1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/config.h> 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/interrupt.h> 22 #include <linux/pagemap.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/suspend.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/slab.h> 31 #include <linux/notifier.h> 32 #include <linux/topology.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmalloc.h> 39 #include <linux/mempolicy.h> 40 #include <linux/stop_machine.h> 41 42 #include <asm/tlbflush.h> 43 #include <asm/div64.h> 44 #include "internal.h" 45 46 /* 47 * MCD - HACK: Find somewhere to initialize this EARLY, or make this 48 * initializer cleaner 49 */ 50 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; 51 EXPORT_SYMBOL(node_online_map); 52 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; 53 EXPORT_SYMBOL(node_possible_map); 54 unsigned long totalram_pages __read_mostly; 55 unsigned long totalhigh_pages __read_mostly; 56 unsigned long totalreserve_pages __read_mostly; 57 long nr_swap_pages; 58 int percpu_pagelist_fraction; 59 60 static void __free_pages_ok(struct page *page, unsigned int order); 61 62 /* 63 * results with 256, 32 in the lowmem_reserve sysctl: 64 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 65 * 1G machine -> (16M dma, 784M normal, 224M high) 66 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 67 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 68 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 69 * 70 * TBD: should special case ZONE_DMA32 machines here - in those we normally 71 * don't need any ZONE_NORMAL reservation 72 */ 73 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 }; 74 75 EXPORT_SYMBOL(totalram_pages); 76 77 /* 78 * Used by page_zone() to look up the address of the struct zone whose 79 * id is encoded in the upper bits of page->flags 80 */ 81 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly; 82 EXPORT_SYMBOL(zone_table); 83 84 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" }; 85 int min_free_kbytes = 1024; 86 87 unsigned long __meminitdata nr_kernel_pages; 88 unsigned long __meminitdata nr_all_pages; 89 90 #ifdef CONFIG_DEBUG_VM 91 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 92 { 93 int ret = 0; 94 unsigned seq; 95 unsigned long pfn = page_to_pfn(page); 96 97 do { 98 seq = zone_span_seqbegin(zone); 99 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 100 ret = 1; 101 else if (pfn < zone->zone_start_pfn) 102 ret = 1; 103 } while (zone_span_seqretry(zone, seq)); 104 105 return ret; 106 } 107 108 static int page_is_consistent(struct zone *zone, struct page *page) 109 { 110 #ifdef CONFIG_HOLES_IN_ZONE 111 if (!pfn_valid(page_to_pfn(page))) 112 return 0; 113 #endif 114 if (zone != page_zone(page)) 115 return 0; 116 117 return 1; 118 } 119 /* 120 * Temporary debugging check for pages not lying within a given zone. 121 */ 122 static int bad_range(struct zone *zone, struct page *page) 123 { 124 if (page_outside_zone_boundaries(zone, page)) 125 return 1; 126 if (!page_is_consistent(zone, page)) 127 return 1; 128 129 return 0; 130 } 131 132 #else 133 static inline int bad_range(struct zone *zone, struct page *page) 134 { 135 return 0; 136 } 137 #endif 138 139 static void bad_page(struct page *page) 140 { 141 printk(KERN_EMERG "Bad page state in process '%s'\n" 142 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" 143 KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 144 KERN_EMERG "Backtrace:\n", 145 current->comm, page, (int)(2*sizeof(unsigned long)), 146 (unsigned long)page->flags, page->mapping, 147 page_mapcount(page), page_count(page)); 148 dump_stack(); 149 page->flags &= ~(1 << PG_lru | 150 1 << PG_private | 151 1 << PG_locked | 152 1 << PG_active | 153 1 << PG_dirty | 154 1 << PG_reclaim | 155 1 << PG_slab | 156 1 << PG_swapcache | 157 1 << PG_writeback | 158 1 << PG_buddy ); 159 set_page_count(page, 0); 160 reset_page_mapcount(page); 161 page->mapping = NULL; 162 add_taint(TAINT_BAD_PAGE); 163 } 164 165 /* 166 * Higher-order pages are called "compound pages". They are structured thusly: 167 * 168 * The first PAGE_SIZE page is called the "head page". 169 * 170 * The remaining PAGE_SIZE pages are called "tail pages". 171 * 172 * All pages have PG_compound set. All pages have their ->private pointing at 173 * the head page (even the head page has this). 174 * 175 * The first tail page's ->lru.next holds the address of the compound page's 176 * put_page() function. Its ->lru.prev holds the order of allocation. 177 * This usage means that zero-order pages may not be compound. 178 */ 179 180 static void free_compound_page(struct page *page) 181 { 182 __free_pages_ok(page, (unsigned long)page[1].lru.prev); 183 } 184 185 static void prep_compound_page(struct page *page, unsigned long order) 186 { 187 int i; 188 int nr_pages = 1 << order; 189 190 page[1].lru.next = (void *)free_compound_page; /* set dtor */ 191 page[1].lru.prev = (void *)order; 192 for (i = 0; i < nr_pages; i++) { 193 struct page *p = page + i; 194 195 __SetPageCompound(p); 196 set_page_private(p, (unsigned long)page); 197 } 198 } 199 200 static void destroy_compound_page(struct page *page, unsigned long order) 201 { 202 int i; 203 int nr_pages = 1 << order; 204 205 if (unlikely((unsigned long)page[1].lru.prev != order)) 206 bad_page(page); 207 208 for (i = 0; i < nr_pages; i++) { 209 struct page *p = page + i; 210 211 if (unlikely(!PageCompound(p) | 212 (page_private(p) != (unsigned long)page))) 213 bad_page(page); 214 __ClearPageCompound(p); 215 } 216 } 217 218 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 219 { 220 int i; 221 222 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); 223 /* 224 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 225 * and __GFP_HIGHMEM from hard or soft interrupt context. 226 */ 227 BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 228 for (i = 0; i < (1 << order); i++) 229 clear_highpage(page + i); 230 } 231 232 /* 233 * function for dealing with page's order in buddy system. 234 * zone->lock is already acquired when we use these. 235 * So, we don't need atomic page->flags operations here. 236 */ 237 static inline unsigned long page_order(struct page *page) 238 { 239 return page_private(page); 240 } 241 242 static inline void set_page_order(struct page *page, int order) 243 { 244 set_page_private(page, order); 245 __SetPageBuddy(page); 246 } 247 248 static inline void rmv_page_order(struct page *page) 249 { 250 __ClearPageBuddy(page); 251 set_page_private(page, 0); 252 } 253 254 /* 255 * Locate the struct page for both the matching buddy in our 256 * pair (buddy1) and the combined O(n+1) page they form (page). 257 * 258 * 1) Any buddy B1 will have an order O twin B2 which satisfies 259 * the following equation: 260 * B2 = B1 ^ (1 << O) 261 * For example, if the starting buddy (buddy2) is #8 its order 262 * 1 buddy is #10: 263 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 264 * 265 * 2) Any buddy B will have an order O+1 parent P which 266 * satisfies the following equation: 267 * P = B & ~(1 << O) 268 * 269 * Assumption: *_mem_map is contigious at least up to MAX_ORDER 270 */ 271 static inline struct page * 272 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 273 { 274 unsigned long buddy_idx = page_idx ^ (1 << order); 275 276 return page + (buddy_idx - page_idx); 277 } 278 279 static inline unsigned long 280 __find_combined_index(unsigned long page_idx, unsigned int order) 281 { 282 return (page_idx & ~(1 << order)); 283 } 284 285 /* 286 * This function checks whether a page is free && is the buddy 287 * we can do coalesce a page and its buddy if 288 * (a) the buddy is not in a hole && 289 * (b) the buddy is in the buddy system && 290 * (c) a page and its buddy have the same order && 291 * (d) a page and its buddy are in the same zone. 292 * 293 * For recording whether a page is in the buddy system, we use PG_buddy. 294 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 295 * 296 * For recording page's order, we use page_private(page). 297 */ 298 static inline int page_is_buddy(struct page *page, struct page *buddy, 299 int order) 300 { 301 #ifdef CONFIG_HOLES_IN_ZONE 302 if (!pfn_valid(page_to_pfn(buddy))) 303 return 0; 304 #endif 305 306 if (page_zone_id(page) != page_zone_id(buddy)) 307 return 0; 308 309 if (PageBuddy(buddy) && page_order(buddy) == order) { 310 BUG_ON(page_count(buddy) != 0); 311 return 1; 312 } 313 return 0; 314 } 315 316 /* 317 * Freeing function for a buddy system allocator. 318 * 319 * The concept of a buddy system is to maintain direct-mapped table 320 * (containing bit values) for memory blocks of various "orders". 321 * The bottom level table contains the map for the smallest allocatable 322 * units of memory (here, pages), and each level above it describes 323 * pairs of units from the levels below, hence, "buddies". 324 * At a high level, all that happens here is marking the table entry 325 * at the bottom level available, and propagating the changes upward 326 * as necessary, plus some accounting needed to play nicely with other 327 * parts of the VM system. 328 * At each level, we keep a list of pages, which are heads of continuous 329 * free pages of length of (1 << order) and marked with PG_buddy. Page's 330 * order is recorded in page_private(page) field. 331 * So when we are allocating or freeing one, we can derive the state of the 332 * other. That is, if we allocate a small block, and both were 333 * free, the remainder of the region must be split into blocks. 334 * If a block is freed, and its buddy is also free, then this 335 * triggers coalescing into a block of larger size. 336 * 337 * -- wli 338 */ 339 340 static inline void __free_one_page(struct page *page, 341 struct zone *zone, unsigned int order) 342 { 343 unsigned long page_idx; 344 int order_size = 1 << order; 345 346 if (unlikely(PageCompound(page))) 347 destroy_compound_page(page, order); 348 349 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 350 351 BUG_ON(page_idx & (order_size - 1)); 352 BUG_ON(bad_range(zone, page)); 353 354 zone->free_pages += order_size; 355 while (order < MAX_ORDER-1) { 356 unsigned long combined_idx; 357 struct free_area *area; 358 struct page *buddy; 359 360 buddy = __page_find_buddy(page, page_idx, order); 361 if (!page_is_buddy(page, buddy, order)) 362 break; /* Move the buddy up one level. */ 363 364 list_del(&buddy->lru); 365 area = zone->free_area + order; 366 area->nr_free--; 367 rmv_page_order(buddy); 368 combined_idx = __find_combined_index(page_idx, order); 369 page = page + (combined_idx - page_idx); 370 page_idx = combined_idx; 371 order++; 372 } 373 set_page_order(page, order); 374 list_add(&page->lru, &zone->free_area[order].free_list); 375 zone->free_area[order].nr_free++; 376 } 377 378 static inline int free_pages_check(struct page *page) 379 { 380 if (unlikely(page_mapcount(page) | 381 (page->mapping != NULL) | 382 (page_count(page) != 0) | 383 (page->flags & ( 384 1 << PG_lru | 385 1 << PG_private | 386 1 << PG_locked | 387 1 << PG_active | 388 1 << PG_reclaim | 389 1 << PG_slab | 390 1 << PG_swapcache | 391 1 << PG_writeback | 392 1 << PG_reserved | 393 1 << PG_buddy )))) 394 bad_page(page); 395 if (PageDirty(page)) 396 __ClearPageDirty(page); 397 /* 398 * For now, we report if PG_reserved was found set, but do not 399 * clear it, and do not free the page. But we shall soon need 400 * to do more, for when the ZERO_PAGE count wraps negative. 401 */ 402 return PageReserved(page); 403 } 404 405 /* 406 * Frees a list of pages. 407 * Assumes all pages on list are in same zone, and of same order. 408 * count is the number of pages to free. 409 * 410 * If the zone was previously in an "all pages pinned" state then look to 411 * see if this freeing clears that state. 412 * 413 * And clear the zone's pages_scanned counter, to hold off the "all pages are 414 * pinned" detection logic. 415 */ 416 static void free_pages_bulk(struct zone *zone, int count, 417 struct list_head *list, int order) 418 { 419 spin_lock(&zone->lock); 420 zone->all_unreclaimable = 0; 421 zone->pages_scanned = 0; 422 while (count--) { 423 struct page *page; 424 425 BUG_ON(list_empty(list)); 426 page = list_entry(list->prev, struct page, lru); 427 /* have to delete it as __free_one_page list manipulates */ 428 list_del(&page->lru); 429 __free_one_page(page, zone, order); 430 } 431 spin_unlock(&zone->lock); 432 } 433 434 static void free_one_page(struct zone *zone, struct page *page, int order) 435 { 436 LIST_HEAD(list); 437 list_add(&page->lru, &list); 438 free_pages_bulk(zone, 1, &list, order); 439 } 440 441 static void __free_pages_ok(struct page *page, unsigned int order) 442 { 443 unsigned long flags; 444 int i; 445 int reserved = 0; 446 447 arch_free_page(page, order); 448 if (!PageHighMem(page)) 449 mutex_debug_check_no_locks_freed(page_address(page), 450 PAGE_SIZE<<order); 451 452 for (i = 0 ; i < (1 << order) ; ++i) 453 reserved += free_pages_check(page + i); 454 if (reserved) 455 return; 456 457 kernel_map_pages(page, 1 << order, 0); 458 local_irq_save(flags); 459 __mod_page_state(pgfree, 1 << order); 460 free_one_page(page_zone(page), page, order); 461 local_irq_restore(flags); 462 } 463 464 /* 465 * permit the bootmem allocator to evade page validation on high-order frees 466 */ 467 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) 468 { 469 if (order == 0) { 470 __ClearPageReserved(page); 471 set_page_count(page, 0); 472 set_page_refcounted(page); 473 __free_page(page); 474 } else { 475 int loop; 476 477 prefetchw(page); 478 for (loop = 0; loop < BITS_PER_LONG; loop++) { 479 struct page *p = &page[loop]; 480 481 if (loop + 1 < BITS_PER_LONG) 482 prefetchw(p + 1); 483 __ClearPageReserved(p); 484 set_page_count(p, 0); 485 } 486 487 set_page_refcounted(page); 488 __free_pages(page, order); 489 } 490 } 491 492 493 /* 494 * The order of subdivision here is critical for the IO subsystem. 495 * Please do not alter this order without good reasons and regression 496 * testing. Specifically, as large blocks of memory are subdivided, 497 * the order in which smaller blocks are delivered depends on the order 498 * they're subdivided in this function. This is the primary factor 499 * influencing the order in which pages are delivered to the IO 500 * subsystem according to empirical testing, and this is also justified 501 * by considering the behavior of a buddy system containing a single 502 * large block of memory acted on by a series of small allocations. 503 * This behavior is a critical factor in sglist merging's success. 504 * 505 * -- wli 506 */ 507 static inline void expand(struct zone *zone, struct page *page, 508 int low, int high, struct free_area *area) 509 { 510 unsigned long size = 1 << high; 511 512 while (high > low) { 513 area--; 514 high--; 515 size >>= 1; 516 BUG_ON(bad_range(zone, &page[size])); 517 list_add(&page[size].lru, &area->free_list); 518 area->nr_free++; 519 set_page_order(&page[size], high); 520 } 521 } 522 523 /* 524 * This page is about to be returned from the page allocator 525 */ 526 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 527 { 528 if (unlikely(page_mapcount(page) | 529 (page->mapping != NULL) | 530 (page_count(page) != 0) | 531 (page->flags & ( 532 1 << PG_lru | 533 1 << PG_private | 534 1 << PG_locked | 535 1 << PG_active | 536 1 << PG_dirty | 537 1 << PG_reclaim | 538 1 << PG_slab | 539 1 << PG_swapcache | 540 1 << PG_writeback | 541 1 << PG_reserved | 542 1 << PG_buddy )))) 543 bad_page(page); 544 545 /* 546 * For now, we report if PG_reserved was found set, but do not 547 * clear it, and do not allocate the page: as a safety net. 548 */ 549 if (PageReserved(page)) 550 return 1; 551 552 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 553 1 << PG_referenced | 1 << PG_arch_1 | 554 1 << PG_checked | 1 << PG_mappedtodisk); 555 set_page_private(page, 0); 556 set_page_refcounted(page); 557 kernel_map_pages(page, 1 << order, 1); 558 559 if (gfp_flags & __GFP_ZERO) 560 prep_zero_page(page, order, gfp_flags); 561 562 if (order && (gfp_flags & __GFP_COMP)) 563 prep_compound_page(page, order); 564 565 return 0; 566 } 567 568 /* 569 * Do the hard work of removing an element from the buddy allocator. 570 * Call me with the zone->lock already held. 571 */ 572 static struct page *__rmqueue(struct zone *zone, unsigned int order) 573 { 574 struct free_area * area; 575 unsigned int current_order; 576 struct page *page; 577 578 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 579 area = zone->free_area + current_order; 580 if (list_empty(&area->free_list)) 581 continue; 582 583 page = list_entry(area->free_list.next, struct page, lru); 584 list_del(&page->lru); 585 rmv_page_order(page); 586 area->nr_free--; 587 zone->free_pages -= 1UL << order; 588 expand(zone, page, order, current_order, area); 589 return page; 590 } 591 592 return NULL; 593 } 594 595 /* 596 * Obtain a specified number of elements from the buddy allocator, all under 597 * a single hold of the lock, for efficiency. Add them to the supplied list. 598 * Returns the number of new pages which were placed at *list. 599 */ 600 static int rmqueue_bulk(struct zone *zone, unsigned int order, 601 unsigned long count, struct list_head *list) 602 { 603 int i; 604 605 spin_lock(&zone->lock); 606 for (i = 0; i < count; ++i) { 607 struct page *page = __rmqueue(zone, order); 608 if (unlikely(page == NULL)) 609 break; 610 list_add_tail(&page->lru, list); 611 } 612 spin_unlock(&zone->lock); 613 return i; 614 } 615 616 #ifdef CONFIG_NUMA 617 /* 618 * Called from the slab reaper to drain pagesets on a particular node that 619 * belong to the currently executing processor. 620 * Note that this function must be called with the thread pinned to 621 * a single processor. 622 */ 623 void drain_node_pages(int nodeid) 624 { 625 int i, z; 626 unsigned long flags; 627 628 for (z = 0; z < MAX_NR_ZONES; z++) { 629 struct zone *zone = NODE_DATA(nodeid)->node_zones + z; 630 struct per_cpu_pageset *pset; 631 632 pset = zone_pcp(zone, smp_processor_id()); 633 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 634 struct per_cpu_pages *pcp; 635 636 pcp = &pset->pcp[i]; 637 if (pcp->count) { 638 local_irq_save(flags); 639 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 640 pcp->count = 0; 641 local_irq_restore(flags); 642 } 643 } 644 } 645 } 646 #endif 647 648 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) 649 static void __drain_pages(unsigned int cpu) 650 { 651 unsigned long flags; 652 struct zone *zone; 653 int i; 654 655 for_each_zone(zone) { 656 struct per_cpu_pageset *pset; 657 658 pset = zone_pcp(zone, cpu); 659 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 660 struct per_cpu_pages *pcp; 661 662 pcp = &pset->pcp[i]; 663 local_irq_save(flags); 664 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 665 pcp->count = 0; 666 local_irq_restore(flags); 667 } 668 } 669 } 670 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ 671 672 #ifdef CONFIG_PM 673 674 void mark_free_pages(struct zone *zone) 675 { 676 unsigned long zone_pfn, flags; 677 int order; 678 struct list_head *curr; 679 680 if (!zone->spanned_pages) 681 return; 682 683 spin_lock_irqsave(&zone->lock, flags); 684 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) 685 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); 686 687 for (order = MAX_ORDER - 1; order >= 0; --order) 688 list_for_each(curr, &zone->free_area[order].free_list) { 689 unsigned long start_pfn, i; 690 691 start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); 692 693 for (i=0; i < (1<<order); i++) 694 SetPageNosaveFree(pfn_to_page(start_pfn+i)); 695 } 696 spin_unlock_irqrestore(&zone->lock, flags); 697 } 698 699 /* 700 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 701 */ 702 void drain_local_pages(void) 703 { 704 unsigned long flags; 705 706 local_irq_save(flags); 707 __drain_pages(smp_processor_id()); 708 local_irq_restore(flags); 709 } 710 #endif /* CONFIG_PM */ 711 712 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu) 713 { 714 #ifdef CONFIG_NUMA 715 pg_data_t *pg = z->zone_pgdat; 716 pg_data_t *orig = zonelist->zones[0]->zone_pgdat; 717 struct per_cpu_pageset *p; 718 719 p = zone_pcp(z, cpu); 720 if (pg == orig) { 721 p->numa_hit++; 722 } else { 723 p->numa_miss++; 724 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++; 725 } 726 if (pg == NODE_DATA(numa_node_id())) 727 p->local_node++; 728 else 729 p->other_node++; 730 #endif 731 } 732 733 /* 734 * Free a 0-order page 735 */ 736 static void fastcall free_hot_cold_page(struct page *page, int cold) 737 { 738 struct zone *zone = page_zone(page); 739 struct per_cpu_pages *pcp; 740 unsigned long flags; 741 742 arch_free_page(page, 0); 743 744 if (PageAnon(page)) 745 page->mapping = NULL; 746 if (free_pages_check(page)) 747 return; 748 749 kernel_map_pages(page, 1, 0); 750 751 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 752 local_irq_save(flags); 753 __inc_page_state(pgfree); 754 list_add(&page->lru, &pcp->list); 755 pcp->count++; 756 if (pcp->count >= pcp->high) { 757 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 758 pcp->count -= pcp->batch; 759 } 760 local_irq_restore(flags); 761 put_cpu(); 762 } 763 764 void fastcall free_hot_page(struct page *page) 765 { 766 free_hot_cold_page(page, 0); 767 } 768 769 void fastcall free_cold_page(struct page *page) 770 { 771 free_hot_cold_page(page, 1); 772 } 773 774 /* 775 * split_page takes a non-compound higher-order page, and splits it into 776 * n (1<<order) sub-pages: page[0..n] 777 * Each sub-page must be freed individually. 778 * 779 * Note: this is probably too low level an operation for use in drivers. 780 * Please consult with lkml before using this in your driver. 781 */ 782 void split_page(struct page *page, unsigned int order) 783 { 784 int i; 785 786 BUG_ON(PageCompound(page)); 787 BUG_ON(!page_count(page)); 788 for (i = 1; i < (1 << order); i++) 789 set_page_refcounted(page + i); 790 } 791 792 /* 793 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 794 * we cheat by calling it from here, in the order > 0 path. Saves a branch 795 * or two. 796 */ 797 static struct page *buffered_rmqueue(struct zonelist *zonelist, 798 struct zone *zone, int order, gfp_t gfp_flags) 799 { 800 unsigned long flags; 801 struct page *page; 802 int cold = !!(gfp_flags & __GFP_COLD); 803 int cpu; 804 805 again: 806 cpu = get_cpu(); 807 if (likely(order == 0)) { 808 struct per_cpu_pages *pcp; 809 810 pcp = &zone_pcp(zone, cpu)->pcp[cold]; 811 local_irq_save(flags); 812 if (!pcp->count) { 813 pcp->count += rmqueue_bulk(zone, 0, 814 pcp->batch, &pcp->list); 815 if (unlikely(!pcp->count)) 816 goto failed; 817 } 818 page = list_entry(pcp->list.next, struct page, lru); 819 list_del(&page->lru); 820 pcp->count--; 821 } else { 822 spin_lock_irqsave(&zone->lock, flags); 823 page = __rmqueue(zone, order); 824 spin_unlock(&zone->lock); 825 if (!page) 826 goto failed; 827 } 828 829 __mod_page_state_zone(zone, pgalloc, 1 << order); 830 zone_statistics(zonelist, zone, cpu); 831 local_irq_restore(flags); 832 put_cpu(); 833 834 BUG_ON(bad_range(zone, page)); 835 if (prep_new_page(page, order, gfp_flags)) 836 goto again; 837 return page; 838 839 failed: 840 local_irq_restore(flags); 841 put_cpu(); 842 return NULL; 843 } 844 845 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 846 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 847 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 848 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 849 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 850 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 851 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 852 853 /* 854 * Return 1 if free pages are above 'mark'. This takes into account the order 855 * of the allocation. 856 */ 857 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 858 int classzone_idx, int alloc_flags) 859 { 860 /* free_pages my go negative - that's OK */ 861 long min = mark, free_pages = z->free_pages - (1 << order) + 1; 862 int o; 863 864 if (alloc_flags & ALLOC_HIGH) 865 min -= min / 2; 866 if (alloc_flags & ALLOC_HARDER) 867 min -= min / 4; 868 869 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 870 return 0; 871 for (o = 0; o < order; o++) { 872 /* At the next order, this order's pages become unavailable */ 873 free_pages -= z->free_area[o].nr_free << o; 874 875 /* Require fewer higher order pages to be free */ 876 min >>= 1; 877 878 if (free_pages <= min) 879 return 0; 880 } 881 return 1; 882 } 883 884 /* 885 * get_page_from_freeliest goes through the zonelist trying to allocate 886 * a page. 887 */ 888 static struct page * 889 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, 890 struct zonelist *zonelist, int alloc_flags) 891 { 892 struct zone **z = zonelist->zones; 893 struct page *page = NULL; 894 int classzone_idx = zone_idx(*z); 895 896 /* 897 * Go through the zonelist once, looking for a zone with enough free. 898 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 899 */ 900 do { 901 if ((alloc_flags & ALLOC_CPUSET) && 902 !cpuset_zone_allowed(*z, gfp_mask)) 903 continue; 904 905 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 906 unsigned long mark; 907 if (alloc_flags & ALLOC_WMARK_MIN) 908 mark = (*z)->pages_min; 909 else if (alloc_flags & ALLOC_WMARK_LOW) 910 mark = (*z)->pages_low; 911 else 912 mark = (*z)->pages_high; 913 if (!zone_watermark_ok(*z, order, mark, 914 classzone_idx, alloc_flags)) 915 if (!zone_reclaim_mode || 916 !zone_reclaim(*z, gfp_mask, order)) 917 continue; 918 } 919 920 page = buffered_rmqueue(zonelist, *z, order, gfp_mask); 921 if (page) { 922 break; 923 } 924 } while (*(++z) != NULL); 925 return page; 926 } 927 928 /* 929 * This is the 'heart' of the zoned buddy allocator. 930 */ 931 struct page * fastcall 932 __alloc_pages(gfp_t gfp_mask, unsigned int order, 933 struct zonelist *zonelist) 934 { 935 const gfp_t wait = gfp_mask & __GFP_WAIT; 936 struct zone **z; 937 struct page *page; 938 struct reclaim_state reclaim_state; 939 struct task_struct *p = current; 940 int do_retry; 941 int alloc_flags; 942 int did_some_progress; 943 944 might_sleep_if(wait); 945 946 restart: 947 z = zonelist->zones; /* the list of zones suitable for gfp_mask */ 948 949 if (unlikely(*z == NULL)) { 950 /* Should this ever happen?? */ 951 return NULL; 952 } 953 954 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 955 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); 956 if (page) 957 goto got_pg; 958 959 do { 960 if (cpuset_zone_allowed(*z, gfp_mask|__GFP_HARDWALL)) 961 wakeup_kswapd(*z, order); 962 } while (*(++z)); 963 964 /* 965 * OK, we're below the kswapd watermark and have kicked background 966 * reclaim. Now things get more complex, so set up alloc_flags according 967 * to how we want to proceed. 968 * 969 * The caller may dip into page reserves a bit more if the caller 970 * cannot run direct reclaim, or if the caller has realtime scheduling 971 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 972 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 973 */ 974 alloc_flags = ALLOC_WMARK_MIN; 975 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 976 alloc_flags |= ALLOC_HARDER; 977 if (gfp_mask & __GFP_HIGH) 978 alloc_flags |= ALLOC_HIGH; 979 if (wait) 980 alloc_flags |= ALLOC_CPUSET; 981 982 /* 983 * Go through the zonelist again. Let __GFP_HIGH and allocations 984 * coming from realtime tasks go deeper into reserves. 985 * 986 * This is the last chance, in general, before the goto nopage. 987 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 988 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 989 */ 990 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); 991 if (page) 992 goto got_pg; 993 994 /* This allocation should allow future memory freeing. */ 995 996 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 997 && !in_interrupt()) { 998 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 999 nofail_alloc: 1000 /* go through the zonelist yet again, ignoring mins */ 1001 page = get_page_from_freelist(gfp_mask, order, 1002 zonelist, ALLOC_NO_WATERMARKS); 1003 if (page) 1004 goto got_pg; 1005 if (gfp_mask & __GFP_NOFAIL) { 1006 blk_congestion_wait(WRITE, HZ/50); 1007 goto nofail_alloc; 1008 } 1009 } 1010 goto nopage; 1011 } 1012 1013 /* Atomic allocations - we can't balance anything */ 1014 if (!wait) 1015 goto nopage; 1016 1017 rebalance: 1018 cond_resched(); 1019 1020 /* We now go into synchronous reclaim */ 1021 cpuset_memory_pressure_bump(); 1022 p->flags |= PF_MEMALLOC; 1023 reclaim_state.reclaimed_slab = 0; 1024 p->reclaim_state = &reclaim_state; 1025 1026 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask); 1027 1028 p->reclaim_state = NULL; 1029 p->flags &= ~PF_MEMALLOC; 1030 1031 cond_resched(); 1032 1033 if (likely(did_some_progress)) { 1034 page = get_page_from_freelist(gfp_mask, order, 1035 zonelist, alloc_flags); 1036 if (page) 1037 goto got_pg; 1038 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1039 /* 1040 * Go through the zonelist yet one more time, keep 1041 * very high watermark here, this is only to catch 1042 * a parallel oom killing, we must fail if we're still 1043 * under heavy pressure. 1044 */ 1045 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1046 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1047 if (page) 1048 goto got_pg; 1049 1050 out_of_memory(zonelist, gfp_mask, order); 1051 goto restart; 1052 } 1053 1054 /* 1055 * Don't let big-order allocations loop unless the caller explicitly 1056 * requests that. Wait for some write requests to complete then retry. 1057 * 1058 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 1059 * <= 3, but that may not be true in other implementations. 1060 */ 1061 do_retry = 0; 1062 if (!(gfp_mask & __GFP_NORETRY)) { 1063 if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) 1064 do_retry = 1; 1065 if (gfp_mask & __GFP_NOFAIL) 1066 do_retry = 1; 1067 } 1068 if (do_retry) { 1069 blk_congestion_wait(WRITE, HZ/50); 1070 goto rebalance; 1071 } 1072 1073 nopage: 1074 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1075 printk(KERN_WARNING "%s: page allocation failure." 1076 " order:%d, mode:0x%x\n", 1077 p->comm, order, gfp_mask); 1078 dump_stack(); 1079 show_mem(); 1080 } 1081 got_pg: 1082 return page; 1083 } 1084 1085 EXPORT_SYMBOL(__alloc_pages); 1086 1087 /* 1088 * Common helper functions. 1089 */ 1090 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1091 { 1092 struct page * page; 1093 page = alloc_pages(gfp_mask, order); 1094 if (!page) 1095 return 0; 1096 return (unsigned long) page_address(page); 1097 } 1098 1099 EXPORT_SYMBOL(__get_free_pages); 1100 1101 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) 1102 { 1103 struct page * page; 1104 1105 /* 1106 * get_zeroed_page() returns a 32-bit address, which cannot represent 1107 * a highmem page 1108 */ 1109 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1110 1111 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1112 if (page) 1113 return (unsigned long) page_address(page); 1114 return 0; 1115 } 1116 1117 EXPORT_SYMBOL(get_zeroed_page); 1118 1119 void __pagevec_free(struct pagevec *pvec) 1120 { 1121 int i = pagevec_count(pvec); 1122 1123 while (--i >= 0) 1124 free_hot_cold_page(pvec->pages[i], pvec->cold); 1125 } 1126 1127 fastcall void __free_pages(struct page *page, unsigned int order) 1128 { 1129 if (put_page_testzero(page)) { 1130 if (order == 0) 1131 free_hot_page(page); 1132 else 1133 __free_pages_ok(page, order); 1134 } 1135 } 1136 1137 EXPORT_SYMBOL(__free_pages); 1138 1139 fastcall void free_pages(unsigned long addr, unsigned int order) 1140 { 1141 if (addr != 0) { 1142 BUG_ON(!virt_addr_valid((void *)addr)); 1143 __free_pages(virt_to_page((void *)addr), order); 1144 } 1145 } 1146 1147 EXPORT_SYMBOL(free_pages); 1148 1149 /* 1150 * Total amount of free (allocatable) RAM: 1151 */ 1152 unsigned int nr_free_pages(void) 1153 { 1154 unsigned int sum = 0; 1155 struct zone *zone; 1156 1157 for_each_zone(zone) 1158 sum += zone->free_pages; 1159 1160 return sum; 1161 } 1162 1163 EXPORT_SYMBOL(nr_free_pages); 1164 1165 #ifdef CONFIG_NUMA 1166 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) 1167 { 1168 unsigned int i, sum = 0; 1169 1170 for (i = 0; i < MAX_NR_ZONES; i++) 1171 sum += pgdat->node_zones[i].free_pages; 1172 1173 return sum; 1174 } 1175 #endif 1176 1177 static unsigned int nr_free_zone_pages(int offset) 1178 { 1179 /* Just pick one node, since fallback list is circular */ 1180 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1181 unsigned int sum = 0; 1182 1183 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1184 struct zone **zonep = zonelist->zones; 1185 struct zone *zone; 1186 1187 for (zone = *zonep++; zone; zone = *zonep++) { 1188 unsigned long size = zone->present_pages; 1189 unsigned long high = zone->pages_high; 1190 if (size > high) 1191 sum += size - high; 1192 } 1193 1194 return sum; 1195 } 1196 1197 /* 1198 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1199 */ 1200 unsigned int nr_free_buffer_pages(void) 1201 { 1202 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1203 } 1204 1205 /* 1206 * Amount of free RAM allocatable within all zones 1207 */ 1208 unsigned int nr_free_pagecache_pages(void) 1209 { 1210 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); 1211 } 1212 1213 #ifdef CONFIG_HIGHMEM 1214 unsigned int nr_free_highpages (void) 1215 { 1216 pg_data_t *pgdat; 1217 unsigned int pages = 0; 1218 1219 for_each_online_pgdat(pgdat) 1220 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1221 1222 return pages; 1223 } 1224 #endif 1225 1226 #ifdef CONFIG_NUMA 1227 static void show_node(struct zone *zone) 1228 { 1229 printk("Node %d ", zone->zone_pgdat->node_id); 1230 } 1231 #else 1232 #define show_node(zone) do { } while (0) 1233 #endif 1234 1235 /* 1236 * Accumulate the page_state information across all CPUs. 1237 * The result is unavoidably approximate - it can change 1238 * during and after execution of this function. 1239 */ 1240 static DEFINE_PER_CPU(struct page_state, page_states) = {0}; 1241 1242 atomic_t nr_pagecache = ATOMIC_INIT(0); 1243 EXPORT_SYMBOL(nr_pagecache); 1244 #ifdef CONFIG_SMP 1245 DEFINE_PER_CPU(long, nr_pagecache_local) = 0; 1246 #endif 1247 1248 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask) 1249 { 1250 unsigned cpu; 1251 1252 memset(ret, 0, nr * sizeof(unsigned long)); 1253 cpus_and(*cpumask, *cpumask, cpu_online_map); 1254 1255 for_each_cpu_mask(cpu, *cpumask) { 1256 unsigned long *in; 1257 unsigned long *out; 1258 unsigned off; 1259 unsigned next_cpu; 1260 1261 in = (unsigned long *)&per_cpu(page_states, cpu); 1262 1263 next_cpu = next_cpu(cpu, *cpumask); 1264 if (likely(next_cpu < NR_CPUS)) 1265 prefetch(&per_cpu(page_states, next_cpu)); 1266 1267 out = (unsigned long *)ret; 1268 for (off = 0; off < nr; off++) 1269 *out++ += *in++; 1270 } 1271 } 1272 1273 void get_page_state_node(struct page_state *ret, int node) 1274 { 1275 int nr; 1276 cpumask_t mask = node_to_cpumask(node); 1277 1278 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1279 nr /= sizeof(unsigned long); 1280 1281 __get_page_state(ret, nr+1, &mask); 1282 } 1283 1284 void get_page_state(struct page_state *ret) 1285 { 1286 int nr; 1287 cpumask_t mask = CPU_MASK_ALL; 1288 1289 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1290 nr /= sizeof(unsigned long); 1291 1292 __get_page_state(ret, nr + 1, &mask); 1293 } 1294 1295 void get_full_page_state(struct page_state *ret) 1296 { 1297 cpumask_t mask = CPU_MASK_ALL; 1298 1299 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask); 1300 } 1301 1302 unsigned long read_page_state_offset(unsigned long offset) 1303 { 1304 unsigned long ret = 0; 1305 int cpu; 1306 1307 for_each_online_cpu(cpu) { 1308 unsigned long in; 1309 1310 in = (unsigned long)&per_cpu(page_states, cpu) + offset; 1311 ret += *((unsigned long *)in); 1312 } 1313 return ret; 1314 } 1315 1316 void __mod_page_state_offset(unsigned long offset, unsigned long delta) 1317 { 1318 void *ptr; 1319 1320 ptr = &__get_cpu_var(page_states); 1321 *(unsigned long *)(ptr + offset) += delta; 1322 } 1323 EXPORT_SYMBOL(__mod_page_state_offset); 1324 1325 void mod_page_state_offset(unsigned long offset, unsigned long delta) 1326 { 1327 unsigned long flags; 1328 void *ptr; 1329 1330 local_irq_save(flags); 1331 ptr = &__get_cpu_var(page_states); 1332 *(unsigned long *)(ptr + offset) += delta; 1333 local_irq_restore(flags); 1334 } 1335 EXPORT_SYMBOL(mod_page_state_offset); 1336 1337 void __get_zone_counts(unsigned long *active, unsigned long *inactive, 1338 unsigned long *free, struct pglist_data *pgdat) 1339 { 1340 struct zone *zones = pgdat->node_zones; 1341 int i; 1342 1343 *active = 0; 1344 *inactive = 0; 1345 *free = 0; 1346 for (i = 0; i < MAX_NR_ZONES; i++) { 1347 *active += zones[i].nr_active; 1348 *inactive += zones[i].nr_inactive; 1349 *free += zones[i].free_pages; 1350 } 1351 } 1352 1353 void get_zone_counts(unsigned long *active, 1354 unsigned long *inactive, unsigned long *free) 1355 { 1356 struct pglist_data *pgdat; 1357 1358 *active = 0; 1359 *inactive = 0; 1360 *free = 0; 1361 for_each_online_pgdat(pgdat) { 1362 unsigned long l, m, n; 1363 __get_zone_counts(&l, &m, &n, pgdat); 1364 *active += l; 1365 *inactive += m; 1366 *free += n; 1367 } 1368 } 1369 1370 void si_meminfo(struct sysinfo *val) 1371 { 1372 val->totalram = totalram_pages; 1373 val->sharedram = 0; 1374 val->freeram = nr_free_pages(); 1375 val->bufferram = nr_blockdev_pages(); 1376 #ifdef CONFIG_HIGHMEM 1377 val->totalhigh = totalhigh_pages; 1378 val->freehigh = nr_free_highpages(); 1379 #else 1380 val->totalhigh = 0; 1381 val->freehigh = 0; 1382 #endif 1383 val->mem_unit = PAGE_SIZE; 1384 } 1385 1386 EXPORT_SYMBOL(si_meminfo); 1387 1388 #ifdef CONFIG_NUMA 1389 void si_meminfo_node(struct sysinfo *val, int nid) 1390 { 1391 pg_data_t *pgdat = NODE_DATA(nid); 1392 1393 val->totalram = pgdat->node_present_pages; 1394 val->freeram = nr_free_pages_pgdat(pgdat); 1395 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1396 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1397 val->mem_unit = PAGE_SIZE; 1398 } 1399 #endif 1400 1401 #define K(x) ((x) << (PAGE_SHIFT-10)) 1402 1403 /* 1404 * Show free area list (used inside shift_scroll-lock stuff) 1405 * We also calculate the percentage fragmentation. We do this by counting the 1406 * memory on each free list with the exception of the first item on the list. 1407 */ 1408 void show_free_areas(void) 1409 { 1410 struct page_state ps; 1411 int cpu, temperature; 1412 unsigned long active; 1413 unsigned long inactive; 1414 unsigned long free; 1415 struct zone *zone; 1416 1417 for_each_zone(zone) { 1418 show_node(zone); 1419 printk("%s per-cpu:", zone->name); 1420 1421 if (!populated_zone(zone)) { 1422 printk(" empty\n"); 1423 continue; 1424 } else 1425 printk("\n"); 1426 1427 for_each_online_cpu(cpu) { 1428 struct per_cpu_pageset *pageset; 1429 1430 pageset = zone_pcp(zone, cpu); 1431 1432 for (temperature = 0; temperature < 2; temperature++) 1433 printk("cpu %d %s: high %d, batch %d used:%d\n", 1434 cpu, 1435 temperature ? "cold" : "hot", 1436 pageset->pcp[temperature].high, 1437 pageset->pcp[temperature].batch, 1438 pageset->pcp[temperature].count); 1439 } 1440 } 1441 1442 get_page_state(&ps); 1443 get_zone_counts(&active, &inactive, &free); 1444 1445 printk("Free pages: %11ukB (%ukB HighMem)\n", 1446 K(nr_free_pages()), 1447 K(nr_free_highpages())); 1448 1449 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " 1450 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", 1451 active, 1452 inactive, 1453 ps.nr_dirty, 1454 ps.nr_writeback, 1455 ps.nr_unstable, 1456 nr_free_pages(), 1457 ps.nr_slab, 1458 ps.nr_mapped, 1459 ps.nr_page_table_pages); 1460 1461 for_each_zone(zone) { 1462 int i; 1463 1464 show_node(zone); 1465 printk("%s" 1466 " free:%lukB" 1467 " min:%lukB" 1468 " low:%lukB" 1469 " high:%lukB" 1470 " active:%lukB" 1471 " inactive:%lukB" 1472 " present:%lukB" 1473 " pages_scanned:%lu" 1474 " all_unreclaimable? %s" 1475 "\n", 1476 zone->name, 1477 K(zone->free_pages), 1478 K(zone->pages_min), 1479 K(zone->pages_low), 1480 K(zone->pages_high), 1481 K(zone->nr_active), 1482 K(zone->nr_inactive), 1483 K(zone->present_pages), 1484 zone->pages_scanned, 1485 (zone->all_unreclaimable ? "yes" : "no") 1486 ); 1487 printk("lowmem_reserve[]:"); 1488 for (i = 0; i < MAX_NR_ZONES; i++) 1489 printk(" %lu", zone->lowmem_reserve[i]); 1490 printk("\n"); 1491 } 1492 1493 for_each_zone(zone) { 1494 unsigned long nr, flags, order, total = 0; 1495 1496 show_node(zone); 1497 printk("%s: ", zone->name); 1498 if (!populated_zone(zone)) { 1499 printk("empty\n"); 1500 continue; 1501 } 1502 1503 spin_lock_irqsave(&zone->lock, flags); 1504 for (order = 0; order < MAX_ORDER; order++) { 1505 nr = zone->free_area[order].nr_free; 1506 total += nr << order; 1507 printk("%lu*%lukB ", nr, K(1UL) << order); 1508 } 1509 spin_unlock_irqrestore(&zone->lock, flags); 1510 printk("= %lukB\n", K(total)); 1511 } 1512 1513 show_swap_cache_info(); 1514 } 1515 1516 /* 1517 * Builds allocation fallback zone lists. 1518 * 1519 * Add all populated zones of a node to the zonelist. 1520 */ 1521 static int __meminit build_zonelists_node(pg_data_t *pgdat, 1522 struct zonelist *zonelist, int nr_zones, int zone_type) 1523 { 1524 struct zone *zone; 1525 1526 BUG_ON(zone_type > ZONE_HIGHMEM); 1527 1528 do { 1529 zone = pgdat->node_zones + zone_type; 1530 if (populated_zone(zone)) { 1531 #ifndef CONFIG_HIGHMEM 1532 BUG_ON(zone_type > ZONE_NORMAL); 1533 #endif 1534 zonelist->zones[nr_zones++] = zone; 1535 check_highest_zone(zone_type); 1536 } 1537 zone_type--; 1538 1539 } while (zone_type >= 0); 1540 return nr_zones; 1541 } 1542 1543 static inline int highest_zone(int zone_bits) 1544 { 1545 int res = ZONE_NORMAL; 1546 if (zone_bits & (__force int)__GFP_HIGHMEM) 1547 res = ZONE_HIGHMEM; 1548 if (zone_bits & (__force int)__GFP_DMA32) 1549 res = ZONE_DMA32; 1550 if (zone_bits & (__force int)__GFP_DMA) 1551 res = ZONE_DMA; 1552 return res; 1553 } 1554 1555 #ifdef CONFIG_NUMA 1556 #define MAX_NODE_LOAD (num_online_nodes()) 1557 static int __meminitdata node_load[MAX_NUMNODES]; 1558 /** 1559 * find_next_best_node - find the next node that should appear in a given node's fallback list 1560 * @node: node whose fallback list we're appending 1561 * @used_node_mask: nodemask_t of already used nodes 1562 * 1563 * We use a number of factors to determine which is the next node that should 1564 * appear on a given node's fallback list. The node should not have appeared 1565 * already in @node's fallback list, and it should be the next closest node 1566 * according to the distance array (which contains arbitrary distance values 1567 * from each node to each node in the system), and should also prefer nodes 1568 * with no CPUs, since presumably they'll have very little allocation pressure 1569 * on them otherwise. 1570 * It returns -1 if no node is found. 1571 */ 1572 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask) 1573 { 1574 int n, val; 1575 int min_val = INT_MAX; 1576 int best_node = -1; 1577 1578 /* Use the local node if we haven't already */ 1579 if (!node_isset(node, *used_node_mask)) { 1580 node_set(node, *used_node_mask); 1581 return node; 1582 } 1583 1584 for_each_online_node(n) { 1585 cpumask_t tmp; 1586 1587 /* Don't want a node to appear more than once */ 1588 if (node_isset(n, *used_node_mask)) 1589 continue; 1590 1591 /* Use the distance array to find the distance */ 1592 val = node_distance(node, n); 1593 1594 /* Penalize nodes under us ("prefer the next node") */ 1595 val += (n < node); 1596 1597 /* Give preference to headless and unused nodes */ 1598 tmp = node_to_cpumask(n); 1599 if (!cpus_empty(tmp)) 1600 val += PENALTY_FOR_NODE_WITH_CPUS; 1601 1602 /* Slight preference for less loaded node */ 1603 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 1604 val += node_load[n]; 1605 1606 if (val < min_val) { 1607 min_val = val; 1608 best_node = n; 1609 } 1610 } 1611 1612 if (best_node >= 0) 1613 node_set(best_node, *used_node_mask); 1614 1615 return best_node; 1616 } 1617 1618 static void __meminit build_zonelists(pg_data_t *pgdat) 1619 { 1620 int i, j, k, node, local_node; 1621 int prev_node, load; 1622 struct zonelist *zonelist; 1623 nodemask_t used_mask; 1624 1625 /* initialize zonelists */ 1626 for (i = 0; i < GFP_ZONETYPES; i++) { 1627 zonelist = pgdat->node_zonelists + i; 1628 zonelist->zones[0] = NULL; 1629 } 1630 1631 /* NUMA-aware ordering of nodes */ 1632 local_node = pgdat->node_id; 1633 load = num_online_nodes(); 1634 prev_node = local_node; 1635 nodes_clear(used_mask); 1636 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 1637 int distance = node_distance(local_node, node); 1638 1639 /* 1640 * If another node is sufficiently far away then it is better 1641 * to reclaim pages in a zone before going off node. 1642 */ 1643 if (distance > RECLAIM_DISTANCE) 1644 zone_reclaim_mode = 1; 1645 1646 /* 1647 * We don't want to pressure a particular node. 1648 * So adding penalty to the first node in same 1649 * distance group to make it round-robin. 1650 */ 1651 1652 if (distance != node_distance(local_node, prev_node)) 1653 node_load[node] += load; 1654 prev_node = node; 1655 load--; 1656 for (i = 0; i < GFP_ZONETYPES; i++) { 1657 zonelist = pgdat->node_zonelists + i; 1658 for (j = 0; zonelist->zones[j] != NULL; j++); 1659 1660 k = highest_zone(i); 1661 1662 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1663 zonelist->zones[j] = NULL; 1664 } 1665 } 1666 } 1667 1668 #else /* CONFIG_NUMA */ 1669 1670 static void __meminit build_zonelists(pg_data_t *pgdat) 1671 { 1672 int i, j, k, node, local_node; 1673 1674 local_node = pgdat->node_id; 1675 for (i = 0; i < GFP_ZONETYPES; i++) { 1676 struct zonelist *zonelist; 1677 1678 zonelist = pgdat->node_zonelists + i; 1679 1680 j = 0; 1681 k = highest_zone(i); 1682 j = build_zonelists_node(pgdat, zonelist, j, k); 1683 /* 1684 * Now we build the zonelist so that it contains the zones 1685 * of all the other nodes. 1686 * We don't want to pressure a particular node, so when 1687 * building the zones for node N, we make sure that the 1688 * zones coming right after the local ones are those from 1689 * node N+1 (modulo N) 1690 */ 1691 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 1692 if (!node_online(node)) 1693 continue; 1694 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1695 } 1696 for (node = 0; node < local_node; node++) { 1697 if (!node_online(node)) 1698 continue; 1699 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1700 } 1701 1702 zonelist->zones[j] = NULL; 1703 } 1704 } 1705 1706 #endif /* CONFIG_NUMA */ 1707 1708 /* return values int ....just for stop_machine_run() */ 1709 static int __meminit __build_all_zonelists(void *dummy) 1710 { 1711 int nid; 1712 for_each_online_node(nid) 1713 build_zonelists(NODE_DATA(nid)); 1714 return 0; 1715 } 1716 1717 void __meminit build_all_zonelists(void) 1718 { 1719 if (system_state == SYSTEM_BOOTING) { 1720 __build_all_zonelists(0); 1721 cpuset_init_current_mems_allowed(); 1722 } else { 1723 /* we have to stop all cpus to guaranntee there is no user 1724 of zonelist */ 1725 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS); 1726 /* cpuset refresh routine should be here */ 1727 } 1728 1729 printk("Built %i zonelists\n", num_online_nodes()); 1730 1731 } 1732 1733 /* 1734 * Helper functions to size the waitqueue hash table. 1735 * Essentially these want to choose hash table sizes sufficiently 1736 * large so that collisions trying to wait on pages are rare. 1737 * But in fact, the number of active page waitqueues on typical 1738 * systems is ridiculously low, less than 200. So this is even 1739 * conservative, even though it seems large. 1740 * 1741 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 1742 * waitqueues, i.e. the size of the waitq table given the number of pages. 1743 */ 1744 #define PAGES_PER_WAITQUEUE 256 1745 1746 #ifndef CONFIG_MEMORY_HOTPLUG 1747 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 1748 { 1749 unsigned long size = 1; 1750 1751 pages /= PAGES_PER_WAITQUEUE; 1752 1753 while (size < pages) 1754 size <<= 1; 1755 1756 /* 1757 * Once we have dozens or even hundreds of threads sleeping 1758 * on IO we've got bigger problems than wait queue collision. 1759 * Limit the size of the wait table to a reasonable size. 1760 */ 1761 size = min(size, 4096UL); 1762 1763 return max(size, 4UL); 1764 } 1765 #else 1766 /* 1767 * A zone's size might be changed by hot-add, so it is not possible to determine 1768 * a suitable size for its wait_table. So we use the maximum size now. 1769 * 1770 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 1771 * 1772 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 1773 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 1774 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 1775 * 1776 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 1777 * or more by the traditional way. (See above). It equals: 1778 * 1779 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 1780 * ia64(16K page size) : = ( 8G + 4M)byte. 1781 * powerpc (64K page size) : = (32G +16M)byte. 1782 */ 1783 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 1784 { 1785 return 4096UL; 1786 } 1787 #endif 1788 1789 /* 1790 * This is an integer logarithm so that shifts can be used later 1791 * to extract the more random high bits from the multiplicative 1792 * hash function before the remainder is taken. 1793 */ 1794 static inline unsigned long wait_table_bits(unsigned long size) 1795 { 1796 return ffz(~size); 1797 } 1798 1799 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 1800 1801 static void __init calculate_zone_totalpages(struct pglist_data *pgdat, 1802 unsigned long *zones_size, unsigned long *zholes_size) 1803 { 1804 unsigned long realtotalpages, totalpages = 0; 1805 int i; 1806 1807 for (i = 0; i < MAX_NR_ZONES; i++) 1808 totalpages += zones_size[i]; 1809 pgdat->node_spanned_pages = totalpages; 1810 1811 realtotalpages = totalpages; 1812 if (zholes_size) 1813 for (i = 0; i < MAX_NR_ZONES; i++) 1814 realtotalpages -= zholes_size[i]; 1815 pgdat->node_present_pages = realtotalpages; 1816 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1817 } 1818 1819 1820 /* 1821 * Initially all pages are reserved - free ones are freed 1822 * up by free_all_bootmem() once the early boot process is 1823 * done. Non-atomic initialization, single-pass. 1824 */ 1825 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 1826 unsigned long start_pfn) 1827 { 1828 struct page *page; 1829 unsigned long end_pfn = start_pfn + size; 1830 unsigned long pfn; 1831 1832 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1833 if (!early_pfn_valid(pfn)) 1834 continue; 1835 page = pfn_to_page(pfn); 1836 set_page_links(page, zone, nid, pfn); 1837 init_page_count(page); 1838 reset_page_mapcount(page); 1839 SetPageReserved(page); 1840 INIT_LIST_HEAD(&page->lru); 1841 #ifdef WANT_PAGE_VIRTUAL 1842 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1843 if (!is_highmem_idx(zone)) 1844 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1845 #endif 1846 } 1847 } 1848 1849 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, 1850 unsigned long size) 1851 { 1852 int order; 1853 for (order = 0; order < MAX_ORDER ; order++) { 1854 INIT_LIST_HEAD(&zone->free_area[order].free_list); 1855 zone->free_area[order].nr_free = 0; 1856 } 1857 } 1858 1859 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr) 1860 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, 1861 unsigned long size) 1862 { 1863 unsigned long snum = pfn_to_section_nr(pfn); 1864 unsigned long end = pfn_to_section_nr(pfn + size); 1865 1866 if (FLAGS_HAS_NODE) 1867 zone_table[ZONETABLE_INDEX(nid, zid)] = zone; 1868 else 1869 for (; snum <= end; snum++) 1870 zone_table[ZONETABLE_INDEX(snum, zid)] = zone; 1871 } 1872 1873 #ifndef __HAVE_ARCH_MEMMAP_INIT 1874 #define memmap_init(size, nid, zone, start_pfn) \ 1875 memmap_init_zone((size), (nid), (zone), (start_pfn)) 1876 #endif 1877 1878 static int __cpuinit zone_batchsize(struct zone *zone) 1879 { 1880 int batch; 1881 1882 /* 1883 * The per-cpu-pages pools are set to around 1000th of the 1884 * size of the zone. But no more than 1/2 of a meg. 1885 * 1886 * OK, so we don't know how big the cache is. So guess. 1887 */ 1888 batch = zone->present_pages / 1024; 1889 if (batch * PAGE_SIZE > 512 * 1024) 1890 batch = (512 * 1024) / PAGE_SIZE; 1891 batch /= 4; /* We effectively *= 4 below */ 1892 if (batch < 1) 1893 batch = 1; 1894 1895 /* 1896 * Clamp the batch to a 2^n - 1 value. Having a power 1897 * of 2 value was found to be more likely to have 1898 * suboptimal cache aliasing properties in some cases. 1899 * 1900 * For example if 2 tasks are alternately allocating 1901 * batches of pages, one task can end up with a lot 1902 * of pages of one half of the possible page colors 1903 * and the other with pages of the other colors. 1904 */ 1905 batch = (1 << (fls(batch + batch/2)-1)) - 1; 1906 1907 return batch; 1908 } 1909 1910 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 1911 { 1912 struct per_cpu_pages *pcp; 1913 1914 memset(p, 0, sizeof(*p)); 1915 1916 pcp = &p->pcp[0]; /* hot */ 1917 pcp->count = 0; 1918 pcp->high = 6 * batch; 1919 pcp->batch = max(1UL, 1 * batch); 1920 INIT_LIST_HEAD(&pcp->list); 1921 1922 pcp = &p->pcp[1]; /* cold*/ 1923 pcp->count = 0; 1924 pcp->high = 2 * batch; 1925 pcp->batch = max(1UL, batch/2); 1926 INIT_LIST_HEAD(&pcp->list); 1927 } 1928 1929 /* 1930 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 1931 * to the value high for the pageset p. 1932 */ 1933 1934 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 1935 unsigned long high) 1936 { 1937 struct per_cpu_pages *pcp; 1938 1939 pcp = &p->pcp[0]; /* hot list */ 1940 pcp->high = high; 1941 pcp->batch = max(1UL, high/4); 1942 if ((high/4) > (PAGE_SHIFT * 8)) 1943 pcp->batch = PAGE_SHIFT * 8; 1944 } 1945 1946 1947 #ifdef CONFIG_NUMA 1948 /* 1949 * Boot pageset table. One per cpu which is going to be used for all 1950 * zones and all nodes. The parameters will be set in such a way 1951 * that an item put on a list will immediately be handed over to 1952 * the buddy list. This is safe since pageset manipulation is done 1953 * with interrupts disabled. 1954 * 1955 * Some NUMA counter updates may also be caught by the boot pagesets. 1956 * 1957 * The boot_pagesets must be kept even after bootup is complete for 1958 * unused processors and/or zones. They do play a role for bootstrapping 1959 * hotplugged processors. 1960 * 1961 * zoneinfo_show() and maybe other functions do 1962 * not check if the processor is online before following the pageset pointer. 1963 * Other parts of the kernel may not check if the zone is available. 1964 */ 1965 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 1966 1967 /* 1968 * Dynamically allocate memory for the 1969 * per cpu pageset array in struct zone. 1970 */ 1971 static int __cpuinit process_zones(int cpu) 1972 { 1973 struct zone *zone, *dzone; 1974 1975 for_each_zone(zone) { 1976 1977 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 1978 GFP_KERNEL, cpu_to_node(cpu)); 1979 if (!zone_pcp(zone, cpu)) 1980 goto bad; 1981 1982 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 1983 1984 if (percpu_pagelist_fraction) 1985 setup_pagelist_highmark(zone_pcp(zone, cpu), 1986 (zone->present_pages / percpu_pagelist_fraction)); 1987 } 1988 1989 return 0; 1990 bad: 1991 for_each_zone(dzone) { 1992 if (dzone == zone) 1993 break; 1994 kfree(zone_pcp(dzone, cpu)); 1995 zone_pcp(dzone, cpu) = NULL; 1996 } 1997 return -ENOMEM; 1998 } 1999 2000 static inline void free_zone_pagesets(int cpu) 2001 { 2002 struct zone *zone; 2003 2004 for_each_zone(zone) { 2005 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 2006 2007 zone_pcp(zone, cpu) = NULL; 2008 kfree(pset); 2009 } 2010 } 2011 2012 static int pageset_cpuup_callback(struct notifier_block *nfb, 2013 unsigned long action, 2014 void *hcpu) 2015 { 2016 int cpu = (long)hcpu; 2017 int ret = NOTIFY_OK; 2018 2019 switch (action) { 2020 case CPU_UP_PREPARE: 2021 if (process_zones(cpu)) 2022 ret = NOTIFY_BAD; 2023 break; 2024 case CPU_UP_CANCELED: 2025 case CPU_DEAD: 2026 free_zone_pagesets(cpu); 2027 break; 2028 default: 2029 break; 2030 } 2031 return ret; 2032 } 2033 2034 static struct notifier_block pageset_notifier = 2035 { &pageset_cpuup_callback, NULL, 0 }; 2036 2037 void __init setup_per_cpu_pageset(void) 2038 { 2039 int err; 2040 2041 /* Initialize per_cpu_pageset for cpu 0. 2042 * A cpuup callback will do this for every cpu 2043 * as it comes online 2044 */ 2045 err = process_zones(smp_processor_id()); 2046 BUG_ON(err); 2047 register_cpu_notifier(&pageset_notifier); 2048 } 2049 2050 #endif 2051 2052 static __meminit 2053 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 2054 { 2055 int i; 2056 struct pglist_data *pgdat = zone->zone_pgdat; 2057 size_t alloc_size; 2058 2059 /* 2060 * The per-page waitqueue mechanism uses hashed waitqueues 2061 * per zone. 2062 */ 2063 zone->wait_table_hash_nr_entries = 2064 wait_table_hash_nr_entries(zone_size_pages); 2065 zone->wait_table_bits = 2066 wait_table_bits(zone->wait_table_hash_nr_entries); 2067 alloc_size = zone->wait_table_hash_nr_entries 2068 * sizeof(wait_queue_head_t); 2069 2070 if (system_state == SYSTEM_BOOTING) { 2071 zone->wait_table = (wait_queue_head_t *) 2072 alloc_bootmem_node(pgdat, alloc_size); 2073 } else { 2074 /* 2075 * This case means that a zone whose size was 0 gets new memory 2076 * via memory hot-add. 2077 * But it may be the case that a new node was hot-added. In 2078 * this case vmalloc() will not be able to use this new node's 2079 * memory - this wait_table must be initialized to use this new 2080 * node itself as well. 2081 * To use this new node's memory, further consideration will be 2082 * necessary. 2083 */ 2084 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size); 2085 } 2086 if (!zone->wait_table) 2087 return -ENOMEM; 2088 2089 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 2090 init_waitqueue_head(zone->wait_table + i); 2091 2092 return 0; 2093 } 2094 2095 static __meminit void zone_pcp_init(struct zone *zone) 2096 { 2097 int cpu; 2098 unsigned long batch = zone_batchsize(zone); 2099 2100 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2101 #ifdef CONFIG_NUMA 2102 /* Early boot. Slab allocator not functional yet */ 2103 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2104 setup_pageset(&boot_pageset[cpu],0); 2105 #else 2106 setup_pageset(zone_pcp(zone,cpu), batch); 2107 #endif 2108 } 2109 if (zone->present_pages) 2110 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2111 zone->name, zone->present_pages, batch); 2112 } 2113 2114 __meminit int init_currently_empty_zone(struct zone *zone, 2115 unsigned long zone_start_pfn, 2116 unsigned long size) 2117 { 2118 struct pglist_data *pgdat = zone->zone_pgdat; 2119 int ret; 2120 ret = zone_wait_table_init(zone, size); 2121 if (ret) 2122 return ret; 2123 pgdat->nr_zones = zone_idx(zone) + 1; 2124 2125 zone->zone_start_pfn = zone_start_pfn; 2126 2127 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); 2128 2129 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 2130 2131 return 0; 2132 } 2133 2134 /* 2135 * Set up the zone data structures: 2136 * - mark all pages reserved 2137 * - mark all memory queues empty 2138 * - clear the memory bitmaps 2139 */ 2140 static void __meminit free_area_init_core(struct pglist_data *pgdat, 2141 unsigned long *zones_size, unsigned long *zholes_size) 2142 { 2143 unsigned long j; 2144 int nid = pgdat->node_id; 2145 unsigned long zone_start_pfn = pgdat->node_start_pfn; 2146 int ret; 2147 2148 pgdat_resize_init(pgdat); 2149 pgdat->nr_zones = 0; 2150 init_waitqueue_head(&pgdat->kswapd_wait); 2151 pgdat->kswapd_max_order = 0; 2152 2153 for (j = 0; j < MAX_NR_ZONES; j++) { 2154 struct zone *zone = pgdat->node_zones + j; 2155 unsigned long size, realsize; 2156 2157 realsize = size = zones_size[j]; 2158 if (zholes_size) 2159 realsize -= zholes_size[j]; 2160 2161 if (j < ZONE_HIGHMEM) 2162 nr_kernel_pages += realsize; 2163 nr_all_pages += realsize; 2164 2165 zone->spanned_pages = size; 2166 zone->present_pages = realsize; 2167 zone->name = zone_names[j]; 2168 spin_lock_init(&zone->lock); 2169 spin_lock_init(&zone->lru_lock); 2170 zone_seqlock_init(zone); 2171 zone->zone_pgdat = pgdat; 2172 zone->free_pages = 0; 2173 2174 zone->temp_priority = zone->prev_priority = DEF_PRIORITY; 2175 2176 zone_pcp_init(zone); 2177 INIT_LIST_HEAD(&zone->active_list); 2178 INIT_LIST_HEAD(&zone->inactive_list); 2179 zone->nr_scan_active = 0; 2180 zone->nr_scan_inactive = 0; 2181 zone->nr_active = 0; 2182 zone->nr_inactive = 0; 2183 atomic_set(&zone->reclaim_in_progress, 0); 2184 if (!size) 2185 continue; 2186 2187 zonetable_add(zone, nid, j, zone_start_pfn, size); 2188 ret = init_currently_empty_zone(zone, zone_start_pfn, size); 2189 BUG_ON(ret); 2190 zone_start_pfn += size; 2191 } 2192 } 2193 2194 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 2195 { 2196 /* Skip empty nodes */ 2197 if (!pgdat->node_spanned_pages) 2198 return; 2199 2200 #ifdef CONFIG_FLAT_NODE_MEM_MAP 2201 /* ia64 gets its own node_mem_map, before this, without bootmem */ 2202 if (!pgdat->node_mem_map) { 2203 unsigned long size, start, end; 2204 struct page *map; 2205 2206 /* 2207 * The zone's endpoints aren't required to be MAX_ORDER 2208 * aligned but the node_mem_map endpoints must be in order 2209 * for the buddy allocator to function correctly. 2210 */ 2211 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 2212 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 2213 end = ALIGN(end, MAX_ORDER_NR_PAGES); 2214 size = (end - start) * sizeof(struct page); 2215 map = alloc_remap(pgdat->node_id, size); 2216 if (!map) 2217 map = alloc_bootmem_node(pgdat, size); 2218 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 2219 } 2220 #ifdef CONFIG_FLATMEM 2221 /* 2222 * With no DISCONTIG, the global mem_map is just set as node 0's 2223 */ 2224 if (pgdat == NODE_DATA(0)) 2225 mem_map = NODE_DATA(0)->node_mem_map; 2226 #endif 2227 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 2228 } 2229 2230 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat, 2231 unsigned long *zones_size, unsigned long node_start_pfn, 2232 unsigned long *zholes_size) 2233 { 2234 pgdat->node_id = nid; 2235 pgdat->node_start_pfn = node_start_pfn; 2236 calculate_zone_totalpages(pgdat, zones_size, zholes_size); 2237 2238 alloc_node_mem_map(pgdat); 2239 2240 free_area_init_core(pgdat, zones_size, zholes_size); 2241 } 2242 2243 #ifndef CONFIG_NEED_MULTIPLE_NODES 2244 static bootmem_data_t contig_bootmem_data; 2245 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 2246 2247 EXPORT_SYMBOL(contig_page_data); 2248 #endif 2249 2250 void __init free_area_init(unsigned long *zones_size) 2251 { 2252 free_area_init_node(0, NODE_DATA(0), zones_size, 2253 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 2254 } 2255 2256 #ifdef CONFIG_PROC_FS 2257 2258 #include <linux/seq_file.h> 2259 2260 static void *frag_start(struct seq_file *m, loff_t *pos) 2261 { 2262 pg_data_t *pgdat; 2263 loff_t node = *pos; 2264 for (pgdat = first_online_pgdat(); 2265 pgdat && node; 2266 pgdat = next_online_pgdat(pgdat)) 2267 --node; 2268 2269 return pgdat; 2270 } 2271 2272 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 2273 { 2274 pg_data_t *pgdat = (pg_data_t *)arg; 2275 2276 (*pos)++; 2277 return next_online_pgdat(pgdat); 2278 } 2279 2280 static void frag_stop(struct seq_file *m, void *arg) 2281 { 2282 } 2283 2284 /* 2285 * This walks the free areas for each zone. 2286 */ 2287 static int frag_show(struct seq_file *m, void *arg) 2288 { 2289 pg_data_t *pgdat = (pg_data_t *)arg; 2290 struct zone *zone; 2291 struct zone *node_zones = pgdat->node_zones; 2292 unsigned long flags; 2293 int order; 2294 2295 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2296 if (!populated_zone(zone)) 2297 continue; 2298 2299 spin_lock_irqsave(&zone->lock, flags); 2300 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 2301 for (order = 0; order < MAX_ORDER; ++order) 2302 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 2303 spin_unlock_irqrestore(&zone->lock, flags); 2304 seq_putc(m, '\n'); 2305 } 2306 return 0; 2307 } 2308 2309 struct seq_operations fragmentation_op = { 2310 .start = frag_start, 2311 .next = frag_next, 2312 .stop = frag_stop, 2313 .show = frag_show, 2314 }; 2315 2316 /* 2317 * Output information about zones in @pgdat. 2318 */ 2319 static int zoneinfo_show(struct seq_file *m, void *arg) 2320 { 2321 pg_data_t *pgdat = arg; 2322 struct zone *zone; 2323 struct zone *node_zones = pgdat->node_zones; 2324 unsigned long flags; 2325 2326 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) { 2327 int i; 2328 2329 if (!populated_zone(zone)) 2330 continue; 2331 2332 spin_lock_irqsave(&zone->lock, flags); 2333 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 2334 seq_printf(m, 2335 "\n pages free %lu" 2336 "\n min %lu" 2337 "\n low %lu" 2338 "\n high %lu" 2339 "\n active %lu" 2340 "\n inactive %lu" 2341 "\n scanned %lu (a: %lu i: %lu)" 2342 "\n spanned %lu" 2343 "\n present %lu", 2344 zone->free_pages, 2345 zone->pages_min, 2346 zone->pages_low, 2347 zone->pages_high, 2348 zone->nr_active, 2349 zone->nr_inactive, 2350 zone->pages_scanned, 2351 zone->nr_scan_active, zone->nr_scan_inactive, 2352 zone->spanned_pages, 2353 zone->present_pages); 2354 seq_printf(m, 2355 "\n protection: (%lu", 2356 zone->lowmem_reserve[0]); 2357 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 2358 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 2359 seq_printf(m, 2360 ")" 2361 "\n pagesets"); 2362 for_each_online_cpu(i) { 2363 struct per_cpu_pageset *pageset; 2364 int j; 2365 2366 pageset = zone_pcp(zone, i); 2367 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2368 if (pageset->pcp[j].count) 2369 break; 2370 } 2371 if (j == ARRAY_SIZE(pageset->pcp)) 2372 continue; 2373 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2374 seq_printf(m, 2375 "\n cpu: %i pcp: %i" 2376 "\n count: %i" 2377 "\n high: %i" 2378 "\n batch: %i", 2379 i, j, 2380 pageset->pcp[j].count, 2381 pageset->pcp[j].high, 2382 pageset->pcp[j].batch); 2383 } 2384 #ifdef CONFIG_NUMA 2385 seq_printf(m, 2386 "\n numa_hit: %lu" 2387 "\n numa_miss: %lu" 2388 "\n numa_foreign: %lu" 2389 "\n interleave_hit: %lu" 2390 "\n local_node: %lu" 2391 "\n other_node: %lu", 2392 pageset->numa_hit, 2393 pageset->numa_miss, 2394 pageset->numa_foreign, 2395 pageset->interleave_hit, 2396 pageset->local_node, 2397 pageset->other_node); 2398 #endif 2399 } 2400 seq_printf(m, 2401 "\n all_unreclaimable: %u" 2402 "\n prev_priority: %i" 2403 "\n temp_priority: %i" 2404 "\n start_pfn: %lu", 2405 zone->all_unreclaimable, 2406 zone->prev_priority, 2407 zone->temp_priority, 2408 zone->zone_start_pfn); 2409 spin_unlock_irqrestore(&zone->lock, flags); 2410 seq_putc(m, '\n'); 2411 } 2412 return 0; 2413 } 2414 2415 struct seq_operations zoneinfo_op = { 2416 .start = frag_start, /* iterate over all zones. The same as in 2417 * fragmentation. */ 2418 .next = frag_next, 2419 .stop = frag_stop, 2420 .show = zoneinfo_show, 2421 }; 2422 2423 static char *vmstat_text[] = { 2424 "nr_dirty", 2425 "nr_writeback", 2426 "nr_unstable", 2427 "nr_page_table_pages", 2428 "nr_mapped", 2429 "nr_slab", 2430 2431 "pgpgin", 2432 "pgpgout", 2433 "pswpin", 2434 "pswpout", 2435 2436 "pgalloc_high", 2437 "pgalloc_normal", 2438 "pgalloc_dma32", 2439 "pgalloc_dma", 2440 2441 "pgfree", 2442 "pgactivate", 2443 "pgdeactivate", 2444 2445 "pgfault", 2446 "pgmajfault", 2447 2448 "pgrefill_high", 2449 "pgrefill_normal", 2450 "pgrefill_dma32", 2451 "pgrefill_dma", 2452 2453 "pgsteal_high", 2454 "pgsteal_normal", 2455 "pgsteal_dma32", 2456 "pgsteal_dma", 2457 2458 "pgscan_kswapd_high", 2459 "pgscan_kswapd_normal", 2460 "pgscan_kswapd_dma32", 2461 "pgscan_kswapd_dma", 2462 2463 "pgscan_direct_high", 2464 "pgscan_direct_normal", 2465 "pgscan_direct_dma32", 2466 "pgscan_direct_dma", 2467 2468 "pginodesteal", 2469 "slabs_scanned", 2470 "kswapd_steal", 2471 "kswapd_inodesteal", 2472 "pageoutrun", 2473 "allocstall", 2474 2475 "pgrotated", 2476 "nr_bounce", 2477 }; 2478 2479 static void *vmstat_start(struct seq_file *m, loff_t *pos) 2480 { 2481 struct page_state *ps; 2482 2483 if (*pos >= ARRAY_SIZE(vmstat_text)) 2484 return NULL; 2485 2486 ps = kmalloc(sizeof(*ps), GFP_KERNEL); 2487 m->private = ps; 2488 if (!ps) 2489 return ERR_PTR(-ENOMEM); 2490 get_full_page_state(ps); 2491 ps->pgpgin /= 2; /* sectors -> kbytes */ 2492 ps->pgpgout /= 2; 2493 return (unsigned long *)ps + *pos; 2494 } 2495 2496 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 2497 { 2498 (*pos)++; 2499 if (*pos >= ARRAY_SIZE(vmstat_text)) 2500 return NULL; 2501 return (unsigned long *)m->private + *pos; 2502 } 2503 2504 static int vmstat_show(struct seq_file *m, void *arg) 2505 { 2506 unsigned long *l = arg; 2507 unsigned long off = l - (unsigned long *)m->private; 2508 2509 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 2510 return 0; 2511 } 2512 2513 static void vmstat_stop(struct seq_file *m, void *arg) 2514 { 2515 kfree(m->private); 2516 m->private = NULL; 2517 } 2518 2519 struct seq_operations vmstat_op = { 2520 .start = vmstat_start, 2521 .next = vmstat_next, 2522 .stop = vmstat_stop, 2523 .show = vmstat_show, 2524 }; 2525 2526 #endif /* CONFIG_PROC_FS */ 2527 2528 #ifdef CONFIG_HOTPLUG_CPU 2529 static int page_alloc_cpu_notify(struct notifier_block *self, 2530 unsigned long action, void *hcpu) 2531 { 2532 int cpu = (unsigned long)hcpu; 2533 long *count; 2534 unsigned long *src, *dest; 2535 2536 if (action == CPU_DEAD) { 2537 int i; 2538 2539 /* Drain local pagecache count. */ 2540 count = &per_cpu(nr_pagecache_local, cpu); 2541 atomic_add(*count, &nr_pagecache); 2542 *count = 0; 2543 local_irq_disable(); 2544 __drain_pages(cpu); 2545 2546 /* Add dead cpu's page_states to our own. */ 2547 dest = (unsigned long *)&__get_cpu_var(page_states); 2548 src = (unsigned long *)&per_cpu(page_states, cpu); 2549 2550 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long); 2551 i++) { 2552 dest[i] += src[i]; 2553 src[i] = 0; 2554 } 2555 2556 local_irq_enable(); 2557 } 2558 return NOTIFY_OK; 2559 } 2560 #endif /* CONFIG_HOTPLUG_CPU */ 2561 2562 void __init page_alloc_init(void) 2563 { 2564 hotcpu_notifier(page_alloc_cpu_notify, 0); 2565 } 2566 2567 /* 2568 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 2569 * or min_free_kbytes changes. 2570 */ 2571 static void calculate_totalreserve_pages(void) 2572 { 2573 struct pglist_data *pgdat; 2574 unsigned long reserve_pages = 0; 2575 int i, j; 2576 2577 for_each_online_pgdat(pgdat) { 2578 for (i = 0; i < MAX_NR_ZONES; i++) { 2579 struct zone *zone = pgdat->node_zones + i; 2580 unsigned long max = 0; 2581 2582 /* Find valid and maximum lowmem_reserve in the zone */ 2583 for (j = i; j < MAX_NR_ZONES; j++) { 2584 if (zone->lowmem_reserve[j] > max) 2585 max = zone->lowmem_reserve[j]; 2586 } 2587 2588 /* we treat pages_high as reserved pages. */ 2589 max += zone->pages_high; 2590 2591 if (max > zone->present_pages) 2592 max = zone->present_pages; 2593 reserve_pages += max; 2594 } 2595 } 2596 totalreserve_pages = reserve_pages; 2597 } 2598 2599 /* 2600 * setup_per_zone_lowmem_reserve - called whenever 2601 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 2602 * has a correct pages reserved value, so an adequate number of 2603 * pages are left in the zone after a successful __alloc_pages(). 2604 */ 2605 static void setup_per_zone_lowmem_reserve(void) 2606 { 2607 struct pglist_data *pgdat; 2608 int j, idx; 2609 2610 for_each_online_pgdat(pgdat) { 2611 for (j = 0; j < MAX_NR_ZONES; j++) { 2612 struct zone *zone = pgdat->node_zones + j; 2613 unsigned long present_pages = zone->present_pages; 2614 2615 zone->lowmem_reserve[j] = 0; 2616 2617 for (idx = j-1; idx >= 0; idx--) { 2618 struct zone *lower_zone; 2619 2620 if (sysctl_lowmem_reserve_ratio[idx] < 1) 2621 sysctl_lowmem_reserve_ratio[idx] = 1; 2622 2623 lower_zone = pgdat->node_zones + idx; 2624 lower_zone->lowmem_reserve[j] = present_pages / 2625 sysctl_lowmem_reserve_ratio[idx]; 2626 present_pages += lower_zone->present_pages; 2627 } 2628 } 2629 } 2630 2631 /* update totalreserve_pages */ 2632 calculate_totalreserve_pages(); 2633 } 2634 2635 /* 2636 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures 2637 * that the pages_{min,low,high} values for each zone are set correctly 2638 * with respect to min_free_kbytes. 2639 */ 2640 void setup_per_zone_pages_min(void) 2641 { 2642 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 2643 unsigned long lowmem_pages = 0; 2644 struct zone *zone; 2645 unsigned long flags; 2646 2647 /* Calculate total number of !ZONE_HIGHMEM pages */ 2648 for_each_zone(zone) { 2649 if (!is_highmem(zone)) 2650 lowmem_pages += zone->present_pages; 2651 } 2652 2653 for_each_zone(zone) { 2654 u64 tmp; 2655 2656 spin_lock_irqsave(&zone->lru_lock, flags); 2657 tmp = (u64)pages_min * zone->present_pages; 2658 do_div(tmp, lowmem_pages); 2659 if (is_highmem(zone)) { 2660 /* 2661 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 2662 * need highmem pages, so cap pages_min to a small 2663 * value here. 2664 * 2665 * The (pages_high-pages_low) and (pages_low-pages_min) 2666 * deltas controls asynch page reclaim, and so should 2667 * not be capped for highmem. 2668 */ 2669 int min_pages; 2670 2671 min_pages = zone->present_pages / 1024; 2672 if (min_pages < SWAP_CLUSTER_MAX) 2673 min_pages = SWAP_CLUSTER_MAX; 2674 if (min_pages > 128) 2675 min_pages = 128; 2676 zone->pages_min = min_pages; 2677 } else { 2678 /* 2679 * If it's a lowmem zone, reserve a number of pages 2680 * proportionate to the zone's size. 2681 */ 2682 zone->pages_min = tmp; 2683 } 2684 2685 zone->pages_low = zone->pages_min + (tmp >> 2); 2686 zone->pages_high = zone->pages_min + (tmp >> 1); 2687 spin_unlock_irqrestore(&zone->lru_lock, flags); 2688 } 2689 2690 /* update totalreserve_pages */ 2691 calculate_totalreserve_pages(); 2692 } 2693 2694 /* 2695 * Initialise min_free_kbytes. 2696 * 2697 * For small machines we want it small (128k min). For large machines 2698 * we want it large (64MB max). But it is not linear, because network 2699 * bandwidth does not increase linearly with machine size. We use 2700 * 2701 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 2702 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 2703 * 2704 * which yields 2705 * 2706 * 16MB: 512k 2707 * 32MB: 724k 2708 * 64MB: 1024k 2709 * 128MB: 1448k 2710 * 256MB: 2048k 2711 * 512MB: 2896k 2712 * 1024MB: 4096k 2713 * 2048MB: 5792k 2714 * 4096MB: 8192k 2715 * 8192MB: 11584k 2716 * 16384MB: 16384k 2717 */ 2718 static int __init init_per_zone_pages_min(void) 2719 { 2720 unsigned long lowmem_kbytes; 2721 2722 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 2723 2724 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 2725 if (min_free_kbytes < 128) 2726 min_free_kbytes = 128; 2727 if (min_free_kbytes > 65536) 2728 min_free_kbytes = 65536; 2729 setup_per_zone_pages_min(); 2730 setup_per_zone_lowmem_reserve(); 2731 return 0; 2732 } 2733 module_init(init_per_zone_pages_min) 2734 2735 /* 2736 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 2737 * that we can call two helper functions whenever min_free_kbytes 2738 * changes. 2739 */ 2740 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 2741 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2742 { 2743 proc_dointvec(table, write, file, buffer, length, ppos); 2744 setup_per_zone_pages_min(); 2745 return 0; 2746 } 2747 2748 /* 2749 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 2750 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 2751 * whenever sysctl_lowmem_reserve_ratio changes. 2752 * 2753 * The reserve ratio obviously has absolutely no relation with the 2754 * pages_min watermarks. The lowmem reserve ratio can only make sense 2755 * if in function of the boot time zone sizes. 2756 */ 2757 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 2758 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2759 { 2760 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2761 setup_per_zone_lowmem_reserve(); 2762 return 0; 2763 } 2764 2765 /* 2766 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 2767 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 2768 * can have before it gets flushed back to buddy allocator. 2769 */ 2770 2771 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 2772 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2773 { 2774 struct zone *zone; 2775 unsigned int cpu; 2776 int ret; 2777 2778 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2779 if (!write || (ret == -EINVAL)) 2780 return ret; 2781 for_each_zone(zone) { 2782 for_each_online_cpu(cpu) { 2783 unsigned long high; 2784 high = zone->present_pages / percpu_pagelist_fraction; 2785 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 2786 } 2787 } 2788 return 0; 2789 } 2790 2791 __initdata int hashdist = HASHDIST_DEFAULT; 2792 2793 #ifdef CONFIG_NUMA 2794 static int __init set_hashdist(char *str) 2795 { 2796 if (!str) 2797 return 0; 2798 hashdist = simple_strtoul(str, &str, 0); 2799 return 1; 2800 } 2801 __setup("hashdist=", set_hashdist); 2802 #endif 2803 2804 /* 2805 * allocate a large system hash table from bootmem 2806 * - it is assumed that the hash table must contain an exact power-of-2 2807 * quantity of entries 2808 * - limit is the number of hash buckets, not the total allocation size 2809 */ 2810 void *__init alloc_large_system_hash(const char *tablename, 2811 unsigned long bucketsize, 2812 unsigned long numentries, 2813 int scale, 2814 int flags, 2815 unsigned int *_hash_shift, 2816 unsigned int *_hash_mask, 2817 unsigned long limit) 2818 { 2819 unsigned long long max = limit; 2820 unsigned long log2qty, size; 2821 void *table = NULL; 2822 2823 /* allow the kernel cmdline to have a say */ 2824 if (!numentries) { 2825 /* round applicable memory size up to nearest megabyte */ 2826 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; 2827 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 2828 numentries >>= 20 - PAGE_SHIFT; 2829 numentries <<= 20 - PAGE_SHIFT; 2830 2831 /* limit to 1 bucket per 2^scale bytes of low memory */ 2832 if (scale > PAGE_SHIFT) 2833 numentries >>= (scale - PAGE_SHIFT); 2834 else 2835 numentries <<= (PAGE_SHIFT - scale); 2836 } 2837 numentries = roundup_pow_of_two(numentries); 2838 2839 /* limit allocation size to 1/16 total memory by default */ 2840 if (max == 0) { 2841 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2842 do_div(max, bucketsize); 2843 } 2844 2845 if (numentries > max) 2846 numentries = max; 2847 2848 log2qty = long_log2(numentries); 2849 2850 do { 2851 size = bucketsize << log2qty; 2852 if (flags & HASH_EARLY) 2853 table = alloc_bootmem(size); 2854 else if (hashdist) 2855 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 2856 else { 2857 unsigned long order; 2858 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 2859 ; 2860 table = (void*) __get_free_pages(GFP_ATOMIC, order); 2861 } 2862 } while (!table && size > PAGE_SIZE && --log2qty); 2863 2864 if (!table) 2865 panic("Failed to allocate %s hash table\n", tablename); 2866 2867 printk("%s hash table entries: %d (order: %d, %lu bytes)\n", 2868 tablename, 2869 (1U << log2qty), 2870 long_log2(size) - PAGE_SHIFT, 2871 size); 2872 2873 if (_hash_shift) 2874 *_hash_shift = log2qty; 2875 if (_hash_mask) 2876 *_hash_mask = (1 << log2qty) - 1; 2877 2878 return table; 2879 } 2880 2881 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE 2882 /* 2883 * pfn <-> page translation. out-of-line version. 2884 * (see asm-generic/memory_model.h) 2885 */ 2886 #if defined(CONFIG_FLATMEM) 2887 struct page *pfn_to_page(unsigned long pfn) 2888 { 2889 return mem_map + (pfn - ARCH_PFN_OFFSET); 2890 } 2891 unsigned long page_to_pfn(struct page *page) 2892 { 2893 return (page - mem_map) + ARCH_PFN_OFFSET; 2894 } 2895 #elif defined(CONFIG_DISCONTIGMEM) 2896 struct page *pfn_to_page(unsigned long pfn) 2897 { 2898 int nid = arch_pfn_to_nid(pfn); 2899 return NODE_DATA(nid)->node_mem_map + arch_local_page_offset(pfn,nid); 2900 } 2901 unsigned long page_to_pfn(struct page *page) 2902 { 2903 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 2904 return (page - pgdat->node_mem_map) + pgdat->node_start_pfn; 2905 } 2906 #elif defined(CONFIG_SPARSEMEM) 2907 struct page *pfn_to_page(unsigned long pfn) 2908 { 2909 return __section_mem_map_addr(__pfn_to_section(pfn)) + pfn; 2910 } 2911 2912 unsigned long page_to_pfn(struct page *page) 2913 { 2914 long section_id = page_to_section(page); 2915 return page - __section_mem_map_addr(__nr_to_section(section_id)); 2916 } 2917 #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */ 2918 EXPORT_SYMBOL(pfn_to_page); 2919 EXPORT_SYMBOL(page_to_pfn); 2920 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ 2921