xref: /openbmc/linux/mm/page_alloc.c (revision 77bc7fd607dee2ffb28daff6d0dd8ae42af61ea8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
78 #include "internal.h"
79 #include "shuffle.h"
80 #include "page_reporting.h"
81 
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
84 
85 /* No special request */
86 #define FPI_NONE		((__force fpi_t)0)
87 
88 /*
89  * Skip free page reporting notification for the (possibly merged) page.
90  * This does not hinder free page reporting from grabbing the page,
91  * reporting it and marking it "reported" -  it only skips notifying
92  * the free page reporting infrastructure about a newly freed page. For
93  * example, used when temporarily pulling a page from a freelist and
94  * putting it back unmodified.
95  */
96 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
97 
98 /*
99  * Place the (possibly merged) page to the tail of the freelist. Will ignore
100  * page shuffling (relevant code - e.g., memory onlining - is expected to
101  * shuffle the whole zone).
102  *
103  * Note: No code should rely on this flag for correctness - it's purely
104  *       to allow for optimizations when handing back either fresh pages
105  *       (memory onlining) or untouched pages (page isolation, free page
106  *       reporting).
107  */
108 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
109 
110 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
111 static DEFINE_MUTEX(pcp_batch_high_lock);
112 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
113 
114 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
115 DEFINE_PER_CPU(int, numa_node);
116 EXPORT_PER_CPU_SYMBOL(numa_node);
117 #endif
118 
119 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
120 
121 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
122 /*
123  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
124  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
125  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
126  * defined in <linux/topology.h>.
127  */
128 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
129 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
130 #endif
131 
132 /* work_structs for global per-cpu drains */
133 struct pcpu_drain {
134 	struct zone *zone;
135 	struct work_struct work;
136 };
137 static DEFINE_MUTEX(pcpu_drain_mutex);
138 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
139 
140 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
141 volatile unsigned long latent_entropy __latent_entropy;
142 EXPORT_SYMBOL(latent_entropy);
143 #endif
144 
145 /*
146  * Array of node states.
147  */
148 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
149 	[N_POSSIBLE] = NODE_MASK_ALL,
150 	[N_ONLINE] = { { [0] = 1UL } },
151 #ifndef CONFIG_NUMA
152 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
153 #ifdef CONFIG_HIGHMEM
154 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
155 #endif
156 	[N_MEMORY] = { { [0] = 1UL } },
157 	[N_CPU] = { { [0] = 1UL } },
158 #endif	/* NUMA */
159 };
160 EXPORT_SYMBOL(node_states);
161 
162 atomic_long_t _totalram_pages __read_mostly;
163 EXPORT_SYMBOL(_totalram_pages);
164 unsigned long totalreserve_pages __read_mostly;
165 unsigned long totalcma_pages __read_mostly;
166 
167 int percpu_pagelist_fraction;
168 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
169 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
170 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
171 #else
172 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
173 #endif
174 EXPORT_SYMBOL(init_on_alloc);
175 
176 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
177 DEFINE_STATIC_KEY_TRUE(init_on_free);
178 #else
179 DEFINE_STATIC_KEY_FALSE(init_on_free);
180 #endif
181 EXPORT_SYMBOL(init_on_free);
182 
183 static int __init early_init_on_alloc(char *buf)
184 {
185 	int ret;
186 	bool bool_result;
187 
188 	ret = kstrtobool(buf, &bool_result);
189 	if (ret)
190 		return ret;
191 	if (bool_result && page_poisoning_enabled())
192 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
193 	if (bool_result)
194 		static_branch_enable(&init_on_alloc);
195 	else
196 		static_branch_disable(&init_on_alloc);
197 	return 0;
198 }
199 early_param("init_on_alloc", early_init_on_alloc);
200 
201 static int __init early_init_on_free(char *buf)
202 {
203 	int ret;
204 	bool bool_result;
205 
206 	ret = kstrtobool(buf, &bool_result);
207 	if (ret)
208 		return ret;
209 	if (bool_result && page_poisoning_enabled())
210 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
211 	if (bool_result)
212 		static_branch_enable(&init_on_free);
213 	else
214 		static_branch_disable(&init_on_free);
215 	return 0;
216 }
217 early_param("init_on_free", early_init_on_free);
218 
219 /*
220  * A cached value of the page's pageblock's migratetype, used when the page is
221  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
222  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
223  * Also the migratetype set in the page does not necessarily match the pcplist
224  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
225  * other index - this ensures that it will be put on the correct CMA freelist.
226  */
227 static inline int get_pcppage_migratetype(struct page *page)
228 {
229 	return page->index;
230 }
231 
232 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
233 {
234 	page->index = migratetype;
235 }
236 
237 #ifdef CONFIG_PM_SLEEP
238 /*
239  * The following functions are used by the suspend/hibernate code to temporarily
240  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
241  * while devices are suspended.  To avoid races with the suspend/hibernate code,
242  * they should always be called with system_transition_mutex held
243  * (gfp_allowed_mask also should only be modified with system_transition_mutex
244  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
245  * with that modification).
246  */
247 
248 static gfp_t saved_gfp_mask;
249 
250 void pm_restore_gfp_mask(void)
251 {
252 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
253 	if (saved_gfp_mask) {
254 		gfp_allowed_mask = saved_gfp_mask;
255 		saved_gfp_mask = 0;
256 	}
257 }
258 
259 void pm_restrict_gfp_mask(void)
260 {
261 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
262 	WARN_ON(saved_gfp_mask);
263 	saved_gfp_mask = gfp_allowed_mask;
264 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
265 }
266 
267 bool pm_suspended_storage(void)
268 {
269 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
270 		return false;
271 	return true;
272 }
273 #endif /* CONFIG_PM_SLEEP */
274 
275 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
276 unsigned int pageblock_order __read_mostly;
277 #endif
278 
279 static void __free_pages_ok(struct page *page, unsigned int order,
280 			    fpi_t fpi_flags);
281 
282 /*
283  * results with 256, 32 in the lowmem_reserve sysctl:
284  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
285  *	1G machine -> (16M dma, 784M normal, 224M high)
286  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
287  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
288  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
289  *
290  * TBD: should special case ZONE_DMA32 machines here - in those we normally
291  * don't need any ZONE_NORMAL reservation
292  */
293 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
294 #ifdef CONFIG_ZONE_DMA
295 	[ZONE_DMA] = 256,
296 #endif
297 #ifdef CONFIG_ZONE_DMA32
298 	[ZONE_DMA32] = 256,
299 #endif
300 	[ZONE_NORMAL] = 32,
301 #ifdef CONFIG_HIGHMEM
302 	[ZONE_HIGHMEM] = 0,
303 #endif
304 	[ZONE_MOVABLE] = 0,
305 };
306 
307 static char * const zone_names[MAX_NR_ZONES] = {
308 #ifdef CONFIG_ZONE_DMA
309 	 "DMA",
310 #endif
311 #ifdef CONFIG_ZONE_DMA32
312 	 "DMA32",
313 #endif
314 	 "Normal",
315 #ifdef CONFIG_HIGHMEM
316 	 "HighMem",
317 #endif
318 	 "Movable",
319 #ifdef CONFIG_ZONE_DEVICE
320 	 "Device",
321 #endif
322 };
323 
324 const char * const migratetype_names[MIGRATE_TYPES] = {
325 	"Unmovable",
326 	"Movable",
327 	"Reclaimable",
328 	"HighAtomic",
329 #ifdef CONFIG_CMA
330 	"CMA",
331 #endif
332 #ifdef CONFIG_MEMORY_ISOLATION
333 	"Isolate",
334 #endif
335 };
336 
337 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
338 	[NULL_COMPOUND_DTOR] = NULL,
339 	[COMPOUND_PAGE_DTOR] = free_compound_page,
340 #ifdef CONFIG_HUGETLB_PAGE
341 	[HUGETLB_PAGE_DTOR] = free_huge_page,
342 #endif
343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
344 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
345 #endif
346 };
347 
348 int min_free_kbytes = 1024;
349 int user_min_free_kbytes = -1;
350 #ifdef CONFIG_DISCONTIGMEM
351 /*
352  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
353  * are not on separate NUMA nodes. Functionally this works but with
354  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
355  * quite small. By default, do not boost watermarks on discontigmem as in
356  * many cases very high-order allocations like THP are likely to be
357  * unsupported and the premature reclaim offsets the advantage of long-term
358  * fragmentation avoidance.
359  */
360 int watermark_boost_factor __read_mostly;
361 #else
362 int watermark_boost_factor __read_mostly = 15000;
363 #endif
364 int watermark_scale_factor = 10;
365 
366 static unsigned long nr_kernel_pages __initdata;
367 static unsigned long nr_all_pages __initdata;
368 static unsigned long dma_reserve __initdata;
369 
370 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
371 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
372 static unsigned long required_kernelcore __initdata;
373 static unsigned long required_kernelcore_percent __initdata;
374 static unsigned long required_movablecore __initdata;
375 static unsigned long required_movablecore_percent __initdata;
376 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
377 static bool mirrored_kernelcore __meminitdata;
378 
379 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
380 int movable_zone;
381 EXPORT_SYMBOL(movable_zone);
382 
383 #if MAX_NUMNODES > 1
384 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
385 unsigned int nr_online_nodes __read_mostly = 1;
386 EXPORT_SYMBOL(nr_node_ids);
387 EXPORT_SYMBOL(nr_online_nodes);
388 #endif
389 
390 int page_group_by_mobility_disabled __read_mostly;
391 
392 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
393 /*
394  * During boot we initialize deferred pages on-demand, as needed, but once
395  * page_alloc_init_late() has finished, the deferred pages are all initialized,
396  * and we can permanently disable that path.
397  */
398 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
399 
400 /*
401  * Calling kasan_free_pages() only after deferred memory initialization
402  * has completed. Poisoning pages during deferred memory init will greatly
403  * lengthen the process and cause problem in large memory systems as the
404  * deferred pages initialization is done with interrupt disabled.
405  *
406  * Assuming that there will be no reference to those newly initialized
407  * pages before they are ever allocated, this should have no effect on
408  * KASAN memory tracking as the poison will be properly inserted at page
409  * allocation time. The only corner case is when pages are allocated by
410  * on-demand allocation and then freed again before the deferred pages
411  * initialization is done, but this is not likely to happen.
412  */
413 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
414 {
415 	if (!static_branch_unlikely(&deferred_pages))
416 		kasan_free_pages(page, order);
417 }
418 
419 /* Returns true if the struct page for the pfn is uninitialised */
420 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
421 {
422 	int nid = early_pfn_to_nid(pfn);
423 
424 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
425 		return true;
426 
427 	return false;
428 }
429 
430 /*
431  * Returns true when the remaining initialisation should be deferred until
432  * later in the boot cycle when it can be parallelised.
433  */
434 static bool __meminit
435 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
436 {
437 	static unsigned long prev_end_pfn, nr_initialised;
438 
439 	/*
440 	 * prev_end_pfn static that contains the end of previous zone
441 	 * No need to protect because called very early in boot before smp_init.
442 	 */
443 	if (prev_end_pfn != end_pfn) {
444 		prev_end_pfn = end_pfn;
445 		nr_initialised = 0;
446 	}
447 
448 	/* Always populate low zones for address-constrained allocations */
449 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
450 		return false;
451 
452 	/*
453 	 * We start only with one section of pages, more pages are added as
454 	 * needed until the rest of deferred pages are initialized.
455 	 */
456 	nr_initialised++;
457 	if ((nr_initialised > PAGES_PER_SECTION) &&
458 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
459 		NODE_DATA(nid)->first_deferred_pfn = pfn;
460 		return true;
461 	}
462 	return false;
463 }
464 #else
465 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
466 
467 static inline bool early_page_uninitialised(unsigned long pfn)
468 {
469 	return false;
470 }
471 
472 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
473 {
474 	return false;
475 }
476 #endif
477 
478 /* Return a pointer to the bitmap storing bits affecting a block of pages */
479 static inline unsigned long *get_pageblock_bitmap(struct page *page,
480 							unsigned long pfn)
481 {
482 #ifdef CONFIG_SPARSEMEM
483 	return section_to_usemap(__pfn_to_section(pfn));
484 #else
485 	return page_zone(page)->pageblock_flags;
486 #endif /* CONFIG_SPARSEMEM */
487 }
488 
489 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
490 {
491 #ifdef CONFIG_SPARSEMEM
492 	pfn &= (PAGES_PER_SECTION-1);
493 #else
494 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
495 #endif /* CONFIG_SPARSEMEM */
496 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
497 }
498 
499 /**
500  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
501  * @page: The page within the block of interest
502  * @pfn: The target page frame number
503  * @mask: mask of bits that the caller is interested in
504  *
505  * Return: pageblock_bits flags
506  */
507 static __always_inline
508 unsigned long __get_pfnblock_flags_mask(struct page *page,
509 					unsigned long pfn,
510 					unsigned long mask)
511 {
512 	unsigned long *bitmap;
513 	unsigned long bitidx, word_bitidx;
514 	unsigned long word;
515 
516 	bitmap = get_pageblock_bitmap(page, pfn);
517 	bitidx = pfn_to_bitidx(page, pfn);
518 	word_bitidx = bitidx / BITS_PER_LONG;
519 	bitidx &= (BITS_PER_LONG-1);
520 
521 	word = bitmap[word_bitidx];
522 	return (word >> bitidx) & mask;
523 }
524 
525 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
526 					unsigned long mask)
527 {
528 	return __get_pfnblock_flags_mask(page, pfn, mask);
529 }
530 
531 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
532 {
533 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
534 }
535 
536 /**
537  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
538  * @page: The page within the block of interest
539  * @flags: The flags to set
540  * @pfn: The target page frame number
541  * @mask: mask of bits that the caller is interested in
542  */
543 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
544 					unsigned long pfn,
545 					unsigned long mask)
546 {
547 	unsigned long *bitmap;
548 	unsigned long bitidx, word_bitidx;
549 	unsigned long old_word, word;
550 
551 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
552 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
553 
554 	bitmap = get_pageblock_bitmap(page, pfn);
555 	bitidx = pfn_to_bitidx(page, pfn);
556 	word_bitidx = bitidx / BITS_PER_LONG;
557 	bitidx &= (BITS_PER_LONG-1);
558 
559 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
560 
561 	mask <<= bitidx;
562 	flags <<= bitidx;
563 
564 	word = READ_ONCE(bitmap[word_bitidx]);
565 	for (;;) {
566 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
567 		if (word == old_word)
568 			break;
569 		word = old_word;
570 	}
571 }
572 
573 void set_pageblock_migratetype(struct page *page, int migratetype)
574 {
575 	if (unlikely(page_group_by_mobility_disabled &&
576 		     migratetype < MIGRATE_PCPTYPES))
577 		migratetype = MIGRATE_UNMOVABLE;
578 
579 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
580 				page_to_pfn(page), MIGRATETYPE_MASK);
581 }
582 
583 #ifdef CONFIG_DEBUG_VM
584 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
585 {
586 	int ret = 0;
587 	unsigned seq;
588 	unsigned long pfn = page_to_pfn(page);
589 	unsigned long sp, start_pfn;
590 
591 	do {
592 		seq = zone_span_seqbegin(zone);
593 		start_pfn = zone->zone_start_pfn;
594 		sp = zone->spanned_pages;
595 		if (!zone_spans_pfn(zone, pfn))
596 			ret = 1;
597 	} while (zone_span_seqretry(zone, seq));
598 
599 	if (ret)
600 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
601 			pfn, zone_to_nid(zone), zone->name,
602 			start_pfn, start_pfn + sp);
603 
604 	return ret;
605 }
606 
607 static int page_is_consistent(struct zone *zone, struct page *page)
608 {
609 	if (!pfn_valid_within(page_to_pfn(page)))
610 		return 0;
611 	if (zone != page_zone(page))
612 		return 0;
613 
614 	return 1;
615 }
616 /*
617  * Temporary debugging check for pages not lying within a given zone.
618  */
619 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
620 {
621 	if (page_outside_zone_boundaries(zone, page))
622 		return 1;
623 	if (!page_is_consistent(zone, page))
624 		return 1;
625 
626 	return 0;
627 }
628 #else
629 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
630 {
631 	return 0;
632 }
633 #endif
634 
635 static void bad_page(struct page *page, const char *reason)
636 {
637 	static unsigned long resume;
638 	static unsigned long nr_shown;
639 	static unsigned long nr_unshown;
640 
641 	/*
642 	 * Allow a burst of 60 reports, then keep quiet for that minute;
643 	 * or allow a steady drip of one report per second.
644 	 */
645 	if (nr_shown == 60) {
646 		if (time_before(jiffies, resume)) {
647 			nr_unshown++;
648 			goto out;
649 		}
650 		if (nr_unshown) {
651 			pr_alert(
652 			      "BUG: Bad page state: %lu messages suppressed\n",
653 				nr_unshown);
654 			nr_unshown = 0;
655 		}
656 		nr_shown = 0;
657 	}
658 	if (nr_shown++ == 0)
659 		resume = jiffies + 60 * HZ;
660 
661 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
662 		current->comm, page_to_pfn(page));
663 	__dump_page(page, reason);
664 	dump_page_owner(page);
665 
666 	print_modules();
667 	dump_stack();
668 out:
669 	/* Leave bad fields for debug, except PageBuddy could make trouble */
670 	page_mapcount_reset(page); /* remove PageBuddy */
671 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
672 }
673 
674 /*
675  * Higher-order pages are called "compound pages".  They are structured thusly:
676  *
677  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
678  *
679  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
680  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
681  *
682  * The first tail page's ->compound_dtor holds the offset in array of compound
683  * page destructors. See compound_page_dtors.
684  *
685  * The first tail page's ->compound_order holds the order of allocation.
686  * This usage means that zero-order pages may not be compound.
687  */
688 
689 void free_compound_page(struct page *page)
690 {
691 	mem_cgroup_uncharge(page);
692 	__free_pages_ok(page, compound_order(page), FPI_NONE);
693 }
694 
695 void prep_compound_page(struct page *page, unsigned int order)
696 {
697 	int i;
698 	int nr_pages = 1 << order;
699 
700 	__SetPageHead(page);
701 	for (i = 1; i < nr_pages; i++) {
702 		struct page *p = page + i;
703 		set_page_count(p, 0);
704 		p->mapping = TAIL_MAPPING;
705 		set_compound_head(p, page);
706 	}
707 
708 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
709 	set_compound_order(page, order);
710 	atomic_set(compound_mapcount_ptr(page), -1);
711 	if (hpage_pincount_available(page))
712 		atomic_set(compound_pincount_ptr(page), 0);
713 }
714 
715 #ifdef CONFIG_DEBUG_PAGEALLOC
716 unsigned int _debug_guardpage_minorder;
717 
718 bool _debug_pagealloc_enabled_early __read_mostly
719 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
720 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
721 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
722 EXPORT_SYMBOL(_debug_pagealloc_enabled);
723 
724 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
725 
726 static int __init early_debug_pagealloc(char *buf)
727 {
728 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
729 }
730 early_param("debug_pagealloc", early_debug_pagealloc);
731 
732 void init_debug_pagealloc(void)
733 {
734 	if (!debug_pagealloc_enabled())
735 		return;
736 
737 	static_branch_enable(&_debug_pagealloc_enabled);
738 
739 	if (!debug_guardpage_minorder())
740 		return;
741 
742 	static_branch_enable(&_debug_guardpage_enabled);
743 }
744 
745 static int __init debug_guardpage_minorder_setup(char *buf)
746 {
747 	unsigned long res;
748 
749 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
750 		pr_err("Bad debug_guardpage_minorder value\n");
751 		return 0;
752 	}
753 	_debug_guardpage_minorder = res;
754 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
755 	return 0;
756 }
757 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
758 
759 static inline bool set_page_guard(struct zone *zone, struct page *page,
760 				unsigned int order, int migratetype)
761 {
762 	if (!debug_guardpage_enabled())
763 		return false;
764 
765 	if (order >= debug_guardpage_minorder())
766 		return false;
767 
768 	__SetPageGuard(page);
769 	INIT_LIST_HEAD(&page->lru);
770 	set_page_private(page, order);
771 	/* Guard pages are not available for any usage */
772 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
773 
774 	return true;
775 }
776 
777 static inline void clear_page_guard(struct zone *zone, struct page *page,
778 				unsigned int order, int migratetype)
779 {
780 	if (!debug_guardpage_enabled())
781 		return;
782 
783 	__ClearPageGuard(page);
784 
785 	set_page_private(page, 0);
786 	if (!is_migrate_isolate(migratetype))
787 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
788 }
789 #else
790 static inline bool set_page_guard(struct zone *zone, struct page *page,
791 			unsigned int order, int migratetype) { return false; }
792 static inline void clear_page_guard(struct zone *zone, struct page *page,
793 				unsigned int order, int migratetype) {}
794 #endif
795 
796 static inline void set_buddy_order(struct page *page, unsigned int order)
797 {
798 	set_page_private(page, order);
799 	__SetPageBuddy(page);
800 }
801 
802 /*
803  * This function checks whether a page is free && is the buddy
804  * we can coalesce a page and its buddy if
805  * (a) the buddy is not in a hole (check before calling!) &&
806  * (b) the buddy is in the buddy system &&
807  * (c) a page and its buddy have the same order &&
808  * (d) a page and its buddy are in the same zone.
809  *
810  * For recording whether a page is in the buddy system, we set PageBuddy.
811  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
812  *
813  * For recording page's order, we use page_private(page).
814  */
815 static inline bool page_is_buddy(struct page *page, struct page *buddy,
816 							unsigned int order)
817 {
818 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
819 		return false;
820 
821 	if (buddy_order(buddy) != order)
822 		return false;
823 
824 	/*
825 	 * zone check is done late to avoid uselessly calculating
826 	 * zone/node ids for pages that could never merge.
827 	 */
828 	if (page_zone_id(page) != page_zone_id(buddy))
829 		return false;
830 
831 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
832 
833 	return true;
834 }
835 
836 #ifdef CONFIG_COMPACTION
837 static inline struct capture_control *task_capc(struct zone *zone)
838 {
839 	struct capture_control *capc = current->capture_control;
840 
841 	return unlikely(capc) &&
842 		!(current->flags & PF_KTHREAD) &&
843 		!capc->page &&
844 		capc->cc->zone == zone ? capc : NULL;
845 }
846 
847 static inline bool
848 compaction_capture(struct capture_control *capc, struct page *page,
849 		   int order, int migratetype)
850 {
851 	if (!capc || order != capc->cc->order)
852 		return false;
853 
854 	/* Do not accidentally pollute CMA or isolated regions*/
855 	if (is_migrate_cma(migratetype) ||
856 	    is_migrate_isolate(migratetype))
857 		return false;
858 
859 	/*
860 	 * Do not let lower order allocations polluate a movable pageblock.
861 	 * This might let an unmovable request use a reclaimable pageblock
862 	 * and vice-versa but no more than normal fallback logic which can
863 	 * have trouble finding a high-order free page.
864 	 */
865 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
866 		return false;
867 
868 	capc->page = page;
869 	return true;
870 }
871 
872 #else
873 static inline struct capture_control *task_capc(struct zone *zone)
874 {
875 	return NULL;
876 }
877 
878 static inline bool
879 compaction_capture(struct capture_control *capc, struct page *page,
880 		   int order, int migratetype)
881 {
882 	return false;
883 }
884 #endif /* CONFIG_COMPACTION */
885 
886 /* Used for pages not on another list */
887 static inline void add_to_free_list(struct page *page, struct zone *zone,
888 				    unsigned int order, int migratetype)
889 {
890 	struct free_area *area = &zone->free_area[order];
891 
892 	list_add(&page->lru, &area->free_list[migratetype]);
893 	area->nr_free++;
894 }
895 
896 /* Used for pages not on another list */
897 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
898 					 unsigned int order, int migratetype)
899 {
900 	struct free_area *area = &zone->free_area[order];
901 
902 	list_add_tail(&page->lru, &area->free_list[migratetype]);
903 	area->nr_free++;
904 }
905 
906 /*
907  * Used for pages which are on another list. Move the pages to the tail
908  * of the list - so the moved pages won't immediately be considered for
909  * allocation again (e.g., optimization for memory onlining).
910  */
911 static inline void move_to_free_list(struct page *page, struct zone *zone,
912 				     unsigned int order, int migratetype)
913 {
914 	struct free_area *area = &zone->free_area[order];
915 
916 	list_move_tail(&page->lru, &area->free_list[migratetype]);
917 }
918 
919 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
920 					   unsigned int order)
921 {
922 	/* clear reported state and update reported page count */
923 	if (page_reported(page))
924 		__ClearPageReported(page);
925 
926 	list_del(&page->lru);
927 	__ClearPageBuddy(page);
928 	set_page_private(page, 0);
929 	zone->free_area[order].nr_free--;
930 }
931 
932 /*
933  * If this is not the largest possible page, check if the buddy
934  * of the next-highest order is free. If it is, it's possible
935  * that pages are being freed that will coalesce soon. In case,
936  * that is happening, add the free page to the tail of the list
937  * so it's less likely to be used soon and more likely to be merged
938  * as a higher order page
939  */
940 static inline bool
941 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
942 		   struct page *page, unsigned int order)
943 {
944 	struct page *higher_page, *higher_buddy;
945 	unsigned long combined_pfn;
946 
947 	if (order >= MAX_ORDER - 2)
948 		return false;
949 
950 	if (!pfn_valid_within(buddy_pfn))
951 		return false;
952 
953 	combined_pfn = buddy_pfn & pfn;
954 	higher_page = page + (combined_pfn - pfn);
955 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
956 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
957 
958 	return pfn_valid_within(buddy_pfn) &&
959 	       page_is_buddy(higher_page, higher_buddy, order + 1);
960 }
961 
962 /*
963  * Freeing function for a buddy system allocator.
964  *
965  * The concept of a buddy system is to maintain direct-mapped table
966  * (containing bit values) for memory blocks of various "orders".
967  * The bottom level table contains the map for the smallest allocatable
968  * units of memory (here, pages), and each level above it describes
969  * pairs of units from the levels below, hence, "buddies".
970  * At a high level, all that happens here is marking the table entry
971  * at the bottom level available, and propagating the changes upward
972  * as necessary, plus some accounting needed to play nicely with other
973  * parts of the VM system.
974  * At each level, we keep a list of pages, which are heads of continuous
975  * free pages of length of (1 << order) and marked with PageBuddy.
976  * Page's order is recorded in page_private(page) field.
977  * So when we are allocating or freeing one, we can derive the state of the
978  * other.  That is, if we allocate a small block, and both were
979  * free, the remainder of the region must be split into blocks.
980  * If a block is freed, and its buddy is also free, then this
981  * triggers coalescing into a block of larger size.
982  *
983  * -- nyc
984  */
985 
986 static inline void __free_one_page(struct page *page,
987 		unsigned long pfn,
988 		struct zone *zone, unsigned int order,
989 		int migratetype, fpi_t fpi_flags)
990 {
991 	struct capture_control *capc = task_capc(zone);
992 	unsigned long buddy_pfn;
993 	unsigned long combined_pfn;
994 	unsigned int max_order;
995 	struct page *buddy;
996 	bool to_tail;
997 
998 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
999 
1000 	VM_BUG_ON(!zone_is_initialized(zone));
1001 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1002 
1003 	VM_BUG_ON(migratetype == -1);
1004 	if (likely(!is_migrate_isolate(migratetype)))
1005 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1006 
1007 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1008 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1009 
1010 continue_merging:
1011 	while (order < max_order - 1) {
1012 		if (compaction_capture(capc, page, order, migratetype)) {
1013 			__mod_zone_freepage_state(zone, -(1 << order),
1014 								migratetype);
1015 			return;
1016 		}
1017 		buddy_pfn = __find_buddy_pfn(pfn, order);
1018 		buddy = page + (buddy_pfn - pfn);
1019 
1020 		if (!pfn_valid_within(buddy_pfn))
1021 			goto done_merging;
1022 		if (!page_is_buddy(page, buddy, order))
1023 			goto done_merging;
1024 		/*
1025 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1026 		 * merge with it and move up one order.
1027 		 */
1028 		if (page_is_guard(buddy))
1029 			clear_page_guard(zone, buddy, order, migratetype);
1030 		else
1031 			del_page_from_free_list(buddy, zone, order);
1032 		combined_pfn = buddy_pfn & pfn;
1033 		page = page + (combined_pfn - pfn);
1034 		pfn = combined_pfn;
1035 		order++;
1036 	}
1037 	if (max_order < MAX_ORDER) {
1038 		/* If we are here, it means order is >= pageblock_order.
1039 		 * We want to prevent merge between freepages on isolate
1040 		 * pageblock and normal pageblock. Without this, pageblock
1041 		 * isolation could cause incorrect freepage or CMA accounting.
1042 		 *
1043 		 * We don't want to hit this code for the more frequent
1044 		 * low-order merging.
1045 		 */
1046 		if (unlikely(has_isolate_pageblock(zone))) {
1047 			int buddy_mt;
1048 
1049 			buddy_pfn = __find_buddy_pfn(pfn, order);
1050 			buddy = page + (buddy_pfn - pfn);
1051 			buddy_mt = get_pageblock_migratetype(buddy);
1052 
1053 			if (migratetype != buddy_mt
1054 					&& (is_migrate_isolate(migratetype) ||
1055 						is_migrate_isolate(buddy_mt)))
1056 				goto done_merging;
1057 		}
1058 		max_order++;
1059 		goto continue_merging;
1060 	}
1061 
1062 done_merging:
1063 	set_buddy_order(page, order);
1064 
1065 	if (fpi_flags & FPI_TO_TAIL)
1066 		to_tail = true;
1067 	else if (is_shuffle_order(order))
1068 		to_tail = shuffle_pick_tail();
1069 	else
1070 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1071 
1072 	if (to_tail)
1073 		add_to_free_list_tail(page, zone, order, migratetype);
1074 	else
1075 		add_to_free_list(page, zone, order, migratetype);
1076 
1077 	/* Notify page reporting subsystem of freed page */
1078 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1079 		page_reporting_notify_free(order);
1080 }
1081 
1082 /*
1083  * A bad page could be due to a number of fields. Instead of multiple branches,
1084  * try and check multiple fields with one check. The caller must do a detailed
1085  * check if necessary.
1086  */
1087 static inline bool page_expected_state(struct page *page,
1088 					unsigned long check_flags)
1089 {
1090 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1091 		return false;
1092 
1093 	if (unlikely((unsigned long)page->mapping |
1094 			page_ref_count(page) |
1095 #ifdef CONFIG_MEMCG
1096 			(unsigned long)page->mem_cgroup |
1097 #endif
1098 			(page->flags & check_flags)))
1099 		return false;
1100 
1101 	return true;
1102 }
1103 
1104 static const char *page_bad_reason(struct page *page, unsigned long flags)
1105 {
1106 	const char *bad_reason = NULL;
1107 
1108 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1109 		bad_reason = "nonzero mapcount";
1110 	if (unlikely(page->mapping != NULL))
1111 		bad_reason = "non-NULL mapping";
1112 	if (unlikely(page_ref_count(page) != 0))
1113 		bad_reason = "nonzero _refcount";
1114 	if (unlikely(page->flags & flags)) {
1115 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1116 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1117 		else
1118 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1119 	}
1120 #ifdef CONFIG_MEMCG
1121 	if (unlikely(page->mem_cgroup))
1122 		bad_reason = "page still charged to cgroup";
1123 #endif
1124 	return bad_reason;
1125 }
1126 
1127 static void check_free_page_bad(struct page *page)
1128 {
1129 	bad_page(page,
1130 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1131 }
1132 
1133 static inline int check_free_page(struct page *page)
1134 {
1135 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1136 		return 0;
1137 
1138 	/* Something has gone sideways, find it */
1139 	check_free_page_bad(page);
1140 	return 1;
1141 }
1142 
1143 static int free_tail_pages_check(struct page *head_page, struct page *page)
1144 {
1145 	int ret = 1;
1146 
1147 	/*
1148 	 * We rely page->lru.next never has bit 0 set, unless the page
1149 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1150 	 */
1151 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1152 
1153 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1154 		ret = 0;
1155 		goto out;
1156 	}
1157 	switch (page - head_page) {
1158 	case 1:
1159 		/* the first tail page: ->mapping may be compound_mapcount() */
1160 		if (unlikely(compound_mapcount(page))) {
1161 			bad_page(page, "nonzero compound_mapcount");
1162 			goto out;
1163 		}
1164 		break;
1165 	case 2:
1166 		/*
1167 		 * the second tail page: ->mapping is
1168 		 * deferred_list.next -- ignore value.
1169 		 */
1170 		break;
1171 	default:
1172 		if (page->mapping != TAIL_MAPPING) {
1173 			bad_page(page, "corrupted mapping in tail page");
1174 			goto out;
1175 		}
1176 		break;
1177 	}
1178 	if (unlikely(!PageTail(page))) {
1179 		bad_page(page, "PageTail not set");
1180 		goto out;
1181 	}
1182 	if (unlikely(compound_head(page) != head_page)) {
1183 		bad_page(page, "compound_head not consistent");
1184 		goto out;
1185 	}
1186 	ret = 0;
1187 out:
1188 	page->mapping = NULL;
1189 	clear_compound_head(page);
1190 	return ret;
1191 }
1192 
1193 static void kernel_init_free_pages(struct page *page, int numpages)
1194 {
1195 	int i;
1196 
1197 	/* s390's use of memset() could override KASAN redzones. */
1198 	kasan_disable_current();
1199 	for (i = 0; i < numpages; i++)
1200 		clear_highpage(page + i);
1201 	kasan_enable_current();
1202 }
1203 
1204 static __always_inline bool free_pages_prepare(struct page *page,
1205 					unsigned int order, bool check_free)
1206 {
1207 	int bad = 0;
1208 
1209 	VM_BUG_ON_PAGE(PageTail(page), page);
1210 
1211 	trace_mm_page_free(page, order);
1212 
1213 	if (unlikely(PageHWPoison(page)) && !order) {
1214 		/*
1215 		 * Do not let hwpoison pages hit pcplists/buddy
1216 		 * Untie memcg state and reset page's owner
1217 		 */
1218 		if (memcg_kmem_enabled() && PageKmemcg(page))
1219 			__memcg_kmem_uncharge_page(page, order);
1220 		reset_page_owner(page, order);
1221 		return false;
1222 	}
1223 
1224 	/*
1225 	 * Check tail pages before head page information is cleared to
1226 	 * avoid checking PageCompound for order-0 pages.
1227 	 */
1228 	if (unlikely(order)) {
1229 		bool compound = PageCompound(page);
1230 		int i;
1231 
1232 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1233 
1234 		if (compound)
1235 			ClearPageDoubleMap(page);
1236 		for (i = 1; i < (1 << order); i++) {
1237 			if (compound)
1238 				bad += free_tail_pages_check(page, page + i);
1239 			if (unlikely(check_free_page(page + i))) {
1240 				bad++;
1241 				continue;
1242 			}
1243 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1244 		}
1245 	}
1246 	if (PageMappingFlags(page))
1247 		page->mapping = NULL;
1248 	if (memcg_kmem_enabled() && PageKmemcg(page))
1249 		__memcg_kmem_uncharge_page(page, order);
1250 	if (check_free)
1251 		bad += check_free_page(page);
1252 	if (bad)
1253 		return false;
1254 
1255 	page_cpupid_reset_last(page);
1256 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1257 	reset_page_owner(page, order);
1258 
1259 	if (!PageHighMem(page)) {
1260 		debug_check_no_locks_freed(page_address(page),
1261 					   PAGE_SIZE << order);
1262 		debug_check_no_obj_freed(page_address(page),
1263 					   PAGE_SIZE << order);
1264 	}
1265 	if (want_init_on_free())
1266 		kernel_init_free_pages(page, 1 << order);
1267 
1268 	kernel_poison_pages(page, 1 << order, 0);
1269 	/*
1270 	 * arch_free_page() can make the page's contents inaccessible.  s390
1271 	 * does this.  So nothing which can access the page's contents should
1272 	 * happen after this.
1273 	 */
1274 	arch_free_page(page, order);
1275 
1276 	debug_pagealloc_unmap_pages(page, 1 << order);
1277 
1278 	kasan_free_nondeferred_pages(page, order);
1279 
1280 	return true;
1281 }
1282 
1283 #ifdef CONFIG_DEBUG_VM
1284 /*
1285  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1286  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1287  * moved from pcp lists to free lists.
1288  */
1289 static bool free_pcp_prepare(struct page *page)
1290 {
1291 	return free_pages_prepare(page, 0, true);
1292 }
1293 
1294 static bool bulkfree_pcp_prepare(struct page *page)
1295 {
1296 	if (debug_pagealloc_enabled_static())
1297 		return check_free_page(page);
1298 	else
1299 		return false;
1300 }
1301 #else
1302 /*
1303  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1304  * moving from pcp lists to free list in order to reduce overhead. With
1305  * debug_pagealloc enabled, they are checked also immediately when being freed
1306  * to the pcp lists.
1307  */
1308 static bool free_pcp_prepare(struct page *page)
1309 {
1310 	if (debug_pagealloc_enabled_static())
1311 		return free_pages_prepare(page, 0, true);
1312 	else
1313 		return free_pages_prepare(page, 0, false);
1314 }
1315 
1316 static bool bulkfree_pcp_prepare(struct page *page)
1317 {
1318 	return check_free_page(page);
1319 }
1320 #endif /* CONFIG_DEBUG_VM */
1321 
1322 static inline void prefetch_buddy(struct page *page)
1323 {
1324 	unsigned long pfn = page_to_pfn(page);
1325 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1326 	struct page *buddy = page + (buddy_pfn - pfn);
1327 
1328 	prefetch(buddy);
1329 }
1330 
1331 /*
1332  * Frees a number of pages from the PCP lists
1333  * Assumes all pages on list are in same zone, and of same order.
1334  * count is the number of pages to free.
1335  *
1336  * If the zone was previously in an "all pages pinned" state then look to
1337  * see if this freeing clears that state.
1338  *
1339  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1340  * pinned" detection logic.
1341  */
1342 static void free_pcppages_bulk(struct zone *zone, int count,
1343 					struct per_cpu_pages *pcp)
1344 {
1345 	int migratetype = 0;
1346 	int batch_free = 0;
1347 	int prefetch_nr = 0;
1348 	bool isolated_pageblocks;
1349 	struct page *page, *tmp;
1350 	LIST_HEAD(head);
1351 
1352 	/*
1353 	 * Ensure proper count is passed which otherwise would stuck in the
1354 	 * below while (list_empty(list)) loop.
1355 	 */
1356 	count = min(pcp->count, count);
1357 	while (count) {
1358 		struct list_head *list;
1359 
1360 		/*
1361 		 * Remove pages from lists in a round-robin fashion. A
1362 		 * batch_free count is maintained that is incremented when an
1363 		 * empty list is encountered.  This is so more pages are freed
1364 		 * off fuller lists instead of spinning excessively around empty
1365 		 * lists
1366 		 */
1367 		do {
1368 			batch_free++;
1369 			if (++migratetype == MIGRATE_PCPTYPES)
1370 				migratetype = 0;
1371 			list = &pcp->lists[migratetype];
1372 		} while (list_empty(list));
1373 
1374 		/* This is the only non-empty list. Free them all. */
1375 		if (batch_free == MIGRATE_PCPTYPES)
1376 			batch_free = count;
1377 
1378 		do {
1379 			page = list_last_entry(list, struct page, lru);
1380 			/* must delete to avoid corrupting pcp list */
1381 			list_del(&page->lru);
1382 			pcp->count--;
1383 
1384 			if (bulkfree_pcp_prepare(page))
1385 				continue;
1386 
1387 			list_add_tail(&page->lru, &head);
1388 
1389 			/*
1390 			 * We are going to put the page back to the global
1391 			 * pool, prefetch its buddy to speed up later access
1392 			 * under zone->lock. It is believed the overhead of
1393 			 * an additional test and calculating buddy_pfn here
1394 			 * can be offset by reduced memory latency later. To
1395 			 * avoid excessive prefetching due to large count, only
1396 			 * prefetch buddy for the first pcp->batch nr of pages.
1397 			 */
1398 			if (prefetch_nr++ < pcp->batch)
1399 				prefetch_buddy(page);
1400 		} while (--count && --batch_free && !list_empty(list));
1401 	}
1402 
1403 	spin_lock(&zone->lock);
1404 	isolated_pageblocks = has_isolate_pageblock(zone);
1405 
1406 	/*
1407 	 * Use safe version since after __free_one_page(),
1408 	 * page->lru.next will not point to original list.
1409 	 */
1410 	list_for_each_entry_safe(page, tmp, &head, lru) {
1411 		int mt = get_pcppage_migratetype(page);
1412 		/* MIGRATE_ISOLATE page should not go to pcplists */
1413 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1414 		/* Pageblock could have been isolated meanwhile */
1415 		if (unlikely(isolated_pageblocks))
1416 			mt = get_pageblock_migratetype(page);
1417 
1418 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1419 		trace_mm_page_pcpu_drain(page, 0, mt);
1420 	}
1421 	spin_unlock(&zone->lock);
1422 }
1423 
1424 static void free_one_page(struct zone *zone,
1425 				struct page *page, unsigned long pfn,
1426 				unsigned int order,
1427 				int migratetype, fpi_t fpi_flags)
1428 {
1429 	spin_lock(&zone->lock);
1430 	if (unlikely(has_isolate_pageblock(zone) ||
1431 		is_migrate_isolate(migratetype))) {
1432 		migratetype = get_pfnblock_migratetype(page, pfn);
1433 	}
1434 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1435 	spin_unlock(&zone->lock);
1436 }
1437 
1438 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1439 				unsigned long zone, int nid)
1440 {
1441 	mm_zero_struct_page(page);
1442 	set_page_links(page, zone, nid, pfn);
1443 	init_page_count(page);
1444 	page_mapcount_reset(page);
1445 	page_cpupid_reset_last(page);
1446 	page_kasan_tag_reset(page);
1447 
1448 	INIT_LIST_HEAD(&page->lru);
1449 #ifdef WANT_PAGE_VIRTUAL
1450 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1451 	if (!is_highmem_idx(zone))
1452 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1453 #endif
1454 }
1455 
1456 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1457 static void __meminit init_reserved_page(unsigned long pfn)
1458 {
1459 	pg_data_t *pgdat;
1460 	int nid, zid;
1461 
1462 	if (!early_page_uninitialised(pfn))
1463 		return;
1464 
1465 	nid = early_pfn_to_nid(pfn);
1466 	pgdat = NODE_DATA(nid);
1467 
1468 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1469 		struct zone *zone = &pgdat->node_zones[zid];
1470 
1471 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1472 			break;
1473 	}
1474 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1475 }
1476 #else
1477 static inline void init_reserved_page(unsigned long pfn)
1478 {
1479 }
1480 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1481 
1482 /*
1483  * Initialised pages do not have PageReserved set. This function is
1484  * called for each range allocated by the bootmem allocator and
1485  * marks the pages PageReserved. The remaining valid pages are later
1486  * sent to the buddy page allocator.
1487  */
1488 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1489 {
1490 	unsigned long start_pfn = PFN_DOWN(start);
1491 	unsigned long end_pfn = PFN_UP(end);
1492 
1493 	for (; start_pfn < end_pfn; start_pfn++) {
1494 		if (pfn_valid(start_pfn)) {
1495 			struct page *page = pfn_to_page(start_pfn);
1496 
1497 			init_reserved_page(start_pfn);
1498 
1499 			/* Avoid false-positive PageTail() */
1500 			INIT_LIST_HEAD(&page->lru);
1501 
1502 			/*
1503 			 * no need for atomic set_bit because the struct
1504 			 * page is not visible yet so nobody should
1505 			 * access it yet.
1506 			 */
1507 			__SetPageReserved(page);
1508 		}
1509 	}
1510 }
1511 
1512 static void __free_pages_ok(struct page *page, unsigned int order,
1513 			    fpi_t fpi_flags)
1514 {
1515 	unsigned long flags;
1516 	int migratetype;
1517 	unsigned long pfn = page_to_pfn(page);
1518 
1519 	if (!free_pages_prepare(page, order, true))
1520 		return;
1521 
1522 	migratetype = get_pfnblock_migratetype(page, pfn);
1523 	local_irq_save(flags);
1524 	__count_vm_events(PGFREE, 1 << order);
1525 	free_one_page(page_zone(page), page, pfn, order, migratetype,
1526 		      fpi_flags);
1527 	local_irq_restore(flags);
1528 }
1529 
1530 void __free_pages_core(struct page *page, unsigned int order)
1531 {
1532 	unsigned int nr_pages = 1 << order;
1533 	struct page *p = page;
1534 	unsigned int loop;
1535 
1536 	/*
1537 	 * When initializing the memmap, __init_single_page() sets the refcount
1538 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1539 	 * refcount of all involved pages to 0.
1540 	 */
1541 	prefetchw(p);
1542 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1543 		prefetchw(p + 1);
1544 		__ClearPageReserved(p);
1545 		set_page_count(p, 0);
1546 	}
1547 	__ClearPageReserved(p);
1548 	set_page_count(p, 0);
1549 
1550 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1551 
1552 	/*
1553 	 * Bypass PCP and place fresh pages right to the tail, primarily
1554 	 * relevant for memory onlining.
1555 	 */
1556 	__free_pages_ok(page, order, FPI_TO_TAIL);
1557 }
1558 
1559 #ifdef CONFIG_NEED_MULTIPLE_NODES
1560 
1561 /*
1562  * During memory init memblocks map pfns to nids. The search is expensive and
1563  * this caches recent lookups. The implementation of __early_pfn_to_nid
1564  * treats start/end as pfns.
1565  */
1566 struct mminit_pfnnid_cache {
1567 	unsigned long last_start;
1568 	unsigned long last_end;
1569 	int last_nid;
1570 };
1571 
1572 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1573 
1574 /*
1575  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1576  */
1577 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1578 					struct mminit_pfnnid_cache *state)
1579 {
1580 	unsigned long start_pfn, end_pfn;
1581 	int nid;
1582 
1583 	if (state->last_start <= pfn && pfn < state->last_end)
1584 		return state->last_nid;
1585 
1586 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1587 	if (nid != NUMA_NO_NODE) {
1588 		state->last_start = start_pfn;
1589 		state->last_end = end_pfn;
1590 		state->last_nid = nid;
1591 	}
1592 
1593 	return nid;
1594 }
1595 
1596 int __meminit early_pfn_to_nid(unsigned long pfn)
1597 {
1598 	static DEFINE_SPINLOCK(early_pfn_lock);
1599 	int nid;
1600 
1601 	spin_lock(&early_pfn_lock);
1602 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1603 	if (nid < 0)
1604 		nid = first_online_node;
1605 	spin_unlock(&early_pfn_lock);
1606 
1607 	return nid;
1608 }
1609 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1610 
1611 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1612 							unsigned int order)
1613 {
1614 	if (early_page_uninitialised(pfn))
1615 		return;
1616 	__free_pages_core(page, order);
1617 }
1618 
1619 /*
1620  * Check that the whole (or subset of) a pageblock given by the interval of
1621  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1622  * with the migration of free compaction scanner. The scanners then need to
1623  * use only pfn_valid_within() check for arches that allow holes within
1624  * pageblocks.
1625  *
1626  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1627  *
1628  * It's possible on some configurations to have a setup like node0 node1 node0
1629  * i.e. it's possible that all pages within a zones range of pages do not
1630  * belong to a single zone. We assume that a border between node0 and node1
1631  * can occur within a single pageblock, but not a node0 node1 node0
1632  * interleaving within a single pageblock. It is therefore sufficient to check
1633  * the first and last page of a pageblock and avoid checking each individual
1634  * page in a pageblock.
1635  */
1636 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1637 				     unsigned long end_pfn, struct zone *zone)
1638 {
1639 	struct page *start_page;
1640 	struct page *end_page;
1641 
1642 	/* end_pfn is one past the range we are checking */
1643 	end_pfn--;
1644 
1645 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1646 		return NULL;
1647 
1648 	start_page = pfn_to_online_page(start_pfn);
1649 	if (!start_page)
1650 		return NULL;
1651 
1652 	if (page_zone(start_page) != zone)
1653 		return NULL;
1654 
1655 	end_page = pfn_to_page(end_pfn);
1656 
1657 	/* This gives a shorter code than deriving page_zone(end_page) */
1658 	if (page_zone_id(start_page) != page_zone_id(end_page))
1659 		return NULL;
1660 
1661 	return start_page;
1662 }
1663 
1664 void set_zone_contiguous(struct zone *zone)
1665 {
1666 	unsigned long block_start_pfn = zone->zone_start_pfn;
1667 	unsigned long block_end_pfn;
1668 
1669 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1670 	for (; block_start_pfn < zone_end_pfn(zone);
1671 			block_start_pfn = block_end_pfn,
1672 			 block_end_pfn += pageblock_nr_pages) {
1673 
1674 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1675 
1676 		if (!__pageblock_pfn_to_page(block_start_pfn,
1677 					     block_end_pfn, zone))
1678 			return;
1679 		cond_resched();
1680 	}
1681 
1682 	/* We confirm that there is no hole */
1683 	zone->contiguous = true;
1684 }
1685 
1686 void clear_zone_contiguous(struct zone *zone)
1687 {
1688 	zone->contiguous = false;
1689 }
1690 
1691 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1692 static void __init deferred_free_range(unsigned long pfn,
1693 				       unsigned long nr_pages)
1694 {
1695 	struct page *page;
1696 	unsigned long i;
1697 
1698 	if (!nr_pages)
1699 		return;
1700 
1701 	page = pfn_to_page(pfn);
1702 
1703 	/* Free a large naturally-aligned chunk if possible */
1704 	if (nr_pages == pageblock_nr_pages &&
1705 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1706 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1707 		__free_pages_core(page, pageblock_order);
1708 		return;
1709 	}
1710 
1711 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1712 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1713 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1714 		__free_pages_core(page, 0);
1715 	}
1716 }
1717 
1718 /* Completion tracking for deferred_init_memmap() threads */
1719 static atomic_t pgdat_init_n_undone __initdata;
1720 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1721 
1722 static inline void __init pgdat_init_report_one_done(void)
1723 {
1724 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1725 		complete(&pgdat_init_all_done_comp);
1726 }
1727 
1728 /*
1729  * Returns true if page needs to be initialized or freed to buddy allocator.
1730  *
1731  * First we check if pfn is valid on architectures where it is possible to have
1732  * holes within pageblock_nr_pages. On systems where it is not possible, this
1733  * function is optimized out.
1734  *
1735  * Then, we check if a current large page is valid by only checking the validity
1736  * of the head pfn.
1737  */
1738 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1739 {
1740 	if (!pfn_valid_within(pfn))
1741 		return false;
1742 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1743 		return false;
1744 	return true;
1745 }
1746 
1747 /*
1748  * Free pages to buddy allocator. Try to free aligned pages in
1749  * pageblock_nr_pages sizes.
1750  */
1751 static void __init deferred_free_pages(unsigned long pfn,
1752 				       unsigned long end_pfn)
1753 {
1754 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1755 	unsigned long nr_free = 0;
1756 
1757 	for (; pfn < end_pfn; pfn++) {
1758 		if (!deferred_pfn_valid(pfn)) {
1759 			deferred_free_range(pfn - nr_free, nr_free);
1760 			nr_free = 0;
1761 		} else if (!(pfn & nr_pgmask)) {
1762 			deferred_free_range(pfn - nr_free, nr_free);
1763 			nr_free = 1;
1764 		} else {
1765 			nr_free++;
1766 		}
1767 	}
1768 	/* Free the last block of pages to allocator */
1769 	deferred_free_range(pfn - nr_free, nr_free);
1770 }
1771 
1772 /*
1773  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1774  * by performing it only once every pageblock_nr_pages.
1775  * Return number of pages initialized.
1776  */
1777 static unsigned long  __init deferred_init_pages(struct zone *zone,
1778 						 unsigned long pfn,
1779 						 unsigned long end_pfn)
1780 {
1781 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1782 	int nid = zone_to_nid(zone);
1783 	unsigned long nr_pages = 0;
1784 	int zid = zone_idx(zone);
1785 	struct page *page = NULL;
1786 
1787 	for (; pfn < end_pfn; pfn++) {
1788 		if (!deferred_pfn_valid(pfn)) {
1789 			page = NULL;
1790 			continue;
1791 		} else if (!page || !(pfn & nr_pgmask)) {
1792 			page = pfn_to_page(pfn);
1793 		} else {
1794 			page++;
1795 		}
1796 		__init_single_page(page, pfn, zid, nid);
1797 		nr_pages++;
1798 	}
1799 	return (nr_pages);
1800 }
1801 
1802 /*
1803  * This function is meant to pre-load the iterator for the zone init.
1804  * Specifically it walks through the ranges until we are caught up to the
1805  * first_init_pfn value and exits there. If we never encounter the value we
1806  * return false indicating there are no valid ranges left.
1807  */
1808 static bool __init
1809 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1810 				    unsigned long *spfn, unsigned long *epfn,
1811 				    unsigned long first_init_pfn)
1812 {
1813 	u64 j;
1814 
1815 	/*
1816 	 * Start out by walking through the ranges in this zone that have
1817 	 * already been initialized. We don't need to do anything with them
1818 	 * so we just need to flush them out of the system.
1819 	 */
1820 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1821 		if (*epfn <= first_init_pfn)
1822 			continue;
1823 		if (*spfn < first_init_pfn)
1824 			*spfn = first_init_pfn;
1825 		*i = j;
1826 		return true;
1827 	}
1828 
1829 	return false;
1830 }
1831 
1832 /*
1833  * Initialize and free pages. We do it in two loops: first we initialize
1834  * struct page, then free to buddy allocator, because while we are
1835  * freeing pages we can access pages that are ahead (computing buddy
1836  * page in __free_one_page()).
1837  *
1838  * In order to try and keep some memory in the cache we have the loop
1839  * broken along max page order boundaries. This way we will not cause
1840  * any issues with the buddy page computation.
1841  */
1842 static unsigned long __init
1843 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1844 		       unsigned long *end_pfn)
1845 {
1846 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1847 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1848 	unsigned long nr_pages = 0;
1849 	u64 j = *i;
1850 
1851 	/* First we loop through and initialize the page values */
1852 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1853 		unsigned long t;
1854 
1855 		if (mo_pfn <= *start_pfn)
1856 			break;
1857 
1858 		t = min(mo_pfn, *end_pfn);
1859 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1860 
1861 		if (mo_pfn < *end_pfn) {
1862 			*start_pfn = mo_pfn;
1863 			break;
1864 		}
1865 	}
1866 
1867 	/* Reset values and now loop through freeing pages as needed */
1868 	swap(j, *i);
1869 
1870 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1871 		unsigned long t;
1872 
1873 		if (mo_pfn <= spfn)
1874 			break;
1875 
1876 		t = min(mo_pfn, epfn);
1877 		deferred_free_pages(spfn, t);
1878 
1879 		if (mo_pfn <= epfn)
1880 			break;
1881 	}
1882 
1883 	return nr_pages;
1884 }
1885 
1886 static void __init
1887 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1888 			   void *arg)
1889 {
1890 	unsigned long spfn, epfn;
1891 	struct zone *zone = arg;
1892 	u64 i;
1893 
1894 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1895 
1896 	/*
1897 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1898 	 * can avoid introducing any issues with the buddy allocator.
1899 	 */
1900 	while (spfn < end_pfn) {
1901 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1902 		cond_resched();
1903 	}
1904 }
1905 
1906 /* An arch may override for more concurrency. */
1907 __weak int __init
1908 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1909 {
1910 	return 1;
1911 }
1912 
1913 /* Initialise remaining memory on a node */
1914 static int __init deferred_init_memmap(void *data)
1915 {
1916 	pg_data_t *pgdat = data;
1917 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1918 	unsigned long spfn = 0, epfn = 0;
1919 	unsigned long first_init_pfn, flags;
1920 	unsigned long start = jiffies;
1921 	struct zone *zone;
1922 	int zid, max_threads;
1923 	u64 i;
1924 
1925 	/* Bind memory initialisation thread to a local node if possible */
1926 	if (!cpumask_empty(cpumask))
1927 		set_cpus_allowed_ptr(current, cpumask);
1928 
1929 	pgdat_resize_lock(pgdat, &flags);
1930 	first_init_pfn = pgdat->first_deferred_pfn;
1931 	if (first_init_pfn == ULONG_MAX) {
1932 		pgdat_resize_unlock(pgdat, &flags);
1933 		pgdat_init_report_one_done();
1934 		return 0;
1935 	}
1936 
1937 	/* Sanity check boundaries */
1938 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1939 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1940 	pgdat->first_deferred_pfn = ULONG_MAX;
1941 
1942 	/*
1943 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1944 	 * interrupt thread must allocate this early in boot, zone must be
1945 	 * pre-grown prior to start of deferred page initialization.
1946 	 */
1947 	pgdat_resize_unlock(pgdat, &flags);
1948 
1949 	/* Only the highest zone is deferred so find it */
1950 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1951 		zone = pgdat->node_zones + zid;
1952 		if (first_init_pfn < zone_end_pfn(zone))
1953 			break;
1954 	}
1955 
1956 	/* If the zone is empty somebody else may have cleared out the zone */
1957 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1958 						 first_init_pfn))
1959 		goto zone_empty;
1960 
1961 	max_threads = deferred_page_init_max_threads(cpumask);
1962 
1963 	while (spfn < epfn) {
1964 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1965 		struct padata_mt_job job = {
1966 			.thread_fn   = deferred_init_memmap_chunk,
1967 			.fn_arg      = zone,
1968 			.start       = spfn,
1969 			.size        = epfn_align - spfn,
1970 			.align       = PAGES_PER_SECTION,
1971 			.min_chunk   = PAGES_PER_SECTION,
1972 			.max_threads = max_threads,
1973 		};
1974 
1975 		padata_do_multithreaded(&job);
1976 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1977 						    epfn_align);
1978 	}
1979 zone_empty:
1980 	/* Sanity check that the next zone really is unpopulated */
1981 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1982 
1983 	pr_info("node %d deferred pages initialised in %ums\n",
1984 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
1985 
1986 	pgdat_init_report_one_done();
1987 	return 0;
1988 }
1989 
1990 /*
1991  * If this zone has deferred pages, try to grow it by initializing enough
1992  * deferred pages to satisfy the allocation specified by order, rounded up to
1993  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1994  * of SECTION_SIZE bytes by initializing struct pages in increments of
1995  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1996  *
1997  * Return true when zone was grown, otherwise return false. We return true even
1998  * when we grow less than requested, to let the caller decide if there are
1999  * enough pages to satisfy the allocation.
2000  *
2001  * Note: We use noinline because this function is needed only during boot, and
2002  * it is called from a __ref function _deferred_grow_zone. This way we are
2003  * making sure that it is not inlined into permanent text section.
2004  */
2005 static noinline bool __init
2006 deferred_grow_zone(struct zone *zone, unsigned int order)
2007 {
2008 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2009 	pg_data_t *pgdat = zone->zone_pgdat;
2010 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2011 	unsigned long spfn, epfn, flags;
2012 	unsigned long nr_pages = 0;
2013 	u64 i;
2014 
2015 	/* Only the last zone may have deferred pages */
2016 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2017 		return false;
2018 
2019 	pgdat_resize_lock(pgdat, &flags);
2020 
2021 	/*
2022 	 * If someone grew this zone while we were waiting for spinlock, return
2023 	 * true, as there might be enough pages already.
2024 	 */
2025 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2026 		pgdat_resize_unlock(pgdat, &flags);
2027 		return true;
2028 	}
2029 
2030 	/* If the zone is empty somebody else may have cleared out the zone */
2031 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2032 						 first_deferred_pfn)) {
2033 		pgdat->first_deferred_pfn = ULONG_MAX;
2034 		pgdat_resize_unlock(pgdat, &flags);
2035 		/* Retry only once. */
2036 		return first_deferred_pfn != ULONG_MAX;
2037 	}
2038 
2039 	/*
2040 	 * Initialize and free pages in MAX_ORDER sized increments so
2041 	 * that we can avoid introducing any issues with the buddy
2042 	 * allocator.
2043 	 */
2044 	while (spfn < epfn) {
2045 		/* update our first deferred PFN for this section */
2046 		first_deferred_pfn = spfn;
2047 
2048 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2049 		touch_nmi_watchdog();
2050 
2051 		/* We should only stop along section boundaries */
2052 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2053 			continue;
2054 
2055 		/* If our quota has been met we can stop here */
2056 		if (nr_pages >= nr_pages_needed)
2057 			break;
2058 	}
2059 
2060 	pgdat->first_deferred_pfn = spfn;
2061 	pgdat_resize_unlock(pgdat, &flags);
2062 
2063 	return nr_pages > 0;
2064 }
2065 
2066 /*
2067  * deferred_grow_zone() is __init, but it is called from
2068  * get_page_from_freelist() during early boot until deferred_pages permanently
2069  * disables this call. This is why we have refdata wrapper to avoid warning,
2070  * and to ensure that the function body gets unloaded.
2071  */
2072 static bool __ref
2073 _deferred_grow_zone(struct zone *zone, unsigned int order)
2074 {
2075 	return deferred_grow_zone(zone, order);
2076 }
2077 
2078 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2079 
2080 void __init page_alloc_init_late(void)
2081 {
2082 	struct zone *zone;
2083 	int nid;
2084 
2085 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2086 
2087 	/* There will be num_node_state(N_MEMORY) threads */
2088 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2089 	for_each_node_state(nid, N_MEMORY) {
2090 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2091 	}
2092 
2093 	/* Block until all are initialised */
2094 	wait_for_completion(&pgdat_init_all_done_comp);
2095 
2096 	/*
2097 	 * The number of managed pages has changed due to the initialisation
2098 	 * so the pcpu batch and high limits needs to be updated or the limits
2099 	 * will be artificially small.
2100 	 */
2101 	for_each_populated_zone(zone)
2102 		zone_pcp_update(zone);
2103 
2104 	/*
2105 	 * We initialized the rest of the deferred pages.  Permanently disable
2106 	 * on-demand struct page initialization.
2107 	 */
2108 	static_branch_disable(&deferred_pages);
2109 
2110 	/* Reinit limits that are based on free pages after the kernel is up */
2111 	files_maxfiles_init();
2112 #endif
2113 
2114 	/* Discard memblock private memory */
2115 	memblock_discard();
2116 
2117 	for_each_node_state(nid, N_MEMORY)
2118 		shuffle_free_memory(NODE_DATA(nid));
2119 
2120 	for_each_populated_zone(zone)
2121 		set_zone_contiguous(zone);
2122 }
2123 
2124 #ifdef CONFIG_CMA
2125 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2126 void __init init_cma_reserved_pageblock(struct page *page)
2127 {
2128 	unsigned i = pageblock_nr_pages;
2129 	struct page *p = page;
2130 
2131 	do {
2132 		__ClearPageReserved(p);
2133 		set_page_count(p, 0);
2134 	} while (++p, --i);
2135 
2136 	set_pageblock_migratetype(page, MIGRATE_CMA);
2137 
2138 	if (pageblock_order >= MAX_ORDER) {
2139 		i = pageblock_nr_pages;
2140 		p = page;
2141 		do {
2142 			set_page_refcounted(p);
2143 			__free_pages(p, MAX_ORDER - 1);
2144 			p += MAX_ORDER_NR_PAGES;
2145 		} while (i -= MAX_ORDER_NR_PAGES);
2146 	} else {
2147 		set_page_refcounted(page);
2148 		__free_pages(page, pageblock_order);
2149 	}
2150 
2151 	adjust_managed_page_count(page, pageblock_nr_pages);
2152 }
2153 #endif
2154 
2155 /*
2156  * The order of subdivision here is critical for the IO subsystem.
2157  * Please do not alter this order without good reasons and regression
2158  * testing. Specifically, as large blocks of memory are subdivided,
2159  * the order in which smaller blocks are delivered depends on the order
2160  * they're subdivided in this function. This is the primary factor
2161  * influencing the order in which pages are delivered to the IO
2162  * subsystem according to empirical testing, and this is also justified
2163  * by considering the behavior of a buddy system containing a single
2164  * large block of memory acted on by a series of small allocations.
2165  * This behavior is a critical factor in sglist merging's success.
2166  *
2167  * -- nyc
2168  */
2169 static inline void expand(struct zone *zone, struct page *page,
2170 	int low, int high, int migratetype)
2171 {
2172 	unsigned long size = 1 << high;
2173 
2174 	while (high > low) {
2175 		high--;
2176 		size >>= 1;
2177 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2178 
2179 		/*
2180 		 * Mark as guard pages (or page), that will allow to
2181 		 * merge back to allocator when buddy will be freed.
2182 		 * Corresponding page table entries will not be touched,
2183 		 * pages will stay not present in virtual address space
2184 		 */
2185 		if (set_page_guard(zone, &page[size], high, migratetype))
2186 			continue;
2187 
2188 		add_to_free_list(&page[size], zone, high, migratetype);
2189 		set_buddy_order(&page[size], high);
2190 	}
2191 }
2192 
2193 static void check_new_page_bad(struct page *page)
2194 {
2195 	if (unlikely(page->flags & __PG_HWPOISON)) {
2196 		/* Don't complain about hwpoisoned pages */
2197 		page_mapcount_reset(page); /* remove PageBuddy */
2198 		return;
2199 	}
2200 
2201 	bad_page(page,
2202 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2203 }
2204 
2205 /*
2206  * This page is about to be returned from the page allocator
2207  */
2208 static inline int check_new_page(struct page *page)
2209 {
2210 	if (likely(page_expected_state(page,
2211 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2212 		return 0;
2213 
2214 	check_new_page_bad(page);
2215 	return 1;
2216 }
2217 
2218 static inline bool free_pages_prezeroed(void)
2219 {
2220 	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2221 		page_poisoning_enabled()) || want_init_on_free();
2222 }
2223 
2224 #ifdef CONFIG_DEBUG_VM
2225 /*
2226  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2227  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2228  * also checked when pcp lists are refilled from the free lists.
2229  */
2230 static inline bool check_pcp_refill(struct page *page)
2231 {
2232 	if (debug_pagealloc_enabled_static())
2233 		return check_new_page(page);
2234 	else
2235 		return false;
2236 }
2237 
2238 static inline bool check_new_pcp(struct page *page)
2239 {
2240 	return check_new_page(page);
2241 }
2242 #else
2243 /*
2244  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2245  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2246  * enabled, they are also checked when being allocated from the pcp lists.
2247  */
2248 static inline bool check_pcp_refill(struct page *page)
2249 {
2250 	return check_new_page(page);
2251 }
2252 static inline bool check_new_pcp(struct page *page)
2253 {
2254 	if (debug_pagealloc_enabled_static())
2255 		return check_new_page(page);
2256 	else
2257 		return false;
2258 }
2259 #endif /* CONFIG_DEBUG_VM */
2260 
2261 static bool check_new_pages(struct page *page, unsigned int order)
2262 {
2263 	int i;
2264 	for (i = 0; i < (1 << order); i++) {
2265 		struct page *p = page + i;
2266 
2267 		if (unlikely(check_new_page(p)))
2268 			return true;
2269 	}
2270 
2271 	return false;
2272 }
2273 
2274 inline void post_alloc_hook(struct page *page, unsigned int order,
2275 				gfp_t gfp_flags)
2276 {
2277 	set_page_private(page, 0);
2278 	set_page_refcounted(page);
2279 
2280 	arch_alloc_page(page, order);
2281 	debug_pagealloc_map_pages(page, 1 << order);
2282 	kasan_alloc_pages(page, order);
2283 	kernel_poison_pages(page, 1 << order, 1);
2284 	set_page_owner(page, order, gfp_flags);
2285 }
2286 
2287 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2288 							unsigned int alloc_flags)
2289 {
2290 	post_alloc_hook(page, order, gfp_flags);
2291 
2292 	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2293 		kernel_init_free_pages(page, 1 << order);
2294 
2295 	if (order && (gfp_flags & __GFP_COMP))
2296 		prep_compound_page(page, order);
2297 
2298 	/*
2299 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2300 	 * allocate the page. The expectation is that the caller is taking
2301 	 * steps that will free more memory. The caller should avoid the page
2302 	 * being used for !PFMEMALLOC purposes.
2303 	 */
2304 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2305 		set_page_pfmemalloc(page);
2306 	else
2307 		clear_page_pfmemalloc(page);
2308 }
2309 
2310 /*
2311  * Go through the free lists for the given migratetype and remove
2312  * the smallest available page from the freelists
2313  */
2314 static __always_inline
2315 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2316 						int migratetype)
2317 {
2318 	unsigned int current_order;
2319 	struct free_area *area;
2320 	struct page *page;
2321 
2322 	/* Find a page of the appropriate size in the preferred list */
2323 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2324 		area = &(zone->free_area[current_order]);
2325 		page = get_page_from_free_area(area, migratetype);
2326 		if (!page)
2327 			continue;
2328 		del_page_from_free_list(page, zone, current_order);
2329 		expand(zone, page, order, current_order, migratetype);
2330 		set_pcppage_migratetype(page, migratetype);
2331 		return page;
2332 	}
2333 
2334 	return NULL;
2335 }
2336 
2337 
2338 /*
2339  * This array describes the order lists are fallen back to when
2340  * the free lists for the desirable migrate type are depleted
2341  */
2342 static int fallbacks[MIGRATE_TYPES][3] = {
2343 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2344 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2345 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2346 #ifdef CONFIG_CMA
2347 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2348 #endif
2349 #ifdef CONFIG_MEMORY_ISOLATION
2350 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2351 #endif
2352 };
2353 
2354 #ifdef CONFIG_CMA
2355 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2356 					unsigned int order)
2357 {
2358 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2359 }
2360 #else
2361 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2362 					unsigned int order) { return NULL; }
2363 #endif
2364 
2365 /*
2366  * Move the free pages in a range to the freelist tail of the requested type.
2367  * Note that start_page and end_pages are not aligned on a pageblock
2368  * boundary. If alignment is required, use move_freepages_block()
2369  */
2370 static int move_freepages(struct zone *zone,
2371 			  struct page *start_page, struct page *end_page,
2372 			  int migratetype, int *num_movable)
2373 {
2374 	struct page *page;
2375 	unsigned int order;
2376 	int pages_moved = 0;
2377 
2378 	for (page = start_page; page <= end_page;) {
2379 		if (!pfn_valid_within(page_to_pfn(page))) {
2380 			page++;
2381 			continue;
2382 		}
2383 
2384 		if (!PageBuddy(page)) {
2385 			/*
2386 			 * We assume that pages that could be isolated for
2387 			 * migration are movable. But we don't actually try
2388 			 * isolating, as that would be expensive.
2389 			 */
2390 			if (num_movable &&
2391 					(PageLRU(page) || __PageMovable(page)))
2392 				(*num_movable)++;
2393 
2394 			page++;
2395 			continue;
2396 		}
2397 
2398 		/* Make sure we are not inadvertently changing nodes */
2399 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2400 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2401 
2402 		order = buddy_order(page);
2403 		move_to_free_list(page, zone, order, migratetype);
2404 		page += 1 << order;
2405 		pages_moved += 1 << order;
2406 	}
2407 
2408 	return pages_moved;
2409 }
2410 
2411 int move_freepages_block(struct zone *zone, struct page *page,
2412 				int migratetype, int *num_movable)
2413 {
2414 	unsigned long start_pfn, end_pfn;
2415 	struct page *start_page, *end_page;
2416 
2417 	if (num_movable)
2418 		*num_movable = 0;
2419 
2420 	start_pfn = page_to_pfn(page);
2421 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2422 	start_page = pfn_to_page(start_pfn);
2423 	end_page = start_page + pageblock_nr_pages - 1;
2424 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2425 
2426 	/* Do not cross zone boundaries */
2427 	if (!zone_spans_pfn(zone, start_pfn))
2428 		start_page = page;
2429 	if (!zone_spans_pfn(zone, end_pfn))
2430 		return 0;
2431 
2432 	return move_freepages(zone, start_page, end_page, migratetype,
2433 								num_movable);
2434 }
2435 
2436 static void change_pageblock_range(struct page *pageblock_page,
2437 					int start_order, int migratetype)
2438 {
2439 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2440 
2441 	while (nr_pageblocks--) {
2442 		set_pageblock_migratetype(pageblock_page, migratetype);
2443 		pageblock_page += pageblock_nr_pages;
2444 	}
2445 }
2446 
2447 /*
2448  * When we are falling back to another migratetype during allocation, try to
2449  * steal extra free pages from the same pageblocks to satisfy further
2450  * allocations, instead of polluting multiple pageblocks.
2451  *
2452  * If we are stealing a relatively large buddy page, it is likely there will
2453  * be more free pages in the pageblock, so try to steal them all. For
2454  * reclaimable and unmovable allocations, we steal regardless of page size,
2455  * as fragmentation caused by those allocations polluting movable pageblocks
2456  * is worse than movable allocations stealing from unmovable and reclaimable
2457  * pageblocks.
2458  */
2459 static bool can_steal_fallback(unsigned int order, int start_mt)
2460 {
2461 	/*
2462 	 * Leaving this order check is intended, although there is
2463 	 * relaxed order check in next check. The reason is that
2464 	 * we can actually steal whole pageblock if this condition met,
2465 	 * but, below check doesn't guarantee it and that is just heuristic
2466 	 * so could be changed anytime.
2467 	 */
2468 	if (order >= pageblock_order)
2469 		return true;
2470 
2471 	if (order >= pageblock_order / 2 ||
2472 		start_mt == MIGRATE_RECLAIMABLE ||
2473 		start_mt == MIGRATE_UNMOVABLE ||
2474 		page_group_by_mobility_disabled)
2475 		return true;
2476 
2477 	return false;
2478 }
2479 
2480 static inline void boost_watermark(struct zone *zone)
2481 {
2482 	unsigned long max_boost;
2483 
2484 	if (!watermark_boost_factor)
2485 		return;
2486 	/*
2487 	 * Don't bother in zones that are unlikely to produce results.
2488 	 * On small machines, including kdump capture kernels running
2489 	 * in a small area, boosting the watermark can cause an out of
2490 	 * memory situation immediately.
2491 	 */
2492 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2493 		return;
2494 
2495 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2496 			watermark_boost_factor, 10000);
2497 
2498 	/*
2499 	 * high watermark may be uninitialised if fragmentation occurs
2500 	 * very early in boot so do not boost. We do not fall
2501 	 * through and boost by pageblock_nr_pages as failing
2502 	 * allocations that early means that reclaim is not going
2503 	 * to help and it may even be impossible to reclaim the
2504 	 * boosted watermark resulting in a hang.
2505 	 */
2506 	if (!max_boost)
2507 		return;
2508 
2509 	max_boost = max(pageblock_nr_pages, max_boost);
2510 
2511 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2512 		max_boost);
2513 }
2514 
2515 /*
2516  * This function implements actual steal behaviour. If order is large enough,
2517  * we can steal whole pageblock. If not, we first move freepages in this
2518  * pageblock to our migratetype and determine how many already-allocated pages
2519  * are there in the pageblock with a compatible migratetype. If at least half
2520  * of pages are free or compatible, we can change migratetype of the pageblock
2521  * itself, so pages freed in the future will be put on the correct free list.
2522  */
2523 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2524 		unsigned int alloc_flags, int start_type, bool whole_block)
2525 {
2526 	unsigned int current_order = buddy_order(page);
2527 	int free_pages, movable_pages, alike_pages;
2528 	int old_block_type;
2529 
2530 	old_block_type = get_pageblock_migratetype(page);
2531 
2532 	/*
2533 	 * This can happen due to races and we want to prevent broken
2534 	 * highatomic accounting.
2535 	 */
2536 	if (is_migrate_highatomic(old_block_type))
2537 		goto single_page;
2538 
2539 	/* Take ownership for orders >= pageblock_order */
2540 	if (current_order >= pageblock_order) {
2541 		change_pageblock_range(page, current_order, start_type);
2542 		goto single_page;
2543 	}
2544 
2545 	/*
2546 	 * Boost watermarks to increase reclaim pressure to reduce the
2547 	 * likelihood of future fallbacks. Wake kswapd now as the node
2548 	 * may be balanced overall and kswapd will not wake naturally.
2549 	 */
2550 	boost_watermark(zone);
2551 	if (alloc_flags & ALLOC_KSWAPD)
2552 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2553 
2554 	/* We are not allowed to try stealing from the whole block */
2555 	if (!whole_block)
2556 		goto single_page;
2557 
2558 	free_pages = move_freepages_block(zone, page, start_type,
2559 						&movable_pages);
2560 	/*
2561 	 * Determine how many pages are compatible with our allocation.
2562 	 * For movable allocation, it's the number of movable pages which
2563 	 * we just obtained. For other types it's a bit more tricky.
2564 	 */
2565 	if (start_type == MIGRATE_MOVABLE) {
2566 		alike_pages = movable_pages;
2567 	} else {
2568 		/*
2569 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2570 		 * to MOVABLE pageblock, consider all non-movable pages as
2571 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2572 		 * vice versa, be conservative since we can't distinguish the
2573 		 * exact migratetype of non-movable pages.
2574 		 */
2575 		if (old_block_type == MIGRATE_MOVABLE)
2576 			alike_pages = pageblock_nr_pages
2577 						- (free_pages + movable_pages);
2578 		else
2579 			alike_pages = 0;
2580 	}
2581 
2582 	/* moving whole block can fail due to zone boundary conditions */
2583 	if (!free_pages)
2584 		goto single_page;
2585 
2586 	/*
2587 	 * If a sufficient number of pages in the block are either free or of
2588 	 * comparable migratability as our allocation, claim the whole block.
2589 	 */
2590 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2591 			page_group_by_mobility_disabled)
2592 		set_pageblock_migratetype(page, start_type);
2593 
2594 	return;
2595 
2596 single_page:
2597 	move_to_free_list(page, zone, current_order, start_type);
2598 }
2599 
2600 /*
2601  * Check whether there is a suitable fallback freepage with requested order.
2602  * If only_stealable is true, this function returns fallback_mt only if
2603  * we can steal other freepages all together. This would help to reduce
2604  * fragmentation due to mixed migratetype pages in one pageblock.
2605  */
2606 int find_suitable_fallback(struct free_area *area, unsigned int order,
2607 			int migratetype, bool only_stealable, bool *can_steal)
2608 {
2609 	int i;
2610 	int fallback_mt;
2611 
2612 	if (area->nr_free == 0)
2613 		return -1;
2614 
2615 	*can_steal = false;
2616 	for (i = 0;; i++) {
2617 		fallback_mt = fallbacks[migratetype][i];
2618 		if (fallback_mt == MIGRATE_TYPES)
2619 			break;
2620 
2621 		if (free_area_empty(area, fallback_mt))
2622 			continue;
2623 
2624 		if (can_steal_fallback(order, migratetype))
2625 			*can_steal = true;
2626 
2627 		if (!only_stealable)
2628 			return fallback_mt;
2629 
2630 		if (*can_steal)
2631 			return fallback_mt;
2632 	}
2633 
2634 	return -1;
2635 }
2636 
2637 /*
2638  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2639  * there are no empty page blocks that contain a page with a suitable order
2640  */
2641 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2642 				unsigned int alloc_order)
2643 {
2644 	int mt;
2645 	unsigned long max_managed, flags;
2646 
2647 	/*
2648 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2649 	 * Check is race-prone but harmless.
2650 	 */
2651 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2652 	if (zone->nr_reserved_highatomic >= max_managed)
2653 		return;
2654 
2655 	spin_lock_irqsave(&zone->lock, flags);
2656 
2657 	/* Recheck the nr_reserved_highatomic limit under the lock */
2658 	if (zone->nr_reserved_highatomic >= max_managed)
2659 		goto out_unlock;
2660 
2661 	/* Yoink! */
2662 	mt = get_pageblock_migratetype(page);
2663 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2664 	    && !is_migrate_cma(mt)) {
2665 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2666 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2667 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2668 	}
2669 
2670 out_unlock:
2671 	spin_unlock_irqrestore(&zone->lock, flags);
2672 }
2673 
2674 /*
2675  * Used when an allocation is about to fail under memory pressure. This
2676  * potentially hurts the reliability of high-order allocations when under
2677  * intense memory pressure but failed atomic allocations should be easier
2678  * to recover from than an OOM.
2679  *
2680  * If @force is true, try to unreserve a pageblock even though highatomic
2681  * pageblock is exhausted.
2682  */
2683 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2684 						bool force)
2685 {
2686 	struct zonelist *zonelist = ac->zonelist;
2687 	unsigned long flags;
2688 	struct zoneref *z;
2689 	struct zone *zone;
2690 	struct page *page;
2691 	int order;
2692 	bool ret;
2693 
2694 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2695 								ac->nodemask) {
2696 		/*
2697 		 * Preserve at least one pageblock unless memory pressure
2698 		 * is really high.
2699 		 */
2700 		if (!force && zone->nr_reserved_highatomic <=
2701 					pageblock_nr_pages)
2702 			continue;
2703 
2704 		spin_lock_irqsave(&zone->lock, flags);
2705 		for (order = 0; order < MAX_ORDER; order++) {
2706 			struct free_area *area = &(zone->free_area[order]);
2707 
2708 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2709 			if (!page)
2710 				continue;
2711 
2712 			/*
2713 			 * In page freeing path, migratetype change is racy so
2714 			 * we can counter several free pages in a pageblock
2715 			 * in this loop althoug we changed the pageblock type
2716 			 * from highatomic to ac->migratetype. So we should
2717 			 * adjust the count once.
2718 			 */
2719 			if (is_migrate_highatomic_page(page)) {
2720 				/*
2721 				 * It should never happen but changes to
2722 				 * locking could inadvertently allow a per-cpu
2723 				 * drain to add pages to MIGRATE_HIGHATOMIC
2724 				 * while unreserving so be safe and watch for
2725 				 * underflows.
2726 				 */
2727 				zone->nr_reserved_highatomic -= min(
2728 						pageblock_nr_pages,
2729 						zone->nr_reserved_highatomic);
2730 			}
2731 
2732 			/*
2733 			 * Convert to ac->migratetype and avoid the normal
2734 			 * pageblock stealing heuristics. Minimally, the caller
2735 			 * is doing the work and needs the pages. More
2736 			 * importantly, if the block was always converted to
2737 			 * MIGRATE_UNMOVABLE or another type then the number
2738 			 * of pageblocks that cannot be completely freed
2739 			 * may increase.
2740 			 */
2741 			set_pageblock_migratetype(page, ac->migratetype);
2742 			ret = move_freepages_block(zone, page, ac->migratetype,
2743 									NULL);
2744 			if (ret) {
2745 				spin_unlock_irqrestore(&zone->lock, flags);
2746 				return ret;
2747 			}
2748 		}
2749 		spin_unlock_irqrestore(&zone->lock, flags);
2750 	}
2751 
2752 	return false;
2753 }
2754 
2755 /*
2756  * Try finding a free buddy page on the fallback list and put it on the free
2757  * list of requested migratetype, possibly along with other pages from the same
2758  * block, depending on fragmentation avoidance heuristics. Returns true if
2759  * fallback was found so that __rmqueue_smallest() can grab it.
2760  *
2761  * The use of signed ints for order and current_order is a deliberate
2762  * deviation from the rest of this file, to make the for loop
2763  * condition simpler.
2764  */
2765 static __always_inline bool
2766 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2767 						unsigned int alloc_flags)
2768 {
2769 	struct free_area *area;
2770 	int current_order;
2771 	int min_order = order;
2772 	struct page *page;
2773 	int fallback_mt;
2774 	bool can_steal;
2775 
2776 	/*
2777 	 * Do not steal pages from freelists belonging to other pageblocks
2778 	 * i.e. orders < pageblock_order. If there are no local zones free,
2779 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2780 	 */
2781 	if (alloc_flags & ALLOC_NOFRAGMENT)
2782 		min_order = pageblock_order;
2783 
2784 	/*
2785 	 * Find the largest available free page in the other list. This roughly
2786 	 * approximates finding the pageblock with the most free pages, which
2787 	 * would be too costly to do exactly.
2788 	 */
2789 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2790 				--current_order) {
2791 		area = &(zone->free_area[current_order]);
2792 		fallback_mt = find_suitable_fallback(area, current_order,
2793 				start_migratetype, false, &can_steal);
2794 		if (fallback_mt == -1)
2795 			continue;
2796 
2797 		/*
2798 		 * We cannot steal all free pages from the pageblock and the
2799 		 * requested migratetype is movable. In that case it's better to
2800 		 * steal and split the smallest available page instead of the
2801 		 * largest available page, because even if the next movable
2802 		 * allocation falls back into a different pageblock than this
2803 		 * one, it won't cause permanent fragmentation.
2804 		 */
2805 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2806 					&& current_order > order)
2807 			goto find_smallest;
2808 
2809 		goto do_steal;
2810 	}
2811 
2812 	return false;
2813 
2814 find_smallest:
2815 	for (current_order = order; current_order < MAX_ORDER;
2816 							current_order++) {
2817 		area = &(zone->free_area[current_order]);
2818 		fallback_mt = find_suitable_fallback(area, current_order,
2819 				start_migratetype, false, &can_steal);
2820 		if (fallback_mt != -1)
2821 			break;
2822 	}
2823 
2824 	/*
2825 	 * This should not happen - we already found a suitable fallback
2826 	 * when looking for the largest page.
2827 	 */
2828 	VM_BUG_ON(current_order == MAX_ORDER);
2829 
2830 do_steal:
2831 	page = get_page_from_free_area(area, fallback_mt);
2832 
2833 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2834 								can_steal);
2835 
2836 	trace_mm_page_alloc_extfrag(page, order, current_order,
2837 		start_migratetype, fallback_mt);
2838 
2839 	return true;
2840 
2841 }
2842 
2843 /*
2844  * Do the hard work of removing an element from the buddy allocator.
2845  * Call me with the zone->lock already held.
2846  */
2847 static __always_inline struct page *
2848 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2849 						unsigned int alloc_flags)
2850 {
2851 	struct page *page;
2852 
2853 #ifdef CONFIG_CMA
2854 	/*
2855 	 * Balance movable allocations between regular and CMA areas by
2856 	 * allocating from CMA when over half of the zone's free memory
2857 	 * is in the CMA area.
2858 	 */
2859 	if (alloc_flags & ALLOC_CMA &&
2860 	    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2861 	    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2862 		page = __rmqueue_cma_fallback(zone, order);
2863 		if (page)
2864 			return page;
2865 	}
2866 #endif
2867 retry:
2868 	page = __rmqueue_smallest(zone, order, migratetype);
2869 	if (unlikely(!page)) {
2870 		if (alloc_flags & ALLOC_CMA)
2871 			page = __rmqueue_cma_fallback(zone, order);
2872 
2873 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2874 								alloc_flags))
2875 			goto retry;
2876 	}
2877 
2878 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2879 	return page;
2880 }
2881 
2882 /*
2883  * Obtain a specified number of elements from the buddy allocator, all under
2884  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2885  * Returns the number of new pages which were placed at *list.
2886  */
2887 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2888 			unsigned long count, struct list_head *list,
2889 			int migratetype, unsigned int alloc_flags)
2890 {
2891 	int i, alloced = 0;
2892 
2893 	spin_lock(&zone->lock);
2894 	for (i = 0; i < count; ++i) {
2895 		struct page *page = __rmqueue(zone, order, migratetype,
2896 								alloc_flags);
2897 		if (unlikely(page == NULL))
2898 			break;
2899 
2900 		if (unlikely(check_pcp_refill(page)))
2901 			continue;
2902 
2903 		/*
2904 		 * Split buddy pages returned by expand() are received here in
2905 		 * physical page order. The page is added to the tail of
2906 		 * caller's list. From the callers perspective, the linked list
2907 		 * is ordered by page number under some conditions. This is
2908 		 * useful for IO devices that can forward direction from the
2909 		 * head, thus also in the physical page order. This is useful
2910 		 * for IO devices that can merge IO requests if the physical
2911 		 * pages are ordered properly.
2912 		 */
2913 		list_add_tail(&page->lru, list);
2914 		alloced++;
2915 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2916 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2917 					      -(1 << order));
2918 	}
2919 
2920 	/*
2921 	 * i pages were removed from the buddy list even if some leak due
2922 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2923 	 * on i. Do not confuse with 'alloced' which is the number of
2924 	 * pages added to the pcp list.
2925 	 */
2926 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2927 	spin_unlock(&zone->lock);
2928 	return alloced;
2929 }
2930 
2931 #ifdef CONFIG_NUMA
2932 /*
2933  * Called from the vmstat counter updater to drain pagesets of this
2934  * currently executing processor on remote nodes after they have
2935  * expired.
2936  *
2937  * Note that this function must be called with the thread pinned to
2938  * a single processor.
2939  */
2940 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2941 {
2942 	unsigned long flags;
2943 	int to_drain, batch;
2944 
2945 	local_irq_save(flags);
2946 	batch = READ_ONCE(pcp->batch);
2947 	to_drain = min(pcp->count, batch);
2948 	if (to_drain > 0)
2949 		free_pcppages_bulk(zone, to_drain, pcp);
2950 	local_irq_restore(flags);
2951 }
2952 #endif
2953 
2954 /*
2955  * Drain pcplists of the indicated processor and zone.
2956  *
2957  * The processor must either be the current processor and the
2958  * thread pinned to the current processor or a processor that
2959  * is not online.
2960  */
2961 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2962 {
2963 	unsigned long flags;
2964 	struct per_cpu_pageset *pset;
2965 	struct per_cpu_pages *pcp;
2966 
2967 	local_irq_save(flags);
2968 	pset = per_cpu_ptr(zone->pageset, cpu);
2969 
2970 	pcp = &pset->pcp;
2971 	if (pcp->count)
2972 		free_pcppages_bulk(zone, pcp->count, pcp);
2973 	local_irq_restore(flags);
2974 }
2975 
2976 /*
2977  * Drain pcplists of all zones on the indicated processor.
2978  *
2979  * The processor must either be the current processor and the
2980  * thread pinned to the current processor or a processor that
2981  * is not online.
2982  */
2983 static void drain_pages(unsigned int cpu)
2984 {
2985 	struct zone *zone;
2986 
2987 	for_each_populated_zone(zone) {
2988 		drain_pages_zone(cpu, zone);
2989 	}
2990 }
2991 
2992 /*
2993  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2994  *
2995  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2996  * the single zone's pages.
2997  */
2998 void drain_local_pages(struct zone *zone)
2999 {
3000 	int cpu = smp_processor_id();
3001 
3002 	if (zone)
3003 		drain_pages_zone(cpu, zone);
3004 	else
3005 		drain_pages(cpu);
3006 }
3007 
3008 static void drain_local_pages_wq(struct work_struct *work)
3009 {
3010 	struct pcpu_drain *drain;
3011 
3012 	drain = container_of(work, struct pcpu_drain, work);
3013 
3014 	/*
3015 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3016 	 * we can race with cpu offline when the WQ can move this from
3017 	 * a cpu pinned worker to an unbound one. We can operate on a different
3018 	 * cpu which is allright but we also have to make sure to not move to
3019 	 * a different one.
3020 	 */
3021 	preempt_disable();
3022 	drain_local_pages(drain->zone);
3023 	preempt_enable();
3024 }
3025 
3026 /*
3027  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3028  *
3029  * When zone parameter is non-NULL, spill just the single zone's pages.
3030  *
3031  * Note that this can be extremely slow as the draining happens in a workqueue.
3032  */
3033 void drain_all_pages(struct zone *zone)
3034 {
3035 	int cpu;
3036 
3037 	/*
3038 	 * Allocate in the BSS so we wont require allocation in
3039 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3040 	 */
3041 	static cpumask_t cpus_with_pcps;
3042 
3043 	/*
3044 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3045 	 * initialized.
3046 	 */
3047 	if (WARN_ON_ONCE(!mm_percpu_wq))
3048 		return;
3049 
3050 	/*
3051 	 * Do not drain if one is already in progress unless it's specific to
3052 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3053 	 * the drain to be complete when the call returns.
3054 	 */
3055 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3056 		if (!zone)
3057 			return;
3058 		mutex_lock(&pcpu_drain_mutex);
3059 	}
3060 
3061 	/*
3062 	 * We don't care about racing with CPU hotplug event
3063 	 * as offline notification will cause the notified
3064 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3065 	 * disables preemption as part of its processing
3066 	 */
3067 	for_each_online_cpu(cpu) {
3068 		struct per_cpu_pageset *pcp;
3069 		struct zone *z;
3070 		bool has_pcps = false;
3071 
3072 		if (zone) {
3073 			pcp = per_cpu_ptr(zone->pageset, cpu);
3074 			if (pcp->pcp.count)
3075 				has_pcps = true;
3076 		} else {
3077 			for_each_populated_zone(z) {
3078 				pcp = per_cpu_ptr(z->pageset, cpu);
3079 				if (pcp->pcp.count) {
3080 					has_pcps = true;
3081 					break;
3082 				}
3083 			}
3084 		}
3085 
3086 		if (has_pcps)
3087 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3088 		else
3089 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3090 	}
3091 
3092 	for_each_cpu(cpu, &cpus_with_pcps) {
3093 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3094 
3095 		drain->zone = zone;
3096 		INIT_WORK(&drain->work, drain_local_pages_wq);
3097 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3098 	}
3099 	for_each_cpu(cpu, &cpus_with_pcps)
3100 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3101 
3102 	mutex_unlock(&pcpu_drain_mutex);
3103 }
3104 
3105 #ifdef CONFIG_HIBERNATION
3106 
3107 /*
3108  * Touch the watchdog for every WD_PAGE_COUNT pages.
3109  */
3110 #define WD_PAGE_COUNT	(128*1024)
3111 
3112 void mark_free_pages(struct zone *zone)
3113 {
3114 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3115 	unsigned long flags;
3116 	unsigned int order, t;
3117 	struct page *page;
3118 
3119 	if (zone_is_empty(zone))
3120 		return;
3121 
3122 	spin_lock_irqsave(&zone->lock, flags);
3123 
3124 	max_zone_pfn = zone_end_pfn(zone);
3125 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3126 		if (pfn_valid(pfn)) {
3127 			page = pfn_to_page(pfn);
3128 
3129 			if (!--page_count) {
3130 				touch_nmi_watchdog();
3131 				page_count = WD_PAGE_COUNT;
3132 			}
3133 
3134 			if (page_zone(page) != zone)
3135 				continue;
3136 
3137 			if (!swsusp_page_is_forbidden(page))
3138 				swsusp_unset_page_free(page);
3139 		}
3140 
3141 	for_each_migratetype_order(order, t) {
3142 		list_for_each_entry(page,
3143 				&zone->free_area[order].free_list[t], lru) {
3144 			unsigned long i;
3145 
3146 			pfn = page_to_pfn(page);
3147 			for (i = 0; i < (1UL << order); i++) {
3148 				if (!--page_count) {
3149 					touch_nmi_watchdog();
3150 					page_count = WD_PAGE_COUNT;
3151 				}
3152 				swsusp_set_page_free(pfn_to_page(pfn + i));
3153 			}
3154 		}
3155 	}
3156 	spin_unlock_irqrestore(&zone->lock, flags);
3157 }
3158 #endif /* CONFIG_PM */
3159 
3160 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3161 {
3162 	int migratetype;
3163 
3164 	if (!free_pcp_prepare(page))
3165 		return false;
3166 
3167 	migratetype = get_pfnblock_migratetype(page, pfn);
3168 	set_pcppage_migratetype(page, migratetype);
3169 	return true;
3170 }
3171 
3172 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3173 {
3174 	struct zone *zone = page_zone(page);
3175 	struct per_cpu_pages *pcp;
3176 	int migratetype;
3177 
3178 	migratetype = get_pcppage_migratetype(page);
3179 	__count_vm_event(PGFREE);
3180 
3181 	/*
3182 	 * We only track unmovable, reclaimable and movable on pcp lists.
3183 	 * Free ISOLATE pages back to the allocator because they are being
3184 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3185 	 * areas back if necessary. Otherwise, we may have to free
3186 	 * excessively into the page allocator
3187 	 */
3188 	if (migratetype >= MIGRATE_PCPTYPES) {
3189 		if (unlikely(is_migrate_isolate(migratetype))) {
3190 			free_one_page(zone, page, pfn, 0, migratetype,
3191 				      FPI_NONE);
3192 			return;
3193 		}
3194 		migratetype = MIGRATE_MOVABLE;
3195 	}
3196 
3197 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3198 	list_add(&page->lru, &pcp->lists[migratetype]);
3199 	pcp->count++;
3200 	if (pcp->count >= pcp->high) {
3201 		unsigned long batch = READ_ONCE(pcp->batch);
3202 		free_pcppages_bulk(zone, batch, pcp);
3203 	}
3204 }
3205 
3206 /*
3207  * Free a 0-order page
3208  */
3209 void free_unref_page(struct page *page)
3210 {
3211 	unsigned long flags;
3212 	unsigned long pfn = page_to_pfn(page);
3213 
3214 	if (!free_unref_page_prepare(page, pfn))
3215 		return;
3216 
3217 	local_irq_save(flags);
3218 	free_unref_page_commit(page, pfn);
3219 	local_irq_restore(flags);
3220 }
3221 
3222 /*
3223  * Free a list of 0-order pages
3224  */
3225 void free_unref_page_list(struct list_head *list)
3226 {
3227 	struct page *page, *next;
3228 	unsigned long flags, pfn;
3229 	int batch_count = 0;
3230 
3231 	/* Prepare pages for freeing */
3232 	list_for_each_entry_safe(page, next, list, lru) {
3233 		pfn = page_to_pfn(page);
3234 		if (!free_unref_page_prepare(page, pfn))
3235 			list_del(&page->lru);
3236 		set_page_private(page, pfn);
3237 	}
3238 
3239 	local_irq_save(flags);
3240 	list_for_each_entry_safe(page, next, list, lru) {
3241 		unsigned long pfn = page_private(page);
3242 
3243 		set_page_private(page, 0);
3244 		trace_mm_page_free_batched(page);
3245 		free_unref_page_commit(page, pfn);
3246 
3247 		/*
3248 		 * Guard against excessive IRQ disabled times when we get
3249 		 * a large list of pages to free.
3250 		 */
3251 		if (++batch_count == SWAP_CLUSTER_MAX) {
3252 			local_irq_restore(flags);
3253 			batch_count = 0;
3254 			local_irq_save(flags);
3255 		}
3256 	}
3257 	local_irq_restore(flags);
3258 }
3259 
3260 /*
3261  * split_page takes a non-compound higher-order page, and splits it into
3262  * n (1<<order) sub-pages: page[0..n]
3263  * Each sub-page must be freed individually.
3264  *
3265  * Note: this is probably too low level an operation for use in drivers.
3266  * Please consult with lkml before using this in your driver.
3267  */
3268 void split_page(struct page *page, unsigned int order)
3269 {
3270 	int i;
3271 
3272 	VM_BUG_ON_PAGE(PageCompound(page), page);
3273 	VM_BUG_ON_PAGE(!page_count(page), page);
3274 
3275 	for (i = 1; i < (1 << order); i++)
3276 		set_page_refcounted(page + i);
3277 	split_page_owner(page, 1 << order);
3278 }
3279 EXPORT_SYMBOL_GPL(split_page);
3280 
3281 int __isolate_free_page(struct page *page, unsigned int order)
3282 {
3283 	unsigned long watermark;
3284 	struct zone *zone;
3285 	int mt;
3286 
3287 	BUG_ON(!PageBuddy(page));
3288 
3289 	zone = page_zone(page);
3290 	mt = get_pageblock_migratetype(page);
3291 
3292 	if (!is_migrate_isolate(mt)) {
3293 		/*
3294 		 * Obey watermarks as if the page was being allocated. We can
3295 		 * emulate a high-order watermark check with a raised order-0
3296 		 * watermark, because we already know our high-order page
3297 		 * exists.
3298 		 */
3299 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3300 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3301 			return 0;
3302 
3303 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3304 	}
3305 
3306 	/* Remove page from free list */
3307 
3308 	del_page_from_free_list(page, zone, order);
3309 
3310 	/*
3311 	 * Set the pageblock if the isolated page is at least half of a
3312 	 * pageblock
3313 	 */
3314 	if (order >= pageblock_order - 1) {
3315 		struct page *endpage = page + (1 << order) - 1;
3316 		for (; page < endpage; page += pageblock_nr_pages) {
3317 			int mt = get_pageblock_migratetype(page);
3318 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3319 			    && !is_migrate_highatomic(mt))
3320 				set_pageblock_migratetype(page,
3321 							  MIGRATE_MOVABLE);
3322 		}
3323 	}
3324 
3325 
3326 	return 1UL << order;
3327 }
3328 
3329 /**
3330  * __putback_isolated_page - Return a now-isolated page back where we got it
3331  * @page: Page that was isolated
3332  * @order: Order of the isolated page
3333  * @mt: The page's pageblock's migratetype
3334  *
3335  * This function is meant to return a page pulled from the free lists via
3336  * __isolate_free_page back to the free lists they were pulled from.
3337  */
3338 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3339 {
3340 	struct zone *zone = page_zone(page);
3341 
3342 	/* zone lock should be held when this function is called */
3343 	lockdep_assert_held(&zone->lock);
3344 
3345 	/* Return isolated page to tail of freelist. */
3346 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3347 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3348 }
3349 
3350 /*
3351  * Update NUMA hit/miss statistics
3352  *
3353  * Must be called with interrupts disabled.
3354  */
3355 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3356 {
3357 #ifdef CONFIG_NUMA
3358 	enum numa_stat_item local_stat = NUMA_LOCAL;
3359 
3360 	/* skip numa counters update if numa stats is disabled */
3361 	if (!static_branch_likely(&vm_numa_stat_key))
3362 		return;
3363 
3364 	if (zone_to_nid(z) != numa_node_id())
3365 		local_stat = NUMA_OTHER;
3366 
3367 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3368 		__inc_numa_state(z, NUMA_HIT);
3369 	else {
3370 		__inc_numa_state(z, NUMA_MISS);
3371 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3372 	}
3373 	__inc_numa_state(z, local_stat);
3374 #endif
3375 }
3376 
3377 /* Remove page from the per-cpu list, caller must protect the list */
3378 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3379 			unsigned int alloc_flags,
3380 			struct per_cpu_pages *pcp,
3381 			struct list_head *list)
3382 {
3383 	struct page *page;
3384 
3385 	do {
3386 		if (list_empty(list)) {
3387 			pcp->count += rmqueue_bulk(zone, 0,
3388 					pcp->batch, list,
3389 					migratetype, alloc_flags);
3390 			if (unlikely(list_empty(list)))
3391 				return NULL;
3392 		}
3393 
3394 		page = list_first_entry(list, struct page, lru);
3395 		list_del(&page->lru);
3396 		pcp->count--;
3397 	} while (check_new_pcp(page));
3398 
3399 	return page;
3400 }
3401 
3402 /* Lock and remove page from the per-cpu list */
3403 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3404 			struct zone *zone, gfp_t gfp_flags,
3405 			int migratetype, unsigned int alloc_flags)
3406 {
3407 	struct per_cpu_pages *pcp;
3408 	struct list_head *list;
3409 	struct page *page;
3410 	unsigned long flags;
3411 
3412 	local_irq_save(flags);
3413 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3414 	list = &pcp->lists[migratetype];
3415 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3416 	if (page) {
3417 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3418 		zone_statistics(preferred_zone, zone);
3419 	}
3420 	local_irq_restore(flags);
3421 	return page;
3422 }
3423 
3424 /*
3425  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3426  */
3427 static inline
3428 struct page *rmqueue(struct zone *preferred_zone,
3429 			struct zone *zone, unsigned int order,
3430 			gfp_t gfp_flags, unsigned int alloc_flags,
3431 			int migratetype)
3432 {
3433 	unsigned long flags;
3434 	struct page *page;
3435 
3436 	if (likely(order == 0)) {
3437 		/*
3438 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3439 		 * we need to skip it when CMA area isn't allowed.
3440 		 */
3441 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3442 				migratetype != MIGRATE_MOVABLE) {
3443 			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3444 					migratetype, alloc_flags);
3445 			goto out;
3446 		}
3447 	}
3448 
3449 	/*
3450 	 * We most definitely don't want callers attempting to
3451 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3452 	 */
3453 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3454 	spin_lock_irqsave(&zone->lock, flags);
3455 
3456 	do {
3457 		page = NULL;
3458 		/*
3459 		 * order-0 request can reach here when the pcplist is skipped
3460 		 * due to non-CMA allocation context. HIGHATOMIC area is
3461 		 * reserved for high-order atomic allocation, so order-0
3462 		 * request should skip it.
3463 		 */
3464 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3465 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3466 			if (page)
3467 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3468 		}
3469 		if (!page)
3470 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3471 	} while (page && check_new_pages(page, order));
3472 	spin_unlock(&zone->lock);
3473 	if (!page)
3474 		goto failed;
3475 	__mod_zone_freepage_state(zone, -(1 << order),
3476 				  get_pcppage_migratetype(page));
3477 
3478 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3479 	zone_statistics(preferred_zone, zone);
3480 	local_irq_restore(flags);
3481 
3482 out:
3483 	/* Separate test+clear to avoid unnecessary atomics */
3484 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3485 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3486 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3487 	}
3488 
3489 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3490 	return page;
3491 
3492 failed:
3493 	local_irq_restore(flags);
3494 	return NULL;
3495 }
3496 
3497 #ifdef CONFIG_FAIL_PAGE_ALLOC
3498 
3499 static struct {
3500 	struct fault_attr attr;
3501 
3502 	bool ignore_gfp_highmem;
3503 	bool ignore_gfp_reclaim;
3504 	u32 min_order;
3505 } fail_page_alloc = {
3506 	.attr = FAULT_ATTR_INITIALIZER,
3507 	.ignore_gfp_reclaim = true,
3508 	.ignore_gfp_highmem = true,
3509 	.min_order = 1,
3510 };
3511 
3512 static int __init setup_fail_page_alloc(char *str)
3513 {
3514 	return setup_fault_attr(&fail_page_alloc.attr, str);
3515 }
3516 __setup("fail_page_alloc=", setup_fail_page_alloc);
3517 
3518 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3519 {
3520 	if (order < fail_page_alloc.min_order)
3521 		return false;
3522 	if (gfp_mask & __GFP_NOFAIL)
3523 		return false;
3524 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3525 		return false;
3526 	if (fail_page_alloc.ignore_gfp_reclaim &&
3527 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3528 		return false;
3529 
3530 	return should_fail(&fail_page_alloc.attr, 1 << order);
3531 }
3532 
3533 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3534 
3535 static int __init fail_page_alloc_debugfs(void)
3536 {
3537 	umode_t mode = S_IFREG | 0600;
3538 	struct dentry *dir;
3539 
3540 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3541 					&fail_page_alloc.attr);
3542 
3543 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3544 			    &fail_page_alloc.ignore_gfp_reclaim);
3545 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3546 			    &fail_page_alloc.ignore_gfp_highmem);
3547 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3548 
3549 	return 0;
3550 }
3551 
3552 late_initcall(fail_page_alloc_debugfs);
3553 
3554 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3555 
3556 #else /* CONFIG_FAIL_PAGE_ALLOC */
3557 
3558 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3559 {
3560 	return false;
3561 }
3562 
3563 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3564 
3565 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3566 {
3567 	return __should_fail_alloc_page(gfp_mask, order);
3568 }
3569 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3570 
3571 static inline long __zone_watermark_unusable_free(struct zone *z,
3572 				unsigned int order, unsigned int alloc_flags)
3573 {
3574 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3575 	long unusable_free = (1 << order) - 1;
3576 
3577 	/*
3578 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3579 	 * the high-atomic reserves. This will over-estimate the size of the
3580 	 * atomic reserve but it avoids a search.
3581 	 */
3582 	if (likely(!alloc_harder))
3583 		unusable_free += z->nr_reserved_highatomic;
3584 
3585 #ifdef CONFIG_CMA
3586 	/* If allocation can't use CMA areas don't use free CMA pages */
3587 	if (!(alloc_flags & ALLOC_CMA))
3588 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3589 #endif
3590 
3591 	return unusable_free;
3592 }
3593 
3594 /*
3595  * Return true if free base pages are above 'mark'. For high-order checks it
3596  * will return true of the order-0 watermark is reached and there is at least
3597  * one free page of a suitable size. Checking now avoids taking the zone lock
3598  * to check in the allocation paths if no pages are free.
3599  */
3600 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3601 			 int highest_zoneidx, unsigned int alloc_flags,
3602 			 long free_pages)
3603 {
3604 	long min = mark;
3605 	int o;
3606 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3607 
3608 	/* free_pages may go negative - that's OK */
3609 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3610 
3611 	if (alloc_flags & ALLOC_HIGH)
3612 		min -= min / 2;
3613 
3614 	if (unlikely(alloc_harder)) {
3615 		/*
3616 		 * OOM victims can try even harder than normal ALLOC_HARDER
3617 		 * users on the grounds that it's definitely going to be in
3618 		 * the exit path shortly and free memory. Any allocation it
3619 		 * makes during the free path will be small and short-lived.
3620 		 */
3621 		if (alloc_flags & ALLOC_OOM)
3622 			min -= min / 2;
3623 		else
3624 			min -= min / 4;
3625 	}
3626 
3627 	/*
3628 	 * Check watermarks for an order-0 allocation request. If these
3629 	 * are not met, then a high-order request also cannot go ahead
3630 	 * even if a suitable page happened to be free.
3631 	 */
3632 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3633 		return false;
3634 
3635 	/* If this is an order-0 request then the watermark is fine */
3636 	if (!order)
3637 		return true;
3638 
3639 	/* For a high-order request, check at least one suitable page is free */
3640 	for (o = order; o < MAX_ORDER; o++) {
3641 		struct free_area *area = &z->free_area[o];
3642 		int mt;
3643 
3644 		if (!area->nr_free)
3645 			continue;
3646 
3647 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3648 			if (!free_area_empty(area, mt))
3649 				return true;
3650 		}
3651 
3652 #ifdef CONFIG_CMA
3653 		if ((alloc_flags & ALLOC_CMA) &&
3654 		    !free_area_empty(area, MIGRATE_CMA)) {
3655 			return true;
3656 		}
3657 #endif
3658 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3659 			return true;
3660 	}
3661 	return false;
3662 }
3663 
3664 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3665 		      int highest_zoneidx, unsigned int alloc_flags)
3666 {
3667 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3668 					zone_page_state(z, NR_FREE_PAGES));
3669 }
3670 
3671 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3672 				unsigned long mark, int highest_zoneidx,
3673 				unsigned int alloc_flags, gfp_t gfp_mask)
3674 {
3675 	long free_pages;
3676 
3677 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3678 
3679 	/*
3680 	 * Fast check for order-0 only. If this fails then the reserves
3681 	 * need to be calculated.
3682 	 */
3683 	if (!order) {
3684 		long fast_free;
3685 
3686 		fast_free = free_pages;
3687 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3688 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3689 			return true;
3690 	}
3691 
3692 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3693 					free_pages))
3694 		return true;
3695 	/*
3696 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3697 	 * when checking the min watermark. The min watermark is the
3698 	 * point where boosting is ignored so that kswapd is woken up
3699 	 * when below the low watermark.
3700 	 */
3701 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3702 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3703 		mark = z->_watermark[WMARK_MIN];
3704 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3705 					alloc_flags, free_pages);
3706 	}
3707 
3708 	return false;
3709 }
3710 
3711 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3712 			unsigned long mark, int highest_zoneidx)
3713 {
3714 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3715 
3716 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3717 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3718 
3719 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3720 								free_pages);
3721 }
3722 
3723 #ifdef CONFIG_NUMA
3724 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3725 {
3726 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3727 				node_reclaim_distance;
3728 }
3729 #else	/* CONFIG_NUMA */
3730 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3731 {
3732 	return true;
3733 }
3734 #endif	/* CONFIG_NUMA */
3735 
3736 /*
3737  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3738  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3739  * premature use of a lower zone may cause lowmem pressure problems that
3740  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3741  * probably too small. It only makes sense to spread allocations to avoid
3742  * fragmentation between the Normal and DMA32 zones.
3743  */
3744 static inline unsigned int
3745 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3746 {
3747 	unsigned int alloc_flags;
3748 
3749 	/*
3750 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3751 	 * to save a branch.
3752 	 */
3753 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3754 
3755 #ifdef CONFIG_ZONE_DMA32
3756 	if (!zone)
3757 		return alloc_flags;
3758 
3759 	if (zone_idx(zone) != ZONE_NORMAL)
3760 		return alloc_flags;
3761 
3762 	/*
3763 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3764 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3765 	 * on UMA that if Normal is populated then so is DMA32.
3766 	 */
3767 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3768 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3769 		return alloc_flags;
3770 
3771 	alloc_flags |= ALLOC_NOFRAGMENT;
3772 #endif /* CONFIG_ZONE_DMA32 */
3773 	return alloc_flags;
3774 }
3775 
3776 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3777 					unsigned int alloc_flags)
3778 {
3779 #ifdef CONFIG_CMA
3780 	unsigned int pflags = current->flags;
3781 
3782 	if (!(pflags & PF_MEMALLOC_NOCMA) &&
3783 			gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3784 		alloc_flags |= ALLOC_CMA;
3785 
3786 #endif
3787 	return alloc_flags;
3788 }
3789 
3790 /*
3791  * get_page_from_freelist goes through the zonelist trying to allocate
3792  * a page.
3793  */
3794 static struct page *
3795 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3796 						const struct alloc_context *ac)
3797 {
3798 	struct zoneref *z;
3799 	struct zone *zone;
3800 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3801 	bool no_fallback;
3802 
3803 retry:
3804 	/*
3805 	 * Scan zonelist, looking for a zone with enough free.
3806 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3807 	 */
3808 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3809 	z = ac->preferred_zoneref;
3810 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3811 					ac->nodemask) {
3812 		struct page *page;
3813 		unsigned long mark;
3814 
3815 		if (cpusets_enabled() &&
3816 			(alloc_flags & ALLOC_CPUSET) &&
3817 			!__cpuset_zone_allowed(zone, gfp_mask))
3818 				continue;
3819 		/*
3820 		 * When allocating a page cache page for writing, we
3821 		 * want to get it from a node that is within its dirty
3822 		 * limit, such that no single node holds more than its
3823 		 * proportional share of globally allowed dirty pages.
3824 		 * The dirty limits take into account the node's
3825 		 * lowmem reserves and high watermark so that kswapd
3826 		 * should be able to balance it without having to
3827 		 * write pages from its LRU list.
3828 		 *
3829 		 * XXX: For now, allow allocations to potentially
3830 		 * exceed the per-node dirty limit in the slowpath
3831 		 * (spread_dirty_pages unset) before going into reclaim,
3832 		 * which is important when on a NUMA setup the allowed
3833 		 * nodes are together not big enough to reach the
3834 		 * global limit.  The proper fix for these situations
3835 		 * will require awareness of nodes in the
3836 		 * dirty-throttling and the flusher threads.
3837 		 */
3838 		if (ac->spread_dirty_pages) {
3839 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3840 				continue;
3841 
3842 			if (!node_dirty_ok(zone->zone_pgdat)) {
3843 				last_pgdat_dirty_limit = zone->zone_pgdat;
3844 				continue;
3845 			}
3846 		}
3847 
3848 		if (no_fallback && nr_online_nodes > 1 &&
3849 		    zone != ac->preferred_zoneref->zone) {
3850 			int local_nid;
3851 
3852 			/*
3853 			 * If moving to a remote node, retry but allow
3854 			 * fragmenting fallbacks. Locality is more important
3855 			 * than fragmentation avoidance.
3856 			 */
3857 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3858 			if (zone_to_nid(zone) != local_nid) {
3859 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3860 				goto retry;
3861 			}
3862 		}
3863 
3864 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3865 		if (!zone_watermark_fast(zone, order, mark,
3866 				       ac->highest_zoneidx, alloc_flags,
3867 				       gfp_mask)) {
3868 			int ret;
3869 
3870 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3871 			/*
3872 			 * Watermark failed for this zone, but see if we can
3873 			 * grow this zone if it contains deferred pages.
3874 			 */
3875 			if (static_branch_unlikely(&deferred_pages)) {
3876 				if (_deferred_grow_zone(zone, order))
3877 					goto try_this_zone;
3878 			}
3879 #endif
3880 			/* Checked here to keep the fast path fast */
3881 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3882 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3883 				goto try_this_zone;
3884 
3885 			if (node_reclaim_mode == 0 ||
3886 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3887 				continue;
3888 
3889 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3890 			switch (ret) {
3891 			case NODE_RECLAIM_NOSCAN:
3892 				/* did not scan */
3893 				continue;
3894 			case NODE_RECLAIM_FULL:
3895 				/* scanned but unreclaimable */
3896 				continue;
3897 			default:
3898 				/* did we reclaim enough */
3899 				if (zone_watermark_ok(zone, order, mark,
3900 					ac->highest_zoneidx, alloc_flags))
3901 					goto try_this_zone;
3902 
3903 				continue;
3904 			}
3905 		}
3906 
3907 try_this_zone:
3908 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3909 				gfp_mask, alloc_flags, ac->migratetype);
3910 		if (page) {
3911 			prep_new_page(page, order, gfp_mask, alloc_flags);
3912 
3913 			/*
3914 			 * If this is a high-order atomic allocation then check
3915 			 * if the pageblock should be reserved for the future
3916 			 */
3917 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3918 				reserve_highatomic_pageblock(page, zone, order);
3919 
3920 			return page;
3921 		} else {
3922 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3923 			/* Try again if zone has deferred pages */
3924 			if (static_branch_unlikely(&deferred_pages)) {
3925 				if (_deferred_grow_zone(zone, order))
3926 					goto try_this_zone;
3927 			}
3928 #endif
3929 		}
3930 	}
3931 
3932 	/*
3933 	 * It's possible on a UMA machine to get through all zones that are
3934 	 * fragmented. If avoiding fragmentation, reset and try again.
3935 	 */
3936 	if (no_fallback) {
3937 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3938 		goto retry;
3939 	}
3940 
3941 	return NULL;
3942 }
3943 
3944 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3945 {
3946 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3947 
3948 	/*
3949 	 * This documents exceptions given to allocations in certain
3950 	 * contexts that are allowed to allocate outside current's set
3951 	 * of allowed nodes.
3952 	 */
3953 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3954 		if (tsk_is_oom_victim(current) ||
3955 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3956 			filter &= ~SHOW_MEM_FILTER_NODES;
3957 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3958 		filter &= ~SHOW_MEM_FILTER_NODES;
3959 
3960 	show_mem(filter, nodemask);
3961 }
3962 
3963 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3964 {
3965 	struct va_format vaf;
3966 	va_list args;
3967 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3968 
3969 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3970 		return;
3971 
3972 	va_start(args, fmt);
3973 	vaf.fmt = fmt;
3974 	vaf.va = &args;
3975 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3976 			current->comm, &vaf, gfp_mask, &gfp_mask,
3977 			nodemask_pr_args(nodemask));
3978 	va_end(args);
3979 
3980 	cpuset_print_current_mems_allowed();
3981 	pr_cont("\n");
3982 	dump_stack();
3983 	warn_alloc_show_mem(gfp_mask, nodemask);
3984 }
3985 
3986 static inline struct page *
3987 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3988 			      unsigned int alloc_flags,
3989 			      const struct alloc_context *ac)
3990 {
3991 	struct page *page;
3992 
3993 	page = get_page_from_freelist(gfp_mask, order,
3994 			alloc_flags|ALLOC_CPUSET, ac);
3995 	/*
3996 	 * fallback to ignore cpuset restriction if our nodes
3997 	 * are depleted
3998 	 */
3999 	if (!page)
4000 		page = get_page_from_freelist(gfp_mask, order,
4001 				alloc_flags, ac);
4002 
4003 	return page;
4004 }
4005 
4006 static inline struct page *
4007 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4008 	const struct alloc_context *ac, unsigned long *did_some_progress)
4009 {
4010 	struct oom_control oc = {
4011 		.zonelist = ac->zonelist,
4012 		.nodemask = ac->nodemask,
4013 		.memcg = NULL,
4014 		.gfp_mask = gfp_mask,
4015 		.order = order,
4016 	};
4017 	struct page *page;
4018 
4019 	*did_some_progress = 0;
4020 
4021 	/*
4022 	 * Acquire the oom lock.  If that fails, somebody else is
4023 	 * making progress for us.
4024 	 */
4025 	if (!mutex_trylock(&oom_lock)) {
4026 		*did_some_progress = 1;
4027 		schedule_timeout_uninterruptible(1);
4028 		return NULL;
4029 	}
4030 
4031 	/*
4032 	 * Go through the zonelist yet one more time, keep very high watermark
4033 	 * here, this is only to catch a parallel oom killing, we must fail if
4034 	 * we're still under heavy pressure. But make sure that this reclaim
4035 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4036 	 * allocation which will never fail due to oom_lock already held.
4037 	 */
4038 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4039 				      ~__GFP_DIRECT_RECLAIM, order,
4040 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4041 	if (page)
4042 		goto out;
4043 
4044 	/* Coredumps can quickly deplete all memory reserves */
4045 	if (current->flags & PF_DUMPCORE)
4046 		goto out;
4047 	/* The OOM killer will not help higher order allocs */
4048 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4049 		goto out;
4050 	/*
4051 	 * We have already exhausted all our reclaim opportunities without any
4052 	 * success so it is time to admit defeat. We will skip the OOM killer
4053 	 * because it is very likely that the caller has a more reasonable
4054 	 * fallback than shooting a random task.
4055 	 *
4056 	 * The OOM killer may not free memory on a specific node.
4057 	 */
4058 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4059 		goto out;
4060 	/* The OOM killer does not needlessly kill tasks for lowmem */
4061 	if (ac->highest_zoneidx < ZONE_NORMAL)
4062 		goto out;
4063 	if (pm_suspended_storage())
4064 		goto out;
4065 	/*
4066 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4067 	 * other request to make a forward progress.
4068 	 * We are in an unfortunate situation where out_of_memory cannot
4069 	 * do much for this context but let's try it to at least get
4070 	 * access to memory reserved if the current task is killed (see
4071 	 * out_of_memory). Once filesystems are ready to handle allocation
4072 	 * failures more gracefully we should just bail out here.
4073 	 */
4074 
4075 	/* Exhausted what can be done so it's blame time */
4076 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4077 		*did_some_progress = 1;
4078 
4079 		/*
4080 		 * Help non-failing allocations by giving them access to memory
4081 		 * reserves
4082 		 */
4083 		if (gfp_mask & __GFP_NOFAIL)
4084 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4085 					ALLOC_NO_WATERMARKS, ac);
4086 	}
4087 out:
4088 	mutex_unlock(&oom_lock);
4089 	return page;
4090 }
4091 
4092 /*
4093  * Maximum number of compaction retries wit a progress before OOM
4094  * killer is consider as the only way to move forward.
4095  */
4096 #define MAX_COMPACT_RETRIES 16
4097 
4098 #ifdef CONFIG_COMPACTION
4099 /* Try memory compaction for high-order allocations before reclaim */
4100 static struct page *
4101 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4102 		unsigned int alloc_flags, const struct alloc_context *ac,
4103 		enum compact_priority prio, enum compact_result *compact_result)
4104 {
4105 	struct page *page = NULL;
4106 	unsigned long pflags;
4107 	unsigned int noreclaim_flag;
4108 
4109 	if (!order)
4110 		return NULL;
4111 
4112 	psi_memstall_enter(&pflags);
4113 	noreclaim_flag = memalloc_noreclaim_save();
4114 
4115 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4116 								prio, &page);
4117 
4118 	memalloc_noreclaim_restore(noreclaim_flag);
4119 	psi_memstall_leave(&pflags);
4120 
4121 	/*
4122 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4123 	 * count a compaction stall
4124 	 */
4125 	count_vm_event(COMPACTSTALL);
4126 
4127 	/* Prep a captured page if available */
4128 	if (page)
4129 		prep_new_page(page, order, gfp_mask, alloc_flags);
4130 
4131 	/* Try get a page from the freelist if available */
4132 	if (!page)
4133 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4134 
4135 	if (page) {
4136 		struct zone *zone = page_zone(page);
4137 
4138 		zone->compact_blockskip_flush = false;
4139 		compaction_defer_reset(zone, order, true);
4140 		count_vm_event(COMPACTSUCCESS);
4141 		return page;
4142 	}
4143 
4144 	/*
4145 	 * It's bad if compaction run occurs and fails. The most likely reason
4146 	 * is that pages exist, but not enough to satisfy watermarks.
4147 	 */
4148 	count_vm_event(COMPACTFAIL);
4149 
4150 	cond_resched();
4151 
4152 	return NULL;
4153 }
4154 
4155 static inline bool
4156 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4157 		     enum compact_result compact_result,
4158 		     enum compact_priority *compact_priority,
4159 		     int *compaction_retries)
4160 {
4161 	int max_retries = MAX_COMPACT_RETRIES;
4162 	int min_priority;
4163 	bool ret = false;
4164 	int retries = *compaction_retries;
4165 	enum compact_priority priority = *compact_priority;
4166 
4167 	if (!order)
4168 		return false;
4169 
4170 	if (compaction_made_progress(compact_result))
4171 		(*compaction_retries)++;
4172 
4173 	/*
4174 	 * compaction considers all the zone as desperately out of memory
4175 	 * so it doesn't really make much sense to retry except when the
4176 	 * failure could be caused by insufficient priority
4177 	 */
4178 	if (compaction_failed(compact_result))
4179 		goto check_priority;
4180 
4181 	/*
4182 	 * compaction was skipped because there are not enough order-0 pages
4183 	 * to work with, so we retry only if it looks like reclaim can help.
4184 	 */
4185 	if (compaction_needs_reclaim(compact_result)) {
4186 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4187 		goto out;
4188 	}
4189 
4190 	/*
4191 	 * make sure the compaction wasn't deferred or didn't bail out early
4192 	 * due to locks contention before we declare that we should give up.
4193 	 * But the next retry should use a higher priority if allowed, so
4194 	 * we don't just keep bailing out endlessly.
4195 	 */
4196 	if (compaction_withdrawn(compact_result)) {
4197 		goto check_priority;
4198 	}
4199 
4200 	/*
4201 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4202 	 * costly ones because they are de facto nofail and invoke OOM
4203 	 * killer to move on while costly can fail and users are ready
4204 	 * to cope with that. 1/4 retries is rather arbitrary but we
4205 	 * would need much more detailed feedback from compaction to
4206 	 * make a better decision.
4207 	 */
4208 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4209 		max_retries /= 4;
4210 	if (*compaction_retries <= max_retries) {
4211 		ret = true;
4212 		goto out;
4213 	}
4214 
4215 	/*
4216 	 * Make sure there are attempts at the highest priority if we exhausted
4217 	 * all retries or failed at the lower priorities.
4218 	 */
4219 check_priority:
4220 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4221 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4222 
4223 	if (*compact_priority > min_priority) {
4224 		(*compact_priority)--;
4225 		*compaction_retries = 0;
4226 		ret = true;
4227 	}
4228 out:
4229 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4230 	return ret;
4231 }
4232 #else
4233 static inline struct page *
4234 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4235 		unsigned int alloc_flags, const struct alloc_context *ac,
4236 		enum compact_priority prio, enum compact_result *compact_result)
4237 {
4238 	*compact_result = COMPACT_SKIPPED;
4239 	return NULL;
4240 }
4241 
4242 static inline bool
4243 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4244 		     enum compact_result compact_result,
4245 		     enum compact_priority *compact_priority,
4246 		     int *compaction_retries)
4247 {
4248 	struct zone *zone;
4249 	struct zoneref *z;
4250 
4251 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4252 		return false;
4253 
4254 	/*
4255 	 * There are setups with compaction disabled which would prefer to loop
4256 	 * inside the allocator rather than hit the oom killer prematurely.
4257 	 * Let's give them a good hope and keep retrying while the order-0
4258 	 * watermarks are OK.
4259 	 */
4260 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4261 				ac->highest_zoneidx, ac->nodemask) {
4262 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4263 					ac->highest_zoneidx, alloc_flags))
4264 			return true;
4265 	}
4266 	return false;
4267 }
4268 #endif /* CONFIG_COMPACTION */
4269 
4270 #ifdef CONFIG_LOCKDEP
4271 static struct lockdep_map __fs_reclaim_map =
4272 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4273 
4274 static bool __need_reclaim(gfp_t gfp_mask)
4275 {
4276 	/* no reclaim without waiting on it */
4277 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4278 		return false;
4279 
4280 	/* this guy won't enter reclaim */
4281 	if (current->flags & PF_MEMALLOC)
4282 		return false;
4283 
4284 	if (gfp_mask & __GFP_NOLOCKDEP)
4285 		return false;
4286 
4287 	return true;
4288 }
4289 
4290 void __fs_reclaim_acquire(void)
4291 {
4292 	lock_map_acquire(&__fs_reclaim_map);
4293 }
4294 
4295 void __fs_reclaim_release(void)
4296 {
4297 	lock_map_release(&__fs_reclaim_map);
4298 }
4299 
4300 void fs_reclaim_acquire(gfp_t gfp_mask)
4301 {
4302 	gfp_mask = current_gfp_context(gfp_mask);
4303 
4304 	if (__need_reclaim(gfp_mask)) {
4305 		if (gfp_mask & __GFP_FS)
4306 			__fs_reclaim_acquire();
4307 
4308 #ifdef CONFIG_MMU_NOTIFIER
4309 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4310 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4311 #endif
4312 
4313 	}
4314 }
4315 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4316 
4317 void fs_reclaim_release(gfp_t gfp_mask)
4318 {
4319 	gfp_mask = current_gfp_context(gfp_mask);
4320 
4321 	if (__need_reclaim(gfp_mask)) {
4322 		if (gfp_mask & __GFP_FS)
4323 			__fs_reclaim_release();
4324 	}
4325 }
4326 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4327 #endif
4328 
4329 /* Perform direct synchronous page reclaim */
4330 static unsigned long
4331 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4332 					const struct alloc_context *ac)
4333 {
4334 	unsigned int noreclaim_flag;
4335 	unsigned long pflags, progress;
4336 
4337 	cond_resched();
4338 
4339 	/* We now go into synchronous reclaim */
4340 	cpuset_memory_pressure_bump();
4341 	psi_memstall_enter(&pflags);
4342 	fs_reclaim_acquire(gfp_mask);
4343 	noreclaim_flag = memalloc_noreclaim_save();
4344 
4345 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4346 								ac->nodemask);
4347 
4348 	memalloc_noreclaim_restore(noreclaim_flag);
4349 	fs_reclaim_release(gfp_mask);
4350 	psi_memstall_leave(&pflags);
4351 
4352 	cond_resched();
4353 
4354 	return progress;
4355 }
4356 
4357 /* The really slow allocator path where we enter direct reclaim */
4358 static inline struct page *
4359 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4360 		unsigned int alloc_flags, const struct alloc_context *ac,
4361 		unsigned long *did_some_progress)
4362 {
4363 	struct page *page = NULL;
4364 	bool drained = false;
4365 
4366 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4367 	if (unlikely(!(*did_some_progress)))
4368 		return NULL;
4369 
4370 retry:
4371 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4372 
4373 	/*
4374 	 * If an allocation failed after direct reclaim, it could be because
4375 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4376 	 * Shrink them and try again
4377 	 */
4378 	if (!page && !drained) {
4379 		unreserve_highatomic_pageblock(ac, false);
4380 		drain_all_pages(NULL);
4381 		drained = true;
4382 		goto retry;
4383 	}
4384 
4385 	return page;
4386 }
4387 
4388 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4389 			     const struct alloc_context *ac)
4390 {
4391 	struct zoneref *z;
4392 	struct zone *zone;
4393 	pg_data_t *last_pgdat = NULL;
4394 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4395 
4396 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4397 					ac->nodemask) {
4398 		if (last_pgdat != zone->zone_pgdat)
4399 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4400 		last_pgdat = zone->zone_pgdat;
4401 	}
4402 }
4403 
4404 static inline unsigned int
4405 gfp_to_alloc_flags(gfp_t gfp_mask)
4406 {
4407 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4408 
4409 	/*
4410 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4411 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4412 	 * to save two branches.
4413 	 */
4414 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4415 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4416 
4417 	/*
4418 	 * The caller may dip into page reserves a bit more if the caller
4419 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4420 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4421 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4422 	 */
4423 	alloc_flags |= (__force int)
4424 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4425 
4426 	if (gfp_mask & __GFP_ATOMIC) {
4427 		/*
4428 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4429 		 * if it can't schedule.
4430 		 */
4431 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4432 			alloc_flags |= ALLOC_HARDER;
4433 		/*
4434 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4435 		 * comment for __cpuset_node_allowed().
4436 		 */
4437 		alloc_flags &= ~ALLOC_CPUSET;
4438 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4439 		alloc_flags |= ALLOC_HARDER;
4440 
4441 	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4442 
4443 	return alloc_flags;
4444 }
4445 
4446 static bool oom_reserves_allowed(struct task_struct *tsk)
4447 {
4448 	if (!tsk_is_oom_victim(tsk))
4449 		return false;
4450 
4451 	/*
4452 	 * !MMU doesn't have oom reaper so give access to memory reserves
4453 	 * only to the thread with TIF_MEMDIE set
4454 	 */
4455 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4456 		return false;
4457 
4458 	return true;
4459 }
4460 
4461 /*
4462  * Distinguish requests which really need access to full memory
4463  * reserves from oom victims which can live with a portion of it
4464  */
4465 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4466 {
4467 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4468 		return 0;
4469 	if (gfp_mask & __GFP_MEMALLOC)
4470 		return ALLOC_NO_WATERMARKS;
4471 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4472 		return ALLOC_NO_WATERMARKS;
4473 	if (!in_interrupt()) {
4474 		if (current->flags & PF_MEMALLOC)
4475 			return ALLOC_NO_WATERMARKS;
4476 		else if (oom_reserves_allowed(current))
4477 			return ALLOC_OOM;
4478 	}
4479 
4480 	return 0;
4481 }
4482 
4483 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4484 {
4485 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4486 }
4487 
4488 /*
4489  * Checks whether it makes sense to retry the reclaim to make a forward progress
4490  * for the given allocation request.
4491  *
4492  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4493  * without success, or when we couldn't even meet the watermark if we
4494  * reclaimed all remaining pages on the LRU lists.
4495  *
4496  * Returns true if a retry is viable or false to enter the oom path.
4497  */
4498 static inline bool
4499 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4500 		     struct alloc_context *ac, int alloc_flags,
4501 		     bool did_some_progress, int *no_progress_loops)
4502 {
4503 	struct zone *zone;
4504 	struct zoneref *z;
4505 	bool ret = false;
4506 
4507 	/*
4508 	 * Costly allocations might have made a progress but this doesn't mean
4509 	 * their order will become available due to high fragmentation so
4510 	 * always increment the no progress counter for them
4511 	 */
4512 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4513 		*no_progress_loops = 0;
4514 	else
4515 		(*no_progress_loops)++;
4516 
4517 	/*
4518 	 * Make sure we converge to OOM if we cannot make any progress
4519 	 * several times in the row.
4520 	 */
4521 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4522 		/* Before OOM, exhaust highatomic_reserve */
4523 		return unreserve_highatomic_pageblock(ac, true);
4524 	}
4525 
4526 	/*
4527 	 * Keep reclaiming pages while there is a chance this will lead
4528 	 * somewhere.  If none of the target zones can satisfy our allocation
4529 	 * request even if all reclaimable pages are considered then we are
4530 	 * screwed and have to go OOM.
4531 	 */
4532 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4533 				ac->highest_zoneidx, ac->nodemask) {
4534 		unsigned long available;
4535 		unsigned long reclaimable;
4536 		unsigned long min_wmark = min_wmark_pages(zone);
4537 		bool wmark;
4538 
4539 		available = reclaimable = zone_reclaimable_pages(zone);
4540 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4541 
4542 		/*
4543 		 * Would the allocation succeed if we reclaimed all
4544 		 * reclaimable pages?
4545 		 */
4546 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4547 				ac->highest_zoneidx, alloc_flags, available);
4548 		trace_reclaim_retry_zone(z, order, reclaimable,
4549 				available, min_wmark, *no_progress_loops, wmark);
4550 		if (wmark) {
4551 			/*
4552 			 * If we didn't make any progress and have a lot of
4553 			 * dirty + writeback pages then we should wait for
4554 			 * an IO to complete to slow down the reclaim and
4555 			 * prevent from pre mature OOM
4556 			 */
4557 			if (!did_some_progress) {
4558 				unsigned long write_pending;
4559 
4560 				write_pending = zone_page_state_snapshot(zone,
4561 							NR_ZONE_WRITE_PENDING);
4562 
4563 				if (2 * write_pending > reclaimable) {
4564 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4565 					return true;
4566 				}
4567 			}
4568 
4569 			ret = true;
4570 			goto out;
4571 		}
4572 	}
4573 
4574 out:
4575 	/*
4576 	 * Memory allocation/reclaim might be called from a WQ context and the
4577 	 * current implementation of the WQ concurrency control doesn't
4578 	 * recognize that a particular WQ is congested if the worker thread is
4579 	 * looping without ever sleeping. Therefore we have to do a short sleep
4580 	 * here rather than calling cond_resched().
4581 	 */
4582 	if (current->flags & PF_WQ_WORKER)
4583 		schedule_timeout_uninterruptible(1);
4584 	else
4585 		cond_resched();
4586 	return ret;
4587 }
4588 
4589 static inline bool
4590 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4591 {
4592 	/*
4593 	 * It's possible that cpuset's mems_allowed and the nodemask from
4594 	 * mempolicy don't intersect. This should be normally dealt with by
4595 	 * policy_nodemask(), but it's possible to race with cpuset update in
4596 	 * such a way the check therein was true, and then it became false
4597 	 * before we got our cpuset_mems_cookie here.
4598 	 * This assumes that for all allocations, ac->nodemask can come only
4599 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4600 	 * when it does not intersect with the cpuset restrictions) or the
4601 	 * caller can deal with a violated nodemask.
4602 	 */
4603 	if (cpusets_enabled() && ac->nodemask &&
4604 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4605 		ac->nodemask = NULL;
4606 		return true;
4607 	}
4608 
4609 	/*
4610 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4611 	 * possible to race with parallel threads in such a way that our
4612 	 * allocation can fail while the mask is being updated. If we are about
4613 	 * to fail, check if the cpuset changed during allocation and if so,
4614 	 * retry.
4615 	 */
4616 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4617 		return true;
4618 
4619 	return false;
4620 }
4621 
4622 static inline struct page *
4623 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4624 						struct alloc_context *ac)
4625 {
4626 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4627 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4628 	struct page *page = NULL;
4629 	unsigned int alloc_flags;
4630 	unsigned long did_some_progress;
4631 	enum compact_priority compact_priority;
4632 	enum compact_result compact_result;
4633 	int compaction_retries;
4634 	int no_progress_loops;
4635 	unsigned int cpuset_mems_cookie;
4636 	int reserve_flags;
4637 
4638 	/*
4639 	 * We also sanity check to catch abuse of atomic reserves being used by
4640 	 * callers that are not in atomic context.
4641 	 */
4642 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4643 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4644 		gfp_mask &= ~__GFP_ATOMIC;
4645 
4646 retry_cpuset:
4647 	compaction_retries = 0;
4648 	no_progress_loops = 0;
4649 	compact_priority = DEF_COMPACT_PRIORITY;
4650 	cpuset_mems_cookie = read_mems_allowed_begin();
4651 
4652 	/*
4653 	 * The fast path uses conservative alloc_flags to succeed only until
4654 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4655 	 * alloc_flags precisely. So we do that now.
4656 	 */
4657 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4658 
4659 	/*
4660 	 * We need to recalculate the starting point for the zonelist iterator
4661 	 * because we might have used different nodemask in the fast path, or
4662 	 * there was a cpuset modification and we are retrying - otherwise we
4663 	 * could end up iterating over non-eligible zones endlessly.
4664 	 */
4665 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4666 					ac->highest_zoneidx, ac->nodemask);
4667 	if (!ac->preferred_zoneref->zone)
4668 		goto nopage;
4669 
4670 	if (alloc_flags & ALLOC_KSWAPD)
4671 		wake_all_kswapds(order, gfp_mask, ac);
4672 
4673 	/*
4674 	 * The adjusted alloc_flags might result in immediate success, so try
4675 	 * that first
4676 	 */
4677 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4678 	if (page)
4679 		goto got_pg;
4680 
4681 	/*
4682 	 * For costly allocations, try direct compaction first, as it's likely
4683 	 * that we have enough base pages and don't need to reclaim. For non-
4684 	 * movable high-order allocations, do that as well, as compaction will
4685 	 * try prevent permanent fragmentation by migrating from blocks of the
4686 	 * same migratetype.
4687 	 * Don't try this for allocations that are allowed to ignore
4688 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4689 	 */
4690 	if (can_direct_reclaim &&
4691 			(costly_order ||
4692 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4693 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4694 		page = __alloc_pages_direct_compact(gfp_mask, order,
4695 						alloc_flags, ac,
4696 						INIT_COMPACT_PRIORITY,
4697 						&compact_result);
4698 		if (page)
4699 			goto got_pg;
4700 
4701 		/*
4702 		 * Checks for costly allocations with __GFP_NORETRY, which
4703 		 * includes some THP page fault allocations
4704 		 */
4705 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4706 			/*
4707 			 * If allocating entire pageblock(s) and compaction
4708 			 * failed because all zones are below low watermarks
4709 			 * or is prohibited because it recently failed at this
4710 			 * order, fail immediately unless the allocator has
4711 			 * requested compaction and reclaim retry.
4712 			 *
4713 			 * Reclaim is
4714 			 *  - potentially very expensive because zones are far
4715 			 *    below their low watermarks or this is part of very
4716 			 *    bursty high order allocations,
4717 			 *  - not guaranteed to help because isolate_freepages()
4718 			 *    may not iterate over freed pages as part of its
4719 			 *    linear scan, and
4720 			 *  - unlikely to make entire pageblocks free on its
4721 			 *    own.
4722 			 */
4723 			if (compact_result == COMPACT_SKIPPED ||
4724 			    compact_result == COMPACT_DEFERRED)
4725 				goto nopage;
4726 
4727 			/*
4728 			 * Looks like reclaim/compaction is worth trying, but
4729 			 * sync compaction could be very expensive, so keep
4730 			 * using async compaction.
4731 			 */
4732 			compact_priority = INIT_COMPACT_PRIORITY;
4733 		}
4734 	}
4735 
4736 retry:
4737 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4738 	if (alloc_flags & ALLOC_KSWAPD)
4739 		wake_all_kswapds(order, gfp_mask, ac);
4740 
4741 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4742 	if (reserve_flags)
4743 		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4744 
4745 	/*
4746 	 * Reset the nodemask and zonelist iterators if memory policies can be
4747 	 * ignored. These allocations are high priority and system rather than
4748 	 * user oriented.
4749 	 */
4750 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4751 		ac->nodemask = NULL;
4752 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4753 					ac->highest_zoneidx, ac->nodemask);
4754 	}
4755 
4756 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4757 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4758 	if (page)
4759 		goto got_pg;
4760 
4761 	/* Caller is not willing to reclaim, we can't balance anything */
4762 	if (!can_direct_reclaim)
4763 		goto nopage;
4764 
4765 	/* Avoid recursion of direct reclaim */
4766 	if (current->flags & PF_MEMALLOC)
4767 		goto nopage;
4768 
4769 	/* Try direct reclaim and then allocating */
4770 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4771 							&did_some_progress);
4772 	if (page)
4773 		goto got_pg;
4774 
4775 	/* Try direct compaction and then allocating */
4776 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4777 					compact_priority, &compact_result);
4778 	if (page)
4779 		goto got_pg;
4780 
4781 	/* Do not loop if specifically requested */
4782 	if (gfp_mask & __GFP_NORETRY)
4783 		goto nopage;
4784 
4785 	/*
4786 	 * Do not retry costly high order allocations unless they are
4787 	 * __GFP_RETRY_MAYFAIL
4788 	 */
4789 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4790 		goto nopage;
4791 
4792 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4793 				 did_some_progress > 0, &no_progress_loops))
4794 		goto retry;
4795 
4796 	/*
4797 	 * It doesn't make any sense to retry for the compaction if the order-0
4798 	 * reclaim is not able to make any progress because the current
4799 	 * implementation of the compaction depends on the sufficient amount
4800 	 * of free memory (see __compaction_suitable)
4801 	 */
4802 	if (did_some_progress > 0 &&
4803 			should_compact_retry(ac, order, alloc_flags,
4804 				compact_result, &compact_priority,
4805 				&compaction_retries))
4806 		goto retry;
4807 
4808 
4809 	/* Deal with possible cpuset update races before we start OOM killing */
4810 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4811 		goto retry_cpuset;
4812 
4813 	/* Reclaim has failed us, start killing things */
4814 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4815 	if (page)
4816 		goto got_pg;
4817 
4818 	/* Avoid allocations with no watermarks from looping endlessly */
4819 	if (tsk_is_oom_victim(current) &&
4820 	    (alloc_flags & ALLOC_OOM ||
4821 	     (gfp_mask & __GFP_NOMEMALLOC)))
4822 		goto nopage;
4823 
4824 	/* Retry as long as the OOM killer is making progress */
4825 	if (did_some_progress) {
4826 		no_progress_loops = 0;
4827 		goto retry;
4828 	}
4829 
4830 nopage:
4831 	/* Deal with possible cpuset update races before we fail */
4832 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4833 		goto retry_cpuset;
4834 
4835 	/*
4836 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4837 	 * we always retry
4838 	 */
4839 	if (gfp_mask & __GFP_NOFAIL) {
4840 		/*
4841 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4842 		 * of any new users that actually require GFP_NOWAIT
4843 		 */
4844 		if (WARN_ON_ONCE(!can_direct_reclaim))
4845 			goto fail;
4846 
4847 		/*
4848 		 * PF_MEMALLOC request from this context is rather bizarre
4849 		 * because we cannot reclaim anything and only can loop waiting
4850 		 * for somebody to do a work for us
4851 		 */
4852 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4853 
4854 		/*
4855 		 * non failing costly orders are a hard requirement which we
4856 		 * are not prepared for much so let's warn about these users
4857 		 * so that we can identify them and convert them to something
4858 		 * else.
4859 		 */
4860 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4861 
4862 		/*
4863 		 * Help non-failing allocations by giving them access to memory
4864 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4865 		 * could deplete whole memory reserves which would just make
4866 		 * the situation worse
4867 		 */
4868 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4869 		if (page)
4870 			goto got_pg;
4871 
4872 		cond_resched();
4873 		goto retry;
4874 	}
4875 fail:
4876 	warn_alloc(gfp_mask, ac->nodemask,
4877 			"page allocation failure: order:%u", order);
4878 got_pg:
4879 	return page;
4880 }
4881 
4882 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4883 		int preferred_nid, nodemask_t *nodemask,
4884 		struct alloc_context *ac, gfp_t *alloc_mask,
4885 		unsigned int *alloc_flags)
4886 {
4887 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4888 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4889 	ac->nodemask = nodemask;
4890 	ac->migratetype = gfp_migratetype(gfp_mask);
4891 
4892 	if (cpusets_enabled()) {
4893 		*alloc_mask |= __GFP_HARDWALL;
4894 		/*
4895 		 * When we are in the interrupt context, it is irrelevant
4896 		 * to the current task context. It means that any node ok.
4897 		 */
4898 		if (!in_interrupt() && !ac->nodemask)
4899 			ac->nodemask = &cpuset_current_mems_allowed;
4900 		else
4901 			*alloc_flags |= ALLOC_CPUSET;
4902 	}
4903 
4904 	fs_reclaim_acquire(gfp_mask);
4905 	fs_reclaim_release(gfp_mask);
4906 
4907 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4908 
4909 	if (should_fail_alloc_page(gfp_mask, order))
4910 		return false;
4911 
4912 	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4913 
4914 	/* Dirty zone balancing only done in the fast path */
4915 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4916 
4917 	/*
4918 	 * The preferred zone is used for statistics but crucially it is
4919 	 * also used as the starting point for the zonelist iterator. It
4920 	 * may get reset for allocations that ignore memory policies.
4921 	 */
4922 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4923 					ac->highest_zoneidx, ac->nodemask);
4924 
4925 	return true;
4926 }
4927 
4928 /*
4929  * This is the 'heart' of the zoned buddy allocator.
4930  */
4931 struct page *
4932 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4933 							nodemask_t *nodemask)
4934 {
4935 	struct page *page;
4936 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4937 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4938 	struct alloc_context ac = { };
4939 
4940 	/*
4941 	 * There are several places where we assume that the order value is sane
4942 	 * so bail out early if the request is out of bound.
4943 	 */
4944 	if (unlikely(order >= MAX_ORDER)) {
4945 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4946 		return NULL;
4947 	}
4948 
4949 	gfp_mask &= gfp_allowed_mask;
4950 	alloc_mask = gfp_mask;
4951 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4952 		return NULL;
4953 
4954 	/*
4955 	 * Forbid the first pass from falling back to types that fragment
4956 	 * memory until all local zones are considered.
4957 	 */
4958 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4959 
4960 	/* First allocation attempt */
4961 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4962 	if (likely(page))
4963 		goto out;
4964 
4965 	/*
4966 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4967 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4968 	 * from a particular context which has been marked by
4969 	 * memalloc_no{fs,io}_{save,restore}.
4970 	 */
4971 	alloc_mask = current_gfp_context(gfp_mask);
4972 	ac.spread_dirty_pages = false;
4973 
4974 	/*
4975 	 * Restore the original nodemask if it was potentially replaced with
4976 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4977 	 */
4978 	ac.nodemask = nodemask;
4979 
4980 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4981 
4982 out:
4983 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4984 	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4985 		__free_pages(page, order);
4986 		page = NULL;
4987 	}
4988 
4989 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4990 
4991 	return page;
4992 }
4993 EXPORT_SYMBOL(__alloc_pages_nodemask);
4994 
4995 /*
4996  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4997  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4998  * you need to access high mem.
4999  */
5000 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5001 {
5002 	struct page *page;
5003 
5004 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5005 	if (!page)
5006 		return 0;
5007 	return (unsigned long) page_address(page);
5008 }
5009 EXPORT_SYMBOL(__get_free_pages);
5010 
5011 unsigned long get_zeroed_page(gfp_t gfp_mask)
5012 {
5013 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5014 }
5015 EXPORT_SYMBOL(get_zeroed_page);
5016 
5017 static inline void free_the_page(struct page *page, unsigned int order)
5018 {
5019 	if (order == 0)		/* Via pcp? */
5020 		free_unref_page(page);
5021 	else
5022 		__free_pages_ok(page, order, FPI_NONE);
5023 }
5024 
5025 void __free_pages(struct page *page, unsigned int order)
5026 {
5027 	if (put_page_testzero(page))
5028 		free_the_page(page, order);
5029 	else if (!PageHead(page))
5030 		while (order-- > 0)
5031 			free_the_page(page + (1 << order), order);
5032 }
5033 EXPORT_SYMBOL(__free_pages);
5034 
5035 void free_pages(unsigned long addr, unsigned int order)
5036 {
5037 	if (addr != 0) {
5038 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5039 		__free_pages(virt_to_page((void *)addr), order);
5040 	}
5041 }
5042 
5043 EXPORT_SYMBOL(free_pages);
5044 
5045 /*
5046  * Page Fragment:
5047  *  An arbitrary-length arbitrary-offset area of memory which resides
5048  *  within a 0 or higher order page.  Multiple fragments within that page
5049  *  are individually refcounted, in the page's reference counter.
5050  *
5051  * The page_frag functions below provide a simple allocation framework for
5052  * page fragments.  This is used by the network stack and network device
5053  * drivers to provide a backing region of memory for use as either an
5054  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5055  */
5056 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5057 					     gfp_t gfp_mask)
5058 {
5059 	struct page *page = NULL;
5060 	gfp_t gfp = gfp_mask;
5061 
5062 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5063 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5064 		    __GFP_NOMEMALLOC;
5065 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5066 				PAGE_FRAG_CACHE_MAX_ORDER);
5067 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5068 #endif
5069 	if (unlikely(!page))
5070 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5071 
5072 	nc->va = page ? page_address(page) : NULL;
5073 
5074 	return page;
5075 }
5076 
5077 void __page_frag_cache_drain(struct page *page, unsigned int count)
5078 {
5079 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5080 
5081 	if (page_ref_sub_and_test(page, count))
5082 		free_the_page(page, compound_order(page));
5083 }
5084 EXPORT_SYMBOL(__page_frag_cache_drain);
5085 
5086 void *page_frag_alloc(struct page_frag_cache *nc,
5087 		      unsigned int fragsz, gfp_t gfp_mask)
5088 {
5089 	unsigned int size = PAGE_SIZE;
5090 	struct page *page;
5091 	int offset;
5092 
5093 	if (unlikely(!nc->va)) {
5094 refill:
5095 		page = __page_frag_cache_refill(nc, gfp_mask);
5096 		if (!page)
5097 			return NULL;
5098 
5099 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5100 		/* if size can vary use size else just use PAGE_SIZE */
5101 		size = nc->size;
5102 #endif
5103 		/* Even if we own the page, we do not use atomic_set().
5104 		 * This would break get_page_unless_zero() users.
5105 		 */
5106 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5107 
5108 		/* reset page count bias and offset to start of new frag */
5109 		nc->pfmemalloc = page_is_pfmemalloc(page);
5110 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5111 		nc->offset = size;
5112 	}
5113 
5114 	offset = nc->offset - fragsz;
5115 	if (unlikely(offset < 0)) {
5116 		page = virt_to_page(nc->va);
5117 
5118 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5119 			goto refill;
5120 
5121 		if (unlikely(nc->pfmemalloc)) {
5122 			free_the_page(page, compound_order(page));
5123 			goto refill;
5124 		}
5125 
5126 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5127 		/* if size can vary use size else just use PAGE_SIZE */
5128 		size = nc->size;
5129 #endif
5130 		/* OK, page count is 0, we can safely set it */
5131 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5132 
5133 		/* reset page count bias and offset to start of new frag */
5134 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5135 		offset = size - fragsz;
5136 	}
5137 
5138 	nc->pagecnt_bias--;
5139 	nc->offset = offset;
5140 
5141 	return nc->va + offset;
5142 }
5143 EXPORT_SYMBOL(page_frag_alloc);
5144 
5145 /*
5146  * Frees a page fragment allocated out of either a compound or order 0 page.
5147  */
5148 void page_frag_free(void *addr)
5149 {
5150 	struct page *page = virt_to_head_page(addr);
5151 
5152 	if (unlikely(put_page_testzero(page)))
5153 		free_the_page(page, compound_order(page));
5154 }
5155 EXPORT_SYMBOL(page_frag_free);
5156 
5157 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5158 		size_t size)
5159 {
5160 	if (addr) {
5161 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5162 		unsigned long used = addr + PAGE_ALIGN(size);
5163 
5164 		split_page(virt_to_page((void *)addr), order);
5165 		while (used < alloc_end) {
5166 			free_page(used);
5167 			used += PAGE_SIZE;
5168 		}
5169 	}
5170 	return (void *)addr;
5171 }
5172 
5173 /**
5174  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5175  * @size: the number of bytes to allocate
5176  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5177  *
5178  * This function is similar to alloc_pages(), except that it allocates the
5179  * minimum number of pages to satisfy the request.  alloc_pages() can only
5180  * allocate memory in power-of-two pages.
5181  *
5182  * This function is also limited by MAX_ORDER.
5183  *
5184  * Memory allocated by this function must be released by free_pages_exact().
5185  *
5186  * Return: pointer to the allocated area or %NULL in case of error.
5187  */
5188 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5189 {
5190 	unsigned int order = get_order(size);
5191 	unsigned long addr;
5192 
5193 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5194 		gfp_mask &= ~__GFP_COMP;
5195 
5196 	addr = __get_free_pages(gfp_mask, order);
5197 	return make_alloc_exact(addr, order, size);
5198 }
5199 EXPORT_SYMBOL(alloc_pages_exact);
5200 
5201 /**
5202  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5203  *			   pages on a node.
5204  * @nid: the preferred node ID where memory should be allocated
5205  * @size: the number of bytes to allocate
5206  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5207  *
5208  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5209  * back.
5210  *
5211  * Return: pointer to the allocated area or %NULL in case of error.
5212  */
5213 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5214 {
5215 	unsigned int order = get_order(size);
5216 	struct page *p;
5217 
5218 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5219 		gfp_mask &= ~__GFP_COMP;
5220 
5221 	p = alloc_pages_node(nid, gfp_mask, order);
5222 	if (!p)
5223 		return NULL;
5224 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5225 }
5226 
5227 /**
5228  * free_pages_exact - release memory allocated via alloc_pages_exact()
5229  * @virt: the value returned by alloc_pages_exact.
5230  * @size: size of allocation, same value as passed to alloc_pages_exact().
5231  *
5232  * Release the memory allocated by a previous call to alloc_pages_exact.
5233  */
5234 void free_pages_exact(void *virt, size_t size)
5235 {
5236 	unsigned long addr = (unsigned long)virt;
5237 	unsigned long end = addr + PAGE_ALIGN(size);
5238 
5239 	while (addr < end) {
5240 		free_page(addr);
5241 		addr += PAGE_SIZE;
5242 	}
5243 }
5244 EXPORT_SYMBOL(free_pages_exact);
5245 
5246 /**
5247  * nr_free_zone_pages - count number of pages beyond high watermark
5248  * @offset: The zone index of the highest zone
5249  *
5250  * nr_free_zone_pages() counts the number of pages which are beyond the
5251  * high watermark within all zones at or below a given zone index.  For each
5252  * zone, the number of pages is calculated as:
5253  *
5254  *     nr_free_zone_pages = managed_pages - high_pages
5255  *
5256  * Return: number of pages beyond high watermark.
5257  */
5258 static unsigned long nr_free_zone_pages(int offset)
5259 {
5260 	struct zoneref *z;
5261 	struct zone *zone;
5262 
5263 	/* Just pick one node, since fallback list is circular */
5264 	unsigned long sum = 0;
5265 
5266 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5267 
5268 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5269 		unsigned long size = zone_managed_pages(zone);
5270 		unsigned long high = high_wmark_pages(zone);
5271 		if (size > high)
5272 			sum += size - high;
5273 	}
5274 
5275 	return sum;
5276 }
5277 
5278 /**
5279  * nr_free_buffer_pages - count number of pages beyond high watermark
5280  *
5281  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5282  * watermark within ZONE_DMA and ZONE_NORMAL.
5283  *
5284  * Return: number of pages beyond high watermark within ZONE_DMA and
5285  * ZONE_NORMAL.
5286  */
5287 unsigned long nr_free_buffer_pages(void)
5288 {
5289 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5290 }
5291 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5292 
5293 static inline void show_node(struct zone *zone)
5294 {
5295 	if (IS_ENABLED(CONFIG_NUMA))
5296 		printk("Node %d ", zone_to_nid(zone));
5297 }
5298 
5299 long si_mem_available(void)
5300 {
5301 	long available;
5302 	unsigned long pagecache;
5303 	unsigned long wmark_low = 0;
5304 	unsigned long pages[NR_LRU_LISTS];
5305 	unsigned long reclaimable;
5306 	struct zone *zone;
5307 	int lru;
5308 
5309 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5310 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5311 
5312 	for_each_zone(zone)
5313 		wmark_low += low_wmark_pages(zone);
5314 
5315 	/*
5316 	 * Estimate the amount of memory available for userspace allocations,
5317 	 * without causing swapping.
5318 	 */
5319 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5320 
5321 	/*
5322 	 * Not all the page cache can be freed, otherwise the system will
5323 	 * start swapping. Assume at least half of the page cache, or the
5324 	 * low watermark worth of cache, needs to stay.
5325 	 */
5326 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5327 	pagecache -= min(pagecache / 2, wmark_low);
5328 	available += pagecache;
5329 
5330 	/*
5331 	 * Part of the reclaimable slab and other kernel memory consists of
5332 	 * items that are in use, and cannot be freed. Cap this estimate at the
5333 	 * low watermark.
5334 	 */
5335 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5336 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5337 	available += reclaimable - min(reclaimable / 2, wmark_low);
5338 
5339 	if (available < 0)
5340 		available = 0;
5341 	return available;
5342 }
5343 EXPORT_SYMBOL_GPL(si_mem_available);
5344 
5345 void si_meminfo(struct sysinfo *val)
5346 {
5347 	val->totalram = totalram_pages();
5348 	val->sharedram = global_node_page_state(NR_SHMEM);
5349 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5350 	val->bufferram = nr_blockdev_pages();
5351 	val->totalhigh = totalhigh_pages();
5352 	val->freehigh = nr_free_highpages();
5353 	val->mem_unit = PAGE_SIZE;
5354 }
5355 
5356 EXPORT_SYMBOL(si_meminfo);
5357 
5358 #ifdef CONFIG_NUMA
5359 void si_meminfo_node(struct sysinfo *val, int nid)
5360 {
5361 	int zone_type;		/* needs to be signed */
5362 	unsigned long managed_pages = 0;
5363 	unsigned long managed_highpages = 0;
5364 	unsigned long free_highpages = 0;
5365 	pg_data_t *pgdat = NODE_DATA(nid);
5366 
5367 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5368 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5369 	val->totalram = managed_pages;
5370 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5371 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5372 #ifdef CONFIG_HIGHMEM
5373 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5374 		struct zone *zone = &pgdat->node_zones[zone_type];
5375 
5376 		if (is_highmem(zone)) {
5377 			managed_highpages += zone_managed_pages(zone);
5378 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5379 		}
5380 	}
5381 	val->totalhigh = managed_highpages;
5382 	val->freehigh = free_highpages;
5383 #else
5384 	val->totalhigh = managed_highpages;
5385 	val->freehigh = free_highpages;
5386 #endif
5387 	val->mem_unit = PAGE_SIZE;
5388 }
5389 #endif
5390 
5391 /*
5392  * Determine whether the node should be displayed or not, depending on whether
5393  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5394  */
5395 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5396 {
5397 	if (!(flags & SHOW_MEM_FILTER_NODES))
5398 		return false;
5399 
5400 	/*
5401 	 * no node mask - aka implicit memory numa policy. Do not bother with
5402 	 * the synchronization - read_mems_allowed_begin - because we do not
5403 	 * have to be precise here.
5404 	 */
5405 	if (!nodemask)
5406 		nodemask = &cpuset_current_mems_allowed;
5407 
5408 	return !node_isset(nid, *nodemask);
5409 }
5410 
5411 #define K(x) ((x) << (PAGE_SHIFT-10))
5412 
5413 static void show_migration_types(unsigned char type)
5414 {
5415 	static const char types[MIGRATE_TYPES] = {
5416 		[MIGRATE_UNMOVABLE]	= 'U',
5417 		[MIGRATE_MOVABLE]	= 'M',
5418 		[MIGRATE_RECLAIMABLE]	= 'E',
5419 		[MIGRATE_HIGHATOMIC]	= 'H',
5420 #ifdef CONFIG_CMA
5421 		[MIGRATE_CMA]		= 'C',
5422 #endif
5423 #ifdef CONFIG_MEMORY_ISOLATION
5424 		[MIGRATE_ISOLATE]	= 'I',
5425 #endif
5426 	};
5427 	char tmp[MIGRATE_TYPES + 1];
5428 	char *p = tmp;
5429 	int i;
5430 
5431 	for (i = 0; i < MIGRATE_TYPES; i++) {
5432 		if (type & (1 << i))
5433 			*p++ = types[i];
5434 	}
5435 
5436 	*p = '\0';
5437 	printk(KERN_CONT "(%s) ", tmp);
5438 }
5439 
5440 /*
5441  * Show free area list (used inside shift_scroll-lock stuff)
5442  * We also calculate the percentage fragmentation. We do this by counting the
5443  * memory on each free list with the exception of the first item on the list.
5444  *
5445  * Bits in @filter:
5446  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5447  *   cpuset.
5448  */
5449 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5450 {
5451 	unsigned long free_pcp = 0;
5452 	int cpu;
5453 	struct zone *zone;
5454 	pg_data_t *pgdat;
5455 
5456 	for_each_populated_zone(zone) {
5457 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5458 			continue;
5459 
5460 		for_each_online_cpu(cpu)
5461 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5462 	}
5463 
5464 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5465 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5466 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5467 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5468 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5469 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5470 		global_node_page_state(NR_ACTIVE_ANON),
5471 		global_node_page_state(NR_INACTIVE_ANON),
5472 		global_node_page_state(NR_ISOLATED_ANON),
5473 		global_node_page_state(NR_ACTIVE_FILE),
5474 		global_node_page_state(NR_INACTIVE_FILE),
5475 		global_node_page_state(NR_ISOLATED_FILE),
5476 		global_node_page_state(NR_UNEVICTABLE),
5477 		global_node_page_state(NR_FILE_DIRTY),
5478 		global_node_page_state(NR_WRITEBACK),
5479 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5480 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5481 		global_node_page_state(NR_FILE_MAPPED),
5482 		global_node_page_state(NR_SHMEM),
5483 		global_node_page_state(NR_PAGETABLE),
5484 		global_zone_page_state(NR_BOUNCE),
5485 		global_zone_page_state(NR_FREE_PAGES),
5486 		free_pcp,
5487 		global_zone_page_state(NR_FREE_CMA_PAGES));
5488 
5489 	for_each_online_pgdat(pgdat) {
5490 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5491 			continue;
5492 
5493 		printk("Node %d"
5494 			" active_anon:%lukB"
5495 			" inactive_anon:%lukB"
5496 			" active_file:%lukB"
5497 			" inactive_file:%lukB"
5498 			" unevictable:%lukB"
5499 			" isolated(anon):%lukB"
5500 			" isolated(file):%lukB"
5501 			" mapped:%lukB"
5502 			" dirty:%lukB"
5503 			" writeback:%lukB"
5504 			" shmem:%lukB"
5505 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5506 			" shmem_thp: %lukB"
5507 			" shmem_pmdmapped: %lukB"
5508 			" anon_thp: %lukB"
5509 #endif
5510 			" writeback_tmp:%lukB"
5511 			" kernel_stack:%lukB"
5512 #ifdef CONFIG_SHADOW_CALL_STACK
5513 			" shadow_call_stack:%lukB"
5514 #endif
5515 			" pagetables:%lukB"
5516 			" all_unreclaimable? %s"
5517 			"\n",
5518 			pgdat->node_id,
5519 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5520 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5521 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5522 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5523 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5524 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5525 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5526 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5527 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5528 			K(node_page_state(pgdat, NR_WRITEBACK)),
5529 			K(node_page_state(pgdat, NR_SHMEM)),
5530 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5531 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5532 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5533 					* HPAGE_PMD_NR),
5534 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5535 #endif
5536 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5537 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5538 #ifdef CONFIG_SHADOW_CALL_STACK
5539 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5540 #endif
5541 			K(node_page_state(pgdat, NR_PAGETABLE)),
5542 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5543 				"yes" : "no");
5544 	}
5545 
5546 	for_each_populated_zone(zone) {
5547 		int i;
5548 
5549 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5550 			continue;
5551 
5552 		free_pcp = 0;
5553 		for_each_online_cpu(cpu)
5554 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5555 
5556 		show_node(zone);
5557 		printk(KERN_CONT
5558 			"%s"
5559 			" free:%lukB"
5560 			" min:%lukB"
5561 			" low:%lukB"
5562 			" high:%lukB"
5563 			" reserved_highatomic:%luKB"
5564 			" active_anon:%lukB"
5565 			" inactive_anon:%lukB"
5566 			" active_file:%lukB"
5567 			" inactive_file:%lukB"
5568 			" unevictable:%lukB"
5569 			" writepending:%lukB"
5570 			" present:%lukB"
5571 			" managed:%lukB"
5572 			" mlocked:%lukB"
5573 			" bounce:%lukB"
5574 			" free_pcp:%lukB"
5575 			" local_pcp:%ukB"
5576 			" free_cma:%lukB"
5577 			"\n",
5578 			zone->name,
5579 			K(zone_page_state(zone, NR_FREE_PAGES)),
5580 			K(min_wmark_pages(zone)),
5581 			K(low_wmark_pages(zone)),
5582 			K(high_wmark_pages(zone)),
5583 			K(zone->nr_reserved_highatomic),
5584 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5585 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5586 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5587 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5588 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5589 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5590 			K(zone->present_pages),
5591 			K(zone_managed_pages(zone)),
5592 			K(zone_page_state(zone, NR_MLOCK)),
5593 			K(zone_page_state(zone, NR_BOUNCE)),
5594 			K(free_pcp),
5595 			K(this_cpu_read(zone->pageset->pcp.count)),
5596 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5597 		printk("lowmem_reserve[]:");
5598 		for (i = 0; i < MAX_NR_ZONES; i++)
5599 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5600 		printk(KERN_CONT "\n");
5601 	}
5602 
5603 	for_each_populated_zone(zone) {
5604 		unsigned int order;
5605 		unsigned long nr[MAX_ORDER], flags, total = 0;
5606 		unsigned char types[MAX_ORDER];
5607 
5608 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5609 			continue;
5610 		show_node(zone);
5611 		printk(KERN_CONT "%s: ", zone->name);
5612 
5613 		spin_lock_irqsave(&zone->lock, flags);
5614 		for (order = 0; order < MAX_ORDER; order++) {
5615 			struct free_area *area = &zone->free_area[order];
5616 			int type;
5617 
5618 			nr[order] = area->nr_free;
5619 			total += nr[order] << order;
5620 
5621 			types[order] = 0;
5622 			for (type = 0; type < MIGRATE_TYPES; type++) {
5623 				if (!free_area_empty(area, type))
5624 					types[order] |= 1 << type;
5625 			}
5626 		}
5627 		spin_unlock_irqrestore(&zone->lock, flags);
5628 		for (order = 0; order < MAX_ORDER; order++) {
5629 			printk(KERN_CONT "%lu*%lukB ",
5630 			       nr[order], K(1UL) << order);
5631 			if (nr[order])
5632 				show_migration_types(types[order]);
5633 		}
5634 		printk(KERN_CONT "= %lukB\n", K(total));
5635 	}
5636 
5637 	hugetlb_show_meminfo();
5638 
5639 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5640 
5641 	show_swap_cache_info();
5642 }
5643 
5644 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5645 {
5646 	zoneref->zone = zone;
5647 	zoneref->zone_idx = zone_idx(zone);
5648 }
5649 
5650 /*
5651  * Builds allocation fallback zone lists.
5652  *
5653  * Add all populated zones of a node to the zonelist.
5654  */
5655 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5656 {
5657 	struct zone *zone;
5658 	enum zone_type zone_type = MAX_NR_ZONES;
5659 	int nr_zones = 0;
5660 
5661 	do {
5662 		zone_type--;
5663 		zone = pgdat->node_zones + zone_type;
5664 		if (managed_zone(zone)) {
5665 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5666 			check_highest_zone(zone_type);
5667 		}
5668 	} while (zone_type);
5669 
5670 	return nr_zones;
5671 }
5672 
5673 #ifdef CONFIG_NUMA
5674 
5675 static int __parse_numa_zonelist_order(char *s)
5676 {
5677 	/*
5678 	 * We used to support different zonlists modes but they turned
5679 	 * out to be just not useful. Let's keep the warning in place
5680 	 * if somebody still use the cmd line parameter so that we do
5681 	 * not fail it silently
5682 	 */
5683 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5684 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5685 		return -EINVAL;
5686 	}
5687 	return 0;
5688 }
5689 
5690 char numa_zonelist_order[] = "Node";
5691 
5692 /*
5693  * sysctl handler for numa_zonelist_order
5694  */
5695 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5696 		void *buffer, size_t *length, loff_t *ppos)
5697 {
5698 	if (write)
5699 		return __parse_numa_zonelist_order(buffer);
5700 	return proc_dostring(table, write, buffer, length, ppos);
5701 }
5702 
5703 
5704 #define MAX_NODE_LOAD (nr_online_nodes)
5705 static int node_load[MAX_NUMNODES];
5706 
5707 /**
5708  * find_next_best_node - find the next node that should appear in a given node's fallback list
5709  * @node: node whose fallback list we're appending
5710  * @used_node_mask: nodemask_t of already used nodes
5711  *
5712  * We use a number of factors to determine which is the next node that should
5713  * appear on a given node's fallback list.  The node should not have appeared
5714  * already in @node's fallback list, and it should be the next closest node
5715  * according to the distance array (which contains arbitrary distance values
5716  * from each node to each node in the system), and should also prefer nodes
5717  * with no CPUs, since presumably they'll have very little allocation pressure
5718  * on them otherwise.
5719  *
5720  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5721  */
5722 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5723 {
5724 	int n, val;
5725 	int min_val = INT_MAX;
5726 	int best_node = NUMA_NO_NODE;
5727 
5728 	/* Use the local node if we haven't already */
5729 	if (!node_isset(node, *used_node_mask)) {
5730 		node_set(node, *used_node_mask);
5731 		return node;
5732 	}
5733 
5734 	for_each_node_state(n, N_MEMORY) {
5735 
5736 		/* Don't want a node to appear more than once */
5737 		if (node_isset(n, *used_node_mask))
5738 			continue;
5739 
5740 		/* Use the distance array to find the distance */
5741 		val = node_distance(node, n);
5742 
5743 		/* Penalize nodes under us ("prefer the next node") */
5744 		val += (n < node);
5745 
5746 		/* Give preference to headless and unused nodes */
5747 		if (!cpumask_empty(cpumask_of_node(n)))
5748 			val += PENALTY_FOR_NODE_WITH_CPUS;
5749 
5750 		/* Slight preference for less loaded node */
5751 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5752 		val += node_load[n];
5753 
5754 		if (val < min_val) {
5755 			min_val = val;
5756 			best_node = n;
5757 		}
5758 	}
5759 
5760 	if (best_node >= 0)
5761 		node_set(best_node, *used_node_mask);
5762 
5763 	return best_node;
5764 }
5765 
5766 
5767 /*
5768  * Build zonelists ordered by node and zones within node.
5769  * This results in maximum locality--normal zone overflows into local
5770  * DMA zone, if any--but risks exhausting DMA zone.
5771  */
5772 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5773 		unsigned nr_nodes)
5774 {
5775 	struct zoneref *zonerefs;
5776 	int i;
5777 
5778 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5779 
5780 	for (i = 0; i < nr_nodes; i++) {
5781 		int nr_zones;
5782 
5783 		pg_data_t *node = NODE_DATA(node_order[i]);
5784 
5785 		nr_zones = build_zonerefs_node(node, zonerefs);
5786 		zonerefs += nr_zones;
5787 	}
5788 	zonerefs->zone = NULL;
5789 	zonerefs->zone_idx = 0;
5790 }
5791 
5792 /*
5793  * Build gfp_thisnode zonelists
5794  */
5795 static void build_thisnode_zonelists(pg_data_t *pgdat)
5796 {
5797 	struct zoneref *zonerefs;
5798 	int nr_zones;
5799 
5800 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5801 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5802 	zonerefs += nr_zones;
5803 	zonerefs->zone = NULL;
5804 	zonerefs->zone_idx = 0;
5805 }
5806 
5807 /*
5808  * Build zonelists ordered by zone and nodes within zones.
5809  * This results in conserving DMA zone[s] until all Normal memory is
5810  * exhausted, but results in overflowing to remote node while memory
5811  * may still exist in local DMA zone.
5812  */
5813 
5814 static void build_zonelists(pg_data_t *pgdat)
5815 {
5816 	static int node_order[MAX_NUMNODES];
5817 	int node, load, nr_nodes = 0;
5818 	nodemask_t used_mask = NODE_MASK_NONE;
5819 	int local_node, prev_node;
5820 
5821 	/* NUMA-aware ordering of nodes */
5822 	local_node = pgdat->node_id;
5823 	load = nr_online_nodes;
5824 	prev_node = local_node;
5825 
5826 	memset(node_order, 0, sizeof(node_order));
5827 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5828 		/*
5829 		 * We don't want to pressure a particular node.
5830 		 * So adding penalty to the first node in same
5831 		 * distance group to make it round-robin.
5832 		 */
5833 		if (node_distance(local_node, node) !=
5834 		    node_distance(local_node, prev_node))
5835 			node_load[node] = load;
5836 
5837 		node_order[nr_nodes++] = node;
5838 		prev_node = node;
5839 		load--;
5840 	}
5841 
5842 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5843 	build_thisnode_zonelists(pgdat);
5844 }
5845 
5846 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5847 /*
5848  * Return node id of node used for "local" allocations.
5849  * I.e., first node id of first zone in arg node's generic zonelist.
5850  * Used for initializing percpu 'numa_mem', which is used primarily
5851  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5852  */
5853 int local_memory_node(int node)
5854 {
5855 	struct zoneref *z;
5856 
5857 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5858 				   gfp_zone(GFP_KERNEL),
5859 				   NULL);
5860 	return zone_to_nid(z->zone);
5861 }
5862 #endif
5863 
5864 static void setup_min_unmapped_ratio(void);
5865 static void setup_min_slab_ratio(void);
5866 #else	/* CONFIG_NUMA */
5867 
5868 static void build_zonelists(pg_data_t *pgdat)
5869 {
5870 	int node, local_node;
5871 	struct zoneref *zonerefs;
5872 	int nr_zones;
5873 
5874 	local_node = pgdat->node_id;
5875 
5876 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5877 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5878 	zonerefs += nr_zones;
5879 
5880 	/*
5881 	 * Now we build the zonelist so that it contains the zones
5882 	 * of all the other nodes.
5883 	 * We don't want to pressure a particular node, so when
5884 	 * building the zones for node N, we make sure that the
5885 	 * zones coming right after the local ones are those from
5886 	 * node N+1 (modulo N)
5887 	 */
5888 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5889 		if (!node_online(node))
5890 			continue;
5891 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5892 		zonerefs += nr_zones;
5893 	}
5894 	for (node = 0; node < local_node; node++) {
5895 		if (!node_online(node))
5896 			continue;
5897 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5898 		zonerefs += nr_zones;
5899 	}
5900 
5901 	zonerefs->zone = NULL;
5902 	zonerefs->zone_idx = 0;
5903 }
5904 
5905 #endif	/* CONFIG_NUMA */
5906 
5907 /*
5908  * Boot pageset table. One per cpu which is going to be used for all
5909  * zones and all nodes. The parameters will be set in such a way
5910  * that an item put on a list will immediately be handed over to
5911  * the buddy list. This is safe since pageset manipulation is done
5912  * with interrupts disabled.
5913  *
5914  * The boot_pagesets must be kept even after bootup is complete for
5915  * unused processors and/or zones. They do play a role for bootstrapping
5916  * hotplugged processors.
5917  *
5918  * zoneinfo_show() and maybe other functions do
5919  * not check if the processor is online before following the pageset pointer.
5920  * Other parts of the kernel may not check if the zone is available.
5921  */
5922 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5923 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5924 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5925 
5926 static void __build_all_zonelists(void *data)
5927 {
5928 	int nid;
5929 	int __maybe_unused cpu;
5930 	pg_data_t *self = data;
5931 	static DEFINE_SPINLOCK(lock);
5932 
5933 	spin_lock(&lock);
5934 
5935 #ifdef CONFIG_NUMA
5936 	memset(node_load, 0, sizeof(node_load));
5937 #endif
5938 
5939 	/*
5940 	 * This node is hotadded and no memory is yet present.   So just
5941 	 * building zonelists is fine - no need to touch other nodes.
5942 	 */
5943 	if (self && !node_online(self->node_id)) {
5944 		build_zonelists(self);
5945 	} else {
5946 		for_each_online_node(nid) {
5947 			pg_data_t *pgdat = NODE_DATA(nid);
5948 
5949 			build_zonelists(pgdat);
5950 		}
5951 
5952 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5953 		/*
5954 		 * We now know the "local memory node" for each node--
5955 		 * i.e., the node of the first zone in the generic zonelist.
5956 		 * Set up numa_mem percpu variable for on-line cpus.  During
5957 		 * boot, only the boot cpu should be on-line;  we'll init the
5958 		 * secondary cpus' numa_mem as they come on-line.  During
5959 		 * node/memory hotplug, we'll fixup all on-line cpus.
5960 		 */
5961 		for_each_online_cpu(cpu)
5962 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5963 #endif
5964 	}
5965 
5966 	spin_unlock(&lock);
5967 }
5968 
5969 static noinline void __init
5970 build_all_zonelists_init(void)
5971 {
5972 	int cpu;
5973 
5974 	__build_all_zonelists(NULL);
5975 
5976 	/*
5977 	 * Initialize the boot_pagesets that are going to be used
5978 	 * for bootstrapping processors. The real pagesets for
5979 	 * each zone will be allocated later when the per cpu
5980 	 * allocator is available.
5981 	 *
5982 	 * boot_pagesets are used also for bootstrapping offline
5983 	 * cpus if the system is already booted because the pagesets
5984 	 * are needed to initialize allocators on a specific cpu too.
5985 	 * F.e. the percpu allocator needs the page allocator which
5986 	 * needs the percpu allocator in order to allocate its pagesets
5987 	 * (a chicken-egg dilemma).
5988 	 */
5989 	for_each_possible_cpu(cpu)
5990 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5991 
5992 	mminit_verify_zonelist();
5993 	cpuset_init_current_mems_allowed();
5994 }
5995 
5996 /*
5997  * unless system_state == SYSTEM_BOOTING.
5998  *
5999  * __ref due to call of __init annotated helper build_all_zonelists_init
6000  * [protected by SYSTEM_BOOTING].
6001  */
6002 void __ref build_all_zonelists(pg_data_t *pgdat)
6003 {
6004 	unsigned long vm_total_pages;
6005 
6006 	if (system_state == SYSTEM_BOOTING) {
6007 		build_all_zonelists_init();
6008 	} else {
6009 		__build_all_zonelists(pgdat);
6010 		/* cpuset refresh routine should be here */
6011 	}
6012 	/* Get the number of free pages beyond high watermark in all zones. */
6013 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6014 	/*
6015 	 * Disable grouping by mobility if the number of pages in the
6016 	 * system is too low to allow the mechanism to work. It would be
6017 	 * more accurate, but expensive to check per-zone. This check is
6018 	 * made on memory-hotadd so a system can start with mobility
6019 	 * disabled and enable it later
6020 	 */
6021 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6022 		page_group_by_mobility_disabled = 1;
6023 	else
6024 		page_group_by_mobility_disabled = 0;
6025 
6026 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6027 		nr_online_nodes,
6028 		page_group_by_mobility_disabled ? "off" : "on",
6029 		vm_total_pages);
6030 #ifdef CONFIG_NUMA
6031 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6032 #endif
6033 }
6034 
6035 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6036 static bool __meminit
6037 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6038 {
6039 	static struct memblock_region *r;
6040 
6041 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6042 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6043 			for_each_mem_region(r) {
6044 				if (*pfn < memblock_region_memory_end_pfn(r))
6045 					break;
6046 			}
6047 		}
6048 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6049 		    memblock_is_mirror(r)) {
6050 			*pfn = memblock_region_memory_end_pfn(r);
6051 			return true;
6052 		}
6053 	}
6054 	return false;
6055 }
6056 
6057 /*
6058  * Initially all pages are reserved - free ones are freed
6059  * up by memblock_free_all() once the early boot process is
6060  * done. Non-atomic initialization, single-pass.
6061  *
6062  * All aligned pageblocks are initialized to the specified migratetype
6063  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6064  * zone stats (e.g., nr_isolate_pageblock) are touched.
6065  */
6066 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
6067 		unsigned long start_pfn,
6068 		enum meminit_context context,
6069 		struct vmem_altmap *altmap, int migratetype)
6070 {
6071 	unsigned long pfn, end_pfn = start_pfn + size;
6072 	struct page *page;
6073 
6074 	if (highest_memmap_pfn < end_pfn - 1)
6075 		highest_memmap_pfn = end_pfn - 1;
6076 
6077 #ifdef CONFIG_ZONE_DEVICE
6078 	/*
6079 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6080 	 * memory. We limit the total number of pages to initialize to just
6081 	 * those that might contain the memory mapping. We will defer the
6082 	 * ZONE_DEVICE page initialization until after we have released
6083 	 * the hotplug lock.
6084 	 */
6085 	if (zone == ZONE_DEVICE) {
6086 		if (!altmap)
6087 			return;
6088 
6089 		if (start_pfn == altmap->base_pfn)
6090 			start_pfn += altmap->reserve;
6091 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6092 	}
6093 #endif
6094 
6095 	for (pfn = start_pfn; pfn < end_pfn; ) {
6096 		/*
6097 		 * There can be holes in boot-time mem_map[]s handed to this
6098 		 * function.  They do not exist on hotplugged memory.
6099 		 */
6100 		if (context == MEMINIT_EARLY) {
6101 			if (overlap_memmap_init(zone, &pfn))
6102 				continue;
6103 			if (defer_init(nid, pfn, end_pfn))
6104 				break;
6105 		}
6106 
6107 		page = pfn_to_page(pfn);
6108 		__init_single_page(page, pfn, zone, nid);
6109 		if (context == MEMINIT_HOTPLUG)
6110 			__SetPageReserved(page);
6111 
6112 		/*
6113 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6114 		 * such that unmovable allocations won't be scattered all
6115 		 * over the place during system boot.
6116 		 */
6117 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6118 			set_pageblock_migratetype(page, migratetype);
6119 			cond_resched();
6120 		}
6121 		pfn++;
6122 	}
6123 }
6124 
6125 #ifdef CONFIG_ZONE_DEVICE
6126 void __ref memmap_init_zone_device(struct zone *zone,
6127 				   unsigned long start_pfn,
6128 				   unsigned long nr_pages,
6129 				   struct dev_pagemap *pgmap)
6130 {
6131 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6132 	struct pglist_data *pgdat = zone->zone_pgdat;
6133 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6134 	unsigned long zone_idx = zone_idx(zone);
6135 	unsigned long start = jiffies;
6136 	int nid = pgdat->node_id;
6137 
6138 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6139 		return;
6140 
6141 	/*
6142 	 * The call to memmap_init_zone should have already taken care
6143 	 * of the pages reserved for the memmap, so we can just jump to
6144 	 * the end of that region and start processing the device pages.
6145 	 */
6146 	if (altmap) {
6147 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6148 		nr_pages = end_pfn - start_pfn;
6149 	}
6150 
6151 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6152 		struct page *page = pfn_to_page(pfn);
6153 
6154 		__init_single_page(page, pfn, zone_idx, nid);
6155 
6156 		/*
6157 		 * Mark page reserved as it will need to wait for onlining
6158 		 * phase for it to be fully associated with a zone.
6159 		 *
6160 		 * We can use the non-atomic __set_bit operation for setting
6161 		 * the flag as we are still initializing the pages.
6162 		 */
6163 		__SetPageReserved(page);
6164 
6165 		/*
6166 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6167 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6168 		 * ever freed or placed on a driver-private list.
6169 		 */
6170 		page->pgmap = pgmap;
6171 		page->zone_device_data = NULL;
6172 
6173 		/*
6174 		 * Mark the block movable so that blocks are reserved for
6175 		 * movable at startup. This will force kernel allocations
6176 		 * to reserve their blocks rather than leaking throughout
6177 		 * the address space during boot when many long-lived
6178 		 * kernel allocations are made.
6179 		 *
6180 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6181 		 * because this is done early in section_activate()
6182 		 */
6183 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6184 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6185 			cond_resched();
6186 		}
6187 	}
6188 
6189 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6190 		nr_pages, jiffies_to_msecs(jiffies - start));
6191 }
6192 
6193 #endif
6194 static void __meminit zone_init_free_lists(struct zone *zone)
6195 {
6196 	unsigned int order, t;
6197 	for_each_migratetype_order(order, t) {
6198 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6199 		zone->free_area[order].nr_free = 0;
6200 	}
6201 }
6202 
6203 void __meminit __weak memmap_init(unsigned long size, int nid,
6204 				  unsigned long zone,
6205 				  unsigned long range_start_pfn)
6206 {
6207 	unsigned long start_pfn, end_pfn;
6208 	unsigned long range_end_pfn = range_start_pfn + size;
6209 	int i;
6210 
6211 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6212 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6213 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6214 
6215 		if (end_pfn > start_pfn) {
6216 			size = end_pfn - start_pfn;
6217 			memmap_init_zone(size, nid, zone, start_pfn,
6218 					 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6219 		}
6220 	}
6221 }
6222 
6223 static int zone_batchsize(struct zone *zone)
6224 {
6225 #ifdef CONFIG_MMU
6226 	int batch;
6227 
6228 	/*
6229 	 * The per-cpu-pages pools are set to around 1000th of the
6230 	 * size of the zone.
6231 	 */
6232 	batch = zone_managed_pages(zone) / 1024;
6233 	/* But no more than a meg. */
6234 	if (batch * PAGE_SIZE > 1024 * 1024)
6235 		batch = (1024 * 1024) / PAGE_SIZE;
6236 	batch /= 4;		/* We effectively *= 4 below */
6237 	if (batch < 1)
6238 		batch = 1;
6239 
6240 	/*
6241 	 * Clamp the batch to a 2^n - 1 value. Having a power
6242 	 * of 2 value was found to be more likely to have
6243 	 * suboptimal cache aliasing properties in some cases.
6244 	 *
6245 	 * For example if 2 tasks are alternately allocating
6246 	 * batches of pages, one task can end up with a lot
6247 	 * of pages of one half of the possible page colors
6248 	 * and the other with pages of the other colors.
6249 	 */
6250 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6251 
6252 	return batch;
6253 
6254 #else
6255 	/* The deferral and batching of frees should be suppressed under NOMMU
6256 	 * conditions.
6257 	 *
6258 	 * The problem is that NOMMU needs to be able to allocate large chunks
6259 	 * of contiguous memory as there's no hardware page translation to
6260 	 * assemble apparent contiguous memory from discontiguous pages.
6261 	 *
6262 	 * Queueing large contiguous runs of pages for batching, however,
6263 	 * causes the pages to actually be freed in smaller chunks.  As there
6264 	 * can be a significant delay between the individual batches being
6265 	 * recycled, this leads to the once large chunks of space being
6266 	 * fragmented and becoming unavailable for high-order allocations.
6267 	 */
6268 	return 0;
6269 #endif
6270 }
6271 
6272 /*
6273  * pcp->high and pcp->batch values are related and dependent on one another:
6274  * ->batch must never be higher then ->high.
6275  * The following function updates them in a safe manner without read side
6276  * locking.
6277  *
6278  * Any new users of pcp->batch and pcp->high should ensure they can cope with
6279  * those fields changing asynchronously (acording to the above rule).
6280  *
6281  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6282  * outside of boot time (or some other assurance that no concurrent updaters
6283  * exist).
6284  */
6285 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6286 		unsigned long batch)
6287 {
6288        /* start with a fail safe value for batch */
6289 	pcp->batch = 1;
6290 	smp_wmb();
6291 
6292        /* Update high, then batch, in order */
6293 	pcp->high = high;
6294 	smp_wmb();
6295 
6296 	pcp->batch = batch;
6297 }
6298 
6299 /* a companion to pageset_set_high() */
6300 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6301 {
6302 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6303 }
6304 
6305 static void pageset_init(struct per_cpu_pageset *p)
6306 {
6307 	struct per_cpu_pages *pcp;
6308 	int migratetype;
6309 
6310 	memset(p, 0, sizeof(*p));
6311 
6312 	pcp = &p->pcp;
6313 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6314 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6315 }
6316 
6317 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6318 {
6319 	pageset_init(p);
6320 	pageset_set_batch(p, batch);
6321 }
6322 
6323 /*
6324  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6325  * to the value high for the pageset p.
6326  */
6327 static void pageset_set_high(struct per_cpu_pageset *p,
6328 				unsigned long high)
6329 {
6330 	unsigned long batch = max(1UL, high / 4);
6331 	if ((high / 4) > (PAGE_SHIFT * 8))
6332 		batch = PAGE_SHIFT * 8;
6333 
6334 	pageset_update(&p->pcp, high, batch);
6335 }
6336 
6337 static void pageset_set_high_and_batch(struct zone *zone,
6338 				       struct per_cpu_pageset *pcp)
6339 {
6340 	if (percpu_pagelist_fraction)
6341 		pageset_set_high(pcp,
6342 			(zone_managed_pages(zone) /
6343 				percpu_pagelist_fraction));
6344 	else
6345 		pageset_set_batch(pcp, zone_batchsize(zone));
6346 }
6347 
6348 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6349 {
6350 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6351 
6352 	pageset_init(pcp);
6353 	pageset_set_high_and_batch(zone, pcp);
6354 }
6355 
6356 void __meminit setup_zone_pageset(struct zone *zone)
6357 {
6358 	int cpu;
6359 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6360 	for_each_possible_cpu(cpu)
6361 		zone_pageset_init(zone, cpu);
6362 }
6363 
6364 /*
6365  * Allocate per cpu pagesets and initialize them.
6366  * Before this call only boot pagesets were available.
6367  */
6368 void __init setup_per_cpu_pageset(void)
6369 {
6370 	struct pglist_data *pgdat;
6371 	struct zone *zone;
6372 	int __maybe_unused cpu;
6373 
6374 	for_each_populated_zone(zone)
6375 		setup_zone_pageset(zone);
6376 
6377 #ifdef CONFIG_NUMA
6378 	/*
6379 	 * Unpopulated zones continue using the boot pagesets.
6380 	 * The numa stats for these pagesets need to be reset.
6381 	 * Otherwise, they will end up skewing the stats of
6382 	 * the nodes these zones are associated with.
6383 	 */
6384 	for_each_possible_cpu(cpu) {
6385 		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6386 		memset(pcp->vm_numa_stat_diff, 0,
6387 		       sizeof(pcp->vm_numa_stat_diff));
6388 	}
6389 #endif
6390 
6391 	for_each_online_pgdat(pgdat)
6392 		pgdat->per_cpu_nodestats =
6393 			alloc_percpu(struct per_cpu_nodestat);
6394 }
6395 
6396 static __meminit void zone_pcp_init(struct zone *zone)
6397 {
6398 	/*
6399 	 * per cpu subsystem is not up at this point. The following code
6400 	 * relies on the ability of the linker to provide the
6401 	 * offset of a (static) per cpu variable into the per cpu area.
6402 	 */
6403 	zone->pageset = &boot_pageset;
6404 
6405 	if (populated_zone(zone))
6406 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6407 			zone->name, zone->present_pages,
6408 					 zone_batchsize(zone));
6409 }
6410 
6411 void __meminit init_currently_empty_zone(struct zone *zone,
6412 					unsigned long zone_start_pfn,
6413 					unsigned long size)
6414 {
6415 	struct pglist_data *pgdat = zone->zone_pgdat;
6416 	int zone_idx = zone_idx(zone) + 1;
6417 
6418 	if (zone_idx > pgdat->nr_zones)
6419 		pgdat->nr_zones = zone_idx;
6420 
6421 	zone->zone_start_pfn = zone_start_pfn;
6422 
6423 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6424 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6425 			pgdat->node_id,
6426 			(unsigned long)zone_idx(zone),
6427 			zone_start_pfn, (zone_start_pfn + size));
6428 
6429 	zone_init_free_lists(zone);
6430 	zone->initialized = 1;
6431 }
6432 
6433 /**
6434  * get_pfn_range_for_nid - Return the start and end page frames for a node
6435  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6436  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6437  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6438  *
6439  * It returns the start and end page frame of a node based on information
6440  * provided by memblock_set_node(). If called for a node
6441  * with no available memory, a warning is printed and the start and end
6442  * PFNs will be 0.
6443  */
6444 void __init get_pfn_range_for_nid(unsigned int nid,
6445 			unsigned long *start_pfn, unsigned long *end_pfn)
6446 {
6447 	unsigned long this_start_pfn, this_end_pfn;
6448 	int i;
6449 
6450 	*start_pfn = -1UL;
6451 	*end_pfn = 0;
6452 
6453 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6454 		*start_pfn = min(*start_pfn, this_start_pfn);
6455 		*end_pfn = max(*end_pfn, this_end_pfn);
6456 	}
6457 
6458 	if (*start_pfn == -1UL)
6459 		*start_pfn = 0;
6460 }
6461 
6462 /*
6463  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6464  * assumption is made that zones within a node are ordered in monotonic
6465  * increasing memory addresses so that the "highest" populated zone is used
6466  */
6467 static void __init find_usable_zone_for_movable(void)
6468 {
6469 	int zone_index;
6470 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6471 		if (zone_index == ZONE_MOVABLE)
6472 			continue;
6473 
6474 		if (arch_zone_highest_possible_pfn[zone_index] >
6475 				arch_zone_lowest_possible_pfn[zone_index])
6476 			break;
6477 	}
6478 
6479 	VM_BUG_ON(zone_index == -1);
6480 	movable_zone = zone_index;
6481 }
6482 
6483 /*
6484  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6485  * because it is sized independent of architecture. Unlike the other zones,
6486  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6487  * in each node depending on the size of each node and how evenly kernelcore
6488  * is distributed. This helper function adjusts the zone ranges
6489  * provided by the architecture for a given node by using the end of the
6490  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6491  * zones within a node are in order of monotonic increases memory addresses
6492  */
6493 static void __init adjust_zone_range_for_zone_movable(int nid,
6494 					unsigned long zone_type,
6495 					unsigned long node_start_pfn,
6496 					unsigned long node_end_pfn,
6497 					unsigned long *zone_start_pfn,
6498 					unsigned long *zone_end_pfn)
6499 {
6500 	/* Only adjust if ZONE_MOVABLE is on this node */
6501 	if (zone_movable_pfn[nid]) {
6502 		/* Size ZONE_MOVABLE */
6503 		if (zone_type == ZONE_MOVABLE) {
6504 			*zone_start_pfn = zone_movable_pfn[nid];
6505 			*zone_end_pfn = min(node_end_pfn,
6506 				arch_zone_highest_possible_pfn[movable_zone]);
6507 
6508 		/* Adjust for ZONE_MOVABLE starting within this range */
6509 		} else if (!mirrored_kernelcore &&
6510 			*zone_start_pfn < zone_movable_pfn[nid] &&
6511 			*zone_end_pfn > zone_movable_pfn[nid]) {
6512 			*zone_end_pfn = zone_movable_pfn[nid];
6513 
6514 		/* Check if this whole range is within ZONE_MOVABLE */
6515 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6516 			*zone_start_pfn = *zone_end_pfn;
6517 	}
6518 }
6519 
6520 /*
6521  * Return the number of pages a zone spans in a node, including holes
6522  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6523  */
6524 static unsigned long __init zone_spanned_pages_in_node(int nid,
6525 					unsigned long zone_type,
6526 					unsigned long node_start_pfn,
6527 					unsigned long node_end_pfn,
6528 					unsigned long *zone_start_pfn,
6529 					unsigned long *zone_end_pfn)
6530 {
6531 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6532 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6533 	/* When hotadd a new node from cpu_up(), the node should be empty */
6534 	if (!node_start_pfn && !node_end_pfn)
6535 		return 0;
6536 
6537 	/* Get the start and end of the zone */
6538 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6539 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6540 	adjust_zone_range_for_zone_movable(nid, zone_type,
6541 				node_start_pfn, node_end_pfn,
6542 				zone_start_pfn, zone_end_pfn);
6543 
6544 	/* Check that this node has pages within the zone's required range */
6545 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6546 		return 0;
6547 
6548 	/* Move the zone boundaries inside the node if necessary */
6549 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6550 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6551 
6552 	/* Return the spanned pages */
6553 	return *zone_end_pfn - *zone_start_pfn;
6554 }
6555 
6556 /*
6557  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6558  * then all holes in the requested range will be accounted for.
6559  */
6560 unsigned long __init __absent_pages_in_range(int nid,
6561 				unsigned long range_start_pfn,
6562 				unsigned long range_end_pfn)
6563 {
6564 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6565 	unsigned long start_pfn, end_pfn;
6566 	int i;
6567 
6568 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6569 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6570 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6571 		nr_absent -= end_pfn - start_pfn;
6572 	}
6573 	return nr_absent;
6574 }
6575 
6576 /**
6577  * absent_pages_in_range - Return number of page frames in holes within a range
6578  * @start_pfn: The start PFN to start searching for holes
6579  * @end_pfn: The end PFN to stop searching for holes
6580  *
6581  * Return: the number of pages frames in memory holes within a range.
6582  */
6583 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6584 							unsigned long end_pfn)
6585 {
6586 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6587 }
6588 
6589 /* Return the number of page frames in holes in a zone on a node */
6590 static unsigned long __init zone_absent_pages_in_node(int nid,
6591 					unsigned long zone_type,
6592 					unsigned long node_start_pfn,
6593 					unsigned long node_end_pfn)
6594 {
6595 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6596 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6597 	unsigned long zone_start_pfn, zone_end_pfn;
6598 	unsigned long nr_absent;
6599 
6600 	/* When hotadd a new node from cpu_up(), the node should be empty */
6601 	if (!node_start_pfn && !node_end_pfn)
6602 		return 0;
6603 
6604 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6605 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6606 
6607 	adjust_zone_range_for_zone_movable(nid, zone_type,
6608 			node_start_pfn, node_end_pfn,
6609 			&zone_start_pfn, &zone_end_pfn);
6610 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6611 
6612 	/*
6613 	 * ZONE_MOVABLE handling.
6614 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6615 	 * and vice versa.
6616 	 */
6617 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6618 		unsigned long start_pfn, end_pfn;
6619 		struct memblock_region *r;
6620 
6621 		for_each_mem_region(r) {
6622 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6623 					  zone_start_pfn, zone_end_pfn);
6624 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6625 					zone_start_pfn, zone_end_pfn);
6626 
6627 			if (zone_type == ZONE_MOVABLE &&
6628 			    memblock_is_mirror(r))
6629 				nr_absent += end_pfn - start_pfn;
6630 
6631 			if (zone_type == ZONE_NORMAL &&
6632 			    !memblock_is_mirror(r))
6633 				nr_absent += end_pfn - start_pfn;
6634 		}
6635 	}
6636 
6637 	return nr_absent;
6638 }
6639 
6640 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6641 						unsigned long node_start_pfn,
6642 						unsigned long node_end_pfn)
6643 {
6644 	unsigned long realtotalpages = 0, totalpages = 0;
6645 	enum zone_type i;
6646 
6647 	for (i = 0; i < MAX_NR_ZONES; i++) {
6648 		struct zone *zone = pgdat->node_zones + i;
6649 		unsigned long zone_start_pfn, zone_end_pfn;
6650 		unsigned long spanned, absent;
6651 		unsigned long size, real_size;
6652 
6653 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6654 						     node_start_pfn,
6655 						     node_end_pfn,
6656 						     &zone_start_pfn,
6657 						     &zone_end_pfn);
6658 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
6659 						   node_start_pfn,
6660 						   node_end_pfn);
6661 
6662 		size = spanned;
6663 		real_size = size - absent;
6664 
6665 		if (size)
6666 			zone->zone_start_pfn = zone_start_pfn;
6667 		else
6668 			zone->zone_start_pfn = 0;
6669 		zone->spanned_pages = size;
6670 		zone->present_pages = real_size;
6671 
6672 		totalpages += size;
6673 		realtotalpages += real_size;
6674 	}
6675 
6676 	pgdat->node_spanned_pages = totalpages;
6677 	pgdat->node_present_pages = realtotalpages;
6678 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6679 							realtotalpages);
6680 }
6681 
6682 #ifndef CONFIG_SPARSEMEM
6683 /*
6684  * Calculate the size of the zone->blockflags rounded to an unsigned long
6685  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6686  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6687  * round what is now in bits to nearest long in bits, then return it in
6688  * bytes.
6689  */
6690 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6691 {
6692 	unsigned long usemapsize;
6693 
6694 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6695 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6696 	usemapsize = usemapsize >> pageblock_order;
6697 	usemapsize *= NR_PAGEBLOCK_BITS;
6698 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6699 
6700 	return usemapsize / 8;
6701 }
6702 
6703 static void __ref setup_usemap(struct pglist_data *pgdat,
6704 				struct zone *zone,
6705 				unsigned long zone_start_pfn,
6706 				unsigned long zonesize)
6707 {
6708 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6709 	zone->pageblock_flags = NULL;
6710 	if (usemapsize) {
6711 		zone->pageblock_flags =
6712 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6713 					    pgdat->node_id);
6714 		if (!zone->pageblock_flags)
6715 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6716 			      usemapsize, zone->name, pgdat->node_id);
6717 	}
6718 }
6719 #else
6720 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6721 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6722 #endif /* CONFIG_SPARSEMEM */
6723 
6724 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6725 
6726 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6727 void __init set_pageblock_order(void)
6728 {
6729 	unsigned int order;
6730 
6731 	/* Check that pageblock_nr_pages has not already been setup */
6732 	if (pageblock_order)
6733 		return;
6734 
6735 	if (HPAGE_SHIFT > PAGE_SHIFT)
6736 		order = HUGETLB_PAGE_ORDER;
6737 	else
6738 		order = MAX_ORDER - 1;
6739 
6740 	/*
6741 	 * Assume the largest contiguous order of interest is a huge page.
6742 	 * This value may be variable depending on boot parameters on IA64 and
6743 	 * powerpc.
6744 	 */
6745 	pageblock_order = order;
6746 }
6747 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6748 
6749 /*
6750  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6751  * is unused as pageblock_order is set at compile-time. See
6752  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6753  * the kernel config
6754  */
6755 void __init set_pageblock_order(void)
6756 {
6757 }
6758 
6759 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6760 
6761 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6762 						unsigned long present_pages)
6763 {
6764 	unsigned long pages = spanned_pages;
6765 
6766 	/*
6767 	 * Provide a more accurate estimation if there are holes within
6768 	 * the zone and SPARSEMEM is in use. If there are holes within the
6769 	 * zone, each populated memory region may cost us one or two extra
6770 	 * memmap pages due to alignment because memmap pages for each
6771 	 * populated regions may not be naturally aligned on page boundary.
6772 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6773 	 */
6774 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6775 	    IS_ENABLED(CONFIG_SPARSEMEM))
6776 		pages = present_pages;
6777 
6778 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6779 }
6780 
6781 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6782 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6783 {
6784 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6785 
6786 	spin_lock_init(&ds_queue->split_queue_lock);
6787 	INIT_LIST_HEAD(&ds_queue->split_queue);
6788 	ds_queue->split_queue_len = 0;
6789 }
6790 #else
6791 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6792 #endif
6793 
6794 #ifdef CONFIG_COMPACTION
6795 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6796 {
6797 	init_waitqueue_head(&pgdat->kcompactd_wait);
6798 }
6799 #else
6800 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6801 #endif
6802 
6803 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6804 {
6805 	pgdat_resize_init(pgdat);
6806 
6807 	pgdat_init_split_queue(pgdat);
6808 	pgdat_init_kcompactd(pgdat);
6809 
6810 	init_waitqueue_head(&pgdat->kswapd_wait);
6811 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6812 
6813 	pgdat_page_ext_init(pgdat);
6814 	spin_lock_init(&pgdat->lru_lock);
6815 	lruvec_init(&pgdat->__lruvec);
6816 }
6817 
6818 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6819 							unsigned long remaining_pages)
6820 {
6821 	atomic_long_set(&zone->managed_pages, remaining_pages);
6822 	zone_set_nid(zone, nid);
6823 	zone->name = zone_names[idx];
6824 	zone->zone_pgdat = NODE_DATA(nid);
6825 	spin_lock_init(&zone->lock);
6826 	zone_seqlock_init(zone);
6827 	zone_pcp_init(zone);
6828 }
6829 
6830 /*
6831  * Set up the zone data structures
6832  * - init pgdat internals
6833  * - init all zones belonging to this node
6834  *
6835  * NOTE: this function is only called during memory hotplug
6836  */
6837 #ifdef CONFIG_MEMORY_HOTPLUG
6838 void __ref free_area_init_core_hotplug(int nid)
6839 {
6840 	enum zone_type z;
6841 	pg_data_t *pgdat = NODE_DATA(nid);
6842 
6843 	pgdat_init_internals(pgdat);
6844 	for (z = 0; z < MAX_NR_ZONES; z++)
6845 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6846 }
6847 #endif
6848 
6849 /*
6850  * Set up the zone data structures:
6851  *   - mark all pages reserved
6852  *   - mark all memory queues empty
6853  *   - clear the memory bitmaps
6854  *
6855  * NOTE: pgdat should get zeroed by caller.
6856  * NOTE: this function is only called during early init.
6857  */
6858 static void __init free_area_init_core(struct pglist_data *pgdat)
6859 {
6860 	enum zone_type j;
6861 	int nid = pgdat->node_id;
6862 
6863 	pgdat_init_internals(pgdat);
6864 	pgdat->per_cpu_nodestats = &boot_nodestats;
6865 
6866 	for (j = 0; j < MAX_NR_ZONES; j++) {
6867 		struct zone *zone = pgdat->node_zones + j;
6868 		unsigned long size, freesize, memmap_pages;
6869 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6870 
6871 		size = zone->spanned_pages;
6872 		freesize = zone->present_pages;
6873 
6874 		/*
6875 		 * Adjust freesize so that it accounts for how much memory
6876 		 * is used by this zone for memmap. This affects the watermark
6877 		 * and per-cpu initialisations
6878 		 */
6879 		memmap_pages = calc_memmap_size(size, freesize);
6880 		if (!is_highmem_idx(j)) {
6881 			if (freesize >= memmap_pages) {
6882 				freesize -= memmap_pages;
6883 				if (memmap_pages)
6884 					printk(KERN_DEBUG
6885 					       "  %s zone: %lu pages used for memmap\n",
6886 					       zone_names[j], memmap_pages);
6887 			} else
6888 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6889 					zone_names[j], memmap_pages, freesize);
6890 		}
6891 
6892 		/* Account for reserved pages */
6893 		if (j == 0 && freesize > dma_reserve) {
6894 			freesize -= dma_reserve;
6895 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6896 					zone_names[0], dma_reserve);
6897 		}
6898 
6899 		if (!is_highmem_idx(j))
6900 			nr_kernel_pages += freesize;
6901 		/* Charge for highmem memmap if there are enough kernel pages */
6902 		else if (nr_kernel_pages > memmap_pages * 2)
6903 			nr_kernel_pages -= memmap_pages;
6904 		nr_all_pages += freesize;
6905 
6906 		/*
6907 		 * Set an approximate value for lowmem here, it will be adjusted
6908 		 * when the bootmem allocator frees pages into the buddy system.
6909 		 * And all highmem pages will be managed by the buddy system.
6910 		 */
6911 		zone_init_internals(zone, j, nid, freesize);
6912 
6913 		if (!size)
6914 			continue;
6915 
6916 		set_pageblock_order();
6917 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6918 		init_currently_empty_zone(zone, zone_start_pfn, size);
6919 		memmap_init(size, nid, j, zone_start_pfn);
6920 	}
6921 }
6922 
6923 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6924 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6925 {
6926 	unsigned long __maybe_unused start = 0;
6927 	unsigned long __maybe_unused offset = 0;
6928 
6929 	/* Skip empty nodes */
6930 	if (!pgdat->node_spanned_pages)
6931 		return;
6932 
6933 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6934 	offset = pgdat->node_start_pfn - start;
6935 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6936 	if (!pgdat->node_mem_map) {
6937 		unsigned long size, end;
6938 		struct page *map;
6939 
6940 		/*
6941 		 * The zone's endpoints aren't required to be MAX_ORDER
6942 		 * aligned but the node_mem_map endpoints must be in order
6943 		 * for the buddy allocator to function correctly.
6944 		 */
6945 		end = pgdat_end_pfn(pgdat);
6946 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6947 		size =  (end - start) * sizeof(struct page);
6948 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6949 					  pgdat->node_id);
6950 		if (!map)
6951 			panic("Failed to allocate %ld bytes for node %d memory map\n",
6952 			      size, pgdat->node_id);
6953 		pgdat->node_mem_map = map + offset;
6954 	}
6955 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6956 				__func__, pgdat->node_id, (unsigned long)pgdat,
6957 				(unsigned long)pgdat->node_mem_map);
6958 #ifndef CONFIG_NEED_MULTIPLE_NODES
6959 	/*
6960 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6961 	 */
6962 	if (pgdat == NODE_DATA(0)) {
6963 		mem_map = NODE_DATA(0)->node_mem_map;
6964 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6965 			mem_map -= offset;
6966 	}
6967 #endif
6968 }
6969 #else
6970 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6971 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6972 
6973 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6974 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6975 {
6976 	pgdat->first_deferred_pfn = ULONG_MAX;
6977 }
6978 #else
6979 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6980 #endif
6981 
6982 static void __init free_area_init_node(int nid)
6983 {
6984 	pg_data_t *pgdat = NODE_DATA(nid);
6985 	unsigned long start_pfn = 0;
6986 	unsigned long end_pfn = 0;
6987 
6988 	/* pg_data_t should be reset to zero when it's allocated */
6989 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
6990 
6991 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6992 
6993 	pgdat->node_id = nid;
6994 	pgdat->node_start_pfn = start_pfn;
6995 	pgdat->per_cpu_nodestats = NULL;
6996 
6997 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6998 		(u64)start_pfn << PAGE_SHIFT,
6999 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7000 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7001 
7002 	alloc_node_mem_map(pgdat);
7003 	pgdat_set_deferred_range(pgdat);
7004 
7005 	free_area_init_core(pgdat);
7006 }
7007 
7008 void __init free_area_init_memoryless_node(int nid)
7009 {
7010 	free_area_init_node(nid);
7011 }
7012 
7013 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
7014 /*
7015  * Initialize all valid struct pages in the range [spfn, epfn) and mark them
7016  * PageReserved(). Return the number of struct pages that were initialized.
7017  */
7018 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
7019 {
7020 	unsigned long pfn;
7021 	u64 pgcnt = 0;
7022 
7023 	for (pfn = spfn; pfn < epfn; pfn++) {
7024 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7025 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7026 				+ pageblock_nr_pages - 1;
7027 			continue;
7028 		}
7029 		/*
7030 		 * Use a fake node/zone (0) for now. Some of these pages
7031 		 * (in memblock.reserved but not in memblock.memory) will
7032 		 * get re-initialized via reserve_bootmem_region() later.
7033 		 */
7034 		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
7035 		__SetPageReserved(pfn_to_page(pfn));
7036 		pgcnt++;
7037 	}
7038 
7039 	return pgcnt;
7040 }
7041 
7042 /*
7043  * Only struct pages that are backed by physical memory are zeroed and
7044  * initialized by going through __init_single_page(). But, there are some
7045  * struct pages which are reserved in memblock allocator and their fields
7046  * may be accessed (for example page_to_pfn() on some configuration accesses
7047  * flags). We must explicitly initialize those struct pages.
7048  *
7049  * This function also addresses a similar issue where struct pages are left
7050  * uninitialized because the physical address range is not covered by
7051  * memblock.memory or memblock.reserved. That could happen when memblock
7052  * layout is manually configured via memmap=, or when the highest physical
7053  * address (max_pfn) does not end on a section boundary.
7054  */
7055 static void __init init_unavailable_mem(void)
7056 {
7057 	phys_addr_t start, end;
7058 	u64 i, pgcnt;
7059 	phys_addr_t next = 0;
7060 
7061 	/*
7062 	 * Loop through unavailable ranges not covered by memblock.memory.
7063 	 */
7064 	pgcnt = 0;
7065 	for_each_mem_range(i, &start, &end) {
7066 		if (next < start)
7067 			pgcnt += init_unavailable_range(PFN_DOWN(next),
7068 							PFN_UP(start));
7069 		next = end;
7070 	}
7071 
7072 	/*
7073 	 * Early sections always have a fully populated memmap for the whole
7074 	 * section - see pfn_valid(). If the last section has holes at the
7075 	 * end and that section is marked "online", the memmap will be
7076 	 * considered initialized. Make sure that memmap has a well defined
7077 	 * state.
7078 	 */
7079 	pgcnt += init_unavailable_range(PFN_DOWN(next),
7080 					round_up(max_pfn, PAGES_PER_SECTION));
7081 
7082 	/*
7083 	 * Struct pages that do not have backing memory. This could be because
7084 	 * firmware is using some of this memory, or for some other reasons.
7085 	 */
7086 	if (pgcnt)
7087 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7088 }
7089 #else
7090 static inline void __init init_unavailable_mem(void)
7091 {
7092 }
7093 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7094 
7095 #if MAX_NUMNODES > 1
7096 /*
7097  * Figure out the number of possible node ids.
7098  */
7099 void __init setup_nr_node_ids(void)
7100 {
7101 	unsigned int highest;
7102 
7103 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7104 	nr_node_ids = highest + 1;
7105 }
7106 #endif
7107 
7108 /**
7109  * node_map_pfn_alignment - determine the maximum internode alignment
7110  *
7111  * This function should be called after node map is populated and sorted.
7112  * It calculates the maximum power of two alignment which can distinguish
7113  * all the nodes.
7114  *
7115  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7116  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7117  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7118  * shifted, 1GiB is enough and this function will indicate so.
7119  *
7120  * This is used to test whether pfn -> nid mapping of the chosen memory
7121  * model has fine enough granularity to avoid incorrect mapping for the
7122  * populated node map.
7123  *
7124  * Return: the determined alignment in pfn's.  0 if there is no alignment
7125  * requirement (single node).
7126  */
7127 unsigned long __init node_map_pfn_alignment(void)
7128 {
7129 	unsigned long accl_mask = 0, last_end = 0;
7130 	unsigned long start, end, mask;
7131 	int last_nid = NUMA_NO_NODE;
7132 	int i, nid;
7133 
7134 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7135 		if (!start || last_nid < 0 || last_nid == nid) {
7136 			last_nid = nid;
7137 			last_end = end;
7138 			continue;
7139 		}
7140 
7141 		/*
7142 		 * Start with a mask granular enough to pin-point to the
7143 		 * start pfn and tick off bits one-by-one until it becomes
7144 		 * too coarse to separate the current node from the last.
7145 		 */
7146 		mask = ~((1 << __ffs(start)) - 1);
7147 		while (mask && last_end <= (start & (mask << 1)))
7148 			mask <<= 1;
7149 
7150 		/* accumulate all internode masks */
7151 		accl_mask |= mask;
7152 	}
7153 
7154 	/* convert mask to number of pages */
7155 	return ~accl_mask + 1;
7156 }
7157 
7158 /**
7159  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7160  *
7161  * Return: the minimum PFN based on information provided via
7162  * memblock_set_node().
7163  */
7164 unsigned long __init find_min_pfn_with_active_regions(void)
7165 {
7166 	return PHYS_PFN(memblock_start_of_DRAM());
7167 }
7168 
7169 /*
7170  * early_calculate_totalpages()
7171  * Sum pages in active regions for movable zone.
7172  * Populate N_MEMORY for calculating usable_nodes.
7173  */
7174 static unsigned long __init early_calculate_totalpages(void)
7175 {
7176 	unsigned long totalpages = 0;
7177 	unsigned long start_pfn, end_pfn;
7178 	int i, nid;
7179 
7180 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7181 		unsigned long pages = end_pfn - start_pfn;
7182 
7183 		totalpages += pages;
7184 		if (pages)
7185 			node_set_state(nid, N_MEMORY);
7186 	}
7187 	return totalpages;
7188 }
7189 
7190 /*
7191  * Find the PFN the Movable zone begins in each node. Kernel memory
7192  * is spread evenly between nodes as long as the nodes have enough
7193  * memory. When they don't, some nodes will have more kernelcore than
7194  * others
7195  */
7196 static void __init find_zone_movable_pfns_for_nodes(void)
7197 {
7198 	int i, nid;
7199 	unsigned long usable_startpfn;
7200 	unsigned long kernelcore_node, kernelcore_remaining;
7201 	/* save the state before borrow the nodemask */
7202 	nodemask_t saved_node_state = node_states[N_MEMORY];
7203 	unsigned long totalpages = early_calculate_totalpages();
7204 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7205 	struct memblock_region *r;
7206 
7207 	/* Need to find movable_zone earlier when movable_node is specified. */
7208 	find_usable_zone_for_movable();
7209 
7210 	/*
7211 	 * If movable_node is specified, ignore kernelcore and movablecore
7212 	 * options.
7213 	 */
7214 	if (movable_node_is_enabled()) {
7215 		for_each_mem_region(r) {
7216 			if (!memblock_is_hotpluggable(r))
7217 				continue;
7218 
7219 			nid = memblock_get_region_node(r);
7220 
7221 			usable_startpfn = PFN_DOWN(r->base);
7222 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7223 				min(usable_startpfn, zone_movable_pfn[nid]) :
7224 				usable_startpfn;
7225 		}
7226 
7227 		goto out2;
7228 	}
7229 
7230 	/*
7231 	 * If kernelcore=mirror is specified, ignore movablecore option
7232 	 */
7233 	if (mirrored_kernelcore) {
7234 		bool mem_below_4gb_not_mirrored = false;
7235 
7236 		for_each_mem_region(r) {
7237 			if (memblock_is_mirror(r))
7238 				continue;
7239 
7240 			nid = memblock_get_region_node(r);
7241 
7242 			usable_startpfn = memblock_region_memory_base_pfn(r);
7243 
7244 			if (usable_startpfn < 0x100000) {
7245 				mem_below_4gb_not_mirrored = true;
7246 				continue;
7247 			}
7248 
7249 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7250 				min(usable_startpfn, zone_movable_pfn[nid]) :
7251 				usable_startpfn;
7252 		}
7253 
7254 		if (mem_below_4gb_not_mirrored)
7255 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7256 
7257 		goto out2;
7258 	}
7259 
7260 	/*
7261 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7262 	 * amount of necessary memory.
7263 	 */
7264 	if (required_kernelcore_percent)
7265 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7266 				       10000UL;
7267 	if (required_movablecore_percent)
7268 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7269 					10000UL;
7270 
7271 	/*
7272 	 * If movablecore= was specified, calculate what size of
7273 	 * kernelcore that corresponds so that memory usable for
7274 	 * any allocation type is evenly spread. If both kernelcore
7275 	 * and movablecore are specified, then the value of kernelcore
7276 	 * will be used for required_kernelcore if it's greater than
7277 	 * what movablecore would have allowed.
7278 	 */
7279 	if (required_movablecore) {
7280 		unsigned long corepages;
7281 
7282 		/*
7283 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7284 		 * was requested by the user
7285 		 */
7286 		required_movablecore =
7287 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7288 		required_movablecore = min(totalpages, required_movablecore);
7289 		corepages = totalpages - required_movablecore;
7290 
7291 		required_kernelcore = max(required_kernelcore, corepages);
7292 	}
7293 
7294 	/*
7295 	 * If kernelcore was not specified or kernelcore size is larger
7296 	 * than totalpages, there is no ZONE_MOVABLE.
7297 	 */
7298 	if (!required_kernelcore || required_kernelcore >= totalpages)
7299 		goto out;
7300 
7301 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7302 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7303 
7304 restart:
7305 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7306 	kernelcore_node = required_kernelcore / usable_nodes;
7307 	for_each_node_state(nid, N_MEMORY) {
7308 		unsigned long start_pfn, end_pfn;
7309 
7310 		/*
7311 		 * Recalculate kernelcore_node if the division per node
7312 		 * now exceeds what is necessary to satisfy the requested
7313 		 * amount of memory for the kernel
7314 		 */
7315 		if (required_kernelcore < kernelcore_node)
7316 			kernelcore_node = required_kernelcore / usable_nodes;
7317 
7318 		/*
7319 		 * As the map is walked, we track how much memory is usable
7320 		 * by the kernel using kernelcore_remaining. When it is
7321 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7322 		 */
7323 		kernelcore_remaining = kernelcore_node;
7324 
7325 		/* Go through each range of PFNs within this node */
7326 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7327 			unsigned long size_pages;
7328 
7329 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7330 			if (start_pfn >= end_pfn)
7331 				continue;
7332 
7333 			/* Account for what is only usable for kernelcore */
7334 			if (start_pfn < usable_startpfn) {
7335 				unsigned long kernel_pages;
7336 				kernel_pages = min(end_pfn, usable_startpfn)
7337 								- start_pfn;
7338 
7339 				kernelcore_remaining -= min(kernel_pages,
7340 							kernelcore_remaining);
7341 				required_kernelcore -= min(kernel_pages,
7342 							required_kernelcore);
7343 
7344 				/* Continue if range is now fully accounted */
7345 				if (end_pfn <= usable_startpfn) {
7346 
7347 					/*
7348 					 * Push zone_movable_pfn to the end so
7349 					 * that if we have to rebalance
7350 					 * kernelcore across nodes, we will
7351 					 * not double account here
7352 					 */
7353 					zone_movable_pfn[nid] = end_pfn;
7354 					continue;
7355 				}
7356 				start_pfn = usable_startpfn;
7357 			}
7358 
7359 			/*
7360 			 * The usable PFN range for ZONE_MOVABLE is from
7361 			 * start_pfn->end_pfn. Calculate size_pages as the
7362 			 * number of pages used as kernelcore
7363 			 */
7364 			size_pages = end_pfn - start_pfn;
7365 			if (size_pages > kernelcore_remaining)
7366 				size_pages = kernelcore_remaining;
7367 			zone_movable_pfn[nid] = start_pfn + size_pages;
7368 
7369 			/*
7370 			 * Some kernelcore has been met, update counts and
7371 			 * break if the kernelcore for this node has been
7372 			 * satisfied
7373 			 */
7374 			required_kernelcore -= min(required_kernelcore,
7375 								size_pages);
7376 			kernelcore_remaining -= size_pages;
7377 			if (!kernelcore_remaining)
7378 				break;
7379 		}
7380 	}
7381 
7382 	/*
7383 	 * If there is still required_kernelcore, we do another pass with one
7384 	 * less node in the count. This will push zone_movable_pfn[nid] further
7385 	 * along on the nodes that still have memory until kernelcore is
7386 	 * satisfied
7387 	 */
7388 	usable_nodes--;
7389 	if (usable_nodes && required_kernelcore > usable_nodes)
7390 		goto restart;
7391 
7392 out2:
7393 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7394 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7395 		zone_movable_pfn[nid] =
7396 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7397 
7398 out:
7399 	/* restore the node_state */
7400 	node_states[N_MEMORY] = saved_node_state;
7401 }
7402 
7403 /* Any regular or high memory on that node ? */
7404 static void check_for_memory(pg_data_t *pgdat, int nid)
7405 {
7406 	enum zone_type zone_type;
7407 
7408 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7409 		struct zone *zone = &pgdat->node_zones[zone_type];
7410 		if (populated_zone(zone)) {
7411 			if (IS_ENABLED(CONFIG_HIGHMEM))
7412 				node_set_state(nid, N_HIGH_MEMORY);
7413 			if (zone_type <= ZONE_NORMAL)
7414 				node_set_state(nid, N_NORMAL_MEMORY);
7415 			break;
7416 		}
7417 	}
7418 }
7419 
7420 /*
7421  * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7422  * such cases we allow max_zone_pfn sorted in the descending order
7423  */
7424 bool __weak arch_has_descending_max_zone_pfns(void)
7425 {
7426 	return false;
7427 }
7428 
7429 /**
7430  * free_area_init - Initialise all pg_data_t and zone data
7431  * @max_zone_pfn: an array of max PFNs for each zone
7432  *
7433  * This will call free_area_init_node() for each active node in the system.
7434  * Using the page ranges provided by memblock_set_node(), the size of each
7435  * zone in each node and their holes is calculated. If the maximum PFN
7436  * between two adjacent zones match, it is assumed that the zone is empty.
7437  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7438  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7439  * starts where the previous one ended. For example, ZONE_DMA32 starts
7440  * at arch_max_dma_pfn.
7441  */
7442 void __init free_area_init(unsigned long *max_zone_pfn)
7443 {
7444 	unsigned long start_pfn, end_pfn;
7445 	int i, nid, zone;
7446 	bool descending;
7447 
7448 	/* Record where the zone boundaries are */
7449 	memset(arch_zone_lowest_possible_pfn, 0,
7450 				sizeof(arch_zone_lowest_possible_pfn));
7451 	memset(arch_zone_highest_possible_pfn, 0,
7452 				sizeof(arch_zone_highest_possible_pfn));
7453 
7454 	start_pfn = find_min_pfn_with_active_regions();
7455 	descending = arch_has_descending_max_zone_pfns();
7456 
7457 	for (i = 0; i < MAX_NR_ZONES; i++) {
7458 		if (descending)
7459 			zone = MAX_NR_ZONES - i - 1;
7460 		else
7461 			zone = i;
7462 
7463 		if (zone == ZONE_MOVABLE)
7464 			continue;
7465 
7466 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7467 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7468 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7469 
7470 		start_pfn = end_pfn;
7471 	}
7472 
7473 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7474 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7475 	find_zone_movable_pfns_for_nodes();
7476 
7477 	/* Print out the zone ranges */
7478 	pr_info("Zone ranges:\n");
7479 	for (i = 0; i < MAX_NR_ZONES; i++) {
7480 		if (i == ZONE_MOVABLE)
7481 			continue;
7482 		pr_info("  %-8s ", zone_names[i]);
7483 		if (arch_zone_lowest_possible_pfn[i] ==
7484 				arch_zone_highest_possible_pfn[i])
7485 			pr_cont("empty\n");
7486 		else
7487 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7488 				(u64)arch_zone_lowest_possible_pfn[i]
7489 					<< PAGE_SHIFT,
7490 				((u64)arch_zone_highest_possible_pfn[i]
7491 					<< PAGE_SHIFT) - 1);
7492 	}
7493 
7494 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7495 	pr_info("Movable zone start for each node\n");
7496 	for (i = 0; i < MAX_NUMNODES; i++) {
7497 		if (zone_movable_pfn[i])
7498 			pr_info("  Node %d: %#018Lx\n", i,
7499 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7500 	}
7501 
7502 	/*
7503 	 * Print out the early node map, and initialize the
7504 	 * subsection-map relative to active online memory ranges to
7505 	 * enable future "sub-section" extensions of the memory map.
7506 	 */
7507 	pr_info("Early memory node ranges\n");
7508 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7509 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7510 			(u64)start_pfn << PAGE_SHIFT,
7511 			((u64)end_pfn << PAGE_SHIFT) - 1);
7512 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7513 	}
7514 
7515 	/* Initialise every node */
7516 	mminit_verify_pageflags_layout();
7517 	setup_nr_node_ids();
7518 	init_unavailable_mem();
7519 	for_each_online_node(nid) {
7520 		pg_data_t *pgdat = NODE_DATA(nid);
7521 		free_area_init_node(nid);
7522 
7523 		/* Any memory on that node */
7524 		if (pgdat->node_present_pages)
7525 			node_set_state(nid, N_MEMORY);
7526 		check_for_memory(pgdat, nid);
7527 	}
7528 }
7529 
7530 static int __init cmdline_parse_core(char *p, unsigned long *core,
7531 				     unsigned long *percent)
7532 {
7533 	unsigned long long coremem;
7534 	char *endptr;
7535 
7536 	if (!p)
7537 		return -EINVAL;
7538 
7539 	/* Value may be a percentage of total memory, otherwise bytes */
7540 	coremem = simple_strtoull(p, &endptr, 0);
7541 	if (*endptr == '%') {
7542 		/* Paranoid check for percent values greater than 100 */
7543 		WARN_ON(coremem > 100);
7544 
7545 		*percent = coremem;
7546 	} else {
7547 		coremem = memparse(p, &p);
7548 		/* Paranoid check that UL is enough for the coremem value */
7549 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7550 
7551 		*core = coremem >> PAGE_SHIFT;
7552 		*percent = 0UL;
7553 	}
7554 	return 0;
7555 }
7556 
7557 /*
7558  * kernelcore=size sets the amount of memory for use for allocations that
7559  * cannot be reclaimed or migrated.
7560  */
7561 static int __init cmdline_parse_kernelcore(char *p)
7562 {
7563 	/* parse kernelcore=mirror */
7564 	if (parse_option_str(p, "mirror")) {
7565 		mirrored_kernelcore = true;
7566 		return 0;
7567 	}
7568 
7569 	return cmdline_parse_core(p, &required_kernelcore,
7570 				  &required_kernelcore_percent);
7571 }
7572 
7573 /*
7574  * movablecore=size sets the amount of memory for use for allocations that
7575  * can be reclaimed or migrated.
7576  */
7577 static int __init cmdline_parse_movablecore(char *p)
7578 {
7579 	return cmdline_parse_core(p, &required_movablecore,
7580 				  &required_movablecore_percent);
7581 }
7582 
7583 early_param("kernelcore", cmdline_parse_kernelcore);
7584 early_param("movablecore", cmdline_parse_movablecore);
7585 
7586 void adjust_managed_page_count(struct page *page, long count)
7587 {
7588 	atomic_long_add(count, &page_zone(page)->managed_pages);
7589 	totalram_pages_add(count);
7590 #ifdef CONFIG_HIGHMEM
7591 	if (PageHighMem(page))
7592 		totalhigh_pages_add(count);
7593 #endif
7594 }
7595 EXPORT_SYMBOL(adjust_managed_page_count);
7596 
7597 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7598 {
7599 	void *pos;
7600 	unsigned long pages = 0;
7601 
7602 	start = (void *)PAGE_ALIGN((unsigned long)start);
7603 	end = (void *)((unsigned long)end & PAGE_MASK);
7604 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7605 		struct page *page = virt_to_page(pos);
7606 		void *direct_map_addr;
7607 
7608 		/*
7609 		 * 'direct_map_addr' might be different from 'pos'
7610 		 * because some architectures' virt_to_page()
7611 		 * work with aliases.  Getting the direct map
7612 		 * address ensures that we get a _writeable_
7613 		 * alias for the memset().
7614 		 */
7615 		direct_map_addr = page_address(page);
7616 		if ((unsigned int)poison <= 0xFF)
7617 			memset(direct_map_addr, poison, PAGE_SIZE);
7618 
7619 		free_reserved_page(page);
7620 	}
7621 
7622 	if (pages && s)
7623 		pr_info("Freeing %s memory: %ldK\n",
7624 			s, pages << (PAGE_SHIFT - 10));
7625 
7626 	return pages;
7627 }
7628 
7629 #ifdef	CONFIG_HIGHMEM
7630 void free_highmem_page(struct page *page)
7631 {
7632 	__free_reserved_page(page);
7633 	totalram_pages_inc();
7634 	atomic_long_inc(&page_zone(page)->managed_pages);
7635 	totalhigh_pages_inc();
7636 }
7637 #endif
7638 
7639 
7640 void __init mem_init_print_info(const char *str)
7641 {
7642 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7643 	unsigned long init_code_size, init_data_size;
7644 
7645 	physpages = get_num_physpages();
7646 	codesize = _etext - _stext;
7647 	datasize = _edata - _sdata;
7648 	rosize = __end_rodata - __start_rodata;
7649 	bss_size = __bss_stop - __bss_start;
7650 	init_data_size = __init_end - __init_begin;
7651 	init_code_size = _einittext - _sinittext;
7652 
7653 	/*
7654 	 * Detect special cases and adjust section sizes accordingly:
7655 	 * 1) .init.* may be embedded into .data sections
7656 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7657 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7658 	 * 3) .rodata.* may be embedded into .text or .data sections.
7659 	 */
7660 #define adj_init_size(start, end, size, pos, adj) \
7661 	do { \
7662 		if (start <= pos && pos < end && size > adj) \
7663 			size -= adj; \
7664 	} while (0)
7665 
7666 	adj_init_size(__init_begin, __init_end, init_data_size,
7667 		     _sinittext, init_code_size);
7668 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7669 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7670 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7671 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7672 
7673 #undef	adj_init_size
7674 
7675 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7676 #ifdef	CONFIG_HIGHMEM
7677 		", %luK highmem"
7678 #endif
7679 		"%s%s)\n",
7680 		nr_free_pages() << (PAGE_SHIFT - 10),
7681 		physpages << (PAGE_SHIFT - 10),
7682 		codesize >> 10, datasize >> 10, rosize >> 10,
7683 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7684 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7685 		totalcma_pages << (PAGE_SHIFT - 10),
7686 #ifdef	CONFIG_HIGHMEM
7687 		totalhigh_pages() << (PAGE_SHIFT - 10),
7688 #endif
7689 		str ? ", " : "", str ? str : "");
7690 }
7691 
7692 /**
7693  * set_dma_reserve - set the specified number of pages reserved in the first zone
7694  * @new_dma_reserve: The number of pages to mark reserved
7695  *
7696  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7697  * In the DMA zone, a significant percentage may be consumed by kernel image
7698  * and other unfreeable allocations which can skew the watermarks badly. This
7699  * function may optionally be used to account for unfreeable pages in the
7700  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7701  * smaller per-cpu batchsize.
7702  */
7703 void __init set_dma_reserve(unsigned long new_dma_reserve)
7704 {
7705 	dma_reserve = new_dma_reserve;
7706 }
7707 
7708 static int page_alloc_cpu_dead(unsigned int cpu)
7709 {
7710 
7711 	lru_add_drain_cpu(cpu);
7712 	drain_pages(cpu);
7713 
7714 	/*
7715 	 * Spill the event counters of the dead processor
7716 	 * into the current processors event counters.
7717 	 * This artificially elevates the count of the current
7718 	 * processor.
7719 	 */
7720 	vm_events_fold_cpu(cpu);
7721 
7722 	/*
7723 	 * Zero the differential counters of the dead processor
7724 	 * so that the vm statistics are consistent.
7725 	 *
7726 	 * This is only okay since the processor is dead and cannot
7727 	 * race with what we are doing.
7728 	 */
7729 	cpu_vm_stats_fold(cpu);
7730 	return 0;
7731 }
7732 
7733 #ifdef CONFIG_NUMA
7734 int hashdist = HASHDIST_DEFAULT;
7735 
7736 static int __init set_hashdist(char *str)
7737 {
7738 	if (!str)
7739 		return 0;
7740 	hashdist = simple_strtoul(str, &str, 0);
7741 	return 1;
7742 }
7743 __setup("hashdist=", set_hashdist);
7744 #endif
7745 
7746 void __init page_alloc_init(void)
7747 {
7748 	int ret;
7749 
7750 #ifdef CONFIG_NUMA
7751 	if (num_node_state(N_MEMORY) == 1)
7752 		hashdist = 0;
7753 #endif
7754 
7755 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7756 					"mm/page_alloc:dead", NULL,
7757 					page_alloc_cpu_dead);
7758 	WARN_ON(ret < 0);
7759 }
7760 
7761 /*
7762  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7763  *	or min_free_kbytes changes.
7764  */
7765 static void calculate_totalreserve_pages(void)
7766 {
7767 	struct pglist_data *pgdat;
7768 	unsigned long reserve_pages = 0;
7769 	enum zone_type i, j;
7770 
7771 	for_each_online_pgdat(pgdat) {
7772 
7773 		pgdat->totalreserve_pages = 0;
7774 
7775 		for (i = 0; i < MAX_NR_ZONES; i++) {
7776 			struct zone *zone = pgdat->node_zones + i;
7777 			long max = 0;
7778 			unsigned long managed_pages = zone_managed_pages(zone);
7779 
7780 			/* Find valid and maximum lowmem_reserve in the zone */
7781 			for (j = i; j < MAX_NR_ZONES; j++) {
7782 				if (zone->lowmem_reserve[j] > max)
7783 					max = zone->lowmem_reserve[j];
7784 			}
7785 
7786 			/* we treat the high watermark as reserved pages. */
7787 			max += high_wmark_pages(zone);
7788 
7789 			if (max > managed_pages)
7790 				max = managed_pages;
7791 
7792 			pgdat->totalreserve_pages += max;
7793 
7794 			reserve_pages += max;
7795 		}
7796 	}
7797 	totalreserve_pages = reserve_pages;
7798 }
7799 
7800 /*
7801  * setup_per_zone_lowmem_reserve - called whenever
7802  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7803  *	has a correct pages reserved value, so an adequate number of
7804  *	pages are left in the zone after a successful __alloc_pages().
7805  */
7806 static void setup_per_zone_lowmem_reserve(void)
7807 {
7808 	struct pglist_data *pgdat;
7809 	enum zone_type j, idx;
7810 
7811 	for_each_online_pgdat(pgdat) {
7812 		for (j = 0; j < MAX_NR_ZONES; j++) {
7813 			struct zone *zone = pgdat->node_zones + j;
7814 			unsigned long managed_pages = zone_managed_pages(zone);
7815 
7816 			zone->lowmem_reserve[j] = 0;
7817 
7818 			idx = j;
7819 			while (idx) {
7820 				struct zone *lower_zone;
7821 
7822 				idx--;
7823 				lower_zone = pgdat->node_zones + idx;
7824 
7825 				if (!sysctl_lowmem_reserve_ratio[idx] ||
7826 				    !zone_managed_pages(lower_zone)) {
7827 					lower_zone->lowmem_reserve[j] = 0;
7828 					continue;
7829 				} else {
7830 					lower_zone->lowmem_reserve[j] =
7831 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7832 				}
7833 				managed_pages += zone_managed_pages(lower_zone);
7834 			}
7835 		}
7836 	}
7837 
7838 	/* update totalreserve_pages */
7839 	calculate_totalreserve_pages();
7840 }
7841 
7842 static void __setup_per_zone_wmarks(void)
7843 {
7844 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7845 	unsigned long lowmem_pages = 0;
7846 	struct zone *zone;
7847 	unsigned long flags;
7848 
7849 	/* Calculate total number of !ZONE_HIGHMEM pages */
7850 	for_each_zone(zone) {
7851 		if (!is_highmem(zone))
7852 			lowmem_pages += zone_managed_pages(zone);
7853 	}
7854 
7855 	for_each_zone(zone) {
7856 		u64 tmp;
7857 
7858 		spin_lock_irqsave(&zone->lock, flags);
7859 		tmp = (u64)pages_min * zone_managed_pages(zone);
7860 		do_div(tmp, lowmem_pages);
7861 		if (is_highmem(zone)) {
7862 			/*
7863 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7864 			 * need highmem pages, so cap pages_min to a small
7865 			 * value here.
7866 			 *
7867 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7868 			 * deltas control async page reclaim, and so should
7869 			 * not be capped for highmem.
7870 			 */
7871 			unsigned long min_pages;
7872 
7873 			min_pages = zone_managed_pages(zone) / 1024;
7874 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7875 			zone->_watermark[WMARK_MIN] = min_pages;
7876 		} else {
7877 			/*
7878 			 * If it's a lowmem zone, reserve a number of pages
7879 			 * proportionate to the zone's size.
7880 			 */
7881 			zone->_watermark[WMARK_MIN] = tmp;
7882 		}
7883 
7884 		/*
7885 		 * Set the kswapd watermarks distance according to the
7886 		 * scale factor in proportion to available memory, but
7887 		 * ensure a minimum size on small systems.
7888 		 */
7889 		tmp = max_t(u64, tmp >> 2,
7890 			    mult_frac(zone_managed_pages(zone),
7891 				      watermark_scale_factor, 10000));
7892 
7893 		zone->watermark_boost = 0;
7894 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7895 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7896 
7897 		spin_unlock_irqrestore(&zone->lock, flags);
7898 	}
7899 
7900 	/* update totalreserve_pages */
7901 	calculate_totalreserve_pages();
7902 }
7903 
7904 /**
7905  * setup_per_zone_wmarks - called when min_free_kbytes changes
7906  * or when memory is hot-{added|removed}
7907  *
7908  * Ensures that the watermark[min,low,high] values for each zone are set
7909  * correctly with respect to min_free_kbytes.
7910  */
7911 void setup_per_zone_wmarks(void)
7912 {
7913 	static DEFINE_SPINLOCK(lock);
7914 
7915 	spin_lock(&lock);
7916 	__setup_per_zone_wmarks();
7917 	spin_unlock(&lock);
7918 }
7919 
7920 /*
7921  * Initialise min_free_kbytes.
7922  *
7923  * For small machines we want it small (128k min).  For large machines
7924  * we want it large (256MB max).  But it is not linear, because network
7925  * bandwidth does not increase linearly with machine size.  We use
7926  *
7927  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7928  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7929  *
7930  * which yields
7931  *
7932  * 16MB:	512k
7933  * 32MB:	724k
7934  * 64MB:	1024k
7935  * 128MB:	1448k
7936  * 256MB:	2048k
7937  * 512MB:	2896k
7938  * 1024MB:	4096k
7939  * 2048MB:	5792k
7940  * 4096MB:	8192k
7941  * 8192MB:	11584k
7942  * 16384MB:	16384k
7943  */
7944 int __meminit init_per_zone_wmark_min(void)
7945 {
7946 	unsigned long lowmem_kbytes;
7947 	int new_min_free_kbytes;
7948 
7949 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7950 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7951 
7952 	if (new_min_free_kbytes > user_min_free_kbytes) {
7953 		min_free_kbytes = new_min_free_kbytes;
7954 		if (min_free_kbytes < 128)
7955 			min_free_kbytes = 128;
7956 		if (min_free_kbytes > 262144)
7957 			min_free_kbytes = 262144;
7958 	} else {
7959 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7960 				new_min_free_kbytes, user_min_free_kbytes);
7961 	}
7962 	setup_per_zone_wmarks();
7963 	refresh_zone_stat_thresholds();
7964 	setup_per_zone_lowmem_reserve();
7965 
7966 #ifdef CONFIG_NUMA
7967 	setup_min_unmapped_ratio();
7968 	setup_min_slab_ratio();
7969 #endif
7970 
7971 	khugepaged_min_free_kbytes_update();
7972 
7973 	return 0;
7974 }
7975 postcore_initcall(init_per_zone_wmark_min)
7976 
7977 /*
7978  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7979  *	that we can call two helper functions whenever min_free_kbytes
7980  *	changes.
7981  */
7982 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7983 		void *buffer, size_t *length, loff_t *ppos)
7984 {
7985 	int rc;
7986 
7987 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7988 	if (rc)
7989 		return rc;
7990 
7991 	if (write) {
7992 		user_min_free_kbytes = min_free_kbytes;
7993 		setup_per_zone_wmarks();
7994 	}
7995 	return 0;
7996 }
7997 
7998 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7999 		void *buffer, size_t *length, loff_t *ppos)
8000 {
8001 	int rc;
8002 
8003 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8004 	if (rc)
8005 		return rc;
8006 
8007 	if (write)
8008 		setup_per_zone_wmarks();
8009 
8010 	return 0;
8011 }
8012 
8013 #ifdef CONFIG_NUMA
8014 static void setup_min_unmapped_ratio(void)
8015 {
8016 	pg_data_t *pgdat;
8017 	struct zone *zone;
8018 
8019 	for_each_online_pgdat(pgdat)
8020 		pgdat->min_unmapped_pages = 0;
8021 
8022 	for_each_zone(zone)
8023 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8024 						         sysctl_min_unmapped_ratio) / 100;
8025 }
8026 
8027 
8028 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8029 		void *buffer, size_t *length, loff_t *ppos)
8030 {
8031 	int rc;
8032 
8033 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8034 	if (rc)
8035 		return rc;
8036 
8037 	setup_min_unmapped_ratio();
8038 
8039 	return 0;
8040 }
8041 
8042 static void setup_min_slab_ratio(void)
8043 {
8044 	pg_data_t *pgdat;
8045 	struct zone *zone;
8046 
8047 	for_each_online_pgdat(pgdat)
8048 		pgdat->min_slab_pages = 0;
8049 
8050 	for_each_zone(zone)
8051 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8052 						     sysctl_min_slab_ratio) / 100;
8053 }
8054 
8055 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8056 		void *buffer, size_t *length, loff_t *ppos)
8057 {
8058 	int rc;
8059 
8060 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8061 	if (rc)
8062 		return rc;
8063 
8064 	setup_min_slab_ratio();
8065 
8066 	return 0;
8067 }
8068 #endif
8069 
8070 /*
8071  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8072  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8073  *	whenever sysctl_lowmem_reserve_ratio changes.
8074  *
8075  * The reserve ratio obviously has absolutely no relation with the
8076  * minimum watermarks. The lowmem reserve ratio can only make sense
8077  * if in function of the boot time zone sizes.
8078  */
8079 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8080 		void *buffer, size_t *length, loff_t *ppos)
8081 {
8082 	int i;
8083 
8084 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8085 
8086 	for (i = 0; i < MAX_NR_ZONES; i++) {
8087 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8088 			sysctl_lowmem_reserve_ratio[i] = 0;
8089 	}
8090 
8091 	setup_per_zone_lowmem_reserve();
8092 	return 0;
8093 }
8094 
8095 static void __zone_pcp_update(struct zone *zone)
8096 {
8097 	unsigned int cpu;
8098 
8099 	for_each_possible_cpu(cpu)
8100 		pageset_set_high_and_batch(zone,
8101 				per_cpu_ptr(zone->pageset, cpu));
8102 }
8103 
8104 /*
8105  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8106  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8107  * pagelist can have before it gets flushed back to buddy allocator.
8108  */
8109 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8110 		void *buffer, size_t *length, loff_t *ppos)
8111 {
8112 	struct zone *zone;
8113 	int old_percpu_pagelist_fraction;
8114 	int ret;
8115 
8116 	mutex_lock(&pcp_batch_high_lock);
8117 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8118 
8119 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8120 	if (!write || ret < 0)
8121 		goto out;
8122 
8123 	/* Sanity checking to avoid pcp imbalance */
8124 	if (percpu_pagelist_fraction &&
8125 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8126 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8127 		ret = -EINVAL;
8128 		goto out;
8129 	}
8130 
8131 	/* No change? */
8132 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8133 		goto out;
8134 
8135 	for_each_populated_zone(zone)
8136 		__zone_pcp_update(zone);
8137 out:
8138 	mutex_unlock(&pcp_batch_high_lock);
8139 	return ret;
8140 }
8141 
8142 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8143 /*
8144  * Returns the number of pages that arch has reserved but
8145  * is not known to alloc_large_system_hash().
8146  */
8147 static unsigned long __init arch_reserved_kernel_pages(void)
8148 {
8149 	return 0;
8150 }
8151 #endif
8152 
8153 /*
8154  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8155  * machines. As memory size is increased the scale is also increased but at
8156  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8157  * quadruples the scale is increased by one, which means the size of hash table
8158  * only doubles, instead of quadrupling as well.
8159  * Because 32-bit systems cannot have large physical memory, where this scaling
8160  * makes sense, it is disabled on such platforms.
8161  */
8162 #if __BITS_PER_LONG > 32
8163 #define ADAPT_SCALE_BASE	(64ul << 30)
8164 #define ADAPT_SCALE_SHIFT	2
8165 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8166 #endif
8167 
8168 /*
8169  * allocate a large system hash table from bootmem
8170  * - it is assumed that the hash table must contain an exact power-of-2
8171  *   quantity of entries
8172  * - limit is the number of hash buckets, not the total allocation size
8173  */
8174 void *__init alloc_large_system_hash(const char *tablename,
8175 				     unsigned long bucketsize,
8176 				     unsigned long numentries,
8177 				     int scale,
8178 				     int flags,
8179 				     unsigned int *_hash_shift,
8180 				     unsigned int *_hash_mask,
8181 				     unsigned long low_limit,
8182 				     unsigned long high_limit)
8183 {
8184 	unsigned long long max = high_limit;
8185 	unsigned long log2qty, size;
8186 	void *table = NULL;
8187 	gfp_t gfp_flags;
8188 	bool virt;
8189 
8190 	/* allow the kernel cmdline to have a say */
8191 	if (!numentries) {
8192 		/* round applicable memory size up to nearest megabyte */
8193 		numentries = nr_kernel_pages;
8194 		numentries -= arch_reserved_kernel_pages();
8195 
8196 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8197 		if (PAGE_SHIFT < 20)
8198 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8199 
8200 #if __BITS_PER_LONG > 32
8201 		if (!high_limit) {
8202 			unsigned long adapt;
8203 
8204 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8205 			     adapt <<= ADAPT_SCALE_SHIFT)
8206 				scale++;
8207 		}
8208 #endif
8209 
8210 		/* limit to 1 bucket per 2^scale bytes of low memory */
8211 		if (scale > PAGE_SHIFT)
8212 			numentries >>= (scale - PAGE_SHIFT);
8213 		else
8214 			numentries <<= (PAGE_SHIFT - scale);
8215 
8216 		/* Make sure we've got at least a 0-order allocation.. */
8217 		if (unlikely(flags & HASH_SMALL)) {
8218 			/* Makes no sense without HASH_EARLY */
8219 			WARN_ON(!(flags & HASH_EARLY));
8220 			if (!(numentries >> *_hash_shift)) {
8221 				numentries = 1UL << *_hash_shift;
8222 				BUG_ON(!numentries);
8223 			}
8224 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8225 			numentries = PAGE_SIZE / bucketsize;
8226 	}
8227 	numentries = roundup_pow_of_two(numentries);
8228 
8229 	/* limit allocation size to 1/16 total memory by default */
8230 	if (max == 0) {
8231 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8232 		do_div(max, bucketsize);
8233 	}
8234 	max = min(max, 0x80000000ULL);
8235 
8236 	if (numentries < low_limit)
8237 		numentries = low_limit;
8238 	if (numentries > max)
8239 		numentries = max;
8240 
8241 	log2qty = ilog2(numentries);
8242 
8243 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8244 	do {
8245 		virt = false;
8246 		size = bucketsize << log2qty;
8247 		if (flags & HASH_EARLY) {
8248 			if (flags & HASH_ZERO)
8249 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8250 			else
8251 				table = memblock_alloc_raw(size,
8252 							   SMP_CACHE_BYTES);
8253 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8254 			table = __vmalloc(size, gfp_flags);
8255 			virt = true;
8256 		} else {
8257 			/*
8258 			 * If bucketsize is not a power-of-two, we may free
8259 			 * some pages at the end of hash table which
8260 			 * alloc_pages_exact() automatically does
8261 			 */
8262 			table = alloc_pages_exact(size, gfp_flags);
8263 			kmemleak_alloc(table, size, 1, gfp_flags);
8264 		}
8265 	} while (!table && size > PAGE_SIZE && --log2qty);
8266 
8267 	if (!table)
8268 		panic("Failed to allocate %s hash table\n", tablename);
8269 
8270 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8271 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8272 		virt ? "vmalloc" : "linear");
8273 
8274 	if (_hash_shift)
8275 		*_hash_shift = log2qty;
8276 	if (_hash_mask)
8277 		*_hash_mask = (1 << log2qty) - 1;
8278 
8279 	return table;
8280 }
8281 
8282 /*
8283  * This function checks whether pageblock includes unmovable pages or not.
8284  *
8285  * PageLRU check without isolation or lru_lock could race so that
8286  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8287  * check without lock_page also may miss some movable non-lru pages at
8288  * race condition. So you can't expect this function should be exact.
8289  *
8290  * Returns a page without holding a reference. If the caller wants to
8291  * dereference that page (e.g., dumping), it has to make sure that it
8292  * cannot get removed (e.g., via memory unplug) concurrently.
8293  *
8294  */
8295 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8296 				 int migratetype, int flags)
8297 {
8298 	unsigned long iter = 0;
8299 	unsigned long pfn = page_to_pfn(page);
8300 	unsigned long offset = pfn % pageblock_nr_pages;
8301 
8302 	if (is_migrate_cma_page(page)) {
8303 		/*
8304 		 * CMA allocations (alloc_contig_range) really need to mark
8305 		 * isolate CMA pageblocks even when they are not movable in fact
8306 		 * so consider them movable here.
8307 		 */
8308 		if (is_migrate_cma(migratetype))
8309 			return NULL;
8310 
8311 		return page;
8312 	}
8313 
8314 	for (; iter < pageblock_nr_pages - offset; iter++) {
8315 		if (!pfn_valid_within(pfn + iter))
8316 			continue;
8317 
8318 		page = pfn_to_page(pfn + iter);
8319 
8320 		/*
8321 		 * Both, bootmem allocations and memory holes are marked
8322 		 * PG_reserved and are unmovable. We can even have unmovable
8323 		 * allocations inside ZONE_MOVABLE, for example when
8324 		 * specifying "movablecore".
8325 		 */
8326 		if (PageReserved(page))
8327 			return page;
8328 
8329 		/*
8330 		 * If the zone is movable and we have ruled out all reserved
8331 		 * pages then it should be reasonably safe to assume the rest
8332 		 * is movable.
8333 		 */
8334 		if (zone_idx(zone) == ZONE_MOVABLE)
8335 			continue;
8336 
8337 		/*
8338 		 * Hugepages are not in LRU lists, but they're movable.
8339 		 * THPs are on the LRU, but need to be counted as #small pages.
8340 		 * We need not scan over tail pages because we don't
8341 		 * handle each tail page individually in migration.
8342 		 */
8343 		if (PageHuge(page) || PageTransCompound(page)) {
8344 			struct page *head = compound_head(page);
8345 			unsigned int skip_pages;
8346 
8347 			if (PageHuge(page)) {
8348 				if (!hugepage_migration_supported(page_hstate(head)))
8349 					return page;
8350 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8351 				return page;
8352 			}
8353 
8354 			skip_pages = compound_nr(head) - (page - head);
8355 			iter += skip_pages - 1;
8356 			continue;
8357 		}
8358 
8359 		/*
8360 		 * We can't use page_count without pin a page
8361 		 * because another CPU can free compound page.
8362 		 * This check already skips compound tails of THP
8363 		 * because their page->_refcount is zero at all time.
8364 		 */
8365 		if (!page_ref_count(page)) {
8366 			if (PageBuddy(page))
8367 				iter += (1 << buddy_order(page)) - 1;
8368 			continue;
8369 		}
8370 
8371 		/*
8372 		 * The HWPoisoned page may be not in buddy system, and
8373 		 * page_count() is not 0.
8374 		 */
8375 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8376 			continue;
8377 
8378 		/*
8379 		 * We treat all PageOffline() pages as movable when offlining
8380 		 * to give drivers a chance to decrement their reference count
8381 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8382 		 * can be offlined as there are no direct references anymore.
8383 		 * For actually unmovable PageOffline() where the driver does
8384 		 * not support this, we will fail later when trying to actually
8385 		 * move these pages that still have a reference count > 0.
8386 		 * (false negatives in this function only)
8387 		 */
8388 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8389 			continue;
8390 
8391 		if (__PageMovable(page) || PageLRU(page))
8392 			continue;
8393 
8394 		/*
8395 		 * If there are RECLAIMABLE pages, we need to check
8396 		 * it.  But now, memory offline itself doesn't call
8397 		 * shrink_node_slabs() and it still to be fixed.
8398 		 */
8399 		return page;
8400 	}
8401 	return NULL;
8402 }
8403 
8404 #ifdef CONFIG_CONTIG_ALLOC
8405 static unsigned long pfn_max_align_down(unsigned long pfn)
8406 {
8407 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8408 			     pageblock_nr_pages) - 1);
8409 }
8410 
8411 static unsigned long pfn_max_align_up(unsigned long pfn)
8412 {
8413 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8414 				pageblock_nr_pages));
8415 }
8416 
8417 /* [start, end) must belong to a single zone. */
8418 static int __alloc_contig_migrate_range(struct compact_control *cc,
8419 					unsigned long start, unsigned long end)
8420 {
8421 	/* This function is based on compact_zone() from compaction.c. */
8422 	unsigned int nr_reclaimed;
8423 	unsigned long pfn = start;
8424 	unsigned int tries = 0;
8425 	int ret = 0;
8426 	struct migration_target_control mtc = {
8427 		.nid = zone_to_nid(cc->zone),
8428 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8429 	};
8430 
8431 	migrate_prep();
8432 
8433 	while (pfn < end || !list_empty(&cc->migratepages)) {
8434 		if (fatal_signal_pending(current)) {
8435 			ret = -EINTR;
8436 			break;
8437 		}
8438 
8439 		if (list_empty(&cc->migratepages)) {
8440 			cc->nr_migratepages = 0;
8441 			pfn = isolate_migratepages_range(cc, pfn, end);
8442 			if (!pfn) {
8443 				ret = -EINTR;
8444 				break;
8445 			}
8446 			tries = 0;
8447 		} else if (++tries == 5) {
8448 			ret = ret < 0 ? ret : -EBUSY;
8449 			break;
8450 		}
8451 
8452 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8453 							&cc->migratepages);
8454 		cc->nr_migratepages -= nr_reclaimed;
8455 
8456 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8457 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8458 	}
8459 	if (ret < 0) {
8460 		putback_movable_pages(&cc->migratepages);
8461 		return ret;
8462 	}
8463 	return 0;
8464 }
8465 
8466 /**
8467  * alloc_contig_range() -- tries to allocate given range of pages
8468  * @start:	start PFN to allocate
8469  * @end:	one-past-the-last PFN to allocate
8470  * @migratetype:	migratetype of the underlaying pageblocks (either
8471  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8472  *			in range must have the same migratetype and it must
8473  *			be either of the two.
8474  * @gfp_mask:	GFP mask to use during compaction
8475  *
8476  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8477  * aligned.  The PFN range must belong to a single zone.
8478  *
8479  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8480  * pageblocks in the range.  Once isolated, the pageblocks should not
8481  * be modified by others.
8482  *
8483  * Return: zero on success or negative error code.  On success all
8484  * pages which PFN is in [start, end) are allocated for the caller and
8485  * need to be freed with free_contig_range().
8486  */
8487 int alloc_contig_range(unsigned long start, unsigned long end,
8488 		       unsigned migratetype, gfp_t gfp_mask)
8489 {
8490 	unsigned long outer_start, outer_end;
8491 	unsigned int order;
8492 	int ret = 0;
8493 
8494 	struct compact_control cc = {
8495 		.nr_migratepages = 0,
8496 		.order = -1,
8497 		.zone = page_zone(pfn_to_page(start)),
8498 		.mode = MIGRATE_SYNC,
8499 		.ignore_skip_hint = true,
8500 		.no_set_skip_hint = true,
8501 		.gfp_mask = current_gfp_context(gfp_mask),
8502 		.alloc_contig = true,
8503 	};
8504 	INIT_LIST_HEAD(&cc.migratepages);
8505 
8506 	/*
8507 	 * What we do here is we mark all pageblocks in range as
8508 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8509 	 * have different sizes, and due to the way page allocator
8510 	 * work, we align the range to biggest of the two pages so
8511 	 * that page allocator won't try to merge buddies from
8512 	 * different pageblocks and change MIGRATE_ISOLATE to some
8513 	 * other migration type.
8514 	 *
8515 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8516 	 * migrate the pages from an unaligned range (ie. pages that
8517 	 * we are interested in).  This will put all the pages in
8518 	 * range back to page allocator as MIGRATE_ISOLATE.
8519 	 *
8520 	 * When this is done, we take the pages in range from page
8521 	 * allocator removing them from the buddy system.  This way
8522 	 * page allocator will never consider using them.
8523 	 *
8524 	 * This lets us mark the pageblocks back as
8525 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8526 	 * aligned range but not in the unaligned, original range are
8527 	 * put back to page allocator so that buddy can use them.
8528 	 */
8529 
8530 	ret = start_isolate_page_range(pfn_max_align_down(start),
8531 				       pfn_max_align_up(end), migratetype, 0);
8532 	if (ret)
8533 		return ret;
8534 
8535 	/*
8536 	 * In case of -EBUSY, we'd like to know which page causes problem.
8537 	 * So, just fall through. test_pages_isolated() has a tracepoint
8538 	 * which will report the busy page.
8539 	 *
8540 	 * It is possible that busy pages could become available before
8541 	 * the call to test_pages_isolated, and the range will actually be
8542 	 * allocated.  So, if we fall through be sure to clear ret so that
8543 	 * -EBUSY is not accidentally used or returned to caller.
8544 	 */
8545 	ret = __alloc_contig_migrate_range(&cc, start, end);
8546 	if (ret && ret != -EBUSY)
8547 		goto done;
8548 	ret =0;
8549 
8550 	/*
8551 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8552 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8553 	 * more, all pages in [start, end) are free in page allocator.
8554 	 * What we are going to do is to allocate all pages from
8555 	 * [start, end) (that is remove them from page allocator).
8556 	 *
8557 	 * The only problem is that pages at the beginning and at the
8558 	 * end of interesting range may be not aligned with pages that
8559 	 * page allocator holds, ie. they can be part of higher order
8560 	 * pages.  Because of this, we reserve the bigger range and
8561 	 * once this is done free the pages we are not interested in.
8562 	 *
8563 	 * We don't have to hold zone->lock here because the pages are
8564 	 * isolated thus they won't get removed from buddy.
8565 	 */
8566 
8567 	lru_add_drain_all();
8568 
8569 	order = 0;
8570 	outer_start = start;
8571 	while (!PageBuddy(pfn_to_page(outer_start))) {
8572 		if (++order >= MAX_ORDER) {
8573 			outer_start = start;
8574 			break;
8575 		}
8576 		outer_start &= ~0UL << order;
8577 	}
8578 
8579 	if (outer_start != start) {
8580 		order = buddy_order(pfn_to_page(outer_start));
8581 
8582 		/*
8583 		 * outer_start page could be small order buddy page and
8584 		 * it doesn't include start page. Adjust outer_start
8585 		 * in this case to report failed page properly
8586 		 * on tracepoint in test_pages_isolated()
8587 		 */
8588 		if (outer_start + (1UL << order) <= start)
8589 			outer_start = start;
8590 	}
8591 
8592 	/* Make sure the range is really isolated. */
8593 	if (test_pages_isolated(outer_start, end, 0)) {
8594 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8595 			__func__, outer_start, end);
8596 		ret = -EBUSY;
8597 		goto done;
8598 	}
8599 
8600 	/* Grab isolated pages from freelists. */
8601 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8602 	if (!outer_end) {
8603 		ret = -EBUSY;
8604 		goto done;
8605 	}
8606 
8607 	/* Free head and tail (if any) */
8608 	if (start != outer_start)
8609 		free_contig_range(outer_start, start - outer_start);
8610 	if (end != outer_end)
8611 		free_contig_range(end, outer_end - end);
8612 
8613 done:
8614 	undo_isolate_page_range(pfn_max_align_down(start),
8615 				pfn_max_align_up(end), migratetype);
8616 	return ret;
8617 }
8618 EXPORT_SYMBOL(alloc_contig_range);
8619 
8620 static int __alloc_contig_pages(unsigned long start_pfn,
8621 				unsigned long nr_pages, gfp_t gfp_mask)
8622 {
8623 	unsigned long end_pfn = start_pfn + nr_pages;
8624 
8625 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8626 				  gfp_mask);
8627 }
8628 
8629 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8630 				   unsigned long nr_pages)
8631 {
8632 	unsigned long i, end_pfn = start_pfn + nr_pages;
8633 	struct page *page;
8634 
8635 	for (i = start_pfn; i < end_pfn; i++) {
8636 		page = pfn_to_online_page(i);
8637 		if (!page)
8638 			return false;
8639 
8640 		if (page_zone(page) != z)
8641 			return false;
8642 
8643 		if (PageReserved(page))
8644 			return false;
8645 
8646 		if (page_count(page) > 0)
8647 			return false;
8648 
8649 		if (PageHuge(page))
8650 			return false;
8651 	}
8652 	return true;
8653 }
8654 
8655 static bool zone_spans_last_pfn(const struct zone *zone,
8656 				unsigned long start_pfn, unsigned long nr_pages)
8657 {
8658 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8659 
8660 	return zone_spans_pfn(zone, last_pfn);
8661 }
8662 
8663 /**
8664  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8665  * @nr_pages:	Number of contiguous pages to allocate
8666  * @gfp_mask:	GFP mask to limit search and used during compaction
8667  * @nid:	Target node
8668  * @nodemask:	Mask for other possible nodes
8669  *
8670  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8671  * on an applicable zonelist to find a contiguous pfn range which can then be
8672  * tried for allocation with alloc_contig_range(). This routine is intended
8673  * for allocation requests which can not be fulfilled with the buddy allocator.
8674  *
8675  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8676  * power of two then the alignment is guaranteed to be to the given nr_pages
8677  * (e.g. 1GB request would be aligned to 1GB).
8678  *
8679  * Allocated pages can be freed with free_contig_range() or by manually calling
8680  * __free_page() on each allocated page.
8681  *
8682  * Return: pointer to contiguous pages on success, or NULL if not successful.
8683  */
8684 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8685 				int nid, nodemask_t *nodemask)
8686 {
8687 	unsigned long ret, pfn, flags;
8688 	struct zonelist *zonelist;
8689 	struct zone *zone;
8690 	struct zoneref *z;
8691 
8692 	zonelist = node_zonelist(nid, gfp_mask);
8693 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8694 					gfp_zone(gfp_mask), nodemask) {
8695 		spin_lock_irqsave(&zone->lock, flags);
8696 
8697 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8698 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8699 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8700 				/*
8701 				 * We release the zone lock here because
8702 				 * alloc_contig_range() will also lock the zone
8703 				 * at some point. If there's an allocation
8704 				 * spinning on this lock, it may win the race
8705 				 * and cause alloc_contig_range() to fail...
8706 				 */
8707 				spin_unlock_irqrestore(&zone->lock, flags);
8708 				ret = __alloc_contig_pages(pfn, nr_pages,
8709 							gfp_mask);
8710 				if (!ret)
8711 					return pfn_to_page(pfn);
8712 				spin_lock_irqsave(&zone->lock, flags);
8713 			}
8714 			pfn += nr_pages;
8715 		}
8716 		spin_unlock_irqrestore(&zone->lock, flags);
8717 	}
8718 	return NULL;
8719 }
8720 #endif /* CONFIG_CONTIG_ALLOC */
8721 
8722 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8723 {
8724 	unsigned int count = 0;
8725 
8726 	for (; nr_pages--; pfn++) {
8727 		struct page *page = pfn_to_page(pfn);
8728 
8729 		count += page_count(page) != 1;
8730 		__free_page(page);
8731 	}
8732 	WARN(count != 0, "%d pages are still in use!\n", count);
8733 }
8734 EXPORT_SYMBOL(free_contig_range);
8735 
8736 /*
8737  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8738  * page high values need to be recalulated.
8739  */
8740 void __meminit zone_pcp_update(struct zone *zone)
8741 {
8742 	mutex_lock(&pcp_batch_high_lock);
8743 	__zone_pcp_update(zone);
8744 	mutex_unlock(&pcp_batch_high_lock);
8745 }
8746 
8747 void zone_pcp_reset(struct zone *zone)
8748 {
8749 	unsigned long flags;
8750 	int cpu;
8751 	struct per_cpu_pageset *pset;
8752 
8753 	/* avoid races with drain_pages()  */
8754 	local_irq_save(flags);
8755 	if (zone->pageset != &boot_pageset) {
8756 		for_each_online_cpu(cpu) {
8757 			pset = per_cpu_ptr(zone->pageset, cpu);
8758 			drain_zonestat(zone, pset);
8759 		}
8760 		free_percpu(zone->pageset);
8761 		zone->pageset = &boot_pageset;
8762 	}
8763 	local_irq_restore(flags);
8764 }
8765 
8766 #ifdef CONFIG_MEMORY_HOTREMOVE
8767 /*
8768  * All pages in the range must be in a single zone, must not contain holes,
8769  * must span full sections, and must be isolated before calling this function.
8770  */
8771 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8772 {
8773 	unsigned long pfn = start_pfn;
8774 	struct page *page;
8775 	struct zone *zone;
8776 	unsigned int order;
8777 	unsigned long flags;
8778 
8779 	offline_mem_sections(pfn, end_pfn);
8780 	zone = page_zone(pfn_to_page(pfn));
8781 	spin_lock_irqsave(&zone->lock, flags);
8782 	while (pfn < end_pfn) {
8783 		page = pfn_to_page(pfn);
8784 		/*
8785 		 * The HWPoisoned page may be not in buddy system, and
8786 		 * page_count() is not 0.
8787 		 */
8788 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8789 			pfn++;
8790 			continue;
8791 		}
8792 		/*
8793 		 * At this point all remaining PageOffline() pages have a
8794 		 * reference count of 0 and can simply be skipped.
8795 		 */
8796 		if (PageOffline(page)) {
8797 			BUG_ON(page_count(page));
8798 			BUG_ON(PageBuddy(page));
8799 			pfn++;
8800 			continue;
8801 		}
8802 
8803 		BUG_ON(page_count(page));
8804 		BUG_ON(!PageBuddy(page));
8805 		order = buddy_order(page);
8806 		del_page_from_free_list(page, zone, order);
8807 		pfn += (1 << order);
8808 	}
8809 	spin_unlock_irqrestore(&zone->lock, flags);
8810 }
8811 #endif
8812 
8813 bool is_free_buddy_page(struct page *page)
8814 {
8815 	struct zone *zone = page_zone(page);
8816 	unsigned long pfn = page_to_pfn(page);
8817 	unsigned long flags;
8818 	unsigned int order;
8819 
8820 	spin_lock_irqsave(&zone->lock, flags);
8821 	for (order = 0; order < MAX_ORDER; order++) {
8822 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8823 
8824 		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8825 			break;
8826 	}
8827 	spin_unlock_irqrestore(&zone->lock, flags);
8828 
8829 	return order < MAX_ORDER;
8830 }
8831 
8832 #ifdef CONFIG_MEMORY_FAILURE
8833 /*
8834  * Break down a higher-order page in sub-pages, and keep our target out of
8835  * buddy allocator.
8836  */
8837 static void break_down_buddy_pages(struct zone *zone, struct page *page,
8838 				   struct page *target, int low, int high,
8839 				   int migratetype)
8840 {
8841 	unsigned long size = 1 << high;
8842 	struct page *current_buddy, *next_page;
8843 
8844 	while (high > low) {
8845 		high--;
8846 		size >>= 1;
8847 
8848 		if (target >= &page[size]) {
8849 			next_page = page + size;
8850 			current_buddy = page;
8851 		} else {
8852 			next_page = page;
8853 			current_buddy = page + size;
8854 		}
8855 
8856 		if (set_page_guard(zone, current_buddy, high, migratetype))
8857 			continue;
8858 
8859 		if (current_buddy != target) {
8860 			add_to_free_list(current_buddy, zone, high, migratetype);
8861 			set_buddy_order(current_buddy, high);
8862 			page = next_page;
8863 		}
8864 	}
8865 }
8866 
8867 /*
8868  * Take a page that will be marked as poisoned off the buddy allocator.
8869  */
8870 bool take_page_off_buddy(struct page *page)
8871 {
8872 	struct zone *zone = page_zone(page);
8873 	unsigned long pfn = page_to_pfn(page);
8874 	unsigned long flags;
8875 	unsigned int order;
8876 	bool ret = false;
8877 
8878 	spin_lock_irqsave(&zone->lock, flags);
8879 	for (order = 0; order < MAX_ORDER; order++) {
8880 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8881 		int page_order = buddy_order(page_head);
8882 
8883 		if (PageBuddy(page_head) && page_order >= order) {
8884 			unsigned long pfn_head = page_to_pfn(page_head);
8885 			int migratetype = get_pfnblock_migratetype(page_head,
8886 								   pfn_head);
8887 
8888 			del_page_from_free_list(page_head, zone, page_order);
8889 			break_down_buddy_pages(zone, page_head, page, 0,
8890 						page_order, migratetype);
8891 			ret = true;
8892 			break;
8893 		}
8894 		if (page_count(page_head) > 0)
8895 			break;
8896 	}
8897 	spin_unlock_irqrestore(&zone->lock, flags);
8898 	return ret;
8899 }
8900 #endif
8901