xref: /openbmc/linux/mm/page_alloc.c (revision 06dac2f467fe9269a433aa5056dd2ee1d20475e9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
78 #include "internal.h"
79 #include "shuffle.h"
80 #include "page_reporting.h"
81 
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
84 
85 /* No special request */
86 #define FPI_NONE		((__force fpi_t)0)
87 
88 /*
89  * Skip free page reporting notification for the (possibly merged) page.
90  * This does not hinder free page reporting from grabbing the page,
91  * reporting it and marking it "reported" -  it only skips notifying
92  * the free page reporting infrastructure about a newly freed page. For
93  * example, used when temporarily pulling a page from a freelist and
94  * putting it back unmodified.
95  */
96 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
97 
98 /*
99  * Place the (possibly merged) page to the tail of the freelist. Will ignore
100  * page shuffling (relevant code - e.g., memory onlining - is expected to
101  * shuffle the whole zone).
102  *
103  * Note: No code should rely on this flag for correctness - it's purely
104  *       to allow for optimizations when handing back either fresh pages
105  *       (memory onlining) or untouched pages (page isolation, free page
106  *       reporting).
107  */
108 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
109 
110 /*
111  * Don't poison memory with KASAN (only for the tag-based modes).
112  * During boot, all non-reserved memblock memory is exposed to page_alloc.
113  * Poisoning all that memory lengthens boot time, especially on systems with
114  * large amount of RAM. This flag is used to skip that poisoning.
115  * This is only done for the tag-based KASAN modes, as those are able to
116  * detect memory corruptions with the memory tags assigned by default.
117  * All memory allocated normally after boot gets poisoned as usual.
118  */
119 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
120 
121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122 static DEFINE_MUTEX(pcp_batch_high_lock);
123 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
124 
125 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
126 DEFINE_PER_CPU(int, numa_node);
127 EXPORT_PER_CPU_SYMBOL(numa_node);
128 #endif
129 
130 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
131 
132 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
133 /*
134  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
135  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
136  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
137  * defined in <linux/topology.h>.
138  */
139 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
140 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
141 #endif
142 
143 /* work_structs for global per-cpu drains */
144 struct pcpu_drain {
145 	struct zone *zone;
146 	struct work_struct work;
147 };
148 static DEFINE_MUTEX(pcpu_drain_mutex);
149 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
150 
151 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
152 volatile unsigned long latent_entropy __latent_entropy;
153 EXPORT_SYMBOL(latent_entropy);
154 #endif
155 
156 /*
157  * Array of node states.
158  */
159 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
160 	[N_POSSIBLE] = NODE_MASK_ALL,
161 	[N_ONLINE] = { { [0] = 1UL } },
162 #ifndef CONFIG_NUMA
163 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
164 #ifdef CONFIG_HIGHMEM
165 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
166 #endif
167 	[N_MEMORY] = { { [0] = 1UL } },
168 	[N_CPU] = { { [0] = 1UL } },
169 #endif	/* NUMA */
170 };
171 EXPORT_SYMBOL(node_states);
172 
173 atomic_long_t _totalram_pages __read_mostly;
174 EXPORT_SYMBOL(_totalram_pages);
175 unsigned long totalreserve_pages __read_mostly;
176 unsigned long totalcma_pages __read_mostly;
177 
178 int percpu_pagelist_fraction;
179 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
180 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
181 EXPORT_SYMBOL(init_on_alloc);
182 
183 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
184 EXPORT_SYMBOL(init_on_free);
185 
186 static bool _init_on_alloc_enabled_early __read_mostly
187 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
188 static int __init early_init_on_alloc(char *buf)
189 {
190 
191 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
192 }
193 early_param("init_on_alloc", early_init_on_alloc);
194 
195 static bool _init_on_free_enabled_early __read_mostly
196 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
197 static int __init early_init_on_free(char *buf)
198 {
199 	return kstrtobool(buf, &_init_on_free_enabled_early);
200 }
201 early_param("init_on_free", early_init_on_free);
202 
203 /*
204  * A cached value of the page's pageblock's migratetype, used when the page is
205  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
206  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
207  * Also the migratetype set in the page does not necessarily match the pcplist
208  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
209  * other index - this ensures that it will be put on the correct CMA freelist.
210  */
211 static inline int get_pcppage_migratetype(struct page *page)
212 {
213 	return page->index;
214 }
215 
216 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
217 {
218 	page->index = migratetype;
219 }
220 
221 #ifdef CONFIG_PM_SLEEP
222 /*
223  * The following functions are used by the suspend/hibernate code to temporarily
224  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
225  * while devices are suspended.  To avoid races with the suspend/hibernate code,
226  * they should always be called with system_transition_mutex held
227  * (gfp_allowed_mask also should only be modified with system_transition_mutex
228  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
229  * with that modification).
230  */
231 
232 static gfp_t saved_gfp_mask;
233 
234 void pm_restore_gfp_mask(void)
235 {
236 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
237 	if (saved_gfp_mask) {
238 		gfp_allowed_mask = saved_gfp_mask;
239 		saved_gfp_mask = 0;
240 	}
241 }
242 
243 void pm_restrict_gfp_mask(void)
244 {
245 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
246 	WARN_ON(saved_gfp_mask);
247 	saved_gfp_mask = gfp_allowed_mask;
248 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
249 }
250 
251 bool pm_suspended_storage(void)
252 {
253 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
254 		return false;
255 	return true;
256 }
257 #endif /* CONFIG_PM_SLEEP */
258 
259 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
260 unsigned int pageblock_order __read_mostly;
261 #endif
262 
263 static void __free_pages_ok(struct page *page, unsigned int order,
264 			    fpi_t fpi_flags);
265 
266 /*
267  * results with 256, 32 in the lowmem_reserve sysctl:
268  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
269  *	1G machine -> (16M dma, 784M normal, 224M high)
270  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
271  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
272  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
273  *
274  * TBD: should special case ZONE_DMA32 machines here - in those we normally
275  * don't need any ZONE_NORMAL reservation
276  */
277 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
278 #ifdef CONFIG_ZONE_DMA
279 	[ZONE_DMA] = 256,
280 #endif
281 #ifdef CONFIG_ZONE_DMA32
282 	[ZONE_DMA32] = 256,
283 #endif
284 	[ZONE_NORMAL] = 32,
285 #ifdef CONFIG_HIGHMEM
286 	[ZONE_HIGHMEM] = 0,
287 #endif
288 	[ZONE_MOVABLE] = 0,
289 };
290 
291 static char * const zone_names[MAX_NR_ZONES] = {
292 #ifdef CONFIG_ZONE_DMA
293 	 "DMA",
294 #endif
295 #ifdef CONFIG_ZONE_DMA32
296 	 "DMA32",
297 #endif
298 	 "Normal",
299 #ifdef CONFIG_HIGHMEM
300 	 "HighMem",
301 #endif
302 	 "Movable",
303 #ifdef CONFIG_ZONE_DEVICE
304 	 "Device",
305 #endif
306 };
307 
308 const char * const migratetype_names[MIGRATE_TYPES] = {
309 	"Unmovable",
310 	"Movable",
311 	"Reclaimable",
312 	"HighAtomic",
313 #ifdef CONFIG_CMA
314 	"CMA",
315 #endif
316 #ifdef CONFIG_MEMORY_ISOLATION
317 	"Isolate",
318 #endif
319 };
320 
321 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
322 	[NULL_COMPOUND_DTOR] = NULL,
323 	[COMPOUND_PAGE_DTOR] = free_compound_page,
324 #ifdef CONFIG_HUGETLB_PAGE
325 	[HUGETLB_PAGE_DTOR] = free_huge_page,
326 #endif
327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
328 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
329 #endif
330 };
331 
332 int min_free_kbytes = 1024;
333 int user_min_free_kbytes = -1;
334 #ifdef CONFIG_DISCONTIGMEM
335 /*
336  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
337  * are not on separate NUMA nodes. Functionally this works but with
338  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
339  * quite small. By default, do not boost watermarks on discontigmem as in
340  * many cases very high-order allocations like THP are likely to be
341  * unsupported and the premature reclaim offsets the advantage of long-term
342  * fragmentation avoidance.
343  */
344 int watermark_boost_factor __read_mostly;
345 #else
346 int watermark_boost_factor __read_mostly = 15000;
347 #endif
348 int watermark_scale_factor = 10;
349 
350 static unsigned long nr_kernel_pages __initdata;
351 static unsigned long nr_all_pages __initdata;
352 static unsigned long dma_reserve __initdata;
353 
354 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
355 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
356 static unsigned long required_kernelcore __initdata;
357 static unsigned long required_kernelcore_percent __initdata;
358 static unsigned long required_movablecore __initdata;
359 static unsigned long required_movablecore_percent __initdata;
360 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
361 static bool mirrored_kernelcore __meminitdata;
362 
363 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
364 int movable_zone;
365 EXPORT_SYMBOL(movable_zone);
366 
367 #if MAX_NUMNODES > 1
368 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
369 unsigned int nr_online_nodes __read_mostly = 1;
370 EXPORT_SYMBOL(nr_node_ids);
371 EXPORT_SYMBOL(nr_online_nodes);
372 #endif
373 
374 int page_group_by_mobility_disabled __read_mostly;
375 
376 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
377 /*
378  * During boot we initialize deferred pages on-demand, as needed, but once
379  * page_alloc_init_late() has finished, the deferred pages are all initialized,
380  * and we can permanently disable that path.
381  */
382 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
383 
384 /*
385  * Calling kasan_free_pages() only after deferred memory initialization
386  * has completed. Poisoning pages during deferred memory init will greatly
387  * lengthen the process and cause problem in large memory systems as the
388  * deferred pages initialization is done with interrupt disabled.
389  *
390  * Assuming that there will be no reference to those newly initialized
391  * pages before they are ever allocated, this should have no effect on
392  * KASAN memory tracking as the poison will be properly inserted at page
393  * allocation time. The only corner case is when pages are allocated by
394  * on-demand allocation and then freed again before the deferred pages
395  * initialization is done, but this is not likely to happen.
396  */
397 static inline void kasan_free_nondeferred_pages(struct page *page, int order,
398 						bool init, fpi_t fpi_flags)
399 {
400 	if (static_branch_unlikely(&deferred_pages))
401 		return;
402 	if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
403 			(fpi_flags & FPI_SKIP_KASAN_POISON))
404 		return;
405 	kasan_free_pages(page, order, init);
406 }
407 
408 /* Returns true if the struct page for the pfn is uninitialised */
409 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
410 {
411 	int nid = early_pfn_to_nid(pfn);
412 
413 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
414 		return true;
415 
416 	return false;
417 }
418 
419 /*
420  * Returns true when the remaining initialisation should be deferred until
421  * later in the boot cycle when it can be parallelised.
422  */
423 static bool __meminit
424 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
425 {
426 	static unsigned long prev_end_pfn, nr_initialised;
427 
428 	/*
429 	 * prev_end_pfn static that contains the end of previous zone
430 	 * No need to protect because called very early in boot before smp_init.
431 	 */
432 	if (prev_end_pfn != end_pfn) {
433 		prev_end_pfn = end_pfn;
434 		nr_initialised = 0;
435 	}
436 
437 	/* Always populate low zones for address-constrained allocations */
438 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
439 		return false;
440 
441 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
442 		return true;
443 	/*
444 	 * We start only with one section of pages, more pages are added as
445 	 * needed until the rest of deferred pages are initialized.
446 	 */
447 	nr_initialised++;
448 	if ((nr_initialised > PAGES_PER_SECTION) &&
449 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
450 		NODE_DATA(nid)->first_deferred_pfn = pfn;
451 		return true;
452 	}
453 	return false;
454 }
455 #else
456 static inline void kasan_free_nondeferred_pages(struct page *page, int order,
457 						bool init, fpi_t fpi_flags)
458 {
459 	if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
460 			(fpi_flags & FPI_SKIP_KASAN_POISON))
461 		return;
462 	kasan_free_pages(page, order, init);
463 }
464 
465 static inline bool early_page_uninitialised(unsigned long pfn)
466 {
467 	return false;
468 }
469 
470 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
471 {
472 	return false;
473 }
474 #endif
475 
476 /* Return a pointer to the bitmap storing bits affecting a block of pages */
477 static inline unsigned long *get_pageblock_bitmap(struct page *page,
478 							unsigned long pfn)
479 {
480 #ifdef CONFIG_SPARSEMEM
481 	return section_to_usemap(__pfn_to_section(pfn));
482 #else
483 	return page_zone(page)->pageblock_flags;
484 #endif /* CONFIG_SPARSEMEM */
485 }
486 
487 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
488 {
489 #ifdef CONFIG_SPARSEMEM
490 	pfn &= (PAGES_PER_SECTION-1);
491 #else
492 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
493 #endif /* CONFIG_SPARSEMEM */
494 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
495 }
496 
497 static __always_inline
498 unsigned long __get_pfnblock_flags_mask(struct page *page,
499 					unsigned long pfn,
500 					unsigned long mask)
501 {
502 	unsigned long *bitmap;
503 	unsigned long bitidx, word_bitidx;
504 	unsigned long word;
505 
506 	bitmap = get_pageblock_bitmap(page, pfn);
507 	bitidx = pfn_to_bitidx(page, pfn);
508 	word_bitidx = bitidx / BITS_PER_LONG;
509 	bitidx &= (BITS_PER_LONG-1);
510 
511 	word = bitmap[word_bitidx];
512 	return (word >> bitidx) & mask;
513 }
514 
515 /**
516  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
517  * @page: The page within the block of interest
518  * @pfn: The target page frame number
519  * @mask: mask of bits that the caller is interested in
520  *
521  * Return: pageblock_bits flags
522  */
523 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
524 					unsigned long mask)
525 {
526 	return __get_pfnblock_flags_mask(page, pfn, mask);
527 }
528 
529 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
530 {
531 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
532 }
533 
534 /**
535  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
536  * @page: The page within the block of interest
537  * @flags: The flags to set
538  * @pfn: The target page frame number
539  * @mask: mask of bits that the caller is interested in
540  */
541 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
542 					unsigned long pfn,
543 					unsigned long mask)
544 {
545 	unsigned long *bitmap;
546 	unsigned long bitidx, word_bitidx;
547 	unsigned long old_word, word;
548 
549 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
550 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
551 
552 	bitmap = get_pageblock_bitmap(page, pfn);
553 	bitidx = pfn_to_bitidx(page, pfn);
554 	word_bitidx = bitidx / BITS_PER_LONG;
555 	bitidx &= (BITS_PER_LONG-1);
556 
557 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
558 
559 	mask <<= bitidx;
560 	flags <<= bitidx;
561 
562 	word = READ_ONCE(bitmap[word_bitidx]);
563 	for (;;) {
564 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
565 		if (word == old_word)
566 			break;
567 		word = old_word;
568 	}
569 }
570 
571 void set_pageblock_migratetype(struct page *page, int migratetype)
572 {
573 	if (unlikely(page_group_by_mobility_disabled &&
574 		     migratetype < MIGRATE_PCPTYPES))
575 		migratetype = MIGRATE_UNMOVABLE;
576 
577 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
578 				page_to_pfn(page), MIGRATETYPE_MASK);
579 }
580 
581 #ifdef CONFIG_DEBUG_VM
582 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
583 {
584 	int ret = 0;
585 	unsigned seq;
586 	unsigned long pfn = page_to_pfn(page);
587 	unsigned long sp, start_pfn;
588 
589 	do {
590 		seq = zone_span_seqbegin(zone);
591 		start_pfn = zone->zone_start_pfn;
592 		sp = zone->spanned_pages;
593 		if (!zone_spans_pfn(zone, pfn))
594 			ret = 1;
595 	} while (zone_span_seqretry(zone, seq));
596 
597 	if (ret)
598 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
599 			pfn, zone_to_nid(zone), zone->name,
600 			start_pfn, start_pfn + sp);
601 
602 	return ret;
603 }
604 
605 static int page_is_consistent(struct zone *zone, struct page *page)
606 {
607 	if (!pfn_valid_within(page_to_pfn(page)))
608 		return 0;
609 	if (zone != page_zone(page))
610 		return 0;
611 
612 	return 1;
613 }
614 /*
615  * Temporary debugging check for pages not lying within a given zone.
616  */
617 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
618 {
619 	if (page_outside_zone_boundaries(zone, page))
620 		return 1;
621 	if (!page_is_consistent(zone, page))
622 		return 1;
623 
624 	return 0;
625 }
626 #else
627 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
628 {
629 	return 0;
630 }
631 #endif
632 
633 static void bad_page(struct page *page, const char *reason)
634 {
635 	static unsigned long resume;
636 	static unsigned long nr_shown;
637 	static unsigned long nr_unshown;
638 
639 	/*
640 	 * Allow a burst of 60 reports, then keep quiet for that minute;
641 	 * or allow a steady drip of one report per second.
642 	 */
643 	if (nr_shown == 60) {
644 		if (time_before(jiffies, resume)) {
645 			nr_unshown++;
646 			goto out;
647 		}
648 		if (nr_unshown) {
649 			pr_alert(
650 			      "BUG: Bad page state: %lu messages suppressed\n",
651 				nr_unshown);
652 			nr_unshown = 0;
653 		}
654 		nr_shown = 0;
655 	}
656 	if (nr_shown++ == 0)
657 		resume = jiffies + 60 * HZ;
658 
659 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
660 		current->comm, page_to_pfn(page));
661 	__dump_page(page, reason);
662 	dump_page_owner(page);
663 
664 	print_modules();
665 	dump_stack();
666 out:
667 	/* Leave bad fields for debug, except PageBuddy could make trouble */
668 	page_mapcount_reset(page); /* remove PageBuddy */
669 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
670 }
671 
672 /*
673  * Higher-order pages are called "compound pages".  They are structured thusly:
674  *
675  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
676  *
677  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
678  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
679  *
680  * The first tail page's ->compound_dtor holds the offset in array of compound
681  * page destructors. See compound_page_dtors.
682  *
683  * The first tail page's ->compound_order holds the order of allocation.
684  * This usage means that zero-order pages may not be compound.
685  */
686 
687 void free_compound_page(struct page *page)
688 {
689 	mem_cgroup_uncharge(page);
690 	__free_pages_ok(page, compound_order(page), FPI_NONE);
691 }
692 
693 void prep_compound_page(struct page *page, unsigned int order)
694 {
695 	int i;
696 	int nr_pages = 1 << order;
697 
698 	__SetPageHead(page);
699 	for (i = 1; i < nr_pages; i++) {
700 		struct page *p = page + i;
701 		set_page_count(p, 0);
702 		p->mapping = TAIL_MAPPING;
703 		set_compound_head(p, page);
704 	}
705 
706 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
707 	set_compound_order(page, order);
708 	atomic_set(compound_mapcount_ptr(page), -1);
709 	if (hpage_pincount_available(page))
710 		atomic_set(compound_pincount_ptr(page), 0);
711 }
712 
713 #ifdef CONFIG_DEBUG_PAGEALLOC
714 unsigned int _debug_guardpage_minorder;
715 
716 bool _debug_pagealloc_enabled_early __read_mostly
717 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
718 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
719 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
720 EXPORT_SYMBOL(_debug_pagealloc_enabled);
721 
722 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
723 
724 static int __init early_debug_pagealloc(char *buf)
725 {
726 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
727 }
728 early_param("debug_pagealloc", early_debug_pagealloc);
729 
730 static int __init debug_guardpage_minorder_setup(char *buf)
731 {
732 	unsigned long res;
733 
734 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
735 		pr_err("Bad debug_guardpage_minorder value\n");
736 		return 0;
737 	}
738 	_debug_guardpage_minorder = res;
739 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
740 	return 0;
741 }
742 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
743 
744 static inline bool set_page_guard(struct zone *zone, struct page *page,
745 				unsigned int order, int migratetype)
746 {
747 	if (!debug_guardpage_enabled())
748 		return false;
749 
750 	if (order >= debug_guardpage_minorder())
751 		return false;
752 
753 	__SetPageGuard(page);
754 	INIT_LIST_HEAD(&page->lru);
755 	set_page_private(page, order);
756 	/* Guard pages are not available for any usage */
757 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
758 
759 	return true;
760 }
761 
762 static inline void clear_page_guard(struct zone *zone, struct page *page,
763 				unsigned int order, int migratetype)
764 {
765 	if (!debug_guardpage_enabled())
766 		return;
767 
768 	__ClearPageGuard(page);
769 
770 	set_page_private(page, 0);
771 	if (!is_migrate_isolate(migratetype))
772 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
773 }
774 #else
775 static inline bool set_page_guard(struct zone *zone, struct page *page,
776 			unsigned int order, int migratetype) { return false; }
777 static inline void clear_page_guard(struct zone *zone, struct page *page,
778 				unsigned int order, int migratetype) {}
779 #endif
780 
781 /*
782  * Enable static keys related to various memory debugging and hardening options.
783  * Some override others, and depend on early params that are evaluated in the
784  * order of appearance. So we need to first gather the full picture of what was
785  * enabled, and then make decisions.
786  */
787 void init_mem_debugging_and_hardening(void)
788 {
789 	bool page_poisoning_requested = false;
790 
791 #ifdef CONFIG_PAGE_POISONING
792 	/*
793 	 * Page poisoning is debug page alloc for some arches. If
794 	 * either of those options are enabled, enable poisoning.
795 	 */
796 	if (page_poisoning_enabled() ||
797 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
798 	      debug_pagealloc_enabled())) {
799 		static_branch_enable(&_page_poisoning_enabled);
800 		page_poisoning_requested = true;
801 	}
802 #endif
803 
804 	if (_init_on_alloc_enabled_early) {
805 		if (page_poisoning_requested)
806 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
807 				"will take precedence over init_on_alloc\n");
808 		else
809 			static_branch_enable(&init_on_alloc);
810 	}
811 	if (_init_on_free_enabled_early) {
812 		if (page_poisoning_requested)
813 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
814 				"will take precedence over init_on_free\n");
815 		else
816 			static_branch_enable(&init_on_free);
817 	}
818 
819 #ifdef CONFIG_DEBUG_PAGEALLOC
820 	if (!debug_pagealloc_enabled())
821 		return;
822 
823 	static_branch_enable(&_debug_pagealloc_enabled);
824 
825 	if (!debug_guardpage_minorder())
826 		return;
827 
828 	static_branch_enable(&_debug_guardpage_enabled);
829 #endif
830 }
831 
832 static inline void set_buddy_order(struct page *page, unsigned int order)
833 {
834 	set_page_private(page, order);
835 	__SetPageBuddy(page);
836 }
837 
838 /*
839  * This function checks whether a page is free && is the buddy
840  * we can coalesce a page and its buddy if
841  * (a) the buddy is not in a hole (check before calling!) &&
842  * (b) the buddy is in the buddy system &&
843  * (c) a page and its buddy have the same order &&
844  * (d) a page and its buddy are in the same zone.
845  *
846  * For recording whether a page is in the buddy system, we set PageBuddy.
847  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
848  *
849  * For recording page's order, we use page_private(page).
850  */
851 static inline bool page_is_buddy(struct page *page, struct page *buddy,
852 							unsigned int order)
853 {
854 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
855 		return false;
856 
857 	if (buddy_order(buddy) != order)
858 		return false;
859 
860 	/*
861 	 * zone check is done late to avoid uselessly calculating
862 	 * zone/node ids for pages that could never merge.
863 	 */
864 	if (page_zone_id(page) != page_zone_id(buddy))
865 		return false;
866 
867 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
868 
869 	return true;
870 }
871 
872 #ifdef CONFIG_COMPACTION
873 static inline struct capture_control *task_capc(struct zone *zone)
874 {
875 	struct capture_control *capc = current->capture_control;
876 
877 	return unlikely(capc) &&
878 		!(current->flags & PF_KTHREAD) &&
879 		!capc->page &&
880 		capc->cc->zone == zone ? capc : NULL;
881 }
882 
883 static inline bool
884 compaction_capture(struct capture_control *capc, struct page *page,
885 		   int order, int migratetype)
886 {
887 	if (!capc || order != capc->cc->order)
888 		return false;
889 
890 	/* Do not accidentally pollute CMA or isolated regions*/
891 	if (is_migrate_cma(migratetype) ||
892 	    is_migrate_isolate(migratetype))
893 		return false;
894 
895 	/*
896 	 * Do not let lower order allocations polluate a movable pageblock.
897 	 * This might let an unmovable request use a reclaimable pageblock
898 	 * and vice-versa but no more than normal fallback logic which can
899 	 * have trouble finding a high-order free page.
900 	 */
901 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
902 		return false;
903 
904 	capc->page = page;
905 	return true;
906 }
907 
908 #else
909 static inline struct capture_control *task_capc(struct zone *zone)
910 {
911 	return NULL;
912 }
913 
914 static inline bool
915 compaction_capture(struct capture_control *capc, struct page *page,
916 		   int order, int migratetype)
917 {
918 	return false;
919 }
920 #endif /* CONFIG_COMPACTION */
921 
922 /* Used for pages not on another list */
923 static inline void add_to_free_list(struct page *page, struct zone *zone,
924 				    unsigned int order, int migratetype)
925 {
926 	struct free_area *area = &zone->free_area[order];
927 
928 	list_add(&page->lru, &area->free_list[migratetype]);
929 	area->nr_free++;
930 }
931 
932 /* Used for pages not on another list */
933 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
934 					 unsigned int order, int migratetype)
935 {
936 	struct free_area *area = &zone->free_area[order];
937 
938 	list_add_tail(&page->lru, &area->free_list[migratetype]);
939 	area->nr_free++;
940 }
941 
942 /*
943  * Used for pages which are on another list. Move the pages to the tail
944  * of the list - so the moved pages won't immediately be considered for
945  * allocation again (e.g., optimization for memory onlining).
946  */
947 static inline void move_to_free_list(struct page *page, struct zone *zone,
948 				     unsigned int order, int migratetype)
949 {
950 	struct free_area *area = &zone->free_area[order];
951 
952 	list_move_tail(&page->lru, &area->free_list[migratetype]);
953 }
954 
955 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
956 					   unsigned int order)
957 {
958 	/* clear reported state and update reported page count */
959 	if (page_reported(page))
960 		__ClearPageReported(page);
961 
962 	list_del(&page->lru);
963 	__ClearPageBuddy(page);
964 	set_page_private(page, 0);
965 	zone->free_area[order].nr_free--;
966 }
967 
968 /*
969  * If this is not the largest possible page, check if the buddy
970  * of the next-highest order is free. If it is, it's possible
971  * that pages are being freed that will coalesce soon. In case,
972  * that is happening, add the free page to the tail of the list
973  * so it's less likely to be used soon and more likely to be merged
974  * as a higher order page
975  */
976 static inline bool
977 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
978 		   struct page *page, unsigned int order)
979 {
980 	struct page *higher_page, *higher_buddy;
981 	unsigned long combined_pfn;
982 
983 	if (order >= MAX_ORDER - 2)
984 		return false;
985 
986 	if (!pfn_valid_within(buddy_pfn))
987 		return false;
988 
989 	combined_pfn = buddy_pfn & pfn;
990 	higher_page = page + (combined_pfn - pfn);
991 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
992 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
993 
994 	return pfn_valid_within(buddy_pfn) &&
995 	       page_is_buddy(higher_page, higher_buddy, order + 1);
996 }
997 
998 /*
999  * Freeing function for a buddy system allocator.
1000  *
1001  * The concept of a buddy system is to maintain direct-mapped table
1002  * (containing bit values) for memory blocks of various "orders".
1003  * The bottom level table contains the map for the smallest allocatable
1004  * units of memory (here, pages), and each level above it describes
1005  * pairs of units from the levels below, hence, "buddies".
1006  * At a high level, all that happens here is marking the table entry
1007  * at the bottom level available, and propagating the changes upward
1008  * as necessary, plus some accounting needed to play nicely with other
1009  * parts of the VM system.
1010  * At each level, we keep a list of pages, which are heads of continuous
1011  * free pages of length of (1 << order) and marked with PageBuddy.
1012  * Page's order is recorded in page_private(page) field.
1013  * So when we are allocating or freeing one, we can derive the state of the
1014  * other.  That is, if we allocate a small block, and both were
1015  * free, the remainder of the region must be split into blocks.
1016  * If a block is freed, and its buddy is also free, then this
1017  * triggers coalescing into a block of larger size.
1018  *
1019  * -- nyc
1020  */
1021 
1022 static inline void __free_one_page(struct page *page,
1023 		unsigned long pfn,
1024 		struct zone *zone, unsigned int order,
1025 		int migratetype, fpi_t fpi_flags)
1026 {
1027 	struct capture_control *capc = task_capc(zone);
1028 	unsigned long buddy_pfn;
1029 	unsigned long combined_pfn;
1030 	unsigned int max_order;
1031 	struct page *buddy;
1032 	bool to_tail;
1033 
1034 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1035 
1036 	VM_BUG_ON(!zone_is_initialized(zone));
1037 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1038 
1039 	VM_BUG_ON(migratetype == -1);
1040 	if (likely(!is_migrate_isolate(migratetype)))
1041 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1042 
1043 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1044 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1045 
1046 continue_merging:
1047 	while (order < max_order) {
1048 		if (compaction_capture(capc, page, order, migratetype)) {
1049 			__mod_zone_freepage_state(zone, -(1 << order),
1050 								migratetype);
1051 			return;
1052 		}
1053 		buddy_pfn = __find_buddy_pfn(pfn, order);
1054 		buddy = page + (buddy_pfn - pfn);
1055 
1056 		if (!pfn_valid_within(buddy_pfn))
1057 			goto done_merging;
1058 		if (!page_is_buddy(page, buddy, order))
1059 			goto done_merging;
1060 		/*
1061 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1062 		 * merge with it and move up one order.
1063 		 */
1064 		if (page_is_guard(buddy))
1065 			clear_page_guard(zone, buddy, order, migratetype);
1066 		else
1067 			del_page_from_free_list(buddy, zone, order);
1068 		combined_pfn = buddy_pfn & pfn;
1069 		page = page + (combined_pfn - pfn);
1070 		pfn = combined_pfn;
1071 		order++;
1072 	}
1073 	if (order < MAX_ORDER - 1) {
1074 		/* If we are here, it means order is >= pageblock_order.
1075 		 * We want to prevent merge between freepages on isolate
1076 		 * pageblock and normal pageblock. Without this, pageblock
1077 		 * isolation could cause incorrect freepage or CMA accounting.
1078 		 *
1079 		 * We don't want to hit this code for the more frequent
1080 		 * low-order merging.
1081 		 */
1082 		if (unlikely(has_isolate_pageblock(zone))) {
1083 			int buddy_mt;
1084 
1085 			buddy_pfn = __find_buddy_pfn(pfn, order);
1086 			buddy = page + (buddy_pfn - pfn);
1087 			buddy_mt = get_pageblock_migratetype(buddy);
1088 
1089 			if (migratetype != buddy_mt
1090 					&& (is_migrate_isolate(migratetype) ||
1091 						is_migrate_isolate(buddy_mt)))
1092 				goto done_merging;
1093 		}
1094 		max_order = order + 1;
1095 		goto continue_merging;
1096 	}
1097 
1098 done_merging:
1099 	set_buddy_order(page, order);
1100 
1101 	if (fpi_flags & FPI_TO_TAIL)
1102 		to_tail = true;
1103 	else if (is_shuffle_order(order))
1104 		to_tail = shuffle_pick_tail();
1105 	else
1106 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1107 
1108 	if (to_tail)
1109 		add_to_free_list_tail(page, zone, order, migratetype);
1110 	else
1111 		add_to_free_list(page, zone, order, migratetype);
1112 
1113 	/* Notify page reporting subsystem of freed page */
1114 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1115 		page_reporting_notify_free(order);
1116 }
1117 
1118 /*
1119  * A bad page could be due to a number of fields. Instead of multiple branches,
1120  * try and check multiple fields with one check. The caller must do a detailed
1121  * check if necessary.
1122  */
1123 static inline bool page_expected_state(struct page *page,
1124 					unsigned long check_flags)
1125 {
1126 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1127 		return false;
1128 
1129 	if (unlikely((unsigned long)page->mapping |
1130 			page_ref_count(page) |
1131 #ifdef CONFIG_MEMCG
1132 			page->memcg_data |
1133 #endif
1134 			(page->flags & check_flags)))
1135 		return false;
1136 
1137 	return true;
1138 }
1139 
1140 static const char *page_bad_reason(struct page *page, unsigned long flags)
1141 {
1142 	const char *bad_reason = NULL;
1143 
1144 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1145 		bad_reason = "nonzero mapcount";
1146 	if (unlikely(page->mapping != NULL))
1147 		bad_reason = "non-NULL mapping";
1148 	if (unlikely(page_ref_count(page) != 0))
1149 		bad_reason = "nonzero _refcount";
1150 	if (unlikely(page->flags & flags)) {
1151 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1152 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1153 		else
1154 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1155 	}
1156 #ifdef CONFIG_MEMCG
1157 	if (unlikely(page->memcg_data))
1158 		bad_reason = "page still charged to cgroup";
1159 #endif
1160 	return bad_reason;
1161 }
1162 
1163 static void check_free_page_bad(struct page *page)
1164 {
1165 	bad_page(page,
1166 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1167 }
1168 
1169 static inline int check_free_page(struct page *page)
1170 {
1171 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1172 		return 0;
1173 
1174 	/* Something has gone sideways, find it */
1175 	check_free_page_bad(page);
1176 	return 1;
1177 }
1178 
1179 static int free_tail_pages_check(struct page *head_page, struct page *page)
1180 {
1181 	int ret = 1;
1182 
1183 	/*
1184 	 * We rely page->lru.next never has bit 0 set, unless the page
1185 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1186 	 */
1187 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1188 
1189 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1190 		ret = 0;
1191 		goto out;
1192 	}
1193 	switch (page - head_page) {
1194 	case 1:
1195 		/* the first tail page: ->mapping may be compound_mapcount() */
1196 		if (unlikely(compound_mapcount(page))) {
1197 			bad_page(page, "nonzero compound_mapcount");
1198 			goto out;
1199 		}
1200 		break;
1201 	case 2:
1202 		/*
1203 		 * the second tail page: ->mapping is
1204 		 * deferred_list.next -- ignore value.
1205 		 */
1206 		break;
1207 	default:
1208 		if (page->mapping != TAIL_MAPPING) {
1209 			bad_page(page, "corrupted mapping in tail page");
1210 			goto out;
1211 		}
1212 		break;
1213 	}
1214 	if (unlikely(!PageTail(page))) {
1215 		bad_page(page, "PageTail not set");
1216 		goto out;
1217 	}
1218 	if (unlikely(compound_head(page) != head_page)) {
1219 		bad_page(page, "compound_head not consistent");
1220 		goto out;
1221 	}
1222 	ret = 0;
1223 out:
1224 	page->mapping = NULL;
1225 	clear_compound_head(page);
1226 	return ret;
1227 }
1228 
1229 static void kernel_init_free_pages(struct page *page, int numpages)
1230 {
1231 	int i;
1232 
1233 	/* s390's use of memset() could override KASAN redzones. */
1234 	kasan_disable_current();
1235 	for (i = 0; i < numpages; i++) {
1236 		u8 tag = page_kasan_tag(page + i);
1237 		page_kasan_tag_reset(page + i);
1238 		clear_highpage(page + i);
1239 		page_kasan_tag_set(page + i, tag);
1240 	}
1241 	kasan_enable_current();
1242 }
1243 
1244 static __always_inline bool free_pages_prepare(struct page *page,
1245 			unsigned int order, bool check_free, fpi_t fpi_flags)
1246 {
1247 	int bad = 0;
1248 	bool init;
1249 
1250 	VM_BUG_ON_PAGE(PageTail(page), page);
1251 
1252 	trace_mm_page_free(page, order);
1253 
1254 	if (unlikely(PageHWPoison(page)) && !order) {
1255 		/*
1256 		 * Do not let hwpoison pages hit pcplists/buddy
1257 		 * Untie memcg state and reset page's owner
1258 		 */
1259 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1260 			__memcg_kmem_uncharge_page(page, order);
1261 		reset_page_owner(page, order);
1262 		return false;
1263 	}
1264 
1265 	/*
1266 	 * Check tail pages before head page information is cleared to
1267 	 * avoid checking PageCompound for order-0 pages.
1268 	 */
1269 	if (unlikely(order)) {
1270 		bool compound = PageCompound(page);
1271 		int i;
1272 
1273 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1274 
1275 		if (compound)
1276 			ClearPageDoubleMap(page);
1277 		for (i = 1; i < (1 << order); i++) {
1278 			if (compound)
1279 				bad += free_tail_pages_check(page, page + i);
1280 			if (unlikely(check_free_page(page + i))) {
1281 				bad++;
1282 				continue;
1283 			}
1284 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1285 		}
1286 	}
1287 	if (PageMappingFlags(page))
1288 		page->mapping = NULL;
1289 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1290 		__memcg_kmem_uncharge_page(page, order);
1291 	if (check_free)
1292 		bad += check_free_page(page);
1293 	if (bad)
1294 		return false;
1295 
1296 	page_cpupid_reset_last(page);
1297 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1298 	reset_page_owner(page, order);
1299 
1300 	if (!PageHighMem(page)) {
1301 		debug_check_no_locks_freed(page_address(page),
1302 					   PAGE_SIZE << order);
1303 		debug_check_no_obj_freed(page_address(page),
1304 					   PAGE_SIZE << order);
1305 	}
1306 
1307 	kernel_poison_pages(page, 1 << order);
1308 
1309 	/*
1310 	 * As memory initialization might be integrated into KASAN,
1311 	 * kasan_free_pages and kernel_init_free_pages must be
1312 	 * kept together to avoid discrepancies in behavior.
1313 	 *
1314 	 * With hardware tag-based KASAN, memory tags must be set before the
1315 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1316 	 */
1317 	init = want_init_on_free();
1318 	if (init && !kasan_has_integrated_init())
1319 		kernel_init_free_pages(page, 1 << order);
1320 	kasan_free_nondeferred_pages(page, order, init, fpi_flags);
1321 
1322 	/*
1323 	 * arch_free_page() can make the page's contents inaccessible.  s390
1324 	 * does this.  So nothing which can access the page's contents should
1325 	 * happen after this.
1326 	 */
1327 	arch_free_page(page, order);
1328 
1329 	debug_pagealloc_unmap_pages(page, 1 << order);
1330 
1331 	return true;
1332 }
1333 
1334 #ifdef CONFIG_DEBUG_VM
1335 /*
1336  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1337  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1338  * moved from pcp lists to free lists.
1339  */
1340 static bool free_pcp_prepare(struct page *page)
1341 {
1342 	return free_pages_prepare(page, 0, true, FPI_NONE);
1343 }
1344 
1345 static bool bulkfree_pcp_prepare(struct page *page)
1346 {
1347 	if (debug_pagealloc_enabled_static())
1348 		return check_free_page(page);
1349 	else
1350 		return false;
1351 }
1352 #else
1353 /*
1354  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1355  * moving from pcp lists to free list in order to reduce overhead. With
1356  * debug_pagealloc enabled, they are checked also immediately when being freed
1357  * to the pcp lists.
1358  */
1359 static bool free_pcp_prepare(struct page *page)
1360 {
1361 	if (debug_pagealloc_enabled_static())
1362 		return free_pages_prepare(page, 0, true, FPI_NONE);
1363 	else
1364 		return free_pages_prepare(page, 0, false, FPI_NONE);
1365 }
1366 
1367 static bool bulkfree_pcp_prepare(struct page *page)
1368 {
1369 	return check_free_page(page);
1370 }
1371 #endif /* CONFIG_DEBUG_VM */
1372 
1373 static inline void prefetch_buddy(struct page *page)
1374 {
1375 	unsigned long pfn = page_to_pfn(page);
1376 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1377 	struct page *buddy = page + (buddy_pfn - pfn);
1378 
1379 	prefetch(buddy);
1380 }
1381 
1382 /*
1383  * Frees a number of pages from the PCP lists
1384  * Assumes all pages on list are in same zone, and of same order.
1385  * count is the number of pages to free.
1386  *
1387  * If the zone was previously in an "all pages pinned" state then look to
1388  * see if this freeing clears that state.
1389  *
1390  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1391  * pinned" detection logic.
1392  */
1393 static void free_pcppages_bulk(struct zone *zone, int count,
1394 					struct per_cpu_pages *pcp)
1395 {
1396 	int migratetype = 0;
1397 	int batch_free = 0;
1398 	int prefetch_nr = READ_ONCE(pcp->batch);
1399 	bool isolated_pageblocks;
1400 	struct page *page, *tmp;
1401 	LIST_HEAD(head);
1402 
1403 	/*
1404 	 * Ensure proper count is passed which otherwise would stuck in the
1405 	 * below while (list_empty(list)) loop.
1406 	 */
1407 	count = min(pcp->count, count);
1408 	while (count) {
1409 		struct list_head *list;
1410 
1411 		/*
1412 		 * Remove pages from lists in a round-robin fashion. A
1413 		 * batch_free count is maintained that is incremented when an
1414 		 * empty list is encountered.  This is so more pages are freed
1415 		 * off fuller lists instead of spinning excessively around empty
1416 		 * lists
1417 		 */
1418 		do {
1419 			batch_free++;
1420 			if (++migratetype == MIGRATE_PCPTYPES)
1421 				migratetype = 0;
1422 			list = &pcp->lists[migratetype];
1423 		} while (list_empty(list));
1424 
1425 		/* This is the only non-empty list. Free them all. */
1426 		if (batch_free == MIGRATE_PCPTYPES)
1427 			batch_free = count;
1428 
1429 		do {
1430 			page = list_last_entry(list, struct page, lru);
1431 			/* must delete to avoid corrupting pcp list */
1432 			list_del(&page->lru);
1433 			pcp->count--;
1434 
1435 			if (bulkfree_pcp_prepare(page))
1436 				continue;
1437 
1438 			list_add_tail(&page->lru, &head);
1439 
1440 			/*
1441 			 * We are going to put the page back to the global
1442 			 * pool, prefetch its buddy to speed up later access
1443 			 * under zone->lock. It is believed the overhead of
1444 			 * an additional test and calculating buddy_pfn here
1445 			 * can be offset by reduced memory latency later. To
1446 			 * avoid excessive prefetching due to large count, only
1447 			 * prefetch buddy for the first pcp->batch nr of pages.
1448 			 */
1449 			if (prefetch_nr) {
1450 				prefetch_buddy(page);
1451 				prefetch_nr--;
1452 			}
1453 		} while (--count && --batch_free && !list_empty(list));
1454 	}
1455 
1456 	spin_lock(&zone->lock);
1457 	isolated_pageblocks = has_isolate_pageblock(zone);
1458 
1459 	/*
1460 	 * Use safe version since after __free_one_page(),
1461 	 * page->lru.next will not point to original list.
1462 	 */
1463 	list_for_each_entry_safe(page, tmp, &head, lru) {
1464 		int mt = get_pcppage_migratetype(page);
1465 		/* MIGRATE_ISOLATE page should not go to pcplists */
1466 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1467 		/* Pageblock could have been isolated meanwhile */
1468 		if (unlikely(isolated_pageblocks))
1469 			mt = get_pageblock_migratetype(page);
1470 
1471 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1472 		trace_mm_page_pcpu_drain(page, 0, mt);
1473 	}
1474 	spin_unlock(&zone->lock);
1475 }
1476 
1477 static void free_one_page(struct zone *zone,
1478 				struct page *page, unsigned long pfn,
1479 				unsigned int order,
1480 				int migratetype, fpi_t fpi_flags)
1481 {
1482 	spin_lock(&zone->lock);
1483 	if (unlikely(has_isolate_pageblock(zone) ||
1484 		is_migrate_isolate(migratetype))) {
1485 		migratetype = get_pfnblock_migratetype(page, pfn);
1486 	}
1487 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1488 	spin_unlock(&zone->lock);
1489 }
1490 
1491 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1492 				unsigned long zone, int nid)
1493 {
1494 	mm_zero_struct_page(page);
1495 	set_page_links(page, zone, nid, pfn);
1496 	init_page_count(page);
1497 	page_mapcount_reset(page);
1498 	page_cpupid_reset_last(page);
1499 	page_kasan_tag_reset(page);
1500 
1501 	INIT_LIST_HEAD(&page->lru);
1502 #ifdef WANT_PAGE_VIRTUAL
1503 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1504 	if (!is_highmem_idx(zone))
1505 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1506 #endif
1507 }
1508 
1509 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1510 static void __meminit init_reserved_page(unsigned long pfn)
1511 {
1512 	pg_data_t *pgdat;
1513 	int nid, zid;
1514 
1515 	if (!early_page_uninitialised(pfn))
1516 		return;
1517 
1518 	nid = early_pfn_to_nid(pfn);
1519 	pgdat = NODE_DATA(nid);
1520 
1521 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1522 		struct zone *zone = &pgdat->node_zones[zid];
1523 
1524 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1525 			break;
1526 	}
1527 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1528 }
1529 #else
1530 static inline void init_reserved_page(unsigned long pfn)
1531 {
1532 }
1533 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1534 
1535 /*
1536  * Initialised pages do not have PageReserved set. This function is
1537  * called for each range allocated by the bootmem allocator and
1538  * marks the pages PageReserved. The remaining valid pages are later
1539  * sent to the buddy page allocator.
1540  */
1541 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1542 {
1543 	unsigned long start_pfn = PFN_DOWN(start);
1544 	unsigned long end_pfn = PFN_UP(end);
1545 
1546 	for (; start_pfn < end_pfn; start_pfn++) {
1547 		if (pfn_valid(start_pfn)) {
1548 			struct page *page = pfn_to_page(start_pfn);
1549 
1550 			init_reserved_page(start_pfn);
1551 
1552 			/* Avoid false-positive PageTail() */
1553 			INIT_LIST_HEAD(&page->lru);
1554 
1555 			/*
1556 			 * no need for atomic set_bit because the struct
1557 			 * page is not visible yet so nobody should
1558 			 * access it yet.
1559 			 */
1560 			__SetPageReserved(page);
1561 		}
1562 	}
1563 }
1564 
1565 static void __free_pages_ok(struct page *page, unsigned int order,
1566 			    fpi_t fpi_flags)
1567 {
1568 	unsigned long flags;
1569 	int migratetype;
1570 	unsigned long pfn = page_to_pfn(page);
1571 
1572 	if (!free_pages_prepare(page, order, true, fpi_flags))
1573 		return;
1574 
1575 	migratetype = get_pfnblock_migratetype(page, pfn);
1576 	local_irq_save(flags);
1577 	__count_vm_events(PGFREE, 1 << order);
1578 	free_one_page(page_zone(page), page, pfn, order, migratetype,
1579 		      fpi_flags);
1580 	local_irq_restore(flags);
1581 }
1582 
1583 void __free_pages_core(struct page *page, unsigned int order)
1584 {
1585 	unsigned int nr_pages = 1 << order;
1586 	struct page *p = page;
1587 	unsigned int loop;
1588 
1589 	/*
1590 	 * When initializing the memmap, __init_single_page() sets the refcount
1591 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1592 	 * refcount of all involved pages to 0.
1593 	 */
1594 	prefetchw(p);
1595 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1596 		prefetchw(p + 1);
1597 		__ClearPageReserved(p);
1598 		set_page_count(p, 0);
1599 	}
1600 	__ClearPageReserved(p);
1601 	set_page_count(p, 0);
1602 
1603 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1604 
1605 	/*
1606 	 * Bypass PCP and place fresh pages right to the tail, primarily
1607 	 * relevant for memory onlining.
1608 	 */
1609 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1610 }
1611 
1612 #ifdef CONFIG_NEED_MULTIPLE_NODES
1613 
1614 /*
1615  * During memory init memblocks map pfns to nids. The search is expensive and
1616  * this caches recent lookups. The implementation of __early_pfn_to_nid
1617  * treats start/end as pfns.
1618  */
1619 struct mminit_pfnnid_cache {
1620 	unsigned long last_start;
1621 	unsigned long last_end;
1622 	int last_nid;
1623 };
1624 
1625 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1626 
1627 /*
1628  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1629  */
1630 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1631 					struct mminit_pfnnid_cache *state)
1632 {
1633 	unsigned long start_pfn, end_pfn;
1634 	int nid;
1635 
1636 	if (state->last_start <= pfn && pfn < state->last_end)
1637 		return state->last_nid;
1638 
1639 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1640 	if (nid != NUMA_NO_NODE) {
1641 		state->last_start = start_pfn;
1642 		state->last_end = end_pfn;
1643 		state->last_nid = nid;
1644 	}
1645 
1646 	return nid;
1647 }
1648 
1649 int __meminit early_pfn_to_nid(unsigned long pfn)
1650 {
1651 	static DEFINE_SPINLOCK(early_pfn_lock);
1652 	int nid;
1653 
1654 	spin_lock(&early_pfn_lock);
1655 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1656 	if (nid < 0)
1657 		nid = first_online_node;
1658 	spin_unlock(&early_pfn_lock);
1659 
1660 	return nid;
1661 }
1662 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1663 
1664 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1665 							unsigned int order)
1666 {
1667 	if (early_page_uninitialised(pfn))
1668 		return;
1669 	__free_pages_core(page, order);
1670 }
1671 
1672 /*
1673  * Check that the whole (or subset of) a pageblock given by the interval of
1674  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1675  * with the migration of free compaction scanner. The scanners then need to
1676  * use only pfn_valid_within() check for arches that allow holes within
1677  * pageblocks.
1678  *
1679  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1680  *
1681  * It's possible on some configurations to have a setup like node0 node1 node0
1682  * i.e. it's possible that all pages within a zones range of pages do not
1683  * belong to a single zone. We assume that a border between node0 and node1
1684  * can occur within a single pageblock, but not a node0 node1 node0
1685  * interleaving within a single pageblock. It is therefore sufficient to check
1686  * the first and last page of a pageblock and avoid checking each individual
1687  * page in a pageblock.
1688  */
1689 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1690 				     unsigned long end_pfn, struct zone *zone)
1691 {
1692 	struct page *start_page;
1693 	struct page *end_page;
1694 
1695 	/* end_pfn is one past the range we are checking */
1696 	end_pfn--;
1697 
1698 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1699 		return NULL;
1700 
1701 	start_page = pfn_to_online_page(start_pfn);
1702 	if (!start_page)
1703 		return NULL;
1704 
1705 	if (page_zone(start_page) != zone)
1706 		return NULL;
1707 
1708 	end_page = pfn_to_page(end_pfn);
1709 
1710 	/* This gives a shorter code than deriving page_zone(end_page) */
1711 	if (page_zone_id(start_page) != page_zone_id(end_page))
1712 		return NULL;
1713 
1714 	return start_page;
1715 }
1716 
1717 void set_zone_contiguous(struct zone *zone)
1718 {
1719 	unsigned long block_start_pfn = zone->zone_start_pfn;
1720 	unsigned long block_end_pfn;
1721 
1722 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1723 	for (; block_start_pfn < zone_end_pfn(zone);
1724 			block_start_pfn = block_end_pfn,
1725 			 block_end_pfn += pageblock_nr_pages) {
1726 
1727 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1728 
1729 		if (!__pageblock_pfn_to_page(block_start_pfn,
1730 					     block_end_pfn, zone))
1731 			return;
1732 		cond_resched();
1733 	}
1734 
1735 	/* We confirm that there is no hole */
1736 	zone->contiguous = true;
1737 }
1738 
1739 void clear_zone_contiguous(struct zone *zone)
1740 {
1741 	zone->contiguous = false;
1742 }
1743 
1744 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1745 static void __init deferred_free_range(unsigned long pfn,
1746 				       unsigned long nr_pages)
1747 {
1748 	struct page *page;
1749 	unsigned long i;
1750 
1751 	if (!nr_pages)
1752 		return;
1753 
1754 	page = pfn_to_page(pfn);
1755 
1756 	/* Free a large naturally-aligned chunk if possible */
1757 	if (nr_pages == pageblock_nr_pages &&
1758 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1759 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1760 		__free_pages_core(page, pageblock_order);
1761 		return;
1762 	}
1763 
1764 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1765 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1766 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1767 		__free_pages_core(page, 0);
1768 	}
1769 }
1770 
1771 /* Completion tracking for deferred_init_memmap() threads */
1772 static atomic_t pgdat_init_n_undone __initdata;
1773 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1774 
1775 static inline void __init pgdat_init_report_one_done(void)
1776 {
1777 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1778 		complete(&pgdat_init_all_done_comp);
1779 }
1780 
1781 /*
1782  * Returns true if page needs to be initialized or freed to buddy allocator.
1783  *
1784  * First we check if pfn is valid on architectures where it is possible to have
1785  * holes within pageblock_nr_pages. On systems where it is not possible, this
1786  * function is optimized out.
1787  *
1788  * Then, we check if a current large page is valid by only checking the validity
1789  * of the head pfn.
1790  */
1791 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1792 {
1793 	if (!pfn_valid_within(pfn))
1794 		return false;
1795 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1796 		return false;
1797 	return true;
1798 }
1799 
1800 /*
1801  * Free pages to buddy allocator. Try to free aligned pages in
1802  * pageblock_nr_pages sizes.
1803  */
1804 static void __init deferred_free_pages(unsigned long pfn,
1805 				       unsigned long end_pfn)
1806 {
1807 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1808 	unsigned long nr_free = 0;
1809 
1810 	for (; pfn < end_pfn; pfn++) {
1811 		if (!deferred_pfn_valid(pfn)) {
1812 			deferred_free_range(pfn - nr_free, nr_free);
1813 			nr_free = 0;
1814 		} else if (!(pfn & nr_pgmask)) {
1815 			deferred_free_range(pfn - nr_free, nr_free);
1816 			nr_free = 1;
1817 		} else {
1818 			nr_free++;
1819 		}
1820 	}
1821 	/* Free the last block of pages to allocator */
1822 	deferred_free_range(pfn - nr_free, nr_free);
1823 }
1824 
1825 /*
1826  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1827  * by performing it only once every pageblock_nr_pages.
1828  * Return number of pages initialized.
1829  */
1830 static unsigned long  __init deferred_init_pages(struct zone *zone,
1831 						 unsigned long pfn,
1832 						 unsigned long end_pfn)
1833 {
1834 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1835 	int nid = zone_to_nid(zone);
1836 	unsigned long nr_pages = 0;
1837 	int zid = zone_idx(zone);
1838 	struct page *page = NULL;
1839 
1840 	for (; pfn < end_pfn; pfn++) {
1841 		if (!deferred_pfn_valid(pfn)) {
1842 			page = NULL;
1843 			continue;
1844 		} else if (!page || !(pfn & nr_pgmask)) {
1845 			page = pfn_to_page(pfn);
1846 		} else {
1847 			page++;
1848 		}
1849 		__init_single_page(page, pfn, zid, nid);
1850 		nr_pages++;
1851 	}
1852 	return (nr_pages);
1853 }
1854 
1855 /*
1856  * This function is meant to pre-load the iterator for the zone init.
1857  * Specifically it walks through the ranges until we are caught up to the
1858  * first_init_pfn value and exits there. If we never encounter the value we
1859  * return false indicating there are no valid ranges left.
1860  */
1861 static bool __init
1862 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1863 				    unsigned long *spfn, unsigned long *epfn,
1864 				    unsigned long first_init_pfn)
1865 {
1866 	u64 j;
1867 
1868 	/*
1869 	 * Start out by walking through the ranges in this zone that have
1870 	 * already been initialized. We don't need to do anything with them
1871 	 * so we just need to flush them out of the system.
1872 	 */
1873 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1874 		if (*epfn <= first_init_pfn)
1875 			continue;
1876 		if (*spfn < first_init_pfn)
1877 			*spfn = first_init_pfn;
1878 		*i = j;
1879 		return true;
1880 	}
1881 
1882 	return false;
1883 }
1884 
1885 /*
1886  * Initialize and free pages. We do it in two loops: first we initialize
1887  * struct page, then free to buddy allocator, because while we are
1888  * freeing pages we can access pages that are ahead (computing buddy
1889  * page in __free_one_page()).
1890  *
1891  * In order to try and keep some memory in the cache we have the loop
1892  * broken along max page order boundaries. This way we will not cause
1893  * any issues with the buddy page computation.
1894  */
1895 static unsigned long __init
1896 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1897 		       unsigned long *end_pfn)
1898 {
1899 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1900 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1901 	unsigned long nr_pages = 0;
1902 	u64 j = *i;
1903 
1904 	/* First we loop through and initialize the page values */
1905 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1906 		unsigned long t;
1907 
1908 		if (mo_pfn <= *start_pfn)
1909 			break;
1910 
1911 		t = min(mo_pfn, *end_pfn);
1912 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1913 
1914 		if (mo_pfn < *end_pfn) {
1915 			*start_pfn = mo_pfn;
1916 			break;
1917 		}
1918 	}
1919 
1920 	/* Reset values and now loop through freeing pages as needed */
1921 	swap(j, *i);
1922 
1923 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1924 		unsigned long t;
1925 
1926 		if (mo_pfn <= spfn)
1927 			break;
1928 
1929 		t = min(mo_pfn, epfn);
1930 		deferred_free_pages(spfn, t);
1931 
1932 		if (mo_pfn <= epfn)
1933 			break;
1934 	}
1935 
1936 	return nr_pages;
1937 }
1938 
1939 static void __init
1940 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1941 			   void *arg)
1942 {
1943 	unsigned long spfn, epfn;
1944 	struct zone *zone = arg;
1945 	u64 i;
1946 
1947 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1948 
1949 	/*
1950 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1951 	 * can avoid introducing any issues with the buddy allocator.
1952 	 */
1953 	while (spfn < end_pfn) {
1954 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1955 		cond_resched();
1956 	}
1957 }
1958 
1959 /* An arch may override for more concurrency. */
1960 __weak int __init
1961 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1962 {
1963 	return 1;
1964 }
1965 
1966 /* Initialise remaining memory on a node */
1967 static int __init deferred_init_memmap(void *data)
1968 {
1969 	pg_data_t *pgdat = data;
1970 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1971 	unsigned long spfn = 0, epfn = 0;
1972 	unsigned long first_init_pfn, flags;
1973 	unsigned long start = jiffies;
1974 	struct zone *zone;
1975 	int zid, max_threads;
1976 	u64 i;
1977 
1978 	/* Bind memory initialisation thread to a local node if possible */
1979 	if (!cpumask_empty(cpumask))
1980 		set_cpus_allowed_ptr(current, cpumask);
1981 
1982 	pgdat_resize_lock(pgdat, &flags);
1983 	first_init_pfn = pgdat->first_deferred_pfn;
1984 	if (first_init_pfn == ULONG_MAX) {
1985 		pgdat_resize_unlock(pgdat, &flags);
1986 		pgdat_init_report_one_done();
1987 		return 0;
1988 	}
1989 
1990 	/* Sanity check boundaries */
1991 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1992 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1993 	pgdat->first_deferred_pfn = ULONG_MAX;
1994 
1995 	/*
1996 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1997 	 * interrupt thread must allocate this early in boot, zone must be
1998 	 * pre-grown prior to start of deferred page initialization.
1999 	 */
2000 	pgdat_resize_unlock(pgdat, &flags);
2001 
2002 	/* Only the highest zone is deferred so find it */
2003 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2004 		zone = pgdat->node_zones + zid;
2005 		if (first_init_pfn < zone_end_pfn(zone))
2006 			break;
2007 	}
2008 
2009 	/* If the zone is empty somebody else may have cleared out the zone */
2010 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2011 						 first_init_pfn))
2012 		goto zone_empty;
2013 
2014 	max_threads = deferred_page_init_max_threads(cpumask);
2015 
2016 	while (spfn < epfn) {
2017 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2018 		struct padata_mt_job job = {
2019 			.thread_fn   = deferred_init_memmap_chunk,
2020 			.fn_arg      = zone,
2021 			.start       = spfn,
2022 			.size        = epfn_align - spfn,
2023 			.align       = PAGES_PER_SECTION,
2024 			.min_chunk   = PAGES_PER_SECTION,
2025 			.max_threads = max_threads,
2026 		};
2027 
2028 		padata_do_multithreaded(&job);
2029 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2030 						    epfn_align);
2031 	}
2032 zone_empty:
2033 	/* Sanity check that the next zone really is unpopulated */
2034 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2035 
2036 	pr_info("node %d deferred pages initialised in %ums\n",
2037 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2038 
2039 	pgdat_init_report_one_done();
2040 	return 0;
2041 }
2042 
2043 /*
2044  * If this zone has deferred pages, try to grow it by initializing enough
2045  * deferred pages to satisfy the allocation specified by order, rounded up to
2046  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2047  * of SECTION_SIZE bytes by initializing struct pages in increments of
2048  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2049  *
2050  * Return true when zone was grown, otherwise return false. We return true even
2051  * when we grow less than requested, to let the caller decide if there are
2052  * enough pages to satisfy the allocation.
2053  *
2054  * Note: We use noinline because this function is needed only during boot, and
2055  * it is called from a __ref function _deferred_grow_zone. This way we are
2056  * making sure that it is not inlined into permanent text section.
2057  */
2058 static noinline bool __init
2059 deferred_grow_zone(struct zone *zone, unsigned int order)
2060 {
2061 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2062 	pg_data_t *pgdat = zone->zone_pgdat;
2063 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2064 	unsigned long spfn, epfn, flags;
2065 	unsigned long nr_pages = 0;
2066 	u64 i;
2067 
2068 	/* Only the last zone may have deferred pages */
2069 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2070 		return false;
2071 
2072 	pgdat_resize_lock(pgdat, &flags);
2073 
2074 	/*
2075 	 * If someone grew this zone while we were waiting for spinlock, return
2076 	 * true, as there might be enough pages already.
2077 	 */
2078 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2079 		pgdat_resize_unlock(pgdat, &flags);
2080 		return true;
2081 	}
2082 
2083 	/* If the zone is empty somebody else may have cleared out the zone */
2084 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2085 						 first_deferred_pfn)) {
2086 		pgdat->first_deferred_pfn = ULONG_MAX;
2087 		pgdat_resize_unlock(pgdat, &flags);
2088 		/* Retry only once. */
2089 		return first_deferred_pfn != ULONG_MAX;
2090 	}
2091 
2092 	/*
2093 	 * Initialize and free pages in MAX_ORDER sized increments so
2094 	 * that we can avoid introducing any issues with the buddy
2095 	 * allocator.
2096 	 */
2097 	while (spfn < epfn) {
2098 		/* update our first deferred PFN for this section */
2099 		first_deferred_pfn = spfn;
2100 
2101 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2102 		touch_nmi_watchdog();
2103 
2104 		/* We should only stop along section boundaries */
2105 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2106 			continue;
2107 
2108 		/* If our quota has been met we can stop here */
2109 		if (nr_pages >= nr_pages_needed)
2110 			break;
2111 	}
2112 
2113 	pgdat->first_deferred_pfn = spfn;
2114 	pgdat_resize_unlock(pgdat, &flags);
2115 
2116 	return nr_pages > 0;
2117 }
2118 
2119 /*
2120  * deferred_grow_zone() is __init, but it is called from
2121  * get_page_from_freelist() during early boot until deferred_pages permanently
2122  * disables this call. This is why we have refdata wrapper to avoid warning,
2123  * and to ensure that the function body gets unloaded.
2124  */
2125 static bool __ref
2126 _deferred_grow_zone(struct zone *zone, unsigned int order)
2127 {
2128 	return deferred_grow_zone(zone, order);
2129 }
2130 
2131 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2132 
2133 void __init page_alloc_init_late(void)
2134 {
2135 	struct zone *zone;
2136 	int nid;
2137 
2138 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2139 
2140 	/* There will be num_node_state(N_MEMORY) threads */
2141 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2142 	for_each_node_state(nid, N_MEMORY) {
2143 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2144 	}
2145 
2146 	/* Block until all are initialised */
2147 	wait_for_completion(&pgdat_init_all_done_comp);
2148 
2149 	/*
2150 	 * The number of managed pages has changed due to the initialisation
2151 	 * so the pcpu batch and high limits needs to be updated or the limits
2152 	 * will be artificially small.
2153 	 */
2154 	for_each_populated_zone(zone)
2155 		zone_pcp_update(zone);
2156 
2157 	/*
2158 	 * We initialized the rest of the deferred pages.  Permanently disable
2159 	 * on-demand struct page initialization.
2160 	 */
2161 	static_branch_disable(&deferred_pages);
2162 
2163 	/* Reinit limits that are based on free pages after the kernel is up */
2164 	files_maxfiles_init();
2165 #endif
2166 
2167 	buffer_init();
2168 
2169 	/* Discard memblock private memory */
2170 	memblock_discard();
2171 
2172 	for_each_node_state(nid, N_MEMORY)
2173 		shuffle_free_memory(NODE_DATA(nid));
2174 
2175 	for_each_populated_zone(zone)
2176 		set_zone_contiguous(zone);
2177 }
2178 
2179 #ifdef CONFIG_CMA
2180 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2181 void __init init_cma_reserved_pageblock(struct page *page)
2182 {
2183 	unsigned i = pageblock_nr_pages;
2184 	struct page *p = page;
2185 
2186 	do {
2187 		__ClearPageReserved(p);
2188 		set_page_count(p, 0);
2189 	} while (++p, --i);
2190 
2191 	set_pageblock_migratetype(page, MIGRATE_CMA);
2192 
2193 	if (pageblock_order >= MAX_ORDER) {
2194 		i = pageblock_nr_pages;
2195 		p = page;
2196 		do {
2197 			set_page_refcounted(p);
2198 			__free_pages(p, MAX_ORDER - 1);
2199 			p += MAX_ORDER_NR_PAGES;
2200 		} while (i -= MAX_ORDER_NR_PAGES);
2201 	} else {
2202 		set_page_refcounted(page);
2203 		__free_pages(page, pageblock_order);
2204 	}
2205 
2206 	adjust_managed_page_count(page, pageblock_nr_pages);
2207 	page_zone(page)->cma_pages += pageblock_nr_pages;
2208 }
2209 #endif
2210 
2211 /*
2212  * The order of subdivision here is critical for the IO subsystem.
2213  * Please do not alter this order without good reasons and regression
2214  * testing. Specifically, as large blocks of memory are subdivided,
2215  * the order in which smaller blocks are delivered depends on the order
2216  * they're subdivided in this function. This is the primary factor
2217  * influencing the order in which pages are delivered to the IO
2218  * subsystem according to empirical testing, and this is also justified
2219  * by considering the behavior of a buddy system containing a single
2220  * large block of memory acted on by a series of small allocations.
2221  * This behavior is a critical factor in sglist merging's success.
2222  *
2223  * -- nyc
2224  */
2225 static inline void expand(struct zone *zone, struct page *page,
2226 	int low, int high, int migratetype)
2227 {
2228 	unsigned long size = 1 << high;
2229 
2230 	while (high > low) {
2231 		high--;
2232 		size >>= 1;
2233 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2234 
2235 		/*
2236 		 * Mark as guard pages (or page), that will allow to
2237 		 * merge back to allocator when buddy will be freed.
2238 		 * Corresponding page table entries will not be touched,
2239 		 * pages will stay not present in virtual address space
2240 		 */
2241 		if (set_page_guard(zone, &page[size], high, migratetype))
2242 			continue;
2243 
2244 		add_to_free_list(&page[size], zone, high, migratetype);
2245 		set_buddy_order(&page[size], high);
2246 	}
2247 }
2248 
2249 static void check_new_page_bad(struct page *page)
2250 {
2251 	if (unlikely(page->flags & __PG_HWPOISON)) {
2252 		/* Don't complain about hwpoisoned pages */
2253 		page_mapcount_reset(page); /* remove PageBuddy */
2254 		return;
2255 	}
2256 
2257 	bad_page(page,
2258 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2259 }
2260 
2261 /*
2262  * This page is about to be returned from the page allocator
2263  */
2264 static inline int check_new_page(struct page *page)
2265 {
2266 	if (likely(page_expected_state(page,
2267 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2268 		return 0;
2269 
2270 	check_new_page_bad(page);
2271 	return 1;
2272 }
2273 
2274 #ifdef CONFIG_DEBUG_VM
2275 /*
2276  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2277  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2278  * also checked when pcp lists are refilled from the free lists.
2279  */
2280 static inline bool check_pcp_refill(struct page *page)
2281 {
2282 	if (debug_pagealloc_enabled_static())
2283 		return check_new_page(page);
2284 	else
2285 		return false;
2286 }
2287 
2288 static inline bool check_new_pcp(struct page *page)
2289 {
2290 	return check_new_page(page);
2291 }
2292 #else
2293 /*
2294  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2295  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2296  * enabled, they are also checked when being allocated from the pcp lists.
2297  */
2298 static inline bool check_pcp_refill(struct page *page)
2299 {
2300 	return check_new_page(page);
2301 }
2302 static inline bool check_new_pcp(struct page *page)
2303 {
2304 	if (debug_pagealloc_enabled_static())
2305 		return check_new_page(page);
2306 	else
2307 		return false;
2308 }
2309 #endif /* CONFIG_DEBUG_VM */
2310 
2311 static bool check_new_pages(struct page *page, unsigned int order)
2312 {
2313 	int i;
2314 	for (i = 0; i < (1 << order); i++) {
2315 		struct page *p = page + i;
2316 
2317 		if (unlikely(check_new_page(p)))
2318 			return true;
2319 	}
2320 
2321 	return false;
2322 }
2323 
2324 inline void post_alloc_hook(struct page *page, unsigned int order,
2325 				gfp_t gfp_flags)
2326 {
2327 	bool init;
2328 
2329 	set_page_private(page, 0);
2330 	set_page_refcounted(page);
2331 
2332 	arch_alloc_page(page, order);
2333 	debug_pagealloc_map_pages(page, 1 << order);
2334 
2335 	/*
2336 	 * Page unpoisoning must happen before memory initialization.
2337 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2338 	 * allocations and the page unpoisoning code will complain.
2339 	 */
2340 	kernel_unpoison_pages(page, 1 << order);
2341 
2342 	/*
2343 	 * As memory initialization might be integrated into KASAN,
2344 	 * kasan_alloc_pages and kernel_init_free_pages must be
2345 	 * kept together to avoid discrepancies in behavior.
2346 	 */
2347 	init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2348 	kasan_alloc_pages(page, order, init);
2349 	if (init && !kasan_has_integrated_init())
2350 		kernel_init_free_pages(page, 1 << order);
2351 
2352 	set_page_owner(page, order, gfp_flags);
2353 }
2354 
2355 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2356 							unsigned int alloc_flags)
2357 {
2358 	post_alloc_hook(page, order, gfp_flags);
2359 
2360 	if (order && (gfp_flags & __GFP_COMP))
2361 		prep_compound_page(page, order);
2362 
2363 	/*
2364 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2365 	 * allocate the page. The expectation is that the caller is taking
2366 	 * steps that will free more memory. The caller should avoid the page
2367 	 * being used for !PFMEMALLOC purposes.
2368 	 */
2369 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2370 		set_page_pfmemalloc(page);
2371 	else
2372 		clear_page_pfmemalloc(page);
2373 }
2374 
2375 /*
2376  * Go through the free lists for the given migratetype and remove
2377  * the smallest available page from the freelists
2378  */
2379 static __always_inline
2380 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2381 						int migratetype)
2382 {
2383 	unsigned int current_order;
2384 	struct free_area *area;
2385 	struct page *page;
2386 
2387 	/* Find a page of the appropriate size in the preferred list */
2388 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2389 		area = &(zone->free_area[current_order]);
2390 		page = get_page_from_free_area(area, migratetype);
2391 		if (!page)
2392 			continue;
2393 		del_page_from_free_list(page, zone, current_order);
2394 		expand(zone, page, order, current_order, migratetype);
2395 		set_pcppage_migratetype(page, migratetype);
2396 		return page;
2397 	}
2398 
2399 	return NULL;
2400 }
2401 
2402 
2403 /*
2404  * This array describes the order lists are fallen back to when
2405  * the free lists for the desirable migrate type are depleted
2406  */
2407 static int fallbacks[MIGRATE_TYPES][3] = {
2408 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2409 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2410 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2411 #ifdef CONFIG_CMA
2412 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2413 #endif
2414 #ifdef CONFIG_MEMORY_ISOLATION
2415 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2416 #endif
2417 };
2418 
2419 #ifdef CONFIG_CMA
2420 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2421 					unsigned int order)
2422 {
2423 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2424 }
2425 #else
2426 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2427 					unsigned int order) { return NULL; }
2428 #endif
2429 
2430 /*
2431  * Move the free pages in a range to the freelist tail of the requested type.
2432  * Note that start_page and end_pages are not aligned on a pageblock
2433  * boundary. If alignment is required, use move_freepages_block()
2434  */
2435 static int move_freepages(struct zone *zone,
2436 			  unsigned long start_pfn, unsigned long end_pfn,
2437 			  int migratetype, int *num_movable)
2438 {
2439 	struct page *page;
2440 	unsigned long pfn;
2441 	unsigned int order;
2442 	int pages_moved = 0;
2443 
2444 	for (pfn = start_pfn; pfn <= end_pfn;) {
2445 		if (!pfn_valid_within(pfn)) {
2446 			pfn++;
2447 			continue;
2448 		}
2449 
2450 		page = pfn_to_page(pfn);
2451 		if (!PageBuddy(page)) {
2452 			/*
2453 			 * We assume that pages that could be isolated for
2454 			 * migration are movable. But we don't actually try
2455 			 * isolating, as that would be expensive.
2456 			 */
2457 			if (num_movable &&
2458 					(PageLRU(page) || __PageMovable(page)))
2459 				(*num_movable)++;
2460 			pfn++;
2461 			continue;
2462 		}
2463 
2464 		/* Make sure we are not inadvertently changing nodes */
2465 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2466 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2467 
2468 		order = buddy_order(page);
2469 		move_to_free_list(page, zone, order, migratetype);
2470 		pfn += 1 << order;
2471 		pages_moved += 1 << order;
2472 	}
2473 
2474 	return pages_moved;
2475 }
2476 
2477 int move_freepages_block(struct zone *zone, struct page *page,
2478 				int migratetype, int *num_movable)
2479 {
2480 	unsigned long start_pfn, end_pfn, pfn;
2481 
2482 	if (num_movable)
2483 		*num_movable = 0;
2484 
2485 	pfn = page_to_pfn(page);
2486 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2487 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2488 
2489 	/* Do not cross zone boundaries */
2490 	if (!zone_spans_pfn(zone, start_pfn))
2491 		start_pfn = pfn;
2492 	if (!zone_spans_pfn(zone, end_pfn))
2493 		return 0;
2494 
2495 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2496 								num_movable);
2497 }
2498 
2499 static void change_pageblock_range(struct page *pageblock_page,
2500 					int start_order, int migratetype)
2501 {
2502 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2503 
2504 	while (nr_pageblocks--) {
2505 		set_pageblock_migratetype(pageblock_page, migratetype);
2506 		pageblock_page += pageblock_nr_pages;
2507 	}
2508 }
2509 
2510 /*
2511  * When we are falling back to another migratetype during allocation, try to
2512  * steal extra free pages from the same pageblocks to satisfy further
2513  * allocations, instead of polluting multiple pageblocks.
2514  *
2515  * If we are stealing a relatively large buddy page, it is likely there will
2516  * be more free pages in the pageblock, so try to steal them all. For
2517  * reclaimable and unmovable allocations, we steal regardless of page size,
2518  * as fragmentation caused by those allocations polluting movable pageblocks
2519  * is worse than movable allocations stealing from unmovable and reclaimable
2520  * pageblocks.
2521  */
2522 static bool can_steal_fallback(unsigned int order, int start_mt)
2523 {
2524 	/*
2525 	 * Leaving this order check is intended, although there is
2526 	 * relaxed order check in next check. The reason is that
2527 	 * we can actually steal whole pageblock if this condition met,
2528 	 * but, below check doesn't guarantee it and that is just heuristic
2529 	 * so could be changed anytime.
2530 	 */
2531 	if (order >= pageblock_order)
2532 		return true;
2533 
2534 	if (order >= pageblock_order / 2 ||
2535 		start_mt == MIGRATE_RECLAIMABLE ||
2536 		start_mt == MIGRATE_UNMOVABLE ||
2537 		page_group_by_mobility_disabled)
2538 		return true;
2539 
2540 	return false;
2541 }
2542 
2543 static inline bool boost_watermark(struct zone *zone)
2544 {
2545 	unsigned long max_boost;
2546 
2547 	if (!watermark_boost_factor)
2548 		return false;
2549 	/*
2550 	 * Don't bother in zones that are unlikely to produce results.
2551 	 * On small machines, including kdump capture kernels running
2552 	 * in a small area, boosting the watermark can cause an out of
2553 	 * memory situation immediately.
2554 	 */
2555 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2556 		return false;
2557 
2558 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2559 			watermark_boost_factor, 10000);
2560 
2561 	/*
2562 	 * high watermark may be uninitialised if fragmentation occurs
2563 	 * very early in boot so do not boost. We do not fall
2564 	 * through and boost by pageblock_nr_pages as failing
2565 	 * allocations that early means that reclaim is not going
2566 	 * to help and it may even be impossible to reclaim the
2567 	 * boosted watermark resulting in a hang.
2568 	 */
2569 	if (!max_boost)
2570 		return false;
2571 
2572 	max_boost = max(pageblock_nr_pages, max_boost);
2573 
2574 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2575 		max_boost);
2576 
2577 	return true;
2578 }
2579 
2580 /*
2581  * This function implements actual steal behaviour. If order is large enough,
2582  * we can steal whole pageblock. If not, we first move freepages in this
2583  * pageblock to our migratetype and determine how many already-allocated pages
2584  * are there in the pageblock with a compatible migratetype. If at least half
2585  * of pages are free or compatible, we can change migratetype of the pageblock
2586  * itself, so pages freed in the future will be put on the correct free list.
2587  */
2588 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2589 		unsigned int alloc_flags, int start_type, bool whole_block)
2590 {
2591 	unsigned int current_order = buddy_order(page);
2592 	int free_pages, movable_pages, alike_pages;
2593 	int old_block_type;
2594 
2595 	old_block_type = get_pageblock_migratetype(page);
2596 
2597 	/*
2598 	 * This can happen due to races and we want to prevent broken
2599 	 * highatomic accounting.
2600 	 */
2601 	if (is_migrate_highatomic(old_block_type))
2602 		goto single_page;
2603 
2604 	/* Take ownership for orders >= pageblock_order */
2605 	if (current_order >= pageblock_order) {
2606 		change_pageblock_range(page, current_order, start_type);
2607 		goto single_page;
2608 	}
2609 
2610 	/*
2611 	 * Boost watermarks to increase reclaim pressure to reduce the
2612 	 * likelihood of future fallbacks. Wake kswapd now as the node
2613 	 * may be balanced overall and kswapd will not wake naturally.
2614 	 */
2615 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2616 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2617 
2618 	/* We are not allowed to try stealing from the whole block */
2619 	if (!whole_block)
2620 		goto single_page;
2621 
2622 	free_pages = move_freepages_block(zone, page, start_type,
2623 						&movable_pages);
2624 	/*
2625 	 * Determine how many pages are compatible with our allocation.
2626 	 * For movable allocation, it's the number of movable pages which
2627 	 * we just obtained. For other types it's a bit more tricky.
2628 	 */
2629 	if (start_type == MIGRATE_MOVABLE) {
2630 		alike_pages = movable_pages;
2631 	} else {
2632 		/*
2633 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2634 		 * to MOVABLE pageblock, consider all non-movable pages as
2635 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2636 		 * vice versa, be conservative since we can't distinguish the
2637 		 * exact migratetype of non-movable pages.
2638 		 */
2639 		if (old_block_type == MIGRATE_MOVABLE)
2640 			alike_pages = pageblock_nr_pages
2641 						- (free_pages + movable_pages);
2642 		else
2643 			alike_pages = 0;
2644 	}
2645 
2646 	/* moving whole block can fail due to zone boundary conditions */
2647 	if (!free_pages)
2648 		goto single_page;
2649 
2650 	/*
2651 	 * If a sufficient number of pages in the block are either free or of
2652 	 * comparable migratability as our allocation, claim the whole block.
2653 	 */
2654 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2655 			page_group_by_mobility_disabled)
2656 		set_pageblock_migratetype(page, start_type);
2657 
2658 	return;
2659 
2660 single_page:
2661 	move_to_free_list(page, zone, current_order, start_type);
2662 }
2663 
2664 /*
2665  * Check whether there is a suitable fallback freepage with requested order.
2666  * If only_stealable is true, this function returns fallback_mt only if
2667  * we can steal other freepages all together. This would help to reduce
2668  * fragmentation due to mixed migratetype pages in one pageblock.
2669  */
2670 int find_suitable_fallback(struct free_area *area, unsigned int order,
2671 			int migratetype, bool only_stealable, bool *can_steal)
2672 {
2673 	int i;
2674 	int fallback_mt;
2675 
2676 	if (area->nr_free == 0)
2677 		return -1;
2678 
2679 	*can_steal = false;
2680 	for (i = 0;; i++) {
2681 		fallback_mt = fallbacks[migratetype][i];
2682 		if (fallback_mt == MIGRATE_TYPES)
2683 			break;
2684 
2685 		if (free_area_empty(area, fallback_mt))
2686 			continue;
2687 
2688 		if (can_steal_fallback(order, migratetype))
2689 			*can_steal = true;
2690 
2691 		if (!only_stealable)
2692 			return fallback_mt;
2693 
2694 		if (*can_steal)
2695 			return fallback_mt;
2696 	}
2697 
2698 	return -1;
2699 }
2700 
2701 /*
2702  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2703  * there are no empty page blocks that contain a page with a suitable order
2704  */
2705 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2706 				unsigned int alloc_order)
2707 {
2708 	int mt;
2709 	unsigned long max_managed, flags;
2710 
2711 	/*
2712 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2713 	 * Check is race-prone but harmless.
2714 	 */
2715 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2716 	if (zone->nr_reserved_highatomic >= max_managed)
2717 		return;
2718 
2719 	spin_lock_irqsave(&zone->lock, flags);
2720 
2721 	/* Recheck the nr_reserved_highatomic limit under the lock */
2722 	if (zone->nr_reserved_highatomic >= max_managed)
2723 		goto out_unlock;
2724 
2725 	/* Yoink! */
2726 	mt = get_pageblock_migratetype(page);
2727 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2728 	    && !is_migrate_cma(mt)) {
2729 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2730 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2731 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2732 	}
2733 
2734 out_unlock:
2735 	spin_unlock_irqrestore(&zone->lock, flags);
2736 }
2737 
2738 /*
2739  * Used when an allocation is about to fail under memory pressure. This
2740  * potentially hurts the reliability of high-order allocations when under
2741  * intense memory pressure but failed atomic allocations should be easier
2742  * to recover from than an OOM.
2743  *
2744  * If @force is true, try to unreserve a pageblock even though highatomic
2745  * pageblock is exhausted.
2746  */
2747 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2748 						bool force)
2749 {
2750 	struct zonelist *zonelist = ac->zonelist;
2751 	unsigned long flags;
2752 	struct zoneref *z;
2753 	struct zone *zone;
2754 	struct page *page;
2755 	int order;
2756 	bool ret;
2757 
2758 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2759 								ac->nodemask) {
2760 		/*
2761 		 * Preserve at least one pageblock unless memory pressure
2762 		 * is really high.
2763 		 */
2764 		if (!force && zone->nr_reserved_highatomic <=
2765 					pageblock_nr_pages)
2766 			continue;
2767 
2768 		spin_lock_irqsave(&zone->lock, flags);
2769 		for (order = 0; order < MAX_ORDER; order++) {
2770 			struct free_area *area = &(zone->free_area[order]);
2771 
2772 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2773 			if (!page)
2774 				continue;
2775 
2776 			/*
2777 			 * In page freeing path, migratetype change is racy so
2778 			 * we can counter several free pages in a pageblock
2779 			 * in this loop althoug we changed the pageblock type
2780 			 * from highatomic to ac->migratetype. So we should
2781 			 * adjust the count once.
2782 			 */
2783 			if (is_migrate_highatomic_page(page)) {
2784 				/*
2785 				 * It should never happen but changes to
2786 				 * locking could inadvertently allow a per-cpu
2787 				 * drain to add pages to MIGRATE_HIGHATOMIC
2788 				 * while unreserving so be safe and watch for
2789 				 * underflows.
2790 				 */
2791 				zone->nr_reserved_highatomic -= min(
2792 						pageblock_nr_pages,
2793 						zone->nr_reserved_highatomic);
2794 			}
2795 
2796 			/*
2797 			 * Convert to ac->migratetype and avoid the normal
2798 			 * pageblock stealing heuristics. Minimally, the caller
2799 			 * is doing the work and needs the pages. More
2800 			 * importantly, if the block was always converted to
2801 			 * MIGRATE_UNMOVABLE or another type then the number
2802 			 * of pageblocks that cannot be completely freed
2803 			 * may increase.
2804 			 */
2805 			set_pageblock_migratetype(page, ac->migratetype);
2806 			ret = move_freepages_block(zone, page, ac->migratetype,
2807 									NULL);
2808 			if (ret) {
2809 				spin_unlock_irqrestore(&zone->lock, flags);
2810 				return ret;
2811 			}
2812 		}
2813 		spin_unlock_irqrestore(&zone->lock, flags);
2814 	}
2815 
2816 	return false;
2817 }
2818 
2819 /*
2820  * Try finding a free buddy page on the fallback list and put it on the free
2821  * list of requested migratetype, possibly along with other pages from the same
2822  * block, depending on fragmentation avoidance heuristics. Returns true if
2823  * fallback was found so that __rmqueue_smallest() can grab it.
2824  *
2825  * The use of signed ints for order and current_order is a deliberate
2826  * deviation from the rest of this file, to make the for loop
2827  * condition simpler.
2828  */
2829 static __always_inline bool
2830 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2831 						unsigned int alloc_flags)
2832 {
2833 	struct free_area *area;
2834 	int current_order;
2835 	int min_order = order;
2836 	struct page *page;
2837 	int fallback_mt;
2838 	bool can_steal;
2839 
2840 	/*
2841 	 * Do not steal pages from freelists belonging to other pageblocks
2842 	 * i.e. orders < pageblock_order. If there are no local zones free,
2843 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2844 	 */
2845 	if (alloc_flags & ALLOC_NOFRAGMENT)
2846 		min_order = pageblock_order;
2847 
2848 	/*
2849 	 * Find the largest available free page in the other list. This roughly
2850 	 * approximates finding the pageblock with the most free pages, which
2851 	 * would be too costly to do exactly.
2852 	 */
2853 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2854 				--current_order) {
2855 		area = &(zone->free_area[current_order]);
2856 		fallback_mt = find_suitable_fallback(area, current_order,
2857 				start_migratetype, false, &can_steal);
2858 		if (fallback_mt == -1)
2859 			continue;
2860 
2861 		/*
2862 		 * We cannot steal all free pages from the pageblock and the
2863 		 * requested migratetype is movable. In that case it's better to
2864 		 * steal and split the smallest available page instead of the
2865 		 * largest available page, because even if the next movable
2866 		 * allocation falls back into a different pageblock than this
2867 		 * one, it won't cause permanent fragmentation.
2868 		 */
2869 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2870 					&& current_order > order)
2871 			goto find_smallest;
2872 
2873 		goto do_steal;
2874 	}
2875 
2876 	return false;
2877 
2878 find_smallest:
2879 	for (current_order = order; current_order < MAX_ORDER;
2880 							current_order++) {
2881 		area = &(zone->free_area[current_order]);
2882 		fallback_mt = find_suitable_fallback(area, current_order,
2883 				start_migratetype, false, &can_steal);
2884 		if (fallback_mt != -1)
2885 			break;
2886 	}
2887 
2888 	/*
2889 	 * This should not happen - we already found a suitable fallback
2890 	 * when looking for the largest page.
2891 	 */
2892 	VM_BUG_ON(current_order == MAX_ORDER);
2893 
2894 do_steal:
2895 	page = get_page_from_free_area(area, fallback_mt);
2896 
2897 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2898 								can_steal);
2899 
2900 	trace_mm_page_alloc_extfrag(page, order, current_order,
2901 		start_migratetype, fallback_mt);
2902 
2903 	return true;
2904 
2905 }
2906 
2907 /*
2908  * Do the hard work of removing an element from the buddy allocator.
2909  * Call me with the zone->lock already held.
2910  */
2911 static __always_inline struct page *
2912 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2913 						unsigned int alloc_flags)
2914 {
2915 	struct page *page;
2916 
2917 	if (IS_ENABLED(CONFIG_CMA)) {
2918 		/*
2919 		 * Balance movable allocations between regular and CMA areas by
2920 		 * allocating from CMA when over half of the zone's free memory
2921 		 * is in the CMA area.
2922 		 */
2923 		if (alloc_flags & ALLOC_CMA &&
2924 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2925 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2926 			page = __rmqueue_cma_fallback(zone, order);
2927 			if (page)
2928 				goto out;
2929 		}
2930 	}
2931 retry:
2932 	page = __rmqueue_smallest(zone, order, migratetype);
2933 	if (unlikely(!page)) {
2934 		if (alloc_flags & ALLOC_CMA)
2935 			page = __rmqueue_cma_fallback(zone, order);
2936 
2937 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2938 								alloc_flags))
2939 			goto retry;
2940 	}
2941 out:
2942 	if (page)
2943 		trace_mm_page_alloc_zone_locked(page, order, migratetype);
2944 	return page;
2945 }
2946 
2947 /*
2948  * Obtain a specified number of elements from the buddy allocator, all under
2949  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2950  * Returns the number of new pages which were placed at *list.
2951  */
2952 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2953 			unsigned long count, struct list_head *list,
2954 			int migratetype, unsigned int alloc_flags)
2955 {
2956 	int i, allocated = 0;
2957 
2958 	spin_lock(&zone->lock);
2959 	for (i = 0; i < count; ++i) {
2960 		struct page *page = __rmqueue(zone, order, migratetype,
2961 								alloc_flags);
2962 		if (unlikely(page == NULL))
2963 			break;
2964 
2965 		if (unlikely(check_pcp_refill(page)))
2966 			continue;
2967 
2968 		/*
2969 		 * Split buddy pages returned by expand() are received here in
2970 		 * physical page order. The page is added to the tail of
2971 		 * caller's list. From the callers perspective, the linked list
2972 		 * is ordered by page number under some conditions. This is
2973 		 * useful for IO devices that can forward direction from the
2974 		 * head, thus also in the physical page order. This is useful
2975 		 * for IO devices that can merge IO requests if the physical
2976 		 * pages are ordered properly.
2977 		 */
2978 		list_add_tail(&page->lru, list);
2979 		allocated++;
2980 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2981 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2982 					      -(1 << order));
2983 	}
2984 
2985 	/*
2986 	 * i pages were removed from the buddy list even if some leak due
2987 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2988 	 * on i. Do not confuse with 'allocated' which is the number of
2989 	 * pages added to the pcp list.
2990 	 */
2991 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2992 	spin_unlock(&zone->lock);
2993 	return allocated;
2994 }
2995 
2996 #ifdef CONFIG_NUMA
2997 /*
2998  * Called from the vmstat counter updater to drain pagesets of this
2999  * currently executing processor on remote nodes after they have
3000  * expired.
3001  *
3002  * Note that this function must be called with the thread pinned to
3003  * a single processor.
3004  */
3005 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3006 {
3007 	unsigned long flags;
3008 	int to_drain, batch;
3009 
3010 	local_irq_save(flags);
3011 	batch = READ_ONCE(pcp->batch);
3012 	to_drain = min(pcp->count, batch);
3013 	if (to_drain > 0)
3014 		free_pcppages_bulk(zone, to_drain, pcp);
3015 	local_irq_restore(flags);
3016 }
3017 #endif
3018 
3019 /*
3020  * Drain pcplists of the indicated processor and zone.
3021  *
3022  * The processor must either be the current processor and the
3023  * thread pinned to the current processor or a processor that
3024  * is not online.
3025  */
3026 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3027 {
3028 	unsigned long flags;
3029 	struct per_cpu_pageset *pset;
3030 	struct per_cpu_pages *pcp;
3031 
3032 	local_irq_save(flags);
3033 	pset = per_cpu_ptr(zone->pageset, cpu);
3034 
3035 	pcp = &pset->pcp;
3036 	if (pcp->count)
3037 		free_pcppages_bulk(zone, pcp->count, pcp);
3038 	local_irq_restore(flags);
3039 }
3040 
3041 /*
3042  * Drain pcplists of all zones on the indicated processor.
3043  *
3044  * The processor must either be the current processor and the
3045  * thread pinned to the current processor or a processor that
3046  * is not online.
3047  */
3048 static void drain_pages(unsigned int cpu)
3049 {
3050 	struct zone *zone;
3051 
3052 	for_each_populated_zone(zone) {
3053 		drain_pages_zone(cpu, zone);
3054 	}
3055 }
3056 
3057 /*
3058  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3059  *
3060  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3061  * the single zone's pages.
3062  */
3063 void drain_local_pages(struct zone *zone)
3064 {
3065 	int cpu = smp_processor_id();
3066 
3067 	if (zone)
3068 		drain_pages_zone(cpu, zone);
3069 	else
3070 		drain_pages(cpu);
3071 }
3072 
3073 static void drain_local_pages_wq(struct work_struct *work)
3074 {
3075 	struct pcpu_drain *drain;
3076 
3077 	drain = container_of(work, struct pcpu_drain, work);
3078 
3079 	/*
3080 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3081 	 * we can race with cpu offline when the WQ can move this from
3082 	 * a cpu pinned worker to an unbound one. We can operate on a different
3083 	 * cpu which is allright but we also have to make sure to not move to
3084 	 * a different one.
3085 	 */
3086 	preempt_disable();
3087 	drain_local_pages(drain->zone);
3088 	preempt_enable();
3089 }
3090 
3091 /*
3092  * The implementation of drain_all_pages(), exposing an extra parameter to
3093  * drain on all cpus.
3094  *
3095  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3096  * not empty. The check for non-emptiness can however race with a free to
3097  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3098  * that need the guarantee that every CPU has drained can disable the
3099  * optimizing racy check.
3100  */
3101 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3102 {
3103 	int cpu;
3104 
3105 	/*
3106 	 * Allocate in the BSS so we wont require allocation in
3107 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3108 	 */
3109 	static cpumask_t cpus_with_pcps;
3110 
3111 	/*
3112 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3113 	 * initialized.
3114 	 */
3115 	if (WARN_ON_ONCE(!mm_percpu_wq))
3116 		return;
3117 
3118 	/*
3119 	 * Do not drain if one is already in progress unless it's specific to
3120 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3121 	 * the drain to be complete when the call returns.
3122 	 */
3123 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3124 		if (!zone)
3125 			return;
3126 		mutex_lock(&pcpu_drain_mutex);
3127 	}
3128 
3129 	/*
3130 	 * We don't care about racing with CPU hotplug event
3131 	 * as offline notification will cause the notified
3132 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3133 	 * disables preemption as part of its processing
3134 	 */
3135 	for_each_online_cpu(cpu) {
3136 		struct per_cpu_pageset *pcp;
3137 		struct zone *z;
3138 		bool has_pcps = false;
3139 
3140 		if (force_all_cpus) {
3141 			/*
3142 			 * The pcp.count check is racy, some callers need a
3143 			 * guarantee that no cpu is missed.
3144 			 */
3145 			has_pcps = true;
3146 		} else if (zone) {
3147 			pcp = per_cpu_ptr(zone->pageset, cpu);
3148 			if (pcp->pcp.count)
3149 				has_pcps = true;
3150 		} else {
3151 			for_each_populated_zone(z) {
3152 				pcp = per_cpu_ptr(z->pageset, cpu);
3153 				if (pcp->pcp.count) {
3154 					has_pcps = true;
3155 					break;
3156 				}
3157 			}
3158 		}
3159 
3160 		if (has_pcps)
3161 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3162 		else
3163 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3164 	}
3165 
3166 	for_each_cpu(cpu, &cpus_with_pcps) {
3167 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3168 
3169 		drain->zone = zone;
3170 		INIT_WORK(&drain->work, drain_local_pages_wq);
3171 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3172 	}
3173 	for_each_cpu(cpu, &cpus_with_pcps)
3174 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3175 
3176 	mutex_unlock(&pcpu_drain_mutex);
3177 }
3178 
3179 /*
3180  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3181  *
3182  * When zone parameter is non-NULL, spill just the single zone's pages.
3183  *
3184  * Note that this can be extremely slow as the draining happens in a workqueue.
3185  */
3186 void drain_all_pages(struct zone *zone)
3187 {
3188 	__drain_all_pages(zone, false);
3189 }
3190 
3191 #ifdef CONFIG_HIBERNATION
3192 
3193 /*
3194  * Touch the watchdog for every WD_PAGE_COUNT pages.
3195  */
3196 #define WD_PAGE_COUNT	(128*1024)
3197 
3198 void mark_free_pages(struct zone *zone)
3199 {
3200 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3201 	unsigned long flags;
3202 	unsigned int order, t;
3203 	struct page *page;
3204 
3205 	if (zone_is_empty(zone))
3206 		return;
3207 
3208 	spin_lock_irqsave(&zone->lock, flags);
3209 
3210 	max_zone_pfn = zone_end_pfn(zone);
3211 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3212 		if (pfn_valid(pfn)) {
3213 			page = pfn_to_page(pfn);
3214 
3215 			if (!--page_count) {
3216 				touch_nmi_watchdog();
3217 				page_count = WD_PAGE_COUNT;
3218 			}
3219 
3220 			if (page_zone(page) != zone)
3221 				continue;
3222 
3223 			if (!swsusp_page_is_forbidden(page))
3224 				swsusp_unset_page_free(page);
3225 		}
3226 
3227 	for_each_migratetype_order(order, t) {
3228 		list_for_each_entry(page,
3229 				&zone->free_area[order].free_list[t], lru) {
3230 			unsigned long i;
3231 
3232 			pfn = page_to_pfn(page);
3233 			for (i = 0; i < (1UL << order); i++) {
3234 				if (!--page_count) {
3235 					touch_nmi_watchdog();
3236 					page_count = WD_PAGE_COUNT;
3237 				}
3238 				swsusp_set_page_free(pfn_to_page(pfn + i));
3239 			}
3240 		}
3241 	}
3242 	spin_unlock_irqrestore(&zone->lock, flags);
3243 }
3244 #endif /* CONFIG_PM */
3245 
3246 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3247 {
3248 	int migratetype;
3249 
3250 	if (!free_pcp_prepare(page))
3251 		return false;
3252 
3253 	migratetype = get_pfnblock_migratetype(page, pfn);
3254 	set_pcppage_migratetype(page, migratetype);
3255 	return true;
3256 }
3257 
3258 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3259 {
3260 	struct zone *zone = page_zone(page);
3261 	struct per_cpu_pages *pcp;
3262 	int migratetype;
3263 
3264 	migratetype = get_pcppage_migratetype(page);
3265 	__count_vm_event(PGFREE);
3266 
3267 	/*
3268 	 * We only track unmovable, reclaimable and movable on pcp lists.
3269 	 * Free ISOLATE pages back to the allocator because they are being
3270 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3271 	 * areas back if necessary. Otherwise, we may have to free
3272 	 * excessively into the page allocator
3273 	 */
3274 	if (migratetype >= MIGRATE_PCPTYPES) {
3275 		if (unlikely(is_migrate_isolate(migratetype))) {
3276 			free_one_page(zone, page, pfn, 0, migratetype,
3277 				      FPI_NONE);
3278 			return;
3279 		}
3280 		migratetype = MIGRATE_MOVABLE;
3281 	}
3282 
3283 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3284 	list_add(&page->lru, &pcp->lists[migratetype]);
3285 	pcp->count++;
3286 	if (pcp->count >= READ_ONCE(pcp->high))
3287 		free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
3288 }
3289 
3290 /*
3291  * Free a 0-order page
3292  */
3293 void free_unref_page(struct page *page)
3294 {
3295 	unsigned long flags;
3296 	unsigned long pfn = page_to_pfn(page);
3297 
3298 	if (!free_unref_page_prepare(page, pfn))
3299 		return;
3300 
3301 	local_irq_save(flags);
3302 	free_unref_page_commit(page, pfn);
3303 	local_irq_restore(flags);
3304 }
3305 
3306 /*
3307  * Free a list of 0-order pages
3308  */
3309 void free_unref_page_list(struct list_head *list)
3310 {
3311 	struct page *page, *next;
3312 	unsigned long flags, pfn;
3313 	int batch_count = 0;
3314 
3315 	/* Prepare pages for freeing */
3316 	list_for_each_entry_safe(page, next, list, lru) {
3317 		pfn = page_to_pfn(page);
3318 		if (!free_unref_page_prepare(page, pfn))
3319 			list_del(&page->lru);
3320 		set_page_private(page, pfn);
3321 	}
3322 
3323 	local_irq_save(flags);
3324 	list_for_each_entry_safe(page, next, list, lru) {
3325 		unsigned long pfn = page_private(page);
3326 
3327 		set_page_private(page, 0);
3328 		trace_mm_page_free_batched(page);
3329 		free_unref_page_commit(page, pfn);
3330 
3331 		/*
3332 		 * Guard against excessive IRQ disabled times when we get
3333 		 * a large list of pages to free.
3334 		 */
3335 		if (++batch_count == SWAP_CLUSTER_MAX) {
3336 			local_irq_restore(flags);
3337 			batch_count = 0;
3338 			local_irq_save(flags);
3339 		}
3340 	}
3341 	local_irq_restore(flags);
3342 }
3343 
3344 /*
3345  * split_page takes a non-compound higher-order page, and splits it into
3346  * n (1<<order) sub-pages: page[0..n]
3347  * Each sub-page must be freed individually.
3348  *
3349  * Note: this is probably too low level an operation for use in drivers.
3350  * Please consult with lkml before using this in your driver.
3351  */
3352 void split_page(struct page *page, unsigned int order)
3353 {
3354 	int i;
3355 
3356 	VM_BUG_ON_PAGE(PageCompound(page), page);
3357 	VM_BUG_ON_PAGE(!page_count(page), page);
3358 
3359 	for (i = 1; i < (1 << order); i++)
3360 		set_page_refcounted(page + i);
3361 	split_page_owner(page, 1 << order);
3362 	split_page_memcg(page, 1 << order);
3363 }
3364 EXPORT_SYMBOL_GPL(split_page);
3365 
3366 int __isolate_free_page(struct page *page, unsigned int order)
3367 {
3368 	unsigned long watermark;
3369 	struct zone *zone;
3370 	int mt;
3371 
3372 	BUG_ON(!PageBuddy(page));
3373 
3374 	zone = page_zone(page);
3375 	mt = get_pageblock_migratetype(page);
3376 
3377 	if (!is_migrate_isolate(mt)) {
3378 		/*
3379 		 * Obey watermarks as if the page was being allocated. We can
3380 		 * emulate a high-order watermark check with a raised order-0
3381 		 * watermark, because we already know our high-order page
3382 		 * exists.
3383 		 */
3384 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3385 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3386 			return 0;
3387 
3388 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3389 	}
3390 
3391 	/* Remove page from free list */
3392 
3393 	del_page_from_free_list(page, zone, order);
3394 
3395 	/*
3396 	 * Set the pageblock if the isolated page is at least half of a
3397 	 * pageblock
3398 	 */
3399 	if (order >= pageblock_order - 1) {
3400 		struct page *endpage = page + (1 << order) - 1;
3401 		for (; page < endpage; page += pageblock_nr_pages) {
3402 			int mt = get_pageblock_migratetype(page);
3403 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3404 			    && !is_migrate_highatomic(mt))
3405 				set_pageblock_migratetype(page,
3406 							  MIGRATE_MOVABLE);
3407 		}
3408 	}
3409 
3410 
3411 	return 1UL << order;
3412 }
3413 
3414 /**
3415  * __putback_isolated_page - Return a now-isolated page back where we got it
3416  * @page: Page that was isolated
3417  * @order: Order of the isolated page
3418  * @mt: The page's pageblock's migratetype
3419  *
3420  * This function is meant to return a page pulled from the free lists via
3421  * __isolate_free_page back to the free lists they were pulled from.
3422  */
3423 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3424 {
3425 	struct zone *zone = page_zone(page);
3426 
3427 	/* zone lock should be held when this function is called */
3428 	lockdep_assert_held(&zone->lock);
3429 
3430 	/* Return isolated page to tail of freelist. */
3431 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3432 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3433 }
3434 
3435 /*
3436  * Update NUMA hit/miss statistics
3437  *
3438  * Must be called with interrupts disabled.
3439  */
3440 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3441 {
3442 #ifdef CONFIG_NUMA
3443 	enum numa_stat_item local_stat = NUMA_LOCAL;
3444 
3445 	/* skip numa counters update if numa stats is disabled */
3446 	if (!static_branch_likely(&vm_numa_stat_key))
3447 		return;
3448 
3449 	if (zone_to_nid(z) != numa_node_id())
3450 		local_stat = NUMA_OTHER;
3451 
3452 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3453 		__inc_numa_state(z, NUMA_HIT);
3454 	else {
3455 		__inc_numa_state(z, NUMA_MISS);
3456 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3457 	}
3458 	__inc_numa_state(z, local_stat);
3459 #endif
3460 }
3461 
3462 /* Remove page from the per-cpu list, caller must protect the list */
3463 static inline
3464 struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3465 			unsigned int alloc_flags,
3466 			struct per_cpu_pages *pcp,
3467 			struct list_head *list)
3468 {
3469 	struct page *page;
3470 
3471 	do {
3472 		if (list_empty(list)) {
3473 			pcp->count += rmqueue_bulk(zone, 0,
3474 					READ_ONCE(pcp->batch), list,
3475 					migratetype, alloc_flags);
3476 			if (unlikely(list_empty(list)))
3477 				return NULL;
3478 		}
3479 
3480 		page = list_first_entry(list, struct page, lru);
3481 		list_del(&page->lru);
3482 		pcp->count--;
3483 	} while (check_new_pcp(page));
3484 
3485 	return page;
3486 }
3487 
3488 /* Lock and remove page from the per-cpu list */
3489 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3490 			struct zone *zone, gfp_t gfp_flags,
3491 			int migratetype, unsigned int alloc_flags)
3492 {
3493 	struct per_cpu_pages *pcp;
3494 	struct list_head *list;
3495 	struct page *page;
3496 	unsigned long flags;
3497 
3498 	local_irq_save(flags);
3499 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3500 	list = &pcp->lists[migratetype];
3501 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3502 	if (page) {
3503 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3504 		zone_statistics(preferred_zone, zone);
3505 	}
3506 	local_irq_restore(flags);
3507 	return page;
3508 }
3509 
3510 /*
3511  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3512  */
3513 static inline
3514 struct page *rmqueue(struct zone *preferred_zone,
3515 			struct zone *zone, unsigned int order,
3516 			gfp_t gfp_flags, unsigned int alloc_flags,
3517 			int migratetype)
3518 {
3519 	unsigned long flags;
3520 	struct page *page;
3521 
3522 	if (likely(order == 0)) {
3523 		/*
3524 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3525 		 * we need to skip it when CMA area isn't allowed.
3526 		 */
3527 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3528 				migratetype != MIGRATE_MOVABLE) {
3529 			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3530 					migratetype, alloc_flags);
3531 			goto out;
3532 		}
3533 	}
3534 
3535 	/*
3536 	 * We most definitely don't want callers attempting to
3537 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3538 	 */
3539 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3540 	spin_lock_irqsave(&zone->lock, flags);
3541 
3542 	do {
3543 		page = NULL;
3544 		/*
3545 		 * order-0 request can reach here when the pcplist is skipped
3546 		 * due to non-CMA allocation context. HIGHATOMIC area is
3547 		 * reserved for high-order atomic allocation, so order-0
3548 		 * request should skip it.
3549 		 */
3550 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3551 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3552 			if (page)
3553 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3554 		}
3555 		if (!page)
3556 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3557 	} while (page && check_new_pages(page, order));
3558 	spin_unlock(&zone->lock);
3559 	if (!page)
3560 		goto failed;
3561 	__mod_zone_freepage_state(zone, -(1 << order),
3562 				  get_pcppage_migratetype(page));
3563 
3564 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3565 	zone_statistics(preferred_zone, zone);
3566 	local_irq_restore(flags);
3567 
3568 out:
3569 	/* Separate test+clear to avoid unnecessary atomics */
3570 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3571 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3572 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3573 	}
3574 
3575 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3576 	return page;
3577 
3578 failed:
3579 	local_irq_restore(flags);
3580 	return NULL;
3581 }
3582 
3583 #ifdef CONFIG_FAIL_PAGE_ALLOC
3584 
3585 static struct {
3586 	struct fault_attr attr;
3587 
3588 	bool ignore_gfp_highmem;
3589 	bool ignore_gfp_reclaim;
3590 	u32 min_order;
3591 } fail_page_alloc = {
3592 	.attr = FAULT_ATTR_INITIALIZER,
3593 	.ignore_gfp_reclaim = true,
3594 	.ignore_gfp_highmem = true,
3595 	.min_order = 1,
3596 };
3597 
3598 static int __init setup_fail_page_alloc(char *str)
3599 {
3600 	return setup_fault_attr(&fail_page_alloc.attr, str);
3601 }
3602 __setup("fail_page_alloc=", setup_fail_page_alloc);
3603 
3604 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3605 {
3606 	if (order < fail_page_alloc.min_order)
3607 		return false;
3608 	if (gfp_mask & __GFP_NOFAIL)
3609 		return false;
3610 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3611 		return false;
3612 	if (fail_page_alloc.ignore_gfp_reclaim &&
3613 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3614 		return false;
3615 
3616 	return should_fail(&fail_page_alloc.attr, 1 << order);
3617 }
3618 
3619 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3620 
3621 static int __init fail_page_alloc_debugfs(void)
3622 {
3623 	umode_t mode = S_IFREG | 0600;
3624 	struct dentry *dir;
3625 
3626 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3627 					&fail_page_alloc.attr);
3628 
3629 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3630 			    &fail_page_alloc.ignore_gfp_reclaim);
3631 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3632 			    &fail_page_alloc.ignore_gfp_highmem);
3633 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3634 
3635 	return 0;
3636 }
3637 
3638 late_initcall(fail_page_alloc_debugfs);
3639 
3640 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3641 
3642 #else /* CONFIG_FAIL_PAGE_ALLOC */
3643 
3644 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3645 {
3646 	return false;
3647 }
3648 
3649 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3650 
3651 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3652 {
3653 	return __should_fail_alloc_page(gfp_mask, order);
3654 }
3655 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3656 
3657 static inline long __zone_watermark_unusable_free(struct zone *z,
3658 				unsigned int order, unsigned int alloc_flags)
3659 {
3660 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3661 	long unusable_free = (1 << order) - 1;
3662 
3663 	/*
3664 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3665 	 * the high-atomic reserves. This will over-estimate the size of the
3666 	 * atomic reserve but it avoids a search.
3667 	 */
3668 	if (likely(!alloc_harder))
3669 		unusable_free += z->nr_reserved_highatomic;
3670 
3671 #ifdef CONFIG_CMA
3672 	/* If allocation can't use CMA areas don't use free CMA pages */
3673 	if (!(alloc_flags & ALLOC_CMA))
3674 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3675 #endif
3676 
3677 	return unusable_free;
3678 }
3679 
3680 /*
3681  * Return true if free base pages are above 'mark'. For high-order checks it
3682  * will return true of the order-0 watermark is reached and there is at least
3683  * one free page of a suitable size. Checking now avoids taking the zone lock
3684  * to check in the allocation paths if no pages are free.
3685  */
3686 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3687 			 int highest_zoneidx, unsigned int alloc_flags,
3688 			 long free_pages)
3689 {
3690 	long min = mark;
3691 	int o;
3692 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3693 
3694 	/* free_pages may go negative - that's OK */
3695 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3696 
3697 	if (alloc_flags & ALLOC_HIGH)
3698 		min -= min / 2;
3699 
3700 	if (unlikely(alloc_harder)) {
3701 		/*
3702 		 * OOM victims can try even harder than normal ALLOC_HARDER
3703 		 * users on the grounds that it's definitely going to be in
3704 		 * the exit path shortly and free memory. Any allocation it
3705 		 * makes during the free path will be small and short-lived.
3706 		 */
3707 		if (alloc_flags & ALLOC_OOM)
3708 			min -= min / 2;
3709 		else
3710 			min -= min / 4;
3711 	}
3712 
3713 	/*
3714 	 * Check watermarks for an order-0 allocation request. If these
3715 	 * are not met, then a high-order request also cannot go ahead
3716 	 * even if a suitable page happened to be free.
3717 	 */
3718 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3719 		return false;
3720 
3721 	/* If this is an order-0 request then the watermark is fine */
3722 	if (!order)
3723 		return true;
3724 
3725 	/* For a high-order request, check at least one suitable page is free */
3726 	for (o = order; o < MAX_ORDER; o++) {
3727 		struct free_area *area = &z->free_area[o];
3728 		int mt;
3729 
3730 		if (!area->nr_free)
3731 			continue;
3732 
3733 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3734 			if (!free_area_empty(area, mt))
3735 				return true;
3736 		}
3737 
3738 #ifdef CONFIG_CMA
3739 		if ((alloc_flags & ALLOC_CMA) &&
3740 		    !free_area_empty(area, MIGRATE_CMA)) {
3741 			return true;
3742 		}
3743 #endif
3744 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3745 			return true;
3746 	}
3747 	return false;
3748 }
3749 
3750 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3751 		      int highest_zoneidx, unsigned int alloc_flags)
3752 {
3753 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3754 					zone_page_state(z, NR_FREE_PAGES));
3755 }
3756 
3757 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3758 				unsigned long mark, int highest_zoneidx,
3759 				unsigned int alloc_flags, gfp_t gfp_mask)
3760 {
3761 	long free_pages;
3762 
3763 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3764 
3765 	/*
3766 	 * Fast check for order-0 only. If this fails then the reserves
3767 	 * need to be calculated.
3768 	 */
3769 	if (!order) {
3770 		long fast_free;
3771 
3772 		fast_free = free_pages;
3773 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3774 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3775 			return true;
3776 	}
3777 
3778 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3779 					free_pages))
3780 		return true;
3781 	/*
3782 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3783 	 * when checking the min watermark. The min watermark is the
3784 	 * point where boosting is ignored so that kswapd is woken up
3785 	 * when below the low watermark.
3786 	 */
3787 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3788 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3789 		mark = z->_watermark[WMARK_MIN];
3790 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3791 					alloc_flags, free_pages);
3792 	}
3793 
3794 	return false;
3795 }
3796 
3797 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3798 			unsigned long mark, int highest_zoneidx)
3799 {
3800 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3801 
3802 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3803 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3804 
3805 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3806 								free_pages);
3807 }
3808 
3809 #ifdef CONFIG_NUMA
3810 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3811 {
3812 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3813 				node_reclaim_distance;
3814 }
3815 #else	/* CONFIG_NUMA */
3816 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3817 {
3818 	return true;
3819 }
3820 #endif	/* CONFIG_NUMA */
3821 
3822 /*
3823  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3824  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3825  * premature use of a lower zone may cause lowmem pressure problems that
3826  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3827  * probably too small. It only makes sense to spread allocations to avoid
3828  * fragmentation between the Normal and DMA32 zones.
3829  */
3830 static inline unsigned int
3831 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3832 {
3833 	unsigned int alloc_flags;
3834 
3835 	/*
3836 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3837 	 * to save a branch.
3838 	 */
3839 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3840 
3841 #ifdef CONFIG_ZONE_DMA32
3842 	if (!zone)
3843 		return alloc_flags;
3844 
3845 	if (zone_idx(zone) != ZONE_NORMAL)
3846 		return alloc_flags;
3847 
3848 	/*
3849 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3850 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3851 	 * on UMA that if Normal is populated then so is DMA32.
3852 	 */
3853 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3854 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3855 		return alloc_flags;
3856 
3857 	alloc_flags |= ALLOC_NOFRAGMENT;
3858 #endif /* CONFIG_ZONE_DMA32 */
3859 	return alloc_flags;
3860 }
3861 
3862 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3863 					unsigned int alloc_flags)
3864 {
3865 #ifdef CONFIG_CMA
3866 	unsigned int pflags = current->flags;
3867 
3868 	if (!(pflags & PF_MEMALLOC_NOCMA) &&
3869 			gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3870 		alloc_flags |= ALLOC_CMA;
3871 
3872 #endif
3873 	return alloc_flags;
3874 }
3875 
3876 /*
3877  * get_page_from_freelist goes through the zonelist trying to allocate
3878  * a page.
3879  */
3880 static struct page *
3881 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3882 						const struct alloc_context *ac)
3883 {
3884 	struct zoneref *z;
3885 	struct zone *zone;
3886 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3887 	bool no_fallback;
3888 
3889 retry:
3890 	/*
3891 	 * Scan zonelist, looking for a zone with enough free.
3892 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3893 	 */
3894 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3895 	z = ac->preferred_zoneref;
3896 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3897 					ac->nodemask) {
3898 		struct page *page;
3899 		unsigned long mark;
3900 
3901 		if (cpusets_enabled() &&
3902 			(alloc_flags & ALLOC_CPUSET) &&
3903 			!__cpuset_zone_allowed(zone, gfp_mask))
3904 				continue;
3905 		/*
3906 		 * When allocating a page cache page for writing, we
3907 		 * want to get it from a node that is within its dirty
3908 		 * limit, such that no single node holds more than its
3909 		 * proportional share of globally allowed dirty pages.
3910 		 * The dirty limits take into account the node's
3911 		 * lowmem reserves and high watermark so that kswapd
3912 		 * should be able to balance it without having to
3913 		 * write pages from its LRU list.
3914 		 *
3915 		 * XXX: For now, allow allocations to potentially
3916 		 * exceed the per-node dirty limit in the slowpath
3917 		 * (spread_dirty_pages unset) before going into reclaim,
3918 		 * which is important when on a NUMA setup the allowed
3919 		 * nodes are together not big enough to reach the
3920 		 * global limit.  The proper fix for these situations
3921 		 * will require awareness of nodes in the
3922 		 * dirty-throttling and the flusher threads.
3923 		 */
3924 		if (ac->spread_dirty_pages) {
3925 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3926 				continue;
3927 
3928 			if (!node_dirty_ok(zone->zone_pgdat)) {
3929 				last_pgdat_dirty_limit = zone->zone_pgdat;
3930 				continue;
3931 			}
3932 		}
3933 
3934 		if (no_fallback && nr_online_nodes > 1 &&
3935 		    zone != ac->preferred_zoneref->zone) {
3936 			int local_nid;
3937 
3938 			/*
3939 			 * If moving to a remote node, retry but allow
3940 			 * fragmenting fallbacks. Locality is more important
3941 			 * than fragmentation avoidance.
3942 			 */
3943 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3944 			if (zone_to_nid(zone) != local_nid) {
3945 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3946 				goto retry;
3947 			}
3948 		}
3949 
3950 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3951 		if (!zone_watermark_fast(zone, order, mark,
3952 				       ac->highest_zoneidx, alloc_flags,
3953 				       gfp_mask)) {
3954 			int ret;
3955 
3956 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3957 			/*
3958 			 * Watermark failed for this zone, but see if we can
3959 			 * grow this zone if it contains deferred pages.
3960 			 */
3961 			if (static_branch_unlikely(&deferred_pages)) {
3962 				if (_deferred_grow_zone(zone, order))
3963 					goto try_this_zone;
3964 			}
3965 #endif
3966 			/* Checked here to keep the fast path fast */
3967 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3968 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3969 				goto try_this_zone;
3970 
3971 			if (!node_reclaim_enabled() ||
3972 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3973 				continue;
3974 
3975 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3976 			switch (ret) {
3977 			case NODE_RECLAIM_NOSCAN:
3978 				/* did not scan */
3979 				continue;
3980 			case NODE_RECLAIM_FULL:
3981 				/* scanned but unreclaimable */
3982 				continue;
3983 			default:
3984 				/* did we reclaim enough */
3985 				if (zone_watermark_ok(zone, order, mark,
3986 					ac->highest_zoneidx, alloc_flags))
3987 					goto try_this_zone;
3988 
3989 				continue;
3990 			}
3991 		}
3992 
3993 try_this_zone:
3994 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3995 				gfp_mask, alloc_flags, ac->migratetype);
3996 		if (page) {
3997 			prep_new_page(page, order, gfp_mask, alloc_flags);
3998 
3999 			/*
4000 			 * If this is a high-order atomic allocation then check
4001 			 * if the pageblock should be reserved for the future
4002 			 */
4003 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4004 				reserve_highatomic_pageblock(page, zone, order);
4005 
4006 			return page;
4007 		} else {
4008 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4009 			/* Try again if zone has deferred pages */
4010 			if (static_branch_unlikely(&deferred_pages)) {
4011 				if (_deferred_grow_zone(zone, order))
4012 					goto try_this_zone;
4013 			}
4014 #endif
4015 		}
4016 	}
4017 
4018 	/*
4019 	 * It's possible on a UMA machine to get through all zones that are
4020 	 * fragmented. If avoiding fragmentation, reset and try again.
4021 	 */
4022 	if (no_fallback) {
4023 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4024 		goto retry;
4025 	}
4026 
4027 	return NULL;
4028 }
4029 
4030 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4031 {
4032 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4033 
4034 	/*
4035 	 * This documents exceptions given to allocations in certain
4036 	 * contexts that are allowed to allocate outside current's set
4037 	 * of allowed nodes.
4038 	 */
4039 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4040 		if (tsk_is_oom_victim(current) ||
4041 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4042 			filter &= ~SHOW_MEM_FILTER_NODES;
4043 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4044 		filter &= ~SHOW_MEM_FILTER_NODES;
4045 
4046 	show_mem(filter, nodemask);
4047 }
4048 
4049 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4050 {
4051 	struct va_format vaf;
4052 	va_list args;
4053 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4054 
4055 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4056 		return;
4057 
4058 	va_start(args, fmt);
4059 	vaf.fmt = fmt;
4060 	vaf.va = &args;
4061 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4062 			current->comm, &vaf, gfp_mask, &gfp_mask,
4063 			nodemask_pr_args(nodemask));
4064 	va_end(args);
4065 
4066 	cpuset_print_current_mems_allowed();
4067 	pr_cont("\n");
4068 	dump_stack();
4069 	warn_alloc_show_mem(gfp_mask, nodemask);
4070 }
4071 
4072 static inline struct page *
4073 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4074 			      unsigned int alloc_flags,
4075 			      const struct alloc_context *ac)
4076 {
4077 	struct page *page;
4078 
4079 	page = get_page_from_freelist(gfp_mask, order,
4080 			alloc_flags|ALLOC_CPUSET, ac);
4081 	/*
4082 	 * fallback to ignore cpuset restriction if our nodes
4083 	 * are depleted
4084 	 */
4085 	if (!page)
4086 		page = get_page_from_freelist(gfp_mask, order,
4087 				alloc_flags, ac);
4088 
4089 	return page;
4090 }
4091 
4092 static inline struct page *
4093 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4094 	const struct alloc_context *ac, unsigned long *did_some_progress)
4095 {
4096 	struct oom_control oc = {
4097 		.zonelist = ac->zonelist,
4098 		.nodemask = ac->nodemask,
4099 		.memcg = NULL,
4100 		.gfp_mask = gfp_mask,
4101 		.order = order,
4102 	};
4103 	struct page *page;
4104 
4105 	*did_some_progress = 0;
4106 
4107 	/*
4108 	 * Acquire the oom lock.  If that fails, somebody else is
4109 	 * making progress for us.
4110 	 */
4111 	if (!mutex_trylock(&oom_lock)) {
4112 		*did_some_progress = 1;
4113 		schedule_timeout_uninterruptible(1);
4114 		return NULL;
4115 	}
4116 
4117 	/*
4118 	 * Go through the zonelist yet one more time, keep very high watermark
4119 	 * here, this is only to catch a parallel oom killing, we must fail if
4120 	 * we're still under heavy pressure. But make sure that this reclaim
4121 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4122 	 * allocation which will never fail due to oom_lock already held.
4123 	 */
4124 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4125 				      ~__GFP_DIRECT_RECLAIM, order,
4126 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4127 	if (page)
4128 		goto out;
4129 
4130 	/* Coredumps can quickly deplete all memory reserves */
4131 	if (current->flags & PF_DUMPCORE)
4132 		goto out;
4133 	/* The OOM killer will not help higher order allocs */
4134 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4135 		goto out;
4136 	/*
4137 	 * We have already exhausted all our reclaim opportunities without any
4138 	 * success so it is time to admit defeat. We will skip the OOM killer
4139 	 * because it is very likely that the caller has a more reasonable
4140 	 * fallback than shooting a random task.
4141 	 *
4142 	 * The OOM killer may not free memory on a specific node.
4143 	 */
4144 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4145 		goto out;
4146 	/* The OOM killer does not needlessly kill tasks for lowmem */
4147 	if (ac->highest_zoneidx < ZONE_NORMAL)
4148 		goto out;
4149 	if (pm_suspended_storage())
4150 		goto out;
4151 	/*
4152 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4153 	 * other request to make a forward progress.
4154 	 * We are in an unfortunate situation where out_of_memory cannot
4155 	 * do much for this context but let's try it to at least get
4156 	 * access to memory reserved if the current task is killed (see
4157 	 * out_of_memory). Once filesystems are ready to handle allocation
4158 	 * failures more gracefully we should just bail out here.
4159 	 */
4160 
4161 	/* Exhausted what can be done so it's blame time */
4162 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4163 		*did_some_progress = 1;
4164 
4165 		/*
4166 		 * Help non-failing allocations by giving them access to memory
4167 		 * reserves
4168 		 */
4169 		if (gfp_mask & __GFP_NOFAIL)
4170 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4171 					ALLOC_NO_WATERMARKS, ac);
4172 	}
4173 out:
4174 	mutex_unlock(&oom_lock);
4175 	return page;
4176 }
4177 
4178 /*
4179  * Maximum number of compaction retries wit a progress before OOM
4180  * killer is consider as the only way to move forward.
4181  */
4182 #define MAX_COMPACT_RETRIES 16
4183 
4184 #ifdef CONFIG_COMPACTION
4185 /* Try memory compaction for high-order allocations before reclaim */
4186 static struct page *
4187 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4188 		unsigned int alloc_flags, const struct alloc_context *ac,
4189 		enum compact_priority prio, enum compact_result *compact_result)
4190 {
4191 	struct page *page = NULL;
4192 	unsigned long pflags;
4193 	unsigned int noreclaim_flag;
4194 
4195 	if (!order)
4196 		return NULL;
4197 
4198 	psi_memstall_enter(&pflags);
4199 	noreclaim_flag = memalloc_noreclaim_save();
4200 
4201 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4202 								prio, &page);
4203 
4204 	memalloc_noreclaim_restore(noreclaim_flag);
4205 	psi_memstall_leave(&pflags);
4206 
4207 	if (*compact_result == COMPACT_SKIPPED)
4208 		return NULL;
4209 	/*
4210 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4211 	 * count a compaction stall
4212 	 */
4213 	count_vm_event(COMPACTSTALL);
4214 
4215 	/* Prep a captured page if available */
4216 	if (page)
4217 		prep_new_page(page, order, gfp_mask, alloc_flags);
4218 
4219 	/* Try get a page from the freelist if available */
4220 	if (!page)
4221 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4222 
4223 	if (page) {
4224 		struct zone *zone = page_zone(page);
4225 
4226 		zone->compact_blockskip_flush = false;
4227 		compaction_defer_reset(zone, order, true);
4228 		count_vm_event(COMPACTSUCCESS);
4229 		return page;
4230 	}
4231 
4232 	/*
4233 	 * It's bad if compaction run occurs and fails. The most likely reason
4234 	 * is that pages exist, but not enough to satisfy watermarks.
4235 	 */
4236 	count_vm_event(COMPACTFAIL);
4237 
4238 	cond_resched();
4239 
4240 	return NULL;
4241 }
4242 
4243 static inline bool
4244 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4245 		     enum compact_result compact_result,
4246 		     enum compact_priority *compact_priority,
4247 		     int *compaction_retries)
4248 {
4249 	int max_retries = MAX_COMPACT_RETRIES;
4250 	int min_priority;
4251 	bool ret = false;
4252 	int retries = *compaction_retries;
4253 	enum compact_priority priority = *compact_priority;
4254 
4255 	if (!order)
4256 		return false;
4257 
4258 	if (compaction_made_progress(compact_result))
4259 		(*compaction_retries)++;
4260 
4261 	/*
4262 	 * compaction considers all the zone as desperately out of memory
4263 	 * so it doesn't really make much sense to retry except when the
4264 	 * failure could be caused by insufficient priority
4265 	 */
4266 	if (compaction_failed(compact_result))
4267 		goto check_priority;
4268 
4269 	/*
4270 	 * compaction was skipped because there are not enough order-0 pages
4271 	 * to work with, so we retry only if it looks like reclaim can help.
4272 	 */
4273 	if (compaction_needs_reclaim(compact_result)) {
4274 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4275 		goto out;
4276 	}
4277 
4278 	/*
4279 	 * make sure the compaction wasn't deferred or didn't bail out early
4280 	 * due to locks contention before we declare that we should give up.
4281 	 * But the next retry should use a higher priority if allowed, so
4282 	 * we don't just keep bailing out endlessly.
4283 	 */
4284 	if (compaction_withdrawn(compact_result)) {
4285 		goto check_priority;
4286 	}
4287 
4288 	/*
4289 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4290 	 * costly ones because they are de facto nofail and invoke OOM
4291 	 * killer to move on while costly can fail and users are ready
4292 	 * to cope with that. 1/4 retries is rather arbitrary but we
4293 	 * would need much more detailed feedback from compaction to
4294 	 * make a better decision.
4295 	 */
4296 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4297 		max_retries /= 4;
4298 	if (*compaction_retries <= max_retries) {
4299 		ret = true;
4300 		goto out;
4301 	}
4302 
4303 	/*
4304 	 * Make sure there are attempts at the highest priority if we exhausted
4305 	 * all retries or failed at the lower priorities.
4306 	 */
4307 check_priority:
4308 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4309 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4310 
4311 	if (*compact_priority > min_priority) {
4312 		(*compact_priority)--;
4313 		*compaction_retries = 0;
4314 		ret = true;
4315 	}
4316 out:
4317 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4318 	return ret;
4319 }
4320 #else
4321 static inline struct page *
4322 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4323 		unsigned int alloc_flags, const struct alloc_context *ac,
4324 		enum compact_priority prio, enum compact_result *compact_result)
4325 {
4326 	*compact_result = COMPACT_SKIPPED;
4327 	return NULL;
4328 }
4329 
4330 static inline bool
4331 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4332 		     enum compact_result compact_result,
4333 		     enum compact_priority *compact_priority,
4334 		     int *compaction_retries)
4335 {
4336 	struct zone *zone;
4337 	struct zoneref *z;
4338 
4339 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4340 		return false;
4341 
4342 	/*
4343 	 * There are setups with compaction disabled which would prefer to loop
4344 	 * inside the allocator rather than hit the oom killer prematurely.
4345 	 * Let's give them a good hope and keep retrying while the order-0
4346 	 * watermarks are OK.
4347 	 */
4348 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4349 				ac->highest_zoneidx, ac->nodemask) {
4350 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4351 					ac->highest_zoneidx, alloc_flags))
4352 			return true;
4353 	}
4354 	return false;
4355 }
4356 #endif /* CONFIG_COMPACTION */
4357 
4358 #ifdef CONFIG_LOCKDEP
4359 static struct lockdep_map __fs_reclaim_map =
4360 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4361 
4362 static bool __need_reclaim(gfp_t gfp_mask)
4363 {
4364 	/* no reclaim without waiting on it */
4365 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4366 		return false;
4367 
4368 	/* this guy won't enter reclaim */
4369 	if (current->flags & PF_MEMALLOC)
4370 		return false;
4371 
4372 	if (gfp_mask & __GFP_NOLOCKDEP)
4373 		return false;
4374 
4375 	return true;
4376 }
4377 
4378 void __fs_reclaim_acquire(void)
4379 {
4380 	lock_map_acquire(&__fs_reclaim_map);
4381 }
4382 
4383 void __fs_reclaim_release(void)
4384 {
4385 	lock_map_release(&__fs_reclaim_map);
4386 }
4387 
4388 void fs_reclaim_acquire(gfp_t gfp_mask)
4389 {
4390 	gfp_mask = current_gfp_context(gfp_mask);
4391 
4392 	if (__need_reclaim(gfp_mask)) {
4393 		if (gfp_mask & __GFP_FS)
4394 			__fs_reclaim_acquire();
4395 
4396 #ifdef CONFIG_MMU_NOTIFIER
4397 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4398 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4399 #endif
4400 
4401 	}
4402 }
4403 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4404 
4405 void fs_reclaim_release(gfp_t gfp_mask)
4406 {
4407 	gfp_mask = current_gfp_context(gfp_mask);
4408 
4409 	if (__need_reclaim(gfp_mask)) {
4410 		if (gfp_mask & __GFP_FS)
4411 			__fs_reclaim_release();
4412 	}
4413 }
4414 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4415 #endif
4416 
4417 /* Perform direct synchronous page reclaim */
4418 static unsigned long
4419 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4420 					const struct alloc_context *ac)
4421 {
4422 	unsigned int noreclaim_flag;
4423 	unsigned long pflags, progress;
4424 
4425 	cond_resched();
4426 
4427 	/* We now go into synchronous reclaim */
4428 	cpuset_memory_pressure_bump();
4429 	psi_memstall_enter(&pflags);
4430 	fs_reclaim_acquire(gfp_mask);
4431 	noreclaim_flag = memalloc_noreclaim_save();
4432 
4433 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4434 								ac->nodemask);
4435 
4436 	memalloc_noreclaim_restore(noreclaim_flag);
4437 	fs_reclaim_release(gfp_mask);
4438 	psi_memstall_leave(&pflags);
4439 
4440 	cond_resched();
4441 
4442 	return progress;
4443 }
4444 
4445 /* The really slow allocator path where we enter direct reclaim */
4446 static inline struct page *
4447 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4448 		unsigned int alloc_flags, const struct alloc_context *ac,
4449 		unsigned long *did_some_progress)
4450 {
4451 	struct page *page = NULL;
4452 	bool drained = false;
4453 
4454 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4455 	if (unlikely(!(*did_some_progress)))
4456 		return NULL;
4457 
4458 retry:
4459 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4460 
4461 	/*
4462 	 * If an allocation failed after direct reclaim, it could be because
4463 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4464 	 * Shrink them and try again
4465 	 */
4466 	if (!page && !drained) {
4467 		unreserve_highatomic_pageblock(ac, false);
4468 		drain_all_pages(NULL);
4469 		drained = true;
4470 		goto retry;
4471 	}
4472 
4473 	return page;
4474 }
4475 
4476 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4477 			     const struct alloc_context *ac)
4478 {
4479 	struct zoneref *z;
4480 	struct zone *zone;
4481 	pg_data_t *last_pgdat = NULL;
4482 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4483 
4484 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4485 					ac->nodemask) {
4486 		if (last_pgdat != zone->zone_pgdat)
4487 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4488 		last_pgdat = zone->zone_pgdat;
4489 	}
4490 }
4491 
4492 static inline unsigned int
4493 gfp_to_alloc_flags(gfp_t gfp_mask)
4494 {
4495 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4496 
4497 	/*
4498 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4499 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4500 	 * to save two branches.
4501 	 */
4502 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4503 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4504 
4505 	/*
4506 	 * The caller may dip into page reserves a bit more if the caller
4507 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4508 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4509 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4510 	 */
4511 	alloc_flags |= (__force int)
4512 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4513 
4514 	if (gfp_mask & __GFP_ATOMIC) {
4515 		/*
4516 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4517 		 * if it can't schedule.
4518 		 */
4519 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4520 			alloc_flags |= ALLOC_HARDER;
4521 		/*
4522 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4523 		 * comment for __cpuset_node_allowed().
4524 		 */
4525 		alloc_flags &= ~ALLOC_CPUSET;
4526 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4527 		alloc_flags |= ALLOC_HARDER;
4528 
4529 	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4530 
4531 	return alloc_flags;
4532 }
4533 
4534 static bool oom_reserves_allowed(struct task_struct *tsk)
4535 {
4536 	if (!tsk_is_oom_victim(tsk))
4537 		return false;
4538 
4539 	/*
4540 	 * !MMU doesn't have oom reaper so give access to memory reserves
4541 	 * only to the thread with TIF_MEMDIE set
4542 	 */
4543 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4544 		return false;
4545 
4546 	return true;
4547 }
4548 
4549 /*
4550  * Distinguish requests which really need access to full memory
4551  * reserves from oom victims which can live with a portion of it
4552  */
4553 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4554 {
4555 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4556 		return 0;
4557 	if (gfp_mask & __GFP_MEMALLOC)
4558 		return ALLOC_NO_WATERMARKS;
4559 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4560 		return ALLOC_NO_WATERMARKS;
4561 	if (!in_interrupt()) {
4562 		if (current->flags & PF_MEMALLOC)
4563 			return ALLOC_NO_WATERMARKS;
4564 		else if (oom_reserves_allowed(current))
4565 			return ALLOC_OOM;
4566 	}
4567 
4568 	return 0;
4569 }
4570 
4571 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4572 {
4573 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4574 }
4575 
4576 /*
4577  * Checks whether it makes sense to retry the reclaim to make a forward progress
4578  * for the given allocation request.
4579  *
4580  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4581  * without success, or when we couldn't even meet the watermark if we
4582  * reclaimed all remaining pages on the LRU lists.
4583  *
4584  * Returns true if a retry is viable or false to enter the oom path.
4585  */
4586 static inline bool
4587 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4588 		     struct alloc_context *ac, int alloc_flags,
4589 		     bool did_some_progress, int *no_progress_loops)
4590 {
4591 	struct zone *zone;
4592 	struct zoneref *z;
4593 	bool ret = false;
4594 
4595 	/*
4596 	 * Costly allocations might have made a progress but this doesn't mean
4597 	 * their order will become available due to high fragmentation so
4598 	 * always increment the no progress counter for them
4599 	 */
4600 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4601 		*no_progress_loops = 0;
4602 	else
4603 		(*no_progress_loops)++;
4604 
4605 	/*
4606 	 * Make sure we converge to OOM if we cannot make any progress
4607 	 * several times in the row.
4608 	 */
4609 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4610 		/* Before OOM, exhaust highatomic_reserve */
4611 		return unreserve_highatomic_pageblock(ac, true);
4612 	}
4613 
4614 	/*
4615 	 * Keep reclaiming pages while there is a chance this will lead
4616 	 * somewhere.  If none of the target zones can satisfy our allocation
4617 	 * request even if all reclaimable pages are considered then we are
4618 	 * screwed and have to go OOM.
4619 	 */
4620 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4621 				ac->highest_zoneidx, ac->nodemask) {
4622 		unsigned long available;
4623 		unsigned long reclaimable;
4624 		unsigned long min_wmark = min_wmark_pages(zone);
4625 		bool wmark;
4626 
4627 		available = reclaimable = zone_reclaimable_pages(zone);
4628 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4629 
4630 		/*
4631 		 * Would the allocation succeed if we reclaimed all
4632 		 * reclaimable pages?
4633 		 */
4634 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4635 				ac->highest_zoneidx, alloc_flags, available);
4636 		trace_reclaim_retry_zone(z, order, reclaimable,
4637 				available, min_wmark, *no_progress_loops, wmark);
4638 		if (wmark) {
4639 			/*
4640 			 * If we didn't make any progress and have a lot of
4641 			 * dirty + writeback pages then we should wait for
4642 			 * an IO to complete to slow down the reclaim and
4643 			 * prevent from pre mature OOM
4644 			 */
4645 			if (!did_some_progress) {
4646 				unsigned long write_pending;
4647 
4648 				write_pending = zone_page_state_snapshot(zone,
4649 							NR_ZONE_WRITE_PENDING);
4650 
4651 				if (2 * write_pending > reclaimable) {
4652 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4653 					return true;
4654 				}
4655 			}
4656 
4657 			ret = true;
4658 			goto out;
4659 		}
4660 	}
4661 
4662 out:
4663 	/*
4664 	 * Memory allocation/reclaim might be called from a WQ context and the
4665 	 * current implementation of the WQ concurrency control doesn't
4666 	 * recognize that a particular WQ is congested if the worker thread is
4667 	 * looping without ever sleeping. Therefore we have to do a short sleep
4668 	 * here rather than calling cond_resched().
4669 	 */
4670 	if (current->flags & PF_WQ_WORKER)
4671 		schedule_timeout_uninterruptible(1);
4672 	else
4673 		cond_resched();
4674 	return ret;
4675 }
4676 
4677 static inline bool
4678 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4679 {
4680 	/*
4681 	 * It's possible that cpuset's mems_allowed and the nodemask from
4682 	 * mempolicy don't intersect. This should be normally dealt with by
4683 	 * policy_nodemask(), but it's possible to race with cpuset update in
4684 	 * such a way the check therein was true, and then it became false
4685 	 * before we got our cpuset_mems_cookie here.
4686 	 * This assumes that for all allocations, ac->nodemask can come only
4687 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4688 	 * when it does not intersect with the cpuset restrictions) or the
4689 	 * caller can deal with a violated nodemask.
4690 	 */
4691 	if (cpusets_enabled() && ac->nodemask &&
4692 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4693 		ac->nodemask = NULL;
4694 		return true;
4695 	}
4696 
4697 	/*
4698 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4699 	 * possible to race with parallel threads in such a way that our
4700 	 * allocation can fail while the mask is being updated. If we are about
4701 	 * to fail, check if the cpuset changed during allocation and if so,
4702 	 * retry.
4703 	 */
4704 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4705 		return true;
4706 
4707 	return false;
4708 }
4709 
4710 static inline struct page *
4711 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4712 						struct alloc_context *ac)
4713 {
4714 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4715 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4716 	struct page *page = NULL;
4717 	unsigned int alloc_flags;
4718 	unsigned long did_some_progress;
4719 	enum compact_priority compact_priority;
4720 	enum compact_result compact_result;
4721 	int compaction_retries;
4722 	int no_progress_loops;
4723 	unsigned int cpuset_mems_cookie;
4724 	int reserve_flags;
4725 
4726 	/*
4727 	 * We also sanity check to catch abuse of atomic reserves being used by
4728 	 * callers that are not in atomic context.
4729 	 */
4730 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4731 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4732 		gfp_mask &= ~__GFP_ATOMIC;
4733 
4734 retry_cpuset:
4735 	compaction_retries = 0;
4736 	no_progress_loops = 0;
4737 	compact_priority = DEF_COMPACT_PRIORITY;
4738 	cpuset_mems_cookie = read_mems_allowed_begin();
4739 
4740 	/*
4741 	 * The fast path uses conservative alloc_flags to succeed only until
4742 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4743 	 * alloc_flags precisely. So we do that now.
4744 	 */
4745 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4746 
4747 	/*
4748 	 * We need to recalculate the starting point for the zonelist iterator
4749 	 * because we might have used different nodemask in the fast path, or
4750 	 * there was a cpuset modification and we are retrying - otherwise we
4751 	 * could end up iterating over non-eligible zones endlessly.
4752 	 */
4753 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4754 					ac->highest_zoneidx, ac->nodemask);
4755 	if (!ac->preferred_zoneref->zone)
4756 		goto nopage;
4757 
4758 	if (alloc_flags & ALLOC_KSWAPD)
4759 		wake_all_kswapds(order, gfp_mask, ac);
4760 
4761 	/*
4762 	 * The adjusted alloc_flags might result in immediate success, so try
4763 	 * that first
4764 	 */
4765 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4766 	if (page)
4767 		goto got_pg;
4768 
4769 	/*
4770 	 * For costly allocations, try direct compaction first, as it's likely
4771 	 * that we have enough base pages and don't need to reclaim. For non-
4772 	 * movable high-order allocations, do that as well, as compaction will
4773 	 * try prevent permanent fragmentation by migrating from blocks of the
4774 	 * same migratetype.
4775 	 * Don't try this for allocations that are allowed to ignore
4776 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4777 	 */
4778 	if (can_direct_reclaim &&
4779 			(costly_order ||
4780 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4781 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4782 		page = __alloc_pages_direct_compact(gfp_mask, order,
4783 						alloc_flags, ac,
4784 						INIT_COMPACT_PRIORITY,
4785 						&compact_result);
4786 		if (page)
4787 			goto got_pg;
4788 
4789 		/*
4790 		 * Checks for costly allocations with __GFP_NORETRY, which
4791 		 * includes some THP page fault allocations
4792 		 */
4793 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4794 			/*
4795 			 * If allocating entire pageblock(s) and compaction
4796 			 * failed because all zones are below low watermarks
4797 			 * or is prohibited because it recently failed at this
4798 			 * order, fail immediately unless the allocator has
4799 			 * requested compaction and reclaim retry.
4800 			 *
4801 			 * Reclaim is
4802 			 *  - potentially very expensive because zones are far
4803 			 *    below their low watermarks or this is part of very
4804 			 *    bursty high order allocations,
4805 			 *  - not guaranteed to help because isolate_freepages()
4806 			 *    may not iterate over freed pages as part of its
4807 			 *    linear scan, and
4808 			 *  - unlikely to make entire pageblocks free on its
4809 			 *    own.
4810 			 */
4811 			if (compact_result == COMPACT_SKIPPED ||
4812 			    compact_result == COMPACT_DEFERRED)
4813 				goto nopage;
4814 
4815 			/*
4816 			 * Looks like reclaim/compaction is worth trying, but
4817 			 * sync compaction could be very expensive, so keep
4818 			 * using async compaction.
4819 			 */
4820 			compact_priority = INIT_COMPACT_PRIORITY;
4821 		}
4822 	}
4823 
4824 retry:
4825 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4826 	if (alloc_flags & ALLOC_KSWAPD)
4827 		wake_all_kswapds(order, gfp_mask, ac);
4828 
4829 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4830 	if (reserve_flags)
4831 		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4832 
4833 	/*
4834 	 * Reset the nodemask and zonelist iterators if memory policies can be
4835 	 * ignored. These allocations are high priority and system rather than
4836 	 * user oriented.
4837 	 */
4838 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4839 		ac->nodemask = NULL;
4840 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4841 					ac->highest_zoneidx, ac->nodemask);
4842 	}
4843 
4844 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4845 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4846 	if (page)
4847 		goto got_pg;
4848 
4849 	/* Caller is not willing to reclaim, we can't balance anything */
4850 	if (!can_direct_reclaim)
4851 		goto nopage;
4852 
4853 	/* Avoid recursion of direct reclaim */
4854 	if (current->flags & PF_MEMALLOC)
4855 		goto nopage;
4856 
4857 	/* Try direct reclaim and then allocating */
4858 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4859 							&did_some_progress);
4860 	if (page)
4861 		goto got_pg;
4862 
4863 	/* Try direct compaction and then allocating */
4864 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4865 					compact_priority, &compact_result);
4866 	if (page)
4867 		goto got_pg;
4868 
4869 	/* Do not loop if specifically requested */
4870 	if (gfp_mask & __GFP_NORETRY)
4871 		goto nopage;
4872 
4873 	/*
4874 	 * Do not retry costly high order allocations unless they are
4875 	 * __GFP_RETRY_MAYFAIL
4876 	 */
4877 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4878 		goto nopage;
4879 
4880 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4881 				 did_some_progress > 0, &no_progress_loops))
4882 		goto retry;
4883 
4884 	/*
4885 	 * It doesn't make any sense to retry for the compaction if the order-0
4886 	 * reclaim is not able to make any progress because the current
4887 	 * implementation of the compaction depends on the sufficient amount
4888 	 * of free memory (see __compaction_suitable)
4889 	 */
4890 	if (did_some_progress > 0 &&
4891 			should_compact_retry(ac, order, alloc_flags,
4892 				compact_result, &compact_priority,
4893 				&compaction_retries))
4894 		goto retry;
4895 
4896 
4897 	/* Deal with possible cpuset update races before we start OOM killing */
4898 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4899 		goto retry_cpuset;
4900 
4901 	/* Reclaim has failed us, start killing things */
4902 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4903 	if (page)
4904 		goto got_pg;
4905 
4906 	/* Avoid allocations with no watermarks from looping endlessly */
4907 	if (tsk_is_oom_victim(current) &&
4908 	    (alloc_flags & ALLOC_OOM ||
4909 	     (gfp_mask & __GFP_NOMEMALLOC)))
4910 		goto nopage;
4911 
4912 	/* Retry as long as the OOM killer is making progress */
4913 	if (did_some_progress) {
4914 		no_progress_loops = 0;
4915 		goto retry;
4916 	}
4917 
4918 nopage:
4919 	/* Deal with possible cpuset update races before we fail */
4920 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4921 		goto retry_cpuset;
4922 
4923 	/*
4924 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4925 	 * we always retry
4926 	 */
4927 	if (gfp_mask & __GFP_NOFAIL) {
4928 		/*
4929 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4930 		 * of any new users that actually require GFP_NOWAIT
4931 		 */
4932 		if (WARN_ON_ONCE(!can_direct_reclaim))
4933 			goto fail;
4934 
4935 		/*
4936 		 * PF_MEMALLOC request from this context is rather bizarre
4937 		 * because we cannot reclaim anything and only can loop waiting
4938 		 * for somebody to do a work for us
4939 		 */
4940 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4941 
4942 		/*
4943 		 * non failing costly orders are a hard requirement which we
4944 		 * are not prepared for much so let's warn about these users
4945 		 * so that we can identify them and convert them to something
4946 		 * else.
4947 		 */
4948 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4949 
4950 		/*
4951 		 * Help non-failing allocations by giving them access to memory
4952 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4953 		 * could deplete whole memory reserves which would just make
4954 		 * the situation worse
4955 		 */
4956 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4957 		if (page)
4958 			goto got_pg;
4959 
4960 		cond_resched();
4961 		goto retry;
4962 	}
4963 fail:
4964 	warn_alloc(gfp_mask, ac->nodemask,
4965 			"page allocation failure: order:%u", order);
4966 got_pg:
4967 	return page;
4968 }
4969 
4970 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4971 		int preferred_nid, nodemask_t *nodemask,
4972 		struct alloc_context *ac, gfp_t *alloc_gfp,
4973 		unsigned int *alloc_flags)
4974 {
4975 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4976 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4977 	ac->nodemask = nodemask;
4978 	ac->migratetype = gfp_migratetype(gfp_mask);
4979 
4980 	if (cpusets_enabled()) {
4981 		*alloc_gfp |= __GFP_HARDWALL;
4982 		/*
4983 		 * When we are in the interrupt context, it is irrelevant
4984 		 * to the current task context. It means that any node ok.
4985 		 */
4986 		if (!in_interrupt() && !ac->nodemask)
4987 			ac->nodemask = &cpuset_current_mems_allowed;
4988 		else
4989 			*alloc_flags |= ALLOC_CPUSET;
4990 	}
4991 
4992 	fs_reclaim_acquire(gfp_mask);
4993 	fs_reclaim_release(gfp_mask);
4994 
4995 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4996 
4997 	if (should_fail_alloc_page(gfp_mask, order))
4998 		return false;
4999 
5000 	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
5001 
5002 	/* Dirty zone balancing only done in the fast path */
5003 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5004 
5005 	/*
5006 	 * The preferred zone is used for statistics but crucially it is
5007 	 * also used as the starting point for the zonelist iterator. It
5008 	 * may get reset for allocations that ignore memory policies.
5009 	 */
5010 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5011 					ac->highest_zoneidx, ac->nodemask);
5012 
5013 	return true;
5014 }
5015 
5016 /*
5017  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5018  * @gfp: GFP flags for the allocation
5019  * @preferred_nid: The preferred NUMA node ID to allocate from
5020  * @nodemask: Set of nodes to allocate from, may be NULL
5021  * @nr_pages: The number of pages desired on the list or array
5022  * @page_list: Optional list to store the allocated pages
5023  * @page_array: Optional array to store the pages
5024  *
5025  * This is a batched version of the page allocator that attempts to
5026  * allocate nr_pages quickly. Pages are added to page_list if page_list
5027  * is not NULL, otherwise it is assumed that the page_array is valid.
5028  *
5029  * For lists, nr_pages is the number of pages that should be allocated.
5030  *
5031  * For arrays, only NULL elements are populated with pages and nr_pages
5032  * is the maximum number of pages that will be stored in the array.
5033  *
5034  * Returns the number of pages on the list or array.
5035  */
5036 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5037 			nodemask_t *nodemask, int nr_pages,
5038 			struct list_head *page_list,
5039 			struct page **page_array)
5040 {
5041 	struct page *page;
5042 	unsigned long flags;
5043 	struct zone *zone;
5044 	struct zoneref *z;
5045 	struct per_cpu_pages *pcp;
5046 	struct list_head *pcp_list;
5047 	struct alloc_context ac;
5048 	gfp_t alloc_gfp;
5049 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5050 	int nr_populated = 0;
5051 
5052 	if (unlikely(nr_pages <= 0))
5053 		return 0;
5054 
5055 	/*
5056 	 * Skip populated array elements to determine if any pages need
5057 	 * to be allocated before disabling IRQs.
5058 	 */
5059 	while (page_array && page_array[nr_populated] && nr_populated < nr_pages)
5060 		nr_populated++;
5061 
5062 	/* Use the single page allocator for one page. */
5063 	if (nr_pages - nr_populated == 1)
5064 		goto failed;
5065 
5066 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5067 	gfp &= gfp_allowed_mask;
5068 	alloc_gfp = gfp;
5069 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5070 		return 0;
5071 	gfp = alloc_gfp;
5072 
5073 	/* Find an allowed local zone that meets the low watermark. */
5074 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5075 		unsigned long mark;
5076 
5077 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5078 		    !__cpuset_zone_allowed(zone, gfp)) {
5079 			continue;
5080 		}
5081 
5082 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5083 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5084 			goto failed;
5085 		}
5086 
5087 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5088 		if (zone_watermark_fast(zone, 0,  mark,
5089 				zonelist_zone_idx(ac.preferred_zoneref),
5090 				alloc_flags, gfp)) {
5091 			break;
5092 		}
5093 	}
5094 
5095 	/*
5096 	 * If there are no allowed local zones that meets the watermarks then
5097 	 * try to allocate a single page and reclaim if necessary.
5098 	 */
5099 	if (unlikely(!zone))
5100 		goto failed;
5101 
5102 	/* Attempt the batch allocation */
5103 	local_irq_save(flags);
5104 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
5105 	pcp_list = &pcp->lists[ac.migratetype];
5106 
5107 	while (nr_populated < nr_pages) {
5108 
5109 		/* Skip existing pages */
5110 		if (page_array && page_array[nr_populated]) {
5111 			nr_populated++;
5112 			continue;
5113 		}
5114 
5115 		page = __rmqueue_pcplist(zone, ac.migratetype, alloc_flags,
5116 								pcp, pcp_list);
5117 		if (unlikely(!page)) {
5118 			/* Try and get at least one page */
5119 			if (!nr_populated)
5120 				goto failed_irq;
5121 			break;
5122 		}
5123 
5124 		/*
5125 		 * Ideally this would be batched but the best way to do
5126 		 * that cheaply is to first convert zone_statistics to
5127 		 * be inaccurate per-cpu counter like vm_events to avoid
5128 		 * a RMW cycle then do the accounting with IRQs enabled.
5129 		 */
5130 		__count_zid_vm_events(PGALLOC, zone_idx(zone), 1);
5131 		zone_statistics(ac.preferred_zoneref->zone, zone);
5132 
5133 		prep_new_page(page, 0, gfp, 0);
5134 		if (page_list)
5135 			list_add(&page->lru, page_list);
5136 		else
5137 			page_array[nr_populated] = page;
5138 		nr_populated++;
5139 	}
5140 
5141 	local_irq_restore(flags);
5142 
5143 	return nr_populated;
5144 
5145 failed_irq:
5146 	local_irq_restore(flags);
5147 
5148 failed:
5149 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5150 	if (page) {
5151 		if (page_list)
5152 			list_add(&page->lru, page_list);
5153 		else
5154 			page_array[nr_populated] = page;
5155 		nr_populated++;
5156 	}
5157 
5158 	return nr_populated;
5159 }
5160 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5161 
5162 /*
5163  * This is the 'heart' of the zoned buddy allocator.
5164  */
5165 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5166 							nodemask_t *nodemask)
5167 {
5168 	struct page *page;
5169 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5170 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5171 	struct alloc_context ac = { };
5172 
5173 	/*
5174 	 * There are several places where we assume that the order value is sane
5175 	 * so bail out early if the request is out of bound.
5176 	 */
5177 	if (unlikely(order >= MAX_ORDER)) {
5178 		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5179 		return NULL;
5180 	}
5181 
5182 	gfp &= gfp_allowed_mask;
5183 	alloc_gfp = gfp;
5184 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5185 			&alloc_gfp, &alloc_flags))
5186 		return NULL;
5187 
5188 	/*
5189 	 * Forbid the first pass from falling back to types that fragment
5190 	 * memory until all local zones are considered.
5191 	 */
5192 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5193 
5194 	/* First allocation attempt */
5195 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5196 	if (likely(page))
5197 		goto out;
5198 
5199 	/*
5200 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5201 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5202 	 * from a particular context which has been marked by
5203 	 * memalloc_no{fs,io}_{save,restore}.
5204 	 */
5205 	alloc_gfp = current_gfp_context(gfp);
5206 	ac.spread_dirty_pages = false;
5207 
5208 	/*
5209 	 * Restore the original nodemask if it was potentially replaced with
5210 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5211 	 */
5212 	ac.nodemask = nodemask;
5213 
5214 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5215 
5216 out:
5217 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5218 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5219 		__free_pages(page, order);
5220 		page = NULL;
5221 	}
5222 
5223 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5224 
5225 	return page;
5226 }
5227 EXPORT_SYMBOL(__alloc_pages);
5228 
5229 /*
5230  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5231  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5232  * you need to access high mem.
5233  */
5234 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5235 {
5236 	struct page *page;
5237 
5238 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5239 	if (!page)
5240 		return 0;
5241 	return (unsigned long) page_address(page);
5242 }
5243 EXPORT_SYMBOL(__get_free_pages);
5244 
5245 unsigned long get_zeroed_page(gfp_t gfp_mask)
5246 {
5247 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5248 }
5249 EXPORT_SYMBOL(get_zeroed_page);
5250 
5251 static inline void free_the_page(struct page *page, unsigned int order)
5252 {
5253 	if (order == 0)		/* Via pcp? */
5254 		free_unref_page(page);
5255 	else
5256 		__free_pages_ok(page, order, FPI_NONE);
5257 }
5258 
5259 /**
5260  * __free_pages - Free pages allocated with alloc_pages().
5261  * @page: The page pointer returned from alloc_pages().
5262  * @order: The order of the allocation.
5263  *
5264  * This function can free multi-page allocations that are not compound
5265  * pages.  It does not check that the @order passed in matches that of
5266  * the allocation, so it is easy to leak memory.  Freeing more memory
5267  * than was allocated will probably emit a warning.
5268  *
5269  * If the last reference to this page is speculative, it will be released
5270  * by put_page() which only frees the first page of a non-compound
5271  * allocation.  To prevent the remaining pages from being leaked, we free
5272  * the subsequent pages here.  If you want to use the page's reference
5273  * count to decide when to free the allocation, you should allocate a
5274  * compound page, and use put_page() instead of __free_pages().
5275  *
5276  * Context: May be called in interrupt context or while holding a normal
5277  * spinlock, but not in NMI context or while holding a raw spinlock.
5278  */
5279 void __free_pages(struct page *page, unsigned int order)
5280 {
5281 	if (put_page_testzero(page))
5282 		free_the_page(page, order);
5283 	else if (!PageHead(page))
5284 		while (order-- > 0)
5285 			free_the_page(page + (1 << order), order);
5286 }
5287 EXPORT_SYMBOL(__free_pages);
5288 
5289 void free_pages(unsigned long addr, unsigned int order)
5290 {
5291 	if (addr != 0) {
5292 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5293 		__free_pages(virt_to_page((void *)addr), order);
5294 	}
5295 }
5296 
5297 EXPORT_SYMBOL(free_pages);
5298 
5299 /*
5300  * Page Fragment:
5301  *  An arbitrary-length arbitrary-offset area of memory which resides
5302  *  within a 0 or higher order page.  Multiple fragments within that page
5303  *  are individually refcounted, in the page's reference counter.
5304  *
5305  * The page_frag functions below provide a simple allocation framework for
5306  * page fragments.  This is used by the network stack and network device
5307  * drivers to provide a backing region of memory for use as either an
5308  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5309  */
5310 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5311 					     gfp_t gfp_mask)
5312 {
5313 	struct page *page = NULL;
5314 	gfp_t gfp = gfp_mask;
5315 
5316 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5317 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5318 		    __GFP_NOMEMALLOC;
5319 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5320 				PAGE_FRAG_CACHE_MAX_ORDER);
5321 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5322 #endif
5323 	if (unlikely(!page))
5324 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5325 
5326 	nc->va = page ? page_address(page) : NULL;
5327 
5328 	return page;
5329 }
5330 
5331 void __page_frag_cache_drain(struct page *page, unsigned int count)
5332 {
5333 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5334 
5335 	if (page_ref_sub_and_test(page, count))
5336 		free_the_page(page, compound_order(page));
5337 }
5338 EXPORT_SYMBOL(__page_frag_cache_drain);
5339 
5340 void *page_frag_alloc_align(struct page_frag_cache *nc,
5341 		      unsigned int fragsz, gfp_t gfp_mask,
5342 		      unsigned int align_mask)
5343 {
5344 	unsigned int size = PAGE_SIZE;
5345 	struct page *page;
5346 	int offset;
5347 
5348 	if (unlikely(!nc->va)) {
5349 refill:
5350 		page = __page_frag_cache_refill(nc, gfp_mask);
5351 		if (!page)
5352 			return NULL;
5353 
5354 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5355 		/* if size can vary use size else just use PAGE_SIZE */
5356 		size = nc->size;
5357 #endif
5358 		/* Even if we own the page, we do not use atomic_set().
5359 		 * This would break get_page_unless_zero() users.
5360 		 */
5361 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5362 
5363 		/* reset page count bias and offset to start of new frag */
5364 		nc->pfmemalloc = page_is_pfmemalloc(page);
5365 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5366 		nc->offset = size;
5367 	}
5368 
5369 	offset = nc->offset - fragsz;
5370 	if (unlikely(offset < 0)) {
5371 		page = virt_to_page(nc->va);
5372 
5373 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5374 			goto refill;
5375 
5376 		if (unlikely(nc->pfmemalloc)) {
5377 			free_the_page(page, compound_order(page));
5378 			goto refill;
5379 		}
5380 
5381 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5382 		/* if size can vary use size else just use PAGE_SIZE */
5383 		size = nc->size;
5384 #endif
5385 		/* OK, page count is 0, we can safely set it */
5386 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5387 
5388 		/* reset page count bias and offset to start of new frag */
5389 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5390 		offset = size - fragsz;
5391 	}
5392 
5393 	nc->pagecnt_bias--;
5394 	offset &= align_mask;
5395 	nc->offset = offset;
5396 
5397 	return nc->va + offset;
5398 }
5399 EXPORT_SYMBOL(page_frag_alloc_align);
5400 
5401 /*
5402  * Frees a page fragment allocated out of either a compound or order 0 page.
5403  */
5404 void page_frag_free(void *addr)
5405 {
5406 	struct page *page = virt_to_head_page(addr);
5407 
5408 	if (unlikely(put_page_testzero(page)))
5409 		free_the_page(page, compound_order(page));
5410 }
5411 EXPORT_SYMBOL(page_frag_free);
5412 
5413 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5414 		size_t size)
5415 {
5416 	if (addr) {
5417 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5418 		unsigned long used = addr + PAGE_ALIGN(size);
5419 
5420 		split_page(virt_to_page((void *)addr), order);
5421 		while (used < alloc_end) {
5422 			free_page(used);
5423 			used += PAGE_SIZE;
5424 		}
5425 	}
5426 	return (void *)addr;
5427 }
5428 
5429 /**
5430  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5431  * @size: the number of bytes to allocate
5432  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5433  *
5434  * This function is similar to alloc_pages(), except that it allocates the
5435  * minimum number of pages to satisfy the request.  alloc_pages() can only
5436  * allocate memory in power-of-two pages.
5437  *
5438  * This function is also limited by MAX_ORDER.
5439  *
5440  * Memory allocated by this function must be released by free_pages_exact().
5441  *
5442  * Return: pointer to the allocated area or %NULL in case of error.
5443  */
5444 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5445 {
5446 	unsigned int order = get_order(size);
5447 	unsigned long addr;
5448 
5449 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5450 		gfp_mask &= ~__GFP_COMP;
5451 
5452 	addr = __get_free_pages(gfp_mask, order);
5453 	return make_alloc_exact(addr, order, size);
5454 }
5455 EXPORT_SYMBOL(alloc_pages_exact);
5456 
5457 /**
5458  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5459  *			   pages on a node.
5460  * @nid: the preferred node ID where memory should be allocated
5461  * @size: the number of bytes to allocate
5462  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5463  *
5464  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5465  * back.
5466  *
5467  * Return: pointer to the allocated area or %NULL in case of error.
5468  */
5469 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5470 {
5471 	unsigned int order = get_order(size);
5472 	struct page *p;
5473 
5474 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5475 		gfp_mask &= ~__GFP_COMP;
5476 
5477 	p = alloc_pages_node(nid, gfp_mask, order);
5478 	if (!p)
5479 		return NULL;
5480 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5481 }
5482 
5483 /**
5484  * free_pages_exact - release memory allocated via alloc_pages_exact()
5485  * @virt: the value returned by alloc_pages_exact.
5486  * @size: size of allocation, same value as passed to alloc_pages_exact().
5487  *
5488  * Release the memory allocated by a previous call to alloc_pages_exact.
5489  */
5490 void free_pages_exact(void *virt, size_t size)
5491 {
5492 	unsigned long addr = (unsigned long)virt;
5493 	unsigned long end = addr + PAGE_ALIGN(size);
5494 
5495 	while (addr < end) {
5496 		free_page(addr);
5497 		addr += PAGE_SIZE;
5498 	}
5499 }
5500 EXPORT_SYMBOL(free_pages_exact);
5501 
5502 /**
5503  * nr_free_zone_pages - count number of pages beyond high watermark
5504  * @offset: The zone index of the highest zone
5505  *
5506  * nr_free_zone_pages() counts the number of pages which are beyond the
5507  * high watermark within all zones at or below a given zone index.  For each
5508  * zone, the number of pages is calculated as:
5509  *
5510  *     nr_free_zone_pages = managed_pages - high_pages
5511  *
5512  * Return: number of pages beyond high watermark.
5513  */
5514 static unsigned long nr_free_zone_pages(int offset)
5515 {
5516 	struct zoneref *z;
5517 	struct zone *zone;
5518 
5519 	/* Just pick one node, since fallback list is circular */
5520 	unsigned long sum = 0;
5521 
5522 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5523 
5524 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5525 		unsigned long size = zone_managed_pages(zone);
5526 		unsigned long high = high_wmark_pages(zone);
5527 		if (size > high)
5528 			sum += size - high;
5529 	}
5530 
5531 	return sum;
5532 }
5533 
5534 /**
5535  * nr_free_buffer_pages - count number of pages beyond high watermark
5536  *
5537  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5538  * watermark within ZONE_DMA and ZONE_NORMAL.
5539  *
5540  * Return: number of pages beyond high watermark within ZONE_DMA and
5541  * ZONE_NORMAL.
5542  */
5543 unsigned long nr_free_buffer_pages(void)
5544 {
5545 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5546 }
5547 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5548 
5549 static inline void show_node(struct zone *zone)
5550 {
5551 	if (IS_ENABLED(CONFIG_NUMA))
5552 		printk("Node %d ", zone_to_nid(zone));
5553 }
5554 
5555 long si_mem_available(void)
5556 {
5557 	long available;
5558 	unsigned long pagecache;
5559 	unsigned long wmark_low = 0;
5560 	unsigned long pages[NR_LRU_LISTS];
5561 	unsigned long reclaimable;
5562 	struct zone *zone;
5563 	int lru;
5564 
5565 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5566 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5567 
5568 	for_each_zone(zone)
5569 		wmark_low += low_wmark_pages(zone);
5570 
5571 	/*
5572 	 * Estimate the amount of memory available for userspace allocations,
5573 	 * without causing swapping.
5574 	 */
5575 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5576 
5577 	/*
5578 	 * Not all the page cache can be freed, otherwise the system will
5579 	 * start swapping. Assume at least half of the page cache, or the
5580 	 * low watermark worth of cache, needs to stay.
5581 	 */
5582 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5583 	pagecache -= min(pagecache / 2, wmark_low);
5584 	available += pagecache;
5585 
5586 	/*
5587 	 * Part of the reclaimable slab and other kernel memory consists of
5588 	 * items that are in use, and cannot be freed. Cap this estimate at the
5589 	 * low watermark.
5590 	 */
5591 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5592 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5593 	available += reclaimable - min(reclaimable / 2, wmark_low);
5594 
5595 	if (available < 0)
5596 		available = 0;
5597 	return available;
5598 }
5599 EXPORT_SYMBOL_GPL(si_mem_available);
5600 
5601 void si_meminfo(struct sysinfo *val)
5602 {
5603 	val->totalram = totalram_pages();
5604 	val->sharedram = global_node_page_state(NR_SHMEM);
5605 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5606 	val->bufferram = nr_blockdev_pages();
5607 	val->totalhigh = totalhigh_pages();
5608 	val->freehigh = nr_free_highpages();
5609 	val->mem_unit = PAGE_SIZE;
5610 }
5611 
5612 EXPORT_SYMBOL(si_meminfo);
5613 
5614 #ifdef CONFIG_NUMA
5615 void si_meminfo_node(struct sysinfo *val, int nid)
5616 {
5617 	int zone_type;		/* needs to be signed */
5618 	unsigned long managed_pages = 0;
5619 	unsigned long managed_highpages = 0;
5620 	unsigned long free_highpages = 0;
5621 	pg_data_t *pgdat = NODE_DATA(nid);
5622 
5623 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5624 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5625 	val->totalram = managed_pages;
5626 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5627 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5628 #ifdef CONFIG_HIGHMEM
5629 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5630 		struct zone *zone = &pgdat->node_zones[zone_type];
5631 
5632 		if (is_highmem(zone)) {
5633 			managed_highpages += zone_managed_pages(zone);
5634 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5635 		}
5636 	}
5637 	val->totalhigh = managed_highpages;
5638 	val->freehigh = free_highpages;
5639 #else
5640 	val->totalhigh = managed_highpages;
5641 	val->freehigh = free_highpages;
5642 #endif
5643 	val->mem_unit = PAGE_SIZE;
5644 }
5645 #endif
5646 
5647 /*
5648  * Determine whether the node should be displayed or not, depending on whether
5649  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5650  */
5651 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5652 {
5653 	if (!(flags & SHOW_MEM_FILTER_NODES))
5654 		return false;
5655 
5656 	/*
5657 	 * no node mask - aka implicit memory numa policy. Do not bother with
5658 	 * the synchronization - read_mems_allowed_begin - because we do not
5659 	 * have to be precise here.
5660 	 */
5661 	if (!nodemask)
5662 		nodemask = &cpuset_current_mems_allowed;
5663 
5664 	return !node_isset(nid, *nodemask);
5665 }
5666 
5667 #define K(x) ((x) << (PAGE_SHIFT-10))
5668 
5669 static void show_migration_types(unsigned char type)
5670 {
5671 	static const char types[MIGRATE_TYPES] = {
5672 		[MIGRATE_UNMOVABLE]	= 'U',
5673 		[MIGRATE_MOVABLE]	= 'M',
5674 		[MIGRATE_RECLAIMABLE]	= 'E',
5675 		[MIGRATE_HIGHATOMIC]	= 'H',
5676 #ifdef CONFIG_CMA
5677 		[MIGRATE_CMA]		= 'C',
5678 #endif
5679 #ifdef CONFIG_MEMORY_ISOLATION
5680 		[MIGRATE_ISOLATE]	= 'I',
5681 #endif
5682 	};
5683 	char tmp[MIGRATE_TYPES + 1];
5684 	char *p = tmp;
5685 	int i;
5686 
5687 	for (i = 0; i < MIGRATE_TYPES; i++) {
5688 		if (type & (1 << i))
5689 			*p++ = types[i];
5690 	}
5691 
5692 	*p = '\0';
5693 	printk(KERN_CONT "(%s) ", tmp);
5694 }
5695 
5696 /*
5697  * Show free area list (used inside shift_scroll-lock stuff)
5698  * We also calculate the percentage fragmentation. We do this by counting the
5699  * memory on each free list with the exception of the first item on the list.
5700  *
5701  * Bits in @filter:
5702  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5703  *   cpuset.
5704  */
5705 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5706 {
5707 	unsigned long free_pcp = 0;
5708 	int cpu;
5709 	struct zone *zone;
5710 	pg_data_t *pgdat;
5711 
5712 	for_each_populated_zone(zone) {
5713 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5714 			continue;
5715 
5716 		for_each_online_cpu(cpu)
5717 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5718 	}
5719 
5720 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5721 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5722 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5723 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5724 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5725 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5726 		global_node_page_state(NR_ACTIVE_ANON),
5727 		global_node_page_state(NR_INACTIVE_ANON),
5728 		global_node_page_state(NR_ISOLATED_ANON),
5729 		global_node_page_state(NR_ACTIVE_FILE),
5730 		global_node_page_state(NR_INACTIVE_FILE),
5731 		global_node_page_state(NR_ISOLATED_FILE),
5732 		global_node_page_state(NR_UNEVICTABLE),
5733 		global_node_page_state(NR_FILE_DIRTY),
5734 		global_node_page_state(NR_WRITEBACK),
5735 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5736 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5737 		global_node_page_state(NR_FILE_MAPPED),
5738 		global_node_page_state(NR_SHMEM),
5739 		global_node_page_state(NR_PAGETABLE),
5740 		global_zone_page_state(NR_BOUNCE),
5741 		global_zone_page_state(NR_FREE_PAGES),
5742 		free_pcp,
5743 		global_zone_page_state(NR_FREE_CMA_PAGES));
5744 
5745 	for_each_online_pgdat(pgdat) {
5746 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5747 			continue;
5748 
5749 		printk("Node %d"
5750 			" active_anon:%lukB"
5751 			" inactive_anon:%lukB"
5752 			" active_file:%lukB"
5753 			" inactive_file:%lukB"
5754 			" unevictable:%lukB"
5755 			" isolated(anon):%lukB"
5756 			" isolated(file):%lukB"
5757 			" mapped:%lukB"
5758 			" dirty:%lukB"
5759 			" writeback:%lukB"
5760 			" shmem:%lukB"
5761 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5762 			" shmem_thp: %lukB"
5763 			" shmem_pmdmapped: %lukB"
5764 			" anon_thp: %lukB"
5765 #endif
5766 			" writeback_tmp:%lukB"
5767 			" kernel_stack:%lukB"
5768 #ifdef CONFIG_SHADOW_CALL_STACK
5769 			" shadow_call_stack:%lukB"
5770 #endif
5771 			" pagetables:%lukB"
5772 			" all_unreclaimable? %s"
5773 			"\n",
5774 			pgdat->node_id,
5775 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5776 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5777 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5778 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5779 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5780 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5781 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5782 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5783 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5784 			K(node_page_state(pgdat, NR_WRITEBACK)),
5785 			K(node_page_state(pgdat, NR_SHMEM)),
5786 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5787 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5788 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5789 			K(node_page_state(pgdat, NR_ANON_THPS)),
5790 #endif
5791 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5792 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5793 #ifdef CONFIG_SHADOW_CALL_STACK
5794 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5795 #endif
5796 			K(node_page_state(pgdat, NR_PAGETABLE)),
5797 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5798 				"yes" : "no");
5799 	}
5800 
5801 	for_each_populated_zone(zone) {
5802 		int i;
5803 
5804 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5805 			continue;
5806 
5807 		free_pcp = 0;
5808 		for_each_online_cpu(cpu)
5809 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5810 
5811 		show_node(zone);
5812 		printk(KERN_CONT
5813 			"%s"
5814 			" free:%lukB"
5815 			" min:%lukB"
5816 			" low:%lukB"
5817 			" high:%lukB"
5818 			" reserved_highatomic:%luKB"
5819 			" active_anon:%lukB"
5820 			" inactive_anon:%lukB"
5821 			" active_file:%lukB"
5822 			" inactive_file:%lukB"
5823 			" unevictable:%lukB"
5824 			" writepending:%lukB"
5825 			" present:%lukB"
5826 			" managed:%lukB"
5827 			" mlocked:%lukB"
5828 			" bounce:%lukB"
5829 			" free_pcp:%lukB"
5830 			" local_pcp:%ukB"
5831 			" free_cma:%lukB"
5832 			"\n",
5833 			zone->name,
5834 			K(zone_page_state(zone, NR_FREE_PAGES)),
5835 			K(min_wmark_pages(zone)),
5836 			K(low_wmark_pages(zone)),
5837 			K(high_wmark_pages(zone)),
5838 			K(zone->nr_reserved_highatomic),
5839 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5840 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5841 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5842 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5843 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5844 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5845 			K(zone->present_pages),
5846 			K(zone_managed_pages(zone)),
5847 			K(zone_page_state(zone, NR_MLOCK)),
5848 			K(zone_page_state(zone, NR_BOUNCE)),
5849 			K(free_pcp),
5850 			K(this_cpu_read(zone->pageset->pcp.count)),
5851 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5852 		printk("lowmem_reserve[]:");
5853 		for (i = 0; i < MAX_NR_ZONES; i++)
5854 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5855 		printk(KERN_CONT "\n");
5856 	}
5857 
5858 	for_each_populated_zone(zone) {
5859 		unsigned int order;
5860 		unsigned long nr[MAX_ORDER], flags, total = 0;
5861 		unsigned char types[MAX_ORDER];
5862 
5863 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5864 			continue;
5865 		show_node(zone);
5866 		printk(KERN_CONT "%s: ", zone->name);
5867 
5868 		spin_lock_irqsave(&zone->lock, flags);
5869 		for (order = 0; order < MAX_ORDER; order++) {
5870 			struct free_area *area = &zone->free_area[order];
5871 			int type;
5872 
5873 			nr[order] = area->nr_free;
5874 			total += nr[order] << order;
5875 
5876 			types[order] = 0;
5877 			for (type = 0; type < MIGRATE_TYPES; type++) {
5878 				if (!free_area_empty(area, type))
5879 					types[order] |= 1 << type;
5880 			}
5881 		}
5882 		spin_unlock_irqrestore(&zone->lock, flags);
5883 		for (order = 0; order < MAX_ORDER; order++) {
5884 			printk(KERN_CONT "%lu*%lukB ",
5885 			       nr[order], K(1UL) << order);
5886 			if (nr[order])
5887 				show_migration_types(types[order]);
5888 		}
5889 		printk(KERN_CONT "= %lukB\n", K(total));
5890 	}
5891 
5892 	hugetlb_show_meminfo();
5893 
5894 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5895 
5896 	show_swap_cache_info();
5897 }
5898 
5899 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5900 {
5901 	zoneref->zone = zone;
5902 	zoneref->zone_idx = zone_idx(zone);
5903 }
5904 
5905 /*
5906  * Builds allocation fallback zone lists.
5907  *
5908  * Add all populated zones of a node to the zonelist.
5909  */
5910 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5911 {
5912 	struct zone *zone;
5913 	enum zone_type zone_type = MAX_NR_ZONES;
5914 	int nr_zones = 0;
5915 
5916 	do {
5917 		zone_type--;
5918 		zone = pgdat->node_zones + zone_type;
5919 		if (managed_zone(zone)) {
5920 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5921 			check_highest_zone(zone_type);
5922 		}
5923 	} while (zone_type);
5924 
5925 	return nr_zones;
5926 }
5927 
5928 #ifdef CONFIG_NUMA
5929 
5930 static int __parse_numa_zonelist_order(char *s)
5931 {
5932 	/*
5933 	 * We used to support different zonlists modes but they turned
5934 	 * out to be just not useful. Let's keep the warning in place
5935 	 * if somebody still use the cmd line parameter so that we do
5936 	 * not fail it silently
5937 	 */
5938 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5939 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5940 		return -EINVAL;
5941 	}
5942 	return 0;
5943 }
5944 
5945 char numa_zonelist_order[] = "Node";
5946 
5947 /*
5948  * sysctl handler for numa_zonelist_order
5949  */
5950 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5951 		void *buffer, size_t *length, loff_t *ppos)
5952 {
5953 	if (write)
5954 		return __parse_numa_zonelist_order(buffer);
5955 	return proc_dostring(table, write, buffer, length, ppos);
5956 }
5957 
5958 
5959 #define MAX_NODE_LOAD (nr_online_nodes)
5960 static int node_load[MAX_NUMNODES];
5961 
5962 /**
5963  * find_next_best_node - find the next node that should appear in a given node's fallback list
5964  * @node: node whose fallback list we're appending
5965  * @used_node_mask: nodemask_t of already used nodes
5966  *
5967  * We use a number of factors to determine which is the next node that should
5968  * appear on a given node's fallback list.  The node should not have appeared
5969  * already in @node's fallback list, and it should be the next closest node
5970  * according to the distance array (which contains arbitrary distance values
5971  * from each node to each node in the system), and should also prefer nodes
5972  * with no CPUs, since presumably they'll have very little allocation pressure
5973  * on them otherwise.
5974  *
5975  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5976  */
5977 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5978 {
5979 	int n, val;
5980 	int min_val = INT_MAX;
5981 	int best_node = NUMA_NO_NODE;
5982 
5983 	/* Use the local node if we haven't already */
5984 	if (!node_isset(node, *used_node_mask)) {
5985 		node_set(node, *used_node_mask);
5986 		return node;
5987 	}
5988 
5989 	for_each_node_state(n, N_MEMORY) {
5990 
5991 		/* Don't want a node to appear more than once */
5992 		if (node_isset(n, *used_node_mask))
5993 			continue;
5994 
5995 		/* Use the distance array to find the distance */
5996 		val = node_distance(node, n);
5997 
5998 		/* Penalize nodes under us ("prefer the next node") */
5999 		val += (n < node);
6000 
6001 		/* Give preference to headless and unused nodes */
6002 		if (!cpumask_empty(cpumask_of_node(n)))
6003 			val += PENALTY_FOR_NODE_WITH_CPUS;
6004 
6005 		/* Slight preference for less loaded node */
6006 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6007 		val += node_load[n];
6008 
6009 		if (val < min_val) {
6010 			min_val = val;
6011 			best_node = n;
6012 		}
6013 	}
6014 
6015 	if (best_node >= 0)
6016 		node_set(best_node, *used_node_mask);
6017 
6018 	return best_node;
6019 }
6020 
6021 
6022 /*
6023  * Build zonelists ordered by node and zones within node.
6024  * This results in maximum locality--normal zone overflows into local
6025  * DMA zone, if any--but risks exhausting DMA zone.
6026  */
6027 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6028 		unsigned nr_nodes)
6029 {
6030 	struct zoneref *zonerefs;
6031 	int i;
6032 
6033 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6034 
6035 	for (i = 0; i < nr_nodes; i++) {
6036 		int nr_zones;
6037 
6038 		pg_data_t *node = NODE_DATA(node_order[i]);
6039 
6040 		nr_zones = build_zonerefs_node(node, zonerefs);
6041 		zonerefs += nr_zones;
6042 	}
6043 	zonerefs->zone = NULL;
6044 	zonerefs->zone_idx = 0;
6045 }
6046 
6047 /*
6048  * Build gfp_thisnode zonelists
6049  */
6050 static void build_thisnode_zonelists(pg_data_t *pgdat)
6051 {
6052 	struct zoneref *zonerefs;
6053 	int nr_zones;
6054 
6055 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6056 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6057 	zonerefs += nr_zones;
6058 	zonerefs->zone = NULL;
6059 	zonerefs->zone_idx = 0;
6060 }
6061 
6062 /*
6063  * Build zonelists ordered by zone and nodes within zones.
6064  * This results in conserving DMA zone[s] until all Normal memory is
6065  * exhausted, but results in overflowing to remote node while memory
6066  * may still exist in local DMA zone.
6067  */
6068 
6069 static void build_zonelists(pg_data_t *pgdat)
6070 {
6071 	static int node_order[MAX_NUMNODES];
6072 	int node, load, nr_nodes = 0;
6073 	nodemask_t used_mask = NODE_MASK_NONE;
6074 	int local_node, prev_node;
6075 
6076 	/* NUMA-aware ordering of nodes */
6077 	local_node = pgdat->node_id;
6078 	load = nr_online_nodes;
6079 	prev_node = local_node;
6080 
6081 	memset(node_order, 0, sizeof(node_order));
6082 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6083 		/*
6084 		 * We don't want to pressure a particular node.
6085 		 * So adding penalty to the first node in same
6086 		 * distance group to make it round-robin.
6087 		 */
6088 		if (node_distance(local_node, node) !=
6089 		    node_distance(local_node, prev_node))
6090 			node_load[node] = load;
6091 
6092 		node_order[nr_nodes++] = node;
6093 		prev_node = node;
6094 		load--;
6095 	}
6096 
6097 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6098 	build_thisnode_zonelists(pgdat);
6099 }
6100 
6101 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6102 /*
6103  * Return node id of node used for "local" allocations.
6104  * I.e., first node id of first zone in arg node's generic zonelist.
6105  * Used for initializing percpu 'numa_mem', which is used primarily
6106  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6107  */
6108 int local_memory_node(int node)
6109 {
6110 	struct zoneref *z;
6111 
6112 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6113 				   gfp_zone(GFP_KERNEL),
6114 				   NULL);
6115 	return zone_to_nid(z->zone);
6116 }
6117 #endif
6118 
6119 static void setup_min_unmapped_ratio(void);
6120 static void setup_min_slab_ratio(void);
6121 #else	/* CONFIG_NUMA */
6122 
6123 static void build_zonelists(pg_data_t *pgdat)
6124 {
6125 	int node, local_node;
6126 	struct zoneref *zonerefs;
6127 	int nr_zones;
6128 
6129 	local_node = pgdat->node_id;
6130 
6131 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6132 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6133 	zonerefs += nr_zones;
6134 
6135 	/*
6136 	 * Now we build the zonelist so that it contains the zones
6137 	 * of all the other nodes.
6138 	 * We don't want to pressure a particular node, so when
6139 	 * building the zones for node N, we make sure that the
6140 	 * zones coming right after the local ones are those from
6141 	 * node N+1 (modulo N)
6142 	 */
6143 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6144 		if (!node_online(node))
6145 			continue;
6146 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6147 		zonerefs += nr_zones;
6148 	}
6149 	for (node = 0; node < local_node; node++) {
6150 		if (!node_online(node))
6151 			continue;
6152 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6153 		zonerefs += nr_zones;
6154 	}
6155 
6156 	zonerefs->zone = NULL;
6157 	zonerefs->zone_idx = 0;
6158 }
6159 
6160 #endif	/* CONFIG_NUMA */
6161 
6162 /*
6163  * Boot pageset table. One per cpu which is going to be used for all
6164  * zones and all nodes. The parameters will be set in such a way
6165  * that an item put on a list will immediately be handed over to
6166  * the buddy list. This is safe since pageset manipulation is done
6167  * with interrupts disabled.
6168  *
6169  * The boot_pagesets must be kept even after bootup is complete for
6170  * unused processors and/or zones. They do play a role for bootstrapping
6171  * hotplugged processors.
6172  *
6173  * zoneinfo_show() and maybe other functions do
6174  * not check if the processor is online before following the pageset pointer.
6175  * Other parts of the kernel may not check if the zone is available.
6176  */
6177 static void pageset_init(struct per_cpu_pageset *p);
6178 /* These effectively disable the pcplists in the boot pageset completely */
6179 #define BOOT_PAGESET_HIGH	0
6180 #define BOOT_PAGESET_BATCH	1
6181 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
6182 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6183 
6184 static void __build_all_zonelists(void *data)
6185 {
6186 	int nid;
6187 	int __maybe_unused cpu;
6188 	pg_data_t *self = data;
6189 	static DEFINE_SPINLOCK(lock);
6190 
6191 	spin_lock(&lock);
6192 
6193 #ifdef CONFIG_NUMA
6194 	memset(node_load, 0, sizeof(node_load));
6195 #endif
6196 
6197 	/*
6198 	 * This node is hotadded and no memory is yet present.   So just
6199 	 * building zonelists is fine - no need to touch other nodes.
6200 	 */
6201 	if (self && !node_online(self->node_id)) {
6202 		build_zonelists(self);
6203 	} else {
6204 		for_each_online_node(nid) {
6205 			pg_data_t *pgdat = NODE_DATA(nid);
6206 
6207 			build_zonelists(pgdat);
6208 		}
6209 
6210 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6211 		/*
6212 		 * We now know the "local memory node" for each node--
6213 		 * i.e., the node of the first zone in the generic zonelist.
6214 		 * Set up numa_mem percpu variable for on-line cpus.  During
6215 		 * boot, only the boot cpu should be on-line;  we'll init the
6216 		 * secondary cpus' numa_mem as they come on-line.  During
6217 		 * node/memory hotplug, we'll fixup all on-line cpus.
6218 		 */
6219 		for_each_online_cpu(cpu)
6220 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6221 #endif
6222 	}
6223 
6224 	spin_unlock(&lock);
6225 }
6226 
6227 static noinline void __init
6228 build_all_zonelists_init(void)
6229 {
6230 	int cpu;
6231 
6232 	__build_all_zonelists(NULL);
6233 
6234 	/*
6235 	 * Initialize the boot_pagesets that are going to be used
6236 	 * for bootstrapping processors. The real pagesets for
6237 	 * each zone will be allocated later when the per cpu
6238 	 * allocator is available.
6239 	 *
6240 	 * boot_pagesets are used also for bootstrapping offline
6241 	 * cpus if the system is already booted because the pagesets
6242 	 * are needed to initialize allocators on a specific cpu too.
6243 	 * F.e. the percpu allocator needs the page allocator which
6244 	 * needs the percpu allocator in order to allocate its pagesets
6245 	 * (a chicken-egg dilemma).
6246 	 */
6247 	for_each_possible_cpu(cpu)
6248 		pageset_init(&per_cpu(boot_pageset, cpu));
6249 
6250 	mminit_verify_zonelist();
6251 	cpuset_init_current_mems_allowed();
6252 }
6253 
6254 /*
6255  * unless system_state == SYSTEM_BOOTING.
6256  *
6257  * __ref due to call of __init annotated helper build_all_zonelists_init
6258  * [protected by SYSTEM_BOOTING].
6259  */
6260 void __ref build_all_zonelists(pg_data_t *pgdat)
6261 {
6262 	unsigned long vm_total_pages;
6263 
6264 	if (system_state == SYSTEM_BOOTING) {
6265 		build_all_zonelists_init();
6266 	} else {
6267 		__build_all_zonelists(pgdat);
6268 		/* cpuset refresh routine should be here */
6269 	}
6270 	/* Get the number of free pages beyond high watermark in all zones. */
6271 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6272 	/*
6273 	 * Disable grouping by mobility if the number of pages in the
6274 	 * system is too low to allow the mechanism to work. It would be
6275 	 * more accurate, but expensive to check per-zone. This check is
6276 	 * made on memory-hotadd so a system can start with mobility
6277 	 * disabled and enable it later
6278 	 */
6279 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6280 		page_group_by_mobility_disabled = 1;
6281 	else
6282 		page_group_by_mobility_disabled = 0;
6283 
6284 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6285 		nr_online_nodes,
6286 		page_group_by_mobility_disabled ? "off" : "on",
6287 		vm_total_pages);
6288 #ifdef CONFIG_NUMA
6289 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6290 #endif
6291 }
6292 
6293 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6294 static bool __meminit
6295 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6296 {
6297 	static struct memblock_region *r;
6298 
6299 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6300 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6301 			for_each_mem_region(r) {
6302 				if (*pfn < memblock_region_memory_end_pfn(r))
6303 					break;
6304 			}
6305 		}
6306 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6307 		    memblock_is_mirror(r)) {
6308 			*pfn = memblock_region_memory_end_pfn(r);
6309 			return true;
6310 		}
6311 	}
6312 	return false;
6313 }
6314 
6315 /*
6316  * Initially all pages are reserved - free ones are freed
6317  * up by memblock_free_all() once the early boot process is
6318  * done. Non-atomic initialization, single-pass.
6319  *
6320  * All aligned pageblocks are initialized to the specified migratetype
6321  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6322  * zone stats (e.g., nr_isolate_pageblock) are touched.
6323  */
6324 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6325 		unsigned long start_pfn, unsigned long zone_end_pfn,
6326 		enum meminit_context context,
6327 		struct vmem_altmap *altmap, int migratetype)
6328 {
6329 	unsigned long pfn, end_pfn = start_pfn + size;
6330 	struct page *page;
6331 
6332 	if (highest_memmap_pfn < end_pfn - 1)
6333 		highest_memmap_pfn = end_pfn - 1;
6334 
6335 #ifdef CONFIG_ZONE_DEVICE
6336 	/*
6337 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6338 	 * memory. We limit the total number of pages to initialize to just
6339 	 * those that might contain the memory mapping. We will defer the
6340 	 * ZONE_DEVICE page initialization until after we have released
6341 	 * the hotplug lock.
6342 	 */
6343 	if (zone == ZONE_DEVICE) {
6344 		if (!altmap)
6345 			return;
6346 
6347 		if (start_pfn == altmap->base_pfn)
6348 			start_pfn += altmap->reserve;
6349 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6350 	}
6351 #endif
6352 
6353 	for (pfn = start_pfn; pfn < end_pfn; ) {
6354 		/*
6355 		 * There can be holes in boot-time mem_map[]s handed to this
6356 		 * function.  They do not exist on hotplugged memory.
6357 		 */
6358 		if (context == MEMINIT_EARLY) {
6359 			if (overlap_memmap_init(zone, &pfn))
6360 				continue;
6361 			if (defer_init(nid, pfn, zone_end_pfn))
6362 				break;
6363 		}
6364 
6365 		page = pfn_to_page(pfn);
6366 		__init_single_page(page, pfn, zone, nid);
6367 		if (context == MEMINIT_HOTPLUG)
6368 			__SetPageReserved(page);
6369 
6370 		/*
6371 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6372 		 * such that unmovable allocations won't be scattered all
6373 		 * over the place during system boot.
6374 		 */
6375 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6376 			set_pageblock_migratetype(page, migratetype);
6377 			cond_resched();
6378 		}
6379 		pfn++;
6380 	}
6381 }
6382 
6383 #ifdef CONFIG_ZONE_DEVICE
6384 void __ref memmap_init_zone_device(struct zone *zone,
6385 				   unsigned long start_pfn,
6386 				   unsigned long nr_pages,
6387 				   struct dev_pagemap *pgmap)
6388 {
6389 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6390 	struct pglist_data *pgdat = zone->zone_pgdat;
6391 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6392 	unsigned long zone_idx = zone_idx(zone);
6393 	unsigned long start = jiffies;
6394 	int nid = pgdat->node_id;
6395 
6396 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6397 		return;
6398 
6399 	/*
6400 	 * The call to memmap_init_zone should have already taken care
6401 	 * of the pages reserved for the memmap, so we can just jump to
6402 	 * the end of that region and start processing the device pages.
6403 	 */
6404 	if (altmap) {
6405 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6406 		nr_pages = end_pfn - start_pfn;
6407 	}
6408 
6409 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6410 		struct page *page = pfn_to_page(pfn);
6411 
6412 		__init_single_page(page, pfn, zone_idx, nid);
6413 
6414 		/*
6415 		 * Mark page reserved as it will need to wait for onlining
6416 		 * phase for it to be fully associated with a zone.
6417 		 *
6418 		 * We can use the non-atomic __set_bit operation for setting
6419 		 * the flag as we are still initializing the pages.
6420 		 */
6421 		__SetPageReserved(page);
6422 
6423 		/*
6424 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6425 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6426 		 * ever freed or placed on a driver-private list.
6427 		 */
6428 		page->pgmap = pgmap;
6429 		page->zone_device_data = NULL;
6430 
6431 		/*
6432 		 * Mark the block movable so that blocks are reserved for
6433 		 * movable at startup. This will force kernel allocations
6434 		 * to reserve their blocks rather than leaking throughout
6435 		 * the address space during boot when many long-lived
6436 		 * kernel allocations are made.
6437 		 *
6438 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6439 		 * because this is done early in section_activate()
6440 		 */
6441 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6442 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6443 			cond_resched();
6444 		}
6445 	}
6446 
6447 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6448 		nr_pages, jiffies_to_msecs(jiffies - start));
6449 }
6450 
6451 #endif
6452 static void __meminit zone_init_free_lists(struct zone *zone)
6453 {
6454 	unsigned int order, t;
6455 	for_each_migratetype_order(order, t) {
6456 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6457 		zone->free_area[order].nr_free = 0;
6458 	}
6459 }
6460 
6461 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6462 /*
6463  * Only struct pages that correspond to ranges defined by memblock.memory
6464  * are zeroed and initialized by going through __init_single_page() during
6465  * memmap_init_zone().
6466  *
6467  * But, there could be struct pages that correspond to holes in
6468  * memblock.memory. This can happen because of the following reasons:
6469  * - physical memory bank size is not necessarily the exact multiple of the
6470  *   arbitrary section size
6471  * - early reserved memory may not be listed in memblock.memory
6472  * - memory layouts defined with memmap= kernel parameter may not align
6473  *   nicely with memmap sections
6474  *
6475  * Explicitly initialize those struct pages so that:
6476  * - PG_Reserved is set
6477  * - zone and node links point to zone and node that span the page if the
6478  *   hole is in the middle of a zone
6479  * - zone and node links point to adjacent zone/node if the hole falls on
6480  *   the zone boundary; the pages in such holes will be prepended to the
6481  *   zone/node above the hole except for the trailing pages in the last
6482  *   section that will be appended to the zone/node below.
6483  */
6484 static u64 __meminit init_unavailable_range(unsigned long spfn,
6485 					    unsigned long epfn,
6486 					    int zone, int node)
6487 {
6488 	unsigned long pfn;
6489 	u64 pgcnt = 0;
6490 
6491 	for (pfn = spfn; pfn < epfn; pfn++) {
6492 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6493 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6494 				+ pageblock_nr_pages - 1;
6495 			continue;
6496 		}
6497 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6498 		__SetPageReserved(pfn_to_page(pfn));
6499 		pgcnt++;
6500 	}
6501 
6502 	return pgcnt;
6503 }
6504 #else
6505 static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn,
6506 					 int zone, int node)
6507 {
6508 	return 0;
6509 }
6510 #endif
6511 
6512 void __meminit __weak memmap_init_zone(struct zone *zone)
6513 {
6514 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6515 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6516 	int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6517 	static unsigned long hole_pfn;
6518 	unsigned long start_pfn, end_pfn;
6519 	u64 pgcnt = 0;
6520 
6521 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6522 		start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6523 		end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6524 
6525 		if (end_pfn > start_pfn)
6526 			memmap_init_range(end_pfn - start_pfn, nid,
6527 					zone_id, start_pfn, zone_end_pfn,
6528 					MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6529 
6530 		if (hole_pfn < start_pfn)
6531 			pgcnt += init_unavailable_range(hole_pfn, start_pfn,
6532 							zone_id, nid);
6533 		hole_pfn = end_pfn;
6534 	}
6535 
6536 #ifdef CONFIG_SPARSEMEM
6537 	/*
6538 	 * Initialize the hole in the range [zone_end_pfn, section_end].
6539 	 * If zone boundary falls in the middle of a section, this hole
6540 	 * will be re-initialized during the call to this function for the
6541 	 * higher zone.
6542 	 */
6543 	end_pfn = round_up(zone_end_pfn, PAGES_PER_SECTION);
6544 	if (hole_pfn < end_pfn)
6545 		pgcnt += init_unavailable_range(hole_pfn, end_pfn,
6546 						zone_id, nid);
6547 #endif
6548 
6549 	if (pgcnt)
6550 		pr_info("  %s zone: %llu pages in unavailable ranges\n",
6551 			zone->name, pgcnt);
6552 }
6553 
6554 static int zone_batchsize(struct zone *zone)
6555 {
6556 #ifdef CONFIG_MMU
6557 	int batch;
6558 
6559 	/*
6560 	 * The per-cpu-pages pools are set to around 1000th of the
6561 	 * size of the zone.
6562 	 */
6563 	batch = zone_managed_pages(zone) / 1024;
6564 	/* But no more than a meg. */
6565 	if (batch * PAGE_SIZE > 1024 * 1024)
6566 		batch = (1024 * 1024) / PAGE_SIZE;
6567 	batch /= 4;		/* We effectively *= 4 below */
6568 	if (batch < 1)
6569 		batch = 1;
6570 
6571 	/*
6572 	 * Clamp the batch to a 2^n - 1 value. Having a power
6573 	 * of 2 value was found to be more likely to have
6574 	 * suboptimal cache aliasing properties in some cases.
6575 	 *
6576 	 * For example if 2 tasks are alternately allocating
6577 	 * batches of pages, one task can end up with a lot
6578 	 * of pages of one half of the possible page colors
6579 	 * and the other with pages of the other colors.
6580 	 */
6581 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6582 
6583 	return batch;
6584 
6585 #else
6586 	/* The deferral and batching of frees should be suppressed under NOMMU
6587 	 * conditions.
6588 	 *
6589 	 * The problem is that NOMMU needs to be able to allocate large chunks
6590 	 * of contiguous memory as there's no hardware page translation to
6591 	 * assemble apparent contiguous memory from discontiguous pages.
6592 	 *
6593 	 * Queueing large contiguous runs of pages for batching, however,
6594 	 * causes the pages to actually be freed in smaller chunks.  As there
6595 	 * can be a significant delay between the individual batches being
6596 	 * recycled, this leads to the once large chunks of space being
6597 	 * fragmented and becoming unavailable for high-order allocations.
6598 	 */
6599 	return 0;
6600 #endif
6601 }
6602 
6603 /*
6604  * pcp->high and pcp->batch values are related and generally batch is lower
6605  * than high. They are also related to pcp->count such that count is lower
6606  * than high, and as soon as it reaches high, the pcplist is flushed.
6607  *
6608  * However, guaranteeing these relations at all times would require e.g. write
6609  * barriers here but also careful usage of read barriers at the read side, and
6610  * thus be prone to error and bad for performance. Thus the update only prevents
6611  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6612  * can cope with those fields changing asynchronously, and fully trust only the
6613  * pcp->count field on the local CPU with interrupts disabled.
6614  *
6615  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6616  * outside of boot time (or some other assurance that no concurrent updaters
6617  * exist).
6618  */
6619 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6620 		unsigned long batch)
6621 {
6622 	WRITE_ONCE(pcp->batch, batch);
6623 	WRITE_ONCE(pcp->high, high);
6624 }
6625 
6626 static void pageset_init(struct per_cpu_pageset *p)
6627 {
6628 	struct per_cpu_pages *pcp;
6629 	int migratetype;
6630 
6631 	memset(p, 0, sizeof(*p));
6632 
6633 	pcp = &p->pcp;
6634 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6635 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6636 
6637 	/*
6638 	 * Set batch and high values safe for a boot pageset. A true percpu
6639 	 * pageset's initialization will update them subsequently. Here we don't
6640 	 * need to be as careful as pageset_update() as nobody can access the
6641 	 * pageset yet.
6642 	 */
6643 	pcp->high = BOOT_PAGESET_HIGH;
6644 	pcp->batch = BOOT_PAGESET_BATCH;
6645 }
6646 
6647 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6648 		unsigned long batch)
6649 {
6650 	struct per_cpu_pageset *p;
6651 	int cpu;
6652 
6653 	for_each_possible_cpu(cpu) {
6654 		p = per_cpu_ptr(zone->pageset, cpu);
6655 		pageset_update(&p->pcp, high, batch);
6656 	}
6657 }
6658 
6659 /*
6660  * Calculate and set new high and batch values for all per-cpu pagesets of a
6661  * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
6662  */
6663 static void zone_set_pageset_high_and_batch(struct zone *zone)
6664 {
6665 	unsigned long new_high, new_batch;
6666 
6667 	if (percpu_pagelist_fraction) {
6668 		new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6669 		new_batch = max(1UL, new_high / 4);
6670 		if ((new_high / 4) > (PAGE_SHIFT * 8))
6671 			new_batch = PAGE_SHIFT * 8;
6672 	} else {
6673 		new_batch = zone_batchsize(zone);
6674 		new_high = 6 * new_batch;
6675 		new_batch = max(1UL, 1 * new_batch);
6676 	}
6677 
6678 	if (zone->pageset_high == new_high &&
6679 	    zone->pageset_batch == new_batch)
6680 		return;
6681 
6682 	zone->pageset_high = new_high;
6683 	zone->pageset_batch = new_batch;
6684 
6685 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6686 }
6687 
6688 void __meminit setup_zone_pageset(struct zone *zone)
6689 {
6690 	struct per_cpu_pageset *p;
6691 	int cpu;
6692 
6693 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6694 	for_each_possible_cpu(cpu) {
6695 		p = per_cpu_ptr(zone->pageset, cpu);
6696 		pageset_init(p);
6697 	}
6698 
6699 	zone_set_pageset_high_and_batch(zone);
6700 }
6701 
6702 /*
6703  * Allocate per cpu pagesets and initialize them.
6704  * Before this call only boot pagesets were available.
6705  */
6706 void __init setup_per_cpu_pageset(void)
6707 {
6708 	struct pglist_data *pgdat;
6709 	struct zone *zone;
6710 	int __maybe_unused cpu;
6711 
6712 	for_each_populated_zone(zone)
6713 		setup_zone_pageset(zone);
6714 
6715 #ifdef CONFIG_NUMA
6716 	/*
6717 	 * Unpopulated zones continue using the boot pagesets.
6718 	 * The numa stats for these pagesets need to be reset.
6719 	 * Otherwise, they will end up skewing the stats of
6720 	 * the nodes these zones are associated with.
6721 	 */
6722 	for_each_possible_cpu(cpu) {
6723 		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6724 		memset(pcp->vm_numa_stat_diff, 0,
6725 		       sizeof(pcp->vm_numa_stat_diff));
6726 	}
6727 #endif
6728 
6729 	for_each_online_pgdat(pgdat)
6730 		pgdat->per_cpu_nodestats =
6731 			alloc_percpu(struct per_cpu_nodestat);
6732 }
6733 
6734 static __meminit void zone_pcp_init(struct zone *zone)
6735 {
6736 	/*
6737 	 * per cpu subsystem is not up at this point. The following code
6738 	 * relies on the ability of the linker to provide the
6739 	 * offset of a (static) per cpu variable into the per cpu area.
6740 	 */
6741 	zone->pageset = &boot_pageset;
6742 	zone->pageset_high = BOOT_PAGESET_HIGH;
6743 	zone->pageset_batch = BOOT_PAGESET_BATCH;
6744 
6745 	if (populated_zone(zone))
6746 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6747 			zone->name, zone->present_pages,
6748 					 zone_batchsize(zone));
6749 }
6750 
6751 void __meminit init_currently_empty_zone(struct zone *zone,
6752 					unsigned long zone_start_pfn,
6753 					unsigned long size)
6754 {
6755 	struct pglist_data *pgdat = zone->zone_pgdat;
6756 	int zone_idx = zone_idx(zone) + 1;
6757 
6758 	if (zone_idx > pgdat->nr_zones)
6759 		pgdat->nr_zones = zone_idx;
6760 
6761 	zone->zone_start_pfn = zone_start_pfn;
6762 
6763 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6764 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6765 			pgdat->node_id,
6766 			(unsigned long)zone_idx(zone),
6767 			zone_start_pfn, (zone_start_pfn + size));
6768 
6769 	zone_init_free_lists(zone);
6770 	zone->initialized = 1;
6771 }
6772 
6773 /**
6774  * get_pfn_range_for_nid - Return the start and end page frames for a node
6775  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6776  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6777  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6778  *
6779  * It returns the start and end page frame of a node based on information
6780  * provided by memblock_set_node(). If called for a node
6781  * with no available memory, a warning is printed and the start and end
6782  * PFNs will be 0.
6783  */
6784 void __init get_pfn_range_for_nid(unsigned int nid,
6785 			unsigned long *start_pfn, unsigned long *end_pfn)
6786 {
6787 	unsigned long this_start_pfn, this_end_pfn;
6788 	int i;
6789 
6790 	*start_pfn = -1UL;
6791 	*end_pfn = 0;
6792 
6793 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6794 		*start_pfn = min(*start_pfn, this_start_pfn);
6795 		*end_pfn = max(*end_pfn, this_end_pfn);
6796 	}
6797 
6798 	if (*start_pfn == -1UL)
6799 		*start_pfn = 0;
6800 }
6801 
6802 /*
6803  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6804  * assumption is made that zones within a node are ordered in monotonic
6805  * increasing memory addresses so that the "highest" populated zone is used
6806  */
6807 static void __init find_usable_zone_for_movable(void)
6808 {
6809 	int zone_index;
6810 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6811 		if (zone_index == ZONE_MOVABLE)
6812 			continue;
6813 
6814 		if (arch_zone_highest_possible_pfn[zone_index] >
6815 				arch_zone_lowest_possible_pfn[zone_index])
6816 			break;
6817 	}
6818 
6819 	VM_BUG_ON(zone_index == -1);
6820 	movable_zone = zone_index;
6821 }
6822 
6823 /*
6824  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6825  * because it is sized independent of architecture. Unlike the other zones,
6826  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6827  * in each node depending on the size of each node and how evenly kernelcore
6828  * is distributed. This helper function adjusts the zone ranges
6829  * provided by the architecture for a given node by using the end of the
6830  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6831  * zones within a node are in order of monotonic increases memory addresses
6832  */
6833 static void __init adjust_zone_range_for_zone_movable(int nid,
6834 					unsigned long zone_type,
6835 					unsigned long node_start_pfn,
6836 					unsigned long node_end_pfn,
6837 					unsigned long *zone_start_pfn,
6838 					unsigned long *zone_end_pfn)
6839 {
6840 	/* Only adjust if ZONE_MOVABLE is on this node */
6841 	if (zone_movable_pfn[nid]) {
6842 		/* Size ZONE_MOVABLE */
6843 		if (zone_type == ZONE_MOVABLE) {
6844 			*zone_start_pfn = zone_movable_pfn[nid];
6845 			*zone_end_pfn = min(node_end_pfn,
6846 				arch_zone_highest_possible_pfn[movable_zone]);
6847 
6848 		/* Adjust for ZONE_MOVABLE starting within this range */
6849 		} else if (!mirrored_kernelcore &&
6850 			*zone_start_pfn < zone_movable_pfn[nid] &&
6851 			*zone_end_pfn > zone_movable_pfn[nid]) {
6852 			*zone_end_pfn = zone_movable_pfn[nid];
6853 
6854 		/* Check if this whole range is within ZONE_MOVABLE */
6855 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6856 			*zone_start_pfn = *zone_end_pfn;
6857 	}
6858 }
6859 
6860 /*
6861  * Return the number of pages a zone spans in a node, including holes
6862  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6863  */
6864 static unsigned long __init zone_spanned_pages_in_node(int nid,
6865 					unsigned long zone_type,
6866 					unsigned long node_start_pfn,
6867 					unsigned long node_end_pfn,
6868 					unsigned long *zone_start_pfn,
6869 					unsigned long *zone_end_pfn)
6870 {
6871 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6872 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6873 	/* When hotadd a new node from cpu_up(), the node should be empty */
6874 	if (!node_start_pfn && !node_end_pfn)
6875 		return 0;
6876 
6877 	/* Get the start and end of the zone */
6878 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6879 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6880 	adjust_zone_range_for_zone_movable(nid, zone_type,
6881 				node_start_pfn, node_end_pfn,
6882 				zone_start_pfn, zone_end_pfn);
6883 
6884 	/* Check that this node has pages within the zone's required range */
6885 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6886 		return 0;
6887 
6888 	/* Move the zone boundaries inside the node if necessary */
6889 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6890 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6891 
6892 	/* Return the spanned pages */
6893 	return *zone_end_pfn - *zone_start_pfn;
6894 }
6895 
6896 /*
6897  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6898  * then all holes in the requested range will be accounted for.
6899  */
6900 unsigned long __init __absent_pages_in_range(int nid,
6901 				unsigned long range_start_pfn,
6902 				unsigned long range_end_pfn)
6903 {
6904 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6905 	unsigned long start_pfn, end_pfn;
6906 	int i;
6907 
6908 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6909 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6910 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6911 		nr_absent -= end_pfn - start_pfn;
6912 	}
6913 	return nr_absent;
6914 }
6915 
6916 /**
6917  * absent_pages_in_range - Return number of page frames in holes within a range
6918  * @start_pfn: The start PFN to start searching for holes
6919  * @end_pfn: The end PFN to stop searching for holes
6920  *
6921  * Return: the number of pages frames in memory holes within a range.
6922  */
6923 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6924 							unsigned long end_pfn)
6925 {
6926 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6927 }
6928 
6929 /* Return the number of page frames in holes in a zone on a node */
6930 static unsigned long __init zone_absent_pages_in_node(int nid,
6931 					unsigned long zone_type,
6932 					unsigned long node_start_pfn,
6933 					unsigned long node_end_pfn)
6934 {
6935 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6936 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6937 	unsigned long zone_start_pfn, zone_end_pfn;
6938 	unsigned long nr_absent;
6939 
6940 	/* When hotadd a new node from cpu_up(), the node should be empty */
6941 	if (!node_start_pfn && !node_end_pfn)
6942 		return 0;
6943 
6944 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6945 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6946 
6947 	adjust_zone_range_for_zone_movable(nid, zone_type,
6948 			node_start_pfn, node_end_pfn,
6949 			&zone_start_pfn, &zone_end_pfn);
6950 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6951 
6952 	/*
6953 	 * ZONE_MOVABLE handling.
6954 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6955 	 * and vice versa.
6956 	 */
6957 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6958 		unsigned long start_pfn, end_pfn;
6959 		struct memblock_region *r;
6960 
6961 		for_each_mem_region(r) {
6962 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6963 					  zone_start_pfn, zone_end_pfn);
6964 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6965 					zone_start_pfn, zone_end_pfn);
6966 
6967 			if (zone_type == ZONE_MOVABLE &&
6968 			    memblock_is_mirror(r))
6969 				nr_absent += end_pfn - start_pfn;
6970 
6971 			if (zone_type == ZONE_NORMAL &&
6972 			    !memblock_is_mirror(r))
6973 				nr_absent += end_pfn - start_pfn;
6974 		}
6975 	}
6976 
6977 	return nr_absent;
6978 }
6979 
6980 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6981 						unsigned long node_start_pfn,
6982 						unsigned long node_end_pfn)
6983 {
6984 	unsigned long realtotalpages = 0, totalpages = 0;
6985 	enum zone_type i;
6986 
6987 	for (i = 0; i < MAX_NR_ZONES; i++) {
6988 		struct zone *zone = pgdat->node_zones + i;
6989 		unsigned long zone_start_pfn, zone_end_pfn;
6990 		unsigned long spanned, absent;
6991 		unsigned long size, real_size;
6992 
6993 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6994 						     node_start_pfn,
6995 						     node_end_pfn,
6996 						     &zone_start_pfn,
6997 						     &zone_end_pfn);
6998 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
6999 						   node_start_pfn,
7000 						   node_end_pfn);
7001 
7002 		size = spanned;
7003 		real_size = size - absent;
7004 
7005 		if (size)
7006 			zone->zone_start_pfn = zone_start_pfn;
7007 		else
7008 			zone->zone_start_pfn = 0;
7009 		zone->spanned_pages = size;
7010 		zone->present_pages = real_size;
7011 
7012 		totalpages += size;
7013 		realtotalpages += real_size;
7014 	}
7015 
7016 	pgdat->node_spanned_pages = totalpages;
7017 	pgdat->node_present_pages = realtotalpages;
7018 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
7019 							realtotalpages);
7020 }
7021 
7022 #ifndef CONFIG_SPARSEMEM
7023 /*
7024  * Calculate the size of the zone->blockflags rounded to an unsigned long
7025  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7026  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7027  * round what is now in bits to nearest long in bits, then return it in
7028  * bytes.
7029  */
7030 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7031 {
7032 	unsigned long usemapsize;
7033 
7034 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7035 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7036 	usemapsize = usemapsize >> pageblock_order;
7037 	usemapsize *= NR_PAGEBLOCK_BITS;
7038 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7039 
7040 	return usemapsize / 8;
7041 }
7042 
7043 static void __ref setup_usemap(struct zone *zone)
7044 {
7045 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7046 					       zone->spanned_pages);
7047 	zone->pageblock_flags = NULL;
7048 	if (usemapsize) {
7049 		zone->pageblock_flags =
7050 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7051 					    zone_to_nid(zone));
7052 		if (!zone->pageblock_flags)
7053 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7054 			      usemapsize, zone->name, zone_to_nid(zone));
7055 	}
7056 }
7057 #else
7058 static inline void setup_usemap(struct zone *zone) {}
7059 #endif /* CONFIG_SPARSEMEM */
7060 
7061 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7062 
7063 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7064 void __init set_pageblock_order(void)
7065 {
7066 	unsigned int order;
7067 
7068 	/* Check that pageblock_nr_pages has not already been setup */
7069 	if (pageblock_order)
7070 		return;
7071 
7072 	if (HPAGE_SHIFT > PAGE_SHIFT)
7073 		order = HUGETLB_PAGE_ORDER;
7074 	else
7075 		order = MAX_ORDER - 1;
7076 
7077 	/*
7078 	 * Assume the largest contiguous order of interest is a huge page.
7079 	 * This value may be variable depending on boot parameters on IA64 and
7080 	 * powerpc.
7081 	 */
7082 	pageblock_order = order;
7083 }
7084 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7085 
7086 /*
7087  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7088  * is unused as pageblock_order is set at compile-time. See
7089  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7090  * the kernel config
7091  */
7092 void __init set_pageblock_order(void)
7093 {
7094 }
7095 
7096 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7097 
7098 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7099 						unsigned long present_pages)
7100 {
7101 	unsigned long pages = spanned_pages;
7102 
7103 	/*
7104 	 * Provide a more accurate estimation if there are holes within
7105 	 * the zone and SPARSEMEM is in use. If there are holes within the
7106 	 * zone, each populated memory region may cost us one or two extra
7107 	 * memmap pages due to alignment because memmap pages for each
7108 	 * populated regions may not be naturally aligned on page boundary.
7109 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7110 	 */
7111 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7112 	    IS_ENABLED(CONFIG_SPARSEMEM))
7113 		pages = present_pages;
7114 
7115 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7116 }
7117 
7118 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7119 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7120 {
7121 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7122 
7123 	spin_lock_init(&ds_queue->split_queue_lock);
7124 	INIT_LIST_HEAD(&ds_queue->split_queue);
7125 	ds_queue->split_queue_len = 0;
7126 }
7127 #else
7128 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7129 #endif
7130 
7131 #ifdef CONFIG_COMPACTION
7132 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7133 {
7134 	init_waitqueue_head(&pgdat->kcompactd_wait);
7135 }
7136 #else
7137 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7138 #endif
7139 
7140 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7141 {
7142 	pgdat_resize_init(pgdat);
7143 
7144 	pgdat_init_split_queue(pgdat);
7145 	pgdat_init_kcompactd(pgdat);
7146 
7147 	init_waitqueue_head(&pgdat->kswapd_wait);
7148 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7149 
7150 	pgdat_page_ext_init(pgdat);
7151 	lruvec_init(&pgdat->__lruvec);
7152 }
7153 
7154 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7155 							unsigned long remaining_pages)
7156 {
7157 	atomic_long_set(&zone->managed_pages, remaining_pages);
7158 	zone_set_nid(zone, nid);
7159 	zone->name = zone_names[idx];
7160 	zone->zone_pgdat = NODE_DATA(nid);
7161 	spin_lock_init(&zone->lock);
7162 	zone_seqlock_init(zone);
7163 	zone_pcp_init(zone);
7164 }
7165 
7166 /*
7167  * Set up the zone data structures
7168  * - init pgdat internals
7169  * - init all zones belonging to this node
7170  *
7171  * NOTE: this function is only called during memory hotplug
7172  */
7173 #ifdef CONFIG_MEMORY_HOTPLUG
7174 void __ref free_area_init_core_hotplug(int nid)
7175 {
7176 	enum zone_type z;
7177 	pg_data_t *pgdat = NODE_DATA(nid);
7178 
7179 	pgdat_init_internals(pgdat);
7180 	for (z = 0; z < MAX_NR_ZONES; z++)
7181 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7182 }
7183 #endif
7184 
7185 /*
7186  * Set up the zone data structures:
7187  *   - mark all pages reserved
7188  *   - mark all memory queues empty
7189  *   - clear the memory bitmaps
7190  *
7191  * NOTE: pgdat should get zeroed by caller.
7192  * NOTE: this function is only called during early init.
7193  */
7194 static void __init free_area_init_core(struct pglist_data *pgdat)
7195 {
7196 	enum zone_type j;
7197 	int nid = pgdat->node_id;
7198 
7199 	pgdat_init_internals(pgdat);
7200 	pgdat->per_cpu_nodestats = &boot_nodestats;
7201 
7202 	for (j = 0; j < MAX_NR_ZONES; j++) {
7203 		struct zone *zone = pgdat->node_zones + j;
7204 		unsigned long size, freesize, memmap_pages;
7205 
7206 		size = zone->spanned_pages;
7207 		freesize = zone->present_pages;
7208 
7209 		/*
7210 		 * Adjust freesize so that it accounts for how much memory
7211 		 * is used by this zone for memmap. This affects the watermark
7212 		 * and per-cpu initialisations
7213 		 */
7214 		memmap_pages = calc_memmap_size(size, freesize);
7215 		if (!is_highmem_idx(j)) {
7216 			if (freesize >= memmap_pages) {
7217 				freesize -= memmap_pages;
7218 				if (memmap_pages)
7219 					printk(KERN_DEBUG
7220 					       "  %s zone: %lu pages used for memmap\n",
7221 					       zone_names[j], memmap_pages);
7222 			} else
7223 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
7224 					zone_names[j], memmap_pages, freesize);
7225 		}
7226 
7227 		/* Account for reserved pages */
7228 		if (j == 0 && freesize > dma_reserve) {
7229 			freesize -= dma_reserve;
7230 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
7231 					zone_names[0], dma_reserve);
7232 		}
7233 
7234 		if (!is_highmem_idx(j))
7235 			nr_kernel_pages += freesize;
7236 		/* Charge for highmem memmap if there are enough kernel pages */
7237 		else if (nr_kernel_pages > memmap_pages * 2)
7238 			nr_kernel_pages -= memmap_pages;
7239 		nr_all_pages += freesize;
7240 
7241 		/*
7242 		 * Set an approximate value for lowmem here, it will be adjusted
7243 		 * when the bootmem allocator frees pages into the buddy system.
7244 		 * And all highmem pages will be managed by the buddy system.
7245 		 */
7246 		zone_init_internals(zone, j, nid, freesize);
7247 
7248 		if (!size)
7249 			continue;
7250 
7251 		set_pageblock_order();
7252 		setup_usemap(zone);
7253 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7254 		memmap_init_zone(zone);
7255 	}
7256 }
7257 
7258 #ifdef CONFIG_FLAT_NODE_MEM_MAP
7259 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7260 {
7261 	unsigned long __maybe_unused start = 0;
7262 	unsigned long __maybe_unused offset = 0;
7263 
7264 	/* Skip empty nodes */
7265 	if (!pgdat->node_spanned_pages)
7266 		return;
7267 
7268 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7269 	offset = pgdat->node_start_pfn - start;
7270 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7271 	if (!pgdat->node_mem_map) {
7272 		unsigned long size, end;
7273 		struct page *map;
7274 
7275 		/*
7276 		 * The zone's endpoints aren't required to be MAX_ORDER
7277 		 * aligned but the node_mem_map endpoints must be in order
7278 		 * for the buddy allocator to function correctly.
7279 		 */
7280 		end = pgdat_end_pfn(pgdat);
7281 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7282 		size =  (end - start) * sizeof(struct page);
7283 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7284 					  pgdat->node_id);
7285 		if (!map)
7286 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7287 			      size, pgdat->node_id);
7288 		pgdat->node_mem_map = map + offset;
7289 	}
7290 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7291 				__func__, pgdat->node_id, (unsigned long)pgdat,
7292 				(unsigned long)pgdat->node_mem_map);
7293 #ifndef CONFIG_NEED_MULTIPLE_NODES
7294 	/*
7295 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7296 	 */
7297 	if (pgdat == NODE_DATA(0)) {
7298 		mem_map = NODE_DATA(0)->node_mem_map;
7299 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7300 			mem_map -= offset;
7301 	}
7302 #endif
7303 }
7304 #else
7305 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7306 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
7307 
7308 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7309 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7310 {
7311 	pgdat->first_deferred_pfn = ULONG_MAX;
7312 }
7313 #else
7314 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7315 #endif
7316 
7317 static void __init free_area_init_node(int nid)
7318 {
7319 	pg_data_t *pgdat = NODE_DATA(nid);
7320 	unsigned long start_pfn = 0;
7321 	unsigned long end_pfn = 0;
7322 
7323 	/* pg_data_t should be reset to zero when it's allocated */
7324 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7325 
7326 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7327 
7328 	pgdat->node_id = nid;
7329 	pgdat->node_start_pfn = start_pfn;
7330 	pgdat->per_cpu_nodestats = NULL;
7331 
7332 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7333 		(u64)start_pfn << PAGE_SHIFT,
7334 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7335 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7336 
7337 	alloc_node_mem_map(pgdat);
7338 	pgdat_set_deferred_range(pgdat);
7339 
7340 	free_area_init_core(pgdat);
7341 }
7342 
7343 void __init free_area_init_memoryless_node(int nid)
7344 {
7345 	free_area_init_node(nid);
7346 }
7347 
7348 #if MAX_NUMNODES > 1
7349 /*
7350  * Figure out the number of possible node ids.
7351  */
7352 void __init setup_nr_node_ids(void)
7353 {
7354 	unsigned int highest;
7355 
7356 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7357 	nr_node_ids = highest + 1;
7358 }
7359 #endif
7360 
7361 /**
7362  * node_map_pfn_alignment - determine the maximum internode alignment
7363  *
7364  * This function should be called after node map is populated and sorted.
7365  * It calculates the maximum power of two alignment which can distinguish
7366  * all the nodes.
7367  *
7368  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7369  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7370  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7371  * shifted, 1GiB is enough and this function will indicate so.
7372  *
7373  * This is used to test whether pfn -> nid mapping of the chosen memory
7374  * model has fine enough granularity to avoid incorrect mapping for the
7375  * populated node map.
7376  *
7377  * Return: the determined alignment in pfn's.  0 if there is no alignment
7378  * requirement (single node).
7379  */
7380 unsigned long __init node_map_pfn_alignment(void)
7381 {
7382 	unsigned long accl_mask = 0, last_end = 0;
7383 	unsigned long start, end, mask;
7384 	int last_nid = NUMA_NO_NODE;
7385 	int i, nid;
7386 
7387 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7388 		if (!start || last_nid < 0 || last_nid == nid) {
7389 			last_nid = nid;
7390 			last_end = end;
7391 			continue;
7392 		}
7393 
7394 		/*
7395 		 * Start with a mask granular enough to pin-point to the
7396 		 * start pfn and tick off bits one-by-one until it becomes
7397 		 * too coarse to separate the current node from the last.
7398 		 */
7399 		mask = ~((1 << __ffs(start)) - 1);
7400 		while (mask && last_end <= (start & (mask << 1)))
7401 			mask <<= 1;
7402 
7403 		/* accumulate all internode masks */
7404 		accl_mask |= mask;
7405 	}
7406 
7407 	/* convert mask to number of pages */
7408 	return ~accl_mask + 1;
7409 }
7410 
7411 /**
7412  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7413  *
7414  * Return: the minimum PFN based on information provided via
7415  * memblock_set_node().
7416  */
7417 unsigned long __init find_min_pfn_with_active_regions(void)
7418 {
7419 	return PHYS_PFN(memblock_start_of_DRAM());
7420 }
7421 
7422 /*
7423  * early_calculate_totalpages()
7424  * Sum pages in active regions for movable zone.
7425  * Populate N_MEMORY for calculating usable_nodes.
7426  */
7427 static unsigned long __init early_calculate_totalpages(void)
7428 {
7429 	unsigned long totalpages = 0;
7430 	unsigned long start_pfn, end_pfn;
7431 	int i, nid;
7432 
7433 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7434 		unsigned long pages = end_pfn - start_pfn;
7435 
7436 		totalpages += pages;
7437 		if (pages)
7438 			node_set_state(nid, N_MEMORY);
7439 	}
7440 	return totalpages;
7441 }
7442 
7443 /*
7444  * Find the PFN the Movable zone begins in each node. Kernel memory
7445  * is spread evenly between nodes as long as the nodes have enough
7446  * memory. When they don't, some nodes will have more kernelcore than
7447  * others
7448  */
7449 static void __init find_zone_movable_pfns_for_nodes(void)
7450 {
7451 	int i, nid;
7452 	unsigned long usable_startpfn;
7453 	unsigned long kernelcore_node, kernelcore_remaining;
7454 	/* save the state before borrow the nodemask */
7455 	nodemask_t saved_node_state = node_states[N_MEMORY];
7456 	unsigned long totalpages = early_calculate_totalpages();
7457 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7458 	struct memblock_region *r;
7459 
7460 	/* Need to find movable_zone earlier when movable_node is specified. */
7461 	find_usable_zone_for_movable();
7462 
7463 	/*
7464 	 * If movable_node is specified, ignore kernelcore and movablecore
7465 	 * options.
7466 	 */
7467 	if (movable_node_is_enabled()) {
7468 		for_each_mem_region(r) {
7469 			if (!memblock_is_hotpluggable(r))
7470 				continue;
7471 
7472 			nid = memblock_get_region_node(r);
7473 
7474 			usable_startpfn = PFN_DOWN(r->base);
7475 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7476 				min(usable_startpfn, zone_movable_pfn[nid]) :
7477 				usable_startpfn;
7478 		}
7479 
7480 		goto out2;
7481 	}
7482 
7483 	/*
7484 	 * If kernelcore=mirror is specified, ignore movablecore option
7485 	 */
7486 	if (mirrored_kernelcore) {
7487 		bool mem_below_4gb_not_mirrored = false;
7488 
7489 		for_each_mem_region(r) {
7490 			if (memblock_is_mirror(r))
7491 				continue;
7492 
7493 			nid = memblock_get_region_node(r);
7494 
7495 			usable_startpfn = memblock_region_memory_base_pfn(r);
7496 
7497 			if (usable_startpfn < 0x100000) {
7498 				mem_below_4gb_not_mirrored = true;
7499 				continue;
7500 			}
7501 
7502 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7503 				min(usable_startpfn, zone_movable_pfn[nid]) :
7504 				usable_startpfn;
7505 		}
7506 
7507 		if (mem_below_4gb_not_mirrored)
7508 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7509 
7510 		goto out2;
7511 	}
7512 
7513 	/*
7514 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7515 	 * amount of necessary memory.
7516 	 */
7517 	if (required_kernelcore_percent)
7518 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7519 				       10000UL;
7520 	if (required_movablecore_percent)
7521 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7522 					10000UL;
7523 
7524 	/*
7525 	 * If movablecore= was specified, calculate what size of
7526 	 * kernelcore that corresponds so that memory usable for
7527 	 * any allocation type is evenly spread. If both kernelcore
7528 	 * and movablecore are specified, then the value of kernelcore
7529 	 * will be used for required_kernelcore if it's greater than
7530 	 * what movablecore would have allowed.
7531 	 */
7532 	if (required_movablecore) {
7533 		unsigned long corepages;
7534 
7535 		/*
7536 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7537 		 * was requested by the user
7538 		 */
7539 		required_movablecore =
7540 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7541 		required_movablecore = min(totalpages, required_movablecore);
7542 		corepages = totalpages - required_movablecore;
7543 
7544 		required_kernelcore = max(required_kernelcore, corepages);
7545 	}
7546 
7547 	/*
7548 	 * If kernelcore was not specified or kernelcore size is larger
7549 	 * than totalpages, there is no ZONE_MOVABLE.
7550 	 */
7551 	if (!required_kernelcore || required_kernelcore >= totalpages)
7552 		goto out;
7553 
7554 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7555 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7556 
7557 restart:
7558 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7559 	kernelcore_node = required_kernelcore / usable_nodes;
7560 	for_each_node_state(nid, N_MEMORY) {
7561 		unsigned long start_pfn, end_pfn;
7562 
7563 		/*
7564 		 * Recalculate kernelcore_node if the division per node
7565 		 * now exceeds what is necessary to satisfy the requested
7566 		 * amount of memory for the kernel
7567 		 */
7568 		if (required_kernelcore < kernelcore_node)
7569 			kernelcore_node = required_kernelcore / usable_nodes;
7570 
7571 		/*
7572 		 * As the map is walked, we track how much memory is usable
7573 		 * by the kernel using kernelcore_remaining. When it is
7574 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7575 		 */
7576 		kernelcore_remaining = kernelcore_node;
7577 
7578 		/* Go through each range of PFNs within this node */
7579 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7580 			unsigned long size_pages;
7581 
7582 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7583 			if (start_pfn >= end_pfn)
7584 				continue;
7585 
7586 			/* Account for what is only usable for kernelcore */
7587 			if (start_pfn < usable_startpfn) {
7588 				unsigned long kernel_pages;
7589 				kernel_pages = min(end_pfn, usable_startpfn)
7590 								- start_pfn;
7591 
7592 				kernelcore_remaining -= min(kernel_pages,
7593 							kernelcore_remaining);
7594 				required_kernelcore -= min(kernel_pages,
7595 							required_kernelcore);
7596 
7597 				/* Continue if range is now fully accounted */
7598 				if (end_pfn <= usable_startpfn) {
7599 
7600 					/*
7601 					 * Push zone_movable_pfn to the end so
7602 					 * that if we have to rebalance
7603 					 * kernelcore across nodes, we will
7604 					 * not double account here
7605 					 */
7606 					zone_movable_pfn[nid] = end_pfn;
7607 					continue;
7608 				}
7609 				start_pfn = usable_startpfn;
7610 			}
7611 
7612 			/*
7613 			 * The usable PFN range for ZONE_MOVABLE is from
7614 			 * start_pfn->end_pfn. Calculate size_pages as the
7615 			 * number of pages used as kernelcore
7616 			 */
7617 			size_pages = end_pfn - start_pfn;
7618 			if (size_pages > kernelcore_remaining)
7619 				size_pages = kernelcore_remaining;
7620 			zone_movable_pfn[nid] = start_pfn + size_pages;
7621 
7622 			/*
7623 			 * Some kernelcore has been met, update counts and
7624 			 * break if the kernelcore for this node has been
7625 			 * satisfied
7626 			 */
7627 			required_kernelcore -= min(required_kernelcore,
7628 								size_pages);
7629 			kernelcore_remaining -= size_pages;
7630 			if (!kernelcore_remaining)
7631 				break;
7632 		}
7633 	}
7634 
7635 	/*
7636 	 * If there is still required_kernelcore, we do another pass with one
7637 	 * less node in the count. This will push zone_movable_pfn[nid] further
7638 	 * along on the nodes that still have memory until kernelcore is
7639 	 * satisfied
7640 	 */
7641 	usable_nodes--;
7642 	if (usable_nodes && required_kernelcore > usable_nodes)
7643 		goto restart;
7644 
7645 out2:
7646 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7647 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7648 		zone_movable_pfn[nid] =
7649 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7650 
7651 out:
7652 	/* restore the node_state */
7653 	node_states[N_MEMORY] = saved_node_state;
7654 }
7655 
7656 /* Any regular or high memory on that node ? */
7657 static void check_for_memory(pg_data_t *pgdat, int nid)
7658 {
7659 	enum zone_type zone_type;
7660 
7661 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7662 		struct zone *zone = &pgdat->node_zones[zone_type];
7663 		if (populated_zone(zone)) {
7664 			if (IS_ENABLED(CONFIG_HIGHMEM))
7665 				node_set_state(nid, N_HIGH_MEMORY);
7666 			if (zone_type <= ZONE_NORMAL)
7667 				node_set_state(nid, N_NORMAL_MEMORY);
7668 			break;
7669 		}
7670 	}
7671 }
7672 
7673 /*
7674  * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7675  * such cases we allow max_zone_pfn sorted in the descending order
7676  */
7677 bool __weak arch_has_descending_max_zone_pfns(void)
7678 {
7679 	return false;
7680 }
7681 
7682 /**
7683  * free_area_init - Initialise all pg_data_t and zone data
7684  * @max_zone_pfn: an array of max PFNs for each zone
7685  *
7686  * This will call free_area_init_node() for each active node in the system.
7687  * Using the page ranges provided by memblock_set_node(), the size of each
7688  * zone in each node and their holes is calculated. If the maximum PFN
7689  * between two adjacent zones match, it is assumed that the zone is empty.
7690  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7691  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7692  * starts where the previous one ended. For example, ZONE_DMA32 starts
7693  * at arch_max_dma_pfn.
7694  */
7695 void __init free_area_init(unsigned long *max_zone_pfn)
7696 {
7697 	unsigned long start_pfn, end_pfn;
7698 	int i, nid, zone;
7699 	bool descending;
7700 
7701 	/* Record where the zone boundaries are */
7702 	memset(arch_zone_lowest_possible_pfn, 0,
7703 				sizeof(arch_zone_lowest_possible_pfn));
7704 	memset(arch_zone_highest_possible_pfn, 0,
7705 				sizeof(arch_zone_highest_possible_pfn));
7706 
7707 	start_pfn = find_min_pfn_with_active_regions();
7708 	descending = arch_has_descending_max_zone_pfns();
7709 
7710 	for (i = 0; i < MAX_NR_ZONES; i++) {
7711 		if (descending)
7712 			zone = MAX_NR_ZONES - i - 1;
7713 		else
7714 			zone = i;
7715 
7716 		if (zone == ZONE_MOVABLE)
7717 			continue;
7718 
7719 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7720 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7721 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7722 
7723 		start_pfn = end_pfn;
7724 	}
7725 
7726 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7727 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7728 	find_zone_movable_pfns_for_nodes();
7729 
7730 	/* Print out the zone ranges */
7731 	pr_info("Zone ranges:\n");
7732 	for (i = 0; i < MAX_NR_ZONES; i++) {
7733 		if (i == ZONE_MOVABLE)
7734 			continue;
7735 		pr_info("  %-8s ", zone_names[i]);
7736 		if (arch_zone_lowest_possible_pfn[i] ==
7737 				arch_zone_highest_possible_pfn[i])
7738 			pr_cont("empty\n");
7739 		else
7740 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7741 				(u64)arch_zone_lowest_possible_pfn[i]
7742 					<< PAGE_SHIFT,
7743 				((u64)arch_zone_highest_possible_pfn[i]
7744 					<< PAGE_SHIFT) - 1);
7745 	}
7746 
7747 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7748 	pr_info("Movable zone start for each node\n");
7749 	for (i = 0; i < MAX_NUMNODES; i++) {
7750 		if (zone_movable_pfn[i])
7751 			pr_info("  Node %d: %#018Lx\n", i,
7752 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7753 	}
7754 
7755 	/*
7756 	 * Print out the early node map, and initialize the
7757 	 * subsection-map relative to active online memory ranges to
7758 	 * enable future "sub-section" extensions of the memory map.
7759 	 */
7760 	pr_info("Early memory node ranges\n");
7761 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7762 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7763 			(u64)start_pfn << PAGE_SHIFT,
7764 			((u64)end_pfn << PAGE_SHIFT) - 1);
7765 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7766 	}
7767 
7768 	/* Initialise every node */
7769 	mminit_verify_pageflags_layout();
7770 	setup_nr_node_ids();
7771 	for_each_online_node(nid) {
7772 		pg_data_t *pgdat = NODE_DATA(nid);
7773 		free_area_init_node(nid);
7774 
7775 		/* Any memory on that node */
7776 		if (pgdat->node_present_pages)
7777 			node_set_state(nid, N_MEMORY);
7778 		check_for_memory(pgdat, nid);
7779 	}
7780 }
7781 
7782 static int __init cmdline_parse_core(char *p, unsigned long *core,
7783 				     unsigned long *percent)
7784 {
7785 	unsigned long long coremem;
7786 	char *endptr;
7787 
7788 	if (!p)
7789 		return -EINVAL;
7790 
7791 	/* Value may be a percentage of total memory, otherwise bytes */
7792 	coremem = simple_strtoull(p, &endptr, 0);
7793 	if (*endptr == '%') {
7794 		/* Paranoid check for percent values greater than 100 */
7795 		WARN_ON(coremem > 100);
7796 
7797 		*percent = coremem;
7798 	} else {
7799 		coremem = memparse(p, &p);
7800 		/* Paranoid check that UL is enough for the coremem value */
7801 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7802 
7803 		*core = coremem >> PAGE_SHIFT;
7804 		*percent = 0UL;
7805 	}
7806 	return 0;
7807 }
7808 
7809 /*
7810  * kernelcore=size sets the amount of memory for use for allocations that
7811  * cannot be reclaimed or migrated.
7812  */
7813 static int __init cmdline_parse_kernelcore(char *p)
7814 {
7815 	/* parse kernelcore=mirror */
7816 	if (parse_option_str(p, "mirror")) {
7817 		mirrored_kernelcore = true;
7818 		return 0;
7819 	}
7820 
7821 	return cmdline_parse_core(p, &required_kernelcore,
7822 				  &required_kernelcore_percent);
7823 }
7824 
7825 /*
7826  * movablecore=size sets the amount of memory for use for allocations that
7827  * can be reclaimed or migrated.
7828  */
7829 static int __init cmdline_parse_movablecore(char *p)
7830 {
7831 	return cmdline_parse_core(p, &required_movablecore,
7832 				  &required_movablecore_percent);
7833 }
7834 
7835 early_param("kernelcore", cmdline_parse_kernelcore);
7836 early_param("movablecore", cmdline_parse_movablecore);
7837 
7838 void adjust_managed_page_count(struct page *page, long count)
7839 {
7840 	atomic_long_add(count, &page_zone(page)->managed_pages);
7841 	totalram_pages_add(count);
7842 #ifdef CONFIG_HIGHMEM
7843 	if (PageHighMem(page))
7844 		totalhigh_pages_add(count);
7845 #endif
7846 }
7847 EXPORT_SYMBOL(adjust_managed_page_count);
7848 
7849 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7850 {
7851 	void *pos;
7852 	unsigned long pages = 0;
7853 
7854 	start = (void *)PAGE_ALIGN((unsigned long)start);
7855 	end = (void *)((unsigned long)end & PAGE_MASK);
7856 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7857 		struct page *page = virt_to_page(pos);
7858 		void *direct_map_addr;
7859 
7860 		/*
7861 		 * 'direct_map_addr' might be different from 'pos'
7862 		 * because some architectures' virt_to_page()
7863 		 * work with aliases.  Getting the direct map
7864 		 * address ensures that we get a _writeable_
7865 		 * alias for the memset().
7866 		 */
7867 		direct_map_addr = page_address(page);
7868 		/*
7869 		 * Perform a kasan-unchecked memset() since this memory
7870 		 * has not been initialized.
7871 		 */
7872 		direct_map_addr = kasan_reset_tag(direct_map_addr);
7873 		if ((unsigned int)poison <= 0xFF)
7874 			memset(direct_map_addr, poison, PAGE_SIZE);
7875 
7876 		free_reserved_page(page);
7877 	}
7878 
7879 	if (pages && s)
7880 		pr_info("Freeing %s memory: %ldK\n",
7881 			s, pages << (PAGE_SHIFT - 10));
7882 
7883 	return pages;
7884 }
7885 
7886 void __init mem_init_print_info(void)
7887 {
7888 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7889 	unsigned long init_code_size, init_data_size;
7890 
7891 	physpages = get_num_physpages();
7892 	codesize = _etext - _stext;
7893 	datasize = _edata - _sdata;
7894 	rosize = __end_rodata - __start_rodata;
7895 	bss_size = __bss_stop - __bss_start;
7896 	init_data_size = __init_end - __init_begin;
7897 	init_code_size = _einittext - _sinittext;
7898 
7899 	/*
7900 	 * Detect special cases and adjust section sizes accordingly:
7901 	 * 1) .init.* may be embedded into .data sections
7902 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7903 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7904 	 * 3) .rodata.* may be embedded into .text or .data sections.
7905 	 */
7906 #define adj_init_size(start, end, size, pos, adj) \
7907 	do { \
7908 		if (start <= pos && pos < end && size > adj) \
7909 			size -= adj; \
7910 	} while (0)
7911 
7912 	adj_init_size(__init_begin, __init_end, init_data_size,
7913 		     _sinittext, init_code_size);
7914 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7915 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7916 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7917 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7918 
7919 #undef	adj_init_size
7920 
7921 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7922 #ifdef	CONFIG_HIGHMEM
7923 		", %luK highmem"
7924 #endif
7925 		")\n",
7926 		nr_free_pages() << (PAGE_SHIFT - 10),
7927 		physpages << (PAGE_SHIFT - 10),
7928 		codesize >> 10, datasize >> 10, rosize >> 10,
7929 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7930 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7931 		totalcma_pages << (PAGE_SHIFT - 10)
7932 #ifdef	CONFIG_HIGHMEM
7933 		, totalhigh_pages() << (PAGE_SHIFT - 10)
7934 #endif
7935 		);
7936 }
7937 
7938 /**
7939  * set_dma_reserve - set the specified number of pages reserved in the first zone
7940  * @new_dma_reserve: The number of pages to mark reserved
7941  *
7942  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7943  * In the DMA zone, a significant percentage may be consumed by kernel image
7944  * and other unfreeable allocations which can skew the watermarks badly. This
7945  * function may optionally be used to account for unfreeable pages in the
7946  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7947  * smaller per-cpu batchsize.
7948  */
7949 void __init set_dma_reserve(unsigned long new_dma_reserve)
7950 {
7951 	dma_reserve = new_dma_reserve;
7952 }
7953 
7954 static int page_alloc_cpu_dead(unsigned int cpu)
7955 {
7956 
7957 	lru_add_drain_cpu(cpu);
7958 	drain_pages(cpu);
7959 
7960 	/*
7961 	 * Spill the event counters of the dead processor
7962 	 * into the current processors event counters.
7963 	 * This artificially elevates the count of the current
7964 	 * processor.
7965 	 */
7966 	vm_events_fold_cpu(cpu);
7967 
7968 	/*
7969 	 * Zero the differential counters of the dead processor
7970 	 * so that the vm statistics are consistent.
7971 	 *
7972 	 * This is only okay since the processor is dead and cannot
7973 	 * race with what we are doing.
7974 	 */
7975 	cpu_vm_stats_fold(cpu);
7976 	return 0;
7977 }
7978 
7979 #ifdef CONFIG_NUMA
7980 int hashdist = HASHDIST_DEFAULT;
7981 
7982 static int __init set_hashdist(char *str)
7983 {
7984 	if (!str)
7985 		return 0;
7986 	hashdist = simple_strtoul(str, &str, 0);
7987 	return 1;
7988 }
7989 __setup("hashdist=", set_hashdist);
7990 #endif
7991 
7992 void __init page_alloc_init(void)
7993 {
7994 	int ret;
7995 
7996 #ifdef CONFIG_NUMA
7997 	if (num_node_state(N_MEMORY) == 1)
7998 		hashdist = 0;
7999 #endif
8000 
8001 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
8002 					"mm/page_alloc:dead", NULL,
8003 					page_alloc_cpu_dead);
8004 	WARN_ON(ret < 0);
8005 }
8006 
8007 /*
8008  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8009  *	or min_free_kbytes changes.
8010  */
8011 static void calculate_totalreserve_pages(void)
8012 {
8013 	struct pglist_data *pgdat;
8014 	unsigned long reserve_pages = 0;
8015 	enum zone_type i, j;
8016 
8017 	for_each_online_pgdat(pgdat) {
8018 
8019 		pgdat->totalreserve_pages = 0;
8020 
8021 		for (i = 0; i < MAX_NR_ZONES; i++) {
8022 			struct zone *zone = pgdat->node_zones + i;
8023 			long max = 0;
8024 			unsigned long managed_pages = zone_managed_pages(zone);
8025 
8026 			/* Find valid and maximum lowmem_reserve in the zone */
8027 			for (j = i; j < MAX_NR_ZONES; j++) {
8028 				if (zone->lowmem_reserve[j] > max)
8029 					max = zone->lowmem_reserve[j];
8030 			}
8031 
8032 			/* we treat the high watermark as reserved pages. */
8033 			max += high_wmark_pages(zone);
8034 
8035 			if (max > managed_pages)
8036 				max = managed_pages;
8037 
8038 			pgdat->totalreserve_pages += max;
8039 
8040 			reserve_pages += max;
8041 		}
8042 	}
8043 	totalreserve_pages = reserve_pages;
8044 }
8045 
8046 /*
8047  * setup_per_zone_lowmem_reserve - called whenever
8048  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8049  *	has a correct pages reserved value, so an adequate number of
8050  *	pages are left in the zone after a successful __alloc_pages().
8051  */
8052 static void setup_per_zone_lowmem_reserve(void)
8053 {
8054 	struct pglist_data *pgdat;
8055 	enum zone_type i, j;
8056 
8057 	for_each_online_pgdat(pgdat) {
8058 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8059 			struct zone *zone = &pgdat->node_zones[i];
8060 			int ratio = sysctl_lowmem_reserve_ratio[i];
8061 			bool clear = !ratio || !zone_managed_pages(zone);
8062 			unsigned long managed_pages = 0;
8063 
8064 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8065 				if (clear) {
8066 					zone->lowmem_reserve[j] = 0;
8067 				} else {
8068 					struct zone *upper_zone = &pgdat->node_zones[j];
8069 
8070 					managed_pages += zone_managed_pages(upper_zone);
8071 					zone->lowmem_reserve[j] = managed_pages / ratio;
8072 				}
8073 			}
8074 		}
8075 	}
8076 
8077 	/* update totalreserve_pages */
8078 	calculate_totalreserve_pages();
8079 }
8080 
8081 static void __setup_per_zone_wmarks(void)
8082 {
8083 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8084 	unsigned long lowmem_pages = 0;
8085 	struct zone *zone;
8086 	unsigned long flags;
8087 
8088 	/* Calculate total number of !ZONE_HIGHMEM pages */
8089 	for_each_zone(zone) {
8090 		if (!is_highmem(zone))
8091 			lowmem_pages += zone_managed_pages(zone);
8092 	}
8093 
8094 	for_each_zone(zone) {
8095 		u64 tmp;
8096 
8097 		spin_lock_irqsave(&zone->lock, flags);
8098 		tmp = (u64)pages_min * zone_managed_pages(zone);
8099 		do_div(tmp, lowmem_pages);
8100 		if (is_highmem(zone)) {
8101 			/*
8102 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8103 			 * need highmem pages, so cap pages_min to a small
8104 			 * value here.
8105 			 *
8106 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8107 			 * deltas control async page reclaim, and so should
8108 			 * not be capped for highmem.
8109 			 */
8110 			unsigned long min_pages;
8111 
8112 			min_pages = zone_managed_pages(zone) / 1024;
8113 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8114 			zone->_watermark[WMARK_MIN] = min_pages;
8115 		} else {
8116 			/*
8117 			 * If it's a lowmem zone, reserve a number of pages
8118 			 * proportionate to the zone's size.
8119 			 */
8120 			zone->_watermark[WMARK_MIN] = tmp;
8121 		}
8122 
8123 		/*
8124 		 * Set the kswapd watermarks distance according to the
8125 		 * scale factor in proportion to available memory, but
8126 		 * ensure a minimum size on small systems.
8127 		 */
8128 		tmp = max_t(u64, tmp >> 2,
8129 			    mult_frac(zone_managed_pages(zone),
8130 				      watermark_scale_factor, 10000));
8131 
8132 		zone->watermark_boost = 0;
8133 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8134 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8135 
8136 		spin_unlock_irqrestore(&zone->lock, flags);
8137 	}
8138 
8139 	/* update totalreserve_pages */
8140 	calculate_totalreserve_pages();
8141 }
8142 
8143 /**
8144  * setup_per_zone_wmarks - called when min_free_kbytes changes
8145  * or when memory is hot-{added|removed}
8146  *
8147  * Ensures that the watermark[min,low,high] values for each zone are set
8148  * correctly with respect to min_free_kbytes.
8149  */
8150 void setup_per_zone_wmarks(void)
8151 {
8152 	static DEFINE_SPINLOCK(lock);
8153 
8154 	spin_lock(&lock);
8155 	__setup_per_zone_wmarks();
8156 	spin_unlock(&lock);
8157 }
8158 
8159 /*
8160  * Initialise min_free_kbytes.
8161  *
8162  * For small machines we want it small (128k min).  For large machines
8163  * we want it large (256MB max).  But it is not linear, because network
8164  * bandwidth does not increase linearly with machine size.  We use
8165  *
8166  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8167  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8168  *
8169  * which yields
8170  *
8171  * 16MB:	512k
8172  * 32MB:	724k
8173  * 64MB:	1024k
8174  * 128MB:	1448k
8175  * 256MB:	2048k
8176  * 512MB:	2896k
8177  * 1024MB:	4096k
8178  * 2048MB:	5792k
8179  * 4096MB:	8192k
8180  * 8192MB:	11584k
8181  * 16384MB:	16384k
8182  */
8183 int __meminit init_per_zone_wmark_min(void)
8184 {
8185 	unsigned long lowmem_kbytes;
8186 	int new_min_free_kbytes;
8187 
8188 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8189 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8190 
8191 	if (new_min_free_kbytes > user_min_free_kbytes) {
8192 		min_free_kbytes = new_min_free_kbytes;
8193 		if (min_free_kbytes < 128)
8194 			min_free_kbytes = 128;
8195 		if (min_free_kbytes > 262144)
8196 			min_free_kbytes = 262144;
8197 	} else {
8198 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8199 				new_min_free_kbytes, user_min_free_kbytes);
8200 	}
8201 	setup_per_zone_wmarks();
8202 	refresh_zone_stat_thresholds();
8203 	setup_per_zone_lowmem_reserve();
8204 
8205 #ifdef CONFIG_NUMA
8206 	setup_min_unmapped_ratio();
8207 	setup_min_slab_ratio();
8208 #endif
8209 
8210 	khugepaged_min_free_kbytes_update();
8211 
8212 	return 0;
8213 }
8214 postcore_initcall(init_per_zone_wmark_min)
8215 
8216 /*
8217  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8218  *	that we can call two helper functions whenever min_free_kbytes
8219  *	changes.
8220  */
8221 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8222 		void *buffer, size_t *length, loff_t *ppos)
8223 {
8224 	int rc;
8225 
8226 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8227 	if (rc)
8228 		return rc;
8229 
8230 	if (write) {
8231 		user_min_free_kbytes = min_free_kbytes;
8232 		setup_per_zone_wmarks();
8233 	}
8234 	return 0;
8235 }
8236 
8237 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8238 		void *buffer, size_t *length, loff_t *ppos)
8239 {
8240 	int rc;
8241 
8242 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8243 	if (rc)
8244 		return rc;
8245 
8246 	if (write)
8247 		setup_per_zone_wmarks();
8248 
8249 	return 0;
8250 }
8251 
8252 #ifdef CONFIG_NUMA
8253 static void setup_min_unmapped_ratio(void)
8254 {
8255 	pg_data_t *pgdat;
8256 	struct zone *zone;
8257 
8258 	for_each_online_pgdat(pgdat)
8259 		pgdat->min_unmapped_pages = 0;
8260 
8261 	for_each_zone(zone)
8262 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8263 						         sysctl_min_unmapped_ratio) / 100;
8264 }
8265 
8266 
8267 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8268 		void *buffer, size_t *length, loff_t *ppos)
8269 {
8270 	int rc;
8271 
8272 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8273 	if (rc)
8274 		return rc;
8275 
8276 	setup_min_unmapped_ratio();
8277 
8278 	return 0;
8279 }
8280 
8281 static void setup_min_slab_ratio(void)
8282 {
8283 	pg_data_t *pgdat;
8284 	struct zone *zone;
8285 
8286 	for_each_online_pgdat(pgdat)
8287 		pgdat->min_slab_pages = 0;
8288 
8289 	for_each_zone(zone)
8290 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8291 						     sysctl_min_slab_ratio) / 100;
8292 }
8293 
8294 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8295 		void *buffer, size_t *length, loff_t *ppos)
8296 {
8297 	int rc;
8298 
8299 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8300 	if (rc)
8301 		return rc;
8302 
8303 	setup_min_slab_ratio();
8304 
8305 	return 0;
8306 }
8307 #endif
8308 
8309 /*
8310  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8311  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8312  *	whenever sysctl_lowmem_reserve_ratio changes.
8313  *
8314  * The reserve ratio obviously has absolutely no relation with the
8315  * minimum watermarks. The lowmem reserve ratio can only make sense
8316  * if in function of the boot time zone sizes.
8317  */
8318 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8319 		void *buffer, size_t *length, loff_t *ppos)
8320 {
8321 	int i;
8322 
8323 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8324 
8325 	for (i = 0; i < MAX_NR_ZONES; i++) {
8326 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8327 			sysctl_lowmem_reserve_ratio[i] = 0;
8328 	}
8329 
8330 	setup_per_zone_lowmem_reserve();
8331 	return 0;
8332 }
8333 
8334 /*
8335  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8336  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8337  * pagelist can have before it gets flushed back to buddy allocator.
8338  */
8339 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8340 		void *buffer, size_t *length, loff_t *ppos)
8341 {
8342 	struct zone *zone;
8343 	int old_percpu_pagelist_fraction;
8344 	int ret;
8345 
8346 	mutex_lock(&pcp_batch_high_lock);
8347 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8348 
8349 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8350 	if (!write || ret < 0)
8351 		goto out;
8352 
8353 	/* Sanity checking to avoid pcp imbalance */
8354 	if (percpu_pagelist_fraction &&
8355 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8356 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8357 		ret = -EINVAL;
8358 		goto out;
8359 	}
8360 
8361 	/* No change? */
8362 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8363 		goto out;
8364 
8365 	for_each_populated_zone(zone)
8366 		zone_set_pageset_high_and_batch(zone);
8367 out:
8368 	mutex_unlock(&pcp_batch_high_lock);
8369 	return ret;
8370 }
8371 
8372 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8373 /*
8374  * Returns the number of pages that arch has reserved but
8375  * is not known to alloc_large_system_hash().
8376  */
8377 static unsigned long __init arch_reserved_kernel_pages(void)
8378 {
8379 	return 0;
8380 }
8381 #endif
8382 
8383 /*
8384  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8385  * machines. As memory size is increased the scale is also increased but at
8386  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8387  * quadruples the scale is increased by one, which means the size of hash table
8388  * only doubles, instead of quadrupling as well.
8389  * Because 32-bit systems cannot have large physical memory, where this scaling
8390  * makes sense, it is disabled on such platforms.
8391  */
8392 #if __BITS_PER_LONG > 32
8393 #define ADAPT_SCALE_BASE	(64ul << 30)
8394 #define ADAPT_SCALE_SHIFT	2
8395 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8396 #endif
8397 
8398 /*
8399  * allocate a large system hash table from bootmem
8400  * - it is assumed that the hash table must contain an exact power-of-2
8401  *   quantity of entries
8402  * - limit is the number of hash buckets, not the total allocation size
8403  */
8404 void *__init alloc_large_system_hash(const char *tablename,
8405 				     unsigned long bucketsize,
8406 				     unsigned long numentries,
8407 				     int scale,
8408 				     int flags,
8409 				     unsigned int *_hash_shift,
8410 				     unsigned int *_hash_mask,
8411 				     unsigned long low_limit,
8412 				     unsigned long high_limit)
8413 {
8414 	unsigned long long max = high_limit;
8415 	unsigned long log2qty, size;
8416 	void *table = NULL;
8417 	gfp_t gfp_flags;
8418 	bool virt;
8419 	bool huge;
8420 
8421 	/* allow the kernel cmdline to have a say */
8422 	if (!numentries) {
8423 		/* round applicable memory size up to nearest megabyte */
8424 		numentries = nr_kernel_pages;
8425 		numentries -= arch_reserved_kernel_pages();
8426 
8427 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8428 		if (PAGE_SHIFT < 20)
8429 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8430 
8431 #if __BITS_PER_LONG > 32
8432 		if (!high_limit) {
8433 			unsigned long adapt;
8434 
8435 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8436 			     adapt <<= ADAPT_SCALE_SHIFT)
8437 				scale++;
8438 		}
8439 #endif
8440 
8441 		/* limit to 1 bucket per 2^scale bytes of low memory */
8442 		if (scale > PAGE_SHIFT)
8443 			numentries >>= (scale - PAGE_SHIFT);
8444 		else
8445 			numentries <<= (PAGE_SHIFT - scale);
8446 
8447 		/* Make sure we've got at least a 0-order allocation.. */
8448 		if (unlikely(flags & HASH_SMALL)) {
8449 			/* Makes no sense without HASH_EARLY */
8450 			WARN_ON(!(flags & HASH_EARLY));
8451 			if (!(numentries >> *_hash_shift)) {
8452 				numentries = 1UL << *_hash_shift;
8453 				BUG_ON(!numentries);
8454 			}
8455 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8456 			numentries = PAGE_SIZE / bucketsize;
8457 	}
8458 	numentries = roundup_pow_of_two(numentries);
8459 
8460 	/* limit allocation size to 1/16 total memory by default */
8461 	if (max == 0) {
8462 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8463 		do_div(max, bucketsize);
8464 	}
8465 	max = min(max, 0x80000000ULL);
8466 
8467 	if (numentries < low_limit)
8468 		numentries = low_limit;
8469 	if (numentries > max)
8470 		numentries = max;
8471 
8472 	log2qty = ilog2(numentries);
8473 
8474 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8475 	do {
8476 		virt = false;
8477 		size = bucketsize << log2qty;
8478 		if (flags & HASH_EARLY) {
8479 			if (flags & HASH_ZERO)
8480 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8481 			else
8482 				table = memblock_alloc_raw(size,
8483 							   SMP_CACHE_BYTES);
8484 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8485 			table = __vmalloc(size, gfp_flags);
8486 			virt = true;
8487 			huge = is_vm_area_hugepages(table);
8488 		} else {
8489 			/*
8490 			 * If bucketsize is not a power-of-two, we may free
8491 			 * some pages at the end of hash table which
8492 			 * alloc_pages_exact() automatically does
8493 			 */
8494 			table = alloc_pages_exact(size, gfp_flags);
8495 			kmemleak_alloc(table, size, 1, gfp_flags);
8496 		}
8497 	} while (!table && size > PAGE_SIZE && --log2qty);
8498 
8499 	if (!table)
8500 		panic("Failed to allocate %s hash table\n", tablename);
8501 
8502 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8503 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8504 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8505 
8506 	if (_hash_shift)
8507 		*_hash_shift = log2qty;
8508 	if (_hash_mask)
8509 		*_hash_mask = (1 << log2qty) - 1;
8510 
8511 	return table;
8512 }
8513 
8514 /*
8515  * This function checks whether pageblock includes unmovable pages or not.
8516  *
8517  * PageLRU check without isolation or lru_lock could race so that
8518  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8519  * check without lock_page also may miss some movable non-lru pages at
8520  * race condition. So you can't expect this function should be exact.
8521  *
8522  * Returns a page without holding a reference. If the caller wants to
8523  * dereference that page (e.g., dumping), it has to make sure that it
8524  * cannot get removed (e.g., via memory unplug) concurrently.
8525  *
8526  */
8527 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8528 				 int migratetype, int flags)
8529 {
8530 	unsigned long iter = 0;
8531 	unsigned long pfn = page_to_pfn(page);
8532 	unsigned long offset = pfn % pageblock_nr_pages;
8533 
8534 	if (is_migrate_cma_page(page)) {
8535 		/*
8536 		 * CMA allocations (alloc_contig_range) really need to mark
8537 		 * isolate CMA pageblocks even when they are not movable in fact
8538 		 * so consider them movable here.
8539 		 */
8540 		if (is_migrate_cma(migratetype))
8541 			return NULL;
8542 
8543 		return page;
8544 	}
8545 
8546 	for (; iter < pageblock_nr_pages - offset; iter++) {
8547 		if (!pfn_valid_within(pfn + iter))
8548 			continue;
8549 
8550 		page = pfn_to_page(pfn + iter);
8551 
8552 		/*
8553 		 * Both, bootmem allocations and memory holes are marked
8554 		 * PG_reserved and are unmovable. We can even have unmovable
8555 		 * allocations inside ZONE_MOVABLE, for example when
8556 		 * specifying "movablecore".
8557 		 */
8558 		if (PageReserved(page))
8559 			return page;
8560 
8561 		/*
8562 		 * If the zone is movable and we have ruled out all reserved
8563 		 * pages then it should be reasonably safe to assume the rest
8564 		 * is movable.
8565 		 */
8566 		if (zone_idx(zone) == ZONE_MOVABLE)
8567 			continue;
8568 
8569 		/*
8570 		 * Hugepages are not in LRU lists, but they're movable.
8571 		 * THPs are on the LRU, but need to be counted as #small pages.
8572 		 * We need not scan over tail pages because we don't
8573 		 * handle each tail page individually in migration.
8574 		 */
8575 		if (PageHuge(page) || PageTransCompound(page)) {
8576 			struct page *head = compound_head(page);
8577 			unsigned int skip_pages;
8578 
8579 			if (PageHuge(page)) {
8580 				if (!hugepage_migration_supported(page_hstate(head)))
8581 					return page;
8582 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8583 				return page;
8584 			}
8585 
8586 			skip_pages = compound_nr(head) - (page - head);
8587 			iter += skip_pages - 1;
8588 			continue;
8589 		}
8590 
8591 		/*
8592 		 * We can't use page_count without pin a page
8593 		 * because another CPU can free compound page.
8594 		 * This check already skips compound tails of THP
8595 		 * because their page->_refcount is zero at all time.
8596 		 */
8597 		if (!page_ref_count(page)) {
8598 			if (PageBuddy(page))
8599 				iter += (1 << buddy_order(page)) - 1;
8600 			continue;
8601 		}
8602 
8603 		/*
8604 		 * The HWPoisoned page may be not in buddy system, and
8605 		 * page_count() is not 0.
8606 		 */
8607 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8608 			continue;
8609 
8610 		/*
8611 		 * We treat all PageOffline() pages as movable when offlining
8612 		 * to give drivers a chance to decrement their reference count
8613 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8614 		 * can be offlined as there are no direct references anymore.
8615 		 * For actually unmovable PageOffline() where the driver does
8616 		 * not support this, we will fail later when trying to actually
8617 		 * move these pages that still have a reference count > 0.
8618 		 * (false negatives in this function only)
8619 		 */
8620 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8621 			continue;
8622 
8623 		if (__PageMovable(page) || PageLRU(page))
8624 			continue;
8625 
8626 		/*
8627 		 * If there are RECLAIMABLE pages, we need to check
8628 		 * it.  But now, memory offline itself doesn't call
8629 		 * shrink_node_slabs() and it still to be fixed.
8630 		 */
8631 		return page;
8632 	}
8633 	return NULL;
8634 }
8635 
8636 #ifdef CONFIG_CONTIG_ALLOC
8637 static unsigned long pfn_max_align_down(unsigned long pfn)
8638 {
8639 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8640 			     pageblock_nr_pages) - 1);
8641 }
8642 
8643 static unsigned long pfn_max_align_up(unsigned long pfn)
8644 {
8645 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8646 				pageblock_nr_pages));
8647 }
8648 
8649 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8650 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8651 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8652 static void alloc_contig_dump_pages(struct list_head *page_list)
8653 {
8654 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8655 
8656 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8657 		struct page *page;
8658 
8659 		dump_stack();
8660 		list_for_each_entry(page, page_list, lru)
8661 			dump_page(page, "migration failure");
8662 	}
8663 }
8664 #else
8665 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8666 {
8667 }
8668 #endif
8669 
8670 /* [start, end) must belong to a single zone. */
8671 static int __alloc_contig_migrate_range(struct compact_control *cc,
8672 					unsigned long start, unsigned long end)
8673 {
8674 	/* This function is based on compact_zone() from compaction.c. */
8675 	unsigned int nr_reclaimed;
8676 	unsigned long pfn = start;
8677 	unsigned int tries = 0;
8678 	int ret = 0;
8679 	struct migration_target_control mtc = {
8680 		.nid = zone_to_nid(cc->zone),
8681 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8682 	};
8683 
8684 	migrate_prep();
8685 
8686 	while (pfn < end || !list_empty(&cc->migratepages)) {
8687 		if (fatal_signal_pending(current)) {
8688 			ret = -EINTR;
8689 			break;
8690 		}
8691 
8692 		if (list_empty(&cc->migratepages)) {
8693 			cc->nr_migratepages = 0;
8694 			ret = isolate_migratepages_range(cc, pfn, end);
8695 			if (ret && ret != -EAGAIN)
8696 				break;
8697 			pfn = cc->migrate_pfn;
8698 			tries = 0;
8699 		} else if (++tries == 5) {
8700 			ret = -EBUSY;
8701 			break;
8702 		}
8703 
8704 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8705 							&cc->migratepages);
8706 		cc->nr_migratepages -= nr_reclaimed;
8707 
8708 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8709 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8710 
8711 		/*
8712 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8713 		 * to retry again over this error, so do the same here.
8714 		 */
8715 		if (ret == -ENOMEM)
8716 			break;
8717 	}
8718 	if (ret < 0) {
8719 		alloc_contig_dump_pages(&cc->migratepages);
8720 		putback_movable_pages(&cc->migratepages);
8721 		return ret;
8722 	}
8723 	return 0;
8724 }
8725 
8726 /**
8727  * alloc_contig_range() -- tries to allocate given range of pages
8728  * @start:	start PFN to allocate
8729  * @end:	one-past-the-last PFN to allocate
8730  * @migratetype:	migratetype of the underlaying pageblocks (either
8731  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8732  *			in range must have the same migratetype and it must
8733  *			be either of the two.
8734  * @gfp_mask:	GFP mask to use during compaction
8735  *
8736  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8737  * aligned.  The PFN range must belong to a single zone.
8738  *
8739  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8740  * pageblocks in the range.  Once isolated, the pageblocks should not
8741  * be modified by others.
8742  *
8743  * Return: zero on success or negative error code.  On success all
8744  * pages which PFN is in [start, end) are allocated for the caller and
8745  * need to be freed with free_contig_range().
8746  */
8747 int alloc_contig_range(unsigned long start, unsigned long end,
8748 		       unsigned migratetype, gfp_t gfp_mask)
8749 {
8750 	unsigned long outer_start, outer_end;
8751 	unsigned int order;
8752 	int ret = 0;
8753 
8754 	struct compact_control cc = {
8755 		.nr_migratepages = 0,
8756 		.order = -1,
8757 		.zone = page_zone(pfn_to_page(start)),
8758 		.mode = MIGRATE_SYNC,
8759 		.ignore_skip_hint = true,
8760 		.no_set_skip_hint = true,
8761 		.gfp_mask = current_gfp_context(gfp_mask),
8762 		.alloc_contig = true,
8763 	};
8764 	INIT_LIST_HEAD(&cc.migratepages);
8765 
8766 	/*
8767 	 * What we do here is we mark all pageblocks in range as
8768 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8769 	 * have different sizes, and due to the way page allocator
8770 	 * work, we align the range to biggest of the two pages so
8771 	 * that page allocator won't try to merge buddies from
8772 	 * different pageblocks and change MIGRATE_ISOLATE to some
8773 	 * other migration type.
8774 	 *
8775 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8776 	 * migrate the pages from an unaligned range (ie. pages that
8777 	 * we are interested in).  This will put all the pages in
8778 	 * range back to page allocator as MIGRATE_ISOLATE.
8779 	 *
8780 	 * When this is done, we take the pages in range from page
8781 	 * allocator removing them from the buddy system.  This way
8782 	 * page allocator will never consider using them.
8783 	 *
8784 	 * This lets us mark the pageblocks back as
8785 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8786 	 * aligned range but not in the unaligned, original range are
8787 	 * put back to page allocator so that buddy can use them.
8788 	 */
8789 
8790 	ret = start_isolate_page_range(pfn_max_align_down(start),
8791 				       pfn_max_align_up(end), migratetype, 0);
8792 	if (ret)
8793 		return ret;
8794 
8795 	drain_all_pages(cc.zone);
8796 
8797 	/*
8798 	 * In case of -EBUSY, we'd like to know which page causes problem.
8799 	 * So, just fall through. test_pages_isolated() has a tracepoint
8800 	 * which will report the busy page.
8801 	 *
8802 	 * It is possible that busy pages could become available before
8803 	 * the call to test_pages_isolated, and the range will actually be
8804 	 * allocated.  So, if we fall through be sure to clear ret so that
8805 	 * -EBUSY is not accidentally used or returned to caller.
8806 	 */
8807 	ret = __alloc_contig_migrate_range(&cc, start, end);
8808 	if (ret && ret != -EBUSY)
8809 		goto done;
8810 	ret =0;
8811 
8812 	/*
8813 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8814 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8815 	 * more, all pages in [start, end) are free in page allocator.
8816 	 * What we are going to do is to allocate all pages from
8817 	 * [start, end) (that is remove them from page allocator).
8818 	 *
8819 	 * The only problem is that pages at the beginning and at the
8820 	 * end of interesting range may be not aligned with pages that
8821 	 * page allocator holds, ie. they can be part of higher order
8822 	 * pages.  Because of this, we reserve the bigger range and
8823 	 * once this is done free the pages we are not interested in.
8824 	 *
8825 	 * We don't have to hold zone->lock here because the pages are
8826 	 * isolated thus they won't get removed from buddy.
8827 	 */
8828 
8829 	order = 0;
8830 	outer_start = start;
8831 	while (!PageBuddy(pfn_to_page(outer_start))) {
8832 		if (++order >= MAX_ORDER) {
8833 			outer_start = start;
8834 			break;
8835 		}
8836 		outer_start &= ~0UL << order;
8837 	}
8838 
8839 	if (outer_start != start) {
8840 		order = buddy_order(pfn_to_page(outer_start));
8841 
8842 		/*
8843 		 * outer_start page could be small order buddy page and
8844 		 * it doesn't include start page. Adjust outer_start
8845 		 * in this case to report failed page properly
8846 		 * on tracepoint in test_pages_isolated()
8847 		 */
8848 		if (outer_start + (1UL << order) <= start)
8849 			outer_start = start;
8850 	}
8851 
8852 	/* Make sure the range is really isolated. */
8853 	if (test_pages_isolated(outer_start, end, 0)) {
8854 		ret = -EBUSY;
8855 		goto done;
8856 	}
8857 
8858 	/* Grab isolated pages from freelists. */
8859 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8860 	if (!outer_end) {
8861 		ret = -EBUSY;
8862 		goto done;
8863 	}
8864 
8865 	/* Free head and tail (if any) */
8866 	if (start != outer_start)
8867 		free_contig_range(outer_start, start - outer_start);
8868 	if (end != outer_end)
8869 		free_contig_range(end, outer_end - end);
8870 
8871 done:
8872 	undo_isolate_page_range(pfn_max_align_down(start),
8873 				pfn_max_align_up(end), migratetype);
8874 	return ret;
8875 }
8876 EXPORT_SYMBOL(alloc_contig_range);
8877 
8878 static int __alloc_contig_pages(unsigned long start_pfn,
8879 				unsigned long nr_pages, gfp_t gfp_mask)
8880 {
8881 	unsigned long end_pfn = start_pfn + nr_pages;
8882 
8883 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8884 				  gfp_mask);
8885 }
8886 
8887 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8888 				   unsigned long nr_pages)
8889 {
8890 	unsigned long i, end_pfn = start_pfn + nr_pages;
8891 	struct page *page;
8892 
8893 	for (i = start_pfn; i < end_pfn; i++) {
8894 		page = pfn_to_online_page(i);
8895 		if (!page)
8896 			return false;
8897 
8898 		if (page_zone(page) != z)
8899 			return false;
8900 
8901 		if (PageReserved(page))
8902 			return false;
8903 	}
8904 	return true;
8905 }
8906 
8907 static bool zone_spans_last_pfn(const struct zone *zone,
8908 				unsigned long start_pfn, unsigned long nr_pages)
8909 {
8910 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8911 
8912 	return zone_spans_pfn(zone, last_pfn);
8913 }
8914 
8915 /**
8916  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8917  * @nr_pages:	Number of contiguous pages to allocate
8918  * @gfp_mask:	GFP mask to limit search and used during compaction
8919  * @nid:	Target node
8920  * @nodemask:	Mask for other possible nodes
8921  *
8922  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8923  * on an applicable zonelist to find a contiguous pfn range which can then be
8924  * tried for allocation with alloc_contig_range(). This routine is intended
8925  * for allocation requests which can not be fulfilled with the buddy allocator.
8926  *
8927  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8928  * power of two then the alignment is guaranteed to be to the given nr_pages
8929  * (e.g. 1GB request would be aligned to 1GB).
8930  *
8931  * Allocated pages can be freed with free_contig_range() or by manually calling
8932  * __free_page() on each allocated page.
8933  *
8934  * Return: pointer to contiguous pages on success, or NULL if not successful.
8935  */
8936 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8937 				int nid, nodemask_t *nodemask)
8938 {
8939 	unsigned long ret, pfn, flags;
8940 	struct zonelist *zonelist;
8941 	struct zone *zone;
8942 	struct zoneref *z;
8943 
8944 	zonelist = node_zonelist(nid, gfp_mask);
8945 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8946 					gfp_zone(gfp_mask), nodemask) {
8947 		spin_lock_irqsave(&zone->lock, flags);
8948 
8949 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8950 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8951 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8952 				/*
8953 				 * We release the zone lock here because
8954 				 * alloc_contig_range() will also lock the zone
8955 				 * at some point. If there's an allocation
8956 				 * spinning on this lock, it may win the race
8957 				 * and cause alloc_contig_range() to fail...
8958 				 */
8959 				spin_unlock_irqrestore(&zone->lock, flags);
8960 				ret = __alloc_contig_pages(pfn, nr_pages,
8961 							gfp_mask);
8962 				if (!ret)
8963 					return pfn_to_page(pfn);
8964 				spin_lock_irqsave(&zone->lock, flags);
8965 			}
8966 			pfn += nr_pages;
8967 		}
8968 		spin_unlock_irqrestore(&zone->lock, flags);
8969 	}
8970 	return NULL;
8971 }
8972 #endif /* CONFIG_CONTIG_ALLOC */
8973 
8974 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8975 {
8976 	unsigned int count = 0;
8977 
8978 	for (; nr_pages--; pfn++) {
8979 		struct page *page = pfn_to_page(pfn);
8980 
8981 		count += page_count(page) != 1;
8982 		__free_page(page);
8983 	}
8984 	WARN(count != 0, "%d pages are still in use!\n", count);
8985 }
8986 EXPORT_SYMBOL(free_contig_range);
8987 
8988 /*
8989  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8990  * page high values need to be recalulated.
8991  */
8992 void __meminit zone_pcp_update(struct zone *zone)
8993 {
8994 	mutex_lock(&pcp_batch_high_lock);
8995 	zone_set_pageset_high_and_batch(zone);
8996 	mutex_unlock(&pcp_batch_high_lock);
8997 }
8998 
8999 /*
9000  * Effectively disable pcplists for the zone by setting the high limit to 0
9001  * and draining all cpus. A concurrent page freeing on another CPU that's about
9002  * to put the page on pcplist will either finish before the drain and the page
9003  * will be drained, or observe the new high limit and skip the pcplist.
9004  *
9005  * Must be paired with a call to zone_pcp_enable().
9006  */
9007 void zone_pcp_disable(struct zone *zone)
9008 {
9009 	mutex_lock(&pcp_batch_high_lock);
9010 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9011 	__drain_all_pages(zone, true);
9012 }
9013 
9014 void zone_pcp_enable(struct zone *zone)
9015 {
9016 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9017 	mutex_unlock(&pcp_batch_high_lock);
9018 }
9019 
9020 void zone_pcp_reset(struct zone *zone)
9021 {
9022 	unsigned long flags;
9023 	int cpu;
9024 	struct per_cpu_pageset *pset;
9025 
9026 	/* avoid races with drain_pages()  */
9027 	local_irq_save(flags);
9028 	if (zone->pageset != &boot_pageset) {
9029 		for_each_online_cpu(cpu) {
9030 			pset = per_cpu_ptr(zone->pageset, cpu);
9031 			drain_zonestat(zone, pset);
9032 		}
9033 		free_percpu(zone->pageset);
9034 		zone->pageset = &boot_pageset;
9035 	}
9036 	local_irq_restore(flags);
9037 }
9038 
9039 #ifdef CONFIG_MEMORY_HOTREMOVE
9040 /*
9041  * All pages in the range must be in a single zone, must not contain holes,
9042  * must span full sections, and must be isolated before calling this function.
9043  */
9044 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9045 {
9046 	unsigned long pfn = start_pfn;
9047 	struct page *page;
9048 	struct zone *zone;
9049 	unsigned int order;
9050 	unsigned long flags;
9051 
9052 	offline_mem_sections(pfn, end_pfn);
9053 	zone = page_zone(pfn_to_page(pfn));
9054 	spin_lock_irqsave(&zone->lock, flags);
9055 	while (pfn < end_pfn) {
9056 		page = pfn_to_page(pfn);
9057 		/*
9058 		 * The HWPoisoned page may be not in buddy system, and
9059 		 * page_count() is not 0.
9060 		 */
9061 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9062 			pfn++;
9063 			continue;
9064 		}
9065 		/*
9066 		 * At this point all remaining PageOffline() pages have a
9067 		 * reference count of 0 and can simply be skipped.
9068 		 */
9069 		if (PageOffline(page)) {
9070 			BUG_ON(page_count(page));
9071 			BUG_ON(PageBuddy(page));
9072 			pfn++;
9073 			continue;
9074 		}
9075 
9076 		BUG_ON(page_count(page));
9077 		BUG_ON(!PageBuddy(page));
9078 		order = buddy_order(page);
9079 		del_page_from_free_list(page, zone, order);
9080 		pfn += (1 << order);
9081 	}
9082 	spin_unlock_irqrestore(&zone->lock, flags);
9083 }
9084 #endif
9085 
9086 bool is_free_buddy_page(struct page *page)
9087 {
9088 	struct zone *zone = page_zone(page);
9089 	unsigned long pfn = page_to_pfn(page);
9090 	unsigned long flags;
9091 	unsigned int order;
9092 
9093 	spin_lock_irqsave(&zone->lock, flags);
9094 	for (order = 0; order < MAX_ORDER; order++) {
9095 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9096 
9097 		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9098 			break;
9099 	}
9100 	spin_unlock_irqrestore(&zone->lock, flags);
9101 
9102 	return order < MAX_ORDER;
9103 }
9104 
9105 #ifdef CONFIG_MEMORY_FAILURE
9106 /*
9107  * Break down a higher-order page in sub-pages, and keep our target out of
9108  * buddy allocator.
9109  */
9110 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9111 				   struct page *target, int low, int high,
9112 				   int migratetype)
9113 {
9114 	unsigned long size = 1 << high;
9115 	struct page *current_buddy, *next_page;
9116 
9117 	while (high > low) {
9118 		high--;
9119 		size >>= 1;
9120 
9121 		if (target >= &page[size]) {
9122 			next_page = page + size;
9123 			current_buddy = page;
9124 		} else {
9125 			next_page = page;
9126 			current_buddy = page + size;
9127 		}
9128 
9129 		if (set_page_guard(zone, current_buddy, high, migratetype))
9130 			continue;
9131 
9132 		if (current_buddy != target) {
9133 			add_to_free_list(current_buddy, zone, high, migratetype);
9134 			set_buddy_order(current_buddy, high);
9135 			page = next_page;
9136 		}
9137 	}
9138 }
9139 
9140 /*
9141  * Take a page that will be marked as poisoned off the buddy allocator.
9142  */
9143 bool take_page_off_buddy(struct page *page)
9144 {
9145 	struct zone *zone = page_zone(page);
9146 	unsigned long pfn = page_to_pfn(page);
9147 	unsigned long flags;
9148 	unsigned int order;
9149 	bool ret = false;
9150 
9151 	spin_lock_irqsave(&zone->lock, flags);
9152 	for (order = 0; order < MAX_ORDER; order++) {
9153 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9154 		int page_order = buddy_order(page_head);
9155 
9156 		if (PageBuddy(page_head) && page_order >= order) {
9157 			unsigned long pfn_head = page_to_pfn(page_head);
9158 			int migratetype = get_pfnblock_migratetype(page_head,
9159 								   pfn_head);
9160 
9161 			del_page_from_free_list(page_head, zone, page_order);
9162 			break_down_buddy_pages(zone, page_head, page, 0,
9163 						page_order, migratetype);
9164 			ret = true;
9165 			break;
9166 		}
9167 		if (page_count(page_head) > 0)
9168 			break;
9169 	}
9170 	spin_unlock_irqrestore(&zone->lock, flags);
9171 	return ret;
9172 }
9173 #endif
9174