1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/notifier.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/memremap.h> 47 #include <linux/stop_machine.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/page_ext.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/page_ext.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 67 #include <asm/sections.h> 68 #include <asm/tlbflush.h> 69 #include <asm/div64.h> 70 #include "internal.h" 71 72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 73 static DEFINE_MUTEX(pcp_batch_high_lock); 74 #define MIN_PERCPU_PAGELIST_FRACTION (8) 75 76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 77 DEFINE_PER_CPU(int, numa_node); 78 EXPORT_PER_CPU_SYMBOL(numa_node); 79 #endif 80 81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 82 /* 83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 86 * defined in <linux/topology.h>. 87 */ 88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 89 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 90 int _node_numa_mem_[MAX_NUMNODES]; 91 #endif 92 93 /* 94 * Array of node states. 95 */ 96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 97 [N_POSSIBLE] = NODE_MASK_ALL, 98 [N_ONLINE] = { { [0] = 1UL } }, 99 #ifndef CONFIG_NUMA 100 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 101 #ifdef CONFIG_HIGHMEM 102 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 103 #endif 104 #ifdef CONFIG_MOVABLE_NODE 105 [N_MEMORY] = { { [0] = 1UL } }, 106 #endif 107 [N_CPU] = { { [0] = 1UL } }, 108 #endif /* NUMA */ 109 }; 110 EXPORT_SYMBOL(node_states); 111 112 /* Protect totalram_pages and zone->managed_pages */ 113 static DEFINE_SPINLOCK(managed_page_count_lock); 114 115 unsigned long totalram_pages __read_mostly; 116 unsigned long totalreserve_pages __read_mostly; 117 unsigned long totalcma_pages __read_mostly; 118 119 int percpu_pagelist_fraction; 120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 121 122 /* 123 * A cached value of the page's pageblock's migratetype, used when the page is 124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 125 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 126 * Also the migratetype set in the page does not necessarily match the pcplist 127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 128 * other index - this ensures that it will be put on the correct CMA freelist. 129 */ 130 static inline int get_pcppage_migratetype(struct page *page) 131 { 132 return page->index; 133 } 134 135 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 136 { 137 page->index = migratetype; 138 } 139 140 #ifdef CONFIG_PM_SLEEP 141 /* 142 * The following functions are used by the suspend/hibernate code to temporarily 143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 144 * while devices are suspended. To avoid races with the suspend/hibernate code, 145 * they should always be called with pm_mutex held (gfp_allowed_mask also should 146 * only be modified with pm_mutex held, unless the suspend/hibernate code is 147 * guaranteed not to run in parallel with that modification). 148 */ 149 150 static gfp_t saved_gfp_mask; 151 152 void pm_restore_gfp_mask(void) 153 { 154 WARN_ON(!mutex_is_locked(&pm_mutex)); 155 if (saved_gfp_mask) { 156 gfp_allowed_mask = saved_gfp_mask; 157 saved_gfp_mask = 0; 158 } 159 } 160 161 void pm_restrict_gfp_mask(void) 162 { 163 WARN_ON(!mutex_is_locked(&pm_mutex)); 164 WARN_ON(saved_gfp_mask); 165 saved_gfp_mask = gfp_allowed_mask; 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 167 } 168 169 bool pm_suspended_storage(void) 170 { 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 172 return false; 173 return true; 174 } 175 #endif /* CONFIG_PM_SLEEP */ 176 177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 178 unsigned int pageblock_order __read_mostly; 179 #endif 180 181 static void __free_pages_ok(struct page *page, unsigned int order); 182 183 /* 184 * results with 256, 32 in the lowmem_reserve sysctl: 185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 186 * 1G machine -> (16M dma, 784M normal, 224M high) 187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 190 * 191 * TBD: should special case ZONE_DMA32 machines here - in those we normally 192 * don't need any ZONE_NORMAL reservation 193 */ 194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 195 #ifdef CONFIG_ZONE_DMA 196 256, 197 #endif 198 #ifdef CONFIG_ZONE_DMA32 199 256, 200 #endif 201 #ifdef CONFIG_HIGHMEM 202 32, 203 #endif 204 32, 205 }; 206 207 EXPORT_SYMBOL(totalram_pages); 208 209 static char * const zone_names[MAX_NR_ZONES] = { 210 #ifdef CONFIG_ZONE_DMA 211 "DMA", 212 #endif 213 #ifdef CONFIG_ZONE_DMA32 214 "DMA32", 215 #endif 216 "Normal", 217 #ifdef CONFIG_HIGHMEM 218 "HighMem", 219 #endif 220 "Movable", 221 #ifdef CONFIG_ZONE_DEVICE 222 "Device", 223 #endif 224 }; 225 226 char * const migratetype_names[MIGRATE_TYPES] = { 227 "Unmovable", 228 "Movable", 229 "Reclaimable", 230 "HighAtomic", 231 #ifdef CONFIG_CMA 232 "CMA", 233 #endif 234 #ifdef CONFIG_MEMORY_ISOLATION 235 "Isolate", 236 #endif 237 }; 238 239 compound_page_dtor * const compound_page_dtors[] = { 240 NULL, 241 free_compound_page, 242 #ifdef CONFIG_HUGETLB_PAGE 243 free_huge_page, 244 #endif 245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 246 free_transhuge_page, 247 #endif 248 }; 249 250 int min_free_kbytes = 1024; 251 int user_min_free_kbytes = -1; 252 int watermark_scale_factor = 10; 253 254 static unsigned long __meminitdata nr_kernel_pages; 255 static unsigned long __meminitdata nr_all_pages; 256 static unsigned long __meminitdata dma_reserve; 257 258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 260 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 261 static unsigned long __initdata required_kernelcore; 262 static unsigned long __initdata required_movablecore; 263 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 264 static bool mirrored_kernelcore; 265 266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 267 int movable_zone; 268 EXPORT_SYMBOL(movable_zone); 269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 270 271 #if MAX_NUMNODES > 1 272 int nr_node_ids __read_mostly = MAX_NUMNODES; 273 int nr_online_nodes __read_mostly = 1; 274 EXPORT_SYMBOL(nr_node_ids); 275 EXPORT_SYMBOL(nr_online_nodes); 276 #endif 277 278 int page_group_by_mobility_disabled __read_mostly; 279 280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 281 static inline void reset_deferred_meminit(pg_data_t *pgdat) 282 { 283 pgdat->first_deferred_pfn = ULONG_MAX; 284 } 285 286 /* Returns true if the struct page for the pfn is uninitialised */ 287 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 288 { 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn) 290 return true; 291 292 return false; 293 } 294 295 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid) 296 { 297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn) 298 return true; 299 300 return false; 301 } 302 303 /* 304 * Returns false when the remaining initialisation should be deferred until 305 * later in the boot cycle when it can be parallelised. 306 */ 307 static inline bool update_defer_init(pg_data_t *pgdat, 308 unsigned long pfn, unsigned long zone_end, 309 unsigned long *nr_initialised) 310 { 311 /* Always populate low zones for address-contrained allocations */ 312 if (zone_end < pgdat_end_pfn(pgdat)) 313 return true; 314 315 /* Initialise at least 2G of the highest zone */ 316 (*nr_initialised)++; 317 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) && 318 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 319 pgdat->first_deferred_pfn = pfn; 320 return false; 321 } 322 323 return true; 324 } 325 #else 326 static inline void reset_deferred_meminit(pg_data_t *pgdat) 327 { 328 } 329 330 static inline bool early_page_uninitialised(unsigned long pfn) 331 { 332 return false; 333 } 334 335 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid) 336 { 337 return false; 338 } 339 340 static inline bool update_defer_init(pg_data_t *pgdat, 341 unsigned long pfn, unsigned long zone_end, 342 unsigned long *nr_initialised) 343 { 344 return true; 345 } 346 #endif 347 348 349 void set_pageblock_migratetype(struct page *page, int migratetype) 350 { 351 if (unlikely(page_group_by_mobility_disabled && 352 migratetype < MIGRATE_PCPTYPES)) 353 migratetype = MIGRATE_UNMOVABLE; 354 355 set_pageblock_flags_group(page, (unsigned long)migratetype, 356 PB_migrate, PB_migrate_end); 357 } 358 359 #ifdef CONFIG_DEBUG_VM 360 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 361 { 362 int ret = 0; 363 unsigned seq; 364 unsigned long pfn = page_to_pfn(page); 365 unsigned long sp, start_pfn; 366 367 do { 368 seq = zone_span_seqbegin(zone); 369 start_pfn = zone->zone_start_pfn; 370 sp = zone->spanned_pages; 371 if (!zone_spans_pfn(zone, pfn)) 372 ret = 1; 373 } while (zone_span_seqretry(zone, seq)); 374 375 if (ret) 376 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 377 pfn, zone_to_nid(zone), zone->name, 378 start_pfn, start_pfn + sp); 379 380 return ret; 381 } 382 383 static int page_is_consistent(struct zone *zone, struct page *page) 384 { 385 if (!pfn_valid_within(page_to_pfn(page))) 386 return 0; 387 if (zone != page_zone(page)) 388 return 0; 389 390 return 1; 391 } 392 /* 393 * Temporary debugging check for pages not lying within a given zone. 394 */ 395 static int bad_range(struct zone *zone, struct page *page) 396 { 397 if (page_outside_zone_boundaries(zone, page)) 398 return 1; 399 if (!page_is_consistent(zone, page)) 400 return 1; 401 402 return 0; 403 } 404 #else 405 static inline int bad_range(struct zone *zone, struct page *page) 406 { 407 return 0; 408 } 409 #endif 410 411 static void bad_page(struct page *page, const char *reason, 412 unsigned long bad_flags) 413 { 414 static unsigned long resume; 415 static unsigned long nr_shown; 416 static unsigned long nr_unshown; 417 418 /* Don't complain about poisoned pages */ 419 if (PageHWPoison(page)) { 420 page_mapcount_reset(page); /* remove PageBuddy */ 421 return; 422 } 423 424 /* 425 * Allow a burst of 60 reports, then keep quiet for that minute; 426 * or allow a steady drip of one report per second. 427 */ 428 if (nr_shown == 60) { 429 if (time_before(jiffies, resume)) { 430 nr_unshown++; 431 goto out; 432 } 433 if (nr_unshown) { 434 pr_alert( 435 "BUG: Bad page state: %lu messages suppressed\n", 436 nr_unshown); 437 nr_unshown = 0; 438 } 439 nr_shown = 0; 440 } 441 if (nr_shown++ == 0) 442 resume = jiffies + 60 * HZ; 443 444 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 445 current->comm, page_to_pfn(page)); 446 __dump_page(page, reason); 447 bad_flags &= page->flags; 448 if (bad_flags) 449 pr_alert("bad because of flags: %#lx(%pGp)\n", 450 bad_flags, &bad_flags); 451 dump_page_owner(page); 452 453 print_modules(); 454 dump_stack(); 455 out: 456 /* Leave bad fields for debug, except PageBuddy could make trouble */ 457 page_mapcount_reset(page); /* remove PageBuddy */ 458 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 459 } 460 461 /* 462 * Higher-order pages are called "compound pages". They are structured thusly: 463 * 464 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 465 * 466 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 467 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 468 * 469 * The first tail page's ->compound_dtor holds the offset in array of compound 470 * page destructors. See compound_page_dtors. 471 * 472 * The first tail page's ->compound_order holds the order of allocation. 473 * This usage means that zero-order pages may not be compound. 474 */ 475 476 void free_compound_page(struct page *page) 477 { 478 __free_pages_ok(page, compound_order(page)); 479 } 480 481 void prep_compound_page(struct page *page, unsigned int order) 482 { 483 int i; 484 int nr_pages = 1 << order; 485 486 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 487 set_compound_order(page, order); 488 __SetPageHead(page); 489 for (i = 1; i < nr_pages; i++) { 490 struct page *p = page + i; 491 set_page_count(p, 0); 492 p->mapping = TAIL_MAPPING; 493 set_compound_head(p, page); 494 } 495 atomic_set(compound_mapcount_ptr(page), -1); 496 } 497 498 #ifdef CONFIG_DEBUG_PAGEALLOC 499 unsigned int _debug_guardpage_minorder; 500 bool _debug_pagealloc_enabled __read_mostly 501 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 502 EXPORT_SYMBOL(_debug_pagealloc_enabled); 503 bool _debug_guardpage_enabled __read_mostly; 504 505 static int __init early_debug_pagealloc(char *buf) 506 { 507 if (!buf) 508 return -EINVAL; 509 510 if (strcmp(buf, "on") == 0) 511 _debug_pagealloc_enabled = true; 512 513 if (strcmp(buf, "off") == 0) 514 _debug_pagealloc_enabled = false; 515 516 return 0; 517 } 518 early_param("debug_pagealloc", early_debug_pagealloc); 519 520 static bool need_debug_guardpage(void) 521 { 522 /* If we don't use debug_pagealloc, we don't need guard page */ 523 if (!debug_pagealloc_enabled()) 524 return false; 525 526 return true; 527 } 528 529 static void init_debug_guardpage(void) 530 { 531 if (!debug_pagealloc_enabled()) 532 return; 533 534 _debug_guardpage_enabled = true; 535 } 536 537 struct page_ext_operations debug_guardpage_ops = { 538 .need = need_debug_guardpage, 539 .init = init_debug_guardpage, 540 }; 541 542 static int __init debug_guardpage_minorder_setup(char *buf) 543 { 544 unsigned long res; 545 546 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 547 pr_err("Bad debug_guardpage_minorder value\n"); 548 return 0; 549 } 550 _debug_guardpage_minorder = res; 551 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 552 return 0; 553 } 554 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 555 556 static inline void set_page_guard(struct zone *zone, struct page *page, 557 unsigned int order, int migratetype) 558 { 559 struct page_ext *page_ext; 560 561 if (!debug_guardpage_enabled()) 562 return; 563 564 page_ext = lookup_page_ext(page); 565 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 566 567 INIT_LIST_HEAD(&page->lru); 568 set_page_private(page, order); 569 /* Guard pages are not available for any usage */ 570 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 571 } 572 573 static inline void clear_page_guard(struct zone *zone, struct page *page, 574 unsigned int order, int migratetype) 575 { 576 struct page_ext *page_ext; 577 578 if (!debug_guardpage_enabled()) 579 return; 580 581 page_ext = lookup_page_ext(page); 582 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 583 584 set_page_private(page, 0); 585 if (!is_migrate_isolate(migratetype)) 586 __mod_zone_freepage_state(zone, (1 << order), migratetype); 587 } 588 #else 589 struct page_ext_operations debug_guardpage_ops = { NULL, }; 590 static inline void set_page_guard(struct zone *zone, struct page *page, 591 unsigned int order, int migratetype) {} 592 static inline void clear_page_guard(struct zone *zone, struct page *page, 593 unsigned int order, int migratetype) {} 594 #endif 595 596 static inline void set_page_order(struct page *page, unsigned int order) 597 { 598 set_page_private(page, order); 599 __SetPageBuddy(page); 600 } 601 602 static inline void rmv_page_order(struct page *page) 603 { 604 __ClearPageBuddy(page); 605 set_page_private(page, 0); 606 } 607 608 /* 609 * This function checks whether a page is free && is the buddy 610 * we can do coalesce a page and its buddy if 611 * (a) the buddy is not in a hole && 612 * (b) the buddy is in the buddy system && 613 * (c) a page and its buddy have the same order && 614 * (d) a page and its buddy are in the same zone. 615 * 616 * For recording whether a page is in the buddy system, we set ->_mapcount 617 * PAGE_BUDDY_MAPCOUNT_VALUE. 618 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 619 * serialized by zone->lock. 620 * 621 * For recording page's order, we use page_private(page). 622 */ 623 static inline int page_is_buddy(struct page *page, struct page *buddy, 624 unsigned int order) 625 { 626 if (!pfn_valid_within(page_to_pfn(buddy))) 627 return 0; 628 629 if (page_is_guard(buddy) && page_order(buddy) == order) { 630 if (page_zone_id(page) != page_zone_id(buddy)) 631 return 0; 632 633 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 634 635 return 1; 636 } 637 638 if (PageBuddy(buddy) && page_order(buddy) == order) { 639 /* 640 * zone check is done late to avoid uselessly 641 * calculating zone/node ids for pages that could 642 * never merge. 643 */ 644 if (page_zone_id(page) != page_zone_id(buddy)) 645 return 0; 646 647 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 648 649 return 1; 650 } 651 return 0; 652 } 653 654 /* 655 * Freeing function for a buddy system allocator. 656 * 657 * The concept of a buddy system is to maintain direct-mapped table 658 * (containing bit values) for memory blocks of various "orders". 659 * The bottom level table contains the map for the smallest allocatable 660 * units of memory (here, pages), and each level above it describes 661 * pairs of units from the levels below, hence, "buddies". 662 * At a high level, all that happens here is marking the table entry 663 * at the bottom level available, and propagating the changes upward 664 * as necessary, plus some accounting needed to play nicely with other 665 * parts of the VM system. 666 * At each level, we keep a list of pages, which are heads of continuous 667 * free pages of length of (1 << order) and marked with _mapcount 668 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 669 * field. 670 * So when we are allocating or freeing one, we can derive the state of the 671 * other. That is, if we allocate a small block, and both were 672 * free, the remainder of the region must be split into blocks. 673 * If a block is freed, and its buddy is also free, then this 674 * triggers coalescing into a block of larger size. 675 * 676 * -- nyc 677 */ 678 679 static inline void __free_one_page(struct page *page, 680 unsigned long pfn, 681 struct zone *zone, unsigned int order, 682 int migratetype) 683 { 684 unsigned long page_idx; 685 unsigned long combined_idx; 686 unsigned long uninitialized_var(buddy_idx); 687 struct page *buddy; 688 unsigned int max_order = MAX_ORDER; 689 690 VM_BUG_ON(!zone_is_initialized(zone)); 691 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 692 693 VM_BUG_ON(migratetype == -1); 694 if (is_migrate_isolate(migratetype)) { 695 /* 696 * We restrict max order of merging to prevent merge 697 * between freepages on isolate pageblock and normal 698 * pageblock. Without this, pageblock isolation 699 * could cause incorrect freepage accounting. 700 */ 701 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 702 } else { 703 __mod_zone_freepage_state(zone, 1 << order, migratetype); 704 } 705 706 page_idx = pfn & ((1 << max_order) - 1); 707 708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); 709 VM_BUG_ON_PAGE(bad_range(zone, page), page); 710 711 while (order < max_order - 1) { 712 buddy_idx = __find_buddy_index(page_idx, order); 713 buddy = page + (buddy_idx - page_idx); 714 if (!page_is_buddy(page, buddy, order)) 715 break; 716 /* 717 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 718 * merge with it and move up one order. 719 */ 720 if (page_is_guard(buddy)) { 721 clear_page_guard(zone, buddy, order, migratetype); 722 } else { 723 list_del(&buddy->lru); 724 zone->free_area[order].nr_free--; 725 rmv_page_order(buddy); 726 } 727 combined_idx = buddy_idx & page_idx; 728 page = page + (combined_idx - page_idx); 729 page_idx = combined_idx; 730 order++; 731 } 732 set_page_order(page, order); 733 734 /* 735 * If this is not the largest possible page, check if the buddy 736 * of the next-highest order is free. If it is, it's possible 737 * that pages are being freed that will coalesce soon. In case, 738 * that is happening, add the free page to the tail of the list 739 * so it's less likely to be used soon and more likely to be merged 740 * as a higher order page 741 */ 742 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 743 struct page *higher_page, *higher_buddy; 744 combined_idx = buddy_idx & page_idx; 745 higher_page = page + (combined_idx - page_idx); 746 buddy_idx = __find_buddy_index(combined_idx, order + 1); 747 higher_buddy = higher_page + (buddy_idx - combined_idx); 748 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 749 list_add_tail(&page->lru, 750 &zone->free_area[order].free_list[migratetype]); 751 goto out; 752 } 753 } 754 755 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 756 out: 757 zone->free_area[order].nr_free++; 758 } 759 760 static inline int free_pages_check(struct page *page) 761 { 762 const char *bad_reason = NULL; 763 unsigned long bad_flags = 0; 764 765 if (unlikely(atomic_read(&page->_mapcount) != -1)) 766 bad_reason = "nonzero mapcount"; 767 if (unlikely(page->mapping != NULL)) 768 bad_reason = "non-NULL mapping"; 769 if (unlikely(page_ref_count(page) != 0)) 770 bad_reason = "nonzero _count"; 771 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 772 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 773 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 774 } 775 #ifdef CONFIG_MEMCG 776 if (unlikely(page->mem_cgroup)) 777 bad_reason = "page still charged to cgroup"; 778 #endif 779 if (unlikely(bad_reason)) { 780 bad_page(page, bad_reason, bad_flags); 781 return 1; 782 } 783 page_cpupid_reset_last(page); 784 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 785 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 786 return 0; 787 } 788 789 /* 790 * Frees a number of pages from the PCP lists 791 * Assumes all pages on list are in same zone, and of same order. 792 * count is the number of pages to free. 793 * 794 * If the zone was previously in an "all pages pinned" state then look to 795 * see if this freeing clears that state. 796 * 797 * And clear the zone's pages_scanned counter, to hold off the "all pages are 798 * pinned" detection logic. 799 */ 800 static void free_pcppages_bulk(struct zone *zone, int count, 801 struct per_cpu_pages *pcp) 802 { 803 int migratetype = 0; 804 int batch_free = 0; 805 int to_free = count; 806 unsigned long nr_scanned; 807 808 spin_lock(&zone->lock); 809 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 810 if (nr_scanned) 811 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 812 813 while (to_free) { 814 struct page *page; 815 struct list_head *list; 816 817 /* 818 * Remove pages from lists in a round-robin fashion. A 819 * batch_free count is maintained that is incremented when an 820 * empty list is encountered. This is so more pages are freed 821 * off fuller lists instead of spinning excessively around empty 822 * lists 823 */ 824 do { 825 batch_free++; 826 if (++migratetype == MIGRATE_PCPTYPES) 827 migratetype = 0; 828 list = &pcp->lists[migratetype]; 829 } while (list_empty(list)); 830 831 /* This is the only non-empty list. Free them all. */ 832 if (batch_free == MIGRATE_PCPTYPES) 833 batch_free = to_free; 834 835 do { 836 int mt; /* migratetype of the to-be-freed page */ 837 838 page = list_last_entry(list, struct page, lru); 839 /* must delete as __free_one_page list manipulates */ 840 list_del(&page->lru); 841 842 mt = get_pcppage_migratetype(page); 843 /* MIGRATE_ISOLATE page should not go to pcplists */ 844 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 845 /* Pageblock could have been isolated meanwhile */ 846 if (unlikely(has_isolate_pageblock(zone))) 847 mt = get_pageblock_migratetype(page); 848 849 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 850 trace_mm_page_pcpu_drain(page, 0, mt); 851 } while (--to_free && --batch_free && !list_empty(list)); 852 } 853 spin_unlock(&zone->lock); 854 } 855 856 static void free_one_page(struct zone *zone, 857 struct page *page, unsigned long pfn, 858 unsigned int order, 859 int migratetype) 860 { 861 unsigned long nr_scanned; 862 spin_lock(&zone->lock); 863 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 864 if (nr_scanned) 865 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 866 867 if (unlikely(has_isolate_pageblock(zone) || 868 is_migrate_isolate(migratetype))) { 869 migratetype = get_pfnblock_migratetype(page, pfn); 870 } 871 __free_one_page(page, pfn, zone, order, migratetype); 872 spin_unlock(&zone->lock); 873 } 874 875 static int free_tail_pages_check(struct page *head_page, struct page *page) 876 { 877 int ret = 1; 878 879 /* 880 * We rely page->lru.next never has bit 0 set, unless the page 881 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 882 */ 883 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 884 885 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 886 ret = 0; 887 goto out; 888 } 889 switch (page - head_page) { 890 case 1: 891 /* the first tail page: ->mapping is compound_mapcount() */ 892 if (unlikely(compound_mapcount(page))) { 893 bad_page(page, "nonzero compound_mapcount", 0); 894 goto out; 895 } 896 break; 897 case 2: 898 /* 899 * the second tail page: ->mapping is 900 * page_deferred_list().next -- ignore value. 901 */ 902 break; 903 default: 904 if (page->mapping != TAIL_MAPPING) { 905 bad_page(page, "corrupted mapping in tail page", 0); 906 goto out; 907 } 908 break; 909 } 910 if (unlikely(!PageTail(page))) { 911 bad_page(page, "PageTail not set", 0); 912 goto out; 913 } 914 if (unlikely(compound_head(page) != head_page)) { 915 bad_page(page, "compound_head not consistent", 0); 916 goto out; 917 } 918 ret = 0; 919 out: 920 page->mapping = NULL; 921 clear_compound_head(page); 922 return ret; 923 } 924 925 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 926 unsigned long zone, int nid) 927 { 928 set_page_links(page, zone, nid, pfn); 929 init_page_count(page); 930 page_mapcount_reset(page); 931 page_cpupid_reset_last(page); 932 933 INIT_LIST_HEAD(&page->lru); 934 #ifdef WANT_PAGE_VIRTUAL 935 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 936 if (!is_highmem_idx(zone)) 937 set_page_address(page, __va(pfn << PAGE_SHIFT)); 938 #endif 939 } 940 941 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, 942 int nid) 943 { 944 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid); 945 } 946 947 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 948 static void init_reserved_page(unsigned long pfn) 949 { 950 pg_data_t *pgdat; 951 int nid, zid; 952 953 if (!early_page_uninitialised(pfn)) 954 return; 955 956 nid = early_pfn_to_nid(pfn); 957 pgdat = NODE_DATA(nid); 958 959 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 960 struct zone *zone = &pgdat->node_zones[zid]; 961 962 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 963 break; 964 } 965 __init_single_pfn(pfn, zid, nid); 966 } 967 #else 968 static inline void init_reserved_page(unsigned long pfn) 969 { 970 } 971 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 972 973 /* 974 * Initialised pages do not have PageReserved set. This function is 975 * called for each range allocated by the bootmem allocator and 976 * marks the pages PageReserved. The remaining valid pages are later 977 * sent to the buddy page allocator. 978 */ 979 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end) 980 { 981 unsigned long start_pfn = PFN_DOWN(start); 982 unsigned long end_pfn = PFN_UP(end); 983 984 for (; start_pfn < end_pfn; start_pfn++) { 985 if (pfn_valid(start_pfn)) { 986 struct page *page = pfn_to_page(start_pfn); 987 988 init_reserved_page(start_pfn); 989 990 /* Avoid false-positive PageTail() */ 991 INIT_LIST_HEAD(&page->lru); 992 993 SetPageReserved(page); 994 } 995 } 996 } 997 998 static bool free_pages_prepare(struct page *page, unsigned int order) 999 { 1000 bool compound = PageCompound(page); 1001 int i, bad = 0; 1002 1003 VM_BUG_ON_PAGE(PageTail(page), page); 1004 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1005 1006 trace_mm_page_free(page, order); 1007 kmemcheck_free_shadow(page, order); 1008 kasan_free_pages(page, order); 1009 1010 if (PageAnon(page)) 1011 page->mapping = NULL; 1012 bad += free_pages_check(page); 1013 for (i = 1; i < (1 << order); i++) { 1014 if (compound) 1015 bad += free_tail_pages_check(page, page + i); 1016 bad += free_pages_check(page + i); 1017 } 1018 if (bad) 1019 return false; 1020 1021 reset_page_owner(page, order); 1022 1023 if (!PageHighMem(page)) { 1024 debug_check_no_locks_freed(page_address(page), 1025 PAGE_SIZE << order); 1026 debug_check_no_obj_freed(page_address(page), 1027 PAGE_SIZE << order); 1028 } 1029 arch_free_page(page, order); 1030 kernel_poison_pages(page, 1 << order, 0); 1031 kernel_map_pages(page, 1 << order, 0); 1032 1033 return true; 1034 } 1035 1036 static void __free_pages_ok(struct page *page, unsigned int order) 1037 { 1038 unsigned long flags; 1039 int migratetype; 1040 unsigned long pfn = page_to_pfn(page); 1041 1042 if (!free_pages_prepare(page, order)) 1043 return; 1044 1045 migratetype = get_pfnblock_migratetype(page, pfn); 1046 local_irq_save(flags); 1047 __count_vm_events(PGFREE, 1 << order); 1048 free_one_page(page_zone(page), page, pfn, order, migratetype); 1049 local_irq_restore(flags); 1050 } 1051 1052 static void __init __free_pages_boot_core(struct page *page, 1053 unsigned long pfn, unsigned int order) 1054 { 1055 unsigned int nr_pages = 1 << order; 1056 struct page *p = page; 1057 unsigned int loop; 1058 1059 prefetchw(p); 1060 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1061 prefetchw(p + 1); 1062 __ClearPageReserved(p); 1063 set_page_count(p, 0); 1064 } 1065 __ClearPageReserved(p); 1066 set_page_count(p, 0); 1067 1068 page_zone(page)->managed_pages += nr_pages; 1069 set_page_refcounted(page); 1070 __free_pages(page, order); 1071 } 1072 1073 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1074 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1075 1076 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1077 1078 int __meminit early_pfn_to_nid(unsigned long pfn) 1079 { 1080 static DEFINE_SPINLOCK(early_pfn_lock); 1081 int nid; 1082 1083 spin_lock(&early_pfn_lock); 1084 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1085 if (nid < 0) 1086 nid = 0; 1087 spin_unlock(&early_pfn_lock); 1088 1089 return nid; 1090 } 1091 #endif 1092 1093 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1094 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1095 struct mminit_pfnnid_cache *state) 1096 { 1097 int nid; 1098 1099 nid = __early_pfn_to_nid(pfn, state); 1100 if (nid >= 0 && nid != node) 1101 return false; 1102 return true; 1103 } 1104 1105 /* Only safe to use early in boot when initialisation is single-threaded */ 1106 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1107 { 1108 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1109 } 1110 1111 #else 1112 1113 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1114 { 1115 return true; 1116 } 1117 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1118 struct mminit_pfnnid_cache *state) 1119 { 1120 return true; 1121 } 1122 #endif 1123 1124 1125 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1126 unsigned int order) 1127 { 1128 if (early_page_uninitialised(pfn)) 1129 return; 1130 return __free_pages_boot_core(page, pfn, order); 1131 } 1132 1133 /* 1134 * Check that the whole (or subset of) a pageblock given by the interval of 1135 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1136 * with the migration of free compaction scanner. The scanners then need to 1137 * use only pfn_valid_within() check for arches that allow holes within 1138 * pageblocks. 1139 * 1140 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1141 * 1142 * It's possible on some configurations to have a setup like node0 node1 node0 1143 * i.e. it's possible that all pages within a zones range of pages do not 1144 * belong to a single zone. We assume that a border between node0 and node1 1145 * can occur within a single pageblock, but not a node0 node1 node0 1146 * interleaving within a single pageblock. It is therefore sufficient to check 1147 * the first and last page of a pageblock and avoid checking each individual 1148 * page in a pageblock. 1149 */ 1150 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1151 unsigned long end_pfn, struct zone *zone) 1152 { 1153 struct page *start_page; 1154 struct page *end_page; 1155 1156 /* end_pfn is one past the range we are checking */ 1157 end_pfn--; 1158 1159 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1160 return NULL; 1161 1162 start_page = pfn_to_page(start_pfn); 1163 1164 if (page_zone(start_page) != zone) 1165 return NULL; 1166 1167 end_page = pfn_to_page(end_pfn); 1168 1169 /* This gives a shorter code than deriving page_zone(end_page) */ 1170 if (page_zone_id(start_page) != page_zone_id(end_page)) 1171 return NULL; 1172 1173 return start_page; 1174 } 1175 1176 void set_zone_contiguous(struct zone *zone) 1177 { 1178 unsigned long block_start_pfn = zone->zone_start_pfn; 1179 unsigned long block_end_pfn; 1180 1181 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1182 for (; block_start_pfn < zone_end_pfn(zone); 1183 block_start_pfn = block_end_pfn, 1184 block_end_pfn += pageblock_nr_pages) { 1185 1186 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1187 1188 if (!__pageblock_pfn_to_page(block_start_pfn, 1189 block_end_pfn, zone)) 1190 return; 1191 } 1192 1193 /* We confirm that there is no hole */ 1194 zone->contiguous = true; 1195 } 1196 1197 void clear_zone_contiguous(struct zone *zone) 1198 { 1199 zone->contiguous = false; 1200 } 1201 1202 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1203 static void __init deferred_free_range(struct page *page, 1204 unsigned long pfn, int nr_pages) 1205 { 1206 int i; 1207 1208 if (!page) 1209 return; 1210 1211 /* Free a large naturally-aligned chunk if possible */ 1212 if (nr_pages == MAX_ORDER_NR_PAGES && 1213 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) { 1214 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1215 __free_pages_boot_core(page, pfn, MAX_ORDER-1); 1216 return; 1217 } 1218 1219 for (i = 0; i < nr_pages; i++, page++, pfn++) 1220 __free_pages_boot_core(page, pfn, 0); 1221 } 1222 1223 /* Completion tracking for deferred_init_memmap() threads */ 1224 static atomic_t pgdat_init_n_undone __initdata; 1225 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1226 1227 static inline void __init pgdat_init_report_one_done(void) 1228 { 1229 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1230 complete(&pgdat_init_all_done_comp); 1231 } 1232 1233 /* Initialise remaining memory on a node */ 1234 static int __init deferred_init_memmap(void *data) 1235 { 1236 pg_data_t *pgdat = data; 1237 int nid = pgdat->node_id; 1238 struct mminit_pfnnid_cache nid_init_state = { }; 1239 unsigned long start = jiffies; 1240 unsigned long nr_pages = 0; 1241 unsigned long walk_start, walk_end; 1242 int i, zid; 1243 struct zone *zone; 1244 unsigned long first_init_pfn = pgdat->first_deferred_pfn; 1245 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1246 1247 if (first_init_pfn == ULONG_MAX) { 1248 pgdat_init_report_one_done(); 1249 return 0; 1250 } 1251 1252 /* Bind memory initialisation thread to a local node if possible */ 1253 if (!cpumask_empty(cpumask)) 1254 set_cpus_allowed_ptr(current, cpumask); 1255 1256 /* Sanity check boundaries */ 1257 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1258 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1259 pgdat->first_deferred_pfn = ULONG_MAX; 1260 1261 /* Only the highest zone is deferred so find it */ 1262 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1263 zone = pgdat->node_zones + zid; 1264 if (first_init_pfn < zone_end_pfn(zone)) 1265 break; 1266 } 1267 1268 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) { 1269 unsigned long pfn, end_pfn; 1270 struct page *page = NULL; 1271 struct page *free_base_page = NULL; 1272 unsigned long free_base_pfn = 0; 1273 int nr_to_free = 0; 1274 1275 end_pfn = min(walk_end, zone_end_pfn(zone)); 1276 pfn = first_init_pfn; 1277 if (pfn < walk_start) 1278 pfn = walk_start; 1279 if (pfn < zone->zone_start_pfn) 1280 pfn = zone->zone_start_pfn; 1281 1282 for (; pfn < end_pfn; pfn++) { 1283 if (!pfn_valid_within(pfn)) 1284 goto free_range; 1285 1286 /* 1287 * Ensure pfn_valid is checked every 1288 * MAX_ORDER_NR_PAGES for memory holes 1289 */ 1290 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { 1291 if (!pfn_valid(pfn)) { 1292 page = NULL; 1293 goto free_range; 1294 } 1295 } 1296 1297 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { 1298 page = NULL; 1299 goto free_range; 1300 } 1301 1302 /* Minimise pfn page lookups and scheduler checks */ 1303 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) { 1304 page++; 1305 } else { 1306 nr_pages += nr_to_free; 1307 deferred_free_range(free_base_page, 1308 free_base_pfn, nr_to_free); 1309 free_base_page = NULL; 1310 free_base_pfn = nr_to_free = 0; 1311 1312 page = pfn_to_page(pfn); 1313 cond_resched(); 1314 } 1315 1316 if (page->flags) { 1317 VM_BUG_ON(page_zone(page) != zone); 1318 goto free_range; 1319 } 1320 1321 __init_single_page(page, pfn, zid, nid); 1322 if (!free_base_page) { 1323 free_base_page = page; 1324 free_base_pfn = pfn; 1325 nr_to_free = 0; 1326 } 1327 nr_to_free++; 1328 1329 /* Where possible, batch up pages for a single free */ 1330 continue; 1331 free_range: 1332 /* Free the current block of pages to allocator */ 1333 nr_pages += nr_to_free; 1334 deferred_free_range(free_base_page, free_base_pfn, 1335 nr_to_free); 1336 free_base_page = NULL; 1337 free_base_pfn = nr_to_free = 0; 1338 } 1339 1340 first_init_pfn = max(end_pfn, first_init_pfn); 1341 } 1342 1343 /* Sanity check that the next zone really is unpopulated */ 1344 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1345 1346 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1347 jiffies_to_msecs(jiffies - start)); 1348 1349 pgdat_init_report_one_done(); 1350 return 0; 1351 } 1352 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1353 1354 void __init page_alloc_init_late(void) 1355 { 1356 struct zone *zone; 1357 1358 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1359 int nid; 1360 1361 /* There will be num_node_state(N_MEMORY) threads */ 1362 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1363 for_each_node_state(nid, N_MEMORY) { 1364 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1365 } 1366 1367 /* Block until all are initialised */ 1368 wait_for_completion(&pgdat_init_all_done_comp); 1369 1370 /* Reinit limits that are based on free pages after the kernel is up */ 1371 files_maxfiles_init(); 1372 #endif 1373 1374 for_each_populated_zone(zone) 1375 set_zone_contiguous(zone); 1376 } 1377 1378 #ifdef CONFIG_CMA 1379 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1380 void __init init_cma_reserved_pageblock(struct page *page) 1381 { 1382 unsigned i = pageblock_nr_pages; 1383 struct page *p = page; 1384 1385 do { 1386 __ClearPageReserved(p); 1387 set_page_count(p, 0); 1388 } while (++p, --i); 1389 1390 set_pageblock_migratetype(page, MIGRATE_CMA); 1391 1392 if (pageblock_order >= MAX_ORDER) { 1393 i = pageblock_nr_pages; 1394 p = page; 1395 do { 1396 set_page_refcounted(p); 1397 __free_pages(p, MAX_ORDER - 1); 1398 p += MAX_ORDER_NR_PAGES; 1399 } while (i -= MAX_ORDER_NR_PAGES); 1400 } else { 1401 set_page_refcounted(page); 1402 __free_pages(page, pageblock_order); 1403 } 1404 1405 adjust_managed_page_count(page, pageblock_nr_pages); 1406 } 1407 #endif 1408 1409 /* 1410 * The order of subdivision here is critical for the IO subsystem. 1411 * Please do not alter this order without good reasons and regression 1412 * testing. Specifically, as large blocks of memory are subdivided, 1413 * the order in which smaller blocks are delivered depends on the order 1414 * they're subdivided in this function. This is the primary factor 1415 * influencing the order in which pages are delivered to the IO 1416 * subsystem according to empirical testing, and this is also justified 1417 * by considering the behavior of a buddy system containing a single 1418 * large block of memory acted on by a series of small allocations. 1419 * This behavior is a critical factor in sglist merging's success. 1420 * 1421 * -- nyc 1422 */ 1423 static inline void expand(struct zone *zone, struct page *page, 1424 int low, int high, struct free_area *area, 1425 int migratetype) 1426 { 1427 unsigned long size = 1 << high; 1428 1429 while (high > low) { 1430 area--; 1431 high--; 1432 size >>= 1; 1433 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1434 1435 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 1436 debug_guardpage_enabled() && 1437 high < debug_guardpage_minorder()) { 1438 /* 1439 * Mark as guard pages (or page), that will allow to 1440 * merge back to allocator when buddy will be freed. 1441 * Corresponding page table entries will not be touched, 1442 * pages will stay not present in virtual address space 1443 */ 1444 set_page_guard(zone, &page[size], high, migratetype); 1445 continue; 1446 } 1447 list_add(&page[size].lru, &area->free_list[migratetype]); 1448 area->nr_free++; 1449 set_page_order(&page[size], high); 1450 } 1451 } 1452 1453 /* 1454 * This page is about to be returned from the page allocator 1455 */ 1456 static inline int check_new_page(struct page *page) 1457 { 1458 const char *bad_reason = NULL; 1459 unsigned long bad_flags = 0; 1460 1461 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1462 bad_reason = "nonzero mapcount"; 1463 if (unlikely(page->mapping != NULL)) 1464 bad_reason = "non-NULL mapping"; 1465 if (unlikely(page_ref_count(page) != 0)) 1466 bad_reason = "nonzero _count"; 1467 if (unlikely(page->flags & __PG_HWPOISON)) { 1468 bad_reason = "HWPoisoned (hardware-corrupted)"; 1469 bad_flags = __PG_HWPOISON; 1470 } 1471 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1472 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1473 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1474 } 1475 #ifdef CONFIG_MEMCG 1476 if (unlikely(page->mem_cgroup)) 1477 bad_reason = "page still charged to cgroup"; 1478 #endif 1479 if (unlikely(bad_reason)) { 1480 bad_page(page, bad_reason, bad_flags); 1481 return 1; 1482 } 1483 return 0; 1484 } 1485 1486 static inline bool free_pages_prezeroed(bool poisoned) 1487 { 1488 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1489 page_poisoning_enabled() && poisoned; 1490 } 1491 1492 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1493 int alloc_flags) 1494 { 1495 int i; 1496 bool poisoned = true; 1497 1498 for (i = 0; i < (1 << order); i++) { 1499 struct page *p = page + i; 1500 if (unlikely(check_new_page(p))) 1501 return 1; 1502 if (poisoned) 1503 poisoned &= page_is_poisoned(p); 1504 } 1505 1506 set_page_private(page, 0); 1507 set_page_refcounted(page); 1508 1509 arch_alloc_page(page, order); 1510 kernel_map_pages(page, 1 << order, 1); 1511 kernel_poison_pages(page, 1 << order, 1); 1512 kasan_alloc_pages(page, order); 1513 1514 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO)) 1515 for (i = 0; i < (1 << order); i++) 1516 clear_highpage(page + i); 1517 1518 if (order && (gfp_flags & __GFP_COMP)) 1519 prep_compound_page(page, order); 1520 1521 set_page_owner(page, order, gfp_flags); 1522 1523 /* 1524 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1525 * allocate the page. The expectation is that the caller is taking 1526 * steps that will free more memory. The caller should avoid the page 1527 * being used for !PFMEMALLOC purposes. 1528 */ 1529 if (alloc_flags & ALLOC_NO_WATERMARKS) 1530 set_page_pfmemalloc(page); 1531 else 1532 clear_page_pfmemalloc(page); 1533 1534 return 0; 1535 } 1536 1537 /* 1538 * Go through the free lists for the given migratetype and remove 1539 * the smallest available page from the freelists 1540 */ 1541 static inline 1542 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1543 int migratetype) 1544 { 1545 unsigned int current_order; 1546 struct free_area *area; 1547 struct page *page; 1548 1549 /* Find a page of the appropriate size in the preferred list */ 1550 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1551 area = &(zone->free_area[current_order]); 1552 page = list_first_entry_or_null(&area->free_list[migratetype], 1553 struct page, lru); 1554 if (!page) 1555 continue; 1556 list_del(&page->lru); 1557 rmv_page_order(page); 1558 area->nr_free--; 1559 expand(zone, page, order, current_order, area, migratetype); 1560 set_pcppage_migratetype(page, migratetype); 1561 return page; 1562 } 1563 1564 return NULL; 1565 } 1566 1567 1568 /* 1569 * This array describes the order lists are fallen back to when 1570 * the free lists for the desirable migrate type are depleted 1571 */ 1572 static int fallbacks[MIGRATE_TYPES][4] = { 1573 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1574 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1575 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1576 #ifdef CONFIG_CMA 1577 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1578 #endif 1579 #ifdef CONFIG_MEMORY_ISOLATION 1580 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1581 #endif 1582 }; 1583 1584 #ifdef CONFIG_CMA 1585 static struct page *__rmqueue_cma_fallback(struct zone *zone, 1586 unsigned int order) 1587 { 1588 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1589 } 1590 #else 1591 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1592 unsigned int order) { return NULL; } 1593 #endif 1594 1595 /* 1596 * Move the free pages in a range to the free lists of the requested type. 1597 * Note that start_page and end_pages are not aligned on a pageblock 1598 * boundary. If alignment is required, use move_freepages_block() 1599 */ 1600 int move_freepages(struct zone *zone, 1601 struct page *start_page, struct page *end_page, 1602 int migratetype) 1603 { 1604 struct page *page; 1605 unsigned int order; 1606 int pages_moved = 0; 1607 1608 #ifndef CONFIG_HOLES_IN_ZONE 1609 /* 1610 * page_zone is not safe to call in this context when 1611 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1612 * anyway as we check zone boundaries in move_freepages_block(). 1613 * Remove at a later date when no bug reports exist related to 1614 * grouping pages by mobility 1615 */ 1616 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1617 #endif 1618 1619 for (page = start_page; page <= end_page;) { 1620 /* Make sure we are not inadvertently changing nodes */ 1621 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1622 1623 if (!pfn_valid_within(page_to_pfn(page))) { 1624 page++; 1625 continue; 1626 } 1627 1628 if (!PageBuddy(page)) { 1629 page++; 1630 continue; 1631 } 1632 1633 order = page_order(page); 1634 list_move(&page->lru, 1635 &zone->free_area[order].free_list[migratetype]); 1636 page += 1 << order; 1637 pages_moved += 1 << order; 1638 } 1639 1640 return pages_moved; 1641 } 1642 1643 int move_freepages_block(struct zone *zone, struct page *page, 1644 int migratetype) 1645 { 1646 unsigned long start_pfn, end_pfn; 1647 struct page *start_page, *end_page; 1648 1649 start_pfn = page_to_pfn(page); 1650 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1651 start_page = pfn_to_page(start_pfn); 1652 end_page = start_page + pageblock_nr_pages - 1; 1653 end_pfn = start_pfn + pageblock_nr_pages - 1; 1654 1655 /* Do not cross zone boundaries */ 1656 if (!zone_spans_pfn(zone, start_pfn)) 1657 start_page = page; 1658 if (!zone_spans_pfn(zone, end_pfn)) 1659 return 0; 1660 1661 return move_freepages(zone, start_page, end_page, migratetype); 1662 } 1663 1664 static void change_pageblock_range(struct page *pageblock_page, 1665 int start_order, int migratetype) 1666 { 1667 int nr_pageblocks = 1 << (start_order - pageblock_order); 1668 1669 while (nr_pageblocks--) { 1670 set_pageblock_migratetype(pageblock_page, migratetype); 1671 pageblock_page += pageblock_nr_pages; 1672 } 1673 } 1674 1675 /* 1676 * When we are falling back to another migratetype during allocation, try to 1677 * steal extra free pages from the same pageblocks to satisfy further 1678 * allocations, instead of polluting multiple pageblocks. 1679 * 1680 * If we are stealing a relatively large buddy page, it is likely there will 1681 * be more free pages in the pageblock, so try to steal them all. For 1682 * reclaimable and unmovable allocations, we steal regardless of page size, 1683 * as fragmentation caused by those allocations polluting movable pageblocks 1684 * is worse than movable allocations stealing from unmovable and reclaimable 1685 * pageblocks. 1686 */ 1687 static bool can_steal_fallback(unsigned int order, int start_mt) 1688 { 1689 /* 1690 * Leaving this order check is intended, although there is 1691 * relaxed order check in next check. The reason is that 1692 * we can actually steal whole pageblock if this condition met, 1693 * but, below check doesn't guarantee it and that is just heuristic 1694 * so could be changed anytime. 1695 */ 1696 if (order >= pageblock_order) 1697 return true; 1698 1699 if (order >= pageblock_order / 2 || 1700 start_mt == MIGRATE_RECLAIMABLE || 1701 start_mt == MIGRATE_UNMOVABLE || 1702 page_group_by_mobility_disabled) 1703 return true; 1704 1705 return false; 1706 } 1707 1708 /* 1709 * This function implements actual steal behaviour. If order is large enough, 1710 * we can steal whole pageblock. If not, we first move freepages in this 1711 * pageblock and check whether half of pages are moved or not. If half of 1712 * pages are moved, we can change migratetype of pageblock and permanently 1713 * use it's pages as requested migratetype in the future. 1714 */ 1715 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1716 int start_type) 1717 { 1718 unsigned int current_order = page_order(page); 1719 int pages; 1720 1721 /* Take ownership for orders >= pageblock_order */ 1722 if (current_order >= pageblock_order) { 1723 change_pageblock_range(page, current_order, start_type); 1724 return; 1725 } 1726 1727 pages = move_freepages_block(zone, page, start_type); 1728 1729 /* Claim the whole block if over half of it is free */ 1730 if (pages >= (1 << (pageblock_order-1)) || 1731 page_group_by_mobility_disabled) 1732 set_pageblock_migratetype(page, start_type); 1733 } 1734 1735 /* 1736 * Check whether there is a suitable fallback freepage with requested order. 1737 * If only_stealable is true, this function returns fallback_mt only if 1738 * we can steal other freepages all together. This would help to reduce 1739 * fragmentation due to mixed migratetype pages in one pageblock. 1740 */ 1741 int find_suitable_fallback(struct free_area *area, unsigned int order, 1742 int migratetype, bool only_stealable, bool *can_steal) 1743 { 1744 int i; 1745 int fallback_mt; 1746 1747 if (area->nr_free == 0) 1748 return -1; 1749 1750 *can_steal = false; 1751 for (i = 0;; i++) { 1752 fallback_mt = fallbacks[migratetype][i]; 1753 if (fallback_mt == MIGRATE_TYPES) 1754 break; 1755 1756 if (list_empty(&area->free_list[fallback_mt])) 1757 continue; 1758 1759 if (can_steal_fallback(order, migratetype)) 1760 *can_steal = true; 1761 1762 if (!only_stealable) 1763 return fallback_mt; 1764 1765 if (*can_steal) 1766 return fallback_mt; 1767 } 1768 1769 return -1; 1770 } 1771 1772 /* 1773 * Reserve a pageblock for exclusive use of high-order atomic allocations if 1774 * there are no empty page blocks that contain a page with a suitable order 1775 */ 1776 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 1777 unsigned int alloc_order) 1778 { 1779 int mt; 1780 unsigned long max_managed, flags; 1781 1782 /* 1783 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 1784 * Check is race-prone but harmless. 1785 */ 1786 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 1787 if (zone->nr_reserved_highatomic >= max_managed) 1788 return; 1789 1790 spin_lock_irqsave(&zone->lock, flags); 1791 1792 /* Recheck the nr_reserved_highatomic limit under the lock */ 1793 if (zone->nr_reserved_highatomic >= max_managed) 1794 goto out_unlock; 1795 1796 /* Yoink! */ 1797 mt = get_pageblock_migratetype(page); 1798 if (mt != MIGRATE_HIGHATOMIC && 1799 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) { 1800 zone->nr_reserved_highatomic += pageblock_nr_pages; 1801 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 1802 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC); 1803 } 1804 1805 out_unlock: 1806 spin_unlock_irqrestore(&zone->lock, flags); 1807 } 1808 1809 /* 1810 * Used when an allocation is about to fail under memory pressure. This 1811 * potentially hurts the reliability of high-order allocations when under 1812 * intense memory pressure but failed atomic allocations should be easier 1813 * to recover from than an OOM. 1814 */ 1815 static void unreserve_highatomic_pageblock(const struct alloc_context *ac) 1816 { 1817 struct zonelist *zonelist = ac->zonelist; 1818 unsigned long flags; 1819 struct zoneref *z; 1820 struct zone *zone; 1821 struct page *page; 1822 int order; 1823 1824 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 1825 ac->nodemask) { 1826 /* Preserve at least one pageblock */ 1827 if (zone->nr_reserved_highatomic <= pageblock_nr_pages) 1828 continue; 1829 1830 spin_lock_irqsave(&zone->lock, flags); 1831 for (order = 0; order < MAX_ORDER; order++) { 1832 struct free_area *area = &(zone->free_area[order]); 1833 1834 page = list_first_entry_or_null( 1835 &area->free_list[MIGRATE_HIGHATOMIC], 1836 struct page, lru); 1837 if (!page) 1838 continue; 1839 1840 /* 1841 * It should never happen but changes to locking could 1842 * inadvertently allow a per-cpu drain to add pages 1843 * to MIGRATE_HIGHATOMIC while unreserving so be safe 1844 * and watch for underflows. 1845 */ 1846 zone->nr_reserved_highatomic -= min(pageblock_nr_pages, 1847 zone->nr_reserved_highatomic); 1848 1849 /* 1850 * Convert to ac->migratetype and avoid the normal 1851 * pageblock stealing heuristics. Minimally, the caller 1852 * is doing the work and needs the pages. More 1853 * importantly, if the block was always converted to 1854 * MIGRATE_UNMOVABLE or another type then the number 1855 * of pageblocks that cannot be completely freed 1856 * may increase. 1857 */ 1858 set_pageblock_migratetype(page, ac->migratetype); 1859 move_freepages_block(zone, page, ac->migratetype); 1860 spin_unlock_irqrestore(&zone->lock, flags); 1861 return; 1862 } 1863 spin_unlock_irqrestore(&zone->lock, flags); 1864 } 1865 } 1866 1867 /* Remove an element from the buddy allocator from the fallback list */ 1868 static inline struct page * 1869 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 1870 { 1871 struct free_area *area; 1872 unsigned int current_order; 1873 struct page *page; 1874 int fallback_mt; 1875 bool can_steal; 1876 1877 /* Find the largest possible block of pages in the other list */ 1878 for (current_order = MAX_ORDER-1; 1879 current_order >= order && current_order <= MAX_ORDER-1; 1880 --current_order) { 1881 area = &(zone->free_area[current_order]); 1882 fallback_mt = find_suitable_fallback(area, current_order, 1883 start_migratetype, false, &can_steal); 1884 if (fallback_mt == -1) 1885 continue; 1886 1887 page = list_first_entry(&area->free_list[fallback_mt], 1888 struct page, lru); 1889 if (can_steal) 1890 steal_suitable_fallback(zone, page, start_migratetype); 1891 1892 /* Remove the page from the freelists */ 1893 area->nr_free--; 1894 list_del(&page->lru); 1895 rmv_page_order(page); 1896 1897 expand(zone, page, order, current_order, area, 1898 start_migratetype); 1899 /* 1900 * The pcppage_migratetype may differ from pageblock's 1901 * migratetype depending on the decisions in 1902 * find_suitable_fallback(). This is OK as long as it does not 1903 * differ for MIGRATE_CMA pageblocks. Those can be used as 1904 * fallback only via special __rmqueue_cma_fallback() function 1905 */ 1906 set_pcppage_migratetype(page, start_migratetype); 1907 1908 trace_mm_page_alloc_extfrag(page, order, current_order, 1909 start_migratetype, fallback_mt); 1910 1911 return page; 1912 } 1913 1914 return NULL; 1915 } 1916 1917 /* 1918 * Do the hard work of removing an element from the buddy allocator. 1919 * Call me with the zone->lock already held. 1920 */ 1921 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1922 int migratetype) 1923 { 1924 struct page *page; 1925 1926 page = __rmqueue_smallest(zone, order, migratetype); 1927 if (unlikely(!page)) { 1928 if (migratetype == MIGRATE_MOVABLE) 1929 page = __rmqueue_cma_fallback(zone, order); 1930 1931 if (!page) 1932 page = __rmqueue_fallback(zone, order, migratetype); 1933 } 1934 1935 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1936 return page; 1937 } 1938 1939 /* 1940 * Obtain a specified number of elements from the buddy allocator, all under 1941 * a single hold of the lock, for efficiency. Add them to the supplied list. 1942 * Returns the number of new pages which were placed at *list. 1943 */ 1944 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1945 unsigned long count, struct list_head *list, 1946 int migratetype, bool cold) 1947 { 1948 int i; 1949 1950 spin_lock(&zone->lock); 1951 for (i = 0; i < count; ++i) { 1952 struct page *page = __rmqueue(zone, order, migratetype); 1953 if (unlikely(page == NULL)) 1954 break; 1955 1956 /* 1957 * Split buddy pages returned by expand() are received here 1958 * in physical page order. The page is added to the callers and 1959 * list and the list head then moves forward. From the callers 1960 * perspective, the linked list is ordered by page number in 1961 * some conditions. This is useful for IO devices that can 1962 * merge IO requests if the physical pages are ordered 1963 * properly. 1964 */ 1965 if (likely(!cold)) 1966 list_add(&page->lru, list); 1967 else 1968 list_add_tail(&page->lru, list); 1969 list = &page->lru; 1970 if (is_migrate_cma(get_pcppage_migratetype(page))) 1971 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1972 -(1 << order)); 1973 } 1974 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1975 spin_unlock(&zone->lock); 1976 return i; 1977 } 1978 1979 #ifdef CONFIG_NUMA 1980 /* 1981 * Called from the vmstat counter updater to drain pagesets of this 1982 * currently executing processor on remote nodes after they have 1983 * expired. 1984 * 1985 * Note that this function must be called with the thread pinned to 1986 * a single processor. 1987 */ 1988 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1989 { 1990 unsigned long flags; 1991 int to_drain, batch; 1992 1993 local_irq_save(flags); 1994 batch = READ_ONCE(pcp->batch); 1995 to_drain = min(pcp->count, batch); 1996 if (to_drain > 0) { 1997 free_pcppages_bulk(zone, to_drain, pcp); 1998 pcp->count -= to_drain; 1999 } 2000 local_irq_restore(flags); 2001 } 2002 #endif 2003 2004 /* 2005 * Drain pcplists of the indicated processor and zone. 2006 * 2007 * The processor must either be the current processor and the 2008 * thread pinned to the current processor or a processor that 2009 * is not online. 2010 */ 2011 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2012 { 2013 unsigned long flags; 2014 struct per_cpu_pageset *pset; 2015 struct per_cpu_pages *pcp; 2016 2017 local_irq_save(flags); 2018 pset = per_cpu_ptr(zone->pageset, cpu); 2019 2020 pcp = &pset->pcp; 2021 if (pcp->count) { 2022 free_pcppages_bulk(zone, pcp->count, pcp); 2023 pcp->count = 0; 2024 } 2025 local_irq_restore(flags); 2026 } 2027 2028 /* 2029 * Drain pcplists of all zones on the indicated processor. 2030 * 2031 * The processor must either be the current processor and the 2032 * thread pinned to the current processor or a processor that 2033 * is not online. 2034 */ 2035 static void drain_pages(unsigned int cpu) 2036 { 2037 struct zone *zone; 2038 2039 for_each_populated_zone(zone) { 2040 drain_pages_zone(cpu, zone); 2041 } 2042 } 2043 2044 /* 2045 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2046 * 2047 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2048 * the single zone's pages. 2049 */ 2050 void drain_local_pages(struct zone *zone) 2051 { 2052 int cpu = smp_processor_id(); 2053 2054 if (zone) 2055 drain_pages_zone(cpu, zone); 2056 else 2057 drain_pages(cpu); 2058 } 2059 2060 /* 2061 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2062 * 2063 * When zone parameter is non-NULL, spill just the single zone's pages. 2064 * 2065 * Note that this code is protected against sending an IPI to an offline 2066 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 2067 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 2068 * nothing keeps CPUs from showing up after we populated the cpumask and 2069 * before the call to on_each_cpu_mask(). 2070 */ 2071 void drain_all_pages(struct zone *zone) 2072 { 2073 int cpu; 2074 2075 /* 2076 * Allocate in the BSS so we wont require allocation in 2077 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2078 */ 2079 static cpumask_t cpus_with_pcps; 2080 2081 /* 2082 * We don't care about racing with CPU hotplug event 2083 * as offline notification will cause the notified 2084 * cpu to drain that CPU pcps and on_each_cpu_mask 2085 * disables preemption as part of its processing 2086 */ 2087 for_each_online_cpu(cpu) { 2088 struct per_cpu_pageset *pcp; 2089 struct zone *z; 2090 bool has_pcps = false; 2091 2092 if (zone) { 2093 pcp = per_cpu_ptr(zone->pageset, cpu); 2094 if (pcp->pcp.count) 2095 has_pcps = true; 2096 } else { 2097 for_each_populated_zone(z) { 2098 pcp = per_cpu_ptr(z->pageset, cpu); 2099 if (pcp->pcp.count) { 2100 has_pcps = true; 2101 break; 2102 } 2103 } 2104 } 2105 2106 if (has_pcps) 2107 cpumask_set_cpu(cpu, &cpus_with_pcps); 2108 else 2109 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2110 } 2111 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages, 2112 zone, 1); 2113 } 2114 2115 #ifdef CONFIG_HIBERNATION 2116 2117 void mark_free_pages(struct zone *zone) 2118 { 2119 unsigned long pfn, max_zone_pfn; 2120 unsigned long flags; 2121 unsigned int order, t; 2122 struct page *page; 2123 2124 if (zone_is_empty(zone)) 2125 return; 2126 2127 spin_lock_irqsave(&zone->lock, flags); 2128 2129 max_zone_pfn = zone_end_pfn(zone); 2130 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2131 if (pfn_valid(pfn)) { 2132 page = pfn_to_page(pfn); 2133 if (!swsusp_page_is_forbidden(page)) 2134 swsusp_unset_page_free(page); 2135 } 2136 2137 for_each_migratetype_order(order, t) { 2138 list_for_each_entry(page, 2139 &zone->free_area[order].free_list[t], lru) { 2140 unsigned long i; 2141 2142 pfn = page_to_pfn(page); 2143 for (i = 0; i < (1UL << order); i++) 2144 swsusp_set_page_free(pfn_to_page(pfn + i)); 2145 } 2146 } 2147 spin_unlock_irqrestore(&zone->lock, flags); 2148 } 2149 #endif /* CONFIG_PM */ 2150 2151 /* 2152 * Free a 0-order page 2153 * cold == true ? free a cold page : free a hot page 2154 */ 2155 void free_hot_cold_page(struct page *page, bool cold) 2156 { 2157 struct zone *zone = page_zone(page); 2158 struct per_cpu_pages *pcp; 2159 unsigned long flags; 2160 unsigned long pfn = page_to_pfn(page); 2161 int migratetype; 2162 2163 if (!free_pages_prepare(page, 0)) 2164 return; 2165 2166 migratetype = get_pfnblock_migratetype(page, pfn); 2167 set_pcppage_migratetype(page, migratetype); 2168 local_irq_save(flags); 2169 __count_vm_event(PGFREE); 2170 2171 /* 2172 * We only track unmovable, reclaimable and movable on pcp lists. 2173 * Free ISOLATE pages back to the allocator because they are being 2174 * offlined but treat RESERVE as movable pages so we can get those 2175 * areas back if necessary. Otherwise, we may have to free 2176 * excessively into the page allocator 2177 */ 2178 if (migratetype >= MIGRATE_PCPTYPES) { 2179 if (unlikely(is_migrate_isolate(migratetype))) { 2180 free_one_page(zone, page, pfn, 0, migratetype); 2181 goto out; 2182 } 2183 migratetype = MIGRATE_MOVABLE; 2184 } 2185 2186 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2187 if (!cold) 2188 list_add(&page->lru, &pcp->lists[migratetype]); 2189 else 2190 list_add_tail(&page->lru, &pcp->lists[migratetype]); 2191 pcp->count++; 2192 if (pcp->count >= pcp->high) { 2193 unsigned long batch = READ_ONCE(pcp->batch); 2194 free_pcppages_bulk(zone, batch, pcp); 2195 pcp->count -= batch; 2196 } 2197 2198 out: 2199 local_irq_restore(flags); 2200 } 2201 2202 /* 2203 * Free a list of 0-order pages 2204 */ 2205 void free_hot_cold_page_list(struct list_head *list, bool cold) 2206 { 2207 struct page *page, *next; 2208 2209 list_for_each_entry_safe(page, next, list, lru) { 2210 trace_mm_page_free_batched(page, cold); 2211 free_hot_cold_page(page, cold); 2212 } 2213 } 2214 2215 /* 2216 * split_page takes a non-compound higher-order page, and splits it into 2217 * n (1<<order) sub-pages: page[0..n] 2218 * Each sub-page must be freed individually. 2219 * 2220 * Note: this is probably too low level an operation for use in drivers. 2221 * Please consult with lkml before using this in your driver. 2222 */ 2223 void split_page(struct page *page, unsigned int order) 2224 { 2225 int i; 2226 gfp_t gfp_mask; 2227 2228 VM_BUG_ON_PAGE(PageCompound(page), page); 2229 VM_BUG_ON_PAGE(!page_count(page), page); 2230 2231 #ifdef CONFIG_KMEMCHECK 2232 /* 2233 * Split shadow pages too, because free(page[0]) would 2234 * otherwise free the whole shadow. 2235 */ 2236 if (kmemcheck_page_is_tracked(page)) 2237 split_page(virt_to_page(page[0].shadow), order); 2238 #endif 2239 2240 gfp_mask = get_page_owner_gfp(page); 2241 set_page_owner(page, 0, gfp_mask); 2242 for (i = 1; i < (1 << order); i++) { 2243 set_page_refcounted(page + i); 2244 set_page_owner(page + i, 0, gfp_mask); 2245 } 2246 } 2247 EXPORT_SYMBOL_GPL(split_page); 2248 2249 int __isolate_free_page(struct page *page, unsigned int order) 2250 { 2251 unsigned long watermark; 2252 struct zone *zone; 2253 int mt; 2254 2255 BUG_ON(!PageBuddy(page)); 2256 2257 zone = page_zone(page); 2258 mt = get_pageblock_migratetype(page); 2259 2260 if (!is_migrate_isolate(mt)) { 2261 /* Obey watermarks as if the page was being allocated */ 2262 watermark = low_wmark_pages(zone) + (1 << order); 2263 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 2264 return 0; 2265 2266 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2267 } 2268 2269 /* Remove page from free list */ 2270 list_del(&page->lru); 2271 zone->free_area[order].nr_free--; 2272 rmv_page_order(page); 2273 2274 set_page_owner(page, order, __GFP_MOVABLE); 2275 2276 /* Set the pageblock if the isolated page is at least a pageblock */ 2277 if (order >= pageblock_order - 1) { 2278 struct page *endpage = page + (1 << order) - 1; 2279 for (; page < endpage; page += pageblock_nr_pages) { 2280 int mt = get_pageblock_migratetype(page); 2281 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 2282 set_pageblock_migratetype(page, 2283 MIGRATE_MOVABLE); 2284 } 2285 } 2286 2287 2288 return 1UL << order; 2289 } 2290 2291 /* 2292 * Similar to split_page except the page is already free. As this is only 2293 * being used for migration, the migratetype of the block also changes. 2294 * As this is called with interrupts disabled, the caller is responsible 2295 * for calling arch_alloc_page() and kernel_map_page() after interrupts 2296 * are enabled. 2297 * 2298 * Note: this is probably too low level an operation for use in drivers. 2299 * Please consult with lkml before using this in your driver. 2300 */ 2301 int split_free_page(struct page *page) 2302 { 2303 unsigned int order; 2304 int nr_pages; 2305 2306 order = page_order(page); 2307 2308 nr_pages = __isolate_free_page(page, order); 2309 if (!nr_pages) 2310 return 0; 2311 2312 /* Split into individual pages */ 2313 set_page_refcounted(page); 2314 split_page(page, order); 2315 return nr_pages; 2316 } 2317 2318 /* 2319 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2320 */ 2321 static inline 2322 struct page *buffered_rmqueue(struct zone *preferred_zone, 2323 struct zone *zone, unsigned int order, 2324 gfp_t gfp_flags, int alloc_flags, int migratetype) 2325 { 2326 unsigned long flags; 2327 struct page *page; 2328 bool cold = ((gfp_flags & __GFP_COLD) != 0); 2329 2330 if (likely(order == 0)) { 2331 struct per_cpu_pages *pcp; 2332 struct list_head *list; 2333 2334 local_irq_save(flags); 2335 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2336 list = &pcp->lists[migratetype]; 2337 if (list_empty(list)) { 2338 pcp->count += rmqueue_bulk(zone, 0, 2339 pcp->batch, list, 2340 migratetype, cold); 2341 if (unlikely(list_empty(list))) 2342 goto failed; 2343 } 2344 2345 if (cold) 2346 page = list_last_entry(list, struct page, lru); 2347 else 2348 page = list_first_entry(list, struct page, lru); 2349 2350 list_del(&page->lru); 2351 pcp->count--; 2352 } else { 2353 /* 2354 * We most definitely don't want callers attempting to 2355 * allocate greater than order-1 page units with __GFP_NOFAIL. 2356 */ 2357 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2358 spin_lock_irqsave(&zone->lock, flags); 2359 2360 page = NULL; 2361 if (alloc_flags & ALLOC_HARDER) { 2362 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2363 if (page) 2364 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2365 } 2366 if (!page) 2367 page = __rmqueue(zone, order, migratetype); 2368 spin_unlock(&zone->lock); 2369 if (!page) 2370 goto failed; 2371 __mod_zone_freepage_state(zone, -(1 << order), 2372 get_pcppage_migratetype(page)); 2373 } 2374 2375 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); 2376 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 && 2377 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) 2378 set_bit(ZONE_FAIR_DEPLETED, &zone->flags); 2379 2380 __count_zone_vm_events(PGALLOC, zone, 1 << order); 2381 zone_statistics(preferred_zone, zone, gfp_flags); 2382 local_irq_restore(flags); 2383 2384 VM_BUG_ON_PAGE(bad_range(zone, page), page); 2385 return page; 2386 2387 failed: 2388 local_irq_restore(flags); 2389 return NULL; 2390 } 2391 2392 #ifdef CONFIG_FAIL_PAGE_ALLOC 2393 2394 static struct { 2395 struct fault_attr attr; 2396 2397 bool ignore_gfp_highmem; 2398 bool ignore_gfp_reclaim; 2399 u32 min_order; 2400 } fail_page_alloc = { 2401 .attr = FAULT_ATTR_INITIALIZER, 2402 .ignore_gfp_reclaim = true, 2403 .ignore_gfp_highmem = true, 2404 .min_order = 1, 2405 }; 2406 2407 static int __init setup_fail_page_alloc(char *str) 2408 { 2409 return setup_fault_attr(&fail_page_alloc.attr, str); 2410 } 2411 __setup("fail_page_alloc=", setup_fail_page_alloc); 2412 2413 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2414 { 2415 if (order < fail_page_alloc.min_order) 2416 return false; 2417 if (gfp_mask & __GFP_NOFAIL) 2418 return false; 2419 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 2420 return false; 2421 if (fail_page_alloc.ignore_gfp_reclaim && 2422 (gfp_mask & __GFP_DIRECT_RECLAIM)) 2423 return false; 2424 2425 return should_fail(&fail_page_alloc.attr, 1 << order); 2426 } 2427 2428 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 2429 2430 static int __init fail_page_alloc_debugfs(void) 2431 { 2432 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 2433 struct dentry *dir; 2434 2435 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 2436 &fail_page_alloc.attr); 2437 if (IS_ERR(dir)) 2438 return PTR_ERR(dir); 2439 2440 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 2441 &fail_page_alloc.ignore_gfp_reclaim)) 2442 goto fail; 2443 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 2444 &fail_page_alloc.ignore_gfp_highmem)) 2445 goto fail; 2446 if (!debugfs_create_u32("min-order", mode, dir, 2447 &fail_page_alloc.min_order)) 2448 goto fail; 2449 2450 return 0; 2451 fail: 2452 debugfs_remove_recursive(dir); 2453 2454 return -ENOMEM; 2455 } 2456 2457 late_initcall(fail_page_alloc_debugfs); 2458 2459 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 2460 2461 #else /* CONFIG_FAIL_PAGE_ALLOC */ 2462 2463 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2464 { 2465 return false; 2466 } 2467 2468 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 2469 2470 /* 2471 * Return true if free base pages are above 'mark'. For high-order checks it 2472 * will return true of the order-0 watermark is reached and there is at least 2473 * one free page of a suitable size. Checking now avoids taking the zone lock 2474 * to check in the allocation paths if no pages are free. 2475 */ 2476 static bool __zone_watermark_ok(struct zone *z, unsigned int order, 2477 unsigned long mark, int classzone_idx, int alloc_flags, 2478 long free_pages) 2479 { 2480 long min = mark; 2481 int o; 2482 const int alloc_harder = (alloc_flags & ALLOC_HARDER); 2483 2484 /* free_pages may go negative - that's OK */ 2485 free_pages -= (1 << order) - 1; 2486 2487 if (alloc_flags & ALLOC_HIGH) 2488 min -= min / 2; 2489 2490 /* 2491 * If the caller does not have rights to ALLOC_HARDER then subtract 2492 * the high-atomic reserves. This will over-estimate the size of the 2493 * atomic reserve but it avoids a search. 2494 */ 2495 if (likely(!alloc_harder)) 2496 free_pages -= z->nr_reserved_highatomic; 2497 else 2498 min -= min / 4; 2499 2500 #ifdef CONFIG_CMA 2501 /* If allocation can't use CMA areas don't use free CMA pages */ 2502 if (!(alloc_flags & ALLOC_CMA)) 2503 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 2504 #endif 2505 2506 /* 2507 * Check watermarks for an order-0 allocation request. If these 2508 * are not met, then a high-order request also cannot go ahead 2509 * even if a suitable page happened to be free. 2510 */ 2511 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 2512 return false; 2513 2514 /* If this is an order-0 request then the watermark is fine */ 2515 if (!order) 2516 return true; 2517 2518 /* For a high-order request, check at least one suitable page is free */ 2519 for (o = order; o < MAX_ORDER; o++) { 2520 struct free_area *area = &z->free_area[o]; 2521 int mt; 2522 2523 if (!area->nr_free) 2524 continue; 2525 2526 if (alloc_harder) 2527 return true; 2528 2529 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 2530 if (!list_empty(&area->free_list[mt])) 2531 return true; 2532 } 2533 2534 #ifdef CONFIG_CMA 2535 if ((alloc_flags & ALLOC_CMA) && 2536 !list_empty(&area->free_list[MIGRATE_CMA])) { 2537 return true; 2538 } 2539 #endif 2540 } 2541 return false; 2542 } 2543 2544 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2545 int classzone_idx, int alloc_flags) 2546 { 2547 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 2548 zone_page_state(z, NR_FREE_PAGES)); 2549 } 2550 2551 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 2552 unsigned long mark, int classzone_idx) 2553 { 2554 long free_pages = zone_page_state(z, NR_FREE_PAGES); 2555 2556 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 2557 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 2558 2559 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 2560 free_pages); 2561 } 2562 2563 #ifdef CONFIG_NUMA 2564 static bool zone_local(struct zone *local_zone, struct zone *zone) 2565 { 2566 return local_zone->node == zone->node; 2567 } 2568 2569 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2570 { 2571 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < 2572 RECLAIM_DISTANCE; 2573 } 2574 #else /* CONFIG_NUMA */ 2575 static bool zone_local(struct zone *local_zone, struct zone *zone) 2576 { 2577 return true; 2578 } 2579 2580 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2581 { 2582 return true; 2583 } 2584 #endif /* CONFIG_NUMA */ 2585 2586 static void reset_alloc_batches(struct zone *preferred_zone) 2587 { 2588 struct zone *zone = preferred_zone->zone_pgdat->node_zones; 2589 2590 do { 2591 mod_zone_page_state(zone, NR_ALLOC_BATCH, 2592 high_wmark_pages(zone) - low_wmark_pages(zone) - 2593 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 2594 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags); 2595 } while (zone++ != preferred_zone); 2596 } 2597 2598 /* 2599 * get_page_from_freelist goes through the zonelist trying to allocate 2600 * a page. 2601 */ 2602 static struct page * 2603 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 2604 const struct alloc_context *ac) 2605 { 2606 struct zonelist *zonelist = ac->zonelist; 2607 struct zoneref *z; 2608 struct page *page = NULL; 2609 struct zone *zone; 2610 int nr_fair_skipped = 0; 2611 bool zonelist_rescan; 2612 2613 zonelist_scan: 2614 zonelist_rescan = false; 2615 2616 /* 2617 * Scan zonelist, looking for a zone with enough free. 2618 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 2619 */ 2620 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2621 ac->nodemask) { 2622 unsigned long mark; 2623 2624 if (cpusets_enabled() && 2625 (alloc_flags & ALLOC_CPUSET) && 2626 !cpuset_zone_allowed(zone, gfp_mask)) 2627 continue; 2628 /* 2629 * Distribute pages in proportion to the individual 2630 * zone size to ensure fair page aging. The zone a 2631 * page was allocated in should have no effect on the 2632 * time the page has in memory before being reclaimed. 2633 */ 2634 if (alloc_flags & ALLOC_FAIR) { 2635 if (!zone_local(ac->preferred_zone, zone)) 2636 break; 2637 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) { 2638 nr_fair_skipped++; 2639 continue; 2640 } 2641 } 2642 /* 2643 * When allocating a page cache page for writing, we 2644 * want to get it from a zone that is within its dirty 2645 * limit, such that no single zone holds more than its 2646 * proportional share of globally allowed dirty pages. 2647 * The dirty limits take into account the zone's 2648 * lowmem reserves and high watermark so that kswapd 2649 * should be able to balance it without having to 2650 * write pages from its LRU list. 2651 * 2652 * This may look like it could increase pressure on 2653 * lower zones by failing allocations in higher zones 2654 * before they are full. But the pages that do spill 2655 * over are limited as the lower zones are protected 2656 * by this very same mechanism. It should not become 2657 * a practical burden to them. 2658 * 2659 * XXX: For now, allow allocations to potentially 2660 * exceed the per-zone dirty limit in the slowpath 2661 * (spread_dirty_pages unset) before going into reclaim, 2662 * which is important when on a NUMA setup the allowed 2663 * zones are together not big enough to reach the 2664 * global limit. The proper fix for these situations 2665 * will require awareness of zones in the 2666 * dirty-throttling and the flusher threads. 2667 */ 2668 if (ac->spread_dirty_pages && !zone_dirty_ok(zone)) 2669 continue; 2670 2671 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 2672 if (!zone_watermark_ok(zone, order, mark, 2673 ac->classzone_idx, alloc_flags)) { 2674 int ret; 2675 2676 /* Checked here to keep the fast path fast */ 2677 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 2678 if (alloc_flags & ALLOC_NO_WATERMARKS) 2679 goto try_this_zone; 2680 2681 if (zone_reclaim_mode == 0 || 2682 !zone_allows_reclaim(ac->preferred_zone, zone)) 2683 continue; 2684 2685 ret = zone_reclaim(zone, gfp_mask, order); 2686 switch (ret) { 2687 case ZONE_RECLAIM_NOSCAN: 2688 /* did not scan */ 2689 continue; 2690 case ZONE_RECLAIM_FULL: 2691 /* scanned but unreclaimable */ 2692 continue; 2693 default: 2694 /* did we reclaim enough */ 2695 if (zone_watermark_ok(zone, order, mark, 2696 ac->classzone_idx, alloc_flags)) 2697 goto try_this_zone; 2698 2699 continue; 2700 } 2701 } 2702 2703 try_this_zone: 2704 page = buffered_rmqueue(ac->preferred_zone, zone, order, 2705 gfp_mask, alloc_flags, ac->migratetype); 2706 if (page) { 2707 if (prep_new_page(page, order, gfp_mask, alloc_flags)) 2708 goto try_this_zone; 2709 2710 /* 2711 * If this is a high-order atomic allocation then check 2712 * if the pageblock should be reserved for the future 2713 */ 2714 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 2715 reserve_highatomic_pageblock(page, zone, order); 2716 2717 return page; 2718 } 2719 } 2720 2721 /* 2722 * The first pass makes sure allocations are spread fairly within the 2723 * local node. However, the local node might have free pages left 2724 * after the fairness batches are exhausted, and remote zones haven't 2725 * even been considered yet. Try once more without fairness, and 2726 * include remote zones now, before entering the slowpath and waking 2727 * kswapd: prefer spilling to a remote zone over swapping locally. 2728 */ 2729 if (alloc_flags & ALLOC_FAIR) { 2730 alloc_flags &= ~ALLOC_FAIR; 2731 if (nr_fair_skipped) { 2732 zonelist_rescan = true; 2733 reset_alloc_batches(ac->preferred_zone); 2734 } 2735 if (nr_online_nodes > 1) 2736 zonelist_rescan = true; 2737 } 2738 2739 if (zonelist_rescan) 2740 goto zonelist_scan; 2741 2742 return NULL; 2743 } 2744 2745 /* 2746 * Large machines with many possible nodes should not always dump per-node 2747 * meminfo in irq context. 2748 */ 2749 static inline bool should_suppress_show_mem(void) 2750 { 2751 bool ret = false; 2752 2753 #if NODES_SHIFT > 8 2754 ret = in_interrupt(); 2755 #endif 2756 return ret; 2757 } 2758 2759 static DEFINE_RATELIMIT_STATE(nopage_rs, 2760 DEFAULT_RATELIMIT_INTERVAL, 2761 DEFAULT_RATELIMIT_BURST); 2762 2763 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...) 2764 { 2765 unsigned int filter = SHOW_MEM_FILTER_NODES; 2766 2767 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2768 debug_guardpage_minorder() > 0) 2769 return; 2770 2771 /* 2772 * This documents exceptions given to allocations in certain 2773 * contexts that are allowed to allocate outside current's set 2774 * of allowed nodes. 2775 */ 2776 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2777 if (test_thread_flag(TIF_MEMDIE) || 2778 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2779 filter &= ~SHOW_MEM_FILTER_NODES; 2780 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 2781 filter &= ~SHOW_MEM_FILTER_NODES; 2782 2783 if (fmt) { 2784 struct va_format vaf; 2785 va_list args; 2786 2787 va_start(args, fmt); 2788 2789 vaf.fmt = fmt; 2790 vaf.va = &args; 2791 2792 pr_warn("%pV", &vaf); 2793 2794 va_end(args); 2795 } 2796 2797 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n", 2798 current->comm, order, gfp_mask, &gfp_mask); 2799 dump_stack(); 2800 if (!should_suppress_show_mem()) 2801 show_mem(filter); 2802 } 2803 2804 static inline struct page * 2805 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2806 const struct alloc_context *ac, unsigned long *did_some_progress) 2807 { 2808 struct oom_control oc = { 2809 .zonelist = ac->zonelist, 2810 .nodemask = ac->nodemask, 2811 .gfp_mask = gfp_mask, 2812 .order = order, 2813 }; 2814 struct page *page; 2815 2816 *did_some_progress = 0; 2817 2818 /* 2819 * Acquire the oom lock. If that fails, somebody else is 2820 * making progress for us. 2821 */ 2822 if (!mutex_trylock(&oom_lock)) { 2823 *did_some_progress = 1; 2824 schedule_timeout_uninterruptible(1); 2825 return NULL; 2826 } 2827 2828 /* 2829 * Go through the zonelist yet one more time, keep very high watermark 2830 * here, this is only to catch a parallel oom killing, we must fail if 2831 * we're still under heavy pressure. 2832 */ 2833 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, 2834 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 2835 if (page) 2836 goto out; 2837 2838 if (!(gfp_mask & __GFP_NOFAIL)) { 2839 /* Coredumps can quickly deplete all memory reserves */ 2840 if (current->flags & PF_DUMPCORE) 2841 goto out; 2842 /* The OOM killer will not help higher order allocs */ 2843 if (order > PAGE_ALLOC_COSTLY_ORDER) 2844 goto out; 2845 /* The OOM killer does not needlessly kill tasks for lowmem */ 2846 if (ac->high_zoneidx < ZONE_NORMAL) 2847 goto out; 2848 /* The OOM killer does not compensate for IO-less reclaim */ 2849 if (!(gfp_mask & __GFP_FS)) { 2850 /* 2851 * XXX: Page reclaim didn't yield anything, 2852 * and the OOM killer can't be invoked, but 2853 * keep looping as per tradition. 2854 */ 2855 *did_some_progress = 1; 2856 goto out; 2857 } 2858 if (pm_suspended_storage()) 2859 goto out; 2860 /* The OOM killer may not free memory on a specific node */ 2861 if (gfp_mask & __GFP_THISNODE) 2862 goto out; 2863 } 2864 /* Exhausted what can be done so it's blamo time */ 2865 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 2866 *did_some_progress = 1; 2867 2868 if (gfp_mask & __GFP_NOFAIL) { 2869 page = get_page_from_freelist(gfp_mask, order, 2870 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac); 2871 /* 2872 * fallback to ignore cpuset restriction if our nodes 2873 * are depleted 2874 */ 2875 if (!page) 2876 page = get_page_from_freelist(gfp_mask, order, 2877 ALLOC_NO_WATERMARKS, ac); 2878 } 2879 } 2880 out: 2881 mutex_unlock(&oom_lock); 2882 return page; 2883 } 2884 2885 #ifdef CONFIG_COMPACTION 2886 /* Try memory compaction for high-order allocations before reclaim */ 2887 static struct page * 2888 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2889 int alloc_flags, const struct alloc_context *ac, 2890 enum migrate_mode mode, int *contended_compaction, 2891 bool *deferred_compaction) 2892 { 2893 unsigned long compact_result; 2894 struct page *page; 2895 2896 if (!order) 2897 return NULL; 2898 2899 current->flags |= PF_MEMALLOC; 2900 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 2901 mode, contended_compaction); 2902 current->flags &= ~PF_MEMALLOC; 2903 2904 switch (compact_result) { 2905 case COMPACT_DEFERRED: 2906 *deferred_compaction = true; 2907 /* fall-through */ 2908 case COMPACT_SKIPPED: 2909 return NULL; 2910 default: 2911 break; 2912 } 2913 2914 /* 2915 * At least in one zone compaction wasn't deferred or skipped, so let's 2916 * count a compaction stall 2917 */ 2918 count_vm_event(COMPACTSTALL); 2919 2920 page = get_page_from_freelist(gfp_mask, order, 2921 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2922 2923 if (page) { 2924 struct zone *zone = page_zone(page); 2925 2926 zone->compact_blockskip_flush = false; 2927 compaction_defer_reset(zone, order, true); 2928 count_vm_event(COMPACTSUCCESS); 2929 return page; 2930 } 2931 2932 /* 2933 * It's bad if compaction run occurs and fails. The most likely reason 2934 * is that pages exist, but not enough to satisfy watermarks. 2935 */ 2936 count_vm_event(COMPACTFAIL); 2937 2938 cond_resched(); 2939 2940 return NULL; 2941 } 2942 #else 2943 static inline struct page * 2944 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2945 int alloc_flags, const struct alloc_context *ac, 2946 enum migrate_mode mode, int *contended_compaction, 2947 bool *deferred_compaction) 2948 { 2949 return NULL; 2950 } 2951 #endif /* CONFIG_COMPACTION */ 2952 2953 /* Perform direct synchronous page reclaim */ 2954 static int 2955 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 2956 const struct alloc_context *ac) 2957 { 2958 struct reclaim_state reclaim_state; 2959 int progress; 2960 2961 cond_resched(); 2962 2963 /* We now go into synchronous reclaim */ 2964 cpuset_memory_pressure_bump(); 2965 current->flags |= PF_MEMALLOC; 2966 lockdep_set_current_reclaim_state(gfp_mask); 2967 reclaim_state.reclaimed_slab = 0; 2968 current->reclaim_state = &reclaim_state; 2969 2970 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 2971 ac->nodemask); 2972 2973 current->reclaim_state = NULL; 2974 lockdep_clear_current_reclaim_state(); 2975 current->flags &= ~PF_MEMALLOC; 2976 2977 cond_resched(); 2978 2979 return progress; 2980 } 2981 2982 /* The really slow allocator path where we enter direct reclaim */ 2983 static inline struct page * 2984 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2985 int alloc_flags, const struct alloc_context *ac, 2986 unsigned long *did_some_progress) 2987 { 2988 struct page *page = NULL; 2989 bool drained = false; 2990 2991 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 2992 if (unlikely(!(*did_some_progress))) 2993 return NULL; 2994 2995 retry: 2996 page = get_page_from_freelist(gfp_mask, order, 2997 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2998 2999 /* 3000 * If an allocation failed after direct reclaim, it could be because 3001 * pages are pinned on the per-cpu lists or in high alloc reserves. 3002 * Shrink them them and try again 3003 */ 3004 if (!page && !drained) { 3005 unreserve_highatomic_pageblock(ac); 3006 drain_all_pages(NULL); 3007 drained = true; 3008 goto retry; 3009 } 3010 3011 return page; 3012 } 3013 3014 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 3015 { 3016 struct zoneref *z; 3017 struct zone *zone; 3018 3019 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3020 ac->high_zoneidx, ac->nodemask) 3021 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone)); 3022 } 3023 3024 static inline int 3025 gfp_to_alloc_flags(gfp_t gfp_mask) 3026 { 3027 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3028 3029 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3030 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3031 3032 /* 3033 * The caller may dip into page reserves a bit more if the caller 3034 * cannot run direct reclaim, or if the caller has realtime scheduling 3035 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3036 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3037 */ 3038 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3039 3040 if (gfp_mask & __GFP_ATOMIC) { 3041 /* 3042 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3043 * if it can't schedule. 3044 */ 3045 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3046 alloc_flags |= ALLOC_HARDER; 3047 /* 3048 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3049 * comment for __cpuset_node_allowed(). 3050 */ 3051 alloc_flags &= ~ALLOC_CPUSET; 3052 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3053 alloc_flags |= ALLOC_HARDER; 3054 3055 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 3056 if (gfp_mask & __GFP_MEMALLOC) 3057 alloc_flags |= ALLOC_NO_WATERMARKS; 3058 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3059 alloc_flags |= ALLOC_NO_WATERMARKS; 3060 else if (!in_interrupt() && 3061 ((current->flags & PF_MEMALLOC) || 3062 unlikely(test_thread_flag(TIF_MEMDIE)))) 3063 alloc_flags |= ALLOC_NO_WATERMARKS; 3064 } 3065 #ifdef CONFIG_CMA 3066 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3067 alloc_flags |= ALLOC_CMA; 3068 #endif 3069 return alloc_flags; 3070 } 3071 3072 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3073 { 3074 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 3075 } 3076 3077 static inline bool is_thp_gfp_mask(gfp_t gfp_mask) 3078 { 3079 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE; 3080 } 3081 3082 static inline struct page * 3083 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3084 struct alloc_context *ac) 3085 { 3086 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3087 struct page *page = NULL; 3088 int alloc_flags; 3089 unsigned long pages_reclaimed = 0; 3090 unsigned long did_some_progress; 3091 enum migrate_mode migration_mode = MIGRATE_ASYNC; 3092 bool deferred_compaction = false; 3093 int contended_compaction = COMPACT_CONTENDED_NONE; 3094 3095 /* 3096 * In the slowpath, we sanity check order to avoid ever trying to 3097 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 3098 * be using allocators in order of preference for an area that is 3099 * too large. 3100 */ 3101 if (order >= MAX_ORDER) { 3102 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 3103 return NULL; 3104 } 3105 3106 /* 3107 * We also sanity check to catch abuse of atomic reserves being used by 3108 * callers that are not in atomic context. 3109 */ 3110 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 3111 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 3112 gfp_mask &= ~__GFP_ATOMIC; 3113 3114 retry: 3115 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3116 wake_all_kswapds(order, ac); 3117 3118 /* 3119 * OK, we're below the kswapd watermark and have kicked background 3120 * reclaim. Now things get more complex, so set up alloc_flags according 3121 * to how we want to proceed. 3122 */ 3123 alloc_flags = gfp_to_alloc_flags(gfp_mask); 3124 3125 /* 3126 * Find the true preferred zone if the allocation is unconstrained by 3127 * cpusets. 3128 */ 3129 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) { 3130 struct zoneref *preferred_zoneref; 3131 preferred_zoneref = first_zones_zonelist(ac->zonelist, 3132 ac->high_zoneidx, NULL, &ac->preferred_zone); 3133 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref); 3134 } 3135 3136 /* This is the last chance, in general, before the goto nopage. */ 3137 page = get_page_from_freelist(gfp_mask, order, 3138 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 3139 if (page) 3140 goto got_pg; 3141 3142 /* Allocate without watermarks if the context allows */ 3143 if (alloc_flags & ALLOC_NO_WATERMARKS) { 3144 /* 3145 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 3146 * the allocation is high priority and these type of 3147 * allocations are system rather than user orientated 3148 */ 3149 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 3150 page = get_page_from_freelist(gfp_mask, order, 3151 ALLOC_NO_WATERMARKS, ac); 3152 if (page) 3153 goto got_pg; 3154 } 3155 3156 /* Caller is not willing to reclaim, we can't balance anything */ 3157 if (!can_direct_reclaim) { 3158 /* 3159 * All existing users of the __GFP_NOFAIL are blockable, so warn 3160 * of any new users that actually allow this type of allocation 3161 * to fail. 3162 */ 3163 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); 3164 goto nopage; 3165 } 3166 3167 /* Avoid recursion of direct reclaim */ 3168 if (current->flags & PF_MEMALLOC) { 3169 /* 3170 * __GFP_NOFAIL request from this context is rather bizarre 3171 * because we cannot reclaim anything and only can loop waiting 3172 * for somebody to do a work for us. 3173 */ 3174 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3175 cond_resched(); 3176 goto retry; 3177 } 3178 goto nopage; 3179 } 3180 3181 /* Avoid allocations with no watermarks from looping endlessly */ 3182 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 3183 goto nopage; 3184 3185 /* 3186 * Try direct compaction. The first pass is asynchronous. Subsequent 3187 * attempts after direct reclaim are synchronous 3188 */ 3189 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 3190 migration_mode, 3191 &contended_compaction, 3192 &deferred_compaction); 3193 if (page) 3194 goto got_pg; 3195 3196 /* Checks for THP-specific high-order allocations */ 3197 if (is_thp_gfp_mask(gfp_mask)) { 3198 /* 3199 * If compaction is deferred for high-order allocations, it is 3200 * because sync compaction recently failed. If this is the case 3201 * and the caller requested a THP allocation, we do not want 3202 * to heavily disrupt the system, so we fail the allocation 3203 * instead of entering direct reclaim. 3204 */ 3205 if (deferred_compaction) 3206 goto nopage; 3207 3208 /* 3209 * In all zones where compaction was attempted (and not 3210 * deferred or skipped), lock contention has been detected. 3211 * For THP allocation we do not want to disrupt the others 3212 * so we fallback to base pages instead. 3213 */ 3214 if (contended_compaction == COMPACT_CONTENDED_LOCK) 3215 goto nopage; 3216 3217 /* 3218 * If compaction was aborted due to need_resched(), we do not 3219 * want to further increase allocation latency, unless it is 3220 * khugepaged trying to collapse. 3221 */ 3222 if (contended_compaction == COMPACT_CONTENDED_SCHED 3223 && !(current->flags & PF_KTHREAD)) 3224 goto nopage; 3225 } 3226 3227 /* 3228 * It can become very expensive to allocate transparent hugepages at 3229 * fault, so use asynchronous memory compaction for THP unless it is 3230 * khugepaged trying to collapse. 3231 */ 3232 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD)) 3233 migration_mode = MIGRATE_SYNC_LIGHT; 3234 3235 /* Try direct reclaim and then allocating */ 3236 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 3237 &did_some_progress); 3238 if (page) 3239 goto got_pg; 3240 3241 /* Do not loop if specifically requested */ 3242 if (gfp_mask & __GFP_NORETRY) 3243 goto noretry; 3244 3245 /* Keep reclaiming pages as long as there is reasonable progress */ 3246 pages_reclaimed += did_some_progress; 3247 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) || 3248 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) { 3249 /* Wait for some write requests to complete then retry */ 3250 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50); 3251 goto retry; 3252 } 3253 3254 /* Reclaim has failed us, start killing things */ 3255 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 3256 if (page) 3257 goto got_pg; 3258 3259 /* Retry as long as the OOM killer is making progress */ 3260 if (did_some_progress) 3261 goto retry; 3262 3263 noretry: 3264 /* 3265 * High-order allocations do not necessarily loop after 3266 * direct reclaim and reclaim/compaction depends on compaction 3267 * being called after reclaim so call directly if necessary 3268 */ 3269 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, 3270 ac, migration_mode, 3271 &contended_compaction, 3272 &deferred_compaction); 3273 if (page) 3274 goto got_pg; 3275 nopage: 3276 warn_alloc_failed(gfp_mask, order, NULL); 3277 got_pg: 3278 return page; 3279 } 3280 3281 /* 3282 * This is the 'heart' of the zoned buddy allocator. 3283 */ 3284 struct page * 3285 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 3286 struct zonelist *zonelist, nodemask_t *nodemask) 3287 { 3288 struct zoneref *preferred_zoneref; 3289 struct page *page = NULL; 3290 unsigned int cpuset_mems_cookie; 3291 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; 3292 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 3293 struct alloc_context ac = { 3294 .high_zoneidx = gfp_zone(gfp_mask), 3295 .nodemask = nodemask, 3296 .migratetype = gfpflags_to_migratetype(gfp_mask), 3297 }; 3298 3299 gfp_mask &= gfp_allowed_mask; 3300 3301 lockdep_trace_alloc(gfp_mask); 3302 3303 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 3304 3305 if (should_fail_alloc_page(gfp_mask, order)) 3306 return NULL; 3307 3308 /* 3309 * Check the zones suitable for the gfp_mask contain at least one 3310 * valid zone. It's possible to have an empty zonelist as a result 3311 * of __GFP_THISNODE and a memoryless node 3312 */ 3313 if (unlikely(!zonelist->_zonerefs->zone)) 3314 return NULL; 3315 3316 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE) 3317 alloc_flags |= ALLOC_CMA; 3318 3319 retry_cpuset: 3320 cpuset_mems_cookie = read_mems_allowed_begin(); 3321 3322 /* We set it here, as __alloc_pages_slowpath might have changed it */ 3323 ac.zonelist = zonelist; 3324 3325 /* Dirty zone balancing only done in the fast path */ 3326 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE); 3327 3328 /* The preferred zone is used for statistics later */ 3329 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx, 3330 ac.nodemask ? : &cpuset_current_mems_allowed, 3331 &ac.preferred_zone); 3332 if (!ac.preferred_zone) 3333 goto out; 3334 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref); 3335 3336 /* First allocation attempt */ 3337 alloc_mask = gfp_mask|__GFP_HARDWALL; 3338 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 3339 if (unlikely(!page)) { 3340 /* 3341 * Runtime PM, block IO and its error handling path 3342 * can deadlock because I/O on the device might not 3343 * complete. 3344 */ 3345 alloc_mask = memalloc_noio_flags(gfp_mask); 3346 ac.spread_dirty_pages = false; 3347 3348 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 3349 } 3350 3351 if (kmemcheck_enabled && page) 3352 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 3353 3354 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 3355 3356 out: 3357 /* 3358 * When updating a task's mems_allowed, it is possible to race with 3359 * parallel threads in such a way that an allocation can fail while 3360 * the mask is being updated. If a page allocation is about to fail, 3361 * check if the cpuset changed during allocation and if so, retry. 3362 */ 3363 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 3364 goto retry_cpuset; 3365 3366 return page; 3367 } 3368 EXPORT_SYMBOL(__alloc_pages_nodemask); 3369 3370 /* 3371 * Common helper functions. 3372 */ 3373 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 3374 { 3375 struct page *page; 3376 3377 /* 3378 * __get_free_pages() returns a 32-bit address, which cannot represent 3379 * a highmem page 3380 */ 3381 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 3382 3383 page = alloc_pages(gfp_mask, order); 3384 if (!page) 3385 return 0; 3386 return (unsigned long) page_address(page); 3387 } 3388 EXPORT_SYMBOL(__get_free_pages); 3389 3390 unsigned long get_zeroed_page(gfp_t gfp_mask) 3391 { 3392 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 3393 } 3394 EXPORT_SYMBOL(get_zeroed_page); 3395 3396 void __free_pages(struct page *page, unsigned int order) 3397 { 3398 if (put_page_testzero(page)) { 3399 if (order == 0) 3400 free_hot_cold_page(page, false); 3401 else 3402 __free_pages_ok(page, order); 3403 } 3404 } 3405 3406 EXPORT_SYMBOL(__free_pages); 3407 3408 void free_pages(unsigned long addr, unsigned int order) 3409 { 3410 if (addr != 0) { 3411 VM_BUG_ON(!virt_addr_valid((void *)addr)); 3412 __free_pages(virt_to_page((void *)addr), order); 3413 } 3414 } 3415 3416 EXPORT_SYMBOL(free_pages); 3417 3418 /* 3419 * Page Fragment: 3420 * An arbitrary-length arbitrary-offset area of memory which resides 3421 * within a 0 or higher order page. Multiple fragments within that page 3422 * are individually refcounted, in the page's reference counter. 3423 * 3424 * The page_frag functions below provide a simple allocation framework for 3425 * page fragments. This is used by the network stack and network device 3426 * drivers to provide a backing region of memory for use as either an 3427 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 3428 */ 3429 static struct page *__page_frag_refill(struct page_frag_cache *nc, 3430 gfp_t gfp_mask) 3431 { 3432 struct page *page = NULL; 3433 gfp_t gfp = gfp_mask; 3434 3435 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3436 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 3437 __GFP_NOMEMALLOC; 3438 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 3439 PAGE_FRAG_CACHE_MAX_ORDER); 3440 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 3441 #endif 3442 if (unlikely(!page)) 3443 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 3444 3445 nc->va = page ? page_address(page) : NULL; 3446 3447 return page; 3448 } 3449 3450 void *__alloc_page_frag(struct page_frag_cache *nc, 3451 unsigned int fragsz, gfp_t gfp_mask) 3452 { 3453 unsigned int size = PAGE_SIZE; 3454 struct page *page; 3455 int offset; 3456 3457 if (unlikely(!nc->va)) { 3458 refill: 3459 page = __page_frag_refill(nc, gfp_mask); 3460 if (!page) 3461 return NULL; 3462 3463 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3464 /* if size can vary use size else just use PAGE_SIZE */ 3465 size = nc->size; 3466 #endif 3467 /* Even if we own the page, we do not use atomic_set(). 3468 * This would break get_page_unless_zero() users. 3469 */ 3470 page_ref_add(page, size - 1); 3471 3472 /* reset page count bias and offset to start of new frag */ 3473 nc->pfmemalloc = page_is_pfmemalloc(page); 3474 nc->pagecnt_bias = size; 3475 nc->offset = size; 3476 } 3477 3478 offset = nc->offset - fragsz; 3479 if (unlikely(offset < 0)) { 3480 page = virt_to_page(nc->va); 3481 3482 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 3483 goto refill; 3484 3485 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3486 /* if size can vary use size else just use PAGE_SIZE */ 3487 size = nc->size; 3488 #endif 3489 /* OK, page count is 0, we can safely set it */ 3490 set_page_count(page, size); 3491 3492 /* reset page count bias and offset to start of new frag */ 3493 nc->pagecnt_bias = size; 3494 offset = size - fragsz; 3495 } 3496 3497 nc->pagecnt_bias--; 3498 nc->offset = offset; 3499 3500 return nc->va + offset; 3501 } 3502 EXPORT_SYMBOL(__alloc_page_frag); 3503 3504 /* 3505 * Frees a page fragment allocated out of either a compound or order 0 page. 3506 */ 3507 void __free_page_frag(void *addr) 3508 { 3509 struct page *page = virt_to_head_page(addr); 3510 3511 if (unlikely(put_page_testzero(page))) 3512 __free_pages_ok(page, compound_order(page)); 3513 } 3514 EXPORT_SYMBOL(__free_page_frag); 3515 3516 /* 3517 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter 3518 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is 3519 * equivalent to alloc_pages. 3520 * 3521 * It should be used when the caller would like to use kmalloc, but since the 3522 * allocation is large, it has to fall back to the page allocator. 3523 */ 3524 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) 3525 { 3526 struct page *page; 3527 3528 page = alloc_pages(gfp_mask, order); 3529 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) { 3530 __free_pages(page, order); 3531 page = NULL; 3532 } 3533 return page; 3534 } 3535 3536 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 3537 { 3538 struct page *page; 3539 3540 page = alloc_pages_node(nid, gfp_mask, order); 3541 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) { 3542 __free_pages(page, order); 3543 page = NULL; 3544 } 3545 return page; 3546 } 3547 3548 /* 3549 * __free_kmem_pages and free_kmem_pages will free pages allocated with 3550 * alloc_kmem_pages. 3551 */ 3552 void __free_kmem_pages(struct page *page, unsigned int order) 3553 { 3554 memcg_kmem_uncharge(page, order); 3555 __free_pages(page, order); 3556 } 3557 3558 void free_kmem_pages(unsigned long addr, unsigned int order) 3559 { 3560 if (addr != 0) { 3561 VM_BUG_ON(!virt_addr_valid((void *)addr)); 3562 __free_kmem_pages(virt_to_page((void *)addr), order); 3563 } 3564 } 3565 3566 static void *make_alloc_exact(unsigned long addr, unsigned int order, 3567 size_t size) 3568 { 3569 if (addr) { 3570 unsigned long alloc_end = addr + (PAGE_SIZE << order); 3571 unsigned long used = addr + PAGE_ALIGN(size); 3572 3573 split_page(virt_to_page((void *)addr), order); 3574 while (used < alloc_end) { 3575 free_page(used); 3576 used += PAGE_SIZE; 3577 } 3578 } 3579 return (void *)addr; 3580 } 3581 3582 /** 3583 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 3584 * @size: the number of bytes to allocate 3585 * @gfp_mask: GFP flags for the allocation 3586 * 3587 * This function is similar to alloc_pages(), except that it allocates the 3588 * minimum number of pages to satisfy the request. alloc_pages() can only 3589 * allocate memory in power-of-two pages. 3590 * 3591 * This function is also limited by MAX_ORDER. 3592 * 3593 * Memory allocated by this function must be released by free_pages_exact(). 3594 */ 3595 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 3596 { 3597 unsigned int order = get_order(size); 3598 unsigned long addr; 3599 3600 addr = __get_free_pages(gfp_mask, order); 3601 return make_alloc_exact(addr, order, size); 3602 } 3603 EXPORT_SYMBOL(alloc_pages_exact); 3604 3605 /** 3606 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 3607 * pages on a node. 3608 * @nid: the preferred node ID where memory should be allocated 3609 * @size: the number of bytes to allocate 3610 * @gfp_mask: GFP flags for the allocation 3611 * 3612 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 3613 * back. 3614 */ 3615 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 3616 { 3617 unsigned int order = get_order(size); 3618 struct page *p = alloc_pages_node(nid, gfp_mask, order); 3619 if (!p) 3620 return NULL; 3621 return make_alloc_exact((unsigned long)page_address(p), order, size); 3622 } 3623 3624 /** 3625 * free_pages_exact - release memory allocated via alloc_pages_exact() 3626 * @virt: the value returned by alloc_pages_exact. 3627 * @size: size of allocation, same value as passed to alloc_pages_exact(). 3628 * 3629 * Release the memory allocated by a previous call to alloc_pages_exact. 3630 */ 3631 void free_pages_exact(void *virt, size_t size) 3632 { 3633 unsigned long addr = (unsigned long)virt; 3634 unsigned long end = addr + PAGE_ALIGN(size); 3635 3636 while (addr < end) { 3637 free_page(addr); 3638 addr += PAGE_SIZE; 3639 } 3640 } 3641 EXPORT_SYMBOL(free_pages_exact); 3642 3643 /** 3644 * nr_free_zone_pages - count number of pages beyond high watermark 3645 * @offset: The zone index of the highest zone 3646 * 3647 * nr_free_zone_pages() counts the number of counts pages which are beyond the 3648 * high watermark within all zones at or below a given zone index. For each 3649 * zone, the number of pages is calculated as: 3650 * managed_pages - high_pages 3651 */ 3652 static unsigned long nr_free_zone_pages(int offset) 3653 { 3654 struct zoneref *z; 3655 struct zone *zone; 3656 3657 /* Just pick one node, since fallback list is circular */ 3658 unsigned long sum = 0; 3659 3660 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 3661 3662 for_each_zone_zonelist(zone, z, zonelist, offset) { 3663 unsigned long size = zone->managed_pages; 3664 unsigned long high = high_wmark_pages(zone); 3665 if (size > high) 3666 sum += size - high; 3667 } 3668 3669 return sum; 3670 } 3671 3672 /** 3673 * nr_free_buffer_pages - count number of pages beyond high watermark 3674 * 3675 * nr_free_buffer_pages() counts the number of pages which are beyond the high 3676 * watermark within ZONE_DMA and ZONE_NORMAL. 3677 */ 3678 unsigned long nr_free_buffer_pages(void) 3679 { 3680 return nr_free_zone_pages(gfp_zone(GFP_USER)); 3681 } 3682 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 3683 3684 /** 3685 * nr_free_pagecache_pages - count number of pages beyond high watermark 3686 * 3687 * nr_free_pagecache_pages() counts the number of pages which are beyond the 3688 * high watermark within all zones. 3689 */ 3690 unsigned long nr_free_pagecache_pages(void) 3691 { 3692 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 3693 } 3694 3695 static inline void show_node(struct zone *zone) 3696 { 3697 if (IS_ENABLED(CONFIG_NUMA)) 3698 printk("Node %d ", zone_to_nid(zone)); 3699 } 3700 3701 long si_mem_available(void) 3702 { 3703 long available; 3704 unsigned long pagecache; 3705 unsigned long wmark_low = 0; 3706 unsigned long pages[NR_LRU_LISTS]; 3707 struct zone *zone; 3708 int lru; 3709 3710 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 3711 pages[lru] = global_page_state(NR_LRU_BASE + lru); 3712 3713 for_each_zone(zone) 3714 wmark_low += zone->watermark[WMARK_LOW]; 3715 3716 /* 3717 * Estimate the amount of memory available for userspace allocations, 3718 * without causing swapping. 3719 */ 3720 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages; 3721 3722 /* 3723 * Not all the page cache can be freed, otherwise the system will 3724 * start swapping. Assume at least half of the page cache, or the 3725 * low watermark worth of cache, needs to stay. 3726 */ 3727 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 3728 pagecache -= min(pagecache / 2, wmark_low); 3729 available += pagecache; 3730 3731 /* 3732 * Part of the reclaimable slab consists of items that are in use, 3733 * and cannot be freed. Cap this estimate at the low watermark. 3734 */ 3735 available += global_page_state(NR_SLAB_RECLAIMABLE) - 3736 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low); 3737 3738 if (available < 0) 3739 available = 0; 3740 return available; 3741 } 3742 EXPORT_SYMBOL_GPL(si_mem_available); 3743 3744 void si_meminfo(struct sysinfo *val) 3745 { 3746 val->totalram = totalram_pages; 3747 val->sharedram = global_page_state(NR_SHMEM); 3748 val->freeram = global_page_state(NR_FREE_PAGES); 3749 val->bufferram = nr_blockdev_pages(); 3750 val->totalhigh = totalhigh_pages; 3751 val->freehigh = nr_free_highpages(); 3752 val->mem_unit = PAGE_SIZE; 3753 } 3754 3755 EXPORT_SYMBOL(si_meminfo); 3756 3757 #ifdef CONFIG_NUMA 3758 void si_meminfo_node(struct sysinfo *val, int nid) 3759 { 3760 int zone_type; /* needs to be signed */ 3761 unsigned long managed_pages = 0; 3762 pg_data_t *pgdat = NODE_DATA(nid); 3763 3764 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 3765 managed_pages += pgdat->node_zones[zone_type].managed_pages; 3766 val->totalram = managed_pages; 3767 val->sharedram = node_page_state(nid, NR_SHMEM); 3768 val->freeram = node_page_state(nid, NR_FREE_PAGES); 3769 #ifdef CONFIG_HIGHMEM 3770 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 3771 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 3772 NR_FREE_PAGES); 3773 #else 3774 val->totalhigh = 0; 3775 val->freehigh = 0; 3776 #endif 3777 val->mem_unit = PAGE_SIZE; 3778 } 3779 #endif 3780 3781 /* 3782 * Determine whether the node should be displayed or not, depending on whether 3783 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 3784 */ 3785 bool skip_free_areas_node(unsigned int flags, int nid) 3786 { 3787 bool ret = false; 3788 unsigned int cpuset_mems_cookie; 3789 3790 if (!(flags & SHOW_MEM_FILTER_NODES)) 3791 goto out; 3792 3793 do { 3794 cpuset_mems_cookie = read_mems_allowed_begin(); 3795 ret = !node_isset(nid, cpuset_current_mems_allowed); 3796 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 3797 out: 3798 return ret; 3799 } 3800 3801 #define K(x) ((x) << (PAGE_SHIFT-10)) 3802 3803 static void show_migration_types(unsigned char type) 3804 { 3805 static const char types[MIGRATE_TYPES] = { 3806 [MIGRATE_UNMOVABLE] = 'U', 3807 [MIGRATE_MOVABLE] = 'M', 3808 [MIGRATE_RECLAIMABLE] = 'E', 3809 [MIGRATE_HIGHATOMIC] = 'H', 3810 #ifdef CONFIG_CMA 3811 [MIGRATE_CMA] = 'C', 3812 #endif 3813 #ifdef CONFIG_MEMORY_ISOLATION 3814 [MIGRATE_ISOLATE] = 'I', 3815 #endif 3816 }; 3817 char tmp[MIGRATE_TYPES + 1]; 3818 char *p = tmp; 3819 int i; 3820 3821 for (i = 0; i < MIGRATE_TYPES; i++) { 3822 if (type & (1 << i)) 3823 *p++ = types[i]; 3824 } 3825 3826 *p = '\0'; 3827 printk("(%s) ", tmp); 3828 } 3829 3830 /* 3831 * Show free area list (used inside shift_scroll-lock stuff) 3832 * We also calculate the percentage fragmentation. We do this by counting the 3833 * memory on each free list with the exception of the first item on the list. 3834 * 3835 * Bits in @filter: 3836 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 3837 * cpuset. 3838 */ 3839 void show_free_areas(unsigned int filter) 3840 { 3841 unsigned long free_pcp = 0; 3842 int cpu; 3843 struct zone *zone; 3844 3845 for_each_populated_zone(zone) { 3846 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3847 continue; 3848 3849 for_each_online_cpu(cpu) 3850 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 3851 } 3852 3853 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3854 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3855 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 3856 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3857 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3858 " free:%lu free_pcp:%lu free_cma:%lu\n", 3859 global_page_state(NR_ACTIVE_ANON), 3860 global_page_state(NR_INACTIVE_ANON), 3861 global_page_state(NR_ISOLATED_ANON), 3862 global_page_state(NR_ACTIVE_FILE), 3863 global_page_state(NR_INACTIVE_FILE), 3864 global_page_state(NR_ISOLATED_FILE), 3865 global_page_state(NR_UNEVICTABLE), 3866 global_page_state(NR_FILE_DIRTY), 3867 global_page_state(NR_WRITEBACK), 3868 global_page_state(NR_UNSTABLE_NFS), 3869 global_page_state(NR_SLAB_RECLAIMABLE), 3870 global_page_state(NR_SLAB_UNRECLAIMABLE), 3871 global_page_state(NR_FILE_MAPPED), 3872 global_page_state(NR_SHMEM), 3873 global_page_state(NR_PAGETABLE), 3874 global_page_state(NR_BOUNCE), 3875 global_page_state(NR_FREE_PAGES), 3876 free_pcp, 3877 global_page_state(NR_FREE_CMA_PAGES)); 3878 3879 for_each_populated_zone(zone) { 3880 int i; 3881 3882 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3883 continue; 3884 3885 free_pcp = 0; 3886 for_each_online_cpu(cpu) 3887 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 3888 3889 show_node(zone); 3890 printk("%s" 3891 " free:%lukB" 3892 " min:%lukB" 3893 " low:%lukB" 3894 " high:%lukB" 3895 " active_anon:%lukB" 3896 " inactive_anon:%lukB" 3897 " active_file:%lukB" 3898 " inactive_file:%lukB" 3899 " unevictable:%lukB" 3900 " isolated(anon):%lukB" 3901 " isolated(file):%lukB" 3902 " present:%lukB" 3903 " managed:%lukB" 3904 " mlocked:%lukB" 3905 " dirty:%lukB" 3906 " writeback:%lukB" 3907 " mapped:%lukB" 3908 " shmem:%lukB" 3909 " slab_reclaimable:%lukB" 3910 " slab_unreclaimable:%lukB" 3911 " kernel_stack:%lukB" 3912 " pagetables:%lukB" 3913 " unstable:%lukB" 3914 " bounce:%lukB" 3915 " free_pcp:%lukB" 3916 " local_pcp:%ukB" 3917 " free_cma:%lukB" 3918 " writeback_tmp:%lukB" 3919 " pages_scanned:%lu" 3920 " all_unreclaimable? %s" 3921 "\n", 3922 zone->name, 3923 K(zone_page_state(zone, NR_FREE_PAGES)), 3924 K(min_wmark_pages(zone)), 3925 K(low_wmark_pages(zone)), 3926 K(high_wmark_pages(zone)), 3927 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3928 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3929 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3930 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3931 K(zone_page_state(zone, NR_UNEVICTABLE)), 3932 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3933 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3934 K(zone->present_pages), 3935 K(zone->managed_pages), 3936 K(zone_page_state(zone, NR_MLOCK)), 3937 K(zone_page_state(zone, NR_FILE_DIRTY)), 3938 K(zone_page_state(zone, NR_WRITEBACK)), 3939 K(zone_page_state(zone, NR_FILE_MAPPED)), 3940 K(zone_page_state(zone, NR_SHMEM)), 3941 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3942 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3943 zone_page_state(zone, NR_KERNEL_STACK) * 3944 THREAD_SIZE / 1024, 3945 K(zone_page_state(zone, NR_PAGETABLE)), 3946 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3947 K(zone_page_state(zone, NR_BOUNCE)), 3948 K(free_pcp), 3949 K(this_cpu_read(zone->pageset->pcp.count)), 3950 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3951 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3952 K(zone_page_state(zone, NR_PAGES_SCANNED)), 3953 (!zone_reclaimable(zone) ? "yes" : "no") 3954 ); 3955 printk("lowmem_reserve[]:"); 3956 for (i = 0; i < MAX_NR_ZONES; i++) 3957 printk(" %ld", zone->lowmem_reserve[i]); 3958 printk("\n"); 3959 } 3960 3961 for_each_populated_zone(zone) { 3962 unsigned int order; 3963 unsigned long nr[MAX_ORDER], flags, total = 0; 3964 unsigned char types[MAX_ORDER]; 3965 3966 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3967 continue; 3968 show_node(zone); 3969 printk("%s: ", zone->name); 3970 3971 spin_lock_irqsave(&zone->lock, flags); 3972 for (order = 0; order < MAX_ORDER; order++) { 3973 struct free_area *area = &zone->free_area[order]; 3974 int type; 3975 3976 nr[order] = area->nr_free; 3977 total += nr[order] << order; 3978 3979 types[order] = 0; 3980 for (type = 0; type < MIGRATE_TYPES; type++) { 3981 if (!list_empty(&area->free_list[type])) 3982 types[order] |= 1 << type; 3983 } 3984 } 3985 spin_unlock_irqrestore(&zone->lock, flags); 3986 for (order = 0; order < MAX_ORDER; order++) { 3987 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3988 if (nr[order]) 3989 show_migration_types(types[order]); 3990 } 3991 printk("= %lukB\n", K(total)); 3992 } 3993 3994 hugetlb_show_meminfo(); 3995 3996 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3997 3998 show_swap_cache_info(); 3999 } 4000 4001 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4002 { 4003 zoneref->zone = zone; 4004 zoneref->zone_idx = zone_idx(zone); 4005 } 4006 4007 /* 4008 * Builds allocation fallback zone lists. 4009 * 4010 * Add all populated zones of a node to the zonelist. 4011 */ 4012 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 4013 int nr_zones) 4014 { 4015 struct zone *zone; 4016 enum zone_type zone_type = MAX_NR_ZONES; 4017 4018 do { 4019 zone_type--; 4020 zone = pgdat->node_zones + zone_type; 4021 if (populated_zone(zone)) { 4022 zoneref_set_zone(zone, 4023 &zonelist->_zonerefs[nr_zones++]); 4024 check_highest_zone(zone_type); 4025 } 4026 } while (zone_type); 4027 4028 return nr_zones; 4029 } 4030 4031 4032 /* 4033 * zonelist_order: 4034 * 0 = automatic detection of better ordering. 4035 * 1 = order by ([node] distance, -zonetype) 4036 * 2 = order by (-zonetype, [node] distance) 4037 * 4038 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 4039 * the same zonelist. So only NUMA can configure this param. 4040 */ 4041 #define ZONELIST_ORDER_DEFAULT 0 4042 #define ZONELIST_ORDER_NODE 1 4043 #define ZONELIST_ORDER_ZONE 2 4044 4045 /* zonelist order in the kernel. 4046 * set_zonelist_order() will set this to NODE or ZONE. 4047 */ 4048 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 4049 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 4050 4051 4052 #ifdef CONFIG_NUMA 4053 /* The value user specified ....changed by config */ 4054 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4055 /* string for sysctl */ 4056 #define NUMA_ZONELIST_ORDER_LEN 16 4057 char numa_zonelist_order[16] = "default"; 4058 4059 /* 4060 * interface for configure zonelist ordering. 4061 * command line option "numa_zonelist_order" 4062 * = "[dD]efault - default, automatic configuration. 4063 * = "[nN]ode - order by node locality, then by zone within node 4064 * = "[zZ]one - order by zone, then by locality within zone 4065 */ 4066 4067 static int __parse_numa_zonelist_order(char *s) 4068 { 4069 if (*s == 'd' || *s == 'D') { 4070 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4071 } else if (*s == 'n' || *s == 'N') { 4072 user_zonelist_order = ZONELIST_ORDER_NODE; 4073 } else if (*s == 'z' || *s == 'Z') { 4074 user_zonelist_order = ZONELIST_ORDER_ZONE; 4075 } else { 4076 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s); 4077 return -EINVAL; 4078 } 4079 return 0; 4080 } 4081 4082 static __init int setup_numa_zonelist_order(char *s) 4083 { 4084 int ret; 4085 4086 if (!s) 4087 return 0; 4088 4089 ret = __parse_numa_zonelist_order(s); 4090 if (ret == 0) 4091 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 4092 4093 return ret; 4094 } 4095 early_param("numa_zonelist_order", setup_numa_zonelist_order); 4096 4097 /* 4098 * sysctl handler for numa_zonelist_order 4099 */ 4100 int numa_zonelist_order_handler(struct ctl_table *table, int write, 4101 void __user *buffer, size_t *length, 4102 loff_t *ppos) 4103 { 4104 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 4105 int ret; 4106 static DEFINE_MUTEX(zl_order_mutex); 4107 4108 mutex_lock(&zl_order_mutex); 4109 if (write) { 4110 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 4111 ret = -EINVAL; 4112 goto out; 4113 } 4114 strcpy(saved_string, (char *)table->data); 4115 } 4116 ret = proc_dostring(table, write, buffer, length, ppos); 4117 if (ret) 4118 goto out; 4119 if (write) { 4120 int oldval = user_zonelist_order; 4121 4122 ret = __parse_numa_zonelist_order((char *)table->data); 4123 if (ret) { 4124 /* 4125 * bogus value. restore saved string 4126 */ 4127 strncpy((char *)table->data, saved_string, 4128 NUMA_ZONELIST_ORDER_LEN); 4129 user_zonelist_order = oldval; 4130 } else if (oldval != user_zonelist_order) { 4131 mutex_lock(&zonelists_mutex); 4132 build_all_zonelists(NULL, NULL); 4133 mutex_unlock(&zonelists_mutex); 4134 } 4135 } 4136 out: 4137 mutex_unlock(&zl_order_mutex); 4138 return ret; 4139 } 4140 4141 4142 #define MAX_NODE_LOAD (nr_online_nodes) 4143 static int node_load[MAX_NUMNODES]; 4144 4145 /** 4146 * find_next_best_node - find the next node that should appear in a given node's fallback list 4147 * @node: node whose fallback list we're appending 4148 * @used_node_mask: nodemask_t of already used nodes 4149 * 4150 * We use a number of factors to determine which is the next node that should 4151 * appear on a given node's fallback list. The node should not have appeared 4152 * already in @node's fallback list, and it should be the next closest node 4153 * according to the distance array (which contains arbitrary distance values 4154 * from each node to each node in the system), and should also prefer nodes 4155 * with no CPUs, since presumably they'll have very little allocation pressure 4156 * on them otherwise. 4157 * It returns -1 if no node is found. 4158 */ 4159 static int find_next_best_node(int node, nodemask_t *used_node_mask) 4160 { 4161 int n, val; 4162 int min_val = INT_MAX; 4163 int best_node = NUMA_NO_NODE; 4164 const struct cpumask *tmp = cpumask_of_node(0); 4165 4166 /* Use the local node if we haven't already */ 4167 if (!node_isset(node, *used_node_mask)) { 4168 node_set(node, *used_node_mask); 4169 return node; 4170 } 4171 4172 for_each_node_state(n, N_MEMORY) { 4173 4174 /* Don't want a node to appear more than once */ 4175 if (node_isset(n, *used_node_mask)) 4176 continue; 4177 4178 /* Use the distance array to find the distance */ 4179 val = node_distance(node, n); 4180 4181 /* Penalize nodes under us ("prefer the next node") */ 4182 val += (n < node); 4183 4184 /* Give preference to headless and unused nodes */ 4185 tmp = cpumask_of_node(n); 4186 if (!cpumask_empty(tmp)) 4187 val += PENALTY_FOR_NODE_WITH_CPUS; 4188 4189 /* Slight preference for less loaded node */ 4190 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 4191 val += node_load[n]; 4192 4193 if (val < min_val) { 4194 min_val = val; 4195 best_node = n; 4196 } 4197 } 4198 4199 if (best_node >= 0) 4200 node_set(best_node, *used_node_mask); 4201 4202 return best_node; 4203 } 4204 4205 4206 /* 4207 * Build zonelists ordered by node and zones within node. 4208 * This results in maximum locality--normal zone overflows into local 4209 * DMA zone, if any--but risks exhausting DMA zone. 4210 */ 4211 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 4212 { 4213 int j; 4214 struct zonelist *zonelist; 4215 4216 zonelist = &pgdat->node_zonelists[0]; 4217 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 4218 ; 4219 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4220 zonelist->_zonerefs[j].zone = NULL; 4221 zonelist->_zonerefs[j].zone_idx = 0; 4222 } 4223 4224 /* 4225 * Build gfp_thisnode zonelists 4226 */ 4227 static void build_thisnode_zonelists(pg_data_t *pgdat) 4228 { 4229 int j; 4230 struct zonelist *zonelist; 4231 4232 zonelist = &pgdat->node_zonelists[1]; 4233 j = build_zonelists_node(pgdat, zonelist, 0); 4234 zonelist->_zonerefs[j].zone = NULL; 4235 zonelist->_zonerefs[j].zone_idx = 0; 4236 } 4237 4238 /* 4239 * Build zonelists ordered by zone and nodes within zones. 4240 * This results in conserving DMA zone[s] until all Normal memory is 4241 * exhausted, but results in overflowing to remote node while memory 4242 * may still exist in local DMA zone. 4243 */ 4244 static int node_order[MAX_NUMNODES]; 4245 4246 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 4247 { 4248 int pos, j, node; 4249 int zone_type; /* needs to be signed */ 4250 struct zone *z; 4251 struct zonelist *zonelist; 4252 4253 zonelist = &pgdat->node_zonelists[0]; 4254 pos = 0; 4255 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 4256 for (j = 0; j < nr_nodes; j++) { 4257 node = node_order[j]; 4258 z = &NODE_DATA(node)->node_zones[zone_type]; 4259 if (populated_zone(z)) { 4260 zoneref_set_zone(z, 4261 &zonelist->_zonerefs[pos++]); 4262 check_highest_zone(zone_type); 4263 } 4264 } 4265 } 4266 zonelist->_zonerefs[pos].zone = NULL; 4267 zonelist->_zonerefs[pos].zone_idx = 0; 4268 } 4269 4270 #if defined(CONFIG_64BIT) 4271 /* 4272 * Devices that require DMA32/DMA are relatively rare and do not justify a 4273 * penalty to every machine in case the specialised case applies. Default 4274 * to Node-ordering on 64-bit NUMA machines 4275 */ 4276 static int default_zonelist_order(void) 4277 { 4278 return ZONELIST_ORDER_NODE; 4279 } 4280 #else 4281 /* 4282 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 4283 * by the kernel. If processes running on node 0 deplete the low memory zone 4284 * then reclaim will occur more frequency increasing stalls and potentially 4285 * be easier to OOM if a large percentage of the zone is under writeback or 4286 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 4287 * Hence, default to zone ordering on 32-bit. 4288 */ 4289 static int default_zonelist_order(void) 4290 { 4291 return ZONELIST_ORDER_ZONE; 4292 } 4293 #endif /* CONFIG_64BIT */ 4294 4295 static void set_zonelist_order(void) 4296 { 4297 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 4298 current_zonelist_order = default_zonelist_order(); 4299 else 4300 current_zonelist_order = user_zonelist_order; 4301 } 4302 4303 static void build_zonelists(pg_data_t *pgdat) 4304 { 4305 int i, node, load; 4306 nodemask_t used_mask; 4307 int local_node, prev_node; 4308 struct zonelist *zonelist; 4309 unsigned int order = current_zonelist_order; 4310 4311 /* initialize zonelists */ 4312 for (i = 0; i < MAX_ZONELISTS; i++) { 4313 zonelist = pgdat->node_zonelists + i; 4314 zonelist->_zonerefs[0].zone = NULL; 4315 zonelist->_zonerefs[0].zone_idx = 0; 4316 } 4317 4318 /* NUMA-aware ordering of nodes */ 4319 local_node = pgdat->node_id; 4320 load = nr_online_nodes; 4321 prev_node = local_node; 4322 nodes_clear(used_mask); 4323 4324 memset(node_order, 0, sizeof(node_order)); 4325 i = 0; 4326 4327 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 4328 /* 4329 * We don't want to pressure a particular node. 4330 * So adding penalty to the first node in same 4331 * distance group to make it round-robin. 4332 */ 4333 if (node_distance(local_node, node) != 4334 node_distance(local_node, prev_node)) 4335 node_load[node] = load; 4336 4337 prev_node = node; 4338 load--; 4339 if (order == ZONELIST_ORDER_NODE) 4340 build_zonelists_in_node_order(pgdat, node); 4341 else 4342 node_order[i++] = node; /* remember order */ 4343 } 4344 4345 if (order == ZONELIST_ORDER_ZONE) { 4346 /* calculate node order -- i.e., DMA last! */ 4347 build_zonelists_in_zone_order(pgdat, i); 4348 } 4349 4350 build_thisnode_zonelists(pgdat); 4351 } 4352 4353 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 4354 /* 4355 * Return node id of node used for "local" allocations. 4356 * I.e., first node id of first zone in arg node's generic zonelist. 4357 * Used for initializing percpu 'numa_mem', which is used primarily 4358 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 4359 */ 4360 int local_memory_node(int node) 4361 { 4362 struct zone *zone; 4363 4364 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 4365 gfp_zone(GFP_KERNEL), 4366 NULL, 4367 &zone); 4368 return zone->node; 4369 } 4370 #endif 4371 4372 #else /* CONFIG_NUMA */ 4373 4374 static void set_zonelist_order(void) 4375 { 4376 current_zonelist_order = ZONELIST_ORDER_ZONE; 4377 } 4378 4379 static void build_zonelists(pg_data_t *pgdat) 4380 { 4381 int node, local_node; 4382 enum zone_type j; 4383 struct zonelist *zonelist; 4384 4385 local_node = pgdat->node_id; 4386 4387 zonelist = &pgdat->node_zonelists[0]; 4388 j = build_zonelists_node(pgdat, zonelist, 0); 4389 4390 /* 4391 * Now we build the zonelist so that it contains the zones 4392 * of all the other nodes. 4393 * We don't want to pressure a particular node, so when 4394 * building the zones for node N, we make sure that the 4395 * zones coming right after the local ones are those from 4396 * node N+1 (modulo N) 4397 */ 4398 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 4399 if (!node_online(node)) 4400 continue; 4401 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4402 } 4403 for (node = 0; node < local_node; node++) { 4404 if (!node_online(node)) 4405 continue; 4406 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4407 } 4408 4409 zonelist->_zonerefs[j].zone = NULL; 4410 zonelist->_zonerefs[j].zone_idx = 0; 4411 } 4412 4413 #endif /* CONFIG_NUMA */ 4414 4415 /* 4416 * Boot pageset table. One per cpu which is going to be used for all 4417 * zones and all nodes. The parameters will be set in such a way 4418 * that an item put on a list will immediately be handed over to 4419 * the buddy list. This is safe since pageset manipulation is done 4420 * with interrupts disabled. 4421 * 4422 * The boot_pagesets must be kept even after bootup is complete for 4423 * unused processors and/or zones. They do play a role for bootstrapping 4424 * hotplugged processors. 4425 * 4426 * zoneinfo_show() and maybe other functions do 4427 * not check if the processor is online before following the pageset pointer. 4428 * Other parts of the kernel may not check if the zone is available. 4429 */ 4430 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 4431 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 4432 static void setup_zone_pageset(struct zone *zone); 4433 4434 /* 4435 * Global mutex to protect against size modification of zonelists 4436 * as well as to serialize pageset setup for the new populated zone. 4437 */ 4438 DEFINE_MUTEX(zonelists_mutex); 4439 4440 /* return values int ....just for stop_machine() */ 4441 static int __build_all_zonelists(void *data) 4442 { 4443 int nid; 4444 int cpu; 4445 pg_data_t *self = data; 4446 4447 #ifdef CONFIG_NUMA 4448 memset(node_load, 0, sizeof(node_load)); 4449 #endif 4450 4451 if (self && !node_online(self->node_id)) { 4452 build_zonelists(self); 4453 } 4454 4455 for_each_online_node(nid) { 4456 pg_data_t *pgdat = NODE_DATA(nid); 4457 4458 build_zonelists(pgdat); 4459 } 4460 4461 /* 4462 * Initialize the boot_pagesets that are going to be used 4463 * for bootstrapping processors. The real pagesets for 4464 * each zone will be allocated later when the per cpu 4465 * allocator is available. 4466 * 4467 * boot_pagesets are used also for bootstrapping offline 4468 * cpus if the system is already booted because the pagesets 4469 * are needed to initialize allocators on a specific cpu too. 4470 * F.e. the percpu allocator needs the page allocator which 4471 * needs the percpu allocator in order to allocate its pagesets 4472 * (a chicken-egg dilemma). 4473 */ 4474 for_each_possible_cpu(cpu) { 4475 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 4476 4477 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 4478 /* 4479 * We now know the "local memory node" for each node-- 4480 * i.e., the node of the first zone in the generic zonelist. 4481 * Set up numa_mem percpu variable for on-line cpus. During 4482 * boot, only the boot cpu should be on-line; we'll init the 4483 * secondary cpus' numa_mem as they come on-line. During 4484 * node/memory hotplug, we'll fixup all on-line cpus. 4485 */ 4486 if (cpu_online(cpu)) 4487 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 4488 #endif 4489 } 4490 4491 return 0; 4492 } 4493 4494 static noinline void __init 4495 build_all_zonelists_init(void) 4496 { 4497 __build_all_zonelists(NULL); 4498 mminit_verify_zonelist(); 4499 cpuset_init_current_mems_allowed(); 4500 } 4501 4502 /* 4503 * Called with zonelists_mutex held always 4504 * unless system_state == SYSTEM_BOOTING. 4505 * 4506 * __ref due to (1) call of __meminit annotated setup_zone_pageset 4507 * [we're only called with non-NULL zone through __meminit paths] and 4508 * (2) call of __init annotated helper build_all_zonelists_init 4509 * [protected by SYSTEM_BOOTING]. 4510 */ 4511 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 4512 { 4513 set_zonelist_order(); 4514 4515 if (system_state == SYSTEM_BOOTING) { 4516 build_all_zonelists_init(); 4517 } else { 4518 #ifdef CONFIG_MEMORY_HOTPLUG 4519 if (zone) 4520 setup_zone_pageset(zone); 4521 #endif 4522 /* we have to stop all cpus to guarantee there is no user 4523 of zonelist */ 4524 stop_machine(__build_all_zonelists, pgdat, NULL); 4525 /* cpuset refresh routine should be here */ 4526 } 4527 vm_total_pages = nr_free_pagecache_pages(); 4528 /* 4529 * Disable grouping by mobility if the number of pages in the 4530 * system is too low to allow the mechanism to work. It would be 4531 * more accurate, but expensive to check per-zone. This check is 4532 * made on memory-hotadd so a system can start with mobility 4533 * disabled and enable it later 4534 */ 4535 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 4536 page_group_by_mobility_disabled = 1; 4537 else 4538 page_group_by_mobility_disabled = 0; 4539 4540 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n", 4541 nr_online_nodes, 4542 zonelist_order_name[current_zonelist_order], 4543 page_group_by_mobility_disabled ? "off" : "on", 4544 vm_total_pages); 4545 #ifdef CONFIG_NUMA 4546 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 4547 #endif 4548 } 4549 4550 /* 4551 * Helper functions to size the waitqueue hash table. 4552 * Essentially these want to choose hash table sizes sufficiently 4553 * large so that collisions trying to wait on pages are rare. 4554 * But in fact, the number of active page waitqueues on typical 4555 * systems is ridiculously low, less than 200. So this is even 4556 * conservative, even though it seems large. 4557 * 4558 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 4559 * waitqueues, i.e. the size of the waitq table given the number of pages. 4560 */ 4561 #define PAGES_PER_WAITQUEUE 256 4562 4563 #ifndef CONFIG_MEMORY_HOTPLUG 4564 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 4565 { 4566 unsigned long size = 1; 4567 4568 pages /= PAGES_PER_WAITQUEUE; 4569 4570 while (size < pages) 4571 size <<= 1; 4572 4573 /* 4574 * Once we have dozens or even hundreds of threads sleeping 4575 * on IO we've got bigger problems than wait queue collision. 4576 * Limit the size of the wait table to a reasonable size. 4577 */ 4578 size = min(size, 4096UL); 4579 4580 return max(size, 4UL); 4581 } 4582 #else 4583 /* 4584 * A zone's size might be changed by hot-add, so it is not possible to determine 4585 * a suitable size for its wait_table. So we use the maximum size now. 4586 * 4587 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 4588 * 4589 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 4590 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 4591 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 4592 * 4593 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 4594 * or more by the traditional way. (See above). It equals: 4595 * 4596 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 4597 * ia64(16K page size) : = ( 8G + 4M)byte. 4598 * powerpc (64K page size) : = (32G +16M)byte. 4599 */ 4600 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 4601 { 4602 return 4096UL; 4603 } 4604 #endif 4605 4606 /* 4607 * This is an integer logarithm so that shifts can be used later 4608 * to extract the more random high bits from the multiplicative 4609 * hash function before the remainder is taken. 4610 */ 4611 static inline unsigned long wait_table_bits(unsigned long size) 4612 { 4613 return ffz(~size); 4614 } 4615 4616 /* 4617 * Initially all pages are reserved - free ones are freed 4618 * up by free_all_bootmem() once the early boot process is 4619 * done. Non-atomic initialization, single-pass. 4620 */ 4621 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 4622 unsigned long start_pfn, enum memmap_context context) 4623 { 4624 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn)); 4625 unsigned long end_pfn = start_pfn + size; 4626 pg_data_t *pgdat = NODE_DATA(nid); 4627 unsigned long pfn; 4628 unsigned long nr_initialised = 0; 4629 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4630 struct memblock_region *r = NULL, *tmp; 4631 #endif 4632 4633 if (highest_memmap_pfn < end_pfn - 1) 4634 highest_memmap_pfn = end_pfn - 1; 4635 4636 /* 4637 * Honor reservation requested by the driver for this ZONE_DEVICE 4638 * memory 4639 */ 4640 if (altmap && start_pfn == altmap->base_pfn) 4641 start_pfn += altmap->reserve; 4642 4643 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4644 /* 4645 * There can be holes in boot-time mem_map[]s handed to this 4646 * function. They do not exist on hotplugged memory. 4647 */ 4648 if (context != MEMMAP_EARLY) 4649 goto not_early; 4650 4651 if (!early_pfn_valid(pfn)) 4652 continue; 4653 if (!early_pfn_in_nid(pfn, nid)) 4654 continue; 4655 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 4656 break; 4657 4658 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4659 /* 4660 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range 4661 * from zone_movable_pfn[nid] to end of each node should be 4662 * ZONE_MOVABLE not ZONE_NORMAL. skip it. 4663 */ 4664 if (!mirrored_kernelcore && zone_movable_pfn[nid]) 4665 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid]) 4666 continue; 4667 4668 /* 4669 * Check given memblock attribute by firmware which can affect 4670 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 4671 * mirrored, it's an overlapped memmap init. skip it. 4672 */ 4673 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 4674 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 4675 for_each_memblock(memory, tmp) 4676 if (pfn < memblock_region_memory_end_pfn(tmp)) 4677 break; 4678 r = tmp; 4679 } 4680 if (pfn >= memblock_region_memory_base_pfn(r) && 4681 memblock_is_mirror(r)) { 4682 /* already initialized as NORMAL */ 4683 pfn = memblock_region_memory_end_pfn(r); 4684 continue; 4685 } 4686 } 4687 #endif 4688 4689 not_early: 4690 /* 4691 * Mark the block movable so that blocks are reserved for 4692 * movable at startup. This will force kernel allocations 4693 * to reserve their blocks rather than leaking throughout 4694 * the address space during boot when many long-lived 4695 * kernel allocations are made. 4696 * 4697 * bitmap is created for zone's valid pfn range. but memmap 4698 * can be created for invalid pages (for alignment) 4699 * check here not to call set_pageblock_migratetype() against 4700 * pfn out of zone. 4701 */ 4702 if (!(pfn & (pageblock_nr_pages - 1))) { 4703 struct page *page = pfn_to_page(pfn); 4704 4705 __init_single_page(page, pfn, zone, nid); 4706 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4707 } else { 4708 __init_single_pfn(pfn, zone, nid); 4709 } 4710 } 4711 } 4712 4713 static void __meminit zone_init_free_lists(struct zone *zone) 4714 { 4715 unsigned int order, t; 4716 for_each_migratetype_order(order, t) { 4717 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 4718 zone->free_area[order].nr_free = 0; 4719 } 4720 } 4721 4722 #ifndef __HAVE_ARCH_MEMMAP_INIT 4723 #define memmap_init(size, nid, zone, start_pfn) \ 4724 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 4725 #endif 4726 4727 static int zone_batchsize(struct zone *zone) 4728 { 4729 #ifdef CONFIG_MMU 4730 int batch; 4731 4732 /* 4733 * The per-cpu-pages pools are set to around 1000th of the 4734 * size of the zone. But no more than 1/2 of a meg. 4735 * 4736 * OK, so we don't know how big the cache is. So guess. 4737 */ 4738 batch = zone->managed_pages / 1024; 4739 if (batch * PAGE_SIZE > 512 * 1024) 4740 batch = (512 * 1024) / PAGE_SIZE; 4741 batch /= 4; /* We effectively *= 4 below */ 4742 if (batch < 1) 4743 batch = 1; 4744 4745 /* 4746 * Clamp the batch to a 2^n - 1 value. Having a power 4747 * of 2 value was found to be more likely to have 4748 * suboptimal cache aliasing properties in some cases. 4749 * 4750 * For example if 2 tasks are alternately allocating 4751 * batches of pages, one task can end up with a lot 4752 * of pages of one half of the possible page colors 4753 * and the other with pages of the other colors. 4754 */ 4755 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4756 4757 return batch; 4758 4759 #else 4760 /* The deferral and batching of frees should be suppressed under NOMMU 4761 * conditions. 4762 * 4763 * The problem is that NOMMU needs to be able to allocate large chunks 4764 * of contiguous memory as there's no hardware page translation to 4765 * assemble apparent contiguous memory from discontiguous pages. 4766 * 4767 * Queueing large contiguous runs of pages for batching, however, 4768 * causes the pages to actually be freed in smaller chunks. As there 4769 * can be a significant delay between the individual batches being 4770 * recycled, this leads to the once large chunks of space being 4771 * fragmented and becoming unavailable for high-order allocations. 4772 */ 4773 return 0; 4774 #endif 4775 } 4776 4777 /* 4778 * pcp->high and pcp->batch values are related and dependent on one another: 4779 * ->batch must never be higher then ->high. 4780 * The following function updates them in a safe manner without read side 4781 * locking. 4782 * 4783 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4784 * those fields changing asynchronously (acording the the above rule). 4785 * 4786 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4787 * outside of boot time (or some other assurance that no concurrent updaters 4788 * exist). 4789 */ 4790 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4791 unsigned long batch) 4792 { 4793 /* start with a fail safe value for batch */ 4794 pcp->batch = 1; 4795 smp_wmb(); 4796 4797 /* Update high, then batch, in order */ 4798 pcp->high = high; 4799 smp_wmb(); 4800 4801 pcp->batch = batch; 4802 } 4803 4804 /* a companion to pageset_set_high() */ 4805 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4806 { 4807 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4808 } 4809 4810 static void pageset_init(struct per_cpu_pageset *p) 4811 { 4812 struct per_cpu_pages *pcp; 4813 int migratetype; 4814 4815 memset(p, 0, sizeof(*p)); 4816 4817 pcp = &p->pcp; 4818 pcp->count = 0; 4819 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4820 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4821 } 4822 4823 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4824 { 4825 pageset_init(p); 4826 pageset_set_batch(p, batch); 4827 } 4828 4829 /* 4830 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4831 * to the value high for the pageset p. 4832 */ 4833 static void pageset_set_high(struct per_cpu_pageset *p, 4834 unsigned long high) 4835 { 4836 unsigned long batch = max(1UL, high / 4); 4837 if ((high / 4) > (PAGE_SHIFT * 8)) 4838 batch = PAGE_SHIFT * 8; 4839 4840 pageset_update(&p->pcp, high, batch); 4841 } 4842 4843 static void pageset_set_high_and_batch(struct zone *zone, 4844 struct per_cpu_pageset *pcp) 4845 { 4846 if (percpu_pagelist_fraction) 4847 pageset_set_high(pcp, 4848 (zone->managed_pages / 4849 percpu_pagelist_fraction)); 4850 else 4851 pageset_set_batch(pcp, zone_batchsize(zone)); 4852 } 4853 4854 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4855 { 4856 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4857 4858 pageset_init(pcp); 4859 pageset_set_high_and_batch(zone, pcp); 4860 } 4861 4862 static void __meminit setup_zone_pageset(struct zone *zone) 4863 { 4864 int cpu; 4865 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4866 for_each_possible_cpu(cpu) 4867 zone_pageset_init(zone, cpu); 4868 } 4869 4870 /* 4871 * Allocate per cpu pagesets and initialize them. 4872 * Before this call only boot pagesets were available. 4873 */ 4874 void __init setup_per_cpu_pageset(void) 4875 { 4876 struct zone *zone; 4877 4878 for_each_populated_zone(zone) 4879 setup_zone_pageset(zone); 4880 } 4881 4882 static noinline __init_refok 4883 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4884 { 4885 int i; 4886 size_t alloc_size; 4887 4888 /* 4889 * The per-page waitqueue mechanism uses hashed waitqueues 4890 * per zone. 4891 */ 4892 zone->wait_table_hash_nr_entries = 4893 wait_table_hash_nr_entries(zone_size_pages); 4894 zone->wait_table_bits = 4895 wait_table_bits(zone->wait_table_hash_nr_entries); 4896 alloc_size = zone->wait_table_hash_nr_entries 4897 * sizeof(wait_queue_head_t); 4898 4899 if (!slab_is_available()) { 4900 zone->wait_table = (wait_queue_head_t *) 4901 memblock_virt_alloc_node_nopanic( 4902 alloc_size, zone->zone_pgdat->node_id); 4903 } else { 4904 /* 4905 * This case means that a zone whose size was 0 gets new memory 4906 * via memory hot-add. 4907 * But it may be the case that a new node was hot-added. In 4908 * this case vmalloc() will not be able to use this new node's 4909 * memory - this wait_table must be initialized to use this new 4910 * node itself as well. 4911 * To use this new node's memory, further consideration will be 4912 * necessary. 4913 */ 4914 zone->wait_table = vmalloc(alloc_size); 4915 } 4916 if (!zone->wait_table) 4917 return -ENOMEM; 4918 4919 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4920 init_waitqueue_head(zone->wait_table + i); 4921 4922 return 0; 4923 } 4924 4925 static __meminit void zone_pcp_init(struct zone *zone) 4926 { 4927 /* 4928 * per cpu subsystem is not up at this point. The following code 4929 * relies on the ability of the linker to provide the 4930 * offset of a (static) per cpu variable into the per cpu area. 4931 */ 4932 zone->pageset = &boot_pageset; 4933 4934 if (populated_zone(zone)) 4935 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4936 zone->name, zone->present_pages, 4937 zone_batchsize(zone)); 4938 } 4939 4940 int __meminit init_currently_empty_zone(struct zone *zone, 4941 unsigned long zone_start_pfn, 4942 unsigned long size) 4943 { 4944 struct pglist_data *pgdat = zone->zone_pgdat; 4945 int ret; 4946 ret = zone_wait_table_init(zone, size); 4947 if (ret) 4948 return ret; 4949 pgdat->nr_zones = zone_idx(zone) + 1; 4950 4951 zone->zone_start_pfn = zone_start_pfn; 4952 4953 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4954 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4955 pgdat->node_id, 4956 (unsigned long)zone_idx(zone), 4957 zone_start_pfn, (zone_start_pfn + size)); 4958 4959 zone_init_free_lists(zone); 4960 4961 return 0; 4962 } 4963 4964 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4965 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4966 4967 /* 4968 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4969 */ 4970 int __meminit __early_pfn_to_nid(unsigned long pfn, 4971 struct mminit_pfnnid_cache *state) 4972 { 4973 unsigned long start_pfn, end_pfn; 4974 int nid; 4975 4976 if (state->last_start <= pfn && pfn < state->last_end) 4977 return state->last_nid; 4978 4979 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 4980 if (nid != -1) { 4981 state->last_start = start_pfn; 4982 state->last_end = end_pfn; 4983 state->last_nid = nid; 4984 } 4985 4986 return nid; 4987 } 4988 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4989 4990 /** 4991 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 4992 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4993 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 4994 * 4995 * If an architecture guarantees that all ranges registered contain no holes 4996 * and may be freed, this this function may be used instead of calling 4997 * memblock_free_early_nid() manually. 4998 */ 4999 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5000 { 5001 unsigned long start_pfn, end_pfn; 5002 int i, this_nid; 5003 5004 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5005 start_pfn = min(start_pfn, max_low_pfn); 5006 end_pfn = min(end_pfn, max_low_pfn); 5007 5008 if (start_pfn < end_pfn) 5009 memblock_free_early_nid(PFN_PHYS(start_pfn), 5010 (end_pfn - start_pfn) << PAGE_SHIFT, 5011 this_nid); 5012 } 5013 } 5014 5015 /** 5016 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5017 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5018 * 5019 * If an architecture guarantees that all ranges registered contain no holes and may 5020 * be freed, this function may be used instead of calling memory_present() manually. 5021 */ 5022 void __init sparse_memory_present_with_active_regions(int nid) 5023 { 5024 unsigned long start_pfn, end_pfn; 5025 int i, this_nid; 5026 5027 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5028 memory_present(this_nid, start_pfn, end_pfn); 5029 } 5030 5031 /** 5032 * get_pfn_range_for_nid - Return the start and end page frames for a node 5033 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5034 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5035 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5036 * 5037 * It returns the start and end page frame of a node based on information 5038 * provided by memblock_set_node(). If called for a node 5039 * with no available memory, a warning is printed and the start and end 5040 * PFNs will be 0. 5041 */ 5042 void __meminit get_pfn_range_for_nid(unsigned int nid, 5043 unsigned long *start_pfn, unsigned long *end_pfn) 5044 { 5045 unsigned long this_start_pfn, this_end_pfn; 5046 int i; 5047 5048 *start_pfn = -1UL; 5049 *end_pfn = 0; 5050 5051 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5052 *start_pfn = min(*start_pfn, this_start_pfn); 5053 *end_pfn = max(*end_pfn, this_end_pfn); 5054 } 5055 5056 if (*start_pfn == -1UL) 5057 *start_pfn = 0; 5058 } 5059 5060 /* 5061 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5062 * assumption is made that zones within a node are ordered in monotonic 5063 * increasing memory addresses so that the "highest" populated zone is used 5064 */ 5065 static void __init find_usable_zone_for_movable(void) 5066 { 5067 int zone_index; 5068 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5069 if (zone_index == ZONE_MOVABLE) 5070 continue; 5071 5072 if (arch_zone_highest_possible_pfn[zone_index] > 5073 arch_zone_lowest_possible_pfn[zone_index]) 5074 break; 5075 } 5076 5077 VM_BUG_ON(zone_index == -1); 5078 movable_zone = zone_index; 5079 } 5080 5081 /* 5082 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5083 * because it is sized independent of architecture. Unlike the other zones, 5084 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5085 * in each node depending on the size of each node and how evenly kernelcore 5086 * is distributed. This helper function adjusts the zone ranges 5087 * provided by the architecture for a given node by using the end of the 5088 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5089 * zones within a node are in order of monotonic increases memory addresses 5090 */ 5091 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5092 unsigned long zone_type, 5093 unsigned long node_start_pfn, 5094 unsigned long node_end_pfn, 5095 unsigned long *zone_start_pfn, 5096 unsigned long *zone_end_pfn) 5097 { 5098 /* Only adjust if ZONE_MOVABLE is on this node */ 5099 if (zone_movable_pfn[nid]) { 5100 /* Size ZONE_MOVABLE */ 5101 if (zone_type == ZONE_MOVABLE) { 5102 *zone_start_pfn = zone_movable_pfn[nid]; 5103 *zone_end_pfn = min(node_end_pfn, 5104 arch_zone_highest_possible_pfn[movable_zone]); 5105 5106 /* Check if this whole range is within ZONE_MOVABLE */ 5107 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5108 *zone_start_pfn = *zone_end_pfn; 5109 } 5110 } 5111 5112 /* 5113 * Return the number of pages a zone spans in a node, including holes 5114 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5115 */ 5116 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5117 unsigned long zone_type, 5118 unsigned long node_start_pfn, 5119 unsigned long node_end_pfn, 5120 unsigned long *zone_start_pfn, 5121 unsigned long *zone_end_pfn, 5122 unsigned long *ignored) 5123 { 5124 /* When hotadd a new node from cpu_up(), the node should be empty */ 5125 if (!node_start_pfn && !node_end_pfn) 5126 return 0; 5127 5128 /* Get the start and end of the zone */ 5129 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5130 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5131 adjust_zone_range_for_zone_movable(nid, zone_type, 5132 node_start_pfn, node_end_pfn, 5133 zone_start_pfn, zone_end_pfn); 5134 5135 /* Check that this node has pages within the zone's required range */ 5136 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5137 return 0; 5138 5139 /* Move the zone boundaries inside the node if necessary */ 5140 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5141 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5142 5143 /* Return the spanned pages */ 5144 return *zone_end_pfn - *zone_start_pfn; 5145 } 5146 5147 /* 5148 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5149 * then all holes in the requested range will be accounted for. 5150 */ 5151 unsigned long __meminit __absent_pages_in_range(int nid, 5152 unsigned long range_start_pfn, 5153 unsigned long range_end_pfn) 5154 { 5155 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5156 unsigned long start_pfn, end_pfn; 5157 int i; 5158 5159 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5160 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5161 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5162 nr_absent -= end_pfn - start_pfn; 5163 } 5164 return nr_absent; 5165 } 5166 5167 /** 5168 * absent_pages_in_range - Return number of page frames in holes within a range 5169 * @start_pfn: The start PFN to start searching for holes 5170 * @end_pfn: The end PFN to stop searching for holes 5171 * 5172 * It returns the number of pages frames in memory holes within a range. 5173 */ 5174 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5175 unsigned long end_pfn) 5176 { 5177 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5178 } 5179 5180 /* Return the number of page frames in holes in a zone on a node */ 5181 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5182 unsigned long zone_type, 5183 unsigned long node_start_pfn, 5184 unsigned long node_end_pfn, 5185 unsigned long *ignored) 5186 { 5187 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5188 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5189 unsigned long zone_start_pfn, zone_end_pfn; 5190 unsigned long nr_absent; 5191 5192 /* When hotadd a new node from cpu_up(), the node should be empty */ 5193 if (!node_start_pfn && !node_end_pfn) 5194 return 0; 5195 5196 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5197 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5198 5199 adjust_zone_range_for_zone_movable(nid, zone_type, 5200 node_start_pfn, node_end_pfn, 5201 &zone_start_pfn, &zone_end_pfn); 5202 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5203 5204 /* 5205 * ZONE_MOVABLE handling. 5206 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 5207 * and vice versa. 5208 */ 5209 if (zone_movable_pfn[nid]) { 5210 if (mirrored_kernelcore) { 5211 unsigned long start_pfn, end_pfn; 5212 struct memblock_region *r; 5213 5214 for_each_memblock(memory, r) { 5215 start_pfn = clamp(memblock_region_memory_base_pfn(r), 5216 zone_start_pfn, zone_end_pfn); 5217 end_pfn = clamp(memblock_region_memory_end_pfn(r), 5218 zone_start_pfn, zone_end_pfn); 5219 5220 if (zone_type == ZONE_MOVABLE && 5221 memblock_is_mirror(r)) 5222 nr_absent += end_pfn - start_pfn; 5223 5224 if (zone_type == ZONE_NORMAL && 5225 !memblock_is_mirror(r)) 5226 nr_absent += end_pfn - start_pfn; 5227 } 5228 } else { 5229 if (zone_type == ZONE_NORMAL) 5230 nr_absent += node_end_pfn - zone_movable_pfn[nid]; 5231 } 5232 } 5233 5234 return nr_absent; 5235 } 5236 5237 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5238 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 5239 unsigned long zone_type, 5240 unsigned long node_start_pfn, 5241 unsigned long node_end_pfn, 5242 unsigned long *zone_start_pfn, 5243 unsigned long *zone_end_pfn, 5244 unsigned long *zones_size) 5245 { 5246 unsigned int zone; 5247 5248 *zone_start_pfn = node_start_pfn; 5249 for (zone = 0; zone < zone_type; zone++) 5250 *zone_start_pfn += zones_size[zone]; 5251 5252 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 5253 5254 return zones_size[zone_type]; 5255 } 5256 5257 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 5258 unsigned long zone_type, 5259 unsigned long node_start_pfn, 5260 unsigned long node_end_pfn, 5261 unsigned long *zholes_size) 5262 { 5263 if (!zholes_size) 5264 return 0; 5265 5266 return zholes_size[zone_type]; 5267 } 5268 5269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5270 5271 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 5272 unsigned long node_start_pfn, 5273 unsigned long node_end_pfn, 5274 unsigned long *zones_size, 5275 unsigned long *zholes_size) 5276 { 5277 unsigned long realtotalpages = 0, totalpages = 0; 5278 enum zone_type i; 5279 5280 for (i = 0; i < MAX_NR_ZONES; i++) { 5281 struct zone *zone = pgdat->node_zones + i; 5282 unsigned long zone_start_pfn, zone_end_pfn; 5283 unsigned long size, real_size; 5284 5285 size = zone_spanned_pages_in_node(pgdat->node_id, i, 5286 node_start_pfn, 5287 node_end_pfn, 5288 &zone_start_pfn, 5289 &zone_end_pfn, 5290 zones_size); 5291 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 5292 node_start_pfn, node_end_pfn, 5293 zholes_size); 5294 if (size) 5295 zone->zone_start_pfn = zone_start_pfn; 5296 else 5297 zone->zone_start_pfn = 0; 5298 zone->spanned_pages = size; 5299 zone->present_pages = real_size; 5300 5301 totalpages += size; 5302 realtotalpages += real_size; 5303 } 5304 5305 pgdat->node_spanned_pages = totalpages; 5306 pgdat->node_present_pages = realtotalpages; 5307 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 5308 realtotalpages); 5309 } 5310 5311 #ifndef CONFIG_SPARSEMEM 5312 /* 5313 * Calculate the size of the zone->blockflags rounded to an unsigned long 5314 * Start by making sure zonesize is a multiple of pageblock_order by rounding 5315 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 5316 * round what is now in bits to nearest long in bits, then return it in 5317 * bytes. 5318 */ 5319 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 5320 { 5321 unsigned long usemapsize; 5322 5323 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 5324 usemapsize = roundup(zonesize, pageblock_nr_pages); 5325 usemapsize = usemapsize >> pageblock_order; 5326 usemapsize *= NR_PAGEBLOCK_BITS; 5327 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 5328 5329 return usemapsize / 8; 5330 } 5331 5332 static void __init setup_usemap(struct pglist_data *pgdat, 5333 struct zone *zone, 5334 unsigned long zone_start_pfn, 5335 unsigned long zonesize) 5336 { 5337 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 5338 zone->pageblock_flags = NULL; 5339 if (usemapsize) 5340 zone->pageblock_flags = 5341 memblock_virt_alloc_node_nopanic(usemapsize, 5342 pgdat->node_id); 5343 } 5344 #else 5345 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 5346 unsigned long zone_start_pfn, unsigned long zonesize) {} 5347 #endif /* CONFIG_SPARSEMEM */ 5348 5349 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 5350 5351 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 5352 void __paginginit set_pageblock_order(void) 5353 { 5354 unsigned int order; 5355 5356 /* Check that pageblock_nr_pages has not already been setup */ 5357 if (pageblock_order) 5358 return; 5359 5360 if (HPAGE_SHIFT > PAGE_SHIFT) 5361 order = HUGETLB_PAGE_ORDER; 5362 else 5363 order = MAX_ORDER - 1; 5364 5365 /* 5366 * Assume the largest contiguous order of interest is a huge page. 5367 * This value may be variable depending on boot parameters on IA64 and 5368 * powerpc. 5369 */ 5370 pageblock_order = order; 5371 } 5372 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5373 5374 /* 5375 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 5376 * is unused as pageblock_order is set at compile-time. See 5377 * include/linux/pageblock-flags.h for the values of pageblock_order based on 5378 * the kernel config 5379 */ 5380 void __paginginit set_pageblock_order(void) 5381 { 5382 } 5383 5384 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5385 5386 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 5387 unsigned long present_pages) 5388 { 5389 unsigned long pages = spanned_pages; 5390 5391 /* 5392 * Provide a more accurate estimation if there are holes within 5393 * the zone and SPARSEMEM is in use. If there are holes within the 5394 * zone, each populated memory region may cost us one or two extra 5395 * memmap pages due to alignment because memmap pages for each 5396 * populated regions may not naturally algined on page boundary. 5397 * So the (present_pages >> 4) heuristic is a tradeoff for that. 5398 */ 5399 if (spanned_pages > present_pages + (present_pages >> 4) && 5400 IS_ENABLED(CONFIG_SPARSEMEM)) 5401 pages = present_pages; 5402 5403 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 5404 } 5405 5406 /* 5407 * Set up the zone data structures: 5408 * - mark all pages reserved 5409 * - mark all memory queues empty 5410 * - clear the memory bitmaps 5411 * 5412 * NOTE: pgdat should get zeroed by caller. 5413 */ 5414 static void __paginginit free_area_init_core(struct pglist_data *pgdat) 5415 { 5416 enum zone_type j; 5417 int nid = pgdat->node_id; 5418 int ret; 5419 5420 pgdat_resize_init(pgdat); 5421 #ifdef CONFIG_NUMA_BALANCING 5422 spin_lock_init(&pgdat->numabalancing_migrate_lock); 5423 pgdat->numabalancing_migrate_nr_pages = 0; 5424 pgdat->numabalancing_migrate_next_window = jiffies; 5425 #endif 5426 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5427 spin_lock_init(&pgdat->split_queue_lock); 5428 INIT_LIST_HEAD(&pgdat->split_queue); 5429 pgdat->split_queue_len = 0; 5430 #endif 5431 init_waitqueue_head(&pgdat->kswapd_wait); 5432 init_waitqueue_head(&pgdat->pfmemalloc_wait); 5433 #ifdef CONFIG_COMPACTION 5434 init_waitqueue_head(&pgdat->kcompactd_wait); 5435 #endif 5436 pgdat_page_ext_init(pgdat); 5437 5438 for (j = 0; j < MAX_NR_ZONES; j++) { 5439 struct zone *zone = pgdat->node_zones + j; 5440 unsigned long size, realsize, freesize, memmap_pages; 5441 unsigned long zone_start_pfn = zone->zone_start_pfn; 5442 5443 size = zone->spanned_pages; 5444 realsize = freesize = zone->present_pages; 5445 5446 /* 5447 * Adjust freesize so that it accounts for how much memory 5448 * is used by this zone for memmap. This affects the watermark 5449 * and per-cpu initialisations 5450 */ 5451 memmap_pages = calc_memmap_size(size, realsize); 5452 if (!is_highmem_idx(j)) { 5453 if (freesize >= memmap_pages) { 5454 freesize -= memmap_pages; 5455 if (memmap_pages) 5456 printk(KERN_DEBUG 5457 " %s zone: %lu pages used for memmap\n", 5458 zone_names[j], memmap_pages); 5459 } else 5460 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 5461 zone_names[j], memmap_pages, freesize); 5462 } 5463 5464 /* Account for reserved pages */ 5465 if (j == 0 && freesize > dma_reserve) { 5466 freesize -= dma_reserve; 5467 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 5468 zone_names[0], dma_reserve); 5469 } 5470 5471 if (!is_highmem_idx(j)) 5472 nr_kernel_pages += freesize; 5473 /* Charge for highmem memmap if there are enough kernel pages */ 5474 else if (nr_kernel_pages > memmap_pages * 2) 5475 nr_kernel_pages -= memmap_pages; 5476 nr_all_pages += freesize; 5477 5478 /* 5479 * Set an approximate value for lowmem here, it will be adjusted 5480 * when the bootmem allocator frees pages into the buddy system. 5481 * And all highmem pages will be managed by the buddy system. 5482 */ 5483 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 5484 #ifdef CONFIG_NUMA 5485 zone->node = nid; 5486 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 5487 / 100; 5488 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 5489 #endif 5490 zone->name = zone_names[j]; 5491 spin_lock_init(&zone->lock); 5492 spin_lock_init(&zone->lru_lock); 5493 zone_seqlock_init(zone); 5494 zone->zone_pgdat = pgdat; 5495 zone_pcp_init(zone); 5496 5497 /* For bootup, initialized properly in watermark setup */ 5498 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); 5499 5500 lruvec_init(&zone->lruvec); 5501 if (!size) 5502 continue; 5503 5504 set_pageblock_order(); 5505 setup_usemap(pgdat, zone, zone_start_pfn, size); 5506 ret = init_currently_empty_zone(zone, zone_start_pfn, size); 5507 BUG_ON(ret); 5508 memmap_init(size, nid, j, zone_start_pfn); 5509 } 5510 } 5511 5512 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 5513 { 5514 unsigned long __maybe_unused start = 0; 5515 unsigned long __maybe_unused offset = 0; 5516 5517 /* Skip empty nodes */ 5518 if (!pgdat->node_spanned_pages) 5519 return; 5520 5521 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5522 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 5523 offset = pgdat->node_start_pfn - start; 5524 /* ia64 gets its own node_mem_map, before this, without bootmem */ 5525 if (!pgdat->node_mem_map) { 5526 unsigned long size, end; 5527 struct page *map; 5528 5529 /* 5530 * The zone's endpoints aren't required to be MAX_ORDER 5531 * aligned but the node_mem_map endpoints must be in order 5532 * for the buddy allocator to function correctly. 5533 */ 5534 end = pgdat_end_pfn(pgdat); 5535 end = ALIGN(end, MAX_ORDER_NR_PAGES); 5536 size = (end - start) * sizeof(struct page); 5537 map = alloc_remap(pgdat->node_id, size); 5538 if (!map) 5539 map = memblock_virt_alloc_node_nopanic(size, 5540 pgdat->node_id); 5541 pgdat->node_mem_map = map + offset; 5542 } 5543 #ifndef CONFIG_NEED_MULTIPLE_NODES 5544 /* 5545 * With no DISCONTIG, the global mem_map is just set as node 0's 5546 */ 5547 if (pgdat == NODE_DATA(0)) { 5548 mem_map = NODE_DATA(0)->node_mem_map; 5549 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 5550 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 5551 mem_map -= offset; 5552 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5553 } 5554 #endif 5555 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 5556 } 5557 5558 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 5559 unsigned long node_start_pfn, unsigned long *zholes_size) 5560 { 5561 pg_data_t *pgdat = NODE_DATA(nid); 5562 unsigned long start_pfn = 0; 5563 unsigned long end_pfn = 0; 5564 5565 /* pg_data_t should be reset to zero when it's allocated */ 5566 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 5567 5568 reset_deferred_meminit(pgdat); 5569 pgdat->node_id = nid; 5570 pgdat->node_start_pfn = node_start_pfn; 5571 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5572 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 5573 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 5574 (u64)start_pfn << PAGE_SHIFT, 5575 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 5576 #else 5577 start_pfn = node_start_pfn; 5578 #endif 5579 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 5580 zones_size, zholes_size); 5581 5582 alloc_node_mem_map(pgdat); 5583 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5584 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 5585 nid, (unsigned long)pgdat, 5586 (unsigned long)pgdat->node_mem_map); 5587 #endif 5588 5589 free_area_init_core(pgdat); 5590 } 5591 5592 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5593 5594 #if MAX_NUMNODES > 1 5595 /* 5596 * Figure out the number of possible node ids. 5597 */ 5598 void __init setup_nr_node_ids(void) 5599 { 5600 unsigned int highest; 5601 5602 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 5603 nr_node_ids = highest + 1; 5604 } 5605 #endif 5606 5607 /** 5608 * node_map_pfn_alignment - determine the maximum internode alignment 5609 * 5610 * This function should be called after node map is populated and sorted. 5611 * It calculates the maximum power of two alignment which can distinguish 5612 * all the nodes. 5613 * 5614 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 5615 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 5616 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 5617 * shifted, 1GiB is enough and this function will indicate so. 5618 * 5619 * This is used to test whether pfn -> nid mapping of the chosen memory 5620 * model has fine enough granularity to avoid incorrect mapping for the 5621 * populated node map. 5622 * 5623 * Returns the determined alignment in pfn's. 0 if there is no alignment 5624 * requirement (single node). 5625 */ 5626 unsigned long __init node_map_pfn_alignment(void) 5627 { 5628 unsigned long accl_mask = 0, last_end = 0; 5629 unsigned long start, end, mask; 5630 int last_nid = -1; 5631 int i, nid; 5632 5633 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 5634 if (!start || last_nid < 0 || last_nid == nid) { 5635 last_nid = nid; 5636 last_end = end; 5637 continue; 5638 } 5639 5640 /* 5641 * Start with a mask granular enough to pin-point to the 5642 * start pfn and tick off bits one-by-one until it becomes 5643 * too coarse to separate the current node from the last. 5644 */ 5645 mask = ~((1 << __ffs(start)) - 1); 5646 while (mask && last_end <= (start & (mask << 1))) 5647 mask <<= 1; 5648 5649 /* accumulate all internode masks */ 5650 accl_mask |= mask; 5651 } 5652 5653 /* convert mask to number of pages */ 5654 return ~accl_mask + 1; 5655 } 5656 5657 /* Find the lowest pfn for a node */ 5658 static unsigned long __init find_min_pfn_for_node(int nid) 5659 { 5660 unsigned long min_pfn = ULONG_MAX; 5661 unsigned long start_pfn; 5662 int i; 5663 5664 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 5665 min_pfn = min(min_pfn, start_pfn); 5666 5667 if (min_pfn == ULONG_MAX) { 5668 pr_warn("Could not find start_pfn for node %d\n", nid); 5669 return 0; 5670 } 5671 5672 return min_pfn; 5673 } 5674 5675 /** 5676 * find_min_pfn_with_active_regions - Find the minimum PFN registered 5677 * 5678 * It returns the minimum PFN based on information provided via 5679 * memblock_set_node(). 5680 */ 5681 unsigned long __init find_min_pfn_with_active_regions(void) 5682 { 5683 return find_min_pfn_for_node(MAX_NUMNODES); 5684 } 5685 5686 /* 5687 * early_calculate_totalpages() 5688 * Sum pages in active regions for movable zone. 5689 * Populate N_MEMORY for calculating usable_nodes. 5690 */ 5691 static unsigned long __init early_calculate_totalpages(void) 5692 { 5693 unsigned long totalpages = 0; 5694 unsigned long start_pfn, end_pfn; 5695 int i, nid; 5696 5697 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5698 unsigned long pages = end_pfn - start_pfn; 5699 5700 totalpages += pages; 5701 if (pages) 5702 node_set_state(nid, N_MEMORY); 5703 } 5704 return totalpages; 5705 } 5706 5707 /* 5708 * Find the PFN the Movable zone begins in each node. Kernel memory 5709 * is spread evenly between nodes as long as the nodes have enough 5710 * memory. When they don't, some nodes will have more kernelcore than 5711 * others 5712 */ 5713 static void __init find_zone_movable_pfns_for_nodes(void) 5714 { 5715 int i, nid; 5716 unsigned long usable_startpfn; 5717 unsigned long kernelcore_node, kernelcore_remaining; 5718 /* save the state before borrow the nodemask */ 5719 nodemask_t saved_node_state = node_states[N_MEMORY]; 5720 unsigned long totalpages = early_calculate_totalpages(); 5721 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 5722 struct memblock_region *r; 5723 5724 /* Need to find movable_zone earlier when movable_node is specified. */ 5725 find_usable_zone_for_movable(); 5726 5727 /* 5728 * If movable_node is specified, ignore kernelcore and movablecore 5729 * options. 5730 */ 5731 if (movable_node_is_enabled()) { 5732 for_each_memblock(memory, r) { 5733 if (!memblock_is_hotpluggable(r)) 5734 continue; 5735 5736 nid = r->nid; 5737 5738 usable_startpfn = PFN_DOWN(r->base); 5739 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 5740 min(usable_startpfn, zone_movable_pfn[nid]) : 5741 usable_startpfn; 5742 } 5743 5744 goto out2; 5745 } 5746 5747 /* 5748 * If kernelcore=mirror is specified, ignore movablecore option 5749 */ 5750 if (mirrored_kernelcore) { 5751 bool mem_below_4gb_not_mirrored = false; 5752 5753 for_each_memblock(memory, r) { 5754 if (memblock_is_mirror(r)) 5755 continue; 5756 5757 nid = r->nid; 5758 5759 usable_startpfn = memblock_region_memory_base_pfn(r); 5760 5761 if (usable_startpfn < 0x100000) { 5762 mem_below_4gb_not_mirrored = true; 5763 continue; 5764 } 5765 5766 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 5767 min(usable_startpfn, zone_movable_pfn[nid]) : 5768 usable_startpfn; 5769 } 5770 5771 if (mem_below_4gb_not_mirrored) 5772 pr_warn("This configuration results in unmirrored kernel memory."); 5773 5774 goto out2; 5775 } 5776 5777 /* 5778 * If movablecore=nn[KMG] was specified, calculate what size of 5779 * kernelcore that corresponds so that memory usable for 5780 * any allocation type is evenly spread. If both kernelcore 5781 * and movablecore are specified, then the value of kernelcore 5782 * will be used for required_kernelcore if it's greater than 5783 * what movablecore would have allowed. 5784 */ 5785 if (required_movablecore) { 5786 unsigned long corepages; 5787 5788 /* 5789 * Round-up so that ZONE_MOVABLE is at least as large as what 5790 * was requested by the user 5791 */ 5792 required_movablecore = 5793 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 5794 required_movablecore = min(totalpages, required_movablecore); 5795 corepages = totalpages - required_movablecore; 5796 5797 required_kernelcore = max(required_kernelcore, corepages); 5798 } 5799 5800 /* 5801 * If kernelcore was not specified or kernelcore size is larger 5802 * than totalpages, there is no ZONE_MOVABLE. 5803 */ 5804 if (!required_kernelcore || required_kernelcore >= totalpages) 5805 goto out; 5806 5807 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 5808 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 5809 5810 restart: 5811 /* Spread kernelcore memory as evenly as possible throughout nodes */ 5812 kernelcore_node = required_kernelcore / usable_nodes; 5813 for_each_node_state(nid, N_MEMORY) { 5814 unsigned long start_pfn, end_pfn; 5815 5816 /* 5817 * Recalculate kernelcore_node if the division per node 5818 * now exceeds what is necessary to satisfy the requested 5819 * amount of memory for the kernel 5820 */ 5821 if (required_kernelcore < kernelcore_node) 5822 kernelcore_node = required_kernelcore / usable_nodes; 5823 5824 /* 5825 * As the map is walked, we track how much memory is usable 5826 * by the kernel using kernelcore_remaining. When it is 5827 * 0, the rest of the node is usable by ZONE_MOVABLE 5828 */ 5829 kernelcore_remaining = kernelcore_node; 5830 5831 /* Go through each range of PFNs within this node */ 5832 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5833 unsigned long size_pages; 5834 5835 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5836 if (start_pfn >= end_pfn) 5837 continue; 5838 5839 /* Account for what is only usable for kernelcore */ 5840 if (start_pfn < usable_startpfn) { 5841 unsigned long kernel_pages; 5842 kernel_pages = min(end_pfn, usable_startpfn) 5843 - start_pfn; 5844 5845 kernelcore_remaining -= min(kernel_pages, 5846 kernelcore_remaining); 5847 required_kernelcore -= min(kernel_pages, 5848 required_kernelcore); 5849 5850 /* Continue if range is now fully accounted */ 5851 if (end_pfn <= usable_startpfn) { 5852 5853 /* 5854 * Push zone_movable_pfn to the end so 5855 * that if we have to rebalance 5856 * kernelcore across nodes, we will 5857 * not double account here 5858 */ 5859 zone_movable_pfn[nid] = end_pfn; 5860 continue; 5861 } 5862 start_pfn = usable_startpfn; 5863 } 5864 5865 /* 5866 * The usable PFN range for ZONE_MOVABLE is from 5867 * start_pfn->end_pfn. Calculate size_pages as the 5868 * number of pages used as kernelcore 5869 */ 5870 size_pages = end_pfn - start_pfn; 5871 if (size_pages > kernelcore_remaining) 5872 size_pages = kernelcore_remaining; 5873 zone_movable_pfn[nid] = start_pfn + size_pages; 5874 5875 /* 5876 * Some kernelcore has been met, update counts and 5877 * break if the kernelcore for this node has been 5878 * satisfied 5879 */ 5880 required_kernelcore -= min(required_kernelcore, 5881 size_pages); 5882 kernelcore_remaining -= size_pages; 5883 if (!kernelcore_remaining) 5884 break; 5885 } 5886 } 5887 5888 /* 5889 * If there is still required_kernelcore, we do another pass with one 5890 * less node in the count. This will push zone_movable_pfn[nid] further 5891 * along on the nodes that still have memory until kernelcore is 5892 * satisfied 5893 */ 5894 usable_nodes--; 5895 if (usable_nodes && required_kernelcore > usable_nodes) 5896 goto restart; 5897 5898 out2: 5899 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5900 for (nid = 0; nid < MAX_NUMNODES; nid++) 5901 zone_movable_pfn[nid] = 5902 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5903 5904 out: 5905 /* restore the node_state */ 5906 node_states[N_MEMORY] = saved_node_state; 5907 } 5908 5909 /* Any regular or high memory on that node ? */ 5910 static void check_for_memory(pg_data_t *pgdat, int nid) 5911 { 5912 enum zone_type zone_type; 5913 5914 if (N_MEMORY == N_NORMAL_MEMORY) 5915 return; 5916 5917 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5918 struct zone *zone = &pgdat->node_zones[zone_type]; 5919 if (populated_zone(zone)) { 5920 node_set_state(nid, N_HIGH_MEMORY); 5921 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5922 zone_type <= ZONE_NORMAL) 5923 node_set_state(nid, N_NORMAL_MEMORY); 5924 break; 5925 } 5926 } 5927 } 5928 5929 /** 5930 * free_area_init_nodes - Initialise all pg_data_t and zone data 5931 * @max_zone_pfn: an array of max PFNs for each zone 5932 * 5933 * This will call free_area_init_node() for each active node in the system. 5934 * Using the page ranges provided by memblock_set_node(), the size of each 5935 * zone in each node and their holes is calculated. If the maximum PFN 5936 * between two adjacent zones match, it is assumed that the zone is empty. 5937 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5938 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5939 * starts where the previous one ended. For example, ZONE_DMA32 starts 5940 * at arch_max_dma_pfn. 5941 */ 5942 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5943 { 5944 unsigned long start_pfn, end_pfn; 5945 int i, nid; 5946 5947 /* Record where the zone boundaries are */ 5948 memset(arch_zone_lowest_possible_pfn, 0, 5949 sizeof(arch_zone_lowest_possible_pfn)); 5950 memset(arch_zone_highest_possible_pfn, 0, 5951 sizeof(arch_zone_highest_possible_pfn)); 5952 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5953 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5954 for (i = 1; i < MAX_NR_ZONES; i++) { 5955 if (i == ZONE_MOVABLE) 5956 continue; 5957 arch_zone_lowest_possible_pfn[i] = 5958 arch_zone_highest_possible_pfn[i-1]; 5959 arch_zone_highest_possible_pfn[i] = 5960 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5961 } 5962 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5963 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5964 5965 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5966 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5967 find_zone_movable_pfns_for_nodes(); 5968 5969 /* Print out the zone ranges */ 5970 pr_info("Zone ranges:\n"); 5971 for (i = 0; i < MAX_NR_ZONES; i++) { 5972 if (i == ZONE_MOVABLE) 5973 continue; 5974 pr_info(" %-8s ", zone_names[i]); 5975 if (arch_zone_lowest_possible_pfn[i] == 5976 arch_zone_highest_possible_pfn[i]) 5977 pr_cont("empty\n"); 5978 else 5979 pr_cont("[mem %#018Lx-%#018Lx]\n", 5980 (u64)arch_zone_lowest_possible_pfn[i] 5981 << PAGE_SHIFT, 5982 ((u64)arch_zone_highest_possible_pfn[i] 5983 << PAGE_SHIFT) - 1); 5984 } 5985 5986 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5987 pr_info("Movable zone start for each node\n"); 5988 for (i = 0; i < MAX_NUMNODES; i++) { 5989 if (zone_movable_pfn[i]) 5990 pr_info(" Node %d: %#018Lx\n", i, 5991 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 5992 } 5993 5994 /* Print out the early node map */ 5995 pr_info("Early memory node ranges\n"); 5996 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5997 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 5998 (u64)start_pfn << PAGE_SHIFT, 5999 ((u64)end_pfn << PAGE_SHIFT) - 1); 6000 6001 /* Initialise every node */ 6002 mminit_verify_pageflags_layout(); 6003 setup_nr_node_ids(); 6004 for_each_online_node(nid) { 6005 pg_data_t *pgdat = NODE_DATA(nid); 6006 free_area_init_node(nid, NULL, 6007 find_min_pfn_for_node(nid), NULL); 6008 6009 /* Any memory on that node */ 6010 if (pgdat->node_present_pages) 6011 node_set_state(nid, N_MEMORY); 6012 check_for_memory(pgdat, nid); 6013 } 6014 } 6015 6016 static int __init cmdline_parse_core(char *p, unsigned long *core) 6017 { 6018 unsigned long long coremem; 6019 if (!p) 6020 return -EINVAL; 6021 6022 coremem = memparse(p, &p); 6023 *core = coremem >> PAGE_SHIFT; 6024 6025 /* Paranoid check that UL is enough for the coremem value */ 6026 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6027 6028 return 0; 6029 } 6030 6031 /* 6032 * kernelcore=size sets the amount of memory for use for allocations that 6033 * cannot be reclaimed or migrated. 6034 */ 6035 static int __init cmdline_parse_kernelcore(char *p) 6036 { 6037 /* parse kernelcore=mirror */ 6038 if (parse_option_str(p, "mirror")) { 6039 mirrored_kernelcore = true; 6040 return 0; 6041 } 6042 6043 return cmdline_parse_core(p, &required_kernelcore); 6044 } 6045 6046 /* 6047 * movablecore=size sets the amount of memory for use for allocations that 6048 * can be reclaimed or migrated. 6049 */ 6050 static int __init cmdline_parse_movablecore(char *p) 6051 { 6052 return cmdline_parse_core(p, &required_movablecore); 6053 } 6054 6055 early_param("kernelcore", cmdline_parse_kernelcore); 6056 early_param("movablecore", cmdline_parse_movablecore); 6057 6058 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6059 6060 void adjust_managed_page_count(struct page *page, long count) 6061 { 6062 spin_lock(&managed_page_count_lock); 6063 page_zone(page)->managed_pages += count; 6064 totalram_pages += count; 6065 #ifdef CONFIG_HIGHMEM 6066 if (PageHighMem(page)) 6067 totalhigh_pages += count; 6068 #endif 6069 spin_unlock(&managed_page_count_lock); 6070 } 6071 EXPORT_SYMBOL(adjust_managed_page_count); 6072 6073 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6074 { 6075 void *pos; 6076 unsigned long pages = 0; 6077 6078 start = (void *)PAGE_ALIGN((unsigned long)start); 6079 end = (void *)((unsigned long)end & PAGE_MASK); 6080 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6081 if ((unsigned int)poison <= 0xFF) 6082 memset(pos, poison, PAGE_SIZE); 6083 free_reserved_page(virt_to_page(pos)); 6084 } 6085 6086 if (pages && s) 6087 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 6088 s, pages << (PAGE_SHIFT - 10), start, end); 6089 6090 return pages; 6091 } 6092 EXPORT_SYMBOL(free_reserved_area); 6093 6094 #ifdef CONFIG_HIGHMEM 6095 void free_highmem_page(struct page *page) 6096 { 6097 __free_reserved_page(page); 6098 totalram_pages++; 6099 page_zone(page)->managed_pages++; 6100 totalhigh_pages++; 6101 } 6102 #endif 6103 6104 6105 void __init mem_init_print_info(const char *str) 6106 { 6107 unsigned long physpages, codesize, datasize, rosize, bss_size; 6108 unsigned long init_code_size, init_data_size; 6109 6110 physpages = get_num_physpages(); 6111 codesize = _etext - _stext; 6112 datasize = _edata - _sdata; 6113 rosize = __end_rodata - __start_rodata; 6114 bss_size = __bss_stop - __bss_start; 6115 init_data_size = __init_end - __init_begin; 6116 init_code_size = _einittext - _sinittext; 6117 6118 /* 6119 * Detect special cases and adjust section sizes accordingly: 6120 * 1) .init.* may be embedded into .data sections 6121 * 2) .init.text.* may be out of [__init_begin, __init_end], 6122 * please refer to arch/tile/kernel/vmlinux.lds.S. 6123 * 3) .rodata.* may be embedded into .text or .data sections. 6124 */ 6125 #define adj_init_size(start, end, size, pos, adj) \ 6126 do { \ 6127 if (start <= pos && pos < end && size > adj) \ 6128 size -= adj; \ 6129 } while (0) 6130 6131 adj_init_size(__init_begin, __init_end, init_data_size, 6132 _sinittext, init_code_size); 6133 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6134 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6135 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6136 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6137 6138 #undef adj_init_size 6139 6140 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 6141 #ifdef CONFIG_HIGHMEM 6142 ", %luK highmem" 6143 #endif 6144 "%s%s)\n", 6145 nr_free_pages() << (PAGE_SHIFT - 10), 6146 physpages << (PAGE_SHIFT - 10), 6147 codesize >> 10, datasize >> 10, rosize >> 10, 6148 (init_data_size + init_code_size) >> 10, bss_size >> 10, 6149 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 6150 totalcma_pages << (PAGE_SHIFT - 10), 6151 #ifdef CONFIG_HIGHMEM 6152 totalhigh_pages << (PAGE_SHIFT - 10), 6153 #endif 6154 str ? ", " : "", str ? str : ""); 6155 } 6156 6157 /** 6158 * set_dma_reserve - set the specified number of pages reserved in the first zone 6159 * @new_dma_reserve: The number of pages to mark reserved 6160 * 6161 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 6162 * In the DMA zone, a significant percentage may be consumed by kernel image 6163 * and other unfreeable allocations which can skew the watermarks badly. This 6164 * function may optionally be used to account for unfreeable pages in the 6165 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 6166 * smaller per-cpu batchsize. 6167 */ 6168 void __init set_dma_reserve(unsigned long new_dma_reserve) 6169 { 6170 dma_reserve = new_dma_reserve; 6171 } 6172 6173 void __init free_area_init(unsigned long *zones_size) 6174 { 6175 free_area_init_node(0, zones_size, 6176 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 6177 } 6178 6179 static int page_alloc_cpu_notify(struct notifier_block *self, 6180 unsigned long action, void *hcpu) 6181 { 6182 int cpu = (unsigned long)hcpu; 6183 6184 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 6185 lru_add_drain_cpu(cpu); 6186 drain_pages(cpu); 6187 6188 /* 6189 * Spill the event counters of the dead processor 6190 * into the current processors event counters. 6191 * This artificially elevates the count of the current 6192 * processor. 6193 */ 6194 vm_events_fold_cpu(cpu); 6195 6196 /* 6197 * Zero the differential counters of the dead processor 6198 * so that the vm statistics are consistent. 6199 * 6200 * This is only okay since the processor is dead and cannot 6201 * race with what we are doing. 6202 */ 6203 cpu_vm_stats_fold(cpu); 6204 } 6205 return NOTIFY_OK; 6206 } 6207 6208 void __init page_alloc_init(void) 6209 { 6210 hotcpu_notifier(page_alloc_cpu_notify, 0); 6211 } 6212 6213 /* 6214 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6215 * or min_free_kbytes changes. 6216 */ 6217 static void calculate_totalreserve_pages(void) 6218 { 6219 struct pglist_data *pgdat; 6220 unsigned long reserve_pages = 0; 6221 enum zone_type i, j; 6222 6223 for_each_online_pgdat(pgdat) { 6224 for (i = 0; i < MAX_NR_ZONES; i++) { 6225 struct zone *zone = pgdat->node_zones + i; 6226 long max = 0; 6227 6228 /* Find valid and maximum lowmem_reserve in the zone */ 6229 for (j = i; j < MAX_NR_ZONES; j++) { 6230 if (zone->lowmem_reserve[j] > max) 6231 max = zone->lowmem_reserve[j]; 6232 } 6233 6234 /* we treat the high watermark as reserved pages. */ 6235 max += high_wmark_pages(zone); 6236 6237 if (max > zone->managed_pages) 6238 max = zone->managed_pages; 6239 6240 zone->totalreserve_pages = max; 6241 6242 reserve_pages += max; 6243 } 6244 } 6245 totalreserve_pages = reserve_pages; 6246 } 6247 6248 /* 6249 * setup_per_zone_lowmem_reserve - called whenever 6250 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6251 * has a correct pages reserved value, so an adequate number of 6252 * pages are left in the zone after a successful __alloc_pages(). 6253 */ 6254 static void setup_per_zone_lowmem_reserve(void) 6255 { 6256 struct pglist_data *pgdat; 6257 enum zone_type j, idx; 6258 6259 for_each_online_pgdat(pgdat) { 6260 for (j = 0; j < MAX_NR_ZONES; j++) { 6261 struct zone *zone = pgdat->node_zones + j; 6262 unsigned long managed_pages = zone->managed_pages; 6263 6264 zone->lowmem_reserve[j] = 0; 6265 6266 idx = j; 6267 while (idx) { 6268 struct zone *lower_zone; 6269 6270 idx--; 6271 6272 if (sysctl_lowmem_reserve_ratio[idx] < 1) 6273 sysctl_lowmem_reserve_ratio[idx] = 1; 6274 6275 lower_zone = pgdat->node_zones + idx; 6276 lower_zone->lowmem_reserve[j] = managed_pages / 6277 sysctl_lowmem_reserve_ratio[idx]; 6278 managed_pages += lower_zone->managed_pages; 6279 } 6280 } 6281 } 6282 6283 /* update totalreserve_pages */ 6284 calculate_totalreserve_pages(); 6285 } 6286 6287 static void __setup_per_zone_wmarks(void) 6288 { 6289 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6290 unsigned long lowmem_pages = 0; 6291 struct zone *zone; 6292 unsigned long flags; 6293 6294 /* Calculate total number of !ZONE_HIGHMEM pages */ 6295 for_each_zone(zone) { 6296 if (!is_highmem(zone)) 6297 lowmem_pages += zone->managed_pages; 6298 } 6299 6300 for_each_zone(zone) { 6301 u64 tmp; 6302 6303 spin_lock_irqsave(&zone->lock, flags); 6304 tmp = (u64)pages_min * zone->managed_pages; 6305 do_div(tmp, lowmem_pages); 6306 if (is_highmem(zone)) { 6307 /* 6308 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6309 * need highmem pages, so cap pages_min to a small 6310 * value here. 6311 * 6312 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6313 * deltas control asynch page reclaim, and so should 6314 * not be capped for highmem. 6315 */ 6316 unsigned long min_pages; 6317 6318 min_pages = zone->managed_pages / 1024; 6319 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6320 zone->watermark[WMARK_MIN] = min_pages; 6321 } else { 6322 /* 6323 * If it's a lowmem zone, reserve a number of pages 6324 * proportionate to the zone's size. 6325 */ 6326 zone->watermark[WMARK_MIN] = tmp; 6327 } 6328 6329 /* 6330 * Set the kswapd watermarks distance according to the 6331 * scale factor in proportion to available memory, but 6332 * ensure a minimum size on small systems. 6333 */ 6334 tmp = max_t(u64, tmp >> 2, 6335 mult_frac(zone->managed_pages, 6336 watermark_scale_factor, 10000)); 6337 6338 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6339 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 6340 6341 __mod_zone_page_state(zone, NR_ALLOC_BATCH, 6342 high_wmark_pages(zone) - low_wmark_pages(zone) - 6343 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 6344 6345 spin_unlock_irqrestore(&zone->lock, flags); 6346 } 6347 6348 /* update totalreserve_pages */ 6349 calculate_totalreserve_pages(); 6350 } 6351 6352 /** 6353 * setup_per_zone_wmarks - called when min_free_kbytes changes 6354 * or when memory is hot-{added|removed} 6355 * 6356 * Ensures that the watermark[min,low,high] values for each zone are set 6357 * correctly with respect to min_free_kbytes. 6358 */ 6359 void setup_per_zone_wmarks(void) 6360 { 6361 mutex_lock(&zonelists_mutex); 6362 __setup_per_zone_wmarks(); 6363 mutex_unlock(&zonelists_mutex); 6364 } 6365 6366 /* 6367 * The inactive anon list should be small enough that the VM never has to 6368 * do too much work, but large enough that each inactive page has a chance 6369 * to be referenced again before it is swapped out. 6370 * 6371 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 6372 * INACTIVE_ANON pages on this zone's LRU, maintained by the 6373 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 6374 * the anonymous pages are kept on the inactive list. 6375 * 6376 * total target max 6377 * memory ratio inactive anon 6378 * ------------------------------------- 6379 * 10MB 1 5MB 6380 * 100MB 1 50MB 6381 * 1GB 3 250MB 6382 * 10GB 10 0.9GB 6383 * 100GB 31 3GB 6384 * 1TB 101 10GB 6385 * 10TB 320 32GB 6386 */ 6387 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 6388 { 6389 unsigned int gb, ratio; 6390 6391 /* Zone size in gigabytes */ 6392 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 6393 if (gb) 6394 ratio = int_sqrt(10 * gb); 6395 else 6396 ratio = 1; 6397 6398 zone->inactive_ratio = ratio; 6399 } 6400 6401 static void __meminit setup_per_zone_inactive_ratio(void) 6402 { 6403 struct zone *zone; 6404 6405 for_each_zone(zone) 6406 calculate_zone_inactive_ratio(zone); 6407 } 6408 6409 /* 6410 * Initialise min_free_kbytes. 6411 * 6412 * For small machines we want it small (128k min). For large machines 6413 * we want it large (64MB max). But it is not linear, because network 6414 * bandwidth does not increase linearly with machine size. We use 6415 * 6416 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6417 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6418 * 6419 * which yields 6420 * 6421 * 16MB: 512k 6422 * 32MB: 724k 6423 * 64MB: 1024k 6424 * 128MB: 1448k 6425 * 256MB: 2048k 6426 * 512MB: 2896k 6427 * 1024MB: 4096k 6428 * 2048MB: 5792k 6429 * 4096MB: 8192k 6430 * 8192MB: 11584k 6431 * 16384MB: 16384k 6432 */ 6433 int __meminit init_per_zone_wmark_min(void) 6434 { 6435 unsigned long lowmem_kbytes; 6436 int new_min_free_kbytes; 6437 6438 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6439 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6440 6441 if (new_min_free_kbytes > user_min_free_kbytes) { 6442 min_free_kbytes = new_min_free_kbytes; 6443 if (min_free_kbytes < 128) 6444 min_free_kbytes = 128; 6445 if (min_free_kbytes > 65536) 6446 min_free_kbytes = 65536; 6447 } else { 6448 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6449 new_min_free_kbytes, user_min_free_kbytes); 6450 } 6451 setup_per_zone_wmarks(); 6452 refresh_zone_stat_thresholds(); 6453 setup_per_zone_lowmem_reserve(); 6454 setup_per_zone_inactive_ratio(); 6455 return 0; 6456 } 6457 module_init(init_per_zone_wmark_min) 6458 6459 /* 6460 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6461 * that we can call two helper functions whenever min_free_kbytes 6462 * changes. 6463 */ 6464 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 6465 void __user *buffer, size_t *length, loff_t *ppos) 6466 { 6467 int rc; 6468 6469 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6470 if (rc) 6471 return rc; 6472 6473 if (write) { 6474 user_min_free_kbytes = min_free_kbytes; 6475 setup_per_zone_wmarks(); 6476 } 6477 return 0; 6478 } 6479 6480 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 6481 void __user *buffer, size_t *length, loff_t *ppos) 6482 { 6483 int rc; 6484 6485 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6486 if (rc) 6487 return rc; 6488 6489 if (write) 6490 setup_per_zone_wmarks(); 6491 6492 return 0; 6493 } 6494 6495 #ifdef CONFIG_NUMA 6496 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 6497 void __user *buffer, size_t *length, loff_t *ppos) 6498 { 6499 struct zone *zone; 6500 int rc; 6501 6502 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6503 if (rc) 6504 return rc; 6505 6506 for_each_zone(zone) 6507 zone->min_unmapped_pages = (zone->managed_pages * 6508 sysctl_min_unmapped_ratio) / 100; 6509 return 0; 6510 } 6511 6512 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 6513 void __user *buffer, size_t *length, loff_t *ppos) 6514 { 6515 struct zone *zone; 6516 int rc; 6517 6518 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6519 if (rc) 6520 return rc; 6521 6522 for_each_zone(zone) 6523 zone->min_slab_pages = (zone->managed_pages * 6524 sysctl_min_slab_ratio) / 100; 6525 return 0; 6526 } 6527 #endif 6528 6529 /* 6530 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6531 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6532 * whenever sysctl_lowmem_reserve_ratio changes. 6533 * 6534 * The reserve ratio obviously has absolutely no relation with the 6535 * minimum watermarks. The lowmem reserve ratio can only make sense 6536 * if in function of the boot time zone sizes. 6537 */ 6538 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 6539 void __user *buffer, size_t *length, loff_t *ppos) 6540 { 6541 proc_dointvec_minmax(table, write, buffer, length, ppos); 6542 setup_per_zone_lowmem_reserve(); 6543 return 0; 6544 } 6545 6546 /* 6547 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 6548 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6549 * pagelist can have before it gets flushed back to buddy allocator. 6550 */ 6551 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 6552 void __user *buffer, size_t *length, loff_t *ppos) 6553 { 6554 struct zone *zone; 6555 int old_percpu_pagelist_fraction; 6556 int ret; 6557 6558 mutex_lock(&pcp_batch_high_lock); 6559 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 6560 6561 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6562 if (!write || ret < 0) 6563 goto out; 6564 6565 /* Sanity checking to avoid pcp imbalance */ 6566 if (percpu_pagelist_fraction && 6567 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 6568 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 6569 ret = -EINVAL; 6570 goto out; 6571 } 6572 6573 /* No change? */ 6574 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 6575 goto out; 6576 6577 for_each_populated_zone(zone) { 6578 unsigned int cpu; 6579 6580 for_each_possible_cpu(cpu) 6581 pageset_set_high_and_batch(zone, 6582 per_cpu_ptr(zone->pageset, cpu)); 6583 } 6584 out: 6585 mutex_unlock(&pcp_batch_high_lock); 6586 return ret; 6587 } 6588 6589 #ifdef CONFIG_NUMA 6590 int hashdist = HASHDIST_DEFAULT; 6591 6592 static int __init set_hashdist(char *str) 6593 { 6594 if (!str) 6595 return 0; 6596 hashdist = simple_strtoul(str, &str, 0); 6597 return 1; 6598 } 6599 __setup("hashdist=", set_hashdist); 6600 #endif 6601 6602 /* 6603 * allocate a large system hash table from bootmem 6604 * - it is assumed that the hash table must contain an exact power-of-2 6605 * quantity of entries 6606 * - limit is the number of hash buckets, not the total allocation size 6607 */ 6608 void *__init alloc_large_system_hash(const char *tablename, 6609 unsigned long bucketsize, 6610 unsigned long numentries, 6611 int scale, 6612 int flags, 6613 unsigned int *_hash_shift, 6614 unsigned int *_hash_mask, 6615 unsigned long low_limit, 6616 unsigned long high_limit) 6617 { 6618 unsigned long long max = high_limit; 6619 unsigned long log2qty, size; 6620 void *table = NULL; 6621 6622 /* allow the kernel cmdline to have a say */ 6623 if (!numentries) { 6624 /* round applicable memory size up to nearest megabyte */ 6625 numentries = nr_kernel_pages; 6626 6627 /* It isn't necessary when PAGE_SIZE >= 1MB */ 6628 if (PAGE_SHIFT < 20) 6629 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 6630 6631 /* limit to 1 bucket per 2^scale bytes of low memory */ 6632 if (scale > PAGE_SHIFT) 6633 numentries >>= (scale - PAGE_SHIFT); 6634 else 6635 numentries <<= (PAGE_SHIFT - scale); 6636 6637 /* Make sure we've got at least a 0-order allocation.. */ 6638 if (unlikely(flags & HASH_SMALL)) { 6639 /* Makes no sense without HASH_EARLY */ 6640 WARN_ON(!(flags & HASH_EARLY)); 6641 if (!(numentries >> *_hash_shift)) { 6642 numentries = 1UL << *_hash_shift; 6643 BUG_ON(!numentries); 6644 } 6645 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 6646 numentries = PAGE_SIZE / bucketsize; 6647 } 6648 numentries = roundup_pow_of_two(numentries); 6649 6650 /* limit allocation size to 1/16 total memory by default */ 6651 if (max == 0) { 6652 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 6653 do_div(max, bucketsize); 6654 } 6655 max = min(max, 0x80000000ULL); 6656 6657 if (numentries < low_limit) 6658 numentries = low_limit; 6659 if (numentries > max) 6660 numentries = max; 6661 6662 log2qty = ilog2(numentries); 6663 6664 do { 6665 size = bucketsize << log2qty; 6666 if (flags & HASH_EARLY) 6667 table = memblock_virt_alloc_nopanic(size, 0); 6668 else if (hashdist) 6669 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 6670 else { 6671 /* 6672 * If bucketsize is not a power-of-two, we may free 6673 * some pages at the end of hash table which 6674 * alloc_pages_exact() automatically does 6675 */ 6676 if (get_order(size) < MAX_ORDER) { 6677 table = alloc_pages_exact(size, GFP_ATOMIC); 6678 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 6679 } 6680 } 6681 } while (!table && size > PAGE_SIZE && --log2qty); 6682 6683 if (!table) 6684 panic("Failed to allocate %s hash table\n", tablename); 6685 6686 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 6687 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 6688 6689 if (_hash_shift) 6690 *_hash_shift = log2qty; 6691 if (_hash_mask) 6692 *_hash_mask = (1 << log2qty) - 1; 6693 6694 return table; 6695 } 6696 6697 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 6698 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 6699 unsigned long pfn) 6700 { 6701 #ifdef CONFIG_SPARSEMEM 6702 return __pfn_to_section(pfn)->pageblock_flags; 6703 #else 6704 return zone->pageblock_flags; 6705 #endif /* CONFIG_SPARSEMEM */ 6706 } 6707 6708 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 6709 { 6710 #ifdef CONFIG_SPARSEMEM 6711 pfn &= (PAGES_PER_SECTION-1); 6712 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6713 #else 6714 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 6715 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6716 #endif /* CONFIG_SPARSEMEM */ 6717 } 6718 6719 /** 6720 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 6721 * @page: The page within the block of interest 6722 * @pfn: The target page frame number 6723 * @end_bitidx: The last bit of interest to retrieve 6724 * @mask: mask of bits that the caller is interested in 6725 * 6726 * Return: pageblock_bits flags 6727 */ 6728 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 6729 unsigned long end_bitidx, 6730 unsigned long mask) 6731 { 6732 struct zone *zone; 6733 unsigned long *bitmap; 6734 unsigned long bitidx, word_bitidx; 6735 unsigned long word; 6736 6737 zone = page_zone(page); 6738 bitmap = get_pageblock_bitmap(zone, pfn); 6739 bitidx = pfn_to_bitidx(zone, pfn); 6740 word_bitidx = bitidx / BITS_PER_LONG; 6741 bitidx &= (BITS_PER_LONG-1); 6742 6743 word = bitmap[word_bitidx]; 6744 bitidx += end_bitidx; 6745 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 6746 } 6747 6748 /** 6749 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 6750 * @page: The page within the block of interest 6751 * @flags: The flags to set 6752 * @pfn: The target page frame number 6753 * @end_bitidx: The last bit of interest 6754 * @mask: mask of bits that the caller is interested in 6755 */ 6756 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 6757 unsigned long pfn, 6758 unsigned long end_bitidx, 6759 unsigned long mask) 6760 { 6761 struct zone *zone; 6762 unsigned long *bitmap; 6763 unsigned long bitidx, word_bitidx; 6764 unsigned long old_word, word; 6765 6766 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 6767 6768 zone = page_zone(page); 6769 bitmap = get_pageblock_bitmap(zone, pfn); 6770 bitidx = pfn_to_bitidx(zone, pfn); 6771 word_bitidx = bitidx / BITS_PER_LONG; 6772 bitidx &= (BITS_PER_LONG-1); 6773 6774 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); 6775 6776 bitidx += end_bitidx; 6777 mask <<= (BITS_PER_LONG - bitidx - 1); 6778 flags <<= (BITS_PER_LONG - bitidx - 1); 6779 6780 word = READ_ONCE(bitmap[word_bitidx]); 6781 for (;;) { 6782 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 6783 if (word == old_word) 6784 break; 6785 word = old_word; 6786 } 6787 } 6788 6789 /* 6790 * This function checks whether pageblock includes unmovable pages or not. 6791 * If @count is not zero, it is okay to include less @count unmovable pages 6792 * 6793 * PageLRU check without isolation or lru_lock could race so that 6794 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 6795 * expect this function should be exact. 6796 */ 6797 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 6798 bool skip_hwpoisoned_pages) 6799 { 6800 unsigned long pfn, iter, found; 6801 int mt; 6802 6803 /* 6804 * For avoiding noise data, lru_add_drain_all() should be called 6805 * If ZONE_MOVABLE, the zone never contains unmovable pages 6806 */ 6807 if (zone_idx(zone) == ZONE_MOVABLE) 6808 return false; 6809 mt = get_pageblock_migratetype(page); 6810 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 6811 return false; 6812 6813 pfn = page_to_pfn(page); 6814 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 6815 unsigned long check = pfn + iter; 6816 6817 if (!pfn_valid_within(check)) 6818 continue; 6819 6820 page = pfn_to_page(check); 6821 6822 /* 6823 * Hugepages are not in LRU lists, but they're movable. 6824 * We need not scan over tail pages bacause we don't 6825 * handle each tail page individually in migration. 6826 */ 6827 if (PageHuge(page)) { 6828 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 6829 continue; 6830 } 6831 6832 /* 6833 * We can't use page_count without pin a page 6834 * because another CPU can free compound page. 6835 * This check already skips compound tails of THP 6836 * because their page->_count is zero at all time. 6837 */ 6838 if (!page_ref_count(page)) { 6839 if (PageBuddy(page)) 6840 iter += (1 << page_order(page)) - 1; 6841 continue; 6842 } 6843 6844 /* 6845 * The HWPoisoned page may be not in buddy system, and 6846 * page_count() is not 0. 6847 */ 6848 if (skip_hwpoisoned_pages && PageHWPoison(page)) 6849 continue; 6850 6851 if (!PageLRU(page)) 6852 found++; 6853 /* 6854 * If there are RECLAIMABLE pages, we need to check 6855 * it. But now, memory offline itself doesn't call 6856 * shrink_node_slabs() and it still to be fixed. 6857 */ 6858 /* 6859 * If the page is not RAM, page_count()should be 0. 6860 * we don't need more check. This is an _used_ not-movable page. 6861 * 6862 * The problematic thing here is PG_reserved pages. PG_reserved 6863 * is set to both of a memory hole page and a _used_ kernel 6864 * page at boot. 6865 */ 6866 if (found > count) 6867 return true; 6868 } 6869 return false; 6870 } 6871 6872 bool is_pageblock_removable_nolock(struct page *page) 6873 { 6874 struct zone *zone; 6875 unsigned long pfn; 6876 6877 /* 6878 * We have to be careful here because we are iterating over memory 6879 * sections which are not zone aware so we might end up outside of 6880 * the zone but still within the section. 6881 * We have to take care about the node as well. If the node is offline 6882 * its NODE_DATA will be NULL - see page_zone. 6883 */ 6884 if (!node_online(page_to_nid(page))) 6885 return false; 6886 6887 zone = page_zone(page); 6888 pfn = page_to_pfn(page); 6889 if (!zone_spans_pfn(zone, pfn)) 6890 return false; 6891 6892 return !has_unmovable_pages(zone, page, 0, true); 6893 } 6894 6895 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 6896 6897 static unsigned long pfn_max_align_down(unsigned long pfn) 6898 { 6899 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 6900 pageblock_nr_pages) - 1); 6901 } 6902 6903 static unsigned long pfn_max_align_up(unsigned long pfn) 6904 { 6905 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6906 pageblock_nr_pages)); 6907 } 6908 6909 /* [start, end) must belong to a single zone. */ 6910 static int __alloc_contig_migrate_range(struct compact_control *cc, 6911 unsigned long start, unsigned long end) 6912 { 6913 /* This function is based on compact_zone() from compaction.c. */ 6914 unsigned long nr_reclaimed; 6915 unsigned long pfn = start; 6916 unsigned int tries = 0; 6917 int ret = 0; 6918 6919 migrate_prep(); 6920 6921 while (pfn < end || !list_empty(&cc->migratepages)) { 6922 if (fatal_signal_pending(current)) { 6923 ret = -EINTR; 6924 break; 6925 } 6926 6927 if (list_empty(&cc->migratepages)) { 6928 cc->nr_migratepages = 0; 6929 pfn = isolate_migratepages_range(cc, pfn, end); 6930 if (!pfn) { 6931 ret = -EINTR; 6932 break; 6933 } 6934 tries = 0; 6935 } else if (++tries == 5) { 6936 ret = ret < 0 ? ret : -EBUSY; 6937 break; 6938 } 6939 6940 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6941 &cc->migratepages); 6942 cc->nr_migratepages -= nr_reclaimed; 6943 6944 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6945 NULL, 0, cc->mode, MR_CMA); 6946 } 6947 if (ret < 0) { 6948 putback_movable_pages(&cc->migratepages); 6949 return ret; 6950 } 6951 return 0; 6952 } 6953 6954 /** 6955 * alloc_contig_range() -- tries to allocate given range of pages 6956 * @start: start PFN to allocate 6957 * @end: one-past-the-last PFN to allocate 6958 * @migratetype: migratetype of the underlaying pageblocks (either 6959 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6960 * in range must have the same migratetype and it must 6961 * be either of the two. 6962 * 6963 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6964 * aligned, however it's the caller's responsibility to guarantee that 6965 * we are the only thread that changes migrate type of pageblocks the 6966 * pages fall in. 6967 * 6968 * The PFN range must belong to a single zone. 6969 * 6970 * Returns zero on success or negative error code. On success all 6971 * pages which PFN is in [start, end) are allocated for the caller and 6972 * need to be freed with free_contig_range(). 6973 */ 6974 int alloc_contig_range(unsigned long start, unsigned long end, 6975 unsigned migratetype) 6976 { 6977 unsigned long outer_start, outer_end; 6978 unsigned int order; 6979 int ret = 0; 6980 6981 struct compact_control cc = { 6982 .nr_migratepages = 0, 6983 .order = -1, 6984 .zone = page_zone(pfn_to_page(start)), 6985 .mode = MIGRATE_SYNC, 6986 .ignore_skip_hint = true, 6987 }; 6988 INIT_LIST_HEAD(&cc.migratepages); 6989 6990 /* 6991 * What we do here is we mark all pageblocks in range as 6992 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6993 * have different sizes, and due to the way page allocator 6994 * work, we align the range to biggest of the two pages so 6995 * that page allocator won't try to merge buddies from 6996 * different pageblocks and change MIGRATE_ISOLATE to some 6997 * other migration type. 6998 * 6999 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7000 * migrate the pages from an unaligned range (ie. pages that 7001 * we are interested in). This will put all the pages in 7002 * range back to page allocator as MIGRATE_ISOLATE. 7003 * 7004 * When this is done, we take the pages in range from page 7005 * allocator removing them from the buddy system. This way 7006 * page allocator will never consider using them. 7007 * 7008 * This lets us mark the pageblocks back as 7009 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7010 * aligned range but not in the unaligned, original range are 7011 * put back to page allocator so that buddy can use them. 7012 */ 7013 7014 ret = start_isolate_page_range(pfn_max_align_down(start), 7015 pfn_max_align_up(end), migratetype, 7016 false); 7017 if (ret) 7018 return ret; 7019 7020 /* 7021 * In case of -EBUSY, we'd like to know which page causes problem. 7022 * So, just fall through. We will check it in test_pages_isolated(). 7023 */ 7024 ret = __alloc_contig_migrate_range(&cc, start, end); 7025 if (ret && ret != -EBUSY) 7026 goto done; 7027 7028 /* 7029 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7030 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7031 * more, all pages in [start, end) are free in page allocator. 7032 * What we are going to do is to allocate all pages from 7033 * [start, end) (that is remove them from page allocator). 7034 * 7035 * The only problem is that pages at the beginning and at the 7036 * end of interesting range may be not aligned with pages that 7037 * page allocator holds, ie. they can be part of higher order 7038 * pages. Because of this, we reserve the bigger range and 7039 * once this is done free the pages we are not interested in. 7040 * 7041 * We don't have to hold zone->lock here because the pages are 7042 * isolated thus they won't get removed from buddy. 7043 */ 7044 7045 lru_add_drain_all(); 7046 drain_all_pages(cc.zone); 7047 7048 order = 0; 7049 outer_start = start; 7050 while (!PageBuddy(pfn_to_page(outer_start))) { 7051 if (++order >= MAX_ORDER) { 7052 outer_start = start; 7053 break; 7054 } 7055 outer_start &= ~0UL << order; 7056 } 7057 7058 if (outer_start != start) { 7059 order = page_order(pfn_to_page(outer_start)); 7060 7061 /* 7062 * outer_start page could be small order buddy page and 7063 * it doesn't include start page. Adjust outer_start 7064 * in this case to report failed page properly 7065 * on tracepoint in test_pages_isolated() 7066 */ 7067 if (outer_start + (1UL << order) <= start) 7068 outer_start = start; 7069 } 7070 7071 /* Make sure the range is really isolated. */ 7072 if (test_pages_isolated(outer_start, end, false)) { 7073 pr_info("%s: [%lx, %lx) PFNs busy\n", 7074 __func__, outer_start, end); 7075 ret = -EBUSY; 7076 goto done; 7077 } 7078 7079 /* Grab isolated pages from freelists. */ 7080 outer_end = isolate_freepages_range(&cc, outer_start, end); 7081 if (!outer_end) { 7082 ret = -EBUSY; 7083 goto done; 7084 } 7085 7086 /* Free head and tail (if any) */ 7087 if (start != outer_start) 7088 free_contig_range(outer_start, start - outer_start); 7089 if (end != outer_end) 7090 free_contig_range(end, outer_end - end); 7091 7092 done: 7093 undo_isolate_page_range(pfn_max_align_down(start), 7094 pfn_max_align_up(end), migratetype); 7095 return ret; 7096 } 7097 7098 void free_contig_range(unsigned long pfn, unsigned nr_pages) 7099 { 7100 unsigned int count = 0; 7101 7102 for (; nr_pages--; pfn++) { 7103 struct page *page = pfn_to_page(pfn); 7104 7105 count += page_count(page) != 1; 7106 __free_page(page); 7107 } 7108 WARN(count != 0, "%d pages are still in use!\n", count); 7109 } 7110 #endif 7111 7112 #ifdef CONFIG_MEMORY_HOTPLUG 7113 /* 7114 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7115 * page high values need to be recalulated. 7116 */ 7117 void __meminit zone_pcp_update(struct zone *zone) 7118 { 7119 unsigned cpu; 7120 mutex_lock(&pcp_batch_high_lock); 7121 for_each_possible_cpu(cpu) 7122 pageset_set_high_and_batch(zone, 7123 per_cpu_ptr(zone->pageset, cpu)); 7124 mutex_unlock(&pcp_batch_high_lock); 7125 } 7126 #endif 7127 7128 void zone_pcp_reset(struct zone *zone) 7129 { 7130 unsigned long flags; 7131 int cpu; 7132 struct per_cpu_pageset *pset; 7133 7134 /* avoid races with drain_pages() */ 7135 local_irq_save(flags); 7136 if (zone->pageset != &boot_pageset) { 7137 for_each_online_cpu(cpu) { 7138 pset = per_cpu_ptr(zone->pageset, cpu); 7139 drain_zonestat(zone, pset); 7140 } 7141 free_percpu(zone->pageset); 7142 zone->pageset = &boot_pageset; 7143 } 7144 local_irq_restore(flags); 7145 } 7146 7147 #ifdef CONFIG_MEMORY_HOTREMOVE 7148 /* 7149 * All pages in the range must be isolated before calling this. 7150 */ 7151 void 7152 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7153 { 7154 struct page *page; 7155 struct zone *zone; 7156 unsigned int order, i; 7157 unsigned long pfn; 7158 unsigned long flags; 7159 /* find the first valid pfn */ 7160 for (pfn = start_pfn; pfn < end_pfn; pfn++) 7161 if (pfn_valid(pfn)) 7162 break; 7163 if (pfn == end_pfn) 7164 return; 7165 zone = page_zone(pfn_to_page(pfn)); 7166 spin_lock_irqsave(&zone->lock, flags); 7167 pfn = start_pfn; 7168 while (pfn < end_pfn) { 7169 if (!pfn_valid(pfn)) { 7170 pfn++; 7171 continue; 7172 } 7173 page = pfn_to_page(pfn); 7174 /* 7175 * The HWPoisoned page may be not in buddy system, and 7176 * page_count() is not 0. 7177 */ 7178 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7179 pfn++; 7180 SetPageReserved(page); 7181 continue; 7182 } 7183 7184 BUG_ON(page_count(page)); 7185 BUG_ON(!PageBuddy(page)); 7186 order = page_order(page); 7187 #ifdef CONFIG_DEBUG_VM 7188 pr_info("remove from free list %lx %d %lx\n", 7189 pfn, 1 << order, end_pfn); 7190 #endif 7191 list_del(&page->lru); 7192 rmv_page_order(page); 7193 zone->free_area[order].nr_free--; 7194 for (i = 0; i < (1 << order); i++) 7195 SetPageReserved((page+i)); 7196 pfn += (1 << order); 7197 } 7198 spin_unlock_irqrestore(&zone->lock, flags); 7199 } 7200 #endif 7201 7202 bool is_free_buddy_page(struct page *page) 7203 { 7204 struct zone *zone = page_zone(page); 7205 unsigned long pfn = page_to_pfn(page); 7206 unsigned long flags; 7207 unsigned int order; 7208 7209 spin_lock_irqsave(&zone->lock, flags); 7210 for (order = 0; order < MAX_ORDER; order++) { 7211 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7212 7213 if (PageBuddy(page_head) && page_order(page_head) >= order) 7214 break; 7215 } 7216 spin_unlock_irqrestore(&zone->lock, flags); 7217 7218 return order < MAX_ORDER; 7219 } 7220