1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/bootmem.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/suspend.h> 27 #include <linux/pagevec.h> 28 #include <linux/blkdev.h> 29 #include <linux/slab.h> 30 #include <linux/notifier.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/memory_hotplug.h> 36 #include <linux/nodemask.h> 37 #include <linux/vmalloc.h> 38 #include <linux/mempolicy.h> 39 #include <linux/stop_machine.h> 40 #include <linux/sort.h> 41 #include <linux/pfn.h> 42 #include <linux/backing-dev.h> 43 44 #include <asm/tlbflush.h> 45 #include <asm/div64.h> 46 #include "internal.h" 47 48 /* 49 * MCD - HACK: Find somewhere to initialize this EARLY, or make this 50 * initializer cleaner 51 */ 52 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; 53 EXPORT_SYMBOL(node_online_map); 54 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; 55 EXPORT_SYMBOL(node_possible_map); 56 unsigned long totalram_pages __read_mostly; 57 unsigned long totalreserve_pages __read_mostly; 58 long nr_swap_pages; 59 int percpu_pagelist_fraction; 60 61 static void __free_pages_ok(struct page *page, unsigned int order); 62 63 /* 64 * results with 256, 32 in the lowmem_reserve sysctl: 65 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 66 * 1G machine -> (16M dma, 784M normal, 224M high) 67 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 68 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 69 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 70 * 71 * TBD: should special case ZONE_DMA32 machines here - in those we normally 72 * don't need any ZONE_NORMAL reservation 73 */ 74 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 75 256, 76 #ifdef CONFIG_ZONE_DMA32 77 256, 78 #endif 79 #ifdef CONFIG_HIGHMEM 80 32 81 #endif 82 }; 83 84 EXPORT_SYMBOL(totalram_pages); 85 86 static char * const zone_names[MAX_NR_ZONES] = { 87 "DMA", 88 #ifdef CONFIG_ZONE_DMA32 89 "DMA32", 90 #endif 91 "Normal", 92 #ifdef CONFIG_HIGHMEM 93 "HighMem" 94 #endif 95 }; 96 97 int min_free_kbytes = 1024; 98 99 unsigned long __meminitdata nr_kernel_pages; 100 unsigned long __meminitdata nr_all_pages; 101 static unsigned long __initdata dma_reserve; 102 103 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 104 /* 105 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct 106 * ranges of memory (RAM) that may be registered with add_active_range(). 107 * Ranges passed to add_active_range() will be merged if possible 108 * so the number of times add_active_range() can be called is 109 * related to the number of nodes and the number of holes 110 */ 111 #ifdef CONFIG_MAX_ACTIVE_REGIONS 112 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 113 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 114 #else 115 #if MAX_NUMNODES >= 32 116 /* If there can be many nodes, allow up to 50 holes per node */ 117 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 118 #else 119 /* By default, allow up to 256 distinct regions */ 120 #define MAX_ACTIVE_REGIONS 256 121 #endif 122 #endif 123 124 struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS]; 125 int __initdata nr_nodemap_entries; 126 unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 127 unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 128 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 129 unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES]; 130 unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES]; 131 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 132 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 133 134 #ifdef CONFIG_DEBUG_VM 135 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 136 { 137 int ret = 0; 138 unsigned seq; 139 unsigned long pfn = page_to_pfn(page); 140 141 do { 142 seq = zone_span_seqbegin(zone); 143 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 144 ret = 1; 145 else if (pfn < zone->zone_start_pfn) 146 ret = 1; 147 } while (zone_span_seqretry(zone, seq)); 148 149 return ret; 150 } 151 152 static int page_is_consistent(struct zone *zone, struct page *page) 153 { 154 #ifdef CONFIG_HOLES_IN_ZONE 155 if (!pfn_valid(page_to_pfn(page))) 156 return 0; 157 #endif 158 if (zone != page_zone(page)) 159 return 0; 160 161 return 1; 162 } 163 /* 164 * Temporary debugging check for pages not lying within a given zone. 165 */ 166 static int bad_range(struct zone *zone, struct page *page) 167 { 168 if (page_outside_zone_boundaries(zone, page)) 169 return 1; 170 if (!page_is_consistent(zone, page)) 171 return 1; 172 173 return 0; 174 } 175 #else 176 static inline int bad_range(struct zone *zone, struct page *page) 177 { 178 return 0; 179 } 180 #endif 181 182 static void bad_page(struct page *page) 183 { 184 printk(KERN_EMERG "Bad page state in process '%s'\n" 185 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" 186 KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 187 KERN_EMERG "Backtrace:\n", 188 current->comm, page, (int)(2*sizeof(unsigned long)), 189 (unsigned long)page->flags, page->mapping, 190 page_mapcount(page), page_count(page)); 191 dump_stack(); 192 page->flags &= ~(1 << PG_lru | 193 1 << PG_private | 194 1 << PG_locked | 195 1 << PG_active | 196 1 << PG_dirty | 197 1 << PG_reclaim | 198 1 << PG_slab | 199 1 << PG_swapcache | 200 1 << PG_writeback | 201 1 << PG_buddy ); 202 set_page_count(page, 0); 203 reset_page_mapcount(page); 204 page->mapping = NULL; 205 add_taint(TAINT_BAD_PAGE); 206 } 207 208 /* 209 * Higher-order pages are called "compound pages". They are structured thusly: 210 * 211 * The first PAGE_SIZE page is called the "head page". 212 * 213 * The remaining PAGE_SIZE pages are called "tail pages". 214 * 215 * All pages have PG_compound set. All pages have their ->private pointing at 216 * the head page (even the head page has this). 217 * 218 * The first tail page's ->lru.next holds the address of the compound page's 219 * put_page() function. Its ->lru.prev holds the order of allocation. 220 * This usage means that zero-order pages may not be compound. 221 */ 222 223 static void free_compound_page(struct page *page) 224 { 225 __free_pages_ok(page, (unsigned long)page[1].lru.prev); 226 } 227 228 static void prep_compound_page(struct page *page, unsigned long order) 229 { 230 int i; 231 int nr_pages = 1 << order; 232 233 set_compound_page_dtor(page, free_compound_page); 234 page[1].lru.prev = (void *)order; 235 for (i = 0; i < nr_pages; i++) { 236 struct page *p = page + i; 237 238 __SetPageCompound(p); 239 set_page_private(p, (unsigned long)page); 240 } 241 } 242 243 static void destroy_compound_page(struct page *page, unsigned long order) 244 { 245 int i; 246 int nr_pages = 1 << order; 247 248 if (unlikely((unsigned long)page[1].lru.prev != order)) 249 bad_page(page); 250 251 for (i = 0; i < nr_pages; i++) { 252 struct page *p = page + i; 253 254 if (unlikely(!PageCompound(p) | 255 (page_private(p) != (unsigned long)page))) 256 bad_page(page); 257 __ClearPageCompound(p); 258 } 259 } 260 261 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 262 { 263 int i; 264 265 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); 266 /* 267 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 268 * and __GFP_HIGHMEM from hard or soft interrupt context. 269 */ 270 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 271 for (i = 0; i < (1 << order); i++) 272 clear_highpage(page + i); 273 } 274 275 /* 276 * function for dealing with page's order in buddy system. 277 * zone->lock is already acquired when we use these. 278 * So, we don't need atomic page->flags operations here. 279 */ 280 static inline unsigned long page_order(struct page *page) 281 { 282 return page_private(page); 283 } 284 285 static inline void set_page_order(struct page *page, int order) 286 { 287 set_page_private(page, order); 288 __SetPageBuddy(page); 289 } 290 291 static inline void rmv_page_order(struct page *page) 292 { 293 __ClearPageBuddy(page); 294 set_page_private(page, 0); 295 } 296 297 /* 298 * Locate the struct page for both the matching buddy in our 299 * pair (buddy1) and the combined O(n+1) page they form (page). 300 * 301 * 1) Any buddy B1 will have an order O twin B2 which satisfies 302 * the following equation: 303 * B2 = B1 ^ (1 << O) 304 * For example, if the starting buddy (buddy2) is #8 its order 305 * 1 buddy is #10: 306 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 307 * 308 * 2) Any buddy B will have an order O+1 parent P which 309 * satisfies the following equation: 310 * P = B & ~(1 << O) 311 * 312 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 313 */ 314 static inline struct page * 315 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 316 { 317 unsigned long buddy_idx = page_idx ^ (1 << order); 318 319 return page + (buddy_idx - page_idx); 320 } 321 322 static inline unsigned long 323 __find_combined_index(unsigned long page_idx, unsigned int order) 324 { 325 return (page_idx & ~(1 << order)); 326 } 327 328 /* 329 * This function checks whether a page is free && is the buddy 330 * we can do coalesce a page and its buddy if 331 * (a) the buddy is not in a hole && 332 * (b) the buddy is in the buddy system && 333 * (c) a page and its buddy have the same order && 334 * (d) a page and its buddy are in the same zone. 335 * 336 * For recording whether a page is in the buddy system, we use PG_buddy. 337 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 338 * 339 * For recording page's order, we use page_private(page). 340 */ 341 static inline int page_is_buddy(struct page *page, struct page *buddy, 342 int order) 343 { 344 #ifdef CONFIG_HOLES_IN_ZONE 345 if (!pfn_valid(page_to_pfn(buddy))) 346 return 0; 347 #endif 348 349 if (page_zone_id(page) != page_zone_id(buddy)) 350 return 0; 351 352 if (PageBuddy(buddy) && page_order(buddy) == order) { 353 BUG_ON(page_count(buddy) != 0); 354 return 1; 355 } 356 return 0; 357 } 358 359 /* 360 * Freeing function for a buddy system allocator. 361 * 362 * The concept of a buddy system is to maintain direct-mapped table 363 * (containing bit values) for memory blocks of various "orders". 364 * The bottom level table contains the map for the smallest allocatable 365 * units of memory (here, pages), and each level above it describes 366 * pairs of units from the levels below, hence, "buddies". 367 * At a high level, all that happens here is marking the table entry 368 * at the bottom level available, and propagating the changes upward 369 * as necessary, plus some accounting needed to play nicely with other 370 * parts of the VM system. 371 * At each level, we keep a list of pages, which are heads of continuous 372 * free pages of length of (1 << order) and marked with PG_buddy. Page's 373 * order is recorded in page_private(page) field. 374 * So when we are allocating or freeing one, we can derive the state of the 375 * other. That is, if we allocate a small block, and both were 376 * free, the remainder of the region must be split into blocks. 377 * If a block is freed, and its buddy is also free, then this 378 * triggers coalescing into a block of larger size. 379 * 380 * -- wli 381 */ 382 383 static inline void __free_one_page(struct page *page, 384 struct zone *zone, unsigned int order) 385 { 386 unsigned long page_idx; 387 int order_size = 1 << order; 388 389 if (unlikely(PageCompound(page))) 390 destroy_compound_page(page, order); 391 392 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 393 394 VM_BUG_ON(page_idx & (order_size - 1)); 395 VM_BUG_ON(bad_range(zone, page)); 396 397 zone->free_pages += order_size; 398 while (order < MAX_ORDER-1) { 399 unsigned long combined_idx; 400 struct free_area *area; 401 struct page *buddy; 402 403 buddy = __page_find_buddy(page, page_idx, order); 404 if (!page_is_buddy(page, buddy, order)) 405 break; /* Move the buddy up one level. */ 406 407 list_del(&buddy->lru); 408 area = zone->free_area + order; 409 area->nr_free--; 410 rmv_page_order(buddy); 411 combined_idx = __find_combined_index(page_idx, order); 412 page = page + (combined_idx - page_idx); 413 page_idx = combined_idx; 414 order++; 415 } 416 set_page_order(page, order); 417 list_add(&page->lru, &zone->free_area[order].free_list); 418 zone->free_area[order].nr_free++; 419 } 420 421 static inline int free_pages_check(struct page *page) 422 { 423 if (unlikely(page_mapcount(page) | 424 (page->mapping != NULL) | 425 (page_count(page) != 0) | 426 (page->flags & ( 427 1 << PG_lru | 428 1 << PG_private | 429 1 << PG_locked | 430 1 << PG_active | 431 1 << PG_reclaim | 432 1 << PG_slab | 433 1 << PG_swapcache | 434 1 << PG_writeback | 435 1 << PG_reserved | 436 1 << PG_buddy )))) 437 bad_page(page); 438 if (PageDirty(page)) 439 __ClearPageDirty(page); 440 /* 441 * For now, we report if PG_reserved was found set, but do not 442 * clear it, and do not free the page. But we shall soon need 443 * to do more, for when the ZERO_PAGE count wraps negative. 444 */ 445 return PageReserved(page); 446 } 447 448 /* 449 * Frees a list of pages. 450 * Assumes all pages on list are in same zone, and of same order. 451 * count is the number of pages to free. 452 * 453 * If the zone was previously in an "all pages pinned" state then look to 454 * see if this freeing clears that state. 455 * 456 * And clear the zone's pages_scanned counter, to hold off the "all pages are 457 * pinned" detection logic. 458 */ 459 static void free_pages_bulk(struct zone *zone, int count, 460 struct list_head *list, int order) 461 { 462 spin_lock(&zone->lock); 463 zone->all_unreclaimable = 0; 464 zone->pages_scanned = 0; 465 while (count--) { 466 struct page *page; 467 468 VM_BUG_ON(list_empty(list)); 469 page = list_entry(list->prev, struct page, lru); 470 /* have to delete it as __free_one_page list manipulates */ 471 list_del(&page->lru); 472 __free_one_page(page, zone, order); 473 } 474 spin_unlock(&zone->lock); 475 } 476 477 static void free_one_page(struct zone *zone, struct page *page, int order) 478 { 479 spin_lock(&zone->lock); 480 zone->all_unreclaimable = 0; 481 zone->pages_scanned = 0; 482 __free_one_page(page, zone, order); 483 spin_unlock(&zone->lock); 484 } 485 486 static void __free_pages_ok(struct page *page, unsigned int order) 487 { 488 unsigned long flags; 489 int i; 490 int reserved = 0; 491 492 for (i = 0 ; i < (1 << order) ; ++i) 493 reserved += free_pages_check(page + i); 494 if (reserved) 495 return; 496 497 if (!PageHighMem(page)) 498 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 499 arch_free_page(page, order); 500 kernel_map_pages(page, 1 << order, 0); 501 502 local_irq_save(flags); 503 __count_vm_events(PGFREE, 1 << order); 504 free_one_page(page_zone(page), page, order); 505 local_irq_restore(flags); 506 } 507 508 /* 509 * permit the bootmem allocator to evade page validation on high-order frees 510 */ 511 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) 512 { 513 if (order == 0) { 514 __ClearPageReserved(page); 515 set_page_count(page, 0); 516 set_page_refcounted(page); 517 __free_page(page); 518 } else { 519 int loop; 520 521 prefetchw(page); 522 for (loop = 0; loop < BITS_PER_LONG; loop++) { 523 struct page *p = &page[loop]; 524 525 if (loop + 1 < BITS_PER_LONG) 526 prefetchw(p + 1); 527 __ClearPageReserved(p); 528 set_page_count(p, 0); 529 } 530 531 set_page_refcounted(page); 532 __free_pages(page, order); 533 } 534 } 535 536 537 /* 538 * The order of subdivision here is critical for the IO subsystem. 539 * Please do not alter this order without good reasons and regression 540 * testing. Specifically, as large blocks of memory are subdivided, 541 * the order in which smaller blocks are delivered depends on the order 542 * they're subdivided in this function. This is the primary factor 543 * influencing the order in which pages are delivered to the IO 544 * subsystem according to empirical testing, and this is also justified 545 * by considering the behavior of a buddy system containing a single 546 * large block of memory acted on by a series of small allocations. 547 * This behavior is a critical factor in sglist merging's success. 548 * 549 * -- wli 550 */ 551 static inline void expand(struct zone *zone, struct page *page, 552 int low, int high, struct free_area *area) 553 { 554 unsigned long size = 1 << high; 555 556 while (high > low) { 557 area--; 558 high--; 559 size >>= 1; 560 VM_BUG_ON(bad_range(zone, &page[size])); 561 list_add(&page[size].lru, &area->free_list); 562 area->nr_free++; 563 set_page_order(&page[size], high); 564 } 565 } 566 567 /* 568 * This page is about to be returned from the page allocator 569 */ 570 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 571 { 572 if (unlikely(page_mapcount(page) | 573 (page->mapping != NULL) | 574 (page_count(page) != 0) | 575 (page->flags & ( 576 1 << PG_lru | 577 1 << PG_private | 578 1 << PG_locked | 579 1 << PG_active | 580 1 << PG_dirty | 581 1 << PG_reclaim | 582 1 << PG_slab | 583 1 << PG_swapcache | 584 1 << PG_writeback | 585 1 << PG_reserved | 586 1 << PG_buddy )))) 587 bad_page(page); 588 589 /* 590 * For now, we report if PG_reserved was found set, but do not 591 * clear it, and do not allocate the page: as a safety net. 592 */ 593 if (PageReserved(page)) 594 return 1; 595 596 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 597 1 << PG_referenced | 1 << PG_arch_1 | 598 1 << PG_checked | 1 << PG_mappedtodisk); 599 set_page_private(page, 0); 600 set_page_refcounted(page); 601 602 arch_alloc_page(page, order); 603 kernel_map_pages(page, 1 << order, 1); 604 605 if (gfp_flags & __GFP_ZERO) 606 prep_zero_page(page, order, gfp_flags); 607 608 if (order && (gfp_flags & __GFP_COMP)) 609 prep_compound_page(page, order); 610 611 return 0; 612 } 613 614 /* 615 * Do the hard work of removing an element from the buddy allocator. 616 * Call me with the zone->lock already held. 617 */ 618 static struct page *__rmqueue(struct zone *zone, unsigned int order) 619 { 620 struct free_area * area; 621 unsigned int current_order; 622 struct page *page; 623 624 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 625 area = zone->free_area + current_order; 626 if (list_empty(&area->free_list)) 627 continue; 628 629 page = list_entry(area->free_list.next, struct page, lru); 630 list_del(&page->lru); 631 rmv_page_order(page); 632 area->nr_free--; 633 zone->free_pages -= 1UL << order; 634 expand(zone, page, order, current_order, area); 635 return page; 636 } 637 638 return NULL; 639 } 640 641 /* 642 * Obtain a specified number of elements from the buddy allocator, all under 643 * a single hold of the lock, for efficiency. Add them to the supplied list. 644 * Returns the number of new pages which were placed at *list. 645 */ 646 static int rmqueue_bulk(struct zone *zone, unsigned int order, 647 unsigned long count, struct list_head *list) 648 { 649 int i; 650 651 spin_lock(&zone->lock); 652 for (i = 0; i < count; ++i) { 653 struct page *page = __rmqueue(zone, order); 654 if (unlikely(page == NULL)) 655 break; 656 list_add_tail(&page->lru, list); 657 } 658 spin_unlock(&zone->lock); 659 return i; 660 } 661 662 #ifdef CONFIG_NUMA 663 /* 664 * Called from the slab reaper to drain pagesets on a particular node that 665 * belongs to the currently executing processor. 666 * Note that this function must be called with the thread pinned to 667 * a single processor. 668 */ 669 void drain_node_pages(int nodeid) 670 { 671 int i; 672 enum zone_type z; 673 unsigned long flags; 674 675 for (z = 0; z < MAX_NR_ZONES; z++) { 676 struct zone *zone = NODE_DATA(nodeid)->node_zones + z; 677 struct per_cpu_pageset *pset; 678 679 if (!populated_zone(zone)) 680 continue; 681 682 pset = zone_pcp(zone, smp_processor_id()); 683 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 684 struct per_cpu_pages *pcp; 685 686 pcp = &pset->pcp[i]; 687 if (pcp->count) { 688 int to_drain; 689 690 local_irq_save(flags); 691 if (pcp->count >= pcp->batch) 692 to_drain = pcp->batch; 693 else 694 to_drain = pcp->count; 695 free_pages_bulk(zone, to_drain, &pcp->list, 0); 696 pcp->count -= to_drain; 697 local_irq_restore(flags); 698 } 699 } 700 } 701 } 702 #endif 703 704 static void __drain_pages(unsigned int cpu) 705 { 706 unsigned long flags; 707 struct zone *zone; 708 int i; 709 710 for_each_zone(zone) { 711 struct per_cpu_pageset *pset; 712 713 pset = zone_pcp(zone, cpu); 714 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 715 struct per_cpu_pages *pcp; 716 717 pcp = &pset->pcp[i]; 718 local_irq_save(flags); 719 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 720 pcp->count = 0; 721 local_irq_restore(flags); 722 } 723 } 724 } 725 726 #ifdef CONFIG_PM 727 728 void mark_free_pages(struct zone *zone) 729 { 730 unsigned long pfn, max_zone_pfn; 731 unsigned long flags; 732 int order; 733 struct list_head *curr; 734 735 if (!zone->spanned_pages) 736 return; 737 738 spin_lock_irqsave(&zone->lock, flags); 739 740 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 741 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 742 if (pfn_valid(pfn)) { 743 struct page *page = pfn_to_page(pfn); 744 745 if (!PageNosave(page)) 746 ClearPageNosaveFree(page); 747 } 748 749 for (order = MAX_ORDER - 1; order >= 0; --order) 750 list_for_each(curr, &zone->free_area[order].free_list) { 751 unsigned long i; 752 753 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 754 for (i = 0; i < (1UL << order); i++) 755 SetPageNosaveFree(pfn_to_page(pfn + i)); 756 } 757 758 spin_unlock_irqrestore(&zone->lock, flags); 759 } 760 761 /* 762 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 763 */ 764 void drain_local_pages(void) 765 { 766 unsigned long flags; 767 768 local_irq_save(flags); 769 __drain_pages(smp_processor_id()); 770 local_irq_restore(flags); 771 } 772 #endif /* CONFIG_PM */ 773 774 /* 775 * Free a 0-order page 776 */ 777 static void fastcall free_hot_cold_page(struct page *page, int cold) 778 { 779 struct zone *zone = page_zone(page); 780 struct per_cpu_pages *pcp; 781 unsigned long flags; 782 783 if (PageAnon(page)) 784 page->mapping = NULL; 785 if (free_pages_check(page)) 786 return; 787 788 if (!PageHighMem(page)) 789 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 790 arch_free_page(page, 0); 791 kernel_map_pages(page, 1, 0); 792 793 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 794 local_irq_save(flags); 795 __count_vm_event(PGFREE); 796 list_add(&page->lru, &pcp->list); 797 pcp->count++; 798 if (pcp->count >= pcp->high) { 799 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 800 pcp->count -= pcp->batch; 801 } 802 local_irq_restore(flags); 803 put_cpu(); 804 } 805 806 void fastcall free_hot_page(struct page *page) 807 { 808 free_hot_cold_page(page, 0); 809 } 810 811 void fastcall free_cold_page(struct page *page) 812 { 813 free_hot_cold_page(page, 1); 814 } 815 816 /* 817 * split_page takes a non-compound higher-order page, and splits it into 818 * n (1<<order) sub-pages: page[0..n] 819 * Each sub-page must be freed individually. 820 * 821 * Note: this is probably too low level an operation for use in drivers. 822 * Please consult with lkml before using this in your driver. 823 */ 824 void split_page(struct page *page, unsigned int order) 825 { 826 int i; 827 828 VM_BUG_ON(PageCompound(page)); 829 VM_BUG_ON(!page_count(page)); 830 for (i = 1; i < (1 << order); i++) 831 set_page_refcounted(page + i); 832 } 833 834 /* 835 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 836 * we cheat by calling it from here, in the order > 0 path. Saves a branch 837 * or two. 838 */ 839 static struct page *buffered_rmqueue(struct zonelist *zonelist, 840 struct zone *zone, int order, gfp_t gfp_flags) 841 { 842 unsigned long flags; 843 struct page *page; 844 int cold = !!(gfp_flags & __GFP_COLD); 845 int cpu; 846 847 again: 848 cpu = get_cpu(); 849 if (likely(order == 0)) { 850 struct per_cpu_pages *pcp; 851 852 pcp = &zone_pcp(zone, cpu)->pcp[cold]; 853 local_irq_save(flags); 854 if (!pcp->count) { 855 pcp->count = rmqueue_bulk(zone, 0, 856 pcp->batch, &pcp->list); 857 if (unlikely(!pcp->count)) 858 goto failed; 859 } 860 page = list_entry(pcp->list.next, struct page, lru); 861 list_del(&page->lru); 862 pcp->count--; 863 } else { 864 spin_lock_irqsave(&zone->lock, flags); 865 page = __rmqueue(zone, order); 866 spin_unlock(&zone->lock); 867 if (!page) 868 goto failed; 869 } 870 871 __count_zone_vm_events(PGALLOC, zone, 1 << order); 872 zone_statistics(zonelist, zone); 873 local_irq_restore(flags); 874 put_cpu(); 875 876 VM_BUG_ON(bad_range(zone, page)); 877 if (prep_new_page(page, order, gfp_flags)) 878 goto again; 879 return page; 880 881 failed: 882 local_irq_restore(flags); 883 put_cpu(); 884 return NULL; 885 } 886 887 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 888 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 889 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 890 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 891 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 892 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 893 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 894 895 /* 896 * Return 1 if free pages are above 'mark'. This takes into account the order 897 * of the allocation. 898 */ 899 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 900 int classzone_idx, int alloc_flags) 901 { 902 /* free_pages my go negative - that's OK */ 903 unsigned long min = mark; 904 long free_pages = z->free_pages - (1 << order) + 1; 905 int o; 906 907 if (alloc_flags & ALLOC_HIGH) 908 min -= min / 2; 909 if (alloc_flags & ALLOC_HARDER) 910 min -= min / 4; 911 912 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 913 return 0; 914 for (o = 0; o < order; o++) { 915 /* At the next order, this order's pages become unavailable */ 916 free_pages -= z->free_area[o].nr_free << o; 917 918 /* Require fewer higher order pages to be free */ 919 min >>= 1; 920 921 if (free_pages <= min) 922 return 0; 923 } 924 return 1; 925 } 926 927 #ifdef CONFIG_NUMA 928 /* 929 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 930 * skip over zones that are not allowed by the cpuset, or that have 931 * been recently (in last second) found to be nearly full. See further 932 * comments in mmzone.h. Reduces cache footprint of zonelist scans 933 * that have to skip over alot of full or unallowed zones. 934 * 935 * If the zonelist cache is present in the passed in zonelist, then 936 * returns a pointer to the allowed node mask (either the current 937 * tasks mems_allowed, or node_online_map.) 938 * 939 * If the zonelist cache is not available for this zonelist, does 940 * nothing and returns NULL. 941 * 942 * If the fullzones BITMAP in the zonelist cache is stale (more than 943 * a second since last zap'd) then we zap it out (clear its bits.) 944 * 945 * We hold off even calling zlc_setup, until after we've checked the 946 * first zone in the zonelist, on the theory that most allocations will 947 * be satisfied from that first zone, so best to examine that zone as 948 * quickly as we can. 949 */ 950 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 951 { 952 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 953 nodemask_t *allowednodes; /* zonelist_cache approximation */ 954 955 zlc = zonelist->zlcache_ptr; 956 if (!zlc) 957 return NULL; 958 959 if (jiffies - zlc->last_full_zap > 1 * HZ) { 960 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 961 zlc->last_full_zap = jiffies; 962 } 963 964 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 965 &cpuset_current_mems_allowed : 966 &node_online_map; 967 return allowednodes; 968 } 969 970 /* 971 * Given 'z' scanning a zonelist, run a couple of quick checks to see 972 * if it is worth looking at further for free memory: 973 * 1) Check that the zone isn't thought to be full (doesn't have its 974 * bit set in the zonelist_cache fullzones BITMAP). 975 * 2) Check that the zones node (obtained from the zonelist_cache 976 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 977 * Return true (non-zero) if zone is worth looking at further, or 978 * else return false (zero) if it is not. 979 * 980 * This check -ignores- the distinction between various watermarks, 981 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 982 * found to be full for any variation of these watermarks, it will 983 * be considered full for up to one second by all requests, unless 984 * we are so low on memory on all allowed nodes that we are forced 985 * into the second scan of the zonelist. 986 * 987 * In the second scan we ignore this zonelist cache and exactly 988 * apply the watermarks to all zones, even it is slower to do so. 989 * We are low on memory in the second scan, and should leave no stone 990 * unturned looking for a free page. 991 */ 992 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z, 993 nodemask_t *allowednodes) 994 { 995 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 996 int i; /* index of *z in zonelist zones */ 997 int n; /* node that zone *z is on */ 998 999 zlc = zonelist->zlcache_ptr; 1000 if (!zlc) 1001 return 1; 1002 1003 i = z - zonelist->zones; 1004 n = zlc->z_to_n[i]; 1005 1006 /* This zone is worth trying if it is allowed but not full */ 1007 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1008 } 1009 1010 /* 1011 * Given 'z' scanning a zonelist, set the corresponding bit in 1012 * zlc->fullzones, so that subsequent attempts to allocate a page 1013 * from that zone don't waste time re-examining it. 1014 */ 1015 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z) 1016 { 1017 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1018 int i; /* index of *z in zonelist zones */ 1019 1020 zlc = zonelist->zlcache_ptr; 1021 if (!zlc) 1022 return; 1023 1024 i = z - zonelist->zones; 1025 1026 set_bit(i, zlc->fullzones); 1027 } 1028 1029 #else /* CONFIG_NUMA */ 1030 1031 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1032 { 1033 return NULL; 1034 } 1035 1036 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z, 1037 nodemask_t *allowednodes) 1038 { 1039 return 1; 1040 } 1041 1042 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z) 1043 { 1044 } 1045 #endif /* CONFIG_NUMA */ 1046 1047 /* 1048 * get_page_from_freelist goes through the zonelist trying to allocate 1049 * a page. 1050 */ 1051 static struct page * 1052 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, 1053 struct zonelist *zonelist, int alloc_flags) 1054 { 1055 struct zone **z; 1056 struct page *page = NULL; 1057 int classzone_idx = zone_idx(zonelist->zones[0]); 1058 struct zone *zone; 1059 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1060 int zlc_active = 0; /* set if using zonelist_cache */ 1061 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1062 1063 zonelist_scan: 1064 /* 1065 * Scan zonelist, looking for a zone with enough free. 1066 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1067 */ 1068 z = zonelist->zones; 1069 1070 do { 1071 if (NUMA_BUILD && zlc_active && 1072 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1073 continue; 1074 zone = *z; 1075 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) && 1076 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat)) 1077 break; 1078 if ((alloc_flags & ALLOC_CPUSET) && 1079 !cpuset_zone_allowed(zone, gfp_mask)) 1080 goto try_next_zone; 1081 1082 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1083 unsigned long mark; 1084 if (alloc_flags & ALLOC_WMARK_MIN) 1085 mark = zone->pages_min; 1086 else if (alloc_flags & ALLOC_WMARK_LOW) 1087 mark = zone->pages_low; 1088 else 1089 mark = zone->pages_high; 1090 if (!zone_watermark_ok(zone, order, mark, 1091 classzone_idx, alloc_flags)) { 1092 if (!zone_reclaim_mode || 1093 !zone_reclaim(zone, gfp_mask, order)) 1094 goto this_zone_full; 1095 } 1096 } 1097 1098 page = buffered_rmqueue(zonelist, zone, order, gfp_mask); 1099 if (page) 1100 break; 1101 this_zone_full: 1102 if (NUMA_BUILD) 1103 zlc_mark_zone_full(zonelist, z); 1104 try_next_zone: 1105 if (NUMA_BUILD && !did_zlc_setup) { 1106 /* we do zlc_setup after the first zone is tried */ 1107 allowednodes = zlc_setup(zonelist, alloc_flags); 1108 zlc_active = 1; 1109 did_zlc_setup = 1; 1110 } 1111 } while (*(++z) != NULL); 1112 1113 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1114 /* Disable zlc cache for second zonelist scan */ 1115 zlc_active = 0; 1116 goto zonelist_scan; 1117 } 1118 return page; 1119 } 1120 1121 /* 1122 * This is the 'heart' of the zoned buddy allocator. 1123 */ 1124 struct page * fastcall 1125 __alloc_pages(gfp_t gfp_mask, unsigned int order, 1126 struct zonelist *zonelist) 1127 { 1128 const gfp_t wait = gfp_mask & __GFP_WAIT; 1129 struct zone **z; 1130 struct page *page; 1131 struct reclaim_state reclaim_state; 1132 struct task_struct *p = current; 1133 int do_retry; 1134 int alloc_flags; 1135 int did_some_progress; 1136 1137 might_sleep_if(wait); 1138 1139 restart: 1140 z = zonelist->zones; /* the list of zones suitable for gfp_mask */ 1141 1142 if (unlikely(*z == NULL)) { 1143 /* Should this ever happen?? */ 1144 return NULL; 1145 } 1146 1147 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1148 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); 1149 if (page) 1150 goto got_pg; 1151 1152 /* 1153 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1154 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1155 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1156 * using a larger set of nodes after it has established that the 1157 * allowed per node queues are empty and that nodes are 1158 * over allocated. 1159 */ 1160 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1161 goto nopage; 1162 1163 for (z = zonelist->zones; *z; z++) 1164 wakeup_kswapd(*z, order); 1165 1166 /* 1167 * OK, we're below the kswapd watermark and have kicked background 1168 * reclaim. Now things get more complex, so set up alloc_flags according 1169 * to how we want to proceed. 1170 * 1171 * The caller may dip into page reserves a bit more if the caller 1172 * cannot run direct reclaim, or if the caller has realtime scheduling 1173 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1174 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1175 */ 1176 alloc_flags = ALLOC_WMARK_MIN; 1177 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 1178 alloc_flags |= ALLOC_HARDER; 1179 if (gfp_mask & __GFP_HIGH) 1180 alloc_flags |= ALLOC_HIGH; 1181 if (wait) 1182 alloc_flags |= ALLOC_CPUSET; 1183 1184 /* 1185 * Go through the zonelist again. Let __GFP_HIGH and allocations 1186 * coming from realtime tasks go deeper into reserves. 1187 * 1188 * This is the last chance, in general, before the goto nopage. 1189 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1190 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1191 */ 1192 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); 1193 if (page) 1194 goto got_pg; 1195 1196 /* This allocation should allow future memory freeing. */ 1197 1198 rebalance: 1199 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 1200 && !in_interrupt()) { 1201 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 1202 nofail_alloc: 1203 /* go through the zonelist yet again, ignoring mins */ 1204 page = get_page_from_freelist(gfp_mask, order, 1205 zonelist, ALLOC_NO_WATERMARKS); 1206 if (page) 1207 goto got_pg; 1208 if (gfp_mask & __GFP_NOFAIL) { 1209 congestion_wait(WRITE, HZ/50); 1210 goto nofail_alloc; 1211 } 1212 } 1213 goto nopage; 1214 } 1215 1216 /* Atomic allocations - we can't balance anything */ 1217 if (!wait) 1218 goto nopage; 1219 1220 cond_resched(); 1221 1222 /* We now go into synchronous reclaim */ 1223 cpuset_memory_pressure_bump(); 1224 p->flags |= PF_MEMALLOC; 1225 reclaim_state.reclaimed_slab = 0; 1226 p->reclaim_state = &reclaim_state; 1227 1228 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask); 1229 1230 p->reclaim_state = NULL; 1231 p->flags &= ~PF_MEMALLOC; 1232 1233 cond_resched(); 1234 1235 if (likely(did_some_progress)) { 1236 page = get_page_from_freelist(gfp_mask, order, 1237 zonelist, alloc_flags); 1238 if (page) 1239 goto got_pg; 1240 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1241 /* 1242 * Go through the zonelist yet one more time, keep 1243 * very high watermark here, this is only to catch 1244 * a parallel oom killing, we must fail if we're still 1245 * under heavy pressure. 1246 */ 1247 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1248 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1249 if (page) 1250 goto got_pg; 1251 1252 out_of_memory(zonelist, gfp_mask, order); 1253 goto restart; 1254 } 1255 1256 /* 1257 * Don't let big-order allocations loop unless the caller explicitly 1258 * requests that. Wait for some write requests to complete then retry. 1259 * 1260 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 1261 * <= 3, but that may not be true in other implementations. 1262 */ 1263 do_retry = 0; 1264 if (!(gfp_mask & __GFP_NORETRY)) { 1265 if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) 1266 do_retry = 1; 1267 if (gfp_mask & __GFP_NOFAIL) 1268 do_retry = 1; 1269 } 1270 if (do_retry) { 1271 congestion_wait(WRITE, HZ/50); 1272 goto rebalance; 1273 } 1274 1275 nopage: 1276 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1277 printk(KERN_WARNING "%s: page allocation failure." 1278 " order:%d, mode:0x%x\n", 1279 p->comm, order, gfp_mask); 1280 dump_stack(); 1281 show_mem(); 1282 } 1283 got_pg: 1284 return page; 1285 } 1286 1287 EXPORT_SYMBOL(__alloc_pages); 1288 1289 /* 1290 * Common helper functions. 1291 */ 1292 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1293 { 1294 struct page * page; 1295 page = alloc_pages(gfp_mask, order); 1296 if (!page) 1297 return 0; 1298 return (unsigned long) page_address(page); 1299 } 1300 1301 EXPORT_SYMBOL(__get_free_pages); 1302 1303 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) 1304 { 1305 struct page * page; 1306 1307 /* 1308 * get_zeroed_page() returns a 32-bit address, which cannot represent 1309 * a highmem page 1310 */ 1311 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1312 1313 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1314 if (page) 1315 return (unsigned long) page_address(page); 1316 return 0; 1317 } 1318 1319 EXPORT_SYMBOL(get_zeroed_page); 1320 1321 void __pagevec_free(struct pagevec *pvec) 1322 { 1323 int i = pagevec_count(pvec); 1324 1325 while (--i >= 0) 1326 free_hot_cold_page(pvec->pages[i], pvec->cold); 1327 } 1328 1329 fastcall void __free_pages(struct page *page, unsigned int order) 1330 { 1331 if (put_page_testzero(page)) { 1332 if (order == 0) 1333 free_hot_page(page); 1334 else 1335 __free_pages_ok(page, order); 1336 } 1337 } 1338 1339 EXPORT_SYMBOL(__free_pages); 1340 1341 fastcall void free_pages(unsigned long addr, unsigned int order) 1342 { 1343 if (addr != 0) { 1344 VM_BUG_ON(!virt_addr_valid((void *)addr)); 1345 __free_pages(virt_to_page((void *)addr), order); 1346 } 1347 } 1348 1349 EXPORT_SYMBOL(free_pages); 1350 1351 /* 1352 * Total amount of free (allocatable) RAM: 1353 */ 1354 unsigned int nr_free_pages(void) 1355 { 1356 unsigned int sum = 0; 1357 struct zone *zone; 1358 1359 for_each_zone(zone) 1360 sum += zone->free_pages; 1361 1362 return sum; 1363 } 1364 1365 EXPORT_SYMBOL(nr_free_pages); 1366 1367 #ifdef CONFIG_NUMA 1368 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) 1369 { 1370 unsigned int sum = 0; 1371 enum zone_type i; 1372 1373 for (i = 0; i < MAX_NR_ZONES; i++) 1374 sum += pgdat->node_zones[i].free_pages; 1375 1376 return sum; 1377 } 1378 #endif 1379 1380 static unsigned int nr_free_zone_pages(int offset) 1381 { 1382 /* Just pick one node, since fallback list is circular */ 1383 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1384 unsigned int sum = 0; 1385 1386 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1387 struct zone **zonep = zonelist->zones; 1388 struct zone *zone; 1389 1390 for (zone = *zonep++; zone; zone = *zonep++) { 1391 unsigned long size = zone->present_pages; 1392 unsigned long high = zone->pages_high; 1393 if (size > high) 1394 sum += size - high; 1395 } 1396 1397 return sum; 1398 } 1399 1400 /* 1401 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1402 */ 1403 unsigned int nr_free_buffer_pages(void) 1404 { 1405 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1406 } 1407 1408 /* 1409 * Amount of free RAM allocatable within all zones 1410 */ 1411 unsigned int nr_free_pagecache_pages(void) 1412 { 1413 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); 1414 } 1415 1416 static inline void show_node(struct zone *zone) 1417 { 1418 if (NUMA_BUILD) 1419 printk("Node %d ", zone_to_nid(zone)); 1420 } 1421 1422 void si_meminfo(struct sysinfo *val) 1423 { 1424 val->totalram = totalram_pages; 1425 val->sharedram = 0; 1426 val->freeram = nr_free_pages(); 1427 val->bufferram = nr_blockdev_pages(); 1428 val->totalhigh = totalhigh_pages; 1429 val->freehigh = nr_free_highpages(); 1430 val->mem_unit = PAGE_SIZE; 1431 } 1432 1433 EXPORT_SYMBOL(si_meminfo); 1434 1435 #ifdef CONFIG_NUMA 1436 void si_meminfo_node(struct sysinfo *val, int nid) 1437 { 1438 pg_data_t *pgdat = NODE_DATA(nid); 1439 1440 val->totalram = pgdat->node_present_pages; 1441 val->freeram = nr_free_pages_pgdat(pgdat); 1442 #ifdef CONFIG_HIGHMEM 1443 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1444 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1445 #else 1446 val->totalhigh = 0; 1447 val->freehigh = 0; 1448 #endif 1449 val->mem_unit = PAGE_SIZE; 1450 } 1451 #endif 1452 1453 #define K(x) ((x) << (PAGE_SHIFT-10)) 1454 1455 /* 1456 * Show free area list (used inside shift_scroll-lock stuff) 1457 * We also calculate the percentage fragmentation. We do this by counting the 1458 * memory on each free list with the exception of the first item on the list. 1459 */ 1460 void show_free_areas(void) 1461 { 1462 int cpu; 1463 unsigned long active; 1464 unsigned long inactive; 1465 unsigned long free; 1466 struct zone *zone; 1467 1468 for_each_zone(zone) { 1469 if (!populated_zone(zone)) 1470 continue; 1471 1472 show_node(zone); 1473 printk("%s per-cpu:\n", zone->name); 1474 1475 for_each_online_cpu(cpu) { 1476 struct per_cpu_pageset *pageset; 1477 1478 pageset = zone_pcp(zone, cpu); 1479 1480 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d " 1481 "Cold: hi:%5d, btch:%4d usd:%4d\n", 1482 cpu, pageset->pcp[0].high, 1483 pageset->pcp[0].batch, pageset->pcp[0].count, 1484 pageset->pcp[1].high, pageset->pcp[1].batch, 1485 pageset->pcp[1].count); 1486 } 1487 } 1488 1489 get_zone_counts(&active, &inactive, &free); 1490 1491 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " 1492 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", 1493 active, 1494 inactive, 1495 global_page_state(NR_FILE_DIRTY), 1496 global_page_state(NR_WRITEBACK), 1497 global_page_state(NR_UNSTABLE_NFS), 1498 nr_free_pages(), 1499 global_page_state(NR_SLAB_RECLAIMABLE) + 1500 global_page_state(NR_SLAB_UNRECLAIMABLE), 1501 global_page_state(NR_FILE_MAPPED), 1502 global_page_state(NR_PAGETABLE)); 1503 1504 for_each_zone(zone) { 1505 int i; 1506 1507 if (!populated_zone(zone)) 1508 continue; 1509 1510 show_node(zone); 1511 printk("%s" 1512 " free:%lukB" 1513 " min:%lukB" 1514 " low:%lukB" 1515 " high:%lukB" 1516 " active:%lukB" 1517 " inactive:%lukB" 1518 " present:%lukB" 1519 " pages_scanned:%lu" 1520 " all_unreclaimable? %s" 1521 "\n", 1522 zone->name, 1523 K(zone->free_pages), 1524 K(zone->pages_min), 1525 K(zone->pages_low), 1526 K(zone->pages_high), 1527 K(zone->nr_active), 1528 K(zone->nr_inactive), 1529 K(zone->present_pages), 1530 zone->pages_scanned, 1531 (zone->all_unreclaimable ? "yes" : "no") 1532 ); 1533 printk("lowmem_reserve[]:"); 1534 for (i = 0; i < MAX_NR_ZONES; i++) 1535 printk(" %lu", zone->lowmem_reserve[i]); 1536 printk("\n"); 1537 } 1538 1539 for_each_zone(zone) { 1540 unsigned long nr[MAX_ORDER], flags, order, total = 0; 1541 1542 if (!populated_zone(zone)) 1543 continue; 1544 1545 show_node(zone); 1546 printk("%s: ", zone->name); 1547 1548 spin_lock_irqsave(&zone->lock, flags); 1549 for (order = 0; order < MAX_ORDER; order++) { 1550 nr[order] = zone->free_area[order].nr_free; 1551 total += nr[order] << order; 1552 } 1553 spin_unlock_irqrestore(&zone->lock, flags); 1554 for (order = 0; order < MAX_ORDER; order++) 1555 printk("%lu*%lukB ", nr[order], K(1UL) << order); 1556 printk("= %lukB\n", K(total)); 1557 } 1558 1559 show_swap_cache_info(); 1560 } 1561 1562 /* 1563 * Builds allocation fallback zone lists. 1564 * 1565 * Add all populated zones of a node to the zonelist. 1566 */ 1567 static int __meminit build_zonelists_node(pg_data_t *pgdat, 1568 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type) 1569 { 1570 struct zone *zone; 1571 1572 BUG_ON(zone_type >= MAX_NR_ZONES); 1573 zone_type++; 1574 1575 do { 1576 zone_type--; 1577 zone = pgdat->node_zones + zone_type; 1578 if (populated_zone(zone)) { 1579 zonelist->zones[nr_zones++] = zone; 1580 check_highest_zone(zone_type); 1581 } 1582 1583 } while (zone_type); 1584 return nr_zones; 1585 } 1586 1587 #ifdef CONFIG_NUMA 1588 #define MAX_NODE_LOAD (num_online_nodes()) 1589 static int __meminitdata node_load[MAX_NUMNODES]; 1590 /** 1591 * find_next_best_node - find the next node that should appear in a given node's fallback list 1592 * @node: node whose fallback list we're appending 1593 * @used_node_mask: nodemask_t of already used nodes 1594 * 1595 * We use a number of factors to determine which is the next node that should 1596 * appear on a given node's fallback list. The node should not have appeared 1597 * already in @node's fallback list, and it should be the next closest node 1598 * according to the distance array (which contains arbitrary distance values 1599 * from each node to each node in the system), and should also prefer nodes 1600 * with no CPUs, since presumably they'll have very little allocation pressure 1601 * on them otherwise. 1602 * It returns -1 if no node is found. 1603 */ 1604 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask) 1605 { 1606 int n, val; 1607 int min_val = INT_MAX; 1608 int best_node = -1; 1609 1610 /* Use the local node if we haven't already */ 1611 if (!node_isset(node, *used_node_mask)) { 1612 node_set(node, *used_node_mask); 1613 return node; 1614 } 1615 1616 for_each_online_node(n) { 1617 cpumask_t tmp; 1618 1619 /* Don't want a node to appear more than once */ 1620 if (node_isset(n, *used_node_mask)) 1621 continue; 1622 1623 /* Use the distance array to find the distance */ 1624 val = node_distance(node, n); 1625 1626 /* Penalize nodes under us ("prefer the next node") */ 1627 val += (n < node); 1628 1629 /* Give preference to headless and unused nodes */ 1630 tmp = node_to_cpumask(n); 1631 if (!cpus_empty(tmp)) 1632 val += PENALTY_FOR_NODE_WITH_CPUS; 1633 1634 /* Slight preference for less loaded node */ 1635 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 1636 val += node_load[n]; 1637 1638 if (val < min_val) { 1639 min_val = val; 1640 best_node = n; 1641 } 1642 } 1643 1644 if (best_node >= 0) 1645 node_set(best_node, *used_node_mask); 1646 1647 return best_node; 1648 } 1649 1650 static void __meminit build_zonelists(pg_data_t *pgdat) 1651 { 1652 int j, node, local_node; 1653 enum zone_type i; 1654 int prev_node, load; 1655 struct zonelist *zonelist; 1656 nodemask_t used_mask; 1657 1658 /* initialize zonelists */ 1659 for (i = 0; i < MAX_NR_ZONES; i++) { 1660 zonelist = pgdat->node_zonelists + i; 1661 zonelist->zones[0] = NULL; 1662 } 1663 1664 /* NUMA-aware ordering of nodes */ 1665 local_node = pgdat->node_id; 1666 load = num_online_nodes(); 1667 prev_node = local_node; 1668 nodes_clear(used_mask); 1669 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 1670 int distance = node_distance(local_node, node); 1671 1672 /* 1673 * If another node is sufficiently far away then it is better 1674 * to reclaim pages in a zone before going off node. 1675 */ 1676 if (distance > RECLAIM_DISTANCE) 1677 zone_reclaim_mode = 1; 1678 1679 /* 1680 * We don't want to pressure a particular node. 1681 * So adding penalty to the first node in same 1682 * distance group to make it round-robin. 1683 */ 1684 1685 if (distance != node_distance(local_node, prev_node)) 1686 node_load[node] += load; 1687 prev_node = node; 1688 load--; 1689 for (i = 0; i < MAX_NR_ZONES; i++) { 1690 zonelist = pgdat->node_zonelists + i; 1691 for (j = 0; zonelist->zones[j] != NULL; j++); 1692 1693 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); 1694 zonelist->zones[j] = NULL; 1695 } 1696 } 1697 } 1698 1699 /* Construct the zonelist performance cache - see further mmzone.h */ 1700 static void __meminit build_zonelist_cache(pg_data_t *pgdat) 1701 { 1702 int i; 1703 1704 for (i = 0; i < MAX_NR_ZONES; i++) { 1705 struct zonelist *zonelist; 1706 struct zonelist_cache *zlc; 1707 struct zone **z; 1708 1709 zonelist = pgdat->node_zonelists + i; 1710 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 1711 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1712 for (z = zonelist->zones; *z; z++) 1713 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z); 1714 } 1715 } 1716 1717 #else /* CONFIG_NUMA */ 1718 1719 static void __meminit build_zonelists(pg_data_t *pgdat) 1720 { 1721 int node, local_node; 1722 enum zone_type i,j; 1723 1724 local_node = pgdat->node_id; 1725 for (i = 0; i < MAX_NR_ZONES; i++) { 1726 struct zonelist *zonelist; 1727 1728 zonelist = pgdat->node_zonelists + i; 1729 1730 j = build_zonelists_node(pgdat, zonelist, 0, i); 1731 /* 1732 * Now we build the zonelist so that it contains the zones 1733 * of all the other nodes. 1734 * We don't want to pressure a particular node, so when 1735 * building the zones for node N, we make sure that the 1736 * zones coming right after the local ones are those from 1737 * node N+1 (modulo N) 1738 */ 1739 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 1740 if (!node_online(node)) 1741 continue; 1742 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); 1743 } 1744 for (node = 0; node < local_node; node++) { 1745 if (!node_online(node)) 1746 continue; 1747 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i); 1748 } 1749 1750 zonelist->zones[j] = NULL; 1751 } 1752 } 1753 1754 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 1755 static void __meminit build_zonelist_cache(pg_data_t *pgdat) 1756 { 1757 int i; 1758 1759 for (i = 0; i < MAX_NR_ZONES; i++) 1760 pgdat->node_zonelists[i].zlcache_ptr = NULL; 1761 } 1762 1763 #endif /* CONFIG_NUMA */ 1764 1765 /* return values int ....just for stop_machine_run() */ 1766 static int __meminit __build_all_zonelists(void *dummy) 1767 { 1768 int nid; 1769 1770 for_each_online_node(nid) { 1771 build_zonelists(NODE_DATA(nid)); 1772 build_zonelist_cache(NODE_DATA(nid)); 1773 } 1774 return 0; 1775 } 1776 1777 void __meminit build_all_zonelists(void) 1778 { 1779 if (system_state == SYSTEM_BOOTING) { 1780 __build_all_zonelists(NULL); 1781 cpuset_init_current_mems_allowed(); 1782 } else { 1783 /* we have to stop all cpus to guaranntee there is no user 1784 of zonelist */ 1785 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS); 1786 /* cpuset refresh routine should be here */ 1787 } 1788 vm_total_pages = nr_free_pagecache_pages(); 1789 printk("Built %i zonelists. Total pages: %ld\n", 1790 num_online_nodes(), vm_total_pages); 1791 } 1792 1793 /* 1794 * Helper functions to size the waitqueue hash table. 1795 * Essentially these want to choose hash table sizes sufficiently 1796 * large so that collisions trying to wait on pages are rare. 1797 * But in fact, the number of active page waitqueues on typical 1798 * systems is ridiculously low, less than 200. So this is even 1799 * conservative, even though it seems large. 1800 * 1801 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 1802 * waitqueues, i.e. the size of the waitq table given the number of pages. 1803 */ 1804 #define PAGES_PER_WAITQUEUE 256 1805 1806 #ifndef CONFIG_MEMORY_HOTPLUG 1807 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 1808 { 1809 unsigned long size = 1; 1810 1811 pages /= PAGES_PER_WAITQUEUE; 1812 1813 while (size < pages) 1814 size <<= 1; 1815 1816 /* 1817 * Once we have dozens or even hundreds of threads sleeping 1818 * on IO we've got bigger problems than wait queue collision. 1819 * Limit the size of the wait table to a reasonable size. 1820 */ 1821 size = min(size, 4096UL); 1822 1823 return max(size, 4UL); 1824 } 1825 #else 1826 /* 1827 * A zone's size might be changed by hot-add, so it is not possible to determine 1828 * a suitable size for its wait_table. So we use the maximum size now. 1829 * 1830 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 1831 * 1832 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 1833 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 1834 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 1835 * 1836 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 1837 * or more by the traditional way. (See above). It equals: 1838 * 1839 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 1840 * ia64(16K page size) : = ( 8G + 4M)byte. 1841 * powerpc (64K page size) : = (32G +16M)byte. 1842 */ 1843 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 1844 { 1845 return 4096UL; 1846 } 1847 #endif 1848 1849 /* 1850 * This is an integer logarithm so that shifts can be used later 1851 * to extract the more random high bits from the multiplicative 1852 * hash function before the remainder is taken. 1853 */ 1854 static inline unsigned long wait_table_bits(unsigned long size) 1855 { 1856 return ffz(~size); 1857 } 1858 1859 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 1860 1861 /* 1862 * Initially all pages are reserved - free ones are freed 1863 * up by free_all_bootmem() once the early boot process is 1864 * done. Non-atomic initialization, single-pass. 1865 */ 1866 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 1867 unsigned long start_pfn) 1868 { 1869 struct page *page; 1870 unsigned long end_pfn = start_pfn + size; 1871 unsigned long pfn; 1872 1873 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1874 if (!early_pfn_valid(pfn)) 1875 continue; 1876 if (!early_pfn_in_nid(pfn, nid)) 1877 continue; 1878 page = pfn_to_page(pfn); 1879 set_page_links(page, zone, nid, pfn); 1880 init_page_count(page); 1881 reset_page_mapcount(page); 1882 SetPageReserved(page); 1883 INIT_LIST_HEAD(&page->lru); 1884 #ifdef WANT_PAGE_VIRTUAL 1885 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1886 if (!is_highmem_idx(zone)) 1887 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1888 #endif 1889 } 1890 } 1891 1892 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, 1893 unsigned long size) 1894 { 1895 int order; 1896 for (order = 0; order < MAX_ORDER ; order++) { 1897 INIT_LIST_HEAD(&zone->free_area[order].free_list); 1898 zone->free_area[order].nr_free = 0; 1899 } 1900 } 1901 1902 #ifndef __HAVE_ARCH_MEMMAP_INIT 1903 #define memmap_init(size, nid, zone, start_pfn) \ 1904 memmap_init_zone((size), (nid), (zone), (start_pfn)) 1905 #endif 1906 1907 static int __cpuinit zone_batchsize(struct zone *zone) 1908 { 1909 int batch; 1910 1911 /* 1912 * The per-cpu-pages pools are set to around 1000th of the 1913 * size of the zone. But no more than 1/2 of a meg. 1914 * 1915 * OK, so we don't know how big the cache is. So guess. 1916 */ 1917 batch = zone->present_pages / 1024; 1918 if (batch * PAGE_SIZE > 512 * 1024) 1919 batch = (512 * 1024) / PAGE_SIZE; 1920 batch /= 4; /* We effectively *= 4 below */ 1921 if (batch < 1) 1922 batch = 1; 1923 1924 /* 1925 * Clamp the batch to a 2^n - 1 value. Having a power 1926 * of 2 value was found to be more likely to have 1927 * suboptimal cache aliasing properties in some cases. 1928 * 1929 * For example if 2 tasks are alternately allocating 1930 * batches of pages, one task can end up with a lot 1931 * of pages of one half of the possible page colors 1932 * and the other with pages of the other colors. 1933 */ 1934 batch = (1 << (fls(batch + batch/2)-1)) - 1; 1935 1936 return batch; 1937 } 1938 1939 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 1940 { 1941 struct per_cpu_pages *pcp; 1942 1943 memset(p, 0, sizeof(*p)); 1944 1945 pcp = &p->pcp[0]; /* hot */ 1946 pcp->count = 0; 1947 pcp->high = 6 * batch; 1948 pcp->batch = max(1UL, 1 * batch); 1949 INIT_LIST_HEAD(&pcp->list); 1950 1951 pcp = &p->pcp[1]; /* cold*/ 1952 pcp->count = 0; 1953 pcp->high = 2 * batch; 1954 pcp->batch = max(1UL, batch/2); 1955 INIT_LIST_HEAD(&pcp->list); 1956 } 1957 1958 /* 1959 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 1960 * to the value high for the pageset p. 1961 */ 1962 1963 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 1964 unsigned long high) 1965 { 1966 struct per_cpu_pages *pcp; 1967 1968 pcp = &p->pcp[0]; /* hot list */ 1969 pcp->high = high; 1970 pcp->batch = max(1UL, high/4); 1971 if ((high/4) > (PAGE_SHIFT * 8)) 1972 pcp->batch = PAGE_SHIFT * 8; 1973 } 1974 1975 1976 #ifdef CONFIG_NUMA 1977 /* 1978 * Boot pageset table. One per cpu which is going to be used for all 1979 * zones and all nodes. The parameters will be set in such a way 1980 * that an item put on a list will immediately be handed over to 1981 * the buddy list. This is safe since pageset manipulation is done 1982 * with interrupts disabled. 1983 * 1984 * Some NUMA counter updates may also be caught by the boot pagesets. 1985 * 1986 * The boot_pagesets must be kept even after bootup is complete for 1987 * unused processors and/or zones. They do play a role for bootstrapping 1988 * hotplugged processors. 1989 * 1990 * zoneinfo_show() and maybe other functions do 1991 * not check if the processor is online before following the pageset pointer. 1992 * Other parts of the kernel may not check if the zone is available. 1993 */ 1994 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 1995 1996 /* 1997 * Dynamically allocate memory for the 1998 * per cpu pageset array in struct zone. 1999 */ 2000 static int __cpuinit process_zones(int cpu) 2001 { 2002 struct zone *zone, *dzone; 2003 2004 for_each_zone(zone) { 2005 2006 if (!populated_zone(zone)) 2007 continue; 2008 2009 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 2010 GFP_KERNEL, cpu_to_node(cpu)); 2011 if (!zone_pcp(zone, cpu)) 2012 goto bad; 2013 2014 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 2015 2016 if (percpu_pagelist_fraction) 2017 setup_pagelist_highmark(zone_pcp(zone, cpu), 2018 (zone->present_pages / percpu_pagelist_fraction)); 2019 } 2020 2021 return 0; 2022 bad: 2023 for_each_zone(dzone) { 2024 if (dzone == zone) 2025 break; 2026 kfree(zone_pcp(dzone, cpu)); 2027 zone_pcp(dzone, cpu) = NULL; 2028 } 2029 return -ENOMEM; 2030 } 2031 2032 static inline void free_zone_pagesets(int cpu) 2033 { 2034 struct zone *zone; 2035 2036 for_each_zone(zone) { 2037 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 2038 2039 /* Free per_cpu_pageset if it is slab allocated */ 2040 if (pset != &boot_pageset[cpu]) 2041 kfree(pset); 2042 zone_pcp(zone, cpu) = NULL; 2043 } 2044 } 2045 2046 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 2047 unsigned long action, 2048 void *hcpu) 2049 { 2050 int cpu = (long)hcpu; 2051 int ret = NOTIFY_OK; 2052 2053 switch (action) { 2054 case CPU_UP_PREPARE: 2055 if (process_zones(cpu)) 2056 ret = NOTIFY_BAD; 2057 break; 2058 case CPU_UP_CANCELED: 2059 case CPU_DEAD: 2060 free_zone_pagesets(cpu); 2061 break; 2062 default: 2063 break; 2064 } 2065 return ret; 2066 } 2067 2068 static struct notifier_block __cpuinitdata pageset_notifier = 2069 { &pageset_cpuup_callback, NULL, 0 }; 2070 2071 void __init setup_per_cpu_pageset(void) 2072 { 2073 int err; 2074 2075 /* Initialize per_cpu_pageset for cpu 0. 2076 * A cpuup callback will do this for every cpu 2077 * as it comes online 2078 */ 2079 err = process_zones(smp_processor_id()); 2080 BUG_ON(err); 2081 register_cpu_notifier(&pageset_notifier); 2082 } 2083 2084 #endif 2085 2086 static __meminit 2087 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 2088 { 2089 int i; 2090 struct pglist_data *pgdat = zone->zone_pgdat; 2091 size_t alloc_size; 2092 2093 /* 2094 * The per-page waitqueue mechanism uses hashed waitqueues 2095 * per zone. 2096 */ 2097 zone->wait_table_hash_nr_entries = 2098 wait_table_hash_nr_entries(zone_size_pages); 2099 zone->wait_table_bits = 2100 wait_table_bits(zone->wait_table_hash_nr_entries); 2101 alloc_size = zone->wait_table_hash_nr_entries 2102 * sizeof(wait_queue_head_t); 2103 2104 if (system_state == SYSTEM_BOOTING) { 2105 zone->wait_table = (wait_queue_head_t *) 2106 alloc_bootmem_node(pgdat, alloc_size); 2107 } else { 2108 /* 2109 * This case means that a zone whose size was 0 gets new memory 2110 * via memory hot-add. 2111 * But it may be the case that a new node was hot-added. In 2112 * this case vmalloc() will not be able to use this new node's 2113 * memory - this wait_table must be initialized to use this new 2114 * node itself as well. 2115 * To use this new node's memory, further consideration will be 2116 * necessary. 2117 */ 2118 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size); 2119 } 2120 if (!zone->wait_table) 2121 return -ENOMEM; 2122 2123 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 2124 init_waitqueue_head(zone->wait_table + i); 2125 2126 return 0; 2127 } 2128 2129 static __meminit void zone_pcp_init(struct zone *zone) 2130 { 2131 int cpu; 2132 unsigned long batch = zone_batchsize(zone); 2133 2134 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2135 #ifdef CONFIG_NUMA 2136 /* Early boot. Slab allocator not functional yet */ 2137 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2138 setup_pageset(&boot_pageset[cpu],0); 2139 #else 2140 setup_pageset(zone_pcp(zone,cpu), batch); 2141 #endif 2142 } 2143 if (zone->present_pages) 2144 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2145 zone->name, zone->present_pages, batch); 2146 } 2147 2148 __meminit int init_currently_empty_zone(struct zone *zone, 2149 unsigned long zone_start_pfn, 2150 unsigned long size) 2151 { 2152 struct pglist_data *pgdat = zone->zone_pgdat; 2153 int ret; 2154 ret = zone_wait_table_init(zone, size); 2155 if (ret) 2156 return ret; 2157 pgdat->nr_zones = zone_idx(zone) + 1; 2158 2159 zone->zone_start_pfn = zone_start_pfn; 2160 2161 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); 2162 2163 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 2164 2165 return 0; 2166 } 2167 2168 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2169 /* 2170 * Basic iterator support. Return the first range of PFNs for a node 2171 * Note: nid == MAX_NUMNODES returns first region regardless of node 2172 */ 2173 static int __init first_active_region_index_in_nid(int nid) 2174 { 2175 int i; 2176 2177 for (i = 0; i < nr_nodemap_entries; i++) 2178 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 2179 return i; 2180 2181 return -1; 2182 } 2183 2184 /* 2185 * Basic iterator support. Return the next active range of PFNs for a node 2186 * Note: nid == MAX_NUMNODES returns next region regardles of node 2187 */ 2188 static int __init next_active_region_index_in_nid(int index, int nid) 2189 { 2190 for (index = index + 1; index < nr_nodemap_entries; index++) 2191 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 2192 return index; 2193 2194 return -1; 2195 } 2196 2197 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 2198 /* 2199 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 2200 * Architectures may implement their own version but if add_active_range() 2201 * was used and there are no special requirements, this is a convenient 2202 * alternative 2203 */ 2204 int __init early_pfn_to_nid(unsigned long pfn) 2205 { 2206 int i; 2207 2208 for (i = 0; i < nr_nodemap_entries; i++) { 2209 unsigned long start_pfn = early_node_map[i].start_pfn; 2210 unsigned long end_pfn = early_node_map[i].end_pfn; 2211 2212 if (start_pfn <= pfn && pfn < end_pfn) 2213 return early_node_map[i].nid; 2214 } 2215 2216 return 0; 2217 } 2218 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 2219 2220 /* Basic iterator support to walk early_node_map[] */ 2221 #define for_each_active_range_index_in_nid(i, nid) \ 2222 for (i = first_active_region_index_in_nid(nid); i != -1; \ 2223 i = next_active_region_index_in_nid(i, nid)) 2224 2225 /** 2226 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 2227 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 2228 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 2229 * 2230 * If an architecture guarantees that all ranges registered with 2231 * add_active_ranges() contain no holes and may be freed, this 2232 * this function may be used instead of calling free_bootmem() manually. 2233 */ 2234 void __init free_bootmem_with_active_regions(int nid, 2235 unsigned long max_low_pfn) 2236 { 2237 int i; 2238 2239 for_each_active_range_index_in_nid(i, nid) { 2240 unsigned long size_pages = 0; 2241 unsigned long end_pfn = early_node_map[i].end_pfn; 2242 2243 if (early_node_map[i].start_pfn >= max_low_pfn) 2244 continue; 2245 2246 if (end_pfn > max_low_pfn) 2247 end_pfn = max_low_pfn; 2248 2249 size_pages = end_pfn - early_node_map[i].start_pfn; 2250 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 2251 PFN_PHYS(early_node_map[i].start_pfn), 2252 size_pages << PAGE_SHIFT); 2253 } 2254 } 2255 2256 /** 2257 * sparse_memory_present_with_active_regions - Call memory_present for each active range 2258 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 2259 * 2260 * If an architecture guarantees that all ranges registered with 2261 * add_active_ranges() contain no holes and may be freed, this 2262 * function may be used instead of calling memory_present() manually. 2263 */ 2264 void __init sparse_memory_present_with_active_regions(int nid) 2265 { 2266 int i; 2267 2268 for_each_active_range_index_in_nid(i, nid) 2269 memory_present(early_node_map[i].nid, 2270 early_node_map[i].start_pfn, 2271 early_node_map[i].end_pfn); 2272 } 2273 2274 /** 2275 * push_node_boundaries - Push node boundaries to at least the requested boundary 2276 * @nid: The nid of the node to push the boundary for 2277 * @start_pfn: The start pfn of the node 2278 * @end_pfn: The end pfn of the node 2279 * 2280 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd 2281 * time. Specifically, on x86_64, SRAT will report ranges that can potentially 2282 * be hotplugged even though no physical memory exists. This function allows 2283 * an arch to push out the node boundaries so mem_map is allocated that can 2284 * be used later. 2285 */ 2286 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 2287 void __init push_node_boundaries(unsigned int nid, 2288 unsigned long start_pfn, unsigned long end_pfn) 2289 { 2290 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n", 2291 nid, start_pfn, end_pfn); 2292 2293 /* Initialise the boundary for this node if necessary */ 2294 if (node_boundary_end_pfn[nid] == 0) 2295 node_boundary_start_pfn[nid] = -1UL; 2296 2297 /* Update the boundaries */ 2298 if (node_boundary_start_pfn[nid] > start_pfn) 2299 node_boundary_start_pfn[nid] = start_pfn; 2300 if (node_boundary_end_pfn[nid] < end_pfn) 2301 node_boundary_end_pfn[nid] = end_pfn; 2302 } 2303 2304 /* If necessary, push the node boundary out for reserve hotadd */ 2305 static void __init account_node_boundary(unsigned int nid, 2306 unsigned long *start_pfn, unsigned long *end_pfn) 2307 { 2308 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n", 2309 nid, *start_pfn, *end_pfn); 2310 2311 /* Return if boundary information has not been provided */ 2312 if (node_boundary_end_pfn[nid] == 0) 2313 return; 2314 2315 /* Check the boundaries and update if necessary */ 2316 if (node_boundary_start_pfn[nid] < *start_pfn) 2317 *start_pfn = node_boundary_start_pfn[nid]; 2318 if (node_boundary_end_pfn[nid] > *end_pfn) 2319 *end_pfn = node_boundary_end_pfn[nid]; 2320 } 2321 #else 2322 void __init push_node_boundaries(unsigned int nid, 2323 unsigned long start_pfn, unsigned long end_pfn) {} 2324 2325 static void __init account_node_boundary(unsigned int nid, 2326 unsigned long *start_pfn, unsigned long *end_pfn) {} 2327 #endif 2328 2329 2330 /** 2331 * get_pfn_range_for_nid - Return the start and end page frames for a node 2332 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 2333 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 2334 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 2335 * 2336 * It returns the start and end page frame of a node based on information 2337 * provided by an arch calling add_active_range(). If called for a node 2338 * with no available memory, a warning is printed and the start and end 2339 * PFNs will be 0. 2340 */ 2341 void __init get_pfn_range_for_nid(unsigned int nid, 2342 unsigned long *start_pfn, unsigned long *end_pfn) 2343 { 2344 int i; 2345 *start_pfn = -1UL; 2346 *end_pfn = 0; 2347 2348 for_each_active_range_index_in_nid(i, nid) { 2349 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 2350 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 2351 } 2352 2353 if (*start_pfn == -1UL) { 2354 printk(KERN_WARNING "Node %u active with no memory\n", nid); 2355 *start_pfn = 0; 2356 } 2357 2358 /* Push the node boundaries out if requested */ 2359 account_node_boundary(nid, start_pfn, end_pfn); 2360 } 2361 2362 /* 2363 * Return the number of pages a zone spans in a node, including holes 2364 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 2365 */ 2366 unsigned long __init zone_spanned_pages_in_node(int nid, 2367 unsigned long zone_type, 2368 unsigned long *ignored) 2369 { 2370 unsigned long node_start_pfn, node_end_pfn; 2371 unsigned long zone_start_pfn, zone_end_pfn; 2372 2373 /* Get the start and end of the node and zone */ 2374 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 2375 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 2376 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 2377 2378 /* Check that this node has pages within the zone's required range */ 2379 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 2380 return 0; 2381 2382 /* Move the zone boundaries inside the node if necessary */ 2383 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 2384 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 2385 2386 /* Return the spanned pages */ 2387 return zone_end_pfn - zone_start_pfn; 2388 } 2389 2390 /* 2391 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 2392 * then all holes in the requested range will be accounted for. 2393 */ 2394 unsigned long __init __absent_pages_in_range(int nid, 2395 unsigned long range_start_pfn, 2396 unsigned long range_end_pfn) 2397 { 2398 int i = 0; 2399 unsigned long prev_end_pfn = 0, hole_pages = 0; 2400 unsigned long start_pfn; 2401 2402 /* Find the end_pfn of the first active range of pfns in the node */ 2403 i = first_active_region_index_in_nid(nid); 2404 if (i == -1) 2405 return 0; 2406 2407 /* Account for ranges before physical memory on this node */ 2408 if (early_node_map[i].start_pfn > range_start_pfn) 2409 hole_pages = early_node_map[i].start_pfn - range_start_pfn; 2410 2411 prev_end_pfn = early_node_map[i].start_pfn; 2412 2413 /* Find all holes for the zone within the node */ 2414 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 2415 2416 /* No need to continue if prev_end_pfn is outside the zone */ 2417 if (prev_end_pfn >= range_end_pfn) 2418 break; 2419 2420 /* Make sure the end of the zone is not within the hole */ 2421 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 2422 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 2423 2424 /* Update the hole size cound and move on */ 2425 if (start_pfn > range_start_pfn) { 2426 BUG_ON(prev_end_pfn > start_pfn); 2427 hole_pages += start_pfn - prev_end_pfn; 2428 } 2429 prev_end_pfn = early_node_map[i].end_pfn; 2430 } 2431 2432 /* Account for ranges past physical memory on this node */ 2433 if (range_end_pfn > prev_end_pfn) 2434 hole_pages += range_end_pfn - 2435 max(range_start_pfn, prev_end_pfn); 2436 2437 return hole_pages; 2438 } 2439 2440 /** 2441 * absent_pages_in_range - Return number of page frames in holes within a range 2442 * @start_pfn: The start PFN to start searching for holes 2443 * @end_pfn: The end PFN to stop searching for holes 2444 * 2445 * It returns the number of pages frames in memory holes within a range. 2446 */ 2447 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 2448 unsigned long end_pfn) 2449 { 2450 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 2451 } 2452 2453 /* Return the number of page frames in holes in a zone on a node */ 2454 unsigned long __init zone_absent_pages_in_node(int nid, 2455 unsigned long zone_type, 2456 unsigned long *ignored) 2457 { 2458 unsigned long node_start_pfn, node_end_pfn; 2459 unsigned long zone_start_pfn, zone_end_pfn; 2460 2461 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 2462 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 2463 node_start_pfn); 2464 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 2465 node_end_pfn); 2466 2467 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 2468 } 2469 2470 #else 2471 static inline unsigned long zone_spanned_pages_in_node(int nid, 2472 unsigned long zone_type, 2473 unsigned long *zones_size) 2474 { 2475 return zones_size[zone_type]; 2476 } 2477 2478 static inline unsigned long zone_absent_pages_in_node(int nid, 2479 unsigned long zone_type, 2480 unsigned long *zholes_size) 2481 { 2482 if (!zholes_size) 2483 return 0; 2484 2485 return zholes_size[zone_type]; 2486 } 2487 2488 #endif 2489 2490 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 2491 unsigned long *zones_size, unsigned long *zholes_size) 2492 { 2493 unsigned long realtotalpages, totalpages = 0; 2494 enum zone_type i; 2495 2496 for (i = 0; i < MAX_NR_ZONES; i++) 2497 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 2498 zones_size); 2499 pgdat->node_spanned_pages = totalpages; 2500 2501 realtotalpages = totalpages; 2502 for (i = 0; i < MAX_NR_ZONES; i++) 2503 realtotalpages -= 2504 zone_absent_pages_in_node(pgdat->node_id, i, 2505 zholes_size); 2506 pgdat->node_present_pages = realtotalpages; 2507 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 2508 realtotalpages); 2509 } 2510 2511 /* 2512 * Set up the zone data structures: 2513 * - mark all pages reserved 2514 * - mark all memory queues empty 2515 * - clear the memory bitmaps 2516 */ 2517 static void __meminit free_area_init_core(struct pglist_data *pgdat, 2518 unsigned long *zones_size, unsigned long *zholes_size) 2519 { 2520 enum zone_type j; 2521 int nid = pgdat->node_id; 2522 unsigned long zone_start_pfn = pgdat->node_start_pfn; 2523 int ret; 2524 2525 pgdat_resize_init(pgdat); 2526 pgdat->nr_zones = 0; 2527 init_waitqueue_head(&pgdat->kswapd_wait); 2528 pgdat->kswapd_max_order = 0; 2529 2530 for (j = 0; j < MAX_NR_ZONES; j++) { 2531 struct zone *zone = pgdat->node_zones + j; 2532 unsigned long size, realsize, memmap_pages; 2533 2534 size = zone_spanned_pages_in_node(nid, j, zones_size); 2535 realsize = size - zone_absent_pages_in_node(nid, j, 2536 zholes_size); 2537 2538 /* 2539 * Adjust realsize so that it accounts for how much memory 2540 * is used by this zone for memmap. This affects the watermark 2541 * and per-cpu initialisations 2542 */ 2543 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT; 2544 if (realsize >= memmap_pages) { 2545 realsize -= memmap_pages; 2546 printk(KERN_DEBUG 2547 " %s zone: %lu pages used for memmap\n", 2548 zone_names[j], memmap_pages); 2549 } else 2550 printk(KERN_WARNING 2551 " %s zone: %lu pages exceeds realsize %lu\n", 2552 zone_names[j], memmap_pages, realsize); 2553 2554 /* Account for reserved DMA pages */ 2555 if (j == ZONE_DMA && realsize > dma_reserve) { 2556 realsize -= dma_reserve; 2557 printk(KERN_DEBUG " DMA zone: %lu pages reserved\n", 2558 dma_reserve); 2559 } 2560 2561 if (!is_highmem_idx(j)) 2562 nr_kernel_pages += realsize; 2563 nr_all_pages += realsize; 2564 2565 zone->spanned_pages = size; 2566 zone->present_pages = realsize; 2567 #ifdef CONFIG_NUMA 2568 zone->node = nid; 2569 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 2570 / 100; 2571 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 2572 #endif 2573 zone->name = zone_names[j]; 2574 spin_lock_init(&zone->lock); 2575 spin_lock_init(&zone->lru_lock); 2576 zone_seqlock_init(zone); 2577 zone->zone_pgdat = pgdat; 2578 zone->free_pages = 0; 2579 2580 zone->prev_priority = DEF_PRIORITY; 2581 2582 zone_pcp_init(zone); 2583 INIT_LIST_HEAD(&zone->active_list); 2584 INIT_LIST_HEAD(&zone->inactive_list); 2585 zone->nr_scan_active = 0; 2586 zone->nr_scan_inactive = 0; 2587 zone->nr_active = 0; 2588 zone->nr_inactive = 0; 2589 zap_zone_vm_stats(zone); 2590 atomic_set(&zone->reclaim_in_progress, 0); 2591 if (!size) 2592 continue; 2593 2594 ret = init_currently_empty_zone(zone, zone_start_pfn, size); 2595 BUG_ON(ret); 2596 zone_start_pfn += size; 2597 } 2598 } 2599 2600 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 2601 { 2602 /* Skip empty nodes */ 2603 if (!pgdat->node_spanned_pages) 2604 return; 2605 2606 #ifdef CONFIG_FLAT_NODE_MEM_MAP 2607 /* ia64 gets its own node_mem_map, before this, without bootmem */ 2608 if (!pgdat->node_mem_map) { 2609 unsigned long size, start, end; 2610 struct page *map; 2611 2612 /* 2613 * The zone's endpoints aren't required to be MAX_ORDER 2614 * aligned but the node_mem_map endpoints must be in order 2615 * for the buddy allocator to function correctly. 2616 */ 2617 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 2618 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 2619 end = ALIGN(end, MAX_ORDER_NR_PAGES); 2620 size = (end - start) * sizeof(struct page); 2621 map = alloc_remap(pgdat->node_id, size); 2622 if (!map) 2623 map = alloc_bootmem_node(pgdat, size); 2624 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 2625 } 2626 #ifdef CONFIG_FLATMEM 2627 /* 2628 * With no DISCONTIG, the global mem_map is just set as node 0's 2629 */ 2630 if (pgdat == NODE_DATA(0)) { 2631 mem_map = NODE_DATA(0)->node_mem_map; 2632 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2633 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 2634 mem_map -= pgdat->node_start_pfn; 2635 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 2636 } 2637 #endif 2638 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 2639 } 2640 2641 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat, 2642 unsigned long *zones_size, unsigned long node_start_pfn, 2643 unsigned long *zholes_size) 2644 { 2645 pgdat->node_id = nid; 2646 pgdat->node_start_pfn = node_start_pfn; 2647 calculate_node_totalpages(pgdat, zones_size, zholes_size); 2648 2649 alloc_node_mem_map(pgdat); 2650 2651 free_area_init_core(pgdat, zones_size, zholes_size); 2652 } 2653 2654 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2655 /** 2656 * add_active_range - Register a range of PFNs backed by physical memory 2657 * @nid: The node ID the range resides on 2658 * @start_pfn: The start PFN of the available physical memory 2659 * @end_pfn: The end PFN of the available physical memory 2660 * 2661 * These ranges are stored in an early_node_map[] and later used by 2662 * free_area_init_nodes() to calculate zone sizes and holes. If the 2663 * range spans a memory hole, it is up to the architecture to ensure 2664 * the memory is not freed by the bootmem allocator. If possible 2665 * the range being registered will be merged with existing ranges. 2666 */ 2667 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 2668 unsigned long end_pfn) 2669 { 2670 int i; 2671 2672 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) " 2673 "%d entries of %d used\n", 2674 nid, start_pfn, end_pfn, 2675 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 2676 2677 /* Merge with existing active regions if possible */ 2678 for (i = 0; i < nr_nodemap_entries; i++) { 2679 if (early_node_map[i].nid != nid) 2680 continue; 2681 2682 /* Skip if an existing region covers this new one */ 2683 if (start_pfn >= early_node_map[i].start_pfn && 2684 end_pfn <= early_node_map[i].end_pfn) 2685 return; 2686 2687 /* Merge forward if suitable */ 2688 if (start_pfn <= early_node_map[i].end_pfn && 2689 end_pfn > early_node_map[i].end_pfn) { 2690 early_node_map[i].end_pfn = end_pfn; 2691 return; 2692 } 2693 2694 /* Merge backward if suitable */ 2695 if (start_pfn < early_node_map[i].end_pfn && 2696 end_pfn >= early_node_map[i].start_pfn) { 2697 early_node_map[i].start_pfn = start_pfn; 2698 return; 2699 } 2700 } 2701 2702 /* Check that early_node_map is large enough */ 2703 if (i >= MAX_ACTIVE_REGIONS) { 2704 printk(KERN_CRIT "More than %d memory regions, truncating\n", 2705 MAX_ACTIVE_REGIONS); 2706 return; 2707 } 2708 2709 early_node_map[i].nid = nid; 2710 early_node_map[i].start_pfn = start_pfn; 2711 early_node_map[i].end_pfn = end_pfn; 2712 nr_nodemap_entries = i + 1; 2713 } 2714 2715 /** 2716 * shrink_active_range - Shrink an existing registered range of PFNs 2717 * @nid: The node id the range is on that should be shrunk 2718 * @old_end_pfn: The old end PFN of the range 2719 * @new_end_pfn: The new PFN of the range 2720 * 2721 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 2722 * The map is kept at the end physical page range that has already been 2723 * registered with add_active_range(). This function allows an arch to shrink 2724 * an existing registered range. 2725 */ 2726 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn, 2727 unsigned long new_end_pfn) 2728 { 2729 int i; 2730 2731 /* Find the old active region end and shrink */ 2732 for_each_active_range_index_in_nid(i, nid) 2733 if (early_node_map[i].end_pfn == old_end_pfn) { 2734 early_node_map[i].end_pfn = new_end_pfn; 2735 break; 2736 } 2737 } 2738 2739 /** 2740 * remove_all_active_ranges - Remove all currently registered regions 2741 * 2742 * During discovery, it may be found that a table like SRAT is invalid 2743 * and an alternative discovery method must be used. This function removes 2744 * all currently registered regions. 2745 */ 2746 void __init remove_all_active_ranges(void) 2747 { 2748 memset(early_node_map, 0, sizeof(early_node_map)); 2749 nr_nodemap_entries = 0; 2750 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 2751 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn)); 2752 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn)); 2753 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 2754 } 2755 2756 /* Compare two active node_active_regions */ 2757 static int __init cmp_node_active_region(const void *a, const void *b) 2758 { 2759 struct node_active_region *arange = (struct node_active_region *)a; 2760 struct node_active_region *brange = (struct node_active_region *)b; 2761 2762 /* Done this way to avoid overflows */ 2763 if (arange->start_pfn > brange->start_pfn) 2764 return 1; 2765 if (arange->start_pfn < brange->start_pfn) 2766 return -1; 2767 2768 return 0; 2769 } 2770 2771 /* sort the node_map by start_pfn */ 2772 static void __init sort_node_map(void) 2773 { 2774 sort(early_node_map, (size_t)nr_nodemap_entries, 2775 sizeof(struct node_active_region), 2776 cmp_node_active_region, NULL); 2777 } 2778 2779 /* Find the lowest pfn for a node. This depends on a sorted early_node_map */ 2780 unsigned long __init find_min_pfn_for_node(unsigned long nid) 2781 { 2782 int i; 2783 2784 /* Regions in the early_node_map can be in any order */ 2785 sort_node_map(); 2786 2787 /* Assuming a sorted map, the first range found has the starting pfn */ 2788 for_each_active_range_index_in_nid(i, nid) 2789 return early_node_map[i].start_pfn; 2790 2791 printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid); 2792 return 0; 2793 } 2794 2795 /** 2796 * find_min_pfn_with_active_regions - Find the minimum PFN registered 2797 * 2798 * It returns the minimum PFN based on information provided via 2799 * add_active_range(). 2800 */ 2801 unsigned long __init find_min_pfn_with_active_regions(void) 2802 { 2803 return find_min_pfn_for_node(MAX_NUMNODES); 2804 } 2805 2806 /** 2807 * find_max_pfn_with_active_regions - Find the maximum PFN registered 2808 * 2809 * It returns the maximum PFN based on information provided via 2810 * add_active_range(). 2811 */ 2812 unsigned long __init find_max_pfn_with_active_regions(void) 2813 { 2814 int i; 2815 unsigned long max_pfn = 0; 2816 2817 for (i = 0; i < nr_nodemap_entries; i++) 2818 max_pfn = max(max_pfn, early_node_map[i].end_pfn); 2819 2820 return max_pfn; 2821 } 2822 2823 /** 2824 * free_area_init_nodes - Initialise all pg_data_t and zone data 2825 * @max_zone_pfn: an array of max PFNs for each zone 2826 * 2827 * This will call free_area_init_node() for each active node in the system. 2828 * Using the page ranges provided by add_active_range(), the size of each 2829 * zone in each node and their holes is calculated. If the maximum PFN 2830 * between two adjacent zones match, it is assumed that the zone is empty. 2831 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 2832 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 2833 * starts where the previous one ended. For example, ZONE_DMA32 starts 2834 * at arch_max_dma_pfn. 2835 */ 2836 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 2837 { 2838 unsigned long nid; 2839 enum zone_type i; 2840 2841 /* Record where the zone boundaries are */ 2842 memset(arch_zone_lowest_possible_pfn, 0, 2843 sizeof(arch_zone_lowest_possible_pfn)); 2844 memset(arch_zone_highest_possible_pfn, 0, 2845 sizeof(arch_zone_highest_possible_pfn)); 2846 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 2847 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 2848 for (i = 1; i < MAX_NR_ZONES; i++) { 2849 arch_zone_lowest_possible_pfn[i] = 2850 arch_zone_highest_possible_pfn[i-1]; 2851 arch_zone_highest_possible_pfn[i] = 2852 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 2853 } 2854 2855 /* Print out the zone ranges */ 2856 printk("Zone PFN ranges:\n"); 2857 for (i = 0; i < MAX_NR_ZONES; i++) 2858 printk(" %-8s %8lu -> %8lu\n", 2859 zone_names[i], 2860 arch_zone_lowest_possible_pfn[i], 2861 arch_zone_highest_possible_pfn[i]); 2862 2863 /* Print out the early_node_map[] */ 2864 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 2865 for (i = 0; i < nr_nodemap_entries; i++) 2866 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid, 2867 early_node_map[i].start_pfn, 2868 early_node_map[i].end_pfn); 2869 2870 /* Initialise every node */ 2871 for_each_online_node(nid) { 2872 pg_data_t *pgdat = NODE_DATA(nid); 2873 free_area_init_node(nid, pgdat, NULL, 2874 find_min_pfn_for_node(nid), NULL); 2875 } 2876 } 2877 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 2878 2879 /** 2880 * set_dma_reserve - set the specified number of pages reserved in the first zone 2881 * @new_dma_reserve: The number of pages to mark reserved 2882 * 2883 * The per-cpu batchsize and zone watermarks are determined by present_pages. 2884 * In the DMA zone, a significant percentage may be consumed by kernel image 2885 * and other unfreeable allocations which can skew the watermarks badly. This 2886 * function may optionally be used to account for unfreeable pages in the 2887 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 2888 * smaller per-cpu batchsize. 2889 */ 2890 void __init set_dma_reserve(unsigned long new_dma_reserve) 2891 { 2892 dma_reserve = new_dma_reserve; 2893 } 2894 2895 #ifndef CONFIG_NEED_MULTIPLE_NODES 2896 static bootmem_data_t contig_bootmem_data; 2897 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 2898 2899 EXPORT_SYMBOL(contig_page_data); 2900 #endif 2901 2902 void __init free_area_init(unsigned long *zones_size) 2903 { 2904 free_area_init_node(0, NODE_DATA(0), zones_size, 2905 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 2906 } 2907 2908 static int page_alloc_cpu_notify(struct notifier_block *self, 2909 unsigned long action, void *hcpu) 2910 { 2911 int cpu = (unsigned long)hcpu; 2912 2913 if (action == CPU_DEAD) { 2914 local_irq_disable(); 2915 __drain_pages(cpu); 2916 vm_events_fold_cpu(cpu); 2917 local_irq_enable(); 2918 refresh_cpu_vm_stats(cpu); 2919 } 2920 return NOTIFY_OK; 2921 } 2922 2923 void __init page_alloc_init(void) 2924 { 2925 hotcpu_notifier(page_alloc_cpu_notify, 0); 2926 } 2927 2928 /* 2929 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 2930 * or min_free_kbytes changes. 2931 */ 2932 static void calculate_totalreserve_pages(void) 2933 { 2934 struct pglist_data *pgdat; 2935 unsigned long reserve_pages = 0; 2936 enum zone_type i, j; 2937 2938 for_each_online_pgdat(pgdat) { 2939 for (i = 0; i < MAX_NR_ZONES; i++) { 2940 struct zone *zone = pgdat->node_zones + i; 2941 unsigned long max = 0; 2942 2943 /* Find valid and maximum lowmem_reserve in the zone */ 2944 for (j = i; j < MAX_NR_ZONES; j++) { 2945 if (zone->lowmem_reserve[j] > max) 2946 max = zone->lowmem_reserve[j]; 2947 } 2948 2949 /* we treat pages_high as reserved pages. */ 2950 max += zone->pages_high; 2951 2952 if (max > zone->present_pages) 2953 max = zone->present_pages; 2954 reserve_pages += max; 2955 } 2956 } 2957 totalreserve_pages = reserve_pages; 2958 } 2959 2960 /* 2961 * setup_per_zone_lowmem_reserve - called whenever 2962 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 2963 * has a correct pages reserved value, so an adequate number of 2964 * pages are left in the zone after a successful __alloc_pages(). 2965 */ 2966 static void setup_per_zone_lowmem_reserve(void) 2967 { 2968 struct pglist_data *pgdat; 2969 enum zone_type j, idx; 2970 2971 for_each_online_pgdat(pgdat) { 2972 for (j = 0; j < MAX_NR_ZONES; j++) { 2973 struct zone *zone = pgdat->node_zones + j; 2974 unsigned long present_pages = zone->present_pages; 2975 2976 zone->lowmem_reserve[j] = 0; 2977 2978 idx = j; 2979 while (idx) { 2980 struct zone *lower_zone; 2981 2982 idx--; 2983 2984 if (sysctl_lowmem_reserve_ratio[idx] < 1) 2985 sysctl_lowmem_reserve_ratio[idx] = 1; 2986 2987 lower_zone = pgdat->node_zones + idx; 2988 lower_zone->lowmem_reserve[j] = present_pages / 2989 sysctl_lowmem_reserve_ratio[idx]; 2990 present_pages += lower_zone->present_pages; 2991 } 2992 } 2993 } 2994 2995 /* update totalreserve_pages */ 2996 calculate_totalreserve_pages(); 2997 } 2998 2999 /** 3000 * setup_per_zone_pages_min - called when min_free_kbytes changes. 3001 * 3002 * Ensures that the pages_{min,low,high} values for each zone are set correctly 3003 * with respect to min_free_kbytes. 3004 */ 3005 void setup_per_zone_pages_min(void) 3006 { 3007 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 3008 unsigned long lowmem_pages = 0; 3009 struct zone *zone; 3010 unsigned long flags; 3011 3012 /* Calculate total number of !ZONE_HIGHMEM pages */ 3013 for_each_zone(zone) { 3014 if (!is_highmem(zone)) 3015 lowmem_pages += zone->present_pages; 3016 } 3017 3018 for_each_zone(zone) { 3019 u64 tmp; 3020 3021 spin_lock_irqsave(&zone->lru_lock, flags); 3022 tmp = (u64)pages_min * zone->present_pages; 3023 do_div(tmp, lowmem_pages); 3024 if (is_highmem(zone)) { 3025 /* 3026 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 3027 * need highmem pages, so cap pages_min to a small 3028 * value here. 3029 * 3030 * The (pages_high-pages_low) and (pages_low-pages_min) 3031 * deltas controls asynch page reclaim, and so should 3032 * not be capped for highmem. 3033 */ 3034 int min_pages; 3035 3036 min_pages = zone->present_pages / 1024; 3037 if (min_pages < SWAP_CLUSTER_MAX) 3038 min_pages = SWAP_CLUSTER_MAX; 3039 if (min_pages > 128) 3040 min_pages = 128; 3041 zone->pages_min = min_pages; 3042 } else { 3043 /* 3044 * If it's a lowmem zone, reserve a number of pages 3045 * proportionate to the zone's size. 3046 */ 3047 zone->pages_min = tmp; 3048 } 3049 3050 zone->pages_low = zone->pages_min + (tmp >> 2); 3051 zone->pages_high = zone->pages_min + (tmp >> 1); 3052 spin_unlock_irqrestore(&zone->lru_lock, flags); 3053 } 3054 3055 /* update totalreserve_pages */ 3056 calculate_totalreserve_pages(); 3057 } 3058 3059 /* 3060 * Initialise min_free_kbytes. 3061 * 3062 * For small machines we want it small (128k min). For large machines 3063 * we want it large (64MB max). But it is not linear, because network 3064 * bandwidth does not increase linearly with machine size. We use 3065 * 3066 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 3067 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 3068 * 3069 * which yields 3070 * 3071 * 16MB: 512k 3072 * 32MB: 724k 3073 * 64MB: 1024k 3074 * 128MB: 1448k 3075 * 256MB: 2048k 3076 * 512MB: 2896k 3077 * 1024MB: 4096k 3078 * 2048MB: 5792k 3079 * 4096MB: 8192k 3080 * 8192MB: 11584k 3081 * 16384MB: 16384k 3082 */ 3083 static int __init init_per_zone_pages_min(void) 3084 { 3085 unsigned long lowmem_kbytes; 3086 3087 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 3088 3089 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 3090 if (min_free_kbytes < 128) 3091 min_free_kbytes = 128; 3092 if (min_free_kbytes > 65536) 3093 min_free_kbytes = 65536; 3094 setup_per_zone_pages_min(); 3095 setup_per_zone_lowmem_reserve(); 3096 return 0; 3097 } 3098 module_init(init_per_zone_pages_min) 3099 3100 /* 3101 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 3102 * that we can call two helper functions whenever min_free_kbytes 3103 * changes. 3104 */ 3105 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 3106 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3107 { 3108 proc_dointvec(table, write, file, buffer, length, ppos); 3109 setup_per_zone_pages_min(); 3110 return 0; 3111 } 3112 3113 #ifdef CONFIG_NUMA 3114 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 3115 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3116 { 3117 struct zone *zone; 3118 int rc; 3119 3120 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 3121 if (rc) 3122 return rc; 3123 3124 for_each_zone(zone) 3125 zone->min_unmapped_pages = (zone->present_pages * 3126 sysctl_min_unmapped_ratio) / 100; 3127 return 0; 3128 } 3129 3130 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 3131 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3132 { 3133 struct zone *zone; 3134 int rc; 3135 3136 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 3137 if (rc) 3138 return rc; 3139 3140 for_each_zone(zone) 3141 zone->min_slab_pages = (zone->present_pages * 3142 sysctl_min_slab_ratio) / 100; 3143 return 0; 3144 } 3145 #endif 3146 3147 /* 3148 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 3149 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 3150 * whenever sysctl_lowmem_reserve_ratio changes. 3151 * 3152 * The reserve ratio obviously has absolutely no relation with the 3153 * pages_min watermarks. The lowmem reserve ratio can only make sense 3154 * if in function of the boot time zone sizes. 3155 */ 3156 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 3157 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3158 { 3159 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 3160 setup_per_zone_lowmem_reserve(); 3161 return 0; 3162 } 3163 3164 /* 3165 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 3166 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 3167 * can have before it gets flushed back to buddy allocator. 3168 */ 3169 3170 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 3171 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3172 { 3173 struct zone *zone; 3174 unsigned int cpu; 3175 int ret; 3176 3177 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 3178 if (!write || (ret == -EINVAL)) 3179 return ret; 3180 for_each_zone(zone) { 3181 for_each_online_cpu(cpu) { 3182 unsigned long high; 3183 high = zone->present_pages / percpu_pagelist_fraction; 3184 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 3185 } 3186 } 3187 return 0; 3188 } 3189 3190 int hashdist = HASHDIST_DEFAULT; 3191 3192 #ifdef CONFIG_NUMA 3193 static int __init set_hashdist(char *str) 3194 { 3195 if (!str) 3196 return 0; 3197 hashdist = simple_strtoul(str, &str, 0); 3198 return 1; 3199 } 3200 __setup("hashdist=", set_hashdist); 3201 #endif 3202 3203 /* 3204 * allocate a large system hash table from bootmem 3205 * - it is assumed that the hash table must contain an exact power-of-2 3206 * quantity of entries 3207 * - limit is the number of hash buckets, not the total allocation size 3208 */ 3209 void *__init alloc_large_system_hash(const char *tablename, 3210 unsigned long bucketsize, 3211 unsigned long numentries, 3212 int scale, 3213 int flags, 3214 unsigned int *_hash_shift, 3215 unsigned int *_hash_mask, 3216 unsigned long limit) 3217 { 3218 unsigned long long max = limit; 3219 unsigned long log2qty, size; 3220 void *table = NULL; 3221 3222 /* allow the kernel cmdline to have a say */ 3223 if (!numentries) { 3224 /* round applicable memory size up to nearest megabyte */ 3225 numentries = nr_kernel_pages; 3226 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 3227 numentries >>= 20 - PAGE_SHIFT; 3228 numentries <<= 20 - PAGE_SHIFT; 3229 3230 /* limit to 1 bucket per 2^scale bytes of low memory */ 3231 if (scale > PAGE_SHIFT) 3232 numentries >>= (scale - PAGE_SHIFT); 3233 else 3234 numentries <<= (PAGE_SHIFT - scale); 3235 } 3236 numentries = roundup_pow_of_two(numentries); 3237 3238 /* limit allocation size to 1/16 total memory by default */ 3239 if (max == 0) { 3240 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 3241 do_div(max, bucketsize); 3242 } 3243 3244 if (numentries > max) 3245 numentries = max; 3246 3247 log2qty = long_log2(numentries); 3248 3249 do { 3250 size = bucketsize << log2qty; 3251 if (flags & HASH_EARLY) 3252 table = alloc_bootmem(size); 3253 else if (hashdist) 3254 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 3255 else { 3256 unsigned long order; 3257 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 3258 ; 3259 table = (void*) __get_free_pages(GFP_ATOMIC, order); 3260 } 3261 } while (!table && size > PAGE_SIZE && --log2qty); 3262 3263 if (!table) 3264 panic("Failed to allocate %s hash table\n", tablename); 3265 3266 printk("%s hash table entries: %d (order: %d, %lu bytes)\n", 3267 tablename, 3268 (1U << log2qty), 3269 long_log2(size) - PAGE_SHIFT, 3270 size); 3271 3272 if (_hash_shift) 3273 *_hash_shift = log2qty; 3274 if (_hash_mask) 3275 *_hash_mask = (1 << log2qty) - 1; 3276 3277 return table; 3278 } 3279 3280 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE 3281 struct page *pfn_to_page(unsigned long pfn) 3282 { 3283 return __pfn_to_page(pfn); 3284 } 3285 unsigned long page_to_pfn(struct page *page) 3286 { 3287 return __page_to_pfn(page); 3288 } 3289 EXPORT_SYMBOL(pfn_to_page); 3290 EXPORT_SYMBOL(page_to_pfn); 3291 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ 3292 3293 #if MAX_NUMNODES > 1 3294 /* 3295 * Find the highest possible node id. 3296 */ 3297 int highest_possible_node_id(void) 3298 { 3299 unsigned int node; 3300 unsigned int highest = 0; 3301 3302 for_each_node_mask(node, node_possible_map) 3303 highest = node; 3304 return highest; 3305 } 3306 EXPORT_SYMBOL(highest_possible_node_id); 3307 #endif 3308