xref: /openbmc/linux/mm/page_alloc.c (revision b06eda091e5d65bbfce183ad3403ab3d153bef9f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 #include "shuffle.h"
77 
78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79 static DEFINE_MUTEX(pcp_batch_high_lock);
80 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
81 
82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83 DEFINE_PER_CPU(int, numa_node);
84 EXPORT_PER_CPU_SYMBOL(numa_node);
85 #endif
86 
87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88 
89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
90 /*
91  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94  * defined in <linux/topology.h>.
95  */
96 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
97 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98 #endif
99 
100 /* work_structs for global per-cpu drains */
101 struct pcpu_drain {
102 	struct zone *zone;
103 	struct work_struct work;
104 };
105 DEFINE_MUTEX(pcpu_drain_mutex);
106 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
107 
108 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
109 volatile unsigned long latent_entropy __latent_entropy;
110 EXPORT_SYMBOL(latent_entropy);
111 #endif
112 
113 /*
114  * Array of node states.
115  */
116 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
117 	[N_POSSIBLE] = NODE_MASK_ALL,
118 	[N_ONLINE] = { { [0] = 1UL } },
119 #ifndef CONFIG_NUMA
120 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
121 #ifdef CONFIG_HIGHMEM
122 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
123 #endif
124 	[N_MEMORY] = { { [0] = 1UL } },
125 	[N_CPU] = { { [0] = 1UL } },
126 #endif	/* NUMA */
127 };
128 EXPORT_SYMBOL(node_states);
129 
130 atomic_long_t _totalram_pages __read_mostly;
131 EXPORT_SYMBOL(_totalram_pages);
132 unsigned long totalreserve_pages __read_mostly;
133 unsigned long totalcma_pages __read_mostly;
134 
135 int percpu_pagelist_fraction;
136 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
137 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
138 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
139 #else
140 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
141 #endif
142 EXPORT_SYMBOL(init_on_alloc);
143 
144 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
145 DEFINE_STATIC_KEY_TRUE(init_on_free);
146 #else
147 DEFINE_STATIC_KEY_FALSE(init_on_free);
148 #endif
149 EXPORT_SYMBOL(init_on_free);
150 
151 static int __init early_init_on_alloc(char *buf)
152 {
153 	int ret;
154 	bool bool_result;
155 
156 	if (!buf)
157 		return -EINVAL;
158 	ret = kstrtobool(buf, &bool_result);
159 	if (bool_result && page_poisoning_enabled())
160 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
161 	if (bool_result)
162 		static_branch_enable(&init_on_alloc);
163 	else
164 		static_branch_disable(&init_on_alloc);
165 	return ret;
166 }
167 early_param("init_on_alloc", early_init_on_alloc);
168 
169 static int __init early_init_on_free(char *buf)
170 {
171 	int ret;
172 	bool bool_result;
173 
174 	if (!buf)
175 		return -EINVAL;
176 	ret = kstrtobool(buf, &bool_result);
177 	if (bool_result && page_poisoning_enabled())
178 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
179 	if (bool_result)
180 		static_branch_enable(&init_on_free);
181 	else
182 		static_branch_disable(&init_on_free);
183 	return ret;
184 }
185 early_param("init_on_free", early_init_on_free);
186 
187 /*
188  * A cached value of the page's pageblock's migratetype, used when the page is
189  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
190  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
191  * Also the migratetype set in the page does not necessarily match the pcplist
192  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
193  * other index - this ensures that it will be put on the correct CMA freelist.
194  */
195 static inline int get_pcppage_migratetype(struct page *page)
196 {
197 	return page->index;
198 }
199 
200 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
201 {
202 	page->index = migratetype;
203 }
204 
205 #ifdef CONFIG_PM_SLEEP
206 /*
207  * The following functions are used by the suspend/hibernate code to temporarily
208  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
209  * while devices are suspended.  To avoid races with the suspend/hibernate code,
210  * they should always be called with system_transition_mutex held
211  * (gfp_allowed_mask also should only be modified with system_transition_mutex
212  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
213  * with that modification).
214  */
215 
216 static gfp_t saved_gfp_mask;
217 
218 void pm_restore_gfp_mask(void)
219 {
220 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
221 	if (saved_gfp_mask) {
222 		gfp_allowed_mask = saved_gfp_mask;
223 		saved_gfp_mask = 0;
224 	}
225 }
226 
227 void pm_restrict_gfp_mask(void)
228 {
229 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
230 	WARN_ON(saved_gfp_mask);
231 	saved_gfp_mask = gfp_allowed_mask;
232 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
233 }
234 
235 bool pm_suspended_storage(void)
236 {
237 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
238 		return false;
239 	return true;
240 }
241 #endif /* CONFIG_PM_SLEEP */
242 
243 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
244 unsigned int pageblock_order __read_mostly;
245 #endif
246 
247 static void __free_pages_ok(struct page *page, unsigned int order);
248 
249 /*
250  * results with 256, 32 in the lowmem_reserve sysctl:
251  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
252  *	1G machine -> (16M dma, 784M normal, 224M high)
253  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
254  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
255  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
256  *
257  * TBD: should special case ZONE_DMA32 machines here - in those we normally
258  * don't need any ZONE_NORMAL reservation
259  */
260 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
261 #ifdef CONFIG_ZONE_DMA
262 	[ZONE_DMA] = 256,
263 #endif
264 #ifdef CONFIG_ZONE_DMA32
265 	[ZONE_DMA32] = 256,
266 #endif
267 	[ZONE_NORMAL] = 32,
268 #ifdef CONFIG_HIGHMEM
269 	[ZONE_HIGHMEM] = 0,
270 #endif
271 	[ZONE_MOVABLE] = 0,
272 };
273 
274 static char * const zone_names[MAX_NR_ZONES] = {
275 #ifdef CONFIG_ZONE_DMA
276 	 "DMA",
277 #endif
278 #ifdef CONFIG_ZONE_DMA32
279 	 "DMA32",
280 #endif
281 	 "Normal",
282 #ifdef CONFIG_HIGHMEM
283 	 "HighMem",
284 #endif
285 	 "Movable",
286 #ifdef CONFIG_ZONE_DEVICE
287 	 "Device",
288 #endif
289 };
290 
291 const char * const migratetype_names[MIGRATE_TYPES] = {
292 	"Unmovable",
293 	"Movable",
294 	"Reclaimable",
295 	"HighAtomic",
296 #ifdef CONFIG_CMA
297 	"CMA",
298 #endif
299 #ifdef CONFIG_MEMORY_ISOLATION
300 	"Isolate",
301 #endif
302 };
303 
304 compound_page_dtor * const compound_page_dtors[] = {
305 	NULL,
306 	free_compound_page,
307 #ifdef CONFIG_HUGETLB_PAGE
308 	free_huge_page,
309 #endif
310 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
311 	free_transhuge_page,
312 #endif
313 };
314 
315 int min_free_kbytes = 1024;
316 int user_min_free_kbytes = -1;
317 #ifdef CONFIG_DISCONTIGMEM
318 /*
319  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
320  * are not on separate NUMA nodes. Functionally this works but with
321  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
322  * quite small. By default, do not boost watermarks on discontigmem as in
323  * many cases very high-order allocations like THP are likely to be
324  * unsupported and the premature reclaim offsets the advantage of long-term
325  * fragmentation avoidance.
326  */
327 int watermark_boost_factor __read_mostly;
328 #else
329 int watermark_boost_factor __read_mostly = 15000;
330 #endif
331 int watermark_scale_factor = 10;
332 
333 static unsigned long nr_kernel_pages __initdata;
334 static unsigned long nr_all_pages __initdata;
335 static unsigned long dma_reserve __initdata;
336 
337 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
338 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
339 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long required_kernelcore __initdata;
341 static unsigned long required_kernelcore_percent __initdata;
342 static unsigned long required_movablecore __initdata;
343 static unsigned long required_movablecore_percent __initdata;
344 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
345 static bool mirrored_kernelcore __meminitdata;
346 
347 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
348 int movable_zone;
349 EXPORT_SYMBOL(movable_zone);
350 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
351 
352 #if MAX_NUMNODES > 1
353 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
354 unsigned int nr_online_nodes __read_mostly = 1;
355 EXPORT_SYMBOL(nr_node_ids);
356 EXPORT_SYMBOL(nr_online_nodes);
357 #endif
358 
359 int page_group_by_mobility_disabled __read_mostly;
360 
361 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
362 /*
363  * During boot we initialize deferred pages on-demand, as needed, but once
364  * page_alloc_init_late() has finished, the deferred pages are all initialized,
365  * and we can permanently disable that path.
366  */
367 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
368 
369 /*
370  * Calling kasan_free_pages() only after deferred memory initialization
371  * has completed. Poisoning pages during deferred memory init will greatly
372  * lengthen the process and cause problem in large memory systems as the
373  * deferred pages initialization is done with interrupt disabled.
374  *
375  * Assuming that there will be no reference to those newly initialized
376  * pages before they are ever allocated, this should have no effect on
377  * KASAN memory tracking as the poison will be properly inserted at page
378  * allocation time. The only corner case is when pages are allocated by
379  * on-demand allocation and then freed again before the deferred pages
380  * initialization is done, but this is not likely to happen.
381  */
382 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
383 {
384 	if (!static_branch_unlikely(&deferred_pages))
385 		kasan_free_pages(page, order);
386 }
387 
388 /* Returns true if the struct page for the pfn is uninitialised */
389 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
390 {
391 	int nid = early_pfn_to_nid(pfn);
392 
393 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
394 		return true;
395 
396 	return false;
397 }
398 
399 /*
400  * Returns true when the remaining initialisation should be deferred until
401  * later in the boot cycle when it can be parallelised.
402  */
403 static bool __meminit
404 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
405 {
406 	static unsigned long prev_end_pfn, nr_initialised;
407 
408 	/*
409 	 * prev_end_pfn static that contains the end of previous zone
410 	 * No need to protect because called very early in boot before smp_init.
411 	 */
412 	if (prev_end_pfn != end_pfn) {
413 		prev_end_pfn = end_pfn;
414 		nr_initialised = 0;
415 	}
416 
417 	/* Always populate low zones for address-constrained allocations */
418 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
419 		return false;
420 
421 	/*
422 	 * We start only with one section of pages, more pages are added as
423 	 * needed until the rest of deferred pages are initialized.
424 	 */
425 	nr_initialised++;
426 	if ((nr_initialised > PAGES_PER_SECTION) &&
427 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
428 		NODE_DATA(nid)->first_deferred_pfn = pfn;
429 		return true;
430 	}
431 	return false;
432 }
433 #else
434 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
435 
436 static inline bool early_page_uninitialised(unsigned long pfn)
437 {
438 	return false;
439 }
440 
441 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
442 {
443 	return false;
444 }
445 #endif
446 
447 /* Return a pointer to the bitmap storing bits affecting a block of pages */
448 static inline unsigned long *get_pageblock_bitmap(struct page *page,
449 							unsigned long pfn)
450 {
451 #ifdef CONFIG_SPARSEMEM
452 	return section_to_usemap(__pfn_to_section(pfn));
453 #else
454 	return page_zone(page)->pageblock_flags;
455 #endif /* CONFIG_SPARSEMEM */
456 }
457 
458 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
459 {
460 #ifdef CONFIG_SPARSEMEM
461 	pfn &= (PAGES_PER_SECTION-1);
462 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
463 #else
464 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
465 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
466 #endif /* CONFIG_SPARSEMEM */
467 }
468 
469 /**
470  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
471  * @page: The page within the block of interest
472  * @pfn: The target page frame number
473  * @end_bitidx: The last bit of interest to retrieve
474  * @mask: mask of bits that the caller is interested in
475  *
476  * Return: pageblock_bits flags
477  */
478 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
479 					unsigned long pfn,
480 					unsigned long end_bitidx,
481 					unsigned long mask)
482 {
483 	unsigned long *bitmap;
484 	unsigned long bitidx, word_bitidx;
485 	unsigned long word;
486 
487 	bitmap = get_pageblock_bitmap(page, pfn);
488 	bitidx = pfn_to_bitidx(page, pfn);
489 	word_bitidx = bitidx / BITS_PER_LONG;
490 	bitidx &= (BITS_PER_LONG-1);
491 
492 	word = bitmap[word_bitidx];
493 	bitidx += end_bitidx;
494 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
495 }
496 
497 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
498 					unsigned long end_bitidx,
499 					unsigned long mask)
500 {
501 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
502 }
503 
504 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
505 {
506 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
507 }
508 
509 /**
510  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
511  * @page: The page within the block of interest
512  * @flags: The flags to set
513  * @pfn: The target page frame number
514  * @end_bitidx: The last bit of interest
515  * @mask: mask of bits that the caller is interested in
516  */
517 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
518 					unsigned long pfn,
519 					unsigned long end_bitidx,
520 					unsigned long mask)
521 {
522 	unsigned long *bitmap;
523 	unsigned long bitidx, word_bitidx;
524 	unsigned long old_word, word;
525 
526 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
527 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
528 
529 	bitmap = get_pageblock_bitmap(page, pfn);
530 	bitidx = pfn_to_bitidx(page, pfn);
531 	word_bitidx = bitidx / BITS_PER_LONG;
532 	bitidx &= (BITS_PER_LONG-1);
533 
534 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
535 
536 	bitidx += end_bitidx;
537 	mask <<= (BITS_PER_LONG - bitidx - 1);
538 	flags <<= (BITS_PER_LONG - bitidx - 1);
539 
540 	word = READ_ONCE(bitmap[word_bitidx]);
541 	for (;;) {
542 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
543 		if (word == old_word)
544 			break;
545 		word = old_word;
546 	}
547 }
548 
549 void set_pageblock_migratetype(struct page *page, int migratetype)
550 {
551 	if (unlikely(page_group_by_mobility_disabled &&
552 		     migratetype < MIGRATE_PCPTYPES))
553 		migratetype = MIGRATE_UNMOVABLE;
554 
555 	set_pageblock_flags_group(page, (unsigned long)migratetype,
556 					PB_migrate, PB_migrate_end);
557 }
558 
559 #ifdef CONFIG_DEBUG_VM
560 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
561 {
562 	int ret = 0;
563 	unsigned seq;
564 	unsigned long pfn = page_to_pfn(page);
565 	unsigned long sp, start_pfn;
566 
567 	do {
568 		seq = zone_span_seqbegin(zone);
569 		start_pfn = zone->zone_start_pfn;
570 		sp = zone->spanned_pages;
571 		if (!zone_spans_pfn(zone, pfn))
572 			ret = 1;
573 	} while (zone_span_seqretry(zone, seq));
574 
575 	if (ret)
576 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
577 			pfn, zone_to_nid(zone), zone->name,
578 			start_pfn, start_pfn + sp);
579 
580 	return ret;
581 }
582 
583 static int page_is_consistent(struct zone *zone, struct page *page)
584 {
585 	if (!pfn_valid_within(page_to_pfn(page)))
586 		return 0;
587 	if (zone != page_zone(page))
588 		return 0;
589 
590 	return 1;
591 }
592 /*
593  * Temporary debugging check for pages not lying within a given zone.
594  */
595 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
596 {
597 	if (page_outside_zone_boundaries(zone, page))
598 		return 1;
599 	if (!page_is_consistent(zone, page))
600 		return 1;
601 
602 	return 0;
603 }
604 #else
605 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
606 {
607 	return 0;
608 }
609 #endif
610 
611 static void bad_page(struct page *page, const char *reason,
612 		unsigned long bad_flags)
613 {
614 	static unsigned long resume;
615 	static unsigned long nr_shown;
616 	static unsigned long nr_unshown;
617 
618 	/*
619 	 * Allow a burst of 60 reports, then keep quiet for that minute;
620 	 * or allow a steady drip of one report per second.
621 	 */
622 	if (nr_shown == 60) {
623 		if (time_before(jiffies, resume)) {
624 			nr_unshown++;
625 			goto out;
626 		}
627 		if (nr_unshown) {
628 			pr_alert(
629 			      "BUG: Bad page state: %lu messages suppressed\n",
630 				nr_unshown);
631 			nr_unshown = 0;
632 		}
633 		nr_shown = 0;
634 	}
635 	if (nr_shown++ == 0)
636 		resume = jiffies + 60 * HZ;
637 
638 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
639 		current->comm, page_to_pfn(page));
640 	__dump_page(page, reason);
641 	bad_flags &= page->flags;
642 	if (bad_flags)
643 		pr_alert("bad because of flags: %#lx(%pGp)\n",
644 						bad_flags, &bad_flags);
645 	dump_page_owner(page);
646 
647 	print_modules();
648 	dump_stack();
649 out:
650 	/* Leave bad fields for debug, except PageBuddy could make trouble */
651 	page_mapcount_reset(page); /* remove PageBuddy */
652 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
653 }
654 
655 /*
656  * Higher-order pages are called "compound pages".  They are structured thusly:
657  *
658  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
659  *
660  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
661  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
662  *
663  * The first tail page's ->compound_dtor holds the offset in array of compound
664  * page destructors. See compound_page_dtors.
665  *
666  * The first tail page's ->compound_order holds the order of allocation.
667  * This usage means that zero-order pages may not be compound.
668  */
669 
670 void free_compound_page(struct page *page)
671 {
672 	mem_cgroup_uncharge(page);
673 	__free_pages_ok(page, compound_order(page));
674 }
675 
676 void prep_compound_page(struct page *page, unsigned int order)
677 {
678 	int i;
679 	int nr_pages = 1 << order;
680 
681 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
682 	set_compound_order(page, order);
683 	__SetPageHead(page);
684 	for (i = 1; i < nr_pages; i++) {
685 		struct page *p = page + i;
686 		set_page_count(p, 0);
687 		p->mapping = TAIL_MAPPING;
688 		set_compound_head(p, page);
689 	}
690 	atomic_set(compound_mapcount_ptr(page), -1);
691 	if (hpage_pincount_available(page))
692 		atomic_set(compound_pincount_ptr(page), 0);
693 }
694 
695 #ifdef CONFIG_DEBUG_PAGEALLOC
696 unsigned int _debug_guardpage_minorder;
697 
698 bool _debug_pagealloc_enabled_early __read_mostly
699 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
700 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
701 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
702 EXPORT_SYMBOL(_debug_pagealloc_enabled);
703 
704 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
705 
706 static int __init early_debug_pagealloc(char *buf)
707 {
708 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
709 }
710 early_param("debug_pagealloc", early_debug_pagealloc);
711 
712 void init_debug_pagealloc(void)
713 {
714 	if (!debug_pagealloc_enabled())
715 		return;
716 
717 	static_branch_enable(&_debug_pagealloc_enabled);
718 
719 	if (!debug_guardpage_minorder())
720 		return;
721 
722 	static_branch_enable(&_debug_guardpage_enabled);
723 }
724 
725 static int __init debug_guardpage_minorder_setup(char *buf)
726 {
727 	unsigned long res;
728 
729 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
730 		pr_err("Bad debug_guardpage_minorder value\n");
731 		return 0;
732 	}
733 	_debug_guardpage_minorder = res;
734 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
735 	return 0;
736 }
737 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
738 
739 static inline bool set_page_guard(struct zone *zone, struct page *page,
740 				unsigned int order, int migratetype)
741 {
742 	if (!debug_guardpage_enabled())
743 		return false;
744 
745 	if (order >= debug_guardpage_minorder())
746 		return false;
747 
748 	__SetPageGuard(page);
749 	INIT_LIST_HEAD(&page->lru);
750 	set_page_private(page, order);
751 	/* Guard pages are not available for any usage */
752 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
753 
754 	return true;
755 }
756 
757 static inline void clear_page_guard(struct zone *zone, struct page *page,
758 				unsigned int order, int migratetype)
759 {
760 	if (!debug_guardpage_enabled())
761 		return;
762 
763 	__ClearPageGuard(page);
764 
765 	set_page_private(page, 0);
766 	if (!is_migrate_isolate(migratetype))
767 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
768 }
769 #else
770 static inline bool set_page_guard(struct zone *zone, struct page *page,
771 			unsigned int order, int migratetype) { return false; }
772 static inline void clear_page_guard(struct zone *zone, struct page *page,
773 				unsigned int order, int migratetype) {}
774 #endif
775 
776 static inline void set_page_order(struct page *page, unsigned int order)
777 {
778 	set_page_private(page, order);
779 	__SetPageBuddy(page);
780 }
781 
782 /*
783  * This function checks whether a page is free && is the buddy
784  * we can coalesce a page and its buddy if
785  * (a) the buddy is not in a hole (check before calling!) &&
786  * (b) the buddy is in the buddy system &&
787  * (c) a page and its buddy have the same order &&
788  * (d) a page and its buddy are in the same zone.
789  *
790  * For recording whether a page is in the buddy system, we set PageBuddy.
791  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
792  *
793  * For recording page's order, we use page_private(page).
794  */
795 static inline bool page_is_buddy(struct page *page, struct page *buddy,
796 							unsigned int order)
797 {
798 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
799 		return false;
800 
801 	if (page_order(buddy) != order)
802 		return false;
803 
804 	/*
805 	 * zone check is done late to avoid uselessly calculating
806 	 * zone/node ids for pages that could never merge.
807 	 */
808 	if (page_zone_id(page) != page_zone_id(buddy))
809 		return false;
810 
811 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
812 
813 	return true;
814 }
815 
816 #ifdef CONFIG_COMPACTION
817 static inline struct capture_control *task_capc(struct zone *zone)
818 {
819 	struct capture_control *capc = current->capture_control;
820 
821 	return capc &&
822 		!(current->flags & PF_KTHREAD) &&
823 		!capc->page &&
824 		capc->cc->zone == zone &&
825 		capc->cc->direct_compaction ? capc : NULL;
826 }
827 
828 static inline bool
829 compaction_capture(struct capture_control *capc, struct page *page,
830 		   int order, int migratetype)
831 {
832 	if (!capc || order != capc->cc->order)
833 		return false;
834 
835 	/* Do not accidentally pollute CMA or isolated regions*/
836 	if (is_migrate_cma(migratetype) ||
837 	    is_migrate_isolate(migratetype))
838 		return false;
839 
840 	/*
841 	 * Do not let lower order allocations polluate a movable pageblock.
842 	 * This might let an unmovable request use a reclaimable pageblock
843 	 * and vice-versa but no more than normal fallback logic which can
844 	 * have trouble finding a high-order free page.
845 	 */
846 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
847 		return false;
848 
849 	capc->page = page;
850 	return true;
851 }
852 
853 #else
854 static inline struct capture_control *task_capc(struct zone *zone)
855 {
856 	return NULL;
857 }
858 
859 static inline bool
860 compaction_capture(struct capture_control *capc, struct page *page,
861 		   int order, int migratetype)
862 {
863 	return false;
864 }
865 #endif /* CONFIG_COMPACTION */
866 
867 /*
868  * Freeing function for a buddy system allocator.
869  *
870  * The concept of a buddy system is to maintain direct-mapped table
871  * (containing bit values) for memory blocks of various "orders".
872  * The bottom level table contains the map for the smallest allocatable
873  * units of memory (here, pages), and each level above it describes
874  * pairs of units from the levels below, hence, "buddies".
875  * At a high level, all that happens here is marking the table entry
876  * at the bottom level available, and propagating the changes upward
877  * as necessary, plus some accounting needed to play nicely with other
878  * parts of the VM system.
879  * At each level, we keep a list of pages, which are heads of continuous
880  * free pages of length of (1 << order) and marked with PageBuddy.
881  * Page's order is recorded in page_private(page) field.
882  * So when we are allocating or freeing one, we can derive the state of the
883  * other.  That is, if we allocate a small block, and both were
884  * free, the remainder of the region must be split into blocks.
885  * If a block is freed, and its buddy is also free, then this
886  * triggers coalescing into a block of larger size.
887  *
888  * -- nyc
889  */
890 
891 static inline void __free_one_page(struct page *page,
892 		unsigned long pfn,
893 		struct zone *zone, unsigned int order,
894 		int migratetype)
895 {
896 	unsigned long combined_pfn;
897 	unsigned long uninitialized_var(buddy_pfn);
898 	struct page *buddy;
899 	unsigned int max_order;
900 	struct capture_control *capc = task_capc(zone);
901 
902 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
903 
904 	VM_BUG_ON(!zone_is_initialized(zone));
905 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
906 
907 	VM_BUG_ON(migratetype == -1);
908 	if (likely(!is_migrate_isolate(migratetype)))
909 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
910 
911 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
912 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
913 
914 continue_merging:
915 	while (order < max_order - 1) {
916 		if (compaction_capture(capc, page, order, migratetype)) {
917 			__mod_zone_freepage_state(zone, -(1 << order),
918 								migratetype);
919 			return;
920 		}
921 		buddy_pfn = __find_buddy_pfn(pfn, order);
922 		buddy = page + (buddy_pfn - pfn);
923 
924 		if (!pfn_valid_within(buddy_pfn))
925 			goto done_merging;
926 		if (!page_is_buddy(page, buddy, order))
927 			goto done_merging;
928 		/*
929 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
930 		 * merge with it and move up one order.
931 		 */
932 		if (page_is_guard(buddy))
933 			clear_page_guard(zone, buddy, order, migratetype);
934 		else
935 			del_page_from_free_area(buddy, &zone->free_area[order]);
936 		combined_pfn = buddy_pfn & pfn;
937 		page = page + (combined_pfn - pfn);
938 		pfn = combined_pfn;
939 		order++;
940 	}
941 	if (max_order < MAX_ORDER) {
942 		/* If we are here, it means order is >= pageblock_order.
943 		 * We want to prevent merge between freepages on isolate
944 		 * pageblock and normal pageblock. Without this, pageblock
945 		 * isolation could cause incorrect freepage or CMA accounting.
946 		 *
947 		 * We don't want to hit this code for the more frequent
948 		 * low-order merging.
949 		 */
950 		if (unlikely(has_isolate_pageblock(zone))) {
951 			int buddy_mt;
952 
953 			buddy_pfn = __find_buddy_pfn(pfn, order);
954 			buddy = page + (buddy_pfn - pfn);
955 			buddy_mt = get_pageblock_migratetype(buddy);
956 
957 			if (migratetype != buddy_mt
958 					&& (is_migrate_isolate(migratetype) ||
959 						is_migrate_isolate(buddy_mt)))
960 				goto done_merging;
961 		}
962 		max_order++;
963 		goto continue_merging;
964 	}
965 
966 done_merging:
967 	set_page_order(page, order);
968 
969 	/*
970 	 * If this is not the largest possible page, check if the buddy
971 	 * of the next-highest order is free. If it is, it's possible
972 	 * that pages are being freed that will coalesce soon. In case,
973 	 * that is happening, add the free page to the tail of the list
974 	 * so it's less likely to be used soon and more likely to be merged
975 	 * as a higher order page
976 	 */
977 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
978 			&& !is_shuffle_order(order)) {
979 		struct page *higher_page, *higher_buddy;
980 		combined_pfn = buddy_pfn & pfn;
981 		higher_page = page + (combined_pfn - pfn);
982 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
983 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
984 		if (pfn_valid_within(buddy_pfn) &&
985 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
986 			add_to_free_area_tail(page, &zone->free_area[order],
987 					      migratetype);
988 			return;
989 		}
990 	}
991 
992 	if (is_shuffle_order(order))
993 		add_to_free_area_random(page, &zone->free_area[order],
994 				migratetype);
995 	else
996 		add_to_free_area(page, &zone->free_area[order], migratetype);
997 
998 }
999 
1000 /*
1001  * A bad page could be due to a number of fields. Instead of multiple branches,
1002  * try and check multiple fields with one check. The caller must do a detailed
1003  * check if necessary.
1004  */
1005 static inline bool page_expected_state(struct page *page,
1006 					unsigned long check_flags)
1007 {
1008 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1009 		return false;
1010 
1011 	if (unlikely((unsigned long)page->mapping |
1012 			page_ref_count(page) |
1013 #ifdef CONFIG_MEMCG
1014 			(unsigned long)page->mem_cgroup |
1015 #endif
1016 			(page->flags & check_flags)))
1017 		return false;
1018 
1019 	return true;
1020 }
1021 
1022 static void free_pages_check_bad(struct page *page)
1023 {
1024 	const char *bad_reason;
1025 	unsigned long bad_flags;
1026 
1027 	bad_reason = NULL;
1028 	bad_flags = 0;
1029 
1030 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1031 		bad_reason = "nonzero mapcount";
1032 	if (unlikely(page->mapping != NULL))
1033 		bad_reason = "non-NULL mapping";
1034 	if (unlikely(page_ref_count(page) != 0))
1035 		bad_reason = "nonzero _refcount";
1036 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1037 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1038 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1039 	}
1040 #ifdef CONFIG_MEMCG
1041 	if (unlikely(page->mem_cgroup))
1042 		bad_reason = "page still charged to cgroup";
1043 #endif
1044 	bad_page(page, bad_reason, bad_flags);
1045 }
1046 
1047 static inline int free_pages_check(struct page *page)
1048 {
1049 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1050 		return 0;
1051 
1052 	/* Something has gone sideways, find it */
1053 	free_pages_check_bad(page);
1054 	return 1;
1055 }
1056 
1057 static int free_tail_pages_check(struct page *head_page, struct page *page)
1058 {
1059 	int ret = 1;
1060 
1061 	/*
1062 	 * We rely page->lru.next never has bit 0 set, unless the page
1063 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1064 	 */
1065 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1066 
1067 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1068 		ret = 0;
1069 		goto out;
1070 	}
1071 	switch (page - head_page) {
1072 	case 1:
1073 		/* the first tail page: ->mapping may be compound_mapcount() */
1074 		if (unlikely(compound_mapcount(page))) {
1075 			bad_page(page, "nonzero compound_mapcount", 0);
1076 			goto out;
1077 		}
1078 		break;
1079 	case 2:
1080 		/*
1081 		 * the second tail page: ->mapping is
1082 		 * deferred_list.next -- ignore value.
1083 		 */
1084 		break;
1085 	default:
1086 		if (page->mapping != TAIL_MAPPING) {
1087 			bad_page(page, "corrupted mapping in tail page", 0);
1088 			goto out;
1089 		}
1090 		break;
1091 	}
1092 	if (unlikely(!PageTail(page))) {
1093 		bad_page(page, "PageTail not set", 0);
1094 		goto out;
1095 	}
1096 	if (unlikely(compound_head(page) != head_page)) {
1097 		bad_page(page, "compound_head not consistent", 0);
1098 		goto out;
1099 	}
1100 	ret = 0;
1101 out:
1102 	page->mapping = NULL;
1103 	clear_compound_head(page);
1104 	return ret;
1105 }
1106 
1107 static void kernel_init_free_pages(struct page *page, int numpages)
1108 {
1109 	int i;
1110 
1111 	for (i = 0; i < numpages; i++)
1112 		clear_highpage(page + i);
1113 }
1114 
1115 static __always_inline bool free_pages_prepare(struct page *page,
1116 					unsigned int order, bool check_free)
1117 {
1118 	int bad = 0;
1119 
1120 	VM_BUG_ON_PAGE(PageTail(page), page);
1121 
1122 	trace_mm_page_free(page, order);
1123 
1124 	/*
1125 	 * Check tail pages before head page information is cleared to
1126 	 * avoid checking PageCompound for order-0 pages.
1127 	 */
1128 	if (unlikely(order)) {
1129 		bool compound = PageCompound(page);
1130 		int i;
1131 
1132 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1133 
1134 		if (compound)
1135 			ClearPageDoubleMap(page);
1136 		for (i = 1; i < (1 << order); i++) {
1137 			if (compound)
1138 				bad += free_tail_pages_check(page, page + i);
1139 			if (unlikely(free_pages_check(page + i))) {
1140 				bad++;
1141 				continue;
1142 			}
1143 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1144 		}
1145 	}
1146 	if (PageMappingFlags(page))
1147 		page->mapping = NULL;
1148 	if (memcg_kmem_enabled() && PageKmemcg(page))
1149 		__memcg_kmem_uncharge_page(page, order);
1150 	if (check_free)
1151 		bad += free_pages_check(page);
1152 	if (bad)
1153 		return false;
1154 
1155 	page_cpupid_reset_last(page);
1156 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1157 	reset_page_owner(page, order);
1158 
1159 	if (!PageHighMem(page)) {
1160 		debug_check_no_locks_freed(page_address(page),
1161 					   PAGE_SIZE << order);
1162 		debug_check_no_obj_freed(page_address(page),
1163 					   PAGE_SIZE << order);
1164 	}
1165 	if (want_init_on_free())
1166 		kernel_init_free_pages(page, 1 << order);
1167 
1168 	kernel_poison_pages(page, 1 << order, 0);
1169 	/*
1170 	 * arch_free_page() can make the page's contents inaccessible.  s390
1171 	 * does this.  So nothing which can access the page's contents should
1172 	 * happen after this.
1173 	 */
1174 	arch_free_page(page, order);
1175 
1176 	if (debug_pagealloc_enabled_static())
1177 		kernel_map_pages(page, 1 << order, 0);
1178 
1179 	kasan_free_nondeferred_pages(page, order);
1180 
1181 	return true;
1182 }
1183 
1184 #ifdef CONFIG_DEBUG_VM
1185 /*
1186  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1187  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1188  * moved from pcp lists to free lists.
1189  */
1190 static bool free_pcp_prepare(struct page *page)
1191 {
1192 	return free_pages_prepare(page, 0, true);
1193 }
1194 
1195 static bool bulkfree_pcp_prepare(struct page *page)
1196 {
1197 	if (debug_pagealloc_enabled_static())
1198 		return free_pages_check(page);
1199 	else
1200 		return false;
1201 }
1202 #else
1203 /*
1204  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1205  * moving from pcp lists to free list in order to reduce overhead. With
1206  * debug_pagealloc enabled, they are checked also immediately when being freed
1207  * to the pcp lists.
1208  */
1209 static bool free_pcp_prepare(struct page *page)
1210 {
1211 	if (debug_pagealloc_enabled_static())
1212 		return free_pages_prepare(page, 0, true);
1213 	else
1214 		return free_pages_prepare(page, 0, false);
1215 }
1216 
1217 static bool bulkfree_pcp_prepare(struct page *page)
1218 {
1219 	return free_pages_check(page);
1220 }
1221 #endif /* CONFIG_DEBUG_VM */
1222 
1223 static inline void prefetch_buddy(struct page *page)
1224 {
1225 	unsigned long pfn = page_to_pfn(page);
1226 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1227 	struct page *buddy = page + (buddy_pfn - pfn);
1228 
1229 	prefetch(buddy);
1230 }
1231 
1232 /*
1233  * Frees a number of pages from the PCP lists
1234  * Assumes all pages on list are in same zone, and of same order.
1235  * count is the number of pages to free.
1236  *
1237  * If the zone was previously in an "all pages pinned" state then look to
1238  * see if this freeing clears that state.
1239  *
1240  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1241  * pinned" detection logic.
1242  */
1243 static void free_pcppages_bulk(struct zone *zone, int count,
1244 					struct per_cpu_pages *pcp)
1245 {
1246 	int migratetype = 0;
1247 	int batch_free = 0;
1248 	int prefetch_nr = 0;
1249 	bool isolated_pageblocks;
1250 	struct page *page, *tmp;
1251 	LIST_HEAD(head);
1252 
1253 	while (count) {
1254 		struct list_head *list;
1255 
1256 		/*
1257 		 * Remove pages from lists in a round-robin fashion. A
1258 		 * batch_free count is maintained that is incremented when an
1259 		 * empty list is encountered.  This is so more pages are freed
1260 		 * off fuller lists instead of spinning excessively around empty
1261 		 * lists
1262 		 */
1263 		do {
1264 			batch_free++;
1265 			if (++migratetype == MIGRATE_PCPTYPES)
1266 				migratetype = 0;
1267 			list = &pcp->lists[migratetype];
1268 		} while (list_empty(list));
1269 
1270 		/* This is the only non-empty list. Free them all. */
1271 		if (batch_free == MIGRATE_PCPTYPES)
1272 			batch_free = count;
1273 
1274 		do {
1275 			page = list_last_entry(list, struct page, lru);
1276 			/* must delete to avoid corrupting pcp list */
1277 			list_del(&page->lru);
1278 			pcp->count--;
1279 
1280 			if (bulkfree_pcp_prepare(page))
1281 				continue;
1282 
1283 			list_add_tail(&page->lru, &head);
1284 
1285 			/*
1286 			 * We are going to put the page back to the global
1287 			 * pool, prefetch its buddy to speed up later access
1288 			 * under zone->lock. It is believed the overhead of
1289 			 * an additional test and calculating buddy_pfn here
1290 			 * can be offset by reduced memory latency later. To
1291 			 * avoid excessive prefetching due to large count, only
1292 			 * prefetch buddy for the first pcp->batch nr of pages.
1293 			 */
1294 			if (prefetch_nr++ < pcp->batch)
1295 				prefetch_buddy(page);
1296 		} while (--count && --batch_free && !list_empty(list));
1297 	}
1298 
1299 	spin_lock(&zone->lock);
1300 	isolated_pageblocks = has_isolate_pageblock(zone);
1301 
1302 	/*
1303 	 * Use safe version since after __free_one_page(),
1304 	 * page->lru.next will not point to original list.
1305 	 */
1306 	list_for_each_entry_safe(page, tmp, &head, lru) {
1307 		int mt = get_pcppage_migratetype(page);
1308 		/* MIGRATE_ISOLATE page should not go to pcplists */
1309 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1310 		/* Pageblock could have been isolated meanwhile */
1311 		if (unlikely(isolated_pageblocks))
1312 			mt = get_pageblock_migratetype(page);
1313 
1314 		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1315 		trace_mm_page_pcpu_drain(page, 0, mt);
1316 	}
1317 	spin_unlock(&zone->lock);
1318 }
1319 
1320 static void free_one_page(struct zone *zone,
1321 				struct page *page, unsigned long pfn,
1322 				unsigned int order,
1323 				int migratetype)
1324 {
1325 	spin_lock(&zone->lock);
1326 	if (unlikely(has_isolate_pageblock(zone) ||
1327 		is_migrate_isolate(migratetype))) {
1328 		migratetype = get_pfnblock_migratetype(page, pfn);
1329 	}
1330 	__free_one_page(page, pfn, zone, order, migratetype);
1331 	spin_unlock(&zone->lock);
1332 }
1333 
1334 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1335 				unsigned long zone, int nid)
1336 {
1337 	mm_zero_struct_page(page);
1338 	set_page_links(page, zone, nid, pfn);
1339 	init_page_count(page);
1340 	page_mapcount_reset(page);
1341 	page_cpupid_reset_last(page);
1342 	page_kasan_tag_reset(page);
1343 
1344 	INIT_LIST_HEAD(&page->lru);
1345 #ifdef WANT_PAGE_VIRTUAL
1346 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1347 	if (!is_highmem_idx(zone))
1348 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1349 #endif
1350 }
1351 
1352 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1353 static void __meminit init_reserved_page(unsigned long pfn)
1354 {
1355 	pg_data_t *pgdat;
1356 	int nid, zid;
1357 
1358 	if (!early_page_uninitialised(pfn))
1359 		return;
1360 
1361 	nid = early_pfn_to_nid(pfn);
1362 	pgdat = NODE_DATA(nid);
1363 
1364 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1365 		struct zone *zone = &pgdat->node_zones[zid];
1366 
1367 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1368 			break;
1369 	}
1370 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1371 }
1372 #else
1373 static inline void init_reserved_page(unsigned long pfn)
1374 {
1375 }
1376 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1377 
1378 /*
1379  * Initialised pages do not have PageReserved set. This function is
1380  * called for each range allocated by the bootmem allocator and
1381  * marks the pages PageReserved. The remaining valid pages are later
1382  * sent to the buddy page allocator.
1383  */
1384 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1385 {
1386 	unsigned long start_pfn = PFN_DOWN(start);
1387 	unsigned long end_pfn = PFN_UP(end);
1388 
1389 	for (; start_pfn < end_pfn; start_pfn++) {
1390 		if (pfn_valid(start_pfn)) {
1391 			struct page *page = pfn_to_page(start_pfn);
1392 
1393 			init_reserved_page(start_pfn);
1394 
1395 			/* Avoid false-positive PageTail() */
1396 			INIT_LIST_HEAD(&page->lru);
1397 
1398 			/*
1399 			 * no need for atomic set_bit because the struct
1400 			 * page is not visible yet so nobody should
1401 			 * access it yet.
1402 			 */
1403 			__SetPageReserved(page);
1404 		}
1405 	}
1406 }
1407 
1408 static void __free_pages_ok(struct page *page, unsigned int order)
1409 {
1410 	unsigned long flags;
1411 	int migratetype;
1412 	unsigned long pfn = page_to_pfn(page);
1413 
1414 	if (!free_pages_prepare(page, order, true))
1415 		return;
1416 
1417 	migratetype = get_pfnblock_migratetype(page, pfn);
1418 	local_irq_save(flags);
1419 	__count_vm_events(PGFREE, 1 << order);
1420 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1421 	local_irq_restore(flags);
1422 }
1423 
1424 void __free_pages_core(struct page *page, unsigned int order)
1425 {
1426 	unsigned int nr_pages = 1 << order;
1427 	struct page *p = page;
1428 	unsigned int loop;
1429 
1430 	prefetchw(p);
1431 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1432 		prefetchw(p + 1);
1433 		__ClearPageReserved(p);
1434 		set_page_count(p, 0);
1435 	}
1436 	__ClearPageReserved(p);
1437 	set_page_count(p, 0);
1438 
1439 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1440 	set_page_refcounted(page);
1441 	__free_pages(page, order);
1442 }
1443 
1444 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1445 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1446 
1447 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1448 
1449 int __meminit early_pfn_to_nid(unsigned long pfn)
1450 {
1451 	static DEFINE_SPINLOCK(early_pfn_lock);
1452 	int nid;
1453 
1454 	spin_lock(&early_pfn_lock);
1455 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1456 	if (nid < 0)
1457 		nid = first_online_node;
1458 	spin_unlock(&early_pfn_lock);
1459 
1460 	return nid;
1461 }
1462 #endif
1463 
1464 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1465 /* Only safe to use early in boot when initialisation is single-threaded */
1466 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1467 {
1468 	int nid;
1469 
1470 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1471 	if (nid >= 0 && nid != node)
1472 		return false;
1473 	return true;
1474 }
1475 
1476 #else
1477 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1478 {
1479 	return true;
1480 }
1481 #endif
1482 
1483 
1484 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1485 							unsigned int order)
1486 {
1487 	if (early_page_uninitialised(pfn))
1488 		return;
1489 	__free_pages_core(page, order);
1490 }
1491 
1492 /*
1493  * Check that the whole (or subset of) a pageblock given by the interval of
1494  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1495  * with the migration of free compaction scanner. The scanners then need to
1496  * use only pfn_valid_within() check for arches that allow holes within
1497  * pageblocks.
1498  *
1499  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1500  *
1501  * It's possible on some configurations to have a setup like node0 node1 node0
1502  * i.e. it's possible that all pages within a zones range of pages do not
1503  * belong to a single zone. We assume that a border between node0 and node1
1504  * can occur within a single pageblock, but not a node0 node1 node0
1505  * interleaving within a single pageblock. It is therefore sufficient to check
1506  * the first and last page of a pageblock and avoid checking each individual
1507  * page in a pageblock.
1508  */
1509 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1510 				     unsigned long end_pfn, struct zone *zone)
1511 {
1512 	struct page *start_page;
1513 	struct page *end_page;
1514 
1515 	/* end_pfn is one past the range we are checking */
1516 	end_pfn--;
1517 
1518 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1519 		return NULL;
1520 
1521 	start_page = pfn_to_online_page(start_pfn);
1522 	if (!start_page)
1523 		return NULL;
1524 
1525 	if (page_zone(start_page) != zone)
1526 		return NULL;
1527 
1528 	end_page = pfn_to_page(end_pfn);
1529 
1530 	/* This gives a shorter code than deriving page_zone(end_page) */
1531 	if (page_zone_id(start_page) != page_zone_id(end_page))
1532 		return NULL;
1533 
1534 	return start_page;
1535 }
1536 
1537 void set_zone_contiguous(struct zone *zone)
1538 {
1539 	unsigned long block_start_pfn = zone->zone_start_pfn;
1540 	unsigned long block_end_pfn;
1541 
1542 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1543 	for (; block_start_pfn < zone_end_pfn(zone);
1544 			block_start_pfn = block_end_pfn,
1545 			 block_end_pfn += pageblock_nr_pages) {
1546 
1547 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1548 
1549 		if (!__pageblock_pfn_to_page(block_start_pfn,
1550 					     block_end_pfn, zone))
1551 			return;
1552 	}
1553 
1554 	/* We confirm that there is no hole */
1555 	zone->contiguous = true;
1556 }
1557 
1558 void clear_zone_contiguous(struct zone *zone)
1559 {
1560 	zone->contiguous = false;
1561 }
1562 
1563 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1564 static void __init deferred_free_range(unsigned long pfn,
1565 				       unsigned long nr_pages)
1566 {
1567 	struct page *page;
1568 	unsigned long i;
1569 
1570 	if (!nr_pages)
1571 		return;
1572 
1573 	page = pfn_to_page(pfn);
1574 
1575 	/* Free a large naturally-aligned chunk if possible */
1576 	if (nr_pages == pageblock_nr_pages &&
1577 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1578 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1579 		__free_pages_core(page, pageblock_order);
1580 		return;
1581 	}
1582 
1583 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1584 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1585 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1586 		__free_pages_core(page, 0);
1587 	}
1588 }
1589 
1590 /* Completion tracking for deferred_init_memmap() threads */
1591 static atomic_t pgdat_init_n_undone __initdata;
1592 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1593 
1594 static inline void __init pgdat_init_report_one_done(void)
1595 {
1596 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1597 		complete(&pgdat_init_all_done_comp);
1598 }
1599 
1600 /*
1601  * Returns true if page needs to be initialized or freed to buddy allocator.
1602  *
1603  * First we check if pfn is valid on architectures where it is possible to have
1604  * holes within pageblock_nr_pages. On systems where it is not possible, this
1605  * function is optimized out.
1606  *
1607  * Then, we check if a current large page is valid by only checking the validity
1608  * of the head pfn.
1609  */
1610 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1611 {
1612 	if (!pfn_valid_within(pfn))
1613 		return false;
1614 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1615 		return false;
1616 	return true;
1617 }
1618 
1619 /*
1620  * Free pages to buddy allocator. Try to free aligned pages in
1621  * pageblock_nr_pages sizes.
1622  */
1623 static void __init deferred_free_pages(unsigned long pfn,
1624 				       unsigned long end_pfn)
1625 {
1626 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1627 	unsigned long nr_free = 0;
1628 
1629 	for (; pfn < end_pfn; pfn++) {
1630 		if (!deferred_pfn_valid(pfn)) {
1631 			deferred_free_range(pfn - nr_free, nr_free);
1632 			nr_free = 0;
1633 		} else if (!(pfn & nr_pgmask)) {
1634 			deferred_free_range(pfn - nr_free, nr_free);
1635 			nr_free = 1;
1636 			touch_nmi_watchdog();
1637 		} else {
1638 			nr_free++;
1639 		}
1640 	}
1641 	/* Free the last block of pages to allocator */
1642 	deferred_free_range(pfn - nr_free, nr_free);
1643 }
1644 
1645 /*
1646  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1647  * by performing it only once every pageblock_nr_pages.
1648  * Return number of pages initialized.
1649  */
1650 static unsigned long  __init deferred_init_pages(struct zone *zone,
1651 						 unsigned long pfn,
1652 						 unsigned long end_pfn)
1653 {
1654 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1655 	int nid = zone_to_nid(zone);
1656 	unsigned long nr_pages = 0;
1657 	int zid = zone_idx(zone);
1658 	struct page *page = NULL;
1659 
1660 	for (; pfn < end_pfn; pfn++) {
1661 		if (!deferred_pfn_valid(pfn)) {
1662 			page = NULL;
1663 			continue;
1664 		} else if (!page || !(pfn & nr_pgmask)) {
1665 			page = pfn_to_page(pfn);
1666 			touch_nmi_watchdog();
1667 		} else {
1668 			page++;
1669 		}
1670 		__init_single_page(page, pfn, zid, nid);
1671 		nr_pages++;
1672 	}
1673 	return (nr_pages);
1674 }
1675 
1676 /*
1677  * This function is meant to pre-load the iterator for the zone init.
1678  * Specifically it walks through the ranges until we are caught up to the
1679  * first_init_pfn value and exits there. If we never encounter the value we
1680  * return false indicating there are no valid ranges left.
1681  */
1682 static bool __init
1683 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1684 				    unsigned long *spfn, unsigned long *epfn,
1685 				    unsigned long first_init_pfn)
1686 {
1687 	u64 j;
1688 
1689 	/*
1690 	 * Start out by walking through the ranges in this zone that have
1691 	 * already been initialized. We don't need to do anything with them
1692 	 * so we just need to flush them out of the system.
1693 	 */
1694 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1695 		if (*epfn <= first_init_pfn)
1696 			continue;
1697 		if (*spfn < first_init_pfn)
1698 			*spfn = first_init_pfn;
1699 		*i = j;
1700 		return true;
1701 	}
1702 
1703 	return false;
1704 }
1705 
1706 /*
1707  * Initialize and free pages. We do it in two loops: first we initialize
1708  * struct page, then free to buddy allocator, because while we are
1709  * freeing pages we can access pages that are ahead (computing buddy
1710  * page in __free_one_page()).
1711  *
1712  * In order to try and keep some memory in the cache we have the loop
1713  * broken along max page order boundaries. This way we will not cause
1714  * any issues with the buddy page computation.
1715  */
1716 static unsigned long __init
1717 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1718 		       unsigned long *end_pfn)
1719 {
1720 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1721 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1722 	unsigned long nr_pages = 0;
1723 	u64 j = *i;
1724 
1725 	/* First we loop through and initialize the page values */
1726 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1727 		unsigned long t;
1728 
1729 		if (mo_pfn <= *start_pfn)
1730 			break;
1731 
1732 		t = min(mo_pfn, *end_pfn);
1733 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1734 
1735 		if (mo_pfn < *end_pfn) {
1736 			*start_pfn = mo_pfn;
1737 			break;
1738 		}
1739 	}
1740 
1741 	/* Reset values and now loop through freeing pages as needed */
1742 	swap(j, *i);
1743 
1744 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1745 		unsigned long t;
1746 
1747 		if (mo_pfn <= spfn)
1748 			break;
1749 
1750 		t = min(mo_pfn, epfn);
1751 		deferred_free_pages(spfn, t);
1752 
1753 		if (mo_pfn <= epfn)
1754 			break;
1755 	}
1756 
1757 	return nr_pages;
1758 }
1759 
1760 /* Initialise remaining memory on a node */
1761 static int __init deferred_init_memmap(void *data)
1762 {
1763 	pg_data_t *pgdat = data;
1764 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1765 	unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1766 	unsigned long first_init_pfn, flags;
1767 	unsigned long start = jiffies;
1768 	struct zone *zone;
1769 	int zid;
1770 	u64 i;
1771 
1772 	/* Bind memory initialisation thread to a local node if possible */
1773 	if (!cpumask_empty(cpumask))
1774 		set_cpus_allowed_ptr(current, cpumask);
1775 
1776 	pgdat_resize_lock(pgdat, &flags);
1777 	first_init_pfn = pgdat->first_deferred_pfn;
1778 	if (first_init_pfn == ULONG_MAX) {
1779 		pgdat_resize_unlock(pgdat, &flags);
1780 		pgdat_init_report_one_done();
1781 		return 0;
1782 	}
1783 
1784 	/* Sanity check boundaries */
1785 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1786 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1787 	pgdat->first_deferred_pfn = ULONG_MAX;
1788 
1789 	/* Only the highest zone is deferred so find it */
1790 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1791 		zone = pgdat->node_zones + zid;
1792 		if (first_init_pfn < zone_end_pfn(zone))
1793 			break;
1794 	}
1795 
1796 	/* If the zone is empty somebody else may have cleared out the zone */
1797 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1798 						 first_init_pfn))
1799 		goto zone_empty;
1800 
1801 	/*
1802 	 * Initialize and free pages in MAX_ORDER sized increments so
1803 	 * that we can avoid introducing any issues with the buddy
1804 	 * allocator.
1805 	 */
1806 	while (spfn < epfn)
1807 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1808 zone_empty:
1809 	pgdat_resize_unlock(pgdat, &flags);
1810 
1811 	/* Sanity check that the next zone really is unpopulated */
1812 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1813 
1814 	pr_info("node %d initialised, %lu pages in %ums\n",
1815 		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1816 
1817 	pgdat_init_report_one_done();
1818 	return 0;
1819 }
1820 
1821 /*
1822  * If this zone has deferred pages, try to grow it by initializing enough
1823  * deferred pages to satisfy the allocation specified by order, rounded up to
1824  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1825  * of SECTION_SIZE bytes by initializing struct pages in increments of
1826  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1827  *
1828  * Return true when zone was grown, otherwise return false. We return true even
1829  * when we grow less than requested, to let the caller decide if there are
1830  * enough pages to satisfy the allocation.
1831  *
1832  * Note: We use noinline because this function is needed only during boot, and
1833  * it is called from a __ref function _deferred_grow_zone. This way we are
1834  * making sure that it is not inlined into permanent text section.
1835  */
1836 static noinline bool __init
1837 deferred_grow_zone(struct zone *zone, unsigned int order)
1838 {
1839 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1840 	pg_data_t *pgdat = zone->zone_pgdat;
1841 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1842 	unsigned long spfn, epfn, flags;
1843 	unsigned long nr_pages = 0;
1844 	u64 i;
1845 
1846 	/* Only the last zone may have deferred pages */
1847 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1848 		return false;
1849 
1850 	pgdat_resize_lock(pgdat, &flags);
1851 
1852 	/*
1853 	 * If deferred pages have been initialized while we were waiting for
1854 	 * the lock, return true, as the zone was grown.  The caller will retry
1855 	 * this zone.  We won't return to this function since the caller also
1856 	 * has this static branch.
1857 	 */
1858 	if (!static_branch_unlikely(&deferred_pages)) {
1859 		pgdat_resize_unlock(pgdat, &flags);
1860 		return true;
1861 	}
1862 
1863 	/*
1864 	 * If someone grew this zone while we were waiting for spinlock, return
1865 	 * true, as there might be enough pages already.
1866 	 */
1867 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1868 		pgdat_resize_unlock(pgdat, &flags);
1869 		return true;
1870 	}
1871 
1872 	/* If the zone is empty somebody else may have cleared out the zone */
1873 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1874 						 first_deferred_pfn)) {
1875 		pgdat->first_deferred_pfn = ULONG_MAX;
1876 		pgdat_resize_unlock(pgdat, &flags);
1877 		/* Retry only once. */
1878 		return first_deferred_pfn != ULONG_MAX;
1879 	}
1880 
1881 	/*
1882 	 * Initialize and free pages in MAX_ORDER sized increments so
1883 	 * that we can avoid introducing any issues with the buddy
1884 	 * allocator.
1885 	 */
1886 	while (spfn < epfn) {
1887 		/* update our first deferred PFN for this section */
1888 		first_deferred_pfn = spfn;
1889 
1890 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1891 
1892 		/* We should only stop along section boundaries */
1893 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1894 			continue;
1895 
1896 		/* If our quota has been met we can stop here */
1897 		if (nr_pages >= nr_pages_needed)
1898 			break;
1899 	}
1900 
1901 	pgdat->first_deferred_pfn = spfn;
1902 	pgdat_resize_unlock(pgdat, &flags);
1903 
1904 	return nr_pages > 0;
1905 }
1906 
1907 /*
1908  * deferred_grow_zone() is __init, but it is called from
1909  * get_page_from_freelist() during early boot until deferred_pages permanently
1910  * disables this call. This is why we have refdata wrapper to avoid warning,
1911  * and to ensure that the function body gets unloaded.
1912  */
1913 static bool __ref
1914 _deferred_grow_zone(struct zone *zone, unsigned int order)
1915 {
1916 	return deferred_grow_zone(zone, order);
1917 }
1918 
1919 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1920 
1921 void __init page_alloc_init_late(void)
1922 {
1923 	struct zone *zone;
1924 	int nid;
1925 
1926 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1927 
1928 	/* There will be num_node_state(N_MEMORY) threads */
1929 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1930 	for_each_node_state(nid, N_MEMORY) {
1931 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1932 	}
1933 
1934 	/* Block until all are initialised */
1935 	wait_for_completion(&pgdat_init_all_done_comp);
1936 
1937 	/*
1938 	 * The number of managed pages has changed due to the initialisation
1939 	 * so the pcpu batch and high limits needs to be updated or the limits
1940 	 * will be artificially small.
1941 	 */
1942 	for_each_populated_zone(zone)
1943 		zone_pcp_update(zone);
1944 
1945 	/*
1946 	 * We initialized the rest of the deferred pages.  Permanently disable
1947 	 * on-demand struct page initialization.
1948 	 */
1949 	static_branch_disable(&deferred_pages);
1950 
1951 	/* Reinit limits that are based on free pages after the kernel is up */
1952 	files_maxfiles_init();
1953 #endif
1954 
1955 	/* Discard memblock private memory */
1956 	memblock_discard();
1957 
1958 	for_each_node_state(nid, N_MEMORY)
1959 		shuffle_free_memory(NODE_DATA(nid));
1960 
1961 	for_each_populated_zone(zone)
1962 		set_zone_contiguous(zone);
1963 }
1964 
1965 #ifdef CONFIG_CMA
1966 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1967 void __init init_cma_reserved_pageblock(struct page *page)
1968 {
1969 	unsigned i = pageblock_nr_pages;
1970 	struct page *p = page;
1971 
1972 	do {
1973 		__ClearPageReserved(p);
1974 		set_page_count(p, 0);
1975 	} while (++p, --i);
1976 
1977 	set_pageblock_migratetype(page, MIGRATE_CMA);
1978 
1979 	if (pageblock_order >= MAX_ORDER) {
1980 		i = pageblock_nr_pages;
1981 		p = page;
1982 		do {
1983 			set_page_refcounted(p);
1984 			__free_pages(p, MAX_ORDER - 1);
1985 			p += MAX_ORDER_NR_PAGES;
1986 		} while (i -= MAX_ORDER_NR_PAGES);
1987 	} else {
1988 		set_page_refcounted(page);
1989 		__free_pages(page, pageblock_order);
1990 	}
1991 
1992 	adjust_managed_page_count(page, pageblock_nr_pages);
1993 }
1994 #endif
1995 
1996 /*
1997  * The order of subdivision here is critical for the IO subsystem.
1998  * Please do not alter this order without good reasons and regression
1999  * testing. Specifically, as large blocks of memory are subdivided,
2000  * the order in which smaller blocks are delivered depends on the order
2001  * they're subdivided in this function. This is the primary factor
2002  * influencing the order in which pages are delivered to the IO
2003  * subsystem according to empirical testing, and this is also justified
2004  * by considering the behavior of a buddy system containing a single
2005  * large block of memory acted on by a series of small allocations.
2006  * This behavior is a critical factor in sglist merging's success.
2007  *
2008  * -- nyc
2009  */
2010 static inline void expand(struct zone *zone, struct page *page,
2011 	int low, int high, struct free_area *area,
2012 	int migratetype)
2013 {
2014 	unsigned long size = 1 << high;
2015 
2016 	while (high > low) {
2017 		area--;
2018 		high--;
2019 		size >>= 1;
2020 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2021 
2022 		/*
2023 		 * Mark as guard pages (or page), that will allow to
2024 		 * merge back to allocator when buddy will be freed.
2025 		 * Corresponding page table entries will not be touched,
2026 		 * pages will stay not present in virtual address space
2027 		 */
2028 		if (set_page_guard(zone, &page[size], high, migratetype))
2029 			continue;
2030 
2031 		add_to_free_area(&page[size], area, migratetype);
2032 		set_page_order(&page[size], high);
2033 	}
2034 }
2035 
2036 static void check_new_page_bad(struct page *page)
2037 {
2038 	const char *bad_reason = NULL;
2039 	unsigned long bad_flags = 0;
2040 
2041 	if (unlikely(atomic_read(&page->_mapcount) != -1))
2042 		bad_reason = "nonzero mapcount";
2043 	if (unlikely(page->mapping != NULL))
2044 		bad_reason = "non-NULL mapping";
2045 	if (unlikely(page_ref_count(page) != 0))
2046 		bad_reason = "nonzero _refcount";
2047 	if (unlikely(page->flags & __PG_HWPOISON)) {
2048 		bad_reason = "HWPoisoned (hardware-corrupted)";
2049 		bad_flags = __PG_HWPOISON;
2050 		/* Don't complain about hwpoisoned pages */
2051 		page_mapcount_reset(page); /* remove PageBuddy */
2052 		return;
2053 	}
2054 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2055 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2056 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2057 	}
2058 #ifdef CONFIG_MEMCG
2059 	if (unlikely(page->mem_cgroup))
2060 		bad_reason = "page still charged to cgroup";
2061 #endif
2062 	bad_page(page, bad_reason, bad_flags);
2063 }
2064 
2065 /*
2066  * This page is about to be returned from the page allocator
2067  */
2068 static inline int check_new_page(struct page *page)
2069 {
2070 	if (likely(page_expected_state(page,
2071 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2072 		return 0;
2073 
2074 	check_new_page_bad(page);
2075 	return 1;
2076 }
2077 
2078 static inline bool free_pages_prezeroed(void)
2079 {
2080 	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2081 		page_poisoning_enabled()) || want_init_on_free();
2082 }
2083 
2084 #ifdef CONFIG_DEBUG_VM
2085 /*
2086  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2087  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2088  * also checked when pcp lists are refilled from the free lists.
2089  */
2090 static inline bool check_pcp_refill(struct page *page)
2091 {
2092 	if (debug_pagealloc_enabled_static())
2093 		return check_new_page(page);
2094 	else
2095 		return false;
2096 }
2097 
2098 static inline bool check_new_pcp(struct page *page)
2099 {
2100 	return check_new_page(page);
2101 }
2102 #else
2103 /*
2104  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2105  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2106  * enabled, they are also checked when being allocated from the pcp lists.
2107  */
2108 static inline bool check_pcp_refill(struct page *page)
2109 {
2110 	return check_new_page(page);
2111 }
2112 static inline bool check_new_pcp(struct page *page)
2113 {
2114 	if (debug_pagealloc_enabled_static())
2115 		return check_new_page(page);
2116 	else
2117 		return false;
2118 }
2119 #endif /* CONFIG_DEBUG_VM */
2120 
2121 static bool check_new_pages(struct page *page, unsigned int order)
2122 {
2123 	int i;
2124 	for (i = 0; i < (1 << order); i++) {
2125 		struct page *p = page + i;
2126 
2127 		if (unlikely(check_new_page(p)))
2128 			return true;
2129 	}
2130 
2131 	return false;
2132 }
2133 
2134 inline void post_alloc_hook(struct page *page, unsigned int order,
2135 				gfp_t gfp_flags)
2136 {
2137 	set_page_private(page, 0);
2138 	set_page_refcounted(page);
2139 
2140 	arch_alloc_page(page, order);
2141 	if (debug_pagealloc_enabled_static())
2142 		kernel_map_pages(page, 1 << order, 1);
2143 	kasan_alloc_pages(page, order);
2144 	kernel_poison_pages(page, 1 << order, 1);
2145 	set_page_owner(page, order, gfp_flags);
2146 }
2147 
2148 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2149 							unsigned int alloc_flags)
2150 {
2151 	post_alloc_hook(page, order, gfp_flags);
2152 
2153 	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2154 		kernel_init_free_pages(page, 1 << order);
2155 
2156 	if (order && (gfp_flags & __GFP_COMP))
2157 		prep_compound_page(page, order);
2158 
2159 	/*
2160 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2161 	 * allocate the page. The expectation is that the caller is taking
2162 	 * steps that will free more memory. The caller should avoid the page
2163 	 * being used for !PFMEMALLOC purposes.
2164 	 */
2165 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2166 		set_page_pfmemalloc(page);
2167 	else
2168 		clear_page_pfmemalloc(page);
2169 }
2170 
2171 /*
2172  * Go through the free lists for the given migratetype and remove
2173  * the smallest available page from the freelists
2174  */
2175 static __always_inline
2176 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2177 						int migratetype)
2178 {
2179 	unsigned int current_order;
2180 	struct free_area *area;
2181 	struct page *page;
2182 
2183 	/* Find a page of the appropriate size in the preferred list */
2184 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2185 		area = &(zone->free_area[current_order]);
2186 		page = get_page_from_free_area(area, migratetype);
2187 		if (!page)
2188 			continue;
2189 		del_page_from_free_area(page, area);
2190 		expand(zone, page, order, current_order, area, migratetype);
2191 		set_pcppage_migratetype(page, migratetype);
2192 		return page;
2193 	}
2194 
2195 	return NULL;
2196 }
2197 
2198 
2199 /*
2200  * This array describes the order lists are fallen back to when
2201  * the free lists for the desirable migrate type are depleted
2202  */
2203 static int fallbacks[MIGRATE_TYPES][4] = {
2204 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2205 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2206 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2207 #ifdef CONFIG_CMA
2208 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2209 #endif
2210 #ifdef CONFIG_MEMORY_ISOLATION
2211 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2212 #endif
2213 };
2214 
2215 #ifdef CONFIG_CMA
2216 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2217 					unsigned int order)
2218 {
2219 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2220 }
2221 #else
2222 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2223 					unsigned int order) { return NULL; }
2224 #endif
2225 
2226 /*
2227  * Move the free pages in a range to the free lists of the requested type.
2228  * Note that start_page and end_pages are not aligned on a pageblock
2229  * boundary. If alignment is required, use move_freepages_block()
2230  */
2231 static int move_freepages(struct zone *zone,
2232 			  struct page *start_page, struct page *end_page,
2233 			  int migratetype, int *num_movable)
2234 {
2235 	struct page *page;
2236 	unsigned int order;
2237 	int pages_moved = 0;
2238 
2239 	for (page = start_page; page <= end_page;) {
2240 		if (!pfn_valid_within(page_to_pfn(page))) {
2241 			page++;
2242 			continue;
2243 		}
2244 
2245 		if (!PageBuddy(page)) {
2246 			/*
2247 			 * We assume that pages that could be isolated for
2248 			 * migration are movable. But we don't actually try
2249 			 * isolating, as that would be expensive.
2250 			 */
2251 			if (num_movable &&
2252 					(PageLRU(page) || __PageMovable(page)))
2253 				(*num_movable)++;
2254 
2255 			page++;
2256 			continue;
2257 		}
2258 
2259 		/* Make sure we are not inadvertently changing nodes */
2260 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2261 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2262 
2263 		order = page_order(page);
2264 		move_to_free_area(page, &zone->free_area[order], migratetype);
2265 		page += 1 << order;
2266 		pages_moved += 1 << order;
2267 	}
2268 
2269 	return pages_moved;
2270 }
2271 
2272 int move_freepages_block(struct zone *zone, struct page *page,
2273 				int migratetype, int *num_movable)
2274 {
2275 	unsigned long start_pfn, end_pfn;
2276 	struct page *start_page, *end_page;
2277 
2278 	if (num_movable)
2279 		*num_movable = 0;
2280 
2281 	start_pfn = page_to_pfn(page);
2282 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2283 	start_page = pfn_to_page(start_pfn);
2284 	end_page = start_page + pageblock_nr_pages - 1;
2285 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2286 
2287 	/* Do not cross zone boundaries */
2288 	if (!zone_spans_pfn(zone, start_pfn))
2289 		start_page = page;
2290 	if (!zone_spans_pfn(zone, end_pfn))
2291 		return 0;
2292 
2293 	return move_freepages(zone, start_page, end_page, migratetype,
2294 								num_movable);
2295 }
2296 
2297 static void change_pageblock_range(struct page *pageblock_page,
2298 					int start_order, int migratetype)
2299 {
2300 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2301 
2302 	while (nr_pageblocks--) {
2303 		set_pageblock_migratetype(pageblock_page, migratetype);
2304 		pageblock_page += pageblock_nr_pages;
2305 	}
2306 }
2307 
2308 /*
2309  * When we are falling back to another migratetype during allocation, try to
2310  * steal extra free pages from the same pageblocks to satisfy further
2311  * allocations, instead of polluting multiple pageblocks.
2312  *
2313  * If we are stealing a relatively large buddy page, it is likely there will
2314  * be more free pages in the pageblock, so try to steal them all. For
2315  * reclaimable and unmovable allocations, we steal regardless of page size,
2316  * as fragmentation caused by those allocations polluting movable pageblocks
2317  * is worse than movable allocations stealing from unmovable and reclaimable
2318  * pageblocks.
2319  */
2320 static bool can_steal_fallback(unsigned int order, int start_mt)
2321 {
2322 	/*
2323 	 * Leaving this order check is intended, although there is
2324 	 * relaxed order check in next check. The reason is that
2325 	 * we can actually steal whole pageblock if this condition met,
2326 	 * but, below check doesn't guarantee it and that is just heuristic
2327 	 * so could be changed anytime.
2328 	 */
2329 	if (order >= pageblock_order)
2330 		return true;
2331 
2332 	if (order >= pageblock_order / 2 ||
2333 		start_mt == MIGRATE_RECLAIMABLE ||
2334 		start_mt == MIGRATE_UNMOVABLE ||
2335 		page_group_by_mobility_disabled)
2336 		return true;
2337 
2338 	return false;
2339 }
2340 
2341 static inline void boost_watermark(struct zone *zone)
2342 {
2343 	unsigned long max_boost;
2344 
2345 	if (!watermark_boost_factor)
2346 		return;
2347 
2348 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2349 			watermark_boost_factor, 10000);
2350 
2351 	/*
2352 	 * high watermark may be uninitialised if fragmentation occurs
2353 	 * very early in boot so do not boost. We do not fall
2354 	 * through and boost by pageblock_nr_pages as failing
2355 	 * allocations that early means that reclaim is not going
2356 	 * to help and it may even be impossible to reclaim the
2357 	 * boosted watermark resulting in a hang.
2358 	 */
2359 	if (!max_boost)
2360 		return;
2361 
2362 	max_boost = max(pageblock_nr_pages, max_boost);
2363 
2364 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2365 		max_boost);
2366 }
2367 
2368 /*
2369  * This function implements actual steal behaviour. If order is large enough,
2370  * we can steal whole pageblock. If not, we first move freepages in this
2371  * pageblock to our migratetype and determine how many already-allocated pages
2372  * are there in the pageblock with a compatible migratetype. If at least half
2373  * of pages are free or compatible, we can change migratetype of the pageblock
2374  * itself, so pages freed in the future will be put on the correct free list.
2375  */
2376 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2377 		unsigned int alloc_flags, int start_type, bool whole_block)
2378 {
2379 	unsigned int current_order = page_order(page);
2380 	struct free_area *area;
2381 	int free_pages, movable_pages, alike_pages;
2382 	int old_block_type;
2383 
2384 	old_block_type = get_pageblock_migratetype(page);
2385 
2386 	/*
2387 	 * This can happen due to races and we want to prevent broken
2388 	 * highatomic accounting.
2389 	 */
2390 	if (is_migrate_highatomic(old_block_type))
2391 		goto single_page;
2392 
2393 	/* Take ownership for orders >= pageblock_order */
2394 	if (current_order >= pageblock_order) {
2395 		change_pageblock_range(page, current_order, start_type);
2396 		goto single_page;
2397 	}
2398 
2399 	/*
2400 	 * Boost watermarks to increase reclaim pressure to reduce the
2401 	 * likelihood of future fallbacks. Wake kswapd now as the node
2402 	 * may be balanced overall and kswapd will not wake naturally.
2403 	 */
2404 	boost_watermark(zone);
2405 	if (alloc_flags & ALLOC_KSWAPD)
2406 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2407 
2408 	/* We are not allowed to try stealing from the whole block */
2409 	if (!whole_block)
2410 		goto single_page;
2411 
2412 	free_pages = move_freepages_block(zone, page, start_type,
2413 						&movable_pages);
2414 	/*
2415 	 * Determine how many pages are compatible with our allocation.
2416 	 * For movable allocation, it's the number of movable pages which
2417 	 * we just obtained. For other types it's a bit more tricky.
2418 	 */
2419 	if (start_type == MIGRATE_MOVABLE) {
2420 		alike_pages = movable_pages;
2421 	} else {
2422 		/*
2423 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2424 		 * to MOVABLE pageblock, consider all non-movable pages as
2425 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2426 		 * vice versa, be conservative since we can't distinguish the
2427 		 * exact migratetype of non-movable pages.
2428 		 */
2429 		if (old_block_type == MIGRATE_MOVABLE)
2430 			alike_pages = pageblock_nr_pages
2431 						- (free_pages + movable_pages);
2432 		else
2433 			alike_pages = 0;
2434 	}
2435 
2436 	/* moving whole block can fail due to zone boundary conditions */
2437 	if (!free_pages)
2438 		goto single_page;
2439 
2440 	/*
2441 	 * If a sufficient number of pages in the block are either free or of
2442 	 * comparable migratability as our allocation, claim the whole block.
2443 	 */
2444 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2445 			page_group_by_mobility_disabled)
2446 		set_pageblock_migratetype(page, start_type);
2447 
2448 	return;
2449 
2450 single_page:
2451 	area = &zone->free_area[current_order];
2452 	move_to_free_area(page, area, start_type);
2453 }
2454 
2455 /*
2456  * Check whether there is a suitable fallback freepage with requested order.
2457  * If only_stealable is true, this function returns fallback_mt only if
2458  * we can steal other freepages all together. This would help to reduce
2459  * fragmentation due to mixed migratetype pages in one pageblock.
2460  */
2461 int find_suitable_fallback(struct free_area *area, unsigned int order,
2462 			int migratetype, bool only_stealable, bool *can_steal)
2463 {
2464 	int i;
2465 	int fallback_mt;
2466 
2467 	if (area->nr_free == 0)
2468 		return -1;
2469 
2470 	*can_steal = false;
2471 	for (i = 0;; i++) {
2472 		fallback_mt = fallbacks[migratetype][i];
2473 		if (fallback_mt == MIGRATE_TYPES)
2474 			break;
2475 
2476 		if (free_area_empty(area, fallback_mt))
2477 			continue;
2478 
2479 		if (can_steal_fallback(order, migratetype))
2480 			*can_steal = true;
2481 
2482 		if (!only_stealable)
2483 			return fallback_mt;
2484 
2485 		if (*can_steal)
2486 			return fallback_mt;
2487 	}
2488 
2489 	return -1;
2490 }
2491 
2492 /*
2493  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2494  * there are no empty page blocks that contain a page with a suitable order
2495  */
2496 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2497 				unsigned int alloc_order)
2498 {
2499 	int mt;
2500 	unsigned long max_managed, flags;
2501 
2502 	/*
2503 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2504 	 * Check is race-prone but harmless.
2505 	 */
2506 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2507 	if (zone->nr_reserved_highatomic >= max_managed)
2508 		return;
2509 
2510 	spin_lock_irqsave(&zone->lock, flags);
2511 
2512 	/* Recheck the nr_reserved_highatomic limit under the lock */
2513 	if (zone->nr_reserved_highatomic >= max_managed)
2514 		goto out_unlock;
2515 
2516 	/* Yoink! */
2517 	mt = get_pageblock_migratetype(page);
2518 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2519 	    && !is_migrate_cma(mt)) {
2520 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2521 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2522 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2523 	}
2524 
2525 out_unlock:
2526 	spin_unlock_irqrestore(&zone->lock, flags);
2527 }
2528 
2529 /*
2530  * Used when an allocation is about to fail under memory pressure. This
2531  * potentially hurts the reliability of high-order allocations when under
2532  * intense memory pressure but failed atomic allocations should be easier
2533  * to recover from than an OOM.
2534  *
2535  * If @force is true, try to unreserve a pageblock even though highatomic
2536  * pageblock is exhausted.
2537  */
2538 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2539 						bool force)
2540 {
2541 	struct zonelist *zonelist = ac->zonelist;
2542 	unsigned long flags;
2543 	struct zoneref *z;
2544 	struct zone *zone;
2545 	struct page *page;
2546 	int order;
2547 	bool ret;
2548 
2549 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2550 								ac->nodemask) {
2551 		/*
2552 		 * Preserve at least one pageblock unless memory pressure
2553 		 * is really high.
2554 		 */
2555 		if (!force && zone->nr_reserved_highatomic <=
2556 					pageblock_nr_pages)
2557 			continue;
2558 
2559 		spin_lock_irqsave(&zone->lock, flags);
2560 		for (order = 0; order < MAX_ORDER; order++) {
2561 			struct free_area *area = &(zone->free_area[order]);
2562 
2563 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2564 			if (!page)
2565 				continue;
2566 
2567 			/*
2568 			 * In page freeing path, migratetype change is racy so
2569 			 * we can counter several free pages in a pageblock
2570 			 * in this loop althoug we changed the pageblock type
2571 			 * from highatomic to ac->migratetype. So we should
2572 			 * adjust the count once.
2573 			 */
2574 			if (is_migrate_highatomic_page(page)) {
2575 				/*
2576 				 * It should never happen but changes to
2577 				 * locking could inadvertently allow a per-cpu
2578 				 * drain to add pages to MIGRATE_HIGHATOMIC
2579 				 * while unreserving so be safe and watch for
2580 				 * underflows.
2581 				 */
2582 				zone->nr_reserved_highatomic -= min(
2583 						pageblock_nr_pages,
2584 						zone->nr_reserved_highatomic);
2585 			}
2586 
2587 			/*
2588 			 * Convert to ac->migratetype and avoid the normal
2589 			 * pageblock stealing heuristics. Minimally, the caller
2590 			 * is doing the work and needs the pages. More
2591 			 * importantly, if the block was always converted to
2592 			 * MIGRATE_UNMOVABLE or another type then the number
2593 			 * of pageblocks that cannot be completely freed
2594 			 * may increase.
2595 			 */
2596 			set_pageblock_migratetype(page, ac->migratetype);
2597 			ret = move_freepages_block(zone, page, ac->migratetype,
2598 									NULL);
2599 			if (ret) {
2600 				spin_unlock_irqrestore(&zone->lock, flags);
2601 				return ret;
2602 			}
2603 		}
2604 		spin_unlock_irqrestore(&zone->lock, flags);
2605 	}
2606 
2607 	return false;
2608 }
2609 
2610 /*
2611  * Try finding a free buddy page on the fallback list and put it on the free
2612  * list of requested migratetype, possibly along with other pages from the same
2613  * block, depending on fragmentation avoidance heuristics. Returns true if
2614  * fallback was found so that __rmqueue_smallest() can grab it.
2615  *
2616  * The use of signed ints for order and current_order is a deliberate
2617  * deviation from the rest of this file, to make the for loop
2618  * condition simpler.
2619  */
2620 static __always_inline bool
2621 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2622 						unsigned int alloc_flags)
2623 {
2624 	struct free_area *area;
2625 	int current_order;
2626 	int min_order = order;
2627 	struct page *page;
2628 	int fallback_mt;
2629 	bool can_steal;
2630 
2631 	/*
2632 	 * Do not steal pages from freelists belonging to other pageblocks
2633 	 * i.e. orders < pageblock_order. If there are no local zones free,
2634 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2635 	 */
2636 	if (alloc_flags & ALLOC_NOFRAGMENT)
2637 		min_order = pageblock_order;
2638 
2639 	/*
2640 	 * Find the largest available free page in the other list. This roughly
2641 	 * approximates finding the pageblock with the most free pages, which
2642 	 * would be too costly to do exactly.
2643 	 */
2644 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2645 				--current_order) {
2646 		area = &(zone->free_area[current_order]);
2647 		fallback_mt = find_suitable_fallback(area, current_order,
2648 				start_migratetype, false, &can_steal);
2649 		if (fallback_mt == -1)
2650 			continue;
2651 
2652 		/*
2653 		 * We cannot steal all free pages from the pageblock and the
2654 		 * requested migratetype is movable. In that case it's better to
2655 		 * steal and split the smallest available page instead of the
2656 		 * largest available page, because even if the next movable
2657 		 * allocation falls back into a different pageblock than this
2658 		 * one, it won't cause permanent fragmentation.
2659 		 */
2660 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2661 					&& current_order > order)
2662 			goto find_smallest;
2663 
2664 		goto do_steal;
2665 	}
2666 
2667 	return false;
2668 
2669 find_smallest:
2670 	for (current_order = order; current_order < MAX_ORDER;
2671 							current_order++) {
2672 		area = &(zone->free_area[current_order]);
2673 		fallback_mt = find_suitable_fallback(area, current_order,
2674 				start_migratetype, false, &can_steal);
2675 		if (fallback_mt != -1)
2676 			break;
2677 	}
2678 
2679 	/*
2680 	 * This should not happen - we already found a suitable fallback
2681 	 * when looking for the largest page.
2682 	 */
2683 	VM_BUG_ON(current_order == MAX_ORDER);
2684 
2685 do_steal:
2686 	page = get_page_from_free_area(area, fallback_mt);
2687 
2688 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2689 								can_steal);
2690 
2691 	trace_mm_page_alloc_extfrag(page, order, current_order,
2692 		start_migratetype, fallback_mt);
2693 
2694 	return true;
2695 
2696 }
2697 
2698 /*
2699  * Do the hard work of removing an element from the buddy allocator.
2700  * Call me with the zone->lock already held.
2701  */
2702 static __always_inline struct page *
2703 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2704 						unsigned int alloc_flags)
2705 {
2706 	struct page *page;
2707 
2708 retry:
2709 	page = __rmqueue_smallest(zone, order, migratetype);
2710 	if (unlikely(!page)) {
2711 		if (migratetype == MIGRATE_MOVABLE)
2712 			page = __rmqueue_cma_fallback(zone, order);
2713 
2714 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2715 								alloc_flags))
2716 			goto retry;
2717 	}
2718 
2719 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2720 	return page;
2721 }
2722 
2723 /*
2724  * Obtain a specified number of elements from the buddy allocator, all under
2725  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2726  * Returns the number of new pages which were placed at *list.
2727  */
2728 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2729 			unsigned long count, struct list_head *list,
2730 			int migratetype, unsigned int alloc_flags)
2731 {
2732 	int i, alloced = 0;
2733 
2734 	spin_lock(&zone->lock);
2735 	for (i = 0; i < count; ++i) {
2736 		struct page *page = __rmqueue(zone, order, migratetype,
2737 								alloc_flags);
2738 		if (unlikely(page == NULL))
2739 			break;
2740 
2741 		if (unlikely(check_pcp_refill(page)))
2742 			continue;
2743 
2744 		/*
2745 		 * Split buddy pages returned by expand() are received here in
2746 		 * physical page order. The page is added to the tail of
2747 		 * caller's list. From the callers perspective, the linked list
2748 		 * is ordered by page number under some conditions. This is
2749 		 * useful for IO devices that can forward direction from the
2750 		 * head, thus also in the physical page order. This is useful
2751 		 * for IO devices that can merge IO requests if the physical
2752 		 * pages are ordered properly.
2753 		 */
2754 		list_add_tail(&page->lru, list);
2755 		alloced++;
2756 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2757 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2758 					      -(1 << order));
2759 	}
2760 
2761 	/*
2762 	 * i pages were removed from the buddy list even if some leak due
2763 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2764 	 * on i. Do not confuse with 'alloced' which is the number of
2765 	 * pages added to the pcp list.
2766 	 */
2767 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2768 	spin_unlock(&zone->lock);
2769 	return alloced;
2770 }
2771 
2772 #ifdef CONFIG_NUMA
2773 /*
2774  * Called from the vmstat counter updater to drain pagesets of this
2775  * currently executing processor on remote nodes after they have
2776  * expired.
2777  *
2778  * Note that this function must be called with the thread pinned to
2779  * a single processor.
2780  */
2781 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2782 {
2783 	unsigned long flags;
2784 	int to_drain, batch;
2785 
2786 	local_irq_save(flags);
2787 	batch = READ_ONCE(pcp->batch);
2788 	to_drain = min(pcp->count, batch);
2789 	if (to_drain > 0)
2790 		free_pcppages_bulk(zone, to_drain, pcp);
2791 	local_irq_restore(flags);
2792 }
2793 #endif
2794 
2795 /*
2796  * Drain pcplists of the indicated processor and zone.
2797  *
2798  * The processor must either be the current processor and the
2799  * thread pinned to the current processor or a processor that
2800  * is not online.
2801  */
2802 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2803 {
2804 	unsigned long flags;
2805 	struct per_cpu_pageset *pset;
2806 	struct per_cpu_pages *pcp;
2807 
2808 	local_irq_save(flags);
2809 	pset = per_cpu_ptr(zone->pageset, cpu);
2810 
2811 	pcp = &pset->pcp;
2812 	if (pcp->count)
2813 		free_pcppages_bulk(zone, pcp->count, pcp);
2814 	local_irq_restore(flags);
2815 }
2816 
2817 /*
2818  * Drain pcplists of all zones on the indicated processor.
2819  *
2820  * The processor must either be the current processor and the
2821  * thread pinned to the current processor or a processor that
2822  * is not online.
2823  */
2824 static void drain_pages(unsigned int cpu)
2825 {
2826 	struct zone *zone;
2827 
2828 	for_each_populated_zone(zone) {
2829 		drain_pages_zone(cpu, zone);
2830 	}
2831 }
2832 
2833 /*
2834  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2835  *
2836  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2837  * the single zone's pages.
2838  */
2839 void drain_local_pages(struct zone *zone)
2840 {
2841 	int cpu = smp_processor_id();
2842 
2843 	if (zone)
2844 		drain_pages_zone(cpu, zone);
2845 	else
2846 		drain_pages(cpu);
2847 }
2848 
2849 static void drain_local_pages_wq(struct work_struct *work)
2850 {
2851 	struct pcpu_drain *drain;
2852 
2853 	drain = container_of(work, struct pcpu_drain, work);
2854 
2855 	/*
2856 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2857 	 * we can race with cpu offline when the WQ can move this from
2858 	 * a cpu pinned worker to an unbound one. We can operate on a different
2859 	 * cpu which is allright but we also have to make sure to not move to
2860 	 * a different one.
2861 	 */
2862 	preempt_disable();
2863 	drain_local_pages(drain->zone);
2864 	preempt_enable();
2865 }
2866 
2867 /*
2868  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2869  *
2870  * When zone parameter is non-NULL, spill just the single zone's pages.
2871  *
2872  * Note that this can be extremely slow as the draining happens in a workqueue.
2873  */
2874 void drain_all_pages(struct zone *zone)
2875 {
2876 	int cpu;
2877 
2878 	/*
2879 	 * Allocate in the BSS so we wont require allocation in
2880 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2881 	 */
2882 	static cpumask_t cpus_with_pcps;
2883 
2884 	/*
2885 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2886 	 * initialized.
2887 	 */
2888 	if (WARN_ON_ONCE(!mm_percpu_wq))
2889 		return;
2890 
2891 	/*
2892 	 * Do not drain if one is already in progress unless it's specific to
2893 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2894 	 * the drain to be complete when the call returns.
2895 	 */
2896 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2897 		if (!zone)
2898 			return;
2899 		mutex_lock(&pcpu_drain_mutex);
2900 	}
2901 
2902 	/*
2903 	 * We don't care about racing with CPU hotplug event
2904 	 * as offline notification will cause the notified
2905 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2906 	 * disables preemption as part of its processing
2907 	 */
2908 	for_each_online_cpu(cpu) {
2909 		struct per_cpu_pageset *pcp;
2910 		struct zone *z;
2911 		bool has_pcps = false;
2912 
2913 		if (zone) {
2914 			pcp = per_cpu_ptr(zone->pageset, cpu);
2915 			if (pcp->pcp.count)
2916 				has_pcps = true;
2917 		} else {
2918 			for_each_populated_zone(z) {
2919 				pcp = per_cpu_ptr(z->pageset, cpu);
2920 				if (pcp->pcp.count) {
2921 					has_pcps = true;
2922 					break;
2923 				}
2924 			}
2925 		}
2926 
2927 		if (has_pcps)
2928 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2929 		else
2930 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2931 	}
2932 
2933 	for_each_cpu(cpu, &cpus_with_pcps) {
2934 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2935 
2936 		drain->zone = zone;
2937 		INIT_WORK(&drain->work, drain_local_pages_wq);
2938 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2939 	}
2940 	for_each_cpu(cpu, &cpus_with_pcps)
2941 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2942 
2943 	mutex_unlock(&pcpu_drain_mutex);
2944 }
2945 
2946 #ifdef CONFIG_HIBERNATION
2947 
2948 /*
2949  * Touch the watchdog for every WD_PAGE_COUNT pages.
2950  */
2951 #define WD_PAGE_COUNT	(128*1024)
2952 
2953 void mark_free_pages(struct zone *zone)
2954 {
2955 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2956 	unsigned long flags;
2957 	unsigned int order, t;
2958 	struct page *page;
2959 
2960 	if (zone_is_empty(zone))
2961 		return;
2962 
2963 	spin_lock_irqsave(&zone->lock, flags);
2964 
2965 	max_zone_pfn = zone_end_pfn(zone);
2966 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2967 		if (pfn_valid(pfn)) {
2968 			page = pfn_to_page(pfn);
2969 
2970 			if (!--page_count) {
2971 				touch_nmi_watchdog();
2972 				page_count = WD_PAGE_COUNT;
2973 			}
2974 
2975 			if (page_zone(page) != zone)
2976 				continue;
2977 
2978 			if (!swsusp_page_is_forbidden(page))
2979 				swsusp_unset_page_free(page);
2980 		}
2981 
2982 	for_each_migratetype_order(order, t) {
2983 		list_for_each_entry(page,
2984 				&zone->free_area[order].free_list[t], lru) {
2985 			unsigned long i;
2986 
2987 			pfn = page_to_pfn(page);
2988 			for (i = 0; i < (1UL << order); i++) {
2989 				if (!--page_count) {
2990 					touch_nmi_watchdog();
2991 					page_count = WD_PAGE_COUNT;
2992 				}
2993 				swsusp_set_page_free(pfn_to_page(pfn + i));
2994 			}
2995 		}
2996 	}
2997 	spin_unlock_irqrestore(&zone->lock, flags);
2998 }
2999 #endif /* CONFIG_PM */
3000 
3001 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3002 {
3003 	int migratetype;
3004 
3005 	if (!free_pcp_prepare(page))
3006 		return false;
3007 
3008 	migratetype = get_pfnblock_migratetype(page, pfn);
3009 	set_pcppage_migratetype(page, migratetype);
3010 	return true;
3011 }
3012 
3013 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3014 {
3015 	struct zone *zone = page_zone(page);
3016 	struct per_cpu_pages *pcp;
3017 	int migratetype;
3018 
3019 	migratetype = get_pcppage_migratetype(page);
3020 	__count_vm_event(PGFREE);
3021 
3022 	/*
3023 	 * We only track unmovable, reclaimable and movable on pcp lists.
3024 	 * Free ISOLATE pages back to the allocator because they are being
3025 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3026 	 * areas back if necessary. Otherwise, we may have to free
3027 	 * excessively into the page allocator
3028 	 */
3029 	if (migratetype >= MIGRATE_PCPTYPES) {
3030 		if (unlikely(is_migrate_isolate(migratetype))) {
3031 			free_one_page(zone, page, pfn, 0, migratetype);
3032 			return;
3033 		}
3034 		migratetype = MIGRATE_MOVABLE;
3035 	}
3036 
3037 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3038 	list_add(&page->lru, &pcp->lists[migratetype]);
3039 	pcp->count++;
3040 	if (pcp->count >= pcp->high) {
3041 		unsigned long batch = READ_ONCE(pcp->batch);
3042 		free_pcppages_bulk(zone, batch, pcp);
3043 	}
3044 }
3045 
3046 /*
3047  * Free a 0-order page
3048  */
3049 void free_unref_page(struct page *page)
3050 {
3051 	unsigned long flags;
3052 	unsigned long pfn = page_to_pfn(page);
3053 
3054 	if (!free_unref_page_prepare(page, pfn))
3055 		return;
3056 
3057 	local_irq_save(flags);
3058 	free_unref_page_commit(page, pfn);
3059 	local_irq_restore(flags);
3060 }
3061 
3062 /*
3063  * Free a list of 0-order pages
3064  */
3065 void free_unref_page_list(struct list_head *list)
3066 {
3067 	struct page *page, *next;
3068 	unsigned long flags, pfn;
3069 	int batch_count = 0;
3070 
3071 	/* Prepare pages for freeing */
3072 	list_for_each_entry_safe(page, next, list, lru) {
3073 		pfn = page_to_pfn(page);
3074 		if (!free_unref_page_prepare(page, pfn))
3075 			list_del(&page->lru);
3076 		set_page_private(page, pfn);
3077 	}
3078 
3079 	local_irq_save(flags);
3080 	list_for_each_entry_safe(page, next, list, lru) {
3081 		unsigned long pfn = page_private(page);
3082 
3083 		set_page_private(page, 0);
3084 		trace_mm_page_free_batched(page);
3085 		free_unref_page_commit(page, pfn);
3086 
3087 		/*
3088 		 * Guard against excessive IRQ disabled times when we get
3089 		 * a large list of pages to free.
3090 		 */
3091 		if (++batch_count == SWAP_CLUSTER_MAX) {
3092 			local_irq_restore(flags);
3093 			batch_count = 0;
3094 			local_irq_save(flags);
3095 		}
3096 	}
3097 	local_irq_restore(flags);
3098 }
3099 
3100 /*
3101  * split_page takes a non-compound higher-order page, and splits it into
3102  * n (1<<order) sub-pages: page[0..n]
3103  * Each sub-page must be freed individually.
3104  *
3105  * Note: this is probably too low level an operation for use in drivers.
3106  * Please consult with lkml before using this in your driver.
3107  */
3108 void split_page(struct page *page, unsigned int order)
3109 {
3110 	int i;
3111 
3112 	VM_BUG_ON_PAGE(PageCompound(page), page);
3113 	VM_BUG_ON_PAGE(!page_count(page), page);
3114 
3115 	for (i = 1; i < (1 << order); i++)
3116 		set_page_refcounted(page + i);
3117 	split_page_owner(page, order);
3118 }
3119 EXPORT_SYMBOL_GPL(split_page);
3120 
3121 int __isolate_free_page(struct page *page, unsigned int order)
3122 {
3123 	struct free_area *area = &page_zone(page)->free_area[order];
3124 	unsigned long watermark;
3125 	struct zone *zone;
3126 	int mt;
3127 
3128 	BUG_ON(!PageBuddy(page));
3129 
3130 	zone = page_zone(page);
3131 	mt = get_pageblock_migratetype(page);
3132 
3133 	if (!is_migrate_isolate(mt)) {
3134 		/*
3135 		 * Obey watermarks as if the page was being allocated. We can
3136 		 * emulate a high-order watermark check with a raised order-0
3137 		 * watermark, because we already know our high-order page
3138 		 * exists.
3139 		 */
3140 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3141 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3142 			return 0;
3143 
3144 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3145 	}
3146 
3147 	/* Remove page from free list */
3148 
3149 	del_page_from_free_area(page, area);
3150 
3151 	/*
3152 	 * Set the pageblock if the isolated page is at least half of a
3153 	 * pageblock
3154 	 */
3155 	if (order >= pageblock_order - 1) {
3156 		struct page *endpage = page + (1 << order) - 1;
3157 		for (; page < endpage; page += pageblock_nr_pages) {
3158 			int mt = get_pageblock_migratetype(page);
3159 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3160 			    && !is_migrate_highatomic(mt))
3161 				set_pageblock_migratetype(page,
3162 							  MIGRATE_MOVABLE);
3163 		}
3164 	}
3165 
3166 
3167 	return 1UL << order;
3168 }
3169 
3170 /*
3171  * Update NUMA hit/miss statistics
3172  *
3173  * Must be called with interrupts disabled.
3174  */
3175 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3176 {
3177 #ifdef CONFIG_NUMA
3178 	enum numa_stat_item local_stat = NUMA_LOCAL;
3179 
3180 	/* skip numa counters update if numa stats is disabled */
3181 	if (!static_branch_likely(&vm_numa_stat_key))
3182 		return;
3183 
3184 	if (zone_to_nid(z) != numa_node_id())
3185 		local_stat = NUMA_OTHER;
3186 
3187 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3188 		__inc_numa_state(z, NUMA_HIT);
3189 	else {
3190 		__inc_numa_state(z, NUMA_MISS);
3191 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3192 	}
3193 	__inc_numa_state(z, local_stat);
3194 #endif
3195 }
3196 
3197 /* Remove page from the per-cpu list, caller must protect the list */
3198 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3199 			unsigned int alloc_flags,
3200 			struct per_cpu_pages *pcp,
3201 			struct list_head *list)
3202 {
3203 	struct page *page;
3204 
3205 	do {
3206 		if (list_empty(list)) {
3207 			pcp->count += rmqueue_bulk(zone, 0,
3208 					pcp->batch, list,
3209 					migratetype, alloc_flags);
3210 			if (unlikely(list_empty(list)))
3211 				return NULL;
3212 		}
3213 
3214 		page = list_first_entry(list, struct page, lru);
3215 		list_del(&page->lru);
3216 		pcp->count--;
3217 	} while (check_new_pcp(page));
3218 
3219 	return page;
3220 }
3221 
3222 /* Lock and remove page from the per-cpu list */
3223 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3224 			struct zone *zone, gfp_t gfp_flags,
3225 			int migratetype, unsigned int alloc_flags)
3226 {
3227 	struct per_cpu_pages *pcp;
3228 	struct list_head *list;
3229 	struct page *page;
3230 	unsigned long flags;
3231 
3232 	local_irq_save(flags);
3233 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3234 	list = &pcp->lists[migratetype];
3235 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3236 	if (page) {
3237 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3238 		zone_statistics(preferred_zone, zone);
3239 	}
3240 	local_irq_restore(flags);
3241 	return page;
3242 }
3243 
3244 /*
3245  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3246  */
3247 static inline
3248 struct page *rmqueue(struct zone *preferred_zone,
3249 			struct zone *zone, unsigned int order,
3250 			gfp_t gfp_flags, unsigned int alloc_flags,
3251 			int migratetype)
3252 {
3253 	unsigned long flags;
3254 	struct page *page;
3255 
3256 	if (likely(order == 0)) {
3257 		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3258 					migratetype, alloc_flags);
3259 		goto out;
3260 	}
3261 
3262 	/*
3263 	 * We most definitely don't want callers attempting to
3264 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3265 	 */
3266 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3267 	spin_lock_irqsave(&zone->lock, flags);
3268 
3269 	do {
3270 		page = NULL;
3271 		if (alloc_flags & ALLOC_HARDER) {
3272 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3273 			if (page)
3274 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3275 		}
3276 		if (!page)
3277 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3278 	} while (page && check_new_pages(page, order));
3279 	spin_unlock(&zone->lock);
3280 	if (!page)
3281 		goto failed;
3282 	__mod_zone_freepage_state(zone, -(1 << order),
3283 				  get_pcppage_migratetype(page));
3284 
3285 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3286 	zone_statistics(preferred_zone, zone);
3287 	local_irq_restore(flags);
3288 
3289 out:
3290 	/* Separate test+clear to avoid unnecessary atomics */
3291 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3292 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3293 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3294 	}
3295 
3296 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3297 	return page;
3298 
3299 failed:
3300 	local_irq_restore(flags);
3301 	return NULL;
3302 }
3303 
3304 #ifdef CONFIG_FAIL_PAGE_ALLOC
3305 
3306 static struct {
3307 	struct fault_attr attr;
3308 
3309 	bool ignore_gfp_highmem;
3310 	bool ignore_gfp_reclaim;
3311 	u32 min_order;
3312 } fail_page_alloc = {
3313 	.attr = FAULT_ATTR_INITIALIZER,
3314 	.ignore_gfp_reclaim = true,
3315 	.ignore_gfp_highmem = true,
3316 	.min_order = 1,
3317 };
3318 
3319 static int __init setup_fail_page_alloc(char *str)
3320 {
3321 	return setup_fault_attr(&fail_page_alloc.attr, str);
3322 }
3323 __setup("fail_page_alloc=", setup_fail_page_alloc);
3324 
3325 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3326 {
3327 	if (order < fail_page_alloc.min_order)
3328 		return false;
3329 	if (gfp_mask & __GFP_NOFAIL)
3330 		return false;
3331 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3332 		return false;
3333 	if (fail_page_alloc.ignore_gfp_reclaim &&
3334 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3335 		return false;
3336 
3337 	return should_fail(&fail_page_alloc.attr, 1 << order);
3338 }
3339 
3340 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3341 
3342 static int __init fail_page_alloc_debugfs(void)
3343 {
3344 	umode_t mode = S_IFREG | 0600;
3345 	struct dentry *dir;
3346 
3347 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3348 					&fail_page_alloc.attr);
3349 
3350 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3351 			    &fail_page_alloc.ignore_gfp_reclaim);
3352 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3353 			    &fail_page_alloc.ignore_gfp_highmem);
3354 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3355 
3356 	return 0;
3357 }
3358 
3359 late_initcall(fail_page_alloc_debugfs);
3360 
3361 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3362 
3363 #else /* CONFIG_FAIL_PAGE_ALLOC */
3364 
3365 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3366 {
3367 	return false;
3368 }
3369 
3370 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3371 
3372 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3373 {
3374 	return __should_fail_alloc_page(gfp_mask, order);
3375 }
3376 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3377 
3378 /*
3379  * Return true if free base pages are above 'mark'. For high-order checks it
3380  * will return true of the order-0 watermark is reached and there is at least
3381  * one free page of a suitable size. Checking now avoids taking the zone lock
3382  * to check in the allocation paths if no pages are free.
3383  */
3384 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3385 			 int classzone_idx, unsigned int alloc_flags,
3386 			 long free_pages)
3387 {
3388 	long min = mark;
3389 	int o;
3390 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3391 
3392 	/* free_pages may go negative - that's OK */
3393 	free_pages -= (1 << order) - 1;
3394 
3395 	if (alloc_flags & ALLOC_HIGH)
3396 		min -= min / 2;
3397 
3398 	/*
3399 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3400 	 * the high-atomic reserves. This will over-estimate the size of the
3401 	 * atomic reserve but it avoids a search.
3402 	 */
3403 	if (likely(!alloc_harder)) {
3404 		free_pages -= z->nr_reserved_highatomic;
3405 	} else {
3406 		/*
3407 		 * OOM victims can try even harder than normal ALLOC_HARDER
3408 		 * users on the grounds that it's definitely going to be in
3409 		 * the exit path shortly and free memory. Any allocation it
3410 		 * makes during the free path will be small and short-lived.
3411 		 */
3412 		if (alloc_flags & ALLOC_OOM)
3413 			min -= min / 2;
3414 		else
3415 			min -= min / 4;
3416 	}
3417 
3418 
3419 #ifdef CONFIG_CMA
3420 	/* If allocation can't use CMA areas don't use free CMA pages */
3421 	if (!(alloc_flags & ALLOC_CMA))
3422 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3423 #endif
3424 
3425 	/*
3426 	 * Check watermarks for an order-0 allocation request. If these
3427 	 * are not met, then a high-order request also cannot go ahead
3428 	 * even if a suitable page happened to be free.
3429 	 */
3430 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3431 		return false;
3432 
3433 	/* If this is an order-0 request then the watermark is fine */
3434 	if (!order)
3435 		return true;
3436 
3437 	/* For a high-order request, check at least one suitable page is free */
3438 	for (o = order; o < MAX_ORDER; o++) {
3439 		struct free_area *area = &z->free_area[o];
3440 		int mt;
3441 
3442 		if (!area->nr_free)
3443 			continue;
3444 
3445 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3446 			if (!free_area_empty(area, mt))
3447 				return true;
3448 		}
3449 
3450 #ifdef CONFIG_CMA
3451 		if ((alloc_flags & ALLOC_CMA) &&
3452 		    !free_area_empty(area, MIGRATE_CMA)) {
3453 			return true;
3454 		}
3455 #endif
3456 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3457 			return true;
3458 	}
3459 	return false;
3460 }
3461 
3462 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3463 		      int classzone_idx, unsigned int alloc_flags)
3464 {
3465 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3466 					zone_page_state(z, NR_FREE_PAGES));
3467 }
3468 
3469 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3470 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3471 {
3472 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3473 	long cma_pages = 0;
3474 
3475 #ifdef CONFIG_CMA
3476 	/* If allocation can't use CMA areas don't use free CMA pages */
3477 	if (!(alloc_flags & ALLOC_CMA))
3478 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3479 #endif
3480 
3481 	/*
3482 	 * Fast check for order-0 only. If this fails then the reserves
3483 	 * need to be calculated. There is a corner case where the check
3484 	 * passes but only the high-order atomic reserve are free. If
3485 	 * the caller is !atomic then it'll uselessly search the free
3486 	 * list. That corner case is then slower but it is harmless.
3487 	 */
3488 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3489 		return true;
3490 
3491 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3492 					free_pages);
3493 }
3494 
3495 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3496 			unsigned long mark, int classzone_idx)
3497 {
3498 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3499 
3500 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3501 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3502 
3503 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3504 								free_pages);
3505 }
3506 
3507 #ifdef CONFIG_NUMA
3508 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3509 {
3510 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3511 				node_reclaim_distance;
3512 }
3513 #else	/* CONFIG_NUMA */
3514 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3515 {
3516 	return true;
3517 }
3518 #endif	/* CONFIG_NUMA */
3519 
3520 /*
3521  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3522  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3523  * premature use of a lower zone may cause lowmem pressure problems that
3524  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3525  * probably too small. It only makes sense to spread allocations to avoid
3526  * fragmentation between the Normal and DMA32 zones.
3527  */
3528 static inline unsigned int
3529 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3530 {
3531 	unsigned int alloc_flags;
3532 
3533 	/*
3534 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3535 	 * to save a branch.
3536 	 */
3537 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3538 
3539 #ifdef CONFIG_ZONE_DMA32
3540 	if (!zone)
3541 		return alloc_flags;
3542 
3543 	if (zone_idx(zone) != ZONE_NORMAL)
3544 		return alloc_flags;
3545 
3546 	/*
3547 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3548 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3549 	 * on UMA that if Normal is populated then so is DMA32.
3550 	 */
3551 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3552 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3553 		return alloc_flags;
3554 
3555 	alloc_flags |= ALLOC_NOFRAGMENT;
3556 #endif /* CONFIG_ZONE_DMA32 */
3557 	return alloc_flags;
3558 }
3559 
3560 /*
3561  * get_page_from_freelist goes through the zonelist trying to allocate
3562  * a page.
3563  */
3564 static struct page *
3565 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3566 						const struct alloc_context *ac)
3567 {
3568 	struct zoneref *z;
3569 	struct zone *zone;
3570 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3571 	bool no_fallback;
3572 
3573 retry:
3574 	/*
3575 	 * Scan zonelist, looking for a zone with enough free.
3576 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3577 	 */
3578 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3579 	z = ac->preferred_zoneref;
3580 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3581 								ac->nodemask) {
3582 		struct page *page;
3583 		unsigned long mark;
3584 
3585 		if (cpusets_enabled() &&
3586 			(alloc_flags & ALLOC_CPUSET) &&
3587 			!__cpuset_zone_allowed(zone, gfp_mask))
3588 				continue;
3589 		/*
3590 		 * When allocating a page cache page for writing, we
3591 		 * want to get it from a node that is within its dirty
3592 		 * limit, such that no single node holds more than its
3593 		 * proportional share of globally allowed dirty pages.
3594 		 * The dirty limits take into account the node's
3595 		 * lowmem reserves and high watermark so that kswapd
3596 		 * should be able to balance it without having to
3597 		 * write pages from its LRU list.
3598 		 *
3599 		 * XXX: For now, allow allocations to potentially
3600 		 * exceed the per-node dirty limit in the slowpath
3601 		 * (spread_dirty_pages unset) before going into reclaim,
3602 		 * which is important when on a NUMA setup the allowed
3603 		 * nodes are together not big enough to reach the
3604 		 * global limit.  The proper fix for these situations
3605 		 * will require awareness of nodes in the
3606 		 * dirty-throttling and the flusher threads.
3607 		 */
3608 		if (ac->spread_dirty_pages) {
3609 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3610 				continue;
3611 
3612 			if (!node_dirty_ok(zone->zone_pgdat)) {
3613 				last_pgdat_dirty_limit = zone->zone_pgdat;
3614 				continue;
3615 			}
3616 		}
3617 
3618 		if (no_fallback && nr_online_nodes > 1 &&
3619 		    zone != ac->preferred_zoneref->zone) {
3620 			int local_nid;
3621 
3622 			/*
3623 			 * If moving to a remote node, retry but allow
3624 			 * fragmenting fallbacks. Locality is more important
3625 			 * than fragmentation avoidance.
3626 			 */
3627 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3628 			if (zone_to_nid(zone) != local_nid) {
3629 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3630 				goto retry;
3631 			}
3632 		}
3633 
3634 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3635 		if (!zone_watermark_fast(zone, order, mark,
3636 				       ac_classzone_idx(ac), alloc_flags)) {
3637 			int ret;
3638 
3639 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3640 			/*
3641 			 * Watermark failed for this zone, but see if we can
3642 			 * grow this zone if it contains deferred pages.
3643 			 */
3644 			if (static_branch_unlikely(&deferred_pages)) {
3645 				if (_deferred_grow_zone(zone, order))
3646 					goto try_this_zone;
3647 			}
3648 #endif
3649 			/* Checked here to keep the fast path fast */
3650 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3651 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3652 				goto try_this_zone;
3653 
3654 			if (node_reclaim_mode == 0 ||
3655 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3656 				continue;
3657 
3658 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3659 			switch (ret) {
3660 			case NODE_RECLAIM_NOSCAN:
3661 				/* did not scan */
3662 				continue;
3663 			case NODE_RECLAIM_FULL:
3664 				/* scanned but unreclaimable */
3665 				continue;
3666 			default:
3667 				/* did we reclaim enough */
3668 				if (zone_watermark_ok(zone, order, mark,
3669 						ac_classzone_idx(ac), alloc_flags))
3670 					goto try_this_zone;
3671 
3672 				continue;
3673 			}
3674 		}
3675 
3676 try_this_zone:
3677 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3678 				gfp_mask, alloc_flags, ac->migratetype);
3679 		if (page) {
3680 			prep_new_page(page, order, gfp_mask, alloc_flags);
3681 
3682 			/*
3683 			 * If this is a high-order atomic allocation then check
3684 			 * if the pageblock should be reserved for the future
3685 			 */
3686 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3687 				reserve_highatomic_pageblock(page, zone, order);
3688 
3689 			return page;
3690 		} else {
3691 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3692 			/* Try again if zone has deferred pages */
3693 			if (static_branch_unlikely(&deferred_pages)) {
3694 				if (_deferred_grow_zone(zone, order))
3695 					goto try_this_zone;
3696 			}
3697 #endif
3698 		}
3699 	}
3700 
3701 	/*
3702 	 * It's possible on a UMA machine to get through all zones that are
3703 	 * fragmented. If avoiding fragmentation, reset and try again.
3704 	 */
3705 	if (no_fallback) {
3706 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3707 		goto retry;
3708 	}
3709 
3710 	return NULL;
3711 }
3712 
3713 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3714 {
3715 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3716 
3717 	/*
3718 	 * This documents exceptions given to allocations in certain
3719 	 * contexts that are allowed to allocate outside current's set
3720 	 * of allowed nodes.
3721 	 */
3722 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3723 		if (tsk_is_oom_victim(current) ||
3724 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3725 			filter &= ~SHOW_MEM_FILTER_NODES;
3726 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3727 		filter &= ~SHOW_MEM_FILTER_NODES;
3728 
3729 	show_mem(filter, nodemask);
3730 }
3731 
3732 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3733 {
3734 	struct va_format vaf;
3735 	va_list args;
3736 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3737 
3738 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3739 		return;
3740 
3741 	va_start(args, fmt);
3742 	vaf.fmt = fmt;
3743 	vaf.va = &args;
3744 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3745 			current->comm, &vaf, gfp_mask, &gfp_mask,
3746 			nodemask_pr_args(nodemask));
3747 	va_end(args);
3748 
3749 	cpuset_print_current_mems_allowed();
3750 	pr_cont("\n");
3751 	dump_stack();
3752 	warn_alloc_show_mem(gfp_mask, nodemask);
3753 }
3754 
3755 static inline struct page *
3756 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3757 			      unsigned int alloc_flags,
3758 			      const struct alloc_context *ac)
3759 {
3760 	struct page *page;
3761 
3762 	page = get_page_from_freelist(gfp_mask, order,
3763 			alloc_flags|ALLOC_CPUSET, ac);
3764 	/*
3765 	 * fallback to ignore cpuset restriction if our nodes
3766 	 * are depleted
3767 	 */
3768 	if (!page)
3769 		page = get_page_from_freelist(gfp_mask, order,
3770 				alloc_flags, ac);
3771 
3772 	return page;
3773 }
3774 
3775 static inline struct page *
3776 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3777 	const struct alloc_context *ac, unsigned long *did_some_progress)
3778 {
3779 	struct oom_control oc = {
3780 		.zonelist = ac->zonelist,
3781 		.nodemask = ac->nodemask,
3782 		.memcg = NULL,
3783 		.gfp_mask = gfp_mask,
3784 		.order = order,
3785 	};
3786 	struct page *page;
3787 
3788 	*did_some_progress = 0;
3789 
3790 	/*
3791 	 * Acquire the oom lock.  If that fails, somebody else is
3792 	 * making progress for us.
3793 	 */
3794 	if (!mutex_trylock(&oom_lock)) {
3795 		*did_some_progress = 1;
3796 		schedule_timeout_uninterruptible(1);
3797 		return NULL;
3798 	}
3799 
3800 	/*
3801 	 * Go through the zonelist yet one more time, keep very high watermark
3802 	 * here, this is only to catch a parallel oom killing, we must fail if
3803 	 * we're still under heavy pressure. But make sure that this reclaim
3804 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3805 	 * allocation which will never fail due to oom_lock already held.
3806 	 */
3807 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3808 				      ~__GFP_DIRECT_RECLAIM, order,
3809 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3810 	if (page)
3811 		goto out;
3812 
3813 	/* Coredumps can quickly deplete all memory reserves */
3814 	if (current->flags & PF_DUMPCORE)
3815 		goto out;
3816 	/* The OOM killer will not help higher order allocs */
3817 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3818 		goto out;
3819 	/*
3820 	 * We have already exhausted all our reclaim opportunities without any
3821 	 * success so it is time to admit defeat. We will skip the OOM killer
3822 	 * because it is very likely that the caller has a more reasonable
3823 	 * fallback than shooting a random task.
3824 	 */
3825 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3826 		goto out;
3827 	/* The OOM killer does not needlessly kill tasks for lowmem */
3828 	if (ac->high_zoneidx < ZONE_NORMAL)
3829 		goto out;
3830 	if (pm_suspended_storage())
3831 		goto out;
3832 	/*
3833 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3834 	 * other request to make a forward progress.
3835 	 * We are in an unfortunate situation where out_of_memory cannot
3836 	 * do much for this context but let's try it to at least get
3837 	 * access to memory reserved if the current task is killed (see
3838 	 * out_of_memory). Once filesystems are ready to handle allocation
3839 	 * failures more gracefully we should just bail out here.
3840 	 */
3841 
3842 	/* The OOM killer may not free memory on a specific node */
3843 	if (gfp_mask & __GFP_THISNODE)
3844 		goto out;
3845 
3846 	/* Exhausted what can be done so it's blame time */
3847 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3848 		*did_some_progress = 1;
3849 
3850 		/*
3851 		 * Help non-failing allocations by giving them access to memory
3852 		 * reserves
3853 		 */
3854 		if (gfp_mask & __GFP_NOFAIL)
3855 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3856 					ALLOC_NO_WATERMARKS, ac);
3857 	}
3858 out:
3859 	mutex_unlock(&oom_lock);
3860 	return page;
3861 }
3862 
3863 /*
3864  * Maximum number of compaction retries wit a progress before OOM
3865  * killer is consider as the only way to move forward.
3866  */
3867 #define MAX_COMPACT_RETRIES 16
3868 
3869 #ifdef CONFIG_COMPACTION
3870 /* Try memory compaction for high-order allocations before reclaim */
3871 static struct page *
3872 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3873 		unsigned int alloc_flags, const struct alloc_context *ac,
3874 		enum compact_priority prio, enum compact_result *compact_result)
3875 {
3876 	struct page *page = NULL;
3877 	unsigned long pflags;
3878 	unsigned int noreclaim_flag;
3879 
3880 	if (!order)
3881 		return NULL;
3882 
3883 	psi_memstall_enter(&pflags);
3884 	noreclaim_flag = memalloc_noreclaim_save();
3885 
3886 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3887 								prio, &page);
3888 
3889 	memalloc_noreclaim_restore(noreclaim_flag);
3890 	psi_memstall_leave(&pflags);
3891 
3892 	/*
3893 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3894 	 * count a compaction stall
3895 	 */
3896 	count_vm_event(COMPACTSTALL);
3897 
3898 	/* Prep a captured page if available */
3899 	if (page)
3900 		prep_new_page(page, order, gfp_mask, alloc_flags);
3901 
3902 	/* Try get a page from the freelist if available */
3903 	if (!page)
3904 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3905 
3906 	if (page) {
3907 		struct zone *zone = page_zone(page);
3908 
3909 		zone->compact_blockskip_flush = false;
3910 		compaction_defer_reset(zone, order, true);
3911 		count_vm_event(COMPACTSUCCESS);
3912 		return page;
3913 	}
3914 
3915 	/*
3916 	 * It's bad if compaction run occurs and fails. The most likely reason
3917 	 * is that pages exist, but not enough to satisfy watermarks.
3918 	 */
3919 	count_vm_event(COMPACTFAIL);
3920 
3921 	cond_resched();
3922 
3923 	return NULL;
3924 }
3925 
3926 static inline bool
3927 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3928 		     enum compact_result compact_result,
3929 		     enum compact_priority *compact_priority,
3930 		     int *compaction_retries)
3931 {
3932 	int max_retries = MAX_COMPACT_RETRIES;
3933 	int min_priority;
3934 	bool ret = false;
3935 	int retries = *compaction_retries;
3936 	enum compact_priority priority = *compact_priority;
3937 
3938 	if (!order)
3939 		return false;
3940 
3941 	if (compaction_made_progress(compact_result))
3942 		(*compaction_retries)++;
3943 
3944 	/*
3945 	 * compaction considers all the zone as desperately out of memory
3946 	 * so it doesn't really make much sense to retry except when the
3947 	 * failure could be caused by insufficient priority
3948 	 */
3949 	if (compaction_failed(compact_result))
3950 		goto check_priority;
3951 
3952 	/*
3953 	 * compaction was skipped because there are not enough order-0 pages
3954 	 * to work with, so we retry only if it looks like reclaim can help.
3955 	 */
3956 	if (compaction_needs_reclaim(compact_result)) {
3957 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3958 		goto out;
3959 	}
3960 
3961 	/*
3962 	 * make sure the compaction wasn't deferred or didn't bail out early
3963 	 * due to locks contention before we declare that we should give up.
3964 	 * But the next retry should use a higher priority if allowed, so
3965 	 * we don't just keep bailing out endlessly.
3966 	 */
3967 	if (compaction_withdrawn(compact_result)) {
3968 		goto check_priority;
3969 	}
3970 
3971 	/*
3972 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3973 	 * costly ones because they are de facto nofail and invoke OOM
3974 	 * killer to move on while costly can fail and users are ready
3975 	 * to cope with that. 1/4 retries is rather arbitrary but we
3976 	 * would need much more detailed feedback from compaction to
3977 	 * make a better decision.
3978 	 */
3979 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3980 		max_retries /= 4;
3981 	if (*compaction_retries <= max_retries) {
3982 		ret = true;
3983 		goto out;
3984 	}
3985 
3986 	/*
3987 	 * Make sure there are attempts at the highest priority if we exhausted
3988 	 * all retries or failed at the lower priorities.
3989 	 */
3990 check_priority:
3991 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3992 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3993 
3994 	if (*compact_priority > min_priority) {
3995 		(*compact_priority)--;
3996 		*compaction_retries = 0;
3997 		ret = true;
3998 	}
3999 out:
4000 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4001 	return ret;
4002 }
4003 #else
4004 static inline struct page *
4005 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4006 		unsigned int alloc_flags, const struct alloc_context *ac,
4007 		enum compact_priority prio, enum compact_result *compact_result)
4008 {
4009 	*compact_result = COMPACT_SKIPPED;
4010 	return NULL;
4011 }
4012 
4013 static inline bool
4014 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4015 		     enum compact_result compact_result,
4016 		     enum compact_priority *compact_priority,
4017 		     int *compaction_retries)
4018 {
4019 	struct zone *zone;
4020 	struct zoneref *z;
4021 
4022 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4023 		return false;
4024 
4025 	/*
4026 	 * There are setups with compaction disabled which would prefer to loop
4027 	 * inside the allocator rather than hit the oom killer prematurely.
4028 	 * Let's give them a good hope and keep retrying while the order-0
4029 	 * watermarks are OK.
4030 	 */
4031 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4032 					ac->nodemask) {
4033 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4034 					ac_classzone_idx(ac), alloc_flags))
4035 			return true;
4036 	}
4037 	return false;
4038 }
4039 #endif /* CONFIG_COMPACTION */
4040 
4041 #ifdef CONFIG_LOCKDEP
4042 static struct lockdep_map __fs_reclaim_map =
4043 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4044 
4045 static bool __need_fs_reclaim(gfp_t gfp_mask)
4046 {
4047 	gfp_mask = current_gfp_context(gfp_mask);
4048 
4049 	/* no reclaim without waiting on it */
4050 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4051 		return false;
4052 
4053 	/* this guy won't enter reclaim */
4054 	if (current->flags & PF_MEMALLOC)
4055 		return false;
4056 
4057 	/* We're only interested __GFP_FS allocations for now */
4058 	if (!(gfp_mask & __GFP_FS))
4059 		return false;
4060 
4061 	if (gfp_mask & __GFP_NOLOCKDEP)
4062 		return false;
4063 
4064 	return true;
4065 }
4066 
4067 void __fs_reclaim_acquire(void)
4068 {
4069 	lock_map_acquire(&__fs_reclaim_map);
4070 }
4071 
4072 void __fs_reclaim_release(void)
4073 {
4074 	lock_map_release(&__fs_reclaim_map);
4075 }
4076 
4077 void fs_reclaim_acquire(gfp_t gfp_mask)
4078 {
4079 	if (__need_fs_reclaim(gfp_mask))
4080 		__fs_reclaim_acquire();
4081 }
4082 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4083 
4084 void fs_reclaim_release(gfp_t gfp_mask)
4085 {
4086 	if (__need_fs_reclaim(gfp_mask))
4087 		__fs_reclaim_release();
4088 }
4089 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4090 #endif
4091 
4092 /* Perform direct synchronous page reclaim */
4093 static int
4094 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4095 					const struct alloc_context *ac)
4096 {
4097 	int progress;
4098 	unsigned int noreclaim_flag;
4099 	unsigned long pflags;
4100 
4101 	cond_resched();
4102 
4103 	/* We now go into synchronous reclaim */
4104 	cpuset_memory_pressure_bump();
4105 	psi_memstall_enter(&pflags);
4106 	fs_reclaim_acquire(gfp_mask);
4107 	noreclaim_flag = memalloc_noreclaim_save();
4108 
4109 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4110 								ac->nodemask);
4111 
4112 	memalloc_noreclaim_restore(noreclaim_flag);
4113 	fs_reclaim_release(gfp_mask);
4114 	psi_memstall_leave(&pflags);
4115 
4116 	cond_resched();
4117 
4118 	return progress;
4119 }
4120 
4121 /* The really slow allocator path where we enter direct reclaim */
4122 static inline struct page *
4123 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4124 		unsigned int alloc_flags, const struct alloc_context *ac,
4125 		unsigned long *did_some_progress)
4126 {
4127 	struct page *page = NULL;
4128 	bool drained = false;
4129 
4130 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4131 	if (unlikely(!(*did_some_progress)))
4132 		return NULL;
4133 
4134 retry:
4135 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4136 
4137 	/*
4138 	 * If an allocation failed after direct reclaim, it could be because
4139 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4140 	 * Shrink them them and try again
4141 	 */
4142 	if (!page && !drained) {
4143 		unreserve_highatomic_pageblock(ac, false);
4144 		drain_all_pages(NULL);
4145 		drained = true;
4146 		goto retry;
4147 	}
4148 
4149 	return page;
4150 }
4151 
4152 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4153 			     const struct alloc_context *ac)
4154 {
4155 	struct zoneref *z;
4156 	struct zone *zone;
4157 	pg_data_t *last_pgdat = NULL;
4158 	enum zone_type high_zoneidx = ac->high_zoneidx;
4159 
4160 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4161 					ac->nodemask) {
4162 		if (last_pgdat != zone->zone_pgdat)
4163 			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4164 		last_pgdat = zone->zone_pgdat;
4165 	}
4166 }
4167 
4168 static inline unsigned int
4169 gfp_to_alloc_flags(gfp_t gfp_mask)
4170 {
4171 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4172 
4173 	/*
4174 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4175 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4176 	 * to save two branches.
4177 	 */
4178 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4179 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4180 
4181 	/*
4182 	 * The caller may dip into page reserves a bit more if the caller
4183 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4184 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4185 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4186 	 */
4187 	alloc_flags |= (__force int)
4188 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4189 
4190 	if (gfp_mask & __GFP_ATOMIC) {
4191 		/*
4192 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4193 		 * if it can't schedule.
4194 		 */
4195 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4196 			alloc_flags |= ALLOC_HARDER;
4197 		/*
4198 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4199 		 * comment for __cpuset_node_allowed().
4200 		 */
4201 		alloc_flags &= ~ALLOC_CPUSET;
4202 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4203 		alloc_flags |= ALLOC_HARDER;
4204 
4205 #ifdef CONFIG_CMA
4206 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4207 		alloc_flags |= ALLOC_CMA;
4208 #endif
4209 	return alloc_flags;
4210 }
4211 
4212 static bool oom_reserves_allowed(struct task_struct *tsk)
4213 {
4214 	if (!tsk_is_oom_victim(tsk))
4215 		return false;
4216 
4217 	/*
4218 	 * !MMU doesn't have oom reaper so give access to memory reserves
4219 	 * only to the thread with TIF_MEMDIE set
4220 	 */
4221 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4222 		return false;
4223 
4224 	return true;
4225 }
4226 
4227 /*
4228  * Distinguish requests which really need access to full memory
4229  * reserves from oom victims which can live with a portion of it
4230  */
4231 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4232 {
4233 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4234 		return 0;
4235 	if (gfp_mask & __GFP_MEMALLOC)
4236 		return ALLOC_NO_WATERMARKS;
4237 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4238 		return ALLOC_NO_WATERMARKS;
4239 	if (!in_interrupt()) {
4240 		if (current->flags & PF_MEMALLOC)
4241 			return ALLOC_NO_WATERMARKS;
4242 		else if (oom_reserves_allowed(current))
4243 			return ALLOC_OOM;
4244 	}
4245 
4246 	return 0;
4247 }
4248 
4249 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4250 {
4251 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4252 }
4253 
4254 /*
4255  * Checks whether it makes sense to retry the reclaim to make a forward progress
4256  * for the given allocation request.
4257  *
4258  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4259  * without success, or when we couldn't even meet the watermark if we
4260  * reclaimed all remaining pages on the LRU lists.
4261  *
4262  * Returns true if a retry is viable or false to enter the oom path.
4263  */
4264 static inline bool
4265 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4266 		     struct alloc_context *ac, int alloc_flags,
4267 		     bool did_some_progress, int *no_progress_loops)
4268 {
4269 	struct zone *zone;
4270 	struct zoneref *z;
4271 	bool ret = false;
4272 
4273 	/*
4274 	 * Costly allocations might have made a progress but this doesn't mean
4275 	 * their order will become available due to high fragmentation so
4276 	 * always increment the no progress counter for them
4277 	 */
4278 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4279 		*no_progress_loops = 0;
4280 	else
4281 		(*no_progress_loops)++;
4282 
4283 	/*
4284 	 * Make sure we converge to OOM if we cannot make any progress
4285 	 * several times in the row.
4286 	 */
4287 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4288 		/* Before OOM, exhaust highatomic_reserve */
4289 		return unreserve_highatomic_pageblock(ac, true);
4290 	}
4291 
4292 	/*
4293 	 * Keep reclaiming pages while there is a chance this will lead
4294 	 * somewhere.  If none of the target zones can satisfy our allocation
4295 	 * request even if all reclaimable pages are considered then we are
4296 	 * screwed and have to go OOM.
4297 	 */
4298 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4299 					ac->nodemask) {
4300 		unsigned long available;
4301 		unsigned long reclaimable;
4302 		unsigned long min_wmark = min_wmark_pages(zone);
4303 		bool wmark;
4304 
4305 		available = reclaimable = zone_reclaimable_pages(zone);
4306 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4307 
4308 		/*
4309 		 * Would the allocation succeed if we reclaimed all
4310 		 * reclaimable pages?
4311 		 */
4312 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4313 				ac_classzone_idx(ac), alloc_flags, available);
4314 		trace_reclaim_retry_zone(z, order, reclaimable,
4315 				available, min_wmark, *no_progress_loops, wmark);
4316 		if (wmark) {
4317 			/*
4318 			 * If we didn't make any progress and have a lot of
4319 			 * dirty + writeback pages then we should wait for
4320 			 * an IO to complete to slow down the reclaim and
4321 			 * prevent from pre mature OOM
4322 			 */
4323 			if (!did_some_progress) {
4324 				unsigned long write_pending;
4325 
4326 				write_pending = zone_page_state_snapshot(zone,
4327 							NR_ZONE_WRITE_PENDING);
4328 
4329 				if (2 * write_pending > reclaimable) {
4330 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4331 					return true;
4332 				}
4333 			}
4334 
4335 			ret = true;
4336 			goto out;
4337 		}
4338 	}
4339 
4340 out:
4341 	/*
4342 	 * Memory allocation/reclaim might be called from a WQ context and the
4343 	 * current implementation of the WQ concurrency control doesn't
4344 	 * recognize that a particular WQ is congested if the worker thread is
4345 	 * looping without ever sleeping. Therefore we have to do a short sleep
4346 	 * here rather than calling cond_resched().
4347 	 */
4348 	if (current->flags & PF_WQ_WORKER)
4349 		schedule_timeout_uninterruptible(1);
4350 	else
4351 		cond_resched();
4352 	return ret;
4353 }
4354 
4355 static inline bool
4356 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4357 {
4358 	/*
4359 	 * It's possible that cpuset's mems_allowed and the nodemask from
4360 	 * mempolicy don't intersect. This should be normally dealt with by
4361 	 * policy_nodemask(), but it's possible to race with cpuset update in
4362 	 * such a way the check therein was true, and then it became false
4363 	 * before we got our cpuset_mems_cookie here.
4364 	 * This assumes that for all allocations, ac->nodemask can come only
4365 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4366 	 * when it does not intersect with the cpuset restrictions) or the
4367 	 * caller can deal with a violated nodemask.
4368 	 */
4369 	if (cpusets_enabled() && ac->nodemask &&
4370 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4371 		ac->nodemask = NULL;
4372 		return true;
4373 	}
4374 
4375 	/*
4376 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4377 	 * possible to race with parallel threads in such a way that our
4378 	 * allocation can fail while the mask is being updated. If we are about
4379 	 * to fail, check if the cpuset changed during allocation and if so,
4380 	 * retry.
4381 	 */
4382 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4383 		return true;
4384 
4385 	return false;
4386 }
4387 
4388 static inline struct page *
4389 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4390 						struct alloc_context *ac)
4391 {
4392 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4393 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4394 	struct page *page = NULL;
4395 	unsigned int alloc_flags;
4396 	unsigned long did_some_progress;
4397 	enum compact_priority compact_priority;
4398 	enum compact_result compact_result;
4399 	int compaction_retries;
4400 	int no_progress_loops;
4401 	unsigned int cpuset_mems_cookie;
4402 	int reserve_flags;
4403 
4404 	/*
4405 	 * We also sanity check to catch abuse of atomic reserves being used by
4406 	 * callers that are not in atomic context.
4407 	 */
4408 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4409 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4410 		gfp_mask &= ~__GFP_ATOMIC;
4411 
4412 retry_cpuset:
4413 	compaction_retries = 0;
4414 	no_progress_loops = 0;
4415 	compact_priority = DEF_COMPACT_PRIORITY;
4416 	cpuset_mems_cookie = read_mems_allowed_begin();
4417 
4418 	/*
4419 	 * The fast path uses conservative alloc_flags to succeed only until
4420 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4421 	 * alloc_flags precisely. So we do that now.
4422 	 */
4423 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4424 
4425 	/*
4426 	 * We need to recalculate the starting point for the zonelist iterator
4427 	 * because we might have used different nodemask in the fast path, or
4428 	 * there was a cpuset modification and we are retrying - otherwise we
4429 	 * could end up iterating over non-eligible zones endlessly.
4430 	 */
4431 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4432 					ac->high_zoneidx, ac->nodemask);
4433 	if (!ac->preferred_zoneref->zone)
4434 		goto nopage;
4435 
4436 	if (alloc_flags & ALLOC_KSWAPD)
4437 		wake_all_kswapds(order, gfp_mask, ac);
4438 
4439 	/*
4440 	 * The adjusted alloc_flags might result in immediate success, so try
4441 	 * that first
4442 	 */
4443 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4444 	if (page)
4445 		goto got_pg;
4446 
4447 	/*
4448 	 * For costly allocations, try direct compaction first, as it's likely
4449 	 * that we have enough base pages and don't need to reclaim. For non-
4450 	 * movable high-order allocations, do that as well, as compaction will
4451 	 * try prevent permanent fragmentation by migrating from blocks of the
4452 	 * same migratetype.
4453 	 * Don't try this for allocations that are allowed to ignore
4454 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4455 	 */
4456 	if (can_direct_reclaim &&
4457 			(costly_order ||
4458 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4459 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4460 		page = __alloc_pages_direct_compact(gfp_mask, order,
4461 						alloc_flags, ac,
4462 						INIT_COMPACT_PRIORITY,
4463 						&compact_result);
4464 		if (page)
4465 			goto got_pg;
4466 
4467 		/*
4468 		 * Checks for costly allocations with __GFP_NORETRY, which
4469 		 * includes some THP page fault allocations
4470 		 */
4471 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4472 			/*
4473 			 * If allocating entire pageblock(s) and compaction
4474 			 * failed because all zones are below low watermarks
4475 			 * or is prohibited because it recently failed at this
4476 			 * order, fail immediately unless the allocator has
4477 			 * requested compaction and reclaim retry.
4478 			 *
4479 			 * Reclaim is
4480 			 *  - potentially very expensive because zones are far
4481 			 *    below their low watermarks or this is part of very
4482 			 *    bursty high order allocations,
4483 			 *  - not guaranteed to help because isolate_freepages()
4484 			 *    may not iterate over freed pages as part of its
4485 			 *    linear scan, and
4486 			 *  - unlikely to make entire pageblocks free on its
4487 			 *    own.
4488 			 */
4489 			if (compact_result == COMPACT_SKIPPED ||
4490 			    compact_result == COMPACT_DEFERRED)
4491 				goto nopage;
4492 
4493 			/*
4494 			 * Looks like reclaim/compaction is worth trying, but
4495 			 * sync compaction could be very expensive, so keep
4496 			 * using async compaction.
4497 			 */
4498 			compact_priority = INIT_COMPACT_PRIORITY;
4499 		}
4500 	}
4501 
4502 retry:
4503 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4504 	if (alloc_flags & ALLOC_KSWAPD)
4505 		wake_all_kswapds(order, gfp_mask, ac);
4506 
4507 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4508 	if (reserve_flags)
4509 		alloc_flags = reserve_flags;
4510 
4511 	/*
4512 	 * Reset the nodemask and zonelist iterators if memory policies can be
4513 	 * ignored. These allocations are high priority and system rather than
4514 	 * user oriented.
4515 	 */
4516 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4517 		ac->nodemask = NULL;
4518 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4519 					ac->high_zoneidx, ac->nodemask);
4520 	}
4521 
4522 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4523 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4524 	if (page)
4525 		goto got_pg;
4526 
4527 	/* Caller is not willing to reclaim, we can't balance anything */
4528 	if (!can_direct_reclaim)
4529 		goto nopage;
4530 
4531 	/* Avoid recursion of direct reclaim */
4532 	if (current->flags & PF_MEMALLOC)
4533 		goto nopage;
4534 
4535 	/* Try direct reclaim and then allocating */
4536 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4537 							&did_some_progress);
4538 	if (page)
4539 		goto got_pg;
4540 
4541 	/* Try direct compaction and then allocating */
4542 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4543 					compact_priority, &compact_result);
4544 	if (page)
4545 		goto got_pg;
4546 
4547 	/* Do not loop if specifically requested */
4548 	if (gfp_mask & __GFP_NORETRY)
4549 		goto nopage;
4550 
4551 	/*
4552 	 * Do not retry costly high order allocations unless they are
4553 	 * __GFP_RETRY_MAYFAIL
4554 	 */
4555 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4556 		goto nopage;
4557 
4558 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4559 				 did_some_progress > 0, &no_progress_loops))
4560 		goto retry;
4561 
4562 	/*
4563 	 * It doesn't make any sense to retry for the compaction if the order-0
4564 	 * reclaim is not able to make any progress because the current
4565 	 * implementation of the compaction depends on the sufficient amount
4566 	 * of free memory (see __compaction_suitable)
4567 	 */
4568 	if (did_some_progress > 0 &&
4569 			should_compact_retry(ac, order, alloc_flags,
4570 				compact_result, &compact_priority,
4571 				&compaction_retries))
4572 		goto retry;
4573 
4574 
4575 	/* Deal with possible cpuset update races before we start OOM killing */
4576 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4577 		goto retry_cpuset;
4578 
4579 	/* Reclaim has failed us, start killing things */
4580 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4581 	if (page)
4582 		goto got_pg;
4583 
4584 	/* Avoid allocations with no watermarks from looping endlessly */
4585 	if (tsk_is_oom_victim(current) &&
4586 	    (alloc_flags == ALLOC_OOM ||
4587 	     (gfp_mask & __GFP_NOMEMALLOC)))
4588 		goto nopage;
4589 
4590 	/* Retry as long as the OOM killer is making progress */
4591 	if (did_some_progress) {
4592 		no_progress_loops = 0;
4593 		goto retry;
4594 	}
4595 
4596 nopage:
4597 	/* Deal with possible cpuset update races before we fail */
4598 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4599 		goto retry_cpuset;
4600 
4601 	/*
4602 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4603 	 * we always retry
4604 	 */
4605 	if (gfp_mask & __GFP_NOFAIL) {
4606 		/*
4607 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4608 		 * of any new users that actually require GFP_NOWAIT
4609 		 */
4610 		if (WARN_ON_ONCE(!can_direct_reclaim))
4611 			goto fail;
4612 
4613 		/*
4614 		 * PF_MEMALLOC request from this context is rather bizarre
4615 		 * because we cannot reclaim anything and only can loop waiting
4616 		 * for somebody to do a work for us
4617 		 */
4618 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4619 
4620 		/*
4621 		 * non failing costly orders are a hard requirement which we
4622 		 * are not prepared for much so let's warn about these users
4623 		 * so that we can identify them and convert them to something
4624 		 * else.
4625 		 */
4626 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4627 
4628 		/*
4629 		 * Help non-failing allocations by giving them access to memory
4630 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4631 		 * could deplete whole memory reserves which would just make
4632 		 * the situation worse
4633 		 */
4634 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4635 		if (page)
4636 			goto got_pg;
4637 
4638 		cond_resched();
4639 		goto retry;
4640 	}
4641 fail:
4642 	warn_alloc(gfp_mask, ac->nodemask,
4643 			"page allocation failure: order:%u", order);
4644 got_pg:
4645 	return page;
4646 }
4647 
4648 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4649 		int preferred_nid, nodemask_t *nodemask,
4650 		struct alloc_context *ac, gfp_t *alloc_mask,
4651 		unsigned int *alloc_flags)
4652 {
4653 	ac->high_zoneidx = gfp_zone(gfp_mask);
4654 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4655 	ac->nodemask = nodemask;
4656 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4657 
4658 	if (cpusets_enabled()) {
4659 		*alloc_mask |= __GFP_HARDWALL;
4660 		if (!ac->nodemask)
4661 			ac->nodemask = &cpuset_current_mems_allowed;
4662 		else
4663 			*alloc_flags |= ALLOC_CPUSET;
4664 	}
4665 
4666 	fs_reclaim_acquire(gfp_mask);
4667 	fs_reclaim_release(gfp_mask);
4668 
4669 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4670 
4671 	if (should_fail_alloc_page(gfp_mask, order))
4672 		return false;
4673 
4674 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4675 		*alloc_flags |= ALLOC_CMA;
4676 
4677 	return true;
4678 }
4679 
4680 /* Determine whether to spread dirty pages and what the first usable zone */
4681 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4682 {
4683 	/* Dirty zone balancing only done in the fast path */
4684 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4685 
4686 	/*
4687 	 * The preferred zone is used for statistics but crucially it is
4688 	 * also used as the starting point for the zonelist iterator. It
4689 	 * may get reset for allocations that ignore memory policies.
4690 	 */
4691 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4692 					ac->high_zoneidx, ac->nodemask);
4693 }
4694 
4695 /*
4696  * This is the 'heart' of the zoned buddy allocator.
4697  */
4698 struct page *
4699 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4700 							nodemask_t *nodemask)
4701 {
4702 	struct page *page;
4703 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4704 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4705 	struct alloc_context ac = { };
4706 
4707 	/*
4708 	 * There are several places where we assume that the order value is sane
4709 	 * so bail out early if the request is out of bound.
4710 	 */
4711 	if (unlikely(order >= MAX_ORDER)) {
4712 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4713 		return NULL;
4714 	}
4715 
4716 	gfp_mask &= gfp_allowed_mask;
4717 	alloc_mask = gfp_mask;
4718 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4719 		return NULL;
4720 
4721 	finalise_ac(gfp_mask, &ac);
4722 
4723 	/*
4724 	 * Forbid the first pass from falling back to types that fragment
4725 	 * memory until all local zones are considered.
4726 	 */
4727 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4728 
4729 	/* First allocation attempt */
4730 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4731 	if (likely(page))
4732 		goto out;
4733 
4734 	/*
4735 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4736 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4737 	 * from a particular context which has been marked by
4738 	 * memalloc_no{fs,io}_{save,restore}.
4739 	 */
4740 	alloc_mask = current_gfp_context(gfp_mask);
4741 	ac.spread_dirty_pages = false;
4742 
4743 	/*
4744 	 * Restore the original nodemask if it was potentially replaced with
4745 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4746 	 */
4747 	ac.nodemask = nodemask;
4748 
4749 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4750 
4751 out:
4752 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4753 	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4754 		__free_pages(page, order);
4755 		page = NULL;
4756 	}
4757 
4758 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4759 
4760 	return page;
4761 }
4762 EXPORT_SYMBOL(__alloc_pages_nodemask);
4763 
4764 /*
4765  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4766  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4767  * you need to access high mem.
4768  */
4769 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4770 {
4771 	struct page *page;
4772 
4773 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4774 	if (!page)
4775 		return 0;
4776 	return (unsigned long) page_address(page);
4777 }
4778 EXPORT_SYMBOL(__get_free_pages);
4779 
4780 unsigned long get_zeroed_page(gfp_t gfp_mask)
4781 {
4782 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4783 }
4784 EXPORT_SYMBOL(get_zeroed_page);
4785 
4786 static inline void free_the_page(struct page *page, unsigned int order)
4787 {
4788 	if (order == 0)		/* Via pcp? */
4789 		free_unref_page(page);
4790 	else
4791 		__free_pages_ok(page, order);
4792 }
4793 
4794 void __free_pages(struct page *page, unsigned int order)
4795 {
4796 	if (put_page_testzero(page))
4797 		free_the_page(page, order);
4798 }
4799 EXPORT_SYMBOL(__free_pages);
4800 
4801 void free_pages(unsigned long addr, unsigned int order)
4802 {
4803 	if (addr != 0) {
4804 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4805 		__free_pages(virt_to_page((void *)addr), order);
4806 	}
4807 }
4808 
4809 EXPORT_SYMBOL(free_pages);
4810 
4811 /*
4812  * Page Fragment:
4813  *  An arbitrary-length arbitrary-offset area of memory which resides
4814  *  within a 0 or higher order page.  Multiple fragments within that page
4815  *  are individually refcounted, in the page's reference counter.
4816  *
4817  * The page_frag functions below provide a simple allocation framework for
4818  * page fragments.  This is used by the network stack and network device
4819  * drivers to provide a backing region of memory for use as either an
4820  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4821  */
4822 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4823 					     gfp_t gfp_mask)
4824 {
4825 	struct page *page = NULL;
4826 	gfp_t gfp = gfp_mask;
4827 
4828 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4829 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4830 		    __GFP_NOMEMALLOC;
4831 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4832 				PAGE_FRAG_CACHE_MAX_ORDER);
4833 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4834 #endif
4835 	if (unlikely(!page))
4836 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4837 
4838 	nc->va = page ? page_address(page) : NULL;
4839 
4840 	return page;
4841 }
4842 
4843 void __page_frag_cache_drain(struct page *page, unsigned int count)
4844 {
4845 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4846 
4847 	if (page_ref_sub_and_test(page, count))
4848 		free_the_page(page, compound_order(page));
4849 }
4850 EXPORT_SYMBOL(__page_frag_cache_drain);
4851 
4852 void *page_frag_alloc(struct page_frag_cache *nc,
4853 		      unsigned int fragsz, gfp_t gfp_mask)
4854 {
4855 	unsigned int size = PAGE_SIZE;
4856 	struct page *page;
4857 	int offset;
4858 
4859 	if (unlikely(!nc->va)) {
4860 refill:
4861 		page = __page_frag_cache_refill(nc, gfp_mask);
4862 		if (!page)
4863 			return NULL;
4864 
4865 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4866 		/* if size can vary use size else just use PAGE_SIZE */
4867 		size = nc->size;
4868 #endif
4869 		/* Even if we own the page, we do not use atomic_set().
4870 		 * This would break get_page_unless_zero() users.
4871 		 */
4872 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4873 
4874 		/* reset page count bias and offset to start of new frag */
4875 		nc->pfmemalloc = page_is_pfmemalloc(page);
4876 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4877 		nc->offset = size;
4878 	}
4879 
4880 	offset = nc->offset - fragsz;
4881 	if (unlikely(offset < 0)) {
4882 		page = virt_to_page(nc->va);
4883 
4884 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4885 			goto refill;
4886 
4887 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4888 		/* if size can vary use size else just use PAGE_SIZE */
4889 		size = nc->size;
4890 #endif
4891 		/* OK, page count is 0, we can safely set it */
4892 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4893 
4894 		/* reset page count bias and offset to start of new frag */
4895 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4896 		offset = size - fragsz;
4897 	}
4898 
4899 	nc->pagecnt_bias--;
4900 	nc->offset = offset;
4901 
4902 	return nc->va + offset;
4903 }
4904 EXPORT_SYMBOL(page_frag_alloc);
4905 
4906 /*
4907  * Frees a page fragment allocated out of either a compound or order 0 page.
4908  */
4909 void page_frag_free(void *addr)
4910 {
4911 	struct page *page = virt_to_head_page(addr);
4912 
4913 	if (unlikely(put_page_testzero(page)))
4914 		free_the_page(page, compound_order(page));
4915 }
4916 EXPORT_SYMBOL(page_frag_free);
4917 
4918 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4919 		size_t size)
4920 {
4921 	if (addr) {
4922 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4923 		unsigned long used = addr + PAGE_ALIGN(size);
4924 
4925 		split_page(virt_to_page((void *)addr), order);
4926 		while (used < alloc_end) {
4927 			free_page(used);
4928 			used += PAGE_SIZE;
4929 		}
4930 	}
4931 	return (void *)addr;
4932 }
4933 
4934 /**
4935  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4936  * @size: the number of bytes to allocate
4937  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4938  *
4939  * This function is similar to alloc_pages(), except that it allocates the
4940  * minimum number of pages to satisfy the request.  alloc_pages() can only
4941  * allocate memory in power-of-two pages.
4942  *
4943  * This function is also limited by MAX_ORDER.
4944  *
4945  * Memory allocated by this function must be released by free_pages_exact().
4946  *
4947  * Return: pointer to the allocated area or %NULL in case of error.
4948  */
4949 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4950 {
4951 	unsigned int order = get_order(size);
4952 	unsigned long addr;
4953 
4954 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4955 		gfp_mask &= ~__GFP_COMP;
4956 
4957 	addr = __get_free_pages(gfp_mask, order);
4958 	return make_alloc_exact(addr, order, size);
4959 }
4960 EXPORT_SYMBOL(alloc_pages_exact);
4961 
4962 /**
4963  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4964  *			   pages on a node.
4965  * @nid: the preferred node ID where memory should be allocated
4966  * @size: the number of bytes to allocate
4967  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4968  *
4969  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4970  * back.
4971  *
4972  * Return: pointer to the allocated area or %NULL in case of error.
4973  */
4974 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4975 {
4976 	unsigned int order = get_order(size);
4977 	struct page *p;
4978 
4979 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4980 		gfp_mask &= ~__GFP_COMP;
4981 
4982 	p = alloc_pages_node(nid, gfp_mask, order);
4983 	if (!p)
4984 		return NULL;
4985 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4986 }
4987 
4988 /**
4989  * free_pages_exact - release memory allocated via alloc_pages_exact()
4990  * @virt: the value returned by alloc_pages_exact.
4991  * @size: size of allocation, same value as passed to alloc_pages_exact().
4992  *
4993  * Release the memory allocated by a previous call to alloc_pages_exact.
4994  */
4995 void free_pages_exact(void *virt, size_t size)
4996 {
4997 	unsigned long addr = (unsigned long)virt;
4998 	unsigned long end = addr + PAGE_ALIGN(size);
4999 
5000 	while (addr < end) {
5001 		free_page(addr);
5002 		addr += PAGE_SIZE;
5003 	}
5004 }
5005 EXPORT_SYMBOL(free_pages_exact);
5006 
5007 /**
5008  * nr_free_zone_pages - count number of pages beyond high watermark
5009  * @offset: The zone index of the highest zone
5010  *
5011  * nr_free_zone_pages() counts the number of pages which are beyond the
5012  * high watermark within all zones at or below a given zone index.  For each
5013  * zone, the number of pages is calculated as:
5014  *
5015  *     nr_free_zone_pages = managed_pages - high_pages
5016  *
5017  * Return: number of pages beyond high watermark.
5018  */
5019 static unsigned long nr_free_zone_pages(int offset)
5020 {
5021 	struct zoneref *z;
5022 	struct zone *zone;
5023 
5024 	/* Just pick one node, since fallback list is circular */
5025 	unsigned long sum = 0;
5026 
5027 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5028 
5029 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5030 		unsigned long size = zone_managed_pages(zone);
5031 		unsigned long high = high_wmark_pages(zone);
5032 		if (size > high)
5033 			sum += size - high;
5034 	}
5035 
5036 	return sum;
5037 }
5038 
5039 /**
5040  * nr_free_buffer_pages - count number of pages beyond high watermark
5041  *
5042  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5043  * watermark within ZONE_DMA and ZONE_NORMAL.
5044  *
5045  * Return: number of pages beyond high watermark within ZONE_DMA and
5046  * ZONE_NORMAL.
5047  */
5048 unsigned long nr_free_buffer_pages(void)
5049 {
5050 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5051 }
5052 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5053 
5054 /**
5055  * nr_free_pagecache_pages - count number of pages beyond high watermark
5056  *
5057  * nr_free_pagecache_pages() counts the number of pages which are beyond the
5058  * high watermark within all zones.
5059  *
5060  * Return: number of pages beyond high watermark within all zones.
5061  */
5062 unsigned long nr_free_pagecache_pages(void)
5063 {
5064 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5065 }
5066 
5067 static inline void show_node(struct zone *zone)
5068 {
5069 	if (IS_ENABLED(CONFIG_NUMA))
5070 		printk("Node %d ", zone_to_nid(zone));
5071 }
5072 
5073 long si_mem_available(void)
5074 {
5075 	long available;
5076 	unsigned long pagecache;
5077 	unsigned long wmark_low = 0;
5078 	unsigned long pages[NR_LRU_LISTS];
5079 	unsigned long reclaimable;
5080 	struct zone *zone;
5081 	int lru;
5082 
5083 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5084 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5085 
5086 	for_each_zone(zone)
5087 		wmark_low += low_wmark_pages(zone);
5088 
5089 	/*
5090 	 * Estimate the amount of memory available for userspace allocations,
5091 	 * without causing swapping.
5092 	 */
5093 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5094 
5095 	/*
5096 	 * Not all the page cache can be freed, otherwise the system will
5097 	 * start swapping. Assume at least half of the page cache, or the
5098 	 * low watermark worth of cache, needs to stay.
5099 	 */
5100 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5101 	pagecache -= min(pagecache / 2, wmark_low);
5102 	available += pagecache;
5103 
5104 	/*
5105 	 * Part of the reclaimable slab and other kernel memory consists of
5106 	 * items that are in use, and cannot be freed. Cap this estimate at the
5107 	 * low watermark.
5108 	 */
5109 	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5110 			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5111 	available += reclaimable - min(reclaimable / 2, wmark_low);
5112 
5113 	if (available < 0)
5114 		available = 0;
5115 	return available;
5116 }
5117 EXPORT_SYMBOL_GPL(si_mem_available);
5118 
5119 void si_meminfo(struct sysinfo *val)
5120 {
5121 	val->totalram = totalram_pages();
5122 	val->sharedram = global_node_page_state(NR_SHMEM);
5123 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5124 	val->bufferram = nr_blockdev_pages();
5125 	val->totalhigh = totalhigh_pages();
5126 	val->freehigh = nr_free_highpages();
5127 	val->mem_unit = PAGE_SIZE;
5128 }
5129 
5130 EXPORT_SYMBOL(si_meminfo);
5131 
5132 #ifdef CONFIG_NUMA
5133 void si_meminfo_node(struct sysinfo *val, int nid)
5134 {
5135 	int zone_type;		/* needs to be signed */
5136 	unsigned long managed_pages = 0;
5137 	unsigned long managed_highpages = 0;
5138 	unsigned long free_highpages = 0;
5139 	pg_data_t *pgdat = NODE_DATA(nid);
5140 
5141 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5142 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5143 	val->totalram = managed_pages;
5144 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5145 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5146 #ifdef CONFIG_HIGHMEM
5147 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5148 		struct zone *zone = &pgdat->node_zones[zone_type];
5149 
5150 		if (is_highmem(zone)) {
5151 			managed_highpages += zone_managed_pages(zone);
5152 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5153 		}
5154 	}
5155 	val->totalhigh = managed_highpages;
5156 	val->freehigh = free_highpages;
5157 #else
5158 	val->totalhigh = managed_highpages;
5159 	val->freehigh = free_highpages;
5160 #endif
5161 	val->mem_unit = PAGE_SIZE;
5162 }
5163 #endif
5164 
5165 /*
5166  * Determine whether the node should be displayed or not, depending on whether
5167  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5168  */
5169 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5170 {
5171 	if (!(flags & SHOW_MEM_FILTER_NODES))
5172 		return false;
5173 
5174 	/*
5175 	 * no node mask - aka implicit memory numa policy. Do not bother with
5176 	 * the synchronization - read_mems_allowed_begin - because we do not
5177 	 * have to be precise here.
5178 	 */
5179 	if (!nodemask)
5180 		nodemask = &cpuset_current_mems_allowed;
5181 
5182 	return !node_isset(nid, *nodemask);
5183 }
5184 
5185 #define K(x) ((x) << (PAGE_SHIFT-10))
5186 
5187 static void show_migration_types(unsigned char type)
5188 {
5189 	static const char types[MIGRATE_TYPES] = {
5190 		[MIGRATE_UNMOVABLE]	= 'U',
5191 		[MIGRATE_MOVABLE]	= 'M',
5192 		[MIGRATE_RECLAIMABLE]	= 'E',
5193 		[MIGRATE_HIGHATOMIC]	= 'H',
5194 #ifdef CONFIG_CMA
5195 		[MIGRATE_CMA]		= 'C',
5196 #endif
5197 #ifdef CONFIG_MEMORY_ISOLATION
5198 		[MIGRATE_ISOLATE]	= 'I',
5199 #endif
5200 	};
5201 	char tmp[MIGRATE_TYPES + 1];
5202 	char *p = tmp;
5203 	int i;
5204 
5205 	for (i = 0; i < MIGRATE_TYPES; i++) {
5206 		if (type & (1 << i))
5207 			*p++ = types[i];
5208 	}
5209 
5210 	*p = '\0';
5211 	printk(KERN_CONT "(%s) ", tmp);
5212 }
5213 
5214 /*
5215  * Show free area list (used inside shift_scroll-lock stuff)
5216  * We also calculate the percentage fragmentation. We do this by counting the
5217  * memory on each free list with the exception of the first item on the list.
5218  *
5219  * Bits in @filter:
5220  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5221  *   cpuset.
5222  */
5223 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5224 {
5225 	unsigned long free_pcp = 0;
5226 	int cpu;
5227 	struct zone *zone;
5228 	pg_data_t *pgdat;
5229 
5230 	for_each_populated_zone(zone) {
5231 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5232 			continue;
5233 
5234 		for_each_online_cpu(cpu)
5235 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5236 	}
5237 
5238 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5239 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5240 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5241 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5242 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5243 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5244 		global_node_page_state(NR_ACTIVE_ANON),
5245 		global_node_page_state(NR_INACTIVE_ANON),
5246 		global_node_page_state(NR_ISOLATED_ANON),
5247 		global_node_page_state(NR_ACTIVE_FILE),
5248 		global_node_page_state(NR_INACTIVE_FILE),
5249 		global_node_page_state(NR_ISOLATED_FILE),
5250 		global_node_page_state(NR_UNEVICTABLE),
5251 		global_node_page_state(NR_FILE_DIRTY),
5252 		global_node_page_state(NR_WRITEBACK),
5253 		global_node_page_state(NR_UNSTABLE_NFS),
5254 		global_node_page_state(NR_SLAB_RECLAIMABLE),
5255 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5256 		global_node_page_state(NR_FILE_MAPPED),
5257 		global_node_page_state(NR_SHMEM),
5258 		global_zone_page_state(NR_PAGETABLE),
5259 		global_zone_page_state(NR_BOUNCE),
5260 		global_zone_page_state(NR_FREE_PAGES),
5261 		free_pcp,
5262 		global_zone_page_state(NR_FREE_CMA_PAGES));
5263 
5264 	for_each_online_pgdat(pgdat) {
5265 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5266 			continue;
5267 
5268 		printk("Node %d"
5269 			" active_anon:%lukB"
5270 			" inactive_anon:%lukB"
5271 			" active_file:%lukB"
5272 			" inactive_file:%lukB"
5273 			" unevictable:%lukB"
5274 			" isolated(anon):%lukB"
5275 			" isolated(file):%lukB"
5276 			" mapped:%lukB"
5277 			" dirty:%lukB"
5278 			" writeback:%lukB"
5279 			" shmem:%lukB"
5280 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5281 			" shmem_thp: %lukB"
5282 			" shmem_pmdmapped: %lukB"
5283 			" anon_thp: %lukB"
5284 #endif
5285 			" writeback_tmp:%lukB"
5286 			" unstable:%lukB"
5287 			" all_unreclaimable? %s"
5288 			"\n",
5289 			pgdat->node_id,
5290 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5291 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5292 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5293 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5294 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5295 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5296 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5297 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5298 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5299 			K(node_page_state(pgdat, NR_WRITEBACK)),
5300 			K(node_page_state(pgdat, NR_SHMEM)),
5301 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5302 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5303 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5304 					* HPAGE_PMD_NR),
5305 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5306 #endif
5307 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5308 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5309 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5310 				"yes" : "no");
5311 	}
5312 
5313 	for_each_populated_zone(zone) {
5314 		int i;
5315 
5316 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5317 			continue;
5318 
5319 		free_pcp = 0;
5320 		for_each_online_cpu(cpu)
5321 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5322 
5323 		show_node(zone);
5324 		printk(KERN_CONT
5325 			"%s"
5326 			" free:%lukB"
5327 			" min:%lukB"
5328 			" low:%lukB"
5329 			" high:%lukB"
5330 			" reserved_highatomic:%luKB"
5331 			" active_anon:%lukB"
5332 			" inactive_anon:%lukB"
5333 			" active_file:%lukB"
5334 			" inactive_file:%lukB"
5335 			" unevictable:%lukB"
5336 			" writepending:%lukB"
5337 			" present:%lukB"
5338 			" managed:%lukB"
5339 			" mlocked:%lukB"
5340 			" kernel_stack:%lukB"
5341 			" pagetables:%lukB"
5342 			" bounce:%lukB"
5343 			" free_pcp:%lukB"
5344 			" local_pcp:%ukB"
5345 			" free_cma:%lukB"
5346 			"\n",
5347 			zone->name,
5348 			K(zone_page_state(zone, NR_FREE_PAGES)),
5349 			K(min_wmark_pages(zone)),
5350 			K(low_wmark_pages(zone)),
5351 			K(high_wmark_pages(zone)),
5352 			K(zone->nr_reserved_highatomic),
5353 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5354 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5355 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5356 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5357 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5358 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5359 			K(zone->present_pages),
5360 			K(zone_managed_pages(zone)),
5361 			K(zone_page_state(zone, NR_MLOCK)),
5362 			zone_page_state(zone, NR_KERNEL_STACK_KB),
5363 			K(zone_page_state(zone, NR_PAGETABLE)),
5364 			K(zone_page_state(zone, NR_BOUNCE)),
5365 			K(free_pcp),
5366 			K(this_cpu_read(zone->pageset->pcp.count)),
5367 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5368 		printk("lowmem_reserve[]:");
5369 		for (i = 0; i < MAX_NR_ZONES; i++)
5370 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5371 		printk(KERN_CONT "\n");
5372 	}
5373 
5374 	for_each_populated_zone(zone) {
5375 		unsigned int order;
5376 		unsigned long nr[MAX_ORDER], flags, total = 0;
5377 		unsigned char types[MAX_ORDER];
5378 
5379 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5380 			continue;
5381 		show_node(zone);
5382 		printk(KERN_CONT "%s: ", zone->name);
5383 
5384 		spin_lock_irqsave(&zone->lock, flags);
5385 		for (order = 0; order < MAX_ORDER; order++) {
5386 			struct free_area *area = &zone->free_area[order];
5387 			int type;
5388 
5389 			nr[order] = area->nr_free;
5390 			total += nr[order] << order;
5391 
5392 			types[order] = 0;
5393 			for (type = 0; type < MIGRATE_TYPES; type++) {
5394 				if (!free_area_empty(area, type))
5395 					types[order] |= 1 << type;
5396 			}
5397 		}
5398 		spin_unlock_irqrestore(&zone->lock, flags);
5399 		for (order = 0; order < MAX_ORDER; order++) {
5400 			printk(KERN_CONT "%lu*%lukB ",
5401 			       nr[order], K(1UL) << order);
5402 			if (nr[order])
5403 				show_migration_types(types[order]);
5404 		}
5405 		printk(KERN_CONT "= %lukB\n", K(total));
5406 	}
5407 
5408 	hugetlb_show_meminfo();
5409 
5410 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5411 
5412 	show_swap_cache_info();
5413 }
5414 
5415 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5416 {
5417 	zoneref->zone = zone;
5418 	zoneref->zone_idx = zone_idx(zone);
5419 }
5420 
5421 /*
5422  * Builds allocation fallback zone lists.
5423  *
5424  * Add all populated zones of a node to the zonelist.
5425  */
5426 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5427 {
5428 	struct zone *zone;
5429 	enum zone_type zone_type = MAX_NR_ZONES;
5430 	int nr_zones = 0;
5431 
5432 	do {
5433 		zone_type--;
5434 		zone = pgdat->node_zones + zone_type;
5435 		if (managed_zone(zone)) {
5436 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5437 			check_highest_zone(zone_type);
5438 		}
5439 	} while (zone_type);
5440 
5441 	return nr_zones;
5442 }
5443 
5444 #ifdef CONFIG_NUMA
5445 
5446 static int __parse_numa_zonelist_order(char *s)
5447 {
5448 	/*
5449 	 * We used to support different zonlists modes but they turned
5450 	 * out to be just not useful. Let's keep the warning in place
5451 	 * if somebody still use the cmd line parameter so that we do
5452 	 * not fail it silently
5453 	 */
5454 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5455 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5456 		return -EINVAL;
5457 	}
5458 	return 0;
5459 }
5460 
5461 static __init int setup_numa_zonelist_order(char *s)
5462 {
5463 	if (!s)
5464 		return 0;
5465 
5466 	return __parse_numa_zonelist_order(s);
5467 }
5468 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5469 
5470 char numa_zonelist_order[] = "Node";
5471 
5472 /*
5473  * sysctl handler for numa_zonelist_order
5474  */
5475 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5476 		void __user *buffer, size_t *length,
5477 		loff_t *ppos)
5478 {
5479 	char *str;
5480 	int ret;
5481 
5482 	if (!write)
5483 		return proc_dostring(table, write, buffer, length, ppos);
5484 	str = memdup_user_nul(buffer, 16);
5485 	if (IS_ERR(str))
5486 		return PTR_ERR(str);
5487 
5488 	ret = __parse_numa_zonelist_order(str);
5489 	kfree(str);
5490 	return ret;
5491 }
5492 
5493 
5494 #define MAX_NODE_LOAD (nr_online_nodes)
5495 static int node_load[MAX_NUMNODES];
5496 
5497 /**
5498  * find_next_best_node - find the next node that should appear in a given node's fallback list
5499  * @node: node whose fallback list we're appending
5500  * @used_node_mask: nodemask_t of already used nodes
5501  *
5502  * We use a number of factors to determine which is the next node that should
5503  * appear on a given node's fallback list.  The node should not have appeared
5504  * already in @node's fallback list, and it should be the next closest node
5505  * according to the distance array (which contains arbitrary distance values
5506  * from each node to each node in the system), and should also prefer nodes
5507  * with no CPUs, since presumably they'll have very little allocation pressure
5508  * on them otherwise.
5509  *
5510  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5511  */
5512 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5513 {
5514 	int n, val;
5515 	int min_val = INT_MAX;
5516 	int best_node = NUMA_NO_NODE;
5517 	const struct cpumask *tmp = cpumask_of_node(0);
5518 
5519 	/* Use the local node if we haven't already */
5520 	if (!node_isset(node, *used_node_mask)) {
5521 		node_set(node, *used_node_mask);
5522 		return node;
5523 	}
5524 
5525 	for_each_node_state(n, N_MEMORY) {
5526 
5527 		/* Don't want a node to appear more than once */
5528 		if (node_isset(n, *used_node_mask))
5529 			continue;
5530 
5531 		/* Use the distance array to find the distance */
5532 		val = node_distance(node, n);
5533 
5534 		/* Penalize nodes under us ("prefer the next node") */
5535 		val += (n < node);
5536 
5537 		/* Give preference to headless and unused nodes */
5538 		tmp = cpumask_of_node(n);
5539 		if (!cpumask_empty(tmp))
5540 			val += PENALTY_FOR_NODE_WITH_CPUS;
5541 
5542 		/* Slight preference for less loaded node */
5543 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5544 		val += node_load[n];
5545 
5546 		if (val < min_val) {
5547 			min_val = val;
5548 			best_node = n;
5549 		}
5550 	}
5551 
5552 	if (best_node >= 0)
5553 		node_set(best_node, *used_node_mask);
5554 
5555 	return best_node;
5556 }
5557 
5558 
5559 /*
5560  * Build zonelists ordered by node and zones within node.
5561  * This results in maximum locality--normal zone overflows into local
5562  * DMA zone, if any--but risks exhausting DMA zone.
5563  */
5564 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5565 		unsigned nr_nodes)
5566 {
5567 	struct zoneref *zonerefs;
5568 	int i;
5569 
5570 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5571 
5572 	for (i = 0; i < nr_nodes; i++) {
5573 		int nr_zones;
5574 
5575 		pg_data_t *node = NODE_DATA(node_order[i]);
5576 
5577 		nr_zones = build_zonerefs_node(node, zonerefs);
5578 		zonerefs += nr_zones;
5579 	}
5580 	zonerefs->zone = NULL;
5581 	zonerefs->zone_idx = 0;
5582 }
5583 
5584 /*
5585  * Build gfp_thisnode zonelists
5586  */
5587 static void build_thisnode_zonelists(pg_data_t *pgdat)
5588 {
5589 	struct zoneref *zonerefs;
5590 	int nr_zones;
5591 
5592 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5593 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5594 	zonerefs += nr_zones;
5595 	zonerefs->zone = NULL;
5596 	zonerefs->zone_idx = 0;
5597 }
5598 
5599 /*
5600  * Build zonelists ordered by zone and nodes within zones.
5601  * This results in conserving DMA zone[s] until all Normal memory is
5602  * exhausted, but results in overflowing to remote node while memory
5603  * may still exist in local DMA zone.
5604  */
5605 
5606 static void build_zonelists(pg_data_t *pgdat)
5607 {
5608 	static int node_order[MAX_NUMNODES];
5609 	int node, load, nr_nodes = 0;
5610 	nodemask_t used_mask;
5611 	int local_node, prev_node;
5612 
5613 	/* NUMA-aware ordering of nodes */
5614 	local_node = pgdat->node_id;
5615 	load = nr_online_nodes;
5616 	prev_node = local_node;
5617 	nodes_clear(used_mask);
5618 
5619 	memset(node_order, 0, sizeof(node_order));
5620 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5621 		/*
5622 		 * We don't want to pressure a particular node.
5623 		 * So adding penalty to the first node in same
5624 		 * distance group to make it round-robin.
5625 		 */
5626 		if (node_distance(local_node, node) !=
5627 		    node_distance(local_node, prev_node))
5628 			node_load[node] = load;
5629 
5630 		node_order[nr_nodes++] = node;
5631 		prev_node = node;
5632 		load--;
5633 	}
5634 
5635 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5636 	build_thisnode_zonelists(pgdat);
5637 }
5638 
5639 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5640 /*
5641  * Return node id of node used for "local" allocations.
5642  * I.e., first node id of first zone in arg node's generic zonelist.
5643  * Used for initializing percpu 'numa_mem', which is used primarily
5644  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5645  */
5646 int local_memory_node(int node)
5647 {
5648 	struct zoneref *z;
5649 
5650 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5651 				   gfp_zone(GFP_KERNEL),
5652 				   NULL);
5653 	return zone_to_nid(z->zone);
5654 }
5655 #endif
5656 
5657 static void setup_min_unmapped_ratio(void);
5658 static void setup_min_slab_ratio(void);
5659 #else	/* CONFIG_NUMA */
5660 
5661 static void build_zonelists(pg_data_t *pgdat)
5662 {
5663 	int node, local_node;
5664 	struct zoneref *zonerefs;
5665 	int nr_zones;
5666 
5667 	local_node = pgdat->node_id;
5668 
5669 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5670 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5671 	zonerefs += nr_zones;
5672 
5673 	/*
5674 	 * Now we build the zonelist so that it contains the zones
5675 	 * of all the other nodes.
5676 	 * We don't want to pressure a particular node, so when
5677 	 * building the zones for node N, we make sure that the
5678 	 * zones coming right after the local ones are those from
5679 	 * node N+1 (modulo N)
5680 	 */
5681 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5682 		if (!node_online(node))
5683 			continue;
5684 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5685 		zonerefs += nr_zones;
5686 	}
5687 	for (node = 0; node < local_node; node++) {
5688 		if (!node_online(node))
5689 			continue;
5690 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5691 		zonerefs += nr_zones;
5692 	}
5693 
5694 	zonerefs->zone = NULL;
5695 	zonerefs->zone_idx = 0;
5696 }
5697 
5698 #endif	/* CONFIG_NUMA */
5699 
5700 /*
5701  * Boot pageset table. One per cpu which is going to be used for all
5702  * zones and all nodes. The parameters will be set in such a way
5703  * that an item put on a list will immediately be handed over to
5704  * the buddy list. This is safe since pageset manipulation is done
5705  * with interrupts disabled.
5706  *
5707  * The boot_pagesets must be kept even after bootup is complete for
5708  * unused processors and/or zones. They do play a role for bootstrapping
5709  * hotplugged processors.
5710  *
5711  * zoneinfo_show() and maybe other functions do
5712  * not check if the processor is online before following the pageset pointer.
5713  * Other parts of the kernel may not check if the zone is available.
5714  */
5715 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5716 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5717 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5718 
5719 static void __build_all_zonelists(void *data)
5720 {
5721 	int nid;
5722 	int __maybe_unused cpu;
5723 	pg_data_t *self = data;
5724 	static DEFINE_SPINLOCK(lock);
5725 
5726 	spin_lock(&lock);
5727 
5728 #ifdef CONFIG_NUMA
5729 	memset(node_load, 0, sizeof(node_load));
5730 #endif
5731 
5732 	/*
5733 	 * This node is hotadded and no memory is yet present.   So just
5734 	 * building zonelists is fine - no need to touch other nodes.
5735 	 */
5736 	if (self && !node_online(self->node_id)) {
5737 		build_zonelists(self);
5738 	} else {
5739 		for_each_online_node(nid) {
5740 			pg_data_t *pgdat = NODE_DATA(nid);
5741 
5742 			build_zonelists(pgdat);
5743 		}
5744 
5745 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5746 		/*
5747 		 * We now know the "local memory node" for each node--
5748 		 * i.e., the node of the first zone in the generic zonelist.
5749 		 * Set up numa_mem percpu variable for on-line cpus.  During
5750 		 * boot, only the boot cpu should be on-line;  we'll init the
5751 		 * secondary cpus' numa_mem as they come on-line.  During
5752 		 * node/memory hotplug, we'll fixup all on-line cpus.
5753 		 */
5754 		for_each_online_cpu(cpu)
5755 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5756 #endif
5757 	}
5758 
5759 	spin_unlock(&lock);
5760 }
5761 
5762 static noinline void __init
5763 build_all_zonelists_init(void)
5764 {
5765 	int cpu;
5766 
5767 	__build_all_zonelists(NULL);
5768 
5769 	/*
5770 	 * Initialize the boot_pagesets that are going to be used
5771 	 * for bootstrapping processors. The real pagesets for
5772 	 * each zone will be allocated later when the per cpu
5773 	 * allocator is available.
5774 	 *
5775 	 * boot_pagesets are used also for bootstrapping offline
5776 	 * cpus if the system is already booted because the pagesets
5777 	 * are needed to initialize allocators on a specific cpu too.
5778 	 * F.e. the percpu allocator needs the page allocator which
5779 	 * needs the percpu allocator in order to allocate its pagesets
5780 	 * (a chicken-egg dilemma).
5781 	 */
5782 	for_each_possible_cpu(cpu)
5783 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5784 
5785 	mminit_verify_zonelist();
5786 	cpuset_init_current_mems_allowed();
5787 }
5788 
5789 /*
5790  * unless system_state == SYSTEM_BOOTING.
5791  *
5792  * __ref due to call of __init annotated helper build_all_zonelists_init
5793  * [protected by SYSTEM_BOOTING].
5794  */
5795 void __ref build_all_zonelists(pg_data_t *pgdat)
5796 {
5797 	if (system_state == SYSTEM_BOOTING) {
5798 		build_all_zonelists_init();
5799 	} else {
5800 		__build_all_zonelists(pgdat);
5801 		/* cpuset refresh routine should be here */
5802 	}
5803 	vm_total_pages = nr_free_pagecache_pages();
5804 	/*
5805 	 * Disable grouping by mobility if the number of pages in the
5806 	 * system is too low to allow the mechanism to work. It would be
5807 	 * more accurate, but expensive to check per-zone. This check is
5808 	 * made on memory-hotadd so a system can start with mobility
5809 	 * disabled and enable it later
5810 	 */
5811 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5812 		page_group_by_mobility_disabled = 1;
5813 	else
5814 		page_group_by_mobility_disabled = 0;
5815 
5816 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5817 		nr_online_nodes,
5818 		page_group_by_mobility_disabled ? "off" : "on",
5819 		vm_total_pages);
5820 #ifdef CONFIG_NUMA
5821 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5822 #endif
5823 }
5824 
5825 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5826 static bool __meminit
5827 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5828 {
5829 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5830 	static struct memblock_region *r;
5831 
5832 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5833 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5834 			for_each_memblock(memory, r) {
5835 				if (*pfn < memblock_region_memory_end_pfn(r))
5836 					break;
5837 			}
5838 		}
5839 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5840 		    memblock_is_mirror(r)) {
5841 			*pfn = memblock_region_memory_end_pfn(r);
5842 			return true;
5843 		}
5844 	}
5845 #endif
5846 	return false;
5847 }
5848 
5849 #ifdef CONFIG_SPARSEMEM
5850 /* Skip PFNs that belong to non-present sections */
5851 static inline __meminit unsigned long next_pfn(unsigned long pfn)
5852 {
5853 	const unsigned long section_nr = pfn_to_section_nr(++pfn);
5854 
5855 	if (present_section_nr(section_nr))
5856 		return pfn;
5857 	return section_nr_to_pfn(next_present_section_nr(section_nr));
5858 }
5859 #else
5860 static inline __meminit unsigned long next_pfn(unsigned long pfn)
5861 {
5862 	return pfn++;
5863 }
5864 #endif
5865 
5866 /*
5867  * Initially all pages are reserved - free ones are freed
5868  * up by memblock_free_all() once the early boot process is
5869  * done. Non-atomic initialization, single-pass.
5870  */
5871 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5872 		unsigned long start_pfn, enum memmap_context context,
5873 		struct vmem_altmap *altmap)
5874 {
5875 	unsigned long pfn, end_pfn = start_pfn + size;
5876 	struct page *page;
5877 
5878 	if (highest_memmap_pfn < end_pfn - 1)
5879 		highest_memmap_pfn = end_pfn - 1;
5880 
5881 #ifdef CONFIG_ZONE_DEVICE
5882 	/*
5883 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5884 	 * memory. We limit the total number of pages to initialize to just
5885 	 * those that might contain the memory mapping. We will defer the
5886 	 * ZONE_DEVICE page initialization until after we have released
5887 	 * the hotplug lock.
5888 	 */
5889 	if (zone == ZONE_DEVICE) {
5890 		if (!altmap)
5891 			return;
5892 
5893 		if (start_pfn == altmap->base_pfn)
5894 			start_pfn += altmap->reserve;
5895 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5896 	}
5897 #endif
5898 
5899 	for (pfn = start_pfn; pfn < end_pfn; ) {
5900 		/*
5901 		 * There can be holes in boot-time mem_map[]s handed to this
5902 		 * function.  They do not exist on hotplugged memory.
5903 		 */
5904 		if (context == MEMMAP_EARLY) {
5905 			if (!early_pfn_valid(pfn)) {
5906 				pfn = next_pfn(pfn);
5907 				continue;
5908 			}
5909 			if (!early_pfn_in_nid(pfn, nid)) {
5910 				pfn++;
5911 				continue;
5912 			}
5913 			if (overlap_memmap_init(zone, &pfn))
5914 				continue;
5915 			if (defer_init(nid, pfn, end_pfn))
5916 				break;
5917 		}
5918 
5919 		page = pfn_to_page(pfn);
5920 		__init_single_page(page, pfn, zone, nid);
5921 		if (context == MEMMAP_HOTPLUG)
5922 			__SetPageReserved(page);
5923 
5924 		/*
5925 		 * Mark the block movable so that blocks are reserved for
5926 		 * movable at startup. This will force kernel allocations
5927 		 * to reserve their blocks rather than leaking throughout
5928 		 * the address space during boot when many long-lived
5929 		 * kernel allocations are made.
5930 		 *
5931 		 * bitmap is created for zone's valid pfn range. but memmap
5932 		 * can be created for invalid pages (for alignment)
5933 		 * check here not to call set_pageblock_migratetype() against
5934 		 * pfn out of zone.
5935 		 */
5936 		if (!(pfn & (pageblock_nr_pages - 1))) {
5937 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5938 			cond_resched();
5939 		}
5940 		pfn++;
5941 	}
5942 }
5943 
5944 #ifdef CONFIG_ZONE_DEVICE
5945 void __ref memmap_init_zone_device(struct zone *zone,
5946 				   unsigned long start_pfn,
5947 				   unsigned long nr_pages,
5948 				   struct dev_pagemap *pgmap)
5949 {
5950 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
5951 	struct pglist_data *pgdat = zone->zone_pgdat;
5952 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
5953 	unsigned long zone_idx = zone_idx(zone);
5954 	unsigned long start = jiffies;
5955 	int nid = pgdat->node_id;
5956 
5957 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
5958 		return;
5959 
5960 	/*
5961 	 * The call to memmap_init_zone should have already taken care
5962 	 * of the pages reserved for the memmap, so we can just jump to
5963 	 * the end of that region and start processing the device pages.
5964 	 */
5965 	if (altmap) {
5966 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5967 		nr_pages = end_pfn - start_pfn;
5968 	}
5969 
5970 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5971 		struct page *page = pfn_to_page(pfn);
5972 
5973 		__init_single_page(page, pfn, zone_idx, nid);
5974 
5975 		/*
5976 		 * Mark page reserved as it will need to wait for onlining
5977 		 * phase for it to be fully associated with a zone.
5978 		 *
5979 		 * We can use the non-atomic __set_bit operation for setting
5980 		 * the flag as we are still initializing the pages.
5981 		 */
5982 		__SetPageReserved(page);
5983 
5984 		/*
5985 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5986 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
5987 		 * ever freed or placed on a driver-private list.
5988 		 */
5989 		page->pgmap = pgmap;
5990 		page->zone_device_data = NULL;
5991 
5992 		/*
5993 		 * Mark the block movable so that blocks are reserved for
5994 		 * movable at startup. This will force kernel allocations
5995 		 * to reserve their blocks rather than leaking throughout
5996 		 * the address space during boot when many long-lived
5997 		 * kernel allocations are made.
5998 		 *
5999 		 * bitmap is created for zone's valid pfn range. but memmap
6000 		 * can be created for invalid pages (for alignment)
6001 		 * check here not to call set_pageblock_migratetype() against
6002 		 * pfn out of zone.
6003 		 *
6004 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6005 		 * because this is done early in section_activate()
6006 		 */
6007 		if (!(pfn & (pageblock_nr_pages - 1))) {
6008 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6009 			cond_resched();
6010 		}
6011 	}
6012 
6013 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6014 		nr_pages, jiffies_to_msecs(jiffies - start));
6015 }
6016 
6017 #endif
6018 static void __meminit zone_init_free_lists(struct zone *zone)
6019 {
6020 	unsigned int order, t;
6021 	for_each_migratetype_order(order, t) {
6022 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6023 		zone->free_area[order].nr_free = 0;
6024 	}
6025 }
6026 
6027 void __meminit __weak memmap_init(unsigned long size, int nid,
6028 				  unsigned long zone, unsigned long start_pfn)
6029 {
6030 	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6031 }
6032 
6033 static int zone_batchsize(struct zone *zone)
6034 {
6035 #ifdef CONFIG_MMU
6036 	int batch;
6037 
6038 	/*
6039 	 * The per-cpu-pages pools are set to around 1000th of the
6040 	 * size of the zone.
6041 	 */
6042 	batch = zone_managed_pages(zone) / 1024;
6043 	/* But no more than a meg. */
6044 	if (batch * PAGE_SIZE > 1024 * 1024)
6045 		batch = (1024 * 1024) / PAGE_SIZE;
6046 	batch /= 4;		/* We effectively *= 4 below */
6047 	if (batch < 1)
6048 		batch = 1;
6049 
6050 	/*
6051 	 * Clamp the batch to a 2^n - 1 value. Having a power
6052 	 * of 2 value was found to be more likely to have
6053 	 * suboptimal cache aliasing properties in some cases.
6054 	 *
6055 	 * For example if 2 tasks are alternately allocating
6056 	 * batches of pages, one task can end up with a lot
6057 	 * of pages of one half of the possible page colors
6058 	 * and the other with pages of the other colors.
6059 	 */
6060 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6061 
6062 	return batch;
6063 
6064 #else
6065 	/* The deferral and batching of frees should be suppressed under NOMMU
6066 	 * conditions.
6067 	 *
6068 	 * The problem is that NOMMU needs to be able to allocate large chunks
6069 	 * of contiguous memory as there's no hardware page translation to
6070 	 * assemble apparent contiguous memory from discontiguous pages.
6071 	 *
6072 	 * Queueing large contiguous runs of pages for batching, however,
6073 	 * causes the pages to actually be freed in smaller chunks.  As there
6074 	 * can be a significant delay between the individual batches being
6075 	 * recycled, this leads to the once large chunks of space being
6076 	 * fragmented and becoming unavailable for high-order allocations.
6077 	 */
6078 	return 0;
6079 #endif
6080 }
6081 
6082 /*
6083  * pcp->high and pcp->batch values are related and dependent on one another:
6084  * ->batch must never be higher then ->high.
6085  * The following function updates them in a safe manner without read side
6086  * locking.
6087  *
6088  * Any new users of pcp->batch and pcp->high should ensure they can cope with
6089  * those fields changing asynchronously (acording the the above rule).
6090  *
6091  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6092  * outside of boot time (or some other assurance that no concurrent updaters
6093  * exist).
6094  */
6095 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6096 		unsigned long batch)
6097 {
6098        /* start with a fail safe value for batch */
6099 	pcp->batch = 1;
6100 	smp_wmb();
6101 
6102        /* Update high, then batch, in order */
6103 	pcp->high = high;
6104 	smp_wmb();
6105 
6106 	pcp->batch = batch;
6107 }
6108 
6109 /* a companion to pageset_set_high() */
6110 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6111 {
6112 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6113 }
6114 
6115 static void pageset_init(struct per_cpu_pageset *p)
6116 {
6117 	struct per_cpu_pages *pcp;
6118 	int migratetype;
6119 
6120 	memset(p, 0, sizeof(*p));
6121 
6122 	pcp = &p->pcp;
6123 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6124 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6125 }
6126 
6127 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6128 {
6129 	pageset_init(p);
6130 	pageset_set_batch(p, batch);
6131 }
6132 
6133 /*
6134  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6135  * to the value high for the pageset p.
6136  */
6137 static void pageset_set_high(struct per_cpu_pageset *p,
6138 				unsigned long high)
6139 {
6140 	unsigned long batch = max(1UL, high / 4);
6141 	if ((high / 4) > (PAGE_SHIFT * 8))
6142 		batch = PAGE_SHIFT * 8;
6143 
6144 	pageset_update(&p->pcp, high, batch);
6145 }
6146 
6147 static void pageset_set_high_and_batch(struct zone *zone,
6148 				       struct per_cpu_pageset *pcp)
6149 {
6150 	if (percpu_pagelist_fraction)
6151 		pageset_set_high(pcp,
6152 			(zone_managed_pages(zone) /
6153 				percpu_pagelist_fraction));
6154 	else
6155 		pageset_set_batch(pcp, zone_batchsize(zone));
6156 }
6157 
6158 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6159 {
6160 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6161 
6162 	pageset_init(pcp);
6163 	pageset_set_high_and_batch(zone, pcp);
6164 }
6165 
6166 void __meminit setup_zone_pageset(struct zone *zone)
6167 {
6168 	int cpu;
6169 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6170 	for_each_possible_cpu(cpu)
6171 		zone_pageset_init(zone, cpu);
6172 }
6173 
6174 /*
6175  * Allocate per cpu pagesets and initialize them.
6176  * Before this call only boot pagesets were available.
6177  */
6178 void __init setup_per_cpu_pageset(void)
6179 {
6180 	struct pglist_data *pgdat;
6181 	struct zone *zone;
6182 
6183 	for_each_populated_zone(zone)
6184 		setup_zone_pageset(zone);
6185 
6186 	for_each_online_pgdat(pgdat)
6187 		pgdat->per_cpu_nodestats =
6188 			alloc_percpu(struct per_cpu_nodestat);
6189 }
6190 
6191 static __meminit void zone_pcp_init(struct zone *zone)
6192 {
6193 	/*
6194 	 * per cpu subsystem is not up at this point. The following code
6195 	 * relies on the ability of the linker to provide the
6196 	 * offset of a (static) per cpu variable into the per cpu area.
6197 	 */
6198 	zone->pageset = &boot_pageset;
6199 
6200 	if (populated_zone(zone))
6201 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6202 			zone->name, zone->present_pages,
6203 					 zone_batchsize(zone));
6204 }
6205 
6206 void __meminit init_currently_empty_zone(struct zone *zone,
6207 					unsigned long zone_start_pfn,
6208 					unsigned long size)
6209 {
6210 	struct pglist_data *pgdat = zone->zone_pgdat;
6211 	int zone_idx = zone_idx(zone) + 1;
6212 
6213 	if (zone_idx > pgdat->nr_zones)
6214 		pgdat->nr_zones = zone_idx;
6215 
6216 	zone->zone_start_pfn = zone_start_pfn;
6217 
6218 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6219 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6220 			pgdat->node_id,
6221 			(unsigned long)zone_idx(zone),
6222 			zone_start_pfn, (zone_start_pfn + size));
6223 
6224 	zone_init_free_lists(zone);
6225 	zone->initialized = 1;
6226 }
6227 
6228 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6229 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6230 
6231 /*
6232  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6233  */
6234 int __meminit __early_pfn_to_nid(unsigned long pfn,
6235 					struct mminit_pfnnid_cache *state)
6236 {
6237 	unsigned long start_pfn, end_pfn;
6238 	int nid;
6239 
6240 	if (state->last_start <= pfn && pfn < state->last_end)
6241 		return state->last_nid;
6242 
6243 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6244 	if (nid != NUMA_NO_NODE) {
6245 		state->last_start = start_pfn;
6246 		state->last_end = end_pfn;
6247 		state->last_nid = nid;
6248 	}
6249 
6250 	return nid;
6251 }
6252 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6253 
6254 /**
6255  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6256  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6257  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6258  *
6259  * If an architecture guarantees that all ranges registered contain no holes
6260  * and may be freed, this this function may be used instead of calling
6261  * memblock_free_early_nid() manually.
6262  */
6263 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6264 {
6265 	unsigned long start_pfn, end_pfn;
6266 	int i, this_nid;
6267 
6268 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6269 		start_pfn = min(start_pfn, max_low_pfn);
6270 		end_pfn = min(end_pfn, max_low_pfn);
6271 
6272 		if (start_pfn < end_pfn)
6273 			memblock_free_early_nid(PFN_PHYS(start_pfn),
6274 					(end_pfn - start_pfn) << PAGE_SHIFT,
6275 					this_nid);
6276 	}
6277 }
6278 
6279 /**
6280  * sparse_memory_present_with_active_regions - Call memory_present for each active range
6281  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6282  *
6283  * If an architecture guarantees that all ranges registered contain no holes and may
6284  * be freed, this function may be used instead of calling memory_present() manually.
6285  */
6286 void __init sparse_memory_present_with_active_regions(int nid)
6287 {
6288 	unsigned long start_pfn, end_pfn;
6289 	int i, this_nid;
6290 
6291 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6292 		memory_present(this_nid, start_pfn, end_pfn);
6293 }
6294 
6295 /**
6296  * get_pfn_range_for_nid - Return the start and end page frames for a node
6297  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6298  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6299  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6300  *
6301  * It returns the start and end page frame of a node based on information
6302  * provided by memblock_set_node(). If called for a node
6303  * with no available memory, a warning is printed and the start and end
6304  * PFNs will be 0.
6305  */
6306 void __init get_pfn_range_for_nid(unsigned int nid,
6307 			unsigned long *start_pfn, unsigned long *end_pfn)
6308 {
6309 	unsigned long this_start_pfn, this_end_pfn;
6310 	int i;
6311 
6312 	*start_pfn = -1UL;
6313 	*end_pfn = 0;
6314 
6315 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6316 		*start_pfn = min(*start_pfn, this_start_pfn);
6317 		*end_pfn = max(*end_pfn, this_end_pfn);
6318 	}
6319 
6320 	if (*start_pfn == -1UL)
6321 		*start_pfn = 0;
6322 }
6323 
6324 /*
6325  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6326  * assumption is made that zones within a node are ordered in monotonic
6327  * increasing memory addresses so that the "highest" populated zone is used
6328  */
6329 static void __init find_usable_zone_for_movable(void)
6330 {
6331 	int zone_index;
6332 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6333 		if (zone_index == ZONE_MOVABLE)
6334 			continue;
6335 
6336 		if (arch_zone_highest_possible_pfn[zone_index] >
6337 				arch_zone_lowest_possible_pfn[zone_index])
6338 			break;
6339 	}
6340 
6341 	VM_BUG_ON(zone_index == -1);
6342 	movable_zone = zone_index;
6343 }
6344 
6345 /*
6346  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6347  * because it is sized independent of architecture. Unlike the other zones,
6348  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6349  * in each node depending on the size of each node and how evenly kernelcore
6350  * is distributed. This helper function adjusts the zone ranges
6351  * provided by the architecture for a given node by using the end of the
6352  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6353  * zones within a node are in order of monotonic increases memory addresses
6354  */
6355 static void __init adjust_zone_range_for_zone_movable(int nid,
6356 					unsigned long zone_type,
6357 					unsigned long node_start_pfn,
6358 					unsigned long node_end_pfn,
6359 					unsigned long *zone_start_pfn,
6360 					unsigned long *zone_end_pfn)
6361 {
6362 	/* Only adjust if ZONE_MOVABLE is on this node */
6363 	if (zone_movable_pfn[nid]) {
6364 		/* Size ZONE_MOVABLE */
6365 		if (zone_type == ZONE_MOVABLE) {
6366 			*zone_start_pfn = zone_movable_pfn[nid];
6367 			*zone_end_pfn = min(node_end_pfn,
6368 				arch_zone_highest_possible_pfn[movable_zone]);
6369 
6370 		/* Adjust for ZONE_MOVABLE starting within this range */
6371 		} else if (!mirrored_kernelcore &&
6372 			*zone_start_pfn < zone_movable_pfn[nid] &&
6373 			*zone_end_pfn > zone_movable_pfn[nid]) {
6374 			*zone_end_pfn = zone_movable_pfn[nid];
6375 
6376 		/* Check if this whole range is within ZONE_MOVABLE */
6377 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6378 			*zone_start_pfn = *zone_end_pfn;
6379 	}
6380 }
6381 
6382 /*
6383  * Return the number of pages a zone spans in a node, including holes
6384  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6385  */
6386 static unsigned long __init zone_spanned_pages_in_node(int nid,
6387 					unsigned long zone_type,
6388 					unsigned long node_start_pfn,
6389 					unsigned long node_end_pfn,
6390 					unsigned long *zone_start_pfn,
6391 					unsigned long *zone_end_pfn,
6392 					unsigned long *ignored)
6393 {
6394 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6395 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6396 	/* When hotadd a new node from cpu_up(), the node should be empty */
6397 	if (!node_start_pfn && !node_end_pfn)
6398 		return 0;
6399 
6400 	/* Get the start and end of the zone */
6401 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6402 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6403 	adjust_zone_range_for_zone_movable(nid, zone_type,
6404 				node_start_pfn, node_end_pfn,
6405 				zone_start_pfn, zone_end_pfn);
6406 
6407 	/* Check that this node has pages within the zone's required range */
6408 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6409 		return 0;
6410 
6411 	/* Move the zone boundaries inside the node if necessary */
6412 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6413 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6414 
6415 	/* Return the spanned pages */
6416 	return *zone_end_pfn - *zone_start_pfn;
6417 }
6418 
6419 /*
6420  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6421  * then all holes in the requested range will be accounted for.
6422  */
6423 unsigned long __init __absent_pages_in_range(int nid,
6424 				unsigned long range_start_pfn,
6425 				unsigned long range_end_pfn)
6426 {
6427 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6428 	unsigned long start_pfn, end_pfn;
6429 	int i;
6430 
6431 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6432 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6433 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6434 		nr_absent -= end_pfn - start_pfn;
6435 	}
6436 	return nr_absent;
6437 }
6438 
6439 /**
6440  * absent_pages_in_range - Return number of page frames in holes within a range
6441  * @start_pfn: The start PFN to start searching for holes
6442  * @end_pfn: The end PFN to stop searching for holes
6443  *
6444  * Return: the number of pages frames in memory holes within a range.
6445  */
6446 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6447 							unsigned long end_pfn)
6448 {
6449 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6450 }
6451 
6452 /* Return the number of page frames in holes in a zone on a node */
6453 static unsigned long __init zone_absent_pages_in_node(int nid,
6454 					unsigned long zone_type,
6455 					unsigned long node_start_pfn,
6456 					unsigned long node_end_pfn,
6457 					unsigned long *ignored)
6458 {
6459 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6460 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6461 	unsigned long zone_start_pfn, zone_end_pfn;
6462 	unsigned long nr_absent;
6463 
6464 	/* When hotadd a new node from cpu_up(), the node should be empty */
6465 	if (!node_start_pfn && !node_end_pfn)
6466 		return 0;
6467 
6468 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6469 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6470 
6471 	adjust_zone_range_for_zone_movable(nid, zone_type,
6472 			node_start_pfn, node_end_pfn,
6473 			&zone_start_pfn, &zone_end_pfn);
6474 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6475 
6476 	/*
6477 	 * ZONE_MOVABLE handling.
6478 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6479 	 * and vice versa.
6480 	 */
6481 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6482 		unsigned long start_pfn, end_pfn;
6483 		struct memblock_region *r;
6484 
6485 		for_each_memblock(memory, r) {
6486 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6487 					  zone_start_pfn, zone_end_pfn);
6488 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6489 					zone_start_pfn, zone_end_pfn);
6490 
6491 			if (zone_type == ZONE_MOVABLE &&
6492 			    memblock_is_mirror(r))
6493 				nr_absent += end_pfn - start_pfn;
6494 
6495 			if (zone_type == ZONE_NORMAL &&
6496 			    !memblock_is_mirror(r))
6497 				nr_absent += end_pfn - start_pfn;
6498 		}
6499 	}
6500 
6501 	return nr_absent;
6502 }
6503 
6504 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6505 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6506 					unsigned long zone_type,
6507 					unsigned long node_start_pfn,
6508 					unsigned long node_end_pfn,
6509 					unsigned long *zone_start_pfn,
6510 					unsigned long *zone_end_pfn,
6511 					unsigned long *zones_size)
6512 {
6513 	unsigned int zone;
6514 
6515 	*zone_start_pfn = node_start_pfn;
6516 	for (zone = 0; zone < zone_type; zone++)
6517 		*zone_start_pfn += zones_size[zone];
6518 
6519 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6520 
6521 	return zones_size[zone_type];
6522 }
6523 
6524 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6525 						unsigned long zone_type,
6526 						unsigned long node_start_pfn,
6527 						unsigned long node_end_pfn,
6528 						unsigned long *zholes_size)
6529 {
6530 	if (!zholes_size)
6531 		return 0;
6532 
6533 	return zholes_size[zone_type];
6534 }
6535 
6536 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6537 
6538 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6539 						unsigned long node_start_pfn,
6540 						unsigned long node_end_pfn,
6541 						unsigned long *zones_size,
6542 						unsigned long *zholes_size)
6543 {
6544 	unsigned long realtotalpages = 0, totalpages = 0;
6545 	enum zone_type i;
6546 
6547 	for (i = 0; i < MAX_NR_ZONES; i++) {
6548 		struct zone *zone = pgdat->node_zones + i;
6549 		unsigned long zone_start_pfn, zone_end_pfn;
6550 		unsigned long size, real_size;
6551 
6552 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6553 						  node_start_pfn,
6554 						  node_end_pfn,
6555 						  &zone_start_pfn,
6556 						  &zone_end_pfn,
6557 						  zones_size);
6558 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6559 						  node_start_pfn, node_end_pfn,
6560 						  zholes_size);
6561 		if (size)
6562 			zone->zone_start_pfn = zone_start_pfn;
6563 		else
6564 			zone->zone_start_pfn = 0;
6565 		zone->spanned_pages = size;
6566 		zone->present_pages = real_size;
6567 
6568 		totalpages += size;
6569 		realtotalpages += real_size;
6570 	}
6571 
6572 	pgdat->node_spanned_pages = totalpages;
6573 	pgdat->node_present_pages = realtotalpages;
6574 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6575 							realtotalpages);
6576 }
6577 
6578 #ifndef CONFIG_SPARSEMEM
6579 /*
6580  * Calculate the size of the zone->blockflags rounded to an unsigned long
6581  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6582  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6583  * round what is now in bits to nearest long in bits, then return it in
6584  * bytes.
6585  */
6586 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6587 {
6588 	unsigned long usemapsize;
6589 
6590 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6591 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6592 	usemapsize = usemapsize >> pageblock_order;
6593 	usemapsize *= NR_PAGEBLOCK_BITS;
6594 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6595 
6596 	return usemapsize / 8;
6597 }
6598 
6599 static void __ref setup_usemap(struct pglist_data *pgdat,
6600 				struct zone *zone,
6601 				unsigned long zone_start_pfn,
6602 				unsigned long zonesize)
6603 {
6604 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6605 	zone->pageblock_flags = NULL;
6606 	if (usemapsize) {
6607 		zone->pageblock_flags =
6608 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6609 					    pgdat->node_id);
6610 		if (!zone->pageblock_flags)
6611 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6612 			      usemapsize, zone->name, pgdat->node_id);
6613 	}
6614 }
6615 #else
6616 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6617 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6618 #endif /* CONFIG_SPARSEMEM */
6619 
6620 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6621 
6622 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6623 void __init set_pageblock_order(void)
6624 {
6625 	unsigned int order;
6626 
6627 	/* Check that pageblock_nr_pages has not already been setup */
6628 	if (pageblock_order)
6629 		return;
6630 
6631 	if (HPAGE_SHIFT > PAGE_SHIFT)
6632 		order = HUGETLB_PAGE_ORDER;
6633 	else
6634 		order = MAX_ORDER - 1;
6635 
6636 	/*
6637 	 * Assume the largest contiguous order of interest is a huge page.
6638 	 * This value may be variable depending on boot parameters on IA64 and
6639 	 * powerpc.
6640 	 */
6641 	pageblock_order = order;
6642 }
6643 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6644 
6645 /*
6646  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6647  * is unused as pageblock_order is set at compile-time. See
6648  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6649  * the kernel config
6650  */
6651 void __init set_pageblock_order(void)
6652 {
6653 }
6654 
6655 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6656 
6657 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6658 						unsigned long present_pages)
6659 {
6660 	unsigned long pages = spanned_pages;
6661 
6662 	/*
6663 	 * Provide a more accurate estimation if there are holes within
6664 	 * the zone and SPARSEMEM is in use. If there are holes within the
6665 	 * zone, each populated memory region may cost us one or two extra
6666 	 * memmap pages due to alignment because memmap pages for each
6667 	 * populated regions may not be naturally aligned on page boundary.
6668 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6669 	 */
6670 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6671 	    IS_ENABLED(CONFIG_SPARSEMEM))
6672 		pages = present_pages;
6673 
6674 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6675 }
6676 
6677 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6678 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6679 {
6680 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6681 
6682 	spin_lock_init(&ds_queue->split_queue_lock);
6683 	INIT_LIST_HEAD(&ds_queue->split_queue);
6684 	ds_queue->split_queue_len = 0;
6685 }
6686 #else
6687 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6688 #endif
6689 
6690 #ifdef CONFIG_COMPACTION
6691 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6692 {
6693 	init_waitqueue_head(&pgdat->kcompactd_wait);
6694 }
6695 #else
6696 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6697 #endif
6698 
6699 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6700 {
6701 	pgdat_resize_init(pgdat);
6702 
6703 	pgdat_init_split_queue(pgdat);
6704 	pgdat_init_kcompactd(pgdat);
6705 
6706 	init_waitqueue_head(&pgdat->kswapd_wait);
6707 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6708 
6709 	pgdat_page_ext_init(pgdat);
6710 	spin_lock_init(&pgdat->lru_lock);
6711 	lruvec_init(&pgdat->__lruvec);
6712 }
6713 
6714 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6715 							unsigned long remaining_pages)
6716 {
6717 	atomic_long_set(&zone->managed_pages, remaining_pages);
6718 	zone_set_nid(zone, nid);
6719 	zone->name = zone_names[idx];
6720 	zone->zone_pgdat = NODE_DATA(nid);
6721 	spin_lock_init(&zone->lock);
6722 	zone_seqlock_init(zone);
6723 	zone_pcp_init(zone);
6724 }
6725 
6726 /*
6727  * Set up the zone data structures
6728  * - init pgdat internals
6729  * - init all zones belonging to this node
6730  *
6731  * NOTE: this function is only called during memory hotplug
6732  */
6733 #ifdef CONFIG_MEMORY_HOTPLUG
6734 void __ref free_area_init_core_hotplug(int nid)
6735 {
6736 	enum zone_type z;
6737 	pg_data_t *pgdat = NODE_DATA(nid);
6738 
6739 	pgdat_init_internals(pgdat);
6740 	for (z = 0; z < MAX_NR_ZONES; z++)
6741 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6742 }
6743 #endif
6744 
6745 /*
6746  * Set up the zone data structures:
6747  *   - mark all pages reserved
6748  *   - mark all memory queues empty
6749  *   - clear the memory bitmaps
6750  *
6751  * NOTE: pgdat should get zeroed by caller.
6752  * NOTE: this function is only called during early init.
6753  */
6754 static void __init free_area_init_core(struct pglist_data *pgdat)
6755 {
6756 	enum zone_type j;
6757 	int nid = pgdat->node_id;
6758 
6759 	pgdat_init_internals(pgdat);
6760 	pgdat->per_cpu_nodestats = &boot_nodestats;
6761 
6762 	for (j = 0; j < MAX_NR_ZONES; j++) {
6763 		struct zone *zone = pgdat->node_zones + j;
6764 		unsigned long size, freesize, memmap_pages;
6765 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6766 
6767 		size = zone->spanned_pages;
6768 		freesize = zone->present_pages;
6769 
6770 		/*
6771 		 * Adjust freesize so that it accounts for how much memory
6772 		 * is used by this zone for memmap. This affects the watermark
6773 		 * and per-cpu initialisations
6774 		 */
6775 		memmap_pages = calc_memmap_size(size, freesize);
6776 		if (!is_highmem_idx(j)) {
6777 			if (freesize >= memmap_pages) {
6778 				freesize -= memmap_pages;
6779 				if (memmap_pages)
6780 					printk(KERN_DEBUG
6781 					       "  %s zone: %lu pages used for memmap\n",
6782 					       zone_names[j], memmap_pages);
6783 			} else
6784 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6785 					zone_names[j], memmap_pages, freesize);
6786 		}
6787 
6788 		/* Account for reserved pages */
6789 		if (j == 0 && freesize > dma_reserve) {
6790 			freesize -= dma_reserve;
6791 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6792 					zone_names[0], dma_reserve);
6793 		}
6794 
6795 		if (!is_highmem_idx(j))
6796 			nr_kernel_pages += freesize;
6797 		/* Charge for highmem memmap if there are enough kernel pages */
6798 		else if (nr_kernel_pages > memmap_pages * 2)
6799 			nr_kernel_pages -= memmap_pages;
6800 		nr_all_pages += freesize;
6801 
6802 		/*
6803 		 * Set an approximate value for lowmem here, it will be adjusted
6804 		 * when the bootmem allocator frees pages into the buddy system.
6805 		 * And all highmem pages will be managed by the buddy system.
6806 		 */
6807 		zone_init_internals(zone, j, nid, freesize);
6808 
6809 		if (!size)
6810 			continue;
6811 
6812 		set_pageblock_order();
6813 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6814 		init_currently_empty_zone(zone, zone_start_pfn, size);
6815 		memmap_init(size, nid, j, zone_start_pfn);
6816 	}
6817 }
6818 
6819 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6820 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6821 {
6822 	unsigned long __maybe_unused start = 0;
6823 	unsigned long __maybe_unused offset = 0;
6824 
6825 	/* Skip empty nodes */
6826 	if (!pgdat->node_spanned_pages)
6827 		return;
6828 
6829 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6830 	offset = pgdat->node_start_pfn - start;
6831 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6832 	if (!pgdat->node_mem_map) {
6833 		unsigned long size, end;
6834 		struct page *map;
6835 
6836 		/*
6837 		 * The zone's endpoints aren't required to be MAX_ORDER
6838 		 * aligned but the node_mem_map endpoints must be in order
6839 		 * for the buddy allocator to function correctly.
6840 		 */
6841 		end = pgdat_end_pfn(pgdat);
6842 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6843 		size =  (end - start) * sizeof(struct page);
6844 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6845 					  pgdat->node_id);
6846 		if (!map)
6847 			panic("Failed to allocate %ld bytes for node %d memory map\n",
6848 			      size, pgdat->node_id);
6849 		pgdat->node_mem_map = map + offset;
6850 	}
6851 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6852 				__func__, pgdat->node_id, (unsigned long)pgdat,
6853 				(unsigned long)pgdat->node_mem_map);
6854 #ifndef CONFIG_NEED_MULTIPLE_NODES
6855 	/*
6856 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6857 	 */
6858 	if (pgdat == NODE_DATA(0)) {
6859 		mem_map = NODE_DATA(0)->node_mem_map;
6860 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6861 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6862 			mem_map -= offset;
6863 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6864 	}
6865 #endif
6866 }
6867 #else
6868 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6869 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6870 
6871 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6872 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6873 {
6874 	pgdat->first_deferred_pfn = ULONG_MAX;
6875 }
6876 #else
6877 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6878 #endif
6879 
6880 void __init free_area_init_node(int nid, unsigned long *zones_size,
6881 				   unsigned long node_start_pfn,
6882 				   unsigned long *zholes_size)
6883 {
6884 	pg_data_t *pgdat = NODE_DATA(nid);
6885 	unsigned long start_pfn = 0;
6886 	unsigned long end_pfn = 0;
6887 
6888 	/* pg_data_t should be reset to zero when it's allocated */
6889 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6890 
6891 	pgdat->node_id = nid;
6892 	pgdat->node_start_pfn = node_start_pfn;
6893 	pgdat->per_cpu_nodestats = NULL;
6894 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6895 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6896 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6897 		(u64)start_pfn << PAGE_SHIFT,
6898 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6899 #else
6900 	start_pfn = node_start_pfn;
6901 #endif
6902 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6903 				  zones_size, zholes_size);
6904 
6905 	alloc_node_mem_map(pgdat);
6906 	pgdat_set_deferred_range(pgdat);
6907 
6908 	free_area_init_core(pgdat);
6909 }
6910 
6911 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6912 /*
6913  * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6914  * PageReserved(). Return the number of struct pages that were initialized.
6915  */
6916 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6917 {
6918 	unsigned long pfn;
6919 	u64 pgcnt = 0;
6920 
6921 	for (pfn = spfn; pfn < epfn; pfn++) {
6922 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6923 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6924 				+ pageblock_nr_pages - 1;
6925 			continue;
6926 		}
6927 		/*
6928 		 * Use a fake node/zone (0) for now. Some of these pages
6929 		 * (in memblock.reserved but not in memblock.memory) will
6930 		 * get re-initialized via reserve_bootmem_region() later.
6931 		 */
6932 		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6933 		__SetPageReserved(pfn_to_page(pfn));
6934 		pgcnt++;
6935 	}
6936 
6937 	return pgcnt;
6938 }
6939 
6940 /*
6941  * Only struct pages that are backed by physical memory are zeroed and
6942  * initialized by going through __init_single_page(). But, there are some
6943  * struct pages which are reserved in memblock allocator and their fields
6944  * may be accessed (for example page_to_pfn() on some configuration accesses
6945  * flags). We must explicitly initialize those struct pages.
6946  *
6947  * This function also addresses a similar issue where struct pages are left
6948  * uninitialized because the physical address range is not covered by
6949  * memblock.memory or memblock.reserved. That could happen when memblock
6950  * layout is manually configured via memmap=, or when the highest physical
6951  * address (max_pfn) does not end on a section boundary.
6952  */
6953 static void __init init_unavailable_mem(void)
6954 {
6955 	phys_addr_t start, end;
6956 	u64 i, pgcnt;
6957 	phys_addr_t next = 0;
6958 
6959 	/*
6960 	 * Loop through unavailable ranges not covered by memblock.memory.
6961 	 */
6962 	pgcnt = 0;
6963 	for_each_mem_range(i, &memblock.memory, NULL,
6964 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6965 		if (next < start)
6966 			pgcnt += init_unavailable_range(PFN_DOWN(next),
6967 							PFN_UP(start));
6968 		next = end;
6969 	}
6970 
6971 	/*
6972 	 * Early sections always have a fully populated memmap for the whole
6973 	 * section - see pfn_valid(). If the last section has holes at the
6974 	 * end and that section is marked "online", the memmap will be
6975 	 * considered initialized. Make sure that memmap has a well defined
6976 	 * state.
6977 	 */
6978 	pgcnt += init_unavailable_range(PFN_DOWN(next),
6979 					round_up(max_pfn, PAGES_PER_SECTION));
6980 
6981 	/*
6982 	 * Struct pages that do not have backing memory. This could be because
6983 	 * firmware is using some of this memory, or for some other reasons.
6984 	 */
6985 	if (pgcnt)
6986 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6987 }
6988 #else
6989 static inline void __init init_unavailable_mem(void)
6990 {
6991 }
6992 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6993 
6994 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6995 
6996 #if MAX_NUMNODES > 1
6997 /*
6998  * Figure out the number of possible node ids.
6999  */
7000 void __init setup_nr_node_ids(void)
7001 {
7002 	unsigned int highest;
7003 
7004 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7005 	nr_node_ids = highest + 1;
7006 }
7007 #endif
7008 
7009 /**
7010  * node_map_pfn_alignment - determine the maximum internode alignment
7011  *
7012  * This function should be called after node map is populated and sorted.
7013  * It calculates the maximum power of two alignment which can distinguish
7014  * all the nodes.
7015  *
7016  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7017  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7018  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7019  * shifted, 1GiB is enough and this function will indicate so.
7020  *
7021  * This is used to test whether pfn -> nid mapping of the chosen memory
7022  * model has fine enough granularity to avoid incorrect mapping for the
7023  * populated node map.
7024  *
7025  * Return: the determined alignment in pfn's.  0 if there is no alignment
7026  * requirement (single node).
7027  */
7028 unsigned long __init node_map_pfn_alignment(void)
7029 {
7030 	unsigned long accl_mask = 0, last_end = 0;
7031 	unsigned long start, end, mask;
7032 	int last_nid = NUMA_NO_NODE;
7033 	int i, nid;
7034 
7035 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7036 		if (!start || last_nid < 0 || last_nid == nid) {
7037 			last_nid = nid;
7038 			last_end = end;
7039 			continue;
7040 		}
7041 
7042 		/*
7043 		 * Start with a mask granular enough to pin-point to the
7044 		 * start pfn and tick off bits one-by-one until it becomes
7045 		 * too coarse to separate the current node from the last.
7046 		 */
7047 		mask = ~((1 << __ffs(start)) - 1);
7048 		while (mask && last_end <= (start & (mask << 1)))
7049 			mask <<= 1;
7050 
7051 		/* accumulate all internode masks */
7052 		accl_mask |= mask;
7053 	}
7054 
7055 	/* convert mask to number of pages */
7056 	return ~accl_mask + 1;
7057 }
7058 
7059 /* Find the lowest pfn for a node */
7060 static unsigned long __init find_min_pfn_for_node(int nid)
7061 {
7062 	unsigned long min_pfn = ULONG_MAX;
7063 	unsigned long start_pfn;
7064 	int i;
7065 
7066 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7067 		min_pfn = min(min_pfn, start_pfn);
7068 
7069 	if (min_pfn == ULONG_MAX) {
7070 		pr_warn("Could not find start_pfn for node %d\n", nid);
7071 		return 0;
7072 	}
7073 
7074 	return min_pfn;
7075 }
7076 
7077 /**
7078  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7079  *
7080  * Return: the minimum PFN based on information provided via
7081  * memblock_set_node().
7082  */
7083 unsigned long __init find_min_pfn_with_active_regions(void)
7084 {
7085 	return find_min_pfn_for_node(MAX_NUMNODES);
7086 }
7087 
7088 /*
7089  * early_calculate_totalpages()
7090  * Sum pages in active regions for movable zone.
7091  * Populate N_MEMORY for calculating usable_nodes.
7092  */
7093 static unsigned long __init early_calculate_totalpages(void)
7094 {
7095 	unsigned long totalpages = 0;
7096 	unsigned long start_pfn, end_pfn;
7097 	int i, nid;
7098 
7099 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7100 		unsigned long pages = end_pfn - start_pfn;
7101 
7102 		totalpages += pages;
7103 		if (pages)
7104 			node_set_state(nid, N_MEMORY);
7105 	}
7106 	return totalpages;
7107 }
7108 
7109 /*
7110  * Find the PFN the Movable zone begins in each node. Kernel memory
7111  * is spread evenly between nodes as long as the nodes have enough
7112  * memory. When they don't, some nodes will have more kernelcore than
7113  * others
7114  */
7115 static void __init find_zone_movable_pfns_for_nodes(void)
7116 {
7117 	int i, nid;
7118 	unsigned long usable_startpfn;
7119 	unsigned long kernelcore_node, kernelcore_remaining;
7120 	/* save the state before borrow the nodemask */
7121 	nodemask_t saved_node_state = node_states[N_MEMORY];
7122 	unsigned long totalpages = early_calculate_totalpages();
7123 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7124 	struct memblock_region *r;
7125 
7126 	/* Need to find movable_zone earlier when movable_node is specified. */
7127 	find_usable_zone_for_movable();
7128 
7129 	/*
7130 	 * If movable_node is specified, ignore kernelcore and movablecore
7131 	 * options.
7132 	 */
7133 	if (movable_node_is_enabled()) {
7134 		for_each_memblock(memory, r) {
7135 			if (!memblock_is_hotpluggable(r))
7136 				continue;
7137 
7138 			nid = r->nid;
7139 
7140 			usable_startpfn = PFN_DOWN(r->base);
7141 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7142 				min(usable_startpfn, zone_movable_pfn[nid]) :
7143 				usable_startpfn;
7144 		}
7145 
7146 		goto out2;
7147 	}
7148 
7149 	/*
7150 	 * If kernelcore=mirror is specified, ignore movablecore option
7151 	 */
7152 	if (mirrored_kernelcore) {
7153 		bool mem_below_4gb_not_mirrored = false;
7154 
7155 		for_each_memblock(memory, r) {
7156 			if (memblock_is_mirror(r))
7157 				continue;
7158 
7159 			nid = r->nid;
7160 
7161 			usable_startpfn = memblock_region_memory_base_pfn(r);
7162 
7163 			if (usable_startpfn < 0x100000) {
7164 				mem_below_4gb_not_mirrored = true;
7165 				continue;
7166 			}
7167 
7168 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7169 				min(usable_startpfn, zone_movable_pfn[nid]) :
7170 				usable_startpfn;
7171 		}
7172 
7173 		if (mem_below_4gb_not_mirrored)
7174 			pr_warn("This configuration results in unmirrored kernel memory.");
7175 
7176 		goto out2;
7177 	}
7178 
7179 	/*
7180 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7181 	 * amount of necessary memory.
7182 	 */
7183 	if (required_kernelcore_percent)
7184 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7185 				       10000UL;
7186 	if (required_movablecore_percent)
7187 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7188 					10000UL;
7189 
7190 	/*
7191 	 * If movablecore= was specified, calculate what size of
7192 	 * kernelcore that corresponds so that memory usable for
7193 	 * any allocation type is evenly spread. If both kernelcore
7194 	 * and movablecore are specified, then the value of kernelcore
7195 	 * will be used for required_kernelcore if it's greater than
7196 	 * what movablecore would have allowed.
7197 	 */
7198 	if (required_movablecore) {
7199 		unsigned long corepages;
7200 
7201 		/*
7202 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7203 		 * was requested by the user
7204 		 */
7205 		required_movablecore =
7206 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7207 		required_movablecore = min(totalpages, required_movablecore);
7208 		corepages = totalpages - required_movablecore;
7209 
7210 		required_kernelcore = max(required_kernelcore, corepages);
7211 	}
7212 
7213 	/*
7214 	 * If kernelcore was not specified or kernelcore size is larger
7215 	 * than totalpages, there is no ZONE_MOVABLE.
7216 	 */
7217 	if (!required_kernelcore || required_kernelcore >= totalpages)
7218 		goto out;
7219 
7220 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7221 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7222 
7223 restart:
7224 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7225 	kernelcore_node = required_kernelcore / usable_nodes;
7226 	for_each_node_state(nid, N_MEMORY) {
7227 		unsigned long start_pfn, end_pfn;
7228 
7229 		/*
7230 		 * Recalculate kernelcore_node if the division per node
7231 		 * now exceeds what is necessary to satisfy the requested
7232 		 * amount of memory for the kernel
7233 		 */
7234 		if (required_kernelcore < kernelcore_node)
7235 			kernelcore_node = required_kernelcore / usable_nodes;
7236 
7237 		/*
7238 		 * As the map is walked, we track how much memory is usable
7239 		 * by the kernel using kernelcore_remaining. When it is
7240 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7241 		 */
7242 		kernelcore_remaining = kernelcore_node;
7243 
7244 		/* Go through each range of PFNs within this node */
7245 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7246 			unsigned long size_pages;
7247 
7248 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7249 			if (start_pfn >= end_pfn)
7250 				continue;
7251 
7252 			/* Account for what is only usable for kernelcore */
7253 			if (start_pfn < usable_startpfn) {
7254 				unsigned long kernel_pages;
7255 				kernel_pages = min(end_pfn, usable_startpfn)
7256 								- start_pfn;
7257 
7258 				kernelcore_remaining -= min(kernel_pages,
7259 							kernelcore_remaining);
7260 				required_kernelcore -= min(kernel_pages,
7261 							required_kernelcore);
7262 
7263 				/* Continue if range is now fully accounted */
7264 				if (end_pfn <= usable_startpfn) {
7265 
7266 					/*
7267 					 * Push zone_movable_pfn to the end so
7268 					 * that if we have to rebalance
7269 					 * kernelcore across nodes, we will
7270 					 * not double account here
7271 					 */
7272 					zone_movable_pfn[nid] = end_pfn;
7273 					continue;
7274 				}
7275 				start_pfn = usable_startpfn;
7276 			}
7277 
7278 			/*
7279 			 * The usable PFN range for ZONE_MOVABLE is from
7280 			 * start_pfn->end_pfn. Calculate size_pages as the
7281 			 * number of pages used as kernelcore
7282 			 */
7283 			size_pages = end_pfn - start_pfn;
7284 			if (size_pages > kernelcore_remaining)
7285 				size_pages = kernelcore_remaining;
7286 			zone_movable_pfn[nid] = start_pfn + size_pages;
7287 
7288 			/*
7289 			 * Some kernelcore has been met, update counts and
7290 			 * break if the kernelcore for this node has been
7291 			 * satisfied
7292 			 */
7293 			required_kernelcore -= min(required_kernelcore,
7294 								size_pages);
7295 			kernelcore_remaining -= size_pages;
7296 			if (!kernelcore_remaining)
7297 				break;
7298 		}
7299 	}
7300 
7301 	/*
7302 	 * If there is still required_kernelcore, we do another pass with one
7303 	 * less node in the count. This will push zone_movable_pfn[nid] further
7304 	 * along on the nodes that still have memory until kernelcore is
7305 	 * satisfied
7306 	 */
7307 	usable_nodes--;
7308 	if (usable_nodes && required_kernelcore > usable_nodes)
7309 		goto restart;
7310 
7311 out2:
7312 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7313 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7314 		zone_movable_pfn[nid] =
7315 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7316 
7317 out:
7318 	/* restore the node_state */
7319 	node_states[N_MEMORY] = saved_node_state;
7320 }
7321 
7322 /* Any regular or high memory on that node ? */
7323 static void check_for_memory(pg_data_t *pgdat, int nid)
7324 {
7325 	enum zone_type zone_type;
7326 
7327 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7328 		struct zone *zone = &pgdat->node_zones[zone_type];
7329 		if (populated_zone(zone)) {
7330 			if (IS_ENABLED(CONFIG_HIGHMEM))
7331 				node_set_state(nid, N_HIGH_MEMORY);
7332 			if (zone_type <= ZONE_NORMAL)
7333 				node_set_state(nid, N_NORMAL_MEMORY);
7334 			break;
7335 		}
7336 	}
7337 }
7338 
7339 /**
7340  * free_area_init_nodes - Initialise all pg_data_t and zone data
7341  * @max_zone_pfn: an array of max PFNs for each zone
7342  *
7343  * This will call free_area_init_node() for each active node in the system.
7344  * Using the page ranges provided by memblock_set_node(), the size of each
7345  * zone in each node and their holes is calculated. If the maximum PFN
7346  * between two adjacent zones match, it is assumed that the zone is empty.
7347  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7348  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7349  * starts where the previous one ended. For example, ZONE_DMA32 starts
7350  * at arch_max_dma_pfn.
7351  */
7352 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7353 {
7354 	unsigned long start_pfn, end_pfn;
7355 	int i, nid;
7356 
7357 	/* Record where the zone boundaries are */
7358 	memset(arch_zone_lowest_possible_pfn, 0,
7359 				sizeof(arch_zone_lowest_possible_pfn));
7360 	memset(arch_zone_highest_possible_pfn, 0,
7361 				sizeof(arch_zone_highest_possible_pfn));
7362 
7363 	start_pfn = find_min_pfn_with_active_regions();
7364 
7365 	for (i = 0; i < MAX_NR_ZONES; i++) {
7366 		if (i == ZONE_MOVABLE)
7367 			continue;
7368 
7369 		end_pfn = max(max_zone_pfn[i], start_pfn);
7370 		arch_zone_lowest_possible_pfn[i] = start_pfn;
7371 		arch_zone_highest_possible_pfn[i] = end_pfn;
7372 
7373 		start_pfn = end_pfn;
7374 	}
7375 
7376 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7377 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7378 	find_zone_movable_pfns_for_nodes();
7379 
7380 	/* Print out the zone ranges */
7381 	pr_info("Zone ranges:\n");
7382 	for (i = 0; i < MAX_NR_ZONES; i++) {
7383 		if (i == ZONE_MOVABLE)
7384 			continue;
7385 		pr_info("  %-8s ", zone_names[i]);
7386 		if (arch_zone_lowest_possible_pfn[i] ==
7387 				arch_zone_highest_possible_pfn[i])
7388 			pr_cont("empty\n");
7389 		else
7390 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7391 				(u64)arch_zone_lowest_possible_pfn[i]
7392 					<< PAGE_SHIFT,
7393 				((u64)arch_zone_highest_possible_pfn[i]
7394 					<< PAGE_SHIFT) - 1);
7395 	}
7396 
7397 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7398 	pr_info("Movable zone start for each node\n");
7399 	for (i = 0; i < MAX_NUMNODES; i++) {
7400 		if (zone_movable_pfn[i])
7401 			pr_info("  Node %d: %#018Lx\n", i,
7402 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7403 	}
7404 
7405 	/*
7406 	 * Print out the early node map, and initialize the
7407 	 * subsection-map relative to active online memory ranges to
7408 	 * enable future "sub-section" extensions of the memory map.
7409 	 */
7410 	pr_info("Early memory node ranges\n");
7411 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7412 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7413 			(u64)start_pfn << PAGE_SHIFT,
7414 			((u64)end_pfn << PAGE_SHIFT) - 1);
7415 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7416 	}
7417 
7418 	/* Initialise every node */
7419 	mminit_verify_pageflags_layout();
7420 	setup_nr_node_ids();
7421 	init_unavailable_mem();
7422 	for_each_online_node(nid) {
7423 		pg_data_t *pgdat = NODE_DATA(nid);
7424 		free_area_init_node(nid, NULL,
7425 				find_min_pfn_for_node(nid), NULL);
7426 
7427 		/* Any memory on that node */
7428 		if (pgdat->node_present_pages)
7429 			node_set_state(nid, N_MEMORY);
7430 		check_for_memory(pgdat, nid);
7431 	}
7432 }
7433 
7434 static int __init cmdline_parse_core(char *p, unsigned long *core,
7435 				     unsigned long *percent)
7436 {
7437 	unsigned long long coremem;
7438 	char *endptr;
7439 
7440 	if (!p)
7441 		return -EINVAL;
7442 
7443 	/* Value may be a percentage of total memory, otherwise bytes */
7444 	coremem = simple_strtoull(p, &endptr, 0);
7445 	if (*endptr == '%') {
7446 		/* Paranoid check for percent values greater than 100 */
7447 		WARN_ON(coremem > 100);
7448 
7449 		*percent = coremem;
7450 	} else {
7451 		coremem = memparse(p, &p);
7452 		/* Paranoid check that UL is enough for the coremem value */
7453 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7454 
7455 		*core = coremem >> PAGE_SHIFT;
7456 		*percent = 0UL;
7457 	}
7458 	return 0;
7459 }
7460 
7461 /*
7462  * kernelcore=size sets the amount of memory for use for allocations that
7463  * cannot be reclaimed or migrated.
7464  */
7465 static int __init cmdline_parse_kernelcore(char *p)
7466 {
7467 	/* parse kernelcore=mirror */
7468 	if (parse_option_str(p, "mirror")) {
7469 		mirrored_kernelcore = true;
7470 		return 0;
7471 	}
7472 
7473 	return cmdline_parse_core(p, &required_kernelcore,
7474 				  &required_kernelcore_percent);
7475 }
7476 
7477 /*
7478  * movablecore=size sets the amount of memory for use for allocations that
7479  * can be reclaimed or migrated.
7480  */
7481 static int __init cmdline_parse_movablecore(char *p)
7482 {
7483 	return cmdline_parse_core(p, &required_movablecore,
7484 				  &required_movablecore_percent);
7485 }
7486 
7487 early_param("kernelcore", cmdline_parse_kernelcore);
7488 early_param("movablecore", cmdline_parse_movablecore);
7489 
7490 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7491 
7492 void adjust_managed_page_count(struct page *page, long count)
7493 {
7494 	atomic_long_add(count, &page_zone(page)->managed_pages);
7495 	totalram_pages_add(count);
7496 #ifdef CONFIG_HIGHMEM
7497 	if (PageHighMem(page))
7498 		totalhigh_pages_add(count);
7499 #endif
7500 }
7501 EXPORT_SYMBOL(adjust_managed_page_count);
7502 
7503 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7504 {
7505 	void *pos;
7506 	unsigned long pages = 0;
7507 
7508 	start = (void *)PAGE_ALIGN((unsigned long)start);
7509 	end = (void *)((unsigned long)end & PAGE_MASK);
7510 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7511 		struct page *page = virt_to_page(pos);
7512 		void *direct_map_addr;
7513 
7514 		/*
7515 		 * 'direct_map_addr' might be different from 'pos'
7516 		 * because some architectures' virt_to_page()
7517 		 * work with aliases.  Getting the direct map
7518 		 * address ensures that we get a _writeable_
7519 		 * alias for the memset().
7520 		 */
7521 		direct_map_addr = page_address(page);
7522 		if ((unsigned int)poison <= 0xFF)
7523 			memset(direct_map_addr, poison, PAGE_SIZE);
7524 
7525 		free_reserved_page(page);
7526 	}
7527 
7528 	if (pages && s)
7529 		pr_info("Freeing %s memory: %ldK\n",
7530 			s, pages << (PAGE_SHIFT - 10));
7531 
7532 	return pages;
7533 }
7534 
7535 #ifdef	CONFIG_HIGHMEM
7536 void free_highmem_page(struct page *page)
7537 {
7538 	__free_reserved_page(page);
7539 	totalram_pages_inc();
7540 	atomic_long_inc(&page_zone(page)->managed_pages);
7541 	totalhigh_pages_inc();
7542 }
7543 #endif
7544 
7545 
7546 void __init mem_init_print_info(const char *str)
7547 {
7548 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7549 	unsigned long init_code_size, init_data_size;
7550 
7551 	physpages = get_num_physpages();
7552 	codesize = _etext - _stext;
7553 	datasize = _edata - _sdata;
7554 	rosize = __end_rodata - __start_rodata;
7555 	bss_size = __bss_stop - __bss_start;
7556 	init_data_size = __init_end - __init_begin;
7557 	init_code_size = _einittext - _sinittext;
7558 
7559 	/*
7560 	 * Detect special cases and adjust section sizes accordingly:
7561 	 * 1) .init.* may be embedded into .data sections
7562 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7563 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7564 	 * 3) .rodata.* may be embedded into .text or .data sections.
7565 	 */
7566 #define adj_init_size(start, end, size, pos, adj) \
7567 	do { \
7568 		if (start <= pos && pos < end && size > adj) \
7569 			size -= adj; \
7570 	} while (0)
7571 
7572 	adj_init_size(__init_begin, __init_end, init_data_size,
7573 		     _sinittext, init_code_size);
7574 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7575 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7576 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7577 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7578 
7579 #undef	adj_init_size
7580 
7581 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7582 #ifdef	CONFIG_HIGHMEM
7583 		", %luK highmem"
7584 #endif
7585 		"%s%s)\n",
7586 		nr_free_pages() << (PAGE_SHIFT - 10),
7587 		physpages << (PAGE_SHIFT - 10),
7588 		codesize >> 10, datasize >> 10, rosize >> 10,
7589 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7590 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7591 		totalcma_pages << (PAGE_SHIFT - 10),
7592 #ifdef	CONFIG_HIGHMEM
7593 		totalhigh_pages() << (PAGE_SHIFT - 10),
7594 #endif
7595 		str ? ", " : "", str ? str : "");
7596 }
7597 
7598 /**
7599  * set_dma_reserve - set the specified number of pages reserved in the first zone
7600  * @new_dma_reserve: The number of pages to mark reserved
7601  *
7602  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7603  * In the DMA zone, a significant percentage may be consumed by kernel image
7604  * and other unfreeable allocations which can skew the watermarks badly. This
7605  * function may optionally be used to account for unfreeable pages in the
7606  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7607  * smaller per-cpu batchsize.
7608  */
7609 void __init set_dma_reserve(unsigned long new_dma_reserve)
7610 {
7611 	dma_reserve = new_dma_reserve;
7612 }
7613 
7614 void __init free_area_init(unsigned long *zones_size)
7615 {
7616 	init_unavailable_mem();
7617 	free_area_init_node(0, zones_size,
7618 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7619 }
7620 
7621 static int page_alloc_cpu_dead(unsigned int cpu)
7622 {
7623 
7624 	lru_add_drain_cpu(cpu);
7625 	drain_pages(cpu);
7626 
7627 	/*
7628 	 * Spill the event counters of the dead processor
7629 	 * into the current processors event counters.
7630 	 * This artificially elevates the count of the current
7631 	 * processor.
7632 	 */
7633 	vm_events_fold_cpu(cpu);
7634 
7635 	/*
7636 	 * Zero the differential counters of the dead processor
7637 	 * so that the vm statistics are consistent.
7638 	 *
7639 	 * This is only okay since the processor is dead and cannot
7640 	 * race with what we are doing.
7641 	 */
7642 	cpu_vm_stats_fold(cpu);
7643 	return 0;
7644 }
7645 
7646 #ifdef CONFIG_NUMA
7647 int hashdist = HASHDIST_DEFAULT;
7648 
7649 static int __init set_hashdist(char *str)
7650 {
7651 	if (!str)
7652 		return 0;
7653 	hashdist = simple_strtoul(str, &str, 0);
7654 	return 1;
7655 }
7656 __setup("hashdist=", set_hashdist);
7657 #endif
7658 
7659 void __init page_alloc_init(void)
7660 {
7661 	int ret;
7662 
7663 #ifdef CONFIG_NUMA
7664 	if (num_node_state(N_MEMORY) == 1)
7665 		hashdist = 0;
7666 #endif
7667 
7668 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7669 					"mm/page_alloc:dead", NULL,
7670 					page_alloc_cpu_dead);
7671 	WARN_ON(ret < 0);
7672 }
7673 
7674 /*
7675  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7676  *	or min_free_kbytes changes.
7677  */
7678 static void calculate_totalreserve_pages(void)
7679 {
7680 	struct pglist_data *pgdat;
7681 	unsigned long reserve_pages = 0;
7682 	enum zone_type i, j;
7683 
7684 	for_each_online_pgdat(pgdat) {
7685 
7686 		pgdat->totalreserve_pages = 0;
7687 
7688 		for (i = 0; i < MAX_NR_ZONES; i++) {
7689 			struct zone *zone = pgdat->node_zones + i;
7690 			long max = 0;
7691 			unsigned long managed_pages = zone_managed_pages(zone);
7692 
7693 			/* Find valid and maximum lowmem_reserve in the zone */
7694 			for (j = i; j < MAX_NR_ZONES; j++) {
7695 				if (zone->lowmem_reserve[j] > max)
7696 					max = zone->lowmem_reserve[j];
7697 			}
7698 
7699 			/* we treat the high watermark as reserved pages. */
7700 			max += high_wmark_pages(zone);
7701 
7702 			if (max > managed_pages)
7703 				max = managed_pages;
7704 
7705 			pgdat->totalreserve_pages += max;
7706 
7707 			reserve_pages += max;
7708 		}
7709 	}
7710 	totalreserve_pages = reserve_pages;
7711 }
7712 
7713 /*
7714  * setup_per_zone_lowmem_reserve - called whenever
7715  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7716  *	has a correct pages reserved value, so an adequate number of
7717  *	pages are left in the zone after a successful __alloc_pages().
7718  */
7719 static void setup_per_zone_lowmem_reserve(void)
7720 {
7721 	struct pglist_data *pgdat;
7722 	enum zone_type j, idx;
7723 
7724 	for_each_online_pgdat(pgdat) {
7725 		for (j = 0; j < MAX_NR_ZONES; j++) {
7726 			struct zone *zone = pgdat->node_zones + j;
7727 			unsigned long managed_pages = zone_managed_pages(zone);
7728 
7729 			zone->lowmem_reserve[j] = 0;
7730 
7731 			idx = j;
7732 			while (idx) {
7733 				struct zone *lower_zone;
7734 
7735 				idx--;
7736 				lower_zone = pgdat->node_zones + idx;
7737 
7738 				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7739 					sysctl_lowmem_reserve_ratio[idx] = 0;
7740 					lower_zone->lowmem_reserve[j] = 0;
7741 				} else {
7742 					lower_zone->lowmem_reserve[j] =
7743 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7744 				}
7745 				managed_pages += zone_managed_pages(lower_zone);
7746 			}
7747 		}
7748 	}
7749 
7750 	/* update totalreserve_pages */
7751 	calculate_totalreserve_pages();
7752 }
7753 
7754 static void __setup_per_zone_wmarks(void)
7755 {
7756 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7757 	unsigned long lowmem_pages = 0;
7758 	struct zone *zone;
7759 	unsigned long flags;
7760 
7761 	/* Calculate total number of !ZONE_HIGHMEM pages */
7762 	for_each_zone(zone) {
7763 		if (!is_highmem(zone))
7764 			lowmem_pages += zone_managed_pages(zone);
7765 	}
7766 
7767 	for_each_zone(zone) {
7768 		u64 tmp;
7769 
7770 		spin_lock_irqsave(&zone->lock, flags);
7771 		tmp = (u64)pages_min * zone_managed_pages(zone);
7772 		do_div(tmp, lowmem_pages);
7773 		if (is_highmem(zone)) {
7774 			/*
7775 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7776 			 * need highmem pages, so cap pages_min to a small
7777 			 * value here.
7778 			 *
7779 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7780 			 * deltas control async page reclaim, and so should
7781 			 * not be capped for highmem.
7782 			 */
7783 			unsigned long min_pages;
7784 
7785 			min_pages = zone_managed_pages(zone) / 1024;
7786 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7787 			zone->_watermark[WMARK_MIN] = min_pages;
7788 		} else {
7789 			/*
7790 			 * If it's a lowmem zone, reserve a number of pages
7791 			 * proportionate to the zone's size.
7792 			 */
7793 			zone->_watermark[WMARK_MIN] = tmp;
7794 		}
7795 
7796 		/*
7797 		 * Set the kswapd watermarks distance according to the
7798 		 * scale factor in proportion to available memory, but
7799 		 * ensure a minimum size on small systems.
7800 		 */
7801 		tmp = max_t(u64, tmp >> 2,
7802 			    mult_frac(zone_managed_pages(zone),
7803 				      watermark_scale_factor, 10000));
7804 
7805 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7806 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7807 		zone->watermark_boost = 0;
7808 
7809 		spin_unlock_irqrestore(&zone->lock, flags);
7810 	}
7811 
7812 	/* update totalreserve_pages */
7813 	calculate_totalreserve_pages();
7814 }
7815 
7816 /**
7817  * setup_per_zone_wmarks - called when min_free_kbytes changes
7818  * or when memory is hot-{added|removed}
7819  *
7820  * Ensures that the watermark[min,low,high] values for each zone are set
7821  * correctly with respect to min_free_kbytes.
7822  */
7823 void setup_per_zone_wmarks(void)
7824 {
7825 	static DEFINE_SPINLOCK(lock);
7826 
7827 	spin_lock(&lock);
7828 	__setup_per_zone_wmarks();
7829 	spin_unlock(&lock);
7830 }
7831 
7832 /*
7833  * Initialise min_free_kbytes.
7834  *
7835  * For small machines we want it small (128k min).  For large machines
7836  * we want it large (64MB max).  But it is not linear, because network
7837  * bandwidth does not increase linearly with machine size.  We use
7838  *
7839  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7840  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7841  *
7842  * which yields
7843  *
7844  * 16MB:	512k
7845  * 32MB:	724k
7846  * 64MB:	1024k
7847  * 128MB:	1448k
7848  * 256MB:	2048k
7849  * 512MB:	2896k
7850  * 1024MB:	4096k
7851  * 2048MB:	5792k
7852  * 4096MB:	8192k
7853  * 8192MB:	11584k
7854  * 16384MB:	16384k
7855  */
7856 int __meminit init_per_zone_wmark_min(void)
7857 {
7858 	unsigned long lowmem_kbytes;
7859 	int new_min_free_kbytes;
7860 
7861 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7862 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7863 
7864 	if (new_min_free_kbytes > user_min_free_kbytes) {
7865 		min_free_kbytes = new_min_free_kbytes;
7866 		if (min_free_kbytes < 128)
7867 			min_free_kbytes = 128;
7868 		if (min_free_kbytes > 262144)
7869 			min_free_kbytes = 262144;
7870 	} else {
7871 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7872 				new_min_free_kbytes, user_min_free_kbytes);
7873 	}
7874 	setup_per_zone_wmarks();
7875 	refresh_zone_stat_thresholds();
7876 	setup_per_zone_lowmem_reserve();
7877 
7878 #ifdef CONFIG_NUMA
7879 	setup_min_unmapped_ratio();
7880 	setup_min_slab_ratio();
7881 #endif
7882 
7883 	return 0;
7884 }
7885 core_initcall(init_per_zone_wmark_min)
7886 
7887 /*
7888  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7889  *	that we can call two helper functions whenever min_free_kbytes
7890  *	changes.
7891  */
7892 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7893 	void __user *buffer, size_t *length, loff_t *ppos)
7894 {
7895 	int rc;
7896 
7897 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7898 	if (rc)
7899 		return rc;
7900 
7901 	if (write) {
7902 		user_min_free_kbytes = min_free_kbytes;
7903 		setup_per_zone_wmarks();
7904 	}
7905 	return 0;
7906 }
7907 
7908 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7909 	void __user *buffer, size_t *length, loff_t *ppos)
7910 {
7911 	int rc;
7912 
7913 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7914 	if (rc)
7915 		return rc;
7916 
7917 	return 0;
7918 }
7919 
7920 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7921 	void __user *buffer, size_t *length, loff_t *ppos)
7922 {
7923 	int rc;
7924 
7925 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7926 	if (rc)
7927 		return rc;
7928 
7929 	if (write)
7930 		setup_per_zone_wmarks();
7931 
7932 	return 0;
7933 }
7934 
7935 #ifdef CONFIG_NUMA
7936 static void setup_min_unmapped_ratio(void)
7937 {
7938 	pg_data_t *pgdat;
7939 	struct zone *zone;
7940 
7941 	for_each_online_pgdat(pgdat)
7942 		pgdat->min_unmapped_pages = 0;
7943 
7944 	for_each_zone(zone)
7945 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7946 						         sysctl_min_unmapped_ratio) / 100;
7947 }
7948 
7949 
7950 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7951 	void __user *buffer, size_t *length, loff_t *ppos)
7952 {
7953 	int rc;
7954 
7955 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7956 	if (rc)
7957 		return rc;
7958 
7959 	setup_min_unmapped_ratio();
7960 
7961 	return 0;
7962 }
7963 
7964 static void setup_min_slab_ratio(void)
7965 {
7966 	pg_data_t *pgdat;
7967 	struct zone *zone;
7968 
7969 	for_each_online_pgdat(pgdat)
7970 		pgdat->min_slab_pages = 0;
7971 
7972 	for_each_zone(zone)
7973 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7974 						     sysctl_min_slab_ratio) / 100;
7975 }
7976 
7977 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7978 	void __user *buffer, size_t *length, loff_t *ppos)
7979 {
7980 	int rc;
7981 
7982 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7983 	if (rc)
7984 		return rc;
7985 
7986 	setup_min_slab_ratio();
7987 
7988 	return 0;
7989 }
7990 #endif
7991 
7992 /*
7993  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7994  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7995  *	whenever sysctl_lowmem_reserve_ratio changes.
7996  *
7997  * The reserve ratio obviously has absolutely no relation with the
7998  * minimum watermarks. The lowmem reserve ratio can only make sense
7999  * if in function of the boot time zone sizes.
8000  */
8001 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8002 	void __user *buffer, size_t *length, loff_t *ppos)
8003 {
8004 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8005 	setup_per_zone_lowmem_reserve();
8006 	return 0;
8007 }
8008 
8009 static void __zone_pcp_update(struct zone *zone)
8010 {
8011 	unsigned int cpu;
8012 
8013 	for_each_possible_cpu(cpu)
8014 		pageset_set_high_and_batch(zone,
8015 				per_cpu_ptr(zone->pageset, cpu));
8016 }
8017 
8018 /*
8019  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8020  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8021  * pagelist can have before it gets flushed back to buddy allocator.
8022  */
8023 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8024 	void __user *buffer, size_t *length, loff_t *ppos)
8025 {
8026 	struct zone *zone;
8027 	int old_percpu_pagelist_fraction;
8028 	int ret;
8029 
8030 	mutex_lock(&pcp_batch_high_lock);
8031 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8032 
8033 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8034 	if (!write || ret < 0)
8035 		goto out;
8036 
8037 	/* Sanity checking to avoid pcp imbalance */
8038 	if (percpu_pagelist_fraction &&
8039 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8040 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8041 		ret = -EINVAL;
8042 		goto out;
8043 	}
8044 
8045 	/* No change? */
8046 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8047 		goto out;
8048 
8049 	for_each_populated_zone(zone)
8050 		__zone_pcp_update(zone);
8051 out:
8052 	mutex_unlock(&pcp_batch_high_lock);
8053 	return ret;
8054 }
8055 
8056 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8057 /*
8058  * Returns the number of pages that arch has reserved but
8059  * is not known to alloc_large_system_hash().
8060  */
8061 static unsigned long __init arch_reserved_kernel_pages(void)
8062 {
8063 	return 0;
8064 }
8065 #endif
8066 
8067 /*
8068  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8069  * machines. As memory size is increased the scale is also increased but at
8070  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8071  * quadruples the scale is increased by one, which means the size of hash table
8072  * only doubles, instead of quadrupling as well.
8073  * Because 32-bit systems cannot have large physical memory, where this scaling
8074  * makes sense, it is disabled on such platforms.
8075  */
8076 #if __BITS_PER_LONG > 32
8077 #define ADAPT_SCALE_BASE	(64ul << 30)
8078 #define ADAPT_SCALE_SHIFT	2
8079 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8080 #endif
8081 
8082 /*
8083  * allocate a large system hash table from bootmem
8084  * - it is assumed that the hash table must contain an exact power-of-2
8085  *   quantity of entries
8086  * - limit is the number of hash buckets, not the total allocation size
8087  */
8088 void *__init alloc_large_system_hash(const char *tablename,
8089 				     unsigned long bucketsize,
8090 				     unsigned long numentries,
8091 				     int scale,
8092 				     int flags,
8093 				     unsigned int *_hash_shift,
8094 				     unsigned int *_hash_mask,
8095 				     unsigned long low_limit,
8096 				     unsigned long high_limit)
8097 {
8098 	unsigned long long max = high_limit;
8099 	unsigned long log2qty, size;
8100 	void *table = NULL;
8101 	gfp_t gfp_flags;
8102 	bool virt;
8103 
8104 	/* allow the kernel cmdline to have a say */
8105 	if (!numentries) {
8106 		/* round applicable memory size up to nearest megabyte */
8107 		numentries = nr_kernel_pages;
8108 		numentries -= arch_reserved_kernel_pages();
8109 
8110 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8111 		if (PAGE_SHIFT < 20)
8112 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8113 
8114 #if __BITS_PER_LONG > 32
8115 		if (!high_limit) {
8116 			unsigned long adapt;
8117 
8118 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8119 			     adapt <<= ADAPT_SCALE_SHIFT)
8120 				scale++;
8121 		}
8122 #endif
8123 
8124 		/* limit to 1 bucket per 2^scale bytes of low memory */
8125 		if (scale > PAGE_SHIFT)
8126 			numentries >>= (scale - PAGE_SHIFT);
8127 		else
8128 			numentries <<= (PAGE_SHIFT - scale);
8129 
8130 		/* Make sure we've got at least a 0-order allocation.. */
8131 		if (unlikely(flags & HASH_SMALL)) {
8132 			/* Makes no sense without HASH_EARLY */
8133 			WARN_ON(!(flags & HASH_EARLY));
8134 			if (!(numentries >> *_hash_shift)) {
8135 				numentries = 1UL << *_hash_shift;
8136 				BUG_ON(!numentries);
8137 			}
8138 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8139 			numentries = PAGE_SIZE / bucketsize;
8140 	}
8141 	numentries = roundup_pow_of_two(numentries);
8142 
8143 	/* limit allocation size to 1/16 total memory by default */
8144 	if (max == 0) {
8145 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8146 		do_div(max, bucketsize);
8147 	}
8148 	max = min(max, 0x80000000ULL);
8149 
8150 	if (numentries < low_limit)
8151 		numentries = low_limit;
8152 	if (numentries > max)
8153 		numentries = max;
8154 
8155 	log2qty = ilog2(numentries);
8156 
8157 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8158 	do {
8159 		virt = false;
8160 		size = bucketsize << log2qty;
8161 		if (flags & HASH_EARLY) {
8162 			if (flags & HASH_ZERO)
8163 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8164 			else
8165 				table = memblock_alloc_raw(size,
8166 							   SMP_CACHE_BYTES);
8167 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8168 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8169 			virt = true;
8170 		} else {
8171 			/*
8172 			 * If bucketsize is not a power-of-two, we may free
8173 			 * some pages at the end of hash table which
8174 			 * alloc_pages_exact() automatically does
8175 			 */
8176 			table = alloc_pages_exact(size, gfp_flags);
8177 			kmemleak_alloc(table, size, 1, gfp_flags);
8178 		}
8179 	} while (!table && size > PAGE_SIZE && --log2qty);
8180 
8181 	if (!table)
8182 		panic("Failed to allocate %s hash table\n", tablename);
8183 
8184 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8185 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8186 		virt ? "vmalloc" : "linear");
8187 
8188 	if (_hash_shift)
8189 		*_hash_shift = log2qty;
8190 	if (_hash_mask)
8191 		*_hash_mask = (1 << log2qty) - 1;
8192 
8193 	return table;
8194 }
8195 
8196 /*
8197  * This function checks whether pageblock includes unmovable pages or not.
8198  *
8199  * PageLRU check without isolation or lru_lock could race so that
8200  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8201  * check without lock_page also may miss some movable non-lru pages at
8202  * race condition. So you can't expect this function should be exact.
8203  *
8204  * Returns a page without holding a reference. If the caller wants to
8205  * dereference that page (e.g., dumping), it has to make sure that that it
8206  * cannot get removed (e.g., via memory unplug) concurrently.
8207  *
8208  */
8209 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8210 				 int migratetype, int flags)
8211 {
8212 	unsigned long iter = 0;
8213 	unsigned long pfn = page_to_pfn(page);
8214 
8215 	/*
8216 	 * TODO we could make this much more efficient by not checking every
8217 	 * page in the range if we know all of them are in MOVABLE_ZONE and
8218 	 * that the movable zone guarantees that pages are migratable but
8219 	 * the later is not the case right now unfortunatelly. E.g. movablecore
8220 	 * can still lead to having bootmem allocations in zone_movable.
8221 	 */
8222 
8223 	if (is_migrate_cma_page(page)) {
8224 		/*
8225 		 * CMA allocations (alloc_contig_range) really need to mark
8226 		 * isolate CMA pageblocks even when they are not movable in fact
8227 		 * so consider them movable here.
8228 		 */
8229 		if (is_migrate_cma(migratetype))
8230 			return NULL;
8231 
8232 		return page;
8233 	}
8234 
8235 	for (; iter < pageblock_nr_pages; iter++) {
8236 		if (!pfn_valid_within(pfn + iter))
8237 			continue;
8238 
8239 		page = pfn_to_page(pfn + iter);
8240 
8241 		if (PageReserved(page))
8242 			return page;
8243 
8244 		/*
8245 		 * If the zone is movable and we have ruled out all reserved
8246 		 * pages then it should be reasonably safe to assume the rest
8247 		 * is movable.
8248 		 */
8249 		if (zone_idx(zone) == ZONE_MOVABLE)
8250 			continue;
8251 
8252 		/*
8253 		 * Hugepages are not in LRU lists, but they're movable.
8254 		 * We need not scan over tail pages because we don't
8255 		 * handle each tail page individually in migration.
8256 		 */
8257 		if (PageHuge(page)) {
8258 			struct page *head = compound_head(page);
8259 			unsigned int skip_pages;
8260 
8261 			if (!hugepage_migration_supported(page_hstate(head)))
8262 				return page;
8263 
8264 			skip_pages = compound_nr(head) - (page - head);
8265 			iter += skip_pages - 1;
8266 			continue;
8267 		}
8268 
8269 		/*
8270 		 * We can't use page_count without pin a page
8271 		 * because another CPU can free compound page.
8272 		 * This check already skips compound tails of THP
8273 		 * because their page->_refcount is zero at all time.
8274 		 */
8275 		if (!page_ref_count(page)) {
8276 			if (PageBuddy(page))
8277 				iter += (1 << page_order(page)) - 1;
8278 			continue;
8279 		}
8280 
8281 		/*
8282 		 * The HWPoisoned page may be not in buddy system, and
8283 		 * page_count() is not 0.
8284 		 */
8285 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8286 			continue;
8287 
8288 		if (__PageMovable(page) || PageLRU(page))
8289 			continue;
8290 
8291 		/*
8292 		 * If there are RECLAIMABLE pages, we need to check
8293 		 * it.  But now, memory offline itself doesn't call
8294 		 * shrink_node_slabs() and it still to be fixed.
8295 		 */
8296 		/*
8297 		 * If the page is not RAM, page_count()should be 0.
8298 		 * we don't need more check. This is an _used_ not-movable page.
8299 		 *
8300 		 * The problematic thing here is PG_reserved pages. PG_reserved
8301 		 * is set to both of a memory hole page and a _used_ kernel
8302 		 * page at boot.
8303 		 */
8304 		return page;
8305 	}
8306 	return NULL;
8307 }
8308 
8309 #ifdef CONFIG_CONTIG_ALLOC
8310 static unsigned long pfn_max_align_down(unsigned long pfn)
8311 {
8312 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8313 			     pageblock_nr_pages) - 1);
8314 }
8315 
8316 static unsigned long pfn_max_align_up(unsigned long pfn)
8317 {
8318 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8319 				pageblock_nr_pages));
8320 }
8321 
8322 /* [start, end) must belong to a single zone. */
8323 static int __alloc_contig_migrate_range(struct compact_control *cc,
8324 					unsigned long start, unsigned long end)
8325 {
8326 	/* This function is based on compact_zone() from compaction.c. */
8327 	unsigned long nr_reclaimed;
8328 	unsigned long pfn = start;
8329 	unsigned int tries = 0;
8330 	int ret = 0;
8331 
8332 	migrate_prep();
8333 
8334 	while (pfn < end || !list_empty(&cc->migratepages)) {
8335 		if (fatal_signal_pending(current)) {
8336 			ret = -EINTR;
8337 			break;
8338 		}
8339 
8340 		if (list_empty(&cc->migratepages)) {
8341 			cc->nr_migratepages = 0;
8342 			pfn = isolate_migratepages_range(cc, pfn, end);
8343 			if (!pfn) {
8344 				ret = -EINTR;
8345 				break;
8346 			}
8347 			tries = 0;
8348 		} else if (++tries == 5) {
8349 			ret = ret < 0 ? ret : -EBUSY;
8350 			break;
8351 		}
8352 
8353 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8354 							&cc->migratepages);
8355 		cc->nr_migratepages -= nr_reclaimed;
8356 
8357 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8358 				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8359 	}
8360 	if (ret < 0) {
8361 		putback_movable_pages(&cc->migratepages);
8362 		return ret;
8363 	}
8364 	return 0;
8365 }
8366 
8367 /**
8368  * alloc_contig_range() -- tries to allocate given range of pages
8369  * @start:	start PFN to allocate
8370  * @end:	one-past-the-last PFN to allocate
8371  * @migratetype:	migratetype of the underlaying pageblocks (either
8372  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8373  *			in range must have the same migratetype and it must
8374  *			be either of the two.
8375  * @gfp_mask:	GFP mask to use during compaction
8376  *
8377  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8378  * aligned.  The PFN range must belong to a single zone.
8379  *
8380  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8381  * pageblocks in the range.  Once isolated, the pageblocks should not
8382  * be modified by others.
8383  *
8384  * Return: zero on success or negative error code.  On success all
8385  * pages which PFN is in [start, end) are allocated for the caller and
8386  * need to be freed with free_contig_range().
8387  */
8388 int alloc_contig_range(unsigned long start, unsigned long end,
8389 		       unsigned migratetype, gfp_t gfp_mask)
8390 {
8391 	unsigned long outer_start, outer_end;
8392 	unsigned int order;
8393 	int ret = 0;
8394 
8395 	struct compact_control cc = {
8396 		.nr_migratepages = 0,
8397 		.order = -1,
8398 		.zone = page_zone(pfn_to_page(start)),
8399 		.mode = MIGRATE_SYNC,
8400 		.ignore_skip_hint = true,
8401 		.no_set_skip_hint = true,
8402 		.gfp_mask = current_gfp_context(gfp_mask),
8403 		.alloc_contig = true,
8404 	};
8405 	INIT_LIST_HEAD(&cc.migratepages);
8406 
8407 	/*
8408 	 * What we do here is we mark all pageblocks in range as
8409 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8410 	 * have different sizes, and due to the way page allocator
8411 	 * work, we align the range to biggest of the two pages so
8412 	 * that page allocator won't try to merge buddies from
8413 	 * different pageblocks and change MIGRATE_ISOLATE to some
8414 	 * other migration type.
8415 	 *
8416 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8417 	 * migrate the pages from an unaligned range (ie. pages that
8418 	 * we are interested in).  This will put all the pages in
8419 	 * range back to page allocator as MIGRATE_ISOLATE.
8420 	 *
8421 	 * When this is done, we take the pages in range from page
8422 	 * allocator removing them from the buddy system.  This way
8423 	 * page allocator will never consider using them.
8424 	 *
8425 	 * This lets us mark the pageblocks back as
8426 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8427 	 * aligned range but not in the unaligned, original range are
8428 	 * put back to page allocator so that buddy can use them.
8429 	 */
8430 
8431 	ret = start_isolate_page_range(pfn_max_align_down(start),
8432 				       pfn_max_align_up(end), migratetype, 0);
8433 	if (ret < 0)
8434 		return ret;
8435 
8436 	/*
8437 	 * In case of -EBUSY, we'd like to know which page causes problem.
8438 	 * So, just fall through. test_pages_isolated() has a tracepoint
8439 	 * which will report the busy page.
8440 	 *
8441 	 * It is possible that busy pages could become available before
8442 	 * the call to test_pages_isolated, and the range will actually be
8443 	 * allocated.  So, if we fall through be sure to clear ret so that
8444 	 * -EBUSY is not accidentally used or returned to caller.
8445 	 */
8446 	ret = __alloc_contig_migrate_range(&cc, start, end);
8447 	if (ret && ret != -EBUSY)
8448 		goto done;
8449 	ret =0;
8450 
8451 	/*
8452 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8453 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8454 	 * more, all pages in [start, end) are free in page allocator.
8455 	 * What we are going to do is to allocate all pages from
8456 	 * [start, end) (that is remove them from page allocator).
8457 	 *
8458 	 * The only problem is that pages at the beginning and at the
8459 	 * end of interesting range may be not aligned with pages that
8460 	 * page allocator holds, ie. they can be part of higher order
8461 	 * pages.  Because of this, we reserve the bigger range and
8462 	 * once this is done free the pages we are not interested in.
8463 	 *
8464 	 * We don't have to hold zone->lock here because the pages are
8465 	 * isolated thus they won't get removed from buddy.
8466 	 */
8467 
8468 	lru_add_drain_all();
8469 
8470 	order = 0;
8471 	outer_start = start;
8472 	while (!PageBuddy(pfn_to_page(outer_start))) {
8473 		if (++order >= MAX_ORDER) {
8474 			outer_start = start;
8475 			break;
8476 		}
8477 		outer_start &= ~0UL << order;
8478 	}
8479 
8480 	if (outer_start != start) {
8481 		order = page_order(pfn_to_page(outer_start));
8482 
8483 		/*
8484 		 * outer_start page could be small order buddy page and
8485 		 * it doesn't include start page. Adjust outer_start
8486 		 * in this case to report failed page properly
8487 		 * on tracepoint in test_pages_isolated()
8488 		 */
8489 		if (outer_start + (1UL << order) <= start)
8490 			outer_start = start;
8491 	}
8492 
8493 	/* Make sure the range is really isolated. */
8494 	if (test_pages_isolated(outer_start, end, 0)) {
8495 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8496 			__func__, outer_start, end);
8497 		ret = -EBUSY;
8498 		goto done;
8499 	}
8500 
8501 	/* Grab isolated pages from freelists. */
8502 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8503 	if (!outer_end) {
8504 		ret = -EBUSY;
8505 		goto done;
8506 	}
8507 
8508 	/* Free head and tail (if any) */
8509 	if (start != outer_start)
8510 		free_contig_range(outer_start, start - outer_start);
8511 	if (end != outer_end)
8512 		free_contig_range(end, outer_end - end);
8513 
8514 done:
8515 	undo_isolate_page_range(pfn_max_align_down(start),
8516 				pfn_max_align_up(end), migratetype);
8517 	return ret;
8518 }
8519 
8520 static int __alloc_contig_pages(unsigned long start_pfn,
8521 				unsigned long nr_pages, gfp_t gfp_mask)
8522 {
8523 	unsigned long end_pfn = start_pfn + nr_pages;
8524 
8525 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8526 				  gfp_mask);
8527 }
8528 
8529 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8530 				   unsigned long nr_pages)
8531 {
8532 	unsigned long i, end_pfn = start_pfn + nr_pages;
8533 	struct page *page;
8534 
8535 	for (i = start_pfn; i < end_pfn; i++) {
8536 		page = pfn_to_online_page(i);
8537 		if (!page)
8538 			return false;
8539 
8540 		if (page_zone(page) != z)
8541 			return false;
8542 
8543 		if (PageReserved(page))
8544 			return false;
8545 
8546 		if (page_count(page) > 0)
8547 			return false;
8548 
8549 		if (PageHuge(page))
8550 			return false;
8551 	}
8552 	return true;
8553 }
8554 
8555 static bool zone_spans_last_pfn(const struct zone *zone,
8556 				unsigned long start_pfn, unsigned long nr_pages)
8557 {
8558 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8559 
8560 	return zone_spans_pfn(zone, last_pfn);
8561 }
8562 
8563 /**
8564  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8565  * @nr_pages:	Number of contiguous pages to allocate
8566  * @gfp_mask:	GFP mask to limit search and used during compaction
8567  * @nid:	Target node
8568  * @nodemask:	Mask for other possible nodes
8569  *
8570  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8571  * on an applicable zonelist to find a contiguous pfn range which can then be
8572  * tried for allocation with alloc_contig_range(). This routine is intended
8573  * for allocation requests which can not be fulfilled with the buddy allocator.
8574  *
8575  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8576  * power of two then the alignment is guaranteed to be to the given nr_pages
8577  * (e.g. 1GB request would be aligned to 1GB).
8578  *
8579  * Allocated pages can be freed with free_contig_range() or by manually calling
8580  * __free_page() on each allocated page.
8581  *
8582  * Return: pointer to contiguous pages on success, or NULL if not successful.
8583  */
8584 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8585 				int nid, nodemask_t *nodemask)
8586 {
8587 	unsigned long ret, pfn, flags;
8588 	struct zonelist *zonelist;
8589 	struct zone *zone;
8590 	struct zoneref *z;
8591 
8592 	zonelist = node_zonelist(nid, gfp_mask);
8593 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8594 					gfp_zone(gfp_mask), nodemask) {
8595 		spin_lock_irqsave(&zone->lock, flags);
8596 
8597 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8598 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8599 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8600 				/*
8601 				 * We release the zone lock here because
8602 				 * alloc_contig_range() will also lock the zone
8603 				 * at some point. If there's an allocation
8604 				 * spinning on this lock, it may win the race
8605 				 * and cause alloc_contig_range() to fail...
8606 				 */
8607 				spin_unlock_irqrestore(&zone->lock, flags);
8608 				ret = __alloc_contig_pages(pfn, nr_pages,
8609 							gfp_mask);
8610 				if (!ret)
8611 					return pfn_to_page(pfn);
8612 				spin_lock_irqsave(&zone->lock, flags);
8613 			}
8614 			pfn += nr_pages;
8615 		}
8616 		spin_unlock_irqrestore(&zone->lock, flags);
8617 	}
8618 	return NULL;
8619 }
8620 #endif /* CONFIG_CONTIG_ALLOC */
8621 
8622 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8623 {
8624 	unsigned int count = 0;
8625 
8626 	for (; nr_pages--; pfn++) {
8627 		struct page *page = pfn_to_page(pfn);
8628 
8629 		count += page_count(page) != 1;
8630 		__free_page(page);
8631 	}
8632 	WARN(count != 0, "%d pages are still in use!\n", count);
8633 }
8634 
8635 /*
8636  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8637  * page high values need to be recalulated.
8638  */
8639 void __meminit zone_pcp_update(struct zone *zone)
8640 {
8641 	mutex_lock(&pcp_batch_high_lock);
8642 	__zone_pcp_update(zone);
8643 	mutex_unlock(&pcp_batch_high_lock);
8644 }
8645 
8646 void zone_pcp_reset(struct zone *zone)
8647 {
8648 	unsigned long flags;
8649 	int cpu;
8650 	struct per_cpu_pageset *pset;
8651 
8652 	/* avoid races with drain_pages()  */
8653 	local_irq_save(flags);
8654 	if (zone->pageset != &boot_pageset) {
8655 		for_each_online_cpu(cpu) {
8656 			pset = per_cpu_ptr(zone->pageset, cpu);
8657 			drain_zonestat(zone, pset);
8658 		}
8659 		free_percpu(zone->pageset);
8660 		zone->pageset = &boot_pageset;
8661 	}
8662 	local_irq_restore(flags);
8663 }
8664 
8665 #ifdef CONFIG_MEMORY_HOTREMOVE
8666 /*
8667  * All pages in the range must be in a single zone and isolated
8668  * before calling this.
8669  */
8670 unsigned long
8671 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8672 {
8673 	struct page *page;
8674 	struct zone *zone;
8675 	unsigned int order;
8676 	unsigned long pfn;
8677 	unsigned long flags;
8678 	unsigned long offlined_pages = 0;
8679 
8680 	/* find the first valid pfn */
8681 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8682 		if (pfn_valid(pfn))
8683 			break;
8684 	if (pfn == end_pfn)
8685 		return offlined_pages;
8686 
8687 	offline_mem_sections(pfn, end_pfn);
8688 	zone = page_zone(pfn_to_page(pfn));
8689 	spin_lock_irqsave(&zone->lock, flags);
8690 	pfn = start_pfn;
8691 	while (pfn < end_pfn) {
8692 		if (!pfn_valid(pfn)) {
8693 			pfn++;
8694 			continue;
8695 		}
8696 		page = pfn_to_page(pfn);
8697 		/*
8698 		 * The HWPoisoned page may be not in buddy system, and
8699 		 * page_count() is not 0.
8700 		 */
8701 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8702 			pfn++;
8703 			offlined_pages++;
8704 			continue;
8705 		}
8706 
8707 		BUG_ON(page_count(page));
8708 		BUG_ON(!PageBuddy(page));
8709 		order = page_order(page);
8710 		offlined_pages += 1 << order;
8711 		del_page_from_free_area(page, &zone->free_area[order]);
8712 		pfn += (1 << order);
8713 	}
8714 	spin_unlock_irqrestore(&zone->lock, flags);
8715 
8716 	return offlined_pages;
8717 }
8718 #endif
8719 
8720 bool is_free_buddy_page(struct page *page)
8721 {
8722 	struct zone *zone = page_zone(page);
8723 	unsigned long pfn = page_to_pfn(page);
8724 	unsigned long flags;
8725 	unsigned int order;
8726 
8727 	spin_lock_irqsave(&zone->lock, flags);
8728 	for (order = 0; order < MAX_ORDER; order++) {
8729 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8730 
8731 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8732 			break;
8733 	}
8734 	spin_unlock_irqrestore(&zone->lock, flags);
8735 
8736 	return order < MAX_ORDER;
8737 }
8738 
8739 #ifdef CONFIG_MEMORY_FAILURE
8740 /*
8741  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8742  * test is performed under the zone lock to prevent a race against page
8743  * allocation.
8744  */
8745 bool set_hwpoison_free_buddy_page(struct page *page)
8746 {
8747 	struct zone *zone = page_zone(page);
8748 	unsigned long pfn = page_to_pfn(page);
8749 	unsigned long flags;
8750 	unsigned int order;
8751 	bool hwpoisoned = false;
8752 
8753 	spin_lock_irqsave(&zone->lock, flags);
8754 	for (order = 0; order < MAX_ORDER; order++) {
8755 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8756 
8757 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8758 			if (!TestSetPageHWPoison(page))
8759 				hwpoisoned = true;
8760 			break;
8761 		}
8762 	}
8763 	spin_unlock_irqrestore(&zone->lock, flags);
8764 
8765 	return hwpoisoned;
8766 }
8767 #endif
8768