitidx = bitidx / BITS_PER_LONG; 532 bitidx &= (BITS_PER_LONG-1); 533 534 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 535 536 bitidx += end_bitidx; 537 mask <<= (BITS_PER_LONG - bitidx - 1); 538 flags <<= (BITS_PER_LONG - bitidx - 1); 539 540 word = READ_ONCE(bitmap[word_bitidx]); 541 for (;;) { 542 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 543 if (word == old_word) 544 break; 545 word = old_word; 546 } 547 } 548 549 void set_pageblock_migratetype(struct page *page, int migratetype) 550 { 551 if (unlikely(page_group_by_mobility_disabled && 552 migratetype < MIGRATE_PCPTYPES)) 553 migratetype = MIGRATE_UNMOVABLE; 554 555 set_pageblock_flags_group(page, (unsigned long)migratetype, 556 PB_migrate, PB_migrate_end); 557 } 558 559 #ifdef CONFIG_DEBUG_VM 560 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 561 { 562 int ret = 0; 563 unsigned seq; 564 unsigned long pfn = page_to_pfn(page); 565 unsigned long sp, start_pfn; 566 567 do { 568 seq = zone_span_seqbegin(zone); 569 start_pfn = zone->zone_start_pfn; 570 sp = zone->spanned_pages; 571 if (!zone_spans_pfn(zone, pfn)) 572 ret = 1; 573 } while (zone_span_seqretry(zone, seq)); 574 575 if (ret) 576 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 577 pfn, zone_to_nid(zone), zone->name, 578 start_pfn, start_pfn + sp); 579 580 return ret; 581 } 582 583 static int page_is_consistent(struct zone *zone, struct page *page) 584 { 585 if (!pfn_valid_within(page_to_pfn(page))) 586 return 0; 587 if (zone != page_zone(page)) 588 return 0; 589 590 return 1; 591 } 592 /* 593 * Temporary debugging check for pages not lying within a given zone. 594 */ 595 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 596 { 597 if (page_outside_zone_boundaries(zone, page)) 598 return 1; 599 if (!page_is_consistent(zone, page)) 600 return 1; 601 602 return 0; 603 } 604 #else 605 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 606 { 607 return 0; 608 } 609 #endif 610 611 static void bad_page(struct page *page, const char *reason, 612 unsigned long bad_flags) 613 { 614 static unsigned long resume; 615 static unsigned long nr_shown; 616 static unsigned long nr_unshown; 617 618 /* 619 * Allow a burst of 60 reports, then keep quiet for that minute; 620 * or allow a steady drip of one report per second. 621 */ 622 if (nr_shown == 60) { 623 if (time_before(jiffies, resume)) { 624 nr_unshown++; 625 goto out; 626 } 627 if (nr_unshown) { 628 pr_alert( 629 "BUG: Bad page state: %lu messages suppressed\n", 630 nr_unshown); 631 nr_unshown = 0; 632 } 633 nr_shown = 0; 634 } 635 if (nr_shown++ == 0) 636 resume = jiffies + 60 * HZ; 637 638 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 639 current->comm, page_to_pfn(page)); 640 __dump_page(page, reason); 641 bad_flags &= page->flags; 642 if (bad_flags) 643 pr_alert("bad because of flags: %#lx(%pGp)\n", 644 bad_flags, &bad_flags); 645 dump_page_owner(page); 646 647 print_modules(); 648 dump_stack(); 649 out: 650 /* Leave bad fields for debug, except PageBuddy could make trouble */ 651 page_mapcount_reset(page); /* remove PageBuddy */ 652 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 653 } 654 655 /* 656 * Higher-order pages are called "compound pages". They are structured thusly: 657 * 658 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 659 * 660 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 661 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 662 * 663 * The first tail page's ->compound_dtor holds the offset in array of compound 664 * page destructors. See compound_page_dtors. 665 * 666 * The first tail page's ->compound_order holds the order of allocation. 667 * This usage means that zero-order pages may not be compound. 668 */ 669 670 void free_compound_page(struct page *page) 671 { 672 mem_cgroup_uncharge(page); 673 __free_pages_ok(page, compound_order(page)); 674 } 675 676 void prep_compound_page(struct page *page, unsigned int order) 677 { 678 int i; 679 int nr_pages = 1 << order; 680 681 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 682 set_compound_order(page, order); 683 __SetPageHead(page); 684 for (i = 1; i < nr_pages; i++) { 685 struct page *p = page + i; 686 set_page_count(p, 0); 687 p->mapping = TAIL_MAPPING; 688 set_compound_head(p, page); 689 } 690 atomic_set(compound_mapcount_ptr(page), -1); 691 if (hpage_pincount_available(page)) 692 atomic_set(compound_pincount_ptr(page), 0); 693 } 694 695 #ifdef CONFIG_DEBUG_PAGEALLOC 696 unsigned int _debug_guardpage_minorder; 697 698 bool _debug_pagealloc_enabled_early __read_mostly 699 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 700 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 701 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 702 EXPORT_SYMBOL(_debug_pagealloc_enabled); 703 704 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 705 706 static int __init early_debug_pagealloc(char *buf) 707 { 708 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 709 } 710 early_param("debug_pagealloc", early_debug_pagealloc); 711 712 void init_debug_pagealloc(void) 713 { 714 if (!debug_pagealloc_enabled()) 715 return; 716 717 static_branch_enable(&_debug_pagealloc_enabled); 718 719 if (!debug_guardpage_minorder()) 720 return; 721 722 static_branch_enable(&_debug_guardpage_enabled); 723 } 724 725 static int __init debug_guardpage_minorder_setup(char *buf) 726 { 727 unsigned long res; 728 729 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 730 pr_err("Bad debug_guardpage_minorder value\n"); 731 return 0; 732 } 733 _debug_guardpage_minorder = res; 734 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 735 return 0; 736 } 737 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 738 739 static inline bool set_page_guard(struct zone *zone, struct page *page, 740 unsigned int order, int migratetype) 741 { 742 if (!debug_guardpage_enabled()) 743 return false; 744 745 if (order >= debug_guardpage_minorder()) 746 return false; 747 748 __SetPageGuard(page); 749 INIT_LIST_HEAD(&page->lru); 750 set_page_private(page, order); 751 /* Guard pages are not available for any usage */ 752 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 753 754 return true; 755 } 756 757 static inline void clear_page_guard(struct zone *zone, struct page *page, 758 unsigned int order, int migratetype) 759 { 760 if (!debug_guardpage_enabled()) 761 return; 762 763 __ClearPageGuard(page); 764 765 set_page_private(page, 0); 766 if (!is_migrate_isolate(migratetype)) 767 __mod_zone_freepage_state(zone, (1 << order), migratetype); 768 } 769 #else 770 static inline bool set_page_guard(struct zone *zone, struct page *page, 771 unsigned int order, int migratetype) { return false; } 772 static inline void clear_page_guard(struct zone *zone, struct page *page, 773 unsigned int order, int migratetype) {} 774 #endif 775 776 static inline void set_page_order(struct page *page, unsigned int order) 777 { 778 set_page_private(page, order); 779 __SetPageBuddy(page); 780 } 781 782 /* 783 * This function checks whether a page is free && is the buddy 784 * we can coalesce a page and its buddy if 785 * (a) the buddy is not in a hole (check before calling!) && 786 * (b) the buddy is in the buddy system && 787 * (c) a page and its buddy have the same order && 788 * (d) a page and its buddy are in the same zone. 789 * 790 * For recording whether a page is in the buddy system, we set PageBuddy. 791 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 792 * 793 * For recording page's order, we use page_private(page). 794 */ 795 static inline bool page_is_buddy(struct page *page, struct page *buddy, 796 unsigned int order) 797 { 798 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 799 return false; 800 801 if (page_order(buddy) != order) 802 return false; 803 804 /* 805 * zone check is done late to avoid uselessly calculating 806 * zone/node ids for pages that could never merge. 807 */ 808 if (page_zone_id(page) != page_zone_id(buddy)) 809 return false; 810 811 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 812 813 return true; 814 } 815 816 #ifdef CONFIG_COMPACTION 817 static inline struct capture_control *task_capc(struct zone *zone) 818 { 819 struct capture_control *capc = current->capture_control; 820 821 return capc && 822 !(current->flags & PF_KTHREAD) && 823 !capc->page && 824 capc->cc->zone == zone && 825 capc->cc->direct_compaction ? capc : NULL; 826 } 827 828 static inline bool 829 compaction_capture(struct capture_control *capc, struct page *page, 830 int order, int migratetype) 831 { 832 if (!capc || order != capc->cc->order) 833 return false; 834 835 /* Do not accidentally pollute CMA or isolated regions*/ 836 if (is_migrate_cma(migratetype) || 837 is_migrate_isolate(migratetype)) 838 return false; 839 840 /* 841 * Do not let lower order allocations polluate a movable pageblock. 842 * This might let an unmovable request use a reclaimable pageblock 843 * and vice-versa but no more than normal fallback logic which can 844 * have trouble finding a high-order free page. 845 */ 846 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 847 return false; 848 849 capc->page = page; 850 return true; 851 } 852 853 #else 854 static inline struct capture_control *task_capc(struct zone *zone) 855 { 856 return NULL; 857 } 858 859 static inline bool 860 compaction_capture(struct capture_control *capc, struct page *page, 861 int order, int migratetype) 862 { 863 return false; 864 } 865 #endif /* CONFIG_COMPACTION */ 866 867 /* 868 * Freeing function for a buddy system allocator. 869 * 870 * The concept of a buddy system is to maintain direct-mapped table 871 * (containing bit values) for memory blocks of various "orders". 872 * The bottom level table contains the map for the smallest allocatable 873 * units of memory (here, pages), and each level above it describes 874 * pairs of units from the levels below, hence, "buddies". 875 * At a high level, all that happens here is marking the table entry 876 * at the bottom level available, and propagating the changes upward 877 * as necessary, plus some accounting needed to play nicely with other 878 * parts of the VM system. 879 * At each level, we keep a list of pages, which are heads of continuous 880 * free pages of length of (1 << order) and marked with PageBuddy. 881 * Page's order is recorded in page_private(page) field. 882 * So when we are allocating or freeing one, we can derive the state of the 883 * other. That is, if we allocate a small block, and both were 884 * free, the remainder of the region must be split into blocks. 885 * If a block is freed, and its buddy is also free, then this 886 * triggers coalescing into a block of larger size. 887 * 888 * -- nyc 889 */ 890 891 static inline void __free_one_page(struct page *page, 892 unsigned long pfn, 893 struct zone *zone, unsigned int order, 894 int migratetype) 895 { 896 unsigned long combined_pfn; 897 unsigned long uninitialized_var(buddy_pfn); 898 struct page *buddy; 899 unsigned int max_order; 900 struct capture_control *capc = task_capc(zone); 901 902 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 903 904 VM_BUG_ON(!zone_is_initialized(zone)); 905 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 906 907 VM_BUG_ON(migratetype == -1); 908 if (likely(!is_migrate_isolate(migratetype))) 909 __mod_zone_freepage_state(zone, 1 << order, migratetype); 910 911 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 912 VM_BUG_ON_PAGE(bad_range(zone, page), page); 913 914 continue_merging: 915 while (order < max_order - 1) { 916 if (compaction_capture(capc, page, order, migratetype)) { 917 __mod_zone_freepage_state(zone, -(1 << order), 918 migratetype); 919 return; 920 } 921 buddy_pfn = __find_buddy_pfn(pfn, order); 922 buddy = page + (buddy_pfn - pfn); 923 924 if (!pfn_valid_within(buddy_pfn)) 925 goto done_merging; 926 if (!page_is_buddy(page, buddy, order)) 927 goto done_merging; 928 /* 929 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 930 * merge with it and move up one order. 931 */ 932 if (page_is_guard(buddy)) 933 clear_page_guard(zone, buddy, order, migratetype); 934 else 935 del_page_from_free_area(buddy, &zone->free_area[order]); 936 combined_pfn = buddy_pfn & pfn; 937 page = page + (combined_pfn - pfn); 938 pfn = combined_pfn; 939 order++; 940 } 941 if (max_order < MAX_ORDER) { 942 /* If we are here, it means order is >= pageblock_order. 943 * We want to prevent merge between freepages on isolate 944 * pageblock and normal pageblock. Without this, pageblock 945 * isolation could cause incorrect freepage or CMA accounting. 946 * 947 * We don't want to hit this code for the more frequent 948 * low-order merging. 949 */ 950 if (unlikely(has_isolate_pageblock(zone))) { 951 int buddy_mt; 952 953 buddy_pfn = __find_buddy_pfn(pfn, order); 954 buddy = page + (buddy_pfn - pfn); 955 buddy_mt = get_pageblock_migratetype(buddy); 956 957 if (migratetype != buddy_mt 958 && (is_migrate_isolate(migratetype) || 959 is_migrate_isolate(buddy_mt))) 960 goto done_merging; 961 } 962 max_order++; 963 goto continue_merging; 964 } 965 966 done_merging: 967 set_page_order(page, order); 968 969 /* 970 * If this is not the largest possible page, check if the buddy 971 * of the next-highest order is free. If it is, it's possible 972 * that pages are being freed that will coalesce soon. In case, 973 * that is happening, add the free page to the tail of the list 974 * so it's less likely to be used soon and more likely to be merged 975 * as a higher order page 976 */ 977 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn) 978 && !is_shuffle_order(order)) { 979 struct page *higher_page, *higher_buddy; 980 combined_pfn = buddy_pfn & pfn; 981 higher_page = page + (combined_pfn - pfn); 982 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 983 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 984 if (pfn_valid_within(buddy_pfn) && 985 page_is_buddy(higher_page, higher_buddy, order + 1)) { 986 add_to_free_area_tail(page, &zone->free_area[order], 987 migratetype); 988 return; 989 } 990 } 991 992 if (is_shuffle_order(order)) 993 add_to_free_area_random(page, &zone->free_area[order], 994 migratetype); 995 else 996 add_to_free_area(page, &zone->free_area[order], migratetype); 997 998 } 999 1000 /* 1001 * A bad page could be due to a number of fields. Instead of multiple branches, 1002 * try and check multiple fields with one check. The caller must do a detailed 1003 * check if necessary. 1004 */ 1005 static inline bool page_expected_state(struct page *page, 1006 unsigned long check_flags) 1007 { 1008 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1009 return false; 1010 1011 if (unlikely((unsigned long)page->mapping | 1012 page_ref_count(page) | 1013 #ifdef CONFIG_MEMCG 1014 (unsigned long)page->mem_cgroup | 1015 #endif 1016 (page->flags & check_flags))) 1017 return false; 1018 1019 return true; 1020 } 1021 1022 static void free_pages_check_bad(struct page *page) 1023 { 1024 const char *bad_reason; 1025 unsigned long bad_flags; 1026 1027 bad_reason = NULL; 1028 bad_flags = 0; 1029 1030 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1031 bad_reason = "nonzero mapcount"; 1032 if (unlikely(page->mapping != NULL)) 1033 bad_reason = "non-NULL mapping"; 1034 if (unlikely(page_ref_count(page) != 0)) 1035 bad_reason = "nonzero _refcount"; 1036 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 1037 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1038 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 1039 } 1040 #ifdef CONFIG_MEMCG 1041 if (unlikely(page->mem_cgroup)) 1042 bad_reason = "page still charged to cgroup"; 1043 #endif 1044 bad_page(page, bad_reason, bad_flags); 1045 } 1046 1047 static inline int free_pages_check(struct page *page) 1048 { 1049 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1050 return 0; 1051 1052 /* Something has gone sideways, find it */ 1053 free_pages_check_bad(page); 1054 return 1; 1055 } 1056 1057 static int free_tail_pages_check(struct page *head_page, struct page *page) 1058 { 1059 int ret = 1; 1060 1061 /* 1062 * We rely page->lru.next never has bit 0 set, unless the page 1063 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1064 */ 1065 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1066 1067 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1068 ret = 0; 1069 goto out; 1070 } 1071 switch (page - head_page) { 1072 case 1: 1073 /* the first tail page: ->mapping may be compound_mapcount() */ 1074 if (unlikely(compound_mapcount(page))) { 1075 bad_page(page, "nonzero compound_mapcount", 0); 1076 goto out; 1077 } 1078 break; 1079 case 2: 1080 /* 1081 * the second tail page: ->mapping is 1082 * deferred_list.next -- ignore value. 1083 */ 1084 break; 1085 default: 1086 if (page->mapping != TAIL_MAPPING) { 1087 bad_page(page, "corrupted mapping in tail page", 0); 1088 goto out; 1089 } 1090 break; 1091 } 1092 if (unlikely(!PageTail(page))) { 1093 bad_page(page, "PageTail not set", 0); 1094 goto out; 1095 } 1096 if (unlikely(compound_head(page) != head_page)) { 1097 bad_page(page, "compound_head not consistent", 0); 1098 goto out; 1099 } 1100 ret = 0; 1101 out: 1102 page->mapping = NULL; 1103 clear_compound_head(page); 1104 return ret; 1105 } 1106 1107 static void kernel_init_free_pages(struct page *page, int numpages) 1108 { 1109 int i; 1110 1111 for (i = 0; i < numpages; i++) 1112 clear_highpage(page + i); 1113 } 1114 1115 static __always_inline bool free_pages_prepare(struct page *page, 1116 unsigned int order, bool check_free) 1117 { 1118 int bad = 0; 1119 1120 VM_BUG_ON_PAGE(PageTail(page), page); 1121 1122 trace_mm_page_free(page, order); 1123 1124 /* 1125 * Check tail pages before head page information is cleared to 1126 * avoid checking PageCompound for order-0 pages. 1127 */ 1128 if (unlikely(order)) { 1129 bool compound = PageCompound(page); 1130 int i; 1131 1132 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1133 1134 if (compound) 1135 ClearPageDoubleMap(page); 1136 for (i = 1; i < (1 << order); i++) { 1137 if (compound) 1138 bad += free_tail_pages_check(page, page + i); 1139 if (unlikely(free_pages_check(page + i))) { 1140 bad++; 1141 continue; 1142 } 1143 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1144 } 1145 } 1146 if (PageMappingFlags(page)) 1147 page->mapping = NULL; 1148 if (memcg_kmem_enabled() && PageKmemcg(page)) 1149 __memcg_kmem_uncharge_page(page, order); 1150 if (check_free) 1151 bad += free_pages_check(page); 1152 if (bad) 1153 return false; 1154 1155 page_cpupid_reset_last(page); 1156 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1157 reset_page_owner(page, order); 1158 1159 if (!PageHighMem(page)) { 1160 debug_check_no_locks_freed(page_address(page), 1161 PAGE_SIZE << order); 1162 debug_check_no_obj_freed(page_address(page), 1163 PAGE_SIZE << order); 1164 } 1165 if (want_init_on_free()) 1166 kernel_init_free_pages(page, 1 << order); 1167 1168 kernel_poison_pages(page, 1 << order, 0); 1169 /* 1170 * arch_free_page() can make the page's contents inaccessible. s390 1171 * does this. So nothing which can access the page's contents should 1172 * happen after this. 1173 */ 1174 arch_free_page(page, order); 1175 1176 if (debug_pagealloc_enabled_static()) 1177 kernel_map_pages(page, 1 << order, 0); 1178 1179 kasan_free_nondeferred_pages(page, order); 1180 1181 return true; 1182 } 1183 1184 #ifdef CONFIG_DEBUG_VM 1185 /* 1186 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1187 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1188 * moved from pcp lists to free lists. 1189 */ 1190 static bool free_pcp_prepare(struct page *page) 1191 { 1192 return free_pages_prepare(page, 0, true); 1193 } 1194 1195 static bool bulkfree_pcp_prepare(struct page *page) 1196 { 1197 if (debug_pagealloc_enabled_static()) 1198 return free_pages_check(page); 1199 else 1200 return false; 1201 } 1202 #else 1203 /* 1204 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1205 * moving from pcp lists to free list in order to reduce overhead. With 1206 * debug_pagealloc enabled, they are checked also immediately when being freed 1207 * to the pcp lists. 1208 */ 1209 static bool free_pcp_prepare(struct page *page) 1210 { 1211 if (debug_pagealloc_enabled_static()) 1212 return free_pages_prepare(page, 0, true); 1213 else 1214 return free_pages_prepare(page, 0, false); 1215 } 1216 1217 static bool bulkfree_pcp_prepare(struct page *page) 1218 { 1219 return free_pages_check(page); 1220 } 1221 #endif /* CONFIG_DEBUG_VM */ 1222 1223 static inline void prefetch_buddy(struct page *page) 1224 { 1225 unsigned long pfn = page_to_pfn(page); 1226 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1227 struct page *buddy = page + (buddy_pfn - pfn); 1228 1229 prefetch(buddy); 1230 } 1231 1232 /* 1233 * Frees a number of pages from the PCP lists 1234 * Assumes all pages on list are in same zone, and of same order. 1235 * count is the number of pages to free. 1236 * 1237 * If the zone was previously in an "all pages pinned" state then look to 1238 * see if this freeing clears that state. 1239 * 1240 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1241 * pinned" detection logic. 1242 */ 1243 static void free_pcppages_bulk(struct zone *zone, int count, 1244 struct per_cpu_pages *pcp) 1245 { 1246 int migratetype = 0; 1247 int batch_free = 0; 1248 int prefetch_nr = 0; 1249 bool isolated_pageblocks; 1250 struct page *page, *tmp; 1251 LIST_HEAD(head); 1252 1253 while (count) { 1254 struct list_head *list; 1255 1256 /* 1257 * Remove pages from lists in a round-robin fashion. A 1258 * batch_free count is maintained that is incremented when an 1259 * empty list is encountered. This is so more pages are freed 1260 * off fuller lists instead of spinning excessively around empty 1261 * lists 1262 */ 1263 do { 1264 batch_free++; 1265 if (++migratetype == MIGRATE_PCPTYPES) 1266 migratetype = 0; 1267 list = &pcp->lists[migratetype]; 1268 } while (list_empty(list)); 1269 1270 /* This is the only non-empty list. Free them all. */ 1271 if (batch_free == MIGRATE_PCPTYPES) 1272 batch_free = count; 1273 1274 do { 1275 page = list_last_entry(list, struct page, lru); 1276 /* must delete to avoid corrupting pcp list */ 1277 list_del(&page->lru); 1278 pcp->count--; 1279 1280 if (bulkfree_pcp_prepare(page)) 1281 continue; 1282 1283 list_add_tail(&page->lru, &head); 1284 1285 /* 1286 * We are going to put the page back to the global 1287 * pool, prefetch its buddy to speed up later access 1288 * under zone->lock. It is believed the overhead of 1289 * an additional test and calculating buddy_pfn here 1290 * can be offset by reduced memory latency later. To 1291 * avoid excessive prefetching due to large count, only 1292 * prefetch buddy for the first pcp->batch nr of pages. 1293 */ 1294 if (prefetch_nr++ < pcp->batch) 1295 prefetch_buddy(page); 1296 } while (--count && --batch_free && !list_empty(list)); 1297 } 1298 1299 spin_lock(&zone->lock); 1300 isolated_pageblocks = has_isolate_pageblock(zone); 1301 1302 /* 1303 * Use safe version since after __free_one_page(), 1304 * page->lru.next will not point to original list. 1305 */ 1306 list_for_each_entry_safe(page, tmp, &head, lru) { 1307 int mt = get_pcppage_migratetype(page); 1308 /* MIGRATE_ISOLATE page should not go to pcplists */ 1309 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1310 /* Pageblock could have been isolated meanwhile */ 1311 if (unlikely(isolated_pageblocks)) 1312 mt = get_pageblock_migratetype(page); 1313 1314 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1315 trace_mm_page_pcpu_drain(page, 0, mt); 1316 } 1317 spin_unlock(&zone->lock); 1318 } 1319 1320 static void free_one_page(struct zone *zone, 1321 struct page *page, unsigned long pfn, 1322 unsigned int order, 1323 int migratetype) 1324 { 1325 spin_lock(&zone->lock); 1326 if (unlikely(has_isolate_pageblock(zone) || 1327 is_migrate_isolate(migratetype))) { 1328 migratetype = get_pfnblock_migratetype(page, pfn); 1329 } 1330 __free_one_page(page, pfn, zone, order, migratetype); 1331 spin_unlock(&zone->lock); 1332 } 1333 1334 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1335 unsigned long zone, int nid) 1336 { 1337 mm_zero_struct_page(page); 1338 set_page_links(page, zone, nid, pfn); 1339 init_page_count(page); 1340 page_mapcount_reset(page); 1341 page_cpupid_reset_last(page); 1342 page_kasan_tag_reset(page); 1343 1344 INIT_LIST_HEAD(&page->lru); 1345 #ifdef WANT_PAGE_VIRTUAL 1346 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1347 if (!is_highmem_idx(zone)) 1348 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1349 #endif 1350 } 1351 1352 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1353 static void __meminit init_reserved_page(unsigned long pfn) 1354 { 1355 pg_data_t *pgdat; 1356 int nid, zid; 1357 1358 if (!early_page_uninitialised(pfn)) 1359 return; 1360 1361 nid = early_pfn_to_nid(pfn); 1362 pgdat = NODE_DATA(nid); 1363 1364 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1365 struct zone *zone = &pgdat->node_zones[zid]; 1366 1367 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1368 break; 1369 } 1370 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1371 } 1372 #else 1373 static inline void init_reserved_page(unsigned long pfn) 1374 { 1375 } 1376 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1377 1378 /* 1379 * Initialised pages do not have PageReserved set. This function is 1380 * called for each range allocated by the bootmem allocator and 1381 * marks the pages PageReserved. The remaining valid pages are later 1382 * sent to the buddy page allocator. 1383 */ 1384 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1385 { 1386 unsigned long start_pfn = PFN_DOWN(start); 1387 unsigned long end_pfn = PFN_UP(end); 1388 1389 for (; start_pfn < end_pfn; start_pfn++) { 1390 if (pfn_valid(start_pfn)) { 1391 struct page *page = pfn_to_page(start_pfn); 1392 1393 init_reserved_page(start_pfn); 1394 1395 /* Avoid false-positive PageTail() */ 1396 INIT_LIST_HEAD(&page->lru); 1397 1398 /* 1399 * no need for atomic set_bit because the struct 1400 * page is not visible yet so nobody should 1401 * access it yet. 1402 */ 1403 __SetPageReserved(page); 1404 } 1405 } 1406 } 1407 1408 static void __free_pages_ok(struct page *page, unsigned int order) 1409 { 1410 unsigned long flags; 1411 int migratetype; 1412 unsigned long pfn = page_to_pfn(page); 1413 1414 if (!free_pages_prepare(page, order, true)) 1415 return; 1416 1417 migratetype = get_pfnblock_migratetype(page, pfn); 1418 local_irq_save(flags); 1419 __count_vm_events(PGFREE, 1 << order); 1420 free_one_page(page_zone(page), page, pfn, order, migratetype); 1421 local_irq_restore(flags); 1422 } 1423 1424 void __free_pages_core(struct page *page, unsigned int order) 1425 { 1426 unsigned int nr_pages = 1 << order; 1427 struct page *p = page; 1428 unsigned int loop; 1429 1430 prefetchw(p); 1431 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1432 prefetchw(p + 1); 1433 __ClearPageReserved(p); 1434 set_page_count(p, 0); 1435 } 1436 __ClearPageReserved(p); 1437 set_page_count(p, 0); 1438 1439 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1440 set_page_refcounted(page); 1441 __free_pages(page, order); 1442 } 1443 1444 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1445 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1446 1447 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1448 1449 int __meminit early_pfn_to_nid(unsigned long pfn) 1450 { 1451 static DEFINE_SPINLOCK(early_pfn_lock); 1452 int nid; 1453 1454 spin_lock(&early_pfn_lock); 1455 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1456 if (nid < 0) 1457 nid = first_online_node; 1458 spin_unlock(&early_pfn_lock); 1459 1460 return nid; 1461 } 1462 #endif 1463 1464 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1465 /* Only safe to use early in boot when initialisation is single-threaded */ 1466 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1467 { 1468 int nid; 1469 1470 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1471 if (nid >= 0 && nid != node) 1472 return false; 1473 return true; 1474 } 1475 1476 #else 1477 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1478 { 1479 return true; 1480 } 1481 #endif 1482 1483 1484 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1485 unsigned int order) 1486 { 1487 if (early_page_uninitialised(pfn)) 1488 return; 1489 __free_pages_core(page, order); 1490 } 1491 1492 /* 1493 * Check that the whole (or subset of) a pageblock given by the interval of 1494 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1495 * with the migration of free compaction scanner. The scanners then need to 1496 * use only pfn_valid_within() check for arches that allow holes within 1497 * pageblocks. 1498 * 1499 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1500 * 1501 * It's possible on some configurations to have a setup like node0 node1 node0 1502 * i.e. it's possible that all pages within a zones range of pages do not 1503 * belong to a single zone. We assume that a border between node0 and node1 1504 * can occur within a single pageblock, but not a node0 node1 node0 1505 * interleaving within a single pageblock. It is therefore sufficient to check 1506 * the first and last page of a pageblock and avoid checking each individual 1507 * page in a pageblock. 1508 */ 1509 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1510 unsigned long end_pfn, struct zone *zone) 1511 { 1512 struct page *start_page; 1513 struct page *end_page; 1514 1515 /* end_pfn is one past the range we are checking */ 1516 end_pfn--; 1517 1518 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1519 return NULL; 1520 1521 start_page = pfn_to_online_page(start_pfn); 1522 if (!start_page) 1523 return NULL; 1524 1525 if (page_zone(start_page) != zone) 1526 return NULL; 1527 1528 end_page = pfn_to_page(end_pfn); 1529 1530 /* This gives a shorter code than deriving page_zone(end_page) */ 1531 if (page_zone_id(start_page) != page_zone_id(end_page)) 1532 return NULL; 1533 1534 return start_page; 1535 } 1536 1537 void set_zone_contiguous(struct zone *zone) 1538 { 1539 unsigned long block_start_pfn = zone->zone_start_pfn; 1540 unsigned long block_end_pfn; 1541 1542 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1543 for (; block_start_pfn < zone_end_pfn(zone); 1544 block_start_pfn = block_end_pfn, 1545 block_end_pfn += pageblock_nr_pages) { 1546 1547 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1548 1549 if (!__pageblock_pfn_to_page(block_start_pfn, 1550 block_end_pfn, zone)) 1551 return; 1552 } 1553 1554 /* We confirm that there is no hole */ 1555 zone->contiguous = true; 1556 } 1557 1558 void clear_zone_contiguous(struct zone *zone) 1559 { 1560 zone->contiguous = false; 1561 } 1562 1563 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1564 static void __init deferred_free_range(unsigned long pfn, 1565 unsigned long nr_pages) 1566 { 1567 struct page *page; 1568 unsigned long i; 1569 1570 if (!nr_pages) 1571 return; 1572 1573 page = pfn_to_page(pfn); 1574 1575 /* Free a large naturally-aligned chunk if possible */ 1576 if (nr_pages == pageblock_nr_pages && 1577 (pfn & (pageblock_nr_pages - 1)) == 0) { 1578 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1579 __free_pages_core(page, pageblock_order); 1580 return; 1581 } 1582 1583 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1584 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1585 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1586 __free_pages_core(page, 0); 1587 } 1588 } 1589 1590 /* Completion tracking for deferred_init_memmap() threads */ 1591 static atomic_t pgdat_init_n_undone __initdata; 1592 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1593 1594 static inline void __init pgdat_init_report_one_done(void) 1595 { 1596 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1597 complete(&pgdat_init_all_done_comp); 1598 } 1599 1600 /* 1601 * Returns true if page needs to be initialized or freed to buddy allocator. 1602 * 1603 * First we check if pfn is valid on architectures where it is possible to have 1604 * holes within pageblock_nr_pages. On systems where it is not possible, this 1605 * function is optimized out. 1606 * 1607 * Then, we check if a current large page is valid by only checking the validity 1608 * of the head pfn. 1609 */ 1610 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1611 { 1612 if (!pfn_valid_within(pfn)) 1613 return false; 1614 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1615 return false; 1616 return true; 1617 } 1618 1619 /* 1620 * Free pages to buddy allocator. Try to free aligned pages in 1621 * pageblock_nr_pages sizes. 1622 */ 1623 static void __init deferred_free_pages(unsigned long pfn, 1624 unsigned long end_pfn) 1625 { 1626 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1627 unsigned long nr_free = 0; 1628 1629 for (; pfn < end_pfn; pfn++) { 1630 if (!deferred_pfn_valid(pfn)) { 1631 deferred_free_range(pfn - nr_free, nr_free); 1632 nr_free = 0; 1633 } else if (!(pfn & nr_pgmask)) { 1634 deferred_free_range(pfn - nr_free, nr_free); 1635 nr_free = 1; 1636 touch_nmi_watchdog(); 1637 } else { 1638 nr_free++; 1639 } 1640 } 1641 /* Free the last block of pages to allocator */ 1642 deferred_free_range(pfn - nr_free, nr_free); 1643 } 1644 1645 /* 1646 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1647 * by performing it only once every pageblock_nr_pages. 1648 * Return number of pages initialized. 1649 */ 1650 static unsigned long __init deferred_init_pages(struct zone *zone, 1651 unsigned long pfn, 1652 unsigned long end_pfn) 1653 { 1654 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1655 int nid = zone_to_nid(zone); 1656 unsigned long nr_pages = 0; 1657 int zid = zone_idx(zone); 1658 struct page *page = NULL; 1659 1660 for (; pfn < end_pfn; pfn++) { 1661 if (!deferred_pfn_valid(pfn)) { 1662 page = NULL; 1663 continue; 1664 } else if (!page || !(pfn & nr_pgmask)) { 1665 page = pfn_to_page(pfn); 1666 touch_nmi_watchdog(); 1667 } else { 1668 page++; 1669 } 1670 __init_single_page(page, pfn, zid, nid); 1671 nr_pages++; 1672 } 1673 return (nr_pages); 1674 } 1675 1676 /* 1677 * This function is meant to pre-load the iterator for the zone init. 1678 * Specifically it walks through the ranges until we are caught up to the 1679 * first_init_pfn value and exits there. If we never encounter the value we 1680 * return false indicating there are no valid ranges left. 1681 */ 1682 static bool __init 1683 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1684 unsigned long *spfn, unsigned long *epfn, 1685 unsigned long first_init_pfn) 1686 { 1687 u64 j; 1688 1689 /* 1690 * Start out by walking through the ranges in this zone that have 1691 * already been initialized. We don't need to do anything with them 1692 * so we just need to flush them out of the system. 1693 */ 1694 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1695 if (*epfn <= first_init_pfn) 1696 continue; 1697 if (*spfn < first_init_pfn) 1698 *spfn = first_init_pfn; 1699 *i = j; 1700 return true; 1701 } 1702 1703 return false; 1704 } 1705 1706 /* 1707 * Initialize and free pages. We do it in two loops: first we initialize 1708 * struct page, then free to buddy allocator, because while we are 1709 * freeing pages we can access pages that are ahead (computing buddy 1710 * page in __free_one_page()). 1711 * 1712 * In order to try and keep some memory in the cache we have the loop 1713 * broken along max page order boundaries. This way we will not cause 1714 * any issues with the buddy page computation. 1715 */ 1716 static unsigned long __init 1717 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1718 unsigned long *end_pfn) 1719 { 1720 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1721 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1722 unsigned long nr_pages = 0; 1723 u64 j = *i; 1724 1725 /* First we loop through and initialize the page values */ 1726 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1727 unsigned long t; 1728 1729 if (mo_pfn <= *start_pfn) 1730 break; 1731 1732 t = min(mo_pfn, *end_pfn); 1733 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1734 1735 if (mo_pfn < *end_pfn) { 1736 *start_pfn = mo_pfn; 1737 break; 1738 } 1739 } 1740 1741 /* Reset values and now loop through freeing pages as needed */ 1742 swap(j, *i); 1743 1744 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1745 unsigned long t; 1746 1747 if (mo_pfn <= spfn) 1748 break; 1749 1750 t = min(mo_pfn, epfn); 1751 deferred_free_pages(spfn, t); 1752 1753 if (mo_pfn <= epfn) 1754 break; 1755 } 1756 1757 return nr_pages; 1758 } 1759 1760 /* Initialise remaining memory on a node */ 1761 static int __init deferred_init_memmap(void *data) 1762 { 1763 pg_data_t *pgdat = data; 1764 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1765 unsigned long spfn = 0, epfn = 0, nr_pages = 0; 1766 unsigned long first_init_pfn, flags; 1767 unsigned long start = jiffies; 1768 struct zone *zone; 1769 int zid; 1770 u64 i; 1771 1772 /* Bind memory initialisation thread to a local node if possible */ 1773 if (!cpumask_empty(cpumask)) 1774 set_cpus_allowed_ptr(current, cpumask); 1775 1776 pgdat_resize_lock(pgdat, &flags); 1777 first_init_pfn = pgdat->first_deferred_pfn; 1778 if (first_init_pfn == ULONG_MAX) { 1779 pgdat_resize_unlock(pgdat, &flags); 1780 pgdat_init_report_one_done(); 1781 return 0; 1782 } 1783 1784 /* Sanity check boundaries */ 1785 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1786 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1787 pgdat->first_deferred_pfn = ULONG_MAX; 1788 1789 /* Only the highest zone is deferred so find it */ 1790 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1791 zone = pgdat->node_zones + zid; 1792 if (first_init_pfn < zone_end_pfn(zone)) 1793 break; 1794 } 1795 1796 /* If the zone is empty somebody else may have cleared out the zone */ 1797 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1798 first_init_pfn)) 1799 goto zone_empty; 1800 1801 /* 1802 * Initialize and free pages in MAX_ORDER sized increments so 1803 * that we can avoid introducing any issues with the buddy 1804 * allocator. 1805 */ 1806 while (spfn < epfn) 1807 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1808 zone_empty: 1809 pgdat_resize_unlock(pgdat, &flags); 1810 1811 /* Sanity check that the next zone really is unpopulated */ 1812 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1813 1814 pr_info("node %d initialised, %lu pages in %ums\n", 1815 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start)); 1816 1817 pgdat_init_report_one_done(); 1818 return 0; 1819 } 1820 1821 /* 1822 * If this zone has deferred pages, try to grow it by initializing enough 1823 * deferred pages to satisfy the allocation specified by order, rounded up to 1824 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1825 * of SECTION_SIZE bytes by initializing struct pages in increments of 1826 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1827 * 1828 * Return true when zone was grown, otherwise return false. We return true even 1829 * when we grow less than requested, to let the caller decide if there are 1830 * enough pages to satisfy the allocation. 1831 * 1832 * Note: We use noinline because this function is needed only during boot, and 1833 * it is called from a __ref function _deferred_grow_zone. This way we are 1834 * making sure that it is not inlined into permanent text section. 1835 */ 1836 static noinline bool __init 1837 deferred_grow_zone(struct zone *zone, unsigned int order) 1838 { 1839 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1840 pg_data_t *pgdat = zone->zone_pgdat; 1841 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1842 unsigned long spfn, epfn, flags; 1843 unsigned long nr_pages = 0; 1844 u64 i; 1845 1846 /* Only the last zone may have deferred pages */ 1847 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1848 return false; 1849 1850 pgdat_resize_lock(pgdat, &flags); 1851 1852 /* 1853 * If deferred pages have been initialized while we were waiting for 1854 * the lock, return true, as the zone was grown. The caller will retry 1855 * this zone. We won't return to this function since the caller also 1856 * has this static branch. 1857 */ 1858 if (!static_branch_unlikely(&deferred_pages)) { 1859 pgdat_resize_unlock(pgdat, &flags); 1860 return true; 1861 } 1862 1863 /* 1864 * If someone grew this zone while we were waiting for spinlock, return 1865 * true, as there might be enough pages already. 1866 */ 1867 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1868 pgdat_resize_unlock(pgdat, &flags); 1869 return true; 1870 } 1871 1872 /* If the zone is empty somebody else may have cleared out the zone */ 1873 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1874 first_deferred_pfn)) { 1875 pgdat->first_deferred_pfn = ULONG_MAX; 1876 pgdat_resize_unlock(pgdat, &flags); 1877 /* Retry only once. */ 1878 return first_deferred_pfn != ULONG_MAX; 1879 } 1880 1881 /* 1882 * Initialize and free pages in MAX_ORDER sized increments so 1883 * that we can avoid introducing any issues with the buddy 1884 * allocator. 1885 */ 1886 while (spfn < epfn) { 1887 /* update our first deferred PFN for this section */ 1888 first_deferred_pfn = spfn; 1889 1890 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1891 1892 /* We should only stop along section boundaries */ 1893 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 1894 continue; 1895 1896 /* If our quota has been met we can stop here */ 1897 if (nr_pages >= nr_pages_needed) 1898 break; 1899 } 1900 1901 pgdat->first_deferred_pfn = spfn; 1902 pgdat_resize_unlock(pgdat, &flags); 1903 1904 return nr_pages > 0; 1905 } 1906 1907 /* 1908 * deferred_grow_zone() is __init, but it is called from 1909 * get_page_from_freelist() during early boot until deferred_pages permanently 1910 * disables this call. This is why we have refdata wrapper to avoid warning, 1911 * and to ensure that the function body gets unloaded. 1912 */ 1913 static bool __ref 1914 _deferred_grow_zone(struct zone *zone, unsigned int order) 1915 { 1916 return deferred_grow_zone(zone, order); 1917 } 1918 1919 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1920 1921 void __init page_alloc_init_late(void) 1922 { 1923 struct zone *zone; 1924 int nid; 1925 1926 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1927 1928 /* There will be num_node_state(N_MEMORY) threads */ 1929 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1930 for_each_node_state(nid, N_MEMORY) { 1931 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1932 } 1933 1934 /* Block until all are initialised */ 1935 wait_for_completion(&pgdat_init_all_done_comp); 1936 1937 /* 1938 * The number of managed pages has changed due to the initialisation 1939 * so the pcpu batch and high limits needs to be updated or the limits 1940 * will be artificially small. 1941 */ 1942 for_each_populated_zone(zone) 1943 zone_pcp_update(zone); 1944 1945 /* 1946 * We initialized the rest of the deferred pages. Permanently disable 1947 * on-demand struct page initialization. 1948 */ 1949 static_branch_disable(&deferred_pages); 1950 1951 /* Reinit limits that are based on free pages after the kernel is up */ 1952 files_maxfiles_init(); 1953 #endif 1954 1955 /* Discard memblock private memory */ 1956 memblock_discard(); 1957 1958 for_each_node_state(nid, N_MEMORY) 1959 shuffle_free_memory(NODE_DATA(nid)); 1960 1961 for_each_populated_zone(zone) 1962 set_zone_contiguous(zone); 1963 } 1964 1965 #ifdef CONFIG_CMA 1966 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1967 void __init init_cma_reserved_pageblock(struct page *page) 1968 { 1969 unsigned i = pageblock_nr_pages; 1970 struct page *p = page; 1971 1972 do { 1973 __ClearPageReserved(p); 1974 set_page_count(p, 0); 1975 } while (++p, --i); 1976 1977 set_pageblock_migratetype(page, MIGRATE_CMA); 1978 1979 if (pageblock_order >= MAX_ORDER) { 1980 i = pageblock_nr_pages; 1981 p = page; 1982 do { 1983 set_page_refcounted(p); 1984 __free_pages(p, MAX_ORDER - 1); 1985 p += MAX_ORDER_NR_PAGES; 1986 } while (i -= MAX_ORDER_NR_PAGES); 1987 } else { 1988 set_page_refcounted(page); 1989 __free_pages(page, pageblock_order); 1990 } 1991 1992 adjust_managed_page_count(page, pageblock_nr_pages); 1993 } 1994 #endif 1995 1996 /* 1997 * The order of subdivision here is critical for the IO subsystem. 1998 * Please do not alter this order without good reasons and regression 1999 * testing. Specifically, as large blocks of memory are subdivided, 2000 * the order in which smaller blocks are delivered depends on the order 2001 * they're subdivided in this function. This is the primary factor 2002 * influencing the order in which pages are delivered to the IO 2003 * subsystem according to empirical testing, and this is also justified 2004 * by considering the behavior of a buddy system containing a single 2005 * large block of memory acted on by a series of small allocations. 2006 * This behavior is a critical factor in sglist merging's success. 2007 * 2008 * -- nyc 2009 */ 2010 static inline void expand(struct zone *zone, struct page *page, 2011 int low, int high, struct free_area *area, 2012 int migratetype) 2013 { 2014 unsigned long size = 1 << high; 2015 2016 while (high > low) { 2017 area--; 2018 high--; 2019 size >>= 1; 2020 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2021 2022 /* 2023 * Mark as guard pages (or page), that will allow to 2024 * merge back to allocator when buddy will be freed. 2025 * Corresponding page table entries will not be touched, 2026 * pages will stay not present in virtual address space 2027 */ 2028 if (set_page_guard(zone, &page[size], high, migratetype)) 2029 continue; 2030 2031 add_to_free_area(&page[size], area, migratetype); 2032 set_page_order(&page[size], high); 2033 } 2034 } 2035 2036 static void check_new_page_bad(struct page *page) 2037 { 2038 const char *bad_reason = NULL; 2039 unsigned long bad_flags = 0; 2040 2041 if (unlikely(atomic_read(&page->_mapcount) != -1)) 2042 bad_reason = "nonzero mapcount"; 2043 if (unlikely(page->mapping != NULL)) 2044 bad_reason = "non-NULL mapping"; 2045 if (unlikely(page_ref_count(page) != 0)) 2046 bad_reason = "nonzero _refcount"; 2047 if (unlikely(page->flags & __PG_HWPOISON)) { 2048 bad_reason = "HWPoisoned (hardware-corrupted)"; 2049 bad_flags = __PG_HWPOISON; 2050 /* Don't complain about hwpoisoned pages */ 2051 page_mapcount_reset(page); /* remove PageBuddy */ 2052 return; 2053 } 2054 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 2055 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 2056 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 2057 } 2058 #ifdef CONFIG_MEMCG 2059 if (unlikely(page->mem_cgroup)) 2060 bad_reason = "page still charged to cgroup"; 2061 #endif 2062 bad_page(page, bad_reason, bad_flags); 2063 } 2064 2065 /* 2066 * This page is about to be returned from the page allocator 2067 */ 2068 static inline int check_new_page(struct page *page) 2069 { 2070 if (likely(page_expected_state(page, 2071 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2072 return 0; 2073 2074 check_new_page_bad(page); 2075 return 1; 2076 } 2077 2078 static inline bool free_pages_prezeroed(void) 2079 { 2080 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 2081 page_poisoning_enabled()) || want_init_on_free(); 2082 } 2083 2084 #ifdef CONFIG_DEBUG_VM 2085 /* 2086 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2087 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2088 * also checked when pcp lists are refilled from the free lists. 2089 */ 2090 static inline bool check_pcp_refill(struct page *page) 2091 { 2092 if (debug_pagealloc_enabled_static()) 2093 return check_new_page(page); 2094 else 2095 return false; 2096 } 2097 2098 static inline bool check_new_pcp(struct page *page) 2099 { 2100 return check_new_page(page); 2101 } 2102 #else 2103 /* 2104 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2105 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2106 * enabled, they are also checked when being allocated from the pcp lists. 2107 */ 2108 static inline bool check_pcp_refill(struct page *page) 2109 { 2110 return check_new_page(page); 2111 } 2112 static inline bool check_new_pcp(struct page *page) 2113 { 2114 if (debug_pagealloc_enabled_static()) 2115 return check_new_page(page); 2116 else 2117 return false; 2118 } 2119 #endif /* CONFIG_DEBUG_VM */ 2120 2121 static bool check_new_pages(struct page *page, unsigned int order) 2122 { 2123 int i; 2124 for (i = 0; i < (1 << order); i++) { 2125 struct page *p = page + i; 2126 2127 if (unlikely(check_new_page(p))) 2128 return true; 2129 } 2130 2131 return false; 2132 } 2133 2134 inline void post_alloc_hook(struct page *page, unsigned int order, 2135 gfp_t gfp_flags) 2136 { 2137 set_page_private(page, 0); 2138 set_page_refcounted(page); 2139 2140 arch_alloc_page(page, order); 2141 if (debug_pagealloc_enabled_static()) 2142 kernel_map_pages(page, 1 << order, 1); 2143 kasan_alloc_pages(page, order); 2144 kernel_poison_pages(page, 1 << order, 1); 2145 set_page_owner(page, order, gfp_flags); 2146 } 2147 2148 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2149 unsigned int alloc_flags) 2150 { 2151 post_alloc_hook(page, order, gfp_flags); 2152 2153 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags)) 2154 kernel_init_free_pages(page, 1 << order); 2155 2156 if (order && (gfp_flags & __GFP_COMP)) 2157 prep_compound_page(page, order); 2158 2159 /* 2160 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2161 * allocate the page. The expectation is that the caller is taking 2162 * steps that will free more memory. The caller should avoid the page 2163 * being used for !PFMEMALLOC purposes. 2164 */ 2165 if (alloc_flags & ALLOC_NO_WATERMARKS) 2166 set_page_pfmemalloc(page); 2167 else 2168 clear_page_pfmemalloc(page); 2169 } 2170 2171 /* 2172 * Go through the free lists for the given migratetype and remove 2173 * the smallest available page from the freelists 2174 */ 2175 static __always_inline 2176 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2177 int migratetype) 2178 { 2179 unsigned int current_order; 2180 struct free_area *area; 2181 struct page *page; 2182 2183 /* Find a page of the appropriate size in the preferred list */ 2184 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2185 area = &(zone->free_area[current_order]); 2186 page = get_page_from_free_area(area, migratetype); 2187 if (!page) 2188 continue; 2189 del_page_from_free_area(page, area); 2190 expand(zone, page, order, current_order, area, migratetype); 2191 set_pcppage_migratetype(page, migratetype); 2192 return page; 2193 } 2194 2195 return NULL; 2196 } 2197 2198 2199 /* 2200 * This array describes the order lists are fallen back to when 2201 * the free lists for the desirable migrate type are depleted 2202 */ 2203 static int fallbacks[MIGRATE_TYPES][4] = { 2204 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2205 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2206 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2207 #ifdef CONFIG_CMA 2208 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2209 #endif 2210 #ifdef CONFIG_MEMORY_ISOLATION 2211 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2212 #endif 2213 }; 2214 2215 #ifdef CONFIG_CMA 2216 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2217 unsigned int order) 2218 { 2219 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2220 } 2221 #else 2222 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2223 unsigned int order) { return NULL; } 2224 #endif 2225 2226 /* 2227 * Move the free pages in a range to the free lists of the requested type. 2228 * Note that start_page and end_pages are not aligned on a pageblock 2229 * boundary. If alignment is required, use move_freepages_block() 2230 */ 2231 static int move_freepages(struct zone *zone, 2232 struct page *start_page, struct page *end_page, 2233 int migratetype, int *num_movable) 2234 { 2235 struct page *page; 2236 unsigned int order; 2237 int pages_moved = 0; 2238 2239 for (page = start_page; page <= end_page;) { 2240 if (!pfn_valid_within(page_to_pfn(page))) { 2241 page++; 2242 continue; 2243 } 2244 2245 if (!PageBuddy(page)) { 2246 /* 2247 * We assume that pages that could be isolated for 2248 * migration are movable. But we don't actually try 2249 * isolating, as that would be expensive. 2250 */ 2251 if (num_movable && 2252 (PageLRU(page) || __PageMovable(page))) 2253 (*num_movable)++; 2254 2255 page++; 2256 continue; 2257 } 2258 2259 /* Make sure we are not inadvertently changing nodes */ 2260 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2261 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2262 2263 order = page_order(page); 2264 move_to_free_area(page, &zone->free_area[order], migratetype); 2265 page += 1 << order; 2266 pages_moved += 1 << order; 2267 } 2268 2269 return pages_moved; 2270 } 2271 2272 int move_freepages_block(struct zone *zone, struct page *page, 2273 int migratetype, int *num_movable) 2274 { 2275 unsigned long start_pfn, end_pfn; 2276 struct page *start_page, *end_page; 2277 2278 if (num_movable) 2279 *num_movable = 0; 2280 2281 start_pfn = page_to_pfn(page); 2282 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2283 start_page = pfn_to_page(start_pfn); 2284 end_page = start_page + pageblock_nr_pages - 1; 2285 end_pfn = start_pfn + pageblock_nr_pages - 1; 2286 2287 /* Do not cross zone boundaries */ 2288 if (!zone_spans_pfn(zone, start_pfn)) 2289 start_page = page; 2290 if (!zone_spans_pfn(zone, end_pfn)) 2291 return 0; 2292 2293 return move_freepages(zone, start_page, end_page, migratetype, 2294 num_movable); 2295 } 2296 2297 static void change_pageblock_range(struct page *pageblock_page, 2298 int start_order, int migratetype) 2299 { 2300 int nr_pageblocks = 1 << (start_order - pageblock_order); 2301 2302 while (nr_pageblocks--) { 2303 set_pageblock_migratetype(pageblock_page, migratetype); 2304 pageblock_page += pageblock_nr_pages; 2305 } 2306 } 2307 2308 /* 2309 * When we are falling back to another migratetype during allocation, try to 2310 * steal extra free pages from the same pageblocks to satisfy further 2311 * allocations, instead of polluting multiple pageblocks. 2312 * 2313 * If we are stealing a relatively large buddy page, it is likely there will 2314 * be more free pages in the pageblock, so try to steal them all. For 2315 * reclaimable and unmovable allocations, we steal regardless of page size, 2316 * as fragmentation caused by those allocations polluting movable pageblocks 2317 * is worse than movable allocations stealing from unmovable and reclaimable 2318 * pageblocks. 2319 */ 2320 static bool can_steal_fallback(unsigned int order, int start_mt) 2321 { 2322 /* 2323 * Leaving this order check is intended, although there is 2324 * relaxed order check in next check. The reason is that 2325 * we can actually steal whole pageblock if this condition met, 2326 * but, below check doesn't guarantee it and that is just heuristic 2327 * so could be changed anytime. 2328 */ 2329 if (order >= pageblock_order) 2330 return true; 2331 2332 if (order >= pageblock_order / 2 || 2333 start_mt == MIGRATE_RECLAIMABLE || 2334 start_mt == MIGRATE_UNMOVABLE || 2335 page_group_by_mobility_disabled) 2336 return true; 2337 2338 return false; 2339 } 2340 2341 static inline void boost_watermark(struct zone *zone) 2342 { 2343 unsigned long max_boost; 2344 2345 if (!watermark_boost_factor) 2346 return; 2347 2348 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2349 watermark_boost_factor, 10000); 2350 2351 /* 2352 * high watermark may be uninitialised if fragmentation occurs 2353 * very early in boot so do not boost. We do not fall 2354 * through and boost by pageblock_nr_pages as failing 2355 * allocations that early means that reclaim is not going 2356 * to help and it may even be impossible to reclaim the 2357 * boosted watermark resulting in a hang. 2358 */ 2359 if (!max_boost) 2360 return; 2361 2362 max_boost = max(pageblock_nr_pages, max_boost); 2363 2364 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2365 max_boost); 2366 } 2367 2368 /* 2369 * This function implements actual steal behaviour. If order is large enough, 2370 * we can steal whole pageblock. If not, we first move freepages in this 2371 * pageblock to our migratetype and determine how many already-allocated pages 2372 * are there in the pageblock with a compatible migratetype. If at least half 2373 * of pages are free or compatible, we can change migratetype of the pageblock 2374 * itself, so pages freed in the future will be put on the correct free list. 2375 */ 2376 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2377 unsigned int alloc_flags, int start_type, bool whole_block) 2378 { 2379 unsigned int current_order = page_order(page); 2380 struct free_area *area; 2381 int free_pages, movable_pages, alike_pages; 2382 int old_block_type; 2383 2384 old_block_type = get_pageblock_migratetype(page); 2385 2386 /* 2387 * This can happen due to races and we want to prevent broken 2388 * highatomic accounting. 2389 */ 2390 if (is_migrate_highatomic(old_block_type)) 2391 goto single_page; 2392 2393 /* Take ownership for orders >= pageblock_order */ 2394 if (current_order >= pageblock_order) { 2395 change_pageblock_range(page, current_order, start_type); 2396 goto single_page; 2397 } 2398 2399 /* 2400 * Boost watermarks to increase reclaim pressure to reduce the 2401 * likelihood of future fallbacks. Wake kswapd now as the node 2402 * may be balanced overall and kswapd will not wake naturally. 2403 */ 2404 boost_watermark(zone); 2405 if (alloc_flags & ALLOC_KSWAPD) 2406 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2407 2408 /* We are not allowed to try stealing from the whole block */ 2409 if (!whole_block) 2410 goto single_page; 2411 2412 free_pages = move_freepages_block(zone, page, start_type, 2413 &movable_pages); 2414 /* 2415 * Determine how many pages are compatible with our allocation. 2416 * For movable allocation, it's the number of movable pages which 2417 * we just obtained. For other types it's a bit more tricky. 2418 */ 2419 if (start_type == MIGRATE_MOVABLE) { 2420 alike_pages = movable_pages; 2421 } else { 2422 /* 2423 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2424 * to MOVABLE pageblock, consider all non-movable pages as 2425 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2426 * vice versa, be conservative since we can't distinguish the 2427 * exact migratetype of non-movable pages. 2428 */ 2429 if (old_block_type == MIGRATE_MOVABLE) 2430 alike_pages = pageblock_nr_pages 2431 - (free_pages + movable_pages); 2432 else 2433 alike_pages = 0; 2434 } 2435 2436 /* moving whole block can fail due to zone boundary conditions */ 2437 if (!free_pages) 2438 goto single_page; 2439 2440 /* 2441 * If a sufficient number of pages in the block are either free or of 2442 * comparable migratability as our allocation, claim the whole block. 2443 */ 2444 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2445 page_group_by_mobility_disabled) 2446 set_pageblock_migratetype(page, start_type); 2447 2448 return; 2449 2450 single_page: 2451 area = &zone->free_area[current_order]; 2452 move_to_free_area(page, area, start_type); 2453 } 2454 2455 /* 2456 * Check whether there is a suitable fallback freepage with requested order. 2457 * If only_stealable is true, this function returns fallback_mt only if 2458 * we can steal other freepages all together. This would help to reduce 2459 * fragmentation due to mixed migratetype pages in one pageblock. 2460 */ 2461 int find_suitable_fallback(struct free_area *area, unsigned int order, 2462 int migratetype, bool only_stealable, bool *can_steal) 2463 { 2464 int i; 2465 int fallback_mt; 2466 2467 if (area->nr_free == 0) 2468 return -1; 2469 2470 *can_steal = false; 2471 for (i = 0;; i++) { 2472 fallback_mt = fallbacks[migratetype][i]; 2473 if (fallback_mt == MIGRATE_TYPES) 2474 break; 2475 2476 if (free_area_empty(area, fallback_mt)) 2477 continue; 2478 2479 if (can_steal_fallback(order, migratetype)) 2480 *can_steal = true; 2481 2482 if (!only_stealable) 2483 return fallback_mt; 2484 2485 if (*can_steal) 2486 return fallback_mt; 2487 } 2488 2489 return -1; 2490 } 2491 2492 /* 2493 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2494 * there are no empty page blocks that contain a page with a suitable order 2495 */ 2496 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2497 unsigned int alloc_order) 2498 { 2499 int mt; 2500 unsigned long max_managed, flags; 2501 2502 /* 2503 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2504 * Check is race-prone but harmless. 2505 */ 2506 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2507 if (zone->nr_reserved_highatomic >= max_managed) 2508 return; 2509 2510 spin_lock_irqsave(&zone->lock, flags); 2511 2512 /* Recheck the nr_reserved_highatomic limit under the lock */ 2513 if (zone->nr_reserved_highatomic >= max_managed) 2514 goto out_unlock; 2515 2516 /* Yoink! */ 2517 mt = get_pageblock_migratetype(page); 2518 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2519 && !is_migrate_cma(mt)) { 2520 zone->nr_reserved_highatomic += pageblock_nr_pages; 2521 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2522 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2523 } 2524 2525 out_unlock: 2526 spin_unlock_irqrestore(&zone->lock, flags); 2527 } 2528 2529 /* 2530 * Used when an allocation is about to fail under memory pressure. This 2531 * potentially hurts the reliability of high-order allocations when under 2532 * intense memory pressure but failed atomic allocations should be easier 2533 * to recover from than an OOM. 2534 * 2535 * If @force is true, try to unreserve a pageblock even though highatomic 2536 * pageblock is exhausted. 2537 */ 2538 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2539 bool force) 2540 { 2541 struct zonelist *zonelist = ac->zonelist; 2542 unsigned long flags; 2543 struct zoneref *z; 2544 struct zone *zone; 2545 struct page *page; 2546 int order; 2547 bool ret; 2548 2549 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2550 ac->nodemask) { 2551 /* 2552 * Preserve at least one pageblock unless memory pressure 2553 * is really high. 2554 */ 2555 if (!force && zone->nr_reserved_highatomic <= 2556 pageblock_nr_pages) 2557 continue; 2558 2559 spin_lock_irqsave(&zone->lock, flags); 2560 for (order = 0; order < MAX_ORDER; order++) { 2561 struct free_area *area = &(zone->free_area[order]); 2562 2563 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2564 if (!page) 2565 continue; 2566 2567 /* 2568 * In page freeing path, migratetype change is racy so 2569 * we can counter several free pages in a pageblock 2570 * in this loop althoug we changed the pageblock type 2571 * from highatomic to ac->migratetype. So we should 2572 * adjust the count once. 2573 */ 2574 if (is_migrate_highatomic_page(page)) { 2575 /* 2576 * It should never happen but changes to 2577 * locking could inadvertently allow a per-cpu 2578 * drain to add pages to MIGRATE_HIGHATOMIC 2579 * while unreserving so be safe and watch for 2580 * underflows. 2581 */ 2582 zone->nr_reserved_highatomic -= min( 2583 pageblock_nr_pages, 2584 zone->nr_reserved_highatomic); 2585 } 2586 2587 /* 2588 * Convert to ac->migratetype and avoid the normal 2589 * pageblock stealing heuristics. Minimally, the caller 2590 * is doing the work and needs the pages. More 2591 * importantly, if the block was always converted to 2592 * MIGRATE_UNMOVABLE or another type then the number 2593 * of pageblocks that cannot be completely freed 2594 * may increase. 2595 */ 2596 set_pageblock_migratetype(page, ac->migratetype); 2597 ret = move_freepages_block(zone, page, ac->migratetype, 2598 NULL); 2599 if (ret) { 2600 spin_unlock_irqrestore(&zone->lock, flags); 2601 return ret; 2602 } 2603 } 2604 spin_unlock_irqrestore(&zone->lock, flags); 2605 } 2606 2607 return false; 2608 } 2609 2610 /* 2611 * Try finding a free buddy page on the fallback list and put it on the free 2612 * list of requested migratetype, possibly along with other pages from the same 2613 * block, depending on fragmentation avoidance heuristics. Returns true if 2614 * fallback was found so that __rmqueue_smallest() can grab it. 2615 * 2616 * The use of signed ints for order and current_order is a deliberate 2617 * deviation from the rest of this file, to make the for loop 2618 * condition simpler. 2619 */ 2620 static __always_inline bool 2621 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2622 unsigned int alloc_flags) 2623 { 2624 struct free_area *area; 2625 int current_order; 2626 int min_order = order; 2627 struct page *page; 2628 int fallback_mt; 2629 bool can_steal; 2630 2631 /* 2632 * Do not steal pages from freelists belonging to other pageblocks 2633 * i.e. orders < pageblock_order. If there are no local zones free, 2634 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2635 */ 2636 if (alloc_flags & ALLOC_NOFRAGMENT) 2637 min_order = pageblock_order; 2638 2639 /* 2640 * Find the largest available free page in the other list. This roughly 2641 * approximates finding the pageblock with the most free pages, which 2642 * would be too costly to do exactly. 2643 */ 2644 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2645 --current_order) { 2646 area = &(zone->free_area[current_order]); 2647 fallback_mt = find_suitable_fallback(area, current_order, 2648 start_migratetype, false, &can_steal); 2649 if (fallback_mt == -1) 2650 continue; 2651 2652 /* 2653 * We cannot steal all free pages from the pageblock and the 2654 * requested migratetype is movable. In that case it's better to 2655 * steal and split the smallest available page instead of the 2656 * largest available page, because even if the next movable 2657 * allocation falls back into a different pageblock than this 2658 * one, it won't cause permanent fragmentation. 2659 */ 2660 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2661 && current_order > order) 2662 goto find_smallest; 2663 2664 goto do_steal; 2665 } 2666 2667 return false; 2668 2669 find_smallest: 2670 for (current_order = order; current_order < MAX_ORDER; 2671 current_order++) { 2672 area = &(zone->free_area[current_order]); 2673 fallback_mt = find_suitable_fallback(area, current_order, 2674 start_migratetype, false, &can_steal); 2675 if (fallback_mt != -1) 2676 break; 2677 } 2678 2679 /* 2680 * This should not happen - we already found a suitable fallback 2681 * when looking for the largest page. 2682 */ 2683 VM_BUG_ON(current_order == MAX_ORDER); 2684 2685 do_steal: 2686 page = get_page_from_free_area(area, fallback_mt); 2687 2688 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2689 can_steal); 2690 2691 trace_mm_page_alloc_extfrag(page, order, current_order, 2692 start_migratetype, fallback_mt); 2693 2694 return true; 2695 2696 } 2697 2698 /* 2699 * Do the hard work of removing an element from the buddy allocator. 2700 * Call me with the zone->lock already held. 2701 */ 2702 static __always_inline struct page * 2703 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2704 unsigned int alloc_flags) 2705 { 2706 struct page *page; 2707 2708 retry: 2709 page = __rmqueue_smallest(zone, order, migratetype); 2710 if (unlikely(!page)) { 2711 if (migratetype == MIGRATE_MOVABLE) 2712 page = __rmqueue_cma_fallback(zone, order); 2713 2714 if (!page && __rmqueue_fallback(zone, order, migratetype, 2715 alloc_flags)) 2716 goto retry; 2717 } 2718 2719 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2720 return page; 2721 } 2722 2723 /* 2724 * Obtain a specified number of elements from the buddy allocator, all under 2725 * a single hold of the lock, for efficiency. Add them to the supplied list. 2726 * Returns the number of new pages which were placed at *list. 2727 */ 2728 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2729 unsigned long count, struct list_head *list, 2730 int migratetype, unsigned int alloc_flags) 2731 { 2732 int i, alloced = 0; 2733 2734 spin_lock(&zone->lock); 2735 for (i = 0; i < count; ++i) { 2736 struct page *page = __rmqueue(zone, order, migratetype, 2737 alloc_flags); 2738 if (unlikely(page == NULL)) 2739 break; 2740 2741 if (unlikely(check_pcp_refill(page))) 2742 continue; 2743 2744 /* 2745 * Split buddy pages returned by expand() are received here in 2746 * physical page order. The page is added to the tail of 2747 * caller's list. From the callers perspective, the linked list 2748 * is ordered by page number under some conditions. This is 2749 * useful for IO devices that can forward direction from the 2750 * head, thus also in the physical page order. This is useful 2751 * for IO devices that can merge IO requests if the physical 2752 * pages are ordered properly. 2753 */ 2754 list_add_tail(&page->lru, list); 2755 alloced++; 2756 if (is_migrate_cma(get_pcppage_migratetype(page))) 2757 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2758 -(1 << order)); 2759 } 2760 2761 /* 2762 * i pages were removed from the buddy list even if some leak due 2763 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2764 * on i. Do not confuse with 'alloced' which is the number of 2765 * pages added to the pcp list. 2766 */ 2767 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2768 spin_unlock(&zone->lock); 2769 return alloced; 2770 } 2771 2772 #ifdef CONFIG_NUMA 2773 /* 2774 * Called from the vmstat counter updater to drain pagesets of this 2775 * currently executing processor on remote nodes after they have 2776 * expired. 2777 * 2778 * Note that this function must be called with the thread pinned to 2779 * a single processor. 2780 */ 2781 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2782 { 2783 unsigned long flags; 2784 int to_drain, batch; 2785 2786 local_irq_save(flags); 2787 batch = READ_ONCE(pcp->batch); 2788 to_drain = min(pcp->count, batch); 2789 if (to_drain > 0) 2790 free_pcppages_bulk(zone, to_drain, pcp); 2791 local_irq_restore(flags); 2792 } 2793 #endif 2794 2795 /* 2796 * Drain pcplists of the indicated processor and zone. 2797 * 2798 * The processor must either be the current processor and the 2799 * thread pinned to the current processor or a processor that 2800 * is not online. 2801 */ 2802 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2803 { 2804 unsigned long flags; 2805 struct per_cpu_pageset *pset; 2806 struct per_cpu_pages *pcp; 2807 2808 local_irq_save(flags); 2809 pset = per_cpu_ptr(zone->pageset, cpu); 2810 2811 pcp = &pset->pcp; 2812 if (pcp->count) 2813 free_pcppages_bulk(zone, pcp->count, pcp); 2814 local_irq_restore(flags); 2815 } 2816 2817 /* 2818 * Drain pcplists of all zones on the indicated processor. 2819 * 2820 * The processor must either be the current processor and the 2821 * thread pinned to the current processor or a processor that 2822 * is not online. 2823 */ 2824 static void drain_pages(unsigned int cpu) 2825 { 2826 struct zone *zone; 2827 2828 for_each_populated_zone(zone) { 2829 drain_pages_zone(cpu, zone); 2830 } 2831 } 2832 2833 /* 2834 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2835 * 2836 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2837 * the single zone's pages. 2838 */ 2839 void drain_local_pages(struct zone *zone) 2840 { 2841 int cpu = smp_processor_id(); 2842 2843 if (zone) 2844 drain_pages_zone(cpu, zone); 2845 else 2846 drain_pages(cpu); 2847 } 2848 2849 static void drain_local_pages_wq(struct work_struct *work) 2850 { 2851 struct pcpu_drain *drain; 2852 2853 drain = container_of(work, struct pcpu_drain, work); 2854 2855 /* 2856 * drain_all_pages doesn't use proper cpu hotplug protection so 2857 * we can race with cpu offline when the WQ can move this from 2858 * a cpu pinned worker to an unbound one. We can operate on a different 2859 * cpu which is allright but we also have to make sure to not move to 2860 * a different one. 2861 */ 2862 preempt_disable(); 2863 drain_local_pages(drain->zone); 2864 preempt_enable(); 2865 } 2866 2867 /* 2868 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2869 * 2870 * When zone parameter is non-NULL, spill just the single zone's pages. 2871 * 2872 * Note that this can be extremely slow as the draining happens in a workqueue. 2873 */ 2874 void drain_all_pages(struct zone *zone) 2875 { 2876 int cpu; 2877 2878 /* 2879 * Allocate in the BSS so we wont require allocation in 2880 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2881 */ 2882 static cpumask_t cpus_with_pcps; 2883 2884 /* 2885 * Make sure nobody triggers this path before mm_percpu_wq is fully 2886 * initialized. 2887 */ 2888 if (WARN_ON_ONCE(!mm_percpu_wq)) 2889 return; 2890 2891 /* 2892 * Do not drain if one is already in progress unless it's specific to 2893 * a zone. Such callers are primarily CMA and memory hotplug and need 2894 * the drain to be complete when the call returns. 2895 */ 2896 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2897 if (!zone) 2898 return; 2899 mutex_lock(&pcpu_drain_mutex); 2900 } 2901 2902 /* 2903 * We don't care about racing with CPU hotplug event 2904 * as offline notification will cause the notified 2905 * cpu to drain that CPU pcps and on_each_cpu_mask 2906 * disables preemption as part of its processing 2907 */ 2908 for_each_online_cpu(cpu) { 2909 struct per_cpu_pageset *pcp; 2910 struct zone *z; 2911 bool has_pcps = false; 2912 2913 if (zone) { 2914 pcp = per_cpu_ptr(zone->pageset, cpu); 2915 if (pcp->pcp.count) 2916 has_pcps = true; 2917 } else { 2918 for_each_populated_zone(z) { 2919 pcp = per_cpu_ptr(z->pageset, cpu); 2920 if (pcp->pcp.count) { 2921 has_pcps = true; 2922 break; 2923 } 2924 } 2925 } 2926 2927 if (has_pcps) 2928 cpumask_set_cpu(cpu, &cpus_with_pcps); 2929 else 2930 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2931 } 2932 2933 for_each_cpu(cpu, &cpus_with_pcps) { 2934 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 2935 2936 drain->zone = zone; 2937 INIT_WORK(&drain->work, drain_local_pages_wq); 2938 queue_work_on(cpu, mm_percpu_wq, &drain->work); 2939 } 2940 for_each_cpu(cpu, &cpus_with_pcps) 2941 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 2942 2943 mutex_unlock(&pcpu_drain_mutex); 2944 } 2945 2946 #ifdef CONFIG_HIBERNATION 2947 2948 /* 2949 * Touch the watchdog for every WD_PAGE_COUNT pages. 2950 */ 2951 #define WD_PAGE_COUNT (128*1024) 2952 2953 void mark_free_pages(struct zone *zone) 2954 { 2955 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2956 unsigned long flags; 2957 unsigned int order, t; 2958 struct page *page; 2959 2960 if (zone_is_empty(zone)) 2961 return; 2962 2963 spin_lock_irqsave(&zone->lock, flags); 2964 2965 max_zone_pfn = zone_end_pfn(zone); 2966 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2967 if (pfn_valid(pfn)) { 2968 page = pfn_to_page(pfn); 2969 2970 if (!--page_count) { 2971 touch_nmi_watchdog(); 2972 page_count = WD_PAGE_COUNT; 2973 } 2974 2975 if (page_zone(page) != zone) 2976 continue; 2977 2978 if (!swsusp_page_is_forbidden(page)) 2979 swsusp_unset_page_free(page); 2980 } 2981 2982 for_each_migratetype_order(order, t) { 2983 list_for_each_entry(page, 2984 &zone->free_area[order].free_list[t], lru) { 2985 unsigned long i; 2986 2987 pfn = page_to_pfn(page); 2988 for (i = 0; i < (1UL << order); i++) { 2989 if (!--page_count) { 2990 touch_nmi_watchdog(); 2991 page_count = WD_PAGE_COUNT; 2992 } 2993 swsusp_set_page_free(pfn_to_page(pfn + i)); 2994 } 2995 } 2996 } 2997 spin_unlock_irqrestore(&zone->lock, flags); 2998 } 2999 #endif /* CONFIG_PM */ 3000 3001 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3002 { 3003 int migratetype; 3004 3005 if (!free_pcp_prepare(page)) 3006 return false; 3007 3008 migratetype = get_pfnblock_migratetype(page, pfn); 3009 set_pcppage_migratetype(page, migratetype); 3010 return true; 3011 } 3012 3013 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3014 { 3015 struct zone *zone = page_zone(page); 3016 struct per_cpu_pages *pcp; 3017 int migratetype; 3018 3019 migratetype = get_pcppage_migratetype(page); 3020 __count_vm_event(PGFREE); 3021 3022 /* 3023 * We only track unmovable, reclaimable and movable on pcp lists. 3024 * Free ISOLATE pages back to the allocator because they are being 3025 * offlined but treat HIGHATOMIC as movable pages so we can get those 3026 * areas back if necessary. Otherwise, we may have to free 3027 * excessively into the page allocator 3028 */ 3029 if (migratetype >= MIGRATE_PCPTYPES) { 3030 if (unlikely(is_migrate_isolate(migratetype))) { 3031 free_one_page(zone, page, pfn, 0, migratetype); 3032 return; 3033 } 3034 migratetype = MIGRATE_MOVABLE; 3035 } 3036 3037 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3038 list_add(&page->lru, &pcp->lists[migratetype]); 3039 pcp->count++; 3040 if (pcp->count >= pcp->high) { 3041 unsigned long batch = READ_ONCE(pcp->batch); 3042 free_pcppages_bulk(zone, batch, pcp); 3043 } 3044 } 3045 3046 /* 3047 * Free a 0-order page 3048 */ 3049 void free_unref_page(struct page *page) 3050 { 3051 unsigned long flags; 3052 unsigned long pfn = page_to_pfn(page); 3053 3054 if (!free_unref_page_prepare(page, pfn)) 3055 return; 3056 3057 local_irq_save(flags); 3058 free_unref_page_commit(page, pfn); 3059 local_irq_restore(flags); 3060 } 3061 3062 /* 3063 * Free a list of 0-order pages 3064 */ 3065 void free_unref_page_list(struct list_head *list) 3066 { 3067 struct page *page, *next; 3068 unsigned long flags, pfn; 3069 int batch_count = 0; 3070 3071 /* Prepare pages for freeing */ 3072 list_for_each_entry_safe(page, next, list, lru) { 3073 pfn = page_to_pfn(page); 3074 if (!free_unref_page_prepare(page, pfn)) 3075 list_del(&page->lru); 3076 set_page_private(page, pfn); 3077 } 3078 3079 local_irq_save(flags); 3080 list_for_each_entry_safe(page, next, list, lru) { 3081 unsigned long pfn = page_private(page); 3082 3083 set_page_private(page, 0); 3084 trace_mm_page_free_batched(page); 3085 free_unref_page_commit(page, pfn); 3086 3087 /* 3088 * Guard against excessive IRQ disabled times when we get 3089 * a large list of pages to free. 3090 */ 3091 if (++batch_count == SWAP_CLUSTER_MAX) { 3092 local_irq_restore(flags); 3093 batch_count = 0; 3094 local_irq_save(flags); 3095 } 3096 } 3097 local_irq_restore(flags); 3098 } 3099 3100 /* 3101 * split_page takes a non-compound higher-order page, and splits it into 3102 * n (1<<order) sub-pages: page[0..n] 3103 * Each sub-page must be freed individually. 3104 * 3105 * Note: this is probably too low level an operation for use in drivers. 3106 * Please consult with lkml before using this in your driver. 3107 */ 3108 void split_page(struct page *page, unsigned int order) 3109 { 3110 int i; 3111 3112 VM_BUG_ON_PAGE(PageCompound(page), page); 3113 VM_BUG_ON_PAGE(!page_count(page), page); 3114 3115 for (i = 1; i < (1 << order); i++) 3116 set_page_refcounted(page + i); 3117 split_page_owner(page, order); 3118 } 3119 EXPORT_SYMBOL_GPL(split_page); 3120 3121 int __isolate_free_page(struct page *page, unsigned int order) 3122 { 3123 struct free_area *area = &page_zone(page)->free_area[order]; 3124 unsigned long watermark; 3125 struct zone *zone; 3126 int mt; 3127 3128 BUG_ON(!PageBuddy(page)); 3129 3130 zone = page_zone(page); 3131 mt = get_pageblock_migratetype(page); 3132 3133 if (!is_migrate_isolate(mt)) { 3134 /* 3135 * Obey watermarks as if the page was being allocated. We can 3136 * emulate a high-order watermark check with a raised order-0 3137 * watermark, because we already know our high-order page 3138 * exists. 3139 */ 3140 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3141 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3142 return 0; 3143 3144 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3145 } 3146 3147 /* Remove page from free list */ 3148 3149 del_page_from_free_area(page, area); 3150 3151 /* 3152 * Set the pageblock if the isolated page is at least half of a 3153 * pageblock 3154 */ 3155 if (order >= pageblock_order - 1) { 3156 struct page *endpage = page + (1 << order) - 1; 3157 for (; page < endpage; page += pageblock_nr_pages) { 3158 int mt = get_pageblock_migratetype(page); 3159 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3160 && !is_migrate_highatomic(mt)) 3161 set_pageblock_migratetype(page, 3162 MIGRATE_MOVABLE); 3163 } 3164 } 3165 3166 3167 return 1UL << order; 3168 } 3169 3170 /* 3171 * Update NUMA hit/miss statistics 3172 * 3173 * Must be called with interrupts disabled. 3174 */ 3175 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3176 { 3177 #ifdef CONFIG_NUMA 3178 enum numa_stat_item local_stat = NUMA_LOCAL; 3179 3180 /* skip numa counters update if numa stats is disabled */ 3181 if (!static_branch_likely(&vm_numa_stat_key)) 3182 return; 3183 3184 if (zone_to_nid(z) != numa_node_id()) 3185 local_stat = NUMA_OTHER; 3186 3187 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3188 __inc_numa_state(z, NUMA_HIT); 3189 else { 3190 __inc_numa_state(z, NUMA_MISS); 3191 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3192 } 3193 __inc_numa_state(z, local_stat); 3194 #endif 3195 } 3196 3197 /* Remove page from the per-cpu list, caller must protect the list */ 3198 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3199 unsigned int alloc_flags, 3200 struct per_cpu_pages *pcp, 3201 struct list_head *list) 3202 { 3203 struct page *page; 3204 3205 do { 3206 if (list_empty(list)) { 3207 pcp->count += rmqueue_bulk(zone, 0, 3208 pcp->batch, list, 3209 migratetype, alloc_flags); 3210 if (unlikely(list_empty(list))) 3211 return NULL; 3212 } 3213 3214 page = list_first_entry(list, struct page, lru); 3215 list_del(&page->lru); 3216 pcp->count--; 3217 } while (check_new_pcp(page)); 3218 3219 return page; 3220 } 3221 3222 /* Lock and remove page from the per-cpu list */ 3223 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3224 struct zone *zone, gfp_t gfp_flags, 3225 int migratetype, unsigned int alloc_flags) 3226 { 3227 struct per_cpu_pages *pcp; 3228 struct list_head *list; 3229 struct page *page; 3230 unsigned long flags; 3231 3232 local_irq_save(flags); 3233 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3234 list = &pcp->lists[migratetype]; 3235 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3236 if (page) { 3237 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3238 zone_statistics(preferred_zone, zone); 3239 } 3240 local_irq_restore(flags); 3241 return page; 3242 } 3243 3244 /* 3245 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3246 */ 3247 static inline 3248 struct page *rmqueue(struct zone *preferred_zone, 3249 struct zone *zone, unsigned int order, 3250 gfp_t gfp_flags, unsigned int alloc_flags, 3251 int migratetype) 3252 { 3253 unsigned long flags; 3254 struct page *page; 3255 3256 if (likely(order == 0)) { 3257 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3258 migratetype, alloc_flags); 3259 goto out; 3260 } 3261 3262 /* 3263 * We most definitely don't want callers attempting to 3264 * allocate greater than order-1 page units with __GFP_NOFAIL. 3265 */ 3266 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3267 spin_lock_irqsave(&zone->lock, flags); 3268 3269 do { 3270 page = NULL; 3271 if (alloc_flags & ALLOC_HARDER) { 3272 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3273 if (page) 3274 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3275 } 3276 if (!page) 3277 page = __rmqueue(zone, order, migratetype, alloc_flags); 3278 } while (page && check_new_pages(page, order)); 3279 spin_unlock(&zone->lock); 3280 if (!page) 3281 goto failed; 3282 __mod_zone_freepage_state(zone, -(1 << order), 3283 get_pcppage_migratetype(page)); 3284 3285 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3286 zone_statistics(preferred_zone, zone); 3287 local_irq_restore(flags); 3288 3289 out: 3290 /* Separate test+clear to avoid unnecessary atomics */ 3291 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3292 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3293 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3294 } 3295 3296 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3297 return page; 3298 3299 failed: 3300 local_irq_restore(flags); 3301 return NULL; 3302 } 3303 3304 #ifdef CONFIG_FAIL_PAGE_ALLOC 3305 3306 static struct { 3307 struct fault_attr attr; 3308 3309 bool ignore_gfp_highmem; 3310 bool ignore_gfp_reclaim; 3311 u32 min_order; 3312 } fail_page_alloc = { 3313 .attr = FAULT_ATTR_INITIALIZER, 3314 .ignore_gfp_reclaim = true, 3315 .ignore_gfp_highmem = true, 3316 .min_order = 1, 3317 }; 3318 3319 static int __init setup_fail_page_alloc(char *str) 3320 { 3321 return setup_fault_attr(&fail_page_alloc.attr, str); 3322 } 3323 __setup("fail_page_alloc=", setup_fail_page_alloc); 3324 3325 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3326 { 3327 if (order < fail_page_alloc.min_order) 3328 return false; 3329 if (gfp_mask & __GFP_NOFAIL) 3330 return false; 3331 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3332 return false; 3333 if (fail_page_alloc.ignore_gfp_reclaim && 3334 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3335 return false; 3336 3337 return should_fail(&fail_page_alloc.attr, 1 << order); 3338 } 3339 3340 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3341 3342 static int __init fail_page_alloc_debugfs(void) 3343 { 3344 umode_t mode = S_IFREG | 0600; 3345 struct dentry *dir; 3346 3347 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3348 &fail_page_alloc.attr); 3349 3350 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3351 &fail_page_alloc.ignore_gfp_reclaim); 3352 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3353 &fail_page_alloc.ignore_gfp_highmem); 3354 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3355 3356 return 0; 3357 } 3358 3359 late_initcall(fail_page_alloc_debugfs); 3360 3361 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3362 3363 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3364 3365 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3366 { 3367 return false; 3368 } 3369 3370 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3371 3372 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3373 { 3374 return __should_fail_alloc_page(gfp_mask, order); 3375 } 3376 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3377 3378 /* 3379 * Return true if free base pages are above 'mark'. For high-order checks it 3380 * will return true of the order-0 watermark is reached and there is at least 3381 * one free page of a suitable size. Checking now avoids taking the zone lock 3382 * to check in the allocation paths if no pages are free. 3383 */ 3384 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3385 int classzone_idx, unsigned int alloc_flags, 3386 long free_pages) 3387 { 3388 long min = mark; 3389 int o; 3390 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3391 3392 /* free_pages may go negative - that's OK */ 3393 free_pages -= (1 << order) - 1; 3394 3395 if (alloc_flags & ALLOC_HIGH) 3396 min -= min / 2; 3397 3398 /* 3399 * If the caller does not have rights to ALLOC_HARDER then subtract 3400 * the high-atomic reserves. This will over-estimate the size of the 3401 * atomic reserve but it avoids a search. 3402 */ 3403 if (likely(!alloc_harder)) { 3404 free_pages -= z->nr_reserved_highatomic; 3405 } else { 3406 /* 3407 * OOM victims can try even harder than normal ALLOC_HARDER 3408 * users on the grounds that it's definitely going to be in 3409 * the exit path shortly and free memory. Any allocation it 3410 * makes during the free path will be small and short-lived. 3411 */ 3412 if (alloc_flags & ALLOC_OOM) 3413 min -= min / 2; 3414 else 3415 min -= min / 4; 3416 } 3417 3418 3419 #ifdef CONFIG_CMA 3420 /* If allocation can't use CMA areas don't use free CMA pages */ 3421 if (!(alloc_flags & ALLOC_CMA)) 3422 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3423 #endif 3424 3425 /* 3426 * Check watermarks for an order-0 allocation request. If these 3427 * are not met, then a high-order request also cannot go ahead 3428 * even if a suitable page happened to be free. 3429 */ 3430 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3431 return false; 3432 3433 /* If this is an order-0 request then the watermark is fine */ 3434 if (!order) 3435 return true; 3436 3437 /* For a high-order request, check at least one suitable page is free */ 3438 for (o = order; o < MAX_ORDER; o++) { 3439 struct free_area *area = &z->free_area[o]; 3440 int mt; 3441 3442 if (!area->nr_free) 3443 continue; 3444 3445 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3446 if (!free_area_empty(area, mt)) 3447 return true; 3448 } 3449 3450 #ifdef CONFIG_CMA 3451 if ((alloc_flags & ALLOC_CMA) && 3452 !free_area_empty(area, MIGRATE_CMA)) { 3453 return true; 3454 } 3455 #endif 3456 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3457 return true; 3458 } 3459 return false; 3460 } 3461 3462 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3463 int classzone_idx, unsigned int alloc_flags) 3464 { 3465 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3466 zone_page_state(z, NR_FREE_PAGES)); 3467 } 3468 3469 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3470 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3471 { 3472 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3473 long cma_pages = 0; 3474 3475 #ifdef CONFIG_CMA 3476 /* If allocation can't use CMA areas don't use free CMA pages */ 3477 if (!(alloc_flags & ALLOC_CMA)) 3478 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3479 #endif 3480 3481 /* 3482 * Fast check for order-0 only. If this fails then the reserves 3483 * need to be calculated. There is a corner case where the check 3484 * passes but only the high-order atomic reserve are free. If 3485 * the caller is !atomic then it'll uselessly search the free 3486 * list. That corner case is then slower but it is harmless. 3487 */ 3488 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3489 return true; 3490 3491 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3492 free_pages); 3493 } 3494 3495 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3496 unsigned long mark, int classzone_idx) 3497 { 3498 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3499 3500 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3501 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3502 3503 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3504 free_pages); 3505 } 3506 3507 #ifdef CONFIG_NUMA 3508 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3509 { 3510 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3511 node_reclaim_distance; 3512 } 3513 #else /* CONFIG_NUMA */ 3514 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3515 { 3516 return true; 3517 } 3518 #endif /* CONFIG_NUMA */ 3519 3520 /* 3521 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3522 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3523 * premature use of a lower zone may cause lowmem pressure problems that 3524 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3525 * probably too small. It only makes sense to spread allocations to avoid 3526 * fragmentation between the Normal and DMA32 zones. 3527 */ 3528 static inline unsigned int 3529 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3530 { 3531 unsigned int alloc_flags; 3532 3533 /* 3534 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3535 * to save a branch. 3536 */ 3537 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3538 3539 #ifdef CONFIG_ZONE_DMA32 3540 if (!zone) 3541 return alloc_flags; 3542 3543 if (zone_idx(zone) != ZONE_NORMAL) 3544 return alloc_flags; 3545 3546 /* 3547 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3548 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3549 * on UMA that if Normal is populated then so is DMA32. 3550 */ 3551 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3552 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3553 return alloc_flags; 3554 3555 alloc_flags |= ALLOC_NOFRAGMENT; 3556 #endif /* CONFIG_ZONE_DMA32 */ 3557 return alloc_flags; 3558 } 3559 3560 /* 3561 * get_page_from_freelist goes through the zonelist trying to allocate 3562 * a page. 3563 */ 3564 static struct page * 3565 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3566 const struct alloc_context *ac) 3567 { 3568 struct zoneref *z; 3569 struct zone *zone; 3570 struct pglist_data *last_pgdat_dirty_limit = NULL; 3571 bool no_fallback; 3572 3573 retry: 3574 /* 3575 * Scan zonelist, looking for a zone with enough free. 3576 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3577 */ 3578 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3579 z = ac->preferred_zoneref; 3580 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3581 ac->nodemask) { 3582 struct page *page; 3583 unsigned long mark; 3584 3585 if (cpusets_enabled() && 3586 (alloc_flags & ALLOC_CPUSET) && 3587 !__cpuset_zone_allowed(zone, gfp_mask)) 3588 continue; 3589 /* 3590 * When allocating a page cache page for writing, we 3591 * want to get it from a node that is within its dirty 3592 * limit, such that no single node holds more than its 3593 * proportional share of globally allowed dirty pages. 3594 * The dirty limits take into account the node's 3595 * lowmem reserves and high watermark so that kswapd 3596 * should be able to balance it without having to 3597 * write pages from its LRU list. 3598 * 3599 * XXX: For now, allow allocations to potentially 3600 * exceed the per-node dirty limit in the slowpath 3601 * (spread_dirty_pages unset) before going into reclaim, 3602 * which is important when on a NUMA setup the allowed 3603 * nodes are together not big enough to reach the 3604 * global limit. The proper fix for these situations 3605 * will require awareness of nodes in the 3606 * dirty-throttling and the flusher threads. 3607 */ 3608 if (ac->spread_dirty_pages) { 3609 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3610 continue; 3611 3612 if (!node_dirty_ok(zone->zone_pgdat)) { 3613 last_pgdat_dirty_limit = zone->zone_pgdat; 3614 continue; 3615 } 3616 } 3617 3618 if (no_fallback && nr_online_nodes > 1 && 3619 zone != ac->preferred_zoneref->zone) { 3620 int local_nid; 3621 3622 /* 3623 * If moving to a remote node, retry but allow 3624 * fragmenting fallbacks. Locality is more important 3625 * than fragmentation avoidance. 3626 */ 3627 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3628 if (zone_to_nid(zone) != local_nid) { 3629 alloc_flags &= ~ALLOC_NOFRAGMENT; 3630 goto retry; 3631 } 3632 } 3633 3634 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3635 if (!zone_watermark_fast(zone, order, mark, 3636 ac_classzone_idx(ac), alloc_flags)) { 3637 int ret; 3638 3639 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3640 /* 3641 * Watermark failed for this zone, but see if we can 3642 * grow this zone if it contains deferred pages. 3643 */ 3644 if (static_branch_unlikely(&deferred_pages)) { 3645 if (_deferred_grow_zone(zone, order)) 3646 goto try_this_zone; 3647 } 3648 #endif 3649 /* Checked here to keep the fast path fast */ 3650 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3651 if (alloc_flags & ALLOC_NO_WATERMARKS) 3652 goto try_this_zone; 3653 3654 if (node_reclaim_mode == 0 || 3655 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3656 continue; 3657 3658 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3659 switch (ret) { 3660 case NODE_RECLAIM_NOSCAN: 3661 /* did not scan */ 3662 continue; 3663 case NODE_RECLAIM_FULL: 3664 /* scanned but unreclaimable */ 3665 continue; 3666 default: 3667 /* did we reclaim enough */ 3668 if (zone_watermark_ok(zone, order, mark, 3669 ac_classzone_idx(ac), alloc_flags)) 3670 goto try_this_zone; 3671 3672 continue; 3673 } 3674 } 3675 3676 try_this_zone: 3677 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3678 gfp_mask, alloc_flags, ac->migratetype); 3679 if (page) { 3680 prep_new_page(page, order, gfp_mask, alloc_flags); 3681 3682 /* 3683 * If this is a high-order atomic allocation then check 3684 * if the pageblock should be reserved for the future 3685 */ 3686 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3687 reserve_highatomic_pageblock(page, zone, order); 3688 3689 return page; 3690 } else { 3691 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3692 /* Try again if zone has deferred pages */ 3693 if (static_branch_unlikely(&deferred_pages)) { 3694 if (_deferred_grow_zone(zone, order)) 3695 goto try_this_zone; 3696 } 3697 #endif 3698 } 3699 } 3700 3701 /* 3702 * It's possible on a UMA machine to get through all zones that are 3703 * fragmented. If avoiding fragmentation, reset and try again. 3704 */ 3705 if (no_fallback) { 3706 alloc_flags &= ~ALLOC_NOFRAGMENT; 3707 goto retry; 3708 } 3709 3710 return NULL; 3711 } 3712 3713 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3714 { 3715 unsigned int filter = SHOW_MEM_FILTER_NODES; 3716 3717 /* 3718 * This documents exceptions given to allocations in certain 3719 * contexts that are allowed to allocate outside current's set 3720 * of allowed nodes. 3721 */ 3722 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3723 if (tsk_is_oom_victim(current) || 3724 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3725 filter &= ~SHOW_MEM_FILTER_NODES; 3726 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3727 filter &= ~SHOW_MEM_FILTER_NODES; 3728 3729 show_mem(filter, nodemask); 3730 } 3731 3732 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3733 { 3734 struct va_format vaf; 3735 va_list args; 3736 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3737 3738 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3739 return; 3740 3741 va_start(args, fmt); 3742 vaf.fmt = fmt; 3743 vaf.va = &args; 3744 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3745 current->comm, &vaf, gfp_mask, &gfp_mask, 3746 nodemask_pr_args(nodemask)); 3747 va_end(args); 3748 3749 cpuset_print_current_mems_allowed(); 3750 pr_cont("\n"); 3751 dump_stack(); 3752 warn_alloc_show_mem(gfp_mask, nodemask); 3753 } 3754 3755 static inline struct page * 3756 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3757 unsigned int alloc_flags, 3758 const struct alloc_context *ac) 3759 { 3760 struct page *page; 3761 3762 page = get_page_from_freelist(gfp_mask, order, 3763 alloc_flags|ALLOC_CPUSET, ac); 3764 /* 3765 * fallback to ignore cpuset restriction if our nodes 3766 * are depleted 3767 */ 3768 if (!page) 3769 page = get_page_from_freelist(gfp_mask, order, 3770 alloc_flags, ac); 3771 3772 return page; 3773 } 3774 3775 static inline struct page * 3776 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3777 const struct alloc_context *ac, unsigned long *did_some_progress) 3778 { 3779 struct oom_control oc = { 3780 .zonelist = ac->zonelist, 3781 .nodemask = ac->nodemask, 3782 .memcg = NULL, 3783 .gfp_mask = gfp_mask, 3784 .order = order, 3785 }; 3786 struct page *page; 3787 3788 *did_some_progress = 0; 3789 3790 /* 3791 * Acquire the oom lock. If that fails, somebody else is 3792 * making progress for us. 3793 */ 3794 if (!mutex_trylock(&oom_lock)) { 3795 *did_some_progress = 1; 3796 schedule_timeout_uninterruptible(1); 3797 return NULL; 3798 } 3799 3800 /* 3801 * Go through the zonelist yet one more time, keep very high watermark 3802 * here, this is only to catch a parallel oom killing, we must fail if 3803 * we're still under heavy pressure. But make sure that this reclaim 3804 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3805 * allocation which will never fail due to oom_lock already held. 3806 */ 3807 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3808 ~__GFP_DIRECT_RECLAIM, order, 3809 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3810 if (page) 3811 goto out; 3812 3813 /* Coredumps can quickly deplete all memory reserves */ 3814 if (current->flags & PF_DUMPCORE) 3815 goto out; 3816 /* The OOM killer will not help higher order allocs */ 3817 if (order > PAGE_ALLOC_COSTLY_ORDER) 3818 goto out; 3819 /* 3820 * We have already exhausted all our reclaim opportunities without any 3821 * success so it is time to admit defeat. We will skip the OOM killer 3822 * because it is very likely that the caller has a more reasonable 3823 * fallback than shooting a random task. 3824 */ 3825 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3826 goto out; 3827 /* The OOM killer does not needlessly kill tasks for lowmem */ 3828 if (ac->high_zoneidx < ZONE_NORMAL) 3829 goto out; 3830 if (pm_suspended_storage()) 3831 goto out; 3832 /* 3833 * XXX: GFP_NOFS allocations should rather fail than rely on 3834 * other request to make a forward progress. 3835 * We are in an unfortunate situation where out_of_memory cannot 3836 * do much for this context but let's try it to at least get 3837 * access to memory reserved if the current task is killed (see 3838 * out_of_memory). Once filesystems are ready to handle allocation 3839 * failures more gracefully we should just bail out here. 3840 */ 3841 3842 /* The OOM killer may not free memory on a specific node */ 3843 if (gfp_mask & __GFP_THISNODE) 3844 goto out; 3845 3846 /* Exhausted what can be done so it's blame time */ 3847 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3848 *did_some_progress = 1; 3849 3850 /* 3851 * Help non-failing allocations by giving them access to memory 3852 * reserves 3853 */ 3854 if (gfp_mask & __GFP_NOFAIL) 3855 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3856 ALLOC_NO_WATERMARKS, ac); 3857 } 3858 out: 3859 mutex_unlock(&oom_lock); 3860 return page; 3861 } 3862 3863 /* 3864 * Maximum number of compaction retries wit a progress before OOM 3865 * killer is consider as the only way to move forward. 3866 */ 3867 #define MAX_COMPACT_RETRIES 16 3868 3869 #ifdef CONFIG_COMPACTION 3870 /* Try memory compaction for high-order allocations before reclaim */ 3871 static struct page * 3872 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3873 unsigned int alloc_flags, const struct alloc_context *ac, 3874 enum compact_priority prio, enum compact_result *compact_result) 3875 { 3876 struct page *page = NULL; 3877 unsigned long pflags; 3878 unsigned int noreclaim_flag; 3879 3880 if (!order) 3881 return NULL; 3882 3883 psi_memstall_enter(&pflags); 3884 noreclaim_flag = memalloc_noreclaim_save(); 3885 3886 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3887 prio, &page); 3888 3889 memalloc_noreclaim_restore(noreclaim_flag); 3890 psi_memstall_leave(&pflags); 3891 3892 /* 3893 * At least in one zone compaction wasn't deferred or skipped, so let's 3894 * count a compaction stall 3895 */ 3896 count_vm_event(COMPACTSTALL); 3897 3898 /* Prep a captured page if available */ 3899 if (page) 3900 prep_new_page(page, order, gfp_mask, alloc_flags); 3901 3902 /* Try get a page from the freelist if available */ 3903 if (!page) 3904 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3905 3906 if (page) { 3907 struct zone *zone = page_zone(page); 3908 3909 zone->compact_blockskip_flush = false; 3910 compaction_defer_reset(zone, order, true); 3911 count_vm_event(COMPACTSUCCESS); 3912 return page; 3913 } 3914 3915 /* 3916 * It's bad if compaction run occurs and fails. The most likely reason 3917 * is that pages exist, but not enough to satisfy watermarks. 3918 */ 3919 count_vm_event(COMPACTFAIL); 3920 3921 cond_resched(); 3922 3923 return NULL; 3924 } 3925 3926 static inline bool 3927 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3928 enum compact_result compact_result, 3929 enum compact_priority *compact_priority, 3930 int *compaction_retries) 3931 { 3932 int max_retries = MAX_COMPACT_RETRIES; 3933 int min_priority; 3934 bool ret = false; 3935 int retries = *compaction_retries; 3936 enum compact_priority priority = *compact_priority; 3937 3938 if (!order) 3939 return false; 3940 3941 if (compaction_made_progress(compact_result)) 3942 (*compaction_retries)++; 3943 3944 /* 3945 * compaction considers all the zone as desperately out of memory 3946 * so it doesn't really make much sense to retry except when the 3947 * failure could be caused by insufficient priority 3948 */ 3949 if (compaction_failed(compact_result)) 3950 goto check_priority; 3951 3952 /* 3953 * compaction was skipped because there are not enough order-0 pages 3954 * to work with, so we retry only if it looks like reclaim can help. 3955 */ 3956 if (compaction_needs_reclaim(compact_result)) { 3957 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3958 goto out; 3959 } 3960 3961 /* 3962 * make sure the compaction wasn't deferred or didn't bail out early 3963 * due to locks contention before we declare that we should give up. 3964 * But the next retry should use a higher priority if allowed, so 3965 * we don't just keep bailing out endlessly. 3966 */ 3967 if (compaction_withdrawn(compact_result)) { 3968 goto check_priority; 3969 } 3970 3971 /* 3972 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3973 * costly ones because they are de facto nofail and invoke OOM 3974 * killer to move on while costly can fail and users are ready 3975 * to cope with that. 1/4 retries is rather arbitrary but we 3976 * would need much more detailed feedback from compaction to 3977 * make a better decision. 3978 */ 3979 if (order > PAGE_ALLOC_COSTLY_ORDER) 3980 max_retries /= 4; 3981 if (*compaction_retries <= max_retries) { 3982 ret = true; 3983 goto out; 3984 } 3985 3986 /* 3987 * Make sure there are attempts at the highest priority if we exhausted 3988 * all retries or failed at the lower priorities. 3989 */ 3990 check_priority: 3991 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3992 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3993 3994 if (*compact_priority > min_priority) { 3995 (*compact_priority)--; 3996 *compaction_retries = 0; 3997 ret = true; 3998 } 3999 out: 4000 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4001 return ret; 4002 } 4003 #else 4004 static inline struct page * 4005 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4006 unsigned int alloc_flags, const struct alloc_context *ac, 4007 enum compact_priority prio, enum compact_result *compact_result) 4008 { 4009 *compact_result = COMPACT_SKIPPED; 4010 return NULL; 4011 } 4012 4013 static inline bool 4014 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4015 enum compact_result compact_result, 4016 enum compact_priority *compact_priority, 4017 int *compaction_retries) 4018 { 4019 struct zone *zone; 4020 struct zoneref *z; 4021 4022 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4023 return false; 4024 4025 /* 4026 * There are setups with compaction disabled which would prefer to loop 4027 * inside the allocator rather than hit the oom killer prematurely. 4028 * Let's give them a good hope and keep retrying while the order-0 4029 * watermarks are OK. 4030 */ 4031 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4032 ac->nodemask) { 4033 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4034 ac_classzone_idx(ac), alloc_flags)) 4035 return true; 4036 } 4037 return false; 4038 } 4039 #endif /* CONFIG_COMPACTION */ 4040 4041 #ifdef CONFIG_LOCKDEP 4042 static struct lockdep_map __fs_reclaim_map = 4043 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4044 4045 static bool __need_fs_reclaim(gfp_t gfp_mask) 4046 { 4047 gfp_mask = current_gfp_context(gfp_mask); 4048 4049 /* no reclaim without waiting on it */ 4050 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4051 return false; 4052 4053 /* this guy won't enter reclaim */ 4054 if (current->flags & PF_MEMALLOC) 4055 return false; 4056 4057 /* We're only interested __GFP_FS allocations for now */ 4058 if (!(gfp_mask & __GFP_FS)) 4059 return false; 4060 4061 if (gfp_mask & __GFP_NOLOCKDEP) 4062 return false; 4063 4064 return true; 4065 } 4066 4067 void __fs_reclaim_acquire(void) 4068 { 4069 lock_map_acquire(&__fs_reclaim_map); 4070 } 4071 4072 void __fs_reclaim_release(void) 4073 { 4074 lock_map_release(&__fs_reclaim_map); 4075 } 4076 4077 void fs_reclaim_acquire(gfp_t gfp_mask) 4078 { 4079 if (__need_fs_reclaim(gfp_mask)) 4080 __fs_reclaim_acquire(); 4081 } 4082 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4083 4084 void fs_reclaim_release(gfp_t gfp_mask) 4085 { 4086 if (__need_fs_reclaim(gfp_mask)) 4087 __fs_reclaim_release(); 4088 } 4089 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4090 #endif 4091 4092 /* Perform direct synchronous page reclaim */ 4093 static int 4094 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4095 const struct alloc_context *ac) 4096 { 4097 int progress; 4098 unsigned int noreclaim_flag; 4099 unsigned long pflags; 4100 4101 cond_resched(); 4102 4103 /* We now go into synchronous reclaim */ 4104 cpuset_memory_pressure_bump(); 4105 psi_memstall_enter(&pflags); 4106 fs_reclaim_acquire(gfp_mask); 4107 noreclaim_flag = memalloc_noreclaim_save(); 4108 4109 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4110 ac->nodemask); 4111 4112 memalloc_noreclaim_restore(noreclaim_flag); 4113 fs_reclaim_release(gfp_mask); 4114 psi_memstall_leave(&pflags); 4115 4116 cond_resched(); 4117 4118 return progress; 4119 } 4120 4121 /* The really slow allocator path where we enter direct reclaim */ 4122 static inline struct page * 4123 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4124 unsigned int alloc_flags, const struct alloc_context *ac, 4125 unsigned long *did_some_progress) 4126 { 4127 struct page *page = NULL; 4128 bool drained = false; 4129 4130 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4131 if (unlikely(!(*did_some_progress))) 4132 return NULL; 4133 4134 retry: 4135 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4136 4137 /* 4138 * If an allocation failed after direct reclaim, it could be because 4139 * pages are pinned on the per-cpu lists or in high alloc reserves. 4140 * Shrink them them and try again 4141 */ 4142 if (!page && !drained) { 4143 unreserve_highatomic_pageblock(ac, false); 4144 drain_all_pages(NULL); 4145 drained = true; 4146 goto retry; 4147 } 4148 4149 return page; 4150 } 4151 4152 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4153 const struct alloc_context *ac) 4154 { 4155 struct zoneref *z; 4156 struct zone *zone; 4157 pg_data_t *last_pgdat = NULL; 4158 enum zone_type high_zoneidx = ac->high_zoneidx; 4159 4160 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 4161 ac->nodemask) { 4162 if (last_pgdat != zone->zone_pgdat) 4163 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 4164 last_pgdat = zone->zone_pgdat; 4165 } 4166 } 4167 4168 static inline unsigned int 4169 gfp_to_alloc_flags(gfp_t gfp_mask) 4170 { 4171 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4172 4173 /* 4174 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4175 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4176 * to save two branches. 4177 */ 4178 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4179 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4180 4181 /* 4182 * The caller may dip into page reserves a bit more if the caller 4183 * cannot run direct reclaim, or if the caller has realtime scheduling 4184 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4185 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4186 */ 4187 alloc_flags |= (__force int) 4188 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4189 4190 if (gfp_mask & __GFP_ATOMIC) { 4191 /* 4192 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4193 * if it can't schedule. 4194 */ 4195 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4196 alloc_flags |= ALLOC_HARDER; 4197 /* 4198 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4199 * comment for __cpuset_node_allowed(). 4200 */ 4201 alloc_flags &= ~ALLOC_CPUSET; 4202 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4203 alloc_flags |= ALLOC_HARDER; 4204 4205 #ifdef CONFIG_CMA 4206 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4207 alloc_flags |= ALLOC_CMA; 4208 #endif 4209 return alloc_flags; 4210 } 4211 4212 static bool oom_reserves_allowed(struct task_struct *tsk) 4213 { 4214 if (!tsk_is_oom_victim(tsk)) 4215 return false; 4216 4217 /* 4218 * !MMU doesn't have oom reaper so give access to memory reserves 4219 * only to the thread with TIF_MEMDIE set 4220 */ 4221 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4222 return false; 4223 4224 return true; 4225 } 4226 4227 /* 4228 * Distinguish requests which really need access to full memory 4229 * reserves from oom victims which can live with a portion of it 4230 */ 4231 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4232 { 4233 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4234 return 0; 4235 if (gfp_mask & __GFP_MEMALLOC) 4236 return ALLOC_NO_WATERMARKS; 4237 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4238 return ALLOC_NO_WATERMARKS; 4239 if (!in_interrupt()) { 4240 if (current->flags & PF_MEMALLOC) 4241 return ALLOC_NO_WATERMARKS; 4242 else if (oom_reserves_allowed(current)) 4243 return ALLOC_OOM; 4244 } 4245 4246 return 0; 4247 } 4248 4249 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4250 { 4251 return !!__gfp_pfmemalloc_flags(gfp_mask); 4252 } 4253 4254 /* 4255 * Checks whether it makes sense to retry the reclaim to make a forward progress 4256 * for the given allocation request. 4257 * 4258 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4259 * without success, or when we couldn't even meet the watermark if we 4260 * reclaimed all remaining pages on the LRU lists. 4261 * 4262 * Returns true if a retry is viable or false to enter the oom path. 4263 */ 4264 static inline bool 4265 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4266 struct alloc_context *ac, int alloc_flags, 4267 bool did_some_progress, int *no_progress_loops) 4268 { 4269 struct zone *zone; 4270 struct zoneref *z; 4271 bool ret = false; 4272 4273 /* 4274 * Costly allocations might have made a progress but this doesn't mean 4275 * their order will become available due to high fragmentation so 4276 * always increment the no progress counter for them 4277 */ 4278 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4279 *no_progress_loops = 0; 4280 else 4281 (*no_progress_loops)++; 4282 4283 /* 4284 * Make sure we converge to OOM if we cannot make any progress 4285 * several times in the row. 4286 */ 4287 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4288 /* Before OOM, exhaust highatomic_reserve */ 4289 return unreserve_highatomic_pageblock(ac, true); 4290 } 4291 4292 /* 4293 * Keep reclaiming pages while there is a chance this will lead 4294 * somewhere. If none of the target zones can satisfy our allocation 4295 * request even if all reclaimable pages are considered then we are 4296 * screwed and have to go OOM. 4297 */ 4298 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4299 ac->nodemask) { 4300 unsigned long available; 4301 unsigned long reclaimable; 4302 unsigned long min_wmark = min_wmark_pages(zone); 4303 bool wmark; 4304 4305 available = reclaimable = zone_reclaimable_pages(zone); 4306 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4307 4308 /* 4309 * Would the allocation succeed if we reclaimed all 4310 * reclaimable pages? 4311 */ 4312 wmark = __zone_watermark_ok(zone, order, min_wmark, 4313 ac_classzone_idx(ac), alloc_flags, available); 4314 trace_reclaim_retry_zone(z, order, reclaimable, 4315 available, min_wmark, *no_progress_loops, wmark); 4316 if (wmark) { 4317 /* 4318 * If we didn't make any progress and have a lot of 4319 * dirty + writeback pages then we should wait for 4320 * an IO to complete to slow down the reclaim and 4321 * prevent from pre mature OOM 4322 */ 4323 if (!did_some_progress) { 4324 unsigned long write_pending; 4325 4326 write_pending = zone_page_state_snapshot(zone, 4327 NR_ZONE_WRITE_PENDING); 4328 4329 if (2 * write_pending > reclaimable) { 4330 congestion_wait(BLK_RW_ASYNC, HZ/10); 4331 return true; 4332 } 4333 } 4334 4335 ret = true; 4336 goto out; 4337 } 4338 } 4339 4340 out: 4341 /* 4342 * Memory allocation/reclaim might be called from a WQ context and the 4343 * current implementation of the WQ concurrency control doesn't 4344 * recognize that a particular WQ is congested if the worker thread is 4345 * looping without ever sleeping. Therefore we have to do a short sleep 4346 * here rather than calling cond_resched(). 4347 */ 4348 if (current->flags & PF_WQ_WORKER) 4349 schedule_timeout_uninterruptible(1); 4350 else 4351 cond_resched(); 4352 return ret; 4353 } 4354 4355 static inline bool 4356 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4357 { 4358 /* 4359 * It's possible that cpuset's mems_allowed and the nodemask from 4360 * mempolicy don't intersect. This should be normally dealt with by 4361 * policy_nodemask(), but it's possible to race with cpuset update in 4362 * such a way the check therein was true, and then it became false 4363 * before we got our cpuset_mems_cookie here. 4364 * This assumes that for all allocations, ac->nodemask can come only 4365 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4366 * when it does not intersect with the cpuset restrictions) or the 4367 * caller can deal with a violated nodemask. 4368 */ 4369 if (cpusets_enabled() && ac->nodemask && 4370 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4371 ac->nodemask = NULL; 4372 return true; 4373 } 4374 4375 /* 4376 * When updating a task's mems_allowed or mempolicy nodemask, it is 4377 * possible to race with parallel threads in such a way that our 4378 * allocation can fail while the mask is being updated. If we are about 4379 * to fail, check if the cpuset changed during allocation and if so, 4380 * retry. 4381 */ 4382 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4383 return true; 4384 4385 return false; 4386 } 4387 4388 static inline struct page * 4389 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4390 struct alloc_context *ac) 4391 { 4392 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4393 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4394 struct page *page = NULL; 4395 unsigned int alloc_flags; 4396 unsigned long did_some_progress; 4397 enum compact_priority compact_priority; 4398 enum compact_result compact_result; 4399 int compaction_retries; 4400 int no_progress_loops; 4401 unsigned int cpuset_mems_cookie; 4402 int reserve_flags; 4403 4404 /* 4405 * We also sanity check to catch abuse of atomic reserves being used by 4406 * callers that are not in atomic context. 4407 */ 4408 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4409 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4410 gfp_mask &= ~__GFP_ATOMIC; 4411 4412 retry_cpuset: 4413 compaction_retries = 0; 4414 no_progress_loops = 0; 4415 compact_priority = DEF_COMPACT_PRIORITY; 4416 cpuset_mems_cookie = read_mems_allowed_begin(); 4417 4418 /* 4419 * The fast path uses conservative alloc_flags to succeed only until 4420 * kswapd needs to be woken up, and to avoid the cost of setting up 4421 * alloc_flags precisely. So we do that now. 4422 */ 4423 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4424 4425 /* 4426 * We need to recalculate the starting point for the zonelist iterator 4427 * because we might have used different nodemask in the fast path, or 4428 * there was a cpuset modification and we are retrying - otherwise we 4429 * could end up iterating over non-eligible zones endlessly. 4430 */ 4431 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4432 ac->high_zoneidx, ac->nodemask); 4433 if (!ac->preferred_zoneref->zone) 4434 goto nopage; 4435 4436 if (alloc_flags & ALLOC_KSWAPD) 4437 wake_all_kswapds(order, gfp_mask, ac); 4438 4439 /* 4440 * The adjusted alloc_flags might result in immediate success, so try 4441 * that first 4442 */ 4443 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4444 if (page) 4445 goto got_pg; 4446 4447 /* 4448 * For costly allocations, try direct compaction first, as it's likely 4449 * that we have enough base pages and don't need to reclaim. For non- 4450 * movable high-order allocations, do that as well, as compaction will 4451 * try prevent permanent fragmentation by migrating from blocks of the 4452 * same migratetype. 4453 * Don't try this for allocations that are allowed to ignore 4454 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4455 */ 4456 if (can_direct_reclaim && 4457 (costly_order || 4458 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4459 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4460 page = __alloc_pages_direct_compact(gfp_mask, order, 4461 alloc_flags, ac, 4462 INIT_COMPACT_PRIORITY, 4463 &compact_result); 4464 if (page) 4465 goto got_pg; 4466 4467 /* 4468 * Checks for costly allocations with __GFP_NORETRY, which 4469 * includes some THP page fault allocations 4470 */ 4471 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4472 /* 4473 * If allocating entire pageblock(s) and compaction 4474 * failed because all zones are below low watermarks 4475 * or is prohibited because it recently failed at this 4476 * order, fail immediately unless the allocator has 4477 * requested compaction and reclaim retry. 4478 * 4479 * Reclaim is 4480 * - potentially very expensive because zones are far 4481 * below their low watermarks or this is part of very 4482 * bursty high order allocations, 4483 * - not guaranteed to help because isolate_freepages() 4484 * may not iterate over freed pages as part of its 4485 * linear scan, and 4486 * - unlikely to make entire pageblocks free on its 4487 * own. 4488 */ 4489 if (compact_result == COMPACT_SKIPPED || 4490 compact_result == COMPACT_DEFERRED) 4491 goto nopage; 4492 4493 /* 4494 * Looks like reclaim/compaction is worth trying, but 4495 * sync compaction could be very expensive, so keep 4496 * using async compaction. 4497 */ 4498 compact_priority = INIT_COMPACT_PRIORITY; 4499 } 4500 } 4501 4502 retry: 4503 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4504 if (alloc_flags & ALLOC_KSWAPD) 4505 wake_all_kswapds(order, gfp_mask, ac); 4506 4507 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4508 if (reserve_flags) 4509 alloc_flags = reserve_flags; 4510 4511 /* 4512 * Reset the nodemask and zonelist iterators if memory policies can be 4513 * ignored. These allocations are high priority and system rather than 4514 * user oriented. 4515 */ 4516 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4517 ac->nodemask = NULL; 4518 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4519 ac->high_zoneidx, ac->nodemask); 4520 } 4521 4522 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4523 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4524 if (page) 4525 goto got_pg; 4526 4527 /* Caller is not willing to reclaim, we can't balance anything */ 4528 if (!can_direct_reclaim) 4529 goto nopage; 4530 4531 /* Avoid recursion of direct reclaim */ 4532 if (current->flags & PF_MEMALLOC) 4533 goto nopage; 4534 4535 /* Try direct reclaim and then allocating */ 4536 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4537 &did_some_progress); 4538 if (page) 4539 goto got_pg; 4540 4541 /* Try direct compaction and then allocating */ 4542 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4543 compact_priority, &compact_result); 4544 if (page) 4545 goto got_pg; 4546 4547 /* Do not loop if specifically requested */ 4548 if (gfp_mask & __GFP_NORETRY) 4549 goto nopage; 4550 4551 /* 4552 * Do not retry costly high order allocations unless they are 4553 * __GFP_RETRY_MAYFAIL 4554 */ 4555 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4556 goto nopage; 4557 4558 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4559 did_some_progress > 0, &no_progress_loops)) 4560 goto retry; 4561 4562 /* 4563 * It doesn't make any sense to retry for the compaction if the order-0 4564 * reclaim is not able to make any progress because the current 4565 * implementation of the compaction depends on the sufficient amount 4566 * of free memory (see __compaction_suitable) 4567 */ 4568 if (did_some_progress > 0 && 4569 should_compact_retry(ac, order, alloc_flags, 4570 compact_result, &compact_priority, 4571 &compaction_retries)) 4572 goto retry; 4573 4574 4575 /* Deal with possible cpuset update races before we start OOM killing */ 4576 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4577 goto retry_cpuset; 4578 4579 /* Reclaim has failed us, start killing things */ 4580 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4581 if (page) 4582 goto got_pg; 4583 4584 /* Avoid allocations with no watermarks from looping endlessly */ 4585 if (tsk_is_oom_victim(current) && 4586 (alloc_flags == ALLOC_OOM || 4587 (gfp_mask & __GFP_NOMEMALLOC))) 4588 goto nopage; 4589 4590 /* Retry as long as the OOM killer is making progress */ 4591 if (did_some_progress) { 4592 no_progress_loops = 0; 4593 goto retry; 4594 } 4595 4596 nopage: 4597 /* Deal with possible cpuset update races before we fail */ 4598 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4599 goto retry_cpuset; 4600 4601 /* 4602 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4603 * we always retry 4604 */ 4605 if (gfp_mask & __GFP_NOFAIL) { 4606 /* 4607 * All existing users of the __GFP_NOFAIL are blockable, so warn 4608 * of any new users that actually require GFP_NOWAIT 4609 */ 4610 if (WARN_ON_ONCE(!can_direct_reclaim)) 4611 goto fail; 4612 4613 /* 4614 * PF_MEMALLOC request from this context is rather bizarre 4615 * because we cannot reclaim anything and only can loop waiting 4616 * for somebody to do a work for us 4617 */ 4618 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4619 4620 /* 4621 * non failing costly orders are a hard requirement which we 4622 * are not prepared for much so let's warn about these users 4623 * so that we can identify them and convert them to something 4624 * else. 4625 */ 4626 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4627 4628 /* 4629 * Help non-failing allocations by giving them access to memory 4630 * reserves but do not use ALLOC_NO_WATERMARKS because this 4631 * could deplete whole memory reserves which would just make 4632 * the situation worse 4633 */ 4634 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4635 if (page) 4636 goto got_pg; 4637 4638 cond_resched(); 4639 goto retry; 4640 } 4641 fail: 4642 warn_alloc(gfp_mask, ac->nodemask, 4643 "page allocation failure: order:%u", order); 4644 got_pg: 4645 return page; 4646 } 4647 4648 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4649 int preferred_nid, nodemask_t *nodemask, 4650 struct alloc_context *ac, gfp_t *alloc_mask, 4651 unsigned int *alloc_flags) 4652 { 4653 ac->high_zoneidx = gfp_zone(gfp_mask); 4654 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4655 ac->nodemask = nodemask; 4656 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4657 4658 if (cpusets_enabled()) { 4659 *alloc_mask |= __GFP_HARDWALL; 4660 if (!ac->nodemask) 4661 ac->nodemask = &cpuset_current_mems_allowed; 4662 else 4663 *alloc_flags |= ALLOC_CPUSET; 4664 } 4665 4666 fs_reclaim_acquire(gfp_mask); 4667 fs_reclaim_release(gfp_mask); 4668 4669 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4670 4671 if (should_fail_alloc_page(gfp_mask, order)) 4672 return false; 4673 4674 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4675 *alloc_flags |= ALLOC_CMA; 4676 4677 return true; 4678 } 4679 4680 /* Determine whether to spread dirty pages and what the first usable zone */ 4681 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4682 { 4683 /* Dirty zone balancing only done in the fast path */ 4684 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4685 4686 /* 4687 * The preferred zone is used for statistics but crucially it is 4688 * also used as the starting point for the zonelist iterator. It 4689 * may get reset for allocations that ignore memory policies. 4690 */ 4691 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4692 ac->high_zoneidx, ac->nodemask); 4693 } 4694 4695 /* 4696 * This is the 'heart' of the zoned buddy allocator. 4697 */ 4698 struct page * 4699 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4700 nodemask_t *nodemask) 4701 { 4702 struct page *page; 4703 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4704 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4705 struct alloc_context ac = { }; 4706 4707 /* 4708 * There are several places where we assume that the order value is sane 4709 * so bail out early if the request is out of bound. 4710 */ 4711 if (unlikely(order >= MAX_ORDER)) { 4712 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4713 return NULL; 4714 } 4715 4716 gfp_mask &= gfp_allowed_mask; 4717 alloc_mask = gfp_mask; 4718 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4719 return NULL; 4720 4721 finalise_ac(gfp_mask, &ac); 4722 4723 /* 4724 * Forbid the first pass from falling back to types that fragment 4725 * memory until all local zones are considered. 4726 */ 4727 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4728 4729 /* First allocation attempt */ 4730 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4731 if (likely(page)) 4732 goto out; 4733 4734 /* 4735 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4736 * resp. GFP_NOIO which has to be inherited for all allocation requests 4737 * from a particular context which has been marked by 4738 * memalloc_no{fs,io}_{save,restore}. 4739 */ 4740 alloc_mask = current_gfp_context(gfp_mask); 4741 ac.spread_dirty_pages = false; 4742 4743 /* 4744 * Restore the original nodemask if it was potentially replaced with 4745 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4746 */ 4747 ac.nodemask = nodemask; 4748 4749 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4750 4751 out: 4752 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4753 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) { 4754 __free_pages(page, order); 4755 page = NULL; 4756 } 4757 4758 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4759 4760 return page; 4761 } 4762 EXPORT_SYMBOL(__alloc_pages_nodemask); 4763 4764 /* 4765 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4766 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4767 * you need to access high mem. 4768 */ 4769 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4770 { 4771 struct page *page; 4772 4773 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4774 if (!page) 4775 return 0; 4776 return (unsigned long) page_address(page); 4777 } 4778 EXPORT_SYMBOL(__get_free_pages); 4779 4780 unsigned long get_zeroed_page(gfp_t gfp_mask) 4781 { 4782 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4783 } 4784 EXPORT_SYMBOL(get_zeroed_page); 4785 4786 static inline void free_the_page(struct page *page, unsigned int order) 4787 { 4788 if (order == 0) /* Via pcp? */ 4789 free_unref_page(page); 4790 else 4791 __free_pages_ok(page, order); 4792 } 4793 4794 void __free_pages(struct page *page, unsigned int order) 4795 { 4796 if (put_page_testzero(page)) 4797 free_the_page(page, order); 4798 } 4799 EXPORT_SYMBOL(__free_pages); 4800 4801 void free_pages(unsigned long addr, unsigned int order) 4802 { 4803 if (addr != 0) { 4804 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4805 __free_pages(virt_to_page((void *)addr), order); 4806 } 4807 } 4808 4809 EXPORT_SYMBOL(free_pages); 4810 4811 /* 4812 * Page Fragment: 4813 * An arbitrary-length arbitrary-offset area of memory which resides 4814 * within a 0 or higher order page. Multiple fragments within that page 4815 * are individually refcounted, in the page's reference counter. 4816 * 4817 * The page_frag functions below provide a simple allocation framework for 4818 * page fragments. This is used by the network stack and network device 4819 * drivers to provide a backing region of memory for use as either an 4820 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4821 */ 4822 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4823 gfp_t gfp_mask) 4824 { 4825 struct page *page = NULL; 4826 gfp_t gfp = gfp_mask; 4827 4828 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4829 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4830 __GFP_NOMEMALLOC; 4831 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4832 PAGE_FRAG_CACHE_MAX_ORDER); 4833 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4834 #endif 4835 if (unlikely(!page)) 4836 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4837 4838 nc->va = page ? page_address(page) : NULL; 4839 4840 return page; 4841 } 4842 4843 void __page_frag_cache_drain(struct page *page, unsigned int count) 4844 { 4845 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4846 4847 if (page_ref_sub_and_test(page, count)) 4848 free_the_page(page, compound_order(page)); 4849 } 4850 EXPORT_SYMBOL(__page_frag_cache_drain); 4851 4852 void *page_frag_alloc(struct page_frag_cache *nc, 4853 unsigned int fragsz, gfp_t gfp_mask) 4854 { 4855 unsigned int size = PAGE_SIZE; 4856 struct page *page; 4857 int offset; 4858 4859 if (unlikely(!nc->va)) { 4860 refill: 4861 page = __page_frag_cache_refill(nc, gfp_mask); 4862 if (!page) 4863 return NULL; 4864 4865 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4866 /* if size can vary use size else just use PAGE_SIZE */ 4867 size = nc->size; 4868 #endif 4869 /* Even if we own the page, we do not use atomic_set(). 4870 * This would break get_page_unless_zero() users. 4871 */ 4872 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4873 4874 /* reset page count bias and offset to start of new frag */ 4875 nc->pfmemalloc = page_is_pfmemalloc(page); 4876 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4877 nc->offset = size; 4878 } 4879 4880 offset = nc->offset - fragsz; 4881 if (unlikely(offset < 0)) { 4882 page = virt_to_page(nc->va); 4883 4884 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4885 goto refill; 4886 4887 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4888 /* if size can vary use size else just use PAGE_SIZE */ 4889 size = nc->size; 4890 #endif 4891 /* OK, page count is 0, we can safely set it */ 4892 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4893 4894 /* reset page count bias and offset to start of new frag */ 4895 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4896 offset = size - fragsz; 4897 } 4898 4899 nc->pagecnt_bias--; 4900 nc->offset = offset; 4901 4902 return nc->va + offset; 4903 } 4904 EXPORT_SYMBOL(page_frag_alloc); 4905 4906 /* 4907 * Frees a page fragment allocated out of either a compound or order 0 page. 4908 */ 4909 void page_frag_free(void *addr) 4910 { 4911 struct page *page = virt_to_head_page(addr); 4912 4913 if (unlikely(put_page_testzero(page))) 4914 free_the_page(page, compound_order(page)); 4915 } 4916 EXPORT_SYMBOL(page_frag_free); 4917 4918 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4919 size_t size) 4920 { 4921 if (addr) { 4922 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4923 unsigned long used = addr + PAGE_ALIGN(size); 4924 4925 split_page(virt_to_page((void *)addr), order); 4926 while (used < alloc_end) { 4927 free_page(used); 4928 used += PAGE_SIZE; 4929 } 4930 } 4931 return (void *)addr; 4932 } 4933 4934 /** 4935 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4936 * @size: the number of bytes to allocate 4937 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4938 * 4939 * This function is similar to alloc_pages(), except that it allocates the 4940 * minimum number of pages to satisfy the request. alloc_pages() can only 4941 * allocate memory in power-of-two pages. 4942 * 4943 * This function is also limited by MAX_ORDER. 4944 * 4945 * Memory allocated by this function must be released by free_pages_exact(). 4946 * 4947 * Return: pointer to the allocated area or %NULL in case of error. 4948 */ 4949 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4950 { 4951 unsigned int order = get_order(size); 4952 unsigned long addr; 4953 4954 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 4955 gfp_mask &= ~__GFP_COMP; 4956 4957 addr = __get_free_pages(gfp_mask, order); 4958 return make_alloc_exact(addr, order, size); 4959 } 4960 EXPORT_SYMBOL(alloc_pages_exact); 4961 4962 /** 4963 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4964 * pages on a node. 4965 * @nid: the preferred node ID where memory should be allocated 4966 * @size: the number of bytes to allocate 4967 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4968 * 4969 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4970 * back. 4971 * 4972 * Return: pointer to the allocated area or %NULL in case of error. 4973 */ 4974 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4975 { 4976 unsigned int order = get_order(size); 4977 struct page *p; 4978 4979 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 4980 gfp_mask &= ~__GFP_COMP; 4981 4982 p = alloc_pages_node(nid, gfp_mask, order); 4983 if (!p) 4984 return NULL; 4985 return make_alloc_exact((unsigned long)page_address(p), order, size); 4986 } 4987 4988 /** 4989 * free_pages_exact - release memory allocated via alloc_pages_exact() 4990 * @virt: the value returned by alloc_pages_exact. 4991 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4992 * 4993 * Release the memory allocated by a previous call to alloc_pages_exact. 4994 */ 4995 void free_pages_exact(void *virt, size_t size) 4996 { 4997 unsigned long addr = (unsigned long)virt; 4998 unsigned long end = addr + PAGE_ALIGN(size); 4999 5000 while (addr < end) { 5001 free_page(addr); 5002 addr += PAGE_SIZE; 5003 } 5004 } 5005 EXPORT_SYMBOL(free_pages_exact); 5006 5007 /** 5008 * nr_free_zone_pages - count number of pages beyond high watermark 5009 * @offset: The zone index of the highest zone 5010 * 5011 * nr_free_zone_pages() counts the number of pages which are beyond the 5012 * high watermark within all zones at or below a given zone index. For each 5013 * zone, the number of pages is calculated as: 5014 * 5015 * nr_free_zone_pages = managed_pages - high_pages 5016 * 5017 * Return: number of pages beyond high watermark. 5018 */ 5019 static unsigned long nr_free_zone_pages(int offset) 5020 { 5021 struct zoneref *z; 5022 struct zone *zone; 5023 5024 /* Just pick one node, since fallback list is circular */ 5025 unsigned long sum = 0; 5026 5027 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5028 5029 for_each_zone_zonelist(zone, z, zonelist, offset) { 5030 unsigned long size = zone_managed_pages(zone); 5031 unsigned long high = high_wmark_pages(zone); 5032 if (size > high) 5033 sum += size - high; 5034 } 5035 5036 return sum; 5037 } 5038 5039 /** 5040 * nr_free_buffer_pages - count number of pages beyond high watermark 5041 * 5042 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5043 * watermark within ZONE_DMA and ZONE_NORMAL. 5044 * 5045 * Return: number of pages beyond high watermark within ZONE_DMA and 5046 * ZONE_NORMAL. 5047 */ 5048 unsigned long nr_free_buffer_pages(void) 5049 { 5050 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5051 } 5052 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5053 5054 /** 5055 * nr_free_pagecache_pages - count number of pages beyond high watermark 5056 * 5057 * nr_free_pagecache_pages() counts the number of pages which are beyond the 5058 * high watermark within all zones. 5059 * 5060 * Return: number of pages beyond high watermark within all zones. 5061 */ 5062 unsigned long nr_free_pagecache_pages(void) 5063 { 5064 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5065 } 5066 5067 static inline void show_node(struct zone *zone) 5068 { 5069 if (IS_ENABLED(CONFIG_NUMA)) 5070 printk("Node %d ", zone_to_nid(zone)); 5071 } 5072 5073 long si_mem_available(void) 5074 { 5075 long available; 5076 unsigned long pagecache; 5077 unsigned long wmark_low = 0; 5078 unsigned long pages[NR_LRU_LISTS]; 5079 unsigned long reclaimable; 5080 struct zone *zone; 5081 int lru; 5082 5083 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5084 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5085 5086 for_each_zone(zone) 5087 wmark_low += low_wmark_pages(zone); 5088 5089 /* 5090 * Estimate the amount of memory available for userspace allocations, 5091 * without causing swapping. 5092 */ 5093 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5094 5095 /* 5096 * Not all the page cache can be freed, otherwise the system will 5097 * start swapping. Assume at least half of the page cache, or the 5098 * low watermark worth of cache, needs to stay. 5099 */ 5100 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5101 pagecache -= min(pagecache / 2, wmark_low); 5102 available += pagecache; 5103 5104 /* 5105 * Part of the reclaimable slab and other kernel memory consists of 5106 * items that are in use, and cannot be freed. Cap this estimate at the 5107 * low watermark. 5108 */ 5109 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + 5110 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5111 available += reclaimable - min(reclaimable / 2, wmark_low); 5112 5113 if (available < 0) 5114 available = 0; 5115 return available; 5116 } 5117 EXPORT_SYMBOL_GPL(si_mem_available); 5118 5119 void si_meminfo(struct sysinfo *val) 5120 { 5121 val->totalram = totalram_pages(); 5122 val->sharedram = global_node_page_state(NR_SHMEM); 5123 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5124 val->bufferram = nr_blockdev_pages(); 5125 val->totalhigh = totalhigh_pages(); 5126 val->freehigh = nr_free_highpages(); 5127 val->mem_unit = PAGE_SIZE; 5128 } 5129 5130 EXPORT_SYMBOL(si_meminfo); 5131 5132 #ifdef CONFIG_NUMA 5133 void si_meminfo_node(struct sysinfo *val, int nid) 5134 { 5135 int zone_type; /* needs to be signed */ 5136 unsigned long managed_pages = 0; 5137 unsigned long managed_highpages = 0; 5138 unsigned long free_highpages = 0; 5139 pg_data_t *pgdat = NODE_DATA(nid); 5140 5141 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5142 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5143 val->totalram = managed_pages; 5144 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5145 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5146 #ifdef CONFIG_HIGHMEM 5147 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5148 struct zone *zone = &pgdat->node_zones[zone_type]; 5149 5150 if (is_highmem(zone)) { 5151 managed_highpages += zone_managed_pages(zone); 5152 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5153 } 5154 } 5155 val->totalhigh = managed_highpages; 5156 val->freehigh = free_highpages; 5157 #else 5158 val->totalhigh = managed_highpages; 5159 val->freehigh = free_highpages; 5160 #endif 5161 val->mem_unit = PAGE_SIZE; 5162 } 5163 #endif 5164 5165 /* 5166 * Determine whether the node should be displayed or not, depending on whether 5167 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5168 */ 5169 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5170 { 5171 if (!(flags & SHOW_MEM_FILTER_NODES)) 5172 return false; 5173 5174 /* 5175 * no node mask - aka implicit memory numa policy. Do not bother with 5176 * the synchronization - read_mems_allowed_begin - because we do not 5177 * have to be precise here. 5178 */ 5179 if (!nodemask) 5180 nodemask = &cpuset_current_mems_allowed; 5181 5182 return !node_isset(nid, *nodemask); 5183 } 5184 5185 #define K(x) ((x) << (PAGE_SHIFT-10)) 5186 5187 static void show_migration_types(unsigned char type) 5188 { 5189 static const char types[MIGRATE_TYPES] = { 5190 [MIGRATE_UNMOVABLE] = 'U', 5191 [MIGRATE_MOVABLE] = 'M', 5192 [MIGRATE_RECLAIMABLE] = 'E', 5193 [MIGRATE_HIGHATOMIC] = 'H', 5194 #ifdef CONFIG_CMA 5195 [MIGRATE_CMA] = 'C', 5196 #endif 5197 #ifdef CONFIG_MEMORY_ISOLATION 5198 [MIGRATE_ISOLATE] = 'I', 5199 #endif 5200 }; 5201 char tmp[MIGRATE_TYPES + 1]; 5202 char *p = tmp; 5203 int i; 5204 5205 for (i = 0; i < MIGRATE_TYPES; i++) { 5206 if (type & (1 << i)) 5207 *p++ = types[i]; 5208 } 5209 5210 *p = '\0'; 5211 printk(KERN_CONT "(%s) ", tmp); 5212 } 5213 5214 /* 5215 * Show free area list (used inside shift_scroll-lock stuff) 5216 * We also calculate the percentage fragmentation. We do this by counting the 5217 * memory on each free list with the exception of the first item on the list. 5218 * 5219 * Bits in @filter: 5220 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5221 * cpuset. 5222 */ 5223 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5224 { 5225 unsigned long free_pcp = 0; 5226 int cpu; 5227 struct zone *zone; 5228 pg_data_t *pgdat; 5229 5230 for_each_populated_zone(zone) { 5231 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5232 continue; 5233 5234 for_each_online_cpu(cpu) 5235 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5236 } 5237 5238 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5239 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5240 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 5241 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5242 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5243 " free:%lu free_pcp:%lu free_cma:%lu\n", 5244 global_node_page_state(NR_ACTIVE_ANON), 5245 global_node_page_state(NR_INACTIVE_ANON), 5246 global_node_page_state(NR_ISOLATED_ANON), 5247 global_node_page_state(NR_ACTIVE_FILE), 5248 global_node_page_state(NR_INACTIVE_FILE), 5249 global_node_page_state(NR_ISOLATED_FILE), 5250 global_node_page_state(NR_UNEVICTABLE), 5251 global_node_page_state(NR_FILE_DIRTY), 5252 global_node_page_state(NR_WRITEBACK), 5253 global_node_page_state(NR_UNSTABLE_NFS), 5254 global_node_page_state(NR_SLAB_RECLAIMABLE), 5255 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 5256 global_node_page_state(NR_FILE_MAPPED), 5257 global_node_page_state(NR_SHMEM), 5258 global_zone_page_state(NR_PAGETABLE), 5259 global_zone_page_state(NR_BOUNCE), 5260 global_zone_page_state(NR_FREE_PAGES), 5261 free_pcp, 5262 global_zone_page_state(NR_FREE_CMA_PAGES)); 5263 5264 for_each_online_pgdat(pgdat) { 5265 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5266 continue; 5267 5268 printk("Node %d" 5269 " active_anon:%lukB" 5270 " inactive_anon:%lukB" 5271 " active_file:%lukB" 5272 " inactive_file:%lukB" 5273 " unevictable:%lukB" 5274 " isolated(anon):%lukB" 5275 " isolated(file):%lukB" 5276 " mapped:%lukB" 5277 " dirty:%lukB" 5278 " writeback:%lukB" 5279 " shmem:%lukB" 5280 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5281 " shmem_thp: %lukB" 5282 " shmem_pmdmapped: %lukB" 5283 " anon_thp: %lukB" 5284 #endif 5285 " writeback_tmp:%lukB" 5286 " unstable:%lukB" 5287 " all_unreclaimable? %s" 5288 "\n", 5289 pgdat->node_id, 5290 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5291 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5292 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5293 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5294 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5295 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5296 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5297 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5298 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5299 K(node_page_state(pgdat, NR_WRITEBACK)), 5300 K(node_page_state(pgdat, NR_SHMEM)), 5301 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5302 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5303 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5304 * HPAGE_PMD_NR), 5305 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5306 #endif 5307 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5308 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 5309 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5310 "yes" : "no"); 5311 } 5312 5313 for_each_populated_zone(zone) { 5314 int i; 5315 5316 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5317 continue; 5318 5319 free_pcp = 0; 5320 for_each_online_cpu(cpu) 5321 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5322 5323 show_node(zone); 5324 printk(KERN_CONT 5325 "%s" 5326 " free:%lukB" 5327 " min:%lukB" 5328 " low:%lukB" 5329 " high:%lukB" 5330 " reserved_highatomic:%luKB" 5331 " active_anon:%lukB" 5332 " inactive_anon:%lukB" 5333 " active_file:%lukB" 5334 " inactive_file:%lukB" 5335 " unevictable:%lukB" 5336 " writepending:%lukB" 5337 " present:%lukB" 5338 " managed:%lukB" 5339 " mlocked:%lukB" 5340 " kernel_stack:%lukB" 5341 " pagetables:%lukB" 5342 " bounce:%lukB" 5343 " free_pcp:%lukB" 5344 " local_pcp:%ukB" 5345 " free_cma:%lukB" 5346 "\n", 5347 zone->name, 5348 K(zone_page_state(zone, NR_FREE_PAGES)), 5349 K(min_wmark_pages(zone)), 5350 K(low_wmark_pages(zone)), 5351 K(high_wmark_pages(zone)), 5352 K(zone->nr_reserved_highatomic), 5353 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5354 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5355 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5356 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5357 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5358 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5359 K(zone->present_pages), 5360 K(zone_managed_pages(zone)), 5361 K(zone_page_state(zone, NR_MLOCK)), 5362 zone_page_state(zone, NR_KERNEL_STACK_KB), 5363 K(zone_page_state(zone, NR_PAGETABLE)), 5364 K(zone_page_state(zone, NR_BOUNCE)), 5365 K(free_pcp), 5366 K(this_cpu_read(zone->pageset->pcp.count)), 5367 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5368 printk("lowmem_reserve[]:"); 5369 for (i = 0; i < MAX_NR_ZONES; i++) 5370 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5371 printk(KERN_CONT "\n"); 5372 } 5373 5374 for_each_populated_zone(zone) { 5375 unsigned int order; 5376 unsigned long nr[MAX_ORDER], flags, total = 0; 5377 unsigned char types[MAX_ORDER]; 5378 5379 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5380 continue; 5381 show_node(zone); 5382 printk(KERN_CONT "%s: ", zone->name); 5383 5384 spin_lock_irqsave(&zone->lock, flags); 5385 for (order = 0; order < MAX_ORDER; order++) { 5386 struct free_area *area = &zone->free_area[order]; 5387 int type; 5388 5389 nr[order] = area->nr_free; 5390 total += nr[order] << order; 5391 5392 types[order] = 0; 5393 for (type = 0; type < MIGRATE_TYPES; type++) { 5394 if (!free_area_empty(area, type)) 5395 types[order] |= 1 << type; 5396 } 5397 } 5398 spin_unlock_irqrestore(&zone->lock, flags); 5399 for (order = 0; order < MAX_ORDER; order++) { 5400 printk(KERN_CONT "%lu*%lukB ", 5401 nr[order], K(1UL) << order); 5402 if (nr[order]) 5403 show_migration_types(types[order]); 5404 } 5405 printk(KERN_CONT "= %lukB\n", K(total)); 5406 } 5407 5408 hugetlb_show_meminfo(); 5409 5410 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5411 5412 show_swap_cache_info(); 5413 } 5414 5415 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5416 { 5417 zoneref->zone = zone; 5418 zoneref->zone_idx = zone_idx(zone); 5419 } 5420 5421 /* 5422 * Builds allocation fallback zone lists. 5423 * 5424 * Add all populated zones of a node to the zonelist. 5425 */ 5426 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5427 { 5428 struct zone *zone; 5429 enum zone_type zone_type = MAX_NR_ZONES; 5430 int nr_zones = 0; 5431 5432 do { 5433 zone_type--; 5434 zone = pgdat->node_zones + zone_type; 5435 if (managed_zone(zone)) { 5436 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5437 check_highest_zone(zone_type); 5438 } 5439 } while (zone_type); 5440 5441 return nr_zones; 5442 } 5443 5444 #ifdef CONFIG_NUMA 5445 5446 static int __parse_numa_zonelist_order(char *s) 5447 { 5448 /* 5449 * We used to support different zonlists modes but they turned 5450 * out to be just not useful. Let's keep the warning in place 5451 * if somebody still use the cmd line parameter so that we do 5452 * not fail it silently 5453 */ 5454 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5455 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5456 return -EINVAL; 5457 } 5458 return 0; 5459 } 5460 5461 static __init int setup_numa_zonelist_order(char *s) 5462 { 5463 if (!s) 5464 return 0; 5465 5466 return __parse_numa_zonelist_order(s); 5467 } 5468 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5469 5470 char numa_zonelist_order[] = "Node"; 5471 5472 /* 5473 * sysctl handler for numa_zonelist_order 5474 */ 5475 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5476 void __user *buffer, size_t *length, 5477 loff_t *ppos) 5478 { 5479 char *str; 5480 int ret; 5481 5482 if (!write) 5483 return proc_dostring(table, write, buffer, length, ppos); 5484 str = memdup_user_nul(buffer, 16); 5485 if (IS_ERR(str)) 5486 return PTR_ERR(str); 5487 5488 ret = __parse_numa_zonelist_order(str); 5489 kfree(str); 5490 return ret; 5491 } 5492 5493 5494 #define MAX_NODE_LOAD (nr_online_nodes) 5495 static int node_load[MAX_NUMNODES]; 5496 5497 /** 5498 * find_next_best_node - find the next node that should appear in a given node's fallback list 5499 * @node: node whose fallback list we're appending 5500 * @used_node_mask: nodemask_t of already used nodes 5501 * 5502 * We use a number of factors to determine which is the next node that should 5503 * appear on a given node's fallback list. The node should not have appeared 5504 * already in @node's fallback list, and it should be the next closest node 5505 * according to the distance array (which contains arbitrary distance values 5506 * from each node to each node in the system), and should also prefer nodes 5507 * with no CPUs, since presumably they'll have very little allocation pressure 5508 * on them otherwise. 5509 * 5510 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5511 */ 5512 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5513 { 5514 int n, val; 5515 int min_val = INT_MAX; 5516 int best_node = NUMA_NO_NODE; 5517 const struct cpumask *tmp = cpumask_of_node(0); 5518 5519 /* Use the local node if we haven't already */ 5520 if (!node_isset(node, *used_node_mask)) { 5521 node_set(node, *used_node_mask); 5522 return node; 5523 } 5524 5525 for_each_node_state(n, N_MEMORY) { 5526 5527 /* Don't want a node to appear more than once */ 5528 if (node_isset(n, *used_node_mask)) 5529 continue; 5530 5531 /* Use the distance array to find the distance */ 5532 val = node_distance(node, n); 5533 5534 /* Penalize nodes under us ("prefer the next node") */ 5535 val += (n < node); 5536 5537 /* Give preference to headless and unused nodes */ 5538 tmp = cpumask_of_node(n); 5539 if (!cpumask_empty(tmp)) 5540 val += PENALTY_FOR_NODE_WITH_CPUS; 5541 5542 /* Slight preference for less loaded node */ 5543 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5544 val += node_load[n]; 5545 5546 if (val < min_val) { 5547 min_val = val; 5548 best_node = n; 5549 } 5550 } 5551 5552 if (best_node >= 0) 5553 node_set(best_node, *used_node_mask); 5554 5555 return best_node; 5556 } 5557 5558 5559 /* 5560 * Build zonelists ordered by node and zones within node. 5561 * This results in maximum locality--normal zone overflows into local 5562 * DMA zone, if any--but risks exhausting DMA zone. 5563 */ 5564 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5565 unsigned nr_nodes) 5566 { 5567 struct zoneref *zonerefs; 5568 int i; 5569 5570 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5571 5572 for (i = 0; i < nr_nodes; i++) { 5573 int nr_zones; 5574 5575 pg_data_t *node = NODE_DATA(node_order[i]); 5576 5577 nr_zones = build_zonerefs_node(node, zonerefs); 5578 zonerefs += nr_zones; 5579 } 5580 zonerefs->zone = NULL; 5581 zonerefs->zone_idx = 0; 5582 } 5583 5584 /* 5585 * Build gfp_thisnode zonelists 5586 */ 5587 static void build_thisnode_zonelists(pg_data_t *pgdat) 5588 { 5589 struct zoneref *zonerefs; 5590 int nr_zones; 5591 5592 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5593 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5594 zonerefs += nr_zones; 5595 zonerefs->zone = NULL; 5596 zonerefs->zone_idx = 0; 5597 } 5598 5599 /* 5600 * Build zonelists ordered by zone and nodes within zones. 5601 * This results in conserving DMA zone[s] until all Normal memory is 5602 * exhausted, but results in overflowing to remote node while memory 5603 * may still exist in local DMA zone. 5604 */ 5605 5606 static void build_zonelists(pg_data_t *pgdat) 5607 { 5608 static int node_order[MAX_NUMNODES]; 5609 int node, load, nr_nodes = 0; 5610 nodemask_t used_mask; 5611 int local_node, prev_node; 5612 5613 /* NUMA-aware ordering of nodes */ 5614 local_node = pgdat->node_id; 5615 load = nr_online_nodes; 5616 prev_node = local_node; 5617 nodes_clear(used_mask); 5618 5619 memset(node_order, 0, sizeof(node_order)); 5620 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5621 /* 5622 * We don't want to pressure a particular node. 5623 * So adding penalty to the first node in same 5624 * distance group to make it round-robin. 5625 */ 5626 if (node_distance(local_node, node) != 5627 node_distance(local_node, prev_node)) 5628 node_load[node] = load; 5629 5630 node_order[nr_nodes++] = node; 5631 prev_node = node; 5632 load--; 5633 } 5634 5635 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5636 build_thisnode_zonelists(pgdat); 5637 } 5638 5639 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5640 /* 5641 * Return node id of node used for "local" allocations. 5642 * I.e., first node id of first zone in arg node's generic zonelist. 5643 * Used for initializing percpu 'numa_mem', which is used primarily 5644 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5645 */ 5646 int local_memory_node(int node) 5647 { 5648 struct zoneref *z; 5649 5650 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5651 gfp_zone(GFP_KERNEL), 5652 NULL); 5653 return zone_to_nid(z->zone); 5654 } 5655 #endif 5656 5657 static void setup_min_unmapped_ratio(void); 5658 static void setup_min_slab_ratio(void); 5659 #else /* CONFIG_NUMA */ 5660 5661 static void build_zonelists(pg_data_t *pgdat) 5662 { 5663 int node, local_node; 5664 struct zoneref *zonerefs; 5665 int nr_zones; 5666 5667 local_node = pgdat->node_id; 5668 5669 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5670 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5671 zonerefs += nr_zones; 5672 5673 /* 5674 * Now we build the zonelist so that it contains the zones 5675 * of all the other nodes. 5676 * We don't want to pressure a particular node, so when 5677 * building the zones for node N, we make sure that the 5678 * zones coming right after the local ones are those from 5679 * node N+1 (modulo N) 5680 */ 5681 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5682 if (!node_online(node)) 5683 continue; 5684 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5685 zonerefs += nr_zones; 5686 } 5687 for (node = 0; node < local_node; node++) { 5688 if (!node_online(node)) 5689 continue; 5690 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5691 zonerefs += nr_zones; 5692 } 5693 5694 zonerefs->zone = NULL; 5695 zonerefs->zone_idx = 0; 5696 } 5697 5698 #endif /* CONFIG_NUMA */ 5699 5700 /* 5701 * Boot pageset table. One per cpu which is going to be used for all 5702 * zones and all nodes. The parameters will be set in such a way 5703 * that an item put on a list will immediately be handed over to 5704 * the buddy list. This is safe since pageset manipulation is done 5705 * with interrupts disabled. 5706 * 5707 * The boot_pagesets must be kept even after bootup is complete for 5708 * unused processors and/or zones. They do play a role for bootstrapping 5709 * hotplugged processors. 5710 * 5711 * zoneinfo_show() and maybe other functions do 5712 * not check if the processor is online before following the pageset pointer. 5713 * Other parts of the kernel may not check if the zone is available. 5714 */ 5715 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5716 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5717 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5718 5719 static void __build_all_zonelists(void *data) 5720 { 5721 int nid; 5722 int __maybe_unused cpu; 5723 pg_data_t *self = data; 5724 static DEFINE_SPINLOCK(lock); 5725 5726 spin_lock(&lock); 5727 5728 #ifdef CONFIG_NUMA 5729 memset(node_load, 0, sizeof(node_load)); 5730 #endif 5731 5732 /* 5733 * This node is hotadded and no memory is yet present. So just 5734 * building zonelists is fine - no need to touch other nodes. 5735 */ 5736 if (self && !node_online(self->node_id)) { 5737 build_zonelists(self); 5738 } else { 5739 for_each_online_node(nid) { 5740 pg_data_t *pgdat = NODE_DATA(nid); 5741 5742 build_zonelists(pgdat); 5743 } 5744 5745 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5746 /* 5747 * We now know the "local memory node" for each node-- 5748 * i.e., the node of the first zone in the generic zonelist. 5749 * Set up numa_mem percpu variable for on-line cpus. During 5750 * boot, only the boot cpu should be on-line; we'll init the 5751 * secondary cpus' numa_mem as they come on-line. During 5752 * node/memory hotplug, we'll fixup all on-line cpus. 5753 */ 5754 for_each_online_cpu(cpu) 5755 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5756 #endif 5757 } 5758 5759 spin_unlock(&lock); 5760 } 5761 5762 static noinline void __init 5763 build_all_zonelists_init(void) 5764 { 5765 int cpu; 5766 5767 __build_all_zonelists(NULL); 5768 5769 /* 5770 * Initialize the boot_pagesets that are going to be used 5771 * for bootstrapping processors. The real pagesets for 5772 * each zone will be allocated later when the per cpu 5773 * allocator is available. 5774 * 5775 * boot_pagesets are used also for bootstrapping offline 5776 * cpus if the system is already booted because the pagesets 5777 * are needed to initialize allocators on a specific cpu too. 5778 * F.e. the percpu allocator needs the page allocator which 5779 * needs the percpu allocator in order to allocate its pagesets 5780 * (a chicken-egg dilemma). 5781 */ 5782 for_each_possible_cpu(cpu) 5783 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5784 5785 mminit_verify_zonelist(); 5786 cpuset_init_current_mems_allowed(); 5787 } 5788 5789 /* 5790 * unless system_state == SYSTEM_BOOTING. 5791 * 5792 * __ref due to call of __init annotated helper build_all_zonelists_init 5793 * [protected by SYSTEM_BOOTING]. 5794 */ 5795 void __ref build_all_zonelists(pg_data_t *pgdat) 5796 { 5797 if (system_state == SYSTEM_BOOTING) { 5798 build_all_zonelists_init(); 5799 } else { 5800 __build_all_zonelists(pgdat); 5801 /* cpuset refresh routine should be here */ 5802 } 5803 vm_total_pages = nr_free_pagecache_pages(); 5804 /* 5805 * Disable grouping by mobility if the number of pages in the 5806 * system is too low to allow the mechanism to work. It would be 5807 * more accurate, but expensive to check per-zone. This check is 5808 * made on memory-hotadd so a system can start with mobility 5809 * disabled and enable it later 5810 */ 5811 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5812 page_group_by_mobility_disabled = 1; 5813 else 5814 page_group_by_mobility_disabled = 0; 5815 5816 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5817 nr_online_nodes, 5818 page_group_by_mobility_disabled ? "off" : "on", 5819 vm_total_pages); 5820 #ifdef CONFIG_NUMA 5821 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5822 #endif 5823 } 5824 5825 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 5826 static bool __meminit 5827 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 5828 { 5829 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5830 static struct memblock_region *r; 5831 5832 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5833 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 5834 for_each_memblock(memory, r) { 5835 if (*pfn < memblock_region_memory_end_pfn(r)) 5836 break; 5837 } 5838 } 5839 if (*pfn >= memblock_region_memory_base_pfn(r) && 5840 memblock_is_mirror(r)) { 5841 *pfn = memblock_region_memory_end_pfn(r); 5842 return true; 5843 } 5844 } 5845 #endif 5846 return false; 5847 } 5848 5849 #ifdef CONFIG_SPARSEMEM 5850 /* Skip PFNs that belong to non-present sections */ 5851 static inline __meminit unsigned long next_pfn(unsigned long pfn) 5852 { 5853 const unsigned long section_nr = pfn_to_section_nr(++pfn); 5854 5855 if (present_section_nr(section_nr)) 5856 return pfn; 5857 return section_nr_to_pfn(next_present_section_nr(section_nr)); 5858 } 5859 #else 5860 static inline __meminit unsigned long next_pfn(unsigned long pfn) 5861 { 5862 return pfn++; 5863 } 5864 #endif 5865 5866 /* 5867 * Initially all pages are reserved - free ones are freed 5868 * up by memblock_free_all() once the early boot process is 5869 * done. Non-atomic initialization, single-pass. 5870 */ 5871 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5872 unsigned long start_pfn, enum memmap_context context, 5873 struct vmem_altmap *altmap) 5874 { 5875 unsigned long pfn, end_pfn = start_pfn + size; 5876 struct page *page; 5877 5878 if (highest_memmap_pfn < end_pfn - 1) 5879 highest_memmap_pfn = end_pfn - 1; 5880 5881 #ifdef CONFIG_ZONE_DEVICE 5882 /* 5883 * Honor reservation requested by the driver for this ZONE_DEVICE 5884 * memory. We limit the total number of pages to initialize to just 5885 * those that might contain the memory mapping. We will defer the 5886 * ZONE_DEVICE page initialization until after we have released 5887 * the hotplug lock. 5888 */ 5889 if (zone == ZONE_DEVICE) { 5890 if (!altmap) 5891 return; 5892 5893 if (start_pfn == altmap->base_pfn) 5894 start_pfn += altmap->reserve; 5895 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5896 } 5897 #endif 5898 5899 for (pfn = start_pfn; pfn < end_pfn; ) { 5900 /* 5901 * There can be holes in boot-time mem_map[]s handed to this 5902 * function. They do not exist on hotplugged memory. 5903 */ 5904 if (context == MEMMAP_EARLY) { 5905 if (!early_pfn_valid(pfn)) { 5906 pfn = next_pfn(pfn); 5907 continue; 5908 } 5909 if (!early_pfn_in_nid(pfn, nid)) { 5910 pfn++; 5911 continue; 5912 } 5913 if (overlap_memmap_init(zone, &pfn)) 5914 continue; 5915 if (defer_init(nid, pfn, end_pfn)) 5916 break; 5917 } 5918 5919 page = pfn_to_page(pfn); 5920 __init_single_page(page, pfn, zone, nid); 5921 if (context == MEMMAP_HOTPLUG) 5922 __SetPageReserved(page); 5923 5924 /* 5925 * Mark the block movable so that blocks are reserved for 5926 * movable at startup. This will force kernel allocations 5927 * to reserve their blocks rather than leaking throughout 5928 * the address space during boot when many long-lived 5929 * kernel allocations are made. 5930 * 5931 * bitmap is created for zone's valid pfn range. but memmap 5932 * can be created for invalid pages (for alignment) 5933 * check here not to call set_pageblock_migratetype() against 5934 * pfn out of zone. 5935 */ 5936 if (!(pfn & (pageblock_nr_pages - 1))) { 5937 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5938 cond_resched(); 5939 } 5940 pfn++; 5941 } 5942 } 5943 5944 #ifdef CONFIG_ZONE_DEVICE 5945 void __ref memmap_init_zone_device(struct zone *zone, 5946 unsigned long start_pfn, 5947 unsigned long nr_pages, 5948 struct dev_pagemap *pgmap) 5949 { 5950 unsigned long pfn, end_pfn = start_pfn + nr_pages; 5951 struct pglist_data *pgdat = zone->zone_pgdat; 5952 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 5953 unsigned long zone_idx = zone_idx(zone); 5954 unsigned long start = jiffies; 5955 int nid = pgdat->node_id; 5956 5957 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 5958 return; 5959 5960 /* 5961 * The call to memmap_init_zone should have already taken care 5962 * of the pages reserved for the memmap, so we can just jump to 5963 * the end of that region and start processing the device pages. 5964 */ 5965 if (altmap) { 5966 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5967 nr_pages = end_pfn - start_pfn; 5968 } 5969 5970 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5971 struct page *page = pfn_to_page(pfn); 5972 5973 __init_single_page(page, pfn, zone_idx, nid); 5974 5975 /* 5976 * Mark page reserved as it will need to wait for onlining 5977 * phase for it to be fully associated with a zone. 5978 * 5979 * We can use the non-atomic __set_bit operation for setting 5980 * the flag as we are still initializing the pages. 5981 */ 5982 __SetPageReserved(page); 5983 5984 /* 5985 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 5986 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 5987 * ever freed or placed on a driver-private list. 5988 */ 5989 page->pgmap = pgmap; 5990 page->zone_device_data = NULL; 5991 5992 /* 5993 * Mark the block movable so that blocks are reserved for 5994 * movable at startup. This will force kernel allocations 5995 * to reserve their blocks rather than leaking throughout 5996 * the address space during boot when many long-lived 5997 * kernel allocations are made. 5998 * 5999 * bitmap is created for zone's valid pfn range. but memmap 6000 * can be created for invalid pages (for alignment) 6001 * check here not to call set_pageblock_migratetype() against 6002 * pfn out of zone. 6003 * 6004 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 6005 * because this is done early in section_activate() 6006 */ 6007 if (!(pfn & (pageblock_nr_pages - 1))) { 6008 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6009 cond_resched(); 6010 } 6011 } 6012 6013 pr_info("%s initialised %lu pages in %ums\n", __func__, 6014 nr_pages, jiffies_to_msecs(jiffies - start)); 6015 } 6016 6017 #endif 6018 static void __meminit zone_init_free_lists(struct zone *zone) 6019 { 6020 unsigned int order, t; 6021 for_each_migratetype_order(order, t) { 6022 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6023 zone->free_area[order].nr_free = 0; 6024 } 6025 } 6026 6027 void __meminit __weak memmap_init(unsigned long size, int nid, 6028 unsigned long zone, unsigned long start_pfn) 6029 { 6030 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL); 6031 } 6032 6033 static int zone_batchsize(struct zone *zone) 6034 { 6035 #ifdef CONFIG_MMU 6036 int batch; 6037 6038 /* 6039 * The per-cpu-pages pools are set to around 1000th of the 6040 * size of the zone. 6041 */ 6042 batch = zone_managed_pages(zone) / 1024; 6043 /* But no more than a meg. */ 6044 if (batch * PAGE_SIZE > 1024 * 1024) 6045 batch = (1024 * 1024) / PAGE_SIZE; 6046 batch /= 4; /* We effectively *= 4 below */ 6047 if (batch < 1) 6048 batch = 1; 6049 6050 /* 6051 * Clamp the batch to a 2^n - 1 value. Having a power 6052 * of 2 value was found to be more likely to have 6053 * suboptimal cache aliasing properties in some cases. 6054 * 6055 * For example if 2 tasks are alternately allocating 6056 * batches of pages, one task can end up with a lot 6057 * of pages of one half of the possible page colors 6058 * and the other with pages of the other colors. 6059 */ 6060 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6061 6062 return batch; 6063 6064 #else 6065 /* The deferral and batching of frees should be suppressed under NOMMU 6066 * conditions. 6067 * 6068 * The problem is that NOMMU needs to be able to allocate large chunks 6069 * of contiguous memory as there's no hardware page translation to 6070 * assemble apparent contiguous memory from discontiguous pages. 6071 * 6072 * Queueing large contiguous runs of pages for batching, however, 6073 * causes the pages to actually be freed in smaller chunks. As there 6074 * can be a significant delay between the individual batches being 6075 * recycled, this leads to the once large chunks of space being 6076 * fragmented and becoming unavailable for high-order allocations. 6077 */ 6078 return 0; 6079 #endif 6080 } 6081 6082 /* 6083 * pcp->high and pcp->batch values are related and dependent on one another: 6084 * ->batch must never be higher then ->high. 6085 * The following function updates them in a safe manner without read side 6086 * locking. 6087 * 6088 * Any new users of pcp->batch and pcp->high should ensure they can cope with 6089 * those fields changing asynchronously (acording the the above rule). 6090 * 6091 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6092 * outside of boot time (or some other assurance that no concurrent updaters 6093 * exist). 6094 */ 6095 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6096 unsigned long batch) 6097 { 6098 /* start with a fail safe value for batch */ 6099 pcp->batch = 1; 6100 smp_wmb(); 6101 6102 /* Update high, then batch, in order */ 6103 pcp->high = high; 6104 smp_wmb(); 6105 6106 pcp->batch = batch; 6107 } 6108 6109 /* a companion to pageset_set_high() */ 6110 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 6111 { 6112 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 6113 } 6114 6115 static void pageset_init(struct per_cpu_pageset *p) 6116 { 6117 struct per_cpu_pages *pcp; 6118 int migratetype; 6119 6120 memset(p, 0, sizeof(*p)); 6121 6122 pcp = &p->pcp; 6123 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6124 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6125 } 6126 6127 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 6128 { 6129 pageset_init(p); 6130 pageset_set_batch(p, batch); 6131 } 6132 6133 /* 6134 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 6135 * to the value high for the pageset p. 6136 */ 6137 static void pageset_set_high(struct per_cpu_pageset *p, 6138 unsigned long high) 6139 { 6140 unsigned long batch = max(1UL, high / 4); 6141 if ((high / 4) > (PAGE_SHIFT * 8)) 6142 batch = PAGE_SHIFT * 8; 6143 6144 pageset_update(&p->pcp, high, batch); 6145 } 6146 6147 static void pageset_set_high_and_batch(struct zone *zone, 6148 struct per_cpu_pageset *pcp) 6149 { 6150 if (percpu_pagelist_fraction) 6151 pageset_set_high(pcp, 6152 (zone_managed_pages(zone) / 6153 percpu_pagelist_fraction)); 6154 else 6155 pageset_set_batch(pcp, zone_batchsize(zone)); 6156 } 6157 6158 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 6159 { 6160 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 6161 6162 pageset_init(pcp); 6163 pageset_set_high_and_batch(zone, pcp); 6164 } 6165 6166 void __meminit setup_zone_pageset(struct zone *zone) 6167 { 6168 int cpu; 6169 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6170 for_each_possible_cpu(cpu) 6171 zone_pageset_init(zone, cpu); 6172 } 6173 6174 /* 6175 * Allocate per cpu pagesets and initialize them. 6176 * Before this call only boot pagesets were available. 6177 */ 6178 void __init setup_per_cpu_pageset(void) 6179 { 6180 struct pglist_data *pgdat; 6181 struct zone *zone; 6182 6183 for_each_populated_zone(zone) 6184 setup_zone_pageset(zone); 6185 6186 for_each_online_pgdat(pgdat) 6187 pgdat->per_cpu_nodestats = 6188 alloc_percpu(struct per_cpu_nodestat); 6189 } 6190 6191 static __meminit void zone_pcp_init(struct zone *zone) 6192 { 6193 /* 6194 * per cpu subsystem is not up at this point. The following code 6195 * relies on the ability of the linker to provide the 6196 * offset of a (static) per cpu variable into the per cpu area. 6197 */ 6198 zone->pageset = &boot_pageset; 6199 6200 if (populated_zone(zone)) 6201 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6202 zone->name, zone->present_pages, 6203 zone_batchsize(zone)); 6204 } 6205 6206 void __meminit init_currently_empty_zone(struct zone *zone, 6207 unsigned long zone_start_pfn, 6208 unsigned long size) 6209 { 6210 struct pglist_data *pgdat = zone->zone_pgdat; 6211 int zone_idx = zone_idx(zone) + 1; 6212 6213 if (zone_idx > pgdat->nr_zones) 6214 pgdat->nr_zones = zone_idx; 6215 6216 zone->zone_start_pfn = zone_start_pfn; 6217 6218 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6219 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6220 pgdat->node_id, 6221 (unsigned long)zone_idx(zone), 6222 zone_start_pfn, (zone_start_pfn + size)); 6223 6224 zone_init_free_lists(zone); 6225 zone->initialized = 1; 6226 } 6227 6228 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6229 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 6230 6231 /* 6232 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 6233 */ 6234 int __meminit __early_pfn_to_nid(unsigned long pfn, 6235 struct mminit_pfnnid_cache *state) 6236 { 6237 unsigned long start_pfn, end_pfn; 6238 int nid; 6239 6240 if (state->last_start <= pfn && pfn < state->last_end) 6241 return state->last_nid; 6242 6243 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 6244 if (nid != NUMA_NO_NODE) { 6245 state->last_start = start_pfn; 6246 state->last_end = end_pfn; 6247 state->last_nid = nid; 6248 } 6249 6250 return nid; 6251 } 6252 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 6253 6254 /** 6255 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 6256 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 6257 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 6258 * 6259 * If an architecture guarantees that all ranges registered contain no holes 6260 * and may be freed, this this function may be used instead of calling 6261 * memblock_free_early_nid() manually. 6262 */ 6263 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 6264 { 6265 unsigned long start_pfn, end_pfn; 6266 int i, this_nid; 6267 6268 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 6269 start_pfn = min(start_pfn, max_low_pfn); 6270 end_pfn = min(end_pfn, max_low_pfn); 6271 6272 if (start_pfn < end_pfn) 6273 memblock_free_early_nid(PFN_PHYS(start_pfn), 6274 (end_pfn - start_pfn) << PAGE_SHIFT, 6275 this_nid); 6276 } 6277 } 6278 6279 /** 6280 * sparse_memory_present_with_active_regions - Call memory_present for each active range 6281 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 6282 * 6283 * If an architecture guarantees that all ranges registered contain no holes and may 6284 * be freed, this function may be used instead of calling memory_present() manually. 6285 */ 6286 void __init sparse_memory_present_with_active_regions(int nid) 6287 { 6288 unsigned long start_pfn, end_pfn; 6289 int i, this_nid; 6290 6291 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 6292 memory_present(this_nid, start_pfn, end_pfn); 6293 } 6294 6295 /** 6296 * get_pfn_range_for_nid - Return the start and end page frames for a node 6297 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6298 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6299 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6300 * 6301 * It returns the start and end page frame of a node based on information 6302 * provided by memblock_set_node(). If called for a node 6303 * with no available memory, a warning is printed and the start and end 6304 * PFNs will be 0. 6305 */ 6306 void __init get_pfn_range_for_nid(unsigned int nid, 6307 unsigned long *start_pfn, unsigned long *end_pfn) 6308 { 6309 unsigned long this_start_pfn, this_end_pfn; 6310 int i; 6311 6312 *start_pfn = -1UL; 6313 *end_pfn = 0; 6314 6315 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6316 *start_pfn = min(*start_pfn, this_start_pfn); 6317 *end_pfn = max(*end_pfn, this_end_pfn); 6318 } 6319 6320 if (*start_pfn == -1UL) 6321 *start_pfn = 0; 6322 } 6323 6324 /* 6325 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6326 * assumption is made that zones within a node are ordered in monotonic 6327 * increasing memory addresses so that the "highest" populated zone is used 6328 */ 6329 static void __init find_usable_zone_for_movable(void) 6330 { 6331 int zone_index; 6332 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6333 if (zone_index == ZONE_MOVABLE) 6334 continue; 6335 6336 if (arch_zone_highest_possible_pfn[zone_index] > 6337 arch_zone_lowest_possible_pfn[zone_index]) 6338 break; 6339 } 6340 6341 VM_BUG_ON(zone_index == -1); 6342 movable_zone = zone_index; 6343 } 6344 6345 /* 6346 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6347 * because it is sized independent of architecture. Unlike the other zones, 6348 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6349 * in each node depending on the size of each node and how evenly kernelcore 6350 * is distributed. This helper function adjusts the zone ranges 6351 * provided by the architecture for a given node by using the end of the 6352 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6353 * zones within a node are in order of monotonic increases memory addresses 6354 */ 6355 static void __init adjust_zone_range_for_zone_movable(int nid, 6356 unsigned long zone_type, 6357 unsigned long node_start_pfn, 6358 unsigned long node_end_pfn, 6359 unsigned long *zone_start_pfn, 6360 unsigned long *zone_end_pfn) 6361 { 6362 /* Only adjust if ZONE_MOVABLE is on this node */ 6363 if (zone_movable_pfn[nid]) { 6364 /* Size ZONE_MOVABLE */ 6365 if (zone_type == ZONE_MOVABLE) { 6366 *zone_start_pfn = zone_movable_pfn[nid]; 6367 *zone_end_pfn = min(node_end_pfn, 6368 arch_zone_highest_possible_pfn[movable_zone]); 6369 6370 /* Adjust for ZONE_MOVABLE starting within this range */ 6371 } else if (!mirrored_kernelcore && 6372 *zone_start_pfn < zone_movable_pfn[nid] && 6373 *zone_end_pfn > zone_movable_pfn[nid]) { 6374 *zone_end_pfn = zone_movable_pfn[nid]; 6375 6376 /* Check if this whole range is within ZONE_MOVABLE */ 6377 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6378 *zone_start_pfn = *zone_end_pfn; 6379 } 6380 } 6381 6382 /* 6383 * Return the number of pages a zone spans in a node, including holes 6384 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6385 */ 6386 static unsigned long __init zone_spanned_pages_in_node(int nid, 6387 unsigned long zone_type, 6388 unsigned long node_start_pfn, 6389 unsigned long node_end_pfn, 6390 unsigned long *zone_start_pfn, 6391 unsigned long *zone_end_pfn, 6392 unsigned long *ignored) 6393 { 6394 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6395 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6396 /* When hotadd a new node from cpu_up(), the node should be empty */ 6397 if (!node_start_pfn && !node_end_pfn) 6398 return 0; 6399 6400 /* Get the start and end of the zone */ 6401 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6402 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6403 adjust_zone_range_for_zone_movable(nid, zone_type, 6404 node_start_pfn, node_end_pfn, 6405 zone_start_pfn, zone_end_pfn); 6406 6407 /* Check that this node has pages within the zone's required range */ 6408 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6409 return 0; 6410 6411 /* Move the zone boundaries inside the node if necessary */ 6412 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6413 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6414 6415 /* Return the spanned pages */ 6416 return *zone_end_pfn - *zone_start_pfn; 6417 } 6418 6419 /* 6420 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6421 * then all holes in the requested range will be accounted for. 6422 */ 6423 unsigned long __init __absent_pages_in_range(int nid, 6424 unsigned long range_start_pfn, 6425 unsigned long range_end_pfn) 6426 { 6427 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6428 unsigned long start_pfn, end_pfn; 6429 int i; 6430 6431 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6432 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6433 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6434 nr_absent -= end_pfn - start_pfn; 6435 } 6436 return nr_absent; 6437 } 6438 6439 /** 6440 * absent_pages_in_range - Return number of page frames in holes within a range 6441 * @start_pfn: The start PFN to start searching for holes 6442 * @end_pfn: The end PFN to stop searching for holes 6443 * 6444 * Return: the number of pages frames in memory holes within a range. 6445 */ 6446 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6447 unsigned long end_pfn) 6448 { 6449 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6450 } 6451 6452 /* Return the number of page frames in holes in a zone on a node */ 6453 static unsigned long __init zone_absent_pages_in_node(int nid, 6454 unsigned long zone_type, 6455 unsigned long node_start_pfn, 6456 unsigned long node_end_pfn, 6457 unsigned long *ignored) 6458 { 6459 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6460 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6461 unsigned long zone_start_pfn, zone_end_pfn; 6462 unsigned long nr_absent; 6463 6464 /* When hotadd a new node from cpu_up(), the node should be empty */ 6465 if (!node_start_pfn && !node_end_pfn) 6466 return 0; 6467 6468 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6469 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6470 6471 adjust_zone_range_for_zone_movable(nid, zone_type, 6472 node_start_pfn, node_end_pfn, 6473 &zone_start_pfn, &zone_end_pfn); 6474 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6475 6476 /* 6477 * ZONE_MOVABLE handling. 6478 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6479 * and vice versa. 6480 */ 6481 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6482 unsigned long start_pfn, end_pfn; 6483 struct memblock_region *r; 6484 6485 for_each_memblock(memory, r) { 6486 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6487 zone_start_pfn, zone_end_pfn); 6488 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6489 zone_start_pfn, zone_end_pfn); 6490 6491 if (zone_type == ZONE_MOVABLE && 6492 memblock_is_mirror(r)) 6493 nr_absent += end_pfn - start_pfn; 6494 6495 if (zone_type == ZONE_NORMAL && 6496 !memblock_is_mirror(r)) 6497 nr_absent += end_pfn - start_pfn; 6498 } 6499 } 6500 6501 return nr_absent; 6502 } 6503 6504 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6505 static inline unsigned long __init zone_spanned_pages_in_node(int nid, 6506 unsigned long zone_type, 6507 unsigned long node_start_pfn, 6508 unsigned long node_end_pfn, 6509 unsigned long *zone_start_pfn, 6510 unsigned long *zone_end_pfn, 6511 unsigned long *zones_size) 6512 { 6513 unsigned int zone; 6514 6515 *zone_start_pfn = node_start_pfn; 6516 for (zone = 0; zone < zone_type; zone++) 6517 *zone_start_pfn += zones_size[zone]; 6518 6519 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6520 6521 return zones_size[zone_type]; 6522 } 6523 6524 static inline unsigned long __init zone_absent_pages_in_node(int nid, 6525 unsigned long zone_type, 6526 unsigned long node_start_pfn, 6527 unsigned long node_end_pfn, 6528 unsigned long *zholes_size) 6529 { 6530 if (!zholes_size) 6531 return 0; 6532 6533 return zholes_size[zone_type]; 6534 } 6535 6536 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6537 6538 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6539 unsigned long node_start_pfn, 6540 unsigned long node_end_pfn, 6541 unsigned long *zones_size, 6542 unsigned long *zholes_size) 6543 { 6544 unsigned long realtotalpages = 0, totalpages = 0; 6545 enum zone_type i; 6546 6547 for (i = 0; i < MAX_NR_ZONES; i++) { 6548 struct zone *zone = pgdat->node_zones + i; 6549 unsigned long zone_start_pfn, zone_end_pfn; 6550 unsigned long size, real_size; 6551 6552 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6553 node_start_pfn, 6554 node_end_pfn, 6555 &zone_start_pfn, 6556 &zone_end_pfn, 6557 zones_size); 6558 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6559 node_start_pfn, node_end_pfn, 6560 zholes_size); 6561 if (size) 6562 zone->zone_start_pfn = zone_start_pfn; 6563 else 6564 zone->zone_start_pfn = 0; 6565 zone->spanned_pages = size; 6566 zone->present_pages = real_size; 6567 6568 totalpages += size; 6569 realtotalpages += real_size; 6570 } 6571 6572 pgdat->node_spanned_pages = totalpages; 6573 pgdat->node_present_pages = realtotalpages; 6574 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6575 realtotalpages); 6576 } 6577 6578 #ifndef CONFIG_SPARSEMEM 6579 /* 6580 * Calculate the size of the zone->blockflags rounded to an unsigned long 6581 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6582 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6583 * round what is now in bits to nearest long in bits, then return it in 6584 * bytes. 6585 */ 6586 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6587 { 6588 unsigned long usemapsize; 6589 6590 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6591 usemapsize = roundup(zonesize, pageblock_nr_pages); 6592 usemapsize = usemapsize >> pageblock_order; 6593 usemapsize *= NR_PAGEBLOCK_BITS; 6594 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6595 6596 return usemapsize / 8; 6597 } 6598 6599 static void __ref setup_usemap(struct pglist_data *pgdat, 6600 struct zone *zone, 6601 unsigned long zone_start_pfn, 6602 unsigned long zonesize) 6603 { 6604 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6605 zone->pageblock_flags = NULL; 6606 if (usemapsize) { 6607 zone->pageblock_flags = 6608 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6609 pgdat->node_id); 6610 if (!zone->pageblock_flags) 6611 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6612 usemapsize, zone->name, pgdat->node_id); 6613 } 6614 } 6615 #else 6616 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6617 unsigned long zone_start_pfn, unsigned long zonesize) {} 6618 #endif /* CONFIG_SPARSEMEM */ 6619 6620 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6621 6622 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6623 void __init set_pageblock_order(void) 6624 { 6625 unsigned int order; 6626 6627 /* Check that pageblock_nr_pages has not already been setup */ 6628 if (pageblock_order) 6629 return; 6630 6631 if (HPAGE_SHIFT > PAGE_SHIFT) 6632 order = HUGETLB_PAGE_ORDER; 6633 else 6634 order = MAX_ORDER - 1; 6635 6636 /* 6637 * Assume the largest contiguous order of interest is a huge page. 6638 * This value may be variable depending on boot parameters on IA64 and 6639 * powerpc. 6640 */ 6641 pageblock_order = order; 6642 } 6643 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6644 6645 /* 6646 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6647 * is unused as pageblock_order is set at compile-time. See 6648 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6649 * the kernel config 6650 */ 6651 void __init set_pageblock_order(void) 6652 { 6653 } 6654 6655 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6656 6657 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6658 unsigned long present_pages) 6659 { 6660 unsigned long pages = spanned_pages; 6661 6662 /* 6663 * Provide a more accurate estimation if there are holes within 6664 * the zone and SPARSEMEM is in use. If there are holes within the 6665 * zone, each populated memory region may cost us one or two extra 6666 * memmap pages due to alignment because memmap pages for each 6667 * populated regions may not be naturally aligned on page boundary. 6668 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6669 */ 6670 if (spanned_pages > present_pages + (present_pages >> 4) && 6671 IS_ENABLED(CONFIG_SPARSEMEM)) 6672 pages = present_pages; 6673 6674 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6675 } 6676 6677 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6678 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6679 { 6680 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 6681 6682 spin_lock_init(&ds_queue->split_queue_lock); 6683 INIT_LIST_HEAD(&ds_queue->split_queue); 6684 ds_queue->split_queue_len = 0; 6685 } 6686 #else 6687 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6688 #endif 6689 6690 #ifdef CONFIG_COMPACTION 6691 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6692 { 6693 init_waitqueue_head(&pgdat->kcompactd_wait); 6694 } 6695 #else 6696 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6697 #endif 6698 6699 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6700 { 6701 pgdat_resize_init(pgdat); 6702 6703 pgdat_init_split_queue(pgdat); 6704 pgdat_init_kcompactd(pgdat); 6705 6706 init_waitqueue_head(&pgdat->kswapd_wait); 6707 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6708 6709 pgdat_page_ext_init(pgdat); 6710 spin_lock_init(&pgdat->lru_lock); 6711 lruvec_init(&pgdat->__lruvec); 6712 } 6713 6714 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6715 unsigned long remaining_pages) 6716 { 6717 atomic_long_set(&zone->managed_pages, remaining_pages); 6718 zone_set_nid(zone, nid); 6719 zone->name = zone_names[idx]; 6720 zone->zone_pgdat = NODE_DATA(nid); 6721 spin_lock_init(&zone->lock); 6722 zone_seqlock_init(zone); 6723 zone_pcp_init(zone); 6724 } 6725 6726 /* 6727 * Set up the zone data structures 6728 * - init pgdat internals 6729 * - init all zones belonging to this node 6730 * 6731 * NOTE: this function is only called during memory hotplug 6732 */ 6733 #ifdef CONFIG_MEMORY_HOTPLUG 6734 void __ref free_area_init_core_hotplug(int nid) 6735 { 6736 enum zone_type z; 6737 pg_data_t *pgdat = NODE_DATA(nid); 6738 6739 pgdat_init_internals(pgdat); 6740 for (z = 0; z < MAX_NR_ZONES; z++) 6741 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6742 } 6743 #endif 6744 6745 /* 6746 * Set up the zone data structures: 6747 * - mark all pages reserved 6748 * - mark all memory queues empty 6749 * - clear the memory bitmaps 6750 * 6751 * NOTE: pgdat should get zeroed by caller. 6752 * NOTE: this function is only called during early init. 6753 */ 6754 static void __init free_area_init_core(struct pglist_data *pgdat) 6755 { 6756 enum zone_type j; 6757 int nid = pgdat->node_id; 6758 6759 pgdat_init_internals(pgdat); 6760 pgdat->per_cpu_nodestats = &boot_nodestats; 6761 6762 for (j = 0; j < MAX_NR_ZONES; j++) { 6763 struct zone *zone = pgdat->node_zones + j; 6764 unsigned long size, freesize, memmap_pages; 6765 unsigned long zone_start_pfn = zone->zone_start_pfn; 6766 6767 size = zone->spanned_pages; 6768 freesize = zone->present_pages; 6769 6770 /* 6771 * Adjust freesize so that it accounts for how much memory 6772 * is used by this zone for memmap. This affects the watermark 6773 * and per-cpu initialisations 6774 */ 6775 memmap_pages = calc_memmap_size(size, freesize); 6776 if (!is_highmem_idx(j)) { 6777 if (freesize >= memmap_pages) { 6778 freesize -= memmap_pages; 6779 if (memmap_pages) 6780 printk(KERN_DEBUG 6781 " %s zone: %lu pages used for memmap\n", 6782 zone_names[j], memmap_pages); 6783 } else 6784 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6785 zone_names[j], memmap_pages, freesize); 6786 } 6787 6788 /* Account for reserved pages */ 6789 if (j == 0 && freesize > dma_reserve) { 6790 freesize -= dma_reserve; 6791 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6792 zone_names[0], dma_reserve); 6793 } 6794 6795 if (!is_highmem_idx(j)) 6796 nr_kernel_pages += freesize; 6797 /* Charge for highmem memmap if there are enough kernel pages */ 6798 else if (nr_kernel_pages > memmap_pages * 2) 6799 nr_kernel_pages -= memmap_pages; 6800 nr_all_pages += freesize; 6801 6802 /* 6803 * Set an approximate value for lowmem here, it will be adjusted 6804 * when the bootmem allocator frees pages into the buddy system. 6805 * And all highmem pages will be managed by the buddy system. 6806 */ 6807 zone_init_internals(zone, j, nid, freesize); 6808 6809 if (!size) 6810 continue; 6811 6812 set_pageblock_order(); 6813 setup_usemap(pgdat, zone, zone_start_pfn, size); 6814 init_currently_empty_zone(zone, zone_start_pfn, size); 6815 memmap_init(size, nid, j, zone_start_pfn); 6816 } 6817 } 6818 6819 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6820 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6821 { 6822 unsigned long __maybe_unused start = 0; 6823 unsigned long __maybe_unused offset = 0; 6824 6825 /* Skip empty nodes */ 6826 if (!pgdat->node_spanned_pages) 6827 return; 6828 6829 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6830 offset = pgdat->node_start_pfn - start; 6831 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6832 if (!pgdat->node_mem_map) { 6833 unsigned long size, end; 6834 struct page *map; 6835 6836 /* 6837 * The zone's endpoints aren't required to be MAX_ORDER 6838 * aligned but the node_mem_map endpoints must be in order 6839 * for the buddy allocator to function correctly. 6840 */ 6841 end = pgdat_end_pfn(pgdat); 6842 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6843 size = (end - start) * sizeof(struct page); 6844 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 6845 pgdat->node_id); 6846 if (!map) 6847 panic("Failed to allocate %ld bytes for node %d memory map\n", 6848 size, pgdat->node_id); 6849 pgdat->node_mem_map = map + offset; 6850 } 6851 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6852 __func__, pgdat->node_id, (unsigned long)pgdat, 6853 (unsigned long)pgdat->node_mem_map); 6854 #ifndef CONFIG_NEED_MULTIPLE_NODES 6855 /* 6856 * With no DISCONTIG, the global mem_map is just set as node 0's 6857 */ 6858 if (pgdat == NODE_DATA(0)) { 6859 mem_map = NODE_DATA(0)->node_mem_map; 6860 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6861 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6862 mem_map -= offset; 6863 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6864 } 6865 #endif 6866 } 6867 #else 6868 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6869 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6870 6871 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6872 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6873 { 6874 pgdat->first_deferred_pfn = ULONG_MAX; 6875 } 6876 #else 6877 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6878 #endif 6879 6880 void __init free_area_init_node(int nid, unsigned long *zones_size, 6881 unsigned long node_start_pfn, 6882 unsigned long *zholes_size) 6883 { 6884 pg_data_t *pgdat = NODE_DATA(nid); 6885 unsigned long start_pfn = 0; 6886 unsigned long end_pfn = 0; 6887 6888 /* pg_data_t should be reset to zero when it's allocated */ 6889 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6890 6891 pgdat->node_id = nid; 6892 pgdat->node_start_pfn = node_start_pfn; 6893 pgdat->per_cpu_nodestats = NULL; 6894 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6895 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6896 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6897 (u64)start_pfn << PAGE_SHIFT, 6898 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6899 #else 6900 start_pfn = node_start_pfn; 6901 #endif 6902 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6903 zones_size, zholes_size); 6904 6905 alloc_node_mem_map(pgdat); 6906 pgdat_set_deferred_range(pgdat); 6907 6908 free_area_init_core(pgdat); 6909 } 6910 6911 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6912 /* 6913 * Initialize all valid struct pages in the range [spfn, epfn) and mark them 6914 * PageReserved(). Return the number of struct pages that were initialized. 6915 */ 6916 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn) 6917 { 6918 unsigned long pfn; 6919 u64 pgcnt = 0; 6920 6921 for (pfn = spfn; pfn < epfn; pfn++) { 6922 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6923 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6924 + pageblock_nr_pages - 1; 6925 continue; 6926 } 6927 /* 6928 * Use a fake node/zone (0) for now. Some of these pages 6929 * (in memblock.reserved but not in memblock.memory) will 6930 * get re-initialized via reserve_bootmem_region() later. 6931 */ 6932 __init_single_page(pfn_to_page(pfn), pfn, 0, 0); 6933 __SetPageReserved(pfn_to_page(pfn)); 6934 pgcnt++; 6935 } 6936 6937 return pgcnt; 6938 } 6939 6940 /* 6941 * Only struct pages that are backed by physical memory are zeroed and 6942 * initialized by going through __init_single_page(). But, there are some 6943 * struct pages which are reserved in memblock allocator and their fields 6944 * may be accessed (for example page_to_pfn() on some configuration accesses 6945 * flags). We must explicitly initialize those struct pages. 6946 * 6947 * This function also addresses a similar issue where struct pages are left 6948 * uninitialized because the physical address range is not covered by 6949 * memblock.memory or memblock.reserved. That could happen when memblock 6950 * layout is manually configured via memmap=, or when the highest physical 6951 * address (max_pfn) does not end on a section boundary. 6952 */ 6953 static void __init init_unavailable_mem(void) 6954 { 6955 phys_addr_t start, end; 6956 u64 i, pgcnt; 6957 phys_addr_t next = 0; 6958 6959 /* 6960 * Loop through unavailable ranges not covered by memblock.memory. 6961 */ 6962 pgcnt = 0; 6963 for_each_mem_range(i, &memblock.memory, NULL, 6964 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { 6965 if (next < start) 6966 pgcnt += init_unavailable_range(PFN_DOWN(next), 6967 PFN_UP(start)); 6968 next = end; 6969 } 6970 6971 /* 6972 * Early sections always have a fully populated memmap for the whole 6973 * section - see pfn_valid(). If the last section has holes at the 6974 * end and that section is marked "online", the memmap will be 6975 * considered initialized. Make sure that memmap has a well defined 6976 * state. 6977 */ 6978 pgcnt += init_unavailable_range(PFN_DOWN(next), 6979 round_up(max_pfn, PAGES_PER_SECTION)); 6980 6981 /* 6982 * Struct pages that do not have backing memory. This could be because 6983 * firmware is using some of this memory, or for some other reasons. 6984 */ 6985 if (pgcnt) 6986 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 6987 } 6988 #else 6989 static inline void __init init_unavailable_mem(void) 6990 { 6991 } 6992 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 6993 6994 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6995 6996 #if MAX_NUMNODES > 1 6997 /* 6998 * Figure out the number of possible node ids. 6999 */ 7000 void __init setup_nr_node_ids(void) 7001 { 7002 unsigned int highest; 7003 7004 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7005 nr_node_ids = highest + 1; 7006 } 7007 #endif 7008 7009 /** 7010 * node_map_pfn_alignment - determine the maximum internode alignment 7011 * 7012 * This function should be called after node map is populated and sorted. 7013 * It calculates the maximum power of two alignment which can distinguish 7014 * all the nodes. 7015 * 7016 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7017 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7018 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7019 * shifted, 1GiB is enough and this function will indicate so. 7020 * 7021 * This is used to test whether pfn -> nid mapping of the chosen memory 7022 * model has fine enough granularity to avoid incorrect mapping for the 7023 * populated node map. 7024 * 7025 * Return: the determined alignment in pfn's. 0 if there is no alignment 7026 * requirement (single node). 7027 */ 7028 unsigned long __init node_map_pfn_alignment(void) 7029 { 7030 unsigned long accl_mask = 0, last_end = 0; 7031 unsigned long start, end, mask; 7032 int last_nid = NUMA_NO_NODE; 7033 int i, nid; 7034 7035 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7036 if (!start || last_nid < 0 || last_nid == nid) { 7037 last_nid = nid; 7038 last_end = end; 7039 continue; 7040 } 7041 7042 /* 7043 * Start with a mask granular enough to pin-point to the 7044 * start pfn and tick off bits one-by-one until it becomes 7045 * too coarse to separate the current node from the last. 7046 */ 7047 mask = ~((1 << __ffs(start)) - 1); 7048 while (mask && last_end <= (start & (mask << 1))) 7049 mask <<= 1; 7050 7051 /* accumulate all internode masks */ 7052 accl_mask |= mask; 7053 } 7054 7055 /* convert mask to number of pages */ 7056 return ~accl_mask + 1; 7057 } 7058 7059 /* Find the lowest pfn for a node */ 7060 static unsigned long __init find_min_pfn_for_node(int nid) 7061 { 7062 unsigned long min_pfn = ULONG_MAX; 7063 unsigned long start_pfn; 7064 int i; 7065 7066 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 7067 min_pfn = min(min_pfn, start_pfn); 7068 7069 if (min_pfn == ULONG_MAX) { 7070 pr_warn("Could not find start_pfn for node %d\n", nid); 7071 return 0; 7072 } 7073 7074 return min_pfn; 7075 } 7076 7077 /** 7078 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7079 * 7080 * Return: the minimum PFN based on information provided via 7081 * memblock_set_node(). 7082 */ 7083 unsigned long __init find_min_pfn_with_active_regions(void) 7084 { 7085 return find_min_pfn_for_node(MAX_NUMNODES); 7086 } 7087 7088 /* 7089 * early_calculate_totalpages() 7090 * Sum pages in active regions for movable zone. 7091 * Populate N_MEMORY for calculating usable_nodes. 7092 */ 7093 static unsigned long __init early_calculate_totalpages(void) 7094 { 7095 unsigned long totalpages = 0; 7096 unsigned long start_pfn, end_pfn; 7097 int i, nid; 7098 7099 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7100 unsigned long pages = end_pfn - start_pfn; 7101 7102 totalpages += pages; 7103 if (pages) 7104 node_set_state(nid, N_MEMORY); 7105 } 7106 return totalpages; 7107 } 7108 7109 /* 7110 * Find the PFN the Movable zone begins in each node. Kernel memory 7111 * is spread evenly between nodes as long as the nodes have enough 7112 * memory. When they don't, some nodes will have more kernelcore than 7113 * others 7114 */ 7115 static void __init find_zone_movable_pfns_for_nodes(void) 7116 { 7117 int i, nid; 7118 unsigned long usable_startpfn; 7119 unsigned long kernelcore_node, kernelcore_remaining; 7120 /* save the state before borrow the nodemask */ 7121 nodemask_t saved_node_state = node_states[N_MEMORY]; 7122 unsigned long totalpages = early_calculate_totalpages(); 7123 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7124 struct memblock_region *r; 7125 7126 /* Need to find movable_zone earlier when movable_node is specified. */ 7127 find_usable_zone_for_movable(); 7128 7129 /* 7130 * If movable_node is specified, ignore kernelcore and movablecore 7131 * options. 7132 */ 7133 if (movable_node_is_enabled()) { 7134 for_each_memblock(memory, r) { 7135 if (!memblock_is_hotpluggable(r)) 7136 continue; 7137 7138 nid = r->nid; 7139 7140 usable_startpfn = PFN_DOWN(r->base); 7141 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7142 min(usable_startpfn, zone_movable_pfn[nid]) : 7143 usable_startpfn; 7144 } 7145 7146 goto out2; 7147 } 7148 7149 /* 7150 * If kernelcore=mirror is specified, ignore movablecore option 7151 */ 7152 if (mirrored_kernelcore) { 7153 bool mem_below_4gb_not_mirrored = false; 7154 7155 for_each_memblock(memory, r) { 7156 if (memblock_is_mirror(r)) 7157 continue; 7158 7159 nid = r->nid; 7160 7161 usable_startpfn = memblock_region_memory_base_pfn(r); 7162 7163 if (usable_startpfn < 0x100000) { 7164 mem_below_4gb_not_mirrored = true; 7165 continue; 7166 } 7167 7168 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7169 min(usable_startpfn, zone_movable_pfn[nid]) : 7170 usable_startpfn; 7171 } 7172 7173 if (mem_below_4gb_not_mirrored) 7174 pr_warn("This configuration results in unmirrored kernel memory."); 7175 7176 goto out2; 7177 } 7178 7179 /* 7180 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7181 * amount of necessary memory. 7182 */ 7183 if (required_kernelcore_percent) 7184 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7185 10000UL; 7186 if (required_movablecore_percent) 7187 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7188 10000UL; 7189 7190 /* 7191 * If movablecore= was specified, calculate what size of 7192 * kernelcore that corresponds so that memory usable for 7193 * any allocation type is evenly spread. If both kernelcore 7194 * and movablecore are specified, then the value of kernelcore 7195 * will be used for required_kernelcore if it's greater than 7196 * what movablecore would have allowed. 7197 */ 7198 if (required_movablecore) { 7199 unsigned long corepages; 7200 7201 /* 7202 * Round-up so that ZONE_MOVABLE is at least as large as what 7203 * was requested by the user 7204 */ 7205 required_movablecore = 7206 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7207 required_movablecore = min(totalpages, required_movablecore); 7208 corepages = totalpages - required_movablecore; 7209 7210 required_kernelcore = max(required_kernelcore, corepages); 7211 } 7212 7213 /* 7214 * If kernelcore was not specified or kernelcore size is larger 7215 * than totalpages, there is no ZONE_MOVABLE. 7216 */ 7217 if (!required_kernelcore || required_kernelcore >= totalpages) 7218 goto out; 7219 7220 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7221 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7222 7223 restart: 7224 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7225 kernelcore_node = required_kernelcore / usable_nodes; 7226 for_each_node_state(nid, N_MEMORY) { 7227 unsigned long start_pfn, end_pfn; 7228 7229 /* 7230 * Recalculate kernelcore_node if the division per node 7231 * now exceeds what is necessary to satisfy the requested 7232 * amount of memory for the kernel 7233 */ 7234 if (required_kernelcore < kernelcore_node) 7235 kernelcore_node = required_kernelcore / usable_nodes; 7236 7237 /* 7238 * As the map is walked, we track how much memory is usable 7239 * by the kernel using kernelcore_remaining. When it is 7240 * 0, the rest of the node is usable by ZONE_MOVABLE 7241 */ 7242 kernelcore_remaining = kernelcore_node; 7243 7244 /* Go through each range of PFNs within this node */ 7245 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7246 unsigned long size_pages; 7247 7248 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7249 if (start_pfn >= end_pfn) 7250 continue; 7251 7252 /* Account for what is only usable for kernelcore */ 7253 if (start_pfn < usable_startpfn) { 7254 unsigned long kernel_pages; 7255 kernel_pages = min(end_pfn, usable_startpfn) 7256 - start_pfn; 7257 7258 kernelcore_remaining -= min(kernel_pages, 7259 kernelcore_remaining); 7260 required_kernelcore -= min(kernel_pages, 7261 required_kernelcore); 7262 7263 /* Continue if range is now fully accounted */ 7264 if (end_pfn <= usable_startpfn) { 7265 7266 /* 7267 * Push zone_movable_pfn to the end so 7268 * that if we have to rebalance 7269 * kernelcore across nodes, we will 7270 * not double account here 7271 */ 7272 zone_movable_pfn[nid] = end_pfn; 7273 continue; 7274 } 7275 start_pfn = usable_startpfn; 7276 } 7277 7278 /* 7279 * The usable PFN range for ZONE_MOVABLE is from 7280 * start_pfn->end_pfn. Calculate size_pages as the 7281 * number of pages used as kernelcore 7282 */ 7283 size_pages = end_pfn - start_pfn; 7284 if (size_pages > kernelcore_remaining) 7285 size_pages = kernelcore_remaining; 7286 zone_movable_pfn[nid] = start_pfn + size_pages; 7287 7288 /* 7289 * Some kernelcore has been met, update counts and 7290 * break if the kernelcore for this node has been 7291 * satisfied 7292 */ 7293 required_kernelcore -= min(required_kernelcore, 7294 size_pages); 7295 kernelcore_remaining -= size_pages; 7296 if (!kernelcore_remaining) 7297 break; 7298 } 7299 } 7300 7301 /* 7302 * If there is still required_kernelcore, we do another pass with one 7303 * less node in the count. This will push zone_movable_pfn[nid] further 7304 * along on the nodes that still have memory until kernelcore is 7305 * satisfied 7306 */ 7307 usable_nodes--; 7308 if (usable_nodes && required_kernelcore > usable_nodes) 7309 goto restart; 7310 7311 out2: 7312 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7313 for (nid = 0; nid < MAX_NUMNODES; nid++) 7314 zone_movable_pfn[nid] = 7315 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7316 7317 out: 7318 /* restore the node_state */ 7319 node_states[N_MEMORY] = saved_node_state; 7320 } 7321 7322 /* Any regular or high memory on that node ? */ 7323 static void check_for_memory(pg_data_t *pgdat, int nid) 7324 { 7325 enum zone_type zone_type; 7326 7327 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7328 struct zone *zone = &pgdat->node_zones[zone_type]; 7329 if (populated_zone(zone)) { 7330 if (IS_ENABLED(CONFIG_HIGHMEM)) 7331 node_set_state(nid, N_HIGH_MEMORY); 7332 if (zone_type <= ZONE_NORMAL) 7333 node_set_state(nid, N_NORMAL_MEMORY); 7334 break; 7335 } 7336 } 7337 } 7338 7339 /** 7340 * free_area_init_nodes - Initialise all pg_data_t and zone data 7341 * @max_zone_pfn: an array of max PFNs for each zone 7342 * 7343 * This will call free_area_init_node() for each active node in the system. 7344 * Using the page ranges provided by memblock_set_node(), the size of each 7345 * zone in each node and their holes is calculated. If the maximum PFN 7346 * between two adjacent zones match, it is assumed that the zone is empty. 7347 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7348 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7349 * starts where the previous one ended. For example, ZONE_DMA32 starts 7350 * at arch_max_dma_pfn. 7351 */ 7352 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 7353 { 7354 unsigned long start_pfn, end_pfn; 7355 int i, nid; 7356 7357 /* Record where the zone boundaries are */ 7358 memset(arch_zone_lowest_possible_pfn, 0, 7359 sizeof(arch_zone_lowest_possible_pfn)); 7360 memset(arch_zone_highest_possible_pfn, 0, 7361 sizeof(arch_zone_highest_possible_pfn)); 7362 7363 start_pfn = find_min_pfn_with_active_regions(); 7364 7365 for (i = 0; i < MAX_NR_ZONES; i++) { 7366 if (i == ZONE_MOVABLE) 7367 continue; 7368 7369 end_pfn = max(max_zone_pfn[i], start_pfn); 7370 arch_zone_lowest_possible_pfn[i] = start_pfn; 7371 arch_zone_highest_possible_pfn[i] = end_pfn; 7372 7373 start_pfn = end_pfn; 7374 } 7375 7376 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7377 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7378 find_zone_movable_pfns_for_nodes(); 7379 7380 /* Print out the zone ranges */ 7381 pr_info("Zone ranges:\n"); 7382 for (i = 0; i < MAX_NR_ZONES; i++) { 7383 if (i == ZONE_MOVABLE) 7384 continue; 7385 pr_info(" %-8s ", zone_names[i]); 7386 if (arch_zone_lowest_possible_pfn[i] == 7387 arch_zone_highest_possible_pfn[i]) 7388 pr_cont("empty\n"); 7389 else 7390 pr_cont("[mem %#018Lx-%#018Lx]\n", 7391 (u64)arch_zone_lowest_possible_pfn[i] 7392 << PAGE_SHIFT, 7393 ((u64)arch_zone_highest_possible_pfn[i] 7394 << PAGE_SHIFT) - 1); 7395 } 7396 7397 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7398 pr_info("Movable zone start for each node\n"); 7399 for (i = 0; i < MAX_NUMNODES; i++) { 7400 if (zone_movable_pfn[i]) 7401 pr_info(" Node %d: %#018Lx\n", i, 7402 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7403 } 7404 7405 /* 7406 * Print out the early node map, and initialize the 7407 * subsection-map relative to active online memory ranges to 7408 * enable future "sub-section" extensions of the memory map. 7409 */ 7410 pr_info("Early memory node ranges\n"); 7411 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7412 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7413 (u64)start_pfn << PAGE_SHIFT, 7414 ((u64)end_pfn << PAGE_SHIFT) - 1); 7415 subsection_map_init(start_pfn, end_pfn - start_pfn); 7416 } 7417 7418 /* Initialise every node */ 7419 mminit_verify_pageflags_layout(); 7420 setup_nr_node_ids(); 7421 init_unavailable_mem(); 7422 for_each_online_node(nid) { 7423 pg_data_t *pgdat = NODE_DATA(nid); 7424 free_area_init_node(nid, NULL, 7425 find_min_pfn_for_node(nid), NULL); 7426 7427 /* Any memory on that node */ 7428 if (pgdat->node_present_pages) 7429 node_set_state(nid, N_MEMORY); 7430 check_for_memory(pgdat, nid); 7431 } 7432 } 7433 7434 static int __init cmdline_parse_core(char *p, unsigned long *core, 7435 unsigned long *percent) 7436 { 7437 unsigned long long coremem; 7438 char *endptr; 7439 7440 if (!p) 7441 return -EINVAL; 7442 7443 /* Value may be a percentage of total memory, otherwise bytes */ 7444 coremem = simple_strtoull(p, &endptr, 0); 7445 if (*endptr == '%') { 7446 /* Paranoid check for percent values greater than 100 */ 7447 WARN_ON(coremem > 100); 7448 7449 *percent = coremem; 7450 } else { 7451 coremem = memparse(p, &p); 7452 /* Paranoid check that UL is enough for the coremem value */ 7453 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7454 7455 *core = coremem >> PAGE_SHIFT; 7456 *percent = 0UL; 7457 } 7458 return 0; 7459 } 7460 7461 /* 7462 * kernelcore=size sets the amount of memory for use for allocations that 7463 * cannot be reclaimed or migrated. 7464 */ 7465 static int __init cmdline_parse_kernelcore(char *p) 7466 { 7467 /* parse kernelcore=mirror */ 7468 if (parse_option_str(p, "mirror")) { 7469 mirrored_kernelcore = true; 7470 return 0; 7471 } 7472 7473 return cmdline_parse_core(p, &required_kernelcore, 7474 &required_kernelcore_percent); 7475 } 7476 7477 /* 7478 * movablecore=size sets the amount of memory for use for allocations that 7479 * can be reclaimed or migrated. 7480 */ 7481 static int __init cmdline_parse_movablecore(char *p) 7482 { 7483 return cmdline_parse_core(p, &required_movablecore, 7484 &required_movablecore_percent); 7485 } 7486 7487 early_param("kernelcore", cmdline_parse_kernelcore); 7488 early_param("movablecore", cmdline_parse_movablecore); 7489 7490 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 7491 7492 void adjust_managed_page_count(struct page *page, long count) 7493 { 7494 atomic_long_add(count, &page_zone(page)->managed_pages); 7495 totalram_pages_add(count); 7496 #ifdef CONFIG_HIGHMEM 7497 if (PageHighMem(page)) 7498 totalhigh_pages_add(count); 7499 #endif 7500 } 7501 EXPORT_SYMBOL(adjust_managed_page_count); 7502 7503 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7504 { 7505 void *pos; 7506 unsigned long pages = 0; 7507 7508 start = (void *)PAGE_ALIGN((unsigned long)start); 7509 end = (void *)((unsigned long)end & PAGE_MASK); 7510 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7511 struct page *page = virt_to_page(pos); 7512 void *direct_map_addr; 7513 7514 /* 7515 * 'direct_map_addr' might be different from 'pos' 7516 * because some architectures' virt_to_page() 7517 * work with aliases. Getting the direct map 7518 * address ensures that we get a _writeable_ 7519 * alias for the memset(). 7520 */ 7521 direct_map_addr = page_address(page); 7522 if ((unsigned int)poison <= 0xFF) 7523 memset(direct_map_addr, poison, PAGE_SIZE); 7524 7525 free_reserved_page(page); 7526 } 7527 7528 if (pages && s) 7529 pr_info("Freeing %s memory: %ldK\n", 7530 s, pages << (PAGE_SHIFT - 10)); 7531 7532 return pages; 7533 } 7534 7535 #ifdef CONFIG_HIGHMEM 7536 void free_highmem_page(struct page *page) 7537 { 7538 __free_reserved_page(page); 7539 totalram_pages_inc(); 7540 atomic_long_inc(&page_zone(page)->managed_pages); 7541 totalhigh_pages_inc(); 7542 } 7543 #endif 7544 7545 7546 void __init mem_init_print_info(const char *str) 7547 { 7548 unsigned long physpages, codesize, datasize, rosize, bss_size; 7549 unsigned long init_code_size, init_data_size; 7550 7551 physpages = get_num_physpages(); 7552 codesize = _etext - _stext; 7553 datasize = _edata - _sdata; 7554 rosize = __end_rodata - __start_rodata; 7555 bss_size = __bss_stop - __bss_start; 7556 init_data_size = __init_end - __init_begin; 7557 init_code_size = _einittext - _sinittext; 7558 7559 /* 7560 * Detect special cases and adjust section sizes accordingly: 7561 * 1) .init.* may be embedded into .data sections 7562 * 2) .init.text.* may be out of [__init_begin, __init_end], 7563 * please refer to arch/tile/kernel/vmlinux.lds.S. 7564 * 3) .rodata.* may be embedded into .text or .data sections. 7565 */ 7566 #define adj_init_size(start, end, size, pos, adj) \ 7567 do { \ 7568 if (start <= pos && pos < end && size > adj) \ 7569 size -= adj; \ 7570 } while (0) 7571 7572 adj_init_size(__init_begin, __init_end, init_data_size, 7573 _sinittext, init_code_size); 7574 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7575 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7576 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7577 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7578 7579 #undef adj_init_size 7580 7581 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7582 #ifdef CONFIG_HIGHMEM 7583 ", %luK highmem" 7584 #endif 7585 "%s%s)\n", 7586 nr_free_pages() << (PAGE_SHIFT - 10), 7587 physpages << (PAGE_SHIFT - 10), 7588 codesize >> 10, datasize >> 10, rosize >> 10, 7589 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7590 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7591 totalcma_pages << (PAGE_SHIFT - 10), 7592 #ifdef CONFIG_HIGHMEM 7593 totalhigh_pages() << (PAGE_SHIFT - 10), 7594 #endif 7595 str ? ", " : "", str ? str : ""); 7596 } 7597 7598 /** 7599 * set_dma_reserve - set the specified number of pages reserved in the first zone 7600 * @new_dma_reserve: The number of pages to mark reserved 7601 * 7602 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7603 * In the DMA zone, a significant percentage may be consumed by kernel image 7604 * and other unfreeable allocations which can skew the watermarks badly. This 7605 * function may optionally be used to account for unfreeable pages in the 7606 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7607 * smaller per-cpu batchsize. 7608 */ 7609 void __init set_dma_reserve(unsigned long new_dma_reserve) 7610 { 7611 dma_reserve = new_dma_reserve; 7612 } 7613 7614 void __init free_area_init(unsigned long *zones_size) 7615 { 7616 init_unavailable_mem(); 7617 free_area_init_node(0, zones_size, 7618 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7619 } 7620 7621 static int page_alloc_cpu_dead(unsigned int cpu) 7622 { 7623 7624 lru_add_drain_cpu(cpu); 7625 drain_pages(cpu); 7626 7627 /* 7628 * Spill the event counters of the dead processor 7629 * into the current processors event counters. 7630 * This artificially elevates the count of the current 7631 * processor. 7632 */ 7633 vm_events_fold_cpu(cpu); 7634 7635 /* 7636 * Zero the differential counters of the dead processor 7637 * so that the vm statistics are consistent. 7638 * 7639 * This is only okay since the processor is dead and cannot 7640 * race with what we are doing. 7641 */ 7642 cpu_vm_stats_fold(cpu); 7643 return 0; 7644 } 7645 7646 #ifdef CONFIG_NUMA 7647 int hashdist = HASHDIST_DEFAULT; 7648 7649 static int __init set_hashdist(char *str) 7650 { 7651 if (!str) 7652 return 0; 7653 hashdist = simple_strtoul(str, &str, 0); 7654 return 1; 7655 } 7656 __setup("hashdist=", set_hashdist); 7657 #endif 7658 7659 void __init page_alloc_init(void) 7660 { 7661 int ret; 7662 7663 #ifdef CONFIG_NUMA 7664 if (num_node_state(N_MEMORY) == 1) 7665 hashdist = 0; 7666 #endif 7667 7668 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7669 "mm/page_alloc:dead", NULL, 7670 page_alloc_cpu_dead); 7671 WARN_ON(ret < 0); 7672 } 7673 7674 /* 7675 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7676 * or min_free_kbytes changes. 7677 */ 7678 static void calculate_totalreserve_pages(void) 7679 { 7680 struct pglist_data *pgdat; 7681 unsigned long reserve_pages = 0; 7682 enum zone_type i, j; 7683 7684 for_each_online_pgdat(pgdat) { 7685 7686 pgdat->totalreserve_pages = 0; 7687 7688 for (i = 0; i < MAX_NR_ZONES; i++) { 7689 struct zone *zone = pgdat->node_zones + i; 7690 long max = 0; 7691 unsigned long managed_pages = zone_managed_pages(zone); 7692 7693 /* Find valid and maximum lowmem_reserve in the zone */ 7694 for (j = i; j < MAX_NR_ZONES; j++) { 7695 if (zone->lowmem_reserve[j] > max) 7696 max = zone->lowmem_reserve[j]; 7697 } 7698 7699 /* we treat the high watermark as reserved pages. */ 7700 max += high_wmark_pages(zone); 7701 7702 if (max > managed_pages) 7703 max = managed_pages; 7704 7705 pgdat->totalreserve_pages += max; 7706 7707 reserve_pages += max; 7708 } 7709 } 7710 totalreserve_pages = reserve_pages; 7711 } 7712 7713 /* 7714 * setup_per_zone_lowmem_reserve - called whenever 7715 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7716 * has a correct pages reserved value, so an adequate number of 7717 * pages are left in the zone after a successful __alloc_pages(). 7718 */ 7719 static void setup_per_zone_lowmem_reserve(void) 7720 { 7721 struct pglist_data *pgdat; 7722 enum zone_type j, idx; 7723 7724 for_each_online_pgdat(pgdat) { 7725 for (j = 0; j < MAX_NR_ZONES; j++) { 7726 struct zone *zone = pgdat->node_zones + j; 7727 unsigned long managed_pages = zone_managed_pages(zone); 7728 7729 zone->lowmem_reserve[j] = 0; 7730 7731 idx = j; 7732 while (idx) { 7733 struct zone *lower_zone; 7734 7735 idx--; 7736 lower_zone = pgdat->node_zones + idx; 7737 7738 if (sysctl_lowmem_reserve_ratio[idx] < 1) { 7739 sysctl_lowmem_reserve_ratio[idx] = 0; 7740 lower_zone->lowmem_reserve[j] = 0; 7741 } else { 7742 lower_zone->lowmem_reserve[j] = 7743 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7744 } 7745 managed_pages += zone_managed_pages(lower_zone); 7746 } 7747 } 7748 } 7749 7750 /* update totalreserve_pages */ 7751 calculate_totalreserve_pages(); 7752 } 7753 7754 static void __setup_per_zone_wmarks(void) 7755 { 7756 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7757 unsigned long lowmem_pages = 0; 7758 struct zone *zone; 7759 unsigned long flags; 7760 7761 /* Calculate total number of !ZONE_HIGHMEM pages */ 7762 for_each_zone(zone) { 7763 if (!is_highmem(zone)) 7764 lowmem_pages += zone_managed_pages(zone); 7765 } 7766 7767 for_each_zone(zone) { 7768 u64 tmp; 7769 7770 spin_lock_irqsave(&zone->lock, flags); 7771 tmp = (u64)pages_min * zone_managed_pages(zone); 7772 do_div(tmp, lowmem_pages); 7773 if (is_highmem(zone)) { 7774 /* 7775 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7776 * need highmem pages, so cap pages_min to a small 7777 * value here. 7778 * 7779 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7780 * deltas control async page reclaim, and so should 7781 * not be capped for highmem. 7782 */ 7783 unsigned long min_pages; 7784 7785 min_pages = zone_managed_pages(zone) / 1024; 7786 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7787 zone->_watermark[WMARK_MIN] = min_pages; 7788 } else { 7789 /* 7790 * If it's a lowmem zone, reserve a number of pages 7791 * proportionate to the zone's size. 7792 */ 7793 zone->_watermark[WMARK_MIN] = tmp; 7794 } 7795 7796 /* 7797 * Set the kswapd watermarks distance according to the 7798 * scale factor in proportion to available memory, but 7799 * ensure a minimum size on small systems. 7800 */ 7801 tmp = max_t(u64, tmp >> 2, 7802 mult_frac(zone_managed_pages(zone), 7803 watermark_scale_factor, 10000)); 7804 7805 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7806 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7807 zone->watermark_boost = 0; 7808 7809 spin_unlock_irqrestore(&zone->lock, flags); 7810 } 7811 7812 /* update totalreserve_pages */ 7813 calculate_totalreserve_pages(); 7814 } 7815 7816 /** 7817 * setup_per_zone_wmarks - called when min_free_kbytes changes 7818 * or when memory is hot-{added|removed} 7819 * 7820 * Ensures that the watermark[min,low,high] values for each zone are set 7821 * correctly with respect to min_free_kbytes. 7822 */ 7823 void setup_per_zone_wmarks(void) 7824 { 7825 static DEFINE_SPINLOCK(lock); 7826 7827 spin_lock(&lock); 7828 __setup_per_zone_wmarks(); 7829 spin_unlock(&lock); 7830 } 7831 7832 /* 7833 * Initialise min_free_kbytes. 7834 * 7835 * For small machines we want it small (128k min). For large machines 7836 * we want it large (64MB max). But it is not linear, because network 7837 * bandwidth does not increase linearly with machine size. We use 7838 * 7839 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7840 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7841 * 7842 * which yields 7843 * 7844 * 16MB: 512k 7845 * 32MB: 724k 7846 * 64MB: 1024k 7847 * 128MB: 1448k 7848 * 256MB: 2048k 7849 * 512MB: 2896k 7850 * 1024MB: 4096k 7851 * 2048MB: 5792k 7852 * 4096MB: 8192k 7853 * 8192MB: 11584k 7854 * 16384MB: 16384k 7855 */ 7856 int __meminit init_per_zone_wmark_min(void) 7857 { 7858 unsigned long lowmem_kbytes; 7859 int new_min_free_kbytes; 7860 7861 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7862 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7863 7864 if (new_min_free_kbytes > user_min_free_kbytes) { 7865 min_free_kbytes = new_min_free_kbytes; 7866 if (min_free_kbytes < 128) 7867 min_free_kbytes = 128; 7868 if (min_free_kbytes > 262144) 7869 min_free_kbytes = 262144; 7870 } else { 7871 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7872 new_min_free_kbytes, user_min_free_kbytes); 7873 } 7874 setup_per_zone_wmarks(); 7875 refresh_zone_stat_thresholds(); 7876 setup_per_zone_lowmem_reserve(); 7877 7878 #ifdef CONFIG_NUMA 7879 setup_min_unmapped_ratio(); 7880 setup_min_slab_ratio(); 7881 #endif 7882 7883 return 0; 7884 } 7885 core_initcall(init_per_zone_wmark_min) 7886 7887 /* 7888 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7889 * that we can call two helper functions whenever min_free_kbytes 7890 * changes. 7891 */ 7892 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7893 void __user *buffer, size_t *length, loff_t *ppos) 7894 { 7895 int rc; 7896 7897 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7898 if (rc) 7899 return rc; 7900 7901 if (write) { 7902 user_min_free_kbytes = min_free_kbytes; 7903 setup_per_zone_wmarks(); 7904 } 7905 return 0; 7906 } 7907 7908 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write, 7909 void __user *buffer, size_t *length, loff_t *ppos) 7910 { 7911 int rc; 7912 7913 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7914 if (rc) 7915 return rc; 7916 7917 return 0; 7918 } 7919 7920 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7921 void __user *buffer, size_t *length, loff_t *ppos) 7922 { 7923 int rc; 7924 7925 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7926 if (rc) 7927 return rc; 7928 7929 if (write) 7930 setup_per_zone_wmarks(); 7931 7932 return 0; 7933 } 7934 7935 #ifdef CONFIG_NUMA 7936 static void setup_min_unmapped_ratio(void) 7937 { 7938 pg_data_t *pgdat; 7939 struct zone *zone; 7940 7941 for_each_online_pgdat(pgdat) 7942 pgdat->min_unmapped_pages = 0; 7943 7944 for_each_zone(zone) 7945 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 7946 sysctl_min_unmapped_ratio) / 100; 7947 } 7948 7949 7950 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7951 void __user *buffer, size_t *length, loff_t *ppos) 7952 { 7953 int rc; 7954 7955 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7956 if (rc) 7957 return rc; 7958 7959 setup_min_unmapped_ratio(); 7960 7961 return 0; 7962 } 7963 7964 static void setup_min_slab_ratio(void) 7965 { 7966 pg_data_t *pgdat; 7967 struct zone *zone; 7968 7969 for_each_online_pgdat(pgdat) 7970 pgdat->min_slab_pages = 0; 7971 7972 for_each_zone(zone) 7973 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 7974 sysctl_min_slab_ratio) / 100; 7975 } 7976 7977 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7978 void __user *buffer, size_t *length, loff_t *ppos) 7979 { 7980 int rc; 7981 7982 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7983 if (rc) 7984 return rc; 7985 7986 setup_min_slab_ratio(); 7987 7988 return 0; 7989 } 7990 #endif 7991 7992 /* 7993 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7994 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7995 * whenever sysctl_lowmem_reserve_ratio changes. 7996 * 7997 * The reserve ratio obviously has absolutely no relation with the 7998 * minimum watermarks. The lowmem reserve ratio can only make sense 7999 * if in function of the boot time zone sizes. 8000 */ 8001 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8002 void __user *buffer, size_t *length, loff_t *ppos) 8003 { 8004 proc_dointvec_minmax(table, write, buffer, length, ppos); 8005 setup_per_zone_lowmem_reserve(); 8006 return 0; 8007 } 8008 8009 static void __zone_pcp_update(struct zone *zone) 8010 { 8011 unsigned int cpu; 8012 8013 for_each_possible_cpu(cpu) 8014 pageset_set_high_and_batch(zone, 8015 per_cpu_ptr(zone->pageset, cpu)); 8016 } 8017 8018 /* 8019 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 8020 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8021 * pagelist can have before it gets flushed back to buddy allocator. 8022 */ 8023 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 8024 void __user *buffer, size_t *length, loff_t *ppos) 8025 { 8026 struct zone *zone; 8027 int old_percpu_pagelist_fraction; 8028 int ret; 8029 8030 mutex_lock(&pcp_batch_high_lock); 8031 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 8032 8033 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8034 if (!write || ret < 0) 8035 goto out; 8036 8037 /* Sanity checking to avoid pcp imbalance */ 8038 if (percpu_pagelist_fraction && 8039 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 8040 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 8041 ret = -EINVAL; 8042 goto out; 8043 } 8044 8045 /* No change? */ 8046 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 8047 goto out; 8048 8049 for_each_populated_zone(zone) 8050 __zone_pcp_update(zone); 8051 out: 8052 mutex_unlock(&pcp_batch_high_lock); 8053 return ret; 8054 } 8055 8056 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8057 /* 8058 * Returns the number of pages that arch has reserved but 8059 * is not known to alloc_large_system_hash(). 8060 */ 8061 static unsigned long __init arch_reserved_kernel_pages(void) 8062 { 8063 return 0; 8064 } 8065 #endif 8066 8067 /* 8068 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8069 * machines. As memory size is increased the scale is also increased but at 8070 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8071 * quadruples the scale is increased by one, which means the size of hash table 8072 * only doubles, instead of quadrupling as well. 8073 * Because 32-bit systems cannot have large physical memory, where this scaling 8074 * makes sense, it is disabled on such platforms. 8075 */ 8076 #if __BITS_PER_LONG > 32 8077 #define ADAPT_SCALE_BASE (64ul << 30) 8078 #define ADAPT_SCALE_SHIFT 2 8079 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8080 #endif 8081 8082 /* 8083 * allocate a large system hash table from bootmem 8084 * - it is assumed that the hash table must contain an exact power-of-2 8085 * quantity of entries 8086 * - limit is the number of hash buckets, not the total allocation size 8087 */ 8088 void *__init alloc_large_system_hash(const char *tablename, 8089 unsigned long bucketsize, 8090 unsigned long numentries, 8091 int scale, 8092 int flags, 8093 unsigned int *_hash_shift, 8094 unsigned int *_hash_mask, 8095 unsigned long low_limit, 8096 unsigned long high_limit) 8097 { 8098 unsigned long long max = high_limit; 8099 unsigned long log2qty, size; 8100 void *table = NULL; 8101 gfp_t gfp_flags; 8102 bool virt; 8103 8104 /* allow the kernel cmdline to have a say */ 8105 if (!numentries) { 8106 /* round applicable memory size up to nearest megabyte */ 8107 numentries = nr_kernel_pages; 8108 numentries -= arch_reserved_kernel_pages(); 8109 8110 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8111 if (PAGE_SHIFT < 20) 8112 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8113 8114 #if __BITS_PER_LONG > 32 8115 if (!high_limit) { 8116 unsigned long adapt; 8117 8118 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8119 adapt <<= ADAPT_SCALE_SHIFT) 8120 scale++; 8121 } 8122 #endif 8123 8124 /* limit to 1 bucket per 2^scale bytes of low memory */ 8125 if (scale > PAGE_SHIFT) 8126 numentries >>= (scale - PAGE_SHIFT); 8127 else 8128 numentries <<= (PAGE_SHIFT - scale); 8129 8130 /* Make sure we've got at least a 0-order allocation.. */ 8131 if (unlikely(flags & HASH_SMALL)) { 8132 /* Makes no sense without HASH_EARLY */ 8133 WARN_ON(!(flags & HASH_EARLY)); 8134 if (!(numentries >> *_hash_shift)) { 8135 numentries = 1UL << *_hash_shift; 8136 BUG_ON(!numentries); 8137 } 8138 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8139 numentries = PAGE_SIZE / bucketsize; 8140 } 8141 numentries = roundup_pow_of_two(numentries); 8142 8143 /* limit allocation size to 1/16 total memory by default */ 8144 if (max == 0) { 8145 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8146 do_div(max, bucketsize); 8147 } 8148 max = min(max, 0x80000000ULL); 8149 8150 if (numentries < low_limit) 8151 numentries = low_limit; 8152 if (numentries > max) 8153 numentries = max; 8154 8155 log2qty = ilog2(numentries); 8156 8157 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8158 do { 8159 virt = false; 8160 size = bucketsize << log2qty; 8161 if (flags & HASH_EARLY) { 8162 if (flags & HASH_ZERO) 8163 table = memblock_alloc(size, SMP_CACHE_BYTES); 8164 else 8165 table = memblock_alloc_raw(size, 8166 SMP_CACHE_BYTES); 8167 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8168 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 8169 virt = true; 8170 } else { 8171 /* 8172 * If bucketsize is not a power-of-two, we may free 8173 * some pages at the end of hash table which 8174 * alloc_pages_exact() automatically does 8175 */ 8176 table = alloc_pages_exact(size, gfp_flags); 8177 kmemleak_alloc(table, size, 1, gfp_flags); 8178 } 8179 } while (!table && size > PAGE_SIZE && --log2qty); 8180 8181 if (!table) 8182 panic("Failed to allocate %s hash table\n", tablename); 8183 8184 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8185 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8186 virt ? "vmalloc" : "linear"); 8187 8188 if (_hash_shift) 8189 *_hash_shift = log2qty; 8190 if (_hash_mask) 8191 *_hash_mask = (1 << log2qty) - 1; 8192 8193 return table; 8194 } 8195 8196 /* 8197 * This function checks whether pageblock includes unmovable pages or not. 8198 * 8199 * PageLRU check without isolation or lru_lock could race so that 8200 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8201 * check without lock_page also may miss some movable non-lru pages at 8202 * race condition. So you can't expect this function should be exact. 8203 * 8204 * Returns a page without holding a reference. If the caller wants to 8205 * dereference that page (e.g., dumping), it has to make sure that that it 8206 * cannot get removed (e.g., via memory unplug) concurrently. 8207 * 8208 */ 8209 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8210 int migratetype, int flags) 8211 { 8212 unsigned long iter = 0; 8213 unsigned long pfn = page_to_pfn(page); 8214 8215 /* 8216 * TODO we could make this much more efficient by not checking every 8217 * page in the range if we know all of them are in MOVABLE_ZONE and 8218 * that the movable zone guarantees that pages are migratable but 8219 * the later is not the case right now unfortunatelly. E.g. movablecore 8220 * can still lead to having bootmem allocations in zone_movable. 8221 */ 8222 8223 if (is_migrate_cma_page(page)) { 8224 /* 8225 * CMA allocations (alloc_contig_range) really need to mark 8226 * isolate CMA pageblocks even when they are not movable in fact 8227 * so consider them movable here. 8228 */ 8229 if (is_migrate_cma(migratetype)) 8230 return NULL; 8231 8232 return page; 8233 } 8234 8235 for (; iter < pageblock_nr_pages; iter++) { 8236 if (!pfn_valid_within(pfn + iter)) 8237 continue; 8238 8239 page = pfn_to_page(pfn + iter); 8240 8241 if (PageReserved(page)) 8242 return page; 8243 8244 /* 8245 * If the zone is movable and we have ruled out all reserved 8246 * pages then it should be reasonably safe to assume the rest 8247 * is movable. 8248 */ 8249 if (zone_idx(zone) == ZONE_MOVABLE) 8250 continue; 8251 8252 /* 8253 * Hugepages are not in LRU lists, but they're movable. 8254 * We need not scan over tail pages because we don't 8255 * handle each tail page individually in migration. 8256 */ 8257 if (PageHuge(page)) { 8258 struct page *head = compound_head(page); 8259 unsigned int skip_pages; 8260 8261 if (!hugepage_migration_supported(page_hstate(head))) 8262 return page; 8263 8264 skip_pages = compound_nr(head) - (page - head); 8265 iter += skip_pages - 1; 8266 continue; 8267 } 8268 8269 /* 8270 * We can't use page_count without pin a page 8271 * because another CPU can free compound page. 8272 * This check already skips compound tails of THP 8273 * because their page->_refcount is zero at all time. 8274 */ 8275 if (!page_ref_count(page)) { 8276 if (PageBuddy(page)) 8277 iter += (1 << page_order(page)) - 1; 8278 continue; 8279 } 8280 8281 /* 8282 * The HWPoisoned page may be not in buddy system, and 8283 * page_count() is not 0. 8284 */ 8285 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8286 continue; 8287 8288 if (__PageMovable(page) || PageLRU(page)) 8289 continue; 8290 8291 /* 8292 * If there are RECLAIMABLE pages, we need to check 8293 * it. But now, memory offline itself doesn't call 8294 * shrink_node_slabs() and it still to be fixed. 8295 */ 8296 /* 8297 * If the page is not RAM, page_count()should be 0. 8298 * we don't need more check. This is an _used_ not-movable page. 8299 * 8300 * The problematic thing here is PG_reserved pages. PG_reserved 8301 * is set to both of a memory hole page and a _used_ kernel 8302 * page at boot. 8303 */ 8304 return page; 8305 } 8306 return NULL; 8307 } 8308 8309 #ifdef CONFIG_CONTIG_ALLOC 8310 static unsigned long pfn_max_align_down(unsigned long pfn) 8311 { 8312 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8313 pageblock_nr_pages) - 1); 8314 } 8315 8316 static unsigned long pfn_max_align_up(unsigned long pfn) 8317 { 8318 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8319 pageblock_nr_pages)); 8320 } 8321 8322 /* [start, end) must belong to a single zone. */ 8323 static int __alloc_contig_migrate_range(struct compact_control *cc, 8324 unsigned long start, unsigned long end) 8325 { 8326 /* This function is based on compact_zone() from compaction.c. */ 8327 unsigned long nr_reclaimed; 8328 unsigned long pfn = start; 8329 unsigned int tries = 0; 8330 int ret = 0; 8331 8332 migrate_prep(); 8333 8334 while (pfn < end || !list_empty(&cc->migratepages)) { 8335 if (fatal_signal_pending(current)) { 8336 ret = -EINTR; 8337 break; 8338 } 8339 8340 if (list_empty(&cc->migratepages)) { 8341 cc->nr_migratepages = 0; 8342 pfn = isolate_migratepages_range(cc, pfn, end); 8343 if (!pfn) { 8344 ret = -EINTR; 8345 break; 8346 } 8347 tries = 0; 8348 } else if (++tries == 5) { 8349 ret = ret < 0 ? ret : -EBUSY; 8350 break; 8351 } 8352 8353 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8354 &cc->migratepages); 8355 cc->nr_migratepages -= nr_reclaimed; 8356 8357 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 8358 NULL, 0, cc->mode, MR_CONTIG_RANGE); 8359 } 8360 if (ret < 0) { 8361 putback_movable_pages(&cc->migratepages); 8362 return ret; 8363 } 8364 return 0; 8365 } 8366 8367 /** 8368 * alloc_contig_range() -- tries to allocate given range of pages 8369 * @start: start PFN to allocate 8370 * @end: one-past-the-last PFN to allocate 8371 * @migratetype: migratetype of the underlaying pageblocks (either 8372 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8373 * in range must have the same migratetype and it must 8374 * be either of the two. 8375 * @gfp_mask: GFP mask to use during compaction 8376 * 8377 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8378 * aligned. The PFN range must belong to a single zone. 8379 * 8380 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8381 * pageblocks in the range. Once isolated, the pageblocks should not 8382 * be modified by others. 8383 * 8384 * Return: zero on success or negative error code. On success all 8385 * pages which PFN is in [start, end) are allocated for the caller and 8386 * need to be freed with free_contig_range(). 8387 */ 8388 int alloc_contig_range(unsigned long start, unsigned long end, 8389 unsigned migratetype, gfp_t gfp_mask) 8390 { 8391 unsigned long outer_start, outer_end; 8392 unsigned int order; 8393 int ret = 0; 8394 8395 struct compact_control cc = { 8396 .nr_migratepages = 0, 8397 .order = -1, 8398 .zone = page_zone(pfn_to_page(start)), 8399 .mode = MIGRATE_SYNC, 8400 .ignore_skip_hint = true, 8401 .no_set_skip_hint = true, 8402 .gfp_mask = current_gfp_context(gfp_mask), 8403 .alloc_contig = true, 8404 }; 8405 INIT_LIST_HEAD(&cc.migratepages); 8406 8407 /* 8408 * What we do here is we mark all pageblocks in range as 8409 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8410 * have different sizes, and due to the way page allocator 8411 * work, we align the range to biggest of the two pages so 8412 * that page allocator won't try to merge buddies from 8413 * different pageblocks and change MIGRATE_ISOLATE to some 8414 * other migration type. 8415 * 8416 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8417 * migrate the pages from an unaligned range (ie. pages that 8418 * we are interested in). This will put all the pages in 8419 * range back to page allocator as MIGRATE_ISOLATE. 8420 * 8421 * When this is done, we take the pages in range from page 8422 * allocator removing them from the buddy system. This way 8423 * page allocator will never consider using them. 8424 * 8425 * This lets us mark the pageblocks back as 8426 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8427 * aligned range but not in the unaligned, original range are 8428 * put back to page allocator so that buddy can use them. 8429 */ 8430 8431 ret = start_isolate_page_range(pfn_max_align_down(start), 8432 pfn_max_align_up(end), migratetype, 0); 8433 if (ret < 0) 8434 return ret; 8435 8436 /* 8437 * In case of -EBUSY, we'd like to know which page causes problem. 8438 * So, just fall through. test_pages_isolated() has a tracepoint 8439 * which will report the busy page. 8440 * 8441 * It is possible that busy pages could become available before 8442 * the call to test_pages_isolated, and the range will actually be 8443 * allocated. So, if we fall through be sure to clear ret so that 8444 * -EBUSY is not accidentally used or returned to caller. 8445 */ 8446 ret = __alloc_contig_migrate_range(&cc, start, end); 8447 if (ret && ret != -EBUSY) 8448 goto done; 8449 ret =0; 8450 8451 /* 8452 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8453 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8454 * more, all pages in [start, end) are free in page allocator. 8455 * What we are going to do is to allocate all pages from 8456 * [start, end) (that is remove them from page allocator). 8457 * 8458 * The only problem is that pages at the beginning and at the 8459 * end of interesting range may be not aligned with pages that 8460 * page allocator holds, ie. they can be part of higher order 8461 * pages. Because of this, we reserve the bigger range and 8462 * once this is done free the pages we are not interested in. 8463 * 8464 * We don't have to hold zone->lock here because the pages are 8465 * isolated thus they won't get removed from buddy. 8466 */ 8467 8468 lru_add_drain_all(); 8469 8470 order = 0; 8471 outer_start = start; 8472 while (!PageBuddy(pfn_to_page(outer_start))) { 8473 if (++order >= MAX_ORDER) { 8474 outer_start = start; 8475 break; 8476 } 8477 outer_start &= ~0UL << order; 8478 } 8479 8480 if (outer_start != start) { 8481 order = page_order(pfn_to_page(outer_start)); 8482 8483 /* 8484 * outer_start page could be small order buddy page and 8485 * it doesn't include start page. Adjust outer_start 8486 * in this case to report failed page properly 8487 * on tracepoint in test_pages_isolated() 8488 */ 8489 if (outer_start + (1UL << order) <= start) 8490 outer_start = start; 8491 } 8492 8493 /* Make sure the range is really isolated. */ 8494 if (test_pages_isolated(outer_start, end, 0)) { 8495 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8496 __func__, outer_start, end); 8497 ret = -EBUSY; 8498 goto done; 8499 } 8500 8501 /* Grab isolated pages from freelists. */ 8502 outer_end = isolate_freepages_range(&cc, outer_start, end); 8503 if (!outer_end) { 8504 ret = -EBUSY; 8505 goto done; 8506 } 8507 8508 /* Free head and tail (if any) */ 8509 if (start != outer_start) 8510 free_contig_range(outer_start, start - outer_start); 8511 if (end != outer_end) 8512 free_contig_range(end, outer_end - end); 8513 8514 done: 8515 undo_isolate_page_range(pfn_max_align_down(start), 8516 pfn_max_align_up(end), migratetype); 8517 return ret; 8518 } 8519 8520 static int __alloc_contig_pages(unsigned long start_pfn, 8521 unsigned long nr_pages, gfp_t gfp_mask) 8522 { 8523 unsigned long end_pfn = start_pfn + nr_pages; 8524 8525 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 8526 gfp_mask); 8527 } 8528 8529 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 8530 unsigned long nr_pages) 8531 { 8532 unsigned long i, end_pfn = start_pfn + nr_pages; 8533 struct page *page; 8534 8535 for (i = start_pfn; i < end_pfn; i++) { 8536 page = pfn_to_online_page(i); 8537 if (!page) 8538 return false; 8539 8540 if (page_zone(page) != z) 8541 return false; 8542 8543 if (PageReserved(page)) 8544 return false; 8545 8546 if (page_count(page) > 0) 8547 return false; 8548 8549 if (PageHuge(page)) 8550 return false; 8551 } 8552 return true; 8553 } 8554 8555 static bool zone_spans_last_pfn(const struct zone *zone, 8556 unsigned long start_pfn, unsigned long nr_pages) 8557 { 8558 unsigned long last_pfn = start_pfn + nr_pages - 1; 8559 8560 return zone_spans_pfn(zone, last_pfn); 8561 } 8562 8563 /** 8564 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 8565 * @nr_pages: Number of contiguous pages to allocate 8566 * @gfp_mask: GFP mask to limit search and used during compaction 8567 * @nid: Target node 8568 * @nodemask: Mask for other possible nodes 8569 * 8570 * This routine is a wrapper around alloc_contig_range(). It scans over zones 8571 * on an applicable zonelist to find a contiguous pfn range which can then be 8572 * tried for allocation with alloc_contig_range(). This routine is intended 8573 * for allocation requests which can not be fulfilled with the buddy allocator. 8574 * 8575 * The allocated memory is always aligned to a page boundary. If nr_pages is a 8576 * power of two then the alignment is guaranteed to be to the given nr_pages 8577 * (e.g. 1GB request would be aligned to 1GB). 8578 * 8579 * Allocated pages can be freed with free_contig_range() or by manually calling 8580 * __free_page() on each allocated page. 8581 * 8582 * Return: pointer to contiguous pages on success, or NULL if not successful. 8583 */ 8584 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 8585 int nid, nodemask_t *nodemask) 8586 { 8587 unsigned long ret, pfn, flags; 8588 struct zonelist *zonelist; 8589 struct zone *zone; 8590 struct zoneref *z; 8591 8592 zonelist = node_zonelist(nid, gfp_mask); 8593 for_each_zone_zonelist_nodemask(zone, z, zonelist, 8594 gfp_zone(gfp_mask), nodemask) { 8595 spin_lock_irqsave(&zone->lock, flags); 8596 8597 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 8598 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 8599 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 8600 /* 8601 * We release the zone lock here because 8602 * alloc_contig_range() will also lock the zone 8603 * at some point. If there's an allocation 8604 * spinning on this lock, it may win the race 8605 * and cause alloc_contig_range() to fail... 8606 */ 8607 spin_unlock_irqrestore(&zone->lock, flags); 8608 ret = __alloc_contig_pages(pfn, nr_pages, 8609 gfp_mask); 8610 if (!ret) 8611 return pfn_to_page(pfn); 8612 spin_lock_irqsave(&zone->lock, flags); 8613 } 8614 pfn += nr_pages; 8615 } 8616 spin_unlock_irqrestore(&zone->lock, flags); 8617 } 8618 return NULL; 8619 } 8620 #endif /* CONFIG_CONTIG_ALLOC */ 8621 8622 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8623 { 8624 unsigned int count = 0; 8625 8626 for (; nr_pages--; pfn++) { 8627 struct page *page = pfn_to_page(pfn); 8628 8629 count += page_count(page) != 1; 8630 __free_page(page); 8631 } 8632 WARN(count != 0, "%d pages are still in use!\n", count); 8633 } 8634 8635 /* 8636 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8637 * page high values need to be recalulated. 8638 */ 8639 void __meminit zone_pcp_update(struct zone *zone) 8640 { 8641 mutex_lock(&pcp_batch_high_lock); 8642 __zone_pcp_update(zone); 8643 mutex_unlock(&pcp_batch_high_lock); 8644 } 8645 8646 void zone_pcp_reset(struct zone *zone) 8647 { 8648 unsigned long flags; 8649 int cpu; 8650 struct per_cpu_pageset *pset; 8651 8652 /* avoid races with drain_pages() */ 8653 local_irq_save(flags); 8654 if (zone->pageset != &boot_pageset) { 8655 for_each_online_cpu(cpu) { 8656 pset = per_cpu_ptr(zone->pageset, cpu); 8657 drain_zonestat(zone, pset); 8658 } 8659 free_percpu(zone->pageset); 8660 zone->pageset = &boot_pageset; 8661 } 8662 local_irq_restore(flags); 8663 } 8664 8665 #ifdef CONFIG_MEMORY_HOTREMOVE 8666 /* 8667 * All pages in the range must be in a single zone and isolated 8668 * before calling this. 8669 */ 8670 unsigned long 8671 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8672 { 8673 struct page *page; 8674 struct zone *zone; 8675 unsigned int order; 8676 unsigned long pfn; 8677 unsigned long flags; 8678 unsigned long offlined_pages = 0; 8679 8680 /* find the first valid pfn */ 8681 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8682 if (pfn_valid(pfn)) 8683 break; 8684 if (pfn == end_pfn) 8685 return offlined_pages; 8686 8687 offline_mem_sections(pfn, end_pfn); 8688 zone = page_zone(pfn_to_page(pfn)); 8689 spin_lock_irqsave(&zone->lock, flags); 8690 pfn = start_pfn; 8691 while (pfn < end_pfn) { 8692 if (!pfn_valid(pfn)) { 8693 pfn++; 8694 continue; 8695 } 8696 page = pfn_to_page(pfn); 8697 /* 8698 * The HWPoisoned page may be not in buddy system, and 8699 * page_count() is not 0. 8700 */ 8701 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8702 pfn++; 8703 offlined_pages++; 8704 continue; 8705 } 8706 8707 BUG_ON(page_count(page)); 8708 BUG_ON(!PageBuddy(page)); 8709 order = page_order(page); 8710 offlined_pages += 1 << order; 8711 del_page_from_free_area(page, &zone->free_area[order]); 8712 pfn += (1 << order); 8713 } 8714 spin_unlock_irqrestore(&zone->lock, flags); 8715 8716 return offlined_pages; 8717 } 8718 #endif 8719 8720 bool is_free_buddy_page(struct page *page) 8721 { 8722 struct zone *zone = page_zone(page); 8723 unsigned long pfn = page_to_pfn(page); 8724 unsigned long flags; 8725 unsigned int order; 8726 8727 spin_lock_irqsave(&zone->lock, flags); 8728 for (order = 0; order < MAX_ORDER; order++) { 8729 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8730 8731 if (PageBuddy(page_head) && page_order(page_head) >= order) 8732 break; 8733 } 8734 spin_unlock_irqrestore(&zone->lock, flags); 8735 8736 return order < MAX_ORDER; 8737 } 8738 8739 #ifdef CONFIG_MEMORY_FAILURE 8740 /* 8741 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8742 * test is performed under the zone lock to prevent a race against page 8743 * allocation. 8744 */ 8745 bool set_hwpoison_free_buddy_page(struct page *page) 8746 { 8747 struct zone *zone = page_zone(page); 8748 unsigned long pfn = page_to_pfn(page); 8749 unsigned long flags; 8750 unsigned int order; 8751 bool hwpoisoned = false; 8752 8753 spin_lock_irqsave(&zone->lock, flags); 8754 for (order = 0; order < MAX_ORDER; order++) { 8755 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8756 8757 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8758 if (!TestSetPageHWPoison(page)) 8759 hwpoisoned = true; 8760 break; 8761 } 8762 } 8763 spin_unlock_irqrestore(&zone->lock, flags); 8764 8765 return hwpoisoned; 8766 } 8767 #endif 8768