1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/mmu_notifier.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 #include <linux/psi.h> 72 #include <linux/padata.h> 73 #include <linux/khugepaged.h> 74 #include <linux/buffer_head.h> 75 #include <asm/sections.h> 76 #include <asm/tlbflush.h> 77 #include <asm/div64.h> 78 #include "internal.h" 79 #include "shuffle.h" 80 #include "page_reporting.h" 81 82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 83 typedef int __bitwise fpi_t; 84 85 /* No special request */ 86 #define FPI_NONE ((__force fpi_t)0) 87 88 /* 89 * Skip free page reporting notification for the (possibly merged) page. 90 * This does not hinder free page reporting from grabbing the page, 91 * reporting it and marking it "reported" - it only skips notifying 92 * the free page reporting infrastructure about a newly freed page. For 93 * example, used when temporarily pulling a page from a freelist and 94 * putting it back unmodified. 95 */ 96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 97 98 /* 99 * Place the (possibly merged) page to the tail of the freelist. Will ignore 100 * page shuffling (relevant code - e.g., memory onlining - is expected to 101 * shuffle the whole zone). 102 * 103 * Note: No code should rely on this flag for correctness - it's purely 104 * to allow for optimizations when handing back either fresh pages 105 * (memory onlining) or untouched pages (page isolation, free page 106 * reporting). 107 */ 108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 109 110 /* 111 * Don't poison memory with KASAN (only for the tag-based modes). 112 * During boot, all non-reserved memblock memory is exposed to page_alloc. 113 * Poisoning all that memory lengthens boot time, especially on systems with 114 * large amount of RAM. This flag is used to skip that poisoning. 115 * This is only done for the tag-based KASAN modes, as those are able to 116 * detect memory corruptions with the memory tags assigned by default. 117 * All memory allocated normally after boot gets poisoned as usual. 118 */ 119 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 120 121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 122 static DEFINE_MUTEX(pcp_batch_high_lock); 123 #define MIN_PERCPU_PAGELIST_FRACTION (8) 124 125 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 126 DEFINE_PER_CPU(int, numa_node); 127 EXPORT_PER_CPU_SYMBOL(numa_node); 128 #endif 129 130 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 131 132 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 133 /* 134 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 135 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 136 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 137 * defined in <linux/topology.h>. 138 */ 139 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 140 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 141 #endif 142 143 /* work_structs for global per-cpu drains */ 144 struct pcpu_drain { 145 struct zone *zone; 146 struct work_struct work; 147 }; 148 static DEFINE_MUTEX(pcpu_drain_mutex); 149 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 150 151 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 152 volatile unsigned long latent_entropy __latent_entropy; 153 EXPORT_SYMBOL(latent_entropy); 154 #endif 155 156 /* 157 * Array of node states. 158 */ 159 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 160 [N_POSSIBLE] = NODE_MASK_ALL, 161 [N_ONLINE] = { { [0] = 1UL } }, 162 #ifndef CONFIG_NUMA 163 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 164 #ifdef CONFIG_HIGHMEM 165 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 166 #endif 167 [N_MEMORY] = { { [0] = 1UL } }, 168 [N_CPU] = { { [0] = 1UL } }, 169 #endif /* NUMA */ 170 }; 171 EXPORT_SYMBOL(node_states); 172 173 atomic_long_t _totalram_pages __read_mostly; 174 EXPORT_SYMBOL(_totalram_pages); 175 unsigned long totalreserve_pages __read_mostly; 176 unsigned long totalcma_pages __read_mostly; 177 178 int percpu_pagelist_fraction; 179 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 180 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 181 EXPORT_SYMBOL(init_on_alloc); 182 183 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 184 EXPORT_SYMBOL(init_on_free); 185 186 static bool _init_on_alloc_enabled_early __read_mostly 187 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 188 static int __init early_init_on_alloc(char *buf) 189 { 190 191 return kstrtobool(buf, &_init_on_alloc_enabled_early); 192 } 193 early_param("init_on_alloc", early_init_on_alloc); 194 195 static bool _init_on_free_enabled_early __read_mostly 196 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 197 static int __init early_init_on_free(char *buf) 198 { 199 return kstrtobool(buf, &_init_on_free_enabled_early); 200 } 201 early_param("init_on_free", early_init_on_free); 202 203 /* 204 * A cached value of the page's pageblock's migratetype, used when the page is 205 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 206 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 207 * Also the migratetype set in the page does not necessarily match the pcplist 208 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 209 * other index - this ensures that it will be put on the correct CMA freelist. 210 */ 211 static inline int get_pcppage_migratetype(struct page *page) 212 { 213 return page->index; 214 } 215 216 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 217 { 218 page->index = migratetype; 219 } 220 221 #ifdef CONFIG_PM_SLEEP 222 /* 223 * The following functions are used by the suspend/hibernate code to temporarily 224 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 225 * while devices are suspended. To avoid races with the suspend/hibernate code, 226 * they should always be called with system_transition_mutex held 227 * (gfp_allowed_mask also should only be modified with system_transition_mutex 228 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 229 * with that modification). 230 */ 231 232 static gfp_t saved_gfp_mask; 233 234 void pm_restore_gfp_mask(void) 235 { 236 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 237 if (saved_gfp_mask) { 238 gfp_allowed_mask = saved_gfp_mask; 239 saved_gfp_mask = 0; 240 } 241 } 242 243 void pm_restrict_gfp_mask(void) 244 { 245 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 246 WARN_ON(saved_gfp_mask); 247 saved_gfp_mask = gfp_allowed_mask; 248 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 249 } 250 251 bool pm_suspended_storage(void) 252 { 253 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 254 return false; 255 return true; 256 } 257 #endif /* CONFIG_PM_SLEEP */ 258 259 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 260 unsigned int pageblock_order __read_mostly; 261 #endif 262 263 static void __free_pages_ok(struct page *page, unsigned int order, 264 fpi_t fpi_flags); 265 266 /* 267 * results with 256, 32 in the lowmem_reserve sysctl: 268 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 269 * 1G machine -> (16M dma, 784M normal, 224M high) 270 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 271 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 272 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 273 * 274 * TBD: should special case ZONE_DMA32 machines here - in those we normally 275 * don't need any ZONE_NORMAL reservation 276 */ 277 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 278 #ifdef CONFIG_ZONE_DMA 279 [ZONE_DMA] = 256, 280 #endif 281 #ifdef CONFIG_ZONE_DMA32 282 [ZONE_DMA32] = 256, 283 #endif 284 [ZONE_NORMAL] = 32, 285 #ifdef CONFIG_HIGHMEM 286 [ZONE_HIGHMEM] = 0, 287 #endif 288 [ZONE_MOVABLE] = 0, 289 }; 290 291 static char * const zone_names[MAX_NR_ZONES] = { 292 #ifdef CONFIG_ZONE_DMA 293 "DMA", 294 #endif 295 #ifdef CONFIG_ZONE_DMA32 296 "DMA32", 297 #endif 298 "Normal", 299 #ifdef CONFIG_HIGHMEM 300 "HighMem", 301 #endif 302 "Movable", 303 #ifdef CONFIG_ZONE_DEVICE 304 "Device", 305 #endif 306 }; 307 308 const char * const migratetype_names[MIGRATE_TYPES] = { 309 "Unmovable", 310 "Movable", 311 "Reclaimable", 312 "HighAtomic", 313 #ifdef CONFIG_CMA 314 "CMA", 315 #endif 316 #ifdef CONFIG_MEMORY_ISOLATION 317 "Isolate", 318 #endif 319 }; 320 321 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 322 [NULL_COMPOUND_DTOR] = NULL, 323 [COMPOUND_PAGE_DTOR] = free_compound_page, 324 #ifdef CONFIG_HUGETLB_PAGE 325 [HUGETLB_PAGE_DTOR] = free_huge_page, 326 #endif 327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 328 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 329 #endif 330 }; 331 332 int min_free_kbytes = 1024; 333 int user_min_free_kbytes = -1; 334 #ifdef CONFIG_DISCONTIGMEM 335 /* 336 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 337 * are not on separate NUMA nodes. Functionally this works but with 338 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 339 * quite small. By default, do not boost watermarks on discontigmem as in 340 * many cases very high-order allocations like THP are likely to be 341 * unsupported and the premature reclaim offsets the advantage of long-term 342 * fragmentation avoidance. 343 */ 344 int watermark_boost_factor __read_mostly; 345 #else 346 int watermark_boost_factor __read_mostly = 15000; 347 #endif 348 int watermark_scale_factor = 10; 349 350 static unsigned long nr_kernel_pages __initdata; 351 static unsigned long nr_all_pages __initdata; 352 static unsigned long dma_reserve __initdata; 353 354 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 355 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 356 static unsigned long required_kernelcore __initdata; 357 static unsigned long required_kernelcore_percent __initdata; 358 static unsigned long required_movablecore __initdata; 359 static unsigned long required_movablecore_percent __initdata; 360 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 361 static bool mirrored_kernelcore __meminitdata; 362 363 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 364 int movable_zone; 365 EXPORT_SYMBOL(movable_zone); 366 367 #if MAX_NUMNODES > 1 368 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 369 unsigned int nr_online_nodes __read_mostly = 1; 370 EXPORT_SYMBOL(nr_node_ids); 371 EXPORT_SYMBOL(nr_online_nodes); 372 #endif 373 374 int page_group_by_mobility_disabled __read_mostly; 375 376 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 377 /* 378 * During boot we initialize deferred pages on-demand, as needed, but once 379 * page_alloc_init_late() has finished, the deferred pages are all initialized, 380 * and we can permanently disable that path. 381 */ 382 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 383 384 /* 385 * Calling kasan_poison_pages() only after deferred memory initialization 386 * has completed. Poisoning pages during deferred memory init will greatly 387 * lengthen the process and cause problem in large memory systems as the 388 * deferred pages initialization is done with interrupt disabled. 389 * 390 * Assuming that there will be no reference to those newly initialized 391 * pages before they are ever allocated, this should have no effect on 392 * KASAN memory tracking as the poison will be properly inserted at page 393 * allocation time. The only corner case is when pages are allocated by 394 * on-demand allocation and then freed again before the deferred pages 395 * initialization is done, but this is not likely to happen. 396 */ 397 static inline bool should_skip_kasan_poison(fpi_t fpi_flags) 398 { 399 return static_branch_unlikely(&deferred_pages) || 400 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 401 (fpi_flags & FPI_SKIP_KASAN_POISON)); 402 } 403 404 /* Returns true if the struct page for the pfn is uninitialised */ 405 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 406 { 407 int nid = early_pfn_to_nid(pfn); 408 409 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 410 return true; 411 412 return false; 413 } 414 415 /* 416 * Returns true when the remaining initialisation should be deferred until 417 * later in the boot cycle when it can be parallelised. 418 */ 419 static bool __meminit 420 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 421 { 422 static unsigned long prev_end_pfn, nr_initialised; 423 424 /* 425 * prev_end_pfn static that contains the end of previous zone 426 * No need to protect because called very early in boot before smp_init. 427 */ 428 if (prev_end_pfn != end_pfn) { 429 prev_end_pfn = end_pfn; 430 nr_initialised = 0; 431 } 432 433 /* Always populate low zones for address-constrained allocations */ 434 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 435 return false; 436 437 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 438 return true; 439 /* 440 * We start only with one section of pages, more pages are added as 441 * needed until the rest of deferred pages are initialized. 442 */ 443 nr_initialised++; 444 if ((nr_initialised > PAGES_PER_SECTION) && 445 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 446 NODE_DATA(nid)->first_deferred_pfn = pfn; 447 return true; 448 } 449 return false; 450 } 451 #else 452 static inline bool should_skip_kasan_poison(fpi_t fpi_flags) 453 { 454 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 455 (fpi_flags & FPI_SKIP_KASAN_POISON)); 456 } 457 458 static inline bool early_page_uninitialised(unsigned long pfn) 459 { 460 return false; 461 } 462 463 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 464 { 465 return false; 466 } 467 #endif 468 469 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 470 static inline unsigned long *get_pageblock_bitmap(struct page *page, 471 unsigned long pfn) 472 { 473 #ifdef CONFIG_SPARSEMEM 474 return section_to_usemap(__pfn_to_section(pfn)); 475 #else 476 return page_zone(page)->pageblock_flags; 477 #endif /* CONFIG_SPARSEMEM */ 478 } 479 480 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 481 { 482 #ifdef CONFIG_SPARSEMEM 483 pfn &= (PAGES_PER_SECTION-1); 484 #else 485 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 486 #endif /* CONFIG_SPARSEMEM */ 487 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 488 } 489 490 static __always_inline 491 unsigned long __get_pfnblock_flags_mask(struct page *page, 492 unsigned long pfn, 493 unsigned long mask) 494 { 495 unsigned long *bitmap; 496 unsigned long bitidx, word_bitidx; 497 unsigned long word; 498 499 bitmap = get_pageblock_bitmap(page, pfn); 500 bitidx = pfn_to_bitidx(page, pfn); 501 word_bitidx = bitidx / BITS_PER_LONG; 502 bitidx &= (BITS_PER_LONG-1); 503 504 word = bitmap[word_bitidx]; 505 return (word >> bitidx) & mask; 506 } 507 508 /** 509 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 510 * @page: The page within the block of interest 511 * @pfn: The target page frame number 512 * @mask: mask of bits that the caller is interested in 513 * 514 * Return: pageblock_bits flags 515 */ 516 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 517 unsigned long mask) 518 { 519 return __get_pfnblock_flags_mask(page, pfn, mask); 520 } 521 522 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 523 { 524 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 525 } 526 527 /** 528 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 529 * @page: The page within the block of interest 530 * @flags: The flags to set 531 * @pfn: The target page frame number 532 * @mask: mask of bits that the caller is interested in 533 */ 534 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 535 unsigned long pfn, 536 unsigned long mask) 537 { 538 unsigned long *bitmap; 539 unsigned long bitidx, word_bitidx; 540 unsigned long old_word, word; 541 542 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 543 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 544 545 bitmap = get_pageblock_bitmap(page, pfn); 546 bitidx = pfn_to_bitidx(page, pfn); 547 word_bitidx = bitidx / BITS_PER_LONG; 548 bitidx &= (BITS_PER_LONG-1); 549 550 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 551 552 mask <<= bitidx; 553 flags <<= bitidx; 554 555 word = READ_ONCE(bitmap[word_bitidx]); 556 for (;;) { 557 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 558 if (word == old_word) 559 break; 560 word = old_word; 561 } 562 } 563 564 void set_pageblock_migratetype(struct page *page, int migratetype) 565 { 566 if (unlikely(page_group_by_mobility_disabled && 567 migratetype < MIGRATE_PCPTYPES)) 568 migratetype = MIGRATE_UNMOVABLE; 569 570 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 571 page_to_pfn(page), MIGRATETYPE_MASK); 572 } 573 574 #ifdef CONFIG_DEBUG_VM 575 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 576 { 577 int ret = 0; 578 unsigned seq; 579 unsigned long pfn = page_to_pfn(page); 580 unsigned long sp, start_pfn; 581 582 do { 583 seq = zone_span_seqbegin(zone); 584 start_pfn = zone->zone_start_pfn; 585 sp = zone->spanned_pages; 586 if (!zone_spans_pfn(zone, pfn)) 587 ret = 1; 588 } while (zone_span_seqretry(zone, seq)); 589 590 if (ret) 591 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 592 pfn, zone_to_nid(zone), zone->name, 593 start_pfn, start_pfn + sp); 594 595 return ret; 596 } 597 598 static int page_is_consistent(struct zone *zone, struct page *page) 599 { 600 if (!pfn_valid_within(page_to_pfn(page))) 601 return 0; 602 if (zone != page_zone(page)) 603 return 0; 604 605 return 1; 606 } 607 /* 608 * Temporary debugging check for pages not lying within a given zone. 609 */ 610 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 611 { 612 if (page_outside_zone_boundaries(zone, page)) 613 return 1; 614 if (!page_is_consistent(zone, page)) 615 return 1; 616 617 return 0; 618 } 619 #else 620 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 621 { 622 return 0; 623 } 624 #endif 625 626 static void bad_page(struct page *page, const char *reason) 627 { 628 static unsigned long resume; 629 static unsigned long nr_shown; 630 static unsigned long nr_unshown; 631 632 /* 633 * Allow a burst of 60 reports, then keep quiet for that minute; 634 * or allow a steady drip of one report per second. 635 */ 636 if (nr_shown == 60) { 637 if (time_before(jiffies, resume)) { 638 nr_unshown++; 639 goto out; 640 } 641 if (nr_unshown) { 642 pr_alert( 643 "BUG: Bad page state: %lu messages suppressed\n", 644 nr_unshown); 645 nr_unshown = 0; 646 } 647 nr_shown = 0; 648 } 649 if (nr_shown++ == 0) 650 resume = jiffies + 60 * HZ; 651 652 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 653 current->comm, page_to_pfn(page)); 654 __dump_page(page, reason); 655 dump_page_owner(page); 656 657 print_modules(); 658 dump_stack(); 659 out: 660 /* Leave bad fields for debug, except PageBuddy could make trouble */ 661 page_mapcount_reset(page); /* remove PageBuddy */ 662 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 663 } 664 665 /* 666 * Higher-order pages are called "compound pages". They are structured thusly: 667 * 668 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 669 * 670 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 671 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 672 * 673 * The first tail page's ->compound_dtor holds the offset in array of compound 674 * page destructors. See compound_page_dtors. 675 * 676 * The first tail page's ->compound_order holds the order of allocation. 677 * This usage means that zero-order pages may not be compound. 678 */ 679 680 void free_compound_page(struct page *page) 681 { 682 mem_cgroup_uncharge(page); 683 __free_pages_ok(page, compound_order(page), FPI_NONE); 684 } 685 686 void prep_compound_page(struct page *page, unsigned int order) 687 { 688 int i; 689 int nr_pages = 1 << order; 690 691 __SetPageHead(page); 692 for (i = 1; i < nr_pages; i++) { 693 struct page *p = page + i; 694 set_page_count(p, 0); 695 p->mapping = TAIL_MAPPING; 696 set_compound_head(p, page); 697 } 698 699 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 700 set_compound_order(page, order); 701 atomic_set(compound_mapcount_ptr(page), -1); 702 if (hpage_pincount_available(page)) 703 atomic_set(compound_pincount_ptr(page), 0); 704 } 705 706 #ifdef CONFIG_DEBUG_PAGEALLOC 707 unsigned int _debug_guardpage_minorder; 708 709 bool _debug_pagealloc_enabled_early __read_mostly 710 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 711 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 712 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 713 EXPORT_SYMBOL(_debug_pagealloc_enabled); 714 715 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 716 717 static int __init early_debug_pagealloc(char *buf) 718 { 719 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 720 } 721 early_param("debug_pagealloc", early_debug_pagealloc); 722 723 static int __init debug_guardpage_minorder_setup(char *buf) 724 { 725 unsigned long res; 726 727 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 728 pr_err("Bad debug_guardpage_minorder value\n"); 729 return 0; 730 } 731 _debug_guardpage_minorder = res; 732 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 733 return 0; 734 } 735 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 736 737 static inline bool set_page_guard(struct zone *zone, struct page *page, 738 unsigned int order, int migratetype) 739 { 740 if (!debug_guardpage_enabled()) 741 return false; 742 743 if (order >= debug_guardpage_minorder()) 744 return false; 745 746 __SetPageGuard(page); 747 INIT_LIST_HEAD(&page->lru); 748 set_page_private(page, order); 749 /* Guard pages are not available for any usage */ 750 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 751 752 return true; 753 } 754 755 static inline void clear_page_guard(struct zone *zone, struct page *page, 756 unsigned int order, int migratetype) 757 { 758 if (!debug_guardpage_enabled()) 759 return; 760 761 __ClearPageGuard(page); 762 763 set_page_private(page, 0); 764 if (!is_migrate_isolate(migratetype)) 765 __mod_zone_freepage_state(zone, (1 << order), migratetype); 766 } 767 #else 768 static inline bool set_page_guard(struct zone *zone, struct page *page, 769 unsigned int order, int migratetype) { return false; } 770 static inline void clear_page_guard(struct zone *zone, struct page *page, 771 unsigned int order, int migratetype) {} 772 #endif 773 774 /* 775 * Enable static keys related to various memory debugging and hardening options. 776 * Some override others, and depend on early params that are evaluated in the 777 * order of appearance. So we need to first gather the full picture of what was 778 * enabled, and then make decisions. 779 */ 780 void init_mem_debugging_and_hardening(void) 781 { 782 bool page_poisoning_requested = false; 783 784 #ifdef CONFIG_PAGE_POISONING 785 /* 786 * Page poisoning is debug page alloc for some arches. If 787 * either of those options are enabled, enable poisoning. 788 */ 789 if (page_poisoning_enabled() || 790 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 791 debug_pagealloc_enabled())) { 792 static_branch_enable(&_page_poisoning_enabled); 793 page_poisoning_requested = true; 794 } 795 #endif 796 797 if (_init_on_alloc_enabled_early) { 798 if (page_poisoning_requested) 799 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 800 "will take precedence over init_on_alloc\n"); 801 else 802 static_branch_enable(&init_on_alloc); 803 } 804 if (_init_on_free_enabled_early) { 805 if (page_poisoning_requested) 806 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 807 "will take precedence over init_on_free\n"); 808 else 809 static_branch_enable(&init_on_free); 810 } 811 812 #ifdef CONFIG_DEBUG_PAGEALLOC 813 if (!debug_pagealloc_enabled()) 814 return; 815 816 static_branch_enable(&_debug_pagealloc_enabled); 817 818 if (!debug_guardpage_minorder()) 819 return; 820 821 static_branch_enable(&_debug_guardpage_enabled); 822 #endif 823 } 824 825 static inline void set_buddy_order(struct page *page, unsigned int order) 826 { 827 set_page_private(page, order); 828 __SetPageBuddy(page); 829 } 830 831 /* 832 * This function checks whether a page is free && is the buddy 833 * we can coalesce a page and its buddy if 834 * (a) the buddy is not in a hole (check before calling!) && 835 * (b) the buddy is in the buddy system && 836 * (c) a page and its buddy have the same order && 837 * (d) a page and its buddy are in the same zone. 838 * 839 * For recording whether a page is in the buddy system, we set PageBuddy. 840 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 841 * 842 * For recording page's order, we use page_private(page). 843 */ 844 static inline bool page_is_buddy(struct page *page, struct page *buddy, 845 unsigned int order) 846 { 847 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 848 return false; 849 850 if (buddy_order(buddy) != order) 851 return false; 852 853 /* 854 * zone check is done late to avoid uselessly calculating 855 * zone/node ids for pages that could never merge. 856 */ 857 if (page_zone_id(page) != page_zone_id(buddy)) 858 return false; 859 860 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 861 862 return true; 863 } 864 865 #ifdef CONFIG_COMPACTION 866 static inline struct capture_control *task_capc(struct zone *zone) 867 { 868 struct capture_control *capc = current->capture_control; 869 870 return unlikely(capc) && 871 !(current->flags & PF_KTHREAD) && 872 !capc->page && 873 capc->cc->zone == zone ? capc : NULL; 874 } 875 876 static inline bool 877 compaction_capture(struct capture_control *capc, struct page *page, 878 int order, int migratetype) 879 { 880 if (!capc || order != capc->cc->order) 881 return false; 882 883 /* Do not accidentally pollute CMA or isolated regions*/ 884 if (is_migrate_cma(migratetype) || 885 is_migrate_isolate(migratetype)) 886 return false; 887 888 /* 889 * Do not let lower order allocations pollute a movable pageblock. 890 * This might let an unmovable request use a reclaimable pageblock 891 * and vice-versa but no more than normal fallback logic which can 892 * have trouble finding a high-order free page. 893 */ 894 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 895 return false; 896 897 capc->page = page; 898 return true; 899 } 900 901 #else 902 static inline struct capture_control *task_capc(struct zone *zone) 903 { 904 return NULL; 905 } 906 907 static inline bool 908 compaction_capture(struct capture_control *capc, struct page *page, 909 int order, int migratetype) 910 { 911 return false; 912 } 913 #endif /* CONFIG_COMPACTION */ 914 915 /* Used for pages not on another list */ 916 static inline void add_to_free_list(struct page *page, struct zone *zone, 917 unsigned int order, int migratetype) 918 { 919 struct free_area *area = &zone->free_area[order]; 920 921 list_add(&page->lru, &area->free_list[migratetype]); 922 area->nr_free++; 923 } 924 925 /* Used for pages not on another list */ 926 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 927 unsigned int order, int migratetype) 928 { 929 struct free_area *area = &zone->free_area[order]; 930 931 list_add_tail(&page->lru, &area->free_list[migratetype]); 932 area->nr_free++; 933 } 934 935 /* 936 * Used for pages which are on another list. Move the pages to the tail 937 * of the list - so the moved pages won't immediately be considered for 938 * allocation again (e.g., optimization for memory onlining). 939 */ 940 static inline void move_to_free_list(struct page *page, struct zone *zone, 941 unsigned int order, int migratetype) 942 { 943 struct free_area *area = &zone->free_area[order]; 944 945 list_move_tail(&page->lru, &area->free_list[migratetype]); 946 } 947 948 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 949 unsigned int order) 950 { 951 /* clear reported state and update reported page count */ 952 if (page_reported(page)) 953 __ClearPageReported(page); 954 955 list_del(&page->lru); 956 __ClearPageBuddy(page); 957 set_page_private(page, 0); 958 zone->free_area[order].nr_free--; 959 } 960 961 /* 962 * If this is not the largest possible page, check if the buddy 963 * of the next-highest order is free. If it is, it's possible 964 * that pages are being freed that will coalesce soon. In case, 965 * that is happening, add the free page to the tail of the list 966 * so it's less likely to be used soon and more likely to be merged 967 * as a higher order page 968 */ 969 static inline bool 970 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 971 struct page *page, unsigned int order) 972 { 973 struct page *higher_page, *higher_buddy; 974 unsigned long combined_pfn; 975 976 if (order >= MAX_ORDER - 2) 977 return false; 978 979 if (!pfn_valid_within(buddy_pfn)) 980 return false; 981 982 combined_pfn = buddy_pfn & pfn; 983 higher_page = page + (combined_pfn - pfn); 984 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 985 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 986 987 return pfn_valid_within(buddy_pfn) && 988 page_is_buddy(higher_page, higher_buddy, order + 1); 989 } 990 991 /* 992 * Freeing function for a buddy system allocator. 993 * 994 * The concept of a buddy system is to maintain direct-mapped table 995 * (containing bit values) for memory blocks of various "orders". 996 * The bottom level table contains the map for the smallest allocatable 997 * units of memory (here, pages), and each level above it describes 998 * pairs of units from the levels below, hence, "buddies". 999 * At a high level, all that happens here is marking the table entry 1000 * at the bottom level available, and propagating the changes upward 1001 * as necessary, plus some accounting needed to play nicely with other 1002 * parts of the VM system. 1003 * At each level, we keep a list of pages, which are heads of continuous 1004 * free pages of length of (1 << order) and marked with PageBuddy. 1005 * Page's order is recorded in page_private(page) field. 1006 * So when we are allocating or freeing one, we can derive the state of the 1007 * other. That is, if we allocate a small block, and both were 1008 * free, the remainder of the region must be split into blocks. 1009 * If a block is freed, and its buddy is also free, then this 1010 * triggers coalescing into a block of larger size. 1011 * 1012 * -- nyc 1013 */ 1014 1015 static inline void __free_one_page(struct page *page, 1016 unsigned long pfn, 1017 struct zone *zone, unsigned int order, 1018 int migratetype, fpi_t fpi_flags) 1019 { 1020 struct capture_control *capc = task_capc(zone); 1021 unsigned long buddy_pfn; 1022 unsigned long combined_pfn; 1023 unsigned int max_order; 1024 struct page *buddy; 1025 bool to_tail; 1026 1027 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order); 1028 1029 VM_BUG_ON(!zone_is_initialized(zone)); 1030 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1031 1032 VM_BUG_ON(migratetype == -1); 1033 if (likely(!is_migrate_isolate(migratetype))) 1034 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1035 1036 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1037 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1038 1039 continue_merging: 1040 while (order < max_order) { 1041 if (compaction_capture(capc, page, order, migratetype)) { 1042 __mod_zone_freepage_state(zone, -(1 << order), 1043 migratetype); 1044 return; 1045 } 1046 buddy_pfn = __find_buddy_pfn(pfn, order); 1047 buddy = page + (buddy_pfn - pfn); 1048 1049 if (!pfn_valid_within(buddy_pfn)) 1050 goto done_merging; 1051 if (!page_is_buddy(page, buddy, order)) 1052 goto done_merging; 1053 /* 1054 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1055 * merge with it and move up one order. 1056 */ 1057 if (page_is_guard(buddy)) 1058 clear_page_guard(zone, buddy, order, migratetype); 1059 else 1060 del_page_from_free_list(buddy, zone, order); 1061 combined_pfn = buddy_pfn & pfn; 1062 page = page + (combined_pfn - pfn); 1063 pfn = combined_pfn; 1064 order++; 1065 } 1066 if (order < MAX_ORDER - 1) { 1067 /* If we are here, it means order is >= pageblock_order. 1068 * We want to prevent merge between freepages on isolate 1069 * pageblock and normal pageblock. Without this, pageblock 1070 * isolation could cause incorrect freepage or CMA accounting. 1071 * 1072 * We don't want to hit this code for the more frequent 1073 * low-order merging. 1074 */ 1075 if (unlikely(has_isolate_pageblock(zone))) { 1076 int buddy_mt; 1077 1078 buddy_pfn = __find_buddy_pfn(pfn, order); 1079 buddy = page + (buddy_pfn - pfn); 1080 buddy_mt = get_pageblock_migratetype(buddy); 1081 1082 if (migratetype != buddy_mt 1083 && (is_migrate_isolate(migratetype) || 1084 is_migrate_isolate(buddy_mt))) 1085 goto done_merging; 1086 } 1087 max_order = order + 1; 1088 goto continue_merging; 1089 } 1090 1091 done_merging: 1092 set_buddy_order(page, order); 1093 1094 if (fpi_flags & FPI_TO_TAIL) 1095 to_tail = true; 1096 else if (is_shuffle_order(order)) 1097 to_tail = shuffle_pick_tail(); 1098 else 1099 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1100 1101 if (to_tail) 1102 add_to_free_list_tail(page, zone, order, migratetype); 1103 else 1104 add_to_free_list(page, zone, order, migratetype); 1105 1106 /* Notify page reporting subsystem of freed page */ 1107 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1108 page_reporting_notify_free(order); 1109 } 1110 1111 /* 1112 * A bad page could be due to a number of fields. Instead of multiple branches, 1113 * try and check multiple fields with one check. The caller must do a detailed 1114 * check if necessary. 1115 */ 1116 static inline bool page_expected_state(struct page *page, 1117 unsigned long check_flags) 1118 { 1119 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1120 return false; 1121 1122 if (unlikely((unsigned long)page->mapping | 1123 page_ref_count(page) | 1124 #ifdef CONFIG_MEMCG 1125 page->memcg_data | 1126 #endif 1127 (page->flags & check_flags))) 1128 return false; 1129 1130 return true; 1131 } 1132 1133 static const char *page_bad_reason(struct page *page, unsigned long flags) 1134 { 1135 const char *bad_reason = NULL; 1136 1137 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1138 bad_reason = "nonzero mapcount"; 1139 if (unlikely(page->mapping != NULL)) 1140 bad_reason = "non-NULL mapping"; 1141 if (unlikely(page_ref_count(page) != 0)) 1142 bad_reason = "nonzero _refcount"; 1143 if (unlikely(page->flags & flags)) { 1144 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1145 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1146 else 1147 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1148 } 1149 #ifdef CONFIG_MEMCG 1150 if (unlikely(page->memcg_data)) 1151 bad_reason = "page still charged to cgroup"; 1152 #endif 1153 return bad_reason; 1154 } 1155 1156 static void check_free_page_bad(struct page *page) 1157 { 1158 bad_page(page, 1159 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1160 } 1161 1162 static inline int check_free_page(struct page *page) 1163 { 1164 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1165 return 0; 1166 1167 /* Something has gone sideways, find it */ 1168 check_free_page_bad(page); 1169 return 1; 1170 } 1171 1172 static int free_tail_pages_check(struct page *head_page, struct page *page) 1173 { 1174 int ret = 1; 1175 1176 /* 1177 * We rely page->lru.next never has bit 0 set, unless the page 1178 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1179 */ 1180 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1181 1182 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1183 ret = 0; 1184 goto out; 1185 } 1186 switch (page - head_page) { 1187 case 1: 1188 /* the first tail page: ->mapping may be compound_mapcount() */ 1189 if (unlikely(compound_mapcount(page))) { 1190 bad_page(page, "nonzero compound_mapcount"); 1191 goto out; 1192 } 1193 break; 1194 case 2: 1195 /* 1196 * the second tail page: ->mapping is 1197 * deferred_list.next -- ignore value. 1198 */ 1199 break; 1200 default: 1201 if (page->mapping != TAIL_MAPPING) { 1202 bad_page(page, "corrupted mapping in tail page"); 1203 goto out; 1204 } 1205 break; 1206 } 1207 if (unlikely(!PageTail(page))) { 1208 bad_page(page, "PageTail not set"); 1209 goto out; 1210 } 1211 if (unlikely(compound_head(page) != head_page)) { 1212 bad_page(page, "compound_head not consistent"); 1213 goto out; 1214 } 1215 ret = 0; 1216 out: 1217 page->mapping = NULL; 1218 clear_compound_head(page); 1219 return ret; 1220 } 1221 1222 static void kernel_init_free_pages(struct page *page, int numpages) 1223 { 1224 int i; 1225 1226 /* s390's use of memset() could override KASAN redzones. */ 1227 kasan_disable_current(); 1228 for (i = 0; i < numpages; i++) { 1229 u8 tag = page_kasan_tag(page + i); 1230 page_kasan_tag_reset(page + i); 1231 clear_highpage(page + i); 1232 page_kasan_tag_set(page + i, tag); 1233 } 1234 kasan_enable_current(); 1235 } 1236 1237 static __always_inline bool free_pages_prepare(struct page *page, 1238 unsigned int order, bool check_free, fpi_t fpi_flags) 1239 { 1240 int bad = 0; 1241 bool skip_kasan_poison = should_skip_kasan_poison(fpi_flags); 1242 1243 VM_BUG_ON_PAGE(PageTail(page), page); 1244 1245 trace_mm_page_free(page, order); 1246 1247 if (unlikely(PageHWPoison(page)) && !order) { 1248 /* 1249 * Do not let hwpoison pages hit pcplists/buddy 1250 * Untie memcg state and reset page's owner 1251 */ 1252 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1253 __memcg_kmem_uncharge_page(page, order); 1254 reset_page_owner(page, order); 1255 return false; 1256 } 1257 1258 /* 1259 * Check tail pages before head page information is cleared to 1260 * avoid checking PageCompound for order-0 pages. 1261 */ 1262 if (unlikely(order)) { 1263 bool compound = PageCompound(page); 1264 int i; 1265 1266 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1267 1268 if (compound) 1269 ClearPageDoubleMap(page); 1270 for (i = 1; i < (1 << order); i++) { 1271 if (compound) 1272 bad += free_tail_pages_check(page, page + i); 1273 if (unlikely(check_free_page(page + i))) { 1274 bad++; 1275 continue; 1276 } 1277 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1278 } 1279 } 1280 if (PageMappingFlags(page)) 1281 page->mapping = NULL; 1282 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1283 __memcg_kmem_uncharge_page(page, order); 1284 if (check_free) 1285 bad += check_free_page(page); 1286 if (bad) 1287 return false; 1288 1289 page_cpupid_reset_last(page); 1290 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1291 reset_page_owner(page, order); 1292 1293 if (!PageHighMem(page)) { 1294 debug_check_no_locks_freed(page_address(page), 1295 PAGE_SIZE << order); 1296 debug_check_no_obj_freed(page_address(page), 1297 PAGE_SIZE << order); 1298 } 1299 1300 kernel_poison_pages(page, 1 << order); 1301 1302 /* 1303 * As memory initialization might be integrated into KASAN, 1304 * kasan_free_pages and kernel_init_free_pages must be 1305 * kept together to avoid discrepancies in behavior. 1306 * 1307 * With hardware tag-based KASAN, memory tags must be set before the 1308 * page becomes unavailable via debug_pagealloc or arch_free_page. 1309 */ 1310 if (kasan_has_integrated_init()) { 1311 if (!skip_kasan_poison) 1312 kasan_free_pages(page, order); 1313 } else { 1314 bool init = want_init_on_free(); 1315 1316 if (init) 1317 kernel_init_free_pages(page, 1 << order); 1318 if (!skip_kasan_poison) 1319 kasan_poison_pages(page, order, init); 1320 } 1321 1322 /* 1323 * arch_free_page() can make the page's contents inaccessible. s390 1324 * does this. So nothing which can access the page's contents should 1325 * happen after this. 1326 */ 1327 arch_free_page(page, order); 1328 1329 debug_pagealloc_unmap_pages(page, 1 << order); 1330 1331 return true; 1332 } 1333 1334 #ifdef CONFIG_DEBUG_VM 1335 /* 1336 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1337 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1338 * moved from pcp lists to free lists. 1339 */ 1340 static bool free_pcp_prepare(struct page *page) 1341 { 1342 return free_pages_prepare(page, 0, true, FPI_NONE); 1343 } 1344 1345 static bool bulkfree_pcp_prepare(struct page *page) 1346 { 1347 if (debug_pagealloc_enabled_static()) 1348 return check_free_page(page); 1349 else 1350 return false; 1351 } 1352 #else 1353 /* 1354 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1355 * moving from pcp lists to free list in order to reduce overhead. With 1356 * debug_pagealloc enabled, they are checked also immediately when being freed 1357 * to the pcp lists. 1358 */ 1359 static bool free_pcp_prepare(struct page *page) 1360 { 1361 if (debug_pagealloc_enabled_static()) 1362 return free_pages_prepare(page, 0, true, FPI_NONE); 1363 else 1364 return free_pages_prepare(page, 0, false, FPI_NONE); 1365 } 1366 1367 static bool bulkfree_pcp_prepare(struct page *page) 1368 { 1369 return check_free_page(page); 1370 } 1371 #endif /* CONFIG_DEBUG_VM */ 1372 1373 static inline void prefetch_buddy(struct page *page) 1374 { 1375 unsigned long pfn = page_to_pfn(page); 1376 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1377 struct page *buddy = page + (buddy_pfn - pfn); 1378 1379 prefetch(buddy); 1380 } 1381 1382 /* 1383 * Frees a number of pages from the PCP lists 1384 * Assumes all pages on list are in same zone, and of same order. 1385 * count is the number of pages to free. 1386 * 1387 * If the zone was previously in an "all pages pinned" state then look to 1388 * see if this freeing clears that state. 1389 * 1390 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1391 * pinned" detection logic. 1392 */ 1393 static void free_pcppages_bulk(struct zone *zone, int count, 1394 struct per_cpu_pages *pcp) 1395 { 1396 int migratetype = 0; 1397 int batch_free = 0; 1398 int prefetch_nr = READ_ONCE(pcp->batch); 1399 bool isolated_pageblocks; 1400 struct page *page, *tmp; 1401 LIST_HEAD(head); 1402 1403 /* 1404 * Ensure proper count is passed which otherwise would stuck in the 1405 * below while (list_empty(list)) loop. 1406 */ 1407 count = min(pcp->count, count); 1408 while (count) { 1409 struct list_head *list; 1410 1411 /* 1412 * Remove pages from lists in a round-robin fashion. A 1413 * batch_free count is maintained that is incremented when an 1414 * empty list is encountered. This is so more pages are freed 1415 * off fuller lists instead of spinning excessively around empty 1416 * lists 1417 */ 1418 do { 1419 batch_free++; 1420 if (++migratetype == MIGRATE_PCPTYPES) 1421 migratetype = 0; 1422 list = &pcp->lists[migratetype]; 1423 } while (list_empty(list)); 1424 1425 /* This is the only non-empty list. Free them all. */ 1426 if (batch_free == MIGRATE_PCPTYPES) 1427 batch_free = count; 1428 1429 do { 1430 page = list_last_entry(list, struct page, lru); 1431 /* must delete to avoid corrupting pcp list */ 1432 list_del(&page->lru); 1433 pcp->count--; 1434 1435 if (bulkfree_pcp_prepare(page)) 1436 continue; 1437 1438 list_add_tail(&page->lru, &head); 1439 1440 /* 1441 * We are going to put the page back to the global 1442 * pool, prefetch its buddy to speed up later access 1443 * under zone->lock. It is believed the overhead of 1444 * an additional test and calculating buddy_pfn here 1445 * can be offset by reduced memory latency later. To 1446 * avoid excessive prefetching due to large count, only 1447 * prefetch buddy for the first pcp->batch nr of pages. 1448 */ 1449 if (prefetch_nr) { 1450 prefetch_buddy(page); 1451 prefetch_nr--; 1452 } 1453 } while (--count && --batch_free && !list_empty(list)); 1454 } 1455 1456 spin_lock(&zone->lock); 1457 isolated_pageblocks = has_isolate_pageblock(zone); 1458 1459 /* 1460 * Use safe version since after __free_one_page(), 1461 * page->lru.next will not point to original list. 1462 */ 1463 list_for_each_entry_safe(page, tmp, &head, lru) { 1464 int mt = get_pcppage_migratetype(page); 1465 /* MIGRATE_ISOLATE page should not go to pcplists */ 1466 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1467 /* Pageblock could have been isolated meanwhile */ 1468 if (unlikely(isolated_pageblocks)) 1469 mt = get_pageblock_migratetype(page); 1470 1471 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE); 1472 trace_mm_page_pcpu_drain(page, 0, mt); 1473 } 1474 spin_unlock(&zone->lock); 1475 } 1476 1477 static void free_one_page(struct zone *zone, 1478 struct page *page, unsigned long pfn, 1479 unsigned int order, 1480 int migratetype, fpi_t fpi_flags) 1481 { 1482 spin_lock(&zone->lock); 1483 if (unlikely(has_isolate_pageblock(zone) || 1484 is_migrate_isolate(migratetype))) { 1485 migratetype = get_pfnblock_migratetype(page, pfn); 1486 } 1487 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1488 spin_unlock(&zone->lock); 1489 } 1490 1491 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1492 unsigned long zone, int nid) 1493 { 1494 mm_zero_struct_page(page); 1495 set_page_links(page, zone, nid, pfn); 1496 init_page_count(page); 1497 page_mapcount_reset(page); 1498 page_cpupid_reset_last(page); 1499 page_kasan_tag_reset(page); 1500 1501 INIT_LIST_HEAD(&page->lru); 1502 #ifdef WANT_PAGE_VIRTUAL 1503 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1504 if (!is_highmem_idx(zone)) 1505 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1506 #endif 1507 } 1508 1509 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1510 static void __meminit init_reserved_page(unsigned long pfn) 1511 { 1512 pg_data_t *pgdat; 1513 int nid, zid; 1514 1515 if (!early_page_uninitialised(pfn)) 1516 return; 1517 1518 nid = early_pfn_to_nid(pfn); 1519 pgdat = NODE_DATA(nid); 1520 1521 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1522 struct zone *zone = &pgdat->node_zones[zid]; 1523 1524 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1525 break; 1526 } 1527 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1528 } 1529 #else 1530 static inline void init_reserved_page(unsigned long pfn) 1531 { 1532 } 1533 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1534 1535 /* 1536 * Initialised pages do not have PageReserved set. This function is 1537 * called for each range allocated by the bootmem allocator and 1538 * marks the pages PageReserved. The remaining valid pages are later 1539 * sent to the buddy page allocator. 1540 */ 1541 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1542 { 1543 unsigned long start_pfn = PFN_DOWN(start); 1544 unsigned long end_pfn = PFN_UP(end); 1545 1546 for (; start_pfn < end_pfn; start_pfn++) { 1547 if (pfn_valid(start_pfn)) { 1548 struct page *page = pfn_to_page(start_pfn); 1549 1550 init_reserved_page(start_pfn); 1551 1552 /* Avoid false-positive PageTail() */ 1553 INIT_LIST_HEAD(&page->lru); 1554 1555 /* 1556 * no need for atomic set_bit because the struct 1557 * page is not visible yet so nobody should 1558 * access it yet. 1559 */ 1560 __SetPageReserved(page); 1561 } 1562 } 1563 } 1564 1565 static void __free_pages_ok(struct page *page, unsigned int order, 1566 fpi_t fpi_flags) 1567 { 1568 unsigned long flags; 1569 int migratetype; 1570 unsigned long pfn = page_to_pfn(page); 1571 1572 if (!free_pages_prepare(page, order, true, fpi_flags)) 1573 return; 1574 1575 migratetype = get_pfnblock_migratetype(page, pfn); 1576 local_irq_save(flags); 1577 __count_vm_events(PGFREE, 1 << order); 1578 free_one_page(page_zone(page), page, pfn, order, migratetype, 1579 fpi_flags); 1580 local_irq_restore(flags); 1581 } 1582 1583 void __free_pages_core(struct page *page, unsigned int order) 1584 { 1585 unsigned int nr_pages = 1 << order; 1586 struct page *p = page; 1587 unsigned int loop; 1588 1589 /* 1590 * When initializing the memmap, __init_single_page() sets the refcount 1591 * of all pages to 1 ("allocated"/"not free"). We have to set the 1592 * refcount of all involved pages to 0. 1593 */ 1594 prefetchw(p); 1595 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1596 prefetchw(p + 1); 1597 __ClearPageReserved(p); 1598 set_page_count(p, 0); 1599 } 1600 __ClearPageReserved(p); 1601 set_page_count(p, 0); 1602 1603 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1604 1605 /* 1606 * Bypass PCP and place fresh pages right to the tail, primarily 1607 * relevant for memory onlining. 1608 */ 1609 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1610 } 1611 1612 #ifdef CONFIG_NEED_MULTIPLE_NODES 1613 1614 /* 1615 * During memory init memblocks map pfns to nids. The search is expensive and 1616 * this caches recent lookups. The implementation of __early_pfn_to_nid 1617 * treats start/end as pfns. 1618 */ 1619 struct mminit_pfnnid_cache { 1620 unsigned long last_start; 1621 unsigned long last_end; 1622 int last_nid; 1623 }; 1624 1625 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1626 1627 /* 1628 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1629 */ 1630 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1631 struct mminit_pfnnid_cache *state) 1632 { 1633 unsigned long start_pfn, end_pfn; 1634 int nid; 1635 1636 if (state->last_start <= pfn && pfn < state->last_end) 1637 return state->last_nid; 1638 1639 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1640 if (nid != NUMA_NO_NODE) { 1641 state->last_start = start_pfn; 1642 state->last_end = end_pfn; 1643 state->last_nid = nid; 1644 } 1645 1646 return nid; 1647 } 1648 1649 int __meminit early_pfn_to_nid(unsigned long pfn) 1650 { 1651 static DEFINE_SPINLOCK(early_pfn_lock); 1652 int nid; 1653 1654 spin_lock(&early_pfn_lock); 1655 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1656 if (nid < 0) 1657 nid = first_online_node; 1658 spin_unlock(&early_pfn_lock); 1659 1660 return nid; 1661 } 1662 #endif /* CONFIG_NEED_MULTIPLE_NODES */ 1663 1664 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1665 unsigned int order) 1666 { 1667 if (early_page_uninitialised(pfn)) 1668 return; 1669 __free_pages_core(page, order); 1670 } 1671 1672 /* 1673 * Check that the whole (or subset of) a pageblock given by the interval of 1674 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1675 * with the migration of free compaction scanner. The scanners then need to 1676 * use only pfn_valid_within() check for arches that allow holes within 1677 * pageblocks. 1678 * 1679 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1680 * 1681 * It's possible on some configurations to have a setup like node0 node1 node0 1682 * i.e. it's possible that all pages within a zones range of pages do not 1683 * belong to a single zone. We assume that a border between node0 and node1 1684 * can occur within a single pageblock, but not a node0 node1 node0 1685 * interleaving within a single pageblock. It is therefore sufficient to check 1686 * the first and last page of a pageblock and avoid checking each individual 1687 * page in a pageblock. 1688 */ 1689 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1690 unsigned long end_pfn, struct zone *zone) 1691 { 1692 struct page *start_page; 1693 struct page *end_page; 1694 1695 /* end_pfn is one past the range we are checking */ 1696 end_pfn--; 1697 1698 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1699 return NULL; 1700 1701 start_page = pfn_to_online_page(start_pfn); 1702 if (!start_page) 1703 return NULL; 1704 1705 if (page_zone(start_page) != zone) 1706 return NULL; 1707 1708 end_page = pfn_to_page(end_pfn); 1709 1710 /* This gives a shorter code than deriving page_zone(end_page) */ 1711 if (page_zone_id(start_page) != page_zone_id(end_page)) 1712 return NULL; 1713 1714 return start_page; 1715 } 1716 1717 void set_zone_contiguous(struct zone *zone) 1718 { 1719 unsigned long block_start_pfn = zone->zone_start_pfn; 1720 unsigned long block_end_pfn; 1721 1722 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1723 for (; block_start_pfn < zone_end_pfn(zone); 1724 block_start_pfn = block_end_pfn, 1725 block_end_pfn += pageblock_nr_pages) { 1726 1727 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1728 1729 if (!__pageblock_pfn_to_page(block_start_pfn, 1730 block_end_pfn, zone)) 1731 return; 1732 cond_resched(); 1733 } 1734 1735 /* We confirm that there is no hole */ 1736 zone->contiguous = true; 1737 } 1738 1739 void clear_zone_contiguous(struct zone *zone) 1740 { 1741 zone->contiguous = false; 1742 } 1743 1744 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1745 static void __init deferred_free_range(unsigned long pfn, 1746 unsigned long nr_pages) 1747 { 1748 struct page *page; 1749 unsigned long i; 1750 1751 if (!nr_pages) 1752 return; 1753 1754 page = pfn_to_page(pfn); 1755 1756 /* Free a large naturally-aligned chunk if possible */ 1757 if (nr_pages == pageblock_nr_pages && 1758 (pfn & (pageblock_nr_pages - 1)) == 0) { 1759 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1760 __free_pages_core(page, pageblock_order); 1761 return; 1762 } 1763 1764 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1765 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1766 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1767 __free_pages_core(page, 0); 1768 } 1769 } 1770 1771 /* Completion tracking for deferred_init_memmap() threads */ 1772 static atomic_t pgdat_init_n_undone __initdata; 1773 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1774 1775 static inline void __init pgdat_init_report_one_done(void) 1776 { 1777 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1778 complete(&pgdat_init_all_done_comp); 1779 } 1780 1781 /* 1782 * Returns true if page needs to be initialized or freed to buddy allocator. 1783 * 1784 * First we check if pfn is valid on architectures where it is possible to have 1785 * holes within pageblock_nr_pages. On systems where it is not possible, this 1786 * function is optimized out. 1787 * 1788 * Then, we check if a current large page is valid by only checking the validity 1789 * of the head pfn. 1790 */ 1791 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1792 { 1793 if (!pfn_valid_within(pfn)) 1794 return false; 1795 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1796 return false; 1797 return true; 1798 } 1799 1800 /* 1801 * Free pages to buddy allocator. Try to free aligned pages in 1802 * pageblock_nr_pages sizes. 1803 */ 1804 static void __init deferred_free_pages(unsigned long pfn, 1805 unsigned long end_pfn) 1806 { 1807 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1808 unsigned long nr_free = 0; 1809 1810 for (; pfn < end_pfn; pfn++) { 1811 if (!deferred_pfn_valid(pfn)) { 1812 deferred_free_range(pfn - nr_free, nr_free); 1813 nr_free = 0; 1814 } else if (!(pfn & nr_pgmask)) { 1815 deferred_free_range(pfn - nr_free, nr_free); 1816 nr_free = 1; 1817 } else { 1818 nr_free++; 1819 } 1820 } 1821 /* Free the last block of pages to allocator */ 1822 deferred_free_range(pfn - nr_free, nr_free); 1823 } 1824 1825 /* 1826 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1827 * by performing it only once every pageblock_nr_pages. 1828 * Return number of pages initialized. 1829 */ 1830 static unsigned long __init deferred_init_pages(struct zone *zone, 1831 unsigned long pfn, 1832 unsigned long end_pfn) 1833 { 1834 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1835 int nid = zone_to_nid(zone); 1836 unsigned long nr_pages = 0; 1837 int zid = zone_idx(zone); 1838 struct page *page = NULL; 1839 1840 for (; pfn < end_pfn; pfn++) { 1841 if (!deferred_pfn_valid(pfn)) { 1842 page = NULL; 1843 continue; 1844 } else if (!page || !(pfn & nr_pgmask)) { 1845 page = pfn_to_page(pfn); 1846 } else { 1847 page++; 1848 } 1849 __init_single_page(page, pfn, zid, nid); 1850 nr_pages++; 1851 } 1852 return (nr_pages); 1853 } 1854 1855 /* 1856 * This function is meant to pre-load the iterator for the zone init. 1857 * Specifically it walks through the ranges until we are caught up to the 1858 * first_init_pfn value and exits there. If we never encounter the value we 1859 * return false indicating there are no valid ranges left. 1860 */ 1861 static bool __init 1862 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1863 unsigned long *spfn, unsigned long *epfn, 1864 unsigned long first_init_pfn) 1865 { 1866 u64 j; 1867 1868 /* 1869 * Start out by walking through the ranges in this zone that have 1870 * already been initialized. We don't need to do anything with them 1871 * so we just need to flush them out of the system. 1872 */ 1873 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1874 if (*epfn <= first_init_pfn) 1875 continue; 1876 if (*spfn < first_init_pfn) 1877 *spfn = first_init_pfn; 1878 *i = j; 1879 return true; 1880 } 1881 1882 return false; 1883 } 1884 1885 /* 1886 * Initialize and free pages. We do it in two loops: first we initialize 1887 * struct page, then free to buddy allocator, because while we are 1888 * freeing pages we can access pages that are ahead (computing buddy 1889 * page in __free_one_page()). 1890 * 1891 * In order to try and keep some memory in the cache we have the loop 1892 * broken along max page order boundaries. This way we will not cause 1893 * any issues with the buddy page computation. 1894 */ 1895 static unsigned long __init 1896 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1897 unsigned long *end_pfn) 1898 { 1899 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1900 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1901 unsigned long nr_pages = 0; 1902 u64 j = *i; 1903 1904 /* First we loop through and initialize the page values */ 1905 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1906 unsigned long t; 1907 1908 if (mo_pfn <= *start_pfn) 1909 break; 1910 1911 t = min(mo_pfn, *end_pfn); 1912 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1913 1914 if (mo_pfn < *end_pfn) { 1915 *start_pfn = mo_pfn; 1916 break; 1917 } 1918 } 1919 1920 /* Reset values and now loop through freeing pages as needed */ 1921 swap(j, *i); 1922 1923 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1924 unsigned long t; 1925 1926 if (mo_pfn <= spfn) 1927 break; 1928 1929 t = min(mo_pfn, epfn); 1930 deferred_free_pages(spfn, t); 1931 1932 if (mo_pfn <= epfn) 1933 break; 1934 } 1935 1936 return nr_pages; 1937 } 1938 1939 static void __init 1940 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 1941 void *arg) 1942 { 1943 unsigned long spfn, epfn; 1944 struct zone *zone = arg; 1945 u64 i; 1946 1947 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 1948 1949 /* 1950 * Initialize and free pages in MAX_ORDER sized increments so that we 1951 * can avoid introducing any issues with the buddy allocator. 1952 */ 1953 while (spfn < end_pfn) { 1954 deferred_init_maxorder(&i, zone, &spfn, &epfn); 1955 cond_resched(); 1956 } 1957 } 1958 1959 /* An arch may override for more concurrency. */ 1960 __weak int __init 1961 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 1962 { 1963 return 1; 1964 } 1965 1966 /* Initialise remaining memory on a node */ 1967 static int __init deferred_init_memmap(void *data) 1968 { 1969 pg_data_t *pgdat = data; 1970 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1971 unsigned long spfn = 0, epfn = 0; 1972 unsigned long first_init_pfn, flags; 1973 unsigned long start = jiffies; 1974 struct zone *zone; 1975 int zid, max_threads; 1976 u64 i; 1977 1978 /* Bind memory initialisation thread to a local node if possible */ 1979 if (!cpumask_empty(cpumask)) 1980 set_cpus_allowed_ptr(current, cpumask); 1981 1982 pgdat_resize_lock(pgdat, &flags); 1983 first_init_pfn = pgdat->first_deferred_pfn; 1984 if (first_init_pfn == ULONG_MAX) { 1985 pgdat_resize_unlock(pgdat, &flags); 1986 pgdat_init_report_one_done(); 1987 return 0; 1988 } 1989 1990 /* Sanity check boundaries */ 1991 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1992 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1993 pgdat->first_deferred_pfn = ULONG_MAX; 1994 1995 /* 1996 * Once we unlock here, the zone cannot be grown anymore, thus if an 1997 * interrupt thread must allocate this early in boot, zone must be 1998 * pre-grown prior to start of deferred page initialization. 1999 */ 2000 pgdat_resize_unlock(pgdat, &flags); 2001 2002 /* Only the highest zone is deferred so find it */ 2003 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2004 zone = pgdat->node_zones + zid; 2005 if (first_init_pfn < zone_end_pfn(zone)) 2006 break; 2007 } 2008 2009 /* If the zone is empty somebody else may have cleared out the zone */ 2010 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2011 first_init_pfn)) 2012 goto zone_empty; 2013 2014 max_threads = deferred_page_init_max_threads(cpumask); 2015 2016 while (spfn < epfn) { 2017 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2018 struct padata_mt_job job = { 2019 .thread_fn = deferred_init_memmap_chunk, 2020 .fn_arg = zone, 2021 .start = spfn, 2022 .size = epfn_align - spfn, 2023 .align = PAGES_PER_SECTION, 2024 .min_chunk = PAGES_PER_SECTION, 2025 .max_threads = max_threads, 2026 }; 2027 2028 padata_do_multithreaded(&job); 2029 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2030 epfn_align); 2031 } 2032 zone_empty: 2033 /* Sanity check that the next zone really is unpopulated */ 2034 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2035 2036 pr_info("node %d deferred pages initialised in %ums\n", 2037 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2038 2039 pgdat_init_report_one_done(); 2040 return 0; 2041 } 2042 2043 /* 2044 * If this zone has deferred pages, try to grow it by initializing enough 2045 * deferred pages to satisfy the allocation specified by order, rounded up to 2046 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2047 * of SECTION_SIZE bytes by initializing struct pages in increments of 2048 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2049 * 2050 * Return true when zone was grown, otherwise return false. We return true even 2051 * when we grow less than requested, to let the caller decide if there are 2052 * enough pages to satisfy the allocation. 2053 * 2054 * Note: We use noinline because this function is needed only during boot, and 2055 * it is called from a __ref function _deferred_grow_zone. This way we are 2056 * making sure that it is not inlined into permanent text section. 2057 */ 2058 static noinline bool __init 2059 deferred_grow_zone(struct zone *zone, unsigned int order) 2060 { 2061 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2062 pg_data_t *pgdat = zone->zone_pgdat; 2063 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2064 unsigned long spfn, epfn, flags; 2065 unsigned long nr_pages = 0; 2066 u64 i; 2067 2068 /* Only the last zone may have deferred pages */ 2069 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2070 return false; 2071 2072 pgdat_resize_lock(pgdat, &flags); 2073 2074 /* 2075 * If someone grew this zone while we were waiting for spinlock, return 2076 * true, as there might be enough pages already. 2077 */ 2078 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2079 pgdat_resize_unlock(pgdat, &flags); 2080 return true; 2081 } 2082 2083 /* If the zone is empty somebody else may have cleared out the zone */ 2084 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2085 first_deferred_pfn)) { 2086 pgdat->first_deferred_pfn = ULONG_MAX; 2087 pgdat_resize_unlock(pgdat, &flags); 2088 /* Retry only once. */ 2089 return first_deferred_pfn != ULONG_MAX; 2090 } 2091 2092 /* 2093 * Initialize and free pages in MAX_ORDER sized increments so 2094 * that we can avoid introducing any issues with the buddy 2095 * allocator. 2096 */ 2097 while (spfn < epfn) { 2098 /* update our first deferred PFN for this section */ 2099 first_deferred_pfn = spfn; 2100 2101 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2102 touch_nmi_watchdog(); 2103 2104 /* We should only stop along section boundaries */ 2105 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2106 continue; 2107 2108 /* If our quota has been met we can stop here */ 2109 if (nr_pages >= nr_pages_needed) 2110 break; 2111 } 2112 2113 pgdat->first_deferred_pfn = spfn; 2114 pgdat_resize_unlock(pgdat, &flags); 2115 2116 return nr_pages > 0; 2117 } 2118 2119 /* 2120 * deferred_grow_zone() is __init, but it is called from 2121 * get_page_from_freelist() during early boot until deferred_pages permanently 2122 * disables this call. This is why we have refdata wrapper to avoid warning, 2123 * and to ensure that the function body gets unloaded. 2124 */ 2125 static bool __ref 2126 _deferred_grow_zone(struct zone *zone, unsigned int order) 2127 { 2128 return deferred_grow_zone(zone, order); 2129 } 2130 2131 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2132 2133 void __init page_alloc_init_late(void) 2134 { 2135 struct zone *zone; 2136 int nid; 2137 2138 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2139 2140 /* There will be num_node_state(N_MEMORY) threads */ 2141 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2142 for_each_node_state(nid, N_MEMORY) { 2143 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2144 } 2145 2146 /* Block until all are initialised */ 2147 wait_for_completion(&pgdat_init_all_done_comp); 2148 2149 /* 2150 * The number of managed pages has changed due to the initialisation 2151 * so the pcpu batch and high limits needs to be updated or the limits 2152 * will be artificially small. 2153 */ 2154 for_each_populated_zone(zone) 2155 zone_pcp_update(zone); 2156 2157 /* 2158 * We initialized the rest of the deferred pages. Permanently disable 2159 * on-demand struct page initialization. 2160 */ 2161 static_branch_disable(&deferred_pages); 2162 2163 /* Reinit limits that are based on free pages after the kernel is up */ 2164 files_maxfiles_init(); 2165 #endif 2166 2167 buffer_init(); 2168 2169 /* Discard memblock private memory */ 2170 memblock_discard(); 2171 2172 for_each_node_state(nid, N_MEMORY) 2173 shuffle_free_memory(NODE_DATA(nid)); 2174 2175 for_each_populated_zone(zone) 2176 set_zone_contiguous(zone); 2177 } 2178 2179 #ifdef CONFIG_CMA 2180 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2181 void __init init_cma_reserved_pageblock(struct page *page) 2182 { 2183 unsigned i = pageblock_nr_pages; 2184 struct page *p = page; 2185 2186 do { 2187 __ClearPageReserved(p); 2188 set_page_count(p, 0); 2189 } while (++p, --i); 2190 2191 set_pageblock_migratetype(page, MIGRATE_CMA); 2192 2193 if (pageblock_order >= MAX_ORDER) { 2194 i = pageblock_nr_pages; 2195 p = page; 2196 do { 2197 set_page_refcounted(p); 2198 __free_pages(p, MAX_ORDER - 1); 2199 p += MAX_ORDER_NR_PAGES; 2200 } while (i -= MAX_ORDER_NR_PAGES); 2201 } else { 2202 set_page_refcounted(page); 2203 __free_pages(page, pageblock_order); 2204 } 2205 2206 adjust_managed_page_count(page, pageblock_nr_pages); 2207 page_zone(page)->cma_pages += pageblock_nr_pages; 2208 } 2209 #endif 2210 2211 /* 2212 * The order of subdivision here is critical for the IO subsystem. 2213 * Please do not alter this order without good reasons and regression 2214 * testing. Specifically, as large blocks of memory are subdivided, 2215 * the order in which smaller blocks are delivered depends on the order 2216 * they're subdivided in this function. This is the primary factor 2217 * influencing the order in which pages are delivered to the IO 2218 * subsystem according to empirical testing, and this is also justified 2219 * by considering the behavior of a buddy system containing a single 2220 * large block of memory acted on by a series of small allocations. 2221 * This behavior is a critical factor in sglist merging's success. 2222 * 2223 * -- nyc 2224 */ 2225 static inline void expand(struct zone *zone, struct page *page, 2226 int low, int high, int migratetype) 2227 { 2228 unsigned long size = 1 << high; 2229 2230 while (high > low) { 2231 high--; 2232 size >>= 1; 2233 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2234 2235 /* 2236 * Mark as guard pages (or page), that will allow to 2237 * merge back to allocator when buddy will be freed. 2238 * Corresponding page table entries will not be touched, 2239 * pages will stay not present in virtual address space 2240 */ 2241 if (set_page_guard(zone, &page[size], high, migratetype)) 2242 continue; 2243 2244 add_to_free_list(&page[size], zone, high, migratetype); 2245 set_buddy_order(&page[size], high); 2246 } 2247 } 2248 2249 static void check_new_page_bad(struct page *page) 2250 { 2251 if (unlikely(page->flags & __PG_HWPOISON)) { 2252 /* Don't complain about hwpoisoned pages */ 2253 page_mapcount_reset(page); /* remove PageBuddy */ 2254 return; 2255 } 2256 2257 bad_page(page, 2258 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2259 } 2260 2261 /* 2262 * This page is about to be returned from the page allocator 2263 */ 2264 static inline int check_new_page(struct page *page) 2265 { 2266 if (likely(page_expected_state(page, 2267 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2268 return 0; 2269 2270 check_new_page_bad(page); 2271 return 1; 2272 } 2273 2274 #ifdef CONFIG_DEBUG_VM 2275 /* 2276 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2277 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2278 * also checked when pcp lists are refilled from the free lists. 2279 */ 2280 static inline bool check_pcp_refill(struct page *page) 2281 { 2282 if (debug_pagealloc_enabled_static()) 2283 return check_new_page(page); 2284 else 2285 return false; 2286 } 2287 2288 static inline bool check_new_pcp(struct page *page) 2289 { 2290 return check_new_page(page); 2291 } 2292 #else 2293 /* 2294 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2295 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2296 * enabled, they are also checked when being allocated from the pcp lists. 2297 */ 2298 static inline bool check_pcp_refill(struct page *page) 2299 { 2300 return check_new_page(page); 2301 } 2302 static inline bool check_new_pcp(struct page *page) 2303 { 2304 if (debug_pagealloc_enabled_static()) 2305 return check_new_page(page); 2306 else 2307 return false; 2308 } 2309 #endif /* CONFIG_DEBUG_VM */ 2310 2311 static bool check_new_pages(struct page *page, unsigned int order) 2312 { 2313 int i; 2314 for (i = 0; i < (1 << order); i++) { 2315 struct page *p = page + i; 2316 2317 if (unlikely(check_new_page(p))) 2318 return true; 2319 } 2320 2321 return false; 2322 } 2323 2324 inline void post_alloc_hook(struct page *page, unsigned int order, 2325 gfp_t gfp_flags) 2326 { 2327 set_page_private(page, 0); 2328 set_page_refcounted(page); 2329 2330 arch_alloc_page(page, order); 2331 debug_pagealloc_map_pages(page, 1 << order); 2332 2333 /* 2334 * Page unpoisoning must happen before memory initialization. 2335 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2336 * allocations and the page unpoisoning code will complain. 2337 */ 2338 kernel_unpoison_pages(page, 1 << order); 2339 2340 /* 2341 * As memory initialization might be integrated into KASAN, 2342 * kasan_alloc_pages and kernel_init_free_pages must be 2343 * kept together to avoid discrepancies in behavior. 2344 */ 2345 if (kasan_has_integrated_init()) { 2346 kasan_alloc_pages(page, order, gfp_flags); 2347 } else { 2348 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags); 2349 2350 kasan_unpoison_pages(page, order, init); 2351 if (init) 2352 kernel_init_free_pages(page, 1 << order); 2353 } 2354 2355 set_page_owner(page, order, gfp_flags); 2356 } 2357 2358 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2359 unsigned int alloc_flags) 2360 { 2361 post_alloc_hook(page, order, gfp_flags); 2362 2363 if (order && (gfp_flags & __GFP_COMP)) 2364 prep_compound_page(page, order); 2365 2366 /* 2367 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2368 * allocate the page. The expectation is that the caller is taking 2369 * steps that will free more memory. The caller should avoid the page 2370 * being used for !PFMEMALLOC purposes. 2371 */ 2372 if (alloc_flags & ALLOC_NO_WATERMARKS) 2373 set_page_pfmemalloc(page); 2374 else 2375 clear_page_pfmemalloc(page); 2376 } 2377 2378 /* 2379 * Go through the free lists for the given migratetype and remove 2380 * the smallest available page from the freelists 2381 */ 2382 static __always_inline 2383 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2384 int migratetype) 2385 { 2386 unsigned int current_order; 2387 struct free_area *area; 2388 struct page *page; 2389 2390 /* Find a page of the appropriate size in the preferred list */ 2391 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2392 area = &(zone->free_area[current_order]); 2393 page = get_page_from_free_area(area, migratetype); 2394 if (!page) 2395 continue; 2396 del_page_from_free_list(page, zone, current_order); 2397 expand(zone, page, order, current_order, migratetype); 2398 set_pcppage_migratetype(page, migratetype); 2399 return page; 2400 } 2401 2402 return NULL; 2403 } 2404 2405 2406 /* 2407 * This array describes the order lists are fallen back to when 2408 * the free lists for the desirable migrate type are depleted 2409 */ 2410 static int fallbacks[MIGRATE_TYPES][3] = { 2411 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2412 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2413 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2414 #ifdef CONFIG_CMA 2415 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2416 #endif 2417 #ifdef CONFIG_MEMORY_ISOLATION 2418 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2419 #endif 2420 }; 2421 2422 #ifdef CONFIG_CMA 2423 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2424 unsigned int order) 2425 { 2426 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2427 } 2428 #else 2429 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2430 unsigned int order) { return NULL; } 2431 #endif 2432 2433 /* 2434 * Move the free pages in a range to the freelist tail of the requested type. 2435 * Note that start_page and end_pages are not aligned on a pageblock 2436 * boundary. If alignment is required, use move_freepages_block() 2437 */ 2438 static int move_freepages(struct zone *zone, 2439 unsigned long start_pfn, unsigned long end_pfn, 2440 int migratetype, int *num_movable) 2441 { 2442 struct page *page; 2443 unsigned long pfn; 2444 unsigned int order; 2445 int pages_moved = 0; 2446 2447 for (pfn = start_pfn; pfn <= end_pfn;) { 2448 if (!pfn_valid_within(pfn)) { 2449 pfn++; 2450 continue; 2451 } 2452 2453 page = pfn_to_page(pfn); 2454 if (!PageBuddy(page)) { 2455 /* 2456 * We assume that pages that could be isolated for 2457 * migration are movable. But we don't actually try 2458 * isolating, as that would be expensive. 2459 */ 2460 if (num_movable && 2461 (PageLRU(page) || __PageMovable(page))) 2462 (*num_movable)++; 2463 pfn++; 2464 continue; 2465 } 2466 2467 /* Make sure we are not inadvertently changing nodes */ 2468 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2469 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2470 2471 order = buddy_order(page); 2472 move_to_free_list(page, zone, order, migratetype); 2473 pfn += 1 << order; 2474 pages_moved += 1 << order; 2475 } 2476 2477 return pages_moved; 2478 } 2479 2480 int move_freepages_block(struct zone *zone, struct page *page, 2481 int migratetype, int *num_movable) 2482 { 2483 unsigned long start_pfn, end_pfn, pfn; 2484 2485 if (num_movable) 2486 *num_movable = 0; 2487 2488 pfn = page_to_pfn(page); 2489 start_pfn = pfn & ~(pageblock_nr_pages - 1); 2490 end_pfn = start_pfn + pageblock_nr_pages - 1; 2491 2492 /* Do not cross zone boundaries */ 2493 if (!zone_spans_pfn(zone, start_pfn)) 2494 start_pfn = pfn; 2495 if (!zone_spans_pfn(zone, end_pfn)) 2496 return 0; 2497 2498 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2499 num_movable); 2500 } 2501 2502 static void change_pageblock_range(struct page *pageblock_page, 2503 int start_order, int migratetype) 2504 { 2505 int nr_pageblocks = 1 << (start_order - pageblock_order); 2506 2507 while (nr_pageblocks--) { 2508 set_pageblock_migratetype(pageblock_page, migratetype); 2509 pageblock_page += pageblock_nr_pages; 2510 } 2511 } 2512 2513 /* 2514 * When we are falling back to another migratetype during allocation, try to 2515 * steal extra free pages from the same pageblocks to satisfy further 2516 * allocations, instead of polluting multiple pageblocks. 2517 * 2518 * If we are stealing a relatively large buddy page, it is likely there will 2519 * be more free pages in the pageblock, so try to steal them all. For 2520 * reclaimable and unmovable allocations, we steal regardless of page size, 2521 * as fragmentation caused by those allocations polluting movable pageblocks 2522 * is worse than movable allocations stealing from unmovable and reclaimable 2523 * pageblocks. 2524 */ 2525 static bool can_steal_fallback(unsigned int order, int start_mt) 2526 { 2527 /* 2528 * Leaving this order check is intended, although there is 2529 * relaxed order check in next check. The reason is that 2530 * we can actually steal whole pageblock if this condition met, 2531 * but, below check doesn't guarantee it and that is just heuristic 2532 * so could be changed anytime. 2533 */ 2534 if (order >= pageblock_order) 2535 return true; 2536 2537 if (order >= pageblock_order / 2 || 2538 start_mt == MIGRATE_RECLAIMABLE || 2539 start_mt == MIGRATE_UNMOVABLE || 2540 page_group_by_mobility_disabled) 2541 return true; 2542 2543 return false; 2544 } 2545 2546 static inline bool boost_watermark(struct zone *zone) 2547 { 2548 unsigned long max_boost; 2549 2550 if (!watermark_boost_factor) 2551 return false; 2552 /* 2553 * Don't bother in zones that are unlikely to produce results. 2554 * On small machines, including kdump capture kernels running 2555 * in a small area, boosting the watermark can cause an out of 2556 * memory situation immediately. 2557 */ 2558 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2559 return false; 2560 2561 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2562 watermark_boost_factor, 10000); 2563 2564 /* 2565 * high watermark may be uninitialised if fragmentation occurs 2566 * very early in boot so do not boost. We do not fall 2567 * through and boost by pageblock_nr_pages as failing 2568 * allocations that early means that reclaim is not going 2569 * to help and it may even be impossible to reclaim the 2570 * boosted watermark resulting in a hang. 2571 */ 2572 if (!max_boost) 2573 return false; 2574 2575 max_boost = max(pageblock_nr_pages, max_boost); 2576 2577 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2578 max_boost); 2579 2580 return true; 2581 } 2582 2583 /* 2584 * This function implements actual steal behaviour. If order is large enough, 2585 * we can steal whole pageblock. If not, we first move freepages in this 2586 * pageblock to our migratetype and determine how many already-allocated pages 2587 * are there in the pageblock with a compatible migratetype. If at least half 2588 * of pages are free or compatible, we can change migratetype of the pageblock 2589 * itself, so pages freed in the future will be put on the correct free list. 2590 */ 2591 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2592 unsigned int alloc_flags, int start_type, bool whole_block) 2593 { 2594 unsigned int current_order = buddy_order(page); 2595 int free_pages, movable_pages, alike_pages; 2596 int old_block_type; 2597 2598 old_block_type = get_pageblock_migratetype(page); 2599 2600 /* 2601 * This can happen due to races and we want to prevent broken 2602 * highatomic accounting. 2603 */ 2604 if (is_migrate_highatomic(old_block_type)) 2605 goto single_page; 2606 2607 /* Take ownership for orders >= pageblock_order */ 2608 if (current_order >= pageblock_order) { 2609 change_pageblock_range(page, current_order, start_type); 2610 goto single_page; 2611 } 2612 2613 /* 2614 * Boost watermarks to increase reclaim pressure to reduce the 2615 * likelihood of future fallbacks. Wake kswapd now as the node 2616 * may be balanced overall and kswapd will not wake naturally. 2617 */ 2618 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2619 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2620 2621 /* We are not allowed to try stealing from the whole block */ 2622 if (!whole_block) 2623 goto single_page; 2624 2625 free_pages = move_freepages_block(zone, page, start_type, 2626 &movable_pages); 2627 /* 2628 * Determine how many pages are compatible with our allocation. 2629 * For movable allocation, it's the number of movable pages which 2630 * we just obtained. For other types it's a bit more tricky. 2631 */ 2632 if (start_type == MIGRATE_MOVABLE) { 2633 alike_pages = movable_pages; 2634 } else { 2635 /* 2636 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2637 * to MOVABLE pageblock, consider all non-movable pages as 2638 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2639 * vice versa, be conservative since we can't distinguish the 2640 * exact migratetype of non-movable pages. 2641 */ 2642 if (old_block_type == MIGRATE_MOVABLE) 2643 alike_pages = pageblock_nr_pages 2644 - (free_pages + movable_pages); 2645 else 2646 alike_pages = 0; 2647 } 2648 2649 /* moving whole block can fail due to zone boundary conditions */ 2650 if (!free_pages) 2651 goto single_page; 2652 2653 /* 2654 * If a sufficient number of pages in the block are either free or of 2655 * comparable migratability as our allocation, claim the whole block. 2656 */ 2657 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2658 page_group_by_mobility_disabled) 2659 set_pageblock_migratetype(page, start_type); 2660 2661 return; 2662 2663 single_page: 2664 move_to_free_list(page, zone, current_order, start_type); 2665 } 2666 2667 /* 2668 * Check whether there is a suitable fallback freepage with requested order. 2669 * If only_stealable is true, this function returns fallback_mt only if 2670 * we can steal other freepages all together. This would help to reduce 2671 * fragmentation due to mixed migratetype pages in one pageblock. 2672 */ 2673 int find_suitable_fallback(struct free_area *area, unsigned int order, 2674 int migratetype, bool only_stealable, bool *can_steal) 2675 { 2676 int i; 2677 int fallback_mt; 2678 2679 if (area->nr_free == 0) 2680 return -1; 2681 2682 *can_steal = false; 2683 for (i = 0;; i++) { 2684 fallback_mt = fallbacks[migratetype][i]; 2685 if (fallback_mt == MIGRATE_TYPES) 2686 break; 2687 2688 if (free_area_empty(area, fallback_mt)) 2689 continue; 2690 2691 if (can_steal_fallback(order, migratetype)) 2692 *can_steal = true; 2693 2694 if (!only_stealable) 2695 return fallback_mt; 2696 2697 if (*can_steal) 2698 return fallback_mt; 2699 } 2700 2701 return -1; 2702 } 2703 2704 /* 2705 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2706 * there are no empty page blocks that contain a page with a suitable order 2707 */ 2708 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2709 unsigned int alloc_order) 2710 { 2711 int mt; 2712 unsigned long max_managed, flags; 2713 2714 /* 2715 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2716 * Check is race-prone but harmless. 2717 */ 2718 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2719 if (zone->nr_reserved_highatomic >= max_managed) 2720 return; 2721 2722 spin_lock_irqsave(&zone->lock, flags); 2723 2724 /* Recheck the nr_reserved_highatomic limit under the lock */ 2725 if (zone->nr_reserved_highatomic >= max_managed) 2726 goto out_unlock; 2727 2728 /* Yoink! */ 2729 mt = get_pageblock_migratetype(page); 2730 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2731 && !is_migrate_cma(mt)) { 2732 zone->nr_reserved_highatomic += pageblock_nr_pages; 2733 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2734 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2735 } 2736 2737 out_unlock: 2738 spin_unlock_irqrestore(&zone->lock, flags); 2739 } 2740 2741 /* 2742 * Used when an allocation is about to fail under memory pressure. This 2743 * potentially hurts the reliability of high-order allocations when under 2744 * intense memory pressure but failed atomic allocations should be easier 2745 * to recover from than an OOM. 2746 * 2747 * If @force is true, try to unreserve a pageblock even though highatomic 2748 * pageblock is exhausted. 2749 */ 2750 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2751 bool force) 2752 { 2753 struct zonelist *zonelist = ac->zonelist; 2754 unsigned long flags; 2755 struct zoneref *z; 2756 struct zone *zone; 2757 struct page *page; 2758 int order; 2759 bool ret; 2760 2761 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2762 ac->nodemask) { 2763 /* 2764 * Preserve at least one pageblock unless memory pressure 2765 * is really high. 2766 */ 2767 if (!force && zone->nr_reserved_highatomic <= 2768 pageblock_nr_pages) 2769 continue; 2770 2771 spin_lock_irqsave(&zone->lock, flags); 2772 for (order = 0; order < MAX_ORDER; order++) { 2773 struct free_area *area = &(zone->free_area[order]); 2774 2775 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2776 if (!page) 2777 continue; 2778 2779 /* 2780 * In page freeing path, migratetype change is racy so 2781 * we can counter several free pages in a pageblock 2782 * in this loop although we changed the pageblock type 2783 * from highatomic to ac->migratetype. So we should 2784 * adjust the count once. 2785 */ 2786 if (is_migrate_highatomic_page(page)) { 2787 /* 2788 * It should never happen but changes to 2789 * locking could inadvertently allow a per-cpu 2790 * drain to add pages to MIGRATE_HIGHATOMIC 2791 * while unreserving so be safe and watch for 2792 * underflows. 2793 */ 2794 zone->nr_reserved_highatomic -= min( 2795 pageblock_nr_pages, 2796 zone->nr_reserved_highatomic); 2797 } 2798 2799 /* 2800 * Convert to ac->migratetype and avoid the normal 2801 * pageblock stealing heuristics. Minimally, the caller 2802 * is doing the work and needs the pages. More 2803 * importantly, if the block was always converted to 2804 * MIGRATE_UNMOVABLE or another type then the number 2805 * of pageblocks that cannot be completely freed 2806 * may increase. 2807 */ 2808 set_pageblock_migratetype(page, ac->migratetype); 2809 ret = move_freepages_block(zone, page, ac->migratetype, 2810 NULL); 2811 if (ret) { 2812 spin_unlock_irqrestore(&zone->lock, flags); 2813 return ret; 2814 } 2815 } 2816 spin_unlock_irqrestore(&zone->lock, flags); 2817 } 2818 2819 return false; 2820 } 2821 2822 /* 2823 * Try finding a free buddy page on the fallback list and put it on the free 2824 * list of requested migratetype, possibly along with other pages from the same 2825 * block, depending on fragmentation avoidance heuristics. Returns true if 2826 * fallback was found so that __rmqueue_smallest() can grab it. 2827 * 2828 * The use of signed ints for order and current_order is a deliberate 2829 * deviation from the rest of this file, to make the for loop 2830 * condition simpler. 2831 */ 2832 static __always_inline bool 2833 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2834 unsigned int alloc_flags) 2835 { 2836 struct free_area *area; 2837 int current_order; 2838 int min_order = order; 2839 struct page *page; 2840 int fallback_mt; 2841 bool can_steal; 2842 2843 /* 2844 * Do not steal pages from freelists belonging to other pageblocks 2845 * i.e. orders < pageblock_order. If there are no local zones free, 2846 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2847 */ 2848 if (alloc_flags & ALLOC_NOFRAGMENT) 2849 min_order = pageblock_order; 2850 2851 /* 2852 * Find the largest available free page in the other list. This roughly 2853 * approximates finding the pageblock with the most free pages, which 2854 * would be too costly to do exactly. 2855 */ 2856 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2857 --current_order) { 2858 area = &(zone->free_area[current_order]); 2859 fallback_mt = find_suitable_fallback(area, current_order, 2860 start_migratetype, false, &can_steal); 2861 if (fallback_mt == -1) 2862 continue; 2863 2864 /* 2865 * We cannot steal all free pages from the pageblock and the 2866 * requested migratetype is movable. In that case it's better to 2867 * steal and split the smallest available page instead of the 2868 * largest available page, because even if the next movable 2869 * allocation falls back into a different pageblock than this 2870 * one, it won't cause permanent fragmentation. 2871 */ 2872 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2873 && current_order > order) 2874 goto find_smallest; 2875 2876 goto do_steal; 2877 } 2878 2879 return false; 2880 2881 find_smallest: 2882 for (current_order = order; current_order < MAX_ORDER; 2883 current_order++) { 2884 area = &(zone->free_area[current_order]); 2885 fallback_mt = find_suitable_fallback(area, current_order, 2886 start_migratetype, false, &can_steal); 2887 if (fallback_mt != -1) 2888 break; 2889 } 2890 2891 /* 2892 * This should not happen - we already found a suitable fallback 2893 * when looking for the largest page. 2894 */ 2895 VM_BUG_ON(current_order == MAX_ORDER); 2896 2897 do_steal: 2898 page = get_page_from_free_area(area, fallback_mt); 2899 2900 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2901 can_steal); 2902 2903 trace_mm_page_alloc_extfrag(page, order, current_order, 2904 start_migratetype, fallback_mt); 2905 2906 return true; 2907 2908 } 2909 2910 /* 2911 * Do the hard work of removing an element from the buddy allocator. 2912 * Call me with the zone->lock already held. 2913 */ 2914 static __always_inline struct page * 2915 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2916 unsigned int alloc_flags) 2917 { 2918 struct page *page; 2919 2920 if (IS_ENABLED(CONFIG_CMA)) { 2921 /* 2922 * Balance movable allocations between regular and CMA areas by 2923 * allocating from CMA when over half of the zone's free memory 2924 * is in the CMA area. 2925 */ 2926 if (alloc_flags & ALLOC_CMA && 2927 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2928 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2929 page = __rmqueue_cma_fallback(zone, order); 2930 if (page) 2931 goto out; 2932 } 2933 } 2934 retry: 2935 page = __rmqueue_smallest(zone, order, migratetype); 2936 if (unlikely(!page)) { 2937 if (alloc_flags & ALLOC_CMA) 2938 page = __rmqueue_cma_fallback(zone, order); 2939 2940 if (!page && __rmqueue_fallback(zone, order, migratetype, 2941 alloc_flags)) 2942 goto retry; 2943 } 2944 out: 2945 if (page) 2946 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2947 return page; 2948 } 2949 2950 /* 2951 * Obtain a specified number of elements from the buddy allocator, all under 2952 * a single hold of the lock, for efficiency. Add them to the supplied list. 2953 * Returns the number of new pages which were placed at *list. 2954 */ 2955 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2956 unsigned long count, struct list_head *list, 2957 int migratetype, unsigned int alloc_flags) 2958 { 2959 int i, allocated = 0; 2960 2961 spin_lock(&zone->lock); 2962 for (i = 0; i < count; ++i) { 2963 struct page *page = __rmqueue(zone, order, migratetype, 2964 alloc_flags); 2965 if (unlikely(page == NULL)) 2966 break; 2967 2968 if (unlikely(check_pcp_refill(page))) 2969 continue; 2970 2971 /* 2972 * Split buddy pages returned by expand() are received here in 2973 * physical page order. The page is added to the tail of 2974 * caller's list. From the callers perspective, the linked list 2975 * is ordered by page number under some conditions. This is 2976 * useful for IO devices that can forward direction from the 2977 * head, thus also in the physical page order. This is useful 2978 * for IO devices that can merge IO requests if the physical 2979 * pages are ordered properly. 2980 */ 2981 list_add_tail(&page->lru, list); 2982 allocated++; 2983 if (is_migrate_cma(get_pcppage_migratetype(page))) 2984 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2985 -(1 << order)); 2986 } 2987 2988 /* 2989 * i pages were removed from the buddy list even if some leak due 2990 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2991 * on i. Do not confuse with 'allocated' which is the number of 2992 * pages added to the pcp list. 2993 */ 2994 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2995 spin_unlock(&zone->lock); 2996 return allocated; 2997 } 2998 2999 #ifdef CONFIG_NUMA 3000 /* 3001 * Called from the vmstat counter updater to drain pagesets of this 3002 * currently executing processor on remote nodes after they have 3003 * expired. 3004 * 3005 * Note that this function must be called with the thread pinned to 3006 * a single processor. 3007 */ 3008 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3009 { 3010 unsigned long flags; 3011 int to_drain, batch; 3012 3013 local_irq_save(flags); 3014 batch = READ_ONCE(pcp->batch); 3015 to_drain = min(pcp->count, batch); 3016 if (to_drain > 0) 3017 free_pcppages_bulk(zone, to_drain, pcp); 3018 local_irq_restore(flags); 3019 } 3020 #endif 3021 3022 /* 3023 * Drain pcplists of the indicated processor and zone. 3024 * 3025 * The processor must either be the current processor and the 3026 * thread pinned to the current processor or a processor that 3027 * is not online. 3028 */ 3029 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3030 { 3031 unsigned long flags; 3032 struct per_cpu_pageset *pset; 3033 struct per_cpu_pages *pcp; 3034 3035 local_irq_save(flags); 3036 pset = per_cpu_ptr(zone->pageset, cpu); 3037 3038 pcp = &pset->pcp; 3039 if (pcp->count) 3040 free_pcppages_bulk(zone, pcp->count, pcp); 3041 local_irq_restore(flags); 3042 } 3043 3044 /* 3045 * Drain pcplists of all zones on the indicated processor. 3046 * 3047 * The processor must either be the current processor and the 3048 * thread pinned to the current processor or a processor that 3049 * is not online. 3050 */ 3051 static void drain_pages(unsigned int cpu) 3052 { 3053 struct zone *zone; 3054 3055 for_each_populated_zone(zone) { 3056 drain_pages_zone(cpu, zone); 3057 } 3058 } 3059 3060 /* 3061 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3062 * 3063 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3064 * the single zone's pages. 3065 */ 3066 void drain_local_pages(struct zone *zone) 3067 { 3068 int cpu = smp_processor_id(); 3069 3070 if (zone) 3071 drain_pages_zone(cpu, zone); 3072 else 3073 drain_pages(cpu); 3074 } 3075 3076 static void drain_local_pages_wq(struct work_struct *work) 3077 { 3078 struct pcpu_drain *drain; 3079 3080 drain = container_of(work, struct pcpu_drain, work); 3081 3082 /* 3083 * drain_all_pages doesn't use proper cpu hotplug protection so 3084 * we can race with cpu offline when the WQ can move this from 3085 * a cpu pinned worker to an unbound one. We can operate on a different 3086 * cpu which is alright but we also have to make sure to not move to 3087 * a different one. 3088 */ 3089 preempt_disable(); 3090 drain_local_pages(drain->zone); 3091 preempt_enable(); 3092 } 3093 3094 /* 3095 * The implementation of drain_all_pages(), exposing an extra parameter to 3096 * drain on all cpus. 3097 * 3098 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3099 * not empty. The check for non-emptiness can however race with a free to 3100 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3101 * that need the guarantee that every CPU has drained can disable the 3102 * optimizing racy check. 3103 */ 3104 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3105 { 3106 int cpu; 3107 3108 /* 3109 * Allocate in the BSS so we wont require allocation in 3110 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3111 */ 3112 static cpumask_t cpus_with_pcps; 3113 3114 /* 3115 * Make sure nobody triggers this path before mm_percpu_wq is fully 3116 * initialized. 3117 */ 3118 if (WARN_ON_ONCE(!mm_percpu_wq)) 3119 return; 3120 3121 /* 3122 * Do not drain if one is already in progress unless it's specific to 3123 * a zone. Such callers are primarily CMA and memory hotplug and need 3124 * the drain to be complete when the call returns. 3125 */ 3126 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3127 if (!zone) 3128 return; 3129 mutex_lock(&pcpu_drain_mutex); 3130 } 3131 3132 /* 3133 * We don't care about racing with CPU hotplug event 3134 * as offline notification will cause the notified 3135 * cpu to drain that CPU pcps and on_each_cpu_mask 3136 * disables preemption as part of its processing 3137 */ 3138 for_each_online_cpu(cpu) { 3139 struct per_cpu_pageset *pcp; 3140 struct zone *z; 3141 bool has_pcps = false; 3142 3143 if (force_all_cpus) { 3144 /* 3145 * The pcp.count check is racy, some callers need a 3146 * guarantee that no cpu is missed. 3147 */ 3148 has_pcps = true; 3149 } else if (zone) { 3150 pcp = per_cpu_ptr(zone->pageset, cpu); 3151 if (pcp->pcp.count) 3152 has_pcps = true; 3153 } else { 3154 for_each_populated_zone(z) { 3155 pcp = per_cpu_ptr(z->pageset, cpu); 3156 if (pcp->pcp.count) { 3157 has_pcps = true; 3158 break; 3159 } 3160 } 3161 } 3162 3163 if (has_pcps) 3164 cpumask_set_cpu(cpu, &cpus_with_pcps); 3165 else 3166 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3167 } 3168 3169 for_each_cpu(cpu, &cpus_with_pcps) { 3170 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3171 3172 drain->zone = zone; 3173 INIT_WORK(&drain->work, drain_local_pages_wq); 3174 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3175 } 3176 for_each_cpu(cpu, &cpus_with_pcps) 3177 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3178 3179 mutex_unlock(&pcpu_drain_mutex); 3180 } 3181 3182 /* 3183 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3184 * 3185 * When zone parameter is non-NULL, spill just the single zone's pages. 3186 * 3187 * Note that this can be extremely slow as the draining happens in a workqueue. 3188 */ 3189 void drain_all_pages(struct zone *zone) 3190 { 3191 __drain_all_pages(zone, false); 3192 } 3193 3194 #ifdef CONFIG_HIBERNATION 3195 3196 /* 3197 * Touch the watchdog for every WD_PAGE_COUNT pages. 3198 */ 3199 #define WD_PAGE_COUNT (128*1024) 3200 3201 void mark_free_pages(struct zone *zone) 3202 { 3203 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3204 unsigned long flags; 3205 unsigned int order, t; 3206 struct page *page; 3207 3208 if (zone_is_empty(zone)) 3209 return; 3210 3211 spin_lock_irqsave(&zone->lock, flags); 3212 3213 max_zone_pfn = zone_end_pfn(zone); 3214 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3215 if (pfn_valid(pfn)) { 3216 page = pfn_to_page(pfn); 3217 3218 if (!--page_count) { 3219 touch_nmi_watchdog(); 3220 page_count = WD_PAGE_COUNT; 3221 } 3222 3223 if (page_zone(page) != zone) 3224 continue; 3225 3226 if (!swsusp_page_is_forbidden(page)) 3227 swsusp_unset_page_free(page); 3228 } 3229 3230 for_each_migratetype_order(order, t) { 3231 list_for_each_entry(page, 3232 &zone->free_area[order].free_list[t], lru) { 3233 unsigned long i; 3234 3235 pfn = page_to_pfn(page); 3236 for (i = 0; i < (1UL << order); i++) { 3237 if (!--page_count) { 3238 touch_nmi_watchdog(); 3239 page_count = WD_PAGE_COUNT; 3240 } 3241 swsusp_set_page_free(pfn_to_page(pfn + i)); 3242 } 3243 } 3244 } 3245 spin_unlock_irqrestore(&zone->lock, flags); 3246 } 3247 #endif /* CONFIG_PM */ 3248 3249 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3250 { 3251 int migratetype; 3252 3253 if (!free_pcp_prepare(page)) 3254 return false; 3255 3256 migratetype = get_pfnblock_migratetype(page, pfn); 3257 set_pcppage_migratetype(page, migratetype); 3258 return true; 3259 } 3260 3261 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3262 { 3263 struct zone *zone = page_zone(page); 3264 struct per_cpu_pages *pcp; 3265 int migratetype; 3266 3267 migratetype = get_pcppage_migratetype(page); 3268 __count_vm_event(PGFREE); 3269 3270 /* 3271 * We only track unmovable, reclaimable and movable on pcp lists. 3272 * Free ISOLATE pages back to the allocator because they are being 3273 * offlined but treat HIGHATOMIC as movable pages so we can get those 3274 * areas back if necessary. Otherwise, we may have to free 3275 * excessively into the page allocator 3276 */ 3277 if (migratetype >= MIGRATE_PCPTYPES) { 3278 if (unlikely(is_migrate_isolate(migratetype))) { 3279 free_one_page(zone, page, pfn, 0, migratetype, 3280 FPI_NONE); 3281 return; 3282 } 3283 migratetype = MIGRATE_MOVABLE; 3284 } 3285 3286 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3287 list_add(&page->lru, &pcp->lists[migratetype]); 3288 pcp->count++; 3289 if (pcp->count >= READ_ONCE(pcp->high)) 3290 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp); 3291 } 3292 3293 /* 3294 * Free a 0-order page 3295 */ 3296 void free_unref_page(struct page *page) 3297 { 3298 unsigned long flags; 3299 unsigned long pfn = page_to_pfn(page); 3300 3301 if (!free_unref_page_prepare(page, pfn)) 3302 return; 3303 3304 local_irq_save(flags); 3305 free_unref_page_commit(page, pfn); 3306 local_irq_restore(flags); 3307 } 3308 3309 /* 3310 * Free a list of 0-order pages 3311 */ 3312 void free_unref_page_list(struct list_head *list) 3313 { 3314 struct page *page, *next; 3315 unsigned long flags, pfn; 3316 int batch_count = 0; 3317 3318 /* Prepare pages for freeing */ 3319 list_for_each_entry_safe(page, next, list, lru) { 3320 pfn = page_to_pfn(page); 3321 if (!free_unref_page_prepare(page, pfn)) 3322 list_del(&page->lru); 3323 set_page_private(page, pfn); 3324 } 3325 3326 local_irq_save(flags); 3327 list_for_each_entry_safe(page, next, list, lru) { 3328 unsigned long pfn = page_private(page); 3329 3330 set_page_private(page, 0); 3331 trace_mm_page_free_batched(page); 3332 free_unref_page_commit(page, pfn); 3333 3334 /* 3335 * Guard against excessive IRQ disabled times when we get 3336 * a large list of pages to free. 3337 */ 3338 if (++batch_count == SWAP_CLUSTER_MAX) { 3339 local_irq_restore(flags); 3340 batch_count = 0; 3341 local_irq_save(flags); 3342 } 3343 } 3344 local_irq_restore(flags); 3345 } 3346 3347 /* 3348 * split_page takes a non-compound higher-order page, and splits it into 3349 * n (1<<order) sub-pages: page[0..n] 3350 * Each sub-page must be freed individually. 3351 * 3352 * Note: this is probably too low level an operation for use in drivers. 3353 * Please consult with lkml before using this in your driver. 3354 */ 3355 void split_page(struct page *page, unsigned int order) 3356 { 3357 int i; 3358 3359 VM_BUG_ON_PAGE(PageCompound(page), page); 3360 VM_BUG_ON_PAGE(!page_count(page), page); 3361 3362 for (i = 1; i < (1 << order); i++) 3363 set_page_refcounted(page + i); 3364 split_page_owner(page, 1 << order); 3365 split_page_memcg(page, 1 << order); 3366 } 3367 EXPORT_SYMBOL_GPL(split_page); 3368 3369 int __isolate_free_page(struct page *page, unsigned int order) 3370 { 3371 unsigned long watermark; 3372 struct zone *zone; 3373 int mt; 3374 3375 BUG_ON(!PageBuddy(page)); 3376 3377 zone = page_zone(page); 3378 mt = get_pageblock_migratetype(page); 3379 3380 if (!is_migrate_isolate(mt)) { 3381 /* 3382 * Obey watermarks as if the page was being allocated. We can 3383 * emulate a high-order watermark check with a raised order-0 3384 * watermark, because we already know our high-order page 3385 * exists. 3386 */ 3387 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3388 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3389 return 0; 3390 3391 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3392 } 3393 3394 /* Remove page from free list */ 3395 3396 del_page_from_free_list(page, zone, order); 3397 3398 /* 3399 * Set the pageblock if the isolated page is at least half of a 3400 * pageblock 3401 */ 3402 if (order >= pageblock_order - 1) { 3403 struct page *endpage = page + (1 << order) - 1; 3404 for (; page < endpage; page += pageblock_nr_pages) { 3405 int mt = get_pageblock_migratetype(page); 3406 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3407 && !is_migrate_highatomic(mt)) 3408 set_pageblock_migratetype(page, 3409 MIGRATE_MOVABLE); 3410 } 3411 } 3412 3413 3414 return 1UL << order; 3415 } 3416 3417 /** 3418 * __putback_isolated_page - Return a now-isolated page back where we got it 3419 * @page: Page that was isolated 3420 * @order: Order of the isolated page 3421 * @mt: The page's pageblock's migratetype 3422 * 3423 * This function is meant to return a page pulled from the free lists via 3424 * __isolate_free_page back to the free lists they were pulled from. 3425 */ 3426 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3427 { 3428 struct zone *zone = page_zone(page); 3429 3430 /* zone lock should be held when this function is called */ 3431 lockdep_assert_held(&zone->lock); 3432 3433 /* Return isolated page to tail of freelist. */ 3434 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3435 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3436 } 3437 3438 /* 3439 * Update NUMA hit/miss statistics 3440 * 3441 * Must be called with interrupts disabled. 3442 */ 3443 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3444 { 3445 #ifdef CONFIG_NUMA 3446 enum numa_stat_item local_stat = NUMA_LOCAL; 3447 3448 /* skip numa counters update if numa stats is disabled */ 3449 if (!static_branch_likely(&vm_numa_stat_key)) 3450 return; 3451 3452 if (zone_to_nid(z) != numa_node_id()) 3453 local_stat = NUMA_OTHER; 3454 3455 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3456 __inc_numa_state(z, NUMA_HIT); 3457 else { 3458 __inc_numa_state(z, NUMA_MISS); 3459 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3460 } 3461 __inc_numa_state(z, local_stat); 3462 #endif 3463 } 3464 3465 /* Remove page from the per-cpu list, caller must protect the list */ 3466 static inline 3467 struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3468 unsigned int alloc_flags, 3469 struct per_cpu_pages *pcp, 3470 struct list_head *list) 3471 { 3472 struct page *page; 3473 3474 do { 3475 if (list_empty(list)) { 3476 pcp->count += rmqueue_bulk(zone, 0, 3477 READ_ONCE(pcp->batch), list, 3478 migratetype, alloc_flags); 3479 if (unlikely(list_empty(list))) 3480 return NULL; 3481 } 3482 3483 page = list_first_entry(list, struct page, lru); 3484 list_del(&page->lru); 3485 pcp->count--; 3486 } while (check_new_pcp(page)); 3487 3488 return page; 3489 } 3490 3491 /* Lock and remove page from the per-cpu list */ 3492 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3493 struct zone *zone, gfp_t gfp_flags, 3494 int migratetype, unsigned int alloc_flags) 3495 { 3496 struct per_cpu_pages *pcp; 3497 struct list_head *list; 3498 struct page *page; 3499 unsigned long flags; 3500 3501 local_irq_save(flags); 3502 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3503 list = &pcp->lists[migratetype]; 3504 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3505 if (page) { 3506 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3507 zone_statistics(preferred_zone, zone); 3508 } 3509 local_irq_restore(flags); 3510 return page; 3511 } 3512 3513 /* 3514 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3515 */ 3516 static inline 3517 struct page *rmqueue(struct zone *preferred_zone, 3518 struct zone *zone, unsigned int order, 3519 gfp_t gfp_flags, unsigned int alloc_flags, 3520 int migratetype) 3521 { 3522 unsigned long flags; 3523 struct page *page; 3524 3525 if (likely(order == 0)) { 3526 /* 3527 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3528 * we need to skip it when CMA area isn't allowed. 3529 */ 3530 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3531 migratetype != MIGRATE_MOVABLE) { 3532 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3533 migratetype, alloc_flags); 3534 goto out; 3535 } 3536 } 3537 3538 /* 3539 * We most definitely don't want callers attempting to 3540 * allocate greater than order-1 page units with __GFP_NOFAIL. 3541 */ 3542 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3543 spin_lock_irqsave(&zone->lock, flags); 3544 3545 do { 3546 page = NULL; 3547 /* 3548 * order-0 request can reach here when the pcplist is skipped 3549 * due to non-CMA allocation context. HIGHATOMIC area is 3550 * reserved for high-order atomic allocation, so order-0 3551 * request should skip it. 3552 */ 3553 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3554 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3555 if (page) 3556 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3557 } 3558 if (!page) 3559 page = __rmqueue(zone, order, migratetype, alloc_flags); 3560 } while (page && check_new_pages(page, order)); 3561 spin_unlock(&zone->lock); 3562 if (!page) 3563 goto failed; 3564 __mod_zone_freepage_state(zone, -(1 << order), 3565 get_pcppage_migratetype(page)); 3566 3567 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3568 zone_statistics(preferred_zone, zone); 3569 local_irq_restore(flags); 3570 3571 out: 3572 /* Separate test+clear to avoid unnecessary atomics */ 3573 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3574 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3575 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3576 } 3577 3578 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3579 return page; 3580 3581 failed: 3582 local_irq_restore(flags); 3583 return NULL; 3584 } 3585 3586 #ifdef CONFIG_FAIL_PAGE_ALLOC 3587 3588 static struct { 3589 struct fault_attr attr; 3590 3591 bool ignore_gfp_highmem; 3592 bool ignore_gfp_reclaim; 3593 u32 min_order; 3594 } fail_page_alloc = { 3595 .attr = FAULT_ATTR_INITIALIZER, 3596 .ignore_gfp_reclaim = true, 3597 .ignore_gfp_highmem = true, 3598 .min_order = 1, 3599 }; 3600 3601 static int __init setup_fail_page_alloc(char *str) 3602 { 3603 return setup_fault_attr(&fail_page_alloc.attr, str); 3604 } 3605 __setup("fail_page_alloc=", setup_fail_page_alloc); 3606 3607 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3608 { 3609 if (order < fail_page_alloc.min_order) 3610 return false; 3611 if (gfp_mask & __GFP_NOFAIL) 3612 return false; 3613 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3614 return false; 3615 if (fail_page_alloc.ignore_gfp_reclaim && 3616 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3617 return false; 3618 3619 return should_fail(&fail_page_alloc.attr, 1 << order); 3620 } 3621 3622 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3623 3624 static int __init fail_page_alloc_debugfs(void) 3625 { 3626 umode_t mode = S_IFREG | 0600; 3627 struct dentry *dir; 3628 3629 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3630 &fail_page_alloc.attr); 3631 3632 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3633 &fail_page_alloc.ignore_gfp_reclaim); 3634 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3635 &fail_page_alloc.ignore_gfp_highmem); 3636 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3637 3638 return 0; 3639 } 3640 3641 late_initcall(fail_page_alloc_debugfs); 3642 3643 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3644 3645 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3646 3647 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3648 { 3649 return false; 3650 } 3651 3652 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3653 3654 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3655 { 3656 return __should_fail_alloc_page(gfp_mask, order); 3657 } 3658 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3659 3660 static inline long __zone_watermark_unusable_free(struct zone *z, 3661 unsigned int order, unsigned int alloc_flags) 3662 { 3663 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3664 long unusable_free = (1 << order) - 1; 3665 3666 /* 3667 * If the caller does not have rights to ALLOC_HARDER then subtract 3668 * the high-atomic reserves. This will over-estimate the size of the 3669 * atomic reserve but it avoids a search. 3670 */ 3671 if (likely(!alloc_harder)) 3672 unusable_free += z->nr_reserved_highatomic; 3673 3674 #ifdef CONFIG_CMA 3675 /* If allocation can't use CMA areas don't use free CMA pages */ 3676 if (!(alloc_flags & ALLOC_CMA)) 3677 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3678 #endif 3679 3680 return unusable_free; 3681 } 3682 3683 /* 3684 * Return true if free base pages are above 'mark'. For high-order checks it 3685 * will return true of the order-0 watermark is reached and there is at least 3686 * one free page of a suitable size. Checking now avoids taking the zone lock 3687 * to check in the allocation paths if no pages are free. 3688 */ 3689 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3690 int highest_zoneidx, unsigned int alloc_flags, 3691 long free_pages) 3692 { 3693 long min = mark; 3694 int o; 3695 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3696 3697 /* free_pages may go negative - that's OK */ 3698 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3699 3700 if (alloc_flags & ALLOC_HIGH) 3701 min -= min / 2; 3702 3703 if (unlikely(alloc_harder)) { 3704 /* 3705 * OOM victims can try even harder than normal ALLOC_HARDER 3706 * users on the grounds that it's definitely going to be in 3707 * the exit path shortly and free memory. Any allocation it 3708 * makes during the free path will be small and short-lived. 3709 */ 3710 if (alloc_flags & ALLOC_OOM) 3711 min -= min / 2; 3712 else 3713 min -= min / 4; 3714 } 3715 3716 /* 3717 * Check watermarks for an order-0 allocation request. If these 3718 * are not met, then a high-order request also cannot go ahead 3719 * even if a suitable page happened to be free. 3720 */ 3721 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3722 return false; 3723 3724 /* If this is an order-0 request then the watermark is fine */ 3725 if (!order) 3726 return true; 3727 3728 /* For a high-order request, check at least one suitable page is free */ 3729 for (o = order; o < MAX_ORDER; o++) { 3730 struct free_area *area = &z->free_area[o]; 3731 int mt; 3732 3733 if (!area->nr_free) 3734 continue; 3735 3736 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3737 if (!free_area_empty(area, mt)) 3738 return true; 3739 } 3740 3741 #ifdef CONFIG_CMA 3742 if ((alloc_flags & ALLOC_CMA) && 3743 !free_area_empty(area, MIGRATE_CMA)) { 3744 return true; 3745 } 3746 #endif 3747 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3748 return true; 3749 } 3750 return false; 3751 } 3752 3753 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3754 int highest_zoneidx, unsigned int alloc_flags) 3755 { 3756 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3757 zone_page_state(z, NR_FREE_PAGES)); 3758 } 3759 3760 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3761 unsigned long mark, int highest_zoneidx, 3762 unsigned int alloc_flags, gfp_t gfp_mask) 3763 { 3764 long free_pages; 3765 3766 free_pages = zone_page_state(z, NR_FREE_PAGES); 3767 3768 /* 3769 * Fast check for order-0 only. If this fails then the reserves 3770 * need to be calculated. 3771 */ 3772 if (!order) { 3773 long fast_free; 3774 3775 fast_free = free_pages; 3776 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3777 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3778 return true; 3779 } 3780 3781 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3782 free_pages)) 3783 return true; 3784 /* 3785 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3786 * when checking the min watermark. The min watermark is the 3787 * point where boosting is ignored so that kswapd is woken up 3788 * when below the low watermark. 3789 */ 3790 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3791 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3792 mark = z->_watermark[WMARK_MIN]; 3793 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3794 alloc_flags, free_pages); 3795 } 3796 3797 return false; 3798 } 3799 3800 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3801 unsigned long mark, int highest_zoneidx) 3802 { 3803 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3804 3805 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3806 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3807 3808 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3809 free_pages); 3810 } 3811 3812 #ifdef CONFIG_NUMA 3813 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3814 { 3815 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3816 node_reclaim_distance; 3817 } 3818 #else /* CONFIG_NUMA */ 3819 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3820 { 3821 return true; 3822 } 3823 #endif /* CONFIG_NUMA */ 3824 3825 /* 3826 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3827 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3828 * premature use of a lower zone may cause lowmem pressure problems that 3829 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3830 * probably too small. It only makes sense to spread allocations to avoid 3831 * fragmentation between the Normal and DMA32 zones. 3832 */ 3833 static inline unsigned int 3834 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3835 { 3836 unsigned int alloc_flags; 3837 3838 /* 3839 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3840 * to save a branch. 3841 */ 3842 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3843 3844 #ifdef CONFIG_ZONE_DMA32 3845 if (!zone) 3846 return alloc_flags; 3847 3848 if (zone_idx(zone) != ZONE_NORMAL) 3849 return alloc_flags; 3850 3851 /* 3852 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3853 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3854 * on UMA that if Normal is populated then so is DMA32. 3855 */ 3856 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3857 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3858 return alloc_flags; 3859 3860 alloc_flags |= ALLOC_NOFRAGMENT; 3861 #endif /* CONFIG_ZONE_DMA32 */ 3862 return alloc_flags; 3863 } 3864 3865 /* Must be called after current_gfp_context() which can change gfp_mask */ 3866 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3867 unsigned int alloc_flags) 3868 { 3869 #ifdef CONFIG_CMA 3870 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3871 alloc_flags |= ALLOC_CMA; 3872 #endif 3873 return alloc_flags; 3874 } 3875 3876 /* 3877 * get_page_from_freelist goes through the zonelist trying to allocate 3878 * a page. 3879 */ 3880 static struct page * 3881 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3882 const struct alloc_context *ac) 3883 { 3884 struct zoneref *z; 3885 struct zone *zone; 3886 struct pglist_data *last_pgdat_dirty_limit = NULL; 3887 bool no_fallback; 3888 3889 retry: 3890 /* 3891 * Scan zonelist, looking for a zone with enough free. 3892 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3893 */ 3894 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3895 z = ac->preferred_zoneref; 3896 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3897 ac->nodemask) { 3898 struct page *page; 3899 unsigned long mark; 3900 3901 if (cpusets_enabled() && 3902 (alloc_flags & ALLOC_CPUSET) && 3903 !__cpuset_zone_allowed(zone, gfp_mask)) 3904 continue; 3905 /* 3906 * When allocating a page cache page for writing, we 3907 * want to get it from a node that is within its dirty 3908 * limit, such that no single node holds more than its 3909 * proportional share of globally allowed dirty pages. 3910 * The dirty limits take into account the node's 3911 * lowmem reserves and high watermark so that kswapd 3912 * should be able to balance it without having to 3913 * write pages from its LRU list. 3914 * 3915 * XXX: For now, allow allocations to potentially 3916 * exceed the per-node dirty limit in the slowpath 3917 * (spread_dirty_pages unset) before going into reclaim, 3918 * which is important when on a NUMA setup the allowed 3919 * nodes are together not big enough to reach the 3920 * global limit. The proper fix for these situations 3921 * will require awareness of nodes in the 3922 * dirty-throttling and the flusher threads. 3923 */ 3924 if (ac->spread_dirty_pages) { 3925 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3926 continue; 3927 3928 if (!node_dirty_ok(zone->zone_pgdat)) { 3929 last_pgdat_dirty_limit = zone->zone_pgdat; 3930 continue; 3931 } 3932 } 3933 3934 if (no_fallback && nr_online_nodes > 1 && 3935 zone != ac->preferred_zoneref->zone) { 3936 int local_nid; 3937 3938 /* 3939 * If moving to a remote node, retry but allow 3940 * fragmenting fallbacks. Locality is more important 3941 * than fragmentation avoidance. 3942 */ 3943 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3944 if (zone_to_nid(zone) != local_nid) { 3945 alloc_flags &= ~ALLOC_NOFRAGMENT; 3946 goto retry; 3947 } 3948 } 3949 3950 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3951 if (!zone_watermark_fast(zone, order, mark, 3952 ac->highest_zoneidx, alloc_flags, 3953 gfp_mask)) { 3954 int ret; 3955 3956 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3957 /* 3958 * Watermark failed for this zone, but see if we can 3959 * grow this zone if it contains deferred pages. 3960 */ 3961 if (static_branch_unlikely(&deferred_pages)) { 3962 if (_deferred_grow_zone(zone, order)) 3963 goto try_this_zone; 3964 } 3965 #endif 3966 /* Checked here to keep the fast path fast */ 3967 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3968 if (alloc_flags & ALLOC_NO_WATERMARKS) 3969 goto try_this_zone; 3970 3971 if (!node_reclaim_enabled() || 3972 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3973 continue; 3974 3975 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3976 switch (ret) { 3977 case NODE_RECLAIM_NOSCAN: 3978 /* did not scan */ 3979 continue; 3980 case NODE_RECLAIM_FULL: 3981 /* scanned but unreclaimable */ 3982 continue; 3983 default: 3984 /* did we reclaim enough */ 3985 if (zone_watermark_ok(zone, order, mark, 3986 ac->highest_zoneidx, alloc_flags)) 3987 goto try_this_zone; 3988 3989 continue; 3990 } 3991 } 3992 3993 try_this_zone: 3994 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3995 gfp_mask, alloc_flags, ac->migratetype); 3996 if (page) { 3997 prep_new_page(page, order, gfp_mask, alloc_flags); 3998 3999 /* 4000 * If this is a high-order atomic allocation then check 4001 * if the pageblock should be reserved for the future 4002 */ 4003 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4004 reserve_highatomic_pageblock(page, zone, order); 4005 4006 return page; 4007 } else { 4008 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4009 /* Try again if zone has deferred pages */ 4010 if (static_branch_unlikely(&deferred_pages)) { 4011 if (_deferred_grow_zone(zone, order)) 4012 goto try_this_zone; 4013 } 4014 #endif 4015 } 4016 } 4017 4018 /* 4019 * It's possible on a UMA machine to get through all zones that are 4020 * fragmented. If avoiding fragmentation, reset and try again. 4021 */ 4022 if (no_fallback) { 4023 alloc_flags &= ~ALLOC_NOFRAGMENT; 4024 goto retry; 4025 } 4026 4027 return NULL; 4028 } 4029 4030 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4031 { 4032 unsigned int filter = SHOW_MEM_FILTER_NODES; 4033 4034 /* 4035 * This documents exceptions given to allocations in certain 4036 * contexts that are allowed to allocate outside current's set 4037 * of allowed nodes. 4038 */ 4039 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4040 if (tsk_is_oom_victim(current) || 4041 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4042 filter &= ~SHOW_MEM_FILTER_NODES; 4043 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4044 filter &= ~SHOW_MEM_FILTER_NODES; 4045 4046 show_mem(filter, nodemask); 4047 } 4048 4049 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4050 { 4051 struct va_format vaf; 4052 va_list args; 4053 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4054 4055 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 4056 return; 4057 4058 va_start(args, fmt); 4059 vaf.fmt = fmt; 4060 vaf.va = &args; 4061 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4062 current->comm, &vaf, gfp_mask, &gfp_mask, 4063 nodemask_pr_args(nodemask)); 4064 va_end(args); 4065 4066 cpuset_print_current_mems_allowed(); 4067 pr_cont("\n"); 4068 dump_stack(); 4069 warn_alloc_show_mem(gfp_mask, nodemask); 4070 } 4071 4072 static inline struct page * 4073 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4074 unsigned int alloc_flags, 4075 const struct alloc_context *ac) 4076 { 4077 struct page *page; 4078 4079 page = get_page_from_freelist(gfp_mask, order, 4080 alloc_flags|ALLOC_CPUSET, ac); 4081 /* 4082 * fallback to ignore cpuset restriction if our nodes 4083 * are depleted 4084 */ 4085 if (!page) 4086 page = get_page_from_freelist(gfp_mask, order, 4087 alloc_flags, ac); 4088 4089 return page; 4090 } 4091 4092 static inline struct page * 4093 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4094 const struct alloc_context *ac, unsigned long *did_some_progress) 4095 { 4096 struct oom_control oc = { 4097 .zonelist = ac->zonelist, 4098 .nodemask = ac->nodemask, 4099 .memcg = NULL, 4100 .gfp_mask = gfp_mask, 4101 .order = order, 4102 }; 4103 struct page *page; 4104 4105 *did_some_progress = 0; 4106 4107 /* 4108 * Acquire the oom lock. If that fails, somebody else is 4109 * making progress for us. 4110 */ 4111 if (!mutex_trylock(&oom_lock)) { 4112 *did_some_progress = 1; 4113 schedule_timeout_uninterruptible(1); 4114 return NULL; 4115 } 4116 4117 /* 4118 * Go through the zonelist yet one more time, keep very high watermark 4119 * here, this is only to catch a parallel oom killing, we must fail if 4120 * we're still under heavy pressure. But make sure that this reclaim 4121 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4122 * allocation which will never fail due to oom_lock already held. 4123 */ 4124 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4125 ~__GFP_DIRECT_RECLAIM, order, 4126 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4127 if (page) 4128 goto out; 4129 4130 /* Coredumps can quickly deplete all memory reserves */ 4131 if (current->flags & PF_DUMPCORE) 4132 goto out; 4133 /* The OOM killer will not help higher order allocs */ 4134 if (order > PAGE_ALLOC_COSTLY_ORDER) 4135 goto out; 4136 /* 4137 * We have already exhausted all our reclaim opportunities without any 4138 * success so it is time to admit defeat. We will skip the OOM killer 4139 * because it is very likely that the caller has a more reasonable 4140 * fallback than shooting a random task. 4141 * 4142 * The OOM killer may not free memory on a specific node. 4143 */ 4144 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4145 goto out; 4146 /* The OOM killer does not needlessly kill tasks for lowmem */ 4147 if (ac->highest_zoneidx < ZONE_NORMAL) 4148 goto out; 4149 if (pm_suspended_storage()) 4150 goto out; 4151 /* 4152 * XXX: GFP_NOFS allocations should rather fail than rely on 4153 * other request to make a forward progress. 4154 * We are in an unfortunate situation where out_of_memory cannot 4155 * do much for this context but let's try it to at least get 4156 * access to memory reserved if the current task is killed (see 4157 * out_of_memory). Once filesystems are ready to handle allocation 4158 * failures more gracefully we should just bail out here. 4159 */ 4160 4161 /* Exhausted what can be done so it's blame time */ 4162 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4163 *did_some_progress = 1; 4164 4165 /* 4166 * Help non-failing allocations by giving them access to memory 4167 * reserves 4168 */ 4169 if (gfp_mask & __GFP_NOFAIL) 4170 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4171 ALLOC_NO_WATERMARKS, ac); 4172 } 4173 out: 4174 mutex_unlock(&oom_lock); 4175 return page; 4176 } 4177 4178 /* 4179 * Maximum number of compaction retries with a progress before OOM 4180 * killer is consider as the only way to move forward. 4181 */ 4182 #define MAX_COMPACT_RETRIES 16 4183 4184 #ifdef CONFIG_COMPACTION 4185 /* Try memory compaction for high-order allocations before reclaim */ 4186 static struct page * 4187 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4188 unsigned int alloc_flags, const struct alloc_context *ac, 4189 enum compact_priority prio, enum compact_result *compact_result) 4190 { 4191 struct page *page = NULL; 4192 unsigned long pflags; 4193 unsigned int noreclaim_flag; 4194 4195 if (!order) 4196 return NULL; 4197 4198 psi_memstall_enter(&pflags); 4199 noreclaim_flag = memalloc_noreclaim_save(); 4200 4201 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4202 prio, &page); 4203 4204 memalloc_noreclaim_restore(noreclaim_flag); 4205 psi_memstall_leave(&pflags); 4206 4207 if (*compact_result == COMPACT_SKIPPED) 4208 return NULL; 4209 /* 4210 * At least in one zone compaction wasn't deferred or skipped, so let's 4211 * count a compaction stall 4212 */ 4213 count_vm_event(COMPACTSTALL); 4214 4215 /* Prep a captured page if available */ 4216 if (page) 4217 prep_new_page(page, order, gfp_mask, alloc_flags); 4218 4219 /* Try get a page from the freelist if available */ 4220 if (!page) 4221 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4222 4223 if (page) { 4224 struct zone *zone = page_zone(page); 4225 4226 zone->compact_blockskip_flush = false; 4227 compaction_defer_reset(zone, order, true); 4228 count_vm_event(COMPACTSUCCESS); 4229 return page; 4230 } 4231 4232 /* 4233 * It's bad if compaction run occurs and fails. The most likely reason 4234 * is that pages exist, but not enough to satisfy watermarks. 4235 */ 4236 count_vm_event(COMPACTFAIL); 4237 4238 cond_resched(); 4239 4240 return NULL; 4241 } 4242 4243 static inline bool 4244 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4245 enum compact_result compact_result, 4246 enum compact_priority *compact_priority, 4247 int *compaction_retries) 4248 { 4249 int max_retries = MAX_COMPACT_RETRIES; 4250 int min_priority; 4251 bool ret = false; 4252 int retries = *compaction_retries; 4253 enum compact_priority priority = *compact_priority; 4254 4255 if (!order) 4256 return false; 4257 4258 if (compaction_made_progress(compact_result)) 4259 (*compaction_retries)++; 4260 4261 /* 4262 * compaction considers all the zone as desperately out of memory 4263 * so it doesn't really make much sense to retry except when the 4264 * failure could be caused by insufficient priority 4265 */ 4266 if (compaction_failed(compact_result)) 4267 goto check_priority; 4268 4269 /* 4270 * compaction was skipped because there are not enough order-0 pages 4271 * to work with, so we retry only if it looks like reclaim can help. 4272 */ 4273 if (compaction_needs_reclaim(compact_result)) { 4274 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4275 goto out; 4276 } 4277 4278 /* 4279 * make sure the compaction wasn't deferred or didn't bail out early 4280 * due to locks contention before we declare that we should give up. 4281 * But the next retry should use a higher priority if allowed, so 4282 * we don't just keep bailing out endlessly. 4283 */ 4284 if (compaction_withdrawn(compact_result)) { 4285 goto check_priority; 4286 } 4287 4288 /* 4289 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4290 * costly ones because they are de facto nofail and invoke OOM 4291 * killer to move on while costly can fail and users are ready 4292 * to cope with that. 1/4 retries is rather arbitrary but we 4293 * would need much more detailed feedback from compaction to 4294 * make a better decision. 4295 */ 4296 if (order > PAGE_ALLOC_COSTLY_ORDER) 4297 max_retries /= 4; 4298 if (*compaction_retries <= max_retries) { 4299 ret = true; 4300 goto out; 4301 } 4302 4303 /* 4304 * Make sure there are attempts at the highest priority if we exhausted 4305 * all retries or failed at the lower priorities. 4306 */ 4307 check_priority: 4308 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4309 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4310 4311 if (*compact_priority > min_priority) { 4312 (*compact_priority)--; 4313 *compaction_retries = 0; 4314 ret = true; 4315 } 4316 out: 4317 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4318 return ret; 4319 } 4320 #else 4321 static inline struct page * 4322 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4323 unsigned int alloc_flags, const struct alloc_context *ac, 4324 enum compact_priority prio, enum compact_result *compact_result) 4325 { 4326 *compact_result = COMPACT_SKIPPED; 4327 return NULL; 4328 } 4329 4330 static inline bool 4331 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4332 enum compact_result compact_result, 4333 enum compact_priority *compact_priority, 4334 int *compaction_retries) 4335 { 4336 struct zone *zone; 4337 struct zoneref *z; 4338 4339 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4340 return false; 4341 4342 /* 4343 * There are setups with compaction disabled which would prefer to loop 4344 * inside the allocator rather than hit the oom killer prematurely. 4345 * Let's give them a good hope and keep retrying while the order-0 4346 * watermarks are OK. 4347 */ 4348 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4349 ac->highest_zoneidx, ac->nodemask) { 4350 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4351 ac->highest_zoneidx, alloc_flags)) 4352 return true; 4353 } 4354 return false; 4355 } 4356 #endif /* CONFIG_COMPACTION */ 4357 4358 #ifdef CONFIG_LOCKDEP 4359 static struct lockdep_map __fs_reclaim_map = 4360 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4361 4362 static bool __need_reclaim(gfp_t gfp_mask) 4363 { 4364 /* no reclaim without waiting on it */ 4365 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4366 return false; 4367 4368 /* this guy won't enter reclaim */ 4369 if (current->flags & PF_MEMALLOC) 4370 return false; 4371 4372 if (gfp_mask & __GFP_NOLOCKDEP) 4373 return false; 4374 4375 return true; 4376 } 4377 4378 void __fs_reclaim_acquire(void) 4379 { 4380 lock_map_acquire(&__fs_reclaim_map); 4381 } 4382 4383 void __fs_reclaim_release(void) 4384 { 4385 lock_map_release(&__fs_reclaim_map); 4386 } 4387 4388 void fs_reclaim_acquire(gfp_t gfp_mask) 4389 { 4390 gfp_mask = current_gfp_context(gfp_mask); 4391 4392 if (__need_reclaim(gfp_mask)) { 4393 if (gfp_mask & __GFP_FS) 4394 __fs_reclaim_acquire(); 4395 4396 #ifdef CONFIG_MMU_NOTIFIER 4397 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4398 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4399 #endif 4400 4401 } 4402 } 4403 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4404 4405 void fs_reclaim_release(gfp_t gfp_mask) 4406 { 4407 gfp_mask = current_gfp_context(gfp_mask); 4408 4409 if (__need_reclaim(gfp_mask)) { 4410 if (gfp_mask & __GFP_FS) 4411 __fs_reclaim_release(); 4412 } 4413 } 4414 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4415 #endif 4416 4417 /* Perform direct synchronous page reclaim */ 4418 static unsigned long 4419 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4420 const struct alloc_context *ac) 4421 { 4422 unsigned int noreclaim_flag; 4423 unsigned long pflags, progress; 4424 4425 cond_resched(); 4426 4427 /* We now go into synchronous reclaim */ 4428 cpuset_memory_pressure_bump(); 4429 psi_memstall_enter(&pflags); 4430 fs_reclaim_acquire(gfp_mask); 4431 noreclaim_flag = memalloc_noreclaim_save(); 4432 4433 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4434 ac->nodemask); 4435 4436 memalloc_noreclaim_restore(noreclaim_flag); 4437 fs_reclaim_release(gfp_mask); 4438 psi_memstall_leave(&pflags); 4439 4440 cond_resched(); 4441 4442 return progress; 4443 } 4444 4445 /* The really slow allocator path where we enter direct reclaim */ 4446 static inline struct page * 4447 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4448 unsigned int alloc_flags, const struct alloc_context *ac, 4449 unsigned long *did_some_progress) 4450 { 4451 struct page *page = NULL; 4452 bool drained = false; 4453 4454 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4455 if (unlikely(!(*did_some_progress))) 4456 return NULL; 4457 4458 retry: 4459 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4460 4461 /* 4462 * If an allocation failed after direct reclaim, it could be because 4463 * pages are pinned on the per-cpu lists or in high alloc reserves. 4464 * Shrink them and try again 4465 */ 4466 if (!page && !drained) { 4467 unreserve_highatomic_pageblock(ac, false); 4468 drain_all_pages(NULL); 4469 drained = true; 4470 goto retry; 4471 } 4472 4473 return page; 4474 } 4475 4476 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4477 const struct alloc_context *ac) 4478 { 4479 struct zoneref *z; 4480 struct zone *zone; 4481 pg_data_t *last_pgdat = NULL; 4482 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4483 4484 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4485 ac->nodemask) { 4486 if (last_pgdat != zone->zone_pgdat) 4487 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4488 last_pgdat = zone->zone_pgdat; 4489 } 4490 } 4491 4492 static inline unsigned int 4493 gfp_to_alloc_flags(gfp_t gfp_mask) 4494 { 4495 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4496 4497 /* 4498 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4499 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4500 * to save two branches. 4501 */ 4502 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4503 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4504 4505 /* 4506 * The caller may dip into page reserves a bit more if the caller 4507 * cannot run direct reclaim, or if the caller has realtime scheduling 4508 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4509 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4510 */ 4511 alloc_flags |= (__force int) 4512 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4513 4514 if (gfp_mask & __GFP_ATOMIC) { 4515 /* 4516 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4517 * if it can't schedule. 4518 */ 4519 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4520 alloc_flags |= ALLOC_HARDER; 4521 /* 4522 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4523 * comment for __cpuset_node_allowed(). 4524 */ 4525 alloc_flags &= ~ALLOC_CPUSET; 4526 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4527 alloc_flags |= ALLOC_HARDER; 4528 4529 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4530 4531 return alloc_flags; 4532 } 4533 4534 static bool oom_reserves_allowed(struct task_struct *tsk) 4535 { 4536 if (!tsk_is_oom_victim(tsk)) 4537 return false; 4538 4539 /* 4540 * !MMU doesn't have oom reaper so give access to memory reserves 4541 * only to the thread with TIF_MEMDIE set 4542 */ 4543 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4544 return false; 4545 4546 return true; 4547 } 4548 4549 /* 4550 * Distinguish requests which really need access to full memory 4551 * reserves from oom victims which can live with a portion of it 4552 */ 4553 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4554 { 4555 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4556 return 0; 4557 if (gfp_mask & __GFP_MEMALLOC) 4558 return ALLOC_NO_WATERMARKS; 4559 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4560 return ALLOC_NO_WATERMARKS; 4561 if (!in_interrupt()) { 4562 if (current->flags & PF_MEMALLOC) 4563 return ALLOC_NO_WATERMARKS; 4564 else if (oom_reserves_allowed(current)) 4565 return ALLOC_OOM; 4566 } 4567 4568 return 0; 4569 } 4570 4571 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4572 { 4573 return !!__gfp_pfmemalloc_flags(gfp_mask); 4574 } 4575 4576 /* 4577 * Checks whether it makes sense to retry the reclaim to make a forward progress 4578 * for the given allocation request. 4579 * 4580 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4581 * without success, or when we couldn't even meet the watermark if we 4582 * reclaimed all remaining pages on the LRU lists. 4583 * 4584 * Returns true if a retry is viable or false to enter the oom path. 4585 */ 4586 static inline bool 4587 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4588 struct alloc_context *ac, int alloc_flags, 4589 bool did_some_progress, int *no_progress_loops) 4590 { 4591 struct zone *zone; 4592 struct zoneref *z; 4593 bool ret = false; 4594 4595 /* 4596 * Costly allocations might have made a progress but this doesn't mean 4597 * their order will become available due to high fragmentation so 4598 * always increment the no progress counter for them 4599 */ 4600 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4601 *no_progress_loops = 0; 4602 else 4603 (*no_progress_loops)++; 4604 4605 /* 4606 * Make sure we converge to OOM if we cannot make any progress 4607 * several times in the row. 4608 */ 4609 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4610 /* Before OOM, exhaust highatomic_reserve */ 4611 return unreserve_highatomic_pageblock(ac, true); 4612 } 4613 4614 /* 4615 * Keep reclaiming pages while there is a chance this will lead 4616 * somewhere. If none of the target zones can satisfy our allocation 4617 * request even if all reclaimable pages are considered then we are 4618 * screwed and have to go OOM. 4619 */ 4620 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4621 ac->highest_zoneidx, ac->nodemask) { 4622 unsigned long available; 4623 unsigned long reclaimable; 4624 unsigned long min_wmark = min_wmark_pages(zone); 4625 bool wmark; 4626 4627 available = reclaimable = zone_reclaimable_pages(zone); 4628 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4629 4630 /* 4631 * Would the allocation succeed if we reclaimed all 4632 * reclaimable pages? 4633 */ 4634 wmark = __zone_watermark_ok(zone, order, min_wmark, 4635 ac->highest_zoneidx, alloc_flags, available); 4636 trace_reclaim_retry_zone(z, order, reclaimable, 4637 available, min_wmark, *no_progress_loops, wmark); 4638 if (wmark) { 4639 /* 4640 * If we didn't make any progress and have a lot of 4641 * dirty + writeback pages then we should wait for 4642 * an IO to complete to slow down the reclaim and 4643 * prevent from pre mature OOM 4644 */ 4645 if (!did_some_progress) { 4646 unsigned long write_pending; 4647 4648 write_pending = zone_page_state_snapshot(zone, 4649 NR_ZONE_WRITE_PENDING); 4650 4651 if (2 * write_pending > reclaimable) { 4652 congestion_wait(BLK_RW_ASYNC, HZ/10); 4653 return true; 4654 } 4655 } 4656 4657 ret = true; 4658 goto out; 4659 } 4660 } 4661 4662 out: 4663 /* 4664 * Memory allocation/reclaim might be called from a WQ context and the 4665 * current implementation of the WQ concurrency control doesn't 4666 * recognize that a particular WQ is congested if the worker thread is 4667 * looping without ever sleeping. Therefore we have to do a short sleep 4668 * here rather than calling cond_resched(). 4669 */ 4670 if (current->flags & PF_WQ_WORKER) 4671 schedule_timeout_uninterruptible(1); 4672 else 4673 cond_resched(); 4674 return ret; 4675 } 4676 4677 static inline bool 4678 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4679 { 4680 /* 4681 * It's possible that cpuset's mems_allowed and the nodemask from 4682 * mempolicy don't intersect. This should be normally dealt with by 4683 * policy_nodemask(), but it's possible to race with cpuset update in 4684 * such a way the check therein was true, and then it became false 4685 * before we got our cpuset_mems_cookie here. 4686 * This assumes that for all allocations, ac->nodemask can come only 4687 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4688 * when it does not intersect with the cpuset restrictions) or the 4689 * caller can deal with a violated nodemask. 4690 */ 4691 if (cpusets_enabled() && ac->nodemask && 4692 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4693 ac->nodemask = NULL; 4694 return true; 4695 } 4696 4697 /* 4698 * When updating a task's mems_allowed or mempolicy nodemask, it is 4699 * possible to race with parallel threads in such a way that our 4700 * allocation can fail while the mask is being updated. If we are about 4701 * to fail, check if the cpuset changed during allocation and if so, 4702 * retry. 4703 */ 4704 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4705 return true; 4706 4707 return false; 4708 } 4709 4710 static inline struct page * 4711 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4712 struct alloc_context *ac) 4713 { 4714 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4715 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4716 struct page *page = NULL; 4717 unsigned int alloc_flags; 4718 unsigned long did_some_progress; 4719 enum compact_priority compact_priority; 4720 enum compact_result compact_result; 4721 int compaction_retries; 4722 int no_progress_loops; 4723 unsigned int cpuset_mems_cookie; 4724 int reserve_flags; 4725 4726 /* 4727 * We also sanity check to catch abuse of atomic reserves being used by 4728 * callers that are not in atomic context. 4729 */ 4730 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4731 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4732 gfp_mask &= ~__GFP_ATOMIC; 4733 4734 retry_cpuset: 4735 compaction_retries = 0; 4736 no_progress_loops = 0; 4737 compact_priority = DEF_COMPACT_PRIORITY; 4738 cpuset_mems_cookie = read_mems_allowed_begin(); 4739 4740 /* 4741 * The fast path uses conservative alloc_flags to succeed only until 4742 * kswapd needs to be woken up, and to avoid the cost of setting up 4743 * alloc_flags precisely. So we do that now. 4744 */ 4745 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4746 4747 /* 4748 * We need to recalculate the starting point for the zonelist iterator 4749 * because we might have used different nodemask in the fast path, or 4750 * there was a cpuset modification and we are retrying - otherwise we 4751 * could end up iterating over non-eligible zones endlessly. 4752 */ 4753 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4754 ac->highest_zoneidx, ac->nodemask); 4755 if (!ac->preferred_zoneref->zone) 4756 goto nopage; 4757 4758 if (alloc_flags & ALLOC_KSWAPD) 4759 wake_all_kswapds(order, gfp_mask, ac); 4760 4761 /* 4762 * The adjusted alloc_flags might result in immediate success, so try 4763 * that first 4764 */ 4765 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4766 if (page) 4767 goto got_pg; 4768 4769 /* 4770 * For costly allocations, try direct compaction first, as it's likely 4771 * that we have enough base pages and don't need to reclaim. For non- 4772 * movable high-order allocations, do that as well, as compaction will 4773 * try prevent permanent fragmentation by migrating from blocks of the 4774 * same migratetype. 4775 * Don't try this for allocations that are allowed to ignore 4776 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4777 */ 4778 if (can_direct_reclaim && 4779 (costly_order || 4780 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4781 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4782 page = __alloc_pages_direct_compact(gfp_mask, order, 4783 alloc_flags, ac, 4784 INIT_COMPACT_PRIORITY, 4785 &compact_result); 4786 if (page) 4787 goto got_pg; 4788 4789 /* 4790 * Checks for costly allocations with __GFP_NORETRY, which 4791 * includes some THP page fault allocations 4792 */ 4793 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4794 /* 4795 * If allocating entire pageblock(s) and compaction 4796 * failed because all zones are below low watermarks 4797 * or is prohibited because it recently failed at this 4798 * order, fail immediately unless the allocator has 4799 * requested compaction and reclaim retry. 4800 * 4801 * Reclaim is 4802 * - potentially very expensive because zones are far 4803 * below their low watermarks or this is part of very 4804 * bursty high order allocations, 4805 * - not guaranteed to help because isolate_freepages() 4806 * may not iterate over freed pages as part of its 4807 * linear scan, and 4808 * - unlikely to make entire pageblocks free on its 4809 * own. 4810 */ 4811 if (compact_result == COMPACT_SKIPPED || 4812 compact_result == COMPACT_DEFERRED) 4813 goto nopage; 4814 4815 /* 4816 * Looks like reclaim/compaction is worth trying, but 4817 * sync compaction could be very expensive, so keep 4818 * using async compaction. 4819 */ 4820 compact_priority = INIT_COMPACT_PRIORITY; 4821 } 4822 } 4823 4824 retry: 4825 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4826 if (alloc_flags & ALLOC_KSWAPD) 4827 wake_all_kswapds(order, gfp_mask, ac); 4828 4829 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4830 if (reserve_flags) 4831 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags); 4832 4833 /* 4834 * Reset the nodemask and zonelist iterators if memory policies can be 4835 * ignored. These allocations are high priority and system rather than 4836 * user oriented. 4837 */ 4838 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4839 ac->nodemask = NULL; 4840 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4841 ac->highest_zoneidx, ac->nodemask); 4842 } 4843 4844 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4845 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4846 if (page) 4847 goto got_pg; 4848 4849 /* Caller is not willing to reclaim, we can't balance anything */ 4850 if (!can_direct_reclaim) 4851 goto nopage; 4852 4853 /* Avoid recursion of direct reclaim */ 4854 if (current->flags & PF_MEMALLOC) 4855 goto nopage; 4856 4857 /* Try direct reclaim and then allocating */ 4858 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4859 &did_some_progress); 4860 if (page) 4861 goto got_pg; 4862 4863 /* Try direct compaction and then allocating */ 4864 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4865 compact_priority, &compact_result); 4866 if (page) 4867 goto got_pg; 4868 4869 /* Do not loop if specifically requested */ 4870 if (gfp_mask & __GFP_NORETRY) 4871 goto nopage; 4872 4873 /* 4874 * Do not retry costly high order allocations unless they are 4875 * __GFP_RETRY_MAYFAIL 4876 */ 4877 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4878 goto nopage; 4879 4880 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4881 did_some_progress > 0, &no_progress_loops)) 4882 goto retry; 4883 4884 /* 4885 * It doesn't make any sense to retry for the compaction if the order-0 4886 * reclaim is not able to make any progress because the current 4887 * implementation of the compaction depends on the sufficient amount 4888 * of free memory (see __compaction_suitable) 4889 */ 4890 if (did_some_progress > 0 && 4891 should_compact_retry(ac, order, alloc_flags, 4892 compact_result, &compact_priority, 4893 &compaction_retries)) 4894 goto retry; 4895 4896 4897 /* Deal with possible cpuset update races before we start OOM killing */ 4898 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4899 goto retry_cpuset; 4900 4901 /* Reclaim has failed us, start killing things */ 4902 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4903 if (page) 4904 goto got_pg; 4905 4906 /* Avoid allocations with no watermarks from looping endlessly */ 4907 if (tsk_is_oom_victim(current) && 4908 (alloc_flags & ALLOC_OOM || 4909 (gfp_mask & __GFP_NOMEMALLOC))) 4910 goto nopage; 4911 4912 /* Retry as long as the OOM killer is making progress */ 4913 if (did_some_progress) { 4914 no_progress_loops = 0; 4915 goto retry; 4916 } 4917 4918 nopage: 4919 /* Deal with possible cpuset update races before we fail */ 4920 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4921 goto retry_cpuset; 4922 4923 /* 4924 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4925 * we always retry 4926 */ 4927 if (gfp_mask & __GFP_NOFAIL) { 4928 /* 4929 * All existing users of the __GFP_NOFAIL are blockable, so warn 4930 * of any new users that actually require GFP_NOWAIT 4931 */ 4932 if (WARN_ON_ONCE(!can_direct_reclaim)) 4933 goto fail; 4934 4935 /* 4936 * PF_MEMALLOC request from this context is rather bizarre 4937 * because we cannot reclaim anything and only can loop waiting 4938 * for somebody to do a work for us 4939 */ 4940 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4941 4942 /* 4943 * non failing costly orders are a hard requirement which we 4944 * are not prepared for much so let's warn about these users 4945 * so that we can identify them and convert them to something 4946 * else. 4947 */ 4948 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4949 4950 /* 4951 * Help non-failing allocations by giving them access to memory 4952 * reserves but do not use ALLOC_NO_WATERMARKS because this 4953 * could deplete whole memory reserves which would just make 4954 * the situation worse 4955 */ 4956 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4957 if (page) 4958 goto got_pg; 4959 4960 cond_resched(); 4961 goto retry; 4962 } 4963 fail: 4964 warn_alloc(gfp_mask, ac->nodemask, 4965 "page allocation failure: order:%u", order); 4966 got_pg: 4967 return page; 4968 } 4969 4970 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4971 int preferred_nid, nodemask_t *nodemask, 4972 struct alloc_context *ac, gfp_t *alloc_gfp, 4973 unsigned int *alloc_flags) 4974 { 4975 ac->highest_zoneidx = gfp_zone(gfp_mask); 4976 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4977 ac->nodemask = nodemask; 4978 ac->migratetype = gfp_migratetype(gfp_mask); 4979 4980 if (cpusets_enabled()) { 4981 *alloc_gfp |= __GFP_HARDWALL; 4982 /* 4983 * When we are in the interrupt context, it is irrelevant 4984 * to the current task context. It means that any node ok. 4985 */ 4986 if (!in_interrupt() && !ac->nodemask) 4987 ac->nodemask = &cpuset_current_mems_allowed; 4988 else 4989 *alloc_flags |= ALLOC_CPUSET; 4990 } 4991 4992 fs_reclaim_acquire(gfp_mask); 4993 fs_reclaim_release(gfp_mask); 4994 4995 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4996 4997 if (should_fail_alloc_page(gfp_mask, order)) 4998 return false; 4999 5000 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5001 5002 /* Dirty zone balancing only done in the fast path */ 5003 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5004 5005 /* 5006 * The preferred zone is used for statistics but crucially it is 5007 * also used as the starting point for the zonelist iterator. It 5008 * may get reset for allocations that ignore memory policies. 5009 */ 5010 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5011 ac->highest_zoneidx, ac->nodemask); 5012 5013 return true; 5014 } 5015 5016 /* 5017 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5018 * @gfp: GFP flags for the allocation 5019 * @preferred_nid: The preferred NUMA node ID to allocate from 5020 * @nodemask: Set of nodes to allocate from, may be NULL 5021 * @nr_pages: The number of pages desired on the list or array 5022 * @page_list: Optional list to store the allocated pages 5023 * @page_array: Optional array to store the pages 5024 * 5025 * This is a batched version of the page allocator that attempts to 5026 * allocate nr_pages quickly. Pages are added to page_list if page_list 5027 * is not NULL, otherwise it is assumed that the page_array is valid. 5028 * 5029 * For lists, nr_pages is the number of pages that should be allocated. 5030 * 5031 * For arrays, only NULL elements are populated with pages and nr_pages 5032 * is the maximum number of pages that will be stored in the array. 5033 * 5034 * Returns the number of pages on the list or array. 5035 */ 5036 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5037 nodemask_t *nodemask, int nr_pages, 5038 struct list_head *page_list, 5039 struct page **page_array) 5040 { 5041 struct page *page; 5042 unsigned long flags; 5043 struct zone *zone; 5044 struct zoneref *z; 5045 struct per_cpu_pages *pcp; 5046 struct list_head *pcp_list; 5047 struct alloc_context ac; 5048 gfp_t alloc_gfp; 5049 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5050 int nr_populated = 0; 5051 5052 if (unlikely(nr_pages <= 0)) 5053 return 0; 5054 5055 /* 5056 * Skip populated array elements to determine if any pages need 5057 * to be allocated before disabling IRQs. 5058 */ 5059 while (page_array && page_array[nr_populated] && nr_populated < nr_pages) 5060 nr_populated++; 5061 5062 /* Use the single page allocator for one page. */ 5063 if (nr_pages - nr_populated == 1) 5064 goto failed; 5065 5066 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5067 gfp &= gfp_allowed_mask; 5068 alloc_gfp = gfp; 5069 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5070 return 0; 5071 gfp = alloc_gfp; 5072 5073 /* Find an allowed local zone that meets the low watermark. */ 5074 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5075 unsigned long mark; 5076 5077 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5078 !__cpuset_zone_allowed(zone, gfp)) { 5079 continue; 5080 } 5081 5082 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5083 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5084 goto failed; 5085 } 5086 5087 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5088 if (zone_watermark_fast(zone, 0, mark, 5089 zonelist_zone_idx(ac.preferred_zoneref), 5090 alloc_flags, gfp)) { 5091 break; 5092 } 5093 } 5094 5095 /* 5096 * If there are no allowed local zones that meets the watermarks then 5097 * try to allocate a single page and reclaim if necessary. 5098 */ 5099 if (unlikely(!zone)) 5100 goto failed; 5101 5102 /* Attempt the batch allocation */ 5103 local_irq_save(flags); 5104 pcp = &this_cpu_ptr(zone->pageset)->pcp; 5105 pcp_list = &pcp->lists[ac.migratetype]; 5106 5107 while (nr_populated < nr_pages) { 5108 5109 /* Skip existing pages */ 5110 if (page_array && page_array[nr_populated]) { 5111 nr_populated++; 5112 continue; 5113 } 5114 5115 page = __rmqueue_pcplist(zone, ac.migratetype, alloc_flags, 5116 pcp, pcp_list); 5117 if (unlikely(!page)) { 5118 /* Try and get at least one page */ 5119 if (!nr_populated) 5120 goto failed_irq; 5121 break; 5122 } 5123 5124 /* 5125 * Ideally this would be batched but the best way to do 5126 * that cheaply is to first convert zone_statistics to 5127 * be inaccurate per-cpu counter like vm_events to avoid 5128 * a RMW cycle then do the accounting with IRQs enabled. 5129 */ 5130 __count_zid_vm_events(PGALLOC, zone_idx(zone), 1); 5131 zone_statistics(ac.preferred_zoneref->zone, zone); 5132 5133 prep_new_page(page, 0, gfp, 0); 5134 if (page_list) 5135 list_add(&page->lru, page_list); 5136 else 5137 page_array[nr_populated] = page; 5138 nr_populated++; 5139 } 5140 5141 local_irq_restore(flags); 5142 5143 return nr_populated; 5144 5145 failed_irq: 5146 local_irq_restore(flags); 5147 5148 failed: 5149 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5150 if (page) { 5151 if (page_list) 5152 list_add(&page->lru, page_list); 5153 else 5154 page_array[nr_populated] = page; 5155 nr_populated++; 5156 } 5157 5158 return nr_populated; 5159 } 5160 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5161 5162 /* 5163 * This is the 'heart' of the zoned buddy allocator. 5164 */ 5165 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5166 nodemask_t *nodemask) 5167 { 5168 struct page *page; 5169 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5170 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5171 struct alloc_context ac = { }; 5172 5173 /* 5174 * There are several places where we assume that the order value is sane 5175 * so bail out early if the request is out of bound. 5176 */ 5177 if (unlikely(order >= MAX_ORDER)) { 5178 WARN_ON_ONCE(!(gfp & __GFP_NOWARN)); 5179 return NULL; 5180 } 5181 5182 gfp &= gfp_allowed_mask; 5183 /* 5184 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5185 * resp. GFP_NOIO which has to be inherited for all allocation requests 5186 * from a particular context which has been marked by 5187 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5188 * movable zones are not used during allocation. 5189 */ 5190 gfp = current_gfp_context(gfp); 5191 alloc_gfp = gfp; 5192 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5193 &alloc_gfp, &alloc_flags)) 5194 return NULL; 5195 5196 /* 5197 * Forbid the first pass from falling back to types that fragment 5198 * memory until all local zones are considered. 5199 */ 5200 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5201 5202 /* First allocation attempt */ 5203 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5204 if (likely(page)) 5205 goto out; 5206 5207 alloc_gfp = gfp; 5208 ac.spread_dirty_pages = false; 5209 5210 /* 5211 * Restore the original nodemask if it was potentially replaced with 5212 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5213 */ 5214 ac.nodemask = nodemask; 5215 5216 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5217 5218 out: 5219 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5220 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5221 __free_pages(page, order); 5222 page = NULL; 5223 } 5224 5225 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5226 5227 return page; 5228 } 5229 EXPORT_SYMBOL(__alloc_pages); 5230 5231 /* 5232 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5233 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5234 * you need to access high mem. 5235 */ 5236 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5237 { 5238 struct page *page; 5239 5240 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5241 if (!page) 5242 return 0; 5243 return (unsigned long) page_address(page); 5244 } 5245 EXPORT_SYMBOL(__get_free_pages); 5246 5247 unsigned long get_zeroed_page(gfp_t gfp_mask) 5248 { 5249 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5250 } 5251 EXPORT_SYMBOL(get_zeroed_page); 5252 5253 static inline void free_the_page(struct page *page, unsigned int order) 5254 { 5255 if (order == 0) /* Via pcp? */ 5256 free_unref_page(page); 5257 else 5258 __free_pages_ok(page, order, FPI_NONE); 5259 } 5260 5261 /** 5262 * __free_pages - Free pages allocated with alloc_pages(). 5263 * @page: The page pointer returned from alloc_pages(). 5264 * @order: The order of the allocation. 5265 * 5266 * This function can free multi-page allocations that are not compound 5267 * pages. It does not check that the @order passed in matches that of 5268 * the allocation, so it is easy to leak memory. Freeing more memory 5269 * than was allocated will probably emit a warning. 5270 * 5271 * If the last reference to this page is speculative, it will be released 5272 * by put_page() which only frees the first page of a non-compound 5273 * allocation. To prevent the remaining pages from being leaked, we free 5274 * the subsequent pages here. If you want to use the page's reference 5275 * count to decide when to free the allocation, you should allocate a 5276 * compound page, and use put_page() instead of __free_pages(). 5277 * 5278 * Context: May be called in interrupt context or while holding a normal 5279 * spinlock, but not in NMI context or while holding a raw spinlock. 5280 */ 5281 void __free_pages(struct page *page, unsigned int order) 5282 { 5283 if (put_page_testzero(page)) 5284 free_the_page(page, order); 5285 else if (!PageHead(page)) 5286 while (order-- > 0) 5287 free_the_page(page + (1 << order), order); 5288 } 5289 EXPORT_SYMBOL(__free_pages); 5290 5291 void free_pages(unsigned long addr, unsigned int order) 5292 { 5293 if (addr != 0) { 5294 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5295 __free_pages(virt_to_page((void *)addr), order); 5296 } 5297 } 5298 5299 EXPORT_SYMBOL(free_pages); 5300 5301 /* 5302 * Page Fragment: 5303 * An arbitrary-length arbitrary-offset area of memory which resides 5304 * within a 0 or higher order page. Multiple fragments within that page 5305 * are individually refcounted, in the page's reference counter. 5306 * 5307 * The page_frag functions below provide a simple allocation framework for 5308 * page fragments. This is used by the network stack and network device 5309 * drivers to provide a backing region of memory for use as either an 5310 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5311 */ 5312 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5313 gfp_t gfp_mask) 5314 { 5315 struct page *page = NULL; 5316 gfp_t gfp = gfp_mask; 5317 5318 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5319 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5320 __GFP_NOMEMALLOC; 5321 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5322 PAGE_FRAG_CACHE_MAX_ORDER); 5323 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5324 #endif 5325 if (unlikely(!page)) 5326 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5327 5328 nc->va = page ? page_address(page) : NULL; 5329 5330 return page; 5331 } 5332 5333 void __page_frag_cache_drain(struct page *page, unsigned int count) 5334 { 5335 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5336 5337 if (page_ref_sub_and_test(page, count)) 5338 free_the_page(page, compound_order(page)); 5339 } 5340 EXPORT_SYMBOL(__page_frag_cache_drain); 5341 5342 void *page_frag_alloc_align(struct page_frag_cache *nc, 5343 unsigned int fragsz, gfp_t gfp_mask, 5344 unsigned int align_mask) 5345 { 5346 unsigned int size = PAGE_SIZE; 5347 struct page *page; 5348 int offset; 5349 5350 if (unlikely(!nc->va)) { 5351 refill: 5352 page = __page_frag_cache_refill(nc, gfp_mask); 5353 if (!page) 5354 return NULL; 5355 5356 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5357 /* if size can vary use size else just use PAGE_SIZE */ 5358 size = nc->size; 5359 #endif 5360 /* Even if we own the page, we do not use atomic_set(). 5361 * This would break get_page_unless_zero() users. 5362 */ 5363 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5364 5365 /* reset page count bias and offset to start of new frag */ 5366 nc->pfmemalloc = page_is_pfmemalloc(page); 5367 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5368 nc->offset = size; 5369 } 5370 5371 offset = nc->offset - fragsz; 5372 if (unlikely(offset < 0)) { 5373 page = virt_to_page(nc->va); 5374 5375 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5376 goto refill; 5377 5378 if (unlikely(nc->pfmemalloc)) { 5379 free_the_page(page, compound_order(page)); 5380 goto refill; 5381 } 5382 5383 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5384 /* if size can vary use size else just use PAGE_SIZE */ 5385 size = nc->size; 5386 #endif 5387 /* OK, page count is 0, we can safely set it */ 5388 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5389 5390 /* reset page count bias and offset to start of new frag */ 5391 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5392 offset = size - fragsz; 5393 } 5394 5395 nc->pagecnt_bias--; 5396 offset &= align_mask; 5397 nc->offset = offset; 5398 5399 return nc->va + offset; 5400 } 5401 EXPORT_SYMBOL(page_frag_alloc_align); 5402 5403 /* 5404 * Frees a page fragment allocated out of either a compound or order 0 page. 5405 */ 5406 void page_frag_free(void *addr) 5407 { 5408 struct page *page = virt_to_head_page(addr); 5409 5410 if (unlikely(put_page_testzero(page))) 5411 free_the_page(page, compound_order(page)); 5412 } 5413 EXPORT_SYMBOL(page_frag_free); 5414 5415 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5416 size_t size) 5417 { 5418 if (addr) { 5419 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5420 unsigned long used = addr + PAGE_ALIGN(size); 5421 5422 split_page(virt_to_page((void *)addr), order); 5423 while (used < alloc_end) { 5424 free_page(used); 5425 used += PAGE_SIZE; 5426 } 5427 } 5428 return (void *)addr; 5429 } 5430 5431 /** 5432 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5433 * @size: the number of bytes to allocate 5434 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5435 * 5436 * This function is similar to alloc_pages(), except that it allocates the 5437 * minimum number of pages to satisfy the request. alloc_pages() can only 5438 * allocate memory in power-of-two pages. 5439 * 5440 * This function is also limited by MAX_ORDER. 5441 * 5442 * Memory allocated by this function must be released by free_pages_exact(). 5443 * 5444 * Return: pointer to the allocated area or %NULL in case of error. 5445 */ 5446 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5447 { 5448 unsigned int order = get_order(size); 5449 unsigned long addr; 5450 5451 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5452 gfp_mask &= ~__GFP_COMP; 5453 5454 addr = __get_free_pages(gfp_mask, order); 5455 return make_alloc_exact(addr, order, size); 5456 } 5457 EXPORT_SYMBOL(alloc_pages_exact); 5458 5459 /** 5460 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5461 * pages on a node. 5462 * @nid: the preferred node ID where memory should be allocated 5463 * @size: the number of bytes to allocate 5464 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5465 * 5466 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5467 * back. 5468 * 5469 * Return: pointer to the allocated area or %NULL in case of error. 5470 */ 5471 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5472 { 5473 unsigned int order = get_order(size); 5474 struct page *p; 5475 5476 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5477 gfp_mask &= ~__GFP_COMP; 5478 5479 p = alloc_pages_node(nid, gfp_mask, order); 5480 if (!p) 5481 return NULL; 5482 return make_alloc_exact((unsigned long)page_address(p), order, size); 5483 } 5484 5485 /** 5486 * free_pages_exact - release memory allocated via alloc_pages_exact() 5487 * @virt: the value returned by alloc_pages_exact. 5488 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5489 * 5490 * Release the memory allocated by a previous call to alloc_pages_exact. 5491 */ 5492 void free_pages_exact(void *virt, size_t size) 5493 { 5494 unsigned long addr = (unsigned long)virt; 5495 unsigned long end = addr + PAGE_ALIGN(size); 5496 5497 while (addr < end) { 5498 free_page(addr); 5499 addr += PAGE_SIZE; 5500 } 5501 } 5502 EXPORT_SYMBOL(free_pages_exact); 5503 5504 /** 5505 * nr_free_zone_pages - count number of pages beyond high watermark 5506 * @offset: The zone index of the highest zone 5507 * 5508 * nr_free_zone_pages() counts the number of pages which are beyond the 5509 * high watermark within all zones at or below a given zone index. For each 5510 * zone, the number of pages is calculated as: 5511 * 5512 * nr_free_zone_pages = managed_pages - high_pages 5513 * 5514 * Return: number of pages beyond high watermark. 5515 */ 5516 static unsigned long nr_free_zone_pages(int offset) 5517 { 5518 struct zoneref *z; 5519 struct zone *zone; 5520 5521 /* Just pick one node, since fallback list is circular */ 5522 unsigned long sum = 0; 5523 5524 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5525 5526 for_each_zone_zonelist(zone, z, zonelist, offset) { 5527 unsigned long size = zone_managed_pages(zone); 5528 unsigned long high = high_wmark_pages(zone); 5529 if (size > high) 5530 sum += size - high; 5531 } 5532 5533 return sum; 5534 } 5535 5536 /** 5537 * nr_free_buffer_pages - count number of pages beyond high watermark 5538 * 5539 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5540 * watermark within ZONE_DMA and ZONE_NORMAL. 5541 * 5542 * Return: number of pages beyond high watermark within ZONE_DMA and 5543 * ZONE_NORMAL. 5544 */ 5545 unsigned long nr_free_buffer_pages(void) 5546 { 5547 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5548 } 5549 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5550 5551 static inline void show_node(struct zone *zone) 5552 { 5553 if (IS_ENABLED(CONFIG_NUMA)) 5554 printk("Node %d ", zone_to_nid(zone)); 5555 } 5556 5557 long si_mem_available(void) 5558 { 5559 long available; 5560 unsigned long pagecache; 5561 unsigned long wmark_low = 0; 5562 unsigned long pages[NR_LRU_LISTS]; 5563 unsigned long reclaimable; 5564 struct zone *zone; 5565 int lru; 5566 5567 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5568 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5569 5570 for_each_zone(zone) 5571 wmark_low += low_wmark_pages(zone); 5572 5573 /* 5574 * Estimate the amount of memory available for userspace allocations, 5575 * without causing swapping. 5576 */ 5577 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5578 5579 /* 5580 * Not all the page cache can be freed, otherwise the system will 5581 * start swapping. Assume at least half of the page cache, or the 5582 * low watermark worth of cache, needs to stay. 5583 */ 5584 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5585 pagecache -= min(pagecache / 2, wmark_low); 5586 available += pagecache; 5587 5588 /* 5589 * Part of the reclaimable slab and other kernel memory consists of 5590 * items that are in use, and cannot be freed. Cap this estimate at the 5591 * low watermark. 5592 */ 5593 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5594 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5595 available += reclaimable - min(reclaimable / 2, wmark_low); 5596 5597 if (available < 0) 5598 available = 0; 5599 return available; 5600 } 5601 EXPORT_SYMBOL_GPL(si_mem_available); 5602 5603 void si_meminfo(struct sysinfo *val) 5604 { 5605 val->totalram = totalram_pages(); 5606 val->sharedram = global_node_page_state(NR_SHMEM); 5607 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5608 val->bufferram = nr_blockdev_pages(); 5609 val->totalhigh = totalhigh_pages(); 5610 val->freehigh = nr_free_highpages(); 5611 val->mem_unit = PAGE_SIZE; 5612 } 5613 5614 EXPORT_SYMBOL(si_meminfo); 5615 5616 #ifdef CONFIG_NUMA 5617 void si_meminfo_node(struct sysinfo *val, int nid) 5618 { 5619 int zone_type; /* needs to be signed */ 5620 unsigned long managed_pages = 0; 5621 unsigned long managed_highpages = 0; 5622 unsigned long free_highpages = 0; 5623 pg_data_t *pgdat = NODE_DATA(nid); 5624 5625 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5626 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5627 val->totalram = managed_pages; 5628 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5629 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5630 #ifdef CONFIG_HIGHMEM 5631 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5632 struct zone *zone = &pgdat->node_zones[zone_type]; 5633 5634 if (is_highmem(zone)) { 5635 managed_highpages += zone_managed_pages(zone); 5636 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5637 } 5638 } 5639 val->totalhigh = managed_highpages; 5640 val->freehigh = free_highpages; 5641 #else 5642 val->totalhigh = managed_highpages; 5643 val->freehigh = free_highpages; 5644 #endif 5645 val->mem_unit = PAGE_SIZE; 5646 } 5647 #endif 5648 5649 /* 5650 * Determine whether the node should be displayed or not, depending on whether 5651 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5652 */ 5653 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5654 { 5655 if (!(flags & SHOW_MEM_FILTER_NODES)) 5656 return false; 5657 5658 /* 5659 * no node mask - aka implicit memory numa policy. Do not bother with 5660 * the synchronization - read_mems_allowed_begin - because we do not 5661 * have to be precise here. 5662 */ 5663 if (!nodemask) 5664 nodemask = &cpuset_current_mems_allowed; 5665 5666 return !node_isset(nid, *nodemask); 5667 } 5668 5669 #define K(x) ((x) << (PAGE_SHIFT-10)) 5670 5671 static void show_migration_types(unsigned char type) 5672 { 5673 static const char types[MIGRATE_TYPES] = { 5674 [MIGRATE_UNMOVABLE] = 'U', 5675 [MIGRATE_MOVABLE] = 'M', 5676 [MIGRATE_RECLAIMABLE] = 'E', 5677 [MIGRATE_HIGHATOMIC] = 'H', 5678 #ifdef CONFIG_CMA 5679 [MIGRATE_CMA] = 'C', 5680 #endif 5681 #ifdef CONFIG_MEMORY_ISOLATION 5682 [MIGRATE_ISOLATE] = 'I', 5683 #endif 5684 }; 5685 char tmp[MIGRATE_TYPES + 1]; 5686 char *p = tmp; 5687 int i; 5688 5689 for (i = 0; i < MIGRATE_TYPES; i++) { 5690 if (type & (1 << i)) 5691 *p++ = types[i]; 5692 } 5693 5694 *p = '\0'; 5695 printk(KERN_CONT "(%s) ", tmp); 5696 } 5697 5698 /* 5699 * Show free area list (used inside shift_scroll-lock stuff) 5700 * We also calculate the percentage fragmentation. We do this by counting the 5701 * memory on each free list with the exception of the first item on the list. 5702 * 5703 * Bits in @filter: 5704 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5705 * cpuset. 5706 */ 5707 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5708 { 5709 unsigned long free_pcp = 0; 5710 int cpu; 5711 struct zone *zone; 5712 pg_data_t *pgdat; 5713 5714 for_each_populated_zone(zone) { 5715 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5716 continue; 5717 5718 for_each_online_cpu(cpu) 5719 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5720 } 5721 5722 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5723 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5724 " unevictable:%lu dirty:%lu writeback:%lu\n" 5725 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5726 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5727 " free:%lu free_pcp:%lu free_cma:%lu\n", 5728 global_node_page_state(NR_ACTIVE_ANON), 5729 global_node_page_state(NR_INACTIVE_ANON), 5730 global_node_page_state(NR_ISOLATED_ANON), 5731 global_node_page_state(NR_ACTIVE_FILE), 5732 global_node_page_state(NR_INACTIVE_FILE), 5733 global_node_page_state(NR_ISOLATED_FILE), 5734 global_node_page_state(NR_UNEVICTABLE), 5735 global_node_page_state(NR_FILE_DIRTY), 5736 global_node_page_state(NR_WRITEBACK), 5737 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5738 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5739 global_node_page_state(NR_FILE_MAPPED), 5740 global_node_page_state(NR_SHMEM), 5741 global_node_page_state(NR_PAGETABLE), 5742 global_zone_page_state(NR_BOUNCE), 5743 global_zone_page_state(NR_FREE_PAGES), 5744 free_pcp, 5745 global_zone_page_state(NR_FREE_CMA_PAGES)); 5746 5747 for_each_online_pgdat(pgdat) { 5748 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5749 continue; 5750 5751 printk("Node %d" 5752 " active_anon:%lukB" 5753 " inactive_anon:%lukB" 5754 " active_file:%lukB" 5755 " inactive_file:%lukB" 5756 " unevictable:%lukB" 5757 " isolated(anon):%lukB" 5758 " isolated(file):%lukB" 5759 " mapped:%lukB" 5760 " dirty:%lukB" 5761 " writeback:%lukB" 5762 " shmem:%lukB" 5763 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5764 " shmem_thp: %lukB" 5765 " shmem_pmdmapped: %lukB" 5766 " anon_thp: %lukB" 5767 #endif 5768 " writeback_tmp:%lukB" 5769 " kernel_stack:%lukB" 5770 #ifdef CONFIG_SHADOW_CALL_STACK 5771 " shadow_call_stack:%lukB" 5772 #endif 5773 " pagetables:%lukB" 5774 " all_unreclaimable? %s" 5775 "\n", 5776 pgdat->node_id, 5777 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5778 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5779 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5780 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5781 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5782 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5783 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5784 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5785 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5786 K(node_page_state(pgdat, NR_WRITEBACK)), 5787 K(node_page_state(pgdat, NR_SHMEM)), 5788 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5789 K(node_page_state(pgdat, NR_SHMEM_THPS)), 5790 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 5791 K(node_page_state(pgdat, NR_ANON_THPS)), 5792 #endif 5793 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5794 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5795 #ifdef CONFIG_SHADOW_CALL_STACK 5796 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5797 #endif 5798 K(node_page_state(pgdat, NR_PAGETABLE)), 5799 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5800 "yes" : "no"); 5801 } 5802 5803 for_each_populated_zone(zone) { 5804 int i; 5805 5806 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5807 continue; 5808 5809 free_pcp = 0; 5810 for_each_online_cpu(cpu) 5811 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5812 5813 show_node(zone); 5814 printk(KERN_CONT 5815 "%s" 5816 " free:%lukB" 5817 " min:%lukB" 5818 " low:%lukB" 5819 " high:%lukB" 5820 " reserved_highatomic:%luKB" 5821 " active_anon:%lukB" 5822 " inactive_anon:%lukB" 5823 " active_file:%lukB" 5824 " inactive_file:%lukB" 5825 " unevictable:%lukB" 5826 " writepending:%lukB" 5827 " present:%lukB" 5828 " managed:%lukB" 5829 " mlocked:%lukB" 5830 " bounce:%lukB" 5831 " free_pcp:%lukB" 5832 " local_pcp:%ukB" 5833 " free_cma:%lukB" 5834 "\n", 5835 zone->name, 5836 K(zone_page_state(zone, NR_FREE_PAGES)), 5837 K(min_wmark_pages(zone)), 5838 K(low_wmark_pages(zone)), 5839 K(high_wmark_pages(zone)), 5840 K(zone->nr_reserved_highatomic), 5841 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5842 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5843 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5844 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5845 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5846 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5847 K(zone->present_pages), 5848 K(zone_managed_pages(zone)), 5849 K(zone_page_state(zone, NR_MLOCK)), 5850 K(zone_page_state(zone, NR_BOUNCE)), 5851 K(free_pcp), 5852 K(this_cpu_read(zone->pageset->pcp.count)), 5853 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5854 printk("lowmem_reserve[]:"); 5855 for (i = 0; i < MAX_NR_ZONES; i++) 5856 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5857 printk(KERN_CONT "\n"); 5858 } 5859 5860 for_each_populated_zone(zone) { 5861 unsigned int order; 5862 unsigned long nr[MAX_ORDER], flags, total = 0; 5863 unsigned char types[MAX_ORDER]; 5864 5865 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5866 continue; 5867 show_node(zone); 5868 printk(KERN_CONT "%s: ", zone->name); 5869 5870 spin_lock_irqsave(&zone->lock, flags); 5871 for (order = 0; order < MAX_ORDER; order++) { 5872 struct free_area *area = &zone->free_area[order]; 5873 int type; 5874 5875 nr[order] = area->nr_free; 5876 total += nr[order] << order; 5877 5878 types[order] = 0; 5879 for (type = 0; type < MIGRATE_TYPES; type++) { 5880 if (!free_area_empty(area, type)) 5881 types[order] |= 1 << type; 5882 } 5883 } 5884 spin_unlock_irqrestore(&zone->lock, flags); 5885 for (order = 0; order < MAX_ORDER; order++) { 5886 printk(KERN_CONT "%lu*%lukB ", 5887 nr[order], K(1UL) << order); 5888 if (nr[order]) 5889 show_migration_types(types[order]); 5890 } 5891 printk(KERN_CONT "= %lukB\n", K(total)); 5892 } 5893 5894 hugetlb_show_meminfo(); 5895 5896 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5897 5898 show_swap_cache_info(); 5899 } 5900 5901 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5902 { 5903 zoneref->zone = zone; 5904 zoneref->zone_idx = zone_idx(zone); 5905 } 5906 5907 /* 5908 * Builds allocation fallback zone lists. 5909 * 5910 * Add all populated zones of a node to the zonelist. 5911 */ 5912 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5913 { 5914 struct zone *zone; 5915 enum zone_type zone_type = MAX_NR_ZONES; 5916 int nr_zones = 0; 5917 5918 do { 5919 zone_type--; 5920 zone = pgdat->node_zones + zone_type; 5921 if (managed_zone(zone)) { 5922 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5923 check_highest_zone(zone_type); 5924 } 5925 } while (zone_type); 5926 5927 return nr_zones; 5928 } 5929 5930 #ifdef CONFIG_NUMA 5931 5932 static int __parse_numa_zonelist_order(char *s) 5933 { 5934 /* 5935 * We used to support different zonelists modes but they turned 5936 * out to be just not useful. Let's keep the warning in place 5937 * if somebody still use the cmd line parameter so that we do 5938 * not fail it silently 5939 */ 5940 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5941 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5942 return -EINVAL; 5943 } 5944 return 0; 5945 } 5946 5947 char numa_zonelist_order[] = "Node"; 5948 5949 /* 5950 * sysctl handler for numa_zonelist_order 5951 */ 5952 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5953 void *buffer, size_t *length, loff_t *ppos) 5954 { 5955 if (write) 5956 return __parse_numa_zonelist_order(buffer); 5957 return proc_dostring(table, write, buffer, length, ppos); 5958 } 5959 5960 5961 #define MAX_NODE_LOAD (nr_online_nodes) 5962 static int node_load[MAX_NUMNODES]; 5963 5964 /** 5965 * find_next_best_node - find the next node that should appear in a given node's fallback list 5966 * @node: node whose fallback list we're appending 5967 * @used_node_mask: nodemask_t of already used nodes 5968 * 5969 * We use a number of factors to determine which is the next node that should 5970 * appear on a given node's fallback list. The node should not have appeared 5971 * already in @node's fallback list, and it should be the next closest node 5972 * according to the distance array (which contains arbitrary distance values 5973 * from each node to each node in the system), and should also prefer nodes 5974 * with no CPUs, since presumably they'll have very little allocation pressure 5975 * on them otherwise. 5976 * 5977 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5978 */ 5979 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5980 { 5981 int n, val; 5982 int min_val = INT_MAX; 5983 int best_node = NUMA_NO_NODE; 5984 5985 /* Use the local node if we haven't already */ 5986 if (!node_isset(node, *used_node_mask)) { 5987 node_set(node, *used_node_mask); 5988 return node; 5989 } 5990 5991 for_each_node_state(n, N_MEMORY) { 5992 5993 /* Don't want a node to appear more than once */ 5994 if (node_isset(n, *used_node_mask)) 5995 continue; 5996 5997 /* Use the distance array to find the distance */ 5998 val = node_distance(node, n); 5999 6000 /* Penalize nodes under us ("prefer the next node") */ 6001 val += (n < node); 6002 6003 /* Give preference to headless and unused nodes */ 6004 if (!cpumask_empty(cpumask_of_node(n))) 6005 val += PENALTY_FOR_NODE_WITH_CPUS; 6006 6007 /* Slight preference for less loaded node */ 6008 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 6009 val += node_load[n]; 6010 6011 if (val < min_val) { 6012 min_val = val; 6013 best_node = n; 6014 } 6015 } 6016 6017 if (best_node >= 0) 6018 node_set(best_node, *used_node_mask); 6019 6020 return best_node; 6021 } 6022 6023 6024 /* 6025 * Build zonelists ordered by node and zones within node. 6026 * This results in maximum locality--normal zone overflows into local 6027 * DMA zone, if any--but risks exhausting DMA zone. 6028 */ 6029 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6030 unsigned nr_nodes) 6031 { 6032 struct zoneref *zonerefs; 6033 int i; 6034 6035 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6036 6037 for (i = 0; i < nr_nodes; i++) { 6038 int nr_zones; 6039 6040 pg_data_t *node = NODE_DATA(node_order[i]); 6041 6042 nr_zones = build_zonerefs_node(node, zonerefs); 6043 zonerefs += nr_zones; 6044 } 6045 zonerefs->zone = NULL; 6046 zonerefs->zone_idx = 0; 6047 } 6048 6049 /* 6050 * Build gfp_thisnode zonelists 6051 */ 6052 static void build_thisnode_zonelists(pg_data_t *pgdat) 6053 { 6054 struct zoneref *zonerefs; 6055 int nr_zones; 6056 6057 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6058 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6059 zonerefs += nr_zones; 6060 zonerefs->zone = NULL; 6061 zonerefs->zone_idx = 0; 6062 } 6063 6064 /* 6065 * Build zonelists ordered by zone and nodes within zones. 6066 * This results in conserving DMA zone[s] until all Normal memory is 6067 * exhausted, but results in overflowing to remote node while memory 6068 * may still exist in local DMA zone. 6069 */ 6070 6071 static void build_zonelists(pg_data_t *pgdat) 6072 { 6073 static int node_order[MAX_NUMNODES]; 6074 int node, load, nr_nodes = 0; 6075 nodemask_t used_mask = NODE_MASK_NONE; 6076 int local_node, prev_node; 6077 6078 /* NUMA-aware ordering of nodes */ 6079 local_node = pgdat->node_id; 6080 load = nr_online_nodes; 6081 prev_node = local_node; 6082 6083 memset(node_order, 0, sizeof(node_order)); 6084 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6085 /* 6086 * We don't want to pressure a particular node. 6087 * So adding penalty to the first node in same 6088 * distance group to make it round-robin. 6089 */ 6090 if (node_distance(local_node, node) != 6091 node_distance(local_node, prev_node)) 6092 node_load[node] = load; 6093 6094 node_order[nr_nodes++] = node; 6095 prev_node = node; 6096 load--; 6097 } 6098 6099 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6100 build_thisnode_zonelists(pgdat); 6101 } 6102 6103 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6104 /* 6105 * Return node id of node used for "local" allocations. 6106 * I.e., first node id of first zone in arg node's generic zonelist. 6107 * Used for initializing percpu 'numa_mem', which is used primarily 6108 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6109 */ 6110 int local_memory_node(int node) 6111 { 6112 struct zoneref *z; 6113 6114 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6115 gfp_zone(GFP_KERNEL), 6116 NULL); 6117 return zone_to_nid(z->zone); 6118 } 6119 #endif 6120 6121 static void setup_min_unmapped_ratio(void); 6122 static void setup_min_slab_ratio(void); 6123 #else /* CONFIG_NUMA */ 6124 6125 static void build_zonelists(pg_data_t *pgdat) 6126 { 6127 int node, local_node; 6128 struct zoneref *zonerefs; 6129 int nr_zones; 6130 6131 local_node = pgdat->node_id; 6132 6133 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6134 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6135 zonerefs += nr_zones; 6136 6137 /* 6138 * Now we build the zonelist so that it contains the zones 6139 * of all the other nodes. 6140 * We don't want to pressure a particular node, so when 6141 * building the zones for node N, we make sure that the 6142 * zones coming right after the local ones are those from 6143 * node N+1 (modulo N) 6144 */ 6145 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6146 if (!node_online(node)) 6147 continue; 6148 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6149 zonerefs += nr_zones; 6150 } 6151 for (node = 0; node < local_node; node++) { 6152 if (!node_online(node)) 6153 continue; 6154 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6155 zonerefs += nr_zones; 6156 } 6157 6158 zonerefs->zone = NULL; 6159 zonerefs->zone_idx = 0; 6160 } 6161 6162 #endif /* CONFIG_NUMA */ 6163 6164 /* 6165 * Boot pageset table. One per cpu which is going to be used for all 6166 * zones and all nodes. The parameters will be set in such a way 6167 * that an item put on a list will immediately be handed over to 6168 * the buddy list. This is safe since pageset manipulation is done 6169 * with interrupts disabled. 6170 * 6171 * The boot_pagesets must be kept even after bootup is complete for 6172 * unused processors and/or zones. They do play a role for bootstrapping 6173 * hotplugged processors. 6174 * 6175 * zoneinfo_show() and maybe other functions do 6176 * not check if the processor is online before following the pageset pointer. 6177 * Other parts of the kernel may not check if the zone is available. 6178 */ 6179 static void pageset_init(struct per_cpu_pageset *p); 6180 /* These effectively disable the pcplists in the boot pageset completely */ 6181 #define BOOT_PAGESET_HIGH 0 6182 #define BOOT_PAGESET_BATCH 1 6183 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 6184 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6185 6186 static void __build_all_zonelists(void *data) 6187 { 6188 int nid; 6189 int __maybe_unused cpu; 6190 pg_data_t *self = data; 6191 static DEFINE_SPINLOCK(lock); 6192 6193 spin_lock(&lock); 6194 6195 #ifdef CONFIG_NUMA 6196 memset(node_load, 0, sizeof(node_load)); 6197 #endif 6198 6199 /* 6200 * This node is hotadded and no memory is yet present. So just 6201 * building zonelists is fine - no need to touch other nodes. 6202 */ 6203 if (self && !node_online(self->node_id)) { 6204 build_zonelists(self); 6205 } else { 6206 for_each_online_node(nid) { 6207 pg_data_t *pgdat = NODE_DATA(nid); 6208 6209 build_zonelists(pgdat); 6210 } 6211 6212 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6213 /* 6214 * We now know the "local memory node" for each node-- 6215 * i.e., the node of the first zone in the generic zonelist. 6216 * Set up numa_mem percpu variable for on-line cpus. During 6217 * boot, only the boot cpu should be on-line; we'll init the 6218 * secondary cpus' numa_mem as they come on-line. During 6219 * node/memory hotplug, we'll fixup all on-line cpus. 6220 */ 6221 for_each_online_cpu(cpu) 6222 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6223 #endif 6224 } 6225 6226 spin_unlock(&lock); 6227 } 6228 6229 static noinline void __init 6230 build_all_zonelists_init(void) 6231 { 6232 int cpu; 6233 6234 __build_all_zonelists(NULL); 6235 6236 /* 6237 * Initialize the boot_pagesets that are going to be used 6238 * for bootstrapping processors. The real pagesets for 6239 * each zone will be allocated later when the per cpu 6240 * allocator is available. 6241 * 6242 * boot_pagesets are used also for bootstrapping offline 6243 * cpus if the system is already booted because the pagesets 6244 * are needed to initialize allocators on a specific cpu too. 6245 * F.e. the percpu allocator needs the page allocator which 6246 * needs the percpu allocator in order to allocate its pagesets 6247 * (a chicken-egg dilemma). 6248 */ 6249 for_each_possible_cpu(cpu) 6250 pageset_init(&per_cpu(boot_pageset, cpu)); 6251 6252 mminit_verify_zonelist(); 6253 cpuset_init_current_mems_allowed(); 6254 } 6255 6256 /* 6257 * unless system_state == SYSTEM_BOOTING. 6258 * 6259 * __ref due to call of __init annotated helper build_all_zonelists_init 6260 * [protected by SYSTEM_BOOTING]. 6261 */ 6262 void __ref build_all_zonelists(pg_data_t *pgdat) 6263 { 6264 unsigned long vm_total_pages; 6265 6266 if (system_state == SYSTEM_BOOTING) { 6267 build_all_zonelists_init(); 6268 } else { 6269 __build_all_zonelists(pgdat); 6270 /* cpuset refresh routine should be here */ 6271 } 6272 /* Get the number of free pages beyond high watermark in all zones. */ 6273 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6274 /* 6275 * Disable grouping by mobility if the number of pages in the 6276 * system is too low to allow the mechanism to work. It would be 6277 * more accurate, but expensive to check per-zone. This check is 6278 * made on memory-hotadd so a system can start with mobility 6279 * disabled and enable it later 6280 */ 6281 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6282 page_group_by_mobility_disabled = 1; 6283 else 6284 page_group_by_mobility_disabled = 0; 6285 6286 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6287 nr_online_nodes, 6288 page_group_by_mobility_disabled ? "off" : "on", 6289 vm_total_pages); 6290 #ifdef CONFIG_NUMA 6291 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6292 #endif 6293 } 6294 6295 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6296 static bool __meminit 6297 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6298 { 6299 static struct memblock_region *r; 6300 6301 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6302 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6303 for_each_mem_region(r) { 6304 if (*pfn < memblock_region_memory_end_pfn(r)) 6305 break; 6306 } 6307 } 6308 if (*pfn >= memblock_region_memory_base_pfn(r) && 6309 memblock_is_mirror(r)) { 6310 *pfn = memblock_region_memory_end_pfn(r); 6311 return true; 6312 } 6313 } 6314 return false; 6315 } 6316 6317 /* 6318 * Initially all pages are reserved - free ones are freed 6319 * up by memblock_free_all() once the early boot process is 6320 * done. Non-atomic initialization, single-pass. 6321 * 6322 * All aligned pageblocks are initialized to the specified migratetype 6323 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6324 * zone stats (e.g., nr_isolate_pageblock) are touched. 6325 */ 6326 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6327 unsigned long start_pfn, unsigned long zone_end_pfn, 6328 enum meminit_context context, 6329 struct vmem_altmap *altmap, int migratetype) 6330 { 6331 unsigned long pfn, end_pfn = start_pfn + size; 6332 struct page *page; 6333 6334 if (highest_memmap_pfn < end_pfn - 1) 6335 highest_memmap_pfn = end_pfn - 1; 6336 6337 #ifdef CONFIG_ZONE_DEVICE 6338 /* 6339 * Honor reservation requested by the driver for this ZONE_DEVICE 6340 * memory. We limit the total number of pages to initialize to just 6341 * those that might contain the memory mapping. We will defer the 6342 * ZONE_DEVICE page initialization until after we have released 6343 * the hotplug lock. 6344 */ 6345 if (zone == ZONE_DEVICE) { 6346 if (!altmap) 6347 return; 6348 6349 if (start_pfn == altmap->base_pfn) 6350 start_pfn += altmap->reserve; 6351 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6352 } 6353 #endif 6354 6355 for (pfn = start_pfn; pfn < end_pfn; ) { 6356 /* 6357 * There can be holes in boot-time mem_map[]s handed to this 6358 * function. They do not exist on hotplugged memory. 6359 */ 6360 if (context == MEMINIT_EARLY) { 6361 if (overlap_memmap_init(zone, &pfn)) 6362 continue; 6363 if (defer_init(nid, pfn, zone_end_pfn)) 6364 break; 6365 } 6366 6367 page = pfn_to_page(pfn); 6368 __init_single_page(page, pfn, zone, nid); 6369 if (context == MEMINIT_HOTPLUG) 6370 __SetPageReserved(page); 6371 6372 /* 6373 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6374 * such that unmovable allocations won't be scattered all 6375 * over the place during system boot. 6376 */ 6377 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6378 set_pageblock_migratetype(page, migratetype); 6379 cond_resched(); 6380 } 6381 pfn++; 6382 } 6383 } 6384 6385 #ifdef CONFIG_ZONE_DEVICE 6386 void __ref memmap_init_zone_device(struct zone *zone, 6387 unsigned long start_pfn, 6388 unsigned long nr_pages, 6389 struct dev_pagemap *pgmap) 6390 { 6391 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6392 struct pglist_data *pgdat = zone->zone_pgdat; 6393 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6394 unsigned long zone_idx = zone_idx(zone); 6395 unsigned long start = jiffies; 6396 int nid = pgdat->node_id; 6397 6398 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6399 return; 6400 6401 /* 6402 * The call to memmap_init_zone should have already taken care 6403 * of the pages reserved for the memmap, so we can just jump to 6404 * the end of that region and start processing the device pages. 6405 */ 6406 if (altmap) { 6407 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6408 nr_pages = end_pfn - start_pfn; 6409 } 6410 6411 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6412 struct page *page = pfn_to_page(pfn); 6413 6414 __init_single_page(page, pfn, zone_idx, nid); 6415 6416 /* 6417 * Mark page reserved as it will need to wait for onlining 6418 * phase for it to be fully associated with a zone. 6419 * 6420 * We can use the non-atomic __set_bit operation for setting 6421 * the flag as we are still initializing the pages. 6422 */ 6423 __SetPageReserved(page); 6424 6425 /* 6426 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6427 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6428 * ever freed or placed on a driver-private list. 6429 */ 6430 page->pgmap = pgmap; 6431 page->zone_device_data = NULL; 6432 6433 /* 6434 * Mark the block movable so that blocks are reserved for 6435 * movable at startup. This will force kernel allocations 6436 * to reserve their blocks rather than leaking throughout 6437 * the address space during boot when many long-lived 6438 * kernel allocations are made. 6439 * 6440 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6441 * because this is done early in section_activate() 6442 */ 6443 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6444 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6445 cond_resched(); 6446 } 6447 } 6448 6449 pr_info("%s initialised %lu pages in %ums\n", __func__, 6450 nr_pages, jiffies_to_msecs(jiffies - start)); 6451 } 6452 6453 #endif 6454 static void __meminit zone_init_free_lists(struct zone *zone) 6455 { 6456 unsigned int order, t; 6457 for_each_migratetype_order(order, t) { 6458 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6459 zone->free_area[order].nr_free = 0; 6460 } 6461 } 6462 6463 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6464 /* 6465 * Only struct pages that correspond to ranges defined by memblock.memory 6466 * are zeroed and initialized by going through __init_single_page() during 6467 * memmap_init_zone(). 6468 * 6469 * But, there could be struct pages that correspond to holes in 6470 * memblock.memory. This can happen because of the following reasons: 6471 * - physical memory bank size is not necessarily the exact multiple of the 6472 * arbitrary section size 6473 * - early reserved memory may not be listed in memblock.memory 6474 * - memory layouts defined with memmap= kernel parameter may not align 6475 * nicely with memmap sections 6476 * 6477 * Explicitly initialize those struct pages so that: 6478 * - PG_Reserved is set 6479 * - zone and node links point to zone and node that span the page if the 6480 * hole is in the middle of a zone 6481 * - zone and node links point to adjacent zone/node if the hole falls on 6482 * the zone boundary; the pages in such holes will be prepended to the 6483 * zone/node above the hole except for the trailing pages in the last 6484 * section that will be appended to the zone/node below. 6485 */ 6486 static u64 __meminit init_unavailable_range(unsigned long spfn, 6487 unsigned long epfn, 6488 int zone, int node) 6489 { 6490 unsigned long pfn; 6491 u64 pgcnt = 0; 6492 6493 for (pfn = spfn; pfn < epfn; pfn++) { 6494 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6495 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6496 + pageblock_nr_pages - 1; 6497 continue; 6498 } 6499 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6500 __SetPageReserved(pfn_to_page(pfn)); 6501 pgcnt++; 6502 } 6503 6504 return pgcnt; 6505 } 6506 #else 6507 static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn, 6508 int zone, int node) 6509 { 6510 return 0; 6511 } 6512 #endif 6513 6514 void __meminit __weak memmap_init_zone(struct zone *zone) 6515 { 6516 unsigned long zone_start_pfn = zone->zone_start_pfn; 6517 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6518 int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6519 static unsigned long hole_pfn; 6520 unsigned long start_pfn, end_pfn; 6521 u64 pgcnt = 0; 6522 6523 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6524 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6525 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6526 6527 if (end_pfn > start_pfn) 6528 memmap_init_range(end_pfn - start_pfn, nid, 6529 zone_id, start_pfn, zone_end_pfn, 6530 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6531 6532 if (hole_pfn < start_pfn) 6533 pgcnt += init_unavailable_range(hole_pfn, start_pfn, 6534 zone_id, nid); 6535 hole_pfn = end_pfn; 6536 } 6537 6538 #ifdef CONFIG_SPARSEMEM 6539 /* 6540 * Initialize the hole in the range [zone_end_pfn, section_end]. 6541 * If zone boundary falls in the middle of a section, this hole 6542 * will be re-initialized during the call to this function for the 6543 * higher zone. 6544 */ 6545 end_pfn = round_up(zone_end_pfn, PAGES_PER_SECTION); 6546 if (hole_pfn < end_pfn) 6547 pgcnt += init_unavailable_range(hole_pfn, end_pfn, 6548 zone_id, nid); 6549 #endif 6550 6551 if (pgcnt) 6552 pr_info(" %s zone: %llu pages in unavailable ranges\n", 6553 zone->name, pgcnt); 6554 } 6555 6556 static int zone_batchsize(struct zone *zone) 6557 { 6558 #ifdef CONFIG_MMU 6559 int batch; 6560 6561 /* 6562 * The per-cpu-pages pools are set to around 1000th of the 6563 * size of the zone. 6564 */ 6565 batch = zone_managed_pages(zone) / 1024; 6566 /* But no more than a meg. */ 6567 if (batch * PAGE_SIZE > 1024 * 1024) 6568 batch = (1024 * 1024) / PAGE_SIZE; 6569 batch /= 4; /* We effectively *= 4 below */ 6570 if (batch < 1) 6571 batch = 1; 6572 6573 /* 6574 * Clamp the batch to a 2^n - 1 value. Having a power 6575 * of 2 value was found to be more likely to have 6576 * suboptimal cache aliasing properties in some cases. 6577 * 6578 * For example if 2 tasks are alternately allocating 6579 * batches of pages, one task can end up with a lot 6580 * of pages of one half of the possible page colors 6581 * and the other with pages of the other colors. 6582 */ 6583 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6584 6585 return batch; 6586 6587 #else 6588 /* The deferral and batching of frees should be suppressed under NOMMU 6589 * conditions. 6590 * 6591 * The problem is that NOMMU needs to be able to allocate large chunks 6592 * of contiguous memory as there's no hardware page translation to 6593 * assemble apparent contiguous memory from discontiguous pages. 6594 * 6595 * Queueing large contiguous runs of pages for batching, however, 6596 * causes the pages to actually be freed in smaller chunks. As there 6597 * can be a significant delay between the individual batches being 6598 * recycled, this leads to the once large chunks of space being 6599 * fragmented and becoming unavailable for high-order allocations. 6600 */ 6601 return 0; 6602 #endif 6603 } 6604 6605 /* 6606 * pcp->high and pcp->batch values are related and generally batch is lower 6607 * than high. They are also related to pcp->count such that count is lower 6608 * than high, and as soon as it reaches high, the pcplist is flushed. 6609 * 6610 * However, guaranteeing these relations at all times would require e.g. write 6611 * barriers here but also careful usage of read barriers at the read side, and 6612 * thus be prone to error and bad for performance. Thus the update only prevents 6613 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6614 * can cope with those fields changing asynchronously, and fully trust only the 6615 * pcp->count field on the local CPU with interrupts disabled. 6616 * 6617 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6618 * outside of boot time (or some other assurance that no concurrent updaters 6619 * exist). 6620 */ 6621 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6622 unsigned long batch) 6623 { 6624 WRITE_ONCE(pcp->batch, batch); 6625 WRITE_ONCE(pcp->high, high); 6626 } 6627 6628 static void pageset_init(struct per_cpu_pageset *p) 6629 { 6630 struct per_cpu_pages *pcp; 6631 int migratetype; 6632 6633 memset(p, 0, sizeof(*p)); 6634 6635 pcp = &p->pcp; 6636 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6637 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6638 6639 /* 6640 * Set batch and high values safe for a boot pageset. A true percpu 6641 * pageset's initialization will update them subsequently. Here we don't 6642 * need to be as careful as pageset_update() as nobody can access the 6643 * pageset yet. 6644 */ 6645 pcp->high = BOOT_PAGESET_HIGH; 6646 pcp->batch = BOOT_PAGESET_BATCH; 6647 } 6648 6649 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 6650 unsigned long batch) 6651 { 6652 struct per_cpu_pageset *p; 6653 int cpu; 6654 6655 for_each_possible_cpu(cpu) { 6656 p = per_cpu_ptr(zone->pageset, cpu); 6657 pageset_update(&p->pcp, high, batch); 6658 } 6659 } 6660 6661 /* 6662 * Calculate and set new high and batch values for all per-cpu pagesets of a 6663 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl. 6664 */ 6665 static void zone_set_pageset_high_and_batch(struct zone *zone) 6666 { 6667 unsigned long new_high, new_batch; 6668 6669 if (percpu_pagelist_fraction) { 6670 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction; 6671 new_batch = max(1UL, new_high / 4); 6672 if ((new_high / 4) > (PAGE_SHIFT * 8)) 6673 new_batch = PAGE_SHIFT * 8; 6674 } else { 6675 new_batch = zone_batchsize(zone); 6676 new_high = 6 * new_batch; 6677 new_batch = max(1UL, 1 * new_batch); 6678 } 6679 6680 if (zone->pageset_high == new_high && 6681 zone->pageset_batch == new_batch) 6682 return; 6683 6684 zone->pageset_high = new_high; 6685 zone->pageset_batch = new_batch; 6686 6687 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 6688 } 6689 6690 void __meminit setup_zone_pageset(struct zone *zone) 6691 { 6692 struct per_cpu_pageset *p; 6693 int cpu; 6694 6695 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6696 for_each_possible_cpu(cpu) { 6697 p = per_cpu_ptr(zone->pageset, cpu); 6698 pageset_init(p); 6699 } 6700 6701 zone_set_pageset_high_and_batch(zone); 6702 } 6703 6704 /* 6705 * Allocate per cpu pagesets and initialize them. 6706 * Before this call only boot pagesets were available. 6707 */ 6708 void __init setup_per_cpu_pageset(void) 6709 { 6710 struct pglist_data *pgdat; 6711 struct zone *zone; 6712 int __maybe_unused cpu; 6713 6714 for_each_populated_zone(zone) 6715 setup_zone_pageset(zone); 6716 6717 #ifdef CONFIG_NUMA 6718 /* 6719 * Unpopulated zones continue using the boot pagesets. 6720 * The numa stats for these pagesets need to be reset. 6721 * Otherwise, they will end up skewing the stats of 6722 * the nodes these zones are associated with. 6723 */ 6724 for_each_possible_cpu(cpu) { 6725 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu); 6726 memset(pcp->vm_numa_stat_diff, 0, 6727 sizeof(pcp->vm_numa_stat_diff)); 6728 } 6729 #endif 6730 6731 for_each_online_pgdat(pgdat) 6732 pgdat->per_cpu_nodestats = 6733 alloc_percpu(struct per_cpu_nodestat); 6734 } 6735 6736 static __meminit void zone_pcp_init(struct zone *zone) 6737 { 6738 /* 6739 * per cpu subsystem is not up at this point. The following code 6740 * relies on the ability of the linker to provide the 6741 * offset of a (static) per cpu variable into the per cpu area. 6742 */ 6743 zone->pageset = &boot_pageset; 6744 zone->pageset_high = BOOT_PAGESET_HIGH; 6745 zone->pageset_batch = BOOT_PAGESET_BATCH; 6746 6747 if (populated_zone(zone)) 6748 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6749 zone->name, zone->present_pages, 6750 zone_batchsize(zone)); 6751 } 6752 6753 void __meminit init_currently_empty_zone(struct zone *zone, 6754 unsigned long zone_start_pfn, 6755 unsigned long size) 6756 { 6757 struct pglist_data *pgdat = zone->zone_pgdat; 6758 int zone_idx = zone_idx(zone) + 1; 6759 6760 if (zone_idx > pgdat->nr_zones) 6761 pgdat->nr_zones = zone_idx; 6762 6763 zone->zone_start_pfn = zone_start_pfn; 6764 6765 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6766 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6767 pgdat->node_id, 6768 (unsigned long)zone_idx(zone), 6769 zone_start_pfn, (zone_start_pfn + size)); 6770 6771 zone_init_free_lists(zone); 6772 zone->initialized = 1; 6773 } 6774 6775 /** 6776 * get_pfn_range_for_nid - Return the start and end page frames for a node 6777 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6778 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6779 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6780 * 6781 * It returns the start and end page frame of a node based on information 6782 * provided by memblock_set_node(). If called for a node 6783 * with no available memory, a warning is printed and the start and end 6784 * PFNs will be 0. 6785 */ 6786 void __init get_pfn_range_for_nid(unsigned int nid, 6787 unsigned long *start_pfn, unsigned long *end_pfn) 6788 { 6789 unsigned long this_start_pfn, this_end_pfn; 6790 int i; 6791 6792 *start_pfn = -1UL; 6793 *end_pfn = 0; 6794 6795 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6796 *start_pfn = min(*start_pfn, this_start_pfn); 6797 *end_pfn = max(*end_pfn, this_end_pfn); 6798 } 6799 6800 if (*start_pfn == -1UL) 6801 *start_pfn = 0; 6802 } 6803 6804 /* 6805 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6806 * assumption is made that zones within a node are ordered in monotonic 6807 * increasing memory addresses so that the "highest" populated zone is used 6808 */ 6809 static void __init find_usable_zone_for_movable(void) 6810 { 6811 int zone_index; 6812 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6813 if (zone_index == ZONE_MOVABLE) 6814 continue; 6815 6816 if (arch_zone_highest_possible_pfn[zone_index] > 6817 arch_zone_lowest_possible_pfn[zone_index]) 6818 break; 6819 } 6820 6821 VM_BUG_ON(zone_index == -1); 6822 movable_zone = zone_index; 6823 } 6824 6825 /* 6826 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6827 * because it is sized independent of architecture. Unlike the other zones, 6828 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6829 * in each node depending on the size of each node and how evenly kernelcore 6830 * is distributed. This helper function adjusts the zone ranges 6831 * provided by the architecture for a given node by using the end of the 6832 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6833 * zones within a node are in order of monotonic increases memory addresses 6834 */ 6835 static void __init adjust_zone_range_for_zone_movable(int nid, 6836 unsigned long zone_type, 6837 unsigned long node_start_pfn, 6838 unsigned long node_end_pfn, 6839 unsigned long *zone_start_pfn, 6840 unsigned long *zone_end_pfn) 6841 { 6842 /* Only adjust if ZONE_MOVABLE is on this node */ 6843 if (zone_movable_pfn[nid]) { 6844 /* Size ZONE_MOVABLE */ 6845 if (zone_type == ZONE_MOVABLE) { 6846 *zone_start_pfn = zone_movable_pfn[nid]; 6847 *zone_end_pfn = min(node_end_pfn, 6848 arch_zone_highest_possible_pfn[movable_zone]); 6849 6850 /* Adjust for ZONE_MOVABLE starting within this range */ 6851 } else if (!mirrored_kernelcore && 6852 *zone_start_pfn < zone_movable_pfn[nid] && 6853 *zone_end_pfn > zone_movable_pfn[nid]) { 6854 *zone_end_pfn = zone_movable_pfn[nid]; 6855 6856 /* Check if this whole range is within ZONE_MOVABLE */ 6857 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6858 *zone_start_pfn = *zone_end_pfn; 6859 } 6860 } 6861 6862 /* 6863 * Return the number of pages a zone spans in a node, including holes 6864 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6865 */ 6866 static unsigned long __init zone_spanned_pages_in_node(int nid, 6867 unsigned long zone_type, 6868 unsigned long node_start_pfn, 6869 unsigned long node_end_pfn, 6870 unsigned long *zone_start_pfn, 6871 unsigned long *zone_end_pfn) 6872 { 6873 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6874 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6875 /* When hotadd a new node from cpu_up(), the node should be empty */ 6876 if (!node_start_pfn && !node_end_pfn) 6877 return 0; 6878 6879 /* Get the start and end of the zone */ 6880 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6881 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6882 adjust_zone_range_for_zone_movable(nid, zone_type, 6883 node_start_pfn, node_end_pfn, 6884 zone_start_pfn, zone_end_pfn); 6885 6886 /* Check that this node has pages within the zone's required range */ 6887 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6888 return 0; 6889 6890 /* Move the zone boundaries inside the node if necessary */ 6891 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6892 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6893 6894 /* Return the spanned pages */ 6895 return *zone_end_pfn - *zone_start_pfn; 6896 } 6897 6898 /* 6899 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6900 * then all holes in the requested range will be accounted for. 6901 */ 6902 unsigned long __init __absent_pages_in_range(int nid, 6903 unsigned long range_start_pfn, 6904 unsigned long range_end_pfn) 6905 { 6906 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6907 unsigned long start_pfn, end_pfn; 6908 int i; 6909 6910 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6911 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6912 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6913 nr_absent -= end_pfn - start_pfn; 6914 } 6915 return nr_absent; 6916 } 6917 6918 /** 6919 * absent_pages_in_range - Return number of page frames in holes within a range 6920 * @start_pfn: The start PFN to start searching for holes 6921 * @end_pfn: The end PFN to stop searching for holes 6922 * 6923 * Return: the number of pages frames in memory holes within a range. 6924 */ 6925 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6926 unsigned long end_pfn) 6927 { 6928 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6929 } 6930 6931 /* Return the number of page frames in holes in a zone on a node */ 6932 static unsigned long __init zone_absent_pages_in_node(int nid, 6933 unsigned long zone_type, 6934 unsigned long node_start_pfn, 6935 unsigned long node_end_pfn) 6936 { 6937 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6938 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6939 unsigned long zone_start_pfn, zone_end_pfn; 6940 unsigned long nr_absent; 6941 6942 /* When hotadd a new node from cpu_up(), the node should be empty */ 6943 if (!node_start_pfn && !node_end_pfn) 6944 return 0; 6945 6946 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6947 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6948 6949 adjust_zone_range_for_zone_movable(nid, zone_type, 6950 node_start_pfn, node_end_pfn, 6951 &zone_start_pfn, &zone_end_pfn); 6952 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6953 6954 /* 6955 * ZONE_MOVABLE handling. 6956 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6957 * and vice versa. 6958 */ 6959 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6960 unsigned long start_pfn, end_pfn; 6961 struct memblock_region *r; 6962 6963 for_each_mem_region(r) { 6964 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6965 zone_start_pfn, zone_end_pfn); 6966 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6967 zone_start_pfn, zone_end_pfn); 6968 6969 if (zone_type == ZONE_MOVABLE && 6970 memblock_is_mirror(r)) 6971 nr_absent += end_pfn - start_pfn; 6972 6973 if (zone_type == ZONE_NORMAL && 6974 !memblock_is_mirror(r)) 6975 nr_absent += end_pfn - start_pfn; 6976 } 6977 } 6978 6979 return nr_absent; 6980 } 6981 6982 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6983 unsigned long node_start_pfn, 6984 unsigned long node_end_pfn) 6985 { 6986 unsigned long realtotalpages = 0, totalpages = 0; 6987 enum zone_type i; 6988 6989 for (i = 0; i < MAX_NR_ZONES; i++) { 6990 struct zone *zone = pgdat->node_zones + i; 6991 unsigned long zone_start_pfn, zone_end_pfn; 6992 unsigned long spanned, absent; 6993 unsigned long size, real_size; 6994 6995 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 6996 node_start_pfn, 6997 node_end_pfn, 6998 &zone_start_pfn, 6999 &zone_end_pfn); 7000 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7001 node_start_pfn, 7002 node_end_pfn); 7003 7004 size = spanned; 7005 real_size = size - absent; 7006 7007 if (size) 7008 zone->zone_start_pfn = zone_start_pfn; 7009 else 7010 zone->zone_start_pfn = 0; 7011 zone->spanned_pages = size; 7012 zone->present_pages = real_size; 7013 7014 totalpages += size; 7015 realtotalpages += real_size; 7016 } 7017 7018 pgdat->node_spanned_pages = totalpages; 7019 pgdat->node_present_pages = realtotalpages; 7020 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 7021 realtotalpages); 7022 } 7023 7024 #ifndef CONFIG_SPARSEMEM 7025 /* 7026 * Calculate the size of the zone->blockflags rounded to an unsigned long 7027 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7028 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7029 * round what is now in bits to nearest long in bits, then return it in 7030 * bytes. 7031 */ 7032 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7033 { 7034 unsigned long usemapsize; 7035 7036 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7037 usemapsize = roundup(zonesize, pageblock_nr_pages); 7038 usemapsize = usemapsize >> pageblock_order; 7039 usemapsize *= NR_PAGEBLOCK_BITS; 7040 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7041 7042 return usemapsize / 8; 7043 } 7044 7045 static void __ref setup_usemap(struct zone *zone) 7046 { 7047 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7048 zone->spanned_pages); 7049 zone->pageblock_flags = NULL; 7050 if (usemapsize) { 7051 zone->pageblock_flags = 7052 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7053 zone_to_nid(zone)); 7054 if (!zone->pageblock_flags) 7055 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7056 usemapsize, zone->name, zone_to_nid(zone)); 7057 } 7058 } 7059 #else 7060 static inline void setup_usemap(struct zone *zone) {} 7061 #endif /* CONFIG_SPARSEMEM */ 7062 7063 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7064 7065 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7066 void __init set_pageblock_order(void) 7067 { 7068 unsigned int order; 7069 7070 /* Check that pageblock_nr_pages has not already been setup */ 7071 if (pageblock_order) 7072 return; 7073 7074 if (HPAGE_SHIFT > PAGE_SHIFT) 7075 order = HUGETLB_PAGE_ORDER; 7076 else 7077 order = MAX_ORDER - 1; 7078 7079 /* 7080 * Assume the largest contiguous order of interest is a huge page. 7081 * This value may be variable depending on boot parameters on IA64 and 7082 * powerpc. 7083 */ 7084 pageblock_order = order; 7085 } 7086 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7087 7088 /* 7089 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7090 * is unused as pageblock_order is set at compile-time. See 7091 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7092 * the kernel config 7093 */ 7094 void __init set_pageblock_order(void) 7095 { 7096 } 7097 7098 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7099 7100 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7101 unsigned long present_pages) 7102 { 7103 unsigned long pages = spanned_pages; 7104 7105 /* 7106 * Provide a more accurate estimation if there are holes within 7107 * the zone and SPARSEMEM is in use. If there are holes within the 7108 * zone, each populated memory region may cost us one or two extra 7109 * memmap pages due to alignment because memmap pages for each 7110 * populated regions may not be naturally aligned on page boundary. 7111 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7112 */ 7113 if (spanned_pages > present_pages + (present_pages >> 4) && 7114 IS_ENABLED(CONFIG_SPARSEMEM)) 7115 pages = present_pages; 7116 7117 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7118 } 7119 7120 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7121 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7122 { 7123 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7124 7125 spin_lock_init(&ds_queue->split_queue_lock); 7126 INIT_LIST_HEAD(&ds_queue->split_queue); 7127 ds_queue->split_queue_len = 0; 7128 } 7129 #else 7130 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7131 #endif 7132 7133 #ifdef CONFIG_COMPACTION 7134 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7135 { 7136 init_waitqueue_head(&pgdat->kcompactd_wait); 7137 } 7138 #else 7139 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7140 #endif 7141 7142 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7143 { 7144 pgdat_resize_init(pgdat); 7145 7146 pgdat_init_split_queue(pgdat); 7147 pgdat_init_kcompactd(pgdat); 7148 7149 init_waitqueue_head(&pgdat->kswapd_wait); 7150 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7151 7152 pgdat_page_ext_init(pgdat); 7153 lruvec_init(&pgdat->__lruvec); 7154 } 7155 7156 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7157 unsigned long remaining_pages) 7158 { 7159 atomic_long_set(&zone->managed_pages, remaining_pages); 7160 zone_set_nid(zone, nid); 7161 zone->name = zone_names[idx]; 7162 zone->zone_pgdat = NODE_DATA(nid); 7163 spin_lock_init(&zone->lock); 7164 zone_seqlock_init(zone); 7165 zone_pcp_init(zone); 7166 } 7167 7168 /* 7169 * Set up the zone data structures 7170 * - init pgdat internals 7171 * - init all zones belonging to this node 7172 * 7173 * NOTE: this function is only called during memory hotplug 7174 */ 7175 #ifdef CONFIG_MEMORY_HOTPLUG 7176 void __ref free_area_init_core_hotplug(int nid) 7177 { 7178 enum zone_type z; 7179 pg_data_t *pgdat = NODE_DATA(nid); 7180 7181 pgdat_init_internals(pgdat); 7182 for (z = 0; z < MAX_NR_ZONES; z++) 7183 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7184 } 7185 #endif 7186 7187 /* 7188 * Set up the zone data structures: 7189 * - mark all pages reserved 7190 * - mark all memory queues empty 7191 * - clear the memory bitmaps 7192 * 7193 * NOTE: pgdat should get zeroed by caller. 7194 * NOTE: this function is only called during early init. 7195 */ 7196 static void __init free_area_init_core(struct pglist_data *pgdat) 7197 { 7198 enum zone_type j; 7199 int nid = pgdat->node_id; 7200 7201 pgdat_init_internals(pgdat); 7202 pgdat->per_cpu_nodestats = &boot_nodestats; 7203 7204 for (j = 0; j < MAX_NR_ZONES; j++) { 7205 struct zone *zone = pgdat->node_zones + j; 7206 unsigned long size, freesize, memmap_pages; 7207 7208 size = zone->spanned_pages; 7209 freesize = zone->present_pages; 7210 7211 /* 7212 * Adjust freesize so that it accounts for how much memory 7213 * is used by this zone for memmap. This affects the watermark 7214 * and per-cpu initialisations 7215 */ 7216 memmap_pages = calc_memmap_size(size, freesize); 7217 if (!is_highmem_idx(j)) { 7218 if (freesize >= memmap_pages) { 7219 freesize -= memmap_pages; 7220 if (memmap_pages) 7221 printk(KERN_DEBUG 7222 " %s zone: %lu pages used for memmap\n", 7223 zone_names[j], memmap_pages); 7224 } else 7225 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 7226 zone_names[j], memmap_pages, freesize); 7227 } 7228 7229 /* Account for reserved pages */ 7230 if (j == 0 && freesize > dma_reserve) { 7231 freesize -= dma_reserve; 7232 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 7233 zone_names[0], dma_reserve); 7234 } 7235 7236 if (!is_highmem_idx(j)) 7237 nr_kernel_pages += freesize; 7238 /* Charge for highmem memmap if there are enough kernel pages */ 7239 else if (nr_kernel_pages > memmap_pages * 2) 7240 nr_kernel_pages -= memmap_pages; 7241 nr_all_pages += freesize; 7242 7243 /* 7244 * Set an approximate value for lowmem here, it will be adjusted 7245 * when the bootmem allocator frees pages into the buddy system. 7246 * And all highmem pages will be managed by the buddy system. 7247 */ 7248 zone_init_internals(zone, j, nid, freesize); 7249 7250 if (!size) 7251 continue; 7252 7253 set_pageblock_order(); 7254 setup_usemap(zone); 7255 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7256 memmap_init_zone(zone); 7257 } 7258 } 7259 7260 #ifdef CONFIG_FLAT_NODE_MEM_MAP 7261 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 7262 { 7263 unsigned long __maybe_unused start = 0; 7264 unsigned long __maybe_unused offset = 0; 7265 7266 /* Skip empty nodes */ 7267 if (!pgdat->node_spanned_pages) 7268 return; 7269 7270 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7271 offset = pgdat->node_start_pfn - start; 7272 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7273 if (!pgdat->node_mem_map) { 7274 unsigned long size, end; 7275 struct page *map; 7276 7277 /* 7278 * The zone's endpoints aren't required to be MAX_ORDER 7279 * aligned but the node_mem_map endpoints must be in order 7280 * for the buddy allocator to function correctly. 7281 */ 7282 end = pgdat_end_pfn(pgdat); 7283 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7284 size = (end - start) * sizeof(struct page); 7285 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 7286 pgdat->node_id); 7287 if (!map) 7288 panic("Failed to allocate %ld bytes for node %d memory map\n", 7289 size, pgdat->node_id); 7290 pgdat->node_mem_map = map + offset; 7291 } 7292 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7293 __func__, pgdat->node_id, (unsigned long)pgdat, 7294 (unsigned long)pgdat->node_mem_map); 7295 #ifndef CONFIG_NEED_MULTIPLE_NODES 7296 /* 7297 * With no DISCONTIG, the global mem_map is just set as node 0's 7298 */ 7299 if (pgdat == NODE_DATA(0)) { 7300 mem_map = NODE_DATA(0)->node_mem_map; 7301 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7302 mem_map -= offset; 7303 } 7304 #endif 7305 } 7306 #else 7307 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 7308 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 7309 7310 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7311 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7312 { 7313 pgdat->first_deferred_pfn = ULONG_MAX; 7314 } 7315 #else 7316 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7317 #endif 7318 7319 static void __init free_area_init_node(int nid) 7320 { 7321 pg_data_t *pgdat = NODE_DATA(nid); 7322 unsigned long start_pfn = 0; 7323 unsigned long end_pfn = 0; 7324 7325 /* pg_data_t should be reset to zero when it's allocated */ 7326 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7327 7328 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7329 7330 pgdat->node_id = nid; 7331 pgdat->node_start_pfn = start_pfn; 7332 pgdat->per_cpu_nodestats = NULL; 7333 7334 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7335 (u64)start_pfn << PAGE_SHIFT, 7336 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7337 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7338 7339 alloc_node_mem_map(pgdat); 7340 pgdat_set_deferred_range(pgdat); 7341 7342 free_area_init_core(pgdat); 7343 } 7344 7345 void __init free_area_init_memoryless_node(int nid) 7346 { 7347 free_area_init_node(nid); 7348 } 7349 7350 #if MAX_NUMNODES > 1 7351 /* 7352 * Figure out the number of possible node ids. 7353 */ 7354 void __init setup_nr_node_ids(void) 7355 { 7356 unsigned int highest; 7357 7358 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7359 nr_node_ids = highest + 1; 7360 } 7361 #endif 7362 7363 /** 7364 * node_map_pfn_alignment - determine the maximum internode alignment 7365 * 7366 * This function should be called after node map is populated and sorted. 7367 * It calculates the maximum power of two alignment which can distinguish 7368 * all the nodes. 7369 * 7370 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7371 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7372 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7373 * shifted, 1GiB is enough and this function will indicate so. 7374 * 7375 * This is used to test whether pfn -> nid mapping of the chosen memory 7376 * model has fine enough granularity to avoid incorrect mapping for the 7377 * populated node map. 7378 * 7379 * Return: the determined alignment in pfn's. 0 if there is no alignment 7380 * requirement (single node). 7381 */ 7382 unsigned long __init node_map_pfn_alignment(void) 7383 { 7384 unsigned long accl_mask = 0, last_end = 0; 7385 unsigned long start, end, mask; 7386 int last_nid = NUMA_NO_NODE; 7387 int i, nid; 7388 7389 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7390 if (!start || last_nid < 0 || last_nid == nid) { 7391 last_nid = nid; 7392 last_end = end; 7393 continue; 7394 } 7395 7396 /* 7397 * Start with a mask granular enough to pin-point to the 7398 * start pfn and tick off bits one-by-one until it becomes 7399 * too coarse to separate the current node from the last. 7400 */ 7401 mask = ~((1 << __ffs(start)) - 1); 7402 while (mask && last_end <= (start & (mask << 1))) 7403 mask <<= 1; 7404 7405 /* accumulate all internode masks */ 7406 accl_mask |= mask; 7407 } 7408 7409 /* convert mask to number of pages */ 7410 return ~accl_mask + 1; 7411 } 7412 7413 /** 7414 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7415 * 7416 * Return: the minimum PFN based on information provided via 7417 * memblock_set_node(). 7418 */ 7419 unsigned long __init find_min_pfn_with_active_regions(void) 7420 { 7421 return PHYS_PFN(memblock_start_of_DRAM()); 7422 } 7423 7424 /* 7425 * early_calculate_totalpages() 7426 * Sum pages in active regions for movable zone. 7427 * Populate N_MEMORY for calculating usable_nodes. 7428 */ 7429 static unsigned long __init early_calculate_totalpages(void) 7430 { 7431 unsigned long totalpages = 0; 7432 unsigned long start_pfn, end_pfn; 7433 int i, nid; 7434 7435 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7436 unsigned long pages = end_pfn - start_pfn; 7437 7438 totalpages += pages; 7439 if (pages) 7440 node_set_state(nid, N_MEMORY); 7441 } 7442 return totalpages; 7443 } 7444 7445 /* 7446 * Find the PFN the Movable zone begins in each node. Kernel memory 7447 * is spread evenly between nodes as long as the nodes have enough 7448 * memory. When they don't, some nodes will have more kernelcore than 7449 * others 7450 */ 7451 static void __init find_zone_movable_pfns_for_nodes(void) 7452 { 7453 int i, nid; 7454 unsigned long usable_startpfn; 7455 unsigned long kernelcore_node, kernelcore_remaining; 7456 /* save the state before borrow the nodemask */ 7457 nodemask_t saved_node_state = node_states[N_MEMORY]; 7458 unsigned long totalpages = early_calculate_totalpages(); 7459 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7460 struct memblock_region *r; 7461 7462 /* Need to find movable_zone earlier when movable_node is specified. */ 7463 find_usable_zone_for_movable(); 7464 7465 /* 7466 * If movable_node is specified, ignore kernelcore and movablecore 7467 * options. 7468 */ 7469 if (movable_node_is_enabled()) { 7470 for_each_mem_region(r) { 7471 if (!memblock_is_hotpluggable(r)) 7472 continue; 7473 7474 nid = memblock_get_region_node(r); 7475 7476 usable_startpfn = PFN_DOWN(r->base); 7477 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7478 min(usable_startpfn, zone_movable_pfn[nid]) : 7479 usable_startpfn; 7480 } 7481 7482 goto out2; 7483 } 7484 7485 /* 7486 * If kernelcore=mirror is specified, ignore movablecore option 7487 */ 7488 if (mirrored_kernelcore) { 7489 bool mem_below_4gb_not_mirrored = false; 7490 7491 for_each_mem_region(r) { 7492 if (memblock_is_mirror(r)) 7493 continue; 7494 7495 nid = memblock_get_region_node(r); 7496 7497 usable_startpfn = memblock_region_memory_base_pfn(r); 7498 7499 if (usable_startpfn < 0x100000) { 7500 mem_below_4gb_not_mirrored = true; 7501 continue; 7502 } 7503 7504 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7505 min(usable_startpfn, zone_movable_pfn[nid]) : 7506 usable_startpfn; 7507 } 7508 7509 if (mem_below_4gb_not_mirrored) 7510 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7511 7512 goto out2; 7513 } 7514 7515 /* 7516 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7517 * amount of necessary memory. 7518 */ 7519 if (required_kernelcore_percent) 7520 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7521 10000UL; 7522 if (required_movablecore_percent) 7523 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7524 10000UL; 7525 7526 /* 7527 * If movablecore= was specified, calculate what size of 7528 * kernelcore that corresponds so that memory usable for 7529 * any allocation type is evenly spread. If both kernelcore 7530 * and movablecore are specified, then the value of kernelcore 7531 * will be used for required_kernelcore if it's greater than 7532 * what movablecore would have allowed. 7533 */ 7534 if (required_movablecore) { 7535 unsigned long corepages; 7536 7537 /* 7538 * Round-up so that ZONE_MOVABLE is at least as large as what 7539 * was requested by the user 7540 */ 7541 required_movablecore = 7542 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7543 required_movablecore = min(totalpages, required_movablecore); 7544 corepages = totalpages - required_movablecore; 7545 7546 required_kernelcore = max(required_kernelcore, corepages); 7547 } 7548 7549 /* 7550 * If kernelcore was not specified or kernelcore size is larger 7551 * than totalpages, there is no ZONE_MOVABLE. 7552 */ 7553 if (!required_kernelcore || required_kernelcore >= totalpages) 7554 goto out; 7555 7556 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7557 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7558 7559 restart: 7560 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7561 kernelcore_node = required_kernelcore / usable_nodes; 7562 for_each_node_state(nid, N_MEMORY) { 7563 unsigned long start_pfn, end_pfn; 7564 7565 /* 7566 * Recalculate kernelcore_node if the division per node 7567 * now exceeds what is necessary to satisfy the requested 7568 * amount of memory for the kernel 7569 */ 7570 if (required_kernelcore < kernelcore_node) 7571 kernelcore_node = required_kernelcore / usable_nodes; 7572 7573 /* 7574 * As the map is walked, we track how much memory is usable 7575 * by the kernel using kernelcore_remaining. When it is 7576 * 0, the rest of the node is usable by ZONE_MOVABLE 7577 */ 7578 kernelcore_remaining = kernelcore_node; 7579 7580 /* Go through each range of PFNs within this node */ 7581 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7582 unsigned long size_pages; 7583 7584 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7585 if (start_pfn >= end_pfn) 7586 continue; 7587 7588 /* Account for what is only usable for kernelcore */ 7589 if (start_pfn < usable_startpfn) { 7590 unsigned long kernel_pages; 7591 kernel_pages = min(end_pfn, usable_startpfn) 7592 - start_pfn; 7593 7594 kernelcore_remaining -= min(kernel_pages, 7595 kernelcore_remaining); 7596 required_kernelcore -= min(kernel_pages, 7597 required_kernelcore); 7598 7599 /* Continue if range is now fully accounted */ 7600 if (end_pfn <= usable_startpfn) { 7601 7602 /* 7603 * Push zone_movable_pfn to the end so 7604 * that if we have to rebalance 7605 * kernelcore across nodes, we will 7606 * not double account here 7607 */ 7608 zone_movable_pfn[nid] = end_pfn; 7609 continue; 7610 } 7611 start_pfn = usable_startpfn; 7612 } 7613 7614 /* 7615 * The usable PFN range for ZONE_MOVABLE is from 7616 * start_pfn->end_pfn. Calculate size_pages as the 7617 * number of pages used as kernelcore 7618 */ 7619 size_pages = end_pfn - start_pfn; 7620 if (size_pages > kernelcore_remaining) 7621 size_pages = kernelcore_remaining; 7622 zone_movable_pfn[nid] = start_pfn + size_pages; 7623 7624 /* 7625 * Some kernelcore has been met, update counts and 7626 * break if the kernelcore for this node has been 7627 * satisfied 7628 */ 7629 required_kernelcore -= min(required_kernelcore, 7630 size_pages); 7631 kernelcore_remaining -= size_pages; 7632 if (!kernelcore_remaining) 7633 break; 7634 } 7635 } 7636 7637 /* 7638 * If there is still required_kernelcore, we do another pass with one 7639 * less node in the count. This will push zone_movable_pfn[nid] further 7640 * along on the nodes that still have memory until kernelcore is 7641 * satisfied 7642 */ 7643 usable_nodes--; 7644 if (usable_nodes && required_kernelcore > usable_nodes) 7645 goto restart; 7646 7647 out2: 7648 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7649 for (nid = 0; nid < MAX_NUMNODES; nid++) 7650 zone_movable_pfn[nid] = 7651 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7652 7653 out: 7654 /* restore the node_state */ 7655 node_states[N_MEMORY] = saved_node_state; 7656 } 7657 7658 /* Any regular or high memory on that node ? */ 7659 static void check_for_memory(pg_data_t *pgdat, int nid) 7660 { 7661 enum zone_type zone_type; 7662 7663 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7664 struct zone *zone = &pgdat->node_zones[zone_type]; 7665 if (populated_zone(zone)) { 7666 if (IS_ENABLED(CONFIG_HIGHMEM)) 7667 node_set_state(nid, N_HIGH_MEMORY); 7668 if (zone_type <= ZONE_NORMAL) 7669 node_set_state(nid, N_NORMAL_MEMORY); 7670 break; 7671 } 7672 } 7673 } 7674 7675 /* 7676 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 7677 * such cases we allow max_zone_pfn sorted in the descending order 7678 */ 7679 bool __weak arch_has_descending_max_zone_pfns(void) 7680 { 7681 return false; 7682 } 7683 7684 /** 7685 * free_area_init - Initialise all pg_data_t and zone data 7686 * @max_zone_pfn: an array of max PFNs for each zone 7687 * 7688 * This will call free_area_init_node() for each active node in the system. 7689 * Using the page ranges provided by memblock_set_node(), the size of each 7690 * zone in each node and their holes is calculated. If the maximum PFN 7691 * between two adjacent zones match, it is assumed that the zone is empty. 7692 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7693 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7694 * starts where the previous one ended. For example, ZONE_DMA32 starts 7695 * at arch_max_dma_pfn. 7696 */ 7697 void __init free_area_init(unsigned long *max_zone_pfn) 7698 { 7699 unsigned long start_pfn, end_pfn; 7700 int i, nid, zone; 7701 bool descending; 7702 7703 /* Record where the zone boundaries are */ 7704 memset(arch_zone_lowest_possible_pfn, 0, 7705 sizeof(arch_zone_lowest_possible_pfn)); 7706 memset(arch_zone_highest_possible_pfn, 0, 7707 sizeof(arch_zone_highest_possible_pfn)); 7708 7709 start_pfn = find_min_pfn_with_active_regions(); 7710 descending = arch_has_descending_max_zone_pfns(); 7711 7712 for (i = 0; i < MAX_NR_ZONES; i++) { 7713 if (descending) 7714 zone = MAX_NR_ZONES - i - 1; 7715 else 7716 zone = i; 7717 7718 if (zone == ZONE_MOVABLE) 7719 continue; 7720 7721 end_pfn = max(max_zone_pfn[zone], start_pfn); 7722 arch_zone_lowest_possible_pfn[zone] = start_pfn; 7723 arch_zone_highest_possible_pfn[zone] = end_pfn; 7724 7725 start_pfn = end_pfn; 7726 } 7727 7728 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7729 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7730 find_zone_movable_pfns_for_nodes(); 7731 7732 /* Print out the zone ranges */ 7733 pr_info("Zone ranges:\n"); 7734 for (i = 0; i < MAX_NR_ZONES; i++) { 7735 if (i == ZONE_MOVABLE) 7736 continue; 7737 pr_info(" %-8s ", zone_names[i]); 7738 if (arch_zone_lowest_possible_pfn[i] == 7739 arch_zone_highest_possible_pfn[i]) 7740 pr_cont("empty\n"); 7741 else 7742 pr_cont("[mem %#018Lx-%#018Lx]\n", 7743 (u64)arch_zone_lowest_possible_pfn[i] 7744 << PAGE_SHIFT, 7745 ((u64)arch_zone_highest_possible_pfn[i] 7746 << PAGE_SHIFT) - 1); 7747 } 7748 7749 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7750 pr_info("Movable zone start for each node\n"); 7751 for (i = 0; i < MAX_NUMNODES; i++) { 7752 if (zone_movable_pfn[i]) 7753 pr_info(" Node %d: %#018Lx\n", i, 7754 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7755 } 7756 7757 /* 7758 * Print out the early node map, and initialize the 7759 * subsection-map relative to active online memory ranges to 7760 * enable future "sub-section" extensions of the memory map. 7761 */ 7762 pr_info("Early memory node ranges\n"); 7763 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7764 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7765 (u64)start_pfn << PAGE_SHIFT, 7766 ((u64)end_pfn << PAGE_SHIFT) - 1); 7767 subsection_map_init(start_pfn, end_pfn - start_pfn); 7768 } 7769 7770 /* Initialise every node */ 7771 mminit_verify_pageflags_layout(); 7772 setup_nr_node_ids(); 7773 for_each_online_node(nid) { 7774 pg_data_t *pgdat = NODE_DATA(nid); 7775 free_area_init_node(nid); 7776 7777 /* Any memory on that node */ 7778 if (pgdat->node_present_pages) 7779 node_set_state(nid, N_MEMORY); 7780 check_for_memory(pgdat, nid); 7781 } 7782 } 7783 7784 static int __init cmdline_parse_core(char *p, unsigned long *core, 7785 unsigned long *percent) 7786 { 7787 unsigned long long coremem; 7788 char *endptr; 7789 7790 if (!p) 7791 return -EINVAL; 7792 7793 /* Value may be a percentage of total memory, otherwise bytes */ 7794 coremem = simple_strtoull(p, &endptr, 0); 7795 if (*endptr == '%') { 7796 /* Paranoid check for percent values greater than 100 */ 7797 WARN_ON(coremem > 100); 7798 7799 *percent = coremem; 7800 } else { 7801 coremem = memparse(p, &p); 7802 /* Paranoid check that UL is enough for the coremem value */ 7803 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7804 7805 *core = coremem >> PAGE_SHIFT; 7806 *percent = 0UL; 7807 } 7808 return 0; 7809 } 7810 7811 /* 7812 * kernelcore=size sets the amount of memory for use for allocations that 7813 * cannot be reclaimed or migrated. 7814 */ 7815 static int __init cmdline_parse_kernelcore(char *p) 7816 { 7817 /* parse kernelcore=mirror */ 7818 if (parse_option_str(p, "mirror")) { 7819 mirrored_kernelcore = true; 7820 return 0; 7821 } 7822 7823 return cmdline_parse_core(p, &required_kernelcore, 7824 &required_kernelcore_percent); 7825 } 7826 7827 /* 7828 * movablecore=size sets the amount of memory for use for allocations that 7829 * can be reclaimed or migrated. 7830 */ 7831 static int __init cmdline_parse_movablecore(char *p) 7832 { 7833 return cmdline_parse_core(p, &required_movablecore, 7834 &required_movablecore_percent); 7835 } 7836 7837 early_param("kernelcore", cmdline_parse_kernelcore); 7838 early_param("movablecore", cmdline_parse_movablecore); 7839 7840 void adjust_managed_page_count(struct page *page, long count) 7841 { 7842 atomic_long_add(count, &page_zone(page)->managed_pages); 7843 totalram_pages_add(count); 7844 #ifdef CONFIG_HIGHMEM 7845 if (PageHighMem(page)) 7846 totalhigh_pages_add(count); 7847 #endif 7848 } 7849 EXPORT_SYMBOL(adjust_managed_page_count); 7850 7851 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7852 { 7853 void *pos; 7854 unsigned long pages = 0; 7855 7856 start = (void *)PAGE_ALIGN((unsigned long)start); 7857 end = (void *)((unsigned long)end & PAGE_MASK); 7858 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7859 struct page *page = virt_to_page(pos); 7860 void *direct_map_addr; 7861 7862 /* 7863 * 'direct_map_addr' might be different from 'pos' 7864 * because some architectures' virt_to_page() 7865 * work with aliases. Getting the direct map 7866 * address ensures that we get a _writeable_ 7867 * alias for the memset(). 7868 */ 7869 direct_map_addr = page_address(page); 7870 /* 7871 * Perform a kasan-unchecked memset() since this memory 7872 * has not been initialized. 7873 */ 7874 direct_map_addr = kasan_reset_tag(direct_map_addr); 7875 if ((unsigned int)poison <= 0xFF) 7876 memset(direct_map_addr, poison, PAGE_SIZE); 7877 7878 free_reserved_page(page); 7879 } 7880 7881 if (pages && s) 7882 pr_info("Freeing %s memory: %ldK\n", 7883 s, pages << (PAGE_SHIFT - 10)); 7884 7885 return pages; 7886 } 7887 7888 void __init mem_init_print_info(void) 7889 { 7890 unsigned long physpages, codesize, datasize, rosize, bss_size; 7891 unsigned long init_code_size, init_data_size; 7892 7893 physpages = get_num_physpages(); 7894 codesize = _etext - _stext; 7895 datasize = _edata - _sdata; 7896 rosize = __end_rodata - __start_rodata; 7897 bss_size = __bss_stop - __bss_start; 7898 init_data_size = __init_end - __init_begin; 7899 init_code_size = _einittext - _sinittext; 7900 7901 /* 7902 * Detect special cases and adjust section sizes accordingly: 7903 * 1) .init.* may be embedded into .data sections 7904 * 2) .init.text.* may be out of [__init_begin, __init_end], 7905 * please refer to arch/tile/kernel/vmlinux.lds.S. 7906 * 3) .rodata.* may be embedded into .text or .data sections. 7907 */ 7908 #define adj_init_size(start, end, size, pos, adj) \ 7909 do { \ 7910 if (start <= pos && pos < end && size > adj) \ 7911 size -= adj; \ 7912 } while (0) 7913 7914 adj_init_size(__init_begin, __init_end, init_data_size, 7915 _sinittext, init_code_size); 7916 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7917 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7918 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7919 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7920 7921 #undef adj_init_size 7922 7923 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7924 #ifdef CONFIG_HIGHMEM 7925 ", %luK highmem" 7926 #endif 7927 ")\n", 7928 nr_free_pages() << (PAGE_SHIFT - 10), 7929 physpages << (PAGE_SHIFT - 10), 7930 codesize >> 10, datasize >> 10, rosize >> 10, 7931 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7932 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7933 totalcma_pages << (PAGE_SHIFT - 10) 7934 #ifdef CONFIG_HIGHMEM 7935 , totalhigh_pages() << (PAGE_SHIFT - 10) 7936 #endif 7937 ); 7938 } 7939 7940 /** 7941 * set_dma_reserve - set the specified number of pages reserved in the first zone 7942 * @new_dma_reserve: The number of pages to mark reserved 7943 * 7944 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7945 * In the DMA zone, a significant percentage may be consumed by kernel image 7946 * and other unfreeable allocations which can skew the watermarks badly. This 7947 * function may optionally be used to account for unfreeable pages in the 7948 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7949 * smaller per-cpu batchsize. 7950 */ 7951 void __init set_dma_reserve(unsigned long new_dma_reserve) 7952 { 7953 dma_reserve = new_dma_reserve; 7954 } 7955 7956 static int page_alloc_cpu_dead(unsigned int cpu) 7957 { 7958 7959 lru_add_drain_cpu(cpu); 7960 drain_pages(cpu); 7961 7962 /* 7963 * Spill the event counters of the dead processor 7964 * into the current processors event counters. 7965 * This artificially elevates the count of the current 7966 * processor. 7967 */ 7968 vm_events_fold_cpu(cpu); 7969 7970 /* 7971 * Zero the differential counters of the dead processor 7972 * so that the vm statistics are consistent. 7973 * 7974 * This is only okay since the processor is dead and cannot 7975 * race with what we are doing. 7976 */ 7977 cpu_vm_stats_fold(cpu); 7978 return 0; 7979 } 7980 7981 #ifdef CONFIG_NUMA 7982 int hashdist = HASHDIST_DEFAULT; 7983 7984 static int __init set_hashdist(char *str) 7985 { 7986 if (!str) 7987 return 0; 7988 hashdist = simple_strtoul(str, &str, 0); 7989 return 1; 7990 } 7991 __setup("hashdist=", set_hashdist); 7992 #endif 7993 7994 void __init page_alloc_init(void) 7995 { 7996 int ret; 7997 7998 #ifdef CONFIG_NUMA 7999 if (num_node_state(N_MEMORY) == 1) 8000 hashdist = 0; 8001 #endif 8002 8003 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 8004 "mm/page_alloc:dead", NULL, 8005 page_alloc_cpu_dead); 8006 WARN_ON(ret < 0); 8007 } 8008 8009 /* 8010 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8011 * or min_free_kbytes changes. 8012 */ 8013 static void calculate_totalreserve_pages(void) 8014 { 8015 struct pglist_data *pgdat; 8016 unsigned long reserve_pages = 0; 8017 enum zone_type i, j; 8018 8019 for_each_online_pgdat(pgdat) { 8020 8021 pgdat->totalreserve_pages = 0; 8022 8023 for (i = 0; i < MAX_NR_ZONES; i++) { 8024 struct zone *zone = pgdat->node_zones + i; 8025 long max = 0; 8026 unsigned long managed_pages = zone_managed_pages(zone); 8027 8028 /* Find valid and maximum lowmem_reserve in the zone */ 8029 for (j = i; j < MAX_NR_ZONES; j++) { 8030 if (zone->lowmem_reserve[j] > max) 8031 max = zone->lowmem_reserve[j]; 8032 } 8033 8034 /* we treat the high watermark as reserved pages. */ 8035 max += high_wmark_pages(zone); 8036 8037 if (max > managed_pages) 8038 max = managed_pages; 8039 8040 pgdat->totalreserve_pages += max; 8041 8042 reserve_pages += max; 8043 } 8044 } 8045 totalreserve_pages = reserve_pages; 8046 } 8047 8048 /* 8049 * setup_per_zone_lowmem_reserve - called whenever 8050 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8051 * has a correct pages reserved value, so an adequate number of 8052 * pages are left in the zone after a successful __alloc_pages(). 8053 */ 8054 static void setup_per_zone_lowmem_reserve(void) 8055 { 8056 struct pglist_data *pgdat; 8057 enum zone_type i, j; 8058 8059 for_each_online_pgdat(pgdat) { 8060 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8061 struct zone *zone = &pgdat->node_zones[i]; 8062 int ratio = sysctl_lowmem_reserve_ratio[i]; 8063 bool clear = !ratio || !zone_managed_pages(zone); 8064 unsigned long managed_pages = 0; 8065 8066 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8067 if (clear) { 8068 zone->lowmem_reserve[j] = 0; 8069 } else { 8070 struct zone *upper_zone = &pgdat->node_zones[j]; 8071 8072 managed_pages += zone_managed_pages(upper_zone); 8073 zone->lowmem_reserve[j] = managed_pages / ratio; 8074 } 8075 } 8076 } 8077 } 8078 8079 /* update totalreserve_pages */ 8080 calculate_totalreserve_pages(); 8081 } 8082 8083 static void __setup_per_zone_wmarks(void) 8084 { 8085 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8086 unsigned long lowmem_pages = 0; 8087 struct zone *zone; 8088 unsigned long flags; 8089 8090 /* Calculate total number of !ZONE_HIGHMEM pages */ 8091 for_each_zone(zone) { 8092 if (!is_highmem(zone)) 8093 lowmem_pages += zone_managed_pages(zone); 8094 } 8095 8096 for_each_zone(zone) { 8097 u64 tmp; 8098 8099 spin_lock_irqsave(&zone->lock, flags); 8100 tmp = (u64)pages_min * zone_managed_pages(zone); 8101 do_div(tmp, lowmem_pages); 8102 if (is_highmem(zone)) { 8103 /* 8104 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8105 * need highmem pages, so cap pages_min to a small 8106 * value here. 8107 * 8108 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8109 * deltas control async page reclaim, and so should 8110 * not be capped for highmem. 8111 */ 8112 unsigned long min_pages; 8113 8114 min_pages = zone_managed_pages(zone) / 1024; 8115 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8116 zone->_watermark[WMARK_MIN] = min_pages; 8117 } else { 8118 /* 8119 * If it's a lowmem zone, reserve a number of pages 8120 * proportionate to the zone's size. 8121 */ 8122 zone->_watermark[WMARK_MIN] = tmp; 8123 } 8124 8125 /* 8126 * Set the kswapd watermarks distance according to the 8127 * scale factor in proportion to available memory, but 8128 * ensure a minimum size on small systems. 8129 */ 8130 tmp = max_t(u64, tmp >> 2, 8131 mult_frac(zone_managed_pages(zone), 8132 watermark_scale_factor, 10000)); 8133 8134 zone->watermark_boost = 0; 8135 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8136 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 8137 8138 spin_unlock_irqrestore(&zone->lock, flags); 8139 } 8140 8141 /* update totalreserve_pages */ 8142 calculate_totalreserve_pages(); 8143 } 8144 8145 /** 8146 * setup_per_zone_wmarks - called when min_free_kbytes changes 8147 * or when memory is hot-{added|removed} 8148 * 8149 * Ensures that the watermark[min,low,high] values for each zone are set 8150 * correctly with respect to min_free_kbytes. 8151 */ 8152 void setup_per_zone_wmarks(void) 8153 { 8154 static DEFINE_SPINLOCK(lock); 8155 8156 spin_lock(&lock); 8157 __setup_per_zone_wmarks(); 8158 spin_unlock(&lock); 8159 } 8160 8161 /* 8162 * Initialise min_free_kbytes. 8163 * 8164 * For small machines we want it small (128k min). For large machines 8165 * we want it large (256MB max). But it is not linear, because network 8166 * bandwidth does not increase linearly with machine size. We use 8167 * 8168 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8169 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8170 * 8171 * which yields 8172 * 8173 * 16MB: 512k 8174 * 32MB: 724k 8175 * 64MB: 1024k 8176 * 128MB: 1448k 8177 * 256MB: 2048k 8178 * 512MB: 2896k 8179 * 1024MB: 4096k 8180 * 2048MB: 5792k 8181 * 4096MB: 8192k 8182 * 8192MB: 11584k 8183 * 16384MB: 16384k 8184 */ 8185 int __meminit init_per_zone_wmark_min(void) 8186 { 8187 unsigned long lowmem_kbytes; 8188 int new_min_free_kbytes; 8189 8190 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8191 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8192 8193 if (new_min_free_kbytes > user_min_free_kbytes) { 8194 min_free_kbytes = new_min_free_kbytes; 8195 if (min_free_kbytes < 128) 8196 min_free_kbytes = 128; 8197 if (min_free_kbytes > 262144) 8198 min_free_kbytes = 262144; 8199 } else { 8200 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8201 new_min_free_kbytes, user_min_free_kbytes); 8202 } 8203 setup_per_zone_wmarks(); 8204 refresh_zone_stat_thresholds(); 8205 setup_per_zone_lowmem_reserve(); 8206 8207 #ifdef CONFIG_NUMA 8208 setup_min_unmapped_ratio(); 8209 setup_min_slab_ratio(); 8210 #endif 8211 8212 khugepaged_min_free_kbytes_update(); 8213 8214 return 0; 8215 } 8216 postcore_initcall(init_per_zone_wmark_min) 8217 8218 /* 8219 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8220 * that we can call two helper functions whenever min_free_kbytes 8221 * changes. 8222 */ 8223 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8224 void *buffer, size_t *length, loff_t *ppos) 8225 { 8226 int rc; 8227 8228 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8229 if (rc) 8230 return rc; 8231 8232 if (write) { 8233 user_min_free_kbytes = min_free_kbytes; 8234 setup_per_zone_wmarks(); 8235 } 8236 return 0; 8237 } 8238 8239 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8240 void *buffer, size_t *length, loff_t *ppos) 8241 { 8242 int rc; 8243 8244 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8245 if (rc) 8246 return rc; 8247 8248 if (write) 8249 setup_per_zone_wmarks(); 8250 8251 return 0; 8252 } 8253 8254 #ifdef CONFIG_NUMA 8255 static void setup_min_unmapped_ratio(void) 8256 { 8257 pg_data_t *pgdat; 8258 struct zone *zone; 8259 8260 for_each_online_pgdat(pgdat) 8261 pgdat->min_unmapped_pages = 0; 8262 8263 for_each_zone(zone) 8264 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8265 sysctl_min_unmapped_ratio) / 100; 8266 } 8267 8268 8269 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8270 void *buffer, size_t *length, loff_t *ppos) 8271 { 8272 int rc; 8273 8274 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8275 if (rc) 8276 return rc; 8277 8278 setup_min_unmapped_ratio(); 8279 8280 return 0; 8281 } 8282 8283 static void setup_min_slab_ratio(void) 8284 { 8285 pg_data_t *pgdat; 8286 struct zone *zone; 8287 8288 for_each_online_pgdat(pgdat) 8289 pgdat->min_slab_pages = 0; 8290 8291 for_each_zone(zone) 8292 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8293 sysctl_min_slab_ratio) / 100; 8294 } 8295 8296 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8297 void *buffer, size_t *length, loff_t *ppos) 8298 { 8299 int rc; 8300 8301 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8302 if (rc) 8303 return rc; 8304 8305 setup_min_slab_ratio(); 8306 8307 return 0; 8308 } 8309 #endif 8310 8311 /* 8312 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8313 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8314 * whenever sysctl_lowmem_reserve_ratio changes. 8315 * 8316 * The reserve ratio obviously has absolutely no relation with the 8317 * minimum watermarks. The lowmem reserve ratio can only make sense 8318 * if in function of the boot time zone sizes. 8319 */ 8320 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8321 void *buffer, size_t *length, loff_t *ppos) 8322 { 8323 int i; 8324 8325 proc_dointvec_minmax(table, write, buffer, length, ppos); 8326 8327 for (i = 0; i < MAX_NR_ZONES; i++) { 8328 if (sysctl_lowmem_reserve_ratio[i] < 1) 8329 sysctl_lowmem_reserve_ratio[i] = 0; 8330 } 8331 8332 setup_per_zone_lowmem_reserve(); 8333 return 0; 8334 } 8335 8336 /* 8337 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 8338 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8339 * pagelist can have before it gets flushed back to buddy allocator. 8340 */ 8341 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 8342 void *buffer, size_t *length, loff_t *ppos) 8343 { 8344 struct zone *zone; 8345 int old_percpu_pagelist_fraction; 8346 int ret; 8347 8348 mutex_lock(&pcp_batch_high_lock); 8349 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 8350 8351 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8352 if (!write || ret < 0) 8353 goto out; 8354 8355 /* Sanity checking to avoid pcp imbalance */ 8356 if (percpu_pagelist_fraction && 8357 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 8358 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 8359 ret = -EINVAL; 8360 goto out; 8361 } 8362 8363 /* No change? */ 8364 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 8365 goto out; 8366 8367 for_each_populated_zone(zone) 8368 zone_set_pageset_high_and_batch(zone); 8369 out: 8370 mutex_unlock(&pcp_batch_high_lock); 8371 return ret; 8372 } 8373 8374 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8375 /* 8376 * Returns the number of pages that arch has reserved but 8377 * is not known to alloc_large_system_hash(). 8378 */ 8379 static unsigned long __init arch_reserved_kernel_pages(void) 8380 { 8381 return 0; 8382 } 8383 #endif 8384 8385 /* 8386 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8387 * machines. As memory size is increased the scale is also increased but at 8388 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8389 * quadruples the scale is increased by one, which means the size of hash table 8390 * only doubles, instead of quadrupling as well. 8391 * Because 32-bit systems cannot have large physical memory, where this scaling 8392 * makes sense, it is disabled on such platforms. 8393 */ 8394 #if __BITS_PER_LONG > 32 8395 #define ADAPT_SCALE_BASE (64ul << 30) 8396 #define ADAPT_SCALE_SHIFT 2 8397 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8398 #endif 8399 8400 /* 8401 * allocate a large system hash table from bootmem 8402 * - it is assumed that the hash table must contain an exact power-of-2 8403 * quantity of entries 8404 * - limit is the number of hash buckets, not the total allocation size 8405 */ 8406 void *__init alloc_large_system_hash(const char *tablename, 8407 unsigned long bucketsize, 8408 unsigned long numentries, 8409 int scale, 8410 int flags, 8411 unsigned int *_hash_shift, 8412 unsigned int *_hash_mask, 8413 unsigned long low_limit, 8414 unsigned long high_limit) 8415 { 8416 unsigned long long max = high_limit; 8417 unsigned long log2qty, size; 8418 void *table = NULL; 8419 gfp_t gfp_flags; 8420 bool virt; 8421 bool huge; 8422 8423 /* allow the kernel cmdline to have a say */ 8424 if (!numentries) { 8425 /* round applicable memory size up to nearest megabyte */ 8426 numentries = nr_kernel_pages; 8427 numentries -= arch_reserved_kernel_pages(); 8428 8429 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8430 if (PAGE_SHIFT < 20) 8431 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8432 8433 #if __BITS_PER_LONG > 32 8434 if (!high_limit) { 8435 unsigned long adapt; 8436 8437 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8438 adapt <<= ADAPT_SCALE_SHIFT) 8439 scale++; 8440 } 8441 #endif 8442 8443 /* limit to 1 bucket per 2^scale bytes of low memory */ 8444 if (scale > PAGE_SHIFT) 8445 numentries >>= (scale - PAGE_SHIFT); 8446 else 8447 numentries <<= (PAGE_SHIFT - scale); 8448 8449 /* Make sure we've got at least a 0-order allocation.. */ 8450 if (unlikely(flags & HASH_SMALL)) { 8451 /* Makes no sense without HASH_EARLY */ 8452 WARN_ON(!(flags & HASH_EARLY)); 8453 if (!(numentries >> *_hash_shift)) { 8454 numentries = 1UL << *_hash_shift; 8455 BUG_ON(!numentries); 8456 } 8457 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8458 numentries = PAGE_SIZE / bucketsize; 8459 } 8460 numentries = roundup_pow_of_two(numentries); 8461 8462 /* limit allocation size to 1/16 total memory by default */ 8463 if (max == 0) { 8464 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8465 do_div(max, bucketsize); 8466 } 8467 max = min(max, 0x80000000ULL); 8468 8469 if (numentries < low_limit) 8470 numentries = low_limit; 8471 if (numentries > max) 8472 numentries = max; 8473 8474 log2qty = ilog2(numentries); 8475 8476 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8477 do { 8478 virt = false; 8479 size = bucketsize << log2qty; 8480 if (flags & HASH_EARLY) { 8481 if (flags & HASH_ZERO) 8482 table = memblock_alloc(size, SMP_CACHE_BYTES); 8483 else 8484 table = memblock_alloc_raw(size, 8485 SMP_CACHE_BYTES); 8486 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8487 table = __vmalloc(size, gfp_flags); 8488 virt = true; 8489 huge = is_vm_area_hugepages(table); 8490 } else { 8491 /* 8492 * If bucketsize is not a power-of-two, we may free 8493 * some pages at the end of hash table which 8494 * alloc_pages_exact() automatically does 8495 */ 8496 table = alloc_pages_exact(size, gfp_flags); 8497 kmemleak_alloc(table, size, 1, gfp_flags); 8498 } 8499 } while (!table && size > PAGE_SIZE && --log2qty); 8500 8501 if (!table) 8502 panic("Failed to allocate %s hash table\n", tablename); 8503 8504 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8505 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8506 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 8507 8508 if (_hash_shift) 8509 *_hash_shift = log2qty; 8510 if (_hash_mask) 8511 *_hash_mask = (1 << log2qty) - 1; 8512 8513 return table; 8514 } 8515 8516 /* 8517 * This function checks whether pageblock includes unmovable pages or not. 8518 * 8519 * PageLRU check without isolation or lru_lock could race so that 8520 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8521 * check without lock_page also may miss some movable non-lru pages at 8522 * race condition. So you can't expect this function should be exact. 8523 * 8524 * Returns a page without holding a reference. If the caller wants to 8525 * dereference that page (e.g., dumping), it has to make sure that it 8526 * cannot get removed (e.g., via memory unplug) concurrently. 8527 * 8528 */ 8529 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8530 int migratetype, int flags) 8531 { 8532 unsigned long iter = 0; 8533 unsigned long pfn = page_to_pfn(page); 8534 unsigned long offset = pfn % pageblock_nr_pages; 8535 8536 if (is_migrate_cma_page(page)) { 8537 /* 8538 * CMA allocations (alloc_contig_range) really need to mark 8539 * isolate CMA pageblocks even when they are not movable in fact 8540 * so consider them movable here. 8541 */ 8542 if (is_migrate_cma(migratetype)) 8543 return NULL; 8544 8545 return page; 8546 } 8547 8548 for (; iter < pageblock_nr_pages - offset; iter++) { 8549 if (!pfn_valid_within(pfn + iter)) 8550 continue; 8551 8552 page = pfn_to_page(pfn + iter); 8553 8554 /* 8555 * Both, bootmem allocations and memory holes are marked 8556 * PG_reserved and are unmovable. We can even have unmovable 8557 * allocations inside ZONE_MOVABLE, for example when 8558 * specifying "movablecore". 8559 */ 8560 if (PageReserved(page)) 8561 return page; 8562 8563 /* 8564 * If the zone is movable and we have ruled out all reserved 8565 * pages then it should be reasonably safe to assume the rest 8566 * is movable. 8567 */ 8568 if (zone_idx(zone) == ZONE_MOVABLE) 8569 continue; 8570 8571 /* 8572 * Hugepages are not in LRU lists, but they're movable. 8573 * THPs are on the LRU, but need to be counted as #small pages. 8574 * We need not scan over tail pages because we don't 8575 * handle each tail page individually in migration. 8576 */ 8577 if (PageHuge(page) || PageTransCompound(page)) { 8578 struct page *head = compound_head(page); 8579 unsigned int skip_pages; 8580 8581 if (PageHuge(page)) { 8582 if (!hugepage_migration_supported(page_hstate(head))) 8583 return page; 8584 } else if (!PageLRU(head) && !__PageMovable(head)) { 8585 return page; 8586 } 8587 8588 skip_pages = compound_nr(head) - (page - head); 8589 iter += skip_pages - 1; 8590 continue; 8591 } 8592 8593 /* 8594 * We can't use page_count without pin a page 8595 * because another CPU can free compound page. 8596 * This check already skips compound tails of THP 8597 * because their page->_refcount is zero at all time. 8598 */ 8599 if (!page_ref_count(page)) { 8600 if (PageBuddy(page)) 8601 iter += (1 << buddy_order(page)) - 1; 8602 continue; 8603 } 8604 8605 /* 8606 * The HWPoisoned page may be not in buddy system, and 8607 * page_count() is not 0. 8608 */ 8609 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8610 continue; 8611 8612 /* 8613 * We treat all PageOffline() pages as movable when offlining 8614 * to give drivers a chance to decrement their reference count 8615 * in MEM_GOING_OFFLINE in order to indicate that these pages 8616 * can be offlined as there are no direct references anymore. 8617 * For actually unmovable PageOffline() where the driver does 8618 * not support this, we will fail later when trying to actually 8619 * move these pages that still have a reference count > 0. 8620 * (false negatives in this function only) 8621 */ 8622 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8623 continue; 8624 8625 if (__PageMovable(page) || PageLRU(page)) 8626 continue; 8627 8628 /* 8629 * If there are RECLAIMABLE pages, we need to check 8630 * it. But now, memory offline itself doesn't call 8631 * shrink_node_slabs() and it still to be fixed. 8632 */ 8633 return page; 8634 } 8635 return NULL; 8636 } 8637 8638 #ifdef CONFIG_CONTIG_ALLOC 8639 static unsigned long pfn_max_align_down(unsigned long pfn) 8640 { 8641 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8642 pageblock_nr_pages) - 1); 8643 } 8644 8645 static unsigned long pfn_max_align_up(unsigned long pfn) 8646 { 8647 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8648 pageblock_nr_pages)); 8649 } 8650 8651 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 8652 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 8653 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 8654 static void alloc_contig_dump_pages(struct list_head *page_list) 8655 { 8656 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 8657 8658 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 8659 struct page *page; 8660 8661 dump_stack(); 8662 list_for_each_entry(page, page_list, lru) 8663 dump_page(page, "migration failure"); 8664 } 8665 } 8666 #else 8667 static inline void alloc_contig_dump_pages(struct list_head *page_list) 8668 { 8669 } 8670 #endif 8671 8672 /* [start, end) must belong to a single zone. */ 8673 static int __alloc_contig_migrate_range(struct compact_control *cc, 8674 unsigned long start, unsigned long end) 8675 { 8676 /* This function is based on compact_zone() from compaction.c. */ 8677 unsigned int nr_reclaimed; 8678 unsigned long pfn = start; 8679 unsigned int tries = 0; 8680 int ret = 0; 8681 struct migration_target_control mtc = { 8682 .nid = zone_to_nid(cc->zone), 8683 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 8684 }; 8685 8686 lru_cache_disable(); 8687 8688 while (pfn < end || !list_empty(&cc->migratepages)) { 8689 if (fatal_signal_pending(current)) { 8690 ret = -EINTR; 8691 break; 8692 } 8693 8694 if (list_empty(&cc->migratepages)) { 8695 cc->nr_migratepages = 0; 8696 ret = isolate_migratepages_range(cc, pfn, end); 8697 if (ret && ret != -EAGAIN) 8698 break; 8699 pfn = cc->migrate_pfn; 8700 tries = 0; 8701 } else if (++tries == 5) { 8702 ret = -EBUSY; 8703 break; 8704 } 8705 8706 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8707 &cc->migratepages); 8708 cc->nr_migratepages -= nr_reclaimed; 8709 8710 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 8711 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE); 8712 8713 /* 8714 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 8715 * to retry again over this error, so do the same here. 8716 */ 8717 if (ret == -ENOMEM) 8718 break; 8719 } 8720 8721 lru_cache_enable(); 8722 if (ret < 0) { 8723 alloc_contig_dump_pages(&cc->migratepages); 8724 putback_movable_pages(&cc->migratepages); 8725 return ret; 8726 } 8727 return 0; 8728 } 8729 8730 /** 8731 * alloc_contig_range() -- tries to allocate given range of pages 8732 * @start: start PFN to allocate 8733 * @end: one-past-the-last PFN to allocate 8734 * @migratetype: migratetype of the underlying pageblocks (either 8735 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8736 * in range must have the same migratetype and it must 8737 * be either of the two. 8738 * @gfp_mask: GFP mask to use during compaction 8739 * 8740 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8741 * aligned. The PFN range must belong to a single zone. 8742 * 8743 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8744 * pageblocks in the range. Once isolated, the pageblocks should not 8745 * be modified by others. 8746 * 8747 * Return: zero on success or negative error code. On success all 8748 * pages which PFN is in [start, end) are allocated for the caller and 8749 * need to be freed with free_contig_range(). 8750 */ 8751 int alloc_contig_range(unsigned long start, unsigned long end, 8752 unsigned migratetype, gfp_t gfp_mask) 8753 { 8754 unsigned long outer_start, outer_end; 8755 unsigned int order; 8756 int ret = 0; 8757 8758 struct compact_control cc = { 8759 .nr_migratepages = 0, 8760 .order = -1, 8761 .zone = page_zone(pfn_to_page(start)), 8762 .mode = MIGRATE_SYNC, 8763 .ignore_skip_hint = true, 8764 .no_set_skip_hint = true, 8765 .gfp_mask = current_gfp_context(gfp_mask), 8766 .alloc_contig = true, 8767 }; 8768 INIT_LIST_HEAD(&cc.migratepages); 8769 8770 /* 8771 * What we do here is we mark all pageblocks in range as 8772 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8773 * have different sizes, and due to the way page allocator 8774 * work, we align the range to biggest of the two pages so 8775 * that page allocator won't try to merge buddies from 8776 * different pageblocks and change MIGRATE_ISOLATE to some 8777 * other migration type. 8778 * 8779 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8780 * migrate the pages from an unaligned range (ie. pages that 8781 * we are interested in). This will put all the pages in 8782 * range back to page allocator as MIGRATE_ISOLATE. 8783 * 8784 * When this is done, we take the pages in range from page 8785 * allocator removing them from the buddy system. This way 8786 * page allocator will never consider using them. 8787 * 8788 * This lets us mark the pageblocks back as 8789 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8790 * aligned range but not in the unaligned, original range are 8791 * put back to page allocator so that buddy can use them. 8792 */ 8793 8794 ret = start_isolate_page_range(pfn_max_align_down(start), 8795 pfn_max_align_up(end), migratetype, 0); 8796 if (ret) 8797 return ret; 8798 8799 drain_all_pages(cc.zone); 8800 8801 /* 8802 * In case of -EBUSY, we'd like to know which page causes problem. 8803 * So, just fall through. test_pages_isolated() has a tracepoint 8804 * which will report the busy page. 8805 * 8806 * It is possible that busy pages could become available before 8807 * the call to test_pages_isolated, and the range will actually be 8808 * allocated. So, if we fall through be sure to clear ret so that 8809 * -EBUSY is not accidentally used or returned to caller. 8810 */ 8811 ret = __alloc_contig_migrate_range(&cc, start, end); 8812 if (ret && ret != -EBUSY) 8813 goto done; 8814 ret = 0; 8815 8816 /* 8817 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8818 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8819 * more, all pages in [start, end) are free in page allocator. 8820 * What we are going to do is to allocate all pages from 8821 * [start, end) (that is remove them from page allocator). 8822 * 8823 * The only problem is that pages at the beginning and at the 8824 * end of interesting range may be not aligned with pages that 8825 * page allocator holds, ie. they can be part of higher order 8826 * pages. Because of this, we reserve the bigger range and 8827 * once this is done free the pages we are not interested in. 8828 * 8829 * We don't have to hold zone->lock here because the pages are 8830 * isolated thus they won't get removed from buddy. 8831 */ 8832 8833 order = 0; 8834 outer_start = start; 8835 while (!PageBuddy(pfn_to_page(outer_start))) { 8836 if (++order >= MAX_ORDER) { 8837 outer_start = start; 8838 break; 8839 } 8840 outer_start &= ~0UL << order; 8841 } 8842 8843 if (outer_start != start) { 8844 order = buddy_order(pfn_to_page(outer_start)); 8845 8846 /* 8847 * outer_start page could be small order buddy page and 8848 * it doesn't include start page. Adjust outer_start 8849 * in this case to report failed page properly 8850 * on tracepoint in test_pages_isolated() 8851 */ 8852 if (outer_start + (1UL << order) <= start) 8853 outer_start = start; 8854 } 8855 8856 /* Make sure the range is really isolated. */ 8857 if (test_pages_isolated(outer_start, end, 0)) { 8858 ret = -EBUSY; 8859 goto done; 8860 } 8861 8862 /* Grab isolated pages from freelists. */ 8863 outer_end = isolate_freepages_range(&cc, outer_start, end); 8864 if (!outer_end) { 8865 ret = -EBUSY; 8866 goto done; 8867 } 8868 8869 /* Free head and tail (if any) */ 8870 if (start != outer_start) 8871 free_contig_range(outer_start, start - outer_start); 8872 if (end != outer_end) 8873 free_contig_range(end, outer_end - end); 8874 8875 done: 8876 undo_isolate_page_range(pfn_max_align_down(start), 8877 pfn_max_align_up(end), migratetype); 8878 return ret; 8879 } 8880 EXPORT_SYMBOL(alloc_contig_range); 8881 8882 static int __alloc_contig_pages(unsigned long start_pfn, 8883 unsigned long nr_pages, gfp_t gfp_mask) 8884 { 8885 unsigned long end_pfn = start_pfn + nr_pages; 8886 8887 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 8888 gfp_mask); 8889 } 8890 8891 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 8892 unsigned long nr_pages) 8893 { 8894 unsigned long i, end_pfn = start_pfn + nr_pages; 8895 struct page *page; 8896 8897 for (i = start_pfn; i < end_pfn; i++) { 8898 page = pfn_to_online_page(i); 8899 if (!page) 8900 return false; 8901 8902 if (page_zone(page) != z) 8903 return false; 8904 8905 if (PageReserved(page)) 8906 return false; 8907 } 8908 return true; 8909 } 8910 8911 static bool zone_spans_last_pfn(const struct zone *zone, 8912 unsigned long start_pfn, unsigned long nr_pages) 8913 { 8914 unsigned long last_pfn = start_pfn + nr_pages - 1; 8915 8916 return zone_spans_pfn(zone, last_pfn); 8917 } 8918 8919 /** 8920 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 8921 * @nr_pages: Number of contiguous pages to allocate 8922 * @gfp_mask: GFP mask to limit search and used during compaction 8923 * @nid: Target node 8924 * @nodemask: Mask for other possible nodes 8925 * 8926 * This routine is a wrapper around alloc_contig_range(). It scans over zones 8927 * on an applicable zonelist to find a contiguous pfn range which can then be 8928 * tried for allocation with alloc_contig_range(). This routine is intended 8929 * for allocation requests which can not be fulfilled with the buddy allocator. 8930 * 8931 * The allocated memory is always aligned to a page boundary. If nr_pages is a 8932 * power of two then the alignment is guaranteed to be to the given nr_pages 8933 * (e.g. 1GB request would be aligned to 1GB). 8934 * 8935 * Allocated pages can be freed with free_contig_range() or by manually calling 8936 * __free_page() on each allocated page. 8937 * 8938 * Return: pointer to contiguous pages on success, or NULL if not successful. 8939 */ 8940 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 8941 int nid, nodemask_t *nodemask) 8942 { 8943 unsigned long ret, pfn, flags; 8944 struct zonelist *zonelist; 8945 struct zone *zone; 8946 struct zoneref *z; 8947 8948 zonelist = node_zonelist(nid, gfp_mask); 8949 for_each_zone_zonelist_nodemask(zone, z, zonelist, 8950 gfp_zone(gfp_mask), nodemask) { 8951 spin_lock_irqsave(&zone->lock, flags); 8952 8953 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 8954 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 8955 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 8956 /* 8957 * We release the zone lock here because 8958 * alloc_contig_range() will also lock the zone 8959 * at some point. If there's an allocation 8960 * spinning on this lock, it may win the race 8961 * and cause alloc_contig_range() to fail... 8962 */ 8963 spin_unlock_irqrestore(&zone->lock, flags); 8964 ret = __alloc_contig_pages(pfn, nr_pages, 8965 gfp_mask); 8966 if (!ret) 8967 return pfn_to_page(pfn); 8968 spin_lock_irqsave(&zone->lock, flags); 8969 } 8970 pfn += nr_pages; 8971 } 8972 spin_unlock_irqrestore(&zone->lock, flags); 8973 } 8974 return NULL; 8975 } 8976 #endif /* CONFIG_CONTIG_ALLOC */ 8977 8978 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 8979 { 8980 unsigned long count = 0; 8981 8982 for (; nr_pages--; pfn++) { 8983 struct page *page = pfn_to_page(pfn); 8984 8985 count += page_count(page) != 1; 8986 __free_page(page); 8987 } 8988 WARN(count != 0, "%lu pages are still in use!\n", count); 8989 } 8990 EXPORT_SYMBOL(free_contig_range); 8991 8992 /* 8993 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8994 * page high values need to be recalculated. 8995 */ 8996 void __meminit zone_pcp_update(struct zone *zone) 8997 { 8998 mutex_lock(&pcp_batch_high_lock); 8999 zone_set_pageset_high_and_batch(zone); 9000 mutex_unlock(&pcp_batch_high_lock); 9001 } 9002 9003 /* 9004 * Effectively disable pcplists for the zone by setting the high limit to 0 9005 * and draining all cpus. A concurrent page freeing on another CPU that's about 9006 * to put the page on pcplist will either finish before the drain and the page 9007 * will be drained, or observe the new high limit and skip the pcplist. 9008 * 9009 * Must be paired with a call to zone_pcp_enable(). 9010 */ 9011 void zone_pcp_disable(struct zone *zone) 9012 { 9013 mutex_lock(&pcp_batch_high_lock); 9014 __zone_set_pageset_high_and_batch(zone, 0, 1); 9015 __drain_all_pages(zone, true); 9016 } 9017 9018 void zone_pcp_enable(struct zone *zone) 9019 { 9020 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9021 mutex_unlock(&pcp_batch_high_lock); 9022 } 9023 9024 void zone_pcp_reset(struct zone *zone) 9025 { 9026 int cpu; 9027 struct per_cpu_pageset *pset; 9028 9029 if (zone->pageset != &boot_pageset) { 9030 for_each_online_cpu(cpu) { 9031 pset = per_cpu_ptr(zone->pageset, cpu); 9032 drain_zonestat(zone, pset); 9033 } 9034 free_percpu(zone->pageset); 9035 zone->pageset = &boot_pageset; 9036 } 9037 } 9038 9039 #ifdef CONFIG_MEMORY_HOTREMOVE 9040 /* 9041 * All pages in the range must be in a single zone, must not contain holes, 9042 * must span full sections, and must be isolated before calling this function. 9043 */ 9044 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9045 { 9046 unsigned long pfn = start_pfn; 9047 struct page *page; 9048 struct zone *zone; 9049 unsigned int order; 9050 unsigned long flags; 9051 9052 offline_mem_sections(pfn, end_pfn); 9053 zone = page_zone(pfn_to_page(pfn)); 9054 spin_lock_irqsave(&zone->lock, flags); 9055 while (pfn < end_pfn) { 9056 page = pfn_to_page(pfn); 9057 /* 9058 * The HWPoisoned page may be not in buddy system, and 9059 * page_count() is not 0. 9060 */ 9061 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9062 pfn++; 9063 continue; 9064 } 9065 /* 9066 * At this point all remaining PageOffline() pages have a 9067 * reference count of 0 and can simply be skipped. 9068 */ 9069 if (PageOffline(page)) { 9070 BUG_ON(page_count(page)); 9071 BUG_ON(PageBuddy(page)); 9072 pfn++; 9073 continue; 9074 } 9075 9076 BUG_ON(page_count(page)); 9077 BUG_ON(!PageBuddy(page)); 9078 order = buddy_order(page); 9079 del_page_from_free_list(page, zone, order); 9080 pfn += (1 << order); 9081 } 9082 spin_unlock_irqrestore(&zone->lock, flags); 9083 } 9084 #endif 9085 9086 bool is_free_buddy_page(struct page *page) 9087 { 9088 struct zone *zone = page_zone(page); 9089 unsigned long pfn = page_to_pfn(page); 9090 unsigned long flags; 9091 unsigned int order; 9092 9093 spin_lock_irqsave(&zone->lock, flags); 9094 for (order = 0; order < MAX_ORDER; order++) { 9095 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9096 9097 if (PageBuddy(page_head) && buddy_order(page_head) >= order) 9098 break; 9099 } 9100 spin_unlock_irqrestore(&zone->lock, flags); 9101 9102 return order < MAX_ORDER; 9103 } 9104 9105 #ifdef CONFIG_MEMORY_FAILURE 9106 /* 9107 * Break down a higher-order page in sub-pages, and keep our target out of 9108 * buddy allocator. 9109 */ 9110 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9111 struct page *target, int low, int high, 9112 int migratetype) 9113 { 9114 unsigned long size = 1 << high; 9115 struct page *current_buddy, *next_page; 9116 9117 while (high > low) { 9118 high--; 9119 size >>= 1; 9120 9121 if (target >= &page[size]) { 9122 next_page = page + size; 9123 current_buddy = page; 9124 } else { 9125 next_page = page; 9126 current_buddy = page + size; 9127 } 9128 9129 if (set_page_guard(zone, current_buddy, high, migratetype)) 9130 continue; 9131 9132 if (current_buddy != target) { 9133 add_to_free_list(current_buddy, zone, high, migratetype); 9134 set_buddy_order(current_buddy, high); 9135 page = next_page; 9136 } 9137 } 9138 } 9139 9140 /* 9141 * Take a page that will be marked as poisoned off the buddy allocator. 9142 */ 9143 bool take_page_off_buddy(struct page *page) 9144 { 9145 struct zone *zone = page_zone(page); 9146 unsigned long pfn = page_to_pfn(page); 9147 unsigned long flags; 9148 unsigned int order; 9149 bool ret = false; 9150 9151 spin_lock_irqsave(&zone->lock, flags); 9152 for (order = 0; order < MAX_ORDER; order++) { 9153 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9154 int page_order = buddy_order(page_head); 9155 9156 if (PageBuddy(page_head) && page_order >= order) { 9157 unsigned long pfn_head = page_to_pfn(page_head); 9158 int migratetype = get_pfnblock_migratetype(page_head, 9159 pfn_head); 9160 9161 del_page_from_free_list(page_head, zone, page_order); 9162 break_down_buddy_pages(zone, page_head, page, 0, 9163 page_order, migratetype); 9164 ret = true; 9165 break; 9166 } 9167 if (page_count(page_head) > 0) 9168 break; 9169 } 9170 spin_unlock_irqrestore(&zone->lock, flags); 9171 return ret; 9172 } 9173 #endif 9174