xref: /openbmc/linux/mm/page-writeback.c (revision ea88023b3491a384575ebcd5e8a449e841a28a24)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 
38 /*
39  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
40  * will look to see if it needs to force writeback or throttling.
41  */
42 static long ratelimit_pages = 32;
43 
44 /*
45  * When balance_dirty_pages decides that the caller needs to perform some
46  * non-background writeback, this is how many pages it will attempt to write.
47  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
48  * large amounts of I/O are submitted.
49  */
50 static inline long sync_writeback_pages(void)
51 {
52 	return ratelimit_pages + ratelimit_pages / 2;
53 }
54 
55 /* The following parameters are exported via /proc/sys/vm */
56 
57 /*
58  * Start background writeback (via pdflush) at this percentage
59  */
60 int dirty_background_ratio = 10;
61 
62 /*
63  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
64  * dirty_background_ratio * the amount of dirtyable memory
65  */
66 unsigned long dirty_background_bytes;
67 
68 /*
69  * free highmem will not be subtracted from the total free memory
70  * for calculating free ratios if vm_highmem_is_dirtyable is true
71  */
72 int vm_highmem_is_dirtyable;
73 
74 /*
75  * The generator of dirty data starts writeback at this percentage
76  */
77 int vm_dirty_ratio = 20;
78 
79 /*
80  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
81  * vm_dirty_ratio * the amount of dirtyable memory
82  */
83 unsigned long vm_dirty_bytes;
84 
85 /*
86  * The interval between `kupdate'-style writebacks
87  */
88 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
89 
90 /*
91  * The longest time for which data is allowed to remain dirty
92  */
93 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
94 
95 /*
96  * Flag that makes the machine dump writes/reads and block dirtyings.
97  */
98 int block_dump;
99 
100 /*
101  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
102  * a full sync is triggered after this time elapses without any disk activity.
103  */
104 int laptop_mode;
105 
106 EXPORT_SYMBOL(laptop_mode);
107 
108 /* End of sysctl-exported parameters */
109 
110 
111 /*
112  * Scale the writeback cache size proportional to the relative writeout speeds.
113  *
114  * We do this by keeping a floating proportion between BDIs, based on page
115  * writeback completions [end_page_writeback()]. Those devices that write out
116  * pages fastest will get the larger share, while the slower will get a smaller
117  * share.
118  *
119  * We use page writeout completions because we are interested in getting rid of
120  * dirty pages. Having them written out is the primary goal.
121  *
122  * We introduce a concept of time, a period over which we measure these events,
123  * because demand can/will vary over time. The length of this period itself is
124  * measured in page writeback completions.
125  *
126  */
127 static struct prop_descriptor vm_completions;
128 static struct prop_descriptor vm_dirties;
129 
130 /*
131  * couple the period to the dirty_ratio:
132  *
133  *   period/2 ~ roundup_pow_of_two(dirty limit)
134  */
135 static int calc_period_shift(void)
136 {
137 	unsigned long dirty_total;
138 
139 	if (vm_dirty_bytes)
140 		dirty_total = vm_dirty_bytes / PAGE_SIZE;
141 	else
142 		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
143 				100;
144 	return 2 + ilog2(dirty_total - 1);
145 }
146 
147 /*
148  * update the period when the dirty threshold changes.
149  */
150 static void update_completion_period(void)
151 {
152 	int shift = calc_period_shift();
153 	prop_change_shift(&vm_completions, shift);
154 	prop_change_shift(&vm_dirties, shift);
155 }
156 
157 int dirty_background_ratio_handler(struct ctl_table *table, int write,
158 		struct file *filp, void __user *buffer, size_t *lenp,
159 		loff_t *ppos)
160 {
161 	int ret;
162 
163 	ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
164 	if (ret == 0 && write)
165 		dirty_background_bytes = 0;
166 	return ret;
167 }
168 
169 int dirty_background_bytes_handler(struct ctl_table *table, int write,
170 		struct file *filp, void __user *buffer, size_t *lenp,
171 		loff_t *ppos)
172 {
173 	int ret;
174 
175 	ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
176 	if (ret == 0 && write)
177 		dirty_background_ratio = 0;
178 	return ret;
179 }
180 
181 int dirty_ratio_handler(struct ctl_table *table, int write,
182 		struct file *filp, void __user *buffer, size_t *lenp,
183 		loff_t *ppos)
184 {
185 	int old_ratio = vm_dirty_ratio;
186 	int ret;
187 
188 	ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
189 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
190 		update_completion_period();
191 		vm_dirty_bytes = 0;
192 	}
193 	return ret;
194 }
195 
196 
197 int dirty_bytes_handler(struct ctl_table *table, int write,
198 		struct file *filp, void __user *buffer, size_t *lenp,
199 		loff_t *ppos)
200 {
201 	unsigned long old_bytes = vm_dirty_bytes;
202 	int ret;
203 
204 	ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
205 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
206 		update_completion_period();
207 		vm_dirty_ratio = 0;
208 	}
209 	return ret;
210 }
211 
212 /*
213  * Increment the BDI's writeout completion count and the global writeout
214  * completion count. Called from test_clear_page_writeback().
215  */
216 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
217 {
218 	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
219 			      bdi->max_prop_frac);
220 }
221 
222 void bdi_writeout_inc(struct backing_dev_info *bdi)
223 {
224 	unsigned long flags;
225 
226 	local_irq_save(flags);
227 	__bdi_writeout_inc(bdi);
228 	local_irq_restore(flags);
229 }
230 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
231 
232 void task_dirty_inc(struct task_struct *tsk)
233 {
234 	prop_inc_single(&vm_dirties, &tsk->dirties);
235 }
236 
237 /*
238  * Obtain an accurate fraction of the BDI's portion.
239  */
240 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
241 		long *numerator, long *denominator)
242 {
243 	if (bdi_cap_writeback_dirty(bdi)) {
244 		prop_fraction_percpu(&vm_completions, &bdi->completions,
245 				numerator, denominator);
246 	} else {
247 		*numerator = 0;
248 		*denominator = 1;
249 	}
250 }
251 
252 /*
253  * Clip the earned share of dirty pages to that which is actually available.
254  * This avoids exceeding the total dirty_limit when the floating averages
255  * fluctuate too quickly.
256  */
257 static void clip_bdi_dirty_limit(struct backing_dev_info *bdi,
258 		unsigned long dirty, unsigned long *pbdi_dirty)
259 {
260 	unsigned long avail_dirty;
261 
262 	avail_dirty = global_page_state(NR_FILE_DIRTY) +
263 		 global_page_state(NR_WRITEBACK) +
264 		 global_page_state(NR_UNSTABLE_NFS) +
265 		 global_page_state(NR_WRITEBACK_TEMP);
266 
267 	if (avail_dirty < dirty)
268 		avail_dirty = dirty - avail_dirty;
269 	else
270 		avail_dirty = 0;
271 
272 	avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
273 		bdi_stat(bdi, BDI_WRITEBACK);
274 
275 	*pbdi_dirty = min(*pbdi_dirty, avail_dirty);
276 }
277 
278 static inline void task_dirties_fraction(struct task_struct *tsk,
279 		long *numerator, long *denominator)
280 {
281 	prop_fraction_single(&vm_dirties, &tsk->dirties,
282 				numerator, denominator);
283 }
284 
285 /*
286  * scale the dirty limit
287  *
288  * task specific dirty limit:
289  *
290  *   dirty -= (dirty/8) * p_{t}
291  */
292 static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty)
293 {
294 	long numerator, denominator;
295 	unsigned long dirty = *pdirty;
296 	u64 inv = dirty >> 3;
297 
298 	task_dirties_fraction(tsk, &numerator, &denominator);
299 	inv *= numerator;
300 	do_div(inv, denominator);
301 
302 	dirty -= inv;
303 	if (dirty < *pdirty/2)
304 		dirty = *pdirty/2;
305 
306 	*pdirty = dirty;
307 }
308 
309 /*
310  *
311  */
312 static unsigned int bdi_min_ratio;
313 
314 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
315 {
316 	int ret = 0;
317 
318 	spin_lock(&bdi_lock);
319 	if (min_ratio > bdi->max_ratio) {
320 		ret = -EINVAL;
321 	} else {
322 		min_ratio -= bdi->min_ratio;
323 		if (bdi_min_ratio + min_ratio < 100) {
324 			bdi_min_ratio += min_ratio;
325 			bdi->min_ratio += min_ratio;
326 		} else {
327 			ret = -EINVAL;
328 		}
329 	}
330 	spin_unlock(&bdi_lock);
331 
332 	return ret;
333 }
334 
335 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
336 {
337 	int ret = 0;
338 
339 	if (max_ratio > 100)
340 		return -EINVAL;
341 
342 	spin_lock(&bdi_lock);
343 	if (bdi->min_ratio > max_ratio) {
344 		ret = -EINVAL;
345 	} else {
346 		bdi->max_ratio = max_ratio;
347 		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
348 	}
349 	spin_unlock(&bdi_lock);
350 
351 	return ret;
352 }
353 EXPORT_SYMBOL(bdi_set_max_ratio);
354 
355 /*
356  * Work out the current dirty-memory clamping and background writeout
357  * thresholds.
358  *
359  * The main aim here is to lower them aggressively if there is a lot of mapped
360  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
361  * pages.  It is better to clamp down on writers than to start swapping, and
362  * performing lots of scanning.
363  *
364  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
365  *
366  * We don't permit the clamping level to fall below 5% - that is getting rather
367  * excessive.
368  *
369  * We make sure that the background writeout level is below the adjusted
370  * clamping level.
371  */
372 
373 static unsigned long highmem_dirtyable_memory(unsigned long total)
374 {
375 #ifdef CONFIG_HIGHMEM
376 	int node;
377 	unsigned long x = 0;
378 
379 	for_each_node_state(node, N_HIGH_MEMORY) {
380 		struct zone *z =
381 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
382 
383 		x += zone_page_state(z, NR_FREE_PAGES) + zone_lru_pages(z);
384 	}
385 	/*
386 	 * Make sure that the number of highmem pages is never larger
387 	 * than the number of the total dirtyable memory. This can only
388 	 * occur in very strange VM situations but we want to make sure
389 	 * that this does not occur.
390 	 */
391 	return min(x, total);
392 #else
393 	return 0;
394 #endif
395 }
396 
397 /**
398  * determine_dirtyable_memory - amount of memory that may be used
399  *
400  * Returns the numebr of pages that can currently be freed and used
401  * by the kernel for direct mappings.
402  */
403 unsigned long determine_dirtyable_memory(void)
404 {
405 	unsigned long x;
406 
407 	x = global_page_state(NR_FREE_PAGES) + global_lru_pages();
408 
409 	if (!vm_highmem_is_dirtyable)
410 		x -= highmem_dirtyable_memory(x);
411 
412 	return x + 1;	/* Ensure that we never return 0 */
413 }
414 
415 void
416 get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty,
417 		 unsigned long *pbdi_dirty, struct backing_dev_info *bdi)
418 {
419 	unsigned long background;
420 	unsigned long dirty;
421 	unsigned long available_memory = determine_dirtyable_memory();
422 	struct task_struct *tsk;
423 
424 	if (vm_dirty_bytes)
425 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
426 	else {
427 		int dirty_ratio;
428 
429 		dirty_ratio = vm_dirty_ratio;
430 		if (dirty_ratio < 5)
431 			dirty_ratio = 5;
432 		dirty = (dirty_ratio * available_memory) / 100;
433 	}
434 
435 	if (dirty_background_bytes)
436 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
437 	else
438 		background = (dirty_background_ratio * available_memory) / 100;
439 
440 	if (background >= dirty)
441 		background = dirty / 2;
442 	tsk = current;
443 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
444 		background += background / 4;
445 		dirty += dirty / 4;
446 	}
447 	*pbackground = background;
448 	*pdirty = dirty;
449 
450 	if (bdi) {
451 		u64 bdi_dirty;
452 		long numerator, denominator;
453 
454 		/*
455 		 * Calculate this BDI's share of the dirty ratio.
456 		 */
457 		bdi_writeout_fraction(bdi, &numerator, &denominator);
458 
459 		bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
460 		bdi_dirty *= numerator;
461 		do_div(bdi_dirty, denominator);
462 		bdi_dirty += (dirty * bdi->min_ratio) / 100;
463 		if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
464 			bdi_dirty = dirty * bdi->max_ratio / 100;
465 
466 		*pbdi_dirty = bdi_dirty;
467 		clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
468 		task_dirty_limit(current, pbdi_dirty);
469 	}
470 }
471 
472 /*
473  * balance_dirty_pages() must be called by processes which are generating dirty
474  * data.  It looks at the number of dirty pages in the machine and will force
475  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
476  * If we're over `background_thresh' then pdflush is woken to perform some
477  * writeout.
478  */
479 static void balance_dirty_pages(struct address_space *mapping)
480 {
481 	long nr_reclaimable, bdi_nr_reclaimable;
482 	long nr_writeback, bdi_nr_writeback;
483 	unsigned long background_thresh;
484 	unsigned long dirty_thresh;
485 	unsigned long bdi_thresh;
486 	unsigned long pages_written = 0;
487 	unsigned long write_chunk = sync_writeback_pages();
488 
489 	struct backing_dev_info *bdi = mapping->backing_dev_info;
490 
491 	for (;;) {
492 		struct writeback_control wbc = {
493 			.bdi		= bdi,
494 			.sync_mode	= WB_SYNC_NONE,
495 			.older_than_this = NULL,
496 			.nr_to_write	= write_chunk,
497 			.range_cyclic	= 1,
498 		};
499 
500 		get_dirty_limits(&background_thresh, &dirty_thresh,
501 				&bdi_thresh, bdi);
502 
503 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
504 					global_page_state(NR_UNSTABLE_NFS);
505 		nr_writeback = global_page_state(NR_WRITEBACK);
506 
507 		bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
508 		bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
509 
510 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
511 			break;
512 
513 		/*
514 		 * Throttle it only when the background writeback cannot
515 		 * catch-up. This avoids (excessively) small writeouts
516 		 * when the bdi limits are ramping up.
517 		 */
518 		if (nr_reclaimable + nr_writeback <
519 				(background_thresh + dirty_thresh) / 2)
520 			break;
521 
522 		if (!bdi->dirty_exceeded)
523 			bdi->dirty_exceeded = 1;
524 
525 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
526 		 * Unstable writes are a feature of certain networked
527 		 * filesystems (i.e. NFS) in which data may have been
528 		 * written to the server's write cache, but has not yet
529 		 * been flushed to permanent storage.
530 		 * Only move pages to writeback if this bdi is over its
531 		 * threshold otherwise wait until the disk writes catch
532 		 * up.
533 		 */
534 		if (bdi_nr_reclaimable > bdi_thresh) {
535 			writeback_inodes_wbc(&wbc);
536 			pages_written += write_chunk - wbc.nr_to_write;
537 			get_dirty_limits(&background_thresh, &dirty_thresh,
538 				       &bdi_thresh, bdi);
539 		}
540 
541 		/*
542 		 * In order to avoid the stacked BDI deadlock we need
543 		 * to ensure we accurately count the 'dirty' pages when
544 		 * the threshold is low.
545 		 *
546 		 * Otherwise it would be possible to get thresh+n pages
547 		 * reported dirty, even though there are thresh-m pages
548 		 * actually dirty; with m+n sitting in the percpu
549 		 * deltas.
550 		 */
551 		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
552 			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
553 			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
554 		} else if (bdi_nr_reclaimable) {
555 			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
556 			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
557 		}
558 
559 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
560 			break;
561 		if (pages_written >= write_chunk)
562 			break;		/* We've done our duty */
563 
564 		schedule_timeout(1);
565 	}
566 
567 	if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
568 			bdi->dirty_exceeded)
569 		bdi->dirty_exceeded = 0;
570 
571 	if (writeback_in_progress(bdi))
572 		return;		/* pdflush is already working this queue */
573 
574 	/*
575 	 * In laptop mode, we wait until hitting the higher threshold before
576 	 * starting background writeout, and then write out all the way down
577 	 * to the lower threshold.  So slow writers cause minimal disk activity.
578 	 *
579 	 * In normal mode, we start background writeout at the lower
580 	 * background_thresh, to keep the amount of dirty memory low.
581 	 */
582 	if ((laptop_mode && pages_written) ||
583 	    (!laptop_mode && ((nr_writeback = global_page_state(NR_FILE_DIRTY)
584 					  + global_page_state(NR_UNSTABLE_NFS))
585 					  > background_thresh))) {
586 		struct writeback_control wbc = {
587 			.bdi		= bdi,
588 			.sync_mode	= WB_SYNC_NONE,
589 			.nr_to_write	= nr_writeback,
590 		};
591 
592 
593 		bdi_start_writeback(&wbc);
594 	}
595 }
596 
597 void set_page_dirty_balance(struct page *page, int page_mkwrite)
598 {
599 	if (set_page_dirty(page) || page_mkwrite) {
600 		struct address_space *mapping = page_mapping(page);
601 
602 		if (mapping)
603 			balance_dirty_pages_ratelimited(mapping);
604 	}
605 }
606 
607 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
608 
609 /**
610  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
611  * @mapping: address_space which was dirtied
612  * @nr_pages_dirtied: number of pages which the caller has just dirtied
613  *
614  * Processes which are dirtying memory should call in here once for each page
615  * which was newly dirtied.  The function will periodically check the system's
616  * dirty state and will initiate writeback if needed.
617  *
618  * On really big machines, get_writeback_state is expensive, so try to avoid
619  * calling it too often (ratelimiting).  But once we're over the dirty memory
620  * limit we decrease the ratelimiting by a lot, to prevent individual processes
621  * from overshooting the limit by (ratelimit_pages) each.
622  */
623 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
624 					unsigned long nr_pages_dirtied)
625 {
626 	unsigned long ratelimit;
627 	unsigned long *p;
628 
629 	ratelimit = ratelimit_pages;
630 	if (mapping->backing_dev_info->dirty_exceeded)
631 		ratelimit = 8;
632 
633 	/*
634 	 * Check the rate limiting. Also, we do not want to throttle real-time
635 	 * tasks in balance_dirty_pages(). Period.
636 	 */
637 	preempt_disable();
638 	p =  &__get_cpu_var(bdp_ratelimits);
639 	*p += nr_pages_dirtied;
640 	if (unlikely(*p >= ratelimit)) {
641 		*p = 0;
642 		preempt_enable();
643 		balance_dirty_pages(mapping);
644 		return;
645 	}
646 	preempt_enable();
647 }
648 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
649 
650 void throttle_vm_writeout(gfp_t gfp_mask)
651 {
652 	unsigned long background_thresh;
653 	unsigned long dirty_thresh;
654 
655         for ( ; ; ) {
656 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
657 
658                 /*
659                  * Boost the allowable dirty threshold a bit for page
660                  * allocators so they don't get DoS'ed by heavy writers
661                  */
662                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
663 
664                 if (global_page_state(NR_UNSTABLE_NFS) +
665 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
666                         	break;
667                 congestion_wait(BLK_RW_ASYNC, HZ/10);
668 
669 		/*
670 		 * The caller might hold locks which can prevent IO completion
671 		 * or progress in the filesystem.  So we cannot just sit here
672 		 * waiting for IO to complete.
673 		 */
674 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
675 			break;
676         }
677 }
678 
679 static void laptop_timer_fn(unsigned long unused);
680 
681 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
682 
683 /*
684  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
685  */
686 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
687 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
688 {
689 	proc_dointvec(table, write, file, buffer, length, ppos);
690 	return 0;
691 }
692 
693 static void do_laptop_sync(struct work_struct *work)
694 {
695 	wakeup_flusher_threads(0);
696 	kfree(work);
697 }
698 
699 static void laptop_timer_fn(unsigned long unused)
700 {
701 	struct work_struct *work;
702 
703 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
704 	if (work) {
705 		INIT_WORK(work, do_laptop_sync);
706 		schedule_work(work);
707 	}
708 }
709 
710 /*
711  * We've spun up the disk and we're in laptop mode: schedule writeback
712  * of all dirty data a few seconds from now.  If the flush is already scheduled
713  * then push it back - the user is still using the disk.
714  */
715 void laptop_io_completion(void)
716 {
717 	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
718 }
719 
720 /*
721  * We're in laptop mode and we've just synced. The sync's writes will have
722  * caused another writeback to be scheduled by laptop_io_completion.
723  * Nothing needs to be written back anymore, so we unschedule the writeback.
724  */
725 void laptop_sync_completion(void)
726 {
727 	del_timer(&laptop_mode_wb_timer);
728 }
729 
730 /*
731  * If ratelimit_pages is too high then we can get into dirty-data overload
732  * if a large number of processes all perform writes at the same time.
733  * If it is too low then SMP machines will call the (expensive)
734  * get_writeback_state too often.
735  *
736  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
737  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
738  * thresholds before writeback cuts in.
739  *
740  * But the limit should not be set too high.  Because it also controls the
741  * amount of memory which the balance_dirty_pages() caller has to write back.
742  * If this is too large then the caller will block on the IO queue all the
743  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
744  * will write six megabyte chunks, max.
745  */
746 
747 void writeback_set_ratelimit(void)
748 {
749 	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
750 	if (ratelimit_pages < 16)
751 		ratelimit_pages = 16;
752 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
753 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
754 }
755 
756 static int __cpuinit
757 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
758 {
759 	writeback_set_ratelimit();
760 	return NOTIFY_DONE;
761 }
762 
763 static struct notifier_block __cpuinitdata ratelimit_nb = {
764 	.notifier_call	= ratelimit_handler,
765 	.next		= NULL,
766 };
767 
768 /*
769  * Called early on to tune the page writeback dirty limits.
770  *
771  * We used to scale dirty pages according to how total memory
772  * related to pages that could be allocated for buffers (by
773  * comparing nr_free_buffer_pages() to vm_total_pages.
774  *
775  * However, that was when we used "dirty_ratio" to scale with
776  * all memory, and we don't do that any more. "dirty_ratio"
777  * is now applied to total non-HIGHPAGE memory (by subtracting
778  * totalhigh_pages from vm_total_pages), and as such we can't
779  * get into the old insane situation any more where we had
780  * large amounts of dirty pages compared to a small amount of
781  * non-HIGHMEM memory.
782  *
783  * But we might still want to scale the dirty_ratio by how
784  * much memory the box has..
785  */
786 void __init page_writeback_init(void)
787 {
788 	int shift;
789 
790 	writeback_set_ratelimit();
791 	register_cpu_notifier(&ratelimit_nb);
792 
793 	shift = calc_period_shift();
794 	prop_descriptor_init(&vm_completions, shift);
795 	prop_descriptor_init(&vm_dirties, shift);
796 }
797 
798 /**
799  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
800  * @mapping: address space structure to write
801  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
802  * @writepage: function called for each page
803  * @data: data passed to writepage function
804  *
805  * If a page is already under I/O, write_cache_pages() skips it, even
806  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
807  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
808  * and msync() need to guarantee that all the data which was dirty at the time
809  * the call was made get new I/O started against them.  If wbc->sync_mode is
810  * WB_SYNC_ALL then we were called for data integrity and we must wait for
811  * existing IO to complete.
812  */
813 int write_cache_pages(struct address_space *mapping,
814 		      struct writeback_control *wbc, writepage_t writepage,
815 		      void *data)
816 {
817 	struct backing_dev_info *bdi = mapping->backing_dev_info;
818 	int ret = 0;
819 	int done = 0;
820 	struct pagevec pvec;
821 	int nr_pages;
822 	pgoff_t uninitialized_var(writeback_index);
823 	pgoff_t index;
824 	pgoff_t end;		/* Inclusive */
825 	pgoff_t done_index;
826 	int cycled;
827 	int range_whole = 0;
828 	long nr_to_write = wbc->nr_to_write;
829 
830 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
831 		wbc->encountered_congestion = 1;
832 		return 0;
833 	}
834 
835 	pagevec_init(&pvec, 0);
836 	if (wbc->range_cyclic) {
837 		writeback_index = mapping->writeback_index; /* prev offset */
838 		index = writeback_index;
839 		if (index == 0)
840 			cycled = 1;
841 		else
842 			cycled = 0;
843 		end = -1;
844 	} else {
845 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
846 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
847 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
848 			range_whole = 1;
849 		cycled = 1; /* ignore range_cyclic tests */
850 	}
851 retry:
852 	done_index = index;
853 	while (!done && (index <= end)) {
854 		int i;
855 
856 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
857 			      PAGECACHE_TAG_DIRTY,
858 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
859 		if (nr_pages == 0)
860 			break;
861 
862 		for (i = 0; i < nr_pages; i++) {
863 			struct page *page = pvec.pages[i];
864 
865 			/*
866 			 * At this point, the page may be truncated or
867 			 * invalidated (changing page->mapping to NULL), or
868 			 * even swizzled back from swapper_space to tmpfs file
869 			 * mapping. However, page->index will not change
870 			 * because we have a reference on the page.
871 			 */
872 			if (page->index > end) {
873 				/*
874 				 * can't be range_cyclic (1st pass) because
875 				 * end == -1 in that case.
876 				 */
877 				done = 1;
878 				break;
879 			}
880 
881 			done_index = page->index + 1;
882 
883 			lock_page(page);
884 
885 			/*
886 			 * Page truncated or invalidated. We can freely skip it
887 			 * then, even for data integrity operations: the page
888 			 * has disappeared concurrently, so there could be no
889 			 * real expectation of this data interity operation
890 			 * even if there is now a new, dirty page at the same
891 			 * pagecache address.
892 			 */
893 			if (unlikely(page->mapping != mapping)) {
894 continue_unlock:
895 				unlock_page(page);
896 				continue;
897 			}
898 
899 			if (!PageDirty(page)) {
900 				/* someone wrote it for us */
901 				goto continue_unlock;
902 			}
903 
904 			if (PageWriteback(page)) {
905 				if (wbc->sync_mode != WB_SYNC_NONE)
906 					wait_on_page_writeback(page);
907 				else
908 					goto continue_unlock;
909 			}
910 
911 			BUG_ON(PageWriteback(page));
912 			if (!clear_page_dirty_for_io(page))
913 				goto continue_unlock;
914 
915 			ret = (*writepage)(page, wbc, data);
916 			if (unlikely(ret)) {
917 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
918 					unlock_page(page);
919 					ret = 0;
920 				} else {
921 					/*
922 					 * done_index is set past this page,
923 					 * so media errors will not choke
924 					 * background writeout for the entire
925 					 * file. This has consequences for
926 					 * range_cyclic semantics (ie. it may
927 					 * not be suitable for data integrity
928 					 * writeout).
929 					 */
930 					done = 1;
931 					break;
932 				}
933  			}
934 
935 			if (nr_to_write > 0) {
936 				nr_to_write--;
937 				if (nr_to_write == 0 &&
938 				    wbc->sync_mode == WB_SYNC_NONE) {
939 					/*
940 					 * We stop writing back only if we are
941 					 * not doing integrity sync. In case of
942 					 * integrity sync we have to keep going
943 					 * because someone may be concurrently
944 					 * dirtying pages, and we might have
945 					 * synced a lot of newly appeared dirty
946 					 * pages, but have not synced all of the
947 					 * old dirty pages.
948 					 */
949 					done = 1;
950 					break;
951 				}
952 			}
953 
954 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
955 				wbc->encountered_congestion = 1;
956 				done = 1;
957 				break;
958 			}
959 		}
960 		pagevec_release(&pvec);
961 		cond_resched();
962 	}
963 	if (!cycled && !done) {
964 		/*
965 		 * range_cyclic:
966 		 * We hit the last page and there is more work to be done: wrap
967 		 * back to the start of the file
968 		 */
969 		cycled = 1;
970 		index = 0;
971 		end = writeback_index - 1;
972 		goto retry;
973 	}
974 	if (!wbc->no_nrwrite_index_update) {
975 		if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
976 			mapping->writeback_index = done_index;
977 		wbc->nr_to_write = nr_to_write;
978 	}
979 
980 	return ret;
981 }
982 EXPORT_SYMBOL(write_cache_pages);
983 
984 /*
985  * Function used by generic_writepages to call the real writepage
986  * function and set the mapping flags on error
987  */
988 static int __writepage(struct page *page, struct writeback_control *wbc,
989 		       void *data)
990 {
991 	struct address_space *mapping = data;
992 	int ret = mapping->a_ops->writepage(page, wbc);
993 	mapping_set_error(mapping, ret);
994 	return ret;
995 }
996 
997 /**
998  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
999  * @mapping: address space structure to write
1000  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1001  *
1002  * This is a library function, which implements the writepages()
1003  * address_space_operation.
1004  */
1005 int generic_writepages(struct address_space *mapping,
1006 		       struct writeback_control *wbc)
1007 {
1008 	/* deal with chardevs and other special file */
1009 	if (!mapping->a_ops->writepage)
1010 		return 0;
1011 
1012 	return write_cache_pages(mapping, wbc, __writepage, mapping);
1013 }
1014 
1015 EXPORT_SYMBOL(generic_writepages);
1016 
1017 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1018 {
1019 	int ret;
1020 
1021 	if (wbc->nr_to_write <= 0)
1022 		return 0;
1023 	wbc->for_writepages = 1;
1024 	if (mapping->a_ops->writepages)
1025 		ret = mapping->a_ops->writepages(mapping, wbc);
1026 	else
1027 		ret = generic_writepages(mapping, wbc);
1028 	wbc->for_writepages = 0;
1029 	return ret;
1030 }
1031 
1032 /**
1033  * write_one_page - write out a single page and optionally wait on I/O
1034  * @page: the page to write
1035  * @wait: if true, wait on writeout
1036  *
1037  * The page must be locked by the caller and will be unlocked upon return.
1038  *
1039  * write_one_page() returns a negative error code if I/O failed.
1040  */
1041 int write_one_page(struct page *page, int wait)
1042 {
1043 	struct address_space *mapping = page->mapping;
1044 	int ret = 0;
1045 	struct writeback_control wbc = {
1046 		.sync_mode = WB_SYNC_ALL,
1047 		.nr_to_write = 1,
1048 	};
1049 
1050 	BUG_ON(!PageLocked(page));
1051 
1052 	if (wait)
1053 		wait_on_page_writeback(page);
1054 
1055 	if (clear_page_dirty_for_io(page)) {
1056 		page_cache_get(page);
1057 		ret = mapping->a_ops->writepage(page, &wbc);
1058 		if (ret == 0 && wait) {
1059 			wait_on_page_writeback(page);
1060 			if (PageError(page))
1061 				ret = -EIO;
1062 		}
1063 		page_cache_release(page);
1064 	} else {
1065 		unlock_page(page);
1066 	}
1067 	return ret;
1068 }
1069 EXPORT_SYMBOL(write_one_page);
1070 
1071 /*
1072  * For address_spaces which do not use buffers nor write back.
1073  */
1074 int __set_page_dirty_no_writeback(struct page *page)
1075 {
1076 	if (!PageDirty(page))
1077 		SetPageDirty(page);
1078 	return 0;
1079 }
1080 
1081 /*
1082  * Helper function for set_page_dirty family.
1083  * NOTE: This relies on being atomic wrt interrupts.
1084  */
1085 void account_page_dirtied(struct page *page, struct address_space *mapping)
1086 {
1087 	if (mapping_cap_account_dirty(mapping)) {
1088 		__inc_zone_page_state(page, NR_FILE_DIRTY);
1089 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1090 		task_dirty_inc(current);
1091 		task_io_account_write(PAGE_CACHE_SIZE);
1092 	}
1093 }
1094 
1095 /*
1096  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1097  * its radix tree.
1098  *
1099  * This is also used when a single buffer is being dirtied: we want to set the
1100  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1101  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1102  *
1103  * Most callers have locked the page, which pins the address_space in memory.
1104  * But zap_pte_range() does not lock the page, however in that case the
1105  * mapping is pinned by the vma's ->vm_file reference.
1106  *
1107  * We take care to handle the case where the page was truncated from the
1108  * mapping by re-checking page_mapping() inside tree_lock.
1109  */
1110 int __set_page_dirty_nobuffers(struct page *page)
1111 {
1112 	if (!TestSetPageDirty(page)) {
1113 		struct address_space *mapping = page_mapping(page);
1114 		struct address_space *mapping2;
1115 
1116 		if (!mapping)
1117 			return 1;
1118 
1119 		spin_lock_irq(&mapping->tree_lock);
1120 		mapping2 = page_mapping(page);
1121 		if (mapping2) { /* Race with truncate? */
1122 			BUG_ON(mapping2 != mapping);
1123 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1124 			account_page_dirtied(page, mapping);
1125 			radix_tree_tag_set(&mapping->page_tree,
1126 				page_index(page), PAGECACHE_TAG_DIRTY);
1127 		}
1128 		spin_unlock_irq(&mapping->tree_lock);
1129 		if (mapping->host) {
1130 			/* !PageAnon && !swapper_space */
1131 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1132 		}
1133 		return 1;
1134 	}
1135 	return 0;
1136 }
1137 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1138 
1139 /*
1140  * When a writepage implementation decides that it doesn't want to write this
1141  * page for some reason, it should redirty the locked page via
1142  * redirty_page_for_writepage() and it should then unlock the page and return 0
1143  */
1144 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1145 {
1146 	wbc->pages_skipped++;
1147 	return __set_page_dirty_nobuffers(page);
1148 }
1149 EXPORT_SYMBOL(redirty_page_for_writepage);
1150 
1151 /*
1152  * If the mapping doesn't provide a set_page_dirty a_op, then
1153  * just fall through and assume that it wants buffer_heads.
1154  */
1155 int set_page_dirty(struct page *page)
1156 {
1157 	struct address_space *mapping = page_mapping(page);
1158 
1159 	if (likely(mapping)) {
1160 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1161 #ifdef CONFIG_BLOCK
1162 		if (!spd)
1163 			spd = __set_page_dirty_buffers;
1164 #endif
1165 		return (*spd)(page);
1166 	}
1167 	if (!PageDirty(page)) {
1168 		if (!TestSetPageDirty(page))
1169 			return 1;
1170 	}
1171 	return 0;
1172 }
1173 EXPORT_SYMBOL(set_page_dirty);
1174 
1175 /*
1176  * set_page_dirty() is racy if the caller has no reference against
1177  * page->mapping->host, and if the page is unlocked.  This is because another
1178  * CPU could truncate the page off the mapping and then free the mapping.
1179  *
1180  * Usually, the page _is_ locked, or the caller is a user-space process which
1181  * holds a reference on the inode by having an open file.
1182  *
1183  * In other cases, the page should be locked before running set_page_dirty().
1184  */
1185 int set_page_dirty_lock(struct page *page)
1186 {
1187 	int ret;
1188 
1189 	lock_page_nosync(page);
1190 	ret = set_page_dirty(page);
1191 	unlock_page(page);
1192 	return ret;
1193 }
1194 EXPORT_SYMBOL(set_page_dirty_lock);
1195 
1196 /*
1197  * Clear a page's dirty flag, while caring for dirty memory accounting.
1198  * Returns true if the page was previously dirty.
1199  *
1200  * This is for preparing to put the page under writeout.  We leave the page
1201  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1202  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1203  * implementation will run either set_page_writeback() or set_page_dirty(),
1204  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1205  * back into sync.
1206  *
1207  * This incoherency between the page's dirty flag and radix-tree tag is
1208  * unfortunate, but it only exists while the page is locked.
1209  */
1210 int clear_page_dirty_for_io(struct page *page)
1211 {
1212 	struct address_space *mapping = page_mapping(page);
1213 
1214 	BUG_ON(!PageLocked(page));
1215 
1216 	ClearPageReclaim(page);
1217 	if (mapping && mapping_cap_account_dirty(mapping)) {
1218 		/*
1219 		 * Yes, Virginia, this is indeed insane.
1220 		 *
1221 		 * We use this sequence to make sure that
1222 		 *  (a) we account for dirty stats properly
1223 		 *  (b) we tell the low-level filesystem to
1224 		 *      mark the whole page dirty if it was
1225 		 *      dirty in a pagetable. Only to then
1226 		 *  (c) clean the page again and return 1 to
1227 		 *      cause the writeback.
1228 		 *
1229 		 * This way we avoid all nasty races with the
1230 		 * dirty bit in multiple places and clearing
1231 		 * them concurrently from different threads.
1232 		 *
1233 		 * Note! Normally the "set_page_dirty(page)"
1234 		 * has no effect on the actual dirty bit - since
1235 		 * that will already usually be set. But we
1236 		 * need the side effects, and it can help us
1237 		 * avoid races.
1238 		 *
1239 		 * We basically use the page "master dirty bit"
1240 		 * as a serialization point for all the different
1241 		 * threads doing their things.
1242 		 */
1243 		if (page_mkclean(page))
1244 			set_page_dirty(page);
1245 		/*
1246 		 * We carefully synchronise fault handlers against
1247 		 * installing a dirty pte and marking the page dirty
1248 		 * at this point. We do this by having them hold the
1249 		 * page lock at some point after installing their
1250 		 * pte, but before marking the page dirty.
1251 		 * Pages are always locked coming in here, so we get
1252 		 * the desired exclusion. See mm/memory.c:do_wp_page()
1253 		 * for more comments.
1254 		 */
1255 		if (TestClearPageDirty(page)) {
1256 			dec_zone_page_state(page, NR_FILE_DIRTY);
1257 			dec_bdi_stat(mapping->backing_dev_info,
1258 					BDI_RECLAIMABLE);
1259 			return 1;
1260 		}
1261 		return 0;
1262 	}
1263 	return TestClearPageDirty(page);
1264 }
1265 EXPORT_SYMBOL(clear_page_dirty_for_io);
1266 
1267 int test_clear_page_writeback(struct page *page)
1268 {
1269 	struct address_space *mapping = page_mapping(page);
1270 	int ret;
1271 
1272 	if (mapping) {
1273 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1274 		unsigned long flags;
1275 
1276 		spin_lock_irqsave(&mapping->tree_lock, flags);
1277 		ret = TestClearPageWriteback(page);
1278 		if (ret) {
1279 			radix_tree_tag_clear(&mapping->page_tree,
1280 						page_index(page),
1281 						PAGECACHE_TAG_WRITEBACK);
1282 			if (bdi_cap_account_writeback(bdi)) {
1283 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1284 				__bdi_writeout_inc(bdi);
1285 			}
1286 		}
1287 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1288 	} else {
1289 		ret = TestClearPageWriteback(page);
1290 	}
1291 	if (ret)
1292 		dec_zone_page_state(page, NR_WRITEBACK);
1293 	return ret;
1294 }
1295 
1296 int test_set_page_writeback(struct page *page)
1297 {
1298 	struct address_space *mapping = page_mapping(page);
1299 	int ret;
1300 
1301 	if (mapping) {
1302 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1303 		unsigned long flags;
1304 
1305 		spin_lock_irqsave(&mapping->tree_lock, flags);
1306 		ret = TestSetPageWriteback(page);
1307 		if (!ret) {
1308 			radix_tree_tag_set(&mapping->page_tree,
1309 						page_index(page),
1310 						PAGECACHE_TAG_WRITEBACK);
1311 			if (bdi_cap_account_writeback(bdi))
1312 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1313 		}
1314 		if (!PageDirty(page))
1315 			radix_tree_tag_clear(&mapping->page_tree,
1316 						page_index(page),
1317 						PAGECACHE_TAG_DIRTY);
1318 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1319 	} else {
1320 		ret = TestSetPageWriteback(page);
1321 	}
1322 	if (!ret)
1323 		inc_zone_page_state(page, NR_WRITEBACK);
1324 	return ret;
1325 
1326 }
1327 EXPORT_SYMBOL(test_set_page_writeback);
1328 
1329 /*
1330  * Return true if any of the pages in the mapping are marked with the
1331  * passed tag.
1332  */
1333 int mapping_tagged(struct address_space *mapping, int tag)
1334 {
1335 	int ret;
1336 	rcu_read_lock();
1337 	ret = radix_tree_tagged(&mapping->page_tree, tag);
1338 	rcu_read_unlock();
1339 	return ret;
1340 }
1341 EXPORT_SYMBOL(mapping_tagged);
1342