1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/config.h> 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/interrupt.h> 22 #include <linux/pagemap.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/suspend.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/slab.h> 31 #include <linux/notifier.h> 32 #include <linux/topology.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmalloc.h> 39 #include <linux/mempolicy.h> 40 41 #include <asm/tlbflush.h> 42 #include "internal.h" 43 44 /* 45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this 46 * initializer cleaner 47 */ 48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; 49 EXPORT_SYMBOL(node_online_map); 50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; 51 EXPORT_SYMBOL(node_possible_map); 52 struct pglist_data *pgdat_list __read_mostly; 53 unsigned long totalram_pages __read_mostly; 54 unsigned long totalhigh_pages __read_mostly; 55 long nr_swap_pages; 56 int percpu_pagelist_fraction; 57 58 static void __free_pages_ok(struct page *page, unsigned int order); 59 60 /* 61 * results with 256, 32 in the lowmem_reserve sysctl: 62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 63 * 1G machine -> (16M dma, 784M normal, 224M high) 64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 67 * 68 * TBD: should special case ZONE_DMA32 machines here - in those we normally 69 * don't need any ZONE_NORMAL reservation 70 */ 71 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 }; 72 73 EXPORT_SYMBOL(totalram_pages); 74 75 /* 76 * Used by page_zone() to look up the address of the struct zone whose 77 * id is encoded in the upper bits of page->flags 78 */ 79 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly; 80 EXPORT_SYMBOL(zone_table); 81 82 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" }; 83 int min_free_kbytes = 1024; 84 85 unsigned long __initdata nr_kernel_pages; 86 unsigned long __initdata nr_all_pages; 87 88 #ifdef CONFIG_DEBUG_VM 89 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 90 { 91 int ret = 0; 92 unsigned seq; 93 unsigned long pfn = page_to_pfn(page); 94 95 do { 96 seq = zone_span_seqbegin(zone); 97 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 98 ret = 1; 99 else if (pfn < zone->zone_start_pfn) 100 ret = 1; 101 } while (zone_span_seqretry(zone, seq)); 102 103 return ret; 104 } 105 106 static int page_is_consistent(struct zone *zone, struct page *page) 107 { 108 #ifdef CONFIG_HOLES_IN_ZONE 109 if (!pfn_valid(page_to_pfn(page))) 110 return 0; 111 #endif 112 if (zone != page_zone(page)) 113 return 0; 114 115 return 1; 116 } 117 /* 118 * Temporary debugging check for pages not lying within a given zone. 119 */ 120 static int bad_range(struct zone *zone, struct page *page) 121 { 122 if (page_outside_zone_boundaries(zone, page)) 123 return 1; 124 if (!page_is_consistent(zone, page)) 125 return 1; 126 127 return 0; 128 } 129 130 #else 131 static inline int bad_range(struct zone *zone, struct page *page) 132 { 133 return 0; 134 } 135 #endif 136 137 static void bad_page(struct page *page) 138 { 139 printk(KERN_EMERG "Bad page state in process '%s'\n" 140 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" 141 KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 142 KERN_EMERG "Backtrace:\n", 143 current->comm, page, (int)(2*sizeof(unsigned long)), 144 (unsigned long)page->flags, page->mapping, 145 page_mapcount(page), page_count(page)); 146 dump_stack(); 147 page->flags &= ~(1 << PG_lru | 148 1 << PG_private | 149 1 << PG_locked | 150 1 << PG_active | 151 1 << PG_dirty | 152 1 << PG_reclaim | 153 1 << PG_slab | 154 1 << PG_swapcache | 155 1 << PG_writeback ); 156 set_page_count(page, 0); 157 reset_page_mapcount(page); 158 page->mapping = NULL; 159 add_taint(TAINT_BAD_PAGE); 160 } 161 162 /* 163 * Higher-order pages are called "compound pages". They are structured thusly: 164 * 165 * The first PAGE_SIZE page is called the "head page". 166 * 167 * The remaining PAGE_SIZE pages are called "tail pages". 168 * 169 * All pages have PG_compound set. All pages have their ->private pointing at 170 * the head page (even the head page has this). 171 * 172 * The first tail page's ->lru.next holds the address of the compound page's 173 * put_page() function. Its ->lru.prev holds the order of allocation. 174 * This usage means that zero-order pages may not be compound. 175 */ 176 177 static void free_compound_page(struct page *page) 178 { 179 __free_pages_ok(page, (unsigned long)page[1].lru.prev); 180 } 181 182 static void prep_compound_page(struct page *page, unsigned long order) 183 { 184 int i; 185 int nr_pages = 1 << order; 186 187 page[1].lru.next = (void *)free_compound_page; /* set dtor */ 188 page[1].lru.prev = (void *)order; 189 for (i = 0; i < nr_pages; i++) { 190 struct page *p = page + i; 191 192 __SetPageCompound(p); 193 set_page_private(p, (unsigned long)page); 194 } 195 } 196 197 static void destroy_compound_page(struct page *page, unsigned long order) 198 { 199 int i; 200 int nr_pages = 1 << order; 201 202 if (unlikely((unsigned long)page[1].lru.prev != order)) 203 bad_page(page); 204 205 for (i = 0; i < nr_pages; i++) { 206 struct page *p = page + i; 207 208 if (unlikely(!PageCompound(p) | 209 (page_private(p) != (unsigned long)page))) 210 bad_page(page); 211 __ClearPageCompound(p); 212 } 213 } 214 215 /* 216 * function for dealing with page's order in buddy system. 217 * zone->lock is already acquired when we use these. 218 * So, we don't need atomic page->flags operations here. 219 */ 220 static inline unsigned long page_order(struct page *page) { 221 return page_private(page); 222 } 223 224 static inline void set_page_order(struct page *page, int order) { 225 set_page_private(page, order); 226 __SetPagePrivate(page); 227 } 228 229 static inline void rmv_page_order(struct page *page) 230 { 231 __ClearPagePrivate(page); 232 set_page_private(page, 0); 233 } 234 235 /* 236 * Locate the struct page for both the matching buddy in our 237 * pair (buddy1) and the combined O(n+1) page they form (page). 238 * 239 * 1) Any buddy B1 will have an order O twin B2 which satisfies 240 * the following equation: 241 * B2 = B1 ^ (1 << O) 242 * For example, if the starting buddy (buddy2) is #8 its order 243 * 1 buddy is #10: 244 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 245 * 246 * 2) Any buddy B will have an order O+1 parent P which 247 * satisfies the following equation: 248 * P = B & ~(1 << O) 249 * 250 * Assumption: *_mem_map is contigious at least up to MAX_ORDER 251 */ 252 static inline struct page * 253 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 254 { 255 unsigned long buddy_idx = page_idx ^ (1 << order); 256 257 return page + (buddy_idx - page_idx); 258 } 259 260 static inline unsigned long 261 __find_combined_index(unsigned long page_idx, unsigned int order) 262 { 263 return (page_idx & ~(1 << order)); 264 } 265 266 /* 267 * This function checks whether a page is free && is the buddy 268 * we can do coalesce a page and its buddy if 269 * (a) the buddy is not in a hole && 270 * (b) the buddy is free && 271 * (c) the buddy is on the buddy system && 272 * (d) a page and its buddy have the same order. 273 * for recording page's order, we use page_private(page) and PG_private. 274 * 275 */ 276 static inline int page_is_buddy(struct page *page, int order) 277 { 278 #ifdef CONFIG_HOLES_IN_ZONE 279 if (!pfn_valid(page_to_pfn(page))) 280 return 0; 281 #endif 282 283 if (PagePrivate(page) && 284 (page_order(page) == order) && 285 page_count(page) == 0) 286 return 1; 287 return 0; 288 } 289 290 /* 291 * Freeing function for a buddy system allocator. 292 * 293 * The concept of a buddy system is to maintain direct-mapped table 294 * (containing bit values) for memory blocks of various "orders". 295 * The bottom level table contains the map for the smallest allocatable 296 * units of memory (here, pages), and each level above it describes 297 * pairs of units from the levels below, hence, "buddies". 298 * At a high level, all that happens here is marking the table entry 299 * at the bottom level available, and propagating the changes upward 300 * as necessary, plus some accounting needed to play nicely with other 301 * parts of the VM system. 302 * At each level, we keep a list of pages, which are heads of continuous 303 * free pages of length of (1 << order) and marked with PG_Private.Page's 304 * order is recorded in page_private(page) field. 305 * So when we are allocating or freeing one, we can derive the state of the 306 * other. That is, if we allocate a small block, and both were 307 * free, the remainder of the region must be split into blocks. 308 * If a block is freed, and its buddy is also free, then this 309 * triggers coalescing into a block of larger size. 310 * 311 * -- wli 312 */ 313 314 static inline void __free_one_page(struct page *page, 315 struct zone *zone, unsigned int order) 316 { 317 unsigned long page_idx; 318 int order_size = 1 << order; 319 320 if (unlikely(PageCompound(page))) 321 destroy_compound_page(page, order); 322 323 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 324 325 BUG_ON(page_idx & (order_size - 1)); 326 BUG_ON(bad_range(zone, page)); 327 328 zone->free_pages += order_size; 329 while (order < MAX_ORDER-1) { 330 unsigned long combined_idx; 331 struct free_area *area; 332 struct page *buddy; 333 334 buddy = __page_find_buddy(page, page_idx, order); 335 if (!page_is_buddy(buddy, order)) 336 break; /* Move the buddy up one level. */ 337 338 list_del(&buddy->lru); 339 area = zone->free_area + order; 340 area->nr_free--; 341 rmv_page_order(buddy); 342 combined_idx = __find_combined_index(page_idx, order); 343 page = page + (combined_idx - page_idx); 344 page_idx = combined_idx; 345 order++; 346 } 347 set_page_order(page, order); 348 list_add(&page->lru, &zone->free_area[order].free_list); 349 zone->free_area[order].nr_free++; 350 } 351 352 static inline int free_pages_check(struct page *page) 353 { 354 if (unlikely(page_mapcount(page) | 355 (page->mapping != NULL) | 356 (page_count(page) != 0) | 357 (page->flags & ( 358 1 << PG_lru | 359 1 << PG_private | 360 1 << PG_locked | 361 1 << PG_active | 362 1 << PG_reclaim | 363 1 << PG_slab | 364 1 << PG_swapcache | 365 1 << PG_writeback | 366 1 << PG_reserved )))) 367 bad_page(page); 368 if (PageDirty(page)) 369 __ClearPageDirty(page); 370 /* 371 * For now, we report if PG_reserved was found set, but do not 372 * clear it, and do not free the page. But we shall soon need 373 * to do more, for when the ZERO_PAGE count wraps negative. 374 */ 375 return PageReserved(page); 376 } 377 378 /* 379 * Frees a list of pages. 380 * Assumes all pages on list are in same zone, and of same order. 381 * count is the number of pages to free. 382 * 383 * If the zone was previously in an "all pages pinned" state then look to 384 * see if this freeing clears that state. 385 * 386 * And clear the zone's pages_scanned counter, to hold off the "all pages are 387 * pinned" detection logic. 388 */ 389 static void free_pages_bulk(struct zone *zone, int count, 390 struct list_head *list, int order) 391 { 392 spin_lock(&zone->lock); 393 zone->all_unreclaimable = 0; 394 zone->pages_scanned = 0; 395 while (count--) { 396 struct page *page; 397 398 BUG_ON(list_empty(list)); 399 page = list_entry(list->prev, struct page, lru); 400 /* have to delete it as __free_one_page list manipulates */ 401 list_del(&page->lru); 402 __free_one_page(page, zone, order); 403 } 404 spin_unlock(&zone->lock); 405 } 406 407 static void free_one_page(struct zone *zone, struct page *page, int order) 408 { 409 LIST_HEAD(list); 410 list_add(&page->lru, &list); 411 free_pages_bulk(zone, 1, &list, order); 412 } 413 414 static void __free_pages_ok(struct page *page, unsigned int order) 415 { 416 unsigned long flags; 417 int i; 418 int reserved = 0; 419 420 arch_free_page(page, order); 421 if (!PageHighMem(page)) 422 mutex_debug_check_no_locks_freed(page_address(page), 423 PAGE_SIZE<<order); 424 425 for (i = 0 ; i < (1 << order) ; ++i) 426 reserved += free_pages_check(page + i); 427 if (reserved) 428 return; 429 430 kernel_map_pages(page, 1 << order, 0); 431 local_irq_save(flags); 432 __mod_page_state(pgfree, 1 << order); 433 free_one_page(page_zone(page), page, order); 434 local_irq_restore(flags); 435 } 436 437 /* 438 * permit the bootmem allocator to evade page validation on high-order frees 439 */ 440 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) 441 { 442 if (order == 0) { 443 __ClearPageReserved(page); 444 set_page_count(page, 0); 445 set_page_refs(page, 0); 446 __free_page(page); 447 } else { 448 int loop; 449 450 prefetchw(page); 451 for (loop = 0; loop < BITS_PER_LONG; loop++) { 452 struct page *p = &page[loop]; 453 454 if (loop + 1 < BITS_PER_LONG) 455 prefetchw(p + 1); 456 __ClearPageReserved(p); 457 set_page_count(p, 0); 458 } 459 460 set_page_refs(page, order); 461 __free_pages(page, order); 462 } 463 } 464 465 466 /* 467 * The order of subdivision here is critical for the IO subsystem. 468 * Please do not alter this order without good reasons and regression 469 * testing. Specifically, as large blocks of memory are subdivided, 470 * the order in which smaller blocks are delivered depends on the order 471 * they're subdivided in this function. This is the primary factor 472 * influencing the order in which pages are delivered to the IO 473 * subsystem according to empirical testing, and this is also justified 474 * by considering the behavior of a buddy system containing a single 475 * large block of memory acted on by a series of small allocations. 476 * This behavior is a critical factor in sglist merging's success. 477 * 478 * -- wli 479 */ 480 static inline void expand(struct zone *zone, struct page *page, 481 int low, int high, struct free_area *area) 482 { 483 unsigned long size = 1 << high; 484 485 while (high > low) { 486 area--; 487 high--; 488 size >>= 1; 489 BUG_ON(bad_range(zone, &page[size])); 490 list_add(&page[size].lru, &area->free_list); 491 area->nr_free++; 492 set_page_order(&page[size], high); 493 } 494 } 495 496 /* 497 * This page is about to be returned from the page allocator 498 */ 499 static int prep_new_page(struct page *page, int order) 500 { 501 if (unlikely(page_mapcount(page) | 502 (page->mapping != NULL) | 503 (page_count(page) != 0) | 504 (page->flags & ( 505 1 << PG_lru | 506 1 << PG_private | 507 1 << PG_locked | 508 1 << PG_active | 509 1 << PG_dirty | 510 1 << PG_reclaim | 511 1 << PG_slab | 512 1 << PG_swapcache | 513 1 << PG_writeback | 514 1 << PG_reserved )))) 515 bad_page(page); 516 517 /* 518 * For now, we report if PG_reserved was found set, but do not 519 * clear it, and do not allocate the page: as a safety net. 520 */ 521 if (PageReserved(page)) 522 return 1; 523 524 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 525 1 << PG_referenced | 1 << PG_arch_1 | 526 1 << PG_checked | 1 << PG_mappedtodisk); 527 set_page_private(page, 0); 528 set_page_refs(page, order); 529 kernel_map_pages(page, 1 << order, 1); 530 return 0; 531 } 532 533 /* 534 * Do the hard work of removing an element from the buddy allocator. 535 * Call me with the zone->lock already held. 536 */ 537 static struct page *__rmqueue(struct zone *zone, unsigned int order) 538 { 539 struct free_area * area; 540 unsigned int current_order; 541 struct page *page; 542 543 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 544 area = zone->free_area + current_order; 545 if (list_empty(&area->free_list)) 546 continue; 547 548 page = list_entry(area->free_list.next, struct page, lru); 549 list_del(&page->lru); 550 rmv_page_order(page); 551 area->nr_free--; 552 zone->free_pages -= 1UL << order; 553 expand(zone, page, order, current_order, area); 554 return page; 555 } 556 557 return NULL; 558 } 559 560 /* 561 * Obtain a specified number of elements from the buddy allocator, all under 562 * a single hold of the lock, for efficiency. Add them to the supplied list. 563 * Returns the number of new pages which were placed at *list. 564 */ 565 static int rmqueue_bulk(struct zone *zone, unsigned int order, 566 unsigned long count, struct list_head *list) 567 { 568 int i; 569 570 spin_lock(&zone->lock); 571 for (i = 0; i < count; ++i) { 572 struct page *page = __rmqueue(zone, order); 573 if (unlikely(page == NULL)) 574 break; 575 list_add_tail(&page->lru, list); 576 } 577 spin_unlock(&zone->lock); 578 return i; 579 } 580 581 #ifdef CONFIG_NUMA 582 /* 583 * Called from the slab reaper to drain pagesets on a particular node that 584 * belong to the currently executing processor. 585 */ 586 void drain_node_pages(int nodeid) 587 { 588 int i, z; 589 unsigned long flags; 590 591 local_irq_save(flags); 592 for (z = 0; z < MAX_NR_ZONES; z++) { 593 struct zone *zone = NODE_DATA(nodeid)->node_zones + z; 594 struct per_cpu_pageset *pset; 595 596 pset = zone_pcp(zone, smp_processor_id()); 597 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 598 struct per_cpu_pages *pcp; 599 600 pcp = &pset->pcp[i]; 601 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 602 pcp->count = 0; 603 } 604 } 605 local_irq_restore(flags); 606 } 607 #endif 608 609 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) 610 static void __drain_pages(unsigned int cpu) 611 { 612 unsigned long flags; 613 struct zone *zone; 614 int i; 615 616 for_each_zone(zone) { 617 struct per_cpu_pageset *pset; 618 619 pset = zone_pcp(zone, cpu); 620 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 621 struct per_cpu_pages *pcp; 622 623 pcp = &pset->pcp[i]; 624 local_irq_save(flags); 625 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 626 pcp->count = 0; 627 local_irq_restore(flags); 628 } 629 } 630 } 631 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ 632 633 #ifdef CONFIG_PM 634 635 void mark_free_pages(struct zone *zone) 636 { 637 unsigned long zone_pfn, flags; 638 int order; 639 struct list_head *curr; 640 641 if (!zone->spanned_pages) 642 return; 643 644 spin_lock_irqsave(&zone->lock, flags); 645 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) 646 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); 647 648 for (order = MAX_ORDER - 1; order >= 0; --order) 649 list_for_each(curr, &zone->free_area[order].free_list) { 650 unsigned long start_pfn, i; 651 652 start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); 653 654 for (i=0; i < (1<<order); i++) 655 SetPageNosaveFree(pfn_to_page(start_pfn+i)); 656 } 657 spin_unlock_irqrestore(&zone->lock, flags); 658 } 659 660 /* 661 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 662 */ 663 void drain_local_pages(void) 664 { 665 unsigned long flags; 666 667 local_irq_save(flags); 668 __drain_pages(smp_processor_id()); 669 local_irq_restore(flags); 670 } 671 #endif /* CONFIG_PM */ 672 673 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu) 674 { 675 #ifdef CONFIG_NUMA 676 pg_data_t *pg = z->zone_pgdat; 677 pg_data_t *orig = zonelist->zones[0]->zone_pgdat; 678 struct per_cpu_pageset *p; 679 680 p = zone_pcp(z, cpu); 681 if (pg == orig) { 682 p->numa_hit++; 683 } else { 684 p->numa_miss++; 685 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++; 686 } 687 if (pg == NODE_DATA(numa_node_id())) 688 p->local_node++; 689 else 690 p->other_node++; 691 #endif 692 } 693 694 /* 695 * Free a 0-order page 696 */ 697 static void fastcall free_hot_cold_page(struct page *page, int cold) 698 { 699 struct zone *zone = page_zone(page); 700 struct per_cpu_pages *pcp; 701 unsigned long flags; 702 703 arch_free_page(page, 0); 704 705 if (PageAnon(page)) 706 page->mapping = NULL; 707 if (free_pages_check(page)) 708 return; 709 710 kernel_map_pages(page, 1, 0); 711 712 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 713 local_irq_save(flags); 714 __inc_page_state(pgfree); 715 list_add(&page->lru, &pcp->list); 716 pcp->count++; 717 if (pcp->count >= pcp->high) { 718 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 719 pcp->count -= pcp->batch; 720 } 721 local_irq_restore(flags); 722 put_cpu(); 723 } 724 725 void fastcall free_hot_page(struct page *page) 726 { 727 free_hot_cold_page(page, 0); 728 } 729 730 void fastcall free_cold_page(struct page *page) 731 { 732 free_hot_cold_page(page, 1); 733 } 734 735 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 736 { 737 int i; 738 739 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); 740 for(i = 0; i < (1 << order); i++) 741 clear_highpage(page + i); 742 } 743 744 /* 745 * split_page takes a non-compound higher-order page, and splits it into 746 * n (1<<order) sub-pages: page[0..n] 747 * Each sub-page must be freed individually. 748 * 749 * Note: this is probably too low level an operation for use in drivers. 750 * Please consult with lkml before using this in your driver. 751 */ 752 void split_page(struct page *page, unsigned int order) 753 { 754 int i; 755 756 BUG_ON(PageCompound(page)); 757 BUG_ON(!page_count(page)); 758 for (i = 1; i < (1 << order); i++) { 759 BUG_ON(page_count(page + i)); 760 set_page_count(page + i, 1); 761 } 762 } 763 764 /* 765 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 766 * we cheat by calling it from here, in the order > 0 path. Saves a branch 767 * or two. 768 */ 769 static struct page *buffered_rmqueue(struct zonelist *zonelist, 770 struct zone *zone, int order, gfp_t gfp_flags) 771 { 772 unsigned long flags; 773 struct page *page; 774 int cold = !!(gfp_flags & __GFP_COLD); 775 int cpu; 776 777 again: 778 cpu = get_cpu(); 779 if (likely(order == 0)) { 780 struct per_cpu_pages *pcp; 781 782 pcp = &zone_pcp(zone, cpu)->pcp[cold]; 783 local_irq_save(flags); 784 if (!pcp->count) { 785 pcp->count += rmqueue_bulk(zone, 0, 786 pcp->batch, &pcp->list); 787 if (unlikely(!pcp->count)) 788 goto failed; 789 } 790 page = list_entry(pcp->list.next, struct page, lru); 791 list_del(&page->lru); 792 pcp->count--; 793 } else { 794 spin_lock_irqsave(&zone->lock, flags); 795 page = __rmqueue(zone, order); 796 spin_unlock(&zone->lock); 797 if (!page) 798 goto failed; 799 } 800 801 __mod_page_state_zone(zone, pgalloc, 1 << order); 802 zone_statistics(zonelist, zone, cpu); 803 local_irq_restore(flags); 804 put_cpu(); 805 806 BUG_ON(bad_range(zone, page)); 807 if (prep_new_page(page, order)) 808 goto again; 809 810 if (gfp_flags & __GFP_ZERO) 811 prep_zero_page(page, order, gfp_flags); 812 813 if (order && (gfp_flags & __GFP_COMP)) 814 prep_compound_page(page, order); 815 return page; 816 817 failed: 818 local_irq_restore(flags); 819 put_cpu(); 820 return NULL; 821 } 822 823 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 824 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 825 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 826 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 827 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 828 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 829 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 830 831 /* 832 * Return 1 if free pages are above 'mark'. This takes into account the order 833 * of the allocation. 834 */ 835 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 836 int classzone_idx, int alloc_flags) 837 { 838 /* free_pages my go negative - that's OK */ 839 long min = mark, free_pages = z->free_pages - (1 << order) + 1; 840 int o; 841 842 if (alloc_flags & ALLOC_HIGH) 843 min -= min / 2; 844 if (alloc_flags & ALLOC_HARDER) 845 min -= min / 4; 846 847 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 848 return 0; 849 for (o = 0; o < order; o++) { 850 /* At the next order, this order's pages become unavailable */ 851 free_pages -= z->free_area[o].nr_free << o; 852 853 /* Require fewer higher order pages to be free */ 854 min >>= 1; 855 856 if (free_pages <= min) 857 return 0; 858 } 859 return 1; 860 } 861 862 /* 863 * get_page_from_freeliest goes through the zonelist trying to allocate 864 * a page. 865 */ 866 static struct page * 867 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, 868 struct zonelist *zonelist, int alloc_flags) 869 { 870 struct zone **z = zonelist->zones; 871 struct page *page = NULL; 872 int classzone_idx = zone_idx(*z); 873 874 /* 875 * Go through the zonelist once, looking for a zone with enough free. 876 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 877 */ 878 do { 879 if ((alloc_flags & ALLOC_CPUSET) && 880 !cpuset_zone_allowed(*z, gfp_mask)) 881 continue; 882 883 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 884 unsigned long mark; 885 if (alloc_flags & ALLOC_WMARK_MIN) 886 mark = (*z)->pages_min; 887 else if (alloc_flags & ALLOC_WMARK_LOW) 888 mark = (*z)->pages_low; 889 else 890 mark = (*z)->pages_high; 891 if (!zone_watermark_ok(*z, order, mark, 892 classzone_idx, alloc_flags)) 893 if (!zone_reclaim_mode || 894 !zone_reclaim(*z, gfp_mask, order)) 895 continue; 896 } 897 898 page = buffered_rmqueue(zonelist, *z, order, gfp_mask); 899 if (page) { 900 break; 901 } 902 } while (*(++z) != NULL); 903 return page; 904 } 905 906 /* 907 * This is the 'heart' of the zoned buddy allocator. 908 */ 909 struct page * fastcall 910 __alloc_pages(gfp_t gfp_mask, unsigned int order, 911 struct zonelist *zonelist) 912 { 913 const gfp_t wait = gfp_mask & __GFP_WAIT; 914 struct zone **z; 915 struct page *page; 916 struct reclaim_state reclaim_state; 917 struct task_struct *p = current; 918 int do_retry; 919 int alloc_flags; 920 int did_some_progress; 921 922 might_sleep_if(wait); 923 924 restart: 925 z = zonelist->zones; /* the list of zones suitable for gfp_mask */ 926 927 if (unlikely(*z == NULL)) { 928 /* Should this ever happen?? */ 929 return NULL; 930 } 931 932 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 933 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); 934 if (page) 935 goto got_pg; 936 937 do { 938 wakeup_kswapd(*z, order); 939 } while (*(++z)); 940 941 /* 942 * OK, we're below the kswapd watermark and have kicked background 943 * reclaim. Now things get more complex, so set up alloc_flags according 944 * to how we want to proceed. 945 * 946 * The caller may dip into page reserves a bit more if the caller 947 * cannot run direct reclaim, or if the caller has realtime scheduling 948 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 949 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 950 */ 951 alloc_flags = ALLOC_WMARK_MIN; 952 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 953 alloc_flags |= ALLOC_HARDER; 954 if (gfp_mask & __GFP_HIGH) 955 alloc_flags |= ALLOC_HIGH; 956 alloc_flags |= ALLOC_CPUSET; 957 958 /* 959 * Go through the zonelist again. Let __GFP_HIGH and allocations 960 * coming from realtime tasks go deeper into reserves. 961 * 962 * This is the last chance, in general, before the goto nopage. 963 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 964 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 965 */ 966 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); 967 if (page) 968 goto got_pg; 969 970 /* This allocation should allow future memory freeing. */ 971 972 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 973 && !in_interrupt()) { 974 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 975 nofail_alloc: 976 /* go through the zonelist yet again, ignoring mins */ 977 page = get_page_from_freelist(gfp_mask, order, 978 zonelist, ALLOC_NO_WATERMARKS); 979 if (page) 980 goto got_pg; 981 if (gfp_mask & __GFP_NOFAIL) { 982 blk_congestion_wait(WRITE, HZ/50); 983 goto nofail_alloc; 984 } 985 } 986 goto nopage; 987 } 988 989 /* Atomic allocations - we can't balance anything */ 990 if (!wait) 991 goto nopage; 992 993 rebalance: 994 cond_resched(); 995 996 /* We now go into synchronous reclaim */ 997 cpuset_memory_pressure_bump(); 998 p->flags |= PF_MEMALLOC; 999 reclaim_state.reclaimed_slab = 0; 1000 p->reclaim_state = &reclaim_state; 1001 1002 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask); 1003 1004 p->reclaim_state = NULL; 1005 p->flags &= ~PF_MEMALLOC; 1006 1007 cond_resched(); 1008 1009 if (likely(did_some_progress)) { 1010 page = get_page_from_freelist(gfp_mask, order, 1011 zonelist, alloc_flags); 1012 if (page) 1013 goto got_pg; 1014 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1015 /* 1016 * Go through the zonelist yet one more time, keep 1017 * very high watermark here, this is only to catch 1018 * a parallel oom killing, we must fail if we're still 1019 * under heavy pressure. 1020 */ 1021 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1022 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1023 if (page) 1024 goto got_pg; 1025 1026 out_of_memory(zonelist, gfp_mask, order); 1027 goto restart; 1028 } 1029 1030 /* 1031 * Don't let big-order allocations loop unless the caller explicitly 1032 * requests that. Wait for some write requests to complete then retry. 1033 * 1034 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 1035 * <= 3, but that may not be true in other implementations. 1036 */ 1037 do_retry = 0; 1038 if (!(gfp_mask & __GFP_NORETRY)) { 1039 if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) 1040 do_retry = 1; 1041 if (gfp_mask & __GFP_NOFAIL) 1042 do_retry = 1; 1043 } 1044 if (do_retry) { 1045 blk_congestion_wait(WRITE, HZ/50); 1046 goto rebalance; 1047 } 1048 1049 nopage: 1050 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1051 printk(KERN_WARNING "%s: page allocation failure." 1052 " order:%d, mode:0x%x\n", 1053 p->comm, order, gfp_mask); 1054 dump_stack(); 1055 show_mem(); 1056 } 1057 got_pg: 1058 return page; 1059 } 1060 1061 EXPORT_SYMBOL(__alloc_pages); 1062 1063 /* 1064 * Common helper functions. 1065 */ 1066 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1067 { 1068 struct page * page; 1069 page = alloc_pages(gfp_mask, order); 1070 if (!page) 1071 return 0; 1072 return (unsigned long) page_address(page); 1073 } 1074 1075 EXPORT_SYMBOL(__get_free_pages); 1076 1077 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) 1078 { 1079 struct page * page; 1080 1081 /* 1082 * get_zeroed_page() returns a 32-bit address, which cannot represent 1083 * a highmem page 1084 */ 1085 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1086 1087 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1088 if (page) 1089 return (unsigned long) page_address(page); 1090 return 0; 1091 } 1092 1093 EXPORT_SYMBOL(get_zeroed_page); 1094 1095 void __pagevec_free(struct pagevec *pvec) 1096 { 1097 int i = pagevec_count(pvec); 1098 1099 while (--i >= 0) 1100 free_hot_cold_page(pvec->pages[i], pvec->cold); 1101 } 1102 1103 fastcall void __free_pages(struct page *page, unsigned int order) 1104 { 1105 if (put_page_testzero(page)) { 1106 if (order == 0) 1107 free_hot_page(page); 1108 else 1109 __free_pages_ok(page, order); 1110 } 1111 } 1112 1113 EXPORT_SYMBOL(__free_pages); 1114 1115 fastcall void free_pages(unsigned long addr, unsigned int order) 1116 { 1117 if (addr != 0) { 1118 BUG_ON(!virt_addr_valid((void *)addr)); 1119 __free_pages(virt_to_page((void *)addr), order); 1120 } 1121 } 1122 1123 EXPORT_SYMBOL(free_pages); 1124 1125 /* 1126 * Total amount of free (allocatable) RAM: 1127 */ 1128 unsigned int nr_free_pages(void) 1129 { 1130 unsigned int sum = 0; 1131 struct zone *zone; 1132 1133 for_each_zone(zone) 1134 sum += zone->free_pages; 1135 1136 return sum; 1137 } 1138 1139 EXPORT_SYMBOL(nr_free_pages); 1140 1141 #ifdef CONFIG_NUMA 1142 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) 1143 { 1144 unsigned int i, sum = 0; 1145 1146 for (i = 0; i < MAX_NR_ZONES; i++) 1147 sum += pgdat->node_zones[i].free_pages; 1148 1149 return sum; 1150 } 1151 #endif 1152 1153 static unsigned int nr_free_zone_pages(int offset) 1154 { 1155 /* Just pick one node, since fallback list is circular */ 1156 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1157 unsigned int sum = 0; 1158 1159 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1160 struct zone **zonep = zonelist->zones; 1161 struct zone *zone; 1162 1163 for (zone = *zonep++; zone; zone = *zonep++) { 1164 unsigned long size = zone->present_pages; 1165 unsigned long high = zone->pages_high; 1166 if (size > high) 1167 sum += size - high; 1168 } 1169 1170 return sum; 1171 } 1172 1173 /* 1174 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1175 */ 1176 unsigned int nr_free_buffer_pages(void) 1177 { 1178 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1179 } 1180 1181 /* 1182 * Amount of free RAM allocatable within all zones 1183 */ 1184 unsigned int nr_free_pagecache_pages(void) 1185 { 1186 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); 1187 } 1188 1189 #ifdef CONFIG_HIGHMEM 1190 unsigned int nr_free_highpages (void) 1191 { 1192 pg_data_t *pgdat; 1193 unsigned int pages = 0; 1194 1195 for_each_pgdat(pgdat) 1196 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1197 1198 return pages; 1199 } 1200 #endif 1201 1202 #ifdef CONFIG_NUMA 1203 static void show_node(struct zone *zone) 1204 { 1205 printk("Node %d ", zone->zone_pgdat->node_id); 1206 } 1207 #else 1208 #define show_node(zone) do { } while (0) 1209 #endif 1210 1211 /* 1212 * Accumulate the page_state information across all CPUs. 1213 * The result is unavoidably approximate - it can change 1214 * during and after execution of this function. 1215 */ 1216 static DEFINE_PER_CPU(struct page_state, page_states) = {0}; 1217 1218 atomic_t nr_pagecache = ATOMIC_INIT(0); 1219 EXPORT_SYMBOL(nr_pagecache); 1220 #ifdef CONFIG_SMP 1221 DEFINE_PER_CPU(long, nr_pagecache_local) = 0; 1222 #endif 1223 1224 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask) 1225 { 1226 unsigned cpu; 1227 1228 memset(ret, 0, nr * sizeof(unsigned long)); 1229 cpus_and(*cpumask, *cpumask, cpu_online_map); 1230 1231 for_each_cpu_mask(cpu, *cpumask) { 1232 unsigned long *in; 1233 unsigned long *out; 1234 unsigned off; 1235 unsigned next_cpu; 1236 1237 in = (unsigned long *)&per_cpu(page_states, cpu); 1238 1239 next_cpu = next_cpu(cpu, *cpumask); 1240 if (likely(next_cpu < NR_CPUS)) 1241 prefetch(&per_cpu(page_states, next_cpu)); 1242 1243 out = (unsigned long *)ret; 1244 for (off = 0; off < nr; off++) 1245 *out++ += *in++; 1246 } 1247 } 1248 1249 void get_page_state_node(struct page_state *ret, int node) 1250 { 1251 int nr; 1252 cpumask_t mask = node_to_cpumask(node); 1253 1254 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1255 nr /= sizeof(unsigned long); 1256 1257 __get_page_state(ret, nr+1, &mask); 1258 } 1259 1260 void get_page_state(struct page_state *ret) 1261 { 1262 int nr; 1263 cpumask_t mask = CPU_MASK_ALL; 1264 1265 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1266 nr /= sizeof(unsigned long); 1267 1268 __get_page_state(ret, nr + 1, &mask); 1269 } 1270 1271 void get_full_page_state(struct page_state *ret) 1272 { 1273 cpumask_t mask = CPU_MASK_ALL; 1274 1275 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask); 1276 } 1277 1278 unsigned long read_page_state_offset(unsigned long offset) 1279 { 1280 unsigned long ret = 0; 1281 int cpu; 1282 1283 for_each_online_cpu(cpu) { 1284 unsigned long in; 1285 1286 in = (unsigned long)&per_cpu(page_states, cpu) + offset; 1287 ret += *((unsigned long *)in); 1288 } 1289 return ret; 1290 } 1291 1292 void __mod_page_state_offset(unsigned long offset, unsigned long delta) 1293 { 1294 void *ptr; 1295 1296 ptr = &__get_cpu_var(page_states); 1297 *(unsigned long *)(ptr + offset) += delta; 1298 } 1299 EXPORT_SYMBOL(__mod_page_state_offset); 1300 1301 void mod_page_state_offset(unsigned long offset, unsigned long delta) 1302 { 1303 unsigned long flags; 1304 void *ptr; 1305 1306 local_irq_save(flags); 1307 ptr = &__get_cpu_var(page_states); 1308 *(unsigned long *)(ptr + offset) += delta; 1309 local_irq_restore(flags); 1310 } 1311 EXPORT_SYMBOL(mod_page_state_offset); 1312 1313 void __get_zone_counts(unsigned long *active, unsigned long *inactive, 1314 unsigned long *free, struct pglist_data *pgdat) 1315 { 1316 struct zone *zones = pgdat->node_zones; 1317 int i; 1318 1319 *active = 0; 1320 *inactive = 0; 1321 *free = 0; 1322 for (i = 0; i < MAX_NR_ZONES; i++) { 1323 *active += zones[i].nr_active; 1324 *inactive += zones[i].nr_inactive; 1325 *free += zones[i].free_pages; 1326 } 1327 } 1328 1329 void get_zone_counts(unsigned long *active, 1330 unsigned long *inactive, unsigned long *free) 1331 { 1332 struct pglist_data *pgdat; 1333 1334 *active = 0; 1335 *inactive = 0; 1336 *free = 0; 1337 for_each_pgdat(pgdat) { 1338 unsigned long l, m, n; 1339 __get_zone_counts(&l, &m, &n, pgdat); 1340 *active += l; 1341 *inactive += m; 1342 *free += n; 1343 } 1344 } 1345 1346 void si_meminfo(struct sysinfo *val) 1347 { 1348 val->totalram = totalram_pages; 1349 val->sharedram = 0; 1350 val->freeram = nr_free_pages(); 1351 val->bufferram = nr_blockdev_pages(); 1352 #ifdef CONFIG_HIGHMEM 1353 val->totalhigh = totalhigh_pages; 1354 val->freehigh = nr_free_highpages(); 1355 #else 1356 val->totalhigh = 0; 1357 val->freehigh = 0; 1358 #endif 1359 val->mem_unit = PAGE_SIZE; 1360 } 1361 1362 EXPORT_SYMBOL(si_meminfo); 1363 1364 #ifdef CONFIG_NUMA 1365 void si_meminfo_node(struct sysinfo *val, int nid) 1366 { 1367 pg_data_t *pgdat = NODE_DATA(nid); 1368 1369 val->totalram = pgdat->node_present_pages; 1370 val->freeram = nr_free_pages_pgdat(pgdat); 1371 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1372 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1373 val->mem_unit = PAGE_SIZE; 1374 } 1375 #endif 1376 1377 #define K(x) ((x) << (PAGE_SHIFT-10)) 1378 1379 /* 1380 * Show free area list (used inside shift_scroll-lock stuff) 1381 * We also calculate the percentage fragmentation. We do this by counting the 1382 * memory on each free list with the exception of the first item on the list. 1383 */ 1384 void show_free_areas(void) 1385 { 1386 struct page_state ps; 1387 int cpu, temperature; 1388 unsigned long active; 1389 unsigned long inactive; 1390 unsigned long free; 1391 struct zone *zone; 1392 1393 for_each_zone(zone) { 1394 show_node(zone); 1395 printk("%s per-cpu:", zone->name); 1396 1397 if (!populated_zone(zone)) { 1398 printk(" empty\n"); 1399 continue; 1400 } else 1401 printk("\n"); 1402 1403 for_each_online_cpu(cpu) { 1404 struct per_cpu_pageset *pageset; 1405 1406 pageset = zone_pcp(zone, cpu); 1407 1408 for (temperature = 0; temperature < 2; temperature++) 1409 printk("cpu %d %s: high %d, batch %d used:%d\n", 1410 cpu, 1411 temperature ? "cold" : "hot", 1412 pageset->pcp[temperature].high, 1413 pageset->pcp[temperature].batch, 1414 pageset->pcp[temperature].count); 1415 } 1416 } 1417 1418 get_page_state(&ps); 1419 get_zone_counts(&active, &inactive, &free); 1420 1421 printk("Free pages: %11ukB (%ukB HighMem)\n", 1422 K(nr_free_pages()), 1423 K(nr_free_highpages())); 1424 1425 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " 1426 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", 1427 active, 1428 inactive, 1429 ps.nr_dirty, 1430 ps.nr_writeback, 1431 ps.nr_unstable, 1432 nr_free_pages(), 1433 ps.nr_slab, 1434 ps.nr_mapped, 1435 ps.nr_page_table_pages); 1436 1437 for_each_zone(zone) { 1438 int i; 1439 1440 show_node(zone); 1441 printk("%s" 1442 " free:%lukB" 1443 " min:%lukB" 1444 " low:%lukB" 1445 " high:%lukB" 1446 " active:%lukB" 1447 " inactive:%lukB" 1448 " present:%lukB" 1449 " pages_scanned:%lu" 1450 " all_unreclaimable? %s" 1451 "\n", 1452 zone->name, 1453 K(zone->free_pages), 1454 K(zone->pages_min), 1455 K(zone->pages_low), 1456 K(zone->pages_high), 1457 K(zone->nr_active), 1458 K(zone->nr_inactive), 1459 K(zone->present_pages), 1460 zone->pages_scanned, 1461 (zone->all_unreclaimable ? "yes" : "no") 1462 ); 1463 printk("lowmem_reserve[]:"); 1464 for (i = 0; i < MAX_NR_ZONES; i++) 1465 printk(" %lu", zone->lowmem_reserve[i]); 1466 printk("\n"); 1467 } 1468 1469 for_each_zone(zone) { 1470 unsigned long nr, flags, order, total = 0; 1471 1472 show_node(zone); 1473 printk("%s: ", zone->name); 1474 if (!populated_zone(zone)) { 1475 printk("empty\n"); 1476 continue; 1477 } 1478 1479 spin_lock_irqsave(&zone->lock, flags); 1480 for (order = 0; order < MAX_ORDER; order++) { 1481 nr = zone->free_area[order].nr_free; 1482 total += nr << order; 1483 printk("%lu*%lukB ", nr, K(1UL) << order); 1484 } 1485 spin_unlock_irqrestore(&zone->lock, flags); 1486 printk("= %lukB\n", K(total)); 1487 } 1488 1489 show_swap_cache_info(); 1490 } 1491 1492 /* 1493 * Builds allocation fallback zone lists. 1494 * 1495 * Add all populated zones of a node to the zonelist. 1496 */ 1497 static int __init build_zonelists_node(pg_data_t *pgdat, 1498 struct zonelist *zonelist, int nr_zones, int zone_type) 1499 { 1500 struct zone *zone; 1501 1502 BUG_ON(zone_type > ZONE_HIGHMEM); 1503 1504 do { 1505 zone = pgdat->node_zones + zone_type; 1506 if (populated_zone(zone)) { 1507 #ifndef CONFIG_HIGHMEM 1508 BUG_ON(zone_type > ZONE_NORMAL); 1509 #endif 1510 zonelist->zones[nr_zones++] = zone; 1511 check_highest_zone(zone_type); 1512 } 1513 zone_type--; 1514 1515 } while (zone_type >= 0); 1516 return nr_zones; 1517 } 1518 1519 static inline int highest_zone(int zone_bits) 1520 { 1521 int res = ZONE_NORMAL; 1522 if (zone_bits & (__force int)__GFP_HIGHMEM) 1523 res = ZONE_HIGHMEM; 1524 if (zone_bits & (__force int)__GFP_DMA32) 1525 res = ZONE_DMA32; 1526 if (zone_bits & (__force int)__GFP_DMA) 1527 res = ZONE_DMA; 1528 return res; 1529 } 1530 1531 #ifdef CONFIG_NUMA 1532 #define MAX_NODE_LOAD (num_online_nodes()) 1533 static int __initdata node_load[MAX_NUMNODES]; 1534 /** 1535 * find_next_best_node - find the next node that should appear in a given node's fallback list 1536 * @node: node whose fallback list we're appending 1537 * @used_node_mask: nodemask_t of already used nodes 1538 * 1539 * We use a number of factors to determine which is the next node that should 1540 * appear on a given node's fallback list. The node should not have appeared 1541 * already in @node's fallback list, and it should be the next closest node 1542 * according to the distance array (which contains arbitrary distance values 1543 * from each node to each node in the system), and should also prefer nodes 1544 * with no CPUs, since presumably they'll have very little allocation pressure 1545 * on them otherwise. 1546 * It returns -1 if no node is found. 1547 */ 1548 static int __init find_next_best_node(int node, nodemask_t *used_node_mask) 1549 { 1550 int n, val; 1551 int min_val = INT_MAX; 1552 int best_node = -1; 1553 1554 /* Use the local node if we haven't already */ 1555 if (!node_isset(node, *used_node_mask)) { 1556 node_set(node, *used_node_mask); 1557 return node; 1558 } 1559 1560 for_each_online_node(n) { 1561 cpumask_t tmp; 1562 1563 /* Don't want a node to appear more than once */ 1564 if (node_isset(n, *used_node_mask)) 1565 continue; 1566 1567 /* Use the distance array to find the distance */ 1568 val = node_distance(node, n); 1569 1570 /* Penalize nodes under us ("prefer the next node") */ 1571 val += (n < node); 1572 1573 /* Give preference to headless and unused nodes */ 1574 tmp = node_to_cpumask(n); 1575 if (!cpus_empty(tmp)) 1576 val += PENALTY_FOR_NODE_WITH_CPUS; 1577 1578 /* Slight preference for less loaded node */ 1579 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 1580 val += node_load[n]; 1581 1582 if (val < min_val) { 1583 min_val = val; 1584 best_node = n; 1585 } 1586 } 1587 1588 if (best_node >= 0) 1589 node_set(best_node, *used_node_mask); 1590 1591 return best_node; 1592 } 1593 1594 static void __init build_zonelists(pg_data_t *pgdat) 1595 { 1596 int i, j, k, node, local_node; 1597 int prev_node, load; 1598 struct zonelist *zonelist; 1599 nodemask_t used_mask; 1600 1601 /* initialize zonelists */ 1602 for (i = 0; i < GFP_ZONETYPES; i++) { 1603 zonelist = pgdat->node_zonelists + i; 1604 zonelist->zones[0] = NULL; 1605 } 1606 1607 /* NUMA-aware ordering of nodes */ 1608 local_node = pgdat->node_id; 1609 load = num_online_nodes(); 1610 prev_node = local_node; 1611 nodes_clear(used_mask); 1612 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 1613 int distance = node_distance(local_node, node); 1614 1615 /* 1616 * If another node is sufficiently far away then it is better 1617 * to reclaim pages in a zone before going off node. 1618 */ 1619 if (distance > RECLAIM_DISTANCE) 1620 zone_reclaim_mode = 1; 1621 1622 /* 1623 * We don't want to pressure a particular node. 1624 * So adding penalty to the first node in same 1625 * distance group to make it round-robin. 1626 */ 1627 1628 if (distance != node_distance(local_node, prev_node)) 1629 node_load[node] += load; 1630 prev_node = node; 1631 load--; 1632 for (i = 0; i < GFP_ZONETYPES; i++) { 1633 zonelist = pgdat->node_zonelists + i; 1634 for (j = 0; zonelist->zones[j] != NULL; j++); 1635 1636 k = highest_zone(i); 1637 1638 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1639 zonelist->zones[j] = NULL; 1640 } 1641 } 1642 } 1643 1644 #else /* CONFIG_NUMA */ 1645 1646 static void __init build_zonelists(pg_data_t *pgdat) 1647 { 1648 int i, j, k, node, local_node; 1649 1650 local_node = pgdat->node_id; 1651 for (i = 0; i < GFP_ZONETYPES; i++) { 1652 struct zonelist *zonelist; 1653 1654 zonelist = pgdat->node_zonelists + i; 1655 1656 j = 0; 1657 k = highest_zone(i); 1658 j = build_zonelists_node(pgdat, zonelist, j, k); 1659 /* 1660 * Now we build the zonelist so that it contains the zones 1661 * of all the other nodes. 1662 * We don't want to pressure a particular node, so when 1663 * building the zones for node N, we make sure that the 1664 * zones coming right after the local ones are those from 1665 * node N+1 (modulo N) 1666 */ 1667 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 1668 if (!node_online(node)) 1669 continue; 1670 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1671 } 1672 for (node = 0; node < local_node; node++) { 1673 if (!node_online(node)) 1674 continue; 1675 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1676 } 1677 1678 zonelist->zones[j] = NULL; 1679 } 1680 } 1681 1682 #endif /* CONFIG_NUMA */ 1683 1684 void __init build_all_zonelists(void) 1685 { 1686 int i; 1687 1688 for_each_online_node(i) 1689 build_zonelists(NODE_DATA(i)); 1690 printk("Built %i zonelists\n", num_online_nodes()); 1691 cpuset_init_current_mems_allowed(); 1692 } 1693 1694 /* 1695 * Helper functions to size the waitqueue hash table. 1696 * Essentially these want to choose hash table sizes sufficiently 1697 * large so that collisions trying to wait on pages are rare. 1698 * But in fact, the number of active page waitqueues on typical 1699 * systems is ridiculously low, less than 200. So this is even 1700 * conservative, even though it seems large. 1701 * 1702 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 1703 * waitqueues, i.e. the size of the waitq table given the number of pages. 1704 */ 1705 #define PAGES_PER_WAITQUEUE 256 1706 1707 static inline unsigned long wait_table_size(unsigned long pages) 1708 { 1709 unsigned long size = 1; 1710 1711 pages /= PAGES_PER_WAITQUEUE; 1712 1713 while (size < pages) 1714 size <<= 1; 1715 1716 /* 1717 * Once we have dozens or even hundreds of threads sleeping 1718 * on IO we've got bigger problems than wait queue collision. 1719 * Limit the size of the wait table to a reasonable size. 1720 */ 1721 size = min(size, 4096UL); 1722 1723 return max(size, 4UL); 1724 } 1725 1726 /* 1727 * This is an integer logarithm so that shifts can be used later 1728 * to extract the more random high bits from the multiplicative 1729 * hash function before the remainder is taken. 1730 */ 1731 static inline unsigned long wait_table_bits(unsigned long size) 1732 { 1733 return ffz(~size); 1734 } 1735 1736 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 1737 1738 static void __init calculate_zone_totalpages(struct pglist_data *pgdat, 1739 unsigned long *zones_size, unsigned long *zholes_size) 1740 { 1741 unsigned long realtotalpages, totalpages = 0; 1742 int i; 1743 1744 for (i = 0; i < MAX_NR_ZONES; i++) 1745 totalpages += zones_size[i]; 1746 pgdat->node_spanned_pages = totalpages; 1747 1748 realtotalpages = totalpages; 1749 if (zholes_size) 1750 for (i = 0; i < MAX_NR_ZONES; i++) 1751 realtotalpages -= zholes_size[i]; 1752 pgdat->node_present_pages = realtotalpages; 1753 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1754 } 1755 1756 1757 /* 1758 * Initially all pages are reserved - free ones are freed 1759 * up by free_all_bootmem() once the early boot process is 1760 * done. Non-atomic initialization, single-pass. 1761 */ 1762 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 1763 unsigned long start_pfn) 1764 { 1765 struct page *page; 1766 unsigned long end_pfn = start_pfn + size; 1767 unsigned long pfn; 1768 1769 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1770 if (!early_pfn_valid(pfn)) 1771 continue; 1772 page = pfn_to_page(pfn); 1773 set_page_links(page, zone, nid, pfn); 1774 set_page_count(page, 1); 1775 reset_page_mapcount(page); 1776 SetPageReserved(page); 1777 INIT_LIST_HEAD(&page->lru); 1778 #ifdef WANT_PAGE_VIRTUAL 1779 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1780 if (!is_highmem_idx(zone)) 1781 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1782 #endif 1783 } 1784 } 1785 1786 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, 1787 unsigned long size) 1788 { 1789 int order; 1790 for (order = 0; order < MAX_ORDER ; order++) { 1791 INIT_LIST_HEAD(&zone->free_area[order].free_list); 1792 zone->free_area[order].nr_free = 0; 1793 } 1794 } 1795 1796 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr) 1797 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, 1798 unsigned long size) 1799 { 1800 unsigned long snum = pfn_to_section_nr(pfn); 1801 unsigned long end = pfn_to_section_nr(pfn + size); 1802 1803 if (FLAGS_HAS_NODE) 1804 zone_table[ZONETABLE_INDEX(nid, zid)] = zone; 1805 else 1806 for (; snum <= end; snum++) 1807 zone_table[ZONETABLE_INDEX(snum, zid)] = zone; 1808 } 1809 1810 #ifndef __HAVE_ARCH_MEMMAP_INIT 1811 #define memmap_init(size, nid, zone, start_pfn) \ 1812 memmap_init_zone((size), (nid), (zone), (start_pfn)) 1813 #endif 1814 1815 static int __cpuinit zone_batchsize(struct zone *zone) 1816 { 1817 int batch; 1818 1819 /* 1820 * The per-cpu-pages pools are set to around 1000th of the 1821 * size of the zone. But no more than 1/2 of a meg. 1822 * 1823 * OK, so we don't know how big the cache is. So guess. 1824 */ 1825 batch = zone->present_pages / 1024; 1826 if (batch * PAGE_SIZE > 512 * 1024) 1827 batch = (512 * 1024) / PAGE_SIZE; 1828 batch /= 4; /* We effectively *= 4 below */ 1829 if (batch < 1) 1830 batch = 1; 1831 1832 /* 1833 * Clamp the batch to a 2^n - 1 value. Having a power 1834 * of 2 value was found to be more likely to have 1835 * suboptimal cache aliasing properties in some cases. 1836 * 1837 * For example if 2 tasks are alternately allocating 1838 * batches of pages, one task can end up with a lot 1839 * of pages of one half of the possible page colors 1840 * and the other with pages of the other colors. 1841 */ 1842 batch = (1 << (fls(batch + batch/2)-1)) - 1; 1843 1844 return batch; 1845 } 1846 1847 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 1848 { 1849 struct per_cpu_pages *pcp; 1850 1851 memset(p, 0, sizeof(*p)); 1852 1853 pcp = &p->pcp[0]; /* hot */ 1854 pcp->count = 0; 1855 pcp->high = 6 * batch; 1856 pcp->batch = max(1UL, 1 * batch); 1857 INIT_LIST_HEAD(&pcp->list); 1858 1859 pcp = &p->pcp[1]; /* cold*/ 1860 pcp->count = 0; 1861 pcp->high = 2 * batch; 1862 pcp->batch = max(1UL, batch/2); 1863 INIT_LIST_HEAD(&pcp->list); 1864 } 1865 1866 /* 1867 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 1868 * to the value high for the pageset p. 1869 */ 1870 1871 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 1872 unsigned long high) 1873 { 1874 struct per_cpu_pages *pcp; 1875 1876 pcp = &p->pcp[0]; /* hot list */ 1877 pcp->high = high; 1878 pcp->batch = max(1UL, high/4); 1879 if ((high/4) > (PAGE_SHIFT * 8)) 1880 pcp->batch = PAGE_SHIFT * 8; 1881 } 1882 1883 1884 #ifdef CONFIG_NUMA 1885 /* 1886 * Boot pageset table. One per cpu which is going to be used for all 1887 * zones and all nodes. The parameters will be set in such a way 1888 * that an item put on a list will immediately be handed over to 1889 * the buddy list. This is safe since pageset manipulation is done 1890 * with interrupts disabled. 1891 * 1892 * Some NUMA counter updates may also be caught by the boot pagesets. 1893 * 1894 * The boot_pagesets must be kept even after bootup is complete for 1895 * unused processors and/or zones. They do play a role for bootstrapping 1896 * hotplugged processors. 1897 * 1898 * zoneinfo_show() and maybe other functions do 1899 * not check if the processor is online before following the pageset pointer. 1900 * Other parts of the kernel may not check if the zone is available. 1901 */ 1902 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 1903 1904 /* 1905 * Dynamically allocate memory for the 1906 * per cpu pageset array in struct zone. 1907 */ 1908 static int __cpuinit process_zones(int cpu) 1909 { 1910 struct zone *zone, *dzone; 1911 1912 for_each_zone(zone) { 1913 1914 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 1915 GFP_KERNEL, cpu_to_node(cpu)); 1916 if (!zone_pcp(zone, cpu)) 1917 goto bad; 1918 1919 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 1920 1921 if (percpu_pagelist_fraction) 1922 setup_pagelist_highmark(zone_pcp(zone, cpu), 1923 (zone->present_pages / percpu_pagelist_fraction)); 1924 } 1925 1926 return 0; 1927 bad: 1928 for_each_zone(dzone) { 1929 if (dzone == zone) 1930 break; 1931 kfree(zone_pcp(dzone, cpu)); 1932 zone_pcp(dzone, cpu) = NULL; 1933 } 1934 return -ENOMEM; 1935 } 1936 1937 static inline void free_zone_pagesets(int cpu) 1938 { 1939 struct zone *zone; 1940 1941 for_each_zone(zone) { 1942 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 1943 1944 zone_pcp(zone, cpu) = NULL; 1945 kfree(pset); 1946 } 1947 } 1948 1949 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 1950 unsigned long action, 1951 void *hcpu) 1952 { 1953 int cpu = (long)hcpu; 1954 int ret = NOTIFY_OK; 1955 1956 switch (action) { 1957 case CPU_UP_PREPARE: 1958 if (process_zones(cpu)) 1959 ret = NOTIFY_BAD; 1960 break; 1961 case CPU_UP_CANCELED: 1962 case CPU_DEAD: 1963 free_zone_pagesets(cpu); 1964 break; 1965 default: 1966 break; 1967 } 1968 return ret; 1969 } 1970 1971 static struct notifier_block pageset_notifier = 1972 { &pageset_cpuup_callback, NULL, 0 }; 1973 1974 void __init setup_per_cpu_pageset(void) 1975 { 1976 int err; 1977 1978 /* Initialize per_cpu_pageset for cpu 0. 1979 * A cpuup callback will do this for every cpu 1980 * as it comes online 1981 */ 1982 err = process_zones(smp_processor_id()); 1983 BUG_ON(err); 1984 register_cpu_notifier(&pageset_notifier); 1985 } 1986 1987 #endif 1988 1989 static __meminit 1990 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 1991 { 1992 int i; 1993 struct pglist_data *pgdat = zone->zone_pgdat; 1994 1995 /* 1996 * The per-page waitqueue mechanism uses hashed waitqueues 1997 * per zone. 1998 */ 1999 zone->wait_table_size = wait_table_size(zone_size_pages); 2000 zone->wait_table_bits = wait_table_bits(zone->wait_table_size); 2001 zone->wait_table = (wait_queue_head_t *) 2002 alloc_bootmem_node(pgdat, zone->wait_table_size 2003 * sizeof(wait_queue_head_t)); 2004 2005 for(i = 0; i < zone->wait_table_size; ++i) 2006 init_waitqueue_head(zone->wait_table + i); 2007 } 2008 2009 static __meminit void zone_pcp_init(struct zone *zone) 2010 { 2011 int cpu; 2012 unsigned long batch = zone_batchsize(zone); 2013 2014 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2015 #ifdef CONFIG_NUMA 2016 /* Early boot. Slab allocator not functional yet */ 2017 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2018 setup_pageset(&boot_pageset[cpu],0); 2019 #else 2020 setup_pageset(zone_pcp(zone,cpu), batch); 2021 #endif 2022 } 2023 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2024 zone->name, zone->present_pages, batch); 2025 } 2026 2027 static __meminit void init_currently_empty_zone(struct zone *zone, 2028 unsigned long zone_start_pfn, unsigned long size) 2029 { 2030 struct pglist_data *pgdat = zone->zone_pgdat; 2031 2032 zone_wait_table_init(zone, size); 2033 pgdat->nr_zones = zone_idx(zone) + 1; 2034 2035 zone->zone_mem_map = pfn_to_page(zone_start_pfn); 2036 zone->zone_start_pfn = zone_start_pfn; 2037 2038 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); 2039 2040 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 2041 } 2042 2043 /* 2044 * Set up the zone data structures: 2045 * - mark all pages reserved 2046 * - mark all memory queues empty 2047 * - clear the memory bitmaps 2048 */ 2049 static void __init free_area_init_core(struct pglist_data *pgdat, 2050 unsigned long *zones_size, unsigned long *zholes_size) 2051 { 2052 unsigned long j; 2053 int nid = pgdat->node_id; 2054 unsigned long zone_start_pfn = pgdat->node_start_pfn; 2055 2056 pgdat_resize_init(pgdat); 2057 pgdat->nr_zones = 0; 2058 init_waitqueue_head(&pgdat->kswapd_wait); 2059 pgdat->kswapd_max_order = 0; 2060 2061 for (j = 0; j < MAX_NR_ZONES; j++) { 2062 struct zone *zone = pgdat->node_zones + j; 2063 unsigned long size, realsize; 2064 2065 realsize = size = zones_size[j]; 2066 if (zholes_size) 2067 realsize -= zholes_size[j]; 2068 2069 if (j < ZONE_HIGHMEM) 2070 nr_kernel_pages += realsize; 2071 nr_all_pages += realsize; 2072 2073 zone->spanned_pages = size; 2074 zone->present_pages = realsize; 2075 zone->name = zone_names[j]; 2076 spin_lock_init(&zone->lock); 2077 spin_lock_init(&zone->lru_lock); 2078 zone_seqlock_init(zone); 2079 zone->zone_pgdat = pgdat; 2080 zone->free_pages = 0; 2081 2082 zone->temp_priority = zone->prev_priority = DEF_PRIORITY; 2083 2084 zone_pcp_init(zone); 2085 INIT_LIST_HEAD(&zone->active_list); 2086 INIT_LIST_HEAD(&zone->inactive_list); 2087 zone->nr_scan_active = 0; 2088 zone->nr_scan_inactive = 0; 2089 zone->nr_active = 0; 2090 zone->nr_inactive = 0; 2091 atomic_set(&zone->reclaim_in_progress, 0); 2092 if (!size) 2093 continue; 2094 2095 zonetable_add(zone, nid, j, zone_start_pfn, size); 2096 init_currently_empty_zone(zone, zone_start_pfn, size); 2097 zone_start_pfn += size; 2098 } 2099 } 2100 2101 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 2102 { 2103 /* Skip empty nodes */ 2104 if (!pgdat->node_spanned_pages) 2105 return; 2106 2107 #ifdef CONFIG_FLAT_NODE_MEM_MAP 2108 /* ia64 gets its own node_mem_map, before this, without bootmem */ 2109 if (!pgdat->node_mem_map) { 2110 unsigned long size; 2111 struct page *map; 2112 2113 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page); 2114 map = alloc_remap(pgdat->node_id, size); 2115 if (!map) 2116 map = alloc_bootmem_node(pgdat, size); 2117 pgdat->node_mem_map = map; 2118 } 2119 #ifdef CONFIG_FLATMEM 2120 /* 2121 * With no DISCONTIG, the global mem_map is just set as node 0's 2122 */ 2123 if (pgdat == NODE_DATA(0)) 2124 mem_map = NODE_DATA(0)->node_mem_map; 2125 #endif 2126 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 2127 } 2128 2129 void __init free_area_init_node(int nid, struct pglist_data *pgdat, 2130 unsigned long *zones_size, unsigned long node_start_pfn, 2131 unsigned long *zholes_size) 2132 { 2133 pgdat->node_id = nid; 2134 pgdat->node_start_pfn = node_start_pfn; 2135 calculate_zone_totalpages(pgdat, zones_size, zholes_size); 2136 2137 alloc_node_mem_map(pgdat); 2138 2139 free_area_init_core(pgdat, zones_size, zholes_size); 2140 } 2141 2142 #ifndef CONFIG_NEED_MULTIPLE_NODES 2143 static bootmem_data_t contig_bootmem_data; 2144 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 2145 2146 EXPORT_SYMBOL(contig_page_data); 2147 #endif 2148 2149 void __init free_area_init(unsigned long *zones_size) 2150 { 2151 free_area_init_node(0, NODE_DATA(0), zones_size, 2152 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 2153 } 2154 2155 #ifdef CONFIG_PROC_FS 2156 2157 #include <linux/seq_file.h> 2158 2159 static void *frag_start(struct seq_file *m, loff_t *pos) 2160 { 2161 pg_data_t *pgdat; 2162 loff_t node = *pos; 2163 2164 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next) 2165 --node; 2166 2167 return pgdat; 2168 } 2169 2170 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 2171 { 2172 pg_data_t *pgdat = (pg_data_t *)arg; 2173 2174 (*pos)++; 2175 return pgdat->pgdat_next; 2176 } 2177 2178 static void frag_stop(struct seq_file *m, void *arg) 2179 { 2180 } 2181 2182 /* 2183 * This walks the free areas for each zone. 2184 */ 2185 static int frag_show(struct seq_file *m, void *arg) 2186 { 2187 pg_data_t *pgdat = (pg_data_t *)arg; 2188 struct zone *zone; 2189 struct zone *node_zones = pgdat->node_zones; 2190 unsigned long flags; 2191 int order; 2192 2193 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2194 if (!populated_zone(zone)) 2195 continue; 2196 2197 spin_lock_irqsave(&zone->lock, flags); 2198 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 2199 for (order = 0; order < MAX_ORDER; ++order) 2200 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 2201 spin_unlock_irqrestore(&zone->lock, flags); 2202 seq_putc(m, '\n'); 2203 } 2204 return 0; 2205 } 2206 2207 struct seq_operations fragmentation_op = { 2208 .start = frag_start, 2209 .next = frag_next, 2210 .stop = frag_stop, 2211 .show = frag_show, 2212 }; 2213 2214 /* 2215 * Output information about zones in @pgdat. 2216 */ 2217 static int zoneinfo_show(struct seq_file *m, void *arg) 2218 { 2219 pg_data_t *pgdat = arg; 2220 struct zone *zone; 2221 struct zone *node_zones = pgdat->node_zones; 2222 unsigned long flags; 2223 2224 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) { 2225 int i; 2226 2227 if (!populated_zone(zone)) 2228 continue; 2229 2230 spin_lock_irqsave(&zone->lock, flags); 2231 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 2232 seq_printf(m, 2233 "\n pages free %lu" 2234 "\n min %lu" 2235 "\n low %lu" 2236 "\n high %lu" 2237 "\n active %lu" 2238 "\n inactive %lu" 2239 "\n scanned %lu (a: %lu i: %lu)" 2240 "\n spanned %lu" 2241 "\n present %lu", 2242 zone->free_pages, 2243 zone->pages_min, 2244 zone->pages_low, 2245 zone->pages_high, 2246 zone->nr_active, 2247 zone->nr_inactive, 2248 zone->pages_scanned, 2249 zone->nr_scan_active, zone->nr_scan_inactive, 2250 zone->spanned_pages, 2251 zone->present_pages); 2252 seq_printf(m, 2253 "\n protection: (%lu", 2254 zone->lowmem_reserve[0]); 2255 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 2256 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 2257 seq_printf(m, 2258 ")" 2259 "\n pagesets"); 2260 for_each_online_cpu(i) { 2261 struct per_cpu_pageset *pageset; 2262 int j; 2263 2264 pageset = zone_pcp(zone, i); 2265 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2266 if (pageset->pcp[j].count) 2267 break; 2268 } 2269 if (j == ARRAY_SIZE(pageset->pcp)) 2270 continue; 2271 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2272 seq_printf(m, 2273 "\n cpu: %i pcp: %i" 2274 "\n count: %i" 2275 "\n high: %i" 2276 "\n batch: %i", 2277 i, j, 2278 pageset->pcp[j].count, 2279 pageset->pcp[j].high, 2280 pageset->pcp[j].batch); 2281 } 2282 #ifdef CONFIG_NUMA 2283 seq_printf(m, 2284 "\n numa_hit: %lu" 2285 "\n numa_miss: %lu" 2286 "\n numa_foreign: %lu" 2287 "\n interleave_hit: %lu" 2288 "\n local_node: %lu" 2289 "\n other_node: %lu", 2290 pageset->numa_hit, 2291 pageset->numa_miss, 2292 pageset->numa_foreign, 2293 pageset->interleave_hit, 2294 pageset->local_node, 2295 pageset->other_node); 2296 #endif 2297 } 2298 seq_printf(m, 2299 "\n all_unreclaimable: %u" 2300 "\n prev_priority: %i" 2301 "\n temp_priority: %i" 2302 "\n start_pfn: %lu", 2303 zone->all_unreclaimable, 2304 zone->prev_priority, 2305 zone->temp_priority, 2306 zone->zone_start_pfn); 2307 spin_unlock_irqrestore(&zone->lock, flags); 2308 seq_putc(m, '\n'); 2309 } 2310 return 0; 2311 } 2312 2313 struct seq_operations zoneinfo_op = { 2314 .start = frag_start, /* iterate over all zones. The same as in 2315 * fragmentation. */ 2316 .next = frag_next, 2317 .stop = frag_stop, 2318 .show = zoneinfo_show, 2319 }; 2320 2321 static char *vmstat_text[] = { 2322 "nr_dirty", 2323 "nr_writeback", 2324 "nr_unstable", 2325 "nr_page_table_pages", 2326 "nr_mapped", 2327 "nr_slab", 2328 2329 "pgpgin", 2330 "pgpgout", 2331 "pswpin", 2332 "pswpout", 2333 2334 "pgalloc_high", 2335 "pgalloc_normal", 2336 "pgalloc_dma32", 2337 "pgalloc_dma", 2338 2339 "pgfree", 2340 "pgactivate", 2341 "pgdeactivate", 2342 2343 "pgfault", 2344 "pgmajfault", 2345 2346 "pgrefill_high", 2347 "pgrefill_normal", 2348 "pgrefill_dma32", 2349 "pgrefill_dma", 2350 2351 "pgsteal_high", 2352 "pgsteal_normal", 2353 "pgsteal_dma32", 2354 "pgsteal_dma", 2355 2356 "pgscan_kswapd_high", 2357 "pgscan_kswapd_normal", 2358 "pgscan_kswapd_dma32", 2359 "pgscan_kswapd_dma", 2360 2361 "pgscan_direct_high", 2362 "pgscan_direct_normal", 2363 "pgscan_direct_dma32", 2364 "pgscan_direct_dma", 2365 2366 "pginodesteal", 2367 "slabs_scanned", 2368 "kswapd_steal", 2369 "kswapd_inodesteal", 2370 "pageoutrun", 2371 "allocstall", 2372 2373 "pgrotated", 2374 "nr_bounce", 2375 }; 2376 2377 static void *vmstat_start(struct seq_file *m, loff_t *pos) 2378 { 2379 struct page_state *ps; 2380 2381 if (*pos >= ARRAY_SIZE(vmstat_text)) 2382 return NULL; 2383 2384 ps = kmalloc(sizeof(*ps), GFP_KERNEL); 2385 m->private = ps; 2386 if (!ps) 2387 return ERR_PTR(-ENOMEM); 2388 get_full_page_state(ps); 2389 ps->pgpgin /= 2; /* sectors -> kbytes */ 2390 ps->pgpgout /= 2; 2391 return (unsigned long *)ps + *pos; 2392 } 2393 2394 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 2395 { 2396 (*pos)++; 2397 if (*pos >= ARRAY_SIZE(vmstat_text)) 2398 return NULL; 2399 return (unsigned long *)m->private + *pos; 2400 } 2401 2402 static int vmstat_show(struct seq_file *m, void *arg) 2403 { 2404 unsigned long *l = arg; 2405 unsigned long off = l - (unsigned long *)m->private; 2406 2407 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 2408 return 0; 2409 } 2410 2411 static void vmstat_stop(struct seq_file *m, void *arg) 2412 { 2413 kfree(m->private); 2414 m->private = NULL; 2415 } 2416 2417 struct seq_operations vmstat_op = { 2418 .start = vmstat_start, 2419 .next = vmstat_next, 2420 .stop = vmstat_stop, 2421 .show = vmstat_show, 2422 }; 2423 2424 #endif /* CONFIG_PROC_FS */ 2425 2426 #ifdef CONFIG_HOTPLUG_CPU 2427 static int page_alloc_cpu_notify(struct notifier_block *self, 2428 unsigned long action, void *hcpu) 2429 { 2430 int cpu = (unsigned long)hcpu; 2431 long *count; 2432 unsigned long *src, *dest; 2433 2434 if (action == CPU_DEAD) { 2435 int i; 2436 2437 /* Drain local pagecache count. */ 2438 count = &per_cpu(nr_pagecache_local, cpu); 2439 atomic_add(*count, &nr_pagecache); 2440 *count = 0; 2441 local_irq_disable(); 2442 __drain_pages(cpu); 2443 2444 /* Add dead cpu's page_states to our own. */ 2445 dest = (unsigned long *)&__get_cpu_var(page_states); 2446 src = (unsigned long *)&per_cpu(page_states, cpu); 2447 2448 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long); 2449 i++) { 2450 dest[i] += src[i]; 2451 src[i] = 0; 2452 } 2453 2454 local_irq_enable(); 2455 } 2456 return NOTIFY_OK; 2457 } 2458 #endif /* CONFIG_HOTPLUG_CPU */ 2459 2460 void __init page_alloc_init(void) 2461 { 2462 hotcpu_notifier(page_alloc_cpu_notify, 0); 2463 } 2464 2465 /* 2466 * setup_per_zone_lowmem_reserve - called whenever 2467 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 2468 * has a correct pages reserved value, so an adequate number of 2469 * pages are left in the zone after a successful __alloc_pages(). 2470 */ 2471 static void setup_per_zone_lowmem_reserve(void) 2472 { 2473 struct pglist_data *pgdat; 2474 int j, idx; 2475 2476 for_each_pgdat(pgdat) { 2477 for (j = 0; j < MAX_NR_ZONES; j++) { 2478 struct zone *zone = pgdat->node_zones + j; 2479 unsigned long present_pages = zone->present_pages; 2480 2481 zone->lowmem_reserve[j] = 0; 2482 2483 for (idx = j-1; idx >= 0; idx--) { 2484 struct zone *lower_zone; 2485 2486 if (sysctl_lowmem_reserve_ratio[idx] < 1) 2487 sysctl_lowmem_reserve_ratio[idx] = 1; 2488 2489 lower_zone = pgdat->node_zones + idx; 2490 lower_zone->lowmem_reserve[j] = present_pages / 2491 sysctl_lowmem_reserve_ratio[idx]; 2492 present_pages += lower_zone->present_pages; 2493 } 2494 } 2495 } 2496 } 2497 2498 /* 2499 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures 2500 * that the pages_{min,low,high} values for each zone are set correctly 2501 * with respect to min_free_kbytes. 2502 */ 2503 void setup_per_zone_pages_min(void) 2504 { 2505 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 2506 unsigned long lowmem_pages = 0; 2507 struct zone *zone; 2508 unsigned long flags; 2509 2510 /* Calculate total number of !ZONE_HIGHMEM pages */ 2511 for_each_zone(zone) { 2512 if (!is_highmem(zone)) 2513 lowmem_pages += zone->present_pages; 2514 } 2515 2516 for_each_zone(zone) { 2517 unsigned long tmp; 2518 spin_lock_irqsave(&zone->lru_lock, flags); 2519 tmp = (pages_min * zone->present_pages) / lowmem_pages; 2520 if (is_highmem(zone)) { 2521 /* 2522 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 2523 * need highmem pages, so cap pages_min to a small 2524 * value here. 2525 * 2526 * The (pages_high-pages_low) and (pages_low-pages_min) 2527 * deltas controls asynch page reclaim, and so should 2528 * not be capped for highmem. 2529 */ 2530 int min_pages; 2531 2532 min_pages = zone->present_pages / 1024; 2533 if (min_pages < SWAP_CLUSTER_MAX) 2534 min_pages = SWAP_CLUSTER_MAX; 2535 if (min_pages > 128) 2536 min_pages = 128; 2537 zone->pages_min = min_pages; 2538 } else { 2539 /* 2540 * If it's a lowmem zone, reserve a number of pages 2541 * proportionate to the zone's size. 2542 */ 2543 zone->pages_min = tmp; 2544 } 2545 2546 zone->pages_low = zone->pages_min + tmp / 4; 2547 zone->pages_high = zone->pages_min + tmp / 2; 2548 spin_unlock_irqrestore(&zone->lru_lock, flags); 2549 } 2550 } 2551 2552 /* 2553 * Initialise min_free_kbytes. 2554 * 2555 * For small machines we want it small (128k min). For large machines 2556 * we want it large (64MB max). But it is not linear, because network 2557 * bandwidth does not increase linearly with machine size. We use 2558 * 2559 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 2560 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 2561 * 2562 * which yields 2563 * 2564 * 16MB: 512k 2565 * 32MB: 724k 2566 * 64MB: 1024k 2567 * 128MB: 1448k 2568 * 256MB: 2048k 2569 * 512MB: 2896k 2570 * 1024MB: 4096k 2571 * 2048MB: 5792k 2572 * 4096MB: 8192k 2573 * 8192MB: 11584k 2574 * 16384MB: 16384k 2575 */ 2576 static int __init init_per_zone_pages_min(void) 2577 { 2578 unsigned long lowmem_kbytes; 2579 2580 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 2581 2582 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 2583 if (min_free_kbytes < 128) 2584 min_free_kbytes = 128; 2585 if (min_free_kbytes > 65536) 2586 min_free_kbytes = 65536; 2587 setup_per_zone_pages_min(); 2588 setup_per_zone_lowmem_reserve(); 2589 return 0; 2590 } 2591 module_init(init_per_zone_pages_min) 2592 2593 /* 2594 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 2595 * that we can call two helper functions whenever min_free_kbytes 2596 * changes. 2597 */ 2598 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 2599 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2600 { 2601 proc_dointvec(table, write, file, buffer, length, ppos); 2602 setup_per_zone_pages_min(); 2603 return 0; 2604 } 2605 2606 /* 2607 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 2608 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 2609 * whenever sysctl_lowmem_reserve_ratio changes. 2610 * 2611 * The reserve ratio obviously has absolutely no relation with the 2612 * pages_min watermarks. The lowmem reserve ratio can only make sense 2613 * if in function of the boot time zone sizes. 2614 */ 2615 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 2616 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2617 { 2618 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2619 setup_per_zone_lowmem_reserve(); 2620 return 0; 2621 } 2622 2623 /* 2624 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 2625 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 2626 * can have before it gets flushed back to buddy allocator. 2627 */ 2628 2629 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 2630 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2631 { 2632 struct zone *zone; 2633 unsigned int cpu; 2634 int ret; 2635 2636 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2637 if (!write || (ret == -EINVAL)) 2638 return ret; 2639 for_each_zone(zone) { 2640 for_each_online_cpu(cpu) { 2641 unsigned long high; 2642 high = zone->present_pages / percpu_pagelist_fraction; 2643 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 2644 } 2645 } 2646 return 0; 2647 } 2648 2649 __initdata int hashdist = HASHDIST_DEFAULT; 2650 2651 #ifdef CONFIG_NUMA 2652 static int __init set_hashdist(char *str) 2653 { 2654 if (!str) 2655 return 0; 2656 hashdist = simple_strtoul(str, &str, 0); 2657 return 1; 2658 } 2659 __setup("hashdist=", set_hashdist); 2660 #endif 2661 2662 /* 2663 * allocate a large system hash table from bootmem 2664 * - it is assumed that the hash table must contain an exact power-of-2 2665 * quantity of entries 2666 * - limit is the number of hash buckets, not the total allocation size 2667 */ 2668 void *__init alloc_large_system_hash(const char *tablename, 2669 unsigned long bucketsize, 2670 unsigned long numentries, 2671 int scale, 2672 int flags, 2673 unsigned int *_hash_shift, 2674 unsigned int *_hash_mask, 2675 unsigned long limit) 2676 { 2677 unsigned long long max = limit; 2678 unsigned long log2qty, size; 2679 void *table = NULL; 2680 2681 /* allow the kernel cmdline to have a say */ 2682 if (!numentries) { 2683 /* round applicable memory size up to nearest megabyte */ 2684 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; 2685 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 2686 numentries >>= 20 - PAGE_SHIFT; 2687 numentries <<= 20 - PAGE_SHIFT; 2688 2689 /* limit to 1 bucket per 2^scale bytes of low memory */ 2690 if (scale > PAGE_SHIFT) 2691 numentries >>= (scale - PAGE_SHIFT); 2692 else 2693 numentries <<= (PAGE_SHIFT - scale); 2694 } 2695 /* rounded up to nearest power of 2 in size */ 2696 numentries = 1UL << (long_log2(numentries) + 1); 2697 2698 /* limit allocation size to 1/16 total memory by default */ 2699 if (max == 0) { 2700 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2701 do_div(max, bucketsize); 2702 } 2703 2704 if (numentries > max) 2705 numentries = max; 2706 2707 log2qty = long_log2(numentries); 2708 2709 do { 2710 size = bucketsize << log2qty; 2711 if (flags & HASH_EARLY) 2712 table = alloc_bootmem(size); 2713 else if (hashdist) 2714 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 2715 else { 2716 unsigned long order; 2717 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 2718 ; 2719 table = (void*) __get_free_pages(GFP_ATOMIC, order); 2720 } 2721 } while (!table && size > PAGE_SIZE && --log2qty); 2722 2723 if (!table) 2724 panic("Failed to allocate %s hash table\n", tablename); 2725 2726 printk("%s hash table entries: %d (order: %d, %lu bytes)\n", 2727 tablename, 2728 (1U << log2qty), 2729 long_log2(size) - PAGE_SHIFT, 2730 size); 2731 2732 if (_hash_shift) 2733 *_hash_shift = log2qty; 2734 if (_hash_mask) 2735 *_hash_mask = (1 << log2qty) - 1; 2736 2737 return table; 2738 } 2739