1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/kmemcheck.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/slab.h> 32 #include <linux/oom.h> 33 #include <linux/notifier.h> 34 #include <linux/topology.h> 35 #include <linux/sysctl.h> 36 #include <linux/cpu.h> 37 #include <linux/cpuset.h> 38 #include <linux/memory_hotplug.h> 39 #include <linux/nodemask.h> 40 #include <linux/vmalloc.h> 41 #include <linux/mempolicy.h> 42 #include <linux/stop_machine.h> 43 #include <linux/sort.h> 44 #include <linux/pfn.h> 45 #include <linux/backing-dev.h> 46 #include <linux/fault-inject.h> 47 #include <linux/page-isolation.h> 48 #include <linux/page_cgroup.h> 49 #include <linux/debugobjects.h> 50 #include <linux/kmemleak.h> 51 #include <linux/memory.h> 52 #include <trace/events/kmem.h> 53 #include <linux/ftrace_event.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 #include "internal.h" 58 59 /* 60 * Array of node states. 61 */ 62 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 63 [N_POSSIBLE] = NODE_MASK_ALL, 64 [N_ONLINE] = { { [0] = 1UL } }, 65 #ifndef CONFIG_NUMA 66 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 67 #ifdef CONFIG_HIGHMEM 68 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 69 #endif 70 [N_CPU] = { { [0] = 1UL } }, 71 #endif /* NUMA */ 72 }; 73 EXPORT_SYMBOL(node_states); 74 75 unsigned long totalram_pages __read_mostly; 76 unsigned long totalreserve_pages __read_mostly; 77 int percpu_pagelist_fraction; 78 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 79 80 #ifdef CONFIG_PM_SLEEP 81 /* 82 * The following functions are used by the suspend/hibernate code to temporarily 83 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 84 * while devices are suspended. To avoid races with the suspend/hibernate code, 85 * they should always be called with pm_mutex held (gfp_allowed_mask also should 86 * only be modified with pm_mutex held, unless the suspend/hibernate code is 87 * guaranteed not to run in parallel with that modification). 88 */ 89 void set_gfp_allowed_mask(gfp_t mask) 90 { 91 WARN_ON(!mutex_is_locked(&pm_mutex)); 92 gfp_allowed_mask = mask; 93 } 94 95 gfp_t clear_gfp_allowed_mask(gfp_t mask) 96 { 97 gfp_t ret = gfp_allowed_mask; 98 99 WARN_ON(!mutex_is_locked(&pm_mutex)); 100 gfp_allowed_mask &= ~mask; 101 return ret; 102 } 103 #endif /* CONFIG_PM_SLEEP */ 104 105 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 106 int pageblock_order __read_mostly; 107 #endif 108 109 static void __free_pages_ok(struct page *page, unsigned int order); 110 111 /* 112 * results with 256, 32 in the lowmem_reserve sysctl: 113 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 114 * 1G machine -> (16M dma, 784M normal, 224M high) 115 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 116 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 117 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 118 * 119 * TBD: should special case ZONE_DMA32 machines here - in those we normally 120 * don't need any ZONE_NORMAL reservation 121 */ 122 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 123 #ifdef CONFIG_ZONE_DMA 124 256, 125 #endif 126 #ifdef CONFIG_ZONE_DMA32 127 256, 128 #endif 129 #ifdef CONFIG_HIGHMEM 130 32, 131 #endif 132 32, 133 }; 134 135 EXPORT_SYMBOL(totalram_pages); 136 137 static char * const zone_names[MAX_NR_ZONES] = { 138 #ifdef CONFIG_ZONE_DMA 139 "DMA", 140 #endif 141 #ifdef CONFIG_ZONE_DMA32 142 "DMA32", 143 #endif 144 "Normal", 145 #ifdef CONFIG_HIGHMEM 146 "HighMem", 147 #endif 148 "Movable", 149 }; 150 151 int min_free_kbytes = 1024; 152 153 static unsigned long __meminitdata nr_kernel_pages; 154 static unsigned long __meminitdata nr_all_pages; 155 static unsigned long __meminitdata dma_reserve; 156 157 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 158 /* 159 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 160 * ranges of memory (RAM) that may be registered with add_active_range(). 161 * Ranges passed to add_active_range() will be merged if possible 162 * so the number of times add_active_range() can be called is 163 * related to the number of nodes and the number of holes 164 */ 165 #ifdef CONFIG_MAX_ACTIVE_REGIONS 166 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 167 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 168 #else 169 #if MAX_NUMNODES >= 32 170 /* If there can be many nodes, allow up to 50 holes per node */ 171 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 172 #else 173 /* By default, allow up to 256 distinct regions */ 174 #define MAX_ACTIVE_REGIONS 256 175 #endif 176 #endif 177 178 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 179 static int __meminitdata nr_nodemap_entries; 180 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 181 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 182 static unsigned long __initdata required_kernelcore; 183 static unsigned long __initdata required_movablecore; 184 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 185 186 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 187 int movable_zone; 188 EXPORT_SYMBOL(movable_zone); 189 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 190 191 #if MAX_NUMNODES > 1 192 int nr_node_ids __read_mostly = MAX_NUMNODES; 193 int nr_online_nodes __read_mostly = 1; 194 EXPORT_SYMBOL(nr_node_ids); 195 EXPORT_SYMBOL(nr_online_nodes); 196 #endif 197 198 int page_group_by_mobility_disabled __read_mostly; 199 200 static void set_pageblock_migratetype(struct page *page, int migratetype) 201 { 202 203 if (unlikely(page_group_by_mobility_disabled)) 204 migratetype = MIGRATE_UNMOVABLE; 205 206 set_pageblock_flags_group(page, (unsigned long)migratetype, 207 PB_migrate, PB_migrate_end); 208 } 209 210 bool oom_killer_disabled __read_mostly; 211 212 #ifdef CONFIG_DEBUG_VM 213 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 214 { 215 int ret = 0; 216 unsigned seq; 217 unsigned long pfn = page_to_pfn(page); 218 219 do { 220 seq = zone_span_seqbegin(zone); 221 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 222 ret = 1; 223 else if (pfn < zone->zone_start_pfn) 224 ret = 1; 225 } while (zone_span_seqretry(zone, seq)); 226 227 return ret; 228 } 229 230 static int page_is_consistent(struct zone *zone, struct page *page) 231 { 232 if (!pfn_valid_within(page_to_pfn(page))) 233 return 0; 234 if (zone != page_zone(page)) 235 return 0; 236 237 return 1; 238 } 239 /* 240 * Temporary debugging check for pages not lying within a given zone. 241 */ 242 static int bad_range(struct zone *zone, struct page *page) 243 { 244 if (page_outside_zone_boundaries(zone, page)) 245 return 1; 246 if (!page_is_consistent(zone, page)) 247 return 1; 248 249 return 0; 250 } 251 #else 252 static inline int bad_range(struct zone *zone, struct page *page) 253 { 254 return 0; 255 } 256 #endif 257 258 static void bad_page(struct page *page) 259 { 260 static unsigned long resume; 261 static unsigned long nr_shown; 262 static unsigned long nr_unshown; 263 264 /* Don't complain about poisoned pages */ 265 if (PageHWPoison(page)) { 266 __ClearPageBuddy(page); 267 return; 268 } 269 270 /* 271 * Allow a burst of 60 reports, then keep quiet for that minute; 272 * or allow a steady drip of one report per second. 273 */ 274 if (nr_shown == 60) { 275 if (time_before(jiffies, resume)) { 276 nr_unshown++; 277 goto out; 278 } 279 if (nr_unshown) { 280 printk(KERN_ALERT 281 "BUG: Bad page state: %lu messages suppressed\n", 282 nr_unshown); 283 nr_unshown = 0; 284 } 285 nr_shown = 0; 286 } 287 if (nr_shown++ == 0) 288 resume = jiffies + 60 * HZ; 289 290 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 291 current->comm, page_to_pfn(page)); 292 dump_page(page); 293 294 dump_stack(); 295 out: 296 /* Leave bad fields for debug, except PageBuddy could make trouble */ 297 __ClearPageBuddy(page); 298 add_taint(TAINT_BAD_PAGE); 299 } 300 301 /* 302 * Higher-order pages are called "compound pages". They are structured thusly: 303 * 304 * The first PAGE_SIZE page is called the "head page". 305 * 306 * The remaining PAGE_SIZE pages are called "tail pages". 307 * 308 * All pages have PG_compound set. All pages have their ->private pointing at 309 * the head page (even the head page has this). 310 * 311 * The first tail page's ->lru.next holds the address of the compound page's 312 * put_page() function. Its ->lru.prev holds the order of allocation. 313 * This usage means that zero-order pages may not be compound. 314 */ 315 316 static void free_compound_page(struct page *page) 317 { 318 __free_pages_ok(page, compound_order(page)); 319 } 320 321 void prep_compound_page(struct page *page, unsigned long order) 322 { 323 int i; 324 int nr_pages = 1 << order; 325 326 set_compound_page_dtor(page, free_compound_page); 327 set_compound_order(page, order); 328 __SetPageHead(page); 329 for (i = 1; i < nr_pages; i++) { 330 struct page *p = page + i; 331 332 __SetPageTail(p); 333 p->first_page = page; 334 } 335 } 336 337 static int destroy_compound_page(struct page *page, unsigned long order) 338 { 339 int i; 340 int nr_pages = 1 << order; 341 int bad = 0; 342 343 if (unlikely(compound_order(page) != order) || 344 unlikely(!PageHead(page))) { 345 bad_page(page); 346 bad++; 347 } 348 349 __ClearPageHead(page); 350 351 for (i = 1; i < nr_pages; i++) { 352 struct page *p = page + i; 353 354 if (unlikely(!PageTail(p) || (p->first_page != page))) { 355 bad_page(page); 356 bad++; 357 } 358 __ClearPageTail(p); 359 } 360 361 return bad; 362 } 363 364 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 365 { 366 int i; 367 368 /* 369 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 370 * and __GFP_HIGHMEM from hard or soft interrupt context. 371 */ 372 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 373 for (i = 0; i < (1 << order); i++) 374 clear_highpage(page + i); 375 } 376 377 static inline void set_page_order(struct page *page, int order) 378 { 379 set_page_private(page, order); 380 __SetPageBuddy(page); 381 } 382 383 static inline void rmv_page_order(struct page *page) 384 { 385 __ClearPageBuddy(page); 386 set_page_private(page, 0); 387 } 388 389 /* 390 * Locate the struct page for both the matching buddy in our 391 * pair (buddy1) and the combined O(n+1) page they form (page). 392 * 393 * 1) Any buddy B1 will have an order O twin B2 which satisfies 394 * the following equation: 395 * B2 = B1 ^ (1 << O) 396 * For example, if the starting buddy (buddy2) is #8 its order 397 * 1 buddy is #10: 398 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 399 * 400 * 2) Any buddy B will have an order O+1 parent P which 401 * satisfies the following equation: 402 * P = B & ~(1 << O) 403 * 404 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 405 */ 406 static inline struct page * 407 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 408 { 409 unsigned long buddy_idx = page_idx ^ (1 << order); 410 411 return page + (buddy_idx - page_idx); 412 } 413 414 static inline unsigned long 415 __find_combined_index(unsigned long page_idx, unsigned int order) 416 { 417 return (page_idx & ~(1 << order)); 418 } 419 420 /* 421 * This function checks whether a page is free && is the buddy 422 * we can do coalesce a page and its buddy if 423 * (a) the buddy is not in a hole && 424 * (b) the buddy is in the buddy system && 425 * (c) a page and its buddy have the same order && 426 * (d) a page and its buddy are in the same zone. 427 * 428 * For recording whether a page is in the buddy system, we use PG_buddy. 429 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 430 * 431 * For recording page's order, we use page_private(page). 432 */ 433 static inline int page_is_buddy(struct page *page, struct page *buddy, 434 int order) 435 { 436 if (!pfn_valid_within(page_to_pfn(buddy))) 437 return 0; 438 439 if (page_zone_id(page) != page_zone_id(buddy)) 440 return 0; 441 442 if (PageBuddy(buddy) && page_order(buddy) == order) { 443 VM_BUG_ON(page_count(buddy) != 0); 444 return 1; 445 } 446 return 0; 447 } 448 449 /* 450 * Freeing function for a buddy system allocator. 451 * 452 * The concept of a buddy system is to maintain direct-mapped table 453 * (containing bit values) for memory blocks of various "orders". 454 * The bottom level table contains the map for the smallest allocatable 455 * units of memory (here, pages), and each level above it describes 456 * pairs of units from the levels below, hence, "buddies". 457 * At a high level, all that happens here is marking the table entry 458 * at the bottom level available, and propagating the changes upward 459 * as necessary, plus some accounting needed to play nicely with other 460 * parts of the VM system. 461 * At each level, we keep a list of pages, which are heads of continuous 462 * free pages of length of (1 << order) and marked with PG_buddy. Page's 463 * order is recorded in page_private(page) field. 464 * So when we are allocating or freeing one, we can derive the state of the 465 * other. That is, if we allocate a small block, and both were 466 * free, the remainder of the region must be split into blocks. 467 * If a block is freed, and its buddy is also free, then this 468 * triggers coalescing into a block of larger size. 469 * 470 * -- wli 471 */ 472 473 static inline void __free_one_page(struct page *page, 474 struct zone *zone, unsigned int order, 475 int migratetype) 476 { 477 unsigned long page_idx; 478 unsigned long combined_idx; 479 struct page *buddy; 480 481 if (unlikely(PageCompound(page))) 482 if (unlikely(destroy_compound_page(page, order))) 483 return; 484 485 VM_BUG_ON(migratetype == -1); 486 487 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 488 489 VM_BUG_ON(page_idx & ((1 << order) - 1)); 490 VM_BUG_ON(bad_range(zone, page)); 491 492 while (order < MAX_ORDER-1) { 493 buddy = __page_find_buddy(page, page_idx, order); 494 if (!page_is_buddy(page, buddy, order)) 495 break; 496 497 /* Our buddy is free, merge with it and move up one order. */ 498 list_del(&buddy->lru); 499 zone->free_area[order].nr_free--; 500 rmv_page_order(buddy); 501 combined_idx = __find_combined_index(page_idx, order); 502 page = page + (combined_idx - page_idx); 503 page_idx = combined_idx; 504 order++; 505 } 506 set_page_order(page, order); 507 508 /* 509 * If this is not the largest possible page, check if the buddy 510 * of the next-highest order is free. If it is, it's possible 511 * that pages are being freed that will coalesce soon. In case, 512 * that is happening, add the free page to the tail of the list 513 * so it's less likely to be used soon and more likely to be merged 514 * as a higher order page 515 */ 516 if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) { 517 struct page *higher_page, *higher_buddy; 518 combined_idx = __find_combined_index(page_idx, order); 519 higher_page = page + combined_idx - page_idx; 520 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1); 521 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 522 list_add_tail(&page->lru, 523 &zone->free_area[order].free_list[migratetype]); 524 goto out; 525 } 526 } 527 528 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 529 out: 530 zone->free_area[order].nr_free++; 531 } 532 533 /* 534 * free_page_mlock() -- clean up attempts to free and mlocked() page. 535 * Page should not be on lru, so no need to fix that up. 536 * free_pages_check() will verify... 537 */ 538 static inline void free_page_mlock(struct page *page) 539 { 540 __dec_zone_page_state(page, NR_MLOCK); 541 __count_vm_event(UNEVICTABLE_MLOCKFREED); 542 } 543 544 static inline int free_pages_check(struct page *page) 545 { 546 if (unlikely(page_mapcount(page) | 547 (page->mapping != NULL) | 548 (atomic_read(&page->_count) != 0) | 549 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) { 550 bad_page(page); 551 return 1; 552 } 553 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 554 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 555 return 0; 556 } 557 558 /* 559 * Frees a number of pages from the PCP lists 560 * Assumes all pages on list are in same zone, and of same order. 561 * count is the number of pages to free. 562 * 563 * If the zone was previously in an "all pages pinned" state then look to 564 * see if this freeing clears that state. 565 * 566 * And clear the zone's pages_scanned counter, to hold off the "all pages are 567 * pinned" detection logic. 568 */ 569 static void free_pcppages_bulk(struct zone *zone, int count, 570 struct per_cpu_pages *pcp) 571 { 572 int migratetype = 0; 573 int batch_free = 0; 574 575 spin_lock(&zone->lock); 576 zone->all_unreclaimable = 0; 577 zone->pages_scanned = 0; 578 579 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 580 while (count) { 581 struct page *page; 582 struct list_head *list; 583 584 /* 585 * Remove pages from lists in a round-robin fashion. A 586 * batch_free count is maintained that is incremented when an 587 * empty list is encountered. This is so more pages are freed 588 * off fuller lists instead of spinning excessively around empty 589 * lists 590 */ 591 do { 592 batch_free++; 593 if (++migratetype == MIGRATE_PCPTYPES) 594 migratetype = 0; 595 list = &pcp->lists[migratetype]; 596 } while (list_empty(list)); 597 598 do { 599 page = list_entry(list->prev, struct page, lru); 600 /* must delete as __free_one_page list manipulates */ 601 list_del(&page->lru); 602 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 603 __free_one_page(page, zone, 0, page_private(page)); 604 trace_mm_page_pcpu_drain(page, 0, page_private(page)); 605 } while (--count && --batch_free && !list_empty(list)); 606 } 607 spin_unlock(&zone->lock); 608 } 609 610 static void free_one_page(struct zone *zone, struct page *page, int order, 611 int migratetype) 612 { 613 spin_lock(&zone->lock); 614 zone->all_unreclaimable = 0; 615 zone->pages_scanned = 0; 616 617 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 618 __free_one_page(page, zone, order, migratetype); 619 spin_unlock(&zone->lock); 620 } 621 622 static void __free_pages_ok(struct page *page, unsigned int order) 623 { 624 unsigned long flags; 625 int i; 626 int bad = 0; 627 int wasMlocked = __TestClearPageMlocked(page); 628 629 trace_mm_page_free_direct(page, order); 630 kmemcheck_free_shadow(page, order); 631 632 for (i = 0 ; i < (1 << order) ; ++i) 633 bad += free_pages_check(page + i); 634 if (bad) 635 return; 636 637 if (!PageHighMem(page)) { 638 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 639 debug_check_no_obj_freed(page_address(page), 640 PAGE_SIZE << order); 641 } 642 arch_free_page(page, order); 643 kernel_map_pages(page, 1 << order, 0); 644 645 local_irq_save(flags); 646 if (unlikely(wasMlocked)) 647 free_page_mlock(page); 648 __count_vm_events(PGFREE, 1 << order); 649 free_one_page(page_zone(page), page, order, 650 get_pageblock_migratetype(page)); 651 local_irq_restore(flags); 652 } 653 654 /* 655 * permit the bootmem allocator to evade page validation on high-order frees 656 */ 657 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 658 { 659 if (order == 0) { 660 __ClearPageReserved(page); 661 set_page_count(page, 0); 662 set_page_refcounted(page); 663 __free_page(page); 664 } else { 665 int loop; 666 667 prefetchw(page); 668 for (loop = 0; loop < BITS_PER_LONG; loop++) { 669 struct page *p = &page[loop]; 670 671 if (loop + 1 < BITS_PER_LONG) 672 prefetchw(p + 1); 673 __ClearPageReserved(p); 674 set_page_count(p, 0); 675 } 676 677 set_page_refcounted(page); 678 __free_pages(page, order); 679 } 680 } 681 682 683 /* 684 * The order of subdivision here is critical for the IO subsystem. 685 * Please do not alter this order without good reasons and regression 686 * testing. Specifically, as large blocks of memory are subdivided, 687 * the order in which smaller blocks are delivered depends on the order 688 * they're subdivided in this function. This is the primary factor 689 * influencing the order in which pages are delivered to the IO 690 * subsystem according to empirical testing, and this is also justified 691 * by considering the behavior of a buddy system containing a single 692 * large block of memory acted on by a series of small allocations. 693 * This behavior is a critical factor in sglist merging's success. 694 * 695 * -- wli 696 */ 697 static inline void expand(struct zone *zone, struct page *page, 698 int low, int high, struct free_area *area, 699 int migratetype) 700 { 701 unsigned long size = 1 << high; 702 703 while (high > low) { 704 area--; 705 high--; 706 size >>= 1; 707 VM_BUG_ON(bad_range(zone, &page[size])); 708 list_add(&page[size].lru, &area->free_list[migratetype]); 709 area->nr_free++; 710 set_page_order(&page[size], high); 711 } 712 } 713 714 /* 715 * This page is about to be returned from the page allocator 716 */ 717 static inline int check_new_page(struct page *page) 718 { 719 if (unlikely(page_mapcount(page) | 720 (page->mapping != NULL) | 721 (atomic_read(&page->_count) != 0) | 722 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) { 723 bad_page(page); 724 return 1; 725 } 726 return 0; 727 } 728 729 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 730 { 731 int i; 732 733 for (i = 0; i < (1 << order); i++) { 734 struct page *p = page + i; 735 if (unlikely(check_new_page(p))) 736 return 1; 737 } 738 739 set_page_private(page, 0); 740 set_page_refcounted(page); 741 742 arch_alloc_page(page, order); 743 kernel_map_pages(page, 1 << order, 1); 744 745 if (gfp_flags & __GFP_ZERO) 746 prep_zero_page(page, order, gfp_flags); 747 748 if (order && (gfp_flags & __GFP_COMP)) 749 prep_compound_page(page, order); 750 751 return 0; 752 } 753 754 /* 755 * Go through the free lists for the given migratetype and remove 756 * the smallest available page from the freelists 757 */ 758 static inline 759 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 760 int migratetype) 761 { 762 unsigned int current_order; 763 struct free_area * area; 764 struct page *page; 765 766 /* Find a page of the appropriate size in the preferred list */ 767 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 768 area = &(zone->free_area[current_order]); 769 if (list_empty(&area->free_list[migratetype])) 770 continue; 771 772 page = list_entry(area->free_list[migratetype].next, 773 struct page, lru); 774 list_del(&page->lru); 775 rmv_page_order(page); 776 area->nr_free--; 777 expand(zone, page, order, current_order, area, migratetype); 778 return page; 779 } 780 781 return NULL; 782 } 783 784 785 /* 786 * This array describes the order lists are fallen back to when 787 * the free lists for the desirable migrate type are depleted 788 */ 789 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 790 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 791 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 792 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 793 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 794 }; 795 796 /* 797 * Move the free pages in a range to the free lists of the requested type. 798 * Note that start_page and end_pages are not aligned on a pageblock 799 * boundary. If alignment is required, use move_freepages_block() 800 */ 801 static int move_freepages(struct zone *zone, 802 struct page *start_page, struct page *end_page, 803 int migratetype) 804 { 805 struct page *page; 806 unsigned long order; 807 int pages_moved = 0; 808 809 #ifndef CONFIG_HOLES_IN_ZONE 810 /* 811 * page_zone is not safe to call in this context when 812 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 813 * anyway as we check zone boundaries in move_freepages_block(). 814 * Remove at a later date when no bug reports exist related to 815 * grouping pages by mobility 816 */ 817 BUG_ON(page_zone(start_page) != page_zone(end_page)); 818 #endif 819 820 for (page = start_page; page <= end_page;) { 821 /* Make sure we are not inadvertently changing nodes */ 822 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 823 824 if (!pfn_valid_within(page_to_pfn(page))) { 825 page++; 826 continue; 827 } 828 829 if (!PageBuddy(page)) { 830 page++; 831 continue; 832 } 833 834 order = page_order(page); 835 list_del(&page->lru); 836 list_add(&page->lru, 837 &zone->free_area[order].free_list[migratetype]); 838 page += 1 << order; 839 pages_moved += 1 << order; 840 } 841 842 return pages_moved; 843 } 844 845 static int move_freepages_block(struct zone *zone, struct page *page, 846 int migratetype) 847 { 848 unsigned long start_pfn, end_pfn; 849 struct page *start_page, *end_page; 850 851 start_pfn = page_to_pfn(page); 852 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 853 start_page = pfn_to_page(start_pfn); 854 end_page = start_page + pageblock_nr_pages - 1; 855 end_pfn = start_pfn + pageblock_nr_pages - 1; 856 857 /* Do not cross zone boundaries */ 858 if (start_pfn < zone->zone_start_pfn) 859 start_page = page; 860 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 861 return 0; 862 863 return move_freepages(zone, start_page, end_page, migratetype); 864 } 865 866 static void change_pageblock_range(struct page *pageblock_page, 867 int start_order, int migratetype) 868 { 869 int nr_pageblocks = 1 << (start_order - pageblock_order); 870 871 while (nr_pageblocks--) { 872 set_pageblock_migratetype(pageblock_page, migratetype); 873 pageblock_page += pageblock_nr_pages; 874 } 875 } 876 877 /* Remove an element from the buddy allocator from the fallback list */ 878 static inline struct page * 879 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 880 { 881 struct free_area * area; 882 int current_order; 883 struct page *page; 884 int migratetype, i; 885 886 /* Find the largest possible block of pages in the other list */ 887 for (current_order = MAX_ORDER-1; current_order >= order; 888 --current_order) { 889 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 890 migratetype = fallbacks[start_migratetype][i]; 891 892 /* MIGRATE_RESERVE handled later if necessary */ 893 if (migratetype == MIGRATE_RESERVE) 894 continue; 895 896 area = &(zone->free_area[current_order]); 897 if (list_empty(&area->free_list[migratetype])) 898 continue; 899 900 page = list_entry(area->free_list[migratetype].next, 901 struct page, lru); 902 area->nr_free--; 903 904 /* 905 * If breaking a large block of pages, move all free 906 * pages to the preferred allocation list. If falling 907 * back for a reclaimable kernel allocation, be more 908 * agressive about taking ownership of free pages 909 */ 910 if (unlikely(current_order >= (pageblock_order >> 1)) || 911 start_migratetype == MIGRATE_RECLAIMABLE || 912 page_group_by_mobility_disabled) { 913 unsigned long pages; 914 pages = move_freepages_block(zone, page, 915 start_migratetype); 916 917 /* Claim the whole block if over half of it is free */ 918 if (pages >= (1 << (pageblock_order-1)) || 919 page_group_by_mobility_disabled) 920 set_pageblock_migratetype(page, 921 start_migratetype); 922 923 migratetype = start_migratetype; 924 } 925 926 /* Remove the page from the freelists */ 927 list_del(&page->lru); 928 rmv_page_order(page); 929 930 /* Take ownership for orders >= pageblock_order */ 931 if (current_order >= pageblock_order) 932 change_pageblock_range(page, current_order, 933 start_migratetype); 934 935 expand(zone, page, order, current_order, area, migratetype); 936 937 trace_mm_page_alloc_extfrag(page, order, current_order, 938 start_migratetype, migratetype); 939 940 return page; 941 } 942 } 943 944 return NULL; 945 } 946 947 /* 948 * Do the hard work of removing an element from the buddy allocator. 949 * Call me with the zone->lock already held. 950 */ 951 static struct page *__rmqueue(struct zone *zone, unsigned int order, 952 int migratetype) 953 { 954 struct page *page; 955 956 retry_reserve: 957 page = __rmqueue_smallest(zone, order, migratetype); 958 959 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 960 page = __rmqueue_fallback(zone, order, migratetype); 961 962 /* 963 * Use MIGRATE_RESERVE rather than fail an allocation. goto 964 * is used because __rmqueue_smallest is an inline function 965 * and we want just one call site 966 */ 967 if (!page) { 968 migratetype = MIGRATE_RESERVE; 969 goto retry_reserve; 970 } 971 } 972 973 trace_mm_page_alloc_zone_locked(page, order, migratetype); 974 return page; 975 } 976 977 /* 978 * Obtain a specified number of elements from the buddy allocator, all under 979 * a single hold of the lock, for efficiency. Add them to the supplied list. 980 * Returns the number of new pages which were placed at *list. 981 */ 982 static int rmqueue_bulk(struct zone *zone, unsigned int order, 983 unsigned long count, struct list_head *list, 984 int migratetype, int cold) 985 { 986 int i; 987 988 spin_lock(&zone->lock); 989 for (i = 0; i < count; ++i) { 990 struct page *page = __rmqueue(zone, order, migratetype); 991 if (unlikely(page == NULL)) 992 break; 993 994 /* 995 * Split buddy pages returned by expand() are received here 996 * in physical page order. The page is added to the callers and 997 * list and the list head then moves forward. From the callers 998 * perspective, the linked list is ordered by page number in 999 * some conditions. This is useful for IO devices that can 1000 * merge IO requests if the physical pages are ordered 1001 * properly. 1002 */ 1003 if (likely(cold == 0)) 1004 list_add(&page->lru, list); 1005 else 1006 list_add_tail(&page->lru, list); 1007 set_page_private(page, migratetype); 1008 list = &page->lru; 1009 } 1010 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1011 spin_unlock(&zone->lock); 1012 return i; 1013 } 1014 1015 #ifdef CONFIG_NUMA 1016 /* 1017 * Called from the vmstat counter updater to drain pagesets of this 1018 * currently executing processor on remote nodes after they have 1019 * expired. 1020 * 1021 * Note that this function must be called with the thread pinned to 1022 * a single processor. 1023 */ 1024 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1025 { 1026 unsigned long flags; 1027 int to_drain; 1028 1029 local_irq_save(flags); 1030 if (pcp->count >= pcp->batch) 1031 to_drain = pcp->batch; 1032 else 1033 to_drain = pcp->count; 1034 free_pcppages_bulk(zone, to_drain, pcp); 1035 pcp->count -= to_drain; 1036 local_irq_restore(flags); 1037 } 1038 #endif 1039 1040 /* 1041 * Drain pages of the indicated processor. 1042 * 1043 * The processor must either be the current processor and the 1044 * thread pinned to the current processor or a processor that 1045 * is not online. 1046 */ 1047 static void drain_pages(unsigned int cpu) 1048 { 1049 unsigned long flags; 1050 struct zone *zone; 1051 1052 for_each_populated_zone(zone) { 1053 struct per_cpu_pageset *pset; 1054 struct per_cpu_pages *pcp; 1055 1056 local_irq_save(flags); 1057 pset = per_cpu_ptr(zone->pageset, cpu); 1058 1059 pcp = &pset->pcp; 1060 free_pcppages_bulk(zone, pcp->count, pcp); 1061 pcp->count = 0; 1062 local_irq_restore(flags); 1063 } 1064 } 1065 1066 /* 1067 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1068 */ 1069 void drain_local_pages(void *arg) 1070 { 1071 drain_pages(smp_processor_id()); 1072 } 1073 1074 /* 1075 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 1076 */ 1077 void drain_all_pages(void) 1078 { 1079 on_each_cpu(drain_local_pages, NULL, 1); 1080 } 1081 1082 #ifdef CONFIG_HIBERNATION 1083 1084 void mark_free_pages(struct zone *zone) 1085 { 1086 unsigned long pfn, max_zone_pfn; 1087 unsigned long flags; 1088 int order, t; 1089 struct list_head *curr; 1090 1091 if (!zone->spanned_pages) 1092 return; 1093 1094 spin_lock_irqsave(&zone->lock, flags); 1095 1096 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1097 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1098 if (pfn_valid(pfn)) { 1099 struct page *page = pfn_to_page(pfn); 1100 1101 if (!swsusp_page_is_forbidden(page)) 1102 swsusp_unset_page_free(page); 1103 } 1104 1105 for_each_migratetype_order(order, t) { 1106 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1107 unsigned long i; 1108 1109 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1110 for (i = 0; i < (1UL << order); i++) 1111 swsusp_set_page_free(pfn_to_page(pfn + i)); 1112 } 1113 } 1114 spin_unlock_irqrestore(&zone->lock, flags); 1115 } 1116 #endif /* CONFIG_PM */ 1117 1118 /* 1119 * Free a 0-order page 1120 * cold == 1 ? free a cold page : free a hot page 1121 */ 1122 void free_hot_cold_page(struct page *page, int cold) 1123 { 1124 struct zone *zone = page_zone(page); 1125 struct per_cpu_pages *pcp; 1126 unsigned long flags; 1127 int migratetype; 1128 int wasMlocked = __TestClearPageMlocked(page); 1129 1130 trace_mm_page_free_direct(page, 0); 1131 kmemcheck_free_shadow(page, 0); 1132 1133 if (PageAnon(page)) 1134 page->mapping = NULL; 1135 if (free_pages_check(page)) 1136 return; 1137 1138 if (!PageHighMem(page)) { 1139 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 1140 debug_check_no_obj_freed(page_address(page), PAGE_SIZE); 1141 } 1142 arch_free_page(page, 0); 1143 kernel_map_pages(page, 1, 0); 1144 1145 migratetype = get_pageblock_migratetype(page); 1146 set_page_private(page, migratetype); 1147 local_irq_save(flags); 1148 if (unlikely(wasMlocked)) 1149 free_page_mlock(page); 1150 __count_vm_event(PGFREE); 1151 1152 /* 1153 * We only track unmovable, reclaimable and movable on pcp lists. 1154 * Free ISOLATE pages back to the allocator because they are being 1155 * offlined but treat RESERVE as movable pages so we can get those 1156 * areas back if necessary. Otherwise, we may have to free 1157 * excessively into the page allocator 1158 */ 1159 if (migratetype >= MIGRATE_PCPTYPES) { 1160 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1161 free_one_page(zone, page, 0, migratetype); 1162 goto out; 1163 } 1164 migratetype = MIGRATE_MOVABLE; 1165 } 1166 1167 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1168 if (cold) 1169 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1170 else 1171 list_add(&page->lru, &pcp->lists[migratetype]); 1172 pcp->count++; 1173 if (pcp->count >= pcp->high) { 1174 free_pcppages_bulk(zone, pcp->batch, pcp); 1175 pcp->count -= pcp->batch; 1176 } 1177 1178 out: 1179 local_irq_restore(flags); 1180 } 1181 1182 /* 1183 * split_page takes a non-compound higher-order page, and splits it into 1184 * n (1<<order) sub-pages: page[0..n] 1185 * Each sub-page must be freed individually. 1186 * 1187 * Note: this is probably too low level an operation for use in drivers. 1188 * Please consult with lkml before using this in your driver. 1189 */ 1190 void split_page(struct page *page, unsigned int order) 1191 { 1192 int i; 1193 1194 VM_BUG_ON(PageCompound(page)); 1195 VM_BUG_ON(!page_count(page)); 1196 1197 #ifdef CONFIG_KMEMCHECK 1198 /* 1199 * Split shadow pages too, because free(page[0]) would 1200 * otherwise free the whole shadow. 1201 */ 1202 if (kmemcheck_page_is_tracked(page)) 1203 split_page(virt_to_page(page[0].shadow), order); 1204 #endif 1205 1206 for (i = 1; i < (1 << order); i++) 1207 set_page_refcounted(page + i); 1208 } 1209 1210 /* 1211 * Similar to split_page except the page is already free. As this is only 1212 * being used for migration, the migratetype of the block also changes. 1213 * As this is called with interrupts disabled, the caller is responsible 1214 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1215 * are enabled. 1216 * 1217 * Note: this is probably too low level an operation for use in drivers. 1218 * Please consult with lkml before using this in your driver. 1219 */ 1220 int split_free_page(struct page *page) 1221 { 1222 unsigned int order; 1223 unsigned long watermark; 1224 struct zone *zone; 1225 1226 BUG_ON(!PageBuddy(page)); 1227 1228 zone = page_zone(page); 1229 order = page_order(page); 1230 1231 /* Obey watermarks as if the page was being allocated */ 1232 watermark = low_wmark_pages(zone) + (1 << order); 1233 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1234 return 0; 1235 1236 /* Remove page from free list */ 1237 list_del(&page->lru); 1238 zone->free_area[order].nr_free--; 1239 rmv_page_order(page); 1240 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); 1241 1242 /* Split into individual pages */ 1243 set_page_refcounted(page); 1244 split_page(page, order); 1245 1246 if (order >= pageblock_order - 1) { 1247 struct page *endpage = page + (1 << order) - 1; 1248 for (; page < endpage; page += pageblock_nr_pages) 1249 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1250 } 1251 1252 return 1 << order; 1253 } 1254 1255 /* 1256 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1257 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1258 * or two. 1259 */ 1260 static inline 1261 struct page *buffered_rmqueue(struct zone *preferred_zone, 1262 struct zone *zone, int order, gfp_t gfp_flags, 1263 int migratetype) 1264 { 1265 unsigned long flags; 1266 struct page *page; 1267 int cold = !!(gfp_flags & __GFP_COLD); 1268 1269 again: 1270 if (likely(order == 0)) { 1271 struct per_cpu_pages *pcp; 1272 struct list_head *list; 1273 1274 local_irq_save(flags); 1275 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1276 list = &pcp->lists[migratetype]; 1277 if (list_empty(list)) { 1278 pcp->count += rmqueue_bulk(zone, 0, 1279 pcp->batch, list, 1280 migratetype, cold); 1281 if (unlikely(list_empty(list))) 1282 goto failed; 1283 } 1284 1285 if (cold) 1286 page = list_entry(list->prev, struct page, lru); 1287 else 1288 page = list_entry(list->next, struct page, lru); 1289 1290 list_del(&page->lru); 1291 pcp->count--; 1292 } else { 1293 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1294 /* 1295 * __GFP_NOFAIL is not to be used in new code. 1296 * 1297 * All __GFP_NOFAIL callers should be fixed so that they 1298 * properly detect and handle allocation failures. 1299 * 1300 * We most definitely don't want callers attempting to 1301 * allocate greater than order-1 page units with 1302 * __GFP_NOFAIL. 1303 */ 1304 WARN_ON_ONCE(order > 1); 1305 } 1306 spin_lock_irqsave(&zone->lock, flags); 1307 page = __rmqueue(zone, order, migratetype); 1308 spin_unlock(&zone->lock); 1309 if (!page) 1310 goto failed; 1311 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1312 } 1313 1314 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1315 zone_statistics(preferred_zone, zone); 1316 local_irq_restore(flags); 1317 1318 VM_BUG_ON(bad_range(zone, page)); 1319 if (prep_new_page(page, order, gfp_flags)) 1320 goto again; 1321 return page; 1322 1323 failed: 1324 local_irq_restore(flags); 1325 return NULL; 1326 } 1327 1328 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1329 #define ALLOC_WMARK_MIN WMARK_MIN 1330 #define ALLOC_WMARK_LOW WMARK_LOW 1331 #define ALLOC_WMARK_HIGH WMARK_HIGH 1332 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1333 1334 /* Mask to get the watermark bits */ 1335 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1336 1337 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1338 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1339 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1340 1341 #ifdef CONFIG_FAIL_PAGE_ALLOC 1342 1343 static struct fail_page_alloc_attr { 1344 struct fault_attr attr; 1345 1346 u32 ignore_gfp_highmem; 1347 u32 ignore_gfp_wait; 1348 u32 min_order; 1349 1350 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1351 1352 struct dentry *ignore_gfp_highmem_file; 1353 struct dentry *ignore_gfp_wait_file; 1354 struct dentry *min_order_file; 1355 1356 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1357 1358 } fail_page_alloc = { 1359 .attr = FAULT_ATTR_INITIALIZER, 1360 .ignore_gfp_wait = 1, 1361 .ignore_gfp_highmem = 1, 1362 .min_order = 1, 1363 }; 1364 1365 static int __init setup_fail_page_alloc(char *str) 1366 { 1367 return setup_fault_attr(&fail_page_alloc.attr, str); 1368 } 1369 __setup("fail_page_alloc=", setup_fail_page_alloc); 1370 1371 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1372 { 1373 if (order < fail_page_alloc.min_order) 1374 return 0; 1375 if (gfp_mask & __GFP_NOFAIL) 1376 return 0; 1377 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1378 return 0; 1379 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1380 return 0; 1381 1382 return should_fail(&fail_page_alloc.attr, 1 << order); 1383 } 1384 1385 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1386 1387 static int __init fail_page_alloc_debugfs(void) 1388 { 1389 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1390 struct dentry *dir; 1391 int err; 1392 1393 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1394 "fail_page_alloc"); 1395 if (err) 1396 return err; 1397 dir = fail_page_alloc.attr.dentries.dir; 1398 1399 fail_page_alloc.ignore_gfp_wait_file = 1400 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1401 &fail_page_alloc.ignore_gfp_wait); 1402 1403 fail_page_alloc.ignore_gfp_highmem_file = 1404 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1405 &fail_page_alloc.ignore_gfp_highmem); 1406 fail_page_alloc.min_order_file = 1407 debugfs_create_u32("min-order", mode, dir, 1408 &fail_page_alloc.min_order); 1409 1410 if (!fail_page_alloc.ignore_gfp_wait_file || 1411 !fail_page_alloc.ignore_gfp_highmem_file || 1412 !fail_page_alloc.min_order_file) { 1413 err = -ENOMEM; 1414 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1415 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1416 debugfs_remove(fail_page_alloc.min_order_file); 1417 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1418 } 1419 1420 return err; 1421 } 1422 1423 late_initcall(fail_page_alloc_debugfs); 1424 1425 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1426 1427 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1428 1429 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1430 { 1431 return 0; 1432 } 1433 1434 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1435 1436 /* 1437 * Return 1 if free pages are above 'mark'. This takes into account the order 1438 * of the allocation. 1439 */ 1440 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1441 int classzone_idx, int alloc_flags) 1442 { 1443 /* free_pages my go negative - that's OK */ 1444 long min = mark; 1445 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1446 int o; 1447 1448 if (alloc_flags & ALLOC_HIGH) 1449 min -= min / 2; 1450 if (alloc_flags & ALLOC_HARDER) 1451 min -= min / 4; 1452 1453 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1454 return 0; 1455 for (o = 0; o < order; o++) { 1456 /* At the next order, this order's pages become unavailable */ 1457 free_pages -= z->free_area[o].nr_free << o; 1458 1459 /* Require fewer higher order pages to be free */ 1460 min >>= 1; 1461 1462 if (free_pages <= min) 1463 return 0; 1464 } 1465 return 1; 1466 } 1467 1468 #ifdef CONFIG_NUMA 1469 /* 1470 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1471 * skip over zones that are not allowed by the cpuset, or that have 1472 * been recently (in last second) found to be nearly full. See further 1473 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1474 * that have to skip over a lot of full or unallowed zones. 1475 * 1476 * If the zonelist cache is present in the passed in zonelist, then 1477 * returns a pointer to the allowed node mask (either the current 1478 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1479 * 1480 * If the zonelist cache is not available for this zonelist, does 1481 * nothing and returns NULL. 1482 * 1483 * If the fullzones BITMAP in the zonelist cache is stale (more than 1484 * a second since last zap'd) then we zap it out (clear its bits.) 1485 * 1486 * We hold off even calling zlc_setup, until after we've checked the 1487 * first zone in the zonelist, on the theory that most allocations will 1488 * be satisfied from that first zone, so best to examine that zone as 1489 * quickly as we can. 1490 */ 1491 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1492 { 1493 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1494 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1495 1496 zlc = zonelist->zlcache_ptr; 1497 if (!zlc) 1498 return NULL; 1499 1500 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1501 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1502 zlc->last_full_zap = jiffies; 1503 } 1504 1505 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1506 &cpuset_current_mems_allowed : 1507 &node_states[N_HIGH_MEMORY]; 1508 return allowednodes; 1509 } 1510 1511 /* 1512 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1513 * if it is worth looking at further for free memory: 1514 * 1) Check that the zone isn't thought to be full (doesn't have its 1515 * bit set in the zonelist_cache fullzones BITMAP). 1516 * 2) Check that the zones node (obtained from the zonelist_cache 1517 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1518 * Return true (non-zero) if zone is worth looking at further, or 1519 * else return false (zero) if it is not. 1520 * 1521 * This check -ignores- the distinction between various watermarks, 1522 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1523 * found to be full for any variation of these watermarks, it will 1524 * be considered full for up to one second by all requests, unless 1525 * we are so low on memory on all allowed nodes that we are forced 1526 * into the second scan of the zonelist. 1527 * 1528 * In the second scan we ignore this zonelist cache and exactly 1529 * apply the watermarks to all zones, even it is slower to do so. 1530 * We are low on memory in the second scan, and should leave no stone 1531 * unturned looking for a free page. 1532 */ 1533 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1534 nodemask_t *allowednodes) 1535 { 1536 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1537 int i; /* index of *z in zonelist zones */ 1538 int n; /* node that zone *z is on */ 1539 1540 zlc = zonelist->zlcache_ptr; 1541 if (!zlc) 1542 return 1; 1543 1544 i = z - zonelist->_zonerefs; 1545 n = zlc->z_to_n[i]; 1546 1547 /* This zone is worth trying if it is allowed but not full */ 1548 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1549 } 1550 1551 /* 1552 * Given 'z' scanning a zonelist, set the corresponding bit in 1553 * zlc->fullzones, so that subsequent attempts to allocate a page 1554 * from that zone don't waste time re-examining it. 1555 */ 1556 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1557 { 1558 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1559 int i; /* index of *z in zonelist zones */ 1560 1561 zlc = zonelist->zlcache_ptr; 1562 if (!zlc) 1563 return; 1564 1565 i = z - zonelist->_zonerefs; 1566 1567 set_bit(i, zlc->fullzones); 1568 } 1569 1570 #else /* CONFIG_NUMA */ 1571 1572 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1573 { 1574 return NULL; 1575 } 1576 1577 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1578 nodemask_t *allowednodes) 1579 { 1580 return 1; 1581 } 1582 1583 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1584 { 1585 } 1586 #endif /* CONFIG_NUMA */ 1587 1588 /* 1589 * get_page_from_freelist goes through the zonelist trying to allocate 1590 * a page. 1591 */ 1592 static struct page * 1593 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1594 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1595 struct zone *preferred_zone, int migratetype) 1596 { 1597 struct zoneref *z; 1598 struct page *page = NULL; 1599 int classzone_idx; 1600 struct zone *zone; 1601 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1602 int zlc_active = 0; /* set if using zonelist_cache */ 1603 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1604 1605 classzone_idx = zone_idx(preferred_zone); 1606 zonelist_scan: 1607 /* 1608 * Scan zonelist, looking for a zone with enough free. 1609 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1610 */ 1611 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1612 high_zoneidx, nodemask) { 1613 if (NUMA_BUILD && zlc_active && 1614 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1615 continue; 1616 if ((alloc_flags & ALLOC_CPUSET) && 1617 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1618 goto try_next_zone; 1619 1620 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1621 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1622 unsigned long mark; 1623 int ret; 1624 1625 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1626 if (zone_watermark_ok(zone, order, mark, 1627 classzone_idx, alloc_flags)) 1628 goto try_this_zone; 1629 1630 if (zone_reclaim_mode == 0) 1631 goto this_zone_full; 1632 1633 ret = zone_reclaim(zone, gfp_mask, order); 1634 switch (ret) { 1635 case ZONE_RECLAIM_NOSCAN: 1636 /* did not scan */ 1637 goto try_next_zone; 1638 case ZONE_RECLAIM_FULL: 1639 /* scanned but unreclaimable */ 1640 goto this_zone_full; 1641 default: 1642 /* did we reclaim enough */ 1643 if (!zone_watermark_ok(zone, order, mark, 1644 classzone_idx, alloc_flags)) 1645 goto this_zone_full; 1646 } 1647 } 1648 1649 try_this_zone: 1650 page = buffered_rmqueue(preferred_zone, zone, order, 1651 gfp_mask, migratetype); 1652 if (page) 1653 break; 1654 this_zone_full: 1655 if (NUMA_BUILD) 1656 zlc_mark_zone_full(zonelist, z); 1657 try_next_zone: 1658 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1659 /* 1660 * we do zlc_setup after the first zone is tried but only 1661 * if there are multiple nodes make it worthwhile 1662 */ 1663 allowednodes = zlc_setup(zonelist, alloc_flags); 1664 zlc_active = 1; 1665 did_zlc_setup = 1; 1666 } 1667 } 1668 1669 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1670 /* Disable zlc cache for second zonelist scan */ 1671 zlc_active = 0; 1672 goto zonelist_scan; 1673 } 1674 return page; 1675 } 1676 1677 static inline int 1678 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1679 unsigned long pages_reclaimed) 1680 { 1681 /* Do not loop if specifically requested */ 1682 if (gfp_mask & __GFP_NORETRY) 1683 return 0; 1684 1685 /* 1686 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1687 * means __GFP_NOFAIL, but that may not be true in other 1688 * implementations. 1689 */ 1690 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1691 return 1; 1692 1693 /* 1694 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1695 * specified, then we retry until we no longer reclaim any pages 1696 * (above), or we've reclaimed an order of pages at least as 1697 * large as the allocation's order. In both cases, if the 1698 * allocation still fails, we stop retrying. 1699 */ 1700 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1701 return 1; 1702 1703 /* 1704 * Don't let big-order allocations loop unless the caller 1705 * explicitly requests that. 1706 */ 1707 if (gfp_mask & __GFP_NOFAIL) 1708 return 1; 1709 1710 return 0; 1711 } 1712 1713 static inline struct page * 1714 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1715 struct zonelist *zonelist, enum zone_type high_zoneidx, 1716 nodemask_t *nodemask, struct zone *preferred_zone, 1717 int migratetype) 1718 { 1719 struct page *page; 1720 1721 /* Acquire the OOM killer lock for the zones in zonelist */ 1722 if (!try_set_zone_oom(zonelist, gfp_mask)) { 1723 schedule_timeout_uninterruptible(1); 1724 return NULL; 1725 } 1726 1727 /* 1728 * Go through the zonelist yet one more time, keep very high watermark 1729 * here, this is only to catch a parallel oom killing, we must fail if 1730 * we're still under heavy pressure. 1731 */ 1732 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1733 order, zonelist, high_zoneidx, 1734 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1735 preferred_zone, migratetype); 1736 if (page) 1737 goto out; 1738 1739 if (!(gfp_mask & __GFP_NOFAIL)) { 1740 /* The OOM killer will not help higher order allocs */ 1741 if (order > PAGE_ALLOC_COSTLY_ORDER) 1742 goto out; 1743 /* 1744 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 1745 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 1746 * The caller should handle page allocation failure by itself if 1747 * it specifies __GFP_THISNODE. 1748 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 1749 */ 1750 if (gfp_mask & __GFP_THISNODE) 1751 goto out; 1752 } 1753 /* Exhausted what can be done so it's blamo time */ 1754 out_of_memory(zonelist, gfp_mask, order, nodemask); 1755 1756 out: 1757 clear_zonelist_oom(zonelist, gfp_mask); 1758 return page; 1759 } 1760 1761 /* The really slow allocator path where we enter direct reclaim */ 1762 static inline struct page * 1763 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 1764 struct zonelist *zonelist, enum zone_type high_zoneidx, 1765 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1766 int migratetype, unsigned long *did_some_progress) 1767 { 1768 struct page *page = NULL; 1769 struct reclaim_state reclaim_state; 1770 struct task_struct *p = current; 1771 1772 cond_resched(); 1773 1774 /* We now go into synchronous reclaim */ 1775 cpuset_memory_pressure_bump(); 1776 p->flags |= PF_MEMALLOC; 1777 lockdep_set_current_reclaim_state(gfp_mask); 1778 reclaim_state.reclaimed_slab = 0; 1779 p->reclaim_state = &reclaim_state; 1780 1781 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 1782 1783 p->reclaim_state = NULL; 1784 lockdep_clear_current_reclaim_state(); 1785 p->flags &= ~PF_MEMALLOC; 1786 1787 cond_resched(); 1788 1789 if (order != 0) 1790 drain_all_pages(); 1791 1792 if (likely(*did_some_progress)) 1793 page = get_page_from_freelist(gfp_mask, nodemask, order, 1794 zonelist, high_zoneidx, 1795 alloc_flags, preferred_zone, 1796 migratetype); 1797 return page; 1798 } 1799 1800 /* 1801 * This is called in the allocator slow-path if the allocation request is of 1802 * sufficient urgency to ignore watermarks and take other desperate measures 1803 */ 1804 static inline struct page * 1805 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 1806 struct zonelist *zonelist, enum zone_type high_zoneidx, 1807 nodemask_t *nodemask, struct zone *preferred_zone, 1808 int migratetype) 1809 { 1810 struct page *page; 1811 1812 do { 1813 page = get_page_from_freelist(gfp_mask, nodemask, order, 1814 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 1815 preferred_zone, migratetype); 1816 1817 if (!page && gfp_mask & __GFP_NOFAIL) 1818 congestion_wait(BLK_RW_ASYNC, HZ/50); 1819 } while (!page && (gfp_mask & __GFP_NOFAIL)); 1820 1821 return page; 1822 } 1823 1824 static inline 1825 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 1826 enum zone_type high_zoneidx) 1827 { 1828 struct zoneref *z; 1829 struct zone *zone; 1830 1831 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1832 wakeup_kswapd(zone, order); 1833 } 1834 1835 static inline int 1836 gfp_to_alloc_flags(gfp_t gfp_mask) 1837 { 1838 struct task_struct *p = current; 1839 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 1840 const gfp_t wait = gfp_mask & __GFP_WAIT; 1841 1842 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 1843 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH); 1844 1845 /* 1846 * The caller may dip into page reserves a bit more if the caller 1847 * cannot run direct reclaim, or if the caller has realtime scheduling 1848 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1849 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1850 */ 1851 alloc_flags |= (gfp_mask & __GFP_HIGH); 1852 1853 if (!wait) { 1854 alloc_flags |= ALLOC_HARDER; 1855 /* 1856 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1857 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1858 */ 1859 alloc_flags &= ~ALLOC_CPUSET; 1860 } else if (unlikely(rt_task(p)) && !in_interrupt()) 1861 alloc_flags |= ALLOC_HARDER; 1862 1863 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 1864 if (!in_interrupt() && 1865 ((p->flags & PF_MEMALLOC) || 1866 unlikely(test_thread_flag(TIF_MEMDIE)))) 1867 alloc_flags |= ALLOC_NO_WATERMARKS; 1868 } 1869 1870 return alloc_flags; 1871 } 1872 1873 static inline struct page * 1874 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 1875 struct zonelist *zonelist, enum zone_type high_zoneidx, 1876 nodemask_t *nodemask, struct zone *preferred_zone, 1877 int migratetype) 1878 { 1879 const gfp_t wait = gfp_mask & __GFP_WAIT; 1880 struct page *page = NULL; 1881 int alloc_flags; 1882 unsigned long pages_reclaimed = 0; 1883 unsigned long did_some_progress; 1884 struct task_struct *p = current; 1885 1886 /* 1887 * In the slowpath, we sanity check order to avoid ever trying to 1888 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 1889 * be using allocators in order of preference for an area that is 1890 * too large. 1891 */ 1892 if (order >= MAX_ORDER) { 1893 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 1894 return NULL; 1895 } 1896 1897 /* 1898 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1899 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1900 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1901 * using a larger set of nodes after it has established that the 1902 * allowed per node queues are empty and that nodes are 1903 * over allocated. 1904 */ 1905 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1906 goto nopage; 1907 1908 restart: 1909 wake_all_kswapd(order, zonelist, high_zoneidx); 1910 1911 /* 1912 * OK, we're below the kswapd watermark and have kicked background 1913 * reclaim. Now things get more complex, so set up alloc_flags according 1914 * to how we want to proceed. 1915 */ 1916 alloc_flags = gfp_to_alloc_flags(gfp_mask); 1917 1918 /* This is the last chance, in general, before the goto nopage. */ 1919 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 1920 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 1921 preferred_zone, migratetype); 1922 if (page) 1923 goto got_pg; 1924 1925 rebalance: 1926 /* Allocate without watermarks if the context allows */ 1927 if (alloc_flags & ALLOC_NO_WATERMARKS) { 1928 page = __alloc_pages_high_priority(gfp_mask, order, 1929 zonelist, high_zoneidx, nodemask, 1930 preferred_zone, migratetype); 1931 if (page) 1932 goto got_pg; 1933 } 1934 1935 /* Atomic allocations - we can't balance anything */ 1936 if (!wait) 1937 goto nopage; 1938 1939 /* Avoid recursion of direct reclaim */ 1940 if (p->flags & PF_MEMALLOC) 1941 goto nopage; 1942 1943 /* Avoid allocations with no watermarks from looping endlessly */ 1944 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 1945 goto nopage; 1946 1947 /* Try direct reclaim and then allocating */ 1948 page = __alloc_pages_direct_reclaim(gfp_mask, order, 1949 zonelist, high_zoneidx, 1950 nodemask, 1951 alloc_flags, preferred_zone, 1952 migratetype, &did_some_progress); 1953 if (page) 1954 goto got_pg; 1955 1956 /* 1957 * If we failed to make any progress reclaiming, then we are 1958 * running out of options and have to consider going OOM 1959 */ 1960 if (!did_some_progress) { 1961 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1962 if (oom_killer_disabled) 1963 goto nopage; 1964 page = __alloc_pages_may_oom(gfp_mask, order, 1965 zonelist, high_zoneidx, 1966 nodemask, preferred_zone, 1967 migratetype); 1968 if (page) 1969 goto got_pg; 1970 1971 /* 1972 * The OOM killer does not trigger for high-order 1973 * ~__GFP_NOFAIL allocations so if no progress is being 1974 * made, there are no other options and retrying is 1975 * unlikely to help. 1976 */ 1977 if (order > PAGE_ALLOC_COSTLY_ORDER && 1978 !(gfp_mask & __GFP_NOFAIL)) 1979 goto nopage; 1980 1981 goto restart; 1982 } 1983 } 1984 1985 /* Check if we should retry the allocation */ 1986 pages_reclaimed += did_some_progress; 1987 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { 1988 /* Wait for some write requests to complete then retry */ 1989 congestion_wait(BLK_RW_ASYNC, HZ/50); 1990 goto rebalance; 1991 } 1992 1993 nopage: 1994 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1995 printk(KERN_WARNING "%s: page allocation failure." 1996 " order:%d, mode:0x%x\n", 1997 p->comm, order, gfp_mask); 1998 dump_stack(); 1999 show_mem(); 2000 } 2001 return page; 2002 got_pg: 2003 if (kmemcheck_enabled) 2004 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2005 return page; 2006 2007 } 2008 2009 /* 2010 * This is the 'heart' of the zoned buddy allocator. 2011 */ 2012 struct page * 2013 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2014 struct zonelist *zonelist, nodemask_t *nodemask) 2015 { 2016 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2017 struct zone *preferred_zone; 2018 struct page *page; 2019 int migratetype = allocflags_to_migratetype(gfp_mask); 2020 2021 gfp_mask &= gfp_allowed_mask; 2022 2023 lockdep_trace_alloc(gfp_mask); 2024 2025 might_sleep_if(gfp_mask & __GFP_WAIT); 2026 2027 if (should_fail_alloc_page(gfp_mask, order)) 2028 return NULL; 2029 2030 /* 2031 * Check the zones suitable for the gfp_mask contain at least one 2032 * valid zone. It's possible to have an empty zonelist as a result 2033 * of GFP_THISNODE and a memoryless node 2034 */ 2035 if (unlikely(!zonelist->_zonerefs->zone)) 2036 return NULL; 2037 2038 get_mems_allowed(); 2039 /* The preferred zone is used for statistics later */ 2040 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone); 2041 if (!preferred_zone) { 2042 put_mems_allowed(); 2043 return NULL; 2044 } 2045 2046 /* First allocation attempt */ 2047 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2048 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 2049 preferred_zone, migratetype); 2050 if (unlikely(!page)) 2051 page = __alloc_pages_slowpath(gfp_mask, order, 2052 zonelist, high_zoneidx, nodemask, 2053 preferred_zone, migratetype); 2054 put_mems_allowed(); 2055 2056 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2057 return page; 2058 } 2059 EXPORT_SYMBOL(__alloc_pages_nodemask); 2060 2061 /* 2062 * Common helper functions. 2063 */ 2064 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2065 { 2066 struct page *page; 2067 2068 /* 2069 * __get_free_pages() returns a 32-bit address, which cannot represent 2070 * a highmem page 2071 */ 2072 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2073 2074 page = alloc_pages(gfp_mask, order); 2075 if (!page) 2076 return 0; 2077 return (unsigned long) page_address(page); 2078 } 2079 EXPORT_SYMBOL(__get_free_pages); 2080 2081 unsigned long get_zeroed_page(gfp_t gfp_mask) 2082 { 2083 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2084 } 2085 EXPORT_SYMBOL(get_zeroed_page); 2086 2087 void __pagevec_free(struct pagevec *pvec) 2088 { 2089 int i = pagevec_count(pvec); 2090 2091 while (--i >= 0) { 2092 trace_mm_pagevec_free(pvec->pages[i], pvec->cold); 2093 free_hot_cold_page(pvec->pages[i], pvec->cold); 2094 } 2095 } 2096 2097 void __free_pages(struct page *page, unsigned int order) 2098 { 2099 if (put_page_testzero(page)) { 2100 if (order == 0) 2101 free_hot_cold_page(page, 0); 2102 else 2103 __free_pages_ok(page, order); 2104 } 2105 } 2106 2107 EXPORT_SYMBOL(__free_pages); 2108 2109 void free_pages(unsigned long addr, unsigned int order) 2110 { 2111 if (addr != 0) { 2112 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2113 __free_pages(virt_to_page((void *)addr), order); 2114 } 2115 } 2116 2117 EXPORT_SYMBOL(free_pages); 2118 2119 /** 2120 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2121 * @size: the number of bytes to allocate 2122 * @gfp_mask: GFP flags for the allocation 2123 * 2124 * This function is similar to alloc_pages(), except that it allocates the 2125 * minimum number of pages to satisfy the request. alloc_pages() can only 2126 * allocate memory in power-of-two pages. 2127 * 2128 * This function is also limited by MAX_ORDER. 2129 * 2130 * Memory allocated by this function must be released by free_pages_exact(). 2131 */ 2132 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2133 { 2134 unsigned int order = get_order(size); 2135 unsigned long addr; 2136 2137 addr = __get_free_pages(gfp_mask, order); 2138 if (addr) { 2139 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2140 unsigned long used = addr + PAGE_ALIGN(size); 2141 2142 split_page(virt_to_page((void *)addr), order); 2143 while (used < alloc_end) { 2144 free_page(used); 2145 used += PAGE_SIZE; 2146 } 2147 } 2148 2149 return (void *)addr; 2150 } 2151 EXPORT_SYMBOL(alloc_pages_exact); 2152 2153 /** 2154 * free_pages_exact - release memory allocated via alloc_pages_exact() 2155 * @virt: the value returned by alloc_pages_exact. 2156 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2157 * 2158 * Release the memory allocated by a previous call to alloc_pages_exact. 2159 */ 2160 void free_pages_exact(void *virt, size_t size) 2161 { 2162 unsigned long addr = (unsigned long)virt; 2163 unsigned long end = addr + PAGE_ALIGN(size); 2164 2165 while (addr < end) { 2166 free_page(addr); 2167 addr += PAGE_SIZE; 2168 } 2169 } 2170 EXPORT_SYMBOL(free_pages_exact); 2171 2172 static unsigned int nr_free_zone_pages(int offset) 2173 { 2174 struct zoneref *z; 2175 struct zone *zone; 2176 2177 /* Just pick one node, since fallback list is circular */ 2178 unsigned int sum = 0; 2179 2180 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2181 2182 for_each_zone_zonelist(zone, z, zonelist, offset) { 2183 unsigned long size = zone->present_pages; 2184 unsigned long high = high_wmark_pages(zone); 2185 if (size > high) 2186 sum += size - high; 2187 } 2188 2189 return sum; 2190 } 2191 2192 /* 2193 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2194 */ 2195 unsigned int nr_free_buffer_pages(void) 2196 { 2197 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2198 } 2199 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2200 2201 /* 2202 * Amount of free RAM allocatable within all zones 2203 */ 2204 unsigned int nr_free_pagecache_pages(void) 2205 { 2206 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2207 } 2208 2209 static inline void show_node(struct zone *zone) 2210 { 2211 if (NUMA_BUILD) 2212 printk("Node %d ", zone_to_nid(zone)); 2213 } 2214 2215 void si_meminfo(struct sysinfo *val) 2216 { 2217 val->totalram = totalram_pages; 2218 val->sharedram = 0; 2219 val->freeram = global_page_state(NR_FREE_PAGES); 2220 val->bufferram = nr_blockdev_pages(); 2221 val->totalhigh = totalhigh_pages; 2222 val->freehigh = nr_free_highpages(); 2223 val->mem_unit = PAGE_SIZE; 2224 } 2225 2226 EXPORT_SYMBOL(si_meminfo); 2227 2228 #ifdef CONFIG_NUMA 2229 void si_meminfo_node(struct sysinfo *val, int nid) 2230 { 2231 pg_data_t *pgdat = NODE_DATA(nid); 2232 2233 val->totalram = pgdat->node_present_pages; 2234 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2235 #ifdef CONFIG_HIGHMEM 2236 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2237 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2238 NR_FREE_PAGES); 2239 #else 2240 val->totalhigh = 0; 2241 val->freehigh = 0; 2242 #endif 2243 val->mem_unit = PAGE_SIZE; 2244 } 2245 #endif 2246 2247 #define K(x) ((x) << (PAGE_SHIFT-10)) 2248 2249 /* 2250 * Show free area list (used inside shift_scroll-lock stuff) 2251 * We also calculate the percentage fragmentation. We do this by counting the 2252 * memory on each free list with the exception of the first item on the list. 2253 */ 2254 void show_free_areas(void) 2255 { 2256 int cpu; 2257 struct zone *zone; 2258 2259 for_each_populated_zone(zone) { 2260 show_node(zone); 2261 printk("%s per-cpu:\n", zone->name); 2262 2263 for_each_online_cpu(cpu) { 2264 struct per_cpu_pageset *pageset; 2265 2266 pageset = per_cpu_ptr(zone->pageset, cpu); 2267 2268 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2269 cpu, pageset->pcp.high, 2270 pageset->pcp.batch, pageset->pcp.count); 2271 } 2272 } 2273 2274 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2275 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2276 " unevictable:%lu" 2277 " dirty:%lu writeback:%lu unstable:%lu\n" 2278 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2279 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2280 global_page_state(NR_ACTIVE_ANON), 2281 global_page_state(NR_INACTIVE_ANON), 2282 global_page_state(NR_ISOLATED_ANON), 2283 global_page_state(NR_ACTIVE_FILE), 2284 global_page_state(NR_INACTIVE_FILE), 2285 global_page_state(NR_ISOLATED_FILE), 2286 global_page_state(NR_UNEVICTABLE), 2287 global_page_state(NR_FILE_DIRTY), 2288 global_page_state(NR_WRITEBACK), 2289 global_page_state(NR_UNSTABLE_NFS), 2290 global_page_state(NR_FREE_PAGES), 2291 global_page_state(NR_SLAB_RECLAIMABLE), 2292 global_page_state(NR_SLAB_UNRECLAIMABLE), 2293 global_page_state(NR_FILE_MAPPED), 2294 global_page_state(NR_SHMEM), 2295 global_page_state(NR_PAGETABLE), 2296 global_page_state(NR_BOUNCE)); 2297 2298 for_each_populated_zone(zone) { 2299 int i; 2300 2301 show_node(zone); 2302 printk("%s" 2303 " free:%lukB" 2304 " min:%lukB" 2305 " low:%lukB" 2306 " high:%lukB" 2307 " active_anon:%lukB" 2308 " inactive_anon:%lukB" 2309 " active_file:%lukB" 2310 " inactive_file:%lukB" 2311 " unevictable:%lukB" 2312 " isolated(anon):%lukB" 2313 " isolated(file):%lukB" 2314 " present:%lukB" 2315 " mlocked:%lukB" 2316 " dirty:%lukB" 2317 " writeback:%lukB" 2318 " mapped:%lukB" 2319 " shmem:%lukB" 2320 " slab_reclaimable:%lukB" 2321 " slab_unreclaimable:%lukB" 2322 " kernel_stack:%lukB" 2323 " pagetables:%lukB" 2324 " unstable:%lukB" 2325 " bounce:%lukB" 2326 " writeback_tmp:%lukB" 2327 " pages_scanned:%lu" 2328 " all_unreclaimable? %s" 2329 "\n", 2330 zone->name, 2331 K(zone_page_state(zone, NR_FREE_PAGES)), 2332 K(min_wmark_pages(zone)), 2333 K(low_wmark_pages(zone)), 2334 K(high_wmark_pages(zone)), 2335 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2336 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2337 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2338 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2339 K(zone_page_state(zone, NR_UNEVICTABLE)), 2340 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2341 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2342 K(zone->present_pages), 2343 K(zone_page_state(zone, NR_MLOCK)), 2344 K(zone_page_state(zone, NR_FILE_DIRTY)), 2345 K(zone_page_state(zone, NR_WRITEBACK)), 2346 K(zone_page_state(zone, NR_FILE_MAPPED)), 2347 K(zone_page_state(zone, NR_SHMEM)), 2348 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2349 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2350 zone_page_state(zone, NR_KERNEL_STACK) * 2351 THREAD_SIZE / 1024, 2352 K(zone_page_state(zone, NR_PAGETABLE)), 2353 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2354 K(zone_page_state(zone, NR_BOUNCE)), 2355 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2356 zone->pages_scanned, 2357 (zone->all_unreclaimable ? "yes" : "no") 2358 ); 2359 printk("lowmem_reserve[]:"); 2360 for (i = 0; i < MAX_NR_ZONES; i++) 2361 printk(" %lu", zone->lowmem_reserve[i]); 2362 printk("\n"); 2363 } 2364 2365 for_each_populated_zone(zone) { 2366 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2367 2368 show_node(zone); 2369 printk("%s: ", zone->name); 2370 2371 spin_lock_irqsave(&zone->lock, flags); 2372 for (order = 0; order < MAX_ORDER; order++) { 2373 nr[order] = zone->free_area[order].nr_free; 2374 total += nr[order] << order; 2375 } 2376 spin_unlock_irqrestore(&zone->lock, flags); 2377 for (order = 0; order < MAX_ORDER; order++) 2378 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2379 printk("= %lukB\n", K(total)); 2380 } 2381 2382 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2383 2384 show_swap_cache_info(); 2385 } 2386 2387 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2388 { 2389 zoneref->zone = zone; 2390 zoneref->zone_idx = zone_idx(zone); 2391 } 2392 2393 /* 2394 * Builds allocation fallback zone lists. 2395 * 2396 * Add all populated zones of a node to the zonelist. 2397 */ 2398 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2399 int nr_zones, enum zone_type zone_type) 2400 { 2401 struct zone *zone; 2402 2403 BUG_ON(zone_type >= MAX_NR_ZONES); 2404 zone_type++; 2405 2406 do { 2407 zone_type--; 2408 zone = pgdat->node_zones + zone_type; 2409 if (populated_zone(zone)) { 2410 zoneref_set_zone(zone, 2411 &zonelist->_zonerefs[nr_zones++]); 2412 check_highest_zone(zone_type); 2413 } 2414 2415 } while (zone_type); 2416 return nr_zones; 2417 } 2418 2419 2420 /* 2421 * zonelist_order: 2422 * 0 = automatic detection of better ordering. 2423 * 1 = order by ([node] distance, -zonetype) 2424 * 2 = order by (-zonetype, [node] distance) 2425 * 2426 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2427 * the same zonelist. So only NUMA can configure this param. 2428 */ 2429 #define ZONELIST_ORDER_DEFAULT 0 2430 #define ZONELIST_ORDER_NODE 1 2431 #define ZONELIST_ORDER_ZONE 2 2432 2433 /* zonelist order in the kernel. 2434 * set_zonelist_order() will set this to NODE or ZONE. 2435 */ 2436 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2437 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2438 2439 2440 #ifdef CONFIG_NUMA 2441 /* The value user specified ....changed by config */ 2442 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2443 /* string for sysctl */ 2444 #define NUMA_ZONELIST_ORDER_LEN 16 2445 char numa_zonelist_order[16] = "default"; 2446 2447 /* 2448 * interface for configure zonelist ordering. 2449 * command line option "numa_zonelist_order" 2450 * = "[dD]efault - default, automatic configuration. 2451 * = "[nN]ode - order by node locality, then by zone within node 2452 * = "[zZ]one - order by zone, then by locality within zone 2453 */ 2454 2455 static int __parse_numa_zonelist_order(char *s) 2456 { 2457 if (*s == 'd' || *s == 'D') { 2458 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2459 } else if (*s == 'n' || *s == 'N') { 2460 user_zonelist_order = ZONELIST_ORDER_NODE; 2461 } else if (*s == 'z' || *s == 'Z') { 2462 user_zonelist_order = ZONELIST_ORDER_ZONE; 2463 } else { 2464 printk(KERN_WARNING 2465 "Ignoring invalid numa_zonelist_order value: " 2466 "%s\n", s); 2467 return -EINVAL; 2468 } 2469 return 0; 2470 } 2471 2472 static __init int setup_numa_zonelist_order(char *s) 2473 { 2474 if (s) 2475 return __parse_numa_zonelist_order(s); 2476 return 0; 2477 } 2478 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2479 2480 /* 2481 * sysctl handler for numa_zonelist_order 2482 */ 2483 int numa_zonelist_order_handler(ctl_table *table, int write, 2484 void __user *buffer, size_t *length, 2485 loff_t *ppos) 2486 { 2487 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2488 int ret; 2489 static DEFINE_MUTEX(zl_order_mutex); 2490 2491 mutex_lock(&zl_order_mutex); 2492 if (write) 2493 strcpy(saved_string, (char*)table->data); 2494 ret = proc_dostring(table, write, buffer, length, ppos); 2495 if (ret) 2496 goto out; 2497 if (write) { 2498 int oldval = user_zonelist_order; 2499 if (__parse_numa_zonelist_order((char*)table->data)) { 2500 /* 2501 * bogus value. restore saved string 2502 */ 2503 strncpy((char*)table->data, saved_string, 2504 NUMA_ZONELIST_ORDER_LEN); 2505 user_zonelist_order = oldval; 2506 } else if (oldval != user_zonelist_order) 2507 build_all_zonelists(); 2508 } 2509 out: 2510 mutex_unlock(&zl_order_mutex); 2511 return ret; 2512 } 2513 2514 2515 #define MAX_NODE_LOAD (nr_online_nodes) 2516 static int node_load[MAX_NUMNODES]; 2517 2518 /** 2519 * find_next_best_node - find the next node that should appear in a given node's fallback list 2520 * @node: node whose fallback list we're appending 2521 * @used_node_mask: nodemask_t of already used nodes 2522 * 2523 * We use a number of factors to determine which is the next node that should 2524 * appear on a given node's fallback list. The node should not have appeared 2525 * already in @node's fallback list, and it should be the next closest node 2526 * according to the distance array (which contains arbitrary distance values 2527 * from each node to each node in the system), and should also prefer nodes 2528 * with no CPUs, since presumably they'll have very little allocation pressure 2529 * on them otherwise. 2530 * It returns -1 if no node is found. 2531 */ 2532 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2533 { 2534 int n, val; 2535 int min_val = INT_MAX; 2536 int best_node = -1; 2537 const struct cpumask *tmp = cpumask_of_node(0); 2538 2539 /* Use the local node if we haven't already */ 2540 if (!node_isset(node, *used_node_mask)) { 2541 node_set(node, *used_node_mask); 2542 return node; 2543 } 2544 2545 for_each_node_state(n, N_HIGH_MEMORY) { 2546 2547 /* Don't want a node to appear more than once */ 2548 if (node_isset(n, *used_node_mask)) 2549 continue; 2550 2551 /* Use the distance array to find the distance */ 2552 val = node_distance(node, n); 2553 2554 /* Penalize nodes under us ("prefer the next node") */ 2555 val += (n < node); 2556 2557 /* Give preference to headless and unused nodes */ 2558 tmp = cpumask_of_node(n); 2559 if (!cpumask_empty(tmp)) 2560 val += PENALTY_FOR_NODE_WITH_CPUS; 2561 2562 /* Slight preference for less loaded node */ 2563 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2564 val += node_load[n]; 2565 2566 if (val < min_val) { 2567 min_val = val; 2568 best_node = n; 2569 } 2570 } 2571 2572 if (best_node >= 0) 2573 node_set(best_node, *used_node_mask); 2574 2575 return best_node; 2576 } 2577 2578 2579 /* 2580 * Build zonelists ordered by node and zones within node. 2581 * This results in maximum locality--normal zone overflows into local 2582 * DMA zone, if any--but risks exhausting DMA zone. 2583 */ 2584 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2585 { 2586 int j; 2587 struct zonelist *zonelist; 2588 2589 zonelist = &pgdat->node_zonelists[0]; 2590 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2591 ; 2592 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2593 MAX_NR_ZONES - 1); 2594 zonelist->_zonerefs[j].zone = NULL; 2595 zonelist->_zonerefs[j].zone_idx = 0; 2596 } 2597 2598 /* 2599 * Build gfp_thisnode zonelists 2600 */ 2601 static void build_thisnode_zonelists(pg_data_t *pgdat) 2602 { 2603 int j; 2604 struct zonelist *zonelist; 2605 2606 zonelist = &pgdat->node_zonelists[1]; 2607 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2608 zonelist->_zonerefs[j].zone = NULL; 2609 zonelist->_zonerefs[j].zone_idx = 0; 2610 } 2611 2612 /* 2613 * Build zonelists ordered by zone and nodes within zones. 2614 * This results in conserving DMA zone[s] until all Normal memory is 2615 * exhausted, but results in overflowing to remote node while memory 2616 * may still exist in local DMA zone. 2617 */ 2618 static int node_order[MAX_NUMNODES]; 2619 2620 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2621 { 2622 int pos, j, node; 2623 int zone_type; /* needs to be signed */ 2624 struct zone *z; 2625 struct zonelist *zonelist; 2626 2627 zonelist = &pgdat->node_zonelists[0]; 2628 pos = 0; 2629 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2630 for (j = 0; j < nr_nodes; j++) { 2631 node = node_order[j]; 2632 z = &NODE_DATA(node)->node_zones[zone_type]; 2633 if (populated_zone(z)) { 2634 zoneref_set_zone(z, 2635 &zonelist->_zonerefs[pos++]); 2636 check_highest_zone(zone_type); 2637 } 2638 } 2639 } 2640 zonelist->_zonerefs[pos].zone = NULL; 2641 zonelist->_zonerefs[pos].zone_idx = 0; 2642 } 2643 2644 static int default_zonelist_order(void) 2645 { 2646 int nid, zone_type; 2647 unsigned long low_kmem_size,total_size; 2648 struct zone *z; 2649 int average_size; 2650 /* 2651 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 2652 * If they are really small and used heavily, the system can fall 2653 * into OOM very easily. 2654 * This function detect ZONE_DMA/DMA32 size and configures zone order. 2655 */ 2656 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2657 low_kmem_size = 0; 2658 total_size = 0; 2659 for_each_online_node(nid) { 2660 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2661 z = &NODE_DATA(nid)->node_zones[zone_type]; 2662 if (populated_zone(z)) { 2663 if (zone_type < ZONE_NORMAL) 2664 low_kmem_size += z->present_pages; 2665 total_size += z->present_pages; 2666 } else if (zone_type == ZONE_NORMAL) { 2667 /* 2668 * If any node has only lowmem, then node order 2669 * is preferred to allow kernel allocations 2670 * locally; otherwise, they can easily infringe 2671 * on other nodes when there is an abundance of 2672 * lowmem available to allocate from. 2673 */ 2674 return ZONELIST_ORDER_NODE; 2675 } 2676 } 2677 } 2678 if (!low_kmem_size || /* there are no DMA area. */ 2679 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2680 return ZONELIST_ORDER_NODE; 2681 /* 2682 * look into each node's config. 2683 * If there is a node whose DMA/DMA32 memory is very big area on 2684 * local memory, NODE_ORDER may be suitable. 2685 */ 2686 average_size = total_size / 2687 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2688 for_each_online_node(nid) { 2689 low_kmem_size = 0; 2690 total_size = 0; 2691 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2692 z = &NODE_DATA(nid)->node_zones[zone_type]; 2693 if (populated_zone(z)) { 2694 if (zone_type < ZONE_NORMAL) 2695 low_kmem_size += z->present_pages; 2696 total_size += z->present_pages; 2697 } 2698 } 2699 if (low_kmem_size && 2700 total_size > average_size && /* ignore small node */ 2701 low_kmem_size > total_size * 70/100) 2702 return ZONELIST_ORDER_NODE; 2703 } 2704 return ZONELIST_ORDER_ZONE; 2705 } 2706 2707 static void set_zonelist_order(void) 2708 { 2709 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2710 current_zonelist_order = default_zonelist_order(); 2711 else 2712 current_zonelist_order = user_zonelist_order; 2713 } 2714 2715 static void build_zonelists(pg_data_t *pgdat) 2716 { 2717 int j, node, load; 2718 enum zone_type i; 2719 nodemask_t used_mask; 2720 int local_node, prev_node; 2721 struct zonelist *zonelist; 2722 int order = current_zonelist_order; 2723 2724 /* initialize zonelists */ 2725 for (i = 0; i < MAX_ZONELISTS; i++) { 2726 zonelist = pgdat->node_zonelists + i; 2727 zonelist->_zonerefs[0].zone = NULL; 2728 zonelist->_zonerefs[0].zone_idx = 0; 2729 } 2730 2731 /* NUMA-aware ordering of nodes */ 2732 local_node = pgdat->node_id; 2733 load = nr_online_nodes; 2734 prev_node = local_node; 2735 nodes_clear(used_mask); 2736 2737 memset(node_order, 0, sizeof(node_order)); 2738 j = 0; 2739 2740 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2741 int distance = node_distance(local_node, node); 2742 2743 /* 2744 * If another node is sufficiently far away then it is better 2745 * to reclaim pages in a zone before going off node. 2746 */ 2747 if (distance > RECLAIM_DISTANCE) 2748 zone_reclaim_mode = 1; 2749 2750 /* 2751 * We don't want to pressure a particular node. 2752 * So adding penalty to the first node in same 2753 * distance group to make it round-robin. 2754 */ 2755 if (distance != node_distance(local_node, prev_node)) 2756 node_load[node] = load; 2757 2758 prev_node = node; 2759 load--; 2760 if (order == ZONELIST_ORDER_NODE) 2761 build_zonelists_in_node_order(pgdat, node); 2762 else 2763 node_order[j++] = node; /* remember order */ 2764 } 2765 2766 if (order == ZONELIST_ORDER_ZONE) { 2767 /* calculate node order -- i.e., DMA last! */ 2768 build_zonelists_in_zone_order(pgdat, j); 2769 } 2770 2771 build_thisnode_zonelists(pgdat); 2772 } 2773 2774 /* Construct the zonelist performance cache - see further mmzone.h */ 2775 static void build_zonelist_cache(pg_data_t *pgdat) 2776 { 2777 struct zonelist *zonelist; 2778 struct zonelist_cache *zlc; 2779 struct zoneref *z; 2780 2781 zonelist = &pgdat->node_zonelists[0]; 2782 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2783 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2784 for (z = zonelist->_zonerefs; z->zone; z++) 2785 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2786 } 2787 2788 2789 #else /* CONFIG_NUMA */ 2790 2791 static void set_zonelist_order(void) 2792 { 2793 current_zonelist_order = ZONELIST_ORDER_ZONE; 2794 } 2795 2796 static void build_zonelists(pg_data_t *pgdat) 2797 { 2798 int node, local_node; 2799 enum zone_type j; 2800 struct zonelist *zonelist; 2801 2802 local_node = pgdat->node_id; 2803 2804 zonelist = &pgdat->node_zonelists[0]; 2805 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2806 2807 /* 2808 * Now we build the zonelist so that it contains the zones 2809 * of all the other nodes. 2810 * We don't want to pressure a particular node, so when 2811 * building the zones for node N, we make sure that the 2812 * zones coming right after the local ones are those from 2813 * node N+1 (modulo N) 2814 */ 2815 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2816 if (!node_online(node)) 2817 continue; 2818 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2819 MAX_NR_ZONES - 1); 2820 } 2821 for (node = 0; node < local_node; node++) { 2822 if (!node_online(node)) 2823 continue; 2824 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2825 MAX_NR_ZONES - 1); 2826 } 2827 2828 zonelist->_zonerefs[j].zone = NULL; 2829 zonelist->_zonerefs[j].zone_idx = 0; 2830 } 2831 2832 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2833 static void build_zonelist_cache(pg_data_t *pgdat) 2834 { 2835 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2836 } 2837 2838 #endif /* CONFIG_NUMA */ 2839 2840 /* 2841 * Boot pageset table. One per cpu which is going to be used for all 2842 * zones and all nodes. The parameters will be set in such a way 2843 * that an item put on a list will immediately be handed over to 2844 * the buddy list. This is safe since pageset manipulation is done 2845 * with interrupts disabled. 2846 * 2847 * The boot_pagesets must be kept even after bootup is complete for 2848 * unused processors and/or zones. They do play a role for bootstrapping 2849 * hotplugged processors. 2850 * 2851 * zoneinfo_show() and maybe other functions do 2852 * not check if the processor is online before following the pageset pointer. 2853 * Other parts of the kernel may not check if the zone is available. 2854 */ 2855 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 2856 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 2857 2858 /* return values int ....just for stop_machine() */ 2859 static int __build_all_zonelists(void *dummy) 2860 { 2861 int nid; 2862 int cpu; 2863 2864 #ifdef CONFIG_NUMA 2865 memset(node_load, 0, sizeof(node_load)); 2866 #endif 2867 for_each_online_node(nid) { 2868 pg_data_t *pgdat = NODE_DATA(nid); 2869 2870 build_zonelists(pgdat); 2871 build_zonelist_cache(pgdat); 2872 } 2873 2874 /* 2875 * Initialize the boot_pagesets that are going to be used 2876 * for bootstrapping processors. The real pagesets for 2877 * each zone will be allocated later when the per cpu 2878 * allocator is available. 2879 * 2880 * boot_pagesets are used also for bootstrapping offline 2881 * cpus if the system is already booted because the pagesets 2882 * are needed to initialize allocators on a specific cpu too. 2883 * F.e. the percpu allocator needs the page allocator which 2884 * needs the percpu allocator in order to allocate its pagesets 2885 * (a chicken-egg dilemma). 2886 */ 2887 for_each_possible_cpu(cpu) 2888 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 2889 2890 return 0; 2891 } 2892 2893 void build_all_zonelists(void) 2894 { 2895 set_zonelist_order(); 2896 2897 if (system_state == SYSTEM_BOOTING) { 2898 __build_all_zonelists(NULL); 2899 mminit_verify_zonelist(); 2900 cpuset_init_current_mems_allowed(); 2901 } else { 2902 /* we have to stop all cpus to guarantee there is no user 2903 of zonelist */ 2904 stop_machine(__build_all_zonelists, NULL, NULL); 2905 /* cpuset refresh routine should be here */ 2906 } 2907 vm_total_pages = nr_free_pagecache_pages(); 2908 /* 2909 * Disable grouping by mobility if the number of pages in the 2910 * system is too low to allow the mechanism to work. It would be 2911 * more accurate, but expensive to check per-zone. This check is 2912 * made on memory-hotadd so a system can start with mobility 2913 * disabled and enable it later 2914 */ 2915 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 2916 page_group_by_mobility_disabled = 1; 2917 else 2918 page_group_by_mobility_disabled = 0; 2919 2920 printk("Built %i zonelists in %s order, mobility grouping %s. " 2921 "Total pages: %ld\n", 2922 nr_online_nodes, 2923 zonelist_order_name[current_zonelist_order], 2924 page_group_by_mobility_disabled ? "off" : "on", 2925 vm_total_pages); 2926 #ifdef CONFIG_NUMA 2927 printk("Policy zone: %s\n", zone_names[policy_zone]); 2928 #endif 2929 } 2930 2931 /* 2932 * Helper functions to size the waitqueue hash table. 2933 * Essentially these want to choose hash table sizes sufficiently 2934 * large so that collisions trying to wait on pages are rare. 2935 * But in fact, the number of active page waitqueues on typical 2936 * systems is ridiculously low, less than 200. So this is even 2937 * conservative, even though it seems large. 2938 * 2939 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 2940 * waitqueues, i.e. the size of the waitq table given the number of pages. 2941 */ 2942 #define PAGES_PER_WAITQUEUE 256 2943 2944 #ifndef CONFIG_MEMORY_HOTPLUG 2945 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2946 { 2947 unsigned long size = 1; 2948 2949 pages /= PAGES_PER_WAITQUEUE; 2950 2951 while (size < pages) 2952 size <<= 1; 2953 2954 /* 2955 * Once we have dozens or even hundreds of threads sleeping 2956 * on IO we've got bigger problems than wait queue collision. 2957 * Limit the size of the wait table to a reasonable size. 2958 */ 2959 size = min(size, 4096UL); 2960 2961 return max(size, 4UL); 2962 } 2963 #else 2964 /* 2965 * A zone's size might be changed by hot-add, so it is not possible to determine 2966 * a suitable size for its wait_table. So we use the maximum size now. 2967 * 2968 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 2969 * 2970 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 2971 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 2972 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 2973 * 2974 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 2975 * or more by the traditional way. (See above). It equals: 2976 * 2977 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 2978 * ia64(16K page size) : = ( 8G + 4M)byte. 2979 * powerpc (64K page size) : = (32G +16M)byte. 2980 */ 2981 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2982 { 2983 return 4096UL; 2984 } 2985 #endif 2986 2987 /* 2988 * This is an integer logarithm so that shifts can be used later 2989 * to extract the more random high bits from the multiplicative 2990 * hash function before the remainder is taken. 2991 */ 2992 static inline unsigned long wait_table_bits(unsigned long size) 2993 { 2994 return ffz(~size); 2995 } 2996 2997 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 2998 2999 /* 3000 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3001 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3002 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3003 * higher will lead to a bigger reserve which will get freed as contiguous 3004 * blocks as reclaim kicks in 3005 */ 3006 static void setup_zone_migrate_reserve(struct zone *zone) 3007 { 3008 unsigned long start_pfn, pfn, end_pfn; 3009 struct page *page; 3010 unsigned long block_migratetype; 3011 int reserve; 3012 3013 /* Get the start pfn, end pfn and the number of blocks to reserve */ 3014 start_pfn = zone->zone_start_pfn; 3015 end_pfn = start_pfn + zone->spanned_pages; 3016 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3017 pageblock_order; 3018 3019 /* 3020 * Reserve blocks are generally in place to help high-order atomic 3021 * allocations that are short-lived. A min_free_kbytes value that 3022 * would result in more than 2 reserve blocks for atomic allocations 3023 * is assumed to be in place to help anti-fragmentation for the 3024 * future allocation of hugepages at runtime. 3025 */ 3026 reserve = min(2, reserve); 3027 3028 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3029 if (!pfn_valid(pfn)) 3030 continue; 3031 page = pfn_to_page(pfn); 3032 3033 /* Watch out for overlapping nodes */ 3034 if (page_to_nid(page) != zone_to_nid(zone)) 3035 continue; 3036 3037 /* Blocks with reserved pages will never free, skip them. */ 3038 if (PageReserved(page)) 3039 continue; 3040 3041 block_migratetype = get_pageblock_migratetype(page); 3042 3043 /* If this block is reserved, account for it */ 3044 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 3045 reserve--; 3046 continue; 3047 } 3048 3049 /* Suitable for reserving if this block is movable */ 3050 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 3051 set_pageblock_migratetype(page, MIGRATE_RESERVE); 3052 move_freepages_block(zone, page, MIGRATE_RESERVE); 3053 reserve--; 3054 continue; 3055 } 3056 3057 /* 3058 * If the reserve is met and this is a previous reserved block, 3059 * take it back 3060 */ 3061 if (block_migratetype == MIGRATE_RESERVE) { 3062 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3063 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3064 } 3065 } 3066 } 3067 3068 /* 3069 * Initially all pages are reserved - free ones are freed 3070 * up by free_all_bootmem() once the early boot process is 3071 * done. Non-atomic initialization, single-pass. 3072 */ 3073 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3074 unsigned long start_pfn, enum memmap_context context) 3075 { 3076 struct page *page; 3077 unsigned long end_pfn = start_pfn + size; 3078 unsigned long pfn; 3079 struct zone *z; 3080 3081 if (highest_memmap_pfn < end_pfn - 1) 3082 highest_memmap_pfn = end_pfn - 1; 3083 3084 z = &NODE_DATA(nid)->node_zones[zone]; 3085 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3086 /* 3087 * There can be holes in boot-time mem_map[]s 3088 * handed to this function. They do not 3089 * exist on hotplugged memory. 3090 */ 3091 if (context == MEMMAP_EARLY) { 3092 if (!early_pfn_valid(pfn)) 3093 continue; 3094 if (!early_pfn_in_nid(pfn, nid)) 3095 continue; 3096 } 3097 page = pfn_to_page(pfn); 3098 set_page_links(page, zone, nid, pfn); 3099 mminit_verify_page_links(page, zone, nid, pfn); 3100 init_page_count(page); 3101 reset_page_mapcount(page); 3102 SetPageReserved(page); 3103 /* 3104 * Mark the block movable so that blocks are reserved for 3105 * movable at startup. This will force kernel allocations 3106 * to reserve their blocks rather than leaking throughout 3107 * the address space during boot when many long-lived 3108 * kernel allocations are made. Later some blocks near 3109 * the start are marked MIGRATE_RESERVE by 3110 * setup_zone_migrate_reserve() 3111 * 3112 * bitmap is created for zone's valid pfn range. but memmap 3113 * can be created for invalid pages (for alignment) 3114 * check here not to call set_pageblock_migratetype() against 3115 * pfn out of zone. 3116 */ 3117 if ((z->zone_start_pfn <= pfn) 3118 && (pfn < z->zone_start_pfn + z->spanned_pages) 3119 && !(pfn & (pageblock_nr_pages - 1))) 3120 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3121 3122 INIT_LIST_HEAD(&page->lru); 3123 #ifdef WANT_PAGE_VIRTUAL 3124 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3125 if (!is_highmem_idx(zone)) 3126 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3127 #endif 3128 } 3129 } 3130 3131 static void __meminit zone_init_free_lists(struct zone *zone) 3132 { 3133 int order, t; 3134 for_each_migratetype_order(order, t) { 3135 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3136 zone->free_area[order].nr_free = 0; 3137 } 3138 } 3139 3140 #ifndef __HAVE_ARCH_MEMMAP_INIT 3141 #define memmap_init(size, nid, zone, start_pfn) \ 3142 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3143 #endif 3144 3145 static int zone_batchsize(struct zone *zone) 3146 { 3147 #ifdef CONFIG_MMU 3148 int batch; 3149 3150 /* 3151 * The per-cpu-pages pools are set to around 1000th of the 3152 * size of the zone. But no more than 1/2 of a meg. 3153 * 3154 * OK, so we don't know how big the cache is. So guess. 3155 */ 3156 batch = zone->present_pages / 1024; 3157 if (batch * PAGE_SIZE > 512 * 1024) 3158 batch = (512 * 1024) / PAGE_SIZE; 3159 batch /= 4; /* We effectively *= 4 below */ 3160 if (batch < 1) 3161 batch = 1; 3162 3163 /* 3164 * Clamp the batch to a 2^n - 1 value. Having a power 3165 * of 2 value was found to be more likely to have 3166 * suboptimal cache aliasing properties in some cases. 3167 * 3168 * For example if 2 tasks are alternately allocating 3169 * batches of pages, one task can end up with a lot 3170 * of pages of one half of the possible page colors 3171 * and the other with pages of the other colors. 3172 */ 3173 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3174 3175 return batch; 3176 3177 #else 3178 /* The deferral and batching of frees should be suppressed under NOMMU 3179 * conditions. 3180 * 3181 * The problem is that NOMMU needs to be able to allocate large chunks 3182 * of contiguous memory as there's no hardware page translation to 3183 * assemble apparent contiguous memory from discontiguous pages. 3184 * 3185 * Queueing large contiguous runs of pages for batching, however, 3186 * causes the pages to actually be freed in smaller chunks. As there 3187 * can be a significant delay between the individual batches being 3188 * recycled, this leads to the once large chunks of space being 3189 * fragmented and becoming unavailable for high-order allocations. 3190 */ 3191 return 0; 3192 #endif 3193 } 3194 3195 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3196 { 3197 struct per_cpu_pages *pcp; 3198 int migratetype; 3199 3200 memset(p, 0, sizeof(*p)); 3201 3202 pcp = &p->pcp; 3203 pcp->count = 0; 3204 pcp->high = 6 * batch; 3205 pcp->batch = max(1UL, 1 * batch); 3206 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3207 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3208 } 3209 3210 /* 3211 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3212 * to the value high for the pageset p. 3213 */ 3214 3215 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3216 unsigned long high) 3217 { 3218 struct per_cpu_pages *pcp; 3219 3220 pcp = &p->pcp; 3221 pcp->high = high; 3222 pcp->batch = max(1UL, high/4); 3223 if ((high/4) > (PAGE_SHIFT * 8)) 3224 pcp->batch = PAGE_SHIFT * 8; 3225 } 3226 3227 /* 3228 * Allocate per cpu pagesets and initialize them. 3229 * Before this call only boot pagesets were available. 3230 * Boot pagesets will no longer be used by this processorr 3231 * after setup_per_cpu_pageset(). 3232 */ 3233 void __init setup_per_cpu_pageset(void) 3234 { 3235 struct zone *zone; 3236 int cpu; 3237 3238 for_each_populated_zone(zone) { 3239 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3240 3241 for_each_possible_cpu(cpu) { 3242 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3243 3244 setup_pageset(pcp, zone_batchsize(zone)); 3245 3246 if (percpu_pagelist_fraction) 3247 setup_pagelist_highmark(pcp, 3248 (zone->present_pages / 3249 percpu_pagelist_fraction)); 3250 } 3251 } 3252 } 3253 3254 static noinline __init_refok 3255 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3256 { 3257 int i; 3258 struct pglist_data *pgdat = zone->zone_pgdat; 3259 size_t alloc_size; 3260 3261 /* 3262 * The per-page waitqueue mechanism uses hashed waitqueues 3263 * per zone. 3264 */ 3265 zone->wait_table_hash_nr_entries = 3266 wait_table_hash_nr_entries(zone_size_pages); 3267 zone->wait_table_bits = 3268 wait_table_bits(zone->wait_table_hash_nr_entries); 3269 alloc_size = zone->wait_table_hash_nr_entries 3270 * sizeof(wait_queue_head_t); 3271 3272 if (!slab_is_available()) { 3273 zone->wait_table = (wait_queue_head_t *) 3274 alloc_bootmem_node(pgdat, alloc_size); 3275 } else { 3276 /* 3277 * This case means that a zone whose size was 0 gets new memory 3278 * via memory hot-add. 3279 * But it may be the case that a new node was hot-added. In 3280 * this case vmalloc() will not be able to use this new node's 3281 * memory - this wait_table must be initialized to use this new 3282 * node itself as well. 3283 * To use this new node's memory, further consideration will be 3284 * necessary. 3285 */ 3286 zone->wait_table = vmalloc(alloc_size); 3287 } 3288 if (!zone->wait_table) 3289 return -ENOMEM; 3290 3291 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3292 init_waitqueue_head(zone->wait_table + i); 3293 3294 return 0; 3295 } 3296 3297 static int __zone_pcp_update(void *data) 3298 { 3299 struct zone *zone = data; 3300 int cpu; 3301 unsigned long batch = zone_batchsize(zone), flags; 3302 3303 for_each_possible_cpu(cpu) { 3304 struct per_cpu_pageset *pset; 3305 struct per_cpu_pages *pcp; 3306 3307 pset = per_cpu_ptr(zone->pageset, cpu); 3308 pcp = &pset->pcp; 3309 3310 local_irq_save(flags); 3311 free_pcppages_bulk(zone, pcp->count, pcp); 3312 setup_pageset(pset, batch); 3313 local_irq_restore(flags); 3314 } 3315 return 0; 3316 } 3317 3318 void zone_pcp_update(struct zone *zone) 3319 { 3320 stop_machine(__zone_pcp_update, zone, NULL); 3321 } 3322 3323 static __meminit void zone_pcp_init(struct zone *zone) 3324 { 3325 /* 3326 * per cpu subsystem is not up at this point. The following code 3327 * relies on the ability of the linker to provide the 3328 * offset of a (static) per cpu variable into the per cpu area. 3329 */ 3330 zone->pageset = &boot_pageset; 3331 3332 if (zone->present_pages) 3333 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 3334 zone->name, zone->present_pages, 3335 zone_batchsize(zone)); 3336 } 3337 3338 __meminit int init_currently_empty_zone(struct zone *zone, 3339 unsigned long zone_start_pfn, 3340 unsigned long size, 3341 enum memmap_context context) 3342 { 3343 struct pglist_data *pgdat = zone->zone_pgdat; 3344 int ret; 3345 ret = zone_wait_table_init(zone, size); 3346 if (ret) 3347 return ret; 3348 pgdat->nr_zones = zone_idx(zone) + 1; 3349 3350 zone->zone_start_pfn = zone_start_pfn; 3351 3352 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3353 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3354 pgdat->node_id, 3355 (unsigned long)zone_idx(zone), 3356 zone_start_pfn, (zone_start_pfn + size)); 3357 3358 zone_init_free_lists(zone); 3359 3360 return 0; 3361 } 3362 3363 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3364 /* 3365 * Basic iterator support. Return the first range of PFNs for a node 3366 * Note: nid == MAX_NUMNODES returns first region regardless of node 3367 */ 3368 static int __meminit first_active_region_index_in_nid(int nid) 3369 { 3370 int i; 3371 3372 for (i = 0; i < nr_nodemap_entries; i++) 3373 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3374 return i; 3375 3376 return -1; 3377 } 3378 3379 /* 3380 * Basic iterator support. Return the next active range of PFNs for a node 3381 * Note: nid == MAX_NUMNODES returns next region regardless of node 3382 */ 3383 static int __meminit next_active_region_index_in_nid(int index, int nid) 3384 { 3385 for (index = index + 1; index < nr_nodemap_entries; index++) 3386 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3387 return index; 3388 3389 return -1; 3390 } 3391 3392 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3393 /* 3394 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3395 * Architectures may implement their own version but if add_active_range() 3396 * was used and there are no special requirements, this is a convenient 3397 * alternative 3398 */ 3399 int __meminit __early_pfn_to_nid(unsigned long pfn) 3400 { 3401 int i; 3402 3403 for (i = 0; i < nr_nodemap_entries; i++) { 3404 unsigned long start_pfn = early_node_map[i].start_pfn; 3405 unsigned long end_pfn = early_node_map[i].end_pfn; 3406 3407 if (start_pfn <= pfn && pfn < end_pfn) 3408 return early_node_map[i].nid; 3409 } 3410 /* This is a memory hole */ 3411 return -1; 3412 } 3413 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3414 3415 int __meminit early_pfn_to_nid(unsigned long pfn) 3416 { 3417 int nid; 3418 3419 nid = __early_pfn_to_nid(pfn); 3420 if (nid >= 0) 3421 return nid; 3422 /* just returns 0 */ 3423 return 0; 3424 } 3425 3426 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3427 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3428 { 3429 int nid; 3430 3431 nid = __early_pfn_to_nid(pfn); 3432 if (nid >= 0 && nid != node) 3433 return false; 3434 return true; 3435 } 3436 #endif 3437 3438 /* Basic iterator support to walk early_node_map[] */ 3439 #define for_each_active_range_index_in_nid(i, nid) \ 3440 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3441 i = next_active_region_index_in_nid(i, nid)) 3442 3443 /** 3444 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3445 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3446 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3447 * 3448 * If an architecture guarantees that all ranges registered with 3449 * add_active_ranges() contain no holes and may be freed, this 3450 * this function may be used instead of calling free_bootmem() manually. 3451 */ 3452 void __init free_bootmem_with_active_regions(int nid, 3453 unsigned long max_low_pfn) 3454 { 3455 int i; 3456 3457 for_each_active_range_index_in_nid(i, nid) { 3458 unsigned long size_pages = 0; 3459 unsigned long end_pfn = early_node_map[i].end_pfn; 3460 3461 if (early_node_map[i].start_pfn >= max_low_pfn) 3462 continue; 3463 3464 if (end_pfn > max_low_pfn) 3465 end_pfn = max_low_pfn; 3466 3467 size_pages = end_pfn - early_node_map[i].start_pfn; 3468 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3469 PFN_PHYS(early_node_map[i].start_pfn), 3470 size_pages << PAGE_SHIFT); 3471 } 3472 } 3473 3474 int __init add_from_early_node_map(struct range *range, int az, 3475 int nr_range, int nid) 3476 { 3477 int i; 3478 u64 start, end; 3479 3480 /* need to go over early_node_map to find out good range for node */ 3481 for_each_active_range_index_in_nid(i, nid) { 3482 start = early_node_map[i].start_pfn; 3483 end = early_node_map[i].end_pfn; 3484 nr_range = add_range(range, az, nr_range, start, end); 3485 } 3486 return nr_range; 3487 } 3488 3489 #ifdef CONFIG_NO_BOOTMEM 3490 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align, 3491 u64 goal, u64 limit) 3492 { 3493 int i; 3494 void *ptr; 3495 3496 /* need to go over early_node_map to find out good range for node */ 3497 for_each_active_range_index_in_nid(i, nid) { 3498 u64 addr; 3499 u64 ei_start, ei_last; 3500 3501 ei_last = early_node_map[i].end_pfn; 3502 ei_last <<= PAGE_SHIFT; 3503 ei_start = early_node_map[i].start_pfn; 3504 ei_start <<= PAGE_SHIFT; 3505 addr = find_early_area(ei_start, ei_last, 3506 goal, limit, size, align); 3507 3508 if (addr == -1ULL) 3509 continue; 3510 3511 #if 0 3512 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n", 3513 nid, 3514 ei_start, ei_last, goal, limit, size, 3515 align, addr); 3516 #endif 3517 3518 ptr = phys_to_virt(addr); 3519 memset(ptr, 0, size); 3520 reserve_early_without_check(addr, addr + size, "BOOTMEM"); 3521 return ptr; 3522 } 3523 3524 return NULL; 3525 } 3526 #endif 3527 3528 3529 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3530 { 3531 int i; 3532 int ret; 3533 3534 for_each_active_range_index_in_nid(i, nid) { 3535 ret = work_fn(early_node_map[i].start_pfn, 3536 early_node_map[i].end_pfn, data); 3537 if (ret) 3538 break; 3539 } 3540 } 3541 /** 3542 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3543 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3544 * 3545 * If an architecture guarantees that all ranges registered with 3546 * add_active_ranges() contain no holes and may be freed, this 3547 * function may be used instead of calling memory_present() manually. 3548 */ 3549 void __init sparse_memory_present_with_active_regions(int nid) 3550 { 3551 int i; 3552 3553 for_each_active_range_index_in_nid(i, nid) 3554 memory_present(early_node_map[i].nid, 3555 early_node_map[i].start_pfn, 3556 early_node_map[i].end_pfn); 3557 } 3558 3559 /** 3560 * get_pfn_range_for_nid - Return the start and end page frames for a node 3561 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3562 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3563 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3564 * 3565 * It returns the start and end page frame of a node based on information 3566 * provided by an arch calling add_active_range(). If called for a node 3567 * with no available memory, a warning is printed and the start and end 3568 * PFNs will be 0. 3569 */ 3570 void __meminit get_pfn_range_for_nid(unsigned int nid, 3571 unsigned long *start_pfn, unsigned long *end_pfn) 3572 { 3573 int i; 3574 *start_pfn = -1UL; 3575 *end_pfn = 0; 3576 3577 for_each_active_range_index_in_nid(i, nid) { 3578 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3579 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3580 } 3581 3582 if (*start_pfn == -1UL) 3583 *start_pfn = 0; 3584 } 3585 3586 /* 3587 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3588 * assumption is made that zones within a node are ordered in monotonic 3589 * increasing memory addresses so that the "highest" populated zone is used 3590 */ 3591 static void __init find_usable_zone_for_movable(void) 3592 { 3593 int zone_index; 3594 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3595 if (zone_index == ZONE_MOVABLE) 3596 continue; 3597 3598 if (arch_zone_highest_possible_pfn[zone_index] > 3599 arch_zone_lowest_possible_pfn[zone_index]) 3600 break; 3601 } 3602 3603 VM_BUG_ON(zone_index == -1); 3604 movable_zone = zone_index; 3605 } 3606 3607 /* 3608 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3609 * because it is sized independant of architecture. Unlike the other zones, 3610 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3611 * in each node depending on the size of each node and how evenly kernelcore 3612 * is distributed. This helper function adjusts the zone ranges 3613 * provided by the architecture for a given node by using the end of the 3614 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3615 * zones within a node are in order of monotonic increases memory addresses 3616 */ 3617 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3618 unsigned long zone_type, 3619 unsigned long node_start_pfn, 3620 unsigned long node_end_pfn, 3621 unsigned long *zone_start_pfn, 3622 unsigned long *zone_end_pfn) 3623 { 3624 /* Only adjust if ZONE_MOVABLE is on this node */ 3625 if (zone_movable_pfn[nid]) { 3626 /* Size ZONE_MOVABLE */ 3627 if (zone_type == ZONE_MOVABLE) { 3628 *zone_start_pfn = zone_movable_pfn[nid]; 3629 *zone_end_pfn = min(node_end_pfn, 3630 arch_zone_highest_possible_pfn[movable_zone]); 3631 3632 /* Adjust for ZONE_MOVABLE starting within this range */ 3633 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3634 *zone_end_pfn > zone_movable_pfn[nid]) { 3635 *zone_end_pfn = zone_movable_pfn[nid]; 3636 3637 /* Check if this whole range is within ZONE_MOVABLE */ 3638 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3639 *zone_start_pfn = *zone_end_pfn; 3640 } 3641 } 3642 3643 /* 3644 * Return the number of pages a zone spans in a node, including holes 3645 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3646 */ 3647 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3648 unsigned long zone_type, 3649 unsigned long *ignored) 3650 { 3651 unsigned long node_start_pfn, node_end_pfn; 3652 unsigned long zone_start_pfn, zone_end_pfn; 3653 3654 /* Get the start and end of the node and zone */ 3655 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3656 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3657 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3658 adjust_zone_range_for_zone_movable(nid, zone_type, 3659 node_start_pfn, node_end_pfn, 3660 &zone_start_pfn, &zone_end_pfn); 3661 3662 /* Check that this node has pages within the zone's required range */ 3663 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3664 return 0; 3665 3666 /* Move the zone boundaries inside the node if necessary */ 3667 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3668 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3669 3670 /* Return the spanned pages */ 3671 return zone_end_pfn - zone_start_pfn; 3672 } 3673 3674 /* 3675 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3676 * then all holes in the requested range will be accounted for. 3677 */ 3678 unsigned long __meminit __absent_pages_in_range(int nid, 3679 unsigned long range_start_pfn, 3680 unsigned long range_end_pfn) 3681 { 3682 int i = 0; 3683 unsigned long prev_end_pfn = 0, hole_pages = 0; 3684 unsigned long start_pfn; 3685 3686 /* Find the end_pfn of the first active range of pfns in the node */ 3687 i = first_active_region_index_in_nid(nid); 3688 if (i == -1) 3689 return 0; 3690 3691 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3692 3693 /* Account for ranges before physical memory on this node */ 3694 if (early_node_map[i].start_pfn > range_start_pfn) 3695 hole_pages = prev_end_pfn - range_start_pfn; 3696 3697 /* Find all holes for the zone within the node */ 3698 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3699 3700 /* No need to continue if prev_end_pfn is outside the zone */ 3701 if (prev_end_pfn >= range_end_pfn) 3702 break; 3703 3704 /* Make sure the end of the zone is not within the hole */ 3705 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3706 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3707 3708 /* Update the hole size cound and move on */ 3709 if (start_pfn > range_start_pfn) { 3710 BUG_ON(prev_end_pfn > start_pfn); 3711 hole_pages += start_pfn - prev_end_pfn; 3712 } 3713 prev_end_pfn = early_node_map[i].end_pfn; 3714 } 3715 3716 /* Account for ranges past physical memory on this node */ 3717 if (range_end_pfn > prev_end_pfn) 3718 hole_pages += range_end_pfn - 3719 max(range_start_pfn, prev_end_pfn); 3720 3721 return hole_pages; 3722 } 3723 3724 /** 3725 * absent_pages_in_range - Return number of page frames in holes within a range 3726 * @start_pfn: The start PFN to start searching for holes 3727 * @end_pfn: The end PFN to stop searching for holes 3728 * 3729 * It returns the number of pages frames in memory holes within a range. 3730 */ 3731 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3732 unsigned long end_pfn) 3733 { 3734 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3735 } 3736 3737 /* Return the number of page frames in holes in a zone on a node */ 3738 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3739 unsigned long zone_type, 3740 unsigned long *ignored) 3741 { 3742 unsigned long node_start_pfn, node_end_pfn; 3743 unsigned long zone_start_pfn, zone_end_pfn; 3744 3745 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3746 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3747 node_start_pfn); 3748 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3749 node_end_pfn); 3750 3751 adjust_zone_range_for_zone_movable(nid, zone_type, 3752 node_start_pfn, node_end_pfn, 3753 &zone_start_pfn, &zone_end_pfn); 3754 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3755 } 3756 3757 #else 3758 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3759 unsigned long zone_type, 3760 unsigned long *zones_size) 3761 { 3762 return zones_size[zone_type]; 3763 } 3764 3765 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3766 unsigned long zone_type, 3767 unsigned long *zholes_size) 3768 { 3769 if (!zholes_size) 3770 return 0; 3771 3772 return zholes_size[zone_type]; 3773 } 3774 3775 #endif 3776 3777 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3778 unsigned long *zones_size, unsigned long *zholes_size) 3779 { 3780 unsigned long realtotalpages, totalpages = 0; 3781 enum zone_type i; 3782 3783 for (i = 0; i < MAX_NR_ZONES; i++) 3784 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3785 zones_size); 3786 pgdat->node_spanned_pages = totalpages; 3787 3788 realtotalpages = totalpages; 3789 for (i = 0; i < MAX_NR_ZONES; i++) 3790 realtotalpages -= 3791 zone_absent_pages_in_node(pgdat->node_id, i, 3792 zholes_size); 3793 pgdat->node_present_pages = realtotalpages; 3794 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3795 realtotalpages); 3796 } 3797 3798 #ifndef CONFIG_SPARSEMEM 3799 /* 3800 * Calculate the size of the zone->blockflags rounded to an unsigned long 3801 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3802 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3803 * round what is now in bits to nearest long in bits, then return it in 3804 * bytes. 3805 */ 3806 static unsigned long __init usemap_size(unsigned long zonesize) 3807 { 3808 unsigned long usemapsize; 3809 3810 usemapsize = roundup(zonesize, pageblock_nr_pages); 3811 usemapsize = usemapsize >> pageblock_order; 3812 usemapsize *= NR_PAGEBLOCK_BITS; 3813 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 3814 3815 return usemapsize / 8; 3816 } 3817 3818 static void __init setup_usemap(struct pglist_data *pgdat, 3819 struct zone *zone, unsigned long zonesize) 3820 { 3821 unsigned long usemapsize = usemap_size(zonesize); 3822 zone->pageblock_flags = NULL; 3823 if (usemapsize) 3824 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 3825 } 3826 #else 3827 static void inline setup_usemap(struct pglist_data *pgdat, 3828 struct zone *zone, unsigned long zonesize) {} 3829 #endif /* CONFIG_SPARSEMEM */ 3830 3831 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 3832 3833 /* Return a sensible default order for the pageblock size. */ 3834 static inline int pageblock_default_order(void) 3835 { 3836 if (HPAGE_SHIFT > PAGE_SHIFT) 3837 return HUGETLB_PAGE_ORDER; 3838 3839 return MAX_ORDER-1; 3840 } 3841 3842 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 3843 static inline void __init set_pageblock_order(unsigned int order) 3844 { 3845 /* Check that pageblock_nr_pages has not already been setup */ 3846 if (pageblock_order) 3847 return; 3848 3849 /* 3850 * Assume the largest contiguous order of interest is a huge page. 3851 * This value may be variable depending on boot parameters on IA64 3852 */ 3853 pageblock_order = order; 3854 } 3855 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3856 3857 /* 3858 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 3859 * and pageblock_default_order() are unused as pageblock_order is set 3860 * at compile-time. See include/linux/pageblock-flags.h for the values of 3861 * pageblock_order based on the kernel config 3862 */ 3863 static inline int pageblock_default_order(unsigned int order) 3864 { 3865 return MAX_ORDER-1; 3866 } 3867 #define set_pageblock_order(x) do {} while (0) 3868 3869 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3870 3871 /* 3872 * Set up the zone data structures: 3873 * - mark all pages reserved 3874 * - mark all memory queues empty 3875 * - clear the memory bitmaps 3876 */ 3877 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 3878 unsigned long *zones_size, unsigned long *zholes_size) 3879 { 3880 enum zone_type j; 3881 int nid = pgdat->node_id; 3882 unsigned long zone_start_pfn = pgdat->node_start_pfn; 3883 int ret; 3884 3885 pgdat_resize_init(pgdat); 3886 pgdat->nr_zones = 0; 3887 init_waitqueue_head(&pgdat->kswapd_wait); 3888 pgdat->kswapd_max_order = 0; 3889 pgdat_page_cgroup_init(pgdat); 3890 3891 for (j = 0; j < MAX_NR_ZONES; j++) { 3892 struct zone *zone = pgdat->node_zones + j; 3893 unsigned long size, realsize, memmap_pages; 3894 enum lru_list l; 3895 3896 size = zone_spanned_pages_in_node(nid, j, zones_size); 3897 realsize = size - zone_absent_pages_in_node(nid, j, 3898 zholes_size); 3899 3900 /* 3901 * Adjust realsize so that it accounts for how much memory 3902 * is used by this zone for memmap. This affects the watermark 3903 * and per-cpu initialisations 3904 */ 3905 memmap_pages = 3906 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 3907 if (realsize >= memmap_pages) { 3908 realsize -= memmap_pages; 3909 if (memmap_pages) 3910 printk(KERN_DEBUG 3911 " %s zone: %lu pages used for memmap\n", 3912 zone_names[j], memmap_pages); 3913 } else 3914 printk(KERN_WARNING 3915 " %s zone: %lu pages exceeds realsize %lu\n", 3916 zone_names[j], memmap_pages, realsize); 3917 3918 /* Account for reserved pages */ 3919 if (j == 0 && realsize > dma_reserve) { 3920 realsize -= dma_reserve; 3921 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 3922 zone_names[0], dma_reserve); 3923 } 3924 3925 if (!is_highmem_idx(j)) 3926 nr_kernel_pages += realsize; 3927 nr_all_pages += realsize; 3928 3929 zone->spanned_pages = size; 3930 zone->present_pages = realsize; 3931 #ifdef CONFIG_NUMA 3932 zone->node = nid; 3933 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 3934 / 100; 3935 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 3936 #endif 3937 zone->name = zone_names[j]; 3938 spin_lock_init(&zone->lock); 3939 spin_lock_init(&zone->lru_lock); 3940 zone_seqlock_init(zone); 3941 zone->zone_pgdat = pgdat; 3942 3943 zone->prev_priority = DEF_PRIORITY; 3944 3945 zone_pcp_init(zone); 3946 for_each_lru(l) { 3947 INIT_LIST_HEAD(&zone->lru[l].list); 3948 zone->reclaim_stat.nr_saved_scan[l] = 0; 3949 } 3950 zone->reclaim_stat.recent_rotated[0] = 0; 3951 zone->reclaim_stat.recent_rotated[1] = 0; 3952 zone->reclaim_stat.recent_scanned[0] = 0; 3953 zone->reclaim_stat.recent_scanned[1] = 0; 3954 zap_zone_vm_stats(zone); 3955 zone->flags = 0; 3956 if (!size) 3957 continue; 3958 3959 set_pageblock_order(pageblock_default_order()); 3960 setup_usemap(pgdat, zone, size); 3961 ret = init_currently_empty_zone(zone, zone_start_pfn, 3962 size, MEMMAP_EARLY); 3963 BUG_ON(ret); 3964 memmap_init(size, nid, j, zone_start_pfn); 3965 zone_start_pfn += size; 3966 } 3967 } 3968 3969 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 3970 { 3971 /* Skip empty nodes */ 3972 if (!pgdat->node_spanned_pages) 3973 return; 3974 3975 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3976 /* ia64 gets its own node_mem_map, before this, without bootmem */ 3977 if (!pgdat->node_mem_map) { 3978 unsigned long size, start, end; 3979 struct page *map; 3980 3981 /* 3982 * The zone's endpoints aren't required to be MAX_ORDER 3983 * aligned but the node_mem_map endpoints must be in order 3984 * for the buddy allocator to function correctly. 3985 */ 3986 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 3987 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 3988 end = ALIGN(end, MAX_ORDER_NR_PAGES); 3989 size = (end - start) * sizeof(struct page); 3990 map = alloc_remap(pgdat->node_id, size); 3991 if (!map) 3992 map = alloc_bootmem_node(pgdat, size); 3993 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 3994 } 3995 #ifndef CONFIG_NEED_MULTIPLE_NODES 3996 /* 3997 * With no DISCONTIG, the global mem_map is just set as node 0's 3998 */ 3999 if (pgdat == NODE_DATA(0)) { 4000 mem_map = NODE_DATA(0)->node_mem_map; 4001 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4002 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4003 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4004 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4005 } 4006 #endif 4007 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4008 } 4009 4010 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4011 unsigned long node_start_pfn, unsigned long *zholes_size) 4012 { 4013 pg_data_t *pgdat = NODE_DATA(nid); 4014 4015 pgdat->node_id = nid; 4016 pgdat->node_start_pfn = node_start_pfn; 4017 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4018 4019 alloc_node_mem_map(pgdat); 4020 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4021 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4022 nid, (unsigned long)pgdat, 4023 (unsigned long)pgdat->node_mem_map); 4024 #endif 4025 4026 free_area_init_core(pgdat, zones_size, zholes_size); 4027 } 4028 4029 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4030 4031 #if MAX_NUMNODES > 1 4032 /* 4033 * Figure out the number of possible node ids. 4034 */ 4035 static void __init setup_nr_node_ids(void) 4036 { 4037 unsigned int node; 4038 unsigned int highest = 0; 4039 4040 for_each_node_mask(node, node_possible_map) 4041 highest = node; 4042 nr_node_ids = highest + 1; 4043 } 4044 #else 4045 static inline void setup_nr_node_ids(void) 4046 { 4047 } 4048 #endif 4049 4050 /** 4051 * add_active_range - Register a range of PFNs backed by physical memory 4052 * @nid: The node ID the range resides on 4053 * @start_pfn: The start PFN of the available physical memory 4054 * @end_pfn: The end PFN of the available physical memory 4055 * 4056 * These ranges are stored in an early_node_map[] and later used by 4057 * free_area_init_nodes() to calculate zone sizes and holes. If the 4058 * range spans a memory hole, it is up to the architecture to ensure 4059 * the memory is not freed by the bootmem allocator. If possible 4060 * the range being registered will be merged with existing ranges. 4061 */ 4062 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 4063 unsigned long end_pfn) 4064 { 4065 int i; 4066 4067 mminit_dprintk(MMINIT_TRACE, "memory_register", 4068 "Entering add_active_range(%d, %#lx, %#lx) " 4069 "%d entries of %d used\n", 4070 nid, start_pfn, end_pfn, 4071 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 4072 4073 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 4074 4075 /* Merge with existing active regions if possible */ 4076 for (i = 0; i < nr_nodemap_entries; i++) { 4077 if (early_node_map[i].nid != nid) 4078 continue; 4079 4080 /* Skip if an existing region covers this new one */ 4081 if (start_pfn >= early_node_map[i].start_pfn && 4082 end_pfn <= early_node_map[i].end_pfn) 4083 return; 4084 4085 /* Merge forward if suitable */ 4086 if (start_pfn <= early_node_map[i].end_pfn && 4087 end_pfn > early_node_map[i].end_pfn) { 4088 early_node_map[i].end_pfn = end_pfn; 4089 return; 4090 } 4091 4092 /* Merge backward if suitable */ 4093 if (start_pfn < early_node_map[i].start_pfn && 4094 end_pfn >= early_node_map[i].start_pfn) { 4095 early_node_map[i].start_pfn = start_pfn; 4096 return; 4097 } 4098 } 4099 4100 /* Check that early_node_map is large enough */ 4101 if (i >= MAX_ACTIVE_REGIONS) { 4102 printk(KERN_CRIT "More than %d memory regions, truncating\n", 4103 MAX_ACTIVE_REGIONS); 4104 return; 4105 } 4106 4107 early_node_map[i].nid = nid; 4108 early_node_map[i].start_pfn = start_pfn; 4109 early_node_map[i].end_pfn = end_pfn; 4110 nr_nodemap_entries = i + 1; 4111 } 4112 4113 /** 4114 * remove_active_range - Shrink an existing registered range of PFNs 4115 * @nid: The node id the range is on that should be shrunk 4116 * @start_pfn: The new PFN of the range 4117 * @end_pfn: The new PFN of the range 4118 * 4119 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 4120 * The map is kept near the end physical page range that has already been 4121 * registered. This function allows an arch to shrink an existing registered 4122 * range. 4123 */ 4124 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 4125 unsigned long end_pfn) 4126 { 4127 int i, j; 4128 int removed = 0; 4129 4130 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 4131 nid, start_pfn, end_pfn); 4132 4133 /* Find the old active region end and shrink */ 4134 for_each_active_range_index_in_nid(i, nid) { 4135 if (early_node_map[i].start_pfn >= start_pfn && 4136 early_node_map[i].end_pfn <= end_pfn) { 4137 /* clear it */ 4138 early_node_map[i].start_pfn = 0; 4139 early_node_map[i].end_pfn = 0; 4140 removed = 1; 4141 continue; 4142 } 4143 if (early_node_map[i].start_pfn < start_pfn && 4144 early_node_map[i].end_pfn > start_pfn) { 4145 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 4146 early_node_map[i].end_pfn = start_pfn; 4147 if (temp_end_pfn > end_pfn) 4148 add_active_range(nid, end_pfn, temp_end_pfn); 4149 continue; 4150 } 4151 if (early_node_map[i].start_pfn >= start_pfn && 4152 early_node_map[i].end_pfn > end_pfn && 4153 early_node_map[i].start_pfn < end_pfn) { 4154 early_node_map[i].start_pfn = end_pfn; 4155 continue; 4156 } 4157 } 4158 4159 if (!removed) 4160 return; 4161 4162 /* remove the blank ones */ 4163 for (i = nr_nodemap_entries - 1; i > 0; i--) { 4164 if (early_node_map[i].nid != nid) 4165 continue; 4166 if (early_node_map[i].end_pfn) 4167 continue; 4168 /* we found it, get rid of it */ 4169 for (j = i; j < nr_nodemap_entries - 1; j++) 4170 memcpy(&early_node_map[j], &early_node_map[j+1], 4171 sizeof(early_node_map[j])); 4172 j = nr_nodemap_entries - 1; 4173 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 4174 nr_nodemap_entries--; 4175 } 4176 } 4177 4178 /** 4179 * remove_all_active_ranges - Remove all currently registered regions 4180 * 4181 * During discovery, it may be found that a table like SRAT is invalid 4182 * and an alternative discovery method must be used. This function removes 4183 * all currently registered regions. 4184 */ 4185 void __init remove_all_active_ranges(void) 4186 { 4187 memset(early_node_map, 0, sizeof(early_node_map)); 4188 nr_nodemap_entries = 0; 4189 } 4190 4191 /* Compare two active node_active_regions */ 4192 static int __init cmp_node_active_region(const void *a, const void *b) 4193 { 4194 struct node_active_region *arange = (struct node_active_region *)a; 4195 struct node_active_region *brange = (struct node_active_region *)b; 4196 4197 /* Done this way to avoid overflows */ 4198 if (arange->start_pfn > brange->start_pfn) 4199 return 1; 4200 if (arange->start_pfn < brange->start_pfn) 4201 return -1; 4202 4203 return 0; 4204 } 4205 4206 /* sort the node_map by start_pfn */ 4207 void __init sort_node_map(void) 4208 { 4209 sort(early_node_map, (size_t)nr_nodemap_entries, 4210 sizeof(struct node_active_region), 4211 cmp_node_active_region, NULL); 4212 } 4213 4214 /* Find the lowest pfn for a node */ 4215 static unsigned long __init find_min_pfn_for_node(int nid) 4216 { 4217 int i; 4218 unsigned long min_pfn = ULONG_MAX; 4219 4220 /* Assuming a sorted map, the first range found has the starting pfn */ 4221 for_each_active_range_index_in_nid(i, nid) 4222 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 4223 4224 if (min_pfn == ULONG_MAX) { 4225 printk(KERN_WARNING 4226 "Could not find start_pfn for node %d\n", nid); 4227 return 0; 4228 } 4229 4230 return min_pfn; 4231 } 4232 4233 /** 4234 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4235 * 4236 * It returns the minimum PFN based on information provided via 4237 * add_active_range(). 4238 */ 4239 unsigned long __init find_min_pfn_with_active_regions(void) 4240 { 4241 return find_min_pfn_for_node(MAX_NUMNODES); 4242 } 4243 4244 /* 4245 * early_calculate_totalpages() 4246 * Sum pages in active regions for movable zone. 4247 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4248 */ 4249 static unsigned long __init early_calculate_totalpages(void) 4250 { 4251 int i; 4252 unsigned long totalpages = 0; 4253 4254 for (i = 0; i < nr_nodemap_entries; i++) { 4255 unsigned long pages = early_node_map[i].end_pfn - 4256 early_node_map[i].start_pfn; 4257 totalpages += pages; 4258 if (pages) 4259 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 4260 } 4261 return totalpages; 4262 } 4263 4264 /* 4265 * Find the PFN the Movable zone begins in each node. Kernel memory 4266 * is spread evenly between nodes as long as the nodes have enough 4267 * memory. When they don't, some nodes will have more kernelcore than 4268 * others 4269 */ 4270 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4271 { 4272 int i, nid; 4273 unsigned long usable_startpfn; 4274 unsigned long kernelcore_node, kernelcore_remaining; 4275 /* save the state before borrow the nodemask */ 4276 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4277 unsigned long totalpages = early_calculate_totalpages(); 4278 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4279 4280 /* 4281 * If movablecore was specified, calculate what size of 4282 * kernelcore that corresponds so that memory usable for 4283 * any allocation type is evenly spread. If both kernelcore 4284 * and movablecore are specified, then the value of kernelcore 4285 * will be used for required_kernelcore if it's greater than 4286 * what movablecore would have allowed. 4287 */ 4288 if (required_movablecore) { 4289 unsigned long corepages; 4290 4291 /* 4292 * Round-up so that ZONE_MOVABLE is at least as large as what 4293 * was requested by the user 4294 */ 4295 required_movablecore = 4296 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4297 corepages = totalpages - required_movablecore; 4298 4299 required_kernelcore = max(required_kernelcore, corepages); 4300 } 4301 4302 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4303 if (!required_kernelcore) 4304 goto out; 4305 4306 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4307 find_usable_zone_for_movable(); 4308 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4309 4310 restart: 4311 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4312 kernelcore_node = required_kernelcore / usable_nodes; 4313 for_each_node_state(nid, N_HIGH_MEMORY) { 4314 /* 4315 * Recalculate kernelcore_node if the division per node 4316 * now exceeds what is necessary to satisfy the requested 4317 * amount of memory for the kernel 4318 */ 4319 if (required_kernelcore < kernelcore_node) 4320 kernelcore_node = required_kernelcore / usable_nodes; 4321 4322 /* 4323 * As the map is walked, we track how much memory is usable 4324 * by the kernel using kernelcore_remaining. When it is 4325 * 0, the rest of the node is usable by ZONE_MOVABLE 4326 */ 4327 kernelcore_remaining = kernelcore_node; 4328 4329 /* Go through each range of PFNs within this node */ 4330 for_each_active_range_index_in_nid(i, nid) { 4331 unsigned long start_pfn, end_pfn; 4332 unsigned long size_pages; 4333 4334 start_pfn = max(early_node_map[i].start_pfn, 4335 zone_movable_pfn[nid]); 4336 end_pfn = early_node_map[i].end_pfn; 4337 if (start_pfn >= end_pfn) 4338 continue; 4339 4340 /* Account for what is only usable for kernelcore */ 4341 if (start_pfn < usable_startpfn) { 4342 unsigned long kernel_pages; 4343 kernel_pages = min(end_pfn, usable_startpfn) 4344 - start_pfn; 4345 4346 kernelcore_remaining -= min(kernel_pages, 4347 kernelcore_remaining); 4348 required_kernelcore -= min(kernel_pages, 4349 required_kernelcore); 4350 4351 /* Continue if range is now fully accounted */ 4352 if (end_pfn <= usable_startpfn) { 4353 4354 /* 4355 * Push zone_movable_pfn to the end so 4356 * that if we have to rebalance 4357 * kernelcore across nodes, we will 4358 * not double account here 4359 */ 4360 zone_movable_pfn[nid] = end_pfn; 4361 continue; 4362 } 4363 start_pfn = usable_startpfn; 4364 } 4365 4366 /* 4367 * The usable PFN range for ZONE_MOVABLE is from 4368 * start_pfn->end_pfn. Calculate size_pages as the 4369 * number of pages used as kernelcore 4370 */ 4371 size_pages = end_pfn - start_pfn; 4372 if (size_pages > kernelcore_remaining) 4373 size_pages = kernelcore_remaining; 4374 zone_movable_pfn[nid] = start_pfn + size_pages; 4375 4376 /* 4377 * Some kernelcore has been met, update counts and 4378 * break if the kernelcore for this node has been 4379 * satisified 4380 */ 4381 required_kernelcore -= min(required_kernelcore, 4382 size_pages); 4383 kernelcore_remaining -= size_pages; 4384 if (!kernelcore_remaining) 4385 break; 4386 } 4387 } 4388 4389 /* 4390 * If there is still required_kernelcore, we do another pass with one 4391 * less node in the count. This will push zone_movable_pfn[nid] further 4392 * along on the nodes that still have memory until kernelcore is 4393 * satisified 4394 */ 4395 usable_nodes--; 4396 if (usable_nodes && required_kernelcore > usable_nodes) 4397 goto restart; 4398 4399 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4400 for (nid = 0; nid < MAX_NUMNODES; nid++) 4401 zone_movable_pfn[nid] = 4402 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4403 4404 out: 4405 /* restore the node_state */ 4406 node_states[N_HIGH_MEMORY] = saved_node_state; 4407 } 4408 4409 /* Any regular memory on that node ? */ 4410 static void check_for_regular_memory(pg_data_t *pgdat) 4411 { 4412 #ifdef CONFIG_HIGHMEM 4413 enum zone_type zone_type; 4414 4415 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4416 struct zone *zone = &pgdat->node_zones[zone_type]; 4417 if (zone->present_pages) 4418 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4419 } 4420 #endif 4421 } 4422 4423 /** 4424 * free_area_init_nodes - Initialise all pg_data_t and zone data 4425 * @max_zone_pfn: an array of max PFNs for each zone 4426 * 4427 * This will call free_area_init_node() for each active node in the system. 4428 * Using the page ranges provided by add_active_range(), the size of each 4429 * zone in each node and their holes is calculated. If the maximum PFN 4430 * between two adjacent zones match, it is assumed that the zone is empty. 4431 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4432 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4433 * starts where the previous one ended. For example, ZONE_DMA32 starts 4434 * at arch_max_dma_pfn. 4435 */ 4436 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4437 { 4438 unsigned long nid; 4439 int i; 4440 4441 /* Sort early_node_map as initialisation assumes it is sorted */ 4442 sort_node_map(); 4443 4444 /* Record where the zone boundaries are */ 4445 memset(arch_zone_lowest_possible_pfn, 0, 4446 sizeof(arch_zone_lowest_possible_pfn)); 4447 memset(arch_zone_highest_possible_pfn, 0, 4448 sizeof(arch_zone_highest_possible_pfn)); 4449 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4450 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4451 for (i = 1; i < MAX_NR_ZONES; i++) { 4452 if (i == ZONE_MOVABLE) 4453 continue; 4454 arch_zone_lowest_possible_pfn[i] = 4455 arch_zone_highest_possible_pfn[i-1]; 4456 arch_zone_highest_possible_pfn[i] = 4457 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4458 } 4459 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4460 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4461 4462 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4463 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4464 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4465 4466 /* Print out the zone ranges */ 4467 printk("Zone PFN ranges:\n"); 4468 for (i = 0; i < MAX_NR_ZONES; i++) { 4469 if (i == ZONE_MOVABLE) 4470 continue; 4471 printk(" %-8s ", zone_names[i]); 4472 if (arch_zone_lowest_possible_pfn[i] == 4473 arch_zone_highest_possible_pfn[i]) 4474 printk("empty\n"); 4475 else 4476 printk("%0#10lx -> %0#10lx\n", 4477 arch_zone_lowest_possible_pfn[i], 4478 arch_zone_highest_possible_pfn[i]); 4479 } 4480 4481 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4482 printk("Movable zone start PFN for each node\n"); 4483 for (i = 0; i < MAX_NUMNODES; i++) { 4484 if (zone_movable_pfn[i]) 4485 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4486 } 4487 4488 /* Print out the early_node_map[] */ 4489 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4490 for (i = 0; i < nr_nodemap_entries; i++) 4491 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4492 early_node_map[i].start_pfn, 4493 early_node_map[i].end_pfn); 4494 4495 /* Initialise every node */ 4496 mminit_verify_pageflags_layout(); 4497 setup_nr_node_ids(); 4498 for_each_online_node(nid) { 4499 pg_data_t *pgdat = NODE_DATA(nid); 4500 free_area_init_node(nid, NULL, 4501 find_min_pfn_for_node(nid), NULL); 4502 4503 /* Any memory on that node */ 4504 if (pgdat->node_present_pages) 4505 node_set_state(nid, N_HIGH_MEMORY); 4506 check_for_regular_memory(pgdat); 4507 } 4508 } 4509 4510 static int __init cmdline_parse_core(char *p, unsigned long *core) 4511 { 4512 unsigned long long coremem; 4513 if (!p) 4514 return -EINVAL; 4515 4516 coremem = memparse(p, &p); 4517 *core = coremem >> PAGE_SHIFT; 4518 4519 /* Paranoid check that UL is enough for the coremem value */ 4520 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4521 4522 return 0; 4523 } 4524 4525 /* 4526 * kernelcore=size sets the amount of memory for use for allocations that 4527 * cannot be reclaimed or migrated. 4528 */ 4529 static int __init cmdline_parse_kernelcore(char *p) 4530 { 4531 return cmdline_parse_core(p, &required_kernelcore); 4532 } 4533 4534 /* 4535 * movablecore=size sets the amount of memory for use for allocations that 4536 * can be reclaimed or migrated. 4537 */ 4538 static int __init cmdline_parse_movablecore(char *p) 4539 { 4540 return cmdline_parse_core(p, &required_movablecore); 4541 } 4542 4543 early_param("kernelcore", cmdline_parse_kernelcore); 4544 early_param("movablecore", cmdline_parse_movablecore); 4545 4546 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4547 4548 /** 4549 * set_dma_reserve - set the specified number of pages reserved in the first zone 4550 * @new_dma_reserve: The number of pages to mark reserved 4551 * 4552 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4553 * In the DMA zone, a significant percentage may be consumed by kernel image 4554 * and other unfreeable allocations which can skew the watermarks badly. This 4555 * function may optionally be used to account for unfreeable pages in the 4556 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4557 * smaller per-cpu batchsize. 4558 */ 4559 void __init set_dma_reserve(unsigned long new_dma_reserve) 4560 { 4561 dma_reserve = new_dma_reserve; 4562 } 4563 4564 #ifndef CONFIG_NEED_MULTIPLE_NODES 4565 struct pglist_data __refdata contig_page_data = { 4566 #ifndef CONFIG_NO_BOOTMEM 4567 .bdata = &bootmem_node_data[0] 4568 #endif 4569 }; 4570 EXPORT_SYMBOL(contig_page_data); 4571 #endif 4572 4573 void __init free_area_init(unsigned long *zones_size) 4574 { 4575 free_area_init_node(0, zones_size, 4576 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4577 } 4578 4579 static int page_alloc_cpu_notify(struct notifier_block *self, 4580 unsigned long action, void *hcpu) 4581 { 4582 int cpu = (unsigned long)hcpu; 4583 4584 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4585 drain_pages(cpu); 4586 4587 /* 4588 * Spill the event counters of the dead processor 4589 * into the current processors event counters. 4590 * This artificially elevates the count of the current 4591 * processor. 4592 */ 4593 vm_events_fold_cpu(cpu); 4594 4595 /* 4596 * Zero the differential counters of the dead processor 4597 * so that the vm statistics are consistent. 4598 * 4599 * This is only okay since the processor is dead and cannot 4600 * race with what we are doing. 4601 */ 4602 refresh_cpu_vm_stats(cpu); 4603 } 4604 return NOTIFY_OK; 4605 } 4606 4607 void __init page_alloc_init(void) 4608 { 4609 hotcpu_notifier(page_alloc_cpu_notify, 0); 4610 } 4611 4612 /* 4613 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4614 * or min_free_kbytes changes. 4615 */ 4616 static void calculate_totalreserve_pages(void) 4617 { 4618 struct pglist_data *pgdat; 4619 unsigned long reserve_pages = 0; 4620 enum zone_type i, j; 4621 4622 for_each_online_pgdat(pgdat) { 4623 for (i = 0; i < MAX_NR_ZONES; i++) { 4624 struct zone *zone = pgdat->node_zones + i; 4625 unsigned long max = 0; 4626 4627 /* Find valid and maximum lowmem_reserve in the zone */ 4628 for (j = i; j < MAX_NR_ZONES; j++) { 4629 if (zone->lowmem_reserve[j] > max) 4630 max = zone->lowmem_reserve[j]; 4631 } 4632 4633 /* we treat the high watermark as reserved pages. */ 4634 max += high_wmark_pages(zone); 4635 4636 if (max > zone->present_pages) 4637 max = zone->present_pages; 4638 reserve_pages += max; 4639 } 4640 } 4641 totalreserve_pages = reserve_pages; 4642 } 4643 4644 /* 4645 * setup_per_zone_lowmem_reserve - called whenever 4646 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4647 * has a correct pages reserved value, so an adequate number of 4648 * pages are left in the zone after a successful __alloc_pages(). 4649 */ 4650 static void setup_per_zone_lowmem_reserve(void) 4651 { 4652 struct pglist_data *pgdat; 4653 enum zone_type j, idx; 4654 4655 for_each_online_pgdat(pgdat) { 4656 for (j = 0; j < MAX_NR_ZONES; j++) { 4657 struct zone *zone = pgdat->node_zones + j; 4658 unsigned long present_pages = zone->present_pages; 4659 4660 zone->lowmem_reserve[j] = 0; 4661 4662 idx = j; 4663 while (idx) { 4664 struct zone *lower_zone; 4665 4666 idx--; 4667 4668 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4669 sysctl_lowmem_reserve_ratio[idx] = 1; 4670 4671 lower_zone = pgdat->node_zones + idx; 4672 lower_zone->lowmem_reserve[j] = present_pages / 4673 sysctl_lowmem_reserve_ratio[idx]; 4674 present_pages += lower_zone->present_pages; 4675 } 4676 } 4677 } 4678 4679 /* update totalreserve_pages */ 4680 calculate_totalreserve_pages(); 4681 } 4682 4683 /** 4684 * setup_per_zone_wmarks - called when min_free_kbytes changes 4685 * or when memory is hot-{added|removed} 4686 * 4687 * Ensures that the watermark[min,low,high] values for each zone are set 4688 * correctly with respect to min_free_kbytes. 4689 */ 4690 void setup_per_zone_wmarks(void) 4691 { 4692 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4693 unsigned long lowmem_pages = 0; 4694 struct zone *zone; 4695 unsigned long flags; 4696 4697 /* Calculate total number of !ZONE_HIGHMEM pages */ 4698 for_each_zone(zone) { 4699 if (!is_highmem(zone)) 4700 lowmem_pages += zone->present_pages; 4701 } 4702 4703 for_each_zone(zone) { 4704 u64 tmp; 4705 4706 spin_lock_irqsave(&zone->lock, flags); 4707 tmp = (u64)pages_min * zone->present_pages; 4708 do_div(tmp, lowmem_pages); 4709 if (is_highmem(zone)) { 4710 /* 4711 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4712 * need highmem pages, so cap pages_min to a small 4713 * value here. 4714 * 4715 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 4716 * deltas controls asynch page reclaim, and so should 4717 * not be capped for highmem. 4718 */ 4719 int min_pages; 4720 4721 min_pages = zone->present_pages / 1024; 4722 if (min_pages < SWAP_CLUSTER_MAX) 4723 min_pages = SWAP_CLUSTER_MAX; 4724 if (min_pages > 128) 4725 min_pages = 128; 4726 zone->watermark[WMARK_MIN] = min_pages; 4727 } else { 4728 /* 4729 * If it's a lowmem zone, reserve a number of pages 4730 * proportionate to the zone's size. 4731 */ 4732 zone->watermark[WMARK_MIN] = tmp; 4733 } 4734 4735 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 4736 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 4737 setup_zone_migrate_reserve(zone); 4738 spin_unlock_irqrestore(&zone->lock, flags); 4739 } 4740 4741 /* update totalreserve_pages */ 4742 calculate_totalreserve_pages(); 4743 } 4744 4745 /* 4746 * The inactive anon list should be small enough that the VM never has to 4747 * do too much work, but large enough that each inactive page has a chance 4748 * to be referenced again before it is swapped out. 4749 * 4750 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 4751 * INACTIVE_ANON pages on this zone's LRU, maintained by the 4752 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 4753 * the anonymous pages are kept on the inactive list. 4754 * 4755 * total target max 4756 * memory ratio inactive anon 4757 * ------------------------------------- 4758 * 10MB 1 5MB 4759 * 100MB 1 50MB 4760 * 1GB 3 250MB 4761 * 10GB 10 0.9GB 4762 * 100GB 31 3GB 4763 * 1TB 101 10GB 4764 * 10TB 320 32GB 4765 */ 4766 void calculate_zone_inactive_ratio(struct zone *zone) 4767 { 4768 unsigned int gb, ratio; 4769 4770 /* Zone size in gigabytes */ 4771 gb = zone->present_pages >> (30 - PAGE_SHIFT); 4772 if (gb) 4773 ratio = int_sqrt(10 * gb); 4774 else 4775 ratio = 1; 4776 4777 zone->inactive_ratio = ratio; 4778 } 4779 4780 static void __init setup_per_zone_inactive_ratio(void) 4781 { 4782 struct zone *zone; 4783 4784 for_each_zone(zone) 4785 calculate_zone_inactive_ratio(zone); 4786 } 4787 4788 /* 4789 * Initialise min_free_kbytes. 4790 * 4791 * For small machines we want it small (128k min). For large machines 4792 * we want it large (64MB max). But it is not linear, because network 4793 * bandwidth does not increase linearly with machine size. We use 4794 * 4795 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4796 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4797 * 4798 * which yields 4799 * 4800 * 16MB: 512k 4801 * 32MB: 724k 4802 * 64MB: 1024k 4803 * 128MB: 1448k 4804 * 256MB: 2048k 4805 * 512MB: 2896k 4806 * 1024MB: 4096k 4807 * 2048MB: 5792k 4808 * 4096MB: 8192k 4809 * 8192MB: 11584k 4810 * 16384MB: 16384k 4811 */ 4812 static int __init init_per_zone_wmark_min(void) 4813 { 4814 unsigned long lowmem_kbytes; 4815 4816 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4817 4818 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4819 if (min_free_kbytes < 128) 4820 min_free_kbytes = 128; 4821 if (min_free_kbytes > 65536) 4822 min_free_kbytes = 65536; 4823 setup_per_zone_wmarks(); 4824 setup_per_zone_lowmem_reserve(); 4825 setup_per_zone_inactive_ratio(); 4826 return 0; 4827 } 4828 module_init(init_per_zone_wmark_min) 4829 4830 /* 4831 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 4832 * that we can call two helper functions whenever min_free_kbytes 4833 * changes. 4834 */ 4835 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 4836 void __user *buffer, size_t *length, loff_t *ppos) 4837 { 4838 proc_dointvec(table, write, buffer, length, ppos); 4839 if (write) 4840 setup_per_zone_wmarks(); 4841 return 0; 4842 } 4843 4844 #ifdef CONFIG_NUMA 4845 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 4846 void __user *buffer, size_t *length, loff_t *ppos) 4847 { 4848 struct zone *zone; 4849 int rc; 4850 4851 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 4852 if (rc) 4853 return rc; 4854 4855 for_each_zone(zone) 4856 zone->min_unmapped_pages = (zone->present_pages * 4857 sysctl_min_unmapped_ratio) / 100; 4858 return 0; 4859 } 4860 4861 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 4862 void __user *buffer, size_t *length, loff_t *ppos) 4863 { 4864 struct zone *zone; 4865 int rc; 4866 4867 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 4868 if (rc) 4869 return rc; 4870 4871 for_each_zone(zone) 4872 zone->min_slab_pages = (zone->present_pages * 4873 sysctl_min_slab_ratio) / 100; 4874 return 0; 4875 } 4876 #endif 4877 4878 /* 4879 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 4880 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 4881 * whenever sysctl_lowmem_reserve_ratio changes. 4882 * 4883 * The reserve ratio obviously has absolutely no relation with the 4884 * minimum watermarks. The lowmem reserve ratio can only make sense 4885 * if in function of the boot time zone sizes. 4886 */ 4887 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 4888 void __user *buffer, size_t *length, loff_t *ppos) 4889 { 4890 proc_dointvec_minmax(table, write, buffer, length, ppos); 4891 setup_per_zone_lowmem_reserve(); 4892 return 0; 4893 } 4894 4895 /* 4896 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 4897 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 4898 * can have before it gets flushed back to buddy allocator. 4899 */ 4900 4901 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 4902 void __user *buffer, size_t *length, loff_t *ppos) 4903 { 4904 struct zone *zone; 4905 unsigned int cpu; 4906 int ret; 4907 4908 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 4909 if (!write || (ret == -EINVAL)) 4910 return ret; 4911 for_each_populated_zone(zone) { 4912 for_each_possible_cpu(cpu) { 4913 unsigned long high; 4914 high = zone->present_pages / percpu_pagelist_fraction; 4915 setup_pagelist_highmark( 4916 per_cpu_ptr(zone->pageset, cpu), high); 4917 } 4918 } 4919 return 0; 4920 } 4921 4922 int hashdist = HASHDIST_DEFAULT; 4923 4924 #ifdef CONFIG_NUMA 4925 static int __init set_hashdist(char *str) 4926 { 4927 if (!str) 4928 return 0; 4929 hashdist = simple_strtoul(str, &str, 0); 4930 return 1; 4931 } 4932 __setup("hashdist=", set_hashdist); 4933 #endif 4934 4935 /* 4936 * allocate a large system hash table from bootmem 4937 * - it is assumed that the hash table must contain an exact power-of-2 4938 * quantity of entries 4939 * - limit is the number of hash buckets, not the total allocation size 4940 */ 4941 void *__init alloc_large_system_hash(const char *tablename, 4942 unsigned long bucketsize, 4943 unsigned long numentries, 4944 int scale, 4945 int flags, 4946 unsigned int *_hash_shift, 4947 unsigned int *_hash_mask, 4948 unsigned long limit) 4949 { 4950 unsigned long long max = limit; 4951 unsigned long log2qty, size; 4952 void *table = NULL; 4953 4954 /* allow the kernel cmdline to have a say */ 4955 if (!numentries) { 4956 /* round applicable memory size up to nearest megabyte */ 4957 numentries = nr_kernel_pages; 4958 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 4959 numentries >>= 20 - PAGE_SHIFT; 4960 numentries <<= 20 - PAGE_SHIFT; 4961 4962 /* limit to 1 bucket per 2^scale bytes of low memory */ 4963 if (scale > PAGE_SHIFT) 4964 numentries >>= (scale - PAGE_SHIFT); 4965 else 4966 numentries <<= (PAGE_SHIFT - scale); 4967 4968 /* Make sure we've got at least a 0-order allocation.. */ 4969 if (unlikely(flags & HASH_SMALL)) { 4970 /* Makes no sense without HASH_EARLY */ 4971 WARN_ON(!(flags & HASH_EARLY)); 4972 if (!(numentries >> *_hash_shift)) { 4973 numentries = 1UL << *_hash_shift; 4974 BUG_ON(!numentries); 4975 } 4976 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 4977 numentries = PAGE_SIZE / bucketsize; 4978 } 4979 numentries = roundup_pow_of_two(numentries); 4980 4981 /* limit allocation size to 1/16 total memory by default */ 4982 if (max == 0) { 4983 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 4984 do_div(max, bucketsize); 4985 } 4986 4987 if (numentries > max) 4988 numentries = max; 4989 4990 log2qty = ilog2(numentries); 4991 4992 do { 4993 size = bucketsize << log2qty; 4994 if (flags & HASH_EARLY) 4995 table = alloc_bootmem_nopanic(size); 4996 else if (hashdist) 4997 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 4998 else { 4999 /* 5000 * If bucketsize is not a power-of-two, we may free 5001 * some pages at the end of hash table which 5002 * alloc_pages_exact() automatically does 5003 */ 5004 if (get_order(size) < MAX_ORDER) { 5005 table = alloc_pages_exact(size, GFP_ATOMIC); 5006 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5007 } 5008 } 5009 } while (!table && size > PAGE_SIZE && --log2qty); 5010 5011 if (!table) 5012 panic("Failed to allocate %s hash table\n", tablename); 5013 5014 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", 5015 tablename, 5016 (1U << log2qty), 5017 ilog2(size) - PAGE_SHIFT, 5018 size); 5019 5020 if (_hash_shift) 5021 *_hash_shift = log2qty; 5022 if (_hash_mask) 5023 *_hash_mask = (1 << log2qty) - 1; 5024 5025 return table; 5026 } 5027 5028 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5029 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5030 unsigned long pfn) 5031 { 5032 #ifdef CONFIG_SPARSEMEM 5033 return __pfn_to_section(pfn)->pageblock_flags; 5034 #else 5035 return zone->pageblock_flags; 5036 #endif /* CONFIG_SPARSEMEM */ 5037 } 5038 5039 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5040 { 5041 #ifdef CONFIG_SPARSEMEM 5042 pfn &= (PAGES_PER_SECTION-1); 5043 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5044 #else 5045 pfn = pfn - zone->zone_start_pfn; 5046 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5047 #endif /* CONFIG_SPARSEMEM */ 5048 } 5049 5050 /** 5051 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5052 * @page: The page within the block of interest 5053 * @start_bitidx: The first bit of interest to retrieve 5054 * @end_bitidx: The last bit of interest 5055 * returns pageblock_bits flags 5056 */ 5057 unsigned long get_pageblock_flags_group(struct page *page, 5058 int start_bitidx, int end_bitidx) 5059 { 5060 struct zone *zone; 5061 unsigned long *bitmap; 5062 unsigned long pfn, bitidx; 5063 unsigned long flags = 0; 5064 unsigned long value = 1; 5065 5066 zone = page_zone(page); 5067 pfn = page_to_pfn(page); 5068 bitmap = get_pageblock_bitmap(zone, pfn); 5069 bitidx = pfn_to_bitidx(zone, pfn); 5070 5071 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5072 if (test_bit(bitidx + start_bitidx, bitmap)) 5073 flags |= value; 5074 5075 return flags; 5076 } 5077 5078 /** 5079 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5080 * @page: The page within the block of interest 5081 * @start_bitidx: The first bit of interest 5082 * @end_bitidx: The last bit of interest 5083 * @flags: The flags to set 5084 */ 5085 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5086 int start_bitidx, int end_bitidx) 5087 { 5088 struct zone *zone; 5089 unsigned long *bitmap; 5090 unsigned long pfn, bitidx; 5091 unsigned long value = 1; 5092 5093 zone = page_zone(page); 5094 pfn = page_to_pfn(page); 5095 bitmap = get_pageblock_bitmap(zone, pfn); 5096 bitidx = pfn_to_bitidx(zone, pfn); 5097 VM_BUG_ON(pfn < zone->zone_start_pfn); 5098 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5099 5100 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5101 if (flags & value) 5102 __set_bit(bitidx + start_bitidx, bitmap); 5103 else 5104 __clear_bit(bitidx + start_bitidx, bitmap); 5105 } 5106 5107 /* 5108 * This is designed as sub function...plz see page_isolation.c also. 5109 * set/clear page block's type to be ISOLATE. 5110 * page allocater never alloc memory from ISOLATE block. 5111 */ 5112 5113 int set_migratetype_isolate(struct page *page) 5114 { 5115 struct zone *zone; 5116 struct page *curr_page; 5117 unsigned long flags, pfn, iter; 5118 unsigned long immobile = 0; 5119 struct memory_isolate_notify arg; 5120 int notifier_ret; 5121 int ret = -EBUSY; 5122 int zone_idx; 5123 5124 zone = page_zone(page); 5125 zone_idx = zone_idx(zone); 5126 5127 spin_lock_irqsave(&zone->lock, flags); 5128 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE || 5129 zone_idx == ZONE_MOVABLE) { 5130 ret = 0; 5131 goto out; 5132 } 5133 5134 pfn = page_to_pfn(page); 5135 arg.start_pfn = pfn; 5136 arg.nr_pages = pageblock_nr_pages; 5137 arg.pages_found = 0; 5138 5139 /* 5140 * It may be possible to isolate a pageblock even if the 5141 * migratetype is not MIGRATE_MOVABLE. The memory isolation 5142 * notifier chain is used by balloon drivers to return the 5143 * number of pages in a range that are held by the balloon 5144 * driver to shrink memory. If all the pages are accounted for 5145 * by balloons, are free, or on the LRU, isolation can continue. 5146 * Later, for example, when memory hotplug notifier runs, these 5147 * pages reported as "can be isolated" should be isolated(freed) 5148 * by the balloon driver through the memory notifier chain. 5149 */ 5150 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); 5151 notifier_ret = notifier_to_errno(notifier_ret); 5152 if (notifier_ret || !arg.pages_found) 5153 goto out; 5154 5155 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) { 5156 if (!pfn_valid_within(pfn)) 5157 continue; 5158 5159 curr_page = pfn_to_page(iter); 5160 if (!page_count(curr_page) || PageLRU(curr_page)) 5161 continue; 5162 5163 immobile++; 5164 } 5165 5166 if (arg.pages_found == immobile) 5167 ret = 0; 5168 5169 out: 5170 if (!ret) { 5171 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5172 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5173 } 5174 5175 spin_unlock_irqrestore(&zone->lock, flags); 5176 if (!ret) 5177 drain_all_pages(); 5178 return ret; 5179 } 5180 5181 void unset_migratetype_isolate(struct page *page) 5182 { 5183 struct zone *zone; 5184 unsigned long flags; 5185 zone = page_zone(page); 5186 spin_lock_irqsave(&zone->lock, flags); 5187 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5188 goto out; 5189 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5190 move_freepages_block(zone, page, MIGRATE_MOVABLE); 5191 out: 5192 spin_unlock_irqrestore(&zone->lock, flags); 5193 } 5194 5195 #ifdef CONFIG_MEMORY_HOTREMOVE 5196 /* 5197 * All pages in the range must be isolated before calling this. 5198 */ 5199 void 5200 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5201 { 5202 struct page *page; 5203 struct zone *zone; 5204 int order, i; 5205 unsigned long pfn; 5206 unsigned long flags; 5207 /* find the first valid pfn */ 5208 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5209 if (pfn_valid(pfn)) 5210 break; 5211 if (pfn == end_pfn) 5212 return; 5213 zone = page_zone(pfn_to_page(pfn)); 5214 spin_lock_irqsave(&zone->lock, flags); 5215 pfn = start_pfn; 5216 while (pfn < end_pfn) { 5217 if (!pfn_valid(pfn)) { 5218 pfn++; 5219 continue; 5220 } 5221 page = pfn_to_page(pfn); 5222 BUG_ON(page_count(page)); 5223 BUG_ON(!PageBuddy(page)); 5224 order = page_order(page); 5225 #ifdef CONFIG_DEBUG_VM 5226 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5227 pfn, 1 << order, end_pfn); 5228 #endif 5229 list_del(&page->lru); 5230 rmv_page_order(page); 5231 zone->free_area[order].nr_free--; 5232 __mod_zone_page_state(zone, NR_FREE_PAGES, 5233 - (1UL << order)); 5234 for (i = 0; i < (1 << order); i++) 5235 SetPageReserved((page+i)); 5236 pfn += (1 << order); 5237 } 5238 spin_unlock_irqrestore(&zone->lock, flags); 5239 } 5240 #endif 5241 5242 #ifdef CONFIG_MEMORY_FAILURE 5243 bool is_free_buddy_page(struct page *page) 5244 { 5245 struct zone *zone = page_zone(page); 5246 unsigned long pfn = page_to_pfn(page); 5247 unsigned long flags; 5248 int order; 5249 5250 spin_lock_irqsave(&zone->lock, flags); 5251 for (order = 0; order < MAX_ORDER; order++) { 5252 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5253 5254 if (PageBuddy(page_head) && page_order(page_head) >= order) 5255 break; 5256 } 5257 spin_unlock_irqrestore(&zone->lock, flags); 5258 5259 return order < MAX_ORDER; 5260 } 5261 #endif 5262 5263 static struct trace_print_flags pageflag_names[] = { 5264 {1UL << PG_locked, "locked" }, 5265 {1UL << PG_error, "error" }, 5266 {1UL << PG_referenced, "referenced" }, 5267 {1UL << PG_uptodate, "uptodate" }, 5268 {1UL << PG_dirty, "dirty" }, 5269 {1UL << PG_lru, "lru" }, 5270 {1UL << PG_active, "active" }, 5271 {1UL << PG_slab, "slab" }, 5272 {1UL << PG_owner_priv_1, "owner_priv_1" }, 5273 {1UL << PG_arch_1, "arch_1" }, 5274 {1UL << PG_reserved, "reserved" }, 5275 {1UL << PG_private, "private" }, 5276 {1UL << PG_private_2, "private_2" }, 5277 {1UL << PG_writeback, "writeback" }, 5278 #ifdef CONFIG_PAGEFLAGS_EXTENDED 5279 {1UL << PG_head, "head" }, 5280 {1UL << PG_tail, "tail" }, 5281 #else 5282 {1UL << PG_compound, "compound" }, 5283 #endif 5284 {1UL << PG_swapcache, "swapcache" }, 5285 {1UL << PG_mappedtodisk, "mappedtodisk" }, 5286 {1UL << PG_reclaim, "reclaim" }, 5287 {1UL << PG_buddy, "buddy" }, 5288 {1UL << PG_swapbacked, "swapbacked" }, 5289 {1UL << PG_unevictable, "unevictable" }, 5290 #ifdef CONFIG_MMU 5291 {1UL << PG_mlocked, "mlocked" }, 5292 #endif 5293 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 5294 {1UL << PG_uncached, "uncached" }, 5295 #endif 5296 #ifdef CONFIG_MEMORY_FAILURE 5297 {1UL << PG_hwpoison, "hwpoison" }, 5298 #endif 5299 {-1UL, NULL }, 5300 }; 5301 5302 static void dump_page_flags(unsigned long flags) 5303 { 5304 const char *delim = ""; 5305 unsigned long mask; 5306 int i; 5307 5308 printk(KERN_ALERT "page flags: %#lx(", flags); 5309 5310 /* remove zone id */ 5311 flags &= (1UL << NR_PAGEFLAGS) - 1; 5312 5313 for (i = 0; pageflag_names[i].name && flags; i++) { 5314 5315 mask = pageflag_names[i].mask; 5316 if ((flags & mask) != mask) 5317 continue; 5318 5319 flags &= ~mask; 5320 printk("%s%s", delim, pageflag_names[i].name); 5321 delim = "|"; 5322 } 5323 5324 /* check for left over flags */ 5325 if (flags) 5326 printk("%s%#lx", delim, flags); 5327 5328 printk(")\n"); 5329 } 5330 5331 void dump_page(struct page *page) 5332 { 5333 printk(KERN_ALERT 5334 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 5335 page, page_count(page), page_mapcount(page), 5336 page->mapping, page->index); 5337 dump_page_flags(page->flags); 5338 } 5339