1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/mmu_notifier.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 #include <linux/psi.h> 72 #include <linux/padata.h> 73 #include <linux/khugepaged.h> 74 75 #include <asm/sections.h> 76 #include <asm/tlbflush.h> 77 #include <asm/div64.h> 78 #include "internal.h" 79 #include "shuffle.h" 80 #include "page_reporting.h" 81 82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 83 typedef int __bitwise fpi_t; 84 85 /* No special request */ 86 #define FPI_NONE ((__force fpi_t)0) 87 88 /* 89 * Skip free page reporting notification for the (possibly merged) page. 90 * This does not hinder free page reporting from grabbing the page, 91 * reporting it and marking it "reported" - it only skips notifying 92 * the free page reporting infrastructure about a newly freed page. For 93 * example, used when temporarily pulling a page from a freelist and 94 * putting it back unmodified. 95 */ 96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 97 98 /* 99 * Place the (possibly merged) page to the tail of the freelist. Will ignore 100 * page shuffling (relevant code - e.g., memory onlining - is expected to 101 * shuffle the whole zone). 102 * 103 * Note: No code should rely on this flag for correctness - it's purely 104 * to allow for optimizations when handing back either fresh pages 105 * (memory onlining) or untouched pages (page isolation, free page 106 * reporting). 107 */ 108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 109 110 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 111 static DEFINE_MUTEX(pcp_batch_high_lock); 112 #define MIN_PERCPU_PAGELIST_FRACTION (8) 113 114 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 115 DEFINE_PER_CPU(int, numa_node); 116 EXPORT_PER_CPU_SYMBOL(numa_node); 117 #endif 118 119 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 120 121 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 122 /* 123 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 124 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 125 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 126 * defined in <linux/topology.h>. 127 */ 128 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 129 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 130 #endif 131 132 /* work_structs for global per-cpu drains */ 133 struct pcpu_drain { 134 struct zone *zone; 135 struct work_struct work; 136 }; 137 static DEFINE_MUTEX(pcpu_drain_mutex); 138 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 139 140 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 141 volatile unsigned long latent_entropy __latent_entropy; 142 EXPORT_SYMBOL(latent_entropy); 143 #endif 144 145 /* 146 * Array of node states. 147 */ 148 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 149 [N_POSSIBLE] = NODE_MASK_ALL, 150 [N_ONLINE] = { { [0] = 1UL } }, 151 #ifndef CONFIG_NUMA 152 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 153 #ifdef CONFIG_HIGHMEM 154 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 155 #endif 156 [N_MEMORY] = { { [0] = 1UL } }, 157 [N_CPU] = { { [0] = 1UL } }, 158 #endif /* NUMA */ 159 }; 160 EXPORT_SYMBOL(node_states); 161 162 atomic_long_t _totalram_pages __read_mostly; 163 EXPORT_SYMBOL(_totalram_pages); 164 unsigned long totalreserve_pages __read_mostly; 165 unsigned long totalcma_pages __read_mostly; 166 167 int percpu_pagelist_fraction; 168 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 169 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 170 DEFINE_STATIC_KEY_TRUE(init_on_alloc); 171 #else 172 DEFINE_STATIC_KEY_FALSE(init_on_alloc); 173 #endif 174 EXPORT_SYMBOL(init_on_alloc); 175 176 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 177 DEFINE_STATIC_KEY_TRUE(init_on_free); 178 #else 179 DEFINE_STATIC_KEY_FALSE(init_on_free); 180 #endif 181 EXPORT_SYMBOL(init_on_free); 182 183 static int __init early_init_on_alloc(char *buf) 184 { 185 int ret; 186 bool bool_result; 187 188 ret = kstrtobool(buf, &bool_result); 189 if (ret) 190 return ret; 191 if (bool_result && page_poisoning_enabled()) 192 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n"); 193 if (bool_result) 194 static_branch_enable(&init_on_alloc); 195 else 196 static_branch_disable(&init_on_alloc); 197 return 0; 198 } 199 early_param("init_on_alloc", early_init_on_alloc); 200 201 static int __init early_init_on_free(char *buf) 202 { 203 int ret; 204 bool bool_result; 205 206 ret = kstrtobool(buf, &bool_result); 207 if (ret) 208 return ret; 209 if (bool_result && page_poisoning_enabled()) 210 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n"); 211 if (bool_result) 212 static_branch_enable(&init_on_free); 213 else 214 static_branch_disable(&init_on_free); 215 return 0; 216 } 217 early_param("init_on_free", early_init_on_free); 218 219 /* 220 * A cached value of the page's pageblock's migratetype, used when the page is 221 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 222 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 223 * Also the migratetype set in the page does not necessarily match the pcplist 224 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 225 * other index - this ensures that it will be put on the correct CMA freelist. 226 */ 227 static inline int get_pcppage_migratetype(struct page *page) 228 { 229 return page->index; 230 } 231 232 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 233 { 234 page->index = migratetype; 235 } 236 237 #ifdef CONFIG_PM_SLEEP 238 /* 239 * The following functions are used by the suspend/hibernate code to temporarily 240 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 241 * while devices are suspended. To avoid races with the suspend/hibernate code, 242 * they should always be called with system_transition_mutex held 243 * (gfp_allowed_mask also should only be modified with system_transition_mutex 244 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 245 * with that modification). 246 */ 247 248 static gfp_t saved_gfp_mask; 249 250 void pm_restore_gfp_mask(void) 251 { 252 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 253 if (saved_gfp_mask) { 254 gfp_allowed_mask = saved_gfp_mask; 255 saved_gfp_mask = 0; 256 } 257 } 258 259 void pm_restrict_gfp_mask(void) 260 { 261 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 262 WARN_ON(saved_gfp_mask); 263 saved_gfp_mask = gfp_allowed_mask; 264 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 265 } 266 267 bool pm_suspended_storage(void) 268 { 269 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 270 return false; 271 return true; 272 } 273 #endif /* CONFIG_PM_SLEEP */ 274 275 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 276 unsigned int pageblock_order __read_mostly; 277 #endif 278 279 static void __free_pages_ok(struct page *page, unsigned int order, 280 fpi_t fpi_flags); 281 282 /* 283 * results with 256, 32 in the lowmem_reserve sysctl: 284 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 285 * 1G machine -> (16M dma, 784M normal, 224M high) 286 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 287 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 288 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 289 * 290 * TBD: should special case ZONE_DMA32 machines here - in those we normally 291 * don't need any ZONE_NORMAL reservation 292 */ 293 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 294 #ifdef CONFIG_ZONE_DMA 295 [ZONE_DMA] = 256, 296 #endif 297 #ifdef CONFIG_ZONE_DMA32 298 [ZONE_DMA32] = 256, 299 #endif 300 [ZONE_NORMAL] = 32, 301 #ifdef CONFIG_HIGHMEM 302 [ZONE_HIGHMEM] = 0, 303 #endif 304 [ZONE_MOVABLE] = 0, 305 }; 306 307 static char * const zone_names[MAX_NR_ZONES] = { 308 #ifdef CONFIG_ZONE_DMA 309 "DMA", 310 #endif 311 #ifdef CONFIG_ZONE_DMA32 312 "DMA32", 313 #endif 314 "Normal", 315 #ifdef CONFIG_HIGHMEM 316 "HighMem", 317 #endif 318 "Movable", 319 #ifdef CONFIG_ZONE_DEVICE 320 "Device", 321 #endif 322 }; 323 324 const char * const migratetype_names[MIGRATE_TYPES] = { 325 "Unmovable", 326 "Movable", 327 "Reclaimable", 328 "HighAtomic", 329 #ifdef CONFIG_CMA 330 "CMA", 331 #endif 332 #ifdef CONFIG_MEMORY_ISOLATION 333 "Isolate", 334 #endif 335 }; 336 337 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 338 [NULL_COMPOUND_DTOR] = NULL, 339 [COMPOUND_PAGE_DTOR] = free_compound_page, 340 #ifdef CONFIG_HUGETLB_PAGE 341 [HUGETLB_PAGE_DTOR] = free_huge_page, 342 #endif 343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 344 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 345 #endif 346 }; 347 348 int min_free_kbytes = 1024; 349 int user_min_free_kbytes = -1; 350 #ifdef CONFIG_DISCONTIGMEM 351 /* 352 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 353 * are not on separate NUMA nodes. Functionally this works but with 354 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 355 * quite small. By default, do not boost watermarks on discontigmem as in 356 * many cases very high-order allocations like THP are likely to be 357 * unsupported and the premature reclaim offsets the advantage of long-term 358 * fragmentation avoidance. 359 */ 360 int watermark_boost_factor __read_mostly; 361 #else 362 int watermark_boost_factor __read_mostly = 15000; 363 #endif 364 int watermark_scale_factor = 10; 365 366 static unsigned long nr_kernel_pages __initdata; 367 static unsigned long nr_all_pages __initdata; 368 static unsigned long dma_reserve __initdata; 369 370 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 371 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 372 static unsigned long required_kernelcore __initdata; 373 static unsigned long required_kernelcore_percent __initdata; 374 static unsigned long required_movablecore __initdata; 375 static unsigned long required_movablecore_percent __initdata; 376 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 377 static bool mirrored_kernelcore __meminitdata; 378 379 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 380 int movable_zone; 381 EXPORT_SYMBOL(movable_zone); 382 383 #if MAX_NUMNODES > 1 384 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 385 unsigned int nr_online_nodes __read_mostly = 1; 386 EXPORT_SYMBOL(nr_node_ids); 387 EXPORT_SYMBOL(nr_online_nodes); 388 #endif 389 390 int page_group_by_mobility_disabled __read_mostly; 391 392 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 393 /* 394 * During boot we initialize deferred pages on-demand, as needed, but once 395 * page_alloc_init_late() has finished, the deferred pages are all initialized, 396 * and we can permanently disable that path. 397 */ 398 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 399 400 /* 401 * Calling kasan_free_pages() only after deferred memory initialization 402 * has completed. Poisoning pages during deferred memory init will greatly 403 * lengthen the process and cause problem in large memory systems as the 404 * deferred pages initialization is done with interrupt disabled. 405 * 406 * Assuming that there will be no reference to those newly initialized 407 * pages before they are ever allocated, this should have no effect on 408 * KASAN memory tracking as the poison will be properly inserted at page 409 * allocation time. The only corner case is when pages are allocated by 410 * on-demand allocation and then freed again before the deferred pages 411 * initialization is done, but this is not likely to happen. 412 */ 413 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 414 { 415 if (!static_branch_unlikely(&deferred_pages)) 416 kasan_free_pages(page, order); 417 } 418 419 /* Returns true if the struct page for the pfn is uninitialised */ 420 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 421 { 422 int nid = early_pfn_to_nid(pfn); 423 424 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 425 return true; 426 427 return false; 428 } 429 430 /* 431 * Returns true when the remaining initialisation should be deferred until 432 * later in the boot cycle when it can be parallelised. 433 */ 434 static bool __meminit 435 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 436 { 437 static unsigned long prev_end_pfn, nr_initialised; 438 439 /* 440 * prev_end_pfn static that contains the end of previous zone 441 * No need to protect because called very early in boot before smp_init. 442 */ 443 if (prev_end_pfn != end_pfn) { 444 prev_end_pfn = end_pfn; 445 nr_initialised = 0; 446 } 447 448 /* Always populate low zones for address-constrained allocations */ 449 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 450 return false; 451 452 /* 453 * We start only with one section of pages, more pages are added as 454 * needed until the rest of deferred pages are initialized. 455 */ 456 nr_initialised++; 457 if ((nr_initialised > PAGES_PER_SECTION) && 458 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 459 NODE_DATA(nid)->first_deferred_pfn = pfn; 460 return true; 461 } 462 return false; 463 } 464 #else 465 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 466 467 static inline bool early_page_uninitialised(unsigned long pfn) 468 { 469 return false; 470 } 471 472 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 473 { 474 return false; 475 } 476 #endif 477 478 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 479 static inline unsigned long *get_pageblock_bitmap(struct page *page, 480 unsigned long pfn) 481 { 482 #ifdef CONFIG_SPARSEMEM 483 return section_to_usemap(__pfn_to_section(pfn)); 484 #else 485 return page_zone(page)->pageblock_flags; 486 #endif /* CONFIG_SPARSEMEM */ 487 } 488 489 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 490 { 491 #ifdef CONFIG_SPARSEMEM 492 pfn &= (PAGES_PER_SECTION-1); 493 #else 494 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 495 #endif /* CONFIG_SPARSEMEM */ 496 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 497 } 498 499 /** 500 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 501 * @page: The page within the block of interest 502 * @pfn: The target page frame number 503 * @mask: mask of bits that the caller is interested in 504 * 505 * Return: pageblock_bits flags 506 */ 507 static __always_inline 508 unsigned long __get_pfnblock_flags_mask(struct page *page, 509 unsigned long pfn, 510 unsigned long mask) 511 { 512 unsigned long *bitmap; 513 unsigned long bitidx, word_bitidx; 514 unsigned long word; 515 516 bitmap = get_pageblock_bitmap(page, pfn); 517 bitidx = pfn_to_bitidx(page, pfn); 518 word_bitidx = bitidx / BITS_PER_LONG; 519 bitidx &= (BITS_PER_LONG-1); 520 521 word = bitmap[word_bitidx]; 522 return (word >> bitidx) & mask; 523 } 524 525 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 526 unsigned long mask) 527 { 528 return __get_pfnblock_flags_mask(page, pfn, mask); 529 } 530 531 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 532 { 533 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 534 } 535 536 /** 537 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 538 * @page: The page within the block of interest 539 * @flags: The flags to set 540 * @pfn: The target page frame number 541 * @mask: mask of bits that the caller is interested in 542 */ 543 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 544 unsigned long pfn, 545 unsigned long mask) 546 { 547 unsigned long *bitmap; 548 unsigned long bitidx, word_bitidx; 549 unsigned long old_word, word; 550 551 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 552 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 553 554 bitmap = get_pageblock_bitmap(page, pfn); 555 bitidx = pfn_to_bitidx(page, pfn); 556 word_bitidx = bitidx / BITS_PER_LONG; 557 bitidx &= (BITS_PER_LONG-1); 558 559 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 560 561 mask <<= bitidx; 562 flags <<= bitidx; 563 564 word = READ_ONCE(bitmap[word_bitidx]); 565 for (;;) { 566 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 567 if (word == old_word) 568 break; 569 word = old_word; 570 } 571 } 572 573 void set_pageblock_migratetype(struct page *page, int migratetype) 574 { 575 if (unlikely(page_group_by_mobility_disabled && 576 migratetype < MIGRATE_PCPTYPES)) 577 migratetype = MIGRATE_UNMOVABLE; 578 579 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 580 page_to_pfn(page), MIGRATETYPE_MASK); 581 } 582 583 #ifdef CONFIG_DEBUG_VM 584 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 585 { 586 int ret = 0; 587 unsigned seq; 588 unsigned long pfn = page_to_pfn(page); 589 unsigned long sp, start_pfn; 590 591 do { 592 seq = zone_span_seqbegin(zone); 593 start_pfn = zone->zone_start_pfn; 594 sp = zone->spanned_pages; 595 if (!zone_spans_pfn(zone, pfn)) 596 ret = 1; 597 } while (zone_span_seqretry(zone, seq)); 598 599 if (ret) 600 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 601 pfn, zone_to_nid(zone), zone->name, 602 start_pfn, start_pfn + sp); 603 604 return ret; 605 } 606 607 static int page_is_consistent(struct zone *zone, struct page *page) 608 { 609 if (!pfn_valid_within(page_to_pfn(page))) 610 return 0; 611 if (zone != page_zone(page)) 612 return 0; 613 614 return 1; 615 } 616 /* 617 * Temporary debugging check for pages not lying within a given zone. 618 */ 619 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 620 { 621 if (page_outside_zone_boundaries(zone, page)) 622 return 1; 623 if (!page_is_consistent(zone, page)) 624 return 1; 625 626 return 0; 627 } 628 #else 629 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 630 { 631 return 0; 632 } 633 #endif 634 635 static void bad_page(struct page *page, const char *reason) 636 { 637 static unsigned long resume; 638 static unsigned long nr_shown; 639 static unsigned long nr_unshown; 640 641 /* 642 * Allow a burst of 60 reports, then keep quiet for that minute; 643 * or allow a steady drip of one report per second. 644 */ 645 if (nr_shown == 60) { 646 if (time_before(jiffies, resume)) { 647 nr_unshown++; 648 goto out; 649 } 650 if (nr_unshown) { 651 pr_alert( 652 "BUG: Bad page state: %lu messages suppressed\n", 653 nr_unshown); 654 nr_unshown = 0; 655 } 656 nr_shown = 0; 657 } 658 if (nr_shown++ == 0) 659 resume = jiffies + 60 * HZ; 660 661 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 662 current->comm, page_to_pfn(page)); 663 __dump_page(page, reason); 664 dump_page_owner(page); 665 666 print_modules(); 667 dump_stack(); 668 out: 669 /* Leave bad fields for debug, except PageBuddy could make trouble */ 670 page_mapcount_reset(page); /* remove PageBuddy */ 671 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 672 } 673 674 /* 675 * Higher-order pages are called "compound pages". They are structured thusly: 676 * 677 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 678 * 679 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 680 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 681 * 682 * The first tail page's ->compound_dtor holds the offset in array of compound 683 * page destructors. See compound_page_dtors. 684 * 685 * The first tail page's ->compound_order holds the order of allocation. 686 * This usage means that zero-order pages may not be compound. 687 */ 688 689 void free_compound_page(struct page *page) 690 { 691 mem_cgroup_uncharge(page); 692 __free_pages_ok(page, compound_order(page), FPI_NONE); 693 } 694 695 void prep_compound_page(struct page *page, unsigned int order) 696 { 697 int i; 698 int nr_pages = 1 << order; 699 700 __SetPageHead(page); 701 for (i = 1; i < nr_pages; i++) { 702 struct page *p = page + i; 703 set_page_count(p, 0); 704 p->mapping = TAIL_MAPPING; 705 set_compound_head(p, page); 706 } 707 708 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 709 set_compound_order(page, order); 710 atomic_set(compound_mapcount_ptr(page), -1); 711 if (hpage_pincount_available(page)) 712 atomic_set(compound_pincount_ptr(page), 0); 713 } 714 715 #ifdef CONFIG_DEBUG_PAGEALLOC 716 unsigned int _debug_guardpage_minorder; 717 718 bool _debug_pagealloc_enabled_early __read_mostly 719 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 720 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 721 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 722 EXPORT_SYMBOL(_debug_pagealloc_enabled); 723 724 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 725 726 static int __init early_debug_pagealloc(char *buf) 727 { 728 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 729 } 730 early_param("debug_pagealloc", early_debug_pagealloc); 731 732 void init_debug_pagealloc(void) 733 { 734 if (!debug_pagealloc_enabled()) 735 return; 736 737 static_branch_enable(&_debug_pagealloc_enabled); 738 739 if (!debug_guardpage_minorder()) 740 return; 741 742 static_branch_enable(&_debug_guardpage_enabled); 743 } 744 745 static int __init debug_guardpage_minorder_setup(char *buf) 746 { 747 unsigned long res; 748 749 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 750 pr_err("Bad debug_guardpage_minorder value\n"); 751 return 0; 752 } 753 _debug_guardpage_minorder = res; 754 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 755 return 0; 756 } 757 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 758 759 static inline bool set_page_guard(struct zone *zone, struct page *page, 760 unsigned int order, int migratetype) 761 { 762 if (!debug_guardpage_enabled()) 763 return false; 764 765 if (order >= debug_guardpage_minorder()) 766 return false; 767 768 __SetPageGuard(page); 769 INIT_LIST_HEAD(&page->lru); 770 set_page_private(page, order); 771 /* Guard pages are not available for any usage */ 772 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 773 774 return true; 775 } 776 777 static inline void clear_page_guard(struct zone *zone, struct page *page, 778 unsigned int order, int migratetype) 779 { 780 if (!debug_guardpage_enabled()) 781 return; 782 783 __ClearPageGuard(page); 784 785 set_page_private(page, 0); 786 if (!is_migrate_isolate(migratetype)) 787 __mod_zone_freepage_state(zone, (1 << order), migratetype); 788 } 789 #else 790 static inline bool set_page_guard(struct zone *zone, struct page *page, 791 unsigned int order, int migratetype) { return false; } 792 static inline void clear_page_guard(struct zone *zone, struct page *page, 793 unsigned int order, int migratetype) {} 794 #endif 795 796 static inline void set_buddy_order(struct page *page, unsigned int order) 797 { 798 set_page_private(page, order); 799 __SetPageBuddy(page); 800 } 801 802 /* 803 * This function checks whether a page is free && is the buddy 804 * we can coalesce a page and its buddy if 805 * (a) the buddy is not in a hole (check before calling!) && 806 * (b) the buddy is in the buddy system && 807 * (c) a page and its buddy have the same order && 808 * (d) a page and its buddy are in the same zone. 809 * 810 * For recording whether a page is in the buddy system, we set PageBuddy. 811 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 812 * 813 * For recording page's order, we use page_private(page). 814 */ 815 static inline bool page_is_buddy(struct page *page, struct page *buddy, 816 unsigned int order) 817 { 818 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 819 return false; 820 821 if (buddy_order(buddy) != order) 822 return false; 823 824 /* 825 * zone check is done late to avoid uselessly calculating 826 * zone/node ids for pages that could never merge. 827 */ 828 if (page_zone_id(page) != page_zone_id(buddy)) 829 return false; 830 831 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 832 833 return true; 834 } 835 836 #ifdef CONFIG_COMPACTION 837 static inline struct capture_control *task_capc(struct zone *zone) 838 { 839 struct capture_control *capc = current->capture_control; 840 841 return unlikely(capc) && 842 !(current->flags & PF_KTHREAD) && 843 !capc->page && 844 capc->cc->zone == zone ? capc : NULL; 845 } 846 847 static inline bool 848 compaction_capture(struct capture_control *capc, struct page *page, 849 int order, int migratetype) 850 { 851 if (!capc || order != capc->cc->order) 852 return false; 853 854 /* Do not accidentally pollute CMA or isolated regions*/ 855 if (is_migrate_cma(migratetype) || 856 is_migrate_isolate(migratetype)) 857 return false; 858 859 /* 860 * Do not let lower order allocations polluate a movable pageblock. 861 * This might let an unmovable request use a reclaimable pageblock 862 * and vice-versa but no more than normal fallback logic which can 863 * have trouble finding a high-order free page. 864 */ 865 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 866 return false; 867 868 capc->page = page; 869 return true; 870 } 871 872 #else 873 static inline struct capture_control *task_capc(struct zone *zone) 874 { 875 return NULL; 876 } 877 878 static inline bool 879 compaction_capture(struct capture_control *capc, struct page *page, 880 int order, int migratetype) 881 { 882 return false; 883 } 884 #endif /* CONFIG_COMPACTION */ 885 886 /* Used for pages not on another list */ 887 static inline void add_to_free_list(struct page *page, struct zone *zone, 888 unsigned int order, int migratetype) 889 { 890 struct free_area *area = &zone->free_area[order]; 891 892 list_add(&page->lru, &area->free_list[migratetype]); 893 area->nr_free++; 894 } 895 896 /* Used for pages not on another list */ 897 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 898 unsigned int order, int migratetype) 899 { 900 struct free_area *area = &zone->free_area[order]; 901 902 list_add_tail(&page->lru, &area->free_list[migratetype]); 903 area->nr_free++; 904 } 905 906 /* 907 * Used for pages which are on another list. Move the pages to the tail 908 * of the list - so the moved pages won't immediately be considered for 909 * allocation again (e.g., optimization for memory onlining). 910 */ 911 static inline void move_to_free_list(struct page *page, struct zone *zone, 912 unsigned int order, int migratetype) 913 { 914 struct free_area *area = &zone->free_area[order]; 915 916 list_move_tail(&page->lru, &area->free_list[migratetype]); 917 } 918 919 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 920 unsigned int order) 921 { 922 /* clear reported state and update reported page count */ 923 if (page_reported(page)) 924 __ClearPageReported(page); 925 926 list_del(&page->lru); 927 __ClearPageBuddy(page); 928 set_page_private(page, 0); 929 zone->free_area[order].nr_free--; 930 } 931 932 /* 933 * If this is not the largest possible page, check if the buddy 934 * of the next-highest order is free. If it is, it's possible 935 * that pages are being freed that will coalesce soon. In case, 936 * that is happening, add the free page to the tail of the list 937 * so it's less likely to be used soon and more likely to be merged 938 * as a higher order page 939 */ 940 static inline bool 941 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 942 struct page *page, unsigned int order) 943 { 944 struct page *higher_page, *higher_buddy; 945 unsigned long combined_pfn; 946 947 if (order >= MAX_ORDER - 2) 948 return false; 949 950 if (!pfn_valid_within(buddy_pfn)) 951 return false; 952 953 combined_pfn = buddy_pfn & pfn; 954 higher_page = page + (combined_pfn - pfn); 955 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 956 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 957 958 return pfn_valid_within(buddy_pfn) && 959 page_is_buddy(higher_page, higher_buddy, order + 1); 960 } 961 962 /* 963 * Freeing function for a buddy system allocator. 964 * 965 * The concept of a buddy system is to maintain direct-mapped table 966 * (containing bit values) for memory blocks of various "orders". 967 * The bottom level table contains the map for the smallest allocatable 968 * units of memory (here, pages), and each level above it describes 969 * pairs of units from the levels below, hence, "buddies". 970 * At a high level, all that happens here is marking the table entry 971 * at the bottom level available, and propagating the changes upward 972 * as necessary, plus some accounting needed to play nicely with other 973 * parts of the VM system. 974 * At each level, we keep a list of pages, which are heads of continuous 975 * free pages of length of (1 << order) and marked with PageBuddy. 976 * Page's order is recorded in page_private(page) field. 977 * So when we are allocating or freeing one, we can derive the state of the 978 * other. That is, if we allocate a small block, and both were 979 * free, the remainder of the region must be split into blocks. 980 * If a block is freed, and its buddy is also free, then this 981 * triggers coalescing into a block of larger size. 982 * 983 * -- nyc 984 */ 985 986 static inline void __free_one_page(struct page *page, 987 unsigned long pfn, 988 struct zone *zone, unsigned int order, 989 int migratetype, fpi_t fpi_flags) 990 { 991 struct capture_control *capc = task_capc(zone); 992 unsigned long buddy_pfn; 993 unsigned long combined_pfn; 994 unsigned int max_order; 995 struct page *buddy; 996 bool to_tail; 997 998 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 999 1000 VM_BUG_ON(!zone_is_initialized(zone)); 1001 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1002 1003 VM_BUG_ON(migratetype == -1); 1004 if (likely(!is_migrate_isolate(migratetype))) 1005 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1006 1007 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1008 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1009 1010 continue_merging: 1011 while (order < max_order - 1) { 1012 if (compaction_capture(capc, page, order, migratetype)) { 1013 __mod_zone_freepage_state(zone, -(1 << order), 1014 migratetype); 1015 return; 1016 } 1017 buddy_pfn = __find_buddy_pfn(pfn, order); 1018 buddy = page + (buddy_pfn - pfn); 1019 1020 if (!pfn_valid_within(buddy_pfn)) 1021 goto done_merging; 1022 if (!page_is_buddy(page, buddy, order)) 1023 goto done_merging; 1024 /* 1025 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1026 * merge with it and move up one order. 1027 */ 1028 if (page_is_guard(buddy)) 1029 clear_page_guard(zone, buddy, order, migratetype); 1030 else 1031 del_page_from_free_list(buddy, zone, order); 1032 combined_pfn = buddy_pfn & pfn; 1033 page = page + (combined_pfn - pfn); 1034 pfn = combined_pfn; 1035 order++; 1036 } 1037 if (max_order < MAX_ORDER) { 1038 /* If we are here, it means order is >= pageblock_order. 1039 * We want to prevent merge between freepages on isolate 1040 * pageblock and normal pageblock. Without this, pageblock 1041 * isolation could cause incorrect freepage or CMA accounting. 1042 * 1043 * We don't want to hit this code for the more frequent 1044 * low-order merging. 1045 */ 1046 if (unlikely(has_isolate_pageblock(zone))) { 1047 int buddy_mt; 1048 1049 buddy_pfn = __find_buddy_pfn(pfn, order); 1050 buddy = page + (buddy_pfn - pfn); 1051 buddy_mt = get_pageblock_migratetype(buddy); 1052 1053 if (migratetype != buddy_mt 1054 && (is_migrate_isolate(migratetype) || 1055 is_migrate_isolate(buddy_mt))) 1056 goto done_merging; 1057 } 1058 max_order++; 1059 goto continue_merging; 1060 } 1061 1062 done_merging: 1063 set_buddy_order(page, order); 1064 1065 if (fpi_flags & FPI_TO_TAIL) 1066 to_tail = true; 1067 else if (is_shuffle_order(order)) 1068 to_tail = shuffle_pick_tail(); 1069 else 1070 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1071 1072 if (to_tail) 1073 add_to_free_list_tail(page, zone, order, migratetype); 1074 else 1075 add_to_free_list(page, zone, order, migratetype); 1076 1077 /* Notify page reporting subsystem of freed page */ 1078 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1079 page_reporting_notify_free(order); 1080 } 1081 1082 /* 1083 * A bad page could be due to a number of fields. Instead of multiple branches, 1084 * try and check multiple fields with one check. The caller must do a detailed 1085 * check if necessary. 1086 */ 1087 static inline bool page_expected_state(struct page *page, 1088 unsigned long check_flags) 1089 { 1090 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1091 return false; 1092 1093 if (unlikely((unsigned long)page->mapping | 1094 page_ref_count(page) | 1095 #ifdef CONFIG_MEMCG 1096 (unsigned long)page->mem_cgroup | 1097 #endif 1098 (page->flags & check_flags))) 1099 return false; 1100 1101 return true; 1102 } 1103 1104 static const char *page_bad_reason(struct page *page, unsigned long flags) 1105 { 1106 const char *bad_reason = NULL; 1107 1108 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1109 bad_reason = "nonzero mapcount"; 1110 if (unlikely(page->mapping != NULL)) 1111 bad_reason = "non-NULL mapping"; 1112 if (unlikely(page_ref_count(page) != 0)) 1113 bad_reason = "nonzero _refcount"; 1114 if (unlikely(page->flags & flags)) { 1115 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1116 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1117 else 1118 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1119 } 1120 #ifdef CONFIG_MEMCG 1121 if (unlikely(page->mem_cgroup)) 1122 bad_reason = "page still charged to cgroup"; 1123 #endif 1124 return bad_reason; 1125 } 1126 1127 static void check_free_page_bad(struct page *page) 1128 { 1129 bad_page(page, 1130 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1131 } 1132 1133 static inline int check_free_page(struct page *page) 1134 { 1135 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1136 return 0; 1137 1138 /* Something has gone sideways, find it */ 1139 check_free_page_bad(page); 1140 return 1; 1141 } 1142 1143 static int free_tail_pages_check(struct page *head_page, struct page *page) 1144 { 1145 int ret = 1; 1146 1147 /* 1148 * We rely page->lru.next never has bit 0 set, unless the page 1149 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1150 */ 1151 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1152 1153 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1154 ret = 0; 1155 goto out; 1156 } 1157 switch (page - head_page) { 1158 case 1: 1159 /* the first tail page: ->mapping may be compound_mapcount() */ 1160 if (unlikely(compound_mapcount(page))) { 1161 bad_page(page, "nonzero compound_mapcount"); 1162 goto out; 1163 } 1164 break; 1165 case 2: 1166 /* 1167 * the second tail page: ->mapping is 1168 * deferred_list.next -- ignore value. 1169 */ 1170 break; 1171 default: 1172 if (page->mapping != TAIL_MAPPING) { 1173 bad_page(page, "corrupted mapping in tail page"); 1174 goto out; 1175 } 1176 break; 1177 } 1178 if (unlikely(!PageTail(page))) { 1179 bad_page(page, "PageTail not set"); 1180 goto out; 1181 } 1182 if (unlikely(compound_head(page) != head_page)) { 1183 bad_page(page, "compound_head not consistent"); 1184 goto out; 1185 } 1186 ret = 0; 1187 out: 1188 page->mapping = NULL; 1189 clear_compound_head(page); 1190 return ret; 1191 } 1192 1193 static void kernel_init_free_pages(struct page *page, int numpages) 1194 { 1195 int i; 1196 1197 /* s390's use of memset() could override KASAN redzones. */ 1198 kasan_disable_current(); 1199 for (i = 0; i < numpages; i++) 1200 clear_highpage(page + i); 1201 kasan_enable_current(); 1202 } 1203 1204 static __always_inline bool free_pages_prepare(struct page *page, 1205 unsigned int order, bool check_free) 1206 { 1207 int bad = 0; 1208 1209 VM_BUG_ON_PAGE(PageTail(page), page); 1210 1211 trace_mm_page_free(page, order); 1212 1213 if (unlikely(PageHWPoison(page)) && !order) { 1214 /* 1215 * Do not let hwpoison pages hit pcplists/buddy 1216 * Untie memcg state and reset page's owner 1217 */ 1218 if (memcg_kmem_enabled() && PageKmemcg(page)) 1219 __memcg_kmem_uncharge_page(page, order); 1220 reset_page_owner(page, order); 1221 return false; 1222 } 1223 1224 /* 1225 * Check tail pages before head page information is cleared to 1226 * avoid checking PageCompound for order-0 pages. 1227 */ 1228 if (unlikely(order)) { 1229 bool compound = PageCompound(page); 1230 int i; 1231 1232 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1233 1234 if (compound) 1235 ClearPageDoubleMap(page); 1236 for (i = 1; i < (1 << order); i++) { 1237 if (compound) 1238 bad += free_tail_pages_check(page, page + i); 1239 if (unlikely(check_free_page(page + i))) { 1240 bad++; 1241 continue; 1242 } 1243 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1244 } 1245 } 1246 if (PageMappingFlags(page)) 1247 page->mapping = NULL; 1248 if (memcg_kmem_enabled() && PageKmemcg(page)) 1249 __memcg_kmem_uncharge_page(page, order); 1250 if (check_free) 1251 bad += check_free_page(page); 1252 if (bad) 1253 return false; 1254 1255 page_cpupid_reset_last(page); 1256 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1257 reset_page_owner(page, order); 1258 1259 if (!PageHighMem(page)) { 1260 debug_check_no_locks_freed(page_address(page), 1261 PAGE_SIZE << order); 1262 debug_check_no_obj_freed(page_address(page), 1263 PAGE_SIZE << order); 1264 } 1265 if (want_init_on_free()) 1266 kernel_init_free_pages(page, 1 << order); 1267 1268 kernel_poison_pages(page, 1 << order, 0); 1269 /* 1270 * arch_free_page() can make the page's contents inaccessible. s390 1271 * does this. So nothing which can access the page's contents should 1272 * happen after this. 1273 */ 1274 arch_free_page(page, order); 1275 1276 debug_pagealloc_unmap_pages(page, 1 << order); 1277 1278 kasan_free_nondeferred_pages(page, order); 1279 1280 return true; 1281 } 1282 1283 #ifdef CONFIG_DEBUG_VM 1284 /* 1285 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1286 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1287 * moved from pcp lists to free lists. 1288 */ 1289 static bool free_pcp_prepare(struct page *page) 1290 { 1291 return free_pages_prepare(page, 0, true); 1292 } 1293 1294 static bool bulkfree_pcp_prepare(struct page *page) 1295 { 1296 if (debug_pagealloc_enabled_static()) 1297 return check_free_page(page); 1298 else 1299 return false; 1300 } 1301 #else 1302 /* 1303 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1304 * moving from pcp lists to free list in order to reduce overhead. With 1305 * debug_pagealloc enabled, they are checked also immediately when being freed 1306 * to the pcp lists. 1307 */ 1308 static bool free_pcp_prepare(struct page *page) 1309 { 1310 if (debug_pagealloc_enabled_static()) 1311 return free_pages_prepare(page, 0, true); 1312 else 1313 return free_pages_prepare(page, 0, false); 1314 } 1315 1316 static bool bulkfree_pcp_prepare(struct page *page) 1317 { 1318 return check_free_page(page); 1319 } 1320 #endif /* CONFIG_DEBUG_VM */ 1321 1322 static inline void prefetch_buddy(struct page *page) 1323 { 1324 unsigned long pfn = page_to_pfn(page); 1325 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1326 struct page *buddy = page + (buddy_pfn - pfn); 1327 1328 prefetch(buddy); 1329 } 1330 1331 /* 1332 * Frees a number of pages from the PCP lists 1333 * Assumes all pages on list are in same zone, and of same order. 1334 * count is the number of pages to free. 1335 * 1336 * If the zone was previously in an "all pages pinned" state then look to 1337 * see if this freeing clears that state. 1338 * 1339 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1340 * pinned" detection logic. 1341 */ 1342 static void free_pcppages_bulk(struct zone *zone, int count, 1343 struct per_cpu_pages *pcp) 1344 { 1345 int migratetype = 0; 1346 int batch_free = 0; 1347 int prefetch_nr = 0; 1348 bool isolated_pageblocks; 1349 struct page *page, *tmp; 1350 LIST_HEAD(head); 1351 1352 /* 1353 * Ensure proper count is passed which otherwise would stuck in the 1354 * below while (list_empty(list)) loop. 1355 */ 1356 count = min(pcp->count, count); 1357 while (count) { 1358 struct list_head *list; 1359 1360 /* 1361 * Remove pages from lists in a round-robin fashion. A 1362 * batch_free count is maintained that is incremented when an 1363 * empty list is encountered. This is so more pages are freed 1364 * off fuller lists instead of spinning excessively around empty 1365 * lists 1366 */ 1367 do { 1368 batch_free++; 1369 if (++migratetype == MIGRATE_PCPTYPES) 1370 migratetype = 0; 1371 list = &pcp->lists[migratetype]; 1372 } while (list_empty(list)); 1373 1374 /* This is the only non-empty list. Free them all. */ 1375 if (batch_free == MIGRATE_PCPTYPES) 1376 batch_free = count; 1377 1378 do { 1379 page = list_last_entry(list, struct page, lru); 1380 /* must delete to avoid corrupting pcp list */ 1381 list_del(&page->lru); 1382 pcp->count--; 1383 1384 if (bulkfree_pcp_prepare(page)) 1385 continue; 1386 1387 list_add_tail(&page->lru, &head); 1388 1389 /* 1390 * We are going to put the page back to the global 1391 * pool, prefetch its buddy to speed up later access 1392 * under zone->lock. It is believed the overhead of 1393 * an additional test and calculating buddy_pfn here 1394 * can be offset by reduced memory latency later. To 1395 * avoid excessive prefetching due to large count, only 1396 * prefetch buddy for the first pcp->batch nr of pages. 1397 */ 1398 if (prefetch_nr++ < pcp->batch) 1399 prefetch_buddy(page); 1400 } while (--count && --batch_free && !list_empty(list)); 1401 } 1402 1403 spin_lock(&zone->lock); 1404 isolated_pageblocks = has_isolate_pageblock(zone); 1405 1406 /* 1407 * Use safe version since after __free_one_page(), 1408 * page->lru.next will not point to original list. 1409 */ 1410 list_for_each_entry_safe(page, tmp, &head, lru) { 1411 int mt = get_pcppage_migratetype(page); 1412 /* MIGRATE_ISOLATE page should not go to pcplists */ 1413 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1414 /* Pageblock could have been isolated meanwhile */ 1415 if (unlikely(isolated_pageblocks)) 1416 mt = get_pageblock_migratetype(page); 1417 1418 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE); 1419 trace_mm_page_pcpu_drain(page, 0, mt); 1420 } 1421 spin_unlock(&zone->lock); 1422 } 1423 1424 static void free_one_page(struct zone *zone, 1425 struct page *page, unsigned long pfn, 1426 unsigned int order, 1427 int migratetype, fpi_t fpi_flags) 1428 { 1429 spin_lock(&zone->lock); 1430 if (unlikely(has_isolate_pageblock(zone) || 1431 is_migrate_isolate(migratetype))) { 1432 migratetype = get_pfnblock_migratetype(page, pfn); 1433 } 1434 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1435 spin_unlock(&zone->lock); 1436 } 1437 1438 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1439 unsigned long zone, int nid) 1440 { 1441 mm_zero_struct_page(page); 1442 set_page_links(page, zone, nid, pfn); 1443 init_page_count(page); 1444 page_mapcount_reset(page); 1445 page_cpupid_reset_last(page); 1446 page_kasan_tag_reset(page); 1447 1448 INIT_LIST_HEAD(&page->lru); 1449 #ifdef WANT_PAGE_VIRTUAL 1450 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1451 if (!is_highmem_idx(zone)) 1452 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1453 #endif 1454 } 1455 1456 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1457 static void __meminit init_reserved_page(unsigned long pfn) 1458 { 1459 pg_data_t *pgdat; 1460 int nid, zid; 1461 1462 if (!early_page_uninitialised(pfn)) 1463 return; 1464 1465 nid = early_pfn_to_nid(pfn); 1466 pgdat = NODE_DATA(nid); 1467 1468 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1469 struct zone *zone = &pgdat->node_zones[zid]; 1470 1471 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1472 break; 1473 } 1474 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1475 } 1476 #else 1477 static inline void init_reserved_page(unsigned long pfn) 1478 { 1479 } 1480 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1481 1482 /* 1483 * Initialised pages do not have PageReserved set. This function is 1484 * called for each range allocated by the bootmem allocator and 1485 * marks the pages PageReserved. The remaining valid pages are later 1486 * sent to the buddy page allocator. 1487 */ 1488 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1489 { 1490 unsigned long start_pfn = PFN_DOWN(start); 1491 unsigned long end_pfn = PFN_UP(end); 1492 1493 for (; start_pfn < end_pfn; start_pfn++) { 1494 if (pfn_valid(start_pfn)) { 1495 struct page *page = pfn_to_page(start_pfn); 1496 1497 init_reserved_page(start_pfn); 1498 1499 /* Avoid false-positive PageTail() */ 1500 INIT_LIST_HEAD(&page->lru); 1501 1502 /* 1503 * no need for atomic set_bit because the struct 1504 * page is not visible yet so nobody should 1505 * access it yet. 1506 */ 1507 __SetPageReserved(page); 1508 } 1509 } 1510 } 1511 1512 static void __free_pages_ok(struct page *page, unsigned int order, 1513 fpi_t fpi_flags) 1514 { 1515 unsigned long flags; 1516 int migratetype; 1517 unsigned long pfn = page_to_pfn(page); 1518 1519 if (!free_pages_prepare(page, order, true)) 1520 return; 1521 1522 migratetype = get_pfnblock_migratetype(page, pfn); 1523 local_irq_save(flags); 1524 __count_vm_events(PGFREE, 1 << order); 1525 free_one_page(page_zone(page), page, pfn, order, migratetype, 1526 fpi_flags); 1527 local_irq_restore(flags); 1528 } 1529 1530 void __free_pages_core(struct page *page, unsigned int order) 1531 { 1532 unsigned int nr_pages = 1 << order; 1533 struct page *p = page; 1534 unsigned int loop; 1535 1536 /* 1537 * When initializing the memmap, __init_single_page() sets the refcount 1538 * of all pages to 1 ("allocated"/"not free"). We have to set the 1539 * refcount of all involved pages to 0. 1540 */ 1541 prefetchw(p); 1542 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1543 prefetchw(p + 1); 1544 __ClearPageReserved(p); 1545 set_page_count(p, 0); 1546 } 1547 __ClearPageReserved(p); 1548 set_page_count(p, 0); 1549 1550 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1551 1552 /* 1553 * Bypass PCP and place fresh pages right to the tail, primarily 1554 * relevant for memory onlining. 1555 */ 1556 __free_pages_ok(page, order, FPI_TO_TAIL); 1557 } 1558 1559 #ifdef CONFIG_NEED_MULTIPLE_NODES 1560 1561 /* 1562 * During memory init memblocks map pfns to nids. The search is expensive and 1563 * this caches recent lookups. The implementation of __early_pfn_to_nid 1564 * treats start/end as pfns. 1565 */ 1566 struct mminit_pfnnid_cache { 1567 unsigned long last_start; 1568 unsigned long last_end; 1569 int last_nid; 1570 }; 1571 1572 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1573 1574 /* 1575 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1576 */ 1577 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1578 struct mminit_pfnnid_cache *state) 1579 { 1580 unsigned long start_pfn, end_pfn; 1581 int nid; 1582 1583 if (state->last_start <= pfn && pfn < state->last_end) 1584 return state->last_nid; 1585 1586 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1587 if (nid != NUMA_NO_NODE) { 1588 state->last_start = start_pfn; 1589 state->last_end = end_pfn; 1590 state->last_nid = nid; 1591 } 1592 1593 return nid; 1594 } 1595 1596 int __meminit early_pfn_to_nid(unsigned long pfn) 1597 { 1598 static DEFINE_SPINLOCK(early_pfn_lock); 1599 int nid; 1600 1601 spin_lock(&early_pfn_lock); 1602 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1603 if (nid < 0) 1604 nid = first_online_node; 1605 spin_unlock(&early_pfn_lock); 1606 1607 return nid; 1608 } 1609 #endif /* CONFIG_NEED_MULTIPLE_NODES */ 1610 1611 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1612 unsigned int order) 1613 { 1614 if (early_page_uninitialised(pfn)) 1615 return; 1616 __free_pages_core(page, order); 1617 } 1618 1619 /* 1620 * Check that the whole (or subset of) a pageblock given by the interval of 1621 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1622 * with the migration of free compaction scanner. The scanners then need to 1623 * use only pfn_valid_within() check for arches that allow holes within 1624 * pageblocks. 1625 * 1626 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1627 * 1628 * It's possible on some configurations to have a setup like node0 node1 node0 1629 * i.e. it's possible that all pages within a zones range of pages do not 1630 * belong to a single zone. We assume that a border between node0 and node1 1631 * can occur within a single pageblock, but not a node0 node1 node0 1632 * interleaving within a single pageblock. It is therefore sufficient to check 1633 * the first and last page of a pageblock and avoid checking each individual 1634 * page in a pageblock. 1635 */ 1636 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1637 unsigned long end_pfn, struct zone *zone) 1638 { 1639 struct page *start_page; 1640 struct page *end_page; 1641 1642 /* end_pfn is one past the range we are checking */ 1643 end_pfn--; 1644 1645 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1646 return NULL; 1647 1648 start_page = pfn_to_online_page(start_pfn); 1649 if (!start_page) 1650 return NULL; 1651 1652 if (page_zone(start_page) != zone) 1653 return NULL; 1654 1655 end_page = pfn_to_page(end_pfn); 1656 1657 /* This gives a shorter code than deriving page_zone(end_page) */ 1658 if (page_zone_id(start_page) != page_zone_id(end_page)) 1659 return NULL; 1660 1661 return start_page; 1662 } 1663 1664 void set_zone_contiguous(struct zone *zone) 1665 { 1666 unsigned long block_start_pfn = zone->zone_start_pfn; 1667 unsigned long block_end_pfn; 1668 1669 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1670 for (; block_start_pfn < zone_end_pfn(zone); 1671 block_start_pfn = block_end_pfn, 1672 block_end_pfn += pageblock_nr_pages) { 1673 1674 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1675 1676 if (!__pageblock_pfn_to_page(block_start_pfn, 1677 block_end_pfn, zone)) 1678 return; 1679 cond_resched(); 1680 } 1681 1682 /* We confirm that there is no hole */ 1683 zone->contiguous = true; 1684 } 1685 1686 void clear_zone_contiguous(struct zone *zone) 1687 { 1688 zone->contiguous = false; 1689 } 1690 1691 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1692 static void __init deferred_free_range(unsigned long pfn, 1693 unsigned long nr_pages) 1694 { 1695 struct page *page; 1696 unsigned long i; 1697 1698 if (!nr_pages) 1699 return; 1700 1701 page = pfn_to_page(pfn); 1702 1703 /* Free a large naturally-aligned chunk if possible */ 1704 if (nr_pages == pageblock_nr_pages && 1705 (pfn & (pageblock_nr_pages - 1)) == 0) { 1706 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1707 __free_pages_core(page, pageblock_order); 1708 return; 1709 } 1710 1711 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1712 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1713 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1714 __free_pages_core(page, 0); 1715 } 1716 } 1717 1718 /* Completion tracking for deferred_init_memmap() threads */ 1719 static atomic_t pgdat_init_n_undone __initdata; 1720 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1721 1722 static inline void __init pgdat_init_report_one_done(void) 1723 { 1724 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1725 complete(&pgdat_init_all_done_comp); 1726 } 1727 1728 /* 1729 * Returns true if page needs to be initialized or freed to buddy allocator. 1730 * 1731 * First we check if pfn is valid on architectures where it is possible to have 1732 * holes within pageblock_nr_pages. On systems where it is not possible, this 1733 * function is optimized out. 1734 * 1735 * Then, we check if a current large page is valid by only checking the validity 1736 * of the head pfn. 1737 */ 1738 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1739 { 1740 if (!pfn_valid_within(pfn)) 1741 return false; 1742 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1743 return false; 1744 return true; 1745 } 1746 1747 /* 1748 * Free pages to buddy allocator. Try to free aligned pages in 1749 * pageblock_nr_pages sizes. 1750 */ 1751 static void __init deferred_free_pages(unsigned long pfn, 1752 unsigned long end_pfn) 1753 { 1754 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1755 unsigned long nr_free = 0; 1756 1757 for (; pfn < end_pfn; pfn++) { 1758 if (!deferred_pfn_valid(pfn)) { 1759 deferred_free_range(pfn - nr_free, nr_free); 1760 nr_free = 0; 1761 } else if (!(pfn & nr_pgmask)) { 1762 deferred_free_range(pfn - nr_free, nr_free); 1763 nr_free = 1; 1764 } else { 1765 nr_free++; 1766 } 1767 } 1768 /* Free the last block of pages to allocator */ 1769 deferred_free_range(pfn - nr_free, nr_free); 1770 } 1771 1772 /* 1773 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1774 * by performing it only once every pageblock_nr_pages. 1775 * Return number of pages initialized. 1776 */ 1777 static unsigned long __init deferred_init_pages(struct zone *zone, 1778 unsigned long pfn, 1779 unsigned long end_pfn) 1780 { 1781 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1782 int nid = zone_to_nid(zone); 1783 unsigned long nr_pages = 0; 1784 int zid = zone_idx(zone); 1785 struct page *page = NULL; 1786 1787 for (; pfn < end_pfn; pfn++) { 1788 if (!deferred_pfn_valid(pfn)) { 1789 page = NULL; 1790 continue; 1791 } else if (!page || !(pfn & nr_pgmask)) { 1792 page = pfn_to_page(pfn); 1793 } else { 1794 page++; 1795 } 1796 __init_single_page(page, pfn, zid, nid); 1797 nr_pages++; 1798 } 1799 return (nr_pages); 1800 } 1801 1802 /* 1803 * This function is meant to pre-load the iterator for the zone init. 1804 * Specifically it walks through the ranges until we are caught up to the 1805 * first_init_pfn value and exits there. If we never encounter the value we 1806 * return false indicating there are no valid ranges left. 1807 */ 1808 static bool __init 1809 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1810 unsigned long *spfn, unsigned long *epfn, 1811 unsigned long first_init_pfn) 1812 { 1813 u64 j; 1814 1815 /* 1816 * Start out by walking through the ranges in this zone that have 1817 * already been initialized. We don't need to do anything with them 1818 * so we just need to flush them out of the system. 1819 */ 1820 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1821 if (*epfn <= first_init_pfn) 1822 continue; 1823 if (*spfn < first_init_pfn) 1824 *spfn = first_init_pfn; 1825 *i = j; 1826 return true; 1827 } 1828 1829 return false; 1830 } 1831 1832 /* 1833 * Initialize and free pages. We do it in two loops: first we initialize 1834 * struct page, then free to buddy allocator, because while we are 1835 * freeing pages we can access pages that are ahead (computing buddy 1836 * page in __free_one_page()). 1837 * 1838 * In order to try and keep some memory in the cache we have the loop 1839 * broken along max page order boundaries. This way we will not cause 1840 * any issues with the buddy page computation. 1841 */ 1842 static unsigned long __init 1843 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1844 unsigned long *end_pfn) 1845 { 1846 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1847 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1848 unsigned long nr_pages = 0; 1849 u64 j = *i; 1850 1851 /* First we loop through and initialize the page values */ 1852 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1853 unsigned long t; 1854 1855 if (mo_pfn <= *start_pfn) 1856 break; 1857 1858 t = min(mo_pfn, *end_pfn); 1859 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1860 1861 if (mo_pfn < *end_pfn) { 1862 *start_pfn = mo_pfn; 1863 break; 1864 } 1865 } 1866 1867 /* Reset values and now loop through freeing pages as needed */ 1868 swap(j, *i); 1869 1870 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1871 unsigned long t; 1872 1873 if (mo_pfn <= spfn) 1874 break; 1875 1876 t = min(mo_pfn, epfn); 1877 deferred_free_pages(spfn, t); 1878 1879 if (mo_pfn <= epfn) 1880 break; 1881 } 1882 1883 return nr_pages; 1884 } 1885 1886 static void __init 1887 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 1888 void *arg) 1889 { 1890 unsigned long spfn, epfn; 1891 struct zone *zone = arg; 1892 u64 i; 1893 1894 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 1895 1896 /* 1897 * Initialize and free pages in MAX_ORDER sized increments so that we 1898 * can avoid introducing any issues with the buddy allocator. 1899 */ 1900 while (spfn < end_pfn) { 1901 deferred_init_maxorder(&i, zone, &spfn, &epfn); 1902 cond_resched(); 1903 } 1904 } 1905 1906 /* An arch may override for more concurrency. */ 1907 __weak int __init 1908 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 1909 { 1910 return 1; 1911 } 1912 1913 /* Initialise remaining memory on a node */ 1914 static int __init deferred_init_memmap(void *data) 1915 { 1916 pg_data_t *pgdat = data; 1917 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1918 unsigned long spfn = 0, epfn = 0; 1919 unsigned long first_init_pfn, flags; 1920 unsigned long start = jiffies; 1921 struct zone *zone; 1922 int zid, max_threads; 1923 u64 i; 1924 1925 /* Bind memory initialisation thread to a local node if possible */ 1926 if (!cpumask_empty(cpumask)) 1927 set_cpus_allowed_ptr(current, cpumask); 1928 1929 pgdat_resize_lock(pgdat, &flags); 1930 first_init_pfn = pgdat->first_deferred_pfn; 1931 if (first_init_pfn == ULONG_MAX) { 1932 pgdat_resize_unlock(pgdat, &flags); 1933 pgdat_init_report_one_done(); 1934 return 0; 1935 } 1936 1937 /* Sanity check boundaries */ 1938 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1939 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1940 pgdat->first_deferred_pfn = ULONG_MAX; 1941 1942 /* 1943 * Once we unlock here, the zone cannot be grown anymore, thus if an 1944 * interrupt thread must allocate this early in boot, zone must be 1945 * pre-grown prior to start of deferred page initialization. 1946 */ 1947 pgdat_resize_unlock(pgdat, &flags); 1948 1949 /* Only the highest zone is deferred so find it */ 1950 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1951 zone = pgdat->node_zones + zid; 1952 if (first_init_pfn < zone_end_pfn(zone)) 1953 break; 1954 } 1955 1956 /* If the zone is empty somebody else may have cleared out the zone */ 1957 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1958 first_init_pfn)) 1959 goto zone_empty; 1960 1961 max_threads = deferred_page_init_max_threads(cpumask); 1962 1963 while (spfn < epfn) { 1964 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 1965 struct padata_mt_job job = { 1966 .thread_fn = deferred_init_memmap_chunk, 1967 .fn_arg = zone, 1968 .start = spfn, 1969 .size = epfn_align - spfn, 1970 .align = PAGES_PER_SECTION, 1971 .min_chunk = PAGES_PER_SECTION, 1972 .max_threads = max_threads, 1973 }; 1974 1975 padata_do_multithreaded(&job); 1976 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1977 epfn_align); 1978 } 1979 zone_empty: 1980 /* Sanity check that the next zone really is unpopulated */ 1981 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1982 1983 pr_info("node %d deferred pages initialised in %ums\n", 1984 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 1985 1986 pgdat_init_report_one_done(); 1987 return 0; 1988 } 1989 1990 /* 1991 * If this zone has deferred pages, try to grow it by initializing enough 1992 * deferred pages to satisfy the allocation specified by order, rounded up to 1993 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1994 * of SECTION_SIZE bytes by initializing struct pages in increments of 1995 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1996 * 1997 * Return true when zone was grown, otherwise return false. We return true even 1998 * when we grow less than requested, to let the caller decide if there are 1999 * enough pages to satisfy the allocation. 2000 * 2001 * Note: We use noinline because this function is needed only during boot, and 2002 * it is called from a __ref function _deferred_grow_zone. This way we are 2003 * making sure that it is not inlined into permanent text section. 2004 */ 2005 static noinline bool __init 2006 deferred_grow_zone(struct zone *zone, unsigned int order) 2007 { 2008 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2009 pg_data_t *pgdat = zone->zone_pgdat; 2010 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2011 unsigned long spfn, epfn, flags; 2012 unsigned long nr_pages = 0; 2013 u64 i; 2014 2015 /* Only the last zone may have deferred pages */ 2016 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2017 return false; 2018 2019 pgdat_resize_lock(pgdat, &flags); 2020 2021 /* 2022 * If someone grew this zone while we were waiting for spinlock, return 2023 * true, as there might be enough pages already. 2024 */ 2025 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2026 pgdat_resize_unlock(pgdat, &flags); 2027 return true; 2028 } 2029 2030 /* If the zone is empty somebody else may have cleared out the zone */ 2031 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2032 first_deferred_pfn)) { 2033 pgdat->first_deferred_pfn = ULONG_MAX; 2034 pgdat_resize_unlock(pgdat, &flags); 2035 /* Retry only once. */ 2036 return first_deferred_pfn != ULONG_MAX; 2037 } 2038 2039 /* 2040 * Initialize and free pages in MAX_ORDER sized increments so 2041 * that we can avoid introducing any issues with the buddy 2042 * allocator. 2043 */ 2044 while (spfn < epfn) { 2045 /* update our first deferred PFN for this section */ 2046 first_deferred_pfn = spfn; 2047 2048 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2049 touch_nmi_watchdog(); 2050 2051 /* We should only stop along section boundaries */ 2052 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2053 continue; 2054 2055 /* If our quota has been met we can stop here */ 2056 if (nr_pages >= nr_pages_needed) 2057 break; 2058 } 2059 2060 pgdat->first_deferred_pfn = spfn; 2061 pgdat_resize_unlock(pgdat, &flags); 2062 2063 return nr_pages > 0; 2064 } 2065 2066 /* 2067 * deferred_grow_zone() is __init, but it is called from 2068 * get_page_from_freelist() during early boot until deferred_pages permanently 2069 * disables this call. This is why we have refdata wrapper to avoid warning, 2070 * and to ensure that the function body gets unloaded. 2071 */ 2072 static bool __ref 2073 _deferred_grow_zone(struct zone *zone, unsigned int order) 2074 { 2075 return deferred_grow_zone(zone, order); 2076 } 2077 2078 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2079 2080 void __init page_alloc_init_late(void) 2081 { 2082 struct zone *zone; 2083 int nid; 2084 2085 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2086 2087 /* There will be num_node_state(N_MEMORY) threads */ 2088 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2089 for_each_node_state(nid, N_MEMORY) { 2090 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2091 } 2092 2093 /* Block until all are initialised */ 2094 wait_for_completion(&pgdat_init_all_done_comp); 2095 2096 /* 2097 * The number of managed pages has changed due to the initialisation 2098 * so the pcpu batch and high limits needs to be updated or the limits 2099 * will be artificially small. 2100 */ 2101 for_each_populated_zone(zone) 2102 zone_pcp_update(zone); 2103 2104 /* 2105 * We initialized the rest of the deferred pages. Permanently disable 2106 * on-demand struct page initialization. 2107 */ 2108 static_branch_disable(&deferred_pages); 2109 2110 /* Reinit limits that are based on free pages after the kernel is up */ 2111 files_maxfiles_init(); 2112 #endif 2113 2114 /* Discard memblock private memory */ 2115 memblock_discard(); 2116 2117 for_each_node_state(nid, N_MEMORY) 2118 shuffle_free_memory(NODE_DATA(nid)); 2119 2120 for_each_populated_zone(zone) 2121 set_zone_contiguous(zone); 2122 } 2123 2124 #ifdef CONFIG_CMA 2125 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2126 void __init init_cma_reserved_pageblock(struct page *page) 2127 { 2128 unsigned i = pageblock_nr_pages; 2129 struct page *p = page; 2130 2131 do { 2132 __ClearPageReserved(p); 2133 set_page_count(p, 0); 2134 } while (++p, --i); 2135 2136 set_pageblock_migratetype(page, MIGRATE_CMA); 2137 2138 if (pageblock_order >= MAX_ORDER) { 2139 i = pageblock_nr_pages; 2140 p = page; 2141 do { 2142 set_page_refcounted(p); 2143 __free_pages(p, MAX_ORDER - 1); 2144 p += MAX_ORDER_NR_PAGES; 2145 } while (i -= MAX_ORDER_NR_PAGES); 2146 } else { 2147 set_page_refcounted(page); 2148 __free_pages(page, pageblock_order); 2149 } 2150 2151 adjust_managed_page_count(page, pageblock_nr_pages); 2152 } 2153 #endif 2154 2155 /* 2156 * The order of subdivision here is critical for the IO subsystem. 2157 * Please do not alter this order without good reasons and regression 2158 * testing. Specifically, as large blocks of memory are subdivided, 2159 * the order in which smaller blocks are delivered depends on the order 2160 * they're subdivided in this function. This is the primary factor 2161 * influencing the order in which pages are delivered to the IO 2162 * subsystem according to empirical testing, and this is also justified 2163 * by considering the behavior of a buddy system containing a single 2164 * large block of memory acted on by a series of small allocations. 2165 * This behavior is a critical factor in sglist merging's success. 2166 * 2167 * -- nyc 2168 */ 2169 static inline void expand(struct zone *zone, struct page *page, 2170 int low, int high, int migratetype) 2171 { 2172 unsigned long size = 1 << high; 2173 2174 while (high > low) { 2175 high--; 2176 size >>= 1; 2177 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2178 2179 /* 2180 * Mark as guard pages (or page), that will allow to 2181 * merge back to allocator when buddy will be freed. 2182 * Corresponding page table entries will not be touched, 2183 * pages will stay not present in virtual address space 2184 */ 2185 if (set_page_guard(zone, &page[size], high, migratetype)) 2186 continue; 2187 2188 add_to_free_list(&page[size], zone, high, migratetype); 2189 set_buddy_order(&page[size], high); 2190 } 2191 } 2192 2193 static void check_new_page_bad(struct page *page) 2194 { 2195 if (unlikely(page->flags & __PG_HWPOISON)) { 2196 /* Don't complain about hwpoisoned pages */ 2197 page_mapcount_reset(page); /* remove PageBuddy */ 2198 return; 2199 } 2200 2201 bad_page(page, 2202 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2203 } 2204 2205 /* 2206 * This page is about to be returned from the page allocator 2207 */ 2208 static inline int check_new_page(struct page *page) 2209 { 2210 if (likely(page_expected_state(page, 2211 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2212 return 0; 2213 2214 check_new_page_bad(page); 2215 return 1; 2216 } 2217 2218 static inline bool free_pages_prezeroed(void) 2219 { 2220 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 2221 page_poisoning_enabled()) || want_init_on_free(); 2222 } 2223 2224 #ifdef CONFIG_DEBUG_VM 2225 /* 2226 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2227 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2228 * also checked when pcp lists are refilled from the free lists. 2229 */ 2230 static inline bool check_pcp_refill(struct page *page) 2231 { 2232 if (debug_pagealloc_enabled_static()) 2233 return check_new_page(page); 2234 else 2235 return false; 2236 } 2237 2238 static inline bool check_new_pcp(struct page *page) 2239 { 2240 return check_new_page(page); 2241 } 2242 #else 2243 /* 2244 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2245 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2246 * enabled, they are also checked when being allocated from the pcp lists. 2247 */ 2248 static inline bool check_pcp_refill(struct page *page) 2249 { 2250 return check_new_page(page); 2251 } 2252 static inline bool check_new_pcp(struct page *page) 2253 { 2254 if (debug_pagealloc_enabled_static()) 2255 return check_new_page(page); 2256 else 2257 return false; 2258 } 2259 #endif /* CONFIG_DEBUG_VM */ 2260 2261 static bool check_new_pages(struct page *page, unsigned int order) 2262 { 2263 int i; 2264 for (i = 0; i < (1 << order); i++) { 2265 struct page *p = page + i; 2266 2267 if (unlikely(check_new_page(p))) 2268 return true; 2269 } 2270 2271 return false; 2272 } 2273 2274 inline void post_alloc_hook(struct page *page, unsigned int order, 2275 gfp_t gfp_flags) 2276 { 2277 set_page_private(page, 0); 2278 set_page_refcounted(page); 2279 2280 arch_alloc_page(page, order); 2281 debug_pagealloc_map_pages(page, 1 << order); 2282 kasan_alloc_pages(page, order); 2283 kernel_poison_pages(page, 1 << order, 1); 2284 set_page_owner(page, order, gfp_flags); 2285 } 2286 2287 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2288 unsigned int alloc_flags) 2289 { 2290 post_alloc_hook(page, order, gfp_flags); 2291 2292 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags)) 2293 kernel_init_free_pages(page, 1 << order); 2294 2295 if (order && (gfp_flags & __GFP_COMP)) 2296 prep_compound_page(page, order); 2297 2298 /* 2299 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2300 * allocate the page. The expectation is that the caller is taking 2301 * steps that will free more memory. The caller should avoid the page 2302 * being used for !PFMEMALLOC purposes. 2303 */ 2304 if (alloc_flags & ALLOC_NO_WATERMARKS) 2305 set_page_pfmemalloc(page); 2306 else 2307 clear_page_pfmemalloc(page); 2308 } 2309 2310 /* 2311 * Go through the free lists for the given migratetype and remove 2312 * the smallest available page from the freelists 2313 */ 2314 static __always_inline 2315 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2316 int migratetype) 2317 { 2318 unsigned int current_order; 2319 struct free_area *area; 2320 struct page *page; 2321 2322 /* Find a page of the appropriate size in the preferred list */ 2323 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2324 area = &(zone->free_area[current_order]); 2325 page = get_page_from_free_area(area, migratetype); 2326 if (!page) 2327 continue; 2328 del_page_from_free_list(page, zone, current_order); 2329 expand(zone, page, order, current_order, migratetype); 2330 set_pcppage_migratetype(page, migratetype); 2331 return page; 2332 } 2333 2334 return NULL; 2335 } 2336 2337 2338 /* 2339 * This array describes the order lists are fallen back to when 2340 * the free lists for the desirable migrate type are depleted 2341 */ 2342 static int fallbacks[MIGRATE_TYPES][3] = { 2343 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2344 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2345 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2346 #ifdef CONFIG_CMA 2347 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2348 #endif 2349 #ifdef CONFIG_MEMORY_ISOLATION 2350 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2351 #endif 2352 }; 2353 2354 #ifdef CONFIG_CMA 2355 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2356 unsigned int order) 2357 { 2358 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2359 } 2360 #else 2361 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2362 unsigned int order) { return NULL; } 2363 #endif 2364 2365 /* 2366 * Move the free pages in a range to the freelist tail of the requested type. 2367 * Note that start_page and end_pages are not aligned on a pageblock 2368 * boundary. If alignment is required, use move_freepages_block() 2369 */ 2370 static int move_freepages(struct zone *zone, 2371 struct page *start_page, struct page *end_page, 2372 int migratetype, int *num_movable) 2373 { 2374 struct page *page; 2375 unsigned int order; 2376 int pages_moved = 0; 2377 2378 for (page = start_page; page <= end_page;) { 2379 if (!pfn_valid_within(page_to_pfn(page))) { 2380 page++; 2381 continue; 2382 } 2383 2384 if (!PageBuddy(page)) { 2385 /* 2386 * We assume that pages that could be isolated for 2387 * migration are movable. But we don't actually try 2388 * isolating, as that would be expensive. 2389 */ 2390 if (num_movable && 2391 (PageLRU(page) || __PageMovable(page))) 2392 (*num_movable)++; 2393 2394 page++; 2395 continue; 2396 } 2397 2398 /* Make sure we are not inadvertently changing nodes */ 2399 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2400 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2401 2402 order = buddy_order(page); 2403 move_to_free_list(page, zone, order, migratetype); 2404 page += 1 << order; 2405 pages_moved += 1 << order; 2406 } 2407 2408 return pages_moved; 2409 } 2410 2411 int move_freepages_block(struct zone *zone, struct page *page, 2412 int migratetype, int *num_movable) 2413 { 2414 unsigned long start_pfn, end_pfn; 2415 struct page *start_page, *end_page; 2416 2417 if (num_movable) 2418 *num_movable = 0; 2419 2420 start_pfn = page_to_pfn(page); 2421 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2422 start_page = pfn_to_page(start_pfn); 2423 end_page = start_page + pageblock_nr_pages - 1; 2424 end_pfn = start_pfn + pageblock_nr_pages - 1; 2425 2426 /* Do not cross zone boundaries */ 2427 if (!zone_spans_pfn(zone, start_pfn)) 2428 start_page = page; 2429 if (!zone_spans_pfn(zone, end_pfn)) 2430 return 0; 2431 2432 return move_freepages(zone, start_page, end_page, migratetype, 2433 num_movable); 2434 } 2435 2436 static void change_pageblock_range(struct page *pageblock_page, 2437 int start_order, int migratetype) 2438 { 2439 int nr_pageblocks = 1 << (start_order - pageblock_order); 2440 2441 while (nr_pageblocks--) { 2442 set_pageblock_migratetype(pageblock_page, migratetype); 2443 pageblock_page += pageblock_nr_pages; 2444 } 2445 } 2446 2447 /* 2448 * When we are falling back to another migratetype during allocation, try to 2449 * steal extra free pages from the same pageblocks to satisfy further 2450 * allocations, instead of polluting multiple pageblocks. 2451 * 2452 * If we are stealing a relatively large buddy page, it is likely there will 2453 * be more free pages in the pageblock, so try to steal them all. For 2454 * reclaimable and unmovable allocations, we steal regardless of page size, 2455 * as fragmentation caused by those allocations polluting movable pageblocks 2456 * is worse than movable allocations stealing from unmovable and reclaimable 2457 * pageblocks. 2458 */ 2459 static bool can_steal_fallback(unsigned int order, int start_mt) 2460 { 2461 /* 2462 * Leaving this order check is intended, although there is 2463 * relaxed order check in next check. The reason is that 2464 * we can actually steal whole pageblock if this condition met, 2465 * but, below check doesn't guarantee it and that is just heuristic 2466 * so could be changed anytime. 2467 */ 2468 if (order >= pageblock_order) 2469 return true; 2470 2471 if (order >= pageblock_order / 2 || 2472 start_mt == MIGRATE_RECLAIMABLE || 2473 start_mt == MIGRATE_UNMOVABLE || 2474 page_group_by_mobility_disabled) 2475 return true; 2476 2477 return false; 2478 } 2479 2480 static inline void boost_watermark(struct zone *zone) 2481 { 2482 unsigned long max_boost; 2483 2484 if (!watermark_boost_factor) 2485 return; 2486 /* 2487 * Don't bother in zones that are unlikely to produce results. 2488 * On small machines, including kdump capture kernels running 2489 * in a small area, boosting the watermark can cause an out of 2490 * memory situation immediately. 2491 */ 2492 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2493 return; 2494 2495 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2496 watermark_boost_factor, 10000); 2497 2498 /* 2499 * high watermark may be uninitialised if fragmentation occurs 2500 * very early in boot so do not boost. We do not fall 2501 * through and boost by pageblock_nr_pages as failing 2502 * allocations that early means that reclaim is not going 2503 * to help and it may even be impossible to reclaim the 2504 * boosted watermark resulting in a hang. 2505 */ 2506 if (!max_boost) 2507 return; 2508 2509 max_boost = max(pageblock_nr_pages, max_boost); 2510 2511 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2512 max_boost); 2513 } 2514 2515 /* 2516 * This function implements actual steal behaviour. If order is large enough, 2517 * we can steal whole pageblock. If not, we first move freepages in this 2518 * pageblock to our migratetype and determine how many already-allocated pages 2519 * are there in the pageblock with a compatible migratetype. If at least half 2520 * of pages are free or compatible, we can change migratetype of the pageblock 2521 * itself, so pages freed in the future will be put on the correct free list. 2522 */ 2523 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2524 unsigned int alloc_flags, int start_type, bool whole_block) 2525 { 2526 unsigned int current_order = buddy_order(page); 2527 int free_pages, movable_pages, alike_pages; 2528 int old_block_type; 2529 2530 old_block_type = get_pageblock_migratetype(page); 2531 2532 /* 2533 * This can happen due to races and we want to prevent broken 2534 * highatomic accounting. 2535 */ 2536 if (is_migrate_highatomic(old_block_type)) 2537 goto single_page; 2538 2539 /* Take ownership for orders >= pageblock_order */ 2540 if (current_order >= pageblock_order) { 2541 change_pageblock_range(page, current_order, start_type); 2542 goto single_page; 2543 } 2544 2545 /* 2546 * Boost watermarks to increase reclaim pressure to reduce the 2547 * likelihood of future fallbacks. Wake kswapd now as the node 2548 * may be balanced overall and kswapd will not wake naturally. 2549 */ 2550 boost_watermark(zone); 2551 if (alloc_flags & ALLOC_KSWAPD) 2552 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2553 2554 /* We are not allowed to try stealing from the whole block */ 2555 if (!whole_block) 2556 goto single_page; 2557 2558 free_pages = move_freepages_block(zone, page, start_type, 2559 &movable_pages); 2560 /* 2561 * Determine how many pages are compatible with our allocation. 2562 * For movable allocation, it's the number of movable pages which 2563 * we just obtained. For other types it's a bit more tricky. 2564 */ 2565 if (start_type == MIGRATE_MOVABLE) { 2566 alike_pages = movable_pages; 2567 } else { 2568 /* 2569 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2570 * to MOVABLE pageblock, consider all non-movable pages as 2571 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2572 * vice versa, be conservative since we can't distinguish the 2573 * exact migratetype of non-movable pages. 2574 */ 2575 if (old_block_type == MIGRATE_MOVABLE) 2576 alike_pages = pageblock_nr_pages 2577 - (free_pages + movable_pages); 2578 else 2579 alike_pages = 0; 2580 } 2581 2582 /* moving whole block can fail due to zone boundary conditions */ 2583 if (!free_pages) 2584 goto single_page; 2585 2586 /* 2587 * If a sufficient number of pages in the block are either free or of 2588 * comparable migratability as our allocation, claim the whole block. 2589 */ 2590 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2591 page_group_by_mobility_disabled) 2592 set_pageblock_migratetype(page, start_type); 2593 2594 return; 2595 2596 single_page: 2597 move_to_free_list(page, zone, current_order, start_type); 2598 } 2599 2600 /* 2601 * Check whether there is a suitable fallback freepage with requested order. 2602 * If only_stealable is true, this function returns fallback_mt only if 2603 * we can steal other freepages all together. This would help to reduce 2604 * fragmentation due to mixed migratetype pages in one pageblock. 2605 */ 2606 int find_suitable_fallback(struct free_area *area, unsigned int order, 2607 int migratetype, bool only_stealable, bool *can_steal) 2608 { 2609 int i; 2610 int fallback_mt; 2611 2612 if (area->nr_free == 0) 2613 return -1; 2614 2615 *can_steal = false; 2616 for (i = 0;; i++) { 2617 fallback_mt = fallbacks[migratetype][i]; 2618 if (fallback_mt == MIGRATE_TYPES) 2619 break; 2620 2621 if (free_area_empty(area, fallback_mt)) 2622 continue; 2623 2624 if (can_steal_fallback(order, migratetype)) 2625 *can_steal = true; 2626 2627 if (!only_stealable) 2628 return fallback_mt; 2629 2630 if (*can_steal) 2631 return fallback_mt; 2632 } 2633 2634 return -1; 2635 } 2636 2637 /* 2638 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2639 * there are no empty page blocks that contain a page with a suitable order 2640 */ 2641 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2642 unsigned int alloc_order) 2643 { 2644 int mt; 2645 unsigned long max_managed, flags; 2646 2647 /* 2648 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2649 * Check is race-prone but harmless. 2650 */ 2651 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2652 if (zone->nr_reserved_highatomic >= max_managed) 2653 return; 2654 2655 spin_lock_irqsave(&zone->lock, flags); 2656 2657 /* Recheck the nr_reserved_highatomic limit under the lock */ 2658 if (zone->nr_reserved_highatomic >= max_managed) 2659 goto out_unlock; 2660 2661 /* Yoink! */ 2662 mt = get_pageblock_migratetype(page); 2663 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2664 && !is_migrate_cma(mt)) { 2665 zone->nr_reserved_highatomic += pageblock_nr_pages; 2666 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2667 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2668 } 2669 2670 out_unlock: 2671 spin_unlock_irqrestore(&zone->lock, flags); 2672 } 2673 2674 /* 2675 * Used when an allocation is about to fail under memory pressure. This 2676 * potentially hurts the reliability of high-order allocations when under 2677 * intense memory pressure but failed atomic allocations should be easier 2678 * to recover from than an OOM. 2679 * 2680 * If @force is true, try to unreserve a pageblock even though highatomic 2681 * pageblock is exhausted. 2682 */ 2683 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2684 bool force) 2685 { 2686 struct zonelist *zonelist = ac->zonelist; 2687 unsigned long flags; 2688 struct zoneref *z; 2689 struct zone *zone; 2690 struct page *page; 2691 int order; 2692 bool ret; 2693 2694 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2695 ac->nodemask) { 2696 /* 2697 * Preserve at least one pageblock unless memory pressure 2698 * is really high. 2699 */ 2700 if (!force && zone->nr_reserved_highatomic <= 2701 pageblock_nr_pages) 2702 continue; 2703 2704 spin_lock_irqsave(&zone->lock, flags); 2705 for (order = 0; order < MAX_ORDER; order++) { 2706 struct free_area *area = &(zone->free_area[order]); 2707 2708 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2709 if (!page) 2710 continue; 2711 2712 /* 2713 * In page freeing path, migratetype change is racy so 2714 * we can counter several free pages in a pageblock 2715 * in this loop althoug we changed the pageblock type 2716 * from highatomic to ac->migratetype. So we should 2717 * adjust the count once. 2718 */ 2719 if (is_migrate_highatomic_page(page)) { 2720 /* 2721 * It should never happen but changes to 2722 * locking could inadvertently allow a per-cpu 2723 * drain to add pages to MIGRATE_HIGHATOMIC 2724 * while unreserving so be safe and watch for 2725 * underflows. 2726 */ 2727 zone->nr_reserved_highatomic -= min( 2728 pageblock_nr_pages, 2729 zone->nr_reserved_highatomic); 2730 } 2731 2732 /* 2733 * Convert to ac->migratetype and avoid the normal 2734 * pageblock stealing heuristics. Minimally, the caller 2735 * is doing the work and needs the pages. More 2736 * importantly, if the block was always converted to 2737 * MIGRATE_UNMOVABLE or another type then the number 2738 * of pageblocks that cannot be completely freed 2739 * may increase. 2740 */ 2741 set_pageblock_migratetype(page, ac->migratetype); 2742 ret = move_freepages_block(zone, page, ac->migratetype, 2743 NULL); 2744 if (ret) { 2745 spin_unlock_irqrestore(&zone->lock, flags); 2746 return ret; 2747 } 2748 } 2749 spin_unlock_irqrestore(&zone->lock, flags); 2750 } 2751 2752 return false; 2753 } 2754 2755 /* 2756 * Try finding a free buddy page on the fallback list and put it on the free 2757 * list of requested migratetype, possibly along with other pages from the same 2758 * block, depending on fragmentation avoidance heuristics. Returns true if 2759 * fallback was found so that __rmqueue_smallest() can grab it. 2760 * 2761 * The use of signed ints for order and current_order is a deliberate 2762 * deviation from the rest of this file, to make the for loop 2763 * condition simpler. 2764 */ 2765 static __always_inline bool 2766 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2767 unsigned int alloc_flags) 2768 { 2769 struct free_area *area; 2770 int current_order; 2771 int min_order = order; 2772 struct page *page; 2773 int fallback_mt; 2774 bool can_steal; 2775 2776 /* 2777 * Do not steal pages from freelists belonging to other pageblocks 2778 * i.e. orders < pageblock_order. If there are no local zones free, 2779 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2780 */ 2781 if (alloc_flags & ALLOC_NOFRAGMENT) 2782 min_order = pageblock_order; 2783 2784 /* 2785 * Find the largest available free page in the other list. This roughly 2786 * approximates finding the pageblock with the most free pages, which 2787 * would be too costly to do exactly. 2788 */ 2789 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2790 --current_order) { 2791 area = &(zone->free_area[current_order]); 2792 fallback_mt = find_suitable_fallback(area, current_order, 2793 start_migratetype, false, &can_steal); 2794 if (fallback_mt == -1) 2795 continue; 2796 2797 /* 2798 * We cannot steal all free pages from the pageblock and the 2799 * requested migratetype is movable. In that case it's better to 2800 * steal and split the smallest available page instead of the 2801 * largest available page, because even if the next movable 2802 * allocation falls back into a different pageblock than this 2803 * one, it won't cause permanent fragmentation. 2804 */ 2805 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2806 && current_order > order) 2807 goto find_smallest; 2808 2809 goto do_steal; 2810 } 2811 2812 return false; 2813 2814 find_smallest: 2815 for (current_order = order; current_order < MAX_ORDER; 2816 current_order++) { 2817 area = &(zone->free_area[current_order]); 2818 fallback_mt = find_suitable_fallback(area, current_order, 2819 start_migratetype, false, &can_steal); 2820 if (fallback_mt != -1) 2821 break; 2822 } 2823 2824 /* 2825 * This should not happen - we already found a suitable fallback 2826 * when looking for the largest page. 2827 */ 2828 VM_BUG_ON(current_order == MAX_ORDER); 2829 2830 do_steal: 2831 page = get_page_from_free_area(area, fallback_mt); 2832 2833 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2834 can_steal); 2835 2836 trace_mm_page_alloc_extfrag(page, order, current_order, 2837 start_migratetype, fallback_mt); 2838 2839 return true; 2840 2841 } 2842 2843 /* 2844 * Do the hard work of removing an element from the buddy allocator. 2845 * Call me with the zone->lock already held. 2846 */ 2847 static __always_inline struct page * 2848 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2849 unsigned int alloc_flags) 2850 { 2851 struct page *page; 2852 2853 #ifdef CONFIG_CMA 2854 /* 2855 * Balance movable allocations between regular and CMA areas by 2856 * allocating from CMA when over half of the zone's free memory 2857 * is in the CMA area. 2858 */ 2859 if (alloc_flags & ALLOC_CMA && 2860 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2861 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2862 page = __rmqueue_cma_fallback(zone, order); 2863 if (page) 2864 return page; 2865 } 2866 #endif 2867 retry: 2868 page = __rmqueue_smallest(zone, order, migratetype); 2869 if (unlikely(!page)) { 2870 if (alloc_flags & ALLOC_CMA) 2871 page = __rmqueue_cma_fallback(zone, order); 2872 2873 if (!page && __rmqueue_fallback(zone, order, migratetype, 2874 alloc_flags)) 2875 goto retry; 2876 } 2877 2878 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2879 return page; 2880 } 2881 2882 /* 2883 * Obtain a specified number of elements from the buddy allocator, all under 2884 * a single hold of the lock, for efficiency. Add them to the supplied list. 2885 * Returns the number of new pages which were placed at *list. 2886 */ 2887 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2888 unsigned long count, struct list_head *list, 2889 int migratetype, unsigned int alloc_flags) 2890 { 2891 int i, alloced = 0; 2892 2893 spin_lock(&zone->lock); 2894 for (i = 0; i < count; ++i) { 2895 struct page *page = __rmqueue(zone, order, migratetype, 2896 alloc_flags); 2897 if (unlikely(page == NULL)) 2898 break; 2899 2900 if (unlikely(check_pcp_refill(page))) 2901 continue; 2902 2903 /* 2904 * Split buddy pages returned by expand() are received here in 2905 * physical page order. The page is added to the tail of 2906 * caller's list. From the callers perspective, the linked list 2907 * is ordered by page number under some conditions. This is 2908 * useful for IO devices that can forward direction from the 2909 * head, thus also in the physical page order. This is useful 2910 * for IO devices that can merge IO requests if the physical 2911 * pages are ordered properly. 2912 */ 2913 list_add_tail(&page->lru, list); 2914 alloced++; 2915 if (is_migrate_cma(get_pcppage_migratetype(page))) 2916 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2917 -(1 << order)); 2918 } 2919 2920 /* 2921 * i pages were removed from the buddy list even if some leak due 2922 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2923 * on i. Do not confuse with 'alloced' which is the number of 2924 * pages added to the pcp list. 2925 */ 2926 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2927 spin_unlock(&zone->lock); 2928 return alloced; 2929 } 2930 2931 #ifdef CONFIG_NUMA 2932 /* 2933 * Called from the vmstat counter updater to drain pagesets of this 2934 * currently executing processor on remote nodes after they have 2935 * expired. 2936 * 2937 * Note that this function must be called with the thread pinned to 2938 * a single processor. 2939 */ 2940 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2941 { 2942 unsigned long flags; 2943 int to_drain, batch; 2944 2945 local_irq_save(flags); 2946 batch = READ_ONCE(pcp->batch); 2947 to_drain = min(pcp->count, batch); 2948 if (to_drain > 0) 2949 free_pcppages_bulk(zone, to_drain, pcp); 2950 local_irq_restore(flags); 2951 } 2952 #endif 2953 2954 /* 2955 * Drain pcplists of the indicated processor and zone. 2956 * 2957 * The processor must either be the current processor and the 2958 * thread pinned to the current processor or a processor that 2959 * is not online. 2960 */ 2961 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2962 { 2963 unsigned long flags; 2964 struct per_cpu_pageset *pset; 2965 struct per_cpu_pages *pcp; 2966 2967 local_irq_save(flags); 2968 pset = per_cpu_ptr(zone->pageset, cpu); 2969 2970 pcp = &pset->pcp; 2971 if (pcp->count) 2972 free_pcppages_bulk(zone, pcp->count, pcp); 2973 local_irq_restore(flags); 2974 } 2975 2976 /* 2977 * Drain pcplists of all zones on the indicated processor. 2978 * 2979 * The processor must either be the current processor and the 2980 * thread pinned to the current processor or a processor that 2981 * is not online. 2982 */ 2983 static void drain_pages(unsigned int cpu) 2984 { 2985 struct zone *zone; 2986 2987 for_each_populated_zone(zone) { 2988 drain_pages_zone(cpu, zone); 2989 } 2990 } 2991 2992 /* 2993 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2994 * 2995 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2996 * the single zone's pages. 2997 */ 2998 void drain_local_pages(struct zone *zone) 2999 { 3000 int cpu = smp_processor_id(); 3001 3002 if (zone) 3003 drain_pages_zone(cpu, zone); 3004 else 3005 drain_pages(cpu); 3006 } 3007 3008 static void drain_local_pages_wq(struct work_struct *work) 3009 { 3010 struct pcpu_drain *drain; 3011 3012 drain = container_of(work, struct pcpu_drain, work); 3013 3014 /* 3015 * drain_all_pages doesn't use proper cpu hotplug protection so 3016 * we can race with cpu offline when the WQ can move this from 3017 * a cpu pinned worker to an unbound one. We can operate on a different 3018 * cpu which is allright but we also have to make sure to not move to 3019 * a different one. 3020 */ 3021 preempt_disable(); 3022 drain_local_pages(drain->zone); 3023 preempt_enable(); 3024 } 3025 3026 /* 3027 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3028 * 3029 * When zone parameter is non-NULL, spill just the single zone's pages. 3030 * 3031 * Note that this can be extremely slow as the draining happens in a workqueue. 3032 */ 3033 void drain_all_pages(struct zone *zone) 3034 { 3035 int cpu; 3036 3037 /* 3038 * Allocate in the BSS so we wont require allocation in 3039 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3040 */ 3041 static cpumask_t cpus_with_pcps; 3042 3043 /* 3044 * Make sure nobody triggers this path before mm_percpu_wq is fully 3045 * initialized. 3046 */ 3047 if (WARN_ON_ONCE(!mm_percpu_wq)) 3048 return; 3049 3050 /* 3051 * Do not drain if one is already in progress unless it's specific to 3052 * a zone. Such callers are primarily CMA and memory hotplug and need 3053 * the drain to be complete when the call returns. 3054 */ 3055 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3056 if (!zone) 3057 return; 3058 mutex_lock(&pcpu_drain_mutex); 3059 } 3060 3061 /* 3062 * We don't care about racing with CPU hotplug event 3063 * as offline notification will cause the notified 3064 * cpu to drain that CPU pcps and on_each_cpu_mask 3065 * disables preemption as part of its processing 3066 */ 3067 for_each_online_cpu(cpu) { 3068 struct per_cpu_pageset *pcp; 3069 struct zone *z; 3070 bool has_pcps = false; 3071 3072 if (zone) { 3073 pcp = per_cpu_ptr(zone->pageset, cpu); 3074 if (pcp->pcp.count) 3075 has_pcps = true; 3076 } else { 3077 for_each_populated_zone(z) { 3078 pcp = per_cpu_ptr(z->pageset, cpu); 3079 if (pcp->pcp.count) { 3080 has_pcps = true; 3081 break; 3082 } 3083 } 3084 } 3085 3086 if (has_pcps) 3087 cpumask_set_cpu(cpu, &cpus_with_pcps); 3088 else 3089 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3090 } 3091 3092 for_each_cpu(cpu, &cpus_with_pcps) { 3093 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3094 3095 drain->zone = zone; 3096 INIT_WORK(&drain->work, drain_local_pages_wq); 3097 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3098 } 3099 for_each_cpu(cpu, &cpus_with_pcps) 3100 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3101 3102 mutex_unlock(&pcpu_drain_mutex); 3103 } 3104 3105 #ifdef CONFIG_HIBERNATION 3106 3107 /* 3108 * Touch the watchdog for every WD_PAGE_COUNT pages. 3109 */ 3110 #define WD_PAGE_COUNT (128*1024) 3111 3112 void mark_free_pages(struct zone *zone) 3113 { 3114 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3115 unsigned long flags; 3116 unsigned int order, t; 3117 struct page *page; 3118 3119 if (zone_is_empty(zone)) 3120 return; 3121 3122 spin_lock_irqsave(&zone->lock, flags); 3123 3124 max_zone_pfn = zone_end_pfn(zone); 3125 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3126 if (pfn_valid(pfn)) { 3127 page = pfn_to_page(pfn); 3128 3129 if (!--page_count) { 3130 touch_nmi_watchdog(); 3131 page_count = WD_PAGE_COUNT; 3132 } 3133 3134 if (page_zone(page) != zone) 3135 continue; 3136 3137 if (!swsusp_page_is_forbidden(page)) 3138 swsusp_unset_page_free(page); 3139 } 3140 3141 for_each_migratetype_order(order, t) { 3142 list_for_each_entry(page, 3143 &zone->free_area[order].free_list[t], lru) { 3144 unsigned long i; 3145 3146 pfn = page_to_pfn(page); 3147 for (i = 0; i < (1UL << order); i++) { 3148 if (!--page_count) { 3149 touch_nmi_watchdog(); 3150 page_count = WD_PAGE_COUNT; 3151 } 3152 swsusp_set_page_free(pfn_to_page(pfn + i)); 3153 } 3154 } 3155 } 3156 spin_unlock_irqrestore(&zone->lock, flags); 3157 } 3158 #endif /* CONFIG_PM */ 3159 3160 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3161 { 3162 int migratetype; 3163 3164 if (!free_pcp_prepare(page)) 3165 return false; 3166 3167 migratetype = get_pfnblock_migratetype(page, pfn); 3168 set_pcppage_migratetype(page, migratetype); 3169 return true; 3170 } 3171 3172 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3173 { 3174 struct zone *zone = page_zone(page); 3175 struct per_cpu_pages *pcp; 3176 int migratetype; 3177 3178 migratetype = get_pcppage_migratetype(page); 3179 __count_vm_event(PGFREE); 3180 3181 /* 3182 * We only track unmovable, reclaimable and movable on pcp lists. 3183 * Free ISOLATE pages back to the allocator because they are being 3184 * offlined but treat HIGHATOMIC as movable pages so we can get those 3185 * areas back if necessary. Otherwise, we may have to free 3186 * excessively into the page allocator 3187 */ 3188 if (migratetype >= MIGRATE_PCPTYPES) { 3189 if (unlikely(is_migrate_isolate(migratetype))) { 3190 free_one_page(zone, page, pfn, 0, migratetype, 3191 FPI_NONE); 3192 return; 3193 } 3194 migratetype = MIGRATE_MOVABLE; 3195 } 3196 3197 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3198 list_add(&page->lru, &pcp->lists[migratetype]); 3199 pcp->count++; 3200 if (pcp->count >= pcp->high) { 3201 unsigned long batch = READ_ONCE(pcp->batch); 3202 free_pcppages_bulk(zone, batch, pcp); 3203 } 3204 } 3205 3206 /* 3207 * Free a 0-order page 3208 */ 3209 void free_unref_page(struct page *page) 3210 { 3211 unsigned long flags; 3212 unsigned long pfn = page_to_pfn(page); 3213 3214 if (!free_unref_page_prepare(page, pfn)) 3215 return; 3216 3217 local_irq_save(flags); 3218 free_unref_page_commit(page, pfn); 3219 local_irq_restore(flags); 3220 } 3221 3222 /* 3223 * Free a list of 0-order pages 3224 */ 3225 void free_unref_page_list(struct list_head *list) 3226 { 3227 struct page *page, *next; 3228 unsigned long flags, pfn; 3229 int batch_count = 0; 3230 3231 /* Prepare pages for freeing */ 3232 list_for_each_entry_safe(page, next, list, lru) { 3233 pfn = page_to_pfn(page); 3234 if (!free_unref_page_prepare(page, pfn)) 3235 list_del(&page->lru); 3236 set_page_private(page, pfn); 3237 } 3238 3239 local_irq_save(flags); 3240 list_for_each_entry_safe(page, next, list, lru) { 3241 unsigned long pfn = page_private(page); 3242 3243 set_page_private(page, 0); 3244 trace_mm_page_free_batched(page); 3245 free_unref_page_commit(page, pfn); 3246 3247 /* 3248 * Guard against excessive IRQ disabled times when we get 3249 * a large list of pages to free. 3250 */ 3251 if (++batch_count == SWAP_CLUSTER_MAX) { 3252 local_irq_restore(flags); 3253 batch_count = 0; 3254 local_irq_save(flags); 3255 } 3256 } 3257 local_irq_restore(flags); 3258 } 3259 3260 /* 3261 * split_page takes a non-compound higher-order page, and splits it into 3262 * n (1<<order) sub-pages: page[0..n] 3263 * Each sub-page must be freed individually. 3264 * 3265 * Note: this is probably too low level an operation for use in drivers. 3266 * Please consult with lkml before using this in your driver. 3267 */ 3268 void split_page(struct page *page, unsigned int order) 3269 { 3270 int i; 3271 3272 VM_BUG_ON_PAGE(PageCompound(page), page); 3273 VM_BUG_ON_PAGE(!page_count(page), page); 3274 3275 for (i = 1; i < (1 << order); i++) 3276 set_page_refcounted(page + i); 3277 split_page_owner(page, 1 << order); 3278 } 3279 EXPORT_SYMBOL_GPL(split_page); 3280 3281 int __isolate_free_page(struct page *page, unsigned int order) 3282 { 3283 unsigned long watermark; 3284 struct zone *zone; 3285 int mt; 3286 3287 BUG_ON(!PageBuddy(page)); 3288 3289 zone = page_zone(page); 3290 mt = get_pageblock_migratetype(page); 3291 3292 if (!is_migrate_isolate(mt)) { 3293 /* 3294 * Obey watermarks as if the page was being allocated. We can 3295 * emulate a high-order watermark check with a raised order-0 3296 * watermark, because we already know our high-order page 3297 * exists. 3298 */ 3299 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3300 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3301 return 0; 3302 3303 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3304 } 3305 3306 /* Remove page from free list */ 3307 3308 del_page_from_free_list(page, zone, order); 3309 3310 /* 3311 * Set the pageblock if the isolated page is at least half of a 3312 * pageblock 3313 */ 3314 if (order >= pageblock_order - 1) { 3315 struct page *endpage = page + (1 << order) - 1; 3316 for (; page < endpage; page += pageblock_nr_pages) { 3317 int mt = get_pageblock_migratetype(page); 3318 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3319 && !is_migrate_highatomic(mt)) 3320 set_pageblock_migratetype(page, 3321 MIGRATE_MOVABLE); 3322 } 3323 } 3324 3325 3326 return 1UL << order; 3327 } 3328 3329 /** 3330 * __putback_isolated_page - Return a now-isolated page back where we got it 3331 * @page: Page that was isolated 3332 * @order: Order of the isolated page 3333 * @mt: The page's pageblock's migratetype 3334 * 3335 * This function is meant to return a page pulled from the free lists via 3336 * __isolate_free_page back to the free lists they were pulled from. 3337 */ 3338 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3339 { 3340 struct zone *zone = page_zone(page); 3341 3342 /* zone lock should be held when this function is called */ 3343 lockdep_assert_held(&zone->lock); 3344 3345 /* Return isolated page to tail of freelist. */ 3346 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3347 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3348 } 3349 3350 /* 3351 * Update NUMA hit/miss statistics 3352 * 3353 * Must be called with interrupts disabled. 3354 */ 3355 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3356 { 3357 #ifdef CONFIG_NUMA 3358 enum numa_stat_item local_stat = NUMA_LOCAL; 3359 3360 /* skip numa counters update if numa stats is disabled */ 3361 if (!static_branch_likely(&vm_numa_stat_key)) 3362 return; 3363 3364 if (zone_to_nid(z) != numa_node_id()) 3365 local_stat = NUMA_OTHER; 3366 3367 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3368 __inc_numa_state(z, NUMA_HIT); 3369 else { 3370 __inc_numa_state(z, NUMA_MISS); 3371 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3372 } 3373 __inc_numa_state(z, local_stat); 3374 #endif 3375 } 3376 3377 /* Remove page from the per-cpu list, caller must protect the list */ 3378 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3379 unsigned int alloc_flags, 3380 struct per_cpu_pages *pcp, 3381 struct list_head *list) 3382 { 3383 struct page *page; 3384 3385 do { 3386 if (list_empty(list)) { 3387 pcp->count += rmqueue_bulk(zone, 0, 3388 pcp->batch, list, 3389 migratetype, alloc_flags); 3390 if (unlikely(list_empty(list))) 3391 return NULL; 3392 } 3393 3394 page = list_first_entry(list, struct page, lru); 3395 list_del(&page->lru); 3396 pcp->count--; 3397 } while (check_new_pcp(page)); 3398 3399 return page; 3400 } 3401 3402 /* Lock and remove page from the per-cpu list */ 3403 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3404 struct zone *zone, gfp_t gfp_flags, 3405 int migratetype, unsigned int alloc_flags) 3406 { 3407 struct per_cpu_pages *pcp; 3408 struct list_head *list; 3409 struct page *page; 3410 unsigned long flags; 3411 3412 local_irq_save(flags); 3413 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3414 list = &pcp->lists[migratetype]; 3415 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3416 if (page) { 3417 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3418 zone_statistics(preferred_zone, zone); 3419 } 3420 local_irq_restore(flags); 3421 return page; 3422 } 3423 3424 /* 3425 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3426 */ 3427 static inline 3428 struct page *rmqueue(struct zone *preferred_zone, 3429 struct zone *zone, unsigned int order, 3430 gfp_t gfp_flags, unsigned int alloc_flags, 3431 int migratetype) 3432 { 3433 unsigned long flags; 3434 struct page *page; 3435 3436 if (likely(order == 0)) { 3437 /* 3438 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3439 * we need to skip it when CMA area isn't allowed. 3440 */ 3441 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3442 migratetype != MIGRATE_MOVABLE) { 3443 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3444 migratetype, alloc_flags); 3445 goto out; 3446 } 3447 } 3448 3449 /* 3450 * We most definitely don't want callers attempting to 3451 * allocate greater than order-1 page units with __GFP_NOFAIL. 3452 */ 3453 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3454 spin_lock_irqsave(&zone->lock, flags); 3455 3456 do { 3457 page = NULL; 3458 /* 3459 * order-0 request can reach here when the pcplist is skipped 3460 * due to non-CMA allocation context. HIGHATOMIC area is 3461 * reserved for high-order atomic allocation, so order-0 3462 * request should skip it. 3463 */ 3464 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3465 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3466 if (page) 3467 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3468 } 3469 if (!page) 3470 page = __rmqueue(zone, order, migratetype, alloc_flags); 3471 } while (page && check_new_pages(page, order)); 3472 spin_unlock(&zone->lock); 3473 if (!page) 3474 goto failed; 3475 __mod_zone_freepage_state(zone, -(1 << order), 3476 get_pcppage_migratetype(page)); 3477 3478 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3479 zone_statistics(preferred_zone, zone); 3480 local_irq_restore(flags); 3481 3482 out: 3483 /* Separate test+clear to avoid unnecessary atomics */ 3484 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3485 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3486 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3487 } 3488 3489 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3490 return page; 3491 3492 failed: 3493 local_irq_restore(flags); 3494 return NULL; 3495 } 3496 3497 #ifdef CONFIG_FAIL_PAGE_ALLOC 3498 3499 static struct { 3500 struct fault_attr attr; 3501 3502 bool ignore_gfp_highmem; 3503 bool ignore_gfp_reclaim; 3504 u32 min_order; 3505 } fail_page_alloc = { 3506 .attr = FAULT_ATTR_INITIALIZER, 3507 .ignore_gfp_reclaim = true, 3508 .ignore_gfp_highmem = true, 3509 .min_order = 1, 3510 }; 3511 3512 static int __init setup_fail_page_alloc(char *str) 3513 { 3514 return setup_fault_attr(&fail_page_alloc.attr, str); 3515 } 3516 __setup("fail_page_alloc=", setup_fail_page_alloc); 3517 3518 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3519 { 3520 if (order < fail_page_alloc.min_order) 3521 return false; 3522 if (gfp_mask & __GFP_NOFAIL) 3523 return false; 3524 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3525 return false; 3526 if (fail_page_alloc.ignore_gfp_reclaim && 3527 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3528 return false; 3529 3530 return should_fail(&fail_page_alloc.attr, 1 << order); 3531 } 3532 3533 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3534 3535 static int __init fail_page_alloc_debugfs(void) 3536 { 3537 umode_t mode = S_IFREG | 0600; 3538 struct dentry *dir; 3539 3540 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3541 &fail_page_alloc.attr); 3542 3543 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3544 &fail_page_alloc.ignore_gfp_reclaim); 3545 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3546 &fail_page_alloc.ignore_gfp_highmem); 3547 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3548 3549 return 0; 3550 } 3551 3552 late_initcall(fail_page_alloc_debugfs); 3553 3554 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3555 3556 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3557 3558 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3559 { 3560 return false; 3561 } 3562 3563 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3564 3565 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3566 { 3567 return __should_fail_alloc_page(gfp_mask, order); 3568 } 3569 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3570 3571 static inline long __zone_watermark_unusable_free(struct zone *z, 3572 unsigned int order, unsigned int alloc_flags) 3573 { 3574 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3575 long unusable_free = (1 << order) - 1; 3576 3577 /* 3578 * If the caller does not have rights to ALLOC_HARDER then subtract 3579 * the high-atomic reserves. This will over-estimate the size of the 3580 * atomic reserve but it avoids a search. 3581 */ 3582 if (likely(!alloc_harder)) 3583 unusable_free += z->nr_reserved_highatomic; 3584 3585 #ifdef CONFIG_CMA 3586 /* If allocation can't use CMA areas don't use free CMA pages */ 3587 if (!(alloc_flags & ALLOC_CMA)) 3588 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3589 #endif 3590 3591 return unusable_free; 3592 } 3593 3594 /* 3595 * Return true if free base pages are above 'mark'. For high-order checks it 3596 * will return true of the order-0 watermark is reached and there is at least 3597 * one free page of a suitable size. Checking now avoids taking the zone lock 3598 * to check in the allocation paths if no pages are free. 3599 */ 3600 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3601 int highest_zoneidx, unsigned int alloc_flags, 3602 long free_pages) 3603 { 3604 long min = mark; 3605 int o; 3606 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3607 3608 /* free_pages may go negative - that's OK */ 3609 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3610 3611 if (alloc_flags & ALLOC_HIGH) 3612 min -= min / 2; 3613 3614 if (unlikely(alloc_harder)) { 3615 /* 3616 * OOM victims can try even harder than normal ALLOC_HARDER 3617 * users on the grounds that it's definitely going to be in 3618 * the exit path shortly and free memory. Any allocation it 3619 * makes during the free path will be small and short-lived. 3620 */ 3621 if (alloc_flags & ALLOC_OOM) 3622 min -= min / 2; 3623 else 3624 min -= min / 4; 3625 } 3626 3627 /* 3628 * Check watermarks for an order-0 allocation request. If these 3629 * are not met, then a high-order request also cannot go ahead 3630 * even if a suitable page happened to be free. 3631 */ 3632 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3633 return false; 3634 3635 /* If this is an order-0 request then the watermark is fine */ 3636 if (!order) 3637 return true; 3638 3639 /* For a high-order request, check at least one suitable page is free */ 3640 for (o = order; o < MAX_ORDER; o++) { 3641 struct free_area *area = &z->free_area[o]; 3642 int mt; 3643 3644 if (!area->nr_free) 3645 continue; 3646 3647 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3648 if (!free_area_empty(area, mt)) 3649 return true; 3650 } 3651 3652 #ifdef CONFIG_CMA 3653 if ((alloc_flags & ALLOC_CMA) && 3654 !free_area_empty(area, MIGRATE_CMA)) { 3655 return true; 3656 } 3657 #endif 3658 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3659 return true; 3660 } 3661 return false; 3662 } 3663 3664 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3665 int highest_zoneidx, unsigned int alloc_flags) 3666 { 3667 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3668 zone_page_state(z, NR_FREE_PAGES)); 3669 } 3670 3671 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3672 unsigned long mark, int highest_zoneidx, 3673 unsigned int alloc_flags, gfp_t gfp_mask) 3674 { 3675 long free_pages; 3676 3677 free_pages = zone_page_state(z, NR_FREE_PAGES); 3678 3679 /* 3680 * Fast check for order-0 only. If this fails then the reserves 3681 * need to be calculated. 3682 */ 3683 if (!order) { 3684 long fast_free; 3685 3686 fast_free = free_pages; 3687 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3688 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3689 return true; 3690 } 3691 3692 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3693 free_pages)) 3694 return true; 3695 /* 3696 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3697 * when checking the min watermark. The min watermark is the 3698 * point where boosting is ignored so that kswapd is woken up 3699 * when below the low watermark. 3700 */ 3701 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3702 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3703 mark = z->_watermark[WMARK_MIN]; 3704 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3705 alloc_flags, free_pages); 3706 } 3707 3708 return false; 3709 } 3710 3711 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3712 unsigned long mark, int highest_zoneidx) 3713 { 3714 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3715 3716 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3717 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3718 3719 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3720 free_pages); 3721 } 3722 3723 #ifdef CONFIG_NUMA 3724 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3725 { 3726 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3727 node_reclaim_distance; 3728 } 3729 #else /* CONFIG_NUMA */ 3730 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3731 { 3732 return true; 3733 } 3734 #endif /* CONFIG_NUMA */ 3735 3736 /* 3737 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3738 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3739 * premature use of a lower zone may cause lowmem pressure problems that 3740 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3741 * probably too small. It only makes sense to spread allocations to avoid 3742 * fragmentation between the Normal and DMA32 zones. 3743 */ 3744 static inline unsigned int 3745 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3746 { 3747 unsigned int alloc_flags; 3748 3749 /* 3750 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3751 * to save a branch. 3752 */ 3753 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3754 3755 #ifdef CONFIG_ZONE_DMA32 3756 if (!zone) 3757 return alloc_flags; 3758 3759 if (zone_idx(zone) != ZONE_NORMAL) 3760 return alloc_flags; 3761 3762 /* 3763 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3764 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3765 * on UMA that if Normal is populated then so is DMA32. 3766 */ 3767 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3768 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3769 return alloc_flags; 3770 3771 alloc_flags |= ALLOC_NOFRAGMENT; 3772 #endif /* CONFIG_ZONE_DMA32 */ 3773 return alloc_flags; 3774 } 3775 3776 static inline unsigned int current_alloc_flags(gfp_t gfp_mask, 3777 unsigned int alloc_flags) 3778 { 3779 #ifdef CONFIG_CMA 3780 unsigned int pflags = current->flags; 3781 3782 if (!(pflags & PF_MEMALLOC_NOCMA) && 3783 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3784 alloc_flags |= ALLOC_CMA; 3785 3786 #endif 3787 return alloc_flags; 3788 } 3789 3790 /* 3791 * get_page_from_freelist goes through the zonelist trying to allocate 3792 * a page. 3793 */ 3794 static struct page * 3795 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3796 const struct alloc_context *ac) 3797 { 3798 struct zoneref *z; 3799 struct zone *zone; 3800 struct pglist_data *last_pgdat_dirty_limit = NULL; 3801 bool no_fallback; 3802 3803 retry: 3804 /* 3805 * Scan zonelist, looking for a zone with enough free. 3806 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3807 */ 3808 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3809 z = ac->preferred_zoneref; 3810 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3811 ac->nodemask) { 3812 struct page *page; 3813 unsigned long mark; 3814 3815 if (cpusets_enabled() && 3816 (alloc_flags & ALLOC_CPUSET) && 3817 !__cpuset_zone_allowed(zone, gfp_mask)) 3818 continue; 3819 /* 3820 * When allocating a page cache page for writing, we 3821 * want to get it from a node that is within its dirty 3822 * limit, such that no single node holds more than its 3823 * proportional share of globally allowed dirty pages. 3824 * The dirty limits take into account the node's 3825 * lowmem reserves and high watermark so that kswapd 3826 * should be able to balance it without having to 3827 * write pages from its LRU list. 3828 * 3829 * XXX: For now, allow allocations to potentially 3830 * exceed the per-node dirty limit in the slowpath 3831 * (spread_dirty_pages unset) before going into reclaim, 3832 * which is important when on a NUMA setup the allowed 3833 * nodes are together not big enough to reach the 3834 * global limit. The proper fix for these situations 3835 * will require awareness of nodes in the 3836 * dirty-throttling and the flusher threads. 3837 */ 3838 if (ac->spread_dirty_pages) { 3839 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3840 continue; 3841 3842 if (!node_dirty_ok(zone->zone_pgdat)) { 3843 last_pgdat_dirty_limit = zone->zone_pgdat; 3844 continue; 3845 } 3846 } 3847 3848 if (no_fallback && nr_online_nodes > 1 && 3849 zone != ac->preferred_zoneref->zone) { 3850 int local_nid; 3851 3852 /* 3853 * If moving to a remote node, retry but allow 3854 * fragmenting fallbacks. Locality is more important 3855 * than fragmentation avoidance. 3856 */ 3857 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3858 if (zone_to_nid(zone) != local_nid) { 3859 alloc_flags &= ~ALLOC_NOFRAGMENT; 3860 goto retry; 3861 } 3862 } 3863 3864 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3865 if (!zone_watermark_fast(zone, order, mark, 3866 ac->highest_zoneidx, alloc_flags, 3867 gfp_mask)) { 3868 int ret; 3869 3870 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3871 /* 3872 * Watermark failed for this zone, but see if we can 3873 * grow this zone if it contains deferred pages. 3874 */ 3875 if (static_branch_unlikely(&deferred_pages)) { 3876 if (_deferred_grow_zone(zone, order)) 3877 goto try_this_zone; 3878 } 3879 #endif 3880 /* Checked here to keep the fast path fast */ 3881 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3882 if (alloc_flags & ALLOC_NO_WATERMARKS) 3883 goto try_this_zone; 3884 3885 if (node_reclaim_mode == 0 || 3886 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3887 continue; 3888 3889 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3890 switch (ret) { 3891 case NODE_RECLAIM_NOSCAN: 3892 /* did not scan */ 3893 continue; 3894 case NODE_RECLAIM_FULL: 3895 /* scanned but unreclaimable */ 3896 continue; 3897 default: 3898 /* did we reclaim enough */ 3899 if (zone_watermark_ok(zone, order, mark, 3900 ac->highest_zoneidx, alloc_flags)) 3901 goto try_this_zone; 3902 3903 continue; 3904 } 3905 } 3906 3907 try_this_zone: 3908 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3909 gfp_mask, alloc_flags, ac->migratetype); 3910 if (page) { 3911 prep_new_page(page, order, gfp_mask, alloc_flags); 3912 3913 /* 3914 * If this is a high-order atomic allocation then check 3915 * if the pageblock should be reserved for the future 3916 */ 3917 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3918 reserve_highatomic_pageblock(page, zone, order); 3919 3920 return page; 3921 } else { 3922 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3923 /* Try again if zone has deferred pages */ 3924 if (static_branch_unlikely(&deferred_pages)) { 3925 if (_deferred_grow_zone(zone, order)) 3926 goto try_this_zone; 3927 } 3928 #endif 3929 } 3930 } 3931 3932 /* 3933 * It's possible on a UMA machine to get through all zones that are 3934 * fragmented. If avoiding fragmentation, reset and try again. 3935 */ 3936 if (no_fallback) { 3937 alloc_flags &= ~ALLOC_NOFRAGMENT; 3938 goto retry; 3939 } 3940 3941 return NULL; 3942 } 3943 3944 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3945 { 3946 unsigned int filter = SHOW_MEM_FILTER_NODES; 3947 3948 /* 3949 * This documents exceptions given to allocations in certain 3950 * contexts that are allowed to allocate outside current's set 3951 * of allowed nodes. 3952 */ 3953 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3954 if (tsk_is_oom_victim(current) || 3955 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3956 filter &= ~SHOW_MEM_FILTER_NODES; 3957 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3958 filter &= ~SHOW_MEM_FILTER_NODES; 3959 3960 show_mem(filter, nodemask); 3961 } 3962 3963 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3964 { 3965 struct va_format vaf; 3966 va_list args; 3967 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3968 3969 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3970 return; 3971 3972 va_start(args, fmt); 3973 vaf.fmt = fmt; 3974 vaf.va = &args; 3975 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3976 current->comm, &vaf, gfp_mask, &gfp_mask, 3977 nodemask_pr_args(nodemask)); 3978 va_end(args); 3979 3980 cpuset_print_current_mems_allowed(); 3981 pr_cont("\n"); 3982 dump_stack(); 3983 warn_alloc_show_mem(gfp_mask, nodemask); 3984 } 3985 3986 static inline struct page * 3987 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3988 unsigned int alloc_flags, 3989 const struct alloc_context *ac) 3990 { 3991 struct page *page; 3992 3993 page = get_page_from_freelist(gfp_mask, order, 3994 alloc_flags|ALLOC_CPUSET, ac); 3995 /* 3996 * fallback to ignore cpuset restriction if our nodes 3997 * are depleted 3998 */ 3999 if (!page) 4000 page = get_page_from_freelist(gfp_mask, order, 4001 alloc_flags, ac); 4002 4003 return page; 4004 } 4005 4006 static inline struct page * 4007 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4008 const struct alloc_context *ac, unsigned long *did_some_progress) 4009 { 4010 struct oom_control oc = { 4011 .zonelist = ac->zonelist, 4012 .nodemask = ac->nodemask, 4013 .memcg = NULL, 4014 .gfp_mask = gfp_mask, 4015 .order = order, 4016 }; 4017 struct page *page; 4018 4019 *did_some_progress = 0; 4020 4021 /* 4022 * Acquire the oom lock. If that fails, somebody else is 4023 * making progress for us. 4024 */ 4025 if (!mutex_trylock(&oom_lock)) { 4026 *did_some_progress = 1; 4027 schedule_timeout_uninterruptible(1); 4028 return NULL; 4029 } 4030 4031 /* 4032 * Go through the zonelist yet one more time, keep very high watermark 4033 * here, this is only to catch a parallel oom killing, we must fail if 4034 * we're still under heavy pressure. But make sure that this reclaim 4035 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4036 * allocation which will never fail due to oom_lock already held. 4037 */ 4038 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4039 ~__GFP_DIRECT_RECLAIM, order, 4040 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4041 if (page) 4042 goto out; 4043 4044 /* Coredumps can quickly deplete all memory reserves */ 4045 if (current->flags & PF_DUMPCORE) 4046 goto out; 4047 /* The OOM killer will not help higher order allocs */ 4048 if (order > PAGE_ALLOC_COSTLY_ORDER) 4049 goto out; 4050 /* 4051 * We have already exhausted all our reclaim opportunities without any 4052 * success so it is time to admit defeat. We will skip the OOM killer 4053 * because it is very likely that the caller has a more reasonable 4054 * fallback than shooting a random task. 4055 * 4056 * The OOM killer may not free memory on a specific node. 4057 */ 4058 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4059 goto out; 4060 /* The OOM killer does not needlessly kill tasks for lowmem */ 4061 if (ac->highest_zoneidx < ZONE_NORMAL) 4062 goto out; 4063 if (pm_suspended_storage()) 4064 goto out; 4065 /* 4066 * XXX: GFP_NOFS allocations should rather fail than rely on 4067 * other request to make a forward progress. 4068 * We are in an unfortunate situation where out_of_memory cannot 4069 * do much for this context but let's try it to at least get 4070 * access to memory reserved if the current task is killed (see 4071 * out_of_memory). Once filesystems are ready to handle allocation 4072 * failures more gracefully we should just bail out here. 4073 */ 4074 4075 /* Exhausted what can be done so it's blame time */ 4076 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4077 *did_some_progress = 1; 4078 4079 /* 4080 * Help non-failing allocations by giving them access to memory 4081 * reserves 4082 */ 4083 if (gfp_mask & __GFP_NOFAIL) 4084 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4085 ALLOC_NO_WATERMARKS, ac); 4086 } 4087 out: 4088 mutex_unlock(&oom_lock); 4089 return page; 4090 } 4091 4092 /* 4093 * Maximum number of compaction retries wit a progress before OOM 4094 * killer is consider as the only way to move forward. 4095 */ 4096 #define MAX_COMPACT_RETRIES 16 4097 4098 #ifdef CONFIG_COMPACTION 4099 /* Try memory compaction for high-order allocations before reclaim */ 4100 static struct page * 4101 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4102 unsigned int alloc_flags, const struct alloc_context *ac, 4103 enum compact_priority prio, enum compact_result *compact_result) 4104 { 4105 struct page *page = NULL; 4106 unsigned long pflags; 4107 unsigned int noreclaim_flag; 4108 4109 if (!order) 4110 return NULL; 4111 4112 psi_memstall_enter(&pflags); 4113 noreclaim_flag = memalloc_noreclaim_save(); 4114 4115 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4116 prio, &page); 4117 4118 memalloc_noreclaim_restore(noreclaim_flag); 4119 psi_memstall_leave(&pflags); 4120 4121 /* 4122 * At least in one zone compaction wasn't deferred or skipped, so let's 4123 * count a compaction stall 4124 */ 4125 count_vm_event(COMPACTSTALL); 4126 4127 /* Prep a captured page if available */ 4128 if (page) 4129 prep_new_page(page, order, gfp_mask, alloc_flags); 4130 4131 /* Try get a page from the freelist if available */ 4132 if (!page) 4133 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4134 4135 if (page) { 4136 struct zone *zone = page_zone(page); 4137 4138 zone->compact_blockskip_flush = false; 4139 compaction_defer_reset(zone, order, true); 4140 count_vm_event(COMPACTSUCCESS); 4141 return page; 4142 } 4143 4144 /* 4145 * It's bad if compaction run occurs and fails. The most likely reason 4146 * is that pages exist, but not enough to satisfy watermarks. 4147 */ 4148 count_vm_event(COMPACTFAIL); 4149 4150 cond_resched(); 4151 4152 return NULL; 4153 } 4154 4155 static inline bool 4156 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4157 enum compact_result compact_result, 4158 enum compact_priority *compact_priority, 4159 int *compaction_retries) 4160 { 4161 int max_retries = MAX_COMPACT_RETRIES; 4162 int min_priority; 4163 bool ret = false; 4164 int retries = *compaction_retries; 4165 enum compact_priority priority = *compact_priority; 4166 4167 if (!order) 4168 return false; 4169 4170 if (compaction_made_progress(compact_result)) 4171 (*compaction_retries)++; 4172 4173 /* 4174 * compaction considers all the zone as desperately out of memory 4175 * so it doesn't really make much sense to retry except when the 4176 * failure could be caused by insufficient priority 4177 */ 4178 if (compaction_failed(compact_result)) 4179 goto check_priority; 4180 4181 /* 4182 * compaction was skipped because there are not enough order-0 pages 4183 * to work with, so we retry only if it looks like reclaim can help. 4184 */ 4185 if (compaction_needs_reclaim(compact_result)) { 4186 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4187 goto out; 4188 } 4189 4190 /* 4191 * make sure the compaction wasn't deferred or didn't bail out early 4192 * due to locks contention before we declare that we should give up. 4193 * But the next retry should use a higher priority if allowed, so 4194 * we don't just keep bailing out endlessly. 4195 */ 4196 if (compaction_withdrawn(compact_result)) { 4197 goto check_priority; 4198 } 4199 4200 /* 4201 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4202 * costly ones because they are de facto nofail and invoke OOM 4203 * killer to move on while costly can fail and users are ready 4204 * to cope with that. 1/4 retries is rather arbitrary but we 4205 * would need much more detailed feedback from compaction to 4206 * make a better decision. 4207 */ 4208 if (order > PAGE_ALLOC_COSTLY_ORDER) 4209 max_retries /= 4; 4210 if (*compaction_retries <= max_retries) { 4211 ret = true; 4212 goto out; 4213 } 4214 4215 /* 4216 * Make sure there are attempts at the highest priority if we exhausted 4217 * all retries or failed at the lower priorities. 4218 */ 4219 check_priority: 4220 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4221 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4222 4223 if (*compact_priority > min_priority) { 4224 (*compact_priority)--; 4225 *compaction_retries = 0; 4226 ret = true; 4227 } 4228 out: 4229 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4230 return ret; 4231 } 4232 #else 4233 static inline struct page * 4234 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4235 unsigned int alloc_flags, const struct alloc_context *ac, 4236 enum compact_priority prio, enum compact_result *compact_result) 4237 { 4238 *compact_result = COMPACT_SKIPPED; 4239 return NULL; 4240 } 4241 4242 static inline bool 4243 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4244 enum compact_result compact_result, 4245 enum compact_priority *compact_priority, 4246 int *compaction_retries) 4247 { 4248 struct zone *zone; 4249 struct zoneref *z; 4250 4251 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4252 return false; 4253 4254 /* 4255 * There are setups with compaction disabled which would prefer to loop 4256 * inside the allocator rather than hit the oom killer prematurely. 4257 * Let's give them a good hope and keep retrying while the order-0 4258 * watermarks are OK. 4259 */ 4260 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4261 ac->highest_zoneidx, ac->nodemask) { 4262 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4263 ac->highest_zoneidx, alloc_flags)) 4264 return true; 4265 } 4266 return false; 4267 } 4268 #endif /* CONFIG_COMPACTION */ 4269 4270 #ifdef CONFIG_LOCKDEP 4271 static struct lockdep_map __fs_reclaim_map = 4272 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4273 4274 static bool __need_reclaim(gfp_t gfp_mask) 4275 { 4276 /* no reclaim without waiting on it */ 4277 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4278 return false; 4279 4280 /* this guy won't enter reclaim */ 4281 if (current->flags & PF_MEMALLOC) 4282 return false; 4283 4284 if (gfp_mask & __GFP_NOLOCKDEP) 4285 return false; 4286 4287 return true; 4288 } 4289 4290 void __fs_reclaim_acquire(void) 4291 { 4292 lock_map_acquire(&__fs_reclaim_map); 4293 } 4294 4295 void __fs_reclaim_release(void) 4296 { 4297 lock_map_release(&__fs_reclaim_map); 4298 } 4299 4300 void fs_reclaim_acquire(gfp_t gfp_mask) 4301 { 4302 gfp_mask = current_gfp_context(gfp_mask); 4303 4304 if (__need_reclaim(gfp_mask)) { 4305 if (gfp_mask & __GFP_FS) 4306 __fs_reclaim_acquire(); 4307 4308 #ifdef CONFIG_MMU_NOTIFIER 4309 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4310 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4311 #endif 4312 4313 } 4314 } 4315 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4316 4317 void fs_reclaim_release(gfp_t gfp_mask) 4318 { 4319 gfp_mask = current_gfp_context(gfp_mask); 4320 4321 if (__need_reclaim(gfp_mask)) { 4322 if (gfp_mask & __GFP_FS) 4323 __fs_reclaim_release(); 4324 } 4325 } 4326 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4327 #endif 4328 4329 /* Perform direct synchronous page reclaim */ 4330 static unsigned long 4331 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4332 const struct alloc_context *ac) 4333 { 4334 unsigned int noreclaim_flag; 4335 unsigned long pflags, progress; 4336 4337 cond_resched(); 4338 4339 /* We now go into synchronous reclaim */ 4340 cpuset_memory_pressure_bump(); 4341 psi_memstall_enter(&pflags); 4342 fs_reclaim_acquire(gfp_mask); 4343 noreclaim_flag = memalloc_noreclaim_save(); 4344 4345 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4346 ac->nodemask); 4347 4348 memalloc_noreclaim_restore(noreclaim_flag); 4349 fs_reclaim_release(gfp_mask); 4350 psi_memstall_leave(&pflags); 4351 4352 cond_resched(); 4353 4354 return progress; 4355 } 4356 4357 /* The really slow allocator path where we enter direct reclaim */ 4358 static inline struct page * 4359 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4360 unsigned int alloc_flags, const struct alloc_context *ac, 4361 unsigned long *did_some_progress) 4362 { 4363 struct page *page = NULL; 4364 bool drained = false; 4365 4366 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4367 if (unlikely(!(*did_some_progress))) 4368 return NULL; 4369 4370 retry: 4371 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4372 4373 /* 4374 * If an allocation failed after direct reclaim, it could be because 4375 * pages are pinned on the per-cpu lists or in high alloc reserves. 4376 * Shrink them and try again 4377 */ 4378 if (!page && !drained) { 4379 unreserve_highatomic_pageblock(ac, false); 4380 drain_all_pages(NULL); 4381 drained = true; 4382 goto retry; 4383 } 4384 4385 return page; 4386 } 4387 4388 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4389 const struct alloc_context *ac) 4390 { 4391 struct zoneref *z; 4392 struct zone *zone; 4393 pg_data_t *last_pgdat = NULL; 4394 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4395 4396 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4397 ac->nodemask) { 4398 if (last_pgdat != zone->zone_pgdat) 4399 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4400 last_pgdat = zone->zone_pgdat; 4401 } 4402 } 4403 4404 static inline unsigned int 4405 gfp_to_alloc_flags(gfp_t gfp_mask) 4406 { 4407 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4408 4409 /* 4410 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4411 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4412 * to save two branches. 4413 */ 4414 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4415 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4416 4417 /* 4418 * The caller may dip into page reserves a bit more if the caller 4419 * cannot run direct reclaim, or if the caller has realtime scheduling 4420 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4421 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4422 */ 4423 alloc_flags |= (__force int) 4424 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4425 4426 if (gfp_mask & __GFP_ATOMIC) { 4427 /* 4428 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4429 * if it can't schedule. 4430 */ 4431 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4432 alloc_flags |= ALLOC_HARDER; 4433 /* 4434 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4435 * comment for __cpuset_node_allowed(). 4436 */ 4437 alloc_flags &= ~ALLOC_CPUSET; 4438 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4439 alloc_flags |= ALLOC_HARDER; 4440 4441 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags); 4442 4443 return alloc_flags; 4444 } 4445 4446 static bool oom_reserves_allowed(struct task_struct *tsk) 4447 { 4448 if (!tsk_is_oom_victim(tsk)) 4449 return false; 4450 4451 /* 4452 * !MMU doesn't have oom reaper so give access to memory reserves 4453 * only to the thread with TIF_MEMDIE set 4454 */ 4455 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4456 return false; 4457 4458 return true; 4459 } 4460 4461 /* 4462 * Distinguish requests which really need access to full memory 4463 * reserves from oom victims which can live with a portion of it 4464 */ 4465 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4466 { 4467 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4468 return 0; 4469 if (gfp_mask & __GFP_MEMALLOC) 4470 return ALLOC_NO_WATERMARKS; 4471 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4472 return ALLOC_NO_WATERMARKS; 4473 if (!in_interrupt()) { 4474 if (current->flags & PF_MEMALLOC) 4475 return ALLOC_NO_WATERMARKS; 4476 else if (oom_reserves_allowed(current)) 4477 return ALLOC_OOM; 4478 } 4479 4480 return 0; 4481 } 4482 4483 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4484 { 4485 return !!__gfp_pfmemalloc_flags(gfp_mask); 4486 } 4487 4488 /* 4489 * Checks whether it makes sense to retry the reclaim to make a forward progress 4490 * for the given allocation request. 4491 * 4492 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4493 * without success, or when we couldn't even meet the watermark if we 4494 * reclaimed all remaining pages on the LRU lists. 4495 * 4496 * Returns true if a retry is viable or false to enter the oom path. 4497 */ 4498 static inline bool 4499 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4500 struct alloc_context *ac, int alloc_flags, 4501 bool did_some_progress, int *no_progress_loops) 4502 { 4503 struct zone *zone; 4504 struct zoneref *z; 4505 bool ret = false; 4506 4507 /* 4508 * Costly allocations might have made a progress but this doesn't mean 4509 * their order will become available due to high fragmentation so 4510 * always increment the no progress counter for them 4511 */ 4512 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4513 *no_progress_loops = 0; 4514 else 4515 (*no_progress_loops)++; 4516 4517 /* 4518 * Make sure we converge to OOM if we cannot make any progress 4519 * several times in the row. 4520 */ 4521 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4522 /* Before OOM, exhaust highatomic_reserve */ 4523 return unreserve_highatomic_pageblock(ac, true); 4524 } 4525 4526 /* 4527 * Keep reclaiming pages while there is a chance this will lead 4528 * somewhere. If none of the target zones can satisfy our allocation 4529 * request even if all reclaimable pages are considered then we are 4530 * screwed and have to go OOM. 4531 */ 4532 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4533 ac->highest_zoneidx, ac->nodemask) { 4534 unsigned long available; 4535 unsigned long reclaimable; 4536 unsigned long min_wmark = min_wmark_pages(zone); 4537 bool wmark; 4538 4539 available = reclaimable = zone_reclaimable_pages(zone); 4540 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4541 4542 /* 4543 * Would the allocation succeed if we reclaimed all 4544 * reclaimable pages? 4545 */ 4546 wmark = __zone_watermark_ok(zone, order, min_wmark, 4547 ac->highest_zoneidx, alloc_flags, available); 4548 trace_reclaim_retry_zone(z, order, reclaimable, 4549 available, min_wmark, *no_progress_loops, wmark); 4550 if (wmark) { 4551 /* 4552 * If we didn't make any progress and have a lot of 4553 * dirty + writeback pages then we should wait for 4554 * an IO to complete to slow down the reclaim and 4555 * prevent from pre mature OOM 4556 */ 4557 if (!did_some_progress) { 4558 unsigned long write_pending; 4559 4560 write_pending = zone_page_state_snapshot(zone, 4561 NR_ZONE_WRITE_PENDING); 4562 4563 if (2 * write_pending > reclaimable) { 4564 congestion_wait(BLK_RW_ASYNC, HZ/10); 4565 return true; 4566 } 4567 } 4568 4569 ret = true; 4570 goto out; 4571 } 4572 } 4573 4574 out: 4575 /* 4576 * Memory allocation/reclaim might be called from a WQ context and the 4577 * current implementation of the WQ concurrency control doesn't 4578 * recognize that a particular WQ is congested if the worker thread is 4579 * looping without ever sleeping. Therefore we have to do a short sleep 4580 * here rather than calling cond_resched(). 4581 */ 4582 if (current->flags & PF_WQ_WORKER) 4583 schedule_timeout_uninterruptible(1); 4584 else 4585 cond_resched(); 4586 return ret; 4587 } 4588 4589 static inline bool 4590 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4591 { 4592 /* 4593 * It's possible that cpuset's mems_allowed and the nodemask from 4594 * mempolicy don't intersect. This should be normally dealt with by 4595 * policy_nodemask(), but it's possible to race with cpuset update in 4596 * such a way the check therein was true, and then it became false 4597 * before we got our cpuset_mems_cookie here. 4598 * This assumes that for all allocations, ac->nodemask can come only 4599 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4600 * when it does not intersect with the cpuset restrictions) or the 4601 * caller can deal with a violated nodemask. 4602 */ 4603 if (cpusets_enabled() && ac->nodemask && 4604 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4605 ac->nodemask = NULL; 4606 return true; 4607 } 4608 4609 /* 4610 * When updating a task's mems_allowed or mempolicy nodemask, it is 4611 * possible to race with parallel threads in such a way that our 4612 * allocation can fail while the mask is being updated. If we are about 4613 * to fail, check if the cpuset changed during allocation and if so, 4614 * retry. 4615 */ 4616 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4617 return true; 4618 4619 return false; 4620 } 4621 4622 static inline struct page * 4623 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4624 struct alloc_context *ac) 4625 { 4626 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4627 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4628 struct page *page = NULL; 4629 unsigned int alloc_flags; 4630 unsigned long did_some_progress; 4631 enum compact_priority compact_priority; 4632 enum compact_result compact_result; 4633 int compaction_retries; 4634 int no_progress_loops; 4635 unsigned int cpuset_mems_cookie; 4636 int reserve_flags; 4637 4638 /* 4639 * We also sanity check to catch abuse of atomic reserves being used by 4640 * callers that are not in atomic context. 4641 */ 4642 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4643 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4644 gfp_mask &= ~__GFP_ATOMIC; 4645 4646 retry_cpuset: 4647 compaction_retries = 0; 4648 no_progress_loops = 0; 4649 compact_priority = DEF_COMPACT_PRIORITY; 4650 cpuset_mems_cookie = read_mems_allowed_begin(); 4651 4652 /* 4653 * The fast path uses conservative alloc_flags to succeed only until 4654 * kswapd needs to be woken up, and to avoid the cost of setting up 4655 * alloc_flags precisely. So we do that now. 4656 */ 4657 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4658 4659 /* 4660 * We need to recalculate the starting point for the zonelist iterator 4661 * because we might have used different nodemask in the fast path, or 4662 * there was a cpuset modification and we are retrying - otherwise we 4663 * could end up iterating over non-eligible zones endlessly. 4664 */ 4665 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4666 ac->highest_zoneidx, ac->nodemask); 4667 if (!ac->preferred_zoneref->zone) 4668 goto nopage; 4669 4670 if (alloc_flags & ALLOC_KSWAPD) 4671 wake_all_kswapds(order, gfp_mask, ac); 4672 4673 /* 4674 * The adjusted alloc_flags might result in immediate success, so try 4675 * that first 4676 */ 4677 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4678 if (page) 4679 goto got_pg; 4680 4681 /* 4682 * For costly allocations, try direct compaction first, as it's likely 4683 * that we have enough base pages and don't need to reclaim. For non- 4684 * movable high-order allocations, do that as well, as compaction will 4685 * try prevent permanent fragmentation by migrating from blocks of the 4686 * same migratetype. 4687 * Don't try this for allocations that are allowed to ignore 4688 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4689 */ 4690 if (can_direct_reclaim && 4691 (costly_order || 4692 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4693 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4694 page = __alloc_pages_direct_compact(gfp_mask, order, 4695 alloc_flags, ac, 4696 INIT_COMPACT_PRIORITY, 4697 &compact_result); 4698 if (page) 4699 goto got_pg; 4700 4701 /* 4702 * Checks for costly allocations with __GFP_NORETRY, which 4703 * includes some THP page fault allocations 4704 */ 4705 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4706 /* 4707 * If allocating entire pageblock(s) and compaction 4708 * failed because all zones are below low watermarks 4709 * or is prohibited because it recently failed at this 4710 * order, fail immediately unless the allocator has 4711 * requested compaction and reclaim retry. 4712 * 4713 * Reclaim is 4714 * - potentially very expensive because zones are far 4715 * below their low watermarks or this is part of very 4716 * bursty high order allocations, 4717 * - not guaranteed to help because isolate_freepages() 4718 * may not iterate over freed pages as part of its 4719 * linear scan, and 4720 * - unlikely to make entire pageblocks free on its 4721 * own. 4722 */ 4723 if (compact_result == COMPACT_SKIPPED || 4724 compact_result == COMPACT_DEFERRED) 4725 goto nopage; 4726 4727 /* 4728 * Looks like reclaim/compaction is worth trying, but 4729 * sync compaction could be very expensive, so keep 4730 * using async compaction. 4731 */ 4732 compact_priority = INIT_COMPACT_PRIORITY; 4733 } 4734 } 4735 4736 retry: 4737 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4738 if (alloc_flags & ALLOC_KSWAPD) 4739 wake_all_kswapds(order, gfp_mask, ac); 4740 4741 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4742 if (reserve_flags) 4743 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags); 4744 4745 /* 4746 * Reset the nodemask and zonelist iterators if memory policies can be 4747 * ignored. These allocations are high priority and system rather than 4748 * user oriented. 4749 */ 4750 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4751 ac->nodemask = NULL; 4752 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4753 ac->highest_zoneidx, ac->nodemask); 4754 } 4755 4756 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4757 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4758 if (page) 4759 goto got_pg; 4760 4761 /* Caller is not willing to reclaim, we can't balance anything */ 4762 if (!can_direct_reclaim) 4763 goto nopage; 4764 4765 /* Avoid recursion of direct reclaim */ 4766 if (current->flags & PF_MEMALLOC) 4767 goto nopage; 4768 4769 /* Try direct reclaim and then allocating */ 4770 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4771 &did_some_progress); 4772 if (page) 4773 goto got_pg; 4774 4775 /* Try direct compaction and then allocating */ 4776 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4777 compact_priority, &compact_result); 4778 if (page) 4779 goto got_pg; 4780 4781 /* Do not loop if specifically requested */ 4782 if (gfp_mask & __GFP_NORETRY) 4783 goto nopage; 4784 4785 /* 4786 * Do not retry costly high order allocations unless they are 4787 * __GFP_RETRY_MAYFAIL 4788 */ 4789 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4790 goto nopage; 4791 4792 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4793 did_some_progress > 0, &no_progress_loops)) 4794 goto retry; 4795 4796 /* 4797 * It doesn't make any sense to retry for the compaction if the order-0 4798 * reclaim is not able to make any progress because the current 4799 * implementation of the compaction depends on the sufficient amount 4800 * of free memory (see __compaction_suitable) 4801 */ 4802 if (did_some_progress > 0 && 4803 should_compact_retry(ac, order, alloc_flags, 4804 compact_result, &compact_priority, 4805 &compaction_retries)) 4806 goto retry; 4807 4808 4809 /* Deal with possible cpuset update races before we start OOM killing */ 4810 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4811 goto retry_cpuset; 4812 4813 /* Reclaim has failed us, start killing things */ 4814 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4815 if (page) 4816 goto got_pg; 4817 4818 /* Avoid allocations with no watermarks from looping endlessly */ 4819 if (tsk_is_oom_victim(current) && 4820 (alloc_flags & ALLOC_OOM || 4821 (gfp_mask & __GFP_NOMEMALLOC))) 4822 goto nopage; 4823 4824 /* Retry as long as the OOM killer is making progress */ 4825 if (did_some_progress) { 4826 no_progress_loops = 0; 4827 goto retry; 4828 } 4829 4830 nopage: 4831 /* Deal with possible cpuset update races before we fail */ 4832 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4833 goto retry_cpuset; 4834 4835 /* 4836 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4837 * we always retry 4838 */ 4839 if (gfp_mask & __GFP_NOFAIL) { 4840 /* 4841 * All existing users of the __GFP_NOFAIL are blockable, so warn 4842 * of any new users that actually require GFP_NOWAIT 4843 */ 4844 if (WARN_ON_ONCE(!can_direct_reclaim)) 4845 goto fail; 4846 4847 /* 4848 * PF_MEMALLOC request from this context is rather bizarre 4849 * because we cannot reclaim anything and only can loop waiting 4850 * for somebody to do a work for us 4851 */ 4852 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4853 4854 /* 4855 * non failing costly orders are a hard requirement which we 4856 * are not prepared for much so let's warn about these users 4857 * so that we can identify them and convert them to something 4858 * else. 4859 */ 4860 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4861 4862 /* 4863 * Help non-failing allocations by giving them access to memory 4864 * reserves but do not use ALLOC_NO_WATERMARKS because this 4865 * could deplete whole memory reserves which would just make 4866 * the situation worse 4867 */ 4868 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4869 if (page) 4870 goto got_pg; 4871 4872 cond_resched(); 4873 goto retry; 4874 } 4875 fail: 4876 warn_alloc(gfp_mask, ac->nodemask, 4877 "page allocation failure: order:%u", order); 4878 got_pg: 4879 return page; 4880 } 4881 4882 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4883 int preferred_nid, nodemask_t *nodemask, 4884 struct alloc_context *ac, gfp_t *alloc_mask, 4885 unsigned int *alloc_flags) 4886 { 4887 ac->highest_zoneidx = gfp_zone(gfp_mask); 4888 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4889 ac->nodemask = nodemask; 4890 ac->migratetype = gfp_migratetype(gfp_mask); 4891 4892 if (cpusets_enabled()) { 4893 *alloc_mask |= __GFP_HARDWALL; 4894 /* 4895 * When we are in the interrupt context, it is irrelevant 4896 * to the current task context. It means that any node ok. 4897 */ 4898 if (!in_interrupt() && !ac->nodemask) 4899 ac->nodemask = &cpuset_current_mems_allowed; 4900 else 4901 *alloc_flags |= ALLOC_CPUSET; 4902 } 4903 4904 fs_reclaim_acquire(gfp_mask); 4905 fs_reclaim_release(gfp_mask); 4906 4907 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4908 4909 if (should_fail_alloc_page(gfp_mask, order)) 4910 return false; 4911 4912 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags); 4913 4914 /* Dirty zone balancing only done in the fast path */ 4915 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4916 4917 /* 4918 * The preferred zone is used for statistics but crucially it is 4919 * also used as the starting point for the zonelist iterator. It 4920 * may get reset for allocations that ignore memory policies. 4921 */ 4922 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4923 ac->highest_zoneidx, ac->nodemask); 4924 4925 return true; 4926 } 4927 4928 /* 4929 * This is the 'heart' of the zoned buddy allocator. 4930 */ 4931 struct page * 4932 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4933 nodemask_t *nodemask) 4934 { 4935 struct page *page; 4936 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4937 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4938 struct alloc_context ac = { }; 4939 4940 /* 4941 * There are several places where we assume that the order value is sane 4942 * so bail out early if the request is out of bound. 4943 */ 4944 if (unlikely(order >= MAX_ORDER)) { 4945 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4946 return NULL; 4947 } 4948 4949 gfp_mask &= gfp_allowed_mask; 4950 alloc_mask = gfp_mask; 4951 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4952 return NULL; 4953 4954 /* 4955 * Forbid the first pass from falling back to types that fragment 4956 * memory until all local zones are considered. 4957 */ 4958 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4959 4960 /* First allocation attempt */ 4961 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4962 if (likely(page)) 4963 goto out; 4964 4965 /* 4966 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4967 * resp. GFP_NOIO which has to be inherited for all allocation requests 4968 * from a particular context which has been marked by 4969 * memalloc_no{fs,io}_{save,restore}. 4970 */ 4971 alloc_mask = current_gfp_context(gfp_mask); 4972 ac.spread_dirty_pages = false; 4973 4974 /* 4975 * Restore the original nodemask if it was potentially replaced with 4976 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4977 */ 4978 ac.nodemask = nodemask; 4979 4980 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4981 4982 out: 4983 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4984 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) { 4985 __free_pages(page, order); 4986 page = NULL; 4987 } 4988 4989 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4990 4991 return page; 4992 } 4993 EXPORT_SYMBOL(__alloc_pages_nodemask); 4994 4995 /* 4996 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4997 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4998 * you need to access high mem. 4999 */ 5000 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5001 { 5002 struct page *page; 5003 5004 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5005 if (!page) 5006 return 0; 5007 return (unsigned long) page_address(page); 5008 } 5009 EXPORT_SYMBOL(__get_free_pages); 5010 5011 unsigned long get_zeroed_page(gfp_t gfp_mask) 5012 { 5013 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5014 } 5015 EXPORT_SYMBOL(get_zeroed_page); 5016 5017 static inline void free_the_page(struct page *page, unsigned int order) 5018 { 5019 if (order == 0) /* Via pcp? */ 5020 free_unref_page(page); 5021 else 5022 __free_pages_ok(page, order, FPI_NONE); 5023 } 5024 5025 void __free_pages(struct page *page, unsigned int order) 5026 { 5027 if (put_page_testzero(page)) 5028 free_the_page(page, order); 5029 else if (!PageHead(page)) 5030 while (order-- > 0) 5031 free_the_page(page + (1 << order), order); 5032 } 5033 EXPORT_SYMBOL(__free_pages); 5034 5035 void free_pages(unsigned long addr, unsigned int order) 5036 { 5037 if (addr != 0) { 5038 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5039 __free_pages(virt_to_page((void *)addr), order); 5040 } 5041 } 5042 5043 EXPORT_SYMBOL(free_pages); 5044 5045 /* 5046 * Page Fragment: 5047 * An arbitrary-length arbitrary-offset area of memory which resides 5048 * within a 0 or higher order page. Multiple fragments within that page 5049 * are individually refcounted, in the page's reference counter. 5050 * 5051 * The page_frag functions below provide a simple allocation framework for 5052 * page fragments. This is used by the network stack and network device 5053 * drivers to provide a backing region of memory for use as either an 5054 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5055 */ 5056 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5057 gfp_t gfp_mask) 5058 { 5059 struct page *page = NULL; 5060 gfp_t gfp = gfp_mask; 5061 5062 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5063 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5064 __GFP_NOMEMALLOC; 5065 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5066 PAGE_FRAG_CACHE_MAX_ORDER); 5067 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5068 #endif 5069 if (unlikely(!page)) 5070 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5071 5072 nc->va = page ? page_address(page) : NULL; 5073 5074 return page; 5075 } 5076 5077 void __page_frag_cache_drain(struct page *page, unsigned int count) 5078 { 5079 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5080 5081 if (page_ref_sub_and_test(page, count)) 5082 free_the_page(page, compound_order(page)); 5083 } 5084 EXPORT_SYMBOL(__page_frag_cache_drain); 5085 5086 void *page_frag_alloc(struct page_frag_cache *nc, 5087 unsigned int fragsz, gfp_t gfp_mask) 5088 { 5089 unsigned int size = PAGE_SIZE; 5090 struct page *page; 5091 int offset; 5092 5093 if (unlikely(!nc->va)) { 5094 refill: 5095 page = __page_frag_cache_refill(nc, gfp_mask); 5096 if (!page) 5097 return NULL; 5098 5099 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5100 /* if size can vary use size else just use PAGE_SIZE */ 5101 size = nc->size; 5102 #endif 5103 /* Even if we own the page, we do not use atomic_set(). 5104 * This would break get_page_unless_zero() users. 5105 */ 5106 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5107 5108 /* reset page count bias and offset to start of new frag */ 5109 nc->pfmemalloc = page_is_pfmemalloc(page); 5110 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5111 nc->offset = size; 5112 } 5113 5114 offset = nc->offset - fragsz; 5115 if (unlikely(offset < 0)) { 5116 page = virt_to_page(nc->va); 5117 5118 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5119 goto refill; 5120 5121 if (unlikely(nc->pfmemalloc)) { 5122 free_the_page(page, compound_order(page)); 5123 goto refill; 5124 } 5125 5126 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5127 /* if size can vary use size else just use PAGE_SIZE */ 5128 size = nc->size; 5129 #endif 5130 /* OK, page count is 0, we can safely set it */ 5131 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5132 5133 /* reset page count bias and offset to start of new frag */ 5134 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5135 offset = size - fragsz; 5136 } 5137 5138 nc->pagecnt_bias--; 5139 nc->offset = offset; 5140 5141 return nc->va + offset; 5142 } 5143 EXPORT_SYMBOL(page_frag_alloc); 5144 5145 /* 5146 * Frees a page fragment allocated out of either a compound or order 0 page. 5147 */ 5148 void page_frag_free(void *addr) 5149 { 5150 struct page *page = virt_to_head_page(addr); 5151 5152 if (unlikely(put_page_testzero(page))) 5153 free_the_page(page, compound_order(page)); 5154 } 5155 EXPORT_SYMBOL(page_frag_free); 5156 5157 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5158 size_t size) 5159 { 5160 if (addr) { 5161 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5162 unsigned long used = addr + PAGE_ALIGN(size); 5163 5164 split_page(virt_to_page((void *)addr), order); 5165 while (used < alloc_end) { 5166 free_page(used); 5167 used += PAGE_SIZE; 5168 } 5169 } 5170 return (void *)addr; 5171 } 5172 5173 /** 5174 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5175 * @size: the number of bytes to allocate 5176 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5177 * 5178 * This function is similar to alloc_pages(), except that it allocates the 5179 * minimum number of pages to satisfy the request. alloc_pages() can only 5180 * allocate memory in power-of-two pages. 5181 * 5182 * This function is also limited by MAX_ORDER. 5183 * 5184 * Memory allocated by this function must be released by free_pages_exact(). 5185 * 5186 * Return: pointer to the allocated area or %NULL in case of error. 5187 */ 5188 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5189 { 5190 unsigned int order = get_order(size); 5191 unsigned long addr; 5192 5193 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5194 gfp_mask &= ~__GFP_COMP; 5195 5196 addr = __get_free_pages(gfp_mask, order); 5197 return make_alloc_exact(addr, order, size); 5198 } 5199 EXPORT_SYMBOL(alloc_pages_exact); 5200 5201 /** 5202 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5203 * pages on a node. 5204 * @nid: the preferred node ID where memory should be allocated 5205 * @size: the number of bytes to allocate 5206 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5207 * 5208 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5209 * back. 5210 * 5211 * Return: pointer to the allocated area or %NULL in case of error. 5212 */ 5213 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5214 { 5215 unsigned int order = get_order(size); 5216 struct page *p; 5217 5218 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5219 gfp_mask &= ~__GFP_COMP; 5220 5221 p = alloc_pages_node(nid, gfp_mask, order); 5222 if (!p) 5223 return NULL; 5224 return make_alloc_exact((unsigned long)page_address(p), order, size); 5225 } 5226 5227 /** 5228 * free_pages_exact - release memory allocated via alloc_pages_exact() 5229 * @virt: the value returned by alloc_pages_exact. 5230 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5231 * 5232 * Release the memory allocated by a previous call to alloc_pages_exact. 5233 */ 5234 void free_pages_exact(void *virt, size_t size) 5235 { 5236 unsigned long addr = (unsigned long)virt; 5237 unsigned long end = addr + PAGE_ALIGN(size); 5238 5239 while (addr < end) { 5240 free_page(addr); 5241 addr += PAGE_SIZE; 5242 } 5243 } 5244 EXPORT_SYMBOL(free_pages_exact); 5245 5246 /** 5247 * nr_free_zone_pages - count number of pages beyond high watermark 5248 * @offset: The zone index of the highest zone 5249 * 5250 * nr_free_zone_pages() counts the number of pages which are beyond the 5251 * high watermark within all zones at or below a given zone index. For each 5252 * zone, the number of pages is calculated as: 5253 * 5254 * nr_free_zone_pages = managed_pages - high_pages 5255 * 5256 * Return: number of pages beyond high watermark. 5257 */ 5258 static unsigned long nr_free_zone_pages(int offset) 5259 { 5260 struct zoneref *z; 5261 struct zone *zone; 5262 5263 /* Just pick one node, since fallback list is circular */ 5264 unsigned long sum = 0; 5265 5266 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5267 5268 for_each_zone_zonelist(zone, z, zonelist, offset) { 5269 unsigned long size = zone_managed_pages(zone); 5270 unsigned long high = high_wmark_pages(zone); 5271 if (size > high) 5272 sum += size - high; 5273 } 5274 5275 return sum; 5276 } 5277 5278 /** 5279 * nr_free_buffer_pages - count number of pages beyond high watermark 5280 * 5281 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5282 * watermark within ZONE_DMA and ZONE_NORMAL. 5283 * 5284 * Return: number of pages beyond high watermark within ZONE_DMA and 5285 * ZONE_NORMAL. 5286 */ 5287 unsigned long nr_free_buffer_pages(void) 5288 { 5289 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5290 } 5291 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5292 5293 static inline void show_node(struct zone *zone) 5294 { 5295 if (IS_ENABLED(CONFIG_NUMA)) 5296 printk("Node %d ", zone_to_nid(zone)); 5297 } 5298 5299 long si_mem_available(void) 5300 { 5301 long available; 5302 unsigned long pagecache; 5303 unsigned long wmark_low = 0; 5304 unsigned long pages[NR_LRU_LISTS]; 5305 unsigned long reclaimable; 5306 struct zone *zone; 5307 int lru; 5308 5309 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5310 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5311 5312 for_each_zone(zone) 5313 wmark_low += low_wmark_pages(zone); 5314 5315 /* 5316 * Estimate the amount of memory available for userspace allocations, 5317 * without causing swapping. 5318 */ 5319 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5320 5321 /* 5322 * Not all the page cache can be freed, otherwise the system will 5323 * start swapping. Assume at least half of the page cache, or the 5324 * low watermark worth of cache, needs to stay. 5325 */ 5326 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5327 pagecache -= min(pagecache / 2, wmark_low); 5328 available += pagecache; 5329 5330 /* 5331 * Part of the reclaimable slab and other kernel memory consists of 5332 * items that are in use, and cannot be freed. Cap this estimate at the 5333 * low watermark. 5334 */ 5335 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5336 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5337 available += reclaimable - min(reclaimable / 2, wmark_low); 5338 5339 if (available < 0) 5340 available = 0; 5341 return available; 5342 } 5343 EXPORT_SYMBOL_GPL(si_mem_available); 5344 5345 void si_meminfo(struct sysinfo *val) 5346 { 5347 val->totalram = totalram_pages(); 5348 val->sharedram = global_node_page_state(NR_SHMEM); 5349 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5350 val->bufferram = nr_blockdev_pages(); 5351 val->totalhigh = totalhigh_pages(); 5352 val->freehigh = nr_free_highpages(); 5353 val->mem_unit = PAGE_SIZE; 5354 } 5355 5356 EXPORT_SYMBOL(si_meminfo); 5357 5358 #ifdef CONFIG_NUMA 5359 void si_meminfo_node(struct sysinfo *val, int nid) 5360 { 5361 int zone_type; /* needs to be signed */ 5362 unsigned long managed_pages = 0; 5363 unsigned long managed_highpages = 0; 5364 unsigned long free_highpages = 0; 5365 pg_data_t *pgdat = NODE_DATA(nid); 5366 5367 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5368 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5369 val->totalram = managed_pages; 5370 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5371 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5372 #ifdef CONFIG_HIGHMEM 5373 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5374 struct zone *zone = &pgdat->node_zones[zone_type]; 5375 5376 if (is_highmem(zone)) { 5377 managed_highpages += zone_managed_pages(zone); 5378 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5379 } 5380 } 5381 val->totalhigh = managed_highpages; 5382 val->freehigh = free_highpages; 5383 #else 5384 val->totalhigh = managed_highpages; 5385 val->freehigh = free_highpages; 5386 #endif 5387 val->mem_unit = PAGE_SIZE; 5388 } 5389 #endif 5390 5391 /* 5392 * Determine whether the node should be displayed or not, depending on whether 5393 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5394 */ 5395 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5396 { 5397 if (!(flags & SHOW_MEM_FILTER_NODES)) 5398 return false; 5399 5400 /* 5401 * no node mask - aka implicit memory numa policy. Do not bother with 5402 * the synchronization - read_mems_allowed_begin - because we do not 5403 * have to be precise here. 5404 */ 5405 if (!nodemask) 5406 nodemask = &cpuset_current_mems_allowed; 5407 5408 return !node_isset(nid, *nodemask); 5409 } 5410 5411 #define K(x) ((x) << (PAGE_SHIFT-10)) 5412 5413 static void show_migration_types(unsigned char type) 5414 { 5415 static const char types[MIGRATE_TYPES] = { 5416 [MIGRATE_UNMOVABLE] = 'U', 5417 [MIGRATE_MOVABLE] = 'M', 5418 [MIGRATE_RECLAIMABLE] = 'E', 5419 [MIGRATE_HIGHATOMIC] = 'H', 5420 #ifdef CONFIG_CMA 5421 [MIGRATE_CMA] = 'C', 5422 #endif 5423 #ifdef CONFIG_MEMORY_ISOLATION 5424 [MIGRATE_ISOLATE] = 'I', 5425 #endif 5426 }; 5427 char tmp[MIGRATE_TYPES + 1]; 5428 char *p = tmp; 5429 int i; 5430 5431 for (i = 0; i < MIGRATE_TYPES; i++) { 5432 if (type & (1 << i)) 5433 *p++ = types[i]; 5434 } 5435 5436 *p = '\0'; 5437 printk(KERN_CONT "(%s) ", tmp); 5438 } 5439 5440 /* 5441 * Show free area list (used inside shift_scroll-lock stuff) 5442 * We also calculate the percentage fragmentation. We do this by counting the 5443 * memory on each free list with the exception of the first item on the list. 5444 * 5445 * Bits in @filter: 5446 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5447 * cpuset. 5448 */ 5449 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5450 { 5451 unsigned long free_pcp = 0; 5452 int cpu; 5453 struct zone *zone; 5454 pg_data_t *pgdat; 5455 5456 for_each_populated_zone(zone) { 5457 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5458 continue; 5459 5460 for_each_online_cpu(cpu) 5461 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5462 } 5463 5464 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5465 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5466 " unevictable:%lu dirty:%lu writeback:%lu\n" 5467 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5468 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5469 " free:%lu free_pcp:%lu free_cma:%lu\n", 5470 global_node_page_state(NR_ACTIVE_ANON), 5471 global_node_page_state(NR_INACTIVE_ANON), 5472 global_node_page_state(NR_ISOLATED_ANON), 5473 global_node_page_state(NR_ACTIVE_FILE), 5474 global_node_page_state(NR_INACTIVE_FILE), 5475 global_node_page_state(NR_ISOLATED_FILE), 5476 global_node_page_state(NR_UNEVICTABLE), 5477 global_node_page_state(NR_FILE_DIRTY), 5478 global_node_page_state(NR_WRITEBACK), 5479 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5480 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5481 global_node_page_state(NR_FILE_MAPPED), 5482 global_node_page_state(NR_SHMEM), 5483 global_node_page_state(NR_PAGETABLE), 5484 global_zone_page_state(NR_BOUNCE), 5485 global_zone_page_state(NR_FREE_PAGES), 5486 free_pcp, 5487 global_zone_page_state(NR_FREE_CMA_PAGES)); 5488 5489 for_each_online_pgdat(pgdat) { 5490 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5491 continue; 5492 5493 printk("Node %d" 5494 " active_anon:%lukB" 5495 " inactive_anon:%lukB" 5496 " active_file:%lukB" 5497 " inactive_file:%lukB" 5498 " unevictable:%lukB" 5499 " isolated(anon):%lukB" 5500 " isolated(file):%lukB" 5501 " mapped:%lukB" 5502 " dirty:%lukB" 5503 " writeback:%lukB" 5504 " shmem:%lukB" 5505 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5506 " shmem_thp: %lukB" 5507 " shmem_pmdmapped: %lukB" 5508 " anon_thp: %lukB" 5509 #endif 5510 " writeback_tmp:%lukB" 5511 " kernel_stack:%lukB" 5512 #ifdef CONFIG_SHADOW_CALL_STACK 5513 " shadow_call_stack:%lukB" 5514 #endif 5515 " pagetables:%lukB" 5516 " all_unreclaimable? %s" 5517 "\n", 5518 pgdat->node_id, 5519 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5520 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5521 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5522 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5523 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5524 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5525 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5526 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5527 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5528 K(node_page_state(pgdat, NR_WRITEBACK)), 5529 K(node_page_state(pgdat, NR_SHMEM)), 5530 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5531 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5532 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5533 * HPAGE_PMD_NR), 5534 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5535 #endif 5536 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5537 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5538 #ifdef CONFIG_SHADOW_CALL_STACK 5539 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5540 #endif 5541 K(node_page_state(pgdat, NR_PAGETABLE)), 5542 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5543 "yes" : "no"); 5544 } 5545 5546 for_each_populated_zone(zone) { 5547 int i; 5548 5549 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5550 continue; 5551 5552 free_pcp = 0; 5553 for_each_online_cpu(cpu) 5554 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5555 5556 show_node(zone); 5557 printk(KERN_CONT 5558 "%s" 5559 " free:%lukB" 5560 " min:%lukB" 5561 " low:%lukB" 5562 " high:%lukB" 5563 " reserved_highatomic:%luKB" 5564 " active_anon:%lukB" 5565 " inactive_anon:%lukB" 5566 " active_file:%lukB" 5567 " inactive_file:%lukB" 5568 " unevictable:%lukB" 5569 " writepending:%lukB" 5570 " present:%lukB" 5571 " managed:%lukB" 5572 " mlocked:%lukB" 5573 " bounce:%lukB" 5574 " free_pcp:%lukB" 5575 " local_pcp:%ukB" 5576 " free_cma:%lukB" 5577 "\n", 5578 zone->name, 5579 K(zone_page_state(zone, NR_FREE_PAGES)), 5580 K(min_wmark_pages(zone)), 5581 K(low_wmark_pages(zone)), 5582 K(high_wmark_pages(zone)), 5583 K(zone->nr_reserved_highatomic), 5584 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5585 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5586 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5587 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5588 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5589 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5590 K(zone->present_pages), 5591 K(zone_managed_pages(zone)), 5592 K(zone_page_state(zone, NR_MLOCK)), 5593 K(zone_page_state(zone, NR_BOUNCE)), 5594 K(free_pcp), 5595 K(this_cpu_read(zone->pageset->pcp.count)), 5596 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5597 printk("lowmem_reserve[]:"); 5598 for (i = 0; i < MAX_NR_ZONES; i++) 5599 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5600 printk(KERN_CONT "\n"); 5601 } 5602 5603 for_each_populated_zone(zone) { 5604 unsigned int order; 5605 unsigned long nr[MAX_ORDER], flags, total = 0; 5606 unsigned char types[MAX_ORDER]; 5607 5608 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5609 continue; 5610 show_node(zone); 5611 printk(KERN_CONT "%s: ", zone->name); 5612 5613 spin_lock_irqsave(&zone->lock, flags); 5614 for (order = 0; order < MAX_ORDER; order++) { 5615 struct free_area *area = &zone->free_area[order]; 5616 int type; 5617 5618 nr[order] = area->nr_free; 5619 total += nr[order] << order; 5620 5621 types[order] = 0; 5622 for (type = 0; type < MIGRATE_TYPES; type++) { 5623 if (!free_area_empty(area, type)) 5624 types[order] |= 1 << type; 5625 } 5626 } 5627 spin_unlock_irqrestore(&zone->lock, flags); 5628 for (order = 0; order < MAX_ORDER; order++) { 5629 printk(KERN_CONT "%lu*%lukB ", 5630 nr[order], K(1UL) << order); 5631 if (nr[order]) 5632 show_migration_types(types[order]); 5633 } 5634 printk(KERN_CONT "= %lukB\n", K(total)); 5635 } 5636 5637 hugetlb_show_meminfo(); 5638 5639 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5640 5641 show_swap_cache_info(); 5642 } 5643 5644 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5645 { 5646 zoneref->zone = zone; 5647 zoneref->zone_idx = zone_idx(zone); 5648 } 5649 5650 /* 5651 * Builds allocation fallback zone lists. 5652 * 5653 * Add all populated zones of a node to the zonelist. 5654 */ 5655 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5656 { 5657 struct zone *zone; 5658 enum zone_type zone_type = MAX_NR_ZONES; 5659 int nr_zones = 0; 5660 5661 do { 5662 zone_type--; 5663 zone = pgdat->node_zones + zone_type; 5664 if (managed_zone(zone)) { 5665 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5666 check_highest_zone(zone_type); 5667 } 5668 } while (zone_type); 5669 5670 return nr_zones; 5671 } 5672 5673 #ifdef CONFIG_NUMA 5674 5675 static int __parse_numa_zonelist_order(char *s) 5676 { 5677 /* 5678 * We used to support different zonlists modes but they turned 5679 * out to be just not useful. Let's keep the warning in place 5680 * if somebody still use the cmd line parameter so that we do 5681 * not fail it silently 5682 */ 5683 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5684 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5685 return -EINVAL; 5686 } 5687 return 0; 5688 } 5689 5690 char numa_zonelist_order[] = "Node"; 5691 5692 /* 5693 * sysctl handler for numa_zonelist_order 5694 */ 5695 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5696 void *buffer, size_t *length, loff_t *ppos) 5697 { 5698 if (write) 5699 return __parse_numa_zonelist_order(buffer); 5700 return proc_dostring(table, write, buffer, length, ppos); 5701 } 5702 5703 5704 #define MAX_NODE_LOAD (nr_online_nodes) 5705 static int node_load[MAX_NUMNODES]; 5706 5707 /** 5708 * find_next_best_node - find the next node that should appear in a given node's fallback list 5709 * @node: node whose fallback list we're appending 5710 * @used_node_mask: nodemask_t of already used nodes 5711 * 5712 * We use a number of factors to determine which is the next node that should 5713 * appear on a given node's fallback list. The node should not have appeared 5714 * already in @node's fallback list, and it should be the next closest node 5715 * according to the distance array (which contains arbitrary distance values 5716 * from each node to each node in the system), and should also prefer nodes 5717 * with no CPUs, since presumably they'll have very little allocation pressure 5718 * on them otherwise. 5719 * 5720 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5721 */ 5722 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5723 { 5724 int n, val; 5725 int min_val = INT_MAX; 5726 int best_node = NUMA_NO_NODE; 5727 5728 /* Use the local node if we haven't already */ 5729 if (!node_isset(node, *used_node_mask)) { 5730 node_set(node, *used_node_mask); 5731 return node; 5732 } 5733 5734 for_each_node_state(n, N_MEMORY) { 5735 5736 /* Don't want a node to appear more than once */ 5737 if (node_isset(n, *used_node_mask)) 5738 continue; 5739 5740 /* Use the distance array to find the distance */ 5741 val = node_distance(node, n); 5742 5743 /* Penalize nodes under us ("prefer the next node") */ 5744 val += (n < node); 5745 5746 /* Give preference to headless and unused nodes */ 5747 if (!cpumask_empty(cpumask_of_node(n))) 5748 val += PENALTY_FOR_NODE_WITH_CPUS; 5749 5750 /* Slight preference for less loaded node */ 5751 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5752 val += node_load[n]; 5753 5754 if (val < min_val) { 5755 min_val = val; 5756 best_node = n; 5757 } 5758 } 5759 5760 if (best_node >= 0) 5761 node_set(best_node, *used_node_mask); 5762 5763 return best_node; 5764 } 5765 5766 5767 /* 5768 * Build zonelists ordered by node and zones within node. 5769 * This results in maximum locality--normal zone overflows into local 5770 * DMA zone, if any--but risks exhausting DMA zone. 5771 */ 5772 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5773 unsigned nr_nodes) 5774 { 5775 struct zoneref *zonerefs; 5776 int i; 5777 5778 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5779 5780 for (i = 0; i < nr_nodes; i++) { 5781 int nr_zones; 5782 5783 pg_data_t *node = NODE_DATA(node_order[i]); 5784 5785 nr_zones = build_zonerefs_node(node, zonerefs); 5786 zonerefs += nr_zones; 5787 } 5788 zonerefs->zone = NULL; 5789 zonerefs->zone_idx = 0; 5790 } 5791 5792 /* 5793 * Build gfp_thisnode zonelists 5794 */ 5795 static void build_thisnode_zonelists(pg_data_t *pgdat) 5796 { 5797 struct zoneref *zonerefs; 5798 int nr_zones; 5799 5800 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5801 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5802 zonerefs += nr_zones; 5803 zonerefs->zone = NULL; 5804 zonerefs->zone_idx = 0; 5805 } 5806 5807 /* 5808 * Build zonelists ordered by zone and nodes within zones. 5809 * This results in conserving DMA zone[s] until all Normal memory is 5810 * exhausted, but results in overflowing to remote node while memory 5811 * may still exist in local DMA zone. 5812 */ 5813 5814 static void build_zonelists(pg_data_t *pgdat) 5815 { 5816 static int node_order[MAX_NUMNODES]; 5817 int node, load, nr_nodes = 0; 5818 nodemask_t used_mask = NODE_MASK_NONE; 5819 int local_node, prev_node; 5820 5821 /* NUMA-aware ordering of nodes */ 5822 local_node = pgdat->node_id; 5823 load = nr_online_nodes; 5824 prev_node = local_node; 5825 5826 memset(node_order, 0, sizeof(node_order)); 5827 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5828 /* 5829 * We don't want to pressure a particular node. 5830 * So adding penalty to the first node in same 5831 * distance group to make it round-robin. 5832 */ 5833 if (node_distance(local_node, node) != 5834 node_distance(local_node, prev_node)) 5835 node_load[node] = load; 5836 5837 node_order[nr_nodes++] = node; 5838 prev_node = node; 5839 load--; 5840 } 5841 5842 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5843 build_thisnode_zonelists(pgdat); 5844 } 5845 5846 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5847 /* 5848 * Return node id of node used for "local" allocations. 5849 * I.e., first node id of first zone in arg node's generic zonelist. 5850 * Used for initializing percpu 'numa_mem', which is used primarily 5851 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5852 */ 5853 int local_memory_node(int node) 5854 { 5855 struct zoneref *z; 5856 5857 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5858 gfp_zone(GFP_KERNEL), 5859 NULL); 5860 return zone_to_nid(z->zone); 5861 } 5862 #endif 5863 5864 static void setup_min_unmapped_ratio(void); 5865 static void setup_min_slab_ratio(void); 5866 #else /* CONFIG_NUMA */ 5867 5868 static void build_zonelists(pg_data_t *pgdat) 5869 { 5870 int node, local_node; 5871 struct zoneref *zonerefs; 5872 int nr_zones; 5873 5874 local_node = pgdat->node_id; 5875 5876 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5877 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5878 zonerefs += nr_zones; 5879 5880 /* 5881 * Now we build the zonelist so that it contains the zones 5882 * of all the other nodes. 5883 * We don't want to pressure a particular node, so when 5884 * building the zones for node N, we make sure that the 5885 * zones coming right after the local ones are those from 5886 * node N+1 (modulo N) 5887 */ 5888 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5889 if (!node_online(node)) 5890 continue; 5891 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5892 zonerefs += nr_zones; 5893 } 5894 for (node = 0; node < local_node; node++) { 5895 if (!node_online(node)) 5896 continue; 5897 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5898 zonerefs += nr_zones; 5899 } 5900 5901 zonerefs->zone = NULL; 5902 zonerefs->zone_idx = 0; 5903 } 5904 5905 #endif /* CONFIG_NUMA */ 5906 5907 /* 5908 * Boot pageset table. One per cpu which is going to be used for all 5909 * zones and all nodes. The parameters will be set in such a way 5910 * that an item put on a list will immediately be handed over to 5911 * the buddy list. This is safe since pageset manipulation is done 5912 * with interrupts disabled. 5913 * 5914 * The boot_pagesets must be kept even after bootup is complete for 5915 * unused processors and/or zones. They do play a role for bootstrapping 5916 * hotplugged processors. 5917 * 5918 * zoneinfo_show() and maybe other functions do 5919 * not check if the processor is online before following the pageset pointer. 5920 * Other parts of the kernel may not check if the zone is available. 5921 */ 5922 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5923 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5924 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5925 5926 static void __build_all_zonelists(void *data) 5927 { 5928 int nid; 5929 int __maybe_unused cpu; 5930 pg_data_t *self = data; 5931 static DEFINE_SPINLOCK(lock); 5932 5933 spin_lock(&lock); 5934 5935 #ifdef CONFIG_NUMA 5936 memset(node_load, 0, sizeof(node_load)); 5937 #endif 5938 5939 /* 5940 * This node is hotadded and no memory is yet present. So just 5941 * building zonelists is fine - no need to touch other nodes. 5942 */ 5943 if (self && !node_online(self->node_id)) { 5944 build_zonelists(self); 5945 } else { 5946 for_each_online_node(nid) { 5947 pg_data_t *pgdat = NODE_DATA(nid); 5948 5949 build_zonelists(pgdat); 5950 } 5951 5952 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5953 /* 5954 * We now know the "local memory node" for each node-- 5955 * i.e., the node of the first zone in the generic zonelist. 5956 * Set up numa_mem percpu variable for on-line cpus. During 5957 * boot, only the boot cpu should be on-line; we'll init the 5958 * secondary cpus' numa_mem as they come on-line. During 5959 * node/memory hotplug, we'll fixup all on-line cpus. 5960 */ 5961 for_each_online_cpu(cpu) 5962 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5963 #endif 5964 } 5965 5966 spin_unlock(&lock); 5967 } 5968 5969 static noinline void __init 5970 build_all_zonelists_init(void) 5971 { 5972 int cpu; 5973 5974 __build_all_zonelists(NULL); 5975 5976 /* 5977 * Initialize the boot_pagesets that are going to be used 5978 * for bootstrapping processors. The real pagesets for 5979 * each zone will be allocated later when the per cpu 5980 * allocator is available. 5981 * 5982 * boot_pagesets are used also for bootstrapping offline 5983 * cpus if the system is already booted because the pagesets 5984 * are needed to initialize allocators on a specific cpu too. 5985 * F.e. the percpu allocator needs the page allocator which 5986 * needs the percpu allocator in order to allocate its pagesets 5987 * (a chicken-egg dilemma). 5988 */ 5989 for_each_possible_cpu(cpu) 5990 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5991 5992 mminit_verify_zonelist(); 5993 cpuset_init_current_mems_allowed(); 5994 } 5995 5996 /* 5997 * unless system_state == SYSTEM_BOOTING. 5998 * 5999 * __ref due to call of __init annotated helper build_all_zonelists_init 6000 * [protected by SYSTEM_BOOTING]. 6001 */ 6002 void __ref build_all_zonelists(pg_data_t *pgdat) 6003 { 6004 unsigned long vm_total_pages; 6005 6006 if (system_state == SYSTEM_BOOTING) { 6007 build_all_zonelists_init(); 6008 } else { 6009 __build_all_zonelists(pgdat); 6010 /* cpuset refresh routine should be here */ 6011 } 6012 /* Get the number of free pages beyond high watermark in all zones. */ 6013 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6014 /* 6015 * Disable grouping by mobility if the number of pages in the 6016 * system is too low to allow the mechanism to work. It would be 6017 * more accurate, but expensive to check per-zone. This check is 6018 * made on memory-hotadd so a system can start with mobility 6019 * disabled and enable it later 6020 */ 6021 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6022 page_group_by_mobility_disabled = 1; 6023 else 6024 page_group_by_mobility_disabled = 0; 6025 6026 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6027 nr_online_nodes, 6028 page_group_by_mobility_disabled ? "off" : "on", 6029 vm_total_pages); 6030 #ifdef CONFIG_NUMA 6031 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6032 #endif 6033 } 6034 6035 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6036 static bool __meminit 6037 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6038 { 6039 static struct memblock_region *r; 6040 6041 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6042 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6043 for_each_mem_region(r) { 6044 if (*pfn < memblock_region_memory_end_pfn(r)) 6045 break; 6046 } 6047 } 6048 if (*pfn >= memblock_region_memory_base_pfn(r) && 6049 memblock_is_mirror(r)) { 6050 *pfn = memblock_region_memory_end_pfn(r); 6051 return true; 6052 } 6053 } 6054 return false; 6055 } 6056 6057 /* 6058 * Initially all pages are reserved - free ones are freed 6059 * up by memblock_free_all() once the early boot process is 6060 * done. Non-atomic initialization, single-pass. 6061 * 6062 * All aligned pageblocks are initialized to the specified migratetype 6063 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6064 * zone stats (e.g., nr_isolate_pageblock) are touched. 6065 */ 6066 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 6067 unsigned long start_pfn, 6068 enum meminit_context context, 6069 struct vmem_altmap *altmap, int migratetype) 6070 { 6071 unsigned long pfn, end_pfn = start_pfn + size; 6072 struct page *page; 6073 6074 if (highest_memmap_pfn < end_pfn - 1) 6075 highest_memmap_pfn = end_pfn - 1; 6076 6077 #ifdef CONFIG_ZONE_DEVICE 6078 /* 6079 * Honor reservation requested by the driver for this ZONE_DEVICE 6080 * memory. We limit the total number of pages to initialize to just 6081 * those that might contain the memory mapping. We will defer the 6082 * ZONE_DEVICE page initialization until after we have released 6083 * the hotplug lock. 6084 */ 6085 if (zone == ZONE_DEVICE) { 6086 if (!altmap) 6087 return; 6088 6089 if (start_pfn == altmap->base_pfn) 6090 start_pfn += altmap->reserve; 6091 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6092 } 6093 #endif 6094 6095 for (pfn = start_pfn; pfn < end_pfn; ) { 6096 /* 6097 * There can be holes in boot-time mem_map[]s handed to this 6098 * function. They do not exist on hotplugged memory. 6099 */ 6100 if (context == MEMINIT_EARLY) { 6101 if (overlap_memmap_init(zone, &pfn)) 6102 continue; 6103 if (defer_init(nid, pfn, end_pfn)) 6104 break; 6105 } 6106 6107 page = pfn_to_page(pfn); 6108 __init_single_page(page, pfn, zone, nid); 6109 if (context == MEMINIT_HOTPLUG) 6110 __SetPageReserved(page); 6111 6112 /* 6113 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6114 * such that unmovable allocations won't be scattered all 6115 * over the place during system boot. 6116 */ 6117 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6118 set_pageblock_migratetype(page, migratetype); 6119 cond_resched(); 6120 } 6121 pfn++; 6122 } 6123 } 6124 6125 #ifdef CONFIG_ZONE_DEVICE 6126 void __ref memmap_init_zone_device(struct zone *zone, 6127 unsigned long start_pfn, 6128 unsigned long nr_pages, 6129 struct dev_pagemap *pgmap) 6130 { 6131 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6132 struct pglist_data *pgdat = zone->zone_pgdat; 6133 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6134 unsigned long zone_idx = zone_idx(zone); 6135 unsigned long start = jiffies; 6136 int nid = pgdat->node_id; 6137 6138 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6139 return; 6140 6141 /* 6142 * The call to memmap_init_zone should have already taken care 6143 * of the pages reserved for the memmap, so we can just jump to 6144 * the end of that region and start processing the device pages. 6145 */ 6146 if (altmap) { 6147 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6148 nr_pages = end_pfn - start_pfn; 6149 } 6150 6151 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6152 struct page *page = pfn_to_page(pfn); 6153 6154 __init_single_page(page, pfn, zone_idx, nid); 6155 6156 /* 6157 * Mark page reserved as it will need to wait for onlining 6158 * phase for it to be fully associated with a zone. 6159 * 6160 * We can use the non-atomic __set_bit operation for setting 6161 * the flag as we are still initializing the pages. 6162 */ 6163 __SetPageReserved(page); 6164 6165 /* 6166 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6167 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6168 * ever freed or placed on a driver-private list. 6169 */ 6170 page->pgmap = pgmap; 6171 page->zone_device_data = NULL; 6172 6173 /* 6174 * Mark the block movable so that blocks are reserved for 6175 * movable at startup. This will force kernel allocations 6176 * to reserve their blocks rather than leaking throughout 6177 * the address space during boot when many long-lived 6178 * kernel allocations are made. 6179 * 6180 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6181 * because this is done early in section_activate() 6182 */ 6183 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6184 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6185 cond_resched(); 6186 } 6187 } 6188 6189 pr_info("%s initialised %lu pages in %ums\n", __func__, 6190 nr_pages, jiffies_to_msecs(jiffies - start)); 6191 } 6192 6193 #endif 6194 static void __meminit zone_init_free_lists(struct zone *zone) 6195 { 6196 unsigned int order, t; 6197 for_each_migratetype_order(order, t) { 6198 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6199 zone->free_area[order].nr_free = 0; 6200 } 6201 } 6202 6203 void __meminit __weak memmap_init(unsigned long size, int nid, 6204 unsigned long zone, 6205 unsigned long range_start_pfn) 6206 { 6207 unsigned long start_pfn, end_pfn; 6208 unsigned long range_end_pfn = range_start_pfn + size; 6209 int i; 6210 6211 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6212 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6213 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6214 6215 if (end_pfn > start_pfn) { 6216 size = end_pfn - start_pfn; 6217 memmap_init_zone(size, nid, zone, start_pfn, 6218 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6219 } 6220 } 6221 } 6222 6223 static int zone_batchsize(struct zone *zone) 6224 { 6225 #ifdef CONFIG_MMU 6226 int batch; 6227 6228 /* 6229 * The per-cpu-pages pools are set to around 1000th of the 6230 * size of the zone. 6231 */ 6232 batch = zone_managed_pages(zone) / 1024; 6233 /* But no more than a meg. */ 6234 if (batch * PAGE_SIZE > 1024 * 1024) 6235 batch = (1024 * 1024) / PAGE_SIZE; 6236 batch /= 4; /* We effectively *= 4 below */ 6237 if (batch < 1) 6238 batch = 1; 6239 6240 /* 6241 * Clamp the batch to a 2^n - 1 value. Having a power 6242 * of 2 value was found to be more likely to have 6243 * suboptimal cache aliasing properties in some cases. 6244 * 6245 * For example if 2 tasks are alternately allocating 6246 * batches of pages, one task can end up with a lot 6247 * of pages of one half of the possible page colors 6248 * and the other with pages of the other colors. 6249 */ 6250 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6251 6252 return batch; 6253 6254 #else 6255 /* The deferral and batching of frees should be suppressed under NOMMU 6256 * conditions. 6257 * 6258 * The problem is that NOMMU needs to be able to allocate large chunks 6259 * of contiguous memory as there's no hardware page translation to 6260 * assemble apparent contiguous memory from discontiguous pages. 6261 * 6262 * Queueing large contiguous runs of pages for batching, however, 6263 * causes the pages to actually be freed in smaller chunks. As there 6264 * can be a significant delay between the individual batches being 6265 * recycled, this leads to the once large chunks of space being 6266 * fragmented and becoming unavailable for high-order allocations. 6267 */ 6268 return 0; 6269 #endif 6270 } 6271 6272 /* 6273 * pcp->high and pcp->batch values are related and dependent on one another: 6274 * ->batch must never be higher then ->high. 6275 * The following function updates them in a safe manner without read side 6276 * locking. 6277 * 6278 * Any new users of pcp->batch and pcp->high should ensure they can cope with 6279 * those fields changing asynchronously (acording to the above rule). 6280 * 6281 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6282 * outside of boot time (or some other assurance that no concurrent updaters 6283 * exist). 6284 */ 6285 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6286 unsigned long batch) 6287 { 6288 /* start with a fail safe value for batch */ 6289 pcp->batch = 1; 6290 smp_wmb(); 6291 6292 /* Update high, then batch, in order */ 6293 pcp->high = high; 6294 smp_wmb(); 6295 6296 pcp->batch = batch; 6297 } 6298 6299 /* a companion to pageset_set_high() */ 6300 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 6301 { 6302 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 6303 } 6304 6305 static void pageset_init(struct per_cpu_pageset *p) 6306 { 6307 struct per_cpu_pages *pcp; 6308 int migratetype; 6309 6310 memset(p, 0, sizeof(*p)); 6311 6312 pcp = &p->pcp; 6313 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6314 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6315 } 6316 6317 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 6318 { 6319 pageset_init(p); 6320 pageset_set_batch(p, batch); 6321 } 6322 6323 /* 6324 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 6325 * to the value high for the pageset p. 6326 */ 6327 static void pageset_set_high(struct per_cpu_pageset *p, 6328 unsigned long high) 6329 { 6330 unsigned long batch = max(1UL, high / 4); 6331 if ((high / 4) > (PAGE_SHIFT * 8)) 6332 batch = PAGE_SHIFT * 8; 6333 6334 pageset_update(&p->pcp, high, batch); 6335 } 6336 6337 static void pageset_set_high_and_batch(struct zone *zone, 6338 struct per_cpu_pageset *pcp) 6339 { 6340 if (percpu_pagelist_fraction) 6341 pageset_set_high(pcp, 6342 (zone_managed_pages(zone) / 6343 percpu_pagelist_fraction)); 6344 else 6345 pageset_set_batch(pcp, zone_batchsize(zone)); 6346 } 6347 6348 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 6349 { 6350 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 6351 6352 pageset_init(pcp); 6353 pageset_set_high_and_batch(zone, pcp); 6354 } 6355 6356 void __meminit setup_zone_pageset(struct zone *zone) 6357 { 6358 int cpu; 6359 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6360 for_each_possible_cpu(cpu) 6361 zone_pageset_init(zone, cpu); 6362 } 6363 6364 /* 6365 * Allocate per cpu pagesets and initialize them. 6366 * Before this call only boot pagesets were available. 6367 */ 6368 void __init setup_per_cpu_pageset(void) 6369 { 6370 struct pglist_data *pgdat; 6371 struct zone *zone; 6372 int __maybe_unused cpu; 6373 6374 for_each_populated_zone(zone) 6375 setup_zone_pageset(zone); 6376 6377 #ifdef CONFIG_NUMA 6378 /* 6379 * Unpopulated zones continue using the boot pagesets. 6380 * The numa stats for these pagesets need to be reset. 6381 * Otherwise, they will end up skewing the stats of 6382 * the nodes these zones are associated with. 6383 */ 6384 for_each_possible_cpu(cpu) { 6385 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu); 6386 memset(pcp->vm_numa_stat_diff, 0, 6387 sizeof(pcp->vm_numa_stat_diff)); 6388 } 6389 #endif 6390 6391 for_each_online_pgdat(pgdat) 6392 pgdat->per_cpu_nodestats = 6393 alloc_percpu(struct per_cpu_nodestat); 6394 } 6395 6396 static __meminit void zone_pcp_init(struct zone *zone) 6397 { 6398 /* 6399 * per cpu subsystem is not up at this point. The following code 6400 * relies on the ability of the linker to provide the 6401 * offset of a (static) per cpu variable into the per cpu area. 6402 */ 6403 zone->pageset = &boot_pageset; 6404 6405 if (populated_zone(zone)) 6406 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6407 zone->name, zone->present_pages, 6408 zone_batchsize(zone)); 6409 } 6410 6411 void __meminit init_currently_empty_zone(struct zone *zone, 6412 unsigned long zone_start_pfn, 6413 unsigned long size) 6414 { 6415 struct pglist_data *pgdat = zone->zone_pgdat; 6416 int zone_idx = zone_idx(zone) + 1; 6417 6418 if (zone_idx > pgdat->nr_zones) 6419 pgdat->nr_zones = zone_idx; 6420 6421 zone->zone_start_pfn = zone_start_pfn; 6422 6423 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6424 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6425 pgdat->node_id, 6426 (unsigned long)zone_idx(zone), 6427 zone_start_pfn, (zone_start_pfn + size)); 6428 6429 zone_init_free_lists(zone); 6430 zone->initialized = 1; 6431 } 6432 6433 /** 6434 * get_pfn_range_for_nid - Return the start and end page frames for a node 6435 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6436 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6437 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6438 * 6439 * It returns the start and end page frame of a node based on information 6440 * provided by memblock_set_node(). If called for a node 6441 * with no available memory, a warning is printed and the start and end 6442 * PFNs will be 0. 6443 */ 6444 void __init get_pfn_range_for_nid(unsigned int nid, 6445 unsigned long *start_pfn, unsigned long *end_pfn) 6446 { 6447 unsigned long this_start_pfn, this_end_pfn; 6448 int i; 6449 6450 *start_pfn = -1UL; 6451 *end_pfn = 0; 6452 6453 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6454 *start_pfn = min(*start_pfn, this_start_pfn); 6455 *end_pfn = max(*end_pfn, this_end_pfn); 6456 } 6457 6458 if (*start_pfn == -1UL) 6459 *start_pfn = 0; 6460 } 6461 6462 /* 6463 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6464 * assumption is made that zones within a node are ordered in monotonic 6465 * increasing memory addresses so that the "highest" populated zone is used 6466 */ 6467 static void __init find_usable_zone_for_movable(void) 6468 { 6469 int zone_index; 6470 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6471 if (zone_index == ZONE_MOVABLE) 6472 continue; 6473 6474 if (arch_zone_highest_possible_pfn[zone_index] > 6475 arch_zone_lowest_possible_pfn[zone_index]) 6476 break; 6477 } 6478 6479 VM_BUG_ON(zone_index == -1); 6480 movable_zone = zone_index; 6481 } 6482 6483 /* 6484 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6485 * because it is sized independent of architecture. Unlike the other zones, 6486 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6487 * in each node depending on the size of each node and how evenly kernelcore 6488 * is distributed. This helper function adjusts the zone ranges 6489 * provided by the architecture for a given node by using the end of the 6490 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6491 * zones within a node are in order of monotonic increases memory addresses 6492 */ 6493 static void __init adjust_zone_range_for_zone_movable(int nid, 6494 unsigned long zone_type, 6495 unsigned long node_start_pfn, 6496 unsigned long node_end_pfn, 6497 unsigned long *zone_start_pfn, 6498 unsigned long *zone_end_pfn) 6499 { 6500 /* Only adjust if ZONE_MOVABLE is on this node */ 6501 if (zone_movable_pfn[nid]) { 6502 /* Size ZONE_MOVABLE */ 6503 if (zone_type == ZONE_MOVABLE) { 6504 *zone_start_pfn = zone_movable_pfn[nid]; 6505 *zone_end_pfn = min(node_end_pfn, 6506 arch_zone_highest_possible_pfn[movable_zone]); 6507 6508 /* Adjust for ZONE_MOVABLE starting within this range */ 6509 } else if (!mirrored_kernelcore && 6510 *zone_start_pfn < zone_movable_pfn[nid] && 6511 *zone_end_pfn > zone_movable_pfn[nid]) { 6512 *zone_end_pfn = zone_movable_pfn[nid]; 6513 6514 /* Check if this whole range is within ZONE_MOVABLE */ 6515 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6516 *zone_start_pfn = *zone_end_pfn; 6517 } 6518 } 6519 6520 /* 6521 * Return the number of pages a zone spans in a node, including holes 6522 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6523 */ 6524 static unsigned long __init zone_spanned_pages_in_node(int nid, 6525 unsigned long zone_type, 6526 unsigned long node_start_pfn, 6527 unsigned long node_end_pfn, 6528 unsigned long *zone_start_pfn, 6529 unsigned long *zone_end_pfn) 6530 { 6531 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6532 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6533 /* When hotadd a new node from cpu_up(), the node should be empty */ 6534 if (!node_start_pfn && !node_end_pfn) 6535 return 0; 6536 6537 /* Get the start and end of the zone */ 6538 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6539 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6540 adjust_zone_range_for_zone_movable(nid, zone_type, 6541 node_start_pfn, node_end_pfn, 6542 zone_start_pfn, zone_end_pfn); 6543 6544 /* Check that this node has pages within the zone's required range */ 6545 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6546 return 0; 6547 6548 /* Move the zone boundaries inside the node if necessary */ 6549 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6550 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6551 6552 /* Return the spanned pages */ 6553 return *zone_end_pfn - *zone_start_pfn; 6554 } 6555 6556 /* 6557 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6558 * then all holes in the requested range will be accounted for. 6559 */ 6560 unsigned long __init __absent_pages_in_range(int nid, 6561 unsigned long range_start_pfn, 6562 unsigned long range_end_pfn) 6563 { 6564 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6565 unsigned long start_pfn, end_pfn; 6566 int i; 6567 6568 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6569 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6570 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6571 nr_absent -= end_pfn - start_pfn; 6572 } 6573 return nr_absent; 6574 } 6575 6576 /** 6577 * absent_pages_in_range - Return number of page frames in holes within a range 6578 * @start_pfn: The start PFN to start searching for holes 6579 * @end_pfn: The end PFN to stop searching for holes 6580 * 6581 * Return: the number of pages frames in memory holes within a range. 6582 */ 6583 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6584 unsigned long end_pfn) 6585 { 6586 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6587 } 6588 6589 /* Return the number of page frames in holes in a zone on a node */ 6590 static unsigned long __init zone_absent_pages_in_node(int nid, 6591 unsigned long zone_type, 6592 unsigned long node_start_pfn, 6593 unsigned long node_end_pfn) 6594 { 6595 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6596 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6597 unsigned long zone_start_pfn, zone_end_pfn; 6598 unsigned long nr_absent; 6599 6600 /* When hotadd a new node from cpu_up(), the node should be empty */ 6601 if (!node_start_pfn && !node_end_pfn) 6602 return 0; 6603 6604 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6605 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6606 6607 adjust_zone_range_for_zone_movable(nid, zone_type, 6608 node_start_pfn, node_end_pfn, 6609 &zone_start_pfn, &zone_end_pfn); 6610 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6611 6612 /* 6613 * ZONE_MOVABLE handling. 6614 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6615 * and vice versa. 6616 */ 6617 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6618 unsigned long start_pfn, end_pfn; 6619 struct memblock_region *r; 6620 6621 for_each_mem_region(r) { 6622 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6623 zone_start_pfn, zone_end_pfn); 6624 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6625 zone_start_pfn, zone_end_pfn); 6626 6627 if (zone_type == ZONE_MOVABLE && 6628 memblock_is_mirror(r)) 6629 nr_absent += end_pfn - start_pfn; 6630 6631 if (zone_type == ZONE_NORMAL && 6632 !memblock_is_mirror(r)) 6633 nr_absent += end_pfn - start_pfn; 6634 } 6635 } 6636 6637 return nr_absent; 6638 } 6639 6640 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6641 unsigned long node_start_pfn, 6642 unsigned long node_end_pfn) 6643 { 6644 unsigned long realtotalpages = 0, totalpages = 0; 6645 enum zone_type i; 6646 6647 for (i = 0; i < MAX_NR_ZONES; i++) { 6648 struct zone *zone = pgdat->node_zones + i; 6649 unsigned long zone_start_pfn, zone_end_pfn; 6650 unsigned long spanned, absent; 6651 unsigned long size, real_size; 6652 6653 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 6654 node_start_pfn, 6655 node_end_pfn, 6656 &zone_start_pfn, 6657 &zone_end_pfn); 6658 absent = zone_absent_pages_in_node(pgdat->node_id, i, 6659 node_start_pfn, 6660 node_end_pfn); 6661 6662 size = spanned; 6663 real_size = size - absent; 6664 6665 if (size) 6666 zone->zone_start_pfn = zone_start_pfn; 6667 else 6668 zone->zone_start_pfn = 0; 6669 zone->spanned_pages = size; 6670 zone->present_pages = real_size; 6671 6672 totalpages += size; 6673 realtotalpages += real_size; 6674 } 6675 6676 pgdat->node_spanned_pages = totalpages; 6677 pgdat->node_present_pages = realtotalpages; 6678 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6679 realtotalpages); 6680 } 6681 6682 #ifndef CONFIG_SPARSEMEM 6683 /* 6684 * Calculate the size of the zone->blockflags rounded to an unsigned long 6685 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6686 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6687 * round what is now in bits to nearest long in bits, then return it in 6688 * bytes. 6689 */ 6690 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6691 { 6692 unsigned long usemapsize; 6693 6694 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6695 usemapsize = roundup(zonesize, pageblock_nr_pages); 6696 usemapsize = usemapsize >> pageblock_order; 6697 usemapsize *= NR_PAGEBLOCK_BITS; 6698 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6699 6700 return usemapsize / 8; 6701 } 6702 6703 static void __ref setup_usemap(struct pglist_data *pgdat, 6704 struct zone *zone, 6705 unsigned long zone_start_pfn, 6706 unsigned long zonesize) 6707 { 6708 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6709 zone->pageblock_flags = NULL; 6710 if (usemapsize) { 6711 zone->pageblock_flags = 6712 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6713 pgdat->node_id); 6714 if (!zone->pageblock_flags) 6715 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6716 usemapsize, zone->name, pgdat->node_id); 6717 } 6718 } 6719 #else 6720 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6721 unsigned long zone_start_pfn, unsigned long zonesize) {} 6722 #endif /* CONFIG_SPARSEMEM */ 6723 6724 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6725 6726 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6727 void __init set_pageblock_order(void) 6728 { 6729 unsigned int order; 6730 6731 /* Check that pageblock_nr_pages has not already been setup */ 6732 if (pageblock_order) 6733 return; 6734 6735 if (HPAGE_SHIFT > PAGE_SHIFT) 6736 order = HUGETLB_PAGE_ORDER; 6737 else 6738 order = MAX_ORDER - 1; 6739 6740 /* 6741 * Assume the largest contiguous order of interest is a huge page. 6742 * This value may be variable depending on boot parameters on IA64 and 6743 * powerpc. 6744 */ 6745 pageblock_order = order; 6746 } 6747 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6748 6749 /* 6750 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6751 * is unused as pageblock_order is set at compile-time. See 6752 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6753 * the kernel config 6754 */ 6755 void __init set_pageblock_order(void) 6756 { 6757 } 6758 6759 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6760 6761 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6762 unsigned long present_pages) 6763 { 6764 unsigned long pages = spanned_pages; 6765 6766 /* 6767 * Provide a more accurate estimation if there are holes within 6768 * the zone and SPARSEMEM is in use. If there are holes within the 6769 * zone, each populated memory region may cost us one or two extra 6770 * memmap pages due to alignment because memmap pages for each 6771 * populated regions may not be naturally aligned on page boundary. 6772 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6773 */ 6774 if (spanned_pages > present_pages + (present_pages >> 4) && 6775 IS_ENABLED(CONFIG_SPARSEMEM)) 6776 pages = present_pages; 6777 6778 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6779 } 6780 6781 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6782 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6783 { 6784 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 6785 6786 spin_lock_init(&ds_queue->split_queue_lock); 6787 INIT_LIST_HEAD(&ds_queue->split_queue); 6788 ds_queue->split_queue_len = 0; 6789 } 6790 #else 6791 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6792 #endif 6793 6794 #ifdef CONFIG_COMPACTION 6795 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6796 { 6797 init_waitqueue_head(&pgdat->kcompactd_wait); 6798 } 6799 #else 6800 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6801 #endif 6802 6803 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6804 { 6805 pgdat_resize_init(pgdat); 6806 6807 pgdat_init_split_queue(pgdat); 6808 pgdat_init_kcompactd(pgdat); 6809 6810 init_waitqueue_head(&pgdat->kswapd_wait); 6811 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6812 6813 pgdat_page_ext_init(pgdat); 6814 spin_lock_init(&pgdat->lru_lock); 6815 lruvec_init(&pgdat->__lruvec); 6816 } 6817 6818 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6819 unsigned long remaining_pages) 6820 { 6821 atomic_long_set(&zone->managed_pages, remaining_pages); 6822 zone_set_nid(zone, nid); 6823 zone->name = zone_names[idx]; 6824 zone->zone_pgdat = NODE_DATA(nid); 6825 spin_lock_init(&zone->lock); 6826 zone_seqlock_init(zone); 6827 zone_pcp_init(zone); 6828 } 6829 6830 /* 6831 * Set up the zone data structures 6832 * - init pgdat internals 6833 * - init all zones belonging to this node 6834 * 6835 * NOTE: this function is only called during memory hotplug 6836 */ 6837 #ifdef CONFIG_MEMORY_HOTPLUG 6838 void __ref free_area_init_core_hotplug(int nid) 6839 { 6840 enum zone_type z; 6841 pg_data_t *pgdat = NODE_DATA(nid); 6842 6843 pgdat_init_internals(pgdat); 6844 for (z = 0; z < MAX_NR_ZONES; z++) 6845 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6846 } 6847 #endif 6848 6849 /* 6850 * Set up the zone data structures: 6851 * - mark all pages reserved 6852 * - mark all memory queues empty 6853 * - clear the memory bitmaps 6854 * 6855 * NOTE: pgdat should get zeroed by caller. 6856 * NOTE: this function is only called during early init. 6857 */ 6858 static void __init free_area_init_core(struct pglist_data *pgdat) 6859 { 6860 enum zone_type j; 6861 int nid = pgdat->node_id; 6862 6863 pgdat_init_internals(pgdat); 6864 pgdat->per_cpu_nodestats = &boot_nodestats; 6865 6866 for (j = 0; j < MAX_NR_ZONES; j++) { 6867 struct zone *zone = pgdat->node_zones + j; 6868 unsigned long size, freesize, memmap_pages; 6869 unsigned long zone_start_pfn = zone->zone_start_pfn; 6870 6871 size = zone->spanned_pages; 6872 freesize = zone->present_pages; 6873 6874 /* 6875 * Adjust freesize so that it accounts for how much memory 6876 * is used by this zone for memmap. This affects the watermark 6877 * and per-cpu initialisations 6878 */ 6879 memmap_pages = calc_memmap_size(size, freesize); 6880 if (!is_highmem_idx(j)) { 6881 if (freesize >= memmap_pages) { 6882 freesize -= memmap_pages; 6883 if (memmap_pages) 6884 printk(KERN_DEBUG 6885 " %s zone: %lu pages used for memmap\n", 6886 zone_names[j], memmap_pages); 6887 } else 6888 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6889 zone_names[j], memmap_pages, freesize); 6890 } 6891 6892 /* Account for reserved pages */ 6893 if (j == 0 && freesize > dma_reserve) { 6894 freesize -= dma_reserve; 6895 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6896 zone_names[0], dma_reserve); 6897 } 6898 6899 if (!is_highmem_idx(j)) 6900 nr_kernel_pages += freesize; 6901 /* Charge for highmem memmap if there are enough kernel pages */ 6902 else if (nr_kernel_pages > memmap_pages * 2) 6903 nr_kernel_pages -= memmap_pages; 6904 nr_all_pages += freesize; 6905 6906 /* 6907 * Set an approximate value for lowmem here, it will be adjusted 6908 * when the bootmem allocator frees pages into the buddy system. 6909 * And all highmem pages will be managed by the buddy system. 6910 */ 6911 zone_init_internals(zone, j, nid, freesize); 6912 6913 if (!size) 6914 continue; 6915 6916 set_pageblock_order(); 6917 setup_usemap(pgdat, zone, zone_start_pfn, size); 6918 init_currently_empty_zone(zone, zone_start_pfn, size); 6919 memmap_init(size, nid, j, zone_start_pfn); 6920 } 6921 } 6922 6923 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6924 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6925 { 6926 unsigned long __maybe_unused start = 0; 6927 unsigned long __maybe_unused offset = 0; 6928 6929 /* Skip empty nodes */ 6930 if (!pgdat->node_spanned_pages) 6931 return; 6932 6933 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6934 offset = pgdat->node_start_pfn - start; 6935 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6936 if (!pgdat->node_mem_map) { 6937 unsigned long size, end; 6938 struct page *map; 6939 6940 /* 6941 * The zone's endpoints aren't required to be MAX_ORDER 6942 * aligned but the node_mem_map endpoints must be in order 6943 * for the buddy allocator to function correctly. 6944 */ 6945 end = pgdat_end_pfn(pgdat); 6946 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6947 size = (end - start) * sizeof(struct page); 6948 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 6949 pgdat->node_id); 6950 if (!map) 6951 panic("Failed to allocate %ld bytes for node %d memory map\n", 6952 size, pgdat->node_id); 6953 pgdat->node_mem_map = map + offset; 6954 } 6955 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6956 __func__, pgdat->node_id, (unsigned long)pgdat, 6957 (unsigned long)pgdat->node_mem_map); 6958 #ifndef CONFIG_NEED_MULTIPLE_NODES 6959 /* 6960 * With no DISCONTIG, the global mem_map is just set as node 0's 6961 */ 6962 if (pgdat == NODE_DATA(0)) { 6963 mem_map = NODE_DATA(0)->node_mem_map; 6964 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6965 mem_map -= offset; 6966 } 6967 #endif 6968 } 6969 #else 6970 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6971 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6972 6973 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6974 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6975 { 6976 pgdat->first_deferred_pfn = ULONG_MAX; 6977 } 6978 #else 6979 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6980 #endif 6981 6982 static void __init free_area_init_node(int nid) 6983 { 6984 pg_data_t *pgdat = NODE_DATA(nid); 6985 unsigned long start_pfn = 0; 6986 unsigned long end_pfn = 0; 6987 6988 /* pg_data_t should be reset to zero when it's allocated */ 6989 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 6990 6991 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6992 6993 pgdat->node_id = nid; 6994 pgdat->node_start_pfn = start_pfn; 6995 pgdat->per_cpu_nodestats = NULL; 6996 6997 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6998 (u64)start_pfn << PAGE_SHIFT, 6999 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7000 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7001 7002 alloc_node_mem_map(pgdat); 7003 pgdat_set_deferred_range(pgdat); 7004 7005 free_area_init_core(pgdat); 7006 } 7007 7008 void __init free_area_init_memoryless_node(int nid) 7009 { 7010 free_area_init_node(nid); 7011 } 7012 7013 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 7014 /* 7015 * Initialize all valid struct pages in the range [spfn, epfn) and mark them 7016 * PageReserved(). Return the number of struct pages that were initialized. 7017 */ 7018 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn) 7019 { 7020 unsigned long pfn; 7021 u64 pgcnt = 0; 7022 7023 for (pfn = spfn; pfn < epfn; pfn++) { 7024 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 7025 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 7026 + pageblock_nr_pages - 1; 7027 continue; 7028 } 7029 /* 7030 * Use a fake node/zone (0) for now. Some of these pages 7031 * (in memblock.reserved but not in memblock.memory) will 7032 * get re-initialized via reserve_bootmem_region() later. 7033 */ 7034 __init_single_page(pfn_to_page(pfn), pfn, 0, 0); 7035 __SetPageReserved(pfn_to_page(pfn)); 7036 pgcnt++; 7037 } 7038 7039 return pgcnt; 7040 } 7041 7042 /* 7043 * Only struct pages that are backed by physical memory are zeroed and 7044 * initialized by going through __init_single_page(). But, there are some 7045 * struct pages which are reserved in memblock allocator and their fields 7046 * may be accessed (for example page_to_pfn() on some configuration accesses 7047 * flags). We must explicitly initialize those struct pages. 7048 * 7049 * This function also addresses a similar issue where struct pages are left 7050 * uninitialized because the physical address range is not covered by 7051 * memblock.memory or memblock.reserved. That could happen when memblock 7052 * layout is manually configured via memmap=, or when the highest physical 7053 * address (max_pfn) does not end on a section boundary. 7054 */ 7055 static void __init init_unavailable_mem(void) 7056 { 7057 phys_addr_t start, end; 7058 u64 i, pgcnt; 7059 phys_addr_t next = 0; 7060 7061 /* 7062 * Loop through unavailable ranges not covered by memblock.memory. 7063 */ 7064 pgcnt = 0; 7065 for_each_mem_range(i, &start, &end) { 7066 if (next < start) 7067 pgcnt += init_unavailable_range(PFN_DOWN(next), 7068 PFN_UP(start)); 7069 next = end; 7070 } 7071 7072 /* 7073 * Early sections always have a fully populated memmap for the whole 7074 * section - see pfn_valid(). If the last section has holes at the 7075 * end and that section is marked "online", the memmap will be 7076 * considered initialized. Make sure that memmap has a well defined 7077 * state. 7078 */ 7079 pgcnt += init_unavailable_range(PFN_DOWN(next), 7080 round_up(max_pfn, PAGES_PER_SECTION)); 7081 7082 /* 7083 * Struct pages that do not have backing memory. This could be because 7084 * firmware is using some of this memory, or for some other reasons. 7085 */ 7086 if (pgcnt) 7087 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 7088 } 7089 #else 7090 static inline void __init init_unavailable_mem(void) 7091 { 7092 } 7093 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 7094 7095 #if MAX_NUMNODES > 1 7096 /* 7097 * Figure out the number of possible node ids. 7098 */ 7099 void __init setup_nr_node_ids(void) 7100 { 7101 unsigned int highest; 7102 7103 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7104 nr_node_ids = highest + 1; 7105 } 7106 #endif 7107 7108 /** 7109 * node_map_pfn_alignment - determine the maximum internode alignment 7110 * 7111 * This function should be called after node map is populated and sorted. 7112 * It calculates the maximum power of two alignment which can distinguish 7113 * all the nodes. 7114 * 7115 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7116 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7117 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7118 * shifted, 1GiB is enough and this function will indicate so. 7119 * 7120 * This is used to test whether pfn -> nid mapping of the chosen memory 7121 * model has fine enough granularity to avoid incorrect mapping for the 7122 * populated node map. 7123 * 7124 * Return: the determined alignment in pfn's. 0 if there is no alignment 7125 * requirement (single node). 7126 */ 7127 unsigned long __init node_map_pfn_alignment(void) 7128 { 7129 unsigned long accl_mask = 0, last_end = 0; 7130 unsigned long start, end, mask; 7131 int last_nid = NUMA_NO_NODE; 7132 int i, nid; 7133 7134 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7135 if (!start || last_nid < 0 || last_nid == nid) { 7136 last_nid = nid; 7137 last_end = end; 7138 continue; 7139 } 7140 7141 /* 7142 * Start with a mask granular enough to pin-point to the 7143 * start pfn and tick off bits one-by-one until it becomes 7144 * too coarse to separate the current node from the last. 7145 */ 7146 mask = ~((1 << __ffs(start)) - 1); 7147 while (mask && last_end <= (start & (mask << 1))) 7148 mask <<= 1; 7149 7150 /* accumulate all internode masks */ 7151 accl_mask |= mask; 7152 } 7153 7154 /* convert mask to number of pages */ 7155 return ~accl_mask + 1; 7156 } 7157 7158 /** 7159 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7160 * 7161 * Return: the minimum PFN based on information provided via 7162 * memblock_set_node(). 7163 */ 7164 unsigned long __init find_min_pfn_with_active_regions(void) 7165 { 7166 return PHYS_PFN(memblock_start_of_DRAM()); 7167 } 7168 7169 /* 7170 * early_calculate_totalpages() 7171 * Sum pages in active regions for movable zone. 7172 * Populate N_MEMORY for calculating usable_nodes. 7173 */ 7174 static unsigned long __init early_calculate_totalpages(void) 7175 { 7176 unsigned long totalpages = 0; 7177 unsigned long start_pfn, end_pfn; 7178 int i, nid; 7179 7180 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7181 unsigned long pages = end_pfn - start_pfn; 7182 7183 totalpages += pages; 7184 if (pages) 7185 node_set_state(nid, N_MEMORY); 7186 } 7187 return totalpages; 7188 } 7189 7190 /* 7191 * Find the PFN the Movable zone begins in each node. Kernel memory 7192 * is spread evenly between nodes as long as the nodes have enough 7193 * memory. When they don't, some nodes will have more kernelcore than 7194 * others 7195 */ 7196 static void __init find_zone_movable_pfns_for_nodes(void) 7197 { 7198 int i, nid; 7199 unsigned long usable_startpfn; 7200 unsigned long kernelcore_node, kernelcore_remaining; 7201 /* save the state before borrow the nodemask */ 7202 nodemask_t saved_node_state = node_states[N_MEMORY]; 7203 unsigned long totalpages = early_calculate_totalpages(); 7204 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7205 struct memblock_region *r; 7206 7207 /* Need to find movable_zone earlier when movable_node is specified. */ 7208 find_usable_zone_for_movable(); 7209 7210 /* 7211 * If movable_node is specified, ignore kernelcore and movablecore 7212 * options. 7213 */ 7214 if (movable_node_is_enabled()) { 7215 for_each_mem_region(r) { 7216 if (!memblock_is_hotpluggable(r)) 7217 continue; 7218 7219 nid = memblock_get_region_node(r); 7220 7221 usable_startpfn = PFN_DOWN(r->base); 7222 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7223 min(usable_startpfn, zone_movable_pfn[nid]) : 7224 usable_startpfn; 7225 } 7226 7227 goto out2; 7228 } 7229 7230 /* 7231 * If kernelcore=mirror is specified, ignore movablecore option 7232 */ 7233 if (mirrored_kernelcore) { 7234 bool mem_below_4gb_not_mirrored = false; 7235 7236 for_each_mem_region(r) { 7237 if (memblock_is_mirror(r)) 7238 continue; 7239 7240 nid = memblock_get_region_node(r); 7241 7242 usable_startpfn = memblock_region_memory_base_pfn(r); 7243 7244 if (usable_startpfn < 0x100000) { 7245 mem_below_4gb_not_mirrored = true; 7246 continue; 7247 } 7248 7249 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7250 min(usable_startpfn, zone_movable_pfn[nid]) : 7251 usable_startpfn; 7252 } 7253 7254 if (mem_below_4gb_not_mirrored) 7255 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7256 7257 goto out2; 7258 } 7259 7260 /* 7261 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7262 * amount of necessary memory. 7263 */ 7264 if (required_kernelcore_percent) 7265 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7266 10000UL; 7267 if (required_movablecore_percent) 7268 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7269 10000UL; 7270 7271 /* 7272 * If movablecore= was specified, calculate what size of 7273 * kernelcore that corresponds so that memory usable for 7274 * any allocation type is evenly spread. If both kernelcore 7275 * and movablecore are specified, then the value of kernelcore 7276 * will be used for required_kernelcore if it's greater than 7277 * what movablecore would have allowed. 7278 */ 7279 if (required_movablecore) { 7280 unsigned long corepages; 7281 7282 /* 7283 * Round-up so that ZONE_MOVABLE is at least as large as what 7284 * was requested by the user 7285 */ 7286 required_movablecore = 7287 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7288 required_movablecore = min(totalpages, required_movablecore); 7289 corepages = totalpages - required_movablecore; 7290 7291 required_kernelcore = max(required_kernelcore, corepages); 7292 } 7293 7294 /* 7295 * If kernelcore was not specified or kernelcore size is larger 7296 * than totalpages, there is no ZONE_MOVABLE. 7297 */ 7298 if (!required_kernelcore || required_kernelcore >= totalpages) 7299 goto out; 7300 7301 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7302 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7303 7304 restart: 7305 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7306 kernelcore_node = required_kernelcore / usable_nodes; 7307 for_each_node_state(nid, N_MEMORY) { 7308 unsigned long start_pfn, end_pfn; 7309 7310 /* 7311 * Recalculate kernelcore_node if the division per node 7312 * now exceeds what is necessary to satisfy the requested 7313 * amount of memory for the kernel 7314 */ 7315 if (required_kernelcore < kernelcore_node) 7316 kernelcore_node = required_kernelcore / usable_nodes; 7317 7318 /* 7319 * As the map is walked, we track how much memory is usable 7320 * by the kernel using kernelcore_remaining. When it is 7321 * 0, the rest of the node is usable by ZONE_MOVABLE 7322 */ 7323 kernelcore_remaining = kernelcore_node; 7324 7325 /* Go through each range of PFNs within this node */ 7326 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7327 unsigned long size_pages; 7328 7329 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7330 if (start_pfn >= end_pfn) 7331 continue; 7332 7333 /* Account for what is only usable for kernelcore */ 7334 if (start_pfn < usable_startpfn) { 7335 unsigned long kernel_pages; 7336 kernel_pages = min(end_pfn, usable_startpfn) 7337 - start_pfn; 7338 7339 kernelcore_remaining -= min(kernel_pages, 7340 kernelcore_remaining); 7341 required_kernelcore -= min(kernel_pages, 7342 required_kernelcore); 7343 7344 /* Continue if range is now fully accounted */ 7345 if (end_pfn <= usable_startpfn) { 7346 7347 /* 7348 * Push zone_movable_pfn to the end so 7349 * that if we have to rebalance 7350 * kernelcore across nodes, we will 7351 * not double account here 7352 */ 7353 zone_movable_pfn[nid] = end_pfn; 7354 continue; 7355 } 7356 start_pfn = usable_startpfn; 7357 } 7358 7359 /* 7360 * The usable PFN range for ZONE_MOVABLE is from 7361 * start_pfn->end_pfn. Calculate size_pages as the 7362 * number of pages used as kernelcore 7363 */ 7364 size_pages = end_pfn - start_pfn; 7365 if (size_pages > kernelcore_remaining) 7366 size_pages = kernelcore_remaining; 7367 zone_movable_pfn[nid] = start_pfn + size_pages; 7368 7369 /* 7370 * Some kernelcore has been met, update counts and 7371 * break if the kernelcore for this node has been 7372 * satisfied 7373 */ 7374 required_kernelcore -= min(required_kernelcore, 7375 size_pages); 7376 kernelcore_remaining -= size_pages; 7377 if (!kernelcore_remaining) 7378 break; 7379 } 7380 } 7381 7382 /* 7383 * If there is still required_kernelcore, we do another pass with one 7384 * less node in the count. This will push zone_movable_pfn[nid] further 7385 * along on the nodes that still have memory until kernelcore is 7386 * satisfied 7387 */ 7388 usable_nodes--; 7389 if (usable_nodes && required_kernelcore > usable_nodes) 7390 goto restart; 7391 7392 out2: 7393 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7394 for (nid = 0; nid < MAX_NUMNODES; nid++) 7395 zone_movable_pfn[nid] = 7396 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7397 7398 out: 7399 /* restore the node_state */ 7400 node_states[N_MEMORY] = saved_node_state; 7401 } 7402 7403 /* Any regular or high memory on that node ? */ 7404 static void check_for_memory(pg_data_t *pgdat, int nid) 7405 { 7406 enum zone_type zone_type; 7407 7408 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7409 struct zone *zone = &pgdat->node_zones[zone_type]; 7410 if (populated_zone(zone)) { 7411 if (IS_ENABLED(CONFIG_HIGHMEM)) 7412 node_set_state(nid, N_HIGH_MEMORY); 7413 if (zone_type <= ZONE_NORMAL) 7414 node_set_state(nid, N_NORMAL_MEMORY); 7415 break; 7416 } 7417 } 7418 } 7419 7420 /* 7421 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 7422 * such cases we allow max_zone_pfn sorted in the descending order 7423 */ 7424 bool __weak arch_has_descending_max_zone_pfns(void) 7425 { 7426 return false; 7427 } 7428 7429 /** 7430 * free_area_init - Initialise all pg_data_t and zone data 7431 * @max_zone_pfn: an array of max PFNs for each zone 7432 * 7433 * This will call free_area_init_node() for each active node in the system. 7434 * Using the page ranges provided by memblock_set_node(), the size of each 7435 * zone in each node and their holes is calculated. If the maximum PFN 7436 * between two adjacent zones match, it is assumed that the zone is empty. 7437 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7438 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7439 * starts where the previous one ended. For example, ZONE_DMA32 starts 7440 * at arch_max_dma_pfn. 7441 */ 7442 void __init free_area_init(unsigned long *max_zone_pfn) 7443 { 7444 unsigned long start_pfn, end_pfn; 7445 int i, nid, zone; 7446 bool descending; 7447 7448 /* Record where the zone boundaries are */ 7449 memset(arch_zone_lowest_possible_pfn, 0, 7450 sizeof(arch_zone_lowest_possible_pfn)); 7451 memset(arch_zone_highest_possible_pfn, 0, 7452 sizeof(arch_zone_highest_possible_pfn)); 7453 7454 start_pfn = find_min_pfn_with_active_regions(); 7455 descending = arch_has_descending_max_zone_pfns(); 7456 7457 for (i = 0; i < MAX_NR_ZONES; i++) { 7458 if (descending) 7459 zone = MAX_NR_ZONES - i - 1; 7460 else 7461 zone = i; 7462 7463 if (zone == ZONE_MOVABLE) 7464 continue; 7465 7466 end_pfn = max(max_zone_pfn[zone], start_pfn); 7467 arch_zone_lowest_possible_pfn[zone] = start_pfn; 7468 arch_zone_highest_possible_pfn[zone] = end_pfn; 7469 7470 start_pfn = end_pfn; 7471 } 7472 7473 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7474 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7475 find_zone_movable_pfns_for_nodes(); 7476 7477 /* Print out the zone ranges */ 7478 pr_info("Zone ranges:\n"); 7479 for (i = 0; i < MAX_NR_ZONES; i++) { 7480 if (i == ZONE_MOVABLE) 7481 continue; 7482 pr_info(" %-8s ", zone_names[i]); 7483 if (arch_zone_lowest_possible_pfn[i] == 7484 arch_zone_highest_possible_pfn[i]) 7485 pr_cont("empty\n"); 7486 else 7487 pr_cont("[mem %#018Lx-%#018Lx]\n", 7488 (u64)arch_zone_lowest_possible_pfn[i] 7489 << PAGE_SHIFT, 7490 ((u64)arch_zone_highest_possible_pfn[i] 7491 << PAGE_SHIFT) - 1); 7492 } 7493 7494 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7495 pr_info("Movable zone start for each node\n"); 7496 for (i = 0; i < MAX_NUMNODES; i++) { 7497 if (zone_movable_pfn[i]) 7498 pr_info(" Node %d: %#018Lx\n", i, 7499 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7500 } 7501 7502 /* 7503 * Print out the early node map, and initialize the 7504 * subsection-map relative to active online memory ranges to 7505 * enable future "sub-section" extensions of the memory map. 7506 */ 7507 pr_info("Early memory node ranges\n"); 7508 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7509 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7510 (u64)start_pfn << PAGE_SHIFT, 7511 ((u64)end_pfn << PAGE_SHIFT) - 1); 7512 subsection_map_init(start_pfn, end_pfn - start_pfn); 7513 } 7514 7515 /* Initialise every node */ 7516 mminit_verify_pageflags_layout(); 7517 setup_nr_node_ids(); 7518 init_unavailable_mem(); 7519 for_each_online_node(nid) { 7520 pg_data_t *pgdat = NODE_DATA(nid); 7521 free_area_init_node(nid); 7522 7523 /* Any memory on that node */ 7524 if (pgdat->node_present_pages) 7525 node_set_state(nid, N_MEMORY); 7526 check_for_memory(pgdat, nid); 7527 } 7528 } 7529 7530 static int __init cmdline_parse_core(char *p, unsigned long *core, 7531 unsigned long *percent) 7532 { 7533 unsigned long long coremem; 7534 char *endptr; 7535 7536 if (!p) 7537 return -EINVAL; 7538 7539 /* Value may be a percentage of total memory, otherwise bytes */ 7540 coremem = simple_strtoull(p, &endptr, 0); 7541 if (*endptr == '%') { 7542 /* Paranoid check for percent values greater than 100 */ 7543 WARN_ON(coremem > 100); 7544 7545 *percent = coremem; 7546 } else { 7547 coremem = memparse(p, &p); 7548 /* Paranoid check that UL is enough for the coremem value */ 7549 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7550 7551 *core = coremem >> PAGE_SHIFT; 7552 *percent = 0UL; 7553 } 7554 return 0; 7555 } 7556 7557 /* 7558 * kernelcore=size sets the amount of memory for use for allocations that 7559 * cannot be reclaimed or migrated. 7560 */ 7561 static int __init cmdline_parse_kernelcore(char *p) 7562 { 7563 /* parse kernelcore=mirror */ 7564 if (parse_option_str(p, "mirror")) { 7565 mirrored_kernelcore = true; 7566 return 0; 7567 } 7568 7569 return cmdline_parse_core(p, &required_kernelcore, 7570 &required_kernelcore_percent); 7571 } 7572 7573 /* 7574 * movablecore=size sets the amount of memory for use for allocations that 7575 * can be reclaimed or migrated. 7576 */ 7577 static int __init cmdline_parse_movablecore(char *p) 7578 { 7579 return cmdline_parse_core(p, &required_movablecore, 7580 &required_movablecore_percent); 7581 } 7582 7583 early_param("kernelcore", cmdline_parse_kernelcore); 7584 early_param("movablecore", cmdline_parse_movablecore); 7585 7586 void adjust_managed_page_count(struct page *page, long count) 7587 { 7588 atomic_long_add(count, &page_zone(page)->managed_pages); 7589 totalram_pages_add(count); 7590 #ifdef CONFIG_HIGHMEM 7591 if (PageHighMem(page)) 7592 totalhigh_pages_add(count); 7593 #endif 7594 } 7595 EXPORT_SYMBOL(adjust_managed_page_count); 7596 7597 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7598 { 7599 void *pos; 7600 unsigned long pages = 0; 7601 7602 start = (void *)PAGE_ALIGN((unsigned long)start); 7603 end = (void *)((unsigned long)end & PAGE_MASK); 7604 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7605 struct page *page = virt_to_page(pos); 7606 void *direct_map_addr; 7607 7608 /* 7609 * 'direct_map_addr' might be different from 'pos' 7610 * because some architectures' virt_to_page() 7611 * work with aliases. Getting the direct map 7612 * address ensures that we get a _writeable_ 7613 * alias for the memset(). 7614 */ 7615 direct_map_addr = page_address(page); 7616 if ((unsigned int)poison <= 0xFF) 7617 memset(direct_map_addr, poison, PAGE_SIZE); 7618 7619 free_reserved_page(page); 7620 } 7621 7622 if (pages && s) 7623 pr_info("Freeing %s memory: %ldK\n", 7624 s, pages << (PAGE_SHIFT - 10)); 7625 7626 return pages; 7627 } 7628 7629 #ifdef CONFIG_HIGHMEM 7630 void free_highmem_page(struct page *page) 7631 { 7632 __free_reserved_page(page); 7633 totalram_pages_inc(); 7634 atomic_long_inc(&page_zone(page)->managed_pages); 7635 totalhigh_pages_inc(); 7636 } 7637 #endif 7638 7639 7640 void __init mem_init_print_info(const char *str) 7641 { 7642 unsigned long physpages, codesize, datasize, rosize, bss_size; 7643 unsigned long init_code_size, init_data_size; 7644 7645 physpages = get_num_physpages(); 7646 codesize = _etext - _stext; 7647 datasize = _edata - _sdata; 7648 rosize = __end_rodata - __start_rodata; 7649 bss_size = __bss_stop - __bss_start; 7650 init_data_size = __init_end - __init_begin; 7651 init_code_size = _einittext - _sinittext; 7652 7653 /* 7654 * Detect special cases and adjust section sizes accordingly: 7655 * 1) .init.* may be embedded into .data sections 7656 * 2) .init.text.* may be out of [__init_begin, __init_end], 7657 * please refer to arch/tile/kernel/vmlinux.lds.S. 7658 * 3) .rodata.* may be embedded into .text or .data sections. 7659 */ 7660 #define adj_init_size(start, end, size, pos, adj) \ 7661 do { \ 7662 if (start <= pos && pos < end && size > adj) \ 7663 size -= adj; \ 7664 } while (0) 7665 7666 adj_init_size(__init_begin, __init_end, init_data_size, 7667 _sinittext, init_code_size); 7668 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7669 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7670 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7671 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7672 7673 #undef adj_init_size 7674 7675 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7676 #ifdef CONFIG_HIGHMEM 7677 ", %luK highmem" 7678 #endif 7679 "%s%s)\n", 7680 nr_free_pages() << (PAGE_SHIFT - 10), 7681 physpages << (PAGE_SHIFT - 10), 7682 codesize >> 10, datasize >> 10, rosize >> 10, 7683 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7684 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7685 totalcma_pages << (PAGE_SHIFT - 10), 7686 #ifdef CONFIG_HIGHMEM 7687 totalhigh_pages() << (PAGE_SHIFT - 10), 7688 #endif 7689 str ? ", " : "", str ? str : ""); 7690 } 7691 7692 /** 7693 * set_dma_reserve - set the specified number of pages reserved in the first zone 7694 * @new_dma_reserve: The number of pages to mark reserved 7695 * 7696 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7697 * In the DMA zone, a significant percentage may be consumed by kernel image 7698 * and other unfreeable allocations which can skew the watermarks badly. This 7699 * function may optionally be used to account for unfreeable pages in the 7700 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7701 * smaller per-cpu batchsize. 7702 */ 7703 void __init set_dma_reserve(unsigned long new_dma_reserve) 7704 { 7705 dma_reserve = new_dma_reserve; 7706 } 7707 7708 static int page_alloc_cpu_dead(unsigned int cpu) 7709 { 7710 7711 lru_add_drain_cpu(cpu); 7712 drain_pages(cpu); 7713 7714 /* 7715 * Spill the event counters of the dead processor 7716 * into the current processors event counters. 7717 * This artificially elevates the count of the current 7718 * processor. 7719 */ 7720 vm_events_fold_cpu(cpu); 7721 7722 /* 7723 * Zero the differential counters of the dead processor 7724 * so that the vm statistics are consistent. 7725 * 7726 * This is only okay since the processor is dead and cannot 7727 * race with what we are doing. 7728 */ 7729 cpu_vm_stats_fold(cpu); 7730 return 0; 7731 } 7732 7733 #ifdef CONFIG_NUMA 7734 int hashdist = HASHDIST_DEFAULT; 7735 7736 static int __init set_hashdist(char *str) 7737 { 7738 if (!str) 7739 return 0; 7740 hashdist = simple_strtoul(str, &str, 0); 7741 return 1; 7742 } 7743 __setup("hashdist=", set_hashdist); 7744 #endif 7745 7746 void __init page_alloc_init(void) 7747 { 7748 int ret; 7749 7750 #ifdef CONFIG_NUMA 7751 if (num_node_state(N_MEMORY) == 1) 7752 hashdist = 0; 7753 #endif 7754 7755 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7756 "mm/page_alloc:dead", NULL, 7757 page_alloc_cpu_dead); 7758 WARN_ON(ret < 0); 7759 } 7760 7761 /* 7762 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7763 * or min_free_kbytes changes. 7764 */ 7765 static void calculate_totalreserve_pages(void) 7766 { 7767 struct pglist_data *pgdat; 7768 unsigned long reserve_pages = 0; 7769 enum zone_type i, j; 7770 7771 for_each_online_pgdat(pgdat) { 7772 7773 pgdat->totalreserve_pages = 0; 7774 7775 for (i = 0; i < MAX_NR_ZONES; i++) { 7776 struct zone *zone = pgdat->node_zones + i; 7777 long max = 0; 7778 unsigned long managed_pages = zone_managed_pages(zone); 7779 7780 /* Find valid and maximum lowmem_reserve in the zone */ 7781 for (j = i; j < MAX_NR_ZONES; j++) { 7782 if (zone->lowmem_reserve[j] > max) 7783 max = zone->lowmem_reserve[j]; 7784 } 7785 7786 /* we treat the high watermark as reserved pages. */ 7787 max += high_wmark_pages(zone); 7788 7789 if (max > managed_pages) 7790 max = managed_pages; 7791 7792 pgdat->totalreserve_pages += max; 7793 7794 reserve_pages += max; 7795 } 7796 } 7797 totalreserve_pages = reserve_pages; 7798 } 7799 7800 /* 7801 * setup_per_zone_lowmem_reserve - called whenever 7802 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7803 * has a correct pages reserved value, so an adequate number of 7804 * pages are left in the zone after a successful __alloc_pages(). 7805 */ 7806 static void setup_per_zone_lowmem_reserve(void) 7807 { 7808 struct pglist_data *pgdat; 7809 enum zone_type j, idx; 7810 7811 for_each_online_pgdat(pgdat) { 7812 for (j = 0; j < MAX_NR_ZONES; j++) { 7813 struct zone *zone = pgdat->node_zones + j; 7814 unsigned long managed_pages = zone_managed_pages(zone); 7815 7816 zone->lowmem_reserve[j] = 0; 7817 7818 idx = j; 7819 while (idx) { 7820 struct zone *lower_zone; 7821 7822 idx--; 7823 lower_zone = pgdat->node_zones + idx; 7824 7825 if (!sysctl_lowmem_reserve_ratio[idx] || 7826 !zone_managed_pages(lower_zone)) { 7827 lower_zone->lowmem_reserve[j] = 0; 7828 continue; 7829 } else { 7830 lower_zone->lowmem_reserve[j] = 7831 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7832 } 7833 managed_pages += zone_managed_pages(lower_zone); 7834 } 7835 } 7836 } 7837 7838 /* update totalreserve_pages */ 7839 calculate_totalreserve_pages(); 7840 } 7841 7842 static void __setup_per_zone_wmarks(void) 7843 { 7844 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7845 unsigned long lowmem_pages = 0; 7846 struct zone *zone; 7847 unsigned long flags; 7848 7849 /* Calculate total number of !ZONE_HIGHMEM pages */ 7850 for_each_zone(zone) { 7851 if (!is_highmem(zone)) 7852 lowmem_pages += zone_managed_pages(zone); 7853 } 7854 7855 for_each_zone(zone) { 7856 u64 tmp; 7857 7858 spin_lock_irqsave(&zone->lock, flags); 7859 tmp = (u64)pages_min * zone_managed_pages(zone); 7860 do_div(tmp, lowmem_pages); 7861 if (is_highmem(zone)) { 7862 /* 7863 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7864 * need highmem pages, so cap pages_min to a small 7865 * value here. 7866 * 7867 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7868 * deltas control async page reclaim, and so should 7869 * not be capped for highmem. 7870 */ 7871 unsigned long min_pages; 7872 7873 min_pages = zone_managed_pages(zone) / 1024; 7874 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7875 zone->_watermark[WMARK_MIN] = min_pages; 7876 } else { 7877 /* 7878 * If it's a lowmem zone, reserve a number of pages 7879 * proportionate to the zone's size. 7880 */ 7881 zone->_watermark[WMARK_MIN] = tmp; 7882 } 7883 7884 /* 7885 * Set the kswapd watermarks distance according to the 7886 * scale factor in proportion to available memory, but 7887 * ensure a minimum size on small systems. 7888 */ 7889 tmp = max_t(u64, tmp >> 2, 7890 mult_frac(zone_managed_pages(zone), 7891 watermark_scale_factor, 10000)); 7892 7893 zone->watermark_boost = 0; 7894 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7895 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7896 7897 spin_unlock_irqrestore(&zone->lock, flags); 7898 } 7899 7900 /* update totalreserve_pages */ 7901 calculate_totalreserve_pages(); 7902 } 7903 7904 /** 7905 * setup_per_zone_wmarks - called when min_free_kbytes changes 7906 * or when memory is hot-{added|removed} 7907 * 7908 * Ensures that the watermark[min,low,high] values for each zone are set 7909 * correctly with respect to min_free_kbytes. 7910 */ 7911 void setup_per_zone_wmarks(void) 7912 { 7913 static DEFINE_SPINLOCK(lock); 7914 7915 spin_lock(&lock); 7916 __setup_per_zone_wmarks(); 7917 spin_unlock(&lock); 7918 } 7919 7920 /* 7921 * Initialise min_free_kbytes. 7922 * 7923 * For small machines we want it small (128k min). For large machines 7924 * we want it large (256MB max). But it is not linear, because network 7925 * bandwidth does not increase linearly with machine size. We use 7926 * 7927 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7928 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7929 * 7930 * which yields 7931 * 7932 * 16MB: 512k 7933 * 32MB: 724k 7934 * 64MB: 1024k 7935 * 128MB: 1448k 7936 * 256MB: 2048k 7937 * 512MB: 2896k 7938 * 1024MB: 4096k 7939 * 2048MB: 5792k 7940 * 4096MB: 8192k 7941 * 8192MB: 11584k 7942 * 16384MB: 16384k 7943 */ 7944 int __meminit init_per_zone_wmark_min(void) 7945 { 7946 unsigned long lowmem_kbytes; 7947 int new_min_free_kbytes; 7948 7949 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7950 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7951 7952 if (new_min_free_kbytes > user_min_free_kbytes) { 7953 min_free_kbytes = new_min_free_kbytes; 7954 if (min_free_kbytes < 128) 7955 min_free_kbytes = 128; 7956 if (min_free_kbytes > 262144) 7957 min_free_kbytes = 262144; 7958 } else { 7959 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7960 new_min_free_kbytes, user_min_free_kbytes); 7961 } 7962 setup_per_zone_wmarks(); 7963 refresh_zone_stat_thresholds(); 7964 setup_per_zone_lowmem_reserve(); 7965 7966 #ifdef CONFIG_NUMA 7967 setup_min_unmapped_ratio(); 7968 setup_min_slab_ratio(); 7969 #endif 7970 7971 khugepaged_min_free_kbytes_update(); 7972 7973 return 0; 7974 } 7975 postcore_initcall(init_per_zone_wmark_min) 7976 7977 /* 7978 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7979 * that we can call two helper functions whenever min_free_kbytes 7980 * changes. 7981 */ 7982 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7983 void *buffer, size_t *length, loff_t *ppos) 7984 { 7985 int rc; 7986 7987 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7988 if (rc) 7989 return rc; 7990 7991 if (write) { 7992 user_min_free_kbytes = min_free_kbytes; 7993 setup_per_zone_wmarks(); 7994 } 7995 return 0; 7996 } 7997 7998 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7999 void *buffer, size_t *length, loff_t *ppos) 8000 { 8001 int rc; 8002 8003 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8004 if (rc) 8005 return rc; 8006 8007 if (write) 8008 setup_per_zone_wmarks(); 8009 8010 return 0; 8011 } 8012 8013 #ifdef CONFIG_NUMA 8014 static void setup_min_unmapped_ratio(void) 8015 { 8016 pg_data_t *pgdat; 8017 struct zone *zone; 8018 8019 for_each_online_pgdat(pgdat) 8020 pgdat->min_unmapped_pages = 0; 8021 8022 for_each_zone(zone) 8023 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8024 sysctl_min_unmapped_ratio) / 100; 8025 } 8026 8027 8028 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8029 void *buffer, size_t *length, loff_t *ppos) 8030 { 8031 int rc; 8032 8033 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8034 if (rc) 8035 return rc; 8036 8037 setup_min_unmapped_ratio(); 8038 8039 return 0; 8040 } 8041 8042 static void setup_min_slab_ratio(void) 8043 { 8044 pg_data_t *pgdat; 8045 struct zone *zone; 8046 8047 for_each_online_pgdat(pgdat) 8048 pgdat->min_slab_pages = 0; 8049 8050 for_each_zone(zone) 8051 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8052 sysctl_min_slab_ratio) / 100; 8053 } 8054 8055 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8056 void *buffer, size_t *length, loff_t *ppos) 8057 { 8058 int rc; 8059 8060 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8061 if (rc) 8062 return rc; 8063 8064 setup_min_slab_ratio(); 8065 8066 return 0; 8067 } 8068 #endif 8069 8070 /* 8071 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8072 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8073 * whenever sysctl_lowmem_reserve_ratio changes. 8074 * 8075 * The reserve ratio obviously has absolutely no relation with the 8076 * minimum watermarks. The lowmem reserve ratio can only make sense 8077 * if in function of the boot time zone sizes. 8078 */ 8079 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8080 void *buffer, size_t *length, loff_t *ppos) 8081 { 8082 int i; 8083 8084 proc_dointvec_minmax(table, write, buffer, length, ppos); 8085 8086 for (i = 0; i < MAX_NR_ZONES; i++) { 8087 if (sysctl_lowmem_reserve_ratio[i] < 1) 8088 sysctl_lowmem_reserve_ratio[i] = 0; 8089 } 8090 8091 setup_per_zone_lowmem_reserve(); 8092 return 0; 8093 } 8094 8095 static void __zone_pcp_update(struct zone *zone) 8096 { 8097 unsigned int cpu; 8098 8099 for_each_possible_cpu(cpu) 8100 pageset_set_high_and_batch(zone, 8101 per_cpu_ptr(zone->pageset, cpu)); 8102 } 8103 8104 /* 8105 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 8106 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8107 * pagelist can have before it gets flushed back to buddy allocator. 8108 */ 8109 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 8110 void *buffer, size_t *length, loff_t *ppos) 8111 { 8112 struct zone *zone; 8113 int old_percpu_pagelist_fraction; 8114 int ret; 8115 8116 mutex_lock(&pcp_batch_high_lock); 8117 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 8118 8119 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8120 if (!write || ret < 0) 8121 goto out; 8122 8123 /* Sanity checking to avoid pcp imbalance */ 8124 if (percpu_pagelist_fraction && 8125 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 8126 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 8127 ret = -EINVAL; 8128 goto out; 8129 } 8130 8131 /* No change? */ 8132 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 8133 goto out; 8134 8135 for_each_populated_zone(zone) 8136 __zone_pcp_update(zone); 8137 out: 8138 mutex_unlock(&pcp_batch_high_lock); 8139 return ret; 8140 } 8141 8142 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8143 /* 8144 * Returns the number of pages that arch has reserved but 8145 * is not known to alloc_large_system_hash(). 8146 */ 8147 static unsigned long __init arch_reserved_kernel_pages(void) 8148 { 8149 return 0; 8150 } 8151 #endif 8152 8153 /* 8154 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8155 * machines. As memory size is increased the scale is also increased but at 8156 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8157 * quadruples the scale is increased by one, which means the size of hash table 8158 * only doubles, instead of quadrupling as well. 8159 * Because 32-bit systems cannot have large physical memory, where this scaling 8160 * makes sense, it is disabled on such platforms. 8161 */ 8162 #if __BITS_PER_LONG > 32 8163 #define ADAPT_SCALE_BASE (64ul << 30) 8164 #define ADAPT_SCALE_SHIFT 2 8165 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8166 #endif 8167 8168 /* 8169 * allocate a large system hash table from bootmem 8170 * - it is assumed that the hash table must contain an exact power-of-2 8171 * quantity of entries 8172 * - limit is the number of hash buckets, not the total allocation size 8173 */ 8174 void *__init alloc_large_system_hash(const char *tablename, 8175 unsigned long bucketsize, 8176 unsigned long numentries, 8177 int scale, 8178 int flags, 8179 unsigned int *_hash_shift, 8180 unsigned int *_hash_mask, 8181 unsigned long low_limit, 8182 unsigned long high_limit) 8183 { 8184 unsigned long long max = high_limit; 8185 unsigned long log2qty, size; 8186 void *table = NULL; 8187 gfp_t gfp_flags; 8188 bool virt; 8189 8190 /* allow the kernel cmdline to have a say */ 8191 if (!numentries) { 8192 /* round applicable memory size up to nearest megabyte */ 8193 numentries = nr_kernel_pages; 8194 numentries -= arch_reserved_kernel_pages(); 8195 8196 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8197 if (PAGE_SHIFT < 20) 8198 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8199 8200 #if __BITS_PER_LONG > 32 8201 if (!high_limit) { 8202 unsigned long adapt; 8203 8204 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8205 adapt <<= ADAPT_SCALE_SHIFT) 8206 scale++; 8207 } 8208 #endif 8209 8210 /* limit to 1 bucket per 2^scale bytes of low memory */ 8211 if (scale > PAGE_SHIFT) 8212 numentries >>= (scale - PAGE_SHIFT); 8213 else 8214 numentries <<= (PAGE_SHIFT - scale); 8215 8216 /* Make sure we've got at least a 0-order allocation.. */ 8217 if (unlikely(flags & HASH_SMALL)) { 8218 /* Makes no sense without HASH_EARLY */ 8219 WARN_ON(!(flags & HASH_EARLY)); 8220 if (!(numentries >> *_hash_shift)) { 8221 numentries = 1UL << *_hash_shift; 8222 BUG_ON(!numentries); 8223 } 8224 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8225 numentries = PAGE_SIZE / bucketsize; 8226 } 8227 numentries = roundup_pow_of_two(numentries); 8228 8229 /* limit allocation size to 1/16 total memory by default */ 8230 if (max == 0) { 8231 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8232 do_div(max, bucketsize); 8233 } 8234 max = min(max, 0x80000000ULL); 8235 8236 if (numentries < low_limit) 8237 numentries = low_limit; 8238 if (numentries > max) 8239 numentries = max; 8240 8241 log2qty = ilog2(numentries); 8242 8243 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8244 do { 8245 virt = false; 8246 size = bucketsize << log2qty; 8247 if (flags & HASH_EARLY) { 8248 if (flags & HASH_ZERO) 8249 table = memblock_alloc(size, SMP_CACHE_BYTES); 8250 else 8251 table = memblock_alloc_raw(size, 8252 SMP_CACHE_BYTES); 8253 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8254 table = __vmalloc(size, gfp_flags); 8255 virt = true; 8256 } else { 8257 /* 8258 * If bucketsize is not a power-of-two, we may free 8259 * some pages at the end of hash table which 8260 * alloc_pages_exact() automatically does 8261 */ 8262 table = alloc_pages_exact(size, gfp_flags); 8263 kmemleak_alloc(table, size, 1, gfp_flags); 8264 } 8265 } while (!table && size > PAGE_SIZE && --log2qty); 8266 8267 if (!table) 8268 panic("Failed to allocate %s hash table\n", tablename); 8269 8270 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8271 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8272 virt ? "vmalloc" : "linear"); 8273 8274 if (_hash_shift) 8275 *_hash_shift = log2qty; 8276 if (_hash_mask) 8277 *_hash_mask = (1 << log2qty) - 1; 8278 8279 return table; 8280 } 8281 8282 /* 8283 * This function checks whether pageblock includes unmovable pages or not. 8284 * 8285 * PageLRU check without isolation or lru_lock could race so that 8286 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8287 * check without lock_page also may miss some movable non-lru pages at 8288 * race condition. So you can't expect this function should be exact. 8289 * 8290 * Returns a page without holding a reference. If the caller wants to 8291 * dereference that page (e.g., dumping), it has to make sure that it 8292 * cannot get removed (e.g., via memory unplug) concurrently. 8293 * 8294 */ 8295 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8296 int migratetype, int flags) 8297 { 8298 unsigned long iter = 0; 8299 unsigned long pfn = page_to_pfn(page); 8300 unsigned long offset = pfn % pageblock_nr_pages; 8301 8302 if (is_migrate_cma_page(page)) { 8303 /* 8304 * CMA allocations (alloc_contig_range) really need to mark 8305 * isolate CMA pageblocks even when they are not movable in fact 8306 * so consider them movable here. 8307 */ 8308 if (is_migrate_cma(migratetype)) 8309 return NULL; 8310 8311 return page; 8312 } 8313 8314 for (; iter < pageblock_nr_pages - offset; iter++) { 8315 if (!pfn_valid_within(pfn + iter)) 8316 continue; 8317 8318 page = pfn_to_page(pfn + iter); 8319 8320 /* 8321 * Both, bootmem allocations and memory holes are marked 8322 * PG_reserved and are unmovable. We can even have unmovable 8323 * allocations inside ZONE_MOVABLE, for example when 8324 * specifying "movablecore". 8325 */ 8326 if (PageReserved(page)) 8327 return page; 8328 8329 /* 8330 * If the zone is movable and we have ruled out all reserved 8331 * pages then it should be reasonably safe to assume the rest 8332 * is movable. 8333 */ 8334 if (zone_idx(zone) == ZONE_MOVABLE) 8335 continue; 8336 8337 /* 8338 * Hugepages are not in LRU lists, but they're movable. 8339 * THPs are on the LRU, but need to be counted as #small pages. 8340 * We need not scan over tail pages because we don't 8341 * handle each tail page individually in migration. 8342 */ 8343 if (PageHuge(page) || PageTransCompound(page)) { 8344 struct page *head = compound_head(page); 8345 unsigned int skip_pages; 8346 8347 if (PageHuge(page)) { 8348 if (!hugepage_migration_supported(page_hstate(head))) 8349 return page; 8350 } else if (!PageLRU(head) && !__PageMovable(head)) { 8351 return page; 8352 } 8353 8354 skip_pages = compound_nr(head) - (page - head); 8355 iter += skip_pages - 1; 8356 continue; 8357 } 8358 8359 /* 8360 * We can't use page_count without pin a page 8361 * because another CPU can free compound page. 8362 * This check already skips compound tails of THP 8363 * because their page->_refcount is zero at all time. 8364 */ 8365 if (!page_ref_count(page)) { 8366 if (PageBuddy(page)) 8367 iter += (1 << buddy_order(page)) - 1; 8368 continue; 8369 } 8370 8371 /* 8372 * The HWPoisoned page may be not in buddy system, and 8373 * page_count() is not 0. 8374 */ 8375 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8376 continue; 8377 8378 /* 8379 * We treat all PageOffline() pages as movable when offlining 8380 * to give drivers a chance to decrement their reference count 8381 * in MEM_GOING_OFFLINE in order to indicate that these pages 8382 * can be offlined as there are no direct references anymore. 8383 * For actually unmovable PageOffline() where the driver does 8384 * not support this, we will fail later when trying to actually 8385 * move these pages that still have a reference count > 0. 8386 * (false negatives in this function only) 8387 */ 8388 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8389 continue; 8390 8391 if (__PageMovable(page) || PageLRU(page)) 8392 continue; 8393 8394 /* 8395 * If there are RECLAIMABLE pages, we need to check 8396 * it. But now, memory offline itself doesn't call 8397 * shrink_node_slabs() and it still to be fixed. 8398 */ 8399 return page; 8400 } 8401 return NULL; 8402 } 8403 8404 #ifdef CONFIG_CONTIG_ALLOC 8405 static unsigned long pfn_max_align_down(unsigned long pfn) 8406 { 8407 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8408 pageblock_nr_pages) - 1); 8409 } 8410 8411 static unsigned long pfn_max_align_up(unsigned long pfn) 8412 { 8413 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8414 pageblock_nr_pages)); 8415 } 8416 8417 /* [start, end) must belong to a single zone. */ 8418 static int __alloc_contig_migrate_range(struct compact_control *cc, 8419 unsigned long start, unsigned long end) 8420 { 8421 /* This function is based on compact_zone() from compaction.c. */ 8422 unsigned int nr_reclaimed; 8423 unsigned long pfn = start; 8424 unsigned int tries = 0; 8425 int ret = 0; 8426 struct migration_target_control mtc = { 8427 .nid = zone_to_nid(cc->zone), 8428 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 8429 }; 8430 8431 migrate_prep(); 8432 8433 while (pfn < end || !list_empty(&cc->migratepages)) { 8434 if (fatal_signal_pending(current)) { 8435 ret = -EINTR; 8436 break; 8437 } 8438 8439 if (list_empty(&cc->migratepages)) { 8440 cc->nr_migratepages = 0; 8441 pfn = isolate_migratepages_range(cc, pfn, end); 8442 if (!pfn) { 8443 ret = -EINTR; 8444 break; 8445 } 8446 tries = 0; 8447 } else if (++tries == 5) { 8448 ret = ret < 0 ? ret : -EBUSY; 8449 break; 8450 } 8451 8452 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8453 &cc->migratepages); 8454 cc->nr_migratepages -= nr_reclaimed; 8455 8456 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 8457 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE); 8458 } 8459 if (ret < 0) { 8460 putback_movable_pages(&cc->migratepages); 8461 return ret; 8462 } 8463 return 0; 8464 } 8465 8466 /** 8467 * alloc_contig_range() -- tries to allocate given range of pages 8468 * @start: start PFN to allocate 8469 * @end: one-past-the-last PFN to allocate 8470 * @migratetype: migratetype of the underlaying pageblocks (either 8471 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8472 * in range must have the same migratetype and it must 8473 * be either of the two. 8474 * @gfp_mask: GFP mask to use during compaction 8475 * 8476 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8477 * aligned. The PFN range must belong to a single zone. 8478 * 8479 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8480 * pageblocks in the range. Once isolated, the pageblocks should not 8481 * be modified by others. 8482 * 8483 * Return: zero on success or negative error code. On success all 8484 * pages which PFN is in [start, end) are allocated for the caller and 8485 * need to be freed with free_contig_range(). 8486 */ 8487 int alloc_contig_range(unsigned long start, unsigned long end, 8488 unsigned migratetype, gfp_t gfp_mask) 8489 { 8490 unsigned long outer_start, outer_end; 8491 unsigned int order; 8492 int ret = 0; 8493 8494 struct compact_control cc = { 8495 .nr_migratepages = 0, 8496 .order = -1, 8497 .zone = page_zone(pfn_to_page(start)), 8498 .mode = MIGRATE_SYNC, 8499 .ignore_skip_hint = true, 8500 .no_set_skip_hint = true, 8501 .gfp_mask = current_gfp_context(gfp_mask), 8502 .alloc_contig = true, 8503 }; 8504 INIT_LIST_HEAD(&cc.migratepages); 8505 8506 /* 8507 * What we do here is we mark all pageblocks in range as 8508 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8509 * have different sizes, and due to the way page allocator 8510 * work, we align the range to biggest of the two pages so 8511 * that page allocator won't try to merge buddies from 8512 * different pageblocks and change MIGRATE_ISOLATE to some 8513 * other migration type. 8514 * 8515 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8516 * migrate the pages from an unaligned range (ie. pages that 8517 * we are interested in). This will put all the pages in 8518 * range back to page allocator as MIGRATE_ISOLATE. 8519 * 8520 * When this is done, we take the pages in range from page 8521 * allocator removing them from the buddy system. This way 8522 * page allocator will never consider using them. 8523 * 8524 * This lets us mark the pageblocks back as 8525 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8526 * aligned range but not in the unaligned, original range are 8527 * put back to page allocator so that buddy can use them. 8528 */ 8529 8530 ret = start_isolate_page_range(pfn_max_align_down(start), 8531 pfn_max_align_up(end), migratetype, 0); 8532 if (ret) 8533 return ret; 8534 8535 /* 8536 * In case of -EBUSY, we'd like to know which page causes problem. 8537 * So, just fall through. test_pages_isolated() has a tracepoint 8538 * which will report the busy page. 8539 * 8540 * It is possible that busy pages could become available before 8541 * the call to test_pages_isolated, and the range will actually be 8542 * allocated. So, if we fall through be sure to clear ret so that 8543 * -EBUSY is not accidentally used or returned to caller. 8544 */ 8545 ret = __alloc_contig_migrate_range(&cc, start, end); 8546 if (ret && ret != -EBUSY) 8547 goto done; 8548 ret =0; 8549 8550 /* 8551 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8552 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8553 * more, all pages in [start, end) are free in page allocator. 8554 * What we are going to do is to allocate all pages from 8555 * [start, end) (that is remove them from page allocator). 8556 * 8557 * The only problem is that pages at the beginning and at the 8558 * end of interesting range may be not aligned with pages that 8559 * page allocator holds, ie. they can be part of higher order 8560 * pages. Because of this, we reserve the bigger range and 8561 * once this is done free the pages we are not interested in. 8562 * 8563 * We don't have to hold zone->lock here because the pages are 8564 * isolated thus they won't get removed from buddy. 8565 */ 8566 8567 lru_add_drain_all(); 8568 8569 order = 0; 8570 outer_start = start; 8571 while (!PageBuddy(pfn_to_page(outer_start))) { 8572 if (++order >= MAX_ORDER) { 8573 outer_start = start; 8574 break; 8575 } 8576 outer_start &= ~0UL << order; 8577 } 8578 8579 if (outer_start != start) { 8580 order = buddy_order(pfn_to_page(outer_start)); 8581 8582 /* 8583 * outer_start page could be small order buddy page and 8584 * it doesn't include start page. Adjust outer_start 8585 * in this case to report failed page properly 8586 * on tracepoint in test_pages_isolated() 8587 */ 8588 if (outer_start + (1UL << order) <= start) 8589 outer_start = start; 8590 } 8591 8592 /* Make sure the range is really isolated. */ 8593 if (test_pages_isolated(outer_start, end, 0)) { 8594 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8595 __func__, outer_start, end); 8596 ret = -EBUSY; 8597 goto done; 8598 } 8599 8600 /* Grab isolated pages from freelists. */ 8601 outer_end = isolate_freepages_range(&cc, outer_start, end); 8602 if (!outer_end) { 8603 ret = -EBUSY; 8604 goto done; 8605 } 8606 8607 /* Free head and tail (if any) */ 8608 if (start != outer_start) 8609 free_contig_range(outer_start, start - outer_start); 8610 if (end != outer_end) 8611 free_contig_range(end, outer_end - end); 8612 8613 done: 8614 undo_isolate_page_range(pfn_max_align_down(start), 8615 pfn_max_align_up(end), migratetype); 8616 return ret; 8617 } 8618 EXPORT_SYMBOL(alloc_contig_range); 8619 8620 static int __alloc_contig_pages(unsigned long start_pfn, 8621 unsigned long nr_pages, gfp_t gfp_mask) 8622 { 8623 unsigned long end_pfn = start_pfn + nr_pages; 8624 8625 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 8626 gfp_mask); 8627 } 8628 8629 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 8630 unsigned long nr_pages) 8631 { 8632 unsigned long i, end_pfn = start_pfn + nr_pages; 8633 struct page *page; 8634 8635 for (i = start_pfn; i < end_pfn; i++) { 8636 page = pfn_to_online_page(i); 8637 if (!page) 8638 return false; 8639 8640 if (page_zone(page) != z) 8641 return false; 8642 8643 if (PageReserved(page)) 8644 return false; 8645 8646 if (page_count(page) > 0) 8647 return false; 8648 8649 if (PageHuge(page)) 8650 return false; 8651 } 8652 return true; 8653 } 8654 8655 static bool zone_spans_last_pfn(const struct zone *zone, 8656 unsigned long start_pfn, unsigned long nr_pages) 8657 { 8658 unsigned long last_pfn = start_pfn + nr_pages - 1; 8659 8660 return zone_spans_pfn(zone, last_pfn); 8661 } 8662 8663 /** 8664 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 8665 * @nr_pages: Number of contiguous pages to allocate 8666 * @gfp_mask: GFP mask to limit search and used during compaction 8667 * @nid: Target node 8668 * @nodemask: Mask for other possible nodes 8669 * 8670 * This routine is a wrapper around alloc_contig_range(). It scans over zones 8671 * on an applicable zonelist to find a contiguous pfn range which can then be 8672 * tried for allocation with alloc_contig_range(). This routine is intended 8673 * for allocation requests which can not be fulfilled with the buddy allocator. 8674 * 8675 * The allocated memory is always aligned to a page boundary. If nr_pages is a 8676 * power of two then the alignment is guaranteed to be to the given nr_pages 8677 * (e.g. 1GB request would be aligned to 1GB). 8678 * 8679 * Allocated pages can be freed with free_contig_range() or by manually calling 8680 * __free_page() on each allocated page. 8681 * 8682 * Return: pointer to contiguous pages on success, or NULL if not successful. 8683 */ 8684 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 8685 int nid, nodemask_t *nodemask) 8686 { 8687 unsigned long ret, pfn, flags; 8688 struct zonelist *zonelist; 8689 struct zone *zone; 8690 struct zoneref *z; 8691 8692 zonelist = node_zonelist(nid, gfp_mask); 8693 for_each_zone_zonelist_nodemask(zone, z, zonelist, 8694 gfp_zone(gfp_mask), nodemask) { 8695 spin_lock_irqsave(&zone->lock, flags); 8696 8697 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 8698 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 8699 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 8700 /* 8701 * We release the zone lock here because 8702 * alloc_contig_range() will also lock the zone 8703 * at some point. If there's an allocation 8704 * spinning on this lock, it may win the race 8705 * and cause alloc_contig_range() to fail... 8706 */ 8707 spin_unlock_irqrestore(&zone->lock, flags); 8708 ret = __alloc_contig_pages(pfn, nr_pages, 8709 gfp_mask); 8710 if (!ret) 8711 return pfn_to_page(pfn); 8712 spin_lock_irqsave(&zone->lock, flags); 8713 } 8714 pfn += nr_pages; 8715 } 8716 spin_unlock_irqrestore(&zone->lock, flags); 8717 } 8718 return NULL; 8719 } 8720 #endif /* CONFIG_CONTIG_ALLOC */ 8721 8722 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8723 { 8724 unsigned int count = 0; 8725 8726 for (; nr_pages--; pfn++) { 8727 struct page *page = pfn_to_page(pfn); 8728 8729 count += page_count(page) != 1; 8730 __free_page(page); 8731 } 8732 WARN(count != 0, "%d pages are still in use!\n", count); 8733 } 8734 EXPORT_SYMBOL(free_contig_range); 8735 8736 /* 8737 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8738 * page high values need to be recalulated. 8739 */ 8740 void __meminit zone_pcp_update(struct zone *zone) 8741 { 8742 mutex_lock(&pcp_batch_high_lock); 8743 __zone_pcp_update(zone); 8744 mutex_unlock(&pcp_batch_high_lock); 8745 } 8746 8747 void zone_pcp_reset(struct zone *zone) 8748 { 8749 unsigned long flags; 8750 int cpu; 8751 struct per_cpu_pageset *pset; 8752 8753 /* avoid races with drain_pages() */ 8754 local_irq_save(flags); 8755 if (zone->pageset != &boot_pageset) { 8756 for_each_online_cpu(cpu) { 8757 pset = per_cpu_ptr(zone->pageset, cpu); 8758 drain_zonestat(zone, pset); 8759 } 8760 free_percpu(zone->pageset); 8761 zone->pageset = &boot_pageset; 8762 } 8763 local_irq_restore(flags); 8764 } 8765 8766 #ifdef CONFIG_MEMORY_HOTREMOVE 8767 /* 8768 * All pages in the range must be in a single zone, must not contain holes, 8769 * must span full sections, and must be isolated before calling this function. 8770 */ 8771 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8772 { 8773 unsigned long pfn = start_pfn; 8774 struct page *page; 8775 struct zone *zone; 8776 unsigned int order; 8777 unsigned long flags; 8778 8779 offline_mem_sections(pfn, end_pfn); 8780 zone = page_zone(pfn_to_page(pfn)); 8781 spin_lock_irqsave(&zone->lock, flags); 8782 while (pfn < end_pfn) { 8783 page = pfn_to_page(pfn); 8784 /* 8785 * The HWPoisoned page may be not in buddy system, and 8786 * page_count() is not 0. 8787 */ 8788 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8789 pfn++; 8790 continue; 8791 } 8792 /* 8793 * At this point all remaining PageOffline() pages have a 8794 * reference count of 0 and can simply be skipped. 8795 */ 8796 if (PageOffline(page)) { 8797 BUG_ON(page_count(page)); 8798 BUG_ON(PageBuddy(page)); 8799 pfn++; 8800 continue; 8801 } 8802 8803 BUG_ON(page_count(page)); 8804 BUG_ON(!PageBuddy(page)); 8805 order = buddy_order(page); 8806 del_page_from_free_list(page, zone, order); 8807 pfn += (1 << order); 8808 } 8809 spin_unlock_irqrestore(&zone->lock, flags); 8810 } 8811 #endif 8812 8813 bool is_free_buddy_page(struct page *page) 8814 { 8815 struct zone *zone = page_zone(page); 8816 unsigned long pfn = page_to_pfn(page); 8817 unsigned long flags; 8818 unsigned int order; 8819 8820 spin_lock_irqsave(&zone->lock, flags); 8821 for (order = 0; order < MAX_ORDER; order++) { 8822 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8823 8824 if (PageBuddy(page_head) && buddy_order(page_head) >= order) 8825 break; 8826 } 8827 spin_unlock_irqrestore(&zone->lock, flags); 8828 8829 return order < MAX_ORDER; 8830 } 8831 8832 #ifdef CONFIG_MEMORY_FAILURE 8833 /* 8834 * Break down a higher-order page in sub-pages, and keep our target out of 8835 * buddy allocator. 8836 */ 8837 static void break_down_buddy_pages(struct zone *zone, struct page *page, 8838 struct page *target, int low, int high, 8839 int migratetype) 8840 { 8841 unsigned long size = 1 << high; 8842 struct page *current_buddy, *next_page; 8843 8844 while (high > low) { 8845 high--; 8846 size >>= 1; 8847 8848 if (target >= &page[size]) { 8849 next_page = page + size; 8850 current_buddy = page; 8851 } else { 8852 next_page = page; 8853 current_buddy = page + size; 8854 } 8855 8856 if (set_page_guard(zone, current_buddy, high, migratetype)) 8857 continue; 8858 8859 if (current_buddy != target) { 8860 add_to_free_list(current_buddy, zone, high, migratetype); 8861 set_buddy_order(current_buddy, high); 8862 page = next_page; 8863 } 8864 } 8865 } 8866 8867 /* 8868 * Take a page that will be marked as poisoned off the buddy allocator. 8869 */ 8870 bool take_page_off_buddy(struct page *page) 8871 { 8872 struct zone *zone = page_zone(page); 8873 unsigned long pfn = page_to_pfn(page); 8874 unsigned long flags; 8875 unsigned int order; 8876 bool ret = false; 8877 8878 spin_lock_irqsave(&zone->lock, flags); 8879 for (order = 0; order < MAX_ORDER; order++) { 8880 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8881 int page_order = buddy_order(page_head); 8882 8883 if (PageBuddy(page_head) && page_order >= order) { 8884 unsigned long pfn_head = page_to_pfn(page_head); 8885 int migratetype = get_pfnblock_migratetype(page_head, 8886 pfn_head); 8887 8888 del_page_from_free_list(page_head, zone, page_order); 8889 break_down_buddy_pages(zone, page_head, page, 0, 8890 page_order, migratetype); 8891 ret = true; 8892 break; 8893 } 8894 if (page_count(page_head) > 0) 8895 break; 8896 } 8897 spin_unlock_irqrestore(&zone->lock, flags); 8898 return ret; 8899 } 8900 #endif 8901