1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/config.h> 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/interrupt.h> 22 #include <linux/pagemap.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/suspend.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/slab.h> 31 #include <linux/notifier.h> 32 #include <linux/topology.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmalloc.h> 39 #include <linux/mempolicy.h> 40 41 #include <asm/tlbflush.h> 42 #include "internal.h" 43 44 /* 45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this 46 * initializer cleaner 47 */ 48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; 49 EXPORT_SYMBOL(node_online_map); 50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; 51 EXPORT_SYMBOL(node_possible_map); 52 struct pglist_data *pgdat_list __read_mostly; 53 unsigned long totalram_pages __read_mostly; 54 unsigned long totalhigh_pages __read_mostly; 55 long nr_swap_pages; 56 int percpu_pagelist_fraction; 57 58 static void __free_pages_ok(struct page *page, unsigned int order); 59 60 /* 61 * results with 256, 32 in the lowmem_reserve sysctl: 62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 63 * 1G machine -> (16M dma, 784M normal, 224M high) 64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 67 * 68 * TBD: should special case ZONE_DMA32 machines here - in those we normally 69 * don't need any ZONE_NORMAL reservation 70 */ 71 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 }; 72 73 EXPORT_SYMBOL(totalram_pages); 74 75 /* 76 * Used by page_zone() to look up the address of the struct zone whose 77 * id is encoded in the upper bits of page->flags 78 */ 79 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly; 80 EXPORT_SYMBOL(zone_table); 81 82 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" }; 83 int min_free_kbytes = 1024; 84 85 unsigned long __initdata nr_kernel_pages; 86 unsigned long __initdata nr_all_pages; 87 88 #ifdef CONFIG_DEBUG_VM 89 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 90 { 91 int ret = 0; 92 unsigned seq; 93 unsigned long pfn = page_to_pfn(page); 94 95 do { 96 seq = zone_span_seqbegin(zone); 97 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 98 ret = 1; 99 else if (pfn < zone->zone_start_pfn) 100 ret = 1; 101 } while (zone_span_seqretry(zone, seq)); 102 103 return ret; 104 } 105 106 static int page_is_consistent(struct zone *zone, struct page *page) 107 { 108 #ifdef CONFIG_HOLES_IN_ZONE 109 if (!pfn_valid(page_to_pfn(page))) 110 return 0; 111 #endif 112 if (zone != page_zone(page)) 113 return 0; 114 115 return 1; 116 } 117 /* 118 * Temporary debugging check for pages not lying within a given zone. 119 */ 120 static int bad_range(struct zone *zone, struct page *page) 121 { 122 if (page_outside_zone_boundaries(zone, page)) 123 return 1; 124 if (!page_is_consistent(zone, page)) 125 return 1; 126 127 return 0; 128 } 129 130 #else 131 static inline int bad_range(struct zone *zone, struct page *page) 132 { 133 return 0; 134 } 135 #endif 136 137 static void bad_page(struct page *page) 138 { 139 printk(KERN_EMERG "Bad page state in process '%s'\n" 140 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" 141 KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 142 KERN_EMERG "Backtrace:\n", 143 current->comm, page, (int)(2*sizeof(unsigned long)), 144 (unsigned long)page->flags, page->mapping, 145 page_mapcount(page), page_count(page)); 146 dump_stack(); 147 page->flags &= ~(1 << PG_lru | 148 1 << PG_private | 149 1 << PG_locked | 150 1 << PG_active | 151 1 << PG_dirty | 152 1 << PG_reclaim | 153 1 << PG_slab | 154 1 << PG_swapcache | 155 1 << PG_writeback ); 156 set_page_count(page, 0); 157 reset_page_mapcount(page); 158 page->mapping = NULL; 159 add_taint(TAINT_BAD_PAGE); 160 } 161 162 /* 163 * Higher-order pages are called "compound pages". They are structured thusly: 164 * 165 * The first PAGE_SIZE page is called the "head page". 166 * 167 * The remaining PAGE_SIZE pages are called "tail pages". 168 * 169 * All pages have PG_compound set. All pages have their ->private pointing at 170 * the head page (even the head page has this). 171 * 172 * The first tail page's ->lru.next holds the address of the compound page's 173 * put_page() function. Its ->lru.prev holds the order of allocation. 174 * This usage means that zero-order pages may not be compound. 175 */ 176 177 static void free_compound_page(struct page *page) 178 { 179 __free_pages_ok(page, (unsigned long)page[1].lru.prev); 180 } 181 182 static void prep_compound_page(struct page *page, unsigned long order) 183 { 184 int i; 185 int nr_pages = 1 << order; 186 187 page[1].lru.next = (void *)free_compound_page; /* set dtor */ 188 page[1].lru.prev = (void *)order; 189 for (i = 0; i < nr_pages; i++) { 190 struct page *p = page + i; 191 192 __SetPageCompound(p); 193 set_page_private(p, (unsigned long)page); 194 } 195 } 196 197 static void destroy_compound_page(struct page *page, unsigned long order) 198 { 199 int i; 200 int nr_pages = 1 << order; 201 202 if (unlikely((unsigned long)page[1].lru.prev != order)) 203 bad_page(page); 204 205 for (i = 0; i < nr_pages; i++) { 206 struct page *p = page + i; 207 208 if (unlikely(!PageCompound(p) | 209 (page_private(p) != (unsigned long)page))) 210 bad_page(page); 211 __ClearPageCompound(p); 212 } 213 } 214 215 /* 216 * function for dealing with page's order in buddy system. 217 * zone->lock is already acquired when we use these. 218 * So, we don't need atomic page->flags operations here. 219 */ 220 static inline unsigned long page_order(struct page *page) { 221 return page_private(page); 222 } 223 224 static inline void set_page_order(struct page *page, int order) { 225 set_page_private(page, order); 226 __SetPagePrivate(page); 227 } 228 229 static inline void rmv_page_order(struct page *page) 230 { 231 __ClearPagePrivate(page); 232 set_page_private(page, 0); 233 } 234 235 /* 236 * Locate the struct page for both the matching buddy in our 237 * pair (buddy1) and the combined O(n+1) page they form (page). 238 * 239 * 1) Any buddy B1 will have an order O twin B2 which satisfies 240 * the following equation: 241 * B2 = B1 ^ (1 << O) 242 * For example, if the starting buddy (buddy2) is #8 its order 243 * 1 buddy is #10: 244 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 245 * 246 * 2) Any buddy B will have an order O+1 parent P which 247 * satisfies the following equation: 248 * P = B & ~(1 << O) 249 * 250 * Assumption: *_mem_map is contigious at least up to MAX_ORDER 251 */ 252 static inline struct page * 253 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 254 { 255 unsigned long buddy_idx = page_idx ^ (1 << order); 256 257 return page + (buddy_idx - page_idx); 258 } 259 260 static inline unsigned long 261 __find_combined_index(unsigned long page_idx, unsigned int order) 262 { 263 return (page_idx & ~(1 << order)); 264 } 265 266 /* 267 * This function checks whether a page is free && is the buddy 268 * we can do coalesce a page and its buddy if 269 * (a) the buddy is not in a hole && 270 * (b) the buddy is free && 271 * (c) the buddy is on the buddy system && 272 * (d) a page and its buddy have the same order. 273 * for recording page's order, we use page_private(page) and PG_private. 274 * 275 */ 276 static inline int page_is_buddy(struct page *page, int order) 277 { 278 #ifdef CONFIG_HOLES_IN_ZONE 279 if (!pfn_valid(page_to_pfn(page))) 280 return 0; 281 #endif 282 283 if (PagePrivate(page) && 284 (page_order(page) == order) && 285 page_count(page) == 0) 286 return 1; 287 return 0; 288 } 289 290 /* 291 * Freeing function for a buddy system allocator. 292 * 293 * The concept of a buddy system is to maintain direct-mapped table 294 * (containing bit values) for memory blocks of various "orders". 295 * The bottom level table contains the map for the smallest allocatable 296 * units of memory (here, pages), and each level above it describes 297 * pairs of units from the levels below, hence, "buddies". 298 * At a high level, all that happens here is marking the table entry 299 * at the bottom level available, and propagating the changes upward 300 * as necessary, plus some accounting needed to play nicely with other 301 * parts of the VM system. 302 * At each level, we keep a list of pages, which are heads of continuous 303 * free pages of length of (1 << order) and marked with PG_Private.Page's 304 * order is recorded in page_private(page) field. 305 * So when we are allocating or freeing one, we can derive the state of the 306 * other. That is, if we allocate a small block, and both were 307 * free, the remainder of the region must be split into blocks. 308 * If a block is freed, and its buddy is also free, then this 309 * triggers coalescing into a block of larger size. 310 * 311 * -- wli 312 */ 313 314 static inline void __free_one_page(struct page *page, 315 struct zone *zone, unsigned int order) 316 { 317 unsigned long page_idx; 318 int order_size = 1 << order; 319 320 if (unlikely(PageCompound(page))) 321 destroy_compound_page(page, order); 322 323 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 324 325 BUG_ON(page_idx & (order_size - 1)); 326 BUG_ON(bad_range(zone, page)); 327 328 zone->free_pages += order_size; 329 while (order < MAX_ORDER-1) { 330 unsigned long combined_idx; 331 struct free_area *area; 332 struct page *buddy; 333 334 buddy = __page_find_buddy(page, page_idx, order); 335 if (!page_is_buddy(buddy, order)) 336 break; /* Move the buddy up one level. */ 337 338 list_del(&buddy->lru); 339 area = zone->free_area + order; 340 area->nr_free--; 341 rmv_page_order(buddy); 342 combined_idx = __find_combined_index(page_idx, order); 343 page = page + (combined_idx - page_idx); 344 page_idx = combined_idx; 345 order++; 346 } 347 set_page_order(page, order); 348 list_add(&page->lru, &zone->free_area[order].free_list); 349 zone->free_area[order].nr_free++; 350 } 351 352 static inline int free_pages_check(struct page *page) 353 { 354 if (unlikely(page_mapcount(page) | 355 (page->mapping != NULL) | 356 (page_count(page) != 0) | 357 (page->flags & ( 358 1 << PG_lru | 359 1 << PG_private | 360 1 << PG_locked | 361 1 << PG_active | 362 1 << PG_reclaim | 363 1 << PG_slab | 364 1 << PG_swapcache | 365 1 << PG_writeback | 366 1 << PG_reserved )))) 367 bad_page(page); 368 if (PageDirty(page)) 369 __ClearPageDirty(page); 370 /* 371 * For now, we report if PG_reserved was found set, but do not 372 * clear it, and do not free the page. But we shall soon need 373 * to do more, for when the ZERO_PAGE count wraps negative. 374 */ 375 return PageReserved(page); 376 } 377 378 /* 379 * Frees a list of pages. 380 * Assumes all pages on list are in same zone, and of same order. 381 * count is the number of pages to free. 382 * 383 * If the zone was previously in an "all pages pinned" state then look to 384 * see if this freeing clears that state. 385 * 386 * And clear the zone's pages_scanned counter, to hold off the "all pages are 387 * pinned" detection logic. 388 */ 389 static void free_pages_bulk(struct zone *zone, int count, 390 struct list_head *list, int order) 391 { 392 spin_lock(&zone->lock); 393 zone->all_unreclaimable = 0; 394 zone->pages_scanned = 0; 395 while (count--) { 396 struct page *page; 397 398 BUG_ON(list_empty(list)); 399 page = list_entry(list->prev, struct page, lru); 400 /* have to delete it as __free_one_page list manipulates */ 401 list_del(&page->lru); 402 __free_one_page(page, zone, order); 403 } 404 spin_unlock(&zone->lock); 405 } 406 407 static void free_one_page(struct zone *zone, struct page *page, int order) 408 { 409 LIST_HEAD(list); 410 list_add(&page->lru, &list); 411 free_pages_bulk(zone, 1, &list, order); 412 } 413 414 static void __free_pages_ok(struct page *page, unsigned int order) 415 { 416 unsigned long flags; 417 int i; 418 int reserved = 0; 419 420 arch_free_page(page, order); 421 if (!PageHighMem(page)) 422 mutex_debug_check_no_locks_freed(page_address(page), 423 PAGE_SIZE<<order); 424 425 for (i = 0 ; i < (1 << order) ; ++i) 426 reserved += free_pages_check(page + i); 427 if (reserved) 428 return; 429 430 kernel_map_pages(page, 1 << order, 0); 431 local_irq_save(flags); 432 __mod_page_state(pgfree, 1 << order); 433 free_one_page(page_zone(page), page, order); 434 local_irq_restore(flags); 435 } 436 437 /* 438 * permit the bootmem allocator to evade page validation on high-order frees 439 */ 440 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) 441 { 442 if (order == 0) { 443 __ClearPageReserved(page); 444 set_page_count(page, 0); 445 set_page_refcounted(page); 446 __free_page(page); 447 } else { 448 int loop; 449 450 prefetchw(page); 451 for (loop = 0; loop < BITS_PER_LONG; loop++) { 452 struct page *p = &page[loop]; 453 454 if (loop + 1 < BITS_PER_LONG) 455 prefetchw(p + 1); 456 __ClearPageReserved(p); 457 set_page_count(p, 0); 458 } 459 460 set_page_refcounted(page); 461 __free_pages(page, order); 462 } 463 } 464 465 466 /* 467 * The order of subdivision here is critical for the IO subsystem. 468 * Please do not alter this order without good reasons and regression 469 * testing. Specifically, as large blocks of memory are subdivided, 470 * the order in which smaller blocks are delivered depends on the order 471 * they're subdivided in this function. This is the primary factor 472 * influencing the order in which pages are delivered to the IO 473 * subsystem according to empirical testing, and this is also justified 474 * by considering the behavior of a buddy system containing a single 475 * large block of memory acted on by a series of small allocations. 476 * This behavior is a critical factor in sglist merging's success. 477 * 478 * -- wli 479 */ 480 static inline void expand(struct zone *zone, struct page *page, 481 int low, int high, struct free_area *area) 482 { 483 unsigned long size = 1 << high; 484 485 while (high > low) { 486 area--; 487 high--; 488 size >>= 1; 489 BUG_ON(bad_range(zone, &page[size])); 490 list_add(&page[size].lru, &area->free_list); 491 area->nr_free++; 492 set_page_order(&page[size], high); 493 } 494 } 495 496 /* 497 * This page is about to be returned from the page allocator 498 */ 499 static int prep_new_page(struct page *page, int order) 500 { 501 if (unlikely(page_mapcount(page) | 502 (page->mapping != NULL) | 503 (page_count(page) != 0) | 504 (page->flags & ( 505 1 << PG_lru | 506 1 << PG_private | 507 1 << PG_locked | 508 1 << PG_active | 509 1 << PG_dirty | 510 1 << PG_reclaim | 511 1 << PG_slab | 512 1 << PG_swapcache | 513 1 << PG_writeback | 514 1 << PG_reserved )))) 515 bad_page(page); 516 517 /* 518 * For now, we report if PG_reserved was found set, but do not 519 * clear it, and do not allocate the page: as a safety net. 520 */ 521 if (PageReserved(page)) 522 return 1; 523 524 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 525 1 << PG_referenced | 1 << PG_arch_1 | 526 1 << PG_checked | 1 << PG_mappedtodisk); 527 set_page_private(page, 0); 528 set_page_refcounted(page); 529 kernel_map_pages(page, 1 << order, 1); 530 return 0; 531 } 532 533 /* 534 * Do the hard work of removing an element from the buddy allocator. 535 * Call me with the zone->lock already held. 536 */ 537 static struct page *__rmqueue(struct zone *zone, unsigned int order) 538 { 539 struct free_area * area; 540 unsigned int current_order; 541 struct page *page; 542 543 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 544 area = zone->free_area + current_order; 545 if (list_empty(&area->free_list)) 546 continue; 547 548 page = list_entry(area->free_list.next, struct page, lru); 549 list_del(&page->lru); 550 rmv_page_order(page); 551 area->nr_free--; 552 zone->free_pages -= 1UL << order; 553 expand(zone, page, order, current_order, area); 554 return page; 555 } 556 557 return NULL; 558 } 559 560 /* 561 * Obtain a specified number of elements from the buddy allocator, all under 562 * a single hold of the lock, for efficiency. Add them to the supplied list. 563 * Returns the number of new pages which were placed at *list. 564 */ 565 static int rmqueue_bulk(struct zone *zone, unsigned int order, 566 unsigned long count, struct list_head *list) 567 { 568 int i; 569 570 spin_lock(&zone->lock); 571 for (i = 0; i < count; ++i) { 572 struct page *page = __rmqueue(zone, order); 573 if (unlikely(page == NULL)) 574 break; 575 list_add_tail(&page->lru, list); 576 } 577 spin_unlock(&zone->lock); 578 return i; 579 } 580 581 #ifdef CONFIG_NUMA 582 /* 583 * Called from the slab reaper to drain pagesets on a particular node that 584 * belong to the currently executing processor. 585 */ 586 void drain_node_pages(int nodeid) 587 { 588 int i, z; 589 unsigned long flags; 590 591 local_irq_save(flags); 592 for (z = 0; z < MAX_NR_ZONES; z++) { 593 struct zone *zone = NODE_DATA(nodeid)->node_zones + z; 594 struct per_cpu_pageset *pset; 595 596 pset = zone_pcp(zone, smp_processor_id()); 597 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 598 struct per_cpu_pages *pcp; 599 600 pcp = &pset->pcp[i]; 601 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 602 pcp->count = 0; 603 } 604 } 605 local_irq_restore(flags); 606 } 607 #endif 608 609 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) 610 static void __drain_pages(unsigned int cpu) 611 { 612 unsigned long flags; 613 struct zone *zone; 614 int i; 615 616 for_each_zone(zone) { 617 struct per_cpu_pageset *pset; 618 619 pset = zone_pcp(zone, cpu); 620 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 621 struct per_cpu_pages *pcp; 622 623 pcp = &pset->pcp[i]; 624 local_irq_save(flags); 625 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 626 pcp->count = 0; 627 local_irq_restore(flags); 628 } 629 } 630 } 631 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ 632 633 #ifdef CONFIG_PM 634 635 void mark_free_pages(struct zone *zone) 636 { 637 unsigned long zone_pfn, flags; 638 int order; 639 struct list_head *curr; 640 641 if (!zone->spanned_pages) 642 return; 643 644 spin_lock_irqsave(&zone->lock, flags); 645 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) 646 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); 647 648 for (order = MAX_ORDER - 1; order >= 0; --order) 649 list_for_each(curr, &zone->free_area[order].free_list) { 650 unsigned long start_pfn, i; 651 652 start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); 653 654 for (i=0; i < (1<<order); i++) 655 SetPageNosaveFree(pfn_to_page(start_pfn+i)); 656 } 657 spin_unlock_irqrestore(&zone->lock, flags); 658 } 659 660 /* 661 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 662 */ 663 void drain_local_pages(void) 664 { 665 unsigned long flags; 666 667 local_irq_save(flags); 668 __drain_pages(smp_processor_id()); 669 local_irq_restore(flags); 670 } 671 #endif /* CONFIG_PM */ 672 673 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu) 674 { 675 #ifdef CONFIG_NUMA 676 pg_data_t *pg = z->zone_pgdat; 677 pg_data_t *orig = zonelist->zones[0]->zone_pgdat; 678 struct per_cpu_pageset *p; 679 680 p = zone_pcp(z, cpu); 681 if (pg == orig) { 682 p->numa_hit++; 683 } else { 684 p->numa_miss++; 685 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++; 686 } 687 if (pg == NODE_DATA(numa_node_id())) 688 p->local_node++; 689 else 690 p->other_node++; 691 #endif 692 } 693 694 /* 695 * Free a 0-order page 696 */ 697 static void fastcall free_hot_cold_page(struct page *page, int cold) 698 { 699 struct zone *zone = page_zone(page); 700 struct per_cpu_pages *pcp; 701 unsigned long flags; 702 703 arch_free_page(page, 0); 704 705 if (PageAnon(page)) 706 page->mapping = NULL; 707 if (free_pages_check(page)) 708 return; 709 710 kernel_map_pages(page, 1, 0); 711 712 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 713 local_irq_save(flags); 714 __inc_page_state(pgfree); 715 list_add(&page->lru, &pcp->list); 716 pcp->count++; 717 if (pcp->count >= pcp->high) { 718 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 719 pcp->count -= pcp->batch; 720 } 721 local_irq_restore(flags); 722 put_cpu(); 723 } 724 725 void fastcall free_hot_page(struct page *page) 726 { 727 free_hot_cold_page(page, 0); 728 } 729 730 void fastcall free_cold_page(struct page *page) 731 { 732 free_hot_cold_page(page, 1); 733 } 734 735 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 736 { 737 int i; 738 739 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); 740 for(i = 0; i < (1 << order); i++) 741 clear_highpage(page + i); 742 } 743 744 /* 745 * split_page takes a non-compound higher-order page, and splits it into 746 * n (1<<order) sub-pages: page[0..n] 747 * Each sub-page must be freed individually. 748 * 749 * Note: this is probably too low level an operation for use in drivers. 750 * Please consult with lkml before using this in your driver. 751 */ 752 void split_page(struct page *page, unsigned int order) 753 { 754 int i; 755 756 BUG_ON(PageCompound(page)); 757 BUG_ON(!page_count(page)); 758 for (i = 1; i < (1 << order); i++) 759 set_page_refcounted(page + i); 760 } 761 762 /* 763 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 764 * we cheat by calling it from here, in the order > 0 path. Saves a branch 765 * or two. 766 */ 767 static struct page *buffered_rmqueue(struct zonelist *zonelist, 768 struct zone *zone, int order, gfp_t gfp_flags) 769 { 770 unsigned long flags; 771 struct page *page; 772 int cold = !!(gfp_flags & __GFP_COLD); 773 int cpu; 774 775 again: 776 cpu = get_cpu(); 777 if (likely(order == 0)) { 778 struct per_cpu_pages *pcp; 779 780 pcp = &zone_pcp(zone, cpu)->pcp[cold]; 781 local_irq_save(flags); 782 if (!pcp->count) { 783 pcp->count += rmqueue_bulk(zone, 0, 784 pcp->batch, &pcp->list); 785 if (unlikely(!pcp->count)) 786 goto failed; 787 } 788 page = list_entry(pcp->list.next, struct page, lru); 789 list_del(&page->lru); 790 pcp->count--; 791 } else { 792 spin_lock_irqsave(&zone->lock, flags); 793 page = __rmqueue(zone, order); 794 spin_unlock(&zone->lock); 795 if (!page) 796 goto failed; 797 } 798 799 __mod_page_state_zone(zone, pgalloc, 1 << order); 800 zone_statistics(zonelist, zone, cpu); 801 local_irq_restore(flags); 802 put_cpu(); 803 804 BUG_ON(bad_range(zone, page)); 805 if (prep_new_page(page, order)) 806 goto again; 807 808 if (gfp_flags & __GFP_ZERO) 809 prep_zero_page(page, order, gfp_flags); 810 811 if (order && (gfp_flags & __GFP_COMP)) 812 prep_compound_page(page, order); 813 return page; 814 815 failed: 816 local_irq_restore(flags); 817 put_cpu(); 818 return NULL; 819 } 820 821 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 822 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 823 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 824 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 825 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 826 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 827 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 828 829 /* 830 * Return 1 if free pages are above 'mark'. This takes into account the order 831 * of the allocation. 832 */ 833 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 834 int classzone_idx, int alloc_flags) 835 { 836 /* free_pages my go negative - that's OK */ 837 long min = mark, free_pages = z->free_pages - (1 << order) + 1; 838 int o; 839 840 if (alloc_flags & ALLOC_HIGH) 841 min -= min / 2; 842 if (alloc_flags & ALLOC_HARDER) 843 min -= min / 4; 844 845 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 846 return 0; 847 for (o = 0; o < order; o++) { 848 /* At the next order, this order's pages become unavailable */ 849 free_pages -= z->free_area[o].nr_free << o; 850 851 /* Require fewer higher order pages to be free */ 852 min >>= 1; 853 854 if (free_pages <= min) 855 return 0; 856 } 857 return 1; 858 } 859 860 /* 861 * get_page_from_freeliest goes through the zonelist trying to allocate 862 * a page. 863 */ 864 static struct page * 865 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, 866 struct zonelist *zonelist, int alloc_flags) 867 { 868 struct zone **z = zonelist->zones; 869 struct page *page = NULL; 870 int classzone_idx = zone_idx(*z); 871 872 /* 873 * Go through the zonelist once, looking for a zone with enough free. 874 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 875 */ 876 do { 877 if ((alloc_flags & ALLOC_CPUSET) && 878 !cpuset_zone_allowed(*z, gfp_mask)) 879 continue; 880 881 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 882 unsigned long mark; 883 if (alloc_flags & ALLOC_WMARK_MIN) 884 mark = (*z)->pages_min; 885 else if (alloc_flags & ALLOC_WMARK_LOW) 886 mark = (*z)->pages_low; 887 else 888 mark = (*z)->pages_high; 889 if (!zone_watermark_ok(*z, order, mark, 890 classzone_idx, alloc_flags)) 891 if (!zone_reclaim_mode || 892 !zone_reclaim(*z, gfp_mask, order)) 893 continue; 894 } 895 896 page = buffered_rmqueue(zonelist, *z, order, gfp_mask); 897 if (page) { 898 break; 899 } 900 } while (*(++z) != NULL); 901 return page; 902 } 903 904 /* 905 * This is the 'heart' of the zoned buddy allocator. 906 */ 907 struct page * fastcall 908 __alloc_pages(gfp_t gfp_mask, unsigned int order, 909 struct zonelist *zonelist) 910 { 911 const gfp_t wait = gfp_mask & __GFP_WAIT; 912 struct zone **z; 913 struct page *page; 914 struct reclaim_state reclaim_state; 915 struct task_struct *p = current; 916 int do_retry; 917 int alloc_flags; 918 int did_some_progress; 919 920 might_sleep_if(wait); 921 922 restart: 923 z = zonelist->zones; /* the list of zones suitable for gfp_mask */ 924 925 if (unlikely(*z == NULL)) { 926 /* Should this ever happen?? */ 927 return NULL; 928 } 929 930 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 931 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); 932 if (page) 933 goto got_pg; 934 935 do { 936 wakeup_kswapd(*z, order); 937 } while (*(++z)); 938 939 /* 940 * OK, we're below the kswapd watermark and have kicked background 941 * reclaim. Now things get more complex, so set up alloc_flags according 942 * to how we want to proceed. 943 * 944 * The caller may dip into page reserves a bit more if the caller 945 * cannot run direct reclaim, or if the caller has realtime scheduling 946 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 947 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 948 */ 949 alloc_flags = ALLOC_WMARK_MIN; 950 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 951 alloc_flags |= ALLOC_HARDER; 952 if (gfp_mask & __GFP_HIGH) 953 alloc_flags |= ALLOC_HIGH; 954 alloc_flags |= ALLOC_CPUSET; 955 956 /* 957 * Go through the zonelist again. Let __GFP_HIGH and allocations 958 * coming from realtime tasks go deeper into reserves. 959 * 960 * This is the last chance, in general, before the goto nopage. 961 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 962 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 963 */ 964 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); 965 if (page) 966 goto got_pg; 967 968 /* This allocation should allow future memory freeing. */ 969 970 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 971 && !in_interrupt()) { 972 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 973 nofail_alloc: 974 /* go through the zonelist yet again, ignoring mins */ 975 page = get_page_from_freelist(gfp_mask, order, 976 zonelist, ALLOC_NO_WATERMARKS); 977 if (page) 978 goto got_pg; 979 if (gfp_mask & __GFP_NOFAIL) { 980 blk_congestion_wait(WRITE, HZ/50); 981 goto nofail_alloc; 982 } 983 } 984 goto nopage; 985 } 986 987 /* Atomic allocations - we can't balance anything */ 988 if (!wait) 989 goto nopage; 990 991 rebalance: 992 cond_resched(); 993 994 /* We now go into synchronous reclaim */ 995 cpuset_memory_pressure_bump(); 996 p->flags |= PF_MEMALLOC; 997 reclaim_state.reclaimed_slab = 0; 998 p->reclaim_state = &reclaim_state; 999 1000 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask); 1001 1002 p->reclaim_state = NULL; 1003 p->flags &= ~PF_MEMALLOC; 1004 1005 cond_resched(); 1006 1007 if (likely(did_some_progress)) { 1008 page = get_page_from_freelist(gfp_mask, order, 1009 zonelist, alloc_flags); 1010 if (page) 1011 goto got_pg; 1012 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1013 /* 1014 * Go through the zonelist yet one more time, keep 1015 * very high watermark here, this is only to catch 1016 * a parallel oom killing, we must fail if we're still 1017 * under heavy pressure. 1018 */ 1019 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1020 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1021 if (page) 1022 goto got_pg; 1023 1024 out_of_memory(zonelist, gfp_mask, order); 1025 goto restart; 1026 } 1027 1028 /* 1029 * Don't let big-order allocations loop unless the caller explicitly 1030 * requests that. Wait for some write requests to complete then retry. 1031 * 1032 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 1033 * <= 3, but that may not be true in other implementations. 1034 */ 1035 do_retry = 0; 1036 if (!(gfp_mask & __GFP_NORETRY)) { 1037 if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) 1038 do_retry = 1; 1039 if (gfp_mask & __GFP_NOFAIL) 1040 do_retry = 1; 1041 } 1042 if (do_retry) { 1043 blk_congestion_wait(WRITE, HZ/50); 1044 goto rebalance; 1045 } 1046 1047 nopage: 1048 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1049 printk(KERN_WARNING "%s: page allocation failure." 1050 " order:%d, mode:0x%x\n", 1051 p->comm, order, gfp_mask); 1052 dump_stack(); 1053 show_mem(); 1054 } 1055 got_pg: 1056 return page; 1057 } 1058 1059 EXPORT_SYMBOL(__alloc_pages); 1060 1061 /* 1062 * Common helper functions. 1063 */ 1064 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1065 { 1066 struct page * page; 1067 page = alloc_pages(gfp_mask, order); 1068 if (!page) 1069 return 0; 1070 return (unsigned long) page_address(page); 1071 } 1072 1073 EXPORT_SYMBOL(__get_free_pages); 1074 1075 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) 1076 { 1077 struct page * page; 1078 1079 /* 1080 * get_zeroed_page() returns a 32-bit address, which cannot represent 1081 * a highmem page 1082 */ 1083 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1084 1085 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1086 if (page) 1087 return (unsigned long) page_address(page); 1088 return 0; 1089 } 1090 1091 EXPORT_SYMBOL(get_zeroed_page); 1092 1093 void __pagevec_free(struct pagevec *pvec) 1094 { 1095 int i = pagevec_count(pvec); 1096 1097 while (--i >= 0) 1098 free_hot_cold_page(pvec->pages[i], pvec->cold); 1099 } 1100 1101 fastcall void __free_pages(struct page *page, unsigned int order) 1102 { 1103 if (put_page_testzero(page)) { 1104 if (order == 0) 1105 free_hot_page(page); 1106 else 1107 __free_pages_ok(page, order); 1108 } 1109 } 1110 1111 EXPORT_SYMBOL(__free_pages); 1112 1113 fastcall void free_pages(unsigned long addr, unsigned int order) 1114 { 1115 if (addr != 0) { 1116 BUG_ON(!virt_addr_valid((void *)addr)); 1117 __free_pages(virt_to_page((void *)addr), order); 1118 } 1119 } 1120 1121 EXPORT_SYMBOL(free_pages); 1122 1123 /* 1124 * Total amount of free (allocatable) RAM: 1125 */ 1126 unsigned int nr_free_pages(void) 1127 { 1128 unsigned int sum = 0; 1129 struct zone *zone; 1130 1131 for_each_zone(zone) 1132 sum += zone->free_pages; 1133 1134 return sum; 1135 } 1136 1137 EXPORT_SYMBOL(nr_free_pages); 1138 1139 #ifdef CONFIG_NUMA 1140 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) 1141 { 1142 unsigned int i, sum = 0; 1143 1144 for (i = 0; i < MAX_NR_ZONES; i++) 1145 sum += pgdat->node_zones[i].free_pages; 1146 1147 return sum; 1148 } 1149 #endif 1150 1151 static unsigned int nr_free_zone_pages(int offset) 1152 { 1153 /* Just pick one node, since fallback list is circular */ 1154 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1155 unsigned int sum = 0; 1156 1157 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1158 struct zone **zonep = zonelist->zones; 1159 struct zone *zone; 1160 1161 for (zone = *zonep++; zone; zone = *zonep++) { 1162 unsigned long size = zone->present_pages; 1163 unsigned long high = zone->pages_high; 1164 if (size > high) 1165 sum += size - high; 1166 } 1167 1168 return sum; 1169 } 1170 1171 /* 1172 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1173 */ 1174 unsigned int nr_free_buffer_pages(void) 1175 { 1176 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1177 } 1178 1179 /* 1180 * Amount of free RAM allocatable within all zones 1181 */ 1182 unsigned int nr_free_pagecache_pages(void) 1183 { 1184 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); 1185 } 1186 1187 #ifdef CONFIG_HIGHMEM 1188 unsigned int nr_free_highpages (void) 1189 { 1190 pg_data_t *pgdat; 1191 unsigned int pages = 0; 1192 1193 for_each_pgdat(pgdat) 1194 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1195 1196 return pages; 1197 } 1198 #endif 1199 1200 #ifdef CONFIG_NUMA 1201 static void show_node(struct zone *zone) 1202 { 1203 printk("Node %d ", zone->zone_pgdat->node_id); 1204 } 1205 #else 1206 #define show_node(zone) do { } while (0) 1207 #endif 1208 1209 /* 1210 * Accumulate the page_state information across all CPUs. 1211 * The result is unavoidably approximate - it can change 1212 * during and after execution of this function. 1213 */ 1214 static DEFINE_PER_CPU(struct page_state, page_states) = {0}; 1215 1216 atomic_t nr_pagecache = ATOMIC_INIT(0); 1217 EXPORT_SYMBOL(nr_pagecache); 1218 #ifdef CONFIG_SMP 1219 DEFINE_PER_CPU(long, nr_pagecache_local) = 0; 1220 #endif 1221 1222 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask) 1223 { 1224 unsigned cpu; 1225 1226 memset(ret, 0, nr * sizeof(unsigned long)); 1227 cpus_and(*cpumask, *cpumask, cpu_online_map); 1228 1229 for_each_cpu_mask(cpu, *cpumask) { 1230 unsigned long *in; 1231 unsigned long *out; 1232 unsigned off; 1233 unsigned next_cpu; 1234 1235 in = (unsigned long *)&per_cpu(page_states, cpu); 1236 1237 next_cpu = next_cpu(cpu, *cpumask); 1238 if (likely(next_cpu < NR_CPUS)) 1239 prefetch(&per_cpu(page_states, next_cpu)); 1240 1241 out = (unsigned long *)ret; 1242 for (off = 0; off < nr; off++) 1243 *out++ += *in++; 1244 } 1245 } 1246 1247 void get_page_state_node(struct page_state *ret, int node) 1248 { 1249 int nr; 1250 cpumask_t mask = node_to_cpumask(node); 1251 1252 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1253 nr /= sizeof(unsigned long); 1254 1255 __get_page_state(ret, nr+1, &mask); 1256 } 1257 1258 void get_page_state(struct page_state *ret) 1259 { 1260 int nr; 1261 cpumask_t mask = CPU_MASK_ALL; 1262 1263 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1264 nr /= sizeof(unsigned long); 1265 1266 __get_page_state(ret, nr + 1, &mask); 1267 } 1268 1269 void get_full_page_state(struct page_state *ret) 1270 { 1271 cpumask_t mask = CPU_MASK_ALL; 1272 1273 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask); 1274 } 1275 1276 unsigned long read_page_state_offset(unsigned long offset) 1277 { 1278 unsigned long ret = 0; 1279 int cpu; 1280 1281 for_each_online_cpu(cpu) { 1282 unsigned long in; 1283 1284 in = (unsigned long)&per_cpu(page_states, cpu) + offset; 1285 ret += *((unsigned long *)in); 1286 } 1287 return ret; 1288 } 1289 1290 void __mod_page_state_offset(unsigned long offset, unsigned long delta) 1291 { 1292 void *ptr; 1293 1294 ptr = &__get_cpu_var(page_states); 1295 *(unsigned long *)(ptr + offset) += delta; 1296 } 1297 EXPORT_SYMBOL(__mod_page_state_offset); 1298 1299 void mod_page_state_offset(unsigned long offset, unsigned long delta) 1300 { 1301 unsigned long flags; 1302 void *ptr; 1303 1304 local_irq_save(flags); 1305 ptr = &__get_cpu_var(page_states); 1306 *(unsigned long *)(ptr + offset) += delta; 1307 local_irq_restore(flags); 1308 } 1309 EXPORT_SYMBOL(mod_page_state_offset); 1310 1311 void __get_zone_counts(unsigned long *active, unsigned long *inactive, 1312 unsigned long *free, struct pglist_data *pgdat) 1313 { 1314 struct zone *zones = pgdat->node_zones; 1315 int i; 1316 1317 *active = 0; 1318 *inactive = 0; 1319 *free = 0; 1320 for (i = 0; i < MAX_NR_ZONES; i++) { 1321 *active += zones[i].nr_active; 1322 *inactive += zones[i].nr_inactive; 1323 *free += zones[i].free_pages; 1324 } 1325 } 1326 1327 void get_zone_counts(unsigned long *active, 1328 unsigned long *inactive, unsigned long *free) 1329 { 1330 struct pglist_data *pgdat; 1331 1332 *active = 0; 1333 *inactive = 0; 1334 *free = 0; 1335 for_each_pgdat(pgdat) { 1336 unsigned long l, m, n; 1337 __get_zone_counts(&l, &m, &n, pgdat); 1338 *active += l; 1339 *inactive += m; 1340 *free += n; 1341 } 1342 } 1343 1344 void si_meminfo(struct sysinfo *val) 1345 { 1346 val->totalram = totalram_pages; 1347 val->sharedram = 0; 1348 val->freeram = nr_free_pages(); 1349 val->bufferram = nr_blockdev_pages(); 1350 #ifdef CONFIG_HIGHMEM 1351 val->totalhigh = totalhigh_pages; 1352 val->freehigh = nr_free_highpages(); 1353 #else 1354 val->totalhigh = 0; 1355 val->freehigh = 0; 1356 #endif 1357 val->mem_unit = PAGE_SIZE; 1358 } 1359 1360 EXPORT_SYMBOL(si_meminfo); 1361 1362 #ifdef CONFIG_NUMA 1363 void si_meminfo_node(struct sysinfo *val, int nid) 1364 { 1365 pg_data_t *pgdat = NODE_DATA(nid); 1366 1367 val->totalram = pgdat->node_present_pages; 1368 val->freeram = nr_free_pages_pgdat(pgdat); 1369 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1370 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1371 val->mem_unit = PAGE_SIZE; 1372 } 1373 #endif 1374 1375 #define K(x) ((x) << (PAGE_SHIFT-10)) 1376 1377 /* 1378 * Show free area list (used inside shift_scroll-lock stuff) 1379 * We also calculate the percentage fragmentation. We do this by counting the 1380 * memory on each free list with the exception of the first item on the list. 1381 */ 1382 void show_free_areas(void) 1383 { 1384 struct page_state ps; 1385 int cpu, temperature; 1386 unsigned long active; 1387 unsigned long inactive; 1388 unsigned long free; 1389 struct zone *zone; 1390 1391 for_each_zone(zone) { 1392 show_node(zone); 1393 printk("%s per-cpu:", zone->name); 1394 1395 if (!populated_zone(zone)) { 1396 printk(" empty\n"); 1397 continue; 1398 } else 1399 printk("\n"); 1400 1401 for_each_online_cpu(cpu) { 1402 struct per_cpu_pageset *pageset; 1403 1404 pageset = zone_pcp(zone, cpu); 1405 1406 for (temperature = 0; temperature < 2; temperature++) 1407 printk("cpu %d %s: high %d, batch %d used:%d\n", 1408 cpu, 1409 temperature ? "cold" : "hot", 1410 pageset->pcp[temperature].high, 1411 pageset->pcp[temperature].batch, 1412 pageset->pcp[temperature].count); 1413 } 1414 } 1415 1416 get_page_state(&ps); 1417 get_zone_counts(&active, &inactive, &free); 1418 1419 printk("Free pages: %11ukB (%ukB HighMem)\n", 1420 K(nr_free_pages()), 1421 K(nr_free_highpages())); 1422 1423 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " 1424 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", 1425 active, 1426 inactive, 1427 ps.nr_dirty, 1428 ps.nr_writeback, 1429 ps.nr_unstable, 1430 nr_free_pages(), 1431 ps.nr_slab, 1432 ps.nr_mapped, 1433 ps.nr_page_table_pages); 1434 1435 for_each_zone(zone) { 1436 int i; 1437 1438 show_node(zone); 1439 printk("%s" 1440 " free:%lukB" 1441 " min:%lukB" 1442 " low:%lukB" 1443 " high:%lukB" 1444 " active:%lukB" 1445 " inactive:%lukB" 1446 " present:%lukB" 1447 " pages_scanned:%lu" 1448 " all_unreclaimable? %s" 1449 "\n", 1450 zone->name, 1451 K(zone->free_pages), 1452 K(zone->pages_min), 1453 K(zone->pages_low), 1454 K(zone->pages_high), 1455 K(zone->nr_active), 1456 K(zone->nr_inactive), 1457 K(zone->present_pages), 1458 zone->pages_scanned, 1459 (zone->all_unreclaimable ? "yes" : "no") 1460 ); 1461 printk("lowmem_reserve[]:"); 1462 for (i = 0; i < MAX_NR_ZONES; i++) 1463 printk(" %lu", zone->lowmem_reserve[i]); 1464 printk("\n"); 1465 } 1466 1467 for_each_zone(zone) { 1468 unsigned long nr, flags, order, total = 0; 1469 1470 show_node(zone); 1471 printk("%s: ", zone->name); 1472 if (!populated_zone(zone)) { 1473 printk("empty\n"); 1474 continue; 1475 } 1476 1477 spin_lock_irqsave(&zone->lock, flags); 1478 for (order = 0; order < MAX_ORDER; order++) { 1479 nr = zone->free_area[order].nr_free; 1480 total += nr << order; 1481 printk("%lu*%lukB ", nr, K(1UL) << order); 1482 } 1483 spin_unlock_irqrestore(&zone->lock, flags); 1484 printk("= %lukB\n", K(total)); 1485 } 1486 1487 show_swap_cache_info(); 1488 } 1489 1490 /* 1491 * Builds allocation fallback zone lists. 1492 * 1493 * Add all populated zones of a node to the zonelist. 1494 */ 1495 static int __init build_zonelists_node(pg_data_t *pgdat, 1496 struct zonelist *zonelist, int nr_zones, int zone_type) 1497 { 1498 struct zone *zone; 1499 1500 BUG_ON(zone_type > ZONE_HIGHMEM); 1501 1502 do { 1503 zone = pgdat->node_zones + zone_type; 1504 if (populated_zone(zone)) { 1505 #ifndef CONFIG_HIGHMEM 1506 BUG_ON(zone_type > ZONE_NORMAL); 1507 #endif 1508 zonelist->zones[nr_zones++] = zone; 1509 check_highest_zone(zone_type); 1510 } 1511 zone_type--; 1512 1513 } while (zone_type >= 0); 1514 return nr_zones; 1515 } 1516 1517 static inline int highest_zone(int zone_bits) 1518 { 1519 int res = ZONE_NORMAL; 1520 if (zone_bits & (__force int)__GFP_HIGHMEM) 1521 res = ZONE_HIGHMEM; 1522 if (zone_bits & (__force int)__GFP_DMA32) 1523 res = ZONE_DMA32; 1524 if (zone_bits & (__force int)__GFP_DMA) 1525 res = ZONE_DMA; 1526 return res; 1527 } 1528 1529 #ifdef CONFIG_NUMA 1530 #define MAX_NODE_LOAD (num_online_nodes()) 1531 static int __initdata node_load[MAX_NUMNODES]; 1532 /** 1533 * find_next_best_node - find the next node that should appear in a given node's fallback list 1534 * @node: node whose fallback list we're appending 1535 * @used_node_mask: nodemask_t of already used nodes 1536 * 1537 * We use a number of factors to determine which is the next node that should 1538 * appear on a given node's fallback list. The node should not have appeared 1539 * already in @node's fallback list, and it should be the next closest node 1540 * according to the distance array (which contains arbitrary distance values 1541 * from each node to each node in the system), and should also prefer nodes 1542 * with no CPUs, since presumably they'll have very little allocation pressure 1543 * on them otherwise. 1544 * It returns -1 if no node is found. 1545 */ 1546 static int __init find_next_best_node(int node, nodemask_t *used_node_mask) 1547 { 1548 int n, val; 1549 int min_val = INT_MAX; 1550 int best_node = -1; 1551 1552 /* Use the local node if we haven't already */ 1553 if (!node_isset(node, *used_node_mask)) { 1554 node_set(node, *used_node_mask); 1555 return node; 1556 } 1557 1558 for_each_online_node(n) { 1559 cpumask_t tmp; 1560 1561 /* Don't want a node to appear more than once */ 1562 if (node_isset(n, *used_node_mask)) 1563 continue; 1564 1565 /* Use the distance array to find the distance */ 1566 val = node_distance(node, n); 1567 1568 /* Penalize nodes under us ("prefer the next node") */ 1569 val += (n < node); 1570 1571 /* Give preference to headless and unused nodes */ 1572 tmp = node_to_cpumask(n); 1573 if (!cpus_empty(tmp)) 1574 val += PENALTY_FOR_NODE_WITH_CPUS; 1575 1576 /* Slight preference for less loaded node */ 1577 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 1578 val += node_load[n]; 1579 1580 if (val < min_val) { 1581 min_val = val; 1582 best_node = n; 1583 } 1584 } 1585 1586 if (best_node >= 0) 1587 node_set(best_node, *used_node_mask); 1588 1589 return best_node; 1590 } 1591 1592 static void __init build_zonelists(pg_data_t *pgdat) 1593 { 1594 int i, j, k, node, local_node; 1595 int prev_node, load; 1596 struct zonelist *zonelist; 1597 nodemask_t used_mask; 1598 1599 /* initialize zonelists */ 1600 for (i = 0; i < GFP_ZONETYPES; i++) { 1601 zonelist = pgdat->node_zonelists + i; 1602 zonelist->zones[0] = NULL; 1603 } 1604 1605 /* NUMA-aware ordering of nodes */ 1606 local_node = pgdat->node_id; 1607 load = num_online_nodes(); 1608 prev_node = local_node; 1609 nodes_clear(used_mask); 1610 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 1611 int distance = node_distance(local_node, node); 1612 1613 /* 1614 * If another node is sufficiently far away then it is better 1615 * to reclaim pages in a zone before going off node. 1616 */ 1617 if (distance > RECLAIM_DISTANCE) 1618 zone_reclaim_mode = 1; 1619 1620 /* 1621 * We don't want to pressure a particular node. 1622 * So adding penalty to the first node in same 1623 * distance group to make it round-robin. 1624 */ 1625 1626 if (distance != node_distance(local_node, prev_node)) 1627 node_load[node] += load; 1628 prev_node = node; 1629 load--; 1630 for (i = 0; i < GFP_ZONETYPES; i++) { 1631 zonelist = pgdat->node_zonelists + i; 1632 for (j = 0; zonelist->zones[j] != NULL; j++); 1633 1634 k = highest_zone(i); 1635 1636 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1637 zonelist->zones[j] = NULL; 1638 } 1639 } 1640 } 1641 1642 #else /* CONFIG_NUMA */ 1643 1644 static void __init build_zonelists(pg_data_t *pgdat) 1645 { 1646 int i, j, k, node, local_node; 1647 1648 local_node = pgdat->node_id; 1649 for (i = 0; i < GFP_ZONETYPES; i++) { 1650 struct zonelist *zonelist; 1651 1652 zonelist = pgdat->node_zonelists + i; 1653 1654 j = 0; 1655 k = highest_zone(i); 1656 j = build_zonelists_node(pgdat, zonelist, j, k); 1657 /* 1658 * Now we build the zonelist so that it contains the zones 1659 * of all the other nodes. 1660 * We don't want to pressure a particular node, so when 1661 * building the zones for node N, we make sure that the 1662 * zones coming right after the local ones are those from 1663 * node N+1 (modulo N) 1664 */ 1665 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 1666 if (!node_online(node)) 1667 continue; 1668 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1669 } 1670 for (node = 0; node < local_node; node++) { 1671 if (!node_online(node)) 1672 continue; 1673 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1674 } 1675 1676 zonelist->zones[j] = NULL; 1677 } 1678 } 1679 1680 #endif /* CONFIG_NUMA */ 1681 1682 void __init build_all_zonelists(void) 1683 { 1684 int i; 1685 1686 for_each_online_node(i) 1687 build_zonelists(NODE_DATA(i)); 1688 printk("Built %i zonelists\n", num_online_nodes()); 1689 cpuset_init_current_mems_allowed(); 1690 } 1691 1692 /* 1693 * Helper functions to size the waitqueue hash table. 1694 * Essentially these want to choose hash table sizes sufficiently 1695 * large so that collisions trying to wait on pages are rare. 1696 * But in fact, the number of active page waitqueues on typical 1697 * systems is ridiculously low, less than 200. So this is even 1698 * conservative, even though it seems large. 1699 * 1700 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 1701 * waitqueues, i.e. the size of the waitq table given the number of pages. 1702 */ 1703 #define PAGES_PER_WAITQUEUE 256 1704 1705 static inline unsigned long wait_table_size(unsigned long pages) 1706 { 1707 unsigned long size = 1; 1708 1709 pages /= PAGES_PER_WAITQUEUE; 1710 1711 while (size < pages) 1712 size <<= 1; 1713 1714 /* 1715 * Once we have dozens or even hundreds of threads sleeping 1716 * on IO we've got bigger problems than wait queue collision. 1717 * Limit the size of the wait table to a reasonable size. 1718 */ 1719 size = min(size, 4096UL); 1720 1721 return max(size, 4UL); 1722 } 1723 1724 /* 1725 * This is an integer logarithm so that shifts can be used later 1726 * to extract the more random high bits from the multiplicative 1727 * hash function before the remainder is taken. 1728 */ 1729 static inline unsigned long wait_table_bits(unsigned long size) 1730 { 1731 return ffz(~size); 1732 } 1733 1734 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 1735 1736 static void __init calculate_zone_totalpages(struct pglist_data *pgdat, 1737 unsigned long *zones_size, unsigned long *zholes_size) 1738 { 1739 unsigned long realtotalpages, totalpages = 0; 1740 int i; 1741 1742 for (i = 0; i < MAX_NR_ZONES; i++) 1743 totalpages += zones_size[i]; 1744 pgdat->node_spanned_pages = totalpages; 1745 1746 realtotalpages = totalpages; 1747 if (zholes_size) 1748 for (i = 0; i < MAX_NR_ZONES; i++) 1749 realtotalpages -= zholes_size[i]; 1750 pgdat->node_present_pages = realtotalpages; 1751 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1752 } 1753 1754 1755 /* 1756 * Initially all pages are reserved - free ones are freed 1757 * up by free_all_bootmem() once the early boot process is 1758 * done. Non-atomic initialization, single-pass. 1759 */ 1760 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 1761 unsigned long start_pfn) 1762 { 1763 struct page *page; 1764 unsigned long end_pfn = start_pfn + size; 1765 unsigned long pfn; 1766 1767 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1768 if (!early_pfn_valid(pfn)) 1769 continue; 1770 page = pfn_to_page(pfn); 1771 set_page_links(page, zone, nid, pfn); 1772 init_page_count(page); 1773 reset_page_mapcount(page); 1774 SetPageReserved(page); 1775 INIT_LIST_HEAD(&page->lru); 1776 #ifdef WANT_PAGE_VIRTUAL 1777 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1778 if (!is_highmem_idx(zone)) 1779 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1780 #endif 1781 } 1782 } 1783 1784 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, 1785 unsigned long size) 1786 { 1787 int order; 1788 for (order = 0; order < MAX_ORDER ; order++) { 1789 INIT_LIST_HEAD(&zone->free_area[order].free_list); 1790 zone->free_area[order].nr_free = 0; 1791 } 1792 } 1793 1794 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr) 1795 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, 1796 unsigned long size) 1797 { 1798 unsigned long snum = pfn_to_section_nr(pfn); 1799 unsigned long end = pfn_to_section_nr(pfn + size); 1800 1801 if (FLAGS_HAS_NODE) 1802 zone_table[ZONETABLE_INDEX(nid, zid)] = zone; 1803 else 1804 for (; snum <= end; snum++) 1805 zone_table[ZONETABLE_INDEX(snum, zid)] = zone; 1806 } 1807 1808 #ifndef __HAVE_ARCH_MEMMAP_INIT 1809 #define memmap_init(size, nid, zone, start_pfn) \ 1810 memmap_init_zone((size), (nid), (zone), (start_pfn)) 1811 #endif 1812 1813 static int __cpuinit zone_batchsize(struct zone *zone) 1814 { 1815 int batch; 1816 1817 /* 1818 * The per-cpu-pages pools are set to around 1000th of the 1819 * size of the zone. But no more than 1/2 of a meg. 1820 * 1821 * OK, so we don't know how big the cache is. So guess. 1822 */ 1823 batch = zone->present_pages / 1024; 1824 if (batch * PAGE_SIZE > 512 * 1024) 1825 batch = (512 * 1024) / PAGE_SIZE; 1826 batch /= 4; /* We effectively *= 4 below */ 1827 if (batch < 1) 1828 batch = 1; 1829 1830 /* 1831 * Clamp the batch to a 2^n - 1 value. Having a power 1832 * of 2 value was found to be more likely to have 1833 * suboptimal cache aliasing properties in some cases. 1834 * 1835 * For example if 2 tasks are alternately allocating 1836 * batches of pages, one task can end up with a lot 1837 * of pages of one half of the possible page colors 1838 * and the other with pages of the other colors. 1839 */ 1840 batch = (1 << (fls(batch + batch/2)-1)) - 1; 1841 1842 return batch; 1843 } 1844 1845 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 1846 { 1847 struct per_cpu_pages *pcp; 1848 1849 memset(p, 0, sizeof(*p)); 1850 1851 pcp = &p->pcp[0]; /* hot */ 1852 pcp->count = 0; 1853 pcp->high = 6 * batch; 1854 pcp->batch = max(1UL, 1 * batch); 1855 INIT_LIST_HEAD(&pcp->list); 1856 1857 pcp = &p->pcp[1]; /* cold*/ 1858 pcp->count = 0; 1859 pcp->high = 2 * batch; 1860 pcp->batch = max(1UL, batch/2); 1861 INIT_LIST_HEAD(&pcp->list); 1862 } 1863 1864 /* 1865 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 1866 * to the value high for the pageset p. 1867 */ 1868 1869 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 1870 unsigned long high) 1871 { 1872 struct per_cpu_pages *pcp; 1873 1874 pcp = &p->pcp[0]; /* hot list */ 1875 pcp->high = high; 1876 pcp->batch = max(1UL, high/4); 1877 if ((high/4) > (PAGE_SHIFT * 8)) 1878 pcp->batch = PAGE_SHIFT * 8; 1879 } 1880 1881 1882 #ifdef CONFIG_NUMA 1883 /* 1884 * Boot pageset table. One per cpu which is going to be used for all 1885 * zones and all nodes. The parameters will be set in such a way 1886 * that an item put on a list will immediately be handed over to 1887 * the buddy list. This is safe since pageset manipulation is done 1888 * with interrupts disabled. 1889 * 1890 * Some NUMA counter updates may also be caught by the boot pagesets. 1891 * 1892 * The boot_pagesets must be kept even after bootup is complete for 1893 * unused processors and/or zones. They do play a role for bootstrapping 1894 * hotplugged processors. 1895 * 1896 * zoneinfo_show() and maybe other functions do 1897 * not check if the processor is online before following the pageset pointer. 1898 * Other parts of the kernel may not check if the zone is available. 1899 */ 1900 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 1901 1902 /* 1903 * Dynamically allocate memory for the 1904 * per cpu pageset array in struct zone. 1905 */ 1906 static int __cpuinit process_zones(int cpu) 1907 { 1908 struct zone *zone, *dzone; 1909 1910 for_each_zone(zone) { 1911 1912 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 1913 GFP_KERNEL, cpu_to_node(cpu)); 1914 if (!zone_pcp(zone, cpu)) 1915 goto bad; 1916 1917 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 1918 1919 if (percpu_pagelist_fraction) 1920 setup_pagelist_highmark(zone_pcp(zone, cpu), 1921 (zone->present_pages / percpu_pagelist_fraction)); 1922 } 1923 1924 return 0; 1925 bad: 1926 for_each_zone(dzone) { 1927 if (dzone == zone) 1928 break; 1929 kfree(zone_pcp(dzone, cpu)); 1930 zone_pcp(dzone, cpu) = NULL; 1931 } 1932 return -ENOMEM; 1933 } 1934 1935 static inline void free_zone_pagesets(int cpu) 1936 { 1937 struct zone *zone; 1938 1939 for_each_zone(zone) { 1940 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 1941 1942 zone_pcp(zone, cpu) = NULL; 1943 kfree(pset); 1944 } 1945 } 1946 1947 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 1948 unsigned long action, 1949 void *hcpu) 1950 { 1951 int cpu = (long)hcpu; 1952 int ret = NOTIFY_OK; 1953 1954 switch (action) { 1955 case CPU_UP_PREPARE: 1956 if (process_zones(cpu)) 1957 ret = NOTIFY_BAD; 1958 break; 1959 case CPU_UP_CANCELED: 1960 case CPU_DEAD: 1961 free_zone_pagesets(cpu); 1962 break; 1963 default: 1964 break; 1965 } 1966 return ret; 1967 } 1968 1969 static struct notifier_block pageset_notifier = 1970 { &pageset_cpuup_callback, NULL, 0 }; 1971 1972 void __init setup_per_cpu_pageset(void) 1973 { 1974 int err; 1975 1976 /* Initialize per_cpu_pageset for cpu 0. 1977 * A cpuup callback will do this for every cpu 1978 * as it comes online 1979 */ 1980 err = process_zones(smp_processor_id()); 1981 BUG_ON(err); 1982 register_cpu_notifier(&pageset_notifier); 1983 } 1984 1985 #endif 1986 1987 static __meminit 1988 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 1989 { 1990 int i; 1991 struct pglist_data *pgdat = zone->zone_pgdat; 1992 1993 /* 1994 * The per-page waitqueue mechanism uses hashed waitqueues 1995 * per zone. 1996 */ 1997 zone->wait_table_size = wait_table_size(zone_size_pages); 1998 zone->wait_table_bits = wait_table_bits(zone->wait_table_size); 1999 zone->wait_table = (wait_queue_head_t *) 2000 alloc_bootmem_node(pgdat, zone->wait_table_size 2001 * sizeof(wait_queue_head_t)); 2002 2003 for(i = 0; i < zone->wait_table_size; ++i) 2004 init_waitqueue_head(zone->wait_table + i); 2005 } 2006 2007 static __meminit void zone_pcp_init(struct zone *zone) 2008 { 2009 int cpu; 2010 unsigned long batch = zone_batchsize(zone); 2011 2012 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2013 #ifdef CONFIG_NUMA 2014 /* Early boot. Slab allocator not functional yet */ 2015 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2016 setup_pageset(&boot_pageset[cpu],0); 2017 #else 2018 setup_pageset(zone_pcp(zone,cpu), batch); 2019 #endif 2020 } 2021 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2022 zone->name, zone->present_pages, batch); 2023 } 2024 2025 static __meminit void init_currently_empty_zone(struct zone *zone, 2026 unsigned long zone_start_pfn, unsigned long size) 2027 { 2028 struct pglist_data *pgdat = zone->zone_pgdat; 2029 2030 zone_wait_table_init(zone, size); 2031 pgdat->nr_zones = zone_idx(zone) + 1; 2032 2033 zone->zone_mem_map = pfn_to_page(zone_start_pfn); 2034 zone->zone_start_pfn = zone_start_pfn; 2035 2036 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); 2037 2038 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 2039 } 2040 2041 /* 2042 * Set up the zone data structures: 2043 * - mark all pages reserved 2044 * - mark all memory queues empty 2045 * - clear the memory bitmaps 2046 */ 2047 static void __init free_area_init_core(struct pglist_data *pgdat, 2048 unsigned long *zones_size, unsigned long *zholes_size) 2049 { 2050 unsigned long j; 2051 int nid = pgdat->node_id; 2052 unsigned long zone_start_pfn = pgdat->node_start_pfn; 2053 2054 pgdat_resize_init(pgdat); 2055 pgdat->nr_zones = 0; 2056 init_waitqueue_head(&pgdat->kswapd_wait); 2057 pgdat->kswapd_max_order = 0; 2058 2059 for (j = 0; j < MAX_NR_ZONES; j++) { 2060 struct zone *zone = pgdat->node_zones + j; 2061 unsigned long size, realsize; 2062 2063 realsize = size = zones_size[j]; 2064 if (zholes_size) 2065 realsize -= zholes_size[j]; 2066 2067 if (j < ZONE_HIGHMEM) 2068 nr_kernel_pages += realsize; 2069 nr_all_pages += realsize; 2070 2071 zone->spanned_pages = size; 2072 zone->present_pages = realsize; 2073 zone->name = zone_names[j]; 2074 spin_lock_init(&zone->lock); 2075 spin_lock_init(&zone->lru_lock); 2076 zone_seqlock_init(zone); 2077 zone->zone_pgdat = pgdat; 2078 zone->free_pages = 0; 2079 2080 zone->temp_priority = zone->prev_priority = DEF_PRIORITY; 2081 2082 zone_pcp_init(zone); 2083 INIT_LIST_HEAD(&zone->active_list); 2084 INIT_LIST_HEAD(&zone->inactive_list); 2085 zone->nr_scan_active = 0; 2086 zone->nr_scan_inactive = 0; 2087 zone->nr_active = 0; 2088 zone->nr_inactive = 0; 2089 atomic_set(&zone->reclaim_in_progress, 0); 2090 if (!size) 2091 continue; 2092 2093 zonetable_add(zone, nid, j, zone_start_pfn, size); 2094 init_currently_empty_zone(zone, zone_start_pfn, size); 2095 zone_start_pfn += size; 2096 } 2097 } 2098 2099 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 2100 { 2101 /* Skip empty nodes */ 2102 if (!pgdat->node_spanned_pages) 2103 return; 2104 2105 #ifdef CONFIG_FLAT_NODE_MEM_MAP 2106 /* ia64 gets its own node_mem_map, before this, without bootmem */ 2107 if (!pgdat->node_mem_map) { 2108 unsigned long size; 2109 struct page *map; 2110 2111 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page); 2112 map = alloc_remap(pgdat->node_id, size); 2113 if (!map) 2114 map = alloc_bootmem_node(pgdat, size); 2115 pgdat->node_mem_map = map; 2116 } 2117 #ifdef CONFIG_FLATMEM 2118 /* 2119 * With no DISCONTIG, the global mem_map is just set as node 0's 2120 */ 2121 if (pgdat == NODE_DATA(0)) 2122 mem_map = NODE_DATA(0)->node_mem_map; 2123 #endif 2124 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 2125 } 2126 2127 void __init free_area_init_node(int nid, struct pglist_data *pgdat, 2128 unsigned long *zones_size, unsigned long node_start_pfn, 2129 unsigned long *zholes_size) 2130 { 2131 pgdat->node_id = nid; 2132 pgdat->node_start_pfn = node_start_pfn; 2133 calculate_zone_totalpages(pgdat, zones_size, zholes_size); 2134 2135 alloc_node_mem_map(pgdat); 2136 2137 free_area_init_core(pgdat, zones_size, zholes_size); 2138 } 2139 2140 #ifndef CONFIG_NEED_MULTIPLE_NODES 2141 static bootmem_data_t contig_bootmem_data; 2142 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 2143 2144 EXPORT_SYMBOL(contig_page_data); 2145 #endif 2146 2147 void __init free_area_init(unsigned long *zones_size) 2148 { 2149 free_area_init_node(0, NODE_DATA(0), zones_size, 2150 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 2151 } 2152 2153 #ifdef CONFIG_PROC_FS 2154 2155 #include <linux/seq_file.h> 2156 2157 static void *frag_start(struct seq_file *m, loff_t *pos) 2158 { 2159 pg_data_t *pgdat; 2160 loff_t node = *pos; 2161 2162 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next) 2163 --node; 2164 2165 return pgdat; 2166 } 2167 2168 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 2169 { 2170 pg_data_t *pgdat = (pg_data_t *)arg; 2171 2172 (*pos)++; 2173 return pgdat->pgdat_next; 2174 } 2175 2176 static void frag_stop(struct seq_file *m, void *arg) 2177 { 2178 } 2179 2180 /* 2181 * This walks the free areas for each zone. 2182 */ 2183 static int frag_show(struct seq_file *m, void *arg) 2184 { 2185 pg_data_t *pgdat = (pg_data_t *)arg; 2186 struct zone *zone; 2187 struct zone *node_zones = pgdat->node_zones; 2188 unsigned long flags; 2189 int order; 2190 2191 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2192 if (!populated_zone(zone)) 2193 continue; 2194 2195 spin_lock_irqsave(&zone->lock, flags); 2196 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 2197 for (order = 0; order < MAX_ORDER; ++order) 2198 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 2199 spin_unlock_irqrestore(&zone->lock, flags); 2200 seq_putc(m, '\n'); 2201 } 2202 return 0; 2203 } 2204 2205 struct seq_operations fragmentation_op = { 2206 .start = frag_start, 2207 .next = frag_next, 2208 .stop = frag_stop, 2209 .show = frag_show, 2210 }; 2211 2212 /* 2213 * Output information about zones in @pgdat. 2214 */ 2215 static int zoneinfo_show(struct seq_file *m, void *arg) 2216 { 2217 pg_data_t *pgdat = arg; 2218 struct zone *zone; 2219 struct zone *node_zones = pgdat->node_zones; 2220 unsigned long flags; 2221 2222 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) { 2223 int i; 2224 2225 if (!populated_zone(zone)) 2226 continue; 2227 2228 spin_lock_irqsave(&zone->lock, flags); 2229 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 2230 seq_printf(m, 2231 "\n pages free %lu" 2232 "\n min %lu" 2233 "\n low %lu" 2234 "\n high %lu" 2235 "\n active %lu" 2236 "\n inactive %lu" 2237 "\n scanned %lu (a: %lu i: %lu)" 2238 "\n spanned %lu" 2239 "\n present %lu", 2240 zone->free_pages, 2241 zone->pages_min, 2242 zone->pages_low, 2243 zone->pages_high, 2244 zone->nr_active, 2245 zone->nr_inactive, 2246 zone->pages_scanned, 2247 zone->nr_scan_active, zone->nr_scan_inactive, 2248 zone->spanned_pages, 2249 zone->present_pages); 2250 seq_printf(m, 2251 "\n protection: (%lu", 2252 zone->lowmem_reserve[0]); 2253 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 2254 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 2255 seq_printf(m, 2256 ")" 2257 "\n pagesets"); 2258 for_each_online_cpu(i) { 2259 struct per_cpu_pageset *pageset; 2260 int j; 2261 2262 pageset = zone_pcp(zone, i); 2263 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2264 if (pageset->pcp[j].count) 2265 break; 2266 } 2267 if (j == ARRAY_SIZE(pageset->pcp)) 2268 continue; 2269 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2270 seq_printf(m, 2271 "\n cpu: %i pcp: %i" 2272 "\n count: %i" 2273 "\n high: %i" 2274 "\n batch: %i", 2275 i, j, 2276 pageset->pcp[j].count, 2277 pageset->pcp[j].high, 2278 pageset->pcp[j].batch); 2279 } 2280 #ifdef CONFIG_NUMA 2281 seq_printf(m, 2282 "\n numa_hit: %lu" 2283 "\n numa_miss: %lu" 2284 "\n numa_foreign: %lu" 2285 "\n interleave_hit: %lu" 2286 "\n local_node: %lu" 2287 "\n other_node: %lu", 2288 pageset->numa_hit, 2289 pageset->numa_miss, 2290 pageset->numa_foreign, 2291 pageset->interleave_hit, 2292 pageset->local_node, 2293 pageset->other_node); 2294 #endif 2295 } 2296 seq_printf(m, 2297 "\n all_unreclaimable: %u" 2298 "\n prev_priority: %i" 2299 "\n temp_priority: %i" 2300 "\n start_pfn: %lu", 2301 zone->all_unreclaimable, 2302 zone->prev_priority, 2303 zone->temp_priority, 2304 zone->zone_start_pfn); 2305 spin_unlock_irqrestore(&zone->lock, flags); 2306 seq_putc(m, '\n'); 2307 } 2308 return 0; 2309 } 2310 2311 struct seq_operations zoneinfo_op = { 2312 .start = frag_start, /* iterate over all zones. The same as in 2313 * fragmentation. */ 2314 .next = frag_next, 2315 .stop = frag_stop, 2316 .show = zoneinfo_show, 2317 }; 2318 2319 static char *vmstat_text[] = { 2320 "nr_dirty", 2321 "nr_writeback", 2322 "nr_unstable", 2323 "nr_page_table_pages", 2324 "nr_mapped", 2325 "nr_slab", 2326 2327 "pgpgin", 2328 "pgpgout", 2329 "pswpin", 2330 "pswpout", 2331 2332 "pgalloc_high", 2333 "pgalloc_normal", 2334 "pgalloc_dma32", 2335 "pgalloc_dma", 2336 2337 "pgfree", 2338 "pgactivate", 2339 "pgdeactivate", 2340 2341 "pgfault", 2342 "pgmajfault", 2343 2344 "pgrefill_high", 2345 "pgrefill_normal", 2346 "pgrefill_dma32", 2347 "pgrefill_dma", 2348 2349 "pgsteal_high", 2350 "pgsteal_normal", 2351 "pgsteal_dma32", 2352 "pgsteal_dma", 2353 2354 "pgscan_kswapd_high", 2355 "pgscan_kswapd_normal", 2356 "pgscan_kswapd_dma32", 2357 "pgscan_kswapd_dma", 2358 2359 "pgscan_direct_high", 2360 "pgscan_direct_normal", 2361 "pgscan_direct_dma32", 2362 "pgscan_direct_dma", 2363 2364 "pginodesteal", 2365 "slabs_scanned", 2366 "kswapd_steal", 2367 "kswapd_inodesteal", 2368 "pageoutrun", 2369 "allocstall", 2370 2371 "pgrotated", 2372 "nr_bounce", 2373 }; 2374 2375 static void *vmstat_start(struct seq_file *m, loff_t *pos) 2376 { 2377 struct page_state *ps; 2378 2379 if (*pos >= ARRAY_SIZE(vmstat_text)) 2380 return NULL; 2381 2382 ps = kmalloc(sizeof(*ps), GFP_KERNEL); 2383 m->private = ps; 2384 if (!ps) 2385 return ERR_PTR(-ENOMEM); 2386 get_full_page_state(ps); 2387 ps->pgpgin /= 2; /* sectors -> kbytes */ 2388 ps->pgpgout /= 2; 2389 return (unsigned long *)ps + *pos; 2390 } 2391 2392 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 2393 { 2394 (*pos)++; 2395 if (*pos >= ARRAY_SIZE(vmstat_text)) 2396 return NULL; 2397 return (unsigned long *)m->private + *pos; 2398 } 2399 2400 static int vmstat_show(struct seq_file *m, void *arg) 2401 { 2402 unsigned long *l = arg; 2403 unsigned long off = l - (unsigned long *)m->private; 2404 2405 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 2406 return 0; 2407 } 2408 2409 static void vmstat_stop(struct seq_file *m, void *arg) 2410 { 2411 kfree(m->private); 2412 m->private = NULL; 2413 } 2414 2415 struct seq_operations vmstat_op = { 2416 .start = vmstat_start, 2417 .next = vmstat_next, 2418 .stop = vmstat_stop, 2419 .show = vmstat_show, 2420 }; 2421 2422 #endif /* CONFIG_PROC_FS */ 2423 2424 #ifdef CONFIG_HOTPLUG_CPU 2425 static int page_alloc_cpu_notify(struct notifier_block *self, 2426 unsigned long action, void *hcpu) 2427 { 2428 int cpu = (unsigned long)hcpu; 2429 long *count; 2430 unsigned long *src, *dest; 2431 2432 if (action == CPU_DEAD) { 2433 int i; 2434 2435 /* Drain local pagecache count. */ 2436 count = &per_cpu(nr_pagecache_local, cpu); 2437 atomic_add(*count, &nr_pagecache); 2438 *count = 0; 2439 local_irq_disable(); 2440 __drain_pages(cpu); 2441 2442 /* Add dead cpu's page_states to our own. */ 2443 dest = (unsigned long *)&__get_cpu_var(page_states); 2444 src = (unsigned long *)&per_cpu(page_states, cpu); 2445 2446 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long); 2447 i++) { 2448 dest[i] += src[i]; 2449 src[i] = 0; 2450 } 2451 2452 local_irq_enable(); 2453 } 2454 return NOTIFY_OK; 2455 } 2456 #endif /* CONFIG_HOTPLUG_CPU */ 2457 2458 void __init page_alloc_init(void) 2459 { 2460 hotcpu_notifier(page_alloc_cpu_notify, 0); 2461 } 2462 2463 /* 2464 * setup_per_zone_lowmem_reserve - called whenever 2465 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 2466 * has a correct pages reserved value, so an adequate number of 2467 * pages are left in the zone after a successful __alloc_pages(). 2468 */ 2469 static void setup_per_zone_lowmem_reserve(void) 2470 { 2471 struct pglist_data *pgdat; 2472 int j, idx; 2473 2474 for_each_pgdat(pgdat) { 2475 for (j = 0; j < MAX_NR_ZONES; j++) { 2476 struct zone *zone = pgdat->node_zones + j; 2477 unsigned long present_pages = zone->present_pages; 2478 2479 zone->lowmem_reserve[j] = 0; 2480 2481 for (idx = j-1; idx >= 0; idx--) { 2482 struct zone *lower_zone; 2483 2484 if (sysctl_lowmem_reserve_ratio[idx] < 1) 2485 sysctl_lowmem_reserve_ratio[idx] = 1; 2486 2487 lower_zone = pgdat->node_zones + idx; 2488 lower_zone->lowmem_reserve[j] = present_pages / 2489 sysctl_lowmem_reserve_ratio[idx]; 2490 present_pages += lower_zone->present_pages; 2491 } 2492 } 2493 } 2494 } 2495 2496 /* 2497 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures 2498 * that the pages_{min,low,high} values for each zone are set correctly 2499 * with respect to min_free_kbytes. 2500 */ 2501 void setup_per_zone_pages_min(void) 2502 { 2503 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 2504 unsigned long lowmem_pages = 0; 2505 struct zone *zone; 2506 unsigned long flags; 2507 2508 /* Calculate total number of !ZONE_HIGHMEM pages */ 2509 for_each_zone(zone) { 2510 if (!is_highmem(zone)) 2511 lowmem_pages += zone->present_pages; 2512 } 2513 2514 for_each_zone(zone) { 2515 unsigned long tmp; 2516 spin_lock_irqsave(&zone->lru_lock, flags); 2517 tmp = (pages_min * zone->present_pages) / lowmem_pages; 2518 if (is_highmem(zone)) { 2519 /* 2520 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 2521 * need highmem pages, so cap pages_min to a small 2522 * value here. 2523 * 2524 * The (pages_high-pages_low) and (pages_low-pages_min) 2525 * deltas controls asynch page reclaim, and so should 2526 * not be capped for highmem. 2527 */ 2528 int min_pages; 2529 2530 min_pages = zone->present_pages / 1024; 2531 if (min_pages < SWAP_CLUSTER_MAX) 2532 min_pages = SWAP_CLUSTER_MAX; 2533 if (min_pages > 128) 2534 min_pages = 128; 2535 zone->pages_min = min_pages; 2536 } else { 2537 /* 2538 * If it's a lowmem zone, reserve a number of pages 2539 * proportionate to the zone's size. 2540 */ 2541 zone->pages_min = tmp; 2542 } 2543 2544 zone->pages_low = zone->pages_min + tmp / 4; 2545 zone->pages_high = zone->pages_min + tmp / 2; 2546 spin_unlock_irqrestore(&zone->lru_lock, flags); 2547 } 2548 } 2549 2550 /* 2551 * Initialise min_free_kbytes. 2552 * 2553 * For small machines we want it small (128k min). For large machines 2554 * we want it large (64MB max). But it is not linear, because network 2555 * bandwidth does not increase linearly with machine size. We use 2556 * 2557 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 2558 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 2559 * 2560 * which yields 2561 * 2562 * 16MB: 512k 2563 * 32MB: 724k 2564 * 64MB: 1024k 2565 * 128MB: 1448k 2566 * 256MB: 2048k 2567 * 512MB: 2896k 2568 * 1024MB: 4096k 2569 * 2048MB: 5792k 2570 * 4096MB: 8192k 2571 * 8192MB: 11584k 2572 * 16384MB: 16384k 2573 */ 2574 static int __init init_per_zone_pages_min(void) 2575 { 2576 unsigned long lowmem_kbytes; 2577 2578 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 2579 2580 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 2581 if (min_free_kbytes < 128) 2582 min_free_kbytes = 128; 2583 if (min_free_kbytes > 65536) 2584 min_free_kbytes = 65536; 2585 setup_per_zone_pages_min(); 2586 setup_per_zone_lowmem_reserve(); 2587 return 0; 2588 } 2589 module_init(init_per_zone_pages_min) 2590 2591 /* 2592 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 2593 * that we can call two helper functions whenever min_free_kbytes 2594 * changes. 2595 */ 2596 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 2597 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2598 { 2599 proc_dointvec(table, write, file, buffer, length, ppos); 2600 setup_per_zone_pages_min(); 2601 return 0; 2602 } 2603 2604 /* 2605 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 2606 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 2607 * whenever sysctl_lowmem_reserve_ratio changes. 2608 * 2609 * The reserve ratio obviously has absolutely no relation with the 2610 * pages_min watermarks. The lowmem reserve ratio can only make sense 2611 * if in function of the boot time zone sizes. 2612 */ 2613 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 2614 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2615 { 2616 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2617 setup_per_zone_lowmem_reserve(); 2618 return 0; 2619 } 2620 2621 /* 2622 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 2623 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 2624 * can have before it gets flushed back to buddy allocator. 2625 */ 2626 2627 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 2628 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2629 { 2630 struct zone *zone; 2631 unsigned int cpu; 2632 int ret; 2633 2634 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2635 if (!write || (ret == -EINVAL)) 2636 return ret; 2637 for_each_zone(zone) { 2638 for_each_online_cpu(cpu) { 2639 unsigned long high; 2640 high = zone->present_pages / percpu_pagelist_fraction; 2641 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 2642 } 2643 } 2644 return 0; 2645 } 2646 2647 __initdata int hashdist = HASHDIST_DEFAULT; 2648 2649 #ifdef CONFIG_NUMA 2650 static int __init set_hashdist(char *str) 2651 { 2652 if (!str) 2653 return 0; 2654 hashdist = simple_strtoul(str, &str, 0); 2655 return 1; 2656 } 2657 __setup("hashdist=", set_hashdist); 2658 #endif 2659 2660 /* 2661 * allocate a large system hash table from bootmem 2662 * - it is assumed that the hash table must contain an exact power-of-2 2663 * quantity of entries 2664 * - limit is the number of hash buckets, not the total allocation size 2665 */ 2666 void *__init alloc_large_system_hash(const char *tablename, 2667 unsigned long bucketsize, 2668 unsigned long numentries, 2669 int scale, 2670 int flags, 2671 unsigned int *_hash_shift, 2672 unsigned int *_hash_mask, 2673 unsigned long limit) 2674 { 2675 unsigned long long max = limit; 2676 unsigned long log2qty, size; 2677 void *table = NULL; 2678 2679 /* allow the kernel cmdline to have a say */ 2680 if (!numentries) { 2681 /* round applicable memory size up to nearest megabyte */ 2682 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; 2683 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 2684 numentries >>= 20 - PAGE_SHIFT; 2685 numentries <<= 20 - PAGE_SHIFT; 2686 2687 /* limit to 1 bucket per 2^scale bytes of low memory */ 2688 if (scale > PAGE_SHIFT) 2689 numentries >>= (scale - PAGE_SHIFT); 2690 else 2691 numentries <<= (PAGE_SHIFT - scale); 2692 } 2693 /* rounded up to nearest power of 2 in size */ 2694 numentries = 1UL << (long_log2(numentries) + 1); 2695 2696 /* limit allocation size to 1/16 total memory by default */ 2697 if (max == 0) { 2698 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2699 do_div(max, bucketsize); 2700 } 2701 2702 if (numentries > max) 2703 numentries = max; 2704 2705 log2qty = long_log2(numentries); 2706 2707 do { 2708 size = bucketsize << log2qty; 2709 if (flags & HASH_EARLY) 2710 table = alloc_bootmem(size); 2711 else if (hashdist) 2712 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 2713 else { 2714 unsigned long order; 2715 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 2716 ; 2717 table = (void*) __get_free_pages(GFP_ATOMIC, order); 2718 } 2719 } while (!table && size > PAGE_SIZE && --log2qty); 2720 2721 if (!table) 2722 panic("Failed to allocate %s hash table\n", tablename); 2723 2724 printk("%s hash table entries: %d (order: %d, %lu bytes)\n", 2725 tablename, 2726 (1U << log2qty), 2727 long_log2(size) - PAGE_SHIFT, 2728 size); 2729 2730 if (_hash_shift) 2731 *_hash_shift = log2qty; 2732 if (_hash_mask) 2733 *_hash_mask = (1 << log2qty) - 1; 2734 2735 return table; 2736 } 2737