1 /* 2 * mm/page-writeback.c. 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains functions related to writing back dirty pages at the 7 * address_space level. 8 * 9 * 10Apr2002 akpm@zip.com.au 10 * Initial version 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/spinlock.h> 16 #include <linux/fs.h> 17 #include <linux/mm.h> 18 #include <linux/swap.h> 19 #include <linux/slab.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/init.h> 23 #include <linux/backing-dev.h> 24 #include <linux/blkdev.h> 25 #include <linux/mpage.h> 26 #include <linux/percpu.h> 27 #include <linux/notifier.h> 28 #include <linux/smp.h> 29 #include <linux/sysctl.h> 30 #include <linux/cpu.h> 31 #include <linux/syscalls.h> 32 33 /* 34 * The maximum number of pages to writeout in a single bdflush/kupdate 35 * operation. We do this so we don't hold I_LOCK against an inode for 36 * enormous amounts of time, which would block a userspace task which has 37 * been forced to throttle against that inode. Also, the code reevaluates 38 * the dirty each time it has written this many pages. 39 */ 40 #define MAX_WRITEBACK_PAGES 1024 41 42 /* 43 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 44 * will look to see if it needs to force writeback or throttling. 45 */ 46 static long ratelimit_pages = 32; 47 48 static long total_pages; /* The total number of pages in the machine. */ 49 static int dirty_exceeded __cacheline_aligned_in_smp; /* Dirty mem may be over limit */ 50 51 /* 52 * When balance_dirty_pages decides that the caller needs to perform some 53 * non-background writeback, this is how many pages it will attempt to write. 54 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably 55 * large amounts of I/O are submitted. 56 */ 57 static inline long sync_writeback_pages(void) 58 { 59 return ratelimit_pages + ratelimit_pages / 2; 60 } 61 62 /* The following parameters are exported via /proc/sys/vm */ 63 64 /* 65 * Start background writeback (via pdflush) at this percentage 66 */ 67 int dirty_background_ratio = 10; 68 69 /* 70 * The generator of dirty data starts writeback at this percentage 71 */ 72 int vm_dirty_ratio = 40; 73 74 /* 75 * The interval between `kupdate'-style writebacks, in centiseconds 76 * (hundredths of a second) 77 */ 78 int dirty_writeback_interval = 5 * HZ; 79 80 /* 81 * The longest number of centiseconds for which data is allowed to remain dirty 82 */ 83 int dirty_expire_interval = 30 * HZ; 84 85 /* 86 * Flag that makes the machine dump writes/reads and block dirtyings. 87 */ 88 int block_dump; 89 90 /* 91 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 92 * a full sync is triggered after this time elapses without any disk activity. 93 */ 94 int laptop_mode; 95 96 EXPORT_SYMBOL(laptop_mode); 97 98 /* End of sysctl-exported parameters */ 99 100 101 static void background_writeout(unsigned long _min_pages); 102 103 struct writeback_state 104 { 105 unsigned long nr_dirty; 106 unsigned long nr_unstable; 107 unsigned long nr_mapped; 108 unsigned long nr_writeback; 109 }; 110 111 static void get_writeback_state(struct writeback_state *wbs) 112 { 113 wbs->nr_dirty = read_page_state(nr_dirty); 114 wbs->nr_unstable = read_page_state(nr_unstable); 115 wbs->nr_mapped = read_page_state(nr_mapped); 116 wbs->nr_writeback = read_page_state(nr_writeback); 117 } 118 119 /* 120 * Work out the current dirty-memory clamping and background writeout 121 * thresholds. 122 * 123 * The main aim here is to lower them aggressively if there is a lot of mapped 124 * memory around. To avoid stressing page reclaim with lots of unreclaimable 125 * pages. It is better to clamp down on writers than to start swapping, and 126 * performing lots of scanning. 127 * 128 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 129 * 130 * We don't permit the clamping level to fall below 5% - that is getting rather 131 * excessive. 132 * 133 * We make sure that the background writeout level is below the adjusted 134 * clamping level. 135 */ 136 static void 137 get_dirty_limits(struct writeback_state *wbs, long *pbackground, long *pdirty, 138 struct address_space *mapping) 139 { 140 int background_ratio; /* Percentages */ 141 int dirty_ratio; 142 int unmapped_ratio; 143 long background; 144 long dirty; 145 unsigned long available_memory = total_pages; 146 struct task_struct *tsk; 147 148 get_writeback_state(wbs); 149 150 #ifdef CONFIG_HIGHMEM 151 /* 152 * If this mapping can only allocate from low memory, 153 * we exclude high memory from our count. 154 */ 155 if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM)) 156 available_memory -= totalhigh_pages; 157 #endif 158 159 160 unmapped_ratio = 100 - (wbs->nr_mapped * 100) / total_pages; 161 162 dirty_ratio = vm_dirty_ratio; 163 if (dirty_ratio > unmapped_ratio / 2) 164 dirty_ratio = unmapped_ratio / 2; 165 166 if (dirty_ratio < 5) 167 dirty_ratio = 5; 168 169 background_ratio = dirty_background_ratio; 170 if (background_ratio >= dirty_ratio) 171 background_ratio = dirty_ratio / 2; 172 173 background = (background_ratio * available_memory) / 100; 174 dirty = (dirty_ratio * available_memory) / 100; 175 tsk = current; 176 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 177 background += background / 4; 178 dirty += dirty / 4; 179 } 180 *pbackground = background; 181 *pdirty = dirty; 182 } 183 184 /* 185 * balance_dirty_pages() must be called by processes which are generating dirty 186 * data. It looks at the number of dirty pages in the machine and will force 187 * the caller to perform writeback if the system is over `vm_dirty_ratio'. 188 * If we're over `background_thresh' then pdflush is woken to perform some 189 * writeout. 190 */ 191 static void balance_dirty_pages(struct address_space *mapping) 192 { 193 struct writeback_state wbs; 194 long nr_reclaimable; 195 long background_thresh; 196 long dirty_thresh; 197 unsigned long pages_written = 0; 198 unsigned long write_chunk = sync_writeback_pages(); 199 200 struct backing_dev_info *bdi = mapping->backing_dev_info; 201 202 for (;;) { 203 struct writeback_control wbc = { 204 .bdi = bdi, 205 .sync_mode = WB_SYNC_NONE, 206 .older_than_this = NULL, 207 .nr_to_write = write_chunk, 208 }; 209 210 get_dirty_limits(&wbs, &background_thresh, 211 &dirty_thresh, mapping); 212 nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable; 213 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh) 214 break; 215 216 if (!dirty_exceeded) 217 dirty_exceeded = 1; 218 219 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. 220 * Unstable writes are a feature of certain networked 221 * filesystems (i.e. NFS) in which data may have been 222 * written to the server's write cache, but has not yet 223 * been flushed to permanent storage. 224 */ 225 if (nr_reclaimable) { 226 writeback_inodes(&wbc); 227 get_dirty_limits(&wbs, &background_thresh, 228 &dirty_thresh, mapping); 229 nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable; 230 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh) 231 break; 232 pages_written += write_chunk - wbc.nr_to_write; 233 if (pages_written >= write_chunk) 234 break; /* We've done our duty */ 235 } 236 blk_congestion_wait(WRITE, HZ/10); 237 } 238 239 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh && dirty_exceeded) 240 dirty_exceeded = 0; 241 242 if (writeback_in_progress(bdi)) 243 return; /* pdflush is already working this queue */ 244 245 /* 246 * In laptop mode, we wait until hitting the higher threshold before 247 * starting background writeout, and then write out all the way down 248 * to the lower threshold. So slow writers cause minimal disk activity. 249 * 250 * In normal mode, we start background writeout at the lower 251 * background_thresh, to keep the amount of dirty memory low. 252 */ 253 if ((laptop_mode && pages_written) || 254 (!laptop_mode && (nr_reclaimable > background_thresh))) 255 pdflush_operation(background_writeout, 0); 256 } 257 258 /** 259 * balance_dirty_pages_ratelimited - balance dirty memory state 260 * @mapping: address_space which was dirtied 261 * 262 * Processes which are dirtying memory should call in here once for each page 263 * which was newly dirtied. The function will periodically check the system's 264 * dirty state and will initiate writeback if needed. 265 * 266 * On really big machines, get_writeback_state is expensive, so try to avoid 267 * calling it too often (ratelimiting). But once we're over the dirty memory 268 * limit we decrease the ratelimiting by a lot, to prevent individual processes 269 * from overshooting the limit by (ratelimit_pages) each. 270 */ 271 void balance_dirty_pages_ratelimited(struct address_space *mapping) 272 { 273 static DEFINE_PER_CPU(int, ratelimits) = 0; 274 long ratelimit; 275 276 ratelimit = ratelimit_pages; 277 if (dirty_exceeded) 278 ratelimit = 8; 279 280 /* 281 * Check the rate limiting. Also, we do not want to throttle real-time 282 * tasks in balance_dirty_pages(). Period. 283 */ 284 if (get_cpu_var(ratelimits)++ >= ratelimit) { 285 __get_cpu_var(ratelimits) = 0; 286 put_cpu_var(ratelimits); 287 balance_dirty_pages(mapping); 288 return; 289 } 290 put_cpu_var(ratelimits); 291 } 292 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 293 294 void throttle_vm_writeout(void) 295 { 296 struct writeback_state wbs; 297 long background_thresh; 298 long dirty_thresh; 299 300 for ( ; ; ) { 301 get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL); 302 303 /* 304 * Boost the allowable dirty threshold a bit for page 305 * allocators so they don't get DoS'ed by heavy writers 306 */ 307 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 308 309 if (wbs.nr_unstable + wbs.nr_writeback <= dirty_thresh) 310 break; 311 blk_congestion_wait(WRITE, HZ/10); 312 } 313 } 314 315 316 /* 317 * writeback at least _min_pages, and keep writing until the amount of dirty 318 * memory is less than the background threshold, or until we're all clean. 319 */ 320 static void background_writeout(unsigned long _min_pages) 321 { 322 long min_pages = _min_pages; 323 struct writeback_control wbc = { 324 .bdi = NULL, 325 .sync_mode = WB_SYNC_NONE, 326 .older_than_this = NULL, 327 .nr_to_write = 0, 328 .nonblocking = 1, 329 }; 330 331 for ( ; ; ) { 332 struct writeback_state wbs; 333 long background_thresh; 334 long dirty_thresh; 335 336 get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL); 337 if (wbs.nr_dirty + wbs.nr_unstable < background_thresh 338 && min_pages <= 0) 339 break; 340 wbc.encountered_congestion = 0; 341 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 342 wbc.pages_skipped = 0; 343 writeback_inodes(&wbc); 344 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 345 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) { 346 /* Wrote less than expected */ 347 blk_congestion_wait(WRITE, HZ/10); 348 if (!wbc.encountered_congestion) 349 break; 350 } 351 } 352 } 353 354 /* 355 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 356 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns 357 * -1 if all pdflush threads were busy. 358 */ 359 int wakeup_pdflush(long nr_pages) 360 { 361 if (nr_pages == 0) { 362 struct writeback_state wbs; 363 364 get_writeback_state(&wbs); 365 nr_pages = wbs.nr_dirty + wbs.nr_unstable; 366 } 367 return pdflush_operation(background_writeout, nr_pages); 368 } 369 370 static void wb_timer_fn(unsigned long unused); 371 static void laptop_timer_fn(unsigned long unused); 372 373 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0); 374 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0); 375 376 /* 377 * Periodic writeback of "old" data. 378 * 379 * Define "old": the first time one of an inode's pages is dirtied, we mark the 380 * dirtying-time in the inode's address_space. So this periodic writeback code 381 * just walks the superblock inode list, writing back any inodes which are 382 * older than a specific point in time. 383 * 384 * Try to run once per dirty_writeback_interval. But if a writeback event 385 * takes longer than a dirty_writeback_interval interval, then leave a 386 * one-second gap. 387 * 388 * older_than_this takes precedence over nr_to_write. So we'll only write back 389 * all dirty pages if they are all attached to "old" mappings. 390 */ 391 static void wb_kupdate(unsigned long arg) 392 { 393 unsigned long oldest_jif; 394 unsigned long start_jif; 395 unsigned long next_jif; 396 long nr_to_write; 397 struct writeback_state wbs; 398 struct writeback_control wbc = { 399 .bdi = NULL, 400 .sync_mode = WB_SYNC_NONE, 401 .older_than_this = &oldest_jif, 402 .nr_to_write = 0, 403 .nonblocking = 1, 404 .for_kupdate = 1, 405 }; 406 407 sync_supers(); 408 409 get_writeback_state(&wbs); 410 oldest_jif = jiffies - dirty_expire_interval; 411 start_jif = jiffies; 412 next_jif = start_jif + dirty_writeback_interval; 413 nr_to_write = wbs.nr_dirty + wbs.nr_unstable + 414 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 415 while (nr_to_write > 0) { 416 wbc.encountered_congestion = 0; 417 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 418 writeback_inodes(&wbc); 419 if (wbc.nr_to_write > 0) { 420 if (wbc.encountered_congestion) 421 blk_congestion_wait(WRITE, HZ/10); 422 else 423 break; /* All the old data is written */ 424 } 425 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 426 } 427 if (time_before(next_jif, jiffies + HZ)) 428 next_jif = jiffies + HZ; 429 if (dirty_writeback_interval) 430 mod_timer(&wb_timer, next_jif); 431 } 432 433 /* 434 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 435 */ 436 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 437 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 438 { 439 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos); 440 if (dirty_writeback_interval) { 441 mod_timer(&wb_timer, 442 jiffies + dirty_writeback_interval); 443 } else { 444 del_timer(&wb_timer); 445 } 446 return 0; 447 } 448 449 static void wb_timer_fn(unsigned long unused) 450 { 451 if (pdflush_operation(wb_kupdate, 0) < 0) 452 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */ 453 } 454 455 static void laptop_flush(unsigned long unused) 456 { 457 sys_sync(); 458 } 459 460 static void laptop_timer_fn(unsigned long unused) 461 { 462 pdflush_operation(laptop_flush, 0); 463 } 464 465 /* 466 * We've spun up the disk and we're in laptop mode: schedule writeback 467 * of all dirty data a few seconds from now. If the flush is already scheduled 468 * then push it back - the user is still using the disk. 469 */ 470 void laptop_io_completion(void) 471 { 472 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode); 473 } 474 475 /* 476 * We're in laptop mode and we've just synced. The sync's writes will have 477 * caused another writeback to be scheduled by laptop_io_completion. 478 * Nothing needs to be written back anymore, so we unschedule the writeback. 479 */ 480 void laptop_sync_completion(void) 481 { 482 del_timer(&laptop_mode_wb_timer); 483 } 484 485 /* 486 * If ratelimit_pages is too high then we can get into dirty-data overload 487 * if a large number of processes all perform writes at the same time. 488 * If it is too low then SMP machines will call the (expensive) 489 * get_writeback_state too often. 490 * 491 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 492 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 493 * thresholds before writeback cuts in. 494 * 495 * But the limit should not be set too high. Because it also controls the 496 * amount of memory which the balance_dirty_pages() caller has to write back. 497 * If this is too large then the caller will block on the IO queue all the 498 * time. So limit it to four megabytes - the balance_dirty_pages() caller 499 * will write six megabyte chunks, max. 500 */ 501 502 static void set_ratelimit(void) 503 { 504 ratelimit_pages = total_pages / (num_online_cpus() * 32); 505 if (ratelimit_pages < 16) 506 ratelimit_pages = 16; 507 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) 508 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; 509 } 510 511 static int 512 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) 513 { 514 set_ratelimit(); 515 return 0; 516 } 517 518 static struct notifier_block ratelimit_nb = { 519 .notifier_call = ratelimit_handler, 520 .next = NULL, 521 }; 522 523 /* 524 * If the machine has a large highmem:lowmem ratio then scale back the default 525 * dirty memory thresholds: allowing too much dirty highmem pins an excessive 526 * number of buffer_heads. 527 */ 528 void __init page_writeback_init(void) 529 { 530 long buffer_pages = nr_free_buffer_pages(); 531 long correction; 532 533 total_pages = nr_free_pagecache_pages(); 534 535 correction = (100 * 4 * buffer_pages) / total_pages; 536 537 if (correction < 100) { 538 dirty_background_ratio *= correction; 539 dirty_background_ratio /= 100; 540 vm_dirty_ratio *= correction; 541 vm_dirty_ratio /= 100; 542 543 if (dirty_background_ratio <= 0) 544 dirty_background_ratio = 1; 545 if (vm_dirty_ratio <= 0) 546 vm_dirty_ratio = 1; 547 } 548 mod_timer(&wb_timer, jiffies + dirty_writeback_interval); 549 set_ratelimit(); 550 register_cpu_notifier(&ratelimit_nb); 551 } 552 553 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 554 { 555 int ret; 556 557 if (wbc->nr_to_write <= 0) 558 return 0; 559 wbc->for_writepages = 1; 560 if (mapping->a_ops->writepages) 561 ret = mapping->a_ops->writepages(mapping, wbc); 562 else 563 ret = generic_writepages(mapping, wbc); 564 wbc->for_writepages = 0; 565 return ret; 566 } 567 568 /** 569 * write_one_page - write out a single page and optionally wait on I/O 570 * 571 * @page: the page to write 572 * @wait: if true, wait on writeout 573 * 574 * The page must be locked by the caller and will be unlocked upon return. 575 * 576 * write_one_page() returns a negative error code if I/O failed. 577 */ 578 int write_one_page(struct page *page, int wait) 579 { 580 struct address_space *mapping = page->mapping; 581 int ret = 0; 582 struct writeback_control wbc = { 583 .sync_mode = WB_SYNC_ALL, 584 .nr_to_write = 1, 585 }; 586 587 BUG_ON(!PageLocked(page)); 588 589 if (wait) 590 wait_on_page_writeback(page); 591 592 if (clear_page_dirty_for_io(page)) { 593 page_cache_get(page); 594 ret = mapping->a_ops->writepage(page, &wbc); 595 if (ret == 0 && wait) { 596 wait_on_page_writeback(page); 597 if (PageError(page)) 598 ret = -EIO; 599 } 600 page_cache_release(page); 601 } else { 602 unlock_page(page); 603 } 604 return ret; 605 } 606 EXPORT_SYMBOL(write_one_page); 607 608 /* 609 * For address_spaces which do not use buffers. Just tag the page as dirty in 610 * its radix tree. 611 * 612 * This is also used when a single buffer is being dirtied: we want to set the 613 * page dirty in that case, but not all the buffers. This is a "bottom-up" 614 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 615 * 616 * Most callers have locked the page, which pins the address_space in memory. 617 * But zap_pte_range() does not lock the page, however in that case the 618 * mapping is pinned by the vma's ->vm_file reference. 619 * 620 * We take care to handle the case where the page was truncated from the 621 * mapping by re-checking page_mapping() insode tree_lock. 622 */ 623 int __set_page_dirty_nobuffers(struct page *page) 624 { 625 int ret = 0; 626 627 if (!TestSetPageDirty(page)) { 628 struct address_space *mapping = page_mapping(page); 629 struct address_space *mapping2; 630 631 if (mapping) { 632 write_lock_irq(&mapping->tree_lock); 633 mapping2 = page_mapping(page); 634 if (mapping2) { /* Race with truncate? */ 635 BUG_ON(mapping2 != mapping); 636 if (mapping_cap_account_dirty(mapping)) 637 inc_page_state(nr_dirty); 638 radix_tree_tag_set(&mapping->page_tree, 639 page_index(page), PAGECACHE_TAG_DIRTY); 640 } 641 write_unlock_irq(&mapping->tree_lock); 642 if (mapping->host) { 643 /* !PageAnon && !swapper_space */ 644 __mark_inode_dirty(mapping->host, 645 I_DIRTY_PAGES); 646 } 647 } 648 } 649 return ret; 650 } 651 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 652 653 /* 654 * When a writepage implementation decides that it doesn't want to write this 655 * page for some reason, it should redirty the locked page via 656 * redirty_page_for_writepage() and it should then unlock the page and return 0 657 */ 658 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 659 { 660 wbc->pages_skipped++; 661 return __set_page_dirty_nobuffers(page); 662 } 663 EXPORT_SYMBOL(redirty_page_for_writepage); 664 665 /* 666 * If the mapping doesn't provide a set_page_dirty a_op, then 667 * just fall through and assume that it wants buffer_heads. 668 */ 669 int fastcall set_page_dirty(struct page *page) 670 { 671 struct address_space *mapping = page_mapping(page); 672 673 if (likely(mapping)) { 674 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 675 if (spd) 676 return (*spd)(page); 677 return __set_page_dirty_buffers(page); 678 } 679 if (!PageDirty(page)) 680 SetPageDirty(page); 681 return 0; 682 } 683 EXPORT_SYMBOL(set_page_dirty); 684 685 /* 686 * set_page_dirty() is racy if the caller has no reference against 687 * page->mapping->host, and if the page is unlocked. This is because another 688 * CPU could truncate the page off the mapping and then free the mapping. 689 * 690 * Usually, the page _is_ locked, or the caller is a user-space process which 691 * holds a reference on the inode by having an open file. 692 * 693 * In other cases, the page should be locked before running set_page_dirty(). 694 */ 695 int set_page_dirty_lock(struct page *page) 696 { 697 int ret; 698 699 lock_page(page); 700 ret = set_page_dirty(page); 701 unlock_page(page); 702 return ret; 703 } 704 EXPORT_SYMBOL(set_page_dirty_lock); 705 706 /* 707 * Clear a page's dirty flag, while caring for dirty memory accounting. 708 * Returns true if the page was previously dirty. 709 */ 710 int test_clear_page_dirty(struct page *page) 711 { 712 struct address_space *mapping = page_mapping(page); 713 unsigned long flags; 714 715 if (mapping) { 716 write_lock_irqsave(&mapping->tree_lock, flags); 717 if (TestClearPageDirty(page)) { 718 radix_tree_tag_clear(&mapping->page_tree, 719 page_index(page), 720 PAGECACHE_TAG_DIRTY); 721 write_unlock_irqrestore(&mapping->tree_lock, flags); 722 if (mapping_cap_account_dirty(mapping)) 723 dec_page_state(nr_dirty); 724 return 1; 725 } 726 write_unlock_irqrestore(&mapping->tree_lock, flags); 727 return 0; 728 } 729 return TestClearPageDirty(page); 730 } 731 EXPORT_SYMBOL(test_clear_page_dirty); 732 733 /* 734 * Clear a page's dirty flag, while caring for dirty memory accounting. 735 * Returns true if the page was previously dirty. 736 * 737 * This is for preparing to put the page under writeout. We leave the page 738 * tagged as dirty in the radix tree so that a concurrent write-for-sync 739 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 740 * implementation will run either set_page_writeback() or set_page_dirty(), 741 * at which stage we bring the page's dirty flag and radix-tree dirty tag 742 * back into sync. 743 * 744 * This incoherency between the page's dirty flag and radix-tree tag is 745 * unfortunate, but it only exists while the page is locked. 746 */ 747 int clear_page_dirty_for_io(struct page *page) 748 { 749 struct address_space *mapping = page_mapping(page); 750 751 if (mapping) { 752 if (TestClearPageDirty(page)) { 753 if (mapping_cap_account_dirty(mapping)) 754 dec_page_state(nr_dirty); 755 return 1; 756 } 757 return 0; 758 } 759 return TestClearPageDirty(page); 760 } 761 EXPORT_SYMBOL(clear_page_dirty_for_io); 762 763 int test_clear_page_writeback(struct page *page) 764 { 765 struct address_space *mapping = page_mapping(page); 766 int ret; 767 768 if (mapping) { 769 unsigned long flags; 770 771 write_lock_irqsave(&mapping->tree_lock, flags); 772 ret = TestClearPageWriteback(page); 773 if (ret) 774 radix_tree_tag_clear(&mapping->page_tree, 775 page_index(page), 776 PAGECACHE_TAG_WRITEBACK); 777 write_unlock_irqrestore(&mapping->tree_lock, flags); 778 } else { 779 ret = TestClearPageWriteback(page); 780 } 781 return ret; 782 } 783 784 int test_set_page_writeback(struct page *page) 785 { 786 struct address_space *mapping = page_mapping(page); 787 int ret; 788 789 if (mapping) { 790 unsigned long flags; 791 792 write_lock_irqsave(&mapping->tree_lock, flags); 793 ret = TestSetPageWriteback(page); 794 if (!ret) 795 radix_tree_tag_set(&mapping->page_tree, 796 page_index(page), 797 PAGECACHE_TAG_WRITEBACK); 798 if (!PageDirty(page)) 799 radix_tree_tag_clear(&mapping->page_tree, 800 page_index(page), 801 PAGECACHE_TAG_DIRTY); 802 write_unlock_irqrestore(&mapping->tree_lock, flags); 803 } else { 804 ret = TestSetPageWriteback(page); 805 } 806 return ret; 807 808 } 809 EXPORT_SYMBOL(test_set_page_writeback); 810 811 /* 812 * Return true if any of the pages in the mapping are marged with the 813 * passed tag. 814 */ 815 int mapping_tagged(struct address_space *mapping, int tag) 816 { 817 unsigned long flags; 818 int ret; 819 820 read_lock_irqsave(&mapping->tree_lock, flags); 821 ret = radix_tree_tagged(&mapping->page_tree, tag); 822 read_unlock_irqrestore(&mapping->tree_lock, flags); 823 return ret; 824 } 825 EXPORT_SYMBOL(mapping_tagged); 826