xref: /openbmc/linux/mm/page_alloc.c (revision 7a3b835371883558eb63e069d891bd87f562380d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
78 #include "internal.h"
79 #include "shuffle.h"
80 #include "page_reporting.h"
81 
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
84 
85 /* No special request */
86 #define FPI_NONE		((__force fpi_t)0)
87 
88 /*
89  * Skip free page reporting notification for the (possibly merged) page.
90  * This does not hinder free page reporting from grabbing the page,
91  * reporting it and marking it "reported" -  it only skips notifying
92  * the free page reporting infrastructure about a newly freed page. For
93  * example, used when temporarily pulling a page from a freelist and
94  * putting it back unmodified.
95  */
96 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
97 
98 /*
99  * Place the (possibly merged) page to the tail of the freelist. Will ignore
100  * page shuffling (relevant code - e.g., memory onlining - is expected to
101  * shuffle the whole zone).
102  *
103  * Note: No code should rely on this flag for correctness - it's purely
104  *       to allow for optimizations when handing back either fresh pages
105  *       (memory onlining) or untouched pages (page isolation, free page
106  *       reporting).
107  */
108 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
109 
110 /*
111  * Don't poison memory with KASAN (only for the tag-based modes).
112  * During boot, all non-reserved memblock memory is exposed to page_alloc.
113  * Poisoning all that memory lengthens boot time, especially on systems with
114  * large amount of RAM. This flag is used to skip that poisoning.
115  * This is only done for the tag-based KASAN modes, as those are able to
116  * detect memory corruptions with the memory tags assigned by default.
117  * All memory allocated normally after boot gets poisoned as usual.
118  */
119 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
120 
121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122 static DEFINE_MUTEX(pcp_batch_high_lock);
123 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
124 
125 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
126 DEFINE_PER_CPU(int, numa_node);
127 EXPORT_PER_CPU_SYMBOL(numa_node);
128 #endif
129 
130 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
131 
132 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
133 /*
134  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
135  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
136  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
137  * defined in <linux/topology.h>.
138  */
139 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
140 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
141 #endif
142 
143 /* work_structs for global per-cpu drains */
144 struct pcpu_drain {
145 	struct zone *zone;
146 	struct work_struct work;
147 };
148 static DEFINE_MUTEX(pcpu_drain_mutex);
149 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
150 
151 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
152 volatile unsigned long latent_entropy __latent_entropy;
153 EXPORT_SYMBOL(latent_entropy);
154 #endif
155 
156 /*
157  * Array of node states.
158  */
159 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
160 	[N_POSSIBLE] = NODE_MASK_ALL,
161 	[N_ONLINE] = { { [0] = 1UL } },
162 #ifndef CONFIG_NUMA
163 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
164 #ifdef CONFIG_HIGHMEM
165 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
166 #endif
167 	[N_MEMORY] = { { [0] = 1UL } },
168 	[N_CPU] = { { [0] = 1UL } },
169 #endif	/* NUMA */
170 };
171 EXPORT_SYMBOL(node_states);
172 
173 atomic_long_t _totalram_pages __read_mostly;
174 EXPORT_SYMBOL(_totalram_pages);
175 unsigned long totalreserve_pages __read_mostly;
176 unsigned long totalcma_pages __read_mostly;
177 
178 int percpu_pagelist_fraction;
179 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
180 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
181 EXPORT_SYMBOL(init_on_alloc);
182 
183 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
184 EXPORT_SYMBOL(init_on_free);
185 
186 static bool _init_on_alloc_enabled_early __read_mostly
187 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
188 static int __init early_init_on_alloc(char *buf)
189 {
190 
191 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
192 }
193 early_param("init_on_alloc", early_init_on_alloc);
194 
195 static bool _init_on_free_enabled_early __read_mostly
196 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
197 static int __init early_init_on_free(char *buf)
198 {
199 	return kstrtobool(buf, &_init_on_free_enabled_early);
200 }
201 early_param("init_on_free", early_init_on_free);
202 
203 /*
204  * A cached value of the page's pageblock's migratetype, used when the page is
205  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
206  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
207  * Also the migratetype set in the page does not necessarily match the pcplist
208  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
209  * other index - this ensures that it will be put on the correct CMA freelist.
210  */
211 static inline int get_pcppage_migratetype(struct page *page)
212 {
213 	return page->index;
214 }
215 
216 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
217 {
218 	page->index = migratetype;
219 }
220 
221 #ifdef CONFIG_PM_SLEEP
222 /*
223  * The following functions are used by the suspend/hibernate code to temporarily
224  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
225  * while devices are suspended.  To avoid races with the suspend/hibernate code,
226  * they should always be called with system_transition_mutex held
227  * (gfp_allowed_mask also should only be modified with system_transition_mutex
228  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
229  * with that modification).
230  */
231 
232 static gfp_t saved_gfp_mask;
233 
234 void pm_restore_gfp_mask(void)
235 {
236 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
237 	if (saved_gfp_mask) {
238 		gfp_allowed_mask = saved_gfp_mask;
239 		saved_gfp_mask = 0;
240 	}
241 }
242 
243 void pm_restrict_gfp_mask(void)
244 {
245 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
246 	WARN_ON(saved_gfp_mask);
247 	saved_gfp_mask = gfp_allowed_mask;
248 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
249 }
250 
251 bool pm_suspended_storage(void)
252 {
253 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
254 		return false;
255 	return true;
256 }
257 #endif /* CONFIG_PM_SLEEP */
258 
259 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
260 unsigned int pageblock_order __read_mostly;
261 #endif
262 
263 static void __free_pages_ok(struct page *page, unsigned int order,
264 			    fpi_t fpi_flags);
265 
266 /*
267  * results with 256, 32 in the lowmem_reserve sysctl:
268  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
269  *	1G machine -> (16M dma, 784M normal, 224M high)
270  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
271  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
272  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
273  *
274  * TBD: should special case ZONE_DMA32 machines here - in those we normally
275  * don't need any ZONE_NORMAL reservation
276  */
277 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
278 #ifdef CONFIG_ZONE_DMA
279 	[ZONE_DMA] = 256,
280 #endif
281 #ifdef CONFIG_ZONE_DMA32
282 	[ZONE_DMA32] = 256,
283 #endif
284 	[ZONE_NORMAL] = 32,
285 #ifdef CONFIG_HIGHMEM
286 	[ZONE_HIGHMEM] = 0,
287 #endif
288 	[ZONE_MOVABLE] = 0,
289 };
290 
291 static char * const zone_names[MAX_NR_ZONES] = {
292 #ifdef CONFIG_ZONE_DMA
293 	 "DMA",
294 #endif
295 #ifdef CONFIG_ZONE_DMA32
296 	 "DMA32",
297 #endif
298 	 "Normal",
299 #ifdef CONFIG_HIGHMEM
300 	 "HighMem",
301 #endif
302 	 "Movable",
303 #ifdef CONFIG_ZONE_DEVICE
304 	 "Device",
305 #endif
306 };
307 
308 const char * const migratetype_names[MIGRATE_TYPES] = {
309 	"Unmovable",
310 	"Movable",
311 	"Reclaimable",
312 	"HighAtomic",
313 #ifdef CONFIG_CMA
314 	"CMA",
315 #endif
316 #ifdef CONFIG_MEMORY_ISOLATION
317 	"Isolate",
318 #endif
319 };
320 
321 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
322 	[NULL_COMPOUND_DTOR] = NULL,
323 	[COMPOUND_PAGE_DTOR] = free_compound_page,
324 #ifdef CONFIG_HUGETLB_PAGE
325 	[HUGETLB_PAGE_DTOR] = free_huge_page,
326 #endif
327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
328 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
329 #endif
330 };
331 
332 int min_free_kbytes = 1024;
333 int user_min_free_kbytes = -1;
334 #ifdef CONFIG_DISCONTIGMEM
335 /*
336  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
337  * are not on separate NUMA nodes. Functionally this works but with
338  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
339  * quite small. By default, do not boost watermarks on discontigmem as in
340  * many cases very high-order allocations like THP are likely to be
341  * unsupported and the premature reclaim offsets the advantage of long-term
342  * fragmentation avoidance.
343  */
344 int watermark_boost_factor __read_mostly;
345 #else
346 int watermark_boost_factor __read_mostly = 15000;
347 #endif
348 int watermark_scale_factor = 10;
349 
350 static unsigned long nr_kernel_pages __initdata;
351 static unsigned long nr_all_pages __initdata;
352 static unsigned long dma_reserve __initdata;
353 
354 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
355 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
356 static unsigned long required_kernelcore __initdata;
357 static unsigned long required_kernelcore_percent __initdata;
358 static unsigned long required_movablecore __initdata;
359 static unsigned long required_movablecore_percent __initdata;
360 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
361 static bool mirrored_kernelcore __meminitdata;
362 
363 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
364 int movable_zone;
365 EXPORT_SYMBOL(movable_zone);
366 
367 #if MAX_NUMNODES > 1
368 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
369 unsigned int nr_online_nodes __read_mostly = 1;
370 EXPORT_SYMBOL(nr_node_ids);
371 EXPORT_SYMBOL(nr_online_nodes);
372 #endif
373 
374 int page_group_by_mobility_disabled __read_mostly;
375 
376 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
377 /*
378  * During boot we initialize deferred pages on-demand, as needed, but once
379  * page_alloc_init_late() has finished, the deferred pages are all initialized,
380  * and we can permanently disable that path.
381  */
382 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
383 
384 /*
385  * Calling kasan_poison_pages() only after deferred memory initialization
386  * has completed. Poisoning pages during deferred memory init will greatly
387  * lengthen the process and cause problem in large memory systems as the
388  * deferred pages initialization is done with interrupt disabled.
389  *
390  * Assuming that there will be no reference to those newly initialized
391  * pages before they are ever allocated, this should have no effect on
392  * KASAN memory tracking as the poison will be properly inserted at page
393  * allocation time. The only corner case is when pages are allocated by
394  * on-demand allocation and then freed again before the deferred pages
395  * initialization is done, but this is not likely to happen.
396  */
397 static inline bool should_skip_kasan_poison(fpi_t fpi_flags)
398 {
399 	return static_branch_unlikely(&deferred_pages) ||
400 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
401 		(fpi_flags & FPI_SKIP_KASAN_POISON));
402 }
403 
404 /* Returns true if the struct page for the pfn is uninitialised */
405 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
406 {
407 	int nid = early_pfn_to_nid(pfn);
408 
409 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
410 		return true;
411 
412 	return false;
413 }
414 
415 /*
416  * Returns true when the remaining initialisation should be deferred until
417  * later in the boot cycle when it can be parallelised.
418  */
419 static bool __meminit
420 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
421 {
422 	static unsigned long prev_end_pfn, nr_initialised;
423 
424 	/*
425 	 * prev_end_pfn static that contains the end of previous zone
426 	 * No need to protect because called very early in boot before smp_init.
427 	 */
428 	if (prev_end_pfn != end_pfn) {
429 		prev_end_pfn = end_pfn;
430 		nr_initialised = 0;
431 	}
432 
433 	/* Always populate low zones for address-constrained allocations */
434 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
435 		return false;
436 
437 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
438 		return true;
439 	/*
440 	 * We start only with one section of pages, more pages are added as
441 	 * needed until the rest of deferred pages are initialized.
442 	 */
443 	nr_initialised++;
444 	if ((nr_initialised > PAGES_PER_SECTION) &&
445 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
446 		NODE_DATA(nid)->first_deferred_pfn = pfn;
447 		return true;
448 	}
449 	return false;
450 }
451 #else
452 static inline bool should_skip_kasan_poison(fpi_t fpi_flags)
453 {
454 	return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
455 		(fpi_flags & FPI_SKIP_KASAN_POISON));
456 }
457 
458 static inline bool early_page_uninitialised(unsigned long pfn)
459 {
460 	return false;
461 }
462 
463 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
464 {
465 	return false;
466 }
467 #endif
468 
469 /* Return a pointer to the bitmap storing bits affecting a block of pages */
470 static inline unsigned long *get_pageblock_bitmap(struct page *page,
471 							unsigned long pfn)
472 {
473 #ifdef CONFIG_SPARSEMEM
474 	return section_to_usemap(__pfn_to_section(pfn));
475 #else
476 	return page_zone(page)->pageblock_flags;
477 #endif /* CONFIG_SPARSEMEM */
478 }
479 
480 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
481 {
482 #ifdef CONFIG_SPARSEMEM
483 	pfn &= (PAGES_PER_SECTION-1);
484 #else
485 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
486 #endif /* CONFIG_SPARSEMEM */
487 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
488 }
489 
490 static __always_inline
491 unsigned long __get_pfnblock_flags_mask(struct page *page,
492 					unsigned long pfn,
493 					unsigned long mask)
494 {
495 	unsigned long *bitmap;
496 	unsigned long bitidx, word_bitidx;
497 	unsigned long word;
498 
499 	bitmap = get_pageblock_bitmap(page, pfn);
500 	bitidx = pfn_to_bitidx(page, pfn);
501 	word_bitidx = bitidx / BITS_PER_LONG;
502 	bitidx &= (BITS_PER_LONG-1);
503 
504 	word = bitmap[word_bitidx];
505 	return (word >> bitidx) & mask;
506 }
507 
508 /**
509  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
510  * @page: The page within the block of interest
511  * @pfn: The target page frame number
512  * @mask: mask of bits that the caller is interested in
513  *
514  * Return: pageblock_bits flags
515  */
516 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
517 					unsigned long mask)
518 {
519 	return __get_pfnblock_flags_mask(page, pfn, mask);
520 }
521 
522 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
523 {
524 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
525 }
526 
527 /**
528  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
529  * @page: The page within the block of interest
530  * @flags: The flags to set
531  * @pfn: The target page frame number
532  * @mask: mask of bits that the caller is interested in
533  */
534 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
535 					unsigned long pfn,
536 					unsigned long mask)
537 {
538 	unsigned long *bitmap;
539 	unsigned long bitidx, word_bitidx;
540 	unsigned long old_word, word;
541 
542 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
543 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
544 
545 	bitmap = get_pageblock_bitmap(page, pfn);
546 	bitidx = pfn_to_bitidx(page, pfn);
547 	word_bitidx = bitidx / BITS_PER_LONG;
548 	bitidx &= (BITS_PER_LONG-1);
549 
550 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
551 
552 	mask <<= bitidx;
553 	flags <<= bitidx;
554 
555 	word = READ_ONCE(bitmap[word_bitidx]);
556 	for (;;) {
557 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
558 		if (word == old_word)
559 			break;
560 		word = old_word;
561 	}
562 }
563 
564 void set_pageblock_migratetype(struct page *page, int migratetype)
565 {
566 	if (unlikely(page_group_by_mobility_disabled &&
567 		     migratetype < MIGRATE_PCPTYPES))
568 		migratetype = MIGRATE_UNMOVABLE;
569 
570 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
571 				page_to_pfn(page), MIGRATETYPE_MASK);
572 }
573 
574 #ifdef CONFIG_DEBUG_VM
575 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
576 {
577 	int ret = 0;
578 	unsigned seq;
579 	unsigned long pfn = page_to_pfn(page);
580 	unsigned long sp, start_pfn;
581 
582 	do {
583 		seq = zone_span_seqbegin(zone);
584 		start_pfn = zone->zone_start_pfn;
585 		sp = zone->spanned_pages;
586 		if (!zone_spans_pfn(zone, pfn))
587 			ret = 1;
588 	} while (zone_span_seqretry(zone, seq));
589 
590 	if (ret)
591 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
592 			pfn, zone_to_nid(zone), zone->name,
593 			start_pfn, start_pfn + sp);
594 
595 	return ret;
596 }
597 
598 static int page_is_consistent(struct zone *zone, struct page *page)
599 {
600 	if (!pfn_valid_within(page_to_pfn(page)))
601 		return 0;
602 	if (zone != page_zone(page))
603 		return 0;
604 
605 	return 1;
606 }
607 /*
608  * Temporary debugging check for pages not lying within a given zone.
609  */
610 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
611 {
612 	if (page_outside_zone_boundaries(zone, page))
613 		return 1;
614 	if (!page_is_consistent(zone, page))
615 		return 1;
616 
617 	return 0;
618 }
619 #else
620 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
621 {
622 	return 0;
623 }
624 #endif
625 
626 static void bad_page(struct page *page, const char *reason)
627 {
628 	static unsigned long resume;
629 	static unsigned long nr_shown;
630 	static unsigned long nr_unshown;
631 
632 	/*
633 	 * Allow a burst of 60 reports, then keep quiet for that minute;
634 	 * or allow a steady drip of one report per second.
635 	 */
636 	if (nr_shown == 60) {
637 		if (time_before(jiffies, resume)) {
638 			nr_unshown++;
639 			goto out;
640 		}
641 		if (nr_unshown) {
642 			pr_alert(
643 			      "BUG: Bad page state: %lu messages suppressed\n",
644 				nr_unshown);
645 			nr_unshown = 0;
646 		}
647 		nr_shown = 0;
648 	}
649 	if (nr_shown++ == 0)
650 		resume = jiffies + 60 * HZ;
651 
652 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
653 		current->comm, page_to_pfn(page));
654 	__dump_page(page, reason);
655 	dump_page_owner(page);
656 
657 	print_modules();
658 	dump_stack();
659 out:
660 	/* Leave bad fields for debug, except PageBuddy could make trouble */
661 	page_mapcount_reset(page); /* remove PageBuddy */
662 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
663 }
664 
665 /*
666  * Higher-order pages are called "compound pages".  They are structured thusly:
667  *
668  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
669  *
670  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
671  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
672  *
673  * The first tail page's ->compound_dtor holds the offset in array of compound
674  * page destructors. See compound_page_dtors.
675  *
676  * The first tail page's ->compound_order holds the order of allocation.
677  * This usage means that zero-order pages may not be compound.
678  */
679 
680 void free_compound_page(struct page *page)
681 {
682 	mem_cgroup_uncharge(page);
683 	__free_pages_ok(page, compound_order(page), FPI_NONE);
684 }
685 
686 void prep_compound_page(struct page *page, unsigned int order)
687 {
688 	int i;
689 	int nr_pages = 1 << order;
690 
691 	__SetPageHead(page);
692 	for (i = 1; i < nr_pages; i++) {
693 		struct page *p = page + i;
694 		set_page_count(p, 0);
695 		p->mapping = TAIL_MAPPING;
696 		set_compound_head(p, page);
697 	}
698 
699 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
700 	set_compound_order(page, order);
701 	atomic_set(compound_mapcount_ptr(page), -1);
702 	if (hpage_pincount_available(page))
703 		atomic_set(compound_pincount_ptr(page), 0);
704 }
705 
706 #ifdef CONFIG_DEBUG_PAGEALLOC
707 unsigned int _debug_guardpage_minorder;
708 
709 bool _debug_pagealloc_enabled_early __read_mostly
710 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
711 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
712 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
713 EXPORT_SYMBOL(_debug_pagealloc_enabled);
714 
715 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
716 
717 static int __init early_debug_pagealloc(char *buf)
718 {
719 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
720 }
721 early_param("debug_pagealloc", early_debug_pagealloc);
722 
723 static int __init debug_guardpage_minorder_setup(char *buf)
724 {
725 	unsigned long res;
726 
727 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
728 		pr_err("Bad debug_guardpage_minorder value\n");
729 		return 0;
730 	}
731 	_debug_guardpage_minorder = res;
732 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
733 	return 0;
734 }
735 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
736 
737 static inline bool set_page_guard(struct zone *zone, struct page *page,
738 				unsigned int order, int migratetype)
739 {
740 	if (!debug_guardpage_enabled())
741 		return false;
742 
743 	if (order >= debug_guardpage_minorder())
744 		return false;
745 
746 	__SetPageGuard(page);
747 	INIT_LIST_HEAD(&page->lru);
748 	set_page_private(page, order);
749 	/* Guard pages are not available for any usage */
750 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
751 
752 	return true;
753 }
754 
755 static inline void clear_page_guard(struct zone *zone, struct page *page,
756 				unsigned int order, int migratetype)
757 {
758 	if (!debug_guardpage_enabled())
759 		return;
760 
761 	__ClearPageGuard(page);
762 
763 	set_page_private(page, 0);
764 	if (!is_migrate_isolate(migratetype))
765 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
766 }
767 #else
768 static inline bool set_page_guard(struct zone *zone, struct page *page,
769 			unsigned int order, int migratetype) { return false; }
770 static inline void clear_page_guard(struct zone *zone, struct page *page,
771 				unsigned int order, int migratetype) {}
772 #endif
773 
774 /*
775  * Enable static keys related to various memory debugging and hardening options.
776  * Some override others, and depend on early params that are evaluated in the
777  * order of appearance. So we need to first gather the full picture of what was
778  * enabled, and then make decisions.
779  */
780 void init_mem_debugging_and_hardening(void)
781 {
782 	bool page_poisoning_requested = false;
783 
784 #ifdef CONFIG_PAGE_POISONING
785 	/*
786 	 * Page poisoning is debug page alloc for some arches. If
787 	 * either of those options are enabled, enable poisoning.
788 	 */
789 	if (page_poisoning_enabled() ||
790 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
791 	      debug_pagealloc_enabled())) {
792 		static_branch_enable(&_page_poisoning_enabled);
793 		page_poisoning_requested = true;
794 	}
795 #endif
796 
797 	if (_init_on_alloc_enabled_early) {
798 		if (page_poisoning_requested)
799 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
800 				"will take precedence over init_on_alloc\n");
801 		else
802 			static_branch_enable(&init_on_alloc);
803 	}
804 	if (_init_on_free_enabled_early) {
805 		if (page_poisoning_requested)
806 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
807 				"will take precedence over init_on_free\n");
808 		else
809 			static_branch_enable(&init_on_free);
810 	}
811 
812 #ifdef CONFIG_DEBUG_PAGEALLOC
813 	if (!debug_pagealloc_enabled())
814 		return;
815 
816 	static_branch_enable(&_debug_pagealloc_enabled);
817 
818 	if (!debug_guardpage_minorder())
819 		return;
820 
821 	static_branch_enable(&_debug_guardpage_enabled);
822 #endif
823 }
824 
825 static inline void set_buddy_order(struct page *page, unsigned int order)
826 {
827 	set_page_private(page, order);
828 	__SetPageBuddy(page);
829 }
830 
831 /*
832  * This function checks whether a page is free && is the buddy
833  * we can coalesce a page and its buddy if
834  * (a) the buddy is not in a hole (check before calling!) &&
835  * (b) the buddy is in the buddy system &&
836  * (c) a page and its buddy have the same order &&
837  * (d) a page and its buddy are in the same zone.
838  *
839  * For recording whether a page is in the buddy system, we set PageBuddy.
840  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
841  *
842  * For recording page's order, we use page_private(page).
843  */
844 static inline bool page_is_buddy(struct page *page, struct page *buddy,
845 							unsigned int order)
846 {
847 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
848 		return false;
849 
850 	if (buddy_order(buddy) != order)
851 		return false;
852 
853 	/*
854 	 * zone check is done late to avoid uselessly calculating
855 	 * zone/node ids for pages that could never merge.
856 	 */
857 	if (page_zone_id(page) != page_zone_id(buddy))
858 		return false;
859 
860 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
861 
862 	return true;
863 }
864 
865 #ifdef CONFIG_COMPACTION
866 static inline struct capture_control *task_capc(struct zone *zone)
867 {
868 	struct capture_control *capc = current->capture_control;
869 
870 	return unlikely(capc) &&
871 		!(current->flags & PF_KTHREAD) &&
872 		!capc->page &&
873 		capc->cc->zone == zone ? capc : NULL;
874 }
875 
876 static inline bool
877 compaction_capture(struct capture_control *capc, struct page *page,
878 		   int order, int migratetype)
879 {
880 	if (!capc || order != capc->cc->order)
881 		return false;
882 
883 	/* Do not accidentally pollute CMA or isolated regions*/
884 	if (is_migrate_cma(migratetype) ||
885 	    is_migrate_isolate(migratetype))
886 		return false;
887 
888 	/*
889 	 * Do not let lower order allocations pollute a movable pageblock.
890 	 * This might let an unmovable request use a reclaimable pageblock
891 	 * and vice-versa but no more than normal fallback logic which can
892 	 * have trouble finding a high-order free page.
893 	 */
894 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
895 		return false;
896 
897 	capc->page = page;
898 	return true;
899 }
900 
901 #else
902 static inline struct capture_control *task_capc(struct zone *zone)
903 {
904 	return NULL;
905 }
906 
907 static inline bool
908 compaction_capture(struct capture_control *capc, struct page *page,
909 		   int order, int migratetype)
910 {
911 	return false;
912 }
913 #endif /* CONFIG_COMPACTION */
914 
915 /* Used for pages not on another list */
916 static inline void add_to_free_list(struct page *page, struct zone *zone,
917 				    unsigned int order, int migratetype)
918 {
919 	struct free_area *area = &zone->free_area[order];
920 
921 	list_add(&page->lru, &area->free_list[migratetype]);
922 	area->nr_free++;
923 }
924 
925 /* Used for pages not on another list */
926 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
927 					 unsigned int order, int migratetype)
928 {
929 	struct free_area *area = &zone->free_area[order];
930 
931 	list_add_tail(&page->lru, &area->free_list[migratetype]);
932 	area->nr_free++;
933 }
934 
935 /*
936  * Used for pages which are on another list. Move the pages to the tail
937  * of the list - so the moved pages won't immediately be considered for
938  * allocation again (e.g., optimization for memory onlining).
939  */
940 static inline void move_to_free_list(struct page *page, struct zone *zone,
941 				     unsigned int order, int migratetype)
942 {
943 	struct free_area *area = &zone->free_area[order];
944 
945 	list_move_tail(&page->lru, &area->free_list[migratetype]);
946 }
947 
948 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
949 					   unsigned int order)
950 {
951 	/* clear reported state and update reported page count */
952 	if (page_reported(page))
953 		__ClearPageReported(page);
954 
955 	list_del(&page->lru);
956 	__ClearPageBuddy(page);
957 	set_page_private(page, 0);
958 	zone->free_area[order].nr_free--;
959 }
960 
961 /*
962  * If this is not the largest possible page, check if the buddy
963  * of the next-highest order is free. If it is, it's possible
964  * that pages are being freed that will coalesce soon. In case,
965  * that is happening, add the free page to the tail of the list
966  * so it's less likely to be used soon and more likely to be merged
967  * as a higher order page
968  */
969 static inline bool
970 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
971 		   struct page *page, unsigned int order)
972 {
973 	struct page *higher_page, *higher_buddy;
974 	unsigned long combined_pfn;
975 
976 	if (order >= MAX_ORDER - 2)
977 		return false;
978 
979 	if (!pfn_valid_within(buddy_pfn))
980 		return false;
981 
982 	combined_pfn = buddy_pfn & pfn;
983 	higher_page = page + (combined_pfn - pfn);
984 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
985 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
986 
987 	return pfn_valid_within(buddy_pfn) &&
988 	       page_is_buddy(higher_page, higher_buddy, order + 1);
989 }
990 
991 /*
992  * Freeing function for a buddy system allocator.
993  *
994  * The concept of a buddy system is to maintain direct-mapped table
995  * (containing bit values) for memory blocks of various "orders".
996  * The bottom level table contains the map for the smallest allocatable
997  * units of memory (here, pages), and each level above it describes
998  * pairs of units from the levels below, hence, "buddies".
999  * At a high level, all that happens here is marking the table entry
1000  * at the bottom level available, and propagating the changes upward
1001  * as necessary, plus some accounting needed to play nicely with other
1002  * parts of the VM system.
1003  * At each level, we keep a list of pages, which are heads of continuous
1004  * free pages of length of (1 << order) and marked with PageBuddy.
1005  * Page's order is recorded in page_private(page) field.
1006  * So when we are allocating or freeing one, we can derive the state of the
1007  * other.  That is, if we allocate a small block, and both were
1008  * free, the remainder of the region must be split into blocks.
1009  * If a block is freed, and its buddy is also free, then this
1010  * triggers coalescing into a block of larger size.
1011  *
1012  * -- nyc
1013  */
1014 
1015 static inline void __free_one_page(struct page *page,
1016 		unsigned long pfn,
1017 		struct zone *zone, unsigned int order,
1018 		int migratetype, fpi_t fpi_flags)
1019 {
1020 	struct capture_control *capc = task_capc(zone);
1021 	unsigned long buddy_pfn;
1022 	unsigned long combined_pfn;
1023 	unsigned int max_order;
1024 	struct page *buddy;
1025 	bool to_tail;
1026 
1027 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1028 
1029 	VM_BUG_ON(!zone_is_initialized(zone));
1030 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1031 
1032 	VM_BUG_ON(migratetype == -1);
1033 	if (likely(!is_migrate_isolate(migratetype)))
1034 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1035 
1036 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1037 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1038 
1039 continue_merging:
1040 	while (order < max_order) {
1041 		if (compaction_capture(capc, page, order, migratetype)) {
1042 			__mod_zone_freepage_state(zone, -(1 << order),
1043 								migratetype);
1044 			return;
1045 		}
1046 		buddy_pfn = __find_buddy_pfn(pfn, order);
1047 		buddy = page + (buddy_pfn - pfn);
1048 
1049 		if (!pfn_valid_within(buddy_pfn))
1050 			goto done_merging;
1051 		if (!page_is_buddy(page, buddy, order))
1052 			goto done_merging;
1053 		/*
1054 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1055 		 * merge with it and move up one order.
1056 		 */
1057 		if (page_is_guard(buddy))
1058 			clear_page_guard(zone, buddy, order, migratetype);
1059 		else
1060 			del_page_from_free_list(buddy, zone, order);
1061 		combined_pfn = buddy_pfn & pfn;
1062 		page = page + (combined_pfn - pfn);
1063 		pfn = combined_pfn;
1064 		order++;
1065 	}
1066 	if (order < MAX_ORDER - 1) {
1067 		/* If we are here, it means order is >= pageblock_order.
1068 		 * We want to prevent merge between freepages on isolate
1069 		 * pageblock and normal pageblock. Without this, pageblock
1070 		 * isolation could cause incorrect freepage or CMA accounting.
1071 		 *
1072 		 * We don't want to hit this code for the more frequent
1073 		 * low-order merging.
1074 		 */
1075 		if (unlikely(has_isolate_pageblock(zone))) {
1076 			int buddy_mt;
1077 
1078 			buddy_pfn = __find_buddy_pfn(pfn, order);
1079 			buddy = page + (buddy_pfn - pfn);
1080 			buddy_mt = get_pageblock_migratetype(buddy);
1081 
1082 			if (migratetype != buddy_mt
1083 					&& (is_migrate_isolate(migratetype) ||
1084 						is_migrate_isolate(buddy_mt)))
1085 				goto done_merging;
1086 		}
1087 		max_order = order + 1;
1088 		goto continue_merging;
1089 	}
1090 
1091 done_merging:
1092 	set_buddy_order(page, order);
1093 
1094 	if (fpi_flags & FPI_TO_TAIL)
1095 		to_tail = true;
1096 	else if (is_shuffle_order(order))
1097 		to_tail = shuffle_pick_tail();
1098 	else
1099 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1100 
1101 	if (to_tail)
1102 		add_to_free_list_tail(page, zone, order, migratetype);
1103 	else
1104 		add_to_free_list(page, zone, order, migratetype);
1105 
1106 	/* Notify page reporting subsystem of freed page */
1107 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1108 		page_reporting_notify_free(order);
1109 }
1110 
1111 /*
1112  * A bad page could be due to a number of fields. Instead of multiple branches,
1113  * try and check multiple fields with one check. The caller must do a detailed
1114  * check if necessary.
1115  */
1116 static inline bool page_expected_state(struct page *page,
1117 					unsigned long check_flags)
1118 {
1119 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1120 		return false;
1121 
1122 	if (unlikely((unsigned long)page->mapping |
1123 			page_ref_count(page) |
1124 #ifdef CONFIG_MEMCG
1125 			page->memcg_data |
1126 #endif
1127 			(page->flags & check_flags)))
1128 		return false;
1129 
1130 	return true;
1131 }
1132 
1133 static const char *page_bad_reason(struct page *page, unsigned long flags)
1134 {
1135 	const char *bad_reason = NULL;
1136 
1137 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1138 		bad_reason = "nonzero mapcount";
1139 	if (unlikely(page->mapping != NULL))
1140 		bad_reason = "non-NULL mapping";
1141 	if (unlikely(page_ref_count(page) != 0))
1142 		bad_reason = "nonzero _refcount";
1143 	if (unlikely(page->flags & flags)) {
1144 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1145 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1146 		else
1147 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1148 	}
1149 #ifdef CONFIG_MEMCG
1150 	if (unlikely(page->memcg_data))
1151 		bad_reason = "page still charged to cgroup";
1152 #endif
1153 	return bad_reason;
1154 }
1155 
1156 static void check_free_page_bad(struct page *page)
1157 {
1158 	bad_page(page,
1159 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1160 }
1161 
1162 static inline int check_free_page(struct page *page)
1163 {
1164 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1165 		return 0;
1166 
1167 	/* Something has gone sideways, find it */
1168 	check_free_page_bad(page);
1169 	return 1;
1170 }
1171 
1172 static int free_tail_pages_check(struct page *head_page, struct page *page)
1173 {
1174 	int ret = 1;
1175 
1176 	/*
1177 	 * We rely page->lru.next never has bit 0 set, unless the page
1178 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1179 	 */
1180 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1181 
1182 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1183 		ret = 0;
1184 		goto out;
1185 	}
1186 	switch (page - head_page) {
1187 	case 1:
1188 		/* the first tail page: ->mapping may be compound_mapcount() */
1189 		if (unlikely(compound_mapcount(page))) {
1190 			bad_page(page, "nonzero compound_mapcount");
1191 			goto out;
1192 		}
1193 		break;
1194 	case 2:
1195 		/*
1196 		 * the second tail page: ->mapping is
1197 		 * deferred_list.next -- ignore value.
1198 		 */
1199 		break;
1200 	default:
1201 		if (page->mapping != TAIL_MAPPING) {
1202 			bad_page(page, "corrupted mapping in tail page");
1203 			goto out;
1204 		}
1205 		break;
1206 	}
1207 	if (unlikely(!PageTail(page))) {
1208 		bad_page(page, "PageTail not set");
1209 		goto out;
1210 	}
1211 	if (unlikely(compound_head(page) != head_page)) {
1212 		bad_page(page, "compound_head not consistent");
1213 		goto out;
1214 	}
1215 	ret = 0;
1216 out:
1217 	page->mapping = NULL;
1218 	clear_compound_head(page);
1219 	return ret;
1220 }
1221 
1222 static void kernel_init_free_pages(struct page *page, int numpages)
1223 {
1224 	int i;
1225 
1226 	/* s390's use of memset() could override KASAN redzones. */
1227 	kasan_disable_current();
1228 	for (i = 0; i < numpages; i++) {
1229 		u8 tag = page_kasan_tag(page + i);
1230 		page_kasan_tag_reset(page + i);
1231 		clear_highpage(page + i);
1232 		page_kasan_tag_set(page + i, tag);
1233 	}
1234 	kasan_enable_current();
1235 }
1236 
1237 static __always_inline bool free_pages_prepare(struct page *page,
1238 			unsigned int order, bool check_free, fpi_t fpi_flags)
1239 {
1240 	int bad = 0;
1241 	bool skip_kasan_poison = should_skip_kasan_poison(fpi_flags);
1242 
1243 	VM_BUG_ON_PAGE(PageTail(page), page);
1244 
1245 	trace_mm_page_free(page, order);
1246 
1247 	if (unlikely(PageHWPoison(page)) && !order) {
1248 		/*
1249 		 * Do not let hwpoison pages hit pcplists/buddy
1250 		 * Untie memcg state and reset page's owner
1251 		 */
1252 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1253 			__memcg_kmem_uncharge_page(page, order);
1254 		reset_page_owner(page, order);
1255 		return false;
1256 	}
1257 
1258 	/*
1259 	 * Check tail pages before head page information is cleared to
1260 	 * avoid checking PageCompound for order-0 pages.
1261 	 */
1262 	if (unlikely(order)) {
1263 		bool compound = PageCompound(page);
1264 		int i;
1265 
1266 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1267 
1268 		if (compound)
1269 			ClearPageDoubleMap(page);
1270 		for (i = 1; i < (1 << order); i++) {
1271 			if (compound)
1272 				bad += free_tail_pages_check(page, page + i);
1273 			if (unlikely(check_free_page(page + i))) {
1274 				bad++;
1275 				continue;
1276 			}
1277 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1278 		}
1279 	}
1280 	if (PageMappingFlags(page))
1281 		page->mapping = NULL;
1282 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1283 		__memcg_kmem_uncharge_page(page, order);
1284 	if (check_free)
1285 		bad += check_free_page(page);
1286 	if (bad)
1287 		return false;
1288 
1289 	page_cpupid_reset_last(page);
1290 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1291 	reset_page_owner(page, order);
1292 
1293 	if (!PageHighMem(page)) {
1294 		debug_check_no_locks_freed(page_address(page),
1295 					   PAGE_SIZE << order);
1296 		debug_check_no_obj_freed(page_address(page),
1297 					   PAGE_SIZE << order);
1298 	}
1299 
1300 	kernel_poison_pages(page, 1 << order);
1301 
1302 	/*
1303 	 * As memory initialization might be integrated into KASAN,
1304 	 * kasan_free_pages and kernel_init_free_pages must be
1305 	 * kept together to avoid discrepancies in behavior.
1306 	 *
1307 	 * With hardware tag-based KASAN, memory tags must be set before the
1308 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1309 	 */
1310 	if (kasan_has_integrated_init()) {
1311 		if (!skip_kasan_poison)
1312 			kasan_free_pages(page, order);
1313 	} else {
1314 		bool init = want_init_on_free();
1315 
1316 		if (init)
1317 			kernel_init_free_pages(page, 1 << order);
1318 		if (!skip_kasan_poison)
1319 			kasan_poison_pages(page, order, init);
1320 	}
1321 
1322 	/*
1323 	 * arch_free_page() can make the page's contents inaccessible.  s390
1324 	 * does this.  So nothing which can access the page's contents should
1325 	 * happen after this.
1326 	 */
1327 	arch_free_page(page, order);
1328 
1329 	debug_pagealloc_unmap_pages(page, 1 << order);
1330 
1331 	return true;
1332 }
1333 
1334 #ifdef CONFIG_DEBUG_VM
1335 /*
1336  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1337  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1338  * moved from pcp lists to free lists.
1339  */
1340 static bool free_pcp_prepare(struct page *page)
1341 {
1342 	return free_pages_prepare(page, 0, true, FPI_NONE);
1343 }
1344 
1345 static bool bulkfree_pcp_prepare(struct page *page)
1346 {
1347 	if (debug_pagealloc_enabled_static())
1348 		return check_free_page(page);
1349 	else
1350 		return false;
1351 }
1352 #else
1353 /*
1354  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1355  * moving from pcp lists to free list in order to reduce overhead. With
1356  * debug_pagealloc enabled, they are checked also immediately when being freed
1357  * to the pcp lists.
1358  */
1359 static bool free_pcp_prepare(struct page *page)
1360 {
1361 	if (debug_pagealloc_enabled_static())
1362 		return free_pages_prepare(page, 0, true, FPI_NONE);
1363 	else
1364 		return free_pages_prepare(page, 0, false, FPI_NONE);
1365 }
1366 
1367 static bool bulkfree_pcp_prepare(struct page *page)
1368 {
1369 	return check_free_page(page);
1370 }
1371 #endif /* CONFIG_DEBUG_VM */
1372 
1373 static inline void prefetch_buddy(struct page *page)
1374 {
1375 	unsigned long pfn = page_to_pfn(page);
1376 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1377 	struct page *buddy = page + (buddy_pfn - pfn);
1378 
1379 	prefetch(buddy);
1380 }
1381 
1382 /*
1383  * Frees a number of pages from the PCP lists
1384  * Assumes all pages on list are in same zone, and of same order.
1385  * count is the number of pages to free.
1386  *
1387  * If the zone was previously in an "all pages pinned" state then look to
1388  * see if this freeing clears that state.
1389  *
1390  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1391  * pinned" detection logic.
1392  */
1393 static void free_pcppages_bulk(struct zone *zone, int count,
1394 					struct per_cpu_pages *pcp)
1395 {
1396 	int migratetype = 0;
1397 	int batch_free = 0;
1398 	int prefetch_nr = READ_ONCE(pcp->batch);
1399 	bool isolated_pageblocks;
1400 	struct page *page, *tmp;
1401 	LIST_HEAD(head);
1402 
1403 	/*
1404 	 * Ensure proper count is passed which otherwise would stuck in the
1405 	 * below while (list_empty(list)) loop.
1406 	 */
1407 	count = min(pcp->count, count);
1408 	while (count) {
1409 		struct list_head *list;
1410 
1411 		/*
1412 		 * Remove pages from lists in a round-robin fashion. A
1413 		 * batch_free count is maintained that is incremented when an
1414 		 * empty list is encountered.  This is so more pages are freed
1415 		 * off fuller lists instead of spinning excessively around empty
1416 		 * lists
1417 		 */
1418 		do {
1419 			batch_free++;
1420 			if (++migratetype == MIGRATE_PCPTYPES)
1421 				migratetype = 0;
1422 			list = &pcp->lists[migratetype];
1423 		} while (list_empty(list));
1424 
1425 		/* This is the only non-empty list. Free them all. */
1426 		if (batch_free == MIGRATE_PCPTYPES)
1427 			batch_free = count;
1428 
1429 		do {
1430 			page = list_last_entry(list, struct page, lru);
1431 			/* must delete to avoid corrupting pcp list */
1432 			list_del(&page->lru);
1433 			pcp->count--;
1434 
1435 			if (bulkfree_pcp_prepare(page))
1436 				continue;
1437 
1438 			list_add_tail(&page->lru, &head);
1439 
1440 			/*
1441 			 * We are going to put the page back to the global
1442 			 * pool, prefetch its buddy to speed up later access
1443 			 * under zone->lock. It is believed the overhead of
1444 			 * an additional test and calculating buddy_pfn here
1445 			 * can be offset by reduced memory latency later. To
1446 			 * avoid excessive prefetching due to large count, only
1447 			 * prefetch buddy for the first pcp->batch nr of pages.
1448 			 */
1449 			if (prefetch_nr) {
1450 				prefetch_buddy(page);
1451 				prefetch_nr--;
1452 			}
1453 		} while (--count && --batch_free && !list_empty(list));
1454 	}
1455 
1456 	spin_lock(&zone->lock);
1457 	isolated_pageblocks = has_isolate_pageblock(zone);
1458 
1459 	/*
1460 	 * Use safe version since after __free_one_page(),
1461 	 * page->lru.next will not point to original list.
1462 	 */
1463 	list_for_each_entry_safe(page, tmp, &head, lru) {
1464 		int mt = get_pcppage_migratetype(page);
1465 		/* MIGRATE_ISOLATE page should not go to pcplists */
1466 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1467 		/* Pageblock could have been isolated meanwhile */
1468 		if (unlikely(isolated_pageblocks))
1469 			mt = get_pageblock_migratetype(page);
1470 
1471 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1472 		trace_mm_page_pcpu_drain(page, 0, mt);
1473 	}
1474 	spin_unlock(&zone->lock);
1475 }
1476 
1477 static void free_one_page(struct zone *zone,
1478 				struct page *page, unsigned long pfn,
1479 				unsigned int order,
1480 				int migratetype, fpi_t fpi_flags)
1481 {
1482 	spin_lock(&zone->lock);
1483 	if (unlikely(has_isolate_pageblock(zone) ||
1484 		is_migrate_isolate(migratetype))) {
1485 		migratetype = get_pfnblock_migratetype(page, pfn);
1486 	}
1487 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1488 	spin_unlock(&zone->lock);
1489 }
1490 
1491 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1492 				unsigned long zone, int nid)
1493 {
1494 	mm_zero_struct_page(page);
1495 	set_page_links(page, zone, nid, pfn);
1496 	init_page_count(page);
1497 	page_mapcount_reset(page);
1498 	page_cpupid_reset_last(page);
1499 	page_kasan_tag_reset(page);
1500 
1501 	INIT_LIST_HEAD(&page->lru);
1502 #ifdef WANT_PAGE_VIRTUAL
1503 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1504 	if (!is_highmem_idx(zone))
1505 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1506 #endif
1507 }
1508 
1509 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1510 static void __meminit init_reserved_page(unsigned long pfn)
1511 {
1512 	pg_data_t *pgdat;
1513 	int nid, zid;
1514 
1515 	if (!early_page_uninitialised(pfn))
1516 		return;
1517 
1518 	nid = early_pfn_to_nid(pfn);
1519 	pgdat = NODE_DATA(nid);
1520 
1521 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1522 		struct zone *zone = &pgdat->node_zones[zid];
1523 
1524 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1525 			break;
1526 	}
1527 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1528 }
1529 #else
1530 static inline void init_reserved_page(unsigned long pfn)
1531 {
1532 }
1533 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1534 
1535 /*
1536  * Initialised pages do not have PageReserved set. This function is
1537  * called for each range allocated by the bootmem allocator and
1538  * marks the pages PageReserved. The remaining valid pages are later
1539  * sent to the buddy page allocator.
1540  */
1541 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1542 {
1543 	unsigned long start_pfn = PFN_DOWN(start);
1544 	unsigned long end_pfn = PFN_UP(end);
1545 
1546 	for (; start_pfn < end_pfn; start_pfn++) {
1547 		if (pfn_valid(start_pfn)) {
1548 			struct page *page = pfn_to_page(start_pfn);
1549 
1550 			init_reserved_page(start_pfn);
1551 
1552 			/* Avoid false-positive PageTail() */
1553 			INIT_LIST_HEAD(&page->lru);
1554 
1555 			/*
1556 			 * no need for atomic set_bit because the struct
1557 			 * page is not visible yet so nobody should
1558 			 * access it yet.
1559 			 */
1560 			__SetPageReserved(page);
1561 		}
1562 	}
1563 }
1564 
1565 static void __free_pages_ok(struct page *page, unsigned int order,
1566 			    fpi_t fpi_flags)
1567 {
1568 	unsigned long flags;
1569 	int migratetype;
1570 	unsigned long pfn = page_to_pfn(page);
1571 
1572 	if (!free_pages_prepare(page, order, true, fpi_flags))
1573 		return;
1574 
1575 	migratetype = get_pfnblock_migratetype(page, pfn);
1576 	local_irq_save(flags);
1577 	__count_vm_events(PGFREE, 1 << order);
1578 	free_one_page(page_zone(page), page, pfn, order, migratetype,
1579 		      fpi_flags);
1580 	local_irq_restore(flags);
1581 }
1582 
1583 void __free_pages_core(struct page *page, unsigned int order)
1584 {
1585 	unsigned int nr_pages = 1 << order;
1586 	struct page *p = page;
1587 	unsigned int loop;
1588 
1589 	/*
1590 	 * When initializing the memmap, __init_single_page() sets the refcount
1591 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1592 	 * refcount of all involved pages to 0.
1593 	 */
1594 	prefetchw(p);
1595 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1596 		prefetchw(p + 1);
1597 		__ClearPageReserved(p);
1598 		set_page_count(p, 0);
1599 	}
1600 	__ClearPageReserved(p);
1601 	set_page_count(p, 0);
1602 
1603 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1604 
1605 	/*
1606 	 * Bypass PCP and place fresh pages right to the tail, primarily
1607 	 * relevant for memory onlining.
1608 	 */
1609 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1610 }
1611 
1612 #ifdef CONFIG_NEED_MULTIPLE_NODES
1613 
1614 /*
1615  * During memory init memblocks map pfns to nids. The search is expensive and
1616  * this caches recent lookups. The implementation of __early_pfn_to_nid
1617  * treats start/end as pfns.
1618  */
1619 struct mminit_pfnnid_cache {
1620 	unsigned long last_start;
1621 	unsigned long last_end;
1622 	int last_nid;
1623 };
1624 
1625 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1626 
1627 /*
1628  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1629  */
1630 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1631 					struct mminit_pfnnid_cache *state)
1632 {
1633 	unsigned long start_pfn, end_pfn;
1634 	int nid;
1635 
1636 	if (state->last_start <= pfn && pfn < state->last_end)
1637 		return state->last_nid;
1638 
1639 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1640 	if (nid != NUMA_NO_NODE) {
1641 		state->last_start = start_pfn;
1642 		state->last_end = end_pfn;
1643 		state->last_nid = nid;
1644 	}
1645 
1646 	return nid;
1647 }
1648 
1649 int __meminit early_pfn_to_nid(unsigned long pfn)
1650 {
1651 	static DEFINE_SPINLOCK(early_pfn_lock);
1652 	int nid;
1653 
1654 	spin_lock(&early_pfn_lock);
1655 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1656 	if (nid < 0)
1657 		nid = first_online_node;
1658 	spin_unlock(&early_pfn_lock);
1659 
1660 	return nid;
1661 }
1662 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1663 
1664 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1665 							unsigned int order)
1666 {
1667 	if (early_page_uninitialised(pfn))
1668 		return;
1669 	__free_pages_core(page, order);
1670 }
1671 
1672 /*
1673  * Check that the whole (or subset of) a pageblock given by the interval of
1674  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1675  * with the migration of free compaction scanner. The scanners then need to
1676  * use only pfn_valid_within() check for arches that allow holes within
1677  * pageblocks.
1678  *
1679  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1680  *
1681  * It's possible on some configurations to have a setup like node0 node1 node0
1682  * i.e. it's possible that all pages within a zones range of pages do not
1683  * belong to a single zone. We assume that a border between node0 and node1
1684  * can occur within a single pageblock, but not a node0 node1 node0
1685  * interleaving within a single pageblock. It is therefore sufficient to check
1686  * the first and last page of a pageblock and avoid checking each individual
1687  * page in a pageblock.
1688  */
1689 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1690 				     unsigned long end_pfn, struct zone *zone)
1691 {
1692 	struct page *start_page;
1693 	struct page *end_page;
1694 
1695 	/* end_pfn is one past the range we are checking */
1696 	end_pfn--;
1697 
1698 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1699 		return NULL;
1700 
1701 	start_page = pfn_to_online_page(start_pfn);
1702 	if (!start_page)
1703 		return NULL;
1704 
1705 	if (page_zone(start_page) != zone)
1706 		return NULL;
1707 
1708 	end_page = pfn_to_page(end_pfn);
1709 
1710 	/* This gives a shorter code than deriving page_zone(end_page) */
1711 	if (page_zone_id(start_page) != page_zone_id(end_page))
1712 		return NULL;
1713 
1714 	return start_page;
1715 }
1716 
1717 void set_zone_contiguous(struct zone *zone)
1718 {
1719 	unsigned long block_start_pfn = zone->zone_start_pfn;
1720 	unsigned long block_end_pfn;
1721 
1722 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1723 	for (; block_start_pfn < zone_end_pfn(zone);
1724 			block_start_pfn = block_end_pfn,
1725 			 block_end_pfn += pageblock_nr_pages) {
1726 
1727 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1728 
1729 		if (!__pageblock_pfn_to_page(block_start_pfn,
1730 					     block_end_pfn, zone))
1731 			return;
1732 		cond_resched();
1733 	}
1734 
1735 	/* We confirm that there is no hole */
1736 	zone->contiguous = true;
1737 }
1738 
1739 void clear_zone_contiguous(struct zone *zone)
1740 {
1741 	zone->contiguous = false;
1742 }
1743 
1744 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1745 static void __init deferred_free_range(unsigned long pfn,
1746 				       unsigned long nr_pages)
1747 {
1748 	struct page *page;
1749 	unsigned long i;
1750 
1751 	if (!nr_pages)
1752 		return;
1753 
1754 	page = pfn_to_page(pfn);
1755 
1756 	/* Free a large naturally-aligned chunk if possible */
1757 	if (nr_pages == pageblock_nr_pages &&
1758 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1759 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1760 		__free_pages_core(page, pageblock_order);
1761 		return;
1762 	}
1763 
1764 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1765 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1766 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1767 		__free_pages_core(page, 0);
1768 	}
1769 }
1770 
1771 /* Completion tracking for deferred_init_memmap() threads */
1772 static atomic_t pgdat_init_n_undone __initdata;
1773 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1774 
1775 static inline void __init pgdat_init_report_one_done(void)
1776 {
1777 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1778 		complete(&pgdat_init_all_done_comp);
1779 }
1780 
1781 /*
1782  * Returns true if page needs to be initialized or freed to buddy allocator.
1783  *
1784  * First we check if pfn is valid on architectures where it is possible to have
1785  * holes within pageblock_nr_pages. On systems where it is not possible, this
1786  * function is optimized out.
1787  *
1788  * Then, we check if a current large page is valid by only checking the validity
1789  * of the head pfn.
1790  */
1791 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1792 {
1793 	if (!pfn_valid_within(pfn))
1794 		return false;
1795 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1796 		return false;
1797 	return true;
1798 }
1799 
1800 /*
1801  * Free pages to buddy allocator. Try to free aligned pages in
1802  * pageblock_nr_pages sizes.
1803  */
1804 static void __init deferred_free_pages(unsigned long pfn,
1805 				       unsigned long end_pfn)
1806 {
1807 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1808 	unsigned long nr_free = 0;
1809 
1810 	for (; pfn < end_pfn; pfn++) {
1811 		if (!deferred_pfn_valid(pfn)) {
1812 			deferred_free_range(pfn - nr_free, nr_free);
1813 			nr_free = 0;
1814 		} else if (!(pfn & nr_pgmask)) {
1815 			deferred_free_range(pfn - nr_free, nr_free);
1816 			nr_free = 1;
1817 		} else {
1818 			nr_free++;
1819 		}
1820 	}
1821 	/* Free the last block of pages to allocator */
1822 	deferred_free_range(pfn - nr_free, nr_free);
1823 }
1824 
1825 /*
1826  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1827  * by performing it only once every pageblock_nr_pages.
1828  * Return number of pages initialized.
1829  */
1830 static unsigned long  __init deferred_init_pages(struct zone *zone,
1831 						 unsigned long pfn,
1832 						 unsigned long end_pfn)
1833 {
1834 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1835 	int nid = zone_to_nid(zone);
1836 	unsigned long nr_pages = 0;
1837 	int zid = zone_idx(zone);
1838 	struct page *page = NULL;
1839 
1840 	for (; pfn < end_pfn; pfn++) {
1841 		if (!deferred_pfn_valid(pfn)) {
1842 			page = NULL;
1843 			continue;
1844 		} else if (!page || !(pfn & nr_pgmask)) {
1845 			page = pfn_to_page(pfn);
1846 		} else {
1847 			page++;
1848 		}
1849 		__init_single_page(page, pfn, zid, nid);
1850 		nr_pages++;
1851 	}
1852 	return (nr_pages);
1853 }
1854 
1855 /*
1856  * This function is meant to pre-load the iterator for the zone init.
1857  * Specifically it walks through the ranges until we are caught up to the
1858  * first_init_pfn value and exits there. If we never encounter the value we
1859  * return false indicating there are no valid ranges left.
1860  */
1861 static bool __init
1862 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1863 				    unsigned long *spfn, unsigned long *epfn,
1864 				    unsigned long first_init_pfn)
1865 {
1866 	u64 j;
1867 
1868 	/*
1869 	 * Start out by walking through the ranges in this zone that have
1870 	 * already been initialized. We don't need to do anything with them
1871 	 * so we just need to flush them out of the system.
1872 	 */
1873 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1874 		if (*epfn <= first_init_pfn)
1875 			continue;
1876 		if (*spfn < first_init_pfn)
1877 			*spfn = first_init_pfn;
1878 		*i = j;
1879 		return true;
1880 	}
1881 
1882 	return false;
1883 }
1884 
1885 /*
1886  * Initialize and free pages. We do it in two loops: first we initialize
1887  * struct page, then free to buddy allocator, because while we are
1888  * freeing pages we can access pages that are ahead (computing buddy
1889  * page in __free_one_page()).
1890  *
1891  * In order to try and keep some memory in the cache we have the loop
1892  * broken along max page order boundaries. This way we will not cause
1893  * any issues with the buddy page computation.
1894  */
1895 static unsigned long __init
1896 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1897 		       unsigned long *end_pfn)
1898 {
1899 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1900 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1901 	unsigned long nr_pages = 0;
1902 	u64 j = *i;
1903 
1904 	/* First we loop through and initialize the page values */
1905 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1906 		unsigned long t;
1907 
1908 		if (mo_pfn <= *start_pfn)
1909 			break;
1910 
1911 		t = min(mo_pfn, *end_pfn);
1912 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1913 
1914 		if (mo_pfn < *end_pfn) {
1915 			*start_pfn = mo_pfn;
1916 			break;
1917 		}
1918 	}
1919 
1920 	/* Reset values and now loop through freeing pages as needed */
1921 	swap(j, *i);
1922 
1923 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1924 		unsigned long t;
1925 
1926 		if (mo_pfn <= spfn)
1927 			break;
1928 
1929 		t = min(mo_pfn, epfn);
1930 		deferred_free_pages(spfn, t);
1931 
1932 		if (mo_pfn <= epfn)
1933 			break;
1934 	}
1935 
1936 	return nr_pages;
1937 }
1938 
1939 static void __init
1940 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1941 			   void *arg)
1942 {
1943 	unsigned long spfn, epfn;
1944 	struct zone *zone = arg;
1945 	u64 i;
1946 
1947 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1948 
1949 	/*
1950 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1951 	 * can avoid introducing any issues with the buddy allocator.
1952 	 */
1953 	while (spfn < end_pfn) {
1954 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1955 		cond_resched();
1956 	}
1957 }
1958 
1959 /* An arch may override for more concurrency. */
1960 __weak int __init
1961 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1962 {
1963 	return 1;
1964 }
1965 
1966 /* Initialise remaining memory on a node */
1967 static int __init deferred_init_memmap(void *data)
1968 {
1969 	pg_data_t *pgdat = data;
1970 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1971 	unsigned long spfn = 0, epfn = 0;
1972 	unsigned long first_init_pfn, flags;
1973 	unsigned long start = jiffies;
1974 	struct zone *zone;
1975 	int zid, max_threads;
1976 	u64 i;
1977 
1978 	/* Bind memory initialisation thread to a local node if possible */
1979 	if (!cpumask_empty(cpumask))
1980 		set_cpus_allowed_ptr(current, cpumask);
1981 
1982 	pgdat_resize_lock(pgdat, &flags);
1983 	first_init_pfn = pgdat->first_deferred_pfn;
1984 	if (first_init_pfn == ULONG_MAX) {
1985 		pgdat_resize_unlock(pgdat, &flags);
1986 		pgdat_init_report_one_done();
1987 		return 0;
1988 	}
1989 
1990 	/* Sanity check boundaries */
1991 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1992 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1993 	pgdat->first_deferred_pfn = ULONG_MAX;
1994 
1995 	/*
1996 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1997 	 * interrupt thread must allocate this early in boot, zone must be
1998 	 * pre-grown prior to start of deferred page initialization.
1999 	 */
2000 	pgdat_resize_unlock(pgdat, &flags);
2001 
2002 	/* Only the highest zone is deferred so find it */
2003 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2004 		zone = pgdat->node_zones + zid;
2005 		if (first_init_pfn < zone_end_pfn(zone))
2006 			break;
2007 	}
2008 
2009 	/* If the zone is empty somebody else may have cleared out the zone */
2010 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2011 						 first_init_pfn))
2012 		goto zone_empty;
2013 
2014 	max_threads = deferred_page_init_max_threads(cpumask);
2015 
2016 	while (spfn < epfn) {
2017 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2018 		struct padata_mt_job job = {
2019 			.thread_fn   = deferred_init_memmap_chunk,
2020 			.fn_arg      = zone,
2021 			.start       = spfn,
2022 			.size        = epfn_align - spfn,
2023 			.align       = PAGES_PER_SECTION,
2024 			.min_chunk   = PAGES_PER_SECTION,
2025 			.max_threads = max_threads,
2026 		};
2027 
2028 		padata_do_multithreaded(&job);
2029 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2030 						    epfn_align);
2031 	}
2032 zone_empty:
2033 	/* Sanity check that the next zone really is unpopulated */
2034 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2035 
2036 	pr_info("node %d deferred pages initialised in %ums\n",
2037 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2038 
2039 	pgdat_init_report_one_done();
2040 	return 0;
2041 }
2042 
2043 /*
2044  * If this zone has deferred pages, try to grow it by initializing enough
2045  * deferred pages to satisfy the allocation specified by order, rounded up to
2046  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2047  * of SECTION_SIZE bytes by initializing struct pages in increments of
2048  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2049  *
2050  * Return true when zone was grown, otherwise return false. We return true even
2051  * when we grow less than requested, to let the caller decide if there are
2052  * enough pages to satisfy the allocation.
2053  *
2054  * Note: We use noinline because this function is needed only during boot, and
2055  * it is called from a __ref function _deferred_grow_zone. This way we are
2056  * making sure that it is not inlined into permanent text section.
2057  */
2058 static noinline bool __init
2059 deferred_grow_zone(struct zone *zone, unsigned int order)
2060 {
2061 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2062 	pg_data_t *pgdat = zone->zone_pgdat;
2063 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2064 	unsigned long spfn, epfn, flags;
2065 	unsigned long nr_pages = 0;
2066 	u64 i;
2067 
2068 	/* Only the last zone may have deferred pages */
2069 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2070 		return false;
2071 
2072 	pgdat_resize_lock(pgdat, &flags);
2073 
2074 	/*
2075 	 * If someone grew this zone while we were waiting for spinlock, return
2076 	 * true, as there might be enough pages already.
2077 	 */
2078 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2079 		pgdat_resize_unlock(pgdat, &flags);
2080 		return true;
2081 	}
2082 
2083 	/* If the zone is empty somebody else may have cleared out the zone */
2084 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2085 						 first_deferred_pfn)) {
2086 		pgdat->first_deferred_pfn = ULONG_MAX;
2087 		pgdat_resize_unlock(pgdat, &flags);
2088 		/* Retry only once. */
2089 		return first_deferred_pfn != ULONG_MAX;
2090 	}
2091 
2092 	/*
2093 	 * Initialize and free pages in MAX_ORDER sized increments so
2094 	 * that we can avoid introducing any issues with the buddy
2095 	 * allocator.
2096 	 */
2097 	while (spfn < epfn) {
2098 		/* update our first deferred PFN for this section */
2099 		first_deferred_pfn = spfn;
2100 
2101 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2102 		touch_nmi_watchdog();
2103 
2104 		/* We should only stop along section boundaries */
2105 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2106 			continue;
2107 
2108 		/* If our quota has been met we can stop here */
2109 		if (nr_pages >= nr_pages_needed)
2110 			break;
2111 	}
2112 
2113 	pgdat->first_deferred_pfn = spfn;
2114 	pgdat_resize_unlock(pgdat, &flags);
2115 
2116 	return nr_pages > 0;
2117 }
2118 
2119 /*
2120  * deferred_grow_zone() is __init, but it is called from
2121  * get_page_from_freelist() during early boot until deferred_pages permanently
2122  * disables this call. This is why we have refdata wrapper to avoid warning,
2123  * and to ensure that the function body gets unloaded.
2124  */
2125 static bool __ref
2126 _deferred_grow_zone(struct zone *zone, unsigned int order)
2127 {
2128 	return deferred_grow_zone(zone, order);
2129 }
2130 
2131 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2132 
2133 void __init page_alloc_init_late(void)
2134 {
2135 	struct zone *zone;
2136 	int nid;
2137 
2138 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2139 
2140 	/* There will be num_node_state(N_MEMORY) threads */
2141 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2142 	for_each_node_state(nid, N_MEMORY) {
2143 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2144 	}
2145 
2146 	/* Block until all are initialised */
2147 	wait_for_completion(&pgdat_init_all_done_comp);
2148 
2149 	/*
2150 	 * The number of managed pages has changed due to the initialisation
2151 	 * so the pcpu batch and high limits needs to be updated or the limits
2152 	 * will be artificially small.
2153 	 */
2154 	for_each_populated_zone(zone)
2155 		zone_pcp_update(zone);
2156 
2157 	/*
2158 	 * We initialized the rest of the deferred pages.  Permanently disable
2159 	 * on-demand struct page initialization.
2160 	 */
2161 	static_branch_disable(&deferred_pages);
2162 
2163 	/* Reinit limits that are based on free pages after the kernel is up */
2164 	files_maxfiles_init();
2165 #endif
2166 
2167 	buffer_init();
2168 
2169 	/* Discard memblock private memory */
2170 	memblock_discard();
2171 
2172 	for_each_node_state(nid, N_MEMORY)
2173 		shuffle_free_memory(NODE_DATA(nid));
2174 
2175 	for_each_populated_zone(zone)
2176 		set_zone_contiguous(zone);
2177 }
2178 
2179 #ifdef CONFIG_CMA
2180 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2181 void __init init_cma_reserved_pageblock(struct page *page)
2182 {
2183 	unsigned i = pageblock_nr_pages;
2184 	struct page *p = page;
2185 
2186 	do {
2187 		__ClearPageReserved(p);
2188 		set_page_count(p, 0);
2189 	} while (++p, --i);
2190 
2191 	set_pageblock_migratetype(page, MIGRATE_CMA);
2192 
2193 	if (pageblock_order >= MAX_ORDER) {
2194 		i = pageblock_nr_pages;
2195 		p = page;
2196 		do {
2197 			set_page_refcounted(p);
2198 			__free_pages(p, MAX_ORDER - 1);
2199 			p += MAX_ORDER_NR_PAGES;
2200 		} while (i -= MAX_ORDER_NR_PAGES);
2201 	} else {
2202 		set_page_refcounted(page);
2203 		__free_pages(page, pageblock_order);
2204 	}
2205 
2206 	adjust_managed_page_count(page, pageblock_nr_pages);
2207 	page_zone(page)->cma_pages += pageblock_nr_pages;
2208 }
2209 #endif
2210 
2211 /*
2212  * The order of subdivision here is critical for the IO subsystem.
2213  * Please do not alter this order without good reasons and regression
2214  * testing. Specifically, as large blocks of memory are subdivided,
2215  * the order in which smaller blocks are delivered depends on the order
2216  * they're subdivided in this function. This is the primary factor
2217  * influencing the order in which pages are delivered to the IO
2218  * subsystem according to empirical testing, and this is also justified
2219  * by considering the behavior of a buddy system containing a single
2220  * large block of memory acted on by a series of small allocations.
2221  * This behavior is a critical factor in sglist merging's success.
2222  *
2223  * -- nyc
2224  */
2225 static inline void expand(struct zone *zone, struct page *page,
2226 	int low, int high, int migratetype)
2227 {
2228 	unsigned long size = 1 << high;
2229 
2230 	while (high > low) {
2231 		high--;
2232 		size >>= 1;
2233 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2234 
2235 		/*
2236 		 * Mark as guard pages (or page), that will allow to
2237 		 * merge back to allocator when buddy will be freed.
2238 		 * Corresponding page table entries will not be touched,
2239 		 * pages will stay not present in virtual address space
2240 		 */
2241 		if (set_page_guard(zone, &page[size], high, migratetype))
2242 			continue;
2243 
2244 		add_to_free_list(&page[size], zone, high, migratetype);
2245 		set_buddy_order(&page[size], high);
2246 	}
2247 }
2248 
2249 static void check_new_page_bad(struct page *page)
2250 {
2251 	if (unlikely(page->flags & __PG_HWPOISON)) {
2252 		/* Don't complain about hwpoisoned pages */
2253 		page_mapcount_reset(page); /* remove PageBuddy */
2254 		return;
2255 	}
2256 
2257 	bad_page(page,
2258 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2259 }
2260 
2261 /*
2262  * This page is about to be returned from the page allocator
2263  */
2264 static inline int check_new_page(struct page *page)
2265 {
2266 	if (likely(page_expected_state(page,
2267 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2268 		return 0;
2269 
2270 	check_new_page_bad(page);
2271 	return 1;
2272 }
2273 
2274 #ifdef CONFIG_DEBUG_VM
2275 /*
2276  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2277  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2278  * also checked when pcp lists are refilled from the free lists.
2279  */
2280 static inline bool check_pcp_refill(struct page *page)
2281 {
2282 	if (debug_pagealloc_enabled_static())
2283 		return check_new_page(page);
2284 	else
2285 		return false;
2286 }
2287 
2288 static inline bool check_new_pcp(struct page *page)
2289 {
2290 	return check_new_page(page);
2291 }
2292 #else
2293 /*
2294  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2295  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2296  * enabled, they are also checked when being allocated from the pcp lists.
2297  */
2298 static inline bool check_pcp_refill(struct page *page)
2299 {
2300 	return check_new_page(page);
2301 }
2302 static inline bool check_new_pcp(struct page *page)
2303 {
2304 	if (debug_pagealloc_enabled_static())
2305 		return check_new_page(page);
2306 	else
2307 		return false;
2308 }
2309 #endif /* CONFIG_DEBUG_VM */
2310 
2311 static bool check_new_pages(struct page *page, unsigned int order)
2312 {
2313 	int i;
2314 	for (i = 0; i < (1 << order); i++) {
2315 		struct page *p = page + i;
2316 
2317 		if (unlikely(check_new_page(p)))
2318 			return true;
2319 	}
2320 
2321 	return false;
2322 }
2323 
2324 inline void post_alloc_hook(struct page *page, unsigned int order,
2325 				gfp_t gfp_flags)
2326 {
2327 	set_page_private(page, 0);
2328 	set_page_refcounted(page);
2329 
2330 	arch_alloc_page(page, order);
2331 	debug_pagealloc_map_pages(page, 1 << order);
2332 
2333 	/*
2334 	 * Page unpoisoning must happen before memory initialization.
2335 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2336 	 * allocations and the page unpoisoning code will complain.
2337 	 */
2338 	kernel_unpoison_pages(page, 1 << order);
2339 
2340 	/*
2341 	 * As memory initialization might be integrated into KASAN,
2342 	 * kasan_alloc_pages and kernel_init_free_pages must be
2343 	 * kept together to avoid discrepancies in behavior.
2344 	 */
2345 	if (kasan_has_integrated_init()) {
2346 		kasan_alloc_pages(page, order, gfp_flags);
2347 	} else {
2348 		bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2349 
2350 		kasan_unpoison_pages(page, order, init);
2351 		if (init)
2352 			kernel_init_free_pages(page, 1 << order);
2353 	}
2354 
2355 	set_page_owner(page, order, gfp_flags);
2356 }
2357 
2358 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2359 							unsigned int alloc_flags)
2360 {
2361 	post_alloc_hook(page, order, gfp_flags);
2362 
2363 	if (order && (gfp_flags & __GFP_COMP))
2364 		prep_compound_page(page, order);
2365 
2366 	/*
2367 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2368 	 * allocate the page. The expectation is that the caller is taking
2369 	 * steps that will free more memory. The caller should avoid the page
2370 	 * being used for !PFMEMALLOC purposes.
2371 	 */
2372 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2373 		set_page_pfmemalloc(page);
2374 	else
2375 		clear_page_pfmemalloc(page);
2376 }
2377 
2378 /*
2379  * Go through the free lists for the given migratetype and remove
2380  * the smallest available page from the freelists
2381  */
2382 static __always_inline
2383 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2384 						int migratetype)
2385 {
2386 	unsigned int current_order;
2387 	struct free_area *area;
2388 	struct page *page;
2389 
2390 	/* Find a page of the appropriate size in the preferred list */
2391 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2392 		area = &(zone->free_area[current_order]);
2393 		page = get_page_from_free_area(area, migratetype);
2394 		if (!page)
2395 			continue;
2396 		del_page_from_free_list(page, zone, current_order);
2397 		expand(zone, page, order, current_order, migratetype);
2398 		set_pcppage_migratetype(page, migratetype);
2399 		return page;
2400 	}
2401 
2402 	return NULL;
2403 }
2404 
2405 
2406 /*
2407  * This array describes the order lists are fallen back to when
2408  * the free lists for the desirable migrate type are depleted
2409  */
2410 static int fallbacks[MIGRATE_TYPES][3] = {
2411 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2412 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2413 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2414 #ifdef CONFIG_CMA
2415 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2416 #endif
2417 #ifdef CONFIG_MEMORY_ISOLATION
2418 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2419 #endif
2420 };
2421 
2422 #ifdef CONFIG_CMA
2423 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2424 					unsigned int order)
2425 {
2426 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2427 }
2428 #else
2429 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2430 					unsigned int order) { return NULL; }
2431 #endif
2432 
2433 /*
2434  * Move the free pages in a range to the freelist tail of the requested type.
2435  * Note that start_page and end_pages are not aligned on a pageblock
2436  * boundary. If alignment is required, use move_freepages_block()
2437  */
2438 static int move_freepages(struct zone *zone,
2439 			  unsigned long start_pfn, unsigned long end_pfn,
2440 			  int migratetype, int *num_movable)
2441 {
2442 	struct page *page;
2443 	unsigned long pfn;
2444 	unsigned int order;
2445 	int pages_moved = 0;
2446 
2447 	for (pfn = start_pfn; pfn <= end_pfn;) {
2448 		if (!pfn_valid_within(pfn)) {
2449 			pfn++;
2450 			continue;
2451 		}
2452 
2453 		page = pfn_to_page(pfn);
2454 		if (!PageBuddy(page)) {
2455 			/*
2456 			 * We assume that pages that could be isolated for
2457 			 * migration are movable. But we don't actually try
2458 			 * isolating, as that would be expensive.
2459 			 */
2460 			if (num_movable &&
2461 					(PageLRU(page) || __PageMovable(page)))
2462 				(*num_movable)++;
2463 			pfn++;
2464 			continue;
2465 		}
2466 
2467 		/* Make sure we are not inadvertently changing nodes */
2468 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2469 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2470 
2471 		order = buddy_order(page);
2472 		move_to_free_list(page, zone, order, migratetype);
2473 		pfn += 1 << order;
2474 		pages_moved += 1 << order;
2475 	}
2476 
2477 	return pages_moved;
2478 }
2479 
2480 int move_freepages_block(struct zone *zone, struct page *page,
2481 				int migratetype, int *num_movable)
2482 {
2483 	unsigned long start_pfn, end_pfn, pfn;
2484 
2485 	if (num_movable)
2486 		*num_movable = 0;
2487 
2488 	pfn = page_to_pfn(page);
2489 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2490 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2491 
2492 	/* Do not cross zone boundaries */
2493 	if (!zone_spans_pfn(zone, start_pfn))
2494 		start_pfn = pfn;
2495 	if (!zone_spans_pfn(zone, end_pfn))
2496 		return 0;
2497 
2498 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2499 								num_movable);
2500 }
2501 
2502 static void change_pageblock_range(struct page *pageblock_page,
2503 					int start_order, int migratetype)
2504 {
2505 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2506 
2507 	while (nr_pageblocks--) {
2508 		set_pageblock_migratetype(pageblock_page, migratetype);
2509 		pageblock_page += pageblock_nr_pages;
2510 	}
2511 }
2512 
2513 /*
2514  * When we are falling back to another migratetype during allocation, try to
2515  * steal extra free pages from the same pageblocks to satisfy further
2516  * allocations, instead of polluting multiple pageblocks.
2517  *
2518  * If we are stealing a relatively large buddy page, it is likely there will
2519  * be more free pages in the pageblock, so try to steal them all. For
2520  * reclaimable and unmovable allocations, we steal regardless of page size,
2521  * as fragmentation caused by those allocations polluting movable pageblocks
2522  * is worse than movable allocations stealing from unmovable and reclaimable
2523  * pageblocks.
2524  */
2525 static bool can_steal_fallback(unsigned int order, int start_mt)
2526 {
2527 	/*
2528 	 * Leaving this order check is intended, although there is
2529 	 * relaxed order check in next check. The reason is that
2530 	 * we can actually steal whole pageblock if this condition met,
2531 	 * but, below check doesn't guarantee it and that is just heuristic
2532 	 * so could be changed anytime.
2533 	 */
2534 	if (order >= pageblock_order)
2535 		return true;
2536 
2537 	if (order >= pageblock_order / 2 ||
2538 		start_mt == MIGRATE_RECLAIMABLE ||
2539 		start_mt == MIGRATE_UNMOVABLE ||
2540 		page_group_by_mobility_disabled)
2541 		return true;
2542 
2543 	return false;
2544 }
2545 
2546 static inline bool boost_watermark(struct zone *zone)
2547 {
2548 	unsigned long max_boost;
2549 
2550 	if (!watermark_boost_factor)
2551 		return false;
2552 	/*
2553 	 * Don't bother in zones that are unlikely to produce results.
2554 	 * On small machines, including kdump capture kernels running
2555 	 * in a small area, boosting the watermark can cause an out of
2556 	 * memory situation immediately.
2557 	 */
2558 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2559 		return false;
2560 
2561 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2562 			watermark_boost_factor, 10000);
2563 
2564 	/*
2565 	 * high watermark may be uninitialised if fragmentation occurs
2566 	 * very early in boot so do not boost. We do not fall
2567 	 * through and boost by pageblock_nr_pages as failing
2568 	 * allocations that early means that reclaim is not going
2569 	 * to help and it may even be impossible to reclaim the
2570 	 * boosted watermark resulting in a hang.
2571 	 */
2572 	if (!max_boost)
2573 		return false;
2574 
2575 	max_boost = max(pageblock_nr_pages, max_boost);
2576 
2577 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2578 		max_boost);
2579 
2580 	return true;
2581 }
2582 
2583 /*
2584  * This function implements actual steal behaviour. If order is large enough,
2585  * we can steal whole pageblock. If not, we first move freepages in this
2586  * pageblock to our migratetype and determine how many already-allocated pages
2587  * are there in the pageblock with a compatible migratetype. If at least half
2588  * of pages are free or compatible, we can change migratetype of the pageblock
2589  * itself, so pages freed in the future will be put on the correct free list.
2590  */
2591 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2592 		unsigned int alloc_flags, int start_type, bool whole_block)
2593 {
2594 	unsigned int current_order = buddy_order(page);
2595 	int free_pages, movable_pages, alike_pages;
2596 	int old_block_type;
2597 
2598 	old_block_type = get_pageblock_migratetype(page);
2599 
2600 	/*
2601 	 * This can happen due to races and we want to prevent broken
2602 	 * highatomic accounting.
2603 	 */
2604 	if (is_migrate_highatomic(old_block_type))
2605 		goto single_page;
2606 
2607 	/* Take ownership for orders >= pageblock_order */
2608 	if (current_order >= pageblock_order) {
2609 		change_pageblock_range(page, current_order, start_type);
2610 		goto single_page;
2611 	}
2612 
2613 	/*
2614 	 * Boost watermarks to increase reclaim pressure to reduce the
2615 	 * likelihood of future fallbacks. Wake kswapd now as the node
2616 	 * may be balanced overall and kswapd will not wake naturally.
2617 	 */
2618 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2619 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2620 
2621 	/* We are not allowed to try stealing from the whole block */
2622 	if (!whole_block)
2623 		goto single_page;
2624 
2625 	free_pages = move_freepages_block(zone, page, start_type,
2626 						&movable_pages);
2627 	/*
2628 	 * Determine how many pages are compatible with our allocation.
2629 	 * For movable allocation, it's the number of movable pages which
2630 	 * we just obtained. For other types it's a bit more tricky.
2631 	 */
2632 	if (start_type == MIGRATE_MOVABLE) {
2633 		alike_pages = movable_pages;
2634 	} else {
2635 		/*
2636 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2637 		 * to MOVABLE pageblock, consider all non-movable pages as
2638 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2639 		 * vice versa, be conservative since we can't distinguish the
2640 		 * exact migratetype of non-movable pages.
2641 		 */
2642 		if (old_block_type == MIGRATE_MOVABLE)
2643 			alike_pages = pageblock_nr_pages
2644 						- (free_pages + movable_pages);
2645 		else
2646 			alike_pages = 0;
2647 	}
2648 
2649 	/* moving whole block can fail due to zone boundary conditions */
2650 	if (!free_pages)
2651 		goto single_page;
2652 
2653 	/*
2654 	 * If a sufficient number of pages in the block are either free or of
2655 	 * comparable migratability as our allocation, claim the whole block.
2656 	 */
2657 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2658 			page_group_by_mobility_disabled)
2659 		set_pageblock_migratetype(page, start_type);
2660 
2661 	return;
2662 
2663 single_page:
2664 	move_to_free_list(page, zone, current_order, start_type);
2665 }
2666 
2667 /*
2668  * Check whether there is a suitable fallback freepage with requested order.
2669  * If only_stealable is true, this function returns fallback_mt only if
2670  * we can steal other freepages all together. This would help to reduce
2671  * fragmentation due to mixed migratetype pages in one pageblock.
2672  */
2673 int find_suitable_fallback(struct free_area *area, unsigned int order,
2674 			int migratetype, bool only_stealable, bool *can_steal)
2675 {
2676 	int i;
2677 	int fallback_mt;
2678 
2679 	if (area->nr_free == 0)
2680 		return -1;
2681 
2682 	*can_steal = false;
2683 	for (i = 0;; i++) {
2684 		fallback_mt = fallbacks[migratetype][i];
2685 		if (fallback_mt == MIGRATE_TYPES)
2686 			break;
2687 
2688 		if (free_area_empty(area, fallback_mt))
2689 			continue;
2690 
2691 		if (can_steal_fallback(order, migratetype))
2692 			*can_steal = true;
2693 
2694 		if (!only_stealable)
2695 			return fallback_mt;
2696 
2697 		if (*can_steal)
2698 			return fallback_mt;
2699 	}
2700 
2701 	return -1;
2702 }
2703 
2704 /*
2705  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2706  * there are no empty page blocks that contain a page with a suitable order
2707  */
2708 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2709 				unsigned int alloc_order)
2710 {
2711 	int mt;
2712 	unsigned long max_managed, flags;
2713 
2714 	/*
2715 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2716 	 * Check is race-prone but harmless.
2717 	 */
2718 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2719 	if (zone->nr_reserved_highatomic >= max_managed)
2720 		return;
2721 
2722 	spin_lock_irqsave(&zone->lock, flags);
2723 
2724 	/* Recheck the nr_reserved_highatomic limit under the lock */
2725 	if (zone->nr_reserved_highatomic >= max_managed)
2726 		goto out_unlock;
2727 
2728 	/* Yoink! */
2729 	mt = get_pageblock_migratetype(page);
2730 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2731 	    && !is_migrate_cma(mt)) {
2732 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2733 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2734 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2735 	}
2736 
2737 out_unlock:
2738 	spin_unlock_irqrestore(&zone->lock, flags);
2739 }
2740 
2741 /*
2742  * Used when an allocation is about to fail under memory pressure. This
2743  * potentially hurts the reliability of high-order allocations when under
2744  * intense memory pressure but failed atomic allocations should be easier
2745  * to recover from than an OOM.
2746  *
2747  * If @force is true, try to unreserve a pageblock even though highatomic
2748  * pageblock is exhausted.
2749  */
2750 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2751 						bool force)
2752 {
2753 	struct zonelist *zonelist = ac->zonelist;
2754 	unsigned long flags;
2755 	struct zoneref *z;
2756 	struct zone *zone;
2757 	struct page *page;
2758 	int order;
2759 	bool ret;
2760 
2761 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2762 								ac->nodemask) {
2763 		/*
2764 		 * Preserve at least one pageblock unless memory pressure
2765 		 * is really high.
2766 		 */
2767 		if (!force && zone->nr_reserved_highatomic <=
2768 					pageblock_nr_pages)
2769 			continue;
2770 
2771 		spin_lock_irqsave(&zone->lock, flags);
2772 		for (order = 0; order < MAX_ORDER; order++) {
2773 			struct free_area *area = &(zone->free_area[order]);
2774 
2775 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2776 			if (!page)
2777 				continue;
2778 
2779 			/*
2780 			 * In page freeing path, migratetype change is racy so
2781 			 * we can counter several free pages in a pageblock
2782 			 * in this loop although we changed the pageblock type
2783 			 * from highatomic to ac->migratetype. So we should
2784 			 * adjust the count once.
2785 			 */
2786 			if (is_migrate_highatomic_page(page)) {
2787 				/*
2788 				 * It should never happen but changes to
2789 				 * locking could inadvertently allow a per-cpu
2790 				 * drain to add pages to MIGRATE_HIGHATOMIC
2791 				 * while unreserving so be safe and watch for
2792 				 * underflows.
2793 				 */
2794 				zone->nr_reserved_highatomic -= min(
2795 						pageblock_nr_pages,
2796 						zone->nr_reserved_highatomic);
2797 			}
2798 
2799 			/*
2800 			 * Convert to ac->migratetype and avoid the normal
2801 			 * pageblock stealing heuristics. Minimally, the caller
2802 			 * is doing the work and needs the pages. More
2803 			 * importantly, if the block was always converted to
2804 			 * MIGRATE_UNMOVABLE or another type then the number
2805 			 * of pageblocks that cannot be completely freed
2806 			 * may increase.
2807 			 */
2808 			set_pageblock_migratetype(page, ac->migratetype);
2809 			ret = move_freepages_block(zone, page, ac->migratetype,
2810 									NULL);
2811 			if (ret) {
2812 				spin_unlock_irqrestore(&zone->lock, flags);
2813 				return ret;
2814 			}
2815 		}
2816 		spin_unlock_irqrestore(&zone->lock, flags);
2817 	}
2818 
2819 	return false;
2820 }
2821 
2822 /*
2823  * Try finding a free buddy page on the fallback list and put it on the free
2824  * list of requested migratetype, possibly along with other pages from the same
2825  * block, depending on fragmentation avoidance heuristics. Returns true if
2826  * fallback was found so that __rmqueue_smallest() can grab it.
2827  *
2828  * The use of signed ints for order and current_order is a deliberate
2829  * deviation from the rest of this file, to make the for loop
2830  * condition simpler.
2831  */
2832 static __always_inline bool
2833 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2834 						unsigned int alloc_flags)
2835 {
2836 	struct free_area *area;
2837 	int current_order;
2838 	int min_order = order;
2839 	struct page *page;
2840 	int fallback_mt;
2841 	bool can_steal;
2842 
2843 	/*
2844 	 * Do not steal pages from freelists belonging to other pageblocks
2845 	 * i.e. orders < pageblock_order. If there are no local zones free,
2846 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2847 	 */
2848 	if (alloc_flags & ALLOC_NOFRAGMENT)
2849 		min_order = pageblock_order;
2850 
2851 	/*
2852 	 * Find the largest available free page in the other list. This roughly
2853 	 * approximates finding the pageblock with the most free pages, which
2854 	 * would be too costly to do exactly.
2855 	 */
2856 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2857 				--current_order) {
2858 		area = &(zone->free_area[current_order]);
2859 		fallback_mt = find_suitable_fallback(area, current_order,
2860 				start_migratetype, false, &can_steal);
2861 		if (fallback_mt == -1)
2862 			continue;
2863 
2864 		/*
2865 		 * We cannot steal all free pages from the pageblock and the
2866 		 * requested migratetype is movable. In that case it's better to
2867 		 * steal and split the smallest available page instead of the
2868 		 * largest available page, because even if the next movable
2869 		 * allocation falls back into a different pageblock than this
2870 		 * one, it won't cause permanent fragmentation.
2871 		 */
2872 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2873 					&& current_order > order)
2874 			goto find_smallest;
2875 
2876 		goto do_steal;
2877 	}
2878 
2879 	return false;
2880 
2881 find_smallest:
2882 	for (current_order = order; current_order < MAX_ORDER;
2883 							current_order++) {
2884 		area = &(zone->free_area[current_order]);
2885 		fallback_mt = find_suitable_fallback(area, current_order,
2886 				start_migratetype, false, &can_steal);
2887 		if (fallback_mt != -1)
2888 			break;
2889 	}
2890 
2891 	/*
2892 	 * This should not happen - we already found a suitable fallback
2893 	 * when looking for the largest page.
2894 	 */
2895 	VM_BUG_ON(current_order == MAX_ORDER);
2896 
2897 do_steal:
2898 	page = get_page_from_free_area(area, fallback_mt);
2899 
2900 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2901 								can_steal);
2902 
2903 	trace_mm_page_alloc_extfrag(page, order, current_order,
2904 		start_migratetype, fallback_mt);
2905 
2906 	return true;
2907 
2908 }
2909 
2910 /*
2911  * Do the hard work of removing an element from the buddy allocator.
2912  * Call me with the zone->lock already held.
2913  */
2914 static __always_inline struct page *
2915 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2916 						unsigned int alloc_flags)
2917 {
2918 	struct page *page;
2919 
2920 	if (IS_ENABLED(CONFIG_CMA)) {
2921 		/*
2922 		 * Balance movable allocations between regular and CMA areas by
2923 		 * allocating from CMA when over half of the zone's free memory
2924 		 * is in the CMA area.
2925 		 */
2926 		if (alloc_flags & ALLOC_CMA &&
2927 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2928 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2929 			page = __rmqueue_cma_fallback(zone, order);
2930 			if (page)
2931 				goto out;
2932 		}
2933 	}
2934 retry:
2935 	page = __rmqueue_smallest(zone, order, migratetype);
2936 	if (unlikely(!page)) {
2937 		if (alloc_flags & ALLOC_CMA)
2938 			page = __rmqueue_cma_fallback(zone, order);
2939 
2940 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2941 								alloc_flags))
2942 			goto retry;
2943 	}
2944 out:
2945 	if (page)
2946 		trace_mm_page_alloc_zone_locked(page, order, migratetype);
2947 	return page;
2948 }
2949 
2950 /*
2951  * Obtain a specified number of elements from the buddy allocator, all under
2952  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2953  * Returns the number of new pages which were placed at *list.
2954  */
2955 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2956 			unsigned long count, struct list_head *list,
2957 			int migratetype, unsigned int alloc_flags)
2958 {
2959 	int i, allocated = 0;
2960 
2961 	spin_lock(&zone->lock);
2962 	for (i = 0; i < count; ++i) {
2963 		struct page *page = __rmqueue(zone, order, migratetype,
2964 								alloc_flags);
2965 		if (unlikely(page == NULL))
2966 			break;
2967 
2968 		if (unlikely(check_pcp_refill(page)))
2969 			continue;
2970 
2971 		/*
2972 		 * Split buddy pages returned by expand() are received here in
2973 		 * physical page order. The page is added to the tail of
2974 		 * caller's list. From the callers perspective, the linked list
2975 		 * is ordered by page number under some conditions. This is
2976 		 * useful for IO devices that can forward direction from the
2977 		 * head, thus also in the physical page order. This is useful
2978 		 * for IO devices that can merge IO requests if the physical
2979 		 * pages are ordered properly.
2980 		 */
2981 		list_add_tail(&page->lru, list);
2982 		allocated++;
2983 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2984 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2985 					      -(1 << order));
2986 	}
2987 
2988 	/*
2989 	 * i pages were removed from the buddy list even if some leak due
2990 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2991 	 * on i. Do not confuse with 'allocated' which is the number of
2992 	 * pages added to the pcp list.
2993 	 */
2994 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2995 	spin_unlock(&zone->lock);
2996 	return allocated;
2997 }
2998 
2999 #ifdef CONFIG_NUMA
3000 /*
3001  * Called from the vmstat counter updater to drain pagesets of this
3002  * currently executing processor on remote nodes after they have
3003  * expired.
3004  *
3005  * Note that this function must be called with the thread pinned to
3006  * a single processor.
3007  */
3008 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3009 {
3010 	unsigned long flags;
3011 	int to_drain, batch;
3012 
3013 	local_irq_save(flags);
3014 	batch = READ_ONCE(pcp->batch);
3015 	to_drain = min(pcp->count, batch);
3016 	if (to_drain > 0)
3017 		free_pcppages_bulk(zone, to_drain, pcp);
3018 	local_irq_restore(flags);
3019 }
3020 #endif
3021 
3022 /*
3023  * Drain pcplists of the indicated processor and zone.
3024  *
3025  * The processor must either be the current processor and the
3026  * thread pinned to the current processor or a processor that
3027  * is not online.
3028  */
3029 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3030 {
3031 	unsigned long flags;
3032 	struct per_cpu_pageset *pset;
3033 	struct per_cpu_pages *pcp;
3034 
3035 	local_irq_save(flags);
3036 	pset = per_cpu_ptr(zone->pageset, cpu);
3037 
3038 	pcp = &pset->pcp;
3039 	if (pcp->count)
3040 		free_pcppages_bulk(zone, pcp->count, pcp);
3041 	local_irq_restore(flags);
3042 }
3043 
3044 /*
3045  * Drain pcplists of all zones on the indicated processor.
3046  *
3047  * The processor must either be the current processor and the
3048  * thread pinned to the current processor or a processor that
3049  * is not online.
3050  */
3051 static void drain_pages(unsigned int cpu)
3052 {
3053 	struct zone *zone;
3054 
3055 	for_each_populated_zone(zone) {
3056 		drain_pages_zone(cpu, zone);
3057 	}
3058 }
3059 
3060 /*
3061  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3062  *
3063  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3064  * the single zone's pages.
3065  */
3066 void drain_local_pages(struct zone *zone)
3067 {
3068 	int cpu = smp_processor_id();
3069 
3070 	if (zone)
3071 		drain_pages_zone(cpu, zone);
3072 	else
3073 		drain_pages(cpu);
3074 }
3075 
3076 static void drain_local_pages_wq(struct work_struct *work)
3077 {
3078 	struct pcpu_drain *drain;
3079 
3080 	drain = container_of(work, struct pcpu_drain, work);
3081 
3082 	/*
3083 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3084 	 * we can race with cpu offline when the WQ can move this from
3085 	 * a cpu pinned worker to an unbound one. We can operate on a different
3086 	 * cpu which is alright but we also have to make sure to not move to
3087 	 * a different one.
3088 	 */
3089 	preempt_disable();
3090 	drain_local_pages(drain->zone);
3091 	preempt_enable();
3092 }
3093 
3094 /*
3095  * The implementation of drain_all_pages(), exposing an extra parameter to
3096  * drain on all cpus.
3097  *
3098  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3099  * not empty. The check for non-emptiness can however race with a free to
3100  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3101  * that need the guarantee that every CPU has drained can disable the
3102  * optimizing racy check.
3103  */
3104 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3105 {
3106 	int cpu;
3107 
3108 	/*
3109 	 * Allocate in the BSS so we wont require allocation in
3110 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3111 	 */
3112 	static cpumask_t cpus_with_pcps;
3113 
3114 	/*
3115 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3116 	 * initialized.
3117 	 */
3118 	if (WARN_ON_ONCE(!mm_percpu_wq))
3119 		return;
3120 
3121 	/*
3122 	 * Do not drain if one is already in progress unless it's specific to
3123 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3124 	 * the drain to be complete when the call returns.
3125 	 */
3126 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3127 		if (!zone)
3128 			return;
3129 		mutex_lock(&pcpu_drain_mutex);
3130 	}
3131 
3132 	/*
3133 	 * We don't care about racing with CPU hotplug event
3134 	 * as offline notification will cause the notified
3135 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3136 	 * disables preemption as part of its processing
3137 	 */
3138 	for_each_online_cpu(cpu) {
3139 		struct per_cpu_pageset *pcp;
3140 		struct zone *z;
3141 		bool has_pcps = false;
3142 
3143 		if (force_all_cpus) {
3144 			/*
3145 			 * The pcp.count check is racy, some callers need a
3146 			 * guarantee that no cpu is missed.
3147 			 */
3148 			has_pcps = true;
3149 		} else if (zone) {
3150 			pcp = per_cpu_ptr(zone->pageset, cpu);
3151 			if (pcp->pcp.count)
3152 				has_pcps = true;
3153 		} else {
3154 			for_each_populated_zone(z) {
3155 				pcp = per_cpu_ptr(z->pageset, cpu);
3156 				if (pcp->pcp.count) {
3157 					has_pcps = true;
3158 					break;
3159 				}
3160 			}
3161 		}
3162 
3163 		if (has_pcps)
3164 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3165 		else
3166 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3167 	}
3168 
3169 	for_each_cpu(cpu, &cpus_with_pcps) {
3170 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3171 
3172 		drain->zone = zone;
3173 		INIT_WORK(&drain->work, drain_local_pages_wq);
3174 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3175 	}
3176 	for_each_cpu(cpu, &cpus_with_pcps)
3177 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3178 
3179 	mutex_unlock(&pcpu_drain_mutex);
3180 }
3181 
3182 /*
3183  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3184  *
3185  * When zone parameter is non-NULL, spill just the single zone's pages.
3186  *
3187  * Note that this can be extremely slow as the draining happens in a workqueue.
3188  */
3189 void drain_all_pages(struct zone *zone)
3190 {
3191 	__drain_all_pages(zone, false);
3192 }
3193 
3194 #ifdef CONFIG_HIBERNATION
3195 
3196 /*
3197  * Touch the watchdog for every WD_PAGE_COUNT pages.
3198  */
3199 #define WD_PAGE_COUNT	(128*1024)
3200 
3201 void mark_free_pages(struct zone *zone)
3202 {
3203 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3204 	unsigned long flags;
3205 	unsigned int order, t;
3206 	struct page *page;
3207 
3208 	if (zone_is_empty(zone))
3209 		return;
3210 
3211 	spin_lock_irqsave(&zone->lock, flags);
3212 
3213 	max_zone_pfn = zone_end_pfn(zone);
3214 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3215 		if (pfn_valid(pfn)) {
3216 			page = pfn_to_page(pfn);
3217 
3218 			if (!--page_count) {
3219 				touch_nmi_watchdog();
3220 				page_count = WD_PAGE_COUNT;
3221 			}
3222 
3223 			if (page_zone(page) != zone)
3224 				continue;
3225 
3226 			if (!swsusp_page_is_forbidden(page))
3227 				swsusp_unset_page_free(page);
3228 		}
3229 
3230 	for_each_migratetype_order(order, t) {
3231 		list_for_each_entry(page,
3232 				&zone->free_area[order].free_list[t], lru) {
3233 			unsigned long i;
3234 
3235 			pfn = page_to_pfn(page);
3236 			for (i = 0; i < (1UL << order); i++) {
3237 				if (!--page_count) {
3238 					touch_nmi_watchdog();
3239 					page_count = WD_PAGE_COUNT;
3240 				}
3241 				swsusp_set_page_free(pfn_to_page(pfn + i));
3242 			}
3243 		}
3244 	}
3245 	spin_unlock_irqrestore(&zone->lock, flags);
3246 }
3247 #endif /* CONFIG_PM */
3248 
3249 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3250 {
3251 	int migratetype;
3252 
3253 	if (!free_pcp_prepare(page))
3254 		return false;
3255 
3256 	migratetype = get_pfnblock_migratetype(page, pfn);
3257 	set_pcppage_migratetype(page, migratetype);
3258 	return true;
3259 }
3260 
3261 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3262 {
3263 	struct zone *zone = page_zone(page);
3264 	struct per_cpu_pages *pcp;
3265 	int migratetype;
3266 
3267 	migratetype = get_pcppage_migratetype(page);
3268 	__count_vm_event(PGFREE);
3269 
3270 	/*
3271 	 * We only track unmovable, reclaimable and movable on pcp lists.
3272 	 * Free ISOLATE pages back to the allocator because they are being
3273 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3274 	 * areas back if necessary. Otherwise, we may have to free
3275 	 * excessively into the page allocator
3276 	 */
3277 	if (migratetype >= MIGRATE_PCPTYPES) {
3278 		if (unlikely(is_migrate_isolate(migratetype))) {
3279 			free_one_page(zone, page, pfn, 0, migratetype,
3280 				      FPI_NONE);
3281 			return;
3282 		}
3283 		migratetype = MIGRATE_MOVABLE;
3284 	}
3285 
3286 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3287 	list_add(&page->lru, &pcp->lists[migratetype]);
3288 	pcp->count++;
3289 	if (pcp->count >= READ_ONCE(pcp->high))
3290 		free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
3291 }
3292 
3293 /*
3294  * Free a 0-order page
3295  */
3296 void free_unref_page(struct page *page)
3297 {
3298 	unsigned long flags;
3299 	unsigned long pfn = page_to_pfn(page);
3300 
3301 	if (!free_unref_page_prepare(page, pfn))
3302 		return;
3303 
3304 	local_irq_save(flags);
3305 	free_unref_page_commit(page, pfn);
3306 	local_irq_restore(flags);
3307 }
3308 
3309 /*
3310  * Free a list of 0-order pages
3311  */
3312 void free_unref_page_list(struct list_head *list)
3313 {
3314 	struct page *page, *next;
3315 	unsigned long flags, pfn;
3316 	int batch_count = 0;
3317 
3318 	/* Prepare pages for freeing */
3319 	list_for_each_entry_safe(page, next, list, lru) {
3320 		pfn = page_to_pfn(page);
3321 		if (!free_unref_page_prepare(page, pfn))
3322 			list_del(&page->lru);
3323 		set_page_private(page, pfn);
3324 	}
3325 
3326 	local_irq_save(flags);
3327 	list_for_each_entry_safe(page, next, list, lru) {
3328 		unsigned long pfn = page_private(page);
3329 
3330 		set_page_private(page, 0);
3331 		trace_mm_page_free_batched(page);
3332 		free_unref_page_commit(page, pfn);
3333 
3334 		/*
3335 		 * Guard against excessive IRQ disabled times when we get
3336 		 * a large list of pages to free.
3337 		 */
3338 		if (++batch_count == SWAP_CLUSTER_MAX) {
3339 			local_irq_restore(flags);
3340 			batch_count = 0;
3341 			local_irq_save(flags);
3342 		}
3343 	}
3344 	local_irq_restore(flags);
3345 }
3346 
3347 /*
3348  * split_page takes a non-compound higher-order page, and splits it into
3349  * n (1<<order) sub-pages: page[0..n]
3350  * Each sub-page must be freed individually.
3351  *
3352  * Note: this is probably too low level an operation for use in drivers.
3353  * Please consult with lkml before using this in your driver.
3354  */
3355 void split_page(struct page *page, unsigned int order)
3356 {
3357 	int i;
3358 
3359 	VM_BUG_ON_PAGE(PageCompound(page), page);
3360 	VM_BUG_ON_PAGE(!page_count(page), page);
3361 
3362 	for (i = 1; i < (1 << order); i++)
3363 		set_page_refcounted(page + i);
3364 	split_page_owner(page, 1 << order);
3365 	split_page_memcg(page, 1 << order);
3366 }
3367 EXPORT_SYMBOL_GPL(split_page);
3368 
3369 int __isolate_free_page(struct page *page, unsigned int order)
3370 {
3371 	unsigned long watermark;
3372 	struct zone *zone;
3373 	int mt;
3374 
3375 	BUG_ON(!PageBuddy(page));
3376 
3377 	zone = page_zone(page);
3378 	mt = get_pageblock_migratetype(page);
3379 
3380 	if (!is_migrate_isolate(mt)) {
3381 		/*
3382 		 * Obey watermarks as if the page was being allocated. We can
3383 		 * emulate a high-order watermark check with a raised order-0
3384 		 * watermark, because we already know our high-order page
3385 		 * exists.
3386 		 */
3387 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3388 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3389 			return 0;
3390 
3391 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3392 	}
3393 
3394 	/* Remove page from free list */
3395 
3396 	del_page_from_free_list(page, zone, order);
3397 
3398 	/*
3399 	 * Set the pageblock if the isolated page is at least half of a
3400 	 * pageblock
3401 	 */
3402 	if (order >= pageblock_order - 1) {
3403 		struct page *endpage = page + (1 << order) - 1;
3404 		for (; page < endpage; page += pageblock_nr_pages) {
3405 			int mt = get_pageblock_migratetype(page);
3406 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3407 			    && !is_migrate_highatomic(mt))
3408 				set_pageblock_migratetype(page,
3409 							  MIGRATE_MOVABLE);
3410 		}
3411 	}
3412 
3413 
3414 	return 1UL << order;
3415 }
3416 
3417 /**
3418  * __putback_isolated_page - Return a now-isolated page back where we got it
3419  * @page: Page that was isolated
3420  * @order: Order of the isolated page
3421  * @mt: The page's pageblock's migratetype
3422  *
3423  * This function is meant to return a page pulled from the free lists via
3424  * __isolate_free_page back to the free lists they were pulled from.
3425  */
3426 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3427 {
3428 	struct zone *zone = page_zone(page);
3429 
3430 	/* zone lock should be held when this function is called */
3431 	lockdep_assert_held(&zone->lock);
3432 
3433 	/* Return isolated page to tail of freelist. */
3434 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3435 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3436 }
3437 
3438 /*
3439  * Update NUMA hit/miss statistics
3440  *
3441  * Must be called with interrupts disabled.
3442  */
3443 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3444 {
3445 #ifdef CONFIG_NUMA
3446 	enum numa_stat_item local_stat = NUMA_LOCAL;
3447 
3448 	/* skip numa counters update if numa stats is disabled */
3449 	if (!static_branch_likely(&vm_numa_stat_key))
3450 		return;
3451 
3452 	if (zone_to_nid(z) != numa_node_id())
3453 		local_stat = NUMA_OTHER;
3454 
3455 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3456 		__inc_numa_state(z, NUMA_HIT);
3457 	else {
3458 		__inc_numa_state(z, NUMA_MISS);
3459 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3460 	}
3461 	__inc_numa_state(z, local_stat);
3462 #endif
3463 }
3464 
3465 /* Remove page from the per-cpu list, caller must protect the list */
3466 static inline
3467 struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3468 			unsigned int alloc_flags,
3469 			struct per_cpu_pages *pcp,
3470 			struct list_head *list)
3471 {
3472 	struct page *page;
3473 
3474 	do {
3475 		if (list_empty(list)) {
3476 			pcp->count += rmqueue_bulk(zone, 0,
3477 					READ_ONCE(pcp->batch), list,
3478 					migratetype, alloc_flags);
3479 			if (unlikely(list_empty(list)))
3480 				return NULL;
3481 		}
3482 
3483 		page = list_first_entry(list, struct page, lru);
3484 		list_del(&page->lru);
3485 		pcp->count--;
3486 	} while (check_new_pcp(page));
3487 
3488 	return page;
3489 }
3490 
3491 /* Lock and remove page from the per-cpu list */
3492 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3493 			struct zone *zone, gfp_t gfp_flags,
3494 			int migratetype, unsigned int alloc_flags)
3495 {
3496 	struct per_cpu_pages *pcp;
3497 	struct list_head *list;
3498 	struct page *page;
3499 	unsigned long flags;
3500 
3501 	local_irq_save(flags);
3502 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3503 	list = &pcp->lists[migratetype];
3504 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3505 	if (page) {
3506 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3507 		zone_statistics(preferred_zone, zone);
3508 	}
3509 	local_irq_restore(flags);
3510 	return page;
3511 }
3512 
3513 /*
3514  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3515  */
3516 static inline
3517 struct page *rmqueue(struct zone *preferred_zone,
3518 			struct zone *zone, unsigned int order,
3519 			gfp_t gfp_flags, unsigned int alloc_flags,
3520 			int migratetype)
3521 {
3522 	unsigned long flags;
3523 	struct page *page;
3524 
3525 	if (likely(order == 0)) {
3526 		/*
3527 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3528 		 * we need to skip it when CMA area isn't allowed.
3529 		 */
3530 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3531 				migratetype != MIGRATE_MOVABLE) {
3532 			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3533 					migratetype, alloc_flags);
3534 			goto out;
3535 		}
3536 	}
3537 
3538 	/*
3539 	 * We most definitely don't want callers attempting to
3540 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3541 	 */
3542 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3543 	spin_lock_irqsave(&zone->lock, flags);
3544 
3545 	do {
3546 		page = NULL;
3547 		/*
3548 		 * order-0 request can reach here when the pcplist is skipped
3549 		 * due to non-CMA allocation context. HIGHATOMIC area is
3550 		 * reserved for high-order atomic allocation, so order-0
3551 		 * request should skip it.
3552 		 */
3553 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3554 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3555 			if (page)
3556 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3557 		}
3558 		if (!page)
3559 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3560 	} while (page && check_new_pages(page, order));
3561 	spin_unlock(&zone->lock);
3562 	if (!page)
3563 		goto failed;
3564 	__mod_zone_freepage_state(zone, -(1 << order),
3565 				  get_pcppage_migratetype(page));
3566 
3567 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3568 	zone_statistics(preferred_zone, zone);
3569 	local_irq_restore(flags);
3570 
3571 out:
3572 	/* Separate test+clear to avoid unnecessary atomics */
3573 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3574 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3575 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3576 	}
3577 
3578 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3579 	return page;
3580 
3581 failed:
3582 	local_irq_restore(flags);
3583 	return NULL;
3584 }
3585 
3586 #ifdef CONFIG_FAIL_PAGE_ALLOC
3587 
3588 static struct {
3589 	struct fault_attr attr;
3590 
3591 	bool ignore_gfp_highmem;
3592 	bool ignore_gfp_reclaim;
3593 	u32 min_order;
3594 } fail_page_alloc = {
3595 	.attr = FAULT_ATTR_INITIALIZER,
3596 	.ignore_gfp_reclaim = true,
3597 	.ignore_gfp_highmem = true,
3598 	.min_order = 1,
3599 };
3600 
3601 static int __init setup_fail_page_alloc(char *str)
3602 {
3603 	return setup_fault_attr(&fail_page_alloc.attr, str);
3604 }
3605 __setup("fail_page_alloc=", setup_fail_page_alloc);
3606 
3607 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3608 {
3609 	if (order < fail_page_alloc.min_order)
3610 		return false;
3611 	if (gfp_mask & __GFP_NOFAIL)
3612 		return false;
3613 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3614 		return false;
3615 	if (fail_page_alloc.ignore_gfp_reclaim &&
3616 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3617 		return false;
3618 
3619 	return should_fail(&fail_page_alloc.attr, 1 << order);
3620 }
3621 
3622 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3623 
3624 static int __init fail_page_alloc_debugfs(void)
3625 {
3626 	umode_t mode = S_IFREG | 0600;
3627 	struct dentry *dir;
3628 
3629 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3630 					&fail_page_alloc.attr);
3631 
3632 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3633 			    &fail_page_alloc.ignore_gfp_reclaim);
3634 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3635 			    &fail_page_alloc.ignore_gfp_highmem);
3636 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3637 
3638 	return 0;
3639 }
3640 
3641 late_initcall(fail_page_alloc_debugfs);
3642 
3643 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3644 
3645 #else /* CONFIG_FAIL_PAGE_ALLOC */
3646 
3647 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3648 {
3649 	return false;
3650 }
3651 
3652 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3653 
3654 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3655 {
3656 	return __should_fail_alloc_page(gfp_mask, order);
3657 }
3658 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3659 
3660 static inline long __zone_watermark_unusable_free(struct zone *z,
3661 				unsigned int order, unsigned int alloc_flags)
3662 {
3663 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3664 	long unusable_free = (1 << order) - 1;
3665 
3666 	/*
3667 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3668 	 * the high-atomic reserves. This will over-estimate the size of the
3669 	 * atomic reserve but it avoids a search.
3670 	 */
3671 	if (likely(!alloc_harder))
3672 		unusable_free += z->nr_reserved_highatomic;
3673 
3674 #ifdef CONFIG_CMA
3675 	/* If allocation can't use CMA areas don't use free CMA pages */
3676 	if (!(alloc_flags & ALLOC_CMA))
3677 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3678 #endif
3679 
3680 	return unusable_free;
3681 }
3682 
3683 /*
3684  * Return true if free base pages are above 'mark'. For high-order checks it
3685  * will return true of the order-0 watermark is reached and there is at least
3686  * one free page of a suitable size. Checking now avoids taking the zone lock
3687  * to check in the allocation paths if no pages are free.
3688  */
3689 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3690 			 int highest_zoneidx, unsigned int alloc_flags,
3691 			 long free_pages)
3692 {
3693 	long min = mark;
3694 	int o;
3695 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3696 
3697 	/* free_pages may go negative - that's OK */
3698 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3699 
3700 	if (alloc_flags & ALLOC_HIGH)
3701 		min -= min / 2;
3702 
3703 	if (unlikely(alloc_harder)) {
3704 		/*
3705 		 * OOM victims can try even harder than normal ALLOC_HARDER
3706 		 * users on the grounds that it's definitely going to be in
3707 		 * the exit path shortly and free memory. Any allocation it
3708 		 * makes during the free path will be small and short-lived.
3709 		 */
3710 		if (alloc_flags & ALLOC_OOM)
3711 			min -= min / 2;
3712 		else
3713 			min -= min / 4;
3714 	}
3715 
3716 	/*
3717 	 * Check watermarks for an order-0 allocation request. If these
3718 	 * are not met, then a high-order request also cannot go ahead
3719 	 * even if a suitable page happened to be free.
3720 	 */
3721 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3722 		return false;
3723 
3724 	/* If this is an order-0 request then the watermark is fine */
3725 	if (!order)
3726 		return true;
3727 
3728 	/* For a high-order request, check at least one suitable page is free */
3729 	for (o = order; o < MAX_ORDER; o++) {
3730 		struct free_area *area = &z->free_area[o];
3731 		int mt;
3732 
3733 		if (!area->nr_free)
3734 			continue;
3735 
3736 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3737 			if (!free_area_empty(area, mt))
3738 				return true;
3739 		}
3740 
3741 #ifdef CONFIG_CMA
3742 		if ((alloc_flags & ALLOC_CMA) &&
3743 		    !free_area_empty(area, MIGRATE_CMA)) {
3744 			return true;
3745 		}
3746 #endif
3747 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3748 			return true;
3749 	}
3750 	return false;
3751 }
3752 
3753 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3754 		      int highest_zoneidx, unsigned int alloc_flags)
3755 {
3756 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3757 					zone_page_state(z, NR_FREE_PAGES));
3758 }
3759 
3760 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3761 				unsigned long mark, int highest_zoneidx,
3762 				unsigned int alloc_flags, gfp_t gfp_mask)
3763 {
3764 	long free_pages;
3765 
3766 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3767 
3768 	/*
3769 	 * Fast check for order-0 only. If this fails then the reserves
3770 	 * need to be calculated.
3771 	 */
3772 	if (!order) {
3773 		long fast_free;
3774 
3775 		fast_free = free_pages;
3776 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3777 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3778 			return true;
3779 	}
3780 
3781 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3782 					free_pages))
3783 		return true;
3784 	/*
3785 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3786 	 * when checking the min watermark. The min watermark is the
3787 	 * point where boosting is ignored so that kswapd is woken up
3788 	 * when below the low watermark.
3789 	 */
3790 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3791 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3792 		mark = z->_watermark[WMARK_MIN];
3793 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3794 					alloc_flags, free_pages);
3795 	}
3796 
3797 	return false;
3798 }
3799 
3800 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3801 			unsigned long mark, int highest_zoneidx)
3802 {
3803 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3804 
3805 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3806 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3807 
3808 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3809 								free_pages);
3810 }
3811 
3812 #ifdef CONFIG_NUMA
3813 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3814 {
3815 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3816 				node_reclaim_distance;
3817 }
3818 #else	/* CONFIG_NUMA */
3819 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3820 {
3821 	return true;
3822 }
3823 #endif	/* CONFIG_NUMA */
3824 
3825 /*
3826  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3827  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3828  * premature use of a lower zone may cause lowmem pressure problems that
3829  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3830  * probably too small. It only makes sense to spread allocations to avoid
3831  * fragmentation between the Normal and DMA32 zones.
3832  */
3833 static inline unsigned int
3834 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3835 {
3836 	unsigned int alloc_flags;
3837 
3838 	/*
3839 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3840 	 * to save a branch.
3841 	 */
3842 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3843 
3844 #ifdef CONFIG_ZONE_DMA32
3845 	if (!zone)
3846 		return alloc_flags;
3847 
3848 	if (zone_idx(zone) != ZONE_NORMAL)
3849 		return alloc_flags;
3850 
3851 	/*
3852 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3853 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3854 	 * on UMA that if Normal is populated then so is DMA32.
3855 	 */
3856 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3857 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3858 		return alloc_flags;
3859 
3860 	alloc_flags |= ALLOC_NOFRAGMENT;
3861 #endif /* CONFIG_ZONE_DMA32 */
3862 	return alloc_flags;
3863 }
3864 
3865 /* Must be called after current_gfp_context() which can change gfp_mask */
3866 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3867 						  unsigned int alloc_flags)
3868 {
3869 #ifdef CONFIG_CMA
3870 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3871 		alloc_flags |= ALLOC_CMA;
3872 #endif
3873 	return alloc_flags;
3874 }
3875 
3876 /*
3877  * get_page_from_freelist goes through the zonelist trying to allocate
3878  * a page.
3879  */
3880 static struct page *
3881 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3882 						const struct alloc_context *ac)
3883 {
3884 	struct zoneref *z;
3885 	struct zone *zone;
3886 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3887 	bool no_fallback;
3888 
3889 retry:
3890 	/*
3891 	 * Scan zonelist, looking for a zone with enough free.
3892 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3893 	 */
3894 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3895 	z = ac->preferred_zoneref;
3896 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3897 					ac->nodemask) {
3898 		struct page *page;
3899 		unsigned long mark;
3900 
3901 		if (cpusets_enabled() &&
3902 			(alloc_flags & ALLOC_CPUSET) &&
3903 			!__cpuset_zone_allowed(zone, gfp_mask))
3904 				continue;
3905 		/*
3906 		 * When allocating a page cache page for writing, we
3907 		 * want to get it from a node that is within its dirty
3908 		 * limit, such that no single node holds more than its
3909 		 * proportional share of globally allowed dirty pages.
3910 		 * The dirty limits take into account the node's
3911 		 * lowmem reserves and high watermark so that kswapd
3912 		 * should be able to balance it without having to
3913 		 * write pages from its LRU list.
3914 		 *
3915 		 * XXX: For now, allow allocations to potentially
3916 		 * exceed the per-node dirty limit in the slowpath
3917 		 * (spread_dirty_pages unset) before going into reclaim,
3918 		 * which is important when on a NUMA setup the allowed
3919 		 * nodes are together not big enough to reach the
3920 		 * global limit.  The proper fix for these situations
3921 		 * will require awareness of nodes in the
3922 		 * dirty-throttling and the flusher threads.
3923 		 */
3924 		if (ac->spread_dirty_pages) {
3925 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3926 				continue;
3927 
3928 			if (!node_dirty_ok(zone->zone_pgdat)) {
3929 				last_pgdat_dirty_limit = zone->zone_pgdat;
3930 				continue;
3931 			}
3932 		}
3933 
3934 		if (no_fallback && nr_online_nodes > 1 &&
3935 		    zone != ac->preferred_zoneref->zone) {
3936 			int local_nid;
3937 
3938 			/*
3939 			 * If moving to a remote node, retry but allow
3940 			 * fragmenting fallbacks. Locality is more important
3941 			 * than fragmentation avoidance.
3942 			 */
3943 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3944 			if (zone_to_nid(zone) != local_nid) {
3945 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3946 				goto retry;
3947 			}
3948 		}
3949 
3950 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3951 		if (!zone_watermark_fast(zone, order, mark,
3952 				       ac->highest_zoneidx, alloc_flags,
3953 				       gfp_mask)) {
3954 			int ret;
3955 
3956 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3957 			/*
3958 			 * Watermark failed for this zone, but see if we can
3959 			 * grow this zone if it contains deferred pages.
3960 			 */
3961 			if (static_branch_unlikely(&deferred_pages)) {
3962 				if (_deferred_grow_zone(zone, order))
3963 					goto try_this_zone;
3964 			}
3965 #endif
3966 			/* Checked here to keep the fast path fast */
3967 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3968 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3969 				goto try_this_zone;
3970 
3971 			if (!node_reclaim_enabled() ||
3972 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3973 				continue;
3974 
3975 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3976 			switch (ret) {
3977 			case NODE_RECLAIM_NOSCAN:
3978 				/* did not scan */
3979 				continue;
3980 			case NODE_RECLAIM_FULL:
3981 				/* scanned but unreclaimable */
3982 				continue;
3983 			default:
3984 				/* did we reclaim enough */
3985 				if (zone_watermark_ok(zone, order, mark,
3986 					ac->highest_zoneidx, alloc_flags))
3987 					goto try_this_zone;
3988 
3989 				continue;
3990 			}
3991 		}
3992 
3993 try_this_zone:
3994 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3995 				gfp_mask, alloc_flags, ac->migratetype);
3996 		if (page) {
3997 			prep_new_page(page, order, gfp_mask, alloc_flags);
3998 
3999 			/*
4000 			 * If this is a high-order atomic allocation then check
4001 			 * if the pageblock should be reserved for the future
4002 			 */
4003 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4004 				reserve_highatomic_pageblock(page, zone, order);
4005 
4006 			return page;
4007 		} else {
4008 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4009 			/* Try again if zone has deferred pages */
4010 			if (static_branch_unlikely(&deferred_pages)) {
4011 				if (_deferred_grow_zone(zone, order))
4012 					goto try_this_zone;
4013 			}
4014 #endif
4015 		}
4016 	}
4017 
4018 	/*
4019 	 * It's possible on a UMA machine to get through all zones that are
4020 	 * fragmented. If avoiding fragmentation, reset and try again.
4021 	 */
4022 	if (no_fallback) {
4023 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4024 		goto retry;
4025 	}
4026 
4027 	return NULL;
4028 }
4029 
4030 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4031 {
4032 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4033 
4034 	/*
4035 	 * This documents exceptions given to allocations in certain
4036 	 * contexts that are allowed to allocate outside current's set
4037 	 * of allowed nodes.
4038 	 */
4039 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4040 		if (tsk_is_oom_victim(current) ||
4041 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4042 			filter &= ~SHOW_MEM_FILTER_NODES;
4043 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4044 		filter &= ~SHOW_MEM_FILTER_NODES;
4045 
4046 	show_mem(filter, nodemask);
4047 }
4048 
4049 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4050 {
4051 	struct va_format vaf;
4052 	va_list args;
4053 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4054 
4055 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4056 		return;
4057 
4058 	va_start(args, fmt);
4059 	vaf.fmt = fmt;
4060 	vaf.va = &args;
4061 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4062 			current->comm, &vaf, gfp_mask, &gfp_mask,
4063 			nodemask_pr_args(nodemask));
4064 	va_end(args);
4065 
4066 	cpuset_print_current_mems_allowed();
4067 	pr_cont("\n");
4068 	dump_stack();
4069 	warn_alloc_show_mem(gfp_mask, nodemask);
4070 }
4071 
4072 static inline struct page *
4073 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4074 			      unsigned int alloc_flags,
4075 			      const struct alloc_context *ac)
4076 {
4077 	struct page *page;
4078 
4079 	page = get_page_from_freelist(gfp_mask, order,
4080 			alloc_flags|ALLOC_CPUSET, ac);
4081 	/*
4082 	 * fallback to ignore cpuset restriction if our nodes
4083 	 * are depleted
4084 	 */
4085 	if (!page)
4086 		page = get_page_from_freelist(gfp_mask, order,
4087 				alloc_flags, ac);
4088 
4089 	return page;
4090 }
4091 
4092 static inline struct page *
4093 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4094 	const struct alloc_context *ac, unsigned long *did_some_progress)
4095 {
4096 	struct oom_control oc = {
4097 		.zonelist = ac->zonelist,
4098 		.nodemask = ac->nodemask,
4099 		.memcg = NULL,
4100 		.gfp_mask = gfp_mask,
4101 		.order = order,
4102 	};
4103 	struct page *page;
4104 
4105 	*did_some_progress = 0;
4106 
4107 	/*
4108 	 * Acquire the oom lock.  If that fails, somebody else is
4109 	 * making progress for us.
4110 	 */
4111 	if (!mutex_trylock(&oom_lock)) {
4112 		*did_some_progress = 1;
4113 		schedule_timeout_uninterruptible(1);
4114 		return NULL;
4115 	}
4116 
4117 	/*
4118 	 * Go through the zonelist yet one more time, keep very high watermark
4119 	 * here, this is only to catch a parallel oom killing, we must fail if
4120 	 * we're still under heavy pressure. But make sure that this reclaim
4121 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4122 	 * allocation which will never fail due to oom_lock already held.
4123 	 */
4124 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4125 				      ~__GFP_DIRECT_RECLAIM, order,
4126 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4127 	if (page)
4128 		goto out;
4129 
4130 	/* Coredumps can quickly deplete all memory reserves */
4131 	if (current->flags & PF_DUMPCORE)
4132 		goto out;
4133 	/* The OOM killer will not help higher order allocs */
4134 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4135 		goto out;
4136 	/*
4137 	 * We have already exhausted all our reclaim opportunities without any
4138 	 * success so it is time to admit defeat. We will skip the OOM killer
4139 	 * because it is very likely that the caller has a more reasonable
4140 	 * fallback than shooting a random task.
4141 	 *
4142 	 * The OOM killer may not free memory on a specific node.
4143 	 */
4144 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4145 		goto out;
4146 	/* The OOM killer does not needlessly kill tasks for lowmem */
4147 	if (ac->highest_zoneidx < ZONE_NORMAL)
4148 		goto out;
4149 	if (pm_suspended_storage())
4150 		goto out;
4151 	/*
4152 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4153 	 * other request to make a forward progress.
4154 	 * We are in an unfortunate situation where out_of_memory cannot
4155 	 * do much for this context but let's try it to at least get
4156 	 * access to memory reserved if the current task is killed (see
4157 	 * out_of_memory). Once filesystems are ready to handle allocation
4158 	 * failures more gracefully we should just bail out here.
4159 	 */
4160 
4161 	/* Exhausted what can be done so it's blame time */
4162 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4163 		*did_some_progress = 1;
4164 
4165 		/*
4166 		 * Help non-failing allocations by giving them access to memory
4167 		 * reserves
4168 		 */
4169 		if (gfp_mask & __GFP_NOFAIL)
4170 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4171 					ALLOC_NO_WATERMARKS, ac);
4172 	}
4173 out:
4174 	mutex_unlock(&oom_lock);
4175 	return page;
4176 }
4177 
4178 /*
4179  * Maximum number of compaction retries with a progress before OOM
4180  * killer is consider as the only way to move forward.
4181  */
4182 #define MAX_COMPACT_RETRIES 16
4183 
4184 #ifdef CONFIG_COMPACTION
4185 /* Try memory compaction for high-order allocations before reclaim */
4186 static struct page *
4187 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4188 		unsigned int alloc_flags, const struct alloc_context *ac,
4189 		enum compact_priority prio, enum compact_result *compact_result)
4190 {
4191 	struct page *page = NULL;
4192 	unsigned long pflags;
4193 	unsigned int noreclaim_flag;
4194 
4195 	if (!order)
4196 		return NULL;
4197 
4198 	psi_memstall_enter(&pflags);
4199 	noreclaim_flag = memalloc_noreclaim_save();
4200 
4201 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4202 								prio, &page);
4203 
4204 	memalloc_noreclaim_restore(noreclaim_flag);
4205 	psi_memstall_leave(&pflags);
4206 
4207 	if (*compact_result == COMPACT_SKIPPED)
4208 		return NULL;
4209 	/*
4210 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4211 	 * count a compaction stall
4212 	 */
4213 	count_vm_event(COMPACTSTALL);
4214 
4215 	/* Prep a captured page if available */
4216 	if (page)
4217 		prep_new_page(page, order, gfp_mask, alloc_flags);
4218 
4219 	/* Try get a page from the freelist if available */
4220 	if (!page)
4221 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4222 
4223 	if (page) {
4224 		struct zone *zone = page_zone(page);
4225 
4226 		zone->compact_blockskip_flush = false;
4227 		compaction_defer_reset(zone, order, true);
4228 		count_vm_event(COMPACTSUCCESS);
4229 		return page;
4230 	}
4231 
4232 	/*
4233 	 * It's bad if compaction run occurs and fails. The most likely reason
4234 	 * is that pages exist, but not enough to satisfy watermarks.
4235 	 */
4236 	count_vm_event(COMPACTFAIL);
4237 
4238 	cond_resched();
4239 
4240 	return NULL;
4241 }
4242 
4243 static inline bool
4244 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4245 		     enum compact_result compact_result,
4246 		     enum compact_priority *compact_priority,
4247 		     int *compaction_retries)
4248 {
4249 	int max_retries = MAX_COMPACT_RETRIES;
4250 	int min_priority;
4251 	bool ret = false;
4252 	int retries = *compaction_retries;
4253 	enum compact_priority priority = *compact_priority;
4254 
4255 	if (!order)
4256 		return false;
4257 
4258 	if (compaction_made_progress(compact_result))
4259 		(*compaction_retries)++;
4260 
4261 	/*
4262 	 * compaction considers all the zone as desperately out of memory
4263 	 * so it doesn't really make much sense to retry except when the
4264 	 * failure could be caused by insufficient priority
4265 	 */
4266 	if (compaction_failed(compact_result))
4267 		goto check_priority;
4268 
4269 	/*
4270 	 * compaction was skipped because there are not enough order-0 pages
4271 	 * to work with, so we retry only if it looks like reclaim can help.
4272 	 */
4273 	if (compaction_needs_reclaim(compact_result)) {
4274 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4275 		goto out;
4276 	}
4277 
4278 	/*
4279 	 * make sure the compaction wasn't deferred or didn't bail out early
4280 	 * due to locks contention before we declare that we should give up.
4281 	 * But the next retry should use a higher priority if allowed, so
4282 	 * we don't just keep bailing out endlessly.
4283 	 */
4284 	if (compaction_withdrawn(compact_result)) {
4285 		goto check_priority;
4286 	}
4287 
4288 	/*
4289 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4290 	 * costly ones because they are de facto nofail and invoke OOM
4291 	 * killer to move on while costly can fail and users are ready
4292 	 * to cope with that. 1/4 retries is rather arbitrary but we
4293 	 * would need much more detailed feedback from compaction to
4294 	 * make a better decision.
4295 	 */
4296 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4297 		max_retries /= 4;
4298 	if (*compaction_retries <= max_retries) {
4299 		ret = true;
4300 		goto out;
4301 	}
4302 
4303 	/*
4304 	 * Make sure there are attempts at the highest priority if we exhausted
4305 	 * all retries or failed at the lower priorities.
4306 	 */
4307 check_priority:
4308 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4309 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4310 
4311 	if (*compact_priority > min_priority) {
4312 		(*compact_priority)--;
4313 		*compaction_retries = 0;
4314 		ret = true;
4315 	}
4316 out:
4317 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4318 	return ret;
4319 }
4320 #else
4321 static inline struct page *
4322 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4323 		unsigned int alloc_flags, const struct alloc_context *ac,
4324 		enum compact_priority prio, enum compact_result *compact_result)
4325 {
4326 	*compact_result = COMPACT_SKIPPED;
4327 	return NULL;
4328 }
4329 
4330 static inline bool
4331 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4332 		     enum compact_result compact_result,
4333 		     enum compact_priority *compact_priority,
4334 		     int *compaction_retries)
4335 {
4336 	struct zone *zone;
4337 	struct zoneref *z;
4338 
4339 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4340 		return false;
4341 
4342 	/*
4343 	 * There are setups with compaction disabled which would prefer to loop
4344 	 * inside the allocator rather than hit the oom killer prematurely.
4345 	 * Let's give them a good hope and keep retrying while the order-0
4346 	 * watermarks are OK.
4347 	 */
4348 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4349 				ac->highest_zoneidx, ac->nodemask) {
4350 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4351 					ac->highest_zoneidx, alloc_flags))
4352 			return true;
4353 	}
4354 	return false;
4355 }
4356 #endif /* CONFIG_COMPACTION */
4357 
4358 #ifdef CONFIG_LOCKDEP
4359 static struct lockdep_map __fs_reclaim_map =
4360 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4361 
4362 static bool __need_reclaim(gfp_t gfp_mask)
4363 {
4364 	/* no reclaim without waiting on it */
4365 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4366 		return false;
4367 
4368 	/* this guy won't enter reclaim */
4369 	if (current->flags & PF_MEMALLOC)
4370 		return false;
4371 
4372 	if (gfp_mask & __GFP_NOLOCKDEP)
4373 		return false;
4374 
4375 	return true;
4376 }
4377 
4378 void __fs_reclaim_acquire(void)
4379 {
4380 	lock_map_acquire(&__fs_reclaim_map);
4381 }
4382 
4383 void __fs_reclaim_release(void)
4384 {
4385 	lock_map_release(&__fs_reclaim_map);
4386 }
4387 
4388 void fs_reclaim_acquire(gfp_t gfp_mask)
4389 {
4390 	gfp_mask = current_gfp_context(gfp_mask);
4391 
4392 	if (__need_reclaim(gfp_mask)) {
4393 		if (gfp_mask & __GFP_FS)
4394 			__fs_reclaim_acquire();
4395 
4396 #ifdef CONFIG_MMU_NOTIFIER
4397 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4398 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4399 #endif
4400 
4401 	}
4402 }
4403 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4404 
4405 void fs_reclaim_release(gfp_t gfp_mask)
4406 {
4407 	gfp_mask = current_gfp_context(gfp_mask);
4408 
4409 	if (__need_reclaim(gfp_mask)) {
4410 		if (gfp_mask & __GFP_FS)
4411 			__fs_reclaim_release();
4412 	}
4413 }
4414 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4415 #endif
4416 
4417 /* Perform direct synchronous page reclaim */
4418 static unsigned long
4419 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4420 					const struct alloc_context *ac)
4421 {
4422 	unsigned int noreclaim_flag;
4423 	unsigned long pflags, progress;
4424 
4425 	cond_resched();
4426 
4427 	/* We now go into synchronous reclaim */
4428 	cpuset_memory_pressure_bump();
4429 	psi_memstall_enter(&pflags);
4430 	fs_reclaim_acquire(gfp_mask);
4431 	noreclaim_flag = memalloc_noreclaim_save();
4432 
4433 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4434 								ac->nodemask);
4435 
4436 	memalloc_noreclaim_restore(noreclaim_flag);
4437 	fs_reclaim_release(gfp_mask);
4438 	psi_memstall_leave(&pflags);
4439 
4440 	cond_resched();
4441 
4442 	return progress;
4443 }
4444 
4445 /* The really slow allocator path where we enter direct reclaim */
4446 static inline struct page *
4447 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4448 		unsigned int alloc_flags, const struct alloc_context *ac,
4449 		unsigned long *did_some_progress)
4450 {
4451 	struct page *page = NULL;
4452 	bool drained = false;
4453 
4454 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4455 	if (unlikely(!(*did_some_progress)))
4456 		return NULL;
4457 
4458 retry:
4459 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4460 
4461 	/*
4462 	 * If an allocation failed after direct reclaim, it could be because
4463 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4464 	 * Shrink them and try again
4465 	 */
4466 	if (!page && !drained) {
4467 		unreserve_highatomic_pageblock(ac, false);
4468 		drain_all_pages(NULL);
4469 		drained = true;
4470 		goto retry;
4471 	}
4472 
4473 	return page;
4474 }
4475 
4476 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4477 			     const struct alloc_context *ac)
4478 {
4479 	struct zoneref *z;
4480 	struct zone *zone;
4481 	pg_data_t *last_pgdat = NULL;
4482 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4483 
4484 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4485 					ac->nodemask) {
4486 		if (last_pgdat != zone->zone_pgdat)
4487 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4488 		last_pgdat = zone->zone_pgdat;
4489 	}
4490 }
4491 
4492 static inline unsigned int
4493 gfp_to_alloc_flags(gfp_t gfp_mask)
4494 {
4495 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4496 
4497 	/*
4498 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4499 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4500 	 * to save two branches.
4501 	 */
4502 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4503 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4504 
4505 	/*
4506 	 * The caller may dip into page reserves a bit more if the caller
4507 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4508 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4509 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4510 	 */
4511 	alloc_flags |= (__force int)
4512 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4513 
4514 	if (gfp_mask & __GFP_ATOMIC) {
4515 		/*
4516 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4517 		 * if it can't schedule.
4518 		 */
4519 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4520 			alloc_flags |= ALLOC_HARDER;
4521 		/*
4522 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4523 		 * comment for __cpuset_node_allowed().
4524 		 */
4525 		alloc_flags &= ~ALLOC_CPUSET;
4526 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4527 		alloc_flags |= ALLOC_HARDER;
4528 
4529 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4530 
4531 	return alloc_flags;
4532 }
4533 
4534 static bool oom_reserves_allowed(struct task_struct *tsk)
4535 {
4536 	if (!tsk_is_oom_victim(tsk))
4537 		return false;
4538 
4539 	/*
4540 	 * !MMU doesn't have oom reaper so give access to memory reserves
4541 	 * only to the thread with TIF_MEMDIE set
4542 	 */
4543 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4544 		return false;
4545 
4546 	return true;
4547 }
4548 
4549 /*
4550  * Distinguish requests which really need access to full memory
4551  * reserves from oom victims which can live with a portion of it
4552  */
4553 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4554 {
4555 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4556 		return 0;
4557 	if (gfp_mask & __GFP_MEMALLOC)
4558 		return ALLOC_NO_WATERMARKS;
4559 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4560 		return ALLOC_NO_WATERMARKS;
4561 	if (!in_interrupt()) {
4562 		if (current->flags & PF_MEMALLOC)
4563 			return ALLOC_NO_WATERMARKS;
4564 		else if (oom_reserves_allowed(current))
4565 			return ALLOC_OOM;
4566 	}
4567 
4568 	return 0;
4569 }
4570 
4571 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4572 {
4573 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4574 }
4575 
4576 /*
4577  * Checks whether it makes sense to retry the reclaim to make a forward progress
4578  * for the given allocation request.
4579  *
4580  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4581  * without success, or when we couldn't even meet the watermark if we
4582  * reclaimed all remaining pages on the LRU lists.
4583  *
4584  * Returns true if a retry is viable or false to enter the oom path.
4585  */
4586 static inline bool
4587 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4588 		     struct alloc_context *ac, int alloc_flags,
4589 		     bool did_some_progress, int *no_progress_loops)
4590 {
4591 	struct zone *zone;
4592 	struct zoneref *z;
4593 	bool ret = false;
4594 
4595 	/*
4596 	 * Costly allocations might have made a progress but this doesn't mean
4597 	 * their order will become available due to high fragmentation so
4598 	 * always increment the no progress counter for them
4599 	 */
4600 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4601 		*no_progress_loops = 0;
4602 	else
4603 		(*no_progress_loops)++;
4604 
4605 	/*
4606 	 * Make sure we converge to OOM if we cannot make any progress
4607 	 * several times in the row.
4608 	 */
4609 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4610 		/* Before OOM, exhaust highatomic_reserve */
4611 		return unreserve_highatomic_pageblock(ac, true);
4612 	}
4613 
4614 	/*
4615 	 * Keep reclaiming pages while there is a chance this will lead
4616 	 * somewhere.  If none of the target zones can satisfy our allocation
4617 	 * request even if all reclaimable pages are considered then we are
4618 	 * screwed and have to go OOM.
4619 	 */
4620 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4621 				ac->highest_zoneidx, ac->nodemask) {
4622 		unsigned long available;
4623 		unsigned long reclaimable;
4624 		unsigned long min_wmark = min_wmark_pages(zone);
4625 		bool wmark;
4626 
4627 		available = reclaimable = zone_reclaimable_pages(zone);
4628 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4629 
4630 		/*
4631 		 * Would the allocation succeed if we reclaimed all
4632 		 * reclaimable pages?
4633 		 */
4634 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4635 				ac->highest_zoneidx, alloc_flags, available);
4636 		trace_reclaim_retry_zone(z, order, reclaimable,
4637 				available, min_wmark, *no_progress_loops, wmark);
4638 		if (wmark) {
4639 			/*
4640 			 * If we didn't make any progress and have a lot of
4641 			 * dirty + writeback pages then we should wait for
4642 			 * an IO to complete to slow down the reclaim and
4643 			 * prevent from pre mature OOM
4644 			 */
4645 			if (!did_some_progress) {
4646 				unsigned long write_pending;
4647 
4648 				write_pending = zone_page_state_snapshot(zone,
4649 							NR_ZONE_WRITE_PENDING);
4650 
4651 				if (2 * write_pending > reclaimable) {
4652 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4653 					return true;
4654 				}
4655 			}
4656 
4657 			ret = true;
4658 			goto out;
4659 		}
4660 	}
4661 
4662 out:
4663 	/*
4664 	 * Memory allocation/reclaim might be called from a WQ context and the
4665 	 * current implementation of the WQ concurrency control doesn't
4666 	 * recognize that a particular WQ is congested if the worker thread is
4667 	 * looping without ever sleeping. Therefore we have to do a short sleep
4668 	 * here rather than calling cond_resched().
4669 	 */
4670 	if (current->flags & PF_WQ_WORKER)
4671 		schedule_timeout_uninterruptible(1);
4672 	else
4673 		cond_resched();
4674 	return ret;
4675 }
4676 
4677 static inline bool
4678 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4679 {
4680 	/*
4681 	 * It's possible that cpuset's mems_allowed and the nodemask from
4682 	 * mempolicy don't intersect. This should be normally dealt with by
4683 	 * policy_nodemask(), but it's possible to race with cpuset update in
4684 	 * such a way the check therein was true, and then it became false
4685 	 * before we got our cpuset_mems_cookie here.
4686 	 * This assumes that for all allocations, ac->nodemask can come only
4687 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4688 	 * when it does not intersect with the cpuset restrictions) or the
4689 	 * caller can deal with a violated nodemask.
4690 	 */
4691 	if (cpusets_enabled() && ac->nodemask &&
4692 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4693 		ac->nodemask = NULL;
4694 		return true;
4695 	}
4696 
4697 	/*
4698 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4699 	 * possible to race with parallel threads in such a way that our
4700 	 * allocation can fail while the mask is being updated. If we are about
4701 	 * to fail, check if the cpuset changed during allocation and if so,
4702 	 * retry.
4703 	 */
4704 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4705 		return true;
4706 
4707 	return false;
4708 }
4709 
4710 static inline struct page *
4711 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4712 						struct alloc_context *ac)
4713 {
4714 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4715 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4716 	struct page *page = NULL;
4717 	unsigned int alloc_flags;
4718 	unsigned long did_some_progress;
4719 	enum compact_priority compact_priority;
4720 	enum compact_result compact_result;
4721 	int compaction_retries;
4722 	int no_progress_loops;
4723 	unsigned int cpuset_mems_cookie;
4724 	int reserve_flags;
4725 
4726 	/*
4727 	 * We also sanity check to catch abuse of atomic reserves being used by
4728 	 * callers that are not in atomic context.
4729 	 */
4730 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4731 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4732 		gfp_mask &= ~__GFP_ATOMIC;
4733 
4734 retry_cpuset:
4735 	compaction_retries = 0;
4736 	no_progress_loops = 0;
4737 	compact_priority = DEF_COMPACT_PRIORITY;
4738 	cpuset_mems_cookie = read_mems_allowed_begin();
4739 
4740 	/*
4741 	 * The fast path uses conservative alloc_flags to succeed only until
4742 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4743 	 * alloc_flags precisely. So we do that now.
4744 	 */
4745 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4746 
4747 	/*
4748 	 * We need to recalculate the starting point for the zonelist iterator
4749 	 * because we might have used different nodemask in the fast path, or
4750 	 * there was a cpuset modification and we are retrying - otherwise we
4751 	 * could end up iterating over non-eligible zones endlessly.
4752 	 */
4753 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4754 					ac->highest_zoneidx, ac->nodemask);
4755 	if (!ac->preferred_zoneref->zone)
4756 		goto nopage;
4757 
4758 	if (alloc_flags & ALLOC_KSWAPD)
4759 		wake_all_kswapds(order, gfp_mask, ac);
4760 
4761 	/*
4762 	 * The adjusted alloc_flags might result in immediate success, so try
4763 	 * that first
4764 	 */
4765 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4766 	if (page)
4767 		goto got_pg;
4768 
4769 	/*
4770 	 * For costly allocations, try direct compaction first, as it's likely
4771 	 * that we have enough base pages and don't need to reclaim. For non-
4772 	 * movable high-order allocations, do that as well, as compaction will
4773 	 * try prevent permanent fragmentation by migrating from blocks of the
4774 	 * same migratetype.
4775 	 * Don't try this for allocations that are allowed to ignore
4776 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4777 	 */
4778 	if (can_direct_reclaim &&
4779 			(costly_order ||
4780 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4781 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4782 		page = __alloc_pages_direct_compact(gfp_mask, order,
4783 						alloc_flags, ac,
4784 						INIT_COMPACT_PRIORITY,
4785 						&compact_result);
4786 		if (page)
4787 			goto got_pg;
4788 
4789 		/*
4790 		 * Checks for costly allocations with __GFP_NORETRY, which
4791 		 * includes some THP page fault allocations
4792 		 */
4793 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4794 			/*
4795 			 * If allocating entire pageblock(s) and compaction
4796 			 * failed because all zones are below low watermarks
4797 			 * or is prohibited because it recently failed at this
4798 			 * order, fail immediately unless the allocator has
4799 			 * requested compaction and reclaim retry.
4800 			 *
4801 			 * Reclaim is
4802 			 *  - potentially very expensive because zones are far
4803 			 *    below their low watermarks or this is part of very
4804 			 *    bursty high order allocations,
4805 			 *  - not guaranteed to help because isolate_freepages()
4806 			 *    may not iterate over freed pages as part of its
4807 			 *    linear scan, and
4808 			 *  - unlikely to make entire pageblocks free on its
4809 			 *    own.
4810 			 */
4811 			if (compact_result == COMPACT_SKIPPED ||
4812 			    compact_result == COMPACT_DEFERRED)
4813 				goto nopage;
4814 
4815 			/*
4816 			 * Looks like reclaim/compaction is worth trying, but
4817 			 * sync compaction could be very expensive, so keep
4818 			 * using async compaction.
4819 			 */
4820 			compact_priority = INIT_COMPACT_PRIORITY;
4821 		}
4822 	}
4823 
4824 retry:
4825 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4826 	if (alloc_flags & ALLOC_KSWAPD)
4827 		wake_all_kswapds(order, gfp_mask, ac);
4828 
4829 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4830 	if (reserve_flags)
4831 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
4832 
4833 	/*
4834 	 * Reset the nodemask and zonelist iterators if memory policies can be
4835 	 * ignored. These allocations are high priority and system rather than
4836 	 * user oriented.
4837 	 */
4838 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4839 		ac->nodemask = NULL;
4840 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4841 					ac->highest_zoneidx, ac->nodemask);
4842 	}
4843 
4844 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4845 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4846 	if (page)
4847 		goto got_pg;
4848 
4849 	/* Caller is not willing to reclaim, we can't balance anything */
4850 	if (!can_direct_reclaim)
4851 		goto nopage;
4852 
4853 	/* Avoid recursion of direct reclaim */
4854 	if (current->flags & PF_MEMALLOC)
4855 		goto nopage;
4856 
4857 	/* Try direct reclaim and then allocating */
4858 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4859 							&did_some_progress);
4860 	if (page)
4861 		goto got_pg;
4862 
4863 	/* Try direct compaction and then allocating */
4864 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4865 					compact_priority, &compact_result);
4866 	if (page)
4867 		goto got_pg;
4868 
4869 	/* Do not loop if specifically requested */
4870 	if (gfp_mask & __GFP_NORETRY)
4871 		goto nopage;
4872 
4873 	/*
4874 	 * Do not retry costly high order allocations unless they are
4875 	 * __GFP_RETRY_MAYFAIL
4876 	 */
4877 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4878 		goto nopage;
4879 
4880 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4881 				 did_some_progress > 0, &no_progress_loops))
4882 		goto retry;
4883 
4884 	/*
4885 	 * It doesn't make any sense to retry for the compaction if the order-0
4886 	 * reclaim is not able to make any progress because the current
4887 	 * implementation of the compaction depends on the sufficient amount
4888 	 * of free memory (see __compaction_suitable)
4889 	 */
4890 	if (did_some_progress > 0 &&
4891 			should_compact_retry(ac, order, alloc_flags,
4892 				compact_result, &compact_priority,
4893 				&compaction_retries))
4894 		goto retry;
4895 
4896 
4897 	/* Deal with possible cpuset update races before we start OOM killing */
4898 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4899 		goto retry_cpuset;
4900 
4901 	/* Reclaim has failed us, start killing things */
4902 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4903 	if (page)
4904 		goto got_pg;
4905 
4906 	/* Avoid allocations with no watermarks from looping endlessly */
4907 	if (tsk_is_oom_victim(current) &&
4908 	    (alloc_flags & ALLOC_OOM ||
4909 	     (gfp_mask & __GFP_NOMEMALLOC)))
4910 		goto nopage;
4911 
4912 	/* Retry as long as the OOM killer is making progress */
4913 	if (did_some_progress) {
4914 		no_progress_loops = 0;
4915 		goto retry;
4916 	}
4917 
4918 nopage:
4919 	/* Deal with possible cpuset update races before we fail */
4920 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4921 		goto retry_cpuset;
4922 
4923 	/*
4924 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4925 	 * we always retry
4926 	 */
4927 	if (gfp_mask & __GFP_NOFAIL) {
4928 		/*
4929 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4930 		 * of any new users that actually require GFP_NOWAIT
4931 		 */
4932 		if (WARN_ON_ONCE(!can_direct_reclaim))
4933 			goto fail;
4934 
4935 		/*
4936 		 * PF_MEMALLOC request from this context is rather bizarre
4937 		 * because we cannot reclaim anything and only can loop waiting
4938 		 * for somebody to do a work for us
4939 		 */
4940 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4941 
4942 		/*
4943 		 * non failing costly orders are a hard requirement which we
4944 		 * are not prepared for much so let's warn about these users
4945 		 * so that we can identify them and convert them to something
4946 		 * else.
4947 		 */
4948 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4949 
4950 		/*
4951 		 * Help non-failing allocations by giving them access to memory
4952 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4953 		 * could deplete whole memory reserves which would just make
4954 		 * the situation worse
4955 		 */
4956 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4957 		if (page)
4958 			goto got_pg;
4959 
4960 		cond_resched();
4961 		goto retry;
4962 	}
4963 fail:
4964 	warn_alloc(gfp_mask, ac->nodemask,
4965 			"page allocation failure: order:%u", order);
4966 got_pg:
4967 	return page;
4968 }
4969 
4970 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4971 		int preferred_nid, nodemask_t *nodemask,
4972 		struct alloc_context *ac, gfp_t *alloc_gfp,
4973 		unsigned int *alloc_flags)
4974 {
4975 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4976 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4977 	ac->nodemask = nodemask;
4978 	ac->migratetype = gfp_migratetype(gfp_mask);
4979 
4980 	if (cpusets_enabled()) {
4981 		*alloc_gfp |= __GFP_HARDWALL;
4982 		/*
4983 		 * When we are in the interrupt context, it is irrelevant
4984 		 * to the current task context. It means that any node ok.
4985 		 */
4986 		if (!in_interrupt() && !ac->nodemask)
4987 			ac->nodemask = &cpuset_current_mems_allowed;
4988 		else
4989 			*alloc_flags |= ALLOC_CPUSET;
4990 	}
4991 
4992 	fs_reclaim_acquire(gfp_mask);
4993 	fs_reclaim_release(gfp_mask);
4994 
4995 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4996 
4997 	if (should_fail_alloc_page(gfp_mask, order))
4998 		return false;
4999 
5000 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5001 
5002 	/* Dirty zone balancing only done in the fast path */
5003 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5004 
5005 	/*
5006 	 * The preferred zone is used for statistics but crucially it is
5007 	 * also used as the starting point for the zonelist iterator. It
5008 	 * may get reset for allocations that ignore memory policies.
5009 	 */
5010 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5011 					ac->highest_zoneidx, ac->nodemask);
5012 
5013 	return true;
5014 }
5015 
5016 /*
5017  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5018  * @gfp: GFP flags for the allocation
5019  * @preferred_nid: The preferred NUMA node ID to allocate from
5020  * @nodemask: Set of nodes to allocate from, may be NULL
5021  * @nr_pages: The number of pages desired on the list or array
5022  * @page_list: Optional list to store the allocated pages
5023  * @page_array: Optional array to store the pages
5024  *
5025  * This is a batched version of the page allocator that attempts to
5026  * allocate nr_pages quickly. Pages are added to page_list if page_list
5027  * is not NULL, otherwise it is assumed that the page_array is valid.
5028  *
5029  * For lists, nr_pages is the number of pages that should be allocated.
5030  *
5031  * For arrays, only NULL elements are populated with pages and nr_pages
5032  * is the maximum number of pages that will be stored in the array.
5033  *
5034  * Returns the number of pages on the list or array.
5035  */
5036 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5037 			nodemask_t *nodemask, int nr_pages,
5038 			struct list_head *page_list,
5039 			struct page **page_array)
5040 {
5041 	struct page *page;
5042 	unsigned long flags;
5043 	struct zone *zone;
5044 	struct zoneref *z;
5045 	struct per_cpu_pages *pcp;
5046 	struct list_head *pcp_list;
5047 	struct alloc_context ac;
5048 	gfp_t alloc_gfp;
5049 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5050 	int nr_populated = 0;
5051 
5052 	if (unlikely(nr_pages <= 0))
5053 		return 0;
5054 
5055 	/*
5056 	 * Skip populated array elements to determine if any pages need
5057 	 * to be allocated before disabling IRQs.
5058 	 */
5059 	while (page_array && page_array[nr_populated] && nr_populated < nr_pages)
5060 		nr_populated++;
5061 
5062 	/* Use the single page allocator for one page. */
5063 	if (nr_pages - nr_populated == 1)
5064 		goto failed;
5065 
5066 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5067 	gfp &= gfp_allowed_mask;
5068 	alloc_gfp = gfp;
5069 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5070 		return 0;
5071 	gfp = alloc_gfp;
5072 
5073 	/* Find an allowed local zone that meets the low watermark. */
5074 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5075 		unsigned long mark;
5076 
5077 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5078 		    !__cpuset_zone_allowed(zone, gfp)) {
5079 			continue;
5080 		}
5081 
5082 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5083 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5084 			goto failed;
5085 		}
5086 
5087 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5088 		if (zone_watermark_fast(zone, 0,  mark,
5089 				zonelist_zone_idx(ac.preferred_zoneref),
5090 				alloc_flags, gfp)) {
5091 			break;
5092 		}
5093 	}
5094 
5095 	/*
5096 	 * If there are no allowed local zones that meets the watermarks then
5097 	 * try to allocate a single page and reclaim if necessary.
5098 	 */
5099 	if (unlikely(!zone))
5100 		goto failed;
5101 
5102 	/* Attempt the batch allocation */
5103 	local_irq_save(flags);
5104 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
5105 	pcp_list = &pcp->lists[ac.migratetype];
5106 
5107 	while (nr_populated < nr_pages) {
5108 
5109 		/* Skip existing pages */
5110 		if (page_array && page_array[nr_populated]) {
5111 			nr_populated++;
5112 			continue;
5113 		}
5114 
5115 		page = __rmqueue_pcplist(zone, ac.migratetype, alloc_flags,
5116 								pcp, pcp_list);
5117 		if (unlikely(!page)) {
5118 			/* Try and get at least one page */
5119 			if (!nr_populated)
5120 				goto failed_irq;
5121 			break;
5122 		}
5123 
5124 		/*
5125 		 * Ideally this would be batched but the best way to do
5126 		 * that cheaply is to first convert zone_statistics to
5127 		 * be inaccurate per-cpu counter like vm_events to avoid
5128 		 * a RMW cycle then do the accounting with IRQs enabled.
5129 		 */
5130 		__count_zid_vm_events(PGALLOC, zone_idx(zone), 1);
5131 		zone_statistics(ac.preferred_zoneref->zone, zone);
5132 
5133 		prep_new_page(page, 0, gfp, 0);
5134 		if (page_list)
5135 			list_add(&page->lru, page_list);
5136 		else
5137 			page_array[nr_populated] = page;
5138 		nr_populated++;
5139 	}
5140 
5141 	local_irq_restore(flags);
5142 
5143 	return nr_populated;
5144 
5145 failed_irq:
5146 	local_irq_restore(flags);
5147 
5148 failed:
5149 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5150 	if (page) {
5151 		if (page_list)
5152 			list_add(&page->lru, page_list);
5153 		else
5154 			page_array[nr_populated] = page;
5155 		nr_populated++;
5156 	}
5157 
5158 	return nr_populated;
5159 }
5160 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5161 
5162 /*
5163  * This is the 'heart' of the zoned buddy allocator.
5164  */
5165 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5166 							nodemask_t *nodemask)
5167 {
5168 	struct page *page;
5169 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5170 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5171 	struct alloc_context ac = { };
5172 
5173 	/*
5174 	 * There are several places where we assume that the order value is sane
5175 	 * so bail out early if the request is out of bound.
5176 	 */
5177 	if (unlikely(order >= MAX_ORDER)) {
5178 		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5179 		return NULL;
5180 	}
5181 
5182 	gfp &= gfp_allowed_mask;
5183 	/*
5184 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5185 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5186 	 * from a particular context which has been marked by
5187 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5188 	 * movable zones are not used during allocation.
5189 	 */
5190 	gfp = current_gfp_context(gfp);
5191 	alloc_gfp = gfp;
5192 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5193 			&alloc_gfp, &alloc_flags))
5194 		return NULL;
5195 
5196 	/*
5197 	 * Forbid the first pass from falling back to types that fragment
5198 	 * memory until all local zones are considered.
5199 	 */
5200 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5201 
5202 	/* First allocation attempt */
5203 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5204 	if (likely(page))
5205 		goto out;
5206 
5207 	alloc_gfp = gfp;
5208 	ac.spread_dirty_pages = false;
5209 
5210 	/*
5211 	 * Restore the original nodemask if it was potentially replaced with
5212 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5213 	 */
5214 	ac.nodemask = nodemask;
5215 
5216 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5217 
5218 out:
5219 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5220 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5221 		__free_pages(page, order);
5222 		page = NULL;
5223 	}
5224 
5225 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5226 
5227 	return page;
5228 }
5229 EXPORT_SYMBOL(__alloc_pages);
5230 
5231 /*
5232  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5233  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5234  * you need to access high mem.
5235  */
5236 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5237 {
5238 	struct page *page;
5239 
5240 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5241 	if (!page)
5242 		return 0;
5243 	return (unsigned long) page_address(page);
5244 }
5245 EXPORT_SYMBOL(__get_free_pages);
5246 
5247 unsigned long get_zeroed_page(gfp_t gfp_mask)
5248 {
5249 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5250 }
5251 EXPORT_SYMBOL(get_zeroed_page);
5252 
5253 static inline void free_the_page(struct page *page, unsigned int order)
5254 {
5255 	if (order == 0)		/* Via pcp? */
5256 		free_unref_page(page);
5257 	else
5258 		__free_pages_ok(page, order, FPI_NONE);
5259 }
5260 
5261 /**
5262  * __free_pages - Free pages allocated with alloc_pages().
5263  * @page: The page pointer returned from alloc_pages().
5264  * @order: The order of the allocation.
5265  *
5266  * This function can free multi-page allocations that are not compound
5267  * pages.  It does not check that the @order passed in matches that of
5268  * the allocation, so it is easy to leak memory.  Freeing more memory
5269  * than was allocated will probably emit a warning.
5270  *
5271  * If the last reference to this page is speculative, it will be released
5272  * by put_page() which only frees the first page of a non-compound
5273  * allocation.  To prevent the remaining pages from being leaked, we free
5274  * the subsequent pages here.  If you want to use the page's reference
5275  * count to decide when to free the allocation, you should allocate a
5276  * compound page, and use put_page() instead of __free_pages().
5277  *
5278  * Context: May be called in interrupt context or while holding a normal
5279  * spinlock, but not in NMI context or while holding a raw spinlock.
5280  */
5281 void __free_pages(struct page *page, unsigned int order)
5282 {
5283 	if (put_page_testzero(page))
5284 		free_the_page(page, order);
5285 	else if (!PageHead(page))
5286 		while (order-- > 0)
5287 			free_the_page(page + (1 << order), order);
5288 }
5289 EXPORT_SYMBOL(__free_pages);
5290 
5291 void free_pages(unsigned long addr, unsigned int order)
5292 {
5293 	if (addr != 0) {
5294 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5295 		__free_pages(virt_to_page((void *)addr), order);
5296 	}
5297 }
5298 
5299 EXPORT_SYMBOL(free_pages);
5300 
5301 /*
5302  * Page Fragment:
5303  *  An arbitrary-length arbitrary-offset area of memory which resides
5304  *  within a 0 or higher order page.  Multiple fragments within that page
5305  *  are individually refcounted, in the page's reference counter.
5306  *
5307  * The page_frag functions below provide a simple allocation framework for
5308  * page fragments.  This is used by the network stack and network device
5309  * drivers to provide a backing region of memory for use as either an
5310  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5311  */
5312 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5313 					     gfp_t gfp_mask)
5314 {
5315 	struct page *page = NULL;
5316 	gfp_t gfp = gfp_mask;
5317 
5318 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5319 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5320 		    __GFP_NOMEMALLOC;
5321 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5322 				PAGE_FRAG_CACHE_MAX_ORDER);
5323 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5324 #endif
5325 	if (unlikely(!page))
5326 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5327 
5328 	nc->va = page ? page_address(page) : NULL;
5329 
5330 	return page;
5331 }
5332 
5333 void __page_frag_cache_drain(struct page *page, unsigned int count)
5334 {
5335 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5336 
5337 	if (page_ref_sub_and_test(page, count))
5338 		free_the_page(page, compound_order(page));
5339 }
5340 EXPORT_SYMBOL(__page_frag_cache_drain);
5341 
5342 void *page_frag_alloc_align(struct page_frag_cache *nc,
5343 		      unsigned int fragsz, gfp_t gfp_mask,
5344 		      unsigned int align_mask)
5345 {
5346 	unsigned int size = PAGE_SIZE;
5347 	struct page *page;
5348 	int offset;
5349 
5350 	if (unlikely(!nc->va)) {
5351 refill:
5352 		page = __page_frag_cache_refill(nc, gfp_mask);
5353 		if (!page)
5354 			return NULL;
5355 
5356 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5357 		/* if size can vary use size else just use PAGE_SIZE */
5358 		size = nc->size;
5359 #endif
5360 		/* Even if we own the page, we do not use atomic_set().
5361 		 * This would break get_page_unless_zero() users.
5362 		 */
5363 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5364 
5365 		/* reset page count bias and offset to start of new frag */
5366 		nc->pfmemalloc = page_is_pfmemalloc(page);
5367 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5368 		nc->offset = size;
5369 	}
5370 
5371 	offset = nc->offset - fragsz;
5372 	if (unlikely(offset < 0)) {
5373 		page = virt_to_page(nc->va);
5374 
5375 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5376 			goto refill;
5377 
5378 		if (unlikely(nc->pfmemalloc)) {
5379 			free_the_page(page, compound_order(page));
5380 			goto refill;
5381 		}
5382 
5383 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5384 		/* if size can vary use size else just use PAGE_SIZE */
5385 		size = nc->size;
5386 #endif
5387 		/* OK, page count is 0, we can safely set it */
5388 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5389 
5390 		/* reset page count bias and offset to start of new frag */
5391 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5392 		offset = size - fragsz;
5393 	}
5394 
5395 	nc->pagecnt_bias--;
5396 	offset &= align_mask;
5397 	nc->offset = offset;
5398 
5399 	return nc->va + offset;
5400 }
5401 EXPORT_SYMBOL(page_frag_alloc_align);
5402 
5403 /*
5404  * Frees a page fragment allocated out of either a compound or order 0 page.
5405  */
5406 void page_frag_free(void *addr)
5407 {
5408 	struct page *page = virt_to_head_page(addr);
5409 
5410 	if (unlikely(put_page_testzero(page)))
5411 		free_the_page(page, compound_order(page));
5412 }
5413 EXPORT_SYMBOL(page_frag_free);
5414 
5415 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5416 		size_t size)
5417 {
5418 	if (addr) {
5419 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5420 		unsigned long used = addr + PAGE_ALIGN(size);
5421 
5422 		split_page(virt_to_page((void *)addr), order);
5423 		while (used < alloc_end) {
5424 			free_page(used);
5425 			used += PAGE_SIZE;
5426 		}
5427 	}
5428 	return (void *)addr;
5429 }
5430 
5431 /**
5432  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5433  * @size: the number of bytes to allocate
5434  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5435  *
5436  * This function is similar to alloc_pages(), except that it allocates the
5437  * minimum number of pages to satisfy the request.  alloc_pages() can only
5438  * allocate memory in power-of-two pages.
5439  *
5440  * This function is also limited by MAX_ORDER.
5441  *
5442  * Memory allocated by this function must be released by free_pages_exact().
5443  *
5444  * Return: pointer to the allocated area or %NULL in case of error.
5445  */
5446 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5447 {
5448 	unsigned int order = get_order(size);
5449 	unsigned long addr;
5450 
5451 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5452 		gfp_mask &= ~__GFP_COMP;
5453 
5454 	addr = __get_free_pages(gfp_mask, order);
5455 	return make_alloc_exact(addr, order, size);
5456 }
5457 EXPORT_SYMBOL(alloc_pages_exact);
5458 
5459 /**
5460  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5461  *			   pages on a node.
5462  * @nid: the preferred node ID where memory should be allocated
5463  * @size: the number of bytes to allocate
5464  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5465  *
5466  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5467  * back.
5468  *
5469  * Return: pointer to the allocated area or %NULL in case of error.
5470  */
5471 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5472 {
5473 	unsigned int order = get_order(size);
5474 	struct page *p;
5475 
5476 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5477 		gfp_mask &= ~__GFP_COMP;
5478 
5479 	p = alloc_pages_node(nid, gfp_mask, order);
5480 	if (!p)
5481 		return NULL;
5482 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5483 }
5484 
5485 /**
5486  * free_pages_exact - release memory allocated via alloc_pages_exact()
5487  * @virt: the value returned by alloc_pages_exact.
5488  * @size: size of allocation, same value as passed to alloc_pages_exact().
5489  *
5490  * Release the memory allocated by a previous call to alloc_pages_exact.
5491  */
5492 void free_pages_exact(void *virt, size_t size)
5493 {
5494 	unsigned long addr = (unsigned long)virt;
5495 	unsigned long end = addr + PAGE_ALIGN(size);
5496 
5497 	while (addr < end) {
5498 		free_page(addr);
5499 		addr += PAGE_SIZE;
5500 	}
5501 }
5502 EXPORT_SYMBOL(free_pages_exact);
5503 
5504 /**
5505  * nr_free_zone_pages - count number of pages beyond high watermark
5506  * @offset: The zone index of the highest zone
5507  *
5508  * nr_free_zone_pages() counts the number of pages which are beyond the
5509  * high watermark within all zones at or below a given zone index.  For each
5510  * zone, the number of pages is calculated as:
5511  *
5512  *     nr_free_zone_pages = managed_pages - high_pages
5513  *
5514  * Return: number of pages beyond high watermark.
5515  */
5516 static unsigned long nr_free_zone_pages(int offset)
5517 {
5518 	struct zoneref *z;
5519 	struct zone *zone;
5520 
5521 	/* Just pick one node, since fallback list is circular */
5522 	unsigned long sum = 0;
5523 
5524 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5525 
5526 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5527 		unsigned long size = zone_managed_pages(zone);
5528 		unsigned long high = high_wmark_pages(zone);
5529 		if (size > high)
5530 			sum += size - high;
5531 	}
5532 
5533 	return sum;
5534 }
5535 
5536 /**
5537  * nr_free_buffer_pages - count number of pages beyond high watermark
5538  *
5539  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5540  * watermark within ZONE_DMA and ZONE_NORMAL.
5541  *
5542  * Return: number of pages beyond high watermark within ZONE_DMA and
5543  * ZONE_NORMAL.
5544  */
5545 unsigned long nr_free_buffer_pages(void)
5546 {
5547 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5548 }
5549 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5550 
5551 static inline void show_node(struct zone *zone)
5552 {
5553 	if (IS_ENABLED(CONFIG_NUMA))
5554 		printk("Node %d ", zone_to_nid(zone));
5555 }
5556 
5557 long si_mem_available(void)
5558 {
5559 	long available;
5560 	unsigned long pagecache;
5561 	unsigned long wmark_low = 0;
5562 	unsigned long pages[NR_LRU_LISTS];
5563 	unsigned long reclaimable;
5564 	struct zone *zone;
5565 	int lru;
5566 
5567 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5568 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5569 
5570 	for_each_zone(zone)
5571 		wmark_low += low_wmark_pages(zone);
5572 
5573 	/*
5574 	 * Estimate the amount of memory available for userspace allocations,
5575 	 * without causing swapping.
5576 	 */
5577 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5578 
5579 	/*
5580 	 * Not all the page cache can be freed, otherwise the system will
5581 	 * start swapping. Assume at least half of the page cache, or the
5582 	 * low watermark worth of cache, needs to stay.
5583 	 */
5584 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5585 	pagecache -= min(pagecache / 2, wmark_low);
5586 	available += pagecache;
5587 
5588 	/*
5589 	 * Part of the reclaimable slab and other kernel memory consists of
5590 	 * items that are in use, and cannot be freed. Cap this estimate at the
5591 	 * low watermark.
5592 	 */
5593 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5594 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5595 	available += reclaimable - min(reclaimable / 2, wmark_low);
5596 
5597 	if (available < 0)
5598 		available = 0;
5599 	return available;
5600 }
5601 EXPORT_SYMBOL_GPL(si_mem_available);
5602 
5603 void si_meminfo(struct sysinfo *val)
5604 {
5605 	val->totalram = totalram_pages();
5606 	val->sharedram = global_node_page_state(NR_SHMEM);
5607 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5608 	val->bufferram = nr_blockdev_pages();
5609 	val->totalhigh = totalhigh_pages();
5610 	val->freehigh = nr_free_highpages();
5611 	val->mem_unit = PAGE_SIZE;
5612 }
5613 
5614 EXPORT_SYMBOL(si_meminfo);
5615 
5616 #ifdef CONFIG_NUMA
5617 void si_meminfo_node(struct sysinfo *val, int nid)
5618 {
5619 	int zone_type;		/* needs to be signed */
5620 	unsigned long managed_pages = 0;
5621 	unsigned long managed_highpages = 0;
5622 	unsigned long free_highpages = 0;
5623 	pg_data_t *pgdat = NODE_DATA(nid);
5624 
5625 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5626 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5627 	val->totalram = managed_pages;
5628 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5629 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5630 #ifdef CONFIG_HIGHMEM
5631 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5632 		struct zone *zone = &pgdat->node_zones[zone_type];
5633 
5634 		if (is_highmem(zone)) {
5635 			managed_highpages += zone_managed_pages(zone);
5636 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5637 		}
5638 	}
5639 	val->totalhigh = managed_highpages;
5640 	val->freehigh = free_highpages;
5641 #else
5642 	val->totalhigh = managed_highpages;
5643 	val->freehigh = free_highpages;
5644 #endif
5645 	val->mem_unit = PAGE_SIZE;
5646 }
5647 #endif
5648 
5649 /*
5650  * Determine whether the node should be displayed or not, depending on whether
5651  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5652  */
5653 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5654 {
5655 	if (!(flags & SHOW_MEM_FILTER_NODES))
5656 		return false;
5657 
5658 	/*
5659 	 * no node mask - aka implicit memory numa policy. Do not bother with
5660 	 * the synchronization - read_mems_allowed_begin - because we do not
5661 	 * have to be precise here.
5662 	 */
5663 	if (!nodemask)
5664 		nodemask = &cpuset_current_mems_allowed;
5665 
5666 	return !node_isset(nid, *nodemask);
5667 }
5668 
5669 #define K(x) ((x) << (PAGE_SHIFT-10))
5670 
5671 static void show_migration_types(unsigned char type)
5672 {
5673 	static const char types[MIGRATE_TYPES] = {
5674 		[MIGRATE_UNMOVABLE]	= 'U',
5675 		[MIGRATE_MOVABLE]	= 'M',
5676 		[MIGRATE_RECLAIMABLE]	= 'E',
5677 		[MIGRATE_HIGHATOMIC]	= 'H',
5678 #ifdef CONFIG_CMA
5679 		[MIGRATE_CMA]		= 'C',
5680 #endif
5681 #ifdef CONFIG_MEMORY_ISOLATION
5682 		[MIGRATE_ISOLATE]	= 'I',
5683 #endif
5684 	};
5685 	char tmp[MIGRATE_TYPES + 1];
5686 	char *p = tmp;
5687 	int i;
5688 
5689 	for (i = 0; i < MIGRATE_TYPES; i++) {
5690 		if (type & (1 << i))
5691 			*p++ = types[i];
5692 	}
5693 
5694 	*p = '\0';
5695 	printk(KERN_CONT "(%s) ", tmp);
5696 }
5697 
5698 /*
5699  * Show free area list (used inside shift_scroll-lock stuff)
5700  * We also calculate the percentage fragmentation. We do this by counting the
5701  * memory on each free list with the exception of the first item on the list.
5702  *
5703  * Bits in @filter:
5704  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5705  *   cpuset.
5706  */
5707 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5708 {
5709 	unsigned long free_pcp = 0;
5710 	int cpu;
5711 	struct zone *zone;
5712 	pg_data_t *pgdat;
5713 
5714 	for_each_populated_zone(zone) {
5715 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5716 			continue;
5717 
5718 		for_each_online_cpu(cpu)
5719 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5720 	}
5721 
5722 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5723 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5724 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5725 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5726 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5727 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5728 		global_node_page_state(NR_ACTIVE_ANON),
5729 		global_node_page_state(NR_INACTIVE_ANON),
5730 		global_node_page_state(NR_ISOLATED_ANON),
5731 		global_node_page_state(NR_ACTIVE_FILE),
5732 		global_node_page_state(NR_INACTIVE_FILE),
5733 		global_node_page_state(NR_ISOLATED_FILE),
5734 		global_node_page_state(NR_UNEVICTABLE),
5735 		global_node_page_state(NR_FILE_DIRTY),
5736 		global_node_page_state(NR_WRITEBACK),
5737 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5738 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5739 		global_node_page_state(NR_FILE_MAPPED),
5740 		global_node_page_state(NR_SHMEM),
5741 		global_node_page_state(NR_PAGETABLE),
5742 		global_zone_page_state(NR_BOUNCE),
5743 		global_zone_page_state(NR_FREE_PAGES),
5744 		free_pcp,
5745 		global_zone_page_state(NR_FREE_CMA_PAGES));
5746 
5747 	for_each_online_pgdat(pgdat) {
5748 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5749 			continue;
5750 
5751 		printk("Node %d"
5752 			" active_anon:%lukB"
5753 			" inactive_anon:%lukB"
5754 			" active_file:%lukB"
5755 			" inactive_file:%lukB"
5756 			" unevictable:%lukB"
5757 			" isolated(anon):%lukB"
5758 			" isolated(file):%lukB"
5759 			" mapped:%lukB"
5760 			" dirty:%lukB"
5761 			" writeback:%lukB"
5762 			" shmem:%lukB"
5763 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5764 			" shmem_thp: %lukB"
5765 			" shmem_pmdmapped: %lukB"
5766 			" anon_thp: %lukB"
5767 #endif
5768 			" writeback_tmp:%lukB"
5769 			" kernel_stack:%lukB"
5770 #ifdef CONFIG_SHADOW_CALL_STACK
5771 			" shadow_call_stack:%lukB"
5772 #endif
5773 			" pagetables:%lukB"
5774 			" all_unreclaimable? %s"
5775 			"\n",
5776 			pgdat->node_id,
5777 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5778 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5779 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5780 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5781 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5782 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5783 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5784 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5785 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5786 			K(node_page_state(pgdat, NR_WRITEBACK)),
5787 			K(node_page_state(pgdat, NR_SHMEM)),
5788 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5789 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5790 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5791 			K(node_page_state(pgdat, NR_ANON_THPS)),
5792 #endif
5793 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5794 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5795 #ifdef CONFIG_SHADOW_CALL_STACK
5796 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5797 #endif
5798 			K(node_page_state(pgdat, NR_PAGETABLE)),
5799 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5800 				"yes" : "no");
5801 	}
5802 
5803 	for_each_populated_zone(zone) {
5804 		int i;
5805 
5806 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5807 			continue;
5808 
5809 		free_pcp = 0;
5810 		for_each_online_cpu(cpu)
5811 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5812 
5813 		show_node(zone);
5814 		printk(KERN_CONT
5815 			"%s"
5816 			" free:%lukB"
5817 			" min:%lukB"
5818 			" low:%lukB"
5819 			" high:%lukB"
5820 			" reserved_highatomic:%luKB"
5821 			" active_anon:%lukB"
5822 			" inactive_anon:%lukB"
5823 			" active_file:%lukB"
5824 			" inactive_file:%lukB"
5825 			" unevictable:%lukB"
5826 			" writepending:%lukB"
5827 			" present:%lukB"
5828 			" managed:%lukB"
5829 			" mlocked:%lukB"
5830 			" bounce:%lukB"
5831 			" free_pcp:%lukB"
5832 			" local_pcp:%ukB"
5833 			" free_cma:%lukB"
5834 			"\n",
5835 			zone->name,
5836 			K(zone_page_state(zone, NR_FREE_PAGES)),
5837 			K(min_wmark_pages(zone)),
5838 			K(low_wmark_pages(zone)),
5839 			K(high_wmark_pages(zone)),
5840 			K(zone->nr_reserved_highatomic),
5841 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5842 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5843 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5844 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5845 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5846 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5847 			K(zone->present_pages),
5848 			K(zone_managed_pages(zone)),
5849 			K(zone_page_state(zone, NR_MLOCK)),
5850 			K(zone_page_state(zone, NR_BOUNCE)),
5851 			K(free_pcp),
5852 			K(this_cpu_read(zone->pageset->pcp.count)),
5853 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5854 		printk("lowmem_reserve[]:");
5855 		for (i = 0; i < MAX_NR_ZONES; i++)
5856 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5857 		printk(KERN_CONT "\n");
5858 	}
5859 
5860 	for_each_populated_zone(zone) {
5861 		unsigned int order;
5862 		unsigned long nr[MAX_ORDER], flags, total = 0;
5863 		unsigned char types[MAX_ORDER];
5864 
5865 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5866 			continue;
5867 		show_node(zone);
5868 		printk(KERN_CONT "%s: ", zone->name);
5869 
5870 		spin_lock_irqsave(&zone->lock, flags);
5871 		for (order = 0; order < MAX_ORDER; order++) {
5872 			struct free_area *area = &zone->free_area[order];
5873 			int type;
5874 
5875 			nr[order] = area->nr_free;
5876 			total += nr[order] << order;
5877 
5878 			types[order] = 0;
5879 			for (type = 0; type < MIGRATE_TYPES; type++) {
5880 				if (!free_area_empty(area, type))
5881 					types[order] |= 1 << type;
5882 			}
5883 		}
5884 		spin_unlock_irqrestore(&zone->lock, flags);
5885 		for (order = 0; order < MAX_ORDER; order++) {
5886 			printk(KERN_CONT "%lu*%lukB ",
5887 			       nr[order], K(1UL) << order);
5888 			if (nr[order])
5889 				show_migration_types(types[order]);
5890 		}
5891 		printk(KERN_CONT "= %lukB\n", K(total));
5892 	}
5893 
5894 	hugetlb_show_meminfo();
5895 
5896 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5897 
5898 	show_swap_cache_info();
5899 }
5900 
5901 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5902 {
5903 	zoneref->zone = zone;
5904 	zoneref->zone_idx = zone_idx(zone);
5905 }
5906 
5907 /*
5908  * Builds allocation fallback zone lists.
5909  *
5910  * Add all populated zones of a node to the zonelist.
5911  */
5912 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5913 {
5914 	struct zone *zone;
5915 	enum zone_type zone_type = MAX_NR_ZONES;
5916 	int nr_zones = 0;
5917 
5918 	do {
5919 		zone_type--;
5920 		zone = pgdat->node_zones + zone_type;
5921 		if (managed_zone(zone)) {
5922 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5923 			check_highest_zone(zone_type);
5924 		}
5925 	} while (zone_type);
5926 
5927 	return nr_zones;
5928 }
5929 
5930 #ifdef CONFIG_NUMA
5931 
5932 static int __parse_numa_zonelist_order(char *s)
5933 {
5934 	/*
5935 	 * We used to support different zonelists modes but they turned
5936 	 * out to be just not useful. Let's keep the warning in place
5937 	 * if somebody still use the cmd line parameter so that we do
5938 	 * not fail it silently
5939 	 */
5940 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5941 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5942 		return -EINVAL;
5943 	}
5944 	return 0;
5945 }
5946 
5947 char numa_zonelist_order[] = "Node";
5948 
5949 /*
5950  * sysctl handler for numa_zonelist_order
5951  */
5952 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5953 		void *buffer, size_t *length, loff_t *ppos)
5954 {
5955 	if (write)
5956 		return __parse_numa_zonelist_order(buffer);
5957 	return proc_dostring(table, write, buffer, length, ppos);
5958 }
5959 
5960 
5961 #define MAX_NODE_LOAD (nr_online_nodes)
5962 static int node_load[MAX_NUMNODES];
5963 
5964 /**
5965  * find_next_best_node - find the next node that should appear in a given node's fallback list
5966  * @node: node whose fallback list we're appending
5967  * @used_node_mask: nodemask_t of already used nodes
5968  *
5969  * We use a number of factors to determine which is the next node that should
5970  * appear on a given node's fallback list.  The node should not have appeared
5971  * already in @node's fallback list, and it should be the next closest node
5972  * according to the distance array (which contains arbitrary distance values
5973  * from each node to each node in the system), and should also prefer nodes
5974  * with no CPUs, since presumably they'll have very little allocation pressure
5975  * on them otherwise.
5976  *
5977  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5978  */
5979 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5980 {
5981 	int n, val;
5982 	int min_val = INT_MAX;
5983 	int best_node = NUMA_NO_NODE;
5984 
5985 	/* Use the local node if we haven't already */
5986 	if (!node_isset(node, *used_node_mask)) {
5987 		node_set(node, *used_node_mask);
5988 		return node;
5989 	}
5990 
5991 	for_each_node_state(n, N_MEMORY) {
5992 
5993 		/* Don't want a node to appear more than once */
5994 		if (node_isset(n, *used_node_mask))
5995 			continue;
5996 
5997 		/* Use the distance array to find the distance */
5998 		val = node_distance(node, n);
5999 
6000 		/* Penalize nodes under us ("prefer the next node") */
6001 		val += (n < node);
6002 
6003 		/* Give preference to headless and unused nodes */
6004 		if (!cpumask_empty(cpumask_of_node(n)))
6005 			val += PENALTY_FOR_NODE_WITH_CPUS;
6006 
6007 		/* Slight preference for less loaded node */
6008 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6009 		val += node_load[n];
6010 
6011 		if (val < min_val) {
6012 			min_val = val;
6013 			best_node = n;
6014 		}
6015 	}
6016 
6017 	if (best_node >= 0)
6018 		node_set(best_node, *used_node_mask);
6019 
6020 	return best_node;
6021 }
6022 
6023 
6024 /*
6025  * Build zonelists ordered by node and zones within node.
6026  * This results in maximum locality--normal zone overflows into local
6027  * DMA zone, if any--but risks exhausting DMA zone.
6028  */
6029 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6030 		unsigned nr_nodes)
6031 {
6032 	struct zoneref *zonerefs;
6033 	int i;
6034 
6035 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6036 
6037 	for (i = 0; i < nr_nodes; i++) {
6038 		int nr_zones;
6039 
6040 		pg_data_t *node = NODE_DATA(node_order[i]);
6041 
6042 		nr_zones = build_zonerefs_node(node, zonerefs);
6043 		zonerefs += nr_zones;
6044 	}
6045 	zonerefs->zone = NULL;
6046 	zonerefs->zone_idx = 0;
6047 }
6048 
6049 /*
6050  * Build gfp_thisnode zonelists
6051  */
6052 static void build_thisnode_zonelists(pg_data_t *pgdat)
6053 {
6054 	struct zoneref *zonerefs;
6055 	int nr_zones;
6056 
6057 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6058 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6059 	zonerefs += nr_zones;
6060 	zonerefs->zone = NULL;
6061 	zonerefs->zone_idx = 0;
6062 }
6063 
6064 /*
6065  * Build zonelists ordered by zone and nodes within zones.
6066  * This results in conserving DMA zone[s] until all Normal memory is
6067  * exhausted, but results in overflowing to remote node while memory
6068  * may still exist in local DMA zone.
6069  */
6070 
6071 static void build_zonelists(pg_data_t *pgdat)
6072 {
6073 	static int node_order[MAX_NUMNODES];
6074 	int node, load, nr_nodes = 0;
6075 	nodemask_t used_mask = NODE_MASK_NONE;
6076 	int local_node, prev_node;
6077 
6078 	/* NUMA-aware ordering of nodes */
6079 	local_node = pgdat->node_id;
6080 	load = nr_online_nodes;
6081 	prev_node = local_node;
6082 
6083 	memset(node_order, 0, sizeof(node_order));
6084 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6085 		/*
6086 		 * We don't want to pressure a particular node.
6087 		 * So adding penalty to the first node in same
6088 		 * distance group to make it round-robin.
6089 		 */
6090 		if (node_distance(local_node, node) !=
6091 		    node_distance(local_node, prev_node))
6092 			node_load[node] = load;
6093 
6094 		node_order[nr_nodes++] = node;
6095 		prev_node = node;
6096 		load--;
6097 	}
6098 
6099 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6100 	build_thisnode_zonelists(pgdat);
6101 }
6102 
6103 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6104 /*
6105  * Return node id of node used for "local" allocations.
6106  * I.e., first node id of first zone in arg node's generic zonelist.
6107  * Used for initializing percpu 'numa_mem', which is used primarily
6108  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6109  */
6110 int local_memory_node(int node)
6111 {
6112 	struct zoneref *z;
6113 
6114 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6115 				   gfp_zone(GFP_KERNEL),
6116 				   NULL);
6117 	return zone_to_nid(z->zone);
6118 }
6119 #endif
6120 
6121 static void setup_min_unmapped_ratio(void);
6122 static void setup_min_slab_ratio(void);
6123 #else	/* CONFIG_NUMA */
6124 
6125 static void build_zonelists(pg_data_t *pgdat)
6126 {
6127 	int node, local_node;
6128 	struct zoneref *zonerefs;
6129 	int nr_zones;
6130 
6131 	local_node = pgdat->node_id;
6132 
6133 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6134 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6135 	zonerefs += nr_zones;
6136 
6137 	/*
6138 	 * Now we build the zonelist so that it contains the zones
6139 	 * of all the other nodes.
6140 	 * We don't want to pressure a particular node, so when
6141 	 * building the zones for node N, we make sure that the
6142 	 * zones coming right after the local ones are those from
6143 	 * node N+1 (modulo N)
6144 	 */
6145 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6146 		if (!node_online(node))
6147 			continue;
6148 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6149 		zonerefs += nr_zones;
6150 	}
6151 	for (node = 0; node < local_node; node++) {
6152 		if (!node_online(node))
6153 			continue;
6154 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6155 		zonerefs += nr_zones;
6156 	}
6157 
6158 	zonerefs->zone = NULL;
6159 	zonerefs->zone_idx = 0;
6160 }
6161 
6162 #endif	/* CONFIG_NUMA */
6163 
6164 /*
6165  * Boot pageset table. One per cpu which is going to be used for all
6166  * zones and all nodes. The parameters will be set in such a way
6167  * that an item put on a list will immediately be handed over to
6168  * the buddy list. This is safe since pageset manipulation is done
6169  * with interrupts disabled.
6170  *
6171  * The boot_pagesets must be kept even after bootup is complete for
6172  * unused processors and/or zones. They do play a role for bootstrapping
6173  * hotplugged processors.
6174  *
6175  * zoneinfo_show() and maybe other functions do
6176  * not check if the processor is online before following the pageset pointer.
6177  * Other parts of the kernel may not check if the zone is available.
6178  */
6179 static void pageset_init(struct per_cpu_pageset *p);
6180 /* These effectively disable the pcplists in the boot pageset completely */
6181 #define BOOT_PAGESET_HIGH	0
6182 #define BOOT_PAGESET_BATCH	1
6183 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
6184 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6185 
6186 static void __build_all_zonelists(void *data)
6187 {
6188 	int nid;
6189 	int __maybe_unused cpu;
6190 	pg_data_t *self = data;
6191 	static DEFINE_SPINLOCK(lock);
6192 
6193 	spin_lock(&lock);
6194 
6195 #ifdef CONFIG_NUMA
6196 	memset(node_load, 0, sizeof(node_load));
6197 #endif
6198 
6199 	/*
6200 	 * This node is hotadded and no memory is yet present.   So just
6201 	 * building zonelists is fine - no need to touch other nodes.
6202 	 */
6203 	if (self && !node_online(self->node_id)) {
6204 		build_zonelists(self);
6205 	} else {
6206 		for_each_online_node(nid) {
6207 			pg_data_t *pgdat = NODE_DATA(nid);
6208 
6209 			build_zonelists(pgdat);
6210 		}
6211 
6212 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6213 		/*
6214 		 * We now know the "local memory node" for each node--
6215 		 * i.e., the node of the first zone in the generic zonelist.
6216 		 * Set up numa_mem percpu variable for on-line cpus.  During
6217 		 * boot, only the boot cpu should be on-line;  we'll init the
6218 		 * secondary cpus' numa_mem as they come on-line.  During
6219 		 * node/memory hotplug, we'll fixup all on-line cpus.
6220 		 */
6221 		for_each_online_cpu(cpu)
6222 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6223 #endif
6224 	}
6225 
6226 	spin_unlock(&lock);
6227 }
6228 
6229 static noinline void __init
6230 build_all_zonelists_init(void)
6231 {
6232 	int cpu;
6233 
6234 	__build_all_zonelists(NULL);
6235 
6236 	/*
6237 	 * Initialize the boot_pagesets that are going to be used
6238 	 * for bootstrapping processors. The real pagesets for
6239 	 * each zone will be allocated later when the per cpu
6240 	 * allocator is available.
6241 	 *
6242 	 * boot_pagesets are used also for bootstrapping offline
6243 	 * cpus if the system is already booted because the pagesets
6244 	 * are needed to initialize allocators on a specific cpu too.
6245 	 * F.e. the percpu allocator needs the page allocator which
6246 	 * needs the percpu allocator in order to allocate its pagesets
6247 	 * (a chicken-egg dilemma).
6248 	 */
6249 	for_each_possible_cpu(cpu)
6250 		pageset_init(&per_cpu(boot_pageset, cpu));
6251 
6252 	mminit_verify_zonelist();
6253 	cpuset_init_current_mems_allowed();
6254 }
6255 
6256 /*
6257  * unless system_state == SYSTEM_BOOTING.
6258  *
6259  * __ref due to call of __init annotated helper build_all_zonelists_init
6260  * [protected by SYSTEM_BOOTING].
6261  */
6262 void __ref build_all_zonelists(pg_data_t *pgdat)
6263 {
6264 	unsigned long vm_total_pages;
6265 
6266 	if (system_state == SYSTEM_BOOTING) {
6267 		build_all_zonelists_init();
6268 	} else {
6269 		__build_all_zonelists(pgdat);
6270 		/* cpuset refresh routine should be here */
6271 	}
6272 	/* Get the number of free pages beyond high watermark in all zones. */
6273 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6274 	/*
6275 	 * Disable grouping by mobility if the number of pages in the
6276 	 * system is too low to allow the mechanism to work. It would be
6277 	 * more accurate, but expensive to check per-zone. This check is
6278 	 * made on memory-hotadd so a system can start with mobility
6279 	 * disabled and enable it later
6280 	 */
6281 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6282 		page_group_by_mobility_disabled = 1;
6283 	else
6284 		page_group_by_mobility_disabled = 0;
6285 
6286 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6287 		nr_online_nodes,
6288 		page_group_by_mobility_disabled ? "off" : "on",
6289 		vm_total_pages);
6290 #ifdef CONFIG_NUMA
6291 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6292 #endif
6293 }
6294 
6295 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6296 static bool __meminit
6297 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6298 {
6299 	static struct memblock_region *r;
6300 
6301 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6302 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6303 			for_each_mem_region(r) {
6304 				if (*pfn < memblock_region_memory_end_pfn(r))
6305 					break;
6306 			}
6307 		}
6308 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6309 		    memblock_is_mirror(r)) {
6310 			*pfn = memblock_region_memory_end_pfn(r);
6311 			return true;
6312 		}
6313 	}
6314 	return false;
6315 }
6316 
6317 /*
6318  * Initially all pages are reserved - free ones are freed
6319  * up by memblock_free_all() once the early boot process is
6320  * done. Non-atomic initialization, single-pass.
6321  *
6322  * All aligned pageblocks are initialized to the specified migratetype
6323  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6324  * zone stats (e.g., nr_isolate_pageblock) are touched.
6325  */
6326 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6327 		unsigned long start_pfn, unsigned long zone_end_pfn,
6328 		enum meminit_context context,
6329 		struct vmem_altmap *altmap, int migratetype)
6330 {
6331 	unsigned long pfn, end_pfn = start_pfn + size;
6332 	struct page *page;
6333 
6334 	if (highest_memmap_pfn < end_pfn - 1)
6335 		highest_memmap_pfn = end_pfn - 1;
6336 
6337 #ifdef CONFIG_ZONE_DEVICE
6338 	/*
6339 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6340 	 * memory. We limit the total number of pages to initialize to just
6341 	 * those that might contain the memory mapping. We will defer the
6342 	 * ZONE_DEVICE page initialization until after we have released
6343 	 * the hotplug lock.
6344 	 */
6345 	if (zone == ZONE_DEVICE) {
6346 		if (!altmap)
6347 			return;
6348 
6349 		if (start_pfn == altmap->base_pfn)
6350 			start_pfn += altmap->reserve;
6351 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6352 	}
6353 #endif
6354 
6355 	for (pfn = start_pfn; pfn < end_pfn; ) {
6356 		/*
6357 		 * There can be holes in boot-time mem_map[]s handed to this
6358 		 * function.  They do not exist on hotplugged memory.
6359 		 */
6360 		if (context == MEMINIT_EARLY) {
6361 			if (overlap_memmap_init(zone, &pfn))
6362 				continue;
6363 			if (defer_init(nid, pfn, zone_end_pfn))
6364 				break;
6365 		}
6366 
6367 		page = pfn_to_page(pfn);
6368 		__init_single_page(page, pfn, zone, nid);
6369 		if (context == MEMINIT_HOTPLUG)
6370 			__SetPageReserved(page);
6371 
6372 		/*
6373 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6374 		 * such that unmovable allocations won't be scattered all
6375 		 * over the place during system boot.
6376 		 */
6377 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6378 			set_pageblock_migratetype(page, migratetype);
6379 			cond_resched();
6380 		}
6381 		pfn++;
6382 	}
6383 }
6384 
6385 #ifdef CONFIG_ZONE_DEVICE
6386 void __ref memmap_init_zone_device(struct zone *zone,
6387 				   unsigned long start_pfn,
6388 				   unsigned long nr_pages,
6389 				   struct dev_pagemap *pgmap)
6390 {
6391 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6392 	struct pglist_data *pgdat = zone->zone_pgdat;
6393 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6394 	unsigned long zone_idx = zone_idx(zone);
6395 	unsigned long start = jiffies;
6396 	int nid = pgdat->node_id;
6397 
6398 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6399 		return;
6400 
6401 	/*
6402 	 * The call to memmap_init_zone should have already taken care
6403 	 * of the pages reserved for the memmap, so we can just jump to
6404 	 * the end of that region and start processing the device pages.
6405 	 */
6406 	if (altmap) {
6407 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6408 		nr_pages = end_pfn - start_pfn;
6409 	}
6410 
6411 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6412 		struct page *page = pfn_to_page(pfn);
6413 
6414 		__init_single_page(page, pfn, zone_idx, nid);
6415 
6416 		/*
6417 		 * Mark page reserved as it will need to wait for onlining
6418 		 * phase for it to be fully associated with a zone.
6419 		 *
6420 		 * We can use the non-atomic __set_bit operation for setting
6421 		 * the flag as we are still initializing the pages.
6422 		 */
6423 		__SetPageReserved(page);
6424 
6425 		/*
6426 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6427 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6428 		 * ever freed or placed on a driver-private list.
6429 		 */
6430 		page->pgmap = pgmap;
6431 		page->zone_device_data = NULL;
6432 
6433 		/*
6434 		 * Mark the block movable so that blocks are reserved for
6435 		 * movable at startup. This will force kernel allocations
6436 		 * to reserve their blocks rather than leaking throughout
6437 		 * the address space during boot when many long-lived
6438 		 * kernel allocations are made.
6439 		 *
6440 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6441 		 * because this is done early in section_activate()
6442 		 */
6443 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6444 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6445 			cond_resched();
6446 		}
6447 	}
6448 
6449 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6450 		nr_pages, jiffies_to_msecs(jiffies - start));
6451 }
6452 
6453 #endif
6454 static void __meminit zone_init_free_lists(struct zone *zone)
6455 {
6456 	unsigned int order, t;
6457 	for_each_migratetype_order(order, t) {
6458 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6459 		zone->free_area[order].nr_free = 0;
6460 	}
6461 }
6462 
6463 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6464 /*
6465  * Only struct pages that correspond to ranges defined by memblock.memory
6466  * are zeroed and initialized by going through __init_single_page() during
6467  * memmap_init_zone().
6468  *
6469  * But, there could be struct pages that correspond to holes in
6470  * memblock.memory. This can happen because of the following reasons:
6471  * - physical memory bank size is not necessarily the exact multiple of the
6472  *   arbitrary section size
6473  * - early reserved memory may not be listed in memblock.memory
6474  * - memory layouts defined with memmap= kernel parameter may not align
6475  *   nicely with memmap sections
6476  *
6477  * Explicitly initialize those struct pages so that:
6478  * - PG_Reserved is set
6479  * - zone and node links point to zone and node that span the page if the
6480  *   hole is in the middle of a zone
6481  * - zone and node links point to adjacent zone/node if the hole falls on
6482  *   the zone boundary; the pages in such holes will be prepended to the
6483  *   zone/node above the hole except for the trailing pages in the last
6484  *   section that will be appended to the zone/node below.
6485  */
6486 static u64 __meminit init_unavailable_range(unsigned long spfn,
6487 					    unsigned long epfn,
6488 					    int zone, int node)
6489 {
6490 	unsigned long pfn;
6491 	u64 pgcnt = 0;
6492 
6493 	for (pfn = spfn; pfn < epfn; pfn++) {
6494 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6495 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6496 				+ pageblock_nr_pages - 1;
6497 			continue;
6498 		}
6499 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6500 		__SetPageReserved(pfn_to_page(pfn));
6501 		pgcnt++;
6502 	}
6503 
6504 	return pgcnt;
6505 }
6506 #else
6507 static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn,
6508 					 int zone, int node)
6509 {
6510 	return 0;
6511 }
6512 #endif
6513 
6514 void __meminit __weak memmap_init_zone(struct zone *zone)
6515 {
6516 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6517 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6518 	int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6519 	static unsigned long hole_pfn;
6520 	unsigned long start_pfn, end_pfn;
6521 	u64 pgcnt = 0;
6522 
6523 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6524 		start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6525 		end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6526 
6527 		if (end_pfn > start_pfn)
6528 			memmap_init_range(end_pfn - start_pfn, nid,
6529 					zone_id, start_pfn, zone_end_pfn,
6530 					MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6531 
6532 		if (hole_pfn < start_pfn)
6533 			pgcnt += init_unavailable_range(hole_pfn, start_pfn,
6534 							zone_id, nid);
6535 		hole_pfn = end_pfn;
6536 	}
6537 
6538 #ifdef CONFIG_SPARSEMEM
6539 	/*
6540 	 * Initialize the hole in the range [zone_end_pfn, section_end].
6541 	 * If zone boundary falls in the middle of a section, this hole
6542 	 * will be re-initialized during the call to this function for the
6543 	 * higher zone.
6544 	 */
6545 	end_pfn = round_up(zone_end_pfn, PAGES_PER_SECTION);
6546 	if (hole_pfn < end_pfn)
6547 		pgcnt += init_unavailable_range(hole_pfn, end_pfn,
6548 						zone_id, nid);
6549 #endif
6550 
6551 	if (pgcnt)
6552 		pr_info("  %s zone: %llu pages in unavailable ranges\n",
6553 			zone->name, pgcnt);
6554 }
6555 
6556 static int zone_batchsize(struct zone *zone)
6557 {
6558 #ifdef CONFIG_MMU
6559 	int batch;
6560 
6561 	/*
6562 	 * The per-cpu-pages pools are set to around 1000th of the
6563 	 * size of the zone.
6564 	 */
6565 	batch = zone_managed_pages(zone) / 1024;
6566 	/* But no more than a meg. */
6567 	if (batch * PAGE_SIZE > 1024 * 1024)
6568 		batch = (1024 * 1024) / PAGE_SIZE;
6569 	batch /= 4;		/* We effectively *= 4 below */
6570 	if (batch < 1)
6571 		batch = 1;
6572 
6573 	/*
6574 	 * Clamp the batch to a 2^n - 1 value. Having a power
6575 	 * of 2 value was found to be more likely to have
6576 	 * suboptimal cache aliasing properties in some cases.
6577 	 *
6578 	 * For example if 2 tasks are alternately allocating
6579 	 * batches of pages, one task can end up with a lot
6580 	 * of pages of one half of the possible page colors
6581 	 * and the other with pages of the other colors.
6582 	 */
6583 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6584 
6585 	return batch;
6586 
6587 #else
6588 	/* The deferral and batching of frees should be suppressed under NOMMU
6589 	 * conditions.
6590 	 *
6591 	 * The problem is that NOMMU needs to be able to allocate large chunks
6592 	 * of contiguous memory as there's no hardware page translation to
6593 	 * assemble apparent contiguous memory from discontiguous pages.
6594 	 *
6595 	 * Queueing large contiguous runs of pages for batching, however,
6596 	 * causes the pages to actually be freed in smaller chunks.  As there
6597 	 * can be a significant delay between the individual batches being
6598 	 * recycled, this leads to the once large chunks of space being
6599 	 * fragmented and becoming unavailable for high-order allocations.
6600 	 */
6601 	return 0;
6602 #endif
6603 }
6604 
6605 /*
6606  * pcp->high and pcp->batch values are related and generally batch is lower
6607  * than high. They are also related to pcp->count such that count is lower
6608  * than high, and as soon as it reaches high, the pcplist is flushed.
6609  *
6610  * However, guaranteeing these relations at all times would require e.g. write
6611  * barriers here but also careful usage of read barriers at the read side, and
6612  * thus be prone to error and bad for performance. Thus the update only prevents
6613  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6614  * can cope with those fields changing asynchronously, and fully trust only the
6615  * pcp->count field on the local CPU with interrupts disabled.
6616  *
6617  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6618  * outside of boot time (or some other assurance that no concurrent updaters
6619  * exist).
6620  */
6621 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6622 		unsigned long batch)
6623 {
6624 	WRITE_ONCE(pcp->batch, batch);
6625 	WRITE_ONCE(pcp->high, high);
6626 }
6627 
6628 static void pageset_init(struct per_cpu_pageset *p)
6629 {
6630 	struct per_cpu_pages *pcp;
6631 	int migratetype;
6632 
6633 	memset(p, 0, sizeof(*p));
6634 
6635 	pcp = &p->pcp;
6636 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6637 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6638 
6639 	/*
6640 	 * Set batch and high values safe for a boot pageset. A true percpu
6641 	 * pageset's initialization will update them subsequently. Here we don't
6642 	 * need to be as careful as pageset_update() as nobody can access the
6643 	 * pageset yet.
6644 	 */
6645 	pcp->high = BOOT_PAGESET_HIGH;
6646 	pcp->batch = BOOT_PAGESET_BATCH;
6647 }
6648 
6649 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6650 		unsigned long batch)
6651 {
6652 	struct per_cpu_pageset *p;
6653 	int cpu;
6654 
6655 	for_each_possible_cpu(cpu) {
6656 		p = per_cpu_ptr(zone->pageset, cpu);
6657 		pageset_update(&p->pcp, high, batch);
6658 	}
6659 }
6660 
6661 /*
6662  * Calculate and set new high and batch values for all per-cpu pagesets of a
6663  * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
6664  */
6665 static void zone_set_pageset_high_and_batch(struct zone *zone)
6666 {
6667 	unsigned long new_high, new_batch;
6668 
6669 	if (percpu_pagelist_fraction) {
6670 		new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6671 		new_batch = max(1UL, new_high / 4);
6672 		if ((new_high / 4) > (PAGE_SHIFT * 8))
6673 			new_batch = PAGE_SHIFT * 8;
6674 	} else {
6675 		new_batch = zone_batchsize(zone);
6676 		new_high = 6 * new_batch;
6677 		new_batch = max(1UL, 1 * new_batch);
6678 	}
6679 
6680 	if (zone->pageset_high == new_high &&
6681 	    zone->pageset_batch == new_batch)
6682 		return;
6683 
6684 	zone->pageset_high = new_high;
6685 	zone->pageset_batch = new_batch;
6686 
6687 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6688 }
6689 
6690 void __meminit setup_zone_pageset(struct zone *zone)
6691 {
6692 	struct per_cpu_pageset *p;
6693 	int cpu;
6694 
6695 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6696 	for_each_possible_cpu(cpu) {
6697 		p = per_cpu_ptr(zone->pageset, cpu);
6698 		pageset_init(p);
6699 	}
6700 
6701 	zone_set_pageset_high_and_batch(zone);
6702 }
6703 
6704 /*
6705  * Allocate per cpu pagesets and initialize them.
6706  * Before this call only boot pagesets were available.
6707  */
6708 void __init setup_per_cpu_pageset(void)
6709 {
6710 	struct pglist_data *pgdat;
6711 	struct zone *zone;
6712 	int __maybe_unused cpu;
6713 
6714 	for_each_populated_zone(zone)
6715 		setup_zone_pageset(zone);
6716 
6717 #ifdef CONFIG_NUMA
6718 	/*
6719 	 * Unpopulated zones continue using the boot pagesets.
6720 	 * The numa stats for these pagesets need to be reset.
6721 	 * Otherwise, they will end up skewing the stats of
6722 	 * the nodes these zones are associated with.
6723 	 */
6724 	for_each_possible_cpu(cpu) {
6725 		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6726 		memset(pcp->vm_numa_stat_diff, 0,
6727 		       sizeof(pcp->vm_numa_stat_diff));
6728 	}
6729 #endif
6730 
6731 	for_each_online_pgdat(pgdat)
6732 		pgdat->per_cpu_nodestats =
6733 			alloc_percpu(struct per_cpu_nodestat);
6734 }
6735 
6736 static __meminit void zone_pcp_init(struct zone *zone)
6737 {
6738 	/*
6739 	 * per cpu subsystem is not up at this point. The following code
6740 	 * relies on the ability of the linker to provide the
6741 	 * offset of a (static) per cpu variable into the per cpu area.
6742 	 */
6743 	zone->pageset = &boot_pageset;
6744 	zone->pageset_high = BOOT_PAGESET_HIGH;
6745 	zone->pageset_batch = BOOT_PAGESET_BATCH;
6746 
6747 	if (populated_zone(zone))
6748 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6749 			zone->name, zone->present_pages,
6750 					 zone_batchsize(zone));
6751 }
6752 
6753 void __meminit init_currently_empty_zone(struct zone *zone,
6754 					unsigned long zone_start_pfn,
6755 					unsigned long size)
6756 {
6757 	struct pglist_data *pgdat = zone->zone_pgdat;
6758 	int zone_idx = zone_idx(zone) + 1;
6759 
6760 	if (zone_idx > pgdat->nr_zones)
6761 		pgdat->nr_zones = zone_idx;
6762 
6763 	zone->zone_start_pfn = zone_start_pfn;
6764 
6765 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6766 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6767 			pgdat->node_id,
6768 			(unsigned long)zone_idx(zone),
6769 			zone_start_pfn, (zone_start_pfn + size));
6770 
6771 	zone_init_free_lists(zone);
6772 	zone->initialized = 1;
6773 }
6774 
6775 /**
6776  * get_pfn_range_for_nid - Return the start and end page frames for a node
6777  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6778  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6779  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6780  *
6781  * It returns the start and end page frame of a node based on information
6782  * provided by memblock_set_node(). If called for a node
6783  * with no available memory, a warning is printed and the start and end
6784  * PFNs will be 0.
6785  */
6786 void __init get_pfn_range_for_nid(unsigned int nid,
6787 			unsigned long *start_pfn, unsigned long *end_pfn)
6788 {
6789 	unsigned long this_start_pfn, this_end_pfn;
6790 	int i;
6791 
6792 	*start_pfn = -1UL;
6793 	*end_pfn = 0;
6794 
6795 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6796 		*start_pfn = min(*start_pfn, this_start_pfn);
6797 		*end_pfn = max(*end_pfn, this_end_pfn);
6798 	}
6799 
6800 	if (*start_pfn == -1UL)
6801 		*start_pfn = 0;
6802 }
6803 
6804 /*
6805  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6806  * assumption is made that zones within a node are ordered in monotonic
6807  * increasing memory addresses so that the "highest" populated zone is used
6808  */
6809 static void __init find_usable_zone_for_movable(void)
6810 {
6811 	int zone_index;
6812 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6813 		if (zone_index == ZONE_MOVABLE)
6814 			continue;
6815 
6816 		if (arch_zone_highest_possible_pfn[zone_index] >
6817 				arch_zone_lowest_possible_pfn[zone_index])
6818 			break;
6819 	}
6820 
6821 	VM_BUG_ON(zone_index == -1);
6822 	movable_zone = zone_index;
6823 }
6824 
6825 /*
6826  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6827  * because it is sized independent of architecture. Unlike the other zones,
6828  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6829  * in each node depending on the size of each node and how evenly kernelcore
6830  * is distributed. This helper function adjusts the zone ranges
6831  * provided by the architecture for a given node by using the end of the
6832  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6833  * zones within a node are in order of monotonic increases memory addresses
6834  */
6835 static void __init adjust_zone_range_for_zone_movable(int nid,
6836 					unsigned long zone_type,
6837 					unsigned long node_start_pfn,
6838 					unsigned long node_end_pfn,
6839 					unsigned long *zone_start_pfn,
6840 					unsigned long *zone_end_pfn)
6841 {
6842 	/* Only adjust if ZONE_MOVABLE is on this node */
6843 	if (zone_movable_pfn[nid]) {
6844 		/* Size ZONE_MOVABLE */
6845 		if (zone_type == ZONE_MOVABLE) {
6846 			*zone_start_pfn = zone_movable_pfn[nid];
6847 			*zone_end_pfn = min(node_end_pfn,
6848 				arch_zone_highest_possible_pfn[movable_zone]);
6849 
6850 		/* Adjust for ZONE_MOVABLE starting within this range */
6851 		} else if (!mirrored_kernelcore &&
6852 			*zone_start_pfn < zone_movable_pfn[nid] &&
6853 			*zone_end_pfn > zone_movable_pfn[nid]) {
6854 			*zone_end_pfn = zone_movable_pfn[nid];
6855 
6856 		/* Check if this whole range is within ZONE_MOVABLE */
6857 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6858 			*zone_start_pfn = *zone_end_pfn;
6859 	}
6860 }
6861 
6862 /*
6863  * Return the number of pages a zone spans in a node, including holes
6864  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6865  */
6866 static unsigned long __init zone_spanned_pages_in_node(int nid,
6867 					unsigned long zone_type,
6868 					unsigned long node_start_pfn,
6869 					unsigned long node_end_pfn,
6870 					unsigned long *zone_start_pfn,
6871 					unsigned long *zone_end_pfn)
6872 {
6873 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6874 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6875 	/* When hotadd a new node from cpu_up(), the node should be empty */
6876 	if (!node_start_pfn && !node_end_pfn)
6877 		return 0;
6878 
6879 	/* Get the start and end of the zone */
6880 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6881 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6882 	adjust_zone_range_for_zone_movable(nid, zone_type,
6883 				node_start_pfn, node_end_pfn,
6884 				zone_start_pfn, zone_end_pfn);
6885 
6886 	/* Check that this node has pages within the zone's required range */
6887 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6888 		return 0;
6889 
6890 	/* Move the zone boundaries inside the node if necessary */
6891 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6892 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6893 
6894 	/* Return the spanned pages */
6895 	return *zone_end_pfn - *zone_start_pfn;
6896 }
6897 
6898 /*
6899  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6900  * then all holes in the requested range will be accounted for.
6901  */
6902 unsigned long __init __absent_pages_in_range(int nid,
6903 				unsigned long range_start_pfn,
6904 				unsigned long range_end_pfn)
6905 {
6906 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6907 	unsigned long start_pfn, end_pfn;
6908 	int i;
6909 
6910 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6911 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6912 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6913 		nr_absent -= end_pfn - start_pfn;
6914 	}
6915 	return nr_absent;
6916 }
6917 
6918 /**
6919  * absent_pages_in_range - Return number of page frames in holes within a range
6920  * @start_pfn: The start PFN to start searching for holes
6921  * @end_pfn: The end PFN to stop searching for holes
6922  *
6923  * Return: the number of pages frames in memory holes within a range.
6924  */
6925 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6926 							unsigned long end_pfn)
6927 {
6928 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6929 }
6930 
6931 /* Return the number of page frames in holes in a zone on a node */
6932 static unsigned long __init zone_absent_pages_in_node(int nid,
6933 					unsigned long zone_type,
6934 					unsigned long node_start_pfn,
6935 					unsigned long node_end_pfn)
6936 {
6937 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6938 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6939 	unsigned long zone_start_pfn, zone_end_pfn;
6940 	unsigned long nr_absent;
6941 
6942 	/* When hotadd a new node from cpu_up(), the node should be empty */
6943 	if (!node_start_pfn && !node_end_pfn)
6944 		return 0;
6945 
6946 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6947 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6948 
6949 	adjust_zone_range_for_zone_movable(nid, zone_type,
6950 			node_start_pfn, node_end_pfn,
6951 			&zone_start_pfn, &zone_end_pfn);
6952 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6953 
6954 	/*
6955 	 * ZONE_MOVABLE handling.
6956 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6957 	 * and vice versa.
6958 	 */
6959 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6960 		unsigned long start_pfn, end_pfn;
6961 		struct memblock_region *r;
6962 
6963 		for_each_mem_region(r) {
6964 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6965 					  zone_start_pfn, zone_end_pfn);
6966 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6967 					zone_start_pfn, zone_end_pfn);
6968 
6969 			if (zone_type == ZONE_MOVABLE &&
6970 			    memblock_is_mirror(r))
6971 				nr_absent += end_pfn - start_pfn;
6972 
6973 			if (zone_type == ZONE_NORMAL &&
6974 			    !memblock_is_mirror(r))
6975 				nr_absent += end_pfn - start_pfn;
6976 		}
6977 	}
6978 
6979 	return nr_absent;
6980 }
6981 
6982 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6983 						unsigned long node_start_pfn,
6984 						unsigned long node_end_pfn)
6985 {
6986 	unsigned long realtotalpages = 0, totalpages = 0;
6987 	enum zone_type i;
6988 
6989 	for (i = 0; i < MAX_NR_ZONES; i++) {
6990 		struct zone *zone = pgdat->node_zones + i;
6991 		unsigned long zone_start_pfn, zone_end_pfn;
6992 		unsigned long spanned, absent;
6993 		unsigned long size, real_size;
6994 
6995 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6996 						     node_start_pfn,
6997 						     node_end_pfn,
6998 						     &zone_start_pfn,
6999 						     &zone_end_pfn);
7000 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7001 						   node_start_pfn,
7002 						   node_end_pfn);
7003 
7004 		size = spanned;
7005 		real_size = size - absent;
7006 
7007 		if (size)
7008 			zone->zone_start_pfn = zone_start_pfn;
7009 		else
7010 			zone->zone_start_pfn = 0;
7011 		zone->spanned_pages = size;
7012 		zone->present_pages = real_size;
7013 
7014 		totalpages += size;
7015 		realtotalpages += real_size;
7016 	}
7017 
7018 	pgdat->node_spanned_pages = totalpages;
7019 	pgdat->node_present_pages = realtotalpages;
7020 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
7021 							realtotalpages);
7022 }
7023 
7024 #ifndef CONFIG_SPARSEMEM
7025 /*
7026  * Calculate the size of the zone->blockflags rounded to an unsigned long
7027  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7028  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7029  * round what is now in bits to nearest long in bits, then return it in
7030  * bytes.
7031  */
7032 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7033 {
7034 	unsigned long usemapsize;
7035 
7036 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7037 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7038 	usemapsize = usemapsize >> pageblock_order;
7039 	usemapsize *= NR_PAGEBLOCK_BITS;
7040 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7041 
7042 	return usemapsize / 8;
7043 }
7044 
7045 static void __ref setup_usemap(struct zone *zone)
7046 {
7047 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7048 					       zone->spanned_pages);
7049 	zone->pageblock_flags = NULL;
7050 	if (usemapsize) {
7051 		zone->pageblock_flags =
7052 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7053 					    zone_to_nid(zone));
7054 		if (!zone->pageblock_flags)
7055 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7056 			      usemapsize, zone->name, zone_to_nid(zone));
7057 	}
7058 }
7059 #else
7060 static inline void setup_usemap(struct zone *zone) {}
7061 #endif /* CONFIG_SPARSEMEM */
7062 
7063 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7064 
7065 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7066 void __init set_pageblock_order(void)
7067 {
7068 	unsigned int order;
7069 
7070 	/* Check that pageblock_nr_pages has not already been setup */
7071 	if (pageblock_order)
7072 		return;
7073 
7074 	if (HPAGE_SHIFT > PAGE_SHIFT)
7075 		order = HUGETLB_PAGE_ORDER;
7076 	else
7077 		order = MAX_ORDER - 1;
7078 
7079 	/*
7080 	 * Assume the largest contiguous order of interest is a huge page.
7081 	 * This value may be variable depending on boot parameters on IA64 and
7082 	 * powerpc.
7083 	 */
7084 	pageblock_order = order;
7085 }
7086 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7087 
7088 /*
7089  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7090  * is unused as pageblock_order is set at compile-time. See
7091  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7092  * the kernel config
7093  */
7094 void __init set_pageblock_order(void)
7095 {
7096 }
7097 
7098 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7099 
7100 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7101 						unsigned long present_pages)
7102 {
7103 	unsigned long pages = spanned_pages;
7104 
7105 	/*
7106 	 * Provide a more accurate estimation if there are holes within
7107 	 * the zone and SPARSEMEM is in use. If there are holes within the
7108 	 * zone, each populated memory region may cost us one or two extra
7109 	 * memmap pages due to alignment because memmap pages for each
7110 	 * populated regions may not be naturally aligned on page boundary.
7111 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7112 	 */
7113 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7114 	    IS_ENABLED(CONFIG_SPARSEMEM))
7115 		pages = present_pages;
7116 
7117 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7118 }
7119 
7120 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7121 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7122 {
7123 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7124 
7125 	spin_lock_init(&ds_queue->split_queue_lock);
7126 	INIT_LIST_HEAD(&ds_queue->split_queue);
7127 	ds_queue->split_queue_len = 0;
7128 }
7129 #else
7130 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7131 #endif
7132 
7133 #ifdef CONFIG_COMPACTION
7134 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7135 {
7136 	init_waitqueue_head(&pgdat->kcompactd_wait);
7137 }
7138 #else
7139 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7140 #endif
7141 
7142 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7143 {
7144 	pgdat_resize_init(pgdat);
7145 
7146 	pgdat_init_split_queue(pgdat);
7147 	pgdat_init_kcompactd(pgdat);
7148 
7149 	init_waitqueue_head(&pgdat->kswapd_wait);
7150 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7151 
7152 	pgdat_page_ext_init(pgdat);
7153 	lruvec_init(&pgdat->__lruvec);
7154 }
7155 
7156 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7157 							unsigned long remaining_pages)
7158 {
7159 	atomic_long_set(&zone->managed_pages, remaining_pages);
7160 	zone_set_nid(zone, nid);
7161 	zone->name = zone_names[idx];
7162 	zone->zone_pgdat = NODE_DATA(nid);
7163 	spin_lock_init(&zone->lock);
7164 	zone_seqlock_init(zone);
7165 	zone_pcp_init(zone);
7166 }
7167 
7168 /*
7169  * Set up the zone data structures
7170  * - init pgdat internals
7171  * - init all zones belonging to this node
7172  *
7173  * NOTE: this function is only called during memory hotplug
7174  */
7175 #ifdef CONFIG_MEMORY_HOTPLUG
7176 void __ref free_area_init_core_hotplug(int nid)
7177 {
7178 	enum zone_type z;
7179 	pg_data_t *pgdat = NODE_DATA(nid);
7180 
7181 	pgdat_init_internals(pgdat);
7182 	for (z = 0; z < MAX_NR_ZONES; z++)
7183 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7184 }
7185 #endif
7186 
7187 /*
7188  * Set up the zone data structures:
7189  *   - mark all pages reserved
7190  *   - mark all memory queues empty
7191  *   - clear the memory bitmaps
7192  *
7193  * NOTE: pgdat should get zeroed by caller.
7194  * NOTE: this function is only called during early init.
7195  */
7196 static void __init free_area_init_core(struct pglist_data *pgdat)
7197 {
7198 	enum zone_type j;
7199 	int nid = pgdat->node_id;
7200 
7201 	pgdat_init_internals(pgdat);
7202 	pgdat->per_cpu_nodestats = &boot_nodestats;
7203 
7204 	for (j = 0; j < MAX_NR_ZONES; j++) {
7205 		struct zone *zone = pgdat->node_zones + j;
7206 		unsigned long size, freesize, memmap_pages;
7207 
7208 		size = zone->spanned_pages;
7209 		freesize = zone->present_pages;
7210 
7211 		/*
7212 		 * Adjust freesize so that it accounts for how much memory
7213 		 * is used by this zone for memmap. This affects the watermark
7214 		 * and per-cpu initialisations
7215 		 */
7216 		memmap_pages = calc_memmap_size(size, freesize);
7217 		if (!is_highmem_idx(j)) {
7218 			if (freesize >= memmap_pages) {
7219 				freesize -= memmap_pages;
7220 				if (memmap_pages)
7221 					printk(KERN_DEBUG
7222 					       "  %s zone: %lu pages used for memmap\n",
7223 					       zone_names[j], memmap_pages);
7224 			} else
7225 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
7226 					zone_names[j], memmap_pages, freesize);
7227 		}
7228 
7229 		/* Account for reserved pages */
7230 		if (j == 0 && freesize > dma_reserve) {
7231 			freesize -= dma_reserve;
7232 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
7233 					zone_names[0], dma_reserve);
7234 		}
7235 
7236 		if (!is_highmem_idx(j))
7237 			nr_kernel_pages += freesize;
7238 		/* Charge for highmem memmap if there are enough kernel pages */
7239 		else if (nr_kernel_pages > memmap_pages * 2)
7240 			nr_kernel_pages -= memmap_pages;
7241 		nr_all_pages += freesize;
7242 
7243 		/*
7244 		 * Set an approximate value for lowmem here, it will be adjusted
7245 		 * when the bootmem allocator frees pages into the buddy system.
7246 		 * And all highmem pages will be managed by the buddy system.
7247 		 */
7248 		zone_init_internals(zone, j, nid, freesize);
7249 
7250 		if (!size)
7251 			continue;
7252 
7253 		set_pageblock_order();
7254 		setup_usemap(zone);
7255 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7256 		memmap_init_zone(zone);
7257 	}
7258 }
7259 
7260 #ifdef CONFIG_FLAT_NODE_MEM_MAP
7261 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7262 {
7263 	unsigned long __maybe_unused start = 0;
7264 	unsigned long __maybe_unused offset = 0;
7265 
7266 	/* Skip empty nodes */
7267 	if (!pgdat->node_spanned_pages)
7268 		return;
7269 
7270 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7271 	offset = pgdat->node_start_pfn - start;
7272 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7273 	if (!pgdat->node_mem_map) {
7274 		unsigned long size, end;
7275 		struct page *map;
7276 
7277 		/*
7278 		 * The zone's endpoints aren't required to be MAX_ORDER
7279 		 * aligned but the node_mem_map endpoints must be in order
7280 		 * for the buddy allocator to function correctly.
7281 		 */
7282 		end = pgdat_end_pfn(pgdat);
7283 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7284 		size =  (end - start) * sizeof(struct page);
7285 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7286 					  pgdat->node_id);
7287 		if (!map)
7288 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7289 			      size, pgdat->node_id);
7290 		pgdat->node_mem_map = map + offset;
7291 	}
7292 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7293 				__func__, pgdat->node_id, (unsigned long)pgdat,
7294 				(unsigned long)pgdat->node_mem_map);
7295 #ifndef CONFIG_NEED_MULTIPLE_NODES
7296 	/*
7297 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7298 	 */
7299 	if (pgdat == NODE_DATA(0)) {
7300 		mem_map = NODE_DATA(0)->node_mem_map;
7301 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7302 			mem_map -= offset;
7303 	}
7304 #endif
7305 }
7306 #else
7307 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7308 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
7309 
7310 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7311 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7312 {
7313 	pgdat->first_deferred_pfn = ULONG_MAX;
7314 }
7315 #else
7316 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7317 #endif
7318 
7319 static void __init free_area_init_node(int nid)
7320 {
7321 	pg_data_t *pgdat = NODE_DATA(nid);
7322 	unsigned long start_pfn = 0;
7323 	unsigned long end_pfn = 0;
7324 
7325 	/* pg_data_t should be reset to zero when it's allocated */
7326 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7327 
7328 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7329 
7330 	pgdat->node_id = nid;
7331 	pgdat->node_start_pfn = start_pfn;
7332 	pgdat->per_cpu_nodestats = NULL;
7333 
7334 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7335 		(u64)start_pfn << PAGE_SHIFT,
7336 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7337 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7338 
7339 	alloc_node_mem_map(pgdat);
7340 	pgdat_set_deferred_range(pgdat);
7341 
7342 	free_area_init_core(pgdat);
7343 }
7344 
7345 void __init free_area_init_memoryless_node(int nid)
7346 {
7347 	free_area_init_node(nid);
7348 }
7349 
7350 #if MAX_NUMNODES > 1
7351 /*
7352  * Figure out the number of possible node ids.
7353  */
7354 void __init setup_nr_node_ids(void)
7355 {
7356 	unsigned int highest;
7357 
7358 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7359 	nr_node_ids = highest + 1;
7360 }
7361 #endif
7362 
7363 /**
7364  * node_map_pfn_alignment - determine the maximum internode alignment
7365  *
7366  * This function should be called after node map is populated and sorted.
7367  * It calculates the maximum power of two alignment which can distinguish
7368  * all the nodes.
7369  *
7370  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7371  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7372  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7373  * shifted, 1GiB is enough and this function will indicate so.
7374  *
7375  * This is used to test whether pfn -> nid mapping of the chosen memory
7376  * model has fine enough granularity to avoid incorrect mapping for the
7377  * populated node map.
7378  *
7379  * Return: the determined alignment in pfn's.  0 if there is no alignment
7380  * requirement (single node).
7381  */
7382 unsigned long __init node_map_pfn_alignment(void)
7383 {
7384 	unsigned long accl_mask = 0, last_end = 0;
7385 	unsigned long start, end, mask;
7386 	int last_nid = NUMA_NO_NODE;
7387 	int i, nid;
7388 
7389 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7390 		if (!start || last_nid < 0 || last_nid == nid) {
7391 			last_nid = nid;
7392 			last_end = end;
7393 			continue;
7394 		}
7395 
7396 		/*
7397 		 * Start with a mask granular enough to pin-point to the
7398 		 * start pfn and tick off bits one-by-one until it becomes
7399 		 * too coarse to separate the current node from the last.
7400 		 */
7401 		mask = ~((1 << __ffs(start)) - 1);
7402 		while (mask && last_end <= (start & (mask << 1)))
7403 			mask <<= 1;
7404 
7405 		/* accumulate all internode masks */
7406 		accl_mask |= mask;
7407 	}
7408 
7409 	/* convert mask to number of pages */
7410 	return ~accl_mask + 1;
7411 }
7412 
7413 /**
7414  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7415  *
7416  * Return: the minimum PFN based on information provided via
7417  * memblock_set_node().
7418  */
7419 unsigned long __init find_min_pfn_with_active_regions(void)
7420 {
7421 	return PHYS_PFN(memblock_start_of_DRAM());
7422 }
7423 
7424 /*
7425  * early_calculate_totalpages()
7426  * Sum pages in active regions for movable zone.
7427  * Populate N_MEMORY for calculating usable_nodes.
7428  */
7429 static unsigned long __init early_calculate_totalpages(void)
7430 {
7431 	unsigned long totalpages = 0;
7432 	unsigned long start_pfn, end_pfn;
7433 	int i, nid;
7434 
7435 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7436 		unsigned long pages = end_pfn - start_pfn;
7437 
7438 		totalpages += pages;
7439 		if (pages)
7440 			node_set_state(nid, N_MEMORY);
7441 	}
7442 	return totalpages;
7443 }
7444 
7445 /*
7446  * Find the PFN the Movable zone begins in each node. Kernel memory
7447  * is spread evenly between nodes as long as the nodes have enough
7448  * memory. When they don't, some nodes will have more kernelcore than
7449  * others
7450  */
7451 static void __init find_zone_movable_pfns_for_nodes(void)
7452 {
7453 	int i, nid;
7454 	unsigned long usable_startpfn;
7455 	unsigned long kernelcore_node, kernelcore_remaining;
7456 	/* save the state before borrow the nodemask */
7457 	nodemask_t saved_node_state = node_states[N_MEMORY];
7458 	unsigned long totalpages = early_calculate_totalpages();
7459 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7460 	struct memblock_region *r;
7461 
7462 	/* Need to find movable_zone earlier when movable_node is specified. */
7463 	find_usable_zone_for_movable();
7464 
7465 	/*
7466 	 * If movable_node is specified, ignore kernelcore and movablecore
7467 	 * options.
7468 	 */
7469 	if (movable_node_is_enabled()) {
7470 		for_each_mem_region(r) {
7471 			if (!memblock_is_hotpluggable(r))
7472 				continue;
7473 
7474 			nid = memblock_get_region_node(r);
7475 
7476 			usable_startpfn = PFN_DOWN(r->base);
7477 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7478 				min(usable_startpfn, zone_movable_pfn[nid]) :
7479 				usable_startpfn;
7480 		}
7481 
7482 		goto out2;
7483 	}
7484 
7485 	/*
7486 	 * If kernelcore=mirror is specified, ignore movablecore option
7487 	 */
7488 	if (mirrored_kernelcore) {
7489 		bool mem_below_4gb_not_mirrored = false;
7490 
7491 		for_each_mem_region(r) {
7492 			if (memblock_is_mirror(r))
7493 				continue;
7494 
7495 			nid = memblock_get_region_node(r);
7496 
7497 			usable_startpfn = memblock_region_memory_base_pfn(r);
7498 
7499 			if (usable_startpfn < 0x100000) {
7500 				mem_below_4gb_not_mirrored = true;
7501 				continue;
7502 			}
7503 
7504 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7505 				min(usable_startpfn, zone_movable_pfn[nid]) :
7506 				usable_startpfn;
7507 		}
7508 
7509 		if (mem_below_4gb_not_mirrored)
7510 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7511 
7512 		goto out2;
7513 	}
7514 
7515 	/*
7516 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7517 	 * amount of necessary memory.
7518 	 */
7519 	if (required_kernelcore_percent)
7520 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7521 				       10000UL;
7522 	if (required_movablecore_percent)
7523 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7524 					10000UL;
7525 
7526 	/*
7527 	 * If movablecore= was specified, calculate what size of
7528 	 * kernelcore that corresponds so that memory usable for
7529 	 * any allocation type is evenly spread. If both kernelcore
7530 	 * and movablecore are specified, then the value of kernelcore
7531 	 * will be used for required_kernelcore if it's greater than
7532 	 * what movablecore would have allowed.
7533 	 */
7534 	if (required_movablecore) {
7535 		unsigned long corepages;
7536 
7537 		/*
7538 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7539 		 * was requested by the user
7540 		 */
7541 		required_movablecore =
7542 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7543 		required_movablecore = min(totalpages, required_movablecore);
7544 		corepages = totalpages - required_movablecore;
7545 
7546 		required_kernelcore = max(required_kernelcore, corepages);
7547 	}
7548 
7549 	/*
7550 	 * If kernelcore was not specified or kernelcore size is larger
7551 	 * than totalpages, there is no ZONE_MOVABLE.
7552 	 */
7553 	if (!required_kernelcore || required_kernelcore >= totalpages)
7554 		goto out;
7555 
7556 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7557 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7558 
7559 restart:
7560 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7561 	kernelcore_node = required_kernelcore / usable_nodes;
7562 	for_each_node_state(nid, N_MEMORY) {
7563 		unsigned long start_pfn, end_pfn;
7564 
7565 		/*
7566 		 * Recalculate kernelcore_node if the division per node
7567 		 * now exceeds what is necessary to satisfy the requested
7568 		 * amount of memory for the kernel
7569 		 */
7570 		if (required_kernelcore < kernelcore_node)
7571 			kernelcore_node = required_kernelcore / usable_nodes;
7572 
7573 		/*
7574 		 * As the map is walked, we track how much memory is usable
7575 		 * by the kernel using kernelcore_remaining. When it is
7576 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7577 		 */
7578 		kernelcore_remaining = kernelcore_node;
7579 
7580 		/* Go through each range of PFNs within this node */
7581 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7582 			unsigned long size_pages;
7583 
7584 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7585 			if (start_pfn >= end_pfn)
7586 				continue;
7587 
7588 			/* Account for what is only usable for kernelcore */
7589 			if (start_pfn < usable_startpfn) {
7590 				unsigned long kernel_pages;
7591 				kernel_pages = min(end_pfn, usable_startpfn)
7592 								- start_pfn;
7593 
7594 				kernelcore_remaining -= min(kernel_pages,
7595 							kernelcore_remaining);
7596 				required_kernelcore -= min(kernel_pages,
7597 							required_kernelcore);
7598 
7599 				/* Continue if range is now fully accounted */
7600 				if (end_pfn <= usable_startpfn) {
7601 
7602 					/*
7603 					 * Push zone_movable_pfn to the end so
7604 					 * that if we have to rebalance
7605 					 * kernelcore across nodes, we will
7606 					 * not double account here
7607 					 */
7608 					zone_movable_pfn[nid] = end_pfn;
7609 					continue;
7610 				}
7611 				start_pfn = usable_startpfn;
7612 			}
7613 
7614 			/*
7615 			 * The usable PFN range for ZONE_MOVABLE is from
7616 			 * start_pfn->end_pfn. Calculate size_pages as the
7617 			 * number of pages used as kernelcore
7618 			 */
7619 			size_pages = end_pfn - start_pfn;
7620 			if (size_pages > kernelcore_remaining)
7621 				size_pages = kernelcore_remaining;
7622 			zone_movable_pfn[nid] = start_pfn + size_pages;
7623 
7624 			/*
7625 			 * Some kernelcore has been met, update counts and
7626 			 * break if the kernelcore for this node has been
7627 			 * satisfied
7628 			 */
7629 			required_kernelcore -= min(required_kernelcore,
7630 								size_pages);
7631 			kernelcore_remaining -= size_pages;
7632 			if (!kernelcore_remaining)
7633 				break;
7634 		}
7635 	}
7636 
7637 	/*
7638 	 * If there is still required_kernelcore, we do another pass with one
7639 	 * less node in the count. This will push zone_movable_pfn[nid] further
7640 	 * along on the nodes that still have memory until kernelcore is
7641 	 * satisfied
7642 	 */
7643 	usable_nodes--;
7644 	if (usable_nodes && required_kernelcore > usable_nodes)
7645 		goto restart;
7646 
7647 out2:
7648 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7649 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7650 		zone_movable_pfn[nid] =
7651 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7652 
7653 out:
7654 	/* restore the node_state */
7655 	node_states[N_MEMORY] = saved_node_state;
7656 }
7657 
7658 /* Any regular or high memory on that node ? */
7659 static void check_for_memory(pg_data_t *pgdat, int nid)
7660 {
7661 	enum zone_type zone_type;
7662 
7663 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7664 		struct zone *zone = &pgdat->node_zones[zone_type];
7665 		if (populated_zone(zone)) {
7666 			if (IS_ENABLED(CONFIG_HIGHMEM))
7667 				node_set_state(nid, N_HIGH_MEMORY);
7668 			if (zone_type <= ZONE_NORMAL)
7669 				node_set_state(nid, N_NORMAL_MEMORY);
7670 			break;
7671 		}
7672 	}
7673 }
7674 
7675 /*
7676  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7677  * such cases we allow max_zone_pfn sorted in the descending order
7678  */
7679 bool __weak arch_has_descending_max_zone_pfns(void)
7680 {
7681 	return false;
7682 }
7683 
7684 /**
7685  * free_area_init - Initialise all pg_data_t and zone data
7686  * @max_zone_pfn: an array of max PFNs for each zone
7687  *
7688  * This will call free_area_init_node() for each active node in the system.
7689  * Using the page ranges provided by memblock_set_node(), the size of each
7690  * zone in each node and their holes is calculated. If the maximum PFN
7691  * between two adjacent zones match, it is assumed that the zone is empty.
7692  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7693  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7694  * starts where the previous one ended. For example, ZONE_DMA32 starts
7695  * at arch_max_dma_pfn.
7696  */
7697 void __init free_area_init(unsigned long *max_zone_pfn)
7698 {
7699 	unsigned long start_pfn, end_pfn;
7700 	int i, nid, zone;
7701 	bool descending;
7702 
7703 	/* Record where the zone boundaries are */
7704 	memset(arch_zone_lowest_possible_pfn, 0,
7705 				sizeof(arch_zone_lowest_possible_pfn));
7706 	memset(arch_zone_highest_possible_pfn, 0,
7707 				sizeof(arch_zone_highest_possible_pfn));
7708 
7709 	start_pfn = find_min_pfn_with_active_regions();
7710 	descending = arch_has_descending_max_zone_pfns();
7711 
7712 	for (i = 0; i < MAX_NR_ZONES; i++) {
7713 		if (descending)
7714 			zone = MAX_NR_ZONES - i - 1;
7715 		else
7716 			zone = i;
7717 
7718 		if (zone == ZONE_MOVABLE)
7719 			continue;
7720 
7721 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7722 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7723 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7724 
7725 		start_pfn = end_pfn;
7726 	}
7727 
7728 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7729 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7730 	find_zone_movable_pfns_for_nodes();
7731 
7732 	/* Print out the zone ranges */
7733 	pr_info("Zone ranges:\n");
7734 	for (i = 0; i < MAX_NR_ZONES; i++) {
7735 		if (i == ZONE_MOVABLE)
7736 			continue;
7737 		pr_info("  %-8s ", zone_names[i]);
7738 		if (arch_zone_lowest_possible_pfn[i] ==
7739 				arch_zone_highest_possible_pfn[i])
7740 			pr_cont("empty\n");
7741 		else
7742 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7743 				(u64)arch_zone_lowest_possible_pfn[i]
7744 					<< PAGE_SHIFT,
7745 				((u64)arch_zone_highest_possible_pfn[i]
7746 					<< PAGE_SHIFT) - 1);
7747 	}
7748 
7749 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7750 	pr_info("Movable zone start for each node\n");
7751 	for (i = 0; i < MAX_NUMNODES; i++) {
7752 		if (zone_movable_pfn[i])
7753 			pr_info("  Node %d: %#018Lx\n", i,
7754 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7755 	}
7756 
7757 	/*
7758 	 * Print out the early node map, and initialize the
7759 	 * subsection-map relative to active online memory ranges to
7760 	 * enable future "sub-section" extensions of the memory map.
7761 	 */
7762 	pr_info("Early memory node ranges\n");
7763 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7764 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7765 			(u64)start_pfn << PAGE_SHIFT,
7766 			((u64)end_pfn << PAGE_SHIFT) - 1);
7767 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7768 	}
7769 
7770 	/* Initialise every node */
7771 	mminit_verify_pageflags_layout();
7772 	setup_nr_node_ids();
7773 	for_each_online_node(nid) {
7774 		pg_data_t *pgdat = NODE_DATA(nid);
7775 		free_area_init_node(nid);
7776 
7777 		/* Any memory on that node */
7778 		if (pgdat->node_present_pages)
7779 			node_set_state(nid, N_MEMORY);
7780 		check_for_memory(pgdat, nid);
7781 	}
7782 }
7783 
7784 static int __init cmdline_parse_core(char *p, unsigned long *core,
7785 				     unsigned long *percent)
7786 {
7787 	unsigned long long coremem;
7788 	char *endptr;
7789 
7790 	if (!p)
7791 		return -EINVAL;
7792 
7793 	/* Value may be a percentage of total memory, otherwise bytes */
7794 	coremem = simple_strtoull(p, &endptr, 0);
7795 	if (*endptr == '%') {
7796 		/* Paranoid check for percent values greater than 100 */
7797 		WARN_ON(coremem > 100);
7798 
7799 		*percent = coremem;
7800 	} else {
7801 		coremem = memparse(p, &p);
7802 		/* Paranoid check that UL is enough for the coremem value */
7803 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7804 
7805 		*core = coremem >> PAGE_SHIFT;
7806 		*percent = 0UL;
7807 	}
7808 	return 0;
7809 }
7810 
7811 /*
7812  * kernelcore=size sets the amount of memory for use for allocations that
7813  * cannot be reclaimed or migrated.
7814  */
7815 static int __init cmdline_parse_kernelcore(char *p)
7816 {
7817 	/* parse kernelcore=mirror */
7818 	if (parse_option_str(p, "mirror")) {
7819 		mirrored_kernelcore = true;
7820 		return 0;
7821 	}
7822 
7823 	return cmdline_parse_core(p, &required_kernelcore,
7824 				  &required_kernelcore_percent);
7825 }
7826 
7827 /*
7828  * movablecore=size sets the amount of memory for use for allocations that
7829  * can be reclaimed or migrated.
7830  */
7831 static int __init cmdline_parse_movablecore(char *p)
7832 {
7833 	return cmdline_parse_core(p, &required_movablecore,
7834 				  &required_movablecore_percent);
7835 }
7836 
7837 early_param("kernelcore", cmdline_parse_kernelcore);
7838 early_param("movablecore", cmdline_parse_movablecore);
7839 
7840 void adjust_managed_page_count(struct page *page, long count)
7841 {
7842 	atomic_long_add(count, &page_zone(page)->managed_pages);
7843 	totalram_pages_add(count);
7844 #ifdef CONFIG_HIGHMEM
7845 	if (PageHighMem(page))
7846 		totalhigh_pages_add(count);
7847 #endif
7848 }
7849 EXPORT_SYMBOL(adjust_managed_page_count);
7850 
7851 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7852 {
7853 	void *pos;
7854 	unsigned long pages = 0;
7855 
7856 	start = (void *)PAGE_ALIGN((unsigned long)start);
7857 	end = (void *)((unsigned long)end & PAGE_MASK);
7858 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7859 		struct page *page = virt_to_page(pos);
7860 		void *direct_map_addr;
7861 
7862 		/*
7863 		 * 'direct_map_addr' might be different from 'pos'
7864 		 * because some architectures' virt_to_page()
7865 		 * work with aliases.  Getting the direct map
7866 		 * address ensures that we get a _writeable_
7867 		 * alias for the memset().
7868 		 */
7869 		direct_map_addr = page_address(page);
7870 		/*
7871 		 * Perform a kasan-unchecked memset() since this memory
7872 		 * has not been initialized.
7873 		 */
7874 		direct_map_addr = kasan_reset_tag(direct_map_addr);
7875 		if ((unsigned int)poison <= 0xFF)
7876 			memset(direct_map_addr, poison, PAGE_SIZE);
7877 
7878 		free_reserved_page(page);
7879 	}
7880 
7881 	if (pages && s)
7882 		pr_info("Freeing %s memory: %ldK\n",
7883 			s, pages << (PAGE_SHIFT - 10));
7884 
7885 	return pages;
7886 }
7887 
7888 void __init mem_init_print_info(void)
7889 {
7890 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7891 	unsigned long init_code_size, init_data_size;
7892 
7893 	physpages = get_num_physpages();
7894 	codesize = _etext - _stext;
7895 	datasize = _edata - _sdata;
7896 	rosize = __end_rodata - __start_rodata;
7897 	bss_size = __bss_stop - __bss_start;
7898 	init_data_size = __init_end - __init_begin;
7899 	init_code_size = _einittext - _sinittext;
7900 
7901 	/*
7902 	 * Detect special cases and adjust section sizes accordingly:
7903 	 * 1) .init.* may be embedded into .data sections
7904 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7905 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7906 	 * 3) .rodata.* may be embedded into .text or .data sections.
7907 	 */
7908 #define adj_init_size(start, end, size, pos, adj) \
7909 	do { \
7910 		if (start <= pos && pos < end && size > adj) \
7911 			size -= adj; \
7912 	} while (0)
7913 
7914 	adj_init_size(__init_begin, __init_end, init_data_size,
7915 		     _sinittext, init_code_size);
7916 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7917 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7918 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7919 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7920 
7921 #undef	adj_init_size
7922 
7923 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7924 #ifdef	CONFIG_HIGHMEM
7925 		", %luK highmem"
7926 #endif
7927 		")\n",
7928 		nr_free_pages() << (PAGE_SHIFT - 10),
7929 		physpages << (PAGE_SHIFT - 10),
7930 		codesize >> 10, datasize >> 10, rosize >> 10,
7931 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7932 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7933 		totalcma_pages << (PAGE_SHIFT - 10)
7934 #ifdef	CONFIG_HIGHMEM
7935 		, totalhigh_pages() << (PAGE_SHIFT - 10)
7936 #endif
7937 		);
7938 }
7939 
7940 /**
7941  * set_dma_reserve - set the specified number of pages reserved in the first zone
7942  * @new_dma_reserve: The number of pages to mark reserved
7943  *
7944  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7945  * In the DMA zone, a significant percentage may be consumed by kernel image
7946  * and other unfreeable allocations which can skew the watermarks badly. This
7947  * function may optionally be used to account for unfreeable pages in the
7948  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7949  * smaller per-cpu batchsize.
7950  */
7951 void __init set_dma_reserve(unsigned long new_dma_reserve)
7952 {
7953 	dma_reserve = new_dma_reserve;
7954 }
7955 
7956 static int page_alloc_cpu_dead(unsigned int cpu)
7957 {
7958 
7959 	lru_add_drain_cpu(cpu);
7960 	drain_pages(cpu);
7961 
7962 	/*
7963 	 * Spill the event counters of the dead processor
7964 	 * into the current processors event counters.
7965 	 * This artificially elevates the count of the current
7966 	 * processor.
7967 	 */
7968 	vm_events_fold_cpu(cpu);
7969 
7970 	/*
7971 	 * Zero the differential counters of the dead processor
7972 	 * so that the vm statistics are consistent.
7973 	 *
7974 	 * This is only okay since the processor is dead and cannot
7975 	 * race with what we are doing.
7976 	 */
7977 	cpu_vm_stats_fold(cpu);
7978 	return 0;
7979 }
7980 
7981 #ifdef CONFIG_NUMA
7982 int hashdist = HASHDIST_DEFAULT;
7983 
7984 static int __init set_hashdist(char *str)
7985 {
7986 	if (!str)
7987 		return 0;
7988 	hashdist = simple_strtoul(str, &str, 0);
7989 	return 1;
7990 }
7991 __setup("hashdist=", set_hashdist);
7992 #endif
7993 
7994 void __init page_alloc_init(void)
7995 {
7996 	int ret;
7997 
7998 #ifdef CONFIG_NUMA
7999 	if (num_node_state(N_MEMORY) == 1)
8000 		hashdist = 0;
8001 #endif
8002 
8003 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
8004 					"mm/page_alloc:dead", NULL,
8005 					page_alloc_cpu_dead);
8006 	WARN_ON(ret < 0);
8007 }
8008 
8009 /*
8010  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8011  *	or min_free_kbytes changes.
8012  */
8013 static void calculate_totalreserve_pages(void)
8014 {
8015 	struct pglist_data *pgdat;
8016 	unsigned long reserve_pages = 0;
8017 	enum zone_type i, j;
8018 
8019 	for_each_online_pgdat(pgdat) {
8020 
8021 		pgdat->totalreserve_pages = 0;
8022 
8023 		for (i = 0; i < MAX_NR_ZONES; i++) {
8024 			struct zone *zone = pgdat->node_zones + i;
8025 			long max = 0;
8026 			unsigned long managed_pages = zone_managed_pages(zone);
8027 
8028 			/* Find valid and maximum lowmem_reserve in the zone */
8029 			for (j = i; j < MAX_NR_ZONES; j++) {
8030 				if (zone->lowmem_reserve[j] > max)
8031 					max = zone->lowmem_reserve[j];
8032 			}
8033 
8034 			/* we treat the high watermark as reserved pages. */
8035 			max += high_wmark_pages(zone);
8036 
8037 			if (max > managed_pages)
8038 				max = managed_pages;
8039 
8040 			pgdat->totalreserve_pages += max;
8041 
8042 			reserve_pages += max;
8043 		}
8044 	}
8045 	totalreserve_pages = reserve_pages;
8046 }
8047 
8048 /*
8049  * setup_per_zone_lowmem_reserve - called whenever
8050  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8051  *	has a correct pages reserved value, so an adequate number of
8052  *	pages are left in the zone after a successful __alloc_pages().
8053  */
8054 static void setup_per_zone_lowmem_reserve(void)
8055 {
8056 	struct pglist_data *pgdat;
8057 	enum zone_type i, j;
8058 
8059 	for_each_online_pgdat(pgdat) {
8060 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8061 			struct zone *zone = &pgdat->node_zones[i];
8062 			int ratio = sysctl_lowmem_reserve_ratio[i];
8063 			bool clear = !ratio || !zone_managed_pages(zone);
8064 			unsigned long managed_pages = 0;
8065 
8066 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8067 				if (clear) {
8068 					zone->lowmem_reserve[j] = 0;
8069 				} else {
8070 					struct zone *upper_zone = &pgdat->node_zones[j];
8071 
8072 					managed_pages += zone_managed_pages(upper_zone);
8073 					zone->lowmem_reserve[j] = managed_pages / ratio;
8074 				}
8075 			}
8076 		}
8077 	}
8078 
8079 	/* update totalreserve_pages */
8080 	calculate_totalreserve_pages();
8081 }
8082 
8083 static void __setup_per_zone_wmarks(void)
8084 {
8085 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8086 	unsigned long lowmem_pages = 0;
8087 	struct zone *zone;
8088 	unsigned long flags;
8089 
8090 	/* Calculate total number of !ZONE_HIGHMEM pages */
8091 	for_each_zone(zone) {
8092 		if (!is_highmem(zone))
8093 			lowmem_pages += zone_managed_pages(zone);
8094 	}
8095 
8096 	for_each_zone(zone) {
8097 		u64 tmp;
8098 
8099 		spin_lock_irqsave(&zone->lock, flags);
8100 		tmp = (u64)pages_min * zone_managed_pages(zone);
8101 		do_div(tmp, lowmem_pages);
8102 		if (is_highmem(zone)) {
8103 			/*
8104 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8105 			 * need highmem pages, so cap pages_min to a small
8106 			 * value here.
8107 			 *
8108 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8109 			 * deltas control async page reclaim, and so should
8110 			 * not be capped for highmem.
8111 			 */
8112 			unsigned long min_pages;
8113 
8114 			min_pages = zone_managed_pages(zone) / 1024;
8115 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8116 			zone->_watermark[WMARK_MIN] = min_pages;
8117 		} else {
8118 			/*
8119 			 * If it's a lowmem zone, reserve a number of pages
8120 			 * proportionate to the zone's size.
8121 			 */
8122 			zone->_watermark[WMARK_MIN] = tmp;
8123 		}
8124 
8125 		/*
8126 		 * Set the kswapd watermarks distance according to the
8127 		 * scale factor in proportion to available memory, but
8128 		 * ensure a minimum size on small systems.
8129 		 */
8130 		tmp = max_t(u64, tmp >> 2,
8131 			    mult_frac(zone_managed_pages(zone),
8132 				      watermark_scale_factor, 10000));
8133 
8134 		zone->watermark_boost = 0;
8135 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8136 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8137 
8138 		spin_unlock_irqrestore(&zone->lock, flags);
8139 	}
8140 
8141 	/* update totalreserve_pages */
8142 	calculate_totalreserve_pages();
8143 }
8144 
8145 /**
8146  * setup_per_zone_wmarks - called when min_free_kbytes changes
8147  * or when memory is hot-{added|removed}
8148  *
8149  * Ensures that the watermark[min,low,high] values for each zone are set
8150  * correctly with respect to min_free_kbytes.
8151  */
8152 void setup_per_zone_wmarks(void)
8153 {
8154 	static DEFINE_SPINLOCK(lock);
8155 
8156 	spin_lock(&lock);
8157 	__setup_per_zone_wmarks();
8158 	spin_unlock(&lock);
8159 }
8160 
8161 /*
8162  * Initialise min_free_kbytes.
8163  *
8164  * For small machines we want it small (128k min).  For large machines
8165  * we want it large (256MB max).  But it is not linear, because network
8166  * bandwidth does not increase linearly with machine size.  We use
8167  *
8168  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8169  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8170  *
8171  * which yields
8172  *
8173  * 16MB:	512k
8174  * 32MB:	724k
8175  * 64MB:	1024k
8176  * 128MB:	1448k
8177  * 256MB:	2048k
8178  * 512MB:	2896k
8179  * 1024MB:	4096k
8180  * 2048MB:	5792k
8181  * 4096MB:	8192k
8182  * 8192MB:	11584k
8183  * 16384MB:	16384k
8184  */
8185 int __meminit init_per_zone_wmark_min(void)
8186 {
8187 	unsigned long lowmem_kbytes;
8188 	int new_min_free_kbytes;
8189 
8190 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8191 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8192 
8193 	if (new_min_free_kbytes > user_min_free_kbytes) {
8194 		min_free_kbytes = new_min_free_kbytes;
8195 		if (min_free_kbytes < 128)
8196 			min_free_kbytes = 128;
8197 		if (min_free_kbytes > 262144)
8198 			min_free_kbytes = 262144;
8199 	} else {
8200 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8201 				new_min_free_kbytes, user_min_free_kbytes);
8202 	}
8203 	setup_per_zone_wmarks();
8204 	refresh_zone_stat_thresholds();
8205 	setup_per_zone_lowmem_reserve();
8206 
8207 #ifdef CONFIG_NUMA
8208 	setup_min_unmapped_ratio();
8209 	setup_min_slab_ratio();
8210 #endif
8211 
8212 	khugepaged_min_free_kbytes_update();
8213 
8214 	return 0;
8215 }
8216 postcore_initcall(init_per_zone_wmark_min)
8217 
8218 /*
8219  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8220  *	that we can call two helper functions whenever min_free_kbytes
8221  *	changes.
8222  */
8223 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8224 		void *buffer, size_t *length, loff_t *ppos)
8225 {
8226 	int rc;
8227 
8228 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8229 	if (rc)
8230 		return rc;
8231 
8232 	if (write) {
8233 		user_min_free_kbytes = min_free_kbytes;
8234 		setup_per_zone_wmarks();
8235 	}
8236 	return 0;
8237 }
8238 
8239 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8240 		void *buffer, size_t *length, loff_t *ppos)
8241 {
8242 	int rc;
8243 
8244 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8245 	if (rc)
8246 		return rc;
8247 
8248 	if (write)
8249 		setup_per_zone_wmarks();
8250 
8251 	return 0;
8252 }
8253 
8254 #ifdef CONFIG_NUMA
8255 static void setup_min_unmapped_ratio(void)
8256 {
8257 	pg_data_t *pgdat;
8258 	struct zone *zone;
8259 
8260 	for_each_online_pgdat(pgdat)
8261 		pgdat->min_unmapped_pages = 0;
8262 
8263 	for_each_zone(zone)
8264 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8265 						         sysctl_min_unmapped_ratio) / 100;
8266 }
8267 
8268 
8269 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8270 		void *buffer, size_t *length, loff_t *ppos)
8271 {
8272 	int rc;
8273 
8274 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8275 	if (rc)
8276 		return rc;
8277 
8278 	setup_min_unmapped_ratio();
8279 
8280 	return 0;
8281 }
8282 
8283 static void setup_min_slab_ratio(void)
8284 {
8285 	pg_data_t *pgdat;
8286 	struct zone *zone;
8287 
8288 	for_each_online_pgdat(pgdat)
8289 		pgdat->min_slab_pages = 0;
8290 
8291 	for_each_zone(zone)
8292 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8293 						     sysctl_min_slab_ratio) / 100;
8294 }
8295 
8296 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8297 		void *buffer, size_t *length, loff_t *ppos)
8298 {
8299 	int rc;
8300 
8301 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8302 	if (rc)
8303 		return rc;
8304 
8305 	setup_min_slab_ratio();
8306 
8307 	return 0;
8308 }
8309 #endif
8310 
8311 /*
8312  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8313  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8314  *	whenever sysctl_lowmem_reserve_ratio changes.
8315  *
8316  * The reserve ratio obviously has absolutely no relation with the
8317  * minimum watermarks. The lowmem reserve ratio can only make sense
8318  * if in function of the boot time zone sizes.
8319  */
8320 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8321 		void *buffer, size_t *length, loff_t *ppos)
8322 {
8323 	int i;
8324 
8325 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8326 
8327 	for (i = 0; i < MAX_NR_ZONES; i++) {
8328 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8329 			sysctl_lowmem_reserve_ratio[i] = 0;
8330 	}
8331 
8332 	setup_per_zone_lowmem_reserve();
8333 	return 0;
8334 }
8335 
8336 /*
8337  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8338  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8339  * pagelist can have before it gets flushed back to buddy allocator.
8340  */
8341 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8342 		void *buffer, size_t *length, loff_t *ppos)
8343 {
8344 	struct zone *zone;
8345 	int old_percpu_pagelist_fraction;
8346 	int ret;
8347 
8348 	mutex_lock(&pcp_batch_high_lock);
8349 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8350 
8351 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8352 	if (!write || ret < 0)
8353 		goto out;
8354 
8355 	/* Sanity checking to avoid pcp imbalance */
8356 	if (percpu_pagelist_fraction &&
8357 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8358 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8359 		ret = -EINVAL;
8360 		goto out;
8361 	}
8362 
8363 	/* No change? */
8364 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8365 		goto out;
8366 
8367 	for_each_populated_zone(zone)
8368 		zone_set_pageset_high_and_batch(zone);
8369 out:
8370 	mutex_unlock(&pcp_batch_high_lock);
8371 	return ret;
8372 }
8373 
8374 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8375 /*
8376  * Returns the number of pages that arch has reserved but
8377  * is not known to alloc_large_system_hash().
8378  */
8379 static unsigned long __init arch_reserved_kernel_pages(void)
8380 {
8381 	return 0;
8382 }
8383 #endif
8384 
8385 /*
8386  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8387  * machines. As memory size is increased the scale is also increased but at
8388  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8389  * quadruples the scale is increased by one, which means the size of hash table
8390  * only doubles, instead of quadrupling as well.
8391  * Because 32-bit systems cannot have large physical memory, where this scaling
8392  * makes sense, it is disabled on such platforms.
8393  */
8394 #if __BITS_PER_LONG > 32
8395 #define ADAPT_SCALE_BASE	(64ul << 30)
8396 #define ADAPT_SCALE_SHIFT	2
8397 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8398 #endif
8399 
8400 /*
8401  * allocate a large system hash table from bootmem
8402  * - it is assumed that the hash table must contain an exact power-of-2
8403  *   quantity of entries
8404  * - limit is the number of hash buckets, not the total allocation size
8405  */
8406 void *__init alloc_large_system_hash(const char *tablename,
8407 				     unsigned long bucketsize,
8408 				     unsigned long numentries,
8409 				     int scale,
8410 				     int flags,
8411 				     unsigned int *_hash_shift,
8412 				     unsigned int *_hash_mask,
8413 				     unsigned long low_limit,
8414 				     unsigned long high_limit)
8415 {
8416 	unsigned long long max = high_limit;
8417 	unsigned long log2qty, size;
8418 	void *table = NULL;
8419 	gfp_t gfp_flags;
8420 	bool virt;
8421 	bool huge;
8422 
8423 	/* allow the kernel cmdline to have a say */
8424 	if (!numentries) {
8425 		/* round applicable memory size up to nearest megabyte */
8426 		numentries = nr_kernel_pages;
8427 		numentries -= arch_reserved_kernel_pages();
8428 
8429 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8430 		if (PAGE_SHIFT < 20)
8431 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8432 
8433 #if __BITS_PER_LONG > 32
8434 		if (!high_limit) {
8435 			unsigned long adapt;
8436 
8437 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8438 			     adapt <<= ADAPT_SCALE_SHIFT)
8439 				scale++;
8440 		}
8441 #endif
8442 
8443 		/* limit to 1 bucket per 2^scale bytes of low memory */
8444 		if (scale > PAGE_SHIFT)
8445 			numentries >>= (scale - PAGE_SHIFT);
8446 		else
8447 			numentries <<= (PAGE_SHIFT - scale);
8448 
8449 		/* Make sure we've got at least a 0-order allocation.. */
8450 		if (unlikely(flags & HASH_SMALL)) {
8451 			/* Makes no sense without HASH_EARLY */
8452 			WARN_ON(!(flags & HASH_EARLY));
8453 			if (!(numentries >> *_hash_shift)) {
8454 				numentries = 1UL << *_hash_shift;
8455 				BUG_ON(!numentries);
8456 			}
8457 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8458 			numentries = PAGE_SIZE / bucketsize;
8459 	}
8460 	numentries = roundup_pow_of_two(numentries);
8461 
8462 	/* limit allocation size to 1/16 total memory by default */
8463 	if (max == 0) {
8464 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8465 		do_div(max, bucketsize);
8466 	}
8467 	max = min(max, 0x80000000ULL);
8468 
8469 	if (numentries < low_limit)
8470 		numentries = low_limit;
8471 	if (numentries > max)
8472 		numentries = max;
8473 
8474 	log2qty = ilog2(numentries);
8475 
8476 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8477 	do {
8478 		virt = false;
8479 		size = bucketsize << log2qty;
8480 		if (flags & HASH_EARLY) {
8481 			if (flags & HASH_ZERO)
8482 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8483 			else
8484 				table = memblock_alloc_raw(size,
8485 							   SMP_CACHE_BYTES);
8486 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8487 			table = __vmalloc(size, gfp_flags);
8488 			virt = true;
8489 			huge = is_vm_area_hugepages(table);
8490 		} else {
8491 			/*
8492 			 * If bucketsize is not a power-of-two, we may free
8493 			 * some pages at the end of hash table which
8494 			 * alloc_pages_exact() automatically does
8495 			 */
8496 			table = alloc_pages_exact(size, gfp_flags);
8497 			kmemleak_alloc(table, size, 1, gfp_flags);
8498 		}
8499 	} while (!table && size > PAGE_SIZE && --log2qty);
8500 
8501 	if (!table)
8502 		panic("Failed to allocate %s hash table\n", tablename);
8503 
8504 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8505 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8506 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8507 
8508 	if (_hash_shift)
8509 		*_hash_shift = log2qty;
8510 	if (_hash_mask)
8511 		*_hash_mask = (1 << log2qty) - 1;
8512 
8513 	return table;
8514 }
8515 
8516 /*
8517  * This function checks whether pageblock includes unmovable pages or not.
8518  *
8519  * PageLRU check without isolation or lru_lock could race so that
8520  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8521  * check without lock_page also may miss some movable non-lru pages at
8522  * race condition. So you can't expect this function should be exact.
8523  *
8524  * Returns a page without holding a reference. If the caller wants to
8525  * dereference that page (e.g., dumping), it has to make sure that it
8526  * cannot get removed (e.g., via memory unplug) concurrently.
8527  *
8528  */
8529 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8530 				 int migratetype, int flags)
8531 {
8532 	unsigned long iter = 0;
8533 	unsigned long pfn = page_to_pfn(page);
8534 	unsigned long offset = pfn % pageblock_nr_pages;
8535 
8536 	if (is_migrate_cma_page(page)) {
8537 		/*
8538 		 * CMA allocations (alloc_contig_range) really need to mark
8539 		 * isolate CMA pageblocks even when they are not movable in fact
8540 		 * so consider them movable here.
8541 		 */
8542 		if (is_migrate_cma(migratetype))
8543 			return NULL;
8544 
8545 		return page;
8546 	}
8547 
8548 	for (; iter < pageblock_nr_pages - offset; iter++) {
8549 		if (!pfn_valid_within(pfn + iter))
8550 			continue;
8551 
8552 		page = pfn_to_page(pfn + iter);
8553 
8554 		/*
8555 		 * Both, bootmem allocations and memory holes are marked
8556 		 * PG_reserved and are unmovable. We can even have unmovable
8557 		 * allocations inside ZONE_MOVABLE, for example when
8558 		 * specifying "movablecore".
8559 		 */
8560 		if (PageReserved(page))
8561 			return page;
8562 
8563 		/*
8564 		 * If the zone is movable and we have ruled out all reserved
8565 		 * pages then it should be reasonably safe to assume the rest
8566 		 * is movable.
8567 		 */
8568 		if (zone_idx(zone) == ZONE_MOVABLE)
8569 			continue;
8570 
8571 		/*
8572 		 * Hugepages are not in LRU lists, but they're movable.
8573 		 * THPs are on the LRU, but need to be counted as #small pages.
8574 		 * We need not scan over tail pages because we don't
8575 		 * handle each tail page individually in migration.
8576 		 */
8577 		if (PageHuge(page) || PageTransCompound(page)) {
8578 			struct page *head = compound_head(page);
8579 			unsigned int skip_pages;
8580 
8581 			if (PageHuge(page)) {
8582 				if (!hugepage_migration_supported(page_hstate(head)))
8583 					return page;
8584 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8585 				return page;
8586 			}
8587 
8588 			skip_pages = compound_nr(head) - (page - head);
8589 			iter += skip_pages - 1;
8590 			continue;
8591 		}
8592 
8593 		/*
8594 		 * We can't use page_count without pin a page
8595 		 * because another CPU can free compound page.
8596 		 * This check already skips compound tails of THP
8597 		 * because their page->_refcount is zero at all time.
8598 		 */
8599 		if (!page_ref_count(page)) {
8600 			if (PageBuddy(page))
8601 				iter += (1 << buddy_order(page)) - 1;
8602 			continue;
8603 		}
8604 
8605 		/*
8606 		 * The HWPoisoned page may be not in buddy system, and
8607 		 * page_count() is not 0.
8608 		 */
8609 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8610 			continue;
8611 
8612 		/*
8613 		 * We treat all PageOffline() pages as movable when offlining
8614 		 * to give drivers a chance to decrement their reference count
8615 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8616 		 * can be offlined as there are no direct references anymore.
8617 		 * For actually unmovable PageOffline() where the driver does
8618 		 * not support this, we will fail later when trying to actually
8619 		 * move these pages that still have a reference count > 0.
8620 		 * (false negatives in this function only)
8621 		 */
8622 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8623 			continue;
8624 
8625 		if (__PageMovable(page) || PageLRU(page))
8626 			continue;
8627 
8628 		/*
8629 		 * If there are RECLAIMABLE pages, we need to check
8630 		 * it.  But now, memory offline itself doesn't call
8631 		 * shrink_node_slabs() and it still to be fixed.
8632 		 */
8633 		return page;
8634 	}
8635 	return NULL;
8636 }
8637 
8638 #ifdef CONFIG_CONTIG_ALLOC
8639 static unsigned long pfn_max_align_down(unsigned long pfn)
8640 {
8641 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8642 			     pageblock_nr_pages) - 1);
8643 }
8644 
8645 static unsigned long pfn_max_align_up(unsigned long pfn)
8646 {
8647 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8648 				pageblock_nr_pages));
8649 }
8650 
8651 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8652 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8653 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8654 static void alloc_contig_dump_pages(struct list_head *page_list)
8655 {
8656 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8657 
8658 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8659 		struct page *page;
8660 
8661 		dump_stack();
8662 		list_for_each_entry(page, page_list, lru)
8663 			dump_page(page, "migration failure");
8664 	}
8665 }
8666 #else
8667 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8668 {
8669 }
8670 #endif
8671 
8672 /* [start, end) must belong to a single zone. */
8673 static int __alloc_contig_migrate_range(struct compact_control *cc,
8674 					unsigned long start, unsigned long end)
8675 {
8676 	/* This function is based on compact_zone() from compaction.c. */
8677 	unsigned int nr_reclaimed;
8678 	unsigned long pfn = start;
8679 	unsigned int tries = 0;
8680 	int ret = 0;
8681 	struct migration_target_control mtc = {
8682 		.nid = zone_to_nid(cc->zone),
8683 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8684 	};
8685 
8686 	lru_cache_disable();
8687 
8688 	while (pfn < end || !list_empty(&cc->migratepages)) {
8689 		if (fatal_signal_pending(current)) {
8690 			ret = -EINTR;
8691 			break;
8692 		}
8693 
8694 		if (list_empty(&cc->migratepages)) {
8695 			cc->nr_migratepages = 0;
8696 			ret = isolate_migratepages_range(cc, pfn, end);
8697 			if (ret && ret != -EAGAIN)
8698 				break;
8699 			pfn = cc->migrate_pfn;
8700 			tries = 0;
8701 		} else if (++tries == 5) {
8702 			ret = -EBUSY;
8703 			break;
8704 		}
8705 
8706 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8707 							&cc->migratepages);
8708 		cc->nr_migratepages -= nr_reclaimed;
8709 
8710 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8711 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8712 
8713 		/*
8714 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8715 		 * to retry again over this error, so do the same here.
8716 		 */
8717 		if (ret == -ENOMEM)
8718 			break;
8719 	}
8720 
8721 	lru_cache_enable();
8722 	if (ret < 0) {
8723 		alloc_contig_dump_pages(&cc->migratepages);
8724 		putback_movable_pages(&cc->migratepages);
8725 		return ret;
8726 	}
8727 	return 0;
8728 }
8729 
8730 /**
8731  * alloc_contig_range() -- tries to allocate given range of pages
8732  * @start:	start PFN to allocate
8733  * @end:	one-past-the-last PFN to allocate
8734  * @migratetype:	migratetype of the underlying pageblocks (either
8735  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8736  *			in range must have the same migratetype and it must
8737  *			be either of the two.
8738  * @gfp_mask:	GFP mask to use during compaction
8739  *
8740  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8741  * aligned.  The PFN range must belong to a single zone.
8742  *
8743  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8744  * pageblocks in the range.  Once isolated, the pageblocks should not
8745  * be modified by others.
8746  *
8747  * Return: zero on success or negative error code.  On success all
8748  * pages which PFN is in [start, end) are allocated for the caller and
8749  * need to be freed with free_contig_range().
8750  */
8751 int alloc_contig_range(unsigned long start, unsigned long end,
8752 		       unsigned migratetype, gfp_t gfp_mask)
8753 {
8754 	unsigned long outer_start, outer_end;
8755 	unsigned int order;
8756 	int ret = 0;
8757 
8758 	struct compact_control cc = {
8759 		.nr_migratepages = 0,
8760 		.order = -1,
8761 		.zone = page_zone(pfn_to_page(start)),
8762 		.mode = MIGRATE_SYNC,
8763 		.ignore_skip_hint = true,
8764 		.no_set_skip_hint = true,
8765 		.gfp_mask = current_gfp_context(gfp_mask),
8766 		.alloc_contig = true,
8767 	};
8768 	INIT_LIST_HEAD(&cc.migratepages);
8769 
8770 	/*
8771 	 * What we do here is we mark all pageblocks in range as
8772 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8773 	 * have different sizes, and due to the way page allocator
8774 	 * work, we align the range to biggest of the two pages so
8775 	 * that page allocator won't try to merge buddies from
8776 	 * different pageblocks and change MIGRATE_ISOLATE to some
8777 	 * other migration type.
8778 	 *
8779 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8780 	 * migrate the pages from an unaligned range (ie. pages that
8781 	 * we are interested in).  This will put all the pages in
8782 	 * range back to page allocator as MIGRATE_ISOLATE.
8783 	 *
8784 	 * When this is done, we take the pages in range from page
8785 	 * allocator removing them from the buddy system.  This way
8786 	 * page allocator will never consider using them.
8787 	 *
8788 	 * This lets us mark the pageblocks back as
8789 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8790 	 * aligned range but not in the unaligned, original range are
8791 	 * put back to page allocator so that buddy can use them.
8792 	 */
8793 
8794 	ret = start_isolate_page_range(pfn_max_align_down(start),
8795 				       pfn_max_align_up(end), migratetype, 0);
8796 	if (ret)
8797 		return ret;
8798 
8799 	drain_all_pages(cc.zone);
8800 
8801 	/*
8802 	 * In case of -EBUSY, we'd like to know which page causes problem.
8803 	 * So, just fall through. test_pages_isolated() has a tracepoint
8804 	 * which will report the busy page.
8805 	 *
8806 	 * It is possible that busy pages could become available before
8807 	 * the call to test_pages_isolated, and the range will actually be
8808 	 * allocated.  So, if we fall through be sure to clear ret so that
8809 	 * -EBUSY is not accidentally used or returned to caller.
8810 	 */
8811 	ret = __alloc_contig_migrate_range(&cc, start, end);
8812 	if (ret && ret != -EBUSY)
8813 		goto done;
8814 	ret = 0;
8815 
8816 	/*
8817 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8818 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8819 	 * more, all pages in [start, end) are free in page allocator.
8820 	 * What we are going to do is to allocate all pages from
8821 	 * [start, end) (that is remove them from page allocator).
8822 	 *
8823 	 * The only problem is that pages at the beginning and at the
8824 	 * end of interesting range may be not aligned with pages that
8825 	 * page allocator holds, ie. they can be part of higher order
8826 	 * pages.  Because of this, we reserve the bigger range and
8827 	 * once this is done free the pages we are not interested in.
8828 	 *
8829 	 * We don't have to hold zone->lock here because the pages are
8830 	 * isolated thus they won't get removed from buddy.
8831 	 */
8832 
8833 	order = 0;
8834 	outer_start = start;
8835 	while (!PageBuddy(pfn_to_page(outer_start))) {
8836 		if (++order >= MAX_ORDER) {
8837 			outer_start = start;
8838 			break;
8839 		}
8840 		outer_start &= ~0UL << order;
8841 	}
8842 
8843 	if (outer_start != start) {
8844 		order = buddy_order(pfn_to_page(outer_start));
8845 
8846 		/*
8847 		 * outer_start page could be small order buddy page and
8848 		 * it doesn't include start page. Adjust outer_start
8849 		 * in this case to report failed page properly
8850 		 * on tracepoint in test_pages_isolated()
8851 		 */
8852 		if (outer_start + (1UL << order) <= start)
8853 			outer_start = start;
8854 	}
8855 
8856 	/* Make sure the range is really isolated. */
8857 	if (test_pages_isolated(outer_start, end, 0)) {
8858 		ret = -EBUSY;
8859 		goto done;
8860 	}
8861 
8862 	/* Grab isolated pages from freelists. */
8863 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8864 	if (!outer_end) {
8865 		ret = -EBUSY;
8866 		goto done;
8867 	}
8868 
8869 	/* Free head and tail (if any) */
8870 	if (start != outer_start)
8871 		free_contig_range(outer_start, start - outer_start);
8872 	if (end != outer_end)
8873 		free_contig_range(end, outer_end - end);
8874 
8875 done:
8876 	undo_isolate_page_range(pfn_max_align_down(start),
8877 				pfn_max_align_up(end), migratetype);
8878 	return ret;
8879 }
8880 EXPORT_SYMBOL(alloc_contig_range);
8881 
8882 static int __alloc_contig_pages(unsigned long start_pfn,
8883 				unsigned long nr_pages, gfp_t gfp_mask)
8884 {
8885 	unsigned long end_pfn = start_pfn + nr_pages;
8886 
8887 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8888 				  gfp_mask);
8889 }
8890 
8891 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8892 				   unsigned long nr_pages)
8893 {
8894 	unsigned long i, end_pfn = start_pfn + nr_pages;
8895 	struct page *page;
8896 
8897 	for (i = start_pfn; i < end_pfn; i++) {
8898 		page = pfn_to_online_page(i);
8899 		if (!page)
8900 			return false;
8901 
8902 		if (page_zone(page) != z)
8903 			return false;
8904 
8905 		if (PageReserved(page))
8906 			return false;
8907 	}
8908 	return true;
8909 }
8910 
8911 static bool zone_spans_last_pfn(const struct zone *zone,
8912 				unsigned long start_pfn, unsigned long nr_pages)
8913 {
8914 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8915 
8916 	return zone_spans_pfn(zone, last_pfn);
8917 }
8918 
8919 /**
8920  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8921  * @nr_pages:	Number of contiguous pages to allocate
8922  * @gfp_mask:	GFP mask to limit search and used during compaction
8923  * @nid:	Target node
8924  * @nodemask:	Mask for other possible nodes
8925  *
8926  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8927  * on an applicable zonelist to find a contiguous pfn range which can then be
8928  * tried for allocation with alloc_contig_range(). This routine is intended
8929  * for allocation requests which can not be fulfilled with the buddy allocator.
8930  *
8931  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8932  * power of two then the alignment is guaranteed to be to the given nr_pages
8933  * (e.g. 1GB request would be aligned to 1GB).
8934  *
8935  * Allocated pages can be freed with free_contig_range() or by manually calling
8936  * __free_page() on each allocated page.
8937  *
8938  * Return: pointer to contiguous pages on success, or NULL if not successful.
8939  */
8940 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8941 				int nid, nodemask_t *nodemask)
8942 {
8943 	unsigned long ret, pfn, flags;
8944 	struct zonelist *zonelist;
8945 	struct zone *zone;
8946 	struct zoneref *z;
8947 
8948 	zonelist = node_zonelist(nid, gfp_mask);
8949 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8950 					gfp_zone(gfp_mask), nodemask) {
8951 		spin_lock_irqsave(&zone->lock, flags);
8952 
8953 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8954 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8955 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8956 				/*
8957 				 * We release the zone lock here because
8958 				 * alloc_contig_range() will also lock the zone
8959 				 * at some point. If there's an allocation
8960 				 * spinning on this lock, it may win the race
8961 				 * and cause alloc_contig_range() to fail...
8962 				 */
8963 				spin_unlock_irqrestore(&zone->lock, flags);
8964 				ret = __alloc_contig_pages(pfn, nr_pages,
8965 							gfp_mask);
8966 				if (!ret)
8967 					return pfn_to_page(pfn);
8968 				spin_lock_irqsave(&zone->lock, flags);
8969 			}
8970 			pfn += nr_pages;
8971 		}
8972 		spin_unlock_irqrestore(&zone->lock, flags);
8973 	}
8974 	return NULL;
8975 }
8976 #endif /* CONFIG_CONTIG_ALLOC */
8977 
8978 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
8979 {
8980 	unsigned long count = 0;
8981 
8982 	for (; nr_pages--; pfn++) {
8983 		struct page *page = pfn_to_page(pfn);
8984 
8985 		count += page_count(page) != 1;
8986 		__free_page(page);
8987 	}
8988 	WARN(count != 0, "%lu pages are still in use!\n", count);
8989 }
8990 EXPORT_SYMBOL(free_contig_range);
8991 
8992 /*
8993  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8994  * page high values need to be recalculated.
8995  */
8996 void __meminit zone_pcp_update(struct zone *zone)
8997 {
8998 	mutex_lock(&pcp_batch_high_lock);
8999 	zone_set_pageset_high_and_batch(zone);
9000 	mutex_unlock(&pcp_batch_high_lock);
9001 }
9002 
9003 /*
9004  * Effectively disable pcplists for the zone by setting the high limit to 0
9005  * and draining all cpus. A concurrent page freeing on another CPU that's about
9006  * to put the page on pcplist will either finish before the drain and the page
9007  * will be drained, or observe the new high limit and skip the pcplist.
9008  *
9009  * Must be paired with a call to zone_pcp_enable().
9010  */
9011 void zone_pcp_disable(struct zone *zone)
9012 {
9013 	mutex_lock(&pcp_batch_high_lock);
9014 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9015 	__drain_all_pages(zone, true);
9016 }
9017 
9018 void zone_pcp_enable(struct zone *zone)
9019 {
9020 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9021 	mutex_unlock(&pcp_batch_high_lock);
9022 }
9023 
9024 void zone_pcp_reset(struct zone *zone)
9025 {
9026 	int cpu;
9027 	struct per_cpu_pageset *pset;
9028 
9029 	if (zone->pageset != &boot_pageset) {
9030 		for_each_online_cpu(cpu) {
9031 			pset = per_cpu_ptr(zone->pageset, cpu);
9032 			drain_zonestat(zone, pset);
9033 		}
9034 		free_percpu(zone->pageset);
9035 		zone->pageset = &boot_pageset;
9036 	}
9037 }
9038 
9039 #ifdef CONFIG_MEMORY_HOTREMOVE
9040 /*
9041  * All pages in the range must be in a single zone, must not contain holes,
9042  * must span full sections, and must be isolated before calling this function.
9043  */
9044 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9045 {
9046 	unsigned long pfn = start_pfn;
9047 	struct page *page;
9048 	struct zone *zone;
9049 	unsigned int order;
9050 	unsigned long flags;
9051 
9052 	offline_mem_sections(pfn, end_pfn);
9053 	zone = page_zone(pfn_to_page(pfn));
9054 	spin_lock_irqsave(&zone->lock, flags);
9055 	while (pfn < end_pfn) {
9056 		page = pfn_to_page(pfn);
9057 		/*
9058 		 * The HWPoisoned page may be not in buddy system, and
9059 		 * page_count() is not 0.
9060 		 */
9061 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9062 			pfn++;
9063 			continue;
9064 		}
9065 		/*
9066 		 * At this point all remaining PageOffline() pages have a
9067 		 * reference count of 0 and can simply be skipped.
9068 		 */
9069 		if (PageOffline(page)) {
9070 			BUG_ON(page_count(page));
9071 			BUG_ON(PageBuddy(page));
9072 			pfn++;
9073 			continue;
9074 		}
9075 
9076 		BUG_ON(page_count(page));
9077 		BUG_ON(!PageBuddy(page));
9078 		order = buddy_order(page);
9079 		del_page_from_free_list(page, zone, order);
9080 		pfn += (1 << order);
9081 	}
9082 	spin_unlock_irqrestore(&zone->lock, flags);
9083 }
9084 #endif
9085 
9086 bool is_free_buddy_page(struct page *page)
9087 {
9088 	struct zone *zone = page_zone(page);
9089 	unsigned long pfn = page_to_pfn(page);
9090 	unsigned long flags;
9091 	unsigned int order;
9092 
9093 	spin_lock_irqsave(&zone->lock, flags);
9094 	for (order = 0; order < MAX_ORDER; order++) {
9095 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9096 
9097 		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9098 			break;
9099 	}
9100 	spin_unlock_irqrestore(&zone->lock, flags);
9101 
9102 	return order < MAX_ORDER;
9103 }
9104 
9105 #ifdef CONFIG_MEMORY_FAILURE
9106 /*
9107  * Break down a higher-order page in sub-pages, and keep our target out of
9108  * buddy allocator.
9109  */
9110 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9111 				   struct page *target, int low, int high,
9112 				   int migratetype)
9113 {
9114 	unsigned long size = 1 << high;
9115 	struct page *current_buddy, *next_page;
9116 
9117 	while (high > low) {
9118 		high--;
9119 		size >>= 1;
9120 
9121 		if (target >= &page[size]) {
9122 			next_page = page + size;
9123 			current_buddy = page;
9124 		} else {
9125 			next_page = page;
9126 			current_buddy = page + size;
9127 		}
9128 
9129 		if (set_page_guard(zone, current_buddy, high, migratetype))
9130 			continue;
9131 
9132 		if (current_buddy != target) {
9133 			add_to_free_list(current_buddy, zone, high, migratetype);
9134 			set_buddy_order(current_buddy, high);
9135 			page = next_page;
9136 		}
9137 	}
9138 }
9139 
9140 /*
9141  * Take a page that will be marked as poisoned off the buddy allocator.
9142  */
9143 bool take_page_off_buddy(struct page *page)
9144 {
9145 	struct zone *zone = page_zone(page);
9146 	unsigned long pfn = page_to_pfn(page);
9147 	unsigned long flags;
9148 	unsigned int order;
9149 	bool ret = false;
9150 
9151 	spin_lock_irqsave(&zone->lock, flags);
9152 	for (order = 0; order < MAX_ORDER; order++) {
9153 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9154 		int page_order = buddy_order(page_head);
9155 
9156 		if (PageBuddy(page_head) && page_order >= order) {
9157 			unsigned long pfn_head = page_to_pfn(page_head);
9158 			int migratetype = get_pfnblock_migratetype(page_head,
9159 								   pfn_head);
9160 
9161 			del_page_from_free_list(page_head, zone, page_order);
9162 			break_down_buddy_pages(zone, page_head, page, 0,
9163 						page_order, migratetype);
9164 			ret = true;
9165 			break;
9166 		}
9167 		if (page_count(page_head) > 0)
9168 			break;
9169 	}
9170 	spin_unlock_irqrestore(&zone->lock, flags);
9171 	return ret;
9172 }
9173 #endif
9174