xref: /openbmc/linux/mm/page_alloc.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/oom.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40 #include <linux/stop_machine.h>
41 #include <linux/sort.h>
42 #include <linux/pfn.h>
43 #include <linux/backing-dev.h>
44 #include <linux/fault-inject.h>
45 #include <linux/page-isolation.h>
46 
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49 #include "internal.h"
50 
51 /*
52  * Array of node states.
53  */
54 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
55 	[N_POSSIBLE] = NODE_MASK_ALL,
56 	[N_ONLINE] = { { [0] = 1UL } },
57 #ifndef CONFIG_NUMA
58 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
59 #ifdef CONFIG_HIGHMEM
60 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
61 #endif
62 	[N_CPU] = { { [0] = 1UL } },
63 #endif	/* NUMA */
64 };
65 EXPORT_SYMBOL(node_states);
66 
67 unsigned long totalram_pages __read_mostly;
68 unsigned long totalreserve_pages __read_mostly;
69 long nr_swap_pages;
70 int percpu_pagelist_fraction;
71 
72 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
73 int pageblock_order __read_mostly;
74 #endif
75 
76 static void __free_pages_ok(struct page *page, unsigned int order);
77 
78 /*
79  * results with 256, 32 in the lowmem_reserve sysctl:
80  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
81  *	1G machine -> (16M dma, 784M normal, 224M high)
82  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
83  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
85  *
86  * TBD: should special case ZONE_DMA32 machines here - in those we normally
87  * don't need any ZONE_NORMAL reservation
88  */
89 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
90 #ifdef CONFIG_ZONE_DMA
91 	 256,
92 #endif
93 #ifdef CONFIG_ZONE_DMA32
94 	 256,
95 #endif
96 #ifdef CONFIG_HIGHMEM
97 	 32,
98 #endif
99 	 32,
100 };
101 
102 EXPORT_SYMBOL(totalram_pages);
103 
104 static char * const zone_names[MAX_NR_ZONES] = {
105 #ifdef CONFIG_ZONE_DMA
106 	 "DMA",
107 #endif
108 #ifdef CONFIG_ZONE_DMA32
109 	 "DMA32",
110 #endif
111 	 "Normal",
112 #ifdef CONFIG_HIGHMEM
113 	 "HighMem",
114 #endif
115 	 "Movable",
116 };
117 
118 int min_free_kbytes = 1024;
119 
120 unsigned long __meminitdata nr_kernel_pages;
121 unsigned long __meminitdata nr_all_pages;
122 static unsigned long __meminitdata dma_reserve;
123 
124 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
125   /*
126    * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
127    * ranges of memory (RAM) that may be registered with add_active_range().
128    * Ranges passed to add_active_range() will be merged if possible
129    * so the number of times add_active_range() can be called is
130    * related to the number of nodes and the number of holes
131    */
132   #ifdef CONFIG_MAX_ACTIVE_REGIONS
133     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
134     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
135   #else
136     #if MAX_NUMNODES >= 32
137       /* If there can be many nodes, allow up to 50 holes per node */
138       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
139     #else
140       /* By default, allow up to 256 distinct regions */
141       #define MAX_ACTIVE_REGIONS 256
142     #endif
143   #endif
144 
145   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
146   static int __meminitdata nr_nodemap_entries;
147   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
148   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
149 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
150   static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
151   static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
152 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
153   unsigned long __initdata required_kernelcore;
154   static unsigned long __initdata required_movablecore;
155   unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
156 
157   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158   int movable_zone;
159   EXPORT_SYMBOL(movable_zone);
160 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161 
162 #if MAX_NUMNODES > 1
163 int nr_node_ids __read_mostly = MAX_NUMNODES;
164 EXPORT_SYMBOL(nr_node_ids);
165 #endif
166 
167 int page_group_by_mobility_disabled __read_mostly;
168 
169 static void set_pageblock_migratetype(struct page *page, int migratetype)
170 {
171 	set_pageblock_flags_group(page, (unsigned long)migratetype,
172 					PB_migrate, PB_migrate_end);
173 }
174 
175 #ifdef CONFIG_DEBUG_VM
176 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
177 {
178 	int ret = 0;
179 	unsigned seq;
180 	unsigned long pfn = page_to_pfn(page);
181 
182 	do {
183 		seq = zone_span_seqbegin(zone);
184 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
185 			ret = 1;
186 		else if (pfn < zone->zone_start_pfn)
187 			ret = 1;
188 	} while (zone_span_seqretry(zone, seq));
189 
190 	return ret;
191 }
192 
193 static int page_is_consistent(struct zone *zone, struct page *page)
194 {
195 	if (!pfn_valid_within(page_to_pfn(page)))
196 		return 0;
197 	if (zone != page_zone(page))
198 		return 0;
199 
200 	return 1;
201 }
202 /*
203  * Temporary debugging check for pages not lying within a given zone.
204  */
205 static int bad_range(struct zone *zone, struct page *page)
206 {
207 	if (page_outside_zone_boundaries(zone, page))
208 		return 1;
209 	if (!page_is_consistent(zone, page))
210 		return 1;
211 
212 	return 0;
213 }
214 #else
215 static inline int bad_range(struct zone *zone, struct page *page)
216 {
217 	return 0;
218 }
219 #endif
220 
221 static void bad_page(struct page *page)
222 {
223 	printk(KERN_EMERG "Bad page state in process '%s'\n"
224 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
225 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
226 		KERN_EMERG "Backtrace:\n",
227 		current->comm, page, (int)(2*sizeof(unsigned long)),
228 		(unsigned long)page->flags, page->mapping,
229 		page_mapcount(page), page_count(page));
230 	dump_stack();
231 	page->flags &= ~(1 << PG_lru	|
232 			1 << PG_private |
233 			1 << PG_locked	|
234 			1 << PG_active	|
235 			1 << PG_dirty	|
236 			1 << PG_reclaim |
237 			1 << PG_slab    |
238 			1 << PG_swapcache |
239 			1 << PG_writeback |
240 			1 << PG_buddy );
241 	set_page_count(page, 0);
242 	reset_page_mapcount(page);
243 	page->mapping = NULL;
244 	add_taint(TAINT_BAD_PAGE);
245 }
246 
247 /*
248  * Higher-order pages are called "compound pages".  They are structured thusly:
249  *
250  * The first PAGE_SIZE page is called the "head page".
251  *
252  * The remaining PAGE_SIZE pages are called "tail pages".
253  *
254  * All pages have PG_compound set.  All pages have their ->private pointing at
255  * the head page (even the head page has this).
256  *
257  * The first tail page's ->lru.next holds the address of the compound page's
258  * put_page() function.  Its ->lru.prev holds the order of allocation.
259  * This usage means that zero-order pages may not be compound.
260  */
261 
262 static void free_compound_page(struct page *page)
263 {
264 	__free_pages_ok(page, compound_order(page));
265 }
266 
267 static void prep_compound_page(struct page *page, unsigned long order)
268 {
269 	int i;
270 	int nr_pages = 1 << order;
271 
272 	set_compound_page_dtor(page, free_compound_page);
273 	set_compound_order(page, order);
274 	__SetPageHead(page);
275 	for (i = 1; i < nr_pages; i++) {
276 		struct page *p = page + i;
277 
278 		__SetPageTail(p);
279 		p->first_page = page;
280 	}
281 }
282 
283 static void destroy_compound_page(struct page *page, unsigned long order)
284 {
285 	int i;
286 	int nr_pages = 1 << order;
287 
288 	if (unlikely(compound_order(page) != order))
289 		bad_page(page);
290 
291 	if (unlikely(!PageHead(page)))
292 			bad_page(page);
293 	__ClearPageHead(page);
294 	for (i = 1; i < nr_pages; i++) {
295 		struct page *p = page + i;
296 
297 		if (unlikely(!PageTail(p) |
298 				(p->first_page != page)))
299 			bad_page(page);
300 		__ClearPageTail(p);
301 	}
302 }
303 
304 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
305 {
306 	int i;
307 
308 	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
309 	/*
310 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
311 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
312 	 */
313 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
314 	for (i = 0; i < (1 << order); i++)
315 		clear_highpage(page + i);
316 }
317 
318 static inline void set_page_order(struct page *page, int order)
319 {
320 	set_page_private(page, order);
321 	__SetPageBuddy(page);
322 }
323 
324 static inline void rmv_page_order(struct page *page)
325 {
326 	__ClearPageBuddy(page);
327 	set_page_private(page, 0);
328 }
329 
330 /*
331  * Locate the struct page for both the matching buddy in our
332  * pair (buddy1) and the combined O(n+1) page they form (page).
333  *
334  * 1) Any buddy B1 will have an order O twin B2 which satisfies
335  * the following equation:
336  *     B2 = B1 ^ (1 << O)
337  * For example, if the starting buddy (buddy2) is #8 its order
338  * 1 buddy is #10:
339  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
340  *
341  * 2) Any buddy B will have an order O+1 parent P which
342  * satisfies the following equation:
343  *     P = B & ~(1 << O)
344  *
345  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
346  */
347 static inline struct page *
348 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
349 {
350 	unsigned long buddy_idx = page_idx ^ (1 << order);
351 
352 	return page + (buddy_idx - page_idx);
353 }
354 
355 static inline unsigned long
356 __find_combined_index(unsigned long page_idx, unsigned int order)
357 {
358 	return (page_idx & ~(1 << order));
359 }
360 
361 /*
362  * This function checks whether a page is free && is the buddy
363  * we can do coalesce a page and its buddy if
364  * (a) the buddy is not in a hole &&
365  * (b) the buddy is in the buddy system &&
366  * (c) a page and its buddy have the same order &&
367  * (d) a page and its buddy are in the same zone.
368  *
369  * For recording whether a page is in the buddy system, we use PG_buddy.
370  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
371  *
372  * For recording page's order, we use page_private(page).
373  */
374 static inline int page_is_buddy(struct page *page, struct page *buddy,
375 								int order)
376 {
377 	if (!pfn_valid_within(page_to_pfn(buddy)))
378 		return 0;
379 
380 	if (page_zone_id(page) != page_zone_id(buddy))
381 		return 0;
382 
383 	if (PageBuddy(buddy) && page_order(buddy) == order) {
384 		BUG_ON(page_count(buddy) != 0);
385 		return 1;
386 	}
387 	return 0;
388 }
389 
390 /*
391  * Freeing function for a buddy system allocator.
392  *
393  * The concept of a buddy system is to maintain direct-mapped table
394  * (containing bit values) for memory blocks of various "orders".
395  * The bottom level table contains the map for the smallest allocatable
396  * units of memory (here, pages), and each level above it describes
397  * pairs of units from the levels below, hence, "buddies".
398  * At a high level, all that happens here is marking the table entry
399  * at the bottom level available, and propagating the changes upward
400  * as necessary, plus some accounting needed to play nicely with other
401  * parts of the VM system.
402  * At each level, we keep a list of pages, which are heads of continuous
403  * free pages of length of (1 << order) and marked with PG_buddy. Page's
404  * order is recorded in page_private(page) field.
405  * So when we are allocating or freeing one, we can derive the state of the
406  * other.  That is, if we allocate a small block, and both were
407  * free, the remainder of the region must be split into blocks.
408  * If a block is freed, and its buddy is also free, then this
409  * triggers coalescing into a block of larger size.
410  *
411  * -- wli
412  */
413 
414 static inline void __free_one_page(struct page *page,
415 		struct zone *zone, unsigned int order)
416 {
417 	unsigned long page_idx;
418 	int order_size = 1 << order;
419 	int migratetype = get_pageblock_migratetype(page);
420 
421 	if (unlikely(PageCompound(page)))
422 		destroy_compound_page(page, order);
423 
424 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
425 
426 	VM_BUG_ON(page_idx & (order_size - 1));
427 	VM_BUG_ON(bad_range(zone, page));
428 
429 	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
430 	while (order < MAX_ORDER-1) {
431 		unsigned long combined_idx;
432 		struct page *buddy;
433 
434 		buddy = __page_find_buddy(page, page_idx, order);
435 		if (!page_is_buddy(page, buddy, order))
436 			break;		/* Move the buddy up one level. */
437 
438 		list_del(&buddy->lru);
439 		zone->free_area[order].nr_free--;
440 		rmv_page_order(buddy);
441 		combined_idx = __find_combined_index(page_idx, order);
442 		page = page + (combined_idx - page_idx);
443 		page_idx = combined_idx;
444 		order++;
445 	}
446 	set_page_order(page, order);
447 	list_add(&page->lru,
448 		&zone->free_area[order].free_list[migratetype]);
449 	zone->free_area[order].nr_free++;
450 }
451 
452 static inline int free_pages_check(struct page *page)
453 {
454 	if (unlikely(page_mapcount(page) |
455 		(page->mapping != NULL)  |
456 		(page_count(page) != 0)  |
457 		(page->flags & (
458 			1 << PG_lru	|
459 			1 << PG_private |
460 			1 << PG_locked	|
461 			1 << PG_active	|
462 			1 << PG_slab	|
463 			1 << PG_swapcache |
464 			1 << PG_writeback |
465 			1 << PG_reserved |
466 			1 << PG_buddy ))))
467 		bad_page(page);
468 	if (PageDirty(page))
469 		__ClearPageDirty(page);
470 	/*
471 	 * For now, we report if PG_reserved was found set, but do not
472 	 * clear it, and do not free the page.  But we shall soon need
473 	 * to do more, for when the ZERO_PAGE count wraps negative.
474 	 */
475 	return PageReserved(page);
476 }
477 
478 /*
479  * Frees a list of pages.
480  * Assumes all pages on list are in same zone, and of same order.
481  * count is the number of pages to free.
482  *
483  * If the zone was previously in an "all pages pinned" state then look to
484  * see if this freeing clears that state.
485  *
486  * And clear the zone's pages_scanned counter, to hold off the "all pages are
487  * pinned" detection logic.
488  */
489 static void free_pages_bulk(struct zone *zone, int count,
490 					struct list_head *list, int order)
491 {
492 	spin_lock(&zone->lock);
493 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
494 	zone->pages_scanned = 0;
495 	while (count--) {
496 		struct page *page;
497 
498 		VM_BUG_ON(list_empty(list));
499 		page = list_entry(list->prev, struct page, lru);
500 		/* have to delete it as __free_one_page list manipulates */
501 		list_del(&page->lru);
502 		__free_one_page(page, zone, order);
503 	}
504 	spin_unlock(&zone->lock);
505 }
506 
507 static void free_one_page(struct zone *zone, struct page *page, int order)
508 {
509 	spin_lock(&zone->lock);
510 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
511 	zone->pages_scanned = 0;
512 	__free_one_page(page, zone, order);
513 	spin_unlock(&zone->lock);
514 }
515 
516 static void __free_pages_ok(struct page *page, unsigned int order)
517 {
518 	unsigned long flags;
519 	int i;
520 	int reserved = 0;
521 
522 	for (i = 0 ; i < (1 << order) ; ++i)
523 		reserved += free_pages_check(page + i);
524 	if (reserved)
525 		return;
526 
527 	if (!PageHighMem(page))
528 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
529 	arch_free_page(page, order);
530 	kernel_map_pages(page, 1 << order, 0);
531 
532 	local_irq_save(flags);
533 	__count_vm_events(PGFREE, 1 << order);
534 	free_one_page(page_zone(page), page, order);
535 	local_irq_restore(flags);
536 }
537 
538 /*
539  * permit the bootmem allocator to evade page validation on high-order frees
540  */
541 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
542 {
543 	if (order == 0) {
544 		__ClearPageReserved(page);
545 		set_page_count(page, 0);
546 		set_page_refcounted(page);
547 		__free_page(page);
548 	} else {
549 		int loop;
550 
551 		prefetchw(page);
552 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
553 			struct page *p = &page[loop];
554 
555 			if (loop + 1 < BITS_PER_LONG)
556 				prefetchw(p + 1);
557 			__ClearPageReserved(p);
558 			set_page_count(p, 0);
559 		}
560 
561 		set_page_refcounted(page);
562 		__free_pages(page, order);
563 	}
564 }
565 
566 
567 /*
568  * The order of subdivision here is critical for the IO subsystem.
569  * Please do not alter this order without good reasons and regression
570  * testing. Specifically, as large blocks of memory are subdivided,
571  * the order in which smaller blocks are delivered depends on the order
572  * they're subdivided in this function. This is the primary factor
573  * influencing the order in which pages are delivered to the IO
574  * subsystem according to empirical testing, and this is also justified
575  * by considering the behavior of a buddy system containing a single
576  * large block of memory acted on by a series of small allocations.
577  * This behavior is a critical factor in sglist merging's success.
578  *
579  * -- wli
580  */
581 static inline void expand(struct zone *zone, struct page *page,
582 	int low, int high, struct free_area *area,
583 	int migratetype)
584 {
585 	unsigned long size = 1 << high;
586 
587 	while (high > low) {
588 		area--;
589 		high--;
590 		size >>= 1;
591 		VM_BUG_ON(bad_range(zone, &page[size]));
592 		list_add(&page[size].lru, &area->free_list[migratetype]);
593 		area->nr_free++;
594 		set_page_order(&page[size], high);
595 	}
596 }
597 
598 /*
599  * This page is about to be returned from the page allocator
600  */
601 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
602 {
603 	if (unlikely(page_mapcount(page) |
604 		(page->mapping != NULL)  |
605 		(page_count(page) != 0)  |
606 		(page->flags & (
607 			1 << PG_lru	|
608 			1 << PG_private	|
609 			1 << PG_locked	|
610 			1 << PG_active	|
611 			1 << PG_dirty	|
612 			1 << PG_slab    |
613 			1 << PG_swapcache |
614 			1 << PG_writeback |
615 			1 << PG_reserved |
616 			1 << PG_buddy ))))
617 		bad_page(page);
618 
619 	/*
620 	 * For now, we report if PG_reserved was found set, but do not
621 	 * clear it, and do not allocate the page: as a safety net.
622 	 */
623 	if (PageReserved(page))
624 		return 1;
625 
626 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
627 			1 << PG_referenced | 1 << PG_arch_1 |
628 			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
629 	set_page_private(page, 0);
630 	set_page_refcounted(page);
631 
632 	arch_alloc_page(page, order);
633 	kernel_map_pages(page, 1 << order, 1);
634 
635 	if (gfp_flags & __GFP_ZERO)
636 		prep_zero_page(page, order, gfp_flags);
637 
638 	if (order && (gfp_flags & __GFP_COMP))
639 		prep_compound_page(page, order);
640 
641 	return 0;
642 }
643 
644 /*
645  * Go through the free lists for the given migratetype and remove
646  * the smallest available page from the freelists
647  */
648 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
649 						int migratetype)
650 {
651 	unsigned int current_order;
652 	struct free_area * area;
653 	struct page *page;
654 
655 	/* Find a page of the appropriate size in the preferred list */
656 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
657 		area = &(zone->free_area[current_order]);
658 		if (list_empty(&area->free_list[migratetype]))
659 			continue;
660 
661 		page = list_entry(area->free_list[migratetype].next,
662 							struct page, lru);
663 		list_del(&page->lru);
664 		rmv_page_order(page);
665 		area->nr_free--;
666 		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
667 		expand(zone, page, order, current_order, area, migratetype);
668 		return page;
669 	}
670 
671 	return NULL;
672 }
673 
674 
675 /*
676  * This array describes the order lists are fallen back to when
677  * the free lists for the desirable migrate type are depleted
678  */
679 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
680 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
681 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
682 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
683 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
684 };
685 
686 /*
687  * Move the free pages in a range to the free lists of the requested type.
688  * Note that start_page and end_pages are not aligned on a pageblock
689  * boundary. If alignment is required, use move_freepages_block()
690  */
691 int move_freepages(struct zone *zone,
692 			struct page *start_page, struct page *end_page,
693 			int migratetype)
694 {
695 	struct page *page;
696 	unsigned long order;
697 	int pages_moved = 0;
698 
699 #ifndef CONFIG_HOLES_IN_ZONE
700 	/*
701 	 * page_zone is not safe to call in this context when
702 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
703 	 * anyway as we check zone boundaries in move_freepages_block().
704 	 * Remove at a later date when no bug reports exist related to
705 	 * grouping pages by mobility
706 	 */
707 	BUG_ON(page_zone(start_page) != page_zone(end_page));
708 #endif
709 
710 	for (page = start_page; page <= end_page;) {
711 		if (!pfn_valid_within(page_to_pfn(page))) {
712 			page++;
713 			continue;
714 		}
715 
716 		if (!PageBuddy(page)) {
717 			page++;
718 			continue;
719 		}
720 
721 		order = page_order(page);
722 		list_del(&page->lru);
723 		list_add(&page->lru,
724 			&zone->free_area[order].free_list[migratetype]);
725 		page += 1 << order;
726 		pages_moved += 1 << order;
727 	}
728 
729 	return pages_moved;
730 }
731 
732 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
733 {
734 	unsigned long start_pfn, end_pfn;
735 	struct page *start_page, *end_page;
736 
737 	start_pfn = page_to_pfn(page);
738 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
739 	start_page = pfn_to_page(start_pfn);
740 	end_page = start_page + pageblock_nr_pages - 1;
741 	end_pfn = start_pfn + pageblock_nr_pages - 1;
742 
743 	/* Do not cross zone boundaries */
744 	if (start_pfn < zone->zone_start_pfn)
745 		start_page = page;
746 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
747 		return 0;
748 
749 	return move_freepages(zone, start_page, end_page, migratetype);
750 }
751 
752 /* Return the page with the lowest PFN in the list */
753 static struct page *min_page(struct list_head *list)
754 {
755 	unsigned long min_pfn = -1UL;
756 	struct page *min_page = NULL, *page;;
757 
758 	list_for_each_entry(page, list, lru) {
759 		unsigned long pfn = page_to_pfn(page);
760 		if (pfn < min_pfn) {
761 			min_pfn = pfn;
762 			min_page = page;
763 		}
764 	}
765 
766 	return min_page;
767 }
768 
769 /* Remove an element from the buddy allocator from the fallback list */
770 static struct page *__rmqueue_fallback(struct zone *zone, int order,
771 						int start_migratetype)
772 {
773 	struct free_area * area;
774 	int current_order;
775 	struct page *page;
776 	int migratetype, i;
777 
778 	/* Find the largest possible block of pages in the other list */
779 	for (current_order = MAX_ORDER-1; current_order >= order;
780 						--current_order) {
781 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
782 			migratetype = fallbacks[start_migratetype][i];
783 
784 			/* MIGRATE_RESERVE handled later if necessary */
785 			if (migratetype == MIGRATE_RESERVE)
786 				continue;
787 
788 			area = &(zone->free_area[current_order]);
789 			if (list_empty(&area->free_list[migratetype]))
790 				continue;
791 
792 			/* Bias kernel allocations towards low pfns */
793 			page = list_entry(area->free_list[migratetype].next,
794 					struct page, lru);
795 			if (unlikely(start_migratetype != MIGRATE_MOVABLE))
796 				page = min_page(&area->free_list[migratetype]);
797 			area->nr_free--;
798 
799 			/*
800 			 * If breaking a large block of pages, move all free
801 			 * pages to the preferred allocation list. If falling
802 			 * back for a reclaimable kernel allocation, be more
803 			 * agressive about taking ownership of free pages
804 			 */
805 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
806 					start_migratetype == MIGRATE_RECLAIMABLE) {
807 				unsigned long pages;
808 				pages = move_freepages_block(zone, page,
809 								start_migratetype);
810 
811 				/* Claim the whole block if over half of it is free */
812 				if (pages >= (1 << (pageblock_order-1)))
813 					set_pageblock_migratetype(page,
814 								start_migratetype);
815 
816 				migratetype = start_migratetype;
817 			}
818 
819 			/* Remove the page from the freelists */
820 			list_del(&page->lru);
821 			rmv_page_order(page);
822 			__mod_zone_page_state(zone, NR_FREE_PAGES,
823 							-(1UL << order));
824 
825 			if (current_order == pageblock_order)
826 				set_pageblock_migratetype(page,
827 							start_migratetype);
828 
829 			expand(zone, page, order, current_order, area, migratetype);
830 			return page;
831 		}
832 	}
833 
834 	/* Use MIGRATE_RESERVE rather than fail an allocation */
835 	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
836 }
837 
838 /*
839  * Do the hard work of removing an element from the buddy allocator.
840  * Call me with the zone->lock already held.
841  */
842 static struct page *__rmqueue(struct zone *zone, unsigned int order,
843 						int migratetype)
844 {
845 	struct page *page;
846 
847 	page = __rmqueue_smallest(zone, order, migratetype);
848 
849 	if (unlikely(!page))
850 		page = __rmqueue_fallback(zone, order, migratetype);
851 
852 	return page;
853 }
854 
855 /*
856  * Obtain a specified number of elements from the buddy allocator, all under
857  * a single hold of the lock, for efficiency.  Add them to the supplied list.
858  * Returns the number of new pages which were placed at *list.
859  */
860 static int rmqueue_bulk(struct zone *zone, unsigned int order,
861 			unsigned long count, struct list_head *list,
862 			int migratetype)
863 {
864 	int i;
865 
866 	spin_lock(&zone->lock);
867 	for (i = 0; i < count; ++i) {
868 		struct page *page = __rmqueue(zone, order, migratetype);
869 		if (unlikely(page == NULL))
870 			break;
871 		list_add(&page->lru, list);
872 		set_page_private(page, migratetype);
873 	}
874 	spin_unlock(&zone->lock);
875 	return i;
876 }
877 
878 #ifdef CONFIG_NUMA
879 /*
880  * Called from the vmstat counter updater to drain pagesets of this
881  * currently executing processor on remote nodes after they have
882  * expired.
883  *
884  * Note that this function must be called with the thread pinned to
885  * a single processor.
886  */
887 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
888 {
889 	unsigned long flags;
890 	int to_drain;
891 
892 	local_irq_save(flags);
893 	if (pcp->count >= pcp->batch)
894 		to_drain = pcp->batch;
895 	else
896 		to_drain = pcp->count;
897 	free_pages_bulk(zone, to_drain, &pcp->list, 0);
898 	pcp->count -= to_drain;
899 	local_irq_restore(flags);
900 }
901 #endif
902 
903 static void __drain_pages(unsigned int cpu)
904 {
905 	unsigned long flags;
906 	struct zone *zone;
907 	int i;
908 
909 	for_each_zone(zone) {
910 		struct per_cpu_pageset *pset;
911 
912 		if (!populated_zone(zone))
913 			continue;
914 
915 		pset = zone_pcp(zone, cpu);
916 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
917 			struct per_cpu_pages *pcp;
918 
919 			pcp = &pset->pcp[i];
920 			local_irq_save(flags);
921 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
922 			pcp->count = 0;
923 			local_irq_restore(flags);
924 		}
925 	}
926 }
927 
928 #ifdef CONFIG_HIBERNATION
929 
930 void mark_free_pages(struct zone *zone)
931 {
932 	unsigned long pfn, max_zone_pfn;
933 	unsigned long flags;
934 	int order, t;
935 	struct list_head *curr;
936 
937 	if (!zone->spanned_pages)
938 		return;
939 
940 	spin_lock_irqsave(&zone->lock, flags);
941 
942 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
943 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
944 		if (pfn_valid(pfn)) {
945 			struct page *page = pfn_to_page(pfn);
946 
947 			if (!swsusp_page_is_forbidden(page))
948 				swsusp_unset_page_free(page);
949 		}
950 
951 	for_each_migratetype_order(order, t) {
952 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
953 			unsigned long i;
954 
955 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
956 			for (i = 0; i < (1UL << order); i++)
957 				swsusp_set_page_free(pfn_to_page(pfn + i));
958 		}
959 	}
960 	spin_unlock_irqrestore(&zone->lock, flags);
961 }
962 #endif /* CONFIG_PM */
963 
964 /*
965  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
966  */
967 void drain_local_pages(void)
968 {
969 	unsigned long flags;
970 
971 	local_irq_save(flags);
972 	__drain_pages(smp_processor_id());
973 	local_irq_restore(flags);
974 }
975 
976 void smp_drain_local_pages(void *arg)
977 {
978 	drain_local_pages();
979 }
980 
981 /*
982  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
983  */
984 void drain_all_local_pages(void)
985 {
986 	unsigned long flags;
987 
988 	local_irq_save(flags);
989 	__drain_pages(smp_processor_id());
990 	local_irq_restore(flags);
991 
992 	smp_call_function(smp_drain_local_pages, NULL, 0, 1);
993 }
994 
995 /*
996  * Free a 0-order page
997  */
998 static void fastcall free_hot_cold_page(struct page *page, int cold)
999 {
1000 	struct zone *zone = page_zone(page);
1001 	struct per_cpu_pages *pcp;
1002 	unsigned long flags;
1003 
1004 	if (PageAnon(page))
1005 		page->mapping = NULL;
1006 	if (free_pages_check(page))
1007 		return;
1008 
1009 	if (!PageHighMem(page))
1010 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1011 	arch_free_page(page, 0);
1012 	kernel_map_pages(page, 1, 0);
1013 
1014 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1015 	local_irq_save(flags);
1016 	__count_vm_event(PGFREE);
1017 	list_add(&page->lru, &pcp->list);
1018 	set_page_private(page, get_pageblock_migratetype(page));
1019 	pcp->count++;
1020 	if (pcp->count >= pcp->high) {
1021 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1022 		pcp->count -= pcp->batch;
1023 	}
1024 	local_irq_restore(flags);
1025 	put_cpu();
1026 }
1027 
1028 void fastcall free_hot_page(struct page *page)
1029 {
1030 	free_hot_cold_page(page, 0);
1031 }
1032 
1033 void fastcall free_cold_page(struct page *page)
1034 {
1035 	free_hot_cold_page(page, 1);
1036 }
1037 
1038 /*
1039  * split_page takes a non-compound higher-order page, and splits it into
1040  * n (1<<order) sub-pages: page[0..n]
1041  * Each sub-page must be freed individually.
1042  *
1043  * Note: this is probably too low level an operation for use in drivers.
1044  * Please consult with lkml before using this in your driver.
1045  */
1046 void split_page(struct page *page, unsigned int order)
1047 {
1048 	int i;
1049 
1050 	VM_BUG_ON(PageCompound(page));
1051 	VM_BUG_ON(!page_count(page));
1052 	for (i = 1; i < (1 << order); i++)
1053 		set_page_refcounted(page + i);
1054 }
1055 
1056 /*
1057  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1058  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1059  * or two.
1060  */
1061 static struct page *buffered_rmqueue(struct zonelist *zonelist,
1062 			struct zone *zone, int order, gfp_t gfp_flags)
1063 {
1064 	unsigned long flags;
1065 	struct page *page;
1066 	int cold = !!(gfp_flags & __GFP_COLD);
1067 	int cpu;
1068 	int migratetype = allocflags_to_migratetype(gfp_flags);
1069 
1070 again:
1071 	cpu  = get_cpu();
1072 	if (likely(order == 0)) {
1073 		struct per_cpu_pages *pcp;
1074 
1075 		pcp = &zone_pcp(zone, cpu)->pcp[cold];
1076 		local_irq_save(flags);
1077 		if (!pcp->count) {
1078 			pcp->count = rmqueue_bulk(zone, 0,
1079 					pcp->batch, &pcp->list, migratetype);
1080 			if (unlikely(!pcp->count))
1081 				goto failed;
1082 		}
1083 
1084 		/* Find a page of the appropriate migrate type */
1085 		list_for_each_entry(page, &pcp->list, lru)
1086 			if (page_private(page) == migratetype)
1087 				break;
1088 
1089 		/* Allocate more to the pcp list if necessary */
1090 		if (unlikely(&page->lru == &pcp->list)) {
1091 			pcp->count += rmqueue_bulk(zone, 0,
1092 					pcp->batch, &pcp->list, migratetype);
1093 			page = list_entry(pcp->list.next, struct page, lru);
1094 		}
1095 
1096 		list_del(&page->lru);
1097 		pcp->count--;
1098 	} else {
1099 		spin_lock_irqsave(&zone->lock, flags);
1100 		page = __rmqueue(zone, order, migratetype);
1101 		spin_unlock(&zone->lock);
1102 		if (!page)
1103 			goto failed;
1104 	}
1105 
1106 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1107 	zone_statistics(zonelist, zone);
1108 	local_irq_restore(flags);
1109 	put_cpu();
1110 
1111 	VM_BUG_ON(bad_range(zone, page));
1112 	if (prep_new_page(page, order, gfp_flags))
1113 		goto again;
1114 	return page;
1115 
1116 failed:
1117 	local_irq_restore(flags);
1118 	put_cpu();
1119 	return NULL;
1120 }
1121 
1122 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1123 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1124 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1125 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1126 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1127 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1128 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1129 
1130 #ifdef CONFIG_FAIL_PAGE_ALLOC
1131 
1132 static struct fail_page_alloc_attr {
1133 	struct fault_attr attr;
1134 
1135 	u32 ignore_gfp_highmem;
1136 	u32 ignore_gfp_wait;
1137 	u32 min_order;
1138 
1139 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1140 
1141 	struct dentry *ignore_gfp_highmem_file;
1142 	struct dentry *ignore_gfp_wait_file;
1143 	struct dentry *min_order_file;
1144 
1145 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1146 
1147 } fail_page_alloc = {
1148 	.attr = FAULT_ATTR_INITIALIZER,
1149 	.ignore_gfp_wait = 1,
1150 	.ignore_gfp_highmem = 1,
1151 	.min_order = 1,
1152 };
1153 
1154 static int __init setup_fail_page_alloc(char *str)
1155 {
1156 	return setup_fault_attr(&fail_page_alloc.attr, str);
1157 }
1158 __setup("fail_page_alloc=", setup_fail_page_alloc);
1159 
1160 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1161 {
1162 	if (order < fail_page_alloc.min_order)
1163 		return 0;
1164 	if (gfp_mask & __GFP_NOFAIL)
1165 		return 0;
1166 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1167 		return 0;
1168 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1169 		return 0;
1170 
1171 	return should_fail(&fail_page_alloc.attr, 1 << order);
1172 }
1173 
1174 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1175 
1176 static int __init fail_page_alloc_debugfs(void)
1177 {
1178 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1179 	struct dentry *dir;
1180 	int err;
1181 
1182 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1183 				       "fail_page_alloc");
1184 	if (err)
1185 		return err;
1186 	dir = fail_page_alloc.attr.dentries.dir;
1187 
1188 	fail_page_alloc.ignore_gfp_wait_file =
1189 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1190 				      &fail_page_alloc.ignore_gfp_wait);
1191 
1192 	fail_page_alloc.ignore_gfp_highmem_file =
1193 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1194 				      &fail_page_alloc.ignore_gfp_highmem);
1195 	fail_page_alloc.min_order_file =
1196 		debugfs_create_u32("min-order", mode, dir,
1197 				   &fail_page_alloc.min_order);
1198 
1199 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1200             !fail_page_alloc.ignore_gfp_highmem_file ||
1201             !fail_page_alloc.min_order_file) {
1202 		err = -ENOMEM;
1203 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1204 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1205 		debugfs_remove(fail_page_alloc.min_order_file);
1206 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1207 	}
1208 
1209 	return err;
1210 }
1211 
1212 late_initcall(fail_page_alloc_debugfs);
1213 
1214 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1215 
1216 #else /* CONFIG_FAIL_PAGE_ALLOC */
1217 
1218 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1219 {
1220 	return 0;
1221 }
1222 
1223 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1224 
1225 /*
1226  * Return 1 if free pages are above 'mark'. This takes into account the order
1227  * of the allocation.
1228  */
1229 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1230 		      int classzone_idx, int alloc_flags)
1231 {
1232 	/* free_pages my go negative - that's OK */
1233 	long min = mark;
1234 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1235 	int o;
1236 
1237 	if (alloc_flags & ALLOC_HIGH)
1238 		min -= min / 2;
1239 	if (alloc_flags & ALLOC_HARDER)
1240 		min -= min / 4;
1241 
1242 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1243 		return 0;
1244 	for (o = 0; o < order; o++) {
1245 		/* At the next order, this order's pages become unavailable */
1246 		free_pages -= z->free_area[o].nr_free << o;
1247 
1248 		/* Require fewer higher order pages to be free */
1249 		min >>= 1;
1250 
1251 		if (free_pages <= min)
1252 			return 0;
1253 	}
1254 	return 1;
1255 }
1256 
1257 #ifdef CONFIG_NUMA
1258 /*
1259  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1260  * skip over zones that are not allowed by the cpuset, or that have
1261  * been recently (in last second) found to be nearly full.  See further
1262  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1263  * that have to skip over alot of full or unallowed zones.
1264  *
1265  * If the zonelist cache is present in the passed in zonelist, then
1266  * returns a pointer to the allowed node mask (either the current
1267  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1268  *
1269  * If the zonelist cache is not available for this zonelist, does
1270  * nothing and returns NULL.
1271  *
1272  * If the fullzones BITMAP in the zonelist cache is stale (more than
1273  * a second since last zap'd) then we zap it out (clear its bits.)
1274  *
1275  * We hold off even calling zlc_setup, until after we've checked the
1276  * first zone in the zonelist, on the theory that most allocations will
1277  * be satisfied from that first zone, so best to examine that zone as
1278  * quickly as we can.
1279  */
1280 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1281 {
1282 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1283 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1284 
1285 	zlc = zonelist->zlcache_ptr;
1286 	if (!zlc)
1287 		return NULL;
1288 
1289 	if (jiffies - zlc->last_full_zap > 1 * HZ) {
1290 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1291 		zlc->last_full_zap = jiffies;
1292 	}
1293 
1294 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1295 					&cpuset_current_mems_allowed :
1296 					&node_states[N_HIGH_MEMORY];
1297 	return allowednodes;
1298 }
1299 
1300 /*
1301  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1302  * if it is worth looking at further for free memory:
1303  *  1) Check that the zone isn't thought to be full (doesn't have its
1304  *     bit set in the zonelist_cache fullzones BITMAP).
1305  *  2) Check that the zones node (obtained from the zonelist_cache
1306  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1307  * Return true (non-zero) if zone is worth looking at further, or
1308  * else return false (zero) if it is not.
1309  *
1310  * This check -ignores- the distinction between various watermarks,
1311  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1312  * found to be full for any variation of these watermarks, it will
1313  * be considered full for up to one second by all requests, unless
1314  * we are so low on memory on all allowed nodes that we are forced
1315  * into the second scan of the zonelist.
1316  *
1317  * In the second scan we ignore this zonelist cache and exactly
1318  * apply the watermarks to all zones, even it is slower to do so.
1319  * We are low on memory in the second scan, and should leave no stone
1320  * unturned looking for a free page.
1321  */
1322 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1323 						nodemask_t *allowednodes)
1324 {
1325 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1326 	int i;				/* index of *z in zonelist zones */
1327 	int n;				/* node that zone *z is on */
1328 
1329 	zlc = zonelist->zlcache_ptr;
1330 	if (!zlc)
1331 		return 1;
1332 
1333 	i = z - zonelist->zones;
1334 	n = zlc->z_to_n[i];
1335 
1336 	/* This zone is worth trying if it is allowed but not full */
1337 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1338 }
1339 
1340 /*
1341  * Given 'z' scanning a zonelist, set the corresponding bit in
1342  * zlc->fullzones, so that subsequent attempts to allocate a page
1343  * from that zone don't waste time re-examining it.
1344  */
1345 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1346 {
1347 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1348 	int i;				/* index of *z in zonelist zones */
1349 
1350 	zlc = zonelist->zlcache_ptr;
1351 	if (!zlc)
1352 		return;
1353 
1354 	i = z - zonelist->zones;
1355 
1356 	set_bit(i, zlc->fullzones);
1357 }
1358 
1359 #else	/* CONFIG_NUMA */
1360 
1361 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1362 {
1363 	return NULL;
1364 }
1365 
1366 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1367 				nodemask_t *allowednodes)
1368 {
1369 	return 1;
1370 }
1371 
1372 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1373 {
1374 }
1375 #endif	/* CONFIG_NUMA */
1376 
1377 /*
1378  * get_page_from_freelist goes through the zonelist trying to allocate
1379  * a page.
1380  */
1381 static struct page *
1382 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1383 		struct zonelist *zonelist, int alloc_flags)
1384 {
1385 	struct zone **z;
1386 	struct page *page = NULL;
1387 	int classzone_idx = zone_idx(zonelist->zones[0]);
1388 	struct zone *zone;
1389 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1390 	int zlc_active = 0;		/* set if using zonelist_cache */
1391 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1392 	enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1393 
1394 zonelist_scan:
1395 	/*
1396 	 * Scan zonelist, looking for a zone with enough free.
1397 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1398 	 */
1399 	z = zonelist->zones;
1400 
1401 	do {
1402 		/*
1403 		 * In NUMA, this could be a policy zonelist which contains
1404 		 * zones that may not be allowed by the current gfp_mask.
1405 		 * Check the zone is allowed by the current flags
1406 		 */
1407 		if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1408 			if (highest_zoneidx == -1)
1409 				highest_zoneidx = gfp_zone(gfp_mask);
1410 			if (zone_idx(*z) > highest_zoneidx)
1411 				continue;
1412 		}
1413 
1414 		if (NUMA_BUILD && zlc_active &&
1415 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1416 				continue;
1417 		zone = *z;
1418 		if ((alloc_flags & ALLOC_CPUSET) &&
1419 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1420 				goto try_next_zone;
1421 
1422 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1423 			unsigned long mark;
1424 			if (alloc_flags & ALLOC_WMARK_MIN)
1425 				mark = zone->pages_min;
1426 			else if (alloc_flags & ALLOC_WMARK_LOW)
1427 				mark = zone->pages_low;
1428 			else
1429 				mark = zone->pages_high;
1430 			if (!zone_watermark_ok(zone, order, mark,
1431 				    classzone_idx, alloc_flags)) {
1432 				if (!zone_reclaim_mode ||
1433 				    !zone_reclaim(zone, gfp_mask, order))
1434 					goto this_zone_full;
1435 			}
1436 		}
1437 
1438 		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1439 		if (page)
1440 			break;
1441 this_zone_full:
1442 		if (NUMA_BUILD)
1443 			zlc_mark_zone_full(zonelist, z);
1444 try_next_zone:
1445 		if (NUMA_BUILD && !did_zlc_setup) {
1446 			/* we do zlc_setup after the first zone is tried */
1447 			allowednodes = zlc_setup(zonelist, alloc_flags);
1448 			zlc_active = 1;
1449 			did_zlc_setup = 1;
1450 		}
1451 	} while (*(++z) != NULL);
1452 
1453 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1454 		/* Disable zlc cache for second zonelist scan */
1455 		zlc_active = 0;
1456 		goto zonelist_scan;
1457 	}
1458 	return page;
1459 }
1460 
1461 /*
1462  * This is the 'heart' of the zoned buddy allocator.
1463  */
1464 struct page * fastcall
1465 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1466 		struct zonelist *zonelist)
1467 {
1468 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1469 	struct zone **z;
1470 	struct page *page;
1471 	struct reclaim_state reclaim_state;
1472 	struct task_struct *p = current;
1473 	int do_retry;
1474 	int alloc_flags;
1475 	int did_some_progress;
1476 
1477 	might_sleep_if(wait);
1478 
1479 	if (should_fail_alloc_page(gfp_mask, order))
1480 		return NULL;
1481 
1482 restart:
1483 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1484 
1485 	if (unlikely(*z == NULL)) {
1486 		/*
1487 		 * Happens if we have an empty zonelist as a result of
1488 		 * GFP_THISNODE being used on a memoryless node
1489 		 */
1490 		return NULL;
1491 	}
1492 
1493 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1494 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1495 	if (page)
1496 		goto got_pg;
1497 
1498 	/*
1499 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1500 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1501 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1502 	 * using a larger set of nodes after it has established that the
1503 	 * allowed per node queues are empty and that nodes are
1504 	 * over allocated.
1505 	 */
1506 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1507 		goto nopage;
1508 
1509 	for (z = zonelist->zones; *z; z++)
1510 		wakeup_kswapd(*z, order);
1511 
1512 	/*
1513 	 * OK, we're below the kswapd watermark and have kicked background
1514 	 * reclaim. Now things get more complex, so set up alloc_flags according
1515 	 * to how we want to proceed.
1516 	 *
1517 	 * The caller may dip into page reserves a bit more if the caller
1518 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1519 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1520 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1521 	 */
1522 	alloc_flags = ALLOC_WMARK_MIN;
1523 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1524 		alloc_flags |= ALLOC_HARDER;
1525 	if (gfp_mask & __GFP_HIGH)
1526 		alloc_flags |= ALLOC_HIGH;
1527 	if (wait)
1528 		alloc_flags |= ALLOC_CPUSET;
1529 
1530 	/*
1531 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1532 	 * coming from realtime tasks go deeper into reserves.
1533 	 *
1534 	 * This is the last chance, in general, before the goto nopage.
1535 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1536 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1537 	 */
1538 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1539 	if (page)
1540 		goto got_pg;
1541 
1542 	/* This allocation should allow future memory freeing. */
1543 
1544 rebalance:
1545 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1546 			&& !in_interrupt()) {
1547 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1548 nofail_alloc:
1549 			/* go through the zonelist yet again, ignoring mins */
1550 			page = get_page_from_freelist(gfp_mask, order,
1551 				zonelist, ALLOC_NO_WATERMARKS);
1552 			if (page)
1553 				goto got_pg;
1554 			if (gfp_mask & __GFP_NOFAIL) {
1555 				congestion_wait(WRITE, HZ/50);
1556 				goto nofail_alloc;
1557 			}
1558 		}
1559 		goto nopage;
1560 	}
1561 
1562 	/* Atomic allocations - we can't balance anything */
1563 	if (!wait)
1564 		goto nopage;
1565 
1566 	cond_resched();
1567 
1568 	/* We now go into synchronous reclaim */
1569 	cpuset_memory_pressure_bump();
1570 	p->flags |= PF_MEMALLOC;
1571 	reclaim_state.reclaimed_slab = 0;
1572 	p->reclaim_state = &reclaim_state;
1573 
1574 	did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1575 
1576 	p->reclaim_state = NULL;
1577 	p->flags &= ~PF_MEMALLOC;
1578 
1579 	cond_resched();
1580 
1581 	if (order != 0)
1582 		drain_all_local_pages();
1583 
1584 	if (likely(did_some_progress)) {
1585 		page = get_page_from_freelist(gfp_mask, order,
1586 						zonelist, alloc_flags);
1587 		if (page)
1588 			goto got_pg;
1589 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1590 		if (!try_set_zone_oom(zonelist)) {
1591 			schedule_timeout_uninterruptible(1);
1592 			goto restart;
1593 		}
1594 
1595 		/*
1596 		 * Go through the zonelist yet one more time, keep
1597 		 * very high watermark here, this is only to catch
1598 		 * a parallel oom killing, we must fail if we're still
1599 		 * under heavy pressure.
1600 		 */
1601 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1602 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1603 		if (page) {
1604 			clear_zonelist_oom(zonelist);
1605 			goto got_pg;
1606 		}
1607 
1608 		/* The OOM killer will not help higher order allocs so fail */
1609 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
1610 			clear_zonelist_oom(zonelist);
1611 			goto nopage;
1612 		}
1613 
1614 		out_of_memory(zonelist, gfp_mask, order);
1615 		clear_zonelist_oom(zonelist);
1616 		goto restart;
1617 	}
1618 
1619 	/*
1620 	 * Don't let big-order allocations loop unless the caller explicitly
1621 	 * requests that.  Wait for some write requests to complete then retry.
1622 	 *
1623 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1624 	 * <= 3, but that may not be true in other implementations.
1625 	 */
1626 	do_retry = 0;
1627 	if (!(gfp_mask & __GFP_NORETRY)) {
1628 		if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1629 						(gfp_mask & __GFP_REPEAT))
1630 			do_retry = 1;
1631 		if (gfp_mask & __GFP_NOFAIL)
1632 			do_retry = 1;
1633 	}
1634 	if (do_retry) {
1635 		congestion_wait(WRITE, HZ/50);
1636 		goto rebalance;
1637 	}
1638 
1639 nopage:
1640 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1641 		printk(KERN_WARNING "%s: page allocation failure."
1642 			" order:%d, mode:0x%x\n",
1643 			p->comm, order, gfp_mask);
1644 		dump_stack();
1645 		show_mem();
1646 	}
1647 got_pg:
1648 	return page;
1649 }
1650 
1651 EXPORT_SYMBOL(__alloc_pages);
1652 
1653 /*
1654  * Common helper functions.
1655  */
1656 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1657 {
1658 	struct page * page;
1659 	page = alloc_pages(gfp_mask, order);
1660 	if (!page)
1661 		return 0;
1662 	return (unsigned long) page_address(page);
1663 }
1664 
1665 EXPORT_SYMBOL(__get_free_pages);
1666 
1667 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1668 {
1669 	struct page * page;
1670 
1671 	/*
1672 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1673 	 * a highmem page
1674 	 */
1675 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1676 
1677 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1678 	if (page)
1679 		return (unsigned long) page_address(page);
1680 	return 0;
1681 }
1682 
1683 EXPORT_SYMBOL(get_zeroed_page);
1684 
1685 void __pagevec_free(struct pagevec *pvec)
1686 {
1687 	int i = pagevec_count(pvec);
1688 
1689 	while (--i >= 0)
1690 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1691 }
1692 
1693 fastcall void __free_pages(struct page *page, unsigned int order)
1694 {
1695 	if (put_page_testzero(page)) {
1696 		if (order == 0)
1697 			free_hot_page(page);
1698 		else
1699 			__free_pages_ok(page, order);
1700 	}
1701 }
1702 
1703 EXPORT_SYMBOL(__free_pages);
1704 
1705 fastcall void free_pages(unsigned long addr, unsigned int order)
1706 {
1707 	if (addr != 0) {
1708 		VM_BUG_ON(!virt_addr_valid((void *)addr));
1709 		__free_pages(virt_to_page((void *)addr), order);
1710 	}
1711 }
1712 
1713 EXPORT_SYMBOL(free_pages);
1714 
1715 static unsigned int nr_free_zone_pages(int offset)
1716 {
1717 	/* Just pick one node, since fallback list is circular */
1718 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1719 	unsigned int sum = 0;
1720 
1721 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1722 	struct zone **zonep = zonelist->zones;
1723 	struct zone *zone;
1724 
1725 	for (zone = *zonep++; zone; zone = *zonep++) {
1726 		unsigned long size = zone->present_pages;
1727 		unsigned long high = zone->pages_high;
1728 		if (size > high)
1729 			sum += size - high;
1730 	}
1731 
1732 	return sum;
1733 }
1734 
1735 /*
1736  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1737  */
1738 unsigned int nr_free_buffer_pages(void)
1739 {
1740 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1741 }
1742 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1743 
1744 /*
1745  * Amount of free RAM allocatable within all zones
1746  */
1747 unsigned int nr_free_pagecache_pages(void)
1748 {
1749 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1750 }
1751 
1752 static inline void show_node(struct zone *zone)
1753 {
1754 	if (NUMA_BUILD)
1755 		printk("Node %d ", zone_to_nid(zone));
1756 }
1757 
1758 void si_meminfo(struct sysinfo *val)
1759 {
1760 	val->totalram = totalram_pages;
1761 	val->sharedram = 0;
1762 	val->freeram = global_page_state(NR_FREE_PAGES);
1763 	val->bufferram = nr_blockdev_pages();
1764 	val->totalhigh = totalhigh_pages;
1765 	val->freehigh = nr_free_highpages();
1766 	val->mem_unit = PAGE_SIZE;
1767 }
1768 
1769 EXPORT_SYMBOL(si_meminfo);
1770 
1771 #ifdef CONFIG_NUMA
1772 void si_meminfo_node(struct sysinfo *val, int nid)
1773 {
1774 	pg_data_t *pgdat = NODE_DATA(nid);
1775 
1776 	val->totalram = pgdat->node_present_pages;
1777 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1778 #ifdef CONFIG_HIGHMEM
1779 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1780 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1781 			NR_FREE_PAGES);
1782 #else
1783 	val->totalhigh = 0;
1784 	val->freehigh = 0;
1785 #endif
1786 	val->mem_unit = PAGE_SIZE;
1787 }
1788 #endif
1789 
1790 #define K(x) ((x) << (PAGE_SHIFT-10))
1791 
1792 /*
1793  * Show free area list (used inside shift_scroll-lock stuff)
1794  * We also calculate the percentage fragmentation. We do this by counting the
1795  * memory on each free list with the exception of the first item on the list.
1796  */
1797 void show_free_areas(void)
1798 {
1799 	int cpu;
1800 	struct zone *zone;
1801 
1802 	for_each_zone(zone) {
1803 		if (!populated_zone(zone))
1804 			continue;
1805 
1806 		show_node(zone);
1807 		printk("%s per-cpu:\n", zone->name);
1808 
1809 		for_each_online_cpu(cpu) {
1810 			struct per_cpu_pageset *pageset;
1811 
1812 			pageset = zone_pcp(zone, cpu);
1813 
1814 			printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
1815 			       "Cold: hi:%5d, btch:%4d usd:%4d\n",
1816 			       cpu, pageset->pcp[0].high,
1817 			       pageset->pcp[0].batch, pageset->pcp[0].count,
1818 			       pageset->pcp[1].high, pageset->pcp[1].batch,
1819 			       pageset->pcp[1].count);
1820 		}
1821 	}
1822 
1823 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1824 		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1825 		global_page_state(NR_ACTIVE),
1826 		global_page_state(NR_INACTIVE),
1827 		global_page_state(NR_FILE_DIRTY),
1828 		global_page_state(NR_WRITEBACK),
1829 		global_page_state(NR_UNSTABLE_NFS),
1830 		global_page_state(NR_FREE_PAGES),
1831 		global_page_state(NR_SLAB_RECLAIMABLE) +
1832 			global_page_state(NR_SLAB_UNRECLAIMABLE),
1833 		global_page_state(NR_FILE_MAPPED),
1834 		global_page_state(NR_PAGETABLE),
1835 		global_page_state(NR_BOUNCE));
1836 
1837 	for_each_zone(zone) {
1838 		int i;
1839 
1840 		if (!populated_zone(zone))
1841 			continue;
1842 
1843 		show_node(zone);
1844 		printk("%s"
1845 			" free:%lukB"
1846 			" min:%lukB"
1847 			" low:%lukB"
1848 			" high:%lukB"
1849 			" active:%lukB"
1850 			" inactive:%lukB"
1851 			" present:%lukB"
1852 			" pages_scanned:%lu"
1853 			" all_unreclaimable? %s"
1854 			"\n",
1855 			zone->name,
1856 			K(zone_page_state(zone, NR_FREE_PAGES)),
1857 			K(zone->pages_min),
1858 			K(zone->pages_low),
1859 			K(zone->pages_high),
1860 			K(zone_page_state(zone, NR_ACTIVE)),
1861 			K(zone_page_state(zone, NR_INACTIVE)),
1862 			K(zone->present_pages),
1863 			zone->pages_scanned,
1864 			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
1865 			);
1866 		printk("lowmem_reserve[]:");
1867 		for (i = 0; i < MAX_NR_ZONES; i++)
1868 			printk(" %lu", zone->lowmem_reserve[i]);
1869 		printk("\n");
1870 	}
1871 
1872 	for_each_zone(zone) {
1873  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1874 
1875 		if (!populated_zone(zone))
1876 			continue;
1877 
1878 		show_node(zone);
1879 		printk("%s: ", zone->name);
1880 
1881 		spin_lock_irqsave(&zone->lock, flags);
1882 		for (order = 0; order < MAX_ORDER; order++) {
1883 			nr[order] = zone->free_area[order].nr_free;
1884 			total += nr[order] << order;
1885 		}
1886 		spin_unlock_irqrestore(&zone->lock, flags);
1887 		for (order = 0; order < MAX_ORDER; order++)
1888 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1889 		printk("= %lukB\n", K(total));
1890 	}
1891 
1892 	show_swap_cache_info();
1893 }
1894 
1895 /*
1896  * Builds allocation fallback zone lists.
1897  *
1898  * Add all populated zones of a node to the zonelist.
1899  */
1900 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1901 				int nr_zones, enum zone_type zone_type)
1902 {
1903 	struct zone *zone;
1904 
1905 	BUG_ON(zone_type >= MAX_NR_ZONES);
1906 	zone_type++;
1907 
1908 	do {
1909 		zone_type--;
1910 		zone = pgdat->node_zones + zone_type;
1911 		if (populated_zone(zone)) {
1912 			zonelist->zones[nr_zones++] = zone;
1913 			check_highest_zone(zone_type);
1914 		}
1915 
1916 	} while (zone_type);
1917 	return nr_zones;
1918 }
1919 
1920 
1921 /*
1922  *  zonelist_order:
1923  *  0 = automatic detection of better ordering.
1924  *  1 = order by ([node] distance, -zonetype)
1925  *  2 = order by (-zonetype, [node] distance)
1926  *
1927  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1928  *  the same zonelist. So only NUMA can configure this param.
1929  */
1930 #define ZONELIST_ORDER_DEFAULT  0
1931 #define ZONELIST_ORDER_NODE     1
1932 #define ZONELIST_ORDER_ZONE     2
1933 
1934 /* zonelist order in the kernel.
1935  * set_zonelist_order() will set this to NODE or ZONE.
1936  */
1937 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1938 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1939 
1940 
1941 #ifdef CONFIG_NUMA
1942 /* The value user specified ....changed by config */
1943 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1944 /* string for sysctl */
1945 #define NUMA_ZONELIST_ORDER_LEN	16
1946 char numa_zonelist_order[16] = "default";
1947 
1948 /*
1949  * interface for configure zonelist ordering.
1950  * command line option "numa_zonelist_order"
1951  *	= "[dD]efault	- default, automatic configuration.
1952  *	= "[nN]ode 	- order by node locality, then by zone within node
1953  *	= "[zZ]one      - order by zone, then by locality within zone
1954  */
1955 
1956 static int __parse_numa_zonelist_order(char *s)
1957 {
1958 	if (*s == 'd' || *s == 'D') {
1959 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1960 	} else if (*s == 'n' || *s == 'N') {
1961 		user_zonelist_order = ZONELIST_ORDER_NODE;
1962 	} else if (*s == 'z' || *s == 'Z') {
1963 		user_zonelist_order = ZONELIST_ORDER_ZONE;
1964 	} else {
1965 		printk(KERN_WARNING
1966 			"Ignoring invalid numa_zonelist_order value:  "
1967 			"%s\n", s);
1968 		return -EINVAL;
1969 	}
1970 	return 0;
1971 }
1972 
1973 static __init int setup_numa_zonelist_order(char *s)
1974 {
1975 	if (s)
1976 		return __parse_numa_zonelist_order(s);
1977 	return 0;
1978 }
1979 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1980 
1981 /*
1982  * sysctl handler for numa_zonelist_order
1983  */
1984 int numa_zonelist_order_handler(ctl_table *table, int write,
1985 		struct file *file, void __user *buffer, size_t *length,
1986 		loff_t *ppos)
1987 {
1988 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
1989 	int ret;
1990 
1991 	if (write)
1992 		strncpy(saved_string, (char*)table->data,
1993 			NUMA_ZONELIST_ORDER_LEN);
1994 	ret = proc_dostring(table, write, file, buffer, length, ppos);
1995 	if (ret)
1996 		return ret;
1997 	if (write) {
1998 		int oldval = user_zonelist_order;
1999 		if (__parse_numa_zonelist_order((char*)table->data)) {
2000 			/*
2001 			 * bogus value.  restore saved string
2002 			 */
2003 			strncpy((char*)table->data, saved_string,
2004 				NUMA_ZONELIST_ORDER_LEN);
2005 			user_zonelist_order = oldval;
2006 		} else if (oldval != user_zonelist_order)
2007 			build_all_zonelists();
2008 	}
2009 	return 0;
2010 }
2011 
2012 
2013 #define MAX_NODE_LOAD (num_online_nodes())
2014 static int node_load[MAX_NUMNODES];
2015 
2016 /**
2017  * find_next_best_node - find the next node that should appear in a given node's fallback list
2018  * @node: node whose fallback list we're appending
2019  * @used_node_mask: nodemask_t of already used nodes
2020  *
2021  * We use a number of factors to determine which is the next node that should
2022  * appear on a given node's fallback list.  The node should not have appeared
2023  * already in @node's fallback list, and it should be the next closest node
2024  * according to the distance array (which contains arbitrary distance values
2025  * from each node to each node in the system), and should also prefer nodes
2026  * with no CPUs, since presumably they'll have very little allocation pressure
2027  * on them otherwise.
2028  * It returns -1 if no node is found.
2029  */
2030 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2031 {
2032 	int n, val;
2033 	int min_val = INT_MAX;
2034 	int best_node = -1;
2035 
2036 	/* Use the local node if we haven't already */
2037 	if (!node_isset(node, *used_node_mask)) {
2038 		node_set(node, *used_node_mask);
2039 		return node;
2040 	}
2041 
2042 	for_each_node_state(n, N_HIGH_MEMORY) {
2043 		cpumask_t tmp;
2044 
2045 		/* Don't want a node to appear more than once */
2046 		if (node_isset(n, *used_node_mask))
2047 			continue;
2048 
2049 		/* Use the distance array to find the distance */
2050 		val = node_distance(node, n);
2051 
2052 		/* Penalize nodes under us ("prefer the next node") */
2053 		val += (n < node);
2054 
2055 		/* Give preference to headless and unused nodes */
2056 		tmp = node_to_cpumask(n);
2057 		if (!cpus_empty(tmp))
2058 			val += PENALTY_FOR_NODE_WITH_CPUS;
2059 
2060 		/* Slight preference for less loaded node */
2061 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2062 		val += node_load[n];
2063 
2064 		if (val < min_val) {
2065 			min_val = val;
2066 			best_node = n;
2067 		}
2068 	}
2069 
2070 	if (best_node >= 0)
2071 		node_set(best_node, *used_node_mask);
2072 
2073 	return best_node;
2074 }
2075 
2076 
2077 /*
2078  * Build zonelists ordered by node and zones within node.
2079  * This results in maximum locality--normal zone overflows into local
2080  * DMA zone, if any--but risks exhausting DMA zone.
2081  */
2082 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2083 {
2084 	enum zone_type i;
2085 	int j;
2086 	struct zonelist *zonelist;
2087 
2088 	for (i = 0; i < MAX_NR_ZONES; i++) {
2089 		zonelist = pgdat->node_zonelists + i;
2090 		for (j = 0; zonelist->zones[j] != NULL; j++)
2091 			;
2092  		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2093 		zonelist->zones[j] = NULL;
2094 	}
2095 }
2096 
2097 /*
2098  * Build gfp_thisnode zonelists
2099  */
2100 static void build_thisnode_zonelists(pg_data_t *pgdat)
2101 {
2102 	enum zone_type i;
2103 	int j;
2104 	struct zonelist *zonelist;
2105 
2106 	for (i = 0; i < MAX_NR_ZONES; i++) {
2107 		zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2108 		j = build_zonelists_node(pgdat, zonelist, 0, i);
2109 		zonelist->zones[j] = NULL;
2110 	}
2111 }
2112 
2113 /*
2114  * Build zonelists ordered by zone and nodes within zones.
2115  * This results in conserving DMA zone[s] until all Normal memory is
2116  * exhausted, but results in overflowing to remote node while memory
2117  * may still exist in local DMA zone.
2118  */
2119 static int node_order[MAX_NUMNODES];
2120 
2121 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2122 {
2123 	enum zone_type i;
2124 	int pos, j, node;
2125 	int zone_type;		/* needs to be signed */
2126 	struct zone *z;
2127 	struct zonelist *zonelist;
2128 
2129 	for (i = 0; i < MAX_NR_ZONES; i++) {
2130 		zonelist = pgdat->node_zonelists + i;
2131 		pos = 0;
2132 		for (zone_type = i; zone_type >= 0; zone_type--) {
2133 			for (j = 0; j < nr_nodes; j++) {
2134 				node = node_order[j];
2135 				z = &NODE_DATA(node)->node_zones[zone_type];
2136 				if (populated_zone(z)) {
2137 					zonelist->zones[pos++] = z;
2138 					check_highest_zone(zone_type);
2139 				}
2140 			}
2141 		}
2142 		zonelist->zones[pos] = NULL;
2143 	}
2144 }
2145 
2146 static int default_zonelist_order(void)
2147 {
2148 	int nid, zone_type;
2149 	unsigned long low_kmem_size,total_size;
2150 	struct zone *z;
2151 	int average_size;
2152 	/*
2153          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2154 	 * If they are really small and used heavily, the system can fall
2155 	 * into OOM very easily.
2156 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2157 	 */
2158 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2159 	low_kmem_size = 0;
2160 	total_size = 0;
2161 	for_each_online_node(nid) {
2162 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2163 			z = &NODE_DATA(nid)->node_zones[zone_type];
2164 			if (populated_zone(z)) {
2165 				if (zone_type < ZONE_NORMAL)
2166 					low_kmem_size += z->present_pages;
2167 				total_size += z->present_pages;
2168 			}
2169 		}
2170 	}
2171 	if (!low_kmem_size ||  /* there are no DMA area. */
2172 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2173 		return ZONELIST_ORDER_NODE;
2174 	/*
2175 	 * look into each node's config.
2176   	 * If there is a node whose DMA/DMA32 memory is very big area on
2177  	 * local memory, NODE_ORDER may be suitable.
2178          */
2179 	average_size = total_size /
2180 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2181 	for_each_online_node(nid) {
2182 		low_kmem_size = 0;
2183 		total_size = 0;
2184 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2185 			z = &NODE_DATA(nid)->node_zones[zone_type];
2186 			if (populated_zone(z)) {
2187 				if (zone_type < ZONE_NORMAL)
2188 					low_kmem_size += z->present_pages;
2189 				total_size += z->present_pages;
2190 			}
2191 		}
2192 		if (low_kmem_size &&
2193 		    total_size > average_size && /* ignore small node */
2194 		    low_kmem_size > total_size * 70/100)
2195 			return ZONELIST_ORDER_NODE;
2196 	}
2197 	return ZONELIST_ORDER_ZONE;
2198 }
2199 
2200 static void set_zonelist_order(void)
2201 {
2202 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2203 		current_zonelist_order = default_zonelist_order();
2204 	else
2205 		current_zonelist_order = user_zonelist_order;
2206 }
2207 
2208 static void build_zonelists(pg_data_t *pgdat)
2209 {
2210 	int j, node, load;
2211 	enum zone_type i;
2212 	nodemask_t used_mask;
2213 	int local_node, prev_node;
2214 	struct zonelist *zonelist;
2215 	int order = current_zonelist_order;
2216 
2217 	/* initialize zonelists */
2218 	for (i = 0; i < MAX_ZONELISTS; i++) {
2219 		zonelist = pgdat->node_zonelists + i;
2220 		zonelist->zones[0] = NULL;
2221 	}
2222 
2223 	/* NUMA-aware ordering of nodes */
2224 	local_node = pgdat->node_id;
2225 	load = num_online_nodes();
2226 	prev_node = local_node;
2227 	nodes_clear(used_mask);
2228 
2229 	memset(node_load, 0, sizeof(node_load));
2230 	memset(node_order, 0, sizeof(node_order));
2231 	j = 0;
2232 
2233 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2234 		int distance = node_distance(local_node, node);
2235 
2236 		/*
2237 		 * If another node is sufficiently far away then it is better
2238 		 * to reclaim pages in a zone before going off node.
2239 		 */
2240 		if (distance > RECLAIM_DISTANCE)
2241 			zone_reclaim_mode = 1;
2242 
2243 		/*
2244 		 * We don't want to pressure a particular node.
2245 		 * So adding penalty to the first node in same
2246 		 * distance group to make it round-robin.
2247 		 */
2248 		if (distance != node_distance(local_node, prev_node))
2249 			node_load[node] = load;
2250 
2251 		prev_node = node;
2252 		load--;
2253 		if (order == ZONELIST_ORDER_NODE)
2254 			build_zonelists_in_node_order(pgdat, node);
2255 		else
2256 			node_order[j++] = node;	/* remember order */
2257 	}
2258 
2259 	if (order == ZONELIST_ORDER_ZONE) {
2260 		/* calculate node order -- i.e., DMA last! */
2261 		build_zonelists_in_zone_order(pgdat, j);
2262 	}
2263 
2264 	build_thisnode_zonelists(pgdat);
2265 }
2266 
2267 /* Construct the zonelist performance cache - see further mmzone.h */
2268 static void build_zonelist_cache(pg_data_t *pgdat)
2269 {
2270 	int i;
2271 
2272 	for (i = 0; i < MAX_NR_ZONES; i++) {
2273 		struct zonelist *zonelist;
2274 		struct zonelist_cache *zlc;
2275 		struct zone **z;
2276 
2277 		zonelist = pgdat->node_zonelists + i;
2278 		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2279 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2280 		for (z = zonelist->zones; *z; z++)
2281 			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2282 	}
2283 }
2284 
2285 
2286 #else	/* CONFIG_NUMA */
2287 
2288 static void set_zonelist_order(void)
2289 {
2290 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2291 }
2292 
2293 static void build_zonelists(pg_data_t *pgdat)
2294 {
2295 	int node, local_node;
2296 	enum zone_type i,j;
2297 
2298 	local_node = pgdat->node_id;
2299 	for (i = 0; i < MAX_NR_ZONES; i++) {
2300 		struct zonelist *zonelist;
2301 
2302 		zonelist = pgdat->node_zonelists + i;
2303 
2304  		j = build_zonelists_node(pgdat, zonelist, 0, i);
2305  		/*
2306  		 * Now we build the zonelist so that it contains the zones
2307  		 * of all the other nodes.
2308  		 * We don't want to pressure a particular node, so when
2309  		 * building the zones for node N, we make sure that the
2310  		 * zones coming right after the local ones are those from
2311  		 * node N+1 (modulo N)
2312  		 */
2313 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2314 			if (!node_online(node))
2315 				continue;
2316 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2317 		}
2318 		for (node = 0; node < local_node; node++) {
2319 			if (!node_online(node))
2320 				continue;
2321 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2322 		}
2323 
2324 		zonelist->zones[j] = NULL;
2325 	}
2326 }
2327 
2328 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2329 static void build_zonelist_cache(pg_data_t *pgdat)
2330 {
2331 	int i;
2332 
2333 	for (i = 0; i < MAX_NR_ZONES; i++)
2334 		pgdat->node_zonelists[i].zlcache_ptr = NULL;
2335 }
2336 
2337 #endif	/* CONFIG_NUMA */
2338 
2339 /* return values int ....just for stop_machine_run() */
2340 static int __build_all_zonelists(void *dummy)
2341 {
2342 	int nid;
2343 
2344 	for_each_online_node(nid) {
2345 		pg_data_t *pgdat = NODE_DATA(nid);
2346 
2347 		build_zonelists(pgdat);
2348 		build_zonelist_cache(pgdat);
2349 	}
2350 	return 0;
2351 }
2352 
2353 void build_all_zonelists(void)
2354 {
2355 	set_zonelist_order();
2356 
2357 	if (system_state == SYSTEM_BOOTING) {
2358 		__build_all_zonelists(NULL);
2359 		cpuset_init_current_mems_allowed();
2360 	} else {
2361 		/* we have to stop all cpus to guaranntee there is no user
2362 		   of zonelist */
2363 		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2364 		/* cpuset refresh routine should be here */
2365 	}
2366 	vm_total_pages = nr_free_pagecache_pages();
2367 	/*
2368 	 * Disable grouping by mobility if the number of pages in the
2369 	 * system is too low to allow the mechanism to work. It would be
2370 	 * more accurate, but expensive to check per-zone. This check is
2371 	 * made on memory-hotadd so a system can start with mobility
2372 	 * disabled and enable it later
2373 	 */
2374 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2375 		page_group_by_mobility_disabled = 1;
2376 	else
2377 		page_group_by_mobility_disabled = 0;
2378 
2379 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2380 		"Total pages: %ld\n",
2381 			num_online_nodes(),
2382 			zonelist_order_name[current_zonelist_order],
2383 			page_group_by_mobility_disabled ? "off" : "on",
2384 			vm_total_pages);
2385 #ifdef CONFIG_NUMA
2386 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2387 #endif
2388 }
2389 
2390 /*
2391  * Helper functions to size the waitqueue hash table.
2392  * Essentially these want to choose hash table sizes sufficiently
2393  * large so that collisions trying to wait on pages are rare.
2394  * But in fact, the number of active page waitqueues on typical
2395  * systems is ridiculously low, less than 200. So this is even
2396  * conservative, even though it seems large.
2397  *
2398  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2399  * waitqueues, i.e. the size of the waitq table given the number of pages.
2400  */
2401 #define PAGES_PER_WAITQUEUE	256
2402 
2403 #ifndef CONFIG_MEMORY_HOTPLUG
2404 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2405 {
2406 	unsigned long size = 1;
2407 
2408 	pages /= PAGES_PER_WAITQUEUE;
2409 
2410 	while (size < pages)
2411 		size <<= 1;
2412 
2413 	/*
2414 	 * Once we have dozens or even hundreds of threads sleeping
2415 	 * on IO we've got bigger problems than wait queue collision.
2416 	 * Limit the size of the wait table to a reasonable size.
2417 	 */
2418 	size = min(size, 4096UL);
2419 
2420 	return max(size, 4UL);
2421 }
2422 #else
2423 /*
2424  * A zone's size might be changed by hot-add, so it is not possible to determine
2425  * a suitable size for its wait_table.  So we use the maximum size now.
2426  *
2427  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2428  *
2429  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2430  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2431  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2432  *
2433  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2434  * or more by the traditional way. (See above).  It equals:
2435  *
2436  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2437  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2438  *    powerpc (64K page size)             : =  (32G +16M)byte.
2439  */
2440 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2441 {
2442 	return 4096UL;
2443 }
2444 #endif
2445 
2446 /*
2447  * This is an integer logarithm so that shifts can be used later
2448  * to extract the more random high bits from the multiplicative
2449  * hash function before the remainder is taken.
2450  */
2451 static inline unsigned long wait_table_bits(unsigned long size)
2452 {
2453 	return ffz(~size);
2454 }
2455 
2456 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2457 
2458 /*
2459  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2460  * of blocks reserved is based on zone->pages_min. The memory within the
2461  * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2462  * higher will lead to a bigger reserve which will get freed as contiguous
2463  * blocks as reclaim kicks in
2464  */
2465 static void setup_zone_migrate_reserve(struct zone *zone)
2466 {
2467 	unsigned long start_pfn, pfn, end_pfn;
2468 	struct page *page;
2469 	unsigned long reserve, block_migratetype;
2470 
2471 	/* Get the start pfn, end pfn and the number of blocks to reserve */
2472 	start_pfn = zone->zone_start_pfn;
2473 	end_pfn = start_pfn + zone->spanned_pages;
2474 	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2475 							pageblock_order;
2476 
2477 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2478 		if (!pfn_valid(pfn))
2479 			continue;
2480 		page = pfn_to_page(pfn);
2481 
2482 		/* Blocks with reserved pages will never free, skip them. */
2483 		if (PageReserved(page))
2484 			continue;
2485 
2486 		block_migratetype = get_pageblock_migratetype(page);
2487 
2488 		/* If this block is reserved, account for it */
2489 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2490 			reserve--;
2491 			continue;
2492 		}
2493 
2494 		/* Suitable for reserving if this block is movable */
2495 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2496 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2497 			move_freepages_block(zone, page, MIGRATE_RESERVE);
2498 			reserve--;
2499 			continue;
2500 		}
2501 
2502 		/*
2503 		 * If the reserve is met and this is a previous reserved block,
2504 		 * take it back
2505 		 */
2506 		if (block_migratetype == MIGRATE_RESERVE) {
2507 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2508 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2509 		}
2510 	}
2511 }
2512 
2513 /*
2514  * Initially all pages are reserved - free ones are freed
2515  * up by free_all_bootmem() once the early boot process is
2516  * done. Non-atomic initialization, single-pass.
2517  */
2518 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2519 		unsigned long start_pfn, enum memmap_context context)
2520 {
2521 	struct page *page;
2522 	unsigned long end_pfn = start_pfn + size;
2523 	unsigned long pfn;
2524 
2525 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2526 		/*
2527 		 * There can be holes in boot-time mem_map[]s
2528 		 * handed to this function.  They do not
2529 		 * exist on hotplugged memory.
2530 		 */
2531 		if (context == MEMMAP_EARLY) {
2532 			if (!early_pfn_valid(pfn))
2533 				continue;
2534 			if (!early_pfn_in_nid(pfn, nid))
2535 				continue;
2536 		}
2537 		page = pfn_to_page(pfn);
2538 		set_page_links(page, zone, nid, pfn);
2539 		init_page_count(page);
2540 		reset_page_mapcount(page);
2541 		SetPageReserved(page);
2542 
2543 		/*
2544 		 * Mark the block movable so that blocks are reserved for
2545 		 * movable at startup. This will force kernel allocations
2546 		 * to reserve their blocks rather than leaking throughout
2547 		 * the address space during boot when many long-lived
2548 		 * kernel allocations are made. Later some blocks near
2549 		 * the start are marked MIGRATE_RESERVE by
2550 		 * setup_zone_migrate_reserve()
2551 		 */
2552 		if ((pfn & (pageblock_nr_pages-1)))
2553 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2554 
2555 		INIT_LIST_HEAD(&page->lru);
2556 #ifdef WANT_PAGE_VIRTUAL
2557 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2558 		if (!is_highmem_idx(zone))
2559 			set_page_address(page, __va(pfn << PAGE_SHIFT));
2560 #endif
2561 	}
2562 }
2563 
2564 static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2565 				struct zone *zone, unsigned long size)
2566 {
2567 	int order, t;
2568 	for_each_migratetype_order(order, t) {
2569 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2570 		zone->free_area[order].nr_free = 0;
2571 	}
2572 }
2573 
2574 #ifndef __HAVE_ARCH_MEMMAP_INIT
2575 #define memmap_init(size, nid, zone, start_pfn) \
2576 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2577 #endif
2578 
2579 static int __devinit zone_batchsize(struct zone *zone)
2580 {
2581 	int batch;
2582 
2583 	/*
2584 	 * The per-cpu-pages pools are set to around 1000th of the
2585 	 * size of the zone.  But no more than 1/2 of a meg.
2586 	 *
2587 	 * OK, so we don't know how big the cache is.  So guess.
2588 	 */
2589 	batch = zone->present_pages / 1024;
2590 	if (batch * PAGE_SIZE > 512 * 1024)
2591 		batch = (512 * 1024) / PAGE_SIZE;
2592 	batch /= 4;		/* We effectively *= 4 below */
2593 	if (batch < 1)
2594 		batch = 1;
2595 
2596 	/*
2597 	 * Clamp the batch to a 2^n - 1 value. Having a power
2598 	 * of 2 value was found to be more likely to have
2599 	 * suboptimal cache aliasing properties in some cases.
2600 	 *
2601 	 * For example if 2 tasks are alternately allocating
2602 	 * batches of pages, one task can end up with a lot
2603 	 * of pages of one half of the possible page colors
2604 	 * and the other with pages of the other colors.
2605 	 */
2606 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2607 
2608 	return batch;
2609 }
2610 
2611 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2612 {
2613 	struct per_cpu_pages *pcp;
2614 
2615 	memset(p, 0, sizeof(*p));
2616 
2617 	pcp = &p->pcp[0];		/* hot */
2618 	pcp->count = 0;
2619 	pcp->high = 6 * batch;
2620 	pcp->batch = max(1UL, 1 * batch);
2621 	INIT_LIST_HEAD(&pcp->list);
2622 
2623 	pcp = &p->pcp[1];		/* cold*/
2624 	pcp->count = 0;
2625 	pcp->high = 2 * batch;
2626 	pcp->batch = max(1UL, batch/2);
2627 	INIT_LIST_HEAD(&pcp->list);
2628 }
2629 
2630 /*
2631  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2632  * to the value high for the pageset p.
2633  */
2634 
2635 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2636 				unsigned long high)
2637 {
2638 	struct per_cpu_pages *pcp;
2639 
2640 	pcp = &p->pcp[0]; /* hot list */
2641 	pcp->high = high;
2642 	pcp->batch = max(1UL, high/4);
2643 	if ((high/4) > (PAGE_SHIFT * 8))
2644 		pcp->batch = PAGE_SHIFT * 8;
2645 }
2646 
2647 
2648 #ifdef CONFIG_NUMA
2649 /*
2650  * Boot pageset table. One per cpu which is going to be used for all
2651  * zones and all nodes. The parameters will be set in such a way
2652  * that an item put on a list will immediately be handed over to
2653  * the buddy list. This is safe since pageset manipulation is done
2654  * with interrupts disabled.
2655  *
2656  * Some NUMA counter updates may also be caught by the boot pagesets.
2657  *
2658  * The boot_pagesets must be kept even after bootup is complete for
2659  * unused processors and/or zones. They do play a role for bootstrapping
2660  * hotplugged processors.
2661  *
2662  * zoneinfo_show() and maybe other functions do
2663  * not check if the processor is online before following the pageset pointer.
2664  * Other parts of the kernel may not check if the zone is available.
2665  */
2666 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2667 
2668 /*
2669  * Dynamically allocate memory for the
2670  * per cpu pageset array in struct zone.
2671  */
2672 static int __cpuinit process_zones(int cpu)
2673 {
2674 	struct zone *zone, *dzone;
2675 	int node = cpu_to_node(cpu);
2676 
2677 	node_set_state(node, N_CPU);	/* this node has a cpu */
2678 
2679 	for_each_zone(zone) {
2680 
2681 		if (!populated_zone(zone))
2682 			continue;
2683 
2684 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2685 					 GFP_KERNEL, node);
2686 		if (!zone_pcp(zone, cpu))
2687 			goto bad;
2688 
2689 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2690 
2691 		if (percpu_pagelist_fraction)
2692 			setup_pagelist_highmark(zone_pcp(zone, cpu),
2693 			 	(zone->present_pages / percpu_pagelist_fraction));
2694 	}
2695 
2696 	return 0;
2697 bad:
2698 	for_each_zone(dzone) {
2699 		if (!populated_zone(dzone))
2700 			continue;
2701 		if (dzone == zone)
2702 			break;
2703 		kfree(zone_pcp(dzone, cpu));
2704 		zone_pcp(dzone, cpu) = NULL;
2705 	}
2706 	return -ENOMEM;
2707 }
2708 
2709 static inline void free_zone_pagesets(int cpu)
2710 {
2711 	struct zone *zone;
2712 
2713 	for_each_zone(zone) {
2714 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2715 
2716 		/* Free per_cpu_pageset if it is slab allocated */
2717 		if (pset != &boot_pageset[cpu])
2718 			kfree(pset);
2719 		zone_pcp(zone, cpu) = NULL;
2720 	}
2721 }
2722 
2723 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2724 		unsigned long action,
2725 		void *hcpu)
2726 {
2727 	int cpu = (long)hcpu;
2728 	int ret = NOTIFY_OK;
2729 
2730 	switch (action) {
2731 	case CPU_UP_PREPARE:
2732 	case CPU_UP_PREPARE_FROZEN:
2733 		if (process_zones(cpu))
2734 			ret = NOTIFY_BAD;
2735 		break;
2736 	case CPU_UP_CANCELED:
2737 	case CPU_UP_CANCELED_FROZEN:
2738 	case CPU_DEAD:
2739 	case CPU_DEAD_FROZEN:
2740 		free_zone_pagesets(cpu);
2741 		break;
2742 	default:
2743 		break;
2744 	}
2745 	return ret;
2746 }
2747 
2748 static struct notifier_block __cpuinitdata pageset_notifier =
2749 	{ &pageset_cpuup_callback, NULL, 0 };
2750 
2751 void __init setup_per_cpu_pageset(void)
2752 {
2753 	int err;
2754 
2755 	/* Initialize per_cpu_pageset for cpu 0.
2756 	 * A cpuup callback will do this for every cpu
2757 	 * as it comes online
2758 	 */
2759 	err = process_zones(smp_processor_id());
2760 	BUG_ON(err);
2761 	register_cpu_notifier(&pageset_notifier);
2762 }
2763 
2764 #endif
2765 
2766 static noinline __init_refok
2767 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2768 {
2769 	int i;
2770 	struct pglist_data *pgdat = zone->zone_pgdat;
2771 	size_t alloc_size;
2772 
2773 	/*
2774 	 * The per-page waitqueue mechanism uses hashed waitqueues
2775 	 * per zone.
2776 	 */
2777 	zone->wait_table_hash_nr_entries =
2778 		 wait_table_hash_nr_entries(zone_size_pages);
2779 	zone->wait_table_bits =
2780 		wait_table_bits(zone->wait_table_hash_nr_entries);
2781 	alloc_size = zone->wait_table_hash_nr_entries
2782 					* sizeof(wait_queue_head_t);
2783 
2784  	if (system_state == SYSTEM_BOOTING) {
2785 		zone->wait_table = (wait_queue_head_t *)
2786 			alloc_bootmem_node(pgdat, alloc_size);
2787 	} else {
2788 		/*
2789 		 * This case means that a zone whose size was 0 gets new memory
2790 		 * via memory hot-add.
2791 		 * But it may be the case that a new node was hot-added.  In
2792 		 * this case vmalloc() will not be able to use this new node's
2793 		 * memory - this wait_table must be initialized to use this new
2794 		 * node itself as well.
2795 		 * To use this new node's memory, further consideration will be
2796 		 * necessary.
2797 		 */
2798 		zone->wait_table = vmalloc(alloc_size);
2799 	}
2800 	if (!zone->wait_table)
2801 		return -ENOMEM;
2802 
2803 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2804 		init_waitqueue_head(zone->wait_table + i);
2805 
2806 	return 0;
2807 }
2808 
2809 static __meminit void zone_pcp_init(struct zone *zone)
2810 {
2811 	int cpu;
2812 	unsigned long batch = zone_batchsize(zone);
2813 
2814 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2815 #ifdef CONFIG_NUMA
2816 		/* Early boot. Slab allocator not functional yet */
2817 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2818 		setup_pageset(&boot_pageset[cpu],0);
2819 #else
2820 		setup_pageset(zone_pcp(zone,cpu), batch);
2821 #endif
2822 	}
2823 	if (zone->present_pages)
2824 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2825 			zone->name, zone->present_pages, batch);
2826 }
2827 
2828 __meminit int init_currently_empty_zone(struct zone *zone,
2829 					unsigned long zone_start_pfn,
2830 					unsigned long size,
2831 					enum memmap_context context)
2832 {
2833 	struct pglist_data *pgdat = zone->zone_pgdat;
2834 	int ret;
2835 	ret = zone_wait_table_init(zone, size);
2836 	if (ret)
2837 		return ret;
2838 	pgdat->nr_zones = zone_idx(zone) + 1;
2839 
2840 	zone->zone_start_pfn = zone_start_pfn;
2841 
2842 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2843 
2844 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2845 
2846 	return 0;
2847 }
2848 
2849 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2850 /*
2851  * Basic iterator support. Return the first range of PFNs for a node
2852  * Note: nid == MAX_NUMNODES returns first region regardless of node
2853  */
2854 static int __meminit first_active_region_index_in_nid(int nid)
2855 {
2856 	int i;
2857 
2858 	for (i = 0; i < nr_nodemap_entries; i++)
2859 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2860 			return i;
2861 
2862 	return -1;
2863 }
2864 
2865 /*
2866  * Basic iterator support. Return the next active range of PFNs for a node
2867  * Note: nid == MAX_NUMNODES returns next region regardles of node
2868  */
2869 static int __meminit next_active_region_index_in_nid(int index, int nid)
2870 {
2871 	for (index = index + 1; index < nr_nodemap_entries; index++)
2872 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2873 			return index;
2874 
2875 	return -1;
2876 }
2877 
2878 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2879 /*
2880  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2881  * Architectures may implement their own version but if add_active_range()
2882  * was used and there are no special requirements, this is a convenient
2883  * alternative
2884  */
2885 int __meminit early_pfn_to_nid(unsigned long pfn)
2886 {
2887 	int i;
2888 
2889 	for (i = 0; i < nr_nodemap_entries; i++) {
2890 		unsigned long start_pfn = early_node_map[i].start_pfn;
2891 		unsigned long end_pfn = early_node_map[i].end_pfn;
2892 
2893 		if (start_pfn <= pfn && pfn < end_pfn)
2894 			return early_node_map[i].nid;
2895 	}
2896 
2897 	return 0;
2898 }
2899 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2900 
2901 /* Basic iterator support to walk early_node_map[] */
2902 #define for_each_active_range_index_in_nid(i, nid) \
2903 	for (i = first_active_region_index_in_nid(nid); i != -1; \
2904 				i = next_active_region_index_in_nid(i, nid))
2905 
2906 /**
2907  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2908  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2909  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2910  *
2911  * If an architecture guarantees that all ranges registered with
2912  * add_active_ranges() contain no holes and may be freed, this
2913  * this function may be used instead of calling free_bootmem() manually.
2914  */
2915 void __init free_bootmem_with_active_regions(int nid,
2916 						unsigned long max_low_pfn)
2917 {
2918 	int i;
2919 
2920 	for_each_active_range_index_in_nid(i, nid) {
2921 		unsigned long size_pages = 0;
2922 		unsigned long end_pfn = early_node_map[i].end_pfn;
2923 
2924 		if (early_node_map[i].start_pfn >= max_low_pfn)
2925 			continue;
2926 
2927 		if (end_pfn > max_low_pfn)
2928 			end_pfn = max_low_pfn;
2929 
2930 		size_pages = end_pfn - early_node_map[i].start_pfn;
2931 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2932 				PFN_PHYS(early_node_map[i].start_pfn),
2933 				size_pages << PAGE_SHIFT);
2934 	}
2935 }
2936 
2937 /**
2938  * sparse_memory_present_with_active_regions - Call memory_present for each active range
2939  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2940  *
2941  * If an architecture guarantees that all ranges registered with
2942  * add_active_ranges() contain no holes and may be freed, this
2943  * function may be used instead of calling memory_present() manually.
2944  */
2945 void __init sparse_memory_present_with_active_regions(int nid)
2946 {
2947 	int i;
2948 
2949 	for_each_active_range_index_in_nid(i, nid)
2950 		memory_present(early_node_map[i].nid,
2951 				early_node_map[i].start_pfn,
2952 				early_node_map[i].end_pfn);
2953 }
2954 
2955 /**
2956  * push_node_boundaries - Push node boundaries to at least the requested boundary
2957  * @nid: The nid of the node to push the boundary for
2958  * @start_pfn: The start pfn of the node
2959  * @end_pfn: The end pfn of the node
2960  *
2961  * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2962  * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2963  * be hotplugged even though no physical memory exists. This function allows
2964  * an arch to push out the node boundaries so mem_map is allocated that can
2965  * be used later.
2966  */
2967 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2968 void __init push_node_boundaries(unsigned int nid,
2969 		unsigned long start_pfn, unsigned long end_pfn)
2970 {
2971 	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2972 			nid, start_pfn, end_pfn);
2973 
2974 	/* Initialise the boundary for this node if necessary */
2975 	if (node_boundary_end_pfn[nid] == 0)
2976 		node_boundary_start_pfn[nid] = -1UL;
2977 
2978 	/* Update the boundaries */
2979 	if (node_boundary_start_pfn[nid] > start_pfn)
2980 		node_boundary_start_pfn[nid] = start_pfn;
2981 	if (node_boundary_end_pfn[nid] < end_pfn)
2982 		node_boundary_end_pfn[nid] = end_pfn;
2983 }
2984 
2985 /* If necessary, push the node boundary out for reserve hotadd */
2986 static void __meminit account_node_boundary(unsigned int nid,
2987 		unsigned long *start_pfn, unsigned long *end_pfn)
2988 {
2989 	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2990 			nid, *start_pfn, *end_pfn);
2991 
2992 	/* Return if boundary information has not been provided */
2993 	if (node_boundary_end_pfn[nid] == 0)
2994 		return;
2995 
2996 	/* Check the boundaries and update if necessary */
2997 	if (node_boundary_start_pfn[nid] < *start_pfn)
2998 		*start_pfn = node_boundary_start_pfn[nid];
2999 	if (node_boundary_end_pfn[nid] > *end_pfn)
3000 		*end_pfn = node_boundary_end_pfn[nid];
3001 }
3002 #else
3003 void __init push_node_boundaries(unsigned int nid,
3004 		unsigned long start_pfn, unsigned long end_pfn) {}
3005 
3006 static void __meminit account_node_boundary(unsigned int nid,
3007 		unsigned long *start_pfn, unsigned long *end_pfn) {}
3008 #endif
3009 
3010 
3011 /**
3012  * get_pfn_range_for_nid - Return the start and end page frames for a node
3013  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3014  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3015  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3016  *
3017  * It returns the start and end page frame of a node based on information
3018  * provided by an arch calling add_active_range(). If called for a node
3019  * with no available memory, a warning is printed and the start and end
3020  * PFNs will be 0.
3021  */
3022 void __meminit get_pfn_range_for_nid(unsigned int nid,
3023 			unsigned long *start_pfn, unsigned long *end_pfn)
3024 {
3025 	int i;
3026 	*start_pfn = -1UL;
3027 	*end_pfn = 0;
3028 
3029 	for_each_active_range_index_in_nid(i, nid) {
3030 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3031 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3032 	}
3033 
3034 	if (*start_pfn == -1UL)
3035 		*start_pfn = 0;
3036 
3037 	/* Push the node boundaries out if requested */
3038 	account_node_boundary(nid, start_pfn, end_pfn);
3039 }
3040 
3041 /*
3042  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3043  * assumption is made that zones within a node are ordered in monotonic
3044  * increasing memory addresses so that the "highest" populated zone is used
3045  */
3046 void __init find_usable_zone_for_movable(void)
3047 {
3048 	int zone_index;
3049 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3050 		if (zone_index == ZONE_MOVABLE)
3051 			continue;
3052 
3053 		if (arch_zone_highest_possible_pfn[zone_index] >
3054 				arch_zone_lowest_possible_pfn[zone_index])
3055 			break;
3056 	}
3057 
3058 	VM_BUG_ON(zone_index == -1);
3059 	movable_zone = zone_index;
3060 }
3061 
3062 /*
3063  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3064  * because it is sized independant of architecture. Unlike the other zones,
3065  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3066  * in each node depending on the size of each node and how evenly kernelcore
3067  * is distributed. This helper function adjusts the zone ranges
3068  * provided by the architecture for a given node by using the end of the
3069  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3070  * zones within a node are in order of monotonic increases memory addresses
3071  */
3072 void __meminit adjust_zone_range_for_zone_movable(int nid,
3073 					unsigned long zone_type,
3074 					unsigned long node_start_pfn,
3075 					unsigned long node_end_pfn,
3076 					unsigned long *zone_start_pfn,
3077 					unsigned long *zone_end_pfn)
3078 {
3079 	/* Only adjust if ZONE_MOVABLE is on this node */
3080 	if (zone_movable_pfn[nid]) {
3081 		/* Size ZONE_MOVABLE */
3082 		if (zone_type == ZONE_MOVABLE) {
3083 			*zone_start_pfn = zone_movable_pfn[nid];
3084 			*zone_end_pfn = min(node_end_pfn,
3085 				arch_zone_highest_possible_pfn[movable_zone]);
3086 
3087 		/* Adjust for ZONE_MOVABLE starting within this range */
3088 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3089 				*zone_end_pfn > zone_movable_pfn[nid]) {
3090 			*zone_end_pfn = zone_movable_pfn[nid];
3091 
3092 		/* Check if this whole range is within ZONE_MOVABLE */
3093 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3094 			*zone_start_pfn = *zone_end_pfn;
3095 	}
3096 }
3097 
3098 /*
3099  * Return the number of pages a zone spans in a node, including holes
3100  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3101  */
3102 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3103 					unsigned long zone_type,
3104 					unsigned long *ignored)
3105 {
3106 	unsigned long node_start_pfn, node_end_pfn;
3107 	unsigned long zone_start_pfn, zone_end_pfn;
3108 
3109 	/* Get the start and end of the node and zone */
3110 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3111 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3112 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3113 	adjust_zone_range_for_zone_movable(nid, zone_type,
3114 				node_start_pfn, node_end_pfn,
3115 				&zone_start_pfn, &zone_end_pfn);
3116 
3117 	/* Check that this node has pages within the zone's required range */
3118 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3119 		return 0;
3120 
3121 	/* Move the zone boundaries inside the node if necessary */
3122 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3123 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3124 
3125 	/* Return the spanned pages */
3126 	return zone_end_pfn - zone_start_pfn;
3127 }
3128 
3129 /*
3130  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3131  * then all holes in the requested range will be accounted for.
3132  */
3133 unsigned long __meminit __absent_pages_in_range(int nid,
3134 				unsigned long range_start_pfn,
3135 				unsigned long range_end_pfn)
3136 {
3137 	int i = 0;
3138 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3139 	unsigned long start_pfn;
3140 
3141 	/* Find the end_pfn of the first active range of pfns in the node */
3142 	i = first_active_region_index_in_nid(nid);
3143 	if (i == -1)
3144 		return 0;
3145 
3146 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3147 
3148 	/* Account for ranges before physical memory on this node */
3149 	if (early_node_map[i].start_pfn > range_start_pfn)
3150 		hole_pages = prev_end_pfn - range_start_pfn;
3151 
3152 	/* Find all holes for the zone within the node */
3153 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3154 
3155 		/* No need to continue if prev_end_pfn is outside the zone */
3156 		if (prev_end_pfn >= range_end_pfn)
3157 			break;
3158 
3159 		/* Make sure the end of the zone is not within the hole */
3160 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3161 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3162 
3163 		/* Update the hole size cound and move on */
3164 		if (start_pfn > range_start_pfn) {
3165 			BUG_ON(prev_end_pfn > start_pfn);
3166 			hole_pages += start_pfn - prev_end_pfn;
3167 		}
3168 		prev_end_pfn = early_node_map[i].end_pfn;
3169 	}
3170 
3171 	/* Account for ranges past physical memory on this node */
3172 	if (range_end_pfn > prev_end_pfn)
3173 		hole_pages += range_end_pfn -
3174 				max(range_start_pfn, prev_end_pfn);
3175 
3176 	return hole_pages;
3177 }
3178 
3179 /**
3180  * absent_pages_in_range - Return number of page frames in holes within a range
3181  * @start_pfn: The start PFN to start searching for holes
3182  * @end_pfn: The end PFN to stop searching for holes
3183  *
3184  * It returns the number of pages frames in memory holes within a range.
3185  */
3186 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3187 							unsigned long end_pfn)
3188 {
3189 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3190 }
3191 
3192 /* Return the number of page frames in holes in a zone on a node */
3193 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3194 					unsigned long zone_type,
3195 					unsigned long *ignored)
3196 {
3197 	unsigned long node_start_pfn, node_end_pfn;
3198 	unsigned long zone_start_pfn, zone_end_pfn;
3199 
3200 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3201 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3202 							node_start_pfn);
3203 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3204 							node_end_pfn);
3205 
3206 	adjust_zone_range_for_zone_movable(nid, zone_type,
3207 			node_start_pfn, node_end_pfn,
3208 			&zone_start_pfn, &zone_end_pfn);
3209 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3210 }
3211 
3212 #else
3213 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3214 					unsigned long zone_type,
3215 					unsigned long *zones_size)
3216 {
3217 	return zones_size[zone_type];
3218 }
3219 
3220 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3221 						unsigned long zone_type,
3222 						unsigned long *zholes_size)
3223 {
3224 	if (!zholes_size)
3225 		return 0;
3226 
3227 	return zholes_size[zone_type];
3228 }
3229 
3230 #endif
3231 
3232 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3233 		unsigned long *zones_size, unsigned long *zholes_size)
3234 {
3235 	unsigned long realtotalpages, totalpages = 0;
3236 	enum zone_type i;
3237 
3238 	for (i = 0; i < MAX_NR_ZONES; i++)
3239 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3240 								zones_size);
3241 	pgdat->node_spanned_pages = totalpages;
3242 
3243 	realtotalpages = totalpages;
3244 	for (i = 0; i < MAX_NR_ZONES; i++)
3245 		realtotalpages -=
3246 			zone_absent_pages_in_node(pgdat->node_id, i,
3247 								zholes_size);
3248 	pgdat->node_present_pages = realtotalpages;
3249 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3250 							realtotalpages);
3251 }
3252 
3253 #ifndef CONFIG_SPARSEMEM
3254 /*
3255  * Calculate the size of the zone->blockflags rounded to an unsigned long
3256  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3257  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3258  * round what is now in bits to nearest long in bits, then return it in
3259  * bytes.
3260  */
3261 static unsigned long __init usemap_size(unsigned long zonesize)
3262 {
3263 	unsigned long usemapsize;
3264 
3265 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3266 	usemapsize = usemapsize >> pageblock_order;
3267 	usemapsize *= NR_PAGEBLOCK_BITS;
3268 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3269 
3270 	return usemapsize / 8;
3271 }
3272 
3273 static void __init setup_usemap(struct pglist_data *pgdat,
3274 				struct zone *zone, unsigned long zonesize)
3275 {
3276 	unsigned long usemapsize = usemap_size(zonesize);
3277 	zone->pageblock_flags = NULL;
3278 	if (usemapsize) {
3279 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3280 		memset(zone->pageblock_flags, 0, usemapsize);
3281 	}
3282 }
3283 #else
3284 static void inline setup_usemap(struct pglist_data *pgdat,
3285 				struct zone *zone, unsigned long zonesize) {}
3286 #endif /* CONFIG_SPARSEMEM */
3287 
3288 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3289 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3290 static inline void __init set_pageblock_order(unsigned int order)
3291 {
3292 	/* Check that pageblock_nr_pages has not already been setup */
3293 	if (pageblock_order)
3294 		return;
3295 
3296 	/*
3297 	 * Assume the largest contiguous order of interest is a huge page.
3298 	 * This value may be variable depending on boot parameters on IA64
3299 	 */
3300 	pageblock_order = order;
3301 }
3302 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3303 
3304 /* Defined this way to avoid accidently referencing HUGETLB_PAGE_ORDER */
3305 #define set_pageblock_order(x)	do {} while (0)
3306 
3307 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3308 
3309 /*
3310  * Set up the zone data structures:
3311  *   - mark all pages reserved
3312  *   - mark all memory queues empty
3313  *   - clear the memory bitmaps
3314  */
3315 static void __meminit free_area_init_core(struct pglist_data *pgdat,
3316 		unsigned long *zones_size, unsigned long *zholes_size)
3317 {
3318 	enum zone_type j;
3319 	int nid = pgdat->node_id;
3320 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3321 	int ret;
3322 
3323 	pgdat_resize_init(pgdat);
3324 	pgdat->nr_zones = 0;
3325 	init_waitqueue_head(&pgdat->kswapd_wait);
3326 	pgdat->kswapd_max_order = 0;
3327 
3328 	for (j = 0; j < MAX_NR_ZONES; j++) {
3329 		struct zone *zone = pgdat->node_zones + j;
3330 		unsigned long size, realsize, memmap_pages;
3331 
3332 		size = zone_spanned_pages_in_node(nid, j, zones_size);
3333 		realsize = size - zone_absent_pages_in_node(nid, j,
3334 								zholes_size);
3335 
3336 		/*
3337 		 * Adjust realsize so that it accounts for how much memory
3338 		 * is used by this zone for memmap. This affects the watermark
3339 		 * and per-cpu initialisations
3340 		 */
3341 		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3342 		if (realsize >= memmap_pages) {
3343 			realsize -= memmap_pages;
3344 			printk(KERN_DEBUG
3345 				"  %s zone: %lu pages used for memmap\n",
3346 				zone_names[j], memmap_pages);
3347 		} else
3348 			printk(KERN_WARNING
3349 				"  %s zone: %lu pages exceeds realsize %lu\n",
3350 				zone_names[j], memmap_pages, realsize);
3351 
3352 		/* Account for reserved pages */
3353 		if (j == 0 && realsize > dma_reserve) {
3354 			realsize -= dma_reserve;
3355 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3356 					zone_names[0], dma_reserve);
3357 		}
3358 
3359 		if (!is_highmem_idx(j))
3360 			nr_kernel_pages += realsize;
3361 		nr_all_pages += realsize;
3362 
3363 		zone->spanned_pages = size;
3364 		zone->present_pages = realsize;
3365 #ifdef CONFIG_NUMA
3366 		zone->node = nid;
3367 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3368 						/ 100;
3369 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3370 #endif
3371 		zone->name = zone_names[j];
3372 		spin_lock_init(&zone->lock);
3373 		spin_lock_init(&zone->lru_lock);
3374 		zone_seqlock_init(zone);
3375 		zone->zone_pgdat = pgdat;
3376 
3377 		zone->prev_priority = DEF_PRIORITY;
3378 
3379 		zone_pcp_init(zone);
3380 		INIT_LIST_HEAD(&zone->active_list);
3381 		INIT_LIST_HEAD(&zone->inactive_list);
3382 		zone->nr_scan_active = 0;
3383 		zone->nr_scan_inactive = 0;
3384 		zap_zone_vm_stats(zone);
3385 		zone->flags = 0;
3386 		if (!size)
3387 			continue;
3388 
3389 		set_pageblock_order(HUGETLB_PAGE_ORDER);
3390 		setup_usemap(pgdat, zone, size);
3391 		ret = init_currently_empty_zone(zone, zone_start_pfn,
3392 						size, MEMMAP_EARLY);
3393 		BUG_ON(ret);
3394 		zone_start_pfn += size;
3395 	}
3396 }
3397 
3398 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3399 {
3400 	/* Skip empty nodes */
3401 	if (!pgdat->node_spanned_pages)
3402 		return;
3403 
3404 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3405 	/* ia64 gets its own node_mem_map, before this, without bootmem */
3406 	if (!pgdat->node_mem_map) {
3407 		unsigned long size, start, end;
3408 		struct page *map;
3409 
3410 		/*
3411 		 * The zone's endpoints aren't required to be MAX_ORDER
3412 		 * aligned but the node_mem_map endpoints must be in order
3413 		 * for the buddy allocator to function correctly.
3414 		 */
3415 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3416 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3417 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3418 		size =  (end - start) * sizeof(struct page);
3419 		map = alloc_remap(pgdat->node_id, size);
3420 		if (!map)
3421 			map = alloc_bootmem_node(pgdat, size);
3422 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3423 	}
3424 #ifndef CONFIG_NEED_MULTIPLE_NODES
3425 	/*
3426 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3427 	 */
3428 	if (pgdat == NODE_DATA(0)) {
3429 		mem_map = NODE_DATA(0)->node_mem_map;
3430 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3431 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3432 			mem_map -= pgdat->node_start_pfn;
3433 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3434 	}
3435 #endif
3436 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3437 }
3438 
3439 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3440 		unsigned long *zones_size, unsigned long node_start_pfn,
3441 		unsigned long *zholes_size)
3442 {
3443 	pgdat->node_id = nid;
3444 	pgdat->node_start_pfn = node_start_pfn;
3445 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3446 
3447 	alloc_node_mem_map(pgdat);
3448 
3449 	free_area_init_core(pgdat, zones_size, zholes_size);
3450 }
3451 
3452 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3453 
3454 #if MAX_NUMNODES > 1
3455 /*
3456  * Figure out the number of possible node ids.
3457  */
3458 static void __init setup_nr_node_ids(void)
3459 {
3460 	unsigned int node;
3461 	unsigned int highest = 0;
3462 
3463 	for_each_node_mask(node, node_possible_map)
3464 		highest = node;
3465 	nr_node_ids = highest + 1;
3466 }
3467 #else
3468 static inline void setup_nr_node_ids(void)
3469 {
3470 }
3471 #endif
3472 
3473 /**
3474  * add_active_range - Register a range of PFNs backed by physical memory
3475  * @nid: The node ID the range resides on
3476  * @start_pfn: The start PFN of the available physical memory
3477  * @end_pfn: The end PFN of the available physical memory
3478  *
3479  * These ranges are stored in an early_node_map[] and later used by
3480  * free_area_init_nodes() to calculate zone sizes and holes. If the
3481  * range spans a memory hole, it is up to the architecture to ensure
3482  * the memory is not freed by the bootmem allocator. If possible
3483  * the range being registered will be merged with existing ranges.
3484  */
3485 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3486 						unsigned long end_pfn)
3487 {
3488 	int i;
3489 
3490 	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3491 			  "%d entries of %d used\n",
3492 			  nid, start_pfn, end_pfn,
3493 			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3494 
3495 	/* Merge with existing active regions if possible */
3496 	for (i = 0; i < nr_nodemap_entries; i++) {
3497 		if (early_node_map[i].nid != nid)
3498 			continue;
3499 
3500 		/* Skip if an existing region covers this new one */
3501 		if (start_pfn >= early_node_map[i].start_pfn &&
3502 				end_pfn <= early_node_map[i].end_pfn)
3503 			return;
3504 
3505 		/* Merge forward if suitable */
3506 		if (start_pfn <= early_node_map[i].end_pfn &&
3507 				end_pfn > early_node_map[i].end_pfn) {
3508 			early_node_map[i].end_pfn = end_pfn;
3509 			return;
3510 		}
3511 
3512 		/* Merge backward if suitable */
3513 		if (start_pfn < early_node_map[i].end_pfn &&
3514 				end_pfn >= early_node_map[i].start_pfn) {
3515 			early_node_map[i].start_pfn = start_pfn;
3516 			return;
3517 		}
3518 	}
3519 
3520 	/* Check that early_node_map is large enough */
3521 	if (i >= MAX_ACTIVE_REGIONS) {
3522 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3523 							MAX_ACTIVE_REGIONS);
3524 		return;
3525 	}
3526 
3527 	early_node_map[i].nid = nid;
3528 	early_node_map[i].start_pfn = start_pfn;
3529 	early_node_map[i].end_pfn = end_pfn;
3530 	nr_nodemap_entries = i + 1;
3531 }
3532 
3533 /**
3534  * shrink_active_range - Shrink an existing registered range of PFNs
3535  * @nid: The node id the range is on that should be shrunk
3536  * @old_end_pfn: The old end PFN of the range
3537  * @new_end_pfn: The new PFN of the range
3538  *
3539  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3540  * The map is kept at the end physical page range that has already been
3541  * registered with add_active_range(). This function allows an arch to shrink
3542  * an existing registered range.
3543  */
3544 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3545 						unsigned long new_end_pfn)
3546 {
3547 	int i;
3548 
3549 	/* Find the old active region end and shrink */
3550 	for_each_active_range_index_in_nid(i, nid)
3551 		if (early_node_map[i].end_pfn == old_end_pfn) {
3552 			early_node_map[i].end_pfn = new_end_pfn;
3553 			break;
3554 		}
3555 }
3556 
3557 /**
3558  * remove_all_active_ranges - Remove all currently registered regions
3559  *
3560  * During discovery, it may be found that a table like SRAT is invalid
3561  * and an alternative discovery method must be used. This function removes
3562  * all currently registered regions.
3563  */
3564 void __init remove_all_active_ranges(void)
3565 {
3566 	memset(early_node_map, 0, sizeof(early_node_map));
3567 	nr_nodemap_entries = 0;
3568 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3569 	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3570 	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3571 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3572 }
3573 
3574 /* Compare two active node_active_regions */
3575 static int __init cmp_node_active_region(const void *a, const void *b)
3576 {
3577 	struct node_active_region *arange = (struct node_active_region *)a;
3578 	struct node_active_region *brange = (struct node_active_region *)b;
3579 
3580 	/* Done this way to avoid overflows */
3581 	if (arange->start_pfn > brange->start_pfn)
3582 		return 1;
3583 	if (arange->start_pfn < brange->start_pfn)
3584 		return -1;
3585 
3586 	return 0;
3587 }
3588 
3589 /* sort the node_map by start_pfn */
3590 static void __init sort_node_map(void)
3591 {
3592 	sort(early_node_map, (size_t)nr_nodemap_entries,
3593 			sizeof(struct node_active_region),
3594 			cmp_node_active_region, NULL);
3595 }
3596 
3597 /* Find the lowest pfn for a node */
3598 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3599 {
3600 	int i;
3601 	unsigned long min_pfn = ULONG_MAX;
3602 
3603 	/* Assuming a sorted map, the first range found has the starting pfn */
3604 	for_each_active_range_index_in_nid(i, nid)
3605 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3606 
3607 	if (min_pfn == ULONG_MAX) {
3608 		printk(KERN_WARNING
3609 			"Could not find start_pfn for node %lu\n", nid);
3610 		return 0;
3611 	}
3612 
3613 	return min_pfn;
3614 }
3615 
3616 /**
3617  * find_min_pfn_with_active_regions - Find the minimum PFN registered
3618  *
3619  * It returns the minimum PFN based on information provided via
3620  * add_active_range().
3621  */
3622 unsigned long __init find_min_pfn_with_active_regions(void)
3623 {
3624 	return find_min_pfn_for_node(MAX_NUMNODES);
3625 }
3626 
3627 /**
3628  * find_max_pfn_with_active_regions - Find the maximum PFN registered
3629  *
3630  * It returns the maximum PFN based on information provided via
3631  * add_active_range().
3632  */
3633 unsigned long __init find_max_pfn_with_active_regions(void)
3634 {
3635 	int i;
3636 	unsigned long max_pfn = 0;
3637 
3638 	for (i = 0; i < nr_nodemap_entries; i++)
3639 		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3640 
3641 	return max_pfn;
3642 }
3643 
3644 /*
3645  * early_calculate_totalpages()
3646  * Sum pages in active regions for movable zone.
3647  * Populate N_HIGH_MEMORY for calculating usable_nodes.
3648  */
3649 static unsigned long __init early_calculate_totalpages(void)
3650 {
3651 	int i;
3652 	unsigned long totalpages = 0;
3653 
3654 	for (i = 0; i < nr_nodemap_entries; i++) {
3655 		unsigned long pages = early_node_map[i].end_pfn -
3656 						early_node_map[i].start_pfn;
3657 		totalpages += pages;
3658 		if (pages)
3659 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3660 	}
3661   	return totalpages;
3662 }
3663 
3664 /*
3665  * Find the PFN the Movable zone begins in each node. Kernel memory
3666  * is spread evenly between nodes as long as the nodes have enough
3667  * memory. When they don't, some nodes will have more kernelcore than
3668  * others
3669  */
3670 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3671 {
3672 	int i, nid;
3673 	unsigned long usable_startpfn;
3674 	unsigned long kernelcore_node, kernelcore_remaining;
3675 	unsigned long totalpages = early_calculate_totalpages();
3676 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3677 
3678 	/*
3679 	 * If movablecore was specified, calculate what size of
3680 	 * kernelcore that corresponds so that memory usable for
3681 	 * any allocation type is evenly spread. If both kernelcore
3682 	 * and movablecore are specified, then the value of kernelcore
3683 	 * will be used for required_kernelcore if it's greater than
3684 	 * what movablecore would have allowed.
3685 	 */
3686 	if (required_movablecore) {
3687 		unsigned long corepages;
3688 
3689 		/*
3690 		 * Round-up so that ZONE_MOVABLE is at least as large as what
3691 		 * was requested by the user
3692 		 */
3693 		required_movablecore =
3694 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3695 		corepages = totalpages - required_movablecore;
3696 
3697 		required_kernelcore = max(required_kernelcore, corepages);
3698 	}
3699 
3700 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3701 	if (!required_kernelcore)
3702 		return;
3703 
3704 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3705 	find_usable_zone_for_movable();
3706 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3707 
3708 restart:
3709 	/* Spread kernelcore memory as evenly as possible throughout nodes */
3710 	kernelcore_node = required_kernelcore / usable_nodes;
3711 	for_each_node_state(nid, N_HIGH_MEMORY) {
3712 		/*
3713 		 * Recalculate kernelcore_node if the division per node
3714 		 * now exceeds what is necessary to satisfy the requested
3715 		 * amount of memory for the kernel
3716 		 */
3717 		if (required_kernelcore < kernelcore_node)
3718 			kernelcore_node = required_kernelcore / usable_nodes;
3719 
3720 		/*
3721 		 * As the map is walked, we track how much memory is usable
3722 		 * by the kernel using kernelcore_remaining. When it is
3723 		 * 0, the rest of the node is usable by ZONE_MOVABLE
3724 		 */
3725 		kernelcore_remaining = kernelcore_node;
3726 
3727 		/* Go through each range of PFNs within this node */
3728 		for_each_active_range_index_in_nid(i, nid) {
3729 			unsigned long start_pfn, end_pfn;
3730 			unsigned long size_pages;
3731 
3732 			start_pfn = max(early_node_map[i].start_pfn,
3733 						zone_movable_pfn[nid]);
3734 			end_pfn = early_node_map[i].end_pfn;
3735 			if (start_pfn >= end_pfn)
3736 				continue;
3737 
3738 			/* Account for what is only usable for kernelcore */
3739 			if (start_pfn < usable_startpfn) {
3740 				unsigned long kernel_pages;
3741 				kernel_pages = min(end_pfn, usable_startpfn)
3742 								- start_pfn;
3743 
3744 				kernelcore_remaining -= min(kernel_pages,
3745 							kernelcore_remaining);
3746 				required_kernelcore -= min(kernel_pages,
3747 							required_kernelcore);
3748 
3749 				/* Continue if range is now fully accounted */
3750 				if (end_pfn <= usable_startpfn) {
3751 
3752 					/*
3753 					 * Push zone_movable_pfn to the end so
3754 					 * that if we have to rebalance
3755 					 * kernelcore across nodes, we will
3756 					 * not double account here
3757 					 */
3758 					zone_movable_pfn[nid] = end_pfn;
3759 					continue;
3760 				}
3761 				start_pfn = usable_startpfn;
3762 			}
3763 
3764 			/*
3765 			 * The usable PFN range for ZONE_MOVABLE is from
3766 			 * start_pfn->end_pfn. Calculate size_pages as the
3767 			 * number of pages used as kernelcore
3768 			 */
3769 			size_pages = end_pfn - start_pfn;
3770 			if (size_pages > kernelcore_remaining)
3771 				size_pages = kernelcore_remaining;
3772 			zone_movable_pfn[nid] = start_pfn + size_pages;
3773 
3774 			/*
3775 			 * Some kernelcore has been met, update counts and
3776 			 * break if the kernelcore for this node has been
3777 			 * satisified
3778 			 */
3779 			required_kernelcore -= min(required_kernelcore,
3780 								size_pages);
3781 			kernelcore_remaining -= size_pages;
3782 			if (!kernelcore_remaining)
3783 				break;
3784 		}
3785 	}
3786 
3787 	/*
3788 	 * If there is still required_kernelcore, we do another pass with one
3789 	 * less node in the count. This will push zone_movable_pfn[nid] further
3790 	 * along on the nodes that still have memory until kernelcore is
3791 	 * satisified
3792 	 */
3793 	usable_nodes--;
3794 	if (usable_nodes && required_kernelcore > usable_nodes)
3795 		goto restart;
3796 
3797 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3798 	for (nid = 0; nid < MAX_NUMNODES; nid++)
3799 		zone_movable_pfn[nid] =
3800 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3801 }
3802 
3803 /* Any regular memory on that node ? */
3804 static void check_for_regular_memory(pg_data_t *pgdat)
3805 {
3806 #ifdef CONFIG_HIGHMEM
3807 	enum zone_type zone_type;
3808 
3809 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3810 		struct zone *zone = &pgdat->node_zones[zone_type];
3811 		if (zone->present_pages)
3812 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3813 	}
3814 #endif
3815 }
3816 
3817 /**
3818  * free_area_init_nodes - Initialise all pg_data_t and zone data
3819  * @max_zone_pfn: an array of max PFNs for each zone
3820  *
3821  * This will call free_area_init_node() for each active node in the system.
3822  * Using the page ranges provided by add_active_range(), the size of each
3823  * zone in each node and their holes is calculated. If the maximum PFN
3824  * between two adjacent zones match, it is assumed that the zone is empty.
3825  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3826  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3827  * starts where the previous one ended. For example, ZONE_DMA32 starts
3828  * at arch_max_dma_pfn.
3829  */
3830 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3831 {
3832 	unsigned long nid;
3833 	enum zone_type i;
3834 
3835 	/* Sort early_node_map as initialisation assumes it is sorted */
3836 	sort_node_map();
3837 
3838 	/* Record where the zone boundaries are */
3839 	memset(arch_zone_lowest_possible_pfn, 0,
3840 				sizeof(arch_zone_lowest_possible_pfn));
3841 	memset(arch_zone_highest_possible_pfn, 0,
3842 				sizeof(arch_zone_highest_possible_pfn));
3843 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3844 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3845 	for (i = 1; i < MAX_NR_ZONES; i++) {
3846 		if (i == ZONE_MOVABLE)
3847 			continue;
3848 		arch_zone_lowest_possible_pfn[i] =
3849 			arch_zone_highest_possible_pfn[i-1];
3850 		arch_zone_highest_possible_pfn[i] =
3851 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3852 	}
3853 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3854 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3855 
3856 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
3857 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3858 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3859 
3860 	/* Print out the zone ranges */
3861 	printk("Zone PFN ranges:\n");
3862 	for (i = 0; i < MAX_NR_ZONES; i++) {
3863 		if (i == ZONE_MOVABLE)
3864 			continue;
3865 		printk("  %-8s %8lu -> %8lu\n",
3866 				zone_names[i],
3867 				arch_zone_lowest_possible_pfn[i],
3868 				arch_zone_highest_possible_pfn[i]);
3869 	}
3870 
3871 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
3872 	printk("Movable zone start PFN for each node\n");
3873 	for (i = 0; i < MAX_NUMNODES; i++) {
3874 		if (zone_movable_pfn[i])
3875 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
3876 	}
3877 
3878 	/* Print out the early_node_map[] */
3879 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3880 	for (i = 0; i < nr_nodemap_entries; i++)
3881 		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3882 						early_node_map[i].start_pfn,
3883 						early_node_map[i].end_pfn);
3884 
3885 	/* Initialise every node */
3886 	setup_nr_node_ids();
3887 	for_each_online_node(nid) {
3888 		pg_data_t *pgdat = NODE_DATA(nid);
3889 		free_area_init_node(nid, pgdat, NULL,
3890 				find_min_pfn_for_node(nid), NULL);
3891 
3892 		/* Any memory on that node */
3893 		if (pgdat->node_present_pages)
3894 			node_set_state(nid, N_HIGH_MEMORY);
3895 		check_for_regular_memory(pgdat);
3896 	}
3897 }
3898 
3899 static int __init cmdline_parse_core(char *p, unsigned long *core)
3900 {
3901 	unsigned long long coremem;
3902 	if (!p)
3903 		return -EINVAL;
3904 
3905 	coremem = memparse(p, &p);
3906 	*core = coremem >> PAGE_SHIFT;
3907 
3908 	/* Paranoid check that UL is enough for the coremem value */
3909 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3910 
3911 	return 0;
3912 }
3913 
3914 /*
3915  * kernelcore=size sets the amount of memory for use for allocations that
3916  * cannot be reclaimed or migrated.
3917  */
3918 static int __init cmdline_parse_kernelcore(char *p)
3919 {
3920 	return cmdline_parse_core(p, &required_kernelcore);
3921 }
3922 
3923 /*
3924  * movablecore=size sets the amount of memory for use for allocations that
3925  * can be reclaimed or migrated.
3926  */
3927 static int __init cmdline_parse_movablecore(char *p)
3928 {
3929 	return cmdline_parse_core(p, &required_movablecore);
3930 }
3931 
3932 early_param("kernelcore", cmdline_parse_kernelcore);
3933 early_param("movablecore", cmdline_parse_movablecore);
3934 
3935 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3936 
3937 /**
3938  * set_dma_reserve - set the specified number of pages reserved in the first zone
3939  * @new_dma_reserve: The number of pages to mark reserved
3940  *
3941  * The per-cpu batchsize and zone watermarks are determined by present_pages.
3942  * In the DMA zone, a significant percentage may be consumed by kernel image
3943  * and other unfreeable allocations which can skew the watermarks badly. This
3944  * function may optionally be used to account for unfreeable pages in the
3945  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3946  * smaller per-cpu batchsize.
3947  */
3948 void __init set_dma_reserve(unsigned long new_dma_reserve)
3949 {
3950 	dma_reserve = new_dma_reserve;
3951 }
3952 
3953 #ifndef CONFIG_NEED_MULTIPLE_NODES
3954 static bootmem_data_t contig_bootmem_data;
3955 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3956 
3957 EXPORT_SYMBOL(contig_page_data);
3958 #endif
3959 
3960 void __init free_area_init(unsigned long *zones_size)
3961 {
3962 	free_area_init_node(0, NODE_DATA(0), zones_size,
3963 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3964 }
3965 
3966 static int page_alloc_cpu_notify(struct notifier_block *self,
3967 				 unsigned long action, void *hcpu)
3968 {
3969 	int cpu = (unsigned long)hcpu;
3970 
3971 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3972 		local_irq_disable();
3973 		__drain_pages(cpu);
3974 		vm_events_fold_cpu(cpu);
3975 		local_irq_enable();
3976 		refresh_cpu_vm_stats(cpu);
3977 	}
3978 	return NOTIFY_OK;
3979 }
3980 
3981 void __init page_alloc_init(void)
3982 {
3983 	hotcpu_notifier(page_alloc_cpu_notify, 0);
3984 }
3985 
3986 /*
3987  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3988  *	or min_free_kbytes changes.
3989  */
3990 static void calculate_totalreserve_pages(void)
3991 {
3992 	struct pglist_data *pgdat;
3993 	unsigned long reserve_pages = 0;
3994 	enum zone_type i, j;
3995 
3996 	for_each_online_pgdat(pgdat) {
3997 		for (i = 0; i < MAX_NR_ZONES; i++) {
3998 			struct zone *zone = pgdat->node_zones + i;
3999 			unsigned long max = 0;
4000 
4001 			/* Find valid and maximum lowmem_reserve in the zone */
4002 			for (j = i; j < MAX_NR_ZONES; j++) {
4003 				if (zone->lowmem_reserve[j] > max)
4004 					max = zone->lowmem_reserve[j];
4005 			}
4006 
4007 			/* we treat pages_high as reserved pages. */
4008 			max += zone->pages_high;
4009 
4010 			if (max > zone->present_pages)
4011 				max = zone->present_pages;
4012 			reserve_pages += max;
4013 		}
4014 	}
4015 	totalreserve_pages = reserve_pages;
4016 }
4017 
4018 /*
4019  * setup_per_zone_lowmem_reserve - called whenever
4020  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4021  *	has a correct pages reserved value, so an adequate number of
4022  *	pages are left in the zone after a successful __alloc_pages().
4023  */
4024 static void setup_per_zone_lowmem_reserve(void)
4025 {
4026 	struct pglist_data *pgdat;
4027 	enum zone_type j, idx;
4028 
4029 	for_each_online_pgdat(pgdat) {
4030 		for (j = 0; j < MAX_NR_ZONES; j++) {
4031 			struct zone *zone = pgdat->node_zones + j;
4032 			unsigned long present_pages = zone->present_pages;
4033 
4034 			zone->lowmem_reserve[j] = 0;
4035 
4036 			idx = j;
4037 			while (idx) {
4038 				struct zone *lower_zone;
4039 
4040 				idx--;
4041 
4042 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4043 					sysctl_lowmem_reserve_ratio[idx] = 1;
4044 
4045 				lower_zone = pgdat->node_zones + idx;
4046 				lower_zone->lowmem_reserve[j] = present_pages /
4047 					sysctl_lowmem_reserve_ratio[idx];
4048 				present_pages += lower_zone->present_pages;
4049 			}
4050 		}
4051 	}
4052 
4053 	/* update totalreserve_pages */
4054 	calculate_totalreserve_pages();
4055 }
4056 
4057 /**
4058  * setup_per_zone_pages_min - called when min_free_kbytes changes.
4059  *
4060  * Ensures that the pages_{min,low,high} values for each zone are set correctly
4061  * with respect to min_free_kbytes.
4062  */
4063 void setup_per_zone_pages_min(void)
4064 {
4065 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4066 	unsigned long lowmem_pages = 0;
4067 	struct zone *zone;
4068 	unsigned long flags;
4069 
4070 	/* Calculate total number of !ZONE_HIGHMEM pages */
4071 	for_each_zone(zone) {
4072 		if (!is_highmem(zone))
4073 			lowmem_pages += zone->present_pages;
4074 	}
4075 
4076 	for_each_zone(zone) {
4077 		u64 tmp;
4078 
4079 		spin_lock_irqsave(&zone->lru_lock, flags);
4080 		tmp = (u64)pages_min * zone->present_pages;
4081 		do_div(tmp, lowmem_pages);
4082 		if (is_highmem(zone)) {
4083 			/*
4084 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4085 			 * need highmem pages, so cap pages_min to a small
4086 			 * value here.
4087 			 *
4088 			 * The (pages_high-pages_low) and (pages_low-pages_min)
4089 			 * deltas controls asynch page reclaim, and so should
4090 			 * not be capped for highmem.
4091 			 */
4092 			int min_pages;
4093 
4094 			min_pages = zone->present_pages / 1024;
4095 			if (min_pages < SWAP_CLUSTER_MAX)
4096 				min_pages = SWAP_CLUSTER_MAX;
4097 			if (min_pages > 128)
4098 				min_pages = 128;
4099 			zone->pages_min = min_pages;
4100 		} else {
4101 			/*
4102 			 * If it's a lowmem zone, reserve a number of pages
4103 			 * proportionate to the zone's size.
4104 			 */
4105 			zone->pages_min = tmp;
4106 		}
4107 
4108 		zone->pages_low   = zone->pages_min + (tmp >> 2);
4109 		zone->pages_high  = zone->pages_min + (tmp >> 1);
4110 		setup_zone_migrate_reserve(zone);
4111 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4112 	}
4113 
4114 	/* update totalreserve_pages */
4115 	calculate_totalreserve_pages();
4116 }
4117 
4118 /*
4119  * Initialise min_free_kbytes.
4120  *
4121  * For small machines we want it small (128k min).  For large machines
4122  * we want it large (64MB max).  But it is not linear, because network
4123  * bandwidth does not increase linearly with machine size.  We use
4124  *
4125  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4126  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4127  *
4128  * which yields
4129  *
4130  * 16MB:	512k
4131  * 32MB:	724k
4132  * 64MB:	1024k
4133  * 128MB:	1448k
4134  * 256MB:	2048k
4135  * 512MB:	2896k
4136  * 1024MB:	4096k
4137  * 2048MB:	5792k
4138  * 4096MB:	8192k
4139  * 8192MB:	11584k
4140  * 16384MB:	16384k
4141  */
4142 static int __init init_per_zone_pages_min(void)
4143 {
4144 	unsigned long lowmem_kbytes;
4145 
4146 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4147 
4148 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4149 	if (min_free_kbytes < 128)
4150 		min_free_kbytes = 128;
4151 	if (min_free_kbytes > 65536)
4152 		min_free_kbytes = 65536;
4153 	setup_per_zone_pages_min();
4154 	setup_per_zone_lowmem_reserve();
4155 	return 0;
4156 }
4157 module_init(init_per_zone_pages_min)
4158 
4159 /*
4160  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4161  *	that we can call two helper functions whenever min_free_kbytes
4162  *	changes.
4163  */
4164 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4165 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4166 {
4167 	proc_dointvec(table, write, file, buffer, length, ppos);
4168 	if (write)
4169 		setup_per_zone_pages_min();
4170 	return 0;
4171 }
4172 
4173 #ifdef CONFIG_NUMA
4174 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4175 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4176 {
4177 	struct zone *zone;
4178 	int rc;
4179 
4180 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4181 	if (rc)
4182 		return rc;
4183 
4184 	for_each_zone(zone)
4185 		zone->min_unmapped_pages = (zone->present_pages *
4186 				sysctl_min_unmapped_ratio) / 100;
4187 	return 0;
4188 }
4189 
4190 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4191 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4192 {
4193 	struct zone *zone;
4194 	int rc;
4195 
4196 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4197 	if (rc)
4198 		return rc;
4199 
4200 	for_each_zone(zone)
4201 		zone->min_slab_pages = (zone->present_pages *
4202 				sysctl_min_slab_ratio) / 100;
4203 	return 0;
4204 }
4205 #endif
4206 
4207 /*
4208  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4209  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4210  *	whenever sysctl_lowmem_reserve_ratio changes.
4211  *
4212  * The reserve ratio obviously has absolutely no relation with the
4213  * pages_min watermarks. The lowmem reserve ratio can only make sense
4214  * if in function of the boot time zone sizes.
4215  */
4216 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4217 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4218 {
4219 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4220 	setup_per_zone_lowmem_reserve();
4221 	return 0;
4222 }
4223 
4224 /*
4225  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4226  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4227  * can have before it gets flushed back to buddy allocator.
4228  */
4229 
4230 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4231 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4232 {
4233 	struct zone *zone;
4234 	unsigned int cpu;
4235 	int ret;
4236 
4237 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4238 	if (!write || (ret == -EINVAL))
4239 		return ret;
4240 	for_each_zone(zone) {
4241 		for_each_online_cpu(cpu) {
4242 			unsigned long  high;
4243 			high = zone->present_pages / percpu_pagelist_fraction;
4244 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4245 		}
4246 	}
4247 	return 0;
4248 }
4249 
4250 int hashdist = HASHDIST_DEFAULT;
4251 
4252 #ifdef CONFIG_NUMA
4253 static int __init set_hashdist(char *str)
4254 {
4255 	if (!str)
4256 		return 0;
4257 	hashdist = simple_strtoul(str, &str, 0);
4258 	return 1;
4259 }
4260 __setup("hashdist=", set_hashdist);
4261 #endif
4262 
4263 /*
4264  * allocate a large system hash table from bootmem
4265  * - it is assumed that the hash table must contain an exact power-of-2
4266  *   quantity of entries
4267  * - limit is the number of hash buckets, not the total allocation size
4268  */
4269 void *__init alloc_large_system_hash(const char *tablename,
4270 				     unsigned long bucketsize,
4271 				     unsigned long numentries,
4272 				     int scale,
4273 				     int flags,
4274 				     unsigned int *_hash_shift,
4275 				     unsigned int *_hash_mask,
4276 				     unsigned long limit)
4277 {
4278 	unsigned long long max = limit;
4279 	unsigned long log2qty, size;
4280 	void *table = NULL;
4281 
4282 	/* allow the kernel cmdline to have a say */
4283 	if (!numentries) {
4284 		/* round applicable memory size up to nearest megabyte */
4285 		numentries = nr_kernel_pages;
4286 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4287 		numentries >>= 20 - PAGE_SHIFT;
4288 		numentries <<= 20 - PAGE_SHIFT;
4289 
4290 		/* limit to 1 bucket per 2^scale bytes of low memory */
4291 		if (scale > PAGE_SHIFT)
4292 			numentries >>= (scale - PAGE_SHIFT);
4293 		else
4294 			numentries <<= (PAGE_SHIFT - scale);
4295 
4296 		/* Make sure we've got at least a 0-order allocation.. */
4297 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4298 			numentries = PAGE_SIZE / bucketsize;
4299 	}
4300 	numentries = roundup_pow_of_two(numentries);
4301 
4302 	/* limit allocation size to 1/16 total memory by default */
4303 	if (max == 0) {
4304 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4305 		do_div(max, bucketsize);
4306 	}
4307 
4308 	if (numentries > max)
4309 		numentries = max;
4310 
4311 	log2qty = ilog2(numentries);
4312 
4313 	do {
4314 		size = bucketsize << log2qty;
4315 		if (flags & HASH_EARLY)
4316 			table = alloc_bootmem(size);
4317 		else if (hashdist)
4318 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4319 		else {
4320 			unsigned long order;
4321 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4322 				;
4323 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
4324 			/*
4325 			 * If bucketsize is not a power-of-two, we may free
4326 			 * some pages at the end of hash table.
4327 			 */
4328 			if (table) {
4329 				unsigned long alloc_end = (unsigned long)table +
4330 						(PAGE_SIZE << order);
4331 				unsigned long used = (unsigned long)table +
4332 						PAGE_ALIGN(size);
4333 				split_page(virt_to_page(table), order);
4334 				while (used < alloc_end) {
4335 					free_page(used);
4336 					used += PAGE_SIZE;
4337 				}
4338 			}
4339 		}
4340 	} while (!table && size > PAGE_SIZE && --log2qty);
4341 
4342 	if (!table)
4343 		panic("Failed to allocate %s hash table\n", tablename);
4344 
4345 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4346 	       tablename,
4347 	       (1U << log2qty),
4348 	       ilog2(size) - PAGE_SHIFT,
4349 	       size);
4350 
4351 	if (_hash_shift)
4352 		*_hash_shift = log2qty;
4353 	if (_hash_mask)
4354 		*_hash_mask = (1 << log2qty) - 1;
4355 
4356 	return table;
4357 }
4358 
4359 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4360 struct page *pfn_to_page(unsigned long pfn)
4361 {
4362 	return __pfn_to_page(pfn);
4363 }
4364 unsigned long page_to_pfn(struct page *page)
4365 {
4366 	return __page_to_pfn(page);
4367 }
4368 EXPORT_SYMBOL(pfn_to_page);
4369 EXPORT_SYMBOL(page_to_pfn);
4370 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4371 
4372 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4373 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4374 							unsigned long pfn)
4375 {
4376 #ifdef CONFIG_SPARSEMEM
4377 	return __pfn_to_section(pfn)->pageblock_flags;
4378 #else
4379 	return zone->pageblock_flags;
4380 #endif /* CONFIG_SPARSEMEM */
4381 }
4382 
4383 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4384 {
4385 #ifdef CONFIG_SPARSEMEM
4386 	pfn &= (PAGES_PER_SECTION-1);
4387 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4388 #else
4389 	pfn = pfn - zone->zone_start_pfn;
4390 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4391 #endif /* CONFIG_SPARSEMEM */
4392 }
4393 
4394 /**
4395  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4396  * @page: The page within the block of interest
4397  * @start_bitidx: The first bit of interest to retrieve
4398  * @end_bitidx: The last bit of interest
4399  * returns pageblock_bits flags
4400  */
4401 unsigned long get_pageblock_flags_group(struct page *page,
4402 					int start_bitidx, int end_bitidx)
4403 {
4404 	struct zone *zone;
4405 	unsigned long *bitmap;
4406 	unsigned long pfn, bitidx;
4407 	unsigned long flags = 0;
4408 	unsigned long value = 1;
4409 
4410 	zone = page_zone(page);
4411 	pfn = page_to_pfn(page);
4412 	bitmap = get_pageblock_bitmap(zone, pfn);
4413 	bitidx = pfn_to_bitidx(zone, pfn);
4414 
4415 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4416 		if (test_bit(bitidx + start_bitidx, bitmap))
4417 			flags |= value;
4418 
4419 	return flags;
4420 }
4421 
4422 /**
4423  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4424  * @page: The page within the block of interest
4425  * @start_bitidx: The first bit of interest
4426  * @end_bitidx: The last bit of interest
4427  * @flags: The flags to set
4428  */
4429 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4430 					int start_bitidx, int end_bitidx)
4431 {
4432 	struct zone *zone;
4433 	unsigned long *bitmap;
4434 	unsigned long pfn, bitidx;
4435 	unsigned long value = 1;
4436 
4437 	zone = page_zone(page);
4438 	pfn = page_to_pfn(page);
4439 	bitmap = get_pageblock_bitmap(zone, pfn);
4440 	bitidx = pfn_to_bitidx(zone, pfn);
4441 
4442 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4443 		if (flags & value)
4444 			__set_bit(bitidx + start_bitidx, bitmap);
4445 		else
4446 			__clear_bit(bitidx + start_bitidx, bitmap);
4447 }
4448 
4449 /*
4450  * This is designed as sub function...plz see page_isolation.c also.
4451  * set/clear page block's type to be ISOLATE.
4452  * page allocater never alloc memory from ISOLATE block.
4453  */
4454 
4455 int set_migratetype_isolate(struct page *page)
4456 {
4457 	struct zone *zone;
4458 	unsigned long flags;
4459 	int ret = -EBUSY;
4460 
4461 	zone = page_zone(page);
4462 	spin_lock_irqsave(&zone->lock, flags);
4463 	/*
4464 	 * In future, more migrate types will be able to be isolation target.
4465 	 */
4466 	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4467 		goto out;
4468 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4469 	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4470 	ret = 0;
4471 out:
4472 	spin_unlock_irqrestore(&zone->lock, flags);
4473 	if (!ret)
4474 		drain_all_local_pages();
4475 	return ret;
4476 }
4477 
4478 void unset_migratetype_isolate(struct page *page)
4479 {
4480 	struct zone *zone;
4481 	unsigned long flags;
4482 	zone = page_zone(page);
4483 	spin_lock_irqsave(&zone->lock, flags);
4484 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4485 		goto out;
4486 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4487 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4488 out:
4489 	spin_unlock_irqrestore(&zone->lock, flags);
4490 }
4491 
4492 #ifdef CONFIG_MEMORY_HOTREMOVE
4493 /*
4494  * All pages in the range must be isolated before calling this.
4495  */
4496 void
4497 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4498 {
4499 	struct page *page;
4500 	struct zone *zone;
4501 	int order, i;
4502 	unsigned long pfn;
4503 	unsigned long flags;
4504 	/* find the first valid pfn */
4505 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4506 		if (pfn_valid(pfn))
4507 			break;
4508 	if (pfn == end_pfn)
4509 		return;
4510 	zone = page_zone(pfn_to_page(pfn));
4511 	spin_lock_irqsave(&zone->lock, flags);
4512 	pfn = start_pfn;
4513 	while (pfn < end_pfn) {
4514 		if (!pfn_valid(pfn)) {
4515 			pfn++;
4516 			continue;
4517 		}
4518 		page = pfn_to_page(pfn);
4519 		BUG_ON(page_count(page));
4520 		BUG_ON(!PageBuddy(page));
4521 		order = page_order(page);
4522 #ifdef CONFIG_DEBUG_VM
4523 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4524 		       pfn, 1 << order, end_pfn);
4525 #endif
4526 		list_del(&page->lru);
4527 		rmv_page_order(page);
4528 		zone->free_area[order].nr_free--;
4529 		__mod_zone_page_state(zone, NR_FREE_PAGES,
4530 				      - (1UL << order));
4531 		for (i = 0; i < (1 << order); i++)
4532 			SetPageReserved((page+i));
4533 		pfn += (1 << order);
4534 	}
4535 	spin_unlock_irqrestore(&zone->lock, flags);
4536 }
4537 #endif
4538