xref: /openbmc/linux/mm/page_alloc.c (revision 6bb154504f8b496780ec53ec81aba957a12981fa)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/highmem.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/jiffies.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/vmstat.h>
43 #include <linux/mempolicy.h>
44 #include <linux/memremap.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <trace/events/oom.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/sched/mm.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/lockdep.h>
68 #include <linux/nmi.h>
69 #include <linux/psi.h>
70 
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
75 
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
79 
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
84 
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86 
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
88 /*
89  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92  * defined in <linux/topology.h>.
93  */
94 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96 int _node_numa_mem_[MAX_NUMNODES];
97 #endif
98 
99 /* work_structs for global per-cpu drains */
100 DEFINE_MUTEX(pcpu_drain_mutex);
101 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102 
103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104 volatile unsigned long latent_entropy __latent_entropy;
105 EXPORT_SYMBOL(latent_entropy);
106 #endif
107 
108 /*
109  * Array of node states.
110  */
111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 	[N_POSSIBLE] = NODE_MASK_ALL,
113 	[N_ONLINE] = { { [0] = 1UL } },
114 #ifndef CONFIG_NUMA
115 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
116 #ifdef CONFIG_HIGHMEM
117 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
118 #endif
119 	[N_MEMORY] = { { [0] = 1UL } },
120 	[N_CPU] = { { [0] = 1UL } },
121 #endif	/* NUMA */
122 };
123 EXPORT_SYMBOL(node_states);
124 
125 atomic_long_t _totalram_pages __read_mostly;
126 EXPORT_SYMBOL(_totalram_pages);
127 unsigned long totalreserve_pages __read_mostly;
128 unsigned long totalcma_pages __read_mostly;
129 
130 int percpu_pagelist_fraction;
131 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
132 
133 /*
134  * A cached value of the page's pageblock's migratetype, used when the page is
135  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137  * Also the migratetype set in the page does not necessarily match the pcplist
138  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139  * other index - this ensures that it will be put on the correct CMA freelist.
140  */
141 static inline int get_pcppage_migratetype(struct page *page)
142 {
143 	return page->index;
144 }
145 
146 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147 {
148 	page->index = migratetype;
149 }
150 
151 #ifdef CONFIG_PM_SLEEP
152 /*
153  * The following functions are used by the suspend/hibernate code to temporarily
154  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155  * while devices are suspended.  To avoid races with the suspend/hibernate code,
156  * they should always be called with system_transition_mutex held
157  * (gfp_allowed_mask also should only be modified with system_transition_mutex
158  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
159  * with that modification).
160  */
161 
162 static gfp_t saved_gfp_mask;
163 
164 void pm_restore_gfp_mask(void)
165 {
166 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
167 	if (saved_gfp_mask) {
168 		gfp_allowed_mask = saved_gfp_mask;
169 		saved_gfp_mask = 0;
170 	}
171 }
172 
173 void pm_restrict_gfp_mask(void)
174 {
175 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
176 	WARN_ON(saved_gfp_mask);
177 	saved_gfp_mask = gfp_allowed_mask;
178 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
179 }
180 
181 bool pm_suspended_storage(void)
182 {
183 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
184 		return false;
185 	return true;
186 }
187 #endif /* CONFIG_PM_SLEEP */
188 
189 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
190 unsigned int pageblock_order __read_mostly;
191 #endif
192 
193 static void __free_pages_ok(struct page *page, unsigned int order);
194 
195 /*
196  * results with 256, 32 in the lowmem_reserve sysctl:
197  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198  *	1G machine -> (16M dma, 784M normal, 224M high)
199  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
201  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
202  *
203  * TBD: should special case ZONE_DMA32 machines here - in those we normally
204  * don't need any ZONE_NORMAL reservation
205  */
206 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
207 #ifdef CONFIG_ZONE_DMA
208 	[ZONE_DMA] = 256,
209 #endif
210 #ifdef CONFIG_ZONE_DMA32
211 	[ZONE_DMA32] = 256,
212 #endif
213 	[ZONE_NORMAL] = 32,
214 #ifdef CONFIG_HIGHMEM
215 	[ZONE_HIGHMEM] = 0,
216 #endif
217 	[ZONE_MOVABLE] = 0,
218 };
219 
220 EXPORT_SYMBOL(totalram_pages);
221 
222 static char * const zone_names[MAX_NR_ZONES] = {
223 #ifdef CONFIG_ZONE_DMA
224 	 "DMA",
225 #endif
226 #ifdef CONFIG_ZONE_DMA32
227 	 "DMA32",
228 #endif
229 	 "Normal",
230 #ifdef CONFIG_HIGHMEM
231 	 "HighMem",
232 #endif
233 	 "Movable",
234 #ifdef CONFIG_ZONE_DEVICE
235 	 "Device",
236 #endif
237 };
238 
239 char * const migratetype_names[MIGRATE_TYPES] = {
240 	"Unmovable",
241 	"Movable",
242 	"Reclaimable",
243 	"HighAtomic",
244 #ifdef CONFIG_CMA
245 	"CMA",
246 #endif
247 #ifdef CONFIG_MEMORY_ISOLATION
248 	"Isolate",
249 #endif
250 };
251 
252 compound_page_dtor * const compound_page_dtors[] = {
253 	NULL,
254 	free_compound_page,
255 #ifdef CONFIG_HUGETLB_PAGE
256 	free_huge_page,
257 #endif
258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
259 	free_transhuge_page,
260 #endif
261 };
262 
263 int min_free_kbytes = 1024;
264 int user_min_free_kbytes = -1;
265 int watermark_scale_factor = 10;
266 
267 static unsigned long nr_kernel_pages __meminitdata;
268 static unsigned long nr_all_pages __meminitdata;
269 static unsigned long dma_reserve __meminitdata;
270 
271 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
272 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
273 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
274 static unsigned long required_kernelcore __initdata;
275 static unsigned long required_kernelcore_percent __initdata;
276 static unsigned long required_movablecore __initdata;
277 static unsigned long required_movablecore_percent __initdata;
278 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
279 static bool mirrored_kernelcore __meminitdata;
280 
281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
282 int movable_zone;
283 EXPORT_SYMBOL(movable_zone);
284 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
285 
286 #if MAX_NUMNODES > 1
287 int nr_node_ids __read_mostly = MAX_NUMNODES;
288 int nr_online_nodes __read_mostly = 1;
289 EXPORT_SYMBOL(nr_node_ids);
290 EXPORT_SYMBOL(nr_online_nodes);
291 #endif
292 
293 int page_group_by_mobility_disabled __read_mostly;
294 
295 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
296 /* Returns true if the struct page for the pfn is uninitialised */
297 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
298 {
299 	int nid = early_pfn_to_nid(pfn);
300 
301 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
302 		return true;
303 
304 	return false;
305 }
306 
307 /*
308  * Returns true when the remaining initialisation should be deferred until
309  * later in the boot cycle when it can be parallelised.
310  */
311 static bool __meminit
312 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
313 {
314 	static unsigned long prev_end_pfn, nr_initialised;
315 
316 	/*
317 	 * prev_end_pfn static that contains the end of previous zone
318 	 * No need to protect because called very early in boot before smp_init.
319 	 */
320 	if (prev_end_pfn != end_pfn) {
321 		prev_end_pfn = end_pfn;
322 		nr_initialised = 0;
323 	}
324 
325 	/* Always populate low zones for address-constrained allocations */
326 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
327 		return false;
328 	nr_initialised++;
329 	if ((nr_initialised > NODE_DATA(nid)->static_init_pgcnt) &&
330 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
331 		NODE_DATA(nid)->first_deferred_pfn = pfn;
332 		return true;
333 	}
334 	return false;
335 }
336 #else
337 static inline bool early_page_uninitialised(unsigned long pfn)
338 {
339 	return false;
340 }
341 
342 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
343 {
344 	return false;
345 }
346 #endif
347 
348 /* Return a pointer to the bitmap storing bits affecting a block of pages */
349 static inline unsigned long *get_pageblock_bitmap(struct page *page,
350 							unsigned long pfn)
351 {
352 #ifdef CONFIG_SPARSEMEM
353 	return __pfn_to_section(pfn)->pageblock_flags;
354 #else
355 	return page_zone(page)->pageblock_flags;
356 #endif /* CONFIG_SPARSEMEM */
357 }
358 
359 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
360 {
361 #ifdef CONFIG_SPARSEMEM
362 	pfn &= (PAGES_PER_SECTION-1);
363 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364 #else
365 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
366 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
367 #endif /* CONFIG_SPARSEMEM */
368 }
369 
370 /**
371  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
372  * @page: The page within the block of interest
373  * @pfn: The target page frame number
374  * @end_bitidx: The last bit of interest to retrieve
375  * @mask: mask of bits that the caller is interested in
376  *
377  * Return: pageblock_bits flags
378  */
379 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
380 					unsigned long pfn,
381 					unsigned long end_bitidx,
382 					unsigned long mask)
383 {
384 	unsigned long *bitmap;
385 	unsigned long bitidx, word_bitidx;
386 	unsigned long word;
387 
388 	bitmap = get_pageblock_bitmap(page, pfn);
389 	bitidx = pfn_to_bitidx(page, pfn);
390 	word_bitidx = bitidx / BITS_PER_LONG;
391 	bitidx &= (BITS_PER_LONG-1);
392 
393 	word = bitmap[word_bitidx];
394 	bitidx += end_bitidx;
395 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
396 }
397 
398 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
399 					unsigned long end_bitidx,
400 					unsigned long mask)
401 {
402 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
403 }
404 
405 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
406 {
407 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
408 }
409 
410 /**
411  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
412  * @page: The page within the block of interest
413  * @flags: The flags to set
414  * @pfn: The target page frame number
415  * @end_bitidx: The last bit of interest
416  * @mask: mask of bits that the caller is interested in
417  */
418 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
419 					unsigned long pfn,
420 					unsigned long end_bitidx,
421 					unsigned long mask)
422 {
423 	unsigned long *bitmap;
424 	unsigned long bitidx, word_bitidx;
425 	unsigned long old_word, word;
426 
427 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
428 
429 	bitmap = get_pageblock_bitmap(page, pfn);
430 	bitidx = pfn_to_bitidx(page, pfn);
431 	word_bitidx = bitidx / BITS_PER_LONG;
432 	bitidx &= (BITS_PER_LONG-1);
433 
434 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
435 
436 	bitidx += end_bitidx;
437 	mask <<= (BITS_PER_LONG - bitidx - 1);
438 	flags <<= (BITS_PER_LONG - bitidx - 1);
439 
440 	word = READ_ONCE(bitmap[word_bitidx]);
441 	for (;;) {
442 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
443 		if (word == old_word)
444 			break;
445 		word = old_word;
446 	}
447 }
448 
449 void set_pageblock_migratetype(struct page *page, int migratetype)
450 {
451 	if (unlikely(page_group_by_mobility_disabled &&
452 		     migratetype < MIGRATE_PCPTYPES))
453 		migratetype = MIGRATE_UNMOVABLE;
454 
455 	set_pageblock_flags_group(page, (unsigned long)migratetype,
456 					PB_migrate, PB_migrate_end);
457 }
458 
459 #ifdef CONFIG_DEBUG_VM
460 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
461 {
462 	int ret = 0;
463 	unsigned seq;
464 	unsigned long pfn = page_to_pfn(page);
465 	unsigned long sp, start_pfn;
466 
467 	do {
468 		seq = zone_span_seqbegin(zone);
469 		start_pfn = zone->zone_start_pfn;
470 		sp = zone->spanned_pages;
471 		if (!zone_spans_pfn(zone, pfn))
472 			ret = 1;
473 	} while (zone_span_seqretry(zone, seq));
474 
475 	if (ret)
476 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
477 			pfn, zone_to_nid(zone), zone->name,
478 			start_pfn, start_pfn + sp);
479 
480 	return ret;
481 }
482 
483 static int page_is_consistent(struct zone *zone, struct page *page)
484 {
485 	if (!pfn_valid_within(page_to_pfn(page)))
486 		return 0;
487 	if (zone != page_zone(page))
488 		return 0;
489 
490 	return 1;
491 }
492 /*
493  * Temporary debugging check for pages not lying within a given zone.
494  */
495 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
496 {
497 	if (page_outside_zone_boundaries(zone, page))
498 		return 1;
499 	if (!page_is_consistent(zone, page))
500 		return 1;
501 
502 	return 0;
503 }
504 #else
505 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
506 {
507 	return 0;
508 }
509 #endif
510 
511 static void bad_page(struct page *page, const char *reason,
512 		unsigned long bad_flags)
513 {
514 	static unsigned long resume;
515 	static unsigned long nr_shown;
516 	static unsigned long nr_unshown;
517 
518 	/*
519 	 * Allow a burst of 60 reports, then keep quiet for that minute;
520 	 * or allow a steady drip of one report per second.
521 	 */
522 	if (nr_shown == 60) {
523 		if (time_before(jiffies, resume)) {
524 			nr_unshown++;
525 			goto out;
526 		}
527 		if (nr_unshown) {
528 			pr_alert(
529 			      "BUG: Bad page state: %lu messages suppressed\n",
530 				nr_unshown);
531 			nr_unshown = 0;
532 		}
533 		nr_shown = 0;
534 	}
535 	if (nr_shown++ == 0)
536 		resume = jiffies + 60 * HZ;
537 
538 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
539 		current->comm, page_to_pfn(page));
540 	__dump_page(page, reason);
541 	bad_flags &= page->flags;
542 	if (bad_flags)
543 		pr_alert("bad because of flags: %#lx(%pGp)\n",
544 						bad_flags, &bad_flags);
545 	dump_page_owner(page);
546 
547 	print_modules();
548 	dump_stack();
549 out:
550 	/* Leave bad fields for debug, except PageBuddy could make trouble */
551 	page_mapcount_reset(page); /* remove PageBuddy */
552 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
553 }
554 
555 /*
556  * Higher-order pages are called "compound pages".  They are structured thusly:
557  *
558  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
559  *
560  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
561  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
562  *
563  * The first tail page's ->compound_dtor holds the offset in array of compound
564  * page destructors. See compound_page_dtors.
565  *
566  * The first tail page's ->compound_order holds the order of allocation.
567  * This usage means that zero-order pages may not be compound.
568  */
569 
570 void free_compound_page(struct page *page)
571 {
572 	__free_pages_ok(page, compound_order(page));
573 }
574 
575 void prep_compound_page(struct page *page, unsigned int order)
576 {
577 	int i;
578 	int nr_pages = 1 << order;
579 
580 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
581 	set_compound_order(page, order);
582 	__SetPageHead(page);
583 	for (i = 1; i < nr_pages; i++) {
584 		struct page *p = page + i;
585 		set_page_count(p, 0);
586 		p->mapping = TAIL_MAPPING;
587 		set_compound_head(p, page);
588 	}
589 	atomic_set(compound_mapcount_ptr(page), -1);
590 }
591 
592 #ifdef CONFIG_DEBUG_PAGEALLOC
593 unsigned int _debug_guardpage_minorder;
594 bool _debug_pagealloc_enabled __read_mostly
595 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
596 EXPORT_SYMBOL(_debug_pagealloc_enabled);
597 bool _debug_guardpage_enabled __read_mostly;
598 
599 static int __init early_debug_pagealloc(char *buf)
600 {
601 	if (!buf)
602 		return -EINVAL;
603 	return kstrtobool(buf, &_debug_pagealloc_enabled);
604 }
605 early_param("debug_pagealloc", early_debug_pagealloc);
606 
607 static bool need_debug_guardpage(void)
608 {
609 	/* If we don't use debug_pagealloc, we don't need guard page */
610 	if (!debug_pagealloc_enabled())
611 		return false;
612 
613 	if (!debug_guardpage_minorder())
614 		return false;
615 
616 	return true;
617 }
618 
619 static void init_debug_guardpage(void)
620 {
621 	if (!debug_pagealloc_enabled())
622 		return;
623 
624 	if (!debug_guardpage_minorder())
625 		return;
626 
627 	_debug_guardpage_enabled = true;
628 }
629 
630 struct page_ext_operations debug_guardpage_ops = {
631 	.need = need_debug_guardpage,
632 	.init = init_debug_guardpage,
633 };
634 
635 static int __init debug_guardpage_minorder_setup(char *buf)
636 {
637 	unsigned long res;
638 
639 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
640 		pr_err("Bad debug_guardpage_minorder value\n");
641 		return 0;
642 	}
643 	_debug_guardpage_minorder = res;
644 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
645 	return 0;
646 }
647 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
648 
649 static inline bool set_page_guard(struct zone *zone, struct page *page,
650 				unsigned int order, int migratetype)
651 {
652 	struct page_ext *page_ext;
653 
654 	if (!debug_guardpage_enabled())
655 		return false;
656 
657 	if (order >= debug_guardpage_minorder())
658 		return false;
659 
660 	page_ext = lookup_page_ext(page);
661 	if (unlikely(!page_ext))
662 		return false;
663 
664 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
665 
666 	INIT_LIST_HEAD(&page->lru);
667 	set_page_private(page, order);
668 	/* Guard pages are not available for any usage */
669 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
670 
671 	return true;
672 }
673 
674 static inline void clear_page_guard(struct zone *zone, struct page *page,
675 				unsigned int order, int migratetype)
676 {
677 	struct page_ext *page_ext;
678 
679 	if (!debug_guardpage_enabled())
680 		return;
681 
682 	page_ext = lookup_page_ext(page);
683 	if (unlikely(!page_ext))
684 		return;
685 
686 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
687 
688 	set_page_private(page, 0);
689 	if (!is_migrate_isolate(migratetype))
690 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
691 }
692 #else
693 struct page_ext_operations debug_guardpage_ops;
694 static inline bool set_page_guard(struct zone *zone, struct page *page,
695 			unsigned int order, int migratetype) { return false; }
696 static inline void clear_page_guard(struct zone *zone, struct page *page,
697 				unsigned int order, int migratetype) {}
698 #endif
699 
700 static inline void set_page_order(struct page *page, unsigned int order)
701 {
702 	set_page_private(page, order);
703 	__SetPageBuddy(page);
704 }
705 
706 static inline void rmv_page_order(struct page *page)
707 {
708 	__ClearPageBuddy(page);
709 	set_page_private(page, 0);
710 }
711 
712 /*
713  * This function checks whether a page is free && is the buddy
714  * we can coalesce a page and its buddy if
715  * (a) the buddy is not in a hole (check before calling!) &&
716  * (b) the buddy is in the buddy system &&
717  * (c) a page and its buddy have the same order &&
718  * (d) a page and its buddy are in the same zone.
719  *
720  * For recording whether a page is in the buddy system, we set PageBuddy.
721  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
722  *
723  * For recording page's order, we use page_private(page).
724  */
725 static inline int page_is_buddy(struct page *page, struct page *buddy,
726 							unsigned int order)
727 {
728 	if (page_is_guard(buddy) && page_order(buddy) == order) {
729 		if (page_zone_id(page) != page_zone_id(buddy))
730 			return 0;
731 
732 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
733 
734 		return 1;
735 	}
736 
737 	if (PageBuddy(buddy) && page_order(buddy) == order) {
738 		/*
739 		 * zone check is done late to avoid uselessly
740 		 * calculating zone/node ids for pages that could
741 		 * never merge.
742 		 */
743 		if (page_zone_id(page) != page_zone_id(buddy))
744 			return 0;
745 
746 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
747 
748 		return 1;
749 	}
750 	return 0;
751 }
752 
753 /*
754  * Freeing function for a buddy system allocator.
755  *
756  * The concept of a buddy system is to maintain direct-mapped table
757  * (containing bit values) for memory blocks of various "orders".
758  * The bottom level table contains the map for the smallest allocatable
759  * units of memory (here, pages), and each level above it describes
760  * pairs of units from the levels below, hence, "buddies".
761  * At a high level, all that happens here is marking the table entry
762  * at the bottom level available, and propagating the changes upward
763  * as necessary, plus some accounting needed to play nicely with other
764  * parts of the VM system.
765  * At each level, we keep a list of pages, which are heads of continuous
766  * free pages of length of (1 << order) and marked with PageBuddy.
767  * Page's order is recorded in page_private(page) field.
768  * So when we are allocating or freeing one, we can derive the state of the
769  * other.  That is, if we allocate a small block, and both were
770  * free, the remainder of the region must be split into blocks.
771  * If a block is freed, and its buddy is also free, then this
772  * triggers coalescing into a block of larger size.
773  *
774  * -- nyc
775  */
776 
777 static inline void __free_one_page(struct page *page,
778 		unsigned long pfn,
779 		struct zone *zone, unsigned int order,
780 		int migratetype)
781 {
782 	unsigned long combined_pfn;
783 	unsigned long uninitialized_var(buddy_pfn);
784 	struct page *buddy;
785 	unsigned int max_order;
786 
787 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
788 
789 	VM_BUG_ON(!zone_is_initialized(zone));
790 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
791 
792 	VM_BUG_ON(migratetype == -1);
793 	if (likely(!is_migrate_isolate(migratetype)))
794 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
795 
796 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
797 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
798 
799 continue_merging:
800 	while (order < max_order - 1) {
801 		buddy_pfn = __find_buddy_pfn(pfn, order);
802 		buddy = page + (buddy_pfn - pfn);
803 
804 		if (!pfn_valid_within(buddy_pfn))
805 			goto done_merging;
806 		if (!page_is_buddy(page, buddy, order))
807 			goto done_merging;
808 		/*
809 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
810 		 * merge with it and move up one order.
811 		 */
812 		if (page_is_guard(buddy)) {
813 			clear_page_guard(zone, buddy, order, migratetype);
814 		} else {
815 			list_del(&buddy->lru);
816 			zone->free_area[order].nr_free--;
817 			rmv_page_order(buddy);
818 		}
819 		combined_pfn = buddy_pfn & pfn;
820 		page = page + (combined_pfn - pfn);
821 		pfn = combined_pfn;
822 		order++;
823 	}
824 	if (max_order < MAX_ORDER) {
825 		/* If we are here, it means order is >= pageblock_order.
826 		 * We want to prevent merge between freepages on isolate
827 		 * pageblock and normal pageblock. Without this, pageblock
828 		 * isolation could cause incorrect freepage or CMA accounting.
829 		 *
830 		 * We don't want to hit this code for the more frequent
831 		 * low-order merging.
832 		 */
833 		if (unlikely(has_isolate_pageblock(zone))) {
834 			int buddy_mt;
835 
836 			buddy_pfn = __find_buddy_pfn(pfn, order);
837 			buddy = page + (buddy_pfn - pfn);
838 			buddy_mt = get_pageblock_migratetype(buddy);
839 
840 			if (migratetype != buddy_mt
841 					&& (is_migrate_isolate(migratetype) ||
842 						is_migrate_isolate(buddy_mt)))
843 				goto done_merging;
844 		}
845 		max_order++;
846 		goto continue_merging;
847 	}
848 
849 done_merging:
850 	set_page_order(page, order);
851 
852 	/*
853 	 * If this is not the largest possible page, check if the buddy
854 	 * of the next-highest order is free. If it is, it's possible
855 	 * that pages are being freed that will coalesce soon. In case,
856 	 * that is happening, add the free page to the tail of the list
857 	 * so it's less likely to be used soon and more likely to be merged
858 	 * as a higher order page
859 	 */
860 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
861 		struct page *higher_page, *higher_buddy;
862 		combined_pfn = buddy_pfn & pfn;
863 		higher_page = page + (combined_pfn - pfn);
864 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
865 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
866 		if (pfn_valid_within(buddy_pfn) &&
867 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
868 			list_add_tail(&page->lru,
869 				&zone->free_area[order].free_list[migratetype]);
870 			goto out;
871 		}
872 	}
873 
874 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
875 out:
876 	zone->free_area[order].nr_free++;
877 }
878 
879 /*
880  * A bad page could be due to a number of fields. Instead of multiple branches,
881  * try and check multiple fields with one check. The caller must do a detailed
882  * check if necessary.
883  */
884 static inline bool page_expected_state(struct page *page,
885 					unsigned long check_flags)
886 {
887 	if (unlikely(atomic_read(&page->_mapcount) != -1))
888 		return false;
889 
890 	if (unlikely((unsigned long)page->mapping |
891 			page_ref_count(page) |
892 #ifdef CONFIG_MEMCG
893 			(unsigned long)page->mem_cgroup |
894 #endif
895 			(page->flags & check_flags)))
896 		return false;
897 
898 	return true;
899 }
900 
901 static void free_pages_check_bad(struct page *page)
902 {
903 	const char *bad_reason;
904 	unsigned long bad_flags;
905 
906 	bad_reason = NULL;
907 	bad_flags = 0;
908 
909 	if (unlikely(atomic_read(&page->_mapcount) != -1))
910 		bad_reason = "nonzero mapcount";
911 	if (unlikely(page->mapping != NULL))
912 		bad_reason = "non-NULL mapping";
913 	if (unlikely(page_ref_count(page) != 0))
914 		bad_reason = "nonzero _refcount";
915 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
916 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
917 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
918 	}
919 #ifdef CONFIG_MEMCG
920 	if (unlikely(page->mem_cgroup))
921 		bad_reason = "page still charged to cgroup";
922 #endif
923 	bad_page(page, bad_reason, bad_flags);
924 }
925 
926 static inline int free_pages_check(struct page *page)
927 {
928 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
929 		return 0;
930 
931 	/* Something has gone sideways, find it */
932 	free_pages_check_bad(page);
933 	return 1;
934 }
935 
936 static int free_tail_pages_check(struct page *head_page, struct page *page)
937 {
938 	int ret = 1;
939 
940 	/*
941 	 * We rely page->lru.next never has bit 0 set, unless the page
942 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
943 	 */
944 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
945 
946 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
947 		ret = 0;
948 		goto out;
949 	}
950 	switch (page - head_page) {
951 	case 1:
952 		/* the first tail page: ->mapping may be compound_mapcount() */
953 		if (unlikely(compound_mapcount(page))) {
954 			bad_page(page, "nonzero compound_mapcount", 0);
955 			goto out;
956 		}
957 		break;
958 	case 2:
959 		/*
960 		 * the second tail page: ->mapping is
961 		 * deferred_list.next -- ignore value.
962 		 */
963 		break;
964 	default:
965 		if (page->mapping != TAIL_MAPPING) {
966 			bad_page(page, "corrupted mapping in tail page", 0);
967 			goto out;
968 		}
969 		break;
970 	}
971 	if (unlikely(!PageTail(page))) {
972 		bad_page(page, "PageTail not set", 0);
973 		goto out;
974 	}
975 	if (unlikely(compound_head(page) != head_page)) {
976 		bad_page(page, "compound_head not consistent", 0);
977 		goto out;
978 	}
979 	ret = 0;
980 out:
981 	page->mapping = NULL;
982 	clear_compound_head(page);
983 	return ret;
984 }
985 
986 static __always_inline bool free_pages_prepare(struct page *page,
987 					unsigned int order, bool check_free)
988 {
989 	int bad = 0;
990 
991 	VM_BUG_ON_PAGE(PageTail(page), page);
992 
993 	trace_mm_page_free(page, order);
994 
995 	/*
996 	 * Check tail pages before head page information is cleared to
997 	 * avoid checking PageCompound for order-0 pages.
998 	 */
999 	if (unlikely(order)) {
1000 		bool compound = PageCompound(page);
1001 		int i;
1002 
1003 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1004 
1005 		if (compound)
1006 			ClearPageDoubleMap(page);
1007 		for (i = 1; i < (1 << order); i++) {
1008 			if (compound)
1009 				bad += free_tail_pages_check(page, page + i);
1010 			if (unlikely(free_pages_check(page + i))) {
1011 				bad++;
1012 				continue;
1013 			}
1014 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1015 		}
1016 	}
1017 	if (PageMappingFlags(page))
1018 		page->mapping = NULL;
1019 	if (memcg_kmem_enabled() && PageKmemcg(page))
1020 		memcg_kmem_uncharge(page, order);
1021 	if (check_free)
1022 		bad += free_pages_check(page);
1023 	if (bad)
1024 		return false;
1025 
1026 	page_cpupid_reset_last(page);
1027 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1028 	reset_page_owner(page, order);
1029 
1030 	if (!PageHighMem(page)) {
1031 		debug_check_no_locks_freed(page_address(page),
1032 					   PAGE_SIZE << order);
1033 		debug_check_no_obj_freed(page_address(page),
1034 					   PAGE_SIZE << order);
1035 	}
1036 	arch_free_page(page, order);
1037 	kernel_poison_pages(page, 1 << order, 0);
1038 	kernel_map_pages(page, 1 << order, 0);
1039 	kasan_free_pages(page, order);
1040 
1041 	return true;
1042 }
1043 
1044 #ifdef CONFIG_DEBUG_VM
1045 static inline bool free_pcp_prepare(struct page *page)
1046 {
1047 	return free_pages_prepare(page, 0, true);
1048 }
1049 
1050 static inline bool bulkfree_pcp_prepare(struct page *page)
1051 {
1052 	return false;
1053 }
1054 #else
1055 static bool free_pcp_prepare(struct page *page)
1056 {
1057 	return free_pages_prepare(page, 0, false);
1058 }
1059 
1060 static bool bulkfree_pcp_prepare(struct page *page)
1061 {
1062 	return free_pages_check(page);
1063 }
1064 #endif /* CONFIG_DEBUG_VM */
1065 
1066 static inline void prefetch_buddy(struct page *page)
1067 {
1068 	unsigned long pfn = page_to_pfn(page);
1069 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1070 	struct page *buddy = page + (buddy_pfn - pfn);
1071 
1072 	prefetch(buddy);
1073 }
1074 
1075 /*
1076  * Frees a number of pages from the PCP lists
1077  * Assumes all pages on list are in same zone, and of same order.
1078  * count is the number of pages to free.
1079  *
1080  * If the zone was previously in an "all pages pinned" state then look to
1081  * see if this freeing clears that state.
1082  *
1083  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1084  * pinned" detection logic.
1085  */
1086 static void free_pcppages_bulk(struct zone *zone, int count,
1087 					struct per_cpu_pages *pcp)
1088 {
1089 	int migratetype = 0;
1090 	int batch_free = 0;
1091 	int prefetch_nr = 0;
1092 	bool isolated_pageblocks;
1093 	struct page *page, *tmp;
1094 	LIST_HEAD(head);
1095 
1096 	while (count) {
1097 		struct list_head *list;
1098 
1099 		/*
1100 		 * Remove pages from lists in a round-robin fashion. A
1101 		 * batch_free count is maintained that is incremented when an
1102 		 * empty list is encountered.  This is so more pages are freed
1103 		 * off fuller lists instead of spinning excessively around empty
1104 		 * lists
1105 		 */
1106 		do {
1107 			batch_free++;
1108 			if (++migratetype == MIGRATE_PCPTYPES)
1109 				migratetype = 0;
1110 			list = &pcp->lists[migratetype];
1111 		} while (list_empty(list));
1112 
1113 		/* This is the only non-empty list. Free them all. */
1114 		if (batch_free == MIGRATE_PCPTYPES)
1115 			batch_free = count;
1116 
1117 		do {
1118 			page = list_last_entry(list, struct page, lru);
1119 			/* must delete to avoid corrupting pcp list */
1120 			list_del(&page->lru);
1121 			pcp->count--;
1122 
1123 			if (bulkfree_pcp_prepare(page))
1124 				continue;
1125 
1126 			list_add_tail(&page->lru, &head);
1127 
1128 			/*
1129 			 * We are going to put the page back to the global
1130 			 * pool, prefetch its buddy to speed up later access
1131 			 * under zone->lock. It is believed the overhead of
1132 			 * an additional test and calculating buddy_pfn here
1133 			 * can be offset by reduced memory latency later. To
1134 			 * avoid excessive prefetching due to large count, only
1135 			 * prefetch buddy for the first pcp->batch nr of pages.
1136 			 */
1137 			if (prefetch_nr++ < pcp->batch)
1138 				prefetch_buddy(page);
1139 		} while (--count && --batch_free && !list_empty(list));
1140 	}
1141 
1142 	spin_lock(&zone->lock);
1143 	isolated_pageblocks = has_isolate_pageblock(zone);
1144 
1145 	/*
1146 	 * Use safe version since after __free_one_page(),
1147 	 * page->lru.next will not point to original list.
1148 	 */
1149 	list_for_each_entry_safe(page, tmp, &head, lru) {
1150 		int mt = get_pcppage_migratetype(page);
1151 		/* MIGRATE_ISOLATE page should not go to pcplists */
1152 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1153 		/* Pageblock could have been isolated meanwhile */
1154 		if (unlikely(isolated_pageblocks))
1155 			mt = get_pageblock_migratetype(page);
1156 
1157 		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1158 		trace_mm_page_pcpu_drain(page, 0, mt);
1159 	}
1160 	spin_unlock(&zone->lock);
1161 }
1162 
1163 static void free_one_page(struct zone *zone,
1164 				struct page *page, unsigned long pfn,
1165 				unsigned int order,
1166 				int migratetype)
1167 {
1168 	spin_lock(&zone->lock);
1169 	if (unlikely(has_isolate_pageblock(zone) ||
1170 		is_migrate_isolate(migratetype))) {
1171 		migratetype = get_pfnblock_migratetype(page, pfn);
1172 	}
1173 	__free_one_page(page, pfn, zone, order, migratetype);
1174 	spin_unlock(&zone->lock);
1175 }
1176 
1177 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1178 				unsigned long zone, int nid)
1179 {
1180 	mm_zero_struct_page(page);
1181 	set_page_links(page, zone, nid, pfn);
1182 	init_page_count(page);
1183 	page_mapcount_reset(page);
1184 	page_cpupid_reset_last(page);
1185 	page_kasan_tag_reset(page);
1186 
1187 	INIT_LIST_HEAD(&page->lru);
1188 #ifdef WANT_PAGE_VIRTUAL
1189 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1190 	if (!is_highmem_idx(zone))
1191 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1192 #endif
1193 }
1194 
1195 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1196 static void __meminit init_reserved_page(unsigned long pfn)
1197 {
1198 	pg_data_t *pgdat;
1199 	int nid, zid;
1200 
1201 	if (!early_page_uninitialised(pfn))
1202 		return;
1203 
1204 	nid = early_pfn_to_nid(pfn);
1205 	pgdat = NODE_DATA(nid);
1206 
1207 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1208 		struct zone *zone = &pgdat->node_zones[zid];
1209 
1210 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1211 			break;
1212 	}
1213 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1214 }
1215 #else
1216 static inline void init_reserved_page(unsigned long pfn)
1217 {
1218 }
1219 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1220 
1221 /*
1222  * Initialised pages do not have PageReserved set. This function is
1223  * called for each range allocated by the bootmem allocator and
1224  * marks the pages PageReserved. The remaining valid pages are later
1225  * sent to the buddy page allocator.
1226  */
1227 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1228 {
1229 	unsigned long start_pfn = PFN_DOWN(start);
1230 	unsigned long end_pfn = PFN_UP(end);
1231 
1232 	for (; start_pfn < end_pfn; start_pfn++) {
1233 		if (pfn_valid(start_pfn)) {
1234 			struct page *page = pfn_to_page(start_pfn);
1235 
1236 			init_reserved_page(start_pfn);
1237 
1238 			/* Avoid false-positive PageTail() */
1239 			INIT_LIST_HEAD(&page->lru);
1240 
1241 			/*
1242 			 * no need for atomic set_bit because the struct
1243 			 * page is not visible yet so nobody should
1244 			 * access it yet.
1245 			 */
1246 			__SetPageReserved(page);
1247 		}
1248 	}
1249 }
1250 
1251 static void __free_pages_ok(struct page *page, unsigned int order)
1252 {
1253 	unsigned long flags;
1254 	int migratetype;
1255 	unsigned long pfn = page_to_pfn(page);
1256 
1257 	if (!free_pages_prepare(page, order, true))
1258 		return;
1259 
1260 	migratetype = get_pfnblock_migratetype(page, pfn);
1261 	local_irq_save(flags);
1262 	__count_vm_events(PGFREE, 1 << order);
1263 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1264 	local_irq_restore(flags);
1265 }
1266 
1267 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1268 {
1269 	unsigned int nr_pages = 1 << order;
1270 	struct page *p = page;
1271 	unsigned int loop;
1272 
1273 	prefetchw(p);
1274 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1275 		prefetchw(p + 1);
1276 		__ClearPageReserved(p);
1277 		set_page_count(p, 0);
1278 	}
1279 	__ClearPageReserved(p);
1280 	set_page_count(p, 0);
1281 
1282 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1283 	set_page_refcounted(page);
1284 	__free_pages(page, order);
1285 }
1286 
1287 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1288 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1289 
1290 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1291 
1292 int __meminit early_pfn_to_nid(unsigned long pfn)
1293 {
1294 	static DEFINE_SPINLOCK(early_pfn_lock);
1295 	int nid;
1296 
1297 	spin_lock(&early_pfn_lock);
1298 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1299 	if (nid < 0)
1300 		nid = first_online_node;
1301 	spin_unlock(&early_pfn_lock);
1302 
1303 	return nid;
1304 }
1305 #endif
1306 
1307 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1308 static inline bool __meminit __maybe_unused
1309 meminit_pfn_in_nid(unsigned long pfn, int node,
1310 		   struct mminit_pfnnid_cache *state)
1311 {
1312 	int nid;
1313 
1314 	nid = __early_pfn_to_nid(pfn, state);
1315 	if (nid >= 0 && nid != node)
1316 		return false;
1317 	return true;
1318 }
1319 
1320 /* Only safe to use early in boot when initialisation is single-threaded */
1321 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1322 {
1323 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1324 }
1325 
1326 #else
1327 
1328 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1329 {
1330 	return true;
1331 }
1332 static inline bool __meminit  __maybe_unused
1333 meminit_pfn_in_nid(unsigned long pfn, int node,
1334 		   struct mminit_pfnnid_cache *state)
1335 {
1336 	return true;
1337 }
1338 #endif
1339 
1340 
1341 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1342 							unsigned int order)
1343 {
1344 	if (early_page_uninitialised(pfn))
1345 		return;
1346 	return __free_pages_boot_core(page, order);
1347 }
1348 
1349 /*
1350  * Check that the whole (or subset of) a pageblock given by the interval of
1351  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1352  * with the migration of free compaction scanner. The scanners then need to
1353  * use only pfn_valid_within() check for arches that allow holes within
1354  * pageblocks.
1355  *
1356  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1357  *
1358  * It's possible on some configurations to have a setup like node0 node1 node0
1359  * i.e. it's possible that all pages within a zones range of pages do not
1360  * belong to a single zone. We assume that a border between node0 and node1
1361  * can occur within a single pageblock, but not a node0 node1 node0
1362  * interleaving within a single pageblock. It is therefore sufficient to check
1363  * the first and last page of a pageblock and avoid checking each individual
1364  * page in a pageblock.
1365  */
1366 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1367 				     unsigned long end_pfn, struct zone *zone)
1368 {
1369 	struct page *start_page;
1370 	struct page *end_page;
1371 
1372 	/* end_pfn is one past the range we are checking */
1373 	end_pfn--;
1374 
1375 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1376 		return NULL;
1377 
1378 	start_page = pfn_to_online_page(start_pfn);
1379 	if (!start_page)
1380 		return NULL;
1381 
1382 	if (page_zone(start_page) != zone)
1383 		return NULL;
1384 
1385 	end_page = pfn_to_page(end_pfn);
1386 
1387 	/* This gives a shorter code than deriving page_zone(end_page) */
1388 	if (page_zone_id(start_page) != page_zone_id(end_page))
1389 		return NULL;
1390 
1391 	return start_page;
1392 }
1393 
1394 void set_zone_contiguous(struct zone *zone)
1395 {
1396 	unsigned long block_start_pfn = zone->zone_start_pfn;
1397 	unsigned long block_end_pfn;
1398 
1399 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1400 	for (; block_start_pfn < zone_end_pfn(zone);
1401 			block_start_pfn = block_end_pfn,
1402 			 block_end_pfn += pageblock_nr_pages) {
1403 
1404 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1405 
1406 		if (!__pageblock_pfn_to_page(block_start_pfn,
1407 					     block_end_pfn, zone))
1408 			return;
1409 	}
1410 
1411 	/* We confirm that there is no hole */
1412 	zone->contiguous = true;
1413 }
1414 
1415 void clear_zone_contiguous(struct zone *zone)
1416 {
1417 	zone->contiguous = false;
1418 }
1419 
1420 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1421 static void __init deferred_free_range(unsigned long pfn,
1422 				       unsigned long nr_pages)
1423 {
1424 	struct page *page;
1425 	unsigned long i;
1426 
1427 	if (!nr_pages)
1428 		return;
1429 
1430 	page = pfn_to_page(pfn);
1431 
1432 	/* Free a large naturally-aligned chunk if possible */
1433 	if (nr_pages == pageblock_nr_pages &&
1434 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1435 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1436 		__free_pages_boot_core(page, pageblock_order);
1437 		return;
1438 	}
1439 
1440 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1441 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1442 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1443 		__free_pages_boot_core(page, 0);
1444 	}
1445 }
1446 
1447 /* Completion tracking for deferred_init_memmap() threads */
1448 static atomic_t pgdat_init_n_undone __initdata;
1449 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1450 
1451 static inline void __init pgdat_init_report_one_done(void)
1452 {
1453 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1454 		complete(&pgdat_init_all_done_comp);
1455 }
1456 
1457 /*
1458  * Returns true if page needs to be initialized or freed to buddy allocator.
1459  *
1460  * First we check if pfn is valid on architectures where it is possible to have
1461  * holes within pageblock_nr_pages. On systems where it is not possible, this
1462  * function is optimized out.
1463  *
1464  * Then, we check if a current large page is valid by only checking the validity
1465  * of the head pfn.
1466  *
1467  * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1468  * within a node: a pfn is between start and end of a node, but does not belong
1469  * to this memory node.
1470  */
1471 static inline bool __init
1472 deferred_pfn_valid(int nid, unsigned long pfn,
1473 		   struct mminit_pfnnid_cache *nid_init_state)
1474 {
1475 	if (!pfn_valid_within(pfn))
1476 		return false;
1477 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1478 		return false;
1479 	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1480 		return false;
1481 	return true;
1482 }
1483 
1484 /*
1485  * Free pages to buddy allocator. Try to free aligned pages in
1486  * pageblock_nr_pages sizes.
1487  */
1488 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1489 				       unsigned long end_pfn)
1490 {
1491 	struct mminit_pfnnid_cache nid_init_state = { };
1492 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1493 	unsigned long nr_free = 0;
1494 
1495 	for (; pfn < end_pfn; pfn++) {
1496 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1497 			deferred_free_range(pfn - nr_free, nr_free);
1498 			nr_free = 0;
1499 		} else if (!(pfn & nr_pgmask)) {
1500 			deferred_free_range(pfn - nr_free, nr_free);
1501 			nr_free = 1;
1502 			touch_nmi_watchdog();
1503 		} else {
1504 			nr_free++;
1505 		}
1506 	}
1507 	/* Free the last block of pages to allocator */
1508 	deferred_free_range(pfn - nr_free, nr_free);
1509 }
1510 
1511 /*
1512  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1513  * by performing it only once every pageblock_nr_pages.
1514  * Return number of pages initialized.
1515  */
1516 static unsigned long  __init deferred_init_pages(int nid, int zid,
1517 						 unsigned long pfn,
1518 						 unsigned long end_pfn)
1519 {
1520 	struct mminit_pfnnid_cache nid_init_state = { };
1521 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1522 	unsigned long nr_pages = 0;
1523 	struct page *page = NULL;
1524 
1525 	for (; pfn < end_pfn; pfn++) {
1526 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1527 			page = NULL;
1528 			continue;
1529 		} else if (!page || !(pfn & nr_pgmask)) {
1530 			page = pfn_to_page(pfn);
1531 			touch_nmi_watchdog();
1532 		} else {
1533 			page++;
1534 		}
1535 		__init_single_page(page, pfn, zid, nid);
1536 		nr_pages++;
1537 	}
1538 	return (nr_pages);
1539 }
1540 
1541 /* Initialise remaining memory on a node */
1542 static int __init deferred_init_memmap(void *data)
1543 {
1544 	pg_data_t *pgdat = data;
1545 	int nid = pgdat->node_id;
1546 	unsigned long start = jiffies;
1547 	unsigned long nr_pages = 0;
1548 	unsigned long spfn, epfn, first_init_pfn, flags;
1549 	phys_addr_t spa, epa;
1550 	int zid;
1551 	struct zone *zone;
1552 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1553 	u64 i;
1554 
1555 	/* Bind memory initialisation thread to a local node if possible */
1556 	if (!cpumask_empty(cpumask))
1557 		set_cpus_allowed_ptr(current, cpumask);
1558 
1559 	pgdat_resize_lock(pgdat, &flags);
1560 	first_init_pfn = pgdat->first_deferred_pfn;
1561 	if (first_init_pfn == ULONG_MAX) {
1562 		pgdat_resize_unlock(pgdat, &flags);
1563 		pgdat_init_report_one_done();
1564 		return 0;
1565 	}
1566 
1567 	/* Sanity check boundaries */
1568 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1569 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1570 	pgdat->first_deferred_pfn = ULONG_MAX;
1571 
1572 	/* Only the highest zone is deferred so find it */
1573 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1574 		zone = pgdat->node_zones + zid;
1575 		if (first_init_pfn < zone_end_pfn(zone))
1576 			break;
1577 	}
1578 	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1579 
1580 	/*
1581 	 * Initialize and free pages. We do it in two loops: first we initialize
1582 	 * struct page, than free to buddy allocator, because while we are
1583 	 * freeing pages we can access pages that are ahead (computing buddy
1584 	 * page in __free_one_page()).
1585 	 */
1586 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1587 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1588 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1589 		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1590 	}
1591 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1592 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1593 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1594 		deferred_free_pages(nid, zid, spfn, epfn);
1595 	}
1596 	pgdat_resize_unlock(pgdat, &flags);
1597 
1598 	/* Sanity check that the next zone really is unpopulated */
1599 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1600 
1601 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1602 					jiffies_to_msecs(jiffies - start));
1603 
1604 	pgdat_init_report_one_done();
1605 	return 0;
1606 }
1607 
1608 /*
1609  * During boot we initialize deferred pages on-demand, as needed, but once
1610  * page_alloc_init_late() has finished, the deferred pages are all initialized,
1611  * and we can permanently disable that path.
1612  */
1613 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1614 
1615 /*
1616  * If this zone has deferred pages, try to grow it by initializing enough
1617  * deferred pages to satisfy the allocation specified by order, rounded up to
1618  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1619  * of SECTION_SIZE bytes by initializing struct pages in increments of
1620  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1621  *
1622  * Return true when zone was grown, otherwise return false. We return true even
1623  * when we grow less than requested, to let the caller decide if there are
1624  * enough pages to satisfy the allocation.
1625  *
1626  * Note: We use noinline because this function is needed only during boot, and
1627  * it is called from a __ref function _deferred_grow_zone. This way we are
1628  * making sure that it is not inlined into permanent text section.
1629  */
1630 static noinline bool __init
1631 deferred_grow_zone(struct zone *zone, unsigned int order)
1632 {
1633 	int zid = zone_idx(zone);
1634 	int nid = zone_to_nid(zone);
1635 	pg_data_t *pgdat = NODE_DATA(nid);
1636 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1637 	unsigned long nr_pages = 0;
1638 	unsigned long first_init_pfn, spfn, epfn, t, flags;
1639 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1640 	phys_addr_t spa, epa;
1641 	u64 i;
1642 
1643 	/* Only the last zone may have deferred pages */
1644 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1645 		return false;
1646 
1647 	pgdat_resize_lock(pgdat, &flags);
1648 
1649 	/*
1650 	 * If deferred pages have been initialized while we were waiting for
1651 	 * the lock, return true, as the zone was grown.  The caller will retry
1652 	 * this zone.  We won't return to this function since the caller also
1653 	 * has this static branch.
1654 	 */
1655 	if (!static_branch_unlikely(&deferred_pages)) {
1656 		pgdat_resize_unlock(pgdat, &flags);
1657 		return true;
1658 	}
1659 
1660 	/*
1661 	 * If someone grew this zone while we were waiting for spinlock, return
1662 	 * true, as there might be enough pages already.
1663 	 */
1664 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1665 		pgdat_resize_unlock(pgdat, &flags);
1666 		return true;
1667 	}
1668 
1669 	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1670 
1671 	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1672 		pgdat_resize_unlock(pgdat, &flags);
1673 		return false;
1674 	}
1675 
1676 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1677 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1678 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1679 
1680 		while (spfn < epfn && nr_pages < nr_pages_needed) {
1681 			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1682 			first_deferred_pfn = min(t, epfn);
1683 			nr_pages += deferred_init_pages(nid, zid, spfn,
1684 							first_deferred_pfn);
1685 			spfn = first_deferred_pfn;
1686 		}
1687 
1688 		if (nr_pages >= nr_pages_needed)
1689 			break;
1690 	}
1691 
1692 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1693 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1694 		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1695 		deferred_free_pages(nid, zid, spfn, epfn);
1696 
1697 		if (first_deferred_pfn == epfn)
1698 			break;
1699 	}
1700 	pgdat->first_deferred_pfn = first_deferred_pfn;
1701 	pgdat_resize_unlock(pgdat, &flags);
1702 
1703 	return nr_pages > 0;
1704 }
1705 
1706 /*
1707  * deferred_grow_zone() is __init, but it is called from
1708  * get_page_from_freelist() during early boot until deferred_pages permanently
1709  * disables this call. This is why we have refdata wrapper to avoid warning,
1710  * and to ensure that the function body gets unloaded.
1711  */
1712 static bool __ref
1713 _deferred_grow_zone(struct zone *zone, unsigned int order)
1714 {
1715 	return deferred_grow_zone(zone, order);
1716 }
1717 
1718 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1719 
1720 void __init page_alloc_init_late(void)
1721 {
1722 	struct zone *zone;
1723 
1724 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1725 	int nid;
1726 
1727 	/* There will be num_node_state(N_MEMORY) threads */
1728 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1729 	for_each_node_state(nid, N_MEMORY) {
1730 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1731 	}
1732 
1733 	/* Block until all are initialised */
1734 	wait_for_completion(&pgdat_init_all_done_comp);
1735 
1736 	/*
1737 	 * We initialized the rest of the deferred pages.  Permanently disable
1738 	 * on-demand struct page initialization.
1739 	 */
1740 	static_branch_disable(&deferred_pages);
1741 
1742 	/* Reinit limits that are based on free pages after the kernel is up */
1743 	files_maxfiles_init();
1744 #endif
1745 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1746 	/* Discard memblock private memory */
1747 	memblock_discard();
1748 #endif
1749 
1750 	for_each_populated_zone(zone)
1751 		set_zone_contiguous(zone);
1752 }
1753 
1754 #ifdef CONFIG_CMA
1755 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1756 void __init init_cma_reserved_pageblock(struct page *page)
1757 {
1758 	unsigned i = pageblock_nr_pages;
1759 	struct page *p = page;
1760 
1761 	do {
1762 		__ClearPageReserved(p);
1763 		set_page_count(p, 0);
1764 	} while (++p, --i);
1765 
1766 	set_pageblock_migratetype(page, MIGRATE_CMA);
1767 
1768 	if (pageblock_order >= MAX_ORDER) {
1769 		i = pageblock_nr_pages;
1770 		p = page;
1771 		do {
1772 			set_page_refcounted(p);
1773 			__free_pages(p, MAX_ORDER - 1);
1774 			p += MAX_ORDER_NR_PAGES;
1775 		} while (i -= MAX_ORDER_NR_PAGES);
1776 	} else {
1777 		set_page_refcounted(page);
1778 		__free_pages(page, pageblock_order);
1779 	}
1780 
1781 	adjust_managed_page_count(page, pageblock_nr_pages);
1782 }
1783 #endif
1784 
1785 /*
1786  * The order of subdivision here is critical for the IO subsystem.
1787  * Please do not alter this order without good reasons and regression
1788  * testing. Specifically, as large blocks of memory are subdivided,
1789  * the order in which smaller blocks are delivered depends on the order
1790  * they're subdivided in this function. This is the primary factor
1791  * influencing the order in which pages are delivered to the IO
1792  * subsystem according to empirical testing, and this is also justified
1793  * by considering the behavior of a buddy system containing a single
1794  * large block of memory acted on by a series of small allocations.
1795  * This behavior is a critical factor in sglist merging's success.
1796  *
1797  * -- nyc
1798  */
1799 static inline void expand(struct zone *zone, struct page *page,
1800 	int low, int high, struct free_area *area,
1801 	int migratetype)
1802 {
1803 	unsigned long size = 1 << high;
1804 
1805 	while (high > low) {
1806 		area--;
1807 		high--;
1808 		size >>= 1;
1809 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1810 
1811 		/*
1812 		 * Mark as guard pages (or page), that will allow to
1813 		 * merge back to allocator when buddy will be freed.
1814 		 * Corresponding page table entries will not be touched,
1815 		 * pages will stay not present in virtual address space
1816 		 */
1817 		if (set_page_guard(zone, &page[size], high, migratetype))
1818 			continue;
1819 
1820 		list_add(&page[size].lru, &area->free_list[migratetype]);
1821 		area->nr_free++;
1822 		set_page_order(&page[size], high);
1823 	}
1824 }
1825 
1826 static void check_new_page_bad(struct page *page)
1827 {
1828 	const char *bad_reason = NULL;
1829 	unsigned long bad_flags = 0;
1830 
1831 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1832 		bad_reason = "nonzero mapcount";
1833 	if (unlikely(page->mapping != NULL))
1834 		bad_reason = "non-NULL mapping";
1835 	if (unlikely(page_ref_count(page) != 0))
1836 		bad_reason = "nonzero _count";
1837 	if (unlikely(page->flags & __PG_HWPOISON)) {
1838 		bad_reason = "HWPoisoned (hardware-corrupted)";
1839 		bad_flags = __PG_HWPOISON;
1840 		/* Don't complain about hwpoisoned pages */
1841 		page_mapcount_reset(page); /* remove PageBuddy */
1842 		return;
1843 	}
1844 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1845 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1846 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1847 	}
1848 #ifdef CONFIG_MEMCG
1849 	if (unlikely(page->mem_cgroup))
1850 		bad_reason = "page still charged to cgroup";
1851 #endif
1852 	bad_page(page, bad_reason, bad_flags);
1853 }
1854 
1855 /*
1856  * This page is about to be returned from the page allocator
1857  */
1858 static inline int check_new_page(struct page *page)
1859 {
1860 	if (likely(page_expected_state(page,
1861 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1862 		return 0;
1863 
1864 	check_new_page_bad(page);
1865 	return 1;
1866 }
1867 
1868 static inline bool free_pages_prezeroed(void)
1869 {
1870 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1871 		page_poisoning_enabled();
1872 }
1873 
1874 #ifdef CONFIG_DEBUG_VM
1875 static bool check_pcp_refill(struct page *page)
1876 {
1877 	return false;
1878 }
1879 
1880 static bool check_new_pcp(struct page *page)
1881 {
1882 	return check_new_page(page);
1883 }
1884 #else
1885 static bool check_pcp_refill(struct page *page)
1886 {
1887 	return check_new_page(page);
1888 }
1889 static bool check_new_pcp(struct page *page)
1890 {
1891 	return false;
1892 }
1893 #endif /* CONFIG_DEBUG_VM */
1894 
1895 static bool check_new_pages(struct page *page, unsigned int order)
1896 {
1897 	int i;
1898 	for (i = 0; i < (1 << order); i++) {
1899 		struct page *p = page + i;
1900 
1901 		if (unlikely(check_new_page(p)))
1902 			return true;
1903 	}
1904 
1905 	return false;
1906 }
1907 
1908 inline void post_alloc_hook(struct page *page, unsigned int order,
1909 				gfp_t gfp_flags)
1910 {
1911 	set_page_private(page, 0);
1912 	set_page_refcounted(page);
1913 
1914 	arch_alloc_page(page, order);
1915 	kernel_map_pages(page, 1 << order, 1);
1916 	kernel_poison_pages(page, 1 << order, 1);
1917 	kasan_alloc_pages(page, order);
1918 	set_page_owner(page, order, gfp_flags);
1919 }
1920 
1921 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1922 							unsigned int alloc_flags)
1923 {
1924 	int i;
1925 
1926 	post_alloc_hook(page, order, gfp_flags);
1927 
1928 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1929 		for (i = 0; i < (1 << order); i++)
1930 			clear_highpage(page + i);
1931 
1932 	if (order && (gfp_flags & __GFP_COMP))
1933 		prep_compound_page(page, order);
1934 
1935 	/*
1936 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1937 	 * allocate the page. The expectation is that the caller is taking
1938 	 * steps that will free more memory. The caller should avoid the page
1939 	 * being used for !PFMEMALLOC purposes.
1940 	 */
1941 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1942 		set_page_pfmemalloc(page);
1943 	else
1944 		clear_page_pfmemalloc(page);
1945 }
1946 
1947 /*
1948  * Go through the free lists for the given migratetype and remove
1949  * the smallest available page from the freelists
1950  */
1951 static __always_inline
1952 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1953 						int migratetype)
1954 {
1955 	unsigned int current_order;
1956 	struct free_area *area;
1957 	struct page *page;
1958 
1959 	/* Find a page of the appropriate size in the preferred list */
1960 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1961 		area = &(zone->free_area[current_order]);
1962 		page = list_first_entry_or_null(&area->free_list[migratetype],
1963 							struct page, lru);
1964 		if (!page)
1965 			continue;
1966 		list_del(&page->lru);
1967 		rmv_page_order(page);
1968 		area->nr_free--;
1969 		expand(zone, page, order, current_order, area, migratetype);
1970 		set_pcppage_migratetype(page, migratetype);
1971 		return page;
1972 	}
1973 
1974 	return NULL;
1975 }
1976 
1977 
1978 /*
1979  * This array describes the order lists are fallen back to when
1980  * the free lists for the desirable migrate type are depleted
1981  */
1982 static int fallbacks[MIGRATE_TYPES][4] = {
1983 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1984 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1985 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1986 #ifdef CONFIG_CMA
1987 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1988 #endif
1989 #ifdef CONFIG_MEMORY_ISOLATION
1990 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1991 #endif
1992 };
1993 
1994 #ifdef CONFIG_CMA
1995 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1996 					unsigned int order)
1997 {
1998 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1999 }
2000 #else
2001 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2002 					unsigned int order) { return NULL; }
2003 #endif
2004 
2005 /*
2006  * Move the free pages in a range to the free lists of the requested type.
2007  * Note that start_page and end_pages are not aligned on a pageblock
2008  * boundary. If alignment is required, use move_freepages_block()
2009  */
2010 static int move_freepages(struct zone *zone,
2011 			  struct page *start_page, struct page *end_page,
2012 			  int migratetype, int *num_movable)
2013 {
2014 	struct page *page;
2015 	unsigned int order;
2016 	int pages_moved = 0;
2017 
2018 #ifndef CONFIG_HOLES_IN_ZONE
2019 	/*
2020 	 * page_zone is not safe to call in this context when
2021 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2022 	 * anyway as we check zone boundaries in move_freepages_block().
2023 	 * Remove at a later date when no bug reports exist related to
2024 	 * grouping pages by mobility
2025 	 */
2026 	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2027 	          pfn_valid(page_to_pfn(end_page)) &&
2028 	          page_zone(start_page) != page_zone(end_page));
2029 #endif
2030 	for (page = start_page; page <= end_page;) {
2031 		if (!pfn_valid_within(page_to_pfn(page))) {
2032 			page++;
2033 			continue;
2034 		}
2035 
2036 		/* Make sure we are not inadvertently changing nodes */
2037 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2038 
2039 		if (!PageBuddy(page)) {
2040 			/*
2041 			 * We assume that pages that could be isolated for
2042 			 * migration are movable. But we don't actually try
2043 			 * isolating, as that would be expensive.
2044 			 */
2045 			if (num_movable &&
2046 					(PageLRU(page) || __PageMovable(page)))
2047 				(*num_movable)++;
2048 
2049 			page++;
2050 			continue;
2051 		}
2052 
2053 		order = page_order(page);
2054 		list_move(&page->lru,
2055 			  &zone->free_area[order].free_list[migratetype]);
2056 		page += 1 << order;
2057 		pages_moved += 1 << order;
2058 	}
2059 
2060 	return pages_moved;
2061 }
2062 
2063 int move_freepages_block(struct zone *zone, struct page *page,
2064 				int migratetype, int *num_movable)
2065 {
2066 	unsigned long start_pfn, end_pfn;
2067 	struct page *start_page, *end_page;
2068 
2069 	if (num_movable)
2070 		*num_movable = 0;
2071 
2072 	start_pfn = page_to_pfn(page);
2073 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2074 	start_page = pfn_to_page(start_pfn);
2075 	end_page = start_page + pageblock_nr_pages - 1;
2076 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2077 
2078 	/* Do not cross zone boundaries */
2079 	if (!zone_spans_pfn(zone, start_pfn))
2080 		start_page = page;
2081 	if (!zone_spans_pfn(zone, end_pfn))
2082 		return 0;
2083 
2084 	return move_freepages(zone, start_page, end_page, migratetype,
2085 								num_movable);
2086 }
2087 
2088 static void change_pageblock_range(struct page *pageblock_page,
2089 					int start_order, int migratetype)
2090 {
2091 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2092 
2093 	while (nr_pageblocks--) {
2094 		set_pageblock_migratetype(pageblock_page, migratetype);
2095 		pageblock_page += pageblock_nr_pages;
2096 	}
2097 }
2098 
2099 /*
2100  * When we are falling back to another migratetype during allocation, try to
2101  * steal extra free pages from the same pageblocks to satisfy further
2102  * allocations, instead of polluting multiple pageblocks.
2103  *
2104  * If we are stealing a relatively large buddy page, it is likely there will
2105  * be more free pages in the pageblock, so try to steal them all. For
2106  * reclaimable and unmovable allocations, we steal regardless of page size,
2107  * as fragmentation caused by those allocations polluting movable pageblocks
2108  * is worse than movable allocations stealing from unmovable and reclaimable
2109  * pageblocks.
2110  */
2111 static bool can_steal_fallback(unsigned int order, int start_mt)
2112 {
2113 	/*
2114 	 * Leaving this order check is intended, although there is
2115 	 * relaxed order check in next check. The reason is that
2116 	 * we can actually steal whole pageblock if this condition met,
2117 	 * but, below check doesn't guarantee it and that is just heuristic
2118 	 * so could be changed anytime.
2119 	 */
2120 	if (order >= pageblock_order)
2121 		return true;
2122 
2123 	if (order >= pageblock_order / 2 ||
2124 		start_mt == MIGRATE_RECLAIMABLE ||
2125 		start_mt == MIGRATE_UNMOVABLE ||
2126 		page_group_by_mobility_disabled)
2127 		return true;
2128 
2129 	return false;
2130 }
2131 
2132 /*
2133  * This function implements actual steal behaviour. If order is large enough,
2134  * we can steal whole pageblock. If not, we first move freepages in this
2135  * pageblock to our migratetype and determine how many already-allocated pages
2136  * are there in the pageblock with a compatible migratetype. If at least half
2137  * of pages are free or compatible, we can change migratetype of the pageblock
2138  * itself, so pages freed in the future will be put on the correct free list.
2139  */
2140 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2141 					int start_type, bool whole_block)
2142 {
2143 	unsigned int current_order = page_order(page);
2144 	struct free_area *area;
2145 	int free_pages, movable_pages, alike_pages;
2146 	int old_block_type;
2147 
2148 	old_block_type = get_pageblock_migratetype(page);
2149 
2150 	/*
2151 	 * This can happen due to races and we want to prevent broken
2152 	 * highatomic accounting.
2153 	 */
2154 	if (is_migrate_highatomic(old_block_type))
2155 		goto single_page;
2156 
2157 	/* Take ownership for orders >= pageblock_order */
2158 	if (current_order >= pageblock_order) {
2159 		change_pageblock_range(page, current_order, start_type);
2160 		goto single_page;
2161 	}
2162 
2163 	/* We are not allowed to try stealing from the whole block */
2164 	if (!whole_block)
2165 		goto single_page;
2166 
2167 	free_pages = move_freepages_block(zone, page, start_type,
2168 						&movable_pages);
2169 	/*
2170 	 * Determine how many pages are compatible with our allocation.
2171 	 * For movable allocation, it's the number of movable pages which
2172 	 * we just obtained. For other types it's a bit more tricky.
2173 	 */
2174 	if (start_type == MIGRATE_MOVABLE) {
2175 		alike_pages = movable_pages;
2176 	} else {
2177 		/*
2178 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2179 		 * to MOVABLE pageblock, consider all non-movable pages as
2180 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2181 		 * vice versa, be conservative since we can't distinguish the
2182 		 * exact migratetype of non-movable pages.
2183 		 */
2184 		if (old_block_type == MIGRATE_MOVABLE)
2185 			alike_pages = pageblock_nr_pages
2186 						- (free_pages + movable_pages);
2187 		else
2188 			alike_pages = 0;
2189 	}
2190 
2191 	/* moving whole block can fail due to zone boundary conditions */
2192 	if (!free_pages)
2193 		goto single_page;
2194 
2195 	/*
2196 	 * If a sufficient number of pages in the block are either free or of
2197 	 * comparable migratability as our allocation, claim the whole block.
2198 	 */
2199 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2200 			page_group_by_mobility_disabled)
2201 		set_pageblock_migratetype(page, start_type);
2202 
2203 	return;
2204 
2205 single_page:
2206 	area = &zone->free_area[current_order];
2207 	list_move(&page->lru, &area->free_list[start_type]);
2208 }
2209 
2210 /*
2211  * Check whether there is a suitable fallback freepage with requested order.
2212  * If only_stealable is true, this function returns fallback_mt only if
2213  * we can steal other freepages all together. This would help to reduce
2214  * fragmentation due to mixed migratetype pages in one pageblock.
2215  */
2216 int find_suitable_fallback(struct free_area *area, unsigned int order,
2217 			int migratetype, bool only_stealable, bool *can_steal)
2218 {
2219 	int i;
2220 	int fallback_mt;
2221 
2222 	if (area->nr_free == 0)
2223 		return -1;
2224 
2225 	*can_steal = false;
2226 	for (i = 0;; i++) {
2227 		fallback_mt = fallbacks[migratetype][i];
2228 		if (fallback_mt == MIGRATE_TYPES)
2229 			break;
2230 
2231 		if (list_empty(&area->free_list[fallback_mt]))
2232 			continue;
2233 
2234 		if (can_steal_fallback(order, migratetype))
2235 			*can_steal = true;
2236 
2237 		if (!only_stealable)
2238 			return fallback_mt;
2239 
2240 		if (*can_steal)
2241 			return fallback_mt;
2242 	}
2243 
2244 	return -1;
2245 }
2246 
2247 /*
2248  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2249  * there are no empty page blocks that contain a page with a suitable order
2250  */
2251 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2252 				unsigned int alloc_order)
2253 {
2254 	int mt;
2255 	unsigned long max_managed, flags;
2256 
2257 	/*
2258 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2259 	 * Check is race-prone but harmless.
2260 	 */
2261 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2262 	if (zone->nr_reserved_highatomic >= max_managed)
2263 		return;
2264 
2265 	spin_lock_irqsave(&zone->lock, flags);
2266 
2267 	/* Recheck the nr_reserved_highatomic limit under the lock */
2268 	if (zone->nr_reserved_highatomic >= max_managed)
2269 		goto out_unlock;
2270 
2271 	/* Yoink! */
2272 	mt = get_pageblock_migratetype(page);
2273 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2274 	    && !is_migrate_cma(mt)) {
2275 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2276 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2277 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2278 	}
2279 
2280 out_unlock:
2281 	spin_unlock_irqrestore(&zone->lock, flags);
2282 }
2283 
2284 /*
2285  * Used when an allocation is about to fail under memory pressure. This
2286  * potentially hurts the reliability of high-order allocations when under
2287  * intense memory pressure but failed atomic allocations should be easier
2288  * to recover from than an OOM.
2289  *
2290  * If @force is true, try to unreserve a pageblock even though highatomic
2291  * pageblock is exhausted.
2292  */
2293 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2294 						bool force)
2295 {
2296 	struct zonelist *zonelist = ac->zonelist;
2297 	unsigned long flags;
2298 	struct zoneref *z;
2299 	struct zone *zone;
2300 	struct page *page;
2301 	int order;
2302 	bool ret;
2303 
2304 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2305 								ac->nodemask) {
2306 		/*
2307 		 * Preserve at least one pageblock unless memory pressure
2308 		 * is really high.
2309 		 */
2310 		if (!force && zone->nr_reserved_highatomic <=
2311 					pageblock_nr_pages)
2312 			continue;
2313 
2314 		spin_lock_irqsave(&zone->lock, flags);
2315 		for (order = 0; order < MAX_ORDER; order++) {
2316 			struct free_area *area = &(zone->free_area[order]);
2317 
2318 			page = list_first_entry_or_null(
2319 					&area->free_list[MIGRATE_HIGHATOMIC],
2320 					struct page, lru);
2321 			if (!page)
2322 				continue;
2323 
2324 			/*
2325 			 * In page freeing path, migratetype change is racy so
2326 			 * we can counter several free pages in a pageblock
2327 			 * in this loop althoug we changed the pageblock type
2328 			 * from highatomic to ac->migratetype. So we should
2329 			 * adjust the count once.
2330 			 */
2331 			if (is_migrate_highatomic_page(page)) {
2332 				/*
2333 				 * It should never happen but changes to
2334 				 * locking could inadvertently allow a per-cpu
2335 				 * drain to add pages to MIGRATE_HIGHATOMIC
2336 				 * while unreserving so be safe and watch for
2337 				 * underflows.
2338 				 */
2339 				zone->nr_reserved_highatomic -= min(
2340 						pageblock_nr_pages,
2341 						zone->nr_reserved_highatomic);
2342 			}
2343 
2344 			/*
2345 			 * Convert to ac->migratetype and avoid the normal
2346 			 * pageblock stealing heuristics. Minimally, the caller
2347 			 * is doing the work and needs the pages. More
2348 			 * importantly, if the block was always converted to
2349 			 * MIGRATE_UNMOVABLE or another type then the number
2350 			 * of pageblocks that cannot be completely freed
2351 			 * may increase.
2352 			 */
2353 			set_pageblock_migratetype(page, ac->migratetype);
2354 			ret = move_freepages_block(zone, page, ac->migratetype,
2355 									NULL);
2356 			if (ret) {
2357 				spin_unlock_irqrestore(&zone->lock, flags);
2358 				return ret;
2359 			}
2360 		}
2361 		spin_unlock_irqrestore(&zone->lock, flags);
2362 	}
2363 
2364 	return false;
2365 }
2366 
2367 /*
2368  * Try finding a free buddy page on the fallback list and put it on the free
2369  * list of requested migratetype, possibly along with other pages from the same
2370  * block, depending on fragmentation avoidance heuristics. Returns true if
2371  * fallback was found so that __rmqueue_smallest() can grab it.
2372  *
2373  * The use of signed ints for order and current_order is a deliberate
2374  * deviation from the rest of this file, to make the for loop
2375  * condition simpler.
2376  */
2377 static __always_inline bool
2378 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2379 						unsigned int alloc_flags)
2380 {
2381 	struct free_area *area;
2382 	int current_order;
2383 	int min_order = order;
2384 	struct page *page;
2385 	int fallback_mt;
2386 	bool can_steal;
2387 
2388 	/*
2389 	 * Do not steal pages from freelists belonging to other pageblocks
2390 	 * i.e. orders < pageblock_order. If there are no local zones free,
2391 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2392 	 */
2393 	if (alloc_flags & ALLOC_NOFRAGMENT)
2394 		min_order = pageblock_order;
2395 
2396 	/*
2397 	 * Find the largest available free page in the other list. This roughly
2398 	 * approximates finding the pageblock with the most free pages, which
2399 	 * would be too costly to do exactly.
2400 	 */
2401 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2402 				--current_order) {
2403 		area = &(zone->free_area[current_order]);
2404 		fallback_mt = find_suitable_fallback(area, current_order,
2405 				start_migratetype, false, &can_steal);
2406 		if (fallback_mt == -1)
2407 			continue;
2408 
2409 		/*
2410 		 * We cannot steal all free pages from the pageblock and the
2411 		 * requested migratetype is movable. In that case it's better to
2412 		 * steal and split the smallest available page instead of the
2413 		 * largest available page, because even if the next movable
2414 		 * allocation falls back into a different pageblock than this
2415 		 * one, it won't cause permanent fragmentation.
2416 		 */
2417 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2418 					&& current_order > order)
2419 			goto find_smallest;
2420 
2421 		goto do_steal;
2422 	}
2423 
2424 	return false;
2425 
2426 find_smallest:
2427 	for (current_order = order; current_order < MAX_ORDER;
2428 							current_order++) {
2429 		area = &(zone->free_area[current_order]);
2430 		fallback_mt = find_suitable_fallback(area, current_order,
2431 				start_migratetype, false, &can_steal);
2432 		if (fallback_mt != -1)
2433 			break;
2434 	}
2435 
2436 	/*
2437 	 * This should not happen - we already found a suitable fallback
2438 	 * when looking for the largest page.
2439 	 */
2440 	VM_BUG_ON(current_order == MAX_ORDER);
2441 
2442 do_steal:
2443 	page = list_first_entry(&area->free_list[fallback_mt],
2444 							struct page, lru);
2445 
2446 	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2447 
2448 	trace_mm_page_alloc_extfrag(page, order, current_order,
2449 		start_migratetype, fallback_mt);
2450 
2451 	return true;
2452 
2453 }
2454 
2455 /*
2456  * Do the hard work of removing an element from the buddy allocator.
2457  * Call me with the zone->lock already held.
2458  */
2459 static __always_inline struct page *
2460 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2461 						unsigned int alloc_flags)
2462 {
2463 	struct page *page;
2464 
2465 retry:
2466 	page = __rmqueue_smallest(zone, order, migratetype);
2467 	if (unlikely(!page)) {
2468 		if (migratetype == MIGRATE_MOVABLE)
2469 			page = __rmqueue_cma_fallback(zone, order);
2470 
2471 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2472 								alloc_flags))
2473 			goto retry;
2474 	}
2475 
2476 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2477 	return page;
2478 }
2479 
2480 /*
2481  * Obtain a specified number of elements from the buddy allocator, all under
2482  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2483  * Returns the number of new pages which were placed at *list.
2484  */
2485 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2486 			unsigned long count, struct list_head *list,
2487 			int migratetype, unsigned int alloc_flags)
2488 {
2489 	int i, alloced = 0;
2490 
2491 	spin_lock(&zone->lock);
2492 	for (i = 0; i < count; ++i) {
2493 		struct page *page = __rmqueue(zone, order, migratetype,
2494 								alloc_flags);
2495 		if (unlikely(page == NULL))
2496 			break;
2497 
2498 		if (unlikely(check_pcp_refill(page)))
2499 			continue;
2500 
2501 		/*
2502 		 * Split buddy pages returned by expand() are received here in
2503 		 * physical page order. The page is added to the tail of
2504 		 * caller's list. From the callers perspective, the linked list
2505 		 * is ordered by page number under some conditions. This is
2506 		 * useful for IO devices that can forward direction from the
2507 		 * head, thus also in the physical page order. This is useful
2508 		 * for IO devices that can merge IO requests if the physical
2509 		 * pages are ordered properly.
2510 		 */
2511 		list_add_tail(&page->lru, list);
2512 		alloced++;
2513 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2514 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2515 					      -(1 << order));
2516 	}
2517 
2518 	/*
2519 	 * i pages were removed from the buddy list even if some leak due
2520 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2521 	 * on i. Do not confuse with 'alloced' which is the number of
2522 	 * pages added to the pcp list.
2523 	 */
2524 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2525 	spin_unlock(&zone->lock);
2526 	return alloced;
2527 }
2528 
2529 #ifdef CONFIG_NUMA
2530 /*
2531  * Called from the vmstat counter updater to drain pagesets of this
2532  * currently executing processor on remote nodes after they have
2533  * expired.
2534  *
2535  * Note that this function must be called with the thread pinned to
2536  * a single processor.
2537  */
2538 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2539 {
2540 	unsigned long flags;
2541 	int to_drain, batch;
2542 
2543 	local_irq_save(flags);
2544 	batch = READ_ONCE(pcp->batch);
2545 	to_drain = min(pcp->count, batch);
2546 	if (to_drain > 0)
2547 		free_pcppages_bulk(zone, to_drain, pcp);
2548 	local_irq_restore(flags);
2549 }
2550 #endif
2551 
2552 /*
2553  * Drain pcplists of the indicated processor and zone.
2554  *
2555  * The processor must either be the current processor and the
2556  * thread pinned to the current processor or a processor that
2557  * is not online.
2558  */
2559 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2560 {
2561 	unsigned long flags;
2562 	struct per_cpu_pageset *pset;
2563 	struct per_cpu_pages *pcp;
2564 
2565 	local_irq_save(flags);
2566 	pset = per_cpu_ptr(zone->pageset, cpu);
2567 
2568 	pcp = &pset->pcp;
2569 	if (pcp->count)
2570 		free_pcppages_bulk(zone, pcp->count, pcp);
2571 	local_irq_restore(flags);
2572 }
2573 
2574 /*
2575  * Drain pcplists of all zones on the indicated processor.
2576  *
2577  * The processor must either be the current processor and the
2578  * thread pinned to the current processor or a processor that
2579  * is not online.
2580  */
2581 static void drain_pages(unsigned int cpu)
2582 {
2583 	struct zone *zone;
2584 
2585 	for_each_populated_zone(zone) {
2586 		drain_pages_zone(cpu, zone);
2587 	}
2588 }
2589 
2590 /*
2591  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2592  *
2593  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2594  * the single zone's pages.
2595  */
2596 void drain_local_pages(struct zone *zone)
2597 {
2598 	int cpu = smp_processor_id();
2599 
2600 	if (zone)
2601 		drain_pages_zone(cpu, zone);
2602 	else
2603 		drain_pages(cpu);
2604 }
2605 
2606 static void drain_local_pages_wq(struct work_struct *work)
2607 {
2608 	/*
2609 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2610 	 * we can race with cpu offline when the WQ can move this from
2611 	 * a cpu pinned worker to an unbound one. We can operate on a different
2612 	 * cpu which is allright but we also have to make sure to not move to
2613 	 * a different one.
2614 	 */
2615 	preempt_disable();
2616 	drain_local_pages(NULL);
2617 	preempt_enable();
2618 }
2619 
2620 /*
2621  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2622  *
2623  * When zone parameter is non-NULL, spill just the single zone's pages.
2624  *
2625  * Note that this can be extremely slow as the draining happens in a workqueue.
2626  */
2627 void drain_all_pages(struct zone *zone)
2628 {
2629 	int cpu;
2630 
2631 	/*
2632 	 * Allocate in the BSS so we wont require allocation in
2633 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2634 	 */
2635 	static cpumask_t cpus_with_pcps;
2636 
2637 	/*
2638 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2639 	 * initialized.
2640 	 */
2641 	if (WARN_ON_ONCE(!mm_percpu_wq))
2642 		return;
2643 
2644 	/*
2645 	 * Do not drain if one is already in progress unless it's specific to
2646 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2647 	 * the drain to be complete when the call returns.
2648 	 */
2649 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2650 		if (!zone)
2651 			return;
2652 		mutex_lock(&pcpu_drain_mutex);
2653 	}
2654 
2655 	/*
2656 	 * We don't care about racing with CPU hotplug event
2657 	 * as offline notification will cause the notified
2658 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2659 	 * disables preemption as part of its processing
2660 	 */
2661 	for_each_online_cpu(cpu) {
2662 		struct per_cpu_pageset *pcp;
2663 		struct zone *z;
2664 		bool has_pcps = false;
2665 
2666 		if (zone) {
2667 			pcp = per_cpu_ptr(zone->pageset, cpu);
2668 			if (pcp->pcp.count)
2669 				has_pcps = true;
2670 		} else {
2671 			for_each_populated_zone(z) {
2672 				pcp = per_cpu_ptr(z->pageset, cpu);
2673 				if (pcp->pcp.count) {
2674 					has_pcps = true;
2675 					break;
2676 				}
2677 			}
2678 		}
2679 
2680 		if (has_pcps)
2681 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2682 		else
2683 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2684 	}
2685 
2686 	for_each_cpu(cpu, &cpus_with_pcps) {
2687 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2688 		INIT_WORK(work, drain_local_pages_wq);
2689 		queue_work_on(cpu, mm_percpu_wq, work);
2690 	}
2691 	for_each_cpu(cpu, &cpus_with_pcps)
2692 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2693 
2694 	mutex_unlock(&pcpu_drain_mutex);
2695 }
2696 
2697 #ifdef CONFIG_HIBERNATION
2698 
2699 /*
2700  * Touch the watchdog for every WD_PAGE_COUNT pages.
2701  */
2702 #define WD_PAGE_COUNT	(128*1024)
2703 
2704 void mark_free_pages(struct zone *zone)
2705 {
2706 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2707 	unsigned long flags;
2708 	unsigned int order, t;
2709 	struct page *page;
2710 
2711 	if (zone_is_empty(zone))
2712 		return;
2713 
2714 	spin_lock_irqsave(&zone->lock, flags);
2715 
2716 	max_zone_pfn = zone_end_pfn(zone);
2717 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2718 		if (pfn_valid(pfn)) {
2719 			page = pfn_to_page(pfn);
2720 
2721 			if (!--page_count) {
2722 				touch_nmi_watchdog();
2723 				page_count = WD_PAGE_COUNT;
2724 			}
2725 
2726 			if (page_zone(page) != zone)
2727 				continue;
2728 
2729 			if (!swsusp_page_is_forbidden(page))
2730 				swsusp_unset_page_free(page);
2731 		}
2732 
2733 	for_each_migratetype_order(order, t) {
2734 		list_for_each_entry(page,
2735 				&zone->free_area[order].free_list[t], lru) {
2736 			unsigned long i;
2737 
2738 			pfn = page_to_pfn(page);
2739 			for (i = 0; i < (1UL << order); i++) {
2740 				if (!--page_count) {
2741 					touch_nmi_watchdog();
2742 					page_count = WD_PAGE_COUNT;
2743 				}
2744 				swsusp_set_page_free(pfn_to_page(pfn + i));
2745 			}
2746 		}
2747 	}
2748 	spin_unlock_irqrestore(&zone->lock, flags);
2749 }
2750 #endif /* CONFIG_PM */
2751 
2752 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2753 {
2754 	int migratetype;
2755 
2756 	if (!free_pcp_prepare(page))
2757 		return false;
2758 
2759 	migratetype = get_pfnblock_migratetype(page, pfn);
2760 	set_pcppage_migratetype(page, migratetype);
2761 	return true;
2762 }
2763 
2764 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2765 {
2766 	struct zone *zone = page_zone(page);
2767 	struct per_cpu_pages *pcp;
2768 	int migratetype;
2769 
2770 	migratetype = get_pcppage_migratetype(page);
2771 	__count_vm_event(PGFREE);
2772 
2773 	/*
2774 	 * We only track unmovable, reclaimable and movable on pcp lists.
2775 	 * Free ISOLATE pages back to the allocator because they are being
2776 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2777 	 * areas back if necessary. Otherwise, we may have to free
2778 	 * excessively into the page allocator
2779 	 */
2780 	if (migratetype >= MIGRATE_PCPTYPES) {
2781 		if (unlikely(is_migrate_isolate(migratetype))) {
2782 			free_one_page(zone, page, pfn, 0, migratetype);
2783 			return;
2784 		}
2785 		migratetype = MIGRATE_MOVABLE;
2786 	}
2787 
2788 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2789 	list_add(&page->lru, &pcp->lists[migratetype]);
2790 	pcp->count++;
2791 	if (pcp->count >= pcp->high) {
2792 		unsigned long batch = READ_ONCE(pcp->batch);
2793 		free_pcppages_bulk(zone, batch, pcp);
2794 	}
2795 }
2796 
2797 /*
2798  * Free a 0-order page
2799  */
2800 void free_unref_page(struct page *page)
2801 {
2802 	unsigned long flags;
2803 	unsigned long pfn = page_to_pfn(page);
2804 
2805 	if (!free_unref_page_prepare(page, pfn))
2806 		return;
2807 
2808 	local_irq_save(flags);
2809 	free_unref_page_commit(page, pfn);
2810 	local_irq_restore(flags);
2811 }
2812 
2813 /*
2814  * Free a list of 0-order pages
2815  */
2816 void free_unref_page_list(struct list_head *list)
2817 {
2818 	struct page *page, *next;
2819 	unsigned long flags, pfn;
2820 	int batch_count = 0;
2821 
2822 	/* Prepare pages for freeing */
2823 	list_for_each_entry_safe(page, next, list, lru) {
2824 		pfn = page_to_pfn(page);
2825 		if (!free_unref_page_prepare(page, pfn))
2826 			list_del(&page->lru);
2827 		set_page_private(page, pfn);
2828 	}
2829 
2830 	local_irq_save(flags);
2831 	list_for_each_entry_safe(page, next, list, lru) {
2832 		unsigned long pfn = page_private(page);
2833 
2834 		set_page_private(page, 0);
2835 		trace_mm_page_free_batched(page);
2836 		free_unref_page_commit(page, pfn);
2837 
2838 		/*
2839 		 * Guard against excessive IRQ disabled times when we get
2840 		 * a large list of pages to free.
2841 		 */
2842 		if (++batch_count == SWAP_CLUSTER_MAX) {
2843 			local_irq_restore(flags);
2844 			batch_count = 0;
2845 			local_irq_save(flags);
2846 		}
2847 	}
2848 	local_irq_restore(flags);
2849 }
2850 
2851 /*
2852  * split_page takes a non-compound higher-order page, and splits it into
2853  * n (1<<order) sub-pages: page[0..n]
2854  * Each sub-page must be freed individually.
2855  *
2856  * Note: this is probably too low level an operation for use in drivers.
2857  * Please consult with lkml before using this in your driver.
2858  */
2859 void split_page(struct page *page, unsigned int order)
2860 {
2861 	int i;
2862 
2863 	VM_BUG_ON_PAGE(PageCompound(page), page);
2864 	VM_BUG_ON_PAGE(!page_count(page), page);
2865 
2866 	for (i = 1; i < (1 << order); i++)
2867 		set_page_refcounted(page + i);
2868 	split_page_owner(page, order);
2869 }
2870 EXPORT_SYMBOL_GPL(split_page);
2871 
2872 int __isolate_free_page(struct page *page, unsigned int order)
2873 {
2874 	unsigned long watermark;
2875 	struct zone *zone;
2876 	int mt;
2877 
2878 	BUG_ON(!PageBuddy(page));
2879 
2880 	zone = page_zone(page);
2881 	mt = get_pageblock_migratetype(page);
2882 
2883 	if (!is_migrate_isolate(mt)) {
2884 		/*
2885 		 * Obey watermarks as if the page was being allocated. We can
2886 		 * emulate a high-order watermark check with a raised order-0
2887 		 * watermark, because we already know our high-order page
2888 		 * exists.
2889 		 */
2890 		watermark = min_wmark_pages(zone) + (1UL << order);
2891 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2892 			return 0;
2893 
2894 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2895 	}
2896 
2897 	/* Remove page from free list */
2898 	list_del(&page->lru);
2899 	zone->free_area[order].nr_free--;
2900 	rmv_page_order(page);
2901 
2902 	/*
2903 	 * Set the pageblock if the isolated page is at least half of a
2904 	 * pageblock
2905 	 */
2906 	if (order >= pageblock_order - 1) {
2907 		struct page *endpage = page + (1 << order) - 1;
2908 		for (; page < endpage; page += pageblock_nr_pages) {
2909 			int mt = get_pageblock_migratetype(page);
2910 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2911 			    && !is_migrate_highatomic(mt))
2912 				set_pageblock_migratetype(page,
2913 							  MIGRATE_MOVABLE);
2914 		}
2915 	}
2916 
2917 
2918 	return 1UL << order;
2919 }
2920 
2921 /*
2922  * Update NUMA hit/miss statistics
2923  *
2924  * Must be called with interrupts disabled.
2925  */
2926 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2927 {
2928 #ifdef CONFIG_NUMA
2929 	enum numa_stat_item local_stat = NUMA_LOCAL;
2930 
2931 	/* skip numa counters update if numa stats is disabled */
2932 	if (!static_branch_likely(&vm_numa_stat_key))
2933 		return;
2934 
2935 	if (zone_to_nid(z) != numa_node_id())
2936 		local_stat = NUMA_OTHER;
2937 
2938 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2939 		__inc_numa_state(z, NUMA_HIT);
2940 	else {
2941 		__inc_numa_state(z, NUMA_MISS);
2942 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2943 	}
2944 	__inc_numa_state(z, local_stat);
2945 #endif
2946 }
2947 
2948 /* Remove page from the per-cpu list, caller must protect the list */
2949 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2950 			unsigned int alloc_flags,
2951 			struct per_cpu_pages *pcp,
2952 			struct list_head *list)
2953 {
2954 	struct page *page;
2955 
2956 	do {
2957 		if (list_empty(list)) {
2958 			pcp->count += rmqueue_bulk(zone, 0,
2959 					pcp->batch, list,
2960 					migratetype, alloc_flags);
2961 			if (unlikely(list_empty(list)))
2962 				return NULL;
2963 		}
2964 
2965 		page = list_first_entry(list, struct page, lru);
2966 		list_del(&page->lru);
2967 		pcp->count--;
2968 	} while (check_new_pcp(page));
2969 
2970 	return page;
2971 }
2972 
2973 /* Lock and remove page from the per-cpu list */
2974 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2975 			struct zone *zone, unsigned int order,
2976 			gfp_t gfp_flags, int migratetype,
2977 			unsigned int alloc_flags)
2978 {
2979 	struct per_cpu_pages *pcp;
2980 	struct list_head *list;
2981 	struct page *page;
2982 	unsigned long flags;
2983 
2984 	local_irq_save(flags);
2985 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2986 	list = &pcp->lists[migratetype];
2987 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
2988 	if (page) {
2989 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2990 		zone_statistics(preferred_zone, zone);
2991 	}
2992 	local_irq_restore(flags);
2993 	return page;
2994 }
2995 
2996 /*
2997  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2998  */
2999 static inline
3000 struct page *rmqueue(struct zone *preferred_zone,
3001 			struct zone *zone, unsigned int order,
3002 			gfp_t gfp_flags, unsigned int alloc_flags,
3003 			int migratetype)
3004 {
3005 	unsigned long flags;
3006 	struct page *page;
3007 
3008 	if (likely(order == 0)) {
3009 		page = rmqueue_pcplist(preferred_zone, zone, order,
3010 				gfp_flags, migratetype, alloc_flags);
3011 		goto out;
3012 	}
3013 
3014 	/*
3015 	 * We most definitely don't want callers attempting to
3016 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3017 	 */
3018 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3019 	spin_lock_irqsave(&zone->lock, flags);
3020 
3021 	do {
3022 		page = NULL;
3023 		if (alloc_flags & ALLOC_HARDER) {
3024 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3025 			if (page)
3026 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3027 		}
3028 		if (!page)
3029 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3030 	} while (page && check_new_pages(page, order));
3031 	spin_unlock(&zone->lock);
3032 	if (!page)
3033 		goto failed;
3034 	__mod_zone_freepage_state(zone, -(1 << order),
3035 				  get_pcppage_migratetype(page));
3036 
3037 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3038 	zone_statistics(preferred_zone, zone);
3039 	local_irq_restore(flags);
3040 
3041 out:
3042 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3043 	return page;
3044 
3045 failed:
3046 	local_irq_restore(flags);
3047 	return NULL;
3048 }
3049 
3050 #ifdef CONFIG_FAIL_PAGE_ALLOC
3051 
3052 static struct {
3053 	struct fault_attr attr;
3054 
3055 	bool ignore_gfp_highmem;
3056 	bool ignore_gfp_reclaim;
3057 	u32 min_order;
3058 } fail_page_alloc = {
3059 	.attr = FAULT_ATTR_INITIALIZER,
3060 	.ignore_gfp_reclaim = true,
3061 	.ignore_gfp_highmem = true,
3062 	.min_order = 1,
3063 };
3064 
3065 static int __init setup_fail_page_alloc(char *str)
3066 {
3067 	return setup_fault_attr(&fail_page_alloc.attr, str);
3068 }
3069 __setup("fail_page_alloc=", setup_fail_page_alloc);
3070 
3071 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3072 {
3073 	if (order < fail_page_alloc.min_order)
3074 		return false;
3075 	if (gfp_mask & __GFP_NOFAIL)
3076 		return false;
3077 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3078 		return false;
3079 	if (fail_page_alloc.ignore_gfp_reclaim &&
3080 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3081 		return false;
3082 
3083 	return should_fail(&fail_page_alloc.attr, 1 << order);
3084 }
3085 
3086 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3087 
3088 static int __init fail_page_alloc_debugfs(void)
3089 {
3090 	umode_t mode = S_IFREG | 0600;
3091 	struct dentry *dir;
3092 
3093 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3094 					&fail_page_alloc.attr);
3095 	if (IS_ERR(dir))
3096 		return PTR_ERR(dir);
3097 
3098 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3099 				&fail_page_alloc.ignore_gfp_reclaim))
3100 		goto fail;
3101 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3102 				&fail_page_alloc.ignore_gfp_highmem))
3103 		goto fail;
3104 	if (!debugfs_create_u32("min-order", mode, dir,
3105 				&fail_page_alloc.min_order))
3106 		goto fail;
3107 
3108 	return 0;
3109 fail:
3110 	debugfs_remove_recursive(dir);
3111 
3112 	return -ENOMEM;
3113 }
3114 
3115 late_initcall(fail_page_alloc_debugfs);
3116 
3117 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3118 
3119 #else /* CONFIG_FAIL_PAGE_ALLOC */
3120 
3121 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3122 {
3123 	return false;
3124 }
3125 
3126 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3127 
3128 /*
3129  * Return true if free base pages are above 'mark'. For high-order checks it
3130  * will return true of the order-0 watermark is reached and there is at least
3131  * one free page of a suitable size. Checking now avoids taking the zone lock
3132  * to check in the allocation paths if no pages are free.
3133  */
3134 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3135 			 int classzone_idx, unsigned int alloc_flags,
3136 			 long free_pages)
3137 {
3138 	long min = mark;
3139 	int o;
3140 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3141 
3142 	/* free_pages may go negative - that's OK */
3143 	free_pages -= (1 << order) - 1;
3144 
3145 	if (alloc_flags & ALLOC_HIGH)
3146 		min -= min / 2;
3147 
3148 	/*
3149 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3150 	 * the high-atomic reserves. This will over-estimate the size of the
3151 	 * atomic reserve but it avoids a search.
3152 	 */
3153 	if (likely(!alloc_harder)) {
3154 		free_pages -= z->nr_reserved_highatomic;
3155 	} else {
3156 		/*
3157 		 * OOM victims can try even harder than normal ALLOC_HARDER
3158 		 * users on the grounds that it's definitely going to be in
3159 		 * the exit path shortly and free memory. Any allocation it
3160 		 * makes during the free path will be small and short-lived.
3161 		 */
3162 		if (alloc_flags & ALLOC_OOM)
3163 			min -= min / 2;
3164 		else
3165 			min -= min / 4;
3166 	}
3167 
3168 
3169 #ifdef CONFIG_CMA
3170 	/* If allocation can't use CMA areas don't use free CMA pages */
3171 	if (!(alloc_flags & ALLOC_CMA))
3172 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3173 #endif
3174 
3175 	/*
3176 	 * Check watermarks for an order-0 allocation request. If these
3177 	 * are not met, then a high-order request also cannot go ahead
3178 	 * even if a suitable page happened to be free.
3179 	 */
3180 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3181 		return false;
3182 
3183 	/* If this is an order-0 request then the watermark is fine */
3184 	if (!order)
3185 		return true;
3186 
3187 	/* For a high-order request, check at least one suitable page is free */
3188 	for (o = order; o < MAX_ORDER; o++) {
3189 		struct free_area *area = &z->free_area[o];
3190 		int mt;
3191 
3192 		if (!area->nr_free)
3193 			continue;
3194 
3195 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3196 			if (!list_empty(&area->free_list[mt]))
3197 				return true;
3198 		}
3199 
3200 #ifdef CONFIG_CMA
3201 		if ((alloc_flags & ALLOC_CMA) &&
3202 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3203 			return true;
3204 		}
3205 #endif
3206 		if (alloc_harder &&
3207 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3208 			return true;
3209 	}
3210 	return false;
3211 }
3212 
3213 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3214 		      int classzone_idx, unsigned int alloc_flags)
3215 {
3216 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3217 					zone_page_state(z, NR_FREE_PAGES));
3218 }
3219 
3220 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3221 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3222 {
3223 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3224 	long cma_pages = 0;
3225 
3226 #ifdef CONFIG_CMA
3227 	/* If allocation can't use CMA areas don't use free CMA pages */
3228 	if (!(alloc_flags & ALLOC_CMA))
3229 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3230 #endif
3231 
3232 	/*
3233 	 * Fast check for order-0 only. If this fails then the reserves
3234 	 * need to be calculated. There is a corner case where the check
3235 	 * passes but only the high-order atomic reserve are free. If
3236 	 * the caller is !atomic then it'll uselessly search the free
3237 	 * list. That corner case is then slower but it is harmless.
3238 	 */
3239 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3240 		return true;
3241 
3242 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3243 					free_pages);
3244 }
3245 
3246 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3247 			unsigned long mark, int classzone_idx)
3248 {
3249 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3250 
3251 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3252 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3253 
3254 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3255 								free_pages);
3256 }
3257 
3258 #ifdef CONFIG_NUMA
3259 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3260 {
3261 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3262 				RECLAIM_DISTANCE;
3263 }
3264 #else	/* CONFIG_NUMA */
3265 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3266 {
3267 	return true;
3268 }
3269 #endif	/* CONFIG_NUMA */
3270 
3271 #ifdef CONFIG_ZONE_DMA32
3272 /*
3273  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3274  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3275  * premature use of a lower zone may cause lowmem pressure problems that
3276  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3277  * probably too small. It only makes sense to spread allocations to avoid
3278  * fragmentation between the Normal and DMA32 zones.
3279  */
3280 static inline unsigned int
3281 alloc_flags_nofragment(struct zone *zone)
3282 {
3283 	if (zone_idx(zone) != ZONE_NORMAL)
3284 		return 0;
3285 
3286 	/*
3287 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3288 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3289 	 * on UMA that if Normal is populated then so is DMA32.
3290 	 */
3291 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3292 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3293 		return 0;
3294 
3295 	return ALLOC_NOFRAGMENT;
3296 }
3297 #else
3298 static inline unsigned int
3299 alloc_flags_nofragment(struct zone *zone)
3300 {
3301 	return 0;
3302 }
3303 #endif
3304 
3305 /*
3306  * get_page_from_freelist goes through the zonelist trying to allocate
3307  * a page.
3308  */
3309 static struct page *
3310 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3311 						const struct alloc_context *ac)
3312 {
3313 	struct zoneref *z;
3314 	struct zone *zone;
3315 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3316 	bool no_fallback;
3317 
3318 retry:
3319 	/*
3320 	 * Scan zonelist, looking for a zone with enough free.
3321 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3322 	 */
3323 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3324 	z = ac->preferred_zoneref;
3325 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3326 								ac->nodemask) {
3327 		struct page *page;
3328 		unsigned long mark;
3329 
3330 		if (cpusets_enabled() &&
3331 			(alloc_flags & ALLOC_CPUSET) &&
3332 			!__cpuset_zone_allowed(zone, gfp_mask))
3333 				continue;
3334 		/*
3335 		 * When allocating a page cache page for writing, we
3336 		 * want to get it from a node that is within its dirty
3337 		 * limit, such that no single node holds more than its
3338 		 * proportional share of globally allowed dirty pages.
3339 		 * The dirty limits take into account the node's
3340 		 * lowmem reserves and high watermark so that kswapd
3341 		 * should be able to balance it without having to
3342 		 * write pages from its LRU list.
3343 		 *
3344 		 * XXX: For now, allow allocations to potentially
3345 		 * exceed the per-node dirty limit in the slowpath
3346 		 * (spread_dirty_pages unset) before going into reclaim,
3347 		 * which is important when on a NUMA setup the allowed
3348 		 * nodes are together not big enough to reach the
3349 		 * global limit.  The proper fix for these situations
3350 		 * will require awareness of nodes in the
3351 		 * dirty-throttling and the flusher threads.
3352 		 */
3353 		if (ac->spread_dirty_pages) {
3354 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3355 				continue;
3356 
3357 			if (!node_dirty_ok(zone->zone_pgdat)) {
3358 				last_pgdat_dirty_limit = zone->zone_pgdat;
3359 				continue;
3360 			}
3361 		}
3362 
3363 		if (no_fallback && nr_online_nodes > 1 &&
3364 		    zone != ac->preferred_zoneref->zone) {
3365 			int local_nid;
3366 
3367 			/*
3368 			 * If moving to a remote node, retry but allow
3369 			 * fragmenting fallbacks. Locality is more important
3370 			 * than fragmentation avoidance.
3371 			 */
3372 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3373 			if (zone_to_nid(zone) != local_nid) {
3374 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3375 				goto retry;
3376 			}
3377 		}
3378 
3379 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3380 		if (!zone_watermark_fast(zone, order, mark,
3381 				       ac_classzone_idx(ac), alloc_flags)) {
3382 			int ret;
3383 
3384 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3385 			/*
3386 			 * Watermark failed for this zone, but see if we can
3387 			 * grow this zone if it contains deferred pages.
3388 			 */
3389 			if (static_branch_unlikely(&deferred_pages)) {
3390 				if (_deferred_grow_zone(zone, order))
3391 					goto try_this_zone;
3392 			}
3393 #endif
3394 			/* Checked here to keep the fast path fast */
3395 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3396 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3397 				goto try_this_zone;
3398 
3399 			if (node_reclaim_mode == 0 ||
3400 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3401 				continue;
3402 
3403 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3404 			switch (ret) {
3405 			case NODE_RECLAIM_NOSCAN:
3406 				/* did not scan */
3407 				continue;
3408 			case NODE_RECLAIM_FULL:
3409 				/* scanned but unreclaimable */
3410 				continue;
3411 			default:
3412 				/* did we reclaim enough */
3413 				if (zone_watermark_ok(zone, order, mark,
3414 						ac_classzone_idx(ac), alloc_flags))
3415 					goto try_this_zone;
3416 
3417 				continue;
3418 			}
3419 		}
3420 
3421 try_this_zone:
3422 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3423 				gfp_mask, alloc_flags, ac->migratetype);
3424 		if (page) {
3425 			prep_new_page(page, order, gfp_mask, alloc_flags);
3426 
3427 			/*
3428 			 * If this is a high-order atomic allocation then check
3429 			 * if the pageblock should be reserved for the future
3430 			 */
3431 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3432 				reserve_highatomic_pageblock(page, zone, order);
3433 
3434 			return page;
3435 		} else {
3436 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3437 			/* Try again if zone has deferred pages */
3438 			if (static_branch_unlikely(&deferred_pages)) {
3439 				if (_deferred_grow_zone(zone, order))
3440 					goto try_this_zone;
3441 			}
3442 #endif
3443 		}
3444 	}
3445 
3446 	/*
3447 	 * It's possible on a UMA machine to get through all zones that are
3448 	 * fragmented. If avoiding fragmentation, reset and try again.
3449 	 */
3450 	if (no_fallback) {
3451 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3452 		goto retry;
3453 	}
3454 
3455 	return NULL;
3456 }
3457 
3458 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3459 {
3460 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3461 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3462 
3463 	if (!__ratelimit(&show_mem_rs))
3464 		return;
3465 
3466 	/*
3467 	 * This documents exceptions given to allocations in certain
3468 	 * contexts that are allowed to allocate outside current's set
3469 	 * of allowed nodes.
3470 	 */
3471 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3472 		if (tsk_is_oom_victim(current) ||
3473 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3474 			filter &= ~SHOW_MEM_FILTER_NODES;
3475 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3476 		filter &= ~SHOW_MEM_FILTER_NODES;
3477 
3478 	show_mem(filter, nodemask);
3479 }
3480 
3481 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3482 {
3483 	struct va_format vaf;
3484 	va_list args;
3485 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3486 				      DEFAULT_RATELIMIT_BURST);
3487 
3488 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3489 		return;
3490 
3491 	va_start(args, fmt);
3492 	vaf.fmt = fmt;
3493 	vaf.va = &args;
3494 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3495 			current->comm, &vaf, gfp_mask, &gfp_mask,
3496 			nodemask_pr_args(nodemask));
3497 	va_end(args);
3498 
3499 	cpuset_print_current_mems_allowed();
3500 
3501 	dump_stack();
3502 	warn_alloc_show_mem(gfp_mask, nodemask);
3503 }
3504 
3505 static inline struct page *
3506 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3507 			      unsigned int alloc_flags,
3508 			      const struct alloc_context *ac)
3509 {
3510 	struct page *page;
3511 
3512 	page = get_page_from_freelist(gfp_mask, order,
3513 			alloc_flags|ALLOC_CPUSET, ac);
3514 	/*
3515 	 * fallback to ignore cpuset restriction if our nodes
3516 	 * are depleted
3517 	 */
3518 	if (!page)
3519 		page = get_page_from_freelist(gfp_mask, order,
3520 				alloc_flags, ac);
3521 
3522 	return page;
3523 }
3524 
3525 static inline struct page *
3526 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3527 	const struct alloc_context *ac, unsigned long *did_some_progress)
3528 {
3529 	struct oom_control oc = {
3530 		.zonelist = ac->zonelist,
3531 		.nodemask = ac->nodemask,
3532 		.memcg = NULL,
3533 		.gfp_mask = gfp_mask,
3534 		.order = order,
3535 	};
3536 	struct page *page;
3537 
3538 	*did_some_progress = 0;
3539 
3540 	/*
3541 	 * Acquire the oom lock.  If that fails, somebody else is
3542 	 * making progress for us.
3543 	 */
3544 	if (!mutex_trylock(&oom_lock)) {
3545 		*did_some_progress = 1;
3546 		schedule_timeout_uninterruptible(1);
3547 		return NULL;
3548 	}
3549 
3550 	/*
3551 	 * Go through the zonelist yet one more time, keep very high watermark
3552 	 * here, this is only to catch a parallel oom killing, we must fail if
3553 	 * we're still under heavy pressure. But make sure that this reclaim
3554 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3555 	 * allocation which will never fail due to oom_lock already held.
3556 	 */
3557 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3558 				      ~__GFP_DIRECT_RECLAIM, order,
3559 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3560 	if (page)
3561 		goto out;
3562 
3563 	/* Coredumps can quickly deplete all memory reserves */
3564 	if (current->flags & PF_DUMPCORE)
3565 		goto out;
3566 	/* The OOM killer will not help higher order allocs */
3567 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3568 		goto out;
3569 	/*
3570 	 * We have already exhausted all our reclaim opportunities without any
3571 	 * success so it is time to admit defeat. We will skip the OOM killer
3572 	 * because it is very likely that the caller has a more reasonable
3573 	 * fallback than shooting a random task.
3574 	 */
3575 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3576 		goto out;
3577 	/* The OOM killer does not needlessly kill tasks for lowmem */
3578 	if (ac->high_zoneidx < ZONE_NORMAL)
3579 		goto out;
3580 	if (pm_suspended_storage())
3581 		goto out;
3582 	/*
3583 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3584 	 * other request to make a forward progress.
3585 	 * We are in an unfortunate situation where out_of_memory cannot
3586 	 * do much for this context but let's try it to at least get
3587 	 * access to memory reserved if the current task is killed (see
3588 	 * out_of_memory). Once filesystems are ready to handle allocation
3589 	 * failures more gracefully we should just bail out here.
3590 	 */
3591 
3592 	/* The OOM killer may not free memory on a specific node */
3593 	if (gfp_mask & __GFP_THISNODE)
3594 		goto out;
3595 
3596 	/* Exhausted what can be done so it's blame time */
3597 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3598 		*did_some_progress = 1;
3599 
3600 		/*
3601 		 * Help non-failing allocations by giving them access to memory
3602 		 * reserves
3603 		 */
3604 		if (gfp_mask & __GFP_NOFAIL)
3605 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3606 					ALLOC_NO_WATERMARKS, ac);
3607 	}
3608 out:
3609 	mutex_unlock(&oom_lock);
3610 	return page;
3611 }
3612 
3613 /*
3614  * Maximum number of compaction retries wit a progress before OOM
3615  * killer is consider as the only way to move forward.
3616  */
3617 #define MAX_COMPACT_RETRIES 16
3618 
3619 #ifdef CONFIG_COMPACTION
3620 /* Try memory compaction for high-order allocations before reclaim */
3621 static struct page *
3622 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3623 		unsigned int alloc_flags, const struct alloc_context *ac,
3624 		enum compact_priority prio, enum compact_result *compact_result)
3625 {
3626 	struct page *page;
3627 	unsigned long pflags;
3628 	unsigned int noreclaim_flag;
3629 
3630 	if (!order)
3631 		return NULL;
3632 
3633 	psi_memstall_enter(&pflags);
3634 	noreclaim_flag = memalloc_noreclaim_save();
3635 
3636 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3637 									prio);
3638 
3639 	memalloc_noreclaim_restore(noreclaim_flag);
3640 	psi_memstall_leave(&pflags);
3641 
3642 	if (*compact_result <= COMPACT_INACTIVE)
3643 		return NULL;
3644 
3645 	/*
3646 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3647 	 * count a compaction stall
3648 	 */
3649 	count_vm_event(COMPACTSTALL);
3650 
3651 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3652 
3653 	if (page) {
3654 		struct zone *zone = page_zone(page);
3655 
3656 		zone->compact_blockskip_flush = false;
3657 		compaction_defer_reset(zone, order, true);
3658 		count_vm_event(COMPACTSUCCESS);
3659 		return page;
3660 	}
3661 
3662 	/*
3663 	 * It's bad if compaction run occurs and fails. The most likely reason
3664 	 * is that pages exist, but not enough to satisfy watermarks.
3665 	 */
3666 	count_vm_event(COMPACTFAIL);
3667 
3668 	cond_resched();
3669 
3670 	return NULL;
3671 }
3672 
3673 static inline bool
3674 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3675 		     enum compact_result compact_result,
3676 		     enum compact_priority *compact_priority,
3677 		     int *compaction_retries)
3678 {
3679 	int max_retries = MAX_COMPACT_RETRIES;
3680 	int min_priority;
3681 	bool ret = false;
3682 	int retries = *compaction_retries;
3683 	enum compact_priority priority = *compact_priority;
3684 
3685 	if (!order)
3686 		return false;
3687 
3688 	if (compaction_made_progress(compact_result))
3689 		(*compaction_retries)++;
3690 
3691 	/*
3692 	 * compaction considers all the zone as desperately out of memory
3693 	 * so it doesn't really make much sense to retry except when the
3694 	 * failure could be caused by insufficient priority
3695 	 */
3696 	if (compaction_failed(compact_result))
3697 		goto check_priority;
3698 
3699 	/*
3700 	 * make sure the compaction wasn't deferred or didn't bail out early
3701 	 * due to locks contention before we declare that we should give up.
3702 	 * But do not retry if the given zonelist is not suitable for
3703 	 * compaction.
3704 	 */
3705 	if (compaction_withdrawn(compact_result)) {
3706 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3707 		goto out;
3708 	}
3709 
3710 	/*
3711 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3712 	 * costly ones because they are de facto nofail and invoke OOM
3713 	 * killer to move on while costly can fail and users are ready
3714 	 * to cope with that. 1/4 retries is rather arbitrary but we
3715 	 * would need much more detailed feedback from compaction to
3716 	 * make a better decision.
3717 	 */
3718 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3719 		max_retries /= 4;
3720 	if (*compaction_retries <= max_retries) {
3721 		ret = true;
3722 		goto out;
3723 	}
3724 
3725 	/*
3726 	 * Make sure there are attempts at the highest priority if we exhausted
3727 	 * all retries or failed at the lower priorities.
3728 	 */
3729 check_priority:
3730 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3731 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3732 
3733 	if (*compact_priority > min_priority) {
3734 		(*compact_priority)--;
3735 		*compaction_retries = 0;
3736 		ret = true;
3737 	}
3738 out:
3739 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3740 	return ret;
3741 }
3742 #else
3743 static inline struct page *
3744 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3745 		unsigned int alloc_flags, const struct alloc_context *ac,
3746 		enum compact_priority prio, enum compact_result *compact_result)
3747 {
3748 	*compact_result = COMPACT_SKIPPED;
3749 	return NULL;
3750 }
3751 
3752 static inline bool
3753 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3754 		     enum compact_result compact_result,
3755 		     enum compact_priority *compact_priority,
3756 		     int *compaction_retries)
3757 {
3758 	struct zone *zone;
3759 	struct zoneref *z;
3760 
3761 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3762 		return false;
3763 
3764 	/*
3765 	 * There are setups with compaction disabled which would prefer to loop
3766 	 * inside the allocator rather than hit the oom killer prematurely.
3767 	 * Let's give them a good hope and keep retrying while the order-0
3768 	 * watermarks are OK.
3769 	 */
3770 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3771 					ac->nodemask) {
3772 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3773 					ac_classzone_idx(ac), alloc_flags))
3774 			return true;
3775 	}
3776 	return false;
3777 }
3778 #endif /* CONFIG_COMPACTION */
3779 
3780 #ifdef CONFIG_LOCKDEP
3781 static struct lockdep_map __fs_reclaim_map =
3782 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3783 
3784 static bool __need_fs_reclaim(gfp_t gfp_mask)
3785 {
3786 	gfp_mask = current_gfp_context(gfp_mask);
3787 
3788 	/* no reclaim without waiting on it */
3789 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3790 		return false;
3791 
3792 	/* this guy won't enter reclaim */
3793 	if (current->flags & PF_MEMALLOC)
3794 		return false;
3795 
3796 	/* We're only interested __GFP_FS allocations for now */
3797 	if (!(gfp_mask & __GFP_FS))
3798 		return false;
3799 
3800 	if (gfp_mask & __GFP_NOLOCKDEP)
3801 		return false;
3802 
3803 	return true;
3804 }
3805 
3806 void __fs_reclaim_acquire(void)
3807 {
3808 	lock_map_acquire(&__fs_reclaim_map);
3809 }
3810 
3811 void __fs_reclaim_release(void)
3812 {
3813 	lock_map_release(&__fs_reclaim_map);
3814 }
3815 
3816 void fs_reclaim_acquire(gfp_t gfp_mask)
3817 {
3818 	if (__need_fs_reclaim(gfp_mask))
3819 		__fs_reclaim_acquire();
3820 }
3821 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3822 
3823 void fs_reclaim_release(gfp_t gfp_mask)
3824 {
3825 	if (__need_fs_reclaim(gfp_mask))
3826 		__fs_reclaim_release();
3827 }
3828 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3829 #endif
3830 
3831 /* Perform direct synchronous page reclaim */
3832 static int
3833 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3834 					const struct alloc_context *ac)
3835 {
3836 	struct reclaim_state reclaim_state;
3837 	int progress;
3838 	unsigned int noreclaim_flag;
3839 	unsigned long pflags;
3840 
3841 	cond_resched();
3842 
3843 	/* We now go into synchronous reclaim */
3844 	cpuset_memory_pressure_bump();
3845 	psi_memstall_enter(&pflags);
3846 	fs_reclaim_acquire(gfp_mask);
3847 	noreclaim_flag = memalloc_noreclaim_save();
3848 	reclaim_state.reclaimed_slab = 0;
3849 	current->reclaim_state = &reclaim_state;
3850 
3851 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3852 								ac->nodemask);
3853 
3854 	current->reclaim_state = NULL;
3855 	memalloc_noreclaim_restore(noreclaim_flag);
3856 	fs_reclaim_release(gfp_mask);
3857 	psi_memstall_leave(&pflags);
3858 
3859 	cond_resched();
3860 
3861 	return progress;
3862 }
3863 
3864 /* The really slow allocator path where we enter direct reclaim */
3865 static inline struct page *
3866 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3867 		unsigned int alloc_flags, const struct alloc_context *ac,
3868 		unsigned long *did_some_progress)
3869 {
3870 	struct page *page = NULL;
3871 	bool drained = false;
3872 
3873 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3874 	if (unlikely(!(*did_some_progress)))
3875 		return NULL;
3876 
3877 retry:
3878 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3879 
3880 	/*
3881 	 * If an allocation failed after direct reclaim, it could be because
3882 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3883 	 * Shrink them them and try again
3884 	 */
3885 	if (!page && !drained) {
3886 		unreserve_highatomic_pageblock(ac, false);
3887 		drain_all_pages(NULL);
3888 		drained = true;
3889 		goto retry;
3890 	}
3891 
3892 	return page;
3893 }
3894 
3895 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3896 			     const struct alloc_context *ac)
3897 {
3898 	struct zoneref *z;
3899 	struct zone *zone;
3900 	pg_data_t *last_pgdat = NULL;
3901 	enum zone_type high_zoneidx = ac->high_zoneidx;
3902 
3903 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3904 					ac->nodemask) {
3905 		if (last_pgdat != zone->zone_pgdat)
3906 			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3907 		last_pgdat = zone->zone_pgdat;
3908 	}
3909 }
3910 
3911 static inline unsigned int
3912 gfp_to_alloc_flags(gfp_t gfp_mask)
3913 {
3914 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3915 
3916 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3917 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3918 
3919 	/*
3920 	 * The caller may dip into page reserves a bit more if the caller
3921 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3922 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3923 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3924 	 */
3925 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3926 
3927 	if (gfp_mask & __GFP_ATOMIC) {
3928 		/*
3929 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3930 		 * if it can't schedule.
3931 		 */
3932 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3933 			alloc_flags |= ALLOC_HARDER;
3934 		/*
3935 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3936 		 * comment for __cpuset_node_allowed().
3937 		 */
3938 		alloc_flags &= ~ALLOC_CPUSET;
3939 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3940 		alloc_flags |= ALLOC_HARDER;
3941 
3942 #ifdef CONFIG_CMA
3943 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3944 		alloc_flags |= ALLOC_CMA;
3945 #endif
3946 	return alloc_flags;
3947 }
3948 
3949 static bool oom_reserves_allowed(struct task_struct *tsk)
3950 {
3951 	if (!tsk_is_oom_victim(tsk))
3952 		return false;
3953 
3954 	/*
3955 	 * !MMU doesn't have oom reaper so give access to memory reserves
3956 	 * only to the thread with TIF_MEMDIE set
3957 	 */
3958 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3959 		return false;
3960 
3961 	return true;
3962 }
3963 
3964 /*
3965  * Distinguish requests which really need access to full memory
3966  * reserves from oom victims which can live with a portion of it
3967  */
3968 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3969 {
3970 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3971 		return 0;
3972 	if (gfp_mask & __GFP_MEMALLOC)
3973 		return ALLOC_NO_WATERMARKS;
3974 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3975 		return ALLOC_NO_WATERMARKS;
3976 	if (!in_interrupt()) {
3977 		if (current->flags & PF_MEMALLOC)
3978 			return ALLOC_NO_WATERMARKS;
3979 		else if (oom_reserves_allowed(current))
3980 			return ALLOC_OOM;
3981 	}
3982 
3983 	return 0;
3984 }
3985 
3986 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3987 {
3988 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3989 }
3990 
3991 /*
3992  * Checks whether it makes sense to retry the reclaim to make a forward progress
3993  * for the given allocation request.
3994  *
3995  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3996  * without success, or when we couldn't even meet the watermark if we
3997  * reclaimed all remaining pages on the LRU lists.
3998  *
3999  * Returns true if a retry is viable or false to enter the oom path.
4000  */
4001 static inline bool
4002 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4003 		     struct alloc_context *ac, int alloc_flags,
4004 		     bool did_some_progress, int *no_progress_loops)
4005 {
4006 	struct zone *zone;
4007 	struct zoneref *z;
4008 	bool ret = false;
4009 
4010 	/*
4011 	 * Costly allocations might have made a progress but this doesn't mean
4012 	 * their order will become available due to high fragmentation so
4013 	 * always increment the no progress counter for them
4014 	 */
4015 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4016 		*no_progress_loops = 0;
4017 	else
4018 		(*no_progress_loops)++;
4019 
4020 	/*
4021 	 * Make sure we converge to OOM if we cannot make any progress
4022 	 * several times in the row.
4023 	 */
4024 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4025 		/* Before OOM, exhaust highatomic_reserve */
4026 		return unreserve_highatomic_pageblock(ac, true);
4027 	}
4028 
4029 	/*
4030 	 * Keep reclaiming pages while there is a chance this will lead
4031 	 * somewhere.  If none of the target zones can satisfy our allocation
4032 	 * request even if all reclaimable pages are considered then we are
4033 	 * screwed and have to go OOM.
4034 	 */
4035 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4036 					ac->nodemask) {
4037 		unsigned long available;
4038 		unsigned long reclaimable;
4039 		unsigned long min_wmark = min_wmark_pages(zone);
4040 		bool wmark;
4041 
4042 		available = reclaimable = zone_reclaimable_pages(zone);
4043 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4044 
4045 		/*
4046 		 * Would the allocation succeed if we reclaimed all
4047 		 * reclaimable pages?
4048 		 */
4049 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4050 				ac_classzone_idx(ac), alloc_flags, available);
4051 		trace_reclaim_retry_zone(z, order, reclaimable,
4052 				available, min_wmark, *no_progress_loops, wmark);
4053 		if (wmark) {
4054 			/*
4055 			 * If we didn't make any progress and have a lot of
4056 			 * dirty + writeback pages then we should wait for
4057 			 * an IO to complete to slow down the reclaim and
4058 			 * prevent from pre mature OOM
4059 			 */
4060 			if (!did_some_progress) {
4061 				unsigned long write_pending;
4062 
4063 				write_pending = zone_page_state_snapshot(zone,
4064 							NR_ZONE_WRITE_PENDING);
4065 
4066 				if (2 * write_pending > reclaimable) {
4067 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4068 					return true;
4069 				}
4070 			}
4071 
4072 			ret = true;
4073 			goto out;
4074 		}
4075 	}
4076 
4077 out:
4078 	/*
4079 	 * Memory allocation/reclaim might be called from a WQ context and the
4080 	 * current implementation of the WQ concurrency control doesn't
4081 	 * recognize that a particular WQ is congested if the worker thread is
4082 	 * looping without ever sleeping. Therefore we have to do a short sleep
4083 	 * here rather than calling cond_resched().
4084 	 */
4085 	if (current->flags & PF_WQ_WORKER)
4086 		schedule_timeout_uninterruptible(1);
4087 	else
4088 		cond_resched();
4089 	return ret;
4090 }
4091 
4092 static inline bool
4093 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4094 {
4095 	/*
4096 	 * It's possible that cpuset's mems_allowed and the nodemask from
4097 	 * mempolicy don't intersect. This should be normally dealt with by
4098 	 * policy_nodemask(), but it's possible to race with cpuset update in
4099 	 * such a way the check therein was true, and then it became false
4100 	 * before we got our cpuset_mems_cookie here.
4101 	 * This assumes that for all allocations, ac->nodemask can come only
4102 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4103 	 * when it does not intersect with the cpuset restrictions) or the
4104 	 * caller can deal with a violated nodemask.
4105 	 */
4106 	if (cpusets_enabled() && ac->nodemask &&
4107 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4108 		ac->nodemask = NULL;
4109 		return true;
4110 	}
4111 
4112 	/*
4113 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4114 	 * possible to race with parallel threads in such a way that our
4115 	 * allocation can fail while the mask is being updated. If we are about
4116 	 * to fail, check if the cpuset changed during allocation and if so,
4117 	 * retry.
4118 	 */
4119 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4120 		return true;
4121 
4122 	return false;
4123 }
4124 
4125 static inline struct page *
4126 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4127 						struct alloc_context *ac)
4128 {
4129 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4130 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4131 	struct page *page = NULL;
4132 	unsigned int alloc_flags;
4133 	unsigned long did_some_progress;
4134 	enum compact_priority compact_priority;
4135 	enum compact_result compact_result;
4136 	int compaction_retries;
4137 	int no_progress_loops;
4138 	unsigned int cpuset_mems_cookie;
4139 	int reserve_flags;
4140 
4141 	/*
4142 	 * We also sanity check to catch abuse of atomic reserves being used by
4143 	 * callers that are not in atomic context.
4144 	 */
4145 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4146 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4147 		gfp_mask &= ~__GFP_ATOMIC;
4148 
4149 retry_cpuset:
4150 	compaction_retries = 0;
4151 	no_progress_loops = 0;
4152 	compact_priority = DEF_COMPACT_PRIORITY;
4153 	cpuset_mems_cookie = read_mems_allowed_begin();
4154 
4155 	/*
4156 	 * The fast path uses conservative alloc_flags to succeed only until
4157 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4158 	 * alloc_flags precisely. So we do that now.
4159 	 */
4160 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4161 
4162 	/*
4163 	 * We need to recalculate the starting point for the zonelist iterator
4164 	 * because we might have used different nodemask in the fast path, or
4165 	 * there was a cpuset modification and we are retrying - otherwise we
4166 	 * could end up iterating over non-eligible zones endlessly.
4167 	 */
4168 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4169 					ac->high_zoneidx, ac->nodemask);
4170 	if (!ac->preferred_zoneref->zone)
4171 		goto nopage;
4172 
4173 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4174 		wake_all_kswapds(order, gfp_mask, ac);
4175 
4176 	/*
4177 	 * The adjusted alloc_flags might result in immediate success, so try
4178 	 * that first
4179 	 */
4180 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4181 	if (page)
4182 		goto got_pg;
4183 
4184 	/*
4185 	 * For costly allocations, try direct compaction first, as it's likely
4186 	 * that we have enough base pages and don't need to reclaim. For non-
4187 	 * movable high-order allocations, do that as well, as compaction will
4188 	 * try prevent permanent fragmentation by migrating from blocks of the
4189 	 * same migratetype.
4190 	 * Don't try this for allocations that are allowed to ignore
4191 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4192 	 */
4193 	if (can_direct_reclaim &&
4194 			(costly_order ||
4195 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4196 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4197 		page = __alloc_pages_direct_compact(gfp_mask, order,
4198 						alloc_flags, ac,
4199 						INIT_COMPACT_PRIORITY,
4200 						&compact_result);
4201 		if (page)
4202 			goto got_pg;
4203 
4204 		/*
4205 		 * Checks for costly allocations with __GFP_NORETRY, which
4206 		 * includes THP page fault allocations
4207 		 */
4208 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4209 			/*
4210 			 * If compaction is deferred for high-order allocations,
4211 			 * it is because sync compaction recently failed. If
4212 			 * this is the case and the caller requested a THP
4213 			 * allocation, we do not want to heavily disrupt the
4214 			 * system, so we fail the allocation instead of entering
4215 			 * direct reclaim.
4216 			 */
4217 			if (compact_result == COMPACT_DEFERRED)
4218 				goto nopage;
4219 
4220 			/*
4221 			 * Looks like reclaim/compaction is worth trying, but
4222 			 * sync compaction could be very expensive, so keep
4223 			 * using async compaction.
4224 			 */
4225 			compact_priority = INIT_COMPACT_PRIORITY;
4226 		}
4227 	}
4228 
4229 retry:
4230 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4231 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4232 		wake_all_kswapds(order, gfp_mask, ac);
4233 
4234 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4235 	if (reserve_flags)
4236 		alloc_flags = reserve_flags;
4237 
4238 	/*
4239 	 * Reset the nodemask and zonelist iterators if memory policies can be
4240 	 * ignored. These allocations are high priority and system rather than
4241 	 * user oriented.
4242 	 */
4243 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4244 		ac->nodemask = NULL;
4245 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4246 					ac->high_zoneidx, ac->nodemask);
4247 	}
4248 
4249 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4250 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4251 	if (page)
4252 		goto got_pg;
4253 
4254 	/* Caller is not willing to reclaim, we can't balance anything */
4255 	if (!can_direct_reclaim)
4256 		goto nopage;
4257 
4258 	/* Avoid recursion of direct reclaim */
4259 	if (current->flags & PF_MEMALLOC)
4260 		goto nopage;
4261 
4262 	/* Try direct reclaim and then allocating */
4263 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4264 							&did_some_progress);
4265 	if (page)
4266 		goto got_pg;
4267 
4268 	/* Try direct compaction and then allocating */
4269 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4270 					compact_priority, &compact_result);
4271 	if (page)
4272 		goto got_pg;
4273 
4274 	/* Do not loop if specifically requested */
4275 	if (gfp_mask & __GFP_NORETRY)
4276 		goto nopage;
4277 
4278 	/*
4279 	 * Do not retry costly high order allocations unless they are
4280 	 * __GFP_RETRY_MAYFAIL
4281 	 */
4282 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4283 		goto nopage;
4284 
4285 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4286 				 did_some_progress > 0, &no_progress_loops))
4287 		goto retry;
4288 
4289 	/*
4290 	 * It doesn't make any sense to retry for the compaction if the order-0
4291 	 * reclaim is not able to make any progress because the current
4292 	 * implementation of the compaction depends on the sufficient amount
4293 	 * of free memory (see __compaction_suitable)
4294 	 */
4295 	if (did_some_progress > 0 &&
4296 			should_compact_retry(ac, order, alloc_flags,
4297 				compact_result, &compact_priority,
4298 				&compaction_retries))
4299 		goto retry;
4300 
4301 
4302 	/* Deal with possible cpuset update races before we start OOM killing */
4303 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4304 		goto retry_cpuset;
4305 
4306 	/* Reclaim has failed us, start killing things */
4307 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4308 	if (page)
4309 		goto got_pg;
4310 
4311 	/* Avoid allocations with no watermarks from looping endlessly */
4312 	if (tsk_is_oom_victim(current) &&
4313 	    (alloc_flags == ALLOC_OOM ||
4314 	     (gfp_mask & __GFP_NOMEMALLOC)))
4315 		goto nopage;
4316 
4317 	/* Retry as long as the OOM killer is making progress */
4318 	if (did_some_progress) {
4319 		no_progress_loops = 0;
4320 		goto retry;
4321 	}
4322 
4323 nopage:
4324 	/* Deal with possible cpuset update races before we fail */
4325 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4326 		goto retry_cpuset;
4327 
4328 	/*
4329 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4330 	 * we always retry
4331 	 */
4332 	if (gfp_mask & __GFP_NOFAIL) {
4333 		/*
4334 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4335 		 * of any new users that actually require GFP_NOWAIT
4336 		 */
4337 		if (WARN_ON_ONCE(!can_direct_reclaim))
4338 			goto fail;
4339 
4340 		/*
4341 		 * PF_MEMALLOC request from this context is rather bizarre
4342 		 * because we cannot reclaim anything and only can loop waiting
4343 		 * for somebody to do a work for us
4344 		 */
4345 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4346 
4347 		/*
4348 		 * non failing costly orders are a hard requirement which we
4349 		 * are not prepared for much so let's warn about these users
4350 		 * so that we can identify them and convert them to something
4351 		 * else.
4352 		 */
4353 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4354 
4355 		/*
4356 		 * Help non-failing allocations by giving them access to memory
4357 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4358 		 * could deplete whole memory reserves which would just make
4359 		 * the situation worse
4360 		 */
4361 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4362 		if (page)
4363 			goto got_pg;
4364 
4365 		cond_resched();
4366 		goto retry;
4367 	}
4368 fail:
4369 	warn_alloc(gfp_mask, ac->nodemask,
4370 			"page allocation failure: order:%u", order);
4371 got_pg:
4372 	return page;
4373 }
4374 
4375 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4376 		int preferred_nid, nodemask_t *nodemask,
4377 		struct alloc_context *ac, gfp_t *alloc_mask,
4378 		unsigned int *alloc_flags)
4379 {
4380 	ac->high_zoneidx = gfp_zone(gfp_mask);
4381 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4382 	ac->nodemask = nodemask;
4383 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4384 
4385 	if (cpusets_enabled()) {
4386 		*alloc_mask |= __GFP_HARDWALL;
4387 		if (!ac->nodemask)
4388 			ac->nodemask = &cpuset_current_mems_allowed;
4389 		else
4390 			*alloc_flags |= ALLOC_CPUSET;
4391 	}
4392 
4393 	fs_reclaim_acquire(gfp_mask);
4394 	fs_reclaim_release(gfp_mask);
4395 
4396 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4397 
4398 	if (should_fail_alloc_page(gfp_mask, order))
4399 		return false;
4400 
4401 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4402 		*alloc_flags |= ALLOC_CMA;
4403 
4404 	return true;
4405 }
4406 
4407 /* Determine whether to spread dirty pages and what the first usable zone */
4408 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4409 {
4410 	/* Dirty zone balancing only done in the fast path */
4411 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4412 
4413 	/*
4414 	 * The preferred zone is used for statistics but crucially it is
4415 	 * also used as the starting point for the zonelist iterator. It
4416 	 * may get reset for allocations that ignore memory policies.
4417 	 */
4418 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4419 					ac->high_zoneidx, ac->nodemask);
4420 }
4421 
4422 /*
4423  * This is the 'heart' of the zoned buddy allocator.
4424  */
4425 struct page *
4426 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4427 							nodemask_t *nodemask)
4428 {
4429 	struct page *page;
4430 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4431 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4432 	struct alloc_context ac = { };
4433 
4434 	/*
4435 	 * There are several places where we assume that the order value is sane
4436 	 * so bail out early if the request is out of bound.
4437 	 */
4438 	if (unlikely(order >= MAX_ORDER)) {
4439 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4440 		return NULL;
4441 	}
4442 
4443 	gfp_mask &= gfp_allowed_mask;
4444 	alloc_mask = gfp_mask;
4445 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4446 		return NULL;
4447 
4448 	finalise_ac(gfp_mask, &ac);
4449 
4450 	/*
4451 	 * Forbid the first pass from falling back to types that fragment
4452 	 * memory until all local zones are considered.
4453 	 */
4454 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone);
4455 
4456 	/* First allocation attempt */
4457 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4458 	if (likely(page))
4459 		goto out;
4460 
4461 	/*
4462 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4463 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4464 	 * from a particular context which has been marked by
4465 	 * memalloc_no{fs,io}_{save,restore}.
4466 	 */
4467 	alloc_mask = current_gfp_context(gfp_mask);
4468 	ac.spread_dirty_pages = false;
4469 
4470 	/*
4471 	 * Restore the original nodemask if it was potentially replaced with
4472 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4473 	 */
4474 	if (unlikely(ac.nodemask != nodemask))
4475 		ac.nodemask = nodemask;
4476 
4477 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4478 
4479 out:
4480 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4481 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4482 		__free_pages(page, order);
4483 		page = NULL;
4484 	}
4485 
4486 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4487 
4488 	return page;
4489 }
4490 EXPORT_SYMBOL(__alloc_pages_nodemask);
4491 
4492 /*
4493  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4494  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4495  * you need to access high mem.
4496  */
4497 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4498 {
4499 	struct page *page;
4500 
4501 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4502 	if (!page)
4503 		return 0;
4504 	return (unsigned long) page_address(page);
4505 }
4506 EXPORT_SYMBOL(__get_free_pages);
4507 
4508 unsigned long get_zeroed_page(gfp_t gfp_mask)
4509 {
4510 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4511 }
4512 EXPORT_SYMBOL(get_zeroed_page);
4513 
4514 static inline void free_the_page(struct page *page, unsigned int order)
4515 {
4516 	if (order == 0)		/* Via pcp? */
4517 		free_unref_page(page);
4518 	else
4519 		__free_pages_ok(page, order);
4520 }
4521 
4522 void __free_pages(struct page *page, unsigned int order)
4523 {
4524 	if (put_page_testzero(page))
4525 		free_the_page(page, order);
4526 }
4527 EXPORT_SYMBOL(__free_pages);
4528 
4529 void free_pages(unsigned long addr, unsigned int order)
4530 {
4531 	if (addr != 0) {
4532 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4533 		__free_pages(virt_to_page((void *)addr), order);
4534 	}
4535 }
4536 
4537 EXPORT_SYMBOL(free_pages);
4538 
4539 /*
4540  * Page Fragment:
4541  *  An arbitrary-length arbitrary-offset area of memory which resides
4542  *  within a 0 or higher order page.  Multiple fragments within that page
4543  *  are individually refcounted, in the page's reference counter.
4544  *
4545  * The page_frag functions below provide a simple allocation framework for
4546  * page fragments.  This is used by the network stack and network device
4547  * drivers to provide a backing region of memory for use as either an
4548  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4549  */
4550 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4551 					     gfp_t gfp_mask)
4552 {
4553 	struct page *page = NULL;
4554 	gfp_t gfp = gfp_mask;
4555 
4556 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4557 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4558 		    __GFP_NOMEMALLOC;
4559 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4560 				PAGE_FRAG_CACHE_MAX_ORDER);
4561 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4562 #endif
4563 	if (unlikely(!page))
4564 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4565 
4566 	nc->va = page ? page_address(page) : NULL;
4567 
4568 	return page;
4569 }
4570 
4571 void __page_frag_cache_drain(struct page *page, unsigned int count)
4572 {
4573 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4574 
4575 	if (page_ref_sub_and_test(page, count))
4576 		free_the_page(page, compound_order(page));
4577 }
4578 EXPORT_SYMBOL(__page_frag_cache_drain);
4579 
4580 void *page_frag_alloc(struct page_frag_cache *nc,
4581 		      unsigned int fragsz, gfp_t gfp_mask)
4582 {
4583 	unsigned int size = PAGE_SIZE;
4584 	struct page *page;
4585 	int offset;
4586 
4587 	if (unlikely(!nc->va)) {
4588 refill:
4589 		page = __page_frag_cache_refill(nc, gfp_mask);
4590 		if (!page)
4591 			return NULL;
4592 
4593 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4594 		/* if size can vary use size else just use PAGE_SIZE */
4595 		size = nc->size;
4596 #endif
4597 		/* Even if we own the page, we do not use atomic_set().
4598 		 * This would break get_page_unless_zero() users.
4599 		 */
4600 		page_ref_add(page, size - 1);
4601 
4602 		/* reset page count bias and offset to start of new frag */
4603 		nc->pfmemalloc = page_is_pfmemalloc(page);
4604 		nc->pagecnt_bias = size;
4605 		nc->offset = size;
4606 	}
4607 
4608 	offset = nc->offset - fragsz;
4609 	if (unlikely(offset < 0)) {
4610 		page = virt_to_page(nc->va);
4611 
4612 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4613 			goto refill;
4614 
4615 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4616 		/* if size can vary use size else just use PAGE_SIZE */
4617 		size = nc->size;
4618 #endif
4619 		/* OK, page count is 0, we can safely set it */
4620 		set_page_count(page, size);
4621 
4622 		/* reset page count bias and offset to start of new frag */
4623 		nc->pagecnt_bias = size;
4624 		offset = size - fragsz;
4625 	}
4626 
4627 	nc->pagecnt_bias--;
4628 	nc->offset = offset;
4629 
4630 	return nc->va + offset;
4631 }
4632 EXPORT_SYMBOL(page_frag_alloc);
4633 
4634 /*
4635  * Frees a page fragment allocated out of either a compound or order 0 page.
4636  */
4637 void page_frag_free(void *addr)
4638 {
4639 	struct page *page = virt_to_head_page(addr);
4640 
4641 	if (unlikely(put_page_testzero(page)))
4642 		free_the_page(page, compound_order(page));
4643 }
4644 EXPORT_SYMBOL(page_frag_free);
4645 
4646 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4647 		size_t size)
4648 {
4649 	if (addr) {
4650 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4651 		unsigned long used = addr + PAGE_ALIGN(size);
4652 
4653 		split_page(virt_to_page((void *)addr), order);
4654 		while (used < alloc_end) {
4655 			free_page(used);
4656 			used += PAGE_SIZE;
4657 		}
4658 	}
4659 	return (void *)addr;
4660 }
4661 
4662 /**
4663  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4664  * @size: the number of bytes to allocate
4665  * @gfp_mask: GFP flags for the allocation
4666  *
4667  * This function is similar to alloc_pages(), except that it allocates the
4668  * minimum number of pages to satisfy the request.  alloc_pages() can only
4669  * allocate memory in power-of-two pages.
4670  *
4671  * This function is also limited by MAX_ORDER.
4672  *
4673  * Memory allocated by this function must be released by free_pages_exact().
4674  */
4675 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4676 {
4677 	unsigned int order = get_order(size);
4678 	unsigned long addr;
4679 
4680 	addr = __get_free_pages(gfp_mask, order);
4681 	return make_alloc_exact(addr, order, size);
4682 }
4683 EXPORT_SYMBOL(alloc_pages_exact);
4684 
4685 /**
4686  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4687  *			   pages on a node.
4688  * @nid: the preferred node ID where memory should be allocated
4689  * @size: the number of bytes to allocate
4690  * @gfp_mask: GFP flags for the allocation
4691  *
4692  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4693  * back.
4694  */
4695 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4696 {
4697 	unsigned int order = get_order(size);
4698 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4699 	if (!p)
4700 		return NULL;
4701 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4702 }
4703 
4704 /**
4705  * free_pages_exact - release memory allocated via alloc_pages_exact()
4706  * @virt: the value returned by alloc_pages_exact.
4707  * @size: size of allocation, same value as passed to alloc_pages_exact().
4708  *
4709  * Release the memory allocated by a previous call to alloc_pages_exact.
4710  */
4711 void free_pages_exact(void *virt, size_t size)
4712 {
4713 	unsigned long addr = (unsigned long)virt;
4714 	unsigned long end = addr + PAGE_ALIGN(size);
4715 
4716 	while (addr < end) {
4717 		free_page(addr);
4718 		addr += PAGE_SIZE;
4719 	}
4720 }
4721 EXPORT_SYMBOL(free_pages_exact);
4722 
4723 /**
4724  * nr_free_zone_pages - count number of pages beyond high watermark
4725  * @offset: The zone index of the highest zone
4726  *
4727  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4728  * high watermark within all zones at or below a given zone index.  For each
4729  * zone, the number of pages is calculated as:
4730  *
4731  *     nr_free_zone_pages = managed_pages - high_pages
4732  */
4733 static unsigned long nr_free_zone_pages(int offset)
4734 {
4735 	struct zoneref *z;
4736 	struct zone *zone;
4737 
4738 	/* Just pick one node, since fallback list is circular */
4739 	unsigned long sum = 0;
4740 
4741 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4742 
4743 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4744 		unsigned long size = zone_managed_pages(zone);
4745 		unsigned long high = high_wmark_pages(zone);
4746 		if (size > high)
4747 			sum += size - high;
4748 	}
4749 
4750 	return sum;
4751 }
4752 
4753 /**
4754  * nr_free_buffer_pages - count number of pages beyond high watermark
4755  *
4756  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4757  * watermark within ZONE_DMA and ZONE_NORMAL.
4758  */
4759 unsigned long nr_free_buffer_pages(void)
4760 {
4761 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4762 }
4763 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4764 
4765 /**
4766  * nr_free_pagecache_pages - count number of pages beyond high watermark
4767  *
4768  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4769  * high watermark within all zones.
4770  */
4771 unsigned long nr_free_pagecache_pages(void)
4772 {
4773 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4774 }
4775 
4776 static inline void show_node(struct zone *zone)
4777 {
4778 	if (IS_ENABLED(CONFIG_NUMA))
4779 		printk("Node %d ", zone_to_nid(zone));
4780 }
4781 
4782 long si_mem_available(void)
4783 {
4784 	long available;
4785 	unsigned long pagecache;
4786 	unsigned long wmark_low = 0;
4787 	unsigned long pages[NR_LRU_LISTS];
4788 	unsigned long reclaimable;
4789 	struct zone *zone;
4790 	int lru;
4791 
4792 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4793 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4794 
4795 	for_each_zone(zone)
4796 		wmark_low += zone->watermark[WMARK_LOW];
4797 
4798 	/*
4799 	 * Estimate the amount of memory available for userspace allocations,
4800 	 * without causing swapping.
4801 	 */
4802 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4803 
4804 	/*
4805 	 * Not all the page cache can be freed, otherwise the system will
4806 	 * start swapping. Assume at least half of the page cache, or the
4807 	 * low watermark worth of cache, needs to stay.
4808 	 */
4809 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4810 	pagecache -= min(pagecache / 2, wmark_low);
4811 	available += pagecache;
4812 
4813 	/*
4814 	 * Part of the reclaimable slab and other kernel memory consists of
4815 	 * items that are in use, and cannot be freed. Cap this estimate at the
4816 	 * low watermark.
4817 	 */
4818 	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4819 			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4820 	available += reclaimable - min(reclaimable / 2, wmark_low);
4821 
4822 	if (available < 0)
4823 		available = 0;
4824 	return available;
4825 }
4826 EXPORT_SYMBOL_GPL(si_mem_available);
4827 
4828 void si_meminfo(struct sysinfo *val)
4829 {
4830 	val->totalram = totalram_pages();
4831 	val->sharedram = global_node_page_state(NR_SHMEM);
4832 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4833 	val->bufferram = nr_blockdev_pages();
4834 	val->totalhigh = totalhigh_pages();
4835 	val->freehigh = nr_free_highpages();
4836 	val->mem_unit = PAGE_SIZE;
4837 }
4838 
4839 EXPORT_SYMBOL(si_meminfo);
4840 
4841 #ifdef CONFIG_NUMA
4842 void si_meminfo_node(struct sysinfo *val, int nid)
4843 {
4844 	int zone_type;		/* needs to be signed */
4845 	unsigned long managed_pages = 0;
4846 	unsigned long managed_highpages = 0;
4847 	unsigned long free_highpages = 0;
4848 	pg_data_t *pgdat = NODE_DATA(nid);
4849 
4850 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4851 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
4852 	val->totalram = managed_pages;
4853 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4854 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4855 #ifdef CONFIG_HIGHMEM
4856 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4857 		struct zone *zone = &pgdat->node_zones[zone_type];
4858 
4859 		if (is_highmem(zone)) {
4860 			managed_highpages += zone_managed_pages(zone);
4861 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4862 		}
4863 	}
4864 	val->totalhigh = managed_highpages;
4865 	val->freehigh = free_highpages;
4866 #else
4867 	val->totalhigh = managed_highpages;
4868 	val->freehigh = free_highpages;
4869 #endif
4870 	val->mem_unit = PAGE_SIZE;
4871 }
4872 #endif
4873 
4874 /*
4875  * Determine whether the node should be displayed or not, depending on whether
4876  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4877  */
4878 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4879 {
4880 	if (!(flags & SHOW_MEM_FILTER_NODES))
4881 		return false;
4882 
4883 	/*
4884 	 * no node mask - aka implicit memory numa policy. Do not bother with
4885 	 * the synchronization - read_mems_allowed_begin - because we do not
4886 	 * have to be precise here.
4887 	 */
4888 	if (!nodemask)
4889 		nodemask = &cpuset_current_mems_allowed;
4890 
4891 	return !node_isset(nid, *nodemask);
4892 }
4893 
4894 #define K(x) ((x) << (PAGE_SHIFT-10))
4895 
4896 static void show_migration_types(unsigned char type)
4897 {
4898 	static const char types[MIGRATE_TYPES] = {
4899 		[MIGRATE_UNMOVABLE]	= 'U',
4900 		[MIGRATE_MOVABLE]	= 'M',
4901 		[MIGRATE_RECLAIMABLE]	= 'E',
4902 		[MIGRATE_HIGHATOMIC]	= 'H',
4903 #ifdef CONFIG_CMA
4904 		[MIGRATE_CMA]		= 'C',
4905 #endif
4906 #ifdef CONFIG_MEMORY_ISOLATION
4907 		[MIGRATE_ISOLATE]	= 'I',
4908 #endif
4909 	};
4910 	char tmp[MIGRATE_TYPES + 1];
4911 	char *p = tmp;
4912 	int i;
4913 
4914 	for (i = 0; i < MIGRATE_TYPES; i++) {
4915 		if (type & (1 << i))
4916 			*p++ = types[i];
4917 	}
4918 
4919 	*p = '\0';
4920 	printk(KERN_CONT "(%s) ", tmp);
4921 }
4922 
4923 /*
4924  * Show free area list (used inside shift_scroll-lock stuff)
4925  * We also calculate the percentage fragmentation. We do this by counting the
4926  * memory on each free list with the exception of the first item on the list.
4927  *
4928  * Bits in @filter:
4929  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4930  *   cpuset.
4931  */
4932 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4933 {
4934 	unsigned long free_pcp = 0;
4935 	int cpu;
4936 	struct zone *zone;
4937 	pg_data_t *pgdat;
4938 
4939 	for_each_populated_zone(zone) {
4940 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4941 			continue;
4942 
4943 		for_each_online_cpu(cpu)
4944 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4945 	}
4946 
4947 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4948 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4949 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4950 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4951 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4952 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4953 		global_node_page_state(NR_ACTIVE_ANON),
4954 		global_node_page_state(NR_INACTIVE_ANON),
4955 		global_node_page_state(NR_ISOLATED_ANON),
4956 		global_node_page_state(NR_ACTIVE_FILE),
4957 		global_node_page_state(NR_INACTIVE_FILE),
4958 		global_node_page_state(NR_ISOLATED_FILE),
4959 		global_node_page_state(NR_UNEVICTABLE),
4960 		global_node_page_state(NR_FILE_DIRTY),
4961 		global_node_page_state(NR_WRITEBACK),
4962 		global_node_page_state(NR_UNSTABLE_NFS),
4963 		global_node_page_state(NR_SLAB_RECLAIMABLE),
4964 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4965 		global_node_page_state(NR_FILE_MAPPED),
4966 		global_node_page_state(NR_SHMEM),
4967 		global_zone_page_state(NR_PAGETABLE),
4968 		global_zone_page_state(NR_BOUNCE),
4969 		global_zone_page_state(NR_FREE_PAGES),
4970 		free_pcp,
4971 		global_zone_page_state(NR_FREE_CMA_PAGES));
4972 
4973 	for_each_online_pgdat(pgdat) {
4974 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4975 			continue;
4976 
4977 		printk("Node %d"
4978 			" active_anon:%lukB"
4979 			" inactive_anon:%lukB"
4980 			" active_file:%lukB"
4981 			" inactive_file:%lukB"
4982 			" unevictable:%lukB"
4983 			" isolated(anon):%lukB"
4984 			" isolated(file):%lukB"
4985 			" mapped:%lukB"
4986 			" dirty:%lukB"
4987 			" writeback:%lukB"
4988 			" shmem:%lukB"
4989 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4990 			" shmem_thp: %lukB"
4991 			" shmem_pmdmapped: %lukB"
4992 			" anon_thp: %lukB"
4993 #endif
4994 			" writeback_tmp:%lukB"
4995 			" unstable:%lukB"
4996 			" all_unreclaimable? %s"
4997 			"\n",
4998 			pgdat->node_id,
4999 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5000 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5001 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5002 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5003 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5004 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5005 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5006 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5007 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5008 			K(node_page_state(pgdat, NR_WRITEBACK)),
5009 			K(node_page_state(pgdat, NR_SHMEM)),
5010 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5011 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5012 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5013 					* HPAGE_PMD_NR),
5014 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5015 #endif
5016 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5017 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5018 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5019 				"yes" : "no");
5020 	}
5021 
5022 	for_each_populated_zone(zone) {
5023 		int i;
5024 
5025 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5026 			continue;
5027 
5028 		free_pcp = 0;
5029 		for_each_online_cpu(cpu)
5030 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5031 
5032 		show_node(zone);
5033 		printk(KERN_CONT
5034 			"%s"
5035 			" free:%lukB"
5036 			" min:%lukB"
5037 			" low:%lukB"
5038 			" high:%lukB"
5039 			" active_anon:%lukB"
5040 			" inactive_anon:%lukB"
5041 			" active_file:%lukB"
5042 			" inactive_file:%lukB"
5043 			" unevictable:%lukB"
5044 			" writepending:%lukB"
5045 			" present:%lukB"
5046 			" managed:%lukB"
5047 			" mlocked:%lukB"
5048 			" kernel_stack:%lukB"
5049 			" pagetables:%lukB"
5050 			" bounce:%lukB"
5051 			" free_pcp:%lukB"
5052 			" local_pcp:%ukB"
5053 			" free_cma:%lukB"
5054 			"\n",
5055 			zone->name,
5056 			K(zone_page_state(zone, NR_FREE_PAGES)),
5057 			K(min_wmark_pages(zone)),
5058 			K(low_wmark_pages(zone)),
5059 			K(high_wmark_pages(zone)),
5060 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5061 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5062 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5063 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5064 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5065 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5066 			K(zone->present_pages),
5067 			K(zone_managed_pages(zone)),
5068 			K(zone_page_state(zone, NR_MLOCK)),
5069 			zone_page_state(zone, NR_KERNEL_STACK_KB),
5070 			K(zone_page_state(zone, NR_PAGETABLE)),
5071 			K(zone_page_state(zone, NR_BOUNCE)),
5072 			K(free_pcp),
5073 			K(this_cpu_read(zone->pageset->pcp.count)),
5074 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5075 		printk("lowmem_reserve[]:");
5076 		for (i = 0; i < MAX_NR_ZONES; i++)
5077 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5078 		printk(KERN_CONT "\n");
5079 	}
5080 
5081 	for_each_populated_zone(zone) {
5082 		unsigned int order;
5083 		unsigned long nr[MAX_ORDER], flags, total = 0;
5084 		unsigned char types[MAX_ORDER];
5085 
5086 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5087 			continue;
5088 		show_node(zone);
5089 		printk(KERN_CONT "%s: ", zone->name);
5090 
5091 		spin_lock_irqsave(&zone->lock, flags);
5092 		for (order = 0; order < MAX_ORDER; order++) {
5093 			struct free_area *area = &zone->free_area[order];
5094 			int type;
5095 
5096 			nr[order] = area->nr_free;
5097 			total += nr[order] << order;
5098 
5099 			types[order] = 0;
5100 			for (type = 0; type < MIGRATE_TYPES; type++) {
5101 				if (!list_empty(&area->free_list[type]))
5102 					types[order] |= 1 << type;
5103 			}
5104 		}
5105 		spin_unlock_irqrestore(&zone->lock, flags);
5106 		for (order = 0; order < MAX_ORDER; order++) {
5107 			printk(KERN_CONT "%lu*%lukB ",
5108 			       nr[order], K(1UL) << order);
5109 			if (nr[order])
5110 				show_migration_types(types[order]);
5111 		}
5112 		printk(KERN_CONT "= %lukB\n", K(total));
5113 	}
5114 
5115 	hugetlb_show_meminfo();
5116 
5117 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5118 
5119 	show_swap_cache_info();
5120 }
5121 
5122 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5123 {
5124 	zoneref->zone = zone;
5125 	zoneref->zone_idx = zone_idx(zone);
5126 }
5127 
5128 /*
5129  * Builds allocation fallback zone lists.
5130  *
5131  * Add all populated zones of a node to the zonelist.
5132  */
5133 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5134 {
5135 	struct zone *zone;
5136 	enum zone_type zone_type = MAX_NR_ZONES;
5137 	int nr_zones = 0;
5138 
5139 	do {
5140 		zone_type--;
5141 		zone = pgdat->node_zones + zone_type;
5142 		if (managed_zone(zone)) {
5143 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5144 			check_highest_zone(zone_type);
5145 		}
5146 	} while (zone_type);
5147 
5148 	return nr_zones;
5149 }
5150 
5151 #ifdef CONFIG_NUMA
5152 
5153 static int __parse_numa_zonelist_order(char *s)
5154 {
5155 	/*
5156 	 * We used to support different zonlists modes but they turned
5157 	 * out to be just not useful. Let's keep the warning in place
5158 	 * if somebody still use the cmd line parameter so that we do
5159 	 * not fail it silently
5160 	 */
5161 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5162 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5163 		return -EINVAL;
5164 	}
5165 	return 0;
5166 }
5167 
5168 static __init int setup_numa_zonelist_order(char *s)
5169 {
5170 	if (!s)
5171 		return 0;
5172 
5173 	return __parse_numa_zonelist_order(s);
5174 }
5175 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5176 
5177 char numa_zonelist_order[] = "Node";
5178 
5179 /*
5180  * sysctl handler for numa_zonelist_order
5181  */
5182 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5183 		void __user *buffer, size_t *length,
5184 		loff_t *ppos)
5185 {
5186 	char *str;
5187 	int ret;
5188 
5189 	if (!write)
5190 		return proc_dostring(table, write, buffer, length, ppos);
5191 	str = memdup_user_nul(buffer, 16);
5192 	if (IS_ERR(str))
5193 		return PTR_ERR(str);
5194 
5195 	ret = __parse_numa_zonelist_order(str);
5196 	kfree(str);
5197 	return ret;
5198 }
5199 
5200 
5201 #define MAX_NODE_LOAD (nr_online_nodes)
5202 static int node_load[MAX_NUMNODES];
5203 
5204 /**
5205  * find_next_best_node - find the next node that should appear in a given node's fallback list
5206  * @node: node whose fallback list we're appending
5207  * @used_node_mask: nodemask_t of already used nodes
5208  *
5209  * We use a number of factors to determine which is the next node that should
5210  * appear on a given node's fallback list.  The node should not have appeared
5211  * already in @node's fallback list, and it should be the next closest node
5212  * according to the distance array (which contains arbitrary distance values
5213  * from each node to each node in the system), and should also prefer nodes
5214  * with no CPUs, since presumably they'll have very little allocation pressure
5215  * on them otherwise.
5216  * It returns -1 if no node is found.
5217  */
5218 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5219 {
5220 	int n, val;
5221 	int min_val = INT_MAX;
5222 	int best_node = NUMA_NO_NODE;
5223 	const struct cpumask *tmp = cpumask_of_node(0);
5224 
5225 	/* Use the local node if we haven't already */
5226 	if (!node_isset(node, *used_node_mask)) {
5227 		node_set(node, *used_node_mask);
5228 		return node;
5229 	}
5230 
5231 	for_each_node_state(n, N_MEMORY) {
5232 
5233 		/* Don't want a node to appear more than once */
5234 		if (node_isset(n, *used_node_mask))
5235 			continue;
5236 
5237 		/* Use the distance array to find the distance */
5238 		val = node_distance(node, n);
5239 
5240 		/* Penalize nodes under us ("prefer the next node") */
5241 		val += (n < node);
5242 
5243 		/* Give preference to headless and unused nodes */
5244 		tmp = cpumask_of_node(n);
5245 		if (!cpumask_empty(tmp))
5246 			val += PENALTY_FOR_NODE_WITH_CPUS;
5247 
5248 		/* Slight preference for less loaded node */
5249 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5250 		val += node_load[n];
5251 
5252 		if (val < min_val) {
5253 			min_val = val;
5254 			best_node = n;
5255 		}
5256 	}
5257 
5258 	if (best_node >= 0)
5259 		node_set(best_node, *used_node_mask);
5260 
5261 	return best_node;
5262 }
5263 
5264 
5265 /*
5266  * Build zonelists ordered by node and zones within node.
5267  * This results in maximum locality--normal zone overflows into local
5268  * DMA zone, if any--but risks exhausting DMA zone.
5269  */
5270 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5271 		unsigned nr_nodes)
5272 {
5273 	struct zoneref *zonerefs;
5274 	int i;
5275 
5276 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5277 
5278 	for (i = 0; i < nr_nodes; i++) {
5279 		int nr_zones;
5280 
5281 		pg_data_t *node = NODE_DATA(node_order[i]);
5282 
5283 		nr_zones = build_zonerefs_node(node, zonerefs);
5284 		zonerefs += nr_zones;
5285 	}
5286 	zonerefs->zone = NULL;
5287 	zonerefs->zone_idx = 0;
5288 }
5289 
5290 /*
5291  * Build gfp_thisnode zonelists
5292  */
5293 static void build_thisnode_zonelists(pg_data_t *pgdat)
5294 {
5295 	struct zoneref *zonerefs;
5296 	int nr_zones;
5297 
5298 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5299 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5300 	zonerefs += nr_zones;
5301 	zonerefs->zone = NULL;
5302 	zonerefs->zone_idx = 0;
5303 }
5304 
5305 /*
5306  * Build zonelists ordered by zone and nodes within zones.
5307  * This results in conserving DMA zone[s] until all Normal memory is
5308  * exhausted, but results in overflowing to remote node while memory
5309  * may still exist in local DMA zone.
5310  */
5311 
5312 static void build_zonelists(pg_data_t *pgdat)
5313 {
5314 	static int node_order[MAX_NUMNODES];
5315 	int node, load, nr_nodes = 0;
5316 	nodemask_t used_mask;
5317 	int local_node, prev_node;
5318 
5319 	/* NUMA-aware ordering of nodes */
5320 	local_node = pgdat->node_id;
5321 	load = nr_online_nodes;
5322 	prev_node = local_node;
5323 	nodes_clear(used_mask);
5324 
5325 	memset(node_order, 0, sizeof(node_order));
5326 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5327 		/*
5328 		 * We don't want to pressure a particular node.
5329 		 * So adding penalty to the first node in same
5330 		 * distance group to make it round-robin.
5331 		 */
5332 		if (node_distance(local_node, node) !=
5333 		    node_distance(local_node, prev_node))
5334 			node_load[node] = load;
5335 
5336 		node_order[nr_nodes++] = node;
5337 		prev_node = node;
5338 		load--;
5339 	}
5340 
5341 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5342 	build_thisnode_zonelists(pgdat);
5343 }
5344 
5345 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5346 /*
5347  * Return node id of node used for "local" allocations.
5348  * I.e., first node id of first zone in arg node's generic zonelist.
5349  * Used for initializing percpu 'numa_mem', which is used primarily
5350  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5351  */
5352 int local_memory_node(int node)
5353 {
5354 	struct zoneref *z;
5355 
5356 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5357 				   gfp_zone(GFP_KERNEL),
5358 				   NULL);
5359 	return zone_to_nid(z->zone);
5360 }
5361 #endif
5362 
5363 static void setup_min_unmapped_ratio(void);
5364 static void setup_min_slab_ratio(void);
5365 #else	/* CONFIG_NUMA */
5366 
5367 static void build_zonelists(pg_data_t *pgdat)
5368 {
5369 	int node, local_node;
5370 	struct zoneref *zonerefs;
5371 	int nr_zones;
5372 
5373 	local_node = pgdat->node_id;
5374 
5375 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5376 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5377 	zonerefs += nr_zones;
5378 
5379 	/*
5380 	 * Now we build the zonelist so that it contains the zones
5381 	 * of all the other nodes.
5382 	 * We don't want to pressure a particular node, so when
5383 	 * building the zones for node N, we make sure that the
5384 	 * zones coming right after the local ones are those from
5385 	 * node N+1 (modulo N)
5386 	 */
5387 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5388 		if (!node_online(node))
5389 			continue;
5390 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5391 		zonerefs += nr_zones;
5392 	}
5393 	for (node = 0; node < local_node; node++) {
5394 		if (!node_online(node))
5395 			continue;
5396 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5397 		zonerefs += nr_zones;
5398 	}
5399 
5400 	zonerefs->zone = NULL;
5401 	zonerefs->zone_idx = 0;
5402 }
5403 
5404 #endif	/* CONFIG_NUMA */
5405 
5406 /*
5407  * Boot pageset table. One per cpu which is going to be used for all
5408  * zones and all nodes. The parameters will be set in such a way
5409  * that an item put on a list will immediately be handed over to
5410  * the buddy list. This is safe since pageset manipulation is done
5411  * with interrupts disabled.
5412  *
5413  * The boot_pagesets must be kept even after bootup is complete for
5414  * unused processors and/or zones. They do play a role for bootstrapping
5415  * hotplugged processors.
5416  *
5417  * zoneinfo_show() and maybe other functions do
5418  * not check if the processor is online before following the pageset pointer.
5419  * Other parts of the kernel may not check if the zone is available.
5420  */
5421 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5422 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5423 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5424 
5425 static void __build_all_zonelists(void *data)
5426 {
5427 	int nid;
5428 	int __maybe_unused cpu;
5429 	pg_data_t *self = data;
5430 	static DEFINE_SPINLOCK(lock);
5431 
5432 	spin_lock(&lock);
5433 
5434 #ifdef CONFIG_NUMA
5435 	memset(node_load, 0, sizeof(node_load));
5436 #endif
5437 
5438 	/*
5439 	 * This node is hotadded and no memory is yet present.   So just
5440 	 * building zonelists is fine - no need to touch other nodes.
5441 	 */
5442 	if (self && !node_online(self->node_id)) {
5443 		build_zonelists(self);
5444 	} else {
5445 		for_each_online_node(nid) {
5446 			pg_data_t *pgdat = NODE_DATA(nid);
5447 
5448 			build_zonelists(pgdat);
5449 		}
5450 
5451 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5452 		/*
5453 		 * We now know the "local memory node" for each node--
5454 		 * i.e., the node of the first zone in the generic zonelist.
5455 		 * Set up numa_mem percpu variable for on-line cpus.  During
5456 		 * boot, only the boot cpu should be on-line;  we'll init the
5457 		 * secondary cpus' numa_mem as they come on-line.  During
5458 		 * node/memory hotplug, we'll fixup all on-line cpus.
5459 		 */
5460 		for_each_online_cpu(cpu)
5461 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5462 #endif
5463 	}
5464 
5465 	spin_unlock(&lock);
5466 }
5467 
5468 static noinline void __init
5469 build_all_zonelists_init(void)
5470 {
5471 	int cpu;
5472 
5473 	__build_all_zonelists(NULL);
5474 
5475 	/*
5476 	 * Initialize the boot_pagesets that are going to be used
5477 	 * for bootstrapping processors. The real pagesets for
5478 	 * each zone will be allocated later when the per cpu
5479 	 * allocator is available.
5480 	 *
5481 	 * boot_pagesets are used also for bootstrapping offline
5482 	 * cpus if the system is already booted because the pagesets
5483 	 * are needed to initialize allocators on a specific cpu too.
5484 	 * F.e. the percpu allocator needs the page allocator which
5485 	 * needs the percpu allocator in order to allocate its pagesets
5486 	 * (a chicken-egg dilemma).
5487 	 */
5488 	for_each_possible_cpu(cpu)
5489 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5490 
5491 	mminit_verify_zonelist();
5492 	cpuset_init_current_mems_allowed();
5493 }
5494 
5495 /*
5496  * unless system_state == SYSTEM_BOOTING.
5497  *
5498  * __ref due to call of __init annotated helper build_all_zonelists_init
5499  * [protected by SYSTEM_BOOTING].
5500  */
5501 void __ref build_all_zonelists(pg_data_t *pgdat)
5502 {
5503 	if (system_state == SYSTEM_BOOTING) {
5504 		build_all_zonelists_init();
5505 	} else {
5506 		__build_all_zonelists(pgdat);
5507 		/* cpuset refresh routine should be here */
5508 	}
5509 	vm_total_pages = nr_free_pagecache_pages();
5510 	/*
5511 	 * Disable grouping by mobility if the number of pages in the
5512 	 * system is too low to allow the mechanism to work. It would be
5513 	 * more accurate, but expensive to check per-zone. This check is
5514 	 * made on memory-hotadd so a system can start with mobility
5515 	 * disabled and enable it later
5516 	 */
5517 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5518 		page_group_by_mobility_disabled = 1;
5519 	else
5520 		page_group_by_mobility_disabled = 0;
5521 
5522 	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5523 		nr_online_nodes,
5524 		page_group_by_mobility_disabled ? "off" : "on",
5525 		vm_total_pages);
5526 #ifdef CONFIG_NUMA
5527 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5528 #endif
5529 }
5530 
5531 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5532 static bool __meminit
5533 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5534 {
5535 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5536 	static struct memblock_region *r;
5537 
5538 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5539 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5540 			for_each_memblock(memory, r) {
5541 				if (*pfn < memblock_region_memory_end_pfn(r))
5542 					break;
5543 			}
5544 		}
5545 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5546 		    memblock_is_mirror(r)) {
5547 			*pfn = memblock_region_memory_end_pfn(r);
5548 			return true;
5549 		}
5550 	}
5551 #endif
5552 	return false;
5553 }
5554 
5555 /*
5556  * Initially all pages are reserved - free ones are freed
5557  * up by memblock_free_all() once the early boot process is
5558  * done. Non-atomic initialization, single-pass.
5559  */
5560 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5561 		unsigned long start_pfn, enum memmap_context context,
5562 		struct vmem_altmap *altmap)
5563 {
5564 	unsigned long pfn, end_pfn = start_pfn + size;
5565 	struct page *page;
5566 
5567 	if (highest_memmap_pfn < end_pfn - 1)
5568 		highest_memmap_pfn = end_pfn - 1;
5569 
5570 #ifdef CONFIG_ZONE_DEVICE
5571 	/*
5572 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5573 	 * memory. We limit the total number of pages to initialize to just
5574 	 * those that might contain the memory mapping. We will defer the
5575 	 * ZONE_DEVICE page initialization until after we have released
5576 	 * the hotplug lock.
5577 	 */
5578 	if (zone == ZONE_DEVICE) {
5579 		if (!altmap)
5580 			return;
5581 
5582 		if (start_pfn == altmap->base_pfn)
5583 			start_pfn += altmap->reserve;
5584 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5585 	}
5586 #endif
5587 
5588 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5589 		/*
5590 		 * There can be holes in boot-time mem_map[]s handed to this
5591 		 * function.  They do not exist on hotplugged memory.
5592 		 */
5593 		if (context == MEMMAP_EARLY) {
5594 			if (!early_pfn_valid(pfn))
5595 				continue;
5596 			if (!early_pfn_in_nid(pfn, nid))
5597 				continue;
5598 			if (overlap_memmap_init(zone, &pfn))
5599 				continue;
5600 			if (defer_init(nid, pfn, end_pfn))
5601 				break;
5602 		}
5603 
5604 		page = pfn_to_page(pfn);
5605 		__init_single_page(page, pfn, zone, nid);
5606 		if (context == MEMMAP_HOTPLUG)
5607 			__SetPageReserved(page);
5608 
5609 		/*
5610 		 * Mark the block movable so that blocks are reserved for
5611 		 * movable at startup. This will force kernel allocations
5612 		 * to reserve their blocks rather than leaking throughout
5613 		 * the address space during boot when many long-lived
5614 		 * kernel allocations are made.
5615 		 *
5616 		 * bitmap is created for zone's valid pfn range. but memmap
5617 		 * can be created for invalid pages (for alignment)
5618 		 * check here not to call set_pageblock_migratetype() against
5619 		 * pfn out of zone.
5620 		 */
5621 		if (!(pfn & (pageblock_nr_pages - 1))) {
5622 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5623 			cond_resched();
5624 		}
5625 	}
5626 #ifdef CONFIG_SPARSEMEM
5627 	/*
5628 	 * If the zone does not span the rest of the section then
5629 	 * we should at least initialize those pages. Otherwise we
5630 	 * could blow up on a poisoned page in some paths which depend
5631 	 * on full sections being initialized (e.g. memory hotplug).
5632 	 */
5633 	while (end_pfn % PAGES_PER_SECTION) {
5634 		__init_single_page(pfn_to_page(end_pfn), end_pfn, zone, nid);
5635 		end_pfn++;
5636 	}
5637 #endif
5638 }
5639 
5640 #ifdef CONFIG_ZONE_DEVICE
5641 void __ref memmap_init_zone_device(struct zone *zone,
5642 				   unsigned long start_pfn,
5643 				   unsigned long size,
5644 				   struct dev_pagemap *pgmap)
5645 {
5646 	unsigned long pfn, end_pfn = start_pfn + size;
5647 	struct pglist_data *pgdat = zone->zone_pgdat;
5648 	unsigned long zone_idx = zone_idx(zone);
5649 	unsigned long start = jiffies;
5650 	int nid = pgdat->node_id;
5651 
5652 	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5653 		return;
5654 
5655 	/*
5656 	 * The call to memmap_init_zone should have already taken care
5657 	 * of the pages reserved for the memmap, so we can just jump to
5658 	 * the end of that region and start processing the device pages.
5659 	 */
5660 	if (pgmap->altmap_valid) {
5661 		struct vmem_altmap *altmap = &pgmap->altmap;
5662 
5663 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5664 		size = end_pfn - start_pfn;
5665 	}
5666 
5667 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5668 		struct page *page = pfn_to_page(pfn);
5669 
5670 		__init_single_page(page, pfn, zone_idx, nid);
5671 
5672 		/*
5673 		 * Mark page reserved as it will need to wait for onlining
5674 		 * phase for it to be fully associated with a zone.
5675 		 *
5676 		 * We can use the non-atomic __set_bit operation for setting
5677 		 * the flag as we are still initializing the pages.
5678 		 */
5679 		__SetPageReserved(page);
5680 
5681 		/*
5682 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5683 		 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
5684 		 * page is ever freed or placed on a driver-private list.
5685 		 */
5686 		page->pgmap = pgmap;
5687 		page->hmm_data = 0;
5688 
5689 		/*
5690 		 * Mark the block movable so that blocks are reserved for
5691 		 * movable at startup. This will force kernel allocations
5692 		 * to reserve their blocks rather than leaking throughout
5693 		 * the address space during boot when many long-lived
5694 		 * kernel allocations are made.
5695 		 *
5696 		 * bitmap is created for zone's valid pfn range. but memmap
5697 		 * can be created for invalid pages (for alignment)
5698 		 * check here not to call set_pageblock_migratetype() against
5699 		 * pfn out of zone.
5700 		 *
5701 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5702 		 * because this is done early in sparse_add_one_section
5703 		 */
5704 		if (!(pfn & (pageblock_nr_pages - 1))) {
5705 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5706 			cond_resched();
5707 		}
5708 	}
5709 
5710 	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5711 		size, jiffies_to_msecs(jiffies - start));
5712 }
5713 
5714 #endif
5715 static void __meminit zone_init_free_lists(struct zone *zone)
5716 {
5717 	unsigned int order, t;
5718 	for_each_migratetype_order(order, t) {
5719 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5720 		zone->free_area[order].nr_free = 0;
5721 	}
5722 }
5723 
5724 void __meminit __weak memmap_init(unsigned long size, int nid,
5725 				  unsigned long zone, unsigned long start_pfn)
5726 {
5727 	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5728 }
5729 
5730 static int zone_batchsize(struct zone *zone)
5731 {
5732 #ifdef CONFIG_MMU
5733 	int batch;
5734 
5735 	/*
5736 	 * The per-cpu-pages pools are set to around 1000th of the
5737 	 * size of the zone.
5738 	 */
5739 	batch = zone_managed_pages(zone) / 1024;
5740 	/* But no more than a meg. */
5741 	if (batch * PAGE_SIZE > 1024 * 1024)
5742 		batch = (1024 * 1024) / PAGE_SIZE;
5743 	batch /= 4;		/* We effectively *= 4 below */
5744 	if (batch < 1)
5745 		batch = 1;
5746 
5747 	/*
5748 	 * Clamp the batch to a 2^n - 1 value. Having a power
5749 	 * of 2 value was found to be more likely to have
5750 	 * suboptimal cache aliasing properties in some cases.
5751 	 *
5752 	 * For example if 2 tasks are alternately allocating
5753 	 * batches of pages, one task can end up with a lot
5754 	 * of pages of one half of the possible page colors
5755 	 * and the other with pages of the other colors.
5756 	 */
5757 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5758 
5759 	return batch;
5760 
5761 #else
5762 	/* The deferral and batching of frees should be suppressed under NOMMU
5763 	 * conditions.
5764 	 *
5765 	 * The problem is that NOMMU needs to be able to allocate large chunks
5766 	 * of contiguous memory as there's no hardware page translation to
5767 	 * assemble apparent contiguous memory from discontiguous pages.
5768 	 *
5769 	 * Queueing large contiguous runs of pages for batching, however,
5770 	 * causes the pages to actually be freed in smaller chunks.  As there
5771 	 * can be a significant delay between the individual batches being
5772 	 * recycled, this leads to the once large chunks of space being
5773 	 * fragmented and becoming unavailable for high-order allocations.
5774 	 */
5775 	return 0;
5776 #endif
5777 }
5778 
5779 /*
5780  * pcp->high and pcp->batch values are related and dependent on one another:
5781  * ->batch must never be higher then ->high.
5782  * The following function updates them in a safe manner without read side
5783  * locking.
5784  *
5785  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5786  * those fields changing asynchronously (acording the the above rule).
5787  *
5788  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5789  * outside of boot time (or some other assurance that no concurrent updaters
5790  * exist).
5791  */
5792 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5793 		unsigned long batch)
5794 {
5795        /* start with a fail safe value for batch */
5796 	pcp->batch = 1;
5797 	smp_wmb();
5798 
5799        /* Update high, then batch, in order */
5800 	pcp->high = high;
5801 	smp_wmb();
5802 
5803 	pcp->batch = batch;
5804 }
5805 
5806 /* a companion to pageset_set_high() */
5807 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5808 {
5809 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5810 }
5811 
5812 static void pageset_init(struct per_cpu_pageset *p)
5813 {
5814 	struct per_cpu_pages *pcp;
5815 	int migratetype;
5816 
5817 	memset(p, 0, sizeof(*p));
5818 
5819 	pcp = &p->pcp;
5820 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5821 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5822 }
5823 
5824 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5825 {
5826 	pageset_init(p);
5827 	pageset_set_batch(p, batch);
5828 }
5829 
5830 /*
5831  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5832  * to the value high for the pageset p.
5833  */
5834 static void pageset_set_high(struct per_cpu_pageset *p,
5835 				unsigned long high)
5836 {
5837 	unsigned long batch = max(1UL, high / 4);
5838 	if ((high / 4) > (PAGE_SHIFT * 8))
5839 		batch = PAGE_SHIFT * 8;
5840 
5841 	pageset_update(&p->pcp, high, batch);
5842 }
5843 
5844 static void pageset_set_high_and_batch(struct zone *zone,
5845 				       struct per_cpu_pageset *pcp)
5846 {
5847 	if (percpu_pagelist_fraction)
5848 		pageset_set_high(pcp,
5849 			(zone_managed_pages(zone) /
5850 				percpu_pagelist_fraction));
5851 	else
5852 		pageset_set_batch(pcp, zone_batchsize(zone));
5853 }
5854 
5855 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5856 {
5857 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5858 
5859 	pageset_init(pcp);
5860 	pageset_set_high_and_batch(zone, pcp);
5861 }
5862 
5863 void __meminit setup_zone_pageset(struct zone *zone)
5864 {
5865 	int cpu;
5866 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5867 	for_each_possible_cpu(cpu)
5868 		zone_pageset_init(zone, cpu);
5869 }
5870 
5871 /*
5872  * Allocate per cpu pagesets and initialize them.
5873  * Before this call only boot pagesets were available.
5874  */
5875 void __init setup_per_cpu_pageset(void)
5876 {
5877 	struct pglist_data *pgdat;
5878 	struct zone *zone;
5879 
5880 	for_each_populated_zone(zone)
5881 		setup_zone_pageset(zone);
5882 
5883 	for_each_online_pgdat(pgdat)
5884 		pgdat->per_cpu_nodestats =
5885 			alloc_percpu(struct per_cpu_nodestat);
5886 }
5887 
5888 static __meminit void zone_pcp_init(struct zone *zone)
5889 {
5890 	/*
5891 	 * per cpu subsystem is not up at this point. The following code
5892 	 * relies on the ability of the linker to provide the
5893 	 * offset of a (static) per cpu variable into the per cpu area.
5894 	 */
5895 	zone->pageset = &boot_pageset;
5896 
5897 	if (populated_zone(zone))
5898 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5899 			zone->name, zone->present_pages,
5900 					 zone_batchsize(zone));
5901 }
5902 
5903 void __meminit init_currently_empty_zone(struct zone *zone,
5904 					unsigned long zone_start_pfn,
5905 					unsigned long size)
5906 {
5907 	struct pglist_data *pgdat = zone->zone_pgdat;
5908 	int zone_idx = zone_idx(zone) + 1;
5909 
5910 	if (zone_idx > pgdat->nr_zones)
5911 		pgdat->nr_zones = zone_idx;
5912 
5913 	zone->zone_start_pfn = zone_start_pfn;
5914 
5915 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5916 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5917 			pgdat->node_id,
5918 			(unsigned long)zone_idx(zone),
5919 			zone_start_pfn, (zone_start_pfn + size));
5920 
5921 	zone_init_free_lists(zone);
5922 	zone->initialized = 1;
5923 }
5924 
5925 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5926 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5927 
5928 /*
5929  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5930  */
5931 int __meminit __early_pfn_to_nid(unsigned long pfn,
5932 					struct mminit_pfnnid_cache *state)
5933 {
5934 	unsigned long start_pfn, end_pfn;
5935 	int nid;
5936 
5937 	if (state->last_start <= pfn && pfn < state->last_end)
5938 		return state->last_nid;
5939 
5940 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5941 	if (nid != -1) {
5942 		state->last_start = start_pfn;
5943 		state->last_end = end_pfn;
5944 		state->last_nid = nid;
5945 	}
5946 
5947 	return nid;
5948 }
5949 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5950 
5951 /**
5952  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5953  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5954  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5955  *
5956  * If an architecture guarantees that all ranges registered contain no holes
5957  * and may be freed, this this function may be used instead of calling
5958  * memblock_free_early_nid() manually.
5959  */
5960 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5961 {
5962 	unsigned long start_pfn, end_pfn;
5963 	int i, this_nid;
5964 
5965 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5966 		start_pfn = min(start_pfn, max_low_pfn);
5967 		end_pfn = min(end_pfn, max_low_pfn);
5968 
5969 		if (start_pfn < end_pfn)
5970 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5971 					(end_pfn - start_pfn) << PAGE_SHIFT,
5972 					this_nid);
5973 	}
5974 }
5975 
5976 /**
5977  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5978  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5979  *
5980  * If an architecture guarantees that all ranges registered contain no holes and may
5981  * be freed, this function may be used instead of calling memory_present() manually.
5982  */
5983 void __init sparse_memory_present_with_active_regions(int nid)
5984 {
5985 	unsigned long start_pfn, end_pfn;
5986 	int i, this_nid;
5987 
5988 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5989 		memory_present(this_nid, start_pfn, end_pfn);
5990 }
5991 
5992 /**
5993  * get_pfn_range_for_nid - Return the start and end page frames for a node
5994  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5995  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5996  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5997  *
5998  * It returns the start and end page frame of a node based on information
5999  * provided by memblock_set_node(). If called for a node
6000  * with no available memory, a warning is printed and the start and end
6001  * PFNs will be 0.
6002  */
6003 void __meminit get_pfn_range_for_nid(unsigned int nid,
6004 			unsigned long *start_pfn, unsigned long *end_pfn)
6005 {
6006 	unsigned long this_start_pfn, this_end_pfn;
6007 	int i;
6008 
6009 	*start_pfn = -1UL;
6010 	*end_pfn = 0;
6011 
6012 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6013 		*start_pfn = min(*start_pfn, this_start_pfn);
6014 		*end_pfn = max(*end_pfn, this_end_pfn);
6015 	}
6016 
6017 	if (*start_pfn == -1UL)
6018 		*start_pfn = 0;
6019 }
6020 
6021 /*
6022  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6023  * assumption is made that zones within a node are ordered in monotonic
6024  * increasing memory addresses so that the "highest" populated zone is used
6025  */
6026 static void __init find_usable_zone_for_movable(void)
6027 {
6028 	int zone_index;
6029 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6030 		if (zone_index == ZONE_MOVABLE)
6031 			continue;
6032 
6033 		if (arch_zone_highest_possible_pfn[zone_index] >
6034 				arch_zone_lowest_possible_pfn[zone_index])
6035 			break;
6036 	}
6037 
6038 	VM_BUG_ON(zone_index == -1);
6039 	movable_zone = zone_index;
6040 }
6041 
6042 /*
6043  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6044  * because it is sized independent of architecture. Unlike the other zones,
6045  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6046  * in each node depending on the size of each node and how evenly kernelcore
6047  * is distributed. This helper function adjusts the zone ranges
6048  * provided by the architecture for a given node by using the end of the
6049  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6050  * zones within a node are in order of monotonic increases memory addresses
6051  */
6052 static void __meminit adjust_zone_range_for_zone_movable(int nid,
6053 					unsigned long zone_type,
6054 					unsigned long node_start_pfn,
6055 					unsigned long node_end_pfn,
6056 					unsigned long *zone_start_pfn,
6057 					unsigned long *zone_end_pfn)
6058 {
6059 	/* Only adjust if ZONE_MOVABLE is on this node */
6060 	if (zone_movable_pfn[nid]) {
6061 		/* Size ZONE_MOVABLE */
6062 		if (zone_type == ZONE_MOVABLE) {
6063 			*zone_start_pfn = zone_movable_pfn[nid];
6064 			*zone_end_pfn = min(node_end_pfn,
6065 				arch_zone_highest_possible_pfn[movable_zone]);
6066 
6067 		/* Adjust for ZONE_MOVABLE starting within this range */
6068 		} else if (!mirrored_kernelcore &&
6069 			*zone_start_pfn < zone_movable_pfn[nid] &&
6070 			*zone_end_pfn > zone_movable_pfn[nid]) {
6071 			*zone_end_pfn = zone_movable_pfn[nid];
6072 
6073 		/* Check if this whole range is within ZONE_MOVABLE */
6074 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6075 			*zone_start_pfn = *zone_end_pfn;
6076 	}
6077 }
6078 
6079 /*
6080  * Return the number of pages a zone spans in a node, including holes
6081  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6082  */
6083 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
6084 					unsigned long zone_type,
6085 					unsigned long node_start_pfn,
6086 					unsigned long node_end_pfn,
6087 					unsigned long *zone_start_pfn,
6088 					unsigned long *zone_end_pfn,
6089 					unsigned long *ignored)
6090 {
6091 	/* When hotadd a new node from cpu_up(), the node should be empty */
6092 	if (!node_start_pfn && !node_end_pfn)
6093 		return 0;
6094 
6095 	/* Get the start and end of the zone */
6096 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
6097 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
6098 	adjust_zone_range_for_zone_movable(nid, zone_type,
6099 				node_start_pfn, node_end_pfn,
6100 				zone_start_pfn, zone_end_pfn);
6101 
6102 	/* Check that this node has pages within the zone's required range */
6103 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6104 		return 0;
6105 
6106 	/* Move the zone boundaries inside the node if necessary */
6107 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6108 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6109 
6110 	/* Return the spanned pages */
6111 	return *zone_end_pfn - *zone_start_pfn;
6112 }
6113 
6114 /*
6115  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6116  * then all holes in the requested range will be accounted for.
6117  */
6118 unsigned long __meminit __absent_pages_in_range(int nid,
6119 				unsigned long range_start_pfn,
6120 				unsigned long range_end_pfn)
6121 {
6122 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6123 	unsigned long start_pfn, end_pfn;
6124 	int i;
6125 
6126 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6127 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6128 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6129 		nr_absent -= end_pfn - start_pfn;
6130 	}
6131 	return nr_absent;
6132 }
6133 
6134 /**
6135  * absent_pages_in_range - Return number of page frames in holes within a range
6136  * @start_pfn: The start PFN to start searching for holes
6137  * @end_pfn: The end PFN to stop searching for holes
6138  *
6139  * It returns the number of pages frames in memory holes within a range.
6140  */
6141 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6142 							unsigned long end_pfn)
6143 {
6144 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6145 }
6146 
6147 /* Return the number of page frames in holes in a zone on a node */
6148 static unsigned long __meminit zone_absent_pages_in_node(int nid,
6149 					unsigned long zone_type,
6150 					unsigned long node_start_pfn,
6151 					unsigned long node_end_pfn,
6152 					unsigned long *ignored)
6153 {
6154 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6155 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6156 	unsigned long zone_start_pfn, zone_end_pfn;
6157 	unsigned long nr_absent;
6158 
6159 	/* When hotadd a new node from cpu_up(), the node should be empty */
6160 	if (!node_start_pfn && !node_end_pfn)
6161 		return 0;
6162 
6163 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6164 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6165 
6166 	adjust_zone_range_for_zone_movable(nid, zone_type,
6167 			node_start_pfn, node_end_pfn,
6168 			&zone_start_pfn, &zone_end_pfn);
6169 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6170 
6171 	/*
6172 	 * ZONE_MOVABLE handling.
6173 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6174 	 * and vice versa.
6175 	 */
6176 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6177 		unsigned long start_pfn, end_pfn;
6178 		struct memblock_region *r;
6179 
6180 		for_each_memblock(memory, r) {
6181 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6182 					  zone_start_pfn, zone_end_pfn);
6183 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6184 					zone_start_pfn, zone_end_pfn);
6185 
6186 			if (zone_type == ZONE_MOVABLE &&
6187 			    memblock_is_mirror(r))
6188 				nr_absent += end_pfn - start_pfn;
6189 
6190 			if (zone_type == ZONE_NORMAL &&
6191 			    !memblock_is_mirror(r))
6192 				nr_absent += end_pfn - start_pfn;
6193 		}
6194 	}
6195 
6196 	return nr_absent;
6197 }
6198 
6199 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6200 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6201 					unsigned long zone_type,
6202 					unsigned long node_start_pfn,
6203 					unsigned long node_end_pfn,
6204 					unsigned long *zone_start_pfn,
6205 					unsigned long *zone_end_pfn,
6206 					unsigned long *zones_size)
6207 {
6208 	unsigned int zone;
6209 
6210 	*zone_start_pfn = node_start_pfn;
6211 	for (zone = 0; zone < zone_type; zone++)
6212 		*zone_start_pfn += zones_size[zone];
6213 
6214 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6215 
6216 	return zones_size[zone_type];
6217 }
6218 
6219 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6220 						unsigned long zone_type,
6221 						unsigned long node_start_pfn,
6222 						unsigned long node_end_pfn,
6223 						unsigned long *zholes_size)
6224 {
6225 	if (!zholes_size)
6226 		return 0;
6227 
6228 	return zholes_size[zone_type];
6229 }
6230 
6231 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6232 
6233 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6234 						unsigned long node_start_pfn,
6235 						unsigned long node_end_pfn,
6236 						unsigned long *zones_size,
6237 						unsigned long *zholes_size)
6238 {
6239 	unsigned long realtotalpages = 0, totalpages = 0;
6240 	enum zone_type i;
6241 
6242 	for (i = 0; i < MAX_NR_ZONES; i++) {
6243 		struct zone *zone = pgdat->node_zones + i;
6244 		unsigned long zone_start_pfn, zone_end_pfn;
6245 		unsigned long size, real_size;
6246 
6247 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6248 						  node_start_pfn,
6249 						  node_end_pfn,
6250 						  &zone_start_pfn,
6251 						  &zone_end_pfn,
6252 						  zones_size);
6253 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6254 						  node_start_pfn, node_end_pfn,
6255 						  zholes_size);
6256 		if (size)
6257 			zone->zone_start_pfn = zone_start_pfn;
6258 		else
6259 			zone->zone_start_pfn = 0;
6260 		zone->spanned_pages = size;
6261 		zone->present_pages = real_size;
6262 
6263 		totalpages += size;
6264 		realtotalpages += real_size;
6265 	}
6266 
6267 	pgdat->node_spanned_pages = totalpages;
6268 	pgdat->node_present_pages = realtotalpages;
6269 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6270 							realtotalpages);
6271 }
6272 
6273 #ifndef CONFIG_SPARSEMEM
6274 /*
6275  * Calculate the size of the zone->blockflags rounded to an unsigned long
6276  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6277  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6278  * round what is now in bits to nearest long in bits, then return it in
6279  * bytes.
6280  */
6281 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6282 {
6283 	unsigned long usemapsize;
6284 
6285 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6286 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6287 	usemapsize = usemapsize >> pageblock_order;
6288 	usemapsize *= NR_PAGEBLOCK_BITS;
6289 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6290 
6291 	return usemapsize / 8;
6292 }
6293 
6294 static void __ref setup_usemap(struct pglist_data *pgdat,
6295 				struct zone *zone,
6296 				unsigned long zone_start_pfn,
6297 				unsigned long zonesize)
6298 {
6299 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6300 	zone->pageblock_flags = NULL;
6301 	if (usemapsize)
6302 		zone->pageblock_flags =
6303 			memblock_alloc_node_nopanic(usemapsize,
6304 							 pgdat->node_id);
6305 }
6306 #else
6307 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6308 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6309 #endif /* CONFIG_SPARSEMEM */
6310 
6311 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6312 
6313 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6314 void __init set_pageblock_order(void)
6315 {
6316 	unsigned int order;
6317 
6318 	/* Check that pageblock_nr_pages has not already been setup */
6319 	if (pageblock_order)
6320 		return;
6321 
6322 	if (HPAGE_SHIFT > PAGE_SHIFT)
6323 		order = HUGETLB_PAGE_ORDER;
6324 	else
6325 		order = MAX_ORDER - 1;
6326 
6327 	/*
6328 	 * Assume the largest contiguous order of interest is a huge page.
6329 	 * This value may be variable depending on boot parameters on IA64 and
6330 	 * powerpc.
6331 	 */
6332 	pageblock_order = order;
6333 }
6334 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6335 
6336 /*
6337  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6338  * is unused as pageblock_order is set at compile-time. See
6339  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6340  * the kernel config
6341  */
6342 void __init set_pageblock_order(void)
6343 {
6344 }
6345 
6346 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6347 
6348 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6349 						unsigned long present_pages)
6350 {
6351 	unsigned long pages = spanned_pages;
6352 
6353 	/*
6354 	 * Provide a more accurate estimation if there are holes within
6355 	 * the zone and SPARSEMEM is in use. If there are holes within the
6356 	 * zone, each populated memory region may cost us one or two extra
6357 	 * memmap pages due to alignment because memmap pages for each
6358 	 * populated regions may not be naturally aligned on page boundary.
6359 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6360 	 */
6361 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6362 	    IS_ENABLED(CONFIG_SPARSEMEM))
6363 		pages = present_pages;
6364 
6365 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6366 }
6367 
6368 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6369 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6370 {
6371 	spin_lock_init(&pgdat->split_queue_lock);
6372 	INIT_LIST_HEAD(&pgdat->split_queue);
6373 	pgdat->split_queue_len = 0;
6374 }
6375 #else
6376 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6377 #endif
6378 
6379 #ifdef CONFIG_COMPACTION
6380 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6381 {
6382 	init_waitqueue_head(&pgdat->kcompactd_wait);
6383 }
6384 #else
6385 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6386 #endif
6387 
6388 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6389 {
6390 	pgdat_resize_init(pgdat);
6391 
6392 	pgdat_init_split_queue(pgdat);
6393 	pgdat_init_kcompactd(pgdat);
6394 
6395 	init_waitqueue_head(&pgdat->kswapd_wait);
6396 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6397 
6398 	pgdat_page_ext_init(pgdat);
6399 	spin_lock_init(&pgdat->lru_lock);
6400 	lruvec_init(node_lruvec(pgdat));
6401 }
6402 
6403 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6404 							unsigned long remaining_pages)
6405 {
6406 	atomic_long_set(&zone->managed_pages, remaining_pages);
6407 	zone_set_nid(zone, nid);
6408 	zone->name = zone_names[idx];
6409 	zone->zone_pgdat = NODE_DATA(nid);
6410 	spin_lock_init(&zone->lock);
6411 	zone_seqlock_init(zone);
6412 	zone_pcp_init(zone);
6413 }
6414 
6415 /*
6416  * Set up the zone data structures
6417  * - init pgdat internals
6418  * - init all zones belonging to this node
6419  *
6420  * NOTE: this function is only called during memory hotplug
6421  */
6422 #ifdef CONFIG_MEMORY_HOTPLUG
6423 void __ref free_area_init_core_hotplug(int nid)
6424 {
6425 	enum zone_type z;
6426 	pg_data_t *pgdat = NODE_DATA(nid);
6427 
6428 	pgdat_init_internals(pgdat);
6429 	for (z = 0; z < MAX_NR_ZONES; z++)
6430 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6431 }
6432 #endif
6433 
6434 /*
6435  * Set up the zone data structures:
6436  *   - mark all pages reserved
6437  *   - mark all memory queues empty
6438  *   - clear the memory bitmaps
6439  *
6440  * NOTE: pgdat should get zeroed by caller.
6441  * NOTE: this function is only called during early init.
6442  */
6443 static void __init free_area_init_core(struct pglist_data *pgdat)
6444 {
6445 	enum zone_type j;
6446 	int nid = pgdat->node_id;
6447 
6448 	pgdat_init_internals(pgdat);
6449 	pgdat->per_cpu_nodestats = &boot_nodestats;
6450 
6451 	for (j = 0; j < MAX_NR_ZONES; j++) {
6452 		struct zone *zone = pgdat->node_zones + j;
6453 		unsigned long size, freesize, memmap_pages;
6454 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6455 
6456 		size = zone->spanned_pages;
6457 		freesize = zone->present_pages;
6458 
6459 		/*
6460 		 * Adjust freesize so that it accounts for how much memory
6461 		 * is used by this zone for memmap. This affects the watermark
6462 		 * and per-cpu initialisations
6463 		 */
6464 		memmap_pages = calc_memmap_size(size, freesize);
6465 		if (!is_highmem_idx(j)) {
6466 			if (freesize >= memmap_pages) {
6467 				freesize -= memmap_pages;
6468 				if (memmap_pages)
6469 					printk(KERN_DEBUG
6470 					       "  %s zone: %lu pages used for memmap\n",
6471 					       zone_names[j], memmap_pages);
6472 			} else
6473 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6474 					zone_names[j], memmap_pages, freesize);
6475 		}
6476 
6477 		/* Account for reserved pages */
6478 		if (j == 0 && freesize > dma_reserve) {
6479 			freesize -= dma_reserve;
6480 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6481 					zone_names[0], dma_reserve);
6482 		}
6483 
6484 		if (!is_highmem_idx(j))
6485 			nr_kernel_pages += freesize;
6486 		/* Charge for highmem memmap if there are enough kernel pages */
6487 		else if (nr_kernel_pages > memmap_pages * 2)
6488 			nr_kernel_pages -= memmap_pages;
6489 		nr_all_pages += freesize;
6490 
6491 		/*
6492 		 * Set an approximate value for lowmem here, it will be adjusted
6493 		 * when the bootmem allocator frees pages into the buddy system.
6494 		 * And all highmem pages will be managed by the buddy system.
6495 		 */
6496 		zone_init_internals(zone, j, nid, freesize);
6497 
6498 		if (!size)
6499 			continue;
6500 
6501 		set_pageblock_order();
6502 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6503 		init_currently_empty_zone(zone, zone_start_pfn, size);
6504 		memmap_init(size, nid, j, zone_start_pfn);
6505 	}
6506 }
6507 
6508 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6509 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6510 {
6511 	unsigned long __maybe_unused start = 0;
6512 	unsigned long __maybe_unused offset = 0;
6513 
6514 	/* Skip empty nodes */
6515 	if (!pgdat->node_spanned_pages)
6516 		return;
6517 
6518 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6519 	offset = pgdat->node_start_pfn - start;
6520 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6521 	if (!pgdat->node_mem_map) {
6522 		unsigned long size, end;
6523 		struct page *map;
6524 
6525 		/*
6526 		 * The zone's endpoints aren't required to be MAX_ORDER
6527 		 * aligned but the node_mem_map endpoints must be in order
6528 		 * for the buddy allocator to function correctly.
6529 		 */
6530 		end = pgdat_end_pfn(pgdat);
6531 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6532 		size =  (end - start) * sizeof(struct page);
6533 		map = memblock_alloc_node_nopanic(size, pgdat->node_id);
6534 		pgdat->node_mem_map = map + offset;
6535 	}
6536 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6537 				__func__, pgdat->node_id, (unsigned long)pgdat,
6538 				(unsigned long)pgdat->node_mem_map);
6539 #ifndef CONFIG_NEED_MULTIPLE_NODES
6540 	/*
6541 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6542 	 */
6543 	if (pgdat == NODE_DATA(0)) {
6544 		mem_map = NODE_DATA(0)->node_mem_map;
6545 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6546 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6547 			mem_map -= offset;
6548 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6549 	}
6550 #endif
6551 }
6552 #else
6553 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6554 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6555 
6556 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6557 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6558 {
6559 	/*
6560 	 * We start only with one section of pages, more pages are added as
6561 	 * needed until the rest of deferred pages are initialized.
6562 	 */
6563 	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6564 						pgdat->node_spanned_pages);
6565 	pgdat->first_deferred_pfn = ULONG_MAX;
6566 }
6567 #else
6568 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6569 #endif
6570 
6571 void __init free_area_init_node(int nid, unsigned long *zones_size,
6572 				   unsigned long node_start_pfn,
6573 				   unsigned long *zholes_size)
6574 {
6575 	pg_data_t *pgdat = NODE_DATA(nid);
6576 	unsigned long start_pfn = 0;
6577 	unsigned long end_pfn = 0;
6578 
6579 	/* pg_data_t should be reset to zero when it's allocated */
6580 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6581 
6582 	pgdat->node_id = nid;
6583 	pgdat->node_start_pfn = node_start_pfn;
6584 	pgdat->per_cpu_nodestats = NULL;
6585 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6586 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6587 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6588 		(u64)start_pfn << PAGE_SHIFT,
6589 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6590 #else
6591 	start_pfn = node_start_pfn;
6592 #endif
6593 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6594 				  zones_size, zholes_size);
6595 
6596 	alloc_node_mem_map(pgdat);
6597 	pgdat_set_deferred_range(pgdat);
6598 
6599 	free_area_init_core(pgdat);
6600 }
6601 
6602 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6603 /*
6604  * Zero all valid struct pages in range [spfn, epfn), return number of struct
6605  * pages zeroed
6606  */
6607 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6608 {
6609 	unsigned long pfn;
6610 	u64 pgcnt = 0;
6611 
6612 	for (pfn = spfn; pfn < epfn; pfn++) {
6613 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6614 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6615 				+ pageblock_nr_pages - 1;
6616 			continue;
6617 		}
6618 		mm_zero_struct_page(pfn_to_page(pfn));
6619 		pgcnt++;
6620 	}
6621 
6622 	return pgcnt;
6623 }
6624 
6625 /*
6626  * Only struct pages that are backed by physical memory are zeroed and
6627  * initialized by going through __init_single_page(). But, there are some
6628  * struct pages which are reserved in memblock allocator and their fields
6629  * may be accessed (for example page_to_pfn() on some configuration accesses
6630  * flags). We must explicitly zero those struct pages.
6631  *
6632  * This function also addresses a similar issue where struct pages are left
6633  * uninitialized because the physical address range is not covered by
6634  * memblock.memory or memblock.reserved. That could happen when memblock
6635  * layout is manually configured via memmap=.
6636  */
6637 void __init zero_resv_unavail(void)
6638 {
6639 	phys_addr_t start, end;
6640 	u64 i, pgcnt;
6641 	phys_addr_t next = 0;
6642 
6643 	/*
6644 	 * Loop through unavailable ranges not covered by memblock.memory.
6645 	 */
6646 	pgcnt = 0;
6647 	for_each_mem_range(i, &memblock.memory, NULL,
6648 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6649 		if (next < start)
6650 			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6651 		next = end;
6652 	}
6653 	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6654 
6655 	/*
6656 	 * Struct pages that do not have backing memory. This could be because
6657 	 * firmware is using some of this memory, or for some other reasons.
6658 	 */
6659 	if (pgcnt)
6660 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6661 }
6662 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6663 
6664 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6665 
6666 #if MAX_NUMNODES > 1
6667 /*
6668  * Figure out the number of possible node ids.
6669  */
6670 void __init setup_nr_node_ids(void)
6671 {
6672 	unsigned int highest;
6673 
6674 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6675 	nr_node_ids = highest + 1;
6676 }
6677 #endif
6678 
6679 /**
6680  * node_map_pfn_alignment - determine the maximum internode alignment
6681  *
6682  * This function should be called after node map is populated and sorted.
6683  * It calculates the maximum power of two alignment which can distinguish
6684  * all the nodes.
6685  *
6686  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6687  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6688  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6689  * shifted, 1GiB is enough and this function will indicate so.
6690  *
6691  * This is used to test whether pfn -> nid mapping of the chosen memory
6692  * model has fine enough granularity to avoid incorrect mapping for the
6693  * populated node map.
6694  *
6695  * Returns the determined alignment in pfn's.  0 if there is no alignment
6696  * requirement (single node).
6697  */
6698 unsigned long __init node_map_pfn_alignment(void)
6699 {
6700 	unsigned long accl_mask = 0, last_end = 0;
6701 	unsigned long start, end, mask;
6702 	int last_nid = -1;
6703 	int i, nid;
6704 
6705 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6706 		if (!start || last_nid < 0 || last_nid == nid) {
6707 			last_nid = nid;
6708 			last_end = end;
6709 			continue;
6710 		}
6711 
6712 		/*
6713 		 * Start with a mask granular enough to pin-point to the
6714 		 * start pfn and tick off bits one-by-one until it becomes
6715 		 * too coarse to separate the current node from the last.
6716 		 */
6717 		mask = ~((1 << __ffs(start)) - 1);
6718 		while (mask && last_end <= (start & (mask << 1)))
6719 			mask <<= 1;
6720 
6721 		/* accumulate all internode masks */
6722 		accl_mask |= mask;
6723 	}
6724 
6725 	/* convert mask to number of pages */
6726 	return ~accl_mask + 1;
6727 }
6728 
6729 /* Find the lowest pfn for a node */
6730 static unsigned long __init find_min_pfn_for_node(int nid)
6731 {
6732 	unsigned long min_pfn = ULONG_MAX;
6733 	unsigned long start_pfn;
6734 	int i;
6735 
6736 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6737 		min_pfn = min(min_pfn, start_pfn);
6738 
6739 	if (min_pfn == ULONG_MAX) {
6740 		pr_warn("Could not find start_pfn for node %d\n", nid);
6741 		return 0;
6742 	}
6743 
6744 	return min_pfn;
6745 }
6746 
6747 /**
6748  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6749  *
6750  * It returns the minimum PFN based on information provided via
6751  * memblock_set_node().
6752  */
6753 unsigned long __init find_min_pfn_with_active_regions(void)
6754 {
6755 	return find_min_pfn_for_node(MAX_NUMNODES);
6756 }
6757 
6758 /*
6759  * early_calculate_totalpages()
6760  * Sum pages in active regions for movable zone.
6761  * Populate N_MEMORY for calculating usable_nodes.
6762  */
6763 static unsigned long __init early_calculate_totalpages(void)
6764 {
6765 	unsigned long totalpages = 0;
6766 	unsigned long start_pfn, end_pfn;
6767 	int i, nid;
6768 
6769 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6770 		unsigned long pages = end_pfn - start_pfn;
6771 
6772 		totalpages += pages;
6773 		if (pages)
6774 			node_set_state(nid, N_MEMORY);
6775 	}
6776 	return totalpages;
6777 }
6778 
6779 /*
6780  * Find the PFN the Movable zone begins in each node. Kernel memory
6781  * is spread evenly between nodes as long as the nodes have enough
6782  * memory. When they don't, some nodes will have more kernelcore than
6783  * others
6784  */
6785 static void __init find_zone_movable_pfns_for_nodes(void)
6786 {
6787 	int i, nid;
6788 	unsigned long usable_startpfn;
6789 	unsigned long kernelcore_node, kernelcore_remaining;
6790 	/* save the state before borrow the nodemask */
6791 	nodemask_t saved_node_state = node_states[N_MEMORY];
6792 	unsigned long totalpages = early_calculate_totalpages();
6793 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6794 	struct memblock_region *r;
6795 
6796 	/* Need to find movable_zone earlier when movable_node is specified. */
6797 	find_usable_zone_for_movable();
6798 
6799 	/*
6800 	 * If movable_node is specified, ignore kernelcore and movablecore
6801 	 * options.
6802 	 */
6803 	if (movable_node_is_enabled()) {
6804 		for_each_memblock(memory, r) {
6805 			if (!memblock_is_hotpluggable(r))
6806 				continue;
6807 
6808 			nid = r->nid;
6809 
6810 			usable_startpfn = PFN_DOWN(r->base);
6811 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6812 				min(usable_startpfn, zone_movable_pfn[nid]) :
6813 				usable_startpfn;
6814 		}
6815 
6816 		goto out2;
6817 	}
6818 
6819 	/*
6820 	 * If kernelcore=mirror is specified, ignore movablecore option
6821 	 */
6822 	if (mirrored_kernelcore) {
6823 		bool mem_below_4gb_not_mirrored = false;
6824 
6825 		for_each_memblock(memory, r) {
6826 			if (memblock_is_mirror(r))
6827 				continue;
6828 
6829 			nid = r->nid;
6830 
6831 			usable_startpfn = memblock_region_memory_base_pfn(r);
6832 
6833 			if (usable_startpfn < 0x100000) {
6834 				mem_below_4gb_not_mirrored = true;
6835 				continue;
6836 			}
6837 
6838 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6839 				min(usable_startpfn, zone_movable_pfn[nid]) :
6840 				usable_startpfn;
6841 		}
6842 
6843 		if (mem_below_4gb_not_mirrored)
6844 			pr_warn("This configuration results in unmirrored kernel memory.");
6845 
6846 		goto out2;
6847 	}
6848 
6849 	/*
6850 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6851 	 * amount of necessary memory.
6852 	 */
6853 	if (required_kernelcore_percent)
6854 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6855 				       10000UL;
6856 	if (required_movablecore_percent)
6857 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6858 					10000UL;
6859 
6860 	/*
6861 	 * If movablecore= was specified, calculate what size of
6862 	 * kernelcore that corresponds so that memory usable for
6863 	 * any allocation type is evenly spread. If both kernelcore
6864 	 * and movablecore are specified, then the value of kernelcore
6865 	 * will be used for required_kernelcore if it's greater than
6866 	 * what movablecore would have allowed.
6867 	 */
6868 	if (required_movablecore) {
6869 		unsigned long corepages;
6870 
6871 		/*
6872 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6873 		 * was requested by the user
6874 		 */
6875 		required_movablecore =
6876 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6877 		required_movablecore = min(totalpages, required_movablecore);
6878 		corepages = totalpages - required_movablecore;
6879 
6880 		required_kernelcore = max(required_kernelcore, corepages);
6881 	}
6882 
6883 	/*
6884 	 * If kernelcore was not specified or kernelcore size is larger
6885 	 * than totalpages, there is no ZONE_MOVABLE.
6886 	 */
6887 	if (!required_kernelcore || required_kernelcore >= totalpages)
6888 		goto out;
6889 
6890 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6891 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6892 
6893 restart:
6894 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6895 	kernelcore_node = required_kernelcore / usable_nodes;
6896 	for_each_node_state(nid, N_MEMORY) {
6897 		unsigned long start_pfn, end_pfn;
6898 
6899 		/*
6900 		 * Recalculate kernelcore_node if the division per node
6901 		 * now exceeds what is necessary to satisfy the requested
6902 		 * amount of memory for the kernel
6903 		 */
6904 		if (required_kernelcore < kernelcore_node)
6905 			kernelcore_node = required_kernelcore / usable_nodes;
6906 
6907 		/*
6908 		 * As the map is walked, we track how much memory is usable
6909 		 * by the kernel using kernelcore_remaining. When it is
6910 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6911 		 */
6912 		kernelcore_remaining = kernelcore_node;
6913 
6914 		/* Go through each range of PFNs within this node */
6915 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6916 			unsigned long size_pages;
6917 
6918 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6919 			if (start_pfn >= end_pfn)
6920 				continue;
6921 
6922 			/* Account for what is only usable for kernelcore */
6923 			if (start_pfn < usable_startpfn) {
6924 				unsigned long kernel_pages;
6925 				kernel_pages = min(end_pfn, usable_startpfn)
6926 								- start_pfn;
6927 
6928 				kernelcore_remaining -= min(kernel_pages,
6929 							kernelcore_remaining);
6930 				required_kernelcore -= min(kernel_pages,
6931 							required_kernelcore);
6932 
6933 				/* Continue if range is now fully accounted */
6934 				if (end_pfn <= usable_startpfn) {
6935 
6936 					/*
6937 					 * Push zone_movable_pfn to the end so
6938 					 * that if we have to rebalance
6939 					 * kernelcore across nodes, we will
6940 					 * not double account here
6941 					 */
6942 					zone_movable_pfn[nid] = end_pfn;
6943 					continue;
6944 				}
6945 				start_pfn = usable_startpfn;
6946 			}
6947 
6948 			/*
6949 			 * The usable PFN range for ZONE_MOVABLE is from
6950 			 * start_pfn->end_pfn. Calculate size_pages as the
6951 			 * number of pages used as kernelcore
6952 			 */
6953 			size_pages = end_pfn - start_pfn;
6954 			if (size_pages > kernelcore_remaining)
6955 				size_pages = kernelcore_remaining;
6956 			zone_movable_pfn[nid] = start_pfn + size_pages;
6957 
6958 			/*
6959 			 * Some kernelcore has been met, update counts and
6960 			 * break if the kernelcore for this node has been
6961 			 * satisfied
6962 			 */
6963 			required_kernelcore -= min(required_kernelcore,
6964 								size_pages);
6965 			kernelcore_remaining -= size_pages;
6966 			if (!kernelcore_remaining)
6967 				break;
6968 		}
6969 	}
6970 
6971 	/*
6972 	 * If there is still required_kernelcore, we do another pass with one
6973 	 * less node in the count. This will push zone_movable_pfn[nid] further
6974 	 * along on the nodes that still have memory until kernelcore is
6975 	 * satisfied
6976 	 */
6977 	usable_nodes--;
6978 	if (usable_nodes && required_kernelcore > usable_nodes)
6979 		goto restart;
6980 
6981 out2:
6982 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6983 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6984 		zone_movable_pfn[nid] =
6985 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6986 
6987 out:
6988 	/* restore the node_state */
6989 	node_states[N_MEMORY] = saved_node_state;
6990 }
6991 
6992 /* Any regular or high memory on that node ? */
6993 static void check_for_memory(pg_data_t *pgdat, int nid)
6994 {
6995 	enum zone_type zone_type;
6996 
6997 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6998 		struct zone *zone = &pgdat->node_zones[zone_type];
6999 		if (populated_zone(zone)) {
7000 			if (IS_ENABLED(CONFIG_HIGHMEM))
7001 				node_set_state(nid, N_HIGH_MEMORY);
7002 			if (zone_type <= ZONE_NORMAL)
7003 				node_set_state(nid, N_NORMAL_MEMORY);
7004 			break;
7005 		}
7006 	}
7007 }
7008 
7009 /**
7010  * free_area_init_nodes - Initialise all pg_data_t and zone data
7011  * @max_zone_pfn: an array of max PFNs for each zone
7012  *
7013  * This will call free_area_init_node() for each active node in the system.
7014  * Using the page ranges provided by memblock_set_node(), the size of each
7015  * zone in each node and their holes is calculated. If the maximum PFN
7016  * between two adjacent zones match, it is assumed that the zone is empty.
7017  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7018  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7019  * starts where the previous one ended. For example, ZONE_DMA32 starts
7020  * at arch_max_dma_pfn.
7021  */
7022 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7023 {
7024 	unsigned long start_pfn, end_pfn;
7025 	int i, nid;
7026 
7027 	/* Record where the zone boundaries are */
7028 	memset(arch_zone_lowest_possible_pfn, 0,
7029 				sizeof(arch_zone_lowest_possible_pfn));
7030 	memset(arch_zone_highest_possible_pfn, 0,
7031 				sizeof(arch_zone_highest_possible_pfn));
7032 
7033 	start_pfn = find_min_pfn_with_active_regions();
7034 
7035 	for (i = 0; i < MAX_NR_ZONES; i++) {
7036 		if (i == ZONE_MOVABLE)
7037 			continue;
7038 
7039 		end_pfn = max(max_zone_pfn[i], start_pfn);
7040 		arch_zone_lowest_possible_pfn[i] = start_pfn;
7041 		arch_zone_highest_possible_pfn[i] = end_pfn;
7042 
7043 		start_pfn = end_pfn;
7044 	}
7045 
7046 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7047 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7048 	find_zone_movable_pfns_for_nodes();
7049 
7050 	/* Print out the zone ranges */
7051 	pr_info("Zone ranges:\n");
7052 	for (i = 0; i < MAX_NR_ZONES; i++) {
7053 		if (i == ZONE_MOVABLE)
7054 			continue;
7055 		pr_info("  %-8s ", zone_names[i]);
7056 		if (arch_zone_lowest_possible_pfn[i] ==
7057 				arch_zone_highest_possible_pfn[i])
7058 			pr_cont("empty\n");
7059 		else
7060 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7061 				(u64)arch_zone_lowest_possible_pfn[i]
7062 					<< PAGE_SHIFT,
7063 				((u64)arch_zone_highest_possible_pfn[i]
7064 					<< PAGE_SHIFT) - 1);
7065 	}
7066 
7067 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7068 	pr_info("Movable zone start for each node\n");
7069 	for (i = 0; i < MAX_NUMNODES; i++) {
7070 		if (zone_movable_pfn[i])
7071 			pr_info("  Node %d: %#018Lx\n", i,
7072 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7073 	}
7074 
7075 	/* Print out the early node map */
7076 	pr_info("Early memory node ranges\n");
7077 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7078 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7079 			(u64)start_pfn << PAGE_SHIFT,
7080 			((u64)end_pfn << PAGE_SHIFT) - 1);
7081 
7082 	/* Initialise every node */
7083 	mminit_verify_pageflags_layout();
7084 	setup_nr_node_ids();
7085 	zero_resv_unavail();
7086 	for_each_online_node(nid) {
7087 		pg_data_t *pgdat = NODE_DATA(nid);
7088 		free_area_init_node(nid, NULL,
7089 				find_min_pfn_for_node(nid), NULL);
7090 
7091 		/* Any memory on that node */
7092 		if (pgdat->node_present_pages)
7093 			node_set_state(nid, N_MEMORY);
7094 		check_for_memory(pgdat, nid);
7095 	}
7096 }
7097 
7098 static int __init cmdline_parse_core(char *p, unsigned long *core,
7099 				     unsigned long *percent)
7100 {
7101 	unsigned long long coremem;
7102 	char *endptr;
7103 
7104 	if (!p)
7105 		return -EINVAL;
7106 
7107 	/* Value may be a percentage of total memory, otherwise bytes */
7108 	coremem = simple_strtoull(p, &endptr, 0);
7109 	if (*endptr == '%') {
7110 		/* Paranoid check for percent values greater than 100 */
7111 		WARN_ON(coremem > 100);
7112 
7113 		*percent = coremem;
7114 	} else {
7115 		coremem = memparse(p, &p);
7116 		/* Paranoid check that UL is enough for the coremem value */
7117 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7118 
7119 		*core = coremem >> PAGE_SHIFT;
7120 		*percent = 0UL;
7121 	}
7122 	return 0;
7123 }
7124 
7125 /*
7126  * kernelcore=size sets the amount of memory for use for allocations that
7127  * cannot be reclaimed or migrated.
7128  */
7129 static int __init cmdline_parse_kernelcore(char *p)
7130 {
7131 	/* parse kernelcore=mirror */
7132 	if (parse_option_str(p, "mirror")) {
7133 		mirrored_kernelcore = true;
7134 		return 0;
7135 	}
7136 
7137 	return cmdline_parse_core(p, &required_kernelcore,
7138 				  &required_kernelcore_percent);
7139 }
7140 
7141 /*
7142  * movablecore=size sets the amount of memory for use for allocations that
7143  * can be reclaimed or migrated.
7144  */
7145 static int __init cmdline_parse_movablecore(char *p)
7146 {
7147 	return cmdline_parse_core(p, &required_movablecore,
7148 				  &required_movablecore_percent);
7149 }
7150 
7151 early_param("kernelcore", cmdline_parse_kernelcore);
7152 early_param("movablecore", cmdline_parse_movablecore);
7153 
7154 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7155 
7156 void adjust_managed_page_count(struct page *page, long count)
7157 {
7158 	atomic_long_add(count, &page_zone(page)->managed_pages);
7159 	totalram_pages_add(count);
7160 #ifdef CONFIG_HIGHMEM
7161 	if (PageHighMem(page))
7162 		totalhigh_pages_add(count);
7163 #endif
7164 }
7165 EXPORT_SYMBOL(adjust_managed_page_count);
7166 
7167 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
7168 {
7169 	void *pos;
7170 	unsigned long pages = 0;
7171 
7172 	start = (void *)PAGE_ALIGN((unsigned long)start);
7173 	end = (void *)((unsigned long)end & PAGE_MASK);
7174 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7175 		struct page *page = virt_to_page(pos);
7176 		void *direct_map_addr;
7177 
7178 		/*
7179 		 * 'direct_map_addr' might be different from 'pos'
7180 		 * because some architectures' virt_to_page()
7181 		 * work with aliases.  Getting the direct map
7182 		 * address ensures that we get a _writeable_
7183 		 * alias for the memset().
7184 		 */
7185 		direct_map_addr = page_address(page);
7186 		if ((unsigned int)poison <= 0xFF)
7187 			memset(direct_map_addr, poison, PAGE_SIZE);
7188 
7189 		free_reserved_page(page);
7190 	}
7191 
7192 	if (pages && s)
7193 		pr_info("Freeing %s memory: %ldK\n",
7194 			s, pages << (PAGE_SHIFT - 10));
7195 
7196 	return pages;
7197 }
7198 EXPORT_SYMBOL(free_reserved_area);
7199 
7200 #ifdef	CONFIG_HIGHMEM
7201 void free_highmem_page(struct page *page)
7202 {
7203 	__free_reserved_page(page);
7204 	totalram_pages_inc();
7205 	atomic_long_inc(&page_zone(page)->managed_pages);
7206 	totalhigh_pages_inc();
7207 }
7208 #endif
7209 
7210 
7211 void __init mem_init_print_info(const char *str)
7212 {
7213 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7214 	unsigned long init_code_size, init_data_size;
7215 
7216 	physpages = get_num_physpages();
7217 	codesize = _etext - _stext;
7218 	datasize = _edata - _sdata;
7219 	rosize = __end_rodata - __start_rodata;
7220 	bss_size = __bss_stop - __bss_start;
7221 	init_data_size = __init_end - __init_begin;
7222 	init_code_size = _einittext - _sinittext;
7223 
7224 	/*
7225 	 * Detect special cases and adjust section sizes accordingly:
7226 	 * 1) .init.* may be embedded into .data sections
7227 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7228 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7229 	 * 3) .rodata.* may be embedded into .text or .data sections.
7230 	 */
7231 #define adj_init_size(start, end, size, pos, adj) \
7232 	do { \
7233 		if (start <= pos && pos < end && size > adj) \
7234 			size -= adj; \
7235 	} while (0)
7236 
7237 	adj_init_size(__init_begin, __init_end, init_data_size,
7238 		     _sinittext, init_code_size);
7239 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7240 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7241 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7242 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7243 
7244 #undef	adj_init_size
7245 
7246 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7247 #ifdef	CONFIG_HIGHMEM
7248 		", %luK highmem"
7249 #endif
7250 		"%s%s)\n",
7251 		nr_free_pages() << (PAGE_SHIFT - 10),
7252 		physpages << (PAGE_SHIFT - 10),
7253 		codesize >> 10, datasize >> 10, rosize >> 10,
7254 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7255 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7256 		totalcma_pages << (PAGE_SHIFT - 10),
7257 #ifdef	CONFIG_HIGHMEM
7258 		totalhigh_pages() << (PAGE_SHIFT - 10),
7259 #endif
7260 		str ? ", " : "", str ? str : "");
7261 }
7262 
7263 /**
7264  * set_dma_reserve - set the specified number of pages reserved in the first zone
7265  * @new_dma_reserve: The number of pages to mark reserved
7266  *
7267  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7268  * In the DMA zone, a significant percentage may be consumed by kernel image
7269  * and other unfreeable allocations which can skew the watermarks badly. This
7270  * function may optionally be used to account for unfreeable pages in the
7271  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7272  * smaller per-cpu batchsize.
7273  */
7274 void __init set_dma_reserve(unsigned long new_dma_reserve)
7275 {
7276 	dma_reserve = new_dma_reserve;
7277 }
7278 
7279 void __init free_area_init(unsigned long *zones_size)
7280 {
7281 	zero_resv_unavail();
7282 	free_area_init_node(0, zones_size,
7283 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7284 }
7285 
7286 static int page_alloc_cpu_dead(unsigned int cpu)
7287 {
7288 
7289 	lru_add_drain_cpu(cpu);
7290 	drain_pages(cpu);
7291 
7292 	/*
7293 	 * Spill the event counters of the dead processor
7294 	 * into the current processors event counters.
7295 	 * This artificially elevates the count of the current
7296 	 * processor.
7297 	 */
7298 	vm_events_fold_cpu(cpu);
7299 
7300 	/*
7301 	 * Zero the differential counters of the dead processor
7302 	 * so that the vm statistics are consistent.
7303 	 *
7304 	 * This is only okay since the processor is dead and cannot
7305 	 * race with what we are doing.
7306 	 */
7307 	cpu_vm_stats_fold(cpu);
7308 	return 0;
7309 }
7310 
7311 void __init page_alloc_init(void)
7312 {
7313 	int ret;
7314 
7315 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7316 					"mm/page_alloc:dead", NULL,
7317 					page_alloc_cpu_dead);
7318 	WARN_ON(ret < 0);
7319 }
7320 
7321 /*
7322  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7323  *	or min_free_kbytes changes.
7324  */
7325 static void calculate_totalreserve_pages(void)
7326 {
7327 	struct pglist_data *pgdat;
7328 	unsigned long reserve_pages = 0;
7329 	enum zone_type i, j;
7330 
7331 	for_each_online_pgdat(pgdat) {
7332 
7333 		pgdat->totalreserve_pages = 0;
7334 
7335 		for (i = 0; i < MAX_NR_ZONES; i++) {
7336 			struct zone *zone = pgdat->node_zones + i;
7337 			long max = 0;
7338 			unsigned long managed_pages = zone_managed_pages(zone);
7339 
7340 			/* Find valid and maximum lowmem_reserve in the zone */
7341 			for (j = i; j < MAX_NR_ZONES; j++) {
7342 				if (zone->lowmem_reserve[j] > max)
7343 					max = zone->lowmem_reserve[j];
7344 			}
7345 
7346 			/* we treat the high watermark as reserved pages. */
7347 			max += high_wmark_pages(zone);
7348 
7349 			if (max > managed_pages)
7350 				max = managed_pages;
7351 
7352 			pgdat->totalreserve_pages += max;
7353 
7354 			reserve_pages += max;
7355 		}
7356 	}
7357 	totalreserve_pages = reserve_pages;
7358 }
7359 
7360 /*
7361  * setup_per_zone_lowmem_reserve - called whenever
7362  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7363  *	has a correct pages reserved value, so an adequate number of
7364  *	pages are left in the zone after a successful __alloc_pages().
7365  */
7366 static void setup_per_zone_lowmem_reserve(void)
7367 {
7368 	struct pglist_data *pgdat;
7369 	enum zone_type j, idx;
7370 
7371 	for_each_online_pgdat(pgdat) {
7372 		for (j = 0; j < MAX_NR_ZONES; j++) {
7373 			struct zone *zone = pgdat->node_zones + j;
7374 			unsigned long managed_pages = zone_managed_pages(zone);
7375 
7376 			zone->lowmem_reserve[j] = 0;
7377 
7378 			idx = j;
7379 			while (idx) {
7380 				struct zone *lower_zone;
7381 
7382 				idx--;
7383 				lower_zone = pgdat->node_zones + idx;
7384 
7385 				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7386 					sysctl_lowmem_reserve_ratio[idx] = 0;
7387 					lower_zone->lowmem_reserve[j] = 0;
7388 				} else {
7389 					lower_zone->lowmem_reserve[j] =
7390 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7391 				}
7392 				managed_pages += zone_managed_pages(lower_zone);
7393 			}
7394 		}
7395 	}
7396 
7397 	/* update totalreserve_pages */
7398 	calculate_totalreserve_pages();
7399 }
7400 
7401 static void __setup_per_zone_wmarks(void)
7402 {
7403 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7404 	unsigned long lowmem_pages = 0;
7405 	struct zone *zone;
7406 	unsigned long flags;
7407 
7408 	/* Calculate total number of !ZONE_HIGHMEM pages */
7409 	for_each_zone(zone) {
7410 		if (!is_highmem(zone))
7411 			lowmem_pages += zone_managed_pages(zone);
7412 	}
7413 
7414 	for_each_zone(zone) {
7415 		u64 tmp;
7416 
7417 		spin_lock_irqsave(&zone->lock, flags);
7418 		tmp = (u64)pages_min * zone_managed_pages(zone);
7419 		do_div(tmp, lowmem_pages);
7420 		if (is_highmem(zone)) {
7421 			/*
7422 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7423 			 * need highmem pages, so cap pages_min to a small
7424 			 * value here.
7425 			 *
7426 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7427 			 * deltas control asynch page reclaim, and so should
7428 			 * not be capped for highmem.
7429 			 */
7430 			unsigned long min_pages;
7431 
7432 			min_pages = zone_managed_pages(zone) / 1024;
7433 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7434 			zone->watermark[WMARK_MIN] = min_pages;
7435 		} else {
7436 			/*
7437 			 * If it's a lowmem zone, reserve a number of pages
7438 			 * proportionate to the zone's size.
7439 			 */
7440 			zone->watermark[WMARK_MIN] = tmp;
7441 		}
7442 
7443 		/*
7444 		 * Set the kswapd watermarks distance according to the
7445 		 * scale factor in proportion to available memory, but
7446 		 * ensure a minimum size on small systems.
7447 		 */
7448 		tmp = max_t(u64, tmp >> 2,
7449 			    mult_frac(zone_managed_pages(zone),
7450 				      watermark_scale_factor, 10000));
7451 
7452 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7453 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7454 
7455 		spin_unlock_irqrestore(&zone->lock, flags);
7456 	}
7457 
7458 	/* update totalreserve_pages */
7459 	calculate_totalreserve_pages();
7460 }
7461 
7462 /**
7463  * setup_per_zone_wmarks - called when min_free_kbytes changes
7464  * or when memory is hot-{added|removed}
7465  *
7466  * Ensures that the watermark[min,low,high] values for each zone are set
7467  * correctly with respect to min_free_kbytes.
7468  */
7469 void setup_per_zone_wmarks(void)
7470 {
7471 	static DEFINE_SPINLOCK(lock);
7472 
7473 	spin_lock(&lock);
7474 	__setup_per_zone_wmarks();
7475 	spin_unlock(&lock);
7476 }
7477 
7478 /*
7479  * Initialise min_free_kbytes.
7480  *
7481  * For small machines we want it small (128k min).  For large machines
7482  * we want it large (64MB max).  But it is not linear, because network
7483  * bandwidth does not increase linearly with machine size.  We use
7484  *
7485  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7486  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7487  *
7488  * which yields
7489  *
7490  * 16MB:	512k
7491  * 32MB:	724k
7492  * 64MB:	1024k
7493  * 128MB:	1448k
7494  * 256MB:	2048k
7495  * 512MB:	2896k
7496  * 1024MB:	4096k
7497  * 2048MB:	5792k
7498  * 4096MB:	8192k
7499  * 8192MB:	11584k
7500  * 16384MB:	16384k
7501  */
7502 int __meminit init_per_zone_wmark_min(void)
7503 {
7504 	unsigned long lowmem_kbytes;
7505 	int new_min_free_kbytes;
7506 
7507 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7508 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7509 
7510 	if (new_min_free_kbytes > user_min_free_kbytes) {
7511 		min_free_kbytes = new_min_free_kbytes;
7512 		if (min_free_kbytes < 128)
7513 			min_free_kbytes = 128;
7514 		if (min_free_kbytes > 65536)
7515 			min_free_kbytes = 65536;
7516 	} else {
7517 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7518 				new_min_free_kbytes, user_min_free_kbytes);
7519 	}
7520 	setup_per_zone_wmarks();
7521 	refresh_zone_stat_thresholds();
7522 	setup_per_zone_lowmem_reserve();
7523 
7524 #ifdef CONFIG_NUMA
7525 	setup_min_unmapped_ratio();
7526 	setup_min_slab_ratio();
7527 #endif
7528 
7529 	return 0;
7530 }
7531 core_initcall(init_per_zone_wmark_min)
7532 
7533 /*
7534  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7535  *	that we can call two helper functions whenever min_free_kbytes
7536  *	changes.
7537  */
7538 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7539 	void __user *buffer, size_t *length, loff_t *ppos)
7540 {
7541 	int rc;
7542 
7543 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7544 	if (rc)
7545 		return rc;
7546 
7547 	if (write) {
7548 		user_min_free_kbytes = min_free_kbytes;
7549 		setup_per_zone_wmarks();
7550 	}
7551 	return 0;
7552 }
7553 
7554 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7555 	void __user *buffer, size_t *length, loff_t *ppos)
7556 {
7557 	int rc;
7558 
7559 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7560 	if (rc)
7561 		return rc;
7562 
7563 	if (write)
7564 		setup_per_zone_wmarks();
7565 
7566 	return 0;
7567 }
7568 
7569 #ifdef CONFIG_NUMA
7570 static void setup_min_unmapped_ratio(void)
7571 {
7572 	pg_data_t *pgdat;
7573 	struct zone *zone;
7574 
7575 	for_each_online_pgdat(pgdat)
7576 		pgdat->min_unmapped_pages = 0;
7577 
7578 	for_each_zone(zone)
7579 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7580 						         sysctl_min_unmapped_ratio) / 100;
7581 }
7582 
7583 
7584 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7585 	void __user *buffer, size_t *length, loff_t *ppos)
7586 {
7587 	int rc;
7588 
7589 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7590 	if (rc)
7591 		return rc;
7592 
7593 	setup_min_unmapped_ratio();
7594 
7595 	return 0;
7596 }
7597 
7598 static void setup_min_slab_ratio(void)
7599 {
7600 	pg_data_t *pgdat;
7601 	struct zone *zone;
7602 
7603 	for_each_online_pgdat(pgdat)
7604 		pgdat->min_slab_pages = 0;
7605 
7606 	for_each_zone(zone)
7607 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7608 						     sysctl_min_slab_ratio) / 100;
7609 }
7610 
7611 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7612 	void __user *buffer, size_t *length, loff_t *ppos)
7613 {
7614 	int rc;
7615 
7616 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7617 	if (rc)
7618 		return rc;
7619 
7620 	setup_min_slab_ratio();
7621 
7622 	return 0;
7623 }
7624 #endif
7625 
7626 /*
7627  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7628  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7629  *	whenever sysctl_lowmem_reserve_ratio changes.
7630  *
7631  * The reserve ratio obviously has absolutely no relation with the
7632  * minimum watermarks. The lowmem reserve ratio can only make sense
7633  * if in function of the boot time zone sizes.
7634  */
7635 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7636 	void __user *buffer, size_t *length, loff_t *ppos)
7637 {
7638 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7639 	setup_per_zone_lowmem_reserve();
7640 	return 0;
7641 }
7642 
7643 /*
7644  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7645  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7646  * pagelist can have before it gets flushed back to buddy allocator.
7647  */
7648 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7649 	void __user *buffer, size_t *length, loff_t *ppos)
7650 {
7651 	struct zone *zone;
7652 	int old_percpu_pagelist_fraction;
7653 	int ret;
7654 
7655 	mutex_lock(&pcp_batch_high_lock);
7656 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7657 
7658 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7659 	if (!write || ret < 0)
7660 		goto out;
7661 
7662 	/* Sanity checking to avoid pcp imbalance */
7663 	if (percpu_pagelist_fraction &&
7664 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7665 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7666 		ret = -EINVAL;
7667 		goto out;
7668 	}
7669 
7670 	/* No change? */
7671 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7672 		goto out;
7673 
7674 	for_each_populated_zone(zone) {
7675 		unsigned int cpu;
7676 
7677 		for_each_possible_cpu(cpu)
7678 			pageset_set_high_and_batch(zone,
7679 					per_cpu_ptr(zone->pageset, cpu));
7680 	}
7681 out:
7682 	mutex_unlock(&pcp_batch_high_lock);
7683 	return ret;
7684 }
7685 
7686 #ifdef CONFIG_NUMA
7687 int hashdist = HASHDIST_DEFAULT;
7688 
7689 static int __init set_hashdist(char *str)
7690 {
7691 	if (!str)
7692 		return 0;
7693 	hashdist = simple_strtoul(str, &str, 0);
7694 	return 1;
7695 }
7696 __setup("hashdist=", set_hashdist);
7697 #endif
7698 
7699 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7700 /*
7701  * Returns the number of pages that arch has reserved but
7702  * is not known to alloc_large_system_hash().
7703  */
7704 static unsigned long __init arch_reserved_kernel_pages(void)
7705 {
7706 	return 0;
7707 }
7708 #endif
7709 
7710 /*
7711  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7712  * machines. As memory size is increased the scale is also increased but at
7713  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7714  * quadruples the scale is increased by one, which means the size of hash table
7715  * only doubles, instead of quadrupling as well.
7716  * Because 32-bit systems cannot have large physical memory, where this scaling
7717  * makes sense, it is disabled on such platforms.
7718  */
7719 #if __BITS_PER_LONG > 32
7720 #define ADAPT_SCALE_BASE	(64ul << 30)
7721 #define ADAPT_SCALE_SHIFT	2
7722 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7723 #endif
7724 
7725 /*
7726  * allocate a large system hash table from bootmem
7727  * - it is assumed that the hash table must contain an exact power-of-2
7728  *   quantity of entries
7729  * - limit is the number of hash buckets, not the total allocation size
7730  */
7731 void *__init alloc_large_system_hash(const char *tablename,
7732 				     unsigned long bucketsize,
7733 				     unsigned long numentries,
7734 				     int scale,
7735 				     int flags,
7736 				     unsigned int *_hash_shift,
7737 				     unsigned int *_hash_mask,
7738 				     unsigned long low_limit,
7739 				     unsigned long high_limit)
7740 {
7741 	unsigned long long max = high_limit;
7742 	unsigned long log2qty, size;
7743 	void *table = NULL;
7744 	gfp_t gfp_flags;
7745 
7746 	/* allow the kernel cmdline to have a say */
7747 	if (!numentries) {
7748 		/* round applicable memory size up to nearest megabyte */
7749 		numentries = nr_kernel_pages;
7750 		numentries -= arch_reserved_kernel_pages();
7751 
7752 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7753 		if (PAGE_SHIFT < 20)
7754 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7755 
7756 #if __BITS_PER_LONG > 32
7757 		if (!high_limit) {
7758 			unsigned long adapt;
7759 
7760 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7761 			     adapt <<= ADAPT_SCALE_SHIFT)
7762 				scale++;
7763 		}
7764 #endif
7765 
7766 		/* limit to 1 bucket per 2^scale bytes of low memory */
7767 		if (scale > PAGE_SHIFT)
7768 			numentries >>= (scale - PAGE_SHIFT);
7769 		else
7770 			numentries <<= (PAGE_SHIFT - scale);
7771 
7772 		/* Make sure we've got at least a 0-order allocation.. */
7773 		if (unlikely(flags & HASH_SMALL)) {
7774 			/* Makes no sense without HASH_EARLY */
7775 			WARN_ON(!(flags & HASH_EARLY));
7776 			if (!(numentries >> *_hash_shift)) {
7777 				numentries = 1UL << *_hash_shift;
7778 				BUG_ON(!numentries);
7779 			}
7780 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7781 			numentries = PAGE_SIZE / bucketsize;
7782 	}
7783 	numentries = roundup_pow_of_two(numentries);
7784 
7785 	/* limit allocation size to 1/16 total memory by default */
7786 	if (max == 0) {
7787 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7788 		do_div(max, bucketsize);
7789 	}
7790 	max = min(max, 0x80000000ULL);
7791 
7792 	if (numentries < low_limit)
7793 		numentries = low_limit;
7794 	if (numentries > max)
7795 		numentries = max;
7796 
7797 	log2qty = ilog2(numentries);
7798 
7799 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7800 	do {
7801 		size = bucketsize << log2qty;
7802 		if (flags & HASH_EARLY) {
7803 			if (flags & HASH_ZERO)
7804 				table = memblock_alloc_nopanic(size,
7805 							       SMP_CACHE_BYTES);
7806 			else
7807 				table = memblock_alloc_raw(size,
7808 							   SMP_CACHE_BYTES);
7809 		} else if (hashdist) {
7810 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7811 		} else {
7812 			/*
7813 			 * If bucketsize is not a power-of-two, we may free
7814 			 * some pages at the end of hash table which
7815 			 * alloc_pages_exact() automatically does
7816 			 */
7817 			if (get_order(size) < MAX_ORDER) {
7818 				table = alloc_pages_exact(size, gfp_flags);
7819 				kmemleak_alloc(table, size, 1, gfp_flags);
7820 			}
7821 		}
7822 	} while (!table && size > PAGE_SIZE && --log2qty);
7823 
7824 	if (!table)
7825 		panic("Failed to allocate %s hash table\n", tablename);
7826 
7827 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7828 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7829 
7830 	if (_hash_shift)
7831 		*_hash_shift = log2qty;
7832 	if (_hash_mask)
7833 		*_hash_mask = (1 << log2qty) - 1;
7834 
7835 	return table;
7836 }
7837 
7838 /*
7839  * This function checks whether pageblock includes unmovable pages or not.
7840  * If @count is not zero, it is okay to include less @count unmovable pages
7841  *
7842  * PageLRU check without isolation or lru_lock could race so that
7843  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7844  * check without lock_page also may miss some movable non-lru pages at
7845  * race condition. So you can't expect this function should be exact.
7846  */
7847 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7848 			 int migratetype, int flags)
7849 {
7850 	unsigned long pfn, iter, found;
7851 
7852 	/*
7853 	 * TODO we could make this much more efficient by not checking every
7854 	 * page in the range if we know all of them are in MOVABLE_ZONE and
7855 	 * that the movable zone guarantees that pages are migratable but
7856 	 * the later is not the case right now unfortunatelly. E.g. movablecore
7857 	 * can still lead to having bootmem allocations in zone_movable.
7858 	 */
7859 
7860 	/*
7861 	 * CMA allocations (alloc_contig_range) really need to mark isolate
7862 	 * CMA pageblocks even when they are not movable in fact so consider
7863 	 * them movable here.
7864 	 */
7865 	if (is_migrate_cma(migratetype) &&
7866 			is_migrate_cma(get_pageblock_migratetype(page)))
7867 		return false;
7868 
7869 	pfn = page_to_pfn(page);
7870 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7871 		unsigned long check = pfn + iter;
7872 
7873 		if (!pfn_valid_within(check))
7874 			continue;
7875 
7876 		page = pfn_to_page(check);
7877 
7878 		if (PageReserved(page))
7879 			goto unmovable;
7880 
7881 		/*
7882 		 * If the zone is movable and we have ruled out all reserved
7883 		 * pages then it should be reasonably safe to assume the rest
7884 		 * is movable.
7885 		 */
7886 		if (zone_idx(zone) == ZONE_MOVABLE)
7887 			continue;
7888 
7889 		/*
7890 		 * Hugepages are not in LRU lists, but they're movable.
7891 		 * We need not scan over tail pages bacause we don't
7892 		 * handle each tail page individually in migration.
7893 		 */
7894 		if (PageHuge(page)) {
7895 			struct page *head = compound_head(page);
7896 			unsigned int skip_pages;
7897 
7898 			if (!hugepage_migration_supported(page_hstate(head)))
7899 				goto unmovable;
7900 
7901 			skip_pages = (1 << compound_order(head)) - (page - head);
7902 			iter += skip_pages - 1;
7903 			continue;
7904 		}
7905 
7906 		/*
7907 		 * We can't use page_count without pin a page
7908 		 * because another CPU can free compound page.
7909 		 * This check already skips compound tails of THP
7910 		 * because their page->_refcount is zero at all time.
7911 		 */
7912 		if (!page_ref_count(page)) {
7913 			if (PageBuddy(page))
7914 				iter += (1 << page_order(page)) - 1;
7915 			continue;
7916 		}
7917 
7918 		/*
7919 		 * The HWPoisoned page may be not in buddy system, and
7920 		 * page_count() is not 0.
7921 		 */
7922 		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
7923 			continue;
7924 
7925 		if (__PageMovable(page))
7926 			continue;
7927 
7928 		if (!PageLRU(page))
7929 			found++;
7930 		/*
7931 		 * If there are RECLAIMABLE pages, we need to check
7932 		 * it.  But now, memory offline itself doesn't call
7933 		 * shrink_node_slabs() and it still to be fixed.
7934 		 */
7935 		/*
7936 		 * If the page is not RAM, page_count()should be 0.
7937 		 * we don't need more check. This is an _used_ not-movable page.
7938 		 *
7939 		 * The problematic thing here is PG_reserved pages. PG_reserved
7940 		 * is set to both of a memory hole page and a _used_ kernel
7941 		 * page at boot.
7942 		 */
7943 		if (found > count)
7944 			goto unmovable;
7945 	}
7946 	return false;
7947 unmovable:
7948 	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7949 	if (flags & REPORT_FAILURE)
7950 		dump_page(pfn_to_page(pfn+iter), "unmovable page");
7951 	return true;
7952 }
7953 
7954 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7955 
7956 static unsigned long pfn_max_align_down(unsigned long pfn)
7957 {
7958 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7959 			     pageblock_nr_pages) - 1);
7960 }
7961 
7962 static unsigned long pfn_max_align_up(unsigned long pfn)
7963 {
7964 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7965 				pageblock_nr_pages));
7966 }
7967 
7968 /* [start, end) must belong to a single zone. */
7969 static int __alloc_contig_migrate_range(struct compact_control *cc,
7970 					unsigned long start, unsigned long end)
7971 {
7972 	/* This function is based on compact_zone() from compaction.c. */
7973 	unsigned long nr_reclaimed;
7974 	unsigned long pfn = start;
7975 	unsigned int tries = 0;
7976 	int ret = 0;
7977 
7978 	migrate_prep();
7979 
7980 	while (pfn < end || !list_empty(&cc->migratepages)) {
7981 		if (fatal_signal_pending(current)) {
7982 			ret = -EINTR;
7983 			break;
7984 		}
7985 
7986 		if (list_empty(&cc->migratepages)) {
7987 			cc->nr_migratepages = 0;
7988 			pfn = isolate_migratepages_range(cc, pfn, end);
7989 			if (!pfn) {
7990 				ret = -EINTR;
7991 				break;
7992 			}
7993 			tries = 0;
7994 		} else if (++tries == 5) {
7995 			ret = ret < 0 ? ret : -EBUSY;
7996 			break;
7997 		}
7998 
7999 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8000 							&cc->migratepages);
8001 		cc->nr_migratepages -= nr_reclaimed;
8002 
8003 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8004 				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8005 	}
8006 	if (ret < 0) {
8007 		putback_movable_pages(&cc->migratepages);
8008 		return ret;
8009 	}
8010 	return 0;
8011 }
8012 
8013 /**
8014  * alloc_contig_range() -- tries to allocate given range of pages
8015  * @start:	start PFN to allocate
8016  * @end:	one-past-the-last PFN to allocate
8017  * @migratetype:	migratetype of the underlaying pageblocks (either
8018  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8019  *			in range must have the same migratetype and it must
8020  *			be either of the two.
8021  * @gfp_mask:	GFP mask to use during compaction
8022  *
8023  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8024  * aligned.  The PFN range must belong to a single zone.
8025  *
8026  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8027  * pageblocks in the range.  Once isolated, the pageblocks should not
8028  * be modified by others.
8029  *
8030  * Returns zero on success or negative error code.  On success all
8031  * pages which PFN is in [start, end) are allocated for the caller and
8032  * need to be freed with free_contig_range().
8033  */
8034 int alloc_contig_range(unsigned long start, unsigned long end,
8035 		       unsigned migratetype, gfp_t gfp_mask)
8036 {
8037 	unsigned long outer_start, outer_end;
8038 	unsigned int order;
8039 	int ret = 0;
8040 
8041 	struct compact_control cc = {
8042 		.nr_migratepages = 0,
8043 		.order = -1,
8044 		.zone = page_zone(pfn_to_page(start)),
8045 		.mode = MIGRATE_SYNC,
8046 		.ignore_skip_hint = true,
8047 		.no_set_skip_hint = true,
8048 		.gfp_mask = current_gfp_context(gfp_mask),
8049 	};
8050 	INIT_LIST_HEAD(&cc.migratepages);
8051 
8052 	/*
8053 	 * What we do here is we mark all pageblocks in range as
8054 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8055 	 * have different sizes, and due to the way page allocator
8056 	 * work, we align the range to biggest of the two pages so
8057 	 * that page allocator won't try to merge buddies from
8058 	 * different pageblocks and change MIGRATE_ISOLATE to some
8059 	 * other migration type.
8060 	 *
8061 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8062 	 * migrate the pages from an unaligned range (ie. pages that
8063 	 * we are interested in).  This will put all the pages in
8064 	 * range back to page allocator as MIGRATE_ISOLATE.
8065 	 *
8066 	 * When this is done, we take the pages in range from page
8067 	 * allocator removing them from the buddy system.  This way
8068 	 * page allocator will never consider using them.
8069 	 *
8070 	 * This lets us mark the pageblocks back as
8071 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8072 	 * aligned range but not in the unaligned, original range are
8073 	 * put back to page allocator so that buddy can use them.
8074 	 */
8075 
8076 	ret = start_isolate_page_range(pfn_max_align_down(start),
8077 				       pfn_max_align_up(end), migratetype, 0);
8078 	if (ret)
8079 		return ret;
8080 
8081 	/*
8082 	 * In case of -EBUSY, we'd like to know which page causes problem.
8083 	 * So, just fall through. test_pages_isolated() has a tracepoint
8084 	 * which will report the busy page.
8085 	 *
8086 	 * It is possible that busy pages could become available before
8087 	 * the call to test_pages_isolated, and the range will actually be
8088 	 * allocated.  So, if we fall through be sure to clear ret so that
8089 	 * -EBUSY is not accidentally used or returned to caller.
8090 	 */
8091 	ret = __alloc_contig_migrate_range(&cc, start, end);
8092 	if (ret && ret != -EBUSY)
8093 		goto done;
8094 	ret =0;
8095 
8096 	/*
8097 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8098 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8099 	 * more, all pages in [start, end) are free in page allocator.
8100 	 * What we are going to do is to allocate all pages from
8101 	 * [start, end) (that is remove them from page allocator).
8102 	 *
8103 	 * The only problem is that pages at the beginning and at the
8104 	 * end of interesting range may be not aligned with pages that
8105 	 * page allocator holds, ie. they can be part of higher order
8106 	 * pages.  Because of this, we reserve the bigger range and
8107 	 * once this is done free the pages we are not interested in.
8108 	 *
8109 	 * We don't have to hold zone->lock here because the pages are
8110 	 * isolated thus they won't get removed from buddy.
8111 	 */
8112 
8113 	lru_add_drain_all();
8114 	drain_all_pages(cc.zone);
8115 
8116 	order = 0;
8117 	outer_start = start;
8118 	while (!PageBuddy(pfn_to_page(outer_start))) {
8119 		if (++order >= MAX_ORDER) {
8120 			outer_start = start;
8121 			break;
8122 		}
8123 		outer_start &= ~0UL << order;
8124 	}
8125 
8126 	if (outer_start != start) {
8127 		order = page_order(pfn_to_page(outer_start));
8128 
8129 		/*
8130 		 * outer_start page could be small order buddy page and
8131 		 * it doesn't include start page. Adjust outer_start
8132 		 * in this case to report failed page properly
8133 		 * on tracepoint in test_pages_isolated()
8134 		 */
8135 		if (outer_start + (1UL << order) <= start)
8136 			outer_start = start;
8137 	}
8138 
8139 	/* Make sure the range is really isolated. */
8140 	if (test_pages_isolated(outer_start, end, false)) {
8141 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8142 			__func__, outer_start, end);
8143 		ret = -EBUSY;
8144 		goto done;
8145 	}
8146 
8147 	/* Grab isolated pages from freelists. */
8148 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8149 	if (!outer_end) {
8150 		ret = -EBUSY;
8151 		goto done;
8152 	}
8153 
8154 	/* Free head and tail (if any) */
8155 	if (start != outer_start)
8156 		free_contig_range(outer_start, start - outer_start);
8157 	if (end != outer_end)
8158 		free_contig_range(end, outer_end - end);
8159 
8160 done:
8161 	undo_isolate_page_range(pfn_max_align_down(start),
8162 				pfn_max_align_up(end), migratetype);
8163 	return ret;
8164 }
8165 
8166 void free_contig_range(unsigned long pfn, unsigned nr_pages)
8167 {
8168 	unsigned int count = 0;
8169 
8170 	for (; nr_pages--; pfn++) {
8171 		struct page *page = pfn_to_page(pfn);
8172 
8173 		count += page_count(page) != 1;
8174 		__free_page(page);
8175 	}
8176 	WARN(count != 0, "%d pages are still in use!\n", count);
8177 }
8178 #endif
8179 
8180 #ifdef CONFIG_MEMORY_HOTPLUG
8181 /*
8182  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8183  * page high values need to be recalulated.
8184  */
8185 void __meminit zone_pcp_update(struct zone *zone)
8186 {
8187 	unsigned cpu;
8188 	mutex_lock(&pcp_batch_high_lock);
8189 	for_each_possible_cpu(cpu)
8190 		pageset_set_high_and_batch(zone,
8191 				per_cpu_ptr(zone->pageset, cpu));
8192 	mutex_unlock(&pcp_batch_high_lock);
8193 }
8194 #endif
8195 
8196 void zone_pcp_reset(struct zone *zone)
8197 {
8198 	unsigned long flags;
8199 	int cpu;
8200 	struct per_cpu_pageset *pset;
8201 
8202 	/* avoid races with drain_pages()  */
8203 	local_irq_save(flags);
8204 	if (zone->pageset != &boot_pageset) {
8205 		for_each_online_cpu(cpu) {
8206 			pset = per_cpu_ptr(zone->pageset, cpu);
8207 			drain_zonestat(zone, pset);
8208 		}
8209 		free_percpu(zone->pageset);
8210 		zone->pageset = &boot_pageset;
8211 	}
8212 	local_irq_restore(flags);
8213 }
8214 
8215 #ifdef CONFIG_MEMORY_HOTREMOVE
8216 /*
8217  * All pages in the range must be in a single zone and isolated
8218  * before calling this.
8219  */
8220 void
8221 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8222 {
8223 	struct page *page;
8224 	struct zone *zone;
8225 	unsigned int order, i;
8226 	unsigned long pfn;
8227 	unsigned long flags;
8228 	/* find the first valid pfn */
8229 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8230 		if (pfn_valid(pfn))
8231 			break;
8232 	if (pfn == end_pfn)
8233 		return;
8234 	offline_mem_sections(pfn, end_pfn);
8235 	zone = page_zone(pfn_to_page(pfn));
8236 	spin_lock_irqsave(&zone->lock, flags);
8237 	pfn = start_pfn;
8238 	while (pfn < end_pfn) {
8239 		if (!pfn_valid(pfn)) {
8240 			pfn++;
8241 			continue;
8242 		}
8243 		page = pfn_to_page(pfn);
8244 		/*
8245 		 * The HWPoisoned page may be not in buddy system, and
8246 		 * page_count() is not 0.
8247 		 */
8248 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8249 			pfn++;
8250 			SetPageReserved(page);
8251 			continue;
8252 		}
8253 
8254 		BUG_ON(page_count(page));
8255 		BUG_ON(!PageBuddy(page));
8256 		order = page_order(page);
8257 #ifdef CONFIG_DEBUG_VM
8258 		pr_info("remove from free list %lx %d %lx\n",
8259 			pfn, 1 << order, end_pfn);
8260 #endif
8261 		list_del(&page->lru);
8262 		rmv_page_order(page);
8263 		zone->free_area[order].nr_free--;
8264 		for (i = 0; i < (1 << order); i++)
8265 			SetPageReserved((page+i));
8266 		pfn += (1 << order);
8267 	}
8268 	spin_unlock_irqrestore(&zone->lock, flags);
8269 }
8270 #endif
8271 
8272 bool is_free_buddy_page(struct page *page)
8273 {
8274 	struct zone *zone = page_zone(page);
8275 	unsigned long pfn = page_to_pfn(page);
8276 	unsigned long flags;
8277 	unsigned int order;
8278 
8279 	spin_lock_irqsave(&zone->lock, flags);
8280 	for (order = 0; order < MAX_ORDER; order++) {
8281 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8282 
8283 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8284 			break;
8285 	}
8286 	spin_unlock_irqrestore(&zone->lock, flags);
8287 
8288 	return order < MAX_ORDER;
8289 }
8290 
8291 #ifdef CONFIG_MEMORY_FAILURE
8292 /*
8293  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8294  * test is performed under the zone lock to prevent a race against page
8295  * allocation.
8296  */
8297 bool set_hwpoison_free_buddy_page(struct page *page)
8298 {
8299 	struct zone *zone = page_zone(page);
8300 	unsigned long pfn = page_to_pfn(page);
8301 	unsigned long flags;
8302 	unsigned int order;
8303 	bool hwpoisoned = false;
8304 
8305 	spin_lock_irqsave(&zone->lock, flags);
8306 	for (order = 0; order < MAX_ORDER; order++) {
8307 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8308 
8309 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8310 			if (!TestSetPageHWPoison(page))
8311 				hwpoisoned = true;
8312 			break;
8313 		}
8314 	}
8315 	spin_unlock_irqrestore(&zone->lock, flags);
8316 
8317 	return hwpoisoned;
8318 }
8319 #endif
8320