xref: /openbmc/linux/mm/page_alloc.c (revision 1170532bb49f9468aedabdc1d5a560e2521a2bcc)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71 
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
75 
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80 
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86  * defined in <linux/topology.h>.
87  */
88 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92 
93 /*
94  * Array of node states.
95  */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 	[N_POSSIBLE] = NODE_MASK_ALL,
98 	[N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 	[N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 	[N_CPU] = { { [0] = 1UL } },
108 #endif	/* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111 
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114 
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118 
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
121 
122 /*
123  * A cached value of the page's pageblock's migratetype, used when the page is
124  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126  * Also the migratetype set in the page does not necessarily match the pcplist
127  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128  * other index - this ensures that it will be put on the correct CMA freelist.
129  */
130 static inline int get_pcppage_migratetype(struct page *page)
131 {
132 	return page->index;
133 }
134 
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136 {
137 	page->index = migratetype;
138 }
139 
140 #ifdef CONFIG_PM_SLEEP
141 /*
142  * The following functions are used by the suspend/hibernate code to temporarily
143  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144  * while devices are suspended.  To avoid races with the suspend/hibernate code,
145  * they should always be called with pm_mutex held (gfp_allowed_mask also should
146  * only be modified with pm_mutex held, unless the suspend/hibernate code is
147  * guaranteed not to run in parallel with that modification).
148  */
149 
150 static gfp_t saved_gfp_mask;
151 
152 void pm_restore_gfp_mask(void)
153 {
154 	WARN_ON(!mutex_is_locked(&pm_mutex));
155 	if (saved_gfp_mask) {
156 		gfp_allowed_mask = saved_gfp_mask;
157 		saved_gfp_mask = 0;
158 	}
159 }
160 
161 void pm_restrict_gfp_mask(void)
162 {
163 	WARN_ON(!mutex_is_locked(&pm_mutex));
164 	WARN_ON(saved_gfp_mask);
165 	saved_gfp_mask = gfp_allowed_mask;
166 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
167 }
168 
169 bool pm_suspended_storage(void)
170 {
171 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 		return false;
173 	return true;
174 }
175 #endif /* CONFIG_PM_SLEEP */
176 
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
180 
181 static void __free_pages_ok(struct page *page, unsigned int order);
182 
183 /*
184  * results with 256, 32 in the lowmem_reserve sysctl:
185  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186  *	1G machine -> (16M dma, 784M normal, 224M high)
187  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
190  *
191  * TBD: should special case ZONE_DMA32 machines here - in those we normally
192  * don't need any ZONE_NORMAL reservation
193  */
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 	 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 	 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
202 	 32,
203 #endif
204 	 32,
205 };
206 
207 EXPORT_SYMBOL(totalram_pages);
208 
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 	 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 	 "DMA32",
215 #endif
216 	 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 	 "HighMem",
219 #endif
220 	 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 	 "Device",
223 #endif
224 };
225 
226 char * const migratetype_names[MIGRATE_TYPES] = {
227 	"Unmovable",
228 	"Movable",
229 	"Reclaimable",
230 	"HighAtomic",
231 #ifdef CONFIG_CMA
232 	"CMA",
233 #endif
234 #ifdef CONFIG_MEMORY_ISOLATION
235 	"Isolate",
236 #endif
237 };
238 
239 compound_page_dtor * const compound_page_dtors[] = {
240 	NULL,
241 	free_compound_page,
242 #ifdef CONFIG_HUGETLB_PAGE
243 	free_huge_page,
244 #endif
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 	free_transhuge_page,
247 #endif
248 };
249 
250 int min_free_kbytes = 1024;
251 int user_min_free_kbytes = -1;
252 int watermark_scale_factor = 10;
253 
254 static unsigned long __meminitdata nr_kernel_pages;
255 static unsigned long __meminitdata nr_all_pages;
256 static unsigned long __meminitdata dma_reserve;
257 
258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __initdata required_kernelcore;
262 static unsigned long __initdata required_movablecore;
263 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
264 static bool mirrored_kernelcore;
265 
266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267 int movable_zone;
268 EXPORT_SYMBOL(movable_zone);
269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
270 
271 #if MAX_NUMNODES > 1
272 int nr_node_ids __read_mostly = MAX_NUMNODES;
273 int nr_online_nodes __read_mostly = 1;
274 EXPORT_SYMBOL(nr_node_ids);
275 EXPORT_SYMBOL(nr_online_nodes);
276 #endif
277 
278 int page_group_by_mobility_disabled __read_mostly;
279 
280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281 static inline void reset_deferred_meminit(pg_data_t *pgdat)
282 {
283 	pgdat->first_deferred_pfn = ULONG_MAX;
284 }
285 
286 /* Returns true if the struct page for the pfn is uninitialised */
287 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
288 {
289 	if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
290 		return true;
291 
292 	return false;
293 }
294 
295 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296 {
297 	if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 		return true;
299 
300 	return false;
301 }
302 
303 /*
304  * Returns false when the remaining initialisation should be deferred until
305  * later in the boot cycle when it can be parallelised.
306  */
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 				unsigned long pfn, unsigned long zone_end,
309 				unsigned long *nr_initialised)
310 {
311 	/* Always populate low zones for address-contrained allocations */
312 	if (zone_end < pgdat_end_pfn(pgdat))
313 		return true;
314 
315 	/* Initialise at least 2G of the highest zone */
316 	(*nr_initialised)++;
317 	if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
318 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
319 		pgdat->first_deferred_pfn = pfn;
320 		return false;
321 	}
322 
323 	return true;
324 }
325 #else
326 static inline void reset_deferred_meminit(pg_data_t *pgdat)
327 {
328 }
329 
330 static inline bool early_page_uninitialised(unsigned long pfn)
331 {
332 	return false;
333 }
334 
335 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
336 {
337 	return false;
338 }
339 
340 static inline bool update_defer_init(pg_data_t *pgdat,
341 				unsigned long pfn, unsigned long zone_end,
342 				unsigned long *nr_initialised)
343 {
344 	return true;
345 }
346 #endif
347 
348 
349 void set_pageblock_migratetype(struct page *page, int migratetype)
350 {
351 	if (unlikely(page_group_by_mobility_disabled &&
352 		     migratetype < MIGRATE_PCPTYPES))
353 		migratetype = MIGRATE_UNMOVABLE;
354 
355 	set_pageblock_flags_group(page, (unsigned long)migratetype,
356 					PB_migrate, PB_migrate_end);
357 }
358 
359 #ifdef CONFIG_DEBUG_VM
360 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
361 {
362 	int ret = 0;
363 	unsigned seq;
364 	unsigned long pfn = page_to_pfn(page);
365 	unsigned long sp, start_pfn;
366 
367 	do {
368 		seq = zone_span_seqbegin(zone);
369 		start_pfn = zone->zone_start_pfn;
370 		sp = zone->spanned_pages;
371 		if (!zone_spans_pfn(zone, pfn))
372 			ret = 1;
373 	} while (zone_span_seqretry(zone, seq));
374 
375 	if (ret)
376 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
377 			pfn, zone_to_nid(zone), zone->name,
378 			start_pfn, start_pfn + sp);
379 
380 	return ret;
381 }
382 
383 static int page_is_consistent(struct zone *zone, struct page *page)
384 {
385 	if (!pfn_valid_within(page_to_pfn(page)))
386 		return 0;
387 	if (zone != page_zone(page))
388 		return 0;
389 
390 	return 1;
391 }
392 /*
393  * Temporary debugging check for pages not lying within a given zone.
394  */
395 static int bad_range(struct zone *zone, struct page *page)
396 {
397 	if (page_outside_zone_boundaries(zone, page))
398 		return 1;
399 	if (!page_is_consistent(zone, page))
400 		return 1;
401 
402 	return 0;
403 }
404 #else
405 static inline int bad_range(struct zone *zone, struct page *page)
406 {
407 	return 0;
408 }
409 #endif
410 
411 static void bad_page(struct page *page, const char *reason,
412 		unsigned long bad_flags)
413 {
414 	static unsigned long resume;
415 	static unsigned long nr_shown;
416 	static unsigned long nr_unshown;
417 
418 	/* Don't complain about poisoned pages */
419 	if (PageHWPoison(page)) {
420 		page_mapcount_reset(page); /* remove PageBuddy */
421 		return;
422 	}
423 
424 	/*
425 	 * Allow a burst of 60 reports, then keep quiet for that minute;
426 	 * or allow a steady drip of one report per second.
427 	 */
428 	if (nr_shown == 60) {
429 		if (time_before(jiffies, resume)) {
430 			nr_unshown++;
431 			goto out;
432 		}
433 		if (nr_unshown) {
434 			pr_alert(
435 			      "BUG: Bad page state: %lu messages suppressed\n",
436 				nr_unshown);
437 			nr_unshown = 0;
438 		}
439 		nr_shown = 0;
440 	}
441 	if (nr_shown++ == 0)
442 		resume = jiffies + 60 * HZ;
443 
444 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
445 		current->comm, page_to_pfn(page));
446 	__dump_page(page, reason);
447 	bad_flags &= page->flags;
448 	if (bad_flags)
449 		pr_alert("bad because of flags: %#lx(%pGp)\n",
450 						bad_flags, &bad_flags);
451 	dump_page_owner(page);
452 
453 	print_modules();
454 	dump_stack();
455 out:
456 	/* Leave bad fields for debug, except PageBuddy could make trouble */
457 	page_mapcount_reset(page); /* remove PageBuddy */
458 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
459 }
460 
461 /*
462  * Higher-order pages are called "compound pages".  They are structured thusly:
463  *
464  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
465  *
466  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
467  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
468  *
469  * The first tail page's ->compound_dtor holds the offset in array of compound
470  * page destructors. See compound_page_dtors.
471  *
472  * The first tail page's ->compound_order holds the order of allocation.
473  * This usage means that zero-order pages may not be compound.
474  */
475 
476 void free_compound_page(struct page *page)
477 {
478 	__free_pages_ok(page, compound_order(page));
479 }
480 
481 void prep_compound_page(struct page *page, unsigned int order)
482 {
483 	int i;
484 	int nr_pages = 1 << order;
485 
486 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
487 	set_compound_order(page, order);
488 	__SetPageHead(page);
489 	for (i = 1; i < nr_pages; i++) {
490 		struct page *p = page + i;
491 		set_page_count(p, 0);
492 		p->mapping = TAIL_MAPPING;
493 		set_compound_head(p, page);
494 	}
495 	atomic_set(compound_mapcount_ptr(page), -1);
496 }
497 
498 #ifdef CONFIG_DEBUG_PAGEALLOC
499 unsigned int _debug_guardpage_minorder;
500 bool _debug_pagealloc_enabled __read_mostly
501 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
502 EXPORT_SYMBOL(_debug_pagealloc_enabled);
503 bool _debug_guardpage_enabled __read_mostly;
504 
505 static int __init early_debug_pagealloc(char *buf)
506 {
507 	if (!buf)
508 		return -EINVAL;
509 
510 	if (strcmp(buf, "on") == 0)
511 		_debug_pagealloc_enabled = true;
512 
513 	if (strcmp(buf, "off") == 0)
514 		_debug_pagealloc_enabled = false;
515 
516 	return 0;
517 }
518 early_param("debug_pagealloc", early_debug_pagealloc);
519 
520 static bool need_debug_guardpage(void)
521 {
522 	/* If we don't use debug_pagealloc, we don't need guard page */
523 	if (!debug_pagealloc_enabled())
524 		return false;
525 
526 	return true;
527 }
528 
529 static void init_debug_guardpage(void)
530 {
531 	if (!debug_pagealloc_enabled())
532 		return;
533 
534 	_debug_guardpage_enabled = true;
535 }
536 
537 struct page_ext_operations debug_guardpage_ops = {
538 	.need = need_debug_guardpage,
539 	.init = init_debug_guardpage,
540 };
541 
542 static int __init debug_guardpage_minorder_setup(char *buf)
543 {
544 	unsigned long res;
545 
546 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
547 		pr_err("Bad debug_guardpage_minorder value\n");
548 		return 0;
549 	}
550 	_debug_guardpage_minorder = res;
551 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
552 	return 0;
553 }
554 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
555 
556 static inline void set_page_guard(struct zone *zone, struct page *page,
557 				unsigned int order, int migratetype)
558 {
559 	struct page_ext *page_ext;
560 
561 	if (!debug_guardpage_enabled())
562 		return;
563 
564 	page_ext = lookup_page_ext(page);
565 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
566 
567 	INIT_LIST_HEAD(&page->lru);
568 	set_page_private(page, order);
569 	/* Guard pages are not available for any usage */
570 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
571 }
572 
573 static inline void clear_page_guard(struct zone *zone, struct page *page,
574 				unsigned int order, int migratetype)
575 {
576 	struct page_ext *page_ext;
577 
578 	if (!debug_guardpage_enabled())
579 		return;
580 
581 	page_ext = lookup_page_ext(page);
582 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
583 
584 	set_page_private(page, 0);
585 	if (!is_migrate_isolate(migratetype))
586 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
587 }
588 #else
589 struct page_ext_operations debug_guardpage_ops = { NULL, };
590 static inline void set_page_guard(struct zone *zone, struct page *page,
591 				unsigned int order, int migratetype) {}
592 static inline void clear_page_guard(struct zone *zone, struct page *page,
593 				unsigned int order, int migratetype) {}
594 #endif
595 
596 static inline void set_page_order(struct page *page, unsigned int order)
597 {
598 	set_page_private(page, order);
599 	__SetPageBuddy(page);
600 }
601 
602 static inline void rmv_page_order(struct page *page)
603 {
604 	__ClearPageBuddy(page);
605 	set_page_private(page, 0);
606 }
607 
608 /*
609  * This function checks whether a page is free && is the buddy
610  * we can do coalesce a page and its buddy if
611  * (a) the buddy is not in a hole &&
612  * (b) the buddy is in the buddy system &&
613  * (c) a page and its buddy have the same order &&
614  * (d) a page and its buddy are in the same zone.
615  *
616  * For recording whether a page is in the buddy system, we set ->_mapcount
617  * PAGE_BUDDY_MAPCOUNT_VALUE.
618  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
619  * serialized by zone->lock.
620  *
621  * For recording page's order, we use page_private(page).
622  */
623 static inline int page_is_buddy(struct page *page, struct page *buddy,
624 							unsigned int order)
625 {
626 	if (!pfn_valid_within(page_to_pfn(buddy)))
627 		return 0;
628 
629 	if (page_is_guard(buddy) && page_order(buddy) == order) {
630 		if (page_zone_id(page) != page_zone_id(buddy))
631 			return 0;
632 
633 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
634 
635 		return 1;
636 	}
637 
638 	if (PageBuddy(buddy) && page_order(buddy) == order) {
639 		/*
640 		 * zone check is done late to avoid uselessly
641 		 * calculating zone/node ids for pages that could
642 		 * never merge.
643 		 */
644 		if (page_zone_id(page) != page_zone_id(buddy))
645 			return 0;
646 
647 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
648 
649 		return 1;
650 	}
651 	return 0;
652 }
653 
654 /*
655  * Freeing function for a buddy system allocator.
656  *
657  * The concept of a buddy system is to maintain direct-mapped table
658  * (containing bit values) for memory blocks of various "orders".
659  * The bottom level table contains the map for the smallest allocatable
660  * units of memory (here, pages), and each level above it describes
661  * pairs of units from the levels below, hence, "buddies".
662  * At a high level, all that happens here is marking the table entry
663  * at the bottom level available, and propagating the changes upward
664  * as necessary, plus some accounting needed to play nicely with other
665  * parts of the VM system.
666  * At each level, we keep a list of pages, which are heads of continuous
667  * free pages of length of (1 << order) and marked with _mapcount
668  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
669  * field.
670  * So when we are allocating or freeing one, we can derive the state of the
671  * other.  That is, if we allocate a small block, and both were
672  * free, the remainder of the region must be split into blocks.
673  * If a block is freed, and its buddy is also free, then this
674  * triggers coalescing into a block of larger size.
675  *
676  * -- nyc
677  */
678 
679 static inline void __free_one_page(struct page *page,
680 		unsigned long pfn,
681 		struct zone *zone, unsigned int order,
682 		int migratetype)
683 {
684 	unsigned long page_idx;
685 	unsigned long combined_idx;
686 	unsigned long uninitialized_var(buddy_idx);
687 	struct page *buddy;
688 	unsigned int max_order = MAX_ORDER;
689 
690 	VM_BUG_ON(!zone_is_initialized(zone));
691 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
692 
693 	VM_BUG_ON(migratetype == -1);
694 	if (is_migrate_isolate(migratetype)) {
695 		/*
696 		 * We restrict max order of merging to prevent merge
697 		 * between freepages on isolate pageblock and normal
698 		 * pageblock. Without this, pageblock isolation
699 		 * could cause incorrect freepage accounting.
700 		 */
701 		max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
702 	} else {
703 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
704 	}
705 
706 	page_idx = pfn & ((1 << max_order) - 1);
707 
708 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
710 
711 	while (order < max_order - 1) {
712 		buddy_idx = __find_buddy_index(page_idx, order);
713 		buddy = page + (buddy_idx - page_idx);
714 		if (!page_is_buddy(page, buddy, order))
715 			break;
716 		/*
717 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
718 		 * merge with it and move up one order.
719 		 */
720 		if (page_is_guard(buddy)) {
721 			clear_page_guard(zone, buddy, order, migratetype);
722 		} else {
723 			list_del(&buddy->lru);
724 			zone->free_area[order].nr_free--;
725 			rmv_page_order(buddy);
726 		}
727 		combined_idx = buddy_idx & page_idx;
728 		page = page + (combined_idx - page_idx);
729 		page_idx = combined_idx;
730 		order++;
731 	}
732 	set_page_order(page, order);
733 
734 	/*
735 	 * If this is not the largest possible page, check if the buddy
736 	 * of the next-highest order is free. If it is, it's possible
737 	 * that pages are being freed that will coalesce soon. In case,
738 	 * that is happening, add the free page to the tail of the list
739 	 * so it's less likely to be used soon and more likely to be merged
740 	 * as a higher order page
741 	 */
742 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
743 		struct page *higher_page, *higher_buddy;
744 		combined_idx = buddy_idx & page_idx;
745 		higher_page = page + (combined_idx - page_idx);
746 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
747 		higher_buddy = higher_page + (buddy_idx - combined_idx);
748 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
749 			list_add_tail(&page->lru,
750 				&zone->free_area[order].free_list[migratetype]);
751 			goto out;
752 		}
753 	}
754 
755 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
756 out:
757 	zone->free_area[order].nr_free++;
758 }
759 
760 static inline int free_pages_check(struct page *page)
761 {
762 	const char *bad_reason = NULL;
763 	unsigned long bad_flags = 0;
764 
765 	if (unlikely(atomic_read(&page->_mapcount) != -1))
766 		bad_reason = "nonzero mapcount";
767 	if (unlikely(page->mapping != NULL))
768 		bad_reason = "non-NULL mapping";
769 	if (unlikely(page_ref_count(page) != 0))
770 		bad_reason = "nonzero _count";
771 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
772 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
773 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
774 	}
775 #ifdef CONFIG_MEMCG
776 	if (unlikely(page->mem_cgroup))
777 		bad_reason = "page still charged to cgroup";
778 #endif
779 	if (unlikely(bad_reason)) {
780 		bad_page(page, bad_reason, bad_flags);
781 		return 1;
782 	}
783 	page_cpupid_reset_last(page);
784 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
785 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
786 	return 0;
787 }
788 
789 /*
790  * Frees a number of pages from the PCP lists
791  * Assumes all pages on list are in same zone, and of same order.
792  * count is the number of pages to free.
793  *
794  * If the zone was previously in an "all pages pinned" state then look to
795  * see if this freeing clears that state.
796  *
797  * And clear the zone's pages_scanned counter, to hold off the "all pages are
798  * pinned" detection logic.
799  */
800 static void free_pcppages_bulk(struct zone *zone, int count,
801 					struct per_cpu_pages *pcp)
802 {
803 	int migratetype = 0;
804 	int batch_free = 0;
805 	int to_free = count;
806 	unsigned long nr_scanned;
807 
808 	spin_lock(&zone->lock);
809 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
810 	if (nr_scanned)
811 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
812 
813 	while (to_free) {
814 		struct page *page;
815 		struct list_head *list;
816 
817 		/*
818 		 * Remove pages from lists in a round-robin fashion. A
819 		 * batch_free count is maintained that is incremented when an
820 		 * empty list is encountered.  This is so more pages are freed
821 		 * off fuller lists instead of spinning excessively around empty
822 		 * lists
823 		 */
824 		do {
825 			batch_free++;
826 			if (++migratetype == MIGRATE_PCPTYPES)
827 				migratetype = 0;
828 			list = &pcp->lists[migratetype];
829 		} while (list_empty(list));
830 
831 		/* This is the only non-empty list. Free them all. */
832 		if (batch_free == MIGRATE_PCPTYPES)
833 			batch_free = to_free;
834 
835 		do {
836 			int mt;	/* migratetype of the to-be-freed page */
837 
838 			page = list_last_entry(list, struct page, lru);
839 			/* must delete as __free_one_page list manipulates */
840 			list_del(&page->lru);
841 
842 			mt = get_pcppage_migratetype(page);
843 			/* MIGRATE_ISOLATE page should not go to pcplists */
844 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
845 			/* Pageblock could have been isolated meanwhile */
846 			if (unlikely(has_isolate_pageblock(zone)))
847 				mt = get_pageblock_migratetype(page);
848 
849 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
850 			trace_mm_page_pcpu_drain(page, 0, mt);
851 		} while (--to_free && --batch_free && !list_empty(list));
852 	}
853 	spin_unlock(&zone->lock);
854 }
855 
856 static void free_one_page(struct zone *zone,
857 				struct page *page, unsigned long pfn,
858 				unsigned int order,
859 				int migratetype)
860 {
861 	unsigned long nr_scanned;
862 	spin_lock(&zone->lock);
863 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
864 	if (nr_scanned)
865 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
866 
867 	if (unlikely(has_isolate_pageblock(zone) ||
868 		is_migrate_isolate(migratetype))) {
869 		migratetype = get_pfnblock_migratetype(page, pfn);
870 	}
871 	__free_one_page(page, pfn, zone, order, migratetype);
872 	spin_unlock(&zone->lock);
873 }
874 
875 static int free_tail_pages_check(struct page *head_page, struct page *page)
876 {
877 	int ret = 1;
878 
879 	/*
880 	 * We rely page->lru.next never has bit 0 set, unless the page
881 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
882 	 */
883 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
884 
885 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
886 		ret = 0;
887 		goto out;
888 	}
889 	switch (page - head_page) {
890 	case 1:
891 		/* the first tail page: ->mapping is compound_mapcount() */
892 		if (unlikely(compound_mapcount(page))) {
893 			bad_page(page, "nonzero compound_mapcount", 0);
894 			goto out;
895 		}
896 		break;
897 	case 2:
898 		/*
899 		 * the second tail page: ->mapping is
900 		 * page_deferred_list().next -- ignore value.
901 		 */
902 		break;
903 	default:
904 		if (page->mapping != TAIL_MAPPING) {
905 			bad_page(page, "corrupted mapping in tail page", 0);
906 			goto out;
907 		}
908 		break;
909 	}
910 	if (unlikely(!PageTail(page))) {
911 		bad_page(page, "PageTail not set", 0);
912 		goto out;
913 	}
914 	if (unlikely(compound_head(page) != head_page)) {
915 		bad_page(page, "compound_head not consistent", 0);
916 		goto out;
917 	}
918 	ret = 0;
919 out:
920 	page->mapping = NULL;
921 	clear_compound_head(page);
922 	return ret;
923 }
924 
925 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
926 				unsigned long zone, int nid)
927 {
928 	set_page_links(page, zone, nid, pfn);
929 	init_page_count(page);
930 	page_mapcount_reset(page);
931 	page_cpupid_reset_last(page);
932 
933 	INIT_LIST_HEAD(&page->lru);
934 #ifdef WANT_PAGE_VIRTUAL
935 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
936 	if (!is_highmem_idx(zone))
937 		set_page_address(page, __va(pfn << PAGE_SHIFT));
938 #endif
939 }
940 
941 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
942 					int nid)
943 {
944 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
945 }
946 
947 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
948 static void init_reserved_page(unsigned long pfn)
949 {
950 	pg_data_t *pgdat;
951 	int nid, zid;
952 
953 	if (!early_page_uninitialised(pfn))
954 		return;
955 
956 	nid = early_pfn_to_nid(pfn);
957 	pgdat = NODE_DATA(nid);
958 
959 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
960 		struct zone *zone = &pgdat->node_zones[zid];
961 
962 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
963 			break;
964 	}
965 	__init_single_pfn(pfn, zid, nid);
966 }
967 #else
968 static inline void init_reserved_page(unsigned long pfn)
969 {
970 }
971 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
972 
973 /*
974  * Initialised pages do not have PageReserved set. This function is
975  * called for each range allocated by the bootmem allocator and
976  * marks the pages PageReserved. The remaining valid pages are later
977  * sent to the buddy page allocator.
978  */
979 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
980 {
981 	unsigned long start_pfn = PFN_DOWN(start);
982 	unsigned long end_pfn = PFN_UP(end);
983 
984 	for (; start_pfn < end_pfn; start_pfn++) {
985 		if (pfn_valid(start_pfn)) {
986 			struct page *page = pfn_to_page(start_pfn);
987 
988 			init_reserved_page(start_pfn);
989 
990 			/* Avoid false-positive PageTail() */
991 			INIT_LIST_HEAD(&page->lru);
992 
993 			SetPageReserved(page);
994 		}
995 	}
996 }
997 
998 static bool free_pages_prepare(struct page *page, unsigned int order)
999 {
1000 	bool compound = PageCompound(page);
1001 	int i, bad = 0;
1002 
1003 	VM_BUG_ON_PAGE(PageTail(page), page);
1004 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1005 
1006 	trace_mm_page_free(page, order);
1007 	kmemcheck_free_shadow(page, order);
1008 	kasan_free_pages(page, order);
1009 
1010 	if (PageAnon(page))
1011 		page->mapping = NULL;
1012 	bad += free_pages_check(page);
1013 	for (i = 1; i < (1 << order); i++) {
1014 		if (compound)
1015 			bad += free_tail_pages_check(page, page + i);
1016 		bad += free_pages_check(page + i);
1017 	}
1018 	if (bad)
1019 		return false;
1020 
1021 	reset_page_owner(page, order);
1022 
1023 	if (!PageHighMem(page)) {
1024 		debug_check_no_locks_freed(page_address(page),
1025 					   PAGE_SIZE << order);
1026 		debug_check_no_obj_freed(page_address(page),
1027 					   PAGE_SIZE << order);
1028 	}
1029 	arch_free_page(page, order);
1030 	kernel_poison_pages(page, 1 << order, 0);
1031 	kernel_map_pages(page, 1 << order, 0);
1032 
1033 	return true;
1034 }
1035 
1036 static void __free_pages_ok(struct page *page, unsigned int order)
1037 {
1038 	unsigned long flags;
1039 	int migratetype;
1040 	unsigned long pfn = page_to_pfn(page);
1041 
1042 	if (!free_pages_prepare(page, order))
1043 		return;
1044 
1045 	migratetype = get_pfnblock_migratetype(page, pfn);
1046 	local_irq_save(flags);
1047 	__count_vm_events(PGFREE, 1 << order);
1048 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1049 	local_irq_restore(flags);
1050 }
1051 
1052 static void __init __free_pages_boot_core(struct page *page,
1053 					unsigned long pfn, unsigned int order)
1054 {
1055 	unsigned int nr_pages = 1 << order;
1056 	struct page *p = page;
1057 	unsigned int loop;
1058 
1059 	prefetchw(p);
1060 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1061 		prefetchw(p + 1);
1062 		__ClearPageReserved(p);
1063 		set_page_count(p, 0);
1064 	}
1065 	__ClearPageReserved(p);
1066 	set_page_count(p, 0);
1067 
1068 	page_zone(page)->managed_pages += nr_pages;
1069 	set_page_refcounted(page);
1070 	__free_pages(page, order);
1071 }
1072 
1073 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1074 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1075 
1076 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1077 
1078 int __meminit early_pfn_to_nid(unsigned long pfn)
1079 {
1080 	static DEFINE_SPINLOCK(early_pfn_lock);
1081 	int nid;
1082 
1083 	spin_lock(&early_pfn_lock);
1084 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1085 	if (nid < 0)
1086 		nid = 0;
1087 	spin_unlock(&early_pfn_lock);
1088 
1089 	return nid;
1090 }
1091 #endif
1092 
1093 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1094 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1095 					struct mminit_pfnnid_cache *state)
1096 {
1097 	int nid;
1098 
1099 	nid = __early_pfn_to_nid(pfn, state);
1100 	if (nid >= 0 && nid != node)
1101 		return false;
1102 	return true;
1103 }
1104 
1105 /* Only safe to use early in boot when initialisation is single-threaded */
1106 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1107 {
1108 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1109 }
1110 
1111 #else
1112 
1113 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1114 {
1115 	return true;
1116 }
1117 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1118 					struct mminit_pfnnid_cache *state)
1119 {
1120 	return true;
1121 }
1122 #endif
1123 
1124 
1125 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1126 							unsigned int order)
1127 {
1128 	if (early_page_uninitialised(pfn))
1129 		return;
1130 	return __free_pages_boot_core(page, pfn, order);
1131 }
1132 
1133 /*
1134  * Check that the whole (or subset of) a pageblock given by the interval of
1135  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1136  * with the migration of free compaction scanner. The scanners then need to
1137  * use only pfn_valid_within() check for arches that allow holes within
1138  * pageblocks.
1139  *
1140  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1141  *
1142  * It's possible on some configurations to have a setup like node0 node1 node0
1143  * i.e. it's possible that all pages within a zones range of pages do not
1144  * belong to a single zone. We assume that a border between node0 and node1
1145  * can occur within a single pageblock, but not a node0 node1 node0
1146  * interleaving within a single pageblock. It is therefore sufficient to check
1147  * the first and last page of a pageblock and avoid checking each individual
1148  * page in a pageblock.
1149  */
1150 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1151 				     unsigned long end_pfn, struct zone *zone)
1152 {
1153 	struct page *start_page;
1154 	struct page *end_page;
1155 
1156 	/* end_pfn is one past the range we are checking */
1157 	end_pfn--;
1158 
1159 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1160 		return NULL;
1161 
1162 	start_page = pfn_to_page(start_pfn);
1163 
1164 	if (page_zone(start_page) != zone)
1165 		return NULL;
1166 
1167 	end_page = pfn_to_page(end_pfn);
1168 
1169 	/* This gives a shorter code than deriving page_zone(end_page) */
1170 	if (page_zone_id(start_page) != page_zone_id(end_page))
1171 		return NULL;
1172 
1173 	return start_page;
1174 }
1175 
1176 void set_zone_contiguous(struct zone *zone)
1177 {
1178 	unsigned long block_start_pfn = zone->zone_start_pfn;
1179 	unsigned long block_end_pfn;
1180 
1181 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1182 	for (; block_start_pfn < zone_end_pfn(zone);
1183 			block_start_pfn = block_end_pfn,
1184 			 block_end_pfn += pageblock_nr_pages) {
1185 
1186 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1187 
1188 		if (!__pageblock_pfn_to_page(block_start_pfn,
1189 					     block_end_pfn, zone))
1190 			return;
1191 	}
1192 
1193 	/* We confirm that there is no hole */
1194 	zone->contiguous = true;
1195 }
1196 
1197 void clear_zone_contiguous(struct zone *zone)
1198 {
1199 	zone->contiguous = false;
1200 }
1201 
1202 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1203 static void __init deferred_free_range(struct page *page,
1204 					unsigned long pfn, int nr_pages)
1205 {
1206 	int i;
1207 
1208 	if (!page)
1209 		return;
1210 
1211 	/* Free a large naturally-aligned chunk if possible */
1212 	if (nr_pages == MAX_ORDER_NR_PAGES &&
1213 	    (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1214 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1215 		__free_pages_boot_core(page, pfn, MAX_ORDER-1);
1216 		return;
1217 	}
1218 
1219 	for (i = 0; i < nr_pages; i++, page++, pfn++)
1220 		__free_pages_boot_core(page, pfn, 0);
1221 }
1222 
1223 /* Completion tracking for deferred_init_memmap() threads */
1224 static atomic_t pgdat_init_n_undone __initdata;
1225 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1226 
1227 static inline void __init pgdat_init_report_one_done(void)
1228 {
1229 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1230 		complete(&pgdat_init_all_done_comp);
1231 }
1232 
1233 /* Initialise remaining memory on a node */
1234 static int __init deferred_init_memmap(void *data)
1235 {
1236 	pg_data_t *pgdat = data;
1237 	int nid = pgdat->node_id;
1238 	struct mminit_pfnnid_cache nid_init_state = { };
1239 	unsigned long start = jiffies;
1240 	unsigned long nr_pages = 0;
1241 	unsigned long walk_start, walk_end;
1242 	int i, zid;
1243 	struct zone *zone;
1244 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1245 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1246 
1247 	if (first_init_pfn == ULONG_MAX) {
1248 		pgdat_init_report_one_done();
1249 		return 0;
1250 	}
1251 
1252 	/* Bind memory initialisation thread to a local node if possible */
1253 	if (!cpumask_empty(cpumask))
1254 		set_cpus_allowed_ptr(current, cpumask);
1255 
1256 	/* Sanity check boundaries */
1257 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1258 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1259 	pgdat->first_deferred_pfn = ULONG_MAX;
1260 
1261 	/* Only the highest zone is deferred so find it */
1262 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1263 		zone = pgdat->node_zones + zid;
1264 		if (first_init_pfn < zone_end_pfn(zone))
1265 			break;
1266 	}
1267 
1268 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1269 		unsigned long pfn, end_pfn;
1270 		struct page *page = NULL;
1271 		struct page *free_base_page = NULL;
1272 		unsigned long free_base_pfn = 0;
1273 		int nr_to_free = 0;
1274 
1275 		end_pfn = min(walk_end, zone_end_pfn(zone));
1276 		pfn = first_init_pfn;
1277 		if (pfn < walk_start)
1278 			pfn = walk_start;
1279 		if (pfn < zone->zone_start_pfn)
1280 			pfn = zone->zone_start_pfn;
1281 
1282 		for (; pfn < end_pfn; pfn++) {
1283 			if (!pfn_valid_within(pfn))
1284 				goto free_range;
1285 
1286 			/*
1287 			 * Ensure pfn_valid is checked every
1288 			 * MAX_ORDER_NR_PAGES for memory holes
1289 			 */
1290 			if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1291 				if (!pfn_valid(pfn)) {
1292 					page = NULL;
1293 					goto free_range;
1294 				}
1295 			}
1296 
1297 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1298 				page = NULL;
1299 				goto free_range;
1300 			}
1301 
1302 			/* Minimise pfn page lookups and scheduler checks */
1303 			if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1304 				page++;
1305 			} else {
1306 				nr_pages += nr_to_free;
1307 				deferred_free_range(free_base_page,
1308 						free_base_pfn, nr_to_free);
1309 				free_base_page = NULL;
1310 				free_base_pfn = nr_to_free = 0;
1311 
1312 				page = pfn_to_page(pfn);
1313 				cond_resched();
1314 			}
1315 
1316 			if (page->flags) {
1317 				VM_BUG_ON(page_zone(page) != zone);
1318 				goto free_range;
1319 			}
1320 
1321 			__init_single_page(page, pfn, zid, nid);
1322 			if (!free_base_page) {
1323 				free_base_page = page;
1324 				free_base_pfn = pfn;
1325 				nr_to_free = 0;
1326 			}
1327 			nr_to_free++;
1328 
1329 			/* Where possible, batch up pages for a single free */
1330 			continue;
1331 free_range:
1332 			/* Free the current block of pages to allocator */
1333 			nr_pages += nr_to_free;
1334 			deferred_free_range(free_base_page, free_base_pfn,
1335 								nr_to_free);
1336 			free_base_page = NULL;
1337 			free_base_pfn = nr_to_free = 0;
1338 		}
1339 
1340 		first_init_pfn = max(end_pfn, first_init_pfn);
1341 	}
1342 
1343 	/* Sanity check that the next zone really is unpopulated */
1344 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1345 
1346 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1347 					jiffies_to_msecs(jiffies - start));
1348 
1349 	pgdat_init_report_one_done();
1350 	return 0;
1351 }
1352 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1353 
1354 void __init page_alloc_init_late(void)
1355 {
1356 	struct zone *zone;
1357 
1358 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1359 	int nid;
1360 
1361 	/* There will be num_node_state(N_MEMORY) threads */
1362 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1363 	for_each_node_state(nid, N_MEMORY) {
1364 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1365 	}
1366 
1367 	/* Block until all are initialised */
1368 	wait_for_completion(&pgdat_init_all_done_comp);
1369 
1370 	/* Reinit limits that are based on free pages after the kernel is up */
1371 	files_maxfiles_init();
1372 #endif
1373 
1374 	for_each_populated_zone(zone)
1375 		set_zone_contiguous(zone);
1376 }
1377 
1378 #ifdef CONFIG_CMA
1379 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1380 void __init init_cma_reserved_pageblock(struct page *page)
1381 {
1382 	unsigned i = pageblock_nr_pages;
1383 	struct page *p = page;
1384 
1385 	do {
1386 		__ClearPageReserved(p);
1387 		set_page_count(p, 0);
1388 	} while (++p, --i);
1389 
1390 	set_pageblock_migratetype(page, MIGRATE_CMA);
1391 
1392 	if (pageblock_order >= MAX_ORDER) {
1393 		i = pageblock_nr_pages;
1394 		p = page;
1395 		do {
1396 			set_page_refcounted(p);
1397 			__free_pages(p, MAX_ORDER - 1);
1398 			p += MAX_ORDER_NR_PAGES;
1399 		} while (i -= MAX_ORDER_NR_PAGES);
1400 	} else {
1401 		set_page_refcounted(page);
1402 		__free_pages(page, pageblock_order);
1403 	}
1404 
1405 	adjust_managed_page_count(page, pageblock_nr_pages);
1406 }
1407 #endif
1408 
1409 /*
1410  * The order of subdivision here is critical for the IO subsystem.
1411  * Please do not alter this order without good reasons and regression
1412  * testing. Specifically, as large blocks of memory are subdivided,
1413  * the order in which smaller blocks are delivered depends on the order
1414  * they're subdivided in this function. This is the primary factor
1415  * influencing the order in which pages are delivered to the IO
1416  * subsystem according to empirical testing, and this is also justified
1417  * by considering the behavior of a buddy system containing a single
1418  * large block of memory acted on by a series of small allocations.
1419  * This behavior is a critical factor in sglist merging's success.
1420  *
1421  * -- nyc
1422  */
1423 static inline void expand(struct zone *zone, struct page *page,
1424 	int low, int high, struct free_area *area,
1425 	int migratetype)
1426 {
1427 	unsigned long size = 1 << high;
1428 
1429 	while (high > low) {
1430 		area--;
1431 		high--;
1432 		size >>= 1;
1433 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1434 
1435 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1436 			debug_guardpage_enabled() &&
1437 			high < debug_guardpage_minorder()) {
1438 			/*
1439 			 * Mark as guard pages (or page), that will allow to
1440 			 * merge back to allocator when buddy will be freed.
1441 			 * Corresponding page table entries will not be touched,
1442 			 * pages will stay not present in virtual address space
1443 			 */
1444 			set_page_guard(zone, &page[size], high, migratetype);
1445 			continue;
1446 		}
1447 		list_add(&page[size].lru, &area->free_list[migratetype]);
1448 		area->nr_free++;
1449 		set_page_order(&page[size], high);
1450 	}
1451 }
1452 
1453 /*
1454  * This page is about to be returned from the page allocator
1455  */
1456 static inline int check_new_page(struct page *page)
1457 {
1458 	const char *bad_reason = NULL;
1459 	unsigned long bad_flags = 0;
1460 
1461 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1462 		bad_reason = "nonzero mapcount";
1463 	if (unlikely(page->mapping != NULL))
1464 		bad_reason = "non-NULL mapping";
1465 	if (unlikely(page_ref_count(page) != 0))
1466 		bad_reason = "nonzero _count";
1467 	if (unlikely(page->flags & __PG_HWPOISON)) {
1468 		bad_reason = "HWPoisoned (hardware-corrupted)";
1469 		bad_flags = __PG_HWPOISON;
1470 	}
1471 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1472 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1473 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1474 	}
1475 #ifdef CONFIG_MEMCG
1476 	if (unlikely(page->mem_cgroup))
1477 		bad_reason = "page still charged to cgroup";
1478 #endif
1479 	if (unlikely(bad_reason)) {
1480 		bad_page(page, bad_reason, bad_flags);
1481 		return 1;
1482 	}
1483 	return 0;
1484 }
1485 
1486 static inline bool free_pages_prezeroed(bool poisoned)
1487 {
1488 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1489 		page_poisoning_enabled() && poisoned;
1490 }
1491 
1492 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1493 								int alloc_flags)
1494 {
1495 	int i;
1496 	bool poisoned = true;
1497 
1498 	for (i = 0; i < (1 << order); i++) {
1499 		struct page *p = page + i;
1500 		if (unlikely(check_new_page(p)))
1501 			return 1;
1502 		if (poisoned)
1503 			poisoned &= page_is_poisoned(p);
1504 	}
1505 
1506 	set_page_private(page, 0);
1507 	set_page_refcounted(page);
1508 
1509 	arch_alloc_page(page, order);
1510 	kernel_map_pages(page, 1 << order, 1);
1511 	kernel_poison_pages(page, 1 << order, 1);
1512 	kasan_alloc_pages(page, order);
1513 
1514 	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1515 		for (i = 0; i < (1 << order); i++)
1516 			clear_highpage(page + i);
1517 
1518 	if (order && (gfp_flags & __GFP_COMP))
1519 		prep_compound_page(page, order);
1520 
1521 	set_page_owner(page, order, gfp_flags);
1522 
1523 	/*
1524 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1525 	 * allocate the page. The expectation is that the caller is taking
1526 	 * steps that will free more memory. The caller should avoid the page
1527 	 * being used for !PFMEMALLOC purposes.
1528 	 */
1529 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1530 		set_page_pfmemalloc(page);
1531 	else
1532 		clear_page_pfmemalloc(page);
1533 
1534 	return 0;
1535 }
1536 
1537 /*
1538  * Go through the free lists for the given migratetype and remove
1539  * the smallest available page from the freelists
1540  */
1541 static inline
1542 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1543 						int migratetype)
1544 {
1545 	unsigned int current_order;
1546 	struct free_area *area;
1547 	struct page *page;
1548 
1549 	/* Find a page of the appropriate size in the preferred list */
1550 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1551 		area = &(zone->free_area[current_order]);
1552 		page = list_first_entry_or_null(&area->free_list[migratetype],
1553 							struct page, lru);
1554 		if (!page)
1555 			continue;
1556 		list_del(&page->lru);
1557 		rmv_page_order(page);
1558 		area->nr_free--;
1559 		expand(zone, page, order, current_order, area, migratetype);
1560 		set_pcppage_migratetype(page, migratetype);
1561 		return page;
1562 	}
1563 
1564 	return NULL;
1565 }
1566 
1567 
1568 /*
1569  * This array describes the order lists are fallen back to when
1570  * the free lists for the desirable migrate type are depleted
1571  */
1572 static int fallbacks[MIGRATE_TYPES][4] = {
1573 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1574 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1575 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1576 #ifdef CONFIG_CMA
1577 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1578 #endif
1579 #ifdef CONFIG_MEMORY_ISOLATION
1580 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1581 #endif
1582 };
1583 
1584 #ifdef CONFIG_CMA
1585 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1586 					unsigned int order)
1587 {
1588 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1589 }
1590 #else
1591 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1592 					unsigned int order) { return NULL; }
1593 #endif
1594 
1595 /*
1596  * Move the free pages in a range to the free lists of the requested type.
1597  * Note that start_page and end_pages are not aligned on a pageblock
1598  * boundary. If alignment is required, use move_freepages_block()
1599  */
1600 int move_freepages(struct zone *zone,
1601 			  struct page *start_page, struct page *end_page,
1602 			  int migratetype)
1603 {
1604 	struct page *page;
1605 	unsigned int order;
1606 	int pages_moved = 0;
1607 
1608 #ifndef CONFIG_HOLES_IN_ZONE
1609 	/*
1610 	 * page_zone is not safe to call in this context when
1611 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1612 	 * anyway as we check zone boundaries in move_freepages_block().
1613 	 * Remove at a later date when no bug reports exist related to
1614 	 * grouping pages by mobility
1615 	 */
1616 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1617 #endif
1618 
1619 	for (page = start_page; page <= end_page;) {
1620 		/* Make sure we are not inadvertently changing nodes */
1621 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1622 
1623 		if (!pfn_valid_within(page_to_pfn(page))) {
1624 			page++;
1625 			continue;
1626 		}
1627 
1628 		if (!PageBuddy(page)) {
1629 			page++;
1630 			continue;
1631 		}
1632 
1633 		order = page_order(page);
1634 		list_move(&page->lru,
1635 			  &zone->free_area[order].free_list[migratetype]);
1636 		page += 1 << order;
1637 		pages_moved += 1 << order;
1638 	}
1639 
1640 	return pages_moved;
1641 }
1642 
1643 int move_freepages_block(struct zone *zone, struct page *page,
1644 				int migratetype)
1645 {
1646 	unsigned long start_pfn, end_pfn;
1647 	struct page *start_page, *end_page;
1648 
1649 	start_pfn = page_to_pfn(page);
1650 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1651 	start_page = pfn_to_page(start_pfn);
1652 	end_page = start_page + pageblock_nr_pages - 1;
1653 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1654 
1655 	/* Do not cross zone boundaries */
1656 	if (!zone_spans_pfn(zone, start_pfn))
1657 		start_page = page;
1658 	if (!zone_spans_pfn(zone, end_pfn))
1659 		return 0;
1660 
1661 	return move_freepages(zone, start_page, end_page, migratetype);
1662 }
1663 
1664 static void change_pageblock_range(struct page *pageblock_page,
1665 					int start_order, int migratetype)
1666 {
1667 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1668 
1669 	while (nr_pageblocks--) {
1670 		set_pageblock_migratetype(pageblock_page, migratetype);
1671 		pageblock_page += pageblock_nr_pages;
1672 	}
1673 }
1674 
1675 /*
1676  * When we are falling back to another migratetype during allocation, try to
1677  * steal extra free pages from the same pageblocks to satisfy further
1678  * allocations, instead of polluting multiple pageblocks.
1679  *
1680  * If we are stealing a relatively large buddy page, it is likely there will
1681  * be more free pages in the pageblock, so try to steal them all. For
1682  * reclaimable and unmovable allocations, we steal regardless of page size,
1683  * as fragmentation caused by those allocations polluting movable pageblocks
1684  * is worse than movable allocations stealing from unmovable and reclaimable
1685  * pageblocks.
1686  */
1687 static bool can_steal_fallback(unsigned int order, int start_mt)
1688 {
1689 	/*
1690 	 * Leaving this order check is intended, although there is
1691 	 * relaxed order check in next check. The reason is that
1692 	 * we can actually steal whole pageblock if this condition met,
1693 	 * but, below check doesn't guarantee it and that is just heuristic
1694 	 * so could be changed anytime.
1695 	 */
1696 	if (order >= pageblock_order)
1697 		return true;
1698 
1699 	if (order >= pageblock_order / 2 ||
1700 		start_mt == MIGRATE_RECLAIMABLE ||
1701 		start_mt == MIGRATE_UNMOVABLE ||
1702 		page_group_by_mobility_disabled)
1703 		return true;
1704 
1705 	return false;
1706 }
1707 
1708 /*
1709  * This function implements actual steal behaviour. If order is large enough,
1710  * we can steal whole pageblock. If not, we first move freepages in this
1711  * pageblock and check whether half of pages are moved or not. If half of
1712  * pages are moved, we can change migratetype of pageblock and permanently
1713  * use it's pages as requested migratetype in the future.
1714  */
1715 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1716 							  int start_type)
1717 {
1718 	unsigned int current_order = page_order(page);
1719 	int pages;
1720 
1721 	/* Take ownership for orders >= pageblock_order */
1722 	if (current_order >= pageblock_order) {
1723 		change_pageblock_range(page, current_order, start_type);
1724 		return;
1725 	}
1726 
1727 	pages = move_freepages_block(zone, page, start_type);
1728 
1729 	/* Claim the whole block if over half of it is free */
1730 	if (pages >= (1 << (pageblock_order-1)) ||
1731 			page_group_by_mobility_disabled)
1732 		set_pageblock_migratetype(page, start_type);
1733 }
1734 
1735 /*
1736  * Check whether there is a suitable fallback freepage with requested order.
1737  * If only_stealable is true, this function returns fallback_mt only if
1738  * we can steal other freepages all together. This would help to reduce
1739  * fragmentation due to mixed migratetype pages in one pageblock.
1740  */
1741 int find_suitable_fallback(struct free_area *area, unsigned int order,
1742 			int migratetype, bool only_stealable, bool *can_steal)
1743 {
1744 	int i;
1745 	int fallback_mt;
1746 
1747 	if (area->nr_free == 0)
1748 		return -1;
1749 
1750 	*can_steal = false;
1751 	for (i = 0;; i++) {
1752 		fallback_mt = fallbacks[migratetype][i];
1753 		if (fallback_mt == MIGRATE_TYPES)
1754 			break;
1755 
1756 		if (list_empty(&area->free_list[fallback_mt]))
1757 			continue;
1758 
1759 		if (can_steal_fallback(order, migratetype))
1760 			*can_steal = true;
1761 
1762 		if (!only_stealable)
1763 			return fallback_mt;
1764 
1765 		if (*can_steal)
1766 			return fallback_mt;
1767 	}
1768 
1769 	return -1;
1770 }
1771 
1772 /*
1773  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1774  * there are no empty page blocks that contain a page with a suitable order
1775  */
1776 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1777 				unsigned int alloc_order)
1778 {
1779 	int mt;
1780 	unsigned long max_managed, flags;
1781 
1782 	/*
1783 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1784 	 * Check is race-prone but harmless.
1785 	 */
1786 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1787 	if (zone->nr_reserved_highatomic >= max_managed)
1788 		return;
1789 
1790 	spin_lock_irqsave(&zone->lock, flags);
1791 
1792 	/* Recheck the nr_reserved_highatomic limit under the lock */
1793 	if (zone->nr_reserved_highatomic >= max_managed)
1794 		goto out_unlock;
1795 
1796 	/* Yoink! */
1797 	mt = get_pageblock_migratetype(page);
1798 	if (mt != MIGRATE_HIGHATOMIC &&
1799 			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1800 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1801 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1802 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1803 	}
1804 
1805 out_unlock:
1806 	spin_unlock_irqrestore(&zone->lock, flags);
1807 }
1808 
1809 /*
1810  * Used when an allocation is about to fail under memory pressure. This
1811  * potentially hurts the reliability of high-order allocations when under
1812  * intense memory pressure but failed atomic allocations should be easier
1813  * to recover from than an OOM.
1814  */
1815 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1816 {
1817 	struct zonelist *zonelist = ac->zonelist;
1818 	unsigned long flags;
1819 	struct zoneref *z;
1820 	struct zone *zone;
1821 	struct page *page;
1822 	int order;
1823 
1824 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1825 								ac->nodemask) {
1826 		/* Preserve at least one pageblock */
1827 		if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1828 			continue;
1829 
1830 		spin_lock_irqsave(&zone->lock, flags);
1831 		for (order = 0; order < MAX_ORDER; order++) {
1832 			struct free_area *area = &(zone->free_area[order]);
1833 
1834 			page = list_first_entry_or_null(
1835 					&area->free_list[MIGRATE_HIGHATOMIC],
1836 					struct page, lru);
1837 			if (!page)
1838 				continue;
1839 
1840 			/*
1841 			 * It should never happen but changes to locking could
1842 			 * inadvertently allow a per-cpu drain to add pages
1843 			 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1844 			 * and watch for underflows.
1845 			 */
1846 			zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1847 				zone->nr_reserved_highatomic);
1848 
1849 			/*
1850 			 * Convert to ac->migratetype and avoid the normal
1851 			 * pageblock stealing heuristics. Minimally, the caller
1852 			 * is doing the work and needs the pages. More
1853 			 * importantly, if the block was always converted to
1854 			 * MIGRATE_UNMOVABLE or another type then the number
1855 			 * of pageblocks that cannot be completely freed
1856 			 * may increase.
1857 			 */
1858 			set_pageblock_migratetype(page, ac->migratetype);
1859 			move_freepages_block(zone, page, ac->migratetype);
1860 			spin_unlock_irqrestore(&zone->lock, flags);
1861 			return;
1862 		}
1863 		spin_unlock_irqrestore(&zone->lock, flags);
1864 	}
1865 }
1866 
1867 /* Remove an element from the buddy allocator from the fallback list */
1868 static inline struct page *
1869 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1870 {
1871 	struct free_area *area;
1872 	unsigned int current_order;
1873 	struct page *page;
1874 	int fallback_mt;
1875 	bool can_steal;
1876 
1877 	/* Find the largest possible block of pages in the other list */
1878 	for (current_order = MAX_ORDER-1;
1879 				current_order >= order && current_order <= MAX_ORDER-1;
1880 				--current_order) {
1881 		area = &(zone->free_area[current_order]);
1882 		fallback_mt = find_suitable_fallback(area, current_order,
1883 				start_migratetype, false, &can_steal);
1884 		if (fallback_mt == -1)
1885 			continue;
1886 
1887 		page = list_first_entry(&area->free_list[fallback_mt],
1888 						struct page, lru);
1889 		if (can_steal)
1890 			steal_suitable_fallback(zone, page, start_migratetype);
1891 
1892 		/* Remove the page from the freelists */
1893 		area->nr_free--;
1894 		list_del(&page->lru);
1895 		rmv_page_order(page);
1896 
1897 		expand(zone, page, order, current_order, area,
1898 					start_migratetype);
1899 		/*
1900 		 * The pcppage_migratetype may differ from pageblock's
1901 		 * migratetype depending on the decisions in
1902 		 * find_suitable_fallback(). This is OK as long as it does not
1903 		 * differ for MIGRATE_CMA pageblocks. Those can be used as
1904 		 * fallback only via special __rmqueue_cma_fallback() function
1905 		 */
1906 		set_pcppage_migratetype(page, start_migratetype);
1907 
1908 		trace_mm_page_alloc_extfrag(page, order, current_order,
1909 			start_migratetype, fallback_mt);
1910 
1911 		return page;
1912 	}
1913 
1914 	return NULL;
1915 }
1916 
1917 /*
1918  * Do the hard work of removing an element from the buddy allocator.
1919  * Call me with the zone->lock already held.
1920  */
1921 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1922 				int migratetype)
1923 {
1924 	struct page *page;
1925 
1926 	page = __rmqueue_smallest(zone, order, migratetype);
1927 	if (unlikely(!page)) {
1928 		if (migratetype == MIGRATE_MOVABLE)
1929 			page = __rmqueue_cma_fallback(zone, order);
1930 
1931 		if (!page)
1932 			page = __rmqueue_fallback(zone, order, migratetype);
1933 	}
1934 
1935 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1936 	return page;
1937 }
1938 
1939 /*
1940  * Obtain a specified number of elements from the buddy allocator, all under
1941  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1942  * Returns the number of new pages which were placed at *list.
1943  */
1944 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1945 			unsigned long count, struct list_head *list,
1946 			int migratetype, bool cold)
1947 {
1948 	int i;
1949 
1950 	spin_lock(&zone->lock);
1951 	for (i = 0; i < count; ++i) {
1952 		struct page *page = __rmqueue(zone, order, migratetype);
1953 		if (unlikely(page == NULL))
1954 			break;
1955 
1956 		/*
1957 		 * Split buddy pages returned by expand() are received here
1958 		 * in physical page order. The page is added to the callers and
1959 		 * list and the list head then moves forward. From the callers
1960 		 * perspective, the linked list is ordered by page number in
1961 		 * some conditions. This is useful for IO devices that can
1962 		 * merge IO requests if the physical pages are ordered
1963 		 * properly.
1964 		 */
1965 		if (likely(!cold))
1966 			list_add(&page->lru, list);
1967 		else
1968 			list_add_tail(&page->lru, list);
1969 		list = &page->lru;
1970 		if (is_migrate_cma(get_pcppage_migratetype(page)))
1971 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1972 					      -(1 << order));
1973 	}
1974 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1975 	spin_unlock(&zone->lock);
1976 	return i;
1977 }
1978 
1979 #ifdef CONFIG_NUMA
1980 /*
1981  * Called from the vmstat counter updater to drain pagesets of this
1982  * currently executing processor on remote nodes after they have
1983  * expired.
1984  *
1985  * Note that this function must be called with the thread pinned to
1986  * a single processor.
1987  */
1988 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1989 {
1990 	unsigned long flags;
1991 	int to_drain, batch;
1992 
1993 	local_irq_save(flags);
1994 	batch = READ_ONCE(pcp->batch);
1995 	to_drain = min(pcp->count, batch);
1996 	if (to_drain > 0) {
1997 		free_pcppages_bulk(zone, to_drain, pcp);
1998 		pcp->count -= to_drain;
1999 	}
2000 	local_irq_restore(flags);
2001 }
2002 #endif
2003 
2004 /*
2005  * Drain pcplists of the indicated processor and zone.
2006  *
2007  * The processor must either be the current processor and the
2008  * thread pinned to the current processor or a processor that
2009  * is not online.
2010  */
2011 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2012 {
2013 	unsigned long flags;
2014 	struct per_cpu_pageset *pset;
2015 	struct per_cpu_pages *pcp;
2016 
2017 	local_irq_save(flags);
2018 	pset = per_cpu_ptr(zone->pageset, cpu);
2019 
2020 	pcp = &pset->pcp;
2021 	if (pcp->count) {
2022 		free_pcppages_bulk(zone, pcp->count, pcp);
2023 		pcp->count = 0;
2024 	}
2025 	local_irq_restore(flags);
2026 }
2027 
2028 /*
2029  * Drain pcplists of all zones on the indicated processor.
2030  *
2031  * The processor must either be the current processor and the
2032  * thread pinned to the current processor or a processor that
2033  * is not online.
2034  */
2035 static void drain_pages(unsigned int cpu)
2036 {
2037 	struct zone *zone;
2038 
2039 	for_each_populated_zone(zone) {
2040 		drain_pages_zone(cpu, zone);
2041 	}
2042 }
2043 
2044 /*
2045  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2046  *
2047  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2048  * the single zone's pages.
2049  */
2050 void drain_local_pages(struct zone *zone)
2051 {
2052 	int cpu = smp_processor_id();
2053 
2054 	if (zone)
2055 		drain_pages_zone(cpu, zone);
2056 	else
2057 		drain_pages(cpu);
2058 }
2059 
2060 /*
2061  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2062  *
2063  * When zone parameter is non-NULL, spill just the single zone's pages.
2064  *
2065  * Note that this code is protected against sending an IPI to an offline
2066  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2067  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2068  * nothing keeps CPUs from showing up after we populated the cpumask and
2069  * before the call to on_each_cpu_mask().
2070  */
2071 void drain_all_pages(struct zone *zone)
2072 {
2073 	int cpu;
2074 
2075 	/*
2076 	 * Allocate in the BSS so we wont require allocation in
2077 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2078 	 */
2079 	static cpumask_t cpus_with_pcps;
2080 
2081 	/*
2082 	 * We don't care about racing with CPU hotplug event
2083 	 * as offline notification will cause the notified
2084 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2085 	 * disables preemption as part of its processing
2086 	 */
2087 	for_each_online_cpu(cpu) {
2088 		struct per_cpu_pageset *pcp;
2089 		struct zone *z;
2090 		bool has_pcps = false;
2091 
2092 		if (zone) {
2093 			pcp = per_cpu_ptr(zone->pageset, cpu);
2094 			if (pcp->pcp.count)
2095 				has_pcps = true;
2096 		} else {
2097 			for_each_populated_zone(z) {
2098 				pcp = per_cpu_ptr(z->pageset, cpu);
2099 				if (pcp->pcp.count) {
2100 					has_pcps = true;
2101 					break;
2102 				}
2103 			}
2104 		}
2105 
2106 		if (has_pcps)
2107 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2108 		else
2109 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2110 	}
2111 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2112 								zone, 1);
2113 }
2114 
2115 #ifdef CONFIG_HIBERNATION
2116 
2117 void mark_free_pages(struct zone *zone)
2118 {
2119 	unsigned long pfn, max_zone_pfn;
2120 	unsigned long flags;
2121 	unsigned int order, t;
2122 	struct page *page;
2123 
2124 	if (zone_is_empty(zone))
2125 		return;
2126 
2127 	spin_lock_irqsave(&zone->lock, flags);
2128 
2129 	max_zone_pfn = zone_end_pfn(zone);
2130 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2131 		if (pfn_valid(pfn)) {
2132 			page = pfn_to_page(pfn);
2133 			if (!swsusp_page_is_forbidden(page))
2134 				swsusp_unset_page_free(page);
2135 		}
2136 
2137 	for_each_migratetype_order(order, t) {
2138 		list_for_each_entry(page,
2139 				&zone->free_area[order].free_list[t], lru) {
2140 			unsigned long i;
2141 
2142 			pfn = page_to_pfn(page);
2143 			for (i = 0; i < (1UL << order); i++)
2144 				swsusp_set_page_free(pfn_to_page(pfn + i));
2145 		}
2146 	}
2147 	spin_unlock_irqrestore(&zone->lock, flags);
2148 }
2149 #endif /* CONFIG_PM */
2150 
2151 /*
2152  * Free a 0-order page
2153  * cold == true ? free a cold page : free a hot page
2154  */
2155 void free_hot_cold_page(struct page *page, bool cold)
2156 {
2157 	struct zone *zone = page_zone(page);
2158 	struct per_cpu_pages *pcp;
2159 	unsigned long flags;
2160 	unsigned long pfn = page_to_pfn(page);
2161 	int migratetype;
2162 
2163 	if (!free_pages_prepare(page, 0))
2164 		return;
2165 
2166 	migratetype = get_pfnblock_migratetype(page, pfn);
2167 	set_pcppage_migratetype(page, migratetype);
2168 	local_irq_save(flags);
2169 	__count_vm_event(PGFREE);
2170 
2171 	/*
2172 	 * We only track unmovable, reclaimable and movable on pcp lists.
2173 	 * Free ISOLATE pages back to the allocator because they are being
2174 	 * offlined but treat RESERVE as movable pages so we can get those
2175 	 * areas back if necessary. Otherwise, we may have to free
2176 	 * excessively into the page allocator
2177 	 */
2178 	if (migratetype >= MIGRATE_PCPTYPES) {
2179 		if (unlikely(is_migrate_isolate(migratetype))) {
2180 			free_one_page(zone, page, pfn, 0, migratetype);
2181 			goto out;
2182 		}
2183 		migratetype = MIGRATE_MOVABLE;
2184 	}
2185 
2186 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2187 	if (!cold)
2188 		list_add(&page->lru, &pcp->lists[migratetype]);
2189 	else
2190 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2191 	pcp->count++;
2192 	if (pcp->count >= pcp->high) {
2193 		unsigned long batch = READ_ONCE(pcp->batch);
2194 		free_pcppages_bulk(zone, batch, pcp);
2195 		pcp->count -= batch;
2196 	}
2197 
2198 out:
2199 	local_irq_restore(flags);
2200 }
2201 
2202 /*
2203  * Free a list of 0-order pages
2204  */
2205 void free_hot_cold_page_list(struct list_head *list, bool cold)
2206 {
2207 	struct page *page, *next;
2208 
2209 	list_for_each_entry_safe(page, next, list, lru) {
2210 		trace_mm_page_free_batched(page, cold);
2211 		free_hot_cold_page(page, cold);
2212 	}
2213 }
2214 
2215 /*
2216  * split_page takes a non-compound higher-order page, and splits it into
2217  * n (1<<order) sub-pages: page[0..n]
2218  * Each sub-page must be freed individually.
2219  *
2220  * Note: this is probably too low level an operation for use in drivers.
2221  * Please consult with lkml before using this in your driver.
2222  */
2223 void split_page(struct page *page, unsigned int order)
2224 {
2225 	int i;
2226 	gfp_t gfp_mask;
2227 
2228 	VM_BUG_ON_PAGE(PageCompound(page), page);
2229 	VM_BUG_ON_PAGE(!page_count(page), page);
2230 
2231 #ifdef CONFIG_KMEMCHECK
2232 	/*
2233 	 * Split shadow pages too, because free(page[0]) would
2234 	 * otherwise free the whole shadow.
2235 	 */
2236 	if (kmemcheck_page_is_tracked(page))
2237 		split_page(virt_to_page(page[0].shadow), order);
2238 #endif
2239 
2240 	gfp_mask = get_page_owner_gfp(page);
2241 	set_page_owner(page, 0, gfp_mask);
2242 	for (i = 1; i < (1 << order); i++) {
2243 		set_page_refcounted(page + i);
2244 		set_page_owner(page + i, 0, gfp_mask);
2245 	}
2246 }
2247 EXPORT_SYMBOL_GPL(split_page);
2248 
2249 int __isolate_free_page(struct page *page, unsigned int order)
2250 {
2251 	unsigned long watermark;
2252 	struct zone *zone;
2253 	int mt;
2254 
2255 	BUG_ON(!PageBuddy(page));
2256 
2257 	zone = page_zone(page);
2258 	mt = get_pageblock_migratetype(page);
2259 
2260 	if (!is_migrate_isolate(mt)) {
2261 		/* Obey watermarks as if the page was being allocated */
2262 		watermark = low_wmark_pages(zone) + (1 << order);
2263 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2264 			return 0;
2265 
2266 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2267 	}
2268 
2269 	/* Remove page from free list */
2270 	list_del(&page->lru);
2271 	zone->free_area[order].nr_free--;
2272 	rmv_page_order(page);
2273 
2274 	set_page_owner(page, order, __GFP_MOVABLE);
2275 
2276 	/* Set the pageblock if the isolated page is at least a pageblock */
2277 	if (order >= pageblock_order - 1) {
2278 		struct page *endpage = page + (1 << order) - 1;
2279 		for (; page < endpage; page += pageblock_nr_pages) {
2280 			int mt = get_pageblock_migratetype(page);
2281 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2282 				set_pageblock_migratetype(page,
2283 							  MIGRATE_MOVABLE);
2284 		}
2285 	}
2286 
2287 
2288 	return 1UL << order;
2289 }
2290 
2291 /*
2292  * Similar to split_page except the page is already free. As this is only
2293  * being used for migration, the migratetype of the block also changes.
2294  * As this is called with interrupts disabled, the caller is responsible
2295  * for calling arch_alloc_page() and kernel_map_page() after interrupts
2296  * are enabled.
2297  *
2298  * Note: this is probably too low level an operation for use in drivers.
2299  * Please consult with lkml before using this in your driver.
2300  */
2301 int split_free_page(struct page *page)
2302 {
2303 	unsigned int order;
2304 	int nr_pages;
2305 
2306 	order = page_order(page);
2307 
2308 	nr_pages = __isolate_free_page(page, order);
2309 	if (!nr_pages)
2310 		return 0;
2311 
2312 	/* Split into individual pages */
2313 	set_page_refcounted(page);
2314 	split_page(page, order);
2315 	return nr_pages;
2316 }
2317 
2318 /*
2319  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2320  */
2321 static inline
2322 struct page *buffered_rmqueue(struct zone *preferred_zone,
2323 			struct zone *zone, unsigned int order,
2324 			gfp_t gfp_flags, int alloc_flags, int migratetype)
2325 {
2326 	unsigned long flags;
2327 	struct page *page;
2328 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2329 
2330 	if (likely(order == 0)) {
2331 		struct per_cpu_pages *pcp;
2332 		struct list_head *list;
2333 
2334 		local_irq_save(flags);
2335 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
2336 		list = &pcp->lists[migratetype];
2337 		if (list_empty(list)) {
2338 			pcp->count += rmqueue_bulk(zone, 0,
2339 					pcp->batch, list,
2340 					migratetype, cold);
2341 			if (unlikely(list_empty(list)))
2342 				goto failed;
2343 		}
2344 
2345 		if (cold)
2346 			page = list_last_entry(list, struct page, lru);
2347 		else
2348 			page = list_first_entry(list, struct page, lru);
2349 
2350 		list_del(&page->lru);
2351 		pcp->count--;
2352 	} else {
2353 		/*
2354 		 * We most definitely don't want callers attempting to
2355 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
2356 		 */
2357 		WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2358 		spin_lock_irqsave(&zone->lock, flags);
2359 
2360 		page = NULL;
2361 		if (alloc_flags & ALLOC_HARDER) {
2362 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2363 			if (page)
2364 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2365 		}
2366 		if (!page)
2367 			page = __rmqueue(zone, order, migratetype);
2368 		spin_unlock(&zone->lock);
2369 		if (!page)
2370 			goto failed;
2371 		__mod_zone_freepage_state(zone, -(1 << order),
2372 					  get_pcppage_migratetype(page));
2373 	}
2374 
2375 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2376 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2377 	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2378 		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2379 
2380 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
2381 	zone_statistics(preferred_zone, zone, gfp_flags);
2382 	local_irq_restore(flags);
2383 
2384 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
2385 	return page;
2386 
2387 failed:
2388 	local_irq_restore(flags);
2389 	return NULL;
2390 }
2391 
2392 #ifdef CONFIG_FAIL_PAGE_ALLOC
2393 
2394 static struct {
2395 	struct fault_attr attr;
2396 
2397 	bool ignore_gfp_highmem;
2398 	bool ignore_gfp_reclaim;
2399 	u32 min_order;
2400 } fail_page_alloc = {
2401 	.attr = FAULT_ATTR_INITIALIZER,
2402 	.ignore_gfp_reclaim = true,
2403 	.ignore_gfp_highmem = true,
2404 	.min_order = 1,
2405 };
2406 
2407 static int __init setup_fail_page_alloc(char *str)
2408 {
2409 	return setup_fault_attr(&fail_page_alloc.attr, str);
2410 }
2411 __setup("fail_page_alloc=", setup_fail_page_alloc);
2412 
2413 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2414 {
2415 	if (order < fail_page_alloc.min_order)
2416 		return false;
2417 	if (gfp_mask & __GFP_NOFAIL)
2418 		return false;
2419 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2420 		return false;
2421 	if (fail_page_alloc.ignore_gfp_reclaim &&
2422 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2423 		return false;
2424 
2425 	return should_fail(&fail_page_alloc.attr, 1 << order);
2426 }
2427 
2428 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2429 
2430 static int __init fail_page_alloc_debugfs(void)
2431 {
2432 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2433 	struct dentry *dir;
2434 
2435 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2436 					&fail_page_alloc.attr);
2437 	if (IS_ERR(dir))
2438 		return PTR_ERR(dir);
2439 
2440 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2441 				&fail_page_alloc.ignore_gfp_reclaim))
2442 		goto fail;
2443 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2444 				&fail_page_alloc.ignore_gfp_highmem))
2445 		goto fail;
2446 	if (!debugfs_create_u32("min-order", mode, dir,
2447 				&fail_page_alloc.min_order))
2448 		goto fail;
2449 
2450 	return 0;
2451 fail:
2452 	debugfs_remove_recursive(dir);
2453 
2454 	return -ENOMEM;
2455 }
2456 
2457 late_initcall(fail_page_alloc_debugfs);
2458 
2459 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2460 
2461 #else /* CONFIG_FAIL_PAGE_ALLOC */
2462 
2463 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2464 {
2465 	return false;
2466 }
2467 
2468 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2469 
2470 /*
2471  * Return true if free base pages are above 'mark'. For high-order checks it
2472  * will return true of the order-0 watermark is reached and there is at least
2473  * one free page of a suitable size. Checking now avoids taking the zone lock
2474  * to check in the allocation paths if no pages are free.
2475  */
2476 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2477 			unsigned long mark, int classzone_idx, int alloc_flags,
2478 			long free_pages)
2479 {
2480 	long min = mark;
2481 	int o;
2482 	const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2483 
2484 	/* free_pages may go negative - that's OK */
2485 	free_pages -= (1 << order) - 1;
2486 
2487 	if (alloc_flags & ALLOC_HIGH)
2488 		min -= min / 2;
2489 
2490 	/*
2491 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2492 	 * the high-atomic reserves. This will over-estimate the size of the
2493 	 * atomic reserve but it avoids a search.
2494 	 */
2495 	if (likely(!alloc_harder))
2496 		free_pages -= z->nr_reserved_highatomic;
2497 	else
2498 		min -= min / 4;
2499 
2500 #ifdef CONFIG_CMA
2501 	/* If allocation can't use CMA areas don't use free CMA pages */
2502 	if (!(alloc_flags & ALLOC_CMA))
2503 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2504 #endif
2505 
2506 	/*
2507 	 * Check watermarks for an order-0 allocation request. If these
2508 	 * are not met, then a high-order request also cannot go ahead
2509 	 * even if a suitable page happened to be free.
2510 	 */
2511 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2512 		return false;
2513 
2514 	/* If this is an order-0 request then the watermark is fine */
2515 	if (!order)
2516 		return true;
2517 
2518 	/* For a high-order request, check at least one suitable page is free */
2519 	for (o = order; o < MAX_ORDER; o++) {
2520 		struct free_area *area = &z->free_area[o];
2521 		int mt;
2522 
2523 		if (!area->nr_free)
2524 			continue;
2525 
2526 		if (alloc_harder)
2527 			return true;
2528 
2529 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2530 			if (!list_empty(&area->free_list[mt]))
2531 				return true;
2532 		}
2533 
2534 #ifdef CONFIG_CMA
2535 		if ((alloc_flags & ALLOC_CMA) &&
2536 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2537 			return true;
2538 		}
2539 #endif
2540 	}
2541 	return false;
2542 }
2543 
2544 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2545 		      int classzone_idx, int alloc_flags)
2546 {
2547 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2548 					zone_page_state(z, NR_FREE_PAGES));
2549 }
2550 
2551 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2552 			unsigned long mark, int classzone_idx)
2553 {
2554 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2555 
2556 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2557 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2558 
2559 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2560 								free_pages);
2561 }
2562 
2563 #ifdef CONFIG_NUMA
2564 static bool zone_local(struct zone *local_zone, struct zone *zone)
2565 {
2566 	return local_zone->node == zone->node;
2567 }
2568 
2569 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2570 {
2571 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2572 				RECLAIM_DISTANCE;
2573 }
2574 #else	/* CONFIG_NUMA */
2575 static bool zone_local(struct zone *local_zone, struct zone *zone)
2576 {
2577 	return true;
2578 }
2579 
2580 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2581 {
2582 	return true;
2583 }
2584 #endif	/* CONFIG_NUMA */
2585 
2586 static void reset_alloc_batches(struct zone *preferred_zone)
2587 {
2588 	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2589 
2590 	do {
2591 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2592 			high_wmark_pages(zone) - low_wmark_pages(zone) -
2593 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2594 		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2595 	} while (zone++ != preferred_zone);
2596 }
2597 
2598 /*
2599  * get_page_from_freelist goes through the zonelist trying to allocate
2600  * a page.
2601  */
2602 static struct page *
2603 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2604 						const struct alloc_context *ac)
2605 {
2606 	struct zonelist *zonelist = ac->zonelist;
2607 	struct zoneref *z;
2608 	struct page *page = NULL;
2609 	struct zone *zone;
2610 	int nr_fair_skipped = 0;
2611 	bool zonelist_rescan;
2612 
2613 zonelist_scan:
2614 	zonelist_rescan = false;
2615 
2616 	/*
2617 	 * Scan zonelist, looking for a zone with enough free.
2618 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2619 	 */
2620 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2621 								ac->nodemask) {
2622 		unsigned long mark;
2623 
2624 		if (cpusets_enabled() &&
2625 			(alloc_flags & ALLOC_CPUSET) &&
2626 			!cpuset_zone_allowed(zone, gfp_mask))
2627 				continue;
2628 		/*
2629 		 * Distribute pages in proportion to the individual
2630 		 * zone size to ensure fair page aging.  The zone a
2631 		 * page was allocated in should have no effect on the
2632 		 * time the page has in memory before being reclaimed.
2633 		 */
2634 		if (alloc_flags & ALLOC_FAIR) {
2635 			if (!zone_local(ac->preferred_zone, zone))
2636 				break;
2637 			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2638 				nr_fair_skipped++;
2639 				continue;
2640 			}
2641 		}
2642 		/*
2643 		 * When allocating a page cache page for writing, we
2644 		 * want to get it from a zone that is within its dirty
2645 		 * limit, such that no single zone holds more than its
2646 		 * proportional share of globally allowed dirty pages.
2647 		 * The dirty limits take into account the zone's
2648 		 * lowmem reserves and high watermark so that kswapd
2649 		 * should be able to balance it without having to
2650 		 * write pages from its LRU list.
2651 		 *
2652 		 * This may look like it could increase pressure on
2653 		 * lower zones by failing allocations in higher zones
2654 		 * before they are full.  But the pages that do spill
2655 		 * over are limited as the lower zones are protected
2656 		 * by this very same mechanism.  It should not become
2657 		 * a practical burden to them.
2658 		 *
2659 		 * XXX: For now, allow allocations to potentially
2660 		 * exceed the per-zone dirty limit in the slowpath
2661 		 * (spread_dirty_pages unset) before going into reclaim,
2662 		 * which is important when on a NUMA setup the allowed
2663 		 * zones are together not big enough to reach the
2664 		 * global limit.  The proper fix for these situations
2665 		 * will require awareness of zones in the
2666 		 * dirty-throttling and the flusher threads.
2667 		 */
2668 		if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2669 			continue;
2670 
2671 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2672 		if (!zone_watermark_ok(zone, order, mark,
2673 				       ac->classzone_idx, alloc_flags)) {
2674 			int ret;
2675 
2676 			/* Checked here to keep the fast path fast */
2677 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2678 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2679 				goto try_this_zone;
2680 
2681 			if (zone_reclaim_mode == 0 ||
2682 			    !zone_allows_reclaim(ac->preferred_zone, zone))
2683 				continue;
2684 
2685 			ret = zone_reclaim(zone, gfp_mask, order);
2686 			switch (ret) {
2687 			case ZONE_RECLAIM_NOSCAN:
2688 				/* did not scan */
2689 				continue;
2690 			case ZONE_RECLAIM_FULL:
2691 				/* scanned but unreclaimable */
2692 				continue;
2693 			default:
2694 				/* did we reclaim enough */
2695 				if (zone_watermark_ok(zone, order, mark,
2696 						ac->classzone_idx, alloc_flags))
2697 					goto try_this_zone;
2698 
2699 				continue;
2700 			}
2701 		}
2702 
2703 try_this_zone:
2704 		page = buffered_rmqueue(ac->preferred_zone, zone, order,
2705 				gfp_mask, alloc_flags, ac->migratetype);
2706 		if (page) {
2707 			if (prep_new_page(page, order, gfp_mask, alloc_flags))
2708 				goto try_this_zone;
2709 
2710 			/*
2711 			 * If this is a high-order atomic allocation then check
2712 			 * if the pageblock should be reserved for the future
2713 			 */
2714 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2715 				reserve_highatomic_pageblock(page, zone, order);
2716 
2717 			return page;
2718 		}
2719 	}
2720 
2721 	/*
2722 	 * The first pass makes sure allocations are spread fairly within the
2723 	 * local node.  However, the local node might have free pages left
2724 	 * after the fairness batches are exhausted, and remote zones haven't
2725 	 * even been considered yet.  Try once more without fairness, and
2726 	 * include remote zones now, before entering the slowpath and waking
2727 	 * kswapd: prefer spilling to a remote zone over swapping locally.
2728 	 */
2729 	if (alloc_flags & ALLOC_FAIR) {
2730 		alloc_flags &= ~ALLOC_FAIR;
2731 		if (nr_fair_skipped) {
2732 			zonelist_rescan = true;
2733 			reset_alloc_batches(ac->preferred_zone);
2734 		}
2735 		if (nr_online_nodes > 1)
2736 			zonelist_rescan = true;
2737 	}
2738 
2739 	if (zonelist_rescan)
2740 		goto zonelist_scan;
2741 
2742 	return NULL;
2743 }
2744 
2745 /*
2746  * Large machines with many possible nodes should not always dump per-node
2747  * meminfo in irq context.
2748  */
2749 static inline bool should_suppress_show_mem(void)
2750 {
2751 	bool ret = false;
2752 
2753 #if NODES_SHIFT > 8
2754 	ret = in_interrupt();
2755 #endif
2756 	return ret;
2757 }
2758 
2759 static DEFINE_RATELIMIT_STATE(nopage_rs,
2760 		DEFAULT_RATELIMIT_INTERVAL,
2761 		DEFAULT_RATELIMIT_BURST);
2762 
2763 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2764 {
2765 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2766 
2767 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2768 	    debug_guardpage_minorder() > 0)
2769 		return;
2770 
2771 	/*
2772 	 * This documents exceptions given to allocations in certain
2773 	 * contexts that are allowed to allocate outside current's set
2774 	 * of allowed nodes.
2775 	 */
2776 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2777 		if (test_thread_flag(TIF_MEMDIE) ||
2778 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2779 			filter &= ~SHOW_MEM_FILTER_NODES;
2780 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2781 		filter &= ~SHOW_MEM_FILTER_NODES;
2782 
2783 	if (fmt) {
2784 		struct va_format vaf;
2785 		va_list args;
2786 
2787 		va_start(args, fmt);
2788 
2789 		vaf.fmt = fmt;
2790 		vaf.va = &args;
2791 
2792 		pr_warn("%pV", &vaf);
2793 
2794 		va_end(args);
2795 	}
2796 
2797 	pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2798 		current->comm, order, gfp_mask, &gfp_mask);
2799 	dump_stack();
2800 	if (!should_suppress_show_mem())
2801 		show_mem(filter);
2802 }
2803 
2804 static inline struct page *
2805 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2806 	const struct alloc_context *ac, unsigned long *did_some_progress)
2807 {
2808 	struct oom_control oc = {
2809 		.zonelist = ac->zonelist,
2810 		.nodemask = ac->nodemask,
2811 		.gfp_mask = gfp_mask,
2812 		.order = order,
2813 	};
2814 	struct page *page;
2815 
2816 	*did_some_progress = 0;
2817 
2818 	/*
2819 	 * Acquire the oom lock.  If that fails, somebody else is
2820 	 * making progress for us.
2821 	 */
2822 	if (!mutex_trylock(&oom_lock)) {
2823 		*did_some_progress = 1;
2824 		schedule_timeout_uninterruptible(1);
2825 		return NULL;
2826 	}
2827 
2828 	/*
2829 	 * Go through the zonelist yet one more time, keep very high watermark
2830 	 * here, this is only to catch a parallel oom killing, we must fail if
2831 	 * we're still under heavy pressure.
2832 	 */
2833 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2834 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2835 	if (page)
2836 		goto out;
2837 
2838 	if (!(gfp_mask & __GFP_NOFAIL)) {
2839 		/* Coredumps can quickly deplete all memory reserves */
2840 		if (current->flags & PF_DUMPCORE)
2841 			goto out;
2842 		/* The OOM killer will not help higher order allocs */
2843 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2844 			goto out;
2845 		/* The OOM killer does not needlessly kill tasks for lowmem */
2846 		if (ac->high_zoneidx < ZONE_NORMAL)
2847 			goto out;
2848 		/* The OOM killer does not compensate for IO-less reclaim */
2849 		if (!(gfp_mask & __GFP_FS)) {
2850 			/*
2851 			 * XXX: Page reclaim didn't yield anything,
2852 			 * and the OOM killer can't be invoked, but
2853 			 * keep looping as per tradition.
2854 			 */
2855 			*did_some_progress = 1;
2856 			goto out;
2857 		}
2858 		if (pm_suspended_storage())
2859 			goto out;
2860 		/* The OOM killer may not free memory on a specific node */
2861 		if (gfp_mask & __GFP_THISNODE)
2862 			goto out;
2863 	}
2864 	/* Exhausted what can be done so it's blamo time */
2865 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
2866 		*did_some_progress = 1;
2867 
2868 		if (gfp_mask & __GFP_NOFAIL) {
2869 			page = get_page_from_freelist(gfp_mask, order,
2870 					ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2871 			/*
2872 			 * fallback to ignore cpuset restriction if our nodes
2873 			 * are depleted
2874 			 */
2875 			if (!page)
2876 				page = get_page_from_freelist(gfp_mask, order,
2877 					ALLOC_NO_WATERMARKS, ac);
2878 		}
2879 	}
2880 out:
2881 	mutex_unlock(&oom_lock);
2882 	return page;
2883 }
2884 
2885 #ifdef CONFIG_COMPACTION
2886 /* Try memory compaction for high-order allocations before reclaim */
2887 static struct page *
2888 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2889 		int alloc_flags, const struct alloc_context *ac,
2890 		enum migrate_mode mode, int *contended_compaction,
2891 		bool *deferred_compaction)
2892 {
2893 	unsigned long compact_result;
2894 	struct page *page;
2895 
2896 	if (!order)
2897 		return NULL;
2898 
2899 	current->flags |= PF_MEMALLOC;
2900 	compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2901 						mode, contended_compaction);
2902 	current->flags &= ~PF_MEMALLOC;
2903 
2904 	switch (compact_result) {
2905 	case COMPACT_DEFERRED:
2906 		*deferred_compaction = true;
2907 		/* fall-through */
2908 	case COMPACT_SKIPPED:
2909 		return NULL;
2910 	default:
2911 		break;
2912 	}
2913 
2914 	/*
2915 	 * At least in one zone compaction wasn't deferred or skipped, so let's
2916 	 * count a compaction stall
2917 	 */
2918 	count_vm_event(COMPACTSTALL);
2919 
2920 	page = get_page_from_freelist(gfp_mask, order,
2921 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2922 
2923 	if (page) {
2924 		struct zone *zone = page_zone(page);
2925 
2926 		zone->compact_blockskip_flush = false;
2927 		compaction_defer_reset(zone, order, true);
2928 		count_vm_event(COMPACTSUCCESS);
2929 		return page;
2930 	}
2931 
2932 	/*
2933 	 * It's bad if compaction run occurs and fails. The most likely reason
2934 	 * is that pages exist, but not enough to satisfy watermarks.
2935 	 */
2936 	count_vm_event(COMPACTFAIL);
2937 
2938 	cond_resched();
2939 
2940 	return NULL;
2941 }
2942 #else
2943 static inline struct page *
2944 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2945 		int alloc_flags, const struct alloc_context *ac,
2946 		enum migrate_mode mode, int *contended_compaction,
2947 		bool *deferred_compaction)
2948 {
2949 	return NULL;
2950 }
2951 #endif /* CONFIG_COMPACTION */
2952 
2953 /* Perform direct synchronous page reclaim */
2954 static int
2955 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2956 					const struct alloc_context *ac)
2957 {
2958 	struct reclaim_state reclaim_state;
2959 	int progress;
2960 
2961 	cond_resched();
2962 
2963 	/* We now go into synchronous reclaim */
2964 	cpuset_memory_pressure_bump();
2965 	current->flags |= PF_MEMALLOC;
2966 	lockdep_set_current_reclaim_state(gfp_mask);
2967 	reclaim_state.reclaimed_slab = 0;
2968 	current->reclaim_state = &reclaim_state;
2969 
2970 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2971 								ac->nodemask);
2972 
2973 	current->reclaim_state = NULL;
2974 	lockdep_clear_current_reclaim_state();
2975 	current->flags &= ~PF_MEMALLOC;
2976 
2977 	cond_resched();
2978 
2979 	return progress;
2980 }
2981 
2982 /* The really slow allocator path where we enter direct reclaim */
2983 static inline struct page *
2984 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2985 		int alloc_flags, const struct alloc_context *ac,
2986 		unsigned long *did_some_progress)
2987 {
2988 	struct page *page = NULL;
2989 	bool drained = false;
2990 
2991 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2992 	if (unlikely(!(*did_some_progress)))
2993 		return NULL;
2994 
2995 retry:
2996 	page = get_page_from_freelist(gfp_mask, order,
2997 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2998 
2999 	/*
3000 	 * If an allocation failed after direct reclaim, it could be because
3001 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3002 	 * Shrink them them and try again
3003 	 */
3004 	if (!page && !drained) {
3005 		unreserve_highatomic_pageblock(ac);
3006 		drain_all_pages(NULL);
3007 		drained = true;
3008 		goto retry;
3009 	}
3010 
3011 	return page;
3012 }
3013 
3014 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3015 {
3016 	struct zoneref *z;
3017 	struct zone *zone;
3018 
3019 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3020 						ac->high_zoneidx, ac->nodemask)
3021 		wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3022 }
3023 
3024 static inline int
3025 gfp_to_alloc_flags(gfp_t gfp_mask)
3026 {
3027 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3028 
3029 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3030 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3031 
3032 	/*
3033 	 * The caller may dip into page reserves a bit more if the caller
3034 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3035 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3036 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3037 	 */
3038 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3039 
3040 	if (gfp_mask & __GFP_ATOMIC) {
3041 		/*
3042 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3043 		 * if it can't schedule.
3044 		 */
3045 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3046 			alloc_flags |= ALLOC_HARDER;
3047 		/*
3048 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3049 		 * comment for __cpuset_node_allowed().
3050 		 */
3051 		alloc_flags &= ~ALLOC_CPUSET;
3052 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3053 		alloc_flags |= ALLOC_HARDER;
3054 
3055 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3056 		if (gfp_mask & __GFP_MEMALLOC)
3057 			alloc_flags |= ALLOC_NO_WATERMARKS;
3058 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3059 			alloc_flags |= ALLOC_NO_WATERMARKS;
3060 		else if (!in_interrupt() &&
3061 				((current->flags & PF_MEMALLOC) ||
3062 				 unlikely(test_thread_flag(TIF_MEMDIE))))
3063 			alloc_flags |= ALLOC_NO_WATERMARKS;
3064 	}
3065 #ifdef CONFIG_CMA
3066 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3067 		alloc_flags |= ALLOC_CMA;
3068 #endif
3069 	return alloc_flags;
3070 }
3071 
3072 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3073 {
3074 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3075 }
3076 
3077 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3078 {
3079 	return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3080 }
3081 
3082 static inline struct page *
3083 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3084 						struct alloc_context *ac)
3085 {
3086 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3087 	struct page *page = NULL;
3088 	int alloc_flags;
3089 	unsigned long pages_reclaimed = 0;
3090 	unsigned long did_some_progress;
3091 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
3092 	bool deferred_compaction = false;
3093 	int contended_compaction = COMPACT_CONTENDED_NONE;
3094 
3095 	/*
3096 	 * In the slowpath, we sanity check order to avoid ever trying to
3097 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3098 	 * be using allocators in order of preference for an area that is
3099 	 * too large.
3100 	 */
3101 	if (order >= MAX_ORDER) {
3102 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3103 		return NULL;
3104 	}
3105 
3106 	/*
3107 	 * We also sanity check to catch abuse of atomic reserves being used by
3108 	 * callers that are not in atomic context.
3109 	 */
3110 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3111 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3112 		gfp_mask &= ~__GFP_ATOMIC;
3113 
3114 retry:
3115 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3116 		wake_all_kswapds(order, ac);
3117 
3118 	/*
3119 	 * OK, we're below the kswapd watermark and have kicked background
3120 	 * reclaim. Now things get more complex, so set up alloc_flags according
3121 	 * to how we want to proceed.
3122 	 */
3123 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3124 
3125 	/*
3126 	 * Find the true preferred zone if the allocation is unconstrained by
3127 	 * cpusets.
3128 	 */
3129 	if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3130 		struct zoneref *preferred_zoneref;
3131 		preferred_zoneref = first_zones_zonelist(ac->zonelist,
3132 				ac->high_zoneidx, NULL, &ac->preferred_zone);
3133 		ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3134 	}
3135 
3136 	/* This is the last chance, in general, before the goto nopage. */
3137 	page = get_page_from_freelist(gfp_mask, order,
3138 				alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3139 	if (page)
3140 		goto got_pg;
3141 
3142 	/* Allocate without watermarks if the context allows */
3143 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
3144 		/*
3145 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3146 		 * the allocation is high priority and these type of
3147 		 * allocations are system rather than user orientated
3148 		 */
3149 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3150 		page = get_page_from_freelist(gfp_mask, order,
3151 						ALLOC_NO_WATERMARKS, ac);
3152 		if (page)
3153 			goto got_pg;
3154 	}
3155 
3156 	/* Caller is not willing to reclaim, we can't balance anything */
3157 	if (!can_direct_reclaim) {
3158 		/*
3159 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3160 		 * of any new users that actually allow this type of allocation
3161 		 * to fail.
3162 		 */
3163 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3164 		goto nopage;
3165 	}
3166 
3167 	/* Avoid recursion of direct reclaim */
3168 	if (current->flags & PF_MEMALLOC) {
3169 		/*
3170 		 * __GFP_NOFAIL request from this context is rather bizarre
3171 		 * because we cannot reclaim anything and only can loop waiting
3172 		 * for somebody to do a work for us.
3173 		 */
3174 		if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3175 			cond_resched();
3176 			goto retry;
3177 		}
3178 		goto nopage;
3179 	}
3180 
3181 	/* Avoid allocations with no watermarks from looping endlessly */
3182 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3183 		goto nopage;
3184 
3185 	/*
3186 	 * Try direct compaction. The first pass is asynchronous. Subsequent
3187 	 * attempts after direct reclaim are synchronous
3188 	 */
3189 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3190 					migration_mode,
3191 					&contended_compaction,
3192 					&deferred_compaction);
3193 	if (page)
3194 		goto got_pg;
3195 
3196 	/* Checks for THP-specific high-order allocations */
3197 	if (is_thp_gfp_mask(gfp_mask)) {
3198 		/*
3199 		 * If compaction is deferred for high-order allocations, it is
3200 		 * because sync compaction recently failed. If this is the case
3201 		 * and the caller requested a THP allocation, we do not want
3202 		 * to heavily disrupt the system, so we fail the allocation
3203 		 * instead of entering direct reclaim.
3204 		 */
3205 		if (deferred_compaction)
3206 			goto nopage;
3207 
3208 		/*
3209 		 * In all zones where compaction was attempted (and not
3210 		 * deferred or skipped), lock contention has been detected.
3211 		 * For THP allocation we do not want to disrupt the others
3212 		 * so we fallback to base pages instead.
3213 		 */
3214 		if (contended_compaction == COMPACT_CONTENDED_LOCK)
3215 			goto nopage;
3216 
3217 		/*
3218 		 * If compaction was aborted due to need_resched(), we do not
3219 		 * want to further increase allocation latency, unless it is
3220 		 * khugepaged trying to collapse.
3221 		 */
3222 		if (contended_compaction == COMPACT_CONTENDED_SCHED
3223 			&& !(current->flags & PF_KTHREAD))
3224 			goto nopage;
3225 	}
3226 
3227 	/*
3228 	 * It can become very expensive to allocate transparent hugepages at
3229 	 * fault, so use asynchronous memory compaction for THP unless it is
3230 	 * khugepaged trying to collapse.
3231 	 */
3232 	if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3233 		migration_mode = MIGRATE_SYNC_LIGHT;
3234 
3235 	/* Try direct reclaim and then allocating */
3236 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3237 							&did_some_progress);
3238 	if (page)
3239 		goto got_pg;
3240 
3241 	/* Do not loop if specifically requested */
3242 	if (gfp_mask & __GFP_NORETRY)
3243 		goto noretry;
3244 
3245 	/* Keep reclaiming pages as long as there is reasonable progress */
3246 	pages_reclaimed += did_some_progress;
3247 	if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3248 	    ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3249 		/* Wait for some write requests to complete then retry */
3250 		wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3251 		goto retry;
3252 	}
3253 
3254 	/* Reclaim has failed us, start killing things */
3255 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3256 	if (page)
3257 		goto got_pg;
3258 
3259 	/* Retry as long as the OOM killer is making progress */
3260 	if (did_some_progress)
3261 		goto retry;
3262 
3263 noretry:
3264 	/*
3265 	 * High-order allocations do not necessarily loop after
3266 	 * direct reclaim and reclaim/compaction depends on compaction
3267 	 * being called after reclaim so call directly if necessary
3268 	 */
3269 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3270 					    ac, migration_mode,
3271 					    &contended_compaction,
3272 					    &deferred_compaction);
3273 	if (page)
3274 		goto got_pg;
3275 nopage:
3276 	warn_alloc_failed(gfp_mask, order, NULL);
3277 got_pg:
3278 	return page;
3279 }
3280 
3281 /*
3282  * This is the 'heart' of the zoned buddy allocator.
3283  */
3284 struct page *
3285 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3286 			struct zonelist *zonelist, nodemask_t *nodemask)
3287 {
3288 	struct zoneref *preferred_zoneref;
3289 	struct page *page = NULL;
3290 	unsigned int cpuset_mems_cookie;
3291 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3292 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3293 	struct alloc_context ac = {
3294 		.high_zoneidx = gfp_zone(gfp_mask),
3295 		.nodemask = nodemask,
3296 		.migratetype = gfpflags_to_migratetype(gfp_mask),
3297 	};
3298 
3299 	gfp_mask &= gfp_allowed_mask;
3300 
3301 	lockdep_trace_alloc(gfp_mask);
3302 
3303 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3304 
3305 	if (should_fail_alloc_page(gfp_mask, order))
3306 		return NULL;
3307 
3308 	/*
3309 	 * Check the zones suitable for the gfp_mask contain at least one
3310 	 * valid zone. It's possible to have an empty zonelist as a result
3311 	 * of __GFP_THISNODE and a memoryless node
3312 	 */
3313 	if (unlikely(!zonelist->_zonerefs->zone))
3314 		return NULL;
3315 
3316 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3317 		alloc_flags |= ALLOC_CMA;
3318 
3319 retry_cpuset:
3320 	cpuset_mems_cookie = read_mems_allowed_begin();
3321 
3322 	/* We set it here, as __alloc_pages_slowpath might have changed it */
3323 	ac.zonelist = zonelist;
3324 
3325 	/* Dirty zone balancing only done in the fast path */
3326 	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3327 
3328 	/* The preferred zone is used for statistics later */
3329 	preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3330 				ac.nodemask ? : &cpuset_current_mems_allowed,
3331 				&ac.preferred_zone);
3332 	if (!ac.preferred_zone)
3333 		goto out;
3334 	ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3335 
3336 	/* First allocation attempt */
3337 	alloc_mask = gfp_mask|__GFP_HARDWALL;
3338 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3339 	if (unlikely(!page)) {
3340 		/*
3341 		 * Runtime PM, block IO and its error handling path
3342 		 * can deadlock because I/O on the device might not
3343 		 * complete.
3344 		 */
3345 		alloc_mask = memalloc_noio_flags(gfp_mask);
3346 		ac.spread_dirty_pages = false;
3347 
3348 		page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3349 	}
3350 
3351 	if (kmemcheck_enabled && page)
3352 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3353 
3354 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3355 
3356 out:
3357 	/*
3358 	 * When updating a task's mems_allowed, it is possible to race with
3359 	 * parallel threads in such a way that an allocation can fail while
3360 	 * the mask is being updated. If a page allocation is about to fail,
3361 	 * check if the cpuset changed during allocation and if so, retry.
3362 	 */
3363 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3364 		goto retry_cpuset;
3365 
3366 	return page;
3367 }
3368 EXPORT_SYMBOL(__alloc_pages_nodemask);
3369 
3370 /*
3371  * Common helper functions.
3372  */
3373 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3374 {
3375 	struct page *page;
3376 
3377 	/*
3378 	 * __get_free_pages() returns a 32-bit address, which cannot represent
3379 	 * a highmem page
3380 	 */
3381 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3382 
3383 	page = alloc_pages(gfp_mask, order);
3384 	if (!page)
3385 		return 0;
3386 	return (unsigned long) page_address(page);
3387 }
3388 EXPORT_SYMBOL(__get_free_pages);
3389 
3390 unsigned long get_zeroed_page(gfp_t gfp_mask)
3391 {
3392 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3393 }
3394 EXPORT_SYMBOL(get_zeroed_page);
3395 
3396 void __free_pages(struct page *page, unsigned int order)
3397 {
3398 	if (put_page_testzero(page)) {
3399 		if (order == 0)
3400 			free_hot_cold_page(page, false);
3401 		else
3402 			__free_pages_ok(page, order);
3403 	}
3404 }
3405 
3406 EXPORT_SYMBOL(__free_pages);
3407 
3408 void free_pages(unsigned long addr, unsigned int order)
3409 {
3410 	if (addr != 0) {
3411 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3412 		__free_pages(virt_to_page((void *)addr), order);
3413 	}
3414 }
3415 
3416 EXPORT_SYMBOL(free_pages);
3417 
3418 /*
3419  * Page Fragment:
3420  *  An arbitrary-length arbitrary-offset area of memory which resides
3421  *  within a 0 or higher order page.  Multiple fragments within that page
3422  *  are individually refcounted, in the page's reference counter.
3423  *
3424  * The page_frag functions below provide a simple allocation framework for
3425  * page fragments.  This is used by the network stack and network device
3426  * drivers to provide a backing region of memory for use as either an
3427  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3428  */
3429 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3430 				       gfp_t gfp_mask)
3431 {
3432 	struct page *page = NULL;
3433 	gfp_t gfp = gfp_mask;
3434 
3435 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3436 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3437 		    __GFP_NOMEMALLOC;
3438 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3439 				PAGE_FRAG_CACHE_MAX_ORDER);
3440 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3441 #endif
3442 	if (unlikely(!page))
3443 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3444 
3445 	nc->va = page ? page_address(page) : NULL;
3446 
3447 	return page;
3448 }
3449 
3450 void *__alloc_page_frag(struct page_frag_cache *nc,
3451 			unsigned int fragsz, gfp_t gfp_mask)
3452 {
3453 	unsigned int size = PAGE_SIZE;
3454 	struct page *page;
3455 	int offset;
3456 
3457 	if (unlikely(!nc->va)) {
3458 refill:
3459 		page = __page_frag_refill(nc, gfp_mask);
3460 		if (!page)
3461 			return NULL;
3462 
3463 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3464 		/* if size can vary use size else just use PAGE_SIZE */
3465 		size = nc->size;
3466 #endif
3467 		/* Even if we own the page, we do not use atomic_set().
3468 		 * This would break get_page_unless_zero() users.
3469 		 */
3470 		page_ref_add(page, size - 1);
3471 
3472 		/* reset page count bias and offset to start of new frag */
3473 		nc->pfmemalloc = page_is_pfmemalloc(page);
3474 		nc->pagecnt_bias = size;
3475 		nc->offset = size;
3476 	}
3477 
3478 	offset = nc->offset - fragsz;
3479 	if (unlikely(offset < 0)) {
3480 		page = virt_to_page(nc->va);
3481 
3482 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3483 			goto refill;
3484 
3485 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3486 		/* if size can vary use size else just use PAGE_SIZE */
3487 		size = nc->size;
3488 #endif
3489 		/* OK, page count is 0, we can safely set it */
3490 		set_page_count(page, size);
3491 
3492 		/* reset page count bias and offset to start of new frag */
3493 		nc->pagecnt_bias = size;
3494 		offset = size - fragsz;
3495 	}
3496 
3497 	nc->pagecnt_bias--;
3498 	nc->offset = offset;
3499 
3500 	return nc->va + offset;
3501 }
3502 EXPORT_SYMBOL(__alloc_page_frag);
3503 
3504 /*
3505  * Frees a page fragment allocated out of either a compound or order 0 page.
3506  */
3507 void __free_page_frag(void *addr)
3508 {
3509 	struct page *page = virt_to_head_page(addr);
3510 
3511 	if (unlikely(put_page_testzero(page)))
3512 		__free_pages_ok(page, compound_order(page));
3513 }
3514 EXPORT_SYMBOL(__free_page_frag);
3515 
3516 /*
3517  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3518  * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3519  * equivalent to alloc_pages.
3520  *
3521  * It should be used when the caller would like to use kmalloc, but since the
3522  * allocation is large, it has to fall back to the page allocator.
3523  */
3524 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3525 {
3526 	struct page *page;
3527 
3528 	page = alloc_pages(gfp_mask, order);
3529 	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3530 		__free_pages(page, order);
3531 		page = NULL;
3532 	}
3533 	return page;
3534 }
3535 
3536 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3537 {
3538 	struct page *page;
3539 
3540 	page = alloc_pages_node(nid, gfp_mask, order);
3541 	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3542 		__free_pages(page, order);
3543 		page = NULL;
3544 	}
3545 	return page;
3546 }
3547 
3548 /*
3549  * __free_kmem_pages and free_kmem_pages will free pages allocated with
3550  * alloc_kmem_pages.
3551  */
3552 void __free_kmem_pages(struct page *page, unsigned int order)
3553 {
3554 	memcg_kmem_uncharge(page, order);
3555 	__free_pages(page, order);
3556 }
3557 
3558 void free_kmem_pages(unsigned long addr, unsigned int order)
3559 {
3560 	if (addr != 0) {
3561 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3562 		__free_kmem_pages(virt_to_page((void *)addr), order);
3563 	}
3564 }
3565 
3566 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3567 		size_t size)
3568 {
3569 	if (addr) {
3570 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3571 		unsigned long used = addr + PAGE_ALIGN(size);
3572 
3573 		split_page(virt_to_page((void *)addr), order);
3574 		while (used < alloc_end) {
3575 			free_page(used);
3576 			used += PAGE_SIZE;
3577 		}
3578 	}
3579 	return (void *)addr;
3580 }
3581 
3582 /**
3583  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3584  * @size: the number of bytes to allocate
3585  * @gfp_mask: GFP flags for the allocation
3586  *
3587  * This function is similar to alloc_pages(), except that it allocates the
3588  * minimum number of pages to satisfy the request.  alloc_pages() can only
3589  * allocate memory in power-of-two pages.
3590  *
3591  * This function is also limited by MAX_ORDER.
3592  *
3593  * Memory allocated by this function must be released by free_pages_exact().
3594  */
3595 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3596 {
3597 	unsigned int order = get_order(size);
3598 	unsigned long addr;
3599 
3600 	addr = __get_free_pages(gfp_mask, order);
3601 	return make_alloc_exact(addr, order, size);
3602 }
3603 EXPORT_SYMBOL(alloc_pages_exact);
3604 
3605 /**
3606  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3607  *			   pages on a node.
3608  * @nid: the preferred node ID where memory should be allocated
3609  * @size: the number of bytes to allocate
3610  * @gfp_mask: GFP flags for the allocation
3611  *
3612  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3613  * back.
3614  */
3615 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3616 {
3617 	unsigned int order = get_order(size);
3618 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3619 	if (!p)
3620 		return NULL;
3621 	return make_alloc_exact((unsigned long)page_address(p), order, size);
3622 }
3623 
3624 /**
3625  * free_pages_exact - release memory allocated via alloc_pages_exact()
3626  * @virt: the value returned by alloc_pages_exact.
3627  * @size: size of allocation, same value as passed to alloc_pages_exact().
3628  *
3629  * Release the memory allocated by a previous call to alloc_pages_exact.
3630  */
3631 void free_pages_exact(void *virt, size_t size)
3632 {
3633 	unsigned long addr = (unsigned long)virt;
3634 	unsigned long end = addr + PAGE_ALIGN(size);
3635 
3636 	while (addr < end) {
3637 		free_page(addr);
3638 		addr += PAGE_SIZE;
3639 	}
3640 }
3641 EXPORT_SYMBOL(free_pages_exact);
3642 
3643 /**
3644  * nr_free_zone_pages - count number of pages beyond high watermark
3645  * @offset: The zone index of the highest zone
3646  *
3647  * nr_free_zone_pages() counts the number of counts pages which are beyond the
3648  * high watermark within all zones at or below a given zone index.  For each
3649  * zone, the number of pages is calculated as:
3650  *     managed_pages - high_pages
3651  */
3652 static unsigned long nr_free_zone_pages(int offset)
3653 {
3654 	struct zoneref *z;
3655 	struct zone *zone;
3656 
3657 	/* Just pick one node, since fallback list is circular */
3658 	unsigned long sum = 0;
3659 
3660 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3661 
3662 	for_each_zone_zonelist(zone, z, zonelist, offset) {
3663 		unsigned long size = zone->managed_pages;
3664 		unsigned long high = high_wmark_pages(zone);
3665 		if (size > high)
3666 			sum += size - high;
3667 	}
3668 
3669 	return sum;
3670 }
3671 
3672 /**
3673  * nr_free_buffer_pages - count number of pages beyond high watermark
3674  *
3675  * nr_free_buffer_pages() counts the number of pages which are beyond the high
3676  * watermark within ZONE_DMA and ZONE_NORMAL.
3677  */
3678 unsigned long nr_free_buffer_pages(void)
3679 {
3680 	return nr_free_zone_pages(gfp_zone(GFP_USER));
3681 }
3682 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3683 
3684 /**
3685  * nr_free_pagecache_pages - count number of pages beyond high watermark
3686  *
3687  * nr_free_pagecache_pages() counts the number of pages which are beyond the
3688  * high watermark within all zones.
3689  */
3690 unsigned long nr_free_pagecache_pages(void)
3691 {
3692 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3693 }
3694 
3695 static inline void show_node(struct zone *zone)
3696 {
3697 	if (IS_ENABLED(CONFIG_NUMA))
3698 		printk("Node %d ", zone_to_nid(zone));
3699 }
3700 
3701 long si_mem_available(void)
3702 {
3703 	long available;
3704 	unsigned long pagecache;
3705 	unsigned long wmark_low = 0;
3706 	unsigned long pages[NR_LRU_LISTS];
3707 	struct zone *zone;
3708 	int lru;
3709 
3710 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3711 		pages[lru] = global_page_state(NR_LRU_BASE + lru);
3712 
3713 	for_each_zone(zone)
3714 		wmark_low += zone->watermark[WMARK_LOW];
3715 
3716 	/*
3717 	 * Estimate the amount of memory available for userspace allocations,
3718 	 * without causing swapping.
3719 	 */
3720 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3721 
3722 	/*
3723 	 * Not all the page cache can be freed, otherwise the system will
3724 	 * start swapping. Assume at least half of the page cache, or the
3725 	 * low watermark worth of cache, needs to stay.
3726 	 */
3727 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3728 	pagecache -= min(pagecache / 2, wmark_low);
3729 	available += pagecache;
3730 
3731 	/*
3732 	 * Part of the reclaimable slab consists of items that are in use,
3733 	 * and cannot be freed. Cap this estimate at the low watermark.
3734 	 */
3735 	available += global_page_state(NR_SLAB_RECLAIMABLE) -
3736 		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3737 
3738 	if (available < 0)
3739 		available = 0;
3740 	return available;
3741 }
3742 EXPORT_SYMBOL_GPL(si_mem_available);
3743 
3744 void si_meminfo(struct sysinfo *val)
3745 {
3746 	val->totalram = totalram_pages;
3747 	val->sharedram = global_page_state(NR_SHMEM);
3748 	val->freeram = global_page_state(NR_FREE_PAGES);
3749 	val->bufferram = nr_blockdev_pages();
3750 	val->totalhigh = totalhigh_pages;
3751 	val->freehigh = nr_free_highpages();
3752 	val->mem_unit = PAGE_SIZE;
3753 }
3754 
3755 EXPORT_SYMBOL(si_meminfo);
3756 
3757 #ifdef CONFIG_NUMA
3758 void si_meminfo_node(struct sysinfo *val, int nid)
3759 {
3760 	int zone_type;		/* needs to be signed */
3761 	unsigned long managed_pages = 0;
3762 	pg_data_t *pgdat = NODE_DATA(nid);
3763 
3764 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3765 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3766 	val->totalram = managed_pages;
3767 	val->sharedram = node_page_state(nid, NR_SHMEM);
3768 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3769 #ifdef CONFIG_HIGHMEM
3770 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3771 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3772 			NR_FREE_PAGES);
3773 #else
3774 	val->totalhigh = 0;
3775 	val->freehigh = 0;
3776 #endif
3777 	val->mem_unit = PAGE_SIZE;
3778 }
3779 #endif
3780 
3781 /*
3782  * Determine whether the node should be displayed or not, depending on whether
3783  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3784  */
3785 bool skip_free_areas_node(unsigned int flags, int nid)
3786 {
3787 	bool ret = false;
3788 	unsigned int cpuset_mems_cookie;
3789 
3790 	if (!(flags & SHOW_MEM_FILTER_NODES))
3791 		goto out;
3792 
3793 	do {
3794 		cpuset_mems_cookie = read_mems_allowed_begin();
3795 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3796 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3797 out:
3798 	return ret;
3799 }
3800 
3801 #define K(x) ((x) << (PAGE_SHIFT-10))
3802 
3803 static void show_migration_types(unsigned char type)
3804 {
3805 	static const char types[MIGRATE_TYPES] = {
3806 		[MIGRATE_UNMOVABLE]	= 'U',
3807 		[MIGRATE_MOVABLE]	= 'M',
3808 		[MIGRATE_RECLAIMABLE]	= 'E',
3809 		[MIGRATE_HIGHATOMIC]	= 'H',
3810 #ifdef CONFIG_CMA
3811 		[MIGRATE_CMA]		= 'C',
3812 #endif
3813 #ifdef CONFIG_MEMORY_ISOLATION
3814 		[MIGRATE_ISOLATE]	= 'I',
3815 #endif
3816 	};
3817 	char tmp[MIGRATE_TYPES + 1];
3818 	char *p = tmp;
3819 	int i;
3820 
3821 	for (i = 0; i < MIGRATE_TYPES; i++) {
3822 		if (type & (1 << i))
3823 			*p++ = types[i];
3824 	}
3825 
3826 	*p = '\0';
3827 	printk("(%s) ", tmp);
3828 }
3829 
3830 /*
3831  * Show free area list (used inside shift_scroll-lock stuff)
3832  * We also calculate the percentage fragmentation. We do this by counting the
3833  * memory on each free list with the exception of the first item on the list.
3834  *
3835  * Bits in @filter:
3836  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3837  *   cpuset.
3838  */
3839 void show_free_areas(unsigned int filter)
3840 {
3841 	unsigned long free_pcp = 0;
3842 	int cpu;
3843 	struct zone *zone;
3844 
3845 	for_each_populated_zone(zone) {
3846 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3847 			continue;
3848 
3849 		for_each_online_cpu(cpu)
3850 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3851 	}
3852 
3853 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3854 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3855 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3856 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3857 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3858 		" free:%lu free_pcp:%lu free_cma:%lu\n",
3859 		global_page_state(NR_ACTIVE_ANON),
3860 		global_page_state(NR_INACTIVE_ANON),
3861 		global_page_state(NR_ISOLATED_ANON),
3862 		global_page_state(NR_ACTIVE_FILE),
3863 		global_page_state(NR_INACTIVE_FILE),
3864 		global_page_state(NR_ISOLATED_FILE),
3865 		global_page_state(NR_UNEVICTABLE),
3866 		global_page_state(NR_FILE_DIRTY),
3867 		global_page_state(NR_WRITEBACK),
3868 		global_page_state(NR_UNSTABLE_NFS),
3869 		global_page_state(NR_SLAB_RECLAIMABLE),
3870 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3871 		global_page_state(NR_FILE_MAPPED),
3872 		global_page_state(NR_SHMEM),
3873 		global_page_state(NR_PAGETABLE),
3874 		global_page_state(NR_BOUNCE),
3875 		global_page_state(NR_FREE_PAGES),
3876 		free_pcp,
3877 		global_page_state(NR_FREE_CMA_PAGES));
3878 
3879 	for_each_populated_zone(zone) {
3880 		int i;
3881 
3882 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3883 			continue;
3884 
3885 		free_pcp = 0;
3886 		for_each_online_cpu(cpu)
3887 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3888 
3889 		show_node(zone);
3890 		printk("%s"
3891 			" free:%lukB"
3892 			" min:%lukB"
3893 			" low:%lukB"
3894 			" high:%lukB"
3895 			" active_anon:%lukB"
3896 			" inactive_anon:%lukB"
3897 			" active_file:%lukB"
3898 			" inactive_file:%lukB"
3899 			" unevictable:%lukB"
3900 			" isolated(anon):%lukB"
3901 			" isolated(file):%lukB"
3902 			" present:%lukB"
3903 			" managed:%lukB"
3904 			" mlocked:%lukB"
3905 			" dirty:%lukB"
3906 			" writeback:%lukB"
3907 			" mapped:%lukB"
3908 			" shmem:%lukB"
3909 			" slab_reclaimable:%lukB"
3910 			" slab_unreclaimable:%lukB"
3911 			" kernel_stack:%lukB"
3912 			" pagetables:%lukB"
3913 			" unstable:%lukB"
3914 			" bounce:%lukB"
3915 			" free_pcp:%lukB"
3916 			" local_pcp:%ukB"
3917 			" free_cma:%lukB"
3918 			" writeback_tmp:%lukB"
3919 			" pages_scanned:%lu"
3920 			" all_unreclaimable? %s"
3921 			"\n",
3922 			zone->name,
3923 			K(zone_page_state(zone, NR_FREE_PAGES)),
3924 			K(min_wmark_pages(zone)),
3925 			K(low_wmark_pages(zone)),
3926 			K(high_wmark_pages(zone)),
3927 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3928 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3929 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3930 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3931 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3932 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3933 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3934 			K(zone->present_pages),
3935 			K(zone->managed_pages),
3936 			K(zone_page_state(zone, NR_MLOCK)),
3937 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3938 			K(zone_page_state(zone, NR_WRITEBACK)),
3939 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3940 			K(zone_page_state(zone, NR_SHMEM)),
3941 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3942 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3943 			zone_page_state(zone, NR_KERNEL_STACK) *
3944 				THREAD_SIZE / 1024,
3945 			K(zone_page_state(zone, NR_PAGETABLE)),
3946 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3947 			K(zone_page_state(zone, NR_BOUNCE)),
3948 			K(free_pcp),
3949 			K(this_cpu_read(zone->pageset->pcp.count)),
3950 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3951 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3952 			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3953 			(!zone_reclaimable(zone) ? "yes" : "no")
3954 			);
3955 		printk("lowmem_reserve[]:");
3956 		for (i = 0; i < MAX_NR_ZONES; i++)
3957 			printk(" %ld", zone->lowmem_reserve[i]);
3958 		printk("\n");
3959 	}
3960 
3961 	for_each_populated_zone(zone) {
3962 		unsigned int order;
3963 		unsigned long nr[MAX_ORDER], flags, total = 0;
3964 		unsigned char types[MAX_ORDER];
3965 
3966 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3967 			continue;
3968 		show_node(zone);
3969 		printk("%s: ", zone->name);
3970 
3971 		spin_lock_irqsave(&zone->lock, flags);
3972 		for (order = 0; order < MAX_ORDER; order++) {
3973 			struct free_area *area = &zone->free_area[order];
3974 			int type;
3975 
3976 			nr[order] = area->nr_free;
3977 			total += nr[order] << order;
3978 
3979 			types[order] = 0;
3980 			for (type = 0; type < MIGRATE_TYPES; type++) {
3981 				if (!list_empty(&area->free_list[type]))
3982 					types[order] |= 1 << type;
3983 			}
3984 		}
3985 		spin_unlock_irqrestore(&zone->lock, flags);
3986 		for (order = 0; order < MAX_ORDER; order++) {
3987 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3988 			if (nr[order])
3989 				show_migration_types(types[order]);
3990 		}
3991 		printk("= %lukB\n", K(total));
3992 	}
3993 
3994 	hugetlb_show_meminfo();
3995 
3996 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3997 
3998 	show_swap_cache_info();
3999 }
4000 
4001 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4002 {
4003 	zoneref->zone = zone;
4004 	zoneref->zone_idx = zone_idx(zone);
4005 }
4006 
4007 /*
4008  * Builds allocation fallback zone lists.
4009  *
4010  * Add all populated zones of a node to the zonelist.
4011  */
4012 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4013 				int nr_zones)
4014 {
4015 	struct zone *zone;
4016 	enum zone_type zone_type = MAX_NR_ZONES;
4017 
4018 	do {
4019 		zone_type--;
4020 		zone = pgdat->node_zones + zone_type;
4021 		if (populated_zone(zone)) {
4022 			zoneref_set_zone(zone,
4023 				&zonelist->_zonerefs[nr_zones++]);
4024 			check_highest_zone(zone_type);
4025 		}
4026 	} while (zone_type);
4027 
4028 	return nr_zones;
4029 }
4030 
4031 
4032 /*
4033  *  zonelist_order:
4034  *  0 = automatic detection of better ordering.
4035  *  1 = order by ([node] distance, -zonetype)
4036  *  2 = order by (-zonetype, [node] distance)
4037  *
4038  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4039  *  the same zonelist. So only NUMA can configure this param.
4040  */
4041 #define ZONELIST_ORDER_DEFAULT  0
4042 #define ZONELIST_ORDER_NODE     1
4043 #define ZONELIST_ORDER_ZONE     2
4044 
4045 /* zonelist order in the kernel.
4046  * set_zonelist_order() will set this to NODE or ZONE.
4047  */
4048 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4049 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4050 
4051 
4052 #ifdef CONFIG_NUMA
4053 /* The value user specified ....changed by config */
4054 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4055 /* string for sysctl */
4056 #define NUMA_ZONELIST_ORDER_LEN	16
4057 char numa_zonelist_order[16] = "default";
4058 
4059 /*
4060  * interface for configure zonelist ordering.
4061  * command line option "numa_zonelist_order"
4062  *	= "[dD]efault	- default, automatic configuration.
4063  *	= "[nN]ode 	- order by node locality, then by zone within node
4064  *	= "[zZ]one      - order by zone, then by locality within zone
4065  */
4066 
4067 static int __parse_numa_zonelist_order(char *s)
4068 {
4069 	if (*s == 'd' || *s == 'D') {
4070 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4071 	} else if (*s == 'n' || *s == 'N') {
4072 		user_zonelist_order = ZONELIST_ORDER_NODE;
4073 	} else if (*s == 'z' || *s == 'Z') {
4074 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4075 	} else {
4076 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4077 		return -EINVAL;
4078 	}
4079 	return 0;
4080 }
4081 
4082 static __init int setup_numa_zonelist_order(char *s)
4083 {
4084 	int ret;
4085 
4086 	if (!s)
4087 		return 0;
4088 
4089 	ret = __parse_numa_zonelist_order(s);
4090 	if (ret == 0)
4091 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4092 
4093 	return ret;
4094 }
4095 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4096 
4097 /*
4098  * sysctl handler for numa_zonelist_order
4099  */
4100 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4101 		void __user *buffer, size_t *length,
4102 		loff_t *ppos)
4103 {
4104 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4105 	int ret;
4106 	static DEFINE_MUTEX(zl_order_mutex);
4107 
4108 	mutex_lock(&zl_order_mutex);
4109 	if (write) {
4110 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4111 			ret = -EINVAL;
4112 			goto out;
4113 		}
4114 		strcpy(saved_string, (char *)table->data);
4115 	}
4116 	ret = proc_dostring(table, write, buffer, length, ppos);
4117 	if (ret)
4118 		goto out;
4119 	if (write) {
4120 		int oldval = user_zonelist_order;
4121 
4122 		ret = __parse_numa_zonelist_order((char *)table->data);
4123 		if (ret) {
4124 			/*
4125 			 * bogus value.  restore saved string
4126 			 */
4127 			strncpy((char *)table->data, saved_string,
4128 				NUMA_ZONELIST_ORDER_LEN);
4129 			user_zonelist_order = oldval;
4130 		} else if (oldval != user_zonelist_order) {
4131 			mutex_lock(&zonelists_mutex);
4132 			build_all_zonelists(NULL, NULL);
4133 			mutex_unlock(&zonelists_mutex);
4134 		}
4135 	}
4136 out:
4137 	mutex_unlock(&zl_order_mutex);
4138 	return ret;
4139 }
4140 
4141 
4142 #define MAX_NODE_LOAD (nr_online_nodes)
4143 static int node_load[MAX_NUMNODES];
4144 
4145 /**
4146  * find_next_best_node - find the next node that should appear in a given node's fallback list
4147  * @node: node whose fallback list we're appending
4148  * @used_node_mask: nodemask_t of already used nodes
4149  *
4150  * We use a number of factors to determine which is the next node that should
4151  * appear on a given node's fallback list.  The node should not have appeared
4152  * already in @node's fallback list, and it should be the next closest node
4153  * according to the distance array (which contains arbitrary distance values
4154  * from each node to each node in the system), and should also prefer nodes
4155  * with no CPUs, since presumably they'll have very little allocation pressure
4156  * on them otherwise.
4157  * It returns -1 if no node is found.
4158  */
4159 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4160 {
4161 	int n, val;
4162 	int min_val = INT_MAX;
4163 	int best_node = NUMA_NO_NODE;
4164 	const struct cpumask *tmp = cpumask_of_node(0);
4165 
4166 	/* Use the local node if we haven't already */
4167 	if (!node_isset(node, *used_node_mask)) {
4168 		node_set(node, *used_node_mask);
4169 		return node;
4170 	}
4171 
4172 	for_each_node_state(n, N_MEMORY) {
4173 
4174 		/* Don't want a node to appear more than once */
4175 		if (node_isset(n, *used_node_mask))
4176 			continue;
4177 
4178 		/* Use the distance array to find the distance */
4179 		val = node_distance(node, n);
4180 
4181 		/* Penalize nodes under us ("prefer the next node") */
4182 		val += (n < node);
4183 
4184 		/* Give preference to headless and unused nodes */
4185 		tmp = cpumask_of_node(n);
4186 		if (!cpumask_empty(tmp))
4187 			val += PENALTY_FOR_NODE_WITH_CPUS;
4188 
4189 		/* Slight preference for less loaded node */
4190 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4191 		val += node_load[n];
4192 
4193 		if (val < min_val) {
4194 			min_val = val;
4195 			best_node = n;
4196 		}
4197 	}
4198 
4199 	if (best_node >= 0)
4200 		node_set(best_node, *used_node_mask);
4201 
4202 	return best_node;
4203 }
4204 
4205 
4206 /*
4207  * Build zonelists ordered by node and zones within node.
4208  * This results in maximum locality--normal zone overflows into local
4209  * DMA zone, if any--but risks exhausting DMA zone.
4210  */
4211 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4212 {
4213 	int j;
4214 	struct zonelist *zonelist;
4215 
4216 	zonelist = &pgdat->node_zonelists[0];
4217 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4218 		;
4219 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4220 	zonelist->_zonerefs[j].zone = NULL;
4221 	zonelist->_zonerefs[j].zone_idx = 0;
4222 }
4223 
4224 /*
4225  * Build gfp_thisnode zonelists
4226  */
4227 static void build_thisnode_zonelists(pg_data_t *pgdat)
4228 {
4229 	int j;
4230 	struct zonelist *zonelist;
4231 
4232 	zonelist = &pgdat->node_zonelists[1];
4233 	j = build_zonelists_node(pgdat, zonelist, 0);
4234 	zonelist->_zonerefs[j].zone = NULL;
4235 	zonelist->_zonerefs[j].zone_idx = 0;
4236 }
4237 
4238 /*
4239  * Build zonelists ordered by zone and nodes within zones.
4240  * This results in conserving DMA zone[s] until all Normal memory is
4241  * exhausted, but results in overflowing to remote node while memory
4242  * may still exist in local DMA zone.
4243  */
4244 static int node_order[MAX_NUMNODES];
4245 
4246 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4247 {
4248 	int pos, j, node;
4249 	int zone_type;		/* needs to be signed */
4250 	struct zone *z;
4251 	struct zonelist *zonelist;
4252 
4253 	zonelist = &pgdat->node_zonelists[0];
4254 	pos = 0;
4255 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4256 		for (j = 0; j < nr_nodes; j++) {
4257 			node = node_order[j];
4258 			z = &NODE_DATA(node)->node_zones[zone_type];
4259 			if (populated_zone(z)) {
4260 				zoneref_set_zone(z,
4261 					&zonelist->_zonerefs[pos++]);
4262 				check_highest_zone(zone_type);
4263 			}
4264 		}
4265 	}
4266 	zonelist->_zonerefs[pos].zone = NULL;
4267 	zonelist->_zonerefs[pos].zone_idx = 0;
4268 }
4269 
4270 #if defined(CONFIG_64BIT)
4271 /*
4272  * Devices that require DMA32/DMA are relatively rare and do not justify a
4273  * penalty to every machine in case the specialised case applies. Default
4274  * to Node-ordering on 64-bit NUMA machines
4275  */
4276 static int default_zonelist_order(void)
4277 {
4278 	return ZONELIST_ORDER_NODE;
4279 }
4280 #else
4281 /*
4282  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4283  * by the kernel. If processes running on node 0 deplete the low memory zone
4284  * then reclaim will occur more frequency increasing stalls and potentially
4285  * be easier to OOM if a large percentage of the zone is under writeback or
4286  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4287  * Hence, default to zone ordering on 32-bit.
4288  */
4289 static int default_zonelist_order(void)
4290 {
4291 	return ZONELIST_ORDER_ZONE;
4292 }
4293 #endif /* CONFIG_64BIT */
4294 
4295 static void set_zonelist_order(void)
4296 {
4297 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4298 		current_zonelist_order = default_zonelist_order();
4299 	else
4300 		current_zonelist_order = user_zonelist_order;
4301 }
4302 
4303 static void build_zonelists(pg_data_t *pgdat)
4304 {
4305 	int i, node, load;
4306 	nodemask_t used_mask;
4307 	int local_node, prev_node;
4308 	struct zonelist *zonelist;
4309 	unsigned int order = current_zonelist_order;
4310 
4311 	/* initialize zonelists */
4312 	for (i = 0; i < MAX_ZONELISTS; i++) {
4313 		zonelist = pgdat->node_zonelists + i;
4314 		zonelist->_zonerefs[0].zone = NULL;
4315 		zonelist->_zonerefs[0].zone_idx = 0;
4316 	}
4317 
4318 	/* NUMA-aware ordering of nodes */
4319 	local_node = pgdat->node_id;
4320 	load = nr_online_nodes;
4321 	prev_node = local_node;
4322 	nodes_clear(used_mask);
4323 
4324 	memset(node_order, 0, sizeof(node_order));
4325 	i = 0;
4326 
4327 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4328 		/*
4329 		 * We don't want to pressure a particular node.
4330 		 * So adding penalty to the first node in same
4331 		 * distance group to make it round-robin.
4332 		 */
4333 		if (node_distance(local_node, node) !=
4334 		    node_distance(local_node, prev_node))
4335 			node_load[node] = load;
4336 
4337 		prev_node = node;
4338 		load--;
4339 		if (order == ZONELIST_ORDER_NODE)
4340 			build_zonelists_in_node_order(pgdat, node);
4341 		else
4342 			node_order[i++] = node;	/* remember order */
4343 	}
4344 
4345 	if (order == ZONELIST_ORDER_ZONE) {
4346 		/* calculate node order -- i.e., DMA last! */
4347 		build_zonelists_in_zone_order(pgdat, i);
4348 	}
4349 
4350 	build_thisnode_zonelists(pgdat);
4351 }
4352 
4353 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4354 /*
4355  * Return node id of node used for "local" allocations.
4356  * I.e., first node id of first zone in arg node's generic zonelist.
4357  * Used for initializing percpu 'numa_mem', which is used primarily
4358  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4359  */
4360 int local_memory_node(int node)
4361 {
4362 	struct zone *zone;
4363 
4364 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4365 				   gfp_zone(GFP_KERNEL),
4366 				   NULL,
4367 				   &zone);
4368 	return zone->node;
4369 }
4370 #endif
4371 
4372 #else	/* CONFIG_NUMA */
4373 
4374 static void set_zonelist_order(void)
4375 {
4376 	current_zonelist_order = ZONELIST_ORDER_ZONE;
4377 }
4378 
4379 static void build_zonelists(pg_data_t *pgdat)
4380 {
4381 	int node, local_node;
4382 	enum zone_type j;
4383 	struct zonelist *zonelist;
4384 
4385 	local_node = pgdat->node_id;
4386 
4387 	zonelist = &pgdat->node_zonelists[0];
4388 	j = build_zonelists_node(pgdat, zonelist, 0);
4389 
4390 	/*
4391 	 * Now we build the zonelist so that it contains the zones
4392 	 * of all the other nodes.
4393 	 * We don't want to pressure a particular node, so when
4394 	 * building the zones for node N, we make sure that the
4395 	 * zones coming right after the local ones are those from
4396 	 * node N+1 (modulo N)
4397 	 */
4398 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4399 		if (!node_online(node))
4400 			continue;
4401 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4402 	}
4403 	for (node = 0; node < local_node; node++) {
4404 		if (!node_online(node))
4405 			continue;
4406 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4407 	}
4408 
4409 	zonelist->_zonerefs[j].zone = NULL;
4410 	zonelist->_zonerefs[j].zone_idx = 0;
4411 }
4412 
4413 #endif	/* CONFIG_NUMA */
4414 
4415 /*
4416  * Boot pageset table. One per cpu which is going to be used for all
4417  * zones and all nodes. The parameters will be set in such a way
4418  * that an item put on a list will immediately be handed over to
4419  * the buddy list. This is safe since pageset manipulation is done
4420  * with interrupts disabled.
4421  *
4422  * The boot_pagesets must be kept even after bootup is complete for
4423  * unused processors and/or zones. They do play a role for bootstrapping
4424  * hotplugged processors.
4425  *
4426  * zoneinfo_show() and maybe other functions do
4427  * not check if the processor is online before following the pageset pointer.
4428  * Other parts of the kernel may not check if the zone is available.
4429  */
4430 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4431 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4432 static void setup_zone_pageset(struct zone *zone);
4433 
4434 /*
4435  * Global mutex to protect against size modification of zonelists
4436  * as well as to serialize pageset setup for the new populated zone.
4437  */
4438 DEFINE_MUTEX(zonelists_mutex);
4439 
4440 /* return values int ....just for stop_machine() */
4441 static int __build_all_zonelists(void *data)
4442 {
4443 	int nid;
4444 	int cpu;
4445 	pg_data_t *self = data;
4446 
4447 #ifdef CONFIG_NUMA
4448 	memset(node_load, 0, sizeof(node_load));
4449 #endif
4450 
4451 	if (self && !node_online(self->node_id)) {
4452 		build_zonelists(self);
4453 	}
4454 
4455 	for_each_online_node(nid) {
4456 		pg_data_t *pgdat = NODE_DATA(nid);
4457 
4458 		build_zonelists(pgdat);
4459 	}
4460 
4461 	/*
4462 	 * Initialize the boot_pagesets that are going to be used
4463 	 * for bootstrapping processors. The real pagesets for
4464 	 * each zone will be allocated later when the per cpu
4465 	 * allocator is available.
4466 	 *
4467 	 * boot_pagesets are used also for bootstrapping offline
4468 	 * cpus if the system is already booted because the pagesets
4469 	 * are needed to initialize allocators on a specific cpu too.
4470 	 * F.e. the percpu allocator needs the page allocator which
4471 	 * needs the percpu allocator in order to allocate its pagesets
4472 	 * (a chicken-egg dilemma).
4473 	 */
4474 	for_each_possible_cpu(cpu) {
4475 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4476 
4477 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4478 		/*
4479 		 * We now know the "local memory node" for each node--
4480 		 * i.e., the node of the first zone in the generic zonelist.
4481 		 * Set up numa_mem percpu variable for on-line cpus.  During
4482 		 * boot, only the boot cpu should be on-line;  we'll init the
4483 		 * secondary cpus' numa_mem as they come on-line.  During
4484 		 * node/memory hotplug, we'll fixup all on-line cpus.
4485 		 */
4486 		if (cpu_online(cpu))
4487 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4488 #endif
4489 	}
4490 
4491 	return 0;
4492 }
4493 
4494 static noinline void __init
4495 build_all_zonelists_init(void)
4496 {
4497 	__build_all_zonelists(NULL);
4498 	mminit_verify_zonelist();
4499 	cpuset_init_current_mems_allowed();
4500 }
4501 
4502 /*
4503  * Called with zonelists_mutex held always
4504  * unless system_state == SYSTEM_BOOTING.
4505  *
4506  * __ref due to (1) call of __meminit annotated setup_zone_pageset
4507  * [we're only called with non-NULL zone through __meminit paths] and
4508  * (2) call of __init annotated helper build_all_zonelists_init
4509  * [protected by SYSTEM_BOOTING].
4510  */
4511 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4512 {
4513 	set_zonelist_order();
4514 
4515 	if (system_state == SYSTEM_BOOTING) {
4516 		build_all_zonelists_init();
4517 	} else {
4518 #ifdef CONFIG_MEMORY_HOTPLUG
4519 		if (zone)
4520 			setup_zone_pageset(zone);
4521 #endif
4522 		/* we have to stop all cpus to guarantee there is no user
4523 		   of zonelist */
4524 		stop_machine(__build_all_zonelists, pgdat, NULL);
4525 		/* cpuset refresh routine should be here */
4526 	}
4527 	vm_total_pages = nr_free_pagecache_pages();
4528 	/*
4529 	 * Disable grouping by mobility if the number of pages in the
4530 	 * system is too low to allow the mechanism to work. It would be
4531 	 * more accurate, but expensive to check per-zone. This check is
4532 	 * made on memory-hotadd so a system can start with mobility
4533 	 * disabled and enable it later
4534 	 */
4535 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4536 		page_group_by_mobility_disabled = 1;
4537 	else
4538 		page_group_by_mobility_disabled = 0;
4539 
4540 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
4541 		nr_online_nodes,
4542 		zonelist_order_name[current_zonelist_order],
4543 		page_group_by_mobility_disabled ? "off" : "on",
4544 		vm_total_pages);
4545 #ifdef CONFIG_NUMA
4546 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4547 #endif
4548 }
4549 
4550 /*
4551  * Helper functions to size the waitqueue hash table.
4552  * Essentially these want to choose hash table sizes sufficiently
4553  * large so that collisions trying to wait on pages are rare.
4554  * But in fact, the number of active page waitqueues on typical
4555  * systems is ridiculously low, less than 200. So this is even
4556  * conservative, even though it seems large.
4557  *
4558  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4559  * waitqueues, i.e. the size of the waitq table given the number of pages.
4560  */
4561 #define PAGES_PER_WAITQUEUE	256
4562 
4563 #ifndef CONFIG_MEMORY_HOTPLUG
4564 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4565 {
4566 	unsigned long size = 1;
4567 
4568 	pages /= PAGES_PER_WAITQUEUE;
4569 
4570 	while (size < pages)
4571 		size <<= 1;
4572 
4573 	/*
4574 	 * Once we have dozens or even hundreds of threads sleeping
4575 	 * on IO we've got bigger problems than wait queue collision.
4576 	 * Limit the size of the wait table to a reasonable size.
4577 	 */
4578 	size = min(size, 4096UL);
4579 
4580 	return max(size, 4UL);
4581 }
4582 #else
4583 /*
4584  * A zone's size might be changed by hot-add, so it is not possible to determine
4585  * a suitable size for its wait_table.  So we use the maximum size now.
4586  *
4587  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
4588  *
4589  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
4590  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4591  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
4592  *
4593  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4594  * or more by the traditional way. (See above).  It equals:
4595  *
4596  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
4597  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
4598  *    powerpc (64K page size)             : =  (32G +16M)byte.
4599  */
4600 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4601 {
4602 	return 4096UL;
4603 }
4604 #endif
4605 
4606 /*
4607  * This is an integer logarithm so that shifts can be used later
4608  * to extract the more random high bits from the multiplicative
4609  * hash function before the remainder is taken.
4610  */
4611 static inline unsigned long wait_table_bits(unsigned long size)
4612 {
4613 	return ffz(~size);
4614 }
4615 
4616 /*
4617  * Initially all pages are reserved - free ones are freed
4618  * up by free_all_bootmem() once the early boot process is
4619  * done. Non-atomic initialization, single-pass.
4620  */
4621 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4622 		unsigned long start_pfn, enum memmap_context context)
4623 {
4624 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
4625 	unsigned long end_pfn = start_pfn + size;
4626 	pg_data_t *pgdat = NODE_DATA(nid);
4627 	unsigned long pfn;
4628 	unsigned long nr_initialised = 0;
4629 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4630 	struct memblock_region *r = NULL, *tmp;
4631 #endif
4632 
4633 	if (highest_memmap_pfn < end_pfn - 1)
4634 		highest_memmap_pfn = end_pfn - 1;
4635 
4636 	/*
4637 	 * Honor reservation requested by the driver for this ZONE_DEVICE
4638 	 * memory
4639 	 */
4640 	if (altmap && start_pfn == altmap->base_pfn)
4641 		start_pfn += altmap->reserve;
4642 
4643 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4644 		/*
4645 		 * There can be holes in boot-time mem_map[]s handed to this
4646 		 * function.  They do not exist on hotplugged memory.
4647 		 */
4648 		if (context != MEMMAP_EARLY)
4649 			goto not_early;
4650 
4651 		if (!early_pfn_valid(pfn))
4652 			continue;
4653 		if (!early_pfn_in_nid(pfn, nid))
4654 			continue;
4655 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4656 			break;
4657 
4658 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4659 		/*
4660 		 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4661 		 * from zone_movable_pfn[nid] to end of each node should be
4662 		 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4663 		 */
4664 		if (!mirrored_kernelcore && zone_movable_pfn[nid])
4665 			if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4666 				continue;
4667 
4668 		/*
4669 		 * Check given memblock attribute by firmware which can affect
4670 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
4671 		 * mirrored, it's an overlapped memmap init. skip it.
4672 		 */
4673 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4674 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4675 				for_each_memblock(memory, tmp)
4676 					if (pfn < memblock_region_memory_end_pfn(tmp))
4677 						break;
4678 				r = tmp;
4679 			}
4680 			if (pfn >= memblock_region_memory_base_pfn(r) &&
4681 			    memblock_is_mirror(r)) {
4682 				/* already initialized as NORMAL */
4683 				pfn = memblock_region_memory_end_pfn(r);
4684 				continue;
4685 			}
4686 		}
4687 #endif
4688 
4689 not_early:
4690 		/*
4691 		 * Mark the block movable so that blocks are reserved for
4692 		 * movable at startup. This will force kernel allocations
4693 		 * to reserve their blocks rather than leaking throughout
4694 		 * the address space during boot when many long-lived
4695 		 * kernel allocations are made.
4696 		 *
4697 		 * bitmap is created for zone's valid pfn range. but memmap
4698 		 * can be created for invalid pages (for alignment)
4699 		 * check here not to call set_pageblock_migratetype() against
4700 		 * pfn out of zone.
4701 		 */
4702 		if (!(pfn & (pageblock_nr_pages - 1))) {
4703 			struct page *page = pfn_to_page(pfn);
4704 
4705 			__init_single_page(page, pfn, zone, nid);
4706 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4707 		} else {
4708 			__init_single_pfn(pfn, zone, nid);
4709 		}
4710 	}
4711 }
4712 
4713 static void __meminit zone_init_free_lists(struct zone *zone)
4714 {
4715 	unsigned int order, t;
4716 	for_each_migratetype_order(order, t) {
4717 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4718 		zone->free_area[order].nr_free = 0;
4719 	}
4720 }
4721 
4722 #ifndef __HAVE_ARCH_MEMMAP_INIT
4723 #define memmap_init(size, nid, zone, start_pfn) \
4724 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4725 #endif
4726 
4727 static int zone_batchsize(struct zone *zone)
4728 {
4729 #ifdef CONFIG_MMU
4730 	int batch;
4731 
4732 	/*
4733 	 * The per-cpu-pages pools are set to around 1000th of the
4734 	 * size of the zone.  But no more than 1/2 of a meg.
4735 	 *
4736 	 * OK, so we don't know how big the cache is.  So guess.
4737 	 */
4738 	batch = zone->managed_pages / 1024;
4739 	if (batch * PAGE_SIZE > 512 * 1024)
4740 		batch = (512 * 1024) / PAGE_SIZE;
4741 	batch /= 4;		/* We effectively *= 4 below */
4742 	if (batch < 1)
4743 		batch = 1;
4744 
4745 	/*
4746 	 * Clamp the batch to a 2^n - 1 value. Having a power
4747 	 * of 2 value was found to be more likely to have
4748 	 * suboptimal cache aliasing properties in some cases.
4749 	 *
4750 	 * For example if 2 tasks are alternately allocating
4751 	 * batches of pages, one task can end up with a lot
4752 	 * of pages of one half of the possible page colors
4753 	 * and the other with pages of the other colors.
4754 	 */
4755 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4756 
4757 	return batch;
4758 
4759 #else
4760 	/* The deferral and batching of frees should be suppressed under NOMMU
4761 	 * conditions.
4762 	 *
4763 	 * The problem is that NOMMU needs to be able to allocate large chunks
4764 	 * of contiguous memory as there's no hardware page translation to
4765 	 * assemble apparent contiguous memory from discontiguous pages.
4766 	 *
4767 	 * Queueing large contiguous runs of pages for batching, however,
4768 	 * causes the pages to actually be freed in smaller chunks.  As there
4769 	 * can be a significant delay between the individual batches being
4770 	 * recycled, this leads to the once large chunks of space being
4771 	 * fragmented and becoming unavailable for high-order allocations.
4772 	 */
4773 	return 0;
4774 #endif
4775 }
4776 
4777 /*
4778  * pcp->high and pcp->batch values are related and dependent on one another:
4779  * ->batch must never be higher then ->high.
4780  * The following function updates them in a safe manner without read side
4781  * locking.
4782  *
4783  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4784  * those fields changing asynchronously (acording the the above rule).
4785  *
4786  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4787  * outside of boot time (or some other assurance that no concurrent updaters
4788  * exist).
4789  */
4790 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4791 		unsigned long batch)
4792 {
4793        /* start with a fail safe value for batch */
4794 	pcp->batch = 1;
4795 	smp_wmb();
4796 
4797        /* Update high, then batch, in order */
4798 	pcp->high = high;
4799 	smp_wmb();
4800 
4801 	pcp->batch = batch;
4802 }
4803 
4804 /* a companion to pageset_set_high() */
4805 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4806 {
4807 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4808 }
4809 
4810 static void pageset_init(struct per_cpu_pageset *p)
4811 {
4812 	struct per_cpu_pages *pcp;
4813 	int migratetype;
4814 
4815 	memset(p, 0, sizeof(*p));
4816 
4817 	pcp = &p->pcp;
4818 	pcp->count = 0;
4819 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4820 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4821 }
4822 
4823 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4824 {
4825 	pageset_init(p);
4826 	pageset_set_batch(p, batch);
4827 }
4828 
4829 /*
4830  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4831  * to the value high for the pageset p.
4832  */
4833 static void pageset_set_high(struct per_cpu_pageset *p,
4834 				unsigned long high)
4835 {
4836 	unsigned long batch = max(1UL, high / 4);
4837 	if ((high / 4) > (PAGE_SHIFT * 8))
4838 		batch = PAGE_SHIFT * 8;
4839 
4840 	pageset_update(&p->pcp, high, batch);
4841 }
4842 
4843 static void pageset_set_high_and_batch(struct zone *zone,
4844 				       struct per_cpu_pageset *pcp)
4845 {
4846 	if (percpu_pagelist_fraction)
4847 		pageset_set_high(pcp,
4848 			(zone->managed_pages /
4849 				percpu_pagelist_fraction));
4850 	else
4851 		pageset_set_batch(pcp, zone_batchsize(zone));
4852 }
4853 
4854 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4855 {
4856 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4857 
4858 	pageset_init(pcp);
4859 	pageset_set_high_and_batch(zone, pcp);
4860 }
4861 
4862 static void __meminit setup_zone_pageset(struct zone *zone)
4863 {
4864 	int cpu;
4865 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4866 	for_each_possible_cpu(cpu)
4867 		zone_pageset_init(zone, cpu);
4868 }
4869 
4870 /*
4871  * Allocate per cpu pagesets and initialize them.
4872  * Before this call only boot pagesets were available.
4873  */
4874 void __init setup_per_cpu_pageset(void)
4875 {
4876 	struct zone *zone;
4877 
4878 	for_each_populated_zone(zone)
4879 		setup_zone_pageset(zone);
4880 }
4881 
4882 static noinline __init_refok
4883 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4884 {
4885 	int i;
4886 	size_t alloc_size;
4887 
4888 	/*
4889 	 * The per-page waitqueue mechanism uses hashed waitqueues
4890 	 * per zone.
4891 	 */
4892 	zone->wait_table_hash_nr_entries =
4893 		 wait_table_hash_nr_entries(zone_size_pages);
4894 	zone->wait_table_bits =
4895 		wait_table_bits(zone->wait_table_hash_nr_entries);
4896 	alloc_size = zone->wait_table_hash_nr_entries
4897 					* sizeof(wait_queue_head_t);
4898 
4899 	if (!slab_is_available()) {
4900 		zone->wait_table = (wait_queue_head_t *)
4901 			memblock_virt_alloc_node_nopanic(
4902 				alloc_size, zone->zone_pgdat->node_id);
4903 	} else {
4904 		/*
4905 		 * This case means that a zone whose size was 0 gets new memory
4906 		 * via memory hot-add.
4907 		 * But it may be the case that a new node was hot-added.  In
4908 		 * this case vmalloc() will not be able to use this new node's
4909 		 * memory - this wait_table must be initialized to use this new
4910 		 * node itself as well.
4911 		 * To use this new node's memory, further consideration will be
4912 		 * necessary.
4913 		 */
4914 		zone->wait_table = vmalloc(alloc_size);
4915 	}
4916 	if (!zone->wait_table)
4917 		return -ENOMEM;
4918 
4919 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4920 		init_waitqueue_head(zone->wait_table + i);
4921 
4922 	return 0;
4923 }
4924 
4925 static __meminit void zone_pcp_init(struct zone *zone)
4926 {
4927 	/*
4928 	 * per cpu subsystem is not up at this point. The following code
4929 	 * relies on the ability of the linker to provide the
4930 	 * offset of a (static) per cpu variable into the per cpu area.
4931 	 */
4932 	zone->pageset = &boot_pageset;
4933 
4934 	if (populated_zone(zone))
4935 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4936 			zone->name, zone->present_pages,
4937 					 zone_batchsize(zone));
4938 }
4939 
4940 int __meminit init_currently_empty_zone(struct zone *zone,
4941 					unsigned long zone_start_pfn,
4942 					unsigned long size)
4943 {
4944 	struct pglist_data *pgdat = zone->zone_pgdat;
4945 	int ret;
4946 	ret = zone_wait_table_init(zone, size);
4947 	if (ret)
4948 		return ret;
4949 	pgdat->nr_zones = zone_idx(zone) + 1;
4950 
4951 	zone->zone_start_pfn = zone_start_pfn;
4952 
4953 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4954 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4955 			pgdat->node_id,
4956 			(unsigned long)zone_idx(zone),
4957 			zone_start_pfn, (zone_start_pfn + size));
4958 
4959 	zone_init_free_lists(zone);
4960 
4961 	return 0;
4962 }
4963 
4964 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4965 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4966 
4967 /*
4968  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4969  */
4970 int __meminit __early_pfn_to_nid(unsigned long pfn,
4971 					struct mminit_pfnnid_cache *state)
4972 {
4973 	unsigned long start_pfn, end_pfn;
4974 	int nid;
4975 
4976 	if (state->last_start <= pfn && pfn < state->last_end)
4977 		return state->last_nid;
4978 
4979 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4980 	if (nid != -1) {
4981 		state->last_start = start_pfn;
4982 		state->last_end = end_pfn;
4983 		state->last_nid = nid;
4984 	}
4985 
4986 	return nid;
4987 }
4988 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4989 
4990 /**
4991  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4992  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4993  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4994  *
4995  * If an architecture guarantees that all ranges registered contain no holes
4996  * and may be freed, this this function may be used instead of calling
4997  * memblock_free_early_nid() manually.
4998  */
4999 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5000 {
5001 	unsigned long start_pfn, end_pfn;
5002 	int i, this_nid;
5003 
5004 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5005 		start_pfn = min(start_pfn, max_low_pfn);
5006 		end_pfn = min(end_pfn, max_low_pfn);
5007 
5008 		if (start_pfn < end_pfn)
5009 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5010 					(end_pfn - start_pfn) << PAGE_SHIFT,
5011 					this_nid);
5012 	}
5013 }
5014 
5015 /**
5016  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5017  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5018  *
5019  * If an architecture guarantees that all ranges registered contain no holes and may
5020  * be freed, this function may be used instead of calling memory_present() manually.
5021  */
5022 void __init sparse_memory_present_with_active_regions(int nid)
5023 {
5024 	unsigned long start_pfn, end_pfn;
5025 	int i, this_nid;
5026 
5027 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5028 		memory_present(this_nid, start_pfn, end_pfn);
5029 }
5030 
5031 /**
5032  * get_pfn_range_for_nid - Return the start and end page frames for a node
5033  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5034  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5035  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5036  *
5037  * It returns the start and end page frame of a node based on information
5038  * provided by memblock_set_node(). If called for a node
5039  * with no available memory, a warning is printed and the start and end
5040  * PFNs will be 0.
5041  */
5042 void __meminit get_pfn_range_for_nid(unsigned int nid,
5043 			unsigned long *start_pfn, unsigned long *end_pfn)
5044 {
5045 	unsigned long this_start_pfn, this_end_pfn;
5046 	int i;
5047 
5048 	*start_pfn = -1UL;
5049 	*end_pfn = 0;
5050 
5051 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5052 		*start_pfn = min(*start_pfn, this_start_pfn);
5053 		*end_pfn = max(*end_pfn, this_end_pfn);
5054 	}
5055 
5056 	if (*start_pfn == -1UL)
5057 		*start_pfn = 0;
5058 }
5059 
5060 /*
5061  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5062  * assumption is made that zones within a node are ordered in monotonic
5063  * increasing memory addresses so that the "highest" populated zone is used
5064  */
5065 static void __init find_usable_zone_for_movable(void)
5066 {
5067 	int zone_index;
5068 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5069 		if (zone_index == ZONE_MOVABLE)
5070 			continue;
5071 
5072 		if (arch_zone_highest_possible_pfn[zone_index] >
5073 				arch_zone_lowest_possible_pfn[zone_index])
5074 			break;
5075 	}
5076 
5077 	VM_BUG_ON(zone_index == -1);
5078 	movable_zone = zone_index;
5079 }
5080 
5081 /*
5082  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5083  * because it is sized independent of architecture. Unlike the other zones,
5084  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5085  * in each node depending on the size of each node and how evenly kernelcore
5086  * is distributed. This helper function adjusts the zone ranges
5087  * provided by the architecture for a given node by using the end of the
5088  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5089  * zones within a node are in order of monotonic increases memory addresses
5090  */
5091 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5092 					unsigned long zone_type,
5093 					unsigned long node_start_pfn,
5094 					unsigned long node_end_pfn,
5095 					unsigned long *zone_start_pfn,
5096 					unsigned long *zone_end_pfn)
5097 {
5098 	/* Only adjust if ZONE_MOVABLE is on this node */
5099 	if (zone_movable_pfn[nid]) {
5100 		/* Size ZONE_MOVABLE */
5101 		if (zone_type == ZONE_MOVABLE) {
5102 			*zone_start_pfn = zone_movable_pfn[nid];
5103 			*zone_end_pfn = min(node_end_pfn,
5104 				arch_zone_highest_possible_pfn[movable_zone]);
5105 
5106 		/* Check if this whole range is within ZONE_MOVABLE */
5107 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5108 			*zone_start_pfn = *zone_end_pfn;
5109 	}
5110 }
5111 
5112 /*
5113  * Return the number of pages a zone spans in a node, including holes
5114  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5115  */
5116 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5117 					unsigned long zone_type,
5118 					unsigned long node_start_pfn,
5119 					unsigned long node_end_pfn,
5120 					unsigned long *zone_start_pfn,
5121 					unsigned long *zone_end_pfn,
5122 					unsigned long *ignored)
5123 {
5124 	/* When hotadd a new node from cpu_up(), the node should be empty */
5125 	if (!node_start_pfn && !node_end_pfn)
5126 		return 0;
5127 
5128 	/* Get the start and end of the zone */
5129 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5130 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5131 	adjust_zone_range_for_zone_movable(nid, zone_type,
5132 				node_start_pfn, node_end_pfn,
5133 				zone_start_pfn, zone_end_pfn);
5134 
5135 	/* Check that this node has pages within the zone's required range */
5136 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5137 		return 0;
5138 
5139 	/* Move the zone boundaries inside the node if necessary */
5140 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5141 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5142 
5143 	/* Return the spanned pages */
5144 	return *zone_end_pfn - *zone_start_pfn;
5145 }
5146 
5147 /*
5148  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5149  * then all holes in the requested range will be accounted for.
5150  */
5151 unsigned long __meminit __absent_pages_in_range(int nid,
5152 				unsigned long range_start_pfn,
5153 				unsigned long range_end_pfn)
5154 {
5155 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5156 	unsigned long start_pfn, end_pfn;
5157 	int i;
5158 
5159 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5160 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5161 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5162 		nr_absent -= end_pfn - start_pfn;
5163 	}
5164 	return nr_absent;
5165 }
5166 
5167 /**
5168  * absent_pages_in_range - Return number of page frames in holes within a range
5169  * @start_pfn: The start PFN to start searching for holes
5170  * @end_pfn: The end PFN to stop searching for holes
5171  *
5172  * It returns the number of pages frames in memory holes within a range.
5173  */
5174 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5175 							unsigned long end_pfn)
5176 {
5177 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5178 }
5179 
5180 /* Return the number of page frames in holes in a zone on a node */
5181 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5182 					unsigned long zone_type,
5183 					unsigned long node_start_pfn,
5184 					unsigned long node_end_pfn,
5185 					unsigned long *ignored)
5186 {
5187 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5188 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5189 	unsigned long zone_start_pfn, zone_end_pfn;
5190 	unsigned long nr_absent;
5191 
5192 	/* When hotadd a new node from cpu_up(), the node should be empty */
5193 	if (!node_start_pfn && !node_end_pfn)
5194 		return 0;
5195 
5196 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5197 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5198 
5199 	adjust_zone_range_for_zone_movable(nid, zone_type,
5200 			node_start_pfn, node_end_pfn,
5201 			&zone_start_pfn, &zone_end_pfn);
5202 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5203 
5204 	/*
5205 	 * ZONE_MOVABLE handling.
5206 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5207 	 * and vice versa.
5208 	 */
5209 	if (zone_movable_pfn[nid]) {
5210 		if (mirrored_kernelcore) {
5211 			unsigned long start_pfn, end_pfn;
5212 			struct memblock_region *r;
5213 
5214 			for_each_memblock(memory, r) {
5215 				start_pfn = clamp(memblock_region_memory_base_pfn(r),
5216 						  zone_start_pfn, zone_end_pfn);
5217 				end_pfn = clamp(memblock_region_memory_end_pfn(r),
5218 						zone_start_pfn, zone_end_pfn);
5219 
5220 				if (zone_type == ZONE_MOVABLE &&
5221 				    memblock_is_mirror(r))
5222 					nr_absent += end_pfn - start_pfn;
5223 
5224 				if (zone_type == ZONE_NORMAL &&
5225 				    !memblock_is_mirror(r))
5226 					nr_absent += end_pfn - start_pfn;
5227 			}
5228 		} else {
5229 			if (zone_type == ZONE_NORMAL)
5230 				nr_absent += node_end_pfn - zone_movable_pfn[nid];
5231 		}
5232 	}
5233 
5234 	return nr_absent;
5235 }
5236 
5237 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5238 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5239 					unsigned long zone_type,
5240 					unsigned long node_start_pfn,
5241 					unsigned long node_end_pfn,
5242 					unsigned long *zone_start_pfn,
5243 					unsigned long *zone_end_pfn,
5244 					unsigned long *zones_size)
5245 {
5246 	unsigned int zone;
5247 
5248 	*zone_start_pfn = node_start_pfn;
5249 	for (zone = 0; zone < zone_type; zone++)
5250 		*zone_start_pfn += zones_size[zone];
5251 
5252 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5253 
5254 	return zones_size[zone_type];
5255 }
5256 
5257 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5258 						unsigned long zone_type,
5259 						unsigned long node_start_pfn,
5260 						unsigned long node_end_pfn,
5261 						unsigned long *zholes_size)
5262 {
5263 	if (!zholes_size)
5264 		return 0;
5265 
5266 	return zholes_size[zone_type];
5267 }
5268 
5269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5270 
5271 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5272 						unsigned long node_start_pfn,
5273 						unsigned long node_end_pfn,
5274 						unsigned long *zones_size,
5275 						unsigned long *zholes_size)
5276 {
5277 	unsigned long realtotalpages = 0, totalpages = 0;
5278 	enum zone_type i;
5279 
5280 	for (i = 0; i < MAX_NR_ZONES; i++) {
5281 		struct zone *zone = pgdat->node_zones + i;
5282 		unsigned long zone_start_pfn, zone_end_pfn;
5283 		unsigned long size, real_size;
5284 
5285 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5286 						  node_start_pfn,
5287 						  node_end_pfn,
5288 						  &zone_start_pfn,
5289 						  &zone_end_pfn,
5290 						  zones_size);
5291 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5292 						  node_start_pfn, node_end_pfn,
5293 						  zholes_size);
5294 		if (size)
5295 			zone->zone_start_pfn = zone_start_pfn;
5296 		else
5297 			zone->zone_start_pfn = 0;
5298 		zone->spanned_pages = size;
5299 		zone->present_pages = real_size;
5300 
5301 		totalpages += size;
5302 		realtotalpages += real_size;
5303 	}
5304 
5305 	pgdat->node_spanned_pages = totalpages;
5306 	pgdat->node_present_pages = realtotalpages;
5307 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5308 							realtotalpages);
5309 }
5310 
5311 #ifndef CONFIG_SPARSEMEM
5312 /*
5313  * Calculate the size of the zone->blockflags rounded to an unsigned long
5314  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5315  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5316  * round what is now in bits to nearest long in bits, then return it in
5317  * bytes.
5318  */
5319 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5320 {
5321 	unsigned long usemapsize;
5322 
5323 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5324 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5325 	usemapsize = usemapsize >> pageblock_order;
5326 	usemapsize *= NR_PAGEBLOCK_BITS;
5327 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5328 
5329 	return usemapsize / 8;
5330 }
5331 
5332 static void __init setup_usemap(struct pglist_data *pgdat,
5333 				struct zone *zone,
5334 				unsigned long zone_start_pfn,
5335 				unsigned long zonesize)
5336 {
5337 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5338 	zone->pageblock_flags = NULL;
5339 	if (usemapsize)
5340 		zone->pageblock_flags =
5341 			memblock_virt_alloc_node_nopanic(usemapsize,
5342 							 pgdat->node_id);
5343 }
5344 #else
5345 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5346 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5347 #endif /* CONFIG_SPARSEMEM */
5348 
5349 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5350 
5351 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5352 void __paginginit set_pageblock_order(void)
5353 {
5354 	unsigned int order;
5355 
5356 	/* Check that pageblock_nr_pages has not already been setup */
5357 	if (pageblock_order)
5358 		return;
5359 
5360 	if (HPAGE_SHIFT > PAGE_SHIFT)
5361 		order = HUGETLB_PAGE_ORDER;
5362 	else
5363 		order = MAX_ORDER - 1;
5364 
5365 	/*
5366 	 * Assume the largest contiguous order of interest is a huge page.
5367 	 * This value may be variable depending on boot parameters on IA64 and
5368 	 * powerpc.
5369 	 */
5370 	pageblock_order = order;
5371 }
5372 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5373 
5374 /*
5375  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5376  * is unused as pageblock_order is set at compile-time. See
5377  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5378  * the kernel config
5379  */
5380 void __paginginit set_pageblock_order(void)
5381 {
5382 }
5383 
5384 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5385 
5386 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5387 						   unsigned long present_pages)
5388 {
5389 	unsigned long pages = spanned_pages;
5390 
5391 	/*
5392 	 * Provide a more accurate estimation if there are holes within
5393 	 * the zone and SPARSEMEM is in use. If there are holes within the
5394 	 * zone, each populated memory region may cost us one or two extra
5395 	 * memmap pages due to alignment because memmap pages for each
5396 	 * populated regions may not naturally algined on page boundary.
5397 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5398 	 */
5399 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5400 	    IS_ENABLED(CONFIG_SPARSEMEM))
5401 		pages = present_pages;
5402 
5403 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5404 }
5405 
5406 /*
5407  * Set up the zone data structures:
5408  *   - mark all pages reserved
5409  *   - mark all memory queues empty
5410  *   - clear the memory bitmaps
5411  *
5412  * NOTE: pgdat should get zeroed by caller.
5413  */
5414 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5415 {
5416 	enum zone_type j;
5417 	int nid = pgdat->node_id;
5418 	int ret;
5419 
5420 	pgdat_resize_init(pgdat);
5421 #ifdef CONFIG_NUMA_BALANCING
5422 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5423 	pgdat->numabalancing_migrate_nr_pages = 0;
5424 	pgdat->numabalancing_migrate_next_window = jiffies;
5425 #endif
5426 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5427 	spin_lock_init(&pgdat->split_queue_lock);
5428 	INIT_LIST_HEAD(&pgdat->split_queue);
5429 	pgdat->split_queue_len = 0;
5430 #endif
5431 	init_waitqueue_head(&pgdat->kswapd_wait);
5432 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5433 #ifdef CONFIG_COMPACTION
5434 	init_waitqueue_head(&pgdat->kcompactd_wait);
5435 #endif
5436 	pgdat_page_ext_init(pgdat);
5437 
5438 	for (j = 0; j < MAX_NR_ZONES; j++) {
5439 		struct zone *zone = pgdat->node_zones + j;
5440 		unsigned long size, realsize, freesize, memmap_pages;
5441 		unsigned long zone_start_pfn = zone->zone_start_pfn;
5442 
5443 		size = zone->spanned_pages;
5444 		realsize = freesize = zone->present_pages;
5445 
5446 		/*
5447 		 * Adjust freesize so that it accounts for how much memory
5448 		 * is used by this zone for memmap. This affects the watermark
5449 		 * and per-cpu initialisations
5450 		 */
5451 		memmap_pages = calc_memmap_size(size, realsize);
5452 		if (!is_highmem_idx(j)) {
5453 			if (freesize >= memmap_pages) {
5454 				freesize -= memmap_pages;
5455 				if (memmap_pages)
5456 					printk(KERN_DEBUG
5457 					       "  %s zone: %lu pages used for memmap\n",
5458 					       zone_names[j], memmap_pages);
5459 			} else
5460 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
5461 					zone_names[j], memmap_pages, freesize);
5462 		}
5463 
5464 		/* Account for reserved pages */
5465 		if (j == 0 && freesize > dma_reserve) {
5466 			freesize -= dma_reserve;
5467 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5468 					zone_names[0], dma_reserve);
5469 		}
5470 
5471 		if (!is_highmem_idx(j))
5472 			nr_kernel_pages += freesize;
5473 		/* Charge for highmem memmap if there are enough kernel pages */
5474 		else if (nr_kernel_pages > memmap_pages * 2)
5475 			nr_kernel_pages -= memmap_pages;
5476 		nr_all_pages += freesize;
5477 
5478 		/*
5479 		 * Set an approximate value for lowmem here, it will be adjusted
5480 		 * when the bootmem allocator frees pages into the buddy system.
5481 		 * And all highmem pages will be managed by the buddy system.
5482 		 */
5483 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5484 #ifdef CONFIG_NUMA
5485 		zone->node = nid;
5486 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5487 						/ 100;
5488 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5489 #endif
5490 		zone->name = zone_names[j];
5491 		spin_lock_init(&zone->lock);
5492 		spin_lock_init(&zone->lru_lock);
5493 		zone_seqlock_init(zone);
5494 		zone->zone_pgdat = pgdat;
5495 		zone_pcp_init(zone);
5496 
5497 		/* For bootup, initialized properly in watermark setup */
5498 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5499 
5500 		lruvec_init(&zone->lruvec);
5501 		if (!size)
5502 			continue;
5503 
5504 		set_pageblock_order();
5505 		setup_usemap(pgdat, zone, zone_start_pfn, size);
5506 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5507 		BUG_ON(ret);
5508 		memmap_init(size, nid, j, zone_start_pfn);
5509 	}
5510 }
5511 
5512 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5513 {
5514 	unsigned long __maybe_unused start = 0;
5515 	unsigned long __maybe_unused offset = 0;
5516 
5517 	/* Skip empty nodes */
5518 	if (!pgdat->node_spanned_pages)
5519 		return;
5520 
5521 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5522 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5523 	offset = pgdat->node_start_pfn - start;
5524 	/* ia64 gets its own node_mem_map, before this, without bootmem */
5525 	if (!pgdat->node_mem_map) {
5526 		unsigned long size, end;
5527 		struct page *map;
5528 
5529 		/*
5530 		 * The zone's endpoints aren't required to be MAX_ORDER
5531 		 * aligned but the node_mem_map endpoints must be in order
5532 		 * for the buddy allocator to function correctly.
5533 		 */
5534 		end = pgdat_end_pfn(pgdat);
5535 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5536 		size =  (end - start) * sizeof(struct page);
5537 		map = alloc_remap(pgdat->node_id, size);
5538 		if (!map)
5539 			map = memblock_virt_alloc_node_nopanic(size,
5540 							       pgdat->node_id);
5541 		pgdat->node_mem_map = map + offset;
5542 	}
5543 #ifndef CONFIG_NEED_MULTIPLE_NODES
5544 	/*
5545 	 * With no DISCONTIG, the global mem_map is just set as node 0's
5546 	 */
5547 	if (pgdat == NODE_DATA(0)) {
5548 		mem_map = NODE_DATA(0)->node_mem_map;
5549 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5550 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5551 			mem_map -= offset;
5552 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5553 	}
5554 #endif
5555 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5556 }
5557 
5558 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5559 		unsigned long node_start_pfn, unsigned long *zholes_size)
5560 {
5561 	pg_data_t *pgdat = NODE_DATA(nid);
5562 	unsigned long start_pfn = 0;
5563 	unsigned long end_pfn = 0;
5564 
5565 	/* pg_data_t should be reset to zero when it's allocated */
5566 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5567 
5568 	reset_deferred_meminit(pgdat);
5569 	pgdat->node_id = nid;
5570 	pgdat->node_start_pfn = node_start_pfn;
5571 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5572 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5573 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5574 		(u64)start_pfn << PAGE_SHIFT,
5575 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5576 #else
5577 	start_pfn = node_start_pfn;
5578 #endif
5579 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5580 				  zones_size, zholes_size);
5581 
5582 	alloc_node_mem_map(pgdat);
5583 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5584 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5585 		nid, (unsigned long)pgdat,
5586 		(unsigned long)pgdat->node_mem_map);
5587 #endif
5588 
5589 	free_area_init_core(pgdat);
5590 }
5591 
5592 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5593 
5594 #if MAX_NUMNODES > 1
5595 /*
5596  * Figure out the number of possible node ids.
5597  */
5598 void __init setup_nr_node_ids(void)
5599 {
5600 	unsigned int highest;
5601 
5602 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5603 	nr_node_ids = highest + 1;
5604 }
5605 #endif
5606 
5607 /**
5608  * node_map_pfn_alignment - determine the maximum internode alignment
5609  *
5610  * This function should be called after node map is populated and sorted.
5611  * It calculates the maximum power of two alignment which can distinguish
5612  * all the nodes.
5613  *
5614  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5615  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5616  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5617  * shifted, 1GiB is enough and this function will indicate so.
5618  *
5619  * This is used to test whether pfn -> nid mapping of the chosen memory
5620  * model has fine enough granularity to avoid incorrect mapping for the
5621  * populated node map.
5622  *
5623  * Returns the determined alignment in pfn's.  0 if there is no alignment
5624  * requirement (single node).
5625  */
5626 unsigned long __init node_map_pfn_alignment(void)
5627 {
5628 	unsigned long accl_mask = 0, last_end = 0;
5629 	unsigned long start, end, mask;
5630 	int last_nid = -1;
5631 	int i, nid;
5632 
5633 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5634 		if (!start || last_nid < 0 || last_nid == nid) {
5635 			last_nid = nid;
5636 			last_end = end;
5637 			continue;
5638 		}
5639 
5640 		/*
5641 		 * Start with a mask granular enough to pin-point to the
5642 		 * start pfn and tick off bits one-by-one until it becomes
5643 		 * too coarse to separate the current node from the last.
5644 		 */
5645 		mask = ~((1 << __ffs(start)) - 1);
5646 		while (mask && last_end <= (start & (mask << 1)))
5647 			mask <<= 1;
5648 
5649 		/* accumulate all internode masks */
5650 		accl_mask |= mask;
5651 	}
5652 
5653 	/* convert mask to number of pages */
5654 	return ~accl_mask + 1;
5655 }
5656 
5657 /* Find the lowest pfn for a node */
5658 static unsigned long __init find_min_pfn_for_node(int nid)
5659 {
5660 	unsigned long min_pfn = ULONG_MAX;
5661 	unsigned long start_pfn;
5662 	int i;
5663 
5664 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5665 		min_pfn = min(min_pfn, start_pfn);
5666 
5667 	if (min_pfn == ULONG_MAX) {
5668 		pr_warn("Could not find start_pfn for node %d\n", nid);
5669 		return 0;
5670 	}
5671 
5672 	return min_pfn;
5673 }
5674 
5675 /**
5676  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5677  *
5678  * It returns the minimum PFN based on information provided via
5679  * memblock_set_node().
5680  */
5681 unsigned long __init find_min_pfn_with_active_regions(void)
5682 {
5683 	return find_min_pfn_for_node(MAX_NUMNODES);
5684 }
5685 
5686 /*
5687  * early_calculate_totalpages()
5688  * Sum pages in active regions for movable zone.
5689  * Populate N_MEMORY for calculating usable_nodes.
5690  */
5691 static unsigned long __init early_calculate_totalpages(void)
5692 {
5693 	unsigned long totalpages = 0;
5694 	unsigned long start_pfn, end_pfn;
5695 	int i, nid;
5696 
5697 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5698 		unsigned long pages = end_pfn - start_pfn;
5699 
5700 		totalpages += pages;
5701 		if (pages)
5702 			node_set_state(nid, N_MEMORY);
5703 	}
5704 	return totalpages;
5705 }
5706 
5707 /*
5708  * Find the PFN the Movable zone begins in each node. Kernel memory
5709  * is spread evenly between nodes as long as the nodes have enough
5710  * memory. When they don't, some nodes will have more kernelcore than
5711  * others
5712  */
5713 static void __init find_zone_movable_pfns_for_nodes(void)
5714 {
5715 	int i, nid;
5716 	unsigned long usable_startpfn;
5717 	unsigned long kernelcore_node, kernelcore_remaining;
5718 	/* save the state before borrow the nodemask */
5719 	nodemask_t saved_node_state = node_states[N_MEMORY];
5720 	unsigned long totalpages = early_calculate_totalpages();
5721 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5722 	struct memblock_region *r;
5723 
5724 	/* Need to find movable_zone earlier when movable_node is specified. */
5725 	find_usable_zone_for_movable();
5726 
5727 	/*
5728 	 * If movable_node is specified, ignore kernelcore and movablecore
5729 	 * options.
5730 	 */
5731 	if (movable_node_is_enabled()) {
5732 		for_each_memblock(memory, r) {
5733 			if (!memblock_is_hotpluggable(r))
5734 				continue;
5735 
5736 			nid = r->nid;
5737 
5738 			usable_startpfn = PFN_DOWN(r->base);
5739 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5740 				min(usable_startpfn, zone_movable_pfn[nid]) :
5741 				usable_startpfn;
5742 		}
5743 
5744 		goto out2;
5745 	}
5746 
5747 	/*
5748 	 * If kernelcore=mirror is specified, ignore movablecore option
5749 	 */
5750 	if (mirrored_kernelcore) {
5751 		bool mem_below_4gb_not_mirrored = false;
5752 
5753 		for_each_memblock(memory, r) {
5754 			if (memblock_is_mirror(r))
5755 				continue;
5756 
5757 			nid = r->nid;
5758 
5759 			usable_startpfn = memblock_region_memory_base_pfn(r);
5760 
5761 			if (usable_startpfn < 0x100000) {
5762 				mem_below_4gb_not_mirrored = true;
5763 				continue;
5764 			}
5765 
5766 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5767 				min(usable_startpfn, zone_movable_pfn[nid]) :
5768 				usable_startpfn;
5769 		}
5770 
5771 		if (mem_below_4gb_not_mirrored)
5772 			pr_warn("This configuration results in unmirrored kernel memory.");
5773 
5774 		goto out2;
5775 	}
5776 
5777 	/*
5778 	 * If movablecore=nn[KMG] was specified, calculate what size of
5779 	 * kernelcore that corresponds so that memory usable for
5780 	 * any allocation type is evenly spread. If both kernelcore
5781 	 * and movablecore are specified, then the value of kernelcore
5782 	 * will be used for required_kernelcore if it's greater than
5783 	 * what movablecore would have allowed.
5784 	 */
5785 	if (required_movablecore) {
5786 		unsigned long corepages;
5787 
5788 		/*
5789 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5790 		 * was requested by the user
5791 		 */
5792 		required_movablecore =
5793 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5794 		required_movablecore = min(totalpages, required_movablecore);
5795 		corepages = totalpages - required_movablecore;
5796 
5797 		required_kernelcore = max(required_kernelcore, corepages);
5798 	}
5799 
5800 	/*
5801 	 * If kernelcore was not specified or kernelcore size is larger
5802 	 * than totalpages, there is no ZONE_MOVABLE.
5803 	 */
5804 	if (!required_kernelcore || required_kernelcore >= totalpages)
5805 		goto out;
5806 
5807 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5808 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5809 
5810 restart:
5811 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5812 	kernelcore_node = required_kernelcore / usable_nodes;
5813 	for_each_node_state(nid, N_MEMORY) {
5814 		unsigned long start_pfn, end_pfn;
5815 
5816 		/*
5817 		 * Recalculate kernelcore_node if the division per node
5818 		 * now exceeds what is necessary to satisfy the requested
5819 		 * amount of memory for the kernel
5820 		 */
5821 		if (required_kernelcore < kernelcore_node)
5822 			kernelcore_node = required_kernelcore / usable_nodes;
5823 
5824 		/*
5825 		 * As the map is walked, we track how much memory is usable
5826 		 * by the kernel using kernelcore_remaining. When it is
5827 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5828 		 */
5829 		kernelcore_remaining = kernelcore_node;
5830 
5831 		/* Go through each range of PFNs within this node */
5832 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5833 			unsigned long size_pages;
5834 
5835 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5836 			if (start_pfn >= end_pfn)
5837 				continue;
5838 
5839 			/* Account for what is only usable for kernelcore */
5840 			if (start_pfn < usable_startpfn) {
5841 				unsigned long kernel_pages;
5842 				kernel_pages = min(end_pfn, usable_startpfn)
5843 								- start_pfn;
5844 
5845 				kernelcore_remaining -= min(kernel_pages,
5846 							kernelcore_remaining);
5847 				required_kernelcore -= min(kernel_pages,
5848 							required_kernelcore);
5849 
5850 				/* Continue if range is now fully accounted */
5851 				if (end_pfn <= usable_startpfn) {
5852 
5853 					/*
5854 					 * Push zone_movable_pfn to the end so
5855 					 * that if we have to rebalance
5856 					 * kernelcore across nodes, we will
5857 					 * not double account here
5858 					 */
5859 					zone_movable_pfn[nid] = end_pfn;
5860 					continue;
5861 				}
5862 				start_pfn = usable_startpfn;
5863 			}
5864 
5865 			/*
5866 			 * The usable PFN range for ZONE_MOVABLE is from
5867 			 * start_pfn->end_pfn. Calculate size_pages as the
5868 			 * number of pages used as kernelcore
5869 			 */
5870 			size_pages = end_pfn - start_pfn;
5871 			if (size_pages > kernelcore_remaining)
5872 				size_pages = kernelcore_remaining;
5873 			zone_movable_pfn[nid] = start_pfn + size_pages;
5874 
5875 			/*
5876 			 * Some kernelcore has been met, update counts and
5877 			 * break if the kernelcore for this node has been
5878 			 * satisfied
5879 			 */
5880 			required_kernelcore -= min(required_kernelcore,
5881 								size_pages);
5882 			kernelcore_remaining -= size_pages;
5883 			if (!kernelcore_remaining)
5884 				break;
5885 		}
5886 	}
5887 
5888 	/*
5889 	 * If there is still required_kernelcore, we do another pass with one
5890 	 * less node in the count. This will push zone_movable_pfn[nid] further
5891 	 * along on the nodes that still have memory until kernelcore is
5892 	 * satisfied
5893 	 */
5894 	usable_nodes--;
5895 	if (usable_nodes && required_kernelcore > usable_nodes)
5896 		goto restart;
5897 
5898 out2:
5899 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5900 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5901 		zone_movable_pfn[nid] =
5902 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5903 
5904 out:
5905 	/* restore the node_state */
5906 	node_states[N_MEMORY] = saved_node_state;
5907 }
5908 
5909 /* Any regular or high memory on that node ? */
5910 static void check_for_memory(pg_data_t *pgdat, int nid)
5911 {
5912 	enum zone_type zone_type;
5913 
5914 	if (N_MEMORY == N_NORMAL_MEMORY)
5915 		return;
5916 
5917 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5918 		struct zone *zone = &pgdat->node_zones[zone_type];
5919 		if (populated_zone(zone)) {
5920 			node_set_state(nid, N_HIGH_MEMORY);
5921 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5922 			    zone_type <= ZONE_NORMAL)
5923 				node_set_state(nid, N_NORMAL_MEMORY);
5924 			break;
5925 		}
5926 	}
5927 }
5928 
5929 /**
5930  * free_area_init_nodes - Initialise all pg_data_t and zone data
5931  * @max_zone_pfn: an array of max PFNs for each zone
5932  *
5933  * This will call free_area_init_node() for each active node in the system.
5934  * Using the page ranges provided by memblock_set_node(), the size of each
5935  * zone in each node and their holes is calculated. If the maximum PFN
5936  * between two adjacent zones match, it is assumed that the zone is empty.
5937  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5938  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5939  * starts where the previous one ended. For example, ZONE_DMA32 starts
5940  * at arch_max_dma_pfn.
5941  */
5942 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5943 {
5944 	unsigned long start_pfn, end_pfn;
5945 	int i, nid;
5946 
5947 	/* Record where the zone boundaries are */
5948 	memset(arch_zone_lowest_possible_pfn, 0,
5949 				sizeof(arch_zone_lowest_possible_pfn));
5950 	memset(arch_zone_highest_possible_pfn, 0,
5951 				sizeof(arch_zone_highest_possible_pfn));
5952 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5953 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5954 	for (i = 1; i < MAX_NR_ZONES; i++) {
5955 		if (i == ZONE_MOVABLE)
5956 			continue;
5957 		arch_zone_lowest_possible_pfn[i] =
5958 			arch_zone_highest_possible_pfn[i-1];
5959 		arch_zone_highest_possible_pfn[i] =
5960 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5961 	}
5962 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5963 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5964 
5965 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5966 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5967 	find_zone_movable_pfns_for_nodes();
5968 
5969 	/* Print out the zone ranges */
5970 	pr_info("Zone ranges:\n");
5971 	for (i = 0; i < MAX_NR_ZONES; i++) {
5972 		if (i == ZONE_MOVABLE)
5973 			continue;
5974 		pr_info("  %-8s ", zone_names[i]);
5975 		if (arch_zone_lowest_possible_pfn[i] ==
5976 				arch_zone_highest_possible_pfn[i])
5977 			pr_cont("empty\n");
5978 		else
5979 			pr_cont("[mem %#018Lx-%#018Lx]\n",
5980 				(u64)arch_zone_lowest_possible_pfn[i]
5981 					<< PAGE_SHIFT,
5982 				((u64)arch_zone_highest_possible_pfn[i]
5983 					<< PAGE_SHIFT) - 1);
5984 	}
5985 
5986 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5987 	pr_info("Movable zone start for each node\n");
5988 	for (i = 0; i < MAX_NUMNODES; i++) {
5989 		if (zone_movable_pfn[i])
5990 			pr_info("  Node %d: %#018Lx\n", i,
5991 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5992 	}
5993 
5994 	/* Print out the early node map */
5995 	pr_info("Early memory node ranges\n");
5996 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5997 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5998 			(u64)start_pfn << PAGE_SHIFT,
5999 			((u64)end_pfn << PAGE_SHIFT) - 1);
6000 
6001 	/* Initialise every node */
6002 	mminit_verify_pageflags_layout();
6003 	setup_nr_node_ids();
6004 	for_each_online_node(nid) {
6005 		pg_data_t *pgdat = NODE_DATA(nid);
6006 		free_area_init_node(nid, NULL,
6007 				find_min_pfn_for_node(nid), NULL);
6008 
6009 		/* Any memory on that node */
6010 		if (pgdat->node_present_pages)
6011 			node_set_state(nid, N_MEMORY);
6012 		check_for_memory(pgdat, nid);
6013 	}
6014 }
6015 
6016 static int __init cmdline_parse_core(char *p, unsigned long *core)
6017 {
6018 	unsigned long long coremem;
6019 	if (!p)
6020 		return -EINVAL;
6021 
6022 	coremem = memparse(p, &p);
6023 	*core = coremem >> PAGE_SHIFT;
6024 
6025 	/* Paranoid check that UL is enough for the coremem value */
6026 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6027 
6028 	return 0;
6029 }
6030 
6031 /*
6032  * kernelcore=size sets the amount of memory for use for allocations that
6033  * cannot be reclaimed or migrated.
6034  */
6035 static int __init cmdline_parse_kernelcore(char *p)
6036 {
6037 	/* parse kernelcore=mirror */
6038 	if (parse_option_str(p, "mirror")) {
6039 		mirrored_kernelcore = true;
6040 		return 0;
6041 	}
6042 
6043 	return cmdline_parse_core(p, &required_kernelcore);
6044 }
6045 
6046 /*
6047  * movablecore=size sets the amount of memory for use for allocations that
6048  * can be reclaimed or migrated.
6049  */
6050 static int __init cmdline_parse_movablecore(char *p)
6051 {
6052 	return cmdline_parse_core(p, &required_movablecore);
6053 }
6054 
6055 early_param("kernelcore", cmdline_parse_kernelcore);
6056 early_param("movablecore", cmdline_parse_movablecore);
6057 
6058 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6059 
6060 void adjust_managed_page_count(struct page *page, long count)
6061 {
6062 	spin_lock(&managed_page_count_lock);
6063 	page_zone(page)->managed_pages += count;
6064 	totalram_pages += count;
6065 #ifdef CONFIG_HIGHMEM
6066 	if (PageHighMem(page))
6067 		totalhigh_pages += count;
6068 #endif
6069 	spin_unlock(&managed_page_count_lock);
6070 }
6071 EXPORT_SYMBOL(adjust_managed_page_count);
6072 
6073 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6074 {
6075 	void *pos;
6076 	unsigned long pages = 0;
6077 
6078 	start = (void *)PAGE_ALIGN((unsigned long)start);
6079 	end = (void *)((unsigned long)end & PAGE_MASK);
6080 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6081 		if ((unsigned int)poison <= 0xFF)
6082 			memset(pos, poison, PAGE_SIZE);
6083 		free_reserved_page(virt_to_page(pos));
6084 	}
6085 
6086 	if (pages && s)
6087 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6088 			s, pages << (PAGE_SHIFT - 10), start, end);
6089 
6090 	return pages;
6091 }
6092 EXPORT_SYMBOL(free_reserved_area);
6093 
6094 #ifdef	CONFIG_HIGHMEM
6095 void free_highmem_page(struct page *page)
6096 {
6097 	__free_reserved_page(page);
6098 	totalram_pages++;
6099 	page_zone(page)->managed_pages++;
6100 	totalhigh_pages++;
6101 }
6102 #endif
6103 
6104 
6105 void __init mem_init_print_info(const char *str)
6106 {
6107 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6108 	unsigned long init_code_size, init_data_size;
6109 
6110 	physpages = get_num_physpages();
6111 	codesize = _etext - _stext;
6112 	datasize = _edata - _sdata;
6113 	rosize = __end_rodata - __start_rodata;
6114 	bss_size = __bss_stop - __bss_start;
6115 	init_data_size = __init_end - __init_begin;
6116 	init_code_size = _einittext - _sinittext;
6117 
6118 	/*
6119 	 * Detect special cases and adjust section sizes accordingly:
6120 	 * 1) .init.* may be embedded into .data sections
6121 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6122 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6123 	 * 3) .rodata.* may be embedded into .text or .data sections.
6124 	 */
6125 #define adj_init_size(start, end, size, pos, adj) \
6126 	do { \
6127 		if (start <= pos && pos < end && size > adj) \
6128 			size -= adj; \
6129 	} while (0)
6130 
6131 	adj_init_size(__init_begin, __init_end, init_data_size,
6132 		     _sinittext, init_code_size);
6133 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6134 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6135 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6136 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6137 
6138 #undef	adj_init_size
6139 
6140 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6141 #ifdef	CONFIG_HIGHMEM
6142 		", %luK highmem"
6143 #endif
6144 		"%s%s)\n",
6145 		nr_free_pages() << (PAGE_SHIFT - 10),
6146 		physpages << (PAGE_SHIFT - 10),
6147 		codesize >> 10, datasize >> 10, rosize >> 10,
6148 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6149 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6150 		totalcma_pages << (PAGE_SHIFT - 10),
6151 #ifdef	CONFIG_HIGHMEM
6152 		totalhigh_pages << (PAGE_SHIFT - 10),
6153 #endif
6154 		str ? ", " : "", str ? str : "");
6155 }
6156 
6157 /**
6158  * set_dma_reserve - set the specified number of pages reserved in the first zone
6159  * @new_dma_reserve: The number of pages to mark reserved
6160  *
6161  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6162  * In the DMA zone, a significant percentage may be consumed by kernel image
6163  * and other unfreeable allocations which can skew the watermarks badly. This
6164  * function may optionally be used to account for unfreeable pages in the
6165  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6166  * smaller per-cpu batchsize.
6167  */
6168 void __init set_dma_reserve(unsigned long new_dma_reserve)
6169 {
6170 	dma_reserve = new_dma_reserve;
6171 }
6172 
6173 void __init free_area_init(unsigned long *zones_size)
6174 {
6175 	free_area_init_node(0, zones_size,
6176 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6177 }
6178 
6179 static int page_alloc_cpu_notify(struct notifier_block *self,
6180 				 unsigned long action, void *hcpu)
6181 {
6182 	int cpu = (unsigned long)hcpu;
6183 
6184 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6185 		lru_add_drain_cpu(cpu);
6186 		drain_pages(cpu);
6187 
6188 		/*
6189 		 * Spill the event counters of the dead processor
6190 		 * into the current processors event counters.
6191 		 * This artificially elevates the count of the current
6192 		 * processor.
6193 		 */
6194 		vm_events_fold_cpu(cpu);
6195 
6196 		/*
6197 		 * Zero the differential counters of the dead processor
6198 		 * so that the vm statistics are consistent.
6199 		 *
6200 		 * This is only okay since the processor is dead and cannot
6201 		 * race with what we are doing.
6202 		 */
6203 		cpu_vm_stats_fold(cpu);
6204 	}
6205 	return NOTIFY_OK;
6206 }
6207 
6208 void __init page_alloc_init(void)
6209 {
6210 	hotcpu_notifier(page_alloc_cpu_notify, 0);
6211 }
6212 
6213 /*
6214  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6215  *	or min_free_kbytes changes.
6216  */
6217 static void calculate_totalreserve_pages(void)
6218 {
6219 	struct pglist_data *pgdat;
6220 	unsigned long reserve_pages = 0;
6221 	enum zone_type i, j;
6222 
6223 	for_each_online_pgdat(pgdat) {
6224 		for (i = 0; i < MAX_NR_ZONES; i++) {
6225 			struct zone *zone = pgdat->node_zones + i;
6226 			long max = 0;
6227 
6228 			/* Find valid and maximum lowmem_reserve in the zone */
6229 			for (j = i; j < MAX_NR_ZONES; j++) {
6230 				if (zone->lowmem_reserve[j] > max)
6231 					max = zone->lowmem_reserve[j];
6232 			}
6233 
6234 			/* we treat the high watermark as reserved pages. */
6235 			max += high_wmark_pages(zone);
6236 
6237 			if (max > zone->managed_pages)
6238 				max = zone->managed_pages;
6239 
6240 			zone->totalreserve_pages = max;
6241 
6242 			reserve_pages += max;
6243 		}
6244 	}
6245 	totalreserve_pages = reserve_pages;
6246 }
6247 
6248 /*
6249  * setup_per_zone_lowmem_reserve - called whenever
6250  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6251  *	has a correct pages reserved value, so an adequate number of
6252  *	pages are left in the zone after a successful __alloc_pages().
6253  */
6254 static void setup_per_zone_lowmem_reserve(void)
6255 {
6256 	struct pglist_data *pgdat;
6257 	enum zone_type j, idx;
6258 
6259 	for_each_online_pgdat(pgdat) {
6260 		for (j = 0; j < MAX_NR_ZONES; j++) {
6261 			struct zone *zone = pgdat->node_zones + j;
6262 			unsigned long managed_pages = zone->managed_pages;
6263 
6264 			zone->lowmem_reserve[j] = 0;
6265 
6266 			idx = j;
6267 			while (idx) {
6268 				struct zone *lower_zone;
6269 
6270 				idx--;
6271 
6272 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6273 					sysctl_lowmem_reserve_ratio[idx] = 1;
6274 
6275 				lower_zone = pgdat->node_zones + idx;
6276 				lower_zone->lowmem_reserve[j] = managed_pages /
6277 					sysctl_lowmem_reserve_ratio[idx];
6278 				managed_pages += lower_zone->managed_pages;
6279 			}
6280 		}
6281 	}
6282 
6283 	/* update totalreserve_pages */
6284 	calculate_totalreserve_pages();
6285 }
6286 
6287 static void __setup_per_zone_wmarks(void)
6288 {
6289 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6290 	unsigned long lowmem_pages = 0;
6291 	struct zone *zone;
6292 	unsigned long flags;
6293 
6294 	/* Calculate total number of !ZONE_HIGHMEM pages */
6295 	for_each_zone(zone) {
6296 		if (!is_highmem(zone))
6297 			lowmem_pages += zone->managed_pages;
6298 	}
6299 
6300 	for_each_zone(zone) {
6301 		u64 tmp;
6302 
6303 		spin_lock_irqsave(&zone->lock, flags);
6304 		tmp = (u64)pages_min * zone->managed_pages;
6305 		do_div(tmp, lowmem_pages);
6306 		if (is_highmem(zone)) {
6307 			/*
6308 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6309 			 * need highmem pages, so cap pages_min to a small
6310 			 * value here.
6311 			 *
6312 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6313 			 * deltas control asynch page reclaim, and so should
6314 			 * not be capped for highmem.
6315 			 */
6316 			unsigned long min_pages;
6317 
6318 			min_pages = zone->managed_pages / 1024;
6319 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6320 			zone->watermark[WMARK_MIN] = min_pages;
6321 		} else {
6322 			/*
6323 			 * If it's a lowmem zone, reserve a number of pages
6324 			 * proportionate to the zone's size.
6325 			 */
6326 			zone->watermark[WMARK_MIN] = tmp;
6327 		}
6328 
6329 		/*
6330 		 * Set the kswapd watermarks distance according to the
6331 		 * scale factor in proportion to available memory, but
6332 		 * ensure a minimum size on small systems.
6333 		 */
6334 		tmp = max_t(u64, tmp >> 2,
6335 			    mult_frac(zone->managed_pages,
6336 				      watermark_scale_factor, 10000));
6337 
6338 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6339 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6340 
6341 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
6342 			high_wmark_pages(zone) - low_wmark_pages(zone) -
6343 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6344 
6345 		spin_unlock_irqrestore(&zone->lock, flags);
6346 	}
6347 
6348 	/* update totalreserve_pages */
6349 	calculate_totalreserve_pages();
6350 }
6351 
6352 /**
6353  * setup_per_zone_wmarks - called when min_free_kbytes changes
6354  * or when memory is hot-{added|removed}
6355  *
6356  * Ensures that the watermark[min,low,high] values for each zone are set
6357  * correctly with respect to min_free_kbytes.
6358  */
6359 void setup_per_zone_wmarks(void)
6360 {
6361 	mutex_lock(&zonelists_mutex);
6362 	__setup_per_zone_wmarks();
6363 	mutex_unlock(&zonelists_mutex);
6364 }
6365 
6366 /*
6367  * The inactive anon list should be small enough that the VM never has to
6368  * do too much work, but large enough that each inactive page has a chance
6369  * to be referenced again before it is swapped out.
6370  *
6371  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6372  * INACTIVE_ANON pages on this zone's LRU, maintained by the
6373  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6374  * the anonymous pages are kept on the inactive list.
6375  *
6376  * total     target    max
6377  * memory    ratio     inactive anon
6378  * -------------------------------------
6379  *   10MB       1         5MB
6380  *  100MB       1        50MB
6381  *    1GB       3       250MB
6382  *   10GB      10       0.9GB
6383  *  100GB      31         3GB
6384  *    1TB     101        10GB
6385  *   10TB     320        32GB
6386  */
6387 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6388 {
6389 	unsigned int gb, ratio;
6390 
6391 	/* Zone size in gigabytes */
6392 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6393 	if (gb)
6394 		ratio = int_sqrt(10 * gb);
6395 	else
6396 		ratio = 1;
6397 
6398 	zone->inactive_ratio = ratio;
6399 }
6400 
6401 static void __meminit setup_per_zone_inactive_ratio(void)
6402 {
6403 	struct zone *zone;
6404 
6405 	for_each_zone(zone)
6406 		calculate_zone_inactive_ratio(zone);
6407 }
6408 
6409 /*
6410  * Initialise min_free_kbytes.
6411  *
6412  * For small machines we want it small (128k min).  For large machines
6413  * we want it large (64MB max).  But it is not linear, because network
6414  * bandwidth does not increase linearly with machine size.  We use
6415  *
6416  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6417  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6418  *
6419  * which yields
6420  *
6421  * 16MB:	512k
6422  * 32MB:	724k
6423  * 64MB:	1024k
6424  * 128MB:	1448k
6425  * 256MB:	2048k
6426  * 512MB:	2896k
6427  * 1024MB:	4096k
6428  * 2048MB:	5792k
6429  * 4096MB:	8192k
6430  * 8192MB:	11584k
6431  * 16384MB:	16384k
6432  */
6433 int __meminit init_per_zone_wmark_min(void)
6434 {
6435 	unsigned long lowmem_kbytes;
6436 	int new_min_free_kbytes;
6437 
6438 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6439 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6440 
6441 	if (new_min_free_kbytes > user_min_free_kbytes) {
6442 		min_free_kbytes = new_min_free_kbytes;
6443 		if (min_free_kbytes < 128)
6444 			min_free_kbytes = 128;
6445 		if (min_free_kbytes > 65536)
6446 			min_free_kbytes = 65536;
6447 	} else {
6448 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6449 				new_min_free_kbytes, user_min_free_kbytes);
6450 	}
6451 	setup_per_zone_wmarks();
6452 	refresh_zone_stat_thresholds();
6453 	setup_per_zone_lowmem_reserve();
6454 	setup_per_zone_inactive_ratio();
6455 	return 0;
6456 }
6457 module_init(init_per_zone_wmark_min)
6458 
6459 /*
6460  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6461  *	that we can call two helper functions whenever min_free_kbytes
6462  *	changes.
6463  */
6464 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6465 	void __user *buffer, size_t *length, loff_t *ppos)
6466 {
6467 	int rc;
6468 
6469 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6470 	if (rc)
6471 		return rc;
6472 
6473 	if (write) {
6474 		user_min_free_kbytes = min_free_kbytes;
6475 		setup_per_zone_wmarks();
6476 	}
6477 	return 0;
6478 }
6479 
6480 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6481 	void __user *buffer, size_t *length, loff_t *ppos)
6482 {
6483 	int rc;
6484 
6485 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6486 	if (rc)
6487 		return rc;
6488 
6489 	if (write)
6490 		setup_per_zone_wmarks();
6491 
6492 	return 0;
6493 }
6494 
6495 #ifdef CONFIG_NUMA
6496 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6497 	void __user *buffer, size_t *length, loff_t *ppos)
6498 {
6499 	struct zone *zone;
6500 	int rc;
6501 
6502 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6503 	if (rc)
6504 		return rc;
6505 
6506 	for_each_zone(zone)
6507 		zone->min_unmapped_pages = (zone->managed_pages *
6508 				sysctl_min_unmapped_ratio) / 100;
6509 	return 0;
6510 }
6511 
6512 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6513 	void __user *buffer, size_t *length, loff_t *ppos)
6514 {
6515 	struct zone *zone;
6516 	int rc;
6517 
6518 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6519 	if (rc)
6520 		return rc;
6521 
6522 	for_each_zone(zone)
6523 		zone->min_slab_pages = (zone->managed_pages *
6524 				sysctl_min_slab_ratio) / 100;
6525 	return 0;
6526 }
6527 #endif
6528 
6529 /*
6530  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6531  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6532  *	whenever sysctl_lowmem_reserve_ratio changes.
6533  *
6534  * The reserve ratio obviously has absolutely no relation with the
6535  * minimum watermarks. The lowmem reserve ratio can only make sense
6536  * if in function of the boot time zone sizes.
6537  */
6538 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6539 	void __user *buffer, size_t *length, loff_t *ppos)
6540 {
6541 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6542 	setup_per_zone_lowmem_reserve();
6543 	return 0;
6544 }
6545 
6546 /*
6547  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6548  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
6549  * pagelist can have before it gets flushed back to buddy allocator.
6550  */
6551 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6552 	void __user *buffer, size_t *length, loff_t *ppos)
6553 {
6554 	struct zone *zone;
6555 	int old_percpu_pagelist_fraction;
6556 	int ret;
6557 
6558 	mutex_lock(&pcp_batch_high_lock);
6559 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6560 
6561 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6562 	if (!write || ret < 0)
6563 		goto out;
6564 
6565 	/* Sanity checking to avoid pcp imbalance */
6566 	if (percpu_pagelist_fraction &&
6567 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6568 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6569 		ret = -EINVAL;
6570 		goto out;
6571 	}
6572 
6573 	/* No change? */
6574 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6575 		goto out;
6576 
6577 	for_each_populated_zone(zone) {
6578 		unsigned int cpu;
6579 
6580 		for_each_possible_cpu(cpu)
6581 			pageset_set_high_and_batch(zone,
6582 					per_cpu_ptr(zone->pageset, cpu));
6583 	}
6584 out:
6585 	mutex_unlock(&pcp_batch_high_lock);
6586 	return ret;
6587 }
6588 
6589 #ifdef CONFIG_NUMA
6590 int hashdist = HASHDIST_DEFAULT;
6591 
6592 static int __init set_hashdist(char *str)
6593 {
6594 	if (!str)
6595 		return 0;
6596 	hashdist = simple_strtoul(str, &str, 0);
6597 	return 1;
6598 }
6599 __setup("hashdist=", set_hashdist);
6600 #endif
6601 
6602 /*
6603  * allocate a large system hash table from bootmem
6604  * - it is assumed that the hash table must contain an exact power-of-2
6605  *   quantity of entries
6606  * - limit is the number of hash buckets, not the total allocation size
6607  */
6608 void *__init alloc_large_system_hash(const char *tablename,
6609 				     unsigned long bucketsize,
6610 				     unsigned long numentries,
6611 				     int scale,
6612 				     int flags,
6613 				     unsigned int *_hash_shift,
6614 				     unsigned int *_hash_mask,
6615 				     unsigned long low_limit,
6616 				     unsigned long high_limit)
6617 {
6618 	unsigned long long max = high_limit;
6619 	unsigned long log2qty, size;
6620 	void *table = NULL;
6621 
6622 	/* allow the kernel cmdline to have a say */
6623 	if (!numentries) {
6624 		/* round applicable memory size up to nearest megabyte */
6625 		numentries = nr_kernel_pages;
6626 
6627 		/* It isn't necessary when PAGE_SIZE >= 1MB */
6628 		if (PAGE_SHIFT < 20)
6629 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6630 
6631 		/* limit to 1 bucket per 2^scale bytes of low memory */
6632 		if (scale > PAGE_SHIFT)
6633 			numentries >>= (scale - PAGE_SHIFT);
6634 		else
6635 			numentries <<= (PAGE_SHIFT - scale);
6636 
6637 		/* Make sure we've got at least a 0-order allocation.. */
6638 		if (unlikely(flags & HASH_SMALL)) {
6639 			/* Makes no sense without HASH_EARLY */
6640 			WARN_ON(!(flags & HASH_EARLY));
6641 			if (!(numentries >> *_hash_shift)) {
6642 				numentries = 1UL << *_hash_shift;
6643 				BUG_ON(!numentries);
6644 			}
6645 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6646 			numentries = PAGE_SIZE / bucketsize;
6647 	}
6648 	numentries = roundup_pow_of_two(numentries);
6649 
6650 	/* limit allocation size to 1/16 total memory by default */
6651 	if (max == 0) {
6652 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6653 		do_div(max, bucketsize);
6654 	}
6655 	max = min(max, 0x80000000ULL);
6656 
6657 	if (numentries < low_limit)
6658 		numentries = low_limit;
6659 	if (numentries > max)
6660 		numentries = max;
6661 
6662 	log2qty = ilog2(numentries);
6663 
6664 	do {
6665 		size = bucketsize << log2qty;
6666 		if (flags & HASH_EARLY)
6667 			table = memblock_virt_alloc_nopanic(size, 0);
6668 		else if (hashdist)
6669 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6670 		else {
6671 			/*
6672 			 * If bucketsize is not a power-of-two, we may free
6673 			 * some pages at the end of hash table which
6674 			 * alloc_pages_exact() automatically does
6675 			 */
6676 			if (get_order(size) < MAX_ORDER) {
6677 				table = alloc_pages_exact(size, GFP_ATOMIC);
6678 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6679 			}
6680 		}
6681 	} while (!table && size > PAGE_SIZE && --log2qty);
6682 
6683 	if (!table)
6684 		panic("Failed to allocate %s hash table\n", tablename);
6685 
6686 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6687 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
6688 
6689 	if (_hash_shift)
6690 		*_hash_shift = log2qty;
6691 	if (_hash_mask)
6692 		*_hash_mask = (1 << log2qty) - 1;
6693 
6694 	return table;
6695 }
6696 
6697 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6698 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6699 							unsigned long pfn)
6700 {
6701 #ifdef CONFIG_SPARSEMEM
6702 	return __pfn_to_section(pfn)->pageblock_flags;
6703 #else
6704 	return zone->pageblock_flags;
6705 #endif /* CONFIG_SPARSEMEM */
6706 }
6707 
6708 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6709 {
6710 #ifdef CONFIG_SPARSEMEM
6711 	pfn &= (PAGES_PER_SECTION-1);
6712 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6713 #else
6714 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6715 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6716 #endif /* CONFIG_SPARSEMEM */
6717 }
6718 
6719 /**
6720  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6721  * @page: The page within the block of interest
6722  * @pfn: The target page frame number
6723  * @end_bitidx: The last bit of interest to retrieve
6724  * @mask: mask of bits that the caller is interested in
6725  *
6726  * Return: pageblock_bits flags
6727  */
6728 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6729 					unsigned long end_bitidx,
6730 					unsigned long mask)
6731 {
6732 	struct zone *zone;
6733 	unsigned long *bitmap;
6734 	unsigned long bitidx, word_bitidx;
6735 	unsigned long word;
6736 
6737 	zone = page_zone(page);
6738 	bitmap = get_pageblock_bitmap(zone, pfn);
6739 	bitidx = pfn_to_bitidx(zone, pfn);
6740 	word_bitidx = bitidx / BITS_PER_LONG;
6741 	bitidx &= (BITS_PER_LONG-1);
6742 
6743 	word = bitmap[word_bitidx];
6744 	bitidx += end_bitidx;
6745 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6746 }
6747 
6748 /**
6749  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6750  * @page: The page within the block of interest
6751  * @flags: The flags to set
6752  * @pfn: The target page frame number
6753  * @end_bitidx: The last bit of interest
6754  * @mask: mask of bits that the caller is interested in
6755  */
6756 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6757 					unsigned long pfn,
6758 					unsigned long end_bitidx,
6759 					unsigned long mask)
6760 {
6761 	struct zone *zone;
6762 	unsigned long *bitmap;
6763 	unsigned long bitidx, word_bitidx;
6764 	unsigned long old_word, word;
6765 
6766 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6767 
6768 	zone = page_zone(page);
6769 	bitmap = get_pageblock_bitmap(zone, pfn);
6770 	bitidx = pfn_to_bitidx(zone, pfn);
6771 	word_bitidx = bitidx / BITS_PER_LONG;
6772 	bitidx &= (BITS_PER_LONG-1);
6773 
6774 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6775 
6776 	bitidx += end_bitidx;
6777 	mask <<= (BITS_PER_LONG - bitidx - 1);
6778 	flags <<= (BITS_PER_LONG - bitidx - 1);
6779 
6780 	word = READ_ONCE(bitmap[word_bitidx]);
6781 	for (;;) {
6782 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6783 		if (word == old_word)
6784 			break;
6785 		word = old_word;
6786 	}
6787 }
6788 
6789 /*
6790  * This function checks whether pageblock includes unmovable pages or not.
6791  * If @count is not zero, it is okay to include less @count unmovable pages
6792  *
6793  * PageLRU check without isolation or lru_lock could race so that
6794  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6795  * expect this function should be exact.
6796  */
6797 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6798 			 bool skip_hwpoisoned_pages)
6799 {
6800 	unsigned long pfn, iter, found;
6801 	int mt;
6802 
6803 	/*
6804 	 * For avoiding noise data, lru_add_drain_all() should be called
6805 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6806 	 */
6807 	if (zone_idx(zone) == ZONE_MOVABLE)
6808 		return false;
6809 	mt = get_pageblock_migratetype(page);
6810 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6811 		return false;
6812 
6813 	pfn = page_to_pfn(page);
6814 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6815 		unsigned long check = pfn + iter;
6816 
6817 		if (!pfn_valid_within(check))
6818 			continue;
6819 
6820 		page = pfn_to_page(check);
6821 
6822 		/*
6823 		 * Hugepages are not in LRU lists, but they're movable.
6824 		 * We need not scan over tail pages bacause we don't
6825 		 * handle each tail page individually in migration.
6826 		 */
6827 		if (PageHuge(page)) {
6828 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6829 			continue;
6830 		}
6831 
6832 		/*
6833 		 * We can't use page_count without pin a page
6834 		 * because another CPU can free compound page.
6835 		 * This check already skips compound tails of THP
6836 		 * because their page->_count is zero at all time.
6837 		 */
6838 		if (!page_ref_count(page)) {
6839 			if (PageBuddy(page))
6840 				iter += (1 << page_order(page)) - 1;
6841 			continue;
6842 		}
6843 
6844 		/*
6845 		 * The HWPoisoned page may be not in buddy system, and
6846 		 * page_count() is not 0.
6847 		 */
6848 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6849 			continue;
6850 
6851 		if (!PageLRU(page))
6852 			found++;
6853 		/*
6854 		 * If there are RECLAIMABLE pages, we need to check
6855 		 * it.  But now, memory offline itself doesn't call
6856 		 * shrink_node_slabs() and it still to be fixed.
6857 		 */
6858 		/*
6859 		 * If the page is not RAM, page_count()should be 0.
6860 		 * we don't need more check. This is an _used_ not-movable page.
6861 		 *
6862 		 * The problematic thing here is PG_reserved pages. PG_reserved
6863 		 * is set to both of a memory hole page and a _used_ kernel
6864 		 * page at boot.
6865 		 */
6866 		if (found > count)
6867 			return true;
6868 	}
6869 	return false;
6870 }
6871 
6872 bool is_pageblock_removable_nolock(struct page *page)
6873 {
6874 	struct zone *zone;
6875 	unsigned long pfn;
6876 
6877 	/*
6878 	 * We have to be careful here because we are iterating over memory
6879 	 * sections which are not zone aware so we might end up outside of
6880 	 * the zone but still within the section.
6881 	 * We have to take care about the node as well. If the node is offline
6882 	 * its NODE_DATA will be NULL - see page_zone.
6883 	 */
6884 	if (!node_online(page_to_nid(page)))
6885 		return false;
6886 
6887 	zone = page_zone(page);
6888 	pfn = page_to_pfn(page);
6889 	if (!zone_spans_pfn(zone, pfn))
6890 		return false;
6891 
6892 	return !has_unmovable_pages(zone, page, 0, true);
6893 }
6894 
6895 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
6896 
6897 static unsigned long pfn_max_align_down(unsigned long pfn)
6898 {
6899 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6900 			     pageblock_nr_pages) - 1);
6901 }
6902 
6903 static unsigned long pfn_max_align_up(unsigned long pfn)
6904 {
6905 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6906 				pageblock_nr_pages));
6907 }
6908 
6909 /* [start, end) must belong to a single zone. */
6910 static int __alloc_contig_migrate_range(struct compact_control *cc,
6911 					unsigned long start, unsigned long end)
6912 {
6913 	/* This function is based on compact_zone() from compaction.c. */
6914 	unsigned long nr_reclaimed;
6915 	unsigned long pfn = start;
6916 	unsigned int tries = 0;
6917 	int ret = 0;
6918 
6919 	migrate_prep();
6920 
6921 	while (pfn < end || !list_empty(&cc->migratepages)) {
6922 		if (fatal_signal_pending(current)) {
6923 			ret = -EINTR;
6924 			break;
6925 		}
6926 
6927 		if (list_empty(&cc->migratepages)) {
6928 			cc->nr_migratepages = 0;
6929 			pfn = isolate_migratepages_range(cc, pfn, end);
6930 			if (!pfn) {
6931 				ret = -EINTR;
6932 				break;
6933 			}
6934 			tries = 0;
6935 		} else if (++tries == 5) {
6936 			ret = ret < 0 ? ret : -EBUSY;
6937 			break;
6938 		}
6939 
6940 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6941 							&cc->migratepages);
6942 		cc->nr_migratepages -= nr_reclaimed;
6943 
6944 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6945 				    NULL, 0, cc->mode, MR_CMA);
6946 	}
6947 	if (ret < 0) {
6948 		putback_movable_pages(&cc->migratepages);
6949 		return ret;
6950 	}
6951 	return 0;
6952 }
6953 
6954 /**
6955  * alloc_contig_range() -- tries to allocate given range of pages
6956  * @start:	start PFN to allocate
6957  * @end:	one-past-the-last PFN to allocate
6958  * @migratetype:	migratetype of the underlaying pageblocks (either
6959  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6960  *			in range must have the same migratetype and it must
6961  *			be either of the two.
6962  *
6963  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6964  * aligned, however it's the caller's responsibility to guarantee that
6965  * we are the only thread that changes migrate type of pageblocks the
6966  * pages fall in.
6967  *
6968  * The PFN range must belong to a single zone.
6969  *
6970  * Returns zero on success or negative error code.  On success all
6971  * pages which PFN is in [start, end) are allocated for the caller and
6972  * need to be freed with free_contig_range().
6973  */
6974 int alloc_contig_range(unsigned long start, unsigned long end,
6975 		       unsigned migratetype)
6976 {
6977 	unsigned long outer_start, outer_end;
6978 	unsigned int order;
6979 	int ret = 0;
6980 
6981 	struct compact_control cc = {
6982 		.nr_migratepages = 0,
6983 		.order = -1,
6984 		.zone = page_zone(pfn_to_page(start)),
6985 		.mode = MIGRATE_SYNC,
6986 		.ignore_skip_hint = true,
6987 	};
6988 	INIT_LIST_HEAD(&cc.migratepages);
6989 
6990 	/*
6991 	 * What we do here is we mark all pageblocks in range as
6992 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6993 	 * have different sizes, and due to the way page allocator
6994 	 * work, we align the range to biggest of the two pages so
6995 	 * that page allocator won't try to merge buddies from
6996 	 * different pageblocks and change MIGRATE_ISOLATE to some
6997 	 * other migration type.
6998 	 *
6999 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7000 	 * migrate the pages from an unaligned range (ie. pages that
7001 	 * we are interested in).  This will put all the pages in
7002 	 * range back to page allocator as MIGRATE_ISOLATE.
7003 	 *
7004 	 * When this is done, we take the pages in range from page
7005 	 * allocator removing them from the buddy system.  This way
7006 	 * page allocator will never consider using them.
7007 	 *
7008 	 * This lets us mark the pageblocks back as
7009 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7010 	 * aligned range but not in the unaligned, original range are
7011 	 * put back to page allocator so that buddy can use them.
7012 	 */
7013 
7014 	ret = start_isolate_page_range(pfn_max_align_down(start),
7015 				       pfn_max_align_up(end), migratetype,
7016 				       false);
7017 	if (ret)
7018 		return ret;
7019 
7020 	/*
7021 	 * In case of -EBUSY, we'd like to know which page causes problem.
7022 	 * So, just fall through. We will check it in test_pages_isolated().
7023 	 */
7024 	ret = __alloc_contig_migrate_range(&cc, start, end);
7025 	if (ret && ret != -EBUSY)
7026 		goto done;
7027 
7028 	/*
7029 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7030 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7031 	 * more, all pages in [start, end) are free in page allocator.
7032 	 * What we are going to do is to allocate all pages from
7033 	 * [start, end) (that is remove them from page allocator).
7034 	 *
7035 	 * The only problem is that pages at the beginning and at the
7036 	 * end of interesting range may be not aligned with pages that
7037 	 * page allocator holds, ie. they can be part of higher order
7038 	 * pages.  Because of this, we reserve the bigger range and
7039 	 * once this is done free the pages we are not interested in.
7040 	 *
7041 	 * We don't have to hold zone->lock here because the pages are
7042 	 * isolated thus they won't get removed from buddy.
7043 	 */
7044 
7045 	lru_add_drain_all();
7046 	drain_all_pages(cc.zone);
7047 
7048 	order = 0;
7049 	outer_start = start;
7050 	while (!PageBuddy(pfn_to_page(outer_start))) {
7051 		if (++order >= MAX_ORDER) {
7052 			outer_start = start;
7053 			break;
7054 		}
7055 		outer_start &= ~0UL << order;
7056 	}
7057 
7058 	if (outer_start != start) {
7059 		order = page_order(pfn_to_page(outer_start));
7060 
7061 		/*
7062 		 * outer_start page could be small order buddy page and
7063 		 * it doesn't include start page. Adjust outer_start
7064 		 * in this case to report failed page properly
7065 		 * on tracepoint in test_pages_isolated()
7066 		 */
7067 		if (outer_start + (1UL << order) <= start)
7068 			outer_start = start;
7069 	}
7070 
7071 	/* Make sure the range is really isolated. */
7072 	if (test_pages_isolated(outer_start, end, false)) {
7073 		pr_info("%s: [%lx, %lx) PFNs busy\n",
7074 			__func__, outer_start, end);
7075 		ret = -EBUSY;
7076 		goto done;
7077 	}
7078 
7079 	/* Grab isolated pages from freelists. */
7080 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7081 	if (!outer_end) {
7082 		ret = -EBUSY;
7083 		goto done;
7084 	}
7085 
7086 	/* Free head and tail (if any) */
7087 	if (start != outer_start)
7088 		free_contig_range(outer_start, start - outer_start);
7089 	if (end != outer_end)
7090 		free_contig_range(end, outer_end - end);
7091 
7092 done:
7093 	undo_isolate_page_range(pfn_max_align_down(start),
7094 				pfn_max_align_up(end), migratetype);
7095 	return ret;
7096 }
7097 
7098 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7099 {
7100 	unsigned int count = 0;
7101 
7102 	for (; nr_pages--; pfn++) {
7103 		struct page *page = pfn_to_page(pfn);
7104 
7105 		count += page_count(page) != 1;
7106 		__free_page(page);
7107 	}
7108 	WARN(count != 0, "%d pages are still in use!\n", count);
7109 }
7110 #endif
7111 
7112 #ifdef CONFIG_MEMORY_HOTPLUG
7113 /*
7114  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7115  * page high values need to be recalulated.
7116  */
7117 void __meminit zone_pcp_update(struct zone *zone)
7118 {
7119 	unsigned cpu;
7120 	mutex_lock(&pcp_batch_high_lock);
7121 	for_each_possible_cpu(cpu)
7122 		pageset_set_high_and_batch(zone,
7123 				per_cpu_ptr(zone->pageset, cpu));
7124 	mutex_unlock(&pcp_batch_high_lock);
7125 }
7126 #endif
7127 
7128 void zone_pcp_reset(struct zone *zone)
7129 {
7130 	unsigned long flags;
7131 	int cpu;
7132 	struct per_cpu_pageset *pset;
7133 
7134 	/* avoid races with drain_pages()  */
7135 	local_irq_save(flags);
7136 	if (zone->pageset != &boot_pageset) {
7137 		for_each_online_cpu(cpu) {
7138 			pset = per_cpu_ptr(zone->pageset, cpu);
7139 			drain_zonestat(zone, pset);
7140 		}
7141 		free_percpu(zone->pageset);
7142 		zone->pageset = &boot_pageset;
7143 	}
7144 	local_irq_restore(flags);
7145 }
7146 
7147 #ifdef CONFIG_MEMORY_HOTREMOVE
7148 /*
7149  * All pages in the range must be isolated before calling this.
7150  */
7151 void
7152 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7153 {
7154 	struct page *page;
7155 	struct zone *zone;
7156 	unsigned int order, i;
7157 	unsigned long pfn;
7158 	unsigned long flags;
7159 	/* find the first valid pfn */
7160 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7161 		if (pfn_valid(pfn))
7162 			break;
7163 	if (pfn == end_pfn)
7164 		return;
7165 	zone = page_zone(pfn_to_page(pfn));
7166 	spin_lock_irqsave(&zone->lock, flags);
7167 	pfn = start_pfn;
7168 	while (pfn < end_pfn) {
7169 		if (!pfn_valid(pfn)) {
7170 			pfn++;
7171 			continue;
7172 		}
7173 		page = pfn_to_page(pfn);
7174 		/*
7175 		 * The HWPoisoned page may be not in buddy system, and
7176 		 * page_count() is not 0.
7177 		 */
7178 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7179 			pfn++;
7180 			SetPageReserved(page);
7181 			continue;
7182 		}
7183 
7184 		BUG_ON(page_count(page));
7185 		BUG_ON(!PageBuddy(page));
7186 		order = page_order(page);
7187 #ifdef CONFIG_DEBUG_VM
7188 		pr_info("remove from free list %lx %d %lx\n",
7189 			pfn, 1 << order, end_pfn);
7190 #endif
7191 		list_del(&page->lru);
7192 		rmv_page_order(page);
7193 		zone->free_area[order].nr_free--;
7194 		for (i = 0; i < (1 << order); i++)
7195 			SetPageReserved((page+i));
7196 		pfn += (1 << order);
7197 	}
7198 	spin_unlock_irqrestore(&zone->lock, flags);
7199 }
7200 #endif
7201 
7202 bool is_free_buddy_page(struct page *page)
7203 {
7204 	struct zone *zone = page_zone(page);
7205 	unsigned long pfn = page_to_pfn(page);
7206 	unsigned long flags;
7207 	unsigned int order;
7208 
7209 	spin_lock_irqsave(&zone->lock, flags);
7210 	for (order = 0; order < MAX_ORDER; order++) {
7211 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7212 
7213 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7214 			break;
7215 	}
7216 	spin_unlock_irqrestore(&zone->lock, flags);
7217 
7218 	return order < MAX_ORDER;
7219 }
7220