xref: /openbmc/linux/mm/page_alloc.c (revision 748446bb6b5a9390b546af38ec899c868a9dbcf0)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <linux/memory.h>
52 #include <trace/events/kmem.h>
53 #include <linux/ftrace_event.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 #include "internal.h"
58 
59 /*
60  * Array of node states.
61  */
62 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
63 	[N_POSSIBLE] = NODE_MASK_ALL,
64 	[N_ONLINE] = { { [0] = 1UL } },
65 #ifndef CONFIG_NUMA
66 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
67 #ifdef CONFIG_HIGHMEM
68 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
69 #endif
70 	[N_CPU] = { { [0] = 1UL } },
71 #endif	/* NUMA */
72 };
73 EXPORT_SYMBOL(node_states);
74 
75 unsigned long totalram_pages __read_mostly;
76 unsigned long totalreserve_pages __read_mostly;
77 int percpu_pagelist_fraction;
78 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
79 
80 #ifdef CONFIG_PM_SLEEP
81 /*
82  * The following functions are used by the suspend/hibernate code to temporarily
83  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
84  * while devices are suspended.  To avoid races with the suspend/hibernate code,
85  * they should always be called with pm_mutex held (gfp_allowed_mask also should
86  * only be modified with pm_mutex held, unless the suspend/hibernate code is
87  * guaranteed not to run in parallel with that modification).
88  */
89 void set_gfp_allowed_mask(gfp_t mask)
90 {
91 	WARN_ON(!mutex_is_locked(&pm_mutex));
92 	gfp_allowed_mask = mask;
93 }
94 
95 gfp_t clear_gfp_allowed_mask(gfp_t mask)
96 {
97 	gfp_t ret = gfp_allowed_mask;
98 
99 	WARN_ON(!mutex_is_locked(&pm_mutex));
100 	gfp_allowed_mask &= ~mask;
101 	return ret;
102 }
103 #endif /* CONFIG_PM_SLEEP */
104 
105 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
106 int pageblock_order __read_mostly;
107 #endif
108 
109 static void __free_pages_ok(struct page *page, unsigned int order);
110 
111 /*
112  * results with 256, 32 in the lowmem_reserve sysctl:
113  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
114  *	1G machine -> (16M dma, 784M normal, 224M high)
115  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
116  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
117  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
118  *
119  * TBD: should special case ZONE_DMA32 machines here - in those we normally
120  * don't need any ZONE_NORMAL reservation
121  */
122 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
123 #ifdef CONFIG_ZONE_DMA
124 	 256,
125 #endif
126 #ifdef CONFIG_ZONE_DMA32
127 	 256,
128 #endif
129 #ifdef CONFIG_HIGHMEM
130 	 32,
131 #endif
132 	 32,
133 };
134 
135 EXPORT_SYMBOL(totalram_pages);
136 
137 static char * const zone_names[MAX_NR_ZONES] = {
138 #ifdef CONFIG_ZONE_DMA
139 	 "DMA",
140 #endif
141 #ifdef CONFIG_ZONE_DMA32
142 	 "DMA32",
143 #endif
144 	 "Normal",
145 #ifdef CONFIG_HIGHMEM
146 	 "HighMem",
147 #endif
148 	 "Movable",
149 };
150 
151 int min_free_kbytes = 1024;
152 
153 static unsigned long __meminitdata nr_kernel_pages;
154 static unsigned long __meminitdata nr_all_pages;
155 static unsigned long __meminitdata dma_reserve;
156 
157 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
158   /*
159    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
160    * ranges of memory (RAM) that may be registered with add_active_range().
161    * Ranges passed to add_active_range() will be merged if possible
162    * so the number of times add_active_range() can be called is
163    * related to the number of nodes and the number of holes
164    */
165   #ifdef CONFIG_MAX_ACTIVE_REGIONS
166     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
167     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
168   #else
169     #if MAX_NUMNODES >= 32
170       /* If there can be many nodes, allow up to 50 holes per node */
171       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
172     #else
173       /* By default, allow up to 256 distinct regions */
174       #define MAX_ACTIVE_REGIONS 256
175     #endif
176   #endif
177 
178   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
179   static int __meminitdata nr_nodemap_entries;
180   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
181   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
182   static unsigned long __initdata required_kernelcore;
183   static unsigned long __initdata required_movablecore;
184   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
185 
186   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
187   int movable_zone;
188   EXPORT_SYMBOL(movable_zone);
189 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
190 
191 #if MAX_NUMNODES > 1
192 int nr_node_ids __read_mostly = MAX_NUMNODES;
193 int nr_online_nodes __read_mostly = 1;
194 EXPORT_SYMBOL(nr_node_ids);
195 EXPORT_SYMBOL(nr_online_nodes);
196 #endif
197 
198 int page_group_by_mobility_disabled __read_mostly;
199 
200 static void set_pageblock_migratetype(struct page *page, int migratetype)
201 {
202 
203 	if (unlikely(page_group_by_mobility_disabled))
204 		migratetype = MIGRATE_UNMOVABLE;
205 
206 	set_pageblock_flags_group(page, (unsigned long)migratetype,
207 					PB_migrate, PB_migrate_end);
208 }
209 
210 bool oom_killer_disabled __read_mostly;
211 
212 #ifdef CONFIG_DEBUG_VM
213 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
214 {
215 	int ret = 0;
216 	unsigned seq;
217 	unsigned long pfn = page_to_pfn(page);
218 
219 	do {
220 		seq = zone_span_seqbegin(zone);
221 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
222 			ret = 1;
223 		else if (pfn < zone->zone_start_pfn)
224 			ret = 1;
225 	} while (zone_span_seqretry(zone, seq));
226 
227 	return ret;
228 }
229 
230 static int page_is_consistent(struct zone *zone, struct page *page)
231 {
232 	if (!pfn_valid_within(page_to_pfn(page)))
233 		return 0;
234 	if (zone != page_zone(page))
235 		return 0;
236 
237 	return 1;
238 }
239 /*
240  * Temporary debugging check for pages not lying within a given zone.
241  */
242 static int bad_range(struct zone *zone, struct page *page)
243 {
244 	if (page_outside_zone_boundaries(zone, page))
245 		return 1;
246 	if (!page_is_consistent(zone, page))
247 		return 1;
248 
249 	return 0;
250 }
251 #else
252 static inline int bad_range(struct zone *zone, struct page *page)
253 {
254 	return 0;
255 }
256 #endif
257 
258 static void bad_page(struct page *page)
259 {
260 	static unsigned long resume;
261 	static unsigned long nr_shown;
262 	static unsigned long nr_unshown;
263 
264 	/* Don't complain about poisoned pages */
265 	if (PageHWPoison(page)) {
266 		__ClearPageBuddy(page);
267 		return;
268 	}
269 
270 	/*
271 	 * Allow a burst of 60 reports, then keep quiet for that minute;
272 	 * or allow a steady drip of one report per second.
273 	 */
274 	if (nr_shown == 60) {
275 		if (time_before(jiffies, resume)) {
276 			nr_unshown++;
277 			goto out;
278 		}
279 		if (nr_unshown) {
280 			printk(KERN_ALERT
281 			      "BUG: Bad page state: %lu messages suppressed\n",
282 				nr_unshown);
283 			nr_unshown = 0;
284 		}
285 		nr_shown = 0;
286 	}
287 	if (nr_shown++ == 0)
288 		resume = jiffies + 60 * HZ;
289 
290 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
291 		current->comm, page_to_pfn(page));
292 	dump_page(page);
293 
294 	dump_stack();
295 out:
296 	/* Leave bad fields for debug, except PageBuddy could make trouble */
297 	__ClearPageBuddy(page);
298 	add_taint(TAINT_BAD_PAGE);
299 }
300 
301 /*
302  * Higher-order pages are called "compound pages".  They are structured thusly:
303  *
304  * The first PAGE_SIZE page is called the "head page".
305  *
306  * The remaining PAGE_SIZE pages are called "tail pages".
307  *
308  * All pages have PG_compound set.  All pages have their ->private pointing at
309  * the head page (even the head page has this).
310  *
311  * The first tail page's ->lru.next holds the address of the compound page's
312  * put_page() function.  Its ->lru.prev holds the order of allocation.
313  * This usage means that zero-order pages may not be compound.
314  */
315 
316 static void free_compound_page(struct page *page)
317 {
318 	__free_pages_ok(page, compound_order(page));
319 }
320 
321 void prep_compound_page(struct page *page, unsigned long order)
322 {
323 	int i;
324 	int nr_pages = 1 << order;
325 
326 	set_compound_page_dtor(page, free_compound_page);
327 	set_compound_order(page, order);
328 	__SetPageHead(page);
329 	for (i = 1; i < nr_pages; i++) {
330 		struct page *p = page + i;
331 
332 		__SetPageTail(p);
333 		p->first_page = page;
334 	}
335 }
336 
337 static int destroy_compound_page(struct page *page, unsigned long order)
338 {
339 	int i;
340 	int nr_pages = 1 << order;
341 	int bad = 0;
342 
343 	if (unlikely(compound_order(page) != order) ||
344 	    unlikely(!PageHead(page))) {
345 		bad_page(page);
346 		bad++;
347 	}
348 
349 	__ClearPageHead(page);
350 
351 	for (i = 1; i < nr_pages; i++) {
352 		struct page *p = page + i;
353 
354 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
355 			bad_page(page);
356 			bad++;
357 		}
358 		__ClearPageTail(p);
359 	}
360 
361 	return bad;
362 }
363 
364 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
365 {
366 	int i;
367 
368 	/*
369 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
370 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
371 	 */
372 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
373 	for (i = 0; i < (1 << order); i++)
374 		clear_highpage(page + i);
375 }
376 
377 static inline void set_page_order(struct page *page, int order)
378 {
379 	set_page_private(page, order);
380 	__SetPageBuddy(page);
381 }
382 
383 static inline void rmv_page_order(struct page *page)
384 {
385 	__ClearPageBuddy(page);
386 	set_page_private(page, 0);
387 }
388 
389 /*
390  * Locate the struct page for both the matching buddy in our
391  * pair (buddy1) and the combined O(n+1) page they form (page).
392  *
393  * 1) Any buddy B1 will have an order O twin B2 which satisfies
394  * the following equation:
395  *     B2 = B1 ^ (1 << O)
396  * For example, if the starting buddy (buddy2) is #8 its order
397  * 1 buddy is #10:
398  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
399  *
400  * 2) Any buddy B will have an order O+1 parent P which
401  * satisfies the following equation:
402  *     P = B & ~(1 << O)
403  *
404  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
405  */
406 static inline struct page *
407 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
408 {
409 	unsigned long buddy_idx = page_idx ^ (1 << order);
410 
411 	return page + (buddy_idx - page_idx);
412 }
413 
414 static inline unsigned long
415 __find_combined_index(unsigned long page_idx, unsigned int order)
416 {
417 	return (page_idx & ~(1 << order));
418 }
419 
420 /*
421  * This function checks whether a page is free && is the buddy
422  * we can do coalesce a page and its buddy if
423  * (a) the buddy is not in a hole &&
424  * (b) the buddy is in the buddy system &&
425  * (c) a page and its buddy have the same order &&
426  * (d) a page and its buddy are in the same zone.
427  *
428  * For recording whether a page is in the buddy system, we use PG_buddy.
429  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
430  *
431  * For recording page's order, we use page_private(page).
432  */
433 static inline int page_is_buddy(struct page *page, struct page *buddy,
434 								int order)
435 {
436 	if (!pfn_valid_within(page_to_pfn(buddy)))
437 		return 0;
438 
439 	if (page_zone_id(page) != page_zone_id(buddy))
440 		return 0;
441 
442 	if (PageBuddy(buddy) && page_order(buddy) == order) {
443 		VM_BUG_ON(page_count(buddy) != 0);
444 		return 1;
445 	}
446 	return 0;
447 }
448 
449 /*
450  * Freeing function for a buddy system allocator.
451  *
452  * The concept of a buddy system is to maintain direct-mapped table
453  * (containing bit values) for memory blocks of various "orders".
454  * The bottom level table contains the map for the smallest allocatable
455  * units of memory (here, pages), and each level above it describes
456  * pairs of units from the levels below, hence, "buddies".
457  * At a high level, all that happens here is marking the table entry
458  * at the bottom level available, and propagating the changes upward
459  * as necessary, plus some accounting needed to play nicely with other
460  * parts of the VM system.
461  * At each level, we keep a list of pages, which are heads of continuous
462  * free pages of length of (1 << order) and marked with PG_buddy. Page's
463  * order is recorded in page_private(page) field.
464  * So when we are allocating or freeing one, we can derive the state of the
465  * other.  That is, if we allocate a small block, and both were
466  * free, the remainder of the region must be split into blocks.
467  * If a block is freed, and its buddy is also free, then this
468  * triggers coalescing into a block of larger size.
469  *
470  * -- wli
471  */
472 
473 static inline void __free_one_page(struct page *page,
474 		struct zone *zone, unsigned int order,
475 		int migratetype)
476 {
477 	unsigned long page_idx;
478 	unsigned long combined_idx;
479 	struct page *buddy;
480 
481 	if (unlikely(PageCompound(page)))
482 		if (unlikely(destroy_compound_page(page, order)))
483 			return;
484 
485 	VM_BUG_ON(migratetype == -1);
486 
487 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
488 
489 	VM_BUG_ON(page_idx & ((1 << order) - 1));
490 	VM_BUG_ON(bad_range(zone, page));
491 
492 	while (order < MAX_ORDER-1) {
493 		buddy = __page_find_buddy(page, page_idx, order);
494 		if (!page_is_buddy(page, buddy, order))
495 			break;
496 
497 		/* Our buddy is free, merge with it and move up one order. */
498 		list_del(&buddy->lru);
499 		zone->free_area[order].nr_free--;
500 		rmv_page_order(buddy);
501 		combined_idx = __find_combined_index(page_idx, order);
502 		page = page + (combined_idx - page_idx);
503 		page_idx = combined_idx;
504 		order++;
505 	}
506 	set_page_order(page, order);
507 
508 	/*
509 	 * If this is not the largest possible page, check if the buddy
510 	 * of the next-highest order is free. If it is, it's possible
511 	 * that pages are being freed that will coalesce soon. In case,
512 	 * that is happening, add the free page to the tail of the list
513 	 * so it's less likely to be used soon and more likely to be merged
514 	 * as a higher order page
515 	 */
516 	if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
517 		struct page *higher_page, *higher_buddy;
518 		combined_idx = __find_combined_index(page_idx, order);
519 		higher_page = page + combined_idx - page_idx;
520 		higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
521 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
522 			list_add_tail(&page->lru,
523 				&zone->free_area[order].free_list[migratetype]);
524 			goto out;
525 		}
526 	}
527 
528 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
529 out:
530 	zone->free_area[order].nr_free++;
531 }
532 
533 /*
534  * free_page_mlock() -- clean up attempts to free and mlocked() page.
535  * Page should not be on lru, so no need to fix that up.
536  * free_pages_check() will verify...
537  */
538 static inline void free_page_mlock(struct page *page)
539 {
540 	__dec_zone_page_state(page, NR_MLOCK);
541 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
542 }
543 
544 static inline int free_pages_check(struct page *page)
545 {
546 	if (unlikely(page_mapcount(page) |
547 		(page->mapping != NULL)  |
548 		(atomic_read(&page->_count) != 0) |
549 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
550 		bad_page(page);
551 		return 1;
552 	}
553 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
554 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
555 	return 0;
556 }
557 
558 /*
559  * Frees a number of pages from the PCP lists
560  * Assumes all pages on list are in same zone, and of same order.
561  * count is the number of pages to free.
562  *
563  * If the zone was previously in an "all pages pinned" state then look to
564  * see if this freeing clears that state.
565  *
566  * And clear the zone's pages_scanned counter, to hold off the "all pages are
567  * pinned" detection logic.
568  */
569 static void free_pcppages_bulk(struct zone *zone, int count,
570 					struct per_cpu_pages *pcp)
571 {
572 	int migratetype = 0;
573 	int batch_free = 0;
574 
575 	spin_lock(&zone->lock);
576 	zone->all_unreclaimable = 0;
577 	zone->pages_scanned = 0;
578 
579 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
580 	while (count) {
581 		struct page *page;
582 		struct list_head *list;
583 
584 		/*
585 		 * Remove pages from lists in a round-robin fashion. A
586 		 * batch_free count is maintained that is incremented when an
587 		 * empty list is encountered.  This is so more pages are freed
588 		 * off fuller lists instead of spinning excessively around empty
589 		 * lists
590 		 */
591 		do {
592 			batch_free++;
593 			if (++migratetype == MIGRATE_PCPTYPES)
594 				migratetype = 0;
595 			list = &pcp->lists[migratetype];
596 		} while (list_empty(list));
597 
598 		do {
599 			page = list_entry(list->prev, struct page, lru);
600 			/* must delete as __free_one_page list manipulates */
601 			list_del(&page->lru);
602 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
603 			__free_one_page(page, zone, 0, page_private(page));
604 			trace_mm_page_pcpu_drain(page, 0, page_private(page));
605 		} while (--count && --batch_free && !list_empty(list));
606 	}
607 	spin_unlock(&zone->lock);
608 }
609 
610 static void free_one_page(struct zone *zone, struct page *page, int order,
611 				int migratetype)
612 {
613 	spin_lock(&zone->lock);
614 	zone->all_unreclaimable = 0;
615 	zone->pages_scanned = 0;
616 
617 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
618 	__free_one_page(page, zone, order, migratetype);
619 	spin_unlock(&zone->lock);
620 }
621 
622 static void __free_pages_ok(struct page *page, unsigned int order)
623 {
624 	unsigned long flags;
625 	int i;
626 	int bad = 0;
627 	int wasMlocked = __TestClearPageMlocked(page);
628 
629 	trace_mm_page_free_direct(page, order);
630 	kmemcheck_free_shadow(page, order);
631 
632 	for (i = 0 ; i < (1 << order) ; ++i)
633 		bad += free_pages_check(page + i);
634 	if (bad)
635 		return;
636 
637 	if (!PageHighMem(page)) {
638 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
639 		debug_check_no_obj_freed(page_address(page),
640 					   PAGE_SIZE << order);
641 	}
642 	arch_free_page(page, order);
643 	kernel_map_pages(page, 1 << order, 0);
644 
645 	local_irq_save(flags);
646 	if (unlikely(wasMlocked))
647 		free_page_mlock(page);
648 	__count_vm_events(PGFREE, 1 << order);
649 	free_one_page(page_zone(page), page, order,
650 					get_pageblock_migratetype(page));
651 	local_irq_restore(flags);
652 }
653 
654 /*
655  * permit the bootmem allocator to evade page validation on high-order frees
656  */
657 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
658 {
659 	if (order == 0) {
660 		__ClearPageReserved(page);
661 		set_page_count(page, 0);
662 		set_page_refcounted(page);
663 		__free_page(page);
664 	} else {
665 		int loop;
666 
667 		prefetchw(page);
668 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
669 			struct page *p = &page[loop];
670 
671 			if (loop + 1 < BITS_PER_LONG)
672 				prefetchw(p + 1);
673 			__ClearPageReserved(p);
674 			set_page_count(p, 0);
675 		}
676 
677 		set_page_refcounted(page);
678 		__free_pages(page, order);
679 	}
680 }
681 
682 
683 /*
684  * The order of subdivision here is critical for the IO subsystem.
685  * Please do not alter this order without good reasons and regression
686  * testing. Specifically, as large blocks of memory are subdivided,
687  * the order in which smaller blocks are delivered depends on the order
688  * they're subdivided in this function. This is the primary factor
689  * influencing the order in which pages are delivered to the IO
690  * subsystem according to empirical testing, and this is also justified
691  * by considering the behavior of a buddy system containing a single
692  * large block of memory acted on by a series of small allocations.
693  * This behavior is a critical factor in sglist merging's success.
694  *
695  * -- wli
696  */
697 static inline void expand(struct zone *zone, struct page *page,
698 	int low, int high, struct free_area *area,
699 	int migratetype)
700 {
701 	unsigned long size = 1 << high;
702 
703 	while (high > low) {
704 		area--;
705 		high--;
706 		size >>= 1;
707 		VM_BUG_ON(bad_range(zone, &page[size]));
708 		list_add(&page[size].lru, &area->free_list[migratetype]);
709 		area->nr_free++;
710 		set_page_order(&page[size], high);
711 	}
712 }
713 
714 /*
715  * This page is about to be returned from the page allocator
716  */
717 static inline int check_new_page(struct page *page)
718 {
719 	if (unlikely(page_mapcount(page) |
720 		(page->mapping != NULL)  |
721 		(atomic_read(&page->_count) != 0)  |
722 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
723 		bad_page(page);
724 		return 1;
725 	}
726 	return 0;
727 }
728 
729 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
730 {
731 	int i;
732 
733 	for (i = 0; i < (1 << order); i++) {
734 		struct page *p = page + i;
735 		if (unlikely(check_new_page(p)))
736 			return 1;
737 	}
738 
739 	set_page_private(page, 0);
740 	set_page_refcounted(page);
741 
742 	arch_alloc_page(page, order);
743 	kernel_map_pages(page, 1 << order, 1);
744 
745 	if (gfp_flags & __GFP_ZERO)
746 		prep_zero_page(page, order, gfp_flags);
747 
748 	if (order && (gfp_flags & __GFP_COMP))
749 		prep_compound_page(page, order);
750 
751 	return 0;
752 }
753 
754 /*
755  * Go through the free lists for the given migratetype and remove
756  * the smallest available page from the freelists
757  */
758 static inline
759 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
760 						int migratetype)
761 {
762 	unsigned int current_order;
763 	struct free_area * area;
764 	struct page *page;
765 
766 	/* Find a page of the appropriate size in the preferred list */
767 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
768 		area = &(zone->free_area[current_order]);
769 		if (list_empty(&area->free_list[migratetype]))
770 			continue;
771 
772 		page = list_entry(area->free_list[migratetype].next,
773 							struct page, lru);
774 		list_del(&page->lru);
775 		rmv_page_order(page);
776 		area->nr_free--;
777 		expand(zone, page, order, current_order, area, migratetype);
778 		return page;
779 	}
780 
781 	return NULL;
782 }
783 
784 
785 /*
786  * This array describes the order lists are fallen back to when
787  * the free lists for the desirable migrate type are depleted
788  */
789 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
790 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
791 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
792 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
793 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
794 };
795 
796 /*
797  * Move the free pages in a range to the free lists of the requested type.
798  * Note that start_page and end_pages are not aligned on a pageblock
799  * boundary. If alignment is required, use move_freepages_block()
800  */
801 static int move_freepages(struct zone *zone,
802 			  struct page *start_page, struct page *end_page,
803 			  int migratetype)
804 {
805 	struct page *page;
806 	unsigned long order;
807 	int pages_moved = 0;
808 
809 #ifndef CONFIG_HOLES_IN_ZONE
810 	/*
811 	 * page_zone is not safe to call in this context when
812 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
813 	 * anyway as we check zone boundaries in move_freepages_block().
814 	 * Remove at a later date when no bug reports exist related to
815 	 * grouping pages by mobility
816 	 */
817 	BUG_ON(page_zone(start_page) != page_zone(end_page));
818 #endif
819 
820 	for (page = start_page; page <= end_page;) {
821 		/* Make sure we are not inadvertently changing nodes */
822 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
823 
824 		if (!pfn_valid_within(page_to_pfn(page))) {
825 			page++;
826 			continue;
827 		}
828 
829 		if (!PageBuddy(page)) {
830 			page++;
831 			continue;
832 		}
833 
834 		order = page_order(page);
835 		list_del(&page->lru);
836 		list_add(&page->lru,
837 			&zone->free_area[order].free_list[migratetype]);
838 		page += 1 << order;
839 		pages_moved += 1 << order;
840 	}
841 
842 	return pages_moved;
843 }
844 
845 static int move_freepages_block(struct zone *zone, struct page *page,
846 				int migratetype)
847 {
848 	unsigned long start_pfn, end_pfn;
849 	struct page *start_page, *end_page;
850 
851 	start_pfn = page_to_pfn(page);
852 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
853 	start_page = pfn_to_page(start_pfn);
854 	end_page = start_page + pageblock_nr_pages - 1;
855 	end_pfn = start_pfn + pageblock_nr_pages - 1;
856 
857 	/* Do not cross zone boundaries */
858 	if (start_pfn < zone->zone_start_pfn)
859 		start_page = page;
860 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
861 		return 0;
862 
863 	return move_freepages(zone, start_page, end_page, migratetype);
864 }
865 
866 static void change_pageblock_range(struct page *pageblock_page,
867 					int start_order, int migratetype)
868 {
869 	int nr_pageblocks = 1 << (start_order - pageblock_order);
870 
871 	while (nr_pageblocks--) {
872 		set_pageblock_migratetype(pageblock_page, migratetype);
873 		pageblock_page += pageblock_nr_pages;
874 	}
875 }
876 
877 /* Remove an element from the buddy allocator from the fallback list */
878 static inline struct page *
879 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
880 {
881 	struct free_area * area;
882 	int current_order;
883 	struct page *page;
884 	int migratetype, i;
885 
886 	/* Find the largest possible block of pages in the other list */
887 	for (current_order = MAX_ORDER-1; current_order >= order;
888 						--current_order) {
889 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
890 			migratetype = fallbacks[start_migratetype][i];
891 
892 			/* MIGRATE_RESERVE handled later if necessary */
893 			if (migratetype == MIGRATE_RESERVE)
894 				continue;
895 
896 			area = &(zone->free_area[current_order]);
897 			if (list_empty(&area->free_list[migratetype]))
898 				continue;
899 
900 			page = list_entry(area->free_list[migratetype].next,
901 					struct page, lru);
902 			area->nr_free--;
903 
904 			/*
905 			 * If breaking a large block of pages, move all free
906 			 * pages to the preferred allocation list. If falling
907 			 * back for a reclaimable kernel allocation, be more
908 			 * agressive about taking ownership of free pages
909 			 */
910 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
911 					start_migratetype == MIGRATE_RECLAIMABLE ||
912 					page_group_by_mobility_disabled) {
913 				unsigned long pages;
914 				pages = move_freepages_block(zone, page,
915 								start_migratetype);
916 
917 				/* Claim the whole block if over half of it is free */
918 				if (pages >= (1 << (pageblock_order-1)) ||
919 						page_group_by_mobility_disabled)
920 					set_pageblock_migratetype(page,
921 								start_migratetype);
922 
923 				migratetype = start_migratetype;
924 			}
925 
926 			/* Remove the page from the freelists */
927 			list_del(&page->lru);
928 			rmv_page_order(page);
929 
930 			/* Take ownership for orders >= pageblock_order */
931 			if (current_order >= pageblock_order)
932 				change_pageblock_range(page, current_order,
933 							start_migratetype);
934 
935 			expand(zone, page, order, current_order, area, migratetype);
936 
937 			trace_mm_page_alloc_extfrag(page, order, current_order,
938 				start_migratetype, migratetype);
939 
940 			return page;
941 		}
942 	}
943 
944 	return NULL;
945 }
946 
947 /*
948  * Do the hard work of removing an element from the buddy allocator.
949  * Call me with the zone->lock already held.
950  */
951 static struct page *__rmqueue(struct zone *zone, unsigned int order,
952 						int migratetype)
953 {
954 	struct page *page;
955 
956 retry_reserve:
957 	page = __rmqueue_smallest(zone, order, migratetype);
958 
959 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
960 		page = __rmqueue_fallback(zone, order, migratetype);
961 
962 		/*
963 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
964 		 * is used because __rmqueue_smallest is an inline function
965 		 * and we want just one call site
966 		 */
967 		if (!page) {
968 			migratetype = MIGRATE_RESERVE;
969 			goto retry_reserve;
970 		}
971 	}
972 
973 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
974 	return page;
975 }
976 
977 /*
978  * Obtain a specified number of elements from the buddy allocator, all under
979  * a single hold of the lock, for efficiency.  Add them to the supplied list.
980  * Returns the number of new pages which were placed at *list.
981  */
982 static int rmqueue_bulk(struct zone *zone, unsigned int order,
983 			unsigned long count, struct list_head *list,
984 			int migratetype, int cold)
985 {
986 	int i;
987 
988 	spin_lock(&zone->lock);
989 	for (i = 0; i < count; ++i) {
990 		struct page *page = __rmqueue(zone, order, migratetype);
991 		if (unlikely(page == NULL))
992 			break;
993 
994 		/*
995 		 * Split buddy pages returned by expand() are received here
996 		 * in physical page order. The page is added to the callers and
997 		 * list and the list head then moves forward. From the callers
998 		 * perspective, the linked list is ordered by page number in
999 		 * some conditions. This is useful for IO devices that can
1000 		 * merge IO requests if the physical pages are ordered
1001 		 * properly.
1002 		 */
1003 		if (likely(cold == 0))
1004 			list_add(&page->lru, list);
1005 		else
1006 			list_add_tail(&page->lru, list);
1007 		set_page_private(page, migratetype);
1008 		list = &page->lru;
1009 	}
1010 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1011 	spin_unlock(&zone->lock);
1012 	return i;
1013 }
1014 
1015 #ifdef CONFIG_NUMA
1016 /*
1017  * Called from the vmstat counter updater to drain pagesets of this
1018  * currently executing processor on remote nodes after they have
1019  * expired.
1020  *
1021  * Note that this function must be called with the thread pinned to
1022  * a single processor.
1023  */
1024 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1025 {
1026 	unsigned long flags;
1027 	int to_drain;
1028 
1029 	local_irq_save(flags);
1030 	if (pcp->count >= pcp->batch)
1031 		to_drain = pcp->batch;
1032 	else
1033 		to_drain = pcp->count;
1034 	free_pcppages_bulk(zone, to_drain, pcp);
1035 	pcp->count -= to_drain;
1036 	local_irq_restore(flags);
1037 }
1038 #endif
1039 
1040 /*
1041  * Drain pages of the indicated processor.
1042  *
1043  * The processor must either be the current processor and the
1044  * thread pinned to the current processor or a processor that
1045  * is not online.
1046  */
1047 static void drain_pages(unsigned int cpu)
1048 {
1049 	unsigned long flags;
1050 	struct zone *zone;
1051 
1052 	for_each_populated_zone(zone) {
1053 		struct per_cpu_pageset *pset;
1054 		struct per_cpu_pages *pcp;
1055 
1056 		local_irq_save(flags);
1057 		pset = per_cpu_ptr(zone->pageset, cpu);
1058 
1059 		pcp = &pset->pcp;
1060 		free_pcppages_bulk(zone, pcp->count, pcp);
1061 		pcp->count = 0;
1062 		local_irq_restore(flags);
1063 	}
1064 }
1065 
1066 /*
1067  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1068  */
1069 void drain_local_pages(void *arg)
1070 {
1071 	drain_pages(smp_processor_id());
1072 }
1073 
1074 /*
1075  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1076  */
1077 void drain_all_pages(void)
1078 {
1079 	on_each_cpu(drain_local_pages, NULL, 1);
1080 }
1081 
1082 #ifdef CONFIG_HIBERNATION
1083 
1084 void mark_free_pages(struct zone *zone)
1085 {
1086 	unsigned long pfn, max_zone_pfn;
1087 	unsigned long flags;
1088 	int order, t;
1089 	struct list_head *curr;
1090 
1091 	if (!zone->spanned_pages)
1092 		return;
1093 
1094 	spin_lock_irqsave(&zone->lock, flags);
1095 
1096 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1097 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1098 		if (pfn_valid(pfn)) {
1099 			struct page *page = pfn_to_page(pfn);
1100 
1101 			if (!swsusp_page_is_forbidden(page))
1102 				swsusp_unset_page_free(page);
1103 		}
1104 
1105 	for_each_migratetype_order(order, t) {
1106 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1107 			unsigned long i;
1108 
1109 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1110 			for (i = 0; i < (1UL << order); i++)
1111 				swsusp_set_page_free(pfn_to_page(pfn + i));
1112 		}
1113 	}
1114 	spin_unlock_irqrestore(&zone->lock, flags);
1115 }
1116 #endif /* CONFIG_PM */
1117 
1118 /*
1119  * Free a 0-order page
1120  * cold == 1 ? free a cold page : free a hot page
1121  */
1122 void free_hot_cold_page(struct page *page, int cold)
1123 {
1124 	struct zone *zone = page_zone(page);
1125 	struct per_cpu_pages *pcp;
1126 	unsigned long flags;
1127 	int migratetype;
1128 	int wasMlocked = __TestClearPageMlocked(page);
1129 
1130 	trace_mm_page_free_direct(page, 0);
1131 	kmemcheck_free_shadow(page, 0);
1132 
1133 	if (PageAnon(page))
1134 		page->mapping = NULL;
1135 	if (free_pages_check(page))
1136 		return;
1137 
1138 	if (!PageHighMem(page)) {
1139 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1140 		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1141 	}
1142 	arch_free_page(page, 0);
1143 	kernel_map_pages(page, 1, 0);
1144 
1145 	migratetype = get_pageblock_migratetype(page);
1146 	set_page_private(page, migratetype);
1147 	local_irq_save(flags);
1148 	if (unlikely(wasMlocked))
1149 		free_page_mlock(page);
1150 	__count_vm_event(PGFREE);
1151 
1152 	/*
1153 	 * We only track unmovable, reclaimable and movable on pcp lists.
1154 	 * Free ISOLATE pages back to the allocator because they are being
1155 	 * offlined but treat RESERVE as movable pages so we can get those
1156 	 * areas back if necessary. Otherwise, we may have to free
1157 	 * excessively into the page allocator
1158 	 */
1159 	if (migratetype >= MIGRATE_PCPTYPES) {
1160 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1161 			free_one_page(zone, page, 0, migratetype);
1162 			goto out;
1163 		}
1164 		migratetype = MIGRATE_MOVABLE;
1165 	}
1166 
1167 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1168 	if (cold)
1169 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1170 	else
1171 		list_add(&page->lru, &pcp->lists[migratetype]);
1172 	pcp->count++;
1173 	if (pcp->count >= pcp->high) {
1174 		free_pcppages_bulk(zone, pcp->batch, pcp);
1175 		pcp->count -= pcp->batch;
1176 	}
1177 
1178 out:
1179 	local_irq_restore(flags);
1180 }
1181 
1182 /*
1183  * split_page takes a non-compound higher-order page, and splits it into
1184  * n (1<<order) sub-pages: page[0..n]
1185  * Each sub-page must be freed individually.
1186  *
1187  * Note: this is probably too low level an operation for use in drivers.
1188  * Please consult with lkml before using this in your driver.
1189  */
1190 void split_page(struct page *page, unsigned int order)
1191 {
1192 	int i;
1193 
1194 	VM_BUG_ON(PageCompound(page));
1195 	VM_BUG_ON(!page_count(page));
1196 
1197 #ifdef CONFIG_KMEMCHECK
1198 	/*
1199 	 * Split shadow pages too, because free(page[0]) would
1200 	 * otherwise free the whole shadow.
1201 	 */
1202 	if (kmemcheck_page_is_tracked(page))
1203 		split_page(virt_to_page(page[0].shadow), order);
1204 #endif
1205 
1206 	for (i = 1; i < (1 << order); i++)
1207 		set_page_refcounted(page + i);
1208 }
1209 
1210 /*
1211  * Similar to split_page except the page is already free. As this is only
1212  * being used for migration, the migratetype of the block also changes.
1213  * As this is called with interrupts disabled, the caller is responsible
1214  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1215  * are enabled.
1216  *
1217  * Note: this is probably too low level an operation for use in drivers.
1218  * Please consult with lkml before using this in your driver.
1219  */
1220 int split_free_page(struct page *page)
1221 {
1222 	unsigned int order;
1223 	unsigned long watermark;
1224 	struct zone *zone;
1225 
1226 	BUG_ON(!PageBuddy(page));
1227 
1228 	zone = page_zone(page);
1229 	order = page_order(page);
1230 
1231 	/* Obey watermarks as if the page was being allocated */
1232 	watermark = low_wmark_pages(zone) + (1 << order);
1233 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1234 		return 0;
1235 
1236 	/* Remove page from free list */
1237 	list_del(&page->lru);
1238 	zone->free_area[order].nr_free--;
1239 	rmv_page_order(page);
1240 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1241 
1242 	/* Split into individual pages */
1243 	set_page_refcounted(page);
1244 	split_page(page, order);
1245 
1246 	if (order >= pageblock_order - 1) {
1247 		struct page *endpage = page + (1 << order) - 1;
1248 		for (; page < endpage; page += pageblock_nr_pages)
1249 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1250 	}
1251 
1252 	return 1 << order;
1253 }
1254 
1255 /*
1256  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1257  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1258  * or two.
1259  */
1260 static inline
1261 struct page *buffered_rmqueue(struct zone *preferred_zone,
1262 			struct zone *zone, int order, gfp_t gfp_flags,
1263 			int migratetype)
1264 {
1265 	unsigned long flags;
1266 	struct page *page;
1267 	int cold = !!(gfp_flags & __GFP_COLD);
1268 
1269 again:
1270 	if (likely(order == 0)) {
1271 		struct per_cpu_pages *pcp;
1272 		struct list_head *list;
1273 
1274 		local_irq_save(flags);
1275 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1276 		list = &pcp->lists[migratetype];
1277 		if (list_empty(list)) {
1278 			pcp->count += rmqueue_bulk(zone, 0,
1279 					pcp->batch, list,
1280 					migratetype, cold);
1281 			if (unlikely(list_empty(list)))
1282 				goto failed;
1283 		}
1284 
1285 		if (cold)
1286 			page = list_entry(list->prev, struct page, lru);
1287 		else
1288 			page = list_entry(list->next, struct page, lru);
1289 
1290 		list_del(&page->lru);
1291 		pcp->count--;
1292 	} else {
1293 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1294 			/*
1295 			 * __GFP_NOFAIL is not to be used in new code.
1296 			 *
1297 			 * All __GFP_NOFAIL callers should be fixed so that they
1298 			 * properly detect and handle allocation failures.
1299 			 *
1300 			 * We most definitely don't want callers attempting to
1301 			 * allocate greater than order-1 page units with
1302 			 * __GFP_NOFAIL.
1303 			 */
1304 			WARN_ON_ONCE(order > 1);
1305 		}
1306 		spin_lock_irqsave(&zone->lock, flags);
1307 		page = __rmqueue(zone, order, migratetype);
1308 		spin_unlock(&zone->lock);
1309 		if (!page)
1310 			goto failed;
1311 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1312 	}
1313 
1314 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1315 	zone_statistics(preferred_zone, zone);
1316 	local_irq_restore(flags);
1317 
1318 	VM_BUG_ON(bad_range(zone, page));
1319 	if (prep_new_page(page, order, gfp_flags))
1320 		goto again;
1321 	return page;
1322 
1323 failed:
1324 	local_irq_restore(flags);
1325 	return NULL;
1326 }
1327 
1328 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1329 #define ALLOC_WMARK_MIN		WMARK_MIN
1330 #define ALLOC_WMARK_LOW		WMARK_LOW
1331 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1332 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1333 
1334 /* Mask to get the watermark bits */
1335 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1336 
1337 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1338 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1339 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1340 
1341 #ifdef CONFIG_FAIL_PAGE_ALLOC
1342 
1343 static struct fail_page_alloc_attr {
1344 	struct fault_attr attr;
1345 
1346 	u32 ignore_gfp_highmem;
1347 	u32 ignore_gfp_wait;
1348 	u32 min_order;
1349 
1350 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1351 
1352 	struct dentry *ignore_gfp_highmem_file;
1353 	struct dentry *ignore_gfp_wait_file;
1354 	struct dentry *min_order_file;
1355 
1356 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1357 
1358 } fail_page_alloc = {
1359 	.attr = FAULT_ATTR_INITIALIZER,
1360 	.ignore_gfp_wait = 1,
1361 	.ignore_gfp_highmem = 1,
1362 	.min_order = 1,
1363 };
1364 
1365 static int __init setup_fail_page_alloc(char *str)
1366 {
1367 	return setup_fault_attr(&fail_page_alloc.attr, str);
1368 }
1369 __setup("fail_page_alloc=", setup_fail_page_alloc);
1370 
1371 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1372 {
1373 	if (order < fail_page_alloc.min_order)
1374 		return 0;
1375 	if (gfp_mask & __GFP_NOFAIL)
1376 		return 0;
1377 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1378 		return 0;
1379 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1380 		return 0;
1381 
1382 	return should_fail(&fail_page_alloc.attr, 1 << order);
1383 }
1384 
1385 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1386 
1387 static int __init fail_page_alloc_debugfs(void)
1388 {
1389 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1390 	struct dentry *dir;
1391 	int err;
1392 
1393 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1394 				       "fail_page_alloc");
1395 	if (err)
1396 		return err;
1397 	dir = fail_page_alloc.attr.dentries.dir;
1398 
1399 	fail_page_alloc.ignore_gfp_wait_file =
1400 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1401 				      &fail_page_alloc.ignore_gfp_wait);
1402 
1403 	fail_page_alloc.ignore_gfp_highmem_file =
1404 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1405 				      &fail_page_alloc.ignore_gfp_highmem);
1406 	fail_page_alloc.min_order_file =
1407 		debugfs_create_u32("min-order", mode, dir,
1408 				   &fail_page_alloc.min_order);
1409 
1410 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1411             !fail_page_alloc.ignore_gfp_highmem_file ||
1412             !fail_page_alloc.min_order_file) {
1413 		err = -ENOMEM;
1414 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1415 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1416 		debugfs_remove(fail_page_alloc.min_order_file);
1417 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1418 	}
1419 
1420 	return err;
1421 }
1422 
1423 late_initcall(fail_page_alloc_debugfs);
1424 
1425 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1426 
1427 #else /* CONFIG_FAIL_PAGE_ALLOC */
1428 
1429 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1430 {
1431 	return 0;
1432 }
1433 
1434 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1435 
1436 /*
1437  * Return 1 if free pages are above 'mark'. This takes into account the order
1438  * of the allocation.
1439  */
1440 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1441 		      int classzone_idx, int alloc_flags)
1442 {
1443 	/* free_pages my go negative - that's OK */
1444 	long min = mark;
1445 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1446 	int o;
1447 
1448 	if (alloc_flags & ALLOC_HIGH)
1449 		min -= min / 2;
1450 	if (alloc_flags & ALLOC_HARDER)
1451 		min -= min / 4;
1452 
1453 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1454 		return 0;
1455 	for (o = 0; o < order; o++) {
1456 		/* At the next order, this order's pages become unavailable */
1457 		free_pages -= z->free_area[o].nr_free << o;
1458 
1459 		/* Require fewer higher order pages to be free */
1460 		min >>= 1;
1461 
1462 		if (free_pages <= min)
1463 			return 0;
1464 	}
1465 	return 1;
1466 }
1467 
1468 #ifdef CONFIG_NUMA
1469 /*
1470  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1471  * skip over zones that are not allowed by the cpuset, or that have
1472  * been recently (in last second) found to be nearly full.  See further
1473  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1474  * that have to skip over a lot of full or unallowed zones.
1475  *
1476  * If the zonelist cache is present in the passed in zonelist, then
1477  * returns a pointer to the allowed node mask (either the current
1478  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1479  *
1480  * If the zonelist cache is not available for this zonelist, does
1481  * nothing and returns NULL.
1482  *
1483  * If the fullzones BITMAP in the zonelist cache is stale (more than
1484  * a second since last zap'd) then we zap it out (clear its bits.)
1485  *
1486  * We hold off even calling zlc_setup, until after we've checked the
1487  * first zone in the zonelist, on the theory that most allocations will
1488  * be satisfied from that first zone, so best to examine that zone as
1489  * quickly as we can.
1490  */
1491 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1492 {
1493 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1494 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1495 
1496 	zlc = zonelist->zlcache_ptr;
1497 	if (!zlc)
1498 		return NULL;
1499 
1500 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1501 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1502 		zlc->last_full_zap = jiffies;
1503 	}
1504 
1505 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1506 					&cpuset_current_mems_allowed :
1507 					&node_states[N_HIGH_MEMORY];
1508 	return allowednodes;
1509 }
1510 
1511 /*
1512  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1513  * if it is worth looking at further for free memory:
1514  *  1) Check that the zone isn't thought to be full (doesn't have its
1515  *     bit set in the zonelist_cache fullzones BITMAP).
1516  *  2) Check that the zones node (obtained from the zonelist_cache
1517  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1518  * Return true (non-zero) if zone is worth looking at further, or
1519  * else return false (zero) if it is not.
1520  *
1521  * This check -ignores- the distinction between various watermarks,
1522  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1523  * found to be full for any variation of these watermarks, it will
1524  * be considered full for up to one second by all requests, unless
1525  * we are so low on memory on all allowed nodes that we are forced
1526  * into the second scan of the zonelist.
1527  *
1528  * In the second scan we ignore this zonelist cache and exactly
1529  * apply the watermarks to all zones, even it is slower to do so.
1530  * We are low on memory in the second scan, and should leave no stone
1531  * unturned looking for a free page.
1532  */
1533 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1534 						nodemask_t *allowednodes)
1535 {
1536 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1537 	int i;				/* index of *z in zonelist zones */
1538 	int n;				/* node that zone *z is on */
1539 
1540 	zlc = zonelist->zlcache_ptr;
1541 	if (!zlc)
1542 		return 1;
1543 
1544 	i = z - zonelist->_zonerefs;
1545 	n = zlc->z_to_n[i];
1546 
1547 	/* This zone is worth trying if it is allowed but not full */
1548 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1549 }
1550 
1551 /*
1552  * Given 'z' scanning a zonelist, set the corresponding bit in
1553  * zlc->fullzones, so that subsequent attempts to allocate a page
1554  * from that zone don't waste time re-examining it.
1555  */
1556 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1557 {
1558 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1559 	int i;				/* index of *z in zonelist zones */
1560 
1561 	zlc = zonelist->zlcache_ptr;
1562 	if (!zlc)
1563 		return;
1564 
1565 	i = z - zonelist->_zonerefs;
1566 
1567 	set_bit(i, zlc->fullzones);
1568 }
1569 
1570 #else	/* CONFIG_NUMA */
1571 
1572 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1573 {
1574 	return NULL;
1575 }
1576 
1577 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1578 				nodemask_t *allowednodes)
1579 {
1580 	return 1;
1581 }
1582 
1583 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1584 {
1585 }
1586 #endif	/* CONFIG_NUMA */
1587 
1588 /*
1589  * get_page_from_freelist goes through the zonelist trying to allocate
1590  * a page.
1591  */
1592 static struct page *
1593 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1594 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1595 		struct zone *preferred_zone, int migratetype)
1596 {
1597 	struct zoneref *z;
1598 	struct page *page = NULL;
1599 	int classzone_idx;
1600 	struct zone *zone;
1601 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1602 	int zlc_active = 0;		/* set if using zonelist_cache */
1603 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1604 
1605 	classzone_idx = zone_idx(preferred_zone);
1606 zonelist_scan:
1607 	/*
1608 	 * Scan zonelist, looking for a zone with enough free.
1609 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1610 	 */
1611 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1612 						high_zoneidx, nodemask) {
1613 		if (NUMA_BUILD && zlc_active &&
1614 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1615 				continue;
1616 		if ((alloc_flags & ALLOC_CPUSET) &&
1617 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1618 				goto try_next_zone;
1619 
1620 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1621 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1622 			unsigned long mark;
1623 			int ret;
1624 
1625 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1626 			if (zone_watermark_ok(zone, order, mark,
1627 				    classzone_idx, alloc_flags))
1628 				goto try_this_zone;
1629 
1630 			if (zone_reclaim_mode == 0)
1631 				goto this_zone_full;
1632 
1633 			ret = zone_reclaim(zone, gfp_mask, order);
1634 			switch (ret) {
1635 			case ZONE_RECLAIM_NOSCAN:
1636 				/* did not scan */
1637 				goto try_next_zone;
1638 			case ZONE_RECLAIM_FULL:
1639 				/* scanned but unreclaimable */
1640 				goto this_zone_full;
1641 			default:
1642 				/* did we reclaim enough */
1643 				if (!zone_watermark_ok(zone, order, mark,
1644 						classzone_idx, alloc_flags))
1645 					goto this_zone_full;
1646 			}
1647 		}
1648 
1649 try_this_zone:
1650 		page = buffered_rmqueue(preferred_zone, zone, order,
1651 						gfp_mask, migratetype);
1652 		if (page)
1653 			break;
1654 this_zone_full:
1655 		if (NUMA_BUILD)
1656 			zlc_mark_zone_full(zonelist, z);
1657 try_next_zone:
1658 		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1659 			/*
1660 			 * we do zlc_setup after the first zone is tried but only
1661 			 * if there are multiple nodes make it worthwhile
1662 			 */
1663 			allowednodes = zlc_setup(zonelist, alloc_flags);
1664 			zlc_active = 1;
1665 			did_zlc_setup = 1;
1666 		}
1667 	}
1668 
1669 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1670 		/* Disable zlc cache for second zonelist scan */
1671 		zlc_active = 0;
1672 		goto zonelist_scan;
1673 	}
1674 	return page;
1675 }
1676 
1677 static inline int
1678 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1679 				unsigned long pages_reclaimed)
1680 {
1681 	/* Do not loop if specifically requested */
1682 	if (gfp_mask & __GFP_NORETRY)
1683 		return 0;
1684 
1685 	/*
1686 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1687 	 * means __GFP_NOFAIL, but that may not be true in other
1688 	 * implementations.
1689 	 */
1690 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1691 		return 1;
1692 
1693 	/*
1694 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1695 	 * specified, then we retry until we no longer reclaim any pages
1696 	 * (above), or we've reclaimed an order of pages at least as
1697 	 * large as the allocation's order. In both cases, if the
1698 	 * allocation still fails, we stop retrying.
1699 	 */
1700 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1701 		return 1;
1702 
1703 	/*
1704 	 * Don't let big-order allocations loop unless the caller
1705 	 * explicitly requests that.
1706 	 */
1707 	if (gfp_mask & __GFP_NOFAIL)
1708 		return 1;
1709 
1710 	return 0;
1711 }
1712 
1713 static inline struct page *
1714 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1715 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1716 	nodemask_t *nodemask, struct zone *preferred_zone,
1717 	int migratetype)
1718 {
1719 	struct page *page;
1720 
1721 	/* Acquire the OOM killer lock for the zones in zonelist */
1722 	if (!try_set_zone_oom(zonelist, gfp_mask)) {
1723 		schedule_timeout_uninterruptible(1);
1724 		return NULL;
1725 	}
1726 
1727 	/*
1728 	 * Go through the zonelist yet one more time, keep very high watermark
1729 	 * here, this is only to catch a parallel oom killing, we must fail if
1730 	 * we're still under heavy pressure.
1731 	 */
1732 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1733 		order, zonelist, high_zoneidx,
1734 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1735 		preferred_zone, migratetype);
1736 	if (page)
1737 		goto out;
1738 
1739 	if (!(gfp_mask & __GFP_NOFAIL)) {
1740 		/* The OOM killer will not help higher order allocs */
1741 		if (order > PAGE_ALLOC_COSTLY_ORDER)
1742 			goto out;
1743 		/*
1744 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1745 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1746 		 * The caller should handle page allocation failure by itself if
1747 		 * it specifies __GFP_THISNODE.
1748 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1749 		 */
1750 		if (gfp_mask & __GFP_THISNODE)
1751 			goto out;
1752 	}
1753 	/* Exhausted what can be done so it's blamo time */
1754 	out_of_memory(zonelist, gfp_mask, order, nodemask);
1755 
1756 out:
1757 	clear_zonelist_oom(zonelist, gfp_mask);
1758 	return page;
1759 }
1760 
1761 /* The really slow allocator path where we enter direct reclaim */
1762 static inline struct page *
1763 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1764 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1765 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1766 	int migratetype, unsigned long *did_some_progress)
1767 {
1768 	struct page *page = NULL;
1769 	struct reclaim_state reclaim_state;
1770 	struct task_struct *p = current;
1771 
1772 	cond_resched();
1773 
1774 	/* We now go into synchronous reclaim */
1775 	cpuset_memory_pressure_bump();
1776 	p->flags |= PF_MEMALLOC;
1777 	lockdep_set_current_reclaim_state(gfp_mask);
1778 	reclaim_state.reclaimed_slab = 0;
1779 	p->reclaim_state = &reclaim_state;
1780 
1781 	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1782 
1783 	p->reclaim_state = NULL;
1784 	lockdep_clear_current_reclaim_state();
1785 	p->flags &= ~PF_MEMALLOC;
1786 
1787 	cond_resched();
1788 
1789 	if (order != 0)
1790 		drain_all_pages();
1791 
1792 	if (likely(*did_some_progress))
1793 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1794 					zonelist, high_zoneidx,
1795 					alloc_flags, preferred_zone,
1796 					migratetype);
1797 	return page;
1798 }
1799 
1800 /*
1801  * This is called in the allocator slow-path if the allocation request is of
1802  * sufficient urgency to ignore watermarks and take other desperate measures
1803  */
1804 static inline struct page *
1805 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1806 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1807 	nodemask_t *nodemask, struct zone *preferred_zone,
1808 	int migratetype)
1809 {
1810 	struct page *page;
1811 
1812 	do {
1813 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1814 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1815 			preferred_zone, migratetype);
1816 
1817 		if (!page && gfp_mask & __GFP_NOFAIL)
1818 			congestion_wait(BLK_RW_ASYNC, HZ/50);
1819 	} while (!page && (gfp_mask & __GFP_NOFAIL));
1820 
1821 	return page;
1822 }
1823 
1824 static inline
1825 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1826 						enum zone_type high_zoneidx)
1827 {
1828 	struct zoneref *z;
1829 	struct zone *zone;
1830 
1831 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1832 		wakeup_kswapd(zone, order);
1833 }
1834 
1835 static inline int
1836 gfp_to_alloc_flags(gfp_t gfp_mask)
1837 {
1838 	struct task_struct *p = current;
1839 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1840 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1841 
1842 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1843 	BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1844 
1845 	/*
1846 	 * The caller may dip into page reserves a bit more if the caller
1847 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1848 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1849 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1850 	 */
1851 	alloc_flags |= (gfp_mask & __GFP_HIGH);
1852 
1853 	if (!wait) {
1854 		alloc_flags |= ALLOC_HARDER;
1855 		/*
1856 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1857 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1858 		 */
1859 		alloc_flags &= ~ALLOC_CPUSET;
1860 	} else if (unlikely(rt_task(p)) && !in_interrupt())
1861 		alloc_flags |= ALLOC_HARDER;
1862 
1863 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1864 		if (!in_interrupt() &&
1865 		    ((p->flags & PF_MEMALLOC) ||
1866 		     unlikely(test_thread_flag(TIF_MEMDIE))))
1867 			alloc_flags |= ALLOC_NO_WATERMARKS;
1868 	}
1869 
1870 	return alloc_flags;
1871 }
1872 
1873 static inline struct page *
1874 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1875 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1876 	nodemask_t *nodemask, struct zone *preferred_zone,
1877 	int migratetype)
1878 {
1879 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1880 	struct page *page = NULL;
1881 	int alloc_flags;
1882 	unsigned long pages_reclaimed = 0;
1883 	unsigned long did_some_progress;
1884 	struct task_struct *p = current;
1885 
1886 	/*
1887 	 * In the slowpath, we sanity check order to avoid ever trying to
1888 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1889 	 * be using allocators in order of preference for an area that is
1890 	 * too large.
1891 	 */
1892 	if (order >= MAX_ORDER) {
1893 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1894 		return NULL;
1895 	}
1896 
1897 	/*
1898 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1899 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1900 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1901 	 * using a larger set of nodes after it has established that the
1902 	 * allowed per node queues are empty and that nodes are
1903 	 * over allocated.
1904 	 */
1905 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1906 		goto nopage;
1907 
1908 restart:
1909 	wake_all_kswapd(order, zonelist, high_zoneidx);
1910 
1911 	/*
1912 	 * OK, we're below the kswapd watermark and have kicked background
1913 	 * reclaim. Now things get more complex, so set up alloc_flags according
1914 	 * to how we want to proceed.
1915 	 */
1916 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
1917 
1918 	/* This is the last chance, in general, before the goto nopage. */
1919 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1920 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1921 			preferred_zone, migratetype);
1922 	if (page)
1923 		goto got_pg;
1924 
1925 rebalance:
1926 	/* Allocate without watermarks if the context allows */
1927 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
1928 		page = __alloc_pages_high_priority(gfp_mask, order,
1929 				zonelist, high_zoneidx, nodemask,
1930 				preferred_zone, migratetype);
1931 		if (page)
1932 			goto got_pg;
1933 	}
1934 
1935 	/* Atomic allocations - we can't balance anything */
1936 	if (!wait)
1937 		goto nopage;
1938 
1939 	/* Avoid recursion of direct reclaim */
1940 	if (p->flags & PF_MEMALLOC)
1941 		goto nopage;
1942 
1943 	/* Avoid allocations with no watermarks from looping endlessly */
1944 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1945 		goto nopage;
1946 
1947 	/* Try direct reclaim and then allocating */
1948 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
1949 					zonelist, high_zoneidx,
1950 					nodemask,
1951 					alloc_flags, preferred_zone,
1952 					migratetype, &did_some_progress);
1953 	if (page)
1954 		goto got_pg;
1955 
1956 	/*
1957 	 * If we failed to make any progress reclaiming, then we are
1958 	 * running out of options and have to consider going OOM
1959 	 */
1960 	if (!did_some_progress) {
1961 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1962 			if (oom_killer_disabled)
1963 				goto nopage;
1964 			page = __alloc_pages_may_oom(gfp_mask, order,
1965 					zonelist, high_zoneidx,
1966 					nodemask, preferred_zone,
1967 					migratetype);
1968 			if (page)
1969 				goto got_pg;
1970 
1971 			/*
1972 			 * The OOM killer does not trigger for high-order
1973 			 * ~__GFP_NOFAIL allocations so if no progress is being
1974 			 * made, there are no other options and retrying is
1975 			 * unlikely to help.
1976 			 */
1977 			if (order > PAGE_ALLOC_COSTLY_ORDER &&
1978 						!(gfp_mask & __GFP_NOFAIL))
1979 				goto nopage;
1980 
1981 			goto restart;
1982 		}
1983 	}
1984 
1985 	/* Check if we should retry the allocation */
1986 	pages_reclaimed += did_some_progress;
1987 	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1988 		/* Wait for some write requests to complete then retry */
1989 		congestion_wait(BLK_RW_ASYNC, HZ/50);
1990 		goto rebalance;
1991 	}
1992 
1993 nopage:
1994 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1995 		printk(KERN_WARNING "%s: page allocation failure."
1996 			" order:%d, mode:0x%x\n",
1997 			p->comm, order, gfp_mask);
1998 		dump_stack();
1999 		show_mem();
2000 	}
2001 	return page;
2002 got_pg:
2003 	if (kmemcheck_enabled)
2004 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2005 	return page;
2006 
2007 }
2008 
2009 /*
2010  * This is the 'heart' of the zoned buddy allocator.
2011  */
2012 struct page *
2013 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2014 			struct zonelist *zonelist, nodemask_t *nodemask)
2015 {
2016 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2017 	struct zone *preferred_zone;
2018 	struct page *page;
2019 	int migratetype = allocflags_to_migratetype(gfp_mask);
2020 
2021 	gfp_mask &= gfp_allowed_mask;
2022 
2023 	lockdep_trace_alloc(gfp_mask);
2024 
2025 	might_sleep_if(gfp_mask & __GFP_WAIT);
2026 
2027 	if (should_fail_alloc_page(gfp_mask, order))
2028 		return NULL;
2029 
2030 	/*
2031 	 * Check the zones suitable for the gfp_mask contain at least one
2032 	 * valid zone. It's possible to have an empty zonelist as a result
2033 	 * of GFP_THISNODE and a memoryless node
2034 	 */
2035 	if (unlikely(!zonelist->_zonerefs->zone))
2036 		return NULL;
2037 
2038 	get_mems_allowed();
2039 	/* The preferred zone is used for statistics later */
2040 	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
2041 	if (!preferred_zone) {
2042 		put_mems_allowed();
2043 		return NULL;
2044 	}
2045 
2046 	/* First allocation attempt */
2047 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2048 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2049 			preferred_zone, migratetype);
2050 	if (unlikely(!page))
2051 		page = __alloc_pages_slowpath(gfp_mask, order,
2052 				zonelist, high_zoneidx, nodemask,
2053 				preferred_zone, migratetype);
2054 	put_mems_allowed();
2055 
2056 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2057 	return page;
2058 }
2059 EXPORT_SYMBOL(__alloc_pages_nodemask);
2060 
2061 /*
2062  * Common helper functions.
2063  */
2064 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2065 {
2066 	struct page *page;
2067 
2068 	/*
2069 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2070 	 * a highmem page
2071 	 */
2072 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2073 
2074 	page = alloc_pages(gfp_mask, order);
2075 	if (!page)
2076 		return 0;
2077 	return (unsigned long) page_address(page);
2078 }
2079 EXPORT_SYMBOL(__get_free_pages);
2080 
2081 unsigned long get_zeroed_page(gfp_t gfp_mask)
2082 {
2083 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2084 }
2085 EXPORT_SYMBOL(get_zeroed_page);
2086 
2087 void __pagevec_free(struct pagevec *pvec)
2088 {
2089 	int i = pagevec_count(pvec);
2090 
2091 	while (--i >= 0) {
2092 		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2093 		free_hot_cold_page(pvec->pages[i], pvec->cold);
2094 	}
2095 }
2096 
2097 void __free_pages(struct page *page, unsigned int order)
2098 {
2099 	if (put_page_testzero(page)) {
2100 		if (order == 0)
2101 			free_hot_cold_page(page, 0);
2102 		else
2103 			__free_pages_ok(page, order);
2104 	}
2105 }
2106 
2107 EXPORT_SYMBOL(__free_pages);
2108 
2109 void free_pages(unsigned long addr, unsigned int order)
2110 {
2111 	if (addr != 0) {
2112 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2113 		__free_pages(virt_to_page((void *)addr), order);
2114 	}
2115 }
2116 
2117 EXPORT_SYMBOL(free_pages);
2118 
2119 /**
2120  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2121  * @size: the number of bytes to allocate
2122  * @gfp_mask: GFP flags for the allocation
2123  *
2124  * This function is similar to alloc_pages(), except that it allocates the
2125  * minimum number of pages to satisfy the request.  alloc_pages() can only
2126  * allocate memory in power-of-two pages.
2127  *
2128  * This function is also limited by MAX_ORDER.
2129  *
2130  * Memory allocated by this function must be released by free_pages_exact().
2131  */
2132 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2133 {
2134 	unsigned int order = get_order(size);
2135 	unsigned long addr;
2136 
2137 	addr = __get_free_pages(gfp_mask, order);
2138 	if (addr) {
2139 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2140 		unsigned long used = addr + PAGE_ALIGN(size);
2141 
2142 		split_page(virt_to_page((void *)addr), order);
2143 		while (used < alloc_end) {
2144 			free_page(used);
2145 			used += PAGE_SIZE;
2146 		}
2147 	}
2148 
2149 	return (void *)addr;
2150 }
2151 EXPORT_SYMBOL(alloc_pages_exact);
2152 
2153 /**
2154  * free_pages_exact - release memory allocated via alloc_pages_exact()
2155  * @virt: the value returned by alloc_pages_exact.
2156  * @size: size of allocation, same value as passed to alloc_pages_exact().
2157  *
2158  * Release the memory allocated by a previous call to alloc_pages_exact.
2159  */
2160 void free_pages_exact(void *virt, size_t size)
2161 {
2162 	unsigned long addr = (unsigned long)virt;
2163 	unsigned long end = addr + PAGE_ALIGN(size);
2164 
2165 	while (addr < end) {
2166 		free_page(addr);
2167 		addr += PAGE_SIZE;
2168 	}
2169 }
2170 EXPORT_SYMBOL(free_pages_exact);
2171 
2172 static unsigned int nr_free_zone_pages(int offset)
2173 {
2174 	struct zoneref *z;
2175 	struct zone *zone;
2176 
2177 	/* Just pick one node, since fallback list is circular */
2178 	unsigned int sum = 0;
2179 
2180 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2181 
2182 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2183 		unsigned long size = zone->present_pages;
2184 		unsigned long high = high_wmark_pages(zone);
2185 		if (size > high)
2186 			sum += size - high;
2187 	}
2188 
2189 	return sum;
2190 }
2191 
2192 /*
2193  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2194  */
2195 unsigned int nr_free_buffer_pages(void)
2196 {
2197 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2198 }
2199 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2200 
2201 /*
2202  * Amount of free RAM allocatable within all zones
2203  */
2204 unsigned int nr_free_pagecache_pages(void)
2205 {
2206 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2207 }
2208 
2209 static inline void show_node(struct zone *zone)
2210 {
2211 	if (NUMA_BUILD)
2212 		printk("Node %d ", zone_to_nid(zone));
2213 }
2214 
2215 void si_meminfo(struct sysinfo *val)
2216 {
2217 	val->totalram = totalram_pages;
2218 	val->sharedram = 0;
2219 	val->freeram = global_page_state(NR_FREE_PAGES);
2220 	val->bufferram = nr_blockdev_pages();
2221 	val->totalhigh = totalhigh_pages;
2222 	val->freehigh = nr_free_highpages();
2223 	val->mem_unit = PAGE_SIZE;
2224 }
2225 
2226 EXPORT_SYMBOL(si_meminfo);
2227 
2228 #ifdef CONFIG_NUMA
2229 void si_meminfo_node(struct sysinfo *val, int nid)
2230 {
2231 	pg_data_t *pgdat = NODE_DATA(nid);
2232 
2233 	val->totalram = pgdat->node_present_pages;
2234 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2235 #ifdef CONFIG_HIGHMEM
2236 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2237 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2238 			NR_FREE_PAGES);
2239 #else
2240 	val->totalhigh = 0;
2241 	val->freehigh = 0;
2242 #endif
2243 	val->mem_unit = PAGE_SIZE;
2244 }
2245 #endif
2246 
2247 #define K(x) ((x) << (PAGE_SHIFT-10))
2248 
2249 /*
2250  * Show free area list (used inside shift_scroll-lock stuff)
2251  * We also calculate the percentage fragmentation. We do this by counting the
2252  * memory on each free list with the exception of the first item on the list.
2253  */
2254 void show_free_areas(void)
2255 {
2256 	int cpu;
2257 	struct zone *zone;
2258 
2259 	for_each_populated_zone(zone) {
2260 		show_node(zone);
2261 		printk("%s per-cpu:\n", zone->name);
2262 
2263 		for_each_online_cpu(cpu) {
2264 			struct per_cpu_pageset *pageset;
2265 
2266 			pageset = per_cpu_ptr(zone->pageset, cpu);
2267 
2268 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2269 			       cpu, pageset->pcp.high,
2270 			       pageset->pcp.batch, pageset->pcp.count);
2271 		}
2272 	}
2273 
2274 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2275 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2276 		" unevictable:%lu"
2277 		" dirty:%lu writeback:%lu unstable:%lu\n"
2278 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2279 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2280 		global_page_state(NR_ACTIVE_ANON),
2281 		global_page_state(NR_INACTIVE_ANON),
2282 		global_page_state(NR_ISOLATED_ANON),
2283 		global_page_state(NR_ACTIVE_FILE),
2284 		global_page_state(NR_INACTIVE_FILE),
2285 		global_page_state(NR_ISOLATED_FILE),
2286 		global_page_state(NR_UNEVICTABLE),
2287 		global_page_state(NR_FILE_DIRTY),
2288 		global_page_state(NR_WRITEBACK),
2289 		global_page_state(NR_UNSTABLE_NFS),
2290 		global_page_state(NR_FREE_PAGES),
2291 		global_page_state(NR_SLAB_RECLAIMABLE),
2292 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2293 		global_page_state(NR_FILE_MAPPED),
2294 		global_page_state(NR_SHMEM),
2295 		global_page_state(NR_PAGETABLE),
2296 		global_page_state(NR_BOUNCE));
2297 
2298 	for_each_populated_zone(zone) {
2299 		int i;
2300 
2301 		show_node(zone);
2302 		printk("%s"
2303 			" free:%lukB"
2304 			" min:%lukB"
2305 			" low:%lukB"
2306 			" high:%lukB"
2307 			" active_anon:%lukB"
2308 			" inactive_anon:%lukB"
2309 			" active_file:%lukB"
2310 			" inactive_file:%lukB"
2311 			" unevictable:%lukB"
2312 			" isolated(anon):%lukB"
2313 			" isolated(file):%lukB"
2314 			" present:%lukB"
2315 			" mlocked:%lukB"
2316 			" dirty:%lukB"
2317 			" writeback:%lukB"
2318 			" mapped:%lukB"
2319 			" shmem:%lukB"
2320 			" slab_reclaimable:%lukB"
2321 			" slab_unreclaimable:%lukB"
2322 			" kernel_stack:%lukB"
2323 			" pagetables:%lukB"
2324 			" unstable:%lukB"
2325 			" bounce:%lukB"
2326 			" writeback_tmp:%lukB"
2327 			" pages_scanned:%lu"
2328 			" all_unreclaimable? %s"
2329 			"\n",
2330 			zone->name,
2331 			K(zone_page_state(zone, NR_FREE_PAGES)),
2332 			K(min_wmark_pages(zone)),
2333 			K(low_wmark_pages(zone)),
2334 			K(high_wmark_pages(zone)),
2335 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2336 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2337 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2338 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2339 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2340 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2341 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2342 			K(zone->present_pages),
2343 			K(zone_page_state(zone, NR_MLOCK)),
2344 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2345 			K(zone_page_state(zone, NR_WRITEBACK)),
2346 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2347 			K(zone_page_state(zone, NR_SHMEM)),
2348 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2349 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2350 			zone_page_state(zone, NR_KERNEL_STACK) *
2351 				THREAD_SIZE / 1024,
2352 			K(zone_page_state(zone, NR_PAGETABLE)),
2353 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2354 			K(zone_page_state(zone, NR_BOUNCE)),
2355 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2356 			zone->pages_scanned,
2357 			(zone->all_unreclaimable ? "yes" : "no")
2358 			);
2359 		printk("lowmem_reserve[]:");
2360 		for (i = 0; i < MAX_NR_ZONES; i++)
2361 			printk(" %lu", zone->lowmem_reserve[i]);
2362 		printk("\n");
2363 	}
2364 
2365 	for_each_populated_zone(zone) {
2366  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2367 
2368 		show_node(zone);
2369 		printk("%s: ", zone->name);
2370 
2371 		spin_lock_irqsave(&zone->lock, flags);
2372 		for (order = 0; order < MAX_ORDER; order++) {
2373 			nr[order] = zone->free_area[order].nr_free;
2374 			total += nr[order] << order;
2375 		}
2376 		spin_unlock_irqrestore(&zone->lock, flags);
2377 		for (order = 0; order < MAX_ORDER; order++)
2378 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2379 		printk("= %lukB\n", K(total));
2380 	}
2381 
2382 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2383 
2384 	show_swap_cache_info();
2385 }
2386 
2387 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2388 {
2389 	zoneref->zone = zone;
2390 	zoneref->zone_idx = zone_idx(zone);
2391 }
2392 
2393 /*
2394  * Builds allocation fallback zone lists.
2395  *
2396  * Add all populated zones of a node to the zonelist.
2397  */
2398 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2399 				int nr_zones, enum zone_type zone_type)
2400 {
2401 	struct zone *zone;
2402 
2403 	BUG_ON(zone_type >= MAX_NR_ZONES);
2404 	zone_type++;
2405 
2406 	do {
2407 		zone_type--;
2408 		zone = pgdat->node_zones + zone_type;
2409 		if (populated_zone(zone)) {
2410 			zoneref_set_zone(zone,
2411 				&zonelist->_zonerefs[nr_zones++]);
2412 			check_highest_zone(zone_type);
2413 		}
2414 
2415 	} while (zone_type);
2416 	return nr_zones;
2417 }
2418 
2419 
2420 /*
2421  *  zonelist_order:
2422  *  0 = automatic detection of better ordering.
2423  *  1 = order by ([node] distance, -zonetype)
2424  *  2 = order by (-zonetype, [node] distance)
2425  *
2426  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2427  *  the same zonelist. So only NUMA can configure this param.
2428  */
2429 #define ZONELIST_ORDER_DEFAULT  0
2430 #define ZONELIST_ORDER_NODE     1
2431 #define ZONELIST_ORDER_ZONE     2
2432 
2433 /* zonelist order in the kernel.
2434  * set_zonelist_order() will set this to NODE or ZONE.
2435  */
2436 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2437 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2438 
2439 
2440 #ifdef CONFIG_NUMA
2441 /* The value user specified ....changed by config */
2442 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2443 /* string for sysctl */
2444 #define NUMA_ZONELIST_ORDER_LEN	16
2445 char numa_zonelist_order[16] = "default";
2446 
2447 /*
2448  * interface for configure zonelist ordering.
2449  * command line option "numa_zonelist_order"
2450  *	= "[dD]efault	- default, automatic configuration.
2451  *	= "[nN]ode 	- order by node locality, then by zone within node
2452  *	= "[zZ]one      - order by zone, then by locality within zone
2453  */
2454 
2455 static int __parse_numa_zonelist_order(char *s)
2456 {
2457 	if (*s == 'd' || *s == 'D') {
2458 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2459 	} else if (*s == 'n' || *s == 'N') {
2460 		user_zonelist_order = ZONELIST_ORDER_NODE;
2461 	} else if (*s == 'z' || *s == 'Z') {
2462 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2463 	} else {
2464 		printk(KERN_WARNING
2465 			"Ignoring invalid numa_zonelist_order value:  "
2466 			"%s\n", s);
2467 		return -EINVAL;
2468 	}
2469 	return 0;
2470 }
2471 
2472 static __init int setup_numa_zonelist_order(char *s)
2473 {
2474 	if (s)
2475 		return __parse_numa_zonelist_order(s);
2476 	return 0;
2477 }
2478 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2479 
2480 /*
2481  * sysctl handler for numa_zonelist_order
2482  */
2483 int numa_zonelist_order_handler(ctl_table *table, int write,
2484 		void __user *buffer, size_t *length,
2485 		loff_t *ppos)
2486 {
2487 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2488 	int ret;
2489 	static DEFINE_MUTEX(zl_order_mutex);
2490 
2491 	mutex_lock(&zl_order_mutex);
2492 	if (write)
2493 		strcpy(saved_string, (char*)table->data);
2494 	ret = proc_dostring(table, write, buffer, length, ppos);
2495 	if (ret)
2496 		goto out;
2497 	if (write) {
2498 		int oldval = user_zonelist_order;
2499 		if (__parse_numa_zonelist_order((char*)table->data)) {
2500 			/*
2501 			 * bogus value.  restore saved string
2502 			 */
2503 			strncpy((char*)table->data, saved_string,
2504 				NUMA_ZONELIST_ORDER_LEN);
2505 			user_zonelist_order = oldval;
2506 		} else if (oldval != user_zonelist_order)
2507 			build_all_zonelists();
2508 	}
2509 out:
2510 	mutex_unlock(&zl_order_mutex);
2511 	return ret;
2512 }
2513 
2514 
2515 #define MAX_NODE_LOAD (nr_online_nodes)
2516 static int node_load[MAX_NUMNODES];
2517 
2518 /**
2519  * find_next_best_node - find the next node that should appear in a given node's fallback list
2520  * @node: node whose fallback list we're appending
2521  * @used_node_mask: nodemask_t of already used nodes
2522  *
2523  * We use a number of factors to determine which is the next node that should
2524  * appear on a given node's fallback list.  The node should not have appeared
2525  * already in @node's fallback list, and it should be the next closest node
2526  * according to the distance array (which contains arbitrary distance values
2527  * from each node to each node in the system), and should also prefer nodes
2528  * with no CPUs, since presumably they'll have very little allocation pressure
2529  * on them otherwise.
2530  * It returns -1 if no node is found.
2531  */
2532 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2533 {
2534 	int n, val;
2535 	int min_val = INT_MAX;
2536 	int best_node = -1;
2537 	const struct cpumask *tmp = cpumask_of_node(0);
2538 
2539 	/* Use the local node if we haven't already */
2540 	if (!node_isset(node, *used_node_mask)) {
2541 		node_set(node, *used_node_mask);
2542 		return node;
2543 	}
2544 
2545 	for_each_node_state(n, N_HIGH_MEMORY) {
2546 
2547 		/* Don't want a node to appear more than once */
2548 		if (node_isset(n, *used_node_mask))
2549 			continue;
2550 
2551 		/* Use the distance array to find the distance */
2552 		val = node_distance(node, n);
2553 
2554 		/* Penalize nodes under us ("prefer the next node") */
2555 		val += (n < node);
2556 
2557 		/* Give preference to headless and unused nodes */
2558 		tmp = cpumask_of_node(n);
2559 		if (!cpumask_empty(tmp))
2560 			val += PENALTY_FOR_NODE_WITH_CPUS;
2561 
2562 		/* Slight preference for less loaded node */
2563 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2564 		val += node_load[n];
2565 
2566 		if (val < min_val) {
2567 			min_val = val;
2568 			best_node = n;
2569 		}
2570 	}
2571 
2572 	if (best_node >= 0)
2573 		node_set(best_node, *used_node_mask);
2574 
2575 	return best_node;
2576 }
2577 
2578 
2579 /*
2580  * Build zonelists ordered by node and zones within node.
2581  * This results in maximum locality--normal zone overflows into local
2582  * DMA zone, if any--but risks exhausting DMA zone.
2583  */
2584 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2585 {
2586 	int j;
2587 	struct zonelist *zonelist;
2588 
2589 	zonelist = &pgdat->node_zonelists[0];
2590 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2591 		;
2592 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2593 							MAX_NR_ZONES - 1);
2594 	zonelist->_zonerefs[j].zone = NULL;
2595 	zonelist->_zonerefs[j].zone_idx = 0;
2596 }
2597 
2598 /*
2599  * Build gfp_thisnode zonelists
2600  */
2601 static void build_thisnode_zonelists(pg_data_t *pgdat)
2602 {
2603 	int j;
2604 	struct zonelist *zonelist;
2605 
2606 	zonelist = &pgdat->node_zonelists[1];
2607 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2608 	zonelist->_zonerefs[j].zone = NULL;
2609 	zonelist->_zonerefs[j].zone_idx = 0;
2610 }
2611 
2612 /*
2613  * Build zonelists ordered by zone and nodes within zones.
2614  * This results in conserving DMA zone[s] until all Normal memory is
2615  * exhausted, but results in overflowing to remote node while memory
2616  * may still exist in local DMA zone.
2617  */
2618 static int node_order[MAX_NUMNODES];
2619 
2620 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2621 {
2622 	int pos, j, node;
2623 	int zone_type;		/* needs to be signed */
2624 	struct zone *z;
2625 	struct zonelist *zonelist;
2626 
2627 	zonelist = &pgdat->node_zonelists[0];
2628 	pos = 0;
2629 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2630 		for (j = 0; j < nr_nodes; j++) {
2631 			node = node_order[j];
2632 			z = &NODE_DATA(node)->node_zones[zone_type];
2633 			if (populated_zone(z)) {
2634 				zoneref_set_zone(z,
2635 					&zonelist->_zonerefs[pos++]);
2636 				check_highest_zone(zone_type);
2637 			}
2638 		}
2639 	}
2640 	zonelist->_zonerefs[pos].zone = NULL;
2641 	zonelist->_zonerefs[pos].zone_idx = 0;
2642 }
2643 
2644 static int default_zonelist_order(void)
2645 {
2646 	int nid, zone_type;
2647 	unsigned long low_kmem_size,total_size;
2648 	struct zone *z;
2649 	int average_size;
2650 	/*
2651          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2652 	 * If they are really small and used heavily, the system can fall
2653 	 * into OOM very easily.
2654 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2655 	 */
2656 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2657 	low_kmem_size = 0;
2658 	total_size = 0;
2659 	for_each_online_node(nid) {
2660 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2661 			z = &NODE_DATA(nid)->node_zones[zone_type];
2662 			if (populated_zone(z)) {
2663 				if (zone_type < ZONE_NORMAL)
2664 					low_kmem_size += z->present_pages;
2665 				total_size += z->present_pages;
2666 			} else if (zone_type == ZONE_NORMAL) {
2667 				/*
2668 				 * If any node has only lowmem, then node order
2669 				 * is preferred to allow kernel allocations
2670 				 * locally; otherwise, they can easily infringe
2671 				 * on other nodes when there is an abundance of
2672 				 * lowmem available to allocate from.
2673 				 */
2674 				return ZONELIST_ORDER_NODE;
2675 			}
2676 		}
2677 	}
2678 	if (!low_kmem_size ||  /* there are no DMA area. */
2679 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2680 		return ZONELIST_ORDER_NODE;
2681 	/*
2682 	 * look into each node's config.
2683   	 * If there is a node whose DMA/DMA32 memory is very big area on
2684  	 * local memory, NODE_ORDER may be suitable.
2685          */
2686 	average_size = total_size /
2687 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2688 	for_each_online_node(nid) {
2689 		low_kmem_size = 0;
2690 		total_size = 0;
2691 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2692 			z = &NODE_DATA(nid)->node_zones[zone_type];
2693 			if (populated_zone(z)) {
2694 				if (zone_type < ZONE_NORMAL)
2695 					low_kmem_size += z->present_pages;
2696 				total_size += z->present_pages;
2697 			}
2698 		}
2699 		if (low_kmem_size &&
2700 		    total_size > average_size && /* ignore small node */
2701 		    low_kmem_size > total_size * 70/100)
2702 			return ZONELIST_ORDER_NODE;
2703 	}
2704 	return ZONELIST_ORDER_ZONE;
2705 }
2706 
2707 static void set_zonelist_order(void)
2708 {
2709 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2710 		current_zonelist_order = default_zonelist_order();
2711 	else
2712 		current_zonelist_order = user_zonelist_order;
2713 }
2714 
2715 static void build_zonelists(pg_data_t *pgdat)
2716 {
2717 	int j, node, load;
2718 	enum zone_type i;
2719 	nodemask_t used_mask;
2720 	int local_node, prev_node;
2721 	struct zonelist *zonelist;
2722 	int order = current_zonelist_order;
2723 
2724 	/* initialize zonelists */
2725 	for (i = 0; i < MAX_ZONELISTS; i++) {
2726 		zonelist = pgdat->node_zonelists + i;
2727 		zonelist->_zonerefs[0].zone = NULL;
2728 		zonelist->_zonerefs[0].zone_idx = 0;
2729 	}
2730 
2731 	/* NUMA-aware ordering of nodes */
2732 	local_node = pgdat->node_id;
2733 	load = nr_online_nodes;
2734 	prev_node = local_node;
2735 	nodes_clear(used_mask);
2736 
2737 	memset(node_order, 0, sizeof(node_order));
2738 	j = 0;
2739 
2740 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2741 		int distance = node_distance(local_node, node);
2742 
2743 		/*
2744 		 * If another node is sufficiently far away then it is better
2745 		 * to reclaim pages in a zone before going off node.
2746 		 */
2747 		if (distance > RECLAIM_DISTANCE)
2748 			zone_reclaim_mode = 1;
2749 
2750 		/*
2751 		 * We don't want to pressure a particular node.
2752 		 * So adding penalty to the first node in same
2753 		 * distance group to make it round-robin.
2754 		 */
2755 		if (distance != node_distance(local_node, prev_node))
2756 			node_load[node] = load;
2757 
2758 		prev_node = node;
2759 		load--;
2760 		if (order == ZONELIST_ORDER_NODE)
2761 			build_zonelists_in_node_order(pgdat, node);
2762 		else
2763 			node_order[j++] = node;	/* remember order */
2764 	}
2765 
2766 	if (order == ZONELIST_ORDER_ZONE) {
2767 		/* calculate node order -- i.e., DMA last! */
2768 		build_zonelists_in_zone_order(pgdat, j);
2769 	}
2770 
2771 	build_thisnode_zonelists(pgdat);
2772 }
2773 
2774 /* Construct the zonelist performance cache - see further mmzone.h */
2775 static void build_zonelist_cache(pg_data_t *pgdat)
2776 {
2777 	struct zonelist *zonelist;
2778 	struct zonelist_cache *zlc;
2779 	struct zoneref *z;
2780 
2781 	zonelist = &pgdat->node_zonelists[0];
2782 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2783 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2784 	for (z = zonelist->_zonerefs; z->zone; z++)
2785 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2786 }
2787 
2788 
2789 #else	/* CONFIG_NUMA */
2790 
2791 static void set_zonelist_order(void)
2792 {
2793 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2794 }
2795 
2796 static void build_zonelists(pg_data_t *pgdat)
2797 {
2798 	int node, local_node;
2799 	enum zone_type j;
2800 	struct zonelist *zonelist;
2801 
2802 	local_node = pgdat->node_id;
2803 
2804 	zonelist = &pgdat->node_zonelists[0];
2805 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2806 
2807 	/*
2808 	 * Now we build the zonelist so that it contains the zones
2809 	 * of all the other nodes.
2810 	 * We don't want to pressure a particular node, so when
2811 	 * building the zones for node N, we make sure that the
2812 	 * zones coming right after the local ones are those from
2813 	 * node N+1 (modulo N)
2814 	 */
2815 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2816 		if (!node_online(node))
2817 			continue;
2818 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2819 							MAX_NR_ZONES - 1);
2820 	}
2821 	for (node = 0; node < local_node; node++) {
2822 		if (!node_online(node))
2823 			continue;
2824 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2825 							MAX_NR_ZONES - 1);
2826 	}
2827 
2828 	zonelist->_zonerefs[j].zone = NULL;
2829 	zonelist->_zonerefs[j].zone_idx = 0;
2830 }
2831 
2832 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2833 static void build_zonelist_cache(pg_data_t *pgdat)
2834 {
2835 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2836 }
2837 
2838 #endif	/* CONFIG_NUMA */
2839 
2840 /*
2841  * Boot pageset table. One per cpu which is going to be used for all
2842  * zones and all nodes. The parameters will be set in such a way
2843  * that an item put on a list will immediately be handed over to
2844  * the buddy list. This is safe since pageset manipulation is done
2845  * with interrupts disabled.
2846  *
2847  * The boot_pagesets must be kept even after bootup is complete for
2848  * unused processors and/or zones. They do play a role for bootstrapping
2849  * hotplugged processors.
2850  *
2851  * zoneinfo_show() and maybe other functions do
2852  * not check if the processor is online before following the pageset pointer.
2853  * Other parts of the kernel may not check if the zone is available.
2854  */
2855 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2856 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2857 
2858 /* return values int ....just for stop_machine() */
2859 static int __build_all_zonelists(void *dummy)
2860 {
2861 	int nid;
2862 	int cpu;
2863 
2864 #ifdef CONFIG_NUMA
2865 	memset(node_load, 0, sizeof(node_load));
2866 #endif
2867 	for_each_online_node(nid) {
2868 		pg_data_t *pgdat = NODE_DATA(nid);
2869 
2870 		build_zonelists(pgdat);
2871 		build_zonelist_cache(pgdat);
2872 	}
2873 
2874 	/*
2875 	 * Initialize the boot_pagesets that are going to be used
2876 	 * for bootstrapping processors. The real pagesets for
2877 	 * each zone will be allocated later when the per cpu
2878 	 * allocator is available.
2879 	 *
2880 	 * boot_pagesets are used also for bootstrapping offline
2881 	 * cpus if the system is already booted because the pagesets
2882 	 * are needed to initialize allocators on a specific cpu too.
2883 	 * F.e. the percpu allocator needs the page allocator which
2884 	 * needs the percpu allocator in order to allocate its pagesets
2885 	 * (a chicken-egg dilemma).
2886 	 */
2887 	for_each_possible_cpu(cpu)
2888 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
2889 
2890 	return 0;
2891 }
2892 
2893 void build_all_zonelists(void)
2894 {
2895 	set_zonelist_order();
2896 
2897 	if (system_state == SYSTEM_BOOTING) {
2898 		__build_all_zonelists(NULL);
2899 		mminit_verify_zonelist();
2900 		cpuset_init_current_mems_allowed();
2901 	} else {
2902 		/* we have to stop all cpus to guarantee there is no user
2903 		   of zonelist */
2904 		stop_machine(__build_all_zonelists, NULL, NULL);
2905 		/* cpuset refresh routine should be here */
2906 	}
2907 	vm_total_pages = nr_free_pagecache_pages();
2908 	/*
2909 	 * Disable grouping by mobility if the number of pages in the
2910 	 * system is too low to allow the mechanism to work. It would be
2911 	 * more accurate, but expensive to check per-zone. This check is
2912 	 * made on memory-hotadd so a system can start with mobility
2913 	 * disabled and enable it later
2914 	 */
2915 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2916 		page_group_by_mobility_disabled = 1;
2917 	else
2918 		page_group_by_mobility_disabled = 0;
2919 
2920 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2921 		"Total pages: %ld\n",
2922 			nr_online_nodes,
2923 			zonelist_order_name[current_zonelist_order],
2924 			page_group_by_mobility_disabled ? "off" : "on",
2925 			vm_total_pages);
2926 #ifdef CONFIG_NUMA
2927 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2928 #endif
2929 }
2930 
2931 /*
2932  * Helper functions to size the waitqueue hash table.
2933  * Essentially these want to choose hash table sizes sufficiently
2934  * large so that collisions trying to wait on pages are rare.
2935  * But in fact, the number of active page waitqueues on typical
2936  * systems is ridiculously low, less than 200. So this is even
2937  * conservative, even though it seems large.
2938  *
2939  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2940  * waitqueues, i.e. the size of the waitq table given the number of pages.
2941  */
2942 #define PAGES_PER_WAITQUEUE	256
2943 
2944 #ifndef CONFIG_MEMORY_HOTPLUG
2945 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2946 {
2947 	unsigned long size = 1;
2948 
2949 	pages /= PAGES_PER_WAITQUEUE;
2950 
2951 	while (size < pages)
2952 		size <<= 1;
2953 
2954 	/*
2955 	 * Once we have dozens or even hundreds of threads sleeping
2956 	 * on IO we've got bigger problems than wait queue collision.
2957 	 * Limit the size of the wait table to a reasonable size.
2958 	 */
2959 	size = min(size, 4096UL);
2960 
2961 	return max(size, 4UL);
2962 }
2963 #else
2964 /*
2965  * A zone's size might be changed by hot-add, so it is not possible to determine
2966  * a suitable size for its wait_table.  So we use the maximum size now.
2967  *
2968  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2969  *
2970  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2971  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2972  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2973  *
2974  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2975  * or more by the traditional way. (See above).  It equals:
2976  *
2977  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2978  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2979  *    powerpc (64K page size)             : =  (32G +16M)byte.
2980  */
2981 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2982 {
2983 	return 4096UL;
2984 }
2985 #endif
2986 
2987 /*
2988  * This is an integer logarithm so that shifts can be used later
2989  * to extract the more random high bits from the multiplicative
2990  * hash function before the remainder is taken.
2991  */
2992 static inline unsigned long wait_table_bits(unsigned long size)
2993 {
2994 	return ffz(~size);
2995 }
2996 
2997 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2998 
2999 /*
3000  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3001  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3002  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3003  * higher will lead to a bigger reserve which will get freed as contiguous
3004  * blocks as reclaim kicks in
3005  */
3006 static void setup_zone_migrate_reserve(struct zone *zone)
3007 {
3008 	unsigned long start_pfn, pfn, end_pfn;
3009 	struct page *page;
3010 	unsigned long block_migratetype;
3011 	int reserve;
3012 
3013 	/* Get the start pfn, end pfn and the number of blocks to reserve */
3014 	start_pfn = zone->zone_start_pfn;
3015 	end_pfn = start_pfn + zone->spanned_pages;
3016 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3017 							pageblock_order;
3018 
3019 	/*
3020 	 * Reserve blocks are generally in place to help high-order atomic
3021 	 * allocations that are short-lived. A min_free_kbytes value that
3022 	 * would result in more than 2 reserve blocks for atomic allocations
3023 	 * is assumed to be in place to help anti-fragmentation for the
3024 	 * future allocation of hugepages at runtime.
3025 	 */
3026 	reserve = min(2, reserve);
3027 
3028 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3029 		if (!pfn_valid(pfn))
3030 			continue;
3031 		page = pfn_to_page(pfn);
3032 
3033 		/* Watch out for overlapping nodes */
3034 		if (page_to_nid(page) != zone_to_nid(zone))
3035 			continue;
3036 
3037 		/* Blocks with reserved pages will never free, skip them. */
3038 		if (PageReserved(page))
3039 			continue;
3040 
3041 		block_migratetype = get_pageblock_migratetype(page);
3042 
3043 		/* If this block is reserved, account for it */
3044 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3045 			reserve--;
3046 			continue;
3047 		}
3048 
3049 		/* Suitable for reserving if this block is movable */
3050 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3051 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
3052 			move_freepages_block(zone, page, MIGRATE_RESERVE);
3053 			reserve--;
3054 			continue;
3055 		}
3056 
3057 		/*
3058 		 * If the reserve is met and this is a previous reserved block,
3059 		 * take it back
3060 		 */
3061 		if (block_migratetype == MIGRATE_RESERVE) {
3062 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3063 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3064 		}
3065 	}
3066 }
3067 
3068 /*
3069  * Initially all pages are reserved - free ones are freed
3070  * up by free_all_bootmem() once the early boot process is
3071  * done. Non-atomic initialization, single-pass.
3072  */
3073 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3074 		unsigned long start_pfn, enum memmap_context context)
3075 {
3076 	struct page *page;
3077 	unsigned long end_pfn = start_pfn + size;
3078 	unsigned long pfn;
3079 	struct zone *z;
3080 
3081 	if (highest_memmap_pfn < end_pfn - 1)
3082 		highest_memmap_pfn = end_pfn - 1;
3083 
3084 	z = &NODE_DATA(nid)->node_zones[zone];
3085 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3086 		/*
3087 		 * There can be holes in boot-time mem_map[]s
3088 		 * handed to this function.  They do not
3089 		 * exist on hotplugged memory.
3090 		 */
3091 		if (context == MEMMAP_EARLY) {
3092 			if (!early_pfn_valid(pfn))
3093 				continue;
3094 			if (!early_pfn_in_nid(pfn, nid))
3095 				continue;
3096 		}
3097 		page = pfn_to_page(pfn);
3098 		set_page_links(page, zone, nid, pfn);
3099 		mminit_verify_page_links(page, zone, nid, pfn);
3100 		init_page_count(page);
3101 		reset_page_mapcount(page);
3102 		SetPageReserved(page);
3103 		/*
3104 		 * Mark the block movable so that blocks are reserved for
3105 		 * movable at startup. This will force kernel allocations
3106 		 * to reserve their blocks rather than leaking throughout
3107 		 * the address space during boot when many long-lived
3108 		 * kernel allocations are made. Later some blocks near
3109 		 * the start are marked MIGRATE_RESERVE by
3110 		 * setup_zone_migrate_reserve()
3111 		 *
3112 		 * bitmap is created for zone's valid pfn range. but memmap
3113 		 * can be created for invalid pages (for alignment)
3114 		 * check here not to call set_pageblock_migratetype() against
3115 		 * pfn out of zone.
3116 		 */
3117 		if ((z->zone_start_pfn <= pfn)
3118 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3119 		    && !(pfn & (pageblock_nr_pages - 1)))
3120 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3121 
3122 		INIT_LIST_HEAD(&page->lru);
3123 #ifdef WANT_PAGE_VIRTUAL
3124 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3125 		if (!is_highmem_idx(zone))
3126 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3127 #endif
3128 	}
3129 }
3130 
3131 static void __meminit zone_init_free_lists(struct zone *zone)
3132 {
3133 	int order, t;
3134 	for_each_migratetype_order(order, t) {
3135 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3136 		zone->free_area[order].nr_free = 0;
3137 	}
3138 }
3139 
3140 #ifndef __HAVE_ARCH_MEMMAP_INIT
3141 #define memmap_init(size, nid, zone, start_pfn) \
3142 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3143 #endif
3144 
3145 static int zone_batchsize(struct zone *zone)
3146 {
3147 #ifdef CONFIG_MMU
3148 	int batch;
3149 
3150 	/*
3151 	 * The per-cpu-pages pools are set to around 1000th of the
3152 	 * size of the zone.  But no more than 1/2 of a meg.
3153 	 *
3154 	 * OK, so we don't know how big the cache is.  So guess.
3155 	 */
3156 	batch = zone->present_pages / 1024;
3157 	if (batch * PAGE_SIZE > 512 * 1024)
3158 		batch = (512 * 1024) / PAGE_SIZE;
3159 	batch /= 4;		/* We effectively *= 4 below */
3160 	if (batch < 1)
3161 		batch = 1;
3162 
3163 	/*
3164 	 * Clamp the batch to a 2^n - 1 value. Having a power
3165 	 * of 2 value was found to be more likely to have
3166 	 * suboptimal cache aliasing properties in some cases.
3167 	 *
3168 	 * For example if 2 tasks are alternately allocating
3169 	 * batches of pages, one task can end up with a lot
3170 	 * of pages of one half of the possible page colors
3171 	 * and the other with pages of the other colors.
3172 	 */
3173 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3174 
3175 	return batch;
3176 
3177 #else
3178 	/* The deferral and batching of frees should be suppressed under NOMMU
3179 	 * conditions.
3180 	 *
3181 	 * The problem is that NOMMU needs to be able to allocate large chunks
3182 	 * of contiguous memory as there's no hardware page translation to
3183 	 * assemble apparent contiguous memory from discontiguous pages.
3184 	 *
3185 	 * Queueing large contiguous runs of pages for batching, however,
3186 	 * causes the pages to actually be freed in smaller chunks.  As there
3187 	 * can be a significant delay between the individual batches being
3188 	 * recycled, this leads to the once large chunks of space being
3189 	 * fragmented and becoming unavailable for high-order allocations.
3190 	 */
3191 	return 0;
3192 #endif
3193 }
3194 
3195 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3196 {
3197 	struct per_cpu_pages *pcp;
3198 	int migratetype;
3199 
3200 	memset(p, 0, sizeof(*p));
3201 
3202 	pcp = &p->pcp;
3203 	pcp->count = 0;
3204 	pcp->high = 6 * batch;
3205 	pcp->batch = max(1UL, 1 * batch);
3206 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3207 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3208 }
3209 
3210 /*
3211  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3212  * to the value high for the pageset p.
3213  */
3214 
3215 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3216 				unsigned long high)
3217 {
3218 	struct per_cpu_pages *pcp;
3219 
3220 	pcp = &p->pcp;
3221 	pcp->high = high;
3222 	pcp->batch = max(1UL, high/4);
3223 	if ((high/4) > (PAGE_SHIFT * 8))
3224 		pcp->batch = PAGE_SHIFT * 8;
3225 }
3226 
3227 /*
3228  * Allocate per cpu pagesets and initialize them.
3229  * Before this call only boot pagesets were available.
3230  * Boot pagesets will no longer be used by this processorr
3231  * after setup_per_cpu_pageset().
3232  */
3233 void __init setup_per_cpu_pageset(void)
3234 {
3235 	struct zone *zone;
3236 	int cpu;
3237 
3238 	for_each_populated_zone(zone) {
3239 		zone->pageset = alloc_percpu(struct per_cpu_pageset);
3240 
3241 		for_each_possible_cpu(cpu) {
3242 			struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3243 
3244 			setup_pageset(pcp, zone_batchsize(zone));
3245 
3246 			if (percpu_pagelist_fraction)
3247 				setup_pagelist_highmark(pcp,
3248 					(zone->present_pages /
3249 						percpu_pagelist_fraction));
3250 		}
3251 	}
3252 }
3253 
3254 static noinline __init_refok
3255 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3256 {
3257 	int i;
3258 	struct pglist_data *pgdat = zone->zone_pgdat;
3259 	size_t alloc_size;
3260 
3261 	/*
3262 	 * The per-page waitqueue mechanism uses hashed waitqueues
3263 	 * per zone.
3264 	 */
3265 	zone->wait_table_hash_nr_entries =
3266 		 wait_table_hash_nr_entries(zone_size_pages);
3267 	zone->wait_table_bits =
3268 		wait_table_bits(zone->wait_table_hash_nr_entries);
3269 	alloc_size = zone->wait_table_hash_nr_entries
3270 					* sizeof(wait_queue_head_t);
3271 
3272 	if (!slab_is_available()) {
3273 		zone->wait_table = (wait_queue_head_t *)
3274 			alloc_bootmem_node(pgdat, alloc_size);
3275 	} else {
3276 		/*
3277 		 * This case means that a zone whose size was 0 gets new memory
3278 		 * via memory hot-add.
3279 		 * But it may be the case that a new node was hot-added.  In
3280 		 * this case vmalloc() will not be able to use this new node's
3281 		 * memory - this wait_table must be initialized to use this new
3282 		 * node itself as well.
3283 		 * To use this new node's memory, further consideration will be
3284 		 * necessary.
3285 		 */
3286 		zone->wait_table = vmalloc(alloc_size);
3287 	}
3288 	if (!zone->wait_table)
3289 		return -ENOMEM;
3290 
3291 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3292 		init_waitqueue_head(zone->wait_table + i);
3293 
3294 	return 0;
3295 }
3296 
3297 static int __zone_pcp_update(void *data)
3298 {
3299 	struct zone *zone = data;
3300 	int cpu;
3301 	unsigned long batch = zone_batchsize(zone), flags;
3302 
3303 	for_each_possible_cpu(cpu) {
3304 		struct per_cpu_pageset *pset;
3305 		struct per_cpu_pages *pcp;
3306 
3307 		pset = per_cpu_ptr(zone->pageset, cpu);
3308 		pcp = &pset->pcp;
3309 
3310 		local_irq_save(flags);
3311 		free_pcppages_bulk(zone, pcp->count, pcp);
3312 		setup_pageset(pset, batch);
3313 		local_irq_restore(flags);
3314 	}
3315 	return 0;
3316 }
3317 
3318 void zone_pcp_update(struct zone *zone)
3319 {
3320 	stop_machine(__zone_pcp_update, zone, NULL);
3321 }
3322 
3323 static __meminit void zone_pcp_init(struct zone *zone)
3324 {
3325 	/*
3326 	 * per cpu subsystem is not up at this point. The following code
3327 	 * relies on the ability of the linker to provide the
3328 	 * offset of a (static) per cpu variable into the per cpu area.
3329 	 */
3330 	zone->pageset = &boot_pageset;
3331 
3332 	if (zone->present_pages)
3333 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3334 			zone->name, zone->present_pages,
3335 					 zone_batchsize(zone));
3336 }
3337 
3338 __meminit int init_currently_empty_zone(struct zone *zone,
3339 					unsigned long zone_start_pfn,
3340 					unsigned long size,
3341 					enum memmap_context context)
3342 {
3343 	struct pglist_data *pgdat = zone->zone_pgdat;
3344 	int ret;
3345 	ret = zone_wait_table_init(zone, size);
3346 	if (ret)
3347 		return ret;
3348 	pgdat->nr_zones = zone_idx(zone) + 1;
3349 
3350 	zone->zone_start_pfn = zone_start_pfn;
3351 
3352 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3353 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3354 			pgdat->node_id,
3355 			(unsigned long)zone_idx(zone),
3356 			zone_start_pfn, (zone_start_pfn + size));
3357 
3358 	zone_init_free_lists(zone);
3359 
3360 	return 0;
3361 }
3362 
3363 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3364 /*
3365  * Basic iterator support. Return the first range of PFNs for a node
3366  * Note: nid == MAX_NUMNODES returns first region regardless of node
3367  */
3368 static int __meminit first_active_region_index_in_nid(int nid)
3369 {
3370 	int i;
3371 
3372 	for (i = 0; i < nr_nodemap_entries; i++)
3373 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3374 			return i;
3375 
3376 	return -1;
3377 }
3378 
3379 /*
3380  * Basic iterator support. Return the next active range of PFNs for a node
3381  * Note: nid == MAX_NUMNODES returns next region regardless of node
3382  */
3383 static int __meminit next_active_region_index_in_nid(int index, int nid)
3384 {
3385 	for (index = index + 1; index < nr_nodemap_entries; index++)
3386 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3387 			return index;
3388 
3389 	return -1;
3390 }
3391 
3392 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3393 /*
3394  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3395  * Architectures may implement their own version but if add_active_range()
3396  * was used and there are no special requirements, this is a convenient
3397  * alternative
3398  */
3399 int __meminit __early_pfn_to_nid(unsigned long pfn)
3400 {
3401 	int i;
3402 
3403 	for (i = 0; i < nr_nodemap_entries; i++) {
3404 		unsigned long start_pfn = early_node_map[i].start_pfn;
3405 		unsigned long end_pfn = early_node_map[i].end_pfn;
3406 
3407 		if (start_pfn <= pfn && pfn < end_pfn)
3408 			return early_node_map[i].nid;
3409 	}
3410 	/* This is a memory hole */
3411 	return -1;
3412 }
3413 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3414 
3415 int __meminit early_pfn_to_nid(unsigned long pfn)
3416 {
3417 	int nid;
3418 
3419 	nid = __early_pfn_to_nid(pfn);
3420 	if (nid >= 0)
3421 		return nid;
3422 	/* just returns 0 */
3423 	return 0;
3424 }
3425 
3426 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3427 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3428 {
3429 	int nid;
3430 
3431 	nid = __early_pfn_to_nid(pfn);
3432 	if (nid >= 0 && nid != node)
3433 		return false;
3434 	return true;
3435 }
3436 #endif
3437 
3438 /* Basic iterator support to walk early_node_map[] */
3439 #define for_each_active_range_index_in_nid(i, nid) \
3440 	for (i = first_active_region_index_in_nid(nid); i != -1; \
3441 				i = next_active_region_index_in_nid(i, nid))
3442 
3443 /**
3444  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3445  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3446  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3447  *
3448  * If an architecture guarantees that all ranges registered with
3449  * add_active_ranges() contain no holes and may be freed, this
3450  * this function may be used instead of calling free_bootmem() manually.
3451  */
3452 void __init free_bootmem_with_active_regions(int nid,
3453 						unsigned long max_low_pfn)
3454 {
3455 	int i;
3456 
3457 	for_each_active_range_index_in_nid(i, nid) {
3458 		unsigned long size_pages = 0;
3459 		unsigned long end_pfn = early_node_map[i].end_pfn;
3460 
3461 		if (early_node_map[i].start_pfn >= max_low_pfn)
3462 			continue;
3463 
3464 		if (end_pfn > max_low_pfn)
3465 			end_pfn = max_low_pfn;
3466 
3467 		size_pages = end_pfn - early_node_map[i].start_pfn;
3468 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3469 				PFN_PHYS(early_node_map[i].start_pfn),
3470 				size_pages << PAGE_SHIFT);
3471 	}
3472 }
3473 
3474 int __init add_from_early_node_map(struct range *range, int az,
3475 				   int nr_range, int nid)
3476 {
3477 	int i;
3478 	u64 start, end;
3479 
3480 	/* need to go over early_node_map to find out good range for node */
3481 	for_each_active_range_index_in_nid(i, nid) {
3482 		start = early_node_map[i].start_pfn;
3483 		end = early_node_map[i].end_pfn;
3484 		nr_range = add_range(range, az, nr_range, start, end);
3485 	}
3486 	return nr_range;
3487 }
3488 
3489 #ifdef CONFIG_NO_BOOTMEM
3490 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3491 					u64 goal, u64 limit)
3492 {
3493 	int i;
3494 	void *ptr;
3495 
3496 	/* need to go over early_node_map to find out good range for node */
3497 	for_each_active_range_index_in_nid(i, nid) {
3498 		u64 addr;
3499 		u64 ei_start, ei_last;
3500 
3501 		ei_last = early_node_map[i].end_pfn;
3502 		ei_last <<= PAGE_SHIFT;
3503 		ei_start = early_node_map[i].start_pfn;
3504 		ei_start <<= PAGE_SHIFT;
3505 		addr = find_early_area(ei_start, ei_last,
3506 					 goal, limit, size, align);
3507 
3508 		if (addr == -1ULL)
3509 			continue;
3510 
3511 #if 0
3512 		printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3513 				nid,
3514 				ei_start, ei_last, goal, limit, size,
3515 				align, addr);
3516 #endif
3517 
3518 		ptr = phys_to_virt(addr);
3519 		memset(ptr, 0, size);
3520 		reserve_early_without_check(addr, addr + size, "BOOTMEM");
3521 		return ptr;
3522 	}
3523 
3524 	return NULL;
3525 }
3526 #endif
3527 
3528 
3529 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3530 {
3531 	int i;
3532 	int ret;
3533 
3534 	for_each_active_range_index_in_nid(i, nid) {
3535 		ret = work_fn(early_node_map[i].start_pfn,
3536 			      early_node_map[i].end_pfn, data);
3537 		if (ret)
3538 			break;
3539 	}
3540 }
3541 /**
3542  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3543  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3544  *
3545  * If an architecture guarantees that all ranges registered with
3546  * add_active_ranges() contain no holes and may be freed, this
3547  * function may be used instead of calling memory_present() manually.
3548  */
3549 void __init sparse_memory_present_with_active_regions(int nid)
3550 {
3551 	int i;
3552 
3553 	for_each_active_range_index_in_nid(i, nid)
3554 		memory_present(early_node_map[i].nid,
3555 				early_node_map[i].start_pfn,
3556 				early_node_map[i].end_pfn);
3557 }
3558 
3559 /**
3560  * get_pfn_range_for_nid - Return the start and end page frames for a node
3561  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3562  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3563  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3564  *
3565  * It returns the start and end page frame of a node based on information
3566  * provided by an arch calling add_active_range(). If called for a node
3567  * with no available memory, a warning is printed and the start and end
3568  * PFNs will be 0.
3569  */
3570 void __meminit get_pfn_range_for_nid(unsigned int nid,
3571 			unsigned long *start_pfn, unsigned long *end_pfn)
3572 {
3573 	int i;
3574 	*start_pfn = -1UL;
3575 	*end_pfn = 0;
3576 
3577 	for_each_active_range_index_in_nid(i, nid) {
3578 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3579 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3580 	}
3581 
3582 	if (*start_pfn == -1UL)
3583 		*start_pfn = 0;
3584 }
3585 
3586 /*
3587  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3588  * assumption is made that zones within a node are ordered in monotonic
3589  * increasing memory addresses so that the "highest" populated zone is used
3590  */
3591 static void __init find_usable_zone_for_movable(void)
3592 {
3593 	int zone_index;
3594 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3595 		if (zone_index == ZONE_MOVABLE)
3596 			continue;
3597 
3598 		if (arch_zone_highest_possible_pfn[zone_index] >
3599 				arch_zone_lowest_possible_pfn[zone_index])
3600 			break;
3601 	}
3602 
3603 	VM_BUG_ON(zone_index == -1);
3604 	movable_zone = zone_index;
3605 }
3606 
3607 /*
3608  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3609  * because it is sized independant of architecture. Unlike the other zones,
3610  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3611  * in each node depending on the size of each node and how evenly kernelcore
3612  * is distributed. This helper function adjusts the zone ranges
3613  * provided by the architecture for a given node by using the end of the
3614  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3615  * zones within a node are in order of monotonic increases memory addresses
3616  */
3617 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3618 					unsigned long zone_type,
3619 					unsigned long node_start_pfn,
3620 					unsigned long node_end_pfn,
3621 					unsigned long *zone_start_pfn,
3622 					unsigned long *zone_end_pfn)
3623 {
3624 	/* Only adjust if ZONE_MOVABLE is on this node */
3625 	if (zone_movable_pfn[nid]) {
3626 		/* Size ZONE_MOVABLE */
3627 		if (zone_type == ZONE_MOVABLE) {
3628 			*zone_start_pfn = zone_movable_pfn[nid];
3629 			*zone_end_pfn = min(node_end_pfn,
3630 				arch_zone_highest_possible_pfn[movable_zone]);
3631 
3632 		/* Adjust for ZONE_MOVABLE starting within this range */
3633 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3634 				*zone_end_pfn > zone_movable_pfn[nid]) {
3635 			*zone_end_pfn = zone_movable_pfn[nid];
3636 
3637 		/* Check if this whole range is within ZONE_MOVABLE */
3638 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3639 			*zone_start_pfn = *zone_end_pfn;
3640 	}
3641 }
3642 
3643 /*
3644  * Return the number of pages a zone spans in a node, including holes
3645  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3646  */
3647 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3648 					unsigned long zone_type,
3649 					unsigned long *ignored)
3650 {
3651 	unsigned long node_start_pfn, node_end_pfn;
3652 	unsigned long zone_start_pfn, zone_end_pfn;
3653 
3654 	/* Get the start and end of the node and zone */
3655 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3656 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3657 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3658 	adjust_zone_range_for_zone_movable(nid, zone_type,
3659 				node_start_pfn, node_end_pfn,
3660 				&zone_start_pfn, &zone_end_pfn);
3661 
3662 	/* Check that this node has pages within the zone's required range */
3663 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3664 		return 0;
3665 
3666 	/* Move the zone boundaries inside the node if necessary */
3667 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3668 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3669 
3670 	/* Return the spanned pages */
3671 	return zone_end_pfn - zone_start_pfn;
3672 }
3673 
3674 /*
3675  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3676  * then all holes in the requested range will be accounted for.
3677  */
3678 unsigned long __meminit __absent_pages_in_range(int nid,
3679 				unsigned long range_start_pfn,
3680 				unsigned long range_end_pfn)
3681 {
3682 	int i = 0;
3683 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3684 	unsigned long start_pfn;
3685 
3686 	/* Find the end_pfn of the first active range of pfns in the node */
3687 	i = first_active_region_index_in_nid(nid);
3688 	if (i == -1)
3689 		return 0;
3690 
3691 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3692 
3693 	/* Account for ranges before physical memory on this node */
3694 	if (early_node_map[i].start_pfn > range_start_pfn)
3695 		hole_pages = prev_end_pfn - range_start_pfn;
3696 
3697 	/* Find all holes for the zone within the node */
3698 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3699 
3700 		/* No need to continue if prev_end_pfn is outside the zone */
3701 		if (prev_end_pfn >= range_end_pfn)
3702 			break;
3703 
3704 		/* Make sure the end of the zone is not within the hole */
3705 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3706 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3707 
3708 		/* Update the hole size cound and move on */
3709 		if (start_pfn > range_start_pfn) {
3710 			BUG_ON(prev_end_pfn > start_pfn);
3711 			hole_pages += start_pfn - prev_end_pfn;
3712 		}
3713 		prev_end_pfn = early_node_map[i].end_pfn;
3714 	}
3715 
3716 	/* Account for ranges past physical memory on this node */
3717 	if (range_end_pfn > prev_end_pfn)
3718 		hole_pages += range_end_pfn -
3719 				max(range_start_pfn, prev_end_pfn);
3720 
3721 	return hole_pages;
3722 }
3723 
3724 /**
3725  * absent_pages_in_range - Return number of page frames in holes within a range
3726  * @start_pfn: The start PFN to start searching for holes
3727  * @end_pfn: The end PFN to stop searching for holes
3728  *
3729  * It returns the number of pages frames in memory holes within a range.
3730  */
3731 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3732 							unsigned long end_pfn)
3733 {
3734 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3735 }
3736 
3737 /* Return the number of page frames in holes in a zone on a node */
3738 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3739 					unsigned long zone_type,
3740 					unsigned long *ignored)
3741 {
3742 	unsigned long node_start_pfn, node_end_pfn;
3743 	unsigned long zone_start_pfn, zone_end_pfn;
3744 
3745 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3746 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3747 							node_start_pfn);
3748 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3749 							node_end_pfn);
3750 
3751 	adjust_zone_range_for_zone_movable(nid, zone_type,
3752 			node_start_pfn, node_end_pfn,
3753 			&zone_start_pfn, &zone_end_pfn);
3754 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3755 }
3756 
3757 #else
3758 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3759 					unsigned long zone_type,
3760 					unsigned long *zones_size)
3761 {
3762 	return zones_size[zone_type];
3763 }
3764 
3765 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3766 						unsigned long zone_type,
3767 						unsigned long *zholes_size)
3768 {
3769 	if (!zholes_size)
3770 		return 0;
3771 
3772 	return zholes_size[zone_type];
3773 }
3774 
3775 #endif
3776 
3777 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3778 		unsigned long *zones_size, unsigned long *zholes_size)
3779 {
3780 	unsigned long realtotalpages, totalpages = 0;
3781 	enum zone_type i;
3782 
3783 	for (i = 0; i < MAX_NR_ZONES; i++)
3784 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3785 								zones_size);
3786 	pgdat->node_spanned_pages = totalpages;
3787 
3788 	realtotalpages = totalpages;
3789 	for (i = 0; i < MAX_NR_ZONES; i++)
3790 		realtotalpages -=
3791 			zone_absent_pages_in_node(pgdat->node_id, i,
3792 								zholes_size);
3793 	pgdat->node_present_pages = realtotalpages;
3794 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3795 							realtotalpages);
3796 }
3797 
3798 #ifndef CONFIG_SPARSEMEM
3799 /*
3800  * Calculate the size of the zone->blockflags rounded to an unsigned long
3801  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3802  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3803  * round what is now in bits to nearest long in bits, then return it in
3804  * bytes.
3805  */
3806 static unsigned long __init usemap_size(unsigned long zonesize)
3807 {
3808 	unsigned long usemapsize;
3809 
3810 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3811 	usemapsize = usemapsize >> pageblock_order;
3812 	usemapsize *= NR_PAGEBLOCK_BITS;
3813 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3814 
3815 	return usemapsize / 8;
3816 }
3817 
3818 static void __init setup_usemap(struct pglist_data *pgdat,
3819 				struct zone *zone, unsigned long zonesize)
3820 {
3821 	unsigned long usemapsize = usemap_size(zonesize);
3822 	zone->pageblock_flags = NULL;
3823 	if (usemapsize)
3824 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3825 }
3826 #else
3827 static void inline setup_usemap(struct pglist_data *pgdat,
3828 				struct zone *zone, unsigned long zonesize) {}
3829 #endif /* CONFIG_SPARSEMEM */
3830 
3831 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3832 
3833 /* Return a sensible default order for the pageblock size. */
3834 static inline int pageblock_default_order(void)
3835 {
3836 	if (HPAGE_SHIFT > PAGE_SHIFT)
3837 		return HUGETLB_PAGE_ORDER;
3838 
3839 	return MAX_ORDER-1;
3840 }
3841 
3842 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3843 static inline void __init set_pageblock_order(unsigned int order)
3844 {
3845 	/* Check that pageblock_nr_pages has not already been setup */
3846 	if (pageblock_order)
3847 		return;
3848 
3849 	/*
3850 	 * Assume the largest contiguous order of interest is a huge page.
3851 	 * This value may be variable depending on boot parameters on IA64
3852 	 */
3853 	pageblock_order = order;
3854 }
3855 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3856 
3857 /*
3858  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3859  * and pageblock_default_order() are unused as pageblock_order is set
3860  * at compile-time. See include/linux/pageblock-flags.h for the values of
3861  * pageblock_order based on the kernel config
3862  */
3863 static inline int pageblock_default_order(unsigned int order)
3864 {
3865 	return MAX_ORDER-1;
3866 }
3867 #define set_pageblock_order(x)	do {} while (0)
3868 
3869 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3870 
3871 /*
3872  * Set up the zone data structures:
3873  *   - mark all pages reserved
3874  *   - mark all memory queues empty
3875  *   - clear the memory bitmaps
3876  */
3877 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3878 		unsigned long *zones_size, unsigned long *zholes_size)
3879 {
3880 	enum zone_type j;
3881 	int nid = pgdat->node_id;
3882 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3883 	int ret;
3884 
3885 	pgdat_resize_init(pgdat);
3886 	pgdat->nr_zones = 0;
3887 	init_waitqueue_head(&pgdat->kswapd_wait);
3888 	pgdat->kswapd_max_order = 0;
3889 	pgdat_page_cgroup_init(pgdat);
3890 
3891 	for (j = 0; j < MAX_NR_ZONES; j++) {
3892 		struct zone *zone = pgdat->node_zones + j;
3893 		unsigned long size, realsize, memmap_pages;
3894 		enum lru_list l;
3895 
3896 		size = zone_spanned_pages_in_node(nid, j, zones_size);
3897 		realsize = size - zone_absent_pages_in_node(nid, j,
3898 								zholes_size);
3899 
3900 		/*
3901 		 * Adjust realsize so that it accounts for how much memory
3902 		 * is used by this zone for memmap. This affects the watermark
3903 		 * and per-cpu initialisations
3904 		 */
3905 		memmap_pages =
3906 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3907 		if (realsize >= memmap_pages) {
3908 			realsize -= memmap_pages;
3909 			if (memmap_pages)
3910 				printk(KERN_DEBUG
3911 				       "  %s zone: %lu pages used for memmap\n",
3912 				       zone_names[j], memmap_pages);
3913 		} else
3914 			printk(KERN_WARNING
3915 				"  %s zone: %lu pages exceeds realsize %lu\n",
3916 				zone_names[j], memmap_pages, realsize);
3917 
3918 		/* Account for reserved pages */
3919 		if (j == 0 && realsize > dma_reserve) {
3920 			realsize -= dma_reserve;
3921 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3922 					zone_names[0], dma_reserve);
3923 		}
3924 
3925 		if (!is_highmem_idx(j))
3926 			nr_kernel_pages += realsize;
3927 		nr_all_pages += realsize;
3928 
3929 		zone->spanned_pages = size;
3930 		zone->present_pages = realsize;
3931 #ifdef CONFIG_NUMA
3932 		zone->node = nid;
3933 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3934 						/ 100;
3935 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3936 #endif
3937 		zone->name = zone_names[j];
3938 		spin_lock_init(&zone->lock);
3939 		spin_lock_init(&zone->lru_lock);
3940 		zone_seqlock_init(zone);
3941 		zone->zone_pgdat = pgdat;
3942 
3943 		zone->prev_priority = DEF_PRIORITY;
3944 
3945 		zone_pcp_init(zone);
3946 		for_each_lru(l) {
3947 			INIT_LIST_HEAD(&zone->lru[l].list);
3948 			zone->reclaim_stat.nr_saved_scan[l] = 0;
3949 		}
3950 		zone->reclaim_stat.recent_rotated[0] = 0;
3951 		zone->reclaim_stat.recent_rotated[1] = 0;
3952 		zone->reclaim_stat.recent_scanned[0] = 0;
3953 		zone->reclaim_stat.recent_scanned[1] = 0;
3954 		zap_zone_vm_stats(zone);
3955 		zone->flags = 0;
3956 		if (!size)
3957 			continue;
3958 
3959 		set_pageblock_order(pageblock_default_order());
3960 		setup_usemap(pgdat, zone, size);
3961 		ret = init_currently_empty_zone(zone, zone_start_pfn,
3962 						size, MEMMAP_EARLY);
3963 		BUG_ON(ret);
3964 		memmap_init(size, nid, j, zone_start_pfn);
3965 		zone_start_pfn += size;
3966 	}
3967 }
3968 
3969 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3970 {
3971 	/* Skip empty nodes */
3972 	if (!pgdat->node_spanned_pages)
3973 		return;
3974 
3975 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3976 	/* ia64 gets its own node_mem_map, before this, without bootmem */
3977 	if (!pgdat->node_mem_map) {
3978 		unsigned long size, start, end;
3979 		struct page *map;
3980 
3981 		/*
3982 		 * The zone's endpoints aren't required to be MAX_ORDER
3983 		 * aligned but the node_mem_map endpoints must be in order
3984 		 * for the buddy allocator to function correctly.
3985 		 */
3986 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3987 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3988 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3989 		size =  (end - start) * sizeof(struct page);
3990 		map = alloc_remap(pgdat->node_id, size);
3991 		if (!map)
3992 			map = alloc_bootmem_node(pgdat, size);
3993 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3994 	}
3995 #ifndef CONFIG_NEED_MULTIPLE_NODES
3996 	/*
3997 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3998 	 */
3999 	if (pgdat == NODE_DATA(0)) {
4000 		mem_map = NODE_DATA(0)->node_mem_map;
4001 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4002 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4003 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4004 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4005 	}
4006 #endif
4007 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4008 }
4009 
4010 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4011 		unsigned long node_start_pfn, unsigned long *zholes_size)
4012 {
4013 	pg_data_t *pgdat = NODE_DATA(nid);
4014 
4015 	pgdat->node_id = nid;
4016 	pgdat->node_start_pfn = node_start_pfn;
4017 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4018 
4019 	alloc_node_mem_map(pgdat);
4020 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4021 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4022 		nid, (unsigned long)pgdat,
4023 		(unsigned long)pgdat->node_mem_map);
4024 #endif
4025 
4026 	free_area_init_core(pgdat, zones_size, zholes_size);
4027 }
4028 
4029 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4030 
4031 #if MAX_NUMNODES > 1
4032 /*
4033  * Figure out the number of possible node ids.
4034  */
4035 static void __init setup_nr_node_ids(void)
4036 {
4037 	unsigned int node;
4038 	unsigned int highest = 0;
4039 
4040 	for_each_node_mask(node, node_possible_map)
4041 		highest = node;
4042 	nr_node_ids = highest + 1;
4043 }
4044 #else
4045 static inline void setup_nr_node_ids(void)
4046 {
4047 }
4048 #endif
4049 
4050 /**
4051  * add_active_range - Register a range of PFNs backed by physical memory
4052  * @nid: The node ID the range resides on
4053  * @start_pfn: The start PFN of the available physical memory
4054  * @end_pfn: The end PFN of the available physical memory
4055  *
4056  * These ranges are stored in an early_node_map[] and later used by
4057  * free_area_init_nodes() to calculate zone sizes and holes. If the
4058  * range spans a memory hole, it is up to the architecture to ensure
4059  * the memory is not freed by the bootmem allocator. If possible
4060  * the range being registered will be merged with existing ranges.
4061  */
4062 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4063 						unsigned long end_pfn)
4064 {
4065 	int i;
4066 
4067 	mminit_dprintk(MMINIT_TRACE, "memory_register",
4068 			"Entering add_active_range(%d, %#lx, %#lx) "
4069 			"%d entries of %d used\n",
4070 			nid, start_pfn, end_pfn,
4071 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4072 
4073 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4074 
4075 	/* Merge with existing active regions if possible */
4076 	for (i = 0; i < nr_nodemap_entries; i++) {
4077 		if (early_node_map[i].nid != nid)
4078 			continue;
4079 
4080 		/* Skip if an existing region covers this new one */
4081 		if (start_pfn >= early_node_map[i].start_pfn &&
4082 				end_pfn <= early_node_map[i].end_pfn)
4083 			return;
4084 
4085 		/* Merge forward if suitable */
4086 		if (start_pfn <= early_node_map[i].end_pfn &&
4087 				end_pfn > early_node_map[i].end_pfn) {
4088 			early_node_map[i].end_pfn = end_pfn;
4089 			return;
4090 		}
4091 
4092 		/* Merge backward if suitable */
4093 		if (start_pfn < early_node_map[i].start_pfn &&
4094 				end_pfn >= early_node_map[i].start_pfn) {
4095 			early_node_map[i].start_pfn = start_pfn;
4096 			return;
4097 		}
4098 	}
4099 
4100 	/* Check that early_node_map is large enough */
4101 	if (i >= MAX_ACTIVE_REGIONS) {
4102 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4103 							MAX_ACTIVE_REGIONS);
4104 		return;
4105 	}
4106 
4107 	early_node_map[i].nid = nid;
4108 	early_node_map[i].start_pfn = start_pfn;
4109 	early_node_map[i].end_pfn = end_pfn;
4110 	nr_nodemap_entries = i + 1;
4111 }
4112 
4113 /**
4114  * remove_active_range - Shrink an existing registered range of PFNs
4115  * @nid: The node id the range is on that should be shrunk
4116  * @start_pfn: The new PFN of the range
4117  * @end_pfn: The new PFN of the range
4118  *
4119  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4120  * The map is kept near the end physical page range that has already been
4121  * registered. This function allows an arch to shrink an existing registered
4122  * range.
4123  */
4124 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4125 				unsigned long end_pfn)
4126 {
4127 	int i, j;
4128 	int removed = 0;
4129 
4130 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4131 			  nid, start_pfn, end_pfn);
4132 
4133 	/* Find the old active region end and shrink */
4134 	for_each_active_range_index_in_nid(i, nid) {
4135 		if (early_node_map[i].start_pfn >= start_pfn &&
4136 		    early_node_map[i].end_pfn <= end_pfn) {
4137 			/* clear it */
4138 			early_node_map[i].start_pfn = 0;
4139 			early_node_map[i].end_pfn = 0;
4140 			removed = 1;
4141 			continue;
4142 		}
4143 		if (early_node_map[i].start_pfn < start_pfn &&
4144 		    early_node_map[i].end_pfn > start_pfn) {
4145 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4146 			early_node_map[i].end_pfn = start_pfn;
4147 			if (temp_end_pfn > end_pfn)
4148 				add_active_range(nid, end_pfn, temp_end_pfn);
4149 			continue;
4150 		}
4151 		if (early_node_map[i].start_pfn >= start_pfn &&
4152 		    early_node_map[i].end_pfn > end_pfn &&
4153 		    early_node_map[i].start_pfn < end_pfn) {
4154 			early_node_map[i].start_pfn = end_pfn;
4155 			continue;
4156 		}
4157 	}
4158 
4159 	if (!removed)
4160 		return;
4161 
4162 	/* remove the blank ones */
4163 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4164 		if (early_node_map[i].nid != nid)
4165 			continue;
4166 		if (early_node_map[i].end_pfn)
4167 			continue;
4168 		/* we found it, get rid of it */
4169 		for (j = i; j < nr_nodemap_entries - 1; j++)
4170 			memcpy(&early_node_map[j], &early_node_map[j+1],
4171 				sizeof(early_node_map[j]));
4172 		j = nr_nodemap_entries - 1;
4173 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4174 		nr_nodemap_entries--;
4175 	}
4176 }
4177 
4178 /**
4179  * remove_all_active_ranges - Remove all currently registered regions
4180  *
4181  * During discovery, it may be found that a table like SRAT is invalid
4182  * and an alternative discovery method must be used. This function removes
4183  * all currently registered regions.
4184  */
4185 void __init remove_all_active_ranges(void)
4186 {
4187 	memset(early_node_map, 0, sizeof(early_node_map));
4188 	nr_nodemap_entries = 0;
4189 }
4190 
4191 /* Compare two active node_active_regions */
4192 static int __init cmp_node_active_region(const void *a, const void *b)
4193 {
4194 	struct node_active_region *arange = (struct node_active_region *)a;
4195 	struct node_active_region *brange = (struct node_active_region *)b;
4196 
4197 	/* Done this way to avoid overflows */
4198 	if (arange->start_pfn > brange->start_pfn)
4199 		return 1;
4200 	if (arange->start_pfn < brange->start_pfn)
4201 		return -1;
4202 
4203 	return 0;
4204 }
4205 
4206 /* sort the node_map by start_pfn */
4207 void __init sort_node_map(void)
4208 {
4209 	sort(early_node_map, (size_t)nr_nodemap_entries,
4210 			sizeof(struct node_active_region),
4211 			cmp_node_active_region, NULL);
4212 }
4213 
4214 /* Find the lowest pfn for a node */
4215 static unsigned long __init find_min_pfn_for_node(int nid)
4216 {
4217 	int i;
4218 	unsigned long min_pfn = ULONG_MAX;
4219 
4220 	/* Assuming a sorted map, the first range found has the starting pfn */
4221 	for_each_active_range_index_in_nid(i, nid)
4222 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4223 
4224 	if (min_pfn == ULONG_MAX) {
4225 		printk(KERN_WARNING
4226 			"Could not find start_pfn for node %d\n", nid);
4227 		return 0;
4228 	}
4229 
4230 	return min_pfn;
4231 }
4232 
4233 /**
4234  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4235  *
4236  * It returns the minimum PFN based on information provided via
4237  * add_active_range().
4238  */
4239 unsigned long __init find_min_pfn_with_active_regions(void)
4240 {
4241 	return find_min_pfn_for_node(MAX_NUMNODES);
4242 }
4243 
4244 /*
4245  * early_calculate_totalpages()
4246  * Sum pages in active regions for movable zone.
4247  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4248  */
4249 static unsigned long __init early_calculate_totalpages(void)
4250 {
4251 	int i;
4252 	unsigned long totalpages = 0;
4253 
4254 	for (i = 0; i < nr_nodemap_entries; i++) {
4255 		unsigned long pages = early_node_map[i].end_pfn -
4256 						early_node_map[i].start_pfn;
4257 		totalpages += pages;
4258 		if (pages)
4259 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4260 	}
4261   	return totalpages;
4262 }
4263 
4264 /*
4265  * Find the PFN the Movable zone begins in each node. Kernel memory
4266  * is spread evenly between nodes as long as the nodes have enough
4267  * memory. When they don't, some nodes will have more kernelcore than
4268  * others
4269  */
4270 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4271 {
4272 	int i, nid;
4273 	unsigned long usable_startpfn;
4274 	unsigned long kernelcore_node, kernelcore_remaining;
4275 	/* save the state before borrow the nodemask */
4276 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4277 	unsigned long totalpages = early_calculate_totalpages();
4278 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4279 
4280 	/*
4281 	 * If movablecore was specified, calculate what size of
4282 	 * kernelcore that corresponds so that memory usable for
4283 	 * any allocation type is evenly spread. If both kernelcore
4284 	 * and movablecore are specified, then the value of kernelcore
4285 	 * will be used for required_kernelcore if it's greater than
4286 	 * what movablecore would have allowed.
4287 	 */
4288 	if (required_movablecore) {
4289 		unsigned long corepages;
4290 
4291 		/*
4292 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4293 		 * was requested by the user
4294 		 */
4295 		required_movablecore =
4296 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4297 		corepages = totalpages - required_movablecore;
4298 
4299 		required_kernelcore = max(required_kernelcore, corepages);
4300 	}
4301 
4302 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4303 	if (!required_kernelcore)
4304 		goto out;
4305 
4306 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4307 	find_usable_zone_for_movable();
4308 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4309 
4310 restart:
4311 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4312 	kernelcore_node = required_kernelcore / usable_nodes;
4313 	for_each_node_state(nid, N_HIGH_MEMORY) {
4314 		/*
4315 		 * Recalculate kernelcore_node if the division per node
4316 		 * now exceeds what is necessary to satisfy the requested
4317 		 * amount of memory for the kernel
4318 		 */
4319 		if (required_kernelcore < kernelcore_node)
4320 			kernelcore_node = required_kernelcore / usable_nodes;
4321 
4322 		/*
4323 		 * As the map is walked, we track how much memory is usable
4324 		 * by the kernel using kernelcore_remaining. When it is
4325 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4326 		 */
4327 		kernelcore_remaining = kernelcore_node;
4328 
4329 		/* Go through each range of PFNs within this node */
4330 		for_each_active_range_index_in_nid(i, nid) {
4331 			unsigned long start_pfn, end_pfn;
4332 			unsigned long size_pages;
4333 
4334 			start_pfn = max(early_node_map[i].start_pfn,
4335 						zone_movable_pfn[nid]);
4336 			end_pfn = early_node_map[i].end_pfn;
4337 			if (start_pfn >= end_pfn)
4338 				continue;
4339 
4340 			/* Account for what is only usable for kernelcore */
4341 			if (start_pfn < usable_startpfn) {
4342 				unsigned long kernel_pages;
4343 				kernel_pages = min(end_pfn, usable_startpfn)
4344 								- start_pfn;
4345 
4346 				kernelcore_remaining -= min(kernel_pages,
4347 							kernelcore_remaining);
4348 				required_kernelcore -= min(kernel_pages,
4349 							required_kernelcore);
4350 
4351 				/* Continue if range is now fully accounted */
4352 				if (end_pfn <= usable_startpfn) {
4353 
4354 					/*
4355 					 * Push zone_movable_pfn to the end so
4356 					 * that if we have to rebalance
4357 					 * kernelcore across nodes, we will
4358 					 * not double account here
4359 					 */
4360 					zone_movable_pfn[nid] = end_pfn;
4361 					continue;
4362 				}
4363 				start_pfn = usable_startpfn;
4364 			}
4365 
4366 			/*
4367 			 * The usable PFN range for ZONE_MOVABLE is from
4368 			 * start_pfn->end_pfn. Calculate size_pages as the
4369 			 * number of pages used as kernelcore
4370 			 */
4371 			size_pages = end_pfn - start_pfn;
4372 			if (size_pages > kernelcore_remaining)
4373 				size_pages = kernelcore_remaining;
4374 			zone_movable_pfn[nid] = start_pfn + size_pages;
4375 
4376 			/*
4377 			 * Some kernelcore has been met, update counts and
4378 			 * break if the kernelcore for this node has been
4379 			 * satisified
4380 			 */
4381 			required_kernelcore -= min(required_kernelcore,
4382 								size_pages);
4383 			kernelcore_remaining -= size_pages;
4384 			if (!kernelcore_remaining)
4385 				break;
4386 		}
4387 	}
4388 
4389 	/*
4390 	 * If there is still required_kernelcore, we do another pass with one
4391 	 * less node in the count. This will push zone_movable_pfn[nid] further
4392 	 * along on the nodes that still have memory until kernelcore is
4393 	 * satisified
4394 	 */
4395 	usable_nodes--;
4396 	if (usable_nodes && required_kernelcore > usable_nodes)
4397 		goto restart;
4398 
4399 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4400 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4401 		zone_movable_pfn[nid] =
4402 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4403 
4404 out:
4405 	/* restore the node_state */
4406 	node_states[N_HIGH_MEMORY] = saved_node_state;
4407 }
4408 
4409 /* Any regular memory on that node ? */
4410 static void check_for_regular_memory(pg_data_t *pgdat)
4411 {
4412 #ifdef CONFIG_HIGHMEM
4413 	enum zone_type zone_type;
4414 
4415 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4416 		struct zone *zone = &pgdat->node_zones[zone_type];
4417 		if (zone->present_pages)
4418 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4419 	}
4420 #endif
4421 }
4422 
4423 /**
4424  * free_area_init_nodes - Initialise all pg_data_t and zone data
4425  * @max_zone_pfn: an array of max PFNs for each zone
4426  *
4427  * This will call free_area_init_node() for each active node in the system.
4428  * Using the page ranges provided by add_active_range(), the size of each
4429  * zone in each node and their holes is calculated. If the maximum PFN
4430  * between two adjacent zones match, it is assumed that the zone is empty.
4431  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4432  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4433  * starts where the previous one ended. For example, ZONE_DMA32 starts
4434  * at arch_max_dma_pfn.
4435  */
4436 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4437 {
4438 	unsigned long nid;
4439 	int i;
4440 
4441 	/* Sort early_node_map as initialisation assumes it is sorted */
4442 	sort_node_map();
4443 
4444 	/* Record where the zone boundaries are */
4445 	memset(arch_zone_lowest_possible_pfn, 0,
4446 				sizeof(arch_zone_lowest_possible_pfn));
4447 	memset(arch_zone_highest_possible_pfn, 0,
4448 				sizeof(arch_zone_highest_possible_pfn));
4449 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4450 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4451 	for (i = 1; i < MAX_NR_ZONES; i++) {
4452 		if (i == ZONE_MOVABLE)
4453 			continue;
4454 		arch_zone_lowest_possible_pfn[i] =
4455 			arch_zone_highest_possible_pfn[i-1];
4456 		arch_zone_highest_possible_pfn[i] =
4457 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4458 	}
4459 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4460 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4461 
4462 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4463 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4464 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4465 
4466 	/* Print out the zone ranges */
4467 	printk("Zone PFN ranges:\n");
4468 	for (i = 0; i < MAX_NR_ZONES; i++) {
4469 		if (i == ZONE_MOVABLE)
4470 			continue;
4471 		printk("  %-8s ", zone_names[i]);
4472 		if (arch_zone_lowest_possible_pfn[i] ==
4473 				arch_zone_highest_possible_pfn[i])
4474 			printk("empty\n");
4475 		else
4476 			printk("%0#10lx -> %0#10lx\n",
4477 				arch_zone_lowest_possible_pfn[i],
4478 				arch_zone_highest_possible_pfn[i]);
4479 	}
4480 
4481 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4482 	printk("Movable zone start PFN for each node\n");
4483 	for (i = 0; i < MAX_NUMNODES; i++) {
4484 		if (zone_movable_pfn[i])
4485 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4486 	}
4487 
4488 	/* Print out the early_node_map[] */
4489 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4490 	for (i = 0; i < nr_nodemap_entries; i++)
4491 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4492 						early_node_map[i].start_pfn,
4493 						early_node_map[i].end_pfn);
4494 
4495 	/* Initialise every node */
4496 	mminit_verify_pageflags_layout();
4497 	setup_nr_node_ids();
4498 	for_each_online_node(nid) {
4499 		pg_data_t *pgdat = NODE_DATA(nid);
4500 		free_area_init_node(nid, NULL,
4501 				find_min_pfn_for_node(nid), NULL);
4502 
4503 		/* Any memory on that node */
4504 		if (pgdat->node_present_pages)
4505 			node_set_state(nid, N_HIGH_MEMORY);
4506 		check_for_regular_memory(pgdat);
4507 	}
4508 }
4509 
4510 static int __init cmdline_parse_core(char *p, unsigned long *core)
4511 {
4512 	unsigned long long coremem;
4513 	if (!p)
4514 		return -EINVAL;
4515 
4516 	coremem = memparse(p, &p);
4517 	*core = coremem >> PAGE_SHIFT;
4518 
4519 	/* Paranoid check that UL is enough for the coremem value */
4520 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4521 
4522 	return 0;
4523 }
4524 
4525 /*
4526  * kernelcore=size sets the amount of memory for use for allocations that
4527  * cannot be reclaimed or migrated.
4528  */
4529 static int __init cmdline_parse_kernelcore(char *p)
4530 {
4531 	return cmdline_parse_core(p, &required_kernelcore);
4532 }
4533 
4534 /*
4535  * movablecore=size sets the amount of memory for use for allocations that
4536  * can be reclaimed or migrated.
4537  */
4538 static int __init cmdline_parse_movablecore(char *p)
4539 {
4540 	return cmdline_parse_core(p, &required_movablecore);
4541 }
4542 
4543 early_param("kernelcore", cmdline_parse_kernelcore);
4544 early_param("movablecore", cmdline_parse_movablecore);
4545 
4546 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4547 
4548 /**
4549  * set_dma_reserve - set the specified number of pages reserved in the first zone
4550  * @new_dma_reserve: The number of pages to mark reserved
4551  *
4552  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4553  * In the DMA zone, a significant percentage may be consumed by kernel image
4554  * and other unfreeable allocations which can skew the watermarks badly. This
4555  * function may optionally be used to account for unfreeable pages in the
4556  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4557  * smaller per-cpu batchsize.
4558  */
4559 void __init set_dma_reserve(unsigned long new_dma_reserve)
4560 {
4561 	dma_reserve = new_dma_reserve;
4562 }
4563 
4564 #ifndef CONFIG_NEED_MULTIPLE_NODES
4565 struct pglist_data __refdata contig_page_data = {
4566 #ifndef CONFIG_NO_BOOTMEM
4567  .bdata = &bootmem_node_data[0]
4568 #endif
4569  };
4570 EXPORT_SYMBOL(contig_page_data);
4571 #endif
4572 
4573 void __init free_area_init(unsigned long *zones_size)
4574 {
4575 	free_area_init_node(0, zones_size,
4576 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4577 }
4578 
4579 static int page_alloc_cpu_notify(struct notifier_block *self,
4580 				 unsigned long action, void *hcpu)
4581 {
4582 	int cpu = (unsigned long)hcpu;
4583 
4584 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4585 		drain_pages(cpu);
4586 
4587 		/*
4588 		 * Spill the event counters of the dead processor
4589 		 * into the current processors event counters.
4590 		 * This artificially elevates the count of the current
4591 		 * processor.
4592 		 */
4593 		vm_events_fold_cpu(cpu);
4594 
4595 		/*
4596 		 * Zero the differential counters of the dead processor
4597 		 * so that the vm statistics are consistent.
4598 		 *
4599 		 * This is only okay since the processor is dead and cannot
4600 		 * race with what we are doing.
4601 		 */
4602 		refresh_cpu_vm_stats(cpu);
4603 	}
4604 	return NOTIFY_OK;
4605 }
4606 
4607 void __init page_alloc_init(void)
4608 {
4609 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4610 }
4611 
4612 /*
4613  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4614  *	or min_free_kbytes changes.
4615  */
4616 static void calculate_totalreserve_pages(void)
4617 {
4618 	struct pglist_data *pgdat;
4619 	unsigned long reserve_pages = 0;
4620 	enum zone_type i, j;
4621 
4622 	for_each_online_pgdat(pgdat) {
4623 		for (i = 0; i < MAX_NR_ZONES; i++) {
4624 			struct zone *zone = pgdat->node_zones + i;
4625 			unsigned long max = 0;
4626 
4627 			/* Find valid and maximum lowmem_reserve in the zone */
4628 			for (j = i; j < MAX_NR_ZONES; j++) {
4629 				if (zone->lowmem_reserve[j] > max)
4630 					max = zone->lowmem_reserve[j];
4631 			}
4632 
4633 			/* we treat the high watermark as reserved pages. */
4634 			max += high_wmark_pages(zone);
4635 
4636 			if (max > zone->present_pages)
4637 				max = zone->present_pages;
4638 			reserve_pages += max;
4639 		}
4640 	}
4641 	totalreserve_pages = reserve_pages;
4642 }
4643 
4644 /*
4645  * setup_per_zone_lowmem_reserve - called whenever
4646  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4647  *	has a correct pages reserved value, so an adequate number of
4648  *	pages are left in the zone after a successful __alloc_pages().
4649  */
4650 static void setup_per_zone_lowmem_reserve(void)
4651 {
4652 	struct pglist_data *pgdat;
4653 	enum zone_type j, idx;
4654 
4655 	for_each_online_pgdat(pgdat) {
4656 		for (j = 0; j < MAX_NR_ZONES; j++) {
4657 			struct zone *zone = pgdat->node_zones + j;
4658 			unsigned long present_pages = zone->present_pages;
4659 
4660 			zone->lowmem_reserve[j] = 0;
4661 
4662 			idx = j;
4663 			while (idx) {
4664 				struct zone *lower_zone;
4665 
4666 				idx--;
4667 
4668 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4669 					sysctl_lowmem_reserve_ratio[idx] = 1;
4670 
4671 				lower_zone = pgdat->node_zones + idx;
4672 				lower_zone->lowmem_reserve[j] = present_pages /
4673 					sysctl_lowmem_reserve_ratio[idx];
4674 				present_pages += lower_zone->present_pages;
4675 			}
4676 		}
4677 	}
4678 
4679 	/* update totalreserve_pages */
4680 	calculate_totalreserve_pages();
4681 }
4682 
4683 /**
4684  * setup_per_zone_wmarks - called when min_free_kbytes changes
4685  * or when memory is hot-{added|removed}
4686  *
4687  * Ensures that the watermark[min,low,high] values for each zone are set
4688  * correctly with respect to min_free_kbytes.
4689  */
4690 void setup_per_zone_wmarks(void)
4691 {
4692 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4693 	unsigned long lowmem_pages = 0;
4694 	struct zone *zone;
4695 	unsigned long flags;
4696 
4697 	/* Calculate total number of !ZONE_HIGHMEM pages */
4698 	for_each_zone(zone) {
4699 		if (!is_highmem(zone))
4700 			lowmem_pages += zone->present_pages;
4701 	}
4702 
4703 	for_each_zone(zone) {
4704 		u64 tmp;
4705 
4706 		spin_lock_irqsave(&zone->lock, flags);
4707 		tmp = (u64)pages_min * zone->present_pages;
4708 		do_div(tmp, lowmem_pages);
4709 		if (is_highmem(zone)) {
4710 			/*
4711 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4712 			 * need highmem pages, so cap pages_min to a small
4713 			 * value here.
4714 			 *
4715 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4716 			 * deltas controls asynch page reclaim, and so should
4717 			 * not be capped for highmem.
4718 			 */
4719 			int min_pages;
4720 
4721 			min_pages = zone->present_pages / 1024;
4722 			if (min_pages < SWAP_CLUSTER_MAX)
4723 				min_pages = SWAP_CLUSTER_MAX;
4724 			if (min_pages > 128)
4725 				min_pages = 128;
4726 			zone->watermark[WMARK_MIN] = min_pages;
4727 		} else {
4728 			/*
4729 			 * If it's a lowmem zone, reserve a number of pages
4730 			 * proportionate to the zone's size.
4731 			 */
4732 			zone->watermark[WMARK_MIN] = tmp;
4733 		}
4734 
4735 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4736 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4737 		setup_zone_migrate_reserve(zone);
4738 		spin_unlock_irqrestore(&zone->lock, flags);
4739 	}
4740 
4741 	/* update totalreserve_pages */
4742 	calculate_totalreserve_pages();
4743 }
4744 
4745 /*
4746  * The inactive anon list should be small enough that the VM never has to
4747  * do too much work, but large enough that each inactive page has a chance
4748  * to be referenced again before it is swapped out.
4749  *
4750  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4751  * INACTIVE_ANON pages on this zone's LRU, maintained by the
4752  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4753  * the anonymous pages are kept on the inactive list.
4754  *
4755  * total     target    max
4756  * memory    ratio     inactive anon
4757  * -------------------------------------
4758  *   10MB       1         5MB
4759  *  100MB       1        50MB
4760  *    1GB       3       250MB
4761  *   10GB      10       0.9GB
4762  *  100GB      31         3GB
4763  *    1TB     101        10GB
4764  *   10TB     320        32GB
4765  */
4766 void calculate_zone_inactive_ratio(struct zone *zone)
4767 {
4768 	unsigned int gb, ratio;
4769 
4770 	/* Zone size in gigabytes */
4771 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4772 	if (gb)
4773 		ratio = int_sqrt(10 * gb);
4774 	else
4775 		ratio = 1;
4776 
4777 	zone->inactive_ratio = ratio;
4778 }
4779 
4780 static void __init setup_per_zone_inactive_ratio(void)
4781 {
4782 	struct zone *zone;
4783 
4784 	for_each_zone(zone)
4785 		calculate_zone_inactive_ratio(zone);
4786 }
4787 
4788 /*
4789  * Initialise min_free_kbytes.
4790  *
4791  * For small machines we want it small (128k min).  For large machines
4792  * we want it large (64MB max).  But it is not linear, because network
4793  * bandwidth does not increase linearly with machine size.  We use
4794  *
4795  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4796  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4797  *
4798  * which yields
4799  *
4800  * 16MB:	512k
4801  * 32MB:	724k
4802  * 64MB:	1024k
4803  * 128MB:	1448k
4804  * 256MB:	2048k
4805  * 512MB:	2896k
4806  * 1024MB:	4096k
4807  * 2048MB:	5792k
4808  * 4096MB:	8192k
4809  * 8192MB:	11584k
4810  * 16384MB:	16384k
4811  */
4812 static int __init init_per_zone_wmark_min(void)
4813 {
4814 	unsigned long lowmem_kbytes;
4815 
4816 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4817 
4818 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4819 	if (min_free_kbytes < 128)
4820 		min_free_kbytes = 128;
4821 	if (min_free_kbytes > 65536)
4822 		min_free_kbytes = 65536;
4823 	setup_per_zone_wmarks();
4824 	setup_per_zone_lowmem_reserve();
4825 	setup_per_zone_inactive_ratio();
4826 	return 0;
4827 }
4828 module_init(init_per_zone_wmark_min)
4829 
4830 /*
4831  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4832  *	that we can call two helper functions whenever min_free_kbytes
4833  *	changes.
4834  */
4835 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4836 	void __user *buffer, size_t *length, loff_t *ppos)
4837 {
4838 	proc_dointvec(table, write, buffer, length, ppos);
4839 	if (write)
4840 		setup_per_zone_wmarks();
4841 	return 0;
4842 }
4843 
4844 #ifdef CONFIG_NUMA
4845 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4846 	void __user *buffer, size_t *length, loff_t *ppos)
4847 {
4848 	struct zone *zone;
4849 	int rc;
4850 
4851 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4852 	if (rc)
4853 		return rc;
4854 
4855 	for_each_zone(zone)
4856 		zone->min_unmapped_pages = (zone->present_pages *
4857 				sysctl_min_unmapped_ratio) / 100;
4858 	return 0;
4859 }
4860 
4861 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4862 	void __user *buffer, size_t *length, loff_t *ppos)
4863 {
4864 	struct zone *zone;
4865 	int rc;
4866 
4867 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4868 	if (rc)
4869 		return rc;
4870 
4871 	for_each_zone(zone)
4872 		zone->min_slab_pages = (zone->present_pages *
4873 				sysctl_min_slab_ratio) / 100;
4874 	return 0;
4875 }
4876 #endif
4877 
4878 /*
4879  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4880  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4881  *	whenever sysctl_lowmem_reserve_ratio changes.
4882  *
4883  * The reserve ratio obviously has absolutely no relation with the
4884  * minimum watermarks. The lowmem reserve ratio can only make sense
4885  * if in function of the boot time zone sizes.
4886  */
4887 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4888 	void __user *buffer, size_t *length, loff_t *ppos)
4889 {
4890 	proc_dointvec_minmax(table, write, buffer, length, ppos);
4891 	setup_per_zone_lowmem_reserve();
4892 	return 0;
4893 }
4894 
4895 /*
4896  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4897  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4898  * can have before it gets flushed back to buddy allocator.
4899  */
4900 
4901 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4902 	void __user *buffer, size_t *length, loff_t *ppos)
4903 {
4904 	struct zone *zone;
4905 	unsigned int cpu;
4906 	int ret;
4907 
4908 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4909 	if (!write || (ret == -EINVAL))
4910 		return ret;
4911 	for_each_populated_zone(zone) {
4912 		for_each_possible_cpu(cpu) {
4913 			unsigned long  high;
4914 			high = zone->present_pages / percpu_pagelist_fraction;
4915 			setup_pagelist_highmark(
4916 				per_cpu_ptr(zone->pageset, cpu), high);
4917 		}
4918 	}
4919 	return 0;
4920 }
4921 
4922 int hashdist = HASHDIST_DEFAULT;
4923 
4924 #ifdef CONFIG_NUMA
4925 static int __init set_hashdist(char *str)
4926 {
4927 	if (!str)
4928 		return 0;
4929 	hashdist = simple_strtoul(str, &str, 0);
4930 	return 1;
4931 }
4932 __setup("hashdist=", set_hashdist);
4933 #endif
4934 
4935 /*
4936  * allocate a large system hash table from bootmem
4937  * - it is assumed that the hash table must contain an exact power-of-2
4938  *   quantity of entries
4939  * - limit is the number of hash buckets, not the total allocation size
4940  */
4941 void *__init alloc_large_system_hash(const char *tablename,
4942 				     unsigned long bucketsize,
4943 				     unsigned long numentries,
4944 				     int scale,
4945 				     int flags,
4946 				     unsigned int *_hash_shift,
4947 				     unsigned int *_hash_mask,
4948 				     unsigned long limit)
4949 {
4950 	unsigned long long max = limit;
4951 	unsigned long log2qty, size;
4952 	void *table = NULL;
4953 
4954 	/* allow the kernel cmdline to have a say */
4955 	if (!numentries) {
4956 		/* round applicable memory size up to nearest megabyte */
4957 		numentries = nr_kernel_pages;
4958 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4959 		numentries >>= 20 - PAGE_SHIFT;
4960 		numentries <<= 20 - PAGE_SHIFT;
4961 
4962 		/* limit to 1 bucket per 2^scale bytes of low memory */
4963 		if (scale > PAGE_SHIFT)
4964 			numentries >>= (scale - PAGE_SHIFT);
4965 		else
4966 			numentries <<= (PAGE_SHIFT - scale);
4967 
4968 		/* Make sure we've got at least a 0-order allocation.. */
4969 		if (unlikely(flags & HASH_SMALL)) {
4970 			/* Makes no sense without HASH_EARLY */
4971 			WARN_ON(!(flags & HASH_EARLY));
4972 			if (!(numentries >> *_hash_shift)) {
4973 				numentries = 1UL << *_hash_shift;
4974 				BUG_ON(!numentries);
4975 			}
4976 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4977 			numentries = PAGE_SIZE / bucketsize;
4978 	}
4979 	numentries = roundup_pow_of_two(numentries);
4980 
4981 	/* limit allocation size to 1/16 total memory by default */
4982 	if (max == 0) {
4983 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4984 		do_div(max, bucketsize);
4985 	}
4986 
4987 	if (numentries > max)
4988 		numentries = max;
4989 
4990 	log2qty = ilog2(numentries);
4991 
4992 	do {
4993 		size = bucketsize << log2qty;
4994 		if (flags & HASH_EARLY)
4995 			table = alloc_bootmem_nopanic(size);
4996 		else if (hashdist)
4997 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4998 		else {
4999 			/*
5000 			 * If bucketsize is not a power-of-two, we may free
5001 			 * some pages at the end of hash table which
5002 			 * alloc_pages_exact() automatically does
5003 			 */
5004 			if (get_order(size) < MAX_ORDER) {
5005 				table = alloc_pages_exact(size, GFP_ATOMIC);
5006 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5007 			}
5008 		}
5009 	} while (!table && size > PAGE_SIZE && --log2qty);
5010 
5011 	if (!table)
5012 		panic("Failed to allocate %s hash table\n", tablename);
5013 
5014 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
5015 	       tablename,
5016 	       (1U << log2qty),
5017 	       ilog2(size) - PAGE_SHIFT,
5018 	       size);
5019 
5020 	if (_hash_shift)
5021 		*_hash_shift = log2qty;
5022 	if (_hash_mask)
5023 		*_hash_mask = (1 << log2qty) - 1;
5024 
5025 	return table;
5026 }
5027 
5028 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5029 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5030 							unsigned long pfn)
5031 {
5032 #ifdef CONFIG_SPARSEMEM
5033 	return __pfn_to_section(pfn)->pageblock_flags;
5034 #else
5035 	return zone->pageblock_flags;
5036 #endif /* CONFIG_SPARSEMEM */
5037 }
5038 
5039 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5040 {
5041 #ifdef CONFIG_SPARSEMEM
5042 	pfn &= (PAGES_PER_SECTION-1);
5043 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5044 #else
5045 	pfn = pfn - zone->zone_start_pfn;
5046 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5047 #endif /* CONFIG_SPARSEMEM */
5048 }
5049 
5050 /**
5051  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5052  * @page: The page within the block of interest
5053  * @start_bitidx: The first bit of interest to retrieve
5054  * @end_bitidx: The last bit of interest
5055  * returns pageblock_bits flags
5056  */
5057 unsigned long get_pageblock_flags_group(struct page *page,
5058 					int start_bitidx, int end_bitidx)
5059 {
5060 	struct zone *zone;
5061 	unsigned long *bitmap;
5062 	unsigned long pfn, bitidx;
5063 	unsigned long flags = 0;
5064 	unsigned long value = 1;
5065 
5066 	zone = page_zone(page);
5067 	pfn = page_to_pfn(page);
5068 	bitmap = get_pageblock_bitmap(zone, pfn);
5069 	bitidx = pfn_to_bitidx(zone, pfn);
5070 
5071 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5072 		if (test_bit(bitidx + start_bitidx, bitmap))
5073 			flags |= value;
5074 
5075 	return flags;
5076 }
5077 
5078 /**
5079  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5080  * @page: The page within the block of interest
5081  * @start_bitidx: The first bit of interest
5082  * @end_bitidx: The last bit of interest
5083  * @flags: The flags to set
5084  */
5085 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5086 					int start_bitidx, int end_bitidx)
5087 {
5088 	struct zone *zone;
5089 	unsigned long *bitmap;
5090 	unsigned long pfn, bitidx;
5091 	unsigned long value = 1;
5092 
5093 	zone = page_zone(page);
5094 	pfn = page_to_pfn(page);
5095 	bitmap = get_pageblock_bitmap(zone, pfn);
5096 	bitidx = pfn_to_bitidx(zone, pfn);
5097 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5098 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5099 
5100 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5101 		if (flags & value)
5102 			__set_bit(bitidx + start_bitidx, bitmap);
5103 		else
5104 			__clear_bit(bitidx + start_bitidx, bitmap);
5105 }
5106 
5107 /*
5108  * This is designed as sub function...plz see page_isolation.c also.
5109  * set/clear page block's type to be ISOLATE.
5110  * page allocater never alloc memory from ISOLATE block.
5111  */
5112 
5113 int set_migratetype_isolate(struct page *page)
5114 {
5115 	struct zone *zone;
5116 	struct page *curr_page;
5117 	unsigned long flags, pfn, iter;
5118 	unsigned long immobile = 0;
5119 	struct memory_isolate_notify arg;
5120 	int notifier_ret;
5121 	int ret = -EBUSY;
5122 	int zone_idx;
5123 
5124 	zone = page_zone(page);
5125 	zone_idx = zone_idx(zone);
5126 
5127 	spin_lock_irqsave(&zone->lock, flags);
5128 	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5129 	    zone_idx == ZONE_MOVABLE) {
5130 		ret = 0;
5131 		goto out;
5132 	}
5133 
5134 	pfn = page_to_pfn(page);
5135 	arg.start_pfn = pfn;
5136 	arg.nr_pages = pageblock_nr_pages;
5137 	arg.pages_found = 0;
5138 
5139 	/*
5140 	 * It may be possible to isolate a pageblock even if the
5141 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5142 	 * notifier chain is used by balloon drivers to return the
5143 	 * number of pages in a range that are held by the balloon
5144 	 * driver to shrink memory. If all the pages are accounted for
5145 	 * by balloons, are free, or on the LRU, isolation can continue.
5146 	 * Later, for example, when memory hotplug notifier runs, these
5147 	 * pages reported as "can be isolated" should be isolated(freed)
5148 	 * by the balloon driver through the memory notifier chain.
5149 	 */
5150 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5151 	notifier_ret = notifier_to_errno(notifier_ret);
5152 	if (notifier_ret || !arg.pages_found)
5153 		goto out;
5154 
5155 	for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5156 		if (!pfn_valid_within(pfn))
5157 			continue;
5158 
5159 		curr_page = pfn_to_page(iter);
5160 		if (!page_count(curr_page) || PageLRU(curr_page))
5161 			continue;
5162 
5163 		immobile++;
5164 	}
5165 
5166 	if (arg.pages_found == immobile)
5167 		ret = 0;
5168 
5169 out:
5170 	if (!ret) {
5171 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5172 		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5173 	}
5174 
5175 	spin_unlock_irqrestore(&zone->lock, flags);
5176 	if (!ret)
5177 		drain_all_pages();
5178 	return ret;
5179 }
5180 
5181 void unset_migratetype_isolate(struct page *page)
5182 {
5183 	struct zone *zone;
5184 	unsigned long flags;
5185 	zone = page_zone(page);
5186 	spin_lock_irqsave(&zone->lock, flags);
5187 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5188 		goto out;
5189 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5190 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5191 out:
5192 	spin_unlock_irqrestore(&zone->lock, flags);
5193 }
5194 
5195 #ifdef CONFIG_MEMORY_HOTREMOVE
5196 /*
5197  * All pages in the range must be isolated before calling this.
5198  */
5199 void
5200 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5201 {
5202 	struct page *page;
5203 	struct zone *zone;
5204 	int order, i;
5205 	unsigned long pfn;
5206 	unsigned long flags;
5207 	/* find the first valid pfn */
5208 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5209 		if (pfn_valid(pfn))
5210 			break;
5211 	if (pfn == end_pfn)
5212 		return;
5213 	zone = page_zone(pfn_to_page(pfn));
5214 	spin_lock_irqsave(&zone->lock, flags);
5215 	pfn = start_pfn;
5216 	while (pfn < end_pfn) {
5217 		if (!pfn_valid(pfn)) {
5218 			pfn++;
5219 			continue;
5220 		}
5221 		page = pfn_to_page(pfn);
5222 		BUG_ON(page_count(page));
5223 		BUG_ON(!PageBuddy(page));
5224 		order = page_order(page);
5225 #ifdef CONFIG_DEBUG_VM
5226 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5227 		       pfn, 1 << order, end_pfn);
5228 #endif
5229 		list_del(&page->lru);
5230 		rmv_page_order(page);
5231 		zone->free_area[order].nr_free--;
5232 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5233 				      - (1UL << order));
5234 		for (i = 0; i < (1 << order); i++)
5235 			SetPageReserved((page+i));
5236 		pfn += (1 << order);
5237 	}
5238 	spin_unlock_irqrestore(&zone->lock, flags);
5239 }
5240 #endif
5241 
5242 #ifdef CONFIG_MEMORY_FAILURE
5243 bool is_free_buddy_page(struct page *page)
5244 {
5245 	struct zone *zone = page_zone(page);
5246 	unsigned long pfn = page_to_pfn(page);
5247 	unsigned long flags;
5248 	int order;
5249 
5250 	spin_lock_irqsave(&zone->lock, flags);
5251 	for (order = 0; order < MAX_ORDER; order++) {
5252 		struct page *page_head = page - (pfn & ((1 << order) - 1));
5253 
5254 		if (PageBuddy(page_head) && page_order(page_head) >= order)
5255 			break;
5256 	}
5257 	spin_unlock_irqrestore(&zone->lock, flags);
5258 
5259 	return order < MAX_ORDER;
5260 }
5261 #endif
5262 
5263 static struct trace_print_flags pageflag_names[] = {
5264 	{1UL << PG_locked,		"locked"	},
5265 	{1UL << PG_error,		"error"		},
5266 	{1UL << PG_referenced,		"referenced"	},
5267 	{1UL << PG_uptodate,		"uptodate"	},
5268 	{1UL << PG_dirty,		"dirty"		},
5269 	{1UL << PG_lru,			"lru"		},
5270 	{1UL << PG_active,		"active"	},
5271 	{1UL << PG_slab,		"slab"		},
5272 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5273 	{1UL << PG_arch_1,		"arch_1"	},
5274 	{1UL << PG_reserved,		"reserved"	},
5275 	{1UL << PG_private,		"private"	},
5276 	{1UL << PG_private_2,		"private_2"	},
5277 	{1UL << PG_writeback,		"writeback"	},
5278 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5279 	{1UL << PG_head,		"head"		},
5280 	{1UL << PG_tail,		"tail"		},
5281 #else
5282 	{1UL << PG_compound,		"compound"	},
5283 #endif
5284 	{1UL << PG_swapcache,		"swapcache"	},
5285 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5286 	{1UL << PG_reclaim,		"reclaim"	},
5287 	{1UL << PG_buddy,		"buddy"		},
5288 	{1UL << PG_swapbacked,		"swapbacked"	},
5289 	{1UL << PG_unevictable,		"unevictable"	},
5290 #ifdef CONFIG_MMU
5291 	{1UL << PG_mlocked,		"mlocked"	},
5292 #endif
5293 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5294 	{1UL << PG_uncached,		"uncached"	},
5295 #endif
5296 #ifdef CONFIG_MEMORY_FAILURE
5297 	{1UL << PG_hwpoison,		"hwpoison"	},
5298 #endif
5299 	{-1UL,				NULL		},
5300 };
5301 
5302 static void dump_page_flags(unsigned long flags)
5303 {
5304 	const char *delim = "";
5305 	unsigned long mask;
5306 	int i;
5307 
5308 	printk(KERN_ALERT "page flags: %#lx(", flags);
5309 
5310 	/* remove zone id */
5311 	flags &= (1UL << NR_PAGEFLAGS) - 1;
5312 
5313 	for (i = 0; pageflag_names[i].name && flags; i++) {
5314 
5315 		mask = pageflag_names[i].mask;
5316 		if ((flags & mask) != mask)
5317 			continue;
5318 
5319 		flags &= ~mask;
5320 		printk("%s%s", delim, pageflag_names[i].name);
5321 		delim = "|";
5322 	}
5323 
5324 	/* check for left over flags */
5325 	if (flags)
5326 		printk("%s%#lx", delim, flags);
5327 
5328 	printk(")\n");
5329 }
5330 
5331 void dump_page(struct page *page)
5332 {
5333 	printk(KERN_ALERT
5334 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5335 		page, page_count(page), page_mapcount(page),
5336 		page->mapping, page->index);
5337 	dump_page_flags(page->flags);
5338 }
5339