xref: /openbmc/linux/mm/page_alloc.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/nodemask.h>
36 #include <linux/vmalloc.h>
37 
38 #include <asm/tlbflush.h>
39 #include "internal.h"
40 
41 /*
42  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
43  * initializer cleaner
44  */
45 nodemask_t node_online_map = { { [0] = 1UL } };
46 nodemask_t node_possible_map = NODE_MASK_ALL;
47 struct pglist_data *pgdat_list;
48 unsigned long totalram_pages;
49 unsigned long totalhigh_pages;
50 long nr_swap_pages;
51 
52 /*
53  * results with 256, 32 in the lowmem_reserve sysctl:
54  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
55  *	1G machine -> (16M dma, 784M normal, 224M high)
56  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
57  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
58  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
59  */
60 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
61 
62 EXPORT_SYMBOL(totalram_pages);
63 EXPORT_SYMBOL(nr_swap_pages);
64 
65 /*
66  * Used by page_zone() to look up the address of the struct zone whose
67  * id is encoded in the upper bits of page->flags
68  */
69 struct zone *zone_table[1 << (ZONES_SHIFT + NODES_SHIFT)];
70 EXPORT_SYMBOL(zone_table);
71 
72 static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
73 int min_free_kbytes = 1024;
74 
75 unsigned long __initdata nr_kernel_pages;
76 unsigned long __initdata nr_all_pages;
77 
78 /*
79  * Temporary debugging check for pages not lying within a given zone.
80  */
81 static int bad_range(struct zone *zone, struct page *page)
82 {
83 	if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
84 		return 1;
85 	if (page_to_pfn(page) < zone->zone_start_pfn)
86 		return 1;
87 #ifdef CONFIG_HOLES_IN_ZONE
88 	if (!pfn_valid(page_to_pfn(page)))
89 		return 1;
90 #endif
91 	if (zone != page_zone(page))
92 		return 1;
93 	return 0;
94 }
95 
96 static void bad_page(const char *function, struct page *page)
97 {
98 	printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
99 		function, current->comm, page);
100 	printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
101 		(int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
102 		page->mapping, page_mapcount(page), page_count(page));
103 	printk(KERN_EMERG "Backtrace:\n");
104 	dump_stack();
105 	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
106 	page->flags &= ~(1 << PG_private	|
107 			1 << PG_locked	|
108 			1 << PG_lru	|
109 			1 << PG_active	|
110 			1 << PG_dirty	|
111 			1 << PG_swapcache |
112 			1 << PG_writeback);
113 	set_page_count(page, 0);
114 	reset_page_mapcount(page);
115 	page->mapping = NULL;
116 	tainted |= TAINT_BAD_PAGE;
117 }
118 
119 #ifndef CONFIG_HUGETLB_PAGE
120 #define prep_compound_page(page, order) do { } while (0)
121 #define destroy_compound_page(page, order) do { } while (0)
122 #else
123 /*
124  * Higher-order pages are called "compound pages".  They are structured thusly:
125  *
126  * The first PAGE_SIZE page is called the "head page".
127  *
128  * The remaining PAGE_SIZE pages are called "tail pages".
129  *
130  * All pages have PG_compound set.  All pages have their ->private pointing at
131  * the head page (even the head page has this).
132  *
133  * The first tail page's ->mapping, if non-zero, holds the address of the
134  * compound page's put_page() function.
135  *
136  * The order of the allocation is stored in the first tail page's ->index
137  * This is only for debug at present.  This usage means that zero-order pages
138  * may not be compound.
139  */
140 static void prep_compound_page(struct page *page, unsigned long order)
141 {
142 	int i;
143 	int nr_pages = 1 << order;
144 
145 	page[1].mapping = NULL;
146 	page[1].index = order;
147 	for (i = 0; i < nr_pages; i++) {
148 		struct page *p = page + i;
149 
150 		SetPageCompound(p);
151 		p->private = (unsigned long)page;
152 	}
153 }
154 
155 static void destroy_compound_page(struct page *page, unsigned long order)
156 {
157 	int i;
158 	int nr_pages = 1 << order;
159 
160 	if (!PageCompound(page))
161 		return;
162 
163 	if (page[1].index != order)
164 		bad_page(__FUNCTION__, page);
165 
166 	for (i = 0; i < nr_pages; i++) {
167 		struct page *p = page + i;
168 
169 		if (!PageCompound(p))
170 			bad_page(__FUNCTION__, page);
171 		if (p->private != (unsigned long)page)
172 			bad_page(__FUNCTION__, page);
173 		ClearPageCompound(p);
174 	}
175 }
176 #endif		/* CONFIG_HUGETLB_PAGE */
177 
178 /*
179  * function for dealing with page's order in buddy system.
180  * zone->lock is already acquired when we use these.
181  * So, we don't need atomic page->flags operations here.
182  */
183 static inline unsigned long page_order(struct page *page) {
184 	return page->private;
185 }
186 
187 static inline void set_page_order(struct page *page, int order) {
188 	page->private = order;
189 	__SetPagePrivate(page);
190 }
191 
192 static inline void rmv_page_order(struct page *page)
193 {
194 	__ClearPagePrivate(page);
195 	page->private = 0;
196 }
197 
198 /*
199  * Locate the struct page for both the matching buddy in our
200  * pair (buddy1) and the combined O(n+1) page they form (page).
201  *
202  * 1) Any buddy B1 will have an order O twin B2 which satisfies
203  * the following equation:
204  *     B2 = B1 ^ (1 << O)
205  * For example, if the starting buddy (buddy2) is #8 its order
206  * 1 buddy is #10:
207  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
208  *
209  * 2) Any buddy B will have an order O+1 parent P which
210  * satisfies the following equation:
211  *     P = B & ~(1 << O)
212  *
213  * Assumption: *_mem_map is contigious at least up to MAX_ORDER
214  */
215 static inline struct page *
216 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
217 {
218 	unsigned long buddy_idx = page_idx ^ (1 << order);
219 
220 	return page + (buddy_idx - page_idx);
221 }
222 
223 static inline unsigned long
224 __find_combined_index(unsigned long page_idx, unsigned int order)
225 {
226 	return (page_idx & ~(1 << order));
227 }
228 
229 /*
230  * This function checks whether a page is free && is the buddy
231  * we can do coalesce a page and its buddy if
232  * (a) the buddy is free &&
233  * (b) the buddy is on the buddy system &&
234  * (c) a page and its buddy have the same order.
235  * for recording page's order, we use page->private and PG_private.
236  *
237  */
238 static inline int page_is_buddy(struct page *page, int order)
239 {
240        if (PagePrivate(page)           &&
241            (page_order(page) == order) &&
242            !PageReserved(page)         &&
243             page_count(page) == 0)
244                return 1;
245        return 0;
246 }
247 
248 /*
249  * Freeing function for a buddy system allocator.
250  *
251  * The concept of a buddy system is to maintain direct-mapped table
252  * (containing bit values) for memory blocks of various "orders".
253  * The bottom level table contains the map for the smallest allocatable
254  * units of memory (here, pages), and each level above it describes
255  * pairs of units from the levels below, hence, "buddies".
256  * At a high level, all that happens here is marking the table entry
257  * at the bottom level available, and propagating the changes upward
258  * as necessary, plus some accounting needed to play nicely with other
259  * parts of the VM system.
260  * At each level, we keep a list of pages, which are heads of continuous
261  * free pages of length of (1 << order) and marked with PG_Private.Page's
262  * order is recorded in page->private field.
263  * So when we are allocating or freeing one, we can derive the state of the
264  * other.  That is, if we allocate a small block, and both were
265  * free, the remainder of the region must be split into blocks.
266  * If a block is freed, and its buddy is also free, then this
267  * triggers coalescing into a block of larger size.
268  *
269  * -- wli
270  */
271 
272 static inline void __free_pages_bulk (struct page *page,
273 		struct zone *zone, unsigned int order)
274 {
275 	unsigned long page_idx;
276 	int order_size = 1 << order;
277 
278 	if (unlikely(order))
279 		destroy_compound_page(page, order);
280 
281 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
282 
283 	BUG_ON(page_idx & (order_size - 1));
284 	BUG_ON(bad_range(zone, page));
285 
286 	zone->free_pages += order_size;
287 	while (order < MAX_ORDER-1) {
288 		unsigned long combined_idx;
289 		struct free_area *area;
290 		struct page *buddy;
291 
292 		combined_idx = __find_combined_index(page_idx, order);
293 		buddy = __page_find_buddy(page, page_idx, order);
294 
295 		if (bad_range(zone, buddy))
296 			break;
297 		if (!page_is_buddy(buddy, order))
298 			break;		/* Move the buddy up one level. */
299 		list_del(&buddy->lru);
300 		area = zone->free_area + order;
301 		area->nr_free--;
302 		rmv_page_order(buddy);
303 		page = page + (combined_idx - page_idx);
304 		page_idx = combined_idx;
305 		order++;
306 	}
307 	set_page_order(page, order);
308 	list_add(&page->lru, &zone->free_area[order].free_list);
309 	zone->free_area[order].nr_free++;
310 }
311 
312 static inline void free_pages_check(const char *function, struct page *page)
313 {
314 	if (	page_mapcount(page) ||
315 		page->mapping != NULL ||
316 		page_count(page) != 0 ||
317 		(page->flags & (
318 			1 << PG_lru	|
319 			1 << PG_private |
320 			1 << PG_locked	|
321 			1 << PG_active	|
322 			1 << PG_reclaim	|
323 			1 << PG_slab	|
324 			1 << PG_swapcache |
325 			1 << PG_writeback )))
326 		bad_page(function, page);
327 	if (PageDirty(page))
328 		ClearPageDirty(page);
329 }
330 
331 /*
332  * Frees a list of pages.
333  * Assumes all pages on list are in same zone, and of same order.
334  * count is the number of pages to free, or 0 for all on the list.
335  *
336  * If the zone was previously in an "all pages pinned" state then look to
337  * see if this freeing clears that state.
338  *
339  * And clear the zone's pages_scanned counter, to hold off the "all pages are
340  * pinned" detection logic.
341  */
342 static int
343 free_pages_bulk(struct zone *zone, int count,
344 		struct list_head *list, unsigned int order)
345 {
346 	unsigned long flags;
347 	struct page *page = NULL;
348 	int ret = 0;
349 
350 	spin_lock_irqsave(&zone->lock, flags);
351 	zone->all_unreclaimable = 0;
352 	zone->pages_scanned = 0;
353 	while (!list_empty(list) && count--) {
354 		page = list_entry(list->prev, struct page, lru);
355 		/* have to delete it as __free_pages_bulk list manipulates */
356 		list_del(&page->lru);
357 		__free_pages_bulk(page, zone, order);
358 		ret++;
359 	}
360 	spin_unlock_irqrestore(&zone->lock, flags);
361 	return ret;
362 }
363 
364 void __free_pages_ok(struct page *page, unsigned int order)
365 {
366 	LIST_HEAD(list);
367 	int i;
368 
369 	arch_free_page(page, order);
370 
371 	mod_page_state(pgfree, 1 << order);
372 
373 #ifndef CONFIG_MMU
374 	if (order > 0)
375 		for (i = 1 ; i < (1 << order) ; ++i)
376 			__put_page(page + i);
377 #endif
378 
379 	for (i = 0 ; i < (1 << order) ; ++i)
380 		free_pages_check(__FUNCTION__, page + i);
381 	list_add(&page->lru, &list);
382 	kernel_map_pages(page, 1<<order, 0);
383 	free_pages_bulk(page_zone(page), 1, &list, order);
384 }
385 
386 
387 /*
388  * The order of subdivision here is critical for the IO subsystem.
389  * Please do not alter this order without good reasons and regression
390  * testing. Specifically, as large blocks of memory are subdivided,
391  * the order in which smaller blocks are delivered depends on the order
392  * they're subdivided in this function. This is the primary factor
393  * influencing the order in which pages are delivered to the IO
394  * subsystem according to empirical testing, and this is also justified
395  * by considering the behavior of a buddy system containing a single
396  * large block of memory acted on by a series of small allocations.
397  * This behavior is a critical factor in sglist merging's success.
398  *
399  * -- wli
400  */
401 static inline struct page *
402 expand(struct zone *zone, struct page *page,
403  	int low, int high, struct free_area *area)
404 {
405 	unsigned long size = 1 << high;
406 
407 	while (high > low) {
408 		area--;
409 		high--;
410 		size >>= 1;
411 		BUG_ON(bad_range(zone, &page[size]));
412 		list_add(&page[size].lru, &area->free_list);
413 		area->nr_free++;
414 		set_page_order(&page[size], high);
415 	}
416 	return page;
417 }
418 
419 void set_page_refs(struct page *page, int order)
420 {
421 #ifdef CONFIG_MMU
422 	set_page_count(page, 1);
423 #else
424 	int i;
425 
426 	/*
427 	 * We need to reference all the pages for this order, otherwise if
428 	 * anyone accesses one of the pages with (get/put) it will be freed.
429 	 * - eg: access_process_vm()
430 	 */
431 	for (i = 0; i < (1 << order); i++)
432 		set_page_count(page + i, 1);
433 #endif /* CONFIG_MMU */
434 }
435 
436 /*
437  * This page is about to be returned from the page allocator
438  */
439 static void prep_new_page(struct page *page, int order)
440 {
441 	if (page->mapping || page_mapcount(page) ||
442 	    (page->flags & (
443 			1 << PG_private	|
444 			1 << PG_locked	|
445 			1 << PG_lru	|
446 			1 << PG_active	|
447 			1 << PG_dirty	|
448 			1 << PG_reclaim	|
449 			1 << PG_swapcache |
450 			1 << PG_writeback )))
451 		bad_page(__FUNCTION__, page);
452 
453 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
454 			1 << PG_referenced | 1 << PG_arch_1 |
455 			1 << PG_checked | 1 << PG_mappedtodisk);
456 	page->private = 0;
457 	set_page_refs(page, order);
458 	kernel_map_pages(page, 1 << order, 1);
459 }
460 
461 /*
462  * Do the hard work of removing an element from the buddy allocator.
463  * Call me with the zone->lock already held.
464  */
465 static struct page *__rmqueue(struct zone *zone, unsigned int order)
466 {
467 	struct free_area * area;
468 	unsigned int current_order;
469 	struct page *page;
470 
471 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
472 		area = zone->free_area + current_order;
473 		if (list_empty(&area->free_list))
474 			continue;
475 
476 		page = list_entry(area->free_list.next, struct page, lru);
477 		list_del(&page->lru);
478 		rmv_page_order(page);
479 		area->nr_free--;
480 		zone->free_pages -= 1UL << order;
481 		return expand(zone, page, order, current_order, area);
482 	}
483 
484 	return NULL;
485 }
486 
487 /*
488  * Obtain a specified number of elements from the buddy allocator, all under
489  * a single hold of the lock, for efficiency.  Add them to the supplied list.
490  * Returns the number of new pages which were placed at *list.
491  */
492 static int rmqueue_bulk(struct zone *zone, unsigned int order,
493 			unsigned long count, struct list_head *list)
494 {
495 	unsigned long flags;
496 	int i;
497 	int allocated = 0;
498 	struct page *page;
499 
500 	spin_lock_irqsave(&zone->lock, flags);
501 	for (i = 0; i < count; ++i) {
502 		page = __rmqueue(zone, order);
503 		if (page == NULL)
504 			break;
505 		allocated++;
506 		list_add_tail(&page->lru, list);
507 	}
508 	spin_unlock_irqrestore(&zone->lock, flags);
509 	return allocated;
510 }
511 
512 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
513 static void __drain_pages(unsigned int cpu)
514 {
515 	struct zone *zone;
516 	int i;
517 
518 	for_each_zone(zone) {
519 		struct per_cpu_pageset *pset;
520 
521 		pset = &zone->pageset[cpu];
522 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
523 			struct per_cpu_pages *pcp;
524 
525 			pcp = &pset->pcp[i];
526 			pcp->count -= free_pages_bulk(zone, pcp->count,
527 						&pcp->list, 0);
528 		}
529 	}
530 }
531 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
532 
533 #ifdef CONFIG_PM
534 
535 void mark_free_pages(struct zone *zone)
536 {
537 	unsigned long zone_pfn, flags;
538 	int order;
539 	struct list_head *curr;
540 
541 	if (!zone->spanned_pages)
542 		return;
543 
544 	spin_lock_irqsave(&zone->lock, flags);
545 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
546 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
547 
548 	for (order = MAX_ORDER - 1; order >= 0; --order)
549 		list_for_each(curr, &zone->free_area[order].free_list) {
550 			unsigned long start_pfn, i;
551 
552 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
553 
554 			for (i=0; i < (1<<order); i++)
555 				SetPageNosaveFree(pfn_to_page(start_pfn+i));
556 	}
557 	spin_unlock_irqrestore(&zone->lock, flags);
558 }
559 
560 /*
561  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
562  */
563 void drain_local_pages(void)
564 {
565 	unsigned long flags;
566 
567 	local_irq_save(flags);
568 	__drain_pages(smp_processor_id());
569 	local_irq_restore(flags);
570 }
571 #endif /* CONFIG_PM */
572 
573 static void zone_statistics(struct zonelist *zonelist, struct zone *z)
574 {
575 #ifdef CONFIG_NUMA
576 	unsigned long flags;
577 	int cpu;
578 	pg_data_t *pg = z->zone_pgdat;
579 	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
580 	struct per_cpu_pageset *p;
581 
582 	local_irq_save(flags);
583 	cpu = smp_processor_id();
584 	p = &z->pageset[cpu];
585 	if (pg == orig) {
586 		z->pageset[cpu].numa_hit++;
587 	} else {
588 		p->numa_miss++;
589 		zonelist->zones[0]->pageset[cpu].numa_foreign++;
590 	}
591 	if (pg == NODE_DATA(numa_node_id()))
592 		p->local_node++;
593 	else
594 		p->other_node++;
595 	local_irq_restore(flags);
596 #endif
597 }
598 
599 /*
600  * Free a 0-order page
601  */
602 static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
603 static void fastcall free_hot_cold_page(struct page *page, int cold)
604 {
605 	struct zone *zone = page_zone(page);
606 	struct per_cpu_pages *pcp;
607 	unsigned long flags;
608 
609 	arch_free_page(page, 0);
610 
611 	kernel_map_pages(page, 1, 0);
612 	inc_page_state(pgfree);
613 	if (PageAnon(page))
614 		page->mapping = NULL;
615 	free_pages_check(__FUNCTION__, page);
616 	pcp = &zone->pageset[get_cpu()].pcp[cold];
617 	local_irq_save(flags);
618 	if (pcp->count >= pcp->high)
619 		pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
620 	list_add(&page->lru, &pcp->list);
621 	pcp->count++;
622 	local_irq_restore(flags);
623 	put_cpu();
624 }
625 
626 void fastcall free_hot_page(struct page *page)
627 {
628 	free_hot_cold_page(page, 0);
629 }
630 
631 void fastcall free_cold_page(struct page *page)
632 {
633 	free_hot_cold_page(page, 1);
634 }
635 
636 static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags)
637 {
638 	int i;
639 
640 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
641 	for(i = 0; i < (1 << order); i++)
642 		clear_highpage(page + i);
643 }
644 
645 /*
646  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
647  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
648  * or two.
649  */
650 static struct page *
651 buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags)
652 {
653 	unsigned long flags;
654 	struct page *page = NULL;
655 	int cold = !!(gfp_flags & __GFP_COLD);
656 
657 	if (order == 0) {
658 		struct per_cpu_pages *pcp;
659 
660 		pcp = &zone->pageset[get_cpu()].pcp[cold];
661 		local_irq_save(flags);
662 		if (pcp->count <= pcp->low)
663 			pcp->count += rmqueue_bulk(zone, 0,
664 						pcp->batch, &pcp->list);
665 		if (pcp->count) {
666 			page = list_entry(pcp->list.next, struct page, lru);
667 			list_del(&page->lru);
668 			pcp->count--;
669 		}
670 		local_irq_restore(flags);
671 		put_cpu();
672 	}
673 
674 	if (page == NULL) {
675 		spin_lock_irqsave(&zone->lock, flags);
676 		page = __rmqueue(zone, order);
677 		spin_unlock_irqrestore(&zone->lock, flags);
678 	}
679 
680 	if (page != NULL) {
681 		BUG_ON(bad_range(zone, page));
682 		mod_page_state_zone(zone, pgalloc, 1 << order);
683 		prep_new_page(page, order);
684 
685 		if (gfp_flags & __GFP_ZERO)
686 			prep_zero_page(page, order, gfp_flags);
687 
688 		if (order && (gfp_flags & __GFP_COMP))
689 			prep_compound_page(page, order);
690 	}
691 	return page;
692 }
693 
694 /*
695  * Return 1 if free pages are above 'mark'. This takes into account the order
696  * of the allocation.
697  */
698 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
699 		      int classzone_idx, int can_try_harder, int gfp_high)
700 {
701 	/* free_pages my go negative - that's OK */
702 	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
703 	int o;
704 
705 	if (gfp_high)
706 		min -= min / 2;
707 	if (can_try_harder)
708 		min -= min / 4;
709 
710 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
711 		return 0;
712 	for (o = 0; o < order; o++) {
713 		/* At the next order, this order's pages become unavailable */
714 		free_pages -= z->free_area[o].nr_free << o;
715 
716 		/* Require fewer higher order pages to be free */
717 		min >>= 1;
718 
719 		if (free_pages <= min)
720 			return 0;
721 	}
722 	return 1;
723 }
724 
725 /*
726  * This is the 'heart' of the zoned buddy allocator.
727  */
728 struct page * fastcall
729 __alloc_pages(unsigned int __nocast gfp_mask, unsigned int order,
730 		struct zonelist *zonelist)
731 {
732 	const int wait = gfp_mask & __GFP_WAIT;
733 	struct zone **zones, *z;
734 	struct page *page;
735 	struct reclaim_state reclaim_state;
736 	struct task_struct *p = current;
737 	int i;
738 	int classzone_idx;
739 	int do_retry;
740 	int can_try_harder;
741 	int did_some_progress;
742 
743 	might_sleep_if(wait);
744 
745 	/*
746 	 * The caller may dip into page reserves a bit more if the caller
747 	 * cannot run direct reclaim, or is the caller has realtime scheduling
748 	 * policy
749 	 */
750 	can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
751 
752 	zones = zonelist->zones;  /* the list of zones suitable for gfp_mask */
753 
754 	if (unlikely(zones[0] == NULL)) {
755 		/* Should this ever happen?? */
756 		return NULL;
757 	}
758 
759 	classzone_idx = zone_idx(zones[0]);
760 
761  restart:
762 	/* Go through the zonelist once, looking for a zone with enough free */
763 	for (i = 0; (z = zones[i]) != NULL; i++) {
764 
765 		if (!zone_watermark_ok(z, order, z->pages_low,
766 				       classzone_idx, 0, 0))
767 			continue;
768 
769 		if (!cpuset_zone_allowed(z))
770 			continue;
771 
772 		page = buffered_rmqueue(z, order, gfp_mask);
773 		if (page)
774 			goto got_pg;
775 	}
776 
777 	for (i = 0; (z = zones[i]) != NULL; i++)
778 		wakeup_kswapd(z, order);
779 
780 	/*
781 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
782 	 * coming from realtime tasks to go deeper into reserves
783 	 *
784 	 * This is the last chance, in general, before the goto nopage.
785 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
786 	 */
787 	for (i = 0; (z = zones[i]) != NULL; i++) {
788 		if (!zone_watermark_ok(z, order, z->pages_min,
789 				       classzone_idx, can_try_harder,
790 				       gfp_mask & __GFP_HIGH))
791 			continue;
792 
793 		if (wait && !cpuset_zone_allowed(z))
794 			continue;
795 
796 		page = buffered_rmqueue(z, order, gfp_mask);
797 		if (page)
798 			goto got_pg;
799 	}
800 
801 	/* This allocation should allow future memory freeing. */
802 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) && !in_interrupt()) {
803 		/* go through the zonelist yet again, ignoring mins */
804 		for (i = 0; (z = zones[i]) != NULL; i++) {
805 			if (!cpuset_zone_allowed(z))
806 				continue;
807 			page = buffered_rmqueue(z, order, gfp_mask);
808 			if (page)
809 				goto got_pg;
810 		}
811 		goto nopage;
812 	}
813 
814 	/* Atomic allocations - we can't balance anything */
815 	if (!wait)
816 		goto nopage;
817 
818 rebalance:
819 	cond_resched();
820 
821 	/* We now go into synchronous reclaim */
822 	p->flags |= PF_MEMALLOC;
823 	reclaim_state.reclaimed_slab = 0;
824 	p->reclaim_state = &reclaim_state;
825 
826 	did_some_progress = try_to_free_pages(zones, gfp_mask, order);
827 
828 	p->reclaim_state = NULL;
829 	p->flags &= ~PF_MEMALLOC;
830 
831 	cond_resched();
832 
833 	if (likely(did_some_progress)) {
834 		/*
835 		 * Go through the zonelist yet one more time, keep
836 		 * very high watermark here, this is only to catch
837 		 * a parallel oom killing, we must fail if we're still
838 		 * under heavy pressure.
839 		 */
840 		for (i = 0; (z = zones[i]) != NULL; i++) {
841 			if (!zone_watermark_ok(z, order, z->pages_min,
842 					       classzone_idx, can_try_harder,
843 					       gfp_mask & __GFP_HIGH))
844 				continue;
845 
846 			if (!cpuset_zone_allowed(z))
847 				continue;
848 
849 			page = buffered_rmqueue(z, order, gfp_mask);
850 			if (page)
851 				goto got_pg;
852 		}
853 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
854 		/*
855 		 * Go through the zonelist yet one more time, keep
856 		 * very high watermark here, this is only to catch
857 		 * a parallel oom killing, we must fail if we're still
858 		 * under heavy pressure.
859 		 */
860 		for (i = 0; (z = zones[i]) != NULL; i++) {
861 			if (!zone_watermark_ok(z, order, z->pages_high,
862 					       classzone_idx, 0, 0))
863 				continue;
864 
865 			if (!cpuset_zone_allowed(z))
866 				continue;
867 
868 			page = buffered_rmqueue(z, order, gfp_mask);
869 			if (page)
870 				goto got_pg;
871 		}
872 
873 		out_of_memory(gfp_mask);
874 		goto restart;
875 	}
876 
877 	/*
878 	 * Don't let big-order allocations loop unless the caller explicitly
879 	 * requests that.  Wait for some write requests to complete then retry.
880 	 *
881 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
882 	 * <= 3, but that may not be true in other implementations.
883 	 */
884 	do_retry = 0;
885 	if (!(gfp_mask & __GFP_NORETRY)) {
886 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
887 			do_retry = 1;
888 		if (gfp_mask & __GFP_NOFAIL)
889 			do_retry = 1;
890 	}
891 	if (do_retry) {
892 		blk_congestion_wait(WRITE, HZ/50);
893 		goto rebalance;
894 	}
895 
896 nopage:
897 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
898 		printk(KERN_WARNING "%s: page allocation failure."
899 			" order:%d, mode:0x%x\n",
900 			p->comm, order, gfp_mask);
901 		dump_stack();
902 	}
903 	return NULL;
904 got_pg:
905 	zone_statistics(zonelist, z);
906 	return page;
907 }
908 
909 EXPORT_SYMBOL(__alloc_pages);
910 
911 /*
912  * Common helper functions.
913  */
914 fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order)
915 {
916 	struct page * page;
917 	page = alloc_pages(gfp_mask, order);
918 	if (!page)
919 		return 0;
920 	return (unsigned long) page_address(page);
921 }
922 
923 EXPORT_SYMBOL(__get_free_pages);
924 
925 fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask)
926 {
927 	struct page * page;
928 
929 	/*
930 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
931 	 * a highmem page
932 	 */
933 	BUG_ON(gfp_mask & __GFP_HIGHMEM);
934 
935 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
936 	if (page)
937 		return (unsigned long) page_address(page);
938 	return 0;
939 }
940 
941 EXPORT_SYMBOL(get_zeroed_page);
942 
943 void __pagevec_free(struct pagevec *pvec)
944 {
945 	int i = pagevec_count(pvec);
946 
947 	while (--i >= 0)
948 		free_hot_cold_page(pvec->pages[i], pvec->cold);
949 }
950 
951 fastcall void __free_pages(struct page *page, unsigned int order)
952 {
953 	if (!PageReserved(page) && put_page_testzero(page)) {
954 		if (order == 0)
955 			free_hot_page(page);
956 		else
957 			__free_pages_ok(page, order);
958 	}
959 }
960 
961 EXPORT_SYMBOL(__free_pages);
962 
963 fastcall void free_pages(unsigned long addr, unsigned int order)
964 {
965 	if (addr != 0) {
966 		BUG_ON(!virt_addr_valid((void *)addr));
967 		__free_pages(virt_to_page((void *)addr), order);
968 	}
969 }
970 
971 EXPORT_SYMBOL(free_pages);
972 
973 /*
974  * Total amount of free (allocatable) RAM:
975  */
976 unsigned int nr_free_pages(void)
977 {
978 	unsigned int sum = 0;
979 	struct zone *zone;
980 
981 	for_each_zone(zone)
982 		sum += zone->free_pages;
983 
984 	return sum;
985 }
986 
987 EXPORT_SYMBOL(nr_free_pages);
988 
989 #ifdef CONFIG_NUMA
990 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
991 {
992 	unsigned int i, sum = 0;
993 
994 	for (i = 0; i < MAX_NR_ZONES; i++)
995 		sum += pgdat->node_zones[i].free_pages;
996 
997 	return sum;
998 }
999 #endif
1000 
1001 static unsigned int nr_free_zone_pages(int offset)
1002 {
1003 	pg_data_t *pgdat;
1004 	unsigned int sum = 0;
1005 
1006 	for_each_pgdat(pgdat) {
1007 		struct zonelist *zonelist = pgdat->node_zonelists + offset;
1008 		struct zone **zonep = zonelist->zones;
1009 		struct zone *zone;
1010 
1011 		for (zone = *zonep++; zone; zone = *zonep++) {
1012 			unsigned long size = zone->present_pages;
1013 			unsigned long high = zone->pages_high;
1014 			if (size > high)
1015 				sum += size - high;
1016 		}
1017 	}
1018 
1019 	return sum;
1020 }
1021 
1022 /*
1023  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1024  */
1025 unsigned int nr_free_buffer_pages(void)
1026 {
1027 	return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK);
1028 }
1029 
1030 /*
1031  * Amount of free RAM allocatable within all zones
1032  */
1033 unsigned int nr_free_pagecache_pages(void)
1034 {
1035 	return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK);
1036 }
1037 
1038 #ifdef CONFIG_HIGHMEM
1039 unsigned int nr_free_highpages (void)
1040 {
1041 	pg_data_t *pgdat;
1042 	unsigned int pages = 0;
1043 
1044 	for_each_pgdat(pgdat)
1045 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1046 
1047 	return pages;
1048 }
1049 #endif
1050 
1051 #ifdef CONFIG_NUMA
1052 static void show_node(struct zone *zone)
1053 {
1054 	printk("Node %d ", zone->zone_pgdat->node_id);
1055 }
1056 #else
1057 #define show_node(zone)	do { } while (0)
1058 #endif
1059 
1060 /*
1061  * Accumulate the page_state information across all CPUs.
1062  * The result is unavoidably approximate - it can change
1063  * during and after execution of this function.
1064  */
1065 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1066 
1067 atomic_t nr_pagecache = ATOMIC_INIT(0);
1068 EXPORT_SYMBOL(nr_pagecache);
1069 #ifdef CONFIG_SMP
1070 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1071 #endif
1072 
1073 void __get_page_state(struct page_state *ret, int nr)
1074 {
1075 	int cpu = 0;
1076 
1077 	memset(ret, 0, sizeof(*ret));
1078 
1079 	cpu = first_cpu(cpu_online_map);
1080 	while (cpu < NR_CPUS) {
1081 		unsigned long *in, *out, off;
1082 
1083 		in = (unsigned long *)&per_cpu(page_states, cpu);
1084 
1085 		cpu = next_cpu(cpu, cpu_online_map);
1086 
1087 		if (cpu < NR_CPUS)
1088 			prefetch(&per_cpu(page_states, cpu));
1089 
1090 		out = (unsigned long *)ret;
1091 		for (off = 0; off < nr; off++)
1092 			*out++ += *in++;
1093 	}
1094 }
1095 
1096 void get_page_state(struct page_state *ret)
1097 {
1098 	int nr;
1099 
1100 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1101 	nr /= sizeof(unsigned long);
1102 
1103 	__get_page_state(ret, nr + 1);
1104 }
1105 
1106 void get_full_page_state(struct page_state *ret)
1107 {
1108 	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long));
1109 }
1110 
1111 unsigned long __read_page_state(unsigned offset)
1112 {
1113 	unsigned long ret = 0;
1114 	int cpu;
1115 
1116 	for_each_online_cpu(cpu) {
1117 		unsigned long in;
1118 
1119 		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1120 		ret += *((unsigned long *)in);
1121 	}
1122 	return ret;
1123 }
1124 
1125 void __mod_page_state(unsigned offset, unsigned long delta)
1126 {
1127 	unsigned long flags;
1128 	void* ptr;
1129 
1130 	local_irq_save(flags);
1131 	ptr = &__get_cpu_var(page_states);
1132 	*(unsigned long*)(ptr + offset) += delta;
1133 	local_irq_restore(flags);
1134 }
1135 
1136 EXPORT_SYMBOL(__mod_page_state);
1137 
1138 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1139 			unsigned long *free, struct pglist_data *pgdat)
1140 {
1141 	struct zone *zones = pgdat->node_zones;
1142 	int i;
1143 
1144 	*active = 0;
1145 	*inactive = 0;
1146 	*free = 0;
1147 	for (i = 0; i < MAX_NR_ZONES; i++) {
1148 		*active += zones[i].nr_active;
1149 		*inactive += zones[i].nr_inactive;
1150 		*free += zones[i].free_pages;
1151 	}
1152 }
1153 
1154 void get_zone_counts(unsigned long *active,
1155 		unsigned long *inactive, unsigned long *free)
1156 {
1157 	struct pglist_data *pgdat;
1158 
1159 	*active = 0;
1160 	*inactive = 0;
1161 	*free = 0;
1162 	for_each_pgdat(pgdat) {
1163 		unsigned long l, m, n;
1164 		__get_zone_counts(&l, &m, &n, pgdat);
1165 		*active += l;
1166 		*inactive += m;
1167 		*free += n;
1168 	}
1169 }
1170 
1171 void si_meminfo(struct sysinfo *val)
1172 {
1173 	val->totalram = totalram_pages;
1174 	val->sharedram = 0;
1175 	val->freeram = nr_free_pages();
1176 	val->bufferram = nr_blockdev_pages();
1177 #ifdef CONFIG_HIGHMEM
1178 	val->totalhigh = totalhigh_pages;
1179 	val->freehigh = nr_free_highpages();
1180 #else
1181 	val->totalhigh = 0;
1182 	val->freehigh = 0;
1183 #endif
1184 	val->mem_unit = PAGE_SIZE;
1185 }
1186 
1187 EXPORT_SYMBOL(si_meminfo);
1188 
1189 #ifdef CONFIG_NUMA
1190 void si_meminfo_node(struct sysinfo *val, int nid)
1191 {
1192 	pg_data_t *pgdat = NODE_DATA(nid);
1193 
1194 	val->totalram = pgdat->node_present_pages;
1195 	val->freeram = nr_free_pages_pgdat(pgdat);
1196 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1197 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1198 	val->mem_unit = PAGE_SIZE;
1199 }
1200 #endif
1201 
1202 #define K(x) ((x) << (PAGE_SHIFT-10))
1203 
1204 /*
1205  * Show free area list (used inside shift_scroll-lock stuff)
1206  * We also calculate the percentage fragmentation. We do this by counting the
1207  * memory on each free list with the exception of the first item on the list.
1208  */
1209 void show_free_areas(void)
1210 {
1211 	struct page_state ps;
1212 	int cpu, temperature;
1213 	unsigned long active;
1214 	unsigned long inactive;
1215 	unsigned long free;
1216 	struct zone *zone;
1217 
1218 	for_each_zone(zone) {
1219 		show_node(zone);
1220 		printk("%s per-cpu:", zone->name);
1221 
1222 		if (!zone->present_pages) {
1223 			printk(" empty\n");
1224 			continue;
1225 		} else
1226 			printk("\n");
1227 
1228 		for (cpu = 0; cpu < NR_CPUS; ++cpu) {
1229 			struct per_cpu_pageset *pageset;
1230 
1231 			if (!cpu_possible(cpu))
1232 				continue;
1233 
1234 			pageset = zone->pageset + cpu;
1235 
1236 			for (temperature = 0; temperature < 2; temperature++)
1237 				printk("cpu %d %s: low %d, high %d, batch %d\n",
1238 					cpu,
1239 					temperature ? "cold" : "hot",
1240 					pageset->pcp[temperature].low,
1241 					pageset->pcp[temperature].high,
1242 					pageset->pcp[temperature].batch);
1243 		}
1244 	}
1245 
1246 	get_page_state(&ps);
1247 	get_zone_counts(&active, &inactive, &free);
1248 
1249 	printk("\nFree pages: %11ukB (%ukB HighMem)\n",
1250 		K(nr_free_pages()),
1251 		K(nr_free_highpages()));
1252 
1253 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1254 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1255 		active,
1256 		inactive,
1257 		ps.nr_dirty,
1258 		ps.nr_writeback,
1259 		ps.nr_unstable,
1260 		nr_free_pages(),
1261 		ps.nr_slab,
1262 		ps.nr_mapped,
1263 		ps.nr_page_table_pages);
1264 
1265 	for_each_zone(zone) {
1266 		int i;
1267 
1268 		show_node(zone);
1269 		printk("%s"
1270 			" free:%lukB"
1271 			" min:%lukB"
1272 			" low:%lukB"
1273 			" high:%lukB"
1274 			" active:%lukB"
1275 			" inactive:%lukB"
1276 			" present:%lukB"
1277 			" pages_scanned:%lu"
1278 			" all_unreclaimable? %s"
1279 			"\n",
1280 			zone->name,
1281 			K(zone->free_pages),
1282 			K(zone->pages_min),
1283 			K(zone->pages_low),
1284 			K(zone->pages_high),
1285 			K(zone->nr_active),
1286 			K(zone->nr_inactive),
1287 			K(zone->present_pages),
1288 			zone->pages_scanned,
1289 			(zone->all_unreclaimable ? "yes" : "no")
1290 			);
1291 		printk("lowmem_reserve[]:");
1292 		for (i = 0; i < MAX_NR_ZONES; i++)
1293 			printk(" %lu", zone->lowmem_reserve[i]);
1294 		printk("\n");
1295 	}
1296 
1297 	for_each_zone(zone) {
1298  		unsigned long nr, flags, order, total = 0;
1299 
1300 		show_node(zone);
1301 		printk("%s: ", zone->name);
1302 		if (!zone->present_pages) {
1303 			printk("empty\n");
1304 			continue;
1305 		}
1306 
1307 		spin_lock_irqsave(&zone->lock, flags);
1308 		for (order = 0; order < MAX_ORDER; order++) {
1309 			nr = zone->free_area[order].nr_free;
1310 			total += nr << order;
1311 			printk("%lu*%lukB ", nr, K(1UL) << order);
1312 		}
1313 		spin_unlock_irqrestore(&zone->lock, flags);
1314 		printk("= %lukB\n", K(total));
1315 	}
1316 
1317 	show_swap_cache_info();
1318 }
1319 
1320 /*
1321  * Builds allocation fallback zone lists.
1322  */
1323 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1324 {
1325 	switch (k) {
1326 		struct zone *zone;
1327 	default:
1328 		BUG();
1329 	case ZONE_HIGHMEM:
1330 		zone = pgdat->node_zones + ZONE_HIGHMEM;
1331 		if (zone->present_pages) {
1332 #ifndef CONFIG_HIGHMEM
1333 			BUG();
1334 #endif
1335 			zonelist->zones[j++] = zone;
1336 		}
1337 	case ZONE_NORMAL:
1338 		zone = pgdat->node_zones + ZONE_NORMAL;
1339 		if (zone->present_pages)
1340 			zonelist->zones[j++] = zone;
1341 	case ZONE_DMA:
1342 		zone = pgdat->node_zones + ZONE_DMA;
1343 		if (zone->present_pages)
1344 			zonelist->zones[j++] = zone;
1345 	}
1346 
1347 	return j;
1348 }
1349 
1350 #ifdef CONFIG_NUMA
1351 #define MAX_NODE_LOAD (num_online_nodes())
1352 static int __initdata node_load[MAX_NUMNODES];
1353 /**
1354  * find_next_best_node - find the next node that should appear in a given
1355  *    node's fallback list
1356  * @node: node whose fallback list we're appending
1357  * @used_node_mask: nodemask_t of already used nodes
1358  *
1359  * We use a number of factors to determine which is the next node that should
1360  * appear on a given node's fallback list.  The node should not have appeared
1361  * already in @node's fallback list, and it should be the next closest node
1362  * according to the distance array (which contains arbitrary distance values
1363  * from each node to each node in the system), and should also prefer nodes
1364  * with no CPUs, since presumably they'll have very little allocation pressure
1365  * on them otherwise.
1366  * It returns -1 if no node is found.
1367  */
1368 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1369 {
1370 	int i, n, val;
1371 	int min_val = INT_MAX;
1372 	int best_node = -1;
1373 
1374 	for_each_online_node(i) {
1375 		cpumask_t tmp;
1376 
1377 		/* Start from local node */
1378 		n = (node+i) % num_online_nodes();
1379 
1380 		/* Don't want a node to appear more than once */
1381 		if (node_isset(n, *used_node_mask))
1382 			continue;
1383 
1384 		/* Use the local node if we haven't already */
1385 		if (!node_isset(node, *used_node_mask)) {
1386 			best_node = node;
1387 			break;
1388 		}
1389 
1390 		/* Use the distance array to find the distance */
1391 		val = node_distance(node, n);
1392 
1393 		/* Give preference to headless and unused nodes */
1394 		tmp = node_to_cpumask(n);
1395 		if (!cpus_empty(tmp))
1396 			val += PENALTY_FOR_NODE_WITH_CPUS;
1397 
1398 		/* Slight preference for less loaded node */
1399 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1400 		val += node_load[n];
1401 
1402 		if (val < min_val) {
1403 			min_val = val;
1404 			best_node = n;
1405 		}
1406 	}
1407 
1408 	if (best_node >= 0)
1409 		node_set(best_node, *used_node_mask);
1410 
1411 	return best_node;
1412 }
1413 
1414 static void __init build_zonelists(pg_data_t *pgdat)
1415 {
1416 	int i, j, k, node, local_node;
1417 	int prev_node, load;
1418 	struct zonelist *zonelist;
1419 	nodemask_t used_mask;
1420 
1421 	/* initialize zonelists */
1422 	for (i = 0; i < GFP_ZONETYPES; i++) {
1423 		zonelist = pgdat->node_zonelists + i;
1424 		zonelist->zones[0] = NULL;
1425 	}
1426 
1427 	/* NUMA-aware ordering of nodes */
1428 	local_node = pgdat->node_id;
1429 	load = num_online_nodes();
1430 	prev_node = local_node;
1431 	nodes_clear(used_mask);
1432 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1433 		/*
1434 		 * We don't want to pressure a particular node.
1435 		 * So adding penalty to the first node in same
1436 		 * distance group to make it round-robin.
1437 		 */
1438 		if (node_distance(local_node, node) !=
1439 				node_distance(local_node, prev_node))
1440 			node_load[node] += load;
1441 		prev_node = node;
1442 		load--;
1443 		for (i = 0; i < GFP_ZONETYPES; i++) {
1444 			zonelist = pgdat->node_zonelists + i;
1445 			for (j = 0; zonelist->zones[j] != NULL; j++);
1446 
1447 			k = ZONE_NORMAL;
1448 			if (i & __GFP_HIGHMEM)
1449 				k = ZONE_HIGHMEM;
1450 			if (i & __GFP_DMA)
1451 				k = ZONE_DMA;
1452 
1453 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1454 			zonelist->zones[j] = NULL;
1455 		}
1456 	}
1457 }
1458 
1459 #else	/* CONFIG_NUMA */
1460 
1461 static void __init build_zonelists(pg_data_t *pgdat)
1462 {
1463 	int i, j, k, node, local_node;
1464 
1465 	local_node = pgdat->node_id;
1466 	for (i = 0; i < GFP_ZONETYPES; i++) {
1467 		struct zonelist *zonelist;
1468 
1469 		zonelist = pgdat->node_zonelists + i;
1470 
1471 		j = 0;
1472 		k = ZONE_NORMAL;
1473 		if (i & __GFP_HIGHMEM)
1474 			k = ZONE_HIGHMEM;
1475 		if (i & __GFP_DMA)
1476 			k = ZONE_DMA;
1477 
1478  		j = build_zonelists_node(pgdat, zonelist, j, k);
1479  		/*
1480  		 * Now we build the zonelist so that it contains the zones
1481  		 * of all the other nodes.
1482  		 * We don't want to pressure a particular node, so when
1483  		 * building the zones for node N, we make sure that the
1484  		 * zones coming right after the local ones are those from
1485  		 * node N+1 (modulo N)
1486  		 */
1487 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1488 			if (!node_online(node))
1489 				continue;
1490 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1491 		}
1492 		for (node = 0; node < local_node; node++) {
1493 			if (!node_online(node))
1494 				continue;
1495 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1496 		}
1497 
1498 		zonelist->zones[j] = NULL;
1499 	}
1500 }
1501 
1502 #endif	/* CONFIG_NUMA */
1503 
1504 void __init build_all_zonelists(void)
1505 {
1506 	int i;
1507 
1508 	for_each_online_node(i)
1509 		build_zonelists(NODE_DATA(i));
1510 	printk("Built %i zonelists\n", num_online_nodes());
1511 	cpuset_init_current_mems_allowed();
1512 }
1513 
1514 /*
1515  * Helper functions to size the waitqueue hash table.
1516  * Essentially these want to choose hash table sizes sufficiently
1517  * large so that collisions trying to wait on pages are rare.
1518  * But in fact, the number of active page waitqueues on typical
1519  * systems is ridiculously low, less than 200. So this is even
1520  * conservative, even though it seems large.
1521  *
1522  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1523  * waitqueues, i.e. the size of the waitq table given the number of pages.
1524  */
1525 #define PAGES_PER_WAITQUEUE	256
1526 
1527 static inline unsigned long wait_table_size(unsigned long pages)
1528 {
1529 	unsigned long size = 1;
1530 
1531 	pages /= PAGES_PER_WAITQUEUE;
1532 
1533 	while (size < pages)
1534 		size <<= 1;
1535 
1536 	/*
1537 	 * Once we have dozens or even hundreds of threads sleeping
1538 	 * on IO we've got bigger problems than wait queue collision.
1539 	 * Limit the size of the wait table to a reasonable size.
1540 	 */
1541 	size = min(size, 4096UL);
1542 
1543 	return max(size, 4UL);
1544 }
1545 
1546 /*
1547  * This is an integer logarithm so that shifts can be used later
1548  * to extract the more random high bits from the multiplicative
1549  * hash function before the remainder is taken.
1550  */
1551 static inline unsigned long wait_table_bits(unsigned long size)
1552 {
1553 	return ffz(~size);
1554 }
1555 
1556 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1557 
1558 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1559 		unsigned long *zones_size, unsigned long *zholes_size)
1560 {
1561 	unsigned long realtotalpages, totalpages = 0;
1562 	int i;
1563 
1564 	for (i = 0; i < MAX_NR_ZONES; i++)
1565 		totalpages += zones_size[i];
1566 	pgdat->node_spanned_pages = totalpages;
1567 
1568 	realtotalpages = totalpages;
1569 	if (zholes_size)
1570 		for (i = 0; i < MAX_NR_ZONES; i++)
1571 			realtotalpages -= zholes_size[i];
1572 	pgdat->node_present_pages = realtotalpages;
1573 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1574 }
1575 
1576 
1577 /*
1578  * Initially all pages are reserved - free ones are freed
1579  * up by free_all_bootmem() once the early boot process is
1580  * done. Non-atomic initialization, single-pass.
1581  */
1582 void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1583 		unsigned long start_pfn)
1584 {
1585 	struct page *start = pfn_to_page(start_pfn);
1586 	struct page *page;
1587 
1588 	for (page = start; page < (start + size); page++) {
1589 		set_page_zone(page, NODEZONE(nid, zone));
1590 		set_page_count(page, 0);
1591 		reset_page_mapcount(page);
1592 		SetPageReserved(page);
1593 		INIT_LIST_HEAD(&page->lru);
1594 #ifdef WANT_PAGE_VIRTUAL
1595 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1596 		if (!is_highmem_idx(zone))
1597 			set_page_address(page, __va(start_pfn << PAGE_SHIFT));
1598 #endif
1599 		start_pfn++;
1600 	}
1601 }
1602 
1603 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1604 				unsigned long size)
1605 {
1606 	int order;
1607 	for (order = 0; order < MAX_ORDER ; order++) {
1608 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1609 		zone->free_area[order].nr_free = 0;
1610 	}
1611 }
1612 
1613 #ifndef __HAVE_ARCH_MEMMAP_INIT
1614 #define memmap_init(size, nid, zone, start_pfn) \
1615 	memmap_init_zone((size), (nid), (zone), (start_pfn))
1616 #endif
1617 
1618 /*
1619  * Set up the zone data structures:
1620  *   - mark all pages reserved
1621  *   - mark all memory queues empty
1622  *   - clear the memory bitmaps
1623  */
1624 static void __init free_area_init_core(struct pglist_data *pgdat,
1625 		unsigned long *zones_size, unsigned long *zholes_size)
1626 {
1627 	unsigned long i, j;
1628 	const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1);
1629 	int cpu, nid = pgdat->node_id;
1630 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
1631 
1632 	pgdat->nr_zones = 0;
1633 	init_waitqueue_head(&pgdat->kswapd_wait);
1634 	pgdat->kswapd_max_order = 0;
1635 
1636 	for (j = 0; j < MAX_NR_ZONES; j++) {
1637 		struct zone *zone = pgdat->node_zones + j;
1638 		unsigned long size, realsize;
1639 		unsigned long batch;
1640 
1641 		zone_table[NODEZONE(nid, j)] = zone;
1642 		realsize = size = zones_size[j];
1643 		if (zholes_size)
1644 			realsize -= zholes_size[j];
1645 
1646 		if (j == ZONE_DMA || j == ZONE_NORMAL)
1647 			nr_kernel_pages += realsize;
1648 		nr_all_pages += realsize;
1649 
1650 		zone->spanned_pages = size;
1651 		zone->present_pages = realsize;
1652 		zone->name = zone_names[j];
1653 		spin_lock_init(&zone->lock);
1654 		spin_lock_init(&zone->lru_lock);
1655 		zone->zone_pgdat = pgdat;
1656 		zone->free_pages = 0;
1657 
1658 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1659 
1660 		/*
1661 		 * The per-cpu-pages pools are set to around 1000th of the
1662 		 * size of the zone.  But no more than 1/4 of a meg - there's
1663 		 * no point in going beyond the size of L2 cache.
1664 		 *
1665 		 * OK, so we don't know how big the cache is.  So guess.
1666 		 */
1667 		batch = zone->present_pages / 1024;
1668 		if (batch * PAGE_SIZE > 256 * 1024)
1669 			batch = (256 * 1024) / PAGE_SIZE;
1670 		batch /= 4;		/* We effectively *= 4 below */
1671 		if (batch < 1)
1672 			batch = 1;
1673 
1674 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
1675 			struct per_cpu_pages *pcp;
1676 
1677 			pcp = &zone->pageset[cpu].pcp[0];	/* hot */
1678 			pcp->count = 0;
1679 			pcp->low = 2 * batch;
1680 			pcp->high = 6 * batch;
1681 			pcp->batch = 1 * batch;
1682 			INIT_LIST_HEAD(&pcp->list);
1683 
1684 			pcp = &zone->pageset[cpu].pcp[1];	/* cold */
1685 			pcp->count = 0;
1686 			pcp->low = 0;
1687 			pcp->high = 2 * batch;
1688 			pcp->batch = 1 * batch;
1689 			INIT_LIST_HEAD(&pcp->list);
1690 		}
1691 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1692 				zone_names[j], realsize, batch);
1693 		INIT_LIST_HEAD(&zone->active_list);
1694 		INIT_LIST_HEAD(&zone->inactive_list);
1695 		zone->nr_scan_active = 0;
1696 		zone->nr_scan_inactive = 0;
1697 		zone->nr_active = 0;
1698 		zone->nr_inactive = 0;
1699 		if (!size)
1700 			continue;
1701 
1702 		/*
1703 		 * The per-page waitqueue mechanism uses hashed waitqueues
1704 		 * per zone.
1705 		 */
1706 		zone->wait_table_size = wait_table_size(size);
1707 		zone->wait_table_bits =
1708 			wait_table_bits(zone->wait_table_size);
1709 		zone->wait_table = (wait_queue_head_t *)
1710 			alloc_bootmem_node(pgdat, zone->wait_table_size
1711 						* sizeof(wait_queue_head_t));
1712 
1713 		for(i = 0; i < zone->wait_table_size; ++i)
1714 			init_waitqueue_head(zone->wait_table + i);
1715 
1716 		pgdat->nr_zones = j+1;
1717 
1718 		zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1719 		zone->zone_start_pfn = zone_start_pfn;
1720 
1721 		if ((zone_start_pfn) & (zone_required_alignment-1))
1722 			printk(KERN_CRIT "BUG: wrong zone alignment, it will crash\n");
1723 
1724 		memmap_init(size, nid, j, zone_start_pfn);
1725 
1726 		zone_start_pfn += size;
1727 
1728 		zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1729 	}
1730 }
1731 
1732 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1733 {
1734 	unsigned long size;
1735 
1736 	/* Skip empty nodes */
1737 	if (!pgdat->node_spanned_pages)
1738 		return;
1739 
1740 	/* ia64 gets its own node_mem_map, before this, without bootmem */
1741 	if (!pgdat->node_mem_map) {
1742 		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
1743 		pgdat->node_mem_map = alloc_bootmem_node(pgdat, size);
1744 	}
1745 #ifndef CONFIG_DISCONTIGMEM
1746 	/*
1747 	 * With no DISCONTIG, the global mem_map is just set as node 0's
1748 	 */
1749 	if (pgdat == NODE_DATA(0))
1750 		mem_map = NODE_DATA(0)->node_mem_map;
1751 #endif
1752 }
1753 
1754 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
1755 		unsigned long *zones_size, unsigned long node_start_pfn,
1756 		unsigned long *zholes_size)
1757 {
1758 	pgdat->node_id = nid;
1759 	pgdat->node_start_pfn = node_start_pfn;
1760 	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
1761 
1762 	alloc_node_mem_map(pgdat);
1763 
1764 	free_area_init_core(pgdat, zones_size, zholes_size);
1765 }
1766 
1767 #ifndef CONFIG_DISCONTIGMEM
1768 static bootmem_data_t contig_bootmem_data;
1769 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
1770 
1771 EXPORT_SYMBOL(contig_page_data);
1772 
1773 void __init free_area_init(unsigned long *zones_size)
1774 {
1775 	free_area_init_node(0, &contig_page_data, zones_size,
1776 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
1777 }
1778 #endif
1779 
1780 #ifdef CONFIG_PROC_FS
1781 
1782 #include <linux/seq_file.h>
1783 
1784 static void *frag_start(struct seq_file *m, loff_t *pos)
1785 {
1786 	pg_data_t *pgdat;
1787 	loff_t node = *pos;
1788 
1789 	for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
1790 		--node;
1791 
1792 	return pgdat;
1793 }
1794 
1795 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1796 {
1797 	pg_data_t *pgdat = (pg_data_t *)arg;
1798 
1799 	(*pos)++;
1800 	return pgdat->pgdat_next;
1801 }
1802 
1803 static void frag_stop(struct seq_file *m, void *arg)
1804 {
1805 }
1806 
1807 /*
1808  * This walks the free areas for each zone.
1809  */
1810 static int frag_show(struct seq_file *m, void *arg)
1811 {
1812 	pg_data_t *pgdat = (pg_data_t *)arg;
1813 	struct zone *zone;
1814 	struct zone *node_zones = pgdat->node_zones;
1815 	unsigned long flags;
1816 	int order;
1817 
1818 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1819 		if (!zone->present_pages)
1820 			continue;
1821 
1822 		spin_lock_irqsave(&zone->lock, flags);
1823 		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1824 		for (order = 0; order < MAX_ORDER; ++order)
1825 			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1826 		spin_unlock_irqrestore(&zone->lock, flags);
1827 		seq_putc(m, '\n');
1828 	}
1829 	return 0;
1830 }
1831 
1832 struct seq_operations fragmentation_op = {
1833 	.start	= frag_start,
1834 	.next	= frag_next,
1835 	.stop	= frag_stop,
1836 	.show	= frag_show,
1837 };
1838 
1839 static char *vmstat_text[] = {
1840 	"nr_dirty",
1841 	"nr_writeback",
1842 	"nr_unstable",
1843 	"nr_page_table_pages",
1844 	"nr_mapped",
1845 	"nr_slab",
1846 
1847 	"pgpgin",
1848 	"pgpgout",
1849 	"pswpin",
1850 	"pswpout",
1851 	"pgalloc_high",
1852 
1853 	"pgalloc_normal",
1854 	"pgalloc_dma",
1855 	"pgfree",
1856 	"pgactivate",
1857 	"pgdeactivate",
1858 
1859 	"pgfault",
1860 	"pgmajfault",
1861 	"pgrefill_high",
1862 	"pgrefill_normal",
1863 	"pgrefill_dma",
1864 
1865 	"pgsteal_high",
1866 	"pgsteal_normal",
1867 	"pgsteal_dma",
1868 	"pgscan_kswapd_high",
1869 	"pgscan_kswapd_normal",
1870 
1871 	"pgscan_kswapd_dma",
1872 	"pgscan_direct_high",
1873 	"pgscan_direct_normal",
1874 	"pgscan_direct_dma",
1875 	"pginodesteal",
1876 
1877 	"slabs_scanned",
1878 	"kswapd_steal",
1879 	"kswapd_inodesteal",
1880 	"pageoutrun",
1881 	"allocstall",
1882 
1883 	"pgrotated",
1884 };
1885 
1886 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1887 {
1888 	struct page_state *ps;
1889 
1890 	if (*pos >= ARRAY_SIZE(vmstat_text))
1891 		return NULL;
1892 
1893 	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
1894 	m->private = ps;
1895 	if (!ps)
1896 		return ERR_PTR(-ENOMEM);
1897 	get_full_page_state(ps);
1898 	ps->pgpgin /= 2;		/* sectors -> kbytes */
1899 	ps->pgpgout /= 2;
1900 	return (unsigned long *)ps + *pos;
1901 }
1902 
1903 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1904 {
1905 	(*pos)++;
1906 	if (*pos >= ARRAY_SIZE(vmstat_text))
1907 		return NULL;
1908 	return (unsigned long *)m->private + *pos;
1909 }
1910 
1911 static int vmstat_show(struct seq_file *m, void *arg)
1912 {
1913 	unsigned long *l = arg;
1914 	unsigned long off = l - (unsigned long *)m->private;
1915 
1916 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1917 	return 0;
1918 }
1919 
1920 static void vmstat_stop(struct seq_file *m, void *arg)
1921 {
1922 	kfree(m->private);
1923 	m->private = NULL;
1924 }
1925 
1926 struct seq_operations vmstat_op = {
1927 	.start	= vmstat_start,
1928 	.next	= vmstat_next,
1929 	.stop	= vmstat_stop,
1930 	.show	= vmstat_show,
1931 };
1932 
1933 #endif /* CONFIG_PROC_FS */
1934 
1935 #ifdef CONFIG_HOTPLUG_CPU
1936 static int page_alloc_cpu_notify(struct notifier_block *self,
1937 				 unsigned long action, void *hcpu)
1938 {
1939 	int cpu = (unsigned long)hcpu;
1940 	long *count;
1941 	unsigned long *src, *dest;
1942 
1943 	if (action == CPU_DEAD) {
1944 		int i;
1945 
1946 		/* Drain local pagecache count. */
1947 		count = &per_cpu(nr_pagecache_local, cpu);
1948 		atomic_add(*count, &nr_pagecache);
1949 		*count = 0;
1950 		local_irq_disable();
1951 		__drain_pages(cpu);
1952 
1953 		/* Add dead cpu's page_states to our own. */
1954 		dest = (unsigned long *)&__get_cpu_var(page_states);
1955 		src = (unsigned long *)&per_cpu(page_states, cpu);
1956 
1957 		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
1958 				i++) {
1959 			dest[i] += src[i];
1960 			src[i] = 0;
1961 		}
1962 
1963 		local_irq_enable();
1964 	}
1965 	return NOTIFY_OK;
1966 }
1967 #endif /* CONFIG_HOTPLUG_CPU */
1968 
1969 void __init page_alloc_init(void)
1970 {
1971 	hotcpu_notifier(page_alloc_cpu_notify, 0);
1972 }
1973 
1974 /*
1975  * setup_per_zone_lowmem_reserve - called whenever
1976  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
1977  *	has a correct pages reserved value, so an adequate number of
1978  *	pages are left in the zone after a successful __alloc_pages().
1979  */
1980 static void setup_per_zone_lowmem_reserve(void)
1981 {
1982 	struct pglist_data *pgdat;
1983 	int j, idx;
1984 
1985 	for_each_pgdat(pgdat) {
1986 		for (j = 0; j < MAX_NR_ZONES; j++) {
1987 			struct zone *zone = pgdat->node_zones + j;
1988 			unsigned long present_pages = zone->present_pages;
1989 
1990 			zone->lowmem_reserve[j] = 0;
1991 
1992 			for (idx = j-1; idx >= 0; idx--) {
1993 				struct zone *lower_zone;
1994 
1995 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
1996 					sysctl_lowmem_reserve_ratio[idx] = 1;
1997 
1998 				lower_zone = pgdat->node_zones + idx;
1999 				lower_zone->lowmem_reserve[j] = present_pages /
2000 					sysctl_lowmem_reserve_ratio[idx];
2001 				present_pages += lower_zone->present_pages;
2002 			}
2003 		}
2004 	}
2005 }
2006 
2007 /*
2008  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2009  *	that the pages_{min,low,high} values for each zone are set correctly
2010  *	with respect to min_free_kbytes.
2011  */
2012 static void setup_per_zone_pages_min(void)
2013 {
2014 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2015 	unsigned long lowmem_pages = 0;
2016 	struct zone *zone;
2017 	unsigned long flags;
2018 
2019 	/* Calculate total number of !ZONE_HIGHMEM pages */
2020 	for_each_zone(zone) {
2021 		if (!is_highmem(zone))
2022 			lowmem_pages += zone->present_pages;
2023 	}
2024 
2025 	for_each_zone(zone) {
2026 		spin_lock_irqsave(&zone->lru_lock, flags);
2027 		if (is_highmem(zone)) {
2028 			/*
2029 			 * Often, highmem doesn't need to reserve any pages.
2030 			 * But the pages_min/low/high values are also used for
2031 			 * batching up page reclaim activity so we need a
2032 			 * decent value here.
2033 			 */
2034 			int min_pages;
2035 
2036 			min_pages = zone->present_pages / 1024;
2037 			if (min_pages < SWAP_CLUSTER_MAX)
2038 				min_pages = SWAP_CLUSTER_MAX;
2039 			if (min_pages > 128)
2040 				min_pages = 128;
2041 			zone->pages_min = min_pages;
2042 		} else {
2043 			/* if it's a lowmem zone, reserve a number of pages
2044 			 * proportionate to the zone's size.
2045 			 */
2046 			zone->pages_min = (pages_min * zone->present_pages) /
2047 			                   lowmem_pages;
2048 		}
2049 
2050 		/*
2051 		 * When interpreting these watermarks, just keep in mind that:
2052 		 * zone->pages_min == (zone->pages_min * 4) / 4;
2053 		 */
2054 		zone->pages_low   = (zone->pages_min * 5) / 4;
2055 		zone->pages_high  = (zone->pages_min * 6) / 4;
2056 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2057 	}
2058 }
2059 
2060 /*
2061  * Initialise min_free_kbytes.
2062  *
2063  * For small machines we want it small (128k min).  For large machines
2064  * we want it large (64MB max).  But it is not linear, because network
2065  * bandwidth does not increase linearly with machine size.  We use
2066  *
2067  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2068  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2069  *
2070  * which yields
2071  *
2072  * 16MB:	512k
2073  * 32MB:	724k
2074  * 64MB:	1024k
2075  * 128MB:	1448k
2076  * 256MB:	2048k
2077  * 512MB:	2896k
2078  * 1024MB:	4096k
2079  * 2048MB:	5792k
2080  * 4096MB:	8192k
2081  * 8192MB:	11584k
2082  * 16384MB:	16384k
2083  */
2084 static int __init init_per_zone_pages_min(void)
2085 {
2086 	unsigned long lowmem_kbytes;
2087 
2088 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2089 
2090 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2091 	if (min_free_kbytes < 128)
2092 		min_free_kbytes = 128;
2093 	if (min_free_kbytes > 65536)
2094 		min_free_kbytes = 65536;
2095 	setup_per_zone_pages_min();
2096 	setup_per_zone_lowmem_reserve();
2097 	return 0;
2098 }
2099 module_init(init_per_zone_pages_min)
2100 
2101 /*
2102  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2103  *	that we can call two helper functions whenever min_free_kbytes
2104  *	changes.
2105  */
2106 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2107 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2108 {
2109 	proc_dointvec(table, write, file, buffer, length, ppos);
2110 	setup_per_zone_pages_min();
2111 	return 0;
2112 }
2113 
2114 /*
2115  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2116  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2117  *	whenever sysctl_lowmem_reserve_ratio changes.
2118  *
2119  * The reserve ratio obviously has absolutely no relation with the
2120  * pages_min watermarks. The lowmem reserve ratio can only make sense
2121  * if in function of the boot time zone sizes.
2122  */
2123 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2124 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2125 {
2126 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2127 	setup_per_zone_lowmem_reserve();
2128 	return 0;
2129 }
2130 
2131 __initdata int hashdist = HASHDIST_DEFAULT;
2132 
2133 #ifdef CONFIG_NUMA
2134 static int __init set_hashdist(char *str)
2135 {
2136 	if (!str)
2137 		return 0;
2138 	hashdist = simple_strtoul(str, &str, 0);
2139 	return 1;
2140 }
2141 __setup("hashdist=", set_hashdist);
2142 #endif
2143 
2144 /*
2145  * allocate a large system hash table from bootmem
2146  * - it is assumed that the hash table must contain an exact power-of-2
2147  *   quantity of entries
2148  * - limit is the number of hash buckets, not the total allocation size
2149  */
2150 void *__init alloc_large_system_hash(const char *tablename,
2151 				     unsigned long bucketsize,
2152 				     unsigned long numentries,
2153 				     int scale,
2154 				     int flags,
2155 				     unsigned int *_hash_shift,
2156 				     unsigned int *_hash_mask,
2157 				     unsigned long limit)
2158 {
2159 	unsigned long long max = limit;
2160 	unsigned long log2qty, size;
2161 	void *table = NULL;
2162 
2163 	/* allow the kernel cmdline to have a say */
2164 	if (!numentries) {
2165 		/* round applicable memory size up to nearest megabyte */
2166 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2167 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2168 		numentries >>= 20 - PAGE_SHIFT;
2169 		numentries <<= 20 - PAGE_SHIFT;
2170 
2171 		/* limit to 1 bucket per 2^scale bytes of low memory */
2172 		if (scale > PAGE_SHIFT)
2173 			numentries >>= (scale - PAGE_SHIFT);
2174 		else
2175 			numentries <<= (PAGE_SHIFT - scale);
2176 	}
2177 	/* rounded up to nearest power of 2 in size */
2178 	numentries = 1UL << (long_log2(numentries) + 1);
2179 
2180 	/* limit allocation size to 1/16 total memory by default */
2181 	if (max == 0) {
2182 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2183 		do_div(max, bucketsize);
2184 	}
2185 
2186 	if (numentries > max)
2187 		numentries = max;
2188 
2189 	log2qty = long_log2(numentries);
2190 
2191 	do {
2192 		size = bucketsize << log2qty;
2193 		if (flags & HASH_EARLY)
2194 			table = alloc_bootmem(size);
2195 		else if (hashdist)
2196 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2197 		else {
2198 			unsigned long order;
2199 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2200 				;
2201 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2202 		}
2203 	} while (!table && size > PAGE_SIZE && --log2qty);
2204 
2205 	if (!table)
2206 		panic("Failed to allocate %s hash table\n", tablename);
2207 
2208 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2209 	       tablename,
2210 	       (1U << log2qty),
2211 	       long_log2(size) - PAGE_SHIFT,
2212 	       size);
2213 
2214 	if (_hash_shift)
2215 		*_hash_shift = log2qty;
2216 	if (_hash_mask)
2217 		*_hash_mask = (1 << log2qty) - 1;
2218 
2219 	return table;
2220 }
2221