xref: /openbmc/linux/mm/page_alloc.c (revision 03e92a5e097d679acbd1fb4d2ae238a38158aa0b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
78 #include "internal.h"
79 #include "shuffle.h"
80 #include "page_reporting.h"
81 
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
84 
85 /* No special request */
86 #define FPI_NONE		((__force fpi_t)0)
87 
88 /*
89  * Skip free page reporting notification for the (possibly merged) page.
90  * This does not hinder free page reporting from grabbing the page,
91  * reporting it and marking it "reported" -  it only skips notifying
92  * the free page reporting infrastructure about a newly freed page. For
93  * example, used when temporarily pulling a page from a freelist and
94  * putting it back unmodified.
95  */
96 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
97 
98 /*
99  * Place the (possibly merged) page to the tail of the freelist. Will ignore
100  * page shuffling (relevant code - e.g., memory onlining - is expected to
101  * shuffle the whole zone).
102  *
103  * Note: No code should rely on this flag for correctness - it's purely
104  *       to allow for optimizations when handing back either fresh pages
105  *       (memory onlining) or untouched pages (page isolation, free page
106  *       reporting).
107  */
108 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
109 
110 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
111 static DEFINE_MUTEX(pcp_batch_high_lock);
112 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
113 
114 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
115 DEFINE_PER_CPU(int, numa_node);
116 EXPORT_PER_CPU_SYMBOL(numa_node);
117 #endif
118 
119 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
120 
121 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
122 /*
123  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
124  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
125  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
126  * defined in <linux/topology.h>.
127  */
128 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
129 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
130 #endif
131 
132 /* work_structs for global per-cpu drains */
133 struct pcpu_drain {
134 	struct zone *zone;
135 	struct work_struct work;
136 };
137 static DEFINE_MUTEX(pcpu_drain_mutex);
138 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
139 
140 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
141 volatile unsigned long latent_entropy __latent_entropy;
142 EXPORT_SYMBOL(latent_entropy);
143 #endif
144 
145 /*
146  * Array of node states.
147  */
148 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
149 	[N_POSSIBLE] = NODE_MASK_ALL,
150 	[N_ONLINE] = { { [0] = 1UL } },
151 #ifndef CONFIG_NUMA
152 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
153 #ifdef CONFIG_HIGHMEM
154 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
155 #endif
156 	[N_MEMORY] = { { [0] = 1UL } },
157 	[N_CPU] = { { [0] = 1UL } },
158 #endif	/* NUMA */
159 };
160 EXPORT_SYMBOL(node_states);
161 
162 atomic_long_t _totalram_pages __read_mostly;
163 EXPORT_SYMBOL(_totalram_pages);
164 unsigned long totalreserve_pages __read_mostly;
165 unsigned long totalcma_pages __read_mostly;
166 
167 int percpu_pagelist_fraction;
168 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
169 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
170 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
171 #else
172 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
173 #endif
174 EXPORT_SYMBOL(init_on_alloc);
175 
176 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
177 DEFINE_STATIC_KEY_TRUE(init_on_free);
178 #else
179 DEFINE_STATIC_KEY_FALSE(init_on_free);
180 #endif
181 EXPORT_SYMBOL(init_on_free);
182 
183 static int __init early_init_on_alloc(char *buf)
184 {
185 	int ret;
186 	bool bool_result;
187 
188 	ret = kstrtobool(buf, &bool_result);
189 	if (ret)
190 		return ret;
191 	if (bool_result && page_poisoning_enabled())
192 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
193 	if (bool_result)
194 		static_branch_enable(&init_on_alloc);
195 	else
196 		static_branch_disable(&init_on_alloc);
197 	return 0;
198 }
199 early_param("init_on_alloc", early_init_on_alloc);
200 
201 static int __init early_init_on_free(char *buf)
202 {
203 	int ret;
204 	bool bool_result;
205 
206 	ret = kstrtobool(buf, &bool_result);
207 	if (ret)
208 		return ret;
209 	if (bool_result && page_poisoning_enabled())
210 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
211 	if (bool_result)
212 		static_branch_enable(&init_on_free);
213 	else
214 		static_branch_disable(&init_on_free);
215 	return 0;
216 }
217 early_param("init_on_free", early_init_on_free);
218 
219 /*
220  * A cached value of the page's pageblock's migratetype, used when the page is
221  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
222  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
223  * Also the migratetype set in the page does not necessarily match the pcplist
224  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
225  * other index - this ensures that it will be put on the correct CMA freelist.
226  */
227 static inline int get_pcppage_migratetype(struct page *page)
228 {
229 	return page->index;
230 }
231 
232 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
233 {
234 	page->index = migratetype;
235 }
236 
237 #ifdef CONFIG_PM_SLEEP
238 /*
239  * The following functions are used by the suspend/hibernate code to temporarily
240  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
241  * while devices are suspended.  To avoid races with the suspend/hibernate code,
242  * they should always be called with system_transition_mutex held
243  * (gfp_allowed_mask also should only be modified with system_transition_mutex
244  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
245  * with that modification).
246  */
247 
248 static gfp_t saved_gfp_mask;
249 
250 void pm_restore_gfp_mask(void)
251 {
252 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
253 	if (saved_gfp_mask) {
254 		gfp_allowed_mask = saved_gfp_mask;
255 		saved_gfp_mask = 0;
256 	}
257 }
258 
259 void pm_restrict_gfp_mask(void)
260 {
261 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
262 	WARN_ON(saved_gfp_mask);
263 	saved_gfp_mask = gfp_allowed_mask;
264 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
265 }
266 
267 bool pm_suspended_storage(void)
268 {
269 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
270 		return false;
271 	return true;
272 }
273 #endif /* CONFIG_PM_SLEEP */
274 
275 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
276 unsigned int pageblock_order __read_mostly;
277 #endif
278 
279 static void __free_pages_ok(struct page *page, unsigned int order,
280 			    fpi_t fpi_flags);
281 
282 /*
283  * results with 256, 32 in the lowmem_reserve sysctl:
284  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
285  *	1G machine -> (16M dma, 784M normal, 224M high)
286  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
287  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
288  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
289  *
290  * TBD: should special case ZONE_DMA32 machines here - in those we normally
291  * don't need any ZONE_NORMAL reservation
292  */
293 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
294 #ifdef CONFIG_ZONE_DMA
295 	[ZONE_DMA] = 256,
296 #endif
297 #ifdef CONFIG_ZONE_DMA32
298 	[ZONE_DMA32] = 256,
299 #endif
300 	[ZONE_NORMAL] = 32,
301 #ifdef CONFIG_HIGHMEM
302 	[ZONE_HIGHMEM] = 0,
303 #endif
304 	[ZONE_MOVABLE] = 0,
305 };
306 
307 static char * const zone_names[MAX_NR_ZONES] = {
308 #ifdef CONFIG_ZONE_DMA
309 	 "DMA",
310 #endif
311 #ifdef CONFIG_ZONE_DMA32
312 	 "DMA32",
313 #endif
314 	 "Normal",
315 #ifdef CONFIG_HIGHMEM
316 	 "HighMem",
317 #endif
318 	 "Movable",
319 #ifdef CONFIG_ZONE_DEVICE
320 	 "Device",
321 #endif
322 };
323 
324 const char * const migratetype_names[MIGRATE_TYPES] = {
325 	"Unmovable",
326 	"Movable",
327 	"Reclaimable",
328 	"HighAtomic",
329 #ifdef CONFIG_CMA
330 	"CMA",
331 #endif
332 #ifdef CONFIG_MEMORY_ISOLATION
333 	"Isolate",
334 #endif
335 };
336 
337 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
338 	[NULL_COMPOUND_DTOR] = NULL,
339 	[COMPOUND_PAGE_DTOR] = free_compound_page,
340 #ifdef CONFIG_HUGETLB_PAGE
341 	[HUGETLB_PAGE_DTOR] = free_huge_page,
342 #endif
343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
344 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
345 #endif
346 };
347 
348 int min_free_kbytes = 1024;
349 int user_min_free_kbytes = -1;
350 #ifdef CONFIG_DISCONTIGMEM
351 /*
352  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
353  * are not on separate NUMA nodes. Functionally this works but with
354  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
355  * quite small. By default, do not boost watermarks on discontigmem as in
356  * many cases very high-order allocations like THP are likely to be
357  * unsupported and the premature reclaim offsets the advantage of long-term
358  * fragmentation avoidance.
359  */
360 int watermark_boost_factor __read_mostly;
361 #else
362 int watermark_boost_factor __read_mostly = 15000;
363 #endif
364 int watermark_scale_factor = 10;
365 
366 static unsigned long nr_kernel_pages __initdata;
367 static unsigned long nr_all_pages __initdata;
368 static unsigned long dma_reserve __initdata;
369 
370 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
371 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
372 static unsigned long required_kernelcore __initdata;
373 static unsigned long required_kernelcore_percent __initdata;
374 static unsigned long required_movablecore __initdata;
375 static unsigned long required_movablecore_percent __initdata;
376 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
377 static bool mirrored_kernelcore __meminitdata;
378 
379 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
380 int movable_zone;
381 EXPORT_SYMBOL(movable_zone);
382 
383 #if MAX_NUMNODES > 1
384 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
385 unsigned int nr_online_nodes __read_mostly = 1;
386 EXPORT_SYMBOL(nr_node_ids);
387 EXPORT_SYMBOL(nr_online_nodes);
388 #endif
389 
390 int page_group_by_mobility_disabled __read_mostly;
391 
392 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
393 /*
394  * During boot we initialize deferred pages on-demand, as needed, but once
395  * page_alloc_init_late() has finished, the deferred pages are all initialized,
396  * and we can permanently disable that path.
397  */
398 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
399 
400 /*
401  * Calling kasan_free_pages() only after deferred memory initialization
402  * has completed. Poisoning pages during deferred memory init will greatly
403  * lengthen the process and cause problem in large memory systems as the
404  * deferred pages initialization is done with interrupt disabled.
405  *
406  * Assuming that there will be no reference to those newly initialized
407  * pages before they are ever allocated, this should have no effect on
408  * KASAN memory tracking as the poison will be properly inserted at page
409  * allocation time. The only corner case is when pages are allocated by
410  * on-demand allocation and then freed again before the deferred pages
411  * initialization is done, but this is not likely to happen.
412  */
413 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
414 {
415 	if (!static_branch_unlikely(&deferred_pages))
416 		kasan_free_pages(page, order);
417 }
418 
419 /* Returns true if the struct page for the pfn is uninitialised */
420 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
421 {
422 	int nid = early_pfn_to_nid(pfn);
423 
424 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
425 		return true;
426 
427 	return false;
428 }
429 
430 /*
431  * Returns true when the remaining initialisation should be deferred until
432  * later in the boot cycle when it can be parallelised.
433  */
434 static bool __meminit
435 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
436 {
437 	static unsigned long prev_end_pfn, nr_initialised;
438 
439 	/*
440 	 * prev_end_pfn static that contains the end of previous zone
441 	 * No need to protect because called very early in boot before smp_init.
442 	 */
443 	if (prev_end_pfn != end_pfn) {
444 		prev_end_pfn = end_pfn;
445 		nr_initialised = 0;
446 	}
447 
448 	/* Always populate low zones for address-constrained allocations */
449 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
450 		return false;
451 
452 	/*
453 	 * We start only with one section of pages, more pages are added as
454 	 * needed until the rest of deferred pages are initialized.
455 	 */
456 	nr_initialised++;
457 	if ((nr_initialised > PAGES_PER_SECTION) &&
458 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
459 		NODE_DATA(nid)->first_deferred_pfn = pfn;
460 		return true;
461 	}
462 	return false;
463 }
464 #else
465 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
466 
467 static inline bool early_page_uninitialised(unsigned long pfn)
468 {
469 	return false;
470 }
471 
472 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
473 {
474 	return false;
475 }
476 #endif
477 
478 /* Return a pointer to the bitmap storing bits affecting a block of pages */
479 static inline unsigned long *get_pageblock_bitmap(struct page *page,
480 							unsigned long pfn)
481 {
482 #ifdef CONFIG_SPARSEMEM
483 	return section_to_usemap(__pfn_to_section(pfn));
484 #else
485 	return page_zone(page)->pageblock_flags;
486 #endif /* CONFIG_SPARSEMEM */
487 }
488 
489 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
490 {
491 #ifdef CONFIG_SPARSEMEM
492 	pfn &= (PAGES_PER_SECTION-1);
493 #else
494 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
495 #endif /* CONFIG_SPARSEMEM */
496 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
497 }
498 
499 /**
500  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
501  * @page: The page within the block of interest
502  * @pfn: The target page frame number
503  * @mask: mask of bits that the caller is interested in
504  *
505  * Return: pageblock_bits flags
506  */
507 static __always_inline
508 unsigned long __get_pfnblock_flags_mask(struct page *page,
509 					unsigned long pfn,
510 					unsigned long mask)
511 {
512 	unsigned long *bitmap;
513 	unsigned long bitidx, word_bitidx;
514 	unsigned long word;
515 
516 	bitmap = get_pageblock_bitmap(page, pfn);
517 	bitidx = pfn_to_bitidx(page, pfn);
518 	word_bitidx = bitidx / BITS_PER_LONG;
519 	bitidx &= (BITS_PER_LONG-1);
520 
521 	word = bitmap[word_bitidx];
522 	return (word >> bitidx) & mask;
523 }
524 
525 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
526 					unsigned long mask)
527 {
528 	return __get_pfnblock_flags_mask(page, pfn, mask);
529 }
530 
531 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
532 {
533 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
534 }
535 
536 /**
537  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
538  * @page: The page within the block of interest
539  * @flags: The flags to set
540  * @pfn: The target page frame number
541  * @mask: mask of bits that the caller is interested in
542  */
543 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
544 					unsigned long pfn,
545 					unsigned long mask)
546 {
547 	unsigned long *bitmap;
548 	unsigned long bitidx, word_bitidx;
549 	unsigned long old_word, word;
550 
551 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
552 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
553 
554 	bitmap = get_pageblock_bitmap(page, pfn);
555 	bitidx = pfn_to_bitidx(page, pfn);
556 	word_bitidx = bitidx / BITS_PER_LONG;
557 	bitidx &= (BITS_PER_LONG-1);
558 
559 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
560 
561 	mask <<= bitidx;
562 	flags <<= bitidx;
563 
564 	word = READ_ONCE(bitmap[word_bitidx]);
565 	for (;;) {
566 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
567 		if (word == old_word)
568 			break;
569 		word = old_word;
570 	}
571 }
572 
573 void set_pageblock_migratetype(struct page *page, int migratetype)
574 {
575 	if (unlikely(page_group_by_mobility_disabled &&
576 		     migratetype < MIGRATE_PCPTYPES))
577 		migratetype = MIGRATE_UNMOVABLE;
578 
579 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
580 				page_to_pfn(page), MIGRATETYPE_MASK);
581 }
582 
583 #ifdef CONFIG_DEBUG_VM
584 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
585 {
586 	int ret = 0;
587 	unsigned seq;
588 	unsigned long pfn = page_to_pfn(page);
589 	unsigned long sp, start_pfn;
590 
591 	do {
592 		seq = zone_span_seqbegin(zone);
593 		start_pfn = zone->zone_start_pfn;
594 		sp = zone->spanned_pages;
595 		if (!zone_spans_pfn(zone, pfn))
596 			ret = 1;
597 	} while (zone_span_seqretry(zone, seq));
598 
599 	if (ret)
600 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
601 			pfn, zone_to_nid(zone), zone->name,
602 			start_pfn, start_pfn + sp);
603 
604 	return ret;
605 }
606 
607 static int page_is_consistent(struct zone *zone, struct page *page)
608 {
609 	if (!pfn_valid_within(page_to_pfn(page)))
610 		return 0;
611 	if (zone != page_zone(page))
612 		return 0;
613 
614 	return 1;
615 }
616 /*
617  * Temporary debugging check for pages not lying within a given zone.
618  */
619 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
620 {
621 	if (page_outside_zone_boundaries(zone, page))
622 		return 1;
623 	if (!page_is_consistent(zone, page))
624 		return 1;
625 
626 	return 0;
627 }
628 #else
629 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
630 {
631 	return 0;
632 }
633 #endif
634 
635 static void bad_page(struct page *page, const char *reason)
636 {
637 	static unsigned long resume;
638 	static unsigned long nr_shown;
639 	static unsigned long nr_unshown;
640 
641 	/*
642 	 * Allow a burst of 60 reports, then keep quiet for that minute;
643 	 * or allow a steady drip of one report per second.
644 	 */
645 	if (nr_shown == 60) {
646 		if (time_before(jiffies, resume)) {
647 			nr_unshown++;
648 			goto out;
649 		}
650 		if (nr_unshown) {
651 			pr_alert(
652 			      "BUG: Bad page state: %lu messages suppressed\n",
653 				nr_unshown);
654 			nr_unshown = 0;
655 		}
656 		nr_shown = 0;
657 	}
658 	if (nr_shown++ == 0)
659 		resume = jiffies + 60 * HZ;
660 
661 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
662 		current->comm, page_to_pfn(page));
663 	__dump_page(page, reason);
664 	dump_page_owner(page);
665 
666 	print_modules();
667 	dump_stack();
668 out:
669 	/* Leave bad fields for debug, except PageBuddy could make trouble */
670 	page_mapcount_reset(page); /* remove PageBuddy */
671 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
672 }
673 
674 /*
675  * Higher-order pages are called "compound pages".  They are structured thusly:
676  *
677  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
678  *
679  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
680  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
681  *
682  * The first tail page's ->compound_dtor holds the offset in array of compound
683  * page destructors. See compound_page_dtors.
684  *
685  * The first tail page's ->compound_order holds the order of allocation.
686  * This usage means that zero-order pages may not be compound.
687  */
688 
689 void free_compound_page(struct page *page)
690 {
691 	mem_cgroup_uncharge(page);
692 	__free_pages_ok(page, compound_order(page), FPI_NONE);
693 }
694 
695 void prep_compound_page(struct page *page, unsigned int order)
696 {
697 	int i;
698 	int nr_pages = 1 << order;
699 
700 	__SetPageHead(page);
701 	for (i = 1; i < nr_pages; i++) {
702 		struct page *p = page + i;
703 		set_page_count(p, 0);
704 		p->mapping = TAIL_MAPPING;
705 		set_compound_head(p, page);
706 	}
707 
708 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
709 	set_compound_order(page, order);
710 	atomic_set(compound_mapcount_ptr(page), -1);
711 	if (hpage_pincount_available(page))
712 		atomic_set(compound_pincount_ptr(page), 0);
713 }
714 
715 #ifdef CONFIG_DEBUG_PAGEALLOC
716 unsigned int _debug_guardpage_minorder;
717 
718 bool _debug_pagealloc_enabled_early __read_mostly
719 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
720 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
721 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
722 EXPORT_SYMBOL(_debug_pagealloc_enabled);
723 
724 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
725 
726 static int __init early_debug_pagealloc(char *buf)
727 {
728 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
729 }
730 early_param("debug_pagealloc", early_debug_pagealloc);
731 
732 void init_debug_pagealloc(void)
733 {
734 	if (!debug_pagealloc_enabled())
735 		return;
736 
737 	static_branch_enable(&_debug_pagealloc_enabled);
738 
739 	if (!debug_guardpage_minorder())
740 		return;
741 
742 	static_branch_enable(&_debug_guardpage_enabled);
743 }
744 
745 static int __init debug_guardpage_minorder_setup(char *buf)
746 {
747 	unsigned long res;
748 
749 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
750 		pr_err("Bad debug_guardpage_minorder value\n");
751 		return 0;
752 	}
753 	_debug_guardpage_minorder = res;
754 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
755 	return 0;
756 }
757 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
758 
759 static inline bool set_page_guard(struct zone *zone, struct page *page,
760 				unsigned int order, int migratetype)
761 {
762 	if (!debug_guardpage_enabled())
763 		return false;
764 
765 	if (order >= debug_guardpage_minorder())
766 		return false;
767 
768 	__SetPageGuard(page);
769 	INIT_LIST_HEAD(&page->lru);
770 	set_page_private(page, order);
771 	/* Guard pages are not available for any usage */
772 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
773 
774 	return true;
775 }
776 
777 static inline void clear_page_guard(struct zone *zone, struct page *page,
778 				unsigned int order, int migratetype)
779 {
780 	if (!debug_guardpage_enabled())
781 		return;
782 
783 	__ClearPageGuard(page);
784 
785 	set_page_private(page, 0);
786 	if (!is_migrate_isolate(migratetype))
787 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
788 }
789 #else
790 static inline bool set_page_guard(struct zone *zone, struct page *page,
791 			unsigned int order, int migratetype) { return false; }
792 static inline void clear_page_guard(struct zone *zone, struct page *page,
793 				unsigned int order, int migratetype) {}
794 #endif
795 
796 static inline void set_buddy_order(struct page *page, unsigned int order)
797 {
798 	set_page_private(page, order);
799 	__SetPageBuddy(page);
800 }
801 
802 /*
803  * This function checks whether a page is free && is the buddy
804  * we can coalesce a page and its buddy if
805  * (a) the buddy is not in a hole (check before calling!) &&
806  * (b) the buddy is in the buddy system &&
807  * (c) a page and its buddy have the same order &&
808  * (d) a page and its buddy are in the same zone.
809  *
810  * For recording whether a page is in the buddy system, we set PageBuddy.
811  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
812  *
813  * For recording page's order, we use page_private(page).
814  */
815 static inline bool page_is_buddy(struct page *page, struct page *buddy,
816 							unsigned int order)
817 {
818 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
819 		return false;
820 
821 	if (buddy_order(buddy) != order)
822 		return false;
823 
824 	/*
825 	 * zone check is done late to avoid uselessly calculating
826 	 * zone/node ids for pages that could never merge.
827 	 */
828 	if (page_zone_id(page) != page_zone_id(buddy))
829 		return false;
830 
831 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
832 
833 	return true;
834 }
835 
836 #ifdef CONFIG_COMPACTION
837 static inline struct capture_control *task_capc(struct zone *zone)
838 {
839 	struct capture_control *capc = current->capture_control;
840 
841 	return unlikely(capc) &&
842 		!(current->flags & PF_KTHREAD) &&
843 		!capc->page &&
844 		capc->cc->zone == zone ? capc : NULL;
845 }
846 
847 static inline bool
848 compaction_capture(struct capture_control *capc, struct page *page,
849 		   int order, int migratetype)
850 {
851 	if (!capc || order != capc->cc->order)
852 		return false;
853 
854 	/* Do not accidentally pollute CMA or isolated regions*/
855 	if (is_migrate_cma(migratetype) ||
856 	    is_migrate_isolate(migratetype))
857 		return false;
858 
859 	/*
860 	 * Do not let lower order allocations polluate a movable pageblock.
861 	 * This might let an unmovable request use a reclaimable pageblock
862 	 * and vice-versa but no more than normal fallback logic which can
863 	 * have trouble finding a high-order free page.
864 	 */
865 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
866 		return false;
867 
868 	capc->page = page;
869 	return true;
870 }
871 
872 #else
873 static inline struct capture_control *task_capc(struct zone *zone)
874 {
875 	return NULL;
876 }
877 
878 static inline bool
879 compaction_capture(struct capture_control *capc, struct page *page,
880 		   int order, int migratetype)
881 {
882 	return false;
883 }
884 #endif /* CONFIG_COMPACTION */
885 
886 /* Used for pages not on another list */
887 static inline void add_to_free_list(struct page *page, struct zone *zone,
888 				    unsigned int order, int migratetype)
889 {
890 	struct free_area *area = &zone->free_area[order];
891 
892 	list_add(&page->lru, &area->free_list[migratetype]);
893 	area->nr_free++;
894 }
895 
896 /* Used for pages not on another list */
897 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
898 					 unsigned int order, int migratetype)
899 {
900 	struct free_area *area = &zone->free_area[order];
901 
902 	list_add_tail(&page->lru, &area->free_list[migratetype]);
903 	area->nr_free++;
904 }
905 
906 /*
907  * Used for pages which are on another list. Move the pages to the tail
908  * of the list - so the moved pages won't immediately be considered for
909  * allocation again (e.g., optimization for memory onlining).
910  */
911 static inline void move_to_free_list(struct page *page, struct zone *zone,
912 				     unsigned int order, int migratetype)
913 {
914 	struct free_area *area = &zone->free_area[order];
915 
916 	list_move_tail(&page->lru, &area->free_list[migratetype]);
917 }
918 
919 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
920 					   unsigned int order)
921 {
922 	/* clear reported state and update reported page count */
923 	if (page_reported(page))
924 		__ClearPageReported(page);
925 
926 	list_del(&page->lru);
927 	__ClearPageBuddy(page);
928 	set_page_private(page, 0);
929 	zone->free_area[order].nr_free--;
930 }
931 
932 /*
933  * If this is not the largest possible page, check if the buddy
934  * of the next-highest order is free. If it is, it's possible
935  * that pages are being freed that will coalesce soon. In case,
936  * that is happening, add the free page to the tail of the list
937  * so it's less likely to be used soon and more likely to be merged
938  * as a higher order page
939  */
940 static inline bool
941 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
942 		   struct page *page, unsigned int order)
943 {
944 	struct page *higher_page, *higher_buddy;
945 	unsigned long combined_pfn;
946 
947 	if (order >= MAX_ORDER - 2)
948 		return false;
949 
950 	if (!pfn_valid_within(buddy_pfn))
951 		return false;
952 
953 	combined_pfn = buddy_pfn & pfn;
954 	higher_page = page + (combined_pfn - pfn);
955 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
956 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
957 
958 	return pfn_valid_within(buddy_pfn) &&
959 	       page_is_buddy(higher_page, higher_buddy, order + 1);
960 }
961 
962 /*
963  * Freeing function for a buddy system allocator.
964  *
965  * The concept of a buddy system is to maintain direct-mapped table
966  * (containing bit values) for memory blocks of various "orders".
967  * The bottom level table contains the map for the smallest allocatable
968  * units of memory (here, pages), and each level above it describes
969  * pairs of units from the levels below, hence, "buddies".
970  * At a high level, all that happens here is marking the table entry
971  * at the bottom level available, and propagating the changes upward
972  * as necessary, plus some accounting needed to play nicely with other
973  * parts of the VM system.
974  * At each level, we keep a list of pages, which are heads of continuous
975  * free pages of length of (1 << order) and marked with PageBuddy.
976  * Page's order is recorded in page_private(page) field.
977  * So when we are allocating or freeing one, we can derive the state of the
978  * other.  That is, if we allocate a small block, and both were
979  * free, the remainder of the region must be split into blocks.
980  * If a block is freed, and its buddy is also free, then this
981  * triggers coalescing into a block of larger size.
982  *
983  * -- nyc
984  */
985 
986 static inline void __free_one_page(struct page *page,
987 		unsigned long pfn,
988 		struct zone *zone, unsigned int order,
989 		int migratetype, fpi_t fpi_flags)
990 {
991 	struct capture_control *capc = task_capc(zone);
992 	unsigned long buddy_pfn;
993 	unsigned long combined_pfn;
994 	unsigned int max_order;
995 	struct page *buddy;
996 	bool to_tail;
997 
998 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
999 
1000 	VM_BUG_ON(!zone_is_initialized(zone));
1001 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1002 
1003 	VM_BUG_ON(migratetype == -1);
1004 	if (likely(!is_migrate_isolate(migratetype)))
1005 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1006 
1007 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1008 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1009 
1010 continue_merging:
1011 	while (order < max_order - 1) {
1012 		if (compaction_capture(capc, page, order, migratetype)) {
1013 			__mod_zone_freepage_state(zone, -(1 << order),
1014 								migratetype);
1015 			return;
1016 		}
1017 		buddy_pfn = __find_buddy_pfn(pfn, order);
1018 		buddy = page + (buddy_pfn - pfn);
1019 
1020 		if (!pfn_valid_within(buddy_pfn))
1021 			goto done_merging;
1022 		if (!page_is_buddy(page, buddy, order))
1023 			goto done_merging;
1024 		/*
1025 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1026 		 * merge with it and move up one order.
1027 		 */
1028 		if (page_is_guard(buddy))
1029 			clear_page_guard(zone, buddy, order, migratetype);
1030 		else
1031 			del_page_from_free_list(buddy, zone, order);
1032 		combined_pfn = buddy_pfn & pfn;
1033 		page = page + (combined_pfn - pfn);
1034 		pfn = combined_pfn;
1035 		order++;
1036 	}
1037 	if (max_order < MAX_ORDER) {
1038 		/* If we are here, it means order is >= pageblock_order.
1039 		 * We want to prevent merge between freepages on isolate
1040 		 * pageblock and normal pageblock. Without this, pageblock
1041 		 * isolation could cause incorrect freepage or CMA accounting.
1042 		 *
1043 		 * We don't want to hit this code for the more frequent
1044 		 * low-order merging.
1045 		 */
1046 		if (unlikely(has_isolate_pageblock(zone))) {
1047 			int buddy_mt;
1048 
1049 			buddy_pfn = __find_buddy_pfn(pfn, order);
1050 			buddy = page + (buddy_pfn - pfn);
1051 			buddy_mt = get_pageblock_migratetype(buddy);
1052 
1053 			if (migratetype != buddy_mt
1054 					&& (is_migrate_isolate(migratetype) ||
1055 						is_migrate_isolate(buddy_mt)))
1056 				goto done_merging;
1057 		}
1058 		max_order++;
1059 		goto continue_merging;
1060 	}
1061 
1062 done_merging:
1063 	set_buddy_order(page, order);
1064 
1065 	if (fpi_flags & FPI_TO_TAIL)
1066 		to_tail = true;
1067 	else if (is_shuffle_order(order))
1068 		to_tail = shuffle_pick_tail();
1069 	else
1070 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1071 
1072 	if (to_tail)
1073 		add_to_free_list_tail(page, zone, order, migratetype);
1074 	else
1075 		add_to_free_list(page, zone, order, migratetype);
1076 
1077 	/* Notify page reporting subsystem of freed page */
1078 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1079 		page_reporting_notify_free(order);
1080 }
1081 
1082 /*
1083  * A bad page could be due to a number of fields. Instead of multiple branches,
1084  * try and check multiple fields with one check. The caller must do a detailed
1085  * check if necessary.
1086  */
1087 static inline bool page_expected_state(struct page *page,
1088 					unsigned long check_flags)
1089 {
1090 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1091 		return false;
1092 
1093 	if (unlikely((unsigned long)page->mapping |
1094 			page_ref_count(page) |
1095 #ifdef CONFIG_MEMCG
1096 			(unsigned long)page->mem_cgroup |
1097 #endif
1098 			(page->flags & check_flags)))
1099 		return false;
1100 
1101 	return true;
1102 }
1103 
1104 static const char *page_bad_reason(struct page *page, unsigned long flags)
1105 {
1106 	const char *bad_reason = NULL;
1107 
1108 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1109 		bad_reason = "nonzero mapcount";
1110 	if (unlikely(page->mapping != NULL))
1111 		bad_reason = "non-NULL mapping";
1112 	if (unlikely(page_ref_count(page) != 0))
1113 		bad_reason = "nonzero _refcount";
1114 	if (unlikely(page->flags & flags)) {
1115 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1116 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1117 		else
1118 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1119 	}
1120 #ifdef CONFIG_MEMCG
1121 	if (unlikely(page->mem_cgroup))
1122 		bad_reason = "page still charged to cgroup";
1123 #endif
1124 	return bad_reason;
1125 }
1126 
1127 static void check_free_page_bad(struct page *page)
1128 {
1129 	bad_page(page,
1130 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1131 }
1132 
1133 static inline int check_free_page(struct page *page)
1134 {
1135 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1136 		return 0;
1137 
1138 	/* Something has gone sideways, find it */
1139 	check_free_page_bad(page);
1140 	return 1;
1141 }
1142 
1143 static int free_tail_pages_check(struct page *head_page, struct page *page)
1144 {
1145 	int ret = 1;
1146 
1147 	/*
1148 	 * We rely page->lru.next never has bit 0 set, unless the page
1149 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1150 	 */
1151 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1152 
1153 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1154 		ret = 0;
1155 		goto out;
1156 	}
1157 	switch (page - head_page) {
1158 	case 1:
1159 		/* the first tail page: ->mapping may be compound_mapcount() */
1160 		if (unlikely(compound_mapcount(page))) {
1161 			bad_page(page, "nonzero compound_mapcount");
1162 			goto out;
1163 		}
1164 		break;
1165 	case 2:
1166 		/*
1167 		 * the second tail page: ->mapping is
1168 		 * deferred_list.next -- ignore value.
1169 		 */
1170 		break;
1171 	default:
1172 		if (page->mapping != TAIL_MAPPING) {
1173 			bad_page(page, "corrupted mapping in tail page");
1174 			goto out;
1175 		}
1176 		break;
1177 	}
1178 	if (unlikely(!PageTail(page))) {
1179 		bad_page(page, "PageTail not set");
1180 		goto out;
1181 	}
1182 	if (unlikely(compound_head(page) != head_page)) {
1183 		bad_page(page, "compound_head not consistent");
1184 		goto out;
1185 	}
1186 	ret = 0;
1187 out:
1188 	page->mapping = NULL;
1189 	clear_compound_head(page);
1190 	return ret;
1191 }
1192 
1193 static void kernel_init_free_pages(struct page *page, int numpages)
1194 {
1195 	int i;
1196 
1197 	/* s390's use of memset() could override KASAN redzones. */
1198 	kasan_disable_current();
1199 	for (i = 0; i < numpages; i++)
1200 		clear_highpage(page + i);
1201 	kasan_enable_current();
1202 }
1203 
1204 static __always_inline bool free_pages_prepare(struct page *page,
1205 					unsigned int order, bool check_free)
1206 {
1207 	int bad = 0;
1208 
1209 	VM_BUG_ON_PAGE(PageTail(page), page);
1210 
1211 	trace_mm_page_free(page, order);
1212 
1213 	if (unlikely(PageHWPoison(page)) && !order) {
1214 		/*
1215 		 * Do not let hwpoison pages hit pcplists/buddy
1216 		 * Untie memcg state and reset page's owner
1217 		 */
1218 		if (memcg_kmem_enabled() && PageKmemcg(page))
1219 			__memcg_kmem_uncharge_page(page, order);
1220 		reset_page_owner(page, order);
1221 		return false;
1222 	}
1223 
1224 	/*
1225 	 * Check tail pages before head page information is cleared to
1226 	 * avoid checking PageCompound for order-0 pages.
1227 	 */
1228 	if (unlikely(order)) {
1229 		bool compound = PageCompound(page);
1230 		int i;
1231 
1232 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1233 
1234 		if (compound)
1235 			ClearPageDoubleMap(page);
1236 		for (i = 1; i < (1 << order); i++) {
1237 			if (compound)
1238 				bad += free_tail_pages_check(page, page + i);
1239 			if (unlikely(check_free_page(page + i))) {
1240 				bad++;
1241 				continue;
1242 			}
1243 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1244 		}
1245 	}
1246 	if (PageMappingFlags(page))
1247 		page->mapping = NULL;
1248 	if (memcg_kmem_enabled() && PageKmemcg(page))
1249 		__memcg_kmem_uncharge_page(page, order);
1250 	if (check_free)
1251 		bad += check_free_page(page);
1252 	if (bad)
1253 		return false;
1254 
1255 	page_cpupid_reset_last(page);
1256 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1257 	reset_page_owner(page, order);
1258 
1259 	if (!PageHighMem(page)) {
1260 		debug_check_no_locks_freed(page_address(page),
1261 					   PAGE_SIZE << order);
1262 		debug_check_no_obj_freed(page_address(page),
1263 					   PAGE_SIZE << order);
1264 	}
1265 	if (want_init_on_free())
1266 		kernel_init_free_pages(page, 1 << order);
1267 
1268 	kernel_poison_pages(page, 1 << order, 0);
1269 	/*
1270 	 * arch_free_page() can make the page's contents inaccessible.  s390
1271 	 * does this.  So nothing which can access the page's contents should
1272 	 * happen after this.
1273 	 */
1274 	arch_free_page(page, order);
1275 
1276 	if (debug_pagealloc_enabled_static())
1277 		kernel_map_pages(page, 1 << order, 0);
1278 
1279 	kasan_free_nondeferred_pages(page, order);
1280 
1281 	return true;
1282 }
1283 
1284 #ifdef CONFIG_DEBUG_VM
1285 /*
1286  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1287  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1288  * moved from pcp lists to free lists.
1289  */
1290 static bool free_pcp_prepare(struct page *page)
1291 {
1292 	return free_pages_prepare(page, 0, true);
1293 }
1294 
1295 static bool bulkfree_pcp_prepare(struct page *page)
1296 {
1297 	if (debug_pagealloc_enabled_static())
1298 		return check_free_page(page);
1299 	else
1300 		return false;
1301 }
1302 #else
1303 /*
1304  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1305  * moving from pcp lists to free list in order to reduce overhead. With
1306  * debug_pagealloc enabled, they are checked also immediately when being freed
1307  * to the pcp lists.
1308  */
1309 static bool free_pcp_prepare(struct page *page)
1310 {
1311 	if (debug_pagealloc_enabled_static())
1312 		return free_pages_prepare(page, 0, true);
1313 	else
1314 		return free_pages_prepare(page, 0, false);
1315 }
1316 
1317 static bool bulkfree_pcp_prepare(struct page *page)
1318 {
1319 	return check_free_page(page);
1320 }
1321 #endif /* CONFIG_DEBUG_VM */
1322 
1323 static inline void prefetch_buddy(struct page *page)
1324 {
1325 	unsigned long pfn = page_to_pfn(page);
1326 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1327 	struct page *buddy = page + (buddy_pfn - pfn);
1328 
1329 	prefetch(buddy);
1330 }
1331 
1332 /*
1333  * Frees a number of pages from the PCP lists
1334  * Assumes all pages on list are in same zone, and of same order.
1335  * count is the number of pages to free.
1336  *
1337  * If the zone was previously in an "all pages pinned" state then look to
1338  * see if this freeing clears that state.
1339  *
1340  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1341  * pinned" detection logic.
1342  */
1343 static void free_pcppages_bulk(struct zone *zone, int count,
1344 					struct per_cpu_pages *pcp)
1345 {
1346 	int migratetype = 0;
1347 	int batch_free = 0;
1348 	int prefetch_nr = 0;
1349 	bool isolated_pageblocks;
1350 	struct page *page, *tmp;
1351 	LIST_HEAD(head);
1352 
1353 	/*
1354 	 * Ensure proper count is passed which otherwise would stuck in the
1355 	 * below while (list_empty(list)) loop.
1356 	 */
1357 	count = min(pcp->count, count);
1358 	while (count) {
1359 		struct list_head *list;
1360 
1361 		/*
1362 		 * Remove pages from lists in a round-robin fashion. A
1363 		 * batch_free count is maintained that is incremented when an
1364 		 * empty list is encountered.  This is so more pages are freed
1365 		 * off fuller lists instead of spinning excessively around empty
1366 		 * lists
1367 		 */
1368 		do {
1369 			batch_free++;
1370 			if (++migratetype == MIGRATE_PCPTYPES)
1371 				migratetype = 0;
1372 			list = &pcp->lists[migratetype];
1373 		} while (list_empty(list));
1374 
1375 		/* This is the only non-empty list. Free them all. */
1376 		if (batch_free == MIGRATE_PCPTYPES)
1377 			batch_free = count;
1378 
1379 		do {
1380 			page = list_last_entry(list, struct page, lru);
1381 			/* must delete to avoid corrupting pcp list */
1382 			list_del(&page->lru);
1383 			pcp->count--;
1384 
1385 			if (bulkfree_pcp_prepare(page))
1386 				continue;
1387 
1388 			list_add_tail(&page->lru, &head);
1389 
1390 			/*
1391 			 * We are going to put the page back to the global
1392 			 * pool, prefetch its buddy to speed up later access
1393 			 * under zone->lock. It is believed the overhead of
1394 			 * an additional test and calculating buddy_pfn here
1395 			 * can be offset by reduced memory latency later. To
1396 			 * avoid excessive prefetching due to large count, only
1397 			 * prefetch buddy for the first pcp->batch nr of pages.
1398 			 */
1399 			if (prefetch_nr++ < pcp->batch)
1400 				prefetch_buddy(page);
1401 		} while (--count && --batch_free && !list_empty(list));
1402 	}
1403 
1404 	spin_lock(&zone->lock);
1405 	isolated_pageblocks = has_isolate_pageblock(zone);
1406 
1407 	/*
1408 	 * Use safe version since after __free_one_page(),
1409 	 * page->lru.next will not point to original list.
1410 	 */
1411 	list_for_each_entry_safe(page, tmp, &head, lru) {
1412 		int mt = get_pcppage_migratetype(page);
1413 		/* MIGRATE_ISOLATE page should not go to pcplists */
1414 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1415 		/* Pageblock could have been isolated meanwhile */
1416 		if (unlikely(isolated_pageblocks))
1417 			mt = get_pageblock_migratetype(page);
1418 
1419 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1420 		trace_mm_page_pcpu_drain(page, 0, mt);
1421 	}
1422 	spin_unlock(&zone->lock);
1423 }
1424 
1425 static void free_one_page(struct zone *zone,
1426 				struct page *page, unsigned long pfn,
1427 				unsigned int order,
1428 				int migratetype, fpi_t fpi_flags)
1429 {
1430 	spin_lock(&zone->lock);
1431 	if (unlikely(has_isolate_pageblock(zone) ||
1432 		is_migrate_isolate(migratetype))) {
1433 		migratetype = get_pfnblock_migratetype(page, pfn);
1434 	}
1435 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1436 	spin_unlock(&zone->lock);
1437 }
1438 
1439 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1440 				unsigned long zone, int nid)
1441 {
1442 	mm_zero_struct_page(page);
1443 	set_page_links(page, zone, nid, pfn);
1444 	init_page_count(page);
1445 	page_mapcount_reset(page);
1446 	page_cpupid_reset_last(page);
1447 	page_kasan_tag_reset(page);
1448 
1449 	INIT_LIST_HEAD(&page->lru);
1450 #ifdef WANT_PAGE_VIRTUAL
1451 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1452 	if (!is_highmem_idx(zone))
1453 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1454 #endif
1455 }
1456 
1457 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1458 static void __meminit init_reserved_page(unsigned long pfn)
1459 {
1460 	pg_data_t *pgdat;
1461 	int nid, zid;
1462 
1463 	if (!early_page_uninitialised(pfn))
1464 		return;
1465 
1466 	nid = early_pfn_to_nid(pfn);
1467 	pgdat = NODE_DATA(nid);
1468 
1469 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1470 		struct zone *zone = &pgdat->node_zones[zid];
1471 
1472 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1473 			break;
1474 	}
1475 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1476 }
1477 #else
1478 static inline void init_reserved_page(unsigned long pfn)
1479 {
1480 }
1481 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1482 
1483 /*
1484  * Initialised pages do not have PageReserved set. This function is
1485  * called for each range allocated by the bootmem allocator and
1486  * marks the pages PageReserved. The remaining valid pages are later
1487  * sent to the buddy page allocator.
1488  */
1489 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1490 {
1491 	unsigned long start_pfn = PFN_DOWN(start);
1492 	unsigned long end_pfn = PFN_UP(end);
1493 
1494 	for (; start_pfn < end_pfn; start_pfn++) {
1495 		if (pfn_valid(start_pfn)) {
1496 			struct page *page = pfn_to_page(start_pfn);
1497 
1498 			init_reserved_page(start_pfn);
1499 
1500 			/* Avoid false-positive PageTail() */
1501 			INIT_LIST_HEAD(&page->lru);
1502 
1503 			/*
1504 			 * no need for atomic set_bit because the struct
1505 			 * page is not visible yet so nobody should
1506 			 * access it yet.
1507 			 */
1508 			__SetPageReserved(page);
1509 		}
1510 	}
1511 }
1512 
1513 static void __free_pages_ok(struct page *page, unsigned int order,
1514 			    fpi_t fpi_flags)
1515 {
1516 	unsigned long flags;
1517 	int migratetype;
1518 	unsigned long pfn = page_to_pfn(page);
1519 
1520 	if (!free_pages_prepare(page, order, true))
1521 		return;
1522 
1523 	migratetype = get_pfnblock_migratetype(page, pfn);
1524 	local_irq_save(flags);
1525 	__count_vm_events(PGFREE, 1 << order);
1526 	free_one_page(page_zone(page), page, pfn, order, migratetype,
1527 		      fpi_flags);
1528 	local_irq_restore(flags);
1529 }
1530 
1531 void __free_pages_core(struct page *page, unsigned int order)
1532 {
1533 	unsigned int nr_pages = 1 << order;
1534 	struct page *p = page;
1535 	unsigned int loop;
1536 
1537 	/*
1538 	 * When initializing the memmap, __init_single_page() sets the refcount
1539 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1540 	 * refcount of all involved pages to 0.
1541 	 */
1542 	prefetchw(p);
1543 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1544 		prefetchw(p + 1);
1545 		__ClearPageReserved(p);
1546 		set_page_count(p, 0);
1547 	}
1548 	__ClearPageReserved(p);
1549 	set_page_count(p, 0);
1550 
1551 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1552 
1553 	/*
1554 	 * Bypass PCP and place fresh pages right to the tail, primarily
1555 	 * relevant for memory onlining.
1556 	 */
1557 	__free_pages_ok(page, order, FPI_TO_TAIL);
1558 }
1559 
1560 #ifdef CONFIG_NEED_MULTIPLE_NODES
1561 
1562 /*
1563  * During memory init memblocks map pfns to nids. The search is expensive and
1564  * this caches recent lookups. The implementation of __early_pfn_to_nid
1565  * treats start/end as pfns.
1566  */
1567 struct mminit_pfnnid_cache {
1568 	unsigned long last_start;
1569 	unsigned long last_end;
1570 	int last_nid;
1571 };
1572 
1573 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1574 
1575 /*
1576  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1577  */
1578 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1579 					struct mminit_pfnnid_cache *state)
1580 {
1581 	unsigned long start_pfn, end_pfn;
1582 	int nid;
1583 
1584 	if (state->last_start <= pfn && pfn < state->last_end)
1585 		return state->last_nid;
1586 
1587 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1588 	if (nid != NUMA_NO_NODE) {
1589 		state->last_start = start_pfn;
1590 		state->last_end = end_pfn;
1591 		state->last_nid = nid;
1592 	}
1593 
1594 	return nid;
1595 }
1596 
1597 int __meminit early_pfn_to_nid(unsigned long pfn)
1598 {
1599 	static DEFINE_SPINLOCK(early_pfn_lock);
1600 	int nid;
1601 
1602 	spin_lock(&early_pfn_lock);
1603 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1604 	if (nid < 0)
1605 		nid = first_online_node;
1606 	spin_unlock(&early_pfn_lock);
1607 
1608 	return nid;
1609 }
1610 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1611 
1612 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1613 							unsigned int order)
1614 {
1615 	if (early_page_uninitialised(pfn))
1616 		return;
1617 	__free_pages_core(page, order);
1618 }
1619 
1620 /*
1621  * Check that the whole (or subset of) a pageblock given by the interval of
1622  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1623  * with the migration of free compaction scanner. The scanners then need to
1624  * use only pfn_valid_within() check for arches that allow holes within
1625  * pageblocks.
1626  *
1627  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1628  *
1629  * It's possible on some configurations to have a setup like node0 node1 node0
1630  * i.e. it's possible that all pages within a zones range of pages do not
1631  * belong to a single zone. We assume that a border between node0 and node1
1632  * can occur within a single pageblock, but not a node0 node1 node0
1633  * interleaving within a single pageblock. It is therefore sufficient to check
1634  * the first and last page of a pageblock and avoid checking each individual
1635  * page in a pageblock.
1636  */
1637 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1638 				     unsigned long end_pfn, struct zone *zone)
1639 {
1640 	struct page *start_page;
1641 	struct page *end_page;
1642 
1643 	/* end_pfn is one past the range we are checking */
1644 	end_pfn--;
1645 
1646 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1647 		return NULL;
1648 
1649 	start_page = pfn_to_online_page(start_pfn);
1650 	if (!start_page)
1651 		return NULL;
1652 
1653 	if (page_zone(start_page) != zone)
1654 		return NULL;
1655 
1656 	end_page = pfn_to_page(end_pfn);
1657 
1658 	/* This gives a shorter code than deriving page_zone(end_page) */
1659 	if (page_zone_id(start_page) != page_zone_id(end_page))
1660 		return NULL;
1661 
1662 	return start_page;
1663 }
1664 
1665 void set_zone_contiguous(struct zone *zone)
1666 {
1667 	unsigned long block_start_pfn = zone->zone_start_pfn;
1668 	unsigned long block_end_pfn;
1669 
1670 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1671 	for (; block_start_pfn < zone_end_pfn(zone);
1672 			block_start_pfn = block_end_pfn,
1673 			 block_end_pfn += pageblock_nr_pages) {
1674 
1675 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1676 
1677 		if (!__pageblock_pfn_to_page(block_start_pfn,
1678 					     block_end_pfn, zone))
1679 			return;
1680 		cond_resched();
1681 	}
1682 
1683 	/* We confirm that there is no hole */
1684 	zone->contiguous = true;
1685 }
1686 
1687 void clear_zone_contiguous(struct zone *zone)
1688 {
1689 	zone->contiguous = false;
1690 }
1691 
1692 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1693 static void __init deferred_free_range(unsigned long pfn,
1694 				       unsigned long nr_pages)
1695 {
1696 	struct page *page;
1697 	unsigned long i;
1698 
1699 	if (!nr_pages)
1700 		return;
1701 
1702 	page = pfn_to_page(pfn);
1703 
1704 	/* Free a large naturally-aligned chunk if possible */
1705 	if (nr_pages == pageblock_nr_pages &&
1706 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1707 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1708 		__free_pages_core(page, pageblock_order);
1709 		return;
1710 	}
1711 
1712 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1713 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1714 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1715 		__free_pages_core(page, 0);
1716 	}
1717 }
1718 
1719 /* Completion tracking for deferred_init_memmap() threads */
1720 static atomic_t pgdat_init_n_undone __initdata;
1721 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1722 
1723 static inline void __init pgdat_init_report_one_done(void)
1724 {
1725 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1726 		complete(&pgdat_init_all_done_comp);
1727 }
1728 
1729 /*
1730  * Returns true if page needs to be initialized or freed to buddy allocator.
1731  *
1732  * First we check if pfn is valid on architectures where it is possible to have
1733  * holes within pageblock_nr_pages. On systems where it is not possible, this
1734  * function is optimized out.
1735  *
1736  * Then, we check if a current large page is valid by only checking the validity
1737  * of the head pfn.
1738  */
1739 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1740 {
1741 	if (!pfn_valid_within(pfn))
1742 		return false;
1743 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1744 		return false;
1745 	return true;
1746 }
1747 
1748 /*
1749  * Free pages to buddy allocator. Try to free aligned pages in
1750  * pageblock_nr_pages sizes.
1751  */
1752 static void __init deferred_free_pages(unsigned long pfn,
1753 				       unsigned long end_pfn)
1754 {
1755 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1756 	unsigned long nr_free = 0;
1757 
1758 	for (; pfn < end_pfn; pfn++) {
1759 		if (!deferred_pfn_valid(pfn)) {
1760 			deferred_free_range(pfn - nr_free, nr_free);
1761 			nr_free = 0;
1762 		} else if (!(pfn & nr_pgmask)) {
1763 			deferred_free_range(pfn - nr_free, nr_free);
1764 			nr_free = 1;
1765 		} else {
1766 			nr_free++;
1767 		}
1768 	}
1769 	/* Free the last block of pages to allocator */
1770 	deferred_free_range(pfn - nr_free, nr_free);
1771 }
1772 
1773 /*
1774  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1775  * by performing it only once every pageblock_nr_pages.
1776  * Return number of pages initialized.
1777  */
1778 static unsigned long  __init deferred_init_pages(struct zone *zone,
1779 						 unsigned long pfn,
1780 						 unsigned long end_pfn)
1781 {
1782 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1783 	int nid = zone_to_nid(zone);
1784 	unsigned long nr_pages = 0;
1785 	int zid = zone_idx(zone);
1786 	struct page *page = NULL;
1787 
1788 	for (; pfn < end_pfn; pfn++) {
1789 		if (!deferred_pfn_valid(pfn)) {
1790 			page = NULL;
1791 			continue;
1792 		} else if (!page || !(pfn & nr_pgmask)) {
1793 			page = pfn_to_page(pfn);
1794 		} else {
1795 			page++;
1796 		}
1797 		__init_single_page(page, pfn, zid, nid);
1798 		nr_pages++;
1799 	}
1800 	return (nr_pages);
1801 }
1802 
1803 /*
1804  * This function is meant to pre-load the iterator for the zone init.
1805  * Specifically it walks through the ranges until we are caught up to the
1806  * first_init_pfn value and exits there. If we never encounter the value we
1807  * return false indicating there are no valid ranges left.
1808  */
1809 static bool __init
1810 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1811 				    unsigned long *spfn, unsigned long *epfn,
1812 				    unsigned long first_init_pfn)
1813 {
1814 	u64 j;
1815 
1816 	/*
1817 	 * Start out by walking through the ranges in this zone that have
1818 	 * already been initialized. We don't need to do anything with them
1819 	 * so we just need to flush them out of the system.
1820 	 */
1821 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1822 		if (*epfn <= first_init_pfn)
1823 			continue;
1824 		if (*spfn < first_init_pfn)
1825 			*spfn = first_init_pfn;
1826 		*i = j;
1827 		return true;
1828 	}
1829 
1830 	return false;
1831 }
1832 
1833 /*
1834  * Initialize and free pages. We do it in two loops: first we initialize
1835  * struct page, then free to buddy allocator, because while we are
1836  * freeing pages we can access pages that are ahead (computing buddy
1837  * page in __free_one_page()).
1838  *
1839  * In order to try and keep some memory in the cache we have the loop
1840  * broken along max page order boundaries. This way we will not cause
1841  * any issues with the buddy page computation.
1842  */
1843 static unsigned long __init
1844 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1845 		       unsigned long *end_pfn)
1846 {
1847 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1848 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1849 	unsigned long nr_pages = 0;
1850 	u64 j = *i;
1851 
1852 	/* First we loop through and initialize the page values */
1853 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1854 		unsigned long t;
1855 
1856 		if (mo_pfn <= *start_pfn)
1857 			break;
1858 
1859 		t = min(mo_pfn, *end_pfn);
1860 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1861 
1862 		if (mo_pfn < *end_pfn) {
1863 			*start_pfn = mo_pfn;
1864 			break;
1865 		}
1866 	}
1867 
1868 	/* Reset values and now loop through freeing pages as needed */
1869 	swap(j, *i);
1870 
1871 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1872 		unsigned long t;
1873 
1874 		if (mo_pfn <= spfn)
1875 			break;
1876 
1877 		t = min(mo_pfn, epfn);
1878 		deferred_free_pages(spfn, t);
1879 
1880 		if (mo_pfn <= epfn)
1881 			break;
1882 	}
1883 
1884 	return nr_pages;
1885 }
1886 
1887 static void __init
1888 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1889 			   void *arg)
1890 {
1891 	unsigned long spfn, epfn;
1892 	struct zone *zone = arg;
1893 	u64 i;
1894 
1895 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1896 
1897 	/*
1898 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1899 	 * can avoid introducing any issues with the buddy allocator.
1900 	 */
1901 	while (spfn < end_pfn) {
1902 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1903 		cond_resched();
1904 	}
1905 }
1906 
1907 /* An arch may override for more concurrency. */
1908 __weak int __init
1909 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1910 {
1911 	return 1;
1912 }
1913 
1914 /* Initialise remaining memory on a node */
1915 static int __init deferred_init_memmap(void *data)
1916 {
1917 	pg_data_t *pgdat = data;
1918 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1919 	unsigned long spfn = 0, epfn = 0;
1920 	unsigned long first_init_pfn, flags;
1921 	unsigned long start = jiffies;
1922 	struct zone *zone;
1923 	int zid, max_threads;
1924 	u64 i;
1925 
1926 	/* Bind memory initialisation thread to a local node if possible */
1927 	if (!cpumask_empty(cpumask))
1928 		set_cpus_allowed_ptr(current, cpumask);
1929 
1930 	pgdat_resize_lock(pgdat, &flags);
1931 	first_init_pfn = pgdat->first_deferred_pfn;
1932 	if (first_init_pfn == ULONG_MAX) {
1933 		pgdat_resize_unlock(pgdat, &flags);
1934 		pgdat_init_report_one_done();
1935 		return 0;
1936 	}
1937 
1938 	/* Sanity check boundaries */
1939 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1940 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1941 	pgdat->first_deferred_pfn = ULONG_MAX;
1942 
1943 	/*
1944 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1945 	 * interrupt thread must allocate this early in boot, zone must be
1946 	 * pre-grown prior to start of deferred page initialization.
1947 	 */
1948 	pgdat_resize_unlock(pgdat, &flags);
1949 
1950 	/* Only the highest zone is deferred so find it */
1951 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1952 		zone = pgdat->node_zones + zid;
1953 		if (first_init_pfn < zone_end_pfn(zone))
1954 			break;
1955 	}
1956 
1957 	/* If the zone is empty somebody else may have cleared out the zone */
1958 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1959 						 first_init_pfn))
1960 		goto zone_empty;
1961 
1962 	max_threads = deferred_page_init_max_threads(cpumask);
1963 
1964 	while (spfn < epfn) {
1965 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1966 		struct padata_mt_job job = {
1967 			.thread_fn   = deferred_init_memmap_chunk,
1968 			.fn_arg      = zone,
1969 			.start       = spfn,
1970 			.size        = epfn_align - spfn,
1971 			.align       = PAGES_PER_SECTION,
1972 			.min_chunk   = PAGES_PER_SECTION,
1973 			.max_threads = max_threads,
1974 		};
1975 
1976 		padata_do_multithreaded(&job);
1977 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1978 						    epfn_align);
1979 	}
1980 zone_empty:
1981 	/* Sanity check that the next zone really is unpopulated */
1982 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1983 
1984 	pr_info("node %d deferred pages initialised in %ums\n",
1985 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
1986 
1987 	pgdat_init_report_one_done();
1988 	return 0;
1989 }
1990 
1991 /*
1992  * If this zone has deferred pages, try to grow it by initializing enough
1993  * deferred pages to satisfy the allocation specified by order, rounded up to
1994  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1995  * of SECTION_SIZE bytes by initializing struct pages in increments of
1996  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1997  *
1998  * Return true when zone was grown, otherwise return false. We return true even
1999  * when we grow less than requested, to let the caller decide if there are
2000  * enough pages to satisfy the allocation.
2001  *
2002  * Note: We use noinline because this function is needed only during boot, and
2003  * it is called from a __ref function _deferred_grow_zone. This way we are
2004  * making sure that it is not inlined into permanent text section.
2005  */
2006 static noinline bool __init
2007 deferred_grow_zone(struct zone *zone, unsigned int order)
2008 {
2009 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2010 	pg_data_t *pgdat = zone->zone_pgdat;
2011 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2012 	unsigned long spfn, epfn, flags;
2013 	unsigned long nr_pages = 0;
2014 	u64 i;
2015 
2016 	/* Only the last zone may have deferred pages */
2017 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2018 		return false;
2019 
2020 	pgdat_resize_lock(pgdat, &flags);
2021 
2022 	/*
2023 	 * If someone grew this zone while we were waiting for spinlock, return
2024 	 * true, as there might be enough pages already.
2025 	 */
2026 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2027 		pgdat_resize_unlock(pgdat, &flags);
2028 		return true;
2029 	}
2030 
2031 	/* If the zone is empty somebody else may have cleared out the zone */
2032 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2033 						 first_deferred_pfn)) {
2034 		pgdat->first_deferred_pfn = ULONG_MAX;
2035 		pgdat_resize_unlock(pgdat, &flags);
2036 		/* Retry only once. */
2037 		return first_deferred_pfn != ULONG_MAX;
2038 	}
2039 
2040 	/*
2041 	 * Initialize and free pages in MAX_ORDER sized increments so
2042 	 * that we can avoid introducing any issues with the buddy
2043 	 * allocator.
2044 	 */
2045 	while (spfn < epfn) {
2046 		/* update our first deferred PFN for this section */
2047 		first_deferred_pfn = spfn;
2048 
2049 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2050 		touch_nmi_watchdog();
2051 
2052 		/* We should only stop along section boundaries */
2053 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2054 			continue;
2055 
2056 		/* If our quota has been met we can stop here */
2057 		if (nr_pages >= nr_pages_needed)
2058 			break;
2059 	}
2060 
2061 	pgdat->first_deferred_pfn = spfn;
2062 	pgdat_resize_unlock(pgdat, &flags);
2063 
2064 	return nr_pages > 0;
2065 }
2066 
2067 /*
2068  * deferred_grow_zone() is __init, but it is called from
2069  * get_page_from_freelist() during early boot until deferred_pages permanently
2070  * disables this call. This is why we have refdata wrapper to avoid warning,
2071  * and to ensure that the function body gets unloaded.
2072  */
2073 static bool __ref
2074 _deferred_grow_zone(struct zone *zone, unsigned int order)
2075 {
2076 	return deferred_grow_zone(zone, order);
2077 }
2078 
2079 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2080 
2081 void __init page_alloc_init_late(void)
2082 {
2083 	struct zone *zone;
2084 	int nid;
2085 
2086 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2087 
2088 	/* There will be num_node_state(N_MEMORY) threads */
2089 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2090 	for_each_node_state(nid, N_MEMORY) {
2091 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2092 	}
2093 
2094 	/* Block until all are initialised */
2095 	wait_for_completion(&pgdat_init_all_done_comp);
2096 
2097 	/*
2098 	 * The number of managed pages has changed due to the initialisation
2099 	 * so the pcpu batch and high limits needs to be updated or the limits
2100 	 * will be artificially small.
2101 	 */
2102 	for_each_populated_zone(zone)
2103 		zone_pcp_update(zone);
2104 
2105 	/*
2106 	 * We initialized the rest of the deferred pages.  Permanently disable
2107 	 * on-demand struct page initialization.
2108 	 */
2109 	static_branch_disable(&deferred_pages);
2110 
2111 	/* Reinit limits that are based on free pages after the kernel is up */
2112 	files_maxfiles_init();
2113 #endif
2114 
2115 	/* Discard memblock private memory */
2116 	memblock_discard();
2117 
2118 	for_each_node_state(nid, N_MEMORY)
2119 		shuffle_free_memory(NODE_DATA(nid));
2120 
2121 	for_each_populated_zone(zone)
2122 		set_zone_contiguous(zone);
2123 }
2124 
2125 #ifdef CONFIG_CMA
2126 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2127 void __init init_cma_reserved_pageblock(struct page *page)
2128 {
2129 	unsigned i = pageblock_nr_pages;
2130 	struct page *p = page;
2131 
2132 	do {
2133 		__ClearPageReserved(p);
2134 		set_page_count(p, 0);
2135 	} while (++p, --i);
2136 
2137 	set_pageblock_migratetype(page, MIGRATE_CMA);
2138 
2139 	if (pageblock_order >= MAX_ORDER) {
2140 		i = pageblock_nr_pages;
2141 		p = page;
2142 		do {
2143 			set_page_refcounted(p);
2144 			__free_pages(p, MAX_ORDER - 1);
2145 			p += MAX_ORDER_NR_PAGES;
2146 		} while (i -= MAX_ORDER_NR_PAGES);
2147 	} else {
2148 		set_page_refcounted(page);
2149 		__free_pages(page, pageblock_order);
2150 	}
2151 
2152 	adjust_managed_page_count(page, pageblock_nr_pages);
2153 }
2154 #endif
2155 
2156 /*
2157  * The order of subdivision here is critical for the IO subsystem.
2158  * Please do not alter this order without good reasons and regression
2159  * testing. Specifically, as large blocks of memory are subdivided,
2160  * the order in which smaller blocks are delivered depends on the order
2161  * they're subdivided in this function. This is the primary factor
2162  * influencing the order in which pages are delivered to the IO
2163  * subsystem according to empirical testing, and this is also justified
2164  * by considering the behavior of a buddy system containing a single
2165  * large block of memory acted on by a series of small allocations.
2166  * This behavior is a critical factor in sglist merging's success.
2167  *
2168  * -- nyc
2169  */
2170 static inline void expand(struct zone *zone, struct page *page,
2171 	int low, int high, int migratetype)
2172 {
2173 	unsigned long size = 1 << high;
2174 
2175 	while (high > low) {
2176 		high--;
2177 		size >>= 1;
2178 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2179 
2180 		/*
2181 		 * Mark as guard pages (or page), that will allow to
2182 		 * merge back to allocator when buddy will be freed.
2183 		 * Corresponding page table entries will not be touched,
2184 		 * pages will stay not present in virtual address space
2185 		 */
2186 		if (set_page_guard(zone, &page[size], high, migratetype))
2187 			continue;
2188 
2189 		add_to_free_list(&page[size], zone, high, migratetype);
2190 		set_buddy_order(&page[size], high);
2191 	}
2192 }
2193 
2194 static void check_new_page_bad(struct page *page)
2195 {
2196 	if (unlikely(page->flags & __PG_HWPOISON)) {
2197 		/* Don't complain about hwpoisoned pages */
2198 		page_mapcount_reset(page); /* remove PageBuddy */
2199 		return;
2200 	}
2201 
2202 	bad_page(page,
2203 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2204 }
2205 
2206 /*
2207  * This page is about to be returned from the page allocator
2208  */
2209 static inline int check_new_page(struct page *page)
2210 {
2211 	if (likely(page_expected_state(page,
2212 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2213 		return 0;
2214 
2215 	check_new_page_bad(page);
2216 	return 1;
2217 }
2218 
2219 static inline bool free_pages_prezeroed(void)
2220 {
2221 	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2222 		page_poisoning_enabled()) || want_init_on_free();
2223 }
2224 
2225 #ifdef CONFIG_DEBUG_VM
2226 /*
2227  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2228  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2229  * also checked when pcp lists are refilled from the free lists.
2230  */
2231 static inline bool check_pcp_refill(struct page *page)
2232 {
2233 	if (debug_pagealloc_enabled_static())
2234 		return check_new_page(page);
2235 	else
2236 		return false;
2237 }
2238 
2239 static inline bool check_new_pcp(struct page *page)
2240 {
2241 	return check_new_page(page);
2242 }
2243 #else
2244 /*
2245  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2246  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2247  * enabled, they are also checked when being allocated from the pcp lists.
2248  */
2249 static inline bool check_pcp_refill(struct page *page)
2250 {
2251 	return check_new_page(page);
2252 }
2253 static inline bool check_new_pcp(struct page *page)
2254 {
2255 	if (debug_pagealloc_enabled_static())
2256 		return check_new_page(page);
2257 	else
2258 		return false;
2259 }
2260 #endif /* CONFIG_DEBUG_VM */
2261 
2262 static bool check_new_pages(struct page *page, unsigned int order)
2263 {
2264 	int i;
2265 	for (i = 0; i < (1 << order); i++) {
2266 		struct page *p = page + i;
2267 
2268 		if (unlikely(check_new_page(p)))
2269 			return true;
2270 	}
2271 
2272 	return false;
2273 }
2274 
2275 inline void post_alloc_hook(struct page *page, unsigned int order,
2276 				gfp_t gfp_flags)
2277 {
2278 	set_page_private(page, 0);
2279 	set_page_refcounted(page);
2280 
2281 	arch_alloc_page(page, order);
2282 	if (debug_pagealloc_enabled_static())
2283 		kernel_map_pages(page, 1 << order, 1);
2284 	kasan_alloc_pages(page, order);
2285 	kernel_poison_pages(page, 1 << order, 1);
2286 	set_page_owner(page, order, gfp_flags);
2287 }
2288 
2289 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2290 							unsigned int alloc_flags)
2291 {
2292 	post_alloc_hook(page, order, gfp_flags);
2293 
2294 	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2295 		kernel_init_free_pages(page, 1 << order);
2296 
2297 	if (order && (gfp_flags & __GFP_COMP))
2298 		prep_compound_page(page, order);
2299 
2300 	/*
2301 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2302 	 * allocate the page. The expectation is that the caller is taking
2303 	 * steps that will free more memory. The caller should avoid the page
2304 	 * being used for !PFMEMALLOC purposes.
2305 	 */
2306 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2307 		set_page_pfmemalloc(page);
2308 	else
2309 		clear_page_pfmemalloc(page);
2310 }
2311 
2312 /*
2313  * Go through the free lists for the given migratetype and remove
2314  * the smallest available page from the freelists
2315  */
2316 static __always_inline
2317 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2318 						int migratetype)
2319 {
2320 	unsigned int current_order;
2321 	struct free_area *area;
2322 	struct page *page;
2323 
2324 	/* Find a page of the appropriate size in the preferred list */
2325 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2326 		area = &(zone->free_area[current_order]);
2327 		page = get_page_from_free_area(area, migratetype);
2328 		if (!page)
2329 			continue;
2330 		del_page_from_free_list(page, zone, current_order);
2331 		expand(zone, page, order, current_order, migratetype);
2332 		set_pcppage_migratetype(page, migratetype);
2333 		return page;
2334 	}
2335 
2336 	return NULL;
2337 }
2338 
2339 
2340 /*
2341  * This array describes the order lists are fallen back to when
2342  * the free lists for the desirable migrate type are depleted
2343  */
2344 static int fallbacks[MIGRATE_TYPES][3] = {
2345 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2346 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2347 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2348 #ifdef CONFIG_CMA
2349 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2350 #endif
2351 #ifdef CONFIG_MEMORY_ISOLATION
2352 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2353 #endif
2354 };
2355 
2356 #ifdef CONFIG_CMA
2357 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2358 					unsigned int order)
2359 {
2360 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2361 }
2362 #else
2363 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2364 					unsigned int order) { return NULL; }
2365 #endif
2366 
2367 /*
2368  * Move the free pages in a range to the freelist tail of the requested type.
2369  * Note that start_page and end_pages are not aligned on a pageblock
2370  * boundary. If alignment is required, use move_freepages_block()
2371  */
2372 static int move_freepages(struct zone *zone,
2373 			  struct page *start_page, struct page *end_page,
2374 			  int migratetype, int *num_movable)
2375 {
2376 	struct page *page;
2377 	unsigned int order;
2378 	int pages_moved = 0;
2379 
2380 	for (page = start_page; page <= end_page;) {
2381 		if (!pfn_valid_within(page_to_pfn(page))) {
2382 			page++;
2383 			continue;
2384 		}
2385 
2386 		if (!PageBuddy(page)) {
2387 			/*
2388 			 * We assume that pages that could be isolated for
2389 			 * migration are movable. But we don't actually try
2390 			 * isolating, as that would be expensive.
2391 			 */
2392 			if (num_movable &&
2393 					(PageLRU(page) || __PageMovable(page)))
2394 				(*num_movable)++;
2395 
2396 			page++;
2397 			continue;
2398 		}
2399 
2400 		/* Make sure we are not inadvertently changing nodes */
2401 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2402 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2403 
2404 		order = buddy_order(page);
2405 		move_to_free_list(page, zone, order, migratetype);
2406 		page += 1 << order;
2407 		pages_moved += 1 << order;
2408 	}
2409 
2410 	return pages_moved;
2411 }
2412 
2413 int move_freepages_block(struct zone *zone, struct page *page,
2414 				int migratetype, int *num_movable)
2415 {
2416 	unsigned long start_pfn, end_pfn;
2417 	struct page *start_page, *end_page;
2418 
2419 	if (num_movable)
2420 		*num_movable = 0;
2421 
2422 	start_pfn = page_to_pfn(page);
2423 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2424 	start_page = pfn_to_page(start_pfn);
2425 	end_page = start_page + pageblock_nr_pages - 1;
2426 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2427 
2428 	/* Do not cross zone boundaries */
2429 	if (!zone_spans_pfn(zone, start_pfn))
2430 		start_page = page;
2431 	if (!zone_spans_pfn(zone, end_pfn))
2432 		return 0;
2433 
2434 	return move_freepages(zone, start_page, end_page, migratetype,
2435 								num_movable);
2436 }
2437 
2438 static void change_pageblock_range(struct page *pageblock_page,
2439 					int start_order, int migratetype)
2440 {
2441 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2442 
2443 	while (nr_pageblocks--) {
2444 		set_pageblock_migratetype(pageblock_page, migratetype);
2445 		pageblock_page += pageblock_nr_pages;
2446 	}
2447 }
2448 
2449 /*
2450  * When we are falling back to another migratetype during allocation, try to
2451  * steal extra free pages from the same pageblocks to satisfy further
2452  * allocations, instead of polluting multiple pageblocks.
2453  *
2454  * If we are stealing a relatively large buddy page, it is likely there will
2455  * be more free pages in the pageblock, so try to steal them all. For
2456  * reclaimable and unmovable allocations, we steal regardless of page size,
2457  * as fragmentation caused by those allocations polluting movable pageblocks
2458  * is worse than movable allocations stealing from unmovable and reclaimable
2459  * pageblocks.
2460  */
2461 static bool can_steal_fallback(unsigned int order, int start_mt)
2462 {
2463 	/*
2464 	 * Leaving this order check is intended, although there is
2465 	 * relaxed order check in next check. The reason is that
2466 	 * we can actually steal whole pageblock if this condition met,
2467 	 * but, below check doesn't guarantee it and that is just heuristic
2468 	 * so could be changed anytime.
2469 	 */
2470 	if (order >= pageblock_order)
2471 		return true;
2472 
2473 	if (order >= pageblock_order / 2 ||
2474 		start_mt == MIGRATE_RECLAIMABLE ||
2475 		start_mt == MIGRATE_UNMOVABLE ||
2476 		page_group_by_mobility_disabled)
2477 		return true;
2478 
2479 	return false;
2480 }
2481 
2482 static inline void boost_watermark(struct zone *zone)
2483 {
2484 	unsigned long max_boost;
2485 
2486 	if (!watermark_boost_factor)
2487 		return;
2488 	/*
2489 	 * Don't bother in zones that are unlikely to produce results.
2490 	 * On small machines, including kdump capture kernels running
2491 	 * in a small area, boosting the watermark can cause an out of
2492 	 * memory situation immediately.
2493 	 */
2494 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2495 		return;
2496 
2497 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2498 			watermark_boost_factor, 10000);
2499 
2500 	/*
2501 	 * high watermark may be uninitialised if fragmentation occurs
2502 	 * very early in boot so do not boost. We do not fall
2503 	 * through and boost by pageblock_nr_pages as failing
2504 	 * allocations that early means that reclaim is not going
2505 	 * to help and it may even be impossible to reclaim the
2506 	 * boosted watermark resulting in a hang.
2507 	 */
2508 	if (!max_boost)
2509 		return;
2510 
2511 	max_boost = max(pageblock_nr_pages, max_boost);
2512 
2513 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2514 		max_boost);
2515 }
2516 
2517 /*
2518  * This function implements actual steal behaviour. If order is large enough,
2519  * we can steal whole pageblock. If not, we first move freepages in this
2520  * pageblock to our migratetype and determine how many already-allocated pages
2521  * are there in the pageblock with a compatible migratetype. If at least half
2522  * of pages are free or compatible, we can change migratetype of the pageblock
2523  * itself, so pages freed in the future will be put on the correct free list.
2524  */
2525 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2526 		unsigned int alloc_flags, int start_type, bool whole_block)
2527 {
2528 	unsigned int current_order = buddy_order(page);
2529 	int free_pages, movable_pages, alike_pages;
2530 	int old_block_type;
2531 
2532 	old_block_type = get_pageblock_migratetype(page);
2533 
2534 	/*
2535 	 * This can happen due to races and we want to prevent broken
2536 	 * highatomic accounting.
2537 	 */
2538 	if (is_migrate_highatomic(old_block_type))
2539 		goto single_page;
2540 
2541 	/* Take ownership for orders >= pageblock_order */
2542 	if (current_order >= pageblock_order) {
2543 		change_pageblock_range(page, current_order, start_type);
2544 		goto single_page;
2545 	}
2546 
2547 	/*
2548 	 * Boost watermarks to increase reclaim pressure to reduce the
2549 	 * likelihood of future fallbacks. Wake kswapd now as the node
2550 	 * may be balanced overall and kswapd will not wake naturally.
2551 	 */
2552 	boost_watermark(zone);
2553 	if (alloc_flags & ALLOC_KSWAPD)
2554 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2555 
2556 	/* We are not allowed to try stealing from the whole block */
2557 	if (!whole_block)
2558 		goto single_page;
2559 
2560 	free_pages = move_freepages_block(zone, page, start_type,
2561 						&movable_pages);
2562 	/*
2563 	 * Determine how many pages are compatible with our allocation.
2564 	 * For movable allocation, it's the number of movable pages which
2565 	 * we just obtained. For other types it's a bit more tricky.
2566 	 */
2567 	if (start_type == MIGRATE_MOVABLE) {
2568 		alike_pages = movable_pages;
2569 	} else {
2570 		/*
2571 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2572 		 * to MOVABLE pageblock, consider all non-movable pages as
2573 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2574 		 * vice versa, be conservative since we can't distinguish the
2575 		 * exact migratetype of non-movable pages.
2576 		 */
2577 		if (old_block_type == MIGRATE_MOVABLE)
2578 			alike_pages = pageblock_nr_pages
2579 						- (free_pages + movable_pages);
2580 		else
2581 			alike_pages = 0;
2582 	}
2583 
2584 	/* moving whole block can fail due to zone boundary conditions */
2585 	if (!free_pages)
2586 		goto single_page;
2587 
2588 	/*
2589 	 * If a sufficient number of pages in the block are either free or of
2590 	 * comparable migratability as our allocation, claim the whole block.
2591 	 */
2592 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2593 			page_group_by_mobility_disabled)
2594 		set_pageblock_migratetype(page, start_type);
2595 
2596 	return;
2597 
2598 single_page:
2599 	move_to_free_list(page, zone, current_order, start_type);
2600 }
2601 
2602 /*
2603  * Check whether there is a suitable fallback freepage with requested order.
2604  * If only_stealable is true, this function returns fallback_mt only if
2605  * we can steal other freepages all together. This would help to reduce
2606  * fragmentation due to mixed migratetype pages in one pageblock.
2607  */
2608 int find_suitable_fallback(struct free_area *area, unsigned int order,
2609 			int migratetype, bool only_stealable, bool *can_steal)
2610 {
2611 	int i;
2612 	int fallback_mt;
2613 
2614 	if (area->nr_free == 0)
2615 		return -1;
2616 
2617 	*can_steal = false;
2618 	for (i = 0;; i++) {
2619 		fallback_mt = fallbacks[migratetype][i];
2620 		if (fallback_mt == MIGRATE_TYPES)
2621 			break;
2622 
2623 		if (free_area_empty(area, fallback_mt))
2624 			continue;
2625 
2626 		if (can_steal_fallback(order, migratetype))
2627 			*can_steal = true;
2628 
2629 		if (!only_stealable)
2630 			return fallback_mt;
2631 
2632 		if (*can_steal)
2633 			return fallback_mt;
2634 	}
2635 
2636 	return -1;
2637 }
2638 
2639 /*
2640  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2641  * there are no empty page blocks that contain a page with a suitable order
2642  */
2643 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2644 				unsigned int alloc_order)
2645 {
2646 	int mt;
2647 	unsigned long max_managed, flags;
2648 
2649 	/*
2650 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2651 	 * Check is race-prone but harmless.
2652 	 */
2653 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2654 	if (zone->nr_reserved_highatomic >= max_managed)
2655 		return;
2656 
2657 	spin_lock_irqsave(&zone->lock, flags);
2658 
2659 	/* Recheck the nr_reserved_highatomic limit under the lock */
2660 	if (zone->nr_reserved_highatomic >= max_managed)
2661 		goto out_unlock;
2662 
2663 	/* Yoink! */
2664 	mt = get_pageblock_migratetype(page);
2665 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2666 	    && !is_migrate_cma(mt)) {
2667 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2668 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2669 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2670 	}
2671 
2672 out_unlock:
2673 	spin_unlock_irqrestore(&zone->lock, flags);
2674 }
2675 
2676 /*
2677  * Used when an allocation is about to fail under memory pressure. This
2678  * potentially hurts the reliability of high-order allocations when under
2679  * intense memory pressure but failed atomic allocations should be easier
2680  * to recover from than an OOM.
2681  *
2682  * If @force is true, try to unreserve a pageblock even though highatomic
2683  * pageblock is exhausted.
2684  */
2685 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2686 						bool force)
2687 {
2688 	struct zonelist *zonelist = ac->zonelist;
2689 	unsigned long flags;
2690 	struct zoneref *z;
2691 	struct zone *zone;
2692 	struct page *page;
2693 	int order;
2694 	bool ret;
2695 
2696 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2697 								ac->nodemask) {
2698 		/*
2699 		 * Preserve at least one pageblock unless memory pressure
2700 		 * is really high.
2701 		 */
2702 		if (!force && zone->nr_reserved_highatomic <=
2703 					pageblock_nr_pages)
2704 			continue;
2705 
2706 		spin_lock_irqsave(&zone->lock, flags);
2707 		for (order = 0; order < MAX_ORDER; order++) {
2708 			struct free_area *area = &(zone->free_area[order]);
2709 
2710 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2711 			if (!page)
2712 				continue;
2713 
2714 			/*
2715 			 * In page freeing path, migratetype change is racy so
2716 			 * we can counter several free pages in a pageblock
2717 			 * in this loop althoug we changed the pageblock type
2718 			 * from highatomic to ac->migratetype. So we should
2719 			 * adjust the count once.
2720 			 */
2721 			if (is_migrate_highatomic_page(page)) {
2722 				/*
2723 				 * It should never happen but changes to
2724 				 * locking could inadvertently allow a per-cpu
2725 				 * drain to add pages to MIGRATE_HIGHATOMIC
2726 				 * while unreserving so be safe and watch for
2727 				 * underflows.
2728 				 */
2729 				zone->nr_reserved_highatomic -= min(
2730 						pageblock_nr_pages,
2731 						zone->nr_reserved_highatomic);
2732 			}
2733 
2734 			/*
2735 			 * Convert to ac->migratetype and avoid the normal
2736 			 * pageblock stealing heuristics. Minimally, the caller
2737 			 * is doing the work and needs the pages. More
2738 			 * importantly, if the block was always converted to
2739 			 * MIGRATE_UNMOVABLE or another type then the number
2740 			 * of pageblocks that cannot be completely freed
2741 			 * may increase.
2742 			 */
2743 			set_pageblock_migratetype(page, ac->migratetype);
2744 			ret = move_freepages_block(zone, page, ac->migratetype,
2745 									NULL);
2746 			if (ret) {
2747 				spin_unlock_irqrestore(&zone->lock, flags);
2748 				return ret;
2749 			}
2750 		}
2751 		spin_unlock_irqrestore(&zone->lock, flags);
2752 	}
2753 
2754 	return false;
2755 }
2756 
2757 /*
2758  * Try finding a free buddy page on the fallback list and put it on the free
2759  * list of requested migratetype, possibly along with other pages from the same
2760  * block, depending on fragmentation avoidance heuristics. Returns true if
2761  * fallback was found so that __rmqueue_smallest() can grab it.
2762  *
2763  * The use of signed ints for order and current_order is a deliberate
2764  * deviation from the rest of this file, to make the for loop
2765  * condition simpler.
2766  */
2767 static __always_inline bool
2768 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2769 						unsigned int alloc_flags)
2770 {
2771 	struct free_area *area;
2772 	int current_order;
2773 	int min_order = order;
2774 	struct page *page;
2775 	int fallback_mt;
2776 	bool can_steal;
2777 
2778 	/*
2779 	 * Do not steal pages from freelists belonging to other pageblocks
2780 	 * i.e. orders < pageblock_order. If there are no local zones free,
2781 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2782 	 */
2783 	if (alloc_flags & ALLOC_NOFRAGMENT)
2784 		min_order = pageblock_order;
2785 
2786 	/*
2787 	 * Find the largest available free page in the other list. This roughly
2788 	 * approximates finding the pageblock with the most free pages, which
2789 	 * would be too costly to do exactly.
2790 	 */
2791 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2792 				--current_order) {
2793 		area = &(zone->free_area[current_order]);
2794 		fallback_mt = find_suitable_fallback(area, current_order,
2795 				start_migratetype, false, &can_steal);
2796 		if (fallback_mt == -1)
2797 			continue;
2798 
2799 		/*
2800 		 * We cannot steal all free pages from the pageblock and the
2801 		 * requested migratetype is movable. In that case it's better to
2802 		 * steal and split the smallest available page instead of the
2803 		 * largest available page, because even if the next movable
2804 		 * allocation falls back into a different pageblock than this
2805 		 * one, it won't cause permanent fragmentation.
2806 		 */
2807 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2808 					&& current_order > order)
2809 			goto find_smallest;
2810 
2811 		goto do_steal;
2812 	}
2813 
2814 	return false;
2815 
2816 find_smallest:
2817 	for (current_order = order; current_order < MAX_ORDER;
2818 							current_order++) {
2819 		area = &(zone->free_area[current_order]);
2820 		fallback_mt = find_suitable_fallback(area, current_order,
2821 				start_migratetype, false, &can_steal);
2822 		if (fallback_mt != -1)
2823 			break;
2824 	}
2825 
2826 	/*
2827 	 * This should not happen - we already found a suitable fallback
2828 	 * when looking for the largest page.
2829 	 */
2830 	VM_BUG_ON(current_order == MAX_ORDER);
2831 
2832 do_steal:
2833 	page = get_page_from_free_area(area, fallback_mt);
2834 
2835 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2836 								can_steal);
2837 
2838 	trace_mm_page_alloc_extfrag(page, order, current_order,
2839 		start_migratetype, fallback_mt);
2840 
2841 	return true;
2842 
2843 }
2844 
2845 /*
2846  * Do the hard work of removing an element from the buddy allocator.
2847  * Call me with the zone->lock already held.
2848  */
2849 static __always_inline struct page *
2850 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2851 						unsigned int alloc_flags)
2852 {
2853 	struct page *page;
2854 
2855 #ifdef CONFIG_CMA
2856 	/*
2857 	 * Balance movable allocations between regular and CMA areas by
2858 	 * allocating from CMA when over half of the zone's free memory
2859 	 * is in the CMA area.
2860 	 */
2861 	if (alloc_flags & ALLOC_CMA &&
2862 	    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2863 	    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2864 		page = __rmqueue_cma_fallback(zone, order);
2865 		if (page)
2866 			return page;
2867 	}
2868 #endif
2869 retry:
2870 	page = __rmqueue_smallest(zone, order, migratetype);
2871 	if (unlikely(!page)) {
2872 		if (alloc_flags & ALLOC_CMA)
2873 			page = __rmqueue_cma_fallback(zone, order);
2874 
2875 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2876 								alloc_flags))
2877 			goto retry;
2878 	}
2879 
2880 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2881 	return page;
2882 }
2883 
2884 /*
2885  * Obtain a specified number of elements from the buddy allocator, all under
2886  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2887  * Returns the number of new pages which were placed at *list.
2888  */
2889 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2890 			unsigned long count, struct list_head *list,
2891 			int migratetype, unsigned int alloc_flags)
2892 {
2893 	int i, alloced = 0;
2894 
2895 	spin_lock(&zone->lock);
2896 	for (i = 0; i < count; ++i) {
2897 		struct page *page = __rmqueue(zone, order, migratetype,
2898 								alloc_flags);
2899 		if (unlikely(page == NULL))
2900 			break;
2901 
2902 		if (unlikely(check_pcp_refill(page)))
2903 			continue;
2904 
2905 		/*
2906 		 * Split buddy pages returned by expand() are received here in
2907 		 * physical page order. The page is added to the tail of
2908 		 * caller's list. From the callers perspective, the linked list
2909 		 * is ordered by page number under some conditions. This is
2910 		 * useful for IO devices that can forward direction from the
2911 		 * head, thus also in the physical page order. This is useful
2912 		 * for IO devices that can merge IO requests if the physical
2913 		 * pages are ordered properly.
2914 		 */
2915 		list_add_tail(&page->lru, list);
2916 		alloced++;
2917 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2918 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2919 					      -(1 << order));
2920 	}
2921 
2922 	/*
2923 	 * i pages were removed from the buddy list even if some leak due
2924 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2925 	 * on i. Do not confuse with 'alloced' which is the number of
2926 	 * pages added to the pcp list.
2927 	 */
2928 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2929 	spin_unlock(&zone->lock);
2930 	return alloced;
2931 }
2932 
2933 #ifdef CONFIG_NUMA
2934 /*
2935  * Called from the vmstat counter updater to drain pagesets of this
2936  * currently executing processor on remote nodes after they have
2937  * expired.
2938  *
2939  * Note that this function must be called with the thread pinned to
2940  * a single processor.
2941  */
2942 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2943 {
2944 	unsigned long flags;
2945 	int to_drain, batch;
2946 
2947 	local_irq_save(flags);
2948 	batch = READ_ONCE(pcp->batch);
2949 	to_drain = min(pcp->count, batch);
2950 	if (to_drain > 0)
2951 		free_pcppages_bulk(zone, to_drain, pcp);
2952 	local_irq_restore(flags);
2953 }
2954 #endif
2955 
2956 /*
2957  * Drain pcplists of the indicated processor and zone.
2958  *
2959  * The processor must either be the current processor and the
2960  * thread pinned to the current processor or a processor that
2961  * is not online.
2962  */
2963 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2964 {
2965 	unsigned long flags;
2966 	struct per_cpu_pageset *pset;
2967 	struct per_cpu_pages *pcp;
2968 
2969 	local_irq_save(flags);
2970 	pset = per_cpu_ptr(zone->pageset, cpu);
2971 
2972 	pcp = &pset->pcp;
2973 	if (pcp->count)
2974 		free_pcppages_bulk(zone, pcp->count, pcp);
2975 	local_irq_restore(flags);
2976 }
2977 
2978 /*
2979  * Drain pcplists of all zones on the indicated processor.
2980  *
2981  * The processor must either be the current processor and the
2982  * thread pinned to the current processor or a processor that
2983  * is not online.
2984  */
2985 static void drain_pages(unsigned int cpu)
2986 {
2987 	struct zone *zone;
2988 
2989 	for_each_populated_zone(zone) {
2990 		drain_pages_zone(cpu, zone);
2991 	}
2992 }
2993 
2994 /*
2995  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2996  *
2997  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2998  * the single zone's pages.
2999  */
3000 void drain_local_pages(struct zone *zone)
3001 {
3002 	int cpu = smp_processor_id();
3003 
3004 	if (zone)
3005 		drain_pages_zone(cpu, zone);
3006 	else
3007 		drain_pages(cpu);
3008 }
3009 
3010 static void drain_local_pages_wq(struct work_struct *work)
3011 {
3012 	struct pcpu_drain *drain;
3013 
3014 	drain = container_of(work, struct pcpu_drain, work);
3015 
3016 	/*
3017 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3018 	 * we can race with cpu offline when the WQ can move this from
3019 	 * a cpu pinned worker to an unbound one. We can operate on a different
3020 	 * cpu which is allright but we also have to make sure to not move to
3021 	 * a different one.
3022 	 */
3023 	preempt_disable();
3024 	drain_local_pages(drain->zone);
3025 	preempt_enable();
3026 }
3027 
3028 /*
3029  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3030  *
3031  * When zone parameter is non-NULL, spill just the single zone's pages.
3032  *
3033  * Note that this can be extremely slow as the draining happens in a workqueue.
3034  */
3035 void drain_all_pages(struct zone *zone)
3036 {
3037 	int cpu;
3038 
3039 	/*
3040 	 * Allocate in the BSS so we wont require allocation in
3041 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3042 	 */
3043 	static cpumask_t cpus_with_pcps;
3044 
3045 	/*
3046 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3047 	 * initialized.
3048 	 */
3049 	if (WARN_ON_ONCE(!mm_percpu_wq))
3050 		return;
3051 
3052 	/*
3053 	 * Do not drain if one is already in progress unless it's specific to
3054 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3055 	 * the drain to be complete when the call returns.
3056 	 */
3057 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3058 		if (!zone)
3059 			return;
3060 		mutex_lock(&pcpu_drain_mutex);
3061 	}
3062 
3063 	/*
3064 	 * We don't care about racing with CPU hotplug event
3065 	 * as offline notification will cause the notified
3066 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3067 	 * disables preemption as part of its processing
3068 	 */
3069 	for_each_online_cpu(cpu) {
3070 		struct per_cpu_pageset *pcp;
3071 		struct zone *z;
3072 		bool has_pcps = false;
3073 
3074 		if (zone) {
3075 			pcp = per_cpu_ptr(zone->pageset, cpu);
3076 			if (pcp->pcp.count)
3077 				has_pcps = true;
3078 		} else {
3079 			for_each_populated_zone(z) {
3080 				pcp = per_cpu_ptr(z->pageset, cpu);
3081 				if (pcp->pcp.count) {
3082 					has_pcps = true;
3083 					break;
3084 				}
3085 			}
3086 		}
3087 
3088 		if (has_pcps)
3089 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3090 		else
3091 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3092 	}
3093 
3094 	for_each_cpu(cpu, &cpus_with_pcps) {
3095 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3096 
3097 		drain->zone = zone;
3098 		INIT_WORK(&drain->work, drain_local_pages_wq);
3099 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3100 	}
3101 	for_each_cpu(cpu, &cpus_with_pcps)
3102 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3103 
3104 	mutex_unlock(&pcpu_drain_mutex);
3105 }
3106 
3107 #ifdef CONFIG_HIBERNATION
3108 
3109 /*
3110  * Touch the watchdog for every WD_PAGE_COUNT pages.
3111  */
3112 #define WD_PAGE_COUNT	(128*1024)
3113 
3114 void mark_free_pages(struct zone *zone)
3115 {
3116 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3117 	unsigned long flags;
3118 	unsigned int order, t;
3119 	struct page *page;
3120 
3121 	if (zone_is_empty(zone))
3122 		return;
3123 
3124 	spin_lock_irqsave(&zone->lock, flags);
3125 
3126 	max_zone_pfn = zone_end_pfn(zone);
3127 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3128 		if (pfn_valid(pfn)) {
3129 			page = pfn_to_page(pfn);
3130 
3131 			if (!--page_count) {
3132 				touch_nmi_watchdog();
3133 				page_count = WD_PAGE_COUNT;
3134 			}
3135 
3136 			if (page_zone(page) != zone)
3137 				continue;
3138 
3139 			if (!swsusp_page_is_forbidden(page))
3140 				swsusp_unset_page_free(page);
3141 		}
3142 
3143 	for_each_migratetype_order(order, t) {
3144 		list_for_each_entry(page,
3145 				&zone->free_area[order].free_list[t], lru) {
3146 			unsigned long i;
3147 
3148 			pfn = page_to_pfn(page);
3149 			for (i = 0; i < (1UL << order); i++) {
3150 				if (!--page_count) {
3151 					touch_nmi_watchdog();
3152 					page_count = WD_PAGE_COUNT;
3153 				}
3154 				swsusp_set_page_free(pfn_to_page(pfn + i));
3155 			}
3156 		}
3157 	}
3158 	spin_unlock_irqrestore(&zone->lock, flags);
3159 }
3160 #endif /* CONFIG_PM */
3161 
3162 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3163 {
3164 	int migratetype;
3165 
3166 	if (!free_pcp_prepare(page))
3167 		return false;
3168 
3169 	migratetype = get_pfnblock_migratetype(page, pfn);
3170 	set_pcppage_migratetype(page, migratetype);
3171 	return true;
3172 }
3173 
3174 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3175 {
3176 	struct zone *zone = page_zone(page);
3177 	struct per_cpu_pages *pcp;
3178 	int migratetype;
3179 
3180 	migratetype = get_pcppage_migratetype(page);
3181 	__count_vm_event(PGFREE);
3182 
3183 	/*
3184 	 * We only track unmovable, reclaimable and movable on pcp lists.
3185 	 * Free ISOLATE pages back to the allocator because they are being
3186 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3187 	 * areas back if necessary. Otherwise, we may have to free
3188 	 * excessively into the page allocator
3189 	 */
3190 	if (migratetype >= MIGRATE_PCPTYPES) {
3191 		if (unlikely(is_migrate_isolate(migratetype))) {
3192 			free_one_page(zone, page, pfn, 0, migratetype,
3193 				      FPI_NONE);
3194 			return;
3195 		}
3196 		migratetype = MIGRATE_MOVABLE;
3197 	}
3198 
3199 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3200 	list_add(&page->lru, &pcp->lists[migratetype]);
3201 	pcp->count++;
3202 	if (pcp->count >= pcp->high) {
3203 		unsigned long batch = READ_ONCE(pcp->batch);
3204 		free_pcppages_bulk(zone, batch, pcp);
3205 	}
3206 }
3207 
3208 /*
3209  * Free a 0-order page
3210  */
3211 void free_unref_page(struct page *page)
3212 {
3213 	unsigned long flags;
3214 	unsigned long pfn = page_to_pfn(page);
3215 
3216 	if (!free_unref_page_prepare(page, pfn))
3217 		return;
3218 
3219 	local_irq_save(flags);
3220 	free_unref_page_commit(page, pfn);
3221 	local_irq_restore(flags);
3222 }
3223 
3224 /*
3225  * Free a list of 0-order pages
3226  */
3227 void free_unref_page_list(struct list_head *list)
3228 {
3229 	struct page *page, *next;
3230 	unsigned long flags, pfn;
3231 	int batch_count = 0;
3232 
3233 	/* Prepare pages for freeing */
3234 	list_for_each_entry_safe(page, next, list, lru) {
3235 		pfn = page_to_pfn(page);
3236 		if (!free_unref_page_prepare(page, pfn))
3237 			list_del(&page->lru);
3238 		set_page_private(page, pfn);
3239 	}
3240 
3241 	local_irq_save(flags);
3242 	list_for_each_entry_safe(page, next, list, lru) {
3243 		unsigned long pfn = page_private(page);
3244 
3245 		set_page_private(page, 0);
3246 		trace_mm_page_free_batched(page);
3247 		free_unref_page_commit(page, pfn);
3248 
3249 		/*
3250 		 * Guard against excessive IRQ disabled times when we get
3251 		 * a large list of pages to free.
3252 		 */
3253 		if (++batch_count == SWAP_CLUSTER_MAX) {
3254 			local_irq_restore(flags);
3255 			batch_count = 0;
3256 			local_irq_save(flags);
3257 		}
3258 	}
3259 	local_irq_restore(flags);
3260 }
3261 
3262 /*
3263  * split_page takes a non-compound higher-order page, and splits it into
3264  * n (1<<order) sub-pages: page[0..n]
3265  * Each sub-page must be freed individually.
3266  *
3267  * Note: this is probably too low level an operation for use in drivers.
3268  * Please consult with lkml before using this in your driver.
3269  */
3270 void split_page(struct page *page, unsigned int order)
3271 {
3272 	int i;
3273 
3274 	VM_BUG_ON_PAGE(PageCompound(page), page);
3275 	VM_BUG_ON_PAGE(!page_count(page), page);
3276 
3277 	for (i = 1; i < (1 << order); i++)
3278 		set_page_refcounted(page + i);
3279 	split_page_owner(page, 1 << order);
3280 }
3281 EXPORT_SYMBOL_GPL(split_page);
3282 
3283 int __isolate_free_page(struct page *page, unsigned int order)
3284 {
3285 	unsigned long watermark;
3286 	struct zone *zone;
3287 	int mt;
3288 
3289 	BUG_ON(!PageBuddy(page));
3290 
3291 	zone = page_zone(page);
3292 	mt = get_pageblock_migratetype(page);
3293 
3294 	if (!is_migrate_isolate(mt)) {
3295 		/*
3296 		 * Obey watermarks as if the page was being allocated. We can
3297 		 * emulate a high-order watermark check with a raised order-0
3298 		 * watermark, because we already know our high-order page
3299 		 * exists.
3300 		 */
3301 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3302 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3303 			return 0;
3304 
3305 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3306 	}
3307 
3308 	/* Remove page from free list */
3309 
3310 	del_page_from_free_list(page, zone, order);
3311 
3312 	/*
3313 	 * Set the pageblock if the isolated page is at least half of a
3314 	 * pageblock
3315 	 */
3316 	if (order >= pageblock_order - 1) {
3317 		struct page *endpage = page + (1 << order) - 1;
3318 		for (; page < endpage; page += pageblock_nr_pages) {
3319 			int mt = get_pageblock_migratetype(page);
3320 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3321 			    && !is_migrate_highatomic(mt))
3322 				set_pageblock_migratetype(page,
3323 							  MIGRATE_MOVABLE);
3324 		}
3325 	}
3326 
3327 
3328 	return 1UL << order;
3329 }
3330 
3331 /**
3332  * __putback_isolated_page - Return a now-isolated page back where we got it
3333  * @page: Page that was isolated
3334  * @order: Order of the isolated page
3335  * @mt: The page's pageblock's migratetype
3336  *
3337  * This function is meant to return a page pulled from the free lists via
3338  * __isolate_free_page back to the free lists they were pulled from.
3339  */
3340 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3341 {
3342 	struct zone *zone = page_zone(page);
3343 
3344 	/* zone lock should be held when this function is called */
3345 	lockdep_assert_held(&zone->lock);
3346 
3347 	/* Return isolated page to tail of freelist. */
3348 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3349 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3350 }
3351 
3352 /*
3353  * Update NUMA hit/miss statistics
3354  *
3355  * Must be called with interrupts disabled.
3356  */
3357 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3358 {
3359 #ifdef CONFIG_NUMA
3360 	enum numa_stat_item local_stat = NUMA_LOCAL;
3361 
3362 	/* skip numa counters update if numa stats is disabled */
3363 	if (!static_branch_likely(&vm_numa_stat_key))
3364 		return;
3365 
3366 	if (zone_to_nid(z) != numa_node_id())
3367 		local_stat = NUMA_OTHER;
3368 
3369 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3370 		__inc_numa_state(z, NUMA_HIT);
3371 	else {
3372 		__inc_numa_state(z, NUMA_MISS);
3373 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3374 	}
3375 	__inc_numa_state(z, local_stat);
3376 #endif
3377 }
3378 
3379 /* Remove page from the per-cpu list, caller must protect the list */
3380 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3381 			unsigned int alloc_flags,
3382 			struct per_cpu_pages *pcp,
3383 			struct list_head *list)
3384 {
3385 	struct page *page;
3386 
3387 	do {
3388 		if (list_empty(list)) {
3389 			pcp->count += rmqueue_bulk(zone, 0,
3390 					pcp->batch, list,
3391 					migratetype, alloc_flags);
3392 			if (unlikely(list_empty(list)))
3393 				return NULL;
3394 		}
3395 
3396 		page = list_first_entry(list, struct page, lru);
3397 		list_del(&page->lru);
3398 		pcp->count--;
3399 	} while (check_new_pcp(page));
3400 
3401 	return page;
3402 }
3403 
3404 /* Lock and remove page from the per-cpu list */
3405 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3406 			struct zone *zone, gfp_t gfp_flags,
3407 			int migratetype, unsigned int alloc_flags)
3408 {
3409 	struct per_cpu_pages *pcp;
3410 	struct list_head *list;
3411 	struct page *page;
3412 	unsigned long flags;
3413 
3414 	local_irq_save(flags);
3415 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3416 	list = &pcp->lists[migratetype];
3417 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3418 	if (page) {
3419 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3420 		zone_statistics(preferred_zone, zone);
3421 	}
3422 	local_irq_restore(flags);
3423 	return page;
3424 }
3425 
3426 /*
3427  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3428  */
3429 static inline
3430 struct page *rmqueue(struct zone *preferred_zone,
3431 			struct zone *zone, unsigned int order,
3432 			gfp_t gfp_flags, unsigned int alloc_flags,
3433 			int migratetype)
3434 {
3435 	unsigned long flags;
3436 	struct page *page;
3437 
3438 	if (likely(order == 0)) {
3439 		/*
3440 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3441 		 * we need to skip it when CMA area isn't allowed.
3442 		 */
3443 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3444 				migratetype != MIGRATE_MOVABLE) {
3445 			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3446 					migratetype, alloc_flags);
3447 			goto out;
3448 		}
3449 	}
3450 
3451 	/*
3452 	 * We most definitely don't want callers attempting to
3453 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3454 	 */
3455 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3456 	spin_lock_irqsave(&zone->lock, flags);
3457 
3458 	do {
3459 		page = NULL;
3460 		/*
3461 		 * order-0 request can reach here when the pcplist is skipped
3462 		 * due to non-CMA allocation context. HIGHATOMIC area is
3463 		 * reserved for high-order atomic allocation, so order-0
3464 		 * request should skip it.
3465 		 */
3466 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3467 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3468 			if (page)
3469 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3470 		}
3471 		if (!page)
3472 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3473 	} while (page && check_new_pages(page, order));
3474 	spin_unlock(&zone->lock);
3475 	if (!page)
3476 		goto failed;
3477 	__mod_zone_freepage_state(zone, -(1 << order),
3478 				  get_pcppage_migratetype(page));
3479 
3480 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3481 	zone_statistics(preferred_zone, zone);
3482 	local_irq_restore(flags);
3483 
3484 out:
3485 	/* Separate test+clear to avoid unnecessary atomics */
3486 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3487 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3488 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3489 	}
3490 
3491 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3492 	return page;
3493 
3494 failed:
3495 	local_irq_restore(flags);
3496 	return NULL;
3497 }
3498 
3499 #ifdef CONFIG_FAIL_PAGE_ALLOC
3500 
3501 static struct {
3502 	struct fault_attr attr;
3503 
3504 	bool ignore_gfp_highmem;
3505 	bool ignore_gfp_reclaim;
3506 	u32 min_order;
3507 } fail_page_alloc = {
3508 	.attr = FAULT_ATTR_INITIALIZER,
3509 	.ignore_gfp_reclaim = true,
3510 	.ignore_gfp_highmem = true,
3511 	.min_order = 1,
3512 };
3513 
3514 static int __init setup_fail_page_alloc(char *str)
3515 {
3516 	return setup_fault_attr(&fail_page_alloc.attr, str);
3517 }
3518 __setup("fail_page_alloc=", setup_fail_page_alloc);
3519 
3520 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3521 {
3522 	if (order < fail_page_alloc.min_order)
3523 		return false;
3524 	if (gfp_mask & __GFP_NOFAIL)
3525 		return false;
3526 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3527 		return false;
3528 	if (fail_page_alloc.ignore_gfp_reclaim &&
3529 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3530 		return false;
3531 
3532 	return should_fail(&fail_page_alloc.attr, 1 << order);
3533 }
3534 
3535 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3536 
3537 static int __init fail_page_alloc_debugfs(void)
3538 {
3539 	umode_t mode = S_IFREG | 0600;
3540 	struct dentry *dir;
3541 
3542 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3543 					&fail_page_alloc.attr);
3544 
3545 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3546 			    &fail_page_alloc.ignore_gfp_reclaim);
3547 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3548 			    &fail_page_alloc.ignore_gfp_highmem);
3549 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3550 
3551 	return 0;
3552 }
3553 
3554 late_initcall(fail_page_alloc_debugfs);
3555 
3556 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3557 
3558 #else /* CONFIG_FAIL_PAGE_ALLOC */
3559 
3560 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3561 {
3562 	return false;
3563 }
3564 
3565 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3566 
3567 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3568 {
3569 	return __should_fail_alloc_page(gfp_mask, order);
3570 }
3571 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3572 
3573 static inline long __zone_watermark_unusable_free(struct zone *z,
3574 				unsigned int order, unsigned int alloc_flags)
3575 {
3576 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3577 	long unusable_free = (1 << order) - 1;
3578 
3579 	/*
3580 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3581 	 * the high-atomic reserves. This will over-estimate the size of the
3582 	 * atomic reserve but it avoids a search.
3583 	 */
3584 	if (likely(!alloc_harder))
3585 		unusable_free += z->nr_reserved_highatomic;
3586 
3587 #ifdef CONFIG_CMA
3588 	/* If allocation can't use CMA areas don't use free CMA pages */
3589 	if (!(alloc_flags & ALLOC_CMA))
3590 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3591 #endif
3592 
3593 	return unusable_free;
3594 }
3595 
3596 /*
3597  * Return true if free base pages are above 'mark'. For high-order checks it
3598  * will return true of the order-0 watermark is reached and there is at least
3599  * one free page of a suitable size. Checking now avoids taking the zone lock
3600  * to check in the allocation paths if no pages are free.
3601  */
3602 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3603 			 int highest_zoneidx, unsigned int alloc_flags,
3604 			 long free_pages)
3605 {
3606 	long min = mark;
3607 	int o;
3608 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3609 
3610 	/* free_pages may go negative - that's OK */
3611 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3612 
3613 	if (alloc_flags & ALLOC_HIGH)
3614 		min -= min / 2;
3615 
3616 	if (unlikely(alloc_harder)) {
3617 		/*
3618 		 * OOM victims can try even harder than normal ALLOC_HARDER
3619 		 * users on the grounds that it's definitely going to be in
3620 		 * the exit path shortly and free memory. Any allocation it
3621 		 * makes during the free path will be small and short-lived.
3622 		 */
3623 		if (alloc_flags & ALLOC_OOM)
3624 			min -= min / 2;
3625 		else
3626 			min -= min / 4;
3627 	}
3628 
3629 	/*
3630 	 * Check watermarks for an order-0 allocation request. If these
3631 	 * are not met, then a high-order request also cannot go ahead
3632 	 * even if a suitable page happened to be free.
3633 	 */
3634 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3635 		return false;
3636 
3637 	/* If this is an order-0 request then the watermark is fine */
3638 	if (!order)
3639 		return true;
3640 
3641 	/* For a high-order request, check at least one suitable page is free */
3642 	for (o = order; o < MAX_ORDER; o++) {
3643 		struct free_area *area = &z->free_area[o];
3644 		int mt;
3645 
3646 		if (!area->nr_free)
3647 			continue;
3648 
3649 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3650 			if (!free_area_empty(area, mt))
3651 				return true;
3652 		}
3653 
3654 #ifdef CONFIG_CMA
3655 		if ((alloc_flags & ALLOC_CMA) &&
3656 		    !free_area_empty(area, MIGRATE_CMA)) {
3657 			return true;
3658 		}
3659 #endif
3660 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3661 			return true;
3662 	}
3663 	return false;
3664 }
3665 
3666 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3667 		      int highest_zoneidx, unsigned int alloc_flags)
3668 {
3669 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3670 					zone_page_state(z, NR_FREE_PAGES));
3671 }
3672 
3673 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3674 				unsigned long mark, int highest_zoneidx,
3675 				unsigned int alloc_flags, gfp_t gfp_mask)
3676 {
3677 	long free_pages;
3678 
3679 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3680 
3681 	/*
3682 	 * Fast check for order-0 only. If this fails then the reserves
3683 	 * need to be calculated.
3684 	 */
3685 	if (!order) {
3686 		long fast_free;
3687 
3688 		fast_free = free_pages;
3689 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3690 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3691 			return true;
3692 	}
3693 
3694 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3695 					free_pages))
3696 		return true;
3697 	/*
3698 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3699 	 * when checking the min watermark. The min watermark is the
3700 	 * point where boosting is ignored so that kswapd is woken up
3701 	 * when below the low watermark.
3702 	 */
3703 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3704 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3705 		mark = z->_watermark[WMARK_MIN];
3706 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3707 					alloc_flags, free_pages);
3708 	}
3709 
3710 	return false;
3711 }
3712 
3713 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3714 			unsigned long mark, int highest_zoneidx)
3715 {
3716 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3717 
3718 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3719 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3720 
3721 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3722 								free_pages);
3723 }
3724 
3725 #ifdef CONFIG_NUMA
3726 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3727 {
3728 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3729 				node_reclaim_distance;
3730 }
3731 #else	/* CONFIG_NUMA */
3732 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3733 {
3734 	return true;
3735 }
3736 #endif	/* CONFIG_NUMA */
3737 
3738 /*
3739  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3740  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3741  * premature use of a lower zone may cause lowmem pressure problems that
3742  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3743  * probably too small. It only makes sense to spread allocations to avoid
3744  * fragmentation between the Normal and DMA32 zones.
3745  */
3746 static inline unsigned int
3747 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3748 {
3749 	unsigned int alloc_flags;
3750 
3751 	/*
3752 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3753 	 * to save a branch.
3754 	 */
3755 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3756 
3757 #ifdef CONFIG_ZONE_DMA32
3758 	if (!zone)
3759 		return alloc_flags;
3760 
3761 	if (zone_idx(zone) != ZONE_NORMAL)
3762 		return alloc_flags;
3763 
3764 	/*
3765 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3766 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3767 	 * on UMA that if Normal is populated then so is DMA32.
3768 	 */
3769 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3770 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3771 		return alloc_flags;
3772 
3773 	alloc_flags |= ALLOC_NOFRAGMENT;
3774 #endif /* CONFIG_ZONE_DMA32 */
3775 	return alloc_flags;
3776 }
3777 
3778 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3779 					unsigned int alloc_flags)
3780 {
3781 #ifdef CONFIG_CMA
3782 	unsigned int pflags = current->flags;
3783 
3784 	if (!(pflags & PF_MEMALLOC_NOCMA) &&
3785 			gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3786 		alloc_flags |= ALLOC_CMA;
3787 
3788 #endif
3789 	return alloc_flags;
3790 }
3791 
3792 /*
3793  * get_page_from_freelist goes through the zonelist trying to allocate
3794  * a page.
3795  */
3796 static struct page *
3797 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3798 						const struct alloc_context *ac)
3799 {
3800 	struct zoneref *z;
3801 	struct zone *zone;
3802 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3803 	bool no_fallback;
3804 
3805 retry:
3806 	/*
3807 	 * Scan zonelist, looking for a zone with enough free.
3808 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3809 	 */
3810 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3811 	z = ac->preferred_zoneref;
3812 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3813 					ac->nodemask) {
3814 		struct page *page;
3815 		unsigned long mark;
3816 
3817 		if (cpusets_enabled() &&
3818 			(alloc_flags & ALLOC_CPUSET) &&
3819 			!__cpuset_zone_allowed(zone, gfp_mask))
3820 				continue;
3821 		/*
3822 		 * When allocating a page cache page for writing, we
3823 		 * want to get it from a node that is within its dirty
3824 		 * limit, such that no single node holds more than its
3825 		 * proportional share of globally allowed dirty pages.
3826 		 * The dirty limits take into account the node's
3827 		 * lowmem reserves and high watermark so that kswapd
3828 		 * should be able to balance it without having to
3829 		 * write pages from its LRU list.
3830 		 *
3831 		 * XXX: For now, allow allocations to potentially
3832 		 * exceed the per-node dirty limit in the slowpath
3833 		 * (spread_dirty_pages unset) before going into reclaim,
3834 		 * which is important when on a NUMA setup the allowed
3835 		 * nodes are together not big enough to reach the
3836 		 * global limit.  The proper fix for these situations
3837 		 * will require awareness of nodes in the
3838 		 * dirty-throttling and the flusher threads.
3839 		 */
3840 		if (ac->spread_dirty_pages) {
3841 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3842 				continue;
3843 
3844 			if (!node_dirty_ok(zone->zone_pgdat)) {
3845 				last_pgdat_dirty_limit = zone->zone_pgdat;
3846 				continue;
3847 			}
3848 		}
3849 
3850 		if (no_fallback && nr_online_nodes > 1 &&
3851 		    zone != ac->preferred_zoneref->zone) {
3852 			int local_nid;
3853 
3854 			/*
3855 			 * If moving to a remote node, retry but allow
3856 			 * fragmenting fallbacks. Locality is more important
3857 			 * than fragmentation avoidance.
3858 			 */
3859 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3860 			if (zone_to_nid(zone) != local_nid) {
3861 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3862 				goto retry;
3863 			}
3864 		}
3865 
3866 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3867 		if (!zone_watermark_fast(zone, order, mark,
3868 				       ac->highest_zoneidx, alloc_flags,
3869 				       gfp_mask)) {
3870 			int ret;
3871 
3872 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3873 			/*
3874 			 * Watermark failed for this zone, but see if we can
3875 			 * grow this zone if it contains deferred pages.
3876 			 */
3877 			if (static_branch_unlikely(&deferred_pages)) {
3878 				if (_deferred_grow_zone(zone, order))
3879 					goto try_this_zone;
3880 			}
3881 #endif
3882 			/* Checked here to keep the fast path fast */
3883 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3884 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3885 				goto try_this_zone;
3886 
3887 			if (node_reclaim_mode == 0 ||
3888 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3889 				continue;
3890 
3891 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3892 			switch (ret) {
3893 			case NODE_RECLAIM_NOSCAN:
3894 				/* did not scan */
3895 				continue;
3896 			case NODE_RECLAIM_FULL:
3897 				/* scanned but unreclaimable */
3898 				continue;
3899 			default:
3900 				/* did we reclaim enough */
3901 				if (zone_watermark_ok(zone, order, mark,
3902 					ac->highest_zoneidx, alloc_flags))
3903 					goto try_this_zone;
3904 
3905 				continue;
3906 			}
3907 		}
3908 
3909 try_this_zone:
3910 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3911 				gfp_mask, alloc_flags, ac->migratetype);
3912 		if (page) {
3913 			prep_new_page(page, order, gfp_mask, alloc_flags);
3914 
3915 			/*
3916 			 * If this is a high-order atomic allocation then check
3917 			 * if the pageblock should be reserved for the future
3918 			 */
3919 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3920 				reserve_highatomic_pageblock(page, zone, order);
3921 
3922 			return page;
3923 		} else {
3924 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3925 			/* Try again if zone has deferred pages */
3926 			if (static_branch_unlikely(&deferred_pages)) {
3927 				if (_deferred_grow_zone(zone, order))
3928 					goto try_this_zone;
3929 			}
3930 #endif
3931 		}
3932 	}
3933 
3934 	/*
3935 	 * It's possible on a UMA machine to get through all zones that are
3936 	 * fragmented. If avoiding fragmentation, reset and try again.
3937 	 */
3938 	if (no_fallback) {
3939 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3940 		goto retry;
3941 	}
3942 
3943 	return NULL;
3944 }
3945 
3946 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3947 {
3948 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3949 
3950 	/*
3951 	 * This documents exceptions given to allocations in certain
3952 	 * contexts that are allowed to allocate outside current's set
3953 	 * of allowed nodes.
3954 	 */
3955 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3956 		if (tsk_is_oom_victim(current) ||
3957 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3958 			filter &= ~SHOW_MEM_FILTER_NODES;
3959 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3960 		filter &= ~SHOW_MEM_FILTER_NODES;
3961 
3962 	show_mem(filter, nodemask);
3963 }
3964 
3965 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3966 {
3967 	struct va_format vaf;
3968 	va_list args;
3969 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3970 
3971 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3972 		return;
3973 
3974 	va_start(args, fmt);
3975 	vaf.fmt = fmt;
3976 	vaf.va = &args;
3977 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3978 			current->comm, &vaf, gfp_mask, &gfp_mask,
3979 			nodemask_pr_args(nodemask));
3980 	va_end(args);
3981 
3982 	cpuset_print_current_mems_allowed();
3983 	pr_cont("\n");
3984 	dump_stack();
3985 	warn_alloc_show_mem(gfp_mask, nodemask);
3986 }
3987 
3988 static inline struct page *
3989 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3990 			      unsigned int alloc_flags,
3991 			      const struct alloc_context *ac)
3992 {
3993 	struct page *page;
3994 
3995 	page = get_page_from_freelist(gfp_mask, order,
3996 			alloc_flags|ALLOC_CPUSET, ac);
3997 	/*
3998 	 * fallback to ignore cpuset restriction if our nodes
3999 	 * are depleted
4000 	 */
4001 	if (!page)
4002 		page = get_page_from_freelist(gfp_mask, order,
4003 				alloc_flags, ac);
4004 
4005 	return page;
4006 }
4007 
4008 static inline struct page *
4009 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4010 	const struct alloc_context *ac, unsigned long *did_some_progress)
4011 {
4012 	struct oom_control oc = {
4013 		.zonelist = ac->zonelist,
4014 		.nodemask = ac->nodemask,
4015 		.memcg = NULL,
4016 		.gfp_mask = gfp_mask,
4017 		.order = order,
4018 	};
4019 	struct page *page;
4020 
4021 	*did_some_progress = 0;
4022 
4023 	/*
4024 	 * Acquire the oom lock.  If that fails, somebody else is
4025 	 * making progress for us.
4026 	 */
4027 	if (!mutex_trylock(&oom_lock)) {
4028 		*did_some_progress = 1;
4029 		schedule_timeout_uninterruptible(1);
4030 		return NULL;
4031 	}
4032 
4033 	/*
4034 	 * Go through the zonelist yet one more time, keep very high watermark
4035 	 * here, this is only to catch a parallel oom killing, we must fail if
4036 	 * we're still under heavy pressure. But make sure that this reclaim
4037 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4038 	 * allocation which will never fail due to oom_lock already held.
4039 	 */
4040 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4041 				      ~__GFP_DIRECT_RECLAIM, order,
4042 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4043 	if (page)
4044 		goto out;
4045 
4046 	/* Coredumps can quickly deplete all memory reserves */
4047 	if (current->flags & PF_DUMPCORE)
4048 		goto out;
4049 	/* The OOM killer will not help higher order allocs */
4050 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4051 		goto out;
4052 	/*
4053 	 * We have already exhausted all our reclaim opportunities without any
4054 	 * success so it is time to admit defeat. We will skip the OOM killer
4055 	 * because it is very likely that the caller has a more reasonable
4056 	 * fallback than shooting a random task.
4057 	 *
4058 	 * The OOM killer may not free memory on a specific node.
4059 	 */
4060 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4061 		goto out;
4062 	/* The OOM killer does not needlessly kill tasks for lowmem */
4063 	if (ac->highest_zoneidx < ZONE_NORMAL)
4064 		goto out;
4065 	if (pm_suspended_storage())
4066 		goto out;
4067 	/*
4068 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4069 	 * other request to make a forward progress.
4070 	 * We are in an unfortunate situation where out_of_memory cannot
4071 	 * do much for this context but let's try it to at least get
4072 	 * access to memory reserved if the current task is killed (see
4073 	 * out_of_memory). Once filesystems are ready to handle allocation
4074 	 * failures more gracefully we should just bail out here.
4075 	 */
4076 
4077 	/* Exhausted what can be done so it's blame time */
4078 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4079 		*did_some_progress = 1;
4080 
4081 		/*
4082 		 * Help non-failing allocations by giving them access to memory
4083 		 * reserves
4084 		 */
4085 		if (gfp_mask & __GFP_NOFAIL)
4086 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4087 					ALLOC_NO_WATERMARKS, ac);
4088 	}
4089 out:
4090 	mutex_unlock(&oom_lock);
4091 	return page;
4092 }
4093 
4094 /*
4095  * Maximum number of compaction retries wit a progress before OOM
4096  * killer is consider as the only way to move forward.
4097  */
4098 #define MAX_COMPACT_RETRIES 16
4099 
4100 #ifdef CONFIG_COMPACTION
4101 /* Try memory compaction for high-order allocations before reclaim */
4102 static struct page *
4103 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4104 		unsigned int alloc_flags, const struct alloc_context *ac,
4105 		enum compact_priority prio, enum compact_result *compact_result)
4106 {
4107 	struct page *page = NULL;
4108 	unsigned long pflags;
4109 	unsigned int noreclaim_flag;
4110 
4111 	if (!order)
4112 		return NULL;
4113 
4114 	psi_memstall_enter(&pflags);
4115 	noreclaim_flag = memalloc_noreclaim_save();
4116 
4117 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4118 								prio, &page);
4119 
4120 	memalloc_noreclaim_restore(noreclaim_flag);
4121 	psi_memstall_leave(&pflags);
4122 
4123 	/*
4124 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4125 	 * count a compaction stall
4126 	 */
4127 	count_vm_event(COMPACTSTALL);
4128 
4129 	/* Prep a captured page if available */
4130 	if (page)
4131 		prep_new_page(page, order, gfp_mask, alloc_flags);
4132 
4133 	/* Try get a page from the freelist if available */
4134 	if (!page)
4135 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4136 
4137 	if (page) {
4138 		struct zone *zone = page_zone(page);
4139 
4140 		zone->compact_blockskip_flush = false;
4141 		compaction_defer_reset(zone, order, true);
4142 		count_vm_event(COMPACTSUCCESS);
4143 		return page;
4144 	}
4145 
4146 	/*
4147 	 * It's bad if compaction run occurs and fails. The most likely reason
4148 	 * is that pages exist, but not enough to satisfy watermarks.
4149 	 */
4150 	count_vm_event(COMPACTFAIL);
4151 
4152 	cond_resched();
4153 
4154 	return NULL;
4155 }
4156 
4157 static inline bool
4158 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4159 		     enum compact_result compact_result,
4160 		     enum compact_priority *compact_priority,
4161 		     int *compaction_retries)
4162 {
4163 	int max_retries = MAX_COMPACT_RETRIES;
4164 	int min_priority;
4165 	bool ret = false;
4166 	int retries = *compaction_retries;
4167 	enum compact_priority priority = *compact_priority;
4168 
4169 	if (!order)
4170 		return false;
4171 
4172 	if (compaction_made_progress(compact_result))
4173 		(*compaction_retries)++;
4174 
4175 	/*
4176 	 * compaction considers all the zone as desperately out of memory
4177 	 * so it doesn't really make much sense to retry except when the
4178 	 * failure could be caused by insufficient priority
4179 	 */
4180 	if (compaction_failed(compact_result))
4181 		goto check_priority;
4182 
4183 	/*
4184 	 * compaction was skipped because there are not enough order-0 pages
4185 	 * to work with, so we retry only if it looks like reclaim can help.
4186 	 */
4187 	if (compaction_needs_reclaim(compact_result)) {
4188 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4189 		goto out;
4190 	}
4191 
4192 	/*
4193 	 * make sure the compaction wasn't deferred or didn't bail out early
4194 	 * due to locks contention before we declare that we should give up.
4195 	 * But the next retry should use a higher priority if allowed, so
4196 	 * we don't just keep bailing out endlessly.
4197 	 */
4198 	if (compaction_withdrawn(compact_result)) {
4199 		goto check_priority;
4200 	}
4201 
4202 	/*
4203 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4204 	 * costly ones because they are de facto nofail and invoke OOM
4205 	 * killer to move on while costly can fail and users are ready
4206 	 * to cope with that. 1/4 retries is rather arbitrary but we
4207 	 * would need much more detailed feedback from compaction to
4208 	 * make a better decision.
4209 	 */
4210 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4211 		max_retries /= 4;
4212 	if (*compaction_retries <= max_retries) {
4213 		ret = true;
4214 		goto out;
4215 	}
4216 
4217 	/*
4218 	 * Make sure there are attempts at the highest priority if we exhausted
4219 	 * all retries or failed at the lower priorities.
4220 	 */
4221 check_priority:
4222 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4223 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4224 
4225 	if (*compact_priority > min_priority) {
4226 		(*compact_priority)--;
4227 		*compaction_retries = 0;
4228 		ret = true;
4229 	}
4230 out:
4231 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4232 	return ret;
4233 }
4234 #else
4235 static inline struct page *
4236 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4237 		unsigned int alloc_flags, const struct alloc_context *ac,
4238 		enum compact_priority prio, enum compact_result *compact_result)
4239 {
4240 	*compact_result = COMPACT_SKIPPED;
4241 	return NULL;
4242 }
4243 
4244 static inline bool
4245 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4246 		     enum compact_result compact_result,
4247 		     enum compact_priority *compact_priority,
4248 		     int *compaction_retries)
4249 {
4250 	struct zone *zone;
4251 	struct zoneref *z;
4252 
4253 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4254 		return false;
4255 
4256 	/*
4257 	 * There are setups with compaction disabled which would prefer to loop
4258 	 * inside the allocator rather than hit the oom killer prematurely.
4259 	 * Let's give them a good hope and keep retrying while the order-0
4260 	 * watermarks are OK.
4261 	 */
4262 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4263 				ac->highest_zoneidx, ac->nodemask) {
4264 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4265 					ac->highest_zoneidx, alloc_flags))
4266 			return true;
4267 	}
4268 	return false;
4269 }
4270 #endif /* CONFIG_COMPACTION */
4271 
4272 #ifdef CONFIG_LOCKDEP
4273 static struct lockdep_map __fs_reclaim_map =
4274 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4275 
4276 static bool __need_reclaim(gfp_t gfp_mask)
4277 {
4278 	/* no reclaim without waiting on it */
4279 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4280 		return false;
4281 
4282 	/* this guy won't enter reclaim */
4283 	if (current->flags & PF_MEMALLOC)
4284 		return false;
4285 
4286 	if (gfp_mask & __GFP_NOLOCKDEP)
4287 		return false;
4288 
4289 	return true;
4290 }
4291 
4292 void __fs_reclaim_acquire(void)
4293 {
4294 	lock_map_acquire(&__fs_reclaim_map);
4295 }
4296 
4297 void __fs_reclaim_release(void)
4298 {
4299 	lock_map_release(&__fs_reclaim_map);
4300 }
4301 
4302 void fs_reclaim_acquire(gfp_t gfp_mask)
4303 {
4304 	gfp_mask = current_gfp_context(gfp_mask);
4305 
4306 	if (__need_reclaim(gfp_mask)) {
4307 		if (gfp_mask & __GFP_FS)
4308 			__fs_reclaim_acquire();
4309 
4310 #ifdef CONFIG_MMU_NOTIFIER
4311 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4312 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4313 #endif
4314 
4315 	}
4316 }
4317 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4318 
4319 void fs_reclaim_release(gfp_t gfp_mask)
4320 {
4321 	gfp_mask = current_gfp_context(gfp_mask);
4322 
4323 	if (__need_reclaim(gfp_mask)) {
4324 		if (gfp_mask & __GFP_FS)
4325 			__fs_reclaim_release();
4326 	}
4327 }
4328 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4329 #endif
4330 
4331 /* Perform direct synchronous page reclaim */
4332 static unsigned long
4333 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4334 					const struct alloc_context *ac)
4335 {
4336 	unsigned int noreclaim_flag;
4337 	unsigned long pflags, progress;
4338 
4339 	cond_resched();
4340 
4341 	/* We now go into synchronous reclaim */
4342 	cpuset_memory_pressure_bump();
4343 	psi_memstall_enter(&pflags);
4344 	fs_reclaim_acquire(gfp_mask);
4345 	noreclaim_flag = memalloc_noreclaim_save();
4346 
4347 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4348 								ac->nodemask);
4349 
4350 	memalloc_noreclaim_restore(noreclaim_flag);
4351 	fs_reclaim_release(gfp_mask);
4352 	psi_memstall_leave(&pflags);
4353 
4354 	cond_resched();
4355 
4356 	return progress;
4357 }
4358 
4359 /* The really slow allocator path where we enter direct reclaim */
4360 static inline struct page *
4361 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4362 		unsigned int alloc_flags, const struct alloc_context *ac,
4363 		unsigned long *did_some_progress)
4364 {
4365 	struct page *page = NULL;
4366 	bool drained = false;
4367 
4368 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4369 	if (unlikely(!(*did_some_progress)))
4370 		return NULL;
4371 
4372 retry:
4373 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4374 
4375 	/*
4376 	 * If an allocation failed after direct reclaim, it could be because
4377 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4378 	 * Shrink them and try again
4379 	 */
4380 	if (!page && !drained) {
4381 		unreserve_highatomic_pageblock(ac, false);
4382 		drain_all_pages(NULL);
4383 		drained = true;
4384 		goto retry;
4385 	}
4386 
4387 	return page;
4388 }
4389 
4390 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4391 			     const struct alloc_context *ac)
4392 {
4393 	struct zoneref *z;
4394 	struct zone *zone;
4395 	pg_data_t *last_pgdat = NULL;
4396 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4397 
4398 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4399 					ac->nodemask) {
4400 		if (last_pgdat != zone->zone_pgdat)
4401 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4402 		last_pgdat = zone->zone_pgdat;
4403 	}
4404 }
4405 
4406 static inline unsigned int
4407 gfp_to_alloc_flags(gfp_t gfp_mask)
4408 {
4409 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4410 
4411 	/*
4412 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4413 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4414 	 * to save two branches.
4415 	 */
4416 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4417 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4418 
4419 	/*
4420 	 * The caller may dip into page reserves a bit more if the caller
4421 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4422 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4423 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4424 	 */
4425 	alloc_flags |= (__force int)
4426 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4427 
4428 	if (gfp_mask & __GFP_ATOMIC) {
4429 		/*
4430 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4431 		 * if it can't schedule.
4432 		 */
4433 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4434 			alloc_flags |= ALLOC_HARDER;
4435 		/*
4436 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4437 		 * comment for __cpuset_node_allowed().
4438 		 */
4439 		alloc_flags &= ~ALLOC_CPUSET;
4440 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4441 		alloc_flags |= ALLOC_HARDER;
4442 
4443 	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4444 
4445 	return alloc_flags;
4446 }
4447 
4448 static bool oom_reserves_allowed(struct task_struct *tsk)
4449 {
4450 	if (!tsk_is_oom_victim(tsk))
4451 		return false;
4452 
4453 	/*
4454 	 * !MMU doesn't have oom reaper so give access to memory reserves
4455 	 * only to the thread with TIF_MEMDIE set
4456 	 */
4457 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4458 		return false;
4459 
4460 	return true;
4461 }
4462 
4463 /*
4464  * Distinguish requests which really need access to full memory
4465  * reserves from oom victims which can live with a portion of it
4466  */
4467 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4468 {
4469 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4470 		return 0;
4471 	if (gfp_mask & __GFP_MEMALLOC)
4472 		return ALLOC_NO_WATERMARKS;
4473 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4474 		return ALLOC_NO_WATERMARKS;
4475 	if (!in_interrupt()) {
4476 		if (current->flags & PF_MEMALLOC)
4477 			return ALLOC_NO_WATERMARKS;
4478 		else if (oom_reserves_allowed(current))
4479 			return ALLOC_OOM;
4480 	}
4481 
4482 	return 0;
4483 }
4484 
4485 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4486 {
4487 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4488 }
4489 
4490 /*
4491  * Checks whether it makes sense to retry the reclaim to make a forward progress
4492  * for the given allocation request.
4493  *
4494  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4495  * without success, or when we couldn't even meet the watermark if we
4496  * reclaimed all remaining pages on the LRU lists.
4497  *
4498  * Returns true if a retry is viable or false to enter the oom path.
4499  */
4500 static inline bool
4501 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4502 		     struct alloc_context *ac, int alloc_flags,
4503 		     bool did_some_progress, int *no_progress_loops)
4504 {
4505 	struct zone *zone;
4506 	struct zoneref *z;
4507 	bool ret = false;
4508 
4509 	/*
4510 	 * Costly allocations might have made a progress but this doesn't mean
4511 	 * their order will become available due to high fragmentation so
4512 	 * always increment the no progress counter for them
4513 	 */
4514 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4515 		*no_progress_loops = 0;
4516 	else
4517 		(*no_progress_loops)++;
4518 
4519 	/*
4520 	 * Make sure we converge to OOM if we cannot make any progress
4521 	 * several times in the row.
4522 	 */
4523 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4524 		/* Before OOM, exhaust highatomic_reserve */
4525 		return unreserve_highatomic_pageblock(ac, true);
4526 	}
4527 
4528 	/*
4529 	 * Keep reclaiming pages while there is a chance this will lead
4530 	 * somewhere.  If none of the target zones can satisfy our allocation
4531 	 * request even if all reclaimable pages are considered then we are
4532 	 * screwed and have to go OOM.
4533 	 */
4534 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4535 				ac->highest_zoneidx, ac->nodemask) {
4536 		unsigned long available;
4537 		unsigned long reclaimable;
4538 		unsigned long min_wmark = min_wmark_pages(zone);
4539 		bool wmark;
4540 
4541 		available = reclaimable = zone_reclaimable_pages(zone);
4542 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4543 
4544 		/*
4545 		 * Would the allocation succeed if we reclaimed all
4546 		 * reclaimable pages?
4547 		 */
4548 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4549 				ac->highest_zoneidx, alloc_flags, available);
4550 		trace_reclaim_retry_zone(z, order, reclaimable,
4551 				available, min_wmark, *no_progress_loops, wmark);
4552 		if (wmark) {
4553 			/*
4554 			 * If we didn't make any progress and have a lot of
4555 			 * dirty + writeback pages then we should wait for
4556 			 * an IO to complete to slow down the reclaim and
4557 			 * prevent from pre mature OOM
4558 			 */
4559 			if (!did_some_progress) {
4560 				unsigned long write_pending;
4561 
4562 				write_pending = zone_page_state_snapshot(zone,
4563 							NR_ZONE_WRITE_PENDING);
4564 
4565 				if (2 * write_pending > reclaimable) {
4566 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4567 					return true;
4568 				}
4569 			}
4570 
4571 			ret = true;
4572 			goto out;
4573 		}
4574 	}
4575 
4576 out:
4577 	/*
4578 	 * Memory allocation/reclaim might be called from a WQ context and the
4579 	 * current implementation of the WQ concurrency control doesn't
4580 	 * recognize that a particular WQ is congested if the worker thread is
4581 	 * looping without ever sleeping. Therefore we have to do a short sleep
4582 	 * here rather than calling cond_resched().
4583 	 */
4584 	if (current->flags & PF_WQ_WORKER)
4585 		schedule_timeout_uninterruptible(1);
4586 	else
4587 		cond_resched();
4588 	return ret;
4589 }
4590 
4591 static inline bool
4592 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4593 {
4594 	/*
4595 	 * It's possible that cpuset's mems_allowed and the nodemask from
4596 	 * mempolicy don't intersect. This should be normally dealt with by
4597 	 * policy_nodemask(), but it's possible to race with cpuset update in
4598 	 * such a way the check therein was true, and then it became false
4599 	 * before we got our cpuset_mems_cookie here.
4600 	 * This assumes that for all allocations, ac->nodemask can come only
4601 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4602 	 * when it does not intersect with the cpuset restrictions) or the
4603 	 * caller can deal with a violated nodemask.
4604 	 */
4605 	if (cpusets_enabled() && ac->nodemask &&
4606 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4607 		ac->nodemask = NULL;
4608 		return true;
4609 	}
4610 
4611 	/*
4612 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4613 	 * possible to race with parallel threads in such a way that our
4614 	 * allocation can fail while the mask is being updated. If we are about
4615 	 * to fail, check if the cpuset changed during allocation and if so,
4616 	 * retry.
4617 	 */
4618 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4619 		return true;
4620 
4621 	return false;
4622 }
4623 
4624 static inline struct page *
4625 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4626 						struct alloc_context *ac)
4627 {
4628 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4629 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4630 	struct page *page = NULL;
4631 	unsigned int alloc_flags;
4632 	unsigned long did_some_progress;
4633 	enum compact_priority compact_priority;
4634 	enum compact_result compact_result;
4635 	int compaction_retries;
4636 	int no_progress_loops;
4637 	unsigned int cpuset_mems_cookie;
4638 	int reserve_flags;
4639 
4640 	/*
4641 	 * We also sanity check to catch abuse of atomic reserves being used by
4642 	 * callers that are not in atomic context.
4643 	 */
4644 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4645 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4646 		gfp_mask &= ~__GFP_ATOMIC;
4647 
4648 retry_cpuset:
4649 	compaction_retries = 0;
4650 	no_progress_loops = 0;
4651 	compact_priority = DEF_COMPACT_PRIORITY;
4652 	cpuset_mems_cookie = read_mems_allowed_begin();
4653 
4654 	/*
4655 	 * The fast path uses conservative alloc_flags to succeed only until
4656 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4657 	 * alloc_flags precisely. So we do that now.
4658 	 */
4659 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4660 
4661 	/*
4662 	 * We need to recalculate the starting point for the zonelist iterator
4663 	 * because we might have used different nodemask in the fast path, or
4664 	 * there was a cpuset modification and we are retrying - otherwise we
4665 	 * could end up iterating over non-eligible zones endlessly.
4666 	 */
4667 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4668 					ac->highest_zoneidx, ac->nodemask);
4669 	if (!ac->preferred_zoneref->zone)
4670 		goto nopage;
4671 
4672 	if (alloc_flags & ALLOC_KSWAPD)
4673 		wake_all_kswapds(order, gfp_mask, ac);
4674 
4675 	/*
4676 	 * The adjusted alloc_flags might result in immediate success, so try
4677 	 * that first
4678 	 */
4679 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4680 	if (page)
4681 		goto got_pg;
4682 
4683 	/*
4684 	 * For costly allocations, try direct compaction first, as it's likely
4685 	 * that we have enough base pages and don't need to reclaim. For non-
4686 	 * movable high-order allocations, do that as well, as compaction will
4687 	 * try prevent permanent fragmentation by migrating from blocks of the
4688 	 * same migratetype.
4689 	 * Don't try this for allocations that are allowed to ignore
4690 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4691 	 */
4692 	if (can_direct_reclaim &&
4693 			(costly_order ||
4694 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4695 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4696 		page = __alloc_pages_direct_compact(gfp_mask, order,
4697 						alloc_flags, ac,
4698 						INIT_COMPACT_PRIORITY,
4699 						&compact_result);
4700 		if (page)
4701 			goto got_pg;
4702 
4703 		/*
4704 		 * Checks for costly allocations with __GFP_NORETRY, which
4705 		 * includes some THP page fault allocations
4706 		 */
4707 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4708 			/*
4709 			 * If allocating entire pageblock(s) and compaction
4710 			 * failed because all zones are below low watermarks
4711 			 * or is prohibited because it recently failed at this
4712 			 * order, fail immediately unless the allocator has
4713 			 * requested compaction and reclaim retry.
4714 			 *
4715 			 * Reclaim is
4716 			 *  - potentially very expensive because zones are far
4717 			 *    below their low watermarks or this is part of very
4718 			 *    bursty high order allocations,
4719 			 *  - not guaranteed to help because isolate_freepages()
4720 			 *    may not iterate over freed pages as part of its
4721 			 *    linear scan, and
4722 			 *  - unlikely to make entire pageblocks free on its
4723 			 *    own.
4724 			 */
4725 			if (compact_result == COMPACT_SKIPPED ||
4726 			    compact_result == COMPACT_DEFERRED)
4727 				goto nopage;
4728 
4729 			/*
4730 			 * Looks like reclaim/compaction is worth trying, but
4731 			 * sync compaction could be very expensive, so keep
4732 			 * using async compaction.
4733 			 */
4734 			compact_priority = INIT_COMPACT_PRIORITY;
4735 		}
4736 	}
4737 
4738 retry:
4739 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4740 	if (alloc_flags & ALLOC_KSWAPD)
4741 		wake_all_kswapds(order, gfp_mask, ac);
4742 
4743 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4744 	if (reserve_flags)
4745 		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4746 
4747 	/*
4748 	 * Reset the nodemask and zonelist iterators if memory policies can be
4749 	 * ignored. These allocations are high priority and system rather than
4750 	 * user oriented.
4751 	 */
4752 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4753 		ac->nodemask = NULL;
4754 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4755 					ac->highest_zoneidx, ac->nodemask);
4756 	}
4757 
4758 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4759 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4760 	if (page)
4761 		goto got_pg;
4762 
4763 	/* Caller is not willing to reclaim, we can't balance anything */
4764 	if (!can_direct_reclaim)
4765 		goto nopage;
4766 
4767 	/* Avoid recursion of direct reclaim */
4768 	if (current->flags & PF_MEMALLOC)
4769 		goto nopage;
4770 
4771 	/* Try direct reclaim and then allocating */
4772 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4773 							&did_some_progress);
4774 	if (page)
4775 		goto got_pg;
4776 
4777 	/* Try direct compaction and then allocating */
4778 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4779 					compact_priority, &compact_result);
4780 	if (page)
4781 		goto got_pg;
4782 
4783 	/* Do not loop if specifically requested */
4784 	if (gfp_mask & __GFP_NORETRY)
4785 		goto nopage;
4786 
4787 	/*
4788 	 * Do not retry costly high order allocations unless they are
4789 	 * __GFP_RETRY_MAYFAIL
4790 	 */
4791 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4792 		goto nopage;
4793 
4794 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4795 				 did_some_progress > 0, &no_progress_loops))
4796 		goto retry;
4797 
4798 	/*
4799 	 * It doesn't make any sense to retry for the compaction if the order-0
4800 	 * reclaim is not able to make any progress because the current
4801 	 * implementation of the compaction depends on the sufficient amount
4802 	 * of free memory (see __compaction_suitable)
4803 	 */
4804 	if (did_some_progress > 0 &&
4805 			should_compact_retry(ac, order, alloc_flags,
4806 				compact_result, &compact_priority,
4807 				&compaction_retries))
4808 		goto retry;
4809 
4810 
4811 	/* Deal with possible cpuset update races before we start OOM killing */
4812 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4813 		goto retry_cpuset;
4814 
4815 	/* Reclaim has failed us, start killing things */
4816 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4817 	if (page)
4818 		goto got_pg;
4819 
4820 	/* Avoid allocations with no watermarks from looping endlessly */
4821 	if (tsk_is_oom_victim(current) &&
4822 	    (alloc_flags & ALLOC_OOM ||
4823 	     (gfp_mask & __GFP_NOMEMALLOC)))
4824 		goto nopage;
4825 
4826 	/* Retry as long as the OOM killer is making progress */
4827 	if (did_some_progress) {
4828 		no_progress_loops = 0;
4829 		goto retry;
4830 	}
4831 
4832 nopage:
4833 	/* Deal with possible cpuset update races before we fail */
4834 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4835 		goto retry_cpuset;
4836 
4837 	/*
4838 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4839 	 * we always retry
4840 	 */
4841 	if (gfp_mask & __GFP_NOFAIL) {
4842 		/*
4843 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4844 		 * of any new users that actually require GFP_NOWAIT
4845 		 */
4846 		if (WARN_ON_ONCE(!can_direct_reclaim))
4847 			goto fail;
4848 
4849 		/*
4850 		 * PF_MEMALLOC request from this context is rather bizarre
4851 		 * because we cannot reclaim anything and only can loop waiting
4852 		 * for somebody to do a work for us
4853 		 */
4854 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4855 
4856 		/*
4857 		 * non failing costly orders are a hard requirement which we
4858 		 * are not prepared for much so let's warn about these users
4859 		 * so that we can identify them and convert them to something
4860 		 * else.
4861 		 */
4862 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4863 
4864 		/*
4865 		 * Help non-failing allocations by giving them access to memory
4866 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4867 		 * could deplete whole memory reserves which would just make
4868 		 * the situation worse
4869 		 */
4870 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4871 		if (page)
4872 			goto got_pg;
4873 
4874 		cond_resched();
4875 		goto retry;
4876 	}
4877 fail:
4878 	warn_alloc(gfp_mask, ac->nodemask,
4879 			"page allocation failure: order:%u", order);
4880 got_pg:
4881 	return page;
4882 }
4883 
4884 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4885 		int preferred_nid, nodemask_t *nodemask,
4886 		struct alloc_context *ac, gfp_t *alloc_mask,
4887 		unsigned int *alloc_flags)
4888 {
4889 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4890 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4891 	ac->nodemask = nodemask;
4892 	ac->migratetype = gfp_migratetype(gfp_mask);
4893 
4894 	if (cpusets_enabled()) {
4895 		*alloc_mask |= __GFP_HARDWALL;
4896 		/*
4897 		 * When we are in the interrupt context, it is irrelevant
4898 		 * to the current task context. It means that any node ok.
4899 		 */
4900 		if (!in_interrupt() && !ac->nodemask)
4901 			ac->nodemask = &cpuset_current_mems_allowed;
4902 		else
4903 			*alloc_flags |= ALLOC_CPUSET;
4904 	}
4905 
4906 	fs_reclaim_acquire(gfp_mask);
4907 	fs_reclaim_release(gfp_mask);
4908 
4909 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4910 
4911 	if (should_fail_alloc_page(gfp_mask, order))
4912 		return false;
4913 
4914 	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4915 
4916 	/* Dirty zone balancing only done in the fast path */
4917 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4918 
4919 	/*
4920 	 * The preferred zone is used for statistics but crucially it is
4921 	 * also used as the starting point for the zonelist iterator. It
4922 	 * may get reset for allocations that ignore memory policies.
4923 	 */
4924 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4925 					ac->highest_zoneidx, ac->nodemask);
4926 
4927 	return true;
4928 }
4929 
4930 /*
4931  * This is the 'heart' of the zoned buddy allocator.
4932  */
4933 struct page *
4934 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4935 							nodemask_t *nodemask)
4936 {
4937 	struct page *page;
4938 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4939 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4940 	struct alloc_context ac = { };
4941 
4942 	/*
4943 	 * There are several places where we assume that the order value is sane
4944 	 * so bail out early if the request is out of bound.
4945 	 */
4946 	if (unlikely(order >= MAX_ORDER)) {
4947 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4948 		return NULL;
4949 	}
4950 
4951 	gfp_mask &= gfp_allowed_mask;
4952 	alloc_mask = gfp_mask;
4953 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4954 		return NULL;
4955 
4956 	/*
4957 	 * Forbid the first pass from falling back to types that fragment
4958 	 * memory until all local zones are considered.
4959 	 */
4960 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4961 
4962 	/* First allocation attempt */
4963 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4964 	if (likely(page))
4965 		goto out;
4966 
4967 	/*
4968 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4969 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4970 	 * from a particular context which has been marked by
4971 	 * memalloc_no{fs,io}_{save,restore}.
4972 	 */
4973 	alloc_mask = current_gfp_context(gfp_mask);
4974 	ac.spread_dirty_pages = false;
4975 
4976 	/*
4977 	 * Restore the original nodemask if it was potentially replaced with
4978 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4979 	 */
4980 	ac.nodemask = nodemask;
4981 
4982 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4983 
4984 out:
4985 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4986 	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4987 		__free_pages(page, order);
4988 		page = NULL;
4989 	}
4990 
4991 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4992 
4993 	return page;
4994 }
4995 EXPORT_SYMBOL(__alloc_pages_nodemask);
4996 
4997 /*
4998  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4999  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5000  * you need to access high mem.
5001  */
5002 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5003 {
5004 	struct page *page;
5005 
5006 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5007 	if (!page)
5008 		return 0;
5009 	return (unsigned long) page_address(page);
5010 }
5011 EXPORT_SYMBOL(__get_free_pages);
5012 
5013 unsigned long get_zeroed_page(gfp_t gfp_mask)
5014 {
5015 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5016 }
5017 EXPORT_SYMBOL(get_zeroed_page);
5018 
5019 static inline void free_the_page(struct page *page, unsigned int order)
5020 {
5021 	if (order == 0)		/* Via pcp? */
5022 		free_unref_page(page);
5023 	else
5024 		__free_pages_ok(page, order, FPI_NONE);
5025 }
5026 
5027 void __free_pages(struct page *page, unsigned int order)
5028 {
5029 	if (put_page_testzero(page))
5030 		free_the_page(page, order);
5031 	else if (!PageHead(page))
5032 		while (order-- > 0)
5033 			free_the_page(page + (1 << order), order);
5034 }
5035 EXPORT_SYMBOL(__free_pages);
5036 
5037 void free_pages(unsigned long addr, unsigned int order)
5038 {
5039 	if (addr != 0) {
5040 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5041 		__free_pages(virt_to_page((void *)addr), order);
5042 	}
5043 }
5044 
5045 EXPORT_SYMBOL(free_pages);
5046 
5047 /*
5048  * Page Fragment:
5049  *  An arbitrary-length arbitrary-offset area of memory which resides
5050  *  within a 0 or higher order page.  Multiple fragments within that page
5051  *  are individually refcounted, in the page's reference counter.
5052  *
5053  * The page_frag functions below provide a simple allocation framework for
5054  * page fragments.  This is used by the network stack and network device
5055  * drivers to provide a backing region of memory for use as either an
5056  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5057  */
5058 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5059 					     gfp_t gfp_mask)
5060 {
5061 	struct page *page = NULL;
5062 	gfp_t gfp = gfp_mask;
5063 
5064 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5065 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5066 		    __GFP_NOMEMALLOC;
5067 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5068 				PAGE_FRAG_CACHE_MAX_ORDER);
5069 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5070 #endif
5071 	if (unlikely(!page))
5072 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5073 
5074 	nc->va = page ? page_address(page) : NULL;
5075 
5076 	return page;
5077 }
5078 
5079 void __page_frag_cache_drain(struct page *page, unsigned int count)
5080 {
5081 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5082 
5083 	if (page_ref_sub_and_test(page, count))
5084 		free_the_page(page, compound_order(page));
5085 }
5086 EXPORT_SYMBOL(__page_frag_cache_drain);
5087 
5088 void *page_frag_alloc(struct page_frag_cache *nc,
5089 		      unsigned int fragsz, gfp_t gfp_mask)
5090 {
5091 	unsigned int size = PAGE_SIZE;
5092 	struct page *page;
5093 	int offset;
5094 
5095 	if (unlikely(!nc->va)) {
5096 refill:
5097 		page = __page_frag_cache_refill(nc, gfp_mask);
5098 		if (!page)
5099 			return NULL;
5100 
5101 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5102 		/* if size can vary use size else just use PAGE_SIZE */
5103 		size = nc->size;
5104 #endif
5105 		/* Even if we own the page, we do not use atomic_set().
5106 		 * This would break get_page_unless_zero() users.
5107 		 */
5108 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5109 
5110 		/* reset page count bias and offset to start of new frag */
5111 		nc->pfmemalloc = page_is_pfmemalloc(page);
5112 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5113 		nc->offset = size;
5114 	}
5115 
5116 	offset = nc->offset - fragsz;
5117 	if (unlikely(offset < 0)) {
5118 		page = virt_to_page(nc->va);
5119 
5120 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5121 			goto refill;
5122 
5123 		if (unlikely(nc->pfmemalloc)) {
5124 			free_the_page(page, compound_order(page));
5125 			goto refill;
5126 		}
5127 
5128 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5129 		/* if size can vary use size else just use PAGE_SIZE */
5130 		size = nc->size;
5131 #endif
5132 		/* OK, page count is 0, we can safely set it */
5133 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5134 
5135 		/* reset page count bias and offset to start of new frag */
5136 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5137 		offset = size - fragsz;
5138 	}
5139 
5140 	nc->pagecnt_bias--;
5141 	nc->offset = offset;
5142 
5143 	return nc->va + offset;
5144 }
5145 EXPORT_SYMBOL(page_frag_alloc);
5146 
5147 /*
5148  * Frees a page fragment allocated out of either a compound or order 0 page.
5149  */
5150 void page_frag_free(void *addr)
5151 {
5152 	struct page *page = virt_to_head_page(addr);
5153 
5154 	if (unlikely(put_page_testzero(page)))
5155 		free_the_page(page, compound_order(page));
5156 }
5157 EXPORT_SYMBOL(page_frag_free);
5158 
5159 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5160 		size_t size)
5161 {
5162 	if (addr) {
5163 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5164 		unsigned long used = addr + PAGE_ALIGN(size);
5165 
5166 		split_page(virt_to_page((void *)addr), order);
5167 		while (used < alloc_end) {
5168 			free_page(used);
5169 			used += PAGE_SIZE;
5170 		}
5171 	}
5172 	return (void *)addr;
5173 }
5174 
5175 /**
5176  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5177  * @size: the number of bytes to allocate
5178  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5179  *
5180  * This function is similar to alloc_pages(), except that it allocates the
5181  * minimum number of pages to satisfy the request.  alloc_pages() can only
5182  * allocate memory in power-of-two pages.
5183  *
5184  * This function is also limited by MAX_ORDER.
5185  *
5186  * Memory allocated by this function must be released by free_pages_exact().
5187  *
5188  * Return: pointer to the allocated area or %NULL in case of error.
5189  */
5190 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5191 {
5192 	unsigned int order = get_order(size);
5193 	unsigned long addr;
5194 
5195 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5196 		gfp_mask &= ~__GFP_COMP;
5197 
5198 	addr = __get_free_pages(gfp_mask, order);
5199 	return make_alloc_exact(addr, order, size);
5200 }
5201 EXPORT_SYMBOL(alloc_pages_exact);
5202 
5203 /**
5204  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5205  *			   pages on a node.
5206  * @nid: the preferred node ID where memory should be allocated
5207  * @size: the number of bytes to allocate
5208  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5209  *
5210  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5211  * back.
5212  *
5213  * Return: pointer to the allocated area or %NULL in case of error.
5214  */
5215 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5216 {
5217 	unsigned int order = get_order(size);
5218 	struct page *p;
5219 
5220 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5221 		gfp_mask &= ~__GFP_COMP;
5222 
5223 	p = alloc_pages_node(nid, gfp_mask, order);
5224 	if (!p)
5225 		return NULL;
5226 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5227 }
5228 
5229 /**
5230  * free_pages_exact - release memory allocated via alloc_pages_exact()
5231  * @virt: the value returned by alloc_pages_exact.
5232  * @size: size of allocation, same value as passed to alloc_pages_exact().
5233  *
5234  * Release the memory allocated by a previous call to alloc_pages_exact.
5235  */
5236 void free_pages_exact(void *virt, size_t size)
5237 {
5238 	unsigned long addr = (unsigned long)virt;
5239 	unsigned long end = addr + PAGE_ALIGN(size);
5240 
5241 	while (addr < end) {
5242 		free_page(addr);
5243 		addr += PAGE_SIZE;
5244 	}
5245 }
5246 EXPORT_SYMBOL(free_pages_exact);
5247 
5248 /**
5249  * nr_free_zone_pages - count number of pages beyond high watermark
5250  * @offset: The zone index of the highest zone
5251  *
5252  * nr_free_zone_pages() counts the number of pages which are beyond the
5253  * high watermark within all zones at or below a given zone index.  For each
5254  * zone, the number of pages is calculated as:
5255  *
5256  *     nr_free_zone_pages = managed_pages - high_pages
5257  *
5258  * Return: number of pages beyond high watermark.
5259  */
5260 static unsigned long nr_free_zone_pages(int offset)
5261 {
5262 	struct zoneref *z;
5263 	struct zone *zone;
5264 
5265 	/* Just pick one node, since fallback list is circular */
5266 	unsigned long sum = 0;
5267 
5268 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5269 
5270 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5271 		unsigned long size = zone_managed_pages(zone);
5272 		unsigned long high = high_wmark_pages(zone);
5273 		if (size > high)
5274 			sum += size - high;
5275 	}
5276 
5277 	return sum;
5278 }
5279 
5280 /**
5281  * nr_free_buffer_pages - count number of pages beyond high watermark
5282  *
5283  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5284  * watermark within ZONE_DMA and ZONE_NORMAL.
5285  *
5286  * Return: number of pages beyond high watermark within ZONE_DMA and
5287  * ZONE_NORMAL.
5288  */
5289 unsigned long nr_free_buffer_pages(void)
5290 {
5291 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5292 }
5293 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5294 
5295 static inline void show_node(struct zone *zone)
5296 {
5297 	if (IS_ENABLED(CONFIG_NUMA))
5298 		printk("Node %d ", zone_to_nid(zone));
5299 }
5300 
5301 long si_mem_available(void)
5302 {
5303 	long available;
5304 	unsigned long pagecache;
5305 	unsigned long wmark_low = 0;
5306 	unsigned long pages[NR_LRU_LISTS];
5307 	unsigned long reclaimable;
5308 	struct zone *zone;
5309 	int lru;
5310 
5311 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5312 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5313 
5314 	for_each_zone(zone)
5315 		wmark_low += low_wmark_pages(zone);
5316 
5317 	/*
5318 	 * Estimate the amount of memory available for userspace allocations,
5319 	 * without causing swapping.
5320 	 */
5321 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5322 
5323 	/*
5324 	 * Not all the page cache can be freed, otherwise the system will
5325 	 * start swapping. Assume at least half of the page cache, or the
5326 	 * low watermark worth of cache, needs to stay.
5327 	 */
5328 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5329 	pagecache -= min(pagecache / 2, wmark_low);
5330 	available += pagecache;
5331 
5332 	/*
5333 	 * Part of the reclaimable slab and other kernel memory consists of
5334 	 * items that are in use, and cannot be freed. Cap this estimate at the
5335 	 * low watermark.
5336 	 */
5337 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5338 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5339 	available += reclaimable - min(reclaimable / 2, wmark_low);
5340 
5341 	if (available < 0)
5342 		available = 0;
5343 	return available;
5344 }
5345 EXPORT_SYMBOL_GPL(si_mem_available);
5346 
5347 void si_meminfo(struct sysinfo *val)
5348 {
5349 	val->totalram = totalram_pages();
5350 	val->sharedram = global_node_page_state(NR_SHMEM);
5351 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5352 	val->bufferram = nr_blockdev_pages();
5353 	val->totalhigh = totalhigh_pages();
5354 	val->freehigh = nr_free_highpages();
5355 	val->mem_unit = PAGE_SIZE;
5356 }
5357 
5358 EXPORT_SYMBOL(si_meminfo);
5359 
5360 #ifdef CONFIG_NUMA
5361 void si_meminfo_node(struct sysinfo *val, int nid)
5362 {
5363 	int zone_type;		/* needs to be signed */
5364 	unsigned long managed_pages = 0;
5365 	unsigned long managed_highpages = 0;
5366 	unsigned long free_highpages = 0;
5367 	pg_data_t *pgdat = NODE_DATA(nid);
5368 
5369 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5370 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5371 	val->totalram = managed_pages;
5372 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5373 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5374 #ifdef CONFIG_HIGHMEM
5375 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5376 		struct zone *zone = &pgdat->node_zones[zone_type];
5377 
5378 		if (is_highmem(zone)) {
5379 			managed_highpages += zone_managed_pages(zone);
5380 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5381 		}
5382 	}
5383 	val->totalhigh = managed_highpages;
5384 	val->freehigh = free_highpages;
5385 #else
5386 	val->totalhigh = managed_highpages;
5387 	val->freehigh = free_highpages;
5388 #endif
5389 	val->mem_unit = PAGE_SIZE;
5390 }
5391 #endif
5392 
5393 /*
5394  * Determine whether the node should be displayed or not, depending on whether
5395  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5396  */
5397 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5398 {
5399 	if (!(flags & SHOW_MEM_FILTER_NODES))
5400 		return false;
5401 
5402 	/*
5403 	 * no node mask - aka implicit memory numa policy. Do not bother with
5404 	 * the synchronization - read_mems_allowed_begin - because we do not
5405 	 * have to be precise here.
5406 	 */
5407 	if (!nodemask)
5408 		nodemask = &cpuset_current_mems_allowed;
5409 
5410 	return !node_isset(nid, *nodemask);
5411 }
5412 
5413 #define K(x) ((x) << (PAGE_SHIFT-10))
5414 
5415 static void show_migration_types(unsigned char type)
5416 {
5417 	static const char types[MIGRATE_TYPES] = {
5418 		[MIGRATE_UNMOVABLE]	= 'U',
5419 		[MIGRATE_MOVABLE]	= 'M',
5420 		[MIGRATE_RECLAIMABLE]	= 'E',
5421 		[MIGRATE_HIGHATOMIC]	= 'H',
5422 #ifdef CONFIG_CMA
5423 		[MIGRATE_CMA]		= 'C',
5424 #endif
5425 #ifdef CONFIG_MEMORY_ISOLATION
5426 		[MIGRATE_ISOLATE]	= 'I',
5427 #endif
5428 	};
5429 	char tmp[MIGRATE_TYPES + 1];
5430 	char *p = tmp;
5431 	int i;
5432 
5433 	for (i = 0; i < MIGRATE_TYPES; i++) {
5434 		if (type & (1 << i))
5435 			*p++ = types[i];
5436 	}
5437 
5438 	*p = '\0';
5439 	printk(KERN_CONT "(%s) ", tmp);
5440 }
5441 
5442 /*
5443  * Show free area list (used inside shift_scroll-lock stuff)
5444  * We also calculate the percentage fragmentation. We do this by counting the
5445  * memory on each free list with the exception of the first item on the list.
5446  *
5447  * Bits in @filter:
5448  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5449  *   cpuset.
5450  */
5451 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5452 {
5453 	unsigned long free_pcp = 0;
5454 	int cpu;
5455 	struct zone *zone;
5456 	pg_data_t *pgdat;
5457 
5458 	for_each_populated_zone(zone) {
5459 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5460 			continue;
5461 
5462 		for_each_online_cpu(cpu)
5463 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5464 	}
5465 
5466 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5467 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5468 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5469 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5470 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5471 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5472 		global_node_page_state(NR_ACTIVE_ANON),
5473 		global_node_page_state(NR_INACTIVE_ANON),
5474 		global_node_page_state(NR_ISOLATED_ANON),
5475 		global_node_page_state(NR_ACTIVE_FILE),
5476 		global_node_page_state(NR_INACTIVE_FILE),
5477 		global_node_page_state(NR_ISOLATED_FILE),
5478 		global_node_page_state(NR_UNEVICTABLE),
5479 		global_node_page_state(NR_FILE_DIRTY),
5480 		global_node_page_state(NR_WRITEBACK),
5481 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5482 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5483 		global_node_page_state(NR_FILE_MAPPED),
5484 		global_node_page_state(NR_SHMEM),
5485 		global_node_page_state(NR_PAGETABLE),
5486 		global_zone_page_state(NR_BOUNCE),
5487 		global_zone_page_state(NR_FREE_PAGES),
5488 		free_pcp,
5489 		global_zone_page_state(NR_FREE_CMA_PAGES));
5490 
5491 	for_each_online_pgdat(pgdat) {
5492 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5493 			continue;
5494 
5495 		printk("Node %d"
5496 			" active_anon:%lukB"
5497 			" inactive_anon:%lukB"
5498 			" active_file:%lukB"
5499 			" inactive_file:%lukB"
5500 			" unevictable:%lukB"
5501 			" isolated(anon):%lukB"
5502 			" isolated(file):%lukB"
5503 			" mapped:%lukB"
5504 			" dirty:%lukB"
5505 			" writeback:%lukB"
5506 			" shmem:%lukB"
5507 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5508 			" shmem_thp: %lukB"
5509 			" shmem_pmdmapped: %lukB"
5510 			" anon_thp: %lukB"
5511 #endif
5512 			" writeback_tmp:%lukB"
5513 			" kernel_stack:%lukB"
5514 #ifdef CONFIG_SHADOW_CALL_STACK
5515 			" shadow_call_stack:%lukB"
5516 #endif
5517 			" pagetables:%lukB"
5518 			" all_unreclaimable? %s"
5519 			"\n",
5520 			pgdat->node_id,
5521 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5522 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5523 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5524 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5525 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5526 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5527 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5528 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5529 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5530 			K(node_page_state(pgdat, NR_WRITEBACK)),
5531 			K(node_page_state(pgdat, NR_SHMEM)),
5532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5533 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5534 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5535 					* HPAGE_PMD_NR),
5536 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5537 #endif
5538 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5539 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5540 #ifdef CONFIG_SHADOW_CALL_STACK
5541 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5542 #endif
5543 			K(node_page_state(pgdat, NR_PAGETABLE)),
5544 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5545 				"yes" : "no");
5546 	}
5547 
5548 	for_each_populated_zone(zone) {
5549 		int i;
5550 
5551 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5552 			continue;
5553 
5554 		free_pcp = 0;
5555 		for_each_online_cpu(cpu)
5556 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5557 
5558 		show_node(zone);
5559 		printk(KERN_CONT
5560 			"%s"
5561 			" free:%lukB"
5562 			" min:%lukB"
5563 			" low:%lukB"
5564 			" high:%lukB"
5565 			" reserved_highatomic:%luKB"
5566 			" active_anon:%lukB"
5567 			" inactive_anon:%lukB"
5568 			" active_file:%lukB"
5569 			" inactive_file:%lukB"
5570 			" unevictable:%lukB"
5571 			" writepending:%lukB"
5572 			" present:%lukB"
5573 			" managed:%lukB"
5574 			" mlocked:%lukB"
5575 			" bounce:%lukB"
5576 			" free_pcp:%lukB"
5577 			" local_pcp:%ukB"
5578 			" free_cma:%lukB"
5579 			"\n",
5580 			zone->name,
5581 			K(zone_page_state(zone, NR_FREE_PAGES)),
5582 			K(min_wmark_pages(zone)),
5583 			K(low_wmark_pages(zone)),
5584 			K(high_wmark_pages(zone)),
5585 			K(zone->nr_reserved_highatomic),
5586 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5587 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5588 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5589 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5590 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5591 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5592 			K(zone->present_pages),
5593 			K(zone_managed_pages(zone)),
5594 			K(zone_page_state(zone, NR_MLOCK)),
5595 			K(zone_page_state(zone, NR_BOUNCE)),
5596 			K(free_pcp),
5597 			K(this_cpu_read(zone->pageset->pcp.count)),
5598 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5599 		printk("lowmem_reserve[]:");
5600 		for (i = 0; i < MAX_NR_ZONES; i++)
5601 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5602 		printk(KERN_CONT "\n");
5603 	}
5604 
5605 	for_each_populated_zone(zone) {
5606 		unsigned int order;
5607 		unsigned long nr[MAX_ORDER], flags, total = 0;
5608 		unsigned char types[MAX_ORDER];
5609 
5610 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5611 			continue;
5612 		show_node(zone);
5613 		printk(KERN_CONT "%s: ", zone->name);
5614 
5615 		spin_lock_irqsave(&zone->lock, flags);
5616 		for (order = 0; order < MAX_ORDER; order++) {
5617 			struct free_area *area = &zone->free_area[order];
5618 			int type;
5619 
5620 			nr[order] = area->nr_free;
5621 			total += nr[order] << order;
5622 
5623 			types[order] = 0;
5624 			for (type = 0; type < MIGRATE_TYPES; type++) {
5625 				if (!free_area_empty(area, type))
5626 					types[order] |= 1 << type;
5627 			}
5628 		}
5629 		spin_unlock_irqrestore(&zone->lock, flags);
5630 		for (order = 0; order < MAX_ORDER; order++) {
5631 			printk(KERN_CONT "%lu*%lukB ",
5632 			       nr[order], K(1UL) << order);
5633 			if (nr[order])
5634 				show_migration_types(types[order]);
5635 		}
5636 		printk(KERN_CONT "= %lukB\n", K(total));
5637 	}
5638 
5639 	hugetlb_show_meminfo();
5640 
5641 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5642 
5643 	show_swap_cache_info();
5644 }
5645 
5646 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5647 {
5648 	zoneref->zone = zone;
5649 	zoneref->zone_idx = zone_idx(zone);
5650 }
5651 
5652 /*
5653  * Builds allocation fallback zone lists.
5654  *
5655  * Add all populated zones of a node to the zonelist.
5656  */
5657 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5658 {
5659 	struct zone *zone;
5660 	enum zone_type zone_type = MAX_NR_ZONES;
5661 	int nr_zones = 0;
5662 
5663 	do {
5664 		zone_type--;
5665 		zone = pgdat->node_zones + zone_type;
5666 		if (managed_zone(zone)) {
5667 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5668 			check_highest_zone(zone_type);
5669 		}
5670 	} while (zone_type);
5671 
5672 	return nr_zones;
5673 }
5674 
5675 #ifdef CONFIG_NUMA
5676 
5677 static int __parse_numa_zonelist_order(char *s)
5678 {
5679 	/*
5680 	 * We used to support different zonlists modes but they turned
5681 	 * out to be just not useful. Let's keep the warning in place
5682 	 * if somebody still use the cmd line parameter so that we do
5683 	 * not fail it silently
5684 	 */
5685 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5686 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5687 		return -EINVAL;
5688 	}
5689 	return 0;
5690 }
5691 
5692 char numa_zonelist_order[] = "Node";
5693 
5694 /*
5695  * sysctl handler for numa_zonelist_order
5696  */
5697 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5698 		void *buffer, size_t *length, loff_t *ppos)
5699 {
5700 	if (write)
5701 		return __parse_numa_zonelist_order(buffer);
5702 	return proc_dostring(table, write, buffer, length, ppos);
5703 }
5704 
5705 
5706 #define MAX_NODE_LOAD (nr_online_nodes)
5707 static int node_load[MAX_NUMNODES];
5708 
5709 /**
5710  * find_next_best_node - find the next node that should appear in a given node's fallback list
5711  * @node: node whose fallback list we're appending
5712  * @used_node_mask: nodemask_t of already used nodes
5713  *
5714  * We use a number of factors to determine which is the next node that should
5715  * appear on a given node's fallback list.  The node should not have appeared
5716  * already in @node's fallback list, and it should be the next closest node
5717  * according to the distance array (which contains arbitrary distance values
5718  * from each node to each node in the system), and should also prefer nodes
5719  * with no CPUs, since presumably they'll have very little allocation pressure
5720  * on them otherwise.
5721  *
5722  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5723  */
5724 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5725 {
5726 	int n, val;
5727 	int min_val = INT_MAX;
5728 	int best_node = NUMA_NO_NODE;
5729 
5730 	/* Use the local node if we haven't already */
5731 	if (!node_isset(node, *used_node_mask)) {
5732 		node_set(node, *used_node_mask);
5733 		return node;
5734 	}
5735 
5736 	for_each_node_state(n, N_MEMORY) {
5737 
5738 		/* Don't want a node to appear more than once */
5739 		if (node_isset(n, *used_node_mask))
5740 			continue;
5741 
5742 		/* Use the distance array to find the distance */
5743 		val = node_distance(node, n);
5744 
5745 		/* Penalize nodes under us ("prefer the next node") */
5746 		val += (n < node);
5747 
5748 		/* Give preference to headless and unused nodes */
5749 		if (!cpumask_empty(cpumask_of_node(n)))
5750 			val += PENALTY_FOR_NODE_WITH_CPUS;
5751 
5752 		/* Slight preference for less loaded node */
5753 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5754 		val += node_load[n];
5755 
5756 		if (val < min_val) {
5757 			min_val = val;
5758 			best_node = n;
5759 		}
5760 	}
5761 
5762 	if (best_node >= 0)
5763 		node_set(best_node, *used_node_mask);
5764 
5765 	return best_node;
5766 }
5767 
5768 
5769 /*
5770  * Build zonelists ordered by node and zones within node.
5771  * This results in maximum locality--normal zone overflows into local
5772  * DMA zone, if any--but risks exhausting DMA zone.
5773  */
5774 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5775 		unsigned nr_nodes)
5776 {
5777 	struct zoneref *zonerefs;
5778 	int i;
5779 
5780 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5781 
5782 	for (i = 0; i < nr_nodes; i++) {
5783 		int nr_zones;
5784 
5785 		pg_data_t *node = NODE_DATA(node_order[i]);
5786 
5787 		nr_zones = build_zonerefs_node(node, zonerefs);
5788 		zonerefs += nr_zones;
5789 	}
5790 	zonerefs->zone = NULL;
5791 	zonerefs->zone_idx = 0;
5792 }
5793 
5794 /*
5795  * Build gfp_thisnode zonelists
5796  */
5797 static void build_thisnode_zonelists(pg_data_t *pgdat)
5798 {
5799 	struct zoneref *zonerefs;
5800 	int nr_zones;
5801 
5802 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5803 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5804 	zonerefs += nr_zones;
5805 	zonerefs->zone = NULL;
5806 	zonerefs->zone_idx = 0;
5807 }
5808 
5809 /*
5810  * Build zonelists ordered by zone and nodes within zones.
5811  * This results in conserving DMA zone[s] until all Normal memory is
5812  * exhausted, but results in overflowing to remote node while memory
5813  * may still exist in local DMA zone.
5814  */
5815 
5816 static void build_zonelists(pg_data_t *pgdat)
5817 {
5818 	static int node_order[MAX_NUMNODES];
5819 	int node, load, nr_nodes = 0;
5820 	nodemask_t used_mask = NODE_MASK_NONE;
5821 	int local_node, prev_node;
5822 
5823 	/* NUMA-aware ordering of nodes */
5824 	local_node = pgdat->node_id;
5825 	load = nr_online_nodes;
5826 	prev_node = local_node;
5827 
5828 	memset(node_order, 0, sizeof(node_order));
5829 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5830 		/*
5831 		 * We don't want to pressure a particular node.
5832 		 * So adding penalty to the first node in same
5833 		 * distance group to make it round-robin.
5834 		 */
5835 		if (node_distance(local_node, node) !=
5836 		    node_distance(local_node, prev_node))
5837 			node_load[node] = load;
5838 
5839 		node_order[nr_nodes++] = node;
5840 		prev_node = node;
5841 		load--;
5842 	}
5843 
5844 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5845 	build_thisnode_zonelists(pgdat);
5846 }
5847 
5848 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5849 /*
5850  * Return node id of node used for "local" allocations.
5851  * I.e., first node id of first zone in arg node's generic zonelist.
5852  * Used for initializing percpu 'numa_mem', which is used primarily
5853  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5854  */
5855 int local_memory_node(int node)
5856 {
5857 	struct zoneref *z;
5858 
5859 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5860 				   gfp_zone(GFP_KERNEL),
5861 				   NULL);
5862 	return zone_to_nid(z->zone);
5863 }
5864 #endif
5865 
5866 static void setup_min_unmapped_ratio(void);
5867 static void setup_min_slab_ratio(void);
5868 #else	/* CONFIG_NUMA */
5869 
5870 static void build_zonelists(pg_data_t *pgdat)
5871 {
5872 	int node, local_node;
5873 	struct zoneref *zonerefs;
5874 	int nr_zones;
5875 
5876 	local_node = pgdat->node_id;
5877 
5878 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5879 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5880 	zonerefs += nr_zones;
5881 
5882 	/*
5883 	 * Now we build the zonelist so that it contains the zones
5884 	 * of all the other nodes.
5885 	 * We don't want to pressure a particular node, so when
5886 	 * building the zones for node N, we make sure that the
5887 	 * zones coming right after the local ones are those from
5888 	 * node N+1 (modulo N)
5889 	 */
5890 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5891 		if (!node_online(node))
5892 			continue;
5893 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5894 		zonerefs += nr_zones;
5895 	}
5896 	for (node = 0; node < local_node; node++) {
5897 		if (!node_online(node))
5898 			continue;
5899 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5900 		zonerefs += nr_zones;
5901 	}
5902 
5903 	zonerefs->zone = NULL;
5904 	zonerefs->zone_idx = 0;
5905 }
5906 
5907 #endif	/* CONFIG_NUMA */
5908 
5909 /*
5910  * Boot pageset table. One per cpu which is going to be used for all
5911  * zones and all nodes. The parameters will be set in such a way
5912  * that an item put on a list will immediately be handed over to
5913  * the buddy list. This is safe since pageset manipulation is done
5914  * with interrupts disabled.
5915  *
5916  * The boot_pagesets must be kept even after bootup is complete for
5917  * unused processors and/or zones. They do play a role for bootstrapping
5918  * hotplugged processors.
5919  *
5920  * zoneinfo_show() and maybe other functions do
5921  * not check if the processor is online before following the pageset pointer.
5922  * Other parts of the kernel may not check if the zone is available.
5923  */
5924 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5925 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5926 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5927 
5928 static void __build_all_zonelists(void *data)
5929 {
5930 	int nid;
5931 	int __maybe_unused cpu;
5932 	pg_data_t *self = data;
5933 	static DEFINE_SPINLOCK(lock);
5934 
5935 	spin_lock(&lock);
5936 
5937 #ifdef CONFIG_NUMA
5938 	memset(node_load, 0, sizeof(node_load));
5939 #endif
5940 
5941 	/*
5942 	 * This node is hotadded and no memory is yet present.   So just
5943 	 * building zonelists is fine - no need to touch other nodes.
5944 	 */
5945 	if (self && !node_online(self->node_id)) {
5946 		build_zonelists(self);
5947 	} else {
5948 		for_each_online_node(nid) {
5949 			pg_data_t *pgdat = NODE_DATA(nid);
5950 
5951 			build_zonelists(pgdat);
5952 		}
5953 
5954 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5955 		/*
5956 		 * We now know the "local memory node" for each node--
5957 		 * i.e., the node of the first zone in the generic zonelist.
5958 		 * Set up numa_mem percpu variable for on-line cpus.  During
5959 		 * boot, only the boot cpu should be on-line;  we'll init the
5960 		 * secondary cpus' numa_mem as they come on-line.  During
5961 		 * node/memory hotplug, we'll fixup all on-line cpus.
5962 		 */
5963 		for_each_online_cpu(cpu)
5964 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5965 #endif
5966 	}
5967 
5968 	spin_unlock(&lock);
5969 }
5970 
5971 static noinline void __init
5972 build_all_zonelists_init(void)
5973 {
5974 	int cpu;
5975 
5976 	__build_all_zonelists(NULL);
5977 
5978 	/*
5979 	 * Initialize the boot_pagesets that are going to be used
5980 	 * for bootstrapping processors. The real pagesets for
5981 	 * each zone will be allocated later when the per cpu
5982 	 * allocator is available.
5983 	 *
5984 	 * boot_pagesets are used also for bootstrapping offline
5985 	 * cpus if the system is already booted because the pagesets
5986 	 * are needed to initialize allocators on a specific cpu too.
5987 	 * F.e. the percpu allocator needs the page allocator which
5988 	 * needs the percpu allocator in order to allocate its pagesets
5989 	 * (a chicken-egg dilemma).
5990 	 */
5991 	for_each_possible_cpu(cpu)
5992 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5993 
5994 	mminit_verify_zonelist();
5995 	cpuset_init_current_mems_allowed();
5996 }
5997 
5998 /*
5999  * unless system_state == SYSTEM_BOOTING.
6000  *
6001  * __ref due to call of __init annotated helper build_all_zonelists_init
6002  * [protected by SYSTEM_BOOTING].
6003  */
6004 void __ref build_all_zonelists(pg_data_t *pgdat)
6005 {
6006 	unsigned long vm_total_pages;
6007 
6008 	if (system_state == SYSTEM_BOOTING) {
6009 		build_all_zonelists_init();
6010 	} else {
6011 		__build_all_zonelists(pgdat);
6012 		/* cpuset refresh routine should be here */
6013 	}
6014 	/* Get the number of free pages beyond high watermark in all zones. */
6015 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6016 	/*
6017 	 * Disable grouping by mobility if the number of pages in the
6018 	 * system is too low to allow the mechanism to work. It would be
6019 	 * more accurate, but expensive to check per-zone. This check is
6020 	 * made on memory-hotadd so a system can start with mobility
6021 	 * disabled and enable it later
6022 	 */
6023 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6024 		page_group_by_mobility_disabled = 1;
6025 	else
6026 		page_group_by_mobility_disabled = 0;
6027 
6028 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6029 		nr_online_nodes,
6030 		page_group_by_mobility_disabled ? "off" : "on",
6031 		vm_total_pages);
6032 #ifdef CONFIG_NUMA
6033 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6034 #endif
6035 }
6036 
6037 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6038 static bool __meminit
6039 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6040 {
6041 	static struct memblock_region *r;
6042 
6043 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6044 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6045 			for_each_mem_region(r) {
6046 				if (*pfn < memblock_region_memory_end_pfn(r))
6047 					break;
6048 			}
6049 		}
6050 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6051 		    memblock_is_mirror(r)) {
6052 			*pfn = memblock_region_memory_end_pfn(r);
6053 			return true;
6054 		}
6055 	}
6056 	return false;
6057 }
6058 
6059 /*
6060  * Initially all pages are reserved - free ones are freed
6061  * up by memblock_free_all() once the early boot process is
6062  * done. Non-atomic initialization, single-pass.
6063  *
6064  * All aligned pageblocks are initialized to the specified migratetype
6065  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6066  * zone stats (e.g., nr_isolate_pageblock) are touched.
6067  */
6068 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
6069 		unsigned long start_pfn,
6070 		enum meminit_context context,
6071 		struct vmem_altmap *altmap, int migratetype)
6072 {
6073 	unsigned long pfn, end_pfn = start_pfn + size;
6074 	struct page *page;
6075 
6076 	if (highest_memmap_pfn < end_pfn - 1)
6077 		highest_memmap_pfn = end_pfn - 1;
6078 
6079 #ifdef CONFIG_ZONE_DEVICE
6080 	/*
6081 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6082 	 * memory. We limit the total number of pages to initialize to just
6083 	 * those that might contain the memory mapping. We will defer the
6084 	 * ZONE_DEVICE page initialization until after we have released
6085 	 * the hotplug lock.
6086 	 */
6087 	if (zone == ZONE_DEVICE) {
6088 		if (!altmap)
6089 			return;
6090 
6091 		if (start_pfn == altmap->base_pfn)
6092 			start_pfn += altmap->reserve;
6093 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6094 	}
6095 #endif
6096 
6097 	for (pfn = start_pfn; pfn < end_pfn; ) {
6098 		/*
6099 		 * There can be holes in boot-time mem_map[]s handed to this
6100 		 * function.  They do not exist on hotplugged memory.
6101 		 */
6102 		if (context == MEMINIT_EARLY) {
6103 			if (overlap_memmap_init(zone, &pfn))
6104 				continue;
6105 			if (defer_init(nid, pfn, end_pfn))
6106 				break;
6107 		}
6108 
6109 		page = pfn_to_page(pfn);
6110 		__init_single_page(page, pfn, zone, nid);
6111 		if (context == MEMINIT_HOTPLUG)
6112 			__SetPageReserved(page);
6113 
6114 		/*
6115 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6116 		 * such that unmovable allocations won't be scattered all
6117 		 * over the place during system boot.
6118 		 */
6119 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6120 			set_pageblock_migratetype(page, migratetype);
6121 			cond_resched();
6122 		}
6123 		pfn++;
6124 	}
6125 }
6126 
6127 #ifdef CONFIG_ZONE_DEVICE
6128 void __ref memmap_init_zone_device(struct zone *zone,
6129 				   unsigned long start_pfn,
6130 				   unsigned long nr_pages,
6131 				   struct dev_pagemap *pgmap)
6132 {
6133 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6134 	struct pglist_data *pgdat = zone->zone_pgdat;
6135 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6136 	unsigned long zone_idx = zone_idx(zone);
6137 	unsigned long start = jiffies;
6138 	int nid = pgdat->node_id;
6139 
6140 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6141 		return;
6142 
6143 	/*
6144 	 * The call to memmap_init_zone should have already taken care
6145 	 * of the pages reserved for the memmap, so we can just jump to
6146 	 * the end of that region and start processing the device pages.
6147 	 */
6148 	if (altmap) {
6149 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6150 		nr_pages = end_pfn - start_pfn;
6151 	}
6152 
6153 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6154 		struct page *page = pfn_to_page(pfn);
6155 
6156 		__init_single_page(page, pfn, zone_idx, nid);
6157 
6158 		/*
6159 		 * Mark page reserved as it will need to wait for onlining
6160 		 * phase for it to be fully associated with a zone.
6161 		 *
6162 		 * We can use the non-atomic __set_bit operation for setting
6163 		 * the flag as we are still initializing the pages.
6164 		 */
6165 		__SetPageReserved(page);
6166 
6167 		/*
6168 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6169 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6170 		 * ever freed or placed on a driver-private list.
6171 		 */
6172 		page->pgmap = pgmap;
6173 		page->zone_device_data = NULL;
6174 
6175 		/*
6176 		 * Mark the block movable so that blocks are reserved for
6177 		 * movable at startup. This will force kernel allocations
6178 		 * to reserve their blocks rather than leaking throughout
6179 		 * the address space during boot when many long-lived
6180 		 * kernel allocations are made.
6181 		 *
6182 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6183 		 * because this is done early in section_activate()
6184 		 */
6185 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6186 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6187 			cond_resched();
6188 		}
6189 	}
6190 
6191 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6192 		nr_pages, jiffies_to_msecs(jiffies - start));
6193 }
6194 
6195 #endif
6196 static void __meminit zone_init_free_lists(struct zone *zone)
6197 {
6198 	unsigned int order, t;
6199 	for_each_migratetype_order(order, t) {
6200 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6201 		zone->free_area[order].nr_free = 0;
6202 	}
6203 }
6204 
6205 void __meminit __weak memmap_init(unsigned long size, int nid,
6206 				  unsigned long zone,
6207 				  unsigned long range_start_pfn)
6208 {
6209 	unsigned long start_pfn, end_pfn;
6210 	unsigned long range_end_pfn = range_start_pfn + size;
6211 	int i;
6212 
6213 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6214 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6215 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6216 
6217 		if (end_pfn > start_pfn) {
6218 			size = end_pfn - start_pfn;
6219 			memmap_init_zone(size, nid, zone, start_pfn,
6220 					 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6221 		}
6222 	}
6223 }
6224 
6225 static int zone_batchsize(struct zone *zone)
6226 {
6227 #ifdef CONFIG_MMU
6228 	int batch;
6229 
6230 	/*
6231 	 * The per-cpu-pages pools are set to around 1000th of the
6232 	 * size of the zone.
6233 	 */
6234 	batch = zone_managed_pages(zone) / 1024;
6235 	/* But no more than a meg. */
6236 	if (batch * PAGE_SIZE > 1024 * 1024)
6237 		batch = (1024 * 1024) / PAGE_SIZE;
6238 	batch /= 4;		/* We effectively *= 4 below */
6239 	if (batch < 1)
6240 		batch = 1;
6241 
6242 	/*
6243 	 * Clamp the batch to a 2^n - 1 value. Having a power
6244 	 * of 2 value was found to be more likely to have
6245 	 * suboptimal cache aliasing properties in some cases.
6246 	 *
6247 	 * For example if 2 tasks are alternately allocating
6248 	 * batches of pages, one task can end up with a lot
6249 	 * of pages of one half of the possible page colors
6250 	 * and the other with pages of the other colors.
6251 	 */
6252 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6253 
6254 	return batch;
6255 
6256 #else
6257 	/* The deferral and batching of frees should be suppressed under NOMMU
6258 	 * conditions.
6259 	 *
6260 	 * The problem is that NOMMU needs to be able to allocate large chunks
6261 	 * of contiguous memory as there's no hardware page translation to
6262 	 * assemble apparent contiguous memory from discontiguous pages.
6263 	 *
6264 	 * Queueing large contiguous runs of pages for batching, however,
6265 	 * causes the pages to actually be freed in smaller chunks.  As there
6266 	 * can be a significant delay between the individual batches being
6267 	 * recycled, this leads to the once large chunks of space being
6268 	 * fragmented and becoming unavailable for high-order allocations.
6269 	 */
6270 	return 0;
6271 #endif
6272 }
6273 
6274 /*
6275  * pcp->high and pcp->batch values are related and dependent on one another:
6276  * ->batch must never be higher then ->high.
6277  * The following function updates them in a safe manner without read side
6278  * locking.
6279  *
6280  * Any new users of pcp->batch and pcp->high should ensure they can cope with
6281  * those fields changing asynchronously (acording to the above rule).
6282  *
6283  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6284  * outside of boot time (or some other assurance that no concurrent updaters
6285  * exist).
6286  */
6287 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6288 		unsigned long batch)
6289 {
6290        /* start with a fail safe value for batch */
6291 	pcp->batch = 1;
6292 	smp_wmb();
6293 
6294        /* Update high, then batch, in order */
6295 	pcp->high = high;
6296 	smp_wmb();
6297 
6298 	pcp->batch = batch;
6299 }
6300 
6301 /* a companion to pageset_set_high() */
6302 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6303 {
6304 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6305 }
6306 
6307 static void pageset_init(struct per_cpu_pageset *p)
6308 {
6309 	struct per_cpu_pages *pcp;
6310 	int migratetype;
6311 
6312 	memset(p, 0, sizeof(*p));
6313 
6314 	pcp = &p->pcp;
6315 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6316 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6317 }
6318 
6319 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6320 {
6321 	pageset_init(p);
6322 	pageset_set_batch(p, batch);
6323 }
6324 
6325 /*
6326  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6327  * to the value high for the pageset p.
6328  */
6329 static void pageset_set_high(struct per_cpu_pageset *p,
6330 				unsigned long high)
6331 {
6332 	unsigned long batch = max(1UL, high / 4);
6333 	if ((high / 4) > (PAGE_SHIFT * 8))
6334 		batch = PAGE_SHIFT * 8;
6335 
6336 	pageset_update(&p->pcp, high, batch);
6337 }
6338 
6339 static void pageset_set_high_and_batch(struct zone *zone,
6340 				       struct per_cpu_pageset *pcp)
6341 {
6342 	if (percpu_pagelist_fraction)
6343 		pageset_set_high(pcp,
6344 			(zone_managed_pages(zone) /
6345 				percpu_pagelist_fraction));
6346 	else
6347 		pageset_set_batch(pcp, zone_batchsize(zone));
6348 }
6349 
6350 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6351 {
6352 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6353 
6354 	pageset_init(pcp);
6355 	pageset_set_high_and_batch(zone, pcp);
6356 }
6357 
6358 void __meminit setup_zone_pageset(struct zone *zone)
6359 {
6360 	int cpu;
6361 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6362 	for_each_possible_cpu(cpu)
6363 		zone_pageset_init(zone, cpu);
6364 }
6365 
6366 /*
6367  * Allocate per cpu pagesets and initialize them.
6368  * Before this call only boot pagesets were available.
6369  */
6370 void __init setup_per_cpu_pageset(void)
6371 {
6372 	struct pglist_data *pgdat;
6373 	struct zone *zone;
6374 	int __maybe_unused cpu;
6375 
6376 	for_each_populated_zone(zone)
6377 		setup_zone_pageset(zone);
6378 
6379 #ifdef CONFIG_NUMA
6380 	/*
6381 	 * Unpopulated zones continue using the boot pagesets.
6382 	 * The numa stats for these pagesets need to be reset.
6383 	 * Otherwise, they will end up skewing the stats of
6384 	 * the nodes these zones are associated with.
6385 	 */
6386 	for_each_possible_cpu(cpu) {
6387 		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6388 		memset(pcp->vm_numa_stat_diff, 0,
6389 		       sizeof(pcp->vm_numa_stat_diff));
6390 	}
6391 #endif
6392 
6393 	for_each_online_pgdat(pgdat)
6394 		pgdat->per_cpu_nodestats =
6395 			alloc_percpu(struct per_cpu_nodestat);
6396 }
6397 
6398 static __meminit void zone_pcp_init(struct zone *zone)
6399 {
6400 	/*
6401 	 * per cpu subsystem is not up at this point. The following code
6402 	 * relies on the ability of the linker to provide the
6403 	 * offset of a (static) per cpu variable into the per cpu area.
6404 	 */
6405 	zone->pageset = &boot_pageset;
6406 
6407 	if (populated_zone(zone))
6408 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6409 			zone->name, zone->present_pages,
6410 					 zone_batchsize(zone));
6411 }
6412 
6413 void __meminit init_currently_empty_zone(struct zone *zone,
6414 					unsigned long zone_start_pfn,
6415 					unsigned long size)
6416 {
6417 	struct pglist_data *pgdat = zone->zone_pgdat;
6418 	int zone_idx = zone_idx(zone) + 1;
6419 
6420 	if (zone_idx > pgdat->nr_zones)
6421 		pgdat->nr_zones = zone_idx;
6422 
6423 	zone->zone_start_pfn = zone_start_pfn;
6424 
6425 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6426 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6427 			pgdat->node_id,
6428 			(unsigned long)zone_idx(zone),
6429 			zone_start_pfn, (zone_start_pfn + size));
6430 
6431 	zone_init_free_lists(zone);
6432 	zone->initialized = 1;
6433 }
6434 
6435 /**
6436  * get_pfn_range_for_nid - Return the start and end page frames for a node
6437  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6438  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6439  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6440  *
6441  * It returns the start and end page frame of a node based on information
6442  * provided by memblock_set_node(). If called for a node
6443  * with no available memory, a warning is printed and the start and end
6444  * PFNs will be 0.
6445  */
6446 void __init get_pfn_range_for_nid(unsigned int nid,
6447 			unsigned long *start_pfn, unsigned long *end_pfn)
6448 {
6449 	unsigned long this_start_pfn, this_end_pfn;
6450 	int i;
6451 
6452 	*start_pfn = -1UL;
6453 	*end_pfn = 0;
6454 
6455 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6456 		*start_pfn = min(*start_pfn, this_start_pfn);
6457 		*end_pfn = max(*end_pfn, this_end_pfn);
6458 	}
6459 
6460 	if (*start_pfn == -1UL)
6461 		*start_pfn = 0;
6462 }
6463 
6464 /*
6465  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6466  * assumption is made that zones within a node are ordered in monotonic
6467  * increasing memory addresses so that the "highest" populated zone is used
6468  */
6469 static void __init find_usable_zone_for_movable(void)
6470 {
6471 	int zone_index;
6472 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6473 		if (zone_index == ZONE_MOVABLE)
6474 			continue;
6475 
6476 		if (arch_zone_highest_possible_pfn[zone_index] >
6477 				arch_zone_lowest_possible_pfn[zone_index])
6478 			break;
6479 	}
6480 
6481 	VM_BUG_ON(zone_index == -1);
6482 	movable_zone = zone_index;
6483 }
6484 
6485 /*
6486  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6487  * because it is sized independent of architecture. Unlike the other zones,
6488  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6489  * in each node depending on the size of each node and how evenly kernelcore
6490  * is distributed. This helper function adjusts the zone ranges
6491  * provided by the architecture for a given node by using the end of the
6492  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6493  * zones within a node are in order of monotonic increases memory addresses
6494  */
6495 static void __init adjust_zone_range_for_zone_movable(int nid,
6496 					unsigned long zone_type,
6497 					unsigned long node_start_pfn,
6498 					unsigned long node_end_pfn,
6499 					unsigned long *zone_start_pfn,
6500 					unsigned long *zone_end_pfn)
6501 {
6502 	/* Only adjust if ZONE_MOVABLE is on this node */
6503 	if (zone_movable_pfn[nid]) {
6504 		/* Size ZONE_MOVABLE */
6505 		if (zone_type == ZONE_MOVABLE) {
6506 			*zone_start_pfn = zone_movable_pfn[nid];
6507 			*zone_end_pfn = min(node_end_pfn,
6508 				arch_zone_highest_possible_pfn[movable_zone]);
6509 
6510 		/* Adjust for ZONE_MOVABLE starting within this range */
6511 		} else if (!mirrored_kernelcore &&
6512 			*zone_start_pfn < zone_movable_pfn[nid] &&
6513 			*zone_end_pfn > zone_movable_pfn[nid]) {
6514 			*zone_end_pfn = zone_movable_pfn[nid];
6515 
6516 		/* Check if this whole range is within ZONE_MOVABLE */
6517 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6518 			*zone_start_pfn = *zone_end_pfn;
6519 	}
6520 }
6521 
6522 /*
6523  * Return the number of pages a zone spans in a node, including holes
6524  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6525  */
6526 static unsigned long __init zone_spanned_pages_in_node(int nid,
6527 					unsigned long zone_type,
6528 					unsigned long node_start_pfn,
6529 					unsigned long node_end_pfn,
6530 					unsigned long *zone_start_pfn,
6531 					unsigned long *zone_end_pfn)
6532 {
6533 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6534 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6535 	/* When hotadd a new node from cpu_up(), the node should be empty */
6536 	if (!node_start_pfn && !node_end_pfn)
6537 		return 0;
6538 
6539 	/* Get the start and end of the zone */
6540 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6541 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6542 	adjust_zone_range_for_zone_movable(nid, zone_type,
6543 				node_start_pfn, node_end_pfn,
6544 				zone_start_pfn, zone_end_pfn);
6545 
6546 	/* Check that this node has pages within the zone's required range */
6547 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6548 		return 0;
6549 
6550 	/* Move the zone boundaries inside the node if necessary */
6551 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6552 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6553 
6554 	/* Return the spanned pages */
6555 	return *zone_end_pfn - *zone_start_pfn;
6556 }
6557 
6558 /*
6559  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6560  * then all holes in the requested range will be accounted for.
6561  */
6562 unsigned long __init __absent_pages_in_range(int nid,
6563 				unsigned long range_start_pfn,
6564 				unsigned long range_end_pfn)
6565 {
6566 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6567 	unsigned long start_pfn, end_pfn;
6568 	int i;
6569 
6570 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6571 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6572 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6573 		nr_absent -= end_pfn - start_pfn;
6574 	}
6575 	return nr_absent;
6576 }
6577 
6578 /**
6579  * absent_pages_in_range - Return number of page frames in holes within a range
6580  * @start_pfn: The start PFN to start searching for holes
6581  * @end_pfn: The end PFN to stop searching for holes
6582  *
6583  * Return: the number of pages frames in memory holes within a range.
6584  */
6585 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6586 							unsigned long end_pfn)
6587 {
6588 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6589 }
6590 
6591 /* Return the number of page frames in holes in a zone on a node */
6592 static unsigned long __init zone_absent_pages_in_node(int nid,
6593 					unsigned long zone_type,
6594 					unsigned long node_start_pfn,
6595 					unsigned long node_end_pfn)
6596 {
6597 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6598 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6599 	unsigned long zone_start_pfn, zone_end_pfn;
6600 	unsigned long nr_absent;
6601 
6602 	/* When hotadd a new node from cpu_up(), the node should be empty */
6603 	if (!node_start_pfn && !node_end_pfn)
6604 		return 0;
6605 
6606 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6607 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6608 
6609 	adjust_zone_range_for_zone_movable(nid, zone_type,
6610 			node_start_pfn, node_end_pfn,
6611 			&zone_start_pfn, &zone_end_pfn);
6612 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6613 
6614 	/*
6615 	 * ZONE_MOVABLE handling.
6616 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6617 	 * and vice versa.
6618 	 */
6619 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6620 		unsigned long start_pfn, end_pfn;
6621 		struct memblock_region *r;
6622 
6623 		for_each_mem_region(r) {
6624 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6625 					  zone_start_pfn, zone_end_pfn);
6626 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6627 					zone_start_pfn, zone_end_pfn);
6628 
6629 			if (zone_type == ZONE_MOVABLE &&
6630 			    memblock_is_mirror(r))
6631 				nr_absent += end_pfn - start_pfn;
6632 
6633 			if (zone_type == ZONE_NORMAL &&
6634 			    !memblock_is_mirror(r))
6635 				nr_absent += end_pfn - start_pfn;
6636 		}
6637 	}
6638 
6639 	return nr_absent;
6640 }
6641 
6642 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6643 						unsigned long node_start_pfn,
6644 						unsigned long node_end_pfn)
6645 {
6646 	unsigned long realtotalpages = 0, totalpages = 0;
6647 	enum zone_type i;
6648 
6649 	for (i = 0; i < MAX_NR_ZONES; i++) {
6650 		struct zone *zone = pgdat->node_zones + i;
6651 		unsigned long zone_start_pfn, zone_end_pfn;
6652 		unsigned long spanned, absent;
6653 		unsigned long size, real_size;
6654 
6655 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6656 						     node_start_pfn,
6657 						     node_end_pfn,
6658 						     &zone_start_pfn,
6659 						     &zone_end_pfn);
6660 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
6661 						   node_start_pfn,
6662 						   node_end_pfn);
6663 
6664 		size = spanned;
6665 		real_size = size - absent;
6666 
6667 		if (size)
6668 			zone->zone_start_pfn = zone_start_pfn;
6669 		else
6670 			zone->zone_start_pfn = 0;
6671 		zone->spanned_pages = size;
6672 		zone->present_pages = real_size;
6673 
6674 		totalpages += size;
6675 		realtotalpages += real_size;
6676 	}
6677 
6678 	pgdat->node_spanned_pages = totalpages;
6679 	pgdat->node_present_pages = realtotalpages;
6680 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6681 							realtotalpages);
6682 }
6683 
6684 #ifndef CONFIG_SPARSEMEM
6685 /*
6686  * Calculate the size of the zone->blockflags rounded to an unsigned long
6687  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6688  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6689  * round what is now in bits to nearest long in bits, then return it in
6690  * bytes.
6691  */
6692 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6693 {
6694 	unsigned long usemapsize;
6695 
6696 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6697 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6698 	usemapsize = usemapsize >> pageblock_order;
6699 	usemapsize *= NR_PAGEBLOCK_BITS;
6700 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6701 
6702 	return usemapsize / 8;
6703 }
6704 
6705 static void __ref setup_usemap(struct pglist_data *pgdat,
6706 				struct zone *zone,
6707 				unsigned long zone_start_pfn,
6708 				unsigned long zonesize)
6709 {
6710 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6711 	zone->pageblock_flags = NULL;
6712 	if (usemapsize) {
6713 		zone->pageblock_flags =
6714 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6715 					    pgdat->node_id);
6716 		if (!zone->pageblock_flags)
6717 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6718 			      usemapsize, zone->name, pgdat->node_id);
6719 	}
6720 }
6721 #else
6722 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6723 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6724 #endif /* CONFIG_SPARSEMEM */
6725 
6726 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6727 
6728 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6729 void __init set_pageblock_order(void)
6730 {
6731 	unsigned int order;
6732 
6733 	/* Check that pageblock_nr_pages has not already been setup */
6734 	if (pageblock_order)
6735 		return;
6736 
6737 	if (HPAGE_SHIFT > PAGE_SHIFT)
6738 		order = HUGETLB_PAGE_ORDER;
6739 	else
6740 		order = MAX_ORDER - 1;
6741 
6742 	/*
6743 	 * Assume the largest contiguous order of interest is a huge page.
6744 	 * This value may be variable depending on boot parameters on IA64 and
6745 	 * powerpc.
6746 	 */
6747 	pageblock_order = order;
6748 }
6749 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6750 
6751 /*
6752  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6753  * is unused as pageblock_order is set at compile-time. See
6754  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6755  * the kernel config
6756  */
6757 void __init set_pageblock_order(void)
6758 {
6759 }
6760 
6761 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6762 
6763 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6764 						unsigned long present_pages)
6765 {
6766 	unsigned long pages = spanned_pages;
6767 
6768 	/*
6769 	 * Provide a more accurate estimation if there are holes within
6770 	 * the zone and SPARSEMEM is in use. If there are holes within the
6771 	 * zone, each populated memory region may cost us one or two extra
6772 	 * memmap pages due to alignment because memmap pages for each
6773 	 * populated regions may not be naturally aligned on page boundary.
6774 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6775 	 */
6776 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6777 	    IS_ENABLED(CONFIG_SPARSEMEM))
6778 		pages = present_pages;
6779 
6780 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6781 }
6782 
6783 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6784 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6785 {
6786 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6787 
6788 	spin_lock_init(&ds_queue->split_queue_lock);
6789 	INIT_LIST_HEAD(&ds_queue->split_queue);
6790 	ds_queue->split_queue_len = 0;
6791 }
6792 #else
6793 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6794 #endif
6795 
6796 #ifdef CONFIG_COMPACTION
6797 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6798 {
6799 	init_waitqueue_head(&pgdat->kcompactd_wait);
6800 }
6801 #else
6802 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6803 #endif
6804 
6805 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6806 {
6807 	pgdat_resize_init(pgdat);
6808 
6809 	pgdat_init_split_queue(pgdat);
6810 	pgdat_init_kcompactd(pgdat);
6811 
6812 	init_waitqueue_head(&pgdat->kswapd_wait);
6813 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6814 
6815 	pgdat_page_ext_init(pgdat);
6816 	spin_lock_init(&pgdat->lru_lock);
6817 	lruvec_init(&pgdat->__lruvec);
6818 }
6819 
6820 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6821 							unsigned long remaining_pages)
6822 {
6823 	atomic_long_set(&zone->managed_pages, remaining_pages);
6824 	zone_set_nid(zone, nid);
6825 	zone->name = zone_names[idx];
6826 	zone->zone_pgdat = NODE_DATA(nid);
6827 	spin_lock_init(&zone->lock);
6828 	zone_seqlock_init(zone);
6829 	zone_pcp_init(zone);
6830 }
6831 
6832 /*
6833  * Set up the zone data structures
6834  * - init pgdat internals
6835  * - init all zones belonging to this node
6836  *
6837  * NOTE: this function is only called during memory hotplug
6838  */
6839 #ifdef CONFIG_MEMORY_HOTPLUG
6840 void __ref free_area_init_core_hotplug(int nid)
6841 {
6842 	enum zone_type z;
6843 	pg_data_t *pgdat = NODE_DATA(nid);
6844 
6845 	pgdat_init_internals(pgdat);
6846 	for (z = 0; z < MAX_NR_ZONES; z++)
6847 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6848 }
6849 #endif
6850 
6851 /*
6852  * Set up the zone data structures:
6853  *   - mark all pages reserved
6854  *   - mark all memory queues empty
6855  *   - clear the memory bitmaps
6856  *
6857  * NOTE: pgdat should get zeroed by caller.
6858  * NOTE: this function is only called during early init.
6859  */
6860 static void __init free_area_init_core(struct pglist_data *pgdat)
6861 {
6862 	enum zone_type j;
6863 	int nid = pgdat->node_id;
6864 
6865 	pgdat_init_internals(pgdat);
6866 	pgdat->per_cpu_nodestats = &boot_nodestats;
6867 
6868 	for (j = 0; j < MAX_NR_ZONES; j++) {
6869 		struct zone *zone = pgdat->node_zones + j;
6870 		unsigned long size, freesize, memmap_pages;
6871 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6872 
6873 		size = zone->spanned_pages;
6874 		freesize = zone->present_pages;
6875 
6876 		/*
6877 		 * Adjust freesize so that it accounts for how much memory
6878 		 * is used by this zone for memmap. This affects the watermark
6879 		 * and per-cpu initialisations
6880 		 */
6881 		memmap_pages = calc_memmap_size(size, freesize);
6882 		if (!is_highmem_idx(j)) {
6883 			if (freesize >= memmap_pages) {
6884 				freesize -= memmap_pages;
6885 				if (memmap_pages)
6886 					printk(KERN_DEBUG
6887 					       "  %s zone: %lu pages used for memmap\n",
6888 					       zone_names[j], memmap_pages);
6889 			} else
6890 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6891 					zone_names[j], memmap_pages, freesize);
6892 		}
6893 
6894 		/* Account for reserved pages */
6895 		if (j == 0 && freesize > dma_reserve) {
6896 			freesize -= dma_reserve;
6897 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6898 					zone_names[0], dma_reserve);
6899 		}
6900 
6901 		if (!is_highmem_idx(j))
6902 			nr_kernel_pages += freesize;
6903 		/* Charge for highmem memmap if there are enough kernel pages */
6904 		else if (nr_kernel_pages > memmap_pages * 2)
6905 			nr_kernel_pages -= memmap_pages;
6906 		nr_all_pages += freesize;
6907 
6908 		/*
6909 		 * Set an approximate value for lowmem here, it will be adjusted
6910 		 * when the bootmem allocator frees pages into the buddy system.
6911 		 * And all highmem pages will be managed by the buddy system.
6912 		 */
6913 		zone_init_internals(zone, j, nid, freesize);
6914 
6915 		if (!size)
6916 			continue;
6917 
6918 		set_pageblock_order();
6919 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6920 		init_currently_empty_zone(zone, zone_start_pfn, size);
6921 		memmap_init(size, nid, j, zone_start_pfn);
6922 	}
6923 }
6924 
6925 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6926 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6927 {
6928 	unsigned long __maybe_unused start = 0;
6929 	unsigned long __maybe_unused offset = 0;
6930 
6931 	/* Skip empty nodes */
6932 	if (!pgdat->node_spanned_pages)
6933 		return;
6934 
6935 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6936 	offset = pgdat->node_start_pfn - start;
6937 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6938 	if (!pgdat->node_mem_map) {
6939 		unsigned long size, end;
6940 		struct page *map;
6941 
6942 		/*
6943 		 * The zone's endpoints aren't required to be MAX_ORDER
6944 		 * aligned but the node_mem_map endpoints must be in order
6945 		 * for the buddy allocator to function correctly.
6946 		 */
6947 		end = pgdat_end_pfn(pgdat);
6948 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6949 		size =  (end - start) * sizeof(struct page);
6950 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6951 					  pgdat->node_id);
6952 		if (!map)
6953 			panic("Failed to allocate %ld bytes for node %d memory map\n",
6954 			      size, pgdat->node_id);
6955 		pgdat->node_mem_map = map + offset;
6956 	}
6957 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6958 				__func__, pgdat->node_id, (unsigned long)pgdat,
6959 				(unsigned long)pgdat->node_mem_map);
6960 #ifndef CONFIG_NEED_MULTIPLE_NODES
6961 	/*
6962 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6963 	 */
6964 	if (pgdat == NODE_DATA(0)) {
6965 		mem_map = NODE_DATA(0)->node_mem_map;
6966 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6967 			mem_map -= offset;
6968 	}
6969 #endif
6970 }
6971 #else
6972 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6973 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6974 
6975 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6976 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6977 {
6978 	pgdat->first_deferred_pfn = ULONG_MAX;
6979 }
6980 #else
6981 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6982 #endif
6983 
6984 static void __init free_area_init_node(int nid)
6985 {
6986 	pg_data_t *pgdat = NODE_DATA(nid);
6987 	unsigned long start_pfn = 0;
6988 	unsigned long end_pfn = 0;
6989 
6990 	/* pg_data_t should be reset to zero when it's allocated */
6991 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
6992 
6993 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6994 
6995 	pgdat->node_id = nid;
6996 	pgdat->node_start_pfn = start_pfn;
6997 	pgdat->per_cpu_nodestats = NULL;
6998 
6999 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7000 		(u64)start_pfn << PAGE_SHIFT,
7001 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7002 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7003 
7004 	alloc_node_mem_map(pgdat);
7005 	pgdat_set_deferred_range(pgdat);
7006 
7007 	free_area_init_core(pgdat);
7008 }
7009 
7010 void __init free_area_init_memoryless_node(int nid)
7011 {
7012 	free_area_init_node(nid);
7013 }
7014 
7015 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
7016 /*
7017  * Initialize all valid struct pages in the range [spfn, epfn) and mark them
7018  * PageReserved(). Return the number of struct pages that were initialized.
7019  */
7020 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
7021 {
7022 	unsigned long pfn;
7023 	u64 pgcnt = 0;
7024 
7025 	for (pfn = spfn; pfn < epfn; pfn++) {
7026 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7027 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7028 				+ pageblock_nr_pages - 1;
7029 			continue;
7030 		}
7031 		/*
7032 		 * Use a fake node/zone (0) for now. Some of these pages
7033 		 * (in memblock.reserved but not in memblock.memory) will
7034 		 * get re-initialized via reserve_bootmem_region() later.
7035 		 */
7036 		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
7037 		__SetPageReserved(pfn_to_page(pfn));
7038 		pgcnt++;
7039 	}
7040 
7041 	return pgcnt;
7042 }
7043 
7044 /*
7045  * Only struct pages that are backed by physical memory are zeroed and
7046  * initialized by going through __init_single_page(). But, there are some
7047  * struct pages which are reserved in memblock allocator and their fields
7048  * may be accessed (for example page_to_pfn() on some configuration accesses
7049  * flags). We must explicitly initialize those struct pages.
7050  *
7051  * This function also addresses a similar issue where struct pages are left
7052  * uninitialized because the physical address range is not covered by
7053  * memblock.memory or memblock.reserved. That could happen when memblock
7054  * layout is manually configured via memmap=, or when the highest physical
7055  * address (max_pfn) does not end on a section boundary.
7056  */
7057 static void __init init_unavailable_mem(void)
7058 {
7059 	phys_addr_t start, end;
7060 	u64 i, pgcnt;
7061 	phys_addr_t next = 0;
7062 
7063 	/*
7064 	 * Loop through unavailable ranges not covered by memblock.memory.
7065 	 */
7066 	pgcnt = 0;
7067 	for_each_mem_range(i, &start, &end) {
7068 		if (next < start)
7069 			pgcnt += init_unavailable_range(PFN_DOWN(next),
7070 							PFN_UP(start));
7071 		next = end;
7072 	}
7073 
7074 	/*
7075 	 * Early sections always have a fully populated memmap for the whole
7076 	 * section - see pfn_valid(). If the last section has holes at the
7077 	 * end and that section is marked "online", the memmap will be
7078 	 * considered initialized. Make sure that memmap has a well defined
7079 	 * state.
7080 	 */
7081 	pgcnt += init_unavailable_range(PFN_DOWN(next),
7082 					round_up(max_pfn, PAGES_PER_SECTION));
7083 
7084 	/*
7085 	 * Struct pages that do not have backing memory. This could be because
7086 	 * firmware is using some of this memory, or for some other reasons.
7087 	 */
7088 	if (pgcnt)
7089 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7090 }
7091 #else
7092 static inline void __init init_unavailable_mem(void)
7093 {
7094 }
7095 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7096 
7097 #if MAX_NUMNODES > 1
7098 /*
7099  * Figure out the number of possible node ids.
7100  */
7101 void __init setup_nr_node_ids(void)
7102 {
7103 	unsigned int highest;
7104 
7105 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7106 	nr_node_ids = highest + 1;
7107 }
7108 #endif
7109 
7110 /**
7111  * node_map_pfn_alignment - determine the maximum internode alignment
7112  *
7113  * This function should be called after node map is populated and sorted.
7114  * It calculates the maximum power of two alignment which can distinguish
7115  * all the nodes.
7116  *
7117  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7118  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7119  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7120  * shifted, 1GiB is enough and this function will indicate so.
7121  *
7122  * This is used to test whether pfn -> nid mapping of the chosen memory
7123  * model has fine enough granularity to avoid incorrect mapping for the
7124  * populated node map.
7125  *
7126  * Return: the determined alignment in pfn's.  0 if there is no alignment
7127  * requirement (single node).
7128  */
7129 unsigned long __init node_map_pfn_alignment(void)
7130 {
7131 	unsigned long accl_mask = 0, last_end = 0;
7132 	unsigned long start, end, mask;
7133 	int last_nid = NUMA_NO_NODE;
7134 	int i, nid;
7135 
7136 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7137 		if (!start || last_nid < 0 || last_nid == nid) {
7138 			last_nid = nid;
7139 			last_end = end;
7140 			continue;
7141 		}
7142 
7143 		/*
7144 		 * Start with a mask granular enough to pin-point to the
7145 		 * start pfn and tick off bits one-by-one until it becomes
7146 		 * too coarse to separate the current node from the last.
7147 		 */
7148 		mask = ~((1 << __ffs(start)) - 1);
7149 		while (mask && last_end <= (start & (mask << 1)))
7150 			mask <<= 1;
7151 
7152 		/* accumulate all internode masks */
7153 		accl_mask |= mask;
7154 	}
7155 
7156 	/* convert mask to number of pages */
7157 	return ~accl_mask + 1;
7158 }
7159 
7160 /**
7161  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7162  *
7163  * Return: the minimum PFN based on information provided via
7164  * memblock_set_node().
7165  */
7166 unsigned long __init find_min_pfn_with_active_regions(void)
7167 {
7168 	return PHYS_PFN(memblock_start_of_DRAM());
7169 }
7170 
7171 /*
7172  * early_calculate_totalpages()
7173  * Sum pages in active regions for movable zone.
7174  * Populate N_MEMORY for calculating usable_nodes.
7175  */
7176 static unsigned long __init early_calculate_totalpages(void)
7177 {
7178 	unsigned long totalpages = 0;
7179 	unsigned long start_pfn, end_pfn;
7180 	int i, nid;
7181 
7182 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7183 		unsigned long pages = end_pfn - start_pfn;
7184 
7185 		totalpages += pages;
7186 		if (pages)
7187 			node_set_state(nid, N_MEMORY);
7188 	}
7189 	return totalpages;
7190 }
7191 
7192 /*
7193  * Find the PFN the Movable zone begins in each node. Kernel memory
7194  * is spread evenly between nodes as long as the nodes have enough
7195  * memory. When they don't, some nodes will have more kernelcore than
7196  * others
7197  */
7198 static void __init find_zone_movable_pfns_for_nodes(void)
7199 {
7200 	int i, nid;
7201 	unsigned long usable_startpfn;
7202 	unsigned long kernelcore_node, kernelcore_remaining;
7203 	/* save the state before borrow the nodemask */
7204 	nodemask_t saved_node_state = node_states[N_MEMORY];
7205 	unsigned long totalpages = early_calculate_totalpages();
7206 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7207 	struct memblock_region *r;
7208 
7209 	/* Need to find movable_zone earlier when movable_node is specified. */
7210 	find_usable_zone_for_movable();
7211 
7212 	/*
7213 	 * If movable_node is specified, ignore kernelcore and movablecore
7214 	 * options.
7215 	 */
7216 	if (movable_node_is_enabled()) {
7217 		for_each_mem_region(r) {
7218 			if (!memblock_is_hotpluggable(r))
7219 				continue;
7220 
7221 			nid = memblock_get_region_node(r);
7222 
7223 			usable_startpfn = PFN_DOWN(r->base);
7224 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7225 				min(usable_startpfn, zone_movable_pfn[nid]) :
7226 				usable_startpfn;
7227 		}
7228 
7229 		goto out2;
7230 	}
7231 
7232 	/*
7233 	 * If kernelcore=mirror is specified, ignore movablecore option
7234 	 */
7235 	if (mirrored_kernelcore) {
7236 		bool mem_below_4gb_not_mirrored = false;
7237 
7238 		for_each_mem_region(r) {
7239 			if (memblock_is_mirror(r))
7240 				continue;
7241 
7242 			nid = memblock_get_region_node(r);
7243 
7244 			usable_startpfn = memblock_region_memory_base_pfn(r);
7245 
7246 			if (usable_startpfn < 0x100000) {
7247 				mem_below_4gb_not_mirrored = true;
7248 				continue;
7249 			}
7250 
7251 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7252 				min(usable_startpfn, zone_movable_pfn[nid]) :
7253 				usable_startpfn;
7254 		}
7255 
7256 		if (mem_below_4gb_not_mirrored)
7257 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7258 
7259 		goto out2;
7260 	}
7261 
7262 	/*
7263 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7264 	 * amount of necessary memory.
7265 	 */
7266 	if (required_kernelcore_percent)
7267 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7268 				       10000UL;
7269 	if (required_movablecore_percent)
7270 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7271 					10000UL;
7272 
7273 	/*
7274 	 * If movablecore= was specified, calculate what size of
7275 	 * kernelcore that corresponds so that memory usable for
7276 	 * any allocation type is evenly spread. If both kernelcore
7277 	 * and movablecore are specified, then the value of kernelcore
7278 	 * will be used for required_kernelcore if it's greater than
7279 	 * what movablecore would have allowed.
7280 	 */
7281 	if (required_movablecore) {
7282 		unsigned long corepages;
7283 
7284 		/*
7285 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7286 		 * was requested by the user
7287 		 */
7288 		required_movablecore =
7289 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7290 		required_movablecore = min(totalpages, required_movablecore);
7291 		corepages = totalpages - required_movablecore;
7292 
7293 		required_kernelcore = max(required_kernelcore, corepages);
7294 	}
7295 
7296 	/*
7297 	 * If kernelcore was not specified or kernelcore size is larger
7298 	 * than totalpages, there is no ZONE_MOVABLE.
7299 	 */
7300 	if (!required_kernelcore || required_kernelcore >= totalpages)
7301 		goto out;
7302 
7303 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7304 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7305 
7306 restart:
7307 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7308 	kernelcore_node = required_kernelcore / usable_nodes;
7309 	for_each_node_state(nid, N_MEMORY) {
7310 		unsigned long start_pfn, end_pfn;
7311 
7312 		/*
7313 		 * Recalculate kernelcore_node if the division per node
7314 		 * now exceeds what is necessary to satisfy the requested
7315 		 * amount of memory for the kernel
7316 		 */
7317 		if (required_kernelcore < kernelcore_node)
7318 			kernelcore_node = required_kernelcore / usable_nodes;
7319 
7320 		/*
7321 		 * As the map is walked, we track how much memory is usable
7322 		 * by the kernel using kernelcore_remaining. When it is
7323 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7324 		 */
7325 		kernelcore_remaining = kernelcore_node;
7326 
7327 		/* Go through each range of PFNs within this node */
7328 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7329 			unsigned long size_pages;
7330 
7331 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7332 			if (start_pfn >= end_pfn)
7333 				continue;
7334 
7335 			/* Account for what is only usable for kernelcore */
7336 			if (start_pfn < usable_startpfn) {
7337 				unsigned long kernel_pages;
7338 				kernel_pages = min(end_pfn, usable_startpfn)
7339 								- start_pfn;
7340 
7341 				kernelcore_remaining -= min(kernel_pages,
7342 							kernelcore_remaining);
7343 				required_kernelcore -= min(kernel_pages,
7344 							required_kernelcore);
7345 
7346 				/* Continue if range is now fully accounted */
7347 				if (end_pfn <= usable_startpfn) {
7348 
7349 					/*
7350 					 * Push zone_movable_pfn to the end so
7351 					 * that if we have to rebalance
7352 					 * kernelcore across nodes, we will
7353 					 * not double account here
7354 					 */
7355 					zone_movable_pfn[nid] = end_pfn;
7356 					continue;
7357 				}
7358 				start_pfn = usable_startpfn;
7359 			}
7360 
7361 			/*
7362 			 * The usable PFN range for ZONE_MOVABLE is from
7363 			 * start_pfn->end_pfn. Calculate size_pages as the
7364 			 * number of pages used as kernelcore
7365 			 */
7366 			size_pages = end_pfn - start_pfn;
7367 			if (size_pages > kernelcore_remaining)
7368 				size_pages = kernelcore_remaining;
7369 			zone_movable_pfn[nid] = start_pfn + size_pages;
7370 
7371 			/*
7372 			 * Some kernelcore has been met, update counts and
7373 			 * break if the kernelcore for this node has been
7374 			 * satisfied
7375 			 */
7376 			required_kernelcore -= min(required_kernelcore,
7377 								size_pages);
7378 			kernelcore_remaining -= size_pages;
7379 			if (!kernelcore_remaining)
7380 				break;
7381 		}
7382 	}
7383 
7384 	/*
7385 	 * If there is still required_kernelcore, we do another pass with one
7386 	 * less node in the count. This will push zone_movable_pfn[nid] further
7387 	 * along on the nodes that still have memory until kernelcore is
7388 	 * satisfied
7389 	 */
7390 	usable_nodes--;
7391 	if (usable_nodes && required_kernelcore > usable_nodes)
7392 		goto restart;
7393 
7394 out2:
7395 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7396 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7397 		zone_movable_pfn[nid] =
7398 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7399 
7400 out:
7401 	/* restore the node_state */
7402 	node_states[N_MEMORY] = saved_node_state;
7403 }
7404 
7405 /* Any regular or high memory on that node ? */
7406 static void check_for_memory(pg_data_t *pgdat, int nid)
7407 {
7408 	enum zone_type zone_type;
7409 
7410 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7411 		struct zone *zone = &pgdat->node_zones[zone_type];
7412 		if (populated_zone(zone)) {
7413 			if (IS_ENABLED(CONFIG_HIGHMEM))
7414 				node_set_state(nid, N_HIGH_MEMORY);
7415 			if (zone_type <= ZONE_NORMAL)
7416 				node_set_state(nid, N_NORMAL_MEMORY);
7417 			break;
7418 		}
7419 	}
7420 }
7421 
7422 /*
7423  * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7424  * such cases we allow max_zone_pfn sorted in the descending order
7425  */
7426 bool __weak arch_has_descending_max_zone_pfns(void)
7427 {
7428 	return false;
7429 }
7430 
7431 /**
7432  * free_area_init - Initialise all pg_data_t and zone data
7433  * @max_zone_pfn: an array of max PFNs for each zone
7434  *
7435  * This will call free_area_init_node() for each active node in the system.
7436  * Using the page ranges provided by memblock_set_node(), the size of each
7437  * zone in each node and their holes is calculated. If the maximum PFN
7438  * between two adjacent zones match, it is assumed that the zone is empty.
7439  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7440  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7441  * starts where the previous one ended. For example, ZONE_DMA32 starts
7442  * at arch_max_dma_pfn.
7443  */
7444 void __init free_area_init(unsigned long *max_zone_pfn)
7445 {
7446 	unsigned long start_pfn, end_pfn;
7447 	int i, nid, zone;
7448 	bool descending;
7449 
7450 	/* Record where the zone boundaries are */
7451 	memset(arch_zone_lowest_possible_pfn, 0,
7452 				sizeof(arch_zone_lowest_possible_pfn));
7453 	memset(arch_zone_highest_possible_pfn, 0,
7454 				sizeof(arch_zone_highest_possible_pfn));
7455 
7456 	start_pfn = find_min_pfn_with_active_regions();
7457 	descending = arch_has_descending_max_zone_pfns();
7458 
7459 	for (i = 0; i < MAX_NR_ZONES; i++) {
7460 		if (descending)
7461 			zone = MAX_NR_ZONES - i - 1;
7462 		else
7463 			zone = i;
7464 
7465 		if (zone == ZONE_MOVABLE)
7466 			continue;
7467 
7468 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7469 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7470 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7471 
7472 		start_pfn = end_pfn;
7473 	}
7474 
7475 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7476 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7477 	find_zone_movable_pfns_for_nodes();
7478 
7479 	/* Print out the zone ranges */
7480 	pr_info("Zone ranges:\n");
7481 	for (i = 0; i < MAX_NR_ZONES; i++) {
7482 		if (i == ZONE_MOVABLE)
7483 			continue;
7484 		pr_info("  %-8s ", zone_names[i]);
7485 		if (arch_zone_lowest_possible_pfn[i] ==
7486 				arch_zone_highest_possible_pfn[i])
7487 			pr_cont("empty\n");
7488 		else
7489 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7490 				(u64)arch_zone_lowest_possible_pfn[i]
7491 					<< PAGE_SHIFT,
7492 				((u64)arch_zone_highest_possible_pfn[i]
7493 					<< PAGE_SHIFT) - 1);
7494 	}
7495 
7496 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7497 	pr_info("Movable zone start for each node\n");
7498 	for (i = 0; i < MAX_NUMNODES; i++) {
7499 		if (zone_movable_pfn[i])
7500 			pr_info("  Node %d: %#018Lx\n", i,
7501 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7502 	}
7503 
7504 	/*
7505 	 * Print out the early node map, and initialize the
7506 	 * subsection-map relative to active online memory ranges to
7507 	 * enable future "sub-section" extensions of the memory map.
7508 	 */
7509 	pr_info("Early memory node ranges\n");
7510 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7511 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7512 			(u64)start_pfn << PAGE_SHIFT,
7513 			((u64)end_pfn << PAGE_SHIFT) - 1);
7514 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7515 	}
7516 
7517 	/* Initialise every node */
7518 	mminit_verify_pageflags_layout();
7519 	setup_nr_node_ids();
7520 	init_unavailable_mem();
7521 	for_each_online_node(nid) {
7522 		pg_data_t *pgdat = NODE_DATA(nid);
7523 		free_area_init_node(nid);
7524 
7525 		/* Any memory on that node */
7526 		if (pgdat->node_present_pages)
7527 			node_set_state(nid, N_MEMORY);
7528 		check_for_memory(pgdat, nid);
7529 	}
7530 }
7531 
7532 static int __init cmdline_parse_core(char *p, unsigned long *core,
7533 				     unsigned long *percent)
7534 {
7535 	unsigned long long coremem;
7536 	char *endptr;
7537 
7538 	if (!p)
7539 		return -EINVAL;
7540 
7541 	/* Value may be a percentage of total memory, otherwise bytes */
7542 	coremem = simple_strtoull(p, &endptr, 0);
7543 	if (*endptr == '%') {
7544 		/* Paranoid check for percent values greater than 100 */
7545 		WARN_ON(coremem > 100);
7546 
7547 		*percent = coremem;
7548 	} else {
7549 		coremem = memparse(p, &p);
7550 		/* Paranoid check that UL is enough for the coremem value */
7551 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7552 
7553 		*core = coremem >> PAGE_SHIFT;
7554 		*percent = 0UL;
7555 	}
7556 	return 0;
7557 }
7558 
7559 /*
7560  * kernelcore=size sets the amount of memory for use for allocations that
7561  * cannot be reclaimed or migrated.
7562  */
7563 static int __init cmdline_parse_kernelcore(char *p)
7564 {
7565 	/* parse kernelcore=mirror */
7566 	if (parse_option_str(p, "mirror")) {
7567 		mirrored_kernelcore = true;
7568 		return 0;
7569 	}
7570 
7571 	return cmdline_parse_core(p, &required_kernelcore,
7572 				  &required_kernelcore_percent);
7573 }
7574 
7575 /*
7576  * movablecore=size sets the amount of memory for use for allocations that
7577  * can be reclaimed or migrated.
7578  */
7579 static int __init cmdline_parse_movablecore(char *p)
7580 {
7581 	return cmdline_parse_core(p, &required_movablecore,
7582 				  &required_movablecore_percent);
7583 }
7584 
7585 early_param("kernelcore", cmdline_parse_kernelcore);
7586 early_param("movablecore", cmdline_parse_movablecore);
7587 
7588 void adjust_managed_page_count(struct page *page, long count)
7589 {
7590 	atomic_long_add(count, &page_zone(page)->managed_pages);
7591 	totalram_pages_add(count);
7592 #ifdef CONFIG_HIGHMEM
7593 	if (PageHighMem(page))
7594 		totalhigh_pages_add(count);
7595 #endif
7596 }
7597 EXPORT_SYMBOL(adjust_managed_page_count);
7598 
7599 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7600 {
7601 	void *pos;
7602 	unsigned long pages = 0;
7603 
7604 	start = (void *)PAGE_ALIGN((unsigned long)start);
7605 	end = (void *)((unsigned long)end & PAGE_MASK);
7606 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7607 		struct page *page = virt_to_page(pos);
7608 		void *direct_map_addr;
7609 
7610 		/*
7611 		 * 'direct_map_addr' might be different from 'pos'
7612 		 * because some architectures' virt_to_page()
7613 		 * work with aliases.  Getting the direct map
7614 		 * address ensures that we get a _writeable_
7615 		 * alias for the memset().
7616 		 */
7617 		direct_map_addr = page_address(page);
7618 		if ((unsigned int)poison <= 0xFF)
7619 			memset(direct_map_addr, poison, PAGE_SIZE);
7620 
7621 		free_reserved_page(page);
7622 	}
7623 
7624 	if (pages && s)
7625 		pr_info("Freeing %s memory: %ldK\n",
7626 			s, pages << (PAGE_SHIFT - 10));
7627 
7628 	return pages;
7629 }
7630 
7631 #ifdef	CONFIG_HIGHMEM
7632 void free_highmem_page(struct page *page)
7633 {
7634 	__free_reserved_page(page);
7635 	totalram_pages_inc();
7636 	atomic_long_inc(&page_zone(page)->managed_pages);
7637 	totalhigh_pages_inc();
7638 }
7639 #endif
7640 
7641 
7642 void __init mem_init_print_info(const char *str)
7643 {
7644 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7645 	unsigned long init_code_size, init_data_size;
7646 
7647 	physpages = get_num_physpages();
7648 	codesize = _etext - _stext;
7649 	datasize = _edata - _sdata;
7650 	rosize = __end_rodata - __start_rodata;
7651 	bss_size = __bss_stop - __bss_start;
7652 	init_data_size = __init_end - __init_begin;
7653 	init_code_size = _einittext - _sinittext;
7654 
7655 	/*
7656 	 * Detect special cases and adjust section sizes accordingly:
7657 	 * 1) .init.* may be embedded into .data sections
7658 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7659 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7660 	 * 3) .rodata.* may be embedded into .text or .data sections.
7661 	 */
7662 #define adj_init_size(start, end, size, pos, adj) \
7663 	do { \
7664 		if (start <= pos && pos < end && size > adj) \
7665 			size -= adj; \
7666 	} while (0)
7667 
7668 	adj_init_size(__init_begin, __init_end, init_data_size,
7669 		     _sinittext, init_code_size);
7670 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7671 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7672 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7673 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7674 
7675 #undef	adj_init_size
7676 
7677 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7678 #ifdef	CONFIG_HIGHMEM
7679 		", %luK highmem"
7680 #endif
7681 		"%s%s)\n",
7682 		nr_free_pages() << (PAGE_SHIFT - 10),
7683 		physpages << (PAGE_SHIFT - 10),
7684 		codesize >> 10, datasize >> 10, rosize >> 10,
7685 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7686 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7687 		totalcma_pages << (PAGE_SHIFT - 10),
7688 #ifdef	CONFIG_HIGHMEM
7689 		totalhigh_pages() << (PAGE_SHIFT - 10),
7690 #endif
7691 		str ? ", " : "", str ? str : "");
7692 }
7693 
7694 /**
7695  * set_dma_reserve - set the specified number of pages reserved in the first zone
7696  * @new_dma_reserve: The number of pages to mark reserved
7697  *
7698  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7699  * In the DMA zone, a significant percentage may be consumed by kernel image
7700  * and other unfreeable allocations which can skew the watermarks badly. This
7701  * function may optionally be used to account for unfreeable pages in the
7702  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7703  * smaller per-cpu batchsize.
7704  */
7705 void __init set_dma_reserve(unsigned long new_dma_reserve)
7706 {
7707 	dma_reserve = new_dma_reserve;
7708 }
7709 
7710 static int page_alloc_cpu_dead(unsigned int cpu)
7711 {
7712 
7713 	lru_add_drain_cpu(cpu);
7714 	drain_pages(cpu);
7715 
7716 	/*
7717 	 * Spill the event counters of the dead processor
7718 	 * into the current processors event counters.
7719 	 * This artificially elevates the count of the current
7720 	 * processor.
7721 	 */
7722 	vm_events_fold_cpu(cpu);
7723 
7724 	/*
7725 	 * Zero the differential counters of the dead processor
7726 	 * so that the vm statistics are consistent.
7727 	 *
7728 	 * This is only okay since the processor is dead and cannot
7729 	 * race with what we are doing.
7730 	 */
7731 	cpu_vm_stats_fold(cpu);
7732 	return 0;
7733 }
7734 
7735 #ifdef CONFIG_NUMA
7736 int hashdist = HASHDIST_DEFAULT;
7737 
7738 static int __init set_hashdist(char *str)
7739 {
7740 	if (!str)
7741 		return 0;
7742 	hashdist = simple_strtoul(str, &str, 0);
7743 	return 1;
7744 }
7745 __setup("hashdist=", set_hashdist);
7746 #endif
7747 
7748 void __init page_alloc_init(void)
7749 {
7750 	int ret;
7751 
7752 #ifdef CONFIG_NUMA
7753 	if (num_node_state(N_MEMORY) == 1)
7754 		hashdist = 0;
7755 #endif
7756 
7757 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7758 					"mm/page_alloc:dead", NULL,
7759 					page_alloc_cpu_dead);
7760 	WARN_ON(ret < 0);
7761 }
7762 
7763 /*
7764  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7765  *	or min_free_kbytes changes.
7766  */
7767 static void calculate_totalreserve_pages(void)
7768 {
7769 	struct pglist_data *pgdat;
7770 	unsigned long reserve_pages = 0;
7771 	enum zone_type i, j;
7772 
7773 	for_each_online_pgdat(pgdat) {
7774 
7775 		pgdat->totalreserve_pages = 0;
7776 
7777 		for (i = 0; i < MAX_NR_ZONES; i++) {
7778 			struct zone *zone = pgdat->node_zones + i;
7779 			long max = 0;
7780 			unsigned long managed_pages = zone_managed_pages(zone);
7781 
7782 			/* Find valid and maximum lowmem_reserve in the zone */
7783 			for (j = i; j < MAX_NR_ZONES; j++) {
7784 				if (zone->lowmem_reserve[j] > max)
7785 					max = zone->lowmem_reserve[j];
7786 			}
7787 
7788 			/* we treat the high watermark as reserved pages. */
7789 			max += high_wmark_pages(zone);
7790 
7791 			if (max > managed_pages)
7792 				max = managed_pages;
7793 
7794 			pgdat->totalreserve_pages += max;
7795 
7796 			reserve_pages += max;
7797 		}
7798 	}
7799 	totalreserve_pages = reserve_pages;
7800 }
7801 
7802 /*
7803  * setup_per_zone_lowmem_reserve - called whenever
7804  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7805  *	has a correct pages reserved value, so an adequate number of
7806  *	pages are left in the zone after a successful __alloc_pages().
7807  */
7808 static void setup_per_zone_lowmem_reserve(void)
7809 {
7810 	struct pglist_data *pgdat;
7811 	enum zone_type j, idx;
7812 
7813 	for_each_online_pgdat(pgdat) {
7814 		for (j = 0; j < MAX_NR_ZONES; j++) {
7815 			struct zone *zone = pgdat->node_zones + j;
7816 			unsigned long managed_pages = zone_managed_pages(zone);
7817 
7818 			zone->lowmem_reserve[j] = 0;
7819 
7820 			idx = j;
7821 			while (idx) {
7822 				struct zone *lower_zone;
7823 
7824 				idx--;
7825 				lower_zone = pgdat->node_zones + idx;
7826 
7827 				if (!sysctl_lowmem_reserve_ratio[idx] ||
7828 				    !zone_managed_pages(lower_zone)) {
7829 					lower_zone->lowmem_reserve[j] = 0;
7830 					continue;
7831 				} else {
7832 					lower_zone->lowmem_reserve[j] =
7833 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7834 				}
7835 				managed_pages += zone_managed_pages(lower_zone);
7836 			}
7837 		}
7838 	}
7839 
7840 	/* update totalreserve_pages */
7841 	calculate_totalreserve_pages();
7842 }
7843 
7844 static void __setup_per_zone_wmarks(void)
7845 {
7846 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7847 	unsigned long lowmem_pages = 0;
7848 	struct zone *zone;
7849 	unsigned long flags;
7850 
7851 	/* Calculate total number of !ZONE_HIGHMEM pages */
7852 	for_each_zone(zone) {
7853 		if (!is_highmem(zone))
7854 			lowmem_pages += zone_managed_pages(zone);
7855 	}
7856 
7857 	for_each_zone(zone) {
7858 		u64 tmp;
7859 
7860 		spin_lock_irqsave(&zone->lock, flags);
7861 		tmp = (u64)pages_min * zone_managed_pages(zone);
7862 		do_div(tmp, lowmem_pages);
7863 		if (is_highmem(zone)) {
7864 			/*
7865 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7866 			 * need highmem pages, so cap pages_min to a small
7867 			 * value here.
7868 			 *
7869 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7870 			 * deltas control async page reclaim, and so should
7871 			 * not be capped for highmem.
7872 			 */
7873 			unsigned long min_pages;
7874 
7875 			min_pages = zone_managed_pages(zone) / 1024;
7876 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7877 			zone->_watermark[WMARK_MIN] = min_pages;
7878 		} else {
7879 			/*
7880 			 * If it's a lowmem zone, reserve a number of pages
7881 			 * proportionate to the zone's size.
7882 			 */
7883 			zone->_watermark[WMARK_MIN] = tmp;
7884 		}
7885 
7886 		/*
7887 		 * Set the kswapd watermarks distance according to the
7888 		 * scale factor in proportion to available memory, but
7889 		 * ensure a minimum size on small systems.
7890 		 */
7891 		tmp = max_t(u64, tmp >> 2,
7892 			    mult_frac(zone_managed_pages(zone),
7893 				      watermark_scale_factor, 10000));
7894 
7895 		zone->watermark_boost = 0;
7896 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7897 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7898 
7899 		spin_unlock_irqrestore(&zone->lock, flags);
7900 	}
7901 
7902 	/* update totalreserve_pages */
7903 	calculate_totalreserve_pages();
7904 }
7905 
7906 /**
7907  * setup_per_zone_wmarks - called when min_free_kbytes changes
7908  * or when memory is hot-{added|removed}
7909  *
7910  * Ensures that the watermark[min,low,high] values for each zone are set
7911  * correctly with respect to min_free_kbytes.
7912  */
7913 void setup_per_zone_wmarks(void)
7914 {
7915 	static DEFINE_SPINLOCK(lock);
7916 
7917 	spin_lock(&lock);
7918 	__setup_per_zone_wmarks();
7919 	spin_unlock(&lock);
7920 }
7921 
7922 /*
7923  * Initialise min_free_kbytes.
7924  *
7925  * For small machines we want it small (128k min).  For large machines
7926  * we want it large (256MB max).  But it is not linear, because network
7927  * bandwidth does not increase linearly with machine size.  We use
7928  *
7929  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7930  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7931  *
7932  * which yields
7933  *
7934  * 16MB:	512k
7935  * 32MB:	724k
7936  * 64MB:	1024k
7937  * 128MB:	1448k
7938  * 256MB:	2048k
7939  * 512MB:	2896k
7940  * 1024MB:	4096k
7941  * 2048MB:	5792k
7942  * 4096MB:	8192k
7943  * 8192MB:	11584k
7944  * 16384MB:	16384k
7945  */
7946 int __meminit init_per_zone_wmark_min(void)
7947 {
7948 	unsigned long lowmem_kbytes;
7949 	int new_min_free_kbytes;
7950 
7951 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7952 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7953 
7954 	if (new_min_free_kbytes > user_min_free_kbytes) {
7955 		min_free_kbytes = new_min_free_kbytes;
7956 		if (min_free_kbytes < 128)
7957 			min_free_kbytes = 128;
7958 		if (min_free_kbytes > 262144)
7959 			min_free_kbytes = 262144;
7960 	} else {
7961 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7962 				new_min_free_kbytes, user_min_free_kbytes);
7963 	}
7964 	setup_per_zone_wmarks();
7965 	refresh_zone_stat_thresholds();
7966 	setup_per_zone_lowmem_reserve();
7967 
7968 #ifdef CONFIG_NUMA
7969 	setup_min_unmapped_ratio();
7970 	setup_min_slab_ratio();
7971 #endif
7972 
7973 	khugepaged_min_free_kbytes_update();
7974 
7975 	return 0;
7976 }
7977 postcore_initcall(init_per_zone_wmark_min)
7978 
7979 /*
7980  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7981  *	that we can call two helper functions whenever min_free_kbytes
7982  *	changes.
7983  */
7984 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7985 		void *buffer, size_t *length, loff_t *ppos)
7986 {
7987 	int rc;
7988 
7989 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7990 	if (rc)
7991 		return rc;
7992 
7993 	if (write) {
7994 		user_min_free_kbytes = min_free_kbytes;
7995 		setup_per_zone_wmarks();
7996 	}
7997 	return 0;
7998 }
7999 
8000 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8001 		void *buffer, size_t *length, loff_t *ppos)
8002 {
8003 	int rc;
8004 
8005 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8006 	if (rc)
8007 		return rc;
8008 
8009 	if (write)
8010 		setup_per_zone_wmarks();
8011 
8012 	return 0;
8013 }
8014 
8015 #ifdef CONFIG_NUMA
8016 static void setup_min_unmapped_ratio(void)
8017 {
8018 	pg_data_t *pgdat;
8019 	struct zone *zone;
8020 
8021 	for_each_online_pgdat(pgdat)
8022 		pgdat->min_unmapped_pages = 0;
8023 
8024 	for_each_zone(zone)
8025 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8026 						         sysctl_min_unmapped_ratio) / 100;
8027 }
8028 
8029 
8030 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8031 		void *buffer, size_t *length, loff_t *ppos)
8032 {
8033 	int rc;
8034 
8035 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8036 	if (rc)
8037 		return rc;
8038 
8039 	setup_min_unmapped_ratio();
8040 
8041 	return 0;
8042 }
8043 
8044 static void setup_min_slab_ratio(void)
8045 {
8046 	pg_data_t *pgdat;
8047 	struct zone *zone;
8048 
8049 	for_each_online_pgdat(pgdat)
8050 		pgdat->min_slab_pages = 0;
8051 
8052 	for_each_zone(zone)
8053 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8054 						     sysctl_min_slab_ratio) / 100;
8055 }
8056 
8057 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8058 		void *buffer, size_t *length, loff_t *ppos)
8059 {
8060 	int rc;
8061 
8062 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8063 	if (rc)
8064 		return rc;
8065 
8066 	setup_min_slab_ratio();
8067 
8068 	return 0;
8069 }
8070 #endif
8071 
8072 /*
8073  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8074  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8075  *	whenever sysctl_lowmem_reserve_ratio changes.
8076  *
8077  * The reserve ratio obviously has absolutely no relation with the
8078  * minimum watermarks. The lowmem reserve ratio can only make sense
8079  * if in function of the boot time zone sizes.
8080  */
8081 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8082 		void *buffer, size_t *length, loff_t *ppos)
8083 {
8084 	int i;
8085 
8086 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8087 
8088 	for (i = 0; i < MAX_NR_ZONES; i++) {
8089 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8090 			sysctl_lowmem_reserve_ratio[i] = 0;
8091 	}
8092 
8093 	setup_per_zone_lowmem_reserve();
8094 	return 0;
8095 }
8096 
8097 static void __zone_pcp_update(struct zone *zone)
8098 {
8099 	unsigned int cpu;
8100 
8101 	for_each_possible_cpu(cpu)
8102 		pageset_set_high_and_batch(zone,
8103 				per_cpu_ptr(zone->pageset, cpu));
8104 }
8105 
8106 /*
8107  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8108  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8109  * pagelist can have before it gets flushed back to buddy allocator.
8110  */
8111 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8112 		void *buffer, size_t *length, loff_t *ppos)
8113 {
8114 	struct zone *zone;
8115 	int old_percpu_pagelist_fraction;
8116 	int ret;
8117 
8118 	mutex_lock(&pcp_batch_high_lock);
8119 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8120 
8121 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8122 	if (!write || ret < 0)
8123 		goto out;
8124 
8125 	/* Sanity checking to avoid pcp imbalance */
8126 	if (percpu_pagelist_fraction &&
8127 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8128 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8129 		ret = -EINVAL;
8130 		goto out;
8131 	}
8132 
8133 	/* No change? */
8134 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8135 		goto out;
8136 
8137 	for_each_populated_zone(zone)
8138 		__zone_pcp_update(zone);
8139 out:
8140 	mutex_unlock(&pcp_batch_high_lock);
8141 	return ret;
8142 }
8143 
8144 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8145 /*
8146  * Returns the number of pages that arch has reserved but
8147  * is not known to alloc_large_system_hash().
8148  */
8149 static unsigned long __init arch_reserved_kernel_pages(void)
8150 {
8151 	return 0;
8152 }
8153 #endif
8154 
8155 /*
8156  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8157  * machines. As memory size is increased the scale is also increased but at
8158  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8159  * quadruples the scale is increased by one, which means the size of hash table
8160  * only doubles, instead of quadrupling as well.
8161  * Because 32-bit systems cannot have large physical memory, where this scaling
8162  * makes sense, it is disabled on such platforms.
8163  */
8164 #if __BITS_PER_LONG > 32
8165 #define ADAPT_SCALE_BASE	(64ul << 30)
8166 #define ADAPT_SCALE_SHIFT	2
8167 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8168 #endif
8169 
8170 /*
8171  * allocate a large system hash table from bootmem
8172  * - it is assumed that the hash table must contain an exact power-of-2
8173  *   quantity of entries
8174  * - limit is the number of hash buckets, not the total allocation size
8175  */
8176 void *__init alloc_large_system_hash(const char *tablename,
8177 				     unsigned long bucketsize,
8178 				     unsigned long numentries,
8179 				     int scale,
8180 				     int flags,
8181 				     unsigned int *_hash_shift,
8182 				     unsigned int *_hash_mask,
8183 				     unsigned long low_limit,
8184 				     unsigned long high_limit)
8185 {
8186 	unsigned long long max = high_limit;
8187 	unsigned long log2qty, size;
8188 	void *table = NULL;
8189 	gfp_t gfp_flags;
8190 	bool virt;
8191 
8192 	/* allow the kernel cmdline to have a say */
8193 	if (!numentries) {
8194 		/* round applicable memory size up to nearest megabyte */
8195 		numentries = nr_kernel_pages;
8196 		numentries -= arch_reserved_kernel_pages();
8197 
8198 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8199 		if (PAGE_SHIFT < 20)
8200 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8201 
8202 #if __BITS_PER_LONG > 32
8203 		if (!high_limit) {
8204 			unsigned long adapt;
8205 
8206 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8207 			     adapt <<= ADAPT_SCALE_SHIFT)
8208 				scale++;
8209 		}
8210 #endif
8211 
8212 		/* limit to 1 bucket per 2^scale bytes of low memory */
8213 		if (scale > PAGE_SHIFT)
8214 			numentries >>= (scale - PAGE_SHIFT);
8215 		else
8216 			numentries <<= (PAGE_SHIFT - scale);
8217 
8218 		/* Make sure we've got at least a 0-order allocation.. */
8219 		if (unlikely(flags & HASH_SMALL)) {
8220 			/* Makes no sense without HASH_EARLY */
8221 			WARN_ON(!(flags & HASH_EARLY));
8222 			if (!(numentries >> *_hash_shift)) {
8223 				numentries = 1UL << *_hash_shift;
8224 				BUG_ON(!numentries);
8225 			}
8226 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8227 			numentries = PAGE_SIZE / bucketsize;
8228 	}
8229 	numentries = roundup_pow_of_two(numentries);
8230 
8231 	/* limit allocation size to 1/16 total memory by default */
8232 	if (max == 0) {
8233 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8234 		do_div(max, bucketsize);
8235 	}
8236 	max = min(max, 0x80000000ULL);
8237 
8238 	if (numentries < low_limit)
8239 		numentries = low_limit;
8240 	if (numentries > max)
8241 		numentries = max;
8242 
8243 	log2qty = ilog2(numentries);
8244 
8245 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8246 	do {
8247 		virt = false;
8248 		size = bucketsize << log2qty;
8249 		if (flags & HASH_EARLY) {
8250 			if (flags & HASH_ZERO)
8251 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8252 			else
8253 				table = memblock_alloc_raw(size,
8254 							   SMP_CACHE_BYTES);
8255 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8256 			table = __vmalloc(size, gfp_flags);
8257 			virt = true;
8258 		} else {
8259 			/*
8260 			 * If bucketsize is not a power-of-two, we may free
8261 			 * some pages at the end of hash table which
8262 			 * alloc_pages_exact() automatically does
8263 			 */
8264 			table = alloc_pages_exact(size, gfp_flags);
8265 			kmemleak_alloc(table, size, 1, gfp_flags);
8266 		}
8267 	} while (!table && size > PAGE_SIZE && --log2qty);
8268 
8269 	if (!table)
8270 		panic("Failed to allocate %s hash table\n", tablename);
8271 
8272 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8273 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8274 		virt ? "vmalloc" : "linear");
8275 
8276 	if (_hash_shift)
8277 		*_hash_shift = log2qty;
8278 	if (_hash_mask)
8279 		*_hash_mask = (1 << log2qty) - 1;
8280 
8281 	return table;
8282 }
8283 
8284 /*
8285  * This function checks whether pageblock includes unmovable pages or not.
8286  *
8287  * PageLRU check without isolation or lru_lock could race so that
8288  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8289  * check without lock_page also may miss some movable non-lru pages at
8290  * race condition. So you can't expect this function should be exact.
8291  *
8292  * Returns a page without holding a reference. If the caller wants to
8293  * dereference that page (e.g., dumping), it has to make sure that it
8294  * cannot get removed (e.g., via memory unplug) concurrently.
8295  *
8296  */
8297 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8298 				 int migratetype, int flags)
8299 {
8300 	unsigned long iter = 0;
8301 	unsigned long pfn = page_to_pfn(page);
8302 	unsigned long offset = pfn % pageblock_nr_pages;
8303 
8304 	if (is_migrate_cma_page(page)) {
8305 		/*
8306 		 * CMA allocations (alloc_contig_range) really need to mark
8307 		 * isolate CMA pageblocks even when they are not movable in fact
8308 		 * so consider them movable here.
8309 		 */
8310 		if (is_migrate_cma(migratetype))
8311 			return NULL;
8312 
8313 		return page;
8314 	}
8315 
8316 	for (; iter < pageblock_nr_pages - offset; iter++) {
8317 		if (!pfn_valid_within(pfn + iter))
8318 			continue;
8319 
8320 		page = pfn_to_page(pfn + iter);
8321 
8322 		/*
8323 		 * Both, bootmem allocations and memory holes are marked
8324 		 * PG_reserved and are unmovable. We can even have unmovable
8325 		 * allocations inside ZONE_MOVABLE, for example when
8326 		 * specifying "movablecore".
8327 		 */
8328 		if (PageReserved(page))
8329 			return page;
8330 
8331 		/*
8332 		 * If the zone is movable and we have ruled out all reserved
8333 		 * pages then it should be reasonably safe to assume the rest
8334 		 * is movable.
8335 		 */
8336 		if (zone_idx(zone) == ZONE_MOVABLE)
8337 			continue;
8338 
8339 		/*
8340 		 * Hugepages are not in LRU lists, but they're movable.
8341 		 * THPs are on the LRU, but need to be counted as #small pages.
8342 		 * We need not scan over tail pages because we don't
8343 		 * handle each tail page individually in migration.
8344 		 */
8345 		if (PageHuge(page) || PageTransCompound(page)) {
8346 			struct page *head = compound_head(page);
8347 			unsigned int skip_pages;
8348 
8349 			if (PageHuge(page)) {
8350 				if (!hugepage_migration_supported(page_hstate(head)))
8351 					return page;
8352 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8353 				return page;
8354 			}
8355 
8356 			skip_pages = compound_nr(head) - (page - head);
8357 			iter += skip_pages - 1;
8358 			continue;
8359 		}
8360 
8361 		/*
8362 		 * We can't use page_count without pin a page
8363 		 * because another CPU can free compound page.
8364 		 * This check already skips compound tails of THP
8365 		 * because their page->_refcount is zero at all time.
8366 		 */
8367 		if (!page_ref_count(page)) {
8368 			if (PageBuddy(page))
8369 				iter += (1 << buddy_order(page)) - 1;
8370 			continue;
8371 		}
8372 
8373 		/*
8374 		 * The HWPoisoned page may be not in buddy system, and
8375 		 * page_count() is not 0.
8376 		 */
8377 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8378 			continue;
8379 
8380 		/*
8381 		 * We treat all PageOffline() pages as movable when offlining
8382 		 * to give drivers a chance to decrement their reference count
8383 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8384 		 * can be offlined as there are no direct references anymore.
8385 		 * For actually unmovable PageOffline() where the driver does
8386 		 * not support this, we will fail later when trying to actually
8387 		 * move these pages that still have a reference count > 0.
8388 		 * (false negatives in this function only)
8389 		 */
8390 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8391 			continue;
8392 
8393 		if (__PageMovable(page) || PageLRU(page))
8394 			continue;
8395 
8396 		/*
8397 		 * If there are RECLAIMABLE pages, we need to check
8398 		 * it.  But now, memory offline itself doesn't call
8399 		 * shrink_node_slabs() and it still to be fixed.
8400 		 */
8401 		return page;
8402 	}
8403 	return NULL;
8404 }
8405 
8406 #ifdef CONFIG_CONTIG_ALLOC
8407 static unsigned long pfn_max_align_down(unsigned long pfn)
8408 {
8409 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8410 			     pageblock_nr_pages) - 1);
8411 }
8412 
8413 static unsigned long pfn_max_align_up(unsigned long pfn)
8414 {
8415 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8416 				pageblock_nr_pages));
8417 }
8418 
8419 /* [start, end) must belong to a single zone. */
8420 static int __alloc_contig_migrate_range(struct compact_control *cc,
8421 					unsigned long start, unsigned long end)
8422 {
8423 	/* This function is based on compact_zone() from compaction.c. */
8424 	unsigned int nr_reclaimed;
8425 	unsigned long pfn = start;
8426 	unsigned int tries = 0;
8427 	int ret = 0;
8428 	struct migration_target_control mtc = {
8429 		.nid = zone_to_nid(cc->zone),
8430 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8431 	};
8432 
8433 	migrate_prep();
8434 
8435 	while (pfn < end || !list_empty(&cc->migratepages)) {
8436 		if (fatal_signal_pending(current)) {
8437 			ret = -EINTR;
8438 			break;
8439 		}
8440 
8441 		if (list_empty(&cc->migratepages)) {
8442 			cc->nr_migratepages = 0;
8443 			pfn = isolate_migratepages_range(cc, pfn, end);
8444 			if (!pfn) {
8445 				ret = -EINTR;
8446 				break;
8447 			}
8448 			tries = 0;
8449 		} else if (++tries == 5) {
8450 			ret = ret < 0 ? ret : -EBUSY;
8451 			break;
8452 		}
8453 
8454 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8455 							&cc->migratepages);
8456 		cc->nr_migratepages -= nr_reclaimed;
8457 
8458 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8459 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8460 	}
8461 	if (ret < 0) {
8462 		putback_movable_pages(&cc->migratepages);
8463 		return ret;
8464 	}
8465 	return 0;
8466 }
8467 
8468 /**
8469  * alloc_contig_range() -- tries to allocate given range of pages
8470  * @start:	start PFN to allocate
8471  * @end:	one-past-the-last PFN to allocate
8472  * @migratetype:	migratetype of the underlaying pageblocks (either
8473  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8474  *			in range must have the same migratetype and it must
8475  *			be either of the two.
8476  * @gfp_mask:	GFP mask to use during compaction
8477  *
8478  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8479  * aligned.  The PFN range must belong to a single zone.
8480  *
8481  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8482  * pageblocks in the range.  Once isolated, the pageblocks should not
8483  * be modified by others.
8484  *
8485  * Return: zero on success or negative error code.  On success all
8486  * pages which PFN is in [start, end) are allocated for the caller and
8487  * need to be freed with free_contig_range().
8488  */
8489 int alloc_contig_range(unsigned long start, unsigned long end,
8490 		       unsigned migratetype, gfp_t gfp_mask)
8491 {
8492 	unsigned long outer_start, outer_end;
8493 	unsigned int order;
8494 	int ret = 0;
8495 
8496 	struct compact_control cc = {
8497 		.nr_migratepages = 0,
8498 		.order = -1,
8499 		.zone = page_zone(pfn_to_page(start)),
8500 		.mode = MIGRATE_SYNC,
8501 		.ignore_skip_hint = true,
8502 		.no_set_skip_hint = true,
8503 		.gfp_mask = current_gfp_context(gfp_mask),
8504 		.alloc_contig = true,
8505 	};
8506 	INIT_LIST_HEAD(&cc.migratepages);
8507 
8508 	/*
8509 	 * What we do here is we mark all pageblocks in range as
8510 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8511 	 * have different sizes, and due to the way page allocator
8512 	 * work, we align the range to biggest of the two pages so
8513 	 * that page allocator won't try to merge buddies from
8514 	 * different pageblocks and change MIGRATE_ISOLATE to some
8515 	 * other migration type.
8516 	 *
8517 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8518 	 * migrate the pages from an unaligned range (ie. pages that
8519 	 * we are interested in).  This will put all the pages in
8520 	 * range back to page allocator as MIGRATE_ISOLATE.
8521 	 *
8522 	 * When this is done, we take the pages in range from page
8523 	 * allocator removing them from the buddy system.  This way
8524 	 * page allocator will never consider using them.
8525 	 *
8526 	 * This lets us mark the pageblocks back as
8527 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8528 	 * aligned range but not in the unaligned, original range are
8529 	 * put back to page allocator so that buddy can use them.
8530 	 */
8531 
8532 	ret = start_isolate_page_range(pfn_max_align_down(start),
8533 				       pfn_max_align_up(end), migratetype, 0);
8534 	if (ret)
8535 		return ret;
8536 
8537 	/*
8538 	 * In case of -EBUSY, we'd like to know which page causes problem.
8539 	 * So, just fall through. test_pages_isolated() has a tracepoint
8540 	 * which will report the busy page.
8541 	 *
8542 	 * It is possible that busy pages could become available before
8543 	 * the call to test_pages_isolated, and the range will actually be
8544 	 * allocated.  So, if we fall through be sure to clear ret so that
8545 	 * -EBUSY is not accidentally used or returned to caller.
8546 	 */
8547 	ret = __alloc_contig_migrate_range(&cc, start, end);
8548 	if (ret && ret != -EBUSY)
8549 		goto done;
8550 	ret =0;
8551 
8552 	/*
8553 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8554 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8555 	 * more, all pages in [start, end) are free in page allocator.
8556 	 * What we are going to do is to allocate all pages from
8557 	 * [start, end) (that is remove them from page allocator).
8558 	 *
8559 	 * The only problem is that pages at the beginning and at the
8560 	 * end of interesting range may be not aligned with pages that
8561 	 * page allocator holds, ie. they can be part of higher order
8562 	 * pages.  Because of this, we reserve the bigger range and
8563 	 * once this is done free the pages we are not interested in.
8564 	 *
8565 	 * We don't have to hold zone->lock here because the pages are
8566 	 * isolated thus they won't get removed from buddy.
8567 	 */
8568 
8569 	lru_add_drain_all();
8570 
8571 	order = 0;
8572 	outer_start = start;
8573 	while (!PageBuddy(pfn_to_page(outer_start))) {
8574 		if (++order >= MAX_ORDER) {
8575 			outer_start = start;
8576 			break;
8577 		}
8578 		outer_start &= ~0UL << order;
8579 	}
8580 
8581 	if (outer_start != start) {
8582 		order = buddy_order(pfn_to_page(outer_start));
8583 
8584 		/*
8585 		 * outer_start page could be small order buddy page and
8586 		 * it doesn't include start page. Adjust outer_start
8587 		 * in this case to report failed page properly
8588 		 * on tracepoint in test_pages_isolated()
8589 		 */
8590 		if (outer_start + (1UL << order) <= start)
8591 			outer_start = start;
8592 	}
8593 
8594 	/* Make sure the range is really isolated. */
8595 	if (test_pages_isolated(outer_start, end, 0)) {
8596 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8597 			__func__, outer_start, end);
8598 		ret = -EBUSY;
8599 		goto done;
8600 	}
8601 
8602 	/* Grab isolated pages from freelists. */
8603 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8604 	if (!outer_end) {
8605 		ret = -EBUSY;
8606 		goto done;
8607 	}
8608 
8609 	/* Free head and tail (if any) */
8610 	if (start != outer_start)
8611 		free_contig_range(outer_start, start - outer_start);
8612 	if (end != outer_end)
8613 		free_contig_range(end, outer_end - end);
8614 
8615 done:
8616 	undo_isolate_page_range(pfn_max_align_down(start),
8617 				pfn_max_align_up(end), migratetype);
8618 	return ret;
8619 }
8620 EXPORT_SYMBOL(alloc_contig_range);
8621 
8622 static int __alloc_contig_pages(unsigned long start_pfn,
8623 				unsigned long nr_pages, gfp_t gfp_mask)
8624 {
8625 	unsigned long end_pfn = start_pfn + nr_pages;
8626 
8627 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8628 				  gfp_mask);
8629 }
8630 
8631 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8632 				   unsigned long nr_pages)
8633 {
8634 	unsigned long i, end_pfn = start_pfn + nr_pages;
8635 	struct page *page;
8636 
8637 	for (i = start_pfn; i < end_pfn; i++) {
8638 		page = pfn_to_online_page(i);
8639 		if (!page)
8640 			return false;
8641 
8642 		if (page_zone(page) != z)
8643 			return false;
8644 
8645 		if (PageReserved(page))
8646 			return false;
8647 
8648 		if (page_count(page) > 0)
8649 			return false;
8650 
8651 		if (PageHuge(page))
8652 			return false;
8653 	}
8654 	return true;
8655 }
8656 
8657 static bool zone_spans_last_pfn(const struct zone *zone,
8658 				unsigned long start_pfn, unsigned long nr_pages)
8659 {
8660 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8661 
8662 	return zone_spans_pfn(zone, last_pfn);
8663 }
8664 
8665 /**
8666  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8667  * @nr_pages:	Number of contiguous pages to allocate
8668  * @gfp_mask:	GFP mask to limit search and used during compaction
8669  * @nid:	Target node
8670  * @nodemask:	Mask for other possible nodes
8671  *
8672  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8673  * on an applicable zonelist to find a contiguous pfn range which can then be
8674  * tried for allocation with alloc_contig_range(). This routine is intended
8675  * for allocation requests which can not be fulfilled with the buddy allocator.
8676  *
8677  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8678  * power of two then the alignment is guaranteed to be to the given nr_pages
8679  * (e.g. 1GB request would be aligned to 1GB).
8680  *
8681  * Allocated pages can be freed with free_contig_range() or by manually calling
8682  * __free_page() on each allocated page.
8683  *
8684  * Return: pointer to contiguous pages on success, or NULL if not successful.
8685  */
8686 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8687 				int nid, nodemask_t *nodemask)
8688 {
8689 	unsigned long ret, pfn, flags;
8690 	struct zonelist *zonelist;
8691 	struct zone *zone;
8692 	struct zoneref *z;
8693 
8694 	zonelist = node_zonelist(nid, gfp_mask);
8695 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8696 					gfp_zone(gfp_mask), nodemask) {
8697 		spin_lock_irqsave(&zone->lock, flags);
8698 
8699 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8700 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8701 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8702 				/*
8703 				 * We release the zone lock here because
8704 				 * alloc_contig_range() will also lock the zone
8705 				 * at some point. If there's an allocation
8706 				 * spinning on this lock, it may win the race
8707 				 * and cause alloc_contig_range() to fail...
8708 				 */
8709 				spin_unlock_irqrestore(&zone->lock, flags);
8710 				ret = __alloc_contig_pages(pfn, nr_pages,
8711 							gfp_mask);
8712 				if (!ret)
8713 					return pfn_to_page(pfn);
8714 				spin_lock_irqsave(&zone->lock, flags);
8715 			}
8716 			pfn += nr_pages;
8717 		}
8718 		spin_unlock_irqrestore(&zone->lock, flags);
8719 	}
8720 	return NULL;
8721 }
8722 #endif /* CONFIG_CONTIG_ALLOC */
8723 
8724 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8725 {
8726 	unsigned int count = 0;
8727 
8728 	for (; nr_pages--; pfn++) {
8729 		struct page *page = pfn_to_page(pfn);
8730 
8731 		count += page_count(page) != 1;
8732 		__free_page(page);
8733 	}
8734 	WARN(count != 0, "%d pages are still in use!\n", count);
8735 }
8736 EXPORT_SYMBOL(free_contig_range);
8737 
8738 /*
8739  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8740  * page high values need to be recalulated.
8741  */
8742 void __meminit zone_pcp_update(struct zone *zone)
8743 {
8744 	mutex_lock(&pcp_batch_high_lock);
8745 	__zone_pcp_update(zone);
8746 	mutex_unlock(&pcp_batch_high_lock);
8747 }
8748 
8749 void zone_pcp_reset(struct zone *zone)
8750 {
8751 	unsigned long flags;
8752 	int cpu;
8753 	struct per_cpu_pageset *pset;
8754 
8755 	/* avoid races with drain_pages()  */
8756 	local_irq_save(flags);
8757 	if (zone->pageset != &boot_pageset) {
8758 		for_each_online_cpu(cpu) {
8759 			pset = per_cpu_ptr(zone->pageset, cpu);
8760 			drain_zonestat(zone, pset);
8761 		}
8762 		free_percpu(zone->pageset);
8763 		zone->pageset = &boot_pageset;
8764 	}
8765 	local_irq_restore(flags);
8766 }
8767 
8768 #ifdef CONFIG_MEMORY_HOTREMOVE
8769 /*
8770  * All pages in the range must be in a single zone, must not contain holes,
8771  * must span full sections, and must be isolated before calling this function.
8772  */
8773 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8774 {
8775 	unsigned long pfn = start_pfn;
8776 	struct page *page;
8777 	struct zone *zone;
8778 	unsigned int order;
8779 	unsigned long flags;
8780 
8781 	offline_mem_sections(pfn, end_pfn);
8782 	zone = page_zone(pfn_to_page(pfn));
8783 	spin_lock_irqsave(&zone->lock, flags);
8784 	while (pfn < end_pfn) {
8785 		page = pfn_to_page(pfn);
8786 		/*
8787 		 * The HWPoisoned page may be not in buddy system, and
8788 		 * page_count() is not 0.
8789 		 */
8790 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8791 			pfn++;
8792 			continue;
8793 		}
8794 		/*
8795 		 * At this point all remaining PageOffline() pages have a
8796 		 * reference count of 0 and can simply be skipped.
8797 		 */
8798 		if (PageOffline(page)) {
8799 			BUG_ON(page_count(page));
8800 			BUG_ON(PageBuddy(page));
8801 			pfn++;
8802 			continue;
8803 		}
8804 
8805 		BUG_ON(page_count(page));
8806 		BUG_ON(!PageBuddy(page));
8807 		order = buddy_order(page);
8808 		del_page_from_free_list(page, zone, order);
8809 		pfn += (1 << order);
8810 	}
8811 	spin_unlock_irqrestore(&zone->lock, flags);
8812 }
8813 #endif
8814 
8815 bool is_free_buddy_page(struct page *page)
8816 {
8817 	struct zone *zone = page_zone(page);
8818 	unsigned long pfn = page_to_pfn(page);
8819 	unsigned long flags;
8820 	unsigned int order;
8821 
8822 	spin_lock_irqsave(&zone->lock, flags);
8823 	for (order = 0; order < MAX_ORDER; order++) {
8824 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8825 
8826 		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8827 			break;
8828 	}
8829 	spin_unlock_irqrestore(&zone->lock, flags);
8830 
8831 	return order < MAX_ORDER;
8832 }
8833 
8834 #ifdef CONFIG_MEMORY_FAILURE
8835 /*
8836  * Break down a higher-order page in sub-pages, and keep our target out of
8837  * buddy allocator.
8838  */
8839 static void break_down_buddy_pages(struct zone *zone, struct page *page,
8840 				   struct page *target, int low, int high,
8841 				   int migratetype)
8842 {
8843 	unsigned long size = 1 << high;
8844 	struct page *current_buddy, *next_page;
8845 
8846 	while (high > low) {
8847 		high--;
8848 		size >>= 1;
8849 
8850 		if (target >= &page[size]) {
8851 			next_page = page + size;
8852 			current_buddy = page;
8853 		} else {
8854 			next_page = page;
8855 			current_buddy = page + size;
8856 		}
8857 
8858 		if (set_page_guard(zone, current_buddy, high, migratetype))
8859 			continue;
8860 
8861 		if (current_buddy != target) {
8862 			add_to_free_list(current_buddy, zone, high, migratetype);
8863 			set_buddy_order(current_buddy, high);
8864 			page = next_page;
8865 		}
8866 	}
8867 }
8868 
8869 /*
8870  * Take a page that will be marked as poisoned off the buddy allocator.
8871  */
8872 bool take_page_off_buddy(struct page *page)
8873 {
8874 	struct zone *zone = page_zone(page);
8875 	unsigned long pfn = page_to_pfn(page);
8876 	unsigned long flags;
8877 	unsigned int order;
8878 	bool ret = false;
8879 
8880 	spin_lock_irqsave(&zone->lock, flags);
8881 	for (order = 0; order < MAX_ORDER; order++) {
8882 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8883 		int page_order = buddy_order(page_head);
8884 
8885 		if (PageBuddy(page_head) && page_order >= order) {
8886 			unsigned long pfn_head = page_to_pfn(page_head);
8887 			int migratetype = get_pfnblock_migratetype(page_head,
8888 								   pfn_head);
8889 
8890 			del_page_from_free_list(page_head, zone, page_order);
8891 			break_down_buddy_pages(zone, page_head, page, 0,
8892 						page_order, migratetype);
8893 			ret = true;
8894 			break;
8895 		}
8896 		if (page_count(page_head) > 0)
8897 			break;
8898 	}
8899 	spin_unlock_irqrestore(&zone->lock, flags);
8900 	return ret;
8901 }
8902 #endif
8903