1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/mmu_notifier.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 #include <linux/psi.h> 72 #include <linux/padata.h> 73 #include <linux/khugepaged.h> 74 75 #include <asm/sections.h> 76 #include <asm/tlbflush.h> 77 #include <asm/div64.h> 78 #include "internal.h" 79 #include "shuffle.h" 80 #include "page_reporting.h" 81 82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 83 typedef int __bitwise fpi_t; 84 85 /* No special request */ 86 #define FPI_NONE ((__force fpi_t)0) 87 88 /* 89 * Skip free page reporting notification for the (possibly merged) page. 90 * This does not hinder free page reporting from grabbing the page, 91 * reporting it and marking it "reported" - it only skips notifying 92 * the free page reporting infrastructure about a newly freed page. For 93 * example, used when temporarily pulling a page from a freelist and 94 * putting it back unmodified. 95 */ 96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 97 98 /* 99 * Place the (possibly merged) page to the tail of the freelist. Will ignore 100 * page shuffling (relevant code - e.g., memory onlining - is expected to 101 * shuffle the whole zone). 102 * 103 * Note: No code should rely on this flag for correctness - it's purely 104 * to allow for optimizations when handing back either fresh pages 105 * (memory onlining) or untouched pages (page isolation, free page 106 * reporting). 107 */ 108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 109 110 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 111 static DEFINE_MUTEX(pcp_batch_high_lock); 112 #define MIN_PERCPU_PAGELIST_FRACTION (8) 113 114 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 115 DEFINE_PER_CPU(int, numa_node); 116 EXPORT_PER_CPU_SYMBOL(numa_node); 117 #endif 118 119 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 120 121 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 122 /* 123 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 124 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 125 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 126 * defined in <linux/topology.h>. 127 */ 128 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 129 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 130 #endif 131 132 /* work_structs for global per-cpu drains */ 133 struct pcpu_drain { 134 struct zone *zone; 135 struct work_struct work; 136 }; 137 static DEFINE_MUTEX(pcpu_drain_mutex); 138 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 139 140 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 141 volatile unsigned long latent_entropy __latent_entropy; 142 EXPORT_SYMBOL(latent_entropy); 143 #endif 144 145 /* 146 * Array of node states. 147 */ 148 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 149 [N_POSSIBLE] = NODE_MASK_ALL, 150 [N_ONLINE] = { { [0] = 1UL } }, 151 #ifndef CONFIG_NUMA 152 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 153 #ifdef CONFIG_HIGHMEM 154 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 155 #endif 156 [N_MEMORY] = { { [0] = 1UL } }, 157 [N_CPU] = { { [0] = 1UL } }, 158 #endif /* NUMA */ 159 }; 160 EXPORT_SYMBOL(node_states); 161 162 atomic_long_t _totalram_pages __read_mostly; 163 EXPORT_SYMBOL(_totalram_pages); 164 unsigned long totalreserve_pages __read_mostly; 165 unsigned long totalcma_pages __read_mostly; 166 167 int percpu_pagelist_fraction; 168 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 169 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 170 DEFINE_STATIC_KEY_TRUE(init_on_alloc); 171 #else 172 DEFINE_STATIC_KEY_FALSE(init_on_alloc); 173 #endif 174 EXPORT_SYMBOL(init_on_alloc); 175 176 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 177 DEFINE_STATIC_KEY_TRUE(init_on_free); 178 #else 179 DEFINE_STATIC_KEY_FALSE(init_on_free); 180 #endif 181 EXPORT_SYMBOL(init_on_free); 182 183 static int __init early_init_on_alloc(char *buf) 184 { 185 int ret; 186 bool bool_result; 187 188 ret = kstrtobool(buf, &bool_result); 189 if (ret) 190 return ret; 191 if (bool_result && page_poisoning_enabled()) 192 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n"); 193 if (bool_result) 194 static_branch_enable(&init_on_alloc); 195 else 196 static_branch_disable(&init_on_alloc); 197 return 0; 198 } 199 early_param("init_on_alloc", early_init_on_alloc); 200 201 static int __init early_init_on_free(char *buf) 202 { 203 int ret; 204 bool bool_result; 205 206 ret = kstrtobool(buf, &bool_result); 207 if (ret) 208 return ret; 209 if (bool_result && page_poisoning_enabled()) 210 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n"); 211 if (bool_result) 212 static_branch_enable(&init_on_free); 213 else 214 static_branch_disable(&init_on_free); 215 return 0; 216 } 217 early_param("init_on_free", early_init_on_free); 218 219 /* 220 * A cached value of the page's pageblock's migratetype, used when the page is 221 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 222 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 223 * Also the migratetype set in the page does not necessarily match the pcplist 224 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 225 * other index - this ensures that it will be put on the correct CMA freelist. 226 */ 227 static inline int get_pcppage_migratetype(struct page *page) 228 { 229 return page->index; 230 } 231 232 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 233 { 234 page->index = migratetype; 235 } 236 237 #ifdef CONFIG_PM_SLEEP 238 /* 239 * The following functions are used by the suspend/hibernate code to temporarily 240 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 241 * while devices are suspended. To avoid races with the suspend/hibernate code, 242 * they should always be called with system_transition_mutex held 243 * (gfp_allowed_mask also should only be modified with system_transition_mutex 244 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 245 * with that modification). 246 */ 247 248 static gfp_t saved_gfp_mask; 249 250 void pm_restore_gfp_mask(void) 251 { 252 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 253 if (saved_gfp_mask) { 254 gfp_allowed_mask = saved_gfp_mask; 255 saved_gfp_mask = 0; 256 } 257 } 258 259 void pm_restrict_gfp_mask(void) 260 { 261 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 262 WARN_ON(saved_gfp_mask); 263 saved_gfp_mask = gfp_allowed_mask; 264 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 265 } 266 267 bool pm_suspended_storage(void) 268 { 269 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 270 return false; 271 return true; 272 } 273 #endif /* CONFIG_PM_SLEEP */ 274 275 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 276 unsigned int pageblock_order __read_mostly; 277 #endif 278 279 static void __free_pages_ok(struct page *page, unsigned int order, 280 fpi_t fpi_flags); 281 282 /* 283 * results with 256, 32 in the lowmem_reserve sysctl: 284 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 285 * 1G machine -> (16M dma, 784M normal, 224M high) 286 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 287 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 288 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 289 * 290 * TBD: should special case ZONE_DMA32 machines here - in those we normally 291 * don't need any ZONE_NORMAL reservation 292 */ 293 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 294 #ifdef CONFIG_ZONE_DMA 295 [ZONE_DMA] = 256, 296 #endif 297 #ifdef CONFIG_ZONE_DMA32 298 [ZONE_DMA32] = 256, 299 #endif 300 [ZONE_NORMAL] = 32, 301 #ifdef CONFIG_HIGHMEM 302 [ZONE_HIGHMEM] = 0, 303 #endif 304 [ZONE_MOVABLE] = 0, 305 }; 306 307 static char * const zone_names[MAX_NR_ZONES] = { 308 #ifdef CONFIG_ZONE_DMA 309 "DMA", 310 #endif 311 #ifdef CONFIG_ZONE_DMA32 312 "DMA32", 313 #endif 314 "Normal", 315 #ifdef CONFIG_HIGHMEM 316 "HighMem", 317 #endif 318 "Movable", 319 #ifdef CONFIG_ZONE_DEVICE 320 "Device", 321 #endif 322 }; 323 324 const char * const migratetype_names[MIGRATE_TYPES] = { 325 "Unmovable", 326 "Movable", 327 "Reclaimable", 328 "HighAtomic", 329 #ifdef CONFIG_CMA 330 "CMA", 331 #endif 332 #ifdef CONFIG_MEMORY_ISOLATION 333 "Isolate", 334 #endif 335 }; 336 337 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 338 [NULL_COMPOUND_DTOR] = NULL, 339 [COMPOUND_PAGE_DTOR] = free_compound_page, 340 #ifdef CONFIG_HUGETLB_PAGE 341 [HUGETLB_PAGE_DTOR] = free_huge_page, 342 #endif 343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 344 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 345 #endif 346 }; 347 348 int min_free_kbytes = 1024; 349 int user_min_free_kbytes = -1; 350 #ifdef CONFIG_DISCONTIGMEM 351 /* 352 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 353 * are not on separate NUMA nodes. Functionally this works but with 354 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 355 * quite small. By default, do not boost watermarks on discontigmem as in 356 * many cases very high-order allocations like THP are likely to be 357 * unsupported and the premature reclaim offsets the advantage of long-term 358 * fragmentation avoidance. 359 */ 360 int watermark_boost_factor __read_mostly; 361 #else 362 int watermark_boost_factor __read_mostly = 15000; 363 #endif 364 int watermark_scale_factor = 10; 365 366 static unsigned long nr_kernel_pages __initdata; 367 static unsigned long nr_all_pages __initdata; 368 static unsigned long dma_reserve __initdata; 369 370 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 371 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 372 static unsigned long required_kernelcore __initdata; 373 static unsigned long required_kernelcore_percent __initdata; 374 static unsigned long required_movablecore __initdata; 375 static unsigned long required_movablecore_percent __initdata; 376 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 377 static bool mirrored_kernelcore __meminitdata; 378 379 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 380 int movable_zone; 381 EXPORT_SYMBOL(movable_zone); 382 383 #if MAX_NUMNODES > 1 384 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 385 unsigned int nr_online_nodes __read_mostly = 1; 386 EXPORT_SYMBOL(nr_node_ids); 387 EXPORT_SYMBOL(nr_online_nodes); 388 #endif 389 390 int page_group_by_mobility_disabled __read_mostly; 391 392 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 393 /* 394 * During boot we initialize deferred pages on-demand, as needed, but once 395 * page_alloc_init_late() has finished, the deferred pages are all initialized, 396 * and we can permanently disable that path. 397 */ 398 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 399 400 /* 401 * Calling kasan_free_pages() only after deferred memory initialization 402 * has completed. Poisoning pages during deferred memory init will greatly 403 * lengthen the process and cause problem in large memory systems as the 404 * deferred pages initialization is done with interrupt disabled. 405 * 406 * Assuming that there will be no reference to those newly initialized 407 * pages before they are ever allocated, this should have no effect on 408 * KASAN memory tracking as the poison will be properly inserted at page 409 * allocation time. The only corner case is when pages are allocated by 410 * on-demand allocation and then freed again before the deferred pages 411 * initialization is done, but this is not likely to happen. 412 */ 413 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 414 { 415 if (!static_branch_unlikely(&deferred_pages)) 416 kasan_free_pages(page, order); 417 } 418 419 /* Returns true if the struct page for the pfn is uninitialised */ 420 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 421 { 422 int nid = early_pfn_to_nid(pfn); 423 424 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 425 return true; 426 427 return false; 428 } 429 430 /* 431 * Returns true when the remaining initialisation should be deferred until 432 * later in the boot cycle when it can be parallelised. 433 */ 434 static bool __meminit 435 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 436 { 437 static unsigned long prev_end_pfn, nr_initialised; 438 439 /* 440 * prev_end_pfn static that contains the end of previous zone 441 * No need to protect because called very early in boot before smp_init. 442 */ 443 if (prev_end_pfn != end_pfn) { 444 prev_end_pfn = end_pfn; 445 nr_initialised = 0; 446 } 447 448 /* Always populate low zones for address-constrained allocations */ 449 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 450 return false; 451 452 /* 453 * We start only with one section of pages, more pages are added as 454 * needed until the rest of deferred pages are initialized. 455 */ 456 nr_initialised++; 457 if ((nr_initialised > PAGES_PER_SECTION) && 458 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 459 NODE_DATA(nid)->first_deferred_pfn = pfn; 460 return true; 461 } 462 return false; 463 } 464 #else 465 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 466 467 static inline bool early_page_uninitialised(unsigned long pfn) 468 { 469 return false; 470 } 471 472 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 473 { 474 return false; 475 } 476 #endif 477 478 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 479 static inline unsigned long *get_pageblock_bitmap(struct page *page, 480 unsigned long pfn) 481 { 482 #ifdef CONFIG_SPARSEMEM 483 return section_to_usemap(__pfn_to_section(pfn)); 484 #else 485 return page_zone(page)->pageblock_flags; 486 #endif /* CONFIG_SPARSEMEM */ 487 } 488 489 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 490 { 491 #ifdef CONFIG_SPARSEMEM 492 pfn &= (PAGES_PER_SECTION-1); 493 #else 494 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 495 #endif /* CONFIG_SPARSEMEM */ 496 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 497 } 498 499 /** 500 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 501 * @page: The page within the block of interest 502 * @pfn: The target page frame number 503 * @mask: mask of bits that the caller is interested in 504 * 505 * Return: pageblock_bits flags 506 */ 507 static __always_inline 508 unsigned long __get_pfnblock_flags_mask(struct page *page, 509 unsigned long pfn, 510 unsigned long mask) 511 { 512 unsigned long *bitmap; 513 unsigned long bitidx, word_bitidx; 514 unsigned long word; 515 516 bitmap = get_pageblock_bitmap(page, pfn); 517 bitidx = pfn_to_bitidx(page, pfn); 518 word_bitidx = bitidx / BITS_PER_LONG; 519 bitidx &= (BITS_PER_LONG-1); 520 521 word = bitmap[word_bitidx]; 522 return (word >> bitidx) & mask; 523 } 524 525 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 526 unsigned long mask) 527 { 528 return __get_pfnblock_flags_mask(page, pfn, mask); 529 } 530 531 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 532 { 533 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 534 } 535 536 /** 537 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 538 * @page: The page within the block of interest 539 * @flags: The flags to set 540 * @pfn: The target page frame number 541 * @mask: mask of bits that the caller is interested in 542 */ 543 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 544 unsigned long pfn, 545 unsigned long mask) 546 { 547 unsigned long *bitmap; 548 unsigned long bitidx, word_bitidx; 549 unsigned long old_word, word; 550 551 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 552 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 553 554 bitmap = get_pageblock_bitmap(page, pfn); 555 bitidx = pfn_to_bitidx(page, pfn); 556 word_bitidx = bitidx / BITS_PER_LONG; 557 bitidx &= (BITS_PER_LONG-1); 558 559 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 560 561 mask <<= bitidx; 562 flags <<= bitidx; 563 564 word = READ_ONCE(bitmap[word_bitidx]); 565 for (;;) { 566 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 567 if (word == old_word) 568 break; 569 word = old_word; 570 } 571 } 572 573 void set_pageblock_migratetype(struct page *page, int migratetype) 574 { 575 if (unlikely(page_group_by_mobility_disabled && 576 migratetype < MIGRATE_PCPTYPES)) 577 migratetype = MIGRATE_UNMOVABLE; 578 579 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 580 page_to_pfn(page), MIGRATETYPE_MASK); 581 } 582 583 #ifdef CONFIG_DEBUG_VM 584 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 585 { 586 int ret = 0; 587 unsigned seq; 588 unsigned long pfn = page_to_pfn(page); 589 unsigned long sp, start_pfn; 590 591 do { 592 seq = zone_span_seqbegin(zone); 593 start_pfn = zone->zone_start_pfn; 594 sp = zone->spanned_pages; 595 if (!zone_spans_pfn(zone, pfn)) 596 ret = 1; 597 } while (zone_span_seqretry(zone, seq)); 598 599 if (ret) 600 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 601 pfn, zone_to_nid(zone), zone->name, 602 start_pfn, start_pfn + sp); 603 604 return ret; 605 } 606 607 static int page_is_consistent(struct zone *zone, struct page *page) 608 { 609 if (!pfn_valid_within(page_to_pfn(page))) 610 return 0; 611 if (zone != page_zone(page)) 612 return 0; 613 614 return 1; 615 } 616 /* 617 * Temporary debugging check for pages not lying within a given zone. 618 */ 619 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 620 { 621 if (page_outside_zone_boundaries(zone, page)) 622 return 1; 623 if (!page_is_consistent(zone, page)) 624 return 1; 625 626 return 0; 627 } 628 #else 629 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 630 { 631 return 0; 632 } 633 #endif 634 635 static void bad_page(struct page *page, const char *reason) 636 { 637 static unsigned long resume; 638 static unsigned long nr_shown; 639 static unsigned long nr_unshown; 640 641 /* 642 * Allow a burst of 60 reports, then keep quiet for that minute; 643 * or allow a steady drip of one report per second. 644 */ 645 if (nr_shown == 60) { 646 if (time_before(jiffies, resume)) { 647 nr_unshown++; 648 goto out; 649 } 650 if (nr_unshown) { 651 pr_alert( 652 "BUG: Bad page state: %lu messages suppressed\n", 653 nr_unshown); 654 nr_unshown = 0; 655 } 656 nr_shown = 0; 657 } 658 if (nr_shown++ == 0) 659 resume = jiffies + 60 * HZ; 660 661 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 662 current->comm, page_to_pfn(page)); 663 __dump_page(page, reason); 664 dump_page_owner(page); 665 666 print_modules(); 667 dump_stack(); 668 out: 669 /* Leave bad fields for debug, except PageBuddy could make trouble */ 670 page_mapcount_reset(page); /* remove PageBuddy */ 671 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 672 } 673 674 /* 675 * Higher-order pages are called "compound pages". They are structured thusly: 676 * 677 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 678 * 679 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 680 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 681 * 682 * The first tail page's ->compound_dtor holds the offset in array of compound 683 * page destructors. See compound_page_dtors. 684 * 685 * The first tail page's ->compound_order holds the order of allocation. 686 * This usage means that zero-order pages may not be compound. 687 */ 688 689 void free_compound_page(struct page *page) 690 { 691 mem_cgroup_uncharge(page); 692 __free_pages_ok(page, compound_order(page), FPI_NONE); 693 } 694 695 void prep_compound_page(struct page *page, unsigned int order) 696 { 697 int i; 698 int nr_pages = 1 << order; 699 700 __SetPageHead(page); 701 for (i = 1; i < nr_pages; i++) { 702 struct page *p = page + i; 703 set_page_count(p, 0); 704 p->mapping = TAIL_MAPPING; 705 set_compound_head(p, page); 706 } 707 708 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 709 set_compound_order(page, order); 710 atomic_set(compound_mapcount_ptr(page), -1); 711 if (hpage_pincount_available(page)) 712 atomic_set(compound_pincount_ptr(page), 0); 713 } 714 715 #ifdef CONFIG_DEBUG_PAGEALLOC 716 unsigned int _debug_guardpage_minorder; 717 718 bool _debug_pagealloc_enabled_early __read_mostly 719 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 720 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 721 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 722 EXPORT_SYMBOL(_debug_pagealloc_enabled); 723 724 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 725 726 static int __init early_debug_pagealloc(char *buf) 727 { 728 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 729 } 730 early_param("debug_pagealloc", early_debug_pagealloc); 731 732 void init_debug_pagealloc(void) 733 { 734 if (!debug_pagealloc_enabled()) 735 return; 736 737 static_branch_enable(&_debug_pagealloc_enabled); 738 739 if (!debug_guardpage_minorder()) 740 return; 741 742 static_branch_enable(&_debug_guardpage_enabled); 743 } 744 745 static int __init debug_guardpage_minorder_setup(char *buf) 746 { 747 unsigned long res; 748 749 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 750 pr_err("Bad debug_guardpage_minorder value\n"); 751 return 0; 752 } 753 _debug_guardpage_minorder = res; 754 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 755 return 0; 756 } 757 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 758 759 static inline bool set_page_guard(struct zone *zone, struct page *page, 760 unsigned int order, int migratetype) 761 { 762 if (!debug_guardpage_enabled()) 763 return false; 764 765 if (order >= debug_guardpage_minorder()) 766 return false; 767 768 __SetPageGuard(page); 769 INIT_LIST_HEAD(&page->lru); 770 set_page_private(page, order); 771 /* Guard pages are not available for any usage */ 772 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 773 774 return true; 775 } 776 777 static inline void clear_page_guard(struct zone *zone, struct page *page, 778 unsigned int order, int migratetype) 779 { 780 if (!debug_guardpage_enabled()) 781 return; 782 783 __ClearPageGuard(page); 784 785 set_page_private(page, 0); 786 if (!is_migrate_isolate(migratetype)) 787 __mod_zone_freepage_state(zone, (1 << order), migratetype); 788 } 789 #else 790 static inline bool set_page_guard(struct zone *zone, struct page *page, 791 unsigned int order, int migratetype) { return false; } 792 static inline void clear_page_guard(struct zone *zone, struct page *page, 793 unsigned int order, int migratetype) {} 794 #endif 795 796 static inline void set_buddy_order(struct page *page, unsigned int order) 797 { 798 set_page_private(page, order); 799 __SetPageBuddy(page); 800 } 801 802 /* 803 * This function checks whether a page is free && is the buddy 804 * we can coalesce a page and its buddy if 805 * (a) the buddy is not in a hole (check before calling!) && 806 * (b) the buddy is in the buddy system && 807 * (c) a page and its buddy have the same order && 808 * (d) a page and its buddy are in the same zone. 809 * 810 * For recording whether a page is in the buddy system, we set PageBuddy. 811 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 812 * 813 * For recording page's order, we use page_private(page). 814 */ 815 static inline bool page_is_buddy(struct page *page, struct page *buddy, 816 unsigned int order) 817 { 818 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 819 return false; 820 821 if (buddy_order(buddy) != order) 822 return false; 823 824 /* 825 * zone check is done late to avoid uselessly calculating 826 * zone/node ids for pages that could never merge. 827 */ 828 if (page_zone_id(page) != page_zone_id(buddy)) 829 return false; 830 831 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 832 833 return true; 834 } 835 836 #ifdef CONFIG_COMPACTION 837 static inline struct capture_control *task_capc(struct zone *zone) 838 { 839 struct capture_control *capc = current->capture_control; 840 841 return unlikely(capc) && 842 !(current->flags & PF_KTHREAD) && 843 !capc->page && 844 capc->cc->zone == zone ? capc : NULL; 845 } 846 847 static inline bool 848 compaction_capture(struct capture_control *capc, struct page *page, 849 int order, int migratetype) 850 { 851 if (!capc || order != capc->cc->order) 852 return false; 853 854 /* Do not accidentally pollute CMA or isolated regions*/ 855 if (is_migrate_cma(migratetype) || 856 is_migrate_isolate(migratetype)) 857 return false; 858 859 /* 860 * Do not let lower order allocations polluate a movable pageblock. 861 * This might let an unmovable request use a reclaimable pageblock 862 * and vice-versa but no more than normal fallback logic which can 863 * have trouble finding a high-order free page. 864 */ 865 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 866 return false; 867 868 capc->page = page; 869 return true; 870 } 871 872 #else 873 static inline struct capture_control *task_capc(struct zone *zone) 874 { 875 return NULL; 876 } 877 878 static inline bool 879 compaction_capture(struct capture_control *capc, struct page *page, 880 int order, int migratetype) 881 { 882 return false; 883 } 884 #endif /* CONFIG_COMPACTION */ 885 886 /* Used for pages not on another list */ 887 static inline void add_to_free_list(struct page *page, struct zone *zone, 888 unsigned int order, int migratetype) 889 { 890 struct free_area *area = &zone->free_area[order]; 891 892 list_add(&page->lru, &area->free_list[migratetype]); 893 area->nr_free++; 894 } 895 896 /* Used for pages not on another list */ 897 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 898 unsigned int order, int migratetype) 899 { 900 struct free_area *area = &zone->free_area[order]; 901 902 list_add_tail(&page->lru, &area->free_list[migratetype]); 903 area->nr_free++; 904 } 905 906 /* 907 * Used for pages which are on another list. Move the pages to the tail 908 * of the list - so the moved pages won't immediately be considered for 909 * allocation again (e.g., optimization for memory onlining). 910 */ 911 static inline void move_to_free_list(struct page *page, struct zone *zone, 912 unsigned int order, int migratetype) 913 { 914 struct free_area *area = &zone->free_area[order]; 915 916 list_move_tail(&page->lru, &area->free_list[migratetype]); 917 } 918 919 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 920 unsigned int order) 921 { 922 /* clear reported state and update reported page count */ 923 if (page_reported(page)) 924 __ClearPageReported(page); 925 926 list_del(&page->lru); 927 __ClearPageBuddy(page); 928 set_page_private(page, 0); 929 zone->free_area[order].nr_free--; 930 } 931 932 /* 933 * If this is not the largest possible page, check if the buddy 934 * of the next-highest order is free. If it is, it's possible 935 * that pages are being freed that will coalesce soon. In case, 936 * that is happening, add the free page to the tail of the list 937 * so it's less likely to be used soon and more likely to be merged 938 * as a higher order page 939 */ 940 static inline bool 941 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 942 struct page *page, unsigned int order) 943 { 944 struct page *higher_page, *higher_buddy; 945 unsigned long combined_pfn; 946 947 if (order >= MAX_ORDER - 2) 948 return false; 949 950 if (!pfn_valid_within(buddy_pfn)) 951 return false; 952 953 combined_pfn = buddy_pfn & pfn; 954 higher_page = page + (combined_pfn - pfn); 955 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 956 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 957 958 return pfn_valid_within(buddy_pfn) && 959 page_is_buddy(higher_page, higher_buddy, order + 1); 960 } 961 962 /* 963 * Freeing function for a buddy system allocator. 964 * 965 * The concept of a buddy system is to maintain direct-mapped table 966 * (containing bit values) for memory blocks of various "orders". 967 * The bottom level table contains the map for the smallest allocatable 968 * units of memory (here, pages), and each level above it describes 969 * pairs of units from the levels below, hence, "buddies". 970 * At a high level, all that happens here is marking the table entry 971 * at the bottom level available, and propagating the changes upward 972 * as necessary, plus some accounting needed to play nicely with other 973 * parts of the VM system. 974 * At each level, we keep a list of pages, which are heads of continuous 975 * free pages of length of (1 << order) and marked with PageBuddy. 976 * Page's order is recorded in page_private(page) field. 977 * So when we are allocating or freeing one, we can derive the state of the 978 * other. That is, if we allocate a small block, and both were 979 * free, the remainder of the region must be split into blocks. 980 * If a block is freed, and its buddy is also free, then this 981 * triggers coalescing into a block of larger size. 982 * 983 * -- nyc 984 */ 985 986 static inline void __free_one_page(struct page *page, 987 unsigned long pfn, 988 struct zone *zone, unsigned int order, 989 int migratetype, fpi_t fpi_flags) 990 { 991 struct capture_control *capc = task_capc(zone); 992 unsigned long buddy_pfn; 993 unsigned long combined_pfn; 994 unsigned int max_order; 995 struct page *buddy; 996 bool to_tail; 997 998 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 999 1000 VM_BUG_ON(!zone_is_initialized(zone)); 1001 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1002 1003 VM_BUG_ON(migratetype == -1); 1004 if (likely(!is_migrate_isolate(migratetype))) 1005 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1006 1007 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1008 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1009 1010 continue_merging: 1011 while (order < max_order - 1) { 1012 if (compaction_capture(capc, page, order, migratetype)) { 1013 __mod_zone_freepage_state(zone, -(1 << order), 1014 migratetype); 1015 return; 1016 } 1017 buddy_pfn = __find_buddy_pfn(pfn, order); 1018 buddy = page + (buddy_pfn - pfn); 1019 1020 if (!pfn_valid_within(buddy_pfn)) 1021 goto done_merging; 1022 if (!page_is_buddy(page, buddy, order)) 1023 goto done_merging; 1024 /* 1025 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1026 * merge with it and move up one order. 1027 */ 1028 if (page_is_guard(buddy)) 1029 clear_page_guard(zone, buddy, order, migratetype); 1030 else 1031 del_page_from_free_list(buddy, zone, order); 1032 combined_pfn = buddy_pfn & pfn; 1033 page = page + (combined_pfn - pfn); 1034 pfn = combined_pfn; 1035 order++; 1036 } 1037 if (max_order < MAX_ORDER) { 1038 /* If we are here, it means order is >= pageblock_order. 1039 * We want to prevent merge between freepages on isolate 1040 * pageblock and normal pageblock. Without this, pageblock 1041 * isolation could cause incorrect freepage or CMA accounting. 1042 * 1043 * We don't want to hit this code for the more frequent 1044 * low-order merging. 1045 */ 1046 if (unlikely(has_isolate_pageblock(zone))) { 1047 int buddy_mt; 1048 1049 buddy_pfn = __find_buddy_pfn(pfn, order); 1050 buddy = page + (buddy_pfn - pfn); 1051 buddy_mt = get_pageblock_migratetype(buddy); 1052 1053 if (migratetype != buddy_mt 1054 && (is_migrate_isolate(migratetype) || 1055 is_migrate_isolate(buddy_mt))) 1056 goto done_merging; 1057 } 1058 max_order++; 1059 goto continue_merging; 1060 } 1061 1062 done_merging: 1063 set_buddy_order(page, order); 1064 1065 if (fpi_flags & FPI_TO_TAIL) 1066 to_tail = true; 1067 else if (is_shuffle_order(order)) 1068 to_tail = shuffle_pick_tail(); 1069 else 1070 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1071 1072 if (to_tail) 1073 add_to_free_list_tail(page, zone, order, migratetype); 1074 else 1075 add_to_free_list(page, zone, order, migratetype); 1076 1077 /* Notify page reporting subsystem of freed page */ 1078 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1079 page_reporting_notify_free(order); 1080 } 1081 1082 /* 1083 * A bad page could be due to a number of fields. Instead of multiple branches, 1084 * try and check multiple fields with one check. The caller must do a detailed 1085 * check if necessary. 1086 */ 1087 static inline bool page_expected_state(struct page *page, 1088 unsigned long check_flags) 1089 { 1090 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1091 return false; 1092 1093 if (unlikely((unsigned long)page->mapping | 1094 page_ref_count(page) | 1095 #ifdef CONFIG_MEMCG 1096 (unsigned long)page->mem_cgroup | 1097 #endif 1098 (page->flags & check_flags))) 1099 return false; 1100 1101 return true; 1102 } 1103 1104 static const char *page_bad_reason(struct page *page, unsigned long flags) 1105 { 1106 const char *bad_reason = NULL; 1107 1108 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1109 bad_reason = "nonzero mapcount"; 1110 if (unlikely(page->mapping != NULL)) 1111 bad_reason = "non-NULL mapping"; 1112 if (unlikely(page_ref_count(page) != 0)) 1113 bad_reason = "nonzero _refcount"; 1114 if (unlikely(page->flags & flags)) { 1115 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1116 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1117 else 1118 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1119 } 1120 #ifdef CONFIG_MEMCG 1121 if (unlikely(page->mem_cgroup)) 1122 bad_reason = "page still charged to cgroup"; 1123 #endif 1124 return bad_reason; 1125 } 1126 1127 static void check_free_page_bad(struct page *page) 1128 { 1129 bad_page(page, 1130 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1131 } 1132 1133 static inline int check_free_page(struct page *page) 1134 { 1135 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1136 return 0; 1137 1138 /* Something has gone sideways, find it */ 1139 check_free_page_bad(page); 1140 return 1; 1141 } 1142 1143 static int free_tail_pages_check(struct page *head_page, struct page *page) 1144 { 1145 int ret = 1; 1146 1147 /* 1148 * We rely page->lru.next never has bit 0 set, unless the page 1149 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1150 */ 1151 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1152 1153 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1154 ret = 0; 1155 goto out; 1156 } 1157 switch (page - head_page) { 1158 case 1: 1159 /* the first tail page: ->mapping may be compound_mapcount() */ 1160 if (unlikely(compound_mapcount(page))) { 1161 bad_page(page, "nonzero compound_mapcount"); 1162 goto out; 1163 } 1164 break; 1165 case 2: 1166 /* 1167 * the second tail page: ->mapping is 1168 * deferred_list.next -- ignore value. 1169 */ 1170 break; 1171 default: 1172 if (page->mapping != TAIL_MAPPING) { 1173 bad_page(page, "corrupted mapping in tail page"); 1174 goto out; 1175 } 1176 break; 1177 } 1178 if (unlikely(!PageTail(page))) { 1179 bad_page(page, "PageTail not set"); 1180 goto out; 1181 } 1182 if (unlikely(compound_head(page) != head_page)) { 1183 bad_page(page, "compound_head not consistent"); 1184 goto out; 1185 } 1186 ret = 0; 1187 out: 1188 page->mapping = NULL; 1189 clear_compound_head(page); 1190 return ret; 1191 } 1192 1193 static void kernel_init_free_pages(struct page *page, int numpages) 1194 { 1195 int i; 1196 1197 /* s390's use of memset() could override KASAN redzones. */ 1198 kasan_disable_current(); 1199 for (i = 0; i < numpages; i++) 1200 clear_highpage(page + i); 1201 kasan_enable_current(); 1202 } 1203 1204 static __always_inline bool free_pages_prepare(struct page *page, 1205 unsigned int order, bool check_free) 1206 { 1207 int bad = 0; 1208 1209 VM_BUG_ON_PAGE(PageTail(page), page); 1210 1211 trace_mm_page_free(page, order); 1212 1213 if (unlikely(PageHWPoison(page)) && !order) { 1214 /* 1215 * Do not let hwpoison pages hit pcplists/buddy 1216 * Untie memcg state and reset page's owner 1217 */ 1218 if (memcg_kmem_enabled() && PageKmemcg(page)) 1219 __memcg_kmem_uncharge_page(page, order); 1220 reset_page_owner(page, order); 1221 return false; 1222 } 1223 1224 /* 1225 * Check tail pages before head page information is cleared to 1226 * avoid checking PageCompound for order-0 pages. 1227 */ 1228 if (unlikely(order)) { 1229 bool compound = PageCompound(page); 1230 int i; 1231 1232 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1233 1234 if (compound) 1235 ClearPageDoubleMap(page); 1236 for (i = 1; i < (1 << order); i++) { 1237 if (compound) 1238 bad += free_tail_pages_check(page, page + i); 1239 if (unlikely(check_free_page(page + i))) { 1240 bad++; 1241 continue; 1242 } 1243 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1244 } 1245 } 1246 if (PageMappingFlags(page)) 1247 page->mapping = NULL; 1248 if (memcg_kmem_enabled() && PageKmemcg(page)) 1249 __memcg_kmem_uncharge_page(page, order); 1250 if (check_free) 1251 bad += check_free_page(page); 1252 if (bad) 1253 return false; 1254 1255 page_cpupid_reset_last(page); 1256 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1257 reset_page_owner(page, order); 1258 1259 if (!PageHighMem(page)) { 1260 debug_check_no_locks_freed(page_address(page), 1261 PAGE_SIZE << order); 1262 debug_check_no_obj_freed(page_address(page), 1263 PAGE_SIZE << order); 1264 } 1265 if (want_init_on_free()) 1266 kernel_init_free_pages(page, 1 << order); 1267 1268 kernel_poison_pages(page, 1 << order, 0); 1269 /* 1270 * arch_free_page() can make the page's contents inaccessible. s390 1271 * does this. So nothing which can access the page's contents should 1272 * happen after this. 1273 */ 1274 arch_free_page(page, order); 1275 1276 if (debug_pagealloc_enabled_static()) 1277 kernel_map_pages(page, 1 << order, 0); 1278 1279 kasan_free_nondeferred_pages(page, order); 1280 1281 return true; 1282 } 1283 1284 #ifdef CONFIG_DEBUG_VM 1285 /* 1286 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1287 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1288 * moved from pcp lists to free lists. 1289 */ 1290 static bool free_pcp_prepare(struct page *page) 1291 { 1292 return free_pages_prepare(page, 0, true); 1293 } 1294 1295 static bool bulkfree_pcp_prepare(struct page *page) 1296 { 1297 if (debug_pagealloc_enabled_static()) 1298 return check_free_page(page); 1299 else 1300 return false; 1301 } 1302 #else 1303 /* 1304 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1305 * moving from pcp lists to free list in order to reduce overhead. With 1306 * debug_pagealloc enabled, they are checked also immediately when being freed 1307 * to the pcp lists. 1308 */ 1309 static bool free_pcp_prepare(struct page *page) 1310 { 1311 if (debug_pagealloc_enabled_static()) 1312 return free_pages_prepare(page, 0, true); 1313 else 1314 return free_pages_prepare(page, 0, false); 1315 } 1316 1317 static bool bulkfree_pcp_prepare(struct page *page) 1318 { 1319 return check_free_page(page); 1320 } 1321 #endif /* CONFIG_DEBUG_VM */ 1322 1323 static inline void prefetch_buddy(struct page *page) 1324 { 1325 unsigned long pfn = page_to_pfn(page); 1326 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1327 struct page *buddy = page + (buddy_pfn - pfn); 1328 1329 prefetch(buddy); 1330 } 1331 1332 /* 1333 * Frees a number of pages from the PCP lists 1334 * Assumes all pages on list are in same zone, and of same order. 1335 * count is the number of pages to free. 1336 * 1337 * If the zone was previously in an "all pages pinned" state then look to 1338 * see if this freeing clears that state. 1339 * 1340 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1341 * pinned" detection logic. 1342 */ 1343 static void free_pcppages_bulk(struct zone *zone, int count, 1344 struct per_cpu_pages *pcp) 1345 { 1346 int migratetype = 0; 1347 int batch_free = 0; 1348 int prefetch_nr = 0; 1349 bool isolated_pageblocks; 1350 struct page *page, *tmp; 1351 LIST_HEAD(head); 1352 1353 /* 1354 * Ensure proper count is passed which otherwise would stuck in the 1355 * below while (list_empty(list)) loop. 1356 */ 1357 count = min(pcp->count, count); 1358 while (count) { 1359 struct list_head *list; 1360 1361 /* 1362 * Remove pages from lists in a round-robin fashion. A 1363 * batch_free count is maintained that is incremented when an 1364 * empty list is encountered. This is so more pages are freed 1365 * off fuller lists instead of spinning excessively around empty 1366 * lists 1367 */ 1368 do { 1369 batch_free++; 1370 if (++migratetype == MIGRATE_PCPTYPES) 1371 migratetype = 0; 1372 list = &pcp->lists[migratetype]; 1373 } while (list_empty(list)); 1374 1375 /* This is the only non-empty list. Free them all. */ 1376 if (batch_free == MIGRATE_PCPTYPES) 1377 batch_free = count; 1378 1379 do { 1380 page = list_last_entry(list, struct page, lru); 1381 /* must delete to avoid corrupting pcp list */ 1382 list_del(&page->lru); 1383 pcp->count--; 1384 1385 if (bulkfree_pcp_prepare(page)) 1386 continue; 1387 1388 list_add_tail(&page->lru, &head); 1389 1390 /* 1391 * We are going to put the page back to the global 1392 * pool, prefetch its buddy to speed up later access 1393 * under zone->lock. It is believed the overhead of 1394 * an additional test and calculating buddy_pfn here 1395 * can be offset by reduced memory latency later. To 1396 * avoid excessive prefetching due to large count, only 1397 * prefetch buddy for the first pcp->batch nr of pages. 1398 */ 1399 if (prefetch_nr++ < pcp->batch) 1400 prefetch_buddy(page); 1401 } while (--count && --batch_free && !list_empty(list)); 1402 } 1403 1404 spin_lock(&zone->lock); 1405 isolated_pageblocks = has_isolate_pageblock(zone); 1406 1407 /* 1408 * Use safe version since after __free_one_page(), 1409 * page->lru.next will not point to original list. 1410 */ 1411 list_for_each_entry_safe(page, tmp, &head, lru) { 1412 int mt = get_pcppage_migratetype(page); 1413 /* MIGRATE_ISOLATE page should not go to pcplists */ 1414 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1415 /* Pageblock could have been isolated meanwhile */ 1416 if (unlikely(isolated_pageblocks)) 1417 mt = get_pageblock_migratetype(page); 1418 1419 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE); 1420 trace_mm_page_pcpu_drain(page, 0, mt); 1421 } 1422 spin_unlock(&zone->lock); 1423 } 1424 1425 static void free_one_page(struct zone *zone, 1426 struct page *page, unsigned long pfn, 1427 unsigned int order, 1428 int migratetype, fpi_t fpi_flags) 1429 { 1430 spin_lock(&zone->lock); 1431 if (unlikely(has_isolate_pageblock(zone) || 1432 is_migrate_isolate(migratetype))) { 1433 migratetype = get_pfnblock_migratetype(page, pfn); 1434 } 1435 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1436 spin_unlock(&zone->lock); 1437 } 1438 1439 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1440 unsigned long zone, int nid) 1441 { 1442 mm_zero_struct_page(page); 1443 set_page_links(page, zone, nid, pfn); 1444 init_page_count(page); 1445 page_mapcount_reset(page); 1446 page_cpupid_reset_last(page); 1447 page_kasan_tag_reset(page); 1448 1449 INIT_LIST_HEAD(&page->lru); 1450 #ifdef WANT_PAGE_VIRTUAL 1451 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1452 if (!is_highmem_idx(zone)) 1453 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1454 #endif 1455 } 1456 1457 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1458 static void __meminit init_reserved_page(unsigned long pfn) 1459 { 1460 pg_data_t *pgdat; 1461 int nid, zid; 1462 1463 if (!early_page_uninitialised(pfn)) 1464 return; 1465 1466 nid = early_pfn_to_nid(pfn); 1467 pgdat = NODE_DATA(nid); 1468 1469 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1470 struct zone *zone = &pgdat->node_zones[zid]; 1471 1472 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1473 break; 1474 } 1475 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1476 } 1477 #else 1478 static inline void init_reserved_page(unsigned long pfn) 1479 { 1480 } 1481 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1482 1483 /* 1484 * Initialised pages do not have PageReserved set. This function is 1485 * called for each range allocated by the bootmem allocator and 1486 * marks the pages PageReserved. The remaining valid pages are later 1487 * sent to the buddy page allocator. 1488 */ 1489 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1490 { 1491 unsigned long start_pfn = PFN_DOWN(start); 1492 unsigned long end_pfn = PFN_UP(end); 1493 1494 for (; start_pfn < end_pfn; start_pfn++) { 1495 if (pfn_valid(start_pfn)) { 1496 struct page *page = pfn_to_page(start_pfn); 1497 1498 init_reserved_page(start_pfn); 1499 1500 /* Avoid false-positive PageTail() */ 1501 INIT_LIST_HEAD(&page->lru); 1502 1503 /* 1504 * no need for atomic set_bit because the struct 1505 * page is not visible yet so nobody should 1506 * access it yet. 1507 */ 1508 __SetPageReserved(page); 1509 } 1510 } 1511 } 1512 1513 static void __free_pages_ok(struct page *page, unsigned int order, 1514 fpi_t fpi_flags) 1515 { 1516 unsigned long flags; 1517 int migratetype; 1518 unsigned long pfn = page_to_pfn(page); 1519 1520 if (!free_pages_prepare(page, order, true)) 1521 return; 1522 1523 migratetype = get_pfnblock_migratetype(page, pfn); 1524 local_irq_save(flags); 1525 __count_vm_events(PGFREE, 1 << order); 1526 free_one_page(page_zone(page), page, pfn, order, migratetype, 1527 fpi_flags); 1528 local_irq_restore(flags); 1529 } 1530 1531 void __free_pages_core(struct page *page, unsigned int order) 1532 { 1533 unsigned int nr_pages = 1 << order; 1534 struct page *p = page; 1535 unsigned int loop; 1536 1537 /* 1538 * When initializing the memmap, __init_single_page() sets the refcount 1539 * of all pages to 1 ("allocated"/"not free"). We have to set the 1540 * refcount of all involved pages to 0. 1541 */ 1542 prefetchw(p); 1543 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1544 prefetchw(p + 1); 1545 __ClearPageReserved(p); 1546 set_page_count(p, 0); 1547 } 1548 __ClearPageReserved(p); 1549 set_page_count(p, 0); 1550 1551 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1552 1553 /* 1554 * Bypass PCP and place fresh pages right to the tail, primarily 1555 * relevant for memory onlining. 1556 */ 1557 __free_pages_ok(page, order, FPI_TO_TAIL); 1558 } 1559 1560 #ifdef CONFIG_NEED_MULTIPLE_NODES 1561 1562 /* 1563 * During memory init memblocks map pfns to nids. The search is expensive and 1564 * this caches recent lookups. The implementation of __early_pfn_to_nid 1565 * treats start/end as pfns. 1566 */ 1567 struct mminit_pfnnid_cache { 1568 unsigned long last_start; 1569 unsigned long last_end; 1570 int last_nid; 1571 }; 1572 1573 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1574 1575 /* 1576 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1577 */ 1578 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1579 struct mminit_pfnnid_cache *state) 1580 { 1581 unsigned long start_pfn, end_pfn; 1582 int nid; 1583 1584 if (state->last_start <= pfn && pfn < state->last_end) 1585 return state->last_nid; 1586 1587 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1588 if (nid != NUMA_NO_NODE) { 1589 state->last_start = start_pfn; 1590 state->last_end = end_pfn; 1591 state->last_nid = nid; 1592 } 1593 1594 return nid; 1595 } 1596 1597 int __meminit early_pfn_to_nid(unsigned long pfn) 1598 { 1599 static DEFINE_SPINLOCK(early_pfn_lock); 1600 int nid; 1601 1602 spin_lock(&early_pfn_lock); 1603 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1604 if (nid < 0) 1605 nid = first_online_node; 1606 spin_unlock(&early_pfn_lock); 1607 1608 return nid; 1609 } 1610 #endif /* CONFIG_NEED_MULTIPLE_NODES */ 1611 1612 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1613 unsigned int order) 1614 { 1615 if (early_page_uninitialised(pfn)) 1616 return; 1617 __free_pages_core(page, order); 1618 } 1619 1620 /* 1621 * Check that the whole (or subset of) a pageblock given by the interval of 1622 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1623 * with the migration of free compaction scanner. The scanners then need to 1624 * use only pfn_valid_within() check for arches that allow holes within 1625 * pageblocks. 1626 * 1627 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1628 * 1629 * It's possible on some configurations to have a setup like node0 node1 node0 1630 * i.e. it's possible that all pages within a zones range of pages do not 1631 * belong to a single zone. We assume that a border between node0 and node1 1632 * can occur within a single pageblock, but not a node0 node1 node0 1633 * interleaving within a single pageblock. It is therefore sufficient to check 1634 * the first and last page of a pageblock and avoid checking each individual 1635 * page in a pageblock. 1636 */ 1637 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1638 unsigned long end_pfn, struct zone *zone) 1639 { 1640 struct page *start_page; 1641 struct page *end_page; 1642 1643 /* end_pfn is one past the range we are checking */ 1644 end_pfn--; 1645 1646 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1647 return NULL; 1648 1649 start_page = pfn_to_online_page(start_pfn); 1650 if (!start_page) 1651 return NULL; 1652 1653 if (page_zone(start_page) != zone) 1654 return NULL; 1655 1656 end_page = pfn_to_page(end_pfn); 1657 1658 /* This gives a shorter code than deriving page_zone(end_page) */ 1659 if (page_zone_id(start_page) != page_zone_id(end_page)) 1660 return NULL; 1661 1662 return start_page; 1663 } 1664 1665 void set_zone_contiguous(struct zone *zone) 1666 { 1667 unsigned long block_start_pfn = zone->zone_start_pfn; 1668 unsigned long block_end_pfn; 1669 1670 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1671 for (; block_start_pfn < zone_end_pfn(zone); 1672 block_start_pfn = block_end_pfn, 1673 block_end_pfn += pageblock_nr_pages) { 1674 1675 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1676 1677 if (!__pageblock_pfn_to_page(block_start_pfn, 1678 block_end_pfn, zone)) 1679 return; 1680 cond_resched(); 1681 } 1682 1683 /* We confirm that there is no hole */ 1684 zone->contiguous = true; 1685 } 1686 1687 void clear_zone_contiguous(struct zone *zone) 1688 { 1689 zone->contiguous = false; 1690 } 1691 1692 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1693 static void __init deferred_free_range(unsigned long pfn, 1694 unsigned long nr_pages) 1695 { 1696 struct page *page; 1697 unsigned long i; 1698 1699 if (!nr_pages) 1700 return; 1701 1702 page = pfn_to_page(pfn); 1703 1704 /* Free a large naturally-aligned chunk if possible */ 1705 if (nr_pages == pageblock_nr_pages && 1706 (pfn & (pageblock_nr_pages - 1)) == 0) { 1707 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1708 __free_pages_core(page, pageblock_order); 1709 return; 1710 } 1711 1712 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1713 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1714 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1715 __free_pages_core(page, 0); 1716 } 1717 } 1718 1719 /* Completion tracking for deferred_init_memmap() threads */ 1720 static atomic_t pgdat_init_n_undone __initdata; 1721 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1722 1723 static inline void __init pgdat_init_report_one_done(void) 1724 { 1725 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1726 complete(&pgdat_init_all_done_comp); 1727 } 1728 1729 /* 1730 * Returns true if page needs to be initialized or freed to buddy allocator. 1731 * 1732 * First we check if pfn is valid on architectures where it is possible to have 1733 * holes within pageblock_nr_pages. On systems where it is not possible, this 1734 * function is optimized out. 1735 * 1736 * Then, we check if a current large page is valid by only checking the validity 1737 * of the head pfn. 1738 */ 1739 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1740 { 1741 if (!pfn_valid_within(pfn)) 1742 return false; 1743 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1744 return false; 1745 return true; 1746 } 1747 1748 /* 1749 * Free pages to buddy allocator. Try to free aligned pages in 1750 * pageblock_nr_pages sizes. 1751 */ 1752 static void __init deferred_free_pages(unsigned long pfn, 1753 unsigned long end_pfn) 1754 { 1755 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1756 unsigned long nr_free = 0; 1757 1758 for (; pfn < end_pfn; pfn++) { 1759 if (!deferred_pfn_valid(pfn)) { 1760 deferred_free_range(pfn - nr_free, nr_free); 1761 nr_free = 0; 1762 } else if (!(pfn & nr_pgmask)) { 1763 deferred_free_range(pfn - nr_free, nr_free); 1764 nr_free = 1; 1765 } else { 1766 nr_free++; 1767 } 1768 } 1769 /* Free the last block of pages to allocator */ 1770 deferred_free_range(pfn - nr_free, nr_free); 1771 } 1772 1773 /* 1774 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1775 * by performing it only once every pageblock_nr_pages. 1776 * Return number of pages initialized. 1777 */ 1778 static unsigned long __init deferred_init_pages(struct zone *zone, 1779 unsigned long pfn, 1780 unsigned long end_pfn) 1781 { 1782 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1783 int nid = zone_to_nid(zone); 1784 unsigned long nr_pages = 0; 1785 int zid = zone_idx(zone); 1786 struct page *page = NULL; 1787 1788 for (; pfn < end_pfn; pfn++) { 1789 if (!deferred_pfn_valid(pfn)) { 1790 page = NULL; 1791 continue; 1792 } else if (!page || !(pfn & nr_pgmask)) { 1793 page = pfn_to_page(pfn); 1794 } else { 1795 page++; 1796 } 1797 __init_single_page(page, pfn, zid, nid); 1798 nr_pages++; 1799 } 1800 return (nr_pages); 1801 } 1802 1803 /* 1804 * This function is meant to pre-load the iterator for the zone init. 1805 * Specifically it walks through the ranges until we are caught up to the 1806 * first_init_pfn value and exits there. If we never encounter the value we 1807 * return false indicating there are no valid ranges left. 1808 */ 1809 static bool __init 1810 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1811 unsigned long *spfn, unsigned long *epfn, 1812 unsigned long first_init_pfn) 1813 { 1814 u64 j; 1815 1816 /* 1817 * Start out by walking through the ranges in this zone that have 1818 * already been initialized. We don't need to do anything with them 1819 * so we just need to flush them out of the system. 1820 */ 1821 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1822 if (*epfn <= first_init_pfn) 1823 continue; 1824 if (*spfn < first_init_pfn) 1825 *spfn = first_init_pfn; 1826 *i = j; 1827 return true; 1828 } 1829 1830 return false; 1831 } 1832 1833 /* 1834 * Initialize and free pages. We do it in two loops: first we initialize 1835 * struct page, then free to buddy allocator, because while we are 1836 * freeing pages we can access pages that are ahead (computing buddy 1837 * page in __free_one_page()). 1838 * 1839 * In order to try and keep some memory in the cache we have the loop 1840 * broken along max page order boundaries. This way we will not cause 1841 * any issues with the buddy page computation. 1842 */ 1843 static unsigned long __init 1844 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1845 unsigned long *end_pfn) 1846 { 1847 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1848 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1849 unsigned long nr_pages = 0; 1850 u64 j = *i; 1851 1852 /* First we loop through and initialize the page values */ 1853 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1854 unsigned long t; 1855 1856 if (mo_pfn <= *start_pfn) 1857 break; 1858 1859 t = min(mo_pfn, *end_pfn); 1860 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1861 1862 if (mo_pfn < *end_pfn) { 1863 *start_pfn = mo_pfn; 1864 break; 1865 } 1866 } 1867 1868 /* Reset values and now loop through freeing pages as needed */ 1869 swap(j, *i); 1870 1871 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1872 unsigned long t; 1873 1874 if (mo_pfn <= spfn) 1875 break; 1876 1877 t = min(mo_pfn, epfn); 1878 deferred_free_pages(spfn, t); 1879 1880 if (mo_pfn <= epfn) 1881 break; 1882 } 1883 1884 return nr_pages; 1885 } 1886 1887 static void __init 1888 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 1889 void *arg) 1890 { 1891 unsigned long spfn, epfn; 1892 struct zone *zone = arg; 1893 u64 i; 1894 1895 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 1896 1897 /* 1898 * Initialize and free pages in MAX_ORDER sized increments so that we 1899 * can avoid introducing any issues with the buddy allocator. 1900 */ 1901 while (spfn < end_pfn) { 1902 deferred_init_maxorder(&i, zone, &spfn, &epfn); 1903 cond_resched(); 1904 } 1905 } 1906 1907 /* An arch may override for more concurrency. */ 1908 __weak int __init 1909 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 1910 { 1911 return 1; 1912 } 1913 1914 /* Initialise remaining memory on a node */ 1915 static int __init deferred_init_memmap(void *data) 1916 { 1917 pg_data_t *pgdat = data; 1918 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1919 unsigned long spfn = 0, epfn = 0; 1920 unsigned long first_init_pfn, flags; 1921 unsigned long start = jiffies; 1922 struct zone *zone; 1923 int zid, max_threads; 1924 u64 i; 1925 1926 /* Bind memory initialisation thread to a local node if possible */ 1927 if (!cpumask_empty(cpumask)) 1928 set_cpus_allowed_ptr(current, cpumask); 1929 1930 pgdat_resize_lock(pgdat, &flags); 1931 first_init_pfn = pgdat->first_deferred_pfn; 1932 if (first_init_pfn == ULONG_MAX) { 1933 pgdat_resize_unlock(pgdat, &flags); 1934 pgdat_init_report_one_done(); 1935 return 0; 1936 } 1937 1938 /* Sanity check boundaries */ 1939 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1940 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1941 pgdat->first_deferred_pfn = ULONG_MAX; 1942 1943 /* 1944 * Once we unlock here, the zone cannot be grown anymore, thus if an 1945 * interrupt thread must allocate this early in boot, zone must be 1946 * pre-grown prior to start of deferred page initialization. 1947 */ 1948 pgdat_resize_unlock(pgdat, &flags); 1949 1950 /* Only the highest zone is deferred so find it */ 1951 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1952 zone = pgdat->node_zones + zid; 1953 if (first_init_pfn < zone_end_pfn(zone)) 1954 break; 1955 } 1956 1957 /* If the zone is empty somebody else may have cleared out the zone */ 1958 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1959 first_init_pfn)) 1960 goto zone_empty; 1961 1962 max_threads = deferred_page_init_max_threads(cpumask); 1963 1964 while (spfn < epfn) { 1965 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 1966 struct padata_mt_job job = { 1967 .thread_fn = deferred_init_memmap_chunk, 1968 .fn_arg = zone, 1969 .start = spfn, 1970 .size = epfn_align - spfn, 1971 .align = PAGES_PER_SECTION, 1972 .min_chunk = PAGES_PER_SECTION, 1973 .max_threads = max_threads, 1974 }; 1975 1976 padata_do_multithreaded(&job); 1977 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1978 epfn_align); 1979 } 1980 zone_empty: 1981 /* Sanity check that the next zone really is unpopulated */ 1982 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1983 1984 pr_info("node %d deferred pages initialised in %ums\n", 1985 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 1986 1987 pgdat_init_report_one_done(); 1988 return 0; 1989 } 1990 1991 /* 1992 * If this zone has deferred pages, try to grow it by initializing enough 1993 * deferred pages to satisfy the allocation specified by order, rounded up to 1994 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1995 * of SECTION_SIZE bytes by initializing struct pages in increments of 1996 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1997 * 1998 * Return true when zone was grown, otherwise return false. We return true even 1999 * when we grow less than requested, to let the caller decide if there are 2000 * enough pages to satisfy the allocation. 2001 * 2002 * Note: We use noinline because this function is needed only during boot, and 2003 * it is called from a __ref function _deferred_grow_zone. This way we are 2004 * making sure that it is not inlined into permanent text section. 2005 */ 2006 static noinline bool __init 2007 deferred_grow_zone(struct zone *zone, unsigned int order) 2008 { 2009 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2010 pg_data_t *pgdat = zone->zone_pgdat; 2011 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2012 unsigned long spfn, epfn, flags; 2013 unsigned long nr_pages = 0; 2014 u64 i; 2015 2016 /* Only the last zone may have deferred pages */ 2017 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2018 return false; 2019 2020 pgdat_resize_lock(pgdat, &flags); 2021 2022 /* 2023 * If someone grew this zone while we were waiting for spinlock, return 2024 * true, as there might be enough pages already. 2025 */ 2026 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2027 pgdat_resize_unlock(pgdat, &flags); 2028 return true; 2029 } 2030 2031 /* If the zone is empty somebody else may have cleared out the zone */ 2032 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2033 first_deferred_pfn)) { 2034 pgdat->first_deferred_pfn = ULONG_MAX; 2035 pgdat_resize_unlock(pgdat, &flags); 2036 /* Retry only once. */ 2037 return first_deferred_pfn != ULONG_MAX; 2038 } 2039 2040 /* 2041 * Initialize and free pages in MAX_ORDER sized increments so 2042 * that we can avoid introducing any issues with the buddy 2043 * allocator. 2044 */ 2045 while (spfn < epfn) { 2046 /* update our first deferred PFN for this section */ 2047 first_deferred_pfn = spfn; 2048 2049 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2050 touch_nmi_watchdog(); 2051 2052 /* We should only stop along section boundaries */ 2053 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2054 continue; 2055 2056 /* If our quota has been met we can stop here */ 2057 if (nr_pages >= nr_pages_needed) 2058 break; 2059 } 2060 2061 pgdat->first_deferred_pfn = spfn; 2062 pgdat_resize_unlock(pgdat, &flags); 2063 2064 return nr_pages > 0; 2065 } 2066 2067 /* 2068 * deferred_grow_zone() is __init, but it is called from 2069 * get_page_from_freelist() during early boot until deferred_pages permanently 2070 * disables this call. This is why we have refdata wrapper to avoid warning, 2071 * and to ensure that the function body gets unloaded. 2072 */ 2073 static bool __ref 2074 _deferred_grow_zone(struct zone *zone, unsigned int order) 2075 { 2076 return deferred_grow_zone(zone, order); 2077 } 2078 2079 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2080 2081 void __init page_alloc_init_late(void) 2082 { 2083 struct zone *zone; 2084 int nid; 2085 2086 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2087 2088 /* There will be num_node_state(N_MEMORY) threads */ 2089 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2090 for_each_node_state(nid, N_MEMORY) { 2091 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2092 } 2093 2094 /* Block until all are initialised */ 2095 wait_for_completion(&pgdat_init_all_done_comp); 2096 2097 /* 2098 * The number of managed pages has changed due to the initialisation 2099 * so the pcpu batch and high limits needs to be updated or the limits 2100 * will be artificially small. 2101 */ 2102 for_each_populated_zone(zone) 2103 zone_pcp_update(zone); 2104 2105 /* 2106 * We initialized the rest of the deferred pages. Permanently disable 2107 * on-demand struct page initialization. 2108 */ 2109 static_branch_disable(&deferred_pages); 2110 2111 /* Reinit limits that are based on free pages after the kernel is up */ 2112 files_maxfiles_init(); 2113 #endif 2114 2115 /* Discard memblock private memory */ 2116 memblock_discard(); 2117 2118 for_each_node_state(nid, N_MEMORY) 2119 shuffle_free_memory(NODE_DATA(nid)); 2120 2121 for_each_populated_zone(zone) 2122 set_zone_contiguous(zone); 2123 } 2124 2125 #ifdef CONFIG_CMA 2126 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2127 void __init init_cma_reserved_pageblock(struct page *page) 2128 { 2129 unsigned i = pageblock_nr_pages; 2130 struct page *p = page; 2131 2132 do { 2133 __ClearPageReserved(p); 2134 set_page_count(p, 0); 2135 } while (++p, --i); 2136 2137 set_pageblock_migratetype(page, MIGRATE_CMA); 2138 2139 if (pageblock_order >= MAX_ORDER) { 2140 i = pageblock_nr_pages; 2141 p = page; 2142 do { 2143 set_page_refcounted(p); 2144 __free_pages(p, MAX_ORDER - 1); 2145 p += MAX_ORDER_NR_PAGES; 2146 } while (i -= MAX_ORDER_NR_PAGES); 2147 } else { 2148 set_page_refcounted(page); 2149 __free_pages(page, pageblock_order); 2150 } 2151 2152 adjust_managed_page_count(page, pageblock_nr_pages); 2153 } 2154 #endif 2155 2156 /* 2157 * The order of subdivision here is critical for the IO subsystem. 2158 * Please do not alter this order without good reasons and regression 2159 * testing. Specifically, as large blocks of memory are subdivided, 2160 * the order in which smaller blocks are delivered depends on the order 2161 * they're subdivided in this function. This is the primary factor 2162 * influencing the order in which pages are delivered to the IO 2163 * subsystem according to empirical testing, and this is also justified 2164 * by considering the behavior of a buddy system containing a single 2165 * large block of memory acted on by a series of small allocations. 2166 * This behavior is a critical factor in sglist merging's success. 2167 * 2168 * -- nyc 2169 */ 2170 static inline void expand(struct zone *zone, struct page *page, 2171 int low, int high, int migratetype) 2172 { 2173 unsigned long size = 1 << high; 2174 2175 while (high > low) { 2176 high--; 2177 size >>= 1; 2178 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2179 2180 /* 2181 * Mark as guard pages (or page), that will allow to 2182 * merge back to allocator when buddy will be freed. 2183 * Corresponding page table entries will not be touched, 2184 * pages will stay not present in virtual address space 2185 */ 2186 if (set_page_guard(zone, &page[size], high, migratetype)) 2187 continue; 2188 2189 add_to_free_list(&page[size], zone, high, migratetype); 2190 set_buddy_order(&page[size], high); 2191 } 2192 } 2193 2194 static void check_new_page_bad(struct page *page) 2195 { 2196 if (unlikely(page->flags & __PG_HWPOISON)) { 2197 /* Don't complain about hwpoisoned pages */ 2198 page_mapcount_reset(page); /* remove PageBuddy */ 2199 return; 2200 } 2201 2202 bad_page(page, 2203 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2204 } 2205 2206 /* 2207 * This page is about to be returned from the page allocator 2208 */ 2209 static inline int check_new_page(struct page *page) 2210 { 2211 if (likely(page_expected_state(page, 2212 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2213 return 0; 2214 2215 check_new_page_bad(page); 2216 return 1; 2217 } 2218 2219 static inline bool free_pages_prezeroed(void) 2220 { 2221 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 2222 page_poisoning_enabled()) || want_init_on_free(); 2223 } 2224 2225 #ifdef CONFIG_DEBUG_VM 2226 /* 2227 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2228 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2229 * also checked when pcp lists are refilled from the free lists. 2230 */ 2231 static inline bool check_pcp_refill(struct page *page) 2232 { 2233 if (debug_pagealloc_enabled_static()) 2234 return check_new_page(page); 2235 else 2236 return false; 2237 } 2238 2239 static inline bool check_new_pcp(struct page *page) 2240 { 2241 return check_new_page(page); 2242 } 2243 #else 2244 /* 2245 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2246 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2247 * enabled, they are also checked when being allocated from the pcp lists. 2248 */ 2249 static inline bool check_pcp_refill(struct page *page) 2250 { 2251 return check_new_page(page); 2252 } 2253 static inline bool check_new_pcp(struct page *page) 2254 { 2255 if (debug_pagealloc_enabled_static()) 2256 return check_new_page(page); 2257 else 2258 return false; 2259 } 2260 #endif /* CONFIG_DEBUG_VM */ 2261 2262 static bool check_new_pages(struct page *page, unsigned int order) 2263 { 2264 int i; 2265 for (i = 0; i < (1 << order); i++) { 2266 struct page *p = page + i; 2267 2268 if (unlikely(check_new_page(p))) 2269 return true; 2270 } 2271 2272 return false; 2273 } 2274 2275 inline void post_alloc_hook(struct page *page, unsigned int order, 2276 gfp_t gfp_flags) 2277 { 2278 set_page_private(page, 0); 2279 set_page_refcounted(page); 2280 2281 arch_alloc_page(page, order); 2282 if (debug_pagealloc_enabled_static()) 2283 kernel_map_pages(page, 1 << order, 1); 2284 kasan_alloc_pages(page, order); 2285 kernel_poison_pages(page, 1 << order, 1); 2286 set_page_owner(page, order, gfp_flags); 2287 } 2288 2289 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2290 unsigned int alloc_flags) 2291 { 2292 post_alloc_hook(page, order, gfp_flags); 2293 2294 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags)) 2295 kernel_init_free_pages(page, 1 << order); 2296 2297 if (order && (gfp_flags & __GFP_COMP)) 2298 prep_compound_page(page, order); 2299 2300 /* 2301 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2302 * allocate the page. The expectation is that the caller is taking 2303 * steps that will free more memory. The caller should avoid the page 2304 * being used for !PFMEMALLOC purposes. 2305 */ 2306 if (alloc_flags & ALLOC_NO_WATERMARKS) 2307 set_page_pfmemalloc(page); 2308 else 2309 clear_page_pfmemalloc(page); 2310 } 2311 2312 /* 2313 * Go through the free lists for the given migratetype and remove 2314 * the smallest available page from the freelists 2315 */ 2316 static __always_inline 2317 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2318 int migratetype) 2319 { 2320 unsigned int current_order; 2321 struct free_area *area; 2322 struct page *page; 2323 2324 /* Find a page of the appropriate size in the preferred list */ 2325 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2326 area = &(zone->free_area[current_order]); 2327 page = get_page_from_free_area(area, migratetype); 2328 if (!page) 2329 continue; 2330 del_page_from_free_list(page, zone, current_order); 2331 expand(zone, page, order, current_order, migratetype); 2332 set_pcppage_migratetype(page, migratetype); 2333 return page; 2334 } 2335 2336 return NULL; 2337 } 2338 2339 2340 /* 2341 * This array describes the order lists are fallen back to when 2342 * the free lists for the desirable migrate type are depleted 2343 */ 2344 static int fallbacks[MIGRATE_TYPES][3] = { 2345 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2346 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2347 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2348 #ifdef CONFIG_CMA 2349 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2350 #endif 2351 #ifdef CONFIG_MEMORY_ISOLATION 2352 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2353 #endif 2354 }; 2355 2356 #ifdef CONFIG_CMA 2357 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2358 unsigned int order) 2359 { 2360 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2361 } 2362 #else 2363 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2364 unsigned int order) { return NULL; } 2365 #endif 2366 2367 /* 2368 * Move the free pages in a range to the freelist tail of the requested type. 2369 * Note that start_page and end_pages are not aligned on a pageblock 2370 * boundary. If alignment is required, use move_freepages_block() 2371 */ 2372 static int move_freepages(struct zone *zone, 2373 struct page *start_page, struct page *end_page, 2374 int migratetype, int *num_movable) 2375 { 2376 struct page *page; 2377 unsigned int order; 2378 int pages_moved = 0; 2379 2380 for (page = start_page; page <= end_page;) { 2381 if (!pfn_valid_within(page_to_pfn(page))) { 2382 page++; 2383 continue; 2384 } 2385 2386 if (!PageBuddy(page)) { 2387 /* 2388 * We assume that pages that could be isolated for 2389 * migration are movable. But we don't actually try 2390 * isolating, as that would be expensive. 2391 */ 2392 if (num_movable && 2393 (PageLRU(page) || __PageMovable(page))) 2394 (*num_movable)++; 2395 2396 page++; 2397 continue; 2398 } 2399 2400 /* Make sure we are not inadvertently changing nodes */ 2401 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2402 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2403 2404 order = buddy_order(page); 2405 move_to_free_list(page, zone, order, migratetype); 2406 page += 1 << order; 2407 pages_moved += 1 << order; 2408 } 2409 2410 return pages_moved; 2411 } 2412 2413 int move_freepages_block(struct zone *zone, struct page *page, 2414 int migratetype, int *num_movable) 2415 { 2416 unsigned long start_pfn, end_pfn; 2417 struct page *start_page, *end_page; 2418 2419 if (num_movable) 2420 *num_movable = 0; 2421 2422 start_pfn = page_to_pfn(page); 2423 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2424 start_page = pfn_to_page(start_pfn); 2425 end_page = start_page + pageblock_nr_pages - 1; 2426 end_pfn = start_pfn + pageblock_nr_pages - 1; 2427 2428 /* Do not cross zone boundaries */ 2429 if (!zone_spans_pfn(zone, start_pfn)) 2430 start_page = page; 2431 if (!zone_spans_pfn(zone, end_pfn)) 2432 return 0; 2433 2434 return move_freepages(zone, start_page, end_page, migratetype, 2435 num_movable); 2436 } 2437 2438 static void change_pageblock_range(struct page *pageblock_page, 2439 int start_order, int migratetype) 2440 { 2441 int nr_pageblocks = 1 << (start_order - pageblock_order); 2442 2443 while (nr_pageblocks--) { 2444 set_pageblock_migratetype(pageblock_page, migratetype); 2445 pageblock_page += pageblock_nr_pages; 2446 } 2447 } 2448 2449 /* 2450 * When we are falling back to another migratetype during allocation, try to 2451 * steal extra free pages from the same pageblocks to satisfy further 2452 * allocations, instead of polluting multiple pageblocks. 2453 * 2454 * If we are stealing a relatively large buddy page, it is likely there will 2455 * be more free pages in the pageblock, so try to steal them all. For 2456 * reclaimable and unmovable allocations, we steal regardless of page size, 2457 * as fragmentation caused by those allocations polluting movable pageblocks 2458 * is worse than movable allocations stealing from unmovable and reclaimable 2459 * pageblocks. 2460 */ 2461 static bool can_steal_fallback(unsigned int order, int start_mt) 2462 { 2463 /* 2464 * Leaving this order check is intended, although there is 2465 * relaxed order check in next check. The reason is that 2466 * we can actually steal whole pageblock if this condition met, 2467 * but, below check doesn't guarantee it and that is just heuristic 2468 * so could be changed anytime. 2469 */ 2470 if (order >= pageblock_order) 2471 return true; 2472 2473 if (order >= pageblock_order / 2 || 2474 start_mt == MIGRATE_RECLAIMABLE || 2475 start_mt == MIGRATE_UNMOVABLE || 2476 page_group_by_mobility_disabled) 2477 return true; 2478 2479 return false; 2480 } 2481 2482 static inline void boost_watermark(struct zone *zone) 2483 { 2484 unsigned long max_boost; 2485 2486 if (!watermark_boost_factor) 2487 return; 2488 /* 2489 * Don't bother in zones that are unlikely to produce results. 2490 * On small machines, including kdump capture kernels running 2491 * in a small area, boosting the watermark can cause an out of 2492 * memory situation immediately. 2493 */ 2494 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2495 return; 2496 2497 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2498 watermark_boost_factor, 10000); 2499 2500 /* 2501 * high watermark may be uninitialised if fragmentation occurs 2502 * very early in boot so do not boost. We do not fall 2503 * through and boost by pageblock_nr_pages as failing 2504 * allocations that early means that reclaim is not going 2505 * to help and it may even be impossible to reclaim the 2506 * boosted watermark resulting in a hang. 2507 */ 2508 if (!max_boost) 2509 return; 2510 2511 max_boost = max(pageblock_nr_pages, max_boost); 2512 2513 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2514 max_boost); 2515 } 2516 2517 /* 2518 * This function implements actual steal behaviour. If order is large enough, 2519 * we can steal whole pageblock. If not, we first move freepages in this 2520 * pageblock to our migratetype and determine how many already-allocated pages 2521 * are there in the pageblock with a compatible migratetype. If at least half 2522 * of pages are free or compatible, we can change migratetype of the pageblock 2523 * itself, so pages freed in the future will be put on the correct free list. 2524 */ 2525 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2526 unsigned int alloc_flags, int start_type, bool whole_block) 2527 { 2528 unsigned int current_order = buddy_order(page); 2529 int free_pages, movable_pages, alike_pages; 2530 int old_block_type; 2531 2532 old_block_type = get_pageblock_migratetype(page); 2533 2534 /* 2535 * This can happen due to races and we want to prevent broken 2536 * highatomic accounting. 2537 */ 2538 if (is_migrate_highatomic(old_block_type)) 2539 goto single_page; 2540 2541 /* Take ownership for orders >= pageblock_order */ 2542 if (current_order >= pageblock_order) { 2543 change_pageblock_range(page, current_order, start_type); 2544 goto single_page; 2545 } 2546 2547 /* 2548 * Boost watermarks to increase reclaim pressure to reduce the 2549 * likelihood of future fallbacks. Wake kswapd now as the node 2550 * may be balanced overall and kswapd will not wake naturally. 2551 */ 2552 boost_watermark(zone); 2553 if (alloc_flags & ALLOC_KSWAPD) 2554 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2555 2556 /* We are not allowed to try stealing from the whole block */ 2557 if (!whole_block) 2558 goto single_page; 2559 2560 free_pages = move_freepages_block(zone, page, start_type, 2561 &movable_pages); 2562 /* 2563 * Determine how many pages are compatible with our allocation. 2564 * For movable allocation, it's the number of movable pages which 2565 * we just obtained. For other types it's a bit more tricky. 2566 */ 2567 if (start_type == MIGRATE_MOVABLE) { 2568 alike_pages = movable_pages; 2569 } else { 2570 /* 2571 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2572 * to MOVABLE pageblock, consider all non-movable pages as 2573 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2574 * vice versa, be conservative since we can't distinguish the 2575 * exact migratetype of non-movable pages. 2576 */ 2577 if (old_block_type == MIGRATE_MOVABLE) 2578 alike_pages = pageblock_nr_pages 2579 - (free_pages + movable_pages); 2580 else 2581 alike_pages = 0; 2582 } 2583 2584 /* moving whole block can fail due to zone boundary conditions */ 2585 if (!free_pages) 2586 goto single_page; 2587 2588 /* 2589 * If a sufficient number of pages in the block are either free or of 2590 * comparable migratability as our allocation, claim the whole block. 2591 */ 2592 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2593 page_group_by_mobility_disabled) 2594 set_pageblock_migratetype(page, start_type); 2595 2596 return; 2597 2598 single_page: 2599 move_to_free_list(page, zone, current_order, start_type); 2600 } 2601 2602 /* 2603 * Check whether there is a suitable fallback freepage with requested order. 2604 * If only_stealable is true, this function returns fallback_mt only if 2605 * we can steal other freepages all together. This would help to reduce 2606 * fragmentation due to mixed migratetype pages in one pageblock. 2607 */ 2608 int find_suitable_fallback(struct free_area *area, unsigned int order, 2609 int migratetype, bool only_stealable, bool *can_steal) 2610 { 2611 int i; 2612 int fallback_mt; 2613 2614 if (area->nr_free == 0) 2615 return -1; 2616 2617 *can_steal = false; 2618 for (i = 0;; i++) { 2619 fallback_mt = fallbacks[migratetype][i]; 2620 if (fallback_mt == MIGRATE_TYPES) 2621 break; 2622 2623 if (free_area_empty(area, fallback_mt)) 2624 continue; 2625 2626 if (can_steal_fallback(order, migratetype)) 2627 *can_steal = true; 2628 2629 if (!only_stealable) 2630 return fallback_mt; 2631 2632 if (*can_steal) 2633 return fallback_mt; 2634 } 2635 2636 return -1; 2637 } 2638 2639 /* 2640 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2641 * there are no empty page blocks that contain a page with a suitable order 2642 */ 2643 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2644 unsigned int alloc_order) 2645 { 2646 int mt; 2647 unsigned long max_managed, flags; 2648 2649 /* 2650 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2651 * Check is race-prone but harmless. 2652 */ 2653 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2654 if (zone->nr_reserved_highatomic >= max_managed) 2655 return; 2656 2657 spin_lock_irqsave(&zone->lock, flags); 2658 2659 /* Recheck the nr_reserved_highatomic limit under the lock */ 2660 if (zone->nr_reserved_highatomic >= max_managed) 2661 goto out_unlock; 2662 2663 /* Yoink! */ 2664 mt = get_pageblock_migratetype(page); 2665 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2666 && !is_migrate_cma(mt)) { 2667 zone->nr_reserved_highatomic += pageblock_nr_pages; 2668 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2669 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2670 } 2671 2672 out_unlock: 2673 spin_unlock_irqrestore(&zone->lock, flags); 2674 } 2675 2676 /* 2677 * Used when an allocation is about to fail under memory pressure. This 2678 * potentially hurts the reliability of high-order allocations when under 2679 * intense memory pressure but failed atomic allocations should be easier 2680 * to recover from than an OOM. 2681 * 2682 * If @force is true, try to unreserve a pageblock even though highatomic 2683 * pageblock is exhausted. 2684 */ 2685 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2686 bool force) 2687 { 2688 struct zonelist *zonelist = ac->zonelist; 2689 unsigned long flags; 2690 struct zoneref *z; 2691 struct zone *zone; 2692 struct page *page; 2693 int order; 2694 bool ret; 2695 2696 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2697 ac->nodemask) { 2698 /* 2699 * Preserve at least one pageblock unless memory pressure 2700 * is really high. 2701 */ 2702 if (!force && zone->nr_reserved_highatomic <= 2703 pageblock_nr_pages) 2704 continue; 2705 2706 spin_lock_irqsave(&zone->lock, flags); 2707 for (order = 0; order < MAX_ORDER; order++) { 2708 struct free_area *area = &(zone->free_area[order]); 2709 2710 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2711 if (!page) 2712 continue; 2713 2714 /* 2715 * In page freeing path, migratetype change is racy so 2716 * we can counter several free pages in a pageblock 2717 * in this loop althoug we changed the pageblock type 2718 * from highatomic to ac->migratetype. So we should 2719 * adjust the count once. 2720 */ 2721 if (is_migrate_highatomic_page(page)) { 2722 /* 2723 * It should never happen but changes to 2724 * locking could inadvertently allow a per-cpu 2725 * drain to add pages to MIGRATE_HIGHATOMIC 2726 * while unreserving so be safe and watch for 2727 * underflows. 2728 */ 2729 zone->nr_reserved_highatomic -= min( 2730 pageblock_nr_pages, 2731 zone->nr_reserved_highatomic); 2732 } 2733 2734 /* 2735 * Convert to ac->migratetype and avoid the normal 2736 * pageblock stealing heuristics. Minimally, the caller 2737 * is doing the work and needs the pages. More 2738 * importantly, if the block was always converted to 2739 * MIGRATE_UNMOVABLE or another type then the number 2740 * of pageblocks that cannot be completely freed 2741 * may increase. 2742 */ 2743 set_pageblock_migratetype(page, ac->migratetype); 2744 ret = move_freepages_block(zone, page, ac->migratetype, 2745 NULL); 2746 if (ret) { 2747 spin_unlock_irqrestore(&zone->lock, flags); 2748 return ret; 2749 } 2750 } 2751 spin_unlock_irqrestore(&zone->lock, flags); 2752 } 2753 2754 return false; 2755 } 2756 2757 /* 2758 * Try finding a free buddy page on the fallback list and put it on the free 2759 * list of requested migratetype, possibly along with other pages from the same 2760 * block, depending on fragmentation avoidance heuristics. Returns true if 2761 * fallback was found so that __rmqueue_smallest() can grab it. 2762 * 2763 * The use of signed ints for order and current_order is a deliberate 2764 * deviation from the rest of this file, to make the for loop 2765 * condition simpler. 2766 */ 2767 static __always_inline bool 2768 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2769 unsigned int alloc_flags) 2770 { 2771 struct free_area *area; 2772 int current_order; 2773 int min_order = order; 2774 struct page *page; 2775 int fallback_mt; 2776 bool can_steal; 2777 2778 /* 2779 * Do not steal pages from freelists belonging to other pageblocks 2780 * i.e. orders < pageblock_order. If there are no local zones free, 2781 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2782 */ 2783 if (alloc_flags & ALLOC_NOFRAGMENT) 2784 min_order = pageblock_order; 2785 2786 /* 2787 * Find the largest available free page in the other list. This roughly 2788 * approximates finding the pageblock with the most free pages, which 2789 * would be too costly to do exactly. 2790 */ 2791 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2792 --current_order) { 2793 area = &(zone->free_area[current_order]); 2794 fallback_mt = find_suitable_fallback(area, current_order, 2795 start_migratetype, false, &can_steal); 2796 if (fallback_mt == -1) 2797 continue; 2798 2799 /* 2800 * We cannot steal all free pages from the pageblock and the 2801 * requested migratetype is movable. In that case it's better to 2802 * steal and split the smallest available page instead of the 2803 * largest available page, because even if the next movable 2804 * allocation falls back into a different pageblock than this 2805 * one, it won't cause permanent fragmentation. 2806 */ 2807 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2808 && current_order > order) 2809 goto find_smallest; 2810 2811 goto do_steal; 2812 } 2813 2814 return false; 2815 2816 find_smallest: 2817 for (current_order = order; current_order < MAX_ORDER; 2818 current_order++) { 2819 area = &(zone->free_area[current_order]); 2820 fallback_mt = find_suitable_fallback(area, current_order, 2821 start_migratetype, false, &can_steal); 2822 if (fallback_mt != -1) 2823 break; 2824 } 2825 2826 /* 2827 * This should not happen - we already found a suitable fallback 2828 * when looking for the largest page. 2829 */ 2830 VM_BUG_ON(current_order == MAX_ORDER); 2831 2832 do_steal: 2833 page = get_page_from_free_area(area, fallback_mt); 2834 2835 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2836 can_steal); 2837 2838 trace_mm_page_alloc_extfrag(page, order, current_order, 2839 start_migratetype, fallback_mt); 2840 2841 return true; 2842 2843 } 2844 2845 /* 2846 * Do the hard work of removing an element from the buddy allocator. 2847 * Call me with the zone->lock already held. 2848 */ 2849 static __always_inline struct page * 2850 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2851 unsigned int alloc_flags) 2852 { 2853 struct page *page; 2854 2855 #ifdef CONFIG_CMA 2856 /* 2857 * Balance movable allocations between regular and CMA areas by 2858 * allocating from CMA when over half of the zone's free memory 2859 * is in the CMA area. 2860 */ 2861 if (alloc_flags & ALLOC_CMA && 2862 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2863 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2864 page = __rmqueue_cma_fallback(zone, order); 2865 if (page) 2866 return page; 2867 } 2868 #endif 2869 retry: 2870 page = __rmqueue_smallest(zone, order, migratetype); 2871 if (unlikely(!page)) { 2872 if (alloc_flags & ALLOC_CMA) 2873 page = __rmqueue_cma_fallback(zone, order); 2874 2875 if (!page && __rmqueue_fallback(zone, order, migratetype, 2876 alloc_flags)) 2877 goto retry; 2878 } 2879 2880 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2881 return page; 2882 } 2883 2884 /* 2885 * Obtain a specified number of elements from the buddy allocator, all under 2886 * a single hold of the lock, for efficiency. Add them to the supplied list. 2887 * Returns the number of new pages which were placed at *list. 2888 */ 2889 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2890 unsigned long count, struct list_head *list, 2891 int migratetype, unsigned int alloc_flags) 2892 { 2893 int i, alloced = 0; 2894 2895 spin_lock(&zone->lock); 2896 for (i = 0; i < count; ++i) { 2897 struct page *page = __rmqueue(zone, order, migratetype, 2898 alloc_flags); 2899 if (unlikely(page == NULL)) 2900 break; 2901 2902 if (unlikely(check_pcp_refill(page))) 2903 continue; 2904 2905 /* 2906 * Split buddy pages returned by expand() are received here in 2907 * physical page order. The page is added to the tail of 2908 * caller's list. From the callers perspective, the linked list 2909 * is ordered by page number under some conditions. This is 2910 * useful for IO devices that can forward direction from the 2911 * head, thus also in the physical page order. This is useful 2912 * for IO devices that can merge IO requests if the physical 2913 * pages are ordered properly. 2914 */ 2915 list_add_tail(&page->lru, list); 2916 alloced++; 2917 if (is_migrate_cma(get_pcppage_migratetype(page))) 2918 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2919 -(1 << order)); 2920 } 2921 2922 /* 2923 * i pages were removed from the buddy list even if some leak due 2924 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2925 * on i. Do not confuse with 'alloced' which is the number of 2926 * pages added to the pcp list. 2927 */ 2928 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2929 spin_unlock(&zone->lock); 2930 return alloced; 2931 } 2932 2933 #ifdef CONFIG_NUMA 2934 /* 2935 * Called from the vmstat counter updater to drain pagesets of this 2936 * currently executing processor on remote nodes after they have 2937 * expired. 2938 * 2939 * Note that this function must be called with the thread pinned to 2940 * a single processor. 2941 */ 2942 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2943 { 2944 unsigned long flags; 2945 int to_drain, batch; 2946 2947 local_irq_save(flags); 2948 batch = READ_ONCE(pcp->batch); 2949 to_drain = min(pcp->count, batch); 2950 if (to_drain > 0) 2951 free_pcppages_bulk(zone, to_drain, pcp); 2952 local_irq_restore(flags); 2953 } 2954 #endif 2955 2956 /* 2957 * Drain pcplists of the indicated processor and zone. 2958 * 2959 * The processor must either be the current processor and the 2960 * thread pinned to the current processor or a processor that 2961 * is not online. 2962 */ 2963 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2964 { 2965 unsigned long flags; 2966 struct per_cpu_pageset *pset; 2967 struct per_cpu_pages *pcp; 2968 2969 local_irq_save(flags); 2970 pset = per_cpu_ptr(zone->pageset, cpu); 2971 2972 pcp = &pset->pcp; 2973 if (pcp->count) 2974 free_pcppages_bulk(zone, pcp->count, pcp); 2975 local_irq_restore(flags); 2976 } 2977 2978 /* 2979 * Drain pcplists of all zones on the indicated processor. 2980 * 2981 * The processor must either be the current processor and the 2982 * thread pinned to the current processor or a processor that 2983 * is not online. 2984 */ 2985 static void drain_pages(unsigned int cpu) 2986 { 2987 struct zone *zone; 2988 2989 for_each_populated_zone(zone) { 2990 drain_pages_zone(cpu, zone); 2991 } 2992 } 2993 2994 /* 2995 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2996 * 2997 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2998 * the single zone's pages. 2999 */ 3000 void drain_local_pages(struct zone *zone) 3001 { 3002 int cpu = smp_processor_id(); 3003 3004 if (zone) 3005 drain_pages_zone(cpu, zone); 3006 else 3007 drain_pages(cpu); 3008 } 3009 3010 static void drain_local_pages_wq(struct work_struct *work) 3011 { 3012 struct pcpu_drain *drain; 3013 3014 drain = container_of(work, struct pcpu_drain, work); 3015 3016 /* 3017 * drain_all_pages doesn't use proper cpu hotplug protection so 3018 * we can race with cpu offline when the WQ can move this from 3019 * a cpu pinned worker to an unbound one. We can operate on a different 3020 * cpu which is allright but we also have to make sure to not move to 3021 * a different one. 3022 */ 3023 preempt_disable(); 3024 drain_local_pages(drain->zone); 3025 preempt_enable(); 3026 } 3027 3028 /* 3029 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3030 * 3031 * When zone parameter is non-NULL, spill just the single zone's pages. 3032 * 3033 * Note that this can be extremely slow as the draining happens in a workqueue. 3034 */ 3035 void drain_all_pages(struct zone *zone) 3036 { 3037 int cpu; 3038 3039 /* 3040 * Allocate in the BSS so we wont require allocation in 3041 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3042 */ 3043 static cpumask_t cpus_with_pcps; 3044 3045 /* 3046 * Make sure nobody triggers this path before mm_percpu_wq is fully 3047 * initialized. 3048 */ 3049 if (WARN_ON_ONCE(!mm_percpu_wq)) 3050 return; 3051 3052 /* 3053 * Do not drain if one is already in progress unless it's specific to 3054 * a zone. Such callers are primarily CMA and memory hotplug and need 3055 * the drain to be complete when the call returns. 3056 */ 3057 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3058 if (!zone) 3059 return; 3060 mutex_lock(&pcpu_drain_mutex); 3061 } 3062 3063 /* 3064 * We don't care about racing with CPU hotplug event 3065 * as offline notification will cause the notified 3066 * cpu to drain that CPU pcps and on_each_cpu_mask 3067 * disables preemption as part of its processing 3068 */ 3069 for_each_online_cpu(cpu) { 3070 struct per_cpu_pageset *pcp; 3071 struct zone *z; 3072 bool has_pcps = false; 3073 3074 if (zone) { 3075 pcp = per_cpu_ptr(zone->pageset, cpu); 3076 if (pcp->pcp.count) 3077 has_pcps = true; 3078 } else { 3079 for_each_populated_zone(z) { 3080 pcp = per_cpu_ptr(z->pageset, cpu); 3081 if (pcp->pcp.count) { 3082 has_pcps = true; 3083 break; 3084 } 3085 } 3086 } 3087 3088 if (has_pcps) 3089 cpumask_set_cpu(cpu, &cpus_with_pcps); 3090 else 3091 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3092 } 3093 3094 for_each_cpu(cpu, &cpus_with_pcps) { 3095 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3096 3097 drain->zone = zone; 3098 INIT_WORK(&drain->work, drain_local_pages_wq); 3099 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3100 } 3101 for_each_cpu(cpu, &cpus_with_pcps) 3102 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3103 3104 mutex_unlock(&pcpu_drain_mutex); 3105 } 3106 3107 #ifdef CONFIG_HIBERNATION 3108 3109 /* 3110 * Touch the watchdog for every WD_PAGE_COUNT pages. 3111 */ 3112 #define WD_PAGE_COUNT (128*1024) 3113 3114 void mark_free_pages(struct zone *zone) 3115 { 3116 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3117 unsigned long flags; 3118 unsigned int order, t; 3119 struct page *page; 3120 3121 if (zone_is_empty(zone)) 3122 return; 3123 3124 spin_lock_irqsave(&zone->lock, flags); 3125 3126 max_zone_pfn = zone_end_pfn(zone); 3127 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3128 if (pfn_valid(pfn)) { 3129 page = pfn_to_page(pfn); 3130 3131 if (!--page_count) { 3132 touch_nmi_watchdog(); 3133 page_count = WD_PAGE_COUNT; 3134 } 3135 3136 if (page_zone(page) != zone) 3137 continue; 3138 3139 if (!swsusp_page_is_forbidden(page)) 3140 swsusp_unset_page_free(page); 3141 } 3142 3143 for_each_migratetype_order(order, t) { 3144 list_for_each_entry(page, 3145 &zone->free_area[order].free_list[t], lru) { 3146 unsigned long i; 3147 3148 pfn = page_to_pfn(page); 3149 for (i = 0; i < (1UL << order); i++) { 3150 if (!--page_count) { 3151 touch_nmi_watchdog(); 3152 page_count = WD_PAGE_COUNT; 3153 } 3154 swsusp_set_page_free(pfn_to_page(pfn + i)); 3155 } 3156 } 3157 } 3158 spin_unlock_irqrestore(&zone->lock, flags); 3159 } 3160 #endif /* CONFIG_PM */ 3161 3162 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3163 { 3164 int migratetype; 3165 3166 if (!free_pcp_prepare(page)) 3167 return false; 3168 3169 migratetype = get_pfnblock_migratetype(page, pfn); 3170 set_pcppage_migratetype(page, migratetype); 3171 return true; 3172 } 3173 3174 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3175 { 3176 struct zone *zone = page_zone(page); 3177 struct per_cpu_pages *pcp; 3178 int migratetype; 3179 3180 migratetype = get_pcppage_migratetype(page); 3181 __count_vm_event(PGFREE); 3182 3183 /* 3184 * We only track unmovable, reclaimable and movable on pcp lists. 3185 * Free ISOLATE pages back to the allocator because they are being 3186 * offlined but treat HIGHATOMIC as movable pages so we can get those 3187 * areas back if necessary. Otherwise, we may have to free 3188 * excessively into the page allocator 3189 */ 3190 if (migratetype >= MIGRATE_PCPTYPES) { 3191 if (unlikely(is_migrate_isolate(migratetype))) { 3192 free_one_page(zone, page, pfn, 0, migratetype, 3193 FPI_NONE); 3194 return; 3195 } 3196 migratetype = MIGRATE_MOVABLE; 3197 } 3198 3199 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3200 list_add(&page->lru, &pcp->lists[migratetype]); 3201 pcp->count++; 3202 if (pcp->count >= pcp->high) { 3203 unsigned long batch = READ_ONCE(pcp->batch); 3204 free_pcppages_bulk(zone, batch, pcp); 3205 } 3206 } 3207 3208 /* 3209 * Free a 0-order page 3210 */ 3211 void free_unref_page(struct page *page) 3212 { 3213 unsigned long flags; 3214 unsigned long pfn = page_to_pfn(page); 3215 3216 if (!free_unref_page_prepare(page, pfn)) 3217 return; 3218 3219 local_irq_save(flags); 3220 free_unref_page_commit(page, pfn); 3221 local_irq_restore(flags); 3222 } 3223 3224 /* 3225 * Free a list of 0-order pages 3226 */ 3227 void free_unref_page_list(struct list_head *list) 3228 { 3229 struct page *page, *next; 3230 unsigned long flags, pfn; 3231 int batch_count = 0; 3232 3233 /* Prepare pages for freeing */ 3234 list_for_each_entry_safe(page, next, list, lru) { 3235 pfn = page_to_pfn(page); 3236 if (!free_unref_page_prepare(page, pfn)) 3237 list_del(&page->lru); 3238 set_page_private(page, pfn); 3239 } 3240 3241 local_irq_save(flags); 3242 list_for_each_entry_safe(page, next, list, lru) { 3243 unsigned long pfn = page_private(page); 3244 3245 set_page_private(page, 0); 3246 trace_mm_page_free_batched(page); 3247 free_unref_page_commit(page, pfn); 3248 3249 /* 3250 * Guard against excessive IRQ disabled times when we get 3251 * a large list of pages to free. 3252 */ 3253 if (++batch_count == SWAP_CLUSTER_MAX) { 3254 local_irq_restore(flags); 3255 batch_count = 0; 3256 local_irq_save(flags); 3257 } 3258 } 3259 local_irq_restore(flags); 3260 } 3261 3262 /* 3263 * split_page takes a non-compound higher-order page, and splits it into 3264 * n (1<<order) sub-pages: page[0..n] 3265 * Each sub-page must be freed individually. 3266 * 3267 * Note: this is probably too low level an operation for use in drivers. 3268 * Please consult with lkml before using this in your driver. 3269 */ 3270 void split_page(struct page *page, unsigned int order) 3271 { 3272 int i; 3273 3274 VM_BUG_ON_PAGE(PageCompound(page), page); 3275 VM_BUG_ON_PAGE(!page_count(page), page); 3276 3277 for (i = 1; i < (1 << order); i++) 3278 set_page_refcounted(page + i); 3279 split_page_owner(page, 1 << order); 3280 } 3281 EXPORT_SYMBOL_GPL(split_page); 3282 3283 int __isolate_free_page(struct page *page, unsigned int order) 3284 { 3285 unsigned long watermark; 3286 struct zone *zone; 3287 int mt; 3288 3289 BUG_ON(!PageBuddy(page)); 3290 3291 zone = page_zone(page); 3292 mt = get_pageblock_migratetype(page); 3293 3294 if (!is_migrate_isolate(mt)) { 3295 /* 3296 * Obey watermarks as if the page was being allocated. We can 3297 * emulate a high-order watermark check with a raised order-0 3298 * watermark, because we already know our high-order page 3299 * exists. 3300 */ 3301 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3302 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3303 return 0; 3304 3305 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3306 } 3307 3308 /* Remove page from free list */ 3309 3310 del_page_from_free_list(page, zone, order); 3311 3312 /* 3313 * Set the pageblock if the isolated page is at least half of a 3314 * pageblock 3315 */ 3316 if (order >= pageblock_order - 1) { 3317 struct page *endpage = page + (1 << order) - 1; 3318 for (; page < endpage; page += pageblock_nr_pages) { 3319 int mt = get_pageblock_migratetype(page); 3320 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3321 && !is_migrate_highatomic(mt)) 3322 set_pageblock_migratetype(page, 3323 MIGRATE_MOVABLE); 3324 } 3325 } 3326 3327 3328 return 1UL << order; 3329 } 3330 3331 /** 3332 * __putback_isolated_page - Return a now-isolated page back where we got it 3333 * @page: Page that was isolated 3334 * @order: Order of the isolated page 3335 * @mt: The page's pageblock's migratetype 3336 * 3337 * This function is meant to return a page pulled from the free lists via 3338 * __isolate_free_page back to the free lists they were pulled from. 3339 */ 3340 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3341 { 3342 struct zone *zone = page_zone(page); 3343 3344 /* zone lock should be held when this function is called */ 3345 lockdep_assert_held(&zone->lock); 3346 3347 /* Return isolated page to tail of freelist. */ 3348 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3349 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3350 } 3351 3352 /* 3353 * Update NUMA hit/miss statistics 3354 * 3355 * Must be called with interrupts disabled. 3356 */ 3357 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3358 { 3359 #ifdef CONFIG_NUMA 3360 enum numa_stat_item local_stat = NUMA_LOCAL; 3361 3362 /* skip numa counters update if numa stats is disabled */ 3363 if (!static_branch_likely(&vm_numa_stat_key)) 3364 return; 3365 3366 if (zone_to_nid(z) != numa_node_id()) 3367 local_stat = NUMA_OTHER; 3368 3369 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3370 __inc_numa_state(z, NUMA_HIT); 3371 else { 3372 __inc_numa_state(z, NUMA_MISS); 3373 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3374 } 3375 __inc_numa_state(z, local_stat); 3376 #endif 3377 } 3378 3379 /* Remove page from the per-cpu list, caller must protect the list */ 3380 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3381 unsigned int alloc_flags, 3382 struct per_cpu_pages *pcp, 3383 struct list_head *list) 3384 { 3385 struct page *page; 3386 3387 do { 3388 if (list_empty(list)) { 3389 pcp->count += rmqueue_bulk(zone, 0, 3390 pcp->batch, list, 3391 migratetype, alloc_flags); 3392 if (unlikely(list_empty(list))) 3393 return NULL; 3394 } 3395 3396 page = list_first_entry(list, struct page, lru); 3397 list_del(&page->lru); 3398 pcp->count--; 3399 } while (check_new_pcp(page)); 3400 3401 return page; 3402 } 3403 3404 /* Lock and remove page from the per-cpu list */ 3405 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3406 struct zone *zone, gfp_t gfp_flags, 3407 int migratetype, unsigned int alloc_flags) 3408 { 3409 struct per_cpu_pages *pcp; 3410 struct list_head *list; 3411 struct page *page; 3412 unsigned long flags; 3413 3414 local_irq_save(flags); 3415 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3416 list = &pcp->lists[migratetype]; 3417 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3418 if (page) { 3419 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3420 zone_statistics(preferred_zone, zone); 3421 } 3422 local_irq_restore(flags); 3423 return page; 3424 } 3425 3426 /* 3427 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3428 */ 3429 static inline 3430 struct page *rmqueue(struct zone *preferred_zone, 3431 struct zone *zone, unsigned int order, 3432 gfp_t gfp_flags, unsigned int alloc_flags, 3433 int migratetype) 3434 { 3435 unsigned long flags; 3436 struct page *page; 3437 3438 if (likely(order == 0)) { 3439 /* 3440 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3441 * we need to skip it when CMA area isn't allowed. 3442 */ 3443 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3444 migratetype != MIGRATE_MOVABLE) { 3445 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3446 migratetype, alloc_flags); 3447 goto out; 3448 } 3449 } 3450 3451 /* 3452 * We most definitely don't want callers attempting to 3453 * allocate greater than order-1 page units with __GFP_NOFAIL. 3454 */ 3455 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3456 spin_lock_irqsave(&zone->lock, flags); 3457 3458 do { 3459 page = NULL; 3460 /* 3461 * order-0 request can reach here when the pcplist is skipped 3462 * due to non-CMA allocation context. HIGHATOMIC area is 3463 * reserved for high-order atomic allocation, so order-0 3464 * request should skip it. 3465 */ 3466 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3467 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3468 if (page) 3469 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3470 } 3471 if (!page) 3472 page = __rmqueue(zone, order, migratetype, alloc_flags); 3473 } while (page && check_new_pages(page, order)); 3474 spin_unlock(&zone->lock); 3475 if (!page) 3476 goto failed; 3477 __mod_zone_freepage_state(zone, -(1 << order), 3478 get_pcppage_migratetype(page)); 3479 3480 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3481 zone_statistics(preferred_zone, zone); 3482 local_irq_restore(flags); 3483 3484 out: 3485 /* Separate test+clear to avoid unnecessary atomics */ 3486 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3487 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3488 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3489 } 3490 3491 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3492 return page; 3493 3494 failed: 3495 local_irq_restore(flags); 3496 return NULL; 3497 } 3498 3499 #ifdef CONFIG_FAIL_PAGE_ALLOC 3500 3501 static struct { 3502 struct fault_attr attr; 3503 3504 bool ignore_gfp_highmem; 3505 bool ignore_gfp_reclaim; 3506 u32 min_order; 3507 } fail_page_alloc = { 3508 .attr = FAULT_ATTR_INITIALIZER, 3509 .ignore_gfp_reclaim = true, 3510 .ignore_gfp_highmem = true, 3511 .min_order = 1, 3512 }; 3513 3514 static int __init setup_fail_page_alloc(char *str) 3515 { 3516 return setup_fault_attr(&fail_page_alloc.attr, str); 3517 } 3518 __setup("fail_page_alloc=", setup_fail_page_alloc); 3519 3520 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3521 { 3522 if (order < fail_page_alloc.min_order) 3523 return false; 3524 if (gfp_mask & __GFP_NOFAIL) 3525 return false; 3526 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3527 return false; 3528 if (fail_page_alloc.ignore_gfp_reclaim && 3529 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3530 return false; 3531 3532 return should_fail(&fail_page_alloc.attr, 1 << order); 3533 } 3534 3535 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3536 3537 static int __init fail_page_alloc_debugfs(void) 3538 { 3539 umode_t mode = S_IFREG | 0600; 3540 struct dentry *dir; 3541 3542 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3543 &fail_page_alloc.attr); 3544 3545 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3546 &fail_page_alloc.ignore_gfp_reclaim); 3547 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3548 &fail_page_alloc.ignore_gfp_highmem); 3549 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3550 3551 return 0; 3552 } 3553 3554 late_initcall(fail_page_alloc_debugfs); 3555 3556 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3557 3558 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3559 3560 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3561 { 3562 return false; 3563 } 3564 3565 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3566 3567 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3568 { 3569 return __should_fail_alloc_page(gfp_mask, order); 3570 } 3571 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3572 3573 static inline long __zone_watermark_unusable_free(struct zone *z, 3574 unsigned int order, unsigned int alloc_flags) 3575 { 3576 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3577 long unusable_free = (1 << order) - 1; 3578 3579 /* 3580 * If the caller does not have rights to ALLOC_HARDER then subtract 3581 * the high-atomic reserves. This will over-estimate the size of the 3582 * atomic reserve but it avoids a search. 3583 */ 3584 if (likely(!alloc_harder)) 3585 unusable_free += z->nr_reserved_highatomic; 3586 3587 #ifdef CONFIG_CMA 3588 /* If allocation can't use CMA areas don't use free CMA pages */ 3589 if (!(alloc_flags & ALLOC_CMA)) 3590 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3591 #endif 3592 3593 return unusable_free; 3594 } 3595 3596 /* 3597 * Return true if free base pages are above 'mark'. For high-order checks it 3598 * will return true of the order-0 watermark is reached and there is at least 3599 * one free page of a suitable size. Checking now avoids taking the zone lock 3600 * to check in the allocation paths if no pages are free. 3601 */ 3602 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3603 int highest_zoneidx, unsigned int alloc_flags, 3604 long free_pages) 3605 { 3606 long min = mark; 3607 int o; 3608 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3609 3610 /* free_pages may go negative - that's OK */ 3611 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3612 3613 if (alloc_flags & ALLOC_HIGH) 3614 min -= min / 2; 3615 3616 if (unlikely(alloc_harder)) { 3617 /* 3618 * OOM victims can try even harder than normal ALLOC_HARDER 3619 * users on the grounds that it's definitely going to be in 3620 * the exit path shortly and free memory. Any allocation it 3621 * makes during the free path will be small and short-lived. 3622 */ 3623 if (alloc_flags & ALLOC_OOM) 3624 min -= min / 2; 3625 else 3626 min -= min / 4; 3627 } 3628 3629 /* 3630 * Check watermarks for an order-0 allocation request. If these 3631 * are not met, then a high-order request also cannot go ahead 3632 * even if a suitable page happened to be free. 3633 */ 3634 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3635 return false; 3636 3637 /* If this is an order-0 request then the watermark is fine */ 3638 if (!order) 3639 return true; 3640 3641 /* For a high-order request, check at least one suitable page is free */ 3642 for (o = order; o < MAX_ORDER; o++) { 3643 struct free_area *area = &z->free_area[o]; 3644 int mt; 3645 3646 if (!area->nr_free) 3647 continue; 3648 3649 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3650 if (!free_area_empty(area, mt)) 3651 return true; 3652 } 3653 3654 #ifdef CONFIG_CMA 3655 if ((alloc_flags & ALLOC_CMA) && 3656 !free_area_empty(area, MIGRATE_CMA)) { 3657 return true; 3658 } 3659 #endif 3660 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3661 return true; 3662 } 3663 return false; 3664 } 3665 3666 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3667 int highest_zoneidx, unsigned int alloc_flags) 3668 { 3669 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3670 zone_page_state(z, NR_FREE_PAGES)); 3671 } 3672 3673 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3674 unsigned long mark, int highest_zoneidx, 3675 unsigned int alloc_flags, gfp_t gfp_mask) 3676 { 3677 long free_pages; 3678 3679 free_pages = zone_page_state(z, NR_FREE_PAGES); 3680 3681 /* 3682 * Fast check for order-0 only. If this fails then the reserves 3683 * need to be calculated. 3684 */ 3685 if (!order) { 3686 long fast_free; 3687 3688 fast_free = free_pages; 3689 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3690 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3691 return true; 3692 } 3693 3694 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3695 free_pages)) 3696 return true; 3697 /* 3698 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3699 * when checking the min watermark. The min watermark is the 3700 * point where boosting is ignored so that kswapd is woken up 3701 * when below the low watermark. 3702 */ 3703 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3704 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3705 mark = z->_watermark[WMARK_MIN]; 3706 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3707 alloc_flags, free_pages); 3708 } 3709 3710 return false; 3711 } 3712 3713 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3714 unsigned long mark, int highest_zoneidx) 3715 { 3716 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3717 3718 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3719 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3720 3721 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3722 free_pages); 3723 } 3724 3725 #ifdef CONFIG_NUMA 3726 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3727 { 3728 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3729 node_reclaim_distance; 3730 } 3731 #else /* CONFIG_NUMA */ 3732 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3733 { 3734 return true; 3735 } 3736 #endif /* CONFIG_NUMA */ 3737 3738 /* 3739 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3740 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3741 * premature use of a lower zone may cause lowmem pressure problems that 3742 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3743 * probably too small. It only makes sense to spread allocations to avoid 3744 * fragmentation between the Normal and DMA32 zones. 3745 */ 3746 static inline unsigned int 3747 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3748 { 3749 unsigned int alloc_flags; 3750 3751 /* 3752 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3753 * to save a branch. 3754 */ 3755 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3756 3757 #ifdef CONFIG_ZONE_DMA32 3758 if (!zone) 3759 return alloc_flags; 3760 3761 if (zone_idx(zone) != ZONE_NORMAL) 3762 return alloc_flags; 3763 3764 /* 3765 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3766 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3767 * on UMA that if Normal is populated then so is DMA32. 3768 */ 3769 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3770 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3771 return alloc_flags; 3772 3773 alloc_flags |= ALLOC_NOFRAGMENT; 3774 #endif /* CONFIG_ZONE_DMA32 */ 3775 return alloc_flags; 3776 } 3777 3778 static inline unsigned int current_alloc_flags(gfp_t gfp_mask, 3779 unsigned int alloc_flags) 3780 { 3781 #ifdef CONFIG_CMA 3782 unsigned int pflags = current->flags; 3783 3784 if (!(pflags & PF_MEMALLOC_NOCMA) && 3785 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3786 alloc_flags |= ALLOC_CMA; 3787 3788 #endif 3789 return alloc_flags; 3790 } 3791 3792 /* 3793 * get_page_from_freelist goes through the zonelist trying to allocate 3794 * a page. 3795 */ 3796 static struct page * 3797 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3798 const struct alloc_context *ac) 3799 { 3800 struct zoneref *z; 3801 struct zone *zone; 3802 struct pglist_data *last_pgdat_dirty_limit = NULL; 3803 bool no_fallback; 3804 3805 retry: 3806 /* 3807 * Scan zonelist, looking for a zone with enough free. 3808 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3809 */ 3810 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3811 z = ac->preferred_zoneref; 3812 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3813 ac->nodemask) { 3814 struct page *page; 3815 unsigned long mark; 3816 3817 if (cpusets_enabled() && 3818 (alloc_flags & ALLOC_CPUSET) && 3819 !__cpuset_zone_allowed(zone, gfp_mask)) 3820 continue; 3821 /* 3822 * When allocating a page cache page for writing, we 3823 * want to get it from a node that is within its dirty 3824 * limit, such that no single node holds more than its 3825 * proportional share of globally allowed dirty pages. 3826 * The dirty limits take into account the node's 3827 * lowmem reserves and high watermark so that kswapd 3828 * should be able to balance it without having to 3829 * write pages from its LRU list. 3830 * 3831 * XXX: For now, allow allocations to potentially 3832 * exceed the per-node dirty limit in the slowpath 3833 * (spread_dirty_pages unset) before going into reclaim, 3834 * which is important when on a NUMA setup the allowed 3835 * nodes are together not big enough to reach the 3836 * global limit. The proper fix for these situations 3837 * will require awareness of nodes in the 3838 * dirty-throttling and the flusher threads. 3839 */ 3840 if (ac->spread_dirty_pages) { 3841 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3842 continue; 3843 3844 if (!node_dirty_ok(zone->zone_pgdat)) { 3845 last_pgdat_dirty_limit = zone->zone_pgdat; 3846 continue; 3847 } 3848 } 3849 3850 if (no_fallback && nr_online_nodes > 1 && 3851 zone != ac->preferred_zoneref->zone) { 3852 int local_nid; 3853 3854 /* 3855 * If moving to a remote node, retry but allow 3856 * fragmenting fallbacks. Locality is more important 3857 * than fragmentation avoidance. 3858 */ 3859 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3860 if (zone_to_nid(zone) != local_nid) { 3861 alloc_flags &= ~ALLOC_NOFRAGMENT; 3862 goto retry; 3863 } 3864 } 3865 3866 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3867 if (!zone_watermark_fast(zone, order, mark, 3868 ac->highest_zoneidx, alloc_flags, 3869 gfp_mask)) { 3870 int ret; 3871 3872 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3873 /* 3874 * Watermark failed for this zone, but see if we can 3875 * grow this zone if it contains deferred pages. 3876 */ 3877 if (static_branch_unlikely(&deferred_pages)) { 3878 if (_deferred_grow_zone(zone, order)) 3879 goto try_this_zone; 3880 } 3881 #endif 3882 /* Checked here to keep the fast path fast */ 3883 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3884 if (alloc_flags & ALLOC_NO_WATERMARKS) 3885 goto try_this_zone; 3886 3887 if (node_reclaim_mode == 0 || 3888 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3889 continue; 3890 3891 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3892 switch (ret) { 3893 case NODE_RECLAIM_NOSCAN: 3894 /* did not scan */ 3895 continue; 3896 case NODE_RECLAIM_FULL: 3897 /* scanned but unreclaimable */ 3898 continue; 3899 default: 3900 /* did we reclaim enough */ 3901 if (zone_watermark_ok(zone, order, mark, 3902 ac->highest_zoneidx, alloc_flags)) 3903 goto try_this_zone; 3904 3905 continue; 3906 } 3907 } 3908 3909 try_this_zone: 3910 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3911 gfp_mask, alloc_flags, ac->migratetype); 3912 if (page) { 3913 prep_new_page(page, order, gfp_mask, alloc_flags); 3914 3915 /* 3916 * If this is a high-order atomic allocation then check 3917 * if the pageblock should be reserved for the future 3918 */ 3919 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3920 reserve_highatomic_pageblock(page, zone, order); 3921 3922 return page; 3923 } else { 3924 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3925 /* Try again if zone has deferred pages */ 3926 if (static_branch_unlikely(&deferred_pages)) { 3927 if (_deferred_grow_zone(zone, order)) 3928 goto try_this_zone; 3929 } 3930 #endif 3931 } 3932 } 3933 3934 /* 3935 * It's possible on a UMA machine to get through all zones that are 3936 * fragmented. If avoiding fragmentation, reset and try again. 3937 */ 3938 if (no_fallback) { 3939 alloc_flags &= ~ALLOC_NOFRAGMENT; 3940 goto retry; 3941 } 3942 3943 return NULL; 3944 } 3945 3946 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3947 { 3948 unsigned int filter = SHOW_MEM_FILTER_NODES; 3949 3950 /* 3951 * This documents exceptions given to allocations in certain 3952 * contexts that are allowed to allocate outside current's set 3953 * of allowed nodes. 3954 */ 3955 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3956 if (tsk_is_oom_victim(current) || 3957 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3958 filter &= ~SHOW_MEM_FILTER_NODES; 3959 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3960 filter &= ~SHOW_MEM_FILTER_NODES; 3961 3962 show_mem(filter, nodemask); 3963 } 3964 3965 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3966 { 3967 struct va_format vaf; 3968 va_list args; 3969 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3970 3971 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3972 return; 3973 3974 va_start(args, fmt); 3975 vaf.fmt = fmt; 3976 vaf.va = &args; 3977 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3978 current->comm, &vaf, gfp_mask, &gfp_mask, 3979 nodemask_pr_args(nodemask)); 3980 va_end(args); 3981 3982 cpuset_print_current_mems_allowed(); 3983 pr_cont("\n"); 3984 dump_stack(); 3985 warn_alloc_show_mem(gfp_mask, nodemask); 3986 } 3987 3988 static inline struct page * 3989 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3990 unsigned int alloc_flags, 3991 const struct alloc_context *ac) 3992 { 3993 struct page *page; 3994 3995 page = get_page_from_freelist(gfp_mask, order, 3996 alloc_flags|ALLOC_CPUSET, ac); 3997 /* 3998 * fallback to ignore cpuset restriction if our nodes 3999 * are depleted 4000 */ 4001 if (!page) 4002 page = get_page_from_freelist(gfp_mask, order, 4003 alloc_flags, ac); 4004 4005 return page; 4006 } 4007 4008 static inline struct page * 4009 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4010 const struct alloc_context *ac, unsigned long *did_some_progress) 4011 { 4012 struct oom_control oc = { 4013 .zonelist = ac->zonelist, 4014 .nodemask = ac->nodemask, 4015 .memcg = NULL, 4016 .gfp_mask = gfp_mask, 4017 .order = order, 4018 }; 4019 struct page *page; 4020 4021 *did_some_progress = 0; 4022 4023 /* 4024 * Acquire the oom lock. If that fails, somebody else is 4025 * making progress for us. 4026 */ 4027 if (!mutex_trylock(&oom_lock)) { 4028 *did_some_progress = 1; 4029 schedule_timeout_uninterruptible(1); 4030 return NULL; 4031 } 4032 4033 /* 4034 * Go through the zonelist yet one more time, keep very high watermark 4035 * here, this is only to catch a parallel oom killing, we must fail if 4036 * we're still under heavy pressure. But make sure that this reclaim 4037 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4038 * allocation which will never fail due to oom_lock already held. 4039 */ 4040 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4041 ~__GFP_DIRECT_RECLAIM, order, 4042 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4043 if (page) 4044 goto out; 4045 4046 /* Coredumps can quickly deplete all memory reserves */ 4047 if (current->flags & PF_DUMPCORE) 4048 goto out; 4049 /* The OOM killer will not help higher order allocs */ 4050 if (order > PAGE_ALLOC_COSTLY_ORDER) 4051 goto out; 4052 /* 4053 * We have already exhausted all our reclaim opportunities without any 4054 * success so it is time to admit defeat. We will skip the OOM killer 4055 * because it is very likely that the caller has a more reasonable 4056 * fallback than shooting a random task. 4057 * 4058 * The OOM killer may not free memory on a specific node. 4059 */ 4060 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4061 goto out; 4062 /* The OOM killer does not needlessly kill tasks for lowmem */ 4063 if (ac->highest_zoneidx < ZONE_NORMAL) 4064 goto out; 4065 if (pm_suspended_storage()) 4066 goto out; 4067 /* 4068 * XXX: GFP_NOFS allocations should rather fail than rely on 4069 * other request to make a forward progress. 4070 * We are in an unfortunate situation where out_of_memory cannot 4071 * do much for this context but let's try it to at least get 4072 * access to memory reserved if the current task is killed (see 4073 * out_of_memory). Once filesystems are ready to handle allocation 4074 * failures more gracefully we should just bail out here. 4075 */ 4076 4077 /* Exhausted what can be done so it's blame time */ 4078 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4079 *did_some_progress = 1; 4080 4081 /* 4082 * Help non-failing allocations by giving them access to memory 4083 * reserves 4084 */ 4085 if (gfp_mask & __GFP_NOFAIL) 4086 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4087 ALLOC_NO_WATERMARKS, ac); 4088 } 4089 out: 4090 mutex_unlock(&oom_lock); 4091 return page; 4092 } 4093 4094 /* 4095 * Maximum number of compaction retries wit a progress before OOM 4096 * killer is consider as the only way to move forward. 4097 */ 4098 #define MAX_COMPACT_RETRIES 16 4099 4100 #ifdef CONFIG_COMPACTION 4101 /* Try memory compaction for high-order allocations before reclaim */ 4102 static struct page * 4103 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4104 unsigned int alloc_flags, const struct alloc_context *ac, 4105 enum compact_priority prio, enum compact_result *compact_result) 4106 { 4107 struct page *page = NULL; 4108 unsigned long pflags; 4109 unsigned int noreclaim_flag; 4110 4111 if (!order) 4112 return NULL; 4113 4114 psi_memstall_enter(&pflags); 4115 noreclaim_flag = memalloc_noreclaim_save(); 4116 4117 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4118 prio, &page); 4119 4120 memalloc_noreclaim_restore(noreclaim_flag); 4121 psi_memstall_leave(&pflags); 4122 4123 /* 4124 * At least in one zone compaction wasn't deferred or skipped, so let's 4125 * count a compaction stall 4126 */ 4127 count_vm_event(COMPACTSTALL); 4128 4129 /* Prep a captured page if available */ 4130 if (page) 4131 prep_new_page(page, order, gfp_mask, alloc_flags); 4132 4133 /* Try get a page from the freelist if available */ 4134 if (!page) 4135 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4136 4137 if (page) { 4138 struct zone *zone = page_zone(page); 4139 4140 zone->compact_blockskip_flush = false; 4141 compaction_defer_reset(zone, order, true); 4142 count_vm_event(COMPACTSUCCESS); 4143 return page; 4144 } 4145 4146 /* 4147 * It's bad if compaction run occurs and fails. The most likely reason 4148 * is that pages exist, but not enough to satisfy watermarks. 4149 */ 4150 count_vm_event(COMPACTFAIL); 4151 4152 cond_resched(); 4153 4154 return NULL; 4155 } 4156 4157 static inline bool 4158 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4159 enum compact_result compact_result, 4160 enum compact_priority *compact_priority, 4161 int *compaction_retries) 4162 { 4163 int max_retries = MAX_COMPACT_RETRIES; 4164 int min_priority; 4165 bool ret = false; 4166 int retries = *compaction_retries; 4167 enum compact_priority priority = *compact_priority; 4168 4169 if (!order) 4170 return false; 4171 4172 if (compaction_made_progress(compact_result)) 4173 (*compaction_retries)++; 4174 4175 /* 4176 * compaction considers all the zone as desperately out of memory 4177 * so it doesn't really make much sense to retry except when the 4178 * failure could be caused by insufficient priority 4179 */ 4180 if (compaction_failed(compact_result)) 4181 goto check_priority; 4182 4183 /* 4184 * compaction was skipped because there are not enough order-0 pages 4185 * to work with, so we retry only if it looks like reclaim can help. 4186 */ 4187 if (compaction_needs_reclaim(compact_result)) { 4188 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4189 goto out; 4190 } 4191 4192 /* 4193 * make sure the compaction wasn't deferred or didn't bail out early 4194 * due to locks contention before we declare that we should give up. 4195 * But the next retry should use a higher priority if allowed, so 4196 * we don't just keep bailing out endlessly. 4197 */ 4198 if (compaction_withdrawn(compact_result)) { 4199 goto check_priority; 4200 } 4201 4202 /* 4203 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4204 * costly ones because they are de facto nofail and invoke OOM 4205 * killer to move on while costly can fail and users are ready 4206 * to cope with that. 1/4 retries is rather arbitrary but we 4207 * would need much more detailed feedback from compaction to 4208 * make a better decision. 4209 */ 4210 if (order > PAGE_ALLOC_COSTLY_ORDER) 4211 max_retries /= 4; 4212 if (*compaction_retries <= max_retries) { 4213 ret = true; 4214 goto out; 4215 } 4216 4217 /* 4218 * Make sure there are attempts at the highest priority if we exhausted 4219 * all retries or failed at the lower priorities. 4220 */ 4221 check_priority: 4222 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4223 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4224 4225 if (*compact_priority > min_priority) { 4226 (*compact_priority)--; 4227 *compaction_retries = 0; 4228 ret = true; 4229 } 4230 out: 4231 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4232 return ret; 4233 } 4234 #else 4235 static inline struct page * 4236 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4237 unsigned int alloc_flags, const struct alloc_context *ac, 4238 enum compact_priority prio, enum compact_result *compact_result) 4239 { 4240 *compact_result = COMPACT_SKIPPED; 4241 return NULL; 4242 } 4243 4244 static inline bool 4245 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4246 enum compact_result compact_result, 4247 enum compact_priority *compact_priority, 4248 int *compaction_retries) 4249 { 4250 struct zone *zone; 4251 struct zoneref *z; 4252 4253 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4254 return false; 4255 4256 /* 4257 * There are setups with compaction disabled which would prefer to loop 4258 * inside the allocator rather than hit the oom killer prematurely. 4259 * Let's give them a good hope and keep retrying while the order-0 4260 * watermarks are OK. 4261 */ 4262 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4263 ac->highest_zoneidx, ac->nodemask) { 4264 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4265 ac->highest_zoneidx, alloc_flags)) 4266 return true; 4267 } 4268 return false; 4269 } 4270 #endif /* CONFIG_COMPACTION */ 4271 4272 #ifdef CONFIG_LOCKDEP 4273 static struct lockdep_map __fs_reclaim_map = 4274 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4275 4276 static bool __need_reclaim(gfp_t gfp_mask) 4277 { 4278 /* no reclaim without waiting on it */ 4279 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4280 return false; 4281 4282 /* this guy won't enter reclaim */ 4283 if (current->flags & PF_MEMALLOC) 4284 return false; 4285 4286 if (gfp_mask & __GFP_NOLOCKDEP) 4287 return false; 4288 4289 return true; 4290 } 4291 4292 void __fs_reclaim_acquire(void) 4293 { 4294 lock_map_acquire(&__fs_reclaim_map); 4295 } 4296 4297 void __fs_reclaim_release(void) 4298 { 4299 lock_map_release(&__fs_reclaim_map); 4300 } 4301 4302 void fs_reclaim_acquire(gfp_t gfp_mask) 4303 { 4304 gfp_mask = current_gfp_context(gfp_mask); 4305 4306 if (__need_reclaim(gfp_mask)) { 4307 if (gfp_mask & __GFP_FS) 4308 __fs_reclaim_acquire(); 4309 4310 #ifdef CONFIG_MMU_NOTIFIER 4311 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4312 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4313 #endif 4314 4315 } 4316 } 4317 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4318 4319 void fs_reclaim_release(gfp_t gfp_mask) 4320 { 4321 gfp_mask = current_gfp_context(gfp_mask); 4322 4323 if (__need_reclaim(gfp_mask)) { 4324 if (gfp_mask & __GFP_FS) 4325 __fs_reclaim_release(); 4326 } 4327 } 4328 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4329 #endif 4330 4331 /* Perform direct synchronous page reclaim */ 4332 static unsigned long 4333 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4334 const struct alloc_context *ac) 4335 { 4336 unsigned int noreclaim_flag; 4337 unsigned long pflags, progress; 4338 4339 cond_resched(); 4340 4341 /* We now go into synchronous reclaim */ 4342 cpuset_memory_pressure_bump(); 4343 psi_memstall_enter(&pflags); 4344 fs_reclaim_acquire(gfp_mask); 4345 noreclaim_flag = memalloc_noreclaim_save(); 4346 4347 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4348 ac->nodemask); 4349 4350 memalloc_noreclaim_restore(noreclaim_flag); 4351 fs_reclaim_release(gfp_mask); 4352 psi_memstall_leave(&pflags); 4353 4354 cond_resched(); 4355 4356 return progress; 4357 } 4358 4359 /* The really slow allocator path where we enter direct reclaim */ 4360 static inline struct page * 4361 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4362 unsigned int alloc_flags, const struct alloc_context *ac, 4363 unsigned long *did_some_progress) 4364 { 4365 struct page *page = NULL; 4366 bool drained = false; 4367 4368 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4369 if (unlikely(!(*did_some_progress))) 4370 return NULL; 4371 4372 retry: 4373 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4374 4375 /* 4376 * If an allocation failed after direct reclaim, it could be because 4377 * pages are pinned on the per-cpu lists or in high alloc reserves. 4378 * Shrink them and try again 4379 */ 4380 if (!page && !drained) { 4381 unreserve_highatomic_pageblock(ac, false); 4382 drain_all_pages(NULL); 4383 drained = true; 4384 goto retry; 4385 } 4386 4387 return page; 4388 } 4389 4390 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4391 const struct alloc_context *ac) 4392 { 4393 struct zoneref *z; 4394 struct zone *zone; 4395 pg_data_t *last_pgdat = NULL; 4396 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4397 4398 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4399 ac->nodemask) { 4400 if (last_pgdat != zone->zone_pgdat) 4401 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4402 last_pgdat = zone->zone_pgdat; 4403 } 4404 } 4405 4406 static inline unsigned int 4407 gfp_to_alloc_flags(gfp_t gfp_mask) 4408 { 4409 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4410 4411 /* 4412 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4413 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4414 * to save two branches. 4415 */ 4416 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4417 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4418 4419 /* 4420 * The caller may dip into page reserves a bit more if the caller 4421 * cannot run direct reclaim, or if the caller has realtime scheduling 4422 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4423 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4424 */ 4425 alloc_flags |= (__force int) 4426 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4427 4428 if (gfp_mask & __GFP_ATOMIC) { 4429 /* 4430 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4431 * if it can't schedule. 4432 */ 4433 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4434 alloc_flags |= ALLOC_HARDER; 4435 /* 4436 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4437 * comment for __cpuset_node_allowed(). 4438 */ 4439 alloc_flags &= ~ALLOC_CPUSET; 4440 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4441 alloc_flags |= ALLOC_HARDER; 4442 4443 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags); 4444 4445 return alloc_flags; 4446 } 4447 4448 static bool oom_reserves_allowed(struct task_struct *tsk) 4449 { 4450 if (!tsk_is_oom_victim(tsk)) 4451 return false; 4452 4453 /* 4454 * !MMU doesn't have oom reaper so give access to memory reserves 4455 * only to the thread with TIF_MEMDIE set 4456 */ 4457 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4458 return false; 4459 4460 return true; 4461 } 4462 4463 /* 4464 * Distinguish requests which really need access to full memory 4465 * reserves from oom victims which can live with a portion of it 4466 */ 4467 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4468 { 4469 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4470 return 0; 4471 if (gfp_mask & __GFP_MEMALLOC) 4472 return ALLOC_NO_WATERMARKS; 4473 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4474 return ALLOC_NO_WATERMARKS; 4475 if (!in_interrupt()) { 4476 if (current->flags & PF_MEMALLOC) 4477 return ALLOC_NO_WATERMARKS; 4478 else if (oom_reserves_allowed(current)) 4479 return ALLOC_OOM; 4480 } 4481 4482 return 0; 4483 } 4484 4485 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4486 { 4487 return !!__gfp_pfmemalloc_flags(gfp_mask); 4488 } 4489 4490 /* 4491 * Checks whether it makes sense to retry the reclaim to make a forward progress 4492 * for the given allocation request. 4493 * 4494 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4495 * without success, or when we couldn't even meet the watermark if we 4496 * reclaimed all remaining pages on the LRU lists. 4497 * 4498 * Returns true if a retry is viable or false to enter the oom path. 4499 */ 4500 static inline bool 4501 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4502 struct alloc_context *ac, int alloc_flags, 4503 bool did_some_progress, int *no_progress_loops) 4504 { 4505 struct zone *zone; 4506 struct zoneref *z; 4507 bool ret = false; 4508 4509 /* 4510 * Costly allocations might have made a progress but this doesn't mean 4511 * their order will become available due to high fragmentation so 4512 * always increment the no progress counter for them 4513 */ 4514 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4515 *no_progress_loops = 0; 4516 else 4517 (*no_progress_loops)++; 4518 4519 /* 4520 * Make sure we converge to OOM if we cannot make any progress 4521 * several times in the row. 4522 */ 4523 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4524 /* Before OOM, exhaust highatomic_reserve */ 4525 return unreserve_highatomic_pageblock(ac, true); 4526 } 4527 4528 /* 4529 * Keep reclaiming pages while there is a chance this will lead 4530 * somewhere. If none of the target zones can satisfy our allocation 4531 * request even if all reclaimable pages are considered then we are 4532 * screwed and have to go OOM. 4533 */ 4534 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4535 ac->highest_zoneidx, ac->nodemask) { 4536 unsigned long available; 4537 unsigned long reclaimable; 4538 unsigned long min_wmark = min_wmark_pages(zone); 4539 bool wmark; 4540 4541 available = reclaimable = zone_reclaimable_pages(zone); 4542 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4543 4544 /* 4545 * Would the allocation succeed if we reclaimed all 4546 * reclaimable pages? 4547 */ 4548 wmark = __zone_watermark_ok(zone, order, min_wmark, 4549 ac->highest_zoneidx, alloc_flags, available); 4550 trace_reclaim_retry_zone(z, order, reclaimable, 4551 available, min_wmark, *no_progress_loops, wmark); 4552 if (wmark) { 4553 /* 4554 * If we didn't make any progress and have a lot of 4555 * dirty + writeback pages then we should wait for 4556 * an IO to complete to slow down the reclaim and 4557 * prevent from pre mature OOM 4558 */ 4559 if (!did_some_progress) { 4560 unsigned long write_pending; 4561 4562 write_pending = zone_page_state_snapshot(zone, 4563 NR_ZONE_WRITE_PENDING); 4564 4565 if (2 * write_pending > reclaimable) { 4566 congestion_wait(BLK_RW_ASYNC, HZ/10); 4567 return true; 4568 } 4569 } 4570 4571 ret = true; 4572 goto out; 4573 } 4574 } 4575 4576 out: 4577 /* 4578 * Memory allocation/reclaim might be called from a WQ context and the 4579 * current implementation of the WQ concurrency control doesn't 4580 * recognize that a particular WQ is congested if the worker thread is 4581 * looping without ever sleeping. Therefore we have to do a short sleep 4582 * here rather than calling cond_resched(). 4583 */ 4584 if (current->flags & PF_WQ_WORKER) 4585 schedule_timeout_uninterruptible(1); 4586 else 4587 cond_resched(); 4588 return ret; 4589 } 4590 4591 static inline bool 4592 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4593 { 4594 /* 4595 * It's possible that cpuset's mems_allowed and the nodemask from 4596 * mempolicy don't intersect. This should be normally dealt with by 4597 * policy_nodemask(), but it's possible to race with cpuset update in 4598 * such a way the check therein was true, and then it became false 4599 * before we got our cpuset_mems_cookie here. 4600 * This assumes that for all allocations, ac->nodemask can come only 4601 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4602 * when it does not intersect with the cpuset restrictions) or the 4603 * caller can deal with a violated nodemask. 4604 */ 4605 if (cpusets_enabled() && ac->nodemask && 4606 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4607 ac->nodemask = NULL; 4608 return true; 4609 } 4610 4611 /* 4612 * When updating a task's mems_allowed or mempolicy nodemask, it is 4613 * possible to race with parallel threads in such a way that our 4614 * allocation can fail while the mask is being updated. If we are about 4615 * to fail, check if the cpuset changed during allocation and if so, 4616 * retry. 4617 */ 4618 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4619 return true; 4620 4621 return false; 4622 } 4623 4624 static inline struct page * 4625 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4626 struct alloc_context *ac) 4627 { 4628 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4629 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4630 struct page *page = NULL; 4631 unsigned int alloc_flags; 4632 unsigned long did_some_progress; 4633 enum compact_priority compact_priority; 4634 enum compact_result compact_result; 4635 int compaction_retries; 4636 int no_progress_loops; 4637 unsigned int cpuset_mems_cookie; 4638 int reserve_flags; 4639 4640 /* 4641 * We also sanity check to catch abuse of atomic reserves being used by 4642 * callers that are not in atomic context. 4643 */ 4644 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4645 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4646 gfp_mask &= ~__GFP_ATOMIC; 4647 4648 retry_cpuset: 4649 compaction_retries = 0; 4650 no_progress_loops = 0; 4651 compact_priority = DEF_COMPACT_PRIORITY; 4652 cpuset_mems_cookie = read_mems_allowed_begin(); 4653 4654 /* 4655 * The fast path uses conservative alloc_flags to succeed only until 4656 * kswapd needs to be woken up, and to avoid the cost of setting up 4657 * alloc_flags precisely. So we do that now. 4658 */ 4659 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4660 4661 /* 4662 * We need to recalculate the starting point for the zonelist iterator 4663 * because we might have used different nodemask in the fast path, or 4664 * there was a cpuset modification and we are retrying - otherwise we 4665 * could end up iterating over non-eligible zones endlessly. 4666 */ 4667 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4668 ac->highest_zoneidx, ac->nodemask); 4669 if (!ac->preferred_zoneref->zone) 4670 goto nopage; 4671 4672 if (alloc_flags & ALLOC_KSWAPD) 4673 wake_all_kswapds(order, gfp_mask, ac); 4674 4675 /* 4676 * The adjusted alloc_flags might result in immediate success, so try 4677 * that first 4678 */ 4679 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4680 if (page) 4681 goto got_pg; 4682 4683 /* 4684 * For costly allocations, try direct compaction first, as it's likely 4685 * that we have enough base pages and don't need to reclaim. For non- 4686 * movable high-order allocations, do that as well, as compaction will 4687 * try prevent permanent fragmentation by migrating from blocks of the 4688 * same migratetype. 4689 * Don't try this for allocations that are allowed to ignore 4690 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4691 */ 4692 if (can_direct_reclaim && 4693 (costly_order || 4694 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4695 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4696 page = __alloc_pages_direct_compact(gfp_mask, order, 4697 alloc_flags, ac, 4698 INIT_COMPACT_PRIORITY, 4699 &compact_result); 4700 if (page) 4701 goto got_pg; 4702 4703 /* 4704 * Checks for costly allocations with __GFP_NORETRY, which 4705 * includes some THP page fault allocations 4706 */ 4707 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4708 /* 4709 * If allocating entire pageblock(s) and compaction 4710 * failed because all zones are below low watermarks 4711 * or is prohibited because it recently failed at this 4712 * order, fail immediately unless the allocator has 4713 * requested compaction and reclaim retry. 4714 * 4715 * Reclaim is 4716 * - potentially very expensive because zones are far 4717 * below their low watermarks or this is part of very 4718 * bursty high order allocations, 4719 * - not guaranteed to help because isolate_freepages() 4720 * may not iterate over freed pages as part of its 4721 * linear scan, and 4722 * - unlikely to make entire pageblocks free on its 4723 * own. 4724 */ 4725 if (compact_result == COMPACT_SKIPPED || 4726 compact_result == COMPACT_DEFERRED) 4727 goto nopage; 4728 4729 /* 4730 * Looks like reclaim/compaction is worth trying, but 4731 * sync compaction could be very expensive, so keep 4732 * using async compaction. 4733 */ 4734 compact_priority = INIT_COMPACT_PRIORITY; 4735 } 4736 } 4737 4738 retry: 4739 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4740 if (alloc_flags & ALLOC_KSWAPD) 4741 wake_all_kswapds(order, gfp_mask, ac); 4742 4743 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4744 if (reserve_flags) 4745 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags); 4746 4747 /* 4748 * Reset the nodemask and zonelist iterators if memory policies can be 4749 * ignored. These allocations are high priority and system rather than 4750 * user oriented. 4751 */ 4752 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4753 ac->nodemask = NULL; 4754 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4755 ac->highest_zoneidx, ac->nodemask); 4756 } 4757 4758 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4759 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4760 if (page) 4761 goto got_pg; 4762 4763 /* Caller is not willing to reclaim, we can't balance anything */ 4764 if (!can_direct_reclaim) 4765 goto nopage; 4766 4767 /* Avoid recursion of direct reclaim */ 4768 if (current->flags & PF_MEMALLOC) 4769 goto nopage; 4770 4771 /* Try direct reclaim and then allocating */ 4772 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4773 &did_some_progress); 4774 if (page) 4775 goto got_pg; 4776 4777 /* Try direct compaction and then allocating */ 4778 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4779 compact_priority, &compact_result); 4780 if (page) 4781 goto got_pg; 4782 4783 /* Do not loop if specifically requested */ 4784 if (gfp_mask & __GFP_NORETRY) 4785 goto nopage; 4786 4787 /* 4788 * Do not retry costly high order allocations unless they are 4789 * __GFP_RETRY_MAYFAIL 4790 */ 4791 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4792 goto nopage; 4793 4794 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4795 did_some_progress > 0, &no_progress_loops)) 4796 goto retry; 4797 4798 /* 4799 * It doesn't make any sense to retry for the compaction if the order-0 4800 * reclaim is not able to make any progress because the current 4801 * implementation of the compaction depends on the sufficient amount 4802 * of free memory (see __compaction_suitable) 4803 */ 4804 if (did_some_progress > 0 && 4805 should_compact_retry(ac, order, alloc_flags, 4806 compact_result, &compact_priority, 4807 &compaction_retries)) 4808 goto retry; 4809 4810 4811 /* Deal with possible cpuset update races before we start OOM killing */ 4812 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4813 goto retry_cpuset; 4814 4815 /* Reclaim has failed us, start killing things */ 4816 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4817 if (page) 4818 goto got_pg; 4819 4820 /* Avoid allocations with no watermarks from looping endlessly */ 4821 if (tsk_is_oom_victim(current) && 4822 (alloc_flags & ALLOC_OOM || 4823 (gfp_mask & __GFP_NOMEMALLOC))) 4824 goto nopage; 4825 4826 /* Retry as long as the OOM killer is making progress */ 4827 if (did_some_progress) { 4828 no_progress_loops = 0; 4829 goto retry; 4830 } 4831 4832 nopage: 4833 /* Deal with possible cpuset update races before we fail */ 4834 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4835 goto retry_cpuset; 4836 4837 /* 4838 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4839 * we always retry 4840 */ 4841 if (gfp_mask & __GFP_NOFAIL) { 4842 /* 4843 * All existing users of the __GFP_NOFAIL are blockable, so warn 4844 * of any new users that actually require GFP_NOWAIT 4845 */ 4846 if (WARN_ON_ONCE(!can_direct_reclaim)) 4847 goto fail; 4848 4849 /* 4850 * PF_MEMALLOC request from this context is rather bizarre 4851 * because we cannot reclaim anything and only can loop waiting 4852 * for somebody to do a work for us 4853 */ 4854 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4855 4856 /* 4857 * non failing costly orders are a hard requirement which we 4858 * are not prepared for much so let's warn about these users 4859 * so that we can identify them and convert them to something 4860 * else. 4861 */ 4862 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4863 4864 /* 4865 * Help non-failing allocations by giving them access to memory 4866 * reserves but do not use ALLOC_NO_WATERMARKS because this 4867 * could deplete whole memory reserves which would just make 4868 * the situation worse 4869 */ 4870 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4871 if (page) 4872 goto got_pg; 4873 4874 cond_resched(); 4875 goto retry; 4876 } 4877 fail: 4878 warn_alloc(gfp_mask, ac->nodemask, 4879 "page allocation failure: order:%u", order); 4880 got_pg: 4881 return page; 4882 } 4883 4884 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4885 int preferred_nid, nodemask_t *nodemask, 4886 struct alloc_context *ac, gfp_t *alloc_mask, 4887 unsigned int *alloc_flags) 4888 { 4889 ac->highest_zoneidx = gfp_zone(gfp_mask); 4890 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4891 ac->nodemask = nodemask; 4892 ac->migratetype = gfp_migratetype(gfp_mask); 4893 4894 if (cpusets_enabled()) { 4895 *alloc_mask |= __GFP_HARDWALL; 4896 /* 4897 * When we are in the interrupt context, it is irrelevant 4898 * to the current task context. It means that any node ok. 4899 */ 4900 if (!in_interrupt() && !ac->nodemask) 4901 ac->nodemask = &cpuset_current_mems_allowed; 4902 else 4903 *alloc_flags |= ALLOC_CPUSET; 4904 } 4905 4906 fs_reclaim_acquire(gfp_mask); 4907 fs_reclaim_release(gfp_mask); 4908 4909 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4910 4911 if (should_fail_alloc_page(gfp_mask, order)) 4912 return false; 4913 4914 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags); 4915 4916 /* Dirty zone balancing only done in the fast path */ 4917 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4918 4919 /* 4920 * The preferred zone is used for statistics but crucially it is 4921 * also used as the starting point for the zonelist iterator. It 4922 * may get reset for allocations that ignore memory policies. 4923 */ 4924 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4925 ac->highest_zoneidx, ac->nodemask); 4926 4927 return true; 4928 } 4929 4930 /* 4931 * This is the 'heart' of the zoned buddy allocator. 4932 */ 4933 struct page * 4934 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4935 nodemask_t *nodemask) 4936 { 4937 struct page *page; 4938 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4939 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4940 struct alloc_context ac = { }; 4941 4942 /* 4943 * There are several places where we assume that the order value is sane 4944 * so bail out early if the request is out of bound. 4945 */ 4946 if (unlikely(order >= MAX_ORDER)) { 4947 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4948 return NULL; 4949 } 4950 4951 gfp_mask &= gfp_allowed_mask; 4952 alloc_mask = gfp_mask; 4953 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4954 return NULL; 4955 4956 /* 4957 * Forbid the first pass from falling back to types that fragment 4958 * memory until all local zones are considered. 4959 */ 4960 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4961 4962 /* First allocation attempt */ 4963 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4964 if (likely(page)) 4965 goto out; 4966 4967 /* 4968 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4969 * resp. GFP_NOIO which has to be inherited for all allocation requests 4970 * from a particular context which has been marked by 4971 * memalloc_no{fs,io}_{save,restore}. 4972 */ 4973 alloc_mask = current_gfp_context(gfp_mask); 4974 ac.spread_dirty_pages = false; 4975 4976 /* 4977 * Restore the original nodemask if it was potentially replaced with 4978 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4979 */ 4980 ac.nodemask = nodemask; 4981 4982 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4983 4984 out: 4985 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4986 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) { 4987 __free_pages(page, order); 4988 page = NULL; 4989 } 4990 4991 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4992 4993 return page; 4994 } 4995 EXPORT_SYMBOL(__alloc_pages_nodemask); 4996 4997 /* 4998 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4999 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5000 * you need to access high mem. 5001 */ 5002 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5003 { 5004 struct page *page; 5005 5006 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5007 if (!page) 5008 return 0; 5009 return (unsigned long) page_address(page); 5010 } 5011 EXPORT_SYMBOL(__get_free_pages); 5012 5013 unsigned long get_zeroed_page(gfp_t gfp_mask) 5014 { 5015 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5016 } 5017 EXPORT_SYMBOL(get_zeroed_page); 5018 5019 static inline void free_the_page(struct page *page, unsigned int order) 5020 { 5021 if (order == 0) /* Via pcp? */ 5022 free_unref_page(page); 5023 else 5024 __free_pages_ok(page, order, FPI_NONE); 5025 } 5026 5027 void __free_pages(struct page *page, unsigned int order) 5028 { 5029 if (put_page_testzero(page)) 5030 free_the_page(page, order); 5031 else if (!PageHead(page)) 5032 while (order-- > 0) 5033 free_the_page(page + (1 << order), order); 5034 } 5035 EXPORT_SYMBOL(__free_pages); 5036 5037 void free_pages(unsigned long addr, unsigned int order) 5038 { 5039 if (addr != 0) { 5040 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5041 __free_pages(virt_to_page((void *)addr), order); 5042 } 5043 } 5044 5045 EXPORT_SYMBOL(free_pages); 5046 5047 /* 5048 * Page Fragment: 5049 * An arbitrary-length arbitrary-offset area of memory which resides 5050 * within a 0 or higher order page. Multiple fragments within that page 5051 * are individually refcounted, in the page's reference counter. 5052 * 5053 * The page_frag functions below provide a simple allocation framework for 5054 * page fragments. This is used by the network stack and network device 5055 * drivers to provide a backing region of memory for use as either an 5056 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5057 */ 5058 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5059 gfp_t gfp_mask) 5060 { 5061 struct page *page = NULL; 5062 gfp_t gfp = gfp_mask; 5063 5064 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5065 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5066 __GFP_NOMEMALLOC; 5067 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5068 PAGE_FRAG_CACHE_MAX_ORDER); 5069 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5070 #endif 5071 if (unlikely(!page)) 5072 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5073 5074 nc->va = page ? page_address(page) : NULL; 5075 5076 return page; 5077 } 5078 5079 void __page_frag_cache_drain(struct page *page, unsigned int count) 5080 { 5081 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5082 5083 if (page_ref_sub_and_test(page, count)) 5084 free_the_page(page, compound_order(page)); 5085 } 5086 EXPORT_SYMBOL(__page_frag_cache_drain); 5087 5088 void *page_frag_alloc(struct page_frag_cache *nc, 5089 unsigned int fragsz, gfp_t gfp_mask) 5090 { 5091 unsigned int size = PAGE_SIZE; 5092 struct page *page; 5093 int offset; 5094 5095 if (unlikely(!nc->va)) { 5096 refill: 5097 page = __page_frag_cache_refill(nc, gfp_mask); 5098 if (!page) 5099 return NULL; 5100 5101 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5102 /* if size can vary use size else just use PAGE_SIZE */ 5103 size = nc->size; 5104 #endif 5105 /* Even if we own the page, we do not use atomic_set(). 5106 * This would break get_page_unless_zero() users. 5107 */ 5108 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5109 5110 /* reset page count bias and offset to start of new frag */ 5111 nc->pfmemalloc = page_is_pfmemalloc(page); 5112 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5113 nc->offset = size; 5114 } 5115 5116 offset = nc->offset - fragsz; 5117 if (unlikely(offset < 0)) { 5118 page = virt_to_page(nc->va); 5119 5120 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5121 goto refill; 5122 5123 if (unlikely(nc->pfmemalloc)) { 5124 free_the_page(page, compound_order(page)); 5125 goto refill; 5126 } 5127 5128 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5129 /* if size can vary use size else just use PAGE_SIZE */ 5130 size = nc->size; 5131 #endif 5132 /* OK, page count is 0, we can safely set it */ 5133 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5134 5135 /* reset page count bias and offset to start of new frag */ 5136 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5137 offset = size - fragsz; 5138 } 5139 5140 nc->pagecnt_bias--; 5141 nc->offset = offset; 5142 5143 return nc->va + offset; 5144 } 5145 EXPORT_SYMBOL(page_frag_alloc); 5146 5147 /* 5148 * Frees a page fragment allocated out of either a compound or order 0 page. 5149 */ 5150 void page_frag_free(void *addr) 5151 { 5152 struct page *page = virt_to_head_page(addr); 5153 5154 if (unlikely(put_page_testzero(page))) 5155 free_the_page(page, compound_order(page)); 5156 } 5157 EXPORT_SYMBOL(page_frag_free); 5158 5159 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5160 size_t size) 5161 { 5162 if (addr) { 5163 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5164 unsigned long used = addr + PAGE_ALIGN(size); 5165 5166 split_page(virt_to_page((void *)addr), order); 5167 while (used < alloc_end) { 5168 free_page(used); 5169 used += PAGE_SIZE; 5170 } 5171 } 5172 return (void *)addr; 5173 } 5174 5175 /** 5176 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5177 * @size: the number of bytes to allocate 5178 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5179 * 5180 * This function is similar to alloc_pages(), except that it allocates the 5181 * minimum number of pages to satisfy the request. alloc_pages() can only 5182 * allocate memory in power-of-two pages. 5183 * 5184 * This function is also limited by MAX_ORDER. 5185 * 5186 * Memory allocated by this function must be released by free_pages_exact(). 5187 * 5188 * Return: pointer to the allocated area or %NULL in case of error. 5189 */ 5190 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5191 { 5192 unsigned int order = get_order(size); 5193 unsigned long addr; 5194 5195 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5196 gfp_mask &= ~__GFP_COMP; 5197 5198 addr = __get_free_pages(gfp_mask, order); 5199 return make_alloc_exact(addr, order, size); 5200 } 5201 EXPORT_SYMBOL(alloc_pages_exact); 5202 5203 /** 5204 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5205 * pages on a node. 5206 * @nid: the preferred node ID where memory should be allocated 5207 * @size: the number of bytes to allocate 5208 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5209 * 5210 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5211 * back. 5212 * 5213 * Return: pointer to the allocated area or %NULL in case of error. 5214 */ 5215 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5216 { 5217 unsigned int order = get_order(size); 5218 struct page *p; 5219 5220 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5221 gfp_mask &= ~__GFP_COMP; 5222 5223 p = alloc_pages_node(nid, gfp_mask, order); 5224 if (!p) 5225 return NULL; 5226 return make_alloc_exact((unsigned long)page_address(p), order, size); 5227 } 5228 5229 /** 5230 * free_pages_exact - release memory allocated via alloc_pages_exact() 5231 * @virt: the value returned by alloc_pages_exact. 5232 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5233 * 5234 * Release the memory allocated by a previous call to alloc_pages_exact. 5235 */ 5236 void free_pages_exact(void *virt, size_t size) 5237 { 5238 unsigned long addr = (unsigned long)virt; 5239 unsigned long end = addr + PAGE_ALIGN(size); 5240 5241 while (addr < end) { 5242 free_page(addr); 5243 addr += PAGE_SIZE; 5244 } 5245 } 5246 EXPORT_SYMBOL(free_pages_exact); 5247 5248 /** 5249 * nr_free_zone_pages - count number of pages beyond high watermark 5250 * @offset: The zone index of the highest zone 5251 * 5252 * nr_free_zone_pages() counts the number of pages which are beyond the 5253 * high watermark within all zones at or below a given zone index. For each 5254 * zone, the number of pages is calculated as: 5255 * 5256 * nr_free_zone_pages = managed_pages - high_pages 5257 * 5258 * Return: number of pages beyond high watermark. 5259 */ 5260 static unsigned long nr_free_zone_pages(int offset) 5261 { 5262 struct zoneref *z; 5263 struct zone *zone; 5264 5265 /* Just pick one node, since fallback list is circular */ 5266 unsigned long sum = 0; 5267 5268 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5269 5270 for_each_zone_zonelist(zone, z, zonelist, offset) { 5271 unsigned long size = zone_managed_pages(zone); 5272 unsigned long high = high_wmark_pages(zone); 5273 if (size > high) 5274 sum += size - high; 5275 } 5276 5277 return sum; 5278 } 5279 5280 /** 5281 * nr_free_buffer_pages - count number of pages beyond high watermark 5282 * 5283 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5284 * watermark within ZONE_DMA and ZONE_NORMAL. 5285 * 5286 * Return: number of pages beyond high watermark within ZONE_DMA and 5287 * ZONE_NORMAL. 5288 */ 5289 unsigned long nr_free_buffer_pages(void) 5290 { 5291 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5292 } 5293 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5294 5295 static inline void show_node(struct zone *zone) 5296 { 5297 if (IS_ENABLED(CONFIG_NUMA)) 5298 printk("Node %d ", zone_to_nid(zone)); 5299 } 5300 5301 long si_mem_available(void) 5302 { 5303 long available; 5304 unsigned long pagecache; 5305 unsigned long wmark_low = 0; 5306 unsigned long pages[NR_LRU_LISTS]; 5307 unsigned long reclaimable; 5308 struct zone *zone; 5309 int lru; 5310 5311 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5312 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5313 5314 for_each_zone(zone) 5315 wmark_low += low_wmark_pages(zone); 5316 5317 /* 5318 * Estimate the amount of memory available for userspace allocations, 5319 * without causing swapping. 5320 */ 5321 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5322 5323 /* 5324 * Not all the page cache can be freed, otherwise the system will 5325 * start swapping. Assume at least half of the page cache, or the 5326 * low watermark worth of cache, needs to stay. 5327 */ 5328 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5329 pagecache -= min(pagecache / 2, wmark_low); 5330 available += pagecache; 5331 5332 /* 5333 * Part of the reclaimable slab and other kernel memory consists of 5334 * items that are in use, and cannot be freed. Cap this estimate at the 5335 * low watermark. 5336 */ 5337 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5338 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5339 available += reclaimable - min(reclaimable / 2, wmark_low); 5340 5341 if (available < 0) 5342 available = 0; 5343 return available; 5344 } 5345 EXPORT_SYMBOL_GPL(si_mem_available); 5346 5347 void si_meminfo(struct sysinfo *val) 5348 { 5349 val->totalram = totalram_pages(); 5350 val->sharedram = global_node_page_state(NR_SHMEM); 5351 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5352 val->bufferram = nr_blockdev_pages(); 5353 val->totalhigh = totalhigh_pages(); 5354 val->freehigh = nr_free_highpages(); 5355 val->mem_unit = PAGE_SIZE; 5356 } 5357 5358 EXPORT_SYMBOL(si_meminfo); 5359 5360 #ifdef CONFIG_NUMA 5361 void si_meminfo_node(struct sysinfo *val, int nid) 5362 { 5363 int zone_type; /* needs to be signed */ 5364 unsigned long managed_pages = 0; 5365 unsigned long managed_highpages = 0; 5366 unsigned long free_highpages = 0; 5367 pg_data_t *pgdat = NODE_DATA(nid); 5368 5369 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5370 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5371 val->totalram = managed_pages; 5372 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5373 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5374 #ifdef CONFIG_HIGHMEM 5375 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5376 struct zone *zone = &pgdat->node_zones[zone_type]; 5377 5378 if (is_highmem(zone)) { 5379 managed_highpages += zone_managed_pages(zone); 5380 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5381 } 5382 } 5383 val->totalhigh = managed_highpages; 5384 val->freehigh = free_highpages; 5385 #else 5386 val->totalhigh = managed_highpages; 5387 val->freehigh = free_highpages; 5388 #endif 5389 val->mem_unit = PAGE_SIZE; 5390 } 5391 #endif 5392 5393 /* 5394 * Determine whether the node should be displayed or not, depending on whether 5395 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5396 */ 5397 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5398 { 5399 if (!(flags & SHOW_MEM_FILTER_NODES)) 5400 return false; 5401 5402 /* 5403 * no node mask - aka implicit memory numa policy. Do not bother with 5404 * the synchronization - read_mems_allowed_begin - because we do not 5405 * have to be precise here. 5406 */ 5407 if (!nodemask) 5408 nodemask = &cpuset_current_mems_allowed; 5409 5410 return !node_isset(nid, *nodemask); 5411 } 5412 5413 #define K(x) ((x) << (PAGE_SHIFT-10)) 5414 5415 static void show_migration_types(unsigned char type) 5416 { 5417 static const char types[MIGRATE_TYPES] = { 5418 [MIGRATE_UNMOVABLE] = 'U', 5419 [MIGRATE_MOVABLE] = 'M', 5420 [MIGRATE_RECLAIMABLE] = 'E', 5421 [MIGRATE_HIGHATOMIC] = 'H', 5422 #ifdef CONFIG_CMA 5423 [MIGRATE_CMA] = 'C', 5424 #endif 5425 #ifdef CONFIG_MEMORY_ISOLATION 5426 [MIGRATE_ISOLATE] = 'I', 5427 #endif 5428 }; 5429 char tmp[MIGRATE_TYPES + 1]; 5430 char *p = tmp; 5431 int i; 5432 5433 for (i = 0; i < MIGRATE_TYPES; i++) { 5434 if (type & (1 << i)) 5435 *p++ = types[i]; 5436 } 5437 5438 *p = '\0'; 5439 printk(KERN_CONT "(%s) ", tmp); 5440 } 5441 5442 /* 5443 * Show free area list (used inside shift_scroll-lock stuff) 5444 * We also calculate the percentage fragmentation. We do this by counting the 5445 * memory on each free list with the exception of the first item on the list. 5446 * 5447 * Bits in @filter: 5448 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5449 * cpuset. 5450 */ 5451 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5452 { 5453 unsigned long free_pcp = 0; 5454 int cpu; 5455 struct zone *zone; 5456 pg_data_t *pgdat; 5457 5458 for_each_populated_zone(zone) { 5459 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5460 continue; 5461 5462 for_each_online_cpu(cpu) 5463 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5464 } 5465 5466 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5467 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5468 " unevictable:%lu dirty:%lu writeback:%lu\n" 5469 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5470 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5471 " free:%lu free_pcp:%lu free_cma:%lu\n", 5472 global_node_page_state(NR_ACTIVE_ANON), 5473 global_node_page_state(NR_INACTIVE_ANON), 5474 global_node_page_state(NR_ISOLATED_ANON), 5475 global_node_page_state(NR_ACTIVE_FILE), 5476 global_node_page_state(NR_INACTIVE_FILE), 5477 global_node_page_state(NR_ISOLATED_FILE), 5478 global_node_page_state(NR_UNEVICTABLE), 5479 global_node_page_state(NR_FILE_DIRTY), 5480 global_node_page_state(NR_WRITEBACK), 5481 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5482 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5483 global_node_page_state(NR_FILE_MAPPED), 5484 global_node_page_state(NR_SHMEM), 5485 global_node_page_state(NR_PAGETABLE), 5486 global_zone_page_state(NR_BOUNCE), 5487 global_zone_page_state(NR_FREE_PAGES), 5488 free_pcp, 5489 global_zone_page_state(NR_FREE_CMA_PAGES)); 5490 5491 for_each_online_pgdat(pgdat) { 5492 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5493 continue; 5494 5495 printk("Node %d" 5496 " active_anon:%lukB" 5497 " inactive_anon:%lukB" 5498 " active_file:%lukB" 5499 " inactive_file:%lukB" 5500 " unevictable:%lukB" 5501 " isolated(anon):%lukB" 5502 " isolated(file):%lukB" 5503 " mapped:%lukB" 5504 " dirty:%lukB" 5505 " writeback:%lukB" 5506 " shmem:%lukB" 5507 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5508 " shmem_thp: %lukB" 5509 " shmem_pmdmapped: %lukB" 5510 " anon_thp: %lukB" 5511 #endif 5512 " writeback_tmp:%lukB" 5513 " kernel_stack:%lukB" 5514 #ifdef CONFIG_SHADOW_CALL_STACK 5515 " shadow_call_stack:%lukB" 5516 #endif 5517 " pagetables:%lukB" 5518 " all_unreclaimable? %s" 5519 "\n", 5520 pgdat->node_id, 5521 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5522 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5523 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5524 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5525 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5526 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5527 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5528 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5529 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5530 K(node_page_state(pgdat, NR_WRITEBACK)), 5531 K(node_page_state(pgdat, NR_SHMEM)), 5532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5533 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5534 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5535 * HPAGE_PMD_NR), 5536 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5537 #endif 5538 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5539 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5540 #ifdef CONFIG_SHADOW_CALL_STACK 5541 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5542 #endif 5543 K(node_page_state(pgdat, NR_PAGETABLE)), 5544 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5545 "yes" : "no"); 5546 } 5547 5548 for_each_populated_zone(zone) { 5549 int i; 5550 5551 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5552 continue; 5553 5554 free_pcp = 0; 5555 for_each_online_cpu(cpu) 5556 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5557 5558 show_node(zone); 5559 printk(KERN_CONT 5560 "%s" 5561 " free:%lukB" 5562 " min:%lukB" 5563 " low:%lukB" 5564 " high:%lukB" 5565 " reserved_highatomic:%luKB" 5566 " active_anon:%lukB" 5567 " inactive_anon:%lukB" 5568 " active_file:%lukB" 5569 " inactive_file:%lukB" 5570 " unevictable:%lukB" 5571 " writepending:%lukB" 5572 " present:%lukB" 5573 " managed:%lukB" 5574 " mlocked:%lukB" 5575 " bounce:%lukB" 5576 " free_pcp:%lukB" 5577 " local_pcp:%ukB" 5578 " free_cma:%lukB" 5579 "\n", 5580 zone->name, 5581 K(zone_page_state(zone, NR_FREE_PAGES)), 5582 K(min_wmark_pages(zone)), 5583 K(low_wmark_pages(zone)), 5584 K(high_wmark_pages(zone)), 5585 K(zone->nr_reserved_highatomic), 5586 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5587 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5588 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5589 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5590 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5591 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5592 K(zone->present_pages), 5593 K(zone_managed_pages(zone)), 5594 K(zone_page_state(zone, NR_MLOCK)), 5595 K(zone_page_state(zone, NR_BOUNCE)), 5596 K(free_pcp), 5597 K(this_cpu_read(zone->pageset->pcp.count)), 5598 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5599 printk("lowmem_reserve[]:"); 5600 for (i = 0; i < MAX_NR_ZONES; i++) 5601 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5602 printk(KERN_CONT "\n"); 5603 } 5604 5605 for_each_populated_zone(zone) { 5606 unsigned int order; 5607 unsigned long nr[MAX_ORDER], flags, total = 0; 5608 unsigned char types[MAX_ORDER]; 5609 5610 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5611 continue; 5612 show_node(zone); 5613 printk(KERN_CONT "%s: ", zone->name); 5614 5615 spin_lock_irqsave(&zone->lock, flags); 5616 for (order = 0; order < MAX_ORDER; order++) { 5617 struct free_area *area = &zone->free_area[order]; 5618 int type; 5619 5620 nr[order] = area->nr_free; 5621 total += nr[order] << order; 5622 5623 types[order] = 0; 5624 for (type = 0; type < MIGRATE_TYPES; type++) { 5625 if (!free_area_empty(area, type)) 5626 types[order] |= 1 << type; 5627 } 5628 } 5629 spin_unlock_irqrestore(&zone->lock, flags); 5630 for (order = 0; order < MAX_ORDER; order++) { 5631 printk(KERN_CONT "%lu*%lukB ", 5632 nr[order], K(1UL) << order); 5633 if (nr[order]) 5634 show_migration_types(types[order]); 5635 } 5636 printk(KERN_CONT "= %lukB\n", K(total)); 5637 } 5638 5639 hugetlb_show_meminfo(); 5640 5641 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5642 5643 show_swap_cache_info(); 5644 } 5645 5646 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5647 { 5648 zoneref->zone = zone; 5649 zoneref->zone_idx = zone_idx(zone); 5650 } 5651 5652 /* 5653 * Builds allocation fallback zone lists. 5654 * 5655 * Add all populated zones of a node to the zonelist. 5656 */ 5657 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5658 { 5659 struct zone *zone; 5660 enum zone_type zone_type = MAX_NR_ZONES; 5661 int nr_zones = 0; 5662 5663 do { 5664 zone_type--; 5665 zone = pgdat->node_zones + zone_type; 5666 if (managed_zone(zone)) { 5667 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5668 check_highest_zone(zone_type); 5669 } 5670 } while (zone_type); 5671 5672 return nr_zones; 5673 } 5674 5675 #ifdef CONFIG_NUMA 5676 5677 static int __parse_numa_zonelist_order(char *s) 5678 { 5679 /* 5680 * We used to support different zonlists modes but they turned 5681 * out to be just not useful. Let's keep the warning in place 5682 * if somebody still use the cmd line parameter so that we do 5683 * not fail it silently 5684 */ 5685 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5686 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5687 return -EINVAL; 5688 } 5689 return 0; 5690 } 5691 5692 char numa_zonelist_order[] = "Node"; 5693 5694 /* 5695 * sysctl handler for numa_zonelist_order 5696 */ 5697 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5698 void *buffer, size_t *length, loff_t *ppos) 5699 { 5700 if (write) 5701 return __parse_numa_zonelist_order(buffer); 5702 return proc_dostring(table, write, buffer, length, ppos); 5703 } 5704 5705 5706 #define MAX_NODE_LOAD (nr_online_nodes) 5707 static int node_load[MAX_NUMNODES]; 5708 5709 /** 5710 * find_next_best_node - find the next node that should appear in a given node's fallback list 5711 * @node: node whose fallback list we're appending 5712 * @used_node_mask: nodemask_t of already used nodes 5713 * 5714 * We use a number of factors to determine which is the next node that should 5715 * appear on a given node's fallback list. The node should not have appeared 5716 * already in @node's fallback list, and it should be the next closest node 5717 * according to the distance array (which contains arbitrary distance values 5718 * from each node to each node in the system), and should also prefer nodes 5719 * with no CPUs, since presumably they'll have very little allocation pressure 5720 * on them otherwise. 5721 * 5722 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5723 */ 5724 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5725 { 5726 int n, val; 5727 int min_val = INT_MAX; 5728 int best_node = NUMA_NO_NODE; 5729 5730 /* Use the local node if we haven't already */ 5731 if (!node_isset(node, *used_node_mask)) { 5732 node_set(node, *used_node_mask); 5733 return node; 5734 } 5735 5736 for_each_node_state(n, N_MEMORY) { 5737 5738 /* Don't want a node to appear more than once */ 5739 if (node_isset(n, *used_node_mask)) 5740 continue; 5741 5742 /* Use the distance array to find the distance */ 5743 val = node_distance(node, n); 5744 5745 /* Penalize nodes under us ("prefer the next node") */ 5746 val += (n < node); 5747 5748 /* Give preference to headless and unused nodes */ 5749 if (!cpumask_empty(cpumask_of_node(n))) 5750 val += PENALTY_FOR_NODE_WITH_CPUS; 5751 5752 /* Slight preference for less loaded node */ 5753 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5754 val += node_load[n]; 5755 5756 if (val < min_val) { 5757 min_val = val; 5758 best_node = n; 5759 } 5760 } 5761 5762 if (best_node >= 0) 5763 node_set(best_node, *used_node_mask); 5764 5765 return best_node; 5766 } 5767 5768 5769 /* 5770 * Build zonelists ordered by node and zones within node. 5771 * This results in maximum locality--normal zone overflows into local 5772 * DMA zone, if any--but risks exhausting DMA zone. 5773 */ 5774 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5775 unsigned nr_nodes) 5776 { 5777 struct zoneref *zonerefs; 5778 int i; 5779 5780 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5781 5782 for (i = 0; i < nr_nodes; i++) { 5783 int nr_zones; 5784 5785 pg_data_t *node = NODE_DATA(node_order[i]); 5786 5787 nr_zones = build_zonerefs_node(node, zonerefs); 5788 zonerefs += nr_zones; 5789 } 5790 zonerefs->zone = NULL; 5791 zonerefs->zone_idx = 0; 5792 } 5793 5794 /* 5795 * Build gfp_thisnode zonelists 5796 */ 5797 static void build_thisnode_zonelists(pg_data_t *pgdat) 5798 { 5799 struct zoneref *zonerefs; 5800 int nr_zones; 5801 5802 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5803 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5804 zonerefs += nr_zones; 5805 zonerefs->zone = NULL; 5806 zonerefs->zone_idx = 0; 5807 } 5808 5809 /* 5810 * Build zonelists ordered by zone and nodes within zones. 5811 * This results in conserving DMA zone[s] until all Normal memory is 5812 * exhausted, but results in overflowing to remote node while memory 5813 * may still exist in local DMA zone. 5814 */ 5815 5816 static void build_zonelists(pg_data_t *pgdat) 5817 { 5818 static int node_order[MAX_NUMNODES]; 5819 int node, load, nr_nodes = 0; 5820 nodemask_t used_mask = NODE_MASK_NONE; 5821 int local_node, prev_node; 5822 5823 /* NUMA-aware ordering of nodes */ 5824 local_node = pgdat->node_id; 5825 load = nr_online_nodes; 5826 prev_node = local_node; 5827 5828 memset(node_order, 0, sizeof(node_order)); 5829 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5830 /* 5831 * We don't want to pressure a particular node. 5832 * So adding penalty to the first node in same 5833 * distance group to make it round-robin. 5834 */ 5835 if (node_distance(local_node, node) != 5836 node_distance(local_node, prev_node)) 5837 node_load[node] = load; 5838 5839 node_order[nr_nodes++] = node; 5840 prev_node = node; 5841 load--; 5842 } 5843 5844 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5845 build_thisnode_zonelists(pgdat); 5846 } 5847 5848 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5849 /* 5850 * Return node id of node used for "local" allocations. 5851 * I.e., first node id of first zone in arg node's generic zonelist. 5852 * Used for initializing percpu 'numa_mem', which is used primarily 5853 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5854 */ 5855 int local_memory_node(int node) 5856 { 5857 struct zoneref *z; 5858 5859 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5860 gfp_zone(GFP_KERNEL), 5861 NULL); 5862 return zone_to_nid(z->zone); 5863 } 5864 #endif 5865 5866 static void setup_min_unmapped_ratio(void); 5867 static void setup_min_slab_ratio(void); 5868 #else /* CONFIG_NUMA */ 5869 5870 static void build_zonelists(pg_data_t *pgdat) 5871 { 5872 int node, local_node; 5873 struct zoneref *zonerefs; 5874 int nr_zones; 5875 5876 local_node = pgdat->node_id; 5877 5878 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5879 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5880 zonerefs += nr_zones; 5881 5882 /* 5883 * Now we build the zonelist so that it contains the zones 5884 * of all the other nodes. 5885 * We don't want to pressure a particular node, so when 5886 * building the zones for node N, we make sure that the 5887 * zones coming right after the local ones are those from 5888 * node N+1 (modulo N) 5889 */ 5890 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5891 if (!node_online(node)) 5892 continue; 5893 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5894 zonerefs += nr_zones; 5895 } 5896 for (node = 0; node < local_node; node++) { 5897 if (!node_online(node)) 5898 continue; 5899 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5900 zonerefs += nr_zones; 5901 } 5902 5903 zonerefs->zone = NULL; 5904 zonerefs->zone_idx = 0; 5905 } 5906 5907 #endif /* CONFIG_NUMA */ 5908 5909 /* 5910 * Boot pageset table. One per cpu which is going to be used for all 5911 * zones and all nodes. The parameters will be set in such a way 5912 * that an item put on a list will immediately be handed over to 5913 * the buddy list. This is safe since pageset manipulation is done 5914 * with interrupts disabled. 5915 * 5916 * The boot_pagesets must be kept even after bootup is complete for 5917 * unused processors and/or zones. They do play a role for bootstrapping 5918 * hotplugged processors. 5919 * 5920 * zoneinfo_show() and maybe other functions do 5921 * not check if the processor is online before following the pageset pointer. 5922 * Other parts of the kernel may not check if the zone is available. 5923 */ 5924 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5925 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5926 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5927 5928 static void __build_all_zonelists(void *data) 5929 { 5930 int nid; 5931 int __maybe_unused cpu; 5932 pg_data_t *self = data; 5933 static DEFINE_SPINLOCK(lock); 5934 5935 spin_lock(&lock); 5936 5937 #ifdef CONFIG_NUMA 5938 memset(node_load, 0, sizeof(node_load)); 5939 #endif 5940 5941 /* 5942 * This node is hotadded and no memory is yet present. So just 5943 * building zonelists is fine - no need to touch other nodes. 5944 */ 5945 if (self && !node_online(self->node_id)) { 5946 build_zonelists(self); 5947 } else { 5948 for_each_online_node(nid) { 5949 pg_data_t *pgdat = NODE_DATA(nid); 5950 5951 build_zonelists(pgdat); 5952 } 5953 5954 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5955 /* 5956 * We now know the "local memory node" for each node-- 5957 * i.e., the node of the first zone in the generic zonelist. 5958 * Set up numa_mem percpu variable for on-line cpus. During 5959 * boot, only the boot cpu should be on-line; we'll init the 5960 * secondary cpus' numa_mem as they come on-line. During 5961 * node/memory hotplug, we'll fixup all on-line cpus. 5962 */ 5963 for_each_online_cpu(cpu) 5964 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5965 #endif 5966 } 5967 5968 spin_unlock(&lock); 5969 } 5970 5971 static noinline void __init 5972 build_all_zonelists_init(void) 5973 { 5974 int cpu; 5975 5976 __build_all_zonelists(NULL); 5977 5978 /* 5979 * Initialize the boot_pagesets that are going to be used 5980 * for bootstrapping processors. The real pagesets for 5981 * each zone will be allocated later when the per cpu 5982 * allocator is available. 5983 * 5984 * boot_pagesets are used also for bootstrapping offline 5985 * cpus if the system is already booted because the pagesets 5986 * are needed to initialize allocators on a specific cpu too. 5987 * F.e. the percpu allocator needs the page allocator which 5988 * needs the percpu allocator in order to allocate its pagesets 5989 * (a chicken-egg dilemma). 5990 */ 5991 for_each_possible_cpu(cpu) 5992 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5993 5994 mminit_verify_zonelist(); 5995 cpuset_init_current_mems_allowed(); 5996 } 5997 5998 /* 5999 * unless system_state == SYSTEM_BOOTING. 6000 * 6001 * __ref due to call of __init annotated helper build_all_zonelists_init 6002 * [protected by SYSTEM_BOOTING]. 6003 */ 6004 void __ref build_all_zonelists(pg_data_t *pgdat) 6005 { 6006 unsigned long vm_total_pages; 6007 6008 if (system_state == SYSTEM_BOOTING) { 6009 build_all_zonelists_init(); 6010 } else { 6011 __build_all_zonelists(pgdat); 6012 /* cpuset refresh routine should be here */ 6013 } 6014 /* Get the number of free pages beyond high watermark in all zones. */ 6015 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6016 /* 6017 * Disable grouping by mobility if the number of pages in the 6018 * system is too low to allow the mechanism to work. It would be 6019 * more accurate, but expensive to check per-zone. This check is 6020 * made on memory-hotadd so a system can start with mobility 6021 * disabled and enable it later 6022 */ 6023 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6024 page_group_by_mobility_disabled = 1; 6025 else 6026 page_group_by_mobility_disabled = 0; 6027 6028 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6029 nr_online_nodes, 6030 page_group_by_mobility_disabled ? "off" : "on", 6031 vm_total_pages); 6032 #ifdef CONFIG_NUMA 6033 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6034 #endif 6035 } 6036 6037 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6038 static bool __meminit 6039 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6040 { 6041 static struct memblock_region *r; 6042 6043 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6044 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6045 for_each_mem_region(r) { 6046 if (*pfn < memblock_region_memory_end_pfn(r)) 6047 break; 6048 } 6049 } 6050 if (*pfn >= memblock_region_memory_base_pfn(r) && 6051 memblock_is_mirror(r)) { 6052 *pfn = memblock_region_memory_end_pfn(r); 6053 return true; 6054 } 6055 } 6056 return false; 6057 } 6058 6059 /* 6060 * Initially all pages are reserved - free ones are freed 6061 * up by memblock_free_all() once the early boot process is 6062 * done. Non-atomic initialization, single-pass. 6063 * 6064 * All aligned pageblocks are initialized to the specified migratetype 6065 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6066 * zone stats (e.g., nr_isolate_pageblock) are touched. 6067 */ 6068 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 6069 unsigned long start_pfn, 6070 enum meminit_context context, 6071 struct vmem_altmap *altmap, int migratetype) 6072 { 6073 unsigned long pfn, end_pfn = start_pfn + size; 6074 struct page *page; 6075 6076 if (highest_memmap_pfn < end_pfn - 1) 6077 highest_memmap_pfn = end_pfn - 1; 6078 6079 #ifdef CONFIG_ZONE_DEVICE 6080 /* 6081 * Honor reservation requested by the driver for this ZONE_DEVICE 6082 * memory. We limit the total number of pages to initialize to just 6083 * those that might contain the memory mapping. We will defer the 6084 * ZONE_DEVICE page initialization until after we have released 6085 * the hotplug lock. 6086 */ 6087 if (zone == ZONE_DEVICE) { 6088 if (!altmap) 6089 return; 6090 6091 if (start_pfn == altmap->base_pfn) 6092 start_pfn += altmap->reserve; 6093 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6094 } 6095 #endif 6096 6097 for (pfn = start_pfn; pfn < end_pfn; ) { 6098 /* 6099 * There can be holes in boot-time mem_map[]s handed to this 6100 * function. They do not exist on hotplugged memory. 6101 */ 6102 if (context == MEMINIT_EARLY) { 6103 if (overlap_memmap_init(zone, &pfn)) 6104 continue; 6105 if (defer_init(nid, pfn, end_pfn)) 6106 break; 6107 } 6108 6109 page = pfn_to_page(pfn); 6110 __init_single_page(page, pfn, zone, nid); 6111 if (context == MEMINIT_HOTPLUG) 6112 __SetPageReserved(page); 6113 6114 /* 6115 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6116 * such that unmovable allocations won't be scattered all 6117 * over the place during system boot. 6118 */ 6119 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6120 set_pageblock_migratetype(page, migratetype); 6121 cond_resched(); 6122 } 6123 pfn++; 6124 } 6125 } 6126 6127 #ifdef CONFIG_ZONE_DEVICE 6128 void __ref memmap_init_zone_device(struct zone *zone, 6129 unsigned long start_pfn, 6130 unsigned long nr_pages, 6131 struct dev_pagemap *pgmap) 6132 { 6133 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6134 struct pglist_data *pgdat = zone->zone_pgdat; 6135 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6136 unsigned long zone_idx = zone_idx(zone); 6137 unsigned long start = jiffies; 6138 int nid = pgdat->node_id; 6139 6140 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6141 return; 6142 6143 /* 6144 * The call to memmap_init_zone should have already taken care 6145 * of the pages reserved for the memmap, so we can just jump to 6146 * the end of that region and start processing the device pages. 6147 */ 6148 if (altmap) { 6149 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6150 nr_pages = end_pfn - start_pfn; 6151 } 6152 6153 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6154 struct page *page = pfn_to_page(pfn); 6155 6156 __init_single_page(page, pfn, zone_idx, nid); 6157 6158 /* 6159 * Mark page reserved as it will need to wait for onlining 6160 * phase for it to be fully associated with a zone. 6161 * 6162 * We can use the non-atomic __set_bit operation for setting 6163 * the flag as we are still initializing the pages. 6164 */ 6165 __SetPageReserved(page); 6166 6167 /* 6168 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6169 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6170 * ever freed or placed on a driver-private list. 6171 */ 6172 page->pgmap = pgmap; 6173 page->zone_device_data = NULL; 6174 6175 /* 6176 * Mark the block movable so that blocks are reserved for 6177 * movable at startup. This will force kernel allocations 6178 * to reserve their blocks rather than leaking throughout 6179 * the address space during boot when many long-lived 6180 * kernel allocations are made. 6181 * 6182 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6183 * because this is done early in section_activate() 6184 */ 6185 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6186 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6187 cond_resched(); 6188 } 6189 } 6190 6191 pr_info("%s initialised %lu pages in %ums\n", __func__, 6192 nr_pages, jiffies_to_msecs(jiffies - start)); 6193 } 6194 6195 #endif 6196 static void __meminit zone_init_free_lists(struct zone *zone) 6197 { 6198 unsigned int order, t; 6199 for_each_migratetype_order(order, t) { 6200 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6201 zone->free_area[order].nr_free = 0; 6202 } 6203 } 6204 6205 void __meminit __weak memmap_init(unsigned long size, int nid, 6206 unsigned long zone, 6207 unsigned long range_start_pfn) 6208 { 6209 unsigned long start_pfn, end_pfn; 6210 unsigned long range_end_pfn = range_start_pfn + size; 6211 int i; 6212 6213 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6214 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6215 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6216 6217 if (end_pfn > start_pfn) { 6218 size = end_pfn - start_pfn; 6219 memmap_init_zone(size, nid, zone, start_pfn, 6220 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6221 } 6222 } 6223 } 6224 6225 static int zone_batchsize(struct zone *zone) 6226 { 6227 #ifdef CONFIG_MMU 6228 int batch; 6229 6230 /* 6231 * The per-cpu-pages pools are set to around 1000th of the 6232 * size of the zone. 6233 */ 6234 batch = zone_managed_pages(zone) / 1024; 6235 /* But no more than a meg. */ 6236 if (batch * PAGE_SIZE > 1024 * 1024) 6237 batch = (1024 * 1024) / PAGE_SIZE; 6238 batch /= 4; /* We effectively *= 4 below */ 6239 if (batch < 1) 6240 batch = 1; 6241 6242 /* 6243 * Clamp the batch to a 2^n - 1 value. Having a power 6244 * of 2 value was found to be more likely to have 6245 * suboptimal cache aliasing properties in some cases. 6246 * 6247 * For example if 2 tasks are alternately allocating 6248 * batches of pages, one task can end up with a lot 6249 * of pages of one half of the possible page colors 6250 * and the other with pages of the other colors. 6251 */ 6252 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6253 6254 return batch; 6255 6256 #else 6257 /* The deferral and batching of frees should be suppressed under NOMMU 6258 * conditions. 6259 * 6260 * The problem is that NOMMU needs to be able to allocate large chunks 6261 * of contiguous memory as there's no hardware page translation to 6262 * assemble apparent contiguous memory from discontiguous pages. 6263 * 6264 * Queueing large contiguous runs of pages for batching, however, 6265 * causes the pages to actually be freed in smaller chunks. As there 6266 * can be a significant delay between the individual batches being 6267 * recycled, this leads to the once large chunks of space being 6268 * fragmented and becoming unavailable for high-order allocations. 6269 */ 6270 return 0; 6271 #endif 6272 } 6273 6274 /* 6275 * pcp->high and pcp->batch values are related and dependent on one another: 6276 * ->batch must never be higher then ->high. 6277 * The following function updates them in a safe manner without read side 6278 * locking. 6279 * 6280 * Any new users of pcp->batch and pcp->high should ensure they can cope with 6281 * those fields changing asynchronously (acording to the above rule). 6282 * 6283 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6284 * outside of boot time (or some other assurance that no concurrent updaters 6285 * exist). 6286 */ 6287 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6288 unsigned long batch) 6289 { 6290 /* start with a fail safe value for batch */ 6291 pcp->batch = 1; 6292 smp_wmb(); 6293 6294 /* Update high, then batch, in order */ 6295 pcp->high = high; 6296 smp_wmb(); 6297 6298 pcp->batch = batch; 6299 } 6300 6301 /* a companion to pageset_set_high() */ 6302 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 6303 { 6304 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 6305 } 6306 6307 static void pageset_init(struct per_cpu_pageset *p) 6308 { 6309 struct per_cpu_pages *pcp; 6310 int migratetype; 6311 6312 memset(p, 0, sizeof(*p)); 6313 6314 pcp = &p->pcp; 6315 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6316 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6317 } 6318 6319 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 6320 { 6321 pageset_init(p); 6322 pageset_set_batch(p, batch); 6323 } 6324 6325 /* 6326 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 6327 * to the value high for the pageset p. 6328 */ 6329 static void pageset_set_high(struct per_cpu_pageset *p, 6330 unsigned long high) 6331 { 6332 unsigned long batch = max(1UL, high / 4); 6333 if ((high / 4) > (PAGE_SHIFT * 8)) 6334 batch = PAGE_SHIFT * 8; 6335 6336 pageset_update(&p->pcp, high, batch); 6337 } 6338 6339 static void pageset_set_high_and_batch(struct zone *zone, 6340 struct per_cpu_pageset *pcp) 6341 { 6342 if (percpu_pagelist_fraction) 6343 pageset_set_high(pcp, 6344 (zone_managed_pages(zone) / 6345 percpu_pagelist_fraction)); 6346 else 6347 pageset_set_batch(pcp, zone_batchsize(zone)); 6348 } 6349 6350 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 6351 { 6352 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 6353 6354 pageset_init(pcp); 6355 pageset_set_high_and_batch(zone, pcp); 6356 } 6357 6358 void __meminit setup_zone_pageset(struct zone *zone) 6359 { 6360 int cpu; 6361 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6362 for_each_possible_cpu(cpu) 6363 zone_pageset_init(zone, cpu); 6364 } 6365 6366 /* 6367 * Allocate per cpu pagesets and initialize them. 6368 * Before this call only boot pagesets were available. 6369 */ 6370 void __init setup_per_cpu_pageset(void) 6371 { 6372 struct pglist_data *pgdat; 6373 struct zone *zone; 6374 int __maybe_unused cpu; 6375 6376 for_each_populated_zone(zone) 6377 setup_zone_pageset(zone); 6378 6379 #ifdef CONFIG_NUMA 6380 /* 6381 * Unpopulated zones continue using the boot pagesets. 6382 * The numa stats for these pagesets need to be reset. 6383 * Otherwise, they will end up skewing the stats of 6384 * the nodes these zones are associated with. 6385 */ 6386 for_each_possible_cpu(cpu) { 6387 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu); 6388 memset(pcp->vm_numa_stat_diff, 0, 6389 sizeof(pcp->vm_numa_stat_diff)); 6390 } 6391 #endif 6392 6393 for_each_online_pgdat(pgdat) 6394 pgdat->per_cpu_nodestats = 6395 alloc_percpu(struct per_cpu_nodestat); 6396 } 6397 6398 static __meminit void zone_pcp_init(struct zone *zone) 6399 { 6400 /* 6401 * per cpu subsystem is not up at this point. The following code 6402 * relies on the ability of the linker to provide the 6403 * offset of a (static) per cpu variable into the per cpu area. 6404 */ 6405 zone->pageset = &boot_pageset; 6406 6407 if (populated_zone(zone)) 6408 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6409 zone->name, zone->present_pages, 6410 zone_batchsize(zone)); 6411 } 6412 6413 void __meminit init_currently_empty_zone(struct zone *zone, 6414 unsigned long zone_start_pfn, 6415 unsigned long size) 6416 { 6417 struct pglist_data *pgdat = zone->zone_pgdat; 6418 int zone_idx = zone_idx(zone) + 1; 6419 6420 if (zone_idx > pgdat->nr_zones) 6421 pgdat->nr_zones = zone_idx; 6422 6423 zone->zone_start_pfn = zone_start_pfn; 6424 6425 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6426 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6427 pgdat->node_id, 6428 (unsigned long)zone_idx(zone), 6429 zone_start_pfn, (zone_start_pfn + size)); 6430 6431 zone_init_free_lists(zone); 6432 zone->initialized = 1; 6433 } 6434 6435 /** 6436 * get_pfn_range_for_nid - Return the start and end page frames for a node 6437 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6438 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6439 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6440 * 6441 * It returns the start and end page frame of a node based on information 6442 * provided by memblock_set_node(). If called for a node 6443 * with no available memory, a warning is printed and the start and end 6444 * PFNs will be 0. 6445 */ 6446 void __init get_pfn_range_for_nid(unsigned int nid, 6447 unsigned long *start_pfn, unsigned long *end_pfn) 6448 { 6449 unsigned long this_start_pfn, this_end_pfn; 6450 int i; 6451 6452 *start_pfn = -1UL; 6453 *end_pfn = 0; 6454 6455 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6456 *start_pfn = min(*start_pfn, this_start_pfn); 6457 *end_pfn = max(*end_pfn, this_end_pfn); 6458 } 6459 6460 if (*start_pfn == -1UL) 6461 *start_pfn = 0; 6462 } 6463 6464 /* 6465 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6466 * assumption is made that zones within a node are ordered in monotonic 6467 * increasing memory addresses so that the "highest" populated zone is used 6468 */ 6469 static void __init find_usable_zone_for_movable(void) 6470 { 6471 int zone_index; 6472 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6473 if (zone_index == ZONE_MOVABLE) 6474 continue; 6475 6476 if (arch_zone_highest_possible_pfn[zone_index] > 6477 arch_zone_lowest_possible_pfn[zone_index]) 6478 break; 6479 } 6480 6481 VM_BUG_ON(zone_index == -1); 6482 movable_zone = zone_index; 6483 } 6484 6485 /* 6486 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6487 * because it is sized independent of architecture. Unlike the other zones, 6488 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6489 * in each node depending on the size of each node and how evenly kernelcore 6490 * is distributed. This helper function adjusts the zone ranges 6491 * provided by the architecture for a given node by using the end of the 6492 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6493 * zones within a node are in order of monotonic increases memory addresses 6494 */ 6495 static void __init adjust_zone_range_for_zone_movable(int nid, 6496 unsigned long zone_type, 6497 unsigned long node_start_pfn, 6498 unsigned long node_end_pfn, 6499 unsigned long *zone_start_pfn, 6500 unsigned long *zone_end_pfn) 6501 { 6502 /* Only adjust if ZONE_MOVABLE is on this node */ 6503 if (zone_movable_pfn[nid]) { 6504 /* Size ZONE_MOVABLE */ 6505 if (zone_type == ZONE_MOVABLE) { 6506 *zone_start_pfn = zone_movable_pfn[nid]; 6507 *zone_end_pfn = min(node_end_pfn, 6508 arch_zone_highest_possible_pfn[movable_zone]); 6509 6510 /* Adjust for ZONE_MOVABLE starting within this range */ 6511 } else if (!mirrored_kernelcore && 6512 *zone_start_pfn < zone_movable_pfn[nid] && 6513 *zone_end_pfn > zone_movable_pfn[nid]) { 6514 *zone_end_pfn = zone_movable_pfn[nid]; 6515 6516 /* Check if this whole range is within ZONE_MOVABLE */ 6517 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6518 *zone_start_pfn = *zone_end_pfn; 6519 } 6520 } 6521 6522 /* 6523 * Return the number of pages a zone spans in a node, including holes 6524 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6525 */ 6526 static unsigned long __init zone_spanned_pages_in_node(int nid, 6527 unsigned long zone_type, 6528 unsigned long node_start_pfn, 6529 unsigned long node_end_pfn, 6530 unsigned long *zone_start_pfn, 6531 unsigned long *zone_end_pfn) 6532 { 6533 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6534 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6535 /* When hotadd a new node from cpu_up(), the node should be empty */ 6536 if (!node_start_pfn && !node_end_pfn) 6537 return 0; 6538 6539 /* Get the start and end of the zone */ 6540 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6541 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6542 adjust_zone_range_for_zone_movable(nid, zone_type, 6543 node_start_pfn, node_end_pfn, 6544 zone_start_pfn, zone_end_pfn); 6545 6546 /* Check that this node has pages within the zone's required range */ 6547 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6548 return 0; 6549 6550 /* Move the zone boundaries inside the node if necessary */ 6551 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6552 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6553 6554 /* Return the spanned pages */ 6555 return *zone_end_pfn - *zone_start_pfn; 6556 } 6557 6558 /* 6559 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6560 * then all holes in the requested range will be accounted for. 6561 */ 6562 unsigned long __init __absent_pages_in_range(int nid, 6563 unsigned long range_start_pfn, 6564 unsigned long range_end_pfn) 6565 { 6566 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6567 unsigned long start_pfn, end_pfn; 6568 int i; 6569 6570 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6571 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6572 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6573 nr_absent -= end_pfn - start_pfn; 6574 } 6575 return nr_absent; 6576 } 6577 6578 /** 6579 * absent_pages_in_range - Return number of page frames in holes within a range 6580 * @start_pfn: The start PFN to start searching for holes 6581 * @end_pfn: The end PFN to stop searching for holes 6582 * 6583 * Return: the number of pages frames in memory holes within a range. 6584 */ 6585 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6586 unsigned long end_pfn) 6587 { 6588 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6589 } 6590 6591 /* Return the number of page frames in holes in a zone on a node */ 6592 static unsigned long __init zone_absent_pages_in_node(int nid, 6593 unsigned long zone_type, 6594 unsigned long node_start_pfn, 6595 unsigned long node_end_pfn) 6596 { 6597 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6598 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6599 unsigned long zone_start_pfn, zone_end_pfn; 6600 unsigned long nr_absent; 6601 6602 /* When hotadd a new node from cpu_up(), the node should be empty */ 6603 if (!node_start_pfn && !node_end_pfn) 6604 return 0; 6605 6606 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6607 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6608 6609 adjust_zone_range_for_zone_movable(nid, zone_type, 6610 node_start_pfn, node_end_pfn, 6611 &zone_start_pfn, &zone_end_pfn); 6612 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6613 6614 /* 6615 * ZONE_MOVABLE handling. 6616 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6617 * and vice versa. 6618 */ 6619 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6620 unsigned long start_pfn, end_pfn; 6621 struct memblock_region *r; 6622 6623 for_each_mem_region(r) { 6624 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6625 zone_start_pfn, zone_end_pfn); 6626 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6627 zone_start_pfn, zone_end_pfn); 6628 6629 if (zone_type == ZONE_MOVABLE && 6630 memblock_is_mirror(r)) 6631 nr_absent += end_pfn - start_pfn; 6632 6633 if (zone_type == ZONE_NORMAL && 6634 !memblock_is_mirror(r)) 6635 nr_absent += end_pfn - start_pfn; 6636 } 6637 } 6638 6639 return nr_absent; 6640 } 6641 6642 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6643 unsigned long node_start_pfn, 6644 unsigned long node_end_pfn) 6645 { 6646 unsigned long realtotalpages = 0, totalpages = 0; 6647 enum zone_type i; 6648 6649 for (i = 0; i < MAX_NR_ZONES; i++) { 6650 struct zone *zone = pgdat->node_zones + i; 6651 unsigned long zone_start_pfn, zone_end_pfn; 6652 unsigned long spanned, absent; 6653 unsigned long size, real_size; 6654 6655 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 6656 node_start_pfn, 6657 node_end_pfn, 6658 &zone_start_pfn, 6659 &zone_end_pfn); 6660 absent = zone_absent_pages_in_node(pgdat->node_id, i, 6661 node_start_pfn, 6662 node_end_pfn); 6663 6664 size = spanned; 6665 real_size = size - absent; 6666 6667 if (size) 6668 zone->zone_start_pfn = zone_start_pfn; 6669 else 6670 zone->zone_start_pfn = 0; 6671 zone->spanned_pages = size; 6672 zone->present_pages = real_size; 6673 6674 totalpages += size; 6675 realtotalpages += real_size; 6676 } 6677 6678 pgdat->node_spanned_pages = totalpages; 6679 pgdat->node_present_pages = realtotalpages; 6680 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6681 realtotalpages); 6682 } 6683 6684 #ifndef CONFIG_SPARSEMEM 6685 /* 6686 * Calculate the size of the zone->blockflags rounded to an unsigned long 6687 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6688 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6689 * round what is now in bits to nearest long in bits, then return it in 6690 * bytes. 6691 */ 6692 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6693 { 6694 unsigned long usemapsize; 6695 6696 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6697 usemapsize = roundup(zonesize, pageblock_nr_pages); 6698 usemapsize = usemapsize >> pageblock_order; 6699 usemapsize *= NR_PAGEBLOCK_BITS; 6700 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6701 6702 return usemapsize / 8; 6703 } 6704 6705 static void __ref setup_usemap(struct pglist_data *pgdat, 6706 struct zone *zone, 6707 unsigned long zone_start_pfn, 6708 unsigned long zonesize) 6709 { 6710 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6711 zone->pageblock_flags = NULL; 6712 if (usemapsize) { 6713 zone->pageblock_flags = 6714 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6715 pgdat->node_id); 6716 if (!zone->pageblock_flags) 6717 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6718 usemapsize, zone->name, pgdat->node_id); 6719 } 6720 } 6721 #else 6722 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6723 unsigned long zone_start_pfn, unsigned long zonesize) {} 6724 #endif /* CONFIG_SPARSEMEM */ 6725 6726 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6727 6728 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6729 void __init set_pageblock_order(void) 6730 { 6731 unsigned int order; 6732 6733 /* Check that pageblock_nr_pages has not already been setup */ 6734 if (pageblock_order) 6735 return; 6736 6737 if (HPAGE_SHIFT > PAGE_SHIFT) 6738 order = HUGETLB_PAGE_ORDER; 6739 else 6740 order = MAX_ORDER - 1; 6741 6742 /* 6743 * Assume the largest contiguous order of interest is a huge page. 6744 * This value may be variable depending on boot parameters on IA64 and 6745 * powerpc. 6746 */ 6747 pageblock_order = order; 6748 } 6749 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6750 6751 /* 6752 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6753 * is unused as pageblock_order is set at compile-time. See 6754 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6755 * the kernel config 6756 */ 6757 void __init set_pageblock_order(void) 6758 { 6759 } 6760 6761 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6762 6763 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6764 unsigned long present_pages) 6765 { 6766 unsigned long pages = spanned_pages; 6767 6768 /* 6769 * Provide a more accurate estimation if there are holes within 6770 * the zone and SPARSEMEM is in use. If there are holes within the 6771 * zone, each populated memory region may cost us one or two extra 6772 * memmap pages due to alignment because memmap pages for each 6773 * populated regions may not be naturally aligned on page boundary. 6774 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6775 */ 6776 if (spanned_pages > present_pages + (present_pages >> 4) && 6777 IS_ENABLED(CONFIG_SPARSEMEM)) 6778 pages = present_pages; 6779 6780 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6781 } 6782 6783 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6784 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6785 { 6786 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 6787 6788 spin_lock_init(&ds_queue->split_queue_lock); 6789 INIT_LIST_HEAD(&ds_queue->split_queue); 6790 ds_queue->split_queue_len = 0; 6791 } 6792 #else 6793 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6794 #endif 6795 6796 #ifdef CONFIG_COMPACTION 6797 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6798 { 6799 init_waitqueue_head(&pgdat->kcompactd_wait); 6800 } 6801 #else 6802 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6803 #endif 6804 6805 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6806 { 6807 pgdat_resize_init(pgdat); 6808 6809 pgdat_init_split_queue(pgdat); 6810 pgdat_init_kcompactd(pgdat); 6811 6812 init_waitqueue_head(&pgdat->kswapd_wait); 6813 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6814 6815 pgdat_page_ext_init(pgdat); 6816 spin_lock_init(&pgdat->lru_lock); 6817 lruvec_init(&pgdat->__lruvec); 6818 } 6819 6820 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6821 unsigned long remaining_pages) 6822 { 6823 atomic_long_set(&zone->managed_pages, remaining_pages); 6824 zone_set_nid(zone, nid); 6825 zone->name = zone_names[idx]; 6826 zone->zone_pgdat = NODE_DATA(nid); 6827 spin_lock_init(&zone->lock); 6828 zone_seqlock_init(zone); 6829 zone_pcp_init(zone); 6830 } 6831 6832 /* 6833 * Set up the zone data structures 6834 * - init pgdat internals 6835 * - init all zones belonging to this node 6836 * 6837 * NOTE: this function is only called during memory hotplug 6838 */ 6839 #ifdef CONFIG_MEMORY_HOTPLUG 6840 void __ref free_area_init_core_hotplug(int nid) 6841 { 6842 enum zone_type z; 6843 pg_data_t *pgdat = NODE_DATA(nid); 6844 6845 pgdat_init_internals(pgdat); 6846 for (z = 0; z < MAX_NR_ZONES; z++) 6847 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6848 } 6849 #endif 6850 6851 /* 6852 * Set up the zone data structures: 6853 * - mark all pages reserved 6854 * - mark all memory queues empty 6855 * - clear the memory bitmaps 6856 * 6857 * NOTE: pgdat should get zeroed by caller. 6858 * NOTE: this function is only called during early init. 6859 */ 6860 static void __init free_area_init_core(struct pglist_data *pgdat) 6861 { 6862 enum zone_type j; 6863 int nid = pgdat->node_id; 6864 6865 pgdat_init_internals(pgdat); 6866 pgdat->per_cpu_nodestats = &boot_nodestats; 6867 6868 for (j = 0; j < MAX_NR_ZONES; j++) { 6869 struct zone *zone = pgdat->node_zones + j; 6870 unsigned long size, freesize, memmap_pages; 6871 unsigned long zone_start_pfn = zone->zone_start_pfn; 6872 6873 size = zone->spanned_pages; 6874 freesize = zone->present_pages; 6875 6876 /* 6877 * Adjust freesize so that it accounts for how much memory 6878 * is used by this zone for memmap. This affects the watermark 6879 * and per-cpu initialisations 6880 */ 6881 memmap_pages = calc_memmap_size(size, freesize); 6882 if (!is_highmem_idx(j)) { 6883 if (freesize >= memmap_pages) { 6884 freesize -= memmap_pages; 6885 if (memmap_pages) 6886 printk(KERN_DEBUG 6887 " %s zone: %lu pages used for memmap\n", 6888 zone_names[j], memmap_pages); 6889 } else 6890 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6891 zone_names[j], memmap_pages, freesize); 6892 } 6893 6894 /* Account for reserved pages */ 6895 if (j == 0 && freesize > dma_reserve) { 6896 freesize -= dma_reserve; 6897 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6898 zone_names[0], dma_reserve); 6899 } 6900 6901 if (!is_highmem_idx(j)) 6902 nr_kernel_pages += freesize; 6903 /* Charge for highmem memmap if there are enough kernel pages */ 6904 else if (nr_kernel_pages > memmap_pages * 2) 6905 nr_kernel_pages -= memmap_pages; 6906 nr_all_pages += freesize; 6907 6908 /* 6909 * Set an approximate value for lowmem here, it will be adjusted 6910 * when the bootmem allocator frees pages into the buddy system. 6911 * And all highmem pages will be managed by the buddy system. 6912 */ 6913 zone_init_internals(zone, j, nid, freesize); 6914 6915 if (!size) 6916 continue; 6917 6918 set_pageblock_order(); 6919 setup_usemap(pgdat, zone, zone_start_pfn, size); 6920 init_currently_empty_zone(zone, zone_start_pfn, size); 6921 memmap_init(size, nid, j, zone_start_pfn); 6922 } 6923 } 6924 6925 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6926 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6927 { 6928 unsigned long __maybe_unused start = 0; 6929 unsigned long __maybe_unused offset = 0; 6930 6931 /* Skip empty nodes */ 6932 if (!pgdat->node_spanned_pages) 6933 return; 6934 6935 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6936 offset = pgdat->node_start_pfn - start; 6937 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6938 if (!pgdat->node_mem_map) { 6939 unsigned long size, end; 6940 struct page *map; 6941 6942 /* 6943 * The zone's endpoints aren't required to be MAX_ORDER 6944 * aligned but the node_mem_map endpoints must be in order 6945 * for the buddy allocator to function correctly. 6946 */ 6947 end = pgdat_end_pfn(pgdat); 6948 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6949 size = (end - start) * sizeof(struct page); 6950 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 6951 pgdat->node_id); 6952 if (!map) 6953 panic("Failed to allocate %ld bytes for node %d memory map\n", 6954 size, pgdat->node_id); 6955 pgdat->node_mem_map = map + offset; 6956 } 6957 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6958 __func__, pgdat->node_id, (unsigned long)pgdat, 6959 (unsigned long)pgdat->node_mem_map); 6960 #ifndef CONFIG_NEED_MULTIPLE_NODES 6961 /* 6962 * With no DISCONTIG, the global mem_map is just set as node 0's 6963 */ 6964 if (pgdat == NODE_DATA(0)) { 6965 mem_map = NODE_DATA(0)->node_mem_map; 6966 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6967 mem_map -= offset; 6968 } 6969 #endif 6970 } 6971 #else 6972 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6973 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6974 6975 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6976 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6977 { 6978 pgdat->first_deferred_pfn = ULONG_MAX; 6979 } 6980 #else 6981 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6982 #endif 6983 6984 static void __init free_area_init_node(int nid) 6985 { 6986 pg_data_t *pgdat = NODE_DATA(nid); 6987 unsigned long start_pfn = 0; 6988 unsigned long end_pfn = 0; 6989 6990 /* pg_data_t should be reset to zero when it's allocated */ 6991 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 6992 6993 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6994 6995 pgdat->node_id = nid; 6996 pgdat->node_start_pfn = start_pfn; 6997 pgdat->per_cpu_nodestats = NULL; 6998 6999 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7000 (u64)start_pfn << PAGE_SHIFT, 7001 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7002 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7003 7004 alloc_node_mem_map(pgdat); 7005 pgdat_set_deferred_range(pgdat); 7006 7007 free_area_init_core(pgdat); 7008 } 7009 7010 void __init free_area_init_memoryless_node(int nid) 7011 { 7012 free_area_init_node(nid); 7013 } 7014 7015 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 7016 /* 7017 * Initialize all valid struct pages in the range [spfn, epfn) and mark them 7018 * PageReserved(). Return the number of struct pages that were initialized. 7019 */ 7020 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn) 7021 { 7022 unsigned long pfn; 7023 u64 pgcnt = 0; 7024 7025 for (pfn = spfn; pfn < epfn; pfn++) { 7026 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 7027 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 7028 + pageblock_nr_pages - 1; 7029 continue; 7030 } 7031 /* 7032 * Use a fake node/zone (0) for now. Some of these pages 7033 * (in memblock.reserved but not in memblock.memory) will 7034 * get re-initialized via reserve_bootmem_region() later. 7035 */ 7036 __init_single_page(pfn_to_page(pfn), pfn, 0, 0); 7037 __SetPageReserved(pfn_to_page(pfn)); 7038 pgcnt++; 7039 } 7040 7041 return pgcnt; 7042 } 7043 7044 /* 7045 * Only struct pages that are backed by physical memory are zeroed and 7046 * initialized by going through __init_single_page(). But, there are some 7047 * struct pages which are reserved in memblock allocator and their fields 7048 * may be accessed (for example page_to_pfn() on some configuration accesses 7049 * flags). We must explicitly initialize those struct pages. 7050 * 7051 * This function also addresses a similar issue where struct pages are left 7052 * uninitialized because the physical address range is not covered by 7053 * memblock.memory or memblock.reserved. That could happen when memblock 7054 * layout is manually configured via memmap=, or when the highest physical 7055 * address (max_pfn) does not end on a section boundary. 7056 */ 7057 static void __init init_unavailable_mem(void) 7058 { 7059 phys_addr_t start, end; 7060 u64 i, pgcnt; 7061 phys_addr_t next = 0; 7062 7063 /* 7064 * Loop through unavailable ranges not covered by memblock.memory. 7065 */ 7066 pgcnt = 0; 7067 for_each_mem_range(i, &start, &end) { 7068 if (next < start) 7069 pgcnt += init_unavailable_range(PFN_DOWN(next), 7070 PFN_UP(start)); 7071 next = end; 7072 } 7073 7074 /* 7075 * Early sections always have a fully populated memmap for the whole 7076 * section - see pfn_valid(). If the last section has holes at the 7077 * end and that section is marked "online", the memmap will be 7078 * considered initialized. Make sure that memmap has a well defined 7079 * state. 7080 */ 7081 pgcnt += init_unavailable_range(PFN_DOWN(next), 7082 round_up(max_pfn, PAGES_PER_SECTION)); 7083 7084 /* 7085 * Struct pages that do not have backing memory. This could be because 7086 * firmware is using some of this memory, or for some other reasons. 7087 */ 7088 if (pgcnt) 7089 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 7090 } 7091 #else 7092 static inline void __init init_unavailable_mem(void) 7093 { 7094 } 7095 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 7096 7097 #if MAX_NUMNODES > 1 7098 /* 7099 * Figure out the number of possible node ids. 7100 */ 7101 void __init setup_nr_node_ids(void) 7102 { 7103 unsigned int highest; 7104 7105 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7106 nr_node_ids = highest + 1; 7107 } 7108 #endif 7109 7110 /** 7111 * node_map_pfn_alignment - determine the maximum internode alignment 7112 * 7113 * This function should be called after node map is populated and sorted. 7114 * It calculates the maximum power of two alignment which can distinguish 7115 * all the nodes. 7116 * 7117 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7118 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7119 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7120 * shifted, 1GiB is enough and this function will indicate so. 7121 * 7122 * This is used to test whether pfn -> nid mapping of the chosen memory 7123 * model has fine enough granularity to avoid incorrect mapping for the 7124 * populated node map. 7125 * 7126 * Return: the determined alignment in pfn's. 0 if there is no alignment 7127 * requirement (single node). 7128 */ 7129 unsigned long __init node_map_pfn_alignment(void) 7130 { 7131 unsigned long accl_mask = 0, last_end = 0; 7132 unsigned long start, end, mask; 7133 int last_nid = NUMA_NO_NODE; 7134 int i, nid; 7135 7136 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7137 if (!start || last_nid < 0 || last_nid == nid) { 7138 last_nid = nid; 7139 last_end = end; 7140 continue; 7141 } 7142 7143 /* 7144 * Start with a mask granular enough to pin-point to the 7145 * start pfn and tick off bits one-by-one until it becomes 7146 * too coarse to separate the current node from the last. 7147 */ 7148 mask = ~((1 << __ffs(start)) - 1); 7149 while (mask && last_end <= (start & (mask << 1))) 7150 mask <<= 1; 7151 7152 /* accumulate all internode masks */ 7153 accl_mask |= mask; 7154 } 7155 7156 /* convert mask to number of pages */ 7157 return ~accl_mask + 1; 7158 } 7159 7160 /** 7161 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7162 * 7163 * Return: the minimum PFN based on information provided via 7164 * memblock_set_node(). 7165 */ 7166 unsigned long __init find_min_pfn_with_active_regions(void) 7167 { 7168 return PHYS_PFN(memblock_start_of_DRAM()); 7169 } 7170 7171 /* 7172 * early_calculate_totalpages() 7173 * Sum pages in active regions for movable zone. 7174 * Populate N_MEMORY for calculating usable_nodes. 7175 */ 7176 static unsigned long __init early_calculate_totalpages(void) 7177 { 7178 unsigned long totalpages = 0; 7179 unsigned long start_pfn, end_pfn; 7180 int i, nid; 7181 7182 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7183 unsigned long pages = end_pfn - start_pfn; 7184 7185 totalpages += pages; 7186 if (pages) 7187 node_set_state(nid, N_MEMORY); 7188 } 7189 return totalpages; 7190 } 7191 7192 /* 7193 * Find the PFN the Movable zone begins in each node. Kernel memory 7194 * is spread evenly between nodes as long as the nodes have enough 7195 * memory. When they don't, some nodes will have more kernelcore than 7196 * others 7197 */ 7198 static void __init find_zone_movable_pfns_for_nodes(void) 7199 { 7200 int i, nid; 7201 unsigned long usable_startpfn; 7202 unsigned long kernelcore_node, kernelcore_remaining; 7203 /* save the state before borrow the nodemask */ 7204 nodemask_t saved_node_state = node_states[N_MEMORY]; 7205 unsigned long totalpages = early_calculate_totalpages(); 7206 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7207 struct memblock_region *r; 7208 7209 /* Need to find movable_zone earlier when movable_node is specified. */ 7210 find_usable_zone_for_movable(); 7211 7212 /* 7213 * If movable_node is specified, ignore kernelcore and movablecore 7214 * options. 7215 */ 7216 if (movable_node_is_enabled()) { 7217 for_each_mem_region(r) { 7218 if (!memblock_is_hotpluggable(r)) 7219 continue; 7220 7221 nid = memblock_get_region_node(r); 7222 7223 usable_startpfn = PFN_DOWN(r->base); 7224 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7225 min(usable_startpfn, zone_movable_pfn[nid]) : 7226 usable_startpfn; 7227 } 7228 7229 goto out2; 7230 } 7231 7232 /* 7233 * If kernelcore=mirror is specified, ignore movablecore option 7234 */ 7235 if (mirrored_kernelcore) { 7236 bool mem_below_4gb_not_mirrored = false; 7237 7238 for_each_mem_region(r) { 7239 if (memblock_is_mirror(r)) 7240 continue; 7241 7242 nid = memblock_get_region_node(r); 7243 7244 usable_startpfn = memblock_region_memory_base_pfn(r); 7245 7246 if (usable_startpfn < 0x100000) { 7247 mem_below_4gb_not_mirrored = true; 7248 continue; 7249 } 7250 7251 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7252 min(usable_startpfn, zone_movable_pfn[nid]) : 7253 usable_startpfn; 7254 } 7255 7256 if (mem_below_4gb_not_mirrored) 7257 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7258 7259 goto out2; 7260 } 7261 7262 /* 7263 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7264 * amount of necessary memory. 7265 */ 7266 if (required_kernelcore_percent) 7267 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7268 10000UL; 7269 if (required_movablecore_percent) 7270 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7271 10000UL; 7272 7273 /* 7274 * If movablecore= was specified, calculate what size of 7275 * kernelcore that corresponds so that memory usable for 7276 * any allocation type is evenly spread. If both kernelcore 7277 * and movablecore are specified, then the value of kernelcore 7278 * will be used for required_kernelcore if it's greater than 7279 * what movablecore would have allowed. 7280 */ 7281 if (required_movablecore) { 7282 unsigned long corepages; 7283 7284 /* 7285 * Round-up so that ZONE_MOVABLE is at least as large as what 7286 * was requested by the user 7287 */ 7288 required_movablecore = 7289 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7290 required_movablecore = min(totalpages, required_movablecore); 7291 corepages = totalpages - required_movablecore; 7292 7293 required_kernelcore = max(required_kernelcore, corepages); 7294 } 7295 7296 /* 7297 * If kernelcore was not specified or kernelcore size is larger 7298 * than totalpages, there is no ZONE_MOVABLE. 7299 */ 7300 if (!required_kernelcore || required_kernelcore >= totalpages) 7301 goto out; 7302 7303 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7304 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7305 7306 restart: 7307 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7308 kernelcore_node = required_kernelcore / usable_nodes; 7309 for_each_node_state(nid, N_MEMORY) { 7310 unsigned long start_pfn, end_pfn; 7311 7312 /* 7313 * Recalculate kernelcore_node if the division per node 7314 * now exceeds what is necessary to satisfy the requested 7315 * amount of memory for the kernel 7316 */ 7317 if (required_kernelcore < kernelcore_node) 7318 kernelcore_node = required_kernelcore / usable_nodes; 7319 7320 /* 7321 * As the map is walked, we track how much memory is usable 7322 * by the kernel using kernelcore_remaining. When it is 7323 * 0, the rest of the node is usable by ZONE_MOVABLE 7324 */ 7325 kernelcore_remaining = kernelcore_node; 7326 7327 /* Go through each range of PFNs within this node */ 7328 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7329 unsigned long size_pages; 7330 7331 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7332 if (start_pfn >= end_pfn) 7333 continue; 7334 7335 /* Account for what is only usable for kernelcore */ 7336 if (start_pfn < usable_startpfn) { 7337 unsigned long kernel_pages; 7338 kernel_pages = min(end_pfn, usable_startpfn) 7339 - start_pfn; 7340 7341 kernelcore_remaining -= min(kernel_pages, 7342 kernelcore_remaining); 7343 required_kernelcore -= min(kernel_pages, 7344 required_kernelcore); 7345 7346 /* Continue if range is now fully accounted */ 7347 if (end_pfn <= usable_startpfn) { 7348 7349 /* 7350 * Push zone_movable_pfn to the end so 7351 * that if we have to rebalance 7352 * kernelcore across nodes, we will 7353 * not double account here 7354 */ 7355 zone_movable_pfn[nid] = end_pfn; 7356 continue; 7357 } 7358 start_pfn = usable_startpfn; 7359 } 7360 7361 /* 7362 * The usable PFN range for ZONE_MOVABLE is from 7363 * start_pfn->end_pfn. Calculate size_pages as the 7364 * number of pages used as kernelcore 7365 */ 7366 size_pages = end_pfn - start_pfn; 7367 if (size_pages > kernelcore_remaining) 7368 size_pages = kernelcore_remaining; 7369 zone_movable_pfn[nid] = start_pfn + size_pages; 7370 7371 /* 7372 * Some kernelcore has been met, update counts and 7373 * break if the kernelcore for this node has been 7374 * satisfied 7375 */ 7376 required_kernelcore -= min(required_kernelcore, 7377 size_pages); 7378 kernelcore_remaining -= size_pages; 7379 if (!kernelcore_remaining) 7380 break; 7381 } 7382 } 7383 7384 /* 7385 * If there is still required_kernelcore, we do another pass with one 7386 * less node in the count. This will push zone_movable_pfn[nid] further 7387 * along on the nodes that still have memory until kernelcore is 7388 * satisfied 7389 */ 7390 usable_nodes--; 7391 if (usable_nodes && required_kernelcore > usable_nodes) 7392 goto restart; 7393 7394 out2: 7395 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7396 for (nid = 0; nid < MAX_NUMNODES; nid++) 7397 zone_movable_pfn[nid] = 7398 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7399 7400 out: 7401 /* restore the node_state */ 7402 node_states[N_MEMORY] = saved_node_state; 7403 } 7404 7405 /* Any regular or high memory on that node ? */ 7406 static void check_for_memory(pg_data_t *pgdat, int nid) 7407 { 7408 enum zone_type zone_type; 7409 7410 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7411 struct zone *zone = &pgdat->node_zones[zone_type]; 7412 if (populated_zone(zone)) { 7413 if (IS_ENABLED(CONFIG_HIGHMEM)) 7414 node_set_state(nid, N_HIGH_MEMORY); 7415 if (zone_type <= ZONE_NORMAL) 7416 node_set_state(nid, N_NORMAL_MEMORY); 7417 break; 7418 } 7419 } 7420 } 7421 7422 /* 7423 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 7424 * such cases we allow max_zone_pfn sorted in the descending order 7425 */ 7426 bool __weak arch_has_descending_max_zone_pfns(void) 7427 { 7428 return false; 7429 } 7430 7431 /** 7432 * free_area_init - Initialise all pg_data_t and zone data 7433 * @max_zone_pfn: an array of max PFNs for each zone 7434 * 7435 * This will call free_area_init_node() for each active node in the system. 7436 * Using the page ranges provided by memblock_set_node(), the size of each 7437 * zone in each node and their holes is calculated. If the maximum PFN 7438 * between two adjacent zones match, it is assumed that the zone is empty. 7439 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7440 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7441 * starts where the previous one ended. For example, ZONE_DMA32 starts 7442 * at arch_max_dma_pfn. 7443 */ 7444 void __init free_area_init(unsigned long *max_zone_pfn) 7445 { 7446 unsigned long start_pfn, end_pfn; 7447 int i, nid, zone; 7448 bool descending; 7449 7450 /* Record where the zone boundaries are */ 7451 memset(arch_zone_lowest_possible_pfn, 0, 7452 sizeof(arch_zone_lowest_possible_pfn)); 7453 memset(arch_zone_highest_possible_pfn, 0, 7454 sizeof(arch_zone_highest_possible_pfn)); 7455 7456 start_pfn = find_min_pfn_with_active_regions(); 7457 descending = arch_has_descending_max_zone_pfns(); 7458 7459 for (i = 0; i < MAX_NR_ZONES; i++) { 7460 if (descending) 7461 zone = MAX_NR_ZONES - i - 1; 7462 else 7463 zone = i; 7464 7465 if (zone == ZONE_MOVABLE) 7466 continue; 7467 7468 end_pfn = max(max_zone_pfn[zone], start_pfn); 7469 arch_zone_lowest_possible_pfn[zone] = start_pfn; 7470 arch_zone_highest_possible_pfn[zone] = end_pfn; 7471 7472 start_pfn = end_pfn; 7473 } 7474 7475 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7476 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7477 find_zone_movable_pfns_for_nodes(); 7478 7479 /* Print out the zone ranges */ 7480 pr_info("Zone ranges:\n"); 7481 for (i = 0; i < MAX_NR_ZONES; i++) { 7482 if (i == ZONE_MOVABLE) 7483 continue; 7484 pr_info(" %-8s ", zone_names[i]); 7485 if (arch_zone_lowest_possible_pfn[i] == 7486 arch_zone_highest_possible_pfn[i]) 7487 pr_cont("empty\n"); 7488 else 7489 pr_cont("[mem %#018Lx-%#018Lx]\n", 7490 (u64)arch_zone_lowest_possible_pfn[i] 7491 << PAGE_SHIFT, 7492 ((u64)arch_zone_highest_possible_pfn[i] 7493 << PAGE_SHIFT) - 1); 7494 } 7495 7496 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7497 pr_info("Movable zone start for each node\n"); 7498 for (i = 0; i < MAX_NUMNODES; i++) { 7499 if (zone_movable_pfn[i]) 7500 pr_info(" Node %d: %#018Lx\n", i, 7501 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7502 } 7503 7504 /* 7505 * Print out the early node map, and initialize the 7506 * subsection-map relative to active online memory ranges to 7507 * enable future "sub-section" extensions of the memory map. 7508 */ 7509 pr_info("Early memory node ranges\n"); 7510 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7511 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7512 (u64)start_pfn << PAGE_SHIFT, 7513 ((u64)end_pfn << PAGE_SHIFT) - 1); 7514 subsection_map_init(start_pfn, end_pfn - start_pfn); 7515 } 7516 7517 /* Initialise every node */ 7518 mminit_verify_pageflags_layout(); 7519 setup_nr_node_ids(); 7520 init_unavailable_mem(); 7521 for_each_online_node(nid) { 7522 pg_data_t *pgdat = NODE_DATA(nid); 7523 free_area_init_node(nid); 7524 7525 /* Any memory on that node */ 7526 if (pgdat->node_present_pages) 7527 node_set_state(nid, N_MEMORY); 7528 check_for_memory(pgdat, nid); 7529 } 7530 } 7531 7532 static int __init cmdline_parse_core(char *p, unsigned long *core, 7533 unsigned long *percent) 7534 { 7535 unsigned long long coremem; 7536 char *endptr; 7537 7538 if (!p) 7539 return -EINVAL; 7540 7541 /* Value may be a percentage of total memory, otherwise bytes */ 7542 coremem = simple_strtoull(p, &endptr, 0); 7543 if (*endptr == '%') { 7544 /* Paranoid check for percent values greater than 100 */ 7545 WARN_ON(coremem > 100); 7546 7547 *percent = coremem; 7548 } else { 7549 coremem = memparse(p, &p); 7550 /* Paranoid check that UL is enough for the coremem value */ 7551 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7552 7553 *core = coremem >> PAGE_SHIFT; 7554 *percent = 0UL; 7555 } 7556 return 0; 7557 } 7558 7559 /* 7560 * kernelcore=size sets the amount of memory for use for allocations that 7561 * cannot be reclaimed or migrated. 7562 */ 7563 static int __init cmdline_parse_kernelcore(char *p) 7564 { 7565 /* parse kernelcore=mirror */ 7566 if (parse_option_str(p, "mirror")) { 7567 mirrored_kernelcore = true; 7568 return 0; 7569 } 7570 7571 return cmdline_parse_core(p, &required_kernelcore, 7572 &required_kernelcore_percent); 7573 } 7574 7575 /* 7576 * movablecore=size sets the amount of memory for use for allocations that 7577 * can be reclaimed or migrated. 7578 */ 7579 static int __init cmdline_parse_movablecore(char *p) 7580 { 7581 return cmdline_parse_core(p, &required_movablecore, 7582 &required_movablecore_percent); 7583 } 7584 7585 early_param("kernelcore", cmdline_parse_kernelcore); 7586 early_param("movablecore", cmdline_parse_movablecore); 7587 7588 void adjust_managed_page_count(struct page *page, long count) 7589 { 7590 atomic_long_add(count, &page_zone(page)->managed_pages); 7591 totalram_pages_add(count); 7592 #ifdef CONFIG_HIGHMEM 7593 if (PageHighMem(page)) 7594 totalhigh_pages_add(count); 7595 #endif 7596 } 7597 EXPORT_SYMBOL(adjust_managed_page_count); 7598 7599 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7600 { 7601 void *pos; 7602 unsigned long pages = 0; 7603 7604 start = (void *)PAGE_ALIGN((unsigned long)start); 7605 end = (void *)((unsigned long)end & PAGE_MASK); 7606 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7607 struct page *page = virt_to_page(pos); 7608 void *direct_map_addr; 7609 7610 /* 7611 * 'direct_map_addr' might be different from 'pos' 7612 * because some architectures' virt_to_page() 7613 * work with aliases. Getting the direct map 7614 * address ensures that we get a _writeable_ 7615 * alias for the memset(). 7616 */ 7617 direct_map_addr = page_address(page); 7618 if ((unsigned int)poison <= 0xFF) 7619 memset(direct_map_addr, poison, PAGE_SIZE); 7620 7621 free_reserved_page(page); 7622 } 7623 7624 if (pages && s) 7625 pr_info("Freeing %s memory: %ldK\n", 7626 s, pages << (PAGE_SHIFT - 10)); 7627 7628 return pages; 7629 } 7630 7631 #ifdef CONFIG_HIGHMEM 7632 void free_highmem_page(struct page *page) 7633 { 7634 __free_reserved_page(page); 7635 totalram_pages_inc(); 7636 atomic_long_inc(&page_zone(page)->managed_pages); 7637 totalhigh_pages_inc(); 7638 } 7639 #endif 7640 7641 7642 void __init mem_init_print_info(const char *str) 7643 { 7644 unsigned long physpages, codesize, datasize, rosize, bss_size; 7645 unsigned long init_code_size, init_data_size; 7646 7647 physpages = get_num_physpages(); 7648 codesize = _etext - _stext; 7649 datasize = _edata - _sdata; 7650 rosize = __end_rodata - __start_rodata; 7651 bss_size = __bss_stop - __bss_start; 7652 init_data_size = __init_end - __init_begin; 7653 init_code_size = _einittext - _sinittext; 7654 7655 /* 7656 * Detect special cases and adjust section sizes accordingly: 7657 * 1) .init.* may be embedded into .data sections 7658 * 2) .init.text.* may be out of [__init_begin, __init_end], 7659 * please refer to arch/tile/kernel/vmlinux.lds.S. 7660 * 3) .rodata.* may be embedded into .text or .data sections. 7661 */ 7662 #define adj_init_size(start, end, size, pos, adj) \ 7663 do { \ 7664 if (start <= pos && pos < end && size > adj) \ 7665 size -= adj; \ 7666 } while (0) 7667 7668 adj_init_size(__init_begin, __init_end, init_data_size, 7669 _sinittext, init_code_size); 7670 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7671 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7672 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7673 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7674 7675 #undef adj_init_size 7676 7677 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7678 #ifdef CONFIG_HIGHMEM 7679 ", %luK highmem" 7680 #endif 7681 "%s%s)\n", 7682 nr_free_pages() << (PAGE_SHIFT - 10), 7683 physpages << (PAGE_SHIFT - 10), 7684 codesize >> 10, datasize >> 10, rosize >> 10, 7685 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7686 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7687 totalcma_pages << (PAGE_SHIFT - 10), 7688 #ifdef CONFIG_HIGHMEM 7689 totalhigh_pages() << (PAGE_SHIFT - 10), 7690 #endif 7691 str ? ", " : "", str ? str : ""); 7692 } 7693 7694 /** 7695 * set_dma_reserve - set the specified number of pages reserved in the first zone 7696 * @new_dma_reserve: The number of pages to mark reserved 7697 * 7698 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7699 * In the DMA zone, a significant percentage may be consumed by kernel image 7700 * and other unfreeable allocations which can skew the watermarks badly. This 7701 * function may optionally be used to account for unfreeable pages in the 7702 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7703 * smaller per-cpu batchsize. 7704 */ 7705 void __init set_dma_reserve(unsigned long new_dma_reserve) 7706 { 7707 dma_reserve = new_dma_reserve; 7708 } 7709 7710 static int page_alloc_cpu_dead(unsigned int cpu) 7711 { 7712 7713 lru_add_drain_cpu(cpu); 7714 drain_pages(cpu); 7715 7716 /* 7717 * Spill the event counters of the dead processor 7718 * into the current processors event counters. 7719 * This artificially elevates the count of the current 7720 * processor. 7721 */ 7722 vm_events_fold_cpu(cpu); 7723 7724 /* 7725 * Zero the differential counters of the dead processor 7726 * so that the vm statistics are consistent. 7727 * 7728 * This is only okay since the processor is dead and cannot 7729 * race with what we are doing. 7730 */ 7731 cpu_vm_stats_fold(cpu); 7732 return 0; 7733 } 7734 7735 #ifdef CONFIG_NUMA 7736 int hashdist = HASHDIST_DEFAULT; 7737 7738 static int __init set_hashdist(char *str) 7739 { 7740 if (!str) 7741 return 0; 7742 hashdist = simple_strtoul(str, &str, 0); 7743 return 1; 7744 } 7745 __setup("hashdist=", set_hashdist); 7746 #endif 7747 7748 void __init page_alloc_init(void) 7749 { 7750 int ret; 7751 7752 #ifdef CONFIG_NUMA 7753 if (num_node_state(N_MEMORY) == 1) 7754 hashdist = 0; 7755 #endif 7756 7757 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7758 "mm/page_alloc:dead", NULL, 7759 page_alloc_cpu_dead); 7760 WARN_ON(ret < 0); 7761 } 7762 7763 /* 7764 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7765 * or min_free_kbytes changes. 7766 */ 7767 static void calculate_totalreserve_pages(void) 7768 { 7769 struct pglist_data *pgdat; 7770 unsigned long reserve_pages = 0; 7771 enum zone_type i, j; 7772 7773 for_each_online_pgdat(pgdat) { 7774 7775 pgdat->totalreserve_pages = 0; 7776 7777 for (i = 0; i < MAX_NR_ZONES; i++) { 7778 struct zone *zone = pgdat->node_zones + i; 7779 long max = 0; 7780 unsigned long managed_pages = zone_managed_pages(zone); 7781 7782 /* Find valid and maximum lowmem_reserve in the zone */ 7783 for (j = i; j < MAX_NR_ZONES; j++) { 7784 if (zone->lowmem_reserve[j] > max) 7785 max = zone->lowmem_reserve[j]; 7786 } 7787 7788 /* we treat the high watermark as reserved pages. */ 7789 max += high_wmark_pages(zone); 7790 7791 if (max > managed_pages) 7792 max = managed_pages; 7793 7794 pgdat->totalreserve_pages += max; 7795 7796 reserve_pages += max; 7797 } 7798 } 7799 totalreserve_pages = reserve_pages; 7800 } 7801 7802 /* 7803 * setup_per_zone_lowmem_reserve - called whenever 7804 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7805 * has a correct pages reserved value, so an adequate number of 7806 * pages are left in the zone after a successful __alloc_pages(). 7807 */ 7808 static void setup_per_zone_lowmem_reserve(void) 7809 { 7810 struct pglist_data *pgdat; 7811 enum zone_type j, idx; 7812 7813 for_each_online_pgdat(pgdat) { 7814 for (j = 0; j < MAX_NR_ZONES; j++) { 7815 struct zone *zone = pgdat->node_zones + j; 7816 unsigned long managed_pages = zone_managed_pages(zone); 7817 7818 zone->lowmem_reserve[j] = 0; 7819 7820 idx = j; 7821 while (idx) { 7822 struct zone *lower_zone; 7823 7824 idx--; 7825 lower_zone = pgdat->node_zones + idx; 7826 7827 if (!sysctl_lowmem_reserve_ratio[idx] || 7828 !zone_managed_pages(lower_zone)) { 7829 lower_zone->lowmem_reserve[j] = 0; 7830 continue; 7831 } else { 7832 lower_zone->lowmem_reserve[j] = 7833 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7834 } 7835 managed_pages += zone_managed_pages(lower_zone); 7836 } 7837 } 7838 } 7839 7840 /* update totalreserve_pages */ 7841 calculate_totalreserve_pages(); 7842 } 7843 7844 static void __setup_per_zone_wmarks(void) 7845 { 7846 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7847 unsigned long lowmem_pages = 0; 7848 struct zone *zone; 7849 unsigned long flags; 7850 7851 /* Calculate total number of !ZONE_HIGHMEM pages */ 7852 for_each_zone(zone) { 7853 if (!is_highmem(zone)) 7854 lowmem_pages += zone_managed_pages(zone); 7855 } 7856 7857 for_each_zone(zone) { 7858 u64 tmp; 7859 7860 spin_lock_irqsave(&zone->lock, flags); 7861 tmp = (u64)pages_min * zone_managed_pages(zone); 7862 do_div(tmp, lowmem_pages); 7863 if (is_highmem(zone)) { 7864 /* 7865 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7866 * need highmem pages, so cap pages_min to a small 7867 * value here. 7868 * 7869 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7870 * deltas control async page reclaim, and so should 7871 * not be capped for highmem. 7872 */ 7873 unsigned long min_pages; 7874 7875 min_pages = zone_managed_pages(zone) / 1024; 7876 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7877 zone->_watermark[WMARK_MIN] = min_pages; 7878 } else { 7879 /* 7880 * If it's a lowmem zone, reserve a number of pages 7881 * proportionate to the zone's size. 7882 */ 7883 zone->_watermark[WMARK_MIN] = tmp; 7884 } 7885 7886 /* 7887 * Set the kswapd watermarks distance according to the 7888 * scale factor in proportion to available memory, but 7889 * ensure a minimum size on small systems. 7890 */ 7891 tmp = max_t(u64, tmp >> 2, 7892 mult_frac(zone_managed_pages(zone), 7893 watermark_scale_factor, 10000)); 7894 7895 zone->watermark_boost = 0; 7896 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7897 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7898 7899 spin_unlock_irqrestore(&zone->lock, flags); 7900 } 7901 7902 /* update totalreserve_pages */ 7903 calculate_totalreserve_pages(); 7904 } 7905 7906 /** 7907 * setup_per_zone_wmarks - called when min_free_kbytes changes 7908 * or when memory is hot-{added|removed} 7909 * 7910 * Ensures that the watermark[min,low,high] values for each zone are set 7911 * correctly with respect to min_free_kbytes. 7912 */ 7913 void setup_per_zone_wmarks(void) 7914 { 7915 static DEFINE_SPINLOCK(lock); 7916 7917 spin_lock(&lock); 7918 __setup_per_zone_wmarks(); 7919 spin_unlock(&lock); 7920 } 7921 7922 /* 7923 * Initialise min_free_kbytes. 7924 * 7925 * For small machines we want it small (128k min). For large machines 7926 * we want it large (256MB max). But it is not linear, because network 7927 * bandwidth does not increase linearly with machine size. We use 7928 * 7929 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7930 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7931 * 7932 * which yields 7933 * 7934 * 16MB: 512k 7935 * 32MB: 724k 7936 * 64MB: 1024k 7937 * 128MB: 1448k 7938 * 256MB: 2048k 7939 * 512MB: 2896k 7940 * 1024MB: 4096k 7941 * 2048MB: 5792k 7942 * 4096MB: 8192k 7943 * 8192MB: 11584k 7944 * 16384MB: 16384k 7945 */ 7946 int __meminit init_per_zone_wmark_min(void) 7947 { 7948 unsigned long lowmem_kbytes; 7949 int new_min_free_kbytes; 7950 7951 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7952 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7953 7954 if (new_min_free_kbytes > user_min_free_kbytes) { 7955 min_free_kbytes = new_min_free_kbytes; 7956 if (min_free_kbytes < 128) 7957 min_free_kbytes = 128; 7958 if (min_free_kbytes > 262144) 7959 min_free_kbytes = 262144; 7960 } else { 7961 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7962 new_min_free_kbytes, user_min_free_kbytes); 7963 } 7964 setup_per_zone_wmarks(); 7965 refresh_zone_stat_thresholds(); 7966 setup_per_zone_lowmem_reserve(); 7967 7968 #ifdef CONFIG_NUMA 7969 setup_min_unmapped_ratio(); 7970 setup_min_slab_ratio(); 7971 #endif 7972 7973 khugepaged_min_free_kbytes_update(); 7974 7975 return 0; 7976 } 7977 postcore_initcall(init_per_zone_wmark_min) 7978 7979 /* 7980 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7981 * that we can call two helper functions whenever min_free_kbytes 7982 * changes. 7983 */ 7984 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7985 void *buffer, size_t *length, loff_t *ppos) 7986 { 7987 int rc; 7988 7989 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7990 if (rc) 7991 return rc; 7992 7993 if (write) { 7994 user_min_free_kbytes = min_free_kbytes; 7995 setup_per_zone_wmarks(); 7996 } 7997 return 0; 7998 } 7999 8000 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8001 void *buffer, size_t *length, loff_t *ppos) 8002 { 8003 int rc; 8004 8005 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8006 if (rc) 8007 return rc; 8008 8009 if (write) 8010 setup_per_zone_wmarks(); 8011 8012 return 0; 8013 } 8014 8015 #ifdef CONFIG_NUMA 8016 static void setup_min_unmapped_ratio(void) 8017 { 8018 pg_data_t *pgdat; 8019 struct zone *zone; 8020 8021 for_each_online_pgdat(pgdat) 8022 pgdat->min_unmapped_pages = 0; 8023 8024 for_each_zone(zone) 8025 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8026 sysctl_min_unmapped_ratio) / 100; 8027 } 8028 8029 8030 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8031 void *buffer, size_t *length, loff_t *ppos) 8032 { 8033 int rc; 8034 8035 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8036 if (rc) 8037 return rc; 8038 8039 setup_min_unmapped_ratio(); 8040 8041 return 0; 8042 } 8043 8044 static void setup_min_slab_ratio(void) 8045 { 8046 pg_data_t *pgdat; 8047 struct zone *zone; 8048 8049 for_each_online_pgdat(pgdat) 8050 pgdat->min_slab_pages = 0; 8051 8052 for_each_zone(zone) 8053 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8054 sysctl_min_slab_ratio) / 100; 8055 } 8056 8057 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8058 void *buffer, size_t *length, loff_t *ppos) 8059 { 8060 int rc; 8061 8062 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8063 if (rc) 8064 return rc; 8065 8066 setup_min_slab_ratio(); 8067 8068 return 0; 8069 } 8070 #endif 8071 8072 /* 8073 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8074 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8075 * whenever sysctl_lowmem_reserve_ratio changes. 8076 * 8077 * The reserve ratio obviously has absolutely no relation with the 8078 * minimum watermarks. The lowmem reserve ratio can only make sense 8079 * if in function of the boot time zone sizes. 8080 */ 8081 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8082 void *buffer, size_t *length, loff_t *ppos) 8083 { 8084 int i; 8085 8086 proc_dointvec_minmax(table, write, buffer, length, ppos); 8087 8088 for (i = 0; i < MAX_NR_ZONES; i++) { 8089 if (sysctl_lowmem_reserve_ratio[i] < 1) 8090 sysctl_lowmem_reserve_ratio[i] = 0; 8091 } 8092 8093 setup_per_zone_lowmem_reserve(); 8094 return 0; 8095 } 8096 8097 static void __zone_pcp_update(struct zone *zone) 8098 { 8099 unsigned int cpu; 8100 8101 for_each_possible_cpu(cpu) 8102 pageset_set_high_and_batch(zone, 8103 per_cpu_ptr(zone->pageset, cpu)); 8104 } 8105 8106 /* 8107 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 8108 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8109 * pagelist can have before it gets flushed back to buddy allocator. 8110 */ 8111 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 8112 void *buffer, size_t *length, loff_t *ppos) 8113 { 8114 struct zone *zone; 8115 int old_percpu_pagelist_fraction; 8116 int ret; 8117 8118 mutex_lock(&pcp_batch_high_lock); 8119 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 8120 8121 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8122 if (!write || ret < 0) 8123 goto out; 8124 8125 /* Sanity checking to avoid pcp imbalance */ 8126 if (percpu_pagelist_fraction && 8127 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 8128 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 8129 ret = -EINVAL; 8130 goto out; 8131 } 8132 8133 /* No change? */ 8134 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 8135 goto out; 8136 8137 for_each_populated_zone(zone) 8138 __zone_pcp_update(zone); 8139 out: 8140 mutex_unlock(&pcp_batch_high_lock); 8141 return ret; 8142 } 8143 8144 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8145 /* 8146 * Returns the number of pages that arch has reserved but 8147 * is not known to alloc_large_system_hash(). 8148 */ 8149 static unsigned long __init arch_reserved_kernel_pages(void) 8150 { 8151 return 0; 8152 } 8153 #endif 8154 8155 /* 8156 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8157 * machines. As memory size is increased the scale is also increased but at 8158 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8159 * quadruples the scale is increased by one, which means the size of hash table 8160 * only doubles, instead of quadrupling as well. 8161 * Because 32-bit systems cannot have large physical memory, where this scaling 8162 * makes sense, it is disabled on such platforms. 8163 */ 8164 #if __BITS_PER_LONG > 32 8165 #define ADAPT_SCALE_BASE (64ul << 30) 8166 #define ADAPT_SCALE_SHIFT 2 8167 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8168 #endif 8169 8170 /* 8171 * allocate a large system hash table from bootmem 8172 * - it is assumed that the hash table must contain an exact power-of-2 8173 * quantity of entries 8174 * - limit is the number of hash buckets, not the total allocation size 8175 */ 8176 void *__init alloc_large_system_hash(const char *tablename, 8177 unsigned long bucketsize, 8178 unsigned long numentries, 8179 int scale, 8180 int flags, 8181 unsigned int *_hash_shift, 8182 unsigned int *_hash_mask, 8183 unsigned long low_limit, 8184 unsigned long high_limit) 8185 { 8186 unsigned long long max = high_limit; 8187 unsigned long log2qty, size; 8188 void *table = NULL; 8189 gfp_t gfp_flags; 8190 bool virt; 8191 8192 /* allow the kernel cmdline to have a say */ 8193 if (!numentries) { 8194 /* round applicable memory size up to nearest megabyte */ 8195 numentries = nr_kernel_pages; 8196 numentries -= arch_reserved_kernel_pages(); 8197 8198 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8199 if (PAGE_SHIFT < 20) 8200 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8201 8202 #if __BITS_PER_LONG > 32 8203 if (!high_limit) { 8204 unsigned long adapt; 8205 8206 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8207 adapt <<= ADAPT_SCALE_SHIFT) 8208 scale++; 8209 } 8210 #endif 8211 8212 /* limit to 1 bucket per 2^scale bytes of low memory */ 8213 if (scale > PAGE_SHIFT) 8214 numentries >>= (scale - PAGE_SHIFT); 8215 else 8216 numentries <<= (PAGE_SHIFT - scale); 8217 8218 /* Make sure we've got at least a 0-order allocation.. */ 8219 if (unlikely(flags & HASH_SMALL)) { 8220 /* Makes no sense without HASH_EARLY */ 8221 WARN_ON(!(flags & HASH_EARLY)); 8222 if (!(numentries >> *_hash_shift)) { 8223 numentries = 1UL << *_hash_shift; 8224 BUG_ON(!numentries); 8225 } 8226 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8227 numentries = PAGE_SIZE / bucketsize; 8228 } 8229 numentries = roundup_pow_of_two(numentries); 8230 8231 /* limit allocation size to 1/16 total memory by default */ 8232 if (max == 0) { 8233 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8234 do_div(max, bucketsize); 8235 } 8236 max = min(max, 0x80000000ULL); 8237 8238 if (numentries < low_limit) 8239 numentries = low_limit; 8240 if (numentries > max) 8241 numentries = max; 8242 8243 log2qty = ilog2(numentries); 8244 8245 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8246 do { 8247 virt = false; 8248 size = bucketsize << log2qty; 8249 if (flags & HASH_EARLY) { 8250 if (flags & HASH_ZERO) 8251 table = memblock_alloc(size, SMP_CACHE_BYTES); 8252 else 8253 table = memblock_alloc_raw(size, 8254 SMP_CACHE_BYTES); 8255 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8256 table = __vmalloc(size, gfp_flags); 8257 virt = true; 8258 } else { 8259 /* 8260 * If bucketsize is not a power-of-two, we may free 8261 * some pages at the end of hash table which 8262 * alloc_pages_exact() automatically does 8263 */ 8264 table = alloc_pages_exact(size, gfp_flags); 8265 kmemleak_alloc(table, size, 1, gfp_flags); 8266 } 8267 } while (!table && size > PAGE_SIZE && --log2qty); 8268 8269 if (!table) 8270 panic("Failed to allocate %s hash table\n", tablename); 8271 8272 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8273 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8274 virt ? "vmalloc" : "linear"); 8275 8276 if (_hash_shift) 8277 *_hash_shift = log2qty; 8278 if (_hash_mask) 8279 *_hash_mask = (1 << log2qty) - 1; 8280 8281 return table; 8282 } 8283 8284 /* 8285 * This function checks whether pageblock includes unmovable pages or not. 8286 * 8287 * PageLRU check without isolation or lru_lock could race so that 8288 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8289 * check without lock_page also may miss some movable non-lru pages at 8290 * race condition. So you can't expect this function should be exact. 8291 * 8292 * Returns a page without holding a reference. If the caller wants to 8293 * dereference that page (e.g., dumping), it has to make sure that it 8294 * cannot get removed (e.g., via memory unplug) concurrently. 8295 * 8296 */ 8297 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8298 int migratetype, int flags) 8299 { 8300 unsigned long iter = 0; 8301 unsigned long pfn = page_to_pfn(page); 8302 unsigned long offset = pfn % pageblock_nr_pages; 8303 8304 if (is_migrate_cma_page(page)) { 8305 /* 8306 * CMA allocations (alloc_contig_range) really need to mark 8307 * isolate CMA pageblocks even when they are not movable in fact 8308 * so consider them movable here. 8309 */ 8310 if (is_migrate_cma(migratetype)) 8311 return NULL; 8312 8313 return page; 8314 } 8315 8316 for (; iter < pageblock_nr_pages - offset; iter++) { 8317 if (!pfn_valid_within(pfn + iter)) 8318 continue; 8319 8320 page = pfn_to_page(pfn + iter); 8321 8322 /* 8323 * Both, bootmem allocations and memory holes are marked 8324 * PG_reserved and are unmovable. We can even have unmovable 8325 * allocations inside ZONE_MOVABLE, for example when 8326 * specifying "movablecore". 8327 */ 8328 if (PageReserved(page)) 8329 return page; 8330 8331 /* 8332 * If the zone is movable and we have ruled out all reserved 8333 * pages then it should be reasonably safe to assume the rest 8334 * is movable. 8335 */ 8336 if (zone_idx(zone) == ZONE_MOVABLE) 8337 continue; 8338 8339 /* 8340 * Hugepages are not in LRU lists, but they're movable. 8341 * THPs are on the LRU, but need to be counted as #small pages. 8342 * We need not scan over tail pages because we don't 8343 * handle each tail page individually in migration. 8344 */ 8345 if (PageHuge(page) || PageTransCompound(page)) { 8346 struct page *head = compound_head(page); 8347 unsigned int skip_pages; 8348 8349 if (PageHuge(page)) { 8350 if (!hugepage_migration_supported(page_hstate(head))) 8351 return page; 8352 } else if (!PageLRU(head) && !__PageMovable(head)) { 8353 return page; 8354 } 8355 8356 skip_pages = compound_nr(head) - (page - head); 8357 iter += skip_pages - 1; 8358 continue; 8359 } 8360 8361 /* 8362 * We can't use page_count without pin a page 8363 * because another CPU can free compound page. 8364 * This check already skips compound tails of THP 8365 * because their page->_refcount is zero at all time. 8366 */ 8367 if (!page_ref_count(page)) { 8368 if (PageBuddy(page)) 8369 iter += (1 << buddy_order(page)) - 1; 8370 continue; 8371 } 8372 8373 /* 8374 * The HWPoisoned page may be not in buddy system, and 8375 * page_count() is not 0. 8376 */ 8377 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8378 continue; 8379 8380 /* 8381 * We treat all PageOffline() pages as movable when offlining 8382 * to give drivers a chance to decrement their reference count 8383 * in MEM_GOING_OFFLINE in order to indicate that these pages 8384 * can be offlined as there are no direct references anymore. 8385 * For actually unmovable PageOffline() where the driver does 8386 * not support this, we will fail later when trying to actually 8387 * move these pages that still have a reference count > 0. 8388 * (false negatives in this function only) 8389 */ 8390 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8391 continue; 8392 8393 if (__PageMovable(page) || PageLRU(page)) 8394 continue; 8395 8396 /* 8397 * If there are RECLAIMABLE pages, we need to check 8398 * it. But now, memory offline itself doesn't call 8399 * shrink_node_slabs() and it still to be fixed. 8400 */ 8401 return page; 8402 } 8403 return NULL; 8404 } 8405 8406 #ifdef CONFIG_CONTIG_ALLOC 8407 static unsigned long pfn_max_align_down(unsigned long pfn) 8408 { 8409 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8410 pageblock_nr_pages) - 1); 8411 } 8412 8413 static unsigned long pfn_max_align_up(unsigned long pfn) 8414 { 8415 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8416 pageblock_nr_pages)); 8417 } 8418 8419 /* [start, end) must belong to a single zone. */ 8420 static int __alloc_contig_migrate_range(struct compact_control *cc, 8421 unsigned long start, unsigned long end) 8422 { 8423 /* This function is based on compact_zone() from compaction.c. */ 8424 unsigned int nr_reclaimed; 8425 unsigned long pfn = start; 8426 unsigned int tries = 0; 8427 int ret = 0; 8428 struct migration_target_control mtc = { 8429 .nid = zone_to_nid(cc->zone), 8430 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 8431 }; 8432 8433 migrate_prep(); 8434 8435 while (pfn < end || !list_empty(&cc->migratepages)) { 8436 if (fatal_signal_pending(current)) { 8437 ret = -EINTR; 8438 break; 8439 } 8440 8441 if (list_empty(&cc->migratepages)) { 8442 cc->nr_migratepages = 0; 8443 pfn = isolate_migratepages_range(cc, pfn, end); 8444 if (!pfn) { 8445 ret = -EINTR; 8446 break; 8447 } 8448 tries = 0; 8449 } else if (++tries == 5) { 8450 ret = ret < 0 ? ret : -EBUSY; 8451 break; 8452 } 8453 8454 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8455 &cc->migratepages); 8456 cc->nr_migratepages -= nr_reclaimed; 8457 8458 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 8459 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE); 8460 } 8461 if (ret < 0) { 8462 putback_movable_pages(&cc->migratepages); 8463 return ret; 8464 } 8465 return 0; 8466 } 8467 8468 /** 8469 * alloc_contig_range() -- tries to allocate given range of pages 8470 * @start: start PFN to allocate 8471 * @end: one-past-the-last PFN to allocate 8472 * @migratetype: migratetype of the underlaying pageblocks (either 8473 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8474 * in range must have the same migratetype and it must 8475 * be either of the two. 8476 * @gfp_mask: GFP mask to use during compaction 8477 * 8478 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8479 * aligned. The PFN range must belong to a single zone. 8480 * 8481 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8482 * pageblocks in the range. Once isolated, the pageblocks should not 8483 * be modified by others. 8484 * 8485 * Return: zero on success or negative error code. On success all 8486 * pages which PFN is in [start, end) are allocated for the caller and 8487 * need to be freed with free_contig_range(). 8488 */ 8489 int alloc_contig_range(unsigned long start, unsigned long end, 8490 unsigned migratetype, gfp_t gfp_mask) 8491 { 8492 unsigned long outer_start, outer_end; 8493 unsigned int order; 8494 int ret = 0; 8495 8496 struct compact_control cc = { 8497 .nr_migratepages = 0, 8498 .order = -1, 8499 .zone = page_zone(pfn_to_page(start)), 8500 .mode = MIGRATE_SYNC, 8501 .ignore_skip_hint = true, 8502 .no_set_skip_hint = true, 8503 .gfp_mask = current_gfp_context(gfp_mask), 8504 .alloc_contig = true, 8505 }; 8506 INIT_LIST_HEAD(&cc.migratepages); 8507 8508 /* 8509 * What we do here is we mark all pageblocks in range as 8510 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8511 * have different sizes, and due to the way page allocator 8512 * work, we align the range to biggest of the two pages so 8513 * that page allocator won't try to merge buddies from 8514 * different pageblocks and change MIGRATE_ISOLATE to some 8515 * other migration type. 8516 * 8517 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8518 * migrate the pages from an unaligned range (ie. pages that 8519 * we are interested in). This will put all the pages in 8520 * range back to page allocator as MIGRATE_ISOLATE. 8521 * 8522 * When this is done, we take the pages in range from page 8523 * allocator removing them from the buddy system. This way 8524 * page allocator will never consider using them. 8525 * 8526 * This lets us mark the pageblocks back as 8527 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8528 * aligned range but not in the unaligned, original range are 8529 * put back to page allocator so that buddy can use them. 8530 */ 8531 8532 ret = start_isolate_page_range(pfn_max_align_down(start), 8533 pfn_max_align_up(end), migratetype, 0); 8534 if (ret) 8535 return ret; 8536 8537 /* 8538 * In case of -EBUSY, we'd like to know which page causes problem. 8539 * So, just fall through. test_pages_isolated() has a tracepoint 8540 * which will report the busy page. 8541 * 8542 * It is possible that busy pages could become available before 8543 * the call to test_pages_isolated, and the range will actually be 8544 * allocated. So, if we fall through be sure to clear ret so that 8545 * -EBUSY is not accidentally used or returned to caller. 8546 */ 8547 ret = __alloc_contig_migrate_range(&cc, start, end); 8548 if (ret && ret != -EBUSY) 8549 goto done; 8550 ret =0; 8551 8552 /* 8553 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8554 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8555 * more, all pages in [start, end) are free in page allocator. 8556 * What we are going to do is to allocate all pages from 8557 * [start, end) (that is remove them from page allocator). 8558 * 8559 * The only problem is that pages at the beginning and at the 8560 * end of interesting range may be not aligned with pages that 8561 * page allocator holds, ie. they can be part of higher order 8562 * pages. Because of this, we reserve the bigger range and 8563 * once this is done free the pages we are not interested in. 8564 * 8565 * We don't have to hold zone->lock here because the pages are 8566 * isolated thus they won't get removed from buddy. 8567 */ 8568 8569 lru_add_drain_all(); 8570 8571 order = 0; 8572 outer_start = start; 8573 while (!PageBuddy(pfn_to_page(outer_start))) { 8574 if (++order >= MAX_ORDER) { 8575 outer_start = start; 8576 break; 8577 } 8578 outer_start &= ~0UL << order; 8579 } 8580 8581 if (outer_start != start) { 8582 order = buddy_order(pfn_to_page(outer_start)); 8583 8584 /* 8585 * outer_start page could be small order buddy page and 8586 * it doesn't include start page. Adjust outer_start 8587 * in this case to report failed page properly 8588 * on tracepoint in test_pages_isolated() 8589 */ 8590 if (outer_start + (1UL << order) <= start) 8591 outer_start = start; 8592 } 8593 8594 /* Make sure the range is really isolated. */ 8595 if (test_pages_isolated(outer_start, end, 0)) { 8596 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8597 __func__, outer_start, end); 8598 ret = -EBUSY; 8599 goto done; 8600 } 8601 8602 /* Grab isolated pages from freelists. */ 8603 outer_end = isolate_freepages_range(&cc, outer_start, end); 8604 if (!outer_end) { 8605 ret = -EBUSY; 8606 goto done; 8607 } 8608 8609 /* Free head and tail (if any) */ 8610 if (start != outer_start) 8611 free_contig_range(outer_start, start - outer_start); 8612 if (end != outer_end) 8613 free_contig_range(end, outer_end - end); 8614 8615 done: 8616 undo_isolate_page_range(pfn_max_align_down(start), 8617 pfn_max_align_up(end), migratetype); 8618 return ret; 8619 } 8620 EXPORT_SYMBOL(alloc_contig_range); 8621 8622 static int __alloc_contig_pages(unsigned long start_pfn, 8623 unsigned long nr_pages, gfp_t gfp_mask) 8624 { 8625 unsigned long end_pfn = start_pfn + nr_pages; 8626 8627 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 8628 gfp_mask); 8629 } 8630 8631 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 8632 unsigned long nr_pages) 8633 { 8634 unsigned long i, end_pfn = start_pfn + nr_pages; 8635 struct page *page; 8636 8637 for (i = start_pfn; i < end_pfn; i++) { 8638 page = pfn_to_online_page(i); 8639 if (!page) 8640 return false; 8641 8642 if (page_zone(page) != z) 8643 return false; 8644 8645 if (PageReserved(page)) 8646 return false; 8647 8648 if (page_count(page) > 0) 8649 return false; 8650 8651 if (PageHuge(page)) 8652 return false; 8653 } 8654 return true; 8655 } 8656 8657 static bool zone_spans_last_pfn(const struct zone *zone, 8658 unsigned long start_pfn, unsigned long nr_pages) 8659 { 8660 unsigned long last_pfn = start_pfn + nr_pages - 1; 8661 8662 return zone_spans_pfn(zone, last_pfn); 8663 } 8664 8665 /** 8666 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 8667 * @nr_pages: Number of contiguous pages to allocate 8668 * @gfp_mask: GFP mask to limit search and used during compaction 8669 * @nid: Target node 8670 * @nodemask: Mask for other possible nodes 8671 * 8672 * This routine is a wrapper around alloc_contig_range(). It scans over zones 8673 * on an applicable zonelist to find a contiguous pfn range which can then be 8674 * tried for allocation with alloc_contig_range(). This routine is intended 8675 * for allocation requests which can not be fulfilled with the buddy allocator. 8676 * 8677 * The allocated memory is always aligned to a page boundary. If nr_pages is a 8678 * power of two then the alignment is guaranteed to be to the given nr_pages 8679 * (e.g. 1GB request would be aligned to 1GB). 8680 * 8681 * Allocated pages can be freed with free_contig_range() or by manually calling 8682 * __free_page() on each allocated page. 8683 * 8684 * Return: pointer to contiguous pages on success, or NULL if not successful. 8685 */ 8686 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 8687 int nid, nodemask_t *nodemask) 8688 { 8689 unsigned long ret, pfn, flags; 8690 struct zonelist *zonelist; 8691 struct zone *zone; 8692 struct zoneref *z; 8693 8694 zonelist = node_zonelist(nid, gfp_mask); 8695 for_each_zone_zonelist_nodemask(zone, z, zonelist, 8696 gfp_zone(gfp_mask), nodemask) { 8697 spin_lock_irqsave(&zone->lock, flags); 8698 8699 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 8700 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 8701 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 8702 /* 8703 * We release the zone lock here because 8704 * alloc_contig_range() will also lock the zone 8705 * at some point. If there's an allocation 8706 * spinning on this lock, it may win the race 8707 * and cause alloc_contig_range() to fail... 8708 */ 8709 spin_unlock_irqrestore(&zone->lock, flags); 8710 ret = __alloc_contig_pages(pfn, nr_pages, 8711 gfp_mask); 8712 if (!ret) 8713 return pfn_to_page(pfn); 8714 spin_lock_irqsave(&zone->lock, flags); 8715 } 8716 pfn += nr_pages; 8717 } 8718 spin_unlock_irqrestore(&zone->lock, flags); 8719 } 8720 return NULL; 8721 } 8722 #endif /* CONFIG_CONTIG_ALLOC */ 8723 8724 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8725 { 8726 unsigned int count = 0; 8727 8728 for (; nr_pages--; pfn++) { 8729 struct page *page = pfn_to_page(pfn); 8730 8731 count += page_count(page) != 1; 8732 __free_page(page); 8733 } 8734 WARN(count != 0, "%d pages are still in use!\n", count); 8735 } 8736 EXPORT_SYMBOL(free_contig_range); 8737 8738 /* 8739 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8740 * page high values need to be recalulated. 8741 */ 8742 void __meminit zone_pcp_update(struct zone *zone) 8743 { 8744 mutex_lock(&pcp_batch_high_lock); 8745 __zone_pcp_update(zone); 8746 mutex_unlock(&pcp_batch_high_lock); 8747 } 8748 8749 void zone_pcp_reset(struct zone *zone) 8750 { 8751 unsigned long flags; 8752 int cpu; 8753 struct per_cpu_pageset *pset; 8754 8755 /* avoid races with drain_pages() */ 8756 local_irq_save(flags); 8757 if (zone->pageset != &boot_pageset) { 8758 for_each_online_cpu(cpu) { 8759 pset = per_cpu_ptr(zone->pageset, cpu); 8760 drain_zonestat(zone, pset); 8761 } 8762 free_percpu(zone->pageset); 8763 zone->pageset = &boot_pageset; 8764 } 8765 local_irq_restore(flags); 8766 } 8767 8768 #ifdef CONFIG_MEMORY_HOTREMOVE 8769 /* 8770 * All pages in the range must be in a single zone, must not contain holes, 8771 * must span full sections, and must be isolated before calling this function. 8772 */ 8773 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8774 { 8775 unsigned long pfn = start_pfn; 8776 struct page *page; 8777 struct zone *zone; 8778 unsigned int order; 8779 unsigned long flags; 8780 8781 offline_mem_sections(pfn, end_pfn); 8782 zone = page_zone(pfn_to_page(pfn)); 8783 spin_lock_irqsave(&zone->lock, flags); 8784 while (pfn < end_pfn) { 8785 page = pfn_to_page(pfn); 8786 /* 8787 * The HWPoisoned page may be not in buddy system, and 8788 * page_count() is not 0. 8789 */ 8790 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8791 pfn++; 8792 continue; 8793 } 8794 /* 8795 * At this point all remaining PageOffline() pages have a 8796 * reference count of 0 and can simply be skipped. 8797 */ 8798 if (PageOffline(page)) { 8799 BUG_ON(page_count(page)); 8800 BUG_ON(PageBuddy(page)); 8801 pfn++; 8802 continue; 8803 } 8804 8805 BUG_ON(page_count(page)); 8806 BUG_ON(!PageBuddy(page)); 8807 order = buddy_order(page); 8808 del_page_from_free_list(page, zone, order); 8809 pfn += (1 << order); 8810 } 8811 spin_unlock_irqrestore(&zone->lock, flags); 8812 } 8813 #endif 8814 8815 bool is_free_buddy_page(struct page *page) 8816 { 8817 struct zone *zone = page_zone(page); 8818 unsigned long pfn = page_to_pfn(page); 8819 unsigned long flags; 8820 unsigned int order; 8821 8822 spin_lock_irqsave(&zone->lock, flags); 8823 for (order = 0; order < MAX_ORDER; order++) { 8824 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8825 8826 if (PageBuddy(page_head) && buddy_order(page_head) >= order) 8827 break; 8828 } 8829 spin_unlock_irqrestore(&zone->lock, flags); 8830 8831 return order < MAX_ORDER; 8832 } 8833 8834 #ifdef CONFIG_MEMORY_FAILURE 8835 /* 8836 * Break down a higher-order page in sub-pages, and keep our target out of 8837 * buddy allocator. 8838 */ 8839 static void break_down_buddy_pages(struct zone *zone, struct page *page, 8840 struct page *target, int low, int high, 8841 int migratetype) 8842 { 8843 unsigned long size = 1 << high; 8844 struct page *current_buddy, *next_page; 8845 8846 while (high > low) { 8847 high--; 8848 size >>= 1; 8849 8850 if (target >= &page[size]) { 8851 next_page = page + size; 8852 current_buddy = page; 8853 } else { 8854 next_page = page; 8855 current_buddy = page + size; 8856 } 8857 8858 if (set_page_guard(zone, current_buddy, high, migratetype)) 8859 continue; 8860 8861 if (current_buddy != target) { 8862 add_to_free_list(current_buddy, zone, high, migratetype); 8863 set_buddy_order(current_buddy, high); 8864 page = next_page; 8865 } 8866 } 8867 } 8868 8869 /* 8870 * Take a page that will be marked as poisoned off the buddy allocator. 8871 */ 8872 bool take_page_off_buddy(struct page *page) 8873 { 8874 struct zone *zone = page_zone(page); 8875 unsigned long pfn = page_to_pfn(page); 8876 unsigned long flags; 8877 unsigned int order; 8878 bool ret = false; 8879 8880 spin_lock_irqsave(&zone->lock, flags); 8881 for (order = 0; order < MAX_ORDER; order++) { 8882 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8883 int page_order = buddy_order(page_head); 8884 8885 if (PageBuddy(page_head) && page_order >= order) { 8886 unsigned long pfn_head = page_to_pfn(page_head); 8887 int migratetype = get_pfnblock_migratetype(page_head, 8888 pfn_head); 8889 8890 del_page_from_free_list(page_head, zone, page_order); 8891 break_down_buddy_pages(zone, page_head, page, 0, 8892 page_order, migratetype); 8893 ret = true; 8894 break; 8895 } 8896 if (page_count(page_head) > 0) 8897 break; 8898 } 8899 spin_unlock_irqrestore(&zone->lock, flags); 8900 return ret; 8901 } 8902 #endif 8903