1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/highmem.h> 20 #include <linux/swap.h> 21 #include <linux/interrupt.h> 22 #include <linux/pagemap.h> 23 #include <linux/jiffies.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kasan.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/topology.h> 36 #include <linux/sysctl.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/memory_hotplug.h> 40 #include <linux/nodemask.h> 41 #include <linux/vmalloc.h> 42 #include <linux/vmstat.h> 43 #include <linux/mempolicy.h> 44 #include <linux/memremap.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_ext.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <trace/events/oom.h> 57 #include <linux/prefetch.h> 58 #include <linux/mm_inline.h> 59 #include <linux/migrate.h> 60 #include <linux/hugetlb.h> 61 #include <linux/sched/rt.h> 62 #include <linux/sched/mm.h> 63 #include <linux/page_owner.h> 64 #include <linux/kthread.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/lockdep.h> 68 #include <linux/nmi.h> 69 #include <linux/psi.h> 70 71 #include <asm/sections.h> 72 #include <asm/tlbflush.h> 73 #include <asm/div64.h> 74 #include "internal.h" 75 76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 77 static DEFINE_MUTEX(pcp_batch_high_lock); 78 #define MIN_PERCPU_PAGELIST_FRACTION (8) 79 80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 81 DEFINE_PER_CPU(int, numa_node); 82 EXPORT_PER_CPU_SYMBOL(numa_node); 83 #endif 84 85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 86 87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 88 /* 89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 92 * defined in <linux/topology.h>. 93 */ 94 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 95 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 96 int _node_numa_mem_[MAX_NUMNODES]; 97 #endif 98 99 /* work_structs for global per-cpu drains */ 100 DEFINE_MUTEX(pcpu_drain_mutex); 101 DEFINE_PER_CPU(struct work_struct, pcpu_drain); 102 103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 104 volatile unsigned long latent_entropy __latent_entropy; 105 EXPORT_SYMBOL(latent_entropy); 106 #endif 107 108 /* 109 * Array of node states. 110 */ 111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 112 [N_POSSIBLE] = NODE_MASK_ALL, 113 [N_ONLINE] = { { [0] = 1UL } }, 114 #ifndef CONFIG_NUMA 115 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 116 #ifdef CONFIG_HIGHMEM 117 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 118 #endif 119 [N_MEMORY] = { { [0] = 1UL } }, 120 [N_CPU] = { { [0] = 1UL } }, 121 #endif /* NUMA */ 122 }; 123 EXPORT_SYMBOL(node_states); 124 125 atomic_long_t _totalram_pages __read_mostly; 126 EXPORT_SYMBOL(_totalram_pages); 127 unsigned long totalreserve_pages __read_mostly; 128 unsigned long totalcma_pages __read_mostly; 129 130 int percpu_pagelist_fraction; 131 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 132 133 /* 134 * A cached value of the page's pageblock's migratetype, used when the page is 135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 136 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 137 * Also the migratetype set in the page does not necessarily match the pcplist 138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 139 * other index - this ensures that it will be put on the correct CMA freelist. 140 */ 141 static inline int get_pcppage_migratetype(struct page *page) 142 { 143 return page->index; 144 } 145 146 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 147 { 148 page->index = migratetype; 149 } 150 151 #ifdef CONFIG_PM_SLEEP 152 /* 153 * The following functions are used by the suspend/hibernate code to temporarily 154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 155 * while devices are suspended. To avoid races with the suspend/hibernate code, 156 * they should always be called with system_transition_mutex held 157 * (gfp_allowed_mask also should only be modified with system_transition_mutex 158 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 159 * with that modification). 160 */ 161 162 static gfp_t saved_gfp_mask; 163 164 void pm_restore_gfp_mask(void) 165 { 166 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 167 if (saved_gfp_mask) { 168 gfp_allowed_mask = saved_gfp_mask; 169 saved_gfp_mask = 0; 170 } 171 } 172 173 void pm_restrict_gfp_mask(void) 174 { 175 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 176 WARN_ON(saved_gfp_mask); 177 saved_gfp_mask = gfp_allowed_mask; 178 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 179 } 180 181 bool pm_suspended_storage(void) 182 { 183 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 184 return false; 185 return true; 186 } 187 #endif /* CONFIG_PM_SLEEP */ 188 189 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 190 unsigned int pageblock_order __read_mostly; 191 #endif 192 193 static void __free_pages_ok(struct page *page, unsigned int order); 194 195 /* 196 * results with 256, 32 in the lowmem_reserve sysctl: 197 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 198 * 1G machine -> (16M dma, 784M normal, 224M high) 199 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 200 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 201 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 202 * 203 * TBD: should special case ZONE_DMA32 machines here - in those we normally 204 * don't need any ZONE_NORMAL reservation 205 */ 206 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 207 #ifdef CONFIG_ZONE_DMA 208 [ZONE_DMA] = 256, 209 #endif 210 #ifdef CONFIG_ZONE_DMA32 211 [ZONE_DMA32] = 256, 212 #endif 213 [ZONE_NORMAL] = 32, 214 #ifdef CONFIG_HIGHMEM 215 [ZONE_HIGHMEM] = 0, 216 #endif 217 [ZONE_MOVABLE] = 0, 218 }; 219 220 EXPORT_SYMBOL(totalram_pages); 221 222 static char * const zone_names[MAX_NR_ZONES] = { 223 #ifdef CONFIG_ZONE_DMA 224 "DMA", 225 #endif 226 #ifdef CONFIG_ZONE_DMA32 227 "DMA32", 228 #endif 229 "Normal", 230 #ifdef CONFIG_HIGHMEM 231 "HighMem", 232 #endif 233 "Movable", 234 #ifdef CONFIG_ZONE_DEVICE 235 "Device", 236 #endif 237 }; 238 239 char * const migratetype_names[MIGRATE_TYPES] = { 240 "Unmovable", 241 "Movable", 242 "Reclaimable", 243 "HighAtomic", 244 #ifdef CONFIG_CMA 245 "CMA", 246 #endif 247 #ifdef CONFIG_MEMORY_ISOLATION 248 "Isolate", 249 #endif 250 }; 251 252 compound_page_dtor * const compound_page_dtors[] = { 253 NULL, 254 free_compound_page, 255 #ifdef CONFIG_HUGETLB_PAGE 256 free_huge_page, 257 #endif 258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 259 free_transhuge_page, 260 #endif 261 }; 262 263 int min_free_kbytes = 1024; 264 int user_min_free_kbytes = -1; 265 int watermark_scale_factor = 10; 266 267 static unsigned long nr_kernel_pages __meminitdata; 268 static unsigned long nr_all_pages __meminitdata; 269 static unsigned long dma_reserve __meminitdata; 270 271 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 272 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata; 273 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata; 274 static unsigned long required_kernelcore __initdata; 275 static unsigned long required_kernelcore_percent __initdata; 276 static unsigned long required_movablecore __initdata; 277 static unsigned long required_movablecore_percent __initdata; 278 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata; 279 static bool mirrored_kernelcore __meminitdata; 280 281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 282 int movable_zone; 283 EXPORT_SYMBOL(movable_zone); 284 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 285 286 #if MAX_NUMNODES > 1 287 int nr_node_ids __read_mostly = MAX_NUMNODES; 288 int nr_online_nodes __read_mostly = 1; 289 EXPORT_SYMBOL(nr_node_ids); 290 EXPORT_SYMBOL(nr_online_nodes); 291 #endif 292 293 int page_group_by_mobility_disabled __read_mostly; 294 295 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 296 /* Returns true if the struct page for the pfn is uninitialised */ 297 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 298 { 299 int nid = early_pfn_to_nid(pfn); 300 301 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 302 return true; 303 304 return false; 305 } 306 307 /* 308 * Returns true when the remaining initialisation should be deferred until 309 * later in the boot cycle when it can be parallelised. 310 */ 311 static bool __meminit 312 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 313 { 314 static unsigned long prev_end_pfn, nr_initialised; 315 316 /* 317 * prev_end_pfn static that contains the end of previous zone 318 * No need to protect because called very early in boot before smp_init. 319 */ 320 if (prev_end_pfn != end_pfn) { 321 prev_end_pfn = end_pfn; 322 nr_initialised = 0; 323 } 324 325 /* Always populate low zones for address-constrained allocations */ 326 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 327 return false; 328 nr_initialised++; 329 if ((nr_initialised > NODE_DATA(nid)->static_init_pgcnt) && 330 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 331 NODE_DATA(nid)->first_deferred_pfn = pfn; 332 return true; 333 } 334 return false; 335 } 336 #else 337 static inline bool early_page_uninitialised(unsigned long pfn) 338 { 339 return false; 340 } 341 342 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 343 { 344 return false; 345 } 346 #endif 347 348 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 349 static inline unsigned long *get_pageblock_bitmap(struct page *page, 350 unsigned long pfn) 351 { 352 #ifdef CONFIG_SPARSEMEM 353 return __pfn_to_section(pfn)->pageblock_flags; 354 #else 355 return page_zone(page)->pageblock_flags; 356 #endif /* CONFIG_SPARSEMEM */ 357 } 358 359 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 360 { 361 #ifdef CONFIG_SPARSEMEM 362 pfn &= (PAGES_PER_SECTION-1); 363 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 364 #else 365 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 366 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 367 #endif /* CONFIG_SPARSEMEM */ 368 } 369 370 /** 371 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 372 * @page: The page within the block of interest 373 * @pfn: The target page frame number 374 * @end_bitidx: The last bit of interest to retrieve 375 * @mask: mask of bits that the caller is interested in 376 * 377 * Return: pageblock_bits flags 378 */ 379 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 380 unsigned long pfn, 381 unsigned long end_bitidx, 382 unsigned long mask) 383 { 384 unsigned long *bitmap; 385 unsigned long bitidx, word_bitidx; 386 unsigned long word; 387 388 bitmap = get_pageblock_bitmap(page, pfn); 389 bitidx = pfn_to_bitidx(page, pfn); 390 word_bitidx = bitidx / BITS_PER_LONG; 391 bitidx &= (BITS_PER_LONG-1); 392 393 word = bitmap[word_bitidx]; 394 bitidx += end_bitidx; 395 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 396 } 397 398 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 399 unsigned long end_bitidx, 400 unsigned long mask) 401 { 402 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 403 } 404 405 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 406 { 407 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 408 } 409 410 /** 411 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 412 * @page: The page within the block of interest 413 * @flags: The flags to set 414 * @pfn: The target page frame number 415 * @end_bitidx: The last bit of interest 416 * @mask: mask of bits that the caller is interested in 417 */ 418 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 419 unsigned long pfn, 420 unsigned long end_bitidx, 421 unsigned long mask) 422 { 423 unsigned long *bitmap; 424 unsigned long bitidx, word_bitidx; 425 unsigned long old_word, word; 426 427 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 428 429 bitmap = get_pageblock_bitmap(page, pfn); 430 bitidx = pfn_to_bitidx(page, pfn); 431 word_bitidx = bitidx / BITS_PER_LONG; 432 bitidx &= (BITS_PER_LONG-1); 433 434 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 435 436 bitidx += end_bitidx; 437 mask <<= (BITS_PER_LONG - bitidx - 1); 438 flags <<= (BITS_PER_LONG - bitidx - 1); 439 440 word = READ_ONCE(bitmap[word_bitidx]); 441 for (;;) { 442 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 443 if (word == old_word) 444 break; 445 word = old_word; 446 } 447 } 448 449 void set_pageblock_migratetype(struct page *page, int migratetype) 450 { 451 if (unlikely(page_group_by_mobility_disabled && 452 migratetype < MIGRATE_PCPTYPES)) 453 migratetype = MIGRATE_UNMOVABLE; 454 455 set_pageblock_flags_group(page, (unsigned long)migratetype, 456 PB_migrate, PB_migrate_end); 457 } 458 459 #ifdef CONFIG_DEBUG_VM 460 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 461 { 462 int ret = 0; 463 unsigned seq; 464 unsigned long pfn = page_to_pfn(page); 465 unsigned long sp, start_pfn; 466 467 do { 468 seq = zone_span_seqbegin(zone); 469 start_pfn = zone->zone_start_pfn; 470 sp = zone->spanned_pages; 471 if (!zone_spans_pfn(zone, pfn)) 472 ret = 1; 473 } while (zone_span_seqretry(zone, seq)); 474 475 if (ret) 476 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 477 pfn, zone_to_nid(zone), zone->name, 478 start_pfn, start_pfn + sp); 479 480 return ret; 481 } 482 483 static int page_is_consistent(struct zone *zone, struct page *page) 484 { 485 if (!pfn_valid_within(page_to_pfn(page))) 486 return 0; 487 if (zone != page_zone(page)) 488 return 0; 489 490 return 1; 491 } 492 /* 493 * Temporary debugging check for pages not lying within a given zone. 494 */ 495 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 496 { 497 if (page_outside_zone_boundaries(zone, page)) 498 return 1; 499 if (!page_is_consistent(zone, page)) 500 return 1; 501 502 return 0; 503 } 504 #else 505 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 506 { 507 return 0; 508 } 509 #endif 510 511 static void bad_page(struct page *page, const char *reason, 512 unsigned long bad_flags) 513 { 514 static unsigned long resume; 515 static unsigned long nr_shown; 516 static unsigned long nr_unshown; 517 518 /* 519 * Allow a burst of 60 reports, then keep quiet for that minute; 520 * or allow a steady drip of one report per second. 521 */ 522 if (nr_shown == 60) { 523 if (time_before(jiffies, resume)) { 524 nr_unshown++; 525 goto out; 526 } 527 if (nr_unshown) { 528 pr_alert( 529 "BUG: Bad page state: %lu messages suppressed\n", 530 nr_unshown); 531 nr_unshown = 0; 532 } 533 nr_shown = 0; 534 } 535 if (nr_shown++ == 0) 536 resume = jiffies + 60 * HZ; 537 538 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 539 current->comm, page_to_pfn(page)); 540 __dump_page(page, reason); 541 bad_flags &= page->flags; 542 if (bad_flags) 543 pr_alert("bad because of flags: %#lx(%pGp)\n", 544 bad_flags, &bad_flags); 545 dump_page_owner(page); 546 547 print_modules(); 548 dump_stack(); 549 out: 550 /* Leave bad fields for debug, except PageBuddy could make trouble */ 551 page_mapcount_reset(page); /* remove PageBuddy */ 552 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 553 } 554 555 /* 556 * Higher-order pages are called "compound pages". They are structured thusly: 557 * 558 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 559 * 560 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 561 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 562 * 563 * The first tail page's ->compound_dtor holds the offset in array of compound 564 * page destructors. See compound_page_dtors. 565 * 566 * The first tail page's ->compound_order holds the order of allocation. 567 * This usage means that zero-order pages may not be compound. 568 */ 569 570 void free_compound_page(struct page *page) 571 { 572 __free_pages_ok(page, compound_order(page)); 573 } 574 575 void prep_compound_page(struct page *page, unsigned int order) 576 { 577 int i; 578 int nr_pages = 1 << order; 579 580 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 581 set_compound_order(page, order); 582 __SetPageHead(page); 583 for (i = 1; i < nr_pages; i++) { 584 struct page *p = page + i; 585 set_page_count(p, 0); 586 p->mapping = TAIL_MAPPING; 587 set_compound_head(p, page); 588 } 589 atomic_set(compound_mapcount_ptr(page), -1); 590 } 591 592 #ifdef CONFIG_DEBUG_PAGEALLOC 593 unsigned int _debug_guardpage_minorder; 594 bool _debug_pagealloc_enabled __read_mostly 595 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 596 EXPORT_SYMBOL(_debug_pagealloc_enabled); 597 bool _debug_guardpage_enabled __read_mostly; 598 599 static int __init early_debug_pagealloc(char *buf) 600 { 601 if (!buf) 602 return -EINVAL; 603 return kstrtobool(buf, &_debug_pagealloc_enabled); 604 } 605 early_param("debug_pagealloc", early_debug_pagealloc); 606 607 static bool need_debug_guardpage(void) 608 { 609 /* If we don't use debug_pagealloc, we don't need guard page */ 610 if (!debug_pagealloc_enabled()) 611 return false; 612 613 if (!debug_guardpage_minorder()) 614 return false; 615 616 return true; 617 } 618 619 static void init_debug_guardpage(void) 620 { 621 if (!debug_pagealloc_enabled()) 622 return; 623 624 if (!debug_guardpage_minorder()) 625 return; 626 627 _debug_guardpage_enabled = true; 628 } 629 630 struct page_ext_operations debug_guardpage_ops = { 631 .need = need_debug_guardpage, 632 .init = init_debug_guardpage, 633 }; 634 635 static int __init debug_guardpage_minorder_setup(char *buf) 636 { 637 unsigned long res; 638 639 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 640 pr_err("Bad debug_guardpage_minorder value\n"); 641 return 0; 642 } 643 _debug_guardpage_minorder = res; 644 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 645 return 0; 646 } 647 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 648 649 static inline bool set_page_guard(struct zone *zone, struct page *page, 650 unsigned int order, int migratetype) 651 { 652 struct page_ext *page_ext; 653 654 if (!debug_guardpage_enabled()) 655 return false; 656 657 if (order >= debug_guardpage_minorder()) 658 return false; 659 660 page_ext = lookup_page_ext(page); 661 if (unlikely(!page_ext)) 662 return false; 663 664 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 665 666 INIT_LIST_HEAD(&page->lru); 667 set_page_private(page, order); 668 /* Guard pages are not available for any usage */ 669 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 670 671 return true; 672 } 673 674 static inline void clear_page_guard(struct zone *zone, struct page *page, 675 unsigned int order, int migratetype) 676 { 677 struct page_ext *page_ext; 678 679 if (!debug_guardpage_enabled()) 680 return; 681 682 page_ext = lookup_page_ext(page); 683 if (unlikely(!page_ext)) 684 return; 685 686 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 687 688 set_page_private(page, 0); 689 if (!is_migrate_isolate(migratetype)) 690 __mod_zone_freepage_state(zone, (1 << order), migratetype); 691 } 692 #else 693 struct page_ext_operations debug_guardpage_ops; 694 static inline bool set_page_guard(struct zone *zone, struct page *page, 695 unsigned int order, int migratetype) { return false; } 696 static inline void clear_page_guard(struct zone *zone, struct page *page, 697 unsigned int order, int migratetype) {} 698 #endif 699 700 static inline void set_page_order(struct page *page, unsigned int order) 701 { 702 set_page_private(page, order); 703 __SetPageBuddy(page); 704 } 705 706 static inline void rmv_page_order(struct page *page) 707 { 708 __ClearPageBuddy(page); 709 set_page_private(page, 0); 710 } 711 712 /* 713 * This function checks whether a page is free && is the buddy 714 * we can coalesce a page and its buddy if 715 * (a) the buddy is not in a hole (check before calling!) && 716 * (b) the buddy is in the buddy system && 717 * (c) a page and its buddy have the same order && 718 * (d) a page and its buddy are in the same zone. 719 * 720 * For recording whether a page is in the buddy system, we set PageBuddy. 721 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 722 * 723 * For recording page's order, we use page_private(page). 724 */ 725 static inline int page_is_buddy(struct page *page, struct page *buddy, 726 unsigned int order) 727 { 728 if (page_is_guard(buddy) && page_order(buddy) == order) { 729 if (page_zone_id(page) != page_zone_id(buddy)) 730 return 0; 731 732 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 733 734 return 1; 735 } 736 737 if (PageBuddy(buddy) && page_order(buddy) == order) { 738 /* 739 * zone check is done late to avoid uselessly 740 * calculating zone/node ids for pages that could 741 * never merge. 742 */ 743 if (page_zone_id(page) != page_zone_id(buddy)) 744 return 0; 745 746 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 747 748 return 1; 749 } 750 return 0; 751 } 752 753 /* 754 * Freeing function for a buddy system allocator. 755 * 756 * The concept of a buddy system is to maintain direct-mapped table 757 * (containing bit values) for memory blocks of various "orders". 758 * The bottom level table contains the map for the smallest allocatable 759 * units of memory (here, pages), and each level above it describes 760 * pairs of units from the levels below, hence, "buddies". 761 * At a high level, all that happens here is marking the table entry 762 * at the bottom level available, and propagating the changes upward 763 * as necessary, plus some accounting needed to play nicely with other 764 * parts of the VM system. 765 * At each level, we keep a list of pages, which are heads of continuous 766 * free pages of length of (1 << order) and marked with PageBuddy. 767 * Page's order is recorded in page_private(page) field. 768 * So when we are allocating or freeing one, we can derive the state of the 769 * other. That is, if we allocate a small block, and both were 770 * free, the remainder of the region must be split into blocks. 771 * If a block is freed, and its buddy is also free, then this 772 * triggers coalescing into a block of larger size. 773 * 774 * -- nyc 775 */ 776 777 static inline void __free_one_page(struct page *page, 778 unsigned long pfn, 779 struct zone *zone, unsigned int order, 780 int migratetype) 781 { 782 unsigned long combined_pfn; 783 unsigned long uninitialized_var(buddy_pfn); 784 struct page *buddy; 785 unsigned int max_order; 786 787 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 788 789 VM_BUG_ON(!zone_is_initialized(zone)); 790 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 791 792 VM_BUG_ON(migratetype == -1); 793 if (likely(!is_migrate_isolate(migratetype))) 794 __mod_zone_freepage_state(zone, 1 << order, migratetype); 795 796 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 797 VM_BUG_ON_PAGE(bad_range(zone, page), page); 798 799 continue_merging: 800 while (order < max_order - 1) { 801 buddy_pfn = __find_buddy_pfn(pfn, order); 802 buddy = page + (buddy_pfn - pfn); 803 804 if (!pfn_valid_within(buddy_pfn)) 805 goto done_merging; 806 if (!page_is_buddy(page, buddy, order)) 807 goto done_merging; 808 /* 809 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 810 * merge with it and move up one order. 811 */ 812 if (page_is_guard(buddy)) { 813 clear_page_guard(zone, buddy, order, migratetype); 814 } else { 815 list_del(&buddy->lru); 816 zone->free_area[order].nr_free--; 817 rmv_page_order(buddy); 818 } 819 combined_pfn = buddy_pfn & pfn; 820 page = page + (combined_pfn - pfn); 821 pfn = combined_pfn; 822 order++; 823 } 824 if (max_order < MAX_ORDER) { 825 /* If we are here, it means order is >= pageblock_order. 826 * We want to prevent merge between freepages on isolate 827 * pageblock and normal pageblock. Without this, pageblock 828 * isolation could cause incorrect freepage or CMA accounting. 829 * 830 * We don't want to hit this code for the more frequent 831 * low-order merging. 832 */ 833 if (unlikely(has_isolate_pageblock(zone))) { 834 int buddy_mt; 835 836 buddy_pfn = __find_buddy_pfn(pfn, order); 837 buddy = page + (buddy_pfn - pfn); 838 buddy_mt = get_pageblock_migratetype(buddy); 839 840 if (migratetype != buddy_mt 841 && (is_migrate_isolate(migratetype) || 842 is_migrate_isolate(buddy_mt))) 843 goto done_merging; 844 } 845 max_order++; 846 goto continue_merging; 847 } 848 849 done_merging: 850 set_page_order(page, order); 851 852 /* 853 * If this is not the largest possible page, check if the buddy 854 * of the next-highest order is free. If it is, it's possible 855 * that pages are being freed that will coalesce soon. In case, 856 * that is happening, add the free page to the tail of the list 857 * so it's less likely to be used soon and more likely to be merged 858 * as a higher order page 859 */ 860 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 861 struct page *higher_page, *higher_buddy; 862 combined_pfn = buddy_pfn & pfn; 863 higher_page = page + (combined_pfn - pfn); 864 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 865 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 866 if (pfn_valid_within(buddy_pfn) && 867 page_is_buddy(higher_page, higher_buddy, order + 1)) { 868 list_add_tail(&page->lru, 869 &zone->free_area[order].free_list[migratetype]); 870 goto out; 871 } 872 } 873 874 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 875 out: 876 zone->free_area[order].nr_free++; 877 } 878 879 /* 880 * A bad page could be due to a number of fields. Instead of multiple branches, 881 * try and check multiple fields with one check. The caller must do a detailed 882 * check if necessary. 883 */ 884 static inline bool page_expected_state(struct page *page, 885 unsigned long check_flags) 886 { 887 if (unlikely(atomic_read(&page->_mapcount) != -1)) 888 return false; 889 890 if (unlikely((unsigned long)page->mapping | 891 page_ref_count(page) | 892 #ifdef CONFIG_MEMCG 893 (unsigned long)page->mem_cgroup | 894 #endif 895 (page->flags & check_flags))) 896 return false; 897 898 return true; 899 } 900 901 static void free_pages_check_bad(struct page *page) 902 { 903 const char *bad_reason; 904 unsigned long bad_flags; 905 906 bad_reason = NULL; 907 bad_flags = 0; 908 909 if (unlikely(atomic_read(&page->_mapcount) != -1)) 910 bad_reason = "nonzero mapcount"; 911 if (unlikely(page->mapping != NULL)) 912 bad_reason = "non-NULL mapping"; 913 if (unlikely(page_ref_count(page) != 0)) 914 bad_reason = "nonzero _refcount"; 915 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 916 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 917 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 918 } 919 #ifdef CONFIG_MEMCG 920 if (unlikely(page->mem_cgroup)) 921 bad_reason = "page still charged to cgroup"; 922 #endif 923 bad_page(page, bad_reason, bad_flags); 924 } 925 926 static inline int free_pages_check(struct page *page) 927 { 928 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 929 return 0; 930 931 /* Something has gone sideways, find it */ 932 free_pages_check_bad(page); 933 return 1; 934 } 935 936 static int free_tail_pages_check(struct page *head_page, struct page *page) 937 { 938 int ret = 1; 939 940 /* 941 * We rely page->lru.next never has bit 0 set, unless the page 942 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 943 */ 944 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 945 946 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 947 ret = 0; 948 goto out; 949 } 950 switch (page - head_page) { 951 case 1: 952 /* the first tail page: ->mapping may be compound_mapcount() */ 953 if (unlikely(compound_mapcount(page))) { 954 bad_page(page, "nonzero compound_mapcount", 0); 955 goto out; 956 } 957 break; 958 case 2: 959 /* 960 * the second tail page: ->mapping is 961 * deferred_list.next -- ignore value. 962 */ 963 break; 964 default: 965 if (page->mapping != TAIL_MAPPING) { 966 bad_page(page, "corrupted mapping in tail page", 0); 967 goto out; 968 } 969 break; 970 } 971 if (unlikely(!PageTail(page))) { 972 bad_page(page, "PageTail not set", 0); 973 goto out; 974 } 975 if (unlikely(compound_head(page) != head_page)) { 976 bad_page(page, "compound_head not consistent", 0); 977 goto out; 978 } 979 ret = 0; 980 out: 981 page->mapping = NULL; 982 clear_compound_head(page); 983 return ret; 984 } 985 986 static __always_inline bool free_pages_prepare(struct page *page, 987 unsigned int order, bool check_free) 988 { 989 int bad = 0; 990 991 VM_BUG_ON_PAGE(PageTail(page), page); 992 993 trace_mm_page_free(page, order); 994 995 /* 996 * Check tail pages before head page information is cleared to 997 * avoid checking PageCompound for order-0 pages. 998 */ 999 if (unlikely(order)) { 1000 bool compound = PageCompound(page); 1001 int i; 1002 1003 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1004 1005 if (compound) 1006 ClearPageDoubleMap(page); 1007 for (i = 1; i < (1 << order); i++) { 1008 if (compound) 1009 bad += free_tail_pages_check(page, page + i); 1010 if (unlikely(free_pages_check(page + i))) { 1011 bad++; 1012 continue; 1013 } 1014 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1015 } 1016 } 1017 if (PageMappingFlags(page)) 1018 page->mapping = NULL; 1019 if (memcg_kmem_enabled() && PageKmemcg(page)) 1020 memcg_kmem_uncharge(page, order); 1021 if (check_free) 1022 bad += free_pages_check(page); 1023 if (bad) 1024 return false; 1025 1026 page_cpupid_reset_last(page); 1027 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1028 reset_page_owner(page, order); 1029 1030 if (!PageHighMem(page)) { 1031 debug_check_no_locks_freed(page_address(page), 1032 PAGE_SIZE << order); 1033 debug_check_no_obj_freed(page_address(page), 1034 PAGE_SIZE << order); 1035 } 1036 arch_free_page(page, order); 1037 kernel_poison_pages(page, 1 << order, 0); 1038 kernel_map_pages(page, 1 << order, 0); 1039 kasan_free_pages(page, order); 1040 1041 return true; 1042 } 1043 1044 #ifdef CONFIG_DEBUG_VM 1045 static inline bool free_pcp_prepare(struct page *page) 1046 { 1047 return free_pages_prepare(page, 0, true); 1048 } 1049 1050 static inline bool bulkfree_pcp_prepare(struct page *page) 1051 { 1052 return false; 1053 } 1054 #else 1055 static bool free_pcp_prepare(struct page *page) 1056 { 1057 return free_pages_prepare(page, 0, false); 1058 } 1059 1060 static bool bulkfree_pcp_prepare(struct page *page) 1061 { 1062 return free_pages_check(page); 1063 } 1064 #endif /* CONFIG_DEBUG_VM */ 1065 1066 static inline void prefetch_buddy(struct page *page) 1067 { 1068 unsigned long pfn = page_to_pfn(page); 1069 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1070 struct page *buddy = page + (buddy_pfn - pfn); 1071 1072 prefetch(buddy); 1073 } 1074 1075 /* 1076 * Frees a number of pages from the PCP lists 1077 * Assumes all pages on list are in same zone, and of same order. 1078 * count is the number of pages to free. 1079 * 1080 * If the zone was previously in an "all pages pinned" state then look to 1081 * see if this freeing clears that state. 1082 * 1083 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1084 * pinned" detection logic. 1085 */ 1086 static void free_pcppages_bulk(struct zone *zone, int count, 1087 struct per_cpu_pages *pcp) 1088 { 1089 int migratetype = 0; 1090 int batch_free = 0; 1091 int prefetch_nr = 0; 1092 bool isolated_pageblocks; 1093 struct page *page, *tmp; 1094 LIST_HEAD(head); 1095 1096 while (count) { 1097 struct list_head *list; 1098 1099 /* 1100 * Remove pages from lists in a round-robin fashion. A 1101 * batch_free count is maintained that is incremented when an 1102 * empty list is encountered. This is so more pages are freed 1103 * off fuller lists instead of spinning excessively around empty 1104 * lists 1105 */ 1106 do { 1107 batch_free++; 1108 if (++migratetype == MIGRATE_PCPTYPES) 1109 migratetype = 0; 1110 list = &pcp->lists[migratetype]; 1111 } while (list_empty(list)); 1112 1113 /* This is the only non-empty list. Free them all. */ 1114 if (batch_free == MIGRATE_PCPTYPES) 1115 batch_free = count; 1116 1117 do { 1118 page = list_last_entry(list, struct page, lru); 1119 /* must delete to avoid corrupting pcp list */ 1120 list_del(&page->lru); 1121 pcp->count--; 1122 1123 if (bulkfree_pcp_prepare(page)) 1124 continue; 1125 1126 list_add_tail(&page->lru, &head); 1127 1128 /* 1129 * We are going to put the page back to the global 1130 * pool, prefetch its buddy to speed up later access 1131 * under zone->lock. It is believed the overhead of 1132 * an additional test and calculating buddy_pfn here 1133 * can be offset by reduced memory latency later. To 1134 * avoid excessive prefetching due to large count, only 1135 * prefetch buddy for the first pcp->batch nr of pages. 1136 */ 1137 if (prefetch_nr++ < pcp->batch) 1138 prefetch_buddy(page); 1139 } while (--count && --batch_free && !list_empty(list)); 1140 } 1141 1142 spin_lock(&zone->lock); 1143 isolated_pageblocks = has_isolate_pageblock(zone); 1144 1145 /* 1146 * Use safe version since after __free_one_page(), 1147 * page->lru.next will not point to original list. 1148 */ 1149 list_for_each_entry_safe(page, tmp, &head, lru) { 1150 int mt = get_pcppage_migratetype(page); 1151 /* MIGRATE_ISOLATE page should not go to pcplists */ 1152 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1153 /* Pageblock could have been isolated meanwhile */ 1154 if (unlikely(isolated_pageblocks)) 1155 mt = get_pageblock_migratetype(page); 1156 1157 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1158 trace_mm_page_pcpu_drain(page, 0, mt); 1159 } 1160 spin_unlock(&zone->lock); 1161 } 1162 1163 static void free_one_page(struct zone *zone, 1164 struct page *page, unsigned long pfn, 1165 unsigned int order, 1166 int migratetype) 1167 { 1168 spin_lock(&zone->lock); 1169 if (unlikely(has_isolate_pageblock(zone) || 1170 is_migrate_isolate(migratetype))) { 1171 migratetype = get_pfnblock_migratetype(page, pfn); 1172 } 1173 __free_one_page(page, pfn, zone, order, migratetype); 1174 spin_unlock(&zone->lock); 1175 } 1176 1177 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1178 unsigned long zone, int nid) 1179 { 1180 mm_zero_struct_page(page); 1181 set_page_links(page, zone, nid, pfn); 1182 init_page_count(page); 1183 page_mapcount_reset(page); 1184 page_cpupid_reset_last(page); 1185 page_kasan_tag_reset(page); 1186 1187 INIT_LIST_HEAD(&page->lru); 1188 #ifdef WANT_PAGE_VIRTUAL 1189 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1190 if (!is_highmem_idx(zone)) 1191 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1192 #endif 1193 } 1194 1195 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1196 static void __meminit init_reserved_page(unsigned long pfn) 1197 { 1198 pg_data_t *pgdat; 1199 int nid, zid; 1200 1201 if (!early_page_uninitialised(pfn)) 1202 return; 1203 1204 nid = early_pfn_to_nid(pfn); 1205 pgdat = NODE_DATA(nid); 1206 1207 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1208 struct zone *zone = &pgdat->node_zones[zid]; 1209 1210 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1211 break; 1212 } 1213 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1214 } 1215 #else 1216 static inline void init_reserved_page(unsigned long pfn) 1217 { 1218 } 1219 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1220 1221 /* 1222 * Initialised pages do not have PageReserved set. This function is 1223 * called for each range allocated by the bootmem allocator and 1224 * marks the pages PageReserved. The remaining valid pages are later 1225 * sent to the buddy page allocator. 1226 */ 1227 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1228 { 1229 unsigned long start_pfn = PFN_DOWN(start); 1230 unsigned long end_pfn = PFN_UP(end); 1231 1232 for (; start_pfn < end_pfn; start_pfn++) { 1233 if (pfn_valid(start_pfn)) { 1234 struct page *page = pfn_to_page(start_pfn); 1235 1236 init_reserved_page(start_pfn); 1237 1238 /* Avoid false-positive PageTail() */ 1239 INIT_LIST_HEAD(&page->lru); 1240 1241 /* 1242 * no need for atomic set_bit because the struct 1243 * page is not visible yet so nobody should 1244 * access it yet. 1245 */ 1246 __SetPageReserved(page); 1247 } 1248 } 1249 } 1250 1251 static void __free_pages_ok(struct page *page, unsigned int order) 1252 { 1253 unsigned long flags; 1254 int migratetype; 1255 unsigned long pfn = page_to_pfn(page); 1256 1257 if (!free_pages_prepare(page, order, true)) 1258 return; 1259 1260 migratetype = get_pfnblock_migratetype(page, pfn); 1261 local_irq_save(flags); 1262 __count_vm_events(PGFREE, 1 << order); 1263 free_one_page(page_zone(page), page, pfn, order, migratetype); 1264 local_irq_restore(flags); 1265 } 1266 1267 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1268 { 1269 unsigned int nr_pages = 1 << order; 1270 struct page *p = page; 1271 unsigned int loop; 1272 1273 prefetchw(p); 1274 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1275 prefetchw(p + 1); 1276 __ClearPageReserved(p); 1277 set_page_count(p, 0); 1278 } 1279 __ClearPageReserved(p); 1280 set_page_count(p, 0); 1281 1282 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1283 set_page_refcounted(page); 1284 __free_pages(page, order); 1285 } 1286 1287 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1288 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1289 1290 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1291 1292 int __meminit early_pfn_to_nid(unsigned long pfn) 1293 { 1294 static DEFINE_SPINLOCK(early_pfn_lock); 1295 int nid; 1296 1297 spin_lock(&early_pfn_lock); 1298 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1299 if (nid < 0) 1300 nid = first_online_node; 1301 spin_unlock(&early_pfn_lock); 1302 1303 return nid; 1304 } 1305 #endif 1306 1307 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1308 static inline bool __meminit __maybe_unused 1309 meminit_pfn_in_nid(unsigned long pfn, int node, 1310 struct mminit_pfnnid_cache *state) 1311 { 1312 int nid; 1313 1314 nid = __early_pfn_to_nid(pfn, state); 1315 if (nid >= 0 && nid != node) 1316 return false; 1317 return true; 1318 } 1319 1320 /* Only safe to use early in boot when initialisation is single-threaded */ 1321 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1322 { 1323 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1324 } 1325 1326 #else 1327 1328 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1329 { 1330 return true; 1331 } 1332 static inline bool __meminit __maybe_unused 1333 meminit_pfn_in_nid(unsigned long pfn, int node, 1334 struct mminit_pfnnid_cache *state) 1335 { 1336 return true; 1337 } 1338 #endif 1339 1340 1341 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1342 unsigned int order) 1343 { 1344 if (early_page_uninitialised(pfn)) 1345 return; 1346 return __free_pages_boot_core(page, order); 1347 } 1348 1349 /* 1350 * Check that the whole (or subset of) a pageblock given by the interval of 1351 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1352 * with the migration of free compaction scanner. The scanners then need to 1353 * use only pfn_valid_within() check for arches that allow holes within 1354 * pageblocks. 1355 * 1356 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1357 * 1358 * It's possible on some configurations to have a setup like node0 node1 node0 1359 * i.e. it's possible that all pages within a zones range of pages do not 1360 * belong to a single zone. We assume that a border between node0 and node1 1361 * can occur within a single pageblock, but not a node0 node1 node0 1362 * interleaving within a single pageblock. It is therefore sufficient to check 1363 * the first and last page of a pageblock and avoid checking each individual 1364 * page in a pageblock. 1365 */ 1366 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1367 unsigned long end_pfn, struct zone *zone) 1368 { 1369 struct page *start_page; 1370 struct page *end_page; 1371 1372 /* end_pfn is one past the range we are checking */ 1373 end_pfn--; 1374 1375 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1376 return NULL; 1377 1378 start_page = pfn_to_online_page(start_pfn); 1379 if (!start_page) 1380 return NULL; 1381 1382 if (page_zone(start_page) != zone) 1383 return NULL; 1384 1385 end_page = pfn_to_page(end_pfn); 1386 1387 /* This gives a shorter code than deriving page_zone(end_page) */ 1388 if (page_zone_id(start_page) != page_zone_id(end_page)) 1389 return NULL; 1390 1391 return start_page; 1392 } 1393 1394 void set_zone_contiguous(struct zone *zone) 1395 { 1396 unsigned long block_start_pfn = zone->zone_start_pfn; 1397 unsigned long block_end_pfn; 1398 1399 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1400 for (; block_start_pfn < zone_end_pfn(zone); 1401 block_start_pfn = block_end_pfn, 1402 block_end_pfn += pageblock_nr_pages) { 1403 1404 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1405 1406 if (!__pageblock_pfn_to_page(block_start_pfn, 1407 block_end_pfn, zone)) 1408 return; 1409 } 1410 1411 /* We confirm that there is no hole */ 1412 zone->contiguous = true; 1413 } 1414 1415 void clear_zone_contiguous(struct zone *zone) 1416 { 1417 zone->contiguous = false; 1418 } 1419 1420 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1421 static void __init deferred_free_range(unsigned long pfn, 1422 unsigned long nr_pages) 1423 { 1424 struct page *page; 1425 unsigned long i; 1426 1427 if (!nr_pages) 1428 return; 1429 1430 page = pfn_to_page(pfn); 1431 1432 /* Free a large naturally-aligned chunk if possible */ 1433 if (nr_pages == pageblock_nr_pages && 1434 (pfn & (pageblock_nr_pages - 1)) == 0) { 1435 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1436 __free_pages_boot_core(page, pageblock_order); 1437 return; 1438 } 1439 1440 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1441 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1442 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1443 __free_pages_boot_core(page, 0); 1444 } 1445 } 1446 1447 /* Completion tracking for deferred_init_memmap() threads */ 1448 static atomic_t pgdat_init_n_undone __initdata; 1449 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1450 1451 static inline void __init pgdat_init_report_one_done(void) 1452 { 1453 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1454 complete(&pgdat_init_all_done_comp); 1455 } 1456 1457 /* 1458 * Returns true if page needs to be initialized or freed to buddy allocator. 1459 * 1460 * First we check if pfn is valid on architectures where it is possible to have 1461 * holes within pageblock_nr_pages. On systems where it is not possible, this 1462 * function is optimized out. 1463 * 1464 * Then, we check if a current large page is valid by only checking the validity 1465 * of the head pfn. 1466 * 1467 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave 1468 * within a node: a pfn is between start and end of a node, but does not belong 1469 * to this memory node. 1470 */ 1471 static inline bool __init 1472 deferred_pfn_valid(int nid, unsigned long pfn, 1473 struct mminit_pfnnid_cache *nid_init_state) 1474 { 1475 if (!pfn_valid_within(pfn)) 1476 return false; 1477 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1478 return false; 1479 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state)) 1480 return false; 1481 return true; 1482 } 1483 1484 /* 1485 * Free pages to buddy allocator. Try to free aligned pages in 1486 * pageblock_nr_pages sizes. 1487 */ 1488 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn, 1489 unsigned long end_pfn) 1490 { 1491 struct mminit_pfnnid_cache nid_init_state = { }; 1492 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1493 unsigned long nr_free = 0; 1494 1495 for (; pfn < end_pfn; pfn++) { 1496 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1497 deferred_free_range(pfn - nr_free, nr_free); 1498 nr_free = 0; 1499 } else if (!(pfn & nr_pgmask)) { 1500 deferred_free_range(pfn - nr_free, nr_free); 1501 nr_free = 1; 1502 touch_nmi_watchdog(); 1503 } else { 1504 nr_free++; 1505 } 1506 } 1507 /* Free the last block of pages to allocator */ 1508 deferred_free_range(pfn - nr_free, nr_free); 1509 } 1510 1511 /* 1512 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1513 * by performing it only once every pageblock_nr_pages. 1514 * Return number of pages initialized. 1515 */ 1516 static unsigned long __init deferred_init_pages(int nid, int zid, 1517 unsigned long pfn, 1518 unsigned long end_pfn) 1519 { 1520 struct mminit_pfnnid_cache nid_init_state = { }; 1521 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1522 unsigned long nr_pages = 0; 1523 struct page *page = NULL; 1524 1525 for (; pfn < end_pfn; pfn++) { 1526 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1527 page = NULL; 1528 continue; 1529 } else if (!page || !(pfn & nr_pgmask)) { 1530 page = pfn_to_page(pfn); 1531 touch_nmi_watchdog(); 1532 } else { 1533 page++; 1534 } 1535 __init_single_page(page, pfn, zid, nid); 1536 nr_pages++; 1537 } 1538 return (nr_pages); 1539 } 1540 1541 /* Initialise remaining memory on a node */ 1542 static int __init deferred_init_memmap(void *data) 1543 { 1544 pg_data_t *pgdat = data; 1545 int nid = pgdat->node_id; 1546 unsigned long start = jiffies; 1547 unsigned long nr_pages = 0; 1548 unsigned long spfn, epfn, first_init_pfn, flags; 1549 phys_addr_t spa, epa; 1550 int zid; 1551 struct zone *zone; 1552 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1553 u64 i; 1554 1555 /* Bind memory initialisation thread to a local node if possible */ 1556 if (!cpumask_empty(cpumask)) 1557 set_cpus_allowed_ptr(current, cpumask); 1558 1559 pgdat_resize_lock(pgdat, &flags); 1560 first_init_pfn = pgdat->first_deferred_pfn; 1561 if (first_init_pfn == ULONG_MAX) { 1562 pgdat_resize_unlock(pgdat, &flags); 1563 pgdat_init_report_one_done(); 1564 return 0; 1565 } 1566 1567 /* Sanity check boundaries */ 1568 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1569 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1570 pgdat->first_deferred_pfn = ULONG_MAX; 1571 1572 /* Only the highest zone is deferred so find it */ 1573 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1574 zone = pgdat->node_zones + zid; 1575 if (first_init_pfn < zone_end_pfn(zone)) 1576 break; 1577 } 1578 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn); 1579 1580 /* 1581 * Initialize and free pages. We do it in two loops: first we initialize 1582 * struct page, than free to buddy allocator, because while we are 1583 * freeing pages we can access pages that are ahead (computing buddy 1584 * page in __free_one_page()). 1585 */ 1586 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1587 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1588 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1589 nr_pages += deferred_init_pages(nid, zid, spfn, epfn); 1590 } 1591 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1592 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1593 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1594 deferred_free_pages(nid, zid, spfn, epfn); 1595 } 1596 pgdat_resize_unlock(pgdat, &flags); 1597 1598 /* Sanity check that the next zone really is unpopulated */ 1599 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1600 1601 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1602 jiffies_to_msecs(jiffies - start)); 1603 1604 pgdat_init_report_one_done(); 1605 return 0; 1606 } 1607 1608 /* 1609 * During boot we initialize deferred pages on-demand, as needed, but once 1610 * page_alloc_init_late() has finished, the deferred pages are all initialized, 1611 * and we can permanently disable that path. 1612 */ 1613 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 1614 1615 /* 1616 * If this zone has deferred pages, try to grow it by initializing enough 1617 * deferred pages to satisfy the allocation specified by order, rounded up to 1618 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1619 * of SECTION_SIZE bytes by initializing struct pages in increments of 1620 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1621 * 1622 * Return true when zone was grown, otherwise return false. We return true even 1623 * when we grow less than requested, to let the caller decide if there are 1624 * enough pages to satisfy the allocation. 1625 * 1626 * Note: We use noinline because this function is needed only during boot, and 1627 * it is called from a __ref function _deferred_grow_zone. This way we are 1628 * making sure that it is not inlined into permanent text section. 1629 */ 1630 static noinline bool __init 1631 deferred_grow_zone(struct zone *zone, unsigned int order) 1632 { 1633 int zid = zone_idx(zone); 1634 int nid = zone_to_nid(zone); 1635 pg_data_t *pgdat = NODE_DATA(nid); 1636 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1637 unsigned long nr_pages = 0; 1638 unsigned long first_init_pfn, spfn, epfn, t, flags; 1639 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1640 phys_addr_t spa, epa; 1641 u64 i; 1642 1643 /* Only the last zone may have deferred pages */ 1644 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1645 return false; 1646 1647 pgdat_resize_lock(pgdat, &flags); 1648 1649 /* 1650 * If deferred pages have been initialized while we were waiting for 1651 * the lock, return true, as the zone was grown. The caller will retry 1652 * this zone. We won't return to this function since the caller also 1653 * has this static branch. 1654 */ 1655 if (!static_branch_unlikely(&deferred_pages)) { 1656 pgdat_resize_unlock(pgdat, &flags); 1657 return true; 1658 } 1659 1660 /* 1661 * If someone grew this zone while we were waiting for spinlock, return 1662 * true, as there might be enough pages already. 1663 */ 1664 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1665 pgdat_resize_unlock(pgdat, &flags); 1666 return true; 1667 } 1668 1669 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn); 1670 1671 if (first_init_pfn >= pgdat_end_pfn(pgdat)) { 1672 pgdat_resize_unlock(pgdat, &flags); 1673 return false; 1674 } 1675 1676 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1677 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1678 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1679 1680 while (spfn < epfn && nr_pages < nr_pages_needed) { 1681 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION); 1682 first_deferred_pfn = min(t, epfn); 1683 nr_pages += deferred_init_pages(nid, zid, spfn, 1684 first_deferred_pfn); 1685 spfn = first_deferred_pfn; 1686 } 1687 1688 if (nr_pages >= nr_pages_needed) 1689 break; 1690 } 1691 1692 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1693 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1694 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa)); 1695 deferred_free_pages(nid, zid, spfn, epfn); 1696 1697 if (first_deferred_pfn == epfn) 1698 break; 1699 } 1700 pgdat->first_deferred_pfn = first_deferred_pfn; 1701 pgdat_resize_unlock(pgdat, &flags); 1702 1703 return nr_pages > 0; 1704 } 1705 1706 /* 1707 * deferred_grow_zone() is __init, but it is called from 1708 * get_page_from_freelist() during early boot until deferred_pages permanently 1709 * disables this call. This is why we have refdata wrapper to avoid warning, 1710 * and to ensure that the function body gets unloaded. 1711 */ 1712 static bool __ref 1713 _deferred_grow_zone(struct zone *zone, unsigned int order) 1714 { 1715 return deferred_grow_zone(zone, order); 1716 } 1717 1718 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1719 1720 void __init page_alloc_init_late(void) 1721 { 1722 struct zone *zone; 1723 1724 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1725 int nid; 1726 1727 /* There will be num_node_state(N_MEMORY) threads */ 1728 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1729 for_each_node_state(nid, N_MEMORY) { 1730 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1731 } 1732 1733 /* Block until all are initialised */ 1734 wait_for_completion(&pgdat_init_all_done_comp); 1735 1736 /* 1737 * We initialized the rest of the deferred pages. Permanently disable 1738 * on-demand struct page initialization. 1739 */ 1740 static_branch_disable(&deferred_pages); 1741 1742 /* Reinit limits that are based on free pages after the kernel is up */ 1743 files_maxfiles_init(); 1744 #endif 1745 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 1746 /* Discard memblock private memory */ 1747 memblock_discard(); 1748 #endif 1749 1750 for_each_populated_zone(zone) 1751 set_zone_contiguous(zone); 1752 } 1753 1754 #ifdef CONFIG_CMA 1755 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1756 void __init init_cma_reserved_pageblock(struct page *page) 1757 { 1758 unsigned i = pageblock_nr_pages; 1759 struct page *p = page; 1760 1761 do { 1762 __ClearPageReserved(p); 1763 set_page_count(p, 0); 1764 } while (++p, --i); 1765 1766 set_pageblock_migratetype(page, MIGRATE_CMA); 1767 1768 if (pageblock_order >= MAX_ORDER) { 1769 i = pageblock_nr_pages; 1770 p = page; 1771 do { 1772 set_page_refcounted(p); 1773 __free_pages(p, MAX_ORDER - 1); 1774 p += MAX_ORDER_NR_PAGES; 1775 } while (i -= MAX_ORDER_NR_PAGES); 1776 } else { 1777 set_page_refcounted(page); 1778 __free_pages(page, pageblock_order); 1779 } 1780 1781 adjust_managed_page_count(page, pageblock_nr_pages); 1782 } 1783 #endif 1784 1785 /* 1786 * The order of subdivision here is critical for the IO subsystem. 1787 * Please do not alter this order without good reasons and regression 1788 * testing. Specifically, as large blocks of memory are subdivided, 1789 * the order in which smaller blocks are delivered depends on the order 1790 * they're subdivided in this function. This is the primary factor 1791 * influencing the order in which pages are delivered to the IO 1792 * subsystem according to empirical testing, and this is also justified 1793 * by considering the behavior of a buddy system containing a single 1794 * large block of memory acted on by a series of small allocations. 1795 * This behavior is a critical factor in sglist merging's success. 1796 * 1797 * -- nyc 1798 */ 1799 static inline void expand(struct zone *zone, struct page *page, 1800 int low, int high, struct free_area *area, 1801 int migratetype) 1802 { 1803 unsigned long size = 1 << high; 1804 1805 while (high > low) { 1806 area--; 1807 high--; 1808 size >>= 1; 1809 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1810 1811 /* 1812 * Mark as guard pages (or page), that will allow to 1813 * merge back to allocator when buddy will be freed. 1814 * Corresponding page table entries will not be touched, 1815 * pages will stay not present in virtual address space 1816 */ 1817 if (set_page_guard(zone, &page[size], high, migratetype)) 1818 continue; 1819 1820 list_add(&page[size].lru, &area->free_list[migratetype]); 1821 area->nr_free++; 1822 set_page_order(&page[size], high); 1823 } 1824 } 1825 1826 static void check_new_page_bad(struct page *page) 1827 { 1828 const char *bad_reason = NULL; 1829 unsigned long bad_flags = 0; 1830 1831 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1832 bad_reason = "nonzero mapcount"; 1833 if (unlikely(page->mapping != NULL)) 1834 bad_reason = "non-NULL mapping"; 1835 if (unlikely(page_ref_count(page) != 0)) 1836 bad_reason = "nonzero _count"; 1837 if (unlikely(page->flags & __PG_HWPOISON)) { 1838 bad_reason = "HWPoisoned (hardware-corrupted)"; 1839 bad_flags = __PG_HWPOISON; 1840 /* Don't complain about hwpoisoned pages */ 1841 page_mapcount_reset(page); /* remove PageBuddy */ 1842 return; 1843 } 1844 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1845 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1846 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1847 } 1848 #ifdef CONFIG_MEMCG 1849 if (unlikely(page->mem_cgroup)) 1850 bad_reason = "page still charged to cgroup"; 1851 #endif 1852 bad_page(page, bad_reason, bad_flags); 1853 } 1854 1855 /* 1856 * This page is about to be returned from the page allocator 1857 */ 1858 static inline int check_new_page(struct page *page) 1859 { 1860 if (likely(page_expected_state(page, 1861 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1862 return 0; 1863 1864 check_new_page_bad(page); 1865 return 1; 1866 } 1867 1868 static inline bool free_pages_prezeroed(void) 1869 { 1870 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1871 page_poisoning_enabled(); 1872 } 1873 1874 #ifdef CONFIG_DEBUG_VM 1875 static bool check_pcp_refill(struct page *page) 1876 { 1877 return false; 1878 } 1879 1880 static bool check_new_pcp(struct page *page) 1881 { 1882 return check_new_page(page); 1883 } 1884 #else 1885 static bool check_pcp_refill(struct page *page) 1886 { 1887 return check_new_page(page); 1888 } 1889 static bool check_new_pcp(struct page *page) 1890 { 1891 return false; 1892 } 1893 #endif /* CONFIG_DEBUG_VM */ 1894 1895 static bool check_new_pages(struct page *page, unsigned int order) 1896 { 1897 int i; 1898 for (i = 0; i < (1 << order); i++) { 1899 struct page *p = page + i; 1900 1901 if (unlikely(check_new_page(p))) 1902 return true; 1903 } 1904 1905 return false; 1906 } 1907 1908 inline void post_alloc_hook(struct page *page, unsigned int order, 1909 gfp_t gfp_flags) 1910 { 1911 set_page_private(page, 0); 1912 set_page_refcounted(page); 1913 1914 arch_alloc_page(page, order); 1915 kernel_map_pages(page, 1 << order, 1); 1916 kernel_poison_pages(page, 1 << order, 1); 1917 kasan_alloc_pages(page, order); 1918 set_page_owner(page, order, gfp_flags); 1919 } 1920 1921 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1922 unsigned int alloc_flags) 1923 { 1924 int i; 1925 1926 post_alloc_hook(page, order, gfp_flags); 1927 1928 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 1929 for (i = 0; i < (1 << order); i++) 1930 clear_highpage(page + i); 1931 1932 if (order && (gfp_flags & __GFP_COMP)) 1933 prep_compound_page(page, order); 1934 1935 /* 1936 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1937 * allocate the page. The expectation is that the caller is taking 1938 * steps that will free more memory. The caller should avoid the page 1939 * being used for !PFMEMALLOC purposes. 1940 */ 1941 if (alloc_flags & ALLOC_NO_WATERMARKS) 1942 set_page_pfmemalloc(page); 1943 else 1944 clear_page_pfmemalloc(page); 1945 } 1946 1947 /* 1948 * Go through the free lists for the given migratetype and remove 1949 * the smallest available page from the freelists 1950 */ 1951 static __always_inline 1952 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1953 int migratetype) 1954 { 1955 unsigned int current_order; 1956 struct free_area *area; 1957 struct page *page; 1958 1959 /* Find a page of the appropriate size in the preferred list */ 1960 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1961 area = &(zone->free_area[current_order]); 1962 page = list_first_entry_or_null(&area->free_list[migratetype], 1963 struct page, lru); 1964 if (!page) 1965 continue; 1966 list_del(&page->lru); 1967 rmv_page_order(page); 1968 area->nr_free--; 1969 expand(zone, page, order, current_order, area, migratetype); 1970 set_pcppage_migratetype(page, migratetype); 1971 return page; 1972 } 1973 1974 return NULL; 1975 } 1976 1977 1978 /* 1979 * This array describes the order lists are fallen back to when 1980 * the free lists for the desirable migrate type are depleted 1981 */ 1982 static int fallbacks[MIGRATE_TYPES][4] = { 1983 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1984 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1985 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1986 #ifdef CONFIG_CMA 1987 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1988 #endif 1989 #ifdef CONFIG_MEMORY_ISOLATION 1990 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1991 #endif 1992 }; 1993 1994 #ifdef CONFIG_CMA 1995 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1996 unsigned int order) 1997 { 1998 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1999 } 2000 #else 2001 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2002 unsigned int order) { return NULL; } 2003 #endif 2004 2005 /* 2006 * Move the free pages in a range to the free lists of the requested type. 2007 * Note that start_page and end_pages are not aligned on a pageblock 2008 * boundary. If alignment is required, use move_freepages_block() 2009 */ 2010 static int move_freepages(struct zone *zone, 2011 struct page *start_page, struct page *end_page, 2012 int migratetype, int *num_movable) 2013 { 2014 struct page *page; 2015 unsigned int order; 2016 int pages_moved = 0; 2017 2018 #ifndef CONFIG_HOLES_IN_ZONE 2019 /* 2020 * page_zone is not safe to call in this context when 2021 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 2022 * anyway as we check zone boundaries in move_freepages_block(). 2023 * Remove at a later date when no bug reports exist related to 2024 * grouping pages by mobility 2025 */ 2026 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) && 2027 pfn_valid(page_to_pfn(end_page)) && 2028 page_zone(start_page) != page_zone(end_page)); 2029 #endif 2030 for (page = start_page; page <= end_page;) { 2031 if (!pfn_valid_within(page_to_pfn(page))) { 2032 page++; 2033 continue; 2034 } 2035 2036 /* Make sure we are not inadvertently changing nodes */ 2037 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2038 2039 if (!PageBuddy(page)) { 2040 /* 2041 * We assume that pages that could be isolated for 2042 * migration are movable. But we don't actually try 2043 * isolating, as that would be expensive. 2044 */ 2045 if (num_movable && 2046 (PageLRU(page) || __PageMovable(page))) 2047 (*num_movable)++; 2048 2049 page++; 2050 continue; 2051 } 2052 2053 order = page_order(page); 2054 list_move(&page->lru, 2055 &zone->free_area[order].free_list[migratetype]); 2056 page += 1 << order; 2057 pages_moved += 1 << order; 2058 } 2059 2060 return pages_moved; 2061 } 2062 2063 int move_freepages_block(struct zone *zone, struct page *page, 2064 int migratetype, int *num_movable) 2065 { 2066 unsigned long start_pfn, end_pfn; 2067 struct page *start_page, *end_page; 2068 2069 if (num_movable) 2070 *num_movable = 0; 2071 2072 start_pfn = page_to_pfn(page); 2073 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2074 start_page = pfn_to_page(start_pfn); 2075 end_page = start_page + pageblock_nr_pages - 1; 2076 end_pfn = start_pfn + pageblock_nr_pages - 1; 2077 2078 /* Do not cross zone boundaries */ 2079 if (!zone_spans_pfn(zone, start_pfn)) 2080 start_page = page; 2081 if (!zone_spans_pfn(zone, end_pfn)) 2082 return 0; 2083 2084 return move_freepages(zone, start_page, end_page, migratetype, 2085 num_movable); 2086 } 2087 2088 static void change_pageblock_range(struct page *pageblock_page, 2089 int start_order, int migratetype) 2090 { 2091 int nr_pageblocks = 1 << (start_order - pageblock_order); 2092 2093 while (nr_pageblocks--) { 2094 set_pageblock_migratetype(pageblock_page, migratetype); 2095 pageblock_page += pageblock_nr_pages; 2096 } 2097 } 2098 2099 /* 2100 * When we are falling back to another migratetype during allocation, try to 2101 * steal extra free pages from the same pageblocks to satisfy further 2102 * allocations, instead of polluting multiple pageblocks. 2103 * 2104 * If we are stealing a relatively large buddy page, it is likely there will 2105 * be more free pages in the pageblock, so try to steal them all. For 2106 * reclaimable and unmovable allocations, we steal regardless of page size, 2107 * as fragmentation caused by those allocations polluting movable pageblocks 2108 * is worse than movable allocations stealing from unmovable and reclaimable 2109 * pageblocks. 2110 */ 2111 static bool can_steal_fallback(unsigned int order, int start_mt) 2112 { 2113 /* 2114 * Leaving this order check is intended, although there is 2115 * relaxed order check in next check. The reason is that 2116 * we can actually steal whole pageblock if this condition met, 2117 * but, below check doesn't guarantee it and that is just heuristic 2118 * so could be changed anytime. 2119 */ 2120 if (order >= pageblock_order) 2121 return true; 2122 2123 if (order >= pageblock_order / 2 || 2124 start_mt == MIGRATE_RECLAIMABLE || 2125 start_mt == MIGRATE_UNMOVABLE || 2126 page_group_by_mobility_disabled) 2127 return true; 2128 2129 return false; 2130 } 2131 2132 /* 2133 * This function implements actual steal behaviour. If order is large enough, 2134 * we can steal whole pageblock. If not, we first move freepages in this 2135 * pageblock to our migratetype and determine how many already-allocated pages 2136 * are there in the pageblock with a compatible migratetype. If at least half 2137 * of pages are free or compatible, we can change migratetype of the pageblock 2138 * itself, so pages freed in the future will be put on the correct free list. 2139 */ 2140 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2141 int start_type, bool whole_block) 2142 { 2143 unsigned int current_order = page_order(page); 2144 struct free_area *area; 2145 int free_pages, movable_pages, alike_pages; 2146 int old_block_type; 2147 2148 old_block_type = get_pageblock_migratetype(page); 2149 2150 /* 2151 * This can happen due to races and we want to prevent broken 2152 * highatomic accounting. 2153 */ 2154 if (is_migrate_highatomic(old_block_type)) 2155 goto single_page; 2156 2157 /* Take ownership for orders >= pageblock_order */ 2158 if (current_order >= pageblock_order) { 2159 change_pageblock_range(page, current_order, start_type); 2160 goto single_page; 2161 } 2162 2163 /* We are not allowed to try stealing from the whole block */ 2164 if (!whole_block) 2165 goto single_page; 2166 2167 free_pages = move_freepages_block(zone, page, start_type, 2168 &movable_pages); 2169 /* 2170 * Determine how many pages are compatible with our allocation. 2171 * For movable allocation, it's the number of movable pages which 2172 * we just obtained. For other types it's a bit more tricky. 2173 */ 2174 if (start_type == MIGRATE_MOVABLE) { 2175 alike_pages = movable_pages; 2176 } else { 2177 /* 2178 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2179 * to MOVABLE pageblock, consider all non-movable pages as 2180 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2181 * vice versa, be conservative since we can't distinguish the 2182 * exact migratetype of non-movable pages. 2183 */ 2184 if (old_block_type == MIGRATE_MOVABLE) 2185 alike_pages = pageblock_nr_pages 2186 - (free_pages + movable_pages); 2187 else 2188 alike_pages = 0; 2189 } 2190 2191 /* moving whole block can fail due to zone boundary conditions */ 2192 if (!free_pages) 2193 goto single_page; 2194 2195 /* 2196 * If a sufficient number of pages in the block are either free or of 2197 * comparable migratability as our allocation, claim the whole block. 2198 */ 2199 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2200 page_group_by_mobility_disabled) 2201 set_pageblock_migratetype(page, start_type); 2202 2203 return; 2204 2205 single_page: 2206 area = &zone->free_area[current_order]; 2207 list_move(&page->lru, &area->free_list[start_type]); 2208 } 2209 2210 /* 2211 * Check whether there is a suitable fallback freepage with requested order. 2212 * If only_stealable is true, this function returns fallback_mt only if 2213 * we can steal other freepages all together. This would help to reduce 2214 * fragmentation due to mixed migratetype pages in one pageblock. 2215 */ 2216 int find_suitable_fallback(struct free_area *area, unsigned int order, 2217 int migratetype, bool only_stealable, bool *can_steal) 2218 { 2219 int i; 2220 int fallback_mt; 2221 2222 if (area->nr_free == 0) 2223 return -1; 2224 2225 *can_steal = false; 2226 for (i = 0;; i++) { 2227 fallback_mt = fallbacks[migratetype][i]; 2228 if (fallback_mt == MIGRATE_TYPES) 2229 break; 2230 2231 if (list_empty(&area->free_list[fallback_mt])) 2232 continue; 2233 2234 if (can_steal_fallback(order, migratetype)) 2235 *can_steal = true; 2236 2237 if (!only_stealable) 2238 return fallback_mt; 2239 2240 if (*can_steal) 2241 return fallback_mt; 2242 } 2243 2244 return -1; 2245 } 2246 2247 /* 2248 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2249 * there are no empty page blocks that contain a page with a suitable order 2250 */ 2251 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2252 unsigned int alloc_order) 2253 { 2254 int mt; 2255 unsigned long max_managed, flags; 2256 2257 /* 2258 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2259 * Check is race-prone but harmless. 2260 */ 2261 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2262 if (zone->nr_reserved_highatomic >= max_managed) 2263 return; 2264 2265 spin_lock_irqsave(&zone->lock, flags); 2266 2267 /* Recheck the nr_reserved_highatomic limit under the lock */ 2268 if (zone->nr_reserved_highatomic >= max_managed) 2269 goto out_unlock; 2270 2271 /* Yoink! */ 2272 mt = get_pageblock_migratetype(page); 2273 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2274 && !is_migrate_cma(mt)) { 2275 zone->nr_reserved_highatomic += pageblock_nr_pages; 2276 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2277 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2278 } 2279 2280 out_unlock: 2281 spin_unlock_irqrestore(&zone->lock, flags); 2282 } 2283 2284 /* 2285 * Used when an allocation is about to fail under memory pressure. This 2286 * potentially hurts the reliability of high-order allocations when under 2287 * intense memory pressure but failed atomic allocations should be easier 2288 * to recover from than an OOM. 2289 * 2290 * If @force is true, try to unreserve a pageblock even though highatomic 2291 * pageblock is exhausted. 2292 */ 2293 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2294 bool force) 2295 { 2296 struct zonelist *zonelist = ac->zonelist; 2297 unsigned long flags; 2298 struct zoneref *z; 2299 struct zone *zone; 2300 struct page *page; 2301 int order; 2302 bool ret; 2303 2304 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2305 ac->nodemask) { 2306 /* 2307 * Preserve at least one pageblock unless memory pressure 2308 * is really high. 2309 */ 2310 if (!force && zone->nr_reserved_highatomic <= 2311 pageblock_nr_pages) 2312 continue; 2313 2314 spin_lock_irqsave(&zone->lock, flags); 2315 for (order = 0; order < MAX_ORDER; order++) { 2316 struct free_area *area = &(zone->free_area[order]); 2317 2318 page = list_first_entry_or_null( 2319 &area->free_list[MIGRATE_HIGHATOMIC], 2320 struct page, lru); 2321 if (!page) 2322 continue; 2323 2324 /* 2325 * In page freeing path, migratetype change is racy so 2326 * we can counter several free pages in a pageblock 2327 * in this loop althoug we changed the pageblock type 2328 * from highatomic to ac->migratetype. So we should 2329 * adjust the count once. 2330 */ 2331 if (is_migrate_highatomic_page(page)) { 2332 /* 2333 * It should never happen but changes to 2334 * locking could inadvertently allow a per-cpu 2335 * drain to add pages to MIGRATE_HIGHATOMIC 2336 * while unreserving so be safe and watch for 2337 * underflows. 2338 */ 2339 zone->nr_reserved_highatomic -= min( 2340 pageblock_nr_pages, 2341 zone->nr_reserved_highatomic); 2342 } 2343 2344 /* 2345 * Convert to ac->migratetype and avoid the normal 2346 * pageblock stealing heuristics. Minimally, the caller 2347 * is doing the work and needs the pages. More 2348 * importantly, if the block was always converted to 2349 * MIGRATE_UNMOVABLE or another type then the number 2350 * of pageblocks that cannot be completely freed 2351 * may increase. 2352 */ 2353 set_pageblock_migratetype(page, ac->migratetype); 2354 ret = move_freepages_block(zone, page, ac->migratetype, 2355 NULL); 2356 if (ret) { 2357 spin_unlock_irqrestore(&zone->lock, flags); 2358 return ret; 2359 } 2360 } 2361 spin_unlock_irqrestore(&zone->lock, flags); 2362 } 2363 2364 return false; 2365 } 2366 2367 /* 2368 * Try finding a free buddy page on the fallback list and put it on the free 2369 * list of requested migratetype, possibly along with other pages from the same 2370 * block, depending on fragmentation avoidance heuristics. Returns true if 2371 * fallback was found so that __rmqueue_smallest() can grab it. 2372 * 2373 * The use of signed ints for order and current_order is a deliberate 2374 * deviation from the rest of this file, to make the for loop 2375 * condition simpler. 2376 */ 2377 static __always_inline bool 2378 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2379 unsigned int alloc_flags) 2380 { 2381 struct free_area *area; 2382 int current_order; 2383 int min_order = order; 2384 struct page *page; 2385 int fallback_mt; 2386 bool can_steal; 2387 2388 /* 2389 * Do not steal pages from freelists belonging to other pageblocks 2390 * i.e. orders < pageblock_order. If there are no local zones free, 2391 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2392 */ 2393 if (alloc_flags & ALLOC_NOFRAGMENT) 2394 min_order = pageblock_order; 2395 2396 /* 2397 * Find the largest available free page in the other list. This roughly 2398 * approximates finding the pageblock with the most free pages, which 2399 * would be too costly to do exactly. 2400 */ 2401 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2402 --current_order) { 2403 area = &(zone->free_area[current_order]); 2404 fallback_mt = find_suitable_fallback(area, current_order, 2405 start_migratetype, false, &can_steal); 2406 if (fallback_mt == -1) 2407 continue; 2408 2409 /* 2410 * We cannot steal all free pages from the pageblock and the 2411 * requested migratetype is movable. In that case it's better to 2412 * steal and split the smallest available page instead of the 2413 * largest available page, because even if the next movable 2414 * allocation falls back into a different pageblock than this 2415 * one, it won't cause permanent fragmentation. 2416 */ 2417 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2418 && current_order > order) 2419 goto find_smallest; 2420 2421 goto do_steal; 2422 } 2423 2424 return false; 2425 2426 find_smallest: 2427 for (current_order = order; current_order < MAX_ORDER; 2428 current_order++) { 2429 area = &(zone->free_area[current_order]); 2430 fallback_mt = find_suitable_fallback(area, current_order, 2431 start_migratetype, false, &can_steal); 2432 if (fallback_mt != -1) 2433 break; 2434 } 2435 2436 /* 2437 * This should not happen - we already found a suitable fallback 2438 * when looking for the largest page. 2439 */ 2440 VM_BUG_ON(current_order == MAX_ORDER); 2441 2442 do_steal: 2443 page = list_first_entry(&area->free_list[fallback_mt], 2444 struct page, lru); 2445 2446 steal_suitable_fallback(zone, page, start_migratetype, can_steal); 2447 2448 trace_mm_page_alloc_extfrag(page, order, current_order, 2449 start_migratetype, fallback_mt); 2450 2451 return true; 2452 2453 } 2454 2455 /* 2456 * Do the hard work of removing an element from the buddy allocator. 2457 * Call me with the zone->lock already held. 2458 */ 2459 static __always_inline struct page * 2460 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2461 unsigned int alloc_flags) 2462 { 2463 struct page *page; 2464 2465 retry: 2466 page = __rmqueue_smallest(zone, order, migratetype); 2467 if (unlikely(!page)) { 2468 if (migratetype == MIGRATE_MOVABLE) 2469 page = __rmqueue_cma_fallback(zone, order); 2470 2471 if (!page && __rmqueue_fallback(zone, order, migratetype, 2472 alloc_flags)) 2473 goto retry; 2474 } 2475 2476 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2477 return page; 2478 } 2479 2480 /* 2481 * Obtain a specified number of elements from the buddy allocator, all under 2482 * a single hold of the lock, for efficiency. Add them to the supplied list. 2483 * Returns the number of new pages which were placed at *list. 2484 */ 2485 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2486 unsigned long count, struct list_head *list, 2487 int migratetype, unsigned int alloc_flags) 2488 { 2489 int i, alloced = 0; 2490 2491 spin_lock(&zone->lock); 2492 for (i = 0; i < count; ++i) { 2493 struct page *page = __rmqueue(zone, order, migratetype, 2494 alloc_flags); 2495 if (unlikely(page == NULL)) 2496 break; 2497 2498 if (unlikely(check_pcp_refill(page))) 2499 continue; 2500 2501 /* 2502 * Split buddy pages returned by expand() are received here in 2503 * physical page order. The page is added to the tail of 2504 * caller's list. From the callers perspective, the linked list 2505 * is ordered by page number under some conditions. This is 2506 * useful for IO devices that can forward direction from the 2507 * head, thus also in the physical page order. This is useful 2508 * for IO devices that can merge IO requests if the physical 2509 * pages are ordered properly. 2510 */ 2511 list_add_tail(&page->lru, list); 2512 alloced++; 2513 if (is_migrate_cma(get_pcppage_migratetype(page))) 2514 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2515 -(1 << order)); 2516 } 2517 2518 /* 2519 * i pages were removed from the buddy list even if some leak due 2520 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2521 * on i. Do not confuse with 'alloced' which is the number of 2522 * pages added to the pcp list. 2523 */ 2524 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2525 spin_unlock(&zone->lock); 2526 return alloced; 2527 } 2528 2529 #ifdef CONFIG_NUMA 2530 /* 2531 * Called from the vmstat counter updater to drain pagesets of this 2532 * currently executing processor on remote nodes after they have 2533 * expired. 2534 * 2535 * Note that this function must be called with the thread pinned to 2536 * a single processor. 2537 */ 2538 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2539 { 2540 unsigned long flags; 2541 int to_drain, batch; 2542 2543 local_irq_save(flags); 2544 batch = READ_ONCE(pcp->batch); 2545 to_drain = min(pcp->count, batch); 2546 if (to_drain > 0) 2547 free_pcppages_bulk(zone, to_drain, pcp); 2548 local_irq_restore(flags); 2549 } 2550 #endif 2551 2552 /* 2553 * Drain pcplists of the indicated processor and zone. 2554 * 2555 * The processor must either be the current processor and the 2556 * thread pinned to the current processor or a processor that 2557 * is not online. 2558 */ 2559 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2560 { 2561 unsigned long flags; 2562 struct per_cpu_pageset *pset; 2563 struct per_cpu_pages *pcp; 2564 2565 local_irq_save(flags); 2566 pset = per_cpu_ptr(zone->pageset, cpu); 2567 2568 pcp = &pset->pcp; 2569 if (pcp->count) 2570 free_pcppages_bulk(zone, pcp->count, pcp); 2571 local_irq_restore(flags); 2572 } 2573 2574 /* 2575 * Drain pcplists of all zones on the indicated processor. 2576 * 2577 * The processor must either be the current processor and the 2578 * thread pinned to the current processor or a processor that 2579 * is not online. 2580 */ 2581 static void drain_pages(unsigned int cpu) 2582 { 2583 struct zone *zone; 2584 2585 for_each_populated_zone(zone) { 2586 drain_pages_zone(cpu, zone); 2587 } 2588 } 2589 2590 /* 2591 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2592 * 2593 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2594 * the single zone's pages. 2595 */ 2596 void drain_local_pages(struct zone *zone) 2597 { 2598 int cpu = smp_processor_id(); 2599 2600 if (zone) 2601 drain_pages_zone(cpu, zone); 2602 else 2603 drain_pages(cpu); 2604 } 2605 2606 static void drain_local_pages_wq(struct work_struct *work) 2607 { 2608 /* 2609 * drain_all_pages doesn't use proper cpu hotplug protection so 2610 * we can race with cpu offline when the WQ can move this from 2611 * a cpu pinned worker to an unbound one. We can operate on a different 2612 * cpu which is allright but we also have to make sure to not move to 2613 * a different one. 2614 */ 2615 preempt_disable(); 2616 drain_local_pages(NULL); 2617 preempt_enable(); 2618 } 2619 2620 /* 2621 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2622 * 2623 * When zone parameter is non-NULL, spill just the single zone's pages. 2624 * 2625 * Note that this can be extremely slow as the draining happens in a workqueue. 2626 */ 2627 void drain_all_pages(struct zone *zone) 2628 { 2629 int cpu; 2630 2631 /* 2632 * Allocate in the BSS so we wont require allocation in 2633 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2634 */ 2635 static cpumask_t cpus_with_pcps; 2636 2637 /* 2638 * Make sure nobody triggers this path before mm_percpu_wq is fully 2639 * initialized. 2640 */ 2641 if (WARN_ON_ONCE(!mm_percpu_wq)) 2642 return; 2643 2644 /* 2645 * Do not drain if one is already in progress unless it's specific to 2646 * a zone. Such callers are primarily CMA and memory hotplug and need 2647 * the drain to be complete when the call returns. 2648 */ 2649 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2650 if (!zone) 2651 return; 2652 mutex_lock(&pcpu_drain_mutex); 2653 } 2654 2655 /* 2656 * We don't care about racing with CPU hotplug event 2657 * as offline notification will cause the notified 2658 * cpu to drain that CPU pcps and on_each_cpu_mask 2659 * disables preemption as part of its processing 2660 */ 2661 for_each_online_cpu(cpu) { 2662 struct per_cpu_pageset *pcp; 2663 struct zone *z; 2664 bool has_pcps = false; 2665 2666 if (zone) { 2667 pcp = per_cpu_ptr(zone->pageset, cpu); 2668 if (pcp->pcp.count) 2669 has_pcps = true; 2670 } else { 2671 for_each_populated_zone(z) { 2672 pcp = per_cpu_ptr(z->pageset, cpu); 2673 if (pcp->pcp.count) { 2674 has_pcps = true; 2675 break; 2676 } 2677 } 2678 } 2679 2680 if (has_pcps) 2681 cpumask_set_cpu(cpu, &cpus_with_pcps); 2682 else 2683 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2684 } 2685 2686 for_each_cpu(cpu, &cpus_with_pcps) { 2687 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu); 2688 INIT_WORK(work, drain_local_pages_wq); 2689 queue_work_on(cpu, mm_percpu_wq, work); 2690 } 2691 for_each_cpu(cpu, &cpus_with_pcps) 2692 flush_work(per_cpu_ptr(&pcpu_drain, cpu)); 2693 2694 mutex_unlock(&pcpu_drain_mutex); 2695 } 2696 2697 #ifdef CONFIG_HIBERNATION 2698 2699 /* 2700 * Touch the watchdog for every WD_PAGE_COUNT pages. 2701 */ 2702 #define WD_PAGE_COUNT (128*1024) 2703 2704 void mark_free_pages(struct zone *zone) 2705 { 2706 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2707 unsigned long flags; 2708 unsigned int order, t; 2709 struct page *page; 2710 2711 if (zone_is_empty(zone)) 2712 return; 2713 2714 spin_lock_irqsave(&zone->lock, flags); 2715 2716 max_zone_pfn = zone_end_pfn(zone); 2717 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2718 if (pfn_valid(pfn)) { 2719 page = pfn_to_page(pfn); 2720 2721 if (!--page_count) { 2722 touch_nmi_watchdog(); 2723 page_count = WD_PAGE_COUNT; 2724 } 2725 2726 if (page_zone(page) != zone) 2727 continue; 2728 2729 if (!swsusp_page_is_forbidden(page)) 2730 swsusp_unset_page_free(page); 2731 } 2732 2733 for_each_migratetype_order(order, t) { 2734 list_for_each_entry(page, 2735 &zone->free_area[order].free_list[t], lru) { 2736 unsigned long i; 2737 2738 pfn = page_to_pfn(page); 2739 for (i = 0; i < (1UL << order); i++) { 2740 if (!--page_count) { 2741 touch_nmi_watchdog(); 2742 page_count = WD_PAGE_COUNT; 2743 } 2744 swsusp_set_page_free(pfn_to_page(pfn + i)); 2745 } 2746 } 2747 } 2748 spin_unlock_irqrestore(&zone->lock, flags); 2749 } 2750 #endif /* CONFIG_PM */ 2751 2752 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 2753 { 2754 int migratetype; 2755 2756 if (!free_pcp_prepare(page)) 2757 return false; 2758 2759 migratetype = get_pfnblock_migratetype(page, pfn); 2760 set_pcppage_migratetype(page, migratetype); 2761 return true; 2762 } 2763 2764 static void free_unref_page_commit(struct page *page, unsigned long pfn) 2765 { 2766 struct zone *zone = page_zone(page); 2767 struct per_cpu_pages *pcp; 2768 int migratetype; 2769 2770 migratetype = get_pcppage_migratetype(page); 2771 __count_vm_event(PGFREE); 2772 2773 /* 2774 * We only track unmovable, reclaimable and movable on pcp lists. 2775 * Free ISOLATE pages back to the allocator because they are being 2776 * offlined but treat HIGHATOMIC as movable pages so we can get those 2777 * areas back if necessary. Otherwise, we may have to free 2778 * excessively into the page allocator 2779 */ 2780 if (migratetype >= MIGRATE_PCPTYPES) { 2781 if (unlikely(is_migrate_isolate(migratetype))) { 2782 free_one_page(zone, page, pfn, 0, migratetype); 2783 return; 2784 } 2785 migratetype = MIGRATE_MOVABLE; 2786 } 2787 2788 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2789 list_add(&page->lru, &pcp->lists[migratetype]); 2790 pcp->count++; 2791 if (pcp->count >= pcp->high) { 2792 unsigned long batch = READ_ONCE(pcp->batch); 2793 free_pcppages_bulk(zone, batch, pcp); 2794 } 2795 } 2796 2797 /* 2798 * Free a 0-order page 2799 */ 2800 void free_unref_page(struct page *page) 2801 { 2802 unsigned long flags; 2803 unsigned long pfn = page_to_pfn(page); 2804 2805 if (!free_unref_page_prepare(page, pfn)) 2806 return; 2807 2808 local_irq_save(flags); 2809 free_unref_page_commit(page, pfn); 2810 local_irq_restore(flags); 2811 } 2812 2813 /* 2814 * Free a list of 0-order pages 2815 */ 2816 void free_unref_page_list(struct list_head *list) 2817 { 2818 struct page *page, *next; 2819 unsigned long flags, pfn; 2820 int batch_count = 0; 2821 2822 /* Prepare pages for freeing */ 2823 list_for_each_entry_safe(page, next, list, lru) { 2824 pfn = page_to_pfn(page); 2825 if (!free_unref_page_prepare(page, pfn)) 2826 list_del(&page->lru); 2827 set_page_private(page, pfn); 2828 } 2829 2830 local_irq_save(flags); 2831 list_for_each_entry_safe(page, next, list, lru) { 2832 unsigned long pfn = page_private(page); 2833 2834 set_page_private(page, 0); 2835 trace_mm_page_free_batched(page); 2836 free_unref_page_commit(page, pfn); 2837 2838 /* 2839 * Guard against excessive IRQ disabled times when we get 2840 * a large list of pages to free. 2841 */ 2842 if (++batch_count == SWAP_CLUSTER_MAX) { 2843 local_irq_restore(flags); 2844 batch_count = 0; 2845 local_irq_save(flags); 2846 } 2847 } 2848 local_irq_restore(flags); 2849 } 2850 2851 /* 2852 * split_page takes a non-compound higher-order page, and splits it into 2853 * n (1<<order) sub-pages: page[0..n] 2854 * Each sub-page must be freed individually. 2855 * 2856 * Note: this is probably too low level an operation for use in drivers. 2857 * Please consult with lkml before using this in your driver. 2858 */ 2859 void split_page(struct page *page, unsigned int order) 2860 { 2861 int i; 2862 2863 VM_BUG_ON_PAGE(PageCompound(page), page); 2864 VM_BUG_ON_PAGE(!page_count(page), page); 2865 2866 for (i = 1; i < (1 << order); i++) 2867 set_page_refcounted(page + i); 2868 split_page_owner(page, order); 2869 } 2870 EXPORT_SYMBOL_GPL(split_page); 2871 2872 int __isolate_free_page(struct page *page, unsigned int order) 2873 { 2874 unsigned long watermark; 2875 struct zone *zone; 2876 int mt; 2877 2878 BUG_ON(!PageBuddy(page)); 2879 2880 zone = page_zone(page); 2881 mt = get_pageblock_migratetype(page); 2882 2883 if (!is_migrate_isolate(mt)) { 2884 /* 2885 * Obey watermarks as if the page was being allocated. We can 2886 * emulate a high-order watermark check with a raised order-0 2887 * watermark, because we already know our high-order page 2888 * exists. 2889 */ 2890 watermark = min_wmark_pages(zone) + (1UL << order); 2891 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2892 return 0; 2893 2894 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2895 } 2896 2897 /* Remove page from free list */ 2898 list_del(&page->lru); 2899 zone->free_area[order].nr_free--; 2900 rmv_page_order(page); 2901 2902 /* 2903 * Set the pageblock if the isolated page is at least half of a 2904 * pageblock 2905 */ 2906 if (order >= pageblock_order - 1) { 2907 struct page *endpage = page + (1 << order) - 1; 2908 for (; page < endpage; page += pageblock_nr_pages) { 2909 int mt = get_pageblock_migratetype(page); 2910 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 2911 && !is_migrate_highatomic(mt)) 2912 set_pageblock_migratetype(page, 2913 MIGRATE_MOVABLE); 2914 } 2915 } 2916 2917 2918 return 1UL << order; 2919 } 2920 2921 /* 2922 * Update NUMA hit/miss statistics 2923 * 2924 * Must be called with interrupts disabled. 2925 */ 2926 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 2927 { 2928 #ifdef CONFIG_NUMA 2929 enum numa_stat_item local_stat = NUMA_LOCAL; 2930 2931 /* skip numa counters update if numa stats is disabled */ 2932 if (!static_branch_likely(&vm_numa_stat_key)) 2933 return; 2934 2935 if (zone_to_nid(z) != numa_node_id()) 2936 local_stat = NUMA_OTHER; 2937 2938 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2939 __inc_numa_state(z, NUMA_HIT); 2940 else { 2941 __inc_numa_state(z, NUMA_MISS); 2942 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 2943 } 2944 __inc_numa_state(z, local_stat); 2945 #endif 2946 } 2947 2948 /* Remove page from the per-cpu list, caller must protect the list */ 2949 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 2950 unsigned int alloc_flags, 2951 struct per_cpu_pages *pcp, 2952 struct list_head *list) 2953 { 2954 struct page *page; 2955 2956 do { 2957 if (list_empty(list)) { 2958 pcp->count += rmqueue_bulk(zone, 0, 2959 pcp->batch, list, 2960 migratetype, alloc_flags); 2961 if (unlikely(list_empty(list))) 2962 return NULL; 2963 } 2964 2965 page = list_first_entry(list, struct page, lru); 2966 list_del(&page->lru); 2967 pcp->count--; 2968 } while (check_new_pcp(page)); 2969 2970 return page; 2971 } 2972 2973 /* Lock and remove page from the per-cpu list */ 2974 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2975 struct zone *zone, unsigned int order, 2976 gfp_t gfp_flags, int migratetype, 2977 unsigned int alloc_flags) 2978 { 2979 struct per_cpu_pages *pcp; 2980 struct list_head *list; 2981 struct page *page; 2982 unsigned long flags; 2983 2984 local_irq_save(flags); 2985 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2986 list = &pcp->lists[migratetype]; 2987 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 2988 if (page) { 2989 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2990 zone_statistics(preferred_zone, zone); 2991 } 2992 local_irq_restore(flags); 2993 return page; 2994 } 2995 2996 /* 2997 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2998 */ 2999 static inline 3000 struct page *rmqueue(struct zone *preferred_zone, 3001 struct zone *zone, unsigned int order, 3002 gfp_t gfp_flags, unsigned int alloc_flags, 3003 int migratetype) 3004 { 3005 unsigned long flags; 3006 struct page *page; 3007 3008 if (likely(order == 0)) { 3009 page = rmqueue_pcplist(preferred_zone, zone, order, 3010 gfp_flags, migratetype, alloc_flags); 3011 goto out; 3012 } 3013 3014 /* 3015 * We most definitely don't want callers attempting to 3016 * allocate greater than order-1 page units with __GFP_NOFAIL. 3017 */ 3018 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3019 spin_lock_irqsave(&zone->lock, flags); 3020 3021 do { 3022 page = NULL; 3023 if (alloc_flags & ALLOC_HARDER) { 3024 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3025 if (page) 3026 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3027 } 3028 if (!page) 3029 page = __rmqueue(zone, order, migratetype, alloc_flags); 3030 } while (page && check_new_pages(page, order)); 3031 spin_unlock(&zone->lock); 3032 if (!page) 3033 goto failed; 3034 __mod_zone_freepage_state(zone, -(1 << order), 3035 get_pcppage_migratetype(page)); 3036 3037 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3038 zone_statistics(preferred_zone, zone); 3039 local_irq_restore(flags); 3040 3041 out: 3042 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3043 return page; 3044 3045 failed: 3046 local_irq_restore(flags); 3047 return NULL; 3048 } 3049 3050 #ifdef CONFIG_FAIL_PAGE_ALLOC 3051 3052 static struct { 3053 struct fault_attr attr; 3054 3055 bool ignore_gfp_highmem; 3056 bool ignore_gfp_reclaim; 3057 u32 min_order; 3058 } fail_page_alloc = { 3059 .attr = FAULT_ATTR_INITIALIZER, 3060 .ignore_gfp_reclaim = true, 3061 .ignore_gfp_highmem = true, 3062 .min_order = 1, 3063 }; 3064 3065 static int __init setup_fail_page_alloc(char *str) 3066 { 3067 return setup_fault_attr(&fail_page_alloc.attr, str); 3068 } 3069 __setup("fail_page_alloc=", setup_fail_page_alloc); 3070 3071 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3072 { 3073 if (order < fail_page_alloc.min_order) 3074 return false; 3075 if (gfp_mask & __GFP_NOFAIL) 3076 return false; 3077 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3078 return false; 3079 if (fail_page_alloc.ignore_gfp_reclaim && 3080 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3081 return false; 3082 3083 return should_fail(&fail_page_alloc.attr, 1 << order); 3084 } 3085 3086 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3087 3088 static int __init fail_page_alloc_debugfs(void) 3089 { 3090 umode_t mode = S_IFREG | 0600; 3091 struct dentry *dir; 3092 3093 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3094 &fail_page_alloc.attr); 3095 if (IS_ERR(dir)) 3096 return PTR_ERR(dir); 3097 3098 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 3099 &fail_page_alloc.ignore_gfp_reclaim)) 3100 goto fail; 3101 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3102 &fail_page_alloc.ignore_gfp_highmem)) 3103 goto fail; 3104 if (!debugfs_create_u32("min-order", mode, dir, 3105 &fail_page_alloc.min_order)) 3106 goto fail; 3107 3108 return 0; 3109 fail: 3110 debugfs_remove_recursive(dir); 3111 3112 return -ENOMEM; 3113 } 3114 3115 late_initcall(fail_page_alloc_debugfs); 3116 3117 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3118 3119 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3120 3121 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3122 { 3123 return false; 3124 } 3125 3126 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3127 3128 /* 3129 * Return true if free base pages are above 'mark'. For high-order checks it 3130 * will return true of the order-0 watermark is reached and there is at least 3131 * one free page of a suitable size. Checking now avoids taking the zone lock 3132 * to check in the allocation paths if no pages are free. 3133 */ 3134 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3135 int classzone_idx, unsigned int alloc_flags, 3136 long free_pages) 3137 { 3138 long min = mark; 3139 int o; 3140 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3141 3142 /* free_pages may go negative - that's OK */ 3143 free_pages -= (1 << order) - 1; 3144 3145 if (alloc_flags & ALLOC_HIGH) 3146 min -= min / 2; 3147 3148 /* 3149 * If the caller does not have rights to ALLOC_HARDER then subtract 3150 * the high-atomic reserves. This will over-estimate the size of the 3151 * atomic reserve but it avoids a search. 3152 */ 3153 if (likely(!alloc_harder)) { 3154 free_pages -= z->nr_reserved_highatomic; 3155 } else { 3156 /* 3157 * OOM victims can try even harder than normal ALLOC_HARDER 3158 * users on the grounds that it's definitely going to be in 3159 * the exit path shortly and free memory. Any allocation it 3160 * makes during the free path will be small and short-lived. 3161 */ 3162 if (alloc_flags & ALLOC_OOM) 3163 min -= min / 2; 3164 else 3165 min -= min / 4; 3166 } 3167 3168 3169 #ifdef CONFIG_CMA 3170 /* If allocation can't use CMA areas don't use free CMA pages */ 3171 if (!(alloc_flags & ALLOC_CMA)) 3172 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3173 #endif 3174 3175 /* 3176 * Check watermarks for an order-0 allocation request. If these 3177 * are not met, then a high-order request also cannot go ahead 3178 * even if a suitable page happened to be free. 3179 */ 3180 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3181 return false; 3182 3183 /* If this is an order-0 request then the watermark is fine */ 3184 if (!order) 3185 return true; 3186 3187 /* For a high-order request, check at least one suitable page is free */ 3188 for (o = order; o < MAX_ORDER; o++) { 3189 struct free_area *area = &z->free_area[o]; 3190 int mt; 3191 3192 if (!area->nr_free) 3193 continue; 3194 3195 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3196 if (!list_empty(&area->free_list[mt])) 3197 return true; 3198 } 3199 3200 #ifdef CONFIG_CMA 3201 if ((alloc_flags & ALLOC_CMA) && 3202 !list_empty(&area->free_list[MIGRATE_CMA])) { 3203 return true; 3204 } 3205 #endif 3206 if (alloc_harder && 3207 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3208 return true; 3209 } 3210 return false; 3211 } 3212 3213 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3214 int classzone_idx, unsigned int alloc_flags) 3215 { 3216 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3217 zone_page_state(z, NR_FREE_PAGES)); 3218 } 3219 3220 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3221 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3222 { 3223 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3224 long cma_pages = 0; 3225 3226 #ifdef CONFIG_CMA 3227 /* If allocation can't use CMA areas don't use free CMA pages */ 3228 if (!(alloc_flags & ALLOC_CMA)) 3229 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3230 #endif 3231 3232 /* 3233 * Fast check for order-0 only. If this fails then the reserves 3234 * need to be calculated. There is a corner case where the check 3235 * passes but only the high-order atomic reserve are free. If 3236 * the caller is !atomic then it'll uselessly search the free 3237 * list. That corner case is then slower but it is harmless. 3238 */ 3239 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3240 return true; 3241 3242 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3243 free_pages); 3244 } 3245 3246 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3247 unsigned long mark, int classzone_idx) 3248 { 3249 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3250 3251 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3252 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3253 3254 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3255 free_pages); 3256 } 3257 3258 #ifdef CONFIG_NUMA 3259 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3260 { 3261 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3262 RECLAIM_DISTANCE; 3263 } 3264 #else /* CONFIG_NUMA */ 3265 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3266 { 3267 return true; 3268 } 3269 #endif /* CONFIG_NUMA */ 3270 3271 #ifdef CONFIG_ZONE_DMA32 3272 /* 3273 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3274 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3275 * premature use of a lower zone may cause lowmem pressure problems that 3276 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3277 * probably too small. It only makes sense to spread allocations to avoid 3278 * fragmentation between the Normal and DMA32 zones. 3279 */ 3280 static inline unsigned int 3281 alloc_flags_nofragment(struct zone *zone) 3282 { 3283 if (zone_idx(zone) != ZONE_NORMAL) 3284 return 0; 3285 3286 /* 3287 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3288 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3289 * on UMA that if Normal is populated then so is DMA32. 3290 */ 3291 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3292 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3293 return 0; 3294 3295 return ALLOC_NOFRAGMENT; 3296 } 3297 #else 3298 static inline unsigned int 3299 alloc_flags_nofragment(struct zone *zone) 3300 { 3301 return 0; 3302 } 3303 #endif 3304 3305 /* 3306 * get_page_from_freelist goes through the zonelist trying to allocate 3307 * a page. 3308 */ 3309 static struct page * 3310 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3311 const struct alloc_context *ac) 3312 { 3313 struct zoneref *z; 3314 struct zone *zone; 3315 struct pglist_data *last_pgdat_dirty_limit = NULL; 3316 bool no_fallback; 3317 3318 retry: 3319 /* 3320 * Scan zonelist, looking for a zone with enough free. 3321 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3322 */ 3323 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3324 z = ac->preferred_zoneref; 3325 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3326 ac->nodemask) { 3327 struct page *page; 3328 unsigned long mark; 3329 3330 if (cpusets_enabled() && 3331 (alloc_flags & ALLOC_CPUSET) && 3332 !__cpuset_zone_allowed(zone, gfp_mask)) 3333 continue; 3334 /* 3335 * When allocating a page cache page for writing, we 3336 * want to get it from a node that is within its dirty 3337 * limit, such that no single node holds more than its 3338 * proportional share of globally allowed dirty pages. 3339 * The dirty limits take into account the node's 3340 * lowmem reserves and high watermark so that kswapd 3341 * should be able to balance it without having to 3342 * write pages from its LRU list. 3343 * 3344 * XXX: For now, allow allocations to potentially 3345 * exceed the per-node dirty limit in the slowpath 3346 * (spread_dirty_pages unset) before going into reclaim, 3347 * which is important when on a NUMA setup the allowed 3348 * nodes are together not big enough to reach the 3349 * global limit. The proper fix for these situations 3350 * will require awareness of nodes in the 3351 * dirty-throttling and the flusher threads. 3352 */ 3353 if (ac->spread_dirty_pages) { 3354 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3355 continue; 3356 3357 if (!node_dirty_ok(zone->zone_pgdat)) { 3358 last_pgdat_dirty_limit = zone->zone_pgdat; 3359 continue; 3360 } 3361 } 3362 3363 if (no_fallback && nr_online_nodes > 1 && 3364 zone != ac->preferred_zoneref->zone) { 3365 int local_nid; 3366 3367 /* 3368 * If moving to a remote node, retry but allow 3369 * fragmenting fallbacks. Locality is more important 3370 * than fragmentation avoidance. 3371 */ 3372 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3373 if (zone_to_nid(zone) != local_nid) { 3374 alloc_flags &= ~ALLOC_NOFRAGMENT; 3375 goto retry; 3376 } 3377 } 3378 3379 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 3380 if (!zone_watermark_fast(zone, order, mark, 3381 ac_classzone_idx(ac), alloc_flags)) { 3382 int ret; 3383 3384 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3385 /* 3386 * Watermark failed for this zone, but see if we can 3387 * grow this zone if it contains deferred pages. 3388 */ 3389 if (static_branch_unlikely(&deferred_pages)) { 3390 if (_deferred_grow_zone(zone, order)) 3391 goto try_this_zone; 3392 } 3393 #endif 3394 /* Checked here to keep the fast path fast */ 3395 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3396 if (alloc_flags & ALLOC_NO_WATERMARKS) 3397 goto try_this_zone; 3398 3399 if (node_reclaim_mode == 0 || 3400 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3401 continue; 3402 3403 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3404 switch (ret) { 3405 case NODE_RECLAIM_NOSCAN: 3406 /* did not scan */ 3407 continue; 3408 case NODE_RECLAIM_FULL: 3409 /* scanned but unreclaimable */ 3410 continue; 3411 default: 3412 /* did we reclaim enough */ 3413 if (zone_watermark_ok(zone, order, mark, 3414 ac_classzone_idx(ac), alloc_flags)) 3415 goto try_this_zone; 3416 3417 continue; 3418 } 3419 } 3420 3421 try_this_zone: 3422 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3423 gfp_mask, alloc_flags, ac->migratetype); 3424 if (page) { 3425 prep_new_page(page, order, gfp_mask, alloc_flags); 3426 3427 /* 3428 * If this is a high-order atomic allocation then check 3429 * if the pageblock should be reserved for the future 3430 */ 3431 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3432 reserve_highatomic_pageblock(page, zone, order); 3433 3434 return page; 3435 } else { 3436 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3437 /* Try again if zone has deferred pages */ 3438 if (static_branch_unlikely(&deferred_pages)) { 3439 if (_deferred_grow_zone(zone, order)) 3440 goto try_this_zone; 3441 } 3442 #endif 3443 } 3444 } 3445 3446 /* 3447 * It's possible on a UMA machine to get through all zones that are 3448 * fragmented. If avoiding fragmentation, reset and try again. 3449 */ 3450 if (no_fallback) { 3451 alloc_flags &= ~ALLOC_NOFRAGMENT; 3452 goto retry; 3453 } 3454 3455 return NULL; 3456 } 3457 3458 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3459 { 3460 unsigned int filter = SHOW_MEM_FILTER_NODES; 3461 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3462 3463 if (!__ratelimit(&show_mem_rs)) 3464 return; 3465 3466 /* 3467 * This documents exceptions given to allocations in certain 3468 * contexts that are allowed to allocate outside current's set 3469 * of allowed nodes. 3470 */ 3471 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3472 if (tsk_is_oom_victim(current) || 3473 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3474 filter &= ~SHOW_MEM_FILTER_NODES; 3475 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3476 filter &= ~SHOW_MEM_FILTER_NODES; 3477 3478 show_mem(filter, nodemask); 3479 } 3480 3481 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3482 { 3483 struct va_format vaf; 3484 va_list args; 3485 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3486 DEFAULT_RATELIMIT_BURST); 3487 3488 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3489 return; 3490 3491 va_start(args, fmt); 3492 vaf.fmt = fmt; 3493 vaf.va = &args; 3494 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n", 3495 current->comm, &vaf, gfp_mask, &gfp_mask, 3496 nodemask_pr_args(nodemask)); 3497 va_end(args); 3498 3499 cpuset_print_current_mems_allowed(); 3500 3501 dump_stack(); 3502 warn_alloc_show_mem(gfp_mask, nodemask); 3503 } 3504 3505 static inline struct page * 3506 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3507 unsigned int alloc_flags, 3508 const struct alloc_context *ac) 3509 { 3510 struct page *page; 3511 3512 page = get_page_from_freelist(gfp_mask, order, 3513 alloc_flags|ALLOC_CPUSET, ac); 3514 /* 3515 * fallback to ignore cpuset restriction if our nodes 3516 * are depleted 3517 */ 3518 if (!page) 3519 page = get_page_from_freelist(gfp_mask, order, 3520 alloc_flags, ac); 3521 3522 return page; 3523 } 3524 3525 static inline struct page * 3526 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3527 const struct alloc_context *ac, unsigned long *did_some_progress) 3528 { 3529 struct oom_control oc = { 3530 .zonelist = ac->zonelist, 3531 .nodemask = ac->nodemask, 3532 .memcg = NULL, 3533 .gfp_mask = gfp_mask, 3534 .order = order, 3535 }; 3536 struct page *page; 3537 3538 *did_some_progress = 0; 3539 3540 /* 3541 * Acquire the oom lock. If that fails, somebody else is 3542 * making progress for us. 3543 */ 3544 if (!mutex_trylock(&oom_lock)) { 3545 *did_some_progress = 1; 3546 schedule_timeout_uninterruptible(1); 3547 return NULL; 3548 } 3549 3550 /* 3551 * Go through the zonelist yet one more time, keep very high watermark 3552 * here, this is only to catch a parallel oom killing, we must fail if 3553 * we're still under heavy pressure. But make sure that this reclaim 3554 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3555 * allocation which will never fail due to oom_lock already held. 3556 */ 3557 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3558 ~__GFP_DIRECT_RECLAIM, order, 3559 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3560 if (page) 3561 goto out; 3562 3563 /* Coredumps can quickly deplete all memory reserves */ 3564 if (current->flags & PF_DUMPCORE) 3565 goto out; 3566 /* The OOM killer will not help higher order allocs */ 3567 if (order > PAGE_ALLOC_COSTLY_ORDER) 3568 goto out; 3569 /* 3570 * We have already exhausted all our reclaim opportunities without any 3571 * success so it is time to admit defeat. We will skip the OOM killer 3572 * because it is very likely that the caller has a more reasonable 3573 * fallback than shooting a random task. 3574 */ 3575 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3576 goto out; 3577 /* The OOM killer does not needlessly kill tasks for lowmem */ 3578 if (ac->high_zoneidx < ZONE_NORMAL) 3579 goto out; 3580 if (pm_suspended_storage()) 3581 goto out; 3582 /* 3583 * XXX: GFP_NOFS allocations should rather fail than rely on 3584 * other request to make a forward progress. 3585 * We are in an unfortunate situation where out_of_memory cannot 3586 * do much for this context but let's try it to at least get 3587 * access to memory reserved if the current task is killed (see 3588 * out_of_memory). Once filesystems are ready to handle allocation 3589 * failures more gracefully we should just bail out here. 3590 */ 3591 3592 /* The OOM killer may not free memory on a specific node */ 3593 if (gfp_mask & __GFP_THISNODE) 3594 goto out; 3595 3596 /* Exhausted what can be done so it's blame time */ 3597 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3598 *did_some_progress = 1; 3599 3600 /* 3601 * Help non-failing allocations by giving them access to memory 3602 * reserves 3603 */ 3604 if (gfp_mask & __GFP_NOFAIL) 3605 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3606 ALLOC_NO_WATERMARKS, ac); 3607 } 3608 out: 3609 mutex_unlock(&oom_lock); 3610 return page; 3611 } 3612 3613 /* 3614 * Maximum number of compaction retries wit a progress before OOM 3615 * killer is consider as the only way to move forward. 3616 */ 3617 #define MAX_COMPACT_RETRIES 16 3618 3619 #ifdef CONFIG_COMPACTION 3620 /* Try memory compaction for high-order allocations before reclaim */ 3621 static struct page * 3622 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3623 unsigned int alloc_flags, const struct alloc_context *ac, 3624 enum compact_priority prio, enum compact_result *compact_result) 3625 { 3626 struct page *page; 3627 unsigned long pflags; 3628 unsigned int noreclaim_flag; 3629 3630 if (!order) 3631 return NULL; 3632 3633 psi_memstall_enter(&pflags); 3634 noreclaim_flag = memalloc_noreclaim_save(); 3635 3636 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3637 prio); 3638 3639 memalloc_noreclaim_restore(noreclaim_flag); 3640 psi_memstall_leave(&pflags); 3641 3642 if (*compact_result <= COMPACT_INACTIVE) 3643 return NULL; 3644 3645 /* 3646 * At least in one zone compaction wasn't deferred or skipped, so let's 3647 * count a compaction stall 3648 */ 3649 count_vm_event(COMPACTSTALL); 3650 3651 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3652 3653 if (page) { 3654 struct zone *zone = page_zone(page); 3655 3656 zone->compact_blockskip_flush = false; 3657 compaction_defer_reset(zone, order, true); 3658 count_vm_event(COMPACTSUCCESS); 3659 return page; 3660 } 3661 3662 /* 3663 * It's bad if compaction run occurs and fails. The most likely reason 3664 * is that pages exist, but not enough to satisfy watermarks. 3665 */ 3666 count_vm_event(COMPACTFAIL); 3667 3668 cond_resched(); 3669 3670 return NULL; 3671 } 3672 3673 static inline bool 3674 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3675 enum compact_result compact_result, 3676 enum compact_priority *compact_priority, 3677 int *compaction_retries) 3678 { 3679 int max_retries = MAX_COMPACT_RETRIES; 3680 int min_priority; 3681 bool ret = false; 3682 int retries = *compaction_retries; 3683 enum compact_priority priority = *compact_priority; 3684 3685 if (!order) 3686 return false; 3687 3688 if (compaction_made_progress(compact_result)) 3689 (*compaction_retries)++; 3690 3691 /* 3692 * compaction considers all the zone as desperately out of memory 3693 * so it doesn't really make much sense to retry except when the 3694 * failure could be caused by insufficient priority 3695 */ 3696 if (compaction_failed(compact_result)) 3697 goto check_priority; 3698 3699 /* 3700 * make sure the compaction wasn't deferred or didn't bail out early 3701 * due to locks contention before we declare that we should give up. 3702 * But do not retry if the given zonelist is not suitable for 3703 * compaction. 3704 */ 3705 if (compaction_withdrawn(compact_result)) { 3706 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3707 goto out; 3708 } 3709 3710 /* 3711 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3712 * costly ones because they are de facto nofail and invoke OOM 3713 * killer to move on while costly can fail and users are ready 3714 * to cope with that. 1/4 retries is rather arbitrary but we 3715 * would need much more detailed feedback from compaction to 3716 * make a better decision. 3717 */ 3718 if (order > PAGE_ALLOC_COSTLY_ORDER) 3719 max_retries /= 4; 3720 if (*compaction_retries <= max_retries) { 3721 ret = true; 3722 goto out; 3723 } 3724 3725 /* 3726 * Make sure there are attempts at the highest priority if we exhausted 3727 * all retries or failed at the lower priorities. 3728 */ 3729 check_priority: 3730 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3731 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3732 3733 if (*compact_priority > min_priority) { 3734 (*compact_priority)--; 3735 *compaction_retries = 0; 3736 ret = true; 3737 } 3738 out: 3739 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3740 return ret; 3741 } 3742 #else 3743 static inline struct page * 3744 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3745 unsigned int alloc_flags, const struct alloc_context *ac, 3746 enum compact_priority prio, enum compact_result *compact_result) 3747 { 3748 *compact_result = COMPACT_SKIPPED; 3749 return NULL; 3750 } 3751 3752 static inline bool 3753 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3754 enum compact_result compact_result, 3755 enum compact_priority *compact_priority, 3756 int *compaction_retries) 3757 { 3758 struct zone *zone; 3759 struct zoneref *z; 3760 3761 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3762 return false; 3763 3764 /* 3765 * There are setups with compaction disabled which would prefer to loop 3766 * inside the allocator rather than hit the oom killer prematurely. 3767 * Let's give them a good hope and keep retrying while the order-0 3768 * watermarks are OK. 3769 */ 3770 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3771 ac->nodemask) { 3772 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3773 ac_classzone_idx(ac), alloc_flags)) 3774 return true; 3775 } 3776 return false; 3777 } 3778 #endif /* CONFIG_COMPACTION */ 3779 3780 #ifdef CONFIG_LOCKDEP 3781 static struct lockdep_map __fs_reclaim_map = 3782 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3783 3784 static bool __need_fs_reclaim(gfp_t gfp_mask) 3785 { 3786 gfp_mask = current_gfp_context(gfp_mask); 3787 3788 /* no reclaim without waiting on it */ 3789 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3790 return false; 3791 3792 /* this guy won't enter reclaim */ 3793 if (current->flags & PF_MEMALLOC) 3794 return false; 3795 3796 /* We're only interested __GFP_FS allocations for now */ 3797 if (!(gfp_mask & __GFP_FS)) 3798 return false; 3799 3800 if (gfp_mask & __GFP_NOLOCKDEP) 3801 return false; 3802 3803 return true; 3804 } 3805 3806 void __fs_reclaim_acquire(void) 3807 { 3808 lock_map_acquire(&__fs_reclaim_map); 3809 } 3810 3811 void __fs_reclaim_release(void) 3812 { 3813 lock_map_release(&__fs_reclaim_map); 3814 } 3815 3816 void fs_reclaim_acquire(gfp_t gfp_mask) 3817 { 3818 if (__need_fs_reclaim(gfp_mask)) 3819 __fs_reclaim_acquire(); 3820 } 3821 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3822 3823 void fs_reclaim_release(gfp_t gfp_mask) 3824 { 3825 if (__need_fs_reclaim(gfp_mask)) 3826 __fs_reclaim_release(); 3827 } 3828 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3829 #endif 3830 3831 /* Perform direct synchronous page reclaim */ 3832 static int 3833 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3834 const struct alloc_context *ac) 3835 { 3836 struct reclaim_state reclaim_state; 3837 int progress; 3838 unsigned int noreclaim_flag; 3839 unsigned long pflags; 3840 3841 cond_resched(); 3842 3843 /* We now go into synchronous reclaim */ 3844 cpuset_memory_pressure_bump(); 3845 psi_memstall_enter(&pflags); 3846 fs_reclaim_acquire(gfp_mask); 3847 noreclaim_flag = memalloc_noreclaim_save(); 3848 reclaim_state.reclaimed_slab = 0; 3849 current->reclaim_state = &reclaim_state; 3850 3851 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3852 ac->nodemask); 3853 3854 current->reclaim_state = NULL; 3855 memalloc_noreclaim_restore(noreclaim_flag); 3856 fs_reclaim_release(gfp_mask); 3857 psi_memstall_leave(&pflags); 3858 3859 cond_resched(); 3860 3861 return progress; 3862 } 3863 3864 /* The really slow allocator path where we enter direct reclaim */ 3865 static inline struct page * 3866 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3867 unsigned int alloc_flags, const struct alloc_context *ac, 3868 unsigned long *did_some_progress) 3869 { 3870 struct page *page = NULL; 3871 bool drained = false; 3872 3873 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3874 if (unlikely(!(*did_some_progress))) 3875 return NULL; 3876 3877 retry: 3878 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3879 3880 /* 3881 * If an allocation failed after direct reclaim, it could be because 3882 * pages are pinned on the per-cpu lists or in high alloc reserves. 3883 * Shrink them them and try again 3884 */ 3885 if (!page && !drained) { 3886 unreserve_highatomic_pageblock(ac, false); 3887 drain_all_pages(NULL); 3888 drained = true; 3889 goto retry; 3890 } 3891 3892 return page; 3893 } 3894 3895 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3896 const struct alloc_context *ac) 3897 { 3898 struct zoneref *z; 3899 struct zone *zone; 3900 pg_data_t *last_pgdat = NULL; 3901 enum zone_type high_zoneidx = ac->high_zoneidx; 3902 3903 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 3904 ac->nodemask) { 3905 if (last_pgdat != zone->zone_pgdat) 3906 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 3907 last_pgdat = zone->zone_pgdat; 3908 } 3909 } 3910 3911 static inline unsigned int 3912 gfp_to_alloc_flags(gfp_t gfp_mask) 3913 { 3914 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3915 3916 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3917 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3918 3919 /* 3920 * The caller may dip into page reserves a bit more if the caller 3921 * cannot run direct reclaim, or if the caller has realtime scheduling 3922 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3923 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3924 */ 3925 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3926 3927 if (gfp_mask & __GFP_ATOMIC) { 3928 /* 3929 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3930 * if it can't schedule. 3931 */ 3932 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3933 alloc_flags |= ALLOC_HARDER; 3934 /* 3935 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3936 * comment for __cpuset_node_allowed(). 3937 */ 3938 alloc_flags &= ~ALLOC_CPUSET; 3939 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3940 alloc_flags |= ALLOC_HARDER; 3941 3942 #ifdef CONFIG_CMA 3943 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3944 alloc_flags |= ALLOC_CMA; 3945 #endif 3946 return alloc_flags; 3947 } 3948 3949 static bool oom_reserves_allowed(struct task_struct *tsk) 3950 { 3951 if (!tsk_is_oom_victim(tsk)) 3952 return false; 3953 3954 /* 3955 * !MMU doesn't have oom reaper so give access to memory reserves 3956 * only to the thread with TIF_MEMDIE set 3957 */ 3958 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3959 return false; 3960 3961 return true; 3962 } 3963 3964 /* 3965 * Distinguish requests which really need access to full memory 3966 * reserves from oom victims which can live with a portion of it 3967 */ 3968 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3969 { 3970 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3971 return 0; 3972 if (gfp_mask & __GFP_MEMALLOC) 3973 return ALLOC_NO_WATERMARKS; 3974 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3975 return ALLOC_NO_WATERMARKS; 3976 if (!in_interrupt()) { 3977 if (current->flags & PF_MEMALLOC) 3978 return ALLOC_NO_WATERMARKS; 3979 else if (oom_reserves_allowed(current)) 3980 return ALLOC_OOM; 3981 } 3982 3983 return 0; 3984 } 3985 3986 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3987 { 3988 return !!__gfp_pfmemalloc_flags(gfp_mask); 3989 } 3990 3991 /* 3992 * Checks whether it makes sense to retry the reclaim to make a forward progress 3993 * for the given allocation request. 3994 * 3995 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3996 * without success, or when we couldn't even meet the watermark if we 3997 * reclaimed all remaining pages on the LRU lists. 3998 * 3999 * Returns true if a retry is viable or false to enter the oom path. 4000 */ 4001 static inline bool 4002 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4003 struct alloc_context *ac, int alloc_flags, 4004 bool did_some_progress, int *no_progress_loops) 4005 { 4006 struct zone *zone; 4007 struct zoneref *z; 4008 bool ret = false; 4009 4010 /* 4011 * Costly allocations might have made a progress but this doesn't mean 4012 * their order will become available due to high fragmentation so 4013 * always increment the no progress counter for them 4014 */ 4015 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4016 *no_progress_loops = 0; 4017 else 4018 (*no_progress_loops)++; 4019 4020 /* 4021 * Make sure we converge to OOM if we cannot make any progress 4022 * several times in the row. 4023 */ 4024 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4025 /* Before OOM, exhaust highatomic_reserve */ 4026 return unreserve_highatomic_pageblock(ac, true); 4027 } 4028 4029 /* 4030 * Keep reclaiming pages while there is a chance this will lead 4031 * somewhere. If none of the target zones can satisfy our allocation 4032 * request even if all reclaimable pages are considered then we are 4033 * screwed and have to go OOM. 4034 */ 4035 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4036 ac->nodemask) { 4037 unsigned long available; 4038 unsigned long reclaimable; 4039 unsigned long min_wmark = min_wmark_pages(zone); 4040 bool wmark; 4041 4042 available = reclaimable = zone_reclaimable_pages(zone); 4043 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4044 4045 /* 4046 * Would the allocation succeed if we reclaimed all 4047 * reclaimable pages? 4048 */ 4049 wmark = __zone_watermark_ok(zone, order, min_wmark, 4050 ac_classzone_idx(ac), alloc_flags, available); 4051 trace_reclaim_retry_zone(z, order, reclaimable, 4052 available, min_wmark, *no_progress_loops, wmark); 4053 if (wmark) { 4054 /* 4055 * If we didn't make any progress and have a lot of 4056 * dirty + writeback pages then we should wait for 4057 * an IO to complete to slow down the reclaim and 4058 * prevent from pre mature OOM 4059 */ 4060 if (!did_some_progress) { 4061 unsigned long write_pending; 4062 4063 write_pending = zone_page_state_snapshot(zone, 4064 NR_ZONE_WRITE_PENDING); 4065 4066 if (2 * write_pending > reclaimable) { 4067 congestion_wait(BLK_RW_ASYNC, HZ/10); 4068 return true; 4069 } 4070 } 4071 4072 ret = true; 4073 goto out; 4074 } 4075 } 4076 4077 out: 4078 /* 4079 * Memory allocation/reclaim might be called from a WQ context and the 4080 * current implementation of the WQ concurrency control doesn't 4081 * recognize that a particular WQ is congested if the worker thread is 4082 * looping without ever sleeping. Therefore we have to do a short sleep 4083 * here rather than calling cond_resched(). 4084 */ 4085 if (current->flags & PF_WQ_WORKER) 4086 schedule_timeout_uninterruptible(1); 4087 else 4088 cond_resched(); 4089 return ret; 4090 } 4091 4092 static inline bool 4093 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4094 { 4095 /* 4096 * It's possible that cpuset's mems_allowed and the nodemask from 4097 * mempolicy don't intersect. This should be normally dealt with by 4098 * policy_nodemask(), but it's possible to race with cpuset update in 4099 * such a way the check therein was true, and then it became false 4100 * before we got our cpuset_mems_cookie here. 4101 * This assumes that for all allocations, ac->nodemask can come only 4102 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4103 * when it does not intersect with the cpuset restrictions) or the 4104 * caller can deal with a violated nodemask. 4105 */ 4106 if (cpusets_enabled() && ac->nodemask && 4107 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4108 ac->nodemask = NULL; 4109 return true; 4110 } 4111 4112 /* 4113 * When updating a task's mems_allowed or mempolicy nodemask, it is 4114 * possible to race with parallel threads in such a way that our 4115 * allocation can fail while the mask is being updated. If we are about 4116 * to fail, check if the cpuset changed during allocation and if so, 4117 * retry. 4118 */ 4119 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4120 return true; 4121 4122 return false; 4123 } 4124 4125 static inline struct page * 4126 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4127 struct alloc_context *ac) 4128 { 4129 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4130 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4131 struct page *page = NULL; 4132 unsigned int alloc_flags; 4133 unsigned long did_some_progress; 4134 enum compact_priority compact_priority; 4135 enum compact_result compact_result; 4136 int compaction_retries; 4137 int no_progress_loops; 4138 unsigned int cpuset_mems_cookie; 4139 int reserve_flags; 4140 4141 /* 4142 * We also sanity check to catch abuse of atomic reserves being used by 4143 * callers that are not in atomic context. 4144 */ 4145 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4146 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4147 gfp_mask &= ~__GFP_ATOMIC; 4148 4149 retry_cpuset: 4150 compaction_retries = 0; 4151 no_progress_loops = 0; 4152 compact_priority = DEF_COMPACT_PRIORITY; 4153 cpuset_mems_cookie = read_mems_allowed_begin(); 4154 4155 /* 4156 * The fast path uses conservative alloc_flags to succeed only until 4157 * kswapd needs to be woken up, and to avoid the cost of setting up 4158 * alloc_flags precisely. So we do that now. 4159 */ 4160 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4161 4162 /* 4163 * We need to recalculate the starting point for the zonelist iterator 4164 * because we might have used different nodemask in the fast path, or 4165 * there was a cpuset modification and we are retrying - otherwise we 4166 * could end up iterating over non-eligible zones endlessly. 4167 */ 4168 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4169 ac->high_zoneidx, ac->nodemask); 4170 if (!ac->preferred_zoneref->zone) 4171 goto nopage; 4172 4173 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4174 wake_all_kswapds(order, gfp_mask, ac); 4175 4176 /* 4177 * The adjusted alloc_flags might result in immediate success, so try 4178 * that first 4179 */ 4180 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4181 if (page) 4182 goto got_pg; 4183 4184 /* 4185 * For costly allocations, try direct compaction first, as it's likely 4186 * that we have enough base pages and don't need to reclaim. For non- 4187 * movable high-order allocations, do that as well, as compaction will 4188 * try prevent permanent fragmentation by migrating from blocks of the 4189 * same migratetype. 4190 * Don't try this for allocations that are allowed to ignore 4191 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4192 */ 4193 if (can_direct_reclaim && 4194 (costly_order || 4195 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4196 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4197 page = __alloc_pages_direct_compact(gfp_mask, order, 4198 alloc_flags, ac, 4199 INIT_COMPACT_PRIORITY, 4200 &compact_result); 4201 if (page) 4202 goto got_pg; 4203 4204 /* 4205 * Checks for costly allocations with __GFP_NORETRY, which 4206 * includes THP page fault allocations 4207 */ 4208 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4209 /* 4210 * If compaction is deferred for high-order allocations, 4211 * it is because sync compaction recently failed. If 4212 * this is the case and the caller requested a THP 4213 * allocation, we do not want to heavily disrupt the 4214 * system, so we fail the allocation instead of entering 4215 * direct reclaim. 4216 */ 4217 if (compact_result == COMPACT_DEFERRED) 4218 goto nopage; 4219 4220 /* 4221 * Looks like reclaim/compaction is worth trying, but 4222 * sync compaction could be very expensive, so keep 4223 * using async compaction. 4224 */ 4225 compact_priority = INIT_COMPACT_PRIORITY; 4226 } 4227 } 4228 4229 retry: 4230 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4231 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4232 wake_all_kswapds(order, gfp_mask, ac); 4233 4234 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4235 if (reserve_flags) 4236 alloc_flags = reserve_flags; 4237 4238 /* 4239 * Reset the nodemask and zonelist iterators if memory policies can be 4240 * ignored. These allocations are high priority and system rather than 4241 * user oriented. 4242 */ 4243 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4244 ac->nodemask = NULL; 4245 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4246 ac->high_zoneidx, ac->nodemask); 4247 } 4248 4249 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4250 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4251 if (page) 4252 goto got_pg; 4253 4254 /* Caller is not willing to reclaim, we can't balance anything */ 4255 if (!can_direct_reclaim) 4256 goto nopage; 4257 4258 /* Avoid recursion of direct reclaim */ 4259 if (current->flags & PF_MEMALLOC) 4260 goto nopage; 4261 4262 /* Try direct reclaim and then allocating */ 4263 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4264 &did_some_progress); 4265 if (page) 4266 goto got_pg; 4267 4268 /* Try direct compaction and then allocating */ 4269 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4270 compact_priority, &compact_result); 4271 if (page) 4272 goto got_pg; 4273 4274 /* Do not loop if specifically requested */ 4275 if (gfp_mask & __GFP_NORETRY) 4276 goto nopage; 4277 4278 /* 4279 * Do not retry costly high order allocations unless they are 4280 * __GFP_RETRY_MAYFAIL 4281 */ 4282 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4283 goto nopage; 4284 4285 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4286 did_some_progress > 0, &no_progress_loops)) 4287 goto retry; 4288 4289 /* 4290 * It doesn't make any sense to retry for the compaction if the order-0 4291 * reclaim is not able to make any progress because the current 4292 * implementation of the compaction depends on the sufficient amount 4293 * of free memory (see __compaction_suitable) 4294 */ 4295 if (did_some_progress > 0 && 4296 should_compact_retry(ac, order, alloc_flags, 4297 compact_result, &compact_priority, 4298 &compaction_retries)) 4299 goto retry; 4300 4301 4302 /* Deal with possible cpuset update races before we start OOM killing */ 4303 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4304 goto retry_cpuset; 4305 4306 /* Reclaim has failed us, start killing things */ 4307 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4308 if (page) 4309 goto got_pg; 4310 4311 /* Avoid allocations with no watermarks from looping endlessly */ 4312 if (tsk_is_oom_victim(current) && 4313 (alloc_flags == ALLOC_OOM || 4314 (gfp_mask & __GFP_NOMEMALLOC))) 4315 goto nopage; 4316 4317 /* Retry as long as the OOM killer is making progress */ 4318 if (did_some_progress) { 4319 no_progress_loops = 0; 4320 goto retry; 4321 } 4322 4323 nopage: 4324 /* Deal with possible cpuset update races before we fail */ 4325 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4326 goto retry_cpuset; 4327 4328 /* 4329 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4330 * we always retry 4331 */ 4332 if (gfp_mask & __GFP_NOFAIL) { 4333 /* 4334 * All existing users of the __GFP_NOFAIL are blockable, so warn 4335 * of any new users that actually require GFP_NOWAIT 4336 */ 4337 if (WARN_ON_ONCE(!can_direct_reclaim)) 4338 goto fail; 4339 4340 /* 4341 * PF_MEMALLOC request from this context is rather bizarre 4342 * because we cannot reclaim anything and only can loop waiting 4343 * for somebody to do a work for us 4344 */ 4345 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4346 4347 /* 4348 * non failing costly orders are a hard requirement which we 4349 * are not prepared for much so let's warn about these users 4350 * so that we can identify them and convert them to something 4351 * else. 4352 */ 4353 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4354 4355 /* 4356 * Help non-failing allocations by giving them access to memory 4357 * reserves but do not use ALLOC_NO_WATERMARKS because this 4358 * could deplete whole memory reserves which would just make 4359 * the situation worse 4360 */ 4361 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4362 if (page) 4363 goto got_pg; 4364 4365 cond_resched(); 4366 goto retry; 4367 } 4368 fail: 4369 warn_alloc(gfp_mask, ac->nodemask, 4370 "page allocation failure: order:%u", order); 4371 got_pg: 4372 return page; 4373 } 4374 4375 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4376 int preferred_nid, nodemask_t *nodemask, 4377 struct alloc_context *ac, gfp_t *alloc_mask, 4378 unsigned int *alloc_flags) 4379 { 4380 ac->high_zoneidx = gfp_zone(gfp_mask); 4381 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4382 ac->nodemask = nodemask; 4383 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4384 4385 if (cpusets_enabled()) { 4386 *alloc_mask |= __GFP_HARDWALL; 4387 if (!ac->nodemask) 4388 ac->nodemask = &cpuset_current_mems_allowed; 4389 else 4390 *alloc_flags |= ALLOC_CPUSET; 4391 } 4392 4393 fs_reclaim_acquire(gfp_mask); 4394 fs_reclaim_release(gfp_mask); 4395 4396 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4397 4398 if (should_fail_alloc_page(gfp_mask, order)) 4399 return false; 4400 4401 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4402 *alloc_flags |= ALLOC_CMA; 4403 4404 return true; 4405 } 4406 4407 /* Determine whether to spread dirty pages and what the first usable zone */ 4408 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4409 { 4410 /* Dirty zone balancing only done in the fast path */ 4411 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4412 4413 /* 4414 * The preferred zone is used for statistics but crucially it is 4415 * also used as the starting point for the zonelist iterator. It 4416 * may get reset for allocations that ignore memory policies. 4417 */ 4418 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4419 ac->high_zoneidx, ac->nodemask); 4420 } 4421 4422 /* 4423 * This is the 'heart' of the zoned buddy allocator. 4424 */ 4425 struct page * 4426 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4427 nodemask_t *nodemask) 4428 { 4429 struct page *page; 4430 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4431 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4432 struct alloc_context ac = { }; 4433 4434 /* 4435 * There are several places where we assume that the order value is sane 4436 * so bail out early if the request is out of bound. 4437 */ 4438 if (unlikely(order >= MAX_ORDER)) { 4439 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4440 return NULL; 4441 } 4442 4443 gfp_mask &= gfp_allowed_mask; 4444 alloc_mask = gfp_mask; 4445 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4446 return NULL; 4447 4448 finalise_ac(gfp_mask, &ac); 4449 4450 /* 4451 * Forbid the first pass from falling back to types that fragment 4452 * memory until all local zones are considered. 4453 */ 4454 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone); 4455 4456 /* First allocation attempt */ 4457 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4458 if (likely(page)) 4459 goto out; 4460 4461 /* 4462 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4463 * resp. GFP_NOIO which has to be inherited for all allocation requests 4464 * from a particular context which has been marked by 4465 * memalloc_no{fs,io}_{save,restore}. 4466 */ 4467 alloc_mask = current_gfp_context(gfp_mask); 4468 ac.spread_dirty_pages = false; 4469 4470 /* 4471 * Restore the original nodemask if it was potentially replaced with 4472 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4473 */ 4474 if (unlikely(ac.nodemask != nodemask)) 4475 ac.nodemask = nodemask; 4476 4477 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4478 4479 out: 4480 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4481 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4482 __free_pages(page, order); 4483 page = NULL; 4484 } 4485 4486 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4487 4488 return page; 4489 } 4490 EXPORT_SYMBOL(__alloc_pages_nodemask); 4491 4492 /* 4493 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4494 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4495 * you need to access high mem. 4496 */ 4497 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4498 { 4499 struct page *page; 4500 4501 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4502 if (!page) 4503 return 0; 4504 return (unsigned long) page_address(page); 4505 } 4506 EXPORT_SYMBOL(__get_free_pages); 4507 4508 unsigned long get_zeroed_page(gfp_t gfp_mask) 4509 { 4510 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4511 } 4512 EXPORT_SYMBOL(get_zeroed_page); 4513 4514 static inline void free_the_page(struct page *page, unsigned int order) 4515 { 4516 if (order == 0) /* Via pcp? */ 4517 free_unref_page(page); 4518 else 4519 __free_pages_ok(page, order); 4520 } 4521 4522 void __free_pages(struct page *page, unsigned int order) 4523 { 4524 if (put_page_testzero(page)) 4525 free_the_page(page, order); 4526 } 4527 EXPORT_SYMBOL(__free_pages); 4528 4529 void free_pages(unsigned long addr, unsigned int order) 4530 { 4531 if (addr != 0) { 4532 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4533 __free_pages(virt_to_page((void *)addr), order); 4534 } 4535 } 4536 4537 EXPORT_SYMBOL(free_pages); 4538 4539 /* 4540 * Page Fragment: 4541 * An arbitrary-length arbitrary-offset area of memory which resides 4542 * within a 0 or higher order page. Multiple fragments within that page 4543 * are individually refcounted, in the page's reference counter. 4544 * 4545 * The page_frag functions below provide a simple allocation framework for 4546 * page fragments. This is used by the network stack and network device 4547 * drivers to provide a backing region of memory for use as either an 4548 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4549 */ 4550 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4551 gfp_t gfp_mask) 4552 { 4553 struct page *page = NULL; 4554 gfp_t gfp = gfp_mask; 4555 4556 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4557 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4558 __GFP_NOMEMALLOC; 4559 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4560 PAGE_FRAG_CACHE_MAX_ORDER); 4561 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4562 #endif 4563 if (unlikely(!page)) 4564 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4565 4566 nc->va = page ? page_address(page) : NULL; 4567 4568 return page; 4569 } 4570 4571 void __page_frag_cache_drain(struct page *page, unsigned int count) 4572 { 4573 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4574 4575 if (page_ref_sub_and_test(page, count)) 4576 free_the_page(page, compound_order(page)); 4577 } 4578 EXPORT_SYMBOL(__page_frag_cache_drain); 4579 4580 void *page_frag_alloc(struct page_frag_cache *nc, 4581 unsigned int fragsz, gfp_t gfp_mask) 4582 { 4583 unsigned int size = PAGE_SIZE; 4584 struct page *page; 4585 int offset; 4586 4587 if (unlikely(!nc->va)) { 4588 refill: 4589 page = __page_frag_cache_refill(nc, gfp_mask); 4590 if (!page) 4591 return NULL; 4592 4593 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4594 /* if size can vary use size else just use PAGE_SIZE */ 4595 size = nc->size; 4596 #endif 4597 /* Even if we own the page, we do not use atomic_set(). 4598 * This would break get_page_unless_zero() users. 4599 */ 4600 page_ref_add(page, size - 1); 4601 4602 /* reset page count bias and offset to start of new frag */ 4603 nc->pfmemalloc = page_is_pfmemalloc(page); 4604 nc->pagecnt_bias = size; 4605 nc->offset = size; 4606 } 4607 4608 offset = nc->offset - fragsz; 4609 if (unlikely(offset < 0)) { 4610 page = virt_to_page(nc->va); 4611 4612 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4613 goto refill; 4614 4615 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4616 /* if size can vary use size else just use PAGE_SIZE */ 4617 size = nc->size; 4618 #endif 4619 /* OK, page count is 0, we can safely set it */ 4620 set_page_count(page, size); 4621 4622 /* reset page count bias and offset to start of new frag */ 4623 nc->pagecnt_bias = size; 4624 offset = size - fragsz; 4625 } 4626 4627 nc->pagecnt_bias--; 4628 nc->offset = offset; 4629 4630 return nc->va + offset; 4631 } 4632 EXPORT_SYMBOL(page_frag_alloc); 4633 4634 /* 4635 * Frees a page fragment allocated out of either a compound or order 0 page. 4636 */ 4637 void page_frag_free(void *addr) 4638 { 4639 struct page *page = virt_to_head_page(addr); 4640 4641 if (unlikely(put_page_testzero(page))) 4642 free_the_page(page, compound_order(page)); 4643 } 4644 EXPORT_SYMBOL(page_frag_free); 4645 4646 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4647 size_t size) 4648 { 4649 if (addr) { 4650 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4651 unsigned long used = addr + PAGE_ALIGN(size); 4652 4653 split_page(virt_to_page((void *)addr), order); 4654 while (used < alloc_end) { 4655 free_page(used); 4656 used += PAGE_SIZE; 4657 } 4658 } 4659 return (void *)addr; 4660 } 4661 4662 /** 4663 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4664 * @size: the number of bytes to allocate 4665 * @gfp_mask: GFP flags for the allocation 4666 * 4667 * This function is similar to alloc_pages(), except that it allocates the 4668 * minimum number of pages to satisfy the request. alloc_pages() can only 4669 * allocate memory in power-of-two pages. 4670 * 4671 * This function is also limited by MAX_ORDER. 4672 * 4673 * Memory allocated by this function must be released by free_pages_exact(). 4674 */ 4675 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4676 { 4677 unsigned int order = get_order(size); 4678 unsigned long addr; 4679 4680 addr = __get_free_pages(gfp_mask, order); 4681 return make_alloc_exact(addr, order, size); 4682 } 4683 EXPORT_SYMBOL(alloc_pages_exact); 4684 4685 /** 4686 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4687 * pages on a node. 4688 * @nid: the preferred node ID where memory should be allocated 4689 * @size: the number of bytes to allocate 4690 * @gfp_mask: GFP flags for the allocation 4691 * 4692 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4693 * back. 4694 */ 4695 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4696 { 4697 unsigned int order = get_order(size); 4698 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4699 if (!p) 4700 return NULL; 4701 return make_alloc_exact((unsigned long)page_address(p), order, size); 4702 } 4703 4704 /** 4705 * free_pages_exact - release memory allocated via alloc_pages_exact() 4706 * @virt: the value returned by alloc_pages_exact. 4707 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4708 * 4709 * Release the memory allocated by a previous call to alloc_pages_exact. 4710 */ 4711 void free_pages_exact(void *virt, size_t size) 4712 { 4713 unsigned long addr = (unsigned long)virt; 4714 unsigned long end = addr + PAGE_ALIGN(size); 4715 4716 while (addr < end) { 4717 free_page(addr); 4718 addr += PAGE_SIZE; 4719 } 4720 } 4721 EXPORT_SYMBOL(free_pages_exact); 4722 4723 /** 4724 * nr_free_zone_pages - count number of pages beyond high watermark 4725 * @offset: The zone index of the highest zone 4726 * 4727 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4728 * high watermark within all zones at or below a given zone index. For each 4729 * zone, the number of pages is calculated as: 4730 * 4731 * nr_free_zone_pages = managed_pages - high_pages 4732 */ 4733 static unsigned long nr_free_zone_pages(int offset) 4734 { 4735 struct zoneref *z; 4736 struct zone *zone; 4737 4738 /* Just pick one node, since fallback list is circular */ 4739 unsigned long sum = 0; 4740 4741 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4742 4743 for_each_zone_zonelist(zone, z, zonelist, offset) { 4744 unsigned long size = zone_managed_pages(zone); 4745 unsigned long high = high_wmark_pages(zone); 4746 if (size > high) 4747 sum += size - high; 4748 } 4749 4750 return sum; 4751 } 4752 4753 /** 4754 * nr_free_buffer_pages - count number of pages beyond high watermark 4755 * 4756 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4757 * watermark within ZONE_DMA and ZONE_NORMAL. 4758 */ 4759 unsigned long nr_free_buffer_pages(void) 4760 { 4761 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4762 } 4763 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4764 4765 /** 4766 * nr_free_pagecache_pages - count number of pages beyond high watermark 4767 * 4768 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4769 * high watermark within all zones. 4770 */ 4771 unsigned long nr_free_pagecache_pages(void) 4772 { 4773 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4774 } 4775 4776 static inline void show_node(struct zone *zone) 4777 { 4778 if (IS_ENABLED(CONFIG_NUMA)) 4779 printk("Node %d ", zone_to_nid(zone)); 4780 } 4781 4782 long si_mem_available(void) 4783 { 4784 long available; 4785 unsigned long pagecache; 4786 unsigned long wmark_low = 0; 4787 unsigned long pages[NR_LRU_LISTS]; 4788 unsigned long reclaimable; 4789 struct zone *zone; 4790 int lru; 4791 4792 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4793 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4794 4795 for_each_zone(zone) 4796 wmark_low += zone->watermark[WMARK_LOW]; 4797 4798 /* 4799 * Estimate the amount of memory available for userspace allocations, 4800 * without causing swapping. 4801 */ 4802 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 4803 4804 /* 4805 * Not all the page cache can be freed, otherwise the system will 4806 * start swapping. Assume at least half of the page cache, or the 4807 * low watermark worth of cache, needs to stay. 4808 */ 4809 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4810 pagecache -= min(pagecache / 2, wmark_low); 4811 available += pagecache; 4812 4813 /* 4814 * Part of the reclaimable slab and other kernel memory consists of 4815 * items that are in use, and cannot be freed. Cap this estimate at the 4816 * low watermark. 4817 */ 4818 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + 4819 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 4820 available += reclaimable - min(reclaimable / 2, wmark_low); 4821 4822 if (available < 0) 4823 available = 0; 4824 return available; 4825 } 4826 EXPORT_SYMBOL_GPL(si_mem_available); 4827 4828 void si_meminfo(struct sysinfo *val) 4829 { 4830 val->totalram = totalram_pages(); 4831 val->sharedram = global_node_page_state(NR_SHMEM); 4832 val->freeram = global_zone_page_state(NR_FREE_PAGES); 4833 val->bufferram = nr_blockdev_pages(); 4834 val->totalhigh = totalhigh_pages(); 4835 val->freehigh = nr_free_highpages(); 4836 val->mem_unit = PAGE_SIZE; 4837 } 4838 4839 EXPORT_SYMBOL(si_meminfo); 4840 4841 #ifdef CONFIG_NUMA 4842 void si_meminfo_node(struct sysinfo *val, int nid) 4843 { 4844 int zone_type; /* needs to be signed */ 4845 unsigned long managed_pages = 0; 4846 unsigned long managed_highpages = 0; 4847 unsigned long free_highpages = 0; 4848 pg_data_t *pgdat = NODE_DATA(nid); 4849 4850 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4851 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 4852 val->totalram = managed_pages; 4853 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4854 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4855 #ifdef CONFIG_HIGHMEM 4856 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4857 struct zone *zone = &pgdat->node_zones[zone_type]; 4858 4859 if (is_highmem(zone)) { 4860 managed_highpages += zone_managed_pages(zone); 4861 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4862 } 4863 } 4864 val->totalhigh = managed_highpages; 4865 val->freehigh = free_highpages; 4866 #else 4867 val->totalhigh = managed_highpages; 4868 val->freehigh = free_highpages; 4869 #endif 4870 val->mem_unit = PAGE_SIZE; 4871 } 4872 #endif 4873 4874 /* 4875 * Determine whether the node should be displayed or not, depending on whether 4876 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4877 */ 4878 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 4879 { 4880 if (!(flags & SHOW_MEM_FILTER_NODES)) 4881 return false; 4882 4883 /* 4884 * no node mask - aka implicit memory numa policy. Do not bother with 4885 * the synchronization - read_mems_allowed_begin - because we do not 4886 * have to be precise here. 4887 */ 4888 if (!nodemask) 4889 nodemask = &cpuset_current_mems_allowed; 4890 4891 return !node_isset(nid, *nodemask); 4892 } 4893 4894 #define K(x) ((x) << (PAGE_SHIFT-10)) 4895 4896 static void show_migration_types(unsigned char type) 4897 { 4898 static const char types[MIGRATE_TYPES] = { 4899 [MIGRATE_UNMOVABLE] = 'U', 4900 [MIGRATE_MOVABLE] = 'M', 4901 [MIGRATE_RECLAIMABLE] = 'E', 4902 [MIGRATE_HIGHATOMIC] = 'H', 4903 #ifdef CONFIG_CMA 4904 [MIGRATE_CMA] = 'C', 4905 #endif 4906 #ifdef CONFIG_MEMORY_ISOLATION 4907 [MIGRATE_ISOLATE] = 'I', 4908 #endif 4909 }; 4910 char tmp[MIGRATE_TYPES + 1]; 4911 char *p = tmp; 4912 int i; 4913 4914 for (i = 0; i < MIGRATE_TYPES; i++) { 4915 if (type & (1 << i)) 4916 *p++ = types[i]; 4917 } 4918 4919 *p = '\0'; 4920 printk(KERN_CONT "(%s) ", tmp); 4921 } 4922 4923 /* 4924 * Show free area list (used inside shift_scroll-lock stuff) 4925 * We also calculate the percentage fragmentation. We do this by counting the 4926 * memory on each free list with the exception of the first item on the list. 4927 * 4928 * Bits in @filter: 4929 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4930 * cpuset. 4931 */ 4932 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 4933 { 4934 unsigned long free_pcp = 0; 4935 int cpu; 4936 struct zone *zone; 4937 pg_data_t *pgdat; 4938 4939 for_each_populated_zone(zone) { 4940 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4941 continue; 4942 4943 for_each_online_cpu(cpu) 4944 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4945 } 4946 4947 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4948 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4949 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4950 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4951 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4952 " free:%lu free_pcp:%lu free_cma:%lu\n", 4953 global_node_page_state(NR_ACTIVE_ANON), 4954 global_node_page_state(NR_INACTIVE_ANON), 4955 global_node_page_state(NR_ISOLATED_ANON), 4956 global_node_page_state(NR_ACTIVE_FILE), 4957 global_node_page_state(NR_INACTIVE_FILE), 4958 global_node_page_state(NR_ISOLATED_FILE), 4959 global_node_page_state(NR_UNEVICTABLE), 4960 global_node_page_state(NR_FILE_DIRTY), 4961 global_node_page_state(NR_WRITEBACK), 4962 global_node_page_state(NR_UNSTABLE_NFS), 4963 global_node_page_state(NR_SLAB_RECLAIMABLE), 4964 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 4965 global_node_page_state(NR_FILE_MAPPED), 4966 global_node_page_state(NR_SHMEM), 4967 global_zone_page_state(NR_PAGETABLE), 4968 global_zone_page_state(NR_BOUNCE), 4969 global_zone_page_state(NR_FREE_PAGES), 4970 free_pcp, 4971 global_zone_page_state(NR_FREE_CMA_PAGES)); 4972 4973 for_each_online_pgdat(pgdat) { 4974 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 4975 continue; 4976 4977 printk("Node %d" 4978 " active_anon:%lukB" 4979 " inactive_anon:%lukB" 4980 " active_file:%lukB" 4981 " inactive_file:%lukB" 4982 " unevictable:%lukB" 4983 " isolated(anon):%lukB" 4984 " isolated(file):%lukB" 4985 " mapped:%lukB" 4986 " dirty:%lukB" 4987 " writeback:%lukB" 4988 " shmem:%lukB" 4989 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4990 " shmem_thp: %lukB" 4991 " shmem_pmdmapped: %lukB" 4992 " anon_thp: %lukB" 4993 #endif 4994 " writeback_tmp:%lukB" 4995 " unstable:%lukB" 4996 " all_unreclaimable? %s" 4997 "\n", 4998 pgdat->node_id, 4999 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5000 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5001 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5002 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5003 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5004 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5005 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5006 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5007 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5008 K(node_page_state(pgdat, NR_WRITEBACK)), 5009 K(node_page_state(pgdat, NR_SHMEM)), 5010 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5011 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5012 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5013 * HPAGE_PMD_NR), 5014 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5015 #endif 5016 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5017 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 5018 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5019 "yes" : "no"); 5020 } 5021 5022 for_each_populated_zone(zone) { 5023 int i; 5024 5025 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5026 continue; 5027 5028 free_pcp = 0; 5029 for_each_online_cpu(cpu) 5030 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5031 5032 show_node(zone); 5033 printk(KERN_CONT 5034 "%s" 5035 " free:%lukB" 5036 " min:%lukB" 5037 " low:%lukB" 5038 " high:%lukB" 5039 " active_anon:%lukB" 5040 " inactive_anon:%lukB" 5041 " active_file:%lukB" 5042 " inactive_file:%lukB" 5043 " unevictable:%lukB" 5044 " writepending:%lukB" 5045 " present:%lukB" 5046 " managed:%lukB" 5047 " mlocked:%lukB" 5048 " kernel_stack:%lukB" 5049 " pagetables:%lukB" 5050 " bounce:%lukB" 5051 " free_pcp:%lukB" 5052 " local_pcp:%ukB" 5053 " free_cma:%lukB" 5054 "\n", 5055 zone->name, 5056 K(zone_page_state(zone, NR_FREE_PAGES)), 5057 K(min_wmark_pages(zone)), 5058 K(low_wmark_pages(zone)), 5059 K(high_wmark_pages(zone)), 5060 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5061 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5062 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5063 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5064 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5065 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5066 K(zone->present_pages), 5067 K(zone_managed_pages(zone)), 5068 K(zone_page_state(zone, NR_MLOCK)), 5069 zone_page_state(zone, NR_KERNEL_STACK_KB), 5070 K(zone_page_state(zone, NR_PAGETABLE)), 5071 K(zone_page_state(zone, NR_BOUNCE)), 5072 K(free_pcp), 5073 K(this_cpu_read(zone->pageset->pcp.count)), 5074 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5075 printk("lowmem_reserve[]:"); 5076 for (i = 0; i < MAX_NR_ZONES; i++) 5077 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5078 printk(KERN_CONT "\n"); 5079 } 5080 5081 for_each_populated_zone(zone) { 5082 unsigned int order; 5083 unsigned long nr[MAX_ORDER], flags, total = 0; 5084 unsigned char types[MAX_ORDER]; 5085 5086 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5087 continue; 5088 show_node(zone); 5089 printk(KERN_CONT "%s: ", zone->name); 5090 5091 spin_lock_irqsave(&zone->lock, flags); 5092 for (order = 0; order < MAX_ORDER; order++) { 5093 struct free_area *area = &zone->free_area[order]; 5094 int type; 5095 5096 nr[order] = area->nr_free; 5097 total += nr[order] << order; 5098 5099 types[order] = 0; 5100 for (type = 0; type < MIGRATE_TYPES; type++) { 5101 if (!list_empty(&area->free_list[type])) 5102 types[order] |= 1 << type; 5103 } 5104 } 5105 spin_unlock_irqrestore(&zone->lock, flags); 5106 for (order = 0; order < MAX_ORDER; order++) { 5107 printk(KERN_CONT "%lu*%lukB ", 5108 nr[order], K(1UL) << order); 5109 if (nr[order]) 5110 show_migration_types(types[order]); 5111 } 5112 printk(KERN_CONT "= %lukB\n", K(total)); 5113 } 5114 5115 hugetlb_show_meminfo(); 5116 5117 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5118 5119 show_swap_cache_info(); 5120 } 5121 5122 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5123 { 5124 zoneref->zone = zone; 5125 zoneref->zone_idx = zone_idx(zone); 5126 } 5127 5128 /* 5129 * Builds allocation fallback zone lists. 5130 * 5131 * Add all populated zones of a node to the zonelist. 5132 */ 5133 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5134 { 5135 struct zone *zone; 5136 enum zone_type zone_type = MAX_NR_ZONES; 5137 int nr_zones = 0; 5138 5139 do { 5140 zone_type--; 5141 zone = pgdat->node_zones + zone_type; 5142 if (managed_zone(zone)) { 5143 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5144 check_highest_zone(zone_type); 5145 } 5146 } while (zone_type); 5147 5148 return nr_zones; 5149 } 5150 5151 #ifdef CONFIG_NUMA 5152 5153 static int __parse_numa_zonelist_order(char *s) 5154 { 5155 /* 5156 * We used to support different zonlists modes but they turned 5157 * out to be just not useful. Let's keep the warning in place 5158 * if somebody still use the cmd line parameter so that we do 5159 * not fail it silently 5160 */ 5161 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5162 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5163 return -EINVAL; 5164 } 5165 return 0; 5166 } 5167 5168 static __init int setup_numa_zonelist_order(char *s) 5169 { 5170 if (!s) 5171 return 0; 5172 5173 return __parse_numa_zonelist_order(s); 5174 } 5175 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5176 5177 char numa_zonelist_order[] = "Node"; 5178 5179 /* 5180 * sysctl handler for numa_zonelist_order 5181 */ 5182 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5183 void __user *buffer, size_t *length, 5184 loff_t *ppos) 5185 { 5186 char *str; 5187 int ret; 5188 5189 if (!write) 5190 return proc_dostring(table, write, buffer, length, ppos); 5191 str = memdup_user_nul(buffer, 16); 5192 if (IS_ERR(str)) 5193 return PTR_ERR(str); 5194 5195 ret = __parse_numa_zonelist_order(str); 5196 kfree(str); 5197 return ret; 5198 } 5199 5200 5201 #define MAX_NODE_LOAD (nr_online_nodes) 5202 static int node_load[MAX_NUMNODES]; 5203 5204 /** 5205 * find_next_best_node - find the next node that should appear in a given node's fallback list 5206 * @node: node whose fallback list we're appending 5207 * @used_node_mask: nodemask_t of already used nodes 5208 * 5209 * We use a number of factors to determine which is the next node that should 5210 * appear on a given node's fallback list. The node should not have appeared 5211 * already in @node's fallback list, and it should be the next closest node 5212 * according to the distance array (which contains arbitrary distance values 5213 * from each node to each node in the system), and should also prefer nodes 5214 * with no CPUs, since presumably they'll have very little allocation pressure 5215 * on them otherwise. 5216 * It returns -1 if no node is found. 5217 */ 5218 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5219 { 5220 int n, val; 5221 int min_val = INT_MAX; 5222 int best_node = NUMA_NO_NODE; 5223 const struct cpumask *tmp = cpumask_of_node(0); 5224 5225 /* Use the local node if we haven't already */ 5226 if (!node_isset(node, *used_node_mask)) { 5227 node_set(node, *used_node_mask); 5228 return node; 5229 } 5230 5231 for_each_node_state(n, N_MEMORY) { 5232 5233 /* Don't want a node to appear more than once */ 5234 if (node_isset(n, *used_node_mask)) 5235 continue; 5236 5237 /* Use the distance array to find the distance */ 5238 val = node_distance(node, n); 5239 5240 /* Penalize nodes under us ("prefer the next node") */ 5241 val += (n < node); 5242 5243 /* Give preference to headless and unused nodes */ 5244 tmp = cpumask_of_node(n); 5245 if (!cpumask_empty(tmp)) 5246 val += PENALTY_FOR_NODE_WITH_CPUS; 5247 5248 /* Slight preference for less loaded node */ 5249 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5250 val += node_load[n]; 5251 5252 if (val < min_val) { 5253 min_val = val; 5254 best_node = n; 5255 } 5256 } 5257 5258 if (best_node >= 0) 5259 node_set(best_node, *used_node_mask); 5260 5261 return best_node; 5262 } 5263 5264 5265 /* 5266 * Build zonelists ordered by node and zones within node. 5267 * This results in maximum locality--normal zone overflows into local 5268 * DMA zone, if any--but risks exhausting DMA zone. 5269 */ 5270 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5271 unsigned nr_nodes) 5272 { 5273 struct zoneref *zonerefs; 5274 int i; 5275 5276 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5277 5278 for (i = 0; i < nr_nodes; i++) { 5279 int nr_zones; 5280 5281 pg_data_t *node = NODE_DATA(node_order[i]); 5282 5283 nr_zones = build_zonerefs_node(node, zonerefs); 5284 zonerefs += nr_zones; 5285 } 5286 zonerefs->zone = NULL; 5287 zonerefs->zone_idx = 0; 5288 } 5289 5290 /* 5291 * Build gfp_thisnode zonelists 5292 */ 5293 static void build_thisnode_zonelists(pg_data_t *pgdat) 5294 { 5295 struct zoneref *zonerefs; 5296 int nr_zones; 5297 5298 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5299 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5300 zonerefs += nr_zones; 5301 zonerefs->zone = NULL; 5302 zonerefs->zone_idx = 0; 5303 } 5304 5305 /* 5306 * Build zonelists ordered by zone and nodes within zones. 5307 * This results in conserving DMA zone[s] until all Normal memory is 5308 * exhausted, but results in overflowing to remote node while memory 5309 * may still exist in local DMA zone. 5310 */ 5311 5312 static void build_zonelists(pg_data_t *pgdat) 5313 { 5314 static int node_order[MAX_NUMNODES]; 5315 int node, load, nr_nodes = 0; 5316 nodemask_t used_mask; 5317 int local_node, prev_node; 5318 5319 /* NUMA-aware ordering of nodes */ 5320 local_node = pgdat->node_id; 5321 load = nr_online_nodes; 5322 prev_node = local_node; 5323 nodes_clear(used_mask); 5324 5325 memset(node_order, 0, sizeof(node_order)); 5326 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5327 /* 5328 * We don't want to pressure a particular node. 5329 * So adding penalty to the first node in same 5330 * distance group to make it round-robin. 5331 */ 5332 if (node_distance(local_node, node) != 5333 node_distance(local_node, prev_node)) 5334 node_load[node] = load; 5335 5336 node_order[nr_nodes++] = node; 5337 prev_node = node; 5338 load--; 5339 } 5340 5341 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5342 build_thisnode_zonelists(pgdat); 5343 } 5344 5345 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5346 /* 5347 * Return node id of node used for "local" allocations. 5348 * I.e., first node id of first zone in arg node's generic zonelist. 5349 * Used for initializing percpu 'numa_mem', which is used primarily 5350 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5351 */ 5352 int local_memory_node(int node) 5353 { 5354 struct zoneref *z; 5355 5356 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5357 gfp_zone(GFP_KERNEL), 5358 NULL); 5359 return zone_to_nid(z->zone); 5360 } 5361 #endif 5362 5363 static void setup_min_unmapped_ratio(void); 5364 static void setup_min_slab_ratio(void); 5365 #else /* CONFIG_NUMA */ 5366 5367 static void build_zonelists(pg_data_t *pgdat) 5368 { 5369 int node, local_node; 5370 struct zoneref *zonerefs; 5371 int nr_zones; 5372 5373 local_node = pgdat->node_id; 5374 5375 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5376 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5377 zonerefs += nr_zones; 5378 5379 /* 5380 * Now we build the zonelist so that it contains the zones 5381 * of all the other nodes. 5382 * We don't want to pressure a particular node, so when 5383 * building the zones for node N, we make sure that the 5384 * zones coming right after the local ones are those from 5385 * node N+1 (modulo N) 5386 */ 5387 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5388 if (!node_online(node)) 5389 continue; 5390 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5391 zonerefs += nr_zones; 5392 } 5393 for (node = 0; node < local_node; node++) { 5394 if (!node_online(node)) 5395 continue; 5396 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5397 zonerefs += nr_zones; 5398 } 5399 5400 zonerefs->zone = NULL; 5401 zonerefs->zone_idx = 0; 5402 } 5403 5404 #endif /* CONFIG_NUMA */ 5405 5406 /* 5407 * Boot pageset table. One per cpu which is going to be used for all 5408 * zones and all nodes. The parameters will be set in such a way 5409 * that an item put on a list will immediately be handed over to 5410 * the buddy list. This is safe since pageset manipulation is done 5411 * with interrupts disabled. 5412 * 5413 * The boot_pagesets must be kept even after bootup is complete for 5414 * unused processors and/or zones. They do play a role for bootstrapping 5415 * hotplugged processors. 5416 * 5417 * zoneinfo_show() and maybe other functions do 5418 * not check if the processor is online before following the pageset pointer. 5419 * Other parts of the kernel may not check if the zone is available. 5420 */ 5421 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5422 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5423 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5424 5425 static void __build_all_zonelists(void *data) 5426 { 5427 int nid; 5428 int __maybe_unused cpu; 5429 pg_data_t *self = data; 5430 static DEFINE_SPINLOCK(lock); 5431 5432 spin_lock(&lock); 5433 5434 #ifdef CONFIG_NUMA 5435 memset(node_load, 0, sizeof(node_load)); 5436 #endif 5437 5438 /* 5439 * This node is hotadded and no memory is yet present. So just 5440 * building zonelists is fine - no need to touch other nodes. 5441 */ 5442 if (self && !node_online(self->node_id)) { 5443 build_zonelists(self); 5444 } else { 5445 for_each_online_node(nid) { 5446 pg_data_t *pgdat = NODE_DATA(nid); 5447 5448 build_zonelists(pgdat); 5449 } 5450 5451 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5452 /* 5453 * We now know the "local memory node" for each node-- 5454 * i.e., the node of the first zone in the generic zonelist. 5455 * Set up numa_mem percpu variable for on-line cpus. During 5456 * boot, only the boot cpu should be on-line; we'll init the 5457 * secondary cpus' numa_mem as they come on-line. During 5458 * node/memory hotplug, we'll fixup all on-line cpus. 5459 */ 5460 for_each_online_cpu(cpu) 5461 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5462 #endif 5463 } 5464 5465 spin_unlock(&lock); 5466 } 5467 5468 static noinline void __init 5469 build_all_zonelists_init(void) 5470 { 5471 int cpu; 5472 5473 __build_all_zonelists(NULL); 5474 5475 /* 5476 * Initialize the boot_pagesets that are going to be used 5477 * for bootstrapping processors. The real pagesets for 5478 * each zone will be allocated later when the per cpu 5479 * allocator is available. 5480 * 5481 * boot_pagesets are used also for bootstrapping offline 5482 * cpus if the system is already booted because the pagesets 5483 * are needed to initialize allocators on a specific cpu too. 5484 * F.e. the percpu allocator needs the page allocator which 5485 * needs the percpu allocator in order to allocate its pagesets 5486 * (a chicken-egg dilemma). 5487 */ 5488 for_each_possible_cpu(cpu) 5489 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5490 5491 mminit_verify_zonelist(); 5492 cpuset_init_current_mems_allowed(); 5493 } 5494 5495 /* 5496 * unless system_state == SYSTEM_BOOTING. 5497 * 5498 * __ref due to call of __init annotated helper build_all_zonelists_init 5499 * [protected by SYSTEM_BOOTING]. 5500 */ 5501 void __ref build_all_zonelists(pg_data_t *pgdat) 5502 { 5503 if (system_state == SYSTEM_BOOTING) { 5504 build_all_zonelists_init(); 5505 } else { 5506 __build_all_zonelists(pgdat); 5507 /* cpuset refresh routine should be here */ 5508 } 5509 vm_total_pages = nr_free_pagecache_pages(); 5510 /* 5511 * Disable grouping by mobility if the number of pages in the 5512 * system is too low to allow the mechanism to work. It would be 5513 * more accurate, but expensive to check per-zone. This check is 5514 * made on memory-hotadd so a system can start with mobility 5515 * disabled and enable it later 5516 */ 5517 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5518 page_group_by_mobility_disabled = 1; 5519 else 5520 page_group_by_mobility_disabled = 0; 5521 5522 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n", 5523 nr_online_nodes, 5524 page_group_by_mobility_disabled ? "off" : "on", 5525 vm_total_pages); 5526 #ifdef CONFIG_NUMA 5527 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5528 #endif 5529 } 5530 5531 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 5532 static bool __meminit 5533 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 5534 { 5535 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5536 static struct memblock_region *r; 5537 5538 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5539 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 5540 for_each_memblock(memory, r) { 5541 if (*pfn < memblock_region_memory_end_pfn(r)) 5542 break; 5543 } 5544 } 5545 if (*pfn >= memblock_region_memory_base_pfn(r) && 5546 memblock_is_mirror(r)) { 5547 *pfn = memblock_region_memory_end_pfn(r); 5548 return true; 5549 } 5550 } 5551 #endif 5552 return false; 5553 } 5554 5555 /* 5556 * Initially all pages are reserved - free ones are freed 5557 * up by memblock_free_all() once the early boot process is 5558 * done. Non-atomic initialization, single-pass. 5559 */ 5560 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5561 unsigned long start_pfn, enum memmap_context context, 5562 struct vmem_altmap *altmap) 5563 { 5564 unsigned long pfn, end_pfn = start_pfn + size; 5565 struct page *page; 5566 5567 if (highest_memmap_pfn < end_pfn - 1) 5568 highest_memmap_pfn = end_pfn - 1; 5569 5570 #ifdef CONFIG_ZONE_DEVICE 5571 /* 5572 * Honor reservation requested by the driver for this ZONE_DEVICE 5573 * memory. We limit the total number of pages to initialize to just 5574 * those that might contain the memory mapping. We will defer the 5575 * ZONE_DEVICE page initialization until after we have released 5576 * the hotplug lock. 5577 */ 5578 if (zone == ZONE_DEVICE) { 5579 if (!altmap) 5580 return; 5581 5582 if (start_pfn == altmap->base_pfn) 5583 start_pfn += altmap->reserve; 5584 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5585 } 5586 #endif 5587 5588 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5589 /* 5590 * There can be holes in boot-time mem_map[]s handed to this 5591 * function. They do not exist on hotplugged memory. 5592 */ 5593 if (context == MEMMAP_EARLY) { 5594 if (!early_pfn_valid(pfn)) 5595 continue; 5596 if (!early_pfn_in_nid(pfn, nid)) 5597 continue; 5598 if (overlap_memmap_init(zone, &pfn)) 5599 continue; 5600 if (defer_init(nid, pfn, end_pfn)) 5601 break; 5602 } 5603 5604 page = pfn_to_page(pfn); 5605 __init_single_page(page, pfn, zone, nid); 5606 if (context == MEMMAP_HOTPLUG) 5607 __SetPageReserved(page); 5608 5609 /* 5610 * Mark the block movable so that blocks are reserved for 5611 * movable at startup. This will force kernel allocations 5612 * to reserve their blocks rather than leaking throughout 5613 * the address space during boot when many long-lived 5614 * kernel allocations are made. 5615 * 5616 * bitmap is created for zone's valid pfn range. but memmap 5617 * can be created for invalid pages (for alignment) 5618 * check here not to call set_pageblock_migratetype() against 5619 * pfn out of zone. 5620 */ 5621 if (!(pfn & (pageblock_nr_pages - 1))) { 5622 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5623 cond_resched(); 5624 } 5625 } 5626 #ifdef CONFIG_SPARSEMEM 5627 /* 5628 * If the zone does not span the rest of the section then 5629 * we should at least initialize those pages. Otherwise we 5630 * could blow up on a poisoned page in some paths which depend 5631 * on full sections being initialized (e.g. memory hotplug). 5632 */ 5633 while (end_pfn % PAGES_PER_SECTION) { 5634 __init_single_page(pfn_to_page(end_pfn), end_pfn, zone, nid); 5635 end_pfn++; 5636 } 5637 #endif 5638 } 5639 5640 #ifdef CONFIG_ZONE_DEVICE 5641 void __ref memmap_init_zone_device(struct zone *zone, 5642 unsigned long start_pfn, 5643 unsigned long size, 5644 struct dev_pagemap *pgmap) 5645 { 5646 unsigned long pfn, end_pfn = start_pfn + size; 5647 struct pglist_data *pgdat = zone->zone_pgdat; 5648 unsigned long zone_idx = zone_idx(zone); 5649 unsigned long start = jiffies; 5650 int nid = pgdat->node_id; 5651 5652 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone))) 5653 return; 5654 5655 /* 5656 * The call to memmap_init_zone should have already taken care 5657 * of the pages reserved for the memmap, so we can just jump to 5658 * the end of that region and start processing the device pages. 5659 */ 5660 if (pgmap->altmap_valid) { 5661 struct vmem_altmap *altmap = &pgmap->altmap; 5662 5663 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5664 size = end_pfn - start_pfn; 5665 } 5666 5667 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5668 struct page *page = pfn_to_page(pfn); 5669 5670 __init_single_page(page, pfn, zone_idx, nid); 5671 5672 /* 5673 * Mark page reserved as it will need to wait for onlining 5674 * phase for it to be fully associated with a zone. 5675 * 5676 * We can use the non-atomic __set_bit operation for setting 5677 * the flag as we are still initializing the pages. 5678 */ 5679 __SetPageReserved(page); 5680 5681 /* 5682 * ZONE_DEVICE pages union ->lru with a ->pgmap back 5683 * pointer and hmm_data. It is a bug if a ZONE_DEVICE 5684 * page is ever freed or placed on a driver-private list. 5685 */ 5686 page->pgmap = pgmap; 5687 page->hmm_data = 0; 5688 5689 /* 5690 * Mark the block movable so that blocks are reserved for 5691 * movable at startup. This will force kernel allocations 5692 * to reserve their blocks rather than leaking throughout 5693 * the address space during boot when many long-lived 5694 * kernel allocations are made. 5695 * 5696 * bitmap is created for zone's valid pfn range. but memmap 5697 * can be created for invalid pages (for alignment) 5698 * check here not to call set_pageblock_migratetype() against 5699 * pfn out of zone. 5700 * 5701 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 5702 * because this is done early in sparse_add_one_section 5703 */ 5704 if (!(pfn & (pageblock_nr_pages - 1))) { 5705 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5706 cond_resched(); 5707 } 5708 } 5709 5710 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev), 5711 size, jiffies_to_msecs(jiffies - start)); 5712 } 5713 5714 #endif 5715 static void __meminit zone_init_free_lists(struct zone *zone) 5716 { 5717 unsigned int order, t; 5718 for_each_migratetype_order(order, t) { 5719 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5720 zone->free_area[order].nr_free = 0; 5721 } 5722 } 5723 5724 void __meminit __weak memmap_init(unsigned long size, int nid, 5725 unsigned long zone, unsigned long start_pfn) 5726 { 5727 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL); 5728 } 5729 5730 static int zone_batchsize(struct zone *zone) 5731 { 5732 #ifdef CONFIG_MMU 5733 int batch; 5734 5735 /* 5736 * The per-cpu-pages pools are set to around 1000th of the 5737 * size of the zone. 5738 */ 5739 batch = zone_managed_pages(zone) / 1024; 5740 /* But no more than a meg. */ 5741 if (batch * PAGE_SIZE > 1024 * 1024) 5742 batch = (1024 * 1024) / PAGE_SIZE; 5743 batch /= 4; /* We effectively *= 4 below */ 5744 if (batch < 1) 5745 batch = 1; 5746 5747 /* 5748 * Clamp the batch to a 2^n - 1 value. Having a power 5749 * of 2 value was found to be more likely to have 5750 * suboptimal cache aliasing properties in some cases. 5751 * 5752 * For example if 2 tasks are alternately allocating 5753 * batches of pages, one task can end up with a lot 5754 * of pages of one half of the possible page colors 5755 * and the other with pages of the other colors. 5756 */ 5757 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5758 5759 return batch; 5760 5761 #else 5762 /* The deferral and batching of frees should be suppressed under NOMMU 5763 * conditions. 5764 * 5765 * The problem is that NOMMU needs to be able to allocate large chunks 5766 * of contiguous memory as there's no hardware page translation to 5767 * assemble apparent contiguous memory from discontiguous pages. 5768 * 5769 * Queueing large contiguous runs of pages for batching, however, 5770 * causes the pages to actually be freed in smaller chunks. As there 5771 * can be a significant delay between the individual batches being 5772 * recycled, this leads to the once large chunks of space being 5773 * fragmented and becoming unavailable for high-order allocations. 5774 */ 5775 return 0; 5776 #endif 5777 } 5778 5779 /* 5780 * pcp->high and pcp->batch values are related and dependent on one another: 5781 * ->batch must never be higher then ->high. 5782 * The following function updates them in a safe manner without read side 5783 * locking. 5784 * 5785 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5786 * those fields changing asynchronously (acording the the above rule). 5787 * 5788 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5789 * outside of boot time (or some other assurance that no concurrent updaters 5790 * exist). 5791 */ 5792 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5793 unsigned long batch) 5794 { 5795 /* start with a fail safe value for batch */ 5796 pcp->batch = 1; 5797 smp_wmb(); 5798 5799 /* Update high, then batch, in order */ 5800 pcp->high = high; 5801 smp_wmb(); 5802 5803 pcp->batch = batch; 5804 } 5805 5806 /* a companion to pageset_set_high() */ 5807 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5808 { 5809 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5810 } 5811 5812 static void pageset_init(struct per_cpu_pageset *p) 5813 { 5814 struct per_cpu_pages *pcp; 5815 int migratetype; 5816 5817 memset(p, 0, sizeof(*p)); 5818 5819 pcp = &p->pcp; 5820 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5821 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5822 } 5823 5824 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5825 { 5826 pageset_init(p); 5827 pageset_set_batch(p, batch); 5828 } 5829 5830 /* 5831 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5832 * to the value high for the pageset p. 5833 */ 5834 static void pageset_set_high(struct per_cpu_pageset *p, 5835 unsigned long high) 5836 { 5837 unsigned long batch = max(1UL, high / 4); 5838 if ((high / 4) > (PAGE_SHIFT * 8)) 5839 batch = PAGE_SHIFT * 8; 5840 5841 pageset_update(&p->pcp, high, batch); 5842 } 5843 5844 static void pageset_set_high_and_batch(struct zone *zone, 5845 struct per_cpu_pageset *pcp) 5846 { 5847 if (percpu_pagelist_fraction) 5848 pageset_set_high(pcp, 5849 (zone_managed_pages(zone) / 5850 percpu_pagelist_fraction)); 5851 else 5852 pageset_set_batch(pcp, zone_batchsize(zone)); 5853 } 5854 5855 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5856 { 5857 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5858 5859 pageset_init(pcp); 5860 pageset_set_high_and_batch(zone, pcp); 5861 } 5862 5863 void __meminit setup_zone_pageset(struct zone *zone) 5864 { 5865 int cpu; 5866 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5867 for_each_possible_cpu(cpu) 5868 zone_pageset_init(zone, cpu); 5869 } 5870 5871 /* 5872 * Allocate per cpu pagesets and initialize them. 5873 * Before this call only boot pagesets were available. 5874 */ 5875 void __init setup_per_cpu_pageset(void) 5876 { 5877 struct pglist_data *pgdat; 5878 struct zone *zone; 5879 5880 for_each_populated_zone(zone) 5881 setup_zone_pageset(zone); 5882 5883 for_each_online_pgdat(pgdat) 5884 pgdat->per_cpu_nodestats = 5885 alloc_percpu(struct per_cpu_nodestat); 5886 } 5887 5888 static __meminit void zone_pcp_init(struct zone *zone) 5889 { 5890 /* 5891 * per cpu subsystem is not up at this point. The following code 5892 * relies on the ability of the linker to provide the 5893 * offset of a (static) per cpu variable into the per cpu area. 5894 */ 5895 zone->pageset = &boot_pageset; 5896 5897 if (populated_zone(zone)) 5898 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5899 zone->name, zone->present_pages, 5900 zone_batchsize(zone)); 5901 } 5902 5903 void __meminit init_currently_empty_zone(struct zone *zone, 5904 unsigned long zone_start_pfn, 5905 unsigned long size) 5906 { 5907 struct pglist_data *pgdat = zone->zone_pgdat; 5908 int zone_idx = zone_idx(zone) + 1; 5909 5910 if (zone_idx > pgdat->nr_zones) 5911 pgdat->nr_zones = zone_idx; 5912 5913 zone->zone_start_pfn = zone_start_pfn; 5914 5915 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5916 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5917 pgdat->node_id, 5918 (unsigned long)zone_idx(zone), 5919 zone_start_pfn, (zone_start_pfn + size)); 5920 5921 zone_init_free_lists(zone); 5922 zone->initialized = 1; 5923 } 5924 5925 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5926 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5927 5928 /* 5929 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5930 */ 5931 int __meminit __early_pfn_to_nid(unsigned long pfn, 5932 struct mminit_pfnnid_cache *state) 5933 { 5934 unsigned long start_pfn, end_pfn; 5935 int nid; 5936 5937 if (state->last_start <= pfn && pfn < state->last_end) 5938 return state->last_nid; 5939 5940 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5941 if (nid != -1) { 5942 state->last_start = start_pfn; 5943 state->last_end = end_pfn; 5944 state->last_nid = nid; 5945 } 5946 5947 return nid; 5948 } 5949 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5950 5951 /** 5952 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5953 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5954 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5955 * 5956 * If an architecture guarantees that all ranges registered contain no holes 5957 * and may be freed, this this function may be used instead of calling 5958 * memblock_free_early_nid() manually. 5959 */ 5960 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5961 { 5962 unsigned long start_pfn, end_pfn; 5963 int i, this_nid; 5964 5965 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5966 start_pfn = min(start_pfn, max_low_pfn); 5967 end_pfn = min(end_pfn, max_low_pfn); 5968 5969 if (start_pfn < end_pfn) 5970 memblock_free_early_nid(PFN_PHYS(start_pfn), 5971 (end_pfn - start_pfn) << PAGE_SHIFT, 5972 this_nid); 5973 } 5974 } 5975 5976 /** 5977 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5978 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5979 * 5980 * If an architecture guarantees that all ranges registered contain no holes and may 5981 * be freed, this function may be used instead of calling memory_present() manually. 5982 */ 5983 void __init sparse_memory_present_with_active_regions(int nid) 5984 { 5985 unsigned long start_pfn, end_pfn; 5986 int i, this_nid; 5987 5988 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5989 memory_present(this_nid, start_pfn, end_pfn); 5990 } 5991 5992 /** 5993 * get_pfn_range_for_nid - Return the start and end page frames for a node 5994 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5995 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5996 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5997 * 5998 * It returns the start and end page frame of a node based on information 5999 * provided by memblock_set_node(). If called for a node 6000 * with no available memory, a warning is printed and the start and end 6001 * PFNs will be 0. 6002 */ 6003 void __meminit get_pfn_range_for_nid(unsigned int nid, 6004 unsigned long *start_pfn, unsigned long *end_pfn) 6005 { 6006 unsigned long this_start_pfn, this_end_pfn; 6007 int i; 6008 6009 *start_pfn = -1UL; 6010 *end_pfn = 0; 6011 6012 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6013 *start_pfn = min(*start_pfn, this_start_pfn); 6014 *end_pfn = max(*end_pfn, this_end_pfn); 6015 } 6016 6017 if (*start_pfn == -1UL) 6018 *start_pfn = 0; 6019 } 6020 6021 /* 6022 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6023 * assumption is made that zones within a node are ordered in monotonic 6024 * increasing memory addresses so that the "highest" populated zone is used 6025 */ 6026 static void __init find_usable_zone_for_movable(void) 6027 { 6028 int zone_index; 6029 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6030 if (zone_index == ZONE_MOVABLE) 6031 continue; 6032 6033 if (arch_zone_highest_possible_pfn[zone_index] > 6034 arch_zone_lowest_possible_pfn[zone_index]) 6035 break; 6036 } 6037 6038 VM_BUG_ON(zone_index == -1); 6039 movable_zone = zone_index; 6040 } 6041 6042 /* 6043 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6044 * because it is sized independent of architecture. Unlike the other zones, 6045 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6046 * in each node depending on the size of each node and how evenly kernelcore 6047 * is distributed. This helper function adjusts the zone ranges 6048 * provided by the architecture for a given node by using the end of the 6049 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6050 * zones within a node are in order of monotonic increases memory addresses 6051 */ 6052 static void __meminit adjust_zone_range_for_zone_movable(int nid, 6053 unsigned long zone_type, 6054 unsigned long node_start_pfn, 6055 unsigned long node_end_pfn, 6056 unsigned long *zone_start_pfn, 6057 unsigned long *zone_end_pfn) 6058 { 6059 /* Only adjust if ZONE_MOVABLE is on this node */ 6060 if (zone_movable_pfn[nid]) { 6061 /* Size ZONE_MOVABLE */ 6062 if (zone_type == ZONE_MOVABLE) { 6063 *zone_start_pfn = zone_movable_pfn[nid]; 6064 *zone_end_pfn = min(node_end_pfn, 6065 arch_zone_highest_possible_pfn[movable_zone]); 6066 6067 /* Adjust for ZONE_MOVABLE starting within this range */ 6068 } else if (!mirrored_kernelcore && 6069 *zone_start_pfn < zone_movable_pfn[nid] && 6070 *zone_end_pfn > zone_movable_pfn[nid]) { 6071 *zone_end_pfn = zone_movable_pfn[nid]; 6072 6073 /* Check if this whole range is within ZONE_MOVABLE */ 6074 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6075 *zone_start_pfn = *zone_end_pfn; 6076 } 6077 } 6078 6079 /* 6080 * Return the number of pages a zone spans in a node, including holes 6081 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6082 */ 6083 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 6084 unsigned long zone_type, 6085 unsigned long node_start_pfn, 6086 unsigned long node_end_pfn, 6087 unsigned long *zone_start_pfn, 6088 unsigned long *zone_end_pfn, 6089 unsigned long *ignored) 6090 { 6091 /* When hotadd a new node from cpu_up(), the node should be empty */ 6092 if (!node_start_pfn && !node_end_pfn) 6093 return 0; 6094 6095 /* Get the start and end of the zone */ 6096 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 6097 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 6098 adjust_zone_range_for_zone_movable(nid, zone_type, 6099 node_start_pfn, node_end_pfn, 6100 zone_start_pfn, zone_end_pfn); 6101 6102 /* Check that this node has pages within the zone's required range */ 6103 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6104 return 0; 6105 6106 /* Move the zone boundaries inside the node if necessary */ 6107 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6108 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6109 6110 /* Return the spanned pages */ 6111 return *zone_end_pfn - *zone_start_pfn; 6112 } 6113 6114 /* 6115 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6116 * then all holes in the requested range will be accounted for. 6117 */ 6118 unsigned long __meminit __absent_pages_in_range(int nid, 6119 unsigned long range_start_pfn, 6120 unsigned long range_end_pfn) 6121 { 6122 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6123 unsigned long start_pfn, end_pfn; 6124 int i; 6125 6126 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6127 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6128 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6129 nr_absent -= end_pfn - start_pfn; 6130 } 6131 return nr_absent; 6132 } 6133 6134 /** 6135 * absent_pages_in_range - Return number of page frames in holes within a range 6136 * @start_pfn: The start PFN to start searching for holes 6137 * @end_pfn: The end PFN to stop searching for holes 6138 * 6139 * It returns the number of pages frames in memory holes within a range. 6140 */ 6141 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6142 unsigned long end_pfn) 6143 { 6144 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6145 } 6146 6147 /* Return the number of page frames in holes in a zone on a node */ 6148 static unsigned long __meminit zone_absent_pages_in_node(int nid, 6149 unsigned long zone_type, 6150 unsigned long node_start_pfn, 6151 unsigned long node_end_pfn, 6152 unsigned long *ignored) 6153 { 6154 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6155 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6156 unsigned long zone_start_pfn, zone_end_pfn; 6157 unsigned long nr_absent; 6158 6159 /* When hotadd a new node from cpu_up(), the node should be empty */ 6160 if (!node_start_pfn && !node_end_pfn) 6161 return 0; 6162 6163 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6164 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6165 6166 adjust_zone_range_for_zone_movable(nid, zone_type, 6167 node_start_pfn, node_end_pfn, 6168 &zone_start_pfn, &zone_end_pfn); 6169 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6170 6171 /* 6172 * ZONE_MOVABLE handling. 6173 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6174 * and vice versa. 6175 */ 6176 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6177 unsigned long start_pfn, end_pfn; 6178 struct memblock_region *r; 6179 6180 for_each_memblock(memory, r) { 6181 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6182 zone_start_pfn, zone_end_pfn); 6183 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6184 zone_start_pfn, zone_end_pfn); 6185 6186 if (zone_type == ZONE_MOVABLE && 6187 memblock_is_mirror(r)) 6188 nr_absent += end_pfn - start_pfn; 6189 6190 if (zone_type == ZONE_NORMAL && 6191 !memblock_is_mirror(r)) 6192 nr_absent += end_pfn - start_pfn; 6193 } 6194 } 6195 6196 return nr_absent; 6197 } 6198 6199 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6200 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 6201 unsigned long zone_type, 6202 unsigned long node_start_pfn, 6203 unsigned long node_end_pfn, 6204 unsigned long *zone_start_pfn, 6205 unsigned long *zone_end_pfn, 6206 unsigned long *zones_size) 6207 { 6208 unsigned int zone; 6209 6210 *zone_start_pfn = node_start_pfn; 6211 for (zone = 0; zone < zone_type; zone++) 6212 *zone_start_pfn += zones_size[zone]; 6213 6214 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6215 6216 return zones_size[zone_type]; 6217 } 6218 6219 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 6220 unsigned long zone_type, 6221 unsigned long node_start_pfn, 6222 unsigned long node_end_pfn, 6223 unsigned long *zholes_size) 6224 { 6225 if (!zholes_size) 6226 return 0; 6227 6228 return zholes_size[zone_type]; 6229 } 6230 6231 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6232 6233 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 6234 unsigned long node_start_pfn, 6235 unsigned long node_end_pfn, 6236 unsigned long *zones_size, 6237 unsigned long *zholes_size) 6238 { 6239 unsigned long realtotalpages = 0, totalpages = 0; 6240 enum zone_type i; 6241 6242 for (i = 0; i < MAX_NR_ZONES; i++) { 6243 struct zone *zone = pgdat->node_zones + i; 6244 unsigned long zone_start_pfn, zone_end_pfn; 6245 unsigned long size, real_size; 6246 6247 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6248 node_start_pfn, 6249 node_end_pfn, 6250 &zone_start_pfn, 6251 &zone_end_pfn, 6252 zones_size); 6253 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6254 node_start_pfn, node_end_pfn, 6255 zholes_size); 6256 if (size) 6257 zone->zone_start_pfn = zone_start_pfn; 6258 else 6259 zone->zone_start_pfn = 0; 6260 zone->spanned_pages = size; 6261 zone->present_pages = real_size; 6262 6263 totalpages += size; 6264 realtotalpages += real_size; 6265 } 6266 6267 pgdat->node_spanned_pages = totalpages; 6268 pgdat->node_present_pages = realtotalpages; 6269 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6270 realtotalpages); 6271 } 6272 6273 #ifndef CONFIG_SPARSEMEM 6274 /* 6275 * Calculate the size of the zone->blockflags rounded to an unsigned long 6276 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6277 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6278 * round what is now in bits to nearest long in bits, then return it in 6279 * bytes. 6280 */ 6281 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6282 { 6283 unsigned long usemapsize; 6284 6285 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6286 usemapsize = roundup(zonesize, pageblock_nr_pages); 6287 usemapsize = usemapsize >> pageblock_order; 6288 usemapsize *= NR_PAGEBLOCK_BITS; 6289 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6290 6291 return usemapsize / 8; 6292 } 6293 6294 static void __ref setup_usemap(struct pglist_data *pgdat, 6295 struct zone *zone, 6296 unsigned long zone_start_pfn, 6297 unsigned long zonesize) 6298 { 6299 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6300 zone->pageblock_flags = NULL; 6301 if (usemapsize) 6302 zone->pageblock_flags = 6303 memblock_alloc_node_nopanic(usemapsize, 6304 pgdat->node_id); 6305 } 6306 #else 6307 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6308 unsigned long zone_start_pfn, unsigned long zonesize) {} 6309 #endif /* CONFIG_SPARSEMEM */ 6310 6311 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6312 6313 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6314 void __init set_pageblock_order(void) 6315 { 6316 unsigned int order; 6317 6318 /* Check that pageblock_nr_pages has not already been setup */ 6319 if (pageblock_order) 6320 return; 6321 6322 if (HPAGE_SHIFT > PAGE_SHIFT) 6323 order = HUGETLB_PAGE_ORDER; 6324 else 6325 order = MAX_ORDER - 1; 6326 6327 /* 6328 * Assume the largest contiguous order of interest is a huge page. 6329 * This value may be variable depending on boot parameters on IA64 and 6330 * powerpc. 6331 */ 6332 pageblock_order = order; 6333 } 6334 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6335 6336 /* 6337 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6338 * is unused as pageblock_order is set at compile-time. See 6339 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6340 * the kernel config 6341 */ 6342 void __init set_pageblock_order(void) 6343 { 6344 } 6345 6346 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6347 6348 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6349 unsigned long present_pages) 6350 { 6351 unsigned long pages = spanned_pages; 6352 6353 /* 6354 * Provide a more accurate estimation if there are holes within 6355 * the zone and SPARSEMEM is in use. If there are holes within the 6356 * zone, each populated memory region may cost us one or two extra 6357 * memmap pages due to alignment because memmap pages for each 6358 * populated regions may not be naturally aligned on page boundary. 6359 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6360 */ 6361 if (spanned_pages > present_pages + (present_pages >> 4) && 6362 IS_ENABLED(CONFIG_SPARSEMEM)) 6363 pages = present_pages; 6364 6365 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6366 } 6367 6368 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6369 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6370 { 6371 spin_lock_init(&pgdat->split_queue_lock); 6372 INIT_LIST_HEAD(&pgdat->split_queue); 6373 pgdat->split_queue_len = 0; 6374 } 6375 #else 6376 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6377 #endif 6378 6379 #ifdef CONFIG_COMPACTION 6380 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6381 { 6382 init_waitqueue_head(&pgdat->kcompactd_wait); 6383 } 6384 #else 6385 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6386 #endif 6387 6388 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6389 { 6390 pgdat_resize_init(pgdat); 6391 6392 pgdat_init_split_queue(pgdat); 6393 pgdat_init_kcompactd(pgdat); 6394 6395 init_waitqueue_head(&pgdat->kswapd_wait); 6396 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6397 6398 pgdat_page_ext_init(pgdat); 6399 spin_lock_init(&pgdat->lru_lock); 6400 lruvec_init(node_lruvec(pgdat)); 6401 } 6402 6403 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6404 unsigned long remaining_pages) 6405 { 6406 atomic_long_set(&zone->managed_pages, remaining_pages); 6407 zone_set_nid(zone, nid); 6408 zone->name = zone_names[idx]; 6409 zone->zone_pgdat = NODE_DATA(nid); 6410 spin_lock_init(&zone->lock); 6411 zone_seqlock_init(zone); 6412 zone_pcp_init(zone); 6413 } 6414 6415 /* 6416 * Set up the zone data structures 6417 * - init pgdat internals 6418 * - init all zones belonging to this node 6419 * 6420 * NOTE: this function is only called during memory hotplug 6421 */ 6422 #ifdef CONFIG_MEMORY_HOTPLUG 6423 void __ref free_area_init_core_hotplug(int nid) 6424 { 6425 enum zone_type z; 6426 pg_data_t *pgdat = NODE_DATA(nid); 6427 6428 pgdat_init_internals(pgdat); 6429 for (z = 0; z < MAX_NR_ZONES; z++) 6430 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6431 } 6432 #endif 6433 6434 /* 6435 * Set up the zone data structures: 6436 * - mark all pages reserved 6437 * - mark all memory queues empty 6438 * - clear the memory bitmaps 6439 * 6440 * NOTE: pgdat should get zeroed by caller. 6441 * NOTE: this function is only called during early init. 6442 */ 6443 static void __init free_area_init_core(struct pglist_data *pgdat) 6444 { 6445 enum zone_type j; 6446 int nid = pgdat->node_id; 6447 6448 pgdat_init_internals(pgdat); 6449 pgdat->per_cpu_nodestats = &boot_nodestats; 6450 6451 for (j = 0; j < MAX_NR_ZONES; j++) { 6452 struct zone *zone = pgdat->node_zones + j; 6453 unsigned long size, freesize, memmap_pages; 6454 unsigned long zone_start_pfn = zone->zone_start_pfn; 6455 6456 size = zone->spanned_pages; 6457 freesize = zone->present_pages; 6458 6459 /* 6460 * Adjust freesize so that it accounts for how much memory 6461 * is used by this zone for memmap. This affects the watermark 6462 * and per-cpu initialisations 6463 */ 6464 memmap_pages = calc_memmap_size(size, freesize); 6465 if (!is_highmem_idx(j)) { 6466 if (freesize >= memmap_pages) { 6467 freesize -= memmap_pages; 6468 if (memmap_pages) 6469 printk(KERN_DEBUG 6470 " %s zone: %lu pages used for memmap\n", 6471 zone_names[j], memmap_pages); 6472 } else 6473 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6474 zone_names[j], memmap_pages, freesize); 6475 } 6476 6477 /* Account for reserved pages */ 6478 if (j == 0 && freesize > dma_reserve) { 6479 freesize -= dma_reserve; 6480 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6481 zone_names[0], dma_reserve); 6482 } 6483 6484 if (!is_highmem_idx(j)) 6485 nr_kernel_pages += freesize; 6486 /* Charge for highmem memmap if there are enough kernel pages */ 6487 else if (nr_kernel_pages > memmap_pages * 2) 6488 nr_kernel_pages -= memmap_pages; 6489 nr_all_pages += freesize; 6490 6491 /* 6492 * Set an approximate value for lowmem here, it will be adjusted 6493 * when the bootmem allocator frees pages into the buddy system. 6494 * And all highmem pages will be managed by the buddy system. 6495 */ 6496 zone_init_internals(zone, j, nid, freesize); 6497 6498 if (!size) 6499 continue; 6500 6501 set_pageblock_order(); 6502 setup_usemap(pgdat, zone, zone_start_pfn, size); 6503 init_currently_empty_zone(zone, zone_start_pfn, size); 6504 memmap_init(size, nid, j, zone_start_pfn); 6505 } 6506 } 6507 6508 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6509 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6510 { 6511 unsigned long __maybe_unused start = 0; 6512 unsigned long __maybe_unused offset = 0; 6513 6514 /* Skip empty nodes */ 6515 if (!pgdat->node_spanned_pages) 6516 return; 6517 6518 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6519 offset = pgdat->node_start_pfn - start; 6520 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6521 if (!pgdat->node_mem_map) { 6522 unsigned long size, end; 6523 struct page *map; 6524 6525 /* 6526 * The zone's endpoints aren't required to be MAX_ORDER 6527 * aligned but the node_mem_map endpoints must be in order 6528 * for the buddy allocator to function correctly. 6529 */ 6530 end = pgdat_end_pfn(pgdat); 6531 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6532 size = (end - start) * sizeof(struct page); 6533 map = memblock_alloc_node_nopanic(size, pgdat->node_id); 6534 pgdat->node_mem_map = map + offset; 6535 } 6536 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6537 __func__, pgdat->node_id, (unsigned long)pgdat, 6538 (unsigned long)pgdat->node_mem_map); 6539 #ifndef CONFIG_NEED_MULTIPLE_NODES 6540 /* 6541 * With no DISCONTIG, the global mem_map is just set as node 0's 6542 */ 6543 if (pgdat == NODE_DATA(0)) { 6544 mem_map = NODE_DATA(0)->node_mem_map; 6545 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6546 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6547 mem_map -= offset; 6548 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6549 } 6550 #endif 6551 } 6552 #else 6553 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6554 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6555 6556 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6557 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6558 { 6559 /* 6560 * We start only with one section of pages, more pages are added as 6561 * needed until the rest of deferred pages are initialized. 6562 */ 6563 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION, 6564 pgdat->node_spanned_pages); 6565 pgdat->first_deferred_pfn = ULONG_MAX; 6566 } 6567 #else 6568 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6569 #endif 6570 6571 void __init free_area_init_node(int nid, unsigned long *zones_size, 6572 unsigned long node_start_pfn, 6573 unsigned long *zholes_size) 6574 { 6575 pg_data_t *pgdat = NODE_DATA(nid); 6576 unsigned long start_pfn = 0; 6577 unsigned long end_pfn = 0; 6578 6579 /* pg_data_t should be reset to zero when it's allocated */ 6580 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6581 6582 pgdat->node_id = nid; 6583 pgdat->node_start_pfn = node_start_pfn; 6584 pgdat->per_cpu_nodestats = NULL; 6585 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6586 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6587 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6588 (u64)start_pfn << PAGE_SHIFT, 6589 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6590 #else 6591 start_pfn = node_start_pfn; 6592 #endif 6593 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6594 zones_size, zholes_size); 6595 6596 alloc_node_mem_map(pgdat); 6597 pgdat_set_deferred_range(pgdat); 6598 6599 free_area_init_core(pgdat); 6600 } 6601 6602 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6603 /* 6604 * Zero all valid struct pages in range [spfn, epfn), return number of struct 6605 * pages zeroed 6606 */ 6607 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn) 6608 { 6609 unsigned long pfn; 6610 u64 pgcnt = 0; 6611 6612 for (pfn = spfn; pfn < epfn; pfn++) { 6613 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6614 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6615 + pageblock_nr_pages - 1; 6616 continue; 6617 } 6618 mm_zero_struct_page(pfn_to_page(pfn)); 6619 pgcnt++; 6620 } 6621 6622 return pgcnt; 6623 } 6624 6625 /* 6626 * Only struct pages that are backed by physical memory are zeroed and 6627 * initialized by going through __init_single_page(). But, there are some 6628 * struct pages which are reserved in memblock allocator and their fields 6629 * may be accessed (for example page_to_pfn() on some configuration accesses 6630 * flags). We must explicitly zero those struct pages. 6631 * 6632 * This function also addresses a similar issue where struct pages are left 6633 * uninitialized because the physical address range is not covered by 6634 * memblock.memory or memblock.reserved. That could happen when memblock 6635 * layout is manually configured via memmap=. 6636 */ 6637 void __init zero_resv_unavail(void) 6638 { 6639 phys_addr_t start, end; 6640 u64 i, pgcnt; 6641 phys_addr_t next = 0; 6642 6643 /* 6644 * Loop through unavailable ranges not covered by memblock.memory. 6645 */ 6646 pgcnt = 0; 6647 for_each_mem_range(i, &memblock.memory, NULL, 6648 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { 6649 if (next < start) 6650 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start)); 6651 next = end; 6652 } 6653 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn); 6654 6655 /* 6656 * Struct pages that do not have backing memory. This could be because 6657 * firmware is using some of this memory, or for some other reasons. 6658 */ 6659 if (pgcnt) 6660 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 6661 } 6662 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 6663 6664 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6665 6666 #if MAX_NUMNODES > 1 6667 /* 6668 * Figure out the number of possible node ids. 6669 */ 6670 void __init setup_nr_node_ids(void) 6671 { 6672 unsigned int highest; 6673 6674 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6675 nr_node_ids = highest + 1; 6676 } 6677 #endif 6678 6679 /** 6680 * node_map_pfn_alignment - determine the maximum internode alignment 6681 * 6682 * This function should be called after node map is populated and sorted. 6683 * It calculates the maximum power of two alignment which can distinguish 6684 * all the nodes. 6685 * 6686 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6687 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6688 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6689 * shifted, 1GiB is enough and this function will indicate so. 6690 * 6691 * This is used to test whether pfn -> nid mapping of the chosen memory 6692 * model has fine enough granularity to avoid incorrect mapping for the 6693 * populated node map. 6694 * 6695 * Returns the determined alignment in pfn's. 0 if there is no alignment 6696 * requirement (single node). 6697 */ 6698 unsigned long __init node_map_pfn_alignment(void) 6699 { 6700 unsigned long accl_mask = 0, last_end = 0; 6701 unsigned long start, end, mask; 6702 int last_nid = -1; 6703 int i, nid; 6704 6705 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6706 if (!start || last_nid < 0 || last_nid == nid) { 6707 last_nid = nid; 6708 last_end = end; 6709 continue; 6710 } 6711 6712 /* 6713 * Start with a mask granular enough to pin-point to the 6714 * start pfn and tick off bits one-by-one until it becomes 6715 * too coarse to separate the current node from the last. 6716 */ 6717 mask = ~((1 << __ffs(start)) - 1); 6718 while (mask && last_end <= (start & (mask << 1))) 6719 mask <<= 1; 6720 6721 /* accumulate all internode masks */ 6722 accl_mask |= mask; 6723 } 6724 6725 /* convert mask to number of pages */ 6726 return ~accl_mask + 1; 6727 } 6728 6729 /* Find the lowest pfn for a node */ 6730 static unsigned long __init find_min_pfn_for_node(int nid) 6731 { 6732 unsigned long min_pfn = ULONG_MAX; 6733 unsigned long start_pfn; 6734 int i; 6735 6736 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6737 min_pfn = min(min_pfn, start_pfn); 6738 6739 if (min_pfn == ULONG_MAX) { 6740 pr_warn("Could not find start_pfn for node %d\n", nid); 6741 return 0; 6742 } 6743 6744 return min_pfn; 6745 } 6746 6747 /** 6748 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6749 * 6750 * It returns the minimum PFN based on information provided via 6751 * memblock_set_node(). 6752 */ 6753 unsigned long __init find_min_pfn_with_active_regions(void) 6754 { 6755 return find_min_pfn_for_node(MAX_NUMNODES); 6756 } 6757 6758 /* 6759 * early_calculate_totalpages() 6760 * Sum pages in active regions for movable zone. 6761 * Populate N_MEMORY for calculating usable_nodes. 6762 */ 6763 static unsigned long __init early_calculate_totalpages(void) 6764 { 6765 unsigned long totalpages = 0; 6766 unsigned long start_pfn, end_pfn; 6767 int i, nid; 6768 6769 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6770 unsigned long pages = end_pfn - start_pfn; 6771 6772 totalpages += pages; 6773 if (pages) 6774 node_set_state(nid, N_MEMORY); 6775 } 6776 return totalpages; 6777 } 6778 6779 /* 6780 * Find the PFN the Movable zone begins in each node. Kernel memory 6781 * is spread evenly between nodes as long as the nodes have enough 6782 * memory. When they don't, some nodes will have more kernelcore than 6783 * others 6784 */ 6785 static void __init find_zone_movable_pfns_for_nodes(void) 6786 { 6787 int i, nid; 6788 unsigned long usable_startpfn; 6789 unsigned long kernelcore_node, kernelcore_remaining; 6790 /* save the state before borrow the nodemask */ 6791 nodemask_t saved_node_state = node_states[N_MEMORY]; 6792 unsigned long totalpages = early_calculate_totalpages(); 6793 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6794 struct memblock_region *r; 6795 6796 /* Need to find movable_zone earlier when movable_node is specified. */ 6797 find_usable_zone_for_movable(); 6798 6799 /* 6800 * If movable_node is specified, ignore kernelcore and movablecore 6801 * options. 6802 */ 6803 if (movable_node_is_enabled()) { 6804 for_each_memblock(memory, r) { 6805 if (!memblock_is_hotpluggable(r)) 6806 continue; 6807 6808 nid = r->nid; 6809 6810 usable_startpfn = PFN_DOWN(r->base); 6811 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6812 min(usable_startpfn, zone_movable_pfn[nid]) : 6813 usable_startpfn; 6814 } 6815 6816 goto out2; 6817 } 6818 6819 /* 6820 * If kernelcore=mirror is specified, ignore movablecore option 6821 */ 6822 if (mirrored_kernelcore) { 6823 bool mem_below_4gb_not_mirrored = false; 6824 6825 for_each_memblock(memory, r) { 6826 if (memblock_is_mirror(r)) 6827 continue; 6828 6829 nid = r->nid; 6830 6831 usable_startpfn = memblock_region_memory_base_pfn(r); 6832 6833 if (usable_startpfn < 0x100000) { 6834 mem_below_4gb_not_mirrored = true; 6835 continue; 6836 } 6837 6838 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6839 min(usable_startpfn, zone_movable_pfn[nid]) : 6840 usable_startpfn; 6841 } 6842 6843 if (mem_below_4gb_not_mirrored) 6844 pr_warn("This configuration results in unmirrored kernel memory."); 6845 6846 goto out2; 6847 } 6848 6849 /* 6850 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 6851 * amount of necessary memory. 6852 */ 6853 if (required_kernelcore_percent) 6854 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 6855 10000UL; 6856 if (required_movablecore_percent) 6857 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 6858 10000UL; 6859 6860 /* 6861 * If movablecore= was specified, calculate what size of 6862 * kernelcore that corresponds so that memory usable for 6863 * any allocation type is evenly spread. If both kernelcore 6864 * and movablecore are specified, then the value of kernelcore 6865 * will be used for required_kernelcore if it's greater than 6866 * what movablecore would have allowed. 6867 */ 6868 if (required_movablecore) { 6869 unsigned long corepages; 6870 6871 /* 6872 * Round-up so that ZONE_MOVABLE is at least as large as what 6873 * was requested by the user 6874 */ 6875 required_movablecore = 6876 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6877 required_movablecore = min(totalpages, required_movablecore); 6878 corepages = totalpages - required_movablecore; 6879 6880 required_kernelcore = max(required_kernelcore, corepages); 6881 } 6882 6883 /* 6884 * If kernelcore was not specified or kernelcore size is larger 6885 * than totalpages, there is no ZONE_MOVABLE. 6886 */ 6887 if (!required_kernelcore || required_kernelcore >= totalpages) 6888 goto out; 6889 6890 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6891 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6892 6893 restart: 6894 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6895 kernelcore_node = required_kernelcore / usable_nodes; 6896 for_each_node_state(nid, N_MEMORY) { 6897 unsigned long start_pfn, end_pfn; 6898 6899 /* 6900 * Recalculate kernelcore_node if the division per node 6901 * now exceeds what is necessary to satisfy the requested 6902 * amount of memory for the kernel 6903 */ 6904 if (required_kernelcore < kernelcore_node) 6905 kernelcore_node = required_kernelcore / usable_nodes; 6906 6907 /* 6908 * As the map is walked, we track how much memory is usable 6909 * by the kernel using kernelcore_remaining. When it is 6910 * 0, the rest of the node is usable by ZONE_MOVABLE 6911 */ 6912 kernelcore_remaining = kernelcore_node; 6913 6914 /* Go through each range of PFNs within this node */ 6915 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6916 unsigned long size_pages; 6917 6918 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6919 if (start_pfn >= end_pfn) 6920 continue; 6921 6922 /* Account for what is only usable for kernelcore */ 6923 if (start_pfn < usable_startpfn) { 6924 unsigned long kernel_pages; 6925 kernel_pages = min(end_pfn, usable_startpfn) 6926 - start_pfn; 6927 6928 kernelcore_remaining -= min(kernel_pages, 6929 kernelcore_remaining); 6930 required_kernelcore -= min(kernel_pages, 6931 required_kernelcore); 6932 6933 /* Continue if range is now fully accounted */ 6934 if (end_pfn <= usable_startpfn) { 6935 6936 /* 6937 * Push zone_movable_pfn to the end so 6938 * that if we have to rebalance 6939 * kernelcore across nodes, we will 6940 * not double account here 6941 */ 6942 zone_movable_pfn[nid] = end_pfn; 6943 continue; 6944 } 6945 start_pfn = usable_startpfn; 6946 } 6947 6948 /* 6949 * The usable PFN range for ZONE_MOVABLE is from 6950 * start_pfn->end_pfn. Calculate size_pages as the 6951 * number of pages used as kernelcore 6952 */ 6953 size_pages = end_pfn - start_pfn; 6954 if (size_pages > kernelcore_remaining) 6955 size_pages = kernelcore_remaining; 6956 zone_movable_pfn[nid] = start_pfn + size_pages; 6957 6958 /* 6959 * Some kernelcore has been met, update counts and 6960 * break if the kernelcore for this node has been 6961 * satisfied 6962 */ 6963 required_kernelcore -= min(required_kernelcore, 6964 size_pages); 6965 kernelcore_remaining -= size_pages; 6966 if (!kernelcore_remaining) 6967 break; 6968 } 6969 } 6970 6971 /* 6972 * If there is still required_kernelcore, we do another pass with one 6973 * less node in the count. This will push zone_movable_pfn[nid] further 6974 * along on the nodes that still have memory until kernelcore is 6975 * satisfied 6976 */ 6977 usable_nodes--; 6978 if (usable_nodes && required_kernelcore > usable_nodes) 6979 goto restart; 6980 6981 out2: 6982 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6983 for (nid = 0; nid < MAX_NUMNODES; nid++) 6984 zone_movable_pfn[nid] = 6985 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6986 6987 out: 6988 /* restore the node_state */ 6989 node_states[N_MEMORY] = saved_node_state; 6990 } 6991 6992 /* Any regular or high memory on that node ? */ 6993 static void check_for_memory(pg_data_t *pgdat, int nid) 6994 { 6995 enum zone_type zone_type; 6996 6997 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6998 struct zone *zone = &pgdat->node_zones[zone_type]; 6999 if (populated_zone(zone)) { 7000 if (IS_ENABLED(CONFIG_HIGHMEM)) 7001 node_set_state(nid, N_HIGH_MEMORY); 7002 if (zone_type <= ZONE_NORMAL) 7003 node_set_state(nid, N_NORMAL_MEMORY); 7004 break; 7005 } 7006 } 7007 } 7008 7009 /** 7010 * free_area_init_nodes - Initialise all pg_data_t and zone data 7011 * @max_zone_pfn: an array of max PFNs for each zone 7012 * 7013 * This will call free_area_init_node() for each active node in the system. 7014 * Using the page ranges provided by memblock_set_node(), the size of each 7015 * zone in each node and their holes is calculated. If the maximum PFN 7016 * between two adjacent zones match, it is assumed that the zone is empty. 7017 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7018 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7019 * starts where the previous one ended. For example, ZONE_DMA32 starts 7020 * at arch_max_dma_pfn. 7021 */ 7022 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 7023 { 7024 unsigned long start_pfn, end_pfn; 7025 int i, nid; 7026 7027 /* Record where the zone boundaries are */ 7028 memset(arch_zone_lowest_possible_pfn, 0, 7029 sizeof(arch_zone_lowest_possible_pfn)); 7030 memset(arch_zone_highest_possible_pfn, 0, 7031 sizeof(arch_zone_highest_possible_pfn)); 7032 7033 start_pfn = find_min_pfn_with_active_regions(); 7034 7035 for (i = 0; i < MAX_NR_ZONES; i++) { 7036 if (i == ZONE_MOVABLE) 7037 continue; 7038 7039 end_pfn = max(max_zone_pfn[i], start_pfn); 7040 arch_zone_lowest_possible_pfn[i] = start_pfn; 7041 arch_zone_highest_possible_pfn[i] = end_pfn; 7042 7043 start_pfn = end_pfn; 7044 } 7045 7046 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7047 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7048 find_zone_movable_pfns_for_nodes(); 7049 7050 /* Print out the zone ranges */ 7051 pr_info("Zone ranges:\n"); 7052 for (i = 0; i < MAX_NR_ZONES; i++) { 7053 if (i == ZONE_MOVABLE) 7054 continue; 7055 pr_info(" %-8s ", zone_names[i]); 7056 if (arch_zone_lowest_possible_pfn[i] == 7057 arch_zone_highest_possible_pfn[i]) 7058 pr_cont("empty\n"); 7059 else 7060 pr_cont("[mem %#018Lx-%#018Lx]\n", 7061 (u64)arch_zone_lowest_possible_pfn[i] 7062 << PAGE_SHIFT, 7063 ((u64)arch_zone_highest_possible_pfn[i] 7064 << PAGE_SHIFT) - 1); 7065 } 7066 7067 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7068 pr_info("Movable zone start for each node\n"); 7069 for (i = 0; i < MAX_NUMNODES; i++) { 7070 if (zone_movable_pfn[i]) 7071 pr_info(" Node %d: %#018Lx\n", i, 7072 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7073 } 7074 7075 /* Print out the early node map */ 7076 pr_info("Early memory node ranges\n"); 7077 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 7078 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7079 (u64)start_pfn << PAGE_SHIFT, 7080 ((u64)end_pfn << PAGE_SHIFT) - 1); 7081 7082 /* Initialise every node */ 7083 mminit_verify_pageflags_layout(); 7084 setup_nr_node_ids(); 7085 zero_resv_unavail(); 7086 for_each_online_node(nid) { 7087 pg_data_t *pgdat = NODE_DATA(nid); 7088 free_area_init_node(nid, NULL, 7089 find_min_pfn_for_node(nid), NULL); 7090 7091 /* Any memory on that node */ 7092 if (pgdat->node_present_pages) 7093 node_set_state(nid, N_MEMORY); 7094 check_for_memory(pgdat, nid); 7095 } 7096 } 7097 7098 static int __init cmdline_parse_core(char *p, unsigned long *core, 7099 unsigned long *percent) 7100 { 7101 unsigned long long coremem; 7102 char *endptr; 7103 7104 if (!p) 7105 return -EINVAL; 7106 7107 /* Value may be a percentage of total memory, otherwise bytes */ 7108 coremem = simple_strtoull(p, &endptr, 0); 7109 if (*endptr == '%') { 7110 /* Paranoid check for percent values greater than 100 */ 7111 WARN_ON(coremem > 100); 7112 7113 *percent = coremem; 7114 } else { 7115 coremem = memparse(p, &p); 7116 /* Paranoid check that UL is enough for the coremem value */ 7117 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7118 7119 *core = coremem >> PAGE_SHIFT; 7120 *percent = 0UL; 7121 } 7122 return 0; 7123 } 7124 7125 /* 7126 * kernelcore=size sets the amount of memory for use for allocations that 7127 * cannot be reclaimed or migrated. 7128 */ 7129 static int __init cmdline_parse_kernelcore(char *p) 7130 { 7131 /* parse kernelcore=mirror */ 7132 if (parse_option_str(p, "mirror")) { 7133 mirrored_kernelcore = true; 7134 return 0; 7135 } 7136 7137 return cmdline_parse_core(p, &required_kernelcore, 7138 &required_kernelcore_percent); 7139 } 7140 7141 /* 7142 * movablecore=size sets the amount of memory for use for allocations that 7143 * can be reclaimed or migrated. 7144 */ 7145 static int __init cmdline_parse_movablecore(char *p) 7146 { 7147 return cmdline_parse_core(p, &required_movablecore, 7148 &required_movablecore_percent); 7149 } 7150 7151 early_param("kernelcore", cmdline_parse_kernelcore); 7152 early_param("movablecore", cmdline_parse_movablecore); 7153 7154 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 7155 7156 void adjust_managed_page_count(struct page *page, long count) 7157 { 7158 atomic_long_add(count, &page_zone(page)->managed_pages); 7159 totalram_pages_add(count); 7160 #ifdef CONFIG_HIGHMEM 7161 if (PageHighMem(page)) 7162 totalhigh_pages_add(count); 7163 #endif 7164 } 7165 EXPORT_SYMBOL(adjust_managed_page_count); 7166 7167 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 7168 { 7169 void *pos; 7170 unsigned long pages = 0; 7171 7172 start = (void *)PAGE_ALIGN((unsigned long)start); 7173 end = (void *)((unsigned long)end & PAGE_MASK); 7174 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7175 struct page *page = virt_to_page(pos); 7176 void *direct_map_addr; 7177 7178 /* 7179 * 'direct_map_addr' might be different from 'pos' 7180 * because some architectures' virt_to_page() 7181 * work with aliases. Getting the direct map 7182 * address ensures that we get a _writeable_ 7183 * alias for the memset(). 7184 */ 7185 direct_map_addr = page_address(page); 7186 if ((unsigned int)poison <= 0xFF) 7187 memset(direct_map_addr, poison, PAGE_SIZE); 7188 7189 free_reserved_page(page); 7190 } 7191 7192 if (pages && s) 7193 pr_info("Freeing %s memory: %ldK\n", 7194 s, pages << (PAGE_SHIFT - 10)); 7195 7196 return pages; 7197 } 7198 EXPORT_SYMBOL(free_reserved_area); 7199 7200 #ifdef CONFIG_HIGHMEM 7201 void free_highmem_page(struct page *page) 7202 { 7203 __free_reserved_page(page); 7204 totalram_pages_inc(); 7205 atomic_long_inc(&page_zone(page)->managed_pages); 7206 totalhigh_pages_inc(); 7207 } 7208 #endif 7209 7210 7211 void __init mem_init_print_info(const char *str) 7212 { 7213 unsigned long physpages, codesize, datasize, rosize, bss_size; 7214 unsigned long init_code_size, init_data_size; 7215 7216 physpages = get_num_physpages(); 7217 codesize = _etext - _stext; 7218 datasize = _edata - _sdata; 7219 rosize = __end_rodata - __start_rodata; 7220 bss_size = __bss_stop - __bss_start; 7221 init_data_size = __init_end - __init_begin; 7222 init_code_size = _einittext - _sinittext; 7223 7224 /* 7225 * Detect special cases and adjust section sizes accordingly: 7226 * 1) .init.* may be embedded into .data sections 7227 * 2) .init.text.* may be out of [__init_begin, __init_end], 7228 * please refer to arch/tile/kernel/vmlinux.lds.S. 7229 * 3) .rodata.* may be embedded into .text or .data sections. 7230 */ 7231 #define adj_init_size(start, end, size, pos, adj) \ 7232 do { \ 7233 if (start <= pos && pos < end && size > adj) \ 7234 size -= adj; \ 7235 } while (0) 7236 7237 adj_init_size(__init_begin, __init_end, init_data_size, 7238 _sinittext, init_code_size); 7239 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7240 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7241 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7242 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7243 7244 #undef adj_init_size 7245 7246 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7247 #ifdef CONFIG_HIGHMEM 7248 ", %luK highmem" 7249 #endif 7250 "%s%s)\n", 7251 nr_free_pages() << (PAGE_SHIFT - 10), 7252 physpages << (PAGE_SHIFT - 10), 7253 codesize >> 10, datasize >> 10, rosize >> 10, 7254 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7255 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7256 totalcma_pages << (PAGE_SHIFT - 10), 7257 #ifdef CONFIG_HIGHMEM 7258 totalhigh_pages() << (PAGE_SHIFT - 10), 7259 #endif 7260 str ? ", " : "", str ? str : ""); 7261 } 7262 7263 /** 7264 * set_dma_reserve - set the specified number of pages reserved in the first zone 7265 * @new_dma_reserve: The number of pages to mark reserved 7266 * 7267 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7268 * In the DMA zone, a significant percentage may be consumed by kernel image 7269 * and other unfreeable allocations which can skew the watermarks badly. This 7270 * function may optionally be used to account for unfreeable pages in the 7271 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7272 * smaller per-cpu batchsize. 7273 */ 7274 void __init set_dma_reserve(unsigned long new_dma_reserve) 7275 { 7276 dma_reserve = new_dma_reserve; 7277 } 7278 7279 void __init free_area_init(unsigned long *zones_size) 7280 { 7281 zero_resv_unavail(); 7282 free_area_init_node(0, zones_size, 7283 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7284 } 7285 7286 static int page_alloc_cpu_dead(unsigned int cpu) 7287 { 7288 7289 lru_add_drain_cpu(cpu); 7290 drain_pages(cpu); 7291 7292 /* 7293 * Spill the event counters of the dead processor 7294 * into the current processors event counters. 7295 * This artificially elevates the count of the current 7296 * processor. 7297 */ 7298 vm_events_fold_cpu(cpu); 7299 7300 /* 7301 * Zero the differential counters of the dead processor 7302 * so that the vm statistics are consistent. 7303 * 7304 * This is only okay since the processor is dead and cannot 7305 * race with what we are doing. 7306 */ 7307 cpu_vm_stats_fold(cpu); 7308 return 0; 7309 } 7310 7311 void __init page_alloc_init(void) 7312 { 7313 int ret; 7314 7315 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7316 "mm/page_alloc:dead", NULL, 7317 page_alloc_cpu_dead); 7318 WARN_ON(ret < 0); 7319 } 7320 7321 /* 7322 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7323 * or min_free_kbytes changes. 7324 */ 7325 static void calculate_totalreserve_pages(void) 7326 { 7327 struct pglist_data *pgdat; 7328 unsigned long reserve_pages = 0; 7329 enum zone_type i, j; 7330 7331 for_each_online_pgdat(pgdat) { 7332 7333 pgdat->totalreserve_pages = 0; 7334 7335 for (i = 0; i < MAX_NR_ZONES; i++) { 7336 struct zone *zone = pgdat->node_zones + i; 7337 long max = 0; 7338 unsigned long managed_pages = zone_managed_pages(zone); 7339 7340 /* Find valid and maximum lowmem_reserve in the zone */ 7341 for (j = i; j < MAX_NR_ZONES; j++) { 7342 if (zone->lowmem_reserve[j] > max) 7343 max = zone->lowmem_reserve[j]; 7344 } 7345 7346 /* we treat the high watermark as reserved pages. */ 7347 max += high_wmark_pages(zone); 7348 7349 if (max > managed_pages) 7350 max = managed_pages; 7351 7352 pgdat->totalreserve_pages += max; 7353 7354 reserve_pages += max; 7355 } 7356 } 7357 totalreserve_pages = reserve_pages; 7358 } 7359 7360 /* 7361 * setup_per_zone_lowmem_reserve - called whenever 7362 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7363 * has a correct pages reserved value, so an adequate number of 7364 * pages are left in the zone after a successful __alloc_pages(). 7365 */ 7366 static void setup_per_zone_lowmem_reserve(void) 7367 { 7368 struct pglist_data *pgdat; 7369 enum zone_type j, idx; 7370 7371 for_each_online_pgdat(pgdat) { 7372 for (j = 0; j < MAX_NR_ZONES; j++) { 7373 struct zone *zone = pgdat->node_zones + j; 7374 unsigned long managed_pages = zone_managed_pages(zone); 7375 7376 zone->lowmem_reserve[j] = 0; 7377 7378 idx = j; 7379 while (idx) { 7380 struct zone *lower_zone; 7381 7382 idx--; 7383 lower_zone = pgdat->node_zones + idx; 7384 7385 if (sysctl_lowmem_reserve_ratio[idx] < 1) { 7386 sysctl_lowmem_reserve_ratio[idx] = 0; 7387 lower_zone->lowmem_reserve[j] = 0; 7388 } else { 7389 lower_zone->lowmem_reserve[j] = 7390 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7391 } 7392 managed_pages += zone_managed_pages(lower_zone); 7393 } 7394 } 7395 } 7396 7397 /* update totalreserve_pages */ 7398 calculate_totalreserve_pages(); 7399 } 7400 7401 static void __setup_per_zone_wmarks(void) 7402 { 7403 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7404 unsigned long lowmem_pages = 0; 7405 struct zone *zone; 7406 unsigned long flags; 7407 7408 /* Calculate total number of !ZONE_HIGHMEM pages */ 7409 for_each_zone(zone) { 7410 if (!is_highmem(zone)) 7411 lowmem_pages += zone_managed_pages(zone); 7412 } 7413 7414 for_each_zone(zone) { 7415 u64 tmp; 7416 7417 spin_lock_irqsave(&zone->lock, flags); 7418 tmp = (u64)pages_min * zone_managed_pages(zone); 7419 do_div(tmp, lowmem_pages); 7420 if (is_highmem(zone)) { 7421 /* 7422 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7423 * need highmem pages, so cap pages_min to a small 7424 * value here. 7425 * 7426 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7427 * deltas control asynch page reclaim, and so should 7428 * not be capped for highmem. 7429 */ 7430 unsigned long min_pages; 7431 7432 min_pages = zone_managed_pages(zone) / 1024; 7433 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7434 zone->watermark[WMARK_MIN] = min_pages; 7435 } else { 7436 /* 7437 * If it's a lowmem zone, reserve a number of pages 7438 * proportionate to the zone's size. 7439 */ 7440 zone->watermark[WMARK_MIN] = tmp; 7441 } 7442 7443 /* 7444 * Set the kswapd watermarks distance according to the 7445 * scale factor in proportion to available memory, but 7446 * ensure a minimum size on small systems. 7447 */ 7448 tmp = max_t(u64, tmp >> 2, 7449 mult_frac(zone_managed_pages(zone), 7450 watermark_scale_factor, 10000)); 7451 7452 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7453 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7454 7455 spin_unlock_irqrestore(&zone->lock, flags); 7456 } 7457 7458 /* update totalreserve_pages */ 7459 calculate_totalreserve_pages(); 7460 } 7461 7462 /** 7463 * setup_per_zone_wmarks - called when min_free_kbytes changes 7464 * or when memory is hot-{added|removed} 7465 * 7466 * Ensures that the watermark[min,low,high] values for each zone are set 7467 * correctly with respect to min_free_kbytes. 7468 */ 7469 void setup_per_zone_wmarks(void) 7470 { 7471 static DEFINE_SPINLOCK(lock); 7472 7473 spin_lock(&lock); 7474 __setup_per_zone_wmarks(); 7475 spin_unlock(&lock); 7476 } 7477 7478 /* 7479 * Initialise min_free_kbytes. 7480 * 7481 * For small machines we want it small (128k min). For large machines 7482 * we want it large (64MB max). But it is not linear, because network 7483 * bandwidth does not increase linearly with machine size. We use 7484 * 7485 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7486 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7487 * 7488 * which yields 7489 * 7490 * 16MB: 512k 7491 * 32MB: 724k 7492 * 64MB: 1024k 7493 * 128MB: 1448k 7494 * 256MB: 2048k 7495 * 512MB: 2896k 7496 * 1024MB: 4096k 7497 * 2048MB: 5792k 7498 * 4096MB: 8192k 7499 * 8192MB: 11584k 7500 * 16384MB: 16384k 7501 */ 7502 int __meminit init_per_zone_wmark_min(void) 7503 { 7504 unsigned long lowmem_kbytes; 7505 int new_min_free_kbytes; 7506 7507 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7508 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7509 7510 if (new_min_free_kbytes > user_min_free_kbytes) { 7511 min_free_kbytes = new_min_free_kbytes; 7512 if (min_free_kbytes < 128) 7513 min_free_kbytes = 128; 7514 if (min_free_kbytes > 65536) 7515 min_free_kbytes = 65536; 7516 } else { 7517 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7518 new_min_free_kbytes, user_min_free_kbytes); 7519 } 7520 setup_per_zone_wmarks(); 7521 refresh_zone_stat_thresholds(); 7522 setup_per_zone_lowmem_reserve(); 7523 7524 #ifdef CONFIG_NUMA 7525 setup_min_unmapped_ratio(); 7526 setup_min_slab_ratio(); 7527 #endif 7528 7529 return 0; 7530 } 7531 core_initcall(init_per_zone_wmark_min) 7532 7533 /* 7534 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7535 * that we can call two helper functions whenever min_free_kbytes 7536 * changes. 7537 */ 7538 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7539 void __user *buffer, size_t *length, loff_t *ppos) 7540 { 7541 int rc; 7542 7543 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7544 if (rc) 7545 return rc; 7546 7547 if (write) { 7548 user_min_free_kbytes = min_free_kbytes; 7549 setup_per_zone_wmarks(); 7550 } 7551 return 0; 7552 } 7553 7554 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7555 void __user *buffer, size_t *length, loff_t *ppos) 7556 { 7557 int rc; 7558 7559 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7560 if (rc) 7561 return rc; 7562 7563 if (write) 7564 setup_per_zone_wmarks(); 7565 7566 return 0; 7567 } 7568 7569 #ifdef CONFIG_NUMA 7570 static void setup_min_unmapped_ratio(void) 7571 { 7572 pg_data_t *pgdat; 7573 struct zone *zone; 7574 7575 for_each_online_pgdat(pgdat) 7576 pgdat->min_unmapped_pages = 0; 7577 7578 for_each_zone(zone) 7579 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 7580 sysctl_min_unmapped_ratio) / 100; 7581 } 7582 7583 7584 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7585 void __user *buffer, size_t *length, loff_t *ppos) 7586 { 7587 int rc; 7588 7589 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7590 if (rc) 7591 return rc; 7592 7593 setup_min_unmapped_ratio(); 7594 7595 return 0; 7596 } 7597 7598 static void setup_min_slab_ratio(void) 7599 { 7600 pg_data_t *pgdat; 7601 struct zone *zone; 7602 7603 for_each_online_pgdat(pgdat) 7604 pgdat->min_slab_pages = 0; 7605 7606 for_each_zone(zone) 7607 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 7608 sysctl_min_slab_ratio) / 100; 7609 } 7610 7611 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7612 void __user *buffer, size_t *length, loff_t *ppos) 7613 { 7614 int rc; 7615 7616 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7617 if (rc) 7618 return rc; 7619 7620 setup_min_slab_ratio(); 7621 7622 return 0; 7623 } 7624 #endif 7625 7626 /* 7627 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7628 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7629 * whenever sysctl_lowmem_reserve_ratio changes. 7630 * 7631 * The reserve ratio obviously has absolutely no relation with the 7632 * minimum watermarks. The lowmem reserve ratio can only make sense 7633 * if in function of the boot time zone sizes. 7634 */ 7635 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7636 void __user *buffer, size_t *length, loff_t *ppos) 7637 { 7638 proc_dointvec_minmax(table, write, buffer, length, ppos); 7639 setup_per_zone_lowmem_reserve(); 7640 return 0; 7641 } 7642 7643 /* 7644 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7645 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7646 * pagelist can have before it gets flushed back to buddy allocator. 7647 */ 7648 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7649 void __user *buffer, size_t *length, loff_t *ppos) 7650 { 7651 struct zone *zone; 7652 int old_percpu_pagelist_fraction; 7653 int ret; 7654 7655 mutex_lock(&pcp_batch_high_lock); 7656 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7657 7658 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7659 if (!write || ret < 0) 7660 goto out; 7661 7662 /* Sanity checking to avoid pcp imbalance */ 7663 if (percpu_pagelist_fraction && 7664 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7665 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7666 ret = -EINVAL; 7667 goto out; 7668 } 7669 7670 /* No change? */ 7671 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7672 goto out; 7673 7674 for_each_populated_zone(zone) { 7675 unsigned int cpu; 7676 7677 for_each_possible_cpu(cpu) 7678 pageset_set_high_and_batch(zone, 7679 per_cpu_ptr(zone->pageset, cpu)); 7680 } 7681 out: 7682 mutex_unlock(&pcp_batch_high_lock); 7683 return ret; 7684 } 7685 7686 #ifdef CONFIG_NUMA 7687 int hashdist = HASHDIST_DEFAULT; 7688 7689 static int __init set_hashdist(char *str) 7690 { 7691 if (!str) 7692 return 0; 7693 hashdist = simple_strtoul(str, &str, 0); 7694 return 1; 7695 } 7696 __setup("hashdist=", set_hashdist); 7697 #endif 7698 7699 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7700 /* 7701 * Returns the number of pages that arch has reserved but 7702 * is not known to alloc_large_system_hash(). 7703 */ 7704 static unsigned long __init arch_reserved_kernel_pages(void) 7705 { 7706 return 0; 7707 } 7708 #endif 7709 7710 /* 7711 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7712 * machines. As memory size is increased the scale is also increased but at 7713 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7714 * quadruples the scale is increased by one, which means the size of hash table 7715 * only doubles, instead of quadrupling as well. 7716 * Because 32-bit systems cannot have large physical memory, where this scaling 7717 * makes sense, it is disabled on such platforms. 7718 */ 7719 #if __BITS_PER_LONG > 32 7720 #define ADAPT_SCALE_BASE (64ul << 30) 7721 #define ADAPT_SCALE_SHIFT 2 7722 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7723 #endif 7724 7725 /* 7726 * allocate a large system hash table from bootmem 7727 * - it is assumed that the hash table must contain an exact power-of-2 7728 * quantity of entries 7729 * - limit is the number of hash buckets, not the total allocation size 7730 */ 7731 void *__init alloc_large_system_hash(const char *tablename, 7732 unsigned long bucketsize, 7733 unsigned long numentries, 7734 int scale, 7735 int flags, 7736 unsigned int *_hash_shift, 7737 unsigned int *_hash_mask, 7738 unsigned long low_limit, 7739 unsigned long high_limit) 7740 { 7741 unsigned long long max = high_limit; 7742 unsigned long log2qty, size; 7743 void *table = NULL; 7744 gfp_t gfp_flags; 7745 7746 /* allow the kernel cmdline to have a say */ 7747 if (!numentries) { 7748 /* round applicable memory size up to nearest megabyte */ 7749 numentries = nr_kernel_pages; 7750 numentries -= arch_reserved_kernel_pages(); 7751 7752 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7753 if (PAGE_SHIFT < 20) 7754 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7755 7756 #if __BITS_PER_LONG > 32 7757 if (!high_limit) { 7758 unsigned long adapt; 7759 7760 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7761 adapt <<= ADAPT_SCALE_SHIFT) 7762 scale++; 7763 } 7764 #endif 7765 7766 /* limit to 1 bucket per 2^scale bytes of low memory */ 7767 if (scale > PAGE_SHIFT) 7768 numentries >>= (scale - PAGE_SHIFT); 7769 else 7770 numentries <<= (PAGE_SHIFT - scale); 7771 7772 /* Make sure we've got at least a 0-order allocation.. */ 7773 if (unlikely(flags & HASH_SMALL)) { 7774 /* Makes no sense without HASH_EARLY */ 7775 WARN_ON(!(flags & HASH_EARLY)); 7776 if (!(numentries >> *_hash_shift)) { 7777 numentries = 1UL << *_hash_shift; 7778 BUG_ON(!numentries); 7779 } 7780 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7781 numentries = PAGE_SIZE / bucketsize; 7782 } 7783 numentries = roundup_pow_of_two(numentries); 7784 7785 /* limit allocation size to 1/16 total memory by default */ 7786 if (max == 0) { 7787 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7788 do_div(max, bucketsize); 7789 } 7790 max = min(max, 0x80000000ULL); 7791 7792 if (numentries < low_limit) 7793 numentries = low_limit; 7794 if (numentries > max) 7795 numentries = max; 7796 7797 log2qty = ilog2(numentries); 7798 7799 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 7800 do { 7801 size = bucketsize << log2qty; 7802 if (flags & HASH_EARLY) { 7803 if (flags & HASH_ZERO) 7804 table = memblock_alloc_nopanic(size, 7805 SMP_CACHE_BYTES); 7806 else 7807 table = memblock_alloc_raw(size, 7808 SMP_CACHE_BYTES); 7809 } else if (hashdist) { 7810 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 7811 } else { 7812 /* 7813 * If bucketsize is not a power-of-two, we may free 7814 * some pages at the end of hash table which 7815 * alloc_pages_exact() automatically does 7816 */ 7817 if (get_order(size) < MAX_ORDER) { 7818 table = alloc_pages_exact(size, gfp_flags); 7819 kmemleak_alloc(table, size, 1, gfp_flags); 7820 } 7821 } 7822 } while (!table && size > PAGE_SIZE && --log2qty); 7823 7824 if (!table) 7825 panic("Failed to allocate %s hash table\n", tablename); 7826 7827 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7828 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7829 7830 if (_hash_shift) 7831 *_hash_shift = log2qty; 7832 if (_hash_mask) 7833 *_hash_mask = (1 << log2qty) - 1; 7834 7835 return table; 7836 } 7837 7838 /* 7839 * This function checks whether pageblock includes unmovable pages or not. 7840 * If @count is not zero, it is okay to include less @count unmovable pages 7841 * 7842 * PageLRU check without isolation or lru_lock could race so that 7843 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7844 * check without lock_page also may miss some movable non-lru pages at 7845 * race condition. So you can't expect this function should be exact. 7846 */ 7847 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7848 int migratetype, int flags) 7849 { 7850 unsigned long pfn, iter, found; 7851 7852 /* 7853 * TODO we could make this much more efficient by not checking every 7854 * page in the range if we know all of them are in MOVABLE_ZONE and 7855 * that the movable zone guarantees that pages are migratable but 7856 * the later is not the case right now unfortunatelly. E.g. movablecore 7857 * can still lead to having bootmem allocations in zone_movable. 7858 */ 7859 7860 /* 7861 * CMA allocations (alloc_contig_range) really need to mark isolate 7862 * CMA pageblocks even when they are not movable in fact so consider 7863 * them movable here. 7864 */ 7865 if (is_migrate_cma(migratetype) && 7866 is_migrate_cma(get_pageblock_migratetype(page))) 7867 return false; 7868 7869 pfn = page_to_pfn(page); 7870 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7871 unsigned long check = pfn + iter; 7872 7873 if (!pfn_valid_within(check)) 7874 continue; 7875 7876 page = pfn_to_page(check); 7877 7878 if (PageReserved(page)) 7879 goto unmovable; 7880 7881 /* 7882 * If the zone is movable and we have ruled out all reserved 7883 * pages then it should be reasonably safe to assume the rest 7884 * is movable. 7885 */ 7886 if (zone_idx(zone) == ZONE_MOVABLE) 7887 continue; 7888 7889 /* 7890 * Hugepages are not in LRU lists, but they're movable. 7891 * We need not scan over tail pages bacause we don't 7892 * handle each tail page individually in migration. 7893 */ 7894 if (PageHuge(page)) { 7895 struct page *head = compound_head(page); 7896 unsigned int skip_pages; 7897 7898 if (!hugepage_migration_supported(page_hstate(head))) 7899 goto unmovable; 7900 7901 skip_pages = (1 << compound_order(head)) - (page - head); 7902 iter += skip_pages - 1; 7903 continue; 7904 } 7905 7906 /* 7907 * We can't use page_count without pin a page 7908 * because another CPU can free compound page. 7909 * This check already skips compound tails of THP 7910 * because their page->_refcount is zero at all time. 7911 */ 7912 if (!page_ref_count(page)) { 7913 if (PageBuddy(page)) 7914 iter += (1 << page_order(page)) - 1; 7915 continue; 7916 } 7917 7918 /* 7919 * The HWPoisoned page may be not in buddy system, and 7920 * page_count() is not 0. 7921 */ 7922 if ((flags & SKIP_HWPOISON) && PageHWPoison(page)) 7923 continue; 7924 7925 if (__PageMovable(page)) 7926 continue; 7927 7928 if (!PageLRU(page)) 7929 found++; 7930 /* 7931 * If there are RECLAIMABLE pages, we need to check 7932 * it. But now, memory offline itself doesn't call 7933 * shrink_node_slabs() and it still to be fixed. 7934 */ 7935 /* 7936 * If the page is not RAM, page_count()should be 0. 7937 * we don't need more check. This is an _used_ not-movable page. 7938 * 7939 * The problematic thing here is PG_reserved pages. PG_reserved 7940 * is set to both of a memory hole page and a _used_ kernel 7941 * page at boot. 7942 */ 7943 if (found > count) 7944 goto unmovable; 7945 } 7946 return false; 7947 unmovable: 7948 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE); 7949 if (flags & REPORT_FAILURE) 7950 dump_page(pfn_to_page(pfn+iter), "unmovable page"); 7951 return true; 7952 } 7953 7954 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7955 7956 static unsigned long pfn_max_align_down(unsigned long pfn) 7957 { 7958 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7959 pageblock_nr_pages) - 1); 7960 } 7961 7962 static unsigned long pfn_max_align_up(unsigned long pfn) 7963 { 7964 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7965 pageblock_nr_pages)); 7966 } 7967 7968 /* [start, end) must belong to a single zone. */ 7969 static int __alloc_contig_migrate_range(struct compact_control *cc, 7970 unsigned long start, unsigned long end) 7971 { 7972 /* This function is based on compact_zone() from compaction.c. */ 7973 unsigned long nr_reclaimed; 7974 unsigned long pfn = start; 7975 unsigned int tries = 0; 7976 int ret = 0; 7977 7978 migrate_prep(); 7979 7980 while (pfn < end || !list_empty(&cc->migratepages)) { 7981 if (fatal_signal_pending(current)) { 7982 ret = -EINTR; 7983 break; 7984 } 7985 7986 if (list_empty(&cc->migratepages)) { 7987 cc->nr_migratepages = 0; 7988 pfn = isolate_migratepages_range(cc, pfn, end); 7989 if (!pfn) { 7990 ret = -EINTR; 7991 break; 7992 } 7993 tries = 0; 7994 } else if (++tries == 5) { 7995 ret = ret < 0 ? ret : -EBUSY; 7996 break; 7997 } 7998 7999 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8000 &cc->migratepages); 8001 cc->nr_migratepages -= nr_reclaimed; 8002 8003 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 8004 NULL, 0, cc->mode, MR_CONTIG_RANGE); 8005 } 8006 if (ret < 0) { 8007 putback_movable_pages(&cc->migratepages); 8008 return ret; 8009 } 8010 return 0; 8011 } 8012 8013 /** 8014 * alloc_contig_range() -- tries to allocate given range of pages 8015 * @start: start PFN to allocate 8016 * @end: one-past-the-last PFN to allocate 8017 * @migratetype: migratetype of the underlaying pageblocks (either 8018 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8019 * in range must have the same migratetype and it must 8020 * be either of the two. 8021 * @gfp_mask: GFP mask to use during compaction 8022 * 8023 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8024 * aligned. The PFN range must belong to a single zone. 8025 * 8026 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8027 * pageblocks in the range. Once isolated, the pageblocks should not 8028 * be modified by others. 8029 * 8030 * Returns zero on success or negative error code. On success all 8031 * pages which PFN is in [start, end) are allocated for the caller and 8032 * need to be freed with free_contig_range(). 8033 */ 8034 int alloc_contig_range(unsigned long start, unsigned long end, 8035 unsigned migratetype, gfp_t gfp_mask) 8036 { 8037 unsigned long outer_start, outer_end; 8038 unsigned int order; 8039 int ret = 0; 8040 8041 struct compact_control cc = { 8042 .nr_migratepages = 0, 8043 .order = -1, 8044 .zone = page_zone(pfn_to_page(start)), 8045 .mode = MIGRATE_SYNC, 8046 .ignore_skip_hint = true, 8047 .no_set_skip_hint = true, 8048 .gfp_mask = current_gfp_context(gfp_mask), 8049 }; 8050 INIT_LIST_HEAD(&cc.migratepages); 8051 8052 /* 8053 * What we do here is we mark all pageblocks in range as 8054 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8055 * have different sizes, and due to the way page allocator 8056 * work, we align the range to biggest of the two pages so 8057 * that page allocator won't try to merge buddies from 8058 * different pageblocks and change MIGRATE_ISOLATE to some 8059 * other migration type. 8060 * 8061 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8062 * migrate the pages from an unaligned range (ie. pages that 8063 * we are interested in). This will put all the pages in 8064 * range back to page allocator as MIGRATE_ISOLATE. 8065 * 8066 * When this is done, we take the pages in range from page 8067 * allocator removing them from the buddy system. This way 8068 * page allocator will never consider using them. 8069 * 8070 * This lets us mark the pageblocks back as 8071 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8072 * aligned range but not in the unaligned, original range are 8073 * put back to page allocator so that buddy can use them. 8074 */ 8075 8076 ret = start_isolate_page_range(pfn_max_align_down(start), 8077 pfn_max_align_up(end), migratetype, 0); 8078 if (ret) 8079 return ret; 8080 8081 /* 8082 * In case of -EBUSY, we'd like to know which page causes problem. 8083 * So, just fall through. test_pages_isolated() has a tracepoint 8084 * which will report the busy page. 8085 * 8086 * It is possible that busy pages could become available before 8087 * the call to test_pages_isolated, and the range will actually be 8088 * allocated. So, if we fall through be sure to clear ret so that 8089 * -EBUSY is not accidentally used or returned to caller. 8090 */ 8091 ret = __alloc_contig_migrate_range(&cc, start, end); 8092 if (ret && ret != -EBUSY) 8093 goto done; 8094 ret =0; 8095 8096 /* 8097 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8098 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8099 * more, all pages in [start, end) are free in page allocator. 8100 * What we are going to do is to allocate all pages from 8101 * [start, end) (that is remove them from page allocator). 8102 * 8103 * The only problem is that pages at the beginning and at the 8104 * end of interesting range may be not aligned with pages that 8105 * page allocator holds, ie. they can be part of higher order 8106 * pages. Because of this, we reserve the bigger range and 8107 * once this is done free the pages we are not interested in. 8108 * 8109 * We don't have to hold zone->lock here because the pages are 8110 * isolated thus they won't get removed from buddy. 8111 */ 8112 8113 lru_add_drain_all(); 8114 drain_all_pages(cc.zone); 8115 8116 order = 0; 8117 outer_start = start; 8118 while (!PageBuddy(pfn_to_page(outer_start))) { 8119 if (++order >= MAX_ORDER) { 8120 outer_start = start; 8121 break; 8122 } 8123 outer_start &= ~0UL << order; 8124 } 8125 8126 if (outer_start != start) { 8127 order = page_order(pfn_to_page(outer_start)); 8128 8129 /* 8130 * outer_start page could be small order buddy page and 8131 * it doesn't include start page. Adjust outer_start 8132 * in this case to report failed page properly 8133 * on tracepoint in test_pages_isolated() 8134 */ 8135 if (outer_start + (1UL << order) <= start) 8136 outer_start = start; 8137 } 8138 8139 /* Make sure the range is really isolated. */ 8140 if (test_pages_isolated(outer_start, end, false)) { 8141 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8142 __func__, outer_start, end); 8143 ret = -EBUSY; 8144 goto done; 8145 } 8146 8147 /* Grab isolated pages from freelists. */ 8148 outer_end = isolate_freepages_range(&cc, outer_start, end); 8149 if (!outer_end) { 8150 ret = -EBUSY; 8151 goto done; 8152 } 8153 8154 /* Free head and tail (if any) */ 8155 if (start != outer_start) 8156 free_contig_range(outer_start, start - outer_start); 8157 if (end != outer_end) 8158 free_contig_range(end, outer_end - end); 8159 8160 done: 8161 undo_isolate_page_range(pfn_max_align_down(start), 8162 pfn_max_align_up(end), migratetype); 8163 return ret; 8164 } 8165 8166 void free_contig_range(unsigned long pfn, unsigned nr_pages) 8167 { 8168 unsigned int count = 0; 8169 8170 for (; nr_pages--; pfn++) { 8171 struct page *page = pfn_to_page(pfn); 8172 8173 count += page_count(page) != 1; 8174 __free_page(page); 8175 } 8176 WARN(count != 0, "%d pages are still in use!\n", count); 8177 } 8178 #endif 8179 8180 #ifdef CONFIG_MEMORY_HOTPLUG 8181 /* 8182 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8183 * page high values need to be recalulated. 8184 */ 8185 void __meminit zone_pcp_update(struct zone *zone) 8186 { 8187 unsigned cpu; 8188 mutex_lock(&pcp_batch_high_lock); 8189 for_each_possible_cpu(cpu) 8190 pageset_set_high_and_batch(zone, 8191 per_cpu_ptr(zone->pageset, cpu)); 8192 mutex_unlock(&pcp_batch_high_lock); 8193 } 8194 #endif 8195 8196 void zone_pcp_reset(struct zone *zone) 8197 { 8198 unsigned long flags; 8199 int cpu; 8200 struct per_cpu_pageset *pset; 8201 8202 /* avoid races with drain_pages() */ 8203 local_irq_save(flags); 8204 if (zone->pageset != &boot_pageset) { 8205 for_each_online_cpu(cpu) { 8206 pset = per_cpu_ptr(zone->pageset, cpu); 8207 drain_zonestat(zone, pset); 8208 } 8209 free_percpu(zone->pageset); 8210 zone->pageset = &boot_pageset; 8211 } 8212 local_irq_restore(flags); 8213 } 8214 8215 #ifdef CONFIG_MEMORY_HOTREMOVE 8216 /* 8217 * All pages in the range must be in a single zone and isolated 8218 * before calling this. 8219 */ 8220 void 8221 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8222 { 8223 struct page *page; 8224 struct zone *zone; 8225 unsigned int order, i; 8226 unsigned long pfn; 8227 unsigned long flags; 8228 /* find the first valid pfn */ 8229 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8230 if (pfn_valid(pfn)) 8231 break; 8232 if (pfn == end_pfn) 8233 return; 8234 offline_mem_sections(pfn, end_pfn); 8235 zone = page_zone(pfn_to_page(pfn)); 8236 spin_lock_irqsave(&zone->lock, flags); 8237 pfn = start_pfn; 8238 while (pfn < end_pfn) { 8239 if (!pfn_valid(pfn)) { 8240 pfn++; 8241 continue; 8242 } 8243 page = pfn_to_page(pfn); 8244 /* 8245 * The HWPoisoned page may be not in buddy system, and 8246 * page_count() is not 0. 8247 */ 8248 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8249 pfn++; 8250 SetPageReserved(page); 8251 continue; 8252 } 8253 8254 BUG_ON(page_count(page)); 8255 BUG_ON(!PageBuddy(page)); 8256 order = page_order(page); 8257 #ifdef CONFIG_DEBUG_VM 8258 pr_info("remove from free list %lx %d %lx\n", 8259 pfn, 1 << order, end_pfn); 8260 #endif 8261 list_del(&page->lru); 8262 rmv_page_order(page); 8263 zone->free_area[order].nr_free--; 8264 for (i = 0; i < (1 << order); i++) 8265 SetPageReserved((page+i)); 8266 pfn += (1 << order); 8267 } 8268 spin_unlock_irqrestore(&zone->lock, flags); 8269 } 8270 #endif 8271 8272 bool is_free_buddy_page(struct page *page) 8273 { 8274 struct zone *zone = page_zone(page); 8275 unsigned long pfn = page_to_pfn(page); 8276 unsigned long flags; 8277 unsigned int order; 8278 8279 spin_lock_irqsave(&zone->lock, flags); 8280 for (order = 0; order < MAX_ORDER; order++) { 8281 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8282 8283 if (PageBuddy(page_head) && page_order(page_head) >= order) 8284 break; 8285 } 8286 spin_unlock_irqrestore(&zone->lock, flags); 8287 8288 return order < MAX_ORDER; 8289 } 8290 8291 #ifdef CONFIG_MEMORY_FAILURE 8292 /* 8293 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8294 * test is performed under the zone lock to prevent a race against page 8295 * allocation. 8296 */ 8297 bool set_hwpoison_free_buddy_page(struct page *page) 8298 { 8299 struct zone *zone = page_zone(page); 8300 unsigned long pfn = page_to_pfn(page); 8301 unsigned long flags; 8302 unsigned int order; 8303 bool hwpoisoned = false; 8304 8305 spin_lock_irqsave(&zone->lock, flags); 8306 for (order = 0; order < MAX_ORDER; order++) { 8307 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8308 8309 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8310 if (!TestSetPageHWPoison(page)) 8311 hwpoisoned = true; 8312 break; 8313 } 8314 } 8315 spin_unlock_irqrestore(&zone->lock, flags); 8316 8317 return hwpoisoned; 8318 } 8319 #endif 8320