xref: /openbmc/linux/mm/page_alloc.c (revision 6811378e7d8b9aa4fca2a1ca73d24c9d67c9cb12)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40 #include <linux/stop_machine.h>
41 
42 #include <asm/tlbflush.h>
43 #include <asm/div64.h>
44 #include "internal.h"
45 
46 /*
47  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
48  * initializer cleaner
49  */
50 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
51 EXPORT_SYMBOL(node_online_map);
52 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
53 EXPORT_SYMBOL(node_possible_map);
54 unsigned long totalram_pages __read_mostly;
55 unsigned long totalhigh_pages __read_mostly;
56 unsigned long totalreserve_pages __read_mostly;
57 long nr_swap_pages;
58 int percpu_pagelist_fraction;
59 
60 static void __free_pages_ok(struct page *page, unsigned int order);
61 
62 /*
63  * results with 256, 32 in the lowmem_reserve sysctl:
64  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
65  *	1G machine -> (16M dma, 784M normal, 224M high)
66  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
67  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
68  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
69  *
70  * TBD: should special case ZONE_DMA32 machines here - in those we normally
71  * don't need any ZONE_NORMAL reservation
72  */
73 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
74 
75 EXPORT_SYMBOL(totalram_pages);
76 
77 /*
78  * Used by page_zone() to look up the address of the struct zone whose
79  * id is encoded in the upper bits of page->flags
80  */
81 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
82 EXPORT_SYMBOL(zone_table);
83 
84 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
85 int min_free_kbytes = 1024;
86 
87 unsigned long __meminitdata nr_kernel_pages;
88 unsigned long __meminitdata nr_all_pages;
89 
90 #ifdef CONFIG_DEBUG_VM
91 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
92 {
93 	int ret = 0;
94 	unsigned seq;
95 	unsigned long pfn = page_to_pfn(page);
96 
97 	do {
98 		seq = zone_span_seqbegin(zone);
99 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
100 			ret = 1;
101 		else if (pfn < zone->zone_start_pfn)
102 			ret = 1;
103 	} while (zone_span_seqretry(zone, seq));
104 
105 	return ret;
106 }
107 
108 static int page_is_consistent(struct zone *zone, struct page *page)
109 {
110 #ifdef CONFIG_HOLES_IN_ZONE
111 	if (!pfn_valid(page_to_pfn(page)))
112 		return 0;
113 #endif
114 	if (zone != page_zone(page))
115 		return 0;
116 
117 	return 1;
118 }
119 /*
120  * Temporary debugging check for pages not lying within a given zone.
121  */
122 static int bad_range(struct zone *zone, struct page *page)
123 {
124 	if (page_outside_zone_boundaries(zone, page))
125 		return 1;
126 	if (!page_is_consistent(zone, page))
127 		return 1;
128 
129 	return 0;
130 }
131 
132 #else
133 static inline int bad_range(struct zone *zone, struct page *page)
134 {
135 	return 0;
136 }
137 #endif
138 
139 static void bad_page(struct page *page)
140 {
141 	printk(KERN_EMERG "Bad page state in process '%s'\n"
142 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
143 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
144 		KERN_EMERG "Backtrace:\n",
145 		current->comm, page, (int)(2*sizeof(unsigned long)),
146 		(unsigned long)page->flags, page->mapping,
147 		page_mapcount(page), page_count(page));
148 	dump_stack();
149 	page->flags &= ~(1 << PG_lru	|
150 			1 << PG_private |
151 			1 << PG_locked	|
152 			1 << PG_active	|
153 			1 << PG_dirty	|
154 			1 << PG_reclaim |
155 			1 << PG_slab    |
156 			1 << PG_swapcache |
157 			1 << PG_writeback |
158 			1 << PG_buddy );
159 	set_page_count(page, 0);
160 	reset_page_mapcount(page);
161 	page->mapping = NULL;
162 	add_taint(TAINT_BAD_PAGE);
163 }
164 
165 /*
166  * Higher-order pages are called "compound pages".  They are structured thusly:
167  *
168  * The first PAGE_SIZE page is called the "head page".
169  *
170  * The remaining PAGE_SIZE pages are called "tail pages".
171  *
172  * All pages have PG_compound set.  All pages have their ->private pointing at
173  * the head page (even the head page has this).
174  *
175  * The first tail page's ->lru.next holds the address of the compound page's
176  * put_page() function.  Its ->lru.prev holds the order of allocation.
177  * This usage means that zero-order pages may not be compound.
178  */
179 
180 static void free_compound_page(struct page *page)
181 {
182 	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
183 }
184 
185 static void prep_compound_page(struct page *page, unsigned long order)
186 {
187 	int i;
188 	int nr_pages = 1 << order;
189 
190 	page[1].lru.next = (void *)free_compound_page;	/* set dtor */
191 	page[1].lru.prev = (void *)order;
192 	for (i = 0; i < nr_pages; i++) {
193 		struct page *p = page + i;
194 
195 		__SetPageCompound(p);
196 		set_page_private(p, (unsigned long)page);
197 	}
198 }
199 
200 static void destroy_compound_page(struct page *page, unsigned long order)
201 {
202 	int i;
203 	int nr_pages = 1 << order;
204 
205 	if (unlikely((unsigned long)page[1].lru.prev != order))
206 		bad_page(page);
207 
208 	for (i = 0; i < nr_pages; i++) {
209 		struct page *p = page + i;
210 
211 		if (unlikely(!PageCompound(p) |
212 				(page_private(p) != (unsigned long)page)))
213 			bad_page(page);
214 		__ClearPageCompound(p);
215 	}
216 }
217 
218 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
219 {
220 	int i;
221 
222 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
223 	/*
224 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
225 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
226 	 */
227 	BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
228 	for (i = 0; i < (1 << order); i++)
229 		clear_highpage(page + i);
230 }
231 
232 /*
233  * function for dealing with page's order in buddy system.
234  * zone->lock is already acquired when we use these.
235  * So, we don't need atomic page->flags operations here.
236  */
237 static inline unsigned long page_order(struct page *page)
238 {
239 	return page_private(page);
240 }
241 
242 static inline void set_page_order(struct page *page, int order)
243 {
244 	set_page_private(page, order);
245 	__SetPageBuddy(page);
246 }
247 
248 static inline void rmv_page_order(struct page *page)
249 {
250 	__ClearPageBuddy(page);
251 	set_page_private(page, 0);
252 }
253 
254 /*
255  * Locate the struct page for both the matching buddy in our
256  * pair (buddy1) and the combined O(n+1) page they form (page).
257  *
258  * 1) Any buddy B1 will have an order O twin B2 which satisfies
259  * the following equation:
260  *     B2 = B1 ^ (1 << O)
261  * For example, if the starting buddy (buddy2) is #8 its order
262  * 1 buddy is #10:
263  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
264  *
265  * 2) Any buddy B will have an order O+1 parent P which
266  * satisfies the following equation:
267  *     P = B & ~(1 << O)
268  *
269  * Assumption: *_mem_map is contigious at least up to MAX_ORDER
270  */
271 static inline struct page *
272 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
273 {
274 	unsigned long buddy_idx = page_idx ^ (1 << order);
275 
276 	return page + (buddy_idx - page_idx);
277 }
278 
279 static inline unsigned long
280 __find_combined_index(unsigned long page_idx, unsigned int order)
281 {
282 	return (page_idx & ~(1 << order));
283 }
284 
285 /*
286  * This function checks whether a page is free && is the buddy
287  * we can do coalesce a page and its buddy if
288  * (a) the buddy is not in a hole &&
289  * (b) the buddy is in the buddy system &&
290  * (c) a page and its buddy have the same order &&
291  * (d) a page and its buddy are in the same zone.
292  *
293  * For recording whether a page is in the buddy system, we use PG_buddy.
294  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
295  *
296  * For recording page's order, we use page_private(page).
297  */
298 static inline int page_is_buddy(struct page *page, struct page *buddy,
299 								int order)
300 {
301 #ifdef CONFIG_HOLES_IN_ZONE
302 	if (!pfn_valid(page_to_pfn(buddy)))
303 		return 0;
304 #endif
305 
306 	if (page_zone_id(page) != page_zone_id(buddy))
307 		return 0;
308 
309 	if (PageBuddy(buddy) && page_order(buddy) == order) {
310 		BUG_ON(page_count(buddy) != 0);
311 		return 1;
312 	}
313 	return 0;
314 }
315 
316 /*
317  * Freeing function for a buddy system allocator.
318  *
319  * The concept of a buddy system is to maintain direct-mapped table
320  * (containing bit values) for memory blocks of various "orders".
321  * The bottom level table contains the map for the smallest allocatable
322  * units of memory (here, pages), and each level above it describes
323  * pairs of units from the levels below, hence, "buddies".
324  * At a high level, all that happens here is marking the table entry
325  * at the bottom level available, and propagating the changes upward
326  * as necessary, plus some accounting needed to play nicely with other
327  * parts of the VM system.
328  * At each level, we keep a list of pages, which are heads of continuous
329  * free pages of length of (1 << order) and marked with PG_buddy. Page's
330  * order is recorded in page_private(page) field.
331  * So when we are allocating or freeing one, we can derive the state of the
332  * other.  That is, if we allocate a small block, and both were
333  * free, the remainder of the region must be split into blocks.
334  * If a block is freed, and its buddy is also free, then this
335  * triggers coalescing into a block of larger size.
336  *
337  * -- wli
338  */
339 
340 static inline void __free_one_page(struct page *page,
341 		struct zone *zone, unsigned int order)
342 {
343 	unsigned long page_idx;
344 	int order_size = 1 << order;
345 
346 	if (unlikely(PageCompound(page)))
347 		destroy_compound_page(page, order);
348 
349 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
350 
351 	BUG_ON(page_idx & (order_size - 1));
352 	BUG_ON(bad_range(zone, page));
353 
354 	zone->free_pages += order_size;
355 	while (order < MAX_ORDER-1) {
356 		unsigned long combined_idx;
357 		struct free_area *area;
358 		struct page *buddy;
359 
360 		buddy = __page_find_buddy(page, page_idx, order);
361 		if (!page_is_buddy(page, buddy, order))
362 			break;		/* Move the buddy up one level. */
363 
364 		list_del(&buddy->lru);
365 		area = zone->free_area + order;
366 		area->nr_free--;
367 		rmv_page_order(buddy);
368 		combined_idx = __find_combined_index(page_idx, order);
369 		page = page + (combined_idx - page_idx);
370 		page_idx = combined_idx;
371 		order++;
372 	}
373 	set_page_order(page, order);
374 	list_add(&page->lru, &zone->free_area[order].free_list);
375 	zone->free_area[order].nr_free++;
376 }
377 
378 static inline int free_pages_check(struct page *page)
379 {
380 	if (unlikely(page_mapcount(page) |
381 		(page->mapping != NULL)  |
382 		(page_count(page) != 0)  |
383 		(page->flags & (
384 			1 << PG_lru	|
385 			1 << PG_private |
386 			1 << PG_locked	|
387 			1 << PG_active	|
388 			1 << PG_reclaim	|
389 			1 << PG_slab	|
390 			1 << PG_swapcache |
391 			1 << PG_writeback |
392 			1 << PG_reserved |
393 			1 << PG_buddy ))))
394 		bad_page(page);
395 	if (PageDirty(page))
396 		__ClearPageDirty(page);
397 	/*
398 	 * For now, we report if PG_reserved was found set, but do not
399 	 * clear it, and do not free the page.  But we shall soon need
400 	 * to do more, for when the ZERO_PAGE count wraps negative.
401 	 */
402 	return PageReserved(page);
403 }
404 
405 /*
406  * Frees a list of pages.
407  * Assumes all pages on list are in same zone, and of same order.
408  * count is the number of pages to free.
409  *
410  * If the zone was previously in an "all pages pinned" state then look to
411  * see if this freeing clears that state.
412  *
413  * And clear the zone's pages_scanned counter, to hold off the "all pages are
414  * pinned" detection logic.
415  */
416 static void free_pages_bulk(struct zone *zone, int count,
417 					struct list_head *list, int order)
418 {
419 	spin_lock(&zone->lock);
420 	zone->all_unreclaimable = 0;
421 	zone->pages_scanned = 0;
422 	while (count--) {
423 		struct page *page;
424 
425 		BUG_ON(list_empty(list));
426 		page = list_entry(list->prev, struct page, lru);
427 		/* have to delete it as __free_one_page list manipulates */
428 		list_del(&page->lru);
429 		__free_one_page(page, zone, order);
430 	}
431 	spin_unlock(&zone->lock);
432 }
433 
434 static void free_one_page(struct zone *zone, struct page *page, int order)
435 {
436 	LIST_HEAD(list);
437 	list_add(&page->lru, &list);
438 	free_pages_bulk(zone, 1, &list, order);
439 }
440 
441 static void __free_pages_ok(struct page *page, unsigned int order)
442 {
443 	unsigned long flags;
444 	int i;
445 	int reserved = 0;
446 
447 	arch_free_page(page, order);
448 	if (!PageHighMem(page))
449 		mutex_debug_check_no_locks_freed(page_address(page),
450 						 PAGE_SIZE<<order);
451 
452 	for (i = 0 ; i < (1 << order) ; ++i)
453 		reserved += free_pages_check(page + i);
454 	if (reserved)
455 		return;
456 
457 	kernel_map_pages(page, 1 << order, 0);
458 	local_irq_save(flags);
459 	__mod_page_state(pgfree, 1 << order);
460 	free_one_page(page_zone(page), page, order);
461 	local_irq_restore(flags);
462 }
463 
464 /*
465  * permit the bootmem allocator to evade page validation on high-order frees
466  */
467 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
468 {
469 	if (order == 0) {
470 		__ClearPageReserved(page);
471 		set_page_count(page, 0);
472 		set_page_refcounted(page);
473 		__free_page(page);
474 	} else {
475 		int loop;
476 
477 		prefetchw(page);
478 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
479 			struct page *p = &page[loop];
480 
481 			if (loop + 1 < BITS_PER_LONG)
482 				prefetchw(p + 1);
483 			__ClearPageReserved(p);
484 			set_page_count(p, 0);
485 		}
486 
487 		set_page_refcounted(page);
488 		__free_pages(page, order);
489 	}
490 }
491 
492 
493 /*
494  * The order of subdivision here is critical for the IO subsystem.
495  * Please do not alter this order without good reasons and regression
496  * testing. Specifically, as large blocks of memory are subdivided,
497  * the order in which smaller blocks are delivered depends on the order
498  * they're subdivided in this function. This is the primary factor
499  * influencing the order in which pages are delivered to the IO
500  * subsystem according to empirical testing, and this is also justified
501  * by considering the behavior of a buddy system containing a single
502  * large block of memory acted on by a series of small allocations.
503  * This behavior is a critical factor in sglist merging's success.
504  *
505  * -- wli
506  */
507 static inline void expand(struct zone *zone, struct page *page,
508  	int low, int high, struct free_area *area)
509 {
510 	unsigned long size = 1 << high;
511 
512 	while (high > low) {
513 		area--;
514 		high--;
515 		size >>= 1;
516 		BUG_ON(bad_range(zone, &page[size]));
517 		list_add(&page[size].lru, &area->free_list);
518 		area->nr_free++;
519 		set_page_order(&page[size], high);
520 	}
521 }
522 
523 /*
524  * This page is about to be returned from the page allocator
525  */
526 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
527 {
528 	if (unlikely(page_mapcount(page) |
529 		(page->mapping != NULL)  |
530 		(page_count(page) != 0)  |
531 		(page->flags & (
532 			1 << PG_lru	|
533 			1 << PG_private	|
534 			1 << PG_locked	|
535 			1 << PG_active	|
536 			1 << PG_dirty	|
537 			1 << PG_reclaim	|
538 			1 << PG_slab    |
539 			1 << PG_swapcache |
540 			1 << PG_writeback |
541 			1 << PG_reserved |
542 			1 << PG_buddy ))))
543 		bad_page(page);
544 
545 	/*
546 	 * For now, we report if PG_reserved was found set, but do not
547 	 * clear it, and do not allocate the page: as a safety net.
548 	 */
549 	if (PageReserved(page))
550 		return 1;
551 
552 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
553 			1 << PG_referenced | 1 << PG_arch_1 |
554 			1 << PG_checked | 1 << PG_mappedtodisk);
555 	set_page_private(page, 0);
556 	set_page_refcounted(page);
557 	kernel_map_pages(page, 1 << order, 1);
558 
559 	if (gfp_flags & __GFP_ZERO)
560 		prep_zero_page(page, order, gfp_flags);
561 
562 	if (order && (gfp_flags & __GFP_COMP))
563 		prep_compound_page(page, order);
564 
565 	return 0;
566 }
567 
568 /*
569  * Do the hard work of removing an element from the buddy allocator.
570  * Call me with the zone->lock already held.
571  */
572 static struct page *__rmqueue(struct zone *zone, unsigned int order)
573 {
574 	struct free_area * area;
575 	unsigned int current_order;
576 	struct page *page;
577 
578 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
579 		area = zone->free_area + current_order;
580 		if (list_empty(&area->free_list))
581 			continue;
582 
583 		page = list_entry(area->free_list.next, struct page, lru);
584 		list_del(&page->lru);
585 		rmv_page_order(page);
586 		area->nr_free--;
587 		zone->free_pages -= 1UL << order;
588 		expand(zone, page, order, current_order, area);
589 		return page;
590 	}
591 
592 	return NULL;
593 }
594 
595 /*
596  * Obtain a specified number of elements from the buddy allocator, all under
597  * a single hold of the lock, for efficiency.  Add them to the supplied list.
598  * Returns the number of new pages which were placed at *list.
599  */
600 static int rmqueue_bulk(struct zone *zone, unsigned int order,
601 			unsigned long count, struct list_head *list)
602 {
603 	int i;
604 
605 	spin_lock(&zone->lock);
606 	for (i = 0; i < count; ++i) {
607 		struct page *page = __rmqueue(zone, order);
608 		if (unlikely(page == NULL))
609 			break;
610 		list_add_tail(&page->lru, list);
611 	}
612 	spin_unlock(&zone->lock);
613 	return i;
614 }
615 
616 #ifdef CONFIG_NUMA
617 /*
618  * Called from the slab reaper to drain pagesets on a particular node that
619  * belong to the currently executing processor.
620  * Note that this function must be called with the thread pinned to
621  * a single processor.
622  */
623 void drain_node_pages(int nodeid)
624 {
625 	int i, z;
626 	unsigned long flags;
627 
628 	for (z = 0; z < MAX_NR_ZONES; z++) {
629 		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
630 		struct per_cpu_pageset *pset;
631 
632 		pset = zone_pcp(zone, smp_processor_id());
633 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
634 			struct per_cpu_pages *pcp;
635 
636 			pcp = &pset->pcp[i];
637 			if (pcp->count) {
638 				local_irq_save(flags);
639 				free_pages_bulk(zone, pcp->count, &pcp->list, 0);
640 				pcp->count = 0;
641 				local_irq_restore(flags);
642 			}
643 		}
644 	}
645 }
646 #endif
647 
648 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
649 static void __drain_pages(unsigned int cpu)
650 {
651 	unsigned long flags;
652 	struct zone *zone;
653 	int i;
654 
655 	for_each_zone(zone) {
656 		struct per_cpu_pageset *pset;
657 
658 		pset = zone_pcp(zone, cpu);
659 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
660 			struct per_cpu_pages *pcp;
661 
662 			pcp = &pset->pcp[i];
663 			local_irq_save(flags);
664 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
665 			pcp->count = 0;
666 			local_irq_restore(flags);
667 		}
668 	}
669 }
670 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
671 
672 #ifdef CONFIG_PM
673 
674 void mark_free_pages(struct zone *zone)
675 {
676 	unsigned long zone_pfn, flags;
677 	int order;
678 	struct list_head *curr;
679 
680 	if (!zone->spanned_pages)
681 		return;
682 
683 	spin_lock_irqsave(&zone->lock, flags);
684 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
685 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
686 
687 	for (order = MAX_ORDER - 1; order >= 0; --order)
688 		list_for_each(curr, &zone->free_area[order].free_list) {
689 			unsigned long start_pfn, i;
690 
691 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
692 
693 			for (i=0; i < (1<<order); i++)
694 				SetPageNosaveFree(pfn_to_page(start_pfn+i));
695 	}
696 	spin_unlock_irqrestore(&zone->lock, flags);
697 }
698 
699 /*
700  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
701  */
702 void drain_local_pages(void)
703 {
704 	unsigned long flags;
705 
706 	local_irq_save(flags);
707 	__drain_pages(smp_processor_id());
708 	local_irq_restore(flags);
709 }
710 #endif /* CONFIG_PM */
711 
712 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
713 {
714 #ifdef CONFIG_NUMA
715 	pg_data_t *pg = z->zone_pgdat;
716 	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
717 	struct per_cpu_pageset *p;
718 
719 	p = zone_pcp(z, cpu);
720 	if (pg == orig) {
721 		p->numa_hit++;
722 	} else {
723 		p->numa_miss++;
724 		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
725 	}
726 	if (pg == NODE_DATA(numa_node_id()))
727 		p->local_node++;
728 	else
729 		p->other_node++;
730 #endif
731 }
732 
733 /*
734  * Free a 0-order page
735  */
736 static void fastcall free_hot_cold_page(struct page *page, int cold)
737 {
738 	struct zone *zone = page_zone(page);
739 	struct per_cpu_pages *pcp;
740 	unsigned long flags;
741 
742 	arch_free_page(page, 0);
743 
744 	if (PageAnon(page))
745 		page->mapping = NULL;
746 	if (free_pages_check(page))
747 		return;
748 
749 	kernel_map_pages(page, 1, 0);
750 
751 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
752 	local_irq_save(flags);
753 	__inc_page_state(pgfree);
754 	list_add(&page->lru, &pcp->list);
755 	pcp->count++;
756 	if (pcp->count >= pcp->high) {
757 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
758 		pcp->count -= pcp->batch;
759 	}
760 	local_irq_restore(flags);
761 	put_cpu();
762 }
763 
764 void fastcall free_hot_page(struct page *page)
765 {
766 	free_hot_cold_page(page, 0);
767 }
768 
769 void fastcall free_cold_page(struct page *page)
770 {
771 	free_hot_cold_page(page, 1);
772 }
773 
774 /*
775  * split_page takes a non-compound higher-order page, and splits it into
776  * n (1<<order) sub-pages: page[0..n]
777  * Each sub-page must be freed individually.
778  *
779  * Note: this is probably too low level an operation for use in drivers.
780  * Please consult with lkml before using this in your driver.
781  */
782 void split_page(struct page *page, unsigned int order)
783 {
784 	int i;
785 
786 	BUG_ON(PageCompound(page));
787 	BUG_ON(!page_count(page));
788 	for (i = 1; i < (1 << order); i++)
789 		set_page_refcounted(page + i);
790 }
791 
792 /*
793  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
794  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
795  * or two.
796  */
797 static struct page *buffered_rmqueue(struct zonelist *zonelist,
798 			struct zone *zone, int order, gfp_t gfp_flags)
799 {
800 	unsigned long flags;
801 	struct page *page;
802 	int cold = !!(gfp_flags & __GFP_COLD);
803 	int cpu;
804 
805 again:
806 	cpu  = get_cpu();
807 	if (likely(order == 0)) {
808 		struct per_cpu_pages *pcp;
809 
810 		pcp = &zone_pcp(zone, cpu)->pcp[cold];
811 		local_irq_save(flags);
812 		if (!pcp->count) {
813 			pcp->count += rmqueue_bulk(zone, 0,
814 						pcp->batch, &pcp->list);
815 			if (unlikely(!pcp->count))
816 				goto failed;
817 		}
818 		page = list_entry(pcp->list.next, struct page, lru);
819 		list_del(&page->lru);
820 		pcp->count--;
821 	} else {
822 		spin_lock_irqsave(&zone->lock, flags);
823 		page = __rmqueue(zone, order);
824 		spin_unlock(&zone->lock);
825 		if (!page)
826 			goto failed;
827 	}
828 
829 	__mod_page_state_zone(zone, pgalloc, 1 << order);
830 	zone_statistics(zonelist, zone, cpu);
831 	local_irq_restore(flags);
832 	put_cpu();
833 
834 	BUG_ON(bad_range(zone, page));
835 	if (prep_new_page(page, order, gfp_flags))
836 		goto again;
837 	return page;
838 
839 failed:
840 	local_irq_restore(flags);
841 	put_cpu();
842 	return NULL;
843 }
844 
845 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
846 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
847 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
848 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
849 #define ALLOC_HARDER		0x10 /* try to alloc harder */
850 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
851 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
852 
853 /*
854  * Return 1 if free pages are above 'mark'. This takes into account the order
855  * of the allocation.
856  */
857 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
858 		      int classzone_idx, int alloc_flags)
859 {
860 	/* free_pages my go negative - that's OK */
861 	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
862 	int o;
863 
864 	if (alloc_flags & ALLOC_HIGH)
865 		min -= min / 2;
866 	if (alloc_flags & ALLOC_HARDER)
867 		min -= min / 4;
868 
869 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
870 		return 0;
871 	for (o = 0; o < order; o++) {
872 		/* At the next order, this order's pages become unavailable */
873 		free_pages -= z->free_area[o].nr_free << o;
874 
875 		/* Require fewer higher order pages to be free */
876 		min >>= 1;
877 
878 		if (free_pages <= min)
879 			return 0;
880 	}
881 	return 1;
882 }
883 
884 /*
885  * get_page_from_freeliest goes through the zonelist trying to allocate
886  * a page.
887  */
888 static struct page *
889 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
890 		struct zonelist *zonelist, int alloc_flags)
891 {
892 	struct zone **z = zonelist->zones;
893 	struct page *page = NULL;
894 	int classzone_idx = zone_idx(*z);
895 
896 	/*
897 	 * Go through the zonelist once, looking for a zone with enough free.
898 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
899 	 */
900 	do {
901 		if ((alloc_flags & ALLOC_CPUSET) &&
902 				!cpuset_zone_allowed(*z, gfp_mask))
903 			continue;
904 
905 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
906 			unsigned long mark;
907 			if (alloc_flags & ALLOC_WMARK_MIN)
908 				mark = (*z)->pages_min;
909 			else if (alloc_flags & ALLOC_WMARK_LOW)
910 				mark = (*z)->pages_low;
911 			else
912 				mark = (*z)->pages_high;
913 			if (!zone_watermark_ok(*z, order, mark,
914 				    classzone_idx, alloc_flags))
915 				if (!zone_reclaim_mode ||
916 				    !zone_reclaim(*z, gfp_mask, order))
917 					continue;
918 		}
919 
920 		page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
921 		if (page) {
922 			break;
923 		}
924 	} while (*(++z) != NULL);
925 	return page;
926 }
927 
928 /*
929  * This is the 'heart' of the zoned buddy allocator.
930  */
931 struct page * fastcall
932 __alloc_pages(gfp_t gfp_mask, unsigned int order,
933 		struct zonelist *zonelist)
934 {
935 	const gfp_t wait = gfp_mask & __GFP_WAIT;
936 	struct zone **z;
937 	struct page *page;
938 	struct reclaim_state reclaim_state;
939 	struct task_struct *p = current;
940 	int do_retry;
941 	int alloc_flags;
942 	int did_some_progress;
943 
944 	might_sleep_if(wait);
945 
946 restart:
947 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
948 
949 	if (unlikely(*z == NULL)) {
950 		/* Should this ever happen?? */
951 		return NULL;
952 	}
953 
954 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
955 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
956 	if (page)
957 		goto got_pg;
958 
959 	do {
960 		if (cpuset_zone_allowed(*z, gfp_mask|__GFP_HARDWALL))
961 			wakeup_kswapd(*z, order);
962 	} while (*(++z));
963 
964 	/*
965 	 * OK, we're below the kswapd watermark and have kicked background
966 	 * reclaim. Now things get more complex, so set up alloc_flags according
967 	 * to how we want to proceed.
968 	 *
969 	 * The caller may dip into page reserves a bit more if the caller
970 	 * cannot run direct reclaim, or if the caller has realtime scheduling
971 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
972 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
973 	 */
974 	alloc_flags = ALLOC_WMARK_MIN;
975 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
976 		alloc_flags |= ALLOC_HARDER;
977 	if (gfp_mask & __GFP_HIGH)
978 		alloc_flags |= ALLOC_HIGH;
979 	if (wait)
980 		alloc_flags |= ALLOC_CPUSET;
981 
982 	/*
983 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
984 	 * coming from realtime tasks go deeper into reserves.
985 	 *
986 	 * This is the last chance, in general, before the goto nopage.
987 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
988 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
989 	 */
990 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
991 	if (page)
992 		goto got_pg;
993 
994 	/* This allocation should allow future memory freeing. */
995 
996 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
997 			&& !in_interrupt()) {
998 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
999 nofail_alloc:
1000 			/* go through the zonelist yet again, ignoring mins */
1001 			page = get_page_from_freelist(gfp_mask, order,
1002 				zonelist, ALLOC_NO_WATERMARKS);
1003 			if (page)
1004 				goto got_pg;
1005 			if (gfp_mask & __GFP_NOFAIL) {
1006 				blk_congestion_wait(WRITE, HZ/50);
1007 				goto nofail_alloc;
1008 			}
1009 		}
1010 		goto nopage;
1011 	}
1012 
1013 	/* Atomic allocations - we can't balance anything */
1014 	if (!wait)
1015 		goto nopage;
1016 
1017 rebalance:
1018 	cond_resched();
1019 
1020 	/* We now go into synchronous reclaim */
1021 	cpuset_memory_pressure_bump();
1022 	p->flags |= PF_MEMALLOC;
1023 	reclaim_state.reclaimed_slab = 0;
1024 	p->reclaim_state = &reclaim_state;
1025 
1026 	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1027 
1028 	p->reclaim_state = NULL;
1029 	p->flags &= ~PF_MEMALLOC;
1030 
1031 	cond_resched();
1032 
1033 	if (likely(did_some_progress)) {
1034 		page = get_page_from_freelist(gfp_mask, order,
1035 						zonelist, alloc_flags);
1036 		if (page)
1037 			goto got_pg;
1038 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1039 		/*
1040 		 * Go through the zonelist yet one more time, keep
1041 		 * very high watermark here, this is only to catch
1042 		 * a parallel oom killing, we must fail if we're still
1043 		 * under heavy pressure.
1044 		 */
1045 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1046 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1047 		if (page)
1048 			goto got_pg;
1049 
1050 		out_of_memory(zonelist, gfp_mask, order);
1051 		goto restart;
1052 	}
1053 
1054 	/*
1055 	 * Don't let big-order allocations loop unless the caller explicitly
1056 	 * requests that.  Wait for some write requests to complete then retry.
1057 	 *
1058 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1059 	 * <= 3, but that may not be true in other implementations.
1060 	 */
1061 	do_retry = 0;
1062 	if (!(gfp_mask & __GFP_NORETRY)) {
1063 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1064 			do_retry = 1;
1065 		if (gfp_mask & __GFP_NOFAIL)
1066 			do_retry = 1;
1067 	}
1068 	if (do_retry) {
1069 		blk_congestion_wait(WRITE, HZ/50);
1070 		goto rebalance;
1071 	}
1072 
1073 nopage:
1074 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1075 		printk(KERN_WARNING "%s: page allocation failure."
1076 			" order:%d, mode:0x%x\n",
1077 			p->comm, order, gfp_mask);
1078 		dump_stack();
1079 		show_mem();
1080 	}
1081 got_pg:
1082 	return page;
1083 }
1084 
1085 EXPORT_SYMBOL(__alloc_pages);
1086 
1087 /*
1088  * Common helper functions.
1089  */
1090 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1091 {
1092 	struct page * page;
1093 	page = alloc_pages(gfp_mask, order);
1094 	if (!page)
1095 		return 0;
1096 	return (unsigned long) page_address(page);
1097 }
1098 
1099 EXPORT_SYMBOL(__get_free_pages);
1100 
1101 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1102 {
1103 	struct page * page;
1104 
1105 	/*
1106 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1107 	 * a highmem page
1108 	 */
1109 	BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1110 
1111 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1112 	if (page)
1113 		return (unsigned long) page_address(page);
1114 	return 0;
1115 }
1116 
1117 EXPORT_SYMBOL(get_zeroed_page);
1118 
1119 void __pagevec_free(struct pagevec *pvec)
1120 {
1121 	int i = pagevec_count(pvec);
1122 
1123 	while (--i >= 0)
1124 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1125 }
1126 
1127 fastcall void __free_pages(struct page *page, unsigned int order)
1128 {
1129 	if (put_page_testzero(page)) {
1130 		if (order == 0)
1131 			free_hot_page(page);
1132 		else
1133 			__free_pages_ok(page, order);
1134 	}
1135 }
1136 
1137 EXPORT_SYMBOL(__free_pages);
1138 
1139 fastcall void free_pages(unsigned long addr, unsigned int order)
1140 {
1141 	if (addr != 0) {
1142 		BUG_ON(!virt_addr_valid((void *)addr));
1143 		__free_pages(virt_to_page((void *)addr), order);
1144 	}
1145 }
1146 
1147 EXPORT_SYMBOL(free_pages);
1148 
1149 /*
1150  * Total amount of free (allocatable) RAM:
1151  */
1152 unsigned int nr_free_pages(void)
1153 {
1154 	unsigned int sum = 0;
1155 	struct zone *zone;
1156 
1157 	for_each_zone(zone)
1158 		sum += zone->free_pages;
1159 
1160 	return sum;
1161 }
1162 
1163 EXPORT_SYMBOL(nr_free_pages);
1164 
1165 #ifdef CONFIG_NUMA
1166 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1167 {
1168 	unsigned int i, sum = 0;
1169 
1170 	for (i = 0; i < MAX_NR_ZONES; i++)
1171 		sum += pgdat->node_zones[i].free_pages;
1172 
1173 	return sum;
1174 }
1175 #endif
1176 
1177 static unsigned int nr_free_zone_pages(int offset)
1178 {
1179 	/* Just pick one node, since fallback list is circular */
1180 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1181 	unsigned int sum = 0;
1182 
1183 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1184 	struct zone **zonep = zonelist->zones;
1185 	struct zone *zone;
1186 
1187 	for (zone = *zonep++; zone; zone = *zonep++) {
1188 		unsigned long size = zone->present_pages;
1189 		unsigned long high = zone->pages_high;
1190 		if (size > high)
1191 			sum += size - high;
1192 	}
1193 
1194 	return sum;
1195 }
1196 
1197 /*
1198  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1199  */
1200 unsigned int nr_free_buffer_pages(void)
1201 {
1202 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1203 }
1204 
1205 /*
1206  * Amount of free RAM allocatable within all zones
1207  */
1208 unsigned int nr_free_pagecache_pages(void)
1209 {
1210 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1211 }
1212 
1213 #ifdef CONFIG_HIGHMEM
1214 unsigned int nr_free_highpages (void)
1215 {
1216 	pg_data_t *pgdat;
1217 	unsigned int pages = 0;
1218 
1219 	for_each_online_pgdat(pgdat)
1220 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1221 
1222 	return pages;
1223 }
1224 #endif
1225 
1226 #ifdef CONFIG_NUMA
1227 static void show_node(struct zone *zone)
1228 {
1229 	printk("Node %d ", zone->zone_pgdat->node_id);
1230 }
1231 #else
1232 #define show_node(zone)	do { } while (0)
1233 #endif
1234 
1235 /*
1236  * Accumulate the page_state information across all CPUs.
1237  * The result is unavoidably approximate - it can change
1238  * during and after execution of this function.
1239  */
1240 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1241 
1242 atomic_t nr_pagecache = ATOMIC_INIT(0);
1243 EXPORT_SYMBOL(nr_pagecache);
1244 #ifdef CONFIG_SMP
1245 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1246 #endif
1247 
1248 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1249 {
1250 	unsigned cpu;
1251 
1252 	memset(ret, 0, nr * sizeof(unsigned long));
1253 	cpus_and(*cpumask, *cpumask, cpu_online_map);
1254 
1255 	for_each_cpu_mask(cpu, *cpumask) {
1256 		unsigned long *in;
1257 		unsigned long *out;
1258 		unsigned off;
1259 		unsigned next_cpu;
1260 
1261 		in = (unsigned long *)&per_cpu(page_states, cpu);
1262 
1263 		next_cpu = next_cpu(cpu, *cpumask);
1264 		if (likely(next_cpu < NR_CPUS))
1265 			prefetch(&per_cpu(page_states, next_cpu));
1266 
1267 		out = (unsigned long *)ret;
1268 		for (off = 0; off < nr; off++)
1269 			*out++ += *in++;
1270 	}
1271 }
1272 
1273 void get_page_state_node(struct page_state *ret, int node)
1274 {
1275 	int nr;
1276 	cpumask_t mask = node_to_cpumask(node);
1277 
1278 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1279 	nr /= sizeof(unsigned long);
1280 
1281 	__get_page_state(ret, nr+1, &mask);
1282 }
1283 
1284 void get_page_state(struct page_state *ret)
1285 {
1286 	int nr;
1287 	cpumask_t mask = CPU_MASK_ALL;
1288 
1289 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1290 	nr /= sizeof(unsigned long);
1291 
1292 	__get_page_state(ret, nr + 1, &mask);
1293 }
1294 
1295 void get_full_page_state(struct page_state *ret)
1296 {
1297 	cpumask_t mask = CPU_MASK_ALL;
1298 
1299 	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1300 }
1301 
1302 unsigned long read_page_state_offset(unsigned long offset)
1303 {
1304 	unsigned long ret = 0;
1305 	int cpu;
1306 
1307 	for_each_online_cpu(cpu) {
1308 		unsigned long in;
1309 
1310 		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1311 		ret += *((unsigned long *)in);
1312 	}
1313 	return ret;
1314 }
1315 
1316 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1317 {
1318 	void *ptr;
1319 
1320 	ptr = &__get_cpu_var(page_states);
1321 	*(unsigned long *)(ptr + offset) += delta;
1322 }
1323 EXPORT_SYMBOL(__mod_page_state_offset);
1324 
1325 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1326 {
1327 	unsigned long flags;
1328 	void *ptr;
1329 
1330 	local_irq_save(flags);
1331 	ptr = &__get_cpu_var(page_states);
1332 	*(unsigned long *)(ptr + offset) += delta;
1333 	local_irq_restore(flags);
1334 }
1335 EXPORT_SYMBOL(mod_page_state_offset);
1336 
1337 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1338 			unsigned long *free, struct pglist_data *pgdat)
1339 {
1340 	struct zone *zones = pgdat->node_zones;
1341 	int i;
1342 
1343 	*active = 0;
1344 	*inactive = 0;
1345 	*free = 0;
1346 	for (i = 0; i < MAX_NR_ZONES; i++) {
1347 		*active += zones[i].nr_active;
1348 		*inactive += zones[i].nr_inactive;
1349 		*free += zones[i].free_pages;
1350 	}
1351 }
1352 
1353 void get_zone_counts(unsigned long *active,
1354 		unsigned long *inactive, unsigned long *free)
1355 {
1356 	struct pglist_data *pgdat;
1357 
1358 	*active = 0;
1359 	*inactive = 0;
1360 	*free = 0;
1361 	for_each_online_pgdat(pgdat) {
1362 		unsigned long l, m, n;
1363 		__get_zone_counts(&l, &m, &n, pgdat);
1364 		*active += l;
1365 		*inactive += m;
1366 		*free += n;
1367 	}
1368 }
1369 
1370 void si_meminfo(struct sysinfo *val)
1371 {
1372 	val->totalram = totalram_pages;
1373 	val->sharedram = 0;
1374 	val->freeram = nr_free_pages();
1375 	val->bufferram = nr_blockdev_pages();
1376 #ifdef CONFIG_HIGHMEM
1377 	val->totalhigh = totalhigh_pages;
1378 	val->freehigh = nr_free_highpages();
1379 #else
1380 	val->totalhigh = 0;
1381 	val->freehigh = 0;
1382 #endif
1383 	val->mem_unit = PAGE_SIZE;
1384 }
1385 
1386 EXPORT_SYMBOL(si_meminfo);
1387 
1388 #ifdef CONFIG_NUMA
1389 void si_meminfo_node(struct sysinfo *val, int nid)
1390 {
1391 	pg_data_t *pgdat = NODE_DATA(nid);
1392 
1393 	val->totalram = pgdat->node_present_pages;
1394 	val->freeram = nr_free_pages_pgdat(pgdat);
1395 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1396 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1397 	val->mem_unit = PAGE_SIZE;
1398 }
1399 #endif
1400 
1401 #define K(x) ((x) << (PAGE_SHIFT-10))
1402 
1403 /*
1404  * Show free area list (used inside shift_scroll-lock stuff)
1405  * We also calculate the percentage fragmentation. We do this by counting the
1406  * memory on each free list with the exception of the first item on the list.
1407  */
1408 void show_free_areas(void)
1409 {
1410 	struct page_state ps;
1411 	int cpu, temperature;
1412 	unsigned long active;
1413 	unsigned long inactive;
1414 	unsigned long free;
1415 	struct zone *zone;
1416 
1417 	for_each_zone(zone) {
1418 		show_node(zone);
1419 		printk("%s per-cpu:", zone->name);
1420 
1421 		if (!populated_zone(zone)) {
1422 			printk(" empty\n");
1423 			continue;
1424 		} else
1425 			printk("\n");
1426 
1427 		for_each_online_cpu(cpu) {
1428 			struct per_cpu_pageset *pageset;
1429 
1430 			pageset = zone_pcp(zone, cpu);
1431 
1432 			for (temperature = 0; temperature < 2; temperature++)
1433 				printk("cpu %d %s: high %d, batch %d used:%d\n",
1434 					cpu,
1435 					temperature ? "cold" : "hot",
1436 					pageset->pcp[temperature].high,
1437 					pageset->pcp[temperature].batch,
1438 					pageset->pcp[temperature].count);
1439 		}
1440 	}
1441 
1442 	get_page_state(&ps);
1443 	get_zone_counts(&active, &inactive, &free);
1444 
1445 	printk("Free pages: %11ukB (%ukB HighMem)\n",
1446 		K(nr_free_pages()),
1447 		K(nr_free_highpages()));
1448 
1449 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1450 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1451 		active,
1452 		inactive,
1453 		ps.nr_dirty,
1454 		ps.nr_writeback,
1455 		ps.nr_unstable,
1456 		nr_free_pages(),
1457 		ps.nr_slab,
1458 		ps.nr_mapped,
1459 		ps.nr_page_table_pages);
1460 
1461 	for_each_zone(zone) {
1462 		int i;
1463 
1464 		show_node(zone);
1465 		printk("%s"
1466 			" free:%lukB"
1467 			" min:%lukB"
1468 			" low:%lukB"
1469 			" high:%lukB"
1470 			" active:%lukB"
1471 			" inactive:%lukB"
1472 			" present:%lukB"
1473 			" pages_scanned:%lu"
1474 			" all_unreclaimable? %s"
1475 			"\n",
1476 			zone->name,
1477 			K(zone->free_pages),
1478 			K(zone->pages_min),
1479 			K(zone->pages_low),
1480 			K(zone->pages_high),
1481 			K(zone->nr_active),
1482 			K(zone->nr_inactive),
1483 			K(zone->present_pages),
1484 			zone->pages_scanned,
1485 			(zone->all_unreclaimable ? "yes" : "no")
1486 			);
1487 		printk("lowmem_reserve[]:");
1488 		for (i = 0; i < MAX_NR_ZONES; i++)
1489 			printk(" %lu", zone->lowmem_reserve[i]);
1490 		printk("\n");
1491 	}
1492 
1493 	for_each_zone(zone) {
1494  		unsigned long nr, flags, order, total = 0;
1495 
1496 		show_node(zone);
1497 		printk("%s: ", zone->name);
1498 		if (!populated_zone(zone)) {
1499 			printk("empty\n");
1500 			continue;
1501 		}
1502 
1503 		spin_lock_irqsave(&zone->lock, flags);
1504 		for (order = 0; order < MAX_ORDER; order++) {
1505 			nr = zone->free_area[order].nr_free;
1506 			total += nr << order;
1507 			printk("%lu*%lukB ", nr, K(1UL) << order);
1508 		}
1509 		spin_unlock_irqrestore(&zone->lock, flags);
1510 		printk("= %lukB\n", K(total));
1511 	}
1512 
1513 	show_swap_cache_info();
1514 }
1515 
1516 /*
1517  * Builds allocation fallback zone lists.
1518  *
1519  * Add all populated zones of a node to the zonelist.
1520  */
1521 static int __meminit build_zonelists_node(pg_data_t *pgdat,
1522 			struct zonelist *zonelist, int nr_zones, int zone_type)
1523 {
1524 	struct zone *zone;
1525 
1526 	BUG_ON(zone_type > ZONE_HIGHMEM);
1527 
1528 	do {
1529 		zone = pgdat->node_zones + zone_type;
1530 		if (populated_zone(zone)) {
1531 #ifndef CONFIG_HIGHMEM
1532 			BUG_ON(zone_type > ZONE_NORMAL);
1533 #endif
1534 			zonelist->zones[nr_zones++] = zone;
1535 			check_highest_zone(zone_type);
1536 		}
1537 		zone_type--;
1538 
1539 	} while (zone_type >= 0);
1540 	return nr_zones;
1541 }
1542 
1543 static inline int highest_zone(int zone_bits)
1544 {
1545 	int res = ZONE_NORMAL;
1546 	if (zone_bits & (__force int)__GFP_HIGHMEM)
1547 		res = ZONE_HIGHMEM;
1548 	if (zone_bits & (__force int)__GFP_DMA32)
1549 		res = ZONE_DMA32;
1550 	if (zone_bits & (__force int)__GFP_DMA)
1551 		res = ZONE_DMA;
1552 	return res;
1553 }
1554 
1555 #ifdef CONFIG_NUMA
1556 #define MAX_NODE_LOAD (num_online_nodes())
1557 static int __meminitdata node_load[MAX_NUMNODES];
1558 /**
1559  * find_next_best_node - find the next node that should appear in a given node's fallback list
1560  * @node: node whose fallback list we're appending
1561  * @used_node_mask: nodemask_t of already used nodes
1562  *
1563  * We use a number of factors to determine which is the next node that should
1564  * appear on a given node's fallback list.  The node should not have appeared
1565  * already in @node's fallback list, and it should be the next closest node
1566  * according to the distance array (which contains arbitrary distance values
1567  * from each node to each node in the system), and should also prefer nodes
1568  * with no CPUs, since presumably they'll have very little allocation pressure
1569  * on them otherwise.
1570  * It returns -1 if no node is found.
1571  */
1572 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1573 {
1574 	int n, val;
1575 	int min_val = INT_MAX;
1576 	int best_node = -1;
1577 
1578 	/* Use the local node if we haven't already */
1579 	if (!node_isset(node, *used_node_mask)) {
1580 		node_set(node, *used_node_mask);
1581 		return node;
1582 	}
1583 
1584 	for_each_online_node(n) {
1585 		cpumask_t tmp;
1586 
1587 		/* Don't want a node to appear more than once */
1588 		if (node_isset(n, *used_node_mask))
1589 			continue;
1590 
1591 		/* Use the distance array to find the distance */
1592 		val = node_distance(node, n);
1593 
1594 		/* Penalize nodes under us ("prefer the next node") */
1595 		val += (n < node);
1596 
1597 		/* Give preference to headless and unused nodes */
1598 		tmp = node_to_cpumask(n);
1599 		if (!cpus_empty(tmp))
1600 			val += PENALTY_FOR_NODE_WITH_CPUS;
1601 
1602 		/* Slight preference for less loaded node */
1603 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1604 		val += node_load[n];
1605 
1606 		if (val < min_val) {
1607 			min_val = val;
1608 			best_node = n;
1609 		}
1610 	}
1611 
1612 	if (best_node >= 0)
1613 		node_set(best_node, *used_node_mask);
1614 
1615 	return best_node;
1616 }
1617 
1618 static void __meminit build_zonelists(pg_data_t *pgdat)
1619 {
1620 	int i, j, k, node, local_node;
1621 	int prev_node, load;
1622 	struct zonelist *zonelist;
1623 	nodemask_t used_mask;
1624 
1625 	/* initialize zonelists */
1626 	for (i = 0; i < GFP_ZONETYPES; i++) {
1627 		zonelist = pgdat->node_zonelists + i;
1628 		zonelist->zones[0] = NULL;
1629 	}
1630 
1631 	/* NUMA-aware ordering of nodes */
1632 	local_node = pgdat->node_id;
1633 	load = num_online_nodes();
1634 	prev_node = local_node;
1635 	nodes_clear(used_mask);
1636 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1637 		int distance = node_distance(local_node, node);
1638 
1639 		/*
1640 		 * If another node is sufficiently far away then it is better
1641 		 * to reclaim pages in a zone before going off node.
1642 		 */
1643 		if (distance > RECLAIM_DISTANCE)
1644 			zone_reclaim_mode = 1;
1645 
1646 		/*
1647 		 * We don't want to pressure a particular node.
1648 		 * So adding penalty to the first node in same
1649 		 * distance group to make it round-robin.
1650 		 */
1651 
1652 		if (distance != node_distance(local_node, prev_node))
1653 			node_load[node] += load;
1654 		prev_node = node;
1655 		load--;
1656 		for (i = 0; i < GFP_ZONETYPES; i++) {
1657 			zonelist = pgdat->node_zonelists + i;
1658 			for (j = 0; zonelist->zones[j] != NULL; j++);
1659 
1660 			k = highest_zone(i);
1661 
1662 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1663 			zonelist->zones[j] = NULL;
1664 		}
1665 	}
1666 }
1667 
1668 #else	/* CONFIG_NUMA */
1669 
1670 static void __meminit build_zonelists(pg_data_t *pgdat)
1671 {
1672 	int i, j, k, node, local_node;
1673 
1674 	local_node = pgdat->node_id;
1675 	for (i = 0; i < GFP_ZONETYPES; i++) {
1676 		struct zonelist *zonelist;
1677 
1678 		zonelist = pgdat->node_zonelists + i;
1679 
1680 		j = 0;
1681 		k = highest_zone(i);
1682  		j = build_zonelists_node(pgdat, zonelist, j, k);
1683  		/*
1684  		 * Now we build the zonelist so that it contains the zones
1685  		 * of all the other nodes.
1686  		 * We don't want to pressure a particular node, so when
1687  		 * building the zones for node N, we make sure that the
1688  		 * zones coming right after the local ones are those from
1689  		 * node N+1 (modulo N)
1690  		 */
1691 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1692 			if (!node_online(node))
1693 				continue;
1694 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1695 		}
1696 		for (node = 0; node < local_node; node++) {
1697 			if (!node_online(node))
1698 				continue;
1699 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1700 		}
1701 
1702 		zonelist->zones[j] = NULL;
1703 	}
1704 }
1705 
1706 #endif	/* CONFIG_NUMA */
1707 
1708 /* return values int ....just for stop_machine_run() */
1709 static int __meminit __build_all_zonelists(void *dummy)
1710 {
1711 	int nid;
1712 	for_each_online_node(nid)
1713 		build_zonelists(NODE_DATA(nid));
1714 	return 0;
1715 }
1716 
1717 void __meminit build_all_zonelists(void)
1718 {
1719 	if (system_state == SYSTEM_BOOTING) {
1720 		__build_all_zonelists(0);
1721 		cpuset_init_current_mems_allowed();
1722 	} else {
1723 		/* we have to stop all cpus to guaranntee there is no user
1724 		   of zonelist */
1725 		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1726 		/* cpuset refresh routine should be here */
1727 	}
1728 
1729 	printk("Built %i zonelists\n", num_online_nodes());
1730 
1731 }
1732 
1733 /*
1734  * Helper functions to size the waitqueue hash table.
1735  * Essentially these want to choose hash table sizes sufficiently
1736  * large so that collisions trying to wait on pages are rare.
1737  * But in fact, the number of active page waitqueues on typical
1738  * systems is ridiculously low, less than 200. So this is even
1739  * conservative, even though it seems large.
1740  *
1741  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1742  * waitqueues, i.e. the size of the waitq table given the number of pages.
1743  */
1744 #define PAGES_PER_WAITQUEUE	256
1745 
1746 #ifndef CONFIG_MEMORY_HOTPLUG
1747 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1748 {
1749 	unsigned long size = 1;
1750 
1751 	pages /= PAGES_PER_WAITQUEUE;
1752 
1753 	while (size < pages)
1754 		size <<= 1;
1755 
1756 	/*
1757 	 * Once we have dozens or even hundreds of threads sleeping
1758 	 * on IO we've got bigger problems than wait queue collision.
1759 	 * Limit the size of the wait table to a reasonable size.
1760 	 */
1761 	size = min(size, 4096UL);
1762 
1763 	return max(size, 4UL);
1764 }
1765 #else
1766 /*
1767  * A zone's size might be changed by hot-add, so it is not possible to determine
1768  * a suitable size for its wait_table.  So we use the maximum size now.
1769  *
1770  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
1771  *
1772  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
1773  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1774  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
1775  *
1776  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1777  * or more by the traditional way. (See above).  It equals:
1778  *
1779  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
1780  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
1781  *    powerpc (64K page size)             : =  (32G +16M)byte.
1782  */
1783 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1784 {
1785 	return 4096UL;
1786 }
1787 #endif
1788 
1789 /*
1790  * This is an integer logarithm so that shifts can be used later
1791  * to extract the more random high bits from the multiplicative
1792  * hash function before the remainder is taken.
1793  */
1794 static inline unsigned long wait_table_bits(unsigned long size)
1795 {
1796 	return ffz(~size);
1797 }
1798 
1799 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1800 
1801 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1802 		unsigned long *zones_size, unsigned long *zholes_size)
1803 {
1804 	unsigned long realtotalpages, totalpages = 0;
1805 	int i;
1806 
1807 	for (i = 0; i < MAX_NR_ZONES; i++)
1808 		totalpages += zones_size[i];
1809 	pgdat->node_spanned_pages = totalpages;
1810 
1811 	realtotalpages = totalpages;
1812 	if (zholes_size)
1813 		for (i = 0; i < MAX_NR_ZONES; i++)
1814 			realtotalpages -= zholes_size[i];
1815 	pgdat->node_present_pages = realtotalpages;
1816 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1817 }
1818 
1819 
1820 /*
1821  * Initially all pages are reserved - free ones are freed
1822  * up by free_all_bootmem() once the early boot process is
1823  * done. Non-atomic initialization, single-pass.
1824  */
1825 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1826 		unsigned long start_pfn)
1827 {
1828 	struct page *page;
1829 	unsigned long end_pfn = start_pfn + size;
1830 	unsigned long pfn;
1831 
1832 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1833 		if (!early_pfn_valid(pfn))
1834 			continue;
1835 		page = pfn_to_page(pfn);
1836 		set_page_links(page, zone, nid, pfn);
1837 		init_page_count(page);
1838 		reset_page_mapcount(page);
1839 		SetPageReserved(page);
1840 		INIT_LIST_HEAD(&page->lru);
1841 #ifdef WANT_PAGE_VIRTUAL
1842 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1843 		if (!is_highmem_idx(zone))
1844 			set_page_address(page, __va(pfn << PAGE_SHIFT));
1845 #endif
1846 	}
1847 }
1848 
1849 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1850 				unsigned long size)
1851 {
1852 	int order;
1853 	for (order = 0; order < MAX_ORDER ; order++) {
1854 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1855 		zone->free_area[order].nr_free = 0;
1856 	}
1857 }
1858 
1859 #define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1860 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1861 		unsigned long size)
1862 {
1863 	unsigned long snum = pfn_to_section_nr(pfn);
1864 	unsigned long end = pfn_to_section_nr(pfn + size);
1865 
1866 	if (FLAGS_HAS_NODE)
1867 		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1868 	else
1869 		for (; snum <= end; snum++)
1870 			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1871 }
1872 
1873 #ifndef __HAVE_ARCH_MEMMAP_INIT
1874 #define memmap_init(size, nid, zone, start_pfn) \
1875 	memmap_init_zone((size), (nid), (zone), (start_pfn))
1876 #endif
1877 
1878 static int __cpuinit zone_batchsize(struct zone *zone)
1879 {
1880 	int batch;
1881 
1882 	/*
1883 	 * The per-cpu-pages pools are set to around 1000th of the
1884 	 * size of the zone.  But no more than 1/2 of a meg.
1885 	 *
1886 	 * OK, so we don't know how big the cache is.  So guess.
1887 	 */
1888 	batch = zone->present_pages / 1024;
1889 	if (batch * PAGE_SIZE > 512 * 1024)
1890 		batch = (512 * 1024) / PAGE_SIZE;
1891 	batch /= 4;		/* We effectively *= 4 below */
1892 	if (batch < 1)
1893 		batch = 1;
1894 
1895 	/*
1896 	 * Clamp the batch to a 2^n - 1 value. Having a power
1897 	 * of 2 value was found to be more likely to have
1898 	 * suboptimal cache aliasing properties in some cases.
1899 	 *
1900 	 * For example if 2 tasks are alternately allocating
1901 	 * batches of pages, one task can end up with a lot
1902 	 * of pages of one half of the possible page colors
1903 	 * and the other with pages of the other colors.
1904 	 */
1905 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1906 
1907 	return batch;
1908 }
1909 
1910 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1911 {
1912 	struct per_cpu_pages *pcp;
1913 
1914 	memset(p, 0, sizeof(*p));
1915 
1916 	pcp = &p->pcp[0];		/* hot */
1917 	pcp->count = 0;
1918 	pcp->high = 6 * batch;
1919 	pcp->batch = max(1UL, 1 * batch);
1920 	INIT_LIST_HEAD(&pcp->list);
1921 
1922 	pcp = &p->pcp[1];		/* cold*/
1923 	pcp->count = 0;
1924 	pcp->high = 2 * batch;
1925 	pcp->batch = max(1UL, batch/2);
1926 	INIT_LIST_HEAD(&pcp->list);
1927 }
1928 
1929 /*
1930  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1931  * to the value high for the pageset p.
1932  */
1933 
1934 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1935 				unsigned long high)
1936 {
1937 	struct per_cpu_pages *pcp;
1938 
1939 	pcp = &p->pcp[0]; /* hot list */
1940 	pcp->high = high;
1941 	pcp->batch = max(1UL, high/4);
1942 	if ((high/4) > (PAGE_SHIFT * 8))
1943 		pcp->batch = PAGE_SHIFT * 8;
1944 }
1945 
1946 
1947 #ifdef CONFIG_NUMA
1948 /*
1949  * Boot pageset table. One per cpu which is going to be used for all
1950  * zones and all nodes. The parameters will be set in such a way
1951  * that an item put on a list will immediately be handed over to
1952  * the buddy list. This is safe since pageset manipulation is done
1953  * with interrupts disabled.
1954  *
1955  * Some NUMA counter updates may also be caught by the boot pagesets.
1956  *
1957  * The boot_pagesets must be kept even after bootup is complete for
1958  * unused processors and/or zones. They do play a role for bootstrapping
1959  * hotplugged processors.
1960  *
1961  * zoneinfo_show() and maybe other functions do
1962  * not check if the processor is online before following the pageset pointer.
1963  * Other parts of the kernel may not check if the zone is available.
1964  */
1965 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1966 
1967 /*
1968  * Dynamically allocate memory for the
1969  * per cpu pageset array in struct zone.
1970  */
1971 static int __cpuinit process_zones(int cpu)
1972 {
1973 	struct zone *zone, *dzone;
1974 
1975 	for_each_zone(zone) {
1976 
1977 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1978 					 GFP_KERNEL, cpu_to_node(cpu));
1979 		if (!zone_pcp(zone, cpu))
1980 			goto bad;
1981 
1982 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1983 
1984 		if (percpu_pagelist_fraction)
1985 			setup_pagelist_highmark(zone_pcp(zone, cpu),
1986 			 	(zone->present_pages / percpu_pagelist_fraction));
1987 	}
1988 
1989 	return 0;
1990 bad:
1991 	for_each_zone(dzone) {
1992 		if (dzone == zone)
1993 			break;
1994 		kfree(zone_pcp(dzone, cpu));
1995 		zone_pcp(dzone, cpu) = NULL;
1996 	}
1997 	return -ENOMEM;
1998 }
1999 
2000 static inline void free_zone_pagesets(int cpu)
2001 {
2002 	struct zone *zone;
2003 
2004 	for_each_zone(zone) {
2005 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2006 
2007 		zone_pcp(zone, cpu) = NULL;
2008 		kfree(pset);
2009 	}
2010 }
2011 
2012 static int pageset_cpuup_callback(struct notifier_block *nfb,
2013 		unsigned long action,
2014 		void *hcpu)
2015 {
2016 	int cpu = (long)hcpu;
2017 	int ret = NOTIFY_OK;
2018 
2019 	switch (action) {
2020 		case CPU_UP_PREPARE:
2021 			if (process_zones(cpu))
2022 				ret = NOTIFY_BAD;
2023 			break;
2024 		case CPU_UP_CANCELED:
2025 		case CPU_DEAD:
2026 			free_zone_pagesets(cpu);
2027 			break;
2028 		default:
2029 			break;
2030 	}
2031 	return ret;
2032 }
2033 
2034 static struct notifier_block pageset_notifier =
2035 	{ &pageset_cpuup_callback, NULL, 0 };
2036 
2037 void __init setup_per_cpu_pageset(void)
2038 {
2039 	int err;
2040 
2041 	/* Initialize per_cpu_pageset for cpu 0.
2042 	 * A cpuup callback will do this for every cpu
2043 	 * as it comes online
2044 	 */
2045 	err = process_zones(smp_processor_id());
2046 	BUG_ON(err);
2047 	register_cpu_notifier(&pageset_notifier);
2048 }
2049 
2050 #endif
2051 
2052 static __meminit
2053 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2054 {
2055 	int i;
2056 	struct pglist_data *pgdat = zone->zone_pgdat;
2057 	size_t alloc_size;
2058 
2059 	/*
2060 	 * The per-page waitqueue mechanism uses hashed waitqueues
2061 	 * per zone.
2062 	 */
2063 	zone->wait_table_hash_nr_entries =
2064 		 wait_table_hash_nr_entries(zone_size_pages);
2065 	zone->wait_table_bits =
2066 		wait_table_bits(zone->wait_table_hash_nr_entries);
2067 	alloc_size = zone->wait_table_hash_nr_entries
2068 					* sizeof(wait_queue_head_t);
2069 
2070  	if (system_state == SYSTEM_BOOTING) {
2071 		zone->wait_table = (wait_queue_head_t *)
2072 			alloc_bootmem_node(pgdat, alloc_size);
2073 	} else {
2074 		/*
2075 		 * This case means that a zone whose size was 0 gets new memory
2076 		 * via memory hot-add.
2077 		 * But it may be the case that a new node was hot-added.  In
2078 		 * this case vmalloc() will not be able to use this new node's
2079 		 * memory - this wait_table must be initialized to use this new
2080 		 * node itself as well.
2081 		 * To use this new node's memory, further consideration will be
2082 		 * necessary.
2083 		 */
2084 		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2085 	}
2086 	if (!zone->wait_table)
2087 		return -ENOMEM;
2088 
2089 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2090 		init_waitqueue_head(zone->wait_table + i);
2091 
2092 	return 0;
2093 }
2094 
2095 static __meminit void zone_pcp_init(struct zone *zone)
2096 {
2097 	int cpu;
2098 	unsigned long batch = zone_batchsize(zone);
2099 
2100 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2101 #ifdef CONFIG_NUMA
2102 		/* Early boot. Slab allocator not functional yet */
2103 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2104 		setup_pageset(&boot_pageset[cpu],0);
2105 #else
2106 		setup_pageset(zone_pcp(zone,cpu), batch);
2107 #endif
2108 	}
2109 	if (zone->present_pages)
2110 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2111 			zone->name, zone->present_pages, batch);
2112 }
2113 
2114 __meminit int init_currently_empty_zone(struct zone *zone,
2115 					unsigned long zone_start_pfn,
2116 					unsigned long size)
2117 {
2118 	struct pglist_data *pgdat = zone->zone_pgdat;
2119 	int ret;
2120 	ret = zone_wait_table_init(zone, size);
2121 	if (ret)
2122 		return ret;
2123 	pgdat->nr_zones = zone_idx(zone) + 1;
2124 
2125 	zone->zone_start_pfn = zone_start_pfn;
2126 
2127 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2128 
2129 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2130 
2131 	return 0;
2132 }
2133 
2134 /*
2135  * Set up the zone data structures:
2136  *   - mark all pages reserved
2137  *   - mark all memory queues empty
2138  *   - clear the memory bitmaps
2139  */
2140 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2141 		unsigned long *zones_size, unsigned long *zholes_size)
2142 {
2143 	unsigned long j;
2144 	int nid = pgdat->node_id;
2145 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2146 	int ret;
2147 
2148 	pgdat_resize_init(pgdat);
2149 	pgdat->nr_zones = 0;
2150 	init_waitqueue_head(&pgdat->kswapd_wait);
2151 	pgdat->kswapd_max_order = 0;
2152 
2153 	for (j = 0; j < MAX_NR_ZONES; j++) {
2154 		struct zone *zone = pgdat->node_zones + j;
2155 		unsigned long size, realsize;
2156 
2157 		realsize = size = zones_size[j];
2158 		if (zholes_size)
2159 			realsize -= zholes_size[j];
2160 
2161 		if (j < ZONE_HIGHMEM)
2162 			nr_kernel_pages += realsize;
2163 		nr_all_pages += realsize;
2164 
2165 		zone->spanned_pages = size;
2166 		zone->present_pages = realsize;
2167 		zone->name = zone_names[j];
2168 		spin_lock_init(&zone->lock);
2169 		spin_lock_init(&zone->lru_lock);
2170 		zone_seqlock_init(zone);
2171 		zone->zone_pgdat = pgdat;
2172 		zone->free_pages = 0;
2173 
2174 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2175 
2176 		zone_pcp_init(zone);
2177 		INIT_LIST_HEAD(&zone->active_list);
2178 		INIT_LIST_HEAD(&zone->inactive_list);
2179 		zone->nr_scan_active = 0;
2180 		zone->nr_scan_inactive = 0;
2181 		zone->nr_active = 0;
2182 		zone->nr_inactive = 0;
2183 		atomic_set(&zone->reclaim_in_progress, 0);
2184 		if (!size)
2185 			continue;
2186 
2187 		zonetable_add(zone, nid, j, zone_start_pfn, size);
2188 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2189 		BUG_ON(ret);
2190 		zone_start_pfn += size;
2191 	}
2192 }
2193 
2194 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2195 {
2196 	/* Skip empty nodes */
2197 	if (!pgdat->node_spanned_pages)
2198 		return;
2199 
2200 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2201 	/* ia64 gets its own node_mem_map, before this, without bootmem */
2202 	if (!pgdat->node_mem_map) {
2203 		unsigned long size, start, end;
2204 		struct page *map;
2205 
2206 		/*
2207 		 * The zone's endpoints aren't required to be MAX_ORDER
2208 		 * aligned but the node_mem_map endpoints must be in order
2209 		 * for the buddy allocator to function correctly.
2210 		 */
2211 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2212 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2213 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2214 		size =  (end - start) * sizeof(struct page);
2215 		map = alloc_remap(pgdat->node_id, size);
2216 		if (!map)
2217 			map = alloc_bootmem_node(pgdat, size);
2218 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2219 	}
2220 #ifdef CONFIG_FLATMEM
2221 	/*
2222 	 * With no DISCONTIG, the global mem_map is just set as node 0's
2223 	 */
2224 	if (pgdat == NODE_DATA(0))
2225 		mem_map = NODE_DATA(0)->node_mem_map;
2226 #endif
2227 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2228 }
2229 
2230 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2231 		unsigned long *zones_size, unsigned long node_start_pfn,
2232 		unsigned long *zholes_size)
2233 {
2234 	pgdat->node_id = nid;
2235 	pgdat->node_start_pfn = node_start_pfn;
2236 	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2237 
2238 	alloc_node_mem_map(pgdat);
2239 
2240 	free_area_init_core(pgdat, zones_size, zholes_size);
2241 }
2242 
2243 #ifndef CONFIG_NEED_MULTIPLE_NODES
2244 static bootmem_data_t contig_bootmem_data;
2245 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2246 
2247 EXPORT_SYMBOL(contig_page_data);
2248 #endif
2249 
2250 void __init free_area_init(unsigned long *zones_size)
2251 {
2252 	free_area_init_node(0, NODE_DATA(0), zones_size,
2253 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2254 }
2255 
2256 #ifdef CONFIG_PROC_FS
2257 
2258 #include <linux/seq_file.h>
2259 
2260 static void *frag_start(struct seq_file *m, loff_t *pos)
2261 {
2262 	pg_data_t *pgdat;
2263 	loff_t node = *pos;
2264 	for (pgdat = first_online_pgdat();
2265 	     pgdat && node;
2266 	     pgdat = next_online_pgdat(pgdat))
2267 		--node;
2268 
2269 	return pgdat;
2270 }
2271 
2272 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2273 {
2274 	pg_data_t *pgdat = (pg_data_t *)arg;
2275 
2276 	(*pos)++;
2277 	return next_online_pgdat(pgdat);
2278 }
2279 
2280 static void frag_stop(struct seq_file *m, void *arg)
2281 {
2282 }
2283 
2284 /*
2285  * This walks the free areas for each zone.
2286  */
2287 static int frag_show(struct seq_file *m, void *arg)
2288 {
2289 	pg_data_t *pgdat = (pg_data_t *)arg;
2290 	struct zone *zone;
2291 	struct zone *node_zones = pgdat->node_zones;
2292 	unsigned long flags;
2293 	int order;
2294 
2295 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2296 		if (!populated_zone(zone))
2297 			continue;
2298 
2299 		spin_lock_irqsave(&zone->lock, flags);
2300 		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2301 		for (order = 0; order < MAX_ORDER; ++order)
2302 			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2303 		spin_unlock_irqrestore(&zone->lock, flags);
2304 		seq_putc(m, '\n');
2305 	}
2306 	return 0;
2307 }
2308 
2309 struct seq_operations fragmentation_op = {
2310 	.start	= frag_start,
2311 	.next	= frag_next,
2312 	.stop	= frag_stop,
2313 	.show	= frag_show,
2314 };
2315 
2316 /*
2317  * Output information about zones in @pgdat.
2318  */
2319 static int zoneinfo_show(struct seq_file *m, void *arg)
2320 {
2321 	pg_data_t *pgdat = arg;
2322 	struct zone *zone;
2323 	struct zone *node_zones = pgdat->node_zones;
2324 	unsigned long flags;
2325 
2326 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2327 		int i;
2328 
2329 		if (!populated_zone(zone))
2330 			continue;
2331 
2332 		spin_lock_irqsave(&zone->lock, flags);
2333 		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2334 		seq_printf(m,
2335 			   "\n  pages free     %lu"
2336 			   "\n        min      %lu"
2337 			   "\n        low      %lu"
2338 			   "\n        high     %lu"
2339 			   "\n        active   %lu"
2340 			   "\n        inactive %lu"
2341 			   "\n        scanned  %lu (a: %lu i: %lu)"
2342 			   "\n        spanned  %lu"
2343 			   "\n        present  %lu",
2344 			   zone->free_pages,
2345 			   zone->pages_min,
2346 			   zone->pages_low,
2347 			   zone->pages_high,
2348 			   zone->nr_active,
2349 			   zone->nr_inactive,
2350 			   zone->pages_scanned,
2351 			   zone->nr_scan_active, zone->nr_scan_inactive,
2352 			   zone->spanned_pages,
2353 			   zone->present_pages);
2354 		seq_printf(m,
2355 			   "\n        protection: (%lu",
2356 			   zone->lowmem_reserve[0]);
2357 		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2358 			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2359 		seq_printf(m,
2360 			   ")"
2361 			   "\n  pagesets");
2362 		for_each_online_cpu(i) {
2363 			struct per_cpu_pageset *pageset;
2364 			int j;
2365 
2366 			pageset = zone_pcp(zone, i);
2367 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2368 				if (pageset->pcp[j].count)
2369 					break;
2370 			}
2371 			if (j == ARRAY_SIZE(pageset->pcp))
2372 				continue;
2373 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2374 				seq_printf(m,
2375 					   "\n    cpu: %i pcp: %i"
2376 					   "\n              count: %i"
2377 					   "\n              high:  %i"
2378 					   "\n              batch: %i",
2379 					   i, j,
2380 					   pageset->pcp[j].count,
2381 					   pageset->pcp[j].high,
2382 					   pageset->pcp[j].batch);
2383 			}
2384 #ifdef CONFIG_NUMA
2385 			seq_printf(m,
2386 				   "\n            numa_hit:       %lu"
2387 				   "\n            numa_miss:      %lu"
2388 				   "\n            numa_foreign:   %lu"
2389 				   "\n            interleave_hit: %lu"
2390 				   "\n            local_node:     %lu"
2391 				   "\n            other_node:     %lu",
2392 				   pageset->numa_hit,
2393 				   pageset->numa_miss,
2394 				   pageset->numa_foreign,
2395 				   pageset->interleave_hit,
2396 				   pageset->local_node,
2397 				   pageset->other_node);
2398 #endif
2399 		}
2400 		seq_printf(m,
2401 			   "\n  all_unreclaimable: %u"
2402 			   "\n  prev_priority:     %i"
2403 			   "\n  temp_priority:     %i"
2404 			   "\n  start_pfn:         %lu",
2405 			   zone->all_unreclaimable,
2406 			   zone->prev_priority,
2407 			   zone->temp_priority,
2408 			   zone->zone_start_pfn);
2409 		spin_unlock_irqrestore(&zone->lock, flags);
2410 		seq_putc(m, '\n');
2411 	}
2412 	return 0;
2413 }
2414 
2415 struct seq_operations zoneinfo_op = {
2416 	.start	= frag_start, /* iterate over all zones. The same as in
2417 			       * fragmentation. */
2418 	.next	= frag_next,
2419 	.stop	= frag_stop,
2420 	.show	= zoneinfo_show,
2421 };
2422 
2423 static char *vmstat_text[] = {
2424 	"nr_dirty",
2425 	"nr_writeback",
2426 	"nr_unstable",
2427 	"nr_page_table_pages",
2428 	"nr_mapped",
2429 	"nr_slab",
2430 
2431 	"pgpgin",
2432 	"pgpgout",
2433 	"pswpin",
2434 	"pswpout",
2435 
2436 	"pgalloc_high",
2437 	"pgalloc_normal",
2438 	"pgalloc_dma32",
2439 	"pgalloc_dma",
2440 
2441 	"pgfree",
2442 	"pgactivate",
2443 	"pgdeactivate",
2444 
2445 	"pgfault",
2446 	"pgmajfault",
2447 
2448 	"pgrefill_high",
2449 	"pgrefill_normal",
2450 	"pgrefill_dma32",
2451 	"pgrefill_dma",
2452 
2453 	"pgsteal_high",
2454 	"pgsteal_normal",
2455 	"pgsteal_dma32",
2456 	"pgsteal_dma",
2457 
2458 	"pgscan_kswapd_high",
2459 	"pgscan_kswapd_normal",
2460 	"pgscan_kswapd_dma32",
2461 	"pgscan_kswapd_dma",
2462 
2463 	"pgscan_direct_high",
2464 	"pgscan_direct_normal",
2465 	"pgscan_direct_dma32",
2466 	"pgscan_direct_dma",
2467 
2468 	"pginodesteal",
2469 	"slabs_scanned",
2470 	"kswapd_steal",
2471 	"kswapd_inodesteal",
2472 	"pageoutrun",
2473 	"allocstall",
2474 
2475 	"pgrotated",
2476 	"nr_bounce",
2477 };
2478 
2479 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2480 {
2481 	struct page_state *ps;
2482 
2483 	if (*pos >= ARRAY_SIZE(vmstat_text))
2484 		return NULL;
2485 
2486 	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2487 	m->private = ps;
2488 	if (!ps)
2489 		return ERR_PTR(-ENOMEM);
2490 	get_full_page_state(ps);
2491 	ps->pgpgin /= 2;		/* sectors -> kbytes */
2492 	ps->pgpgout /= 2;
2493 	return (unsigned long *)ps + *pos;
2494 }
2495 
2496 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2497 {
2498 	(*pos)++;
2499 	if (*pos >= ARRAY_SIZE(vmstat_text))
2500 		return NULL;
2501 	return (unsigned long *)m->private + *pos;
2502 }
2503 
2504 static int vmstat_show(struct seq_file *m, void *arg)
2505 {
2506 	unsigned long *l = arg;
2507 	unsigned long off = l - (unsigned long *)m->private;
2508 
2509 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2510 	return 0;
2511 }
2512 
2513 static void vmstat_stop(struct seq_file *m, void *arg)
2514 {
2515 	kfree(m->private);
2516 	m->private = NULL;
2517 }
2518 
2519 struct seq_operations vmstat_op = {
2520 	.start	= vmstat_start,
2521 	.next	= vmstat_next,
2522 	.stop	= vmstat_stop,
2523 	.show	= vmstat_show,
2524 };
2525 
2526 #endif /* CONFIG_PROC_FS */
2527 
2528 #ifdef CONFIG_HOTPLUG_CPU
2529 static int page_alloc_cpu_notify(struct notifier_block *self,
2530 				 unsigned long action, void *hcpu)
2531 {
2532 	int cpu = (unsigned long)hcpu;
2533 	long *count;
2534 	unsigned long *src, *dest;
2535 
2536 	if (action == CPU_DEAD) {
2537 		int i;
2538 
2539 		/* Drain local pagecache count. */
2540 		count = &per_cpu(nr_pagecache_local, cpu);
2541 		atomic_add(*count, &nr_pagecache);
2542 		*count = 0;
2543 		local_irq_disable();
2544 		__drain_pages(cpu);
2545 
2546 		/* Add dead cpu's page_states to our own. */
2547 		dest = (unsigned long *)&__get_cpu_var(page_states);
2548 		src = (unsigned long *)&per_cpu(page_states, cpu);
2549 
2550 		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2551 				i++) {
2552 			dest[i] += src[i];
2553 			src[i] = 0;
2554 		}
2555 
2556 		local_irq_enable();
2557 	}
2558 	return NOTIFY_OK;
2559 }
2560 #endif /* CONFIG_HOTPLUG_CPU */
2561 
2562 void __init page_alloc_init(void)
2563 {
2564 	hotcpu_notifier(page_alloc_cpu_notify, 0);
2565 }
2566 
2567 /*
2568  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2569  *	or min_free_kbytes changes.
2570  */
2571 static void calculate_totalreserve_pages(void)
2572 {
2573 	struct pglist_data *pgdat;
2574 	unsigned long reserve_pages = 0;
2575 	int i, j;
2576 
2577 	for_each_online_pgdat(pgdat) {
2578 		for (i = 0; i < MAX_NR_ZONES; i++) {
2579 			struct zone *zone = pgdat->node_zones + i;
2580 			unsigned long max = 0;
2581 
2582 			/* Find valid and maximum lowmem_reserve in the zone */
2583 			for (j = i; j < MAX_NR_ZONES; j++) {
2584 				if (zone->lowmem_reserve[j] > max)
2585 					max = zone->lowmem_reserve[j];
2586 			}
2587 
2588 			/* we treat pages_high as reserved pages. */
2589 			max += zone->pages_high;
2590 
2591 			if (max > zone->present_pages)
2592 				max = zone->present_pages;
2593 			reserve_pages += max;
2594 		}
2595 	}
2596 	totalreserve_pages = reserve_pages;
2597 }
2598 
2599 /*
2600  * setup_per_zone_lowmem_reserve - called whenever
2601  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2602  *	has a correct pages reserved value, so an adequate number of
2603  *	pages are left in the zone after a successful __alloc_pages().
2604  */
2605 static void setup_per_zone_lowmem_reserve(void)
2606 {
2607 	struct pglist_data *pgdat;
2608 	int j, idx;
2609 
2610 	for_each_online_pgdat(pgdat) {
2611 		for (j = 0; j < MAX_NR_ZONES; j++) {
2612 			struct zone *zone = pgdat->node_zones + j;
2613 			unsigned long present_pages = zone->present_pages;
2614 
2615 			zone->lowmem_reserve[j] = 0;
2616 
2617 			for (idx = j-1; idx >= 0; idx--) {
2618 				struct zone *lower_zone;
2619 
2620 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2621 					sysctl_lowmem_reserve_ratio[idx] = 1;
2622 
2623 				lower_zone = pgdat->node_zones + idx;
2624 				lower_zone->lowmem_reserve[j] = present_pages /
2625 					sysctl_lowmem_reserve_ratio[idx];
2626 				present_pages += lower_zone->present_pages;
2627 			}
2628 		}
2629 	}
2630 
2631 	/* update totalreserve_pages */
2632 	calculate_totalreserve_pages();
2633 }
2634 
2635 /*
2636  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2637  *	that the pages_{min,low,high} values for each zone are set correctly
2638  *	with respect to min_free_kbytes.
2639  */
2640 void setup_per_zone_pages_min(void)
2641 {
2642 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2643 	unsigned long lowmem_pages = 0;
2644 	struct zone *zone;
2645 	unsigned long flags;
2646 
2647 	/* Calculate total number of !ZONE_HIGHMEM pages */
2648 	for_each_zone(zone) {
2649 		if (!is_highmem(zone))
2650 			lowmem_pages += zone->present_pages;
2651 	}
2652 
2653 	for_each_zone(zone) {
2654 		u64 tmp;
2655 
2656 		spin_lock_irqsave(&zone->lru_lock, flags);
2657 		tmp = (u64)pages_min * zone->present_pages;
2658 		do_div(tmp, lowmem_pages);
2659 		if (is_highmem(zone)) {
2660 			/*
2661 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2662 			 * need highmem pages, so cap pages_min to a small
2663 			 * value here.
2664 			 *
2665 			 * The (pages_high-pages_low) and (pages_low-pages_min)
2666 			 * deltas controls asynch page reclaim, and so should
2667 			 * not be capped for highmem.
2668 			 */
2669 			int min_pages;
2670 
2671 			min_pages = zone->present_pages / 1024;
2672 			if (min_pages < SWAP_CLUSTER_MAX)
2673 				min_pages = SWAP_CLUSTER_MAX;
2674 			if (min_pages > 128)
2675 				min_pages = 128;
2676 			zone->pages_min = min_pages;
2677 		} else {
2678 			/*
2679 			 * If it's a lowmem zone, reserve a number of pages
2680 			 * proportionate to the zone's size.
2681 			 */
2682 			zone->pages_min = tmp;
2683 		}
2684 
2685 		zone->pages_low   = zone->pages_min + (tmp >> 2);
2686 		zone->pages_high  = zone->pages_min + (tmp >> 1);
2687 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2688 	}
2689 
2690 	/* update totalreserve_pages */
2691 	calculate_totalreserve_pages();
2692 }
2693 
2694 /*
2695  * Initialise min_free_kbytes.
2696  *
2697  * For small machines we want it small (128k min).  For large machines
2698  * we want it large (64MB max).  But it is not linear, because network
2699  * bandwidth does not increase linearly with machine size.  We use
2700  *
2701  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2702  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2703  *
2704  * which yields
2705  *
2706  * 16MB:	512k
2707  * 32MB:	724k
2708  * 64MB:	1024k
2709  * 128MB:	1448k
2710  * 256MB:	2048k
2711  * 512MB:	2896k
2712  * 1024MB:	4096k
2713  * 2048MB:	5792k
2714  * 4096MB:	8192k
2715  * 8192MB:	11584k
2716  * 16384MB:	16384k
2717  */
2718 static int __init init_per_zone_pages_min(void)
2719 {
2720 	unsigned long lowmem_kbytes;
2721 
2722 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2723 
2724 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2725 	if (min_free_kbytes < 128)
2726 		min_free_kbytes = 128;
2727 	if (min_free_kbytes > 65536)
2728 		min_free_kbytes = 65536;
2729 	setup_per_zone_pages_min();
2730 	setup_per_zone_lowmem_reserve();
2731 	return 0;
2732 }
2733 module_init(init_per_zone_pages_min)
2734 
2735 /*
2736  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2737  *	that we can call two helper functions whenever min_free_kbytes
2738  *	changes.
2739  */
2740 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2741 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2742 {
2743 	proc_dointvec(table, write, file, buffer, length, ppos);
2744 	setup_per_zone_pages_min();
2745 	return 0;
2746 }
2747 
2748 /*
2749  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2750  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2751  *	whenever sysctl_lowmem_reserve_ratio changes.
2752  *
2753  * The reserve ratio obviously has absolutely no relation with the
2754  * pages_min watermarks. The lowmem reserve ratio can only make sense
2755  * if in function of the boot time zone sizes.
2756  */
2757 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2758 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2759 {
2760 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2761 	setup_per_zone_lowmem_reserve();
2762 	return 0;
2763 }
2764 
2765 /*
2766  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2767  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
2768  * can have before it gets flushed back to buddy allocator.
2769  */
2770 
2771 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2772 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2773 {
2774 	struct zone *zone;
2775 	unsigned int cpu;
2776 	int ret;
2777 
2778 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2779 	if (!write || (ret == -EINVAL))
2780 		return ret;
2781 	for_each_zone(zone) {
2782 		for_each_online_cpu(cpu) {
2783 			unsigned long  high;
2784 			high = zone->present_pages / percpu_pagelist_fraction;
2785 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2786 		}
2787 	}
2788 	return 0;
2789 }
2790 
2791 __initdata int hashdist = HASHDIST_DEFAULT;
2792 
2793 #ifdef CONFIG_NUMA
2794 static int __init set_hashdist(char *str)
2795 {
2796 	if (!str)
2797 		return 0;
2798 	hashdist = simple_strtoul(str, &str, 0);
2799 	return 1;
2800 }
2801 __setup("hashdist=", set_hashdist);
2802 #endif
2803 
2804 /*
2805  * allocate a large system hash table from bootmem
2806  * - it is assumed that the hash table must contain an exact power-of-2
2807  *   quantity of entries
2808  * - limit is the number of hash buckets, not the total allocation size
2809  */
2810 void *__init alloc_large_system_hash(const char *tablename,
2811 				     unsigned long bucketsize,
2812 				     unsigned long numentries,
2813 				     int scale,
2814 				     int flags,
2815 				     unsigned int *_hash_shift,
2816 				     unsigned int *_hash_mask,
2817 				     unsigned long limit)
2818 {
2819 	unsigned long long max = limit;
2820 	unsigned long log2qty, size;
2821 	void *table = NULL;
2822 
2823 	/* allow the kernel cmdline to have a say */
2824 	if (!numentries) {
2825 		/* round applicable memory size up to nearest megabyte */
2826 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2827 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2828 		numentries >>= 20 - PAGE_SHIFT;
2829 		numentries <<= 20 - PAGE_SHIFT;
2830 
2831 		/* limit to 1 bucket per 2^scale bytes of low memory */
2832 		if (scale > PAGE_SHIFT)
2833 			numentries >>= (scale - PAGE_SHIFT);
2834 		else
2835 			numentries <<= (PAGE_SHIFT - scale);
2836 	}
2837 	numentries = roundup_pow_of_two(numentries);
2838 
2839 	/* limit allocation size to 1/16 total memory by default */
2840 	if (max == 0) {
2841 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2842 		do_div(max, bucketsize);
2843 	}
2844 
2845 	if (numentries > max)
2846 		numentries = max;
2847 
2848 	log2qty = long_log2(numentries);
2849 
2850 	do {
2851 		size = bucketsize << log2qty;
2852 		if (flags & HASH_EARLY)
2853 			table = alloc_bootmem(size);
2854 		else if (hashdist)
2855 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2856 		else {
2857 			unsigned long order;
2858 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2859 				;
2860 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2861 		}
2862 	} while (!table && size > PAGE_SIZE && --log2qty);
2863 
2864 	if (!table)
2865 		panic("Failed to allocate %s hash table\n", tablename);
2866 
2867 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2868 	       tablename,
2869 	       (1U << log2qty),
2870 	       long_log2(size) - PAGE_SHIFT,
2871 	       size);
2872 
2873 	if (_hash_shift)
2874 		*_hash_shift = log2qty;
2875 	if (_hash_mask)
2876 		*_hash_mask = (1 << log2qty) - 1;
2877 
2878 	return table;
2879 }
2880 
2881 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2882 /*
2883  * pfn <-> page translation. out-of-line version.
2884  * (see asm-generic/memory_model.h)
2885  */
2886 #if defined(CONFIG_FLATMEM)
2887 struct page *pfn_to_page(unsigned long pfn)
2888 {
2889 	return mem_map + (pfn - ARCH_PFN_OFFSET);
2890 }
2891 unsigned long page_to_pfn(struct page *page)
2892 {
2893 	return (page - mem_map) + ARCH_PFN_OFFSET;
2894 }
2895 #elif defined(CONFIG_DISCONTIGMEM)
2896 struct page *pfn_to_page(unsigned long pfn)
2897 {
2898 	int nid = arch_pfn_to_nid(pfn);
2899 	return NODE_DATA(nid)->node_mem_map + arch_local_page_offset(pfn,nid);
2900 }
2901 unsigned long page_to_pfn(struct page *page)
2902 {
2903 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
2904 	return (page - pgdat->node_mem_map) + pgdat->node_start_pfn;
2905 }
2906 #elif defined(CONFIG_SPARSEMEM)
2907 struct page *pfn_to_page(unsigned long pfn)
2908 {
2909 	return __section_mem_map_addr(__pfn_to_section(pfn)) + pfn;
2910 }
2911 
2912 unsigned long page_to_pfn(struct page *page)
2913 {
2914 	long section_id = page_to_section(page);
2915 	return page - __section_mem_map_addr(__nr_to_section(section_id));
2916 }
2917 #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */
2918 EXPORT_SYMBOL(pfn_to_page);
2919 EXPORT_SYMBOL(page_to_pfn);
2920 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
2921