xref: /openbmc/linux/mm/page_alloc.c (revision 7835e98b2e3c66dba79cb0ff8ebb90a2fe030c29)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40 
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43 
44 /*
45  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46  * initializer cleaner
47  */
48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map);
50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
51 EXPORT_SYMBOL(node_possible_map);
52 struct pglist_data *pgdat_list __read_mostly;
53 unsigned long totalram_pages __read_mostly;
54 unsigned long totalhigh_pages __read_mostly;
55 long nr_swap_pages;
56 int percpu_pagelist_fraction;
57 
58 static void __free_pages_ok(struct page *page, unsigned int order);
59 
60 /*
61  * results with 256, 32 in the lowmem_reserve sysctl:
62  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63  *	1G machine -> (16M dma, 784M normal, 224M high)
64  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
67  *
68  * TBD: should special case ZONE_DMA32 machines here - in those we normally
69  * don't need any ZONE_NORMAL reservation
70  */
71 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
72 
73 EXPORT_SYMBOL(totalram_pages);
74 
75 /*
76  * Used by page_zone() to look up the address of the struct zone whose
77  * id is encoded in the upper bits of page->flags
78  */
79 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
80 EXPORT_SYMBOL(zone_table);
81 
82 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
83 int min_free_kbytes = 1024;
84 
85 unsigned long __initdata nr_kernel_pages;
86 unsigned long __initdata nr_all_pages;
87 
88 #ifdef CONFIG_DEBUG_VM
89 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
90 {
91 	int ret = 0;
92 	unsigned seq;
93 	unsigned long pfn = page_to_pfn(page);
94 
95 	do {
96 		seq = zone_span_seqbegin(zone);
97 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
98 			ret = 1;
99 		else if (pfn < zone->zone_start_pfn)
100 			ret = 1;
101 	} while (zone_span_seqretry(zone, seq));
102 
103 	return ret;
104 }
105 
106 static int page_is_consistent(struct zone *zone, struct page *page)
107 {
108 #ifdef CONFIG_HOLES_IN_ZONE
109 	if (!pfn_valid(page_to_pfn(page)))
110 		return 0;
111 #endif
112 	if (zone != page_zone(page))
113 		return 0;
114 
115 	return 1;
116 }
117 /*
118  * Temporary debugging check for pages not lying within a given zone.
119  */
120 static int bad_range(struct zone *zone, struct page *page)
121 {
122 	if (page_outside_zone_boundaries(zone, page))
123 		return 1;
124 	if (!page_is_consistent(zone, page))
125 		return 1;
126 
127 	return 0;
128 }
129 
130 #else
131 static inline int bad_range(struct zone *zone, struct page *page)
132 {
133 	return 0;
134 }
135 #endif
136 
137 static void bad_page(struct page *page)
138 {
139 	printk(KERN_EMERG "Bad page state in process '%s'\n"
140 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
142 		KERN_EMERG "Backtrace:\n",
143 		current->comm, page, (int)(2*sizeof(unsigned long)),
144 		(unsigned long)page->flags, page->mapping,
145 		page_mapcount(page), page_count(page));
146 	dump_stack();
147 	page->flags &= ~(1 << PG_lru	|
148 			1 << PG_private |
149 			1 << PG_locked	|
150 			1 << PG_active	|
151 			1 << PG_dirty	|
152 			1 << PG_reclaim |
153 			1 << PG_slab    |
154 			1 << PG_swapcache |
155 			1 << PG_writeback );
156 	set_page_count(page, 0);
157 	reset_page_mapcount(page);
158 	page->mapping = NULL;
159 	add_taint(TAINT_BAD_PAGE);
160 }
161 
162 /*
163  * Higher-order pages are called "compound pages".  They are structured thusly:
164  *
165  * The first PAGE_SIZE page is called the "head page".
166  *
167  * The remaining PAGE_SIZE pages are called "tail pages".
168  *
169  * All pages have PG_compound set.  All pages have their ->private pointing at
170  * the head page (even the head page has this).
171  *
172  * The first tail page's ->lru.next holds the address of the compound page's
173  * put_page() function.  Its ->lru.prev holds the order of allocation.
174  * This usage means that zero-order pages may not be compound.
175  */
176 
177 static void free_compound_page(struct page *page)
178 {
179 	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
180 }
181 
182 static void prep_compound_page(struct page *page, unsigned long order)
183 {
184 	int i;
185 	int nr_pages = 1 << order;
186 
187 	page[1].lru.next = (void *)free_compound_page;	/* set dtor */
188 	page[1].lru.prev = (void *)order;
189 	for (i = 0; i < nr_pages; i++) {
190 		struct page *p = page + i;
191 
192 		__SetPageCompound(p);
193 		set_page_private(p, (unsigned long)page);
194 	}
195 }
196 
197 static void destroy_compound_page(struct page *page, unsigned long order)
198 {
199 	int i;
200 	int nr_pages = 1 << order;
201 
202 	if (unlikely((unsigned long)page[1].lru.prev != order))
203 		bad_page(page);
204 
205 	for (i = 0; i < nr_pages; i++) {
206 		struct page *p = page + i;
207 
208 		if (unlikely(!PageCompound(p) |
209 				(page_private(p) != (unsigned long)page)))
210 			bad_page(page);
211 		__ClearPageCompound(p);
212 	}
213 }
214 
215 /*
216  * function for dealing with page's order in buddy system.
217  * zone->lock is already acquired when we use these.
218  * So, we don't need atomic page->flags operations here.
219  */
220 static inline unsigned long page_order(struct page *page) {
221 	return page_private(page);
222 }
223 
224 static inline void set_page_order(struct page *page, int order) {
225 	set_page_private(page, order);
226 	__SetPagePrivate(page);
227 }
228 
229 static inline void rmv_page_order(struct page *page)
230 {
231 	__ClearPagePrivate(page);
232 	set_page_private(page, 0);
233 }
234 
235 /*
236  * Locate the struct page for both the matching buddy in our
237  * pair (buddy1) and the combined O(n+1) page they form (page).
238  *
239  * 1) Any buddy B1 will have an order O twin B2 which satisfies
240  * the following equation:
241  *     B2 = B1 ^ (1 << O)
242  * For example, if the starting buddy (buddy2) is #8 its order
243  * 1 buddy is #10:
244  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
245  *
246  * 2) Any buddy B will have an order O+1 parent P which
247  * satisfies the following equation:
248  *     P = B & ~(1 << O)
249  *
250  * Assumption: *_mem_map is contigious at least up to MAX_ORDER
251  */
252 static inline struct page *
253 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
254 {
255 	unsigned long buddy_idx = page_idx ^ (1 << order);
256 
257 	return page + (buddy_idx - page_idx);
258 }
259 
260 static inline unsigned long
261 __find_combined_index(unsigned long page_idx, unsigned int order)
262 {
263 	return (page_idx & ~(1 << order));
264 }
265 
266 /*
267  * This function checks whether a page is free && is the buddy
268  * we can do coalesce a page and its buddy if
269  * (a) the buddy is not in a hole &&
270  * (b) the buddy is free &&
271  * (c) the buddy is on the buddy system &&
272  * (d) a page and its buddy have the same order.
273  * for recording page's order, we use page_private(page) and PG_private.
274  *
275  */
276 static inline int page_is_buddy(struct page *page, int order)
277 {
278 #ifdef CONFIG_HOLES_IN_ZONE
279 	if (!pfn_valid(page_to_pfn(page)))
280 		return 0;
281 #endif
282 
283        if (PagePrivate(page)           &&
284            (page_order(page) == order) &&
285             page_count(page) == 0)
286                return 1;
287        return 0;
288 }
289 
290 /*
291  * Freeing function for a buddy system allocator.
292  *
293  * The concept of a buddy system is to maintain direct-mapped table
294  * (containing bit values) for memory blocks of various "orders".
295  * The bottom level table contains the map for the smallest allocatable
296  * units of memory (here, pages), and each level above it describes
297  * pairs of units from the levels below, hence, "buddies".
298  * At a high level, all that happens here is marking the table entry
299  * at the bottom level available, and propagating the changes upward
300  * as necessary, plus some accounting needed to play nicely with other
301  * parts of the VM system.
302  * At each level, we keep a list of pages, which are heads of continuous
303  * free pages of length of (1 << order) and marked with PG_Private.Page's
304  * order is recorded in page_private(page) field.
305  * So when we are allocating or freeing one, we can derive the state of the
306  * other.  That is, if we allocate a small block, and both were
307  * free, the remainder of the region must be split into blocks.
308  * If a block is freed, and its buddy is also free, then this
309  * triggers coalescing into a block of larger size.
310  *
311  * -- wli
312  */
313 
314 static inline void __free_one_page(struct page *page,
315 		struct zone *zone, unsigned int order)
316 {
317 	unsigned long page_idx;
318 	int order_size = 1 << order;
319 
320 	if (unlikely(PageCompound(page)))
321 		destroy_compound_page(page, order);
322 
323 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
324 
325 	BUG_ON(page_idx & (order_size - 1));
326 	BUG_ON(bad_range(zone, page));
327 
328 	zone->free_pages += order_size;
329 	while (order < MAX_ORDER-1) {
330 		unsigned long combined_idx;
331 		struct free_area *area;
332 		struct page *buddy;
333 
334 		buddy = __page_find_buddy(page, page_idx, order);
335 		if (!page_is_buddy(buddy, order))
336 			break;		/* Move the buddy up one level. */
337 
338 		list_del(&buddy->lru);
339 		area = zone->free_area + order;
340 		area->nr_free--;
341 		rmv_page_order(buddy);
342 		combined_idx = __find_combined_index(page_idx, order);
343 		page = page + (combined_idx - page_idx);
344 		page_idx = combined_idx;
345 		order++;
346 	}
347 	set_page_order(page, order);
348 	list_add(&page->lru, &zone->free_area[order].free_list);
349 	zone->free_area[order].nr_free++;
350 }
351 
352 static inline int free_pages_check(struct page *page)
353 {
354 	if (unlikely(page_mapcount(page) |
355 		(page->mapping != NULL)  |
356 		(page_count(page) != 0)  |
357 		(page->flags & (
358 			1 << PG_lru	|
359 			1 << PG_private |
360 			1 << PG_locked	|
361 			1 << PG_active	|
362 			1 << PG_reclaim	|
363 			1 << PG_slab	|
364 			1 << PG_swapcache |
365 			1 << PG_writeback |
366 			1 << PG_reserved ))))
367 		bad_page(page);
368 	if (PageDirty(page))
369 		__ClearPageDirty(page);
370 	/*
371 	 * For now, we report if PG_reserved was found set, but do not
372 	 * clear it, and do not free the page.  But we shall soon need
373 	 * to do more, for when the ZERO_PAGE count wraps negative.
374 	 */
375 	return PageReserved(page);
376 }
377 
378 /*
379  * Frees a list of pages.
380  * Assumes all pages on list are in same zone, and of same order.
381  * count is the number of pages to free.
382  *
383  * If the zone was previously in an "all pages pinned" state then look to
384  * see if this freeing clears that state.
385  *
386  * And clear the zone's pages_scanned counter, to hold off the "all pages are
387  * pinned" detection logic.
388  */
389 static void free_pages_bulk(struct zone *zone, int count,
390 					struct list_head *list, int order)
391 {
392 	spin_lock(&zone->lock);
393 	zone->all_unreclaimable = 0;
394 	zone->pages_scanned = 0;
395 	while (count--) {
396 		struct page *page;
397 
398 		BUG_ON(list_empty(list));
399 		page = list_entry(list->prev, struct page, lru);
400 		/* have to delete it as __free_one_page list manipulates */
401 		list_del(&page->lru);
402 		__free_one_page(page, zone, order);
403 	}
404 	spin_unlock(&zone->lock);
405 }
406 
407 static void free_one_page(struct zone *zone, struct page *page, int order)
408 {
409 	LIST_HEAD(list);
410 	list_add(&page->lru, &list);
411 	free_pages_bulk(zone, 1, &list, order);
412 }
413 
414 static void __free_pages_ok(struct page *page, unsigned int order)
415 {
416 	unsigned long flags;
417 	int i;
418 	int reserved = 0;
419 
420 	arch_free_page(page, order);
421 	if (!PageHighMem(page))
422 		mutex_debug_check_no_locks_freed(page_address(page),
423 						 PAGE_SIZE<<order);
424 
425 	for (i = 0 ; i < (1 << order) ; ++i)
426 		reserved += free_pages_check(page + i);
427 	if (reserved)
428 		return;
429 
430 	kernel_map_pages(page, 1 << order, 0);
431 	local_irq_save(flags);
432 	__mod_page_state(pgfree, 1 << order);
433 	free_one_page(page_zone(page), page, order);
434 	local_irq_restore(flags);
435 }
436 
437 /*
438  * permit the bootmem allocator to evade page validation on high-order frees
439  */
440 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
441 {
442 	if (order == 0) {
443 		__ClearPageReserved(page);
444 		set_page_count(page, 0);
445 		set_page_refcounted(page);
446 		__free_page(page);
447 	} else {
448 		int loop;
449 
450 		prefetchw(page);
451 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
452 			struct page *p = &page[loop];
453 
454 			if (loop + 1 < BITS_PER_LONG)
455 				prefetchw(p + 1);
456 			__ClearPageReserved(p);
457 			set_page_count(p, 0);
458 		}
459 
460 		set_page_refcounted(page);
461 		__free_pages(page, order);
462 	}
463 }
464 
465 
466 /*
467  * The order of subdivision here is critical for the IO subsystem.
468  * Please do not alter this order without good reasons and regression
469  * testing. Specifically, as large blocks of memory are subdivided,
470  * the order in which smaller blocks are delivered depends on the order
471  * they're subdivided in this function. This is the primary factor
472  * influencing the order in which pages are delivered to the IO
473  * subsystem according to empirical testing, and this is also justified
474  * by considering the behavior of a buddy system containing a single
475  * large block of memory acted on by a series of small allocations.
476  * This behavior is a critical factor in sglist merging's success.
477  *
478  * -- wli
479  */
480 static inline void expand(struct zone *zone, struct page *page,
481  	int low, int high, struct free_area *area)
482 {
483 	unsigned long size = 1 << high;
484 
485 	while (high > low) {
486 		area--;
487 		high--;
488 		size >>= 1;
489 		BUG_ON(bad_range(zone, &page[size]));
490 		list_add(&page[size].lru, &area->free_list);
491 		area->nr_free++;
492 		set_page_order(&page[size], high);
493 	}
494 }
495 
496 /*
497  * This page is about to be returned from the page allocator
498  */
499 static int prep_new_page(struct page *page, int order)
500 {
501 	if (unlikely(page_mapcount(page) |
502 		(page->mapping != NULL)  |
503 		(page_count(page) != 0)  |
504 		(page->flags & (
505 			1 << PG_lru	|
506 			1 << PG_private	|
507 			1 << PG_locked	|
508 			1 << PG_active	|
509 			1 << PG_dirty	|
510 			1 << PG_reclaim	|
511 			1 << PG_slab    |
512 			1 << PG_swapcache |
513 			1 << PG_writeback |
514 			1 << PG_reserved ))))
515 		bad_page(page);
516 
517 	/*
518 	 * For now, we report if PG_reserved was found set, but do not
519 	 * clear it, and do not allocate the page: as a safety net.
520 	 */
521 	if (PageReserved(page))
522 		return 1;
523 
524 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
525 			1 << PG_referenced | 1 << PG_arch_1 |
526 			1 << PG_checked | 1 << PG_mappedtodisk);
527 	set_page_private(page, 0);
528 	set_page_refcounted(page);
529 	kernel_map_pages(page, 1 << order, 1);
530 	return 0;
531 }
532 
533 /*
534  * Do the hard work of removing an element from the buddy allocator.
535  * Call me with the zone->lock already held.
536  */
537 static struct page *__rmqueue(struct zone *zone, unsigned int order)
538 {
539 	struct free_area * area;
540 	unsigned int current_order;
541 	struct page *page;
542 
543 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
544 		area = zone->free_area + current_order;
545 		if (list_empty(&area->free_list))
546 			continue;
547 
548 		page = list_entry(area->free_list.next, struct page, lru);
549 		list_del(&page->lru);
550 		rmv_page_order(page);
551 		area->nr_free--;
552 		zone->free_pages -= 1UL << order;
553 		expand(zone, page, order, current_order, area);
554 		return page;
555 	}
556 
557 	return NULL;
558 }
559 
560 /*
561  * Obtain a specified number of elements from the buddy allocator, all under
562  * a single hold of the lock, for efficiency.  Add them to the supplied list.
563  * Returns the number of new pages which were placed at *list.
564  */
565 static int rmqueue_bulk(struct zone *zone, unsigned int order,
566 			unsigned long count, struct list_head *list)
567 {
568 	int i;
569 
570 	spin_lock(&zone->lock);
571 	for (i = 0; i < count; ++i) {
572 		struct page *page = __rmqueue(zone, order);
573 		if (unlikely(page == NULL))
574 			break;
575 		list_add_tail(&page->lru, list);
576 	}
577 	spin_unlock(&zone->lock);
578 	return i;
579 }
580 
581 #ifdef CONFIG_NUMA
582 /*
583  * Called from the slab reaper to drain pagesets on a particular node that
584  * belong to the currently executing processor.
585  */
586 void drain_node_pages(int nodeid)
587 {
588 	int i, z;
589 	unsigned long flags;
590 
591 	local_irq_save(flags);
592 	for (z = 0; z < MAX_NR_ZONES; z++) {
593 		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
594 		struct per_cpu_pageset *pset;
595 
596 		pset = zone_pcp(zone, smp_processor_id());
597 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
598 			struct per_cpu_pages *pcp;
599 
600 			pcp = &pset->pcp[i];
601 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
602 			pcp->count = 0;
603 		}
604 	}
605 	local_irq_restore(flags);
606 }
607 #endif
608 
609 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
610 static void __drain_pages(unsigned int cpu)
611 {
612 	unsigned long flags;
613 	struct zone *zone;
614 	int i;
615 
616 	for_each_zone(zone) {
617 		struct per_cpu_pageset *pset;
618 
619 		pset = zone_pcp(zone, cpu);
620 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
621 			struct per_cpu_pages *pcp;
622 
623 			pcp = &pset->pcp[i];
624 			local_irq_save(flags);
625 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
626 			pcp->count = 0;
627 			local_irq_restore(flags);
628 		}
629 	}
630 }
631 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
632 
633 #ifdef CONFIG_PM
634 
635 void mark_free_pages(struct zone *zone)
636 {
637 	unsigned long zone_pfn, flags;
638 	int order;
639 	struct list_head *curr;
640 
641 	if (!zone->spanned_pages)
642 		return;
643 
644 	spin_lock_irqsave(&zone->lock, flags);
645 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
646 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
647 
648 	for (order = MAX_ORDER - 1; order >= 0; --order)
649 		list_for_each(curr, &zone->free_area[order].free_list) {
650 			unsigned long start_pfn, i;
651 
652 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
653 
654 			for (i=0; i < (1<<order); i++)
655 				SetPageNosaveFree(pfn_to_page(start_pfn+i));
656 	}
657 	spin_unlock_irqrestore(&zone->lock, flags);
658 }
659 
660 /*
661  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
662  */
663 void drain_local_pages(void)
664 {
665 	unsigned long flags;
666 
667 	local_irq_save(flags);
668 	__drain_pages(smp_processor_id());
669 	local_irq_restore(flags);
670 }
671 #endif /* CONFIG_PM */
672 
673 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
674 {
675 #ifdef CONFIG_NUMA
676 	pg_data_t *pg = z->zone_pgdat;
677 	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
678 	struct per_cpu_pageset *p;
679 
680 	p = zone_pcp(z, cpu);
681 	if (pg == orig) {
682 		p->numa_hit++;
683 	} else {
684 		p->numa_miss++;
685 		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
686 	}
687 	if (pg == NODE_DATA(numa_node_id()))
688 		p->local_node++;
689 	else
690 		p->other_node++;
691 #endif
692 }
693 
694 /*
695  * Free a 0-order page
696  */
697 static void fastcall free_hot_cold_page(struct page *page, int cold)
698 {
699 	struct zone *zone = page_zone(page);
700 	struct per_cpu_pages *pcp;
701 	unsigned long flags;
702 
703 	arch_free_page(page, 0);
704 
705 	if (PageAnon(page))
706 		page->mapping = NULL;
707 	if (free_pages_check(page))
708 		return;
709 
710 	kernel_map_pages(page, 1, 0);
711 
712 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
713 	local_irq_save(flags);
714 	__inc_page_state(pgfree);
715 	list_add(&page->lru, &pcp->list);
716 	pcp->count++;
717 	if (pcp->count >= pcp->high) {
718 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
719 		pcp->count -= pcp->batch;
720 	}
721 	local_irq_restore(flags);
722 	put_cpu();
723 }
724 
725 void fastcall free_hot_page(struct page *page)
726 {
727 	free_hot_cold_page(page, 0);
728 }
729 
730 void fastcall free_cold_page(struct page *page)
731 {
732 	free_hot_cold_page(page, 1);
733 }
734 
735 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
736 {
737 	int i;
738 
739 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
740 	for(i = 0; i < (1 << order); i++)
741 		clear_highpage(page + i);
742 }
743 
744 /*
745  * split_page takes a non-compound higher-order page, and splits it into
746  * n (1<<order) sub-pages: page[0..n]
747  * Each sub-page must be freed individually.
748  *
749  * Note: this is probably too low level an operation for use in drivers.
750  * Please consult with lkml before using this in your driver.
751  */
752 void split_page(struct page *page, unsigned int order)
753 {
754 	int i;
755 
756 	BUG_ON(PageCompound(page));
757 	BUG_ON(!page_count(page));
758 	for (i = 1; i < (1 << order); i++)
759 		set_page_refcounted(page + i);
760 }
761 
762 /*
763  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
764  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
765  * or two.
766  */
767 static struct page *buffered_rmqueue(struct zonelist *zonelist,
768 			struct zone *zone, int order, gfp_t gfp_flags)
769 {
770 	unsigned long flags;
771 	struct page *page;
772 	int cold = !!(gfp_flags & __GFP_COLD);
773 	int cpu;
774 
775 again:
776 	cpu  = get_cpu();
777 	if (likely(order == 0)) {
778 		struct per_cpu_pages *pcp;
779 
780 		pcp = &zone_pcp(zone, cpu)->pcp[cold];
781 		local_irq_save(flags);
782 		if (!pcp->count) {
783 			pcp->count += rmqueue_bulk(zone, 0,
784 						pcp->batch, &pcp->list);
785 			if (unlikely(!pcp->count))
786 				goto failed;
787 		}
788 		page = list_entry(pcp->list.next, struct page, lru);
789 		list_del(&page->lru);
790 		pcp->count--;
791 	} else {
792 		spin_lock_irqsave(&zone->lock, flags);
793 		page = __rmqueue(zone, order);
794 		spin_unlock(&zone->lock);
795 		if (!page)
796 			goto failed;
797 	}
798 
799 	__mod_page_state_zone(zone, pgalloc, 1 << order);
800 	zone_statistics(zonelist, zone, cpu);
801 	local_irq_restore(flags);
802 	put_cpu();
803 
804 	BUG_ON(bad_range(zone, page));
805 	if (prep_new_page(page, order))
806 		goto again;
807 
808 	if (gfp_flags & __GFP_ZERO)
809 		prep_zero_page(page, order, gfp_flags);
810 
811 	if (order && (gfp_flags & __GFP_COMP))
812 		prep_compound_page(page, order);
813 	return page;
814 
815 failed:
816 	local_irq_restore(flags);
817 	put_cpu();
818 	return NULL;
819 }
820 
821 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
822 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
823 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
824 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
825 #define ALLOC_HARDER		0x10 /* try to alloc harder */
826 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
827 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
828 
829 /*
830  * Return 1 if free pages are above 'mark'. This takes into account the order
831  * of the allocation.
832  */
833 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
834 		      int classzone_idx, int alloc_flags)
835 {
836 	/* free_pages my go negative - that's OK */
837 	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
838 	int o;
839 
840 	if (alloc_flags & ALLOC_HIGH)
841 		min -= min / 2;
842 	if (alloc_flags & ALLOC_HARDER)
843 		min -= min / 4;
844 
845 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
846 		return 0;
847 	for (o = 0; o < order; o++) {
848 		/* At the next order, this order's pages become unavailable */
849 		free_pages -= z->free_area[o].nr_free << o;
850 
851 		/* Require fewer higher order pages to be free */
852 		min >>= 1;
853 
854 		if (free_pages <= min)
855 			return 0;
856 	}
857 	return 1;
858 }
859 
860 /*
861  * get_page_from_freeliest goes through the zonelist trying to allocate
862  * a page.
863  */
864 static struct page *
865 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
866 		struct zonelist *zonelist, int alloc_flags)
867 {
868 	struct zone **z = zonelist->zones;
869 	struct page *page = NULL;
870 	int classzone_idx = zone_idx(*z);
871 
872 	/*
873 	 * Go through the zonelist once, looking for a zone with enough free.
874 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
875 	 */
876 	do {
877 		if ((alloc_flags & ALLOC_CPUSET) &&
878 				!cpuset_zone_allowed(*z, gfp_mask))
879 			continue;
880 
881 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
882 			unsigned long mark;
883 			if (alloc_flags & ALLOC_WMARK_MIN)
884 				mark = (*z)->pages_min;
885 			else if (alloc_flags & ALLOC_WMARK_LOW)
886 				mark = (*z)->pages_low;
887 			else
888 				mark = (*z)->pages_high;
889 			if (!zone_watermark_ok(*z, order, mark,
890 				    classzone_idx, alloc_flags))
891 				if (!zone_reclaim_mode ||
892 				    !zone_reclaim(*z, gfp_mask, order))
893 					continue;
894 		}
895 
896 		page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
897 		if (page) {
898 			break;
899 		}
900 	} while (*(++z) != NULL);
901 	return page;
902 }
903 
904 /*
905  * This is the 'heart' of the zoned buddy allocator.
906  */
907 struct page * fastcall
908 __alloc_pages(gfp_t gfp_mask, unsigned int order,
909 		struct zonelist *zonelist)
910 {
911 	const gfp_t wait = gfp_mask & __GFP_WAIT;
912 	struct zone **z;
913 	struct page *page;
914 	struct reclaim_state reclaim_state;
915 	struct task_struct *p = current;
916 	int do_retry;
917 	int alloc_flags;
918 	int did_some_progress;
919 
920 	might_sleep_if(wait);
921 
922 restart:
923 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
924 
925 	if (unlikely(*z == NULL)) {
926 		/* Should this ever happen?? */
927 		return NULL;
928 	}
929 
930 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
931 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
932 	if (page)
933 		goto got_pg;
934 
935 	do {
936 		wakeup_kswapd(*z, order);
937 	} while (*(++z));
938 
939 	/*
940 	 * OK, we're below the kswapd watermark and have kicked background
941 	 * reclaim. Now things get more complex, so set up alloc_flags according
942 	 * to how we want to proceed.
943 	 *
944 	 * The caller may dip into page reserves a bit more if the caller
945 	 * cannot run direct reclaim, or if the caller has realtime scheduling
946 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
947 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
948 	 */
949 	alloc_flags = ALLOC_WMARK_MIN;
950 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
951 		alloc_flags |= ALLOC_HARDER;
952 	if (gfp_mask & __GFP_HIGH)
953 		alloc_flags |= ALLOC_HIGH;
954 	alloc_flags |= ALLOC_CPUSET;
955 
956 	/*
957 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
958 	 * coming from realtime tasks go deeper into reserves.
959 	 *
960 	 * This is the last chance, in general, before the goto nopage.
961 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
962 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
963 	 */
964 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
965 	if (page)
966 		goto got_pg;
967 
968 	/* This allocation should allow future memory freeing. */
969 
970 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
971 			&& !in_interrupt()) {
972 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
973 nofail_alloc:
974 			/* go through the zonelist yet again, ignoring mins */
975 			page = get_page_from_freelist(gfp_mask, order,
976 				zonelist, ALLOC_NO_WATERMARKS);
977 			if (page)
978 				goto got_pg;
979 			if (gfp_mask & __GFP_NOFAIL) {
980 				blk_congestion_wait(WRITE, HZ/50);
981 				goto nofail_alloc;
982 			}
983 		}
984 		goto nopage;
985 	}
986 
987 	/* Atomic allocations - we can't balance anything */
988 	if (!wait)
989 		goto nopage;
990 
991 rebalance:
992 	cond_resched();
993 
994 	/* We now go into synchronous reclaim */
995 	cpuset_memory_pressure_bump();
996 	p->flags |= PF_MEMALLOC;
997 	reclaim_state.reclaimed_slab = 0;
998 	p->reclaim_state = &reclaim_state;
999 
1000 	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1001 
1002 	p->reclaim_state = NULL;
1003 	p->flags &= ~PF_MEMALLOC;
1004 
1005 	cond_resched();
1006 
1007 	if (likely(did_some_progress)) {
1008 		page = get_page_from_freelist(gfp_mask, order,
1009 						zonelist, alloc_flags);
1010 		if (page)
1011 			goto got_pg;
1012 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1013 		/*
1014 		 * Go through the zonelist yet one more time, keep
1015 		 * very high watermark here, this is only to catch
1016 		 * a parallel oom killing, we must fail if we're still
1017 		 * under heavy pressure.
1018 		 */
1019 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1020 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1021 		if (page)
1022 			goto got_pg;
1023 
1024 		out_of_memory(zonelist, gfp_mask, order);
1025 		goto restart;
1026 	}
1027 
1028 	/*
1029 	 * Don't let big-order allocations loop unless the caller explicitly
1030 	 * requests that.  Wait for some write requests to complete then retry.
1031 	 *
1032 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1033 	 * <= 3, but that may not be true in other implementations.
1034 	 */
1035 	do_retry = 0;
1036 	if (!(gfp_mask & __GFP_NORETRY)) {
1037 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1038 			do_retry = 1;
1039 		if (gfp_mask & __GFP_NOFAIL)
1040 			do_retry = 1;
1041 	}
1042 	if (do_retry) {
1043 		blk_congestion_wait(WRITE, HZ/50);
1044 		goto rebalance;
1045 	}
1046 
1047 nopage:
1048 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1049 		printk(KERN_WARNING "%s: page allocation failure."
1050 			" order:%d, mode:0x%x\n",
1051 			p->comm, order, gfp_mask);
1052 		dump_stack();
1053 		show_mem();
1054 	}
1055 got_pg:
1056 	return page;
1057 }
1058 
1059 EXPORT_SYMBOL(__alloc_pages);
1060 
1061 /*
1062  * Common helper functions.
1063  */
1064 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1065 {
1066 	struct page * page;
1067 	page = alloc_pages(gfp_mask, order);
1068 	if (!page)
1069 		return 0;
1070 	return (unsigned long) page_address(page);
1071 }
1072 
1073 EXPORT_SYMBOL(__get_free_pages);
1074 
1075 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1076 {
1077 	struct page * page;
1078 
1079 	/*
1080 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1081 	 * a highmem page
1082 	 */
1083 	BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1084 
1085 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1086 	if (page)
1087 		return (unsigned long) page_address(page);
1088 	return 0;
1089 }
1090 
1091 EXPORT_SYMBOL(get_zeroed_page);
1092 
1093 void __pagevec_free(struct pagevec *pvec)
1094 {
1095 	int i = pagevec_count(pvec);
1096 
1097 	while (--i >= 0)
1098 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1099 }
1100 
1101 fastcall void __free_pages(struct page *page, unsigned int order)
1102 {
1103 	if (put_page_testzero(page)) {
1104 		if (order == 0)
1105 			free_hot_page(page);
1106 		else
1107 			__free_pages_ok(page, order);
1108 	}
1109 }
1110 
1111 EXPORT_SYMBOL(__free_pages);
1112 
1113 fastcall void free_pages(unsigned long addr, unsigned int order)
1114 {
1115 	if (addr != 0) {
1116 		BUG_ON(!virt_addr_valid((void *)addr));
1117 		__free_pages(virt_to_page((void *)addr), order);
1118 	}
1119 }
1120 
1121 EXPORT_SYMBOL(free_pages);
1122 
1123 /*
1124  * Total amount of free (allocatable) RAM:
1125  */
1126 unsigned int nr_free_pages(void)
1127 {
1128 	unsigned int sum = 0;
1129 	struct zone *zone;
1130 
1131 	for_each_zone(zone)
1132 		sum += zone->free_pages;
1133 
1134 	return sum;
1135 }
1136 
1137 EXPORT_SYMBOL(nr_free_pages);
1138 
1139 #ifdef CONFIG_NUMA
1140 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1141 {
1142 	unsigned int i, sum = 0;
1143 
1144 	for (i = 0; i < MAX_NR_ZONES; i++)
1145 		sum += pgdat->node_zones[i].free_pages;
1146 
1147 	return sum;
1148 }
1149 #endif
1150 
1151 static unsigned int nr_free_zone_pages(int offset)
1152 {
1153 	/* Just pick one node, since fallback list is circular */
1154 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1155 	unsigned int sum = 0;
1156 
1157 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1158 	struct zone **zonep = zonelist->zones;
1159 	struct zone *zone;
1160 
1161 	for (zone = *zonep++; zone; zone = *zonep++) {
1162 		unsigned long size = zone->present_pages;
1163 		unsigned long high = zone->pages_high;
1164 		if (size > high)
1165 			sum += size - high;
1166 	}
1167 
1168 	return sum;
1169 }
1170 
1171 /*
1172  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1173  */
1174 unsigned int nr_free_buffer_pages(void)
1175 {
1176 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1177 }
1178 
1179 /*
1180  * Amount of free RAM allocatable within all zones
1181  */
1182 unsigned int nr_free_pagecache_pages(void)
1183 {
1184 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1185 }
1186 
1187 #ifdef CONFIG_HIGHMEM
1188 unsigned int nr_free_highpages (void)
1189 {
1190 	pg_data_t *pgdat;
1191 	unsigned int pages = 0;
1192 
1193 	for_each_pgdat(pgdat)
1194 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1195 
1196 	return pages;
1197 }
1198 #endif
1199 
1200 #ifdef CONFIG_NUMA
1201 static void show_node(struct zone *zone)
1202 {
1203 	printk("Node %d ", zone->zone_pgdat->node_id);
1204 }
1205 #else
1206 #define show_node(zone)	do { } while (0)
1207 #endif
1208 
1209 /*
1210  * Accumulate the page_state information across all CPUs.
1211  * The result is unavoidably approximate - it can change
1212  * during and after execution of this function.
1213  */
1214 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1215 
1216 atomic_t nr_pagecache = ATOMIC_INIT(0);
1217 EXPORT_SYMBOL(nr_pagecache);
1218 #ifdef CONFIG_SMP
1219 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1220 #endif
1221 
1222 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1223 {
1224 	unsigned cpu;
1225 
1226 	memset(ret, 0, nr * sizeof(unsigned long));
1227 	cpus_and(*cpumask, *cpumask, cpu_online_map);
1228 
1229 	for_each_cpu_mask(cpu, *cpumask) {
1230 		unsigned long *in;
1231 		unsigned long *out;
1232 		unsigned off;
1233 		unsigned next_cpu;
1234 
1235 		in = (unsigned long *)&per_cpu(page_states, cpu);
1236 
1237 		next_cpu = next_cpu(cpu, *cpumask);
1238 		if (likely(next_cpu < NR_CPUS))
1239 			prefetch(&per_cpu(page_states, next_cpu));
1240 
1241 		out = (unsigned long *)ret;
1242 		for (off = 0; off < nr; off++)
1243 			*out++ += *in++;
1244 	}
1245 }
1246 
1247 void get_page_state_node(struct page_state *ret, int node)
1248 {
1249 	int nr;
1250 	cpumask_t mask = node_to_cpumask(node);
1251 
1252 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1253 	nr /= sizeof(unsigned long);
1254 
1255 	__get_page_state(ret, nr+1, &mask);
1256 }
1257 
1258 void get_page_state(struct page_state *ret)
1259 {
1260 	int nr;
1261 	cpumask_t mask = CPU_MASK_ALL;
1262 
1263 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1264 	nr /= sizeof(unsigned long);
1265 
1266 	__get_page_state(ret, nr + 1, &mask);
1267 }
1268 
1269 void get_full_page_state(struct page_state *ret)
1270 {
1271 	cpumask_t mask = CPU_MASK_ALL;
1272 
1273 	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1274 }
1275 
1276 unsigned long read_page_state_offset(unsigned long offset)
1277 {
1278 	unsigned long ret = 0;
1279 	int cpu;
1280 
1281 	for_each_online_cpu(cpu) {
1282 		unsigned long in;
1283 
1284 		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1285 		ret += *((unsigned long *)in);
1286 	}
1287 	return ret;
1288 }
1289 
1290 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1291 {
1292 	void *ptr;
1293 
1294 	ptr = &__get_cpu_var(page_states);
1295 	*(unsigned long *)(ptr + offset) += delta;
1296 }
1297 EXPORT_SYMBOL(__mod_page_state_offset);
1298 
1299 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1300 {
1301 	unsigned long flags;
1302 	void *ptr;
1303 
1304 	local_irq_save(flags);
1305 	ptr = &__get_cpu_var(page_states);
1306 	*(unsigned long *)(ptr + offset) += delta;
1307 	local_irq_restore(flags);
1308 }
1309 EXPORT_SYMBOL(mod_page_state_offset);
1310 
1311 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1312 			unsigned long *free, struct pglist_data *pgdat)
1313 {
1314 	struct zone *zones = pgdat->node_zones;
1315 	int i;
1316 
1317 	*active = 0;
1318 	*inactive = 0;
1319 	*free = 0;
1320 	for (i = 0; i < MAX_NR_ZONES; i++) {
1321 		*active += zones[i].nr_active;
1322 		*inactive += zones[i].nr_inactive;
1323 		*free += zones[i].free_pages;
1324 	}
1325 }
1326 
1327 void get_zone_counts(unsigned long *active,
1328 		unsigned long *inactive, unsigned long *free)
1329 {
1330 	struct pglist_data *pgdat;
1331 
1332 	*active = 0;
1333 	*inactive = 0;
1334 	*free = 0;
1335 	for_each_pgdat(pgdat) {
1336 		unsigned long l, m, n;
1337 		__get_zone_counts(&l, &m, &n, pgdat);
1338 		*active += l;
1339 		*inactive += m;
1340 		*free += n;
1341 	}
1342 }
1343 
1344 void si_meminfo(struct sysinfo *val)
1345 {
1346 	val->totalram = totalram_pages;
1347 	val->sharedram = 0;
1348 	val->freeram = nr_free_pages();
1349 	val->bufferram = nr_blockdev_pages();
1350 #ifdef CONFIG_HIGHMEM
1351 	val->totalhigh = totalhigh_pages;
1352 	val->freehigh = nr_free_highpages();
1353 #else
1354 	val->totalhigh = 0;
1355 	val->freehigh = 0;
1356 #endif
1357 	val->mem_unit = PAGE_SIZE;
1358 }
1359 
1360 EXPORT_SYMBOL(si_meminfo);
1361 
1362 #ifdef CONFIG_NUMA
1363 void si_meminfo_node(struct sysinfo *val, int nid)
1364 {
1365 	pg_data_t *pgdat = NODE_DATA(nid);
1366 
1367 	val->totalram = pgdat->node_present_pages;
1368 	val->freeram = nr_free_pages_pgdat(pgdat);
1369 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1370 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1371 	val->mem_unit = PAGE_SIZE;
1372 }
1373 #endif
1374 
1375 #define K(x) ((x) << (PAGE_SHIFT-10))
1376 
1377 /*
1378  * Show free area list (used inside shift_scroll-lock stuff)
1379  * We also calculate the percentage fragmentation. We do this by counting the
1380  * memory on each free list with the exception of the first item on the list.
1381  */
1382 void show_free_areas(void)
1383 {
1384 	struct page_state ps;
1385 	int cpu, temperature;
1386 	unsigned long active;
1387 	unsigned long inactive;
1388 	unsigned long free;
1389 	struct zone *zone;
1390 
1391 	for_each_zone(zone) {
1392 		show_node(zone);
1393 		printk("%s per-cpu:", zone->name);
1394 
1395 		if (!populated_zone(zone)) {
1396 			printk(" empty\n");
1397 			continue;
1398 		} else
1399 			printk("\n");
1400 
1401 		for_each_online_cpu(cpu) {
1402 			struct per_cpu_pageset *pageset;
1403 
1404 			pageset = zone_pcp(zone, cpu);
1405 
1406 			for (temperature = 0; temperature < 2; temperature++)
1407 				printk("cpu %d %s: high %d, batch %d used:%d\n",
1408 					cpu,
1409 					temperature ? "cold" : "hot",
1410 					pageset->pcp[temperature].high,
1411 					pageset->pcp[temperature].batch,
1412 					pageset->pcp[temperature].count);
1413 		}
1414 	}
1415 
1416 	get_page_state(&ps);
1417 	get_zone_counts(&active, &inactive, &free);
1418 
1419 	printk("Free pages: %11ukB (%ukB HighMem)\n",
1420 		K(nr_free_pages()),
1421 		K(nr_free_highpages()));
1422 
1423 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1424 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1425 		active,
1426 		inactive,
1427 		ps.nr_dirty,
1428 		ps.nr_writeback,
1429 		ps.nr_unstable,
1430 		nr_free_pages(),
1431 		ps.nr_slab,
1432 		ps.nr_mapped,
1433 		ps.nr_page_table_pages);
1434 
1435 	for_each_zone(zone) {
1436 		int i;
1437 
1438 		show_node(zone);
1439 		printk("%s"
1440 			" free:%lukB"
1441 			" min:%lukB"
1442 			" low:%lukB"
1443 			" high:%lukB"
1444 			" active:%lukB"
1445 			" inactive:%lukB"
1446 			" present:%lukB"
1447 			" pages_scanned:%lu"
1448 			" all_unreclaimable? %s"
1449 			"\n",
1450 			zone->name,
1451 			K(zone->free_pages),
1452 			K(zone->pages_min),
1453 			K(zone->pages_low),
1454 			K(zone->pages_high),
1455 			K(zone->nr_active),
1456 			K(zone->nr_inactive),
1457 			K(zone->present_pages),
1458 			zone->pages_scanned,
1459 			(zone->all_unreclaimable ? "yes" : "no")
1460 			);
1461 		printk("lowmem_reserve[]:");
1462 		for (i = 0; i < MAX_NR_ZONES; i++)
1463 			printk(" %lu", zone->lowmem_reserve[i]);
1464 		printk("\n");
1465 	}
1466 
1467 	for_each_zone(zone) {
1468  		unsigned long nr, flags, order, total = 0;
1469 
1470 		show_node(zone);
1471 		printk("%s: ", zone->name);
1472 		if (!populated_zone(zone)) {
1473 			printk("empty\n");
1474 			continue;
1475 		}
1476 
1477 		spin_lock_irqsave(&zone->lock, flags);
1478 		for (order = 0; order < MAX_ORDER; order++) {
1479 			nr = zone->free_area[order].nr_free;
1480 			total += nr << order;
1481 			printk("%lu*%lukB ", nr, K(1UL) << order);
1482 		}
1483 		spin_unlock_irqrestore(&zone->lock, flags);
1484 		printk("= %lukB\n", K(total));
1485 	}
1486 
1487 	show_swap_cache_info();
1488 }
1489 
1490 /*
1491  * Builds allocation fallback zone lists.
1492  *
1493  * Add all populated zones of a node to the zonelist.
1494  */
1495 static int __init build_zonelists_node(pg_data_t *pgdat,
1496 			struct zonelist *zonelist, int nr_zones, int zone_type)
1497 {
1498 	struct zone *zone;
1499 
1500 	BUG_ON(zone_type > ZONE_HIGHMEM);
1501 
1502 	do {
1503 		zone = pgdat->node_zones + zone_type;
1504 		if (populated_zone(zone)) {
1505 #ifndef CONFIG_HIGHMEM
1506 			BUG_ON(zone_type > ZONE_NORMAL);
1507 #endif
1508 			zonelist->zones[nr_zones++] = zone;
1509 			check_highest_zone(zone_type);
1510 		}
1511 		zone_type--;
1512 
1513 	} while (zone_type >= 0);
1514 	return nr_zones;
1515 }
1516 
1517 static inline int highest_zone(int zone_bits)
1518 {
1519 	int res = ZONE_NORMAL;
1520 	if (zone_bits & (__force int)__GFP_HIGHMEM)
1521 		res = ZONE_HIGHMEM;
1522 	if (zone_bits & (__force int)__GFP_DMA32)
1523 		res = ZONE_DMA32;
1524 	if (zone_bits & (__force int)__GFP_DMA)
1525 		res = ZONE_DMA;
1526 	return res;
1527 }
1528 
1529 #ifdef CONFIG_NUMA
1530 #define MAX_NODE_LOAD (num_online_nodes())
1531 static int __initdata node_load[MAX_NUMNODES];
1532 /**
1533  * find_next_best_node - find the next node that should appear in a given node's fallback list
1534  * @node: node whose fallback list we're appending
1535  * @used_node_mask: nodemask_t of already used nodes
1536  *
1537  * We use a number of factors to determine which is the next node that should
1538  * appear on a given node's fallback list.  The node should not have appeared
1539  * already in @node's fallback list, and it should be the next closest node
1540  * according to the distance array (which contains arbitrary distance values
1541  * from each node to each node in the system), and should also prefer nodes
1542  * with no CPUs, since presumably they'll have very little allocation pressure
1543  * on them otherwise.
1544  * It returns -1 if no node is found.
1545  */
1546 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1547 {
1548 	int n, val;
1549 	int min_val = INT_MAX;
1550 	int best_node = -1;
1551 
1552 	/* Use the local node if we haven't already */
1553 	if (!node_isset(node, *used_node_mask)) {
1554 		node_set(node, *used_node_mask);
1555 		return node;
1556 	}
1557 
1558 	for_each_online_node(n) {
1559 		cpumask_t tmp;
1560 
1561 		/* Don't want a node to appear more than once */
1562 		if (node_isset(n, *used_node_mask))
1563 			continue;
1564 
1565 		/* Use the distance array to find the distance */
1566 		val = node_distance(node, n);
1567 
1568 		/* Penalize nodes under us ("prefer the next node") */
1569 		val += (n < node);
1570 
1571 		/* Give preference to headless and unused nodes */
1572 		tmp = node_to_cpumask(n);
1573 		if (!cpus_empty(tmp))
1574 			val += PENALTY_FOR_NODE_WITH_CPUS;
1575 
1576 		/* Slight preference for less loaded node */
1577 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1578 		val += node_load[n];
1579 
1580 		if (val < min_val) {
1581 			min_val = val;
1582 			best_node = n;
1583 		}
1584 	}
1585 
1586 	if (best_node >= 0)
1587 		node_set(best_node, *used_node_mask);
1588 
1589 	return best_node;
1590 }
1591 
1592 static void __init build_zonelists(pg_data_t *pgdat)
1593 {
1594 	int i, j, k, node, local_node;
1595 	int prev_node, load;
1596 	struct zonelist *zonelist;
1597 	nodemask_t used_mask;
1598 
1599 	/* initialize zonelists */
1600 	for (i = 0; i < GFP_ZONETYPES; i++) {
1601 		zonelist = pgdat->node_zonelists + i;
1602 		zonelist->zones[0] = NULL;
1603 	}
1604 
1605 	/* NUMA-aware ordering of nodes */
1606 	local_node = pgdat->node_id;
1607 	load = num_online_nodes();
1608 	prev_node = local_node;
1609 	nodes_clear(used_mask);
1610 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1611 		int distance = node_distance(local_node, node);
1612 
1613 		/*
1614 		 * If another node is sufficiently far away then it is better
1615 		 * to reclaim pages in a zone before going off node.
1616 		 */
1617 		if (distance > RECLAIM_DISTANCE)
1618 			zone_reclaim_mode = 1;
1619 
1620 		/*
1621 		 * We don't want to pressure a particular node.
1622 		 * So adding penalty to the first node in same
1623 		 * distance group to make it round-robin.
1624 		 */
1625 
1626 		if (distance != node_distance(local_node, prev_node))
1627 			node_load[node] += load;
1628 		prev_node = node;
1629 		load--;
1630 		for (i = 0; i < GFP_ZONETYPES; i++) {
1631 			zonelist = pgdat->node_zonelists + i;
1632 			for (j = 0; zonelist->zones[j] != NULL; j++);
1633 
1634 			k = highest_zone(i);
1635 
1636 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1637 			zonelist->zones[j] = NULL;
1638 		}
1639 	}
1640 }
1641 
1642 #else	/* CONFIG_NUMA */
1643 
1644 static void __init build_zonelists(pg_data_t *pgdat)
1645 {
1646 	int i, j, k, node, local_node;
1647 
1648 	local_node = pgdat->node_id;
1649 	for (i = 0; i < GFP_ZONETYPES; i++) {
1650 		struct zonelist *zonelist;
1651 
1652 		zonelist = pgdat->node_zonelists + i;
1653 
1654 		j = 0;
1655 		k = highest_zone(i);
1656  		j = build_zonelists_node(pgdat, zonelist, j, k);
1657  		/*
1658  		 * Now we build the zonelist so that it contains the zones
1659  		 * of all the other nodes.
1660  		 * We don't want to pressure a particular node, so when
1661  		 * building the zones for node N, we make sure that the
1662  		 * zones coming right after the local ones are those from
1663  		 * node N+1 (modulo N)
1664  		 */
1665 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1666 			if (!node_online(node))
1667 				continue;
1668 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1669 		}
1670 		for (node = 0; node < local_node; node++) {
1671 			if (!node_online(node))
1672 				continue;
1673 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1674 		}
1675 
1676 		zonelist->zones[j] = NULL;
1677 	}
1678 }
1679 
1680 #endif	/* CONFIG_NUMA */
1681 
1682 void __init build_all_zonelists(void)
1683 {
1684 	int i;
1685 
1686 	for_each_online_node(i)
1687 		build_zonelists(NODE_DATA(i));
1688 	printk("Built %i zonelists\n", num_online_nodes());
1689 	cpuset_init_current_mems_allowed();
1690 }
1691 
1692 /*
1693  * Helper functions to size the waitqueue hash table.
1694  * Essentially these want to choose hash table sizes sufficiently
1695  * large so that collisions trying to wait on pages are rare.
1696  * But in fact, the number of active page waitqueues on typical
1697  * systems is ridiculously low, less than 200. So this is even
1698  * conservative, even though it seems large.
1699  *
1700  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1701  * waitqueues, i.e. the size of the waitq table given the number of pages.
1702  */
1703 #define PAGES_PER_WAITQUEUE	256
1704 
1705 static inline unsigned long wait_table_size(unsigned long pages)
1706 {
1707 	unsigned long size = 1;
1708 
1709 	pages /= PAGES_PER_WAITQUEUE;
1710 
1711 	while (size < pages)
1712 		size <<= 1;
1713 
1714 	/*
1715 	 * Once we have dozens or even hundreds of threads sleeping
1716 	 * on IO we've got bigger problems than wait queue collision.
1717 	 * Limit the size of the wait table to a reasonable size.
1718 	 */
1719 	size = min(size, 4096UL);
1720 
1721 	return max(size, 4UL);
1722 }
1723 
1724 /*
1725  * This is an integer logarithm so that shifts can be used later
1726  * to extract the more random high bits from the multiplicative
1727  * hash function before the remainder is taken.
1728  */
1729 static inline unsigned long wait_table_bits(unsigned long size)
1730 {
1731 	return ffz(~size);
1732 }
1733 
1734 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1735 
1736 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1737 		unsigned long *zones_size, unsigned long *zholes_size)
1738 {
1739 	unsigned long realtotalpages, totalpages = 0;
1740 	int i;
1741 
1742 	for (i = 0; i < MAX_NR_ZONES; i++)
1743 		totalpages += zones_size[i];
1744 	pgdat->node_spanned_pages = totalpages;
1745 
1746 	realtotalpages = totalpages;
1747 	if (zholes_size)
1748 		for (i = 0; i < MAX_NR_ZONES; i++)
1749 			realtotalpages -= zholes_size[i];
1750 	pgdat->node_present_pages = realtotalpages;
1751 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1752 }
1753 
1754 
1755 /*
1756  * Initially all pages are reserved - free ones are freed
1757  * up by free_all_bootmem() once the early boot process is
1758  * done. Non-atomic initialization, single-pass.
1759  */
1760 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1761 		unsigned long start_pfn)
1762 {
1763 	struct page *page;
1764 	unsigned long end_pfn = start_pfn + size;
1765 	unsigned long pfn;
1766 
1767 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1768 		if (!early_pfn_valid(pfn))
1769 			continue;
1770 		page = pfn_to_page(pfn);
1771 		set_page_links(page, zone, nid, pfn);
1772 		init_page_count(page);
1773 		reset_page_mapcount(page);
1774 		SetPageReserved(page);
1775 		INIT_LIST_HEAD(&page->lru);
1776 #ifdef WANT_PAGE_VIRTUAL
1777 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1778 		if (!is_highmem_idx(zone))
1779 			set_page_address(page, __va(pfn << PAGE_SHIFT));
1780 #endif
1781 	}
1782 }
1783 
1784 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1785 				unsigned long size)
1786 {
1787 	int order;
1788 	for (order = 0; order < MAX_ORDER ; order++) {
1789 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1790 		zone->free_area[order].nr_free = 0;
1791 	}
1792 }
1793 
1794 #define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1795 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1796 		unsigned long size)
1797 {
1798 	unsigned long snum = pfn_to_section_nr(pfn);
1799 	unsigned long end = pfn_to_section_nr(pfn + size);
1800 
1801 	if (FLAGS_HAS_NODE)
1802 		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1803 	else
1804 		for (; snum <= end; snum++)
1805 			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1806 }
1807 
1808 #ifndef __HAVE_ARCH_MEMMAP_INIT
1809 #define memmap_init(size, nid, zone, start_pfn) \
1810 	memmap_init_zone((size), (nid), (zone), (start_pfn))
1811 #endif
1812 
1813 static int __cpuinit zone_batchsize(struct zone *zone)
1814 {
1815 	int batch;
1816 
1817 	/*
1818 	 * The per-cpu-pages pools are set to around 1000th of the
1819 	 * size of the zone.  But no more than 1/2 of a meg.
1820 	 *
1821 	 * OK, so we don't know how big the cache is.  So guess.
1822 	 */
1823 	batch = zone->present_pages / 1024;
1824 	if (batch * PAGE_SIZE > 512 * 1024)
1825 		batch = (512 * 1024) / PAGE_SIZE;
1826 	batch /= 4;		/* We effectively *= 4 below */
1827 	if (batch < 1)
1828 		batch = 1;
1829 
1830 	/*
1831 	 * Clamp the batch to a 2^n - 1 value. Having a power
1832 	 * of 2 value was found to be more likely to have
1833 	 * suboptimal cache aliasing properties in some cases.
1834 	 *
1835 	 * For example if 2 tasks are alternately allocating
1836 	 * batches of pages, one task can end up with a lot
1837 	 * of pages of one half of the possible page colors
1838 	 * and the other with pages of the other colors.
1839 	 */
1840 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1841 
1842 	return batch;
1843 }
1844 
1845 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1846 {
1847 	struct per_cpu_pages *pcp;
1848 
1849 	memset(p, 0, sizeof(*p));
1850 
1851 	pcp = &p->pcp[0];		/* hot */
1852 	pcp->count = 0;
1853 	pcp->high = 6 * batch;
1854 	pcp->batch = max(1UL, 1 * batch);
1855 	INIT_LIST_HEAD(&pcp->list);
1856 
1857 	pcp = &p->pcp[1];		/* cold*/
1858 	pcp->count = 0;
1859 	pcp->high = 2 * batch;
1860 	pcp->batch = max(1UL, batch/2);
1861 	INIT_LIST_HEAD(&pcp->list);
1862 }
1863 
1864 /*
1865  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1866  * to the value high for the pageset p.
1867  */
1868 
1869 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1870 				unsigned long high)
1871 {
1872 	struct per_cpu_pages *pcp;
1873 
1874 	pcp = &p->pcp[0]; /* hot list */
1875 	pcp->high = high;
1876 	pcp->batch = max(1UL, high/4);
1877 	if ((high/4) > (PAGE_SHIFT * 8))
1878 		pcp->batch = PAGE_SHIFT * 8;
1879 }
1880 
1881 
1882 #ifdef CONFIG_NUMA
1883 /*
1884  * Boot pageset table. One per cpu which is going to be used for all
1885  * zones and all nodes. The parameters will be set in such a way
1886  * that an item put on a list will immediately be handed over to
1887  * the buddy list. This is safe since pageset manipulation is done
1888  * with interrupts disabled.
1889  *
1890  * Some NUMA counter updates may also be caught by the boot pagesets.
1891  *
1892  * The boot_pagesets must be kept even after bootup is complete for
1893  * unused processors and/or zones. They do play a role for bootstrapping
1894  * hotplugged processors.
1895  *
1896  * zoneinfo_show() and maybe other functions do
1897  * not check if the processor is online before following the pageset pointer.
1898  * Other parts of the kernel may not check if the zone is available.
1899  */
1900 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1901 
1902 /*
1903  * Dynamically allocate memory for the
1904  * per cpu pageset array in struct zone.
1905  */
1906 static int __cpuinit process_zones(int cpu)
1907 {
1908 	struct zone *zone, *dzone;
1909 
1910 	for_each_zone(zone) {
1911 
1912 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1913 					 GFP_KERNEL, cpu_to_node(cpu));
1914 		if (!zone_pcp(zone, cpu))
1915 			goto bad;
1916 
1917 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1918 
1919 		if (percpu_pagelist_fraction)
1920 			setup_pagelist_highmark(zone_pcp(zone, cpu),
1921 			 	(zone->present_pages / percpu_pagelist_fraction));
1922 	}
1923 
1924 	return 0;
1925 bad:
1926 	for_each_zone(dzone) {
1927 		if (dzone == zone)
1928 			break;
1929 		kfree(zone_pcp(dzone, cpu));
1930 		zone_pcp(dzone, cpu) = NULL;
1931 	}
1932 	return -ENOMEM;
1933 }
1934 
1935 static inline void free_zone_pagesets(int cpu)
1936 {
1937 	struct zone *zone;
1938 
1939 	for_each_zone(zone) {
1940 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1941 
1942 		zone_pcp(zone, cpu) = NULL;
1943 		kfree(pset);
1944 	}
1945 }
1946 
1947 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1948 		unsigned long action,
1949 		void *hcpu)
1950 {
1951 	int cpu = (long)hcpu;
1952 	int ret = NOTIFY_OK;
1953 
1954 	switch (action) {
1955 		case CPU_UP_PREPARE:
1956 			if (process_zones(cpu))
1957 				ret = NOTIFY_BAD;
1958 			break;
1959 		case CPU_UP_CANCELED:
1960 		case CPU_DEAD:
1961 			free_zone_pagesets(cpu);
1962 			break;
1963 		default:
1964 			break;
1965 	}
1966 	return ret;
1967 }
1968 
1969 static struct notifier_block pageset_notifier =
1970 	{ &pageset_cpuup_callback, NULL, 0 };
1971 
1972 void __init setup_per_cpu_pageset(void)
1973 {
1974 	int err;
1975 
1976 	/* Initialize per_cpu_pageset for cpu 0.
1977 	 * A cpuup callback will do this for every cpu
1978 	 * as it comes online
1979 	 */
1980 	err = process_zones(smp_processor_id());
1981 	BUG_ON(err);
1982 	register_cpu_notifier(&pageset_notifier);
1983 }
1984 
1985 #endif
1986 
1987 static __meminit
1988 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1989 {
1990 	int i;
1991 	struct pglist_data *pgdat = zone->zone_pgdat;
1992 
1993 	/*
1994 	 * The per-page waitqueue mechanism uses hashed waitqueues
1995 	 * per zone.
1996 	 */
1997 	zone->wait_table_size = wait_table_size(zone_size_pages);
1998 	zone->wait_table_bits =	wait_table_bits(zone->wait_table_size);
1999 	zone->wait_table = (wait_queue_head_t *)
2000 		alloc_bootmem_node(pgdat, zone->wait_table_size
2001 					* sizeof(wait_queue_head_t));
2002 
2003 	for(i = 0; i < zone->wait_table_size; ++i)
2004 		init_waitqueue_head(zone->wait_table + i);
2005 }
2006 
2007 static __meminit void zone_pcp_init(struct zone *zone)
2008 {
2009 	int cpu;
2010 	unsigned long batch = zone_batchsize(zone);
2011 
2012 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2013 #ifdef CONFIG_NUMA
2014 		/* Early boot. Slab allocator not functional yet */
2015 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2016 		setup_pageset(&boot_pageset[cpu],0);
2017 #else
2018 		setup_pageset(zone_pcp(zone,cpu), batch);
2019 #endif
2020 	}
2021 	printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2022 		zone->name, zone->present_pages, batch);
2023 }
2024 
2025 static __meminit void init_currently_empty_zone(struct zone *zone,
2026 		unsigned long zone_start_pfn, unsigned long size)
2027 {
2028 	struct pglist_data *pgdat = zone->zone_pgdat;
2029 
2030 	zone_wait_table_init(zone, size);
2031 	pgdat->nr_zones = zone_idx(zone) + 1;
2032 
2033 	zone->zone_mem_map = pfn_to_page(zone_start_pfn);
2034 	zone->zone_start_pfn = zone_start_pfn;
2035 
2036 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2037 
2038 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2039 }
2040 
2041 /*
2042  * Set up the zone data structures:
2043  *   - mark all pages reserved
2044  *   - mark all memory queues empty
2045  *   - clear the memory bitmaps
2046  */
2047 static void __init free_area_init_core(struct pglist_data *pgdat,
2048 		unsigned long *zones_size, unsigned long *zholes_size)
2049 {
2050 	unsigned long j;
2051 	int nid = pgdat->node_id;
2052 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2053 
2054 	pgdat_resize_init(pgdat);
2055 	pgdat->nr_zones = 0;
2056 	init_waitqueue_head(&pgdat->kswapd_wait);
2057 	pgdat->kswapd_max_order = 0;
2058 
2059 	for (j = 0; j < MAX_NR_ZONES; j++) {
2060 		struct zone *zone = pgdat->node_zones + j;
2061 		unsigned long size, realsize;
2062 
2063 		realsize = size = zones_size[j];
2064 		if (zholes_size)
2065 			realsize -= zholes_size[j];
2066 
2067 		if (j < ZONE_HIGHMEM)
2068 			nr_kernel_pages += realsize;
2069 		nr_all_pages += realsize;
2070 
2071 		zone->spanned_pages = size;
2072 		zone->present_pages = realsize;
2073 		zone->name = zone_names[j];
2074 		spin_lock_init(&zone->lock);
2075 		spin_lock_init(&zone->lru_lock);
2076 		zone_seqlock_init(zone);
2077 		zone->zone_pgdat = pgdat;
2078 		zone->free_pages = 0;
2079 
2080 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2081 
2082 		zone_pcp_init(zone);
2083 		INIT_LIST_HEAD(&zone->active_list);
2084 		INIT_LIST_HEAD(&zone->inactive_list);
2085 		zone->nr_scan_active = 0;
2086 		zone->nr_scan_inactive = 0;
2087 		zone->nr_active = 0;
2088 		zone->nr_inactive = 0;
2089 		atomic_set(&zone->reclaim_in_progress, 0);
2090 		if (!size)
2091 			continue;
2092 
2093 		zonetable_add(zone, nid, j, zone_start_pfn, size);
2094 		init_currently_empty_zone(zone, zone_start_pfn, size);
2095 		zone_start_pfn += size;
2096 	}
2097 }
2098 
2099 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2100 {
2101 	/* Skip empty nodes */
2102 	if (!pgdat->node_spanned_pages)
2103 		return;
2104 
2105 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2106 	/* ia64 gets its own node_mem_map, before this, without bootmem */
2107 	if (!pgdat->node_mem_map) {
2108 		unsigned long size;
2109 		struct page *map;
2110 
2111 		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2112 		map = alloc_remap(pgdat->node_id, size);
2113 		if (!map)
2114 			map = alloc_bootmem_node(pgdat, size);
2115 		pgdat->node_mem_map = map;
2116 	}
2117 #ifdef CONFIG_FLATMEM
2118 	/*
2119 	 * With no DISCONTIG, the global mem_map is just set as node 0's
2120 	 */
2121 	if (pgdat == NODE_DATA(0))
2122 		mem_map = NODE_DATA(0)->node_mem_map;
2123 #endif
2124 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2125 }
2126 
2127 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2128 		unsigned long *zones_size, unsigned long node_start_pfn,
2129 		unsigned long *zholes_size)
2130 {
2131 	pgdat->node_id = nid;
2132 	pgdat->node_start_pfn = node_start_pfn;
2133 	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2134 
2135 	alloc_node_mem_map(pgdat);
2136 
2137 	free_area_init_core(pgdat, zones_size, zholes_size);
2138 }
2139 
2140 #ifndef CONFIG_NEED_MULTIPLE_NODES
2141 static bootmem_data_t contig_bootmem_data;
2142 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2143 
2144 EXPORT_SYMBOL(contig_page_data);
2145 #endif
2146 
2147 void __init free_area_init(unsigned long *zones_size)
2148 {
2149 	free_area_init_node(0, NODE_DATA(0), zones_size,
2150 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2151 }
2152 
2153 #ifdef CONFIG_PROC_FS
2154 
2155 #include <linux/seq_file.h>
2156 
2157 static void *frag_start(struct seq_file *m, loff_t *pos)
2158 {
2159 	pg_data_t *pgdat;
2160 	loff_t node = *pos;
2161 
2162 	for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2163 		--node;
2164 
2165 	return pgdat;
2166 }
2167 
2168 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2169 {
2170 	pg_data_t *pgdat = (pg_data_t *)arg;
2171 
2172 	(*pos)++;
2173 	return pgdat->pgdat_next;
2174 }
2175 
2176 static void frag_stop(struct seq_file *m, void *arg)
2177 {
2178 }
2179 
2180 /*
2181  * This walks the free areas for each zone.
2182  */
2183 static int frag_show(struct seq_file *m, void *arg)
2184 {
2185 	pg_data_t *pgdat = (pg_data_t *)arg;
2186 	struct zone *zone;
2187 	struct zone *node_zones = pgdat->node_zones;
2188 	unsigned long flags;
2189 	int order;
2190 
2191 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2192 		if (!populated_zone(zone))
2193 			continue;
2194 
2195 		spin_lock_irqsave(&zone->lock, flags);
2196 		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2197 		for (order = 0; order < MAX_ORDER; ++order)
2198 			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2199 		spin_unlock_irqrestore(&zone->lock, flags);
2200 		seq_putc(m, '\n');
2201 	}
2202 	return 0;
2203 }
2204 
2205 struct seq_operations fragmentation_op = {
2206 	.start	= frag_start,
2207 	.next	= frag_next,
2208 	.stop	= frag_stop,
2209 	.show	= frag_show,
2210 };
2211 
2212 /*
2213  * Output information about zones in @pgdat.
2214  */
2215 static int zoneinfo_show(struct seq_file *m, void *arg)
2216 {
2217 	pg_data_t *pgdat = arg;
2218 	struct zone *zone;
2219 	struct zone *node_zones = pgdat->node_zones;
2220 	unsigned long flags;
2221 
2222 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2223 		int i;
2224 
2225 		if (!populated_zone(zone))
2226 			continue;
2227 
2228 		spin_lock_irqsave(&zone->lock, flags);
2229 		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2230 		seq_printf(m,
2231 			   "\n  pages free     %lu"
2232 			   "\n        min      %lu"
2233 			   "\n        low      %lu"
2234 			   "\n        high     %lu"
2235 			   "\n        active   %lu"
2236 			   "\n        inactive %lu"
2237 			   "\n        scanned  %lu (a: %lu i: %lu)"
2238 			   "\n        spanned  %lu"
2239 			   "\n        present  %lu",
2240 			   zone->free_pages,
2241 			   zone->pages_min,
2242 			   zone->pages_low,
2243 			   zone->pages_high,
2244 			   zone->nr_active,
2245 			   zone->nr_inactive,
2246 			   zone->pages_scanned,
2247 			   zone->nr_scan_active, zone->nr_scan_inactive,
2248 			   zone->spanned_pages,
2249 			   zone->present_pages);
2250 		seq_printf(m,
2251 			   "\n        protection: (%lu",
2252 			   zone->lowmem_reserve[0]);
2253 		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2254 			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2255 		seq_printf(m,
2256 			   ")"
2257 			   "\n  pagesets");
2258 		for_each_online_cpu(i) {
2259 			struct per_cpu_pageset *pageset;
2260 			int j;
2261 
2262 			pageset = zone_pcp(zone, i);
2263 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2264 				if (pageset->pcp[j].count)
2265 					break;
2266 			}
2267 			if (j == ARRAY_SIZE(pageset->pcp))
2268 				continue;
2269 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2270 				seq_printf(m,
2271 					   "\n    cpu: %i pcp: %i"
2272 					   "\n              count: %i"
2273 					   "\n              high:  %i"
2274 					   "\n              batch: %i",
2275 					   i, j,
2276 					   pageset->pcp[j].count,
2277 					   pageset->pcp[j].high,
2278 					   pageset->pcp[j].batch);
2279 			}
2280 #ifdef CONFIG_NUMA
2281 			seq_printf(m,
2282 				   "\n            numa_hit:       %lu"
2283 				   "\n            numa_miss:      %lu"
2284 				   "\n            numa_foreign:   %lu"
2285 				   "\n            interleave_hit: %lu"
2286 				   "\n            local_node:     %lu"
2287 				   "\n            other_node:     %lu",
2288 				   pageset->numa_hit,
2289 				   pageset->numa_miss,
2290 				   pageset->numa_foreign,
2291 				   pageset->interleave_hit,
2292 				   pageset->local_node,
2293 				   pageset->other_node);
2294 #endif
2295 		}
2296 		seq_printf(m,
2297 			   "\n  all_unreclaimable: %u"
2298 			   "\n  prev_priority:     %i"
2299 			   "\n  temp_priority:     %i"
2300 			   "\n  start_pfn:         %lu",
2301 			   zone->all_unreclaimable,
2302 			   zone->prev_priority,
2303 			   zone->temp_priority,
2304 			   zone->zone_start_pfn);
2305 		spin_unlock_irqrestore(&zone->lock, flags);
2306 		seq_putc(m, '\n');
2307 	}
2308 	return 0;
2309 }
2310 
2311 struct seq_operations zoneinfo_op = {
2312 	.start	= frag_start, /* iterate over all zones. The same as in
2313 			       * fragmentation. */
2314 	.next	= frag_next,
2315 	.stop	= frag_stop,
2316 	.show	= zoneinfo_show,
2317 };
2318 
2319 static char *vmstat_text[] = {
2320 	"nr_dirty",
2321 	"nr_writeback",
2322 	"nr_unstable",
2323 	"nr_page_table_pages",
2324 	"nr_mapped",
2325 	"nr_slab",
2326 
2327 	"pgpgin",
2328 	"pgpgout",
2329 	"pswpin",
2330 	"pswpout",
2331 
2332 	"pgalloc_high",
2333 	"pgalloc_normal",
2334 	"pgalloc_dma32",
2335 	"pgalloc_dma",
2336 
2337 	"pgfree",
2338 	"pgactivate",
2339 	"pgdeactivate",
2340 
2341 	"pgfault",
2342 	"pgmajfault",
2343 
2344 	"pgrefill_high",
2345 	"pgrefill_normal",
2346 	"pgrefill_dma32",
2347 	"pgrefill_dma",
2348 
2349 	"pgsteal_high",
2350 	"pgsteal_normal",
2351 	"pgsteal_dma32",
2352 	"pgsteal_dma",
2353 
2354 	"pgscan_kswapd_high",
2355 	"pgscan_kswapd_normal",
2356 	"pgscan_kswapd_dma32",
2357 	"pgscan_kswapd_dma",
2358 
2359 	"pgscan_direct_high",
2360 	"pgscan_direct_normal",
2361 	"pgscan_direct_dma32",
2362 	"pgscan_direct_dma",
2363 
2364 	"pginodesteal",
2365 	"slabs_scanned",
2366 	"kswapd_steal",
2367 	"kswapd_inodesteal",
2368 	"pageoutrun",
2369 	"allocstall",
2370 
2371 	"pgrotated",
2372 	"nr_bounce",
2373 };
2374 
2375 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2376 {
2377 	struct page_state *ps;
2378 
2379 	if (*pos >= ARRAY_SIZE(vmstat_text))
2380 		return NULL;
2381 
2382 	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2383 	m->private = ps;
2384 	if (!ps)
2385 		return ERR_PTR(-ENOMEM);
2386 	get_full_page_state(ps);
2387 	ps->pgpgin /= 2;		/* sectors -> kbytes */
2388 	ps->pgpgout /= 2;
2389 	return (unsigned long *)ps + *pos;
2390 }
2391 
2392 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2393 {
2394 	(*pos)++;
2395 	if (*pos >= ARRAY_SIZE(vmstat_text))
2396 		return NULL;
2397 	return (unsigned long *)m->private + *pos;
2398 }
2399 
2400 static int vmstat_show(struct seq_file *m, void *arg)
2401 {
2402 	unsigned long *l = arg;
2403 	unsigned long off = l - (unsigned long *)m->private;
2404 
2405 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2406 	return 0;
2407 }
2408 
2409 static void vmstat_stop(struct seq_file *m, void *arg)
2410 {
2411 	kfree(m->private);
2412 	m->private = NULL;
2413 }
2414 
2415 struct seq_operations vmstat_op = {
2416 	.start	= vmstat_start,
2417 	.next	= vmstat_next,
2418 	.stop	= vmstat_stop,
2419 	.show	= vmstat_show,
2420 };
2421 
2422 #endif /* CONFIG_PROC_FS */
2423 
2424 #ifdef CONFIG_HOTPLUG_CPU
2425 static int page_alloc_cpu_notify(struct notifier_block *self,
2426 				 unsigned long action, void *hcpu)
2427 {
2428 	int cpu = (unsigned long)hcpu;
2429 	long *count;
2430 	unsigned long *src, *dest;
2431 
2432 	if (action == CPU_DEAD) {
2433 		int i;
2434 
2435 		/* Drain local pagecache count. */
2436 		count = &per_cpu(nr_pagecache_local, cpu);
2437 		atomic_add(*count, &nr_pagecache);
2438 		*count = 0;
2439 		local_irq_disable();
2440 		__drain_pages(cpu);
2441 
2442 		/* Add dead cpu's page_states to our own. */
2443 		dest = (unsigned long *)&__get_cpu_var(page_states);
2444 		src = (unsigned long *)&per_cpu(page_states, cpu);
2445 
2446 		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2447 				i++) {
2448 			dest[i] += src[i];
2449 			src[i] = 0;
2450 		}
2451 
2452 		local_irq_enable();
2453 	}
2454 	return NOTIFY_OK;
2455 }
2456 #endif /* CONFIG_HOTPLUG_CPU */
2457 
2458 void __init page_alloc_init(void)
2459 {
2460 	hotcpu_notifier(page_alloc_cpu_notify, 0);
2461 }
2462 
2463 /*
2464  * setup_per_zone_lowmem_reserve - called whenever
2465  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2466  *	has a correct pages reserved value, so an adequate number of
2467  *	pages are left in the zone after a successful __alloc_pages().
2468  */
2469 static void setup_per_zone_lowmem_reserve(void)
2470 {
2471 	struct pglist_data *pgdat;
2472 	int j, idx;
2473 
2474 	for_each_pgdat(pgdat) {
2475 		for (j = 0; j < MAX_NR_ZONES; j++) {
2476 			struct zone *zone = pgdat->node_zones + j;
2477 			unsigned long present_pages = zone->present_pages;
2478 
2479 			zone->lowmem_reserve[j] = 0;
2480 
2481 			for (idx = j-1; idx >= 0; idx--) {
2482 				struct zone *lower_zone;
2483 
2484 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2485 					sysctl_lowmem_reserve_ratio[idx] = 1;
2486 
2487 				lower_zone = pgdat->node_zones + idx;
2488 				lower_zone->lowmem_reserve[j] = present_pages /
2489 					sysctl_lowmem_reserve_ratio[idx];
2490 				present_pages += lower_zone->present_pages;
2491 			}
2492 		}
2493 	}
2494 }
2495 
2496 /*
2497  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2498  *	that the pages_{min,low,high} values for each zone are set correctly
2499  *	with respect to min_free_kbytes.
2500  */
2501 void setup_per_zone_pages_min(void)
2502 {
2503 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2504 	unsigned long lowmem_pages = 0;
2505 	struct zone *zone;
2506 	unsigned long flags;
2507 
2508 	/* Calculate total number of !ZONE_HIGHMEM pages */
2509 	for_each_zone(zone) {
2510 		if (!is_highmem(zone))
2511 			lowmem_pages += zone->present_pages;
2512 	}
2513 
2514 	for_each_zone(zone) {
2515 		unsigned long tmp;
2516 		spin_lock_irqsave(&zone->lru_lock, flags);
2517 		tmp = (pages_min * zone->present_pages) / lowmem_pages;
2518 		if (is_highmem(zone)) {
2519 			/*
2520 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2521 			 * need highmem pages, so cap pages_min to a small
2522 			 * value here.
2523 			 *
2524 			 * The (pages_high-pages_low) and (pages_low-pages_min)
2525 			 * deltas controls asynch page reclaim, and so should
2526 			 * not be capped for highmem.
2527 			 */
2528 			int min_pages;
2529 
2530 			min_pages = zone->present_pages / 1024;
2531 			if (min_pages < SWAP_CLUSTER_MAX)
2532 				min_pages = SWAP_CLUSTER_MAX;
2533 			if (min_pages > 128)
2534 				min_pages = 128;
2535 			zone->pages_min = min_pages;
2536 		} else {
2537 			/*
2538 			 * If it's a lowmem zone, reserve a number of pages
2539 			 * proportionate to the zone's size.
2540 			 */
2541 			zone->pages_min = tmp;
2542 		}
2543 
2544 		zone->pages_low   = zone->pages_min + tmp / 4;
2545 		zone->pages_high  = zone->pages_min + tmp / 2;
2546 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2547 	}
2548 }
2549 
2550 /*
2551  * Initialise min_free_kbytes.
2552  *
2553  * For small machines we want it small (128k min).  For large machines
2554  * we want it large (64MB max).  But it is not linear, because network
2555  * bandwidth does not increase linearly with machine size.  We use
2556  *
2557  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2558  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2559  *
2560  * which yields
2561  *
2562  * 16MB:	512k
2563  * 32MB:	724k
2564  * 64MB:	1024k
2565  * 128MB:	1448k
2566  * 256MB:	2048k
2567  * 512MB:	2896k
2568  * 1024MB:	4096k
2569  * 2048MB:	5792k
2570  * 4096MB:	8192k
2571  * 8192MB:	11584k
2572  * 16384MB:	16384k
2573  */
2574 static int __init init_per_zone_pages_min(void)
2575 {
2576 	unsigned long lowmem_kbytes;
2577 
2578 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2579 
2580 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2581 	if (min_free_kbytes < 128)
2582 		min_free_kbytes = 128;
2583 	if (min_free_kbytes > 65536)
2584 		min_free_kbytes = 65536;
2585 	setup_per_zone_pages_min();
2586 	setup_per_zone_lowmem_reserve();
2587 	return 0;
2588 }
2589 module_init(init_per_zone_pages_min)
2590 
2591 /*
2592  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2593  *	that we can call two helper functions whenever min_free_kbytes
2594  *	changes.
2595  */
2596 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2597 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2598 {
2599 	proc_dointvec(table, write, file, buffer, length, ppos);
2600 	setup_per_zone_pages_min();
2601 	return 0;
2602 }
2603 
2604 /*
2605  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2606  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2607  *	whenever sysctl_lowmem_reserve_ratio changes.
2608  *
2609  * The reserve ratio obviously has absolutely no relation with the
2610  * pages_min watermarks. The lowmem reserve ratio can only make sense
2611  * if in function of the boot time zone sizes.
2612  */
2613 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2614 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2615 {
2616 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2617 	setup_per_zone_lowmem_reserve();
2618 	return 0;
2619 }
2620 
2621 /*
2622  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2623  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
2624  * can have before it gets flushed back to buddy allocator.
2625  */
2626 
2627 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2628 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2629 {
2630 	struct zone *zone;
2631 	unsigned int cpu;
2632 	int ret;
2633 
2634 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2635 	if (!write || (ret == -EINVAL))
2636 		return ret;
2637 	for_each_zone(zone) {
2638 		for_each_online_cpu(cpu) {
2639 			unsigned long  high;
2640 			high = zone->present_pages / percpu_pagelist_fraction;
2641 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2642 		}
2643 	}
2644 	return 0;
2645 }
2646 
2647 __initdata int hashdist = HASHDIST_DEFAULT;
2648 
2649 #ifdef CONFIG_NUMA
2650 static int __init set_hashdist(char *str)
2651 {
2652 	if (!str)
2653 		return 0;
2654 	hashdist = simple_strtoul(str, &str, 0);
2655 	return 1;
2656 }
2657 __setup("hashdist=", set_hashdist);
2658 #endif
2659 
2660 /*
2661  * allocate a large system hash table from bootmem
2662  * - it is assumed that the hash table must contain an exact power-of-2
2663  *   quantity of entries
2664  * - limit is the number of hash buckets, not the total allocation size
2665  */
2666 void *__init alloc_large_system_hash(const char *tablename,
2667 				     unsigned long bucketsize,
2668 				     unsigned long numentries,
2669 				     int scale,
2670 				     int flags,
2671 				     unsigned int *_hash_shift,
2672 				     unsigned int *_hash_mask,
2673 				     unsigned long limit)
2674 {
2675 	unsigned long long max = limit;
2676 	unsigned long log2qty, size;
2677 	void *table = NULL;
2678 
2679 	/* allow the kernel cmdline to have a say */
2680 	if (!numentries) {
2681 		/* round applicable memory size up to nearest megabyte */
2682 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2683 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2684 		numentries >>= 20 - PAGE_SHIFT;
2685 		numentries <<= 20 - PAGE_SHIFT;
2686 
2687 		/* limit to 1 bucket per 2^scale bytes of low memory */
2688 		if (scale > PAGE_SHIFT)
2689 			numentries >>= (scale - PAGE_SHIFT);
2690 		else
2691 			numentries <<= (PAGE_SHIFT - scale);
2692 	}
2693 	/* rounded up to nearest power of 2 in size */
2694 	numentries = 1UL << (long_log2(numentries) + 1);
2695 
2696 	/* limit allocation size to 1/16 total memory by default */
2697 	if (max == 0) {
2698 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2699 		do_div(max, bucketsize);
2700 	}
2701 
2702 	if (numentries > max)
2703 		numentries = max;
2704 
2705 	log2qty = long_log2(numentries);
2706 
2707 	do {
2708 		size = bucketsize << log2qty;
2709 		if (flags & HASH_EARLY)
2710 			table = alloc_bootmem(size);
2711 		else if (hashdist)
2712 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2713 		else {
2714 			unsigned long order;
2715 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2716 				;
2717 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2718 		}
2719 	} while (!table && size > PAGE_SIZE && --log2qty);
2720 
2721 	if (!table)
2722 		panic("Failed to allocate %s hash table\n", tablename);
2723 
2724 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2725 	       tablename,
2726 	       (1U << log2qty),
2727 	       long_log2(size) - PAGE_SHIFT,
2728 	       size);
2729 
2730 	if (_hash_shift)
2731 		*_hash_shift = log2qty;
2732 	if (_hash_mask)
2733 		*_hash_mask = (1 << log2qty) - 1;
2734 
2735 	return table;
2736 }
2737