xref: /openbmc/linux/mm/page_alloc.c (revision 84097518d1ecd2330f9488e4c2d09953a3340e74)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40 
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43 
44 /*
45  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46  * initializer cleaner
47  */
48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map);
50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
51 EXPORT_SYMBOL(node_possible_map);
52 struct pglist_data *pgdat_list __read_mostly;
53 unsigned long totalram_pages __read_mostly;
54 unsigned long totalhigh_pages __read_mostly;
55 long nr_swap_pages;
56 int percpu_pagelist_fraction;
57 
58 static void __free_pages_ok(struct page *page, unsigned int order);
59 
60 /*
61  * results with 256, 32 in the lowmem_reserve sysctl:
62  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63  *	1G machine -> (16M dma, 784M normal, 224M high)
64  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
67  *
68  * TBD: should special case ZONE_DMA32 machines here - in those we normally
69  * don't need any ZONE_NORMAL reservation
70  */
71 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
72 
73 EXPORT_SYMBOL(totalram_pages);
74 
75 /*
76  * Used by page_zone() to look up the address of the struct zone whose
77  * id is encoded in the upper bits of page->flags
78  */
79 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
80 EXPORT_SYMBOL(zone_table);
81 
82 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
83 int min_free_kbytes = 1024;
84 
85 unsigned long __initdata nr_kernel_pages;
86 unsigned long __initdata nr_all_pages;
87 
88 #ifdef CONFIG_DEBUG_VM
89 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
90 {
91 	int ret = 0;
92 	unsigned seq;
93 	unsigned long pfn = page_to_pfn(page);
94 
95 	do {
96 		seq = zone_span_seqbegin(zone);
97 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
98 			ret = 1;
99 		else if (pfn < zone->zone_start_pfn)
100 			ret = 1;
101 	} while (zone_span_seqretry(zone, seq));
102 
103 	return ret;
104 }
105 
106 static int page_is_consistent(struct zone *zone, struct page *page)
107 {
108 #ifdef CONFIG_HOLES_IN_ZONE
109 	if (!pfn_valid(page_to_pfn(page)))
110 		return 0;
111 #endif
112 	if (zone != page_zone(page))
113 		return 0;
114 
115 	return 1;
116 }
117 /*
118  * Temporary debugging check for pages not lying within a given zone.
119  */
120 static int bad_range(struct zone *zone, struct page *page)
121 {
122 	if (page_outside_zone_boundaries(zone, page))
123 		return 1;
124 	if (!page_is_consistent(zone, page))
125 		return 1;
126 
127 	return 0;
128 }
129 
130 #else
131 static inline int bad_range(struct zone *zone, struct page *page)
132 {
133 	return 0;
134 }
135 #endif
136 
137 static void bad_page(struct page *page)
138 {
139 	printk(KERN_EMERG "Bad page state in process '%s'\n"
140 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
142 		KERN_EMERG "Backtrace:\n",
143 		current->comm, page, (int)(2*sizeof(unsigned long)),
144 		(unsigned long)page->flags, page->mapping,
145 		page_mapcount(page), page_count(page));
146 	dump_stack();
147 	page->flags &= ~(1 << PG_lru	|
148 			1 << PG_private |
149 			1 << PG_locked	|
150 			1 << PG_active	|
151 			1 << PG_dirty	|
152 			1 << PG_reclaim |
153 			1 << PG_slab    |
154 			1 << PG_swapcache |
155 			1 << PG_writeback );
156 	set_page_count(page, 0);
157 	reset_page_mapcount(page);
158 	page->mapping = NULL;
159 	add_taint(TAINT_BAD_PAGE);
160 }
161 
162 /*
163  * Higher-order pages are called "compound pages".  They are structured thusly:
164  *
165  * The first PAGE_SIZE page is called the "head page".
166  *
167  * The remaining PAGE_SIZE pages are called "tail pages".
168  *
169  * All pages have PG_compound set.  All pages have their ->private pointing at
170  * the head page (even the head page has this).
171  *
172  * The first tail page's ->lru.next holds the address of the compound page's
173  * put_page() function.  Its ->lru.prev holds the order of allocation.
174  * This usage means that zero-order pages may not be compound.
175  */
176 
177 static void free_compound_page(struct page *page)
178 {
179 	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
180 }
181 
182 static void prep_compound_page(struct page *page, unsigned long order)
183 {
184 	int i;
185 	int nr_pages = 1 << order;
186 
187 	page[1].lru.next = (void *)free_compound_page;	/* set dtor */
188 	page[1].lru.prev = (void *)order;
189 	for (i = 0; i < nr_pages; i++) {
190 		struct page *p = page + i;
191 
192 		__SetPageCompound(p);
193 		set_page_private(p, (unsigned long)page);
194 	}
195 }
196 
197 static void destroy_compound_page(struct page *page, unsigned long order)
198 {
199 	int i;
200 	int nr_pages = 1 << order;
201 
202 	if (unlikely((unsigned long)page[1].lru.prev != order))
203 		bad_page(page);
204 
205 	for (i = 0; i < nr_pages; i++) {
206 		struct page *p = page + i;
207 
208 		if (unlikely(!PageCompound(p) |
209 				(page_private(p) != (unsigned long)page)))
210 			bad_page(page);
211 		__ClearPageCompound(p);
212 	}
213 }
214 
215 /*
216  * function for dealing with page's order in buddy system.
217  * zone->lock is already acquired when we use these.
218  * So, we don't need atomic page->flags operations here.
219  */
220 static inline unsigned long page_order(struct page *page) {
221 	return page_private(page);
222 }
223 
224 static inline void set_page_order(struct page *page, int order) {
225 	set_page_private(page, order);
226 	__SetPagePrivate(page);
227 }
228 
229 static inline void rmv_page_order(struct page *page)
230 {
231 	__ClearPagePrivate(page);
232 	set_page_private(page, 0);
233 }
234 
235 /*
236  * Locate the struct page for both the matching buddy in our
237  * pair (buddy1) and the combined O(n+1) page they form (page).
238  *
239  * 1) Any buddy B1 will have an order O twin B2 which satisfies
240  * the following equation:
241  *     B2 = B1 ^ (1 << O)
242  * For example, if the starting buddy (buddy2) is #8 its order
243  * 1 buddy is #10:
244  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
245  *
246  * 2) Any buddy B will have an order O+1 parent P which
247  * satisfies the following equation:
248  *     P = B & ~(1 << O)
249  *
250  * Assumption: *_mem_map is contigious at least up to MAX_ORDER
251  */
252 static inline struct page *
253 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
254 {
255 	unsigned long buddy_idx = page_idx ^ (1 << order);
256 
257 	return page + (buddy_idx - page_idx);
258 }
259 
260 static inline unsigned long
261 __find_combined_index(unsigned long page_idx, unsigned int order)
262 {
263 	return (page_idx & ~(1 << order));
264 }
265 
266 /*
267  * This function checks whether a page is free && is the buddy
268  * we can do coalesce a page and its buddy if
269  * (a) the buddy is not in a hole &&
270  * (b) the buddy is free &&
271  * (c) the buddy is on the buddy system &&
272  * (d) a page and its buddy have the same order.
273  * for recording page's order, we use page_private(page) and PG_private.
274  *
275  */
276 static inline int page_is_buddy(struct page *page, int order)
277 {
278 #ifdef CONFIG_HOLES_IN_ZONE
279 	if (!pfn_valid(page_to_pfn(page)))
280 		return 0;
281 #endif
282 
283        if (PagePrivate(page)           &&
284            (page_order(page) == order) &&
285             page_count(page) == 0)
286                return 1;
287        return 0;
288 }
289 
290 /*
291  * Freeing function for a buddy system allocator.
292  *
293  * The concept of a buddy system is to maintain direct-mapped table
294  * (containing bit values) for memory blocks of various "orders".
295  * The bottom level table contains the map for the smallest allocatable
296  * units of memory (here, pages), and each level above it describes
297  * pairs of units from the levels below, hence, "buddies".
298  * At a high level, all that happens here is marking the table entry
299  * at the bottom level available, and propagating the changes upward
300  * as necessary, plus some accounting needed to play nicely with other
301  * parts of the VM system.
302  * At each level, we keep a list of pages, which are heads of continuous
303  * free pages of length of (1 << order) and marked with PG_Private.Page's
304  * order is recorded in page_private(page) field.
305  * So when we are allocating or freeing one, we can derive the state of the
306  * other.  That is, if we allocate a small block, and both were
307  * free, the remainder of the region must be split into blocks.
308  * If a block is freed, and its buddy is also free, then this
309  * triggers coalescing into a block of larger size.
310  *
311  * -- wli
312  */
313 
314 static inline void __free_one_page(struct page *page,
315 		struct zone *zone, unsigned int order)
316 {
317 	unsigned long page_idx;
318 	int order_size = 1 << order;
319 
320 	if (unlikely(PageCompound(page)))
321 		destroy_compound_page(page, order);
322 
323 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
324 
325 	BUG_ON(page_idx & (order_size - 1));
326 	BUG_ON(bad_range(zone, page));
327 
328 	zone->free_pages += order_size;
329 	while (order < MAX_ORDER-1) {
330 		unsigned long combined_idx;
331 		struct free_area *area;
332 		struct page *buddy;
333 
334 		buddy = __page_find_buddy(page, page_idx, order);
335 		if (!page_is_buddy(buddy, order))
336 			break;		/* Move the buddy up one level. */
337 
338 		list_del(&buddy->lru);
339 		area = zone->free_area + order;
340 		area->nr_free--;
341 		rmv_page_order(buddy);
342 		combined_idx = __find_combined_index(page_idx, order);
343 		page = page + (combined_idx - page_idx);
344 		page_idx = combined_idx;
345 		order++;
346 	}
347 	set_page_order(page, order);
348 	list_add(&page->lru, &zone->free_area[order].free_list);
349 	zone->free_area[order].nr_free++;
350 }
351 
352 static inline int free_pages_check(struct page *page)
353 {
354 	if (unlikely(page_mapcount(page) |
355 		(page->mapping != NULL)  |
356 		(page_count(page) != 0)  |
357 		(page->flags & (
358 			1 << PG_lru	|
359 			1 << PG_private |
360 			1 << PG_locked	|
361 			1 << PG_active	|
362 			1 << PG_reclaim	|
363 			1 << PG_slab	|
364 			1 << PG_swapcache |
365 			1 << PG_writeback |
366 			1 << PG_reserved ))))
367 		bad_page(page);
368 	if (PageDirty(page))
369 		__ClearPageDirty(page);
370 	/*
371 	 * For now, we report if PG_reserved was found set, but do not
372 	 * clear it, and do not free the page.  But we shall soon need
373 	 * to do more, for when the ZERO_PAGE count wraps negative.
374 	 */
375 	return PageReserved(page);
376 }
377 
378 /*
379  * Frees a list of pages.
380  * Assumes all pages on list are in same zone, and of same order.
381  * count is the number of pages to free.
382  *
383  * If the zone was previously in an "all pages pinned" state then look to
384  * see if this freeing clears that state.
385  *
386  * And clear the zone's pages_scanned counter, to hold off the "all pages are
387  * pinned" detection logic.
388  */
389 static void free_pages_bulk(struct zone *zone, int count,
390 					struct list_head *list, int order)
391 {
392 	spin_lock(&zone->lock);
393 	zone->all_unreclaimable = 0;
394 	zone->pages_scanned = 0;
395 	while (count--) {
396 		struct page *page;
397 
398 		BUG_ON(list_empty(list));
399 		page = list_entry(list->prev, struct page, lru);
400 		/* have to delete it as __free_one_page list manipulates */
401 		list_del(&page->lru);
402 		__free_one_page(page, zone, order);
403 	}
404 	spin_unlock(&zone->lock);
405 }
406 
407 static void free_one_page(struct zone *zone, struct page *page, int order)
408 {
409 	LIST_HEAD(list);
410 	list_add(&page->lru, &list);
411 	free_pages_bulk(zone, 1, &list, order);
412 }
413 
414 static void __free_pages_ok(struct page *page, unsigned int order)
415 {
416 	unsigned long flags;
417 	int i;
418 	int reserved = 0;
419 
420 	arch_free_page(page, order);
421 	if (!PageHighMem(page))
422 		mutex_debug_check_no_locks_freed(page_address(page),
423 						 PAGE_SIZE<<order);
424 
425 	for (i = 0 ; i < (1 << order) ; ++i)
426 		reserved += free_pages_check(page + i);
427 	if (reserved)
428 		return;
429 
430 	kernel_map_pages(page, 1 << order, 0);
431 	local_irq_save(flags);
432 	__mod_page_state(pgfree, 1 << order);
433 	free_one_page(page_zone(page), page, order);
434 	local_irq_restore(flags);
435 }
436 
437 /*
438  * permit the bootmem allocator to evade page validation on high-order frees
439  */
440 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
441 {
442 	if (order == 0) {
443 		__ClearPageReserved(page);
444 		set_page_count(page, 0);
445 		set_page_refs(page, 0);
446 		__free_page(page);
447 	} else {
448 		int loop;
449 
450 		prefetchw(page);
451 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
452 			struct page *p = &page[loop];
453 
454 			if (loop + 1 < BITS_PER_LONG)
455 				prefetchw(p + 1);
456 			__ClearPageReserved(p);
457 			set_page_count(p, 0);
458 		}
459 
460 		set_page_refs(page, order);
461 		__free_pages(page, order);
462 	}
463 }
464 
465 
466 /*
467  * The order of subdivision here is critical for the IO subsystem.
468  * Please do not alter this order without good reasons and regression
469  * testing. Specifically, as large blocks of memory are subdivided,
470  * the order in which smaller blocks are delivered depends on the order
471  * they're subdivided in this function. This is the primary factor
472  * influencing the order in which pages are delivered to the IO
473  * subsystem according to empirical testing, and this is also justified
474  * by considering the behavior of a buddy system containing a single
475  * large block of memory acted on by a series of small allocations.
476  * This behavior is a critical factor in sglist merging's success.
477  *
478  * -- wli
479  */
480 static inline void expand(struct zone *zone, struct page *page,
481  	int low, int high, struct free_area *area)
482 {
483 	unsigned long size = 1 << high;
484 
485 	while (high > low) {
486 		area--;
487 		high--;
488 		size >>= 1;
489 		BUG_ON(bad_range(zone, &page[size]));
490 		list_add(&page[size].lru, &area->free_list);
491 		area->nr_free++;
492 		set_page_order(&page[size], high);
493 	}
494 }
495 
496 /*
497  * This page is about to be returned from the page allocator
498  */
499 static int prep_new_page(struct page *page, int order)
500 {
501 	if (unlikely(page_mapcount(page) |
502 		(page->mapping != NULL)  |
503 		(page_count(page) != 0)  |
504 		(page->flags & (
505 			1 << PG_lru	|
506 			1 << PG_private	|
507 			1 << PG_locked	|
508 			1 << PG_active	|
509 			1 << PG_dirty	|
510 			1 << PG_reclaim	|
511 			1 << PG_slab    |
512 			1 << PG_swapcache |
513 			1 << PG_writeback |
514 			1 << PG_reserved ))))
515 		bad_page(page);
516 
517 	/*
518 	 * For now, we report if PG_reserved was found set, but do not
519 	 * clear it, and do not allocate the page: as a safety net.
520 	 */
521 	if (PageReserved(page))
522 		return 1;
523 
524 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
525 			1 << PG_referenced | 1 << PG_arch_1 |
526 			1 << PG_checked | 1 << PG_mappedtodisk);
527 	set_page_private(page, 0);
528 	set_page_refs(page, order);
529 	kernel_map_pages(page, 1 << order, 1);
530 	return 0;
531 }
532 
533 /*
534  * Do the hard work of removing an element from the buddy allocator.
535  * Call me with the zone->lock already held.
536  */
537 static struct page *__rmqueue(struct zone *zone, unsigned int order)
538 {
539 	struct free_area * area;
540 	unsigned int current_order;
541 	struct page *page;
542 
543 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
544 		area = zone->free_area + current_order;
545 		if (list_empty(&area->free_list))
546 			continue;
547 
548 		page = list_entry(area->free_list.next, struct page, lru);
549 		list_del(&page->lru);
550 		rmv_page_order(page);
551 		area->nr_free--;
552 		zone->free_pages -= 1UL << order;
553 		expand(zone, page, order, current_order, area);
554 		return page;
555 	}
556 
557 	return NULL;
558 }
559 
560 /*
561  * Obtain a specified number of elements from the buddy allocator, all under
562  * a single hold of the lock, for efficiency.  Add them to the supplied list.
563  * Returns the number of new pages which were placed at *list.
564  */
565 static int rmqueue_bulk(struct zone *zone, unsigned int order,
566 			unsigned long count, struct list_head *list)
567 {
568 	int i;
569 
570 	spin_lock(&zone->lock);
571 	for (i = 0; i < count; ++i) {
572 		struct page *page = __rmqueue(zone, order);
573 		if (unlikely(page == NULL))
574 			break;
575 		list_add_tail(&page->lru, list);
576 	}
577 	spin_unlock(&zone->lock);
578 	return i;
579 }
580 
581 #ifdef CONFIG_NUMA
582 /*
583  * Called from the slab reaper to drain pagesets on a particular node that
584  * belong to the currently executing processor.
585  */
586 void drain_node_pages(int nodeid)
587 {
588 	int i, z;
589 	unsigned long flags;
590 
591 	local_irq_save(flags);
592 	for (z = 0; z < MAX_NR_ZONES; z++) {
593 		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
594 		struct per_cpu_pageset *pset;
595 
596 		pset = zone_pcp(zone, smp_processor_id());
597 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
598 			struct per_cpu_pages *pcp;
599 
600 			pcp = &pset->pcp[i];
601 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
602 			pcp->count = 0;
603 		}
604 	}
605 	local_irq_restore(flags);
606 }
607 #endif
608 
609 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
610 static void __drain_pages(unsigned int cpu)
611 {
612 	unsigned long flags;
613 	struct zone *zone;
614 	int i;
615 
616 	for_each_zone(zone) {
617 		struct per_cpu_pageset *pset;
618 
619 		pset = zone_pcp(zone, cpu);
620 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
621 			struct per_cpu_pages *pcp;
622 
623 			pcp = &pset->pcp[i];
624 			local_irq_save(flags);
625 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
626 			pcp->count = 0;
627 			local_irq_restore(flags);
628 		}
629 	}
630 }
631 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
632 
633 #ifdef CONFIG_PM
634 
635 void mark_free_pages(struct zone *zone)
636 {
637 	unsigned long zone_pfn, flags;
638 	int order;
639 	struct list_head *curr;
640 
641 	if (!zone->spanned_pages)
642 		return;
643 
644 	spin_lock_irqsave(&zone->lock, flags);
645 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
646 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
647 
648 	for (order = MAX_ORDER - 1; order >= 0; --order)
649 		list_for_each(curr, &zone->free_area[order].free_list) {
650 			unsigned long start_pfn, i;
651 
652 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
653 
654 			for (i=0; i < (1<<order); i++)
655 				SetPageNosaveFree(pfn_to_page(start_pfn+i));
656 	}
657 	spin_unlock_irqrestore(&zone->lock, flags);
658 }
659 
660 /*
661  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
662  */
663 void drain_local_pages(void)
664 {
665 	unsigned long flags;
666 
667 	local_irq_save(flags);
668 	__drain_pages(smp_processor_id());
669 	local_irq_restore(flags);
670 }
671 #endif /* CONFIG_PM */
672 
673 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
674 {
675 #ifdef CONFIG_NUMA
676 	pg_data_t *pg = z->zone_pgdat;
677 	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
678 	struct per_cpu_pageset *p;
679 
680 	p = zone_pcp(z, cpu);
681 	if (pg == orig) {
682 		p->numa_hit++;
683 	} else {
684 		p->numa_miss++;
685 		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
686 	}
687 	if (pg == NODE_DATA(numa_node_id()))
688 		p->local_node++;
689 	else
690 		p->other_node++;
691 #endif
692 }
693 
694 /*
695  * Free a 0-order page
696  */
697 static void fastcall free_hot_cold_page(struct page *page, int cold)
698 {
699 	struct zone *zone = page_zone(page);
700 	struct per_cpu_pages *pcp;
701 	unsigned long flags;
702 
703 	arch_free_page(page, 0);
704 
705 	if (PageAnon(page))
706 		page->mapping = NULL;
707 	if (free_pages_check(page))
708 		return;
709 
710 	kernel_map_pages(page, 1, 0);
711 
712 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
713 	local_irq_save(flags);
714 	__inc_page_state(pgfree);
715 	list_add(&page->lru, &pcp->list);
716 	pcp->count++;
717 	if (pcp->count >= pcp->high) {
718 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
719 		pcp->count -= pcp->batch;
720 	}
721 	local_irq_restore(flags);
722 	put_cpu();
723 }
724 
725 void fastcall free_hot_page(struct page *page)
726 {
727 	free_hot_cold_page(page, 0);
728 }
729 
730 void fastcall free_cold_page(struct page *page)
731 {
732 	free_hot_cold_page(page, 1);
733 }
734 
735 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
736 {
737 	int i;
738 
739 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
740 	for(i = 0; i < (1 << order); i++)
741 		clear_highpage(page + i);
742 }
743 
744 /*
745  * split_page takes a non-compound higher-order page, and splits it into
746  * n (1<<order) sub-pages: page[0..n]
747  * Each sub-page must be freed individually.
748  *
749  * Note: this is probably too low level an operation for use in drivers.
750  * Please consult with lkml before using this in your driver.
751  */
752 void split_page(struct page *page, unsigned int order)
753 {
754 	int i;
755 
756 	BUG_ON(PageCompound(page));
757 	BUG_ON(!page_count(page));
758 	for (i = 1; i < (1 << order); i++) {
759 		BUG_ON(page_count(page + i));
760 		set_page_count(page + i, 1);
761 	}
762 }
763 
764 /*
765  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
766  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
767  * or two.
768  */
769 static struct page *buffered_rmqueue(struct zonelist *zonelist,
770 			struct zone *zone, int order, gfp_t gfp_flags)
771 {
772 	unsigned long flags;
773 	struct page *page;
774 	int cold = !!(gfp_flags & __GFP_COLD);
775 	int cpu;
776 
777 again:
778 	cpu  = get_cpu();
779 	if (likely(order == 0)) {
780 		struct per_cpu_pages *pcp;
781 
782 		pcp = &zone_pcp(zone, cpu)->pcp[cold];
783 		local_irq_save(flags);
784 		if (!pcp->count) {
785 			pcp->count += rmqueue_bulk(zone, 0,
786 						pcp->batch, &pcp->list);
787 			if (unlikely(!pcp->count))
788 				goto failed;
789 		}
790 		page = list_entry(pcp->list.next, struct page, lru);
791 		list_del(&page->lru);
792 		pcp->count--;
793 	} else {
794 		spin_lock_irqsave(&zone->lock, flags);
795 		page = __rmqueue(zone, order);
796 		spin_unlock(&zone->lock);
797 		if (!page)
798 			goto failed;
799 	}
800 
801 	__mod_page_state_zone(zone, pgalloc, 1 << order);
802 	zone_statistics(zonelist, zone, cpu);
803 	local_irq_restore(flags);
804 	put_cpu();
805 
806 	BUG_ON(bad_range(zone, page));
807 	if (prep_new_page(page, order))
808 		goto again;
809 
810 	if (gfp_flags & __GFP_ZERO)
811 		prep_zero_page(page, order, gfp_flags);
812 
813 	if (order && (gfp_flags & __GFP_COMP))
814 		prep_compound_page(page, order);
815 	return page;
816 
817 failed:
818 	local_irq_restore(flags);
819 	put_cpu();
820 	return NULL;
821 }
822 
823 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
824 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
825 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
826 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
827 #define ALLOC_HARDER		0x10 /* try to alloc harder */
828 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
829 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
830 
831 /*
832  * Return 1 if free pages are above 'mark'. This takes into account the order
833  * of the allocation.
834  */
835 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
836 		      int classzone_idx, int alloc_flags)
837 {
838 	/* free_pages my go negative - that's OK */
839 	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
840 	int o;
841 
842 	if (alloc_flags & ALLOC_HIGH)
843 		min -= min / 2;
844 	if (alloc_flags & ALLOC_HARDER)
845 		min -= min / 4;
846 
847 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
848 		return 0;
849 	for (o = 0; o < order; o++) {
850 		/* At the next order, this order's pages become unavailable */
851 		free_pages -= z->free_area[o].nr_free << o;
852 
853 		/* Require fewer higher order pages to be free */
854 		min >>= 1;
855 
856 		if (free_pages <= min)
857 			return 0;
858 	}
859 	return 1;
860 }
861 
862 /*
863  * get_page_from_freeliest goes through the zonelist trying to allocate
864  * a page.
865  */
866 static struct page *
867 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
868 		struct zonelist *zonelist, int alloc_flags)
869 {
870 	struct zone **z = zonelist->zones;
871 	struct page *page = NULL;
872 	int classzone_idx = zone_idx(*z);
873 
874 	/*
875 	 * Go through the zonelist once, looking for a zone with enough free.
876 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
877 	 */
878 	do {
879 		if ((alloc_flags & ALLOC_CPUSET) &&
880 				!cpuset_zone_allowed(*z, gfp_mask))
881 			continue;
882 
883 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
884 			unsigned long mark;
885 			if (alloc_flags & ALLOC_WMARK_MIN)
886 				mark = (*z)->pages_min;
887 			else if (alloc_flags & ALLOC_WMARK_LOW)
888 				mark = (*z)->pages_low;
889 			else
890 				mark = (*z)->pages_high;
891 			if (!zone_watermark_ok(*z, order, mark,
892 				    classzone_idx, alloc_flags))
893 				if (!zone_reclaim_mode ||
894 				    !zone_reclaim(*z, gfp_mask, order))
895 					continue;
896 		}
897 
898 		page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
899 		if (page) {
900 			break;
901 		}
902 	} while (*(++z) != NULL);
903 	return page;
904 }
905 
906 /*
907  * This is the 'heart' of the zoned buddy allocator.
908  */
909 struct page * fastcall
910 __alloc_pages(gfp_t gfp_mask, unsigned int order,
911 		struct zonelist *zonelist)
912 {
913 	const gfp_t wait = gfp_mask & __GFP_WAIT;
914 	struct zone **z;
915 	struct page *page;
916 	struct reclaim_state reclaim_state;
917 	struct task_struct *p = current;
918 	int do_retry;
919 	int alloc_flags;
920 	int did_some_progress;
921 
922 	might_sleep_if(wait);
923 
924 restart:
925 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
926 
927 	if (unlikely(*z == NULL)) {
928 		/* Should this ever happen?? */
929 		return NULL;
930 	}
931 
932 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
933 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
934 	if (page)
935 		goto got_pg;
936 
937 	do {
938 		wakeup_kswapd(*z, order);
939 	} while (*(++z));
940 
941 	/*
942 	 * OK, we're below the kswapd watermark and have kicked background
943 	 * reclaim. Now things get more complex, so set up alloc_flags according
944 	 * to how we want to proceed.
945 	 *
946 	 * The caller may dip into page reserves a bit more if the caller
947 	 * cannot run direct reclaim, or if the caller has realtime scheduling
948 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
949 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
950 	 */
951 	alloc_flags = ALLOC_WMARK_MIN;
952 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
953 		alloc_flags |= ALLOC_HARDER;
954 	if (gfp_mask & __GFP_HIGH)
955 		alloc_flags |= ALLOC_HIGH;
956 	alloc_flags |= ALLOC_CPUSET;
957 
958 	/*
959 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
960 	 * coming from realtime tasks go deeper into reserves.
961 	 *
962 	 * This is the last chance, in general, before the goto nopage.
963 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
964 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
965 	 */
966 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
967 	if (page)
968 		goto got_pg;
969 
970 	/* This allocation should allow future memory freeing. */
971 
972 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
973 			&& !in_interrupt()) {
974 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
975 nofail_alloc:
976 			/* go through the zonelist yet again, ignoring mins */
977 			page = get_page_from_freelist(gfp_mask, order,
978 				zonelist, ALLOC_NO_WATERMARKS);
979 			if (page)
980 				goto got_pg;
981 			if (gfp_mask & __GFP_NOFAIL) {
982 				blk_congestion_wait(WRITE, HZ/50);
983 				goto nofail_alloc;
984 			}
985 		}
986 		goto nopage;
987 	}
988 
989 	/* Atomic allocations - we can't balance anything */
990 	if (!wait)
991 		goto nopage;
992 
993 rebalance:
994 	cond_resched();
995 
996 	/* We now go into synchronous reclaim */
997 	cpuset_memory_pressure_bump();
998 	p->flags |= PF_MEMALLOC;
999 	reclaim_state.reclaimed_slab = 0;
1000 	p->reclaim_state = &reclaim_state;
1001 
1002 	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1003 
1004 	p->reclaim_state = NULL;
1005 	p->flags &= ~PF_MEMALLOC;
1006 
1007 	cond_resched();
1008 
1009 	if (likely(did_some_progress)) {
1010 		page = get_page_from_freelist(gfp_mask, order,
1011 						zonelist, alloc_flags);
1012 		if (page)
1013 			goto got_pg;
1014 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1015 		/*
1016 		 * Go through the zonelist yet one more time, keep
1017 		 * very high watermark here, this is only to catch
1018 		 * a parallel oom killing, we must fail if we're still
1019 		 * under heavy pressure.
1020 		 */
1021 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1022 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1023 		if (page)
1024 			goto got_pg;
1025 
1026 		out_of_memory(zonelist, gfp_mask, order);
1027 		goto restart;
1028 	}
1029 
1030 	/*
1031 	 * Don't let big-order allocations loop unless the caller explicitly
1032 	 * requests that.  Wait for some write requests to complete then retry.
1033 	 *
1034 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1035 	 * <= 3, but that may not be true in other implementations.
1036 	 */
1037 	do_retry = 0;
1038 	if (!(gfp_mask & __GFP_NORETRY)) {
1039 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1040 			do_retry = 1;
1041 		if (gfp_mask & __GFP_NOFAIL)
1042 			do_retry = 1;
1043 	}
1044 	if (do_retry) {
1045 		blk_congestion_wait(WRITE, HZ/50);
1046 		goto rebalance;
1047 	}
1048 
1049 nopage:
1050 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1051 		printk(KERN_WARNING "%s: page allocation failure."
1052 			" order:%d, mode:0x%x\n",
1053 			p->comm, order, gfp_mask);
1054 		dump_stack();
1055 		show_mem();
1056 	}
1057 got_pg:
1058 	return page;
1059 }
1060 
1061 EXPORT_SYMBOL(__alloc_pages);
1062 
1063 /*
1064  * Common helper functions.
1065  */
1066 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1067 {
1068 	struct page * page;
1069 	page = alloc_pages(gfp_mask, order);
1070 	if (!page)
1071 		return 0;
1072 	return (unsigned long) page_address(page);
1073 }
1074 
1075 EXPORT_SYMBOL(__get_free_pages);
1076 
1077 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1078 {
1079 	struct page * page;
1080 
1081 	/*
1082 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1083 	 * a highmem page
1084 	 */
1085 	BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1086 
1087 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1088 	if (page)
1089 		return (unsigned long) page_address(page);
1090 	return 0;
1091 }
1092 
1093 EXPORT_SYMBOL(get_zeroed_page);
1094 
1095 void __pagevec_free(struct pagevec *pvec)
1096 {
1097 	int i = pagevec_count(pvec);
1098 
1099 	while (--i >= 0)
1100 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1101 }
1102 
1103 fastcall void __free_pages(struct page *page, unsigned int order)
1104 {
1105 	if (put_page_testzero(page)) {
1106 		if (order == 0)
1107 			free_hot_page(page);
1108 		else
1109 			__free_pages_ok(page, order);
1110 	}
1111 }
1112 
1113 EXPORT_SYMBOL(__free_pages);
1114 
1115 fastcall void free_pages(unsigned long addr, unsigned int order)
1116 {
1117 	if (addr != 0) {
1118 		BUG_ON(!virt_addr_valid((void *)addr));
1119 		__free_pages(virt_to_page((void *)addr), order);
1120 	}
1121 }
1122 
1123 EXPORT_SYMBOL(free_pages);
1124 
1125 /*
1126  * Total amount of free (allocatable) RAM:
1127  */
1128 unsigned int nr_free_pages(void)
1129 {
1130 	unsigned int sum = 0;
1131 	struct zone *zone;
1132 
1133 	for_each_zone(zone)
1134 		sum += zone->free_pages;
1135 
1136 	return sum;
1137 }
1138 
1139 EXPORT_SYMBOL(nr_free_pages);
1140 
1141 #ifdef CONFIG_NUMA
1142 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1143 {
1144 	unsigned int i, sum = 0;
1145 
1146 	for (i = 0; i < MAX_NR_ZONES; i++)
1147 		sum += pgdat->node_zones[i].free_pages;
1148 
1149 	return sum;
1150 }
1151 #endif
1152 
1153 static unsigned int nr_free_zone_pages(int offset)
1154 {
1155 	/* Just pick one node, since fallback list is circular */
1156 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1157 	unsigned int sum = 0;
1158 
1159 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1160 	struct zone **zonep = zonelist->zones;
1161 	struct zone *zone;
1162 
1163 	for (zone = *zonep++; zone; zone = *zonep++) {
1164 		unsigned long size = zone->present_pages;
1165 		unsigned long high = zone->pages_high;
1166 		if (size > high)
1167 			sum += size - high;
1168 	}
1169 
1170 	return sum;
1171 }
1172 
1173 /*
1174  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1175  */
1176 unsigned int nr_free_buffer_pages(void)
1177 {
1178 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1179 }
1180 
1181 /*
1182  * Amount of free RAM allocatable within all zones
1183  */
1184 unsigned int nr_free_pagecache_pages(void)
1185 {
1186 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1187 }
1188 
1189 #ifdef CONFIG_HIGHMEM
1190 unsigned int nr_free_highpages (void)
1191 {
1192 	pg_data_t *pgdat;
1193 	unsigned int pages = 0;
1194 
1195 	for_each_pgdat(pgdat)
1196 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1197 
1198 	return pages;
1199 }
1200 #endif
1201 
1202 #ifdef CONFIG_NUMA
1203 static void show_node(struct zone *zone)
1204 {
1205 	printk("Node %d ", zone->zone_pgdat->node_id);
1206 }
1207 #else
1208 #define show_node(zone)	do { } while (0)
1209 #endif
1210 
1211 /*
1212  * Accumulate the page_state information across all CPUs.
1213  * The result is unavoidably approximate - it can change
1214  * during and after execution of this function.
1215  */
1216 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1217 
1218 atomic_t nr_pagecache = ATOMIC_INIT(0);
1219 EXPORT_SYMBOL(nr_pagecache);
1220 #ifdef CONFIG_SMP
1221 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1222 #endif
1223 
1224 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1225 {
1226 	unsigned cpu;
1227 
1228 	memset(ret, 0, nr * sizeof(unsigned long));
1229 	cpus_and(*cpumask, *cpumask, cpu_online_map);
1230 
1231 	for_each_cpu_mask(cpu, *cpumask) {
1232 		unsigned long *in;
1233 		unsigned long *out;
1234 		unsigned off;
1235 		unsigned next_cpu;
1236 
1237 		in = (unsigned long *)&per_cpu(page_states, cpu);
1238 
1239 		next_cpu = next_cpu(cpu, *cpumask);
1240 		if (likely(next_cpu < NR_CPUS))
1241 			prefetch(&per_cpu(page_states, next_cpu));
1242 
1243 		out = (unsigned long *)ret;
1244 		for (off = 0; off < nr; off++)
1245 			*out++ += *in++;
1246 	}
1247 }
1248 
1249 void get_page_state_node(struct page_state *ret, int node)
1250 {
1251 	int nr;
1252 	cpumask_t mask = node_to_cpumask(node);
1253 
1254 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1255 	nr /= sizeof(unsigned long);
1256 
1257 	__get_page_state(ret, nr+1, &mask);
1258 }
1259 
1260 void get_page_state(struct page_state *ret)
1261 {
1262 	int nr;
1263 	cpumask_t mask = CPU_MASK_ALL;
1264 
1265 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1266 	nr /= sizeof(unsigned long);
1267 
1268 	__get_page_state(ret, nr + 1, &mask);
1269 }
1270 
1271 void get_full_page_state(struct page_state *ret)
1272 {
1273 	cpumask_t mask = CPU_MASK_ALL;
1274 
1275 	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1276 }
1277 
1278 unsigned long read_page_state_offset(unsigned long offset)
1279 {
1280 	unsigned long ret = 0;
1281 	int cpu;
1282 
1283 	for_each_online_cpu(cpu) {
1284 		unsigned long in;
1285 
1286 		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1287 		ret += *((unsigned long *)in);
1288 	}
1289 	return ret;
1290 }
1291 
1292 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1293 {
1294 	void *ptr;
1295 
1296 	ptr = &__get_cpu_var(page_states);
1297 	*(unsigned long *)(ptr + offset) += delta;
1298 }
1299 EXPORT_SYMBOL(__mod_page_state_offset);
1300 
1301 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1302 {
1303 	unsigned long flags;
1304 	void *ptr;
1305 
1306 	local_irq_save(flags);
1307 	ptr = &__get_cpu_var(page_states);
1308 	*(unsigned long *)(ptr + offset) += delta;
1309 	local_irq_restore(flags);
1310 }
1311 EXPORT_SYMBOL(mod_page_state_offset);
1312 
1313 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1314 			unsigned long *free, struct pglist_data *pgdat)
1315 {
1316 	struct zone *zones = pgdat->node_zones;
1317 	int i;
1318 
1319 	*active = 0;
1320 	*inactive = 0;
1321 	*free = 0;
1322 	for (i = 0; i < MAX_NR_ZONES; i++) {
1323 		*active += zones[i].nr_active;
1324 		*inactive += zones[i].nr_inactive;
1325 		*free += zones[i].free_pages;
1326 	}
1327 }
1328 
1329 void get_zone_counts(unsigned long *active,
1330 		unsigned long *inactive, unsigned long *free)
1331 {
1332 	struct pglist_data *pgdat;
1333 
1334 	*active = 0;
1335 	*inactive = 0;
1336 	*free = 0;
1337 	for_each_pgdat(pgdat) {
1338 		unsigned long l, m, n;
1339 		__get_zone_counts(&l, &m, &n, pgdat);
1340 		*active += l;
1341 		*inactive += m;
1342 		*free += n;
1343 	}
1344 }
1345 
1346 void si_meminfo(struct sysinfo *val)
1347 {
1348 	val->totalram = totalram_pages;
1349 	val->sharedram = 0;
1350 	val->freeram = nr_free_pages();
1351 	val->bufferram = nr_blockdev_pages();
1352 #ifdef CONFIG_HIGHMEM
1353 	val->totalhigh = totalhigh_pages;
1354 	val->freehigh = nr_free_highpages();
1355 #else
1356 	val->totalhigh = 0;
1357 	val->freehigh = 0;
1358 #endif
1359 	val->mem_unit = PAGE_SIZE;
1360 }
1361 
1362 EXPORT_SYMBOL(si_meminfo);
1363 
1364 #ifdef CONFIG_NUMA
1365 void si_meminfo_node(struct sysinfo *val, int nid)
1366 {
1367 	pg_data_t *pgdat = NODE_DATA(nid);
1368 
1369 	val->totalram = pgdat->node_present_pages;
1370 	val->freeram = nr_free_pages_pgdat(pgdat);
1371 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1372 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1373 	val->mem_unit = PAGE_SIZE;
1374 }
1375 #endif
1376 
1377 #define K(x) ((x) << (PAGE_SHIFT-10))
1378 
1379 /*
1380  * Show free area list (used inside shift_scroll-lock stuff)
1381  * We also calculate the percentage fragmentation. We do this by counting the
1382  * memory on each free list with the exception of the first item on the list.
1383  */
1384 void show_free_areas(void)
1385 {
1386 	struct page_state ps;
1387 	int cpu, temperature;
1388 	unsigned long active;
1389 	unsigned long inactive;
1390 	unsigned long free;
1391 	struct zone *zone;
1392 
1393 	for_each_zone(zone) {
1394 		show_node(zone);
1395 		printk("%s per-cpu:", zone->name);
1396 
1397 		if (!populated_zone(zone)) {
1398 			printk(" empty\n");
1399 			continue;
1400 		} else
1401 			printk("\n");
1402 
1403 		for_each_online_cpu(cpu) {
1404 			struct per_cpu_pageset *pageset;
1405 
1406 			pageset = zone_pcp(zone, cpu);
1407 
1408 			for (temperature = 0; temperature < 2; temperature++)
1409 				printk("cpu %d %s: high %d, batch %d used:%d\n",
1410 					cpu,
1411 					temperature ? "cold" : "hot",
1412 					pageset->pcp[temperature].high,
1413 					pageset->pcp[temperature].batch,
1414 					pageset->pcp[temperature].count);
1415 		}
1416 	}
1417 
1418 	get_page_state(&ps);
1419 	get_zone_counts(&active, &inactive, &free);
1420 
1421 	printk("Free pages: %11ukB (%ukB HighMem)\n",
1422 		K(nr_free_pages()),
1423 		K(nr_free_highpages()));
1424 
1425 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1426 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1427 		active,
1428 		inactive,
1429 		ps.nr_dirty,
1430 		ps.nr_writeback,
1431 		ps.nr_unstable,
1432 		nr_free_pages(),
1433 		ps.nr_slab,
1434 		ps.nr_mapped,
1435 		ps.nr_page_table_pages);
1436 
1437 	for_each_zone(zone) {
1438 		int i;
1439 
1440 		show_node(zone);
1441 		printk("%s"
1442 			" free:%lukB"
1443 			" min:%lukB"
1444 			" low:%lukB"
1445 			" high:%lukB"
1446 			" active:%lukB"
1447 			" inactive:%lukB"
1448 			" present:%lukB"
1449 			" pages_scanned:%lu"
1450 			" all_unreclaimable? %s"
1451 			"\n",
1452 			zone->name,
1453 			K(zone->free_pages),
1454 			K(zone->pages_min),
1455 			K(zone->pages_low),
1456 			K(zone->pages_high),
1457 			K(zone->nr_active),
1458 			K(zone->nr_inactive),
1459 			K(zone->present_pages),
1460 			zone->pages_scanned,
1461 			(zone->all_unreclaimable ? "yes" : "no")
1462 			);
1463 		printk("lowmem_reserve[]:");
1464 		for (i = 0; i < MAX_NR_ZONES; i++)
1465 			printk(" %lu", zone->lowmem_reserve[i]);
1466 		printk("\n");
1467 	}
1468 
1469 	for_each_zone(zone) {
1470  		unsigned long nr, flags, order, total = 0;
1471 
1472 		show_node(zone);
1473 		printk("%s: ", zone->name);
1474 		if (!populated_zone(zone)) {
1475 			printk("empty\n");
1476 			continue;
1477 		}
1478 
1479 		spin_lock_irqsave(&zone->lock, flags);
1480 		for (order = 0; order < MAX_ORDER; order++) {
1481 			nr = zone->free_area[order].nr_free;
1482 			total += nr << order;
1483 			printk("%lu*%lukB ", nr, K(1UL) << order);
1484 		}
1485 		spin_unlock_irqrestore(&zone->lock, flags);
1486 		printk("= %lukB\n", K(total));
1487 	}
1488 
1489 	show_swap_cache_info();
1490 }
1491 
1492 /*
1493  * Builds allocation fallback zone lists.
1494  *
1495  * Add all populated zones of a node to the zonelist.
1496  */
1497 static int __init build_zonelists_node(pg_data_t *pgdat,
1498 			struct zonelist *zonelist, int nr_zones, int zone_type)
1499 {
1500 	struct zone *zone;
1501 
1502 	BUG_ON(zone_type > ZONE_HIGHMEM);
1503 
1504 	do {
1505 		zone = pgdat->node_zones + zone_type;
1506 		if (populated_zone(zone)) {
1507 #ifndef CONFIG_HIGHMEM
1508 			BUG_ON(zone_type > ZONE_NORMAL);
1509 #endif
1510 			zonelist->zones[nr_zones++] = zone;
1511 			check_highest_zone(zone_type);
1512 		}
1513 		zone_type--;
1514 
1515 	} while (zone_type >= 0);
1516 	return nr_zones;
1517 }
1518 
1519 static inline int highest_zone(int zone_bits)
1520 {
1521 	int res = ZONE_NORMAL;
1522 	if (zone_bits & (__force int)__GFP_HIGHMEM)
1523 		res = ZONE_HIGHMEM;
1524 	if (zone_bits & (__force int)__GFP_DMA32)
1525 		res = ZONE_DMA32;
1526 	if (zone_bits & (__force int)__GFP_DMA)
1527 		res = ZONE_DMA;
1528 	return res;
1529 }
1530 
1531 #ifdef CONFIG_NUMA
1532 #define MAX_NODE_LOAD (num_online_nodes())
1533 static int __initdata node_load[MAX_NUMNODES];
1534 /**
1535  * find_next_best_node - find the next node that should appear in a given node's fallback list
1536  * @node: node whose fallback list we're appending
1537  * @used_node_mask: nodemask_t of already used nodes
1538  *
1539  * We use a number of factors to determine which is the next node that should
1540  * appear on a given node's fallback list.  The node should not have appeared
1541  * already in @node's fallback list, and it should be the next closest node
1542  * according to the distance array (which contains arbitrary distance values
1543  * from each node to each node in the system), and should also prefer nodes
1544  * with no CPUs, since presumably they'll have very little allocation pressure
1545  * on them otherwise.
1546  * It returns -1 if no node is found.
1547  */
1548 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1549 {
1550 	int n, val;
1551 	int min_val = INT_MAX;
1552 	int best_node = -1;
1553 
1554 	/* Use the local node if we haven't already */
1555 	if (!node_isset(node, *used_node_mask)) {
1556 		node_set(node, *used_node_mask);
1557 		return node;
1558 	}
1559 
1560 	for_each_online_node(n) {
1561 		cpumask_t tmp;
1562 
1563 		/* Don't want a node to appear more than once */
1564 		if (node_isset(n, *used_node_mask))
1565 			continue;
1566 
1567 		/* Use the distance array to find the distance */
1568 		val = node_distance(node, n);
1569 
1570 		/* Penalize nodes under us ("prefer the next node") */
1571 		val += (n < node);
1572 
1573 		/* Give preference to headless and unused nodes */
1574 		tmp = node_to_cpumask(n);
1575 		if (!cpus_empty(tmp))
1576 			val += PENALTY_FOR_NODE_WITH_CPUS;
1577 
1578 		/* Slight preference for less loaded node */
1579 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1580 		val += node_load[n];
1581 
1582 		if (val < min_val) {
1583 			min_val = val;
1584 			best_node = n;
1585 		}
1586 	}
1587 
1588 	if (best_node >= 0)
1589 		node_set(best_node, *used_node_mask);
1590 
1591 	return best_node;
1592 }
1593 
1594 static void __init build_zonelists(pg_data_t *pgdat)
1595 {
1596 	int i, j, k, node, local_node;
1597 	int prev_node, load;
1598 	struct zonelist *zonelist;
1599 	nodemask_t used_mask;
1600 
1601 	/* initialize zonelists */
1602 	for (i = 0; i < GFP_ZONETYPES; i++) {
1603 		zonelist = pgdat->node_zonelists + i;
1604 		zonelist->zones[0] = NULL;
1605 	}
1606 
1607 	/* NUMA-aware ordering of nodes */
1608 	local_node = pgdat->node_id;
1609 	load = num_online_nodes();
1610 	prev_node = local_node;
1611 	nodes_clear(used_mask);
1612 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1613 		int distance = node_distance(local_node, node);
1614 
1615 		/*
1616 		 * If another node is sufficiently far away then it is better
1617 		 * to reclaim pages in a zone before going off node.
1618 		 */
1619 		if (distance > RECLAIM_DISTANCE)
1620 			zone_reclaim_mode = 1;
1621 
1622 		/*
1623 		 * We don't want to pressure a particular node.
1624 		 * So adding penalty to the first node in same
1625 		 * distance group to make it round-robin.
1626 		 */
1627 
1628 		if (distance != node_distance(local_node, prev_node))
1629 			node_load[node] += load;
1630 		prev_node = node;
1631 		load--;
1632 		for (i = 0; i < GFP_ZONETYPES; i++) {
1633 			zonelist = pgdat->node_zonelists + i;
1634 			for (j = 0; zonelist->zones[j] != NULL; j++);
1635 
1636 			k = highest_zone(i);
1637 
1638 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1639 			zonelist->zones[j] = NULL;
1640 		}
1641 	}
1642 }
1643 
1644 #else	/* CONFIG_NUMA */
1645 
1646 static void __init build_zonelists(pg_data_t *pgdat)
1647 {
1648 	int i, j, k, node, local_node;
1649 
1650 	local_node = pgdat->node_id;
1651 	for (i = 0; i < GFP_ZONETYPES; i++) {
1652 		struct zonelist *zonelist;
1653 
1654 		zonelist = pgdat->node_zonelists + i;
1655 
1656 		j = 0;
1657 		k = highest_zone(i);
1658  		j = build_zonelists_node(pgdat, zonelist, j, k);
1659  		/*
1660  		 * Now we build the zonelist so that it contains the zones
1661  		 * of all the other nodes.
1662  		 * We don't want to pressure a particular node, so when
1663  		 * building the zones for node N, we make sure that the
1664  		 * zones coming right after the local ones are those from
1665  		 * node N+1 (modulo N)
1666  		 */
1667 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1668 			if (!node_online(node))
1669 				continue;
1670 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1671 		}
1672 		for (node = 0; node < local_node; node++) {
1673 			if (!node_online(node))
1674 				continue;
1675 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1676 		}
1677 
1678 		zonelist->zones[j] = NULL;
1679 	}
1680 }
1681 
1682 #endif	/* CONFIG_NUMA */
1683 
1684 void __init build_all_zonelists(void)
1685 {
1686 	int i;
1687 
1688 	for_each_online_node(i)
1689 		build_zonelists(NODE_DATA(i));
1690 	printk("Built %i zonelists\n", num_online_nodes());
1691 	cpuset_init_current_mems_allowed();
1692 }
1693 
1694 /*
1695  * Helper functions to size the waitqueue hash table.
1696  * Essentially these want to choose hash table sizes sufficiently
1697  * large so that collisions trying to wait on pages are rare.
1698  * But in fact, the number of active page waitqueues on typical
1699  * systems is ridiculously low, less than 200. So this is even
1700  * conservative, even though it seems large.
1701  *
1702  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1703  * waitqueues, i.e. the size of the waitq table given the number of pages.
1704  */
1705 #define PAGES_PER_WAITQUEUE	256
1706 
1707 static inline unsigned long wait_table_size(unsigned long pages)
1708 {
1709 	unsigned long size = 1;
1710 
1711 	pages /= PAGES_PER_WAITQUEUE;
1712 
1713 	while (size < pages)
1714 		size <<= 1;
1715 
1716 	/*
1717 	 * Once we have dozens or even hundreds of threads sleeping
1718 	 * on IO we've got bigger problems than wait queue collision.
1719 	 * Limit the size of the wait table to a reasonable size.
1720 	 */
1721 	size = min(size, 4096UL);
1722 
1723 	return max(size, 4UL);
1724 }
1725 
1726 /*
1727  * This is an integer logarithm so that shifts can be used later
1728  * to extract the more random high bits from the multiplicative
1729  * hash function before the remainder is taken.
1730  */
1731 static inline unsigned long wait_table_bits(unsigned long size)
1732 {
1733 	return ffz(~size);
1734 }
1735 
1736 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1737 
1738 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1739 		unsigned long *zones_size, unsigned long *zholes_size)
1740 {
1741 	unsigned long realtotalpages, totalpages = 0;
1742 	int i;
1743 
1744 	for (i = 0; i < MAX_NR_ZONES; i++)
1745 		totalpages += zones_size[i];
1746 	pgdat->node_spanned_pages = totalpages;
1747 
1748 	realtotalpages = totalpages;
1749 	if (zholes_size)
1750 		for (i = 0; i < MAX_NR_ZONES; i++)
1751 			realtotalpages -= zholes_size[i];
1752 	pgdat->node_present_pages = realtotalpages;
1753 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1754 }
1755 
1756 
1757 /*
1758  * Initially all pages are reserved - free ones are freed
1759  * up by free_all_bootmem() once the early boot process is
1760  * done. Non-atomic initialization, single-pass.
1761  */
1762 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1763 		unsigned long start_pfn)
1764 {
1765 	struct page *page;
1766 	unsigned long end_pfn = start_pfn + size;
1767 	unsigned long pfn;
1768 
1769 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1770 		if (!early_pfn_valid(pfn))
1771 			continue;
1772 		page = pfn_to_page(pfn);
1773 		set_page_links(page, zone, nid, pfn);
1774 		set_page_count(page, 1);
1775 		reset_page_mapcount(page);
1776 		SetPageReserved(page);
1777 		INIT_LIST_HEAD(&page->lru);
1778 #ifdef WANT_PAGE_VIRTUAL
1779 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1780 		if (!is_highmem_idx(zone))
1781 			set_page_address(page, __va(pfn << PAGE_SHIFT));
1782 #endif
1783 	}
1784 }
1785 
1786 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1787 				unsigned long size)
1788 {
1789 	int order;
1790 	for (order = 0; order < MAX_ORDER ; order++) {
1791 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1792 		zone->free_area[order].nr_free = 0;
1793 	}
1794 }
1795 
1796 #define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1797 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1798 		unsigned long size)
1799 {
1800 	unsigned long snum = pfn_to_section_nr(pfn);
1801 	unsigned long end = pfn_to_section_nr(pfn + size);
1802 
1803 	if (FLAGS_HAS_NODE)
1804 		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1805 	else
1806 		for (; snum <= end; snum++)
1807 			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1808 }
1809 
1810 #ifndef __HAVE_ARCH_MEMMAP_INIT
1811 #define memmap_init(size, nid, zone, start_pfn) \
1812 	memmap_init_zone((size), (nid), (zone), (start_pfn))
1813 #endif
1814 
1815 static int __cpuinit zone_batchsize(struct zone *zone)
1816 {
1817 	int batch;
1818 
1819 	/*
1820 	 * The per-cpu-pages pools are set to around 1000th of the
1821 	 * size of the zone.  But no more than 1/2 of a meg.
1822 	 *
1823 	 * OK, so we don't know how big the cache is.  So guess.
1824 	 */
1825 	batch = zone->present_pages / 1024;
1826 	if (batch * PAGE_SIZE > 512 * 1024)
1827 		batch = (512 * 1024) / PAGE_SIZE;
1828 	batch /= 4;		/* We effectively *= 4 below */
1829 	if (batch < 1)
1830 		batch = 1;
1831 
1832 	/*
1833 	 * Clamp the batch to a 2^n - 1 value. Having a power
1834 	 * of 2 value was found to be more likely to have
1835 	 * suboptimal cache aliasing properties in some cases.
1836 	 *
1837 	 * For example if 2 tasks are alternately allocating
1838 	 * batches of pages, one task can end up with a lot
1839 	 * of pages of one half of the possible page colors
1840 	 * and the other with pages of the other colors.
1841 	 */
1842 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1843 
1844 	return batch;
1845 }
1846 
1847 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1848 {
1849 	struct per_cpu_pages *pcp;
1850 
1851 	memset(p, 0, sizeof(*p));
1852 
1853 	pcp = &p->pcp[0];		/* hot */
1854 	pcp->count = 0;
1855 	pcp->high = 6 * batch;
1856 	pcp->batch = max(1UL, 1 * batch);
1857 	INIT_LIST_HEAD(&pcp->list);
1858 
1859 	pcp = &p->pcp[1];		/* cold*/
1860 	pcp->count = 0;
1861 	pcp->high = 2 * batch;
1862 	pcp->batch = max(1UL, batch/2);
1863 	INIT_LIST_HEAD(&pcp->list);
1864 }
1865 
1866 /*
1867  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1868  * to the value high for the pageset p.
1869  */
1870 
1871 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1872 				unsigned long high)
1873 {
1874 	struct per_cpu_pages *pcp;
1875 
1876 	pcp = &p->pcp[0]; /* hot list */
1877 	pcp->high = high;
1878 	pcp->batch = max(1UL, high/4);
1879 	if ((high/4) > (PAGE_SHIFT * 8))
1880 		pcp->batch = PAGE_SHIFT * 8;
1881 }
1882 
1883 
1884 #ifdef CONFIG_NUMA
1885 /*
1886  * Boot pageset table. One per cpu which is going to be used for all
1887  * zones and all nodes. The parameters will be set in such a way
1888  * that an item put on a list will immediately be handed over to
1889  * the buddy list. This is safe since pageset manipulation is done
1890  * with interrupts disabled.
1891  *
1892  * Some NUMA counter updates may also be caught by the boot pagesets.
1893  *
1894  * The boot_pagesets must be kept even after bootup is complete for
1895  * unused processors and/or zones. They do play a role for bootstrapping
1896  * hotplugged processors.
1897  *
1898  * zoneinfo_show() and maybe other functions do
1899  * not check if the processor is online before following the pageset pointer.
1900  * Other parts of the kernel may not check if the zone is available.
1901  */
1902 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1903 
1904 /*
1905  * Dynamically allocate memory for the
1906  * per cpu pageset array in struct zone.
1907  */
1908 static int __cpuinit process_zones(int cpu)
1909 {
1910 	struct zone *zone, *dzone;
1911 
1912 	for_each_zone(zone) {
1913 
1914 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1915 					 GFP_KERNEL, cpu_to_node(cpu));
1916 		if (!zone_pcp(zone, cpu))
1917 			goto bad;
1918 
1919 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1920 
1921 		if (percpu_pagelist_fraction)
1922 			setup_pagelist_highmark(zone_pcp(zone, cpu),
1923 			 	(zone->present_pages / percpu_pagelist_fraction));
1924 	}
1925 
1926 	return 0;
1927 bad:
1928 	for_each_zone(dzone) {
1929 		if (dzone == zone)
1930 			break;
1931 		kfree(zone_pcp(dzone, cpu));
1932 		zone_pcp(dzone, cpu) = NULL;
1933 	}
1934 	return -ENOMEM;
1935 }
1936 
1937 static inline void free_zone_pagesets(int cpu)
1938 {
1939 	struct zone *zone;
1940 
1941 	for_each_zone(zone) {
1942 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1943 
1944 		zone_pcp(zone, cpu) = NULL;
1945 		kfree(pset);
1946 	}
1947 }
1948 
1949 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1950 		unsigned long action,
1951 		void *hcpu)
1952 {
1953 	int cpu = (long)hcpu;
1954 	int ret = NOTIFY_OK;
1955 
1956 	switch (action) {
1957 		case CPU_UP_PREPARE:
1958 			if (process_zones(cpu))
1959 				ret = NOTIFY_BAD;
1960 			break;
1961 		case CPU_UP_CANCELED:
1962 		case CPU_DEAD:
1963 			free_zone_pagesets(cpu);
1964 			break;
1965 		default:
1966 			break;
1967 	}
1968 	return ret;
1969 }
1970 
1971 static struct notifier_block pageset_notifier =
1972 	{ &pageset_cpuup_callback, NULL, 0 };
1973 
1974 void __init setup_per_cpu_pageset(void)
1975 {
1976 	int err;
1977 
1978 	/* Initialize per_cpu_pageset for cpu 0.
1979 	 * A cpuup callback will do this for every cpu
1980 	 * as it comes online
1981 	 */
1982 	err = process_zones(smp_processor_id());
1983 	BUG_ON(err);
1984 	register_cpu_notifier(&pageset_notifier);
1985 }
1986 
1987 #endif
1988 
1989 static __meminit
1990 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1991 {
1992 	int i;
1993 	struct pglist_data *pgdat = zone->zone_pgdat;
1994 
1995 	/*
1996 	 * The per-page waitqueue mechanism uses hashed waitqueues
1997 	 * per zone.
1998 	 */
1999 	zone->wait_table_size = wait_table_size(zone_size_pages);
2000 	zone->wait_table_bits =	wait_table_bits(zone->wait_table_size);
2001 	zone->wait_table = (wait_queue_head_t *)
2002 		alloc_bootmem_node(pgdat, zone->wait_table_size
2003 					* sizeof(wait_queue_head_t));
2004 
2005 	for(i = 0; i < zone->wait_table_size; ++i)
2006 		init_waitqueue_head(zone->wait_table + i);
2007 }
2008 
2009 static __meminit void zone_pcp_init(struct zone *zone)
2010 {
2011 	int cpu;
2012 	unsigned long batch = zone_batchsize(zone);
2013 
2014 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2015 #ifdef CONFIG_NUMA
2016 		/* Early boot. Slab allocator not functional yet */
2017 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2018 		setup_pageset(&boot_pageset[cpu],0);
2019 #else
2020 		setup_pageset(zone_pcp(zone,cpu), batch);
2021 #endif
2022 	}
2023 	printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2024 		zone->name, zone->present_pages, batch);
2025 }
2026 
2027 static __meminit void init_currently_empty_zone(struct zone *zone,
2028 		unsigned long zone_start_pfn, unsigned long size)
2029 {
2030 	struct pglist_data *pgdat = zone->zone_pgdat;
2031 
2032 	zone_wait_table_init(zone, size);
2033 	pgdat->nr_zones = zone_idx(zone) + 1;
2034 
2035 	zone->zone_mem_map = pfn_to_page(zone_start_pfn);
2036 	zone->zone_start_pfn = zone_start_pfn;
2037 
2038 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2039 
2040 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2041 }
2042 
2043 /*
2044  * Set up the zone data structures:
2045  *   - mark all pages reserved
2046  *   - mark all memory queues empty
2047  *   - clear the memory bitmaps
2048  */
2049 static void __init free_area_init_core(struct pglist_data *pgdat,
2050 		unsigned long *zones_size, unsigned long *zholes_size)
2051 {
2052 	unsigned long j;
2053 	int nid = pgdat->node_id;
2054 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2055 
2056 	pgdat_resize_init(pgdat);
2057 	pgdat->nr_zones = 0;
2058 	init_waitqueue_head(&pgdat->kswapd_wait);
2059 	pgdat->kswapd_max_order = 0;
2060 
2061 	for (j = 0; j < MAX_NR_ZONES; j++) {
2062 		struct zone *zone = pgdat->node_zones + j;
2063 		unsigned long size, realsize;
2064 
2065 		realsize = size = zones_size[j];
2066 		if (zholes_size)
2067 			realsize -= zholes_size[j];
2068 
2069 		if (j < ZONE_HIGHMEM)
2070 			nr_kernel_pages += realsize;
2071 		nr_all_pages += realsize;
2072 
2073 		zone->spanned_pages = size;
2074 		zone->present_pages = realsize;
2075 		zone->name = zone_names[j];
2076 		spin_lock_init(&zone->lock);
2077 		spin_lock_init(&zone->lru_lock);
2078 		zone_seqlock_init(zone);
2079 		zone->zone_pgdat = pgdat;
2080 		zone->free_pages = 0;
2081 
2082 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2083 
2084 		zone_pcp_init(zone);
2085 		INIT_LIST_HEAD(&zone->active_list);
2086 		INIT_LIST_HEAD(&zone->inactive_list);
2087 		zone->nr_scan_active = 0;
2088 		zone->nr_scan_inactive = 0;
2089 		zone->nr_active = 0;
2090 		zone->nr_inactive = 0;
2091 		atomic_set(&zone->reclaim_in_progress, 0);
2092 		if (!size)
2093 			continue;
2094 
2095 		zonetable_add(zone, nid, j, zone_start_pfn, size);
2096 		init_currently_empty_zone(zone, zone_start_pfn, size);
2097 		zone_start_pfn += size;
2098 	}
2099 }
2100 
2101 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2102 {
2103 	/* Skip empty nodes */
2104 	if (!pgdat->node_spanned_pages)
2105 		return;
2106 
2107 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2108 	/* ia64 gets its own node_mem_map, before this, without bootmem */
2109 	if (!pgdat->node_mem_map) {
2110 		unsigned long size;
2111 		struct page *map;
2112 
2113 		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2114 		map = alloc_remap(pgdat->node_id, size);
2115 		if (!map)
2116 			map = alloc_bootmem_node(pgdat, size);
2117 		pgdat->node_mem_map = map;
2118 	}
2119 #ifdef CONFIG_FLATMEM
2120 	/*
2121 	 * With no DISCONTIG, the global mem_map is just set as node 0's
2122 	 */
2123 	if (pgdat == NODE_DATA(0))
2124 		mem_map = NODE_DATA(0)->node_mem_map;
2125 #endif
2126 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2127 }
2128 
2129 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2130 		unsigned long *zones_size, unsigned long node_start_pfn,
2131 		unsigned long *zholes_size)
2132 {
2133 	pgdat->node_id = nid;
2134 	pgdat->node_start_pfn = node_start_pfn;
2135 	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2136 
2137 	alloc_node_mem_map(pgdat);
2138 
2139 	free_area_init_core(pgdat, zones_size, zholes_size);
2140 }
2141 
2142 #ifndef CONFIG_NEED_MULTIPLE_NODES
2143 static bootmem_data_t contig_bootmem_data;
2144 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2145 
2146 EXPORT_SYMBOL(contig_page_data);
2147 #endif
2148 
2149 void __init free_area_init(unsigned long *zones_size)
2150 {
2151 	free_area_init_node(0, NODE_DATA(0), zones_size,
2152 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2153 }
2154 
2155 #ifdef CONFIG_PROC_FS
2156 
2157 #include <linux/seq_file.h>
2158 
2159 static void *frag_start(struct seq_file *m, loff_t *pos)
2160 {
2161 	pg_data_t *pgdat;
2162 	loff_t node = *pos;
2163 
2164 	for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2165 		--node;
2166 
2167 	return pgdat;
2168 }
2169 
2170 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2171 {
2172 	pg_data_t *pgdat = (pg_data_t *)arg;
2173 
2174 	(*pos)++;
2175 	return pgdat->pgdat_next;
2176 }
2177 
2178 static void frag_stop(struct seq_file *m, void *arg)
2179 {
2180 }
2181 
2182 /*
2183  * This walks the free areas for each zone.
2184  */
2185 static int frag_show(struct seq_file *m, void *arg)
2186 {
2187 	pg_data_t *pgdat = (pg_data_t *)arg;
2188 	struct zone *zone;
2189 	struct zone *node_zones = pgdat->node_zones;
2190 	unsigned long flags;
2191 	int order;
2192 
2193 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2194 		if (!populated_zone(zone))
2195 			continue;
2196 
2197 		spin_lock_irqsave(&zone->lock, flags);
2198 		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2199 		for (order = 0; order < MAX_ORDER; ++order)
2200 			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2201 		spin_unlock_irqrestore(&zone->lock, flags);
2202 		seq_putc(m, '\n');
2203 	}
2204 	return 0;
2205 }
2206 
2207 struct seq_operations fragmentation_op = {
2208 	.start	= frag_start,
2209 	.next	= frag_next,
2210 	.stop	= frag_stop,
2211 	.show	= frag_show,
2212 };
2213 
2214 /*
2215  * Output information about zones in @pgdat.
2216  */
2217 static int zoneinfo_show(struct seq_file *m, void *arg)
2218 {
2219 	pg_data_t *pgdat = arg;
2220 	struct zone *zone;
2221 	struct zone *node_zones = pgdat->node_zones;
2222 	unsigned long flags;
2223 
2224 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2225 		int i;
2226 
2227 		if (!populated_zone(zone))
2228 			continue;
2229 
2230 		spin_lock_irqsave(&zone->lock, flags);
2231 		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2232 		seq_printf(m,
2233 			   "\n  pages free     %lu"
2234 			   "\n        min      %lu"
2235 			   "\n        low      %lu"
2236 			   "\n        high     %lu"
2237 			   "\n        active   %lu"
2238 			   "\n        inactive %lu"
2239 			   "\n        scanned  %lu (a: %lu i: %lu)"
2240 			   "\n        spanned  %lu"
2241 			   "\n        present  %lu",
2242 			   zone->free_pages,
2243 			   zone->pages_min,
2244 			   zone->pages_low,
2245 			   zone->pages_high,
2246 			   zone->nr_active,
2247 			   zone->nr_inactive,
2248 			   zone->pages_scanned,
2249 			   zone->nr_scan_active, zone->nr_scan_inactive,
2250 			   zone->spanned_pages,
2251 			   zone->present_pages);
2252 		seq_printf(m,
2253 			   "\n        protection: (%lu",
2254 			   zone->lowmem_reserve[0]);
2255 		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2256 			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2257 		seq_printf(m,
2258 			   ")"
2259 			   "\n  pagesets");
2260 		for_each_online_cpu(i) {
2261 			struct per_cpu_pageset *pageset;
2262 			int j;
2263 
2264 			pageset = zone_pcp(zone, i);
2265 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2266 				if (pageset->pcp[j].count)
2267 					break;
2268 			}
2269 			if (j == ARRAY_SIZE(pageset->pcp))
2270 				continue;
2271 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2272 				seq_printf(m,
2273 					   "\n    cpu: %i pcp: %i"
2274 					   "\n              count: %i"
2275 					   "\n              high:  %i"
2276 					   "\n              batch: %i",
2277 					   i, j,
2278 					   pageset->pcp[j].count,
2279 					   pageset->pcp[j].high,
2280 					   pageset->pcp[j].batch);
2281 			}
2282 #ifdef CONFIG_NUMA
2283 			seq_printf(m,
2284 				   "\n            numa_hit:       %lu"
2285 				   "\n            numa_miss:      %lu"
2286 				   "\n            numa_foreign:   %lu"
2287 				   "\n            interleave_hit: %lu"
2288 				   "\n            local_node:     %lu"
2289 				   "\n            other_node:     %lu",
2290 				   pageset->numa_hit,
2291 				   pageset->numa_miss,
2292 				   pageset->numa_foreign,
2293 				   pageset->interleave_hit,
2294 				   pageset->local_node,
2295 				   pageset->other_node);
2296 #endif
2297 		}
2298 		seq_printf(m,
2299 			   "\n  all_unreclaimable: %u"
2300 			   "\n  prev_priority:     %i"
2301 			   "\n  temp_priority:     %i"
2302 			   "\n  start_pfn:         %lu",
2303 			   zone->all_unreclaimable,
2304 			   zone->prev_priority,
2305 			   zone->temp_priority,
2306 			   zone->zone_start_pfn);
2307 		spin_unlock_irqrestore(&zone->lock, flags);
2308 		seq_putc(m, '\n');
2309 	}
2310 	return 0;
2311 }
2312 
2313 struct seq_operations zoneinfo_op = {
2314 	.start	= frag_start, /* iterate over all zones. The same as in
2315 			       * fragmentation. */
2316 	.next	= frag_next,
2317 	.stop	= frag_stop,
2318 	.show	= zoneinfo_show,
2319 };
2320 
2321 static char *vmstat_text[] = {
2322 	"nr_dirty",
2323 	"nr_writeback",
2324 	"nr_unstable",
2325 	"nr_page_table_pages",
2326 	"nr_mapped",
2327 	"nr_slab",
2328 
2329 	"pgpgin",
2330 	"pgpgout",
2331 	"pswpin",
2332 	"pswpout",
2333 
2334 	"pgalloc_high",
2335 	"pgalloc_normal",
2336 	"pgalloc_dma32",
2337 	"pgalloc_dma",
2338 
2339 	"pgfree",
2340 	"pgactivate",
2341 	"pgdeactivate",
2342 
2343 	"pgfault",
2344 	"pgmajfault",
2345 
2346 	"pgrefill_high",
2347 	"pgrefill_normal",
2348 	"pgrefill_dma32",
2349 	"pgrefill_dma",
2350 
2351 	"pgsteal_high",
2352 	"pgsteal_normal",
2353 	"pgsteal_dma32",
2354 	"pgsteal_dma",
2355 
2356 	"pgscan_kswapd_high",
2357 	"pgscan_kswapd_normal",
2358 	"pgscan_kswapd_dma32",
2359 	"pgscan_kswapd_dma",
2360 
2361 	"pgscan_direct_high",
2362 	"pgscan_direct_normal",
2363 	"pgscan_direct_dma32",
2364 	"pgscan_direct_dma",
2365 
2366 	"pginodesteal",
2367 	"slabs_scanned",
2368 	"kswapd_steal",
2369 	"kswapd_inodesteal",
2370 	"pageoutrun",
2371 	"allocstall",
2372 
2373 	"pgrotated",
2374 	"nr_bounce",
2375 };
2376 
2377 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2378 {
2379 	struct page_state *ps;
2380 
2381 	if (*pos >= ARRAY_SIZE(vmstat_text))
2382 		return NULL;
2383 
2384 	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2385 	m->private = ps;
2386 	if (!ps)
2387 		return ERR_PTR(-ENOMEM);
2388 	get_full_page_state(ps);
2389 	ps->pgpgin /= 2;		/* sectors -> kbytes */
2390 	ps->pgpgout /= 2;
2391 	return (unsigned long *)ps + *pos;
2392 }
2393 
2394 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2395 {
2396 	(*pos)++;
2397 	if (*pos >= ARRAY_SIZE(vmstat_text))
2398 		return NULL;
2399 	return (unsigned long *)m->private + *pos;
2400 }
2401 
2402 static int vmstat_show(struct seq_file *m, void *arg)
2403 {
2404 	unsigned long *l = arg;
2405 	unsigned long off = l - (unsigned long *)m->private;
2406 
2407 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2408 	return 0;
2409 }
2410 
2411 static void vmstat_stop(struct seq_file *m, void *arg)
2412 {
2413 	kfree(m->private);
2414 	m->private = NULL;
2415 }
2416 
2417 struct seq_operations vmstat_op = {
2418 	.start	= vmstat_start,
2419 	.next	= vmstat_next,
2420 	.stop	= vmstat_stop,
2421 	.show	= vmstat_show,
2422 };
2423 
2424 #endif /* CONFIG_PROC_FS */
2425 
2426 #ifdef CONFIG_HOTPLUG_CPU
2427 static int page_alloc_cpu_notify(struct notifier_block *self,
2428 				 unsigned long action, void *hcpu)
2429 {
2430 	int cpu = (unsigned long)hcpu;
2431 	long *count;
2432 	unsigned long *src, *dest;
2433 
2434 	if (action == CPU_DEAD) {
2435 		int i;
2436 
2437 		/* Drain local pagecache count. */
2438 		count = &per_cpu(nr_pagecache_local, cpu);
2439 		atomic_add(*count, &nr_pagecache);
2440 		*count = 0;
2441 		local_irq_disable();
2442 		__drain_pages(cpu);
2443 
2444 		/* Add dead cpu's page_states to our own. */
2445 		dest = (unsigned long *)&__get_cpu_var(page_states);
2446 		src = (unsigned long *)&per_cpu(page_states, cpu);
2447 
2448 		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2449 				i++) {
2450 			dest[i] += src[i];
2451 			src[i] = 0;
2452 		}
2453 
2454 		local_irq_enable();
2455 	}
2456 	return NOTIFY_OK;
2457 }
2458 #endif /* CONFIG_HOTPLUG_CPU */
2459 
2460 void __init page_alloc_init(void)
2461 {
2462 	hotcpu_notifier(page_alloc_cpu_notify, 0);
2463 }
2464 
2465 /*
2466  * setup_per_zone_lowmem_reserve - called whenever
2467  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2468  *	has a correct pages reserved value, so an adequate number of
2469  *	pages are left in the zone after a successful __alloc_pages().
2470  */
2471 static void setup_per_zone_lowmem_reserve(void)
2472 {
2473 	struct pglist_data *pgdat;
2474 	int j, idx;
2475 
2476 	for_each_pgdat(pgdat) {
2477 		for (j = 0; j < MAX_NR_ZONES; j++) {
2478 			struct zone *zone = pgdat->node_zones + j;
2479 			unsigned long present_pages = zone->present_pages;
2480 
2481 			zone->lowmem_reserve[j] = 0;
2482 
2483 			for (idx = j-1; idx >= 0; idx--) {
2484 				struct zone *lower_zone;
2485 
2486 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2487 					sysctl_lowmem_reserve_ratio[idx] = 1;
2488 
2489 				lower_zone = pgdat->node_zones + idx;
2490 				lower_zone->lowmem_reserve[j] = present_pages /
2491 					sysctl_lowmem_reserve_ratio[idx];
2492 				present_pages += lower_zone->present_pages;
2493 			}
2494 		}
2495 	}
2496 }
2497 
2498 /*
2499  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2500  *	that the pages_{min,low,high} values for each zone are set correctly
2501  *	with respect to min_free_kbytes.
2502  */
2503 void setup_per_zone_pages_min(void)
2504 {
2505 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2506 	unsigned long lowmem_pages = 0;
2507 	struct zone *zone;
2508 	unsigned long flags;
2509 
2510 	/* Calculate total number of !ZONE_HIGHMEM pages */
2511 	for_each_zone(zone) {
2512 		if (!is_highmem(zone))
2513 			lowmem_pages += zone->present_pages;
2514 	}
2515 
2516 	for_each_zone(zone) {
2517 		unsigned long tmp;
2518 		spin_lock_irqsave(&zone->lru_lock, flags);
2519 		tmp = (pages_min * zone->present_pages) / lowmem_pages;
2520 		if (is_highmem(zone)) {
2521 			/*
2522 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2523 			 * need highmem pages, so cap pages_min to a small
2524 			 * value here.
2525 			 *
2526 			 * The (pages_high-pages_low) and (pages_low-pages_min)
2527 			 * deltas controls asynch page reclaim, and so should
2528 			 * not be capped for highmem.
2529 			 */
2530 			int min_pages;
2531 
2532 			min_pages = zone->present_pages / 1024;
2533 			if (min_pages < SWAP_CLUSTER_MAX)
2534 				min_pages = SWAP_CLUSTER_MAX;
2535 			if (min_pages > 128)
2536 				min_pages = 128;
2537 			zone->pages_min = min_pages;
2538 		} else {
2539 			/*
2540 			 * If it's a lowmem zone, reserve a number of pages
2541 			 * proportionate to the zone's size.
2542 			 */
2543 			zone->pages_min = tmp;
2544 		}
2545 
2546 		zone->pages_low   = zone->pages_min + tmp / 4;
2547 		zone->pages_high  = zone->pages_min + tmp / 2;
2548 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2549 	}
2550 }
2551 
2552 /*
2553  * Initialise min_free_kbytes.
2554  *
2555  * For small machines we want it small (128k min).  For large machines
2556  * we want it large (64MB max).  But it is not linear, because network
2557  * bandwidth does not increase linearly with machine size.  We use
2558  *
2559  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2560  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2561  *
2562  * which yields
2563  *
2564  * 16MB:	512k
2565  * 32MB:	724k
2566  * 64MB:	1024k
2567  * 128MB:	1448k
2568  * 256MB:	2048k
2569  * 512MB:	2896k
2570  * 1024MB:	4096k
2571  * 2048MB:	5792k
2572  * 4096MB:	8192k
2573  * 8192MB:	11584k
2574  * 16384MB:	16384k
2575  */
2576 static int __init init_per_zone_pages_min(void)
2577 {
2578 	unsigned long lowmem_kbytes;
2579 
2580 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2581 
2582 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2583 	if (min_free_kbytes < 128)
2584 		min_free_kbytes = 128;
2585 	if (min_free_kbytes > 65536)
2586 		min_free_kbytes = 65536;
2587 	setup_per_zone_pages_min();
2588 	setup_per_zone_lowmem_reserve();
2589 	return 0;
2590 }
2591 module_init(init_per_zone_pages_min)
2592 
2593 /*
2594  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2595  *	that we can call two helper functions whenever min_free_kbytes
2596  *	changes.
2597  */
2598 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2599 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2600 {
2601 	proc_dointvec(table, write, file, buffer, length, ppos);
2602 	setup_per_zone_pages_min();
2603 	return 0;
2604 }
2605 
2606 /*
2607  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2608  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2609  *	whenever sysctl_lowmem_reserve_ratio changes.
2610  *
2611  * The reserve ratio obviously has absolutely no relation with the
2612  * pages_min watermarks. The lowmem reserve ratio can only make sense
2613  * if in function of the boot time zone sizes.
2614  */
2615 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2616 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2617 {
2618 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2619 	setup_per_zone_lowmem_reserve();
2620 	return 0;
2621 }
2622 
2623 /*
2624  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2625  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
2626  * can have before it gets flushed back to buddy allocator.
2627  */
2628 
2629 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2630 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2631 {
2632 	struct zone *zone;
2633 	unsigned int cpu;
2634 	int ret;
2635 
2636 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2637 	if (!write || (ret == -EINVAL))
2638 		return ret;
2639 	for_each_zone(zone) {
2640 		for_each_online_cpu(cpu) {
2641 			unsigned long  high;
2642 			high = zone->present_pages / percpu_pagelist_fraction;
2643 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2644 		}
2645 	}
2646 	return 0;
2647 }
2648 
2649 __initdata int hashdist = HASHDIST_DEFAULT;
2650 
2651 #ifdef CONFIG_NUMA
2652 static int __init set_hashdist(char *str)
2653 {
2654 	if (!str)
2655 		return 0;
2656 	hashdist = simple_strtoul(str, &str, 0);
2657 	return 1;
2658 }
2659 __setup("hashdist=", set_hashdist);
2660 #endif
2661 
2662 /*
2663  * allocate a large system hash table from bootmem
2664  * - it is assumed that the hash table must contain an exact power-of-2
2665  *   quantity of entries
2666  * - limit is the number of hash buckets, not the total allocation size
2667  */
2668 void *__init alloc_large_system_hash(const char *tablename,
2669 				     unsigned long bucketsize,
2670 				     unsigned long numentries,
2671 				     int scale,
2672 				     int flags,
2673 				     unsigned int *_hash_shift,
2674 				     unsigned int *_hash_mask,
2675 				     unsigned long limit)
2676 {
2677 	unsigned long long max = limit;
2678 	unsigned long log2qty, size;
2679 	void *table = NULL;
2680 
2681 	/* allow the kernel cmdline to have a say */
2682 	if (!numentries) {
2683 		/* round applicable memory size up to nearest megabyte */
2684 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2685 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2686 		numentries >>= 20 - PAGE_SHIFT;
2687 		numentries <<= 20 - PAGE_SHIFT;
2688 
2689 		/* limit to 1 bucket per 2^scale bytes of low memory */
2690 		if (scale > PAGE_SHIFT)
2691 			numentries >>= (scale - PAGE_SHIFT);
2692 		else
2693 			numentries <<= (PAGE_SHIFT - scale);
2694 	}
2695 	/* rounded up to nearest power of 2 in size */
2696 	numentries = 1UL << (long_log2(numentries) + 1);
2697 
2698 	/* limit allocation size to 1/16 total memory by default */
2699 	if (max == 0) {
2700 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2701 		do_div(max, bucketsize);
2702 	}
2703 
2704 	if (numentries > max)
2705 		numentries = max;
2706 
2707 	log2qty = long_log2(numentries);
2708 
2709 	do {
2710 		size = bucketsize << log2qty;
2711 		if (flags & HASH_EARLY)
2712 			table = alloc_bootmem(size);
2713 		else if (hashdist)
2714 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2715 		else {
2716 			unsigned long order;
2717 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2718 				;
2719 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2720 		}
2721 	} while (!table && size > PAGE_SIZE && --log2qty);
2722 
2723 	if (!table)
2724 		panic("Failed to allocate %s hash table\n", tablename);
2725 
2726 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2727 	       tablename,
2728 	       (1U << log2qty),
2729 	       long_log2(size) - PAGE_SHIFT,
2730 	       size);
2731 
2732 	if (_hash_shift)
2733 		*_hash_shift = log2qty;
2734 	if (_hash_mask)
2735 		*_hash_mask = (1 << log2qty) - 1;
2736 
2737 	return table;
2738 }
2739