xref: /openbmc/linux/mm/page_alloc.c (revision 15ad7cdcfd76450d4beebc789ec646664238184d)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46 #include "internal.h"
47 
48 /*
49  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
50  * initializer cleaner
51  */
52 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
53 EXPORT_SYMBOL(node_online_map);
54 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
55 EXPORT_SYMBOL(node_possible_map);
56 unsigned long totalram_pages __read_mostly;
57 unsigned long totalreserve_pages __read_mostly;
58 long nr_swap_pages;
59 int percpu_pagelist_fraction;
60 
61 static void __free_pages_ok(struct page *page, unsigned int order);
62 
63 /*
64  * results with 256, 32 in the lowmem_reserve sysctl:
65  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
66  *	1G machine -> (16M dma, 784M normal, 224M high)
67  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
68  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
69  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
70  *
71  * TBD: should special case ZONE_DMA32 machines here - in those we normally
72  * don't need any ZONE_NORMAL reservation
73  */
74 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
75 	 256,
76 #ifdef CONFIG_ZONE_DMA32
77 	 256,
78 #endif
79 #ifdef CONFIG_HIGHMEM
80 	 32
81 #endif
82 };
83 
84 EXPORT_SYMBOL(totalram_pages);
85 
86 static char * const zone_names[MAX_NR_ZONES] = {
87 	 "DMA",
88 #ifdef CONFIG_ZONE_DMA32
89 	 "DMA32",
90 #endif
91 	 "Normal",
92 #ifdef CONFIG_HIGHMEM
93 	 "HighMem"
94 #endif
95 };
96 
97 int min_free_kbytes = 1024;
98 
99 unsigned long __meminitdata nr_kernel_pages;
100 unsigned long __meminitdata nr_all_pages;
101 static unsigned long __initdata dma_reserve;
102 
103 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
104   /*
105    * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
106    * ranges of memory (RAM) that may be registered with add_active_range().
107    * Ranges passed to add_active_range() will be merged if possible
108    * so the number of times add_active_range() can be called is
109    * related to the number of nodes and the number of holes
110    */
111   #ifdef CONFIG_MAX_ACTIVE_REGIONS
112     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
113     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
114   #else
115     #if MAX_NUMNODES >= 32
116       /* If there can be many nodes, allow up to 50 holes per node */
117       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
118     #else
119       /* By default, allow up to 256 distinct regions */
120       #define MAX_ACTIVE_REGIONS 256
121     #endif
122   #endif
123 
124   struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
125   int __initdata nr_nodemap_entries;
126   unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
127   unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
128 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
129   unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
130   unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
131 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
132 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
133 
134 #ifdef CONFIG_DEBUG_VM
135 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
136 {
137 	int ret = 0;
138 	unsigned seq;
139 	unsigned long pfn = page_to_pfn(page);
140 
141 	do {
142 		seq = zone_span_seqbegin(zone);
143 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
144 			ret = 1;
145 		else if (pfn < zone->zone_start_pfn)
146 			ret = 1;
147 	} while (zone_span_seqretry(zone, seq));
148 
149 	return ret;
150 }
151 
152 static int page_is_consistent(struct zone *zone, struct page *page)
153 {
154 #ifdef CONFIG_HOLES_IN_ZONE
155 	if (!pfn_valid(page_to_pfn(page)))
156 		return 0;
157 #endif
158 	if (zone != page_zone(page))
159 		return 0;
160 
161 	return 1;
162 }
163 /*
164  * Temporary debugging check for pages not lying within a given zone.
165  */
166 static int bad_range(struct zone *zone, struct page *page)
167 {
168 	if (page_outside_zone_boundaries(zone, page))
169 		return 1;
170 	if (!page_is_consistent(zone, page))
171 		return 1;
172 
173 	return 0;
174 }
175 #else
176 static inline int bad_range(struct zone *zone, struct page *page)
177 {
178 	return 0;
179 }
180 #endif
181 
182 static void bad_page(struct page *page)
183 {
184 	printk(KERN_EMERG "Bad page state in process '%s'\n"
185 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
186 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
187 		KERN_EMERG "Backtrace:\n",
188 		current->comm, page, (int)(2*sizeof(unsigned long)),
189 		(unsigned long)page->flags, page->mapping,
190 		page_mapcount(page), page_count(page));
191 	dump_stack();
192 	page->flags &= ~(1 << PG_lru	|
193 			1 << PG_private |
194 			1 << PG_locked	|
195 			1 << PG_active	|
196 			1 << PG_dirty	|
197 			1 << PG_reclaim |
198 			1 << PG_slab    |
199 			1 << PG_swapcache |
200 			1 << PG_writeback |
201 			1 << PG_buddy );
202 	set_page_count(page, 0);
203 	reset_page_mapcount(page);
204 	page->mapping = NULL;
205 	add_taint(TAINT_BAD_PAGE);
206 }
207 
208 /*
209  * Higher-order pages are called "compound pages".  They are structured thusly:
210  *
211  * The first PAGE_SIZE page is called the "head page".
212  *
213  * The remaining PAGE_SIZE pages are called "tail pages".
214  *
215  * All pages have PG_compound set.  All pages have their ->private pointing at
216  * the head page (even the head page has this).
217  *
218  * The first tail page's ->lru.next holds the address of the compound page's
219  * put_page() function.  Its ->lru.prev holds the order of allocation.
220  * This usage means that zero-order pages may not be compound.
221  */
222 
223 static void free_compound_page(struct page *page)
224 {
225 	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
226 }
227 
228 static void prep_compound_page(struct page *page, unsigned long order)
229 {
230 	int i;
231 	int nr_pages = 1 << order;
232 
233 	set_compound_page_dtor(page, free_compound_page);
234 	page[1].lru.prev = (void *)order;
235 	for (i = 0; i < nr_pages; i++) {
236 		struct page *p = page + i;
237 
238 		__SetPageCompound(p);
239 		set_page_private(p, (unsigned long)page);
240 	}
241 }
242 
243 static void destroy_compound_page(struct page *page, unsigned long order)
244 {
245 	int i;
246 	int nr_pages = 1 << order;
247 
248 	if (unlikely((unsigned long)page[1].lru.prev != order))
249 		bad_page(page);
250 
251 	for (i = 0; i < nr_pages; i++) {
252 		struct page *p = page + i;
253 
254 		if (unlikely(!PageCompound(p) |
255 				(page_private(p) != (unsigned long)page)))
256 			bad_page(page);
257 		__ClearPageCompound(p);
258 	}
259 }
260 
261 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
262 {
263 	int i;
264 
265 	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
266 	/*
267 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
268 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
269 	 */
270 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
271 	for (i = 0; i < (1 << order); i++)
272 		clear_highpage(page + i);
273 }
274 
275 /*
276  * function for dealing with page's order in buddy system.
277  * zone->lock is already acquired when we use these.
278  * So, we don't need atomic page->flags operations here.
279  */
280 static inline unsigned long page_order(struct page *page)
281 {
282 	return page_private(page);
283 }
284 
285 static inline void set_page_order(struct page *page, int order)
286 {
287 	set_page_private(page, order);
288 	__SetPageBuddy(page);
289 }
290 
291 static inline void rmv_page_order(struct page *page)
292 {
293 	__ClearPageBuddy(page);
294 	set_page_private(page, 0);
295 }
296 
297 /*
298  * Locate the struct page for both the matching buddy in our
299  * pair (buddy1) and the combined O(n+1) page they form (page).
300  *
301  * 1) Any buddy B1 will have an order O twin B2 which satisfies
302  * the following equation:
303  *     B2 = B1 ^ (1 << O)
304  * For example, if the starting buddy (buddy2) is #8 its order
305  * 1 buddy is #10:
306  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
307  *
308  * 2) Any buddy B will have an order O+1 parent P which
309  * satisfies the following equation:
310  *     P = B & ~(1 << O)
311  *
312  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
313  */
314 static inline struct page *
315 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
316 {
317 	unsigned long buddy_idx = page_idx ^ (1 << order);
318 
319 	return page + (buddy_idx - page_idx);
320 }
321 
322 static inline unsigned long
323 __find_combined_index(unsigned long page_idx, unsigned int order)
324 {
325 	return (page_idx & ~(1 << order));
326 }
327 
328 /*
329  * This function checks whether a page is free && is the buddy
330  * we can do coalesce a page and its buddy if
331  * (a) the buddy is not in a hole &&
332  * (b) the buddy is in the buddy system &&
333  * (c) a page and its buddy have the same order &&
334  * (d) a page and its buddy are in the same zone.
335  *
336  * For recording whether a page is in the buddy system, we use PG_buddy.
337  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
338  *
339  * For recording page's order, we use page_private(page).
340  */
341 static inline int page_is_buddy(struct page *page, struct page *buddy,
342 								int order)
343 {
344 #ifdef CONFIG_HOLES_IN_ZONE
345 	if (!pfn_valid(page_to_pfn(buddy)))
346 		return 0;
347 #endif
348 
349 	if (page_zone_id(page) != page_zone_id(buddy))
350 		return 0;
351 
352 	if (PageBuddy(buddy) && page_order(buddy) == order) {
353 		BUG_ON(page_count(buddy) != 0);
354 		return 1;
355 	}
356 	return 0;
357 }
358 
359 /*
360  * Freeing function for a buddy system allocator.
361  *
362  * The concept of a buddy system is to maintain direct-mapped table
363  * (containing bit values) for memory blocks of various "orders".
364  * The bottom level table contains the map for the smallest allocatable
365  * units of memory (here, pages), and each level above it describes
366  * pairs of units from the levels below, hence, "buddies".
367  * At a high level, all that happens here is marking the table entry
368  * at the bottom level available, and propagating the changes upward
369  * as necessary, plus some accounting needed to play nicely with other
370  * parts of the VM system.
371  * At each level, we keep a list of pages, which are heads of continuous
372  * free pages of length of (1 << order) and marked with PG_buddy. Page's
373  * order is recorded in page_private(page) field.
374  * So when we are allocating or freeing one, we can derive the state of the
375  * other.  That is, if we allocate a small block, and both were
376  * free, the remainder of the region must be split into blocks.
377  * If a block is freed, and its buddy is also free, then this
378  * triggers coalescing into a block of larger size.
379  *
380  * -- wli
381  */
382 
383 static inline void __free_one_page(struct page *page,
384 		struct zone *zone, unsigned int order)
385 {
386 	unsigned long page_idx;
387 	int order_size = 1 << order;
388 
389 	if (unlikely(PageCompound(page)))
390 		destroy_compound_page(page, order);
391 
392 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
393 
394 	VM_BUG_ON(page_idx & (order_size - 1));
395 	VM_BUG_ON(bad_range(zone, page));
396 
397 	zone->free_pages += order_size;
398 	while (order < MAX_ORDER-1) {
399 		unsigned long combined_idx;
400 		struct free_area *area;
401 		struct page *buddy;
402 
403 		buddy = __page_find_buddy(page, page_idx, order);
404 		if (!page_is_buddy(page, buddy, order))
405 			break;		/* Move the buddy up one level. */
406 
407 		list_del(&buddy->lru);
408 		area = zone->free_area + order;
409 		area->nr_free--;
410 		rmv_page_order(buddy);
411 		combined_idx = __find_combined_index(page_idx, order);
412 		page = page + (combined_idx - page_idx);
413 		page_idx = combined_idx;
414 		order++;
415 	}
416 	set_page_order(page, order);
417 	list_add(&page->lru, &zone->free_area[order].free_list);
418 	zone->free_area[order].nr_free++;
419 }
420 
421 static inline int free_pages_check(struct page *page)
422 {
423 	if (unlikely(page_mapcount(page) |
424 		(page->mapping != NULL)  |
425 		(page_count(page) != 0)  |
426 		(page->flags & (
427 			1 << PG_lru	|
428 			1 << PG_private |
429 			1 << PG_locked	|
430 			1 << PG_active	|
431 			1 << PG_reclaim	|
432 			1 << PG_slab	|
433 			1 << PG_swapcache |
434 			1 << PG_writeback |
435 			1 << PG_reserved |
436 			1 << PG_buddy ))))
437 		bad_page(page);
438 	if (PageDirty(page))
439 		__ClearPageDirty(page);
440 	/*
441 	 * For now, we report if PG_reserved was found set, but do not
442 	 * clear it, and do not free the page.  But we shall soon need
443 	 * to do more, for when the ZERO_PAGE count wraps negative.
444 	 */
445 	return PageReserved(page);
446 }
447 
448 /*
449  * Frees a list of pages.
450  * Assumes all pages on list are in same zone, and of same order.
451  * count is the number of pages to free.
452  *
453  * If the zone was previously in an "all pages pinned" state then look to
454  * see if this freeing clears that state.
455  *
456  * And clear the zone's pages_scanned counter, to hold off the "all pages are
457  * pinned" detection logic.
458  */
459 static void free_pages_bulk(struct zone *zone, int count,
460 					struct list_head *list, int order)
461 {
462 	spin_lock(&zone->lock);
463 	zone->all_unreclaimable = 0;
464 	zone->pages_scanned = 0;
465 	while (count--) {
466 		struct page *page;
467 
468 		VM_BUG_ON(list_empty(list));
469 		page = list_entry(list->prev, struct page, lru);
470 		/* have to delete it as __free_one_page list manipulates */
471 		list_del(&page->lru);
472 		__free_one_page(page, zone, order);
473 	}
474 	spin_unlock(&zone->lock);
475 }
476 
477 static void free_one_page(struct zone *zone, struct page *page, int order)
478 {
479 	spin_lock(&zone->lock);
480 	zone->all_unreclaimable = 0;
481 	zone->pages_scanned = 0;
482 	__free_one_page(page, zone, order);
483 	spin_unlock(&zone->lock);
484 }
485 
486 static void __free_pages_ok(struct page *page, unsigned int order)
487 {
488 	unsigned long flags;
489 	int i;
490 	int reserved = 0;
491 
492 	for (i = 0 ; i < (1 << order) ; ++i)
493 		reserved += free_pages_check(page + i);
494 	if (reserved)
495 		return;
496 
497 	if (!PageHighMem(page))
498 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
499 	arch_free_page(page, order);
500 	kernel_map_pages(page, 1 << order, 0);
501 
502 	local_irq_save(flags);
503 	__count_vm_events(PGFREE, 1 << order);
504 	free_one_page(page_zone(page), page, order);
505 	local_irq_restore(flags);
506 }
507 
508 /*
509  * permit the bootmem allocator to evade page validation on high-order frees
510  */
511 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
512 {
513 	if (order == 0) {
514 		__ClearPageReserved(page);
515 		set_page_count(page, 0);
516 		set_page_refcounted(page);
517 		__free_page(page);
518 	} else {
519 		int loop;
520 
521 		prefetchw(page);
522 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
523 			struct page *p = &page[loop];
524 
525 			if (loop + 1 < BITS_PER_LONG)
526 				prefetchw(p + 1);
527 			__ClearPageReserved(p);
528 			set_page_count(p, 0);
529 		}
530 
531 		set_page_refcounted(page);
532 		__free_pages(page, order);
533 	}
534 }
535 
536 
537 /*
538  * The order of subdivision here is critical for the IO subsystem.
539  * Please do not alter this order without good reasons and regression
540  * testing. Specifically, as large blocks of memory are subdivided,
541  * the order in which smaller blocks are delivered depends on the order
542  * they're subdivided in this function. This is the primary factor
543  * influencing the order in which pages are delivered to the IO
544  * subsystem according to empirical testing, and this is also justified
545  * by considering the behavior of a buddy system containing a single
546  * large block of memory acted on by a series of small allocations.
547  * This behavior is a critical factor in sglist merging's success.
548  *
549  * -- wli
550  */
551 static inline void expand(struct zone *zone, struct page *page,
552  	int low, int high, struct free_area *area)
553 {
554 	unsigned long size = 1 << high;
555 
556 	while (high > low) {
557 		area--;
558 		high--;
559 		size >>= 1;
560 		VM_BUG_ON(bad_range(zone, &page[size]));
561 		list_add(&page[size].lru, &area->free_list);
562 		area->nr_free++;
563 		set_page_order(&page[size], high);
564 	}
565 }
566 
567 /*
568  * This page is about to be returned from the page allocator
569  */
570 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
571 {
572 	if (unlikely(page_mapcount(page) |
573 		(page->mapping != NULL)  |
574 		(page_count(page) != 0)  |
575 		(page->flags & (
576 			1 << PG_lru	|
577 			1 << PG_private	|
578 			1 << PG_locked	|
579 			1 << PG_active	|
580 			1 << PG_dirty	|
581 			1 << PG_reclaim	|
582 			1 << PG_slab    |
583 			1 << PG_swapcache |
584 			1 << PG_writeback |
585 			1 << PG_reserved |
586 			1 << PG_buddy ))))
587 		bad_page(page);
588 
589 	/*
590 	 * For now, we report if PG_reserved was found set, but do not
591 	 * clear it, and do not allocate the page: as a safety net.
592 	 */
593 	if (PageReserved(page))
594 		return 1;
595 
596 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
597 			1 << PG_referenced | 1 << PG_arch_1 |
598 			1 << PG_checked | 1 << PG_mappedtodisk);
599 	set_page_private(page, 0);
600 	set_page_refcounted(page);
601 
602 	arch_alloc_page(page, order);
603 	kernel_map_pages(page, 1 << order, 1);
604 
605 	if (gfp_flags & __GFP_ZERO)
606 		prep_zero_page(page, order, gfp_flags);
607 
608 	if (order && (gfp_flags & __GFP_COMP))
609 		prep_compound_page(page, order);
610 
611 	return 0;
612 }
613 
614 /*
615  * Do the hard work of removing an element from the buddy allocator.
616  * Call me with the zone->lock already held.
617  */
618 static struct page *__rmqueue(struct zone *zone, unsigned int order)
619 {
620 	struct free_area * area;
621 	unsigned int current_order;
622 	struct page *page;
623 
624 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
625 		area = zone->free_area + current_order;
626 		if (list_empty(&area->free_list))
627 			continue;
628 
629 		page = list_entry(area->free_list.next, struct page, lru);
630 		list_del(&page->lru);
631 		rmv_page_order(page);
632 		area->nr_free--;
633 		zone->free_pages -= 1UL << order;
634 		expand(zone, page, order, current_order, area);
635 		return page;
636 	}
637 
638 	return NULL;
639 }
640 
641 /*
642  * Obtain a specified number of elements from the buddy allocator, all under
643  * a single hold of the lock, for efficiency.  Add them to the supplied list.
644  * Returns the number of new pages which were placed at *list.
645  */
646 static int rmqueue_bulk(struct zone *zone, unsigned int order,
647 			unsigned long count, struct list_head *list)
648 {
649 	int i;
650 
651 	spin_lock(&zone->lock);
652 	for (i = 0; i < count; ++i) {
653 		struct page *page = __rmqueue(zone, order);
654 		if (unlikely(page == NULL))
655 			break;
656 		list_add_tail(&page->lru, list);
657 	}
658 	spin_unlock(&zone->lock);
659 	return i;
660 }
661 
662 #ifdef CONFIG_NUMA
663 /*
664  * Called from the slab reaper to drain pagesets on a particular node that
665  * belongs to the currently executing processor.
666  * Note that this function must be called with the thread pinned to
667  * a single processor.
668  */
669 void drain_node_pages(int nodeid)
670 {
671 	int i;
672 	enum zone_type z;
673 	unsigned long flags;
674 
675 	for (z = 0; z < MAX_NR_ZONES; z++) {
676 		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
677 		struct per_cpu_pageset *pset;
678 
679 		if (!populated_zone(zone))
680 			continue;
681 
682 		pset = zone_pcp(zone, smp_processor_id());
683 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
684 			struct per_cpu_pages *pcp;
685 
686 			pcp = &pset->pcp[i];
687 			if (pcp->count) {
688 				int to_drain;
689 
690 				local_irq_save(flags);
691 				if (pcp->count >= pcp->batch)
692 					to_drain = pcp->batch;
693 				else
694 					to_drain = pcp->count;
695 				free_pages_bulk(zone, to_drain, &pcp->list, 0);
696 				pcp->count -= to_drain;
697 				local_irq_restore(flags);
698 			}
699 		}
700 	}
701 }
702 #endif
703 
704 static void __drain_pages(unsigned int cpu)
705 {
706 	unsigned long flags;
707 	struct zone *zone;
708 	int i;
709 
710 	for_each_zone(zone) {
711 		struct per_cpu_pageset *pset;
712 
713 		pset = zone_pcp(zone, cpu);
714 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
715 			struct per_cpu_pages *pcp;
716 
717 			pcp = &pset->pcp[i];
718 			local_irq_save(flags);
719 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
720 			pcp->count = 0;
721 			local_irq_restore(flags);
722 		}
723 	}
724 }
725 
726 #ifdef CONFIG_PM
727 
728 void mark_free_pages(struct zone *zone)
729 {
730 	unsigned long pfn, max_zone_pfn;
731 	unsigned long flags;
732 	int order;
733 	struct list_head *curr;
734 
735 	if (!zone->spanned_pages)
736 		return;
737 
738 	spin_lock_irqsave(&zone->lock, flags);
739 
740 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
741 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
742 		if (pfn_valid(pfn)) {
743 			struct page *page = pfn_to_page(pfn);
744 
745 			if (!PageNosave(page))
746 				ClearPageNosaveFree(page);
747 		}
748 
749 	for (order = MAX_ORDER - 1; order >= 0; --order)
750 		list_for_each(curr, &zone->free_area[order].free_list) {
751 			unsigned long i;
752 
753 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
754 			for (i = 0; i < (1UL << order); i++)
755 				SetPageNosaveFree(pfn_to_page(pfn + i));
756 		}
757 
758 	spin_unlock_irqrestore(&zone->lock, flags);
759 }
760 
761 /*
762  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
763  */
764 void drain_local_pages(void)
765 {
766 	unsigned long flags;
767 
768 	local_irq_save(flags);
769 	__drain_pages(smp_processor_id());
770 	local_irq_restore(flags);
771 }
772 #endif /* CONFIG_PM */
773 
774 /*
775  * Free a 0-order page
776  */
777 static void fastcall free_hot_cold_page(struct page *page, int cold)
778 {
779 	struct zone *zone = page_zone(page);
780 	struct per_cpu_pages *pcp;
781 	unsigned long flags;
782 
783 	if (PageAnon(page))
784 		page->mapping = NULL;
785 	if (free_pages_check(page))
786 		return;
787 
788 	if (!PageHighMem(page))
789 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
790 	arch_free_page(page, 0);
791 	kernel_map_pages(page, 1, 0);
792 
793 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
794 	local_irq_save(flags);
795 	__count_vm_event(PGFREE);
796 	list_add(&page->lru, &pcp->list);
797 	pcp->count++;
798 	if (pcp->count >= pcp->high) {
799 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
800 		pcp->count -= pcp->batch;
801 	}
802 	local_irq_restore(flags);
803 	put_cpu();
804 }
805 
806 void fastcall free_hot_page(struct page *page)
807 {
808 	free_hot_cold_page(page, 0);
809 }
810 
811 void fastcall free_cold_page(struct page *page)
812 {
813 	free_hot_cold_page(page, 1);
814 }
815 
816 /*
817  * split_page takes a non-compound higher-order page, and splits it into
818  * n (1<<order) sub-pages: page[0..n]
819  * Each sub-page must be freed individually.
820  *
821  * Note: this is probably too low level an operation for use in drivers.
822  * Please consult with lkml before using this in your driver.
823  */
824 void split_page(struct page *page, unsigned int order)
825 {
826 	int i;
827 
828 	VM_BUG_ON(PageCompound(page));
829 	VM_BUG_ON(!page_count(page));
830 	for (i = 1; i < (1 << order); i++)
831 		set_page_refcounted(page + i);
832 }
833 
834 /*
835  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
836  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
837  * or two.
838  */
839 static struct page *buffered_rmqueue(struct zonelist *zonelist,
840 			struct zone *zone, int order, gfp_t gfp_flags)
841 {
842 	unsigned long flags;
843 	struct page *page;
844 	int cold = !!(gfp_flags & __GFP_COLD);
845 	int cpu;
846 
847 again:
848 	cpu  = get_cpu();
849 	if (likely(order == 0)) {
850 		struct per_cpu_pages *pcp;
851 
852 		pcp = &zone_pcp(zone, cpu)->pcp[cold];
853 		local_irq_save(flags);
854 		if (!pcp->count) {
855 			pcp->count = rmqueue_bulk(zone, 0,
856 						pcp->batch, &pcp->list);
857 			if (unlikely(!pcp->count))
858 				goto failed;
859 		}
860 		page = list_entry(pcp->list.next, struct page, lru);
861 		list_del(&page->lru);
862 		pcp->count--;
863 	} else {
864 		spin_lock_irqsave(&zone->lock, flags);
865 		page = __rmqueue(zone, order);
866 		spin_unlock(&zone->lock);
867 		if (!page)
868 			goto failed;
869 	}
870 
871 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
872 	zone_statistics(zonelist, zone);
873 	local_irq_restore(flags);
874 	put_cpu();
875 
876 	VM_BUG_ON(bad_range(zone, page));
877 	if (prep_new_page(page, order, gfp_flags))
878 		goto again;
879 	return page;
880 
881 failed:
882 	local_irq_restore(flags);
883 	put_cpu();
884 	return NULL;
885 }
886 
887 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
888 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
889 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
890 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
891 #define ALLOC_HARDER		0x10 /* try to alloc harder */
892 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
893 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
894 
895 /*
896  * Return 1 if free pages are above 'mark'. This takes into account the order
897  * of the allocation.
898  */
899 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
900 		      int classzone_idx, int alloc_flags)
901 {
902 	/* free_pages my go negative - that's OK */
903 	unsigned long min = mark;
904 	long free_pages = z->free_pages - (1 << order) + 1;
905 	int o;
906 
907 	if (alloc_flags & ALLOC_HIGH)
908 		min -= min / 2;
909 	if (alloc_flags & ALLOC_HARDER)
910 		min -= min / 4;
911 
912 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
913 		return 0;
914 	for (o = 0; o < order; o++) {
915 		/* At the next order, this order's pages become unavailable */
916 		free_pages -= z->free_area[o].nr_free << o;
917 
918 		/* Require fewer higher order pages to be free */
919 		min >>= 1;
920 
921 		if (free_pages <= min)
922 			return 0;
923 	}
924 	return 1;
925 }
926 
927 #ifdef CONFIG_NUMA
928 /*
929  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
930  * skip over zones that are not allowed by the cpuset, or that have
931  * been recently (in last second) found to be nearly full.  See further
932  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
933  * that have to skip over alot of full or unallowed zones.
934  *
935  * If the zonelist cache is present in the passed in zonelist, then
936  * returns a pointer to the allowed node mask (either the current
937  * tasks mems_allowed, or node_online_map.)
938  *
939  * If the zonelist cache is not available for this zonelist, does
940  * nothing and returns NULL.
941  *
942  * If the fullzones BITMAP in the zonelist cache is stale (more than
943  * a second since last zap'd) then we zap it out (clear its bits.)
944  *
945  * We hold off even calling zlc_setup, until after we've checked the
946  * first zone in the zonelist, on the theory that most allocations will
947  * be satisfied from that first zone, so best to examine that zone as
948  * quickly as we can.
949  */
950 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
951 {
952 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
953 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
954 
955 	zlc = zonelist->zlcache_ptr;
956 	if (!zlc)
957 		return NULL;
958 
959 	if (jiffies - zlc->last_full_zap > 1 * HZ) {
960 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
961 		zlc->last_full_zap = jiffies;
962 	}
963 
964 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
965 					&cpuset_current_mems_allowed :
966 					&node_online_map;
967 	return allowednodes;
968 }
969 
970 /*
971  * Given 'z' scanning a zonelist, run a couple of quick checks to see
972  * if it is worth looking at further for free memory:
973  *  1) Check that the zone isn't thought to be full (doesn't have its
974  *     bit set in the zonelist_cache fullzones BITMAP).
975  *  2) Check that the zones node (obtained from the zonelist_cache
976  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
977  * Return true (non-zero) if zone is worth looking at further, or
978  * else return false (zero) if it is not.
979  *
980  * This check -ignores- the distinction between various watermarks,
981  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
982  * found to be full for any variation of these watermarks, it will
983  * be considered full for up to one second by all requests, unless
984  * we are so low on memory on all allowed nodes that we are forced
985  * into the second scan of the zonelist.
986  *
987  * In the second scan we ignore this zonelist cache and exactly
988  * apply the watermarks to all zones, even it is slower to do so.
989  * We are low on memory in the second scan, and should leave no stone
990  * unturned looking for a free page.
991  */
992 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
993 						nodemask_t *allowednodes)
994 {
995 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
996 	int i;				/* index of *z in zonelist zones */
997 	int n;				/* node that zone *z is on */
998 
999 	zlc = zonelist->zlcache_ptr;
1000 	if (!zlc)
1001 		return 1;
1002 
1003 	i = z - zonelist->zones;
1004 	n = zlc->z_to_n[i];
1005 
1006 	/* This zone is worth trying if it is allowed but not full */
1007 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1008 }
1009 
1010 /*
1011  * Given 'z' scanning a zonelist, set the corresponding bit in
1012  * zlc->fullzones, so that subsequent attempts to allocate a page
1013  * from that zone don't waste time re-examining it.
1014  */
1015 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1016 {
1017 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1018 	int i;				/* index of *z in zonelist zones */
1019 
1020 	zlc = zonelist->zlcache_ptr;
1021 	if (!zlc)
1022 		return;
1023 
1024 	i = z - zonelist->zones;
1025 
1026 	set_bit(i, zlc->fullzones);
1027 }
1028 
1029 #else	/* CONFIG_NUMA */
1030 
1031 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1032 {
1033 	return NULL;
1034 }
1035 
1036 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1037 				nodemask_t *allowednodes)
1038 {
1039 	return 1;
1040 }
1041 
1042 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1043 {
1044 }
1045 #endif	/* CONFIG_NUMA */
1046 
1047 /*
1048  * get_page_from_freelist goes through the zonelist trying to allocate
1049  * a page.
1050  */
1051 static struct page *
1052 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1053 		struct zonelist *zonelist, int alloc_flags)
1054 {
1055 	struct zone **z;
1056 	struct page *page = NULL;
1057 	int classzone_idx = zone_idx(zonelist->zones[0]);
1058 	struct zone *zone;
1059 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1060 	int zlc_active = 0;		/* set if using zonelist_cache */
1061 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1062 
1063 zonelist_scan:
1064 	/*
1065 	 * Scan zonelist, looking for a zone with enough free.
1066 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1067 	 */
1068 	z = zonelist->zones;
1069 
1070 	do {
1071 		if (NUMA_BUILD && zlc_active &&
1072 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1073 				continue;
1074 		zone = *z;
1075 		if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1076 			zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1077 				break;
1078 		if ((alloc_flags & ALLOC_CPUSET) &&
1079 			!cpuset_zone_allowed(zone, gfp_mask))
1080 				goto try_next_zone;
1081 
1082 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1083 			unsigned long mark;
1084 			if (alloc_flags & ALLOC_WMARK_MIN)
1085 				mark = zone->pages_min;
1086 			else if (alloc_flags & ALLOC_WMARK_LOW)
1087 				mark = zone->pages_low;
1088 			else
1089 				mark = zone->pages_high;
1090 			if (!zone_watermark_ok(zone, order, mark,
1091 				    classzone_idx, alloc_flags)) {
1092 				if (!zone_reclaim_mode ||
1093 				    !zone_reclaim(zone, gfp_mask, order))
1094 					goto this_zone_full;
1095 			}
1096 		}
1097 
1098 		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1099 		if (page)
1100 			break;
1101 this_zone_full:
1102 		if (NUMA_BUILD)
1103 			zlc_mark_zone_full(zonelist, z);
1104 try_next_zone:
1105 		if (NUMA_BUILD && !did_zlc_setup) {
1106 			/* we do zlc_setup after the first zone is tried */
1107 			allowednodes = zlc_setup(zonelist, alloc_flags);
1108 			zlc_active = 1;
1109 			did_zlc_setup = 1;
1110 		}
1111 	} while (*(++z) != NULL);
1112 
1113 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1114 		/* Disable zlc cache for second zonelist scan */
1115 		zlc_active = 0;
1116 		goto zonelist_scan;
1117 	}
1118 	return page;
1119 }
1120 
1121 /*
1122  * This is the 'heart' of the zoned buddy allocator.
1123  */
1124 struct page * fastcall
1125 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1126 		struct zonelist *zonelist)
1127 {
1128 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1129 	struct zone **z;
1130 	struct page *page;
1131 	struct reclaim_state reclaim_state;
1132 	struct task_struct *p = current;
1133 	int do_retry;
1134 	int alloc_flags;
1135 	int did_some_progress;
1136 
1137 	might_sleep_if(wait);
1138 
1139 restart:
1140 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1141 
1142 	if (unlikely(*z == NULL)) {
1143 		/* Should this ever happen?? */
1144 		return NULL;
1145 	}
1146 
1147 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1148 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1149 	if (page)
1150 		goto got_pg;
1151 
1152 	/*
1153 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1154 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1155 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1156 	 * using a larger set of nodes after it has established that the
1157 	 * allowed per node queues are empty and that nodes are
1158 	 * over allocated.
1159 	 */
1160 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1161 		goto nopage;
1162 
1163 	for (z = zonelist->zones; *z; z++)
1164 		wakeup_kswapd(*z, order);
1165 
1166 	/*
1167 	 * OK, we're below the kswapd watermark and have kicked background
1168 	 * reclaim. Now things get more complex, so set up alloc_flags according
1169 	 * to how we want to proceed.
1170 	 *
1171 	 * The caller may dip into page reserves a bit more if the caller
1172 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1173 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1174 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1175 	 */
1176 	alloc_flags = ALLOC_WMARK_MIN;
1177 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1178 		alloc_flags |= ALLOC_HARDER;
1179 	if (gfp_mask & __GFP_HIGH)
1180 		alloc_flags |= ALLOC_HIGH;
1181 	if (wait)
1182 		alloc_flags |= ALLOC_CPUSET;
1183 
1184 	/*
1185 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1186 	 * coming from realtime tasks go deeper into reserves.
1187 	 *
1188 	 * This is the last chance, in general, before the goto nopage.
1189 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1190 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1191 	 */
1192 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1193 	if (page)
1194 		goto got_pg;
1195 
1196 	/* This allocation should allow future memory freeing. */
1197 
1198 rebalance:
1199 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1200 			&& !in_interrupt()) {
1201 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1202 nofail_alloc:
1203 			/* go through the zonelist yet again, ignoring mins */
1204 			page = get_page_from_freelist(gfp_mask, order,
1205 				zonelist, ALLOC_NO_WATERMARKS);
1206 			if (page)
1207 				goto got_pg;
1208 			if (gfp_mask & __GFP_NOFAIL) {
1209 				congestion_wait(WRITE, HZ/50);
1210 				goto nofail_alloc;
1211 			}
1212 		}
1213 		goto nopage;
1214 	}
1215 
1216 	/* Atomic allocations - we can't balance anything */
1217 	if (!wait)
1218 		goto nopage;
1219 
1220 	cond_resched();
1221 
1222 	/* We now go into synchronous reclaim */
1223 	cpuset_memory_pressure_bump();
1224 	p->flags |= PF_MEMALLOC;
1225 	reclaim_state.reclaimed_slab = 0;
1226 	p->reclaim_state = &reclaim_state;
1227 
1228 	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1229 
1230 	p->reclaim_state = NULL;
1231 	p->flags &= ~PF_MEMALLOC;
1232 
1233 	cond_resched();
1234 
1235 	if (likely(did_some_progress)) {
1236 		page = get_page_from_freelist(gfp_mask, order,
1237 						zonelist, alloc_flags);
1238 		if (page)
1239 			goto got_pg;
1240 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1241 		/*
1242 		 * Go through the zonelist yet one more time, keep
1243 		 * very high watermark here, this is only to catch
1244 		 * a parallel oom killing, we must fail if we're still
1245 		 * under heavy pressure.
1246 		 */
1247 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1248 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1249 		if (page)
1250 			goto got_pg;
1251 
1252 		out_of_memory(zonelist, gfp_mask, order);
1253 		goto restart;
1254 	}
1255 
1256 	/*
1257 	 * Don't let big-order allocations loop unless the caller explicitly
1258 	 * requests that.  Wait for some write requests to complete then retry.
1259 	 *
1260 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1261 	 * <= 3, but that may not be true in other implementations.
1262 	 */
1263 	do_retry = 0;
1264 	if (!(gfp_mask & __GFP_NORETRY)) {
1265 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1266 			do_retry = 1;
1267 		if (gfp_mask & __GFP_NOFAIL)
1268 			do_retry = 1;
1269 	}
1270 	if (do_retry) {
1271 		congestion_wait(WRITE, HZ/50);
1272 		goto rebalance;
1273 	}
1274 
1275 nopage:
1276 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1277 		printk(KERN_WARNING "%s: page allocation failure."
1278 			" order:%d, mode:0x%x\n",
1279 			p->comm, order, gfp_mask);
1280 		dump_stack();
1281 		show_mem();
1282 	}
1283 got_pg:
1284 	return page;
1285 }
1286 
1287 EXPORT_SYMBOL(__alloc_pages);
1288 
1289 /*
1290  * Common helper functions.
1291  */
1292 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1293 {
1294 	struct page * page;
1295 	page = alloc_pages(gfp_mask, order);
1296 	if (!page)
1297 		return 0;
1298 	return (unsigned long) page_address(page);
1299 }
1300 
1301 EXPORT_SYMBOL(__get_free_pages);
1302 
1303 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1304 {
1305 	struct page * page;
1306 
1307 	/*
1308 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1309 	 * a highmem page
1310 	 */
1311 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1312 
1313 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1314 	if (page)
1315 		return (unsigned long) page_address(page);
1316 	return 0;
1317 }
1318 
1319 EXPORT_SYMBOL(get_zeroed_page);
1320 
1321 void __pagevec_free(struct pagevec *pvec)
1322 {
1323 	int i = pagevec_count(pvec);
1324 
1325 	while (--i >= 0)
1326 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1327 }
1328 
1329 fastcall void __free_pages(struct page *page, unsigned int order)
1330 {
1331 	if (put_page_testzero(page)) {
1332 		if (order == 0)
1333 			free_hot_page(page);
1334 		else
1335 			__free_pages_ok(page, order);
1336 	}
1337 }
1338 
1339 EXPORT_SYMBOL(__free_pages);
1340 
1341 fastcall void free_pages(unsigned long addr, unsigned int order)
1342 {
1343 	if (addr != 0) {
1344 		VM_BUG_ON(!virt_addr_valid((void *)addr));
1345 		__free_pages(virt_to_page((void *)addr), order);
1346 	}
1347 }
1348 
1349 EXPORT_SYMBOL(free_pages);
1350 
1351 /*
1352  * Total amount of free (allocatable) RAM:
1353  */
1354 unsigned int nr_free_pages(void)
1355 {
1356 	unsigned int sum = 0;
1357 	struct zone *zone;
1358 
1359 	for_each_zone(zone)
1360 		sum += zone->free_pages;
1361 
1362 	return sum;
1363 }
1364 
1365 EXPORT_SYMBOL(nr_free_pages);
1366 
1367 #ifdef CONFIG_NUMA
1368 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1369 {
1370 	unsigned int sum = 0;
1371 	enum zone_type i;
1372 
1373 	for (i = 0; i < MAX_NR_ZONES; i++)
1374 		sum += pgdat->node_zones[i].free_pages;
1375 
1376 	return sum;
1377 }
1378 #endif
1379 
1380 static unsigned int nr_free_zone_pages(int offset)
1381 {
1382 	/* Just pick one node, since fallback list is circular */
1383 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1384 	unsigned int sum = 0;
1385 
1386 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1387 	struct zone **zonep = zonelist->zones;
1388 	struct zone *zone;
1389 
1390 	for (zone = *zonep++; zone; zone = *zonep++) {
1391 		unsigned long size = zone->present_pages;
1392 		unsigned long high = zone->pages_high;
1393 		if (size > high)
1394 			sum += size - high;
1395 	}
1396 
1397 	return sum;
1398 }
1399 
1400 /*
1401  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1402  */
1403 unsigned int nr_free_buffer_pages(void)
1404 {
1405 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1406 }
1407 
1408 /*
1409  * Amount of free RAM allocatable within all zones
1410  */
1411 unsigned int nr_free_pagecache_pages(void)
1412 {
1413 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1414 }
1415 
1416 static inline void show_node(struct zone *zone)
1417 {
1418 	if (NUMA_BUILD)
1419 		printk("Node %d ", zone_to_nid(zone));
1420 }
1421 
1422 void si_meminfo(struct sysinfo *val)
1423 {
1424 	val->totalram = totalram_pages;
1425 	val->sharedram = 0;
1426 	val->freeram = nr_free_pages();
1427 	val->bufferram = nr_blockdev_pages();
1428 	val->totalhigh = totalhigh_pages;
1429 	val->freehigh = nr_free_highpages();
1430 	val->mem_unit = PAGE_SIZE;
1431 }
1432 
1433 EXPORT_SYMBOL(si_meminfo);
1434 
1435 #ifdef CONFIG_NUMA
1436 void si_meminfo_node(struct sysinfo *val, int nid)
1437 {
1438 	pg_data_t *pgdat = NODE_DATA(nid);
1439 
1440 	val->totalram = pgdat->node_present_pages;
1441 	val->freeram = nr_free_pages_pgdat(pgdat);
1442 #ifdef CONFIG_HIGHMEM
1443 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1444 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1445 #else
1446 	val->totalhigh = 0;
1447 	val->freehigh = 0;
1448 #endif
1449 	val->mem_unit = PAGE_SIZE;
1450 }
1451 #endif
1452 
1453 #define K(x) ((x) << (PAGE_SHIFT-10))
1454 
1455 /*
1456  * Show free area list (used inside shift_scroll-lock stuff)
1457  * We also calculate the percentage fragmentation. We do this by counting the
1458  * memory on each free list with the exception of the first item on the list.
1459  */
1460 void show_free_areas(void)
1461 {
1462 	int cpu;
1463 	unsigned long active;
1464 	unsigned long inactive;
1465 	unsigned long free;
1466 	struct zone *zone;
1467 
1468 	for_each_zone(zone) {
1469 		if (!populated_zone(zone))
1470 			continue;
1471 
1472 		show_node(zone);
1473 		printk("%s per-cpu:\n", zone->name);
1474 
1475 		for_each_online_cpu(cpu) {
1476 			struct per_cpu_pageset *pageset;
1477 
1478 			pageset = zone_pcp(zone, cpu);
1479 
1480 			printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
1481 			       "Cold: hi:%5d, btch:%4d usd:%4d\n",
1482 			       cpu, pageset->pcp[0].high,
1483 			       pageset->pcp[0].batch, pageset->pcp[0].count,
1484 			       pageset->pcp[1].high, pageset->pcp[1].batch,
1485 			       pageset->pcp[1].count);
1486 		}
1487 	}
1488 
1489 	get_zone_counts(&active, &inactive, &free);
1490 
1491 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1492 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1493 		active,
1494 		inactive,
1495 		global_page_state(NR_FILE_DIRTY),
1496 		global_page_state(NR_WRITEBACK),
1497 		global_page_state(NR_UNSTABLE_NFS),
1498 		nr_free_pages(),
1499 		global_page_state(NR_SLAB_RECLAIMABLE) +
1500 			global_page_state(NR_SLAB_UNRECLAIMABLE),
1501 		global_page_state(NR_FILE_MAPPED),
1502 		global_page_state(NR_PAGETABLE));
1503 
1504 	for_each_zone(zone) {
1505 		int i;
1506 
1507 		if (!populated_zone(zone))
1508 			continue;
1509 
1510 		show_node(zone);
1511 		printk("%s"
1512 			" free:%lukB"
1513 			" min:%lukB"
1514 			" low:%lukB"
1515 			" high:%lukB"
1516 			" active:%lukB"
1517 			" inactive:%lukB"
1518 			" present:%lukB"
1519 			" pages_scanned:%lu"
1520 			" all_unreclaimable? %s"
1521 			"\n",
1522 			zone->name,
1523 			K(zone->free_pages),
1524 			K(zone->pages_min),
1525 			K(zone->pages_low),
1526 			K(zone->pages_high),
1527 			K(zone->nr_active),
1528 			K(zone->nr_inactive),
1529 			K(zone->present_pages),
1530 			zone->pages_scanned,
1531 			(zone->all_unreclaimable ? "yes" : "no")
1532 			);
1533 		printk("lowmem_reserve[]:");
1534 		for (i = 0; i < MAX_NR_ZONES; i++)
1535 			printk(" %lu", zone->lowmem_reserve[i]);
1536 		printk("\n");
1537 	}
1538 
1539 	for_each_zone(zone) {
1540  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1541 
1542 		if (!populated_zone(zone))
1543 			continue;
1544 
1545 		show_node(zone);
1546 		printk("%s: ", zone->name);
1547 
1548 		spin_lock_irqsave(&zone->lock, flags);
1549 		for (order = 0; order < MAX_ORDER; order++) {
1550 			nr[order] = zone->free_area[order].nr_free;
1551 			total += nr[order] << order;
1552 		}
1553 		spin_unlock_irqrestore(&zone->lock, flags);
1554 		for (order = 0; order < MAX_ORDER; order++)
1555 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1556 		printk("= %lukB\n", K(total));
1557 	}
1558 
1559 	show_swap_cache_info();
1560 }
1561 
1562 /*
1563  * Builds allocation fallback zone lists.
1564  *
1565  * Add all populated zones of a node to the zonelist.
1566  */
1567 static int __meminit build_zonelists_node(pg_data_t *pgdat,
1568 			struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1569 {
1570 	struct zone *zone;
1571 
1572 	BUG_ON(zone_type >= MAX_NR_ZONES);
1573 	zone_type++;
1574 
1575 	do {
1576 		zone_type--;
1577 		zone = pgdat->node_zones + zone_type;
1578 		if (populated_zone(zone)) {
1579 			zonelist->zones[nr_zones++] = zone;
1580 			check_highest_zone(zone_type);
1581 		}
1582 
1583 	} while (zone_type);
1584 	return nr_zones;
1585 }
1586 
1587 #ifdef CONFIG_NUMA
1588 #define MAX_NODE_LOAD (num_online_nodes())
1589 static int __meminitdata node_load[MAX_NUMNODES];
1590 /**
1591  * find_next_best_node - find the next node that should appear in a given node's fallback list
1592  * @node: node whose fallback list we're appending
1593  * @used_node_mask: nodemask_t of already used nodes
1594  *
1595  * We use a number of factors to determine which is the next node that should
1596  * appear on a given node's fallback list.  The node should not have appeared
1597  * already in @node's fallback list, and it should be the next closest node
1598  * according to the distance array (which contains arbitrary distance values
1599  * from each node to each node in the system), and should also prefer nodes
1600  * with no CPUs, since presumably they'll have very little allocation pressure
1601  * on them otherwise.
1602  * It returns -1 if no node is found.
1603  */
1604 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1605 {
1606 	int n, val;
1607 	int min_val = INT_MAX;
1608 	int best_node = -1;
1609 
1610 	/* Use the local node if we haven't already */
1611 	if (!node_isset(node, *used_node_mask)) {
1612 		node_set(node, *used_node_mask);
1613 		return node;
1614 	}
1615 
1616 	for_each_online_node(n) {
1617 		cpumask_t tmp;
1618 
1619 		/* Don't want a node to appear more than once */
1620 		if (node_isset(n, *used_node_mask))
1621 			continue;
1622 
1623 		/* Use the distance array to find the distance */
1624 		val = node_distance(node, n);
1625 
1626 		/* Penalize nodes under us ("prefer the next node") */
1627 		val += (n < node);
1628 
1629 		/* Give preference to headless and unused nodes */
1630 		tmp = node_to_cpumask(n);
1631 		if (!cpus_empty(tmp))
1632 			val += PENALTY_FOR_NODE_WITH_CPUS;
1633 
1634 		/* Slight preference for less loaded node */
1635 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1636 		val += node_load[n];
1637 
1638 		if (val < min_val) {
1639 			min_val = val;
1640 			best_node = n;
1641 		}
1642 	}
1643 
1644 	if (best_node >= 0)
1645 		node_set(best_node, *used_node_mask);
1646 
1647 	return best_node;
1648 }
1649 
1650 static void __meminit build_zonelists(pg_data_t *pgdat)
1651 {
1652 	int j, node, local_node;
1653 	enum zone_type i;
1654 	int prev_node, load;
1655 	struct zonelist *zonelist;
1656 	nodemask_t used_mask;
1657 
1658 	/* initialize zonelists */
1659 	for (i = 0; i < MAX_NR_ZONES; i++) {
1660 		zonelist = pgdat->node_zonelists + i;
1661 		zonelist->zones[0] = NULL;
1662 	}
1663 
1664 	/* NUMA-aware ordering of nodes */
1665 	local_node = pgdat->node_id;
1666 	load = num_online_nodes();
1667 	prev_node = local_node;
1668 	nodes_clear(used_mask);
1669 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1670 		int distance = node_distance(local_node, node);
1671 
1672 		/*
1673 		 * If another node is sufficiently far away then it is better
1674 		 * to reclaim pages in a zone before going off node.
1675 		 */
1676 		if (distance > RECLAIM_DISTANCE)
1677 			zone_reclaim_mode = 1;
1678 
1679 		/*
1680 		 * We don't want to pressure a particular node.
1681 		 * So adding penalty to the first node in same
1682 		 * distance group to make it round-robin.
1683 		 */
1684 
1685 		if (distance != node_distance(local_node, prev_node))
1686 			node_load[node] += load;
1687 		prev_node = node;
1688 		load--;
1689 		for (i = 0; i < MAX_NR_ZONES; i++) {
1690 			zonelist = pgdat->node_zonelists + i;
1691 			for (j = 0; zonelist->zones[j] != NULL; j++);
1692 
1693 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1694 			zonelist->zones[j] = NULL;
1695 		}
1696 	}
1697 }
1698 
1699 /* Construct the zonelist performance cache - see further mmzone.h */
1700 static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1701 {
1702 	int i;
1703 
1704 	for (i = 0; i < MAX_NR_ZONES; i++) {
1705 		struct zonelist *zonelist;
1706 		struct zonelist_cache *zlc;
1707 		struct zone **z;
1708 
1709 		zonelist = pgdat->node_zonelists + i;
1710 		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1711 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1712 		for (z = zonelist->zones; *z; z++)
1713 			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1714 	}
1715 }
1716 
1717 #else	/* CONFIG_NUMA */
1718 
1719 static void __meminit build_zonelists(pg_data_t *pgdat)
1720 {
1721 	int node, local_node;
1722 	enum zone_type i,j;
1723 
1724 	local_node = pgdat->node_id;
1725 	for (i = 0; i < MAX_NR_ZONES; i++) {
1726 		struct zonelist *zonelist;
1727 
1728 		zonelist = pgdat->node_zonelists + i;
1729 
1730  		j = build_zonelists_node(pgdat, zonelist, 0, i);
1731  		/*
1732  		 * Now we build the zonelist so that it contains the zones
1733  		 * of all the other nodes.
1734  		 * We don't want to pressure a particular node, so when
1735  		 * building the zones for node N, we make sure that the
1736  		 * zones coming right after the local ones are those from
1737  		 * node N+1 (modulo N)
1738  		 */
1739 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1740 			if (!node_online(node))
1741 				continue;
1742 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1743 		}
1744 		for (node = 0; node < local_node; node++) {
1745 			if (!node_online(node))
1746 				continue;
1747 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1748 		}
1749 
1750 		zonelist->zones[j] = NULL;
1751 	}
1752 }
1753 
1754 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1755 static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1756 {
1757 	int i;
1758 
1759 	for (i = 0; i < MAX_NR_ZONES; i++)
1760 		pgdat->node_zonelists[i].zlcache_ptr = NULL;
1761 }
1762 
1763 #endif	/* CONFIG_NUMA */
1764 
1765 /* return values int ....just for stop_machine_run() */
1766 static int __meminit __build_all_zonelists(void *dummy)
1767 {
1768 	int nid;
1769 
1770 	for_each_online_node(nid) {
1771 		build_zonelists(NODE_DATA(nid));
1772 		build_zonelist_cache(NODE_DATA(nid));
1773 	}
1774 	return 0;
1775 }
1776 
1777 void __meminit build_all_zonelists(void)
1778 {
1779 	if (system_state == SYSTEM_BOOTING) {
1780 		__build_all_zonelists(NULL);
1781 		cpuset_init_current_mems_allowed();
1782 	} else {
1783 		/* we have to stop all cpus to guaranntee there is no user
1784 		   of zonelist */
1785 		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1786 		/* cpuset refresh routine should be here */
1787 	}
1788 	vm_total_pages = nr_free_pagecache_pages();
1789 	printk("Built %i zonelists.  Total pages: %ld\n",
1790 			num_online_nodes(), vm_total_pages);
1791 }
1792 
1793 /*
1794  * Helper functions to size the waitqueue hash table.
1795  * Essentially these want to choose hash table sizes sufficiently
1796  * large so that collisions trying to wait on pages are rare.
1797  * But in fact, the number of active page waitqueues on typical
1798  * systems is ridiculously low, less than 200. So this is even
1799  * conservative, even though it seems large.
1800  *
1801  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1802  * waitqueues, i.e. the size of the waitq table given the number of pages.
1803  */
1804 #define PAGES_PER_WAITQUEUE	256
1805 
1806 #ifndef CONFIG_MEMORY_HOTPLUG
1807 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1808 {
1809 	unsigned long size = 1;
1810 
1811 	pages /= PAGES_PER_WAITQUEUE;
1812 
1813 	while (size < pages)
1814 		size <<= 1;
1815 
1816 	/*
1817 	 * Once we have dozens or even hundreds of threads sleeping
1818 	 * on IO we've got bigger problems than wait queue collision.
1819 	 * Limit the size of the wait table to a reasonable size.
1820 	 */
1821 	size = min(size, 4096UL);
1822 
1823 	return max(size, 4UL);
1824 }
1825 #else
1826 /*
1827  * A zone's size might be changed by hot-add, so it is not possible to determine
1828  * a suitable size for its wait_table.  So we use the maximum size now.
1829  *
1830  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
1831  *
1832  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
1833  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1834  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
1835  *
1836  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1837  * or more by the traditional way. (See above).  It equals:
1838  *
1839  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
1840  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
1841  *    powerpc (64K page size)             : =  (32G +16M)byte.
1842  */
1843 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1844 {
1845 	return 4096UL;
1846 }
1847 #endif
1848 
1849 /*
1850  * This is an integer logarithm so that shifts can be used later
1851  * to extract the more random high bits from the multiplicative
1852  * hash function before the remainder is taken.
1853  */
1854 static inline unsigned long wait_table_bits(unsigned long size)
1855 {
1856 	return ffz(~size);
1857 }
1858 
1859 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1860 
1861 /*
1862  * Initially all pages are reserved - free ones are freed
1863  * up by free_all_bootmem() once the early boot process is
1864  * done. Non-atomic initialization, single-pass.
1865  */
1866 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1867 		unsigned long start_pfn)
1868 {
1869 	struct page *page;
1870 	unsigned long end_pfn = start_pfn + size;
1871 	unsigned long pfn;
1872 
1873 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1874 		if (!early_pfn_valid(pfn))
1875 			continue;
1876 		if (!early_pfn_in_nid(pfn, nid))
1877 			continue;
1878 		page = pfn_to_page(pfn);
1879 		set_page_links(page, zone, nid, pfn);
1880 		init_page_count(page);
1881 		reset_page_mapcount(page);
1882 		SetPageReserved(page);
1883 		INIT_LIST_HEAD(&page->lru);
1884 #ifdef WANT_PAGE_VIRTUAL
1885 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1886 		if (!is_highmem_idx(zone))
1887 			set_page_address(page, __va(pfn << PAGE_SHIFT));
1888 #endif
1889 	}
1890 }
1891 
1892 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1893 				unsigned long size)
1894 {
1895 	int order;
1896 	for (order = 0; order < MAX_ORDER ; order++) {
1897 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1898 		zone->free_area[order].nr_free = 0;
1899 	}
1900 }
1901 
1902 #ifndef __HAVE_ARCH_MEMMAP_INIT
1903 #define memmap_init(size, nid, zone, start_pfn) \
1904 	memmap_init_zone((size), (nid), (zone), (start_pfn))
1905 #endif
1906 
1907 static int __cpuinit zone_batchsize(struct zone *zone)
1908 {
1909 	int batch;
1910 
1911 	/*
1912 	 * The per-cpu-pages pools are set to around 1000th of the
1913 	 * size of the zone.  But no more than 1/2 of a meg.
1914 	 *
1915 	 * OK, so we don't know how big the cache is.  So guess.
1916 	 */
1917 	batch = zone->present_pages / 1024;
1918 	if (batch * PAGE_SIZE > 512 * 1024)
1919 		batch = (512 * 1024) / PAGE_SIZE;
1920 	batch /= 4;		/* We effectively *= 4 below */
1921 	if (batch < 1)
1922 		batch = 1;
1923 
1924 	/*
1925 	 * Clamp the batch to a 2^n - 1 value. Having a power
1926 	 * of 2 value was found to be more likely to have
1927 	 * suboptimal cache aliasing properties in some cases.
1928 	 *
1929 	 * For example if 2 tasks are alternately allocating
1930 	 * batches of pages, one task can end up with a lot
1931 	 * of pages of one half of the possible page colors
1932 	 * and the other with pages of the other colors.
1933 	 */
1934 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1935 
1936 	return batch;
1937 }
1938 
1939 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1940 {
1941 	struct per_cpu_pages *pcp;
1942 
1943 	memset(p, 0, sizeof(*p));
1944 
1945 	pcp = &p->pcp[0];		/* hot */
1946 	pcp->count = 0;
1947 	pcp->high = 6 * batch;
1948 	pcp->batch = max(1UL, 1 * batch);
1949 	INIT_LIST_HEAD(&pcp->list);
1950 
1951 	pcp = &p->pcp[1];		/* cold*/
1952 	pcp->count = 0;
1953 	pcp->high = 2 * batch;
1954 	pcp->batch = max(1UL, batch/2);
1955 	INIT_LIST_HEAD(&pcp->list);
1956 }
1957 
1958 /*
1959  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1960  * to the value high for the pageset p.
1961  */
1962 
1963 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1964 				unsigned long high)
1965 {
1966 	struct per_cpu_pages *pcp;
1967 
1968 	pcp = &p->pcp[0]; /* hot list */
1969 	pcp->high = high;
1970 	pcp->batch = max(1UL, high/4);
1971 	if ((high/4) > (PAGE_SHIFT * 8))
1972 		pcp->batch = PAGE_SHIFT * 8;
1973 }
1974 
1975 
1976 #ifdef CONFIG_NUMA
1977 /*
1978  * Boot pageset table. One per cpu which is going to be used for all
1979  * zones and all nodes. The parameters will be set in such a way
1980  * that an item put on a list will immediately be handed over to
1981  * the buddy list. This is safe since pageset manipulation is done
1982  * with interrupts disabled.
1983  *
1984  * Some NUMA counter updates may also be caught by the boot pagesets.
1985  *
1986  * The boot_pagesets must be kept even after bootup is complete for
1987  * unused processors and/or zones. They do play a role for bootstrapping
1988  * hotplugged processors.
1989  *
1990  * zoneinfo_show() and maybe other functions do
1991  * not check if the processor is online before following the pageset pointer.
1992  * Other parts of the kernel may not check if the zone is available.
1993  */
1994 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1995 
1996 /*
1997  * Dynamically allocate memory for the
1998  * per cpu pageset array in struct zone.
1999  */
2000 static int __cpuinit process_zones(int cpu)
2001 {
2002 	struct zone *zone, *dzone;
2003 
2004 	for_each_zone(zone) {
2005 
2006 		if (!populated_zone(zone))
2007 			continue;
2008 
2009 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2010 					 GFP_KERNEL, cpu_to_node(cpu));
2011 		if (!zone_pcp(zone, cpu))
2012 			goto bad;
2013 
2014 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2015 
2016 		if (percpu_pagelist_fraction)
2017 			setup_pagelist_highmark(zone_pcp(zone, cpu),
2018 			 	(zone->present_pages / percpu_pagelist_fraction));
2019 	}
2020 
2021 	return 0;
2022 bad:
2023 	for_each_zone(dzone) {
2024 		if (dzone == zone)
2025 			break;
2026 		kfree(zone_pcp(dzone, cpu));
2027 		zone_pcp(dzone, cpu) = NULL;
2028 	}
2029 	return -ENOMEM;
2030 }
2031 
2032 static inline void free_zone_pagesets(int cpu)
2033 {
2034 	struct zone *zone;
2035 
2036 	for_each_zone(zone) {
2037 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2038 
2039 		/* Free per_cpu_pageset if it is slab allocated */
2040 		if (pset != &boot_pageset[cpu])
2041 			kfree(pset);
2042 		zone_pcp(zone, cpu) = NULL;
2043 	}
2044 }
2045 
2046 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2047 		unsigned long action,
2048 		void *hcpu)
2049 {
2050 	int cpu = (long)hcpu;
2051 	int ret = NOTIFY_OK;
2052 
2053 	switch (action) {
2054 	case CPU_UP_PREPARE:
2055 		if (process_zones(cpu))
2056 			ret = NOTIFY_BAD;
2057 		break;
2058 	case CPU_UP_CANCELED:
2059 	case CPU_DEAD:
2060 		free_zone_pagesets(cpu);
2061 		break;
2062 	default:
2063 		break;
2064 	}
2065 	return ret;
2066 }
2067 
2068 static struct notifier_block __cpuinitdata pageset_notifier =
2069 	{ &pageset_cpuup_callback, NULL, 0 };
2070 
2071 void __init setup_per_cpu_pageset(void)
2072 {
2073 	int err;
2074 
2075 	/* Initialize per_cpu_pageset for cpu 0.
2076 	 * A cpuup callback will do this for every cpu
2077 	 * as it comes online
2078 	 */
2079 	err = process_zones(smp_processor_id());
2080 	BUG_ON(err);
2081 	register_cpu_notifier(&pageset_notifier);
2082 }
2083 
2084 #endif
2085 
2086 static __meminit
2087 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2088 {
2089 	int i;
2090 	struct pglist_data *pgdat = zone->zone_pgdat;
2091 	size_t alloc_size;
2092 
2093 	/*
2094 	 * The per-page waitqueue mechanism uses hashed waitqueues
2095 	 * per zone.
2096 	 */
2097 	zone->wait_table_hash_nr_entries =
2098 		 wait_table_hash_nr_entries(zone_size_pages);
2099 	zone->wait_table_bits =
2100 		wait_table_bits(zone->wait_table_hash_nr_entries);
2101 	alloc_size = zone->wait_table_hash_nr_entries
2102 					* sizeof(wait_queue_head_t);
2103 
2104  	if (system_state == SYSTEM_BOOTING) {
2105 		zone->wait_table = (wait_queue_head_t *)
2106 			alloc_bootmem_node(pgdat, alloc_size);
2107 	} else {
2108 		/*
2109 		 * This case means that a zone whose size was 0 gets new memory
2110 		 * via memory hot-add.
2111 		 * But it may be the case that a new node was hot-added.  In
2112 		 * this case vmalloc() will not be able to use this new node's
2113 		 * memory - this wait_table must be initialized to use this new
2114 		 * node itself as well.
2115 		 * To use this new node's memory, further consideration will be
2116 		 * necessary.
2117 		 */
2118 		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2119 	}
2120 	if (!zone->wait_table)
2121 		return -ENOMEM;
2122 
2123 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2124 		init_waitqueue_head(zone->wait_table + i);
2125 
2126 	return 0;
2127 }
2128 
2129 static __meminit void zone_pcp_init(struct zone *zone)
2130 {
2131 	int cpu;
2132 	unsigned long batch = zone_batchsize(zone);
2133 
2134 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2135 #ifdef CONFIG_NUMA
2136 		/* Early boot. Slab allocator not functional yet */
2137 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2138 		setup_pageset(&boot_pageset[cpu],0);
2139 #else
2140 		setup_pageset(zone_pcp(zone,cpu), batch);
2141 #endif
2142 	}
2143 	if (zone->present_pages)
2144 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2145 			zone->name, zone->present_pages, batch);
2146 }
2147 
2148 __meminit int init_currently_empty_zone(struct zone *zone,
2149 					unsigned long zone_start_pfn,
2150 					unsigned long size)
2151 {
2152 	struct pglist_data *pgdat = zone->zone_pgdat;
2153 	int ret;
2154 	ret = zone_wait_table_init(zone, size);
2155 	if (ret)
2156 		return ret;
2157 	pgdat->nr_zones = zone_idx(zone) + 1;
2158 
2159 	zone->zone_start_pfn = zone_start_pfn;
2160 
2161 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2162 
2163 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2164 
2165 	return 0;
2166 }
2167 
2168 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2169 /*
2170  * Basic iterator support. Return the first range of PFNs for a node
2171  * Note: nid == MAX_NUMNODES returns first region regardless of node
2172  */
2173 static int __init first_active_region_index_in_nid(int nid)
2174 {
2175 	int i;
2176 
2177 	for (i = 0; i < nr_nodemap_entries; i++)
2178 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2179 			return i;
2180 
2181 	return -1;
2182 }
2183 
2184 /*
2185  * Basic iterator support. Return the next active range of PFNs for a node
2186  * Note: nid == MAX_NUMNODES returns next region regardles of node
2187  */
2188 static int __init next_active_region_index_in_nid(int index, int nid)
2189 {
2190 	for (index = index + 1; index < nr_nodemap_entries; index++)
2191 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2192 			return index;
2193 
2194 	return -1;
2195 }
2196 
2197 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2198 /*
2199  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2200  * Architectures may implement their own version but if add_active_range()
2201  * was used and there are no special requirements, this is a convenient
2202  * alternative
2203  */
2204 int __init early_pfn_to_nid(unsigned long pfn)
2205 {
2206 	int i;
2207 
2208 	for (i = 0; i < nr_nodemap_entries; i++) {
2209 		unsigned long start_pfn = early_node_map[i].start_pfn;
2210 		unsigned long end_pfn = early_node_map[i].end_pfn;
2211 
2212 		if (start_pfn <= pfn && pfn < end_pfn)
2213 			return early_node_map[i].nid;
2214 	}
2215 
2216 	return 0;
2217 }
2218 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2219 
2220 /* Basic iterator support to walk early_node_map[] */
2221 #define for_each_active_range_index_in_nid(i, nid) \
2222 	for (i = first_active_region_index_in_nid(nid); i != -1; \
2223 				i = next_active_region_index_in_nid(i, nid))
2224 
2225 /**
2226  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2227  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2228  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2229  *
2230  * If an architecture guarantees that all ranges registered with
2231  * add_active_ranges() contain no holes and may be freed, this
2232  * this function may be used instead of calling free_bootmem() manually.
2233  */
2234 void __init free_bootmem_with_active_regions(int nid,
2235 						unsigned long max_low_pfn)
2236 {
2237 	int i;
2238 
2239 	for_each_active_range_index_in_nid(i, nid) {
2240 		unsigned long size_pages = 0;
2241 		unsigned long end_pfn = early_node_map[i].end_pfn;
2242 
2243 		if (early_node_map[i].start_pfn >= max_low_pfn)
2244 			continue;
2245 
2246 		if (end_pfn > max_low_pfn)
2247 			end_pfn = max_low_pfn;
2248 
2249 		size_pages = end_pfn - early_node_map[i].start_pfn;
2250 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2251 				PFN_PHYS(early_node_map[i].start_pfn),
2252 				size_pages << PAGE_SHIFT);
2253 	}
2254 }
2255 
2256 /**
2257  * sparse_memory_present_with_active_regions - Call memory_present for each active range
2258  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2259  *
2260  * If an architecture guarantees that all ranges registered with
2261  * add_active_ranges() contain no holes and may be freed, this
2262  * function may be used instead of calling memory_present() manually.
2263  */
2264 void __init sparse_memory_present_with_active_regions(int nid)
2265 {
2266 	int i;
2267 
2268 	for_each_active_range_index_in_nid(i, nid)
2269 		memory_present(early_node_map[i].nid,
2270 				early_node_map[i].start_pfn,
2271 				early_node_map[i].end_pfn);
2272 }
2273 
2274 /**
2275  * push_node_boundaries - Push node boundaries to at least the requested boundary
2276  * @nid: The nid of the node to push the boundary for
2277  * @start_pfn: The start pfn of the node
2278  * @end_pfn: The end pfn of the node
2279  *
2280  * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2281  * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2282  * be hotplugged even though no physical memory exists. This function allows
2283  * an arch to push out the node boundaries so mem_map is allocated that can
2284  * be used later.
2285  */
2286 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2287 void __init push_node_boundaries(unsigned int nid,
2288 		unsigned long start_pfn, unsigned long end_pfn)
2289 {
2290 	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2291 			nid, start_pfn, end_pfn);
2292 
2293 	/* Initialise the boundary for this node if necessary */
2294 	if (node_boundary_end_pfn[nid] == 0)
2295 		node_boundary_start_pfn[nid] = -1UL;
2296 
2297 	/* Update the boundaries */
2298 	if (node_boundary_start_pfn[nid] > start_pfn)
2299 		node_boundary_start_pfn[nid] = start_pfn;
2300 	if (node_boundary_end_pfn[nid] < end_pfn)
2301 		node_boundary_end_pfn[nid] = end_pfn;
2302 }
2303 
2304 /* If necessary, push the node boundary out for reserve hotadd */
2305 static void __init account_node_boundary(unsigned int nid,
2306 		unsigned long *start_pfn, unsigned long *end_pfn)
2307 {
2308 	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2309 			nid, *start_pfn, *end_pfn);
2310 
2311 	/* Return if boundary information has not been provided */
2312 	if (node_boundary_end_pfn[nid] == 0)
2313 		return;
2314 
2315 	/* Check the boundaries and update if necessary */
2316 	if (node_boundary_start_pfn[nid] < *start_pfn)
2317 		*start_pfn = node_boundary_start_pfn[nid];
2318 	if (node_boundary_end_pfn[nid] > *end_pfn)
2319 		*end_pfn = node_boundary_end_pfn[nid];
2320 }
2321 #else
2322 void __init push_node_boundaries(unsigned int nid,
2323 		unsigned long start_pfn, unsigned long end_pfn) {}
2324 
2325 static void __init account_node_boundary(unsigned int nid,
2326 		unsigned long *start_pfn, unsigned long *end_pfn) {}
2327 #endif
2328 
2329 
2330 /**
2331  * get_pfn_range_for_nid - Return the start and end page frames for a node
2332  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2333  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2334  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2335  *
2336  * It returns the start and end page frame of a node based on information
2337  * provided by an arch calling add_active_range(). If called for a node
2338  * with no available memory, a warning is printed and the start and end
2339  * PFNs will be 0.
2340  */
2341 void __init get_pfn_range_for_nid(unsigned int nid,
2342 			unsigned long *start_pfn, unsigned long *end_pfn)
2343 {
2344 	int i;
2345 	*start_pfn = -1UL;
2346 	*end_pfn = 0;
2347 
2348 	for_each_active_range_index_in_nid(i, nid) {
2349 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2350 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2351 	}
2352 
2353 	if (*start_pfn == -1UL) {
2354 		printk(KERN_WARNING "Node %u active with no memory\n", nid);
2355 		*start_pfn = 0;
2356 	}
2357 
2358 	/* Push the node boundaries out if requested */
2359 	account_node_boundary(nid, start_pfn, end_pfn);
2360 }
2361 
2362 /*
2363  * Return the number of pages a zone spans in a node, including holes
2364  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2365  */
2366 unsigned long __init zone_spanned_pages_in_node(int nid,
2367 					unsigned long zone_type,
2368 					unsigned long *ignored)
2369 {
2370 	unsigned long node_start_pfn, node_end_pfn;
2371 	unsigned long zone_start_pfn, zone_end_pfn;
2372 
2373 	/* Get the start and end of the node and zone */
2374 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2375 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2376 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2377 
2378 	/* Check that this node has pages within the zone's required range */
2379 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2380 		return 0;
2381 
2382 	/* Move the zone boundaries inside the node if necessary */
2383 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2384 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2385 
2386 	/* Return the spanned pages */
2387 	return zone_end_pfn - zone_start_pfn;
2388 }
2389 
2390 /*
2391  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2392  * then all holes in the requested range will be accounted for.
2393  */
2394 unsigned long __init __absent_pages_in_range(int nid,
2395 				unsigned long range_start_pfn,
2396 				unsigned long range_end_pfn)
2397 {
2398 	int i = 0;
2399 	unsigned long prev_end_pfn = 0, hole_pages = 0;
2400 	unsigned long start_pfn;
2401 
2402 	/* Find the end_pfn of the first active range of pfns in the node */
2403 	i = first_active_region_index_in_nid(nid);
2404 	if (i == -1)
2405 		return 0;
2406 
2407 	/* Account for ranges before physical memory on this node */
2408 	if (early_node_map[i].start_pfn > range_start_pfn)
2409 		hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2410 
2411 	prev_end_pfn = early_node_map[i].start_pfn;
2412 
2413 	/* Find all holes for the zone within the node */
2414 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2415 
2416 		/* No need to continue if prev_end_pfn is outside the zone */
2417 		if (prev_end_pfn >= range_end_pfn)
2418 			break;
2419 
2420 		/* Make sure the end of the zone is not within the hole */
2421 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2422 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2423 
2424 		/* Update the hole size cound and move on */
2425 		if (start_pfn > range_start_pfn) {
2426 			BUG_ON(prev_end_pfn > start_pfn);
2427 			hole_pages += start_pfn - prev_end_pfn;
2428 		}
2429 		prev_end_pfn = early_node_map[i].end_pfn;
2430 	}
2431 
2432 	/* Account for ranges past physical memory on this node */
2433 	if (range_end_pfn > prev_end_pfn)
2434 		hole_pages += range_end_pfn -
2435 				max(range_start_pfn, prev_end_pfn);
2436 
2437 	return hole_pages;
2438 }
2439 
2440 /**
2441  * absent_pages_in_range - Return number of page frames in holes within a range
2442  * @start_pfn: The start PFN to start searching for holes
2443  * @end_pfn: The end PFN to stop searching for holes
2444  *
2445  * It returns the number of pages frames in memory holes within a range.
2446  */
2447 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2448 							unsigned long end_pfn)
2449 {
2450 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2451 }
2452 
2453 /* Return the number of page frames in holes in a zone on a node */
2454 unsigned long __init zone_absent_pages_in_node(int nid,
2455 					unsigned long zone_type,
2456 					unsigned long *ignored)
2457 {
2458 	unsigned long node_start_pfn, node_end_pfn;
2459 	unsigned long zone_start_pfn, zone_end_pfn;
2460 
2461 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2462 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2463 							node_start_pfn);
2464 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2465 							node_end_pfn);
2466 
2467 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2468 }
2469 
2470 #else
2471 static inline unsigned long zone_spanned_pages_in_node(int nid,
2472 					unsigned long zone_type,
2473 					unsigned long *zones_size)
2474 {
2475 	return zones_size[zone_type];
2476 }
2477 
2478 static inline unsigned long zone_absent_pages_in_node(int nid,
2479 						unsigned long zone_type,
2480 						unsigned long *zholes_size)
2481 {
2482 	if (!zholes_size)
2483 		return 0;
2484 
2485 	return zholes_size[zone_type];
2486 }
2487 
2488 #endif
2489 
2490 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2491 		unsigned long *zones_size, unsigned long *zholes_size)
2492 {
2493 	unsigned long realtotalpages, totalpages = 0;
2494 	enum zone_type i;
2495 
2496 	for (i = 0; i < MAX_NR_ZONES; i++)
2497 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2498 								zones_size);
2499 	pgdat->node_spanned_pages = totalpages;
2500 
2501 	realtotalpages = totalpages;
2502 	for (i = 0; i < MAX_NR_ZONES; i++)
2503 		realtotalpages -=
2504 			zone_absent_pages_in_node(pgdat->node_id, i,
2505 								zholes_size);
2506 	pgdat->node_present_pages = realtotalpages;
2507 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2508 							realtotalpages);
2509 }
2510 
2511 /*
2512  * Set up the zone data structures:
2513  *   - mark all pages reserved
2514  *   - mark all memory queues empty
2515  *   - clear the memory bitmaps
2516  */
2517 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2518 		unsigned long *zones_size, unsigned long *zholes_size)
2519 {
2520 	enum zone_type j;
2521 	int nid = pgdat->node_id;
2522 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2523 	int ret;
2524 
2525 	pgdat_resize_init(pgdat);
2526 	pgdat->nr_zones = 0;
2527 	init_waitqueue_head(&pgdat->kswapd_wait);
2528 	pgdat->kswapd_max_order = 0;
2529 
2530 	for (j = 0; j < MAX_NR_ZONES; j++) {
2531 		struct zone *zone = pgdat->node_zones + j;
2532 		unsigned long size, realsize, memmap_pages;
2533 
2534 		size = zone_spanned_pages_in_node(nid, j, zones_size);
2535 		realsize = size - zone_absent_pages_in_node(nid, j,
2536 								zholes_size);
2537 
2538 		/*
2539 		 * Adjust realsize so that it accounts for how much memory
2540 		 * is used by this zone for memmap. This affects the watermark
2541 		 * and per-cpu initialisations
2542 		 */
2543 		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2544 		if (realsize >= memmap_pages) {
2545 			realsize -= memmap_pages;
2546 			printk(KERN_DEBUG
2547 				"  %s zone: %lu pages used for memmap\n",
2548 				zone_names[j], memmap_pages);
2549 		} else
2550 			printk(KERN_WARNING
2551 				"  %s zone: %lu pages exceeds realsize %lu\n",
2552 				zone_names[j], memmap_pages, realsize);
2553 
2554 		/* Account for reserved DMA pages */
2555 		if (j == ZONE_DMA && realsize > dma_reserve) {
2556 			realsize -= dma_reserve;
2557 			printk(KERN_DEBUG "  DMA zone: %lu pages reserved\n",
2558 								dma_reserve);
2559 		}
2560 
2561 		if (!is_highmem_idx(j))
2562 			nr_kernel_pages += realsize;
2563 		nr_all_pages += realsize;
2564 
2565 		zone->spanned_pages = size;
2566 		zone->present_pages = realsize;
2567 #ifdef CONFIG_NUMA
2568 		zone->node = nid;
2569 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2570 						/ 100;
2571 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2572 #endif
2573 		zone->name = zone_names[j];
2574 		spin_lock_init(&zone->lock);
2575 		spin_lock_init(&zone->lru_lock);
2576 		zone_seqlock_init(zone);
2577 		zone->zone_pgdat = pgdat;
2578 		zone->free_pages = 0;
2579 
2580 		zone->prev_priority = DEF_PRIORITY;
2581 
2582 		zone_pcp_init(zone);
2583 		INIT_LIST_HEAD(&zone->active_list);
2584 		INIT_LIST_HEAD(&zone->inactive_list);
2585 		zone->nr_scan_active = 0;
2586 		zone->nr_scan_inactive = 0;
2587 		zone->nr_active = 0;
2588 		zone->nr_inactive = 0;
2589 		zap_zone_vm_stats(zone);
2590 		atomic_set(&zone->reclaim_in_progress, 0);
2591 		if (!size)
2592 			continue;
2593 
2594 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2595 		BUG_ON(ret);
2596 		zone_start_pfn += size;
2597 	}
2598 }
2599 
2600 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2601 {
2602 	/* Skip empty nodes */
2603 	if (!pgdat->node_spanned_pages)
2604 		return;
2605 
2606 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2607 	/* ia64 gets its own node_mem_map, before this, without bootmem */
2608 	if (!pgdat->node_mem_map) {
2609 		unsigned long size, start, end;
2610 		struct page *map;
2611 
2612 		/*
2613 		 * The zone's endpoints aren't required to be MAX_ORDER
2614 		 * aligned but the node_mem_map endpoints must be in order
2615 		 * for the buddy allocator to function correctly.
2616 		 */
2617 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2618 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2619 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2620 		size =  (end - start) * sizeof(struct page);
2621 		map = alloc_remap(pgdat->node_id, size);
2622 		if (!map)
2623 			map = alloc_bootmem_node(pgdat, size);
2624 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2625 	}
2626 #ifdef CONFIG_FLATMEM
2627 	/*
2628 	 * With no DISCONTIG, the global mem_map is just set as node 0's
2629 	 */
2630 	if (pgdat == NODE_DATA(0)) {
2631 		mem_map = NODE_DATA(0)->node_mem_map;
2632 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2633 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2634 			mem_map -= pgdat->node_start_pfn;
2635 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2636 	}
2637 #endif
2638 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2639 }
2640 
2641 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2642 		unsigned long *zones_size, unsigned long node_start_pfn,
2643 		unsigned long *zholes_size)
2644 {
2645 	pgdat->node_id = nid;
2646 	pgdat->node_start_pfn = node_start_pfn;
2647 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
2648 
2649 	alloc_node_mem_map(pgdat);
2650 
2651 	free_area_init_core(pgdat, zones_size, zholes_size);
2652 }
2653 
2654 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2655 /**
2656  * add_active_range - Register a range of PFNs backed by physical memory
2657  * @nid: The node ID the range resides on
2658  * @start_pfn: The start PFN of the available physical memory
2659  * @end_pfn: The end PFN of the available physical memory
2660  *
2661  * These ranges are stored in an early_node_map[] and later used by
2662  * free_area_init_nodes() to calculate zone sizes and holes. If the
2663  * range spans a memory hole, it is up to the architecture to ensure
2664  * the memory is not freed by the bootmem allocator. If possible
2665  * the range being registered will be merged with existing ranges.
2666  */
2667 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2668 						unsigned long end_pfn)
2669 {
2670 	int i;
2671 
2672 	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2673 			  "%d entries of %d used\n",
2674 			  nid, start_pfn, end_pfn,
2675 			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2676 
2677 	/* Merge with existing active regions if possible */
2678 	for (i = 0; i < nr_nodemap_entries; i++) {
2679 		if (early_node_map[i].nid != nid)
2680 			continue;
2681 
2682 		/* Skip if an existing region covers this new one */
2683 		if (start_pfn >= early_node_map[i].start_pfn &&
2684 				end_pfn <= early_node_map[i].end_pfn)
2685 			return;
2686 
2687 		/* Merge forward if suitable */
2688 		if (start_pfn <= early_node_map[i].end_pfn &&
2689 				end_pfn > early_node_map[i].end_pfn) {
2690 			early_node_map[i].end_pfn = end_pfn;
2691 			return;
2692 		}
2693 
2694 		/* Merge backward if suitable */
2695 		if (start_pfn < early_node_map[i].end_pfn &&
2696 				end_pfn >= early_node_map[i].start_pfn) {
2697 			early_node_map[i].start_pfn = start_pfn;
2698 			return;
2699 		}
2700 	}
2701 
2702 	/* Check that early_node_map is large enough */
2703 	if (i >= MAX_ACTIVE_REGIONS) {
2704 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
2705 							MAX_ACTIVE_REGIONS);
2706 		return;
2707 	}
2708 
2709 	early_node_map[i].nid = nid;
2710 	early_node_map[i].start_pfn = start_pfn;
2711 	early_node_map[i].end_pfn = end_pfn;
2712 	nr_nodemap_entries = i + 1;
2713 }
2714 
2715 /**
2716  * shrink_active_range - Shrink an existing registered range of PFNs
2717  * @nid: The node id the range is on that should be shrunk
2718  * @old_end_pfn: The old end PFN of the range
2719  * @new_end_pfn: The new PFN of the range
2720  *
2721  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2722  * The map is kept at the end physical page range that has already been
2723  * registered with add_active_range(). This function allows an arch to shrink
2724  * an existing registered range.
2725  */
2726 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2727 						unsigned long new_end_pfn)
2728 {
2729 	int i;
2730 
2731 	/* Find the old active region end and shrink */
2732 	for_each_active_range_index_in_nid(i, nid)
2733 		if (early_node_map[i].end_pfn == old_end_pfn) {
2734 			early_node_map[i].end_pfn = new_end_pfn;
2735 			break;
2736 		}
2737 }
2738 
2739 /**
2740  * remove_all_active_ranges - Remove all currently registered regions
2741  *
2742  * During discovery, it may be found that a table like SRAT is invalid
2743  * and an alternative discovery method must be used. This function removes
2744  * all currently registered regions.
2745  */
2746 void __init remove_all_active_ranges(void)
2747 {
2748 	memset(early_node_map, 0, sizeof(early_node_map));
2749 	nr_nodemap_entries = 0;
2750 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2751 	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2752 	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2753 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2754 }
2755 
2756 /* Compare two active node_active_regions */
2757 static int __init cmp_node_active_region(const void *a, const void *b)
2758 {
2759 	struct node_active_region *arange = (struct node_active_region *)a;
2760 	struct node_active_region *brange = (struct node_active_region *)b;
2761 
2762 	/* Done this way to avoid overflows */
2763 	if (arange->start_pfn > brange->start_pfn)
2764 		return 1;
2765 	if (arange->start_pfn < brange->start_pfn)
2766 		return -1;
2767 
2768 	return 0;
2769 }
2770 
2771 /* sort the node_map by start_pfn */
2772 static void __init sort_node_map(void)
2773 {
2774 	sort(early_node_map, (size_t)nr_nodemap_entries,
2775 			sizeof(struct node_active_region),
2776 			cmp_node_active_region, NULL);
2777 }
2778 
2779 /* Find the lowest pfn for a node. This depends on a sorted early_node_map */
2780 unsigned long __init find_min_pfn_for_node(unsigned long nid)
2781 {
2782 	int i;
2783 
2784 	/* Regions in the early_node_map can be in any order */
2785 	sort_node_map();
2786 
2787 	/* Assuming a sorted map, the first range found has the starting pfn */
2788 	for_each_active_range_index_in_nid(i, nid)
2789 		return early_node_map[i].start_pfn;
2790 
2791 	printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid);
2792 	return 0;
2793 }
2794 
2795 /**
2796  * find_min_pfn_with_active_regions - Find the minimum PFN registered
2797  *
2798  * It returns the minimum PFN based on information provided via
2799  * add_active_range().
2800  */
2801 unsigned long __init find_min_pfn_with_active_regions(void)
2802 {
2803 	return find_min_pfn_for_node(MAX_NUMNODES);
2804 }
2805 
2806 /**
2807  * find_max_pfn_with_active_regions - Find the maximum PFN registered
2808  *
2809  * It returns the maximum PFN based on information provided via
2810  * add_active_range().
2811  */
2812 unsigned long __init find_max_pfn_with_active_regions(void)
2813 {
2814 	int i;
2815 	unsigned long max_pfn = 0;
2816 
2817 	for (i = 0; i < nr_nodemap_entries; i++)
2818 		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2819 
2820 	return max_pfn;
2821 }
2822 
2823 /**
2824  * free_area_init_nodes - Initialise all pg_data_t and zone data
2825  * @max_zone_pfn: an array of max PFNs for each zone
2826  *
2827  * This will call free_area_init_node() for each active node in the system.
2828  * Using the page ranges provided by add_active_range(), the size of each
2829  * zone in each node and their holes is calculated. If the maximum PFN
2830  * between two adjacent zones match, it is assumed that the zone is empty.
2831  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2832  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2833  * starts where the previous one ended. For example, ZONE_DMA32 starts
2834  * at arch_max_dma_pfn.
2835  */
2836 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2837 {
2838 	unsigned long nid;
2839 	enum zone_type i;
2840 
2841 	/* Record where the zone boundaries are */
2842 	memset(arch_zone_lowest_possible_pfn, 0,
2843 				sizeof(arch_zone_lowest_possible_pfn));
2844 	memset(arch_zone_highest_possible_pfn, 0,
2845 				sizeof(arch_zone_highest_possible_pfn));
2846 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2847 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2848 	for (i = 1; i < MAX_NR_ZONES; i++) {
2849 		arch_zone_lowest_possible_pfn[i] =
2850 			arch_zone_highest_possible_pfn[i-1];
2851 		arch_zone_highest_possible_pfn[i] =
2852 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2853 	}
2854 
2855 	/* Print out the zone ranges */
2856 	printk("Zone PFN ranges:\n");
2857 	for (i = 0; i < MAX_NR_ZONES; i++)
2858 		printk("  %-8s %8lu -> %8lu\n",
2859 				zone_names[i],
2860 				arch_zone_lowest_possible_pfn[i],
2861 				arch_zone_highest_possible_pfn[i]);
2862 
2863 	/* Print out the early_node_map[] */
2864 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2865 	for (i = 0; i < nr_nodemap_entries; i++)
2866 		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2867 						early_node_map[i].start_pfn,
2868 						early_node_map[i].end_pfn);
2869 
2870 	/* Initialise every node */
2871 	for_each_online_node(nid) {
2872 		pg_data_t *pgdat = NODE_DATA(nid);
2873 		free_area_init_node(nid, pgdat, NULL,
2874 				find_min_pfn_for_node(nid), NULL);
2875 	}
2876 }
2877 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2878 
2879 /**
2880  * set_dma_reserve - set the specified number of pages reserved in the first zone
2881  * @new_dma_reserve: The number of pages to mark reserved
2882  *
2883  * The per-cpu batchsize and zone watermarks are determined by present_pages.
2884  * In the DMA zone, a significant percentage may be consumed by kernel image
2885  * and other unfreeable allocations which can skew the watermarks badly. This
2886  * function may optionally be used to account for unfreeable pages in the
2887  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2888  * smaller per-cpu batchsize.
2889  */
2890 void __init set_dma_reserve(unsigned long new_dma_reserve)
2891 {
2892 	dma_reserve = new_dma_reserve;
2893 }
2894 
2895 #ifndef CONFIG_NEED_MULTIPLE_NODES
2896 static bootmem_data_t contig_bootmem_data;
2897 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2898 
2899 EXPORT_SYMBOL(contig_page_data);
2900 #endif
2901 
2902 void __init free_area_init(unsigned long *zones_size)
2903 {
2904 	free_area_init_node(0, NODE_DATA(0), zones_size,
2905 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2906 }
2907 
2908 static int page_alloc_cpu_notify(struct notifier_block *self,
2909 				 unsigned long action, void *hcpu)
2910 {
2911 	int cpu = (unsigned long)hcpu;
2912 
2913 	if (action == CPU_DEAD) {
2914 		local_irq_disable();
2915 		__drain_pages(cpu);
2916 		vm_events_fold_cpu(cpu);
2917 		local_irq_enable();
2918 		refresh_cpu_vm_stats(cpu);
2919 	}
2920 	return NOTIFY_OK;
2921 }
2922 
2923 void __init page_alloc_init(void)
2924 {
2925 	hotcpu_notifier(page_alloc_cpu_notify, 0);
2926 }
2927 
2928 /*
2929  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2930  *	or min_free_kbytes changes.
2931  */
2932 static void calculate_totalreserve_pages(void)
2933 {
2934 	struct pglist_data *pgdat;
2935 	unsigned long reserve_pages = 0;
2936 	enum zone_type i, j;
2937 
2938 	for_each_online_pgdat(pgdat) {
2939 		for (i = 0; i < MAX_NR_ZONES; i++) {
2940 			struct zone *zone = pgdat->node_zones + i;
2941 			unsigned long max = 0;
2942 
2943 			/* Find valid and maximum lowmem_reserve in the zone */
2944 			for (j = i; j < MAX_NR_ZONES; j++) {
2945 				if (zone->lowmem_reserve[j] > max)
2946 					max = zone->lowmem_reserve[j];
2947 			}
2948 
2949 			/* we treat pages_high as reserved pages. */
2950 			max += zone->pages_high;
2951 
2952 			if (max > zone->present_pages)
2953 				max = zone->present_pages;
2954 			reserve_pages += max;
2955 		}
2956 	}
2957 	totalreserve_pages = reserve_pages;
2958 }
2959 
2960 /*
2961  * setup_per_zone_lowmem_reserve - called whenever
2962  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2963  *	has a correct pages reserved value, so an adequate number of
2964  *	pages are left in the zone after a successful __alloc_pages().
2965  */
2966 static void setup_per_zone_lowmem_reserve(void)
2967 {
2968 	struct pglist_data *pgdat;
2969 	enum zone_type j, idx;
2970 
2971 	for_each_online_pgdat(pgdat) {
2972 		for (j = 0; j < MAX_NR_ZONES; j++) {
2973 			struct zone *zone = pgdat->node_zones + j;
2974 			unsigned long present_pages = zone->present_pages;
2975 
2976 			zone->lowmem_reserve[j] = 0;
2977 
2978 			idx = j;
2979 			while (idx) {
2980 				struct zone *lower_zone;
2981 
2982 				idx--;
2983 
2984 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2985 					sysctl_lowmem_reserve_ratio[idx] = 1;
2986 
2987 				lower_zone = pgdat->node_zones + idx;
2988 				lower_zone->lowmem_reserve[j] = present_pages /
2989 					sysctl_lowmem_reserve_ratio[idx];
2990 				present_pages += lower_zone->present_pages;
2991 			}
2992 		}
2993 	}
2994 
2995 	/* update totalreserve_pages */
2996 	calculate_totalreserve_pages();
2997 }
2998 
2999 /**
3000  * setup_per_zone_pages_min - called when min_free_kbytes changes.
3001  *
3002  * Ensures that the pages_{min,low,high} values for each zone are set correctly
3003  * with respect to min_free_kbytes.
3004  */
3005 void setup_per_zone_pages_min(void)
3006 {
3007 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3008 	unsigned long lowmem_pages = 0;
3009 	struct zone *zone;
3010 	unsigned long flags;
3011 
3012 	/* Calculate total number of !ZONE_HIGHMEM pages */
3013 	for_each_zone(zone) {
3014 		if (!is_highmem(zone))
3015 			lowmem_pages += zone->present_pages;
3016 	}
3017 
3018 	for_each_zone(zone) {
3019 		u64 tmp;
3020 
3021 		spin_lock_irqsave(&zone->lru_lock, flags);
3022 		tmp = (u64)pages_min * zone->present_pages;
3023 		do_div(tmp, lowmem_pages);
3024 		if (is_highmem(zone)) {
3025 			/*
3026 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3027 			 * need highmem pages, so cap pages_min to a small
3028 			 * value here.
3029 			 *
3030 			 * The (pages_high-pages_low) and (pages_low-pages_min)
3031 			 * deltas controls asynch page reclaim, and so should
3032 			 * not be capped for highmem.
3033 			 */
3034 			int min_pages;
3035 
3036 			min_pages = zone->present_pages / 1024;
3037 			if (min_pages < SWAP_CLUSTER_MAX)
3038 				min_pages = SWAP_CLUSTER_MAX;
3039 			if (min_pages > 128)
3040 				min_pages = 128;
3041 			zone->pages_min = min_pages;
3042 		} else {
3043 			/*
3044 			 * If it's a lowmem zone, reserve a number of pages
3045 			 * proportionate to the zone's size.
3046 			 */
3047 			zone->pages_min = tmp;
3048 		}
3049 
3050 		zone->pages_low   = zone->pages_min + (tmp >> 2);
3051 		zone->pages_high  = zone->pages_min + (tmp >> 1);
3052 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3053 	}
3054 
3055 	/* update totalreserve_pages */
3056 	calculate_totalreserve_pages();
3057 }
3058 
3059 /*
3060  * Initialise min_free_kbytes.
3061  *
3062  * For small machines we want it small (128k min).  For large machines
3063  * we want it large (64MB max).  But it is not linear, because network
3064  * bandwidth does not increase linearly with machine size.  We use
3065  *
3066  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3067  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
3068  *
3069  * which yields
3070  *
3071  * 16MB:	512k
3072  * 32MB:	724k
3073  * 64MB:	1024k
3074  * 128MB:	1448k
3075  * 256MB:	2048k
3076  * 512MB:	2896k
3077  * 1024MB:	4096k
3078  * 2048MB:	5792k
3079  * 4096MB:	8192k
3080  * 8192MB:	11584k
3081  * 16384MB:	16384k
3082  */
3083 static int __init init_per_zone_pages_min(void)
3084 {
3085 	unsigned long lowmem_kbytes;
3086 
3087 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3088 
3089 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3090 	if (min_free_kbytes < 128)
3091 		min_free_kbytes = 128;
3092 	if (min_free_kbytes > 65536)
3093 		min_free_kbytes = 65536;
3094 	setup_per_zone_pages_min();
3095 	setup_per_zone_lowmem_reserve();
3096 	return 0;
3097 }
3098 module_init(init_per_zone_pages_min)
3099 
3100 /*
3101  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3102  *	that we can call two helper functions whenever min_free_kbytes
3103  *	changes.
3104  */
3105 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3106 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3107 {
3108 	proc_dointvec(table, write, file, buffer, length, ppos);
3109 	setup_per_zone_pages_min();
3110 	return 0;
3111 }
3112 
3113 #ifdef CONFIG_NUMA
3114 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3115 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3116 {
3117 	struct zone *zone;
3118 	int rc;
3119 
3120 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3121 	if (rc)
3122 		return rc;
3123 
3124 	for_each_zone(zone)
3125 		zone->min_unmapped_pages = (zone->present_pages *
3126 				sysctl_min_unmapped_ratio) / 100;
3127 	return 0;
3128 }
3129 
3130 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3131 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3132 {
3133 	struct zone *zone;
3134 	int rc;
3135 
3136 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3137 	if (rc)
3138 		return rc;
3139 
3140 	for_each_zone(zone)
3141 		zone->min_slab_pages = (zone->present_pages *
3142 				sysctl_min_slab_ratio) / 100;
3143 	return 0;
3144 }
3145 #endif
3146 
3147 /*
3148  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3149  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3150  *	whenever sysctl_lowmem_reserve_ratio changes.
3151  *
3152  * The reserve ratio obviously has absolutely no relation with the
3153  * pages_min watermarks. The lowmem reserve ratio can only make sense
3154  * if in function of the boot time zone sizes.
3155  */
3156 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3157 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3158 {
3159 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3160 	setup_per_zone_lowmem_reserve();
3161 	return 0;
3162 }
3163 
3164 /*
3165  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3166  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
3167  * can have before it gets flushed back to buddy allocator.
3168  */
3169 
3170 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3171 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3172 {
3173 	struct zone *zone;
3174 	unsigned int cpu;
3175 	int ret;
3176 
3177 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3178 	if (!write || (ret == -EINVAL))
3179 		return ret;
3180 	for_each_zone(zone) {
3181 		for_each_online_cpu(cpu) {
3182 			unsigned long  high;
3183 			high = zone->present_pages / percpu_pagelist_fraction;
3184 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3185 		}
3186 	}
3187 	return 0;
3188 }
3189 
3190 int hashdist = HASHDIST_DEFAULT;
3191 
3192 #ifdef CONFIG_NUMA
3193 static int __init set_hashdist(char *str)
3194 {
3195 	if (!str)
3196 		return 0;
3197 	hashdist = simple_strtoul(str, &str, 0);
3198 	return 1;
3199 }
3200 __setup("hashdist=", set_hashdist);
3201 #endif
3202 
3203 /*
3204  * allocate a large system hash table from bootmem
3205  * - it is assumed that the hash table must contain an exact power-of-2
3206  *   quantity of entries
3207  * - limit is the number of hash buckets, not the total allocation size
3208  */
3209 void *__init alloc_large_system_hash(const char *tablename,
3210 				     unsigned long bucketsize,
3211 				     unsigned long numentries,
3212 				     int scale,
3213 				     int flags,
3214 				     unsigned int *_hash_shift,
3215 				     unsigned int *_hash_mask,
3216 				     unsigned long limit)
3217 {
3218 	unsigned long long max = limit;
3219 	unsigned long log2qty, size;
3220 	void *table = NULL;
3221 
3222 	/* allow the kernel cmdline to have a say */
3223 	if (!numentries) {
3224 		/* round applicable memory size up to nearest megabyte */
3225 		numentries = nr_kernel_pages;
3226 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3227 		numentries >>= 20 - PAGE_SHIFT;
3228 		numentries <<= 20 - PAGE_SHIFT;
3229 
3230 		/* limit to 1 bucket per 2^scale bytes of low memory */
3231 		if (scale > PAGE_SHIFT)
3232 			numentries >>= (scale - PAGE_SHIFT);
3233 		else
3234 			numentries <<= (PAGE_SHIFT - scale);
3235 	}
3236 	numentries = roundup_pow_of_two(numentries);
3237 
3238 	/* limit allocation size to 1/16 total memory by default */
3239 	if (max == 0) {
3240 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3241 		do_div(max, bucketsize);
3242 	}
3243 
3244 	if (numentries > max)
3245 		numentries = max;
3246 
3247 	log2qty = long_log2(numentries);
3248 
3249 	do {
3250 		size = bucketsize << log2qty;
3251 		if (flags & HASH_EARLY)
3252 			table = alloc_bootmem(size);
3253 		else if (hashdist)
3254 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3255 		else {
3256 			unsigned long order;
3257 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3258 				;
3259 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
3260 		}
3261 	} while (!table && size > PAGE_SIZE && --log2qty);
3262 
3263 	if (!table)
3264 		panic("Failed to allocate %s hash table\n", tablename);
3265 
3266 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3267 	       tablename,
3268 	       (1U << log2qty),
3269 	       long_log2(size) - PAGE_SHIFT,
3270 	       size);
3271 
3272 	if (_hash_shift)
3273 		*_hash_shift = log2qty;
3274 	if (_hash_mask)
3275 		*_hash_mask = (1 << log2qty) - 1;
3276 
3277 	return table;
3278 }
3279 
3280 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3281 struct page *pfn_to_page(unsigned long pfn)
3282 {
3283 	return __pfn_to_page(pfn);
3284 }
3285 unsigned long page_to_pfn(struct page *page)
3286 {
3287 	return __page_to_pfn(page);
3288 }
3289 EXPORT_SYMBOL(pfn_to_page);
3290 EXPORT_SYMBOL(page_to_pfn);
3291 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3292 
3293 #if MAX_NUMNODES > 1
3294 /*
3295  * Find the highest possible node id.
3296  */
3297 int highest_possible_node_id(void)
3298 {
3299 	unsigned int node;
3300 	unsigned int highest = 0;
3301 
3302 	for_each_node_mask(node, node_possible_map)
3303 		highest = node;
3304 	return highest;
3305 }
3306 EXPORT_SYMBOL(highest_possible_node_id);
3307 #endif
3308