xref: /openbmc/linux/mm/page_alloc.c (revision a97126265dfe10d3321c0fde4708a6cea49b19ed)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/module.h>
31 #include <linux/suspend.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 #include <linux/oom.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/random.h>
49 #include <linux/sort.h>
50 #include <linux/pfn.h>
51 #include <linux/backing-dev.h>
52 #include <linux/fault-inject.h>
53 #include <linux/page-isolation.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/mm.h>
66 #include <linux/page_owner.h>
67 #include <linux/page_table_check.h>
68 #include <linux/kthread.h>
69 #include <linux/memcontrol.h>
70 #include <linux/ftrace.h>
71 #include <linux/lockdep.h>
72 #include <linux/nmi.h>
73 #include <linux/psi.h>
74 #include <linux/padata.h>
75 #include <linux/khugepaged.h>
76 #include <linux/buffer_head.h>
77 #include <linux/delayacct.h>
78 #include <asm/sections.h>
79 #include <asm/tlbflush.h>
80 #include <asm/div64.h>
81 #include "internal.h"
82 #include "shuffle.h"
83 #include "page_reporting.h"
84 #include "swap.h"
85 
86 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
87 typedef int __bitwise fpi_t;
88 
89 /* No special request */
90 #define FPI_NONE		((__force fpi_t)0)
91 
92 /*
93  * Skip free page reporting notification for the (possibly merged) page.
94  * This does not hinder free page reporting from grabbing the page,
95  * reporting it and marking it "reported" -  it only skips notifying
96  * the free page reporting infrastructure about a newly freed page. For
97  * example, used when temporarily pulling a page from a freelist and
98  * putting it back unmodified.
99  */
100 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
101 
102 /*
103  * Place the (possibly merged) page to the tail of the freelist. Will ignore
104  * page shuffling (relevant code - e.g., memory onlining - is expected to
105  * shuffle the whole zone).
106  *
107  * Note: No code should rely on this flag for correctness - it's purely
108  *       to allow for optimizations when handing back either fresh pages
109  *       (memory onlining) or untouched pages (page isolation, free page
110  *       reporting).
111  */
112 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
113 
114 /*
115  * Don't poison memory with KASAN (only for the tag-based modes).
116  * During boot, all non-reserved memblock memory is exposed to page_alloc.
117  * Poisoning all that memory lengthens boot time, especially on systems with
118  * large amount of RAM. This flag is used to skip that poisoning.
119  * This is only done for the tag-based KASAN modes, as those are able to
120  * detect memory corruptions with the memory tags assigned by default.
121  * All memory allocated normally after boot gets poisoned as usual.
122  */
123 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
124 
125 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
126 static DEFINE_MUTEX(pcp_batch_high_lock);
127 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
128 
129 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
130 /*
131  * On SMP, spin_trylock is sufficient protection.
132  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
133  */
134 #define pcp_trylock_prepare(flags)	do { } while (0)
135 #define pcp_trylock_finish(flag)	do { } while (0)
136 #else
137 
138 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
139 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
140 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
141 #endif
142 
143 /*
144  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
145  * a migration causing the wrong PCP to be locked and remote memory being
146  * potentially allocated, pin the task to the CPU for the lookup+lock.
147  * preempt_disable is used on !RT because it is faster than migrate_disable.
148  * migrate_disable is used on RT because otherwise RT spinlock usage is
149  * interfered with and a high priority task cannot preempt the allocator.
150  */
151 #ifndef CONFIG_PREEMPT_RT
152 #define pcpu_task_pin()		preempt_disable()
153 #define pcpu_task_unpin()	preempt_enable()
154 #else
155 #define pcpu_task_pin()		migrate_disable()
156 #define pcpu_task_unpin()	migrate_enable()
157 #endif
158 
159 /*
160  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
161  * Return value should be used with equivalent unlock helper.
162  */
163 #define pcpu_spin_lock(type, member, ptr)				\
164 ({									\
165 	type *_ret;							\
166 	pcpu_task_pin();						\
167 	_ret = this_cpu_ptr(ptr);					\
168 	spin_lock(&_ret->member);					\
169 	_ret;								\
170 })
171 
172 #define pcpu_spin_lock_irqsave(type, member, ptr, flags)		\
173 ({									\
174 	type *_ret;							\
175 	pcpu_task_pin();						\
176 	_ret = this_cpu_ptr(ptr);					\
177 	spin_lock_irqsave(&_ret->member, flags);			\
178 	_ret;								\
179 })
180 
181 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags)		\
182 ({									\
183 	type *_ret;							\
184 	pcpu_task_pin();						\
185 	_ret = this_cpu_ptr(ptr);					\
186 	if (!spin_trylock_irqsave(&_ret->member, flags)) {		\
187 		pcpu_task_unpin();					\
188 		_ret = NULL;						\
189 	}								\
190 	_ret;								\
191 })
192 
193 #define pcpu_spin_unlock(member, ptr)					\
194 ({									\
195 	spin_unlock(&ptr->member);					\
196 	pcpu_task_unpin();						\
197 })
198 
199 #define pcpu_spin_unlock_irqrestore(member, ptr, flags)			\
200 ({									\
201 	spin_unlock_irqrestore(&ptr->member, flags);			\
202 	pcpu_task_unpin();						\
203 })
204 
205 /* struct per_cpu_pages specific helpers. */
206 #define pcp_spin_lock(ptr)						\
207 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
208 
209 #define pcp_spin_lock_irqsave(ptr, flags)				\
210 	pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags)
211 
212 #define pcp_spin_trylock_irqsave(ptr, flags)				\
213 	pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags)
214 
215 #define pcp_spin_unlock(ptr)						\
216 	pcpu_spin_unlock(lock, ptr)
217 
218 #define pcp_spin_unlock_irqrestore(ptr, flags)				\
219 	pcpu_spin_unlock_irqrestore(lock, ptr, flags)
220 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
221 DEFINE_PER_CPU(int, numa_node);
222 EXPORT_PER_CPU_SYMBOL(numa_node);
223 #endif
224 
225 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
226 
227 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
228 /*
229  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
230  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
231  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
232  * defined in <linux/topology.h>.
233  */
234 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
235 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
236 #endif
237 
238 static DEFINE_MUTEX(pcpu_drain_mutex);
239 
240 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
241 volatile unsigned long latent_entropy __latent_entropy;
242 EXPORT_SYMBOL(latent_entropy);
243 #endif
244 
245 /*
246  * Array of node states.
247  */
248 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
249 	[N_POSSIBLE] = NODE_MASK_ALL,
250 	[N_ONLINE] = { { [0] = 1UL } },
251 #ifndef CONFIG_NUMA
252 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
253 #ifdef CONFIG_HIGHMEM
254 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
255 #endif
256 	[N_MEMORY] = { { [0] = 1UL } },
257 	[N_CPU] = { { [0] = 1UL } },
258 #endif	/* NUMA */
259 };
260 EXPORT_SYMBOL(node_states);
261 
262 atomic_long_t _totalram_pages __read_mostly;
263 EXPORT_SYMBOL(_totalram_pages);
264 unsigned long totalreserve_pages __read_mostly;
265 unsigned long totalcma_pages __read_mostly;
266 
267 int percpu_pagelist_high_fraction;
268 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
269 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
270 EXPORT_SYMBOL(init_on_alloc);
271 
272 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
273 EXPORT_SYMBOL(init_on_free);
274 
275 static bool _init_on_alloc_enabled_early __read_mostly
276 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
277 static int __init early_init_on_alloc(char *buf)
278 {
279 
280 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
281 }
282 early_param("init_on_alloc", early_init_on_alloc);
283 
284 static bool _init_on_free_enabled_early __read_mostly
285 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
286 static int __init early_init_on_free(char *buf)
287 {
288 	return kstrtobool(buf, &_init_on_free_enabled_early);
289 }
290 early_param("init_on_free", early_init_on_free);
291 
292 /*
293  * A cached value of the page's pageblock's migratetype, used when the page is
294  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
295  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
296  * Also the migratetype set in the page does not necessarily match the pcplist
297  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
298  * other index - this ensures that it will be put on the correct CMA freelist.
299  */
300 static inline int get_pcppage_migratetype(struct page *page)
301 {
302 	return page->index;
303 }
304 
305 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
306 {
307 	page->index = migratetype;
308 }
309 
310 #ifdef CONFIG_PM_SLEEP
311 /*
312  * The following functions are used by the suspend/hibernate code to temporarily
313  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
314  * while devices are suspended.  To avoid races with the suspend/hibernate code,
315  * they should always be called with system_transition_mutex held
316  * (gfp_allowed_mask also should only be modified with system_transition_mutex
317  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
318  * with that modification).
319  */
320 
321 static gfp_t saved_gfp_mask;
322 
323 void pm_restore_gfp_mask(void)
324 {
325 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
326 	if (saved_gfp_mask) {
327 		gfp_allowed_mask = saved_gfp_mask;
328 		saved_gfp_mask = 0;
329 	}
330 }
331 
332 void pm_restrict_gfp_mask(void)
333 {
334 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
335 	WARN_ON(saved_gfp_mask);
336 	saved_gfp_mask = gfp_allowed_mask;
337 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
338 }
339 
340 bool pm_suspended_storage(void)
341 {
342 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
343 		return false;
344 	return true;
345 }
346 #endif /* CONFIG_PM_SLEEP */
347 
348 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
349 unsigned int pageblock_order __read_mostly;
350 #endif
351 
352 static void __free_pages_ok(struct page *page, unsigned int order,
353 			    fpi_t fpi_flags);
354 
355 /*
356  * results with 256, 32 in the lowmem_reserve sysctl:
357  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
358  *	1G machine -> (16M dma, 784M normal, 224M high)
359  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
360  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
361  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
362  *
363  * TBD: should special case ZONE_DMA32 machines here - in those we normally
364  * don't need any ZONE_NORMAL reservation
365  */
366 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
367 #ifdef CONFIG_ZONE_DMA
368 	[ZONE_DMA] = 256,
369 #endif
370 #ifdef CONFIG_ZONE_DMA32
371 	[ZONE_DMA32] = 256,
372 #endif
373 	[ZONE_NORMAL] = 32,
374 #ifdef CONFIG_HIGHMEM
375 	[ZONE_HIGHMEM] = 0,
376 #endif
377 	[ZONE_MOVABLE] = 0,
378 };
379 
380 static char * const zone_names[MAX_NR_ZONES] = {
381 #ifdef CONFIG_ZONE_DMA
382 	 "DMA",
383 #endif
384 #ifdef CONFIG_ZONE_DMA32
385 	 "DMA32",
386 #endif
387 	 "Normal",
388 #ifdef CONFIG_HIGHMEM
389 	 "HighMem",
390 #endif
391 	 "Movable",
392 #ifdef CONFIG_ZONE_DEVICE
393 	 "Device",
394 #endif
395 };
396 
397 const char * const migratetype_names[MIGRATE_TYPES] = {
398 	"Unmovable",
399 	"Movable",
400 	"Reclaimable",
401 	"HighAtomic",
402 #ifdef CONFIG_CMA
403 	"CMA",
404 #endif
405 #ifdef CONFIG_MEMORY_ISOLATION
406 	"Isolate",
407 #endif
408 };
409 
410 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
411 	[NULL_COMPOUND_DTOR] = NULL,
412 	[COMPOUND_PAGE_DTOR] = free_compound_page,
413 #ifdef CONFIG_HUGETLB_PAGE
414 	[HUGETLB_PAGE_DTOR] = free_huge_page,
415 #endif
416 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
417 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
418 #endif
419 };
420 
421 int min_free_kbytes = 1024;
422 int user_min_free_kbytes = -1;
423 int watermark_boost_factor __read_mostly = 15000;
424 int watermark_scale_factor = 10;
425 
426 static unsigned long nr_kernel_pages __initdata;
427 static unsigned long nr_all_pages __initdata;
428 static unsigned long dma_reserve __initdata;
429 
430 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
431 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
432 static unsigned long required_kernelcore __initdata;
433 static unsigned long required_kernelcore_percent __initdata;
434 static unsigned long required_movablecore __initdata;
435 static unsigned long required_movablecore_percent __initdata;
436 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
437 bool mirrored_kernelcore __initdata_memblock;
438 
439 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
440 int movable_zone;
441 EXPORT_SYMBOL(movable_zone);
442 
443 #if MAX_NUMNODES > 1
444 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
445 unsigned int nr_online_nodes __read_mostly = 1;
446 EXPORT_SYMBOL(nr_node_ids);
447 EXPORT_SYMBOL(nr_online_nodes);
448 #endif
449 
450 int page_group_by_mobility_disabled __read_mostly;
451 
452 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
453 /*
454  * During boot we initialize deferred pages on-demand, as needed, but once
455  * page_alloc_init_late() has finished, the deferred pages are all initialized,
456  * and we can permanently disable that path.
457  */
458 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
459 
460 static inline bool deferred_pages_enabled(void)
461 {
462 	return static_branch_unlikely(&deferred_pages);
463 }
464 
465 /* Returns true if the struct page for the pfn is uninitialised */
466 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
467 {
468 	int nid = early_pfn_to_nid(pfn);
469 
470 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
471 		return true;
472 
473 	return false;
474 }
475 
476 /*
477  * Returns true when the remaining initialisation should be deferred until
478  * later in the boot cycle when it can be parallelised.
479  */
480 static bool __meminit
481 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
482 {
483 	static unsigned long prev_end_pfn, nr_initialised;
484 
485 	/*
486 	 * prev_end_pfn static that contains the end of previous zone
487 	 * No need to protect because called very early in boot before smp_init.
488 	 */
489 	if (prev_end_pfn != end_pfn) {
490 		prev_end_pfn = end_pfn;
491 		nr_initialised = 0;
492 	}
493 
494 	/* Always populate low zones for address-constrained allocations */
495 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
496 		return false;
497 
498 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
499 		return true;
500 	/*
501 	 * We start only with one section of pages, more pages are added as
502 	 * needed until the rest of deferred pages are initialized.
503 	 */
504 	nr_initialised++;
505 	if ((nr_initialised > PAGES_PER_SECTION) &&
506 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
507 		NODE_DATA(nid)->first_deferred_pfn = pfn;
508 		return true;
509 	}
510 	return false;
511 }
512 #else
513 static inline bool deferred_pages_enabled(void)
514 {
515 	return false;
516 }
517 
518 static inline bool early_page_uninitialised(unsigned long pfn)
519 {
520 	return false;
521 }
522 
523 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
524 {
525 	return false;
526 }
527 #endif
528 
529 /* Return a pointer to the bitmap storing bits affecting a block of pages */
530 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
531 							unsigned long pfn)
532 {
533 #ifdef CONFIG_SPARSEMEM
534 	return section_to_usemap(__pfn_to_section(pfn));
535 #else
536 	return page_zone(page)->pageblock_flags;
537 #endif /* CONFIG_SPARSEMEM */
538 }
539 
540 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
541 {
542 #ifdef CONFIG_SPARSEMEM
543 	pfn &= (PAGES_PER_SECTION-1);
544 #else
545 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
546 #endif /* CONFIG_SPARSEMEM */
547 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
548 }
549 
550 static __always_inline
551 unsigned long __get_pfnblock_flags_mask(const struct page *page,
552 					unsigned long pfn,
553 					unsigned long mask)
554 {
555 	unsigned long *bitmap;
556 	unsigned long bitidx, word_bitidx;
557 	unsigned long word;
558 
559 	bitmap = get_pageblock_bitmap(page, pfn);
560 	bitidx = pfn_to_bitidx(page, pfn);
561 	word_bitidx = bitidx / BITS_PER_LONG;
562 	bitidx &= (BITS_PER_LONG-1);
563 	/*
564 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
565 	 * a consistent read of the memory array, so that results, even though
566 	 * racy, are not corrupted.
567 	 */
568 	word = READ_ONCE(bitmap[word_bitidx]);
569 	return (word >> bitidx) & mask;
570 }
571 
572 /**
573  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
574  * @page: The page within the block of interest
575  * @pfn: The target page frame number
576  * @mask: mask of bits that the caller is interested in
577  *
578  * Return: pageblock_bits flags
579  */
580 unsigned long get_pfnblock_flags_mask(const struct page *page,
581 					unsigned long pfn, unsigned long mask)
582 {
583 	return __get_pfnblock_flags_mask(page, pfn, mask);
584 }
585 
586 static __always_inline int get_pfnblock_migratetype(const struct page *page,
587 					unsigned long pfn)
588 {
589 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
590 }
591 
592 /**
593  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
594  * @page: The page within the block of interest
595  * @flags: The flags to set
596  * @pfn: The target page frame number
597  * @mask: mask of bits that the caller is interested in
598  */
599 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
600 					unsigned long pfn,
601 					unsigned long mask)
602 {
603 	unsigned long *bitmap;
604 	unsigned long bitidx, word_bitidx;
605 	unsigned long word;
606 
607 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
608 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
609 
610 	bitmap = get_pageblock_bitmap(page, pfn);
611 	bitidx = pfn_to_bitidx(page, pfn);
612 	word_bitidx = bitidx / BITS_PER_LONG;
613 	bitidx &= (BITS_PER_LONG-1);
614 
615 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
616 
617 	mask <<= bitidx;
618 	flags <<= bitidx;
619 
620 	word = READ_ONCE(bitmap[word_bitidx]);
621 	do {
622 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
623 }
624 
625 void set_pageblock_migratetype(struct page *page, int migratetype)
626 {
627 	if (unlikely(page_group_by_mobility_disabled &&
628 		     migratetype < MIGRATE_PCPTYPES))
629 		migratetype = MIGRATE_UNMOVABLE;
630 
631 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
632 				page_to_pfn(page), MIGRATETYPE_MASK);
633 }
634 
635 #ifdef CONFIG_DEBUG_VM
636 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
637 {
638 	int ret = 0;
639 	unsigned seq;
640 	unsigned long pfn = page_to_pfn(page);
641 	unsigned long sp, start_pfn;
642 
643 	do {
644 		seq = zone_span_seqbegin(zone);
645 		start_pfn = zone->zone_start_pfn;
646 		sp = zone->spanned_pages;
647 		if (!zone_spans_pfn(zone, pfn))
648 			ret = 1;
649 	} while (zone_span_seqretry(zone, seq));
650 
651 	if (ret)
652 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
653 			pfn, zone_to_nid(zone), zone->name,
654 			start_pfn, start_pfn + sp);
655 
656 	return ret;
657 }
658 
659 static int page_is_consistent(struct zone *zone, struct page *page)
660 {
661 	if (zone != page_zone(page))
662 		return 0;
663 
664 	return 1;
665 }
666 /*
667  * Temporary debugging check for pages not lying within a given zone.
668  */
669 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
670 {
671 	if (page_outside_zone_boundaries(zone, page))
672 		return 1;
673 	if (!page_is_consistent(zone, page))
674 		return 1;
675 
676 	return 0;
677 }
678 #else
679 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
680 {
681 	return 0;
682 }
683 #endif
684 
685 static void bad_page(struct page *page, const char *reason)
686 {
687 	static unsigned long resume;
688 	static unsigned long nr_shown;
689 	static unsigned long nr_unshown;
690 
691 	/*
692 	 * Allow a burst of 60 reports, then keep quiet for that minute;
693 	 * or allow a steady drip of one report per second.
694 	 */
695 	if (nr_shown == 60) {
696 		if (time_before(jiffies, resume)) {
697 			nr_unshown++;
698 			goto out;
699 		}
700 		if (nr_unshown) {
701 			pr_alert(
702 			      "BUG: Bad page state: %lu messages suppressed\n",
703 				nr_unshown);
704 			nr_unshown = 0;
705 		}
706 		nr_shown = 0;
707 	}
708 	if (nr_shown++ == 0)
709 		resume = jiffies + 60 * HZ;
710 
711 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
712 		current->comm, page_to_pfn(page));
713 	dump_page(page, reason);
714 
715 	print_modules();
716 	dump_stack();
717 out:
718 	/* Leave bad fields for debug, except PageBuddy could make trouble */
719 	page_mapcount_reset(page); /* remove PageBuddy */
720 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
721 }
722 
723 static inline unsigned int order_to_pindex(int migratetype, int order)
724 {
725 	int base = order;
726 
727 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
728 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
729 		VM_BUG_ON(order != pageblock_order);
730 		return NR_LOWORDER_PCP_LISTS;
731 	}
732 #else
733 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
734 #endif
735 
736 	return (MIGRATE_PCPTYPES * base) + migratetype;
737 }
738 
739 static inline int pindex_to_order(unsigned int pindex)
740 {
741 	int order = pindex / MIGRATE_PCPTYPES;
742 
743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
744 	if (pindex == NR_LOWORDER_PCP_LISTS)
745 		order = pageblock_order;
746 #else
747 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
748 #endif
749 
750 	return order;
751 }
752 
753 static inline bool pcp_allowed_order(unsigned int order)
754 {
755 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
756 		return true;
757 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
758 	if (order == pageblock_order)
759 		return true;
760 #endif
761 	return false;
762 }
763 
764 static inline void free_the_page(struct page *page, unsigned int order)
765 {
766 	if (pcp_allowed_order(order))		/* Via pcp? */
767 		free_unref_page(page, order);
768 	else
769 		__free_pages_ok(page, order, FPI_NONE);
770 }
771 
772 /*
773  * Higher-order pages are called "compound pages".  They are structured thusly:
774  *
775  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
776  *
777  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
778  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
779  *
780  * The first tail page's ->compound_dtor holds the offset in array of compound
781  * page destructors. See compound_page_dtors.
782  *
783  * The first tail page's ->compound_order holds the order of allocation.
784  * This usage means that zero-order pages may not be compound.
785  */
786 
787 void free_compound_page(struct page *page)
788 {
789 	mem_cgroup_uncharge(page_folio(page));
790 	free_the_page(page, compound_order(page));
791 }
792 
793 static void prep_compound_head(struct page *page, unsigned int order)
794 {
795 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
796 	set_compound_order(page, order);
797 	atomic_set(compound_mapcount_ptr(page), -1);
798 	atomic_set(compound_pincount_ptr(page), 0);
799 }
800 
801 static void prep_compound_tail(struct page *head, int tail_idx)
802 {
803 	struct page *p = head + tail_idx;
804 
805 	p->mapping = TAIL_MAPPING;
806 	set_compound_head(p, head);
807 }
808 
809 void prep_compound_page(struct page *page, unsigned int order)
810 {
811 	int i;
812 	int nr_pages = 1 << order;
813 
814 	__SetPageHead(page);
815 	for (i = 1; i < nr_pages; i++)
816 		prep_compound_tail(page, i);
817 
818 	prep_compound_head(page, order);
819 }
820 
821 void destroy_large_folio(struct folio *folio)
822 {
823 	enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor;
824 
825 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
826 	compound_page_dtors[dtor](&folio->page);
827 }
828 
829 #ifdef CONFIG_DEBUG_PAGEALLOC
830 unsigned int _debug_guardpage_minorder;
831 
832 bool _debug_pagealloc_enabled_early __read_mostly
833 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
834 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
835 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
836 EXPORT_SYMBOL(_debug_pagealloc_enabled);
837 
838 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
839 
840 static int __init early_debug_pagealloc(char *buf)
841 {
842 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
843 }
844 early_param("debug_pagealloc", early_debug_pagealloc);
845 
846 static int __init debug_guardpage_minorder_setup(char *buf)
847 {
848 	unsigned long res;
849 
850 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
851 		pr_err("Bad debug_guardpage_minorder value\n");
852 		return 0;
853 	}
854 	_debug_guardpage_minorder = res;
855 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
856 	return 0;
857 }
858 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
859 
860 static inline bool set_page_guard(struct zone *zone, struct page *page,
861 				unsigned int order, int migratetype)
862 {
863 	if (!debug_guardpage_enabled())
864 		return false;
865 
866 	if (order >= debug_guardpage_minorder())
867 		return false;
868 
869 	__SetPageGuard(page);
870 	INIT_LIST_HEAD(&page->buddy_list);
871 	set_page_private(page, order);
872 	/* Guard pages are not available for any usage */
873 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
874 
875 	return true;
876 }
877 
878 static inline void clear_page_guard(struct zone *zone, struct page *page,
879 				unsigned int order, int migratetype)
880 {
881 	if (!debug_guardpage_enabled())
882 		return;
883 
884 	__ClearPageGuard(page);
885 
886 	set_page_private(page, 0);
887 	if (!is_migrate_isolate(migratetype))
888 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
889 }
890 #else
891 static inline bool set_page_guard(struct zone *zone, struct page *page,
892 			unsigned int order, int migratetype) { return false; }
893 static inline void clear_page_guard(struct zone *zone, struct page *page,
894 				unsigned int order, int migratetype) {}
895 #endif
896 
897 /*
898  * Enable static keys related to various memory debugging and hardening options.
899  * Some override others, and depend on early params that are evaluated in the
900  * order of appearance. So we need to first gather the full picture of what was
901  * enabled, and then make decisions.
902  */
903 void init_mem_debugging_and_hardening(void)
904 {
905 	bool page_poisoning_requested = false;
906 
907 #ifdef CONFIG_PAGE_POISONING
908 	/*
909 	 * Page poisoning is debug page alloc for some arches. If
910 	 * either of those options are enabled, enable poisoning.
911 	 */
912 	if (page_poisoning_enabled() ||
913 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
914 	      debug_pagealloc_enabled())) {
915 		static_branch_enable(&_page_poisoning_enabled);
916 		page_poisoning_requested = true;
917 	}
918 #endif
919 
920 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
921 	    page_poisoning_requested) {
922 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
923 			"will take precedence over init_on_alloc and init_on_free\n");
924 		_init_on_alloc_enabled_early = false;
925 		_init_on_free_enabled_early = false;
926 	}
927 
928 	if (_init_on_alloc_enabled_early)
929 		static_branch_enable(&init_on_alloc);
930 	else
931 		static_branch_disable(&init_on_alloc);
932 
933 	if (_init_on_free_enabled_early)
934 		static_branch_enable(&init_on_free);
935 	else
936 		static_branch_disable(&init_on_free);
937 
938 #ifdef CONFIG_DEBUG_PAGEALLOC
939 	if (!debug_pagealloc_enabled())
940 		return;
941 
942 	static_branch_enable(&_debug_pagealloc_enabled);
943 
944 	if (!debug_guardpage_minorder())
945 		return;
946 
947 	static_branch_enable(&_debug_guardpage_enabled);
948 #endif
949 }
950 
951 static inline void set_buddy_order(struct page *page, unsigned int order)
952 {
953 	set_page_private(page, order);
954 	__SetPageBuddy(page);
955 }
956 
957 #ifdef CONFIG_COMPACTION
958 static inline struct capture_control *task_capc(struct zone *zone)
959 {
960 	struct capture_control *capc = current->capture_control;
961 
962 	return unlikely(capc) &&
963 		!(current->flags & PF_KTHREAD) &&
964 		!capc->page &&
965 		capc->cc->zone == zone ? capc : NULL;
966 }
967 
968 static inline bool
969 compaction_capture(struct capture_control *capc, struct page *page,
970 		   int order, int migratetype)
971 {
972 	if (!capc || order != capc->cc->order)
973 		return false;
974 
975 	/* Do not accidentally pollute CMA or isolated regions*/
976 	if (is_migrate_cma(migratetype) ||
977 	    is_migrate_isolate(migratetype))
978 		return false;
979 
980 	/*
981 	 * Do not let lower order allocations pollute a movable pageblock.
982 	 * This might let an unmovable request use a reclaimable pageblock
983 	 * and vice-versa but no more than normal fallback logic which can
984 	 * have trouble finding a high-order free page.
985 	 */
986 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
987 		return false;
988 
989 	capc->page = page;
990 	return true;
991 }
992 
993 #else
994 static inline struct capture_control *task_capc(struct zone *zone)
995 {
996 	return NULL;
997 }
998 
999 static inline bool
1000 compaction_capture(struct capture_control *capc, struct page *page,
1001 		   int order, int migratetype)
1002 {
1003 	return false;
1004 }
1005 #endif /* CONFIG_COMPACTION */
1006 
1007 /* Used for pages not on another list */
1008 static inline void add_to_free_list(struct page *page, struct zone *zone,
1009 				    unsigned int order, int migratetype)
1010 {
1011 	struct free_area *area = &zone->free_area[order];
1012 
1013 	list_add(&page->buddy_list, &area->free_list[migratetype]);
1014 	area->nr_free++;
1015 }
1016 
1017 /* Used for pages not on another list */
1018 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1019 					 unsigned int order, int migratetype)
1020 {
1021 	struct free_area *area = &zone->free_area[order];
1022 
1023 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1024 	area->nr_free++;
1025 }
1026 
1027 /*
1028  * Used for pages which are on another list. Move the pages to the tail
1029  * of the list - so the moved pages won't immediately be considered for
1030  * allocation again (e.g., optimization for memory onlining).
1031  */
1032 static inline void move_to_free_list(struct page *page, struct zone *zone,
1033 				     unsigned int order, int migratetype)
1034 {
1035 	struct free_area *area = &zone->free_area[order];
1036 
1037 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1038 }
1039 
1040 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1041 					   unsigned int order)
1042 {
1043 	/* clear reported state and update reported page count */
1044 	if (page_reported(page))
1045 		__ClearPageReported(page);
1046 
1047 	list_del(&page->buddy_list);
1048 	__ClearPageBuddy(page);
1049 	set_page_private(page, 0);
1050 	zone->free_area[order].nr_free--;
1051 }
1052 
1053 /*
1054  * If this is not the largest possible page, check if the buddy
1055  * of the next-highest order is free. If it is, it's possible
1056  * that pages are being freed that will coalesce soon. In case,
1057  * that is happening, add the free page to the tail of the list
1058  * so it's less likely to be used soon and more likely to be merged
1059  * as a higher order page
1060  */
1061 static inline bool
1062 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1063 		   struct page *page, unsigned int order)
1064 {
1065 	unsigned long higher_page_pfn;
1066 	struct page *higher_page;
1067 
1068 	if (order >= MAX_ORDER - 2)
1069 		return false;
1070 
1071 	higher_page_pfn = buddy_pfn & pfn;
1072 	higher_page = page + (higher_page_pfn - pfn);
1073 
1074 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1075 			NULL) != NULL;
1076 }
1077 
1078 /*
1079  * Freeing function for a buddy system allocator.
1080  *
1081  * The concept of a buddy system is to maintain direct-mapped table
1082  * (containing bit values) for memory blocks of various "orders".
1083  * The bottom level table contains the map for the smallest allocatable
1084  * units of memory (here, pages), and each level above it describes
1085  * pairs of units from the levels below, hence, "buddies".
1086  * At a high level, all that happens here is marking the table entry
1087  * at the bottom level available, and propagating the changes upward
1088  * as necessary, plus some accounting needed to play nicely with other
1089  * parts of the VM system.
1090  * At each level, we keep a list of pages, which are heads of continuous
1091  * free pages of length of (1 << order) and marked with PageBuddy.
1092  * Page's order is recorded in page_private(page) field.
1093  * So when we are allocating or freeing one, we can derive the state of the
1094  * other.  That is, if we allocate a small block, and both were
1095  * free, the remainder of the region must be split into blocks.
1096  * If a block is freed, and its buddy is also free, then this
1097  * triggers coalescing into a block of larger size.
1098  *
1099  * -- nyc
1100  */
1101 
1102 static inline void __free_one_page(struct page *page,
1103 		unsigned long pfn,
1104 		struct zone *zone, unsigned int order,
1105 		int migratetype, fpi_t fpi_flags)
1106 {
1107 	struct capture_control *capc = task_capc(zone);
1108 	unsigned long buddy_pfn;
1109 	unsigned long combined_pfn;
1110 	struct page *buddy;
1111 	bool to_tail;
1112 
1113 	VM_BUG_ON(!zone_is_initialized(zone));
1114 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1115 
1116 	VM_BUG_ON(migratetype == -1);
1117 	if (likely(!is_migrate_isolate(migratetype)))
1118 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1119 
1120 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1121 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1122 
1123 	while (order < MAX_ORDER - 1) {
1124 		if (compaction_capture(capc, page, order, migratetype)) {
1125 			__mod_zone_freepage_state(zone, -(1 << order),
1126 								migratetype);
1127 			return;
1128 		}
1129 
1130 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1131 		if (!buddy)
1132 			goto done_merging;
1133 
1134 		if (unlikely(order >= pageblock_order)) {
1135 			/*
1136 			 * We want to prevent merge between freepages on pageblock
1137 			 * without fallbacks and normal pageblock. Without this,
1138 			 * pageblock isolation could cause incorrect freepage or CMA
1139 			 * accounting or HIGHATOMIC accounting.
1140 			 */
1141 			int buddy_mt = get_pageblock_migratetype(buddy);
1142 
1143 			if (migratetype != buddy_mt
1144 					&& (!migratetype_is_mergeable(migratetype) ||
1145 						!migratetype_is_mergeable(buddy_mt)))
1146 				goto done_merging;
1147 		}
1148 
1149 		/*
1150 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1151 		 * merge with it and move up one order.
1152 		 */
1153 		if (page_is_guard(buddy))
1154 			clear_page_guard(zone, buddy, order, migratetype);
1155 		else
1156 			del_page_from_free_list(buddy, zone, order);
1157 		combined_pfn = buddy_pfn & pfn;
1158 		page = page + (combined_pfn - pfn);
1159 		pfn = combined_pfn;
1160 		order++;
1161 	}
1162 
1163 done_merging:
1164 	set_buddy_order(page, order);
1165 
1166 	if (fpi_flags & FPI_TO_TAIL)
1167 		to_tail = true;
1168 	else if (is_shuffle_order(order))
1169 		to_tail = shuffle_pick_tail();
1170 	else
1171 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1172 
1173 	if (to_tail)
1174 		add_to_free_list_tail(page, zone, order, migratetype);
1175 	else
1176 		add_to_free_list(page, zone, order, migratetype);
1177 
1178 	/* Notify page reporting subsystem of freed page */
1179 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1180 		page_reporting_notify_free(order);
1181 }
1182 
1183 /**
1184  * split_free_page() -- split a free page at split_pfn_offset
1185  * @free_page:		the original free page
1186  * @order:		the order of the page
1187  * @split_pfn_offset:	split offset within the page
1188  *
1189  * Return -ENOENT if the free page is changed, otherwise 0
1190  *
1191  * It is used when the free page crosses two pageblocks with different migratetypes
1192  * at split_pfn_offset within the page. The split free page will be put into
1193  * separate migratetype lists afterwards. Otherwise, the function achieves
1194  * nothing.
1195  */
1196 int split_free_page(struct page *free_page,
1197 			unsigned int order, unsigned long split_pfn_offset)
1198 {
1199 	struct zone *zone = page_zone(free_page);
1200 	unsigned long free_page_pfn = page_to_pfn(free_page);
1201 	unsigned long pfn;
1202 	unsigned long flags;
1203 	int free_page_order;
1204 	int mt;
1205 	int ret = 0;
1206 
1207 	if (split_pfn_offset == 0)
1208 		return ret;
1209 
1210 	spin_lock_irqsave(&zone->lock, flags);
1211 
1212 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1213 		ret = -ENOENT;
1214 		goto out;
1215 	}
1216 
1217 	mt = get_pageblock_migratetype(free_page);
1218 	if (likely(!is_migrate_isolate(mt)))
1219 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1220 
1221 	del_page_from_free_list(free_page, zone, order);
1222 	for (pfn = free_page_pfn;
1223 	     pfn < free_page_pfn + (1UL << order);) {
1224 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1225 
1226 		free_page_order = min_t(unsigned int,
1227 					pfn ? __ffs(pfn) : order,
1228 					__fls(split_pfn_offset));
1229 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1230 				mt, FPI_NONE);
1231 		pfn += 1UL << free_page_order;
1232 		split_pfn_offset -= (1UL << free_page_order);
1233 		/* we have done the first part, now switch to second part */
1234 		if (split_pfn_offset == 0)
1235 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1236 	}
1237 out:
1238 	spin_unlock_irqrestore(&zone->lock, flags);
1239 	return ret;
1240 }
1241 /*
1242  * A bad page could be due to a number of fields. Instead of multiple branches,
1243  * try and check multiple fields with one check. The caller must do a detailed
1244  * check if necessary.
1245  */
1246 static inline bool page_expected_state(struct page *page,
1247 					unsigned long check_flags)
1248 {
1249 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1250 		return false;
1251 
1252 	if (unlikely((unsigned long)page->mapping |
1253 			page_ref_count(page) |
1254 #ifdef CONFIG_MEMCG
1255 			page->memcg_data |
1256 #endif
1257 			(page->flags & check_flags)))
1258 		return false;
1259 
1260 	return true;
1261 }
1262 
1263 static const char *page_bad_reason(struct page *page, unsigned long flags)
1264 {
1265 	const char *bad_reason = NULL;
1266 
1267 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1268 		bad_reason = "nonzero mapcount";
1269 	if (unlikely(page->mapping != NULL))
1270 		bad_reason = "non-NULL mapping";
1271 	if (unlikely(page_ref_count(page) != 0))
1272 		bad_reason = "nonzero _refcount";
1273 	if (unlikely(page->flags & flags)) {
1274 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1275 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1276 		else
1277 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1278 	}
1279 #ifdef CONFIG_MEMCG
1280 	if (unlikely(page->memcg_data))
1281 		bad_reason = "page still charged to cgroup";
1282 #endif
1283 	return bad_reason;
1284 }
1285 
1286 static void check_free_page_bad(struct page *page)
1287 {
1288 	bad_page(page,
1289 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1290 }
1291 
1292 static inline int check_free_page(struct page *page)
1293 {
1294 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1295 		return 0;
1296 
1297 	/* Something has gone sideways, find it */
1298 	check_free_page_bad(page);
1299 	return 1;
1300 }
1301 
1302 static int free_tail_pages_check(struct page *head_page, struct page *page)
1303 {
1304 	int ret = 1;
1305 
1306 	/*
1307 	 * We rely page->lru.next never has bit 0 set, unless the page
1308 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1309 	 */
1310 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1311 
1312 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1313 		ret = 0;
1314 		goto out;
1315 	}
1316 	switch (page - head_page) {
1317 	case 1:
1318 		/* the first tail page: ->mapping may be compound_mapcount() */
1319 		if (unlikely(compound_mapcount(page))) {
1320 			bad_page(page, "nonzero compound_mapcount");
1321 			goto out;
1322 		}
1323 		break;
1324 	case 2:
1325 		/*
1326 		 * the second tail page: ->mapping is
1327 		 * deferred_list.next -- ignore value.
1328 		 */
1329 		break;
1330 	default:
1331 		if (page->mapping != TAIL_MAPPING) {
1332 			bad_page(page, "corrupted mapping in tail page");
1333 			goto out;
1334 		}
1335 		break;
1336 	}
1337 	if (unlikely(!PageTail(page))) {
1338 		bad_page(page, "PageTail not set");
1339 		goto out;
1340 	}
1341 	if (unlikely(compound_head(page) != head_page)) {
1342 		bad_page(page, "compound_head not consistent");
1343 		goto out;
1344 	}
1345 	ret = 0;
1346 out:
1347 	page->mapping = NULL;
1348 	clear_compound_head(page);
1349 	return ret;
1350 }
1351 
1352 /*
1353  * Skip KASAN memory poisoning when either:
1354  *
1355  * 1. Deferred memory initialization has not yet completed,
1356  *    see the explanation below.
1357  * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1358  *    see the comment next to it.
1359  * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1360  *    see the comment next to it.
1361  *
1362  * Poisoning pages during deferred memory init will greatly lengthen the
1363  * process and cause problem in large memory systems as the deferred pages
1364  * initialization is done with interrupt disabled.
1365  *
1366  * Assuming that there will be no reference to those newly initialized
1367  * pages before they are ever allocated, this should have no effect on
1368  * KASAN memory tracking as the poison will be properly inserted at page
1369  * allocation time. The only corner case is when pages are allocated by
1370  * on-demand allocation and then freed again before the deferred pages
1371  * initialization is done, but this is not likely to happen.
1372  */
1373 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1374 {
1375 	return deferred_pages_enabled() ||
1376 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1377 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1378 	       PageSkipKASanPoison(page);
1379 }
1380 
1381 static void kernel_init_pages(struct page *page, int numpages)
1382 {
1383 	int i;
1384 
1385 	/* s390's use of memset() could override KASAN redzones. */
1386 	kasan_disable_current();
1387 	for (i = 0; i < numpages; i++)
1388 		clear_highpage_kasan_tagged(page + i);
1389 	kasan_enable_current();
1390 }
1391 
1392 static __always_inline bool free_pages_prepare(struct page *page,
1393 			unsigned int order, bool check_free, fpi_t fpi_flags)
1394 {
1395 	int bad = 0;
1396 	bool init = want_init_on_free();
1397 
1398 	VM_BUG_ON_PAGE(PageTail(page), page);
1399 
1400 	trace_mm_page_free(page, order);
1401 
1402 	if (unlikely(PageHWPoison(page)) && !order) {
1403 		/*
1404 		 * Do not let hwpoison pages hit pcplists/buddy
1405 		 * Untie memcg state and reset page's owner
1406 		 */
1407 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1408 			__memcg_kmem_uncharge_page(page, order);
1409 		reset_page_owner(page, order);
1410 		page_table_check_free(page, order);
1411 		return false;
1412 	}
1413 
1414 	/*
1415 	 * Check tail pages before head page information is cleared to
1416 	 * avoid checking PageCompound for order-0 pages.
1417 	 */
1418 	if (unlikely(order)) {
1419 		bool compound = PageCompound(page);
1420 		int i;
1421 
1422 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1423 
1424 		if (compound) {
1425 			ClearPageDoubleMap(page);
1426 			ClearPageHasHWPoisoned(page);
1427 		}
1428 		for (i = 1; i < (1 << order); i++) {
1429 			if (compound)
1430 				bad += free_tail_pages_check(page, page + i);
1431 			if (unlikely(check_free_page(page + i))) {
1432 				bad++;
1433 				continue;
1434 			}
1435 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1436 		}
1437 	}
1438 	if (PageMappingFlags(page))
1439 		page->mapping = NULL;
1440 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1441 		__memcg_kmem_uncharge_page(page, order);
1442 	if (check_free)
1443 		bad += check_free_page(page);
1444 	if (bad)
1445 		return false;
1446 
1447 	page_cpupid_reset_last(page);
1448 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1449 	reset_page_owner(page, order);
1450 	page_table_check_free(page, order);
1451 
1452 	if (!PageHighMem(page)) {
1453 		debug_check_no_locks_freed(page_address(page),
1454 					   PAGE_SIZE << order);
1455 		debug_check_no_obj_freed(page_address(page),
1456 					   PAGE_SIZE << order);
1457 	}
1458 
1459 	kernel_poison_pages(page, 1 << order);
1460 
1461 	/*
1462 	 * As memory initialization might be integrated into KASAN,
1463 	 * KASAN poisoning and memory initialization code must be
1464 	 * kept together to avoid discrepancies in behavior.
1465 	 *
1466 	 * With hardware tag-based KASAN, memory tags must be set before the
1467 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1468 	 */
1469 	if (!should_skip_kasan_poison(page, fpi_flags)) {
1470 		kasan_poison_pages(page, order, init);
1471 
1472 		/* Memory is already initialized if KASAN did it internally. */
1473 		if (kasan_has_integrated_init())
1474 			init = false;
1475 	}
1476 	if (init)
1477 		kernel_init_pages(page, 1 << order);
1478 
1479 	/*
1480 	 * arch_free_page() can make the page's contents inaccessible.  s390
1481 	 * does this.  So nothing which can access the page's contents should
1482 	 * happen after this.
1483 	 */
1484 	arch_free_page(page, order);
1485 
1486 	debug_pagealloc_unmap_pages(page, 1 << order);
1487 
1488 	return true;
1489 }
1490 
1491 #ifdef CONFIG_DEBUG_VM
1492 /*
1493  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1494  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1495  * moved from pcp lists to free lists.
1496  */
1497 static bool free_pcp_prepare(struct page *page, unsigned int order)
1498 {
1499 	return free_pages_prepare(page, order, true, FPI_NONE);
1500 }
1501 
1502 static bool bulkfree_pcp_prepare(struct page *page)
1503 {
1504 	if (debug_pagealloc_enabled_static())
1505 		return check_free_page(page);
1506 	else
1507 		return false;
1508 }
1509 #else
1510 /*
1511  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1512  * moving from pcp lists to free list in order to reduce overhead. With
1513  * debug_pagealloc enabled, they are checked also immediately when being freed
1514  * to the pcp lists.
1515  */
1516 static bool free_pcp_prepare(struct page *page, unsigned int order)
1517 {
1518 	if (debug_pagealloc_enabled_static())
1519 		return free_pages_prepare(page, order, true, FPI_NONE);
1520 	else
1521 		return free_pages_prepare(page, order, false, FPI_NONE);
1522 }
1523 
1524 static bool bulkfree_pcp_prepare(struct page *page)
1525 {
1526 	return check_free_page(page);
1527 }
1528 #endif /* CONFIG_DEBUG_VM */
1529 
1530 /*
1531  * Frees a number of pages from the PCP lists
1532  * Assumes all pages on list are in same zone.
1533  * count is the number of pages to free.
1534  */
1535 static void free_pcppages_bulk(struct zone *zone, int count,
1536 					struct per_cpu_pages *pcp,
1537 					int pindex)
1538 {
1539 	int min_pindex = 0;
1540 	int max_pindex = NR_PCP_LISTS - 1;
1541 	unsigned int order;
1542 	bool isolated_pageblocks;
1543 	struct page *page;
1544 
1545 	/*
1546 	 * Ensure proper count is passed which otherwise would stuck in the
1547 	 * below while (list_empty(list)) loop.
1548 	 */
1549 	count = min(pcp->count, count);
1550 
1551 	/* Ensure requested pindex is drained first. */
1552 	pindex = pindex - 1;
1553 
1554 	/* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
1555 	spin_lock(&zone->lock);
1556 	isolated_pageblocks = has_isolate_pageblock(zone);
1557 
1558 	while (count > 0) {
1559 		struct list_head *list;
1560 		int nr_pages;
1561 
1562 		/* Remove pages from lists in a round-robin fashion. */
1563 		do {
1564 			if (++pindex > max_pindex)
1565 				pindex = min_pindex;
1566 			list = &pcp->lists[pindex];
1567 			if (!list_empty(list))
1568 				break;
1569 
1570 			if (pindex == max_pindex)
1571 				max_pindex--;
1572 			if (pindex == min_pindex)
1573 				min_pindex++;
1574 		} while (1);
1575 
1576 		order = pindex_to_order(pindex);
1577 		nr_pages = 1 << order;
1578 		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1579 		do {
1580 			int mt;
1581 
1582 			page = list_last_entry(list, struct page, pcp_list);
1583 			mt = get_pcppage_migratetype(page);
1584 
1585 			/* must delete to avoid corrupting pcp list */
1586 			list_del(&page->pcp_list);
1587 			count -= nr_pages;
1588 			pcp->count -= nr_pages;
1589 
1590 			if (bulkfree_pcp_prepare(page))
1591 				continue;
1592 
1593 			/* MIGRATE_ISOLATE page should not go to pcplists */
1594 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1595 			/* Pageblock could have been isolated meanwhile */
1596 			if (unlikely(isolated_pageblocks))
1597 				mt = get_pageblock_migratetype(page);
1598 
1599 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1600 			trace_mm_page_pcpu_drain(page, order, mt);
1601 		} while (count > 0 && !list_empty(list));
1602 	}
1603 
1604 	spin_unlock(&zone->lock);
1605 }
1606 
1607 static void free_one_page(struct zone *zone,
1608 				struct page *page, unsigned long pfn,
1609 				unsigned int order,
1610 				int migratetype, fpi_t fpi_flags)
1611 {
1612 	unsigned long flags;
1613 
1614 	spin_lock_irqsave(&zone->lock, flags);
1615 	if (unlikely(has_isolate_pageblock(zone) ||
1616 		is_migrate_isolate(migratetype))) {
1617 		migratetype = get_pfnblock_migratetype(page, pfn);
1618 	}
1619 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1620 	spin_unlock_irqrestore(&zone->lock, flags);
1621 }
1622 
1623 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1624 				unsigned long zone, int nid)
1625 {
1626 	mm_zero_struct_page(page);
1627 	set_page_links(page, zone, nid, pfn);
1628 	init_page_count(page);
1629 	page_mapcount_reset(page);
1630 	page_cpupid_reset_last(page);
1631 	page_kasan_tag_reset(page);
1632 
1633 	INIT_LIST_HEAD(&page->lru);
1634 #ifdef WANT_PAGE_VIRTUAL
1635 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1636 	if (!is_highmem_idx(zone))
1637 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1638 #endif
1639 }
1640 
1641 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1642 static void __meminit init_reserved_page(unsigned long pfn)
1643 {
1644 	pg_data_t *pgdat;
1645 	int nid, zid;
1646 
1647 	if (!early_page_uninitialised(pfn))
1648 		return;
1649 
1650 	nid = early_pfn_to_nid(pfn);
1651 	pgdat = NODE_DATA(nid);
1652 
1653 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1654 		struct zone *zone = &pgdat->node_zones[zid];
1655 
1656 		if (zone_spans_pfn(zone, pfn))
1657 			break;
1658 	}
1659 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1660 }
1661 #else
1662 static inline void init_reserved_page(unsigned long pfn)
1663 {
1664 }
1665 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1666 
1667 /*
1668  * Initialised pages do not have PageReserved set. This function is
1669  * called for each range allocated by the bootmem allocator and
1670  * marks the pages PageReserved. The remaining valid pages are later
1671  * sent to the buddy page allocator.
1672  */
1673 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1674 {
1675 	unsigned long start_pfn = PFN_DOWN(start);
1676 	unsigned long end_pfn = PFN_UP(end);
1677 
1678 	for (; start_pfn < end_pfn; start_pfn++) {
1679 		if (pfn_valid(start_pfn)) {
1680 			struct page *page = pfn_to_page(start_pfn);
1681 
1682 			init_reserved_page(start_pfn);
1683 
1684 			/* Avoid false-positive PageTail() */
1685 			INIT_LIST_HEAD(&page->lru);
1686 
1687 			/*
1688 			 * no need for atomic set_bit because the struct
1689 			 * page is not visible yet so nobody should
1690 			 * access it yet.
1691 			 */
1692 			__SetPageReserved(page);
1693 		}
1694 	}
1695 }
1696 
1697 static void __free_pages_ok(struct page *page, unsigned int order,
1698 			    fpi_t fpi_flags)
1699 {
1700 	unsigned long flags;
1701 	int migratetype;
1702 	unsigned long pfn = page_to_pfn(page);
1703 	struct zone *zone = page_zone(page);
1704 
1705 	if (!free_pages_prepare(page, order, true, fpi_flags))
1706 		return;
1707 
1708 	migratetype = get_pfnblock_migratetype(page, pfn);
1709 
1710 	spin_lock_irqsave(&zone->lock, flags);
1711 	if (unlikely(has_isolate_pageblock(zone) ||
1712 		is_migrate_isolate(migratetype))) {
1713 		migratetype = get_pfnblock_migratetype(page, pfn);
1714 	}
1715 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1716 	spin_unlock_irqrestore(&zone->lock, flags);
1717 
1718 	__count_vm_events(PGFREE, 1 << order);
1719 }
1720 
1721 void __free_pages_core(struct page *page, unsigned int order)
1722 {
1723 	unsigned int nr_pages = 1 << order;
1724 	struct page *p = page;
1725 	unsigned int loop;
1726 
1727 	/*
1728 	 * When initializing the memmap, __init_single_page() sets the refcount
1729 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1730 	 * refcount of all involved pages to 0.
1731 	 */
1732 	prefetchw(p);
1733 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1734 		prefetchw(p + 1);
1735 		__ClearPageReserved(p);
1736 		set_page_count(p, 0);
1737 	}
1738 	__ClearPageReserved(p);
1739 	set_page_count(p, 0);
1740 
1741 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1742 
1743 	/*
1744 	 * Bypass PCP and place fresh pages right to the tail, primarily
1745 	 * relevant for memory onlining.
1746 	 */
1747 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1748 }
1749 
1750 #ifdef CONFIG_NUMA
1751 
1752 /*
1753  * During memory init memblocks map pfns to nids. The search is expensive and
1754  * this caches recent lookups. The implementation of __early_pfn_to_nid
1755  * treats start/end as pfns.
1756  */
1757 struct mminit_pfnnid_cache {
1758 	unsigned long last_start;
1759 	unsigned long last_end;
1760 	int last_nid;
1761 };
1762 
1763 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1764 
1765 /*
1766  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1767  */
1768 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1769 					struct mminit_pfnnid_cache *state)
1770 {
1771 	unsigned long start_pfn, end_pfn;
1772 	int nid;
1773 
1774 	if (state->last_start <= pfn && pfn < state->last_end)
1775 		return state->last_nid;
1776 
1777 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1778 	if (nid != NUMA_NO_NODE) {
1779 		state->last_start = start_pfn;
1780 		state->last_end = end_pfn;
1781 		state->last_nid = nid;
1782 	}
1783 
1784 	return nid;
1785 }
1786 
1787 int __meminit early_pfn_to_nid(unsigned long pfn)
1788 {
1789 	static DEFINE_SPINLOCK(early_pfn_lock);
1790 	int nid;
1791 
1792 	spin_lock(&early_pfn_lock);
1793 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1794 	if (nid < 0)
1795 		nid = first_online_node;
1796 	spin_unlock(&early_pfn_lock);
1797 
1798 	return nid;
1799 }
1800 #endif /* CONFIG_NUMA */
1801 
1802 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1803 							unsigned int order)
1804 {
1805 	if (early_page_uninitialised(pfn))
1806 		return;
1807 	__free_pages_core(page, order);
1808 }
1809 
1810 /*
1811  * Check that the whole (or subset of) a pageblock given by the interval of
1812  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1813  * with the migration of free compaction scanner.
1814  *
1815  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1816  *
1817  * It's possible on some configurations to have a setup like node0 node1 node0
1818  * i.e. it's possible that all pages within a zones range of pages do not
1819  * belong to a single zone. We assume that a border between node0 and node1
1820  * can occur within a single pageblock, but not a node0 node1 node0
1821  * interleaving within a single pageblock. It is therefore sufficient to check
1822  * the first and last page of a pageblock and avoid checking each individual
1823  * page in a pageblock.
1824  */
1825 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1826 				     unsigned long end_pfn, struct zone *zone)
1827 {
1828 	struct page *start_page;
1829 	struct page *end_page;
1830 
1831 	/* end_pfn is one past the range we are checking */
1832 	end_pfn--;
1833 
1834 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1835 		return NULL;
1836 
1837 	start_page = pfn_to_online_page(start_pfn);
1838 	if (!start_page)
1839 		return NULL;
1840 
1841 	if (page_zone(start_page) != zone)
1842 		return NULL;
1843 
1844 	end_page = pfn_to_page(end_pfn);
1845 
1846 	/* This gives a shorter code than deriving page_zone(end_page) */
1847 	if (page_zone_id(start_page) != page_zone_id(end_page))
1848 		return NULL;
1849 
1850 	return start_page;
1851 }
1852 
1853 void set_zone_contiguous(struct zone *zone)
1854 {
1855 	unsigned long block_start_pfn = zone->zone_start_pfn;
1856 	unsigned long block_end_pfn;
1857 
1858 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1859 	for (; block_start_pfn < zone_end_pfn(zone);
1860 			block_start_pfn = block_end_pfn,
1861 			 block_end_pfn += pageblock_nr_pages) {
1862 
1863 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1864 
1865 		if (!__pageblock_pfn_to_page(block_start_pfn,
1866 					     block_end_pfn, zone))
1867 			return;
1868 		cond_resched();
1869 	}
1870 
1871 	/* We confirm that there is no hole */
1872 	zone->contiguous = true;
1873 }
1874 
1875 void clear_zone_contiguous(struct zone *zone)
1876 {
1877 	zone->contiguous = false;
1878 }
1879 
1880 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1881 static void __init deferred_free_range(unsigned long pfn,
1882 				       unsigned long nr_pages)
1883 {
1884 	struct page *page;
1885 	unsigned long i;
1886 
1887 	if (!nr_pages)
1888 		return;
1889 
1890 	page = pfn_to_page(pfn);
1891 
1892 	/* Free a large naturally-aligned chunk if possible */
1893 	if (nr_pages == pageblock_nr_pages &&
1894 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1895 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1896 		__free_pages_core(page, pageblock_order);
1897 		return;
1898 	}
1899 
1900 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1901 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1902 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1903 		__free_pages_core(page, 0);
1904 	}
1905 }
1906 
1907 /* Completion tracking for deferred_init_memmap() threads */
1908 static atomic_t pgdat_init_n_undone __initdata;
1909 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1910 
1911 static inline void __init pgdat_init_report_one_done(void)
1912 {
1913 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1914 		complete(&pgdat_init_all_done_comp);
1915 }
1916 
1917 /*
1918  * Returns true if page needs to be initialized or freed to buddy allocator.
1919  *
1920  * First we check if pfn is valid on architectures where it is possible to have
1921  * holes within pageblock_nr_pages. On systems where it is not possible, this
1922  * function is optimized out.
1923  *
1924  * Then, we check if a current large page is valid by only checking the validity
1925  * of the head pfn.
1926  */
1927 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1928 {
1929 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1930 		return false;
1931 	return true;
1932 }
1933 
1934 /*
1935  * Free pages to buddy allocator. Try to free aligned pages in
1936  * pageblock_nr_pages sizes.
1937  */
1938 static void __init deferred_free_pages(unsigned long pfn,
1939 				       unsigned long end_pfn)
1940 {
1941 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1942 	unsigned long nr_free = 0;
1943 
1944 	for (; pfn < end_pfn; pfn++) {
1945 		if (!deferred_pfn_valid(pfn)) {
1946 			deferred_free_range(pfn - nr_free, nr_free);
1947 			nr_free = 0;
1948 		} else if (!(pfn & nr_pgmask)) {
1949 			deferred_free_range(pfn - nr_free, nr_free);
1950 			nr_free = 1;
1951 		} else {
1952 			nr_free++;
1953 		}
1954 	}
1955 	/* Free the last block of pages to allocator */
1956 	deferred_free_range(pfn - nr_free, nr_free);
1957 }
1958 
1959 /*
1960  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1961  * by performing it only once every pageblock_nr_pages.
1962  * Return number of pages initialized.
1963  */
1964 static unsigned long  __init deferred_init_pages(struct zone *zone,
1965 						 unsigned long pfn,
1966 						 unsigned long end_pfn)
1967 {
1968 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1969 	int nid = zone_to_nid(zone);
1970 	unsigned long nr_pages = 0;
1971 	int zid = zone_idx(zone);
1972 	struct page *page = NULL;
1973 
1974 	for (; pfn < end_pfn; pfn++) {
1975 		if (!deferred_pfn_valid(pfn)) {
1976 			page = NULL;
1977 			continue;
1978 		} else if (!page || !(pfn & nr_pgmask)) {
1979 			page = pfn_to_page(pfn);
1980 		} else {
1981 			page++;
1982 		}
1983 		__init_single_page(page, pfn, zid, nid);
1984 		nr_pages++;
1985 	}
1986 	return (nr_pages);
1987 }
1988 
1989 /*
1990  * This function is meant to pre-load the iterator for the zone init.
1991  * Specifically it walks through the ranges until we are caught up to the
1992  * first_init_pfn value and exits there. If we never encounter the value we
1993  * return false indicating there are no valid ranges left.
1994  */
1995 static bool __init
1996 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1997 				    unsigned long *spfn, unsigned long *epfn,
1998 				    unsigned long first_init_pfn)
1999 {
2000 	u64 j;
2001 
2002 	/*
2003 	 * Start out by walking through the ranges in this zone that have
2004 	 * already been initialized. We don't need to do anything with them
2005 	 * so we just need to flush them out of the system.
2006 	 */
2007 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2008 		if (*epfn <= first_init_pfn)
2009 			continue;
2010 		if (*spfn < first_init_pfn)
2011 			*spfn = first_init_pfn;
2012 		*i = j;
2013 		return true;
2014 	}
2015 
2016 	return false;
2017 }
2018 
2019 /*
2020  * Initialize and free pages. We do it in two loops: first we initialize
2021  * struct page, then free to buddy allocator, because while we are
2022  * freeing pages we can access pages that are ahead (computing buddy
2023  * page in __free_one_page()).
2024  *
2025  * In order to try and keep some memory in the cache we have the loop
2026  * broken along max page order boundaries. This way we will not cause
2027  * any issues with the buddy page computation.
2028  */
2029 static unsigned long __init
2030 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2031 		       unsigned long *end_pfn)
2032 {
2033 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2034 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2035 	unsigned long nr_pages = 0;
2036 	u64 j = *i;
2037 
2038 	/* First we loop through and initialize the page values */
2039 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2040 		unsigned long t;
2041 
2042 		if (mo_pfn <= *start_pfn)
2043 			break;
2044 
2045 		t = min(mo_pfn, *end_pfn);
2046 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2047 
2048 		if (mo_pfn < *end_pfn) {
2049 			*start_pfn = mo_pfn;
2050 			break;
2051 		}
2052 	}
2053 
2054 	/* Reset values and now loop through freeing pages as needed */
2055 	swap(j, *i);
2056 
2057 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2058 		unsigned long t;
2059 
2060 		if (mo_pfn <= spfn)
2061 			break;
2062 
2063 		t = min(mo_pfn, epfn);
2064 		deferred_free_pages(spfn, t);
2065 
2066 		if (mo_pfn <= epfn)
2067 			break;
2068 	}
2069 
2070 	return nr_pages;
2071 }
2072 
2073 static void __init
2074 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2075 			   void *arg)
2076 {
2077 	unsigned long spfn, epfn;
2078 	struct zone *zone = arg;
2079 	u64 i;
2080 
2081 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2082 
2083 	/*
2084 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2085 	 * can avoid introducing any issues with the buddy allocator.
2086 	 */
2087 	while (spfn < end_pfn) {
2088 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2089 		cond_resched();
2090 	}
2091 }
2092 
2093 /* An arch may override for more concurrency. */
2094 __weak int __init
2095 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2096 {
2097 	return 1;
2098 }
2099 
2100 /* Initialise remaining memory on a node */
2101 static int __init deferred_init_memmap(void *data)
2102 {
2103 	pg_data_t *pgdat = data;
2104 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2105 	unsigned long spfn = 0, epfn = 0;
2106 	unsigned long first_init_pfn, flags;
2107 	unsigned long start = jiffies;
2108 	struct zone *zone;
2109 	int zid, max_threads;
2110 	u64 i;
2111 
2112 	/* Bind memory initialisation thread to a local node if possible */
2113 	if (!cpumask_empty(cpumask))
2114 		set_cpus_allowed_ptr(current, cpumask);
2115 
2116 	pgdat_resize_lock(pgdat, &flags);
2117 	first_init_pfn = pgdat->first_deferred_pfn;
2118 	if (first_init_pfn == ULONG_MAX) {
2119 		pgdat_resize_unlock(pgdat, &flags);
2120 		pgdat_init_report_one_done();
2121 		return 0;
2122 	}
2123 
2124 	/* Sanity check boundaries */
2125 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2126 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2127 	pgdat->first_deferred_pfn = ULONG_MAX;
2128 
2129 	/*
2130 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2131 	 * interrupt thread must allocate this early in boot, zone must be
2132 	 * pre-grown prior to start of deferred page initialization.
2133 	 */
2134 	pgdat_resize_unlock(pgdat, &flags);
2135 
2136 	/* Only the highest zone is deferred so find it */
2137 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2138 		zone = pgdat->node_zones + zid;
2139 		if (first_init_pfn < zone_end_pfn(zone))
2140 			break;
2141 	}
2142 
2143 	/* If the zone is empty somebody else may have cleared out the zone */
2144 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2145 						 first_init_pfn))
2146 		goto zone_empty;
2147 
2148 	max_threads = deferred_page_init_max_threads(cpumask);
2149 
2150 	while (spfn < epfn) {
2151 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2152 		struct padata_mt_job job = {
2153 			.thread_fn   = deferred_init_memmap_chunk,
2154 			.fn_arg      = zone,
2155 			.start       = spfn,
2156 			.size        = epfn_align - spfn,
2157 			.align       = PAGES_PER_SECTION,
2158 			.min_chunk   = PAGES_PER_SECTION,
2159 			.max_threads = max_threads,
2160 		};
2161 
2162 		padata_do_multithreaded(&job);
2163 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2164 						    epfn_align);
2165 	}
2166 zone_empty:
2167 	/* Sanity check that the next zone really is unpopulated */
2168 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2169 
2170 	pr_info("node %d deferred pages initialised in %ums\n",
2171 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2172 
2173 	pgdat_init_report_one_done();
2174 	return 0;
2175 }
2176 
2177 /*
2178  * If this zone has deferred pages, try to grow it by initializing enough
2179  * deferred pages to satisfy the allocation specified by order, rounded up to
2180  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2181  * of SECTION_SIZE bytes by initializing struct pages in increments of
2182  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2183  *
2184  * Return true when zone was grown, otherwise return false. We return true even
2185  * when we grow less than requested, to let the caller decide if there are
2186  * enough pages to satisfy the allocation.
2187  *
2188  * Note: We use noinline because this function is needed only during boot, and
2189  * it is called from a __ref function _deferred_grow_zone. This way we are
2190  * making sure that it is not inlined into permanent text section.
2191  */
2192 static noinline bool __init
2193 deferred_grow_zone(struct zone *zone, unsigned int order)
2194 {
2195 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2196 	pg_data_t *pgdat = zone->zone_pgdat;
2197 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2198 	unsigned long spfn, epfn, flags;
2199 	unsigned long nr_pages = 0;
2200 	u64 i;
2201 
2202 	/* Only the last zone may have deferred pages */
2203 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2204 		return false;
2205 
2206 	pgdat_resize_lock(pgdat, &flags);
2207 
2208 	/*
2209 	 * If someone grew this zone while we were waiting for spinlock, return
2210 	 * true, as there might be enough pages already.
2211 	 */
2212 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2213 		pgdat_resize_unlock(pgdat, &flags);
2214 		return true;
2215 	}
2216 
2217 	/* If the zone is empty somebody else may have cleared out the zone */
2218 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2219 						 first_deferred_pfn)) {
2220 		pgdat->first_deferred_pfn = ULONG_MAX;
2221 		pgdat_resize_unlock(pgdat, &flags);
2222 		/* Retry only once. */
2223 		return first_deferred_pfn != ULONG_MAX;
2224 	}
2225 
2226 	/*
2227 	 * Initialize and free pages in MAX_ORDER sized increments so
2228 	 * that we can avoid introducing any issues with the buddy
2229 	 * allocator.
2230 	 */
2231 	while (spfn < epfn) {
2232 		/* update our first deferred PFN for this section */
2233 		first_deferred_pfn = spfn;
2234 
2235 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2236 		touch_nmi_watchdog();
2237 
2238 		/* We should only stop along section boundaries */
2239 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2240 			continue;
2241 
2242 		/* If our quota has been met we can stop here */
2243 		if (nr_pages >= nr_pages_needed)
2244 			break;
2245 	}
2246 
2247 	pgdat->first_deferred_pfn = spfn;
2248 	pgdat_resize_unlock(pgdat, &flags);
2249 
2250 	return nr_pages > 0;
2251 }
2252 
2253 /*
2254  * deferred_grow_zone() is __init, but it is called from
2255  * get_page_from_freelist() during early boot until deferred_pages permanently
2256  * disables this call. This is why we have refdata wrapper to avoid warning,
2257  * and to ensure that the function body gets unloaded.
2258  */
2259 static bool __ref
2260 _deferred_grow_zone(struct zone *zone, unsigned int order)
2261 {
2262 	return deferred_grow_zone(zone, order);
2263 }
2264 
2265 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2266 
2267 void __init page_alloc_init_late(void)
2268 {
2269 	struct zone *zone;
2270 	int nid;
2271 
2272 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2273 
2274 	/* There will be num_node_state(N_MEMORY) threads */
2275 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2276 	for_each_node_state(nid, N_MEMORY) {
2277 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2278 	}
2279 
2280 	/* Block until all are initialised */
2281 	wait_for_completion(&pgdat_init_all_done_comp);
2282 
2283 	/*
2284 	 * We initialized the rest of the deferred pages.  Permanently disable
2285 	 * on-demand struct page initialization.
2286 	 */
2287 	static_branch_disable(&deferred_pages);
2288 
2289 	/* Reinit limits that are based on free pages after the kernel is up */
2290 	files_maxfiles_init();
2291 #endif
2292 
2293 	buffer_init();
2294 
2295 	/* Discard memblock private memory */
2296 	memblock_discard();
2297 
2298 	for_each_node_state(nid, N_MEMORY)
2299 		shuffle_free_memory(NODE_DATA(nid));
2300 
2301 	for_each_populated_zone(zone)
2302 		set_zone_contiguous(zone);
2303 }
2304 
2305 #ifdef CONFIG_CMA
2306 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2307 void __init init_cma_reserved_pageblock(struct page *page)
2308 {
2309 	unsigned i = pageblock_nr_pages;
2310 	struct page *p = page;
2311 
2312 	do {
2313 		__ClearPageReserved(p);
2314 		set_page_count(p, 0);
2315 	} while (++p, --i);
2316 
2317 	set_pageblock_migratetype(page, MIGRATE_CMA);
2318 	set_page_refcounted(page);
2319 	__free_pages(page, pageblock_order);
2320 
2321 	adjust_managed_page_count(page, pageblock_nr_pages);
2322 	page_zone(page)->cma_pages += pageblock_nr_pages;
2323 }
2324 #endif
2325 
2326 /*
2327  * The order of subdivision here is critical for the IO subsystem.
2328  * Please do not alter this order without good reasons and regression
2329  * testing. Specifically, as large blocks of memory are subdivided,
2330  * the order in which smaller blocks are delivered depends on the order
2331  * they're subdivided in this function. This is the primary factor
2332  * influencing the order in which pages are delivered to the IO
2333  * subsystem according to empirical testing, and this is also justified
2334  * by considering the behavior of a buddy system containing a single
2335  * large block of memory acted on by a series of small allocations.
2336  * This behavior is a critical factor in sglist merging's success.
2337  *
2338  * -- nyc
2339  */
2340 static inline void expand(struct zone *zone, struct page *page,
2341 	int low, int high, int migratetype)
2342 {
2343 	unsigned long size = 1 << high;
2344 
2345 	while (high > low) {
2346 		high--;
2347 		size >>= 1;
2348 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2349 
2350 		/*
2351 		 * Mark as guard pages (or page), that will allow to
2352 		 * merge back to allocator when buddy will be freed.
2353 		 * Corresponding page table entries will not be touched,
2354 		 * pages will stay not present in virtual address space
2355 		 */
2356 		if (set_page_guard(zone, &page[size], high, migratetype))
2357 			continue;
2358 
2359 		add_to_free_list(&page[size], zone, high, migratetype);
2360 		set_buddy_order(&page[size], high);
2361 	}
2362 }
2363 
2364 static void check_new_page_bad(struct page *page)
2365 {
2366 	if (unlikely(page->flags & __PG_HWPOISON)) {
2367 		/* Don't complain about hwpoisoned pages */
2368 		page_mapcount_reset(page); /* remove PageBuddy */
2369 		return;
2370 	}
2371 
2372 	bad_page(page,
2373 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2374 }
2375 
2376 /*
2377  * This page is about to be returned from the page allocator
2378  */
2379 static inline int check_new_page(struct page *page)
2380 {
2381 	if (likely(page_expected_state(page,
2382 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2383 		return 0;
2384 
2385 	check_new_page_bad(page);
2386 	return 1;
2387 }
2388 
2389 static bool check_new_pages(struct page *page, unsigned int order)
2390 {
2391 	int i;
2392 	for (i = 0; i < (1 << order); i++) {
2393 		struct page *p = page + i;
2394 
2395 		if (unlikely(check_new_page(p)))
2396 			return true;
2397 	}
2398 
2399 	return false;
2400 }
2401 
2402 #ifdef CONFIG_DEBUG_VM
2403 /*
2404  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2405  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2406  * also checked when pcp lists are refilled from the free lists.
2407  */
2408 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2409 {
2410 	if (debug_pagealloc_enabled_static())
2411 		return check_new_pages(page, order);
2412 	else
2413 		return false;
2414 }
2415 
2416 static inline bool check_new_pcp(struct page *page, unsigned int order)
2417 {
2418 	return check_new_pages(page, order);
2419 }
2420 #else
2421 /*
2422  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2423  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2424  * enabled, they are also checked when being allocated from the pcp lists.
2425  */
2426 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2427 {
2428 	return check_new_pages(page, order);
2429 }
2430 static inline bool check_new_pcp(struct page *page, unsigned int order)
2431 {
2432 	if (debug_pagealloc_enabled_static())
2433 		return check_new_pages(page, order);
2434 	else
2435 		return false;
2436 }
2437 #endif /* CONFIG_DEBUG_VM */
2438 
2439 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2440 {
2441 	/* Don't skip if a software KASAN mode is enabled. */
2442 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2443 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2444 		return false;
2445 
2446 	/* Skip, if hardware tag-based KASAN is not enabled. */
2447 	if (!kasan_hw_tags_enabled())
2448 		return true;
2449 
2450 	/*
2451 	 * With hardware tag-based KASAN enabled, skip if this has been
2452 	 * requested via __GFP_SKIP_KASAN_UNPOISON.
2453 	 */
2454 	return flags & __GFP_SKIP_KASAN_UNPOISON;
2455 }
2456 
2457 static inline bool should_skip_init(gfp_t flags)
2458 {
2459 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2460 	if (!kasan_hw_tags_enabled())
2461 		return false;
2462 
2463 	/* For hardware tag-based KASAN, skip if requested. */
2464 	return (flags & __GFP_SKIP_ZERO);
2465 }
2466 
2467 inline void post_alloc_hook(struct page *page, unsigned int order,
2468 				gfp_t gfp_flags)
2469 {
2470 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2471 			!should_skip_init(gfp_flags);
2472 	bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2473 	int i;
2474 
2475 	set_page_private(page, 0);
2476 	set_page_refcounted(page);
2477 
2478 	arch_alloc_page(page, order);
2479 	debug_pagealloc_map_pages(page, 1 << order);
2480 
2481 	/*
2482 	 * Page unpoisoning must happen before memory initialization.
2483 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2484 	 * allocations and the page unpoisoning code will complain.
2485 	 */
2486 	kernel_unpoison_pages(page, 1 << order);
2487 
2488 	/*
2489 	 * As memory initialization might be integrated into KASAN,
2490 	 * KASAN unpoisoning and memory initializion code must be
2491 	 * kept together to avoid discrepancies in behavior.
2492 	 */
2493 
2494 	/*
2495 	 * If memory tags should be zeroed (which happens only when memory
2496 	 * should be initialized as well).
2497 	 */
2498 	if (init_tags) {
2499 		/* Initialize both memory and tags. */
2500 		for (i = 0; i != 1 << order; ++i)
2501 			tag_clear_highpage(page + i);
2502 
2503 		/* Note that memory is already initialized by the loop above. */
2504 		init = false;
2505 	}
2506 	if (!should_skip_kasan_unpoison(gfp_flags)) {
2507 		/* Unpoison shadow memory or set memory tags. */
2508 		kasan_unpoison_pages(page, order, init);
2509 
2510 		/* Note that memory is already initialized by KASAN. */
2511 		if (kasan_has_integrated_init())
2512 			init = false;
2513 	} else {
2514 		/* Ensure page_address() dereferencing does not fault. */
2515 		for (i = 0; i != 1 << order; ++i)
2516 			page_kasan_tag_reset(page + i);
2517 	}
2518 	/* If memory is still not initialized, do it now. */
2519 	if (init)
2520 		kernel_init_pages(page, 1 << order);
2521 	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2522 	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2523 		SetPageSkipKASanPoison(page);
2524 
2525 	set_page_owner(page, order, gfp_flags);
2526 	page_table_check_alloc(page, order);
2527 }
2528 
2529 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2530 							unsigned int alloc_flags)
2531 {
2532 	post_alloc_hook(page, order, gfp_flags);
2533 
2534 	if (order && (gfp_flags & __GFP_COMP))
2535 		prep_compound_page(page, order);
2536 
2537 	/*
2538 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2539 	 * allocate the page. The expectation is that the caller is taking
2540 	 * steps that will free more memory. The caller should avoid the page
2541 	 * being used for !PFMEMALLOC purposes.
2542 	 */
2543 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2544 		set_page_pfmemalloc(page);
2545 	else
2546 		clear_page_pfmemalloc(page);
2547 }
2548 
2549 /*
2550  * Go through the free lists for the given migratetype and remove
2551  * the smallest available page from the freelists
2552  */
2553 static __always_inline
2554 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2555 						int migratetype)
2556 {
2557 	unsigned int current_order;
2558 	struct free_area *area;
2559 	struct page *page;
2560 
2561 	/* Find a page of the appropriate size in the preferred list */
2562 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2563 		area = &(zone->free_area[current_order]);
2564 		page = get_page_from_free_area(area, migratetype);
2565 		if (!page)
2566 			continue;
2567 		del_page_from_free_list(page, zone, current_order);
2568 		expand(zone, page, order, current_order, migratetype);
2569 		set_pcppage_migratetype(page, migratetype);
2570 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
2571 				pcp_allowed_order(order) &&
2572 				migratetype < MIGRATE_PCPTYPES);
2573 		return page;
2574 	}
2575 
2576 	return NULL;
2577 }
2578 
2579 
2580 /*
2581  * This array describes the order lists are fallen back to when
2582  * the free lists for the desirable migrate type are depleted
2583  *
2584  * The other migratetypes do not have fallbacks.
2585  */
2586 static int fallbacks[MIGRATE_TYPES][3] = {
2587 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2588 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2589 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2590 };
2591 
2592 #ifdef CONFIG_CMA
2593 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2594 					unsigned int order)
2595 {
2596 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2597 }
2598 #else
2599 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2600 					unsigned int order) { return NULL; }
2601 #endif
2602 
2603 /*
2604  * Move the free pages in a range to the freelist tail of the requested type.
2605  * Note that start_page and end_pages are not aligned on a pageblock
2606  * boundary. If alignment is required, use move_freepages_block()
2607  */
2608 static int move_freepages(struct zone *zone,
2609 			  unsigned long start_pfn, unsigned long end_pfn,
2610 			  int migratetype, int *num_movable)
2611 {
2612 	struct page *page;
2613 	unsigned long pfn;
2614 	unsigned int order;
2615 	int pages_moved = 0;
2616 
2617 	for (pfn = start_pfn; pfn <= end_pfn;) {
2618 		page = pfn_to_page(pfn);
2619 		if (!PageBuddy(page)) {
2620 			/*
2621 			 * We assume that pages that could be isolated for
2622 			 * migration are movable. But we don't actually try
2623 			 * isolating, as that would be expensive.
2624 			 */
2625 			if (num_movable &&
2626 					(PageLRU(page) || __PageMovable(page)))
2627 				(*num_movable)++;
2628 			pfn++;
2629 			continue;
2630 		}
2631 
2632 		/* Make sure we are not inadvertently changing nodes */
2633 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2634 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2635 
2636 		order = buddy_order(page);
2637 		move_to_free_list(page, zone, order, migratetype);
2638 		pfn += 1 << order;
2639 		pages_moved += 1 << order;
2640 	}
2641 
2642 	return pages_moved;
2643 }
2644 
2645 int move_freepages_block(struct zone *zone, struct page *page,
2646 				int migratetype, int *num_movable)
2647 {
2648 	unsigned long start_pfn, end_pfn, pfn;
2649 
2650 	if (num_movable)
2651 		*num_movable = 0;
2652 
2653 	pfn = page_to_pfn(page);
2654 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2655 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2656 
2657 	/* Do not cross zone boundaries */
2658 	if (!zone_spans_pfn(zone, start_pfn))
2659 		start_pfn = pfn;
2660 	if (!zone_spans_pfn(zone, end_pfn))
2661 		return 0;
2662 
2663 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2664 								num_movable);
2665 }
2666 
2667 static void change_pageblock_range(struct page *pageblock_page,
2668 					int start_order, int migratetype)
2669 {
2670 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2671 
2672 	while (nr_pageblocks--) {
2673 		set_pageblock_migratetype(pageblock_page, migratetype);
2674 		pageblock_page += pageblock_nr_pages;
2675 	}
2676 }
2677 
2678 /*
2679  * When we are falling back to another migratetype during allocation, try to
2680  * steal extra free pages from the same pageblocks to satisfy further
2681  * allocations, instead of polluting multiple pageblocks.
2682  *
2683  * If we are stealing a relatively large buddy page, it is likely there will
2684  * be more free pages in the pageblock, so try to steal them all. For
2685  * reclaimable and unmovable allocations, we steal regardless of page size,
2686  * as fragmentation caused by those allocations polluting movable pageblocks
2687  * is worse than movable allocations stealing from unmovable and reclaimable
2688  * pageblocks.
2689  */
2690 static bool can_steal_fallback(unsigned int order, int start_mt)
2691 {
2692 	/*
2693 	 * Leaving this order check is intended, although there is
2694 	 * relaxed order check in next check. The reason is that
2695 	 * we can actually steal whole pageblock if this condition met,
2696 	 * but, below check doesn't guarantee it and that is just heuristic
2697 	 * so could be changed anytime.
2698 	 */
2699 	if (order >= pageblock_order)
2700 		return true;
2701 
2702 	if (order >= pageblock_order / 2 ||
2703 		start_mt == MIGRATE_RECLAIMABLE ||
2704 		start_mt == MIGRATE_UNMOVABLE ||
2705 		page_group_by_mobility_disabled)
2706 		return true;
2707 
2708 	return false;
2709 }
2710 
2711 static inline bool boost_watermark(struct zone *zone)
2712 {
2713 	unsigned long max_boost;
2714 
2715 	if (!watermark_boost_factor)
2716 		return false;
2717 	/*
2718 	 * Don't bother in zones that are unlikely to produce results.
2719 	 * On small machines, including kdump capture kernels running
2720 	 * in a small area, boosting the watermark can cause an out of
2721 	 * memory situation immediately.
2722 	 */
2723 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2724 		return false;
2725 
2726 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2727 			watermark_boost_factor, 10000);
2728 
2729 	/*
2730 	 * high watermark may be uninitialised if fragmentation occurs
2731 	 * very early in boot so do not boost. We do not fall
2732 	 * through and boost by pageblock_nr_pages as failing
2733 	 * allocations that early means that reclaim is not going
2734 	 * to help and it may even be impossible to reclaim the
2735 	 * boosted watermark resulting in a hang.
2736 	 */
2737 	if (!max_boost)
2738 		return false;
2739 
2740 	max_boost = max(pageblock_nr_pages, max_boost);
2741 
2742 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2743 		max_boost);
2744 
2745 	return true;
2746 }
2747 
2748 /*
2749  * This function implements actual steal behaviour. If order is large enough,
2750  * we can steal whole pageblock. If not, we first move freepages in this
2751  * pageblock to our migratetype and determine how many already-allocated pages
2752  * are there in the pageblock with a compatible migratetype. If at least half
2753  * of pages are free or compatible, we can change migratetype of the pageblock
2754  * itself, so pages freed in the future will be put on the correct free list.
2755  */
2756 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2757 		unsigned int alloc_flags, int start_type, bool whole_block)
2758 {
2759 	unsigned int current_order = buddy_order(page);
2760 	int free_pages, movable_pages, alike_pages;
2761 	int old_block_type;
2762 
2763 	old_block_type = get_pageblock_migratetype(page);
2764 
2765 	/*
2766 	 * This can happen due to races and we want to prevent broken
2767 	 * highatomic accounting.
2768 	 */
2769 	if (is_migrate_highatomic(old_block_type))
2770 		goto single_page;
2771 
2772 	/* Take ownership for orders >= pageblock_order */
2773 	if (current_order >= pageblock_order) {
2774 		change_pageblock_range(page, current_order, start_type);
2775 		goto single_page;
2776 	}
2777 
2778 	/*
2779 	 * Boost watermarks to increase reclaim pressure to reduce the
2780 	 * likelihood of future fallbacks. Wake kswapd now as the node
2781 	 * may be balanced overall and kswapd will not wake naturally.
2782 	 */
2783 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2784 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2785 
2786 	/* We are not allowed to try stealing from the whole block */
2787 	if (!whole_block)
2788 		goto single_page;
2789 
2790 	free_pages = move_freepages_block(zone, page, start_type,
2791 						&movable_pages);
2792 	/*
2793 	 * Determine how many pages are compatible with our allocation.
2794 	 * For movable allocation, it's the number of movable pages which
2795 	 * we just obtained. For other types it's a bit more tricky.
2796 	 */
2797 	if (start_type == MIGRATE_MOVABLE) {
2798 		alike_pages = movable_pages;
2799 	} else {
2800 		/*
2801 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2802 		 * to MOVABLE pageblock, consider all non-movable pages as
2803 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2804 		 * vice versa, be conservative since we can't distinguish the
2805 		 * exact migratetype of non-movable pages.
2806 		 */
2807 		if (old_block_type == MIGRATE_MOVABLE)
2808 			alike_pages = pageblock_nr_pages
2809 						- (free_pages + movable_pages);
2810 		else
2811 			alike_pages = 0;
2812 	}
2813 
2814 	/* moving whole block can fail due to zone boundary conditions */
2815 	if (!free_pages)
2816 		goto single_page;
2817 
2818 	/*
2819 	 * If a sufficient number of pages in the block are either free or of
2820 	 * comparable migratability as our allocation, claim the whole block.
2821 	 */
2822 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2823 			page_group_by_mobility_disabled)
2824 		set_pageblock_migratetype(page, start_type);
2825 
2826 	return;
2827 
2828 single_page:
2829 	move_to_free_list(page, zone, current_order, start_type);
2830 }
2831 
2832 /*
2833  * Check whether there is a suitable fallback freepage with requested order.
2834  * If only_stealable is true, this function returns fallback_mt only if
2835  * we can steal other freepages all together. This would help to reduce
2836  * fragmentation due to mixed migratetype pages in one pageblock.
2837  */
2838 int find_suitable_fallback(struct free_area *area, unsigned int order,
2839 			int migratetype, bool only_stealable, bool *can_steal)
2840 {
2841 	int i;
2842 	int fallback_mt;
2843 
2844 	if (area->nr_free == 0)
2845 		return -1;
2846 
2847 	*can_steal = false;
2848 	for (i = 0;; i++) {
2849 		fallback_mt = fallbacks[migratetype][i];
2850 		if (fallback_mt == MIGRATE_TYPES)
2851 			break;
2852 
2853 		if (free_area_empty(area, fallback_mt))
2854 			continue;
2855 
2856 		if (can_steal_fallback(order, migratetype))
2857 			*can_steal = true;
2858 
2859 		if (!only_stealable)
2860 			return fallback_mt;
2861 
2862 		if (*can_steal)
2863 			return fallback_mt;
2864 	}
2865 
2866 	return -1;
2867 }
2868 
2869 /*
2870  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2871  * there are no empty page blocks that contain a page with a suitable order
2872  */
2873 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2874 				unsigned int alloc_order)
2875 {
2876 	int mt;
2877 	unsigned long max_managed, flags;
2878 
2879 	/*
2880 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2881 	 * Check is race-prone but harmless.
2882 	 */
2883 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2884 	if (zone->nr_reserved_highatomic >= max_managed)
2885 		return;
2886 
2887 	spin_lock_irqsave(&zone->lock, flags);
2888 
2889 	/* Recheck the nr_reserved_highatomic limit under the lock */
2890 	if (zone->nr_reserved_highatomic >= max_managed)
2891 		goto out_unlock;
2892 
2893 	/* Yoink! */
2894 	mt = get_pageblock_migratetype(page);
2895 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2896 	if (migratetype_is_mergeable(mt)) {
2897 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2898 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2899 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2900 	}
2901 
2902 out_unlock:
2903 	spin_unlock_irqrestore(&zone->lock, flags);
2904 }
2905 
2906 /*
2907  * Used when an allocation is about to fail under memory pressure. This
2908  * potentially hurts the reliability of high-order allocations when under
2909  * intense memory pressure but failed atomic allocations should be easier
2910  * to recover from than an OOM.
2911  *
2912  * If @force is true, try to unreserve a pageblock even though highatomic
2913  * pageblock is exhausted.
2914  */
2915 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2916 						bool force)
2917 {
2918 	struct zonelist *zonelist = ac->zonelist;
2919 	unsigned long flags;
2920 	struct zoneref *z;
2921 	struct zone *zone;
2922 	struct page *page;
2923 	int order;
2924 	bool ret;
2925 
2926 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2927 								ac->nodemask) {
2928 		/*
2929 		 * Preserve at least one pageblock unless memory pressure
2930 		 * is really high.
2931 		 */
2932 		if (!force && zone->nr_reserved_highatomic <=
2933 					pageblock_nr_pages)
2934 			continue;
2935 
2936 		spin_lock_irqsave(&zone->lock, flags);
2937 		for (order = 0; order < MAX_ORDER; order++) {
2938 			struct free_area *area = &(zone->free_area[order]);
2939 
2940 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2941 			if (!page)
2942 				continue;
2943 
2944 			/*
2945 			 * In page freeing path, migratetype change is racy so
2946 			 * we can counter several free pages in a pageblock
2947 			 * in this loop although we changed the pageblock type
2948 			 * from highatomic to ac->migratetype. So we should
2949 			 * adjust the count once.
2950 			 */
2951 			if (is_migrate_highatomic_page(page)) {
2952 				/*
2953 				 * It should never happen but changes to
2954 				 * locking could inadvertently allow a per-cpu
2955 				 * drain to add pages to MIGRATE_HIGHATOMIC
2956 				 * while unreserving so be safe and watch for
2957 				 * underflows.
2958 				 */
2959 				zone->nr_reserved_highatomic -= min(
2960 						pageblock_nr_pages,
2961 						zone->nr_reserved_highatomic);
2962 			}
2963 
2964 			/*
2965 			 * Convert to ac->migratetype and avoid the normal
2966 			 * pageblock stealing heuristics. Minimally, the caller
2967 			 * is doing the work and needs the pages. More
2968 			 * importantly, if the block was always converted to
2969 			 * MIGRATE_UNMOVABLE or another type then the number
2970 			 * of pageblocks that cannot be completely freed
2971 			 * may increase.
2972 			 */
2973 			set_pageblock_migratetype(page, ac->migratetype);
2974 			ret = move_freepages_block(zone, page, ac->migratetype,
2975 									NULL);
2976 			if (ret) {
2977 				spin_unlock_irqrestore(&zone->lock, flags);
2978 				return ret;
2979 			}
2980 		}
2981 		spin_unlock_irqrestore(&zone->lock, flags);
2982 	}
2983 
2984 	return false;
2985 }
2986 
2987 /*
2988  * Try finding a free buddy page on the fallback list and put it on the free
2989  * list of requested migratetype, possibly along with other pages from the same
2990  * block, depending on fragmentation avoidance heuristics. Returns true if
2991  * fallback was found so that __rmqueue_smallest() can grab it.
2992  *
2993  * The use of signed ints for order and current_order is a deliberate
2994  * deviation from the rest of this file, to make the for loop
2995  * condition simpler.
2996  */
2997 static __always_inline bool
2998 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2999 						unsigned int alloc_flags)
3000 {
3001 	struct free_area *area;
3002 	int current_order;
3003 	int min_order = order;
3004 	struct page *page;
3005 	int fallback_mt;
3006 	bool can_steal;
3007 
3008 	/*
3009 	 * Do not steal pages from freelists belonging to other pageblocks
3010 	 * i.e. orders < pageblock_order. If there are no local zones free,
3011 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3012 	 */
3013 	if (alloc_flags & ALLOC_NOFRAGMENT)
3014 		min_order = pageblock_order;
3015 
3016 	/*
3017 	 * Find the largest available free page in the other list. This roughly
3018 	 * approximates finding the pageblock with the most free pages, which
3019 	 * would be too costly to do exactly.
3020 	 */
3021 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
3022 				--current_order) {
3023 		area = &(zone->free_area[current_order]);
3024 		fallback_mt = find_suitable_fallback(area, current_order,
3025 				start_migratetype, false, &can_steal);
3026 		if (fallback_mt == -1)
3027 			continue;
3028 
3029 		/*
3030 		 * We cannot steal all free pages from the pageblock and the
3031 		 * requested migratetype is movable. In that case it's better to
3032 		 * steal and split the smallest available page instead of the
3033 		 * largest available page, because even if the next movable
3034 		 * allocation falls back into a different pageblock than this
3035 		 * one, it won't cause permanent fragmentation.
3036 		 */
3037 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3038 					&& current_order > order)
3039 			goto find_smallest;
3040 
3041 		goto do_steal;
3042 	}
3043 
3044 	return false;
3045 
3046 find_smallest:
3047 	for (current_order = order; current_order < MAX_ORDER;
3048 							current_order++) {
3049 		area = &(zone->free_area[current_order]);
3050 		fallback_mt = find_suitable_fallback(area, current_order,
3051 				start_migratetype, false, &can_steal);
3052 		if (fallback_mt != -1)
3053 			break;
3054 	}
3055 
3056 	/*
3057 	 * This should not happen - we already found a suitable fallback
3058 	 * when looking for the largest page.
3059 	 */
3060 	VM_BUG_ON(current_order == MAX_ORDER);
3061 
3062 do_steal:
3063 	page = get_page_from_free_area(area, fallback_mt);
3064 
3065 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3066 								can_steal);
3067 
3068 	trace_mm_page_alloc_extfrag(page, order, current_order,
3069 		start_migratetype, fallback_mt);
3070 
3071 	return true;
3072 
3073 }
3074 
3075 /*
3076  * Do the hard work of removing an element from the buddy allocator.
3077  * Call me with the zone->lock already held.
3078  */
3079 static __always_inline struct page *
3080 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3081 						unsigned int alloc_flags)
3082 {
3083 	struct page *page;
3084 
3085 	if (IS_ENABLED(CONFIG_CMA)) {
3086 		/*
3087 		 * Balance movable allocations between regular and CMA areas by
3088 		 * allocating from CMA when over half of the zone's free memory
3089 		 * is in the CMA area.
3090 		 */
3091 		if (alloc_flags & ALLOC_CMA &&
3092 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3093 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3094 			page = __rmqueue_cma_fallback(zone, order);
3095 			if (page)
3096 				return page;
3097 		}
3098 	}
3099 retry:
3100 	page = __rmqueue_smallest(zone, order, migratetype);
3101 	if (unlikely(!page)) {
3102 		if (alloc_flags & ALLOC_CMA)
3103 			page = __rmqueue_cma_fallback(zone, order);
3104 
3105 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3106 								alloc_flags))
3107 			goto retry;
3108 	}
3109 	return page;
3110 }
3111 
3112 /*
3113  * Obtain a specified number of elements from the buddy allocator, all under
3114  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3115  * Returns the number of new pages which were placed at *list.
3116  */
3117 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3118 			unsigned long count, struct list_head *list,
3119 			int migratetype, unsigned int alloc_flags)
3120 {
3121 	int i, allocated = 0;
3122 
3123 	/* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
3124 	spin_lock(&zone->lock);
3125 	for (i = 0; i < count; ++i) {
3126 		struct page *page = __rmqueue(zone, order, migratetype,
3127 								alloc_flags);
3128 		if (unlikely(page == NULL))
3129 			break;
3130 
3131 		if (unlikely(check_pcp_refill(page, order)))
3132 			continue;
3133 
3134 		/*
3135 		 * Split buddy pages returned by expand() are received here in
3136 		 * physical page order. The page is added to the tail of
3137 		 * caller's list. From the callers perspective, the linked list
3138 		 * is ordered by page number under some conditions. This is
3139 		 * useful for IO devices that can forward direction from the
3140 		 * head, thus also in the physical page order. This is useful
3141 		 * for IO devices that can merge IO requests if the physical
3142 		 * pages are ordered properly.
3143 		 */
3144 		list_add_tail(&page->pcp_list, list);
3145 		allocated++;
3146 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3147 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3148 					      -(1 << order));
3149 	}
3150 
3151 	/*
3152 	 * i pages were removed from the buddy list even if some leak due
3153 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3154 	 * on i. Do not confuse with 'allocated' which is the number of
3155 	 * pages added to the pcp list.
3156 	 */
3157 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3158 	spin_unlock(&zone->lock);
3159 	return allocated;
3160 }
3161 
3162 #ifdef CONFIG_NUMA
3163 /*
3164  * Called from the vmstat counter updater to drain pagesets of this
3165  * currently executing processor on remote nodes after they have
3166  * expired.
3167  */
3168 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3169 {
3170 	int to_drain, batch;
3171 
3172 	batch = READ_ONCE(pcp->batch);
3173 	to_drain = min(pcp->count, batch);
3174 	if (to_drain > 0) {
3175 		unsigned long flags;
3176 
3177 		/*
3178 		 * free_pcppages_bulk expects IRQs disabled for zone->lock
3179 		 * so even though pcp->lock is not intended to be IRQ-safe,
3180 		 * it's needed in this context.
3181 		 */
3182 		spin_lock_irqsave(&pcp->lock, flags);
3183 		free_pcppages_bulk(zone, to_drain, pcp, 0);
3184 		spin_unlock_irqrestore(&pcp->lock, flags);
3185 	}
3186 }
3187 #endif
3188 
3189 /*
3190  * Drain pcplists of the indicated processor and zone.
3191  */
3192 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3193 {
3194 	struct per_cpu_pages *pcp;
3195 
3196 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3197 	if (pcp->count) {
3198 		unsigned long flags;
3199 
3200 		/* See drain_zone_pages on why this is disabling IRQs */
3201 		spin_lock_irqsave(&pcp->lock, flags);
3202 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
3203 		spin_unlock_irqrestore(&pcp->lock, flags);
3204 	}
3205 }
3206 
3207 /*
3208  * Drain pcplists of all zones on the indicated processor.
3209  */
3210 static void drain_pages(unsigned int cpu)
3211 {
3212 	struct zone *zone;
3213 
3214 	for_each_populated_zone(zone) {
3215 		drain_pages_zone(cpu, zone);
3216 	}
3217 }
3218 
3219 /*
3220  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3221  */
3222 void drain_local_pages(struct zone *zone)
3223 {
3224 	int cpu = smp_processor_id();
3225 
3226 	if (zone)
3227 		drain_pages_zone(cpu, zone);
3228 	else
3229 		drain_pages(cpu);
3230 }
3231 
3232 /*
3233  * The implementation of drain_all_pages(), exposing an extra parameter to
3234  * drain on all cpus.
3235  *
3236  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3237  * not empty. The check for non-emptiness can however race with a free to
3238  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3239  * that need the guarantee that every CPU has drained can disable the
3240  * optimizing racy check.
3241  */
3242 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3243 {
3244 	int cpu;
3245 
3246 	/*
3247 	 * Allocate in the BSS so we won't require allocation in
3248 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3249 	 */
3250 	static cpumask_t cpus_with_pcps;
3251 
3252 	/*
3253 	 * Do not drain if one is already in progress unless it's specific to
3254 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3255 	 * the drain to be complete when the call returns.
3256 	 */
3257 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3258 		if (!zone)
3259 			return;
3260 		mutex_lock(&pcpu_drain_mutex);
3261 	}
3262 
3263 	/*
3264 	 * We don't care about racing with CPU hotplug event
3265 	 * as offline notification will cause the notified
3266 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3267 	 * disables preemption as part of its processing
3268 	 */
3269 	for_each_online_cpu(cpu) {
3270 		struct per_cpu_pages *pcp;
3271 		struct zone *z;
3272 		bool has_pcps = false;
3273 
3274 		if (force_all_cpus) {
3275 			/*
3276 			 * The pcp.count check is racy, some callers need a
3277 			 * guarantee that no cpu is missed.
3278 			 */
3279 			has_pcps = true;
3280 		} else if (zone) {
3281 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3282 			if (pcp->count)
3283 				has_pcps = true;
3284 		} else {
3285 			for_each_populated_zone(z) {
3286 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3287 				if (pcp->count) {
3288 					has_pcps = true;
3289 					break;
3290 				}
3291 			}
3292 		}
3293 
3294 		if (has_pcps)
3295 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3296 		else
3297 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3298 	}
3299 
3300 	for_each_cpu(cpu, &cpus_with_pcps) {
3301 		if (zone)
3302 			drain_pages_zone(cpu, zone);
3303 		else
3304 			drain_pages(cpu);
3305 	}
3306 
3307 	mutex_unlock(&pcpu_drain_mutex);
3308 }
3309 
3310 /*
3311  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3312  *
3313  * When zone parameter is non-NULL, spill just the single zone's pages.
3314  */
3315 void drain_all_pages(struct zone *zone)
3316 {
3317 	__drain_all_pages(zone, false);
3318 }
3319 
3320 #ifdef CONFIG_HIBERNATION
3321 
3322 /*
3323  * Touch the watchdog for every WD_PAGE_COUNT pages.
3324  */
3325 #define WD_PAGE_COUNT	(128*1024)
3326 
3327 void mark_free_pages(struct zone *zone)
3328 {
3329 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3330 	unsigned long flags;
3331 	unsigned int order, t;
3332 	struct page *page;
3333 
3334 	if (zone_is_empty(zone))
3335 		return;
3336 
3337 	spin_lock_irqsave(&zone->lock, flags);
3338 
3339 	max_zone_pfn = zone_end_pfn(zone);
3340 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3341 		if (pfn_valid(pfn)) {
3342 			page = pfn_to_page(pfn);
3343 
3344 			if (!--page_count) {
3345 				touch_nmi_watchdog();
3346 				page_count = WD_PAGE_COUNT;
3347 			}
3348 
3349 			if (page_zone(page) != zone)
3350 				continue;
3351 
3352 			if (!swsusp_page_is_forbidden(page))
3353 				swsusp_unset_page_free(page);
3354 		}
3355 
3356 	for_each_migratetype_order(order, t) {
3357 		list_for_each_entry(page,
3358 				&zone->free_area[order].free_list[t], buddy_list) {
3359 			unsigned long i;
3360 
3361 			pfn = page_to_pfn(page);
3362 			for (i = 0; i < (1UL << order); i++) {
3363 				if (!--page_count) {
3364 					touch_nmi_watchdog();
3365 					page_count = WD_PAGE_COUNT;
3366 				}
3367 				swsusp_set_page_free(pfn_to_page(pfn + i));
3368 			}
3369 		}
3370 	}
3371 	spin_unlock_irqrestore(&zone->lock, flags);
3372 }
3373 #endif /* CONFIG_PM */
3374 
3375 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3376 							unsigned int order)
3377 {
3378 	int migratetype;
3379 
3380 	if (!free_pcp_prepare(page, order))
3381 		return false;
3382 
3383 	migratetype = get_pfnblock_migratetype(page, pfn);
3384 	set_pcppage_migratetype(page, migratetype);
3385 	return true;
3386 }
3387 
3388 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3389 		       bool free_high)
3390 {
3391 	int min_nr_free, max_nr_free;
3392 
3393 	/* Free everything if batch freeing high-order pages. */
3394 	if (unlikely(free_high))
3395 		return pcp->count;
3396 
3397 	/* Check for PCP disabled or boot pageset */
3398 	if (unlikely(high < batch))
3399 		return 1;
3400 
3401 	/* Leave at least pcp->batch pages on the list */
3402 	min_nr_free = batch;
3403 	max_nr_free = high - batch;
3404 
3405 	/*
3406 	 * Double the number of pages freed each time there is subsequent
3407 	 * freeing of pages without any allocation.
3408 	 */
3409 	batch <<= pcp->free_factor;
3410 	if (batch < max_nr_free)
3411 		pcp->free_factor++;
3412 	batch = clamp(batch, min_nr_free, max_nr_free);
3413 
3414 	return batch;
3415 }
3416 
3417 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3418 		       bool free_high)
3419 {
3420 	int high = READ_ONCE(pcp->high);
3421 
3422 	if (unlikely(!high || free_high))
3423 		return 0;
3424 
3425 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3426 		return high;
3427 
3428 	/*
3429 	 * If reclaim is active, limit the number of pages that can be
3430 	 * stored on pcp lists
3431 	 */
3432 	return min(READ_ONCE(pcp->batch) << 2, high);
3433 }
3434 
3435 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3436 				   struct page *page, int migratetype,
3437 				   unsigned int order)
3438 {
3439 	int high;
3440 	int pindex;
3441 	bool free_high;
3442 
3443 	__count_vm_event(PGFREE);
3444 	pindex = order_to_pindex(migratetype, order);
3445 	list_add(&page->pcp_list, &pcp->lists[pindex]);
3446 	pcp->count += 1 << order;
3447 
3448 	/*
3449 	 * As high-order pages other than THP's stored on PCP can contribute
3450 	 * to fragmentation, limit the number stored when PCP is heavily
3451 	 * freeing without allocation. The remainder after bulk freeing
3452 	 * stops will be drained from vmstat refresh context.
3453 	 */
3454 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3455 
3456 	high = nr_pcp_high(pcp, zone, free_high);
3457 	if (pcp->count >= high) {
3458 		int batch = READ_ONCE(pcp->batch);
3459 
3460 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3461 	}
3462 }
3463 
3464 /*
3465  * Free a pcp page
3466  */
3467 void free_unref_page(struct page *page, unsigned int order)
3468 {
3469 	unsigned long flags;
3470 	unsigned long __maybe_unused UP_flags;
3471 	struct per_cpu_pages *pcp;
3472 	struct zone *zone;
3473 	unsigned long pfn = page_to_pfn(page);
3474 	int migratetype;
3475 
3476 	if (!free_unref_page_prepare(page, pfn, order))
3477 		return;
3478 
3479 	/*
3480 	 * We only track unmovable, reclaimable and movable on pcp lists.
3481 	 * Place ISOLATE pages on the isolated list because they are being
3482 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3483 	 * areas back if necessary. Otherwise, we may have to free
3484 	 * excessively into the page allocator
3485 	 */
3486 	migratetype = get_pcppage_migratetype(page);
3487 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3488 		if (unlikely(is_migrate_isolate(migratetype))) {
3489 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3490 			return;
3491 		}
3492 		migratetype = MIGRATE_MOVABLE;
3493 	}
3494 
3495 	zone = page_zone(page);
3496 	pcp_trylock_prepare(UP_flags);
3497 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3498 	if (pcp) {
3499 		free_unref_page_commit(zone, pcp, page, migratetype, order);
3500 		pcp_spin_unlock_irqrestore(pcp, flags);
3501 	} else {
3502 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3503 	}
3504 	pcp_trylock_finish(UP_flags);
3505 }
3506 
3507 /*
3508  * Free a list of 0-order pages
3509  */
3510 void free_unref_page_list(struct list_head *list)
3511 {
3512 	struct page *page, *next;
3513 	struct per_cpu_pages *pcp = NULL;
3514 	struct zone *locked_zone = NULL;
3515 	unsigned long flags;
3516 	int batch_count = 0;
3517 	int migratetype;
3518 
3519 	/* Prepare pages for freeing */
3520 	list_for_each_entry_safe(page, next, list, lru) {
3521 		unsigned long pfn = page_to_pfn(page);
3522 		if (!free_unref_page_prepare(page, pfn, 0)) {
3523 			list_del(&page->lru);
3524 			continue;
3525 		}
3526 
3527 		/*
3528 		 * Free isolated pages directly to the allocator, see
3529 		 * comment in free_unref_page.
3530 		 */
3531 		migratetype = get_pcppage_migratetype(page);
3532 		if (unlikely(is_migrate_isolate(migratetype))) {
3533 			list_del(&page->lru);
3534 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3535 			continue;
3536 		}
3537 	}
3538 
3539 	list_for_each_entry_safe(page, next, list, lru) {
3540 		struct zone *zone = page_zone(page);
3541 
3542 		/* Different zone, different pcp lock. */
3543 		if (zone != locked_zone) {
3544 			if (pcp)
3545 				pcp_spin_unlock_irqrestore(pcp, flags);
3546 
3547 			locked_zone = zone;
3548 			pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3549 		}
3550 
3551 		/*
3552 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3553 		 * to the MIGRATE_MOVABLE pcp list.
3554 		 */
3555 		migratetype = get_pcppage_migratetype(page);
3556 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3557 			migratetype = MIGRATE_MOVABLE;
3558 
3559 		trace_mm_page_free_batched(page);
3560 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
3561 
3562 		/*
3563 		 * Guard against excessive IRQ disabled times when we get
3564 		 * a large list of pages to free.
3565 		 */
3566 		if (++batch_count == SWAP_CLUSTER_MAX) {
3567 			pcp_spin_unlock_irqrestore(pcp, flags);
3568 			batch_count = 0;
3569 			pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3570 		}
3571 	}
3572 
3573 	if (pcp)
3574 		pcp_spin_unlock_irqrestore(pcp, flags);
3575 }
3576 
3577 /*
3578  * split_page takes a non-compound higher-order page, and splits it into
3579  * n (1<<order) sub-pages: page[0..n]
3580  * Each sub-page must be freed individually.
3581  *
3582  * Note: this is probably too low level an operation for use in drivers.
3583  * Please consult with lkml before using this in your driver.
3584  */
3585 void split_page(struct page *page, unsigned int order)
3586 {
3587 	int i;
3588 
3589 	VM_BUG_ON_PAGE(PageCompound(page), page);
3590 	VM_BUG_ON_PAGE(!page_count(page), page);
3591 
3592 	for (i = 1; i < (1 << order); i++)
3593 		set_page_refcounted(page + i);
3594 	split_page_owner(page, 1 << order);
3595 	split_page_memcg(page, 1 << order);
3596 }
3597 EXPORT_SYMBOL_GPL(split_page);
3598 
3599 int __isolate_free_page(struct page *page, unsigned int order)
3600 {
3601 	unsigned long watermark;
3602 	struct zone *zone;
3603 	int mt;
3604 
3605 	BUG_ON(!PageBuddy(page));
3606 
3607 	zone = page_zone(page);
3608 	mt = get_pageblock_migratetype(page);
3609 
3610 	if (!is_migrate_isolate(mt)) {
3611 		/*
3612 		 * Obey watermarks as if the page was being allocated. We can
3613 		 * emulate a high-order watermark check with a raised order-0
3614 		 * watermark, because we already know our high-order page
3615 		 * exists.
3616 		 */
3617 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3618 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3619 			return 0;
3620 
3621 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3622 	}
3623 
3624 	/* Remove page from free list */
3625 
3626 	del_page_from_free_list(page, zone, order);
3627 
3628 	/*
3629 	 * Set the pageblock if the isolated page is at least half of a
3630 	 * pageblock
3631 	 */
3632 	if (order >= pageblock_order - 1) {
3633 		struct page *endpage = page + (1 << order) - 1;
3634 		for (; page < endpage; page += pageblock_nr_pages) {
3635 			int mt = get_pageblock_migratetype(page);
3636 			/*
3637 			 * Only change normal pageblocks (i.e., they can merge
3638 			 * with others)
3639 			 */
3640 			if (migratetype_is_mergeable(mt))
3641 				set_pageblock_migratetype(page,
3642 							  MIGRATE_MOVABLE);
3643 		}
3644 	}
3645 
3646 
3647 	return 1UL << order;
3648 }
3649 
3650 /**
3651  * __putback_isolated_page - Return a now-isolated page back where we got it
3652  * @page: Page that was isolated
3653  * @order: Order of the isolated page
3654  * @mt: The page's pageblock's migratetype
3655  *
3656  * This function is meant to return a page pulled from the free lists via
3657  * __isolate_free_page back to the free lists they were pulled from.
3658  */
3659 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3660 {
3661 	struct zone *zone = page_zone(page);
3662 
3663 	/* zone lock should be held when this function is called */
3664 	lockdep_assert_held(&zone->lock);
3665 
3666 	/* Return isolated page to tail of freelist. */
3667 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3668 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3669 }
3670 
3671 /*
3672  * Update NUMA hit/miss statistics
3673  *
3674  * Must be called with interrupts disabled.
3675  */
3676 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3677 				   long nr_account)
3678 {
3679 #ifdef CONFIG_NUMA
3680 	enum numa_stat_item local_stat = NUMA_LOCAL;
3681 
3682 	/* skip numa counters update if numa stats is disabled */
3683 	if (!static_branch_likely(&vm_numa_stat_key))
3684 		return;
3685 
3686 	if (zone_to_nid(z) != numa_node_id())
3687 		local_stat = NUMA_OTHER;
3688 
3689 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3690 		__count_numa_events(z, NUMA_HIT, nr_account);
3691 	else {
3692 		__count_numa_events(z, NUMA_MISS, nr_account);
3693 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3694 	}
3695 	__count_numa_events(z, local_stat, nr_account);
3696 #endif
3697 }
3698 
3699 static __always_inline
3700 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3701 			   unsigned int order, unsigned int alloc_flags,
3702 			   int migratetype)
3703 {
3704 	struct page *page;
3705 	unsigned long flags;
3706 
3707 	do {
3708 		page = NULL;
3709 		spin_lock_irqsave(&zone->lock, flags);
3710 		/*
3711 		 * order-0 request can reach here when the pcplist is skipped
3712 		 * due to non-CMA allocation context. HIGHATOMIC area is
3713 		 * reserved for high-order atomic allocation, so order-0
3714 		 * request should skip it.
3715 		 */
3716 		if (order > 0 && alloc_flags & ALLOC_HARDER)
3717 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3718 		if (!page) {
3719 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3720 			if (!page) {
3721 				spin_unlock_irqrestore(&zone->lock, flags);
3722 				return NULL;
3723 			}
3724 		}
3725 		__mod_zone_freepage_state(zone, -(1 << order),
3726 					  get_pcppage_migratetype(page));
3727 		spin_unlock_irqrestore(&zone->lock, flags);
3728 	} while (check_new_pages(page, order));
3729 
3730 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3731 	zone_statistics(preferred_zone, zone, 1);
3732 
3733 	return page;
3734 }
3735 
3736 /* Remove page from the per-cpu list, caller must protect the list */
3737 static inline
3738 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3739 			int migratetype,
3740 			unsigned int alloc_flags,
3741 			struct per_cpu_pages *pcp,
3742 			struct list_head *list)
3743 {
3744 	struct page *page;
3745 
3746 	do {
3747 		if (list_empty(list)) {
3748 			int batch = READ_ONCE(pcp->batch);
3749 			int alloced;
3750 
3751 			/*
3752 			 * Scale batch relative to order if batch implies
3753 			 * free pages can be stored on the PCP. Batch can
3754 			 * be 1 for small zones or for boot pagesets which
3755 			 * should never store free pages as the pages may
3756 			 * belong to arbitrary zones.
3757 			 */
3758 			if (batch > 1)
3759 				batch = max(batch >> order, 2);
3760 			alloced = rmqueue_bulk(zone, order,
3761 					batch, list,
3762 					migratetype, alloc_flags);
3763 
3764 			pcp->count += alloced << order;
3765 			if (unlikely(list_empty(list)))
3766 				return NULL;
3767 		}
3768 
3769 		page = list_first_entry(list, struct page, pcp_list);
3770 		list_del(&page->pcp_list);
3771 		pcp->count -= 1 << order;
3772 	} while (check_new_pcp(page, order));
3773 
3774 	return page;
3775 }
3776 
3777 /* Lock and remove page from the per-cpu list */
3778 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3779 			struct zone *zone, unsigned int order,
3780 			gfp_t gfp_flags, int migratetype,
3781 			unsigned int alloc_flags)
3782 {
3783 	struct per_cpu_pages *pcp;
3784 	struct list_head *list;
3785 	struct page *page;
3786 	unsigned long flags;
3787 	unsigned long __maybe_unused UP_flags;
3788 
3789 	/*
3790 	 * spin_trylock may fail due to a parallel drain. In the future, the
3791 	 * trylock will also protect against IRQ reentrancy.
3792 	 */
3793 	pcp_trylock_prepare(UP_flags);
3794 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3795 	if (!pcp) {
3796 		pcp_trylock_finish(UP_flags);
3797 		return NULL;
3798 	}
3799 
3800 	/*
3801 	 * On allocation, reduce the number of pages that are batch freed.
3802 	 * See nr_pcp_free() where free_factor is increased for subsequent
3803 	 * frees.
3804 	 */
3805 	pcp->free_factor >>= 1;
3806 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3807 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3808 	pcp_spin_unlock_irqrestore(pcp, flags);
3809 	pcp_trylock_finish(UP_flags);
3810 	if (page) {
3811 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3812 		zone_statistics(preferred_zone, zone, 1);
3813 	}
3814 	return page;
3815 }
3816 
3817 /*
3818  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3819  */
3820 static inline
3821 struct page *rmqueue(struct zone *preferred_zone,
3822 			struct zone *zone, unsigned int order,
3823 			gfp_t gfp_flags, unsigned int alloc_flags,
3824 			int migratetype)
3825 {
3826 	struct page *page;
3827 
3828 	/*
3829 	 * We most definitely don't want callers attempting to
3830 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3831 	 */
3832 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3833 
3834 	if (likely(pcp_allowed_order(order))) {
3835 		/*
3836 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3837 		 * we need to skip it when CMA area isn't allowed.
3838 		 */
3839 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3840 				migratetype != MIGRATE_MOVABLE) {
3841 			page = rmqueue_pcplist(preferred_zone, zone, order,
3842 					gfp_flags, migratetype, alloc_flags);
3843 			if (likely(page))
3844 				goto out;
3845 		}
3846 	}
3847 
3848 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3849 							migratetype);
3850 
3851 out:
3852 	/* Separate test+clear to avoid unnecessary atomics */
3853 	if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3854 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3855 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3856 	}
3857 
3858 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3859 	return page;
3860 }
3861 
3862 #ifdef CONFIG_FAIL_PAGE_ALLOC
3863 
3864 static struct {
3865 	struct fault_attr attr;
3866 
3867 	bool ignore_gfp_highmem;
3868 	bool ignore_gfp_reclaim;
3869 	u32 min_order;
3870 } fail_page_alloc = {
3871 	.attr = FAULT_ATTR_INITIALIZER,
3872 	.ignore_gfp_reclaim = true,
3873 	.ignore_gfp_highmem = true,
3874 	.min_order = 1,
3875 };
3876 
3877 static int __init setup_fail_page_alloc(char *str)
3878 {
3879 	return setup_fault_attr(&fail_page_alloc.attr, str);
3880 }
3881 __setup("fail_page_alloc=", setup_fail_page_alloc);
3882 
3883 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3884 {
3885 	if (order < fail_page_alloc.min_order)
3886 		return false;
3887 	if (gfp_mask & __GFP_NOFAIL)
3888 		return false;
3889 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3890 		return false;
3891 	if (fail_page_alloc.ignore_gfp_reclaim &&
3892 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3893 		return false;
3894 
3895 	if (gfp_mask & __GFP_NOWARN)
3896 		fail_page_alloc.attr.no_warn = true;
3897 
3898 	return should_fail(&fail_page_alloc.attr, 1 << order);
3899 }
3900 
3901 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3902 
3903 static int __init fail_page_alloc_debugfs(void)
3904 {
3905 	umode_t mode = S_IFREG | 0600;
3906 	struct dentry *dir;
3907 
3908 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3909 					&fail_page_alloc.attr);
3910 
3911 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3912 			    &fail_page_alloc.ignore_gfp_reclaim);
3913 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3914 			    &fail_page_alloc.ignore_gfp_highmem);
3915 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3916 
3917 	return 0;
3918 }
3919 
3920 late_initcall(fail_page_alloc_debugfs);
3921 
3922 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3923 
3924 #else /* CONFIG_FAIL_PAGE_ALLOC */
3925 
3926 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3927 {
3928 	return false;
3929 }
3930 
3931 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3932 
3933 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3934 {
3935 	return __should_fail_alloc_page(gfp_mask, order);
3936 }
3937 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3938 
3939 static inline long __zone_watermark_unusable_free(struct zone *z,
3940 				unsigned int order, unsigned int alloc_flags)
3941 {
3942 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3943 	long unusable_free = (1 << order) - 1;
3944 
3945 	/*
3946 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3947 	 * the high-atomic reserves. This will over-estimate the size of the
3948 	 * atomic reserve but it avoids a search.
3949 	 */
3950 	if (likely(!alloc_harder))
3951 		unusable_free += z->nr_reserved_highatomic;
3952 
3953 #ifdef CONFIG_CMA
3954 	/* If allocation can't use CMA areas don't use free CMA pages */
3955 	if (!(alloc_flags & ALLOC_CMA))
3956 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3957 #endif
3958 
3959 	return unusable_free;
3960 }
3961 
3962 /*
3963  * Return true if free base pages are above 'mark'. For high-order checks it
3964  * will return true of the order-0 watermark is reached and there is at least
3965  * one free page of a suitable size. Checking now avoids taking the zone lock
3966  * to check in the allocation paths if no pages are free.
3967  */
3968 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3969 			 int highest_zoneidx, unsigned int alloc_flags,
3970 			 long free_pages)
3971 {
3972 	long min = mark;
3973 	int o;
3974 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3975 
3976 	/* free_pages may go negative - that's OK */
3977 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3978 
3979 	if (alloc_flags & ALLOC_HIGH)
3980 		min -= min / 2;
3981 
3982 	if (unlikely(alloc_harder)) {
3983 		/*
3984 		 * OOM victims can try even harder than normal ALLOC_HARDER
3985 		 * users on the grounds that it's definitely going to be in
3986 		 * the exit path shortly and free memory. Any allocation it
3987 		 * makes during the free path will be small and short-lived.
3988 		 */
3989 		if (alloc_flags & ALLOC_OOM)
3990 			min -= min / 2;
3991 		else
3992 			min -= min / 4;
3993 	}
3994 
3995 	/*
3996 	 * Check watermarks for an order-0 allocation request. If these
3997 	 * are not met, then a high-order request also cannot go ahead
3998 	 * even if a suitable page happened to be free.
3999 	 */
4000 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4001 		return false;
4002 
4003 	/* If this is an order-0 request then the watermark is fine */
4004 	if (!order)
4005 		return true;
4006 
4007 	/* For a high-order request, check at least one suitable page is free */
4008 	for (o = order; o < MAX_ORDER; o++) {
4009 		struct free_area *area = &z->free_area[o];
4010 		int mt;
4011 
4012 		if (!area->nr_free)
4013 			continue;
4014 
4015 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4016 			if (!free_area_empty(area, mt))
4017 				return true;
4018 		}
4019 
4020 #ifdef CONFIG_CMA
4021 		if ((alloc_flags & ALLOC_CMA) &&
4022 		    !free_area_empty(area, MIGRATE_CMA)) {
4023 			return true;
4024 		}
4025 #endif
4026 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
4027 			return true;
4028 	}
4029 	return false;
4030 }
4031 
4032 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4033 		      int highest_zoneidx, unsigned int alloc_flags)
4034 {
4035 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4036 					zone_page_state(z, NR_FREE_PAGES));
4037 }
4038 
4039 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4040 				unsigned long mark, int highest_zoneidx,
4041 				unsigned int alloc_flags, gfp_t gfp_mask)
4042 {
4043 	long free_pages;
4044 
4045 	free_pages = zone_page_state(z, NR_FREE_PAGES);
4046 
4047 	/*
4048 	 * Fast check for order-0 only. If this fails then the reserves
4049 	 * need to be calculated.
4050 	 */
4051 	if (!order) {
4052 		long usable_free;
4053 		long reserved;
4054 
4055 		usable_free = free_pages;
4056 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4057 
4058 		/* reserved may over estimate high-atomic reserves. */
4059 		usable_free -= min(usable_free, reserved);
4060 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4061 			return true;
4062 	}
4063 
4064 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4065 					free_pages))
4066 		return true;
4067 	/*
4068 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4069 	 * when checking the min watermark. The min watermark is the
4070 	 * point where boosting is ignored so that kswapd is woken up
4071 	 * when below the low watermark.
4072 	 */
4073 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4074 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4075 		mark = z->_watermark[WMARK_MIN];
4076 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4077 					alloc_flags, free_pages);
4078 	}
4079 
4080 	return false;
4081 }
4082 
4083 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4084 			unsigned long mark, int highest_zoneidx)
4085 {
4086 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
4087 
4088 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4089 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4090 
4091 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4092 								free_pages);
4093 }
4094 
4095 #ifdef CONFIG_NUMA
4096 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4097 
4098 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4099 {
4100 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4101 				node_reclaim_distance;
4102 }
4103 #else	/* CONFIG_NUMA */
4104 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4105 {
4106 	return true;
4107 }
4108 #endif	/* CONFIG_NUMA */
4109 
4110 /*
4111  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4112  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4113  * premature use of a lower zone may cause lowmem pressure problems that
4114  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4115  * probably too small. It only makes sense to spread allocations to avoid
4116  * fragmentation between the Normal and DMA32 zones.
4117  */
4118 static inline unsigned int
4119 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4120 {
4121 	unsigned int alloc_flags;
4122 
4123 	/*
4124 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4125 	 * to save a branch.
4126 	 */
4127 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4128 
4129 #ifdef CONFIG_ZONE_DMA32
4130 	if (!zone)
4131 		return alloc_flags;
4132 
4133 	if (zone_idx(zone) != ZONE_NORMAL)
4134 		return alloc_flags;
4135 
4136 	/*
4137 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4138 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4139 	 * on UMA that if Normal is populated then so is DMA32.
4140 	 */
4141 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4142 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4143 		return alloc_flags;
4144 
4145 	alloc_flags |= ALLOC_NOFRAGMENT;
4146 #endif /* CONFIG_ZONE_DMA32 */
4147 	return alloc_flags;
4148 }
4149 
4150 /* Must be called after current_gfp_context() which can change gfp_mask */
4151 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4152 						  unsigned int alloc_flags)
4153 {
4154 #ifdef CONFIG_CMA
4155 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4156 		alloc_flags |= ALLOC_CMA;
4157 #endif
4158 	return alloc_flags;
4159 }
4160 
4161 /*
4162  * get_page_from_freelist goes through the zonelist trying to allocate
4163  * a page.
4164  */
4165 static struct page *
4166 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4167 						const struct alloc_context *ac)
4168 {
4169 	struct zoneref *z;
4170 	struct zone *zone;
4171 	struct pglist_data *last_pgdat = NULL;
4172 	bool last_pgdat_dirty_ok = false;
4173 	bool no_fallback;
4174 
4175 retry:
4176 	/*
4177 	 * Scan zonelist, looking for a zone with enough free.
4178 	 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4179 	 */
4180 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4181 	z = ac->preferred_zoneref;
4182 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4183 					ac->nodemask) {
4184 		struct page *page;
4185 		unsigned long mark;
4186 
4187 		if (cpusets_enabled() &&
4188 			(alloc_flags & ALLOC_CPUSET) &&
4189 			!__cpuset_zone_allowed(zone, gfp_mask))
4190 				continue;
4191 		/*
4192 		 * When allocating a page cache page for writing, we
4193 		 * want to get it from a node that is within its dirty
4194 		 * limit, such that no single node holds more than its
4195 		 * proportional share of globally allowed dirty pages.
4196 		 * The dirty limits take into account the node's
4197 		 * lowmem reserves and high watermark so that kswapd
4198 		 * should be able to balance it without having to
4199 		 * write pages from its LRU list.
4200 		 *
4201 		 * XXX: For now, allow allocations to potentially
4202 		 * exceed the per-node dirty limit in the slowpath
4203 		 * (spread_dirty_pages unset) before going into reclaim,
4204 		 * which is important when on a NUMA setup the allowed
4205 		 * nodes are together not big enough to reach the
4206 		 * global limit.  The proper fix for these situations
4207 		 * will require awareness of nodes in the
4208 		 * dirty-throttling and the flusher threads.
4209 		 */
4210 		if (ac->spread_dirty_pages) {
4211 			if (last_pgdat != zone->zone_pgdat) {
4212 				last_pgdat = zone->zone_pgdat;
4213 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4214 			}
4215 
4216 			if (!last_pgdat_dirty_ok)
4217 				continue;
4218 		}
4219 
4220 		if (no_fallback && nr_online_nodes > 1 &&
4221 		    zone != ac->preferred_zoneref->zone) {
4222 			int local_nid;
4223 
4224 			/*
4225 			 * If moving to a remote node, retry but allow
4226 			 * fragmenting fallbacks. Locality is more important
4227 			 * than fragmentation avoidance.
4228 			 */
4229 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4230 			if (zone_to_nid(zone) != local_nid) {
4231 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4232 				goto retry;
4233 			}
4234 		}
4235 
4236 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4237 		if (!zone_watermark_fast(zone, order, mark,
4238 				       ac->highest_zoneidx, alloc_flags,
4239 				       gfp_mask)) {
4240 			int ret;
4241 
4242 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4243 			/*
4244 			 * Watermark failed for this zone, but see if we can
4245 			 * grow this zone if it contains deferred pages.
4246 			 */
4247 			if (static_branch_unlikely(&deferred_pages)) {
4248 				if (_deferred_grow_zone(zone, order))
4249 					goto try_this_zone;
4250 			}
4251 #endif
4252 			/* Checked here to keep the fast path fast */
4253 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4254 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4255 				goto try_this_zone;
4256 
4257 			if (!node_reclaim_enabled() ||
4258 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4259 				continue;
4260 
4261 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4262 			switch (ret) {
4263 			case NODE_RECLAIM_NOSCAN:
4264 				/* did not scan */
4265 				continue;
4266 			case NODE_RECLAIM_FULL:
4267 				/* scanned but unreclaimable */
4268 				continue;
4269 			default:
4270 				/* did we reclaim enough */
4271 				if (zone_watermark_ok(zone, order, mark,
4272 					ac->highest_zoneidx, alloc_flags))
4273 					goto try_this_zone;
4274 
4275 				continue;
4276 			}
4277 		}
4278 
4279 try_this_zone:
4280 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4281 				gfp_mask, alloc_flags, ac->migratetype);
4282 		if (page) {
4283 			prep_new_page(page, order, gfp_mask, alloc_flags);
4284 
4285 			/*
4286 			 * If this is a high-order atomic allocation then check
4287 			 * if the pageblock should be reserved for the future
4288 			 */
4289 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4290 				reserve_highatomic_pageblock(page, zone, order);
4291 
4292 			return page;
4293 		} else {
4294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4295 			/* Try again if zone has deferred pages */
4296 			if (static_branch_unlikely(&deferred_pages)) {
4297 				if (_deferred_grow_zone(zone, order))
4298 					goto try_this_zone;
4299 			}
4300 #endif
4301 		}
4302 	}
4303 
4304 	/*
4305 	 * It's possible on a UMA machine to get through all zones that are
4306 	 * fragmented. If avoiding fragmentation, reset and try again.
4307 	 */
4308 	if (no_fallback) {
4309 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4310 		goto retry;
4311 	}
4312 
4313 	return NULL;
4314 }
4315 
4316 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4317 {
4318 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4319 
4320 	/*
4321 	 * This documents exceptions given to allocations in certain
4322 	 * contexts that are allowed to allocate outside current's set
4323 	 * of allowed nodes.
4324 	 */
4325 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4326 		if (tsk_is_oom_victim(current) ||
4327 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4328 			filter &= ~SHOW_MEM_FILTER_NODES;
4329 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4330 		filter &= ~SHOW_MEM_FILTER_NODES;
4331 
4332 	show_mem(filter, nodemask);
4333 }
4334 
4335 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4336 {
4337 	struct va_format vaf;
4338 	va_list args;
4339 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4340 
4341 	if ((gfp_mask & __GFP_NOWARN) ||
4342 	     !__ratelimit(&nopage_rs) ||
4343 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4344 		return;
4345 
4346 	va_start(args, fmt);
4347 	vaf.fmt = fmt;
4348 	vaf.va = &args;
4349 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4350 			current->comm, &vaf, gfp_mask, &gfp_mask,
4351 			nodemask_pr_args(nodemask));
4352 	va_end(args);
4353 
4354 	cpuset_print_current_mems_allowed();
4355 	pr_cont("\n");
4356 	dump_stack();
4357 	warn_alloc_show_mem(gfp_mask, nodemask);
4358 }
4359 
4360 static inline struct page *
4361 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4362 			      unsigned int alloc_flags,
4363 			      const struct alloc_context *ac)
4364 {
4365 	struct page *page;
4366 
4367 	page = get_page_from_freelist(gfp_mask, order,
4368 			alloc_flags|ALLOC_CPUSET, ac);
4369 	/*
4370 	 * fallback to ignore cpuset restriction if our nodes
4371 	 * are depleted
4372 	 */
4373 	if (!page)
4374 		page = get_page_from_freelist(gfp_mask, order,
4375 				alloc_flags, ac);
4376 
4377 	return page;
4378 }
4379 
4380 static inline struct page *
4381 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4382 	const struct alloc_context *ac, unsigned long *did_some_progress)
4383 {
4384 	struct oom_control oc = {
4385 		.zonelist = ac->zonelist,
4386 		.nodemask = ac->nodemask,
4387 		.memcg = NULL,
4388 		.gfp_mask = gfp_mask,
4389 		.order = order,
4390 	};
4391 	struct page *page;
4392 
4393 	*did_some_progress = 0;
4394 
4395 	/*
4396 	 * Acquire the oom lock.  If that fails, somebody else is
4397 	 * making progress for us.
4398 	 */
4399 	if (!mutex_trylock(&oom_lock)) {
4400 		*did_some_progress = 1;
4401 		schedule_timeout_uninterruptible(1);
4402 		return NULL;
4403 	}
4404 
4405 	/*
4406 	 * Go through the zonelist yet one more time, keep very high watermark
4407 	 * here, this is only to catch a parallel oom killing, we must fail if
4408 	 * we're still under heavy pressure. But make sure that this reclaim
4409 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4410 	 * allocation which will never fail due to oom_lock already held.
4411 	 */
4412 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4413 				      ~__GFP_DIRECT_RECLAIM, order,
4414 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4415 	if (page)
4416 		goto out;
4417 
4418 	/* Coredumps can quickly deplete all memory reserves */
4419 	if (current->flags & PF_DUMPCORE)
4420 		goto out;
4421 	/* The OOM killer will not help higher order allocs */
4422 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4423 		goto out;
4424 	/*
4425 	 * We have already exhausted all our reclaim opportunities without any
4426 	 * success so it is time to admit defeat. We will skip the OOM killer
4427 	 * because it is very likely that the caller has a more reasonable
4428 	 * fallback than shooting a random task.
4429 	 *
4430 	 * The OOM killer may not free memory on a specific node.
4431 	 */
4432 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4433 		goto out;
4434 	/* The OOM killer does not needlessly kill tasks for lowmem */
4435 	if (ac->highest_zoneidx < ZONE_NORMAL)
4436 		goto out;
4437 	if (pm_suspended_storage())
4438 		goto out;
4439 	/*
4440 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4441 	 * other request to make a forward progress.
4442 	 * We are in an unfortunate situation where out_of_memory cannot
4443 	 * do much for this context but let's try it to at least get
4444 	 * access to memory reserved if the current task is killed (see
4445 	 * out_of_memory). Once filesystems are ready to handle allocation
4446 	 * failures more gracefully we should just bail out here.
4447 	 */
4448 
4449 	/* Exhausted what can be done so it's blame time */
4450 	if (out_of_memory(&oc) ||
4451 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4452 		*did_some_progress = 1;
4453 
4454 		/*
4455 		 * Help non-failing allocations by giving them access to memory
4456 		 * reserves
4457 		 */
4458 		if (gfp_mask & __GFP_NOFAIL)
4459 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4460 					ALLOC_NO_WATERMARKS, ac);
4461 	}
4462 out:
4463 	mutex_unlock(&oom_lock);
4464 	return page;
4465 }
4466 
4467 /*
4468  * Maximum number of compaction retries with a progress before OOM
4469  * killer is consider as the only way to move forward.
4470  */
4471 #define MAX_COMPACT_RETRIES 16
4472 
4473 #ifdef CONFIG_COMPACTION
4474 /* Try memory compaction for high-order allocations before reclaim */
4475 static struct page *
4476 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4477 		unsigned int alloc_flags, const struct alloc_context *ac,
4478 		enum compact_priority prio, enum compact_result *compact_result)
4479 {
4480 	struct page *page = NULL;
4481 	unsigned long pflags;
4482 	unsigned int noreclaim_flag;
4483 
4484 	if (!order)
4485 		return NULL;
4486 
4487 	psi_memstall_enter(&pflags);
4488 	delayacct_compact_start();
4489 	noreclaim_flag = memalloc_noreclaim_save();
4490 
4491 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4492 								prio, &page);
4493 
4494 	memalloc_noreclaim_restore(noreclaim_flag);
4495 	psi_memstall_leave(&pflags);
4496 	delayacct_compact_end();
4497 
4498 	if (*compact_result == COMPACT_SKIPPED)
4499 		return NULL;
4500 	/*
4501 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4502 	 * count a compaction stall
4503 	 */
4504 	count_vm_event(COMPACTSTALL);
4505 
4506 	/* Prep a captured page if available */
4507 	if (page)
4508 		prep_new_page(page, order, gfp_mask, alloc_flags);
4509 
4510 	/* Try get a page from the freelist if available */
4511 	if (!page)
4512 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4513 
4514 	if (page) {
4515 		struct zone *zone = page_zone(page);
4516 
4517 		zone->compact_blockskip_flush = false;
4518 		compaction_defer_reset(zone, order, true);
4519 		count_vm_event(COMPACTSUCCESS);
4520 		return page;
4521 	}
4522 
4523 	/*
4524 	 * It's bad if compaction run occurs and fails. The most likely reason
4525 	 * is that pages exist, but not enough to satisfy watermarks.
4526 	 */
4527 	count_vm_event(COMPACTFAIL);
4528 
4529 	cond_resched();
4530 
4531 	return NULL;
4532 }
4533 
4534 static inline bool
4535 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4536 		     enum compact_result compact_result,
4537 		     enum compact_priority *compact_priority,
4538 		     int *compaction_retries)
4539 {
4540 	int max_retries = MAX_COMPACT_RETRIES;
4541 	int min_priority;
4542 	bool ret = false;
4543 	int retries = *compaction_retries;
4544 	enum compact_priority priority = *compact_priority;
4545 
4546 	if (!order)
4547 		return false;
4548 
4549 	if (fatal_signal_pending(current))
4550 		return false;
4551 
4552 	if (compaction_made_progress(compact_result))
4553 		(*compaction_retries)++;
4554 
4555 	/*
4556 	 * compaction considers all the zone as desperately out of memory
4557 	 * so it doesn't really make much sense to retry except when the
4558 	 * failure could be caused by insufficient priority
4559 	 */
4560 	if (compaction_failed(compact_result))
4561 		goto check_priority;
4562 
4563 	/*
4564 	 * compaction was skipped because there are not enough order-0 pages
4565 	 * to work with, so we retry only if it looks like reclaim can help.
4566 	 */
4567 	if (compaction_needs_reclaim(compact_result)) {
4568 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4569 		goto out;
4570 	}
4571 
4572 	/*
4573 	 * make sure the compaction wasn't deferred or didn't bail out early
4574 	 * due to locks contention before we declare that we should give up.
4575 	 * But the next retry should use a higher priority if allowed, so
4576 	 * we don't just keep bailing out endlessly.
4577 	 */
4578 	if (compaction_withdrawn(compact_result)) {
4579 		goto check_priority;
4580 	}
4581 
4582 	/*
4583 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4584 	 * costly ones because they are de facto nofail and invoke OOM
4585 	 * killer to move on while costly can fail and users are ready
4586 	 * to cope with that. 1/4 retries is rather arbitrary but we
4587 	 * would need much more detailed feedback from compaction to
4588 	 * make a better decision.
4589 	 */
4590 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4591 		max_retries /= 4;
4592 	if (*compaction_retries <= max_retries) {
4593 		ret = true;
4594 		goto out;
4595 	}
4596 
4597 	/*
4598 	 * Make sure there are attempts at the highest priority if we exhausted
4599 	 * all retries or failed at the lower priorities.
4600 	 */
4601 check_priority:
4602 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4603 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4604 
4605 	if (*compact_priority > min_priority) {
4606 		(*compact_priority)--;
4607 		*compaction_retries = 0;
4608 		ret = true;
4609 	}
4610 out:
4611 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4612 	return ret;
4613 }
4614 #else
4615 static inline struct page *
4616 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4617 		unsigned int alloc_flags, const struct alloc_context *ac,
4618 		enum compact_priority prio, enum compact_result *compact_result)
4619 {
4620 	*compact_result = COMPACT_SKIPPED;
4621 	return NULL;
4622 }
4623 
4624 static inline bool
4625 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4626 		     enum compact_result compact_result,
4627 		     enum compact_priority *compact_priority,
4628 		     int *compaction_retries)
4629 {
4630 	struct zone *zone;
4631 	struct zoneref *z;
4632 
4633 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4634 		return false;
4635 
4636 	/*
4637 	 * There are setups with compaction disabled which would prefer to loop
4638 	 * inside the allocator rather than hit the oom killer prematurely.
4639 	 * Let's give them a good hope and keep retrying while the order-0
4640 	 * watermarks are OK.
4641 	 */
4642 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4643 				ac->highest_zoneidx, ac->nodemask) {
4644 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4645 					ac->highest_zoneidx, alloc_flags))
4646 			return true;
4647 	}
4648 	return false;
4649 }
4650 #endif /* CONFIG_COMPACTION */
4651 
4652 #ifdef CONFIG_LOCKDEP
4653 static struct lockdep_map __fs_reclaim_map =
4654 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4655 
4656 static bool __need_reclaim(gfp_t gfp_mask)
4657 {
4658 	/* no reclaim without waiting on it */
4659 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4660 		return false;
4661 
4662 	/* this guy won't enter reclaim */
4663 	if (current->flags & PF_MEMALLOC)
4664 		return false;
4665 
4666 	if (gfp_mask & __GFP_NOLOCKDEP)
4667 		return false;
4668 
4669 	return true;
4670 }
4671 
4672 void __fs_reclaim_acquire(unsigned long ip)
4673 {
4674 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4675 }
4676 
4677 void __fs_reclaim_release(unsigned long ip)
4678 {
4679 	lock_release(&__fs_reclaim_map, ip);
4680 }
4681 
4682 void fs_reclaim_acquire(gfp_t gfp_mask)
4683 {
4684 	gfp_mask = current_gfp_context(gfp_mask);
4685 
4686 	if (__need_reclaim(gfp_mask)) {
4687 		if (gfp_mask & __GFP_FS)
4688 			__fs_reclaim_acquire(_RET_IP_);
4689 
4690 #ifdef CONFIG_MMU_NOTIFIER
4691 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4692 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4693 #endif
4694 
4695 	}
4696 }
4697 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4698 
4699 void fs_reclaim_release(gfp_t gfp_mask)
4700 {
4701 	gfp_mask = current_gfp_context(gfp_mask);
4702 
4703 	if (__need_reclaim(gfp_mask)) {
4704 		if (gfp_mask & __GFP_FS)
4705 			__fs_reclaim_release(_RET_IP_);
4706 	}
4707 }
4708 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4709 #endif
4710 
4711 /* Perform direct synchronous page reclaim */
4712 static unsigned long
4713 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4714 					const struct alloc_context *ac)
4715 {
4716 	unsigned int noreclaim_flag;
4717 	unsigned long progress;
4718 
4719 	cond_resched();
4720 
4721 	/* We now go into synchronous reclaim */
4722 	cpuset_memory_pressure_bump();
4723 	fs_reclaim_acquire(gfp_mask);
4724 	noreclaim_flag = memalloc_noreclaim_save();
4725 
4726 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4727 								ac->nodemask);
4728 
4729 	memalloc_noreclaim_restore(noreclaim_flag);
4730 	fs_reclaim_release(gfp_mask);
4731 
4732 	cond_resched();
4733 
4734 	return progress;
4735 }
4736 
4737 /* The really slow allocator path where we enter direct reclaim */
4738 static inline struct page *
4739 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4740 		unsigned int alloc_flags, const struct alloc_context *ac,
4741 		unsigned long *did_some_progress)
4742 {
4743 	struct page *page = NULL;
4744 	unsigned long pflags;
4745 	bool drained = false;
4746 
4747 	psi_memstall_enter(&pflags);
4748 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4749 	if (unlikely(!(*did_some_progress)))
4750 		goto out;
4751 
4752 retry:
4753 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4754 
4755 	/*
4756 	 * If an allocation failed after direct reclaim, it could be because
4757 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4758 	 * Shrink them and try again
4759 	 */
4760 	if (!page && !drained) {
4761 		unreserve_highatomic_pageblock(ac, false);
4762 		drain_all_pages(NULL);
4763 		drained = true;
4764 		goto retry;
4765 	}
4766 out:
4767 	psi_memstall_leave(&pflags);
4768 
4769 	return page;
4770 }
4771 
4772 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4773 			     const struct alloc_context *ac)
4774 {
4775 	struct zoneref *z;
4776 	struct zone *zone;
4777 	pg_data_t *last_pgdat = NULL;
4778 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4779 
4780 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4781 					ac->nodemask) {
4782 		if (!managed_zone(zone))
4783 			continue;
4784 		if (last_pgdat != zone->zone_pgdat) {
4785 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4786 			last_pgdat = zone->zone_pgdat;
4787 		}
4788 	}
4789 }
4790 
4791 static inline unsigned int
4792 gfp_to_alloc_flags(gfp_t gfp_mask)
4793 {
4794 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4795 
4796 	/*
4797 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4798 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4799 	 * to save two branches.
4800 	 */
4801 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4802 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4803 
4804 	/*
4805 	 * The caller may dip into page reserves a bit more if the caller
4806 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4807 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4808 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4809 	 */
4810 	alloc_flags |= (__force int)
4811 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4812 
4813 	if (gfp_mask & __GFP_ATOMIC) {
4814 		/*
4815 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4816 		 * if it can't schedule.
4817 		 */
4818 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4819 			alloc_flags |= ALLOC_HARDER;
4820 		/*
4821 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4822 		 * comment for __cpuset_node_allowed().
4823 		 */
4824 		alloc_flags &= ~ALLOC_CPUSET;
4825 	} else if (unlikely(rt_task(current)) && in_task())
4826 		alloc_flags |= ALLOC_HARDER;
4827 
4828 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4829 
4830 	return alloc_flags;
4831 }
4832 
4833 static bool oom_reserves_allowed(struct task_struct *tsk)
4834 {
4835 	if (!tsk_is_oom_victim(tsk))
4836 		return false;
4837 
4838 	/*
4839 	 * !MMU doesn't have oom reaper so give access to memory reserves
4840 	 * only to the thread with TIF_MEMDIE set
4841 	 */
4842 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4843 		return false;
4844 
4845 	return true;
4846 }
4847 
4848 /*
4849  * Distinguish requests which really need access to full memory
4850  * reserves from oom victims which can live with a portion of it
4851  */
4852 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4853 {
4854 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4855 		return 0;
4856 	if (gfp_mask & __GFP_MEMALLOC)
4857 		return ALLOC_NO_WATERMARKS;
4858 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4859 		return ALLOC_NO_WATERMARKS;
4860 	if (!in_interrupt()) {
4861 		if (current->flags & PF_MEMALLOC)
4862 			return ALLOC_NO_WATERMARKS;
4863 		else if (oom_reserves_allowed(current))
4864 			return ALLOC_OOM;
4865 	}
4866 
4867 	return 0;
4868 }
4869 
4870 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4871 {
4872 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4873 }
4874 
4875 /*
4876  * Checks whether it makes sense to retry the reclaim to make a forward progress
4877  * for the given allocation request.
4878  *
4879  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4880  * without success, or when we couldn't even meet the watermark if we
4881  * reclaimed all remaining pages on the LRU lists.
4882  *
4883  * Returns true if a retry is viable or false to enter the oom path.
4884  */
4885 static inline bool
4886 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4887 		     struct alloc_context *ac, int alloc_flags,
4888 		     bool did_some_progress, int *no_progress_loops)
4889 {
4890 	struct zone *zone;
4891 	struct zoneref *z;
4892 	bool ret = false;
4893 
4894 	/*
4895 	 * Costly allocations might have made a progress but this doesn't mean
4896 	 * their order will become available due to high fragmentation so
4897 	 * always increment the no progress counter for them
4898 	 */
4899 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4900 		*no_progress_loops = 0;
4901 	else
4902 		(*no_progress_loops)++;
4903 
4904 	/*
4905 	 * Make sure we converge to OOM if we cannot make any progress
4906 	 * several times in the row.
4907 	 */
4908 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4909 		/* Before OOM, exhaust highatomic_reserve */
4910 		return unreserve_highatomic_pageblock(ac, true);
4911 	}
4912 
4913 	/*
4914 	 * Keep reclaiming pages while there is a chance this will lead
4915 	 * somewhere.  If none of the target zones can satisfy our allocation
4916 	 * request even if all reclaimable pages are considered then we are
4917 	 * screwed and have to go OOM.
4918 	 */
4919 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4920 				ac->highest_zoneidx, ac->nodemask) {
4921 		unsigned long available;
4922 		unsigned long reclaimable;
4923 		unsigned long min_wmark = min_wmark_pages(zone);
4924 		bool wmark;
4925 
4926 		available = reclaimable = zone_reclaimable_pages(zone);
4927 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4928 
4929 		/*
4930 		 * Would the allocation succeed if we reclaimed all
4931 		 * reclaimable pages?
4932 		 */
4933 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4934 				ac->highest_zoneidx, alloc_flags, available);
4935 		trace_reclaim_retry_zone(z, order, reclaimable,
4936 				available, min_wmark, *no_progress_loops, wmark);
4937 		if (wmark) {
4938 			ret = true;
4939 			break;
4940 		}
4941 	}
4942 
4943 	/*
4944 	 * Memory allocation/reclaim might be called from a WQ context and the
4945 	 * current implementation of the WQ concurrency control doesn't
4946 	 * recognize that a particular WQ is congested if the worker thread is
4947 	 * looping without ever sleeping. Therefore we have to do a short sleep
4948 	 * here rather than calling cond_resched().
4949 	 */
4950 	if (current->flags & PF_WQ_WORKER)
4951 		schedule_timeout_uninterruptible(1);
4952 	else
4953 		cond_resched();
4954 	return ret;
4955 }
4956 
4957 static inline bool
4958 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4959 {
4960 	/*
4961 	 * It's possible that cpuset's mems_allowed and the nodemask from
4962 	 * mempolicy don't intersect. This should be normally dealt with by
4963 	 * policy_nodemask(), but it's possible to race with cpuset update in
4964 	 * such a way the check therein was true, and then it became false
4965 	 * before we got our cpuset_mems_cookie here.
4966 	 * This assumes that for all allocations, ac->nodemask can come only
4967 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4968 	 * when it does not intersect with the cpuset restrictions) or the
4969 	 * caller can deal with a violated nodemask.
4970 	 */
4971 	if (cpusets_enabled() && ac->nodemask &&
4972 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4973 		ac->nodemask = NULL;
4974 		return true;
4975 	}
4976 
4977 	/*
4978 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4979 	 * possible to race with parallel threads in such a way that our
4980 	 * allocation can fail while the mask is being updated. If we are about
4981 	 * to fail, check if the cpuset changed during allocation and if so,
4982 	 * retry.
4983 	 */
4984 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4985 		return true;
4986 
4987 	return false;
4988 }
4989 
4990 static inline struct page *
4991 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4992 						struct alloc_context *ac)
4993 {
4994 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4995 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4996 	struct page *page = NULL;
4997 	unsigned int alloc_flags;
4998 	unsigned long did_some_progress;
4999 	enum compact_priority compact_priority;
5000 	enum compact_result compact_result;
5001 	int compaction_retries;
5002 	int no_progress_loops;
5003 	unsigned int cpuset_mems_cookie;
5004 	int reserve_flags;
5005 
5006 	/*
5007 	 * We also sanity check to catch abuse of atomic reserves being used by
5008 	 * callers that are not in atomic context.
5009 	 */
5010 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5011 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5012 		gfp_mask &= ~__GFP_ATOMIC;
5013 
5014 retry_cpuset:
5015 	compaction_retries = 0;
5016 	no_progress_loops = 0;
5017 	compact_priority = DEF_COMPACT_PRIORITY;
5018 	cpuset_mems_cookie = read_mems_allowed_begin();
5019 
5020 	/*
5021 	 * The fast path uses conservative alloc_flags to succeed only until
5022 	 * kswapd needs to be woken up, and to avoid the cost of setting up
5023 	 * alloc_flags precisely. So we do that now.
5024 	 */
5025 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
5026 
5027 	/*
5028 	 * We need to recalculate the starting point for the zonelist iterator
5029 	 * because we might have used different nodemask in the fast path, or
5030 	 * there was a cpuset modification and we are retrying - otherwise we
5031 	 * could end up iterating over non-eligible zones endlessly.
5032 	 */
5033 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5034 					ac->highest_zoneidx, ac->nodemask);
5035 	if (!ac->preferred_zoneref->zone)
5036 		goto nopage;
5037 
5038 	/*
5039 	 * Check for insane configurations where the cpuset doesn't contain
5040 	 * any suitable zone to satisfy the request - e.g. non-movable
5041 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5042 	 */
5043 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5044 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
5045 					ac->highest_zoneidx,
5046 					&cpuset_current_mems_allowed);
5047 		if (!z->zone)
5048 			goto nopage;
5049 	}
5050 
5051 	if (alloc_flags & ALLOC_KSWAPD)
5052 		wake_all_kswapds(order, gfp_mask, ac);
5053 
5054 	/*
5055 	 * The adjusted alloc_flags might result in immediate success, so try
5056 	 * that first
5057 	 */
5058 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5059 	if (page)
5060 		goto got_pg;
5061 
5062 	/*
5063 	 * For costly allocations, try direct compaction first, as it's likely
5064 	 * that we have enough base pages and don't need to reclaim. For non-
5065 	 * movable high-order allocations, do that as well, as compaction will
5066 	 * try prevent permanent fragmentation by migrating from blocks of the
5067 	 * same migratetype.
5068 	 * Don't try this for allocations that are allowed to ignore
5069 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5070 	 */
5071 	if (can_direct_reclaim &&
5072 			(costly_order ||
5073 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5074 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
5075 		page = __alloc_pages_direct_compact(gfp_mask, order,
5076 						alloc_flags, ac,
5077 						INIT_COMPACT_PRIORITY,
5078 						&compact_result);
5079 		if (page)
5080 			goto got_pg;
5081 
5082 		/*
5083 		 * Checks for costly allocations with __GFP_NORETRY, which
5084 		 * includes some THP page fault allocations
5085 		 */
5086 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5087 			/*
5088 			 * If allocating entire pageblock(s) and compaction
5089 			 * failed because all zones are below low watermarks
5090 			 * or is prohibited because it recently failed at this
5091 			 * order, fail immediately unless the allocator has
5092 			 * requested compaction and reclaim retry.
5093 			 *
5094 			 * Reclaim is
5095 			 *  - potentially very expensive because zones are far
5096 			 *    below their low watermarks or this is part of very
5097 			 *    bursty high order allocations,
5098 			 *  - not guaranteed to help because isolate_freepages()
5099 			 *    may not iterate over freed pages as part of its
5100 			 *    linear scan, and
5101 			 *  - unlikely to make entire pageblocks free on its
5102 			 *    own.
5103 			 */
5104 			if (compact_result == COMPACT_SKIPPED ||
5105 			    compact_result == COMPACT_DEFERRED)
5106 				goto nopage;
5107 
5108 			/*
5109 			 * Looks like reclaim/compaction is worth trying, but
5110 			 * sync compaction could be very expensive, so keep
5111 			 * using async compaction.
5112 			 */
5113 			compact_priority = INIT_COMPACT_PRIORITY;
5114 		}
5115 	}
5116 
5117 retry:
5118 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5119 	if (alloc_flags & ALLOC_KSWAPD)
5120 		wake_all_kswapds(order, gfp_mask, ac);
5121 
5122 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5123 	if (reserve_flags)
5124 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5125 
5126 	/*
5127 	 * Reset the nodemask and zonelist iterators if memory policies can be
5128 	 * ignored. These allocations are high priority and system rather than
5129 	 * user oriented.
5130 	 */
5131 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5132 		ac->nodemask = NULL;
5133 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5134 					ac->highest_zoneidx, ac->nodemask);
5135 	}
5136 
5137 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5138 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5139 	if (page)
5140 		goto got_pg;
5141 
5142 	/* Caller is not willing to reclaim, we can't balance anything */
5143 	if (!can_direct_reclaim)
5144 		goto nopage;
5145 
5146 	/* Avoid recursion of direct reclaim */
5147 	if (current->flags & PF_MEMALLOC)
5148 		goto nopage;
5149 
5150 	/* Try direct reclaim and then allocating */
5151 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5152 							&did_some_progress);
5153 	if (page)
5154 		goto got_pg;
5155 
5156 	/* Try direct compaction and then allocating */
5157 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5158 					compact_priority, &compact_result);
5159 	if (page)
5160 		goto got_pg;
5161 
5162 	/* Do not loop if specifically requested */
5163 	if (gfp_mask & __GFP_NORETRY)
5164 		goto nopage;
5165 
5166 	/*
5167 	 * Do not retry costly high order allocations unless they are
5168 	 * __GFP_RETRY_MAYFAIL
5169 	 */
5170 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5171 		goto nopage;
5172 
5173 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5174 				 did_some_progress > 0, &no_progress_loops))
5175 		goto retry;
5176 
5177 	/*
5178 	 * It doesn't make any sense to retry for the compaction if the order-0
5179 	 * reclaim is not able to make any progress because the current
5180 	 * implementation of the compaction depends on the sufficient amount
5181 	 * of free memory (see __compaction_suitable)
5182 	 */
5183 	if (did_some_progress > 0 &&
5184 			should_compact_retry(ac, order, alloc_flags,
5185 				compact_result, &compact_priority,
5186 				&compaction_retries))
5187 		goto retry;
5188 
5189 
5190 	/* Deal with possible cpuset update races before we start OOM killing */
5191 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5192 		goto retry_cpuset;
5193 
5194 	/* Reclaim has failed us, start killing things */
5195 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5196 	if (page)
5197 		goto got_pg;
5198 
5199 	/* Avoid allocations with no watermarks from looping endlessly */
5200 	if (tsk_is_oom_victim(current) &&
5201 	    (alloc_flags & ALLOC_OOM ||
5202 	     (gfp_mask & __GFP_NOMEMALLOC)))
5203 		goto nopage;
5204 
5205 	/* Retry as long as the OOM killer is making progress */
5206 	if (did_some_progress) {
5207 		no_progress_loops = 0;
5208 		goto retry;
5209 	}
5210 
5211 nopage:
5212 	/* Deal with possible cpuset update races before we fail */
5213 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5214 		goto retry_cpuset;
5215 
5216 	/*
5217 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5218 	 * we always retry
5219 	 */
5220 	if (gfp_mask & __GFP_NOFAIL) {
5221 		/*
5222 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5223 		 * of any new users that actually require GFP_NOWAIT
5224 		 */
5225 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5226 			goto fail;
5227 
5228 		/*
5229 		 * PF_MEMALLOC request from this context is rather bizarre
5230 		 * because we cannot reclaim anything and only can loop waiting
5231 		 * for somebody to do a work for us
5232 		 */
5233 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5234 
5235 		/*
5236 		 * non failing costly orders are a hard requirement which we
5237 		 * are not prepared for much so let's warn about these users
5238 		 * so that we can identify them and convert them to something
5239 		 * else.
5240 		 */
5241 		WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask);
5242 
5243 		/*
5244 		 * Help non-failing allocations by giving them access to memory
5245 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5246 		 * could deplete whole memory reserves which would just make
5247 		 * the situation worse
5248 		 */
5249 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5250 		if (page)
5251 			goto got_pg;
5252 
5253 		cond_resched();
5254 		goto retry;
5255 	}
5256 fail:
5257 	warn_alloc(gfp_mask, ac->nodemask,
5258 			"page allocation failure: order:%u", order);
5259 got_pg:
5260 	return page;
5261 }
5262 
5263 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5264 		int preferred_nid, nodemask_t *nodemask,
5265 		struct alloc_context *ac, gfp_t *alloc_gfp,
5266 		unsigned int *alloc_flags)
5267 {
5268 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5269 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5270 	ac->nodemask = nodemask;
5271 	ac->migratetype = gfp_migratetype(gfp_mask);
5272 
5273 	if (cpusets_enabled()) {
5274 		*alloc_gfp |= __GFP_HARDWALL;
5275 		/*
5276 		 * When we are in the interrupt context, it is irrelevant
5277 		 * to the current task context. It means that any node ok.
5278 		 */
5279 		if (in_task() && !ac->nodemask)
5280 			ac->nodemask = &cpuset_current_mems_allowed;
5281 		else
5282 			*alloc_flags |= ALLOC_CPUSET;
5283 	}
5284 
5285 	might_alloc(gfp_mask);
5286 
5287 	if (should_fail_alloc_page(gfp_mask, order))
5288 		return false;
5289 
5290 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5291 
5292 	/* Dirty zone balancing only done in the fast path */
5293 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5294 
5295 	/*
5296 	 * The preferred zone is used for statistics but crucially it is
5297 	 * also used as the starting point for the zonelist iterator. It
5298 	 * may get reset for allocations that ignore memory policies.
5299 	 */
5300 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5301 					ac->highest_zoneidx, ac->nodemask);
5302 
5303 	return true;
5304 }
5305 
5306 /*
5307  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5308  * @gfp: GFP flags for the allocation
5309  * @preferred_nid: The preferred NUMA node ID to allocate from
5310  * @nodemask: Set of nodes to allocate from, may be NULL
5311  * @nr_pages: The number of pages desired on the list or array
5312  * @page_list: Optional list to store the allocated pages
5313  * @page_array: Optional array to store the pages
5314  *
5315  * This is a batched version of the page allocator that attempts to
5316  * allocate nr_pages quickly. Pages are added to page_list if page_list
5317  * is not NULL, otherwise it is assumed that the page_array is valid.
5318  *
5319  * For lists, nr_pages is the number of pages that should be allocated.
5320  *
5321  * For arrays, only NULL elements are populated with pages and nr_pages
5322  * is the maximum number of pages that will be stored in the array.
5323  *
5324  * Returns the number of pages on the list or array.
5325  */
5326 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5327 			nodemask_t *nodemask, int nr_pages,
5328 			struct list_head *page_list,
5329 			struct page **page_array)
5330 {
5331 	struct page *page;
5332 	unsigned long flags;
5333 	unsigned long __maybe_unused UP_flags;
5334 	struct zone *zone;
5335 	struct zoneref *z;
5336 	struct per_cpu_pages *pcp;
5337 	struct list_head *pcp_list;
5338 	struct alloc_context ac;
5339 	gfp_t alloc_gfp;
5340 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5341 	int nr_populated = 0, nr_account = 0;
5342 
5343 	/*
5344 	 * Skip populated array elements to determine if any pages need
5345 	 * to be allocated before disabling IRQs.
5346 	 */
5347 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5348 		nr_populated++;
5349 
5350 	/* No pages requested? */
5351 	if (unlikely(nr_pages <= 0))
5352 		goto out;
5353 
5354 	/* Already populated array? */
5355 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5356 		goto out;
5357 
5358 	/* Bulk allocator does not support memcg accounting. */
5359 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5360 		goto failed;
5361 
5362 	/* Use the single page allocator for one page. */
5363 	if (nr_pages - nr_populated == 1)
5364 		goto failed;
5365 
5366 #ifdef CONFIG_PAGE_OWNER
5367 	/*
5368 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5369 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5370 	 * removes much of the performance benefit of bulk allocation so
5371 	 * force the caller to allocate one page at a time as it'll have
5372 	 * similar performance to added complexity to the bulk allocator.
5373 	 */
5374 	if (static_branch_unlikely(&page_owner_inited))
5375 		goto failed;
5376 #endif
5377 
5378 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5379 	gfp &= gfp_allowed_mask;
5380 	alloc_gfp = gfp;
5381 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5382 		goto out;
5383 	gfp = alloc_gfp;
5384 
5385 	/* Find an allowed local zone that meets the low watermark. */
5386 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5387 		unsigned long mark;
5388 
5389 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5390 		    !__cpuset_zone_allowed(zone, gfp)) {
5391 			continue;
5392 		}
5393 
5394 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5395 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5396 			goto failed;
5397 		}
5398 
5399 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5400 		if (zone_watermark_fast(zone, 0,  mark,
5401 				zonelist_zone_idx(ac.preferred_zoneref),
5402 				alloc_flags, gfp)) {
5403 			break;
5404 		}
5405 	}
5406 
5407 	/*
5408 	 * If there are no allowed local zones that meets the watermarks then
5409 	 * try to allocate a single page and reclaim if necessary.
5410 	 */
5411 	if (unlikely(!zone))
5412 		goto failed;
5413 
5414 	/* Is a parallel drain in progress? */
5415 	pcp_trylock_prepare(UP_flags);
5416 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
5417 	if (!pcp)
5418 		goto failed_irq;
5419 
5420 	/* Attempt the batch allocation */
5421 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5422 	while (nr_populated < nr_pages) {
5423 
5424 		/* Skip existing pages */
5425 		if (page_array && page_array[nr_populated]) {
5426 			nr_populated++;
5427 			continue;
5428 		}
5429 
5430 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5431 								pcp, pcp_list);
5432 		if (unlikely(!page)) {
5433 			/* Try and allocate at least one page */
5434 			if (!nr_account) {
5435 				pcp_spin_unlock_irqrestore(pcp, flags);
5436 				goto failed_irq;
5437 			}
5438 			break;
5439 		}
5440 		nr_account++;
5441 
5442 		prep_new_page(page, 0, gfp, 0);
5443 		if (page_list)
5444 			list_add(&page->lru, page_list);
5445 		else
5446 			page_array[nr_populated] = page;
5447 		nr_populated++;
5448 	}
5449 
5450 	pcp_spin_unlock_irqrestore(pcp, flags);
5451 	pcp_trylock_finish(UP_flags);
5452 
5453 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5454 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5455 
5456 out:
5457 	return nr_populated;
5458 
5459 failed_irq:
5460 	pcp_trylock_finish(UP_flags);
5461 
5462 failed:
5463 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5464 	if (page) {
5465 		if (page_list)
5466 			list_add(&page->lru, page_list);
5467 		else
5468 			page_array[nr_populated] = page;
5469 		nr_populated++;
5470 	}
5471 
5472 	goto out;
5473 }
5474 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5475 
5476 /*
5477  * This is the 'heart' of the zoned buddy allocator.
5478  */
5479 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5480 							nodemask_t *nodemask)
5481 {
5482 	struct page *page;
5483 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5484 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5485 	struct alloc_context ac = { };
5486 
5487 	/*
5488 	 * There are several places where we assume that the order value is sane
5489 	 * so bail out early if the request is out of bound.
5490 	 */
5491 	if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5492 		return NULL;
5493 
5494 	gfp &= gfp_allowed_mask;
5495 	/*
5496 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5497 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5498 	 * from a particular context which has been marked by
5499 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5500 	 * movable zones are not used during allocation.
5501 	 */
5502 	gfp = current_gfp_context(gfp);
5503 	alloc_gfp = gfp;
5504 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5505 			&alloc_gfp, &alloc_flags))
5506 		return NULL;
5507 
5508 	/*
5509 	 * Forbid the first pass from falling back to types that fragment
5510 	 * memory until all local zones are considered.
5511 	 */
5512 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5513 
5514 	/* First allocation attempt */
5515 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5516 	if (likely(page))
5517 		goto out;
5518 
5519 	alloc_gfp = gfp;
5520 	ac.spread_dirty_pages = false;
5521 
5522 	/*
5523 	 * Restore the original nodemask if it was potentially replaced with
5524 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5525 	 */
5526 	ac.nodemask = nodemask;
5527 
5528 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5529 
5530 out:
5531 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5532 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5533 		__free_pages(page, order);
5534 		page = NULL;
5535 	}
5536 
5537 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5538 
5539 	return page;
5540 }
5541 EXPORT_SYMBOL(__alloc_pages);
5542 
5543 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5544 		nodemask_t *nodemask)
5545 {
5546 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5547 			preferred_nid, nodemask);
5548 
5549 	if (page && order > 1)
5550 		prep_transhuge_page(page);
5551 	return (struct folio *)page;
5552 }
5553 EXPORT_SYMBOL(__folio_alloc);
5554 
5555 /*
5556  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5557  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5558  * you need to access high mem.
5559  */
5560 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5561 {
5562 	struct page *page;
5563 
5564 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5565 	if (!page)
5566 		return 0;
5567 	return (unsigned long) page_address(page);
5568 }
5569 EXPORT_SYMBOL(__get_free_pages);
5570 
5571 unsigned long get_zeroed_page(gfp_t gfp_mask)
5572 {
5573 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5574 }
5575 EXPORT_SYMBOL(get_zeroed_page);
5576 
5577 /**
5578  * __free_pages - Free pages allocated with alloc_pages().
5579  * @page: The page pointer returned from alloc_pages().
5580  * @order: The order of the allocation.
5581  *
5582  * This function can free multi-page allocations that are not compound
5583  * pages.  It does not check that the @order passed in matches that of
5584  * the allocation, so it is easy to leak memory.  Freeing more memory
5585  * than was allocated will probably emit a warning.
5586  *
5587  * If the last reference to this page is speculative, it will be released
5588  * by put_page() which only frees the first page of a non-compound
5589  * allocation.  To prevent the remaining pages from being leaked, we free
5590  * the subsequent pages here.  If you want to use the page's reference
5591  * count to decide when to free the allocation, you should allocate a
5592  * compound page, and use put_page() instead of __free_pages().
5593  *
5594  * Context: May be called in interrupt context or while holding a normal
5595  * spinlock, but not in NMI context or while holding a raw spinlock.
5596  */
5597 void __free_pages(struct page *page, unsigned int order)
5598 {
5599 	if (put_page_testzero(page))
5600 		free_the_page(page, order);
5601 	else if (!PageHead(page))
5602 		while (order-- > 0)
5603 			free_the_page(page + (1 << order), order);
5604 }
5605 EXPORT_SYMBOL(__free_pages);
5606 
5607 void free_pages(unsigned long addr, unsigned int order)
5608 {
5609 	if (addr != 0) {
5610 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5611 		__free_pages(virt_to_page((void *)addr), order);
5612 	}
5613 }
5614 
5615 EXPORT_SYMBOL(free_pages);
5616 
5617 /*
5618  * Page Fragment:
5619  *  An arbitrary-length arbitrary-offset area of memory which resides
5620  *  within a 0 or higher order page.  Multiple fragments within that page
5621  *  are individually refcounted, in the page's reference counter.
5622  *
5623  * The page_frag functions below provide a simple allocation framework for
5624  * page fragments.  This is used by the network stack and network device
5625  * drivers to provide a backing region of memory for use as either an
5626  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5627  */
5628 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5629 					     gfp_t gfp_mask)
5630 {
5631 	struct page *page = NULL;
5632 	gfp_t gfp = gfp_mask;
5633 
5634 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5635 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5636 		    __GFP_NOMEMALLOC;
5637 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5638 				PAGE_FRAG_CACHE_MAX_ORDER);
5639 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5640 #endif
5641 	if (unlikely(!page))
5642 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5643 
5644 	nc->va = page ? page_address(page) : NULL;
5645 
5646 	return page;
5647 }
5648 
5649 void __page_frag_cache_drain(struct page *page, unsigned int count)
5650 {
5651 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5652 
5653 	if (page_ref_sub_and_test(page, count))
5654 		free_the_page(page, compound_order(page));
5655 }
5656 EXPORT_SYMBOL(__page_frag_cache_drain);
5657 
5658 void *page_frag_alloc_align(struct page_frag_cache *nc,
5659 		      unsigned int fragsz, gfp_t gfp_mask,
5660 		      unsigned int align_mask)
5661 {
5662 	unsigned int size = PAGE_SIZE;
5663 	struct page *page;
5664 	int offset;
5665 
5666 	if (unlikely(!nc->va)) {
5667 refill:
5668 		page = __page_frag_cache_refill(nc, gfp_mask);
5669 		if (!page)
5670 			return NULL;
5671 
5672 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5673 		/* if size can vary use size else just use PAGE_SIZE */
5674 		size = nc->size;
5675 #endif
5676 		/* Even if we own the page, we do not use atomic_set().
5677 		 * This would break get_page_unless_zero() users.
5678 		 */
5679 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5680 
5681 		/* reset page count bias and offset to start of new frag */
5682 		nc->pfmemalloc = page_is_pfmemalloc(page);
5683 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5684 		nc->offset = size;
5685 	}
5686 
5687 	offset = nc->offset - fragsz;
5688 	if (unlikely(offset < 0)) {
5689 		page = virt_to_page(nc->va);
5690 
5691 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5692 			goto refill;
5693 
5694 		if (unlikely(nc->pfmemalloc)) {
5695 			free_the_page(page, compound_order(page));
5696 			goto refill;
5697 		}
5698 
5699 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5700 		/* if size can vary use size else just use PAGE_SIZE */
5701 		size = nc->size;
5702 #endif
5703 		/* OK, page count is 0, we can safely set it */
5704 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5705 
5706 		/* reset page count bias and offset to start of new frag */
5707 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5708 		offset = size - fragsz;
5709 	}
5710 
5711 	nc->pagecnt_bias--;
5712 	offset &= align_mask;
5713 	nc->offset = offset;
5714 
5715 	return nc->va + offset;
5716 }
5717 EXPORT_SYMBOL(page_frag_alloc_align);
5718 
5719 /*
5720  * Frees a page fragment allocated out of either a compound or order 0 page.
5721  */
5722 void page_frag_free(void *addr)
5723 {
5724 	struct page *page = virt_to_head_page(addr);
5725 
5726 	if (unlikely(put_page_testzero(page)))
5727 		free_the_page(page, compound_order(page));
5728 }
5729 EXPORT_SYMBOL(page_frag_free);
5730 
5731 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5732 		size_t size)
5733 {
5734 	if (addr) {
5735 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5736 		unsigned long used = addr + PAGE_ALIGN(size);
5737 
5738 		split_page(virt_to_page((void *)addr), order);
5739 		while (used < alloc_end) {
5740 			free_page(used);
5741 			used += PAGE_SIZE;
5742 		}
5743 	}
5744 	return (void *)addr;
5745 }
5746 
5747 /**
5748  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5749  * @size: the number of bytes to allocate
5750  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5751  *
5752  * This function is similar to alloc_pages(), except that it allocates the
5753  * minimum number of pages to satisfy the request.  alloc_pages() can only
5754  * allocate memory in power-of-two pages.
5755  *
5756  * This function is also limited by MAX_ORDER.
5757  *
5758  * Memory allocated by this function must be released by free_pages_exact().
5759  *
5760  * Return: pointer to the allocated area or %NULL in case of error.
5761  */
5762 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5763 {
5764 	unsigned int order = get_order(size);
5765 	unsigned long addr;
5766 
5767 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5768 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5769 
5770 	addr = __get_free_pages(gfp_mask, order);
5771 	return make_alloc_exact(addr, order, size);
5772 }
5773 EXPORT_SYMBOL(alloc_pages_exact);
5774 
5775 /**
5776  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5777  *			   pages on a node.
5778  * @nid: the preferred node ID where memory should be allocated
5779  * @size: the number of bytes to allocate
5780  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5781  *
5782  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5783  * back.
5784  *
5785  * Return: pointer to the allocated area or %NULL in case of error.
5786  */
5787 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5788 {
5789 	unsigned int order = get_order(size);
5790 	struct page *p;
5791 
5792 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5793 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5794 
5795 	p = alloc_pages_node(nid, gfp_mask, order);
5796 	if (!p)
5797 		return NULL;
5798 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5799 }
5800 
5801 /**
5802  * free_pages_exact - release memory allocated via alloc_pages_exact()
5803  * @virt: the value returned by alloc_pages_exact.
5804  * @size: size of allocation, same value as passed to alloc_pages_exact().
5805  *
5806  * Release the memory allocated by a previous call to alloc_pages_exact.
5807  */
5808 void free_pages_exact(void *virt, size_t size)
5809 {
5810 	unsigned long addr = (unsigned long)virt;
5811 	unsigned long end = addr + PAGE_ALIGN(size);
5812 
5813 	while (addr < end) {
5814 		free_page(addr);
5815 		addr += PAGE_SIZE;
5816 	}
5817 }
5818 EXPORT_SYMBOL(free_pages_exact);
5819 
5820 /**
5821  * nr_free_zone_pages - count number of pages beyond high watermark
5822  * @offset: The zone index of the highest zone
5823  *
5824  * nr_free_zone_pages() counts the number of pages which are beyond the
5825  * high watermark within all zones at or below a given zone index.  For each
5826  * zone, the number of pages is calculated as:
5827  *
5828  *     nr_free_zone_pages = managed_pages - high_pages
5829  *
5830  * Return: number of pages beyond high watermark.
5831  */
5832 static unsigned long nr_free_zone_pages(int offset)
5833 {
5834 	struct zoneref *z;
5835 	struct zone *zone;
5836 
5837 	/* Just pick one node, since fallback list is circular */
5838 	unsigned long sum = 0;
5839 
5840 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5841 
5842 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5843 		unsigned long size = zone_managed_pages(zone);
5844 		unsigned long high = high_wmark_pages(zone);
5845 		if (size > high)
5846 			sum += size - high;
5847 	}
5848 
5849 	return sum;
5850 }
5851 
5852 /**
5853  * nr_free_buffer_pages - count number of pages beyond high watermark
5854  *
5855  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5856  * watermark within ZONE_DMA and ZONE_NORMAL.
5857  *
5858  * Return: number of pages beyond high watermark within ZONE_DMA and
5859  * ZONE_NORMAL.
5860  */
5861 unsigned long nr_free_buffer_pages(void)
5862 {
5863 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5864 }
5865 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5866 
5867 static inline void show_node(struct zone *zone)
5868 {
5869 	if (IS_ENABLED(CONFIG_NUMA))
5870 		printk("Node %d ", zone_to_nid(zone));
5871 }
5872 
5873 long si_mem_available(void)
5874 {
5875 	long available;
5876 	unsigned long pagecache;
5877 	unsigned long wmark_low = 0;
5878 	unsigned long pages[NR_LRU_LISTS];
5879 	unsigned long reclaimable;
5880 	struct zone *zone;
5881 	int lru;
5882 
5883 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5884 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5885 
5886 	for_each_zone(zone)
5887 		wmark_low += low_wmark_pages(zone);
5888 
5889 	/*
5890 	 * Estimate the amount of memory available for userspace allocations,
5891 	 * without causing swapping or OOM.
5892 	 */
5893 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5894 
5895 	/*
5896 	 * Not all the page cache can be freed, otherwise the system will
5897 	 * start swapping or thrashing. Assume at least half of the page
5898 	 * cache, or the low watermark worth of cache, needs to stay.
5899 	 */
5900 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5901 	pagecache -= min(pagecache / 2, wmark_low);
5902 	available += pagecache;
5903 
5904 	/*
5905 	 * Part of the reclaimable slab and other kernel memory consists of
5906 	 * items that are in use, and cannot be freed. Cap this estimate at the
5907 	 * low watermark.
5908 	 */
5909 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5910 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5911 	available += reclaimable - min(reclaimable / 2, wmark_low);
5912 
5913 	if (available < 0)
5914 		available = 0;
5915 	return available;
5916 }
5917 EXPORT_SYMBOL_GPL(si_mem_available);
5918 
5919 void si_meminfo(struct sysinfo *val)
5920 {
5921 	val->totalram = totalram_pages();
5922 	val->sharedram = global_node_page_state(NR_SHMEM);
5923 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5924 	val->bufferram = nr_blockdev_pages();
5925 	val->totalhigh = totalhigh_pages();
5926 	val->freehigh = nr_free_highpages();
5927 	val->mem_unit = PAGE_SIZE;
5928 }
5929 
5930 EXPORT_SYMBOL(si_meminfo);
5931 
5932 #ifdef CONFIG_NUMA
5933 void si_meminfo_node(struct sysinfo *val, int nid)
5934 {
5935 	int zone_type;		/* needs to be signed */
5936 	unsigned long managed_pages = 0;
5937 	unsigned long managed_highpages = 0;
5938 	unsigned long free_highpages = 0;
5939 	pg_data_t *pgdat = NODE_DATA(nid);
5940 
5941 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5942 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5943 	val->totalram = managed_pages;
5944 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5945 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5946 #ifdef CONFIG_HIGHMEM
5947 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5948 		struct zone *zone = &pgdat->node_zones[zone_type];
5949 
5950 		if (is_highmem(zone)) {
5951 			managed_highpages += zone_managed_pages(zone);
5952 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5953 		}
5954 	}
5955 	val->totalhigh = managed_highpages;
5956 	val->freehigh = free_highpages;
5957 #else
5958 	val->totalhigh = managed_highpages;
5959 	val->freehigh = free_highpages;
5960 #endif
5961 	val->mem_unit = PAGE_SIZE;
5962 }
5963 #endif
5964 
5965 /*
5966  * Determine whether the node should be displayed or not, depending on whether
5967  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5968  */
5969 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5970 {
5971 	if (!(flags & SHOW_MEM_FILTER_NODES))
5972 		return false;
5973 
5974 	/*
5975 	 * no node mask - aka implicit memory numa policy. Do not bother with
5976 	 * the synchronization - read_mems_allowed_begin - because we do not
5977 	 * have to be precise here.
5978 	 */
5979 	if (!nodemask)
5980 		nodemask = &cpuset_current_mems_allowed;
5981 
5982 	return !node_isset(nid, *nodemask);
5983 }
5984 
5985 #define K(x) ((x) << (PAGE_SHIFT-10))
5986 
5987 static void show_migration_types(unsigned char type)
5988 {
5989 	static const char types[MIGRATE_TYPES] = {
5990 		[MIGRATE_UNMOVABLE]	= 'U',
5991 		[MIGRATE_MOVABLE]	= 'M',
5992 		[MIGRATE_RECLAIMABLE]	= 'E',
5993 		[MIGRATE_HIGHATOMIC]	= 'H',
5994 #ifdef CONFIG_CMA
5995 		[MIGRATE_CMA]		= 'C',
5996 #endif
5997 #ifdef CONFIG_MEMORY_ISOLATION
5998 		[MIGRATE_ISOLATE]	= 'I',
5999 #endif
6000 	};
6001 	char tmp[MIGRATE_TYPES + 1];
6002 	char *p = tmp;
6003 	int i;
6004 
6005 	for (i = 0; i < MIGRATE_TYPES; i++) {
6006 		if (type & (1 << i))
6007 			*p++ = types[i];
6008 	}
6009 
6010 	*p = '\0';
6011 	printk(KERN_CONT "(%s) ", tmp);
6012 }
6013 
6014 /*
6015  * Show free area list (used inside shift_scroll-lock stuff)
6016  * We also calculate the percentage fragmentation. We do this by counting the
6017  * memory on each free list with the exception of the first item on the list.
6018  *
6019  * Bits in @filter:
6020  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6021  *   cpuset.
6022  */
6023 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
6024 {
6025 	unsigned long free_pcp = 0;
6026 	int cpu, nid;
6027 	struct zone *zone;
6028 	pg_data_t *pgdat;
6029 
6030 	for_each_populated_zone(zone) {
6031 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6032 			continue;
6033 
6034 		for_each_online_cpu(cpu)
6035 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6036 	}
6037 
6038 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6039 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6040 		" unevictable:%lu dirty:%lu writeback:%lu\n"
6041 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6042 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
6043 		" kernel_misc_reclaimable:%lu\n"
6044 		" free:%lu free_pcp:%lu free_cma:%lu\n",
6045 		global_node_page_state(NR_ACTIVE_ANON),
6046 		global_node_page_state(NR_INACTIVE_ANON),
6047 		global_node_page_state(NR_ISOLATED_ANON),
6048 		global_node_page_state(NR_ACTIVE_FILE),
6049 		global_node_page_state(NR_INACTIVE_FILE),
6050 		global_node_page_state(NR_ISOLATED_FILE),
6051 		global_node_page_state(NR_UNEVICTABLE),
6052 		global_node_page_state(NR_FILE_DIRTY),
6053 		global_node_page_state(NR_WRITEBACK),
6054 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6055 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6056 		global_node_page_state(NR_FILE_MAPPED),
6057 		global_node_page_state(NR_SHMEM),
6058 		global_node_page_state(NR_PAGETABLE),
6059 		global_zone_page_state(NR_BOUNCE),
6060 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6061 		global_zone_page_state(NR_FREE_PAGES),
6062 		free_pcp,
6063 		global_zone_page_state(NR_FREE_CMA_PAGES));
6064 
6065 	for_each_online_pgdat(pgdat) {
6066 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6067 			continue;
6068 
6069 		printk("Node %d"
6070 			" active_anon:%lukB"
6071 			" inactive_anon:%lukB"
6072 			" active_file:%lukB"
6073 			" inactive_file:%lukB"
6074 			" unevictable:%lukB"
6075 			" isolated(anon):%lukB"
6076 			" isolated(file):%lukB"
6077 			" mapped:%lukB"
6078 			" dirty:%lukB"
6079 			" writeback:%lukB"
6080 			" shmem:%lukB"
6081 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6082 			" shmem_thp: %lukB"
6083 			" shmem_pmdmapped: %lukB"
6084 			" anon_thp: %lukB"
6085 #endif
6086 			" writeback_tmp:%lukB"
6087 			" kernel_stack:%lukB"
6088 #ifdef CONFIG_SHADOW_CALL_STACK
6089 			" shadow_call_stack:%lukB"
6090 #endif
6091 			" pagetables:%lukB"
6092 			" all_unreclaimable? %s"
6093 			"\n",
6094 			pgdat->node_id,
6095 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6096 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6097 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6098 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6099 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
6100 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6101 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6102 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
6103 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
6104 			K(node_page_state(pgdat, NR_WRITEBACK)),
6105 			K(node_page_state(pgdat, NR_SHMEM)),
6106 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6107 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
6108 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6109 			K(node_page_state(pgdat, NR_ANON_THPS)),
6110 #endif
6111 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6112 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
6113 #ifdef CONFIG_SHADOW_CALL_STACK
6114 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
6115 #endif
6116 			K(node_page_state(pgdat, NR_PAGETABLE)),
6117 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6118 				"yes" : "no");
6119 	}
6120 
6121 	for_each_populated_zone(zone) {
6122 		int i;
6123 
6124 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6125 			continue;
6126 
6127 		free_pcp = 0;
6128 		for_each_online_cpu(cpu)
6129 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6130 
6131 		show_node(zone);
6132 		printk(KERN_CONT
6133 			"%s"
6134 			" free:%lukB"
6135 			" boost:%lukB"
6136 			" min:%lukB"
6137 			" low:%lukB"
6138 			" high:%lukB"
6139 			" reserved_highatomic:%luKB"
6140 			" active_anon:%lukB"
6141 			" inactive_anon:%lukB"
6142 			" active_file:%lukB"
6143 			" inactive_file:%lukB"
6144 			" unevictable:%lukB"
6145 			" writepending:%lukB"
6146 			" present:%lukB"
6147 			" managed:%lukB"
6148 			" mlocked:%lukB"
6149 			" bounce:%lukB"
6150 			" free_pcp:%lukB"
6151 			" local_pcp:%ukB"
6152 			" free_cma:%lukB"
6153 			"\n",
6154 			zone->name,
6155 			K(zone_page_state(zone, NR_FREE_PAGES)),
6156 			K(zone->watermark_boost),
6157 			K(min_wmark_pages(zone)),
6158 			K(low_wmark_pages(zone)),
6159 			K(high_wmark_pages(zone)),
6160 			K(zone->nr_reserved_highatomic),
6161 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6162 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6163 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6164 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6165 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6166 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6167 			K(zone->present_pages),
6168 			K(zone_managed_pages(zone)),
6169 			K(zone_page_state(zone, NR_MLOCK)),
6170 			K(zone_page_state(zone, NR_BOUNCE)),
6171 			K(free_pcp),
6172 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6173 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6174 		printk("lowmem_reserve[]:");
6175 		for (i = 0; i < MAX_NR_ZONES; i++)
6176 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6177 		printk(KERN_CONT "\n");
6178 	}
6179 
6180 	for_each_populated_zone(zone) {
6181 		unsigned int order;
6182 		unsigned long nr[MAX_ORDER], flags, total = 0;
6183 		unsigned char types[MAX_ORDER];
6184 
6185 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6186 			continue;
6187 		show_node(zone);
6188 		printk(KERN_CONT "%s: ", zone->name);
6189 
6190 		spin_lock_irqsave(&zone->lock, flags);
6191 		for (order = 0; order < MAX_ORDER; order++) {
6192 			struct free_area *area = &zone->free_area[order];
6193 			int type;
6194 
6195 			nr[order] = area->nr_free;
6196 			total += nr[order] << order;
6197 
6198 			types[order] = 0;
6199 			for (type = 0; type < MIGRATE_TYPES; type++) {
6200 				if (!free_area_empty(area, type))
6201 					types[order] |= 1 << type;
6202 			}
6203 		}
6204 		spin_unlock_irqrestore(&zone->lock, flags);
6205 		for (order = 0; order < MAX_ORDER; order++) {
6206 			printk(KERN_CONT "%lu*%lukB ",
6207 			       nr[order], K(1UL) << order);
6208 			if (nr[order])
6209 				show_migration_types(types[order]);
6210 		}
6211 		printk(KERN_CONT "= %lukB\n", K(total));
6212 	}
6213 
6214 	for_each_online_node(nid) {
6215 		if (show_mem_node_skip(filter, nid, nodemask))
6216 			continue;
6217 		hugetlb_show_meminfo_node(nid);
6218 	}
6219 
6220 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6221 
6222 	show_swap_cache_info();
6223 }
6224 
6225 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6226 {
6227 	zoneref->zone = zone;
6228 	zoneref->zone_idx = zone_idx(zone);
6229 }
6230 
6231 /*
6232  * Builds allocation fallback zone lists.
6233  *
6234  * Add all populated zones of a node to the zonelist.
6235  */
6236 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6237 {
6238 	struct zone *zone;
6239 	enum zone_type zone_type = MAX_NR_ZONES;
6240 	int nr_zones = 0;
6241 
6242 	do {
6243 		zone_type--;
6244 		zone = pgdat->node_zones + zone_type;
6245 		if (populated_zone(zone)) {
6246 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6247 			check_highest_zone(zone_type);
6248 		}
6249 	} while (zone_type);
6250 
6251 	return nr_zones;
6252 }
6253 
6254 #ifdef CONFIG_NUMA
6255 
6256 static int __parse_numa_zonelist_order(char *s)
6257 {
6258 	/*
6259 	 * We used to support different zonelists modes but they turned
6260 	 * out to be just not useful. Let's keep the warning in place
6261 	 * if somebody still use the cmd line parameter so that we do
6262 	 * not fail it silently
6263 	 */
6264 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6265 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6266 		return -EINVAL;
6267 	}
6268 	return 0;
6269 }
6270 
6271 char numa_zonelist_order[] = "Node";
6272 
6273 /*
6274  * sysctl handler for numa_zonelist_order
6275  */
6276 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6277 		void *buffer, size_t *length, loff_t *ppos)
6278 {
6279 	if (write)
6280 		return __parse_numa_zonelist_order(buffer);
6281 	return proc_dostring(table, write, buffer, length, ppos);
6282 }
6283 
6284 
6285 static int node_load[MAX_NUMNODES];
6286 
6287 /**
6288  * find_next_best_node - find the next node that should appear in a given node's fallback list
6289  * @node: node whose fallback list we're appending
6290  * @used_node_mask: nodemask_t of already used nodes
6291  *
6292  * We use a number of factors to determine which is the next node that should
6293  * appear on a given node's fallback list.  The node should not have appeared
6294  * already in @node's fallback list, and it should be the next closest node
6295  * according to the distance array (which contains arbitrary distance values
6296  * from each node to each node in the system), and should also prefer nodes
6297  * with no CPUs, since presumably they'll have very little allocation pressure
6298  * on them otherwise.
6299  *
6300  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6301  */
6302 int find_next_best_node(int node, nodemask_t *used_node_mask)
6303 {
6304 	int n, val;
6305 	int min_val = INT_MAX;
6306 	int best_node = NUMA_NO_NODE;
6307 
6308 	/* Use the local node if we haven't already */
6309 	if (!node_isset(node, *used_node_mask)) {
6310 		node_set(node, *used_node_mask);
6311 		return node;
6312 	}
6313 
6314 	for_each_node_state(n, N_MEMORY) {
6315 
6316 		/* Don't want a node to appear more than once */
6317 		if (node_isset(n, *used_node_mask))
6318 			continue;
6319 
6320 		/* Use the distance array to find the distance */
6321 		val = node_distance(node, n);
6322 
6323 		/* Penalize nodes under us ("prefer the next node") */
6324 		val += (n < node);
6325 
6326 		/* Give preference to headless and unused nodes */
6327 		if (!cpumask_empty(cpumask_of_node(n)))
6328 			val += PENALTY_FOR_NODE_WITH_CPUS;
6329 
6330 		/* Slight preference for less loaded node */
6331 		val *= MAX_NUMNODES;
6332 		val += node_load[n];
6333 
6334 		if (val < min_val) {
6335 			min_val = val;
6336 			best_node = n;
6337 		}
6338 	}
6339 
6340 	if (best_node >= 0)
6341 		node_set(best_node, *used_node_mask);
6342 
6343 	return best_node;
6344 }
6345 
6346 
6347 /*
6348  * Build zonelists ordered by node and zones within node.
6349  * This results in maximum locality--normal zone overflows into local
6350  * DMA zone, if any--but risks exhausting DMA zone.
6351  */
6352 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6353 		unsigned nr_nodes)
6354 {
6355 	struct zoneref *zonerefs;
6356 	int i;
6357 
6358 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6359 
6360 	for (i = 0; i < nr_nodes; i++) {
6361 		int nr_zones;
6362 
6363 		pg_data_t *node = NODE_DATA(node_order[i]);
6364 
6365 		nr_zones = build_zonerefs_node(node, zonerefs);
6366 		zonerefs += nr_zones;
6367 	}
6368 	zonerefs->zone = NULL;
6369 	zonerefs->zone_idx = 0;
6370 }
6371 
6372 /*
6373  * Build gfp_thisnode zonelists
6374  */
6375 static void build_thisnode_zonelists(pg_data_t *pgdat)
6376 {
6377 	struct zoneref *zonerefs;
6378 	int nr_zones;
6379 
6380 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6381 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6382 	zonerefs += nr_zones;
6383 	zonerefs->zone = NULL;
6384 	zonerefs->zone_idx = 0;
6385 }
6386 
6387 /*
6388  * Build zonelists ordered by zone and nodes within zones.
6389  * This results in conserving DMA zone[s] until all Normal memory is
6390  * exhausted, but results in overflowing to remote node while memory
6391  * may still exist in local DMA zone.
6392  */
6393 
6394 static void build_zonelists(pg_data_t *pgdat)
6395 {
6396 	static int node_order[MAX_NUMNODES];
6397 	int node, nr_nodes = 0;
6398 	nodemask_t used_mask = NODE_MASK_NONE;
6399 	int local_node, prev_node;
6400 
6401 	/* NUMA-aware ordering of nodes */
6402 	local_node = pgdat->node_id;
6403 	prev_node = local_node;
6404 
6405 	memset(node_order, 0, sizeof(node_order));
6406 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6407 		/*
6408 		 * We don't want to pressure a particular node.
6409 		 * So adding penalty to the first node in same
6410 		 * distance group to make it round-robin.
6411 		 */
6412 		if (node_distance(local_node, node) !=
6413 		    node_distance(local_node, prev_node))
6414 			node_load[node] += 1;
6415 
6416 		node_order[nr_nodes++] = node;
6417 		prev_node = node;
6418 	}
6419 
6420 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6421 	build_thisnode_zonelists(pgdat);
6422 	pr_info("Fallback order for Node %d: ", local_node);
6423 	for (node = 0; node < nr_nodes; node++)
6424 		pr_cont("%d ", node_order[node]);
6425 	pr_cont("\n");
6426 }
6427 
6428 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6429 /*
6430  * Return node id of node used for "local" allocations.
6431  * I.e., first node id of first zone in arg node's generic zonelist.
6432  * Used for initializing percpu 'numa_mem', which is used primarily
6433  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6434  */
6435 int local_memory_node(int node)
6436 {
6437 	struct zoneref *z;
6438 
6439 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6440 				   gfp_zone(GFP_KERNEL),
6441 				   NULL);
6442 	return zone_to_nid(z->zone);
6443 }
6444 #endif
6445 
6446 static void setup_min_unmapped_ratio(void);
6447 static void setup_min_slab_ratio(void);
6448 #else	/* CONFIG_NUMA */
6449 
6450 static void build_zonelists(pg_data_t *pgdat)
6451 {
6452 	int node, local_node;
6453 	struct zoneref *zonerefs;
6454 	int nr_zones;
6455 
6456 	local_node = pgdat->node_id;
6457 
6458 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6459 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6460 	zonerefs += nr_zones;
6461 
6462 	/*
6463 	 * Now we build the zonelist so that it contains the zones
6464 	 * of all the other nodes.
6465 	 * We don't want to pressure a particular node, so when
6466 	 * building the zones for node N, we make sure that the
6467 	 * zones coming right after the local ones are those from
6468 	 * node N+1 (modulo N)
6469 	 */
6470 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6471 		if (!node_online(node))
6472 			continue;
6473 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6474 		zonerefs += nr_zones;
6475 	}
6476 	for (node = 0; node < local_node; node++) {
6477 		if (!node_online(node))
6478 			continue;
6479 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6480 		zonerefs += nr_zones;
6481 	}
6482 
6483 	zonerefs->zone = NULL;
6484 	zonerefs->zone_idx = 0;
6485 }
6486 
6487 #endif	/* CONFIG_NUMA */
6488 
6489 /*
6490  * Boot pageset table. One per cpu which is going to be used for all
6491  * zones and all nodes. The parameters will be set in such a way
6492  * that an item put on a list will immediately be handed over to
6493  * the buddy list. This is safe since pageset manipulation is done
6494  * with interrupts disabled.
6495  *
6496  * The boot_pagesets must be kept even after bootup is complete for
6497  * unused processors and/or zones. They do play a role for bootstrapping
6498  * hotplugged processors.
6499  *
6500  * zoneinfo_show() and maybe other functions do
6501  * not check if the processor is online before following the pageset pointer.
6502  * Other parts of the kernel may not check if the zone is available.
6503  */
6504 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6505 /* These effectively disable the pcplists in the boot pageset completely */
6506 #define BOOT_PAGESET_HIGH	0
6507 #define BOOT_PAGESET_BATCH	1
6508 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6509 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6510 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6511 
6512 static void __build_all_zonelists(void *data)
6513 {
6514 	int nid;
6515 	int __maybe_unused cpu;
6516 	pg_data_t *self = data;
6517 	static DEFINE_SPINLOCK(lock);
6518 
6519 	spin_lock(&lock);
6520 
6521 #ifdef CONFIG_NUMA
6522 	memset(node_load, 0, sizeof(node_load));
6523 #endif
6524 
6525 	/*
6526 	 * This node is hotadded and no memory is yet present.   So just
6527 	 * building zonelists is fine - no need to touch other nodes.
6528 	 */
6529 	if (self && !node_online(self->node_id)) {
6530 		build_zonelists(self);
6531 	} else {
6532 		/*
6533 		 * All possible nodes have pgdat preallocated
6534 		 * in free_area_init
6535 		 */
6536 		for_each_node(nid) {
6537 			pg_data_t *pgdat = NODE_DATA(nid);
6538 
6539 			build_zonelists(pgdat);
6540 		}
6541 
6542 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6543 		/*
6544 		 * We now know the "local memory node" for each node--
6545 		 * i.e., the node of the first zone in the generic zonelist.
6546 		 * Set up numa_mem percpu variable for on-line cpus.  During
6547 		 * boot, only the boot cpu should be on-line;  we'll init the
6548 		 * secondary cpus' numa_mem as they come on-line.  During
6549 		 * node/memory hotplug, we'll fixup all on-line cpus.
6550 		 */
6551 		for_each_online_cpu(cpu)
6552 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6553 #endif
6554 	}
6555 
6556 	spin_unlock(&lock);
6557 }
6558 
6559 static noinline void __init
6560 build_all_zonelists_init(void)
6561 {
6562 	int cpu;
6563 
6564 	__build_all_zonelists(NULL);
6565 
6566 	/*
6567 	 * Initialize the boot_pagesets that are going to be used
6568 	 * for bootstrapping processors. The real pagesets for
6569 	 * each zone will be allocated later when the per cpu
6570 	 * allocator is available.
6571 	 *
6572 	 * boot_pagesets are used also for bootstrapping offline
6573 	 * cpus if the system is already booted because the pagesets
6574 	 * are needed to initialize allocators on a specific cpu too.
6575 	 * F.e. the percpu allocator needs the page allocator which
6576 	 * needs the percpu allocator in order to allocate its pagesets
6577 	 * (a chicken-egg dilemma).
6578 	 */
6579 	for_each_possible_cpu(cpu)
6580 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6581 
6582 	mminit_verify_zonelist();
6583 	cpuset_init_current_mems_allowed();
6584 }
6585 
6586 /*
6587  * unless system_state == SYSTEM_BOOTING.
6588  *
6589  * __ref due to call of __init annotated helper build_all_zonelists_init
6590  * [protected by SYSTEM_BOOTING].
6591  */
6592 void __ref build_all_zonelists(pg_data_t *pgdat)
6593 {
6594 	unsigned long vm_total_pages;
6595 
6596 	if (system_state == SYSTEM_BOOTING) {
6597 		build_all_zonelists_init();
6598 	} else {
6599 		__build_all_zonelists(pgdat);
6600 		/* cpuset refresh routine should be here */
6601 	}
6602 	/* Get the number of free pages beyond high watermark in all zones. */
6603 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6604 	/*
6605 	 * Disable grouping by mobility if the number of pages in the
6606 	 * system is too low to allow the mechanism to work. It would be
6607 	 * more accurate, but expensive to check per-zone. This check is
6608 	 * made on memory-hotadd so a system can start with mobility
6609 	 * disabled and enable it later
6610 	 */
6611 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6612 		page_group_by_mobility_disabled = 1;
6613 	else
6614 		page_group_by_mobility_disabled = 0;
6615 
6616 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6617 		nr_online_nodes,
6618 		page_group_by_mobility_disabled ? "off" : "on",
6619 		vm_total_pages);
6620 #ifdef CONFIG_NUMA
6621 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6622 #endif
6623 }
6624 
6625 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6626 static bool __meminit
6627 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6628 {
6629 	static struct memblock_region *r;
6630 
6631 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6632 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6633 			for_each_mem_region(r) {
6634 				if (*pfn < memblock_region_memory_end_pfn(r))
6635 					break;
6636 			}
6637 		}
6638 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6639 		    memblock_is_mirror(r)) {
6640 			*pfn = memblock_region_memory_end_pfn(r);
6641 			return true;
6642 		}
6643 	}
6644 	return false;
6645 }
6646 
6647 /*
6648  * Initially all pages are reserved - free ones are freed
6649  * up by memblock_free_all() once the early boot process is
6650  * done. Non-atomic initialization, single-pass.
6651  *
6652  * All aligned pageblocks are initialized to the specified migratetype
6653  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6654  * zone stats (e.g., nr_isolate_pageblock) are touched.
6655  */
6656 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6657 		unsigned long start_pfn, unsigned long zone_end_pfn,
6658 		enum meminit_context context,
6659 		struct vmem_altmap *altmap, int migratetype)
6660 {
6661 	unsigned long pfn, end_pfn = start_pfn + size;
6662 	struct page *page;
6663 
6664 	if (highest_memmap_pfn < end_pfn - 1)
6665 		highest_memmap_pfn = end_pfn - 1;
6666 
6667 #ifdef CONFIG_ZONE_DEVICE
6668 	/*
6669 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6670 	 * memory. We limit the total number of pages to initialize to just
6671 	 * those that might contain the memory mapping. We will defer the
6672 	 * ZONE_DEVICE page initialization until after we have released
6673 	 * the hotplug lock.
6674 	 */
6675 	if (zone == ZONE_DEVICE) {
6676 		if (!altmap)
6677 			return;
6678 
6679 		if (start_pfn == altmap->base_pfn)
6680 			start_pfn += altmap->reserve;
6681 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6682 	}
6683 #endif
6684 
6685 	for (pfn = start_pfn; pfn < end_pfn; ) {
6686 		/*
6687 		 * There can be holes in boot-time mem_map[]s handed to this
6688 		 * function.  They do not exist on hotplugged memory.
6689 		 */
6690 		if (context == MEMINIT_EARLY) {
6691 			if (overlap_memmap_init(zone, &pfn))
6692 				continue;
6693 			if (defer_init(nid, pfn, zone_end_pfn))
6694 				break;
6695 		}
6696 
6697 		page = pfn_to_page(pfn);
6698 		__init_single_page(page, pfn, zone, nid);
6699 		if (context == MEMINIT_HOTPLUG)
6700 			__SetPageReserved(page);
6701 
6702 		/*
6703 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6704 		 * such that unmovable allocations won't be scattered all
6705 		 * over the place during system boot.
6706 		 */
6707 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6708 			set_pageblock_migratetype(page, migratetype);
6709 			cond_resched();
6710 		}
6711 		pfn++;
6712 	}
6713 }
6714 
6715 #ifdef CONFIG_ZONE_DEVICE
6716 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6717 					  unsigned long zone_idx, int nid,
6718 					  struct dev_pagemap *pgmap)
6719 {
6720 
6721 	__init_single_page(page, pfn, zone_idx, nid);
6722 
6723 	/*
6724 	 * Mark page reserved as it will need to wait for onlining
6725 	 * phase for it to be fully associated with a zone.
6726 	 *
6727 	 * We can use the non-atomic __set_bit operation for setting
6728 	 * the flag as we are still initializing the pages.
6729 	 */
6730 	__SetPageReserved(page);
6731 
6732 	/*
6733 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6734 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6735 	 * ever freed or placed on a driver-private list.
6736 	 */
6737 	page->pgmap = pgmap;
6738 	page->zone_device_data = NULL;
6739 
6740 	/*
6741 	 * Mark the block movable so that blocks are reserved for
6742 	 * movable at startup. This will force kernel allocations
6743 	 * to reserve their blocks rather than leaking throughout
6744 	 * the address space during boot when many long-lived
6745 	 * kernel allocations are made.
6746 	 *
6747 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6748 	 * because this is done early in section_activate()
6749 	 */
6750 	if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6751 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6752 		cond_resched();
6753 	}
6754 }
6755 
6756 /*
6757  * With compound page geometry and when struct pages are stored in ram most
6758  * tail pages are reused. Consequently, the amount of unique struct pages to
6759  * initialize is a lot smaller that the total amount of struct pages being
6760  * mapped. This is a paired / mild layering violation with explicit knowledge
6761  * of how the sparse_vmemmap internals handle compound pages in the lack
6762  * of an altmap. See vmemmap_populate_compound_pages().
6763  */
6764 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6765 					      unsigned long nr_pages)
6766 {
6767 	return is_power_of_2(sizeof(struct page)) &&
6768 		!altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6769 }
6770 
6771 static void __ref memmap_init_compound(struct page *head,
6772 				       unsigned long head_pfn,
6773 				       unsigned long zone_idx, int nid,
6774 				       struct dev_pagemap *pgmap,
6775 				       unsigned long nr_pages)
6776 {
6777 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6778 	unsigned int order = pgmap->vmemmap_shift;
6779 
6780 	__SetPageHead(head);
6781 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6782 		struct page *page = pfn_to_page(pfn);
6783 
6784 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6785 		prep_compound_tail(head, pfn - head_pfn);
6786 		set_page_count(page, 0);
6787 
6788 		/*
6789 		 * The first tail page stores compound_mapcount_ptr() and
6790 		 * compound_order() and the second tail page stores
6791 		 * compound_pincount_ptr(). Call prep_compound_head() after
6792 		 * the first and second tail pages have been initialized to
6793 		 * not have the data overwritten.
6794 		 */
6795 		if (pfn == head_pfn + 2)
6796 			prep_compound_head(head, order);
6797 	}
6798 }
6799 
6800 void __ref memmap_init_zone_device(struct zone *zone,
6801 				   unsigned long start_pfn,
6802 				   unsigned long nr_pages,
6803 				   struct dev_pagemap *pgmap)
6804 {
6805 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6806 	struct pglist_data *pgdat = zone->zone_pgdat;
6807 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6808 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6809 	unsigned long zone_idx = zone_idx(zone);
6810 	unsigned long start = jiffies;
6811 	int nid = pgdat->node_id;
6812 
6813 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6814 		return;
6815 
6816 	/*
6817 	 * The call to memmap_init should have already taken care
6818 	 * of the pages reserved for the memmap, so we can just jump to
6819 	 * the end of that region and start processing the device pages.
6820 	 */
6821 	if (altmap) {
6822 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6823 		nr_pages = end_pfn - start_pfn;
6824 	}
6825 
6826 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6827 		struct page *page = pfn_to_page(pfn);
6828 
6829 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6830 
6831 		if (pfns_per_compound == 1)
6832 			continue;
6833 
6834 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6835 				     compound_nr_pages(altmap, pfns_per_compound));
6836 	}
6837 
6838 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6839 		nr_pages, jiffies_to_msecs(jiffies - start));
6840 }
6841 
6842 #endif
6843 static void __meminit zone_init_free_lists(struct zone *zone)
6844 {
6845 	unsigned int order, t;
6846 	for_each_migratetype_order(order, t) {
6847 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6848 		zone->free_area[order].nr_free = 0;
6849 	}
6850 }
6851 
6852 /*
6853  * Only struct pages that correspond to ranges defined by memblock.memory
6854  * are zeroed and initialized by going through __init_single_page() during
6855  * memmap_init_zone_range().
6856  *
6857  * But, there could be struct pages that correspond to holes in
6858  * memblock.memory. This can happen because of the following reasons:
6859  * - physical memory bank size is not necessarily the exact multiple of the
6860  *   arbitrary section size
6861  * - early reserved memory may not be listed in memblock.memory
6862  * - memory layouts defined with memmap= kernel parameter may not align
6863  *   nicely with memmap sections
6864  *
6865  * Explicitly initialize those struct pages so that:
6866  * - PG_Reserved is set
6867  * - zone and node links point to zone and node that span the page if the
6868  *   hole is in the middle of a zone
6869  * - zone and node links point to adjacent zone/node if the hole falls on
6870  *   the zone boundary; the pages in such holes will be prepended to the
6871  *   zone/node above the hole except for the trailing pages in the last
6872  *   section that will be appended to the zone/node below.
6873  */
6874 static void __init init_unavailable_range(unsigned long spfn,
6875 					  unsigned long epfn,
6876 					  int zone, int node)
6877 {
6878 	unsigned long pfn;
6879 	u64 pgcnt = 0;
6880 
6881 	for (pfn = spfn; pfn < epfn; pfn++) {
6882 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6883 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6884 				+ pageblock_nr_pages - 1;
6885 			continue;
6886 		}
6887 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6888 		__SetPageReserved(pfn_to_page(pfn));
6889 		pgcnt++;
6890 	}
6891 
6892 	if (pgcnt)
6893 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6894 			node, zone_names[zone], pgcnt);
6895 }
6896 
6897 static void __init memmap_init_zone_range(struct zone *zone,
6898 					  unsigned long start_pfn,
6899 					  unsigned long end_pfn,
6900 					  unsigned long *hole_pfn)
6901 {
6902 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6903 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6904 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6905 
6906 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6907 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6908 
6909 	if (start_pfn >= end_pfn)
6910 		return;
6911 
6912 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6913 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6914 
6915 	if (*hole_pfn < start_pfn)
6916 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6917 
6918 	*hole_pfn = end_pfn;
6919 }
6920 
6921 static void __init memmap_init(void)
6922 {
6923 	unsigned long start_pfn, end_pfn;
6924 	unsigned long hole_pfn = 0;
6925 	int i, j, zone_id = 0, nid;
6926 
6927 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6928 		struct pglist_data *node = NODE_DATA(nid);
6929 
6930 		for (j = 0; j < MAX_NR_ZONES; j++) {
6931 			struct zone *zone = node->node_zones + j;
6932 
6933 			if (!populated_zone(zone))
6934 				continue;
6935 
6936 			memmap_init_zone_range(zone, start_pfn, end_pfn,
6937 					       &hole_pfn);
6938 			zone_id = j;
6939 		}
6940 	}
6941 
6942 #ifdef CONFIG_SPARSEMEM
6943 	/*
6944 	 * Initialize the memory map for hole in the range [memory_end,
6945 	 * section_end].
6946 	 * Append the pages in this hole to the highest zone in the last
6947 	 * node.
6948 	 * The call to init_unavailable_range() is outside the ifdef to
6949 	 * silence the compiler warining about zone_id set but not used;
6950 	 * for FLATMEM it is a nop anyway
6951 	 */
6952 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6953 	if (hole_pfn < end_pfn)
6954 #endif
6955 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6956 }
6957 
6958 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6959 			  phys_addr_t min_addr, int nid, bool exact_nid)
6960 {
6961 	void *ptr;
6962 
6963 	if (exact_nid)
6964 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6965 						   MEMBLOCK_ALLOC_ACCESSIBLE,
6966 						   nid);
6967 	else
6968 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6969 						 MEMBLOCK_ALLOC_ACCESSIBLE,
6970 						 nid);
6971 
6972 	if (ptr && size > 0)
6973 		page_init_poison(ptr, size);
6974 
6975 	return ptr;
6976 }
6977 
6978 static int zone_batchsize(struct zone *zone)
6979 {
6980 #ifdef CONFIG_MMU
6981 	int batch;
6982 
6983 	/*
6984 	 * The number of pages to batch allocate is either ~0.1%
6985 	 * of the zone or 1MB, whichever is smaller. The batch
6986 	 * size is striking a balance between allocation latency
6987 	 * and zone lock contention.
6988 	 */
6989 	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6990 	batch /= 4;		/* We effectively *= 4 below */
6991 	if (batch < 1)
6992 		batch = 1;
6993 
6994 	/*
6995 	 * Clamp the batch to a 2^n - 1 value. Having a power
6996 	 * of 2 value was found to be more likely to have
6997 	 * suboptimal cache aliasing properties in some cases.
6998 	 *
6999 	 * For example if 2 tasks are alternately allocating
7000 	 * batches of pages, one task can end up with a lot
7001 	 * of pages of one half of the possible page colors
7002 	 * and the other with pages of the other colors.
7003 	 */
7004 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
7005 
7006 	return batch;
7007 
7008 #else
7009 	/* The deferral and batching of frees should be suppressed under NOMMU
7010 	 * conditions.
7011 	 *
7012 	 * The problem is that NOMMU needs to be able to allocate large chunks
7013 	 * of contiguous memory as there's no hardware page translation to
7014 	 * assemble apparent contiguous memory from discontiguous pages.
7015 	 *
7016 	 * Queueing large contiguous runs of pages for batching, however,
7017 	 * causes the pages to actually be freed in smaller chunks.  As there
7018 	 * can be a significant delay between the individual batches being
7019 	 * recycled, this leads to the once large chunks of space being
7020 	 * fragmented and becoming unavailable for high-order allocations.
7021 	 */
7022 	return 0;
7023 #endif
7024 }
7025 
7026 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7027 {
7028 #ifdef CONFIG_MMU
7029 	int high;
7030 	int nr_split_cpus;
7031 	unsigned long total_pages;
7032 
7033 	if (!percpu_pagelist_high_fraction) {
7034 		/*
7035 		 * By default, the high value of the pcp is based on the zone
7036 		 * low watermark so that if they are full then background
7037 		 * reclaim will not be started prematurely.
7038 		 */
7039 		total_pages = low_wmark_pages(zone);
7040 	} else {
7041 		/*
7042 		 * If percpu_pagelist_high_fraction is configured, the high
7043 		 * value is based on a fraction of the managed pages in the
7044 		 * zone.
7045 		 */
7046 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7047 	}
7048 
7049 	/*
7050 	 * Split the high value across all online CPUs local to the zone. Note
7051 	 * that early in boot that CPUs may not be online yet and that during
7052 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7053 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
7054 	 * all online CPUs to mitigate the risk that reclaim is triggered
7055 	 * prematurely due to pages stored on pcp lists.
7056 	 */
7057 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7058 	if (!nr_split_cpus)
7059 		nr_split_cpus = num_online_cpus();
7060 	high = total_pages / nr_split_cpus;
7061 
7062 	/*
7063 	 * Ensure high is at least batch*4. The multiple is based on the
7064 	 * historical relationship between high and batch.
7065 	 */
7066 	high = max(high, batch << 2);
7067 
7068 	return high;
7069 #else
7070 	return 0;
7071 #endif
7072 }
7073 
7074 /*
7075  * pcp->high and pcp->batch values are related and generally batch is lower
7076  * than high. They are also related to pcp->count such that count is lower
7077  * than high, and as soon as it reaches high, the pcplist is flushed.
7078  *
7079  * However, guaranteeing these relations at all times would require e.g. write
7080  * barriers here but also careful usage of read barriers at the read side, and
7081  * thus be prone to error and bad for performance. Thus the update only prevents
7082  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7083  * can cope with those fields changing asynchronously, and fully trust only the
7084  * pcp->count field on the local CPU with interrupts disabled.
7085  *
7086  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7087  * outside of boot time (or some other assurance that no concurrent updaters
7088  * exist).
7089  */
7090 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7091 		unsigned long batch)
7092 {
7093 	WRITE_ONCE(pcp->batch, batch);
7094 	WRITE_ONCE(pcp->high, high);
7095 }
7096 
7097 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7098 {
7099 	int pindex;
7100 
7101 	memset(pcp, 0, sizeof(*pcp));
7102 	memset(pzstats, 0, sizeof(*pzstats));
7103 
7104 	spin_lock_init(&pcp->lock);
7105 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7106 		INIT_LIST_HEAD(&pcp->lists[pindex]);
7107 
7108 	/*
7109 	 * Set batch and high values safe for a boot pageset. A true percpu
7110 	 * pageset's initialization will update them subsequently. Here we don't
7111 	 * need to be as careful as pageset_update() as nobody can access the
7112 	 * pageset yet.
7113 	 */
7114 	pcp->high = BOOT_PAGESET_HIGH;
7115 	pcp->batch = BOOT_PAGESET_BATCH;
7116 	pcp->free_factor = 0;
7117 }
7118 
7119 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7120 		unsigned long batch)
7121 {
7122 	struct per_cpu_pages *pcp;
7123 	int cpu;
7124 
7125 	for_each_possible_cpu(cpu) {
7126 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7127 		pageset_update(pcp, high, batch);
7128 	}
7129 }
7130 
7131 /*
7132  * Calculate and set new high and batch values for all per-cpu pagesets of a
7133  * zone based on the zone's size.
7134  */
7135 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7136 {
7137 	int new_high, new_batch;
7138 
7139 	new_batch = max(1, zone_batchsize(zone));
7140 	new_high = zone_highsize(zone, new_batch, cpu_online);
7141 
7142 	if (zone->pageset_high == new_high &&
7143 	    zone->pageset_batch == new_batch)
7144 		return;
7145 
7146 	zone->pageset_high = new_high;
7147 	zone->pageset_batch = new_batch;
7148 
7149 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7150 }
7151 
7152 void __meminit setup_zone_pageset(struct zone *zone)
7153 {
7154 	int cpu;
7155 
7156 	/* Size may be 0 on !SMP && !NUMA */
7157 	if (sizeof(struct per_cpu_zonestat) > 0)
7158 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7159 
7160 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7161 	for_each_possible_cpu(cpu) {
7162 		struct per_cpu_pages *pcp;
7163 		struct per_cpu_zonestat *pzstats;
7164 
7165 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7166 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7167 		per_cpu_pages_init(pcp, pzstats);
7168 	}
7169 
7170 	zone_set_pageset_high_and_batch(zone, 0);
7171 }
7172 
7173 /*
7174  * Allocate per cpu pagesets and initialize them.
7175  * Before this call only boot pagesets were available.
7176  */
7177 void __init setup_per_cpu_pageset(void)
7178 {
7179 	struct pglist_data *pgdat;
7180 	struct zone *zone;
7181 	int __maybe_unused cpu;
7182 
7183 	for_each_populated_zone(zone)
7184 		setup_zone_pageset(zone);
7185 
7186 #ifdef CONFIG_NUMA
7187 	/*
7188 	 * Unpopulated zones continue using the boot pagesets.
7189 	 * The numa stats for these pagesets need to be reset.
7190 	 * Otherwise, they will end up skewing the stats of
7191 	 * the nodes these zones are associated with.
7192 	 */
7193 	for_each_possible_cpu(cpu) {
7194 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7195 		memset(pzstats->vm_numa_event, 0,
7196 		       sizeof(pzstats->vm_numa_event));
7197 	}
7198 #endif
7199 
7200 	for_each_online_pgdat(pgdat)
7201 		pgdat->per_cpu_nodestats =
7202 			alloc_percpu(struct per_cpu_nodestat);
7203 }
7204 
7205 static __meminit void zone_pcp_init(struct zone *zone)
7206 {
7207 	/*
7208 	 * per cpu subsystem is not up at this point. The following code
7209 	 * relies on the ability of the linker to provide the
7210 	 * offset of a (static) per cpu variable into the per cpu area.
7211 	 */
7212 	zone->per_cpu_pageset = &boot_pageset;
7213 	zone->per_cpu_zonestats = &boot_zonestats;
7214 	zone->pageset_high = BOOT_PAGESET_HIGH;
7215 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7216 
7217 	if (populated_zone(zone))
7218 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7219 			 zone->present_pages, zone_batchsize(zone));
7220 }
7221 
7222 void __meminit init_currently_empty_zone(struct zone *zone,
7223 					unsigned long zone_start_pfn,
7224 					unsigned long size)
7225 {
7226 	struct pglist_data *pgdat = zone->zone_pgdat;
7227 	int zone_idx = zone_idx(zone) + 1;
7228 
7229 	if (zone_idx > pgdat->nr_zones)
7230 		pgdat->nr_zones = zone_idx;
7231 
7232 	zone->zone_start_pfn = zone_start_pfn;
7233 
7234 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7235 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7236 			pgdat->node_id,
7237 			(unsigned long)zone_idx(zone),
7238 			zone_start_pfn, (zone_start_pfn + size));
7239 
7240 	zone_init_free_lists(zone);
7241 	zone->initialized = 1;
7242 }
7243 
7244 /**
7245  * get_pfn_range_for_nid - Return the start and end page frames for a node
7246  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7247  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7248  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7249  *
7250  * It returns the start and end page frame of a node based on information
7251  * provided by memblock_set_node(). If called for a node
7252  * with no available memory, a warning is printed and the start and end
7253  * PFNs will be 0.
7254  */
7255 void __init get_pfn_range_for_nid(unsigned int nid,
7256 			unsigned long *start_pfn, unsigned long *end_pfn)
7257 {
7258 	unsigned long this_start_pfn, this_end_pfn;
7259 	int i;
7260 
7261 	*start_pfn = -1UL;
7262 	*end_pfn = 0;
7263 
7264 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7265 		*start_pfn = min(*start_pfn, this_start_pfn);
7266 		*end_pfn = max(*end_pfn, this_end_pfn);
7267 	}
7268 
7269 	if (*start_pfn == -1UL)
7270 		*start_pfn = 0;
7271 }
7272 
7273 /*
7274  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7275  * assumption is made that zones within a node are ordered in monotonic
7276  * increasing memory addresses so that the "highest" populated zone is used
7277  */
7278 static void __init find_usable_zone_for_movable(void)
7279 {
7280 	int zone_index;
7281 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7282 		if (zone_index == ZONE_MOVABLE)
7283 			continue;
7284 
7285 		if (arch_zone_highest_possible_pfn[zone_index] >
7286 				arch_zone_lowest_possible_pfn[zone_index])
7287 			break;
7288 	}
7289 
7290 	VM_BUG_ON(zone_index == -1);
7291 	movable_zone = zone_index;
7292 }
7293 
7294 /*
7295  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7296  * because it is sized independent of architecture. Unlike the other zones,
7297  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7298  * in each node depending on the size of each node and how evenly kernelcore
7299  * is distributed. This helper function adjusts the zone ranges
7300  * provided by the architecture for a given node by using the end of the
7301  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7302  * zones within a node are in order of monotonic increases memory addresses
7303  */
7304 static void __init adjust_zone_range_for_zone_movable(int nid,
7305 					unsigned long zone_type,
7306 					unsigned long node_start_pfn,
7307 					unsigned long node_end_pfn,
7308 					unsigned long *zone_start_pfn,
7309 					unsigned long *zone_end_pfn)
7310 {
7311 	/* Only adjust if ZONE_MOVABLE is on this node */
7312 	if (zone_movable_pfn[nid]) {
7313 		/* Size ZONE_MOVABLE */
7314 		if (zone_type == ZONE_MOVABLE) {
7315 			*zone_start_pfn = zone_movable_pfn[nid];
7316 			*zone_end_pfn = min(node_end_pfn,
7317 				arch_zone_highest_possible_pfn[movable_zone]);
7318 
7319 		/* Adjust for ZONE_MOVABLE starting within this range */
7320 		} else if (!mirrored_kernelcore &&
7321 			*zone_start_pfn < zone_movable_pfn[nid] &&
7322 			*zone_end_pfn > zone_movable_pfn[nid]) {
7323 			*zone_end_pfn = zone_movable_pfn[nid];
7324 
7325 		/* Check if this whole range is within ZONE_MOVABLE */
7326 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7327 			*zone_start_pfn = *zone_end_pfn;
7328 	}
7329 }
7330 
7331 /*
7332  * Return the number of pages a zone spans in a node, including holes
7333  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7334  */
7335 static unsigned long __init zone_spanned_pages_in_node(int nid,
7336 					unsigned long zone_type,
7337 					unsigned long node_start_pfn,
7338 					unsigned long node_end_pfn,
7339 					unsigned long *zone_start_pfn,
7340 					unsigned long *zone_end_pfn)
7341 {
7342 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7343 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7344 	/* When hotadd a new node from cpu_up(), the node should be empty */
7345 	if (!node_start_pfn && !node_end_pfn)
7346 		return 0;
7347 
7348 	/* Get the start and end of the zone */
7349 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7350 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7351 	adjust_zone_range_for_zone_movable(nid, zone_type,
7352 				node_start_pfn, node_end_pfn,
7353 				zone_start_pfn, zone_end_pfn);
7354 
7355 	/* Check that this node has pages within the zone's required range */
7356 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7357 		return 0;
7358 
7359 	/* Move the zone boundaries inside the node if necessary */
7360 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7361 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7362 
7363 	/* Return the spanned pages */
7364 	return *zone_end_pfn - *zone_start_pfn;
7365 }
7366 
7367 /*
7368  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7369  * then all holes in the requested range will be accounted for.
7370  */
7371 unsigned long __init __absent_pages_in_range(int nid,
7372 				unsigned long range_start_pfn,
7373 				unsigned long range_end_pfn)
7374 {
7375 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7376 	unsigned long start_pfn, end_pfn;
7377 	int i;
7378 
7379 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7380 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7381 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7382 		nr_absent -= end_pfn - start_pfn;
7383 	}
7384 	return nr_absent;
7385 }
7386 
7387 /**
7388  * absent_pages_in_range - Return number of page frames in holes within a range
7389  * @start_pfn: The start PFN to start searching for holes
7390  * @end_pfn: The end PFN to stop searching for holes
7391  *
7392  * Return: the number of pages frames in memory holes within a range.
7393  */
7394 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7395 							unsigned long end_pfn)
7396 {
7397 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7398 }
7399 
7400 /* Return the number of page frames in holes in a zone on a node */
7401 static unsigned long __init zone_absent_pages_in_node(int nid,
7402 					unsigned long zone_type,
7403 					unsigned long node_start_pfn,
7404 					unsigned long node_end_pfn)
7405 {
7406 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7407 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7408 	unsigned long zone_start_pfn, zone_end_pfn;
7409 	unsigned long nr_absent;
7410 
7411 	/* When hotadd a new node from cpu_up(), the node should be empty */
7412 	if (!node_start_pfn && !node_end_pfn)
7413 		return 0;
7414 
7415 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7416 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7417 
7418 	adjust_zone_range_for_zone_movable(nid, zone_type,
7419 			node_start_pfn, node_end_pfn,
7420 			&zone_start_pfn, &zone_end_pfn);
7421 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7422 
7423 	/*
7424 	 * ZONE_MOVABLE handling.
7425 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7426 	 * and vice versa.
7427 	 */
7428 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7429 		unsigned long start_pfn, end_pfn;
7430 		struct memblock_region *r;
7431 
7432 		for_each_mem_region(r) {
7433 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7434 					  zone_start_pfn, zone_end_pfn);
7435 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7436 					zone_start_pfn, zone_end_pfn);
7437 
7438 			if (zone_type == ZONE_MOVABLE &&
7439 			    memblock_is_mirror(r))
7440 				nr_absent += end_pfn - start_pfn;
7441 
7442 			if (zone_type == ZONE_NORMAL &&
7443 			    !memblock_is_mirror(r))
7444 				nr_absent += end_pfn - start_pfn;
7445 		}
7446 	}
7447 
7448 	return nr_absent;
7449 }
7450 
7451 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7452 						unsigned long node_start_pfn,
7453 						unsigned long node_end_pfn)
7454 {
7455 	unsigned long realtotalpages = 0, totalpages = 0;
7456 	enum zone_type i;
7457 
7458 	for (i = 0; i < MAX_NR_ZONES; i++) {
7459 		struct zone *zone = pgdat->node_zones + i;
7460 		unsigned long zone_start_pfn, zone_end_pfn;
7461 		unsigned long spanned, absent;
7462 		unsigned long size, real_size;
7463 
7464 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7465 						     node_start_pfn,
7466 						     node_end_pfn,
7467 						     &zone_start_pfn,
7468 						     &zone_end_pfn);
7469 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7470 						   node_start_pfn,
7471 						   node_end_pfn);
7472 
7473 		size = spanned;
7474 		real_size = size - absent;
7475 
7476 		if (size)
7477 			zone->zone_start_pfn = zone_start_pfn;
7478 		else
7479 			zone->zone_start_pfn = 0;
7480 		zone->spanned_pages = size;
7481 		zone->present_pages = real_size;
7482 #if defined(CONFIG_MEMORY_HOTPLUG)
7483 		zone->present_early_pages = real_size;
7484 #endif
7485 
7486 		totalpages += size;
7487 		realtotalpages += real_size;
7488 	}
7489 
7490 	pgdat->node_spanned_pages = totalpages;
7491 	pgdat->node_present_pages = realtotalpages;
7492 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7493 }
7494 
7495 #ifndef CONFIG_SPARSEMEM
7496 /*
7497  * Calculate the size of the zone->blockflags rounded to an unsigned long
7498  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7499  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7500  * round what is now in bits to nearest long in bits, then return it in
7501  * bytes.
7502  */
7503 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7504 {
7505 	unsigned long usemapsize;
7506 
7507 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7508 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7509 	usemapsize = usemapsize >> pageblock_order;
7510 	usemapsize *= NR_PAGEBLOCK_BITS;
7511 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7512 
7513 	return usemapsize / 8;
7514 }
7515 
7516 static void __ref setup_usemap(struct zone *zone)
7517 {
7518 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7519 					       zone->spanned_pages);
7520 	zone->pageblock_flags = NULL;
7521 	if (usemapsize) {
7522 		zone->pageblock_flags =
7523 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7524 					    zone_to_nid(zone));
7525 		if (!zone->pageblock_flags)
7526 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7527 			      usemapsize, zone->name, zone_to_nid(zone));
7528 	}
7529 }
7530 #else
7531 static inline void setup_usemap(struct zone *zone) {}
7532 #endif /* CONFIG_SPARSEMEM */
7533 
7534 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7535 
7536 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7537 void __init set_pageblock_order(void)
7538 {
7539 	unsigned int order = MAX_ORDER - 1;
7540 
7541 	/* Check that pageblock_nr_pages has not already been setup */
7542 	if (pageblock_order)
7543 		return;
7544 
7545 	/* Don't let pageblocks exceed the maximum allocation granularity. */
7546 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7547 		order = HUGETLB_PAGE_ORDER;
7548 
7549 	/*
7550 	 * Assume the largest contiguous order of interest is a huge page.
7551 	 * This value may be variable depending on boot parameters on IA64 and
7552 	 * powerpc.
7553 	 */
7554 	pageblock_order = order;
7555 }
7556 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7557 
7558 /*
7559  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7560  * is unused as pageblock_order is set at compile-time. See
7561  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7562  * the kernel config
7563  */
7564 void __init set_pageblock_order(void)
7565 {
7566 }
7567 
7568 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7569 
7570 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7571 						unsigned long present_pages)
7572 {
7573 	unsigned long pages = spanned_pages;
7574 
7575 	/*
7576 	 * Provide a more accurate estimation if there are holes within
7577 	 * the zone and SPARSEMEM is in use. If there are holes within the
7578 	 * zone, each populated memory region may cost us one or two extra
7579 	 * memmap pages due to alignment because memmap pages for each
7580 	 * populated regions may not be naturally aligned on page boundary.
7581 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7582 	 */
7583 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7584 	    IS_ENABLED(CONFIG_SPARSEMEM))
7585 		pages = present_pages;
7586 
7587 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7588 }
7589 
7590 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7591 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7592 {
7593 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7594 
7595 	spin_lock_init(&ds_queue->split_queue_lock);
7596 	INIT_LIST_HEAD(&ds_queue->split_queue);
7597 	ds_queue->split_queue_len = 0;
7598 }
7599 #else
7600 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7601 #endif
7602 
7603 #ifdef CONFIG_COMPACTION
7604 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7605 {
7606 	init_waitqueue_head(&pgdat->kcompactd_wait);
7607 }
7608 #else
7609 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7610 #endif
7611 
7612 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7613 {
7614 	int i;
7615 
7616 	pgdat_resize_init(pgdat);
7617 
7618 	pgdat_init_split_queue(pgdat);
7619 	pgdat_init_kcompactd(pgdat);
7620 
7621 	init_waitqueue_head(&pgdat->kswapd_wait);
7622 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7623 
7624 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7625 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7626 
7627 	pgdat_page_ext_init(pgdat);
7628 	lruvec_init(&pgdat->__lruvec);
7629 }
7630 
7631 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7632 							unsigned long remaining_pages)
7633 {
7634 	atomic_long_set(&zone->managed_pages, remaining_pages);
7635 	zone_set_nid(zone, nid);
7636 	zone->name = zone_names[idx];
7637 	zone->zone_pgdat = NODE_DATA(nid);
7638 	spin_lock_init(&zone->lock);
7639 	zone_seqlock_init(zone);
7640 	zone_pcp_init(zone);
7641 }
7642 
7643 /*
7644  * Set up the zone data structures
7645  * - init pgdat internals
7646  * - init all zones belonging to this node
7647  *
7648  * NOTE: this function is only called during memory hotplug
7649  */
7650 #ifdef CONFIG_MEMORY_HOTPLUG
7651 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7652 {
7653 	int nid = pgdat->node_id;
7654 	enum zone_type z;
7655 	int cpu;
7656 
7657 	pgdat_init_internals(pgdat);
7658 
7659 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
7660 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7661 
7662 	/*
7663 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
7664 	 * Note that kswapd will init kswapd_highest_zoneidx properly
7665 	 * when it starts in the near future.
7666 	 */
7667 	pgdat->nr_zones = 0;
7668 	pgdat->kswapd_order = 0;
7669 	pgdat->kswapd_highest_zoneidx = 0;
7670 	pgdat->node_start_pfn = 0;
7671 	for_each_online_cpu(cpu) {
7672 		struct per_cpu_nodestat *p;
7673 
7674 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7675 		memset(p, 0, sizeof(*p));
7676 	}
7677 
7678 	for (z = 0; z < MAX_NR_ZONES; z++)
7679 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7680 }
7681 #endif
7682 
7683 /*
7684  * Set up the zone data structures:
7685  *   - mark all pages reserved
7686  *   - mark all memory queues empty
7687  *   - clear the memory bitmaps
7688  *
7689  * NOTE: pgdat should get zeroed by caller.
7690  * NOTE: this function is only called during early init.
7691  */
7692 static void __init free_area_init_core(struct pglist_data *pgdat)
7693 {
7694 	enum zone_type j;
7695 	int nid = pgdat->node_id;
7696 
7697 	pgdat_init_internals(pgdat);
7698 	pgdat->per_cpu_nodestats = &boot_nodestats;
7699 
7700 	for (j = 0; j < MAX_NR_ZONES; j++) {
7701 		struct zone *zone = pgdat->node_zones + j;
7702 		unsigned long size, freesize, memmap_pages;
7703 
7704 		size = zone->spanned_pages;
7705 		freesize = zone->present_pages;
7706 
7707 		/*
7708 		 * Adjust freesize so that it accounts for how much memory
7709 		 * is used by this zone for memmap. This affects the watermark
7710 		 * and per-cpu initialisations
7711 		 */
7712 		memmap_pages = calc_memmap_size(size, freesize);
7713 		if (!is_highmem_idx(j)) {
7714 			if (freesize >= memmap_pages) {
7715 				freesize -= memmap_pages;
7716 				if (memmap_pages)
7717 					pr_debug("  %s zone: %lu pages used for memmap\n",
7718 						 zone_names[j], memmap_pages);
7719 			} else
7720 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7721 					zone_names[j], memmap_pages, freesize);
7722 		}
7723 
7724 		/* Account for reserved pages */
7725 		if (j == 0 && freesize > dma_reserve) {
7726 			freesize -= dma_reserve;
7727 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7728 		}
7729 
7730 		if (!is_highmem_idx(j))
7731 			nr_kernel_pages += freesize;
7732 		/* Charge for highmem memmap if there are enough kernel pages */
7733 		else if (nr_kernel_pages > memmap_pages * 2)
7734 			nr_kernel_pages -= memmap_pages;
7735 		nr_all_pages += freesize;
7736 
7737 		/*
7738 		 * Set an approximate value for lowmem here, it will be adjusted
7739 		 * when the bootmem allocator frees pages into the buddy system.
7740 		 * And all highmem pages will be managed by the buddy system.
7741 		 */
7742 		zone_init_internals(zone, j, nid, freesize);
7743 
7744 		if (!size)
7745 			continue;
7746 
7747 		set_pageblock_order();
7748 		setup_usemap(zone);
7749 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7750 	}
7751 }
7752 
7753 #ifdef CONFIG_FLATMEM
7754 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7755 {
7756 	unsigned long __maybe_unused start = 0;
7757 	unsigned long __maybe_unused offset = 0;
7758 
7759 	/* Skip empty nodes */
7760 	if (!pgdat->node_spanned_pages)
7761 		return;
7762 
7763 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7764 	offset = pgdat->node_start_pfn - start;
7765 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7766 	if (!pgdat->node_mem_map) {
7767 		unsigned long size, end;
7768 		struct page *map;
7769 
7770 		/*
7771 		 * The zone's endpoints aren't required to be MAX_ORDER
7772 		 * aligned but the node_mem_map endpoints must be in order
7773 		 * for the buddy allocator to function correctly.
7774 		 */
7775 		end = pgdat_end_pfn(pgdat);
7776 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7777 		size =  (end - start) * sizeof(struct page);
7778 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7779 				   pgdat->node_id, false);
7780 		if (!map)
7781 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7782 			      size, pgdat->node_id);
7783 		pgdat->node_mem_map = map + offset;
7784 	}
7785 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7786 				__func__, pgdat->node_id, (unsigned long)pgdat,
7787 				(unsigned long)pgdat->node_mem_map);
7788 #ifndef CONFIG_NUMA
7789 	/*
7790 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7791 	 */
7792 	if (pgdat == NODE_DATA(0)) {
7793 		mem_map = NODE_DATA(0)->node_mem_map;
7794 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7795 			mem_map -= offset;
7796 	}
7797 #endif
7798 }
7799 #else
7800 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7801 #endif /* CONFIG_FLATMEM */
7802 
7803 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7804 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7805 {
7806 	pgdat->first_deferred_pfn = ULONG_MAX;
7807 }
7808 #else
7809 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7810 #endif
7811 
7812 static void __init free_area_init_node(int nid)
7813 {
7814 	pg_data_t *pgdat = NODE_DATA(nid);
7815 	unsigned long start_pfn = 0;
7816 	unsigned long end_pfn = 0;
7817 
7818 	/* pg_data_t should be reset to zero when it's allocated */
7819 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7820 
7821 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7822 
7823 	pgdat->node_id = nid;
7824 	pgdat->node_start_pfn = start_pfn;
7825 	pgdat->per_cpu_nodestats = NULL;
7826 
7827 	if (start_pfn != end_pfn) {
7828 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7829 			(u64)start_pfn << PAGE_SHIFT,
7830 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7831 	} else {
7832 		pr_info("Initmem setup node %d as memoryless\n", nid);
7833 	}
7834 
7835 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7836 
7837 	alloc_node_mem_map(pgdat);
7838 	pgdat_set_deferred_range(pgdat);
7839 
7840 	free_area_init_core(pgdat);
7841 }
7842 
7843 static void __init free_area_init_memoryless_node(int nid)
7844 {
7845 	free_area_init_node(nid);
7846 }
7847 
7848 #if MAX_NUMNODES > 1
7849 /*
7850  * Figure out the number of possible node ids.
7851  */
7852 void __init setup_nr_node_ids(void)
7853 {
7854 	unsigned int highest;
7855 
7856 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7857 	nr_node_ids = highest + 1;
7858 }
7859 #endif
7860 
7861 /**
7862  * node_map_pfn_alignment - determine the maximum internode alignment
7863  *
7864  * This function should be called after node map is populated and sorted.
7865  * It calculates the maximum power of two alignment which can distinguish
7866  * all the nodes.
7867  *
7868  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7869  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7870  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7871  * shifted, 1GiB is enough and this function will indicate so.
7872  *
7873  * This is used to test whether pfn -> nid mapping of the chosen memory
7874  * model has fine enough granularity to avoid incorrect mapping for the
7875  * populated node map.
7876  *
7877  * Return: the determined alignment in pfn's.  0 if there is no alignment
7878  * requirement (single node).
7879  */
7880 unsigned long __init node_map_pfn_alignment(void)
7881 {
7882 	unsigned long accl_mask = 0, last_end = 0;
7883 	unsigned long start, end, mask;
7884 	int last_nid = NUMA_NO_NODE;
7885 	int i, nid;
7886 
7887 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7888 		if (!start || last_nid < 0 || last_nid == nid) {
7889 			last_nid = nid;
7890 			last_end = end;
7891 			continue;
7892 		}
7893 
7894 		/*
7895 		 * Start with a mask granular enough to pin-point to the
7896 		 * start pfn and tick off bits one-by-one until it becomes
7897 		 * too coarse to separate the current node from the last.
7898 		 */
7899 		mask = ~((1 << __ffs(start)) - 1);
7900 		while (mask && last_end <= (start & (mask << 1)))
7901 			mask <<= 1;
7902 
7903 		/* accumulate all internode masks */
7904 		accl_mask |= mask;
7905 	}
7906 
7907 	/* convert mask to number of pages */
7908 	return ~accl_mask + 1;
7909 }
7910 
7911 /**
7912  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7913  *
7914  * Return: the minimum PFN based on information provided via
7915  * memblock_set_node().
7916  */
7917 unsigned long __init find_min_pfn_with_active_regions(void)
7918 {
7919 	return PHYS_PFN(memblock_start_of_DRAM());
7920 }
7921 
7922 /*
7923  * early_calculate_totalpages()
7924  * Sum pages in active regions for movable zone.
7925  * Populate N_MEMORY for calculating usable_nodes.
7926  */
7927 static unsigned long __init early_calculate_totalpages(void)
7928 {
7929 	unsigned long totalpages = 0;
7930 	unsigned long start_pfn, end_pfn;
7931 	int i, nid;
7932 
7933 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7934 		unsigned long pages = end_pfn - start_pfn;
7935 
7936 		totalpages += pages;
7937 		if (pages)
7938 			node_set_state(nid, N_MEMORY);
7939 	}
7940 	return totalpages;
7941 }
7942 
7943 /*
7944  * Find the PFN the Movable zone begins in each node. Kernel memory
7945  * is spread evenly between nodes as long as the nodes have enough
7946  * memory. When they don't, some nodes will have more kernelcore than
7947  * others
7948  */
7949 static void __init find_zone_movable_pfns_for_nodes(void)
7950 {
7951 	int i, nid;
7952 	unsigned long usable_startpfn;
7953 	unsigned long kernelcore_node, kernelcore_remaining;
7954 	/* save the state before borrow the nodemask */
7955 	nodemask_t saved_node_state = node_states[N_MEMORY];
7956 	unsigned long totalpages = early_calculate_totalpages();
7957 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7958 	struct memblock_region *r;
7959 
7960 	/* Need to find movable_zone earlier when movable_node is specified. */
7961 	find_usable_zone_for_movable();
7962 
7963 	/*
7964 	 * If movable_node is specified, ignore kernelcore and movablecore
7965 	 * options.
7966 	 */
7967 	if (movable_node_is_enabled()) {
7968 		for_each_mem_region(r) {
7969 			if (!memblock_is_hotpluggable(r))
7970 				continue;
7971 
7972 			nid = memblock_get_region_node(r);
7973 
7974 			usable_startpfn = PFN_DOWN(r->base);
7975 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7976 				min(usable_startpfn, zone_movable_pfn[nid]) :
7977 				usable_startpfn;
7978 		}
7979 
7980 		goto out2;
7981 	}
7982 
7983 	/*
7984 	 * If kernelcore=mirror is specified, ignore movablecore option
7985 	 */
7986 	if (mirrored_kernelcore) {
7987 		bool mem_below_4gb_not_mirrored = false;
7988 
7989 		for_each_mem_region(r) {
7990 			if (memblock_is_mirror(r))
7991 				continue;
7992 
7993 			nid = memblock_get_region_node(r);
7994 
7995 			usable_startpfn = memblock_region_memory_base_pfn(r);
7996 
7997 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
7998 				mem_below_4gb_not_mirrored = true;
7999 				continue;
8000 			}
8001 
8002 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8003 				min(usable_startpfn, zone_movable_pfn[nid]) :
8004 				usable_startpfn;
8005 		}
8006 
8007 		if (mem_below_4gb_not_mirrored)
8008 			pr_warn("This configuration results in unmirrored kernel memory.\n");
8009 
8010 		goto out2;
8011 	}
8012 
8013 	/*
8014 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8015 	 * amount of necessary memory.
8016 	 */
8017 	if (required_kernelcore_percent)
8018 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8019 				       10000UL;
8020 	if (required_movablecore_percent)
8021 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8022 					10000UL;
8023 
8024 	/*
8025 	 * If movablecore= was specified, calculate what size of
8026 	 * kernelcore that corresponds so that memory usable for
8027 	 * any allocation type is evenly spread. If both kernelcore
8028 	 * and movablecore are specified, then the value of kernelcore
8029 	 * will be used for required_kernelcore if it's greater than
8030 	 * what movablecore would have allowed.
8031 	 */
8032 	if (required_movablecore) {
8033 		unsigned long corepages;
8034 
8035 		/*
8036 		 * Round-up so that ZONE_MOVABLE is at least as large as what
8037 		 * was requested by the user
8038 		 */
8039 		required_movablecore =
8040 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8041 		required_movablecore = min(totalpages, required_movablecore);
8042 		corepages = totalpages - required_movablecore;
8043 
8044 		required_kernelcore = max(required_kernelcore, corepages);
8045 	}
8046 
8047 	/*
8048 	 * If kernelcore was not specified or kernelcore size is larger
8049 	 * than totalpages, there is no ZONE_MOVABLE.
8050 	 */
8051 	if (!required_kernelcore || required_kernelcore >= totalpages)
8052 		goto out;
8053 
8054 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8055 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8056 
8057 restart:
8058 	/* Spread kernelcore memory as evenly as possible throughout nodes */
8059 	kernelcore_node = required_kernelcore / usable_nodes;
8060 	for_each_node_state(nid, N_MEMORY) {
8061 		unsigned long start_pfn, end_pfn;
8062 
8063 		/*
8064 		 * Recalculate kernelcore_node if the division per node
8065 		 * now exceeds what is necessary to satisfy the requested
8066 		 * amount of memory for the kernel
8067 		 */
8068 		if (required_kernelcore < kernelcore_node)
8069 			kernelcore_node = required_kernelcore / usable_nodes;
8070 
8071 		/*
8072 		 * As the map is walked, we track how much memory is usable
8073 		 * by the kernel using kernelcore_remaining. When it is
8074 		 * 0, the rest of the node is usable by ZONE_MOVABLE
8075 		 */
8076 		kernelcore_remaining = kernelcore_node;
8077 
8078 		/* Go through each range of PFNs within this node */
8079 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8080 			unsigned long size_pages;
8081 
8082 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8083 			if (start_pfn >= end_pfn)
8084 				continue;
8085 
8086 			/* Account for what is only usable for kernelcore */
8087 			if (start_pfn < usable_startpfn) {
8088 				unsigned long kernel_pages;
8089 				kernel_pages = min(end_pfn, usable_startpfn)
8090 								- start_pfn;
8091 
8092 				kernelcore_remaining -= min(kernel_pages,
8093 							kernelcore_remaining);
8094 				required_kernelcore -= min(kernel_pages,
8095 							required_kernelcore);
8096 
8097 				/* Continue if range is now fully accounted */
8098 				if (end_pfn <= usable_startpfn) {
8099 
8100 					/*
8101 					 * Push zone_movable_pfn to the end so
8102 					 * that if we have to rebalance
8103 					 * kernelcore across nodes, we will
8104 					 * not double account here
8105 					 */
8106 					zone_movable_pfn[nid] = end_pfn;
8107 					continue;
8108 				}
8109 				start_pfn = usable_startpfn;
8110 			}
8111 
8112 			/*
8113 			 * The usable PFN range for ZONE_MOVABLE is from
8114 			 * start_pfn->end_pfn. Calculate size_pages as the
8115 			 * number of pages used as kernelcore
8116 			 */
8117 			size_pages = end_pfn - start_pfn;
8118 			if (size_pages > kernelcore_remaining)
8119 				size_pages = kernelcore_remaining;
8120 			zone_movable_pfn[nid] = start_pfn + size_pages;
8121 
8122 			/*
8123 			 * Some kernelcore has been met, update counts and
8124 			 * break if the kernelcore for this node has been
8125 			 * satisfied
8126 			 */
8127 			required_kernelcore -= min(required_kernelcore,
8128 								size_pages);
8129 			kernelcore_remaining -= size_pages;
8130 			if (!kernelcore_remaining)
8131 				break;
8132 		}
8133 	}
8134 
8135 	/*
8136 	 * If there is still required_kernelcore, we do another pass with one
8137 	 * less node in the count. This will push zone_movable_pfn[nid] further
8138 	 * along on the nodes that still have memory until kernelcore is
8139 	 * satisfied
8140 	 */
8141 	usable_nodes--;
8142 	if (usable_nodes && required_kernelcore > usable_nodes)
8143 		goto restart;
8144 
8145 out2:
8146 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8147 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
8148 		unsigned long start_pfn, end_pfn;
8149 
8150 		zone_movable_pfn[nid] =
8151 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8152 
8153 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8154 		if (zone_movable_pfn[nid] >= end_pfn)
8155 			zone_movable_pfn[nid] = 0;
8156 	}
8157 
8158 out:
8159 	/* restore the node_state */
8160 	node_states[N_MEMORY] = saved_node_state;
8161 }
8162 
8163 /* Any regular or high memory on that node ? */
8164 static void check_for_memory(pg_data_t *pgdat, int nid)
8165 {
8166 	enum zone_type zone_type;
8167 
8168 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8169 		struct zone *zone = &pgdat->node_zones[zone_type];
8170 		if (populated_zone(zone)) {
8171 			if (IS_ENABLED(CONFIG_HIGHMEM))
8172 				node_set_state(nid, N_HIGH_MEMORY);
8173 			if (zone_type <= ZONE_NORMAL)
8174 				node_set_state(nid, N_NORMAL_MEMORY);
8175 			break;
8176 		}
8177 	}
8178 }
8179 
8180 /*
8181  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8182  * such cases we allow max_zone_pfn sorted in the descending order
8183  */
8184 bool __weak arch_has_descending_max_zone_pfns(void)
8185 {
8186 	return false;
8187 }
8188 
8189 /**
8190  * free_area_init - Initialise all pg_data_t and zone data
8191  * @max_zone_pfn: an array of max PFNs for each zone
8192  *
8193  * This will call free_area_init_node() for each active node in the system.
8194  * Using the page ranges provided by memblock_set_node(), the size of each
8195  * zone in each node and their holes is calculated. If the maximum PFN
8196  * between two adjacent zones match, it is assumed that the zone is empty.
8197  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8198  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8199  * starts where the previous one ended. For example, ZONE_DMA32 starts
8200  * at arch_max_dma_pfn.
8201  */
8202 void __init free_area_init(unsigned long *max_zone_pfn)
8203 {
8204 	unsigned long start_pfn, end_pfn;
8205 	int i, nid, zone;
8206 	bool descending;
8207 
8208 	/* Record where the zone boundaries are */
8209 	memset(arch_zone_lowest_possible_pfn, 0,
8210 				sizeof(arch_zone_lowest_possible_pfn));
8211 	memset(arch_zone_highest_possible_pfn, 0,
8212 				sizeof(arch_zone_highest_possible_pfn));
8213 
8214 	start_pfn = find_min_pfn_with_active_regions();
8215 	descending = arch_has_descending_max_zone_pfns();
8216 
8217 	for (i = 0; i < MAX_NR_ZONES; i++) {
8218 		if (descending)
8219 			zone = MAX_NR_ZONES - i - 1;
8220 		else
8221 			zone = i;
8222 
8223 		if (zone == ZONE_MOVABLE)
8224 			continue;
8225 
8226 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8227 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8228 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8229 
8230 		start_pfn = end_pfn;
8231 	}
8232 
8233 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8234 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8235 	find_zone_movable_pfns_for_nodes();
8236 
8237 	/* Print out the zone ranges */
8238 	pr_info("Zone ranges:\n");
8239 	for (i = 0; i < MAX_NR_ZONES; i++) {
8240 		if (i == ZONE_MOVABLE)
8241 			continue;
8242 		pr_info("  %-8s ", zone_names[i]);
8243 		if (arch_zone_lowest_possible_pfn[i] ==
8244 				arch_zone_highest_possible_pfn[i])
8245 			pr_cont("empty\n");
8246 		else
8247 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8248 				(u64)arch_zone_lowest_possible_pfn[i]
8249 					<< PAGE_SHIFT,
8250 				((u64)arch_zone_highest_possible_pfn[i]
8251 					<< PAGE_SHIFT) - 1);
8252 	}
8253 
8254 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8255 	pr_info("Movable zone start for each node\n");
8256 	for (i = 0; i < MAX_NUMNODES; i++) {
8257 		if (zone_movable_pfn[i])
8258 			pr_info("  Node %d: %#018Lx\n", i,
8259 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8260 	}
8261 
8262 	/*
8263 	 * Print out the early node map, and initialize the
8264 	 * subsection-map relative to active online memory ranges to
8265 	 * enable future "sub-section" extensions of the memory map.
8266 	 */
8267 	pr_info("Early memory node ranges\n");
8268 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8269 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8270 			(u64)start_pfn << PAGE_SHIFT,
8271 			((u64)end_pfn << PAGE_SHIFT) - 1);
8272 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8273 	}
8274 
8275 	/* Initialise every node */
8276 	mminit_verify_pageflags_layout();
8277 	setup_nr_node_ids();
8278 	for_each_node(nid) {
8279 		pg_data_t *pgdat;
8280 
8281 		if (!node_online(nid)) {
8282 			pr_info("Initializing node %d as memoryless\n", nid);
8283 
8284 			/* Allocator not initialized yet */
8285 			pgdat = arch_alloc_nodedata(nid);
8286 			if (!pgdat) {
8287 				pr_err("Cannot allocate %zuB for node %d.\n",
8288 						sizeof(*pgdat), nid);
8289 				continue;
8290 			}
8291 			arch_refresh_nodedata(nid, pgdat);
8292 			free_area_init_memoryless_node(nid);
8293 
8294 			/*
8295 			 * We do not want to confuse userspace by sysfs
8296 			 * files/directories for node without any memory
8297 			 * attached to it, so this node is not marked as
8298 			 * N_MEMORY and not marked online so that no sysfs
8299 			 * hierarchy will be created via register_one_node for
8300 			 * it. The pgdat will get fully initialized by
8301 			 * hotadd_init_pgdat() when memory is hotplugged into
8302 			 * this node.
8303 			 */
8304 			continue;
8305 		}
8306 
8307 		pgdat = NODE_DATA(nid);
8308 		free_area_init_node(nid);
8309 
8310 		/* Any memory on that node */
8311 		if (pgdat->node_present_pages)
8312 			node_set_state(nid, N_MEMORY);
8313 		check_for_memory(pgdat, nid);
8314 	}
8315 
8316 	memmap_init();
8317 }
8318 
8319 static int __init cmdline_parse_core(char *p, unsigned long *core,
8320 				     unsigned long *percent)
8321 {
8322 	unsigned long long coremem;
8323 	char *endptr;
8324 
8325 	if (!p)
8326 		return -EINVAL;
8327 
8328 	/* Value may be a percentage of total memory, otherwise bytes */
8329 	coremem = simple_strtoull(p, &endptr, 0);
8330 	if (*endptr == '%') {
8331 		/* Paranoid check for percent values greater than 100 */
8332 		WARN_ON(coremem > 100);
8333 
8334 		*percent = coremem;
8335 	} else {
8336 		coremem = memparse(p, &p);
8337 		/* Paranoid check that UL is enough for the coremem value */
8338 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8339 
8340 		*core = coremem >> PAGE_SHIFT;
8341 		*percent = 0UL;
8342 	}
8343 	return 0;
8344 }
8345 
8346 /*
8347  * kernelcore=size sets the amount of memory for use for allocations that
8348  * cannot be reclaimed or migrated.
8349  */
8350 static int __init cmdline_parse_kernelcore(char *p)
8351 {
8352 	/* parse kernelcore=mirror */
8353 	if (parse_option_str(p, "mirror")) {
8354 		mirrored_kernelcore = true;
8355 		return 0;
8356 	}
8357 
8358 	return cmdline_parse_core(p, &required_kernelcore,
8359 				  &required_kernelcore_percent);
8360 }
8361 
8362 /*
8363  * movablecore=size sets the amount of memory for use for allocations that
8364  * can be reclaimed or migrated.
8365  */
8366 static int __init cmdline_parse_movablecore(char *p)
8367 {
8368 	return cmdline_parse_core(p, &required_movablecore,
8369 				  &required_movablecore_percent);
8370 }
8371 
8372 early_param("kernelcore", cmdline_parse_kernelcore);
8373 early_param("movablecore", cmdline_parse_movablecore);
8374 
8375 void adjust_managed_page_count(struct page *page, long count)
8376 {
8377 	atomic_long_add(count, &page_zone(page)->managed_pages);
8378 	totalram_pages_add(count);
8379 #ifdef CONFIG_HIGHMEM
8380 	if (PageHighMem(page))
8381 		totalhigh_pages_add(count);
8382 #endif
8383 }
8384 EXPORT_SYMBOL(adjust_managed_page_count);
8385 
8386 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8387 {
8388 	void *pos;
8389 	unsigned long pages = 0;
8390 
8391 	start = (void *)PAGE_ALIGN((unsigned long)start);
8392 	end = (void *)((unsigned long)end & PAGE_MASK);
8393 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8394 		struct page *page = virt_to_page(pos);
8395 		void *direct_map_addr;
8396 
8397 		/*
8398 		 * 'direct_map_addr' might be different from 'pos'
8399 		 * because some architectures' virt_to_page()
8400 		 * work with aliases.  Getting the direct map
8401 		 * address ensures that we get a _writeable_
8402 		 * alias for the memset().
8403 		 */
8404 		direct_map_addr = page_address(page);
8405 		/*
8406 		 * Perform a kasan-unchecked memset() since this memory
8407 		 * has not been initialized.
8408 		 */
8409 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8410 		if ((unsigned int)poison <= 0xFF)
8411 			memset(direct_map_addr, poison, PAGE_SIZE);
8412 
8413 		free_reserved_page(page);
8414 	}
8415 
8416 	if (pages && s)
8417 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8418 
8419 	return pages;
8420 }
8421 
8422 void __init mem_init_print_info(void)
8423 {
8424 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8425 	unsigned long init_code_size, init_data_size;
8426 
8427 	physpages = get_num_physpages();
8428 	codesize = _etext - _stext;
8429 	datasize = _edata - _sdata;
8430 	rosize = __end_rodata - __start_rodata;
8431 	bss_size = __bss_stop - __bss_start;
8432 	init_data_size = __init_end - __init_begin;
8433 	init_code_size = _einittext - _sinittext;
8434 
8435 	/*
8436 	 * Detect special cases and adjust section sizes accordingly:
8437 	 * 1) .init.* may be embedded into .data sections
8438 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8439 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8440 	 * 3) .rodata.* may be embedded into .text or .data sections.
8441 	 */
8442 #define adj_init_size(start, end, size, pos, adj) \
8443 	do { \
8444 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8445 			size -= adj; \
8446 	} while (0)
8447 
8448 	adj_init_size(__init_begin, __init_end, init_data_size,
8449 		     _sinittext, init_code_size);
8450 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8451 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8452 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8453 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8454 
8455 #undef	adj_init_size
8456 
8457 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8458 #ifdef	CONFIG_HIGHMEM
8459 		", %luK highmem"
8460 #endif
8461 		")\n",
8462 		K(nr_free_pages()), K(physpages),
8463 		codesize >> 10, datasize >> 10, rosize >> 10,
8464 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8465 		K(physpages - totalram_pages() - totalcma_pages),
8466 		K(totalcma_pages)
8467 #ifdef	CONFIG_HIGHMEM
8468 		, K(totalhigh_pages())
8469 #endif
8470 		);
8471 }
8472 
8473 /**
8474  * set_dma_reserve - set the specified number of pages reserved in the first zone
8475  * @new_dma_reserve: The number of pages to mark reserved
8476  *
8477  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8478  * In the DMA zone, a significant percentage may be consumed by kernel image
8479  * and other unfreeable allocations which can skew the watermarks badly. This
8480  * function may optionally be used to account for unfreeable pages in the
8481  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8482  * smaller per-cpu batchsize.
8483  */
8484 void __init set_dma_reserve(unsigned long new_dma_reserve)
8485 {
8486 	dma_reserve = new_dma_reserve;
8487 }
8488 
8489 static int page_alloc_cpu_dead(unsigned int cpu)
8490 {
8491 	struct zone *zone;
8492 
8493 	lru_add_drain_cpu(cpu);
8494 	mlock_page_drain_remote(cpu);
8495 	drain_pages(cpu);
8496 
8497 	/*
8498 	 * Spill the event counters of the dead processor
8499 	 * into the current processors event counters.
8500 	 * This artificially elevates the count of the current
8501 	 * processor.
8502 	 */
8503 	vm_events_fold_cpu(cpu);
8504 
8505 	/*
8506 	 * Zero the differential counters of the dead processor
8507 	 * so that the vm statistics are consistent.
8508 	 *
8509 	 * This is only okay since the processor is dead and cannot
8510 	 * race with what we are doing.
8511 	 */
8512 	cpu_vm_stats_fold(cpu);
8513 
8514 	for_each_populated_zone(zone)
8515 		zone_pcp_update(zone, 0);
8516 
8517 	return 0;
8518 }
8519 
8520 static int page_alloc_cpu_online(unsigned int cpu)
8521 {
8522 	struct zone *zone;
8523 
8524 	for_each_populated_zone(zone)
8525 		zone_pcp_update(zone, 1);
8526 	return 0;
8527 }
8528 
8529 #ifdef CONFIG_NUMA
8530 int hashdist = HASHDIST_DEFAULT;
8531 
8532 static int __init set_hashdist(char *str)
8533 {
8534 	if (!str)
8535 		return 0;
8536 	hashdist = simple_strtoul(str, &str, 0);
8537 	return 1;
8538 }
8539 __setup("hashdist=", set_hashdist);
8540 #endif
8541 
8542 void __init page_alloc_init(void)
8543 {
8544 	int ret;
8545 
8546 #ifdef CONFIG_NUMA
8547 	if (num_node_state(N_MEMORY) == 1)
8548 		hashdist = 0;
8549 #endif
8550 
8551 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8552 					"mm/page_alloc:pcp",
8553 					page_alloc_cpu_online,
8554 					page_alloc_cpu_dead);
8555 	WARN_ON(ret < 0);
8556 }
8557 
8558 /*
8559  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8560  *	or min_free_kbytes changes.
8561  */
8562 static void calculate_totalreserve_pages(void)
8563 {
8564 	struct pglist_data *pgdat;
8565 	unsigned long reserve_pages = 0;
8566 	enum zone_type i, j;
8567 
8568 	for_each_online_pgdat(pgdat) {
8569 
8570 		pgdat->totalreserve_pages = 0;
8571 
8572 		for (i = 0; i < MAX_NR_ZONES; i++) {
8573 			struct zone *zone = pgdat->node_zones + i;
8574 			long max = 0;
8575 			unsigned long managed_pages = zone_managed_pages(zone);
8576 
8577 			/* Find valid and maximum lowmem_reserve in the zone */
8578 			for (j = i; j < MAX_NR_ZONES; j++) {
8579 				if (zone->lowmem_reserve[j] > max)
8580 					max = zone->lowmem_reserve[j];
8581 			}
8582 
8583 			/* we treat the high watermark as reserved pages. */
8584 			max += high_wmark_pages(zone);
8585 
8586 			if (max > managed_pages)
8587 				max = managed_pages;
8588 
8589 			pgdat->totalreserve_pages += max;
8590 
8591 			reserve_pages += max;
8592 		}
8593 	}
8594 	totalreserve_pages = reserve_pages;
8595 }
8596 
8597 /*
8598  * setup_per_zone_lowmem_reserve - called whenever
8599  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8600  *	has a correct pages reserved value, so an adequate number of
8601  *	pages are left in the zone after a successful __alloc_pages().
8602  */
8603 static void setup_per_zone_lowmem_reserve(void)
8604 {
8605 	struct pglist_data *pgdat;
8606 	enum zone_type i, j;
8607 
8608 	for_each_online_pgdat(pgdat) {
8609 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8610 			struct zone *zone = &pgdat->node_zones[i];
8611 			int ratio = sysctl_lowmem_reserve_ratio[i];
8612 			bool clear = !ratio || !zone_managed_pages(zone);
8613 			unsigned long managed_pages = 0;
8614 
8615 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8616 				struct zone *upper_zone = &pgdat->node_zones[j];
8617 
8618 				managed_pages += zone_managed_pages(upper_zone);
8619 
8620 				if (clear)
8621 					zone->lowmem_reserve[j] = 0;
8622 				else
8623 					zone->lowmem_reserve[j] = managed_pages / ratio;
8624 			}
8625 		}
8626 	}
8627 
8628 	/* update totalreserve_pages */
8629 	calculate_totalreserve_pages();
8630 }
8631 
8632 static void __setup_per_zone_wmarks(void)
8633 {
8634 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8635 	unsigned long lowmem_pages = 0;
8636 	struct zone *zone;
8637 	unsigned long flags;
8638 
8639 	/* Calculate total number of !ZONE_HIGHMEM pages */
8640 	for_each_zone(zone) {
8641 		if (!is_highmem(zone))
8642 			lowmem_pages += zone_managed_pages(zone);
8643 	}
8644 
8645 	for_each_zone(zone) {
8646 		u64 tmp;
8647 
8648 		spin_lock_irqsave(&zone->lock, flags);
8649 		tmp = (u64)pages_min * zone_managed_pages(zone);
8650 		do_div(tmp, lowmem_pages);
8651 		if (is_highmem(zone)) {
8652 			/*
8653 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8654 			 * need highmem pages, so cap pages_min to a small
8655 			 * value here.
8656 			 *
8657 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8658 			 * deltas control async page reclaim, and so should
8659 			 * not be capped for highmem.
8660 			 */
8661 			unsigned long min_pages;
8662 
8663 			min_pages = zone_managed_pages(zone) / 1024;
8664 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8665 			zone->_watermark[WMARK_MIN] = min_pages;
8666 		} else {
8667 			/*
8668 			 * If it's a lowmem zone, reserve a number of pages
8669 			 * proportionate to the zone's size.
8670 			 */
8671 			zone->_watermark[WMARK_MIN] = tmp;
8672 		}
8673 
8674 		/*
8675 		 * Set the kswapd watermarks distance according to the
8676 		 * scale factor in proportion to available memory, but
8677 		 * ensure a minimum size on small systems.
8678 		 */
8679 		tmp = max_t(u64, tmp >> 2,
8680 			    mult_frac(zone_managed_pages(zone),
8681 				      watermark_scale_factor, 10000));
8682 
8683 		zone->watermark_boost = 0;
8684 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8685 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8686 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8687 
8688 		spin_unlock_irqrestore(&zone->lock, flags);
8689 	}
8690 
8691 	/* update totalreserve_pages */
8692 	calculate_totalreserve_pages();
8693 }
8694 
8695 /**
8696  * setup_per_zone_wmarks - called when min_free_kbytes changes
8697  * or when memory is hot-{added|removed}
8698  *
8699  * Ensures that the watermark[min,low,high] values for each zone are set
8700  * correctly with respect to min_free_kbytes.
8701  */
8702 void setup_per_zone_wmarks(void)
8703 {
8704 	struct zone *zone;
8705 	static DEFINE_SPINLOCK(lock);
8706 
8707 	spin_lock(&lock);
8708 	__setup_per_zone_wmarks();
8709 	spin_unlock(&lock);
8710 
8711 	/*
8712 	 * The watermark size have changed so update the pcpu batch
8713 	 * and high limits or the limits may be inappropriate.
8714 	 */
8715 	for_each_zone(zone)
8716 		zone_pcp_update(zone, 0);
8717 }
8718 
8719 /*
8720  * Initialise min_free_kbytes.
8721  *
8722  * For small machines we want it small (128k min).  For large machines
8723  * we want it large (256MB max).  But it is not linear, because network
8724  * bandwidth does not increase linearly with machine size.  We use
8725  *
8726  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8727  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8728  *
8729  * which yields
8730  *
8731  * 16MB:	512k
8732  * 32MB:	724k
8733  * 64MB:	1024k
8734  * 128MB:	1448k
8735  * 256MB:	2048k
8736  * 512MB:	2896k
8737  * 1024MB:	4096k
8738  * 2048MB:	5792k
8739  * 4096MB:	8192k
8740  * 8192MB:	11584k
8741  * 16384MB:	16384k
8742  */
8743 void calculate_min_free_kbytes(void)
8744 {
8745 	unsigned long lowmem_kbytes;
8746 	int new_min_free_kbytes;
8747 
8748 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8749 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8750 
8751 	if (new_min_free_kbytes > user_min_free_kbytes)
8752 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8753 	else
8754 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8755 				new_min_free_kbytes, user_min_free_kbytes);
8756 
8757 }
8758 
8759 int __meminit init_per_zone_wmark_min(void)
8760 {
8761 	calculate_min_free_kbytes();
8762 	setup_per_zone_wmarks();
8763 	refresh_zone_stat_thresholds();
8764 	setup_per_zone_lowmem_reserve();
8765 
8766 #ifdef CONFIG_NUMA
8767 	setup_min_unmapped_ratio();
8768 	setup_min_slab_ratio();
8769 #endif
8770 
8771 	khugepaged_min_free_kbytes_update();
8772 
8773 	return 0;
8774 }
8775 postcore_initcall(init_per_zone_wmark_min)
8776 
8777 /*
8778  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8779  *	that we can call two helper functions whenever min_free_kbytes
8780  *	changes.
8781  */
8782 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8783 		void *buffer, size_t *length, loff_t *ppos)
8784 {
8785 	int rc;
8786 
8787 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8788 	if (rc)
8789 		return rc;
8790 
8791 	if (write) {
8792 		user_min_free_kbytes = min_free_kbytes;
8793 		setup_per_zone_wmarks();
8794 	}
8795 	return 0;
8796 }
8797 
8798 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8799 		void *buffer, size_t *length, loff_t *ppos)
8800 {
8801 	int rc;
8802 
8803 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8804 	if (rc)
8805 		return rc;
8806 
8807 	if (write)
8808 		setup_per_zone_wmarks();
8809 
8810 	return 0;
8811 }
8812 
8813 #ifdef CONFIG_NUMA
8814 static void setup_min_unmapped_ratio(void)
8815 {
8816 	pg_data_t *pgdat;
8817 	struct zone *zone;
8818 
8819 	for_each_online_pgdat(pgdat)
8820 		pgdat->min_unmapped_pages = 0;
8821 
8822 	for_each_zone(zone)
8823 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8824 						         sysctl_min_unmapped_ratio) / 100;
8825 }
8826 
8827 
8828 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8829 		void *buffer, size_t *length, loff_t *ppos)
8830 {
8831 	int rc;
8832 
8833 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8834 	if (rc)
8835 		return rc;
8836 
8837 	setup_min_unmapped_ratio();
8838 
8839 	return 0;
8840 }
8841 
8842 static void setup_min_slab_ratio(void)
8843 {
8844 	pg_data_t *pgdat;
8845 	struct zone *zone;
8846 
8847 	for_each_online_pgdat(pgdat)
8848 		pgdat->min_slab_pages = 0;
8849 
8850 	for_each_zone(zone)
8851 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8852 						     sysctl_min_slab_ratio) / 100;
8853 }
8854 
8855 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8856 		void *buffer, size_t *length, loff_t *ppos)
8857 {
8858 	int rc;
8859 
8860 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8861 	if (rc)
8862 		return rc;
8863 
8864 	setup_min_slab_ratio();
8865 
8866 	return 0;
8867 }
8868 #endif
8869 
8870 /*
8871  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8872  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8873  *	whenever sysctl_lowmem_reserve_ratio changes.
8874  *
8875  * The reserve ratio obviously has absolutely no relation with the
8876  * minimum watermarks. The lowmem reserve ratio can only make sense
8877  * if in function of the boot time zone sizes.
8878  */
8879 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8880 		void *buffer, size_t *length, loff_t *ppos)
8881 {
8882 	int i;
8883 
8884 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8885 
8886 	for (i = 0; i < MAX_NR_ZONES; i++) {
8887 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8888 			sysctl_lowmem_reserve_ratio[i] = 0;
8889 	}
8890 
8891 	setup_per_zone_lowmem_reserve();
8892 	return 0;
8893 }
8894 
8895 /*
8896  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8897  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8898  * pagelist can have before it gets flushed back to buddy allocator.
8899  */
8900 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8901 		int write, void *buffer, size_t *length, loff_t *ppos)
8902 {
8903 	struct zone *zone;
8904 	int old_percpu_pagelist_high_fraction;
8905 	int ret;
8906 
8907 	mutex_lock(&pcp_batch_high_lock);
8908 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8909 
8910 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8911 	if (!write || ret < 0)
8912 		goto out;
8913 
8914 	/* Sanity checking to avoid pcp imbalance */
8915 	if (percpu_pagelist_high_fraction &&
8916 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8917 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8918 		ret = -EINVAL;
8919 		goto out;
8920 	}
8921 
8922 	/* No change? */
8923 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8924 		goto out;
8925 
8926 	for_each_populated_zone(zone)
8927 		zone_set_pageset_high_and_batch(zone, 0);
8928 out:
8929 	mutex_unlock(&pcp_batch_high_lock);
8930 	return ret;
8931 }
8932 
8933 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8934 /*
8935  * Returns the number of pages that arch has reserved but
8936  * is not known to alloc_large_system_hash().
8937  */
8938 static unsigned long __init arch_reserved_kernel_pages(void)
8939 {
8940 	return 0;
8941 }
8942 #endif
8943 
8944 /*
8945  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8946  * machines. As memory size is increased the scale is also increased but at
8947  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8948  * quadruples the scale is increased by one, which means the size of hash table
8949  * only doubles, instead of quadrupling as well.
8950  * Because 32-bit systems cannot have large physical memory, where this scaling
8951  * makes sense, it is disabled on such platforms.
8952  */
8953 #if __BITS_PER_LONG > 32
8954 #define ADAPT_SCALE_BASE	(64ul << 30)
8955 #define ADAPT_SCALE_SHIFT	2
8956 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8957 #endif
8958 
8959 /*
8960  * allocate a large system hash table from bootmem
8961  * - it is assumed that the hash table must contain an exact power-of-2
8962  *   quantity of entries
8963  * - limit is the number of hash buckets, not the total allocation size
8964  */
8965 void *__init alloc_large_system_hash(const char *tablename,
8966 				     unsigned long bucketsize,
8967 				     unsigned long numentries,
8968 				     int scale,
8969 				     int flags,
8970 				     unsigned int *_hash_shift,
8971 				     unsigned int *_hash_mask,
8972 				     unsigned long low_limit,
8973 				     unsigned long high_limit)
8974 {
8975 	unsigned long long max = high_limit;
8976 	unsigned long log2qty, size;
8977 	void *table = NULL;
8978 	gfp_t gfp_flags;
8979 	bool virt;
8980 	bool huge;
8981 
8982 	/* allow the kernel cmdline to have a say */
8983 	if (!numentries) {
8984 		/* round applicable memory size up to nearest megabyte */
8985 		numentries = nr_kernel_pages;
8986 		numentries -= arch_reserved_kernel_pages();
8987 
8988 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8989 		if (PAGE_SHIFT < 20)
8990 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8991 
8992 #if __BITS_PER_LONG > 32
8993 		if (!high_limit) {
8994 			unsigned long adapt;
8995 
8996 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8997 			     adapt <<= ADAPT_SCALE_SHIFT)
8998 				scale++;
8999 		}
9000 #endif
9001 
9002 		/* limit to 1 bucket per 2^scale bytes of low memory */
9003 		if (scale > PAGE_SHIFT)
9004 			numentries >>= (scale - PAGE_SHIFT);
9005 		else
9006 			numentries <<= (PAGE_SHIFT - scale);
9007 
9008 		/* Make sure we've got at least a 0-order allocation.. */
9009 		if (unlikely(flags & HASH_SMALL)) {
9010 			/* Makes no sense without HASH_EARLY */
9011 			WARN_ON(!(flags & HASH_EARLY));
9012 			if (!(numentries >> *_hash_shift)) {
9013 				numentries = 1UL << *_hash_shift;
9014 				BUG_ON(!numentries);
9015 			}
9016 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9017 			numentries = PAGE_SIZE / bucketsize;
9018 	}
9019 	numentries = roundup_pow_of_two(numentries);
9020 
9021 	/* limit allocation size to 1/16 total memory by default */
9022 	if (max == 0) {
9023 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9024 		do_div(max, bucketsize);
9025 	}
9026 	max = min(max, 0x80000000ULL);
9027 
9028 	if (numentries < low_limit)
9029 		numentries = low_limit;
9030 	if (numentries > max)
9031 		numentries = max;
9032 
9033 	log2qty = ilog2(numentries);
9034 
9035 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9036 	do {
9037 		virt = false;
9038 		size = bucketsize << log2qty;
9039 		if (flags & HASH_EARLY) {
9040 			if (flags & HASH_ZERO)
9041 				table = memblock_alloc(size, SMP_CACHE_BYTES);
9042 			else
9043 				table = memblock_alloc_raw(size,
9044 							   SMP_CACHE_BYTES);
9045 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
9046 			table = vmalloc_huge(size, gfp_flags);
9047 			virt = true;
9048 			if (table)
9049 				huge = is_vm_area_hugepages(table);
9050 		} else {
9051 			/*
9052 			 * If bucketsize is not a power-of-two, we may free
9053 			 * some pages at the end of hash table which
9054 			 * alloc_pages_exact() automatically does
9055 			 */
9056 			table = alloc_pages_exact(size, gfp_flags);
9057 			kmemleak_alloc(table, size, 1, gfp_flags);
9058 		}
9059 	} while (!table && size > PAGE_SIZE && --log2qty);
9060 
9061 	if (!table)
9062 		panic("Failed to allocate %s hash table\n", tablename);
9063 
9064 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9065 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9066 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9067 
9068 	if (_hash_shift)
9069 		*_hash_shift = log2qty;
9070 	if (_hash_mask)
9071 		*_hash_mask = (1 << log2qty) - 1;
9072 
9073 	return table;
9074 }
9075 
9076 #ifdef CONFIG_CONTIG_ALLOC
9077 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9078 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9079 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9080 static void alloc_contig_dump_pages(struct list_head *page_list)
9081 {
9082 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9083 
9084 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9085 		struct page *page;
9086 
9087 		dump_stack();
9088 		list_for_each_entry(page, page_list, lru)
9089 			dump_page(page, "migration failure");
9090 	}
9091 }
9092 #else
9093 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9094 {
9095 }
9096 #endif
9097 
9098 /* [start, end) must belong to a single zone. */
9099 int __alloc_contig_migrate_range(struct compact_control *cc,
9100 					unsigned long start, unsigned long end)
9101 {
9102 	/* This function is based on compact_zone() from compaction.c. */
9103 	unsigned int nr_reclaimed;
9104 	unsigned long pfn = start;
9105 	unsigned int tries = 0;
9106 	int ret = 0;
9107 	struct migration_target_control mtc = {
9108 		.nid = zone_to_nid(cc->zone),
9109 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9110 	};
9111 
9112 	lru_cache_disable();
9113 
9114 	while (pfn < end || !list_empty(&cc->migratepages)) {
9115 		if (fatal_signal_pending(current)) {
9116 			ret = -EINTR;
9117 			break;
9118 		}
9119 
9120 		if (list_empty(&cc->migratepages)) {
9121 			cc->nr_migratepages = 0;
9122 			ret = isolate_migratepages_range(cc, pfn, end);
9123 			if (ret && ret != -EAGAIN)
9124 				break;
9125 			pfn = cc->migrate_pfn;
9126 			tries = 0;
9127 		} else if (++tries == 5) {
9128 			ret = -EBUSY;
9129 			break;
9130 		}
9131 
9132 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9133 							&cc->migratepages);
9134 		cc->nr_migratepages -= nr_reclaimed;
9135 
9136 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9137 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9138 
9139 		/*
9140 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9141 		 * to retry again over this error, so do the same here.
9142 		 */
9143 		if (ret == -ENOMEM)
9144 			break;
9145 	}
9146 
9147 	lru_cache_enable();
9148 	if (ret < 0) {
9149 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9150 			alloc_contig_dump_pages(&cc->migratepages);
9151 		putback_movable_pages(&cc->migratepages);
9152 		return ret;
9153 	}
9154 	return 0;
9155 }
9156 
9157 /**
9158  * alloc_contig_range() -- tries to allocate given range of pages
9159  * @start:	start PFN to allocate
9160  * @end:	one-past-the-last PFN to allocate
9161  * @migratetype:	migratetype of the underlying pageblocks (either
9162  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9163  *			in range must have the same migratetype and it must
9164  *			be either of the two.
9165  * @gfp_mask:	GFP mask to use during compaction
9166  *
9167  * The PFN range does not have to be pageblock aligned. The PFN range must
9168  * belong to a single zone.
9169  *
9170  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9171  * pageblocks in the range.  Once isolated, the pageblocks should not
9172  * be modified by others.
9173  *
9174  * Return: zero on success or negative error code.  On success all
9175  * pages which PFN is in [start, end) are allocated for the caller and
9176  * need to be freed with free_contig_range().
9177  */
9178 int alloc_contig_range(unsigned long start, unsigned long end,
9179 		       unsigned migratetype, gfp_t gfp_mask)
9180 {
9181 	unsigned long outer_start, outer_end;
9182 	int order;
9183 	int ret = 0;
9184 
9185 	struct compact_control cc = {
9186 		.nr_migratepages = 0,
9187 		.order = -1,
9188 		.zone = page_zone(pfn_to_page(start)),
9189 		.mode = MIGRATE_SYNC,
9190 		.ignore_skip_hint = true,
9191 		.no_set_skip_hint = true,
9192 		.gfp_mask = current_gfp_context(gfp_mask),
9193 		.alloc_contig = true,
9194 	};
9195 	INIT_LIST_HEAD(&cc.migratepages);
9196 
9197 	/*
9198 	 * What we do here is we mark all pageblocks in range as
9199 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9200 	 * have different sizes, and due to the way page allocator
9201 	 * work, start_isolate_page_range() has special handlings for this.
9202 	 *
9203 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9204 	 * migrate the pages from an unaligned range (ie. pages that
9205 	 * we are interested in). This will put all the pages in
9206 	 * range back to page allocator as MIGRATE_ISOLATE.
9207 	 *
9208 	 * When this is done, we take the pages in range from page
9209 	 * allocator removing them from the buddy system.  This way
9210 	 * page allocator will never consider using them.
9211 	 *
9212 	 * This lets us mark the pageblocks back as
9213 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9214 	 * aligned range but not in the unaligned, original range are
9215 	 * put back to page allocator so that buddy can use them.
9216 	 */
9217 
9218 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9219 	if (ret)
9220 		goto done;
9221 
9222 	drain_all_pages(cc.zone);
9223 
9224 	/*
9225 	 * In case of -EBUSY, we'd like to know which page causes problem.
9226 	 * So, just fall through. test_pages_isolated() has a tracepoint
9227 	 * which will report the busy page.
9228 	 *
9229 	 * It is possible that busy pages could become available before
9230 	 * the call to test_pages_isolated, and the range will actually be
9231 	 * allocated.  So, if we fall through be sure to clear ret so that
9232 	 * -EBUSY is not accidentally used or returned to caller.
9233 	 */
9234 	ret = __alloc_contig_migrate_range(&cc, start, end);
9235 	if (ret && ret != -EBUSY)
9236 		goto done;
9237 	ret = 0;
9238 
9239 	/*
9240 	 * Pages from [start, end) are within a pageblock_nr_pages
9241 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9242 	 * more, all pages in [start, end) are free in page allocator.
9243 	 * What we are going to do is to allocate all pages from
9244 	 * [start, end) (that is remove them from page allocator).
9245 	 *
9246 	 * The only problem is that pages at the beginning and at the
9247 	 * end of interesting range may be not aligned with pages that
9248 	 * page allocator holds, ie. they can be part of higher order
9249 	 * pages.  Because of this, we reserve the bigger range and
9250 	 * once this is done free the pages we are not interested in.
9251 	 *
9252 	 * We don't have to hold zone->lock here because the pages are
9253 	 * isolated thus they won't get removed from buddy.
9254 	 */
9255 
9256 	order = 0;
9257 	outer_start = start;
9258 	while (!PageBuddy(pfn_to_page(outer_start))) {
9259 		if (++order >= MAX_ORDER) {
9260 			outer_start = start;
9261 			break;
9262 		}
9263 		outer_start &= ~0UL << order;
9264 	}
9265 
9266 	if (outer_start != start) {
9267 		order = buddy_order(pfn_to_page(outer_start));
9268 
9269 		/*
9270 		 * outer_start page could be small order buddy page and
9271 		 * it doesn't include start page. Adjust outer_start
9272 		 * in this case to report failed page properly
9273 		 * on tracepoint in test_pages_isolated()
9274 		 */
9275 		if (outer_start + (1UL << order) <= start)
9276 			outer_start = start;
9277 	}
9278 
9279 	/* Make sure the range is really isolated. */
9280 	if (test_pages_isolated(outer_start, end, 0)) {
9281 		ret = -EBUSY;
9282 		goto done;
9283 	}
9284 
9285 	/* Grab isolated pages from freelists. */
9286 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9287 	if (!outer_end) {
9288 		ret = -EBUSY;
9289 		goto done;
9290 	}
9291 
9292 	/* Free head and tail (if any) */
9293 	if (start != outer_start)
9294 		free_contig_range(outer_start, start - outer_start);
9295 	if (end != outer_end)
9296 		free_contig_range(end, outer_end - end);
9297 
9298 done:
9299 	undo_isolate_page_range(start, end, migratetype);
9300 	return ret;
9301 }
9302 EXPORT_SYMBOL(alloc_contig_range);
9303 
9304 static int __alloc_contig_pages(unsigned long start_pfn,
9305 				unsigned long nr_pages, gfp_t gfp_mask)
9306 {
9307 	unsigned long end_pfn = start_pfn + nr_pages;
9308 
9309 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9310 				  gfp_mask);
9311 }
9312 
9313 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9314 				   unsigned long nr_pages)
9315 {
9316 	unsigned long i, end_pfn = start_pfn + nr_pages;
9317 	struct page *page;
9318 
9319 	for (i = start_pfn; i < end_pfn; i++) {
9320 		page = pfn_to_online_page(i);
9321 		if (!page)
9322 			return false;
9323 
9324 		if (page_zone(page) != z)
9325 			return false;
9326 
9327 		if (PageReserved(page))
9328 			return false;
9329 	}
9330 	return true;
9331 }
9332 
9333 static bool zone_spans_last_pfn(const struct zone *zone,
9334 				unsigned long start_pfn, unsigned long nr_pages)
9335 {
9336 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9337 
9338 	return zone_spans_pfn(zone, last_pfn);
9339 }
9340 
9341 /**
9342  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9343  * @nr_pages:	Number of contiguous pages to allocate
9344  * @gfp_mask:	GFP mask to limit search and used during compaction
9345  * @nid:	Target node
9346  * @nodemask:	Mask for other possible nodes
9347  *
9348  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9349  * on an applicable zonelist to find a contiguous pfn range which can then be
9350  * tried for allocation with alloc_contig_range(). This routine is intended
9351  * for allocation requests which can not be fulfilled with the buddy allocator.
9352  *
9353  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9354  * power of two, then allocated range is also guaranteed to be aligned to same
9355  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9356  *
9357  * Allocated pages can be freed with free_contig_range() or by manually calling
9358  * __free_page() on each allocated page.
9359  *
9360  * Return: pointer to contiguous pages on success, or NULL if not successful.
9361  */
9362 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9363 				int nid, nodemask_t *nodemask)
9364 {
9365 	unsigned long ret, pfn, flags;
9366 	struct zonelist *zonelist;
9367 	struct zone *zone;
9368 	struct zoneref *z;
9369 
9370 	zonelist = node_zonelist(nid, gfp_mask);
9371 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9372 					gfp_zone(gfp_mask), nodemask) {
9373 		spin_lock_irqsave(&zone->lock, flags);
9374 
9375 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9376 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9377 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9378 				/*
9379 				 * We release the zone lock here because
9380 				 * alloc_contig_range() will also lock the zone
9381 				 * at some point. If there's an allocation
9382 				 * spinning on this lock, it may win the race
9383 				 * and cause alloc_contig_range() to fail...
9384 				 */
9385 				spin_unlock_irqrestore(&zone->lock, flags);
9386 				ret = __alloc_contig_pages(pfn, nr_pages,
9387 							gfp_mask);
9388 				if (!ret)
9389 					return pfn_to_page(pfn);
9390 				spin_lock_irqsave(&zone->lock, flags);
9391 			}
9392 			pfn += nr_pages;
9393 		}
9394 		spin_unlock_irqrestore(&zone->lock, flags);
9395 	}
9396 	return NULL;
9397 }
9398 #endif /* CONFIG_CONTIG_ALLOC */
9399 
9400 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9401 {
9402 	unsigned long count = 0;
9403 
9404 	for (; nr_pages--; pfn++) {
9405 		struct page *page = pfn_to_page(pfn);
9406 
9407 		count += page_count(page) != 1;
9408 		__free_page(page);
9409 	}
9410 	WARN(count != 0, "%lu pages are still in use!\n", count);
9411 }
9412 EXPORT_SYMBOL(free_contig_range);
9413 
9414 /*
9415  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9416  * page high values need to be recalculated.
9417  */
9418 void zone_pcp_update(struct zone *zone, int cpu_online)
9419 {
9420 	mutex_lock(&pcp_batch_high_lock);
9421 	zone_set_pageset_high_and_batch(zone, cpu_online);
9422 	mutex_unlock(&pcp_batch_high_lock);
9423 }
9424 
9425 /*
9426  * Effectively disable pcplists for the zone by setting the high limit to 0
9427  * and draining all cpus. A concurrent page freeing on another CPU that's about
9428  * to put the page on pcplist will either finish before the drain and the page
9429  * will be drained, or observe the new high limit and skip the pcplist.
9430  *
9431  * Must be paired with a call to zone_pcp_enable().
9432  */
9433 void zone_pcp_disable(struct zone *zone)
9434 {
9435 	mutex_lock(&pcp_batch_high_lock);
9436 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9437 	__drain_all_pages(zone, true);
9438 }
9439 
9440 void zone_pcp_enable(struct zone *zone)
9441 {
9442 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9443 	mutex_unlock(&pcp_batch_high_lock);
9444 }
9445 
9446 void zone_pcp_reset(struct zone *zone)
9447 {
9448 	int cpu;
9449 	struct per_cpu_zonestat *pzstats;
9450 
9451 	if (zone->per_cpu_pageset != &boot_pageset) {
9452 		for_each_online_cpu(cpu) {
9453 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9454 			drain_zonestat(zone, pzstats);
9455 		}
9456 		free_percpu(zone->per_cpu_pageset);
9457 		free_percpu(zone->per_cpu_zonestats);
9458 		zone->per_cpu_pageset = &boot_pageset;
9459 		zone->per_cpu_zonestats = &boot_zonestats;
9460 	}
9461 }
9462 
9463 #ifdef CONFIG_MEMORY_HOTREMOVE
9464 /*
9465  * All pages in the range must be in a single zone, must not contain holes,
9466  * must span full sections, and must be isolated before calling this function.
9467  */
9468 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9469 {
9470 	unsigned long pfn = start_pfn;
9471 	struct page *page;
9472 	struct zone *zone;
9473 	unsigned int order;
9474 	unsigned long flags;
9475 
9476 	offline_mem_sections(pfn, end_pfn);
9477 	zone = page_zone(pfn_to_page(pfn));
9478 	spin_lock_irqsave(&zone->lock, flags);
9479 	while (pfn < end_pfn) {
9480 		page = pfn_to_page(pfn);
9481 		/*
9482 		 * The HWPoisoned page may be not in buddy system, and
9483 		 * page_count() is not 0.
9484 		 */
9485 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9486 			pfn++;
9487 			continue;
9488 		}
9489 		/*
9490 		 * At this point all remaining PageOffline() pages have a
9491 		 * reference count of 0 and can simply be skipped.
9492 		 */
9493 		if (PageOffline(page)) {
9494 			BUG_ON(page_count(page));
9495 			BUG_ON(PageBuddy(page));
9496 			pfn++;
9497 			continue;
9498 		}
9499 
9500 		BUG_ON(page_count(page));
9501 		BUG_ON(!PageBuddy(page));
9502 		order = buddy_order(page);
9503 		del_page_from_free_list(page, zone, order);
9504 		pfn += (1 << order);
9505 	}
9506 	spin_unlock_irqrestore(&zone->lock, flags);
9507 }
9508 #endif
9509 
9510 /*
9511  * This function returns a stable result only if called under zone lock.
9512  */
9513 bool is_free_buddy_page(struct page *page)
9514 {
9515 	unsigned long pfn = page_to_pfn(page);
9516 	unsigned int order;
9517 
9518 	for (order = 0; order < MAX_ORDER; order++) {
9519 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9520 
9521 		if (PageBuddy(page_head) &&
9522 		    buddy_order_unsafe(page_head) >= order)
9523 			break;
9524 	}
9525 
9526 	return order < MAX_ORDER;
9527 }
9528 EXPORT_SYMBOL(is_free_buddy_page);
9529 
9530 #ifdef CONFIG_MEMORY_FAILURE
9531 /*
9532  * Break down a higher-order page in sub-pages, and keep our target out of
9533  * buddy allocator.
9534  */
9535 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9536 				   struct page *target, int low, int high,
9537 				   int migratetype)
9538 {
9539 	unsigned long size = 1 << high;
9540 	struct page *current_buddy, *next_page;
9541 
9542 	while (high > low) {
9543 		high--;
9544 		size >>= 1;
9545 
9546 		if (target >= &page[size]) {
9547 			next_page = page + size;
9548 			current_buddy = page;
9549 		} else {
9550 			next_page = page;
9551 			current_buddy = page + size;
9552 		}
9553 
9554 		if (set_page_guard(zone, current_buddy, high, migratetype))
9555 			continue;
9556 
9557 		if (current_buddy != target) {
9558 			add_to_free_list(current_buddy, zone, high, migratetype);
9559 			set_buddy_order(current_buddy, high);
9560 			page = next_page;
9561 		}
9562 	}
9563 }
9564 
9565 /*
9566  * Take a page that will be marked as poisoned off the buddy allocator.
9567  */
9568 bool take_page_off_buddy(struct page *page)
9569 {
9570 	struct zone *zone = page_zone(page);
9571 	unsigned long pfn = page_to_pfn(page);
9572 	unsigned long flags;
9573 	unsigned int order;
9574 	bool ret = false;
9575 
9576 	spin_lock_irqsave(&zone->lock, flags);
9577 	for (order = 0; order < MAX_ORDER; order++) {
9578 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9579 		int page_order = buddy_order(page_head);
9580 
9581 		if (PageBuddy(page_head) && page_order >= order) {
9582 			unsigned long pfn_head = page_to_pfn(page_head);
9583 			int migratetype = get_pfnblock_migratetype(page_head,
9584 								   pfn_head);
9585 
9586 			del_page_from_free_list(page_head, zone, page_order);
9587 			break_down_buddy_pages(zone, page_head, page, 0,
9588 						page_order, migratetype);
9589 			SetPageHWPoisonTakenOff(page);
9590 			if (!is_migrate_isolate(migratetype))
9591 				__mod_zone_freepage_state(zone, -1, migratetype);
9592 			ret = true;
9593 			break;
9594 		}
9595 		if (page_count(page_head) > 0)
9596 			break;
9597 	}
9598 	spin_unlock_irqrestore(&zone->lock, flags);
9599 	return ret;
9600 }
9601 
9602 /*
9603  * Cancel takeoff done by take_page_off_buddy().
9604  */
9605 bool put_page_back_buddy(struct page *page)
9606 {
9607 	struct zone *zone = page_zone(page);
9608 	unsigned long pfn = page_to_pfn(page);
9609 	unsigned long flags;
9610 	int migratetype = get_pfnblock_migratetype(page, pfn);
9611 	bool ret = false;
9612 
9613 	spin_lock_irqsave(&zone->lock, flags);
9614 	if (put_page_testzero(page)) {
9615 		ClearPageHWPoisonTakenOff(page);
9616 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9617 		if (TestClearPageHWPoison(page)) {
9618 			ret = true;
9619 		}
9620 	}
9621 	spin_unlock_irqrestore(&zone->lock, flags);
9622 
9623 	return ret;
9624 }
9625 #endif
9626 
9627 #ifdef CONFIG_ZONE_DMA
9628 bool has_managed_dma(void)
9629 {
9630 	struct pglist_data *pgdat;
9631 
9632 	for_each_online_pgdat(pgdat) {
9633 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9634 
9635 		if (managed_zone(zone))
9636 			return true;
9637 	}
9638 	return false;
9639 }
9640 #endif /* CONFIG_ZONE_DMA */
9641