1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> 36 #include <linux/pagevec.h> 37 #include <trace/events/writeback.h> 38 39 /* 40 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 41 * will look to see if it needs to force writeback or throttling. 42 */ 43 static long ratelimit_pages = 32; 44 45 /* 46 * When balance_dirty_pages decides that the caller needs to perform some 47 * non-background writeback, this is how many pages it will attempt to write. 48 * It should be somewhat larger than dirtied pages to ensure that reasonably 49 * large amounts of I/O are submitted. 50 */ 51 static inline long sync_writeback_pages(unsigned long dirtied) 52 { 53 if (dirtied < ratelimit_pages) 54 dirtied = ratelimit_pages; 55 56 return dirtied + dirtied / 2; 57 } 58 59 /* The following parameters are exported via /proc/sys/vm */ 60 61 /* 62 * Start background writeback (via writeback threads) at this percentage 63 */ 64 int dirty_background_ratio = 10; 65 66 /* 67 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 68 * dirty_background_ratio * the amount of dirtyable memory 69 */ 70 unsigned long dirty_background_bytes; 71 72 /* 73 * free highmem will not be subtracted from the total free memory 74 * for calculating free ratios if vm_highmem_is_dirtyable is true 75 */ 76 int vm_highmem_is_dirtyable; 77 78 /* 79 * The generator of dirty data starts writeback at this percentage 80 */ 81 int vm_dirty_ratio = 20; 82 83 /* 84 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 85 * vm_dirty_ratio * the amount of dirtyable memory 86 */ 87 unsigned long vm_dirty_bytes; 88 89 /* 90 * The interval between `kupdate'-style writebacks 91 */ 92 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 93 94 /* 95 * The longest time for which data is allowed to remain dirty 96 */ 97 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 98 99 /* 100 * Flag that makes the machine dump writes/reads and block dirtyings. 101 */ 102 int block_dump; 103 104 /* 105 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 106 * a full sync is triggered after this time elapses without any disk activity. 107 */ 108 int laptop_mode; 109 110 EXPORT_SYMBOL(laptop_mode); 111 112 /* End of sysctl-exported parameters */ 113 114 115 /* 116 * Scale the writeback cache size proportional to the relative writeout speeds. 117 * 118 * We do this by keeping a floating proportion between BDIs, based on page 119 * writeback completions [end_page_writeback()]. Those devices that write out 120 * pages fastest will get the larger share, while the slower will get a smaller 121 * share. 122 * 123 * We use page writeout completions because we are interested in getting rid of 124 * dirty pages. Having them written out is the primary goal. 125 * 126 * We introduce a concept of time, a period over which we measure these events, 127 * because demand can/will vary over time. The length of this period itself is 128 * measured in page writeback completions. 129 * 130 */ 131 static struct prop_descriptor vm_completions; 132 static struct prop_descriptor vm_dirties; 133 134 /* 135 * couple the period to the dirty_ratio: 136 * 137 * period/2 ~ roundup_pow_of_two(dirty limit) 138 */ 139 static int calc_period_shift(void) 140 { 141 unsigned long dirty_total; 142 143 if (vm_dirty_bytes) 144 dirty_total = vm_dirty_bytes / PAGE_SIZE; 145 else 146 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 147 100; 148 return 2 + ilog2(dirty_total - 1); 149 } 150 151 /* 152 * update the period when the dirty threshold changes. 153 */ 154 static void update_completion_period(void) 155 { 156 int shift = calc_period_shift(); 157 prop_change_shift(&vm_completions, shift); 158 prop_change_shift(&vm_dirties, shift); 159 } 160 161 int dirty_background_ratio_handler(struct ctl_table *table, int write, 162 void __user *buffer, size_t *lenp, 163 loff_t *ppos) 164 { 165 int ret; 166 167 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 168 if (ret == 0 && write) 169 dirty_background_bytes = 0; 170 return ret; 171 } 172 173 int dirty_background_bytes_handler(struct ctl_table *table, int write, 174 void __user *buffer, size_t *lenp, 175 loff_t *ppos) 176 { 177 int ret; 178 179 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 180 if (ret == 0 && write) 181 dirty_background_ratio = 0; 182 return ret; 183 } 184 185 int dirty_ratio_handler(struct ctl_table *table, int write, 186 void __user *buffer, size_t *lenp, 187 loff_t *ppos) 188 { 189 int old_ratio = vm_dirty_ratio; 190 int ret; 191 192 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 193 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 194 update_completion_period(); 195 vm_dirty_bytes = 0; 196 } 197 return ret; 198 } 199 200 201 int dirty_bytes_handler(struct ctl_table *table, int write, 202 void __user *buffer, size_t *lenp, 203 loff_t *ppos) 204 { 205 unsigned long old_bytes = vm_dirty_bytes; 206 int ret; 207 208 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 209 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 210 update_completion_period(); 211 vm_dirty_ratio = 0; 212 } 213 return ret; 214 } 215 216 /* 217 * Increment the BDI's writeout completion count and the global writeout 218 * completion count. Called from test_clear_page_writeback(). 219 */ 220 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) 221 { 222 __prop_inc_percpu_max(&vm_completions, &bdi->completions, 223 bdi->max_prop_frac); 224 } 225 226 void bdi_writeout_inc(struct backing_dev_info *bdi) 227 { 228 unsigned long flags; 229 230 local_irq_save(flags); 231 __bdi_writeout_inc(bdi); 232 local_irq_restore(flags); 233 } 234 EXPORT_SYMBOL_GPL(bdi_writeout_inc); 235 236 void task_dirty_inc(struct task_struct *tsk) 237 { 238 prop_inc_single(&vm_dirties, &tsk->dirties); 239 } 240 241 /* 242 * Obtain an accurate fraction of the BDI's portion. 243 */ 244 static void bdi_writeout_fraction(struct backing_dev_info *bdi, 245 long *numerator, long *denominator) 246 { 247 prop_fraction_percpu(&vm_completions, &bdi->completions, 248 numerator, denominator); 249 } 250 251 static inline void task_dirties_fraction(struct task_struct *tsk, 252 long *numerator, long *denominator) 253 { 254 prop_fraction_single(&vm_dirties, &tsk->dirties, 255 numerator, denominator); 256 } 257 258 /* 259 * task_dirty_limit - scale down dirty throttling threshold for one task 260 * 261 * task specific dirty limit: 262 * 263 * dirty -= (dirty/8) * p_{t} 264 * 265 * To protect light/slow dirtying tasks from heavier/fast ones, we start 266 * throttling individual tasks before reaching the bdi dirty limit. 267 * Relatively low thresholds will be allocated to heavy dirtiers. So when 268 * dirty pages grow large, heavy dirtiers will be throttled first, which will 269 * effectively curb the growth of dirty pages. Light dirtiers with high enough 270 * dirty threshold may never get throttled. 271 */ 272 static unsigned long task_dirty_limit(struct task_struct *tsk, 273 unsigned long bdi_dirty) 274 { 275 long numerator, denominator; 276 unsigned long dirty = bdi_dirty; 277 u64 inv = dirty >> 3; 278 279 task_dirties_fraction(tsk, &numerator, &denominator); 280 inv *= numerator; 281 do_div(inv, denominator); 282 283 dirty -= inv; 284 285 return max(dirty, bdi_dirty/2); 286 } 287 288 /* 289 * 290 */ 291 static unsigned int bdi_min_ratio; 292 293 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 294 { 295 int ret = 0; 296 297 spin_lock_bh(&bdi_lock); 298 if (min_ratio > bdi->max_ratio) { 299 ret = -EINVAL; 300 } else { 301 min_ratio -= bdi->min_ratio; 302 if (bdi_min_ratio + min_ratio < 100) { 303 bdi_min_ratio += min_ratio; 304 bdi->min_ratio += min_ratio; 305 } else { 306 ret = -EINVAL; 307 } 308 } 309 spin_unlock_bh(&bdi_lock); 310 311 return ret; 312 } 313 314 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 315 { 316 int ret = 0; 317 318 if (max_ratio > 100) 319 return -EINVAL; 320 321 spin_lock_bh(&bdi_lock); 322 if (bdi->min_ratio > max_ratio) { 323 ret = -EINVAL; 324 } else { 325 bdi->max_ratio = max_ratio; 326 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100; 327 } 328 spin_unlock_bh(&bdi_lock); 329 330 return ret; 331 } 332 EXPORT_SYMBOL(bdi_set_max_ratio); 333 334 /* 335 * Work out the current dirty-memory clamping and background writeout 336 * thresholds. 337 * 338 * The main aim here is to lower them aggressively if there is a lot of mapped 339 * memory around. To avoid stressing page reclaim with lots of unreclaimable 340 * pages. It is better to clamp down on writers than to start swapping, and 341 * performing lots of scanning. 342 * 343 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 344 * 345 * We don't permit the clamping level to fall below 5% - that is getting rather 346 * excessive. 347 * 348 * We make sure that the background writeout level is below the adjusted 349 * clamping level. 350 */ 351 352 static unsigned long highmem_dirtyable_memory(unsigned long total) 353 { 354 #ifdef CONFIG_HIGHMEM 355 int node; 356 unsigned long x = 0; 357 358 for_each_node_state(node, N_HIGH_MEMORY) { 359 struct zone *z = 360 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 361 362 x += zone_page_state(z, NR_FREE_PAGES) + 363 zone_reclaimable_pages(z); 364 } 365 /* 366 * Make sure that the number of highmem pages is never larger 367 * than the number of the total dirtyable memory. This can only 368 * occur in very strange VM situations but we want to make sure 369 * that this does not occur. 370 */ 371 return min(x, total); 372 #else 373 return 0; 374 #endif 375 } 376 377 /** 378 * determine_dirtyable_memory - amount of memory that may be used 379 * 380 * Returns the numebr of pages that can currently be freed and used 381 * by the kernel for direct mappings. 382 */ 383 unsigned long determine_dirtyable_memory(void) 384 { 385 unsigned long x; 386 387 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages(); 388 389 if (!vm_highmem_is_dirtyable) 390 x -= highmem_dirtyable_memory(x); 391 392 return x + 1; /* Ensure that we never return 0 */ 393 } 394 395 /* 396 * global_dirty_limits - background-writeback and dirty-throttling thresholds 397 * 398 * Calculate the dirty thresholds based on sysctl parameters 399 * - vm.dirty_background_ratio or vm.dirty_background_bytes 400 * - vm.dirty_ratio or vm.dirty_bytes 401 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and 402 * real-time tasks. 403 */ 404 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 405 { 406 unsigned long background; 407 unsigned long dirty; 408 unsigned long uninitialized_var(available_memory); 409 struct task_struct *tsk; 410 411 if (!vm_dirty_bytes || !dirty_background_bytes) 412 available_memory = determine_dirtyable_memory(); 413 414 if (vm_dirty_bytes) 415 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); 416 else 417 dirty = (vm_dirty_ratio * available_memory) / 100; 418 419 if (dirty_background_bytes) 420 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); 421 else 422 background = (dirty_background_ratio * available_memory) / 100; 423 424 if (background >= dirty) 425 background = dirty / 2; 426 tsk = current; 427 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 428 background += background / 4; 429 dirty += dirty / 4; 430 } 431 *pbackground = background; 432 *pdirty = dirty; 433 } 434 435 /** 436 * bdi_dirty_limit - @bdi's share of dirty throttling threshold 437 * @bdi: the backing_dev_info to query 438 * @dirty: global dirty limit in pages 439 * 440 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of 441 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. 442 * And the "limit" in the name is not seriously taken as hard limit in 443 * balance_dirty_pages(). 444 * 445 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 446 * - starving fast devices 447 * - piling up dirty pages (that will take long time to sync) on slow devices 448 * 449 * The bdi's share of dirty limit will be adapting to its throughput and 450 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 451 */ 452 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty) 453 { 454 u64 bdi_dirty; 455 long numerator, denominator; 456 457 /* 458 * Calculate this BDI's share of the dirty ratio. 459 */ 460 bdi_writeout_fraction(bdi, &numerator, &denominator); 461 462 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; 463 bdi_dirty *= numerator; 464 do_div(bdi_dirty, denominator); 465 466 bdi_dirty += (dirty * bdi->min_ratio) / 100; 467 if (bdi_dirty > (dirty * bdi->max_ratio) / 100) 468 bdi_dirty = dirty * bdi->max_ratio / 100; 469 470 return bdi_dirty; 471 } 472 473 /* 474 * balance_dirty_pages() must be called by processes which are generating dirty 475 * data. It looks at the number of dirty pages in the machine and will force 476 * the caller to perform writeback if the system is over `vm_dirty_ratio'. 477 * If we're over `background_thresh' then the writeback threads are woken to 478 * perform some writeout. 479 */ 480 static void balance_dirty_pages(struct address_space *mapping, 481 unsigned long write_chunk) 482 { 483 long nr_reclaimable, bdi_nr_reclaimable; 484 long nr_writeback, bdi_nr_writeback; 485 unsigned long background_thresh; 486 unsigned long dirty_thresh; 487 unsigned long bdi_thresh; 488 unsigned long pages_written = 0; 489 unsigned long pause = 1; 490 bool dirty_exceeded = false; 491 struct backing_dev_info *bdi = mapping->backing_dev_info; 492 493 for (;;) { 494 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 495 global_page_state(NR_UNSTABLE_NFS); 496 nr_writeback = global_page_state(NR_WRITEBACK); 497 498 global_dirty_limits(&background_thresh, &dirty_thresh); 499 500 /* 501 * Throttle it only when the background writeback cannot 502 * catch-up. This avoids (excessively) small writeouts 503 * when the bdi limits are ramping up. 504 */ 505 if (nr_reclaimable + nr_writeback <= 506 (background_thresh + dirty_thresh) / 2) 507 break; 508 509 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); 510 bdi_thresh = task_dirty_limit(current, bdi_thresh); 511 512 /* 513 * In order to avoid the stacked BDI deadlock we need 514 * to ensure we accurately count the 'dirty' pages when 515 * the threshold is low. 516 * 517 * Otherwise it would be possible to get thresh+n pages 518 * reported dirty, even though there are thresh-m pages 519 * actually dirty; with m+n sitting in the percpu 520 * deltas. 521 */ 522 if (bdi_thresh < 2*bdi_stat_error(bdi)) { 523 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); 524 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK); 525 } else { 526 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 527 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); 528 } 529 530 /* 531 * The bdi thresh is somehow "soft" limit derived from the 532 * global "hard" limit. The former helps to prevent heavy IO 533 * bdi or process from holding back light ones; The latter is 534 * the last resort safeguard. 535 */ 536 dirty_exceeded = 537 (bdi_nr_reclaimable + bdi_nr_writeback > bdi_thresh) 538 || (nr_reclaimable + nr_writeback > dirty_thresh); 539 540 if (!dirty_exceeded) 541 break; 542 543 if (!bdi->dirty_exceeded) 544 bdi->dirty_exceeded = 1; 545 546 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. 547 * Unstable writes are a feature of certain networked 548 * filesystems (i.e. NFS) in which data may have been 549 * written to the server's write cache, but has not yet 550 * been flushed to permanent storage. 551 * Only move pages to writeback if this bdi is over its 552 * threshold otherwise wait until the disk writes catch 553 * up. 554 */ 555 trace_balance_dirty_start(bdi); 556 if (bdi_nr_reclaimable > bdi_thresh) { 557 pages_written += writeback_inodes_wb(&bdi->wb, 558 write_chunk); 559 trace_balance_dirty_written(bdi, pages_written); 560 if (pages_written >= write_chunk) 561 break; /* We've done our duty */ 562 } 563 __set_current_state(TASK_UNINTERRUPTIBLE); 564 io_schedule_timeout(pause); 565 trace_balance_dirty_wait(bdi); 566 567 /* 568 * Increase the delay for each loop, up to our previous 569 * default of taking a 100ms nap. 570 */ 571 pause <<= 1; 572 if (pause > HZ / 10) 573 pause = HZ / 10; 574 } 575 576 if (!dirty_exceeded && bdi->dirty_exceeded) 577 bdi->dirty_exceeded = 0; 578 579 if (writeback_in_progress(bdi)) 580 return; 581 582 /* 583 * In laptop mode, we wait until hitting the higher threshold before 584 * starting background writeout, and then write out all the way down 585 * to the lower threshold. So slow writers cause minimal disk activity. 586 * 587 * In normal mode, we start background writeout at the lower 588 * background_thresh, to keep the amount of dirty memory low. 589 */ 590 if ((laptop_mode && pages_written) || 591 (!laptop_mode && (nr_reclaimable > background_thresh))) 592 bdi_start_background_writeback(bdi); 593 } 594 595 void set_page_dirty_balance(struct page *page, int page_mkwrite) 596 { 597 if (set_page_dirty(page) || page_mkwrite) { 598 struct address_space *mapping = page_mapping(page); 599 600 if (mapping) 601 balance_dirty_pages_ratelimited(mapping); 602 } 603 } 604 605 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0; 606 607 /** 608 * balance_dirty_pages_ratelimited_nr - balance dirty memory state 609 * @mapping: address_space which was dirtied 610 * @nr_pages_dirtied: number of pages which the caller has just dirtied 611 * 612 * Processes which are dirtying memory should call in here once for each page 613 * which was newly dirtied. The function will periodically check the system's 614 * dirty state and will initiate writeback if needed. 615 * 616 * On really big machines, get_writeback_state is expensive, so try to avoid 617 * calling it too often (ratelimiting). But once we're over the dirty memory 618 * limit we decrease the ratelimiting by a lot, to prevent individual processes 619 * from overshooting the limit by (ratelimit_pages) each. 620 */ 621 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, 622 unsigned long nr_pages_dirtied) 623 { 624 struct backing_dev_info *bdi = mapping->backing_dev_info; 625 unsigned long ratelimit; 626 unsigned long *p; 627 628 if (!bdi_cap_account_dirty(bdi)) 629 return; 630 631 ratelimit = ratelimit_pages; 632 if (mapping->backing_dev_info->dirty_exceeded) 633 ratelimit = 8; 634 635 /* 636 * Check the rate limiting. Also, we do not want to throttle real-time 637 * tasks in balance_dirty_pages(). Period. 638 */ 639 preempt_disable(); 640 p = &__get_cpu_var(bdp_ratelimits); 641 *p += nr_pages_dirtied; 642 if (unlikely(*p >= ratelimit)) { 643 ratelimit = sync_writeback_pages(*p); 644 *p = 0; 645 preempt_enable(); 646 balance_dirty_pages(mapping, ratelimit); 647 return; 648 } 649 preempt_enable(); 650 } 651 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); 652 653 void throttle_vm_writeout(gfp_t gfp_mask) 654 { 655 unsigned long background_thresh; 656 unsigned long dirty_thresh; 657 658 for ( ; ; ) { 659 global_dirty_limits(&background_thresh, &dirty_thresh); 660 661 /* 662 * Boost the allowable dirty threshold a bit for page 663 * allocators so they don't get DoS'ed by heavy writers 664 */ 665 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 666 667 if (global_page_state(NR_UNSTABLE_NFS) + 668 global_page_state(NR_WRITEBACK) <= dirty_thresh) 669 break; 670 congestion_wait(BLK_RW_ASYNC, HZ/10); 671 672 /* 673 * The caller might hold locks which can prevent IO completion 674 * or progress in the filesystem. So we cannot just sit here 675 * waiting for IO to complete. 676 */ 677 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 678 break; 679 } 680 } 681 682 /* 683 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 684 */ 685 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 686 void __user *buffer, size_t *length, loff_t *ppos) 687 { 688 proc_dointvec(table, write, buffer, length, ppos); 689 bdi_arm_supers_timer(); 690 return 0; 691 } 692 693 #ifdef CONFIG_BLOCK 694 void laptop_mode_timer_fn(unsigned long data) 695 { 696 struct request_queue *q = (struct request_queue *)data; 697 int nr_pages = global_page_state(NR_FILE_DIRTY) + 698 global_page_state(NR_UNSTABLE_NFS); 699 700 /* 701 * We want to write everything out, not just down to the dirty 702 * threshold 703 */ 704 if (bdi_has_dirty_io(&q->backing_dev_info)) 705 bdi_start_writeback(&q->backing_dev_info, nr_pages); 706 } 707 708 /* 709 * We've spun up the disk and we're in laptop mode: schedule writeback 710 * of all dirty data a few seconds from now. If the flush is already scheduled 711 * then push it back - the user is still using the disk. 712 */ 713 void laptop_io_completion(struct backing_dev_info *info) 714 { 715 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 716 } 717 718 /* 719 * We're in laptop mode and we've just synced. The sync's writes will have 720 * caused another writeback to be scheduled by laptop_io_completion. 721 * Nothing needs to be written back anymore, so we unschedule the writeback. 722 */ 723 void laptop_sync_completion(void) 724 { 725 struct backing_dev_info *bdi; 726 727 rcu_read_lock(); 728 729 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 730 del_timer(&bdi->laptop_mode_wb_timer); 731 732 rcu_read_unlock(); 733 } 734 #endif 735 736 /* 737 * If ratelimit_pages is too high then we can get into dirty-data overload 738 * if a large number of processes all perform writes at the same time. 739 * If it is too low then SMP machines will call the (expensive) 740 * get_writeback_state too often. 741 * 742 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 743 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 744 * thresholds before writeback cuts in. 745 * 746 * But the limit should not be set too high. Because it also controls the 747 * amount of memory which the balance_dirty_pages() caller has to write back. 748 * If this is too large then the caller will block on the IO queue all the 749 * time. So limit it to four megabytes - the balance_dirty_pages() caller 750 * will write six megabyte chunks, max. 751 */ 752 753 void writeback_set_ratelimit(void) 754 { 755 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32); 756 if (ratelimit_pages < 16) 757 ratelimit_pages = 16; 758 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) 759 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; 760 } 761 762 static int __cpuinit 763 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) 764 { 765 writeback_set_ratelimit(); 766 return NOTIFY_DONE; 767 } 768 769 static struct notifier_block __cpuinitdata ratelimit_nb = { 770 .notifier_call = ratelimit_handler, 771 .next = NULL, 772 }; 773 774 /* 775 * Called early on to tune the page writeback dirty limits. 776 * 777 * We used to scale dirty pages according to how total memory 778 * related to pages that could be allocated for buffers (by 779 * comparing nr_free_buffer_pages() to vm_total_pages. 780 * 781 * However, that was when we used "dirty_ratio" to scale with 782 * all memory, and we don't do that any more. "dirty_ratio" 783 * is now applied to total non-HIGHPAGE memory (by subtracting 784 * totalhigh_pages from vm_total_pages), and as such we can't 785 * get into the old insane situation any more where we had 786 * large amounts of dirty pages compared to a small amount of 787 * non-HIGHMEM memory. 788 * 789 * But we might still want to scale the dirty_ratio by how 790 * much memory the box has.. 791 */ 792 void __init page_writeback_init(void) 793 { 794 int shift; 795 796 writeback_set_ratelimit(); 797 register_cpu_notifier(&ratelimit_nb); 798 799 shift = calc_period_shift(); 800 prop_descriptor_init(&vm_completions, shift); 801 prop_descriptor_init(&vm_dirties, shift); 802 } 803 804 /** 805 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 806 * @mapping: address space structure to write 807 * @start: starting page index 808 * @end: ending page index (inclusive) 809 * 810 * This function scans the page range from @start to @end (inclusive) and tags 811 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 812 * that write_cache_pages (or whoever calls this function) will then use 813 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 814 * used to avoid livelocking of writeback by a process steadily creating new 815 * dirty pages in the file (thus it is important for this function to be quick 816 * so that it can tag pages faster than a dirtying process can create them). 817 */ 818 /* 819 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. 820 */ 821 void tag_pages_for_writeback(struct address_space *mapping, 822 pgoff_t start, pgoff_t end) 823 { 824 #define WRITEBACK_TAG_BATCH 4096 825 unsigned long tagged; 826 827 do { 828 spin_lock_irq(&mapping->tree_lock); 829 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, 830 &start, end, WRITEBACK_TAG_BATCH, 831 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); 832 spin_unlock_irq(&mapping->tree_lock); 833 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); 834 cond_resched(); 835 /* We check 'start' to handle wrapping when end == ~0UL */ 836 } while (tagged >= WRITEBACK_TAG_BATCH && start); 837 } 838 EXPORT_SYMBOL(tag_pages_for_writeback); 839 840 /** 841 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 842 * @mapping: address space structure to write 843 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 844 * @writepage: function called for each page 845 * @data: data passed to writepage function 846 * 847 * If a page is already under I/O, write_cache_pages() skips it, even 848 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 849 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 850 * and msync() need to guarantee that all the data which was dirty at the time 851 * the call was made get new I/O started against them. If wbc->sync_mode is 852 * WB_SYNC_ALL then we were called for data integrity and we must wait for 853 * existing IO to complete. 854 * 855 * To avoid livelocks (when other process dirties new pages), we first tag 856 * pages which should be written back with TOWRITE tag and only then start 857 * writing them. For data-integrity sync we have to be careful so that we do 858 * not miss some pages (e.g., because some other process has cleared TOWRITE 859 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 860 * by the process clearing the DIRTY tag (and submitting the page for IO). 861 */ 862 int write_cache_pages(struct address_space *mapping, 863 struct writeback_control *wbc, writepage_t writepage, 864 void *data) 865 { 866 int ret = 0; 867 int done = 0; 868 struct pagevec pvec; 869 int nr_pages; 870 pgoff_t uninitialized_var(writeback_index); 871 pgoff_t index; 872 pgoff_t end; /* Inclusive */ 873 pgoff_t done_index; 874 int cycled; 875 int range_whole = 0; 876 int tag; 877 878 pagevec_init(&pvec, 0); 879 if (wbc->range_cyclic) { 880 writeback_index = mapping->writeback_index; /* prev offset */ 881 index = writeback_index; 882 if (index == 0) 883 cycled = 1; 884 else 885 cycled = 0; 886 end = -1; 887 } else { 888 index = wbc->range_start >> PAGE_CACHE_SHIFT; 889 end = wbc->range_end >> PAGE_CACHE_SHIFT; 890 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 891 range_whole = 1; 892 cycled = 1; /* ignore range_cyclic tests */ 893 } 894 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 895 tag = PAGECACHE_TAG_TOWRITE; 896 else 897 tag = PAGECACHE_TAG_DIRTY; 898 retry: 899 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 900 tag_pages_for_writeback(mapping, index, end); 901 done_index = index; 902 while (!done && (index <= end)) { 903 int i; 904 905 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 906 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 907 if (nr_pages == 0) 908 break; 909 910 for (i = 0; i < nr_pages; i++) { 911 struct page *page = pvec.pages[i]; 912 913 /* 914 * At this point, the page may be truncated or 915 * invalidated (changing page->mapping to NULL), or 916 * even swizzled back from swapper_space to tmpfs file 917 * mapping. However, page->index will not change 918 * because we have a reference on the page. 919 */ 920 if (page->index > end) { 921 /* 922 * can't be range_cyclic (1st pass) because 923 * end == -1 in that case. 924 */ 925 done = 1; 926 break; 927 } 928 929 done_index = page->index; 930 931 lock_page(page); 932 933 /* 934 * Page truncated or invalidated. We can freely skip it 935 * then, even for data integrity operations: the page 936 * has disappeared concurrently, so there could be no 937 * real expectation of this data interity operation 938 * even if there is now a new, dirty page at the same 939 * pagecache address. 940 */ 941 if (unlikely(page->mapping != mapping)) { 942 continue_unlock: 943 unlock_page(page); 944 continue; 945 } 946 947 if (!PageDirty(page)) { 948 /* someone wrote it for us */ 949 goto continue_unlock; 950 } 951 952 if (PageWriteback(page)) { 953 if (wbc->sync_mode != WB_SYNC_NONE) 954 wait_on_page_writeback(page); 955 else 956 goto continue_unlock; 957 } 958 959 BUG_ON(PageWriteback(page)); 960 if (!clear_page_dirty_for_io(page)) 961 goto continue_unlock; 962 963 trace_wbc_writepage(wbc, mapping->backing_dev_info); 964 ret = (*writepage)(page, wbc, data); 965 if (unlikely(ret)) { 966 if (ret == AOP_WRITEPAGE_ACTIVATE) { 967 unlock_page(page); 968 ret = 0; 969 } else { 970 /* 971 * done_index is set past this page, 972 * so media errors will not choke 973 * background writeout for the entire 974 * file. This has consequences for 975 * range_cyclic semantics (ie. it may 976 * not be suitable for data integrity 977 * writeout). 978 */ 979 done_index = page->index + 1; 980 done = 1; 981 break; 982 } 983 } 984 985 /* 986 * We stop writing back only if we are not doing 987 * integrity sync. In case of integrity sync we have to 988 * keep going until we have written all the pages 989 * we tagged for writeback prior to entering this loop. 990 */ 991 if (--wbc->nr_to_write <= 0 && 992 wbc->sync_mode == WB_SYNC_NONE) { 993 done = 1; 994 break; 995 } 996 } 997 pagevec_release(&pvec); 998 cond_resched(); 999 } 1000 if (!cycled && !done) { 1001 /* 1002 * range_cyclic: 1003 * We hit the last page and there is more work to be done: wrap 1004 * back to the start of the file 1005 */ 1006 cycled = 1; 1007 index = 0; 1008 end = writeback_index - 1; 1009 goto retry; 1010 } 1011 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1012 mapping->writeback_index = done_index; 1013 1014 return ret; 1015 } 1016 EXPORT_SYMBOL(write_cache_pages); 1017 1018 /* 1019 * Function used by generic_writepages to call the real writepage 1020 * function and set the mapping flags on error 1021 */ 1022 static int __writepage(struct page *page, struct writeback_control *wbc, 1023 void *data) 1024 { 1025 struct address_space *mapping = data; 1026 int ret = mapping->a_ops->writepage(page, wbc); 1027 mapping_set_error(mapping, ret); 1028 return ret; 1029 } 1030 1031 /** 1032 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 1033 * @mapping: address space structure to write 1034 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1035 * 1036 * This is a library function, which implements the writepages() 1037 * address_space_operation. 1038 */ 1039 int generic_writepages(struct address_space *mapping, 1040 struct writeback_control *wbc) 1041 { 1042 struct blk_plug plug; 1043 int ret; 1044 1045 /* deal with chardevs and other special file */ 1046 if (!mapping->a_ops->writepage) 1047 return 0; 1048 1049 blk_start_plug(&plug); 1050 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 1051 blk_finish_plug(&plug); 1052 return ret; 1053 } 1054 1055 EXPORT_SYMBOL(generic_writepages); 1056 1057 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 1058 { 1059 int ret; 1060 1061 if (wbc->nr_to_write <= 0) 1062 return 0; 1063 if (mapping->a_ops->writepages) 1064 ret = mapping->a_ops->writepages(mapping, wbc); 1065 else 1066 ret = generic_writepages(mapping, wbc); 1067 return ret; 1068 } 1069 1070 /** 1071 * write_one_page - write out a single page and optionally wait on I/O 1072 * @page: the page to write 1073 * @wait: if true, wait on writeout 1074 * 1075 * The page must be locked by the caller and will be unlocked upon return. 1076 * 1077 * write_one_page() returns a negative error code if I/O failed. 1078 */ 1079 int write_one_page(struct page *page, int wait) 1080 { 1081 struct address_space *mapping = page->mapping; 1082 int ret = 0; 1083 struct writeback_control wbc = { 1084 .sync_mode = WB_SYNC_ALL, 1085 .nr_to_write = 1, 1086 }; 1087 1088 BUG_ON(!PageLocked(page)); 1089 1090 if (wait) 1091 wait_on_page_writeback(page); 1092 1093 if (clear_page_dirty_for_io(page)) { 1094 page_cache_get(page); 1095 ret = mapping->a_ops->writepage(page, &wbc); 1096 if (ret == 0 && wait) { 1097 wait_on_page_writeback(page); 1098 if (PageError(page)) 1099 ret = -EIO; 1100 } 1101 page_cache_release(page); 1102 } else { 1103 unlock_page(page); 1104 } 1105 return ret; 1106 } 1107 EXPORT_SYMBOL(write_one_page); 1108 1109 /* 1110 * For address_spaces which do not use buffers nor write back. 1111 */ 1112 int __set_page_dirty_no_writeback(struct page *page) 1113 { 1114 if (!PageDirty(page)) 1115 return !TestSetPageDirty(page); 1116 return 0; 1117 } 1118 1119 /* 1120 * Helper function for set_page_dirty family. 1121 * NOTE: This relies on being atomic wrt interrupts. 1122 */ 1123 void account_page_dirtied(struct page *page, struct address_space *mapping) 1124 { 1125 if (mapping_cap_account_dirty(mapping)) { 1126 __inc_zone_page_state(page, NR_FILE_DIRTY); 1127 __inc_zone_page_state(page, NR_DIRTIED); 1128 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 1129 task_dirty_inc(current); 1130 task_io_account_write(PAGE_CACHE_SIZE); 1131 } 1132 } 1133 EXPORT_SYMBOL(account_page_dirtied); 1134 1135 /* 1136 * Helper function for set_page_writeback family. 1137 * NOTE: Unlike account_page_dirtied this does not rely on being atomic 1138 * wrt interrupts. 1139 */ 1140 void account_page_writeback(struct page *page) 1141 { 1142 inc_zone_page_state(page, NR_WRITEBACK); 1143 inc_zone_page_state(page, NR_WRITTEN); 1144 } 1145 EXPORT_SYMBOL(account_page_writeback); 1146 1147 /* 1148 * For address_spaces which do not use buffers. Just tag the page as dirty in 1149 * its radix tree. 1150 * 1151 * This is also used when a single buffer is being dirtied: we want to set the 1152 * page dirty in that case, but not all the buffers. This is a "bottom-up" 1153 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 1154 * 1155 * Most callers have locked the page, which pins the address_space in memory. 1156 * But zap_pte_range() does not lock the page, however in that case the 1157 * mapping is pinned by the vma's ->vm_file reference. 1158 * 1159 * We take care to handle the case where the page was truncated from the 1160 * mapping by re-checking page_mapping() inside tree_lock. 1161 */ 1162 int __set_page_dirty_nobuffers(struct page *page) 1163 { 1164 if (!TestSetPageDirty(page)) { 1165 struct address_space *mapping = page_mapping(page); 1166 struct address_space *mapping2; 1167 1168 if (!mapping) 1169 return 1; 1170 1171 spin_lock_irq(&mapping->tree_lock); 1172 mapping2 = page_mapping(page); 1173 if (mapping2) { /* Race with truncate? */ 1174 BUG_ON(mapping2 != mapping); 1175 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 1176 account_page_dirtied(page, mapping); 1177 radix_tree_tag_set(&mapping->page_tree, 1178 page_index(page), PAGECACHE_TAG_DIRTY); 1179 } 1180 spin_unlock_irq(&mapping->tree_lock); 1181 if (mapping->host) { 1182 /* !PageAnon && !swapper_space */ 1183 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1184 } 1185 return 1; 1186 } 1187 return 0; 1188 } 1189 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 1190 1191 /* 1192 * When a writepage implementation decides that it doesn't want to write this 1193 * page for some reason, it should redirty the locked page via 1194 * redirty_page_for_writepage() and it should then unlock the page and return 0 1195 */ 1196 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 1197 { 1198 wbc->pages_skipped++; 1199 return __set_page_dirty_nobuffers(page); 1200 } 1201 EXPORT_SYMBOL(redirty_page_for_writepage); 1202 1203 /* 1204 * Dirty a page. 1205 * 1206 * For pages with a mapping this should be done under the page lock 1207 * for the benefit of asynchronous memory errors who prefer a consistent 1208 * dirty state. This rule can be broken in some special cases, 1209 * but should be better not to. 1210 * 1211 * If the mapping doesn't provide a set_page_dirty a_op, then 1212 * just fall through and assume that it wants buffer_heads. 1213 */ 1214 int set_page_dirty(struct page *page) 1215 { 1216 struct address_space *mapping = page_mapping(page); 1217 1218 if (likely(mapping)) { 1219 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 1220 /* 1221 * readahead/lru_deactivate_page could remain 1222 * PG_readahead/PG_reclaim due to race with end_page_writeback 1223 * About readahead, if the page is written, the flags would be 1224 * reset. So no problem. 1225 * About lru_deactivate_page, if the page is redirty, the flag 1226 * will be reset. So no problem. but if the page is used by readahead 1227 * it will confuse readahead and make it restart the size rampup 1228 * process. But it's a trivial problem. 1229 */ 1230 ClearPageReclaim(page); 1231 #ifdef CONFIG_BLOCK 1232 if (!spd) 1233 spd = __set_page_dirty_buffers; 1234 #endif 1235 return (*spd)(page); 1236 } 1237 if (!PageDirty(page)) { 1238 if (!TestSetPageDirty(page)) 1239 return 1; 1240 } 1241 return 0; 1242 } 1243 EXPORT_SYMBOL(set_page_dirty); 1244 1245 /* 1246 * set_page_dirty() is racy if the caller has no reference against 1247 * page->mapping->host, and if the page is unlocked. This is because another 1248 * CPU could truncate the page off the mapping and then free the mapping. 1249 * 1250 * Usually, the page _is_ locked, or the caller is a user-space process which 1251 * holds a reference on the inode by having an open file. 1252 * 1253 * In other cases, the page should be locked before running set_page_dirty(). 1254 */ 1255 int set_page_dirty_lock(struct page *page) 1256 { 1257 int ret; 1258 1259 lock_page(page); 1260 ret = set_page_dirty(page); 1261 unlock_page(page); 1262 return ret; 1263 } 1264 EXPORT_SYMBOL(set_page_dirty_lock); 1265 1266 /* 1267 * Clear a page's dirty flag, while caring for dirty memory accounting. 1268 * Returns true if the page was previously dirty. 1269 * 1270 * This is for preparing to put the page under writeout. We leave the page 1271 * tagged as dirty in the radix tree so that a concurrent write-for-sync 1272 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 1273 * implementation will run either set_page_writeback() or set_page_dirty(), 1274 * at which stage we bring the page's dirty flag and radix-tree dirty tag 1275 * back into sync. 1276 * 1277 * This incoherency between the page's dirty flag and radix-tree tag is 1278 * unfortunate, but it only exists while the page is locked. 1279 */ 1280 int clear_page_dirty_for_io(struct page *page) 1281 { 1282 struct address_space *mapping = page_mapping(page); 1283 1284 BUG_ON(!PageLocked(page)); 1285 1286 if (mapping && mapping_cap_account_dirty(mapping)) { 1287 /* 1288 * Yes, Virginia, this is indeed insane. 1289 * 1290 * We use this sequence to make sure that 1291 * (a) we account for dirty stats properly 1292 * (b) we tell the low-level filesystem to 1293 * mark the whole page dirty if it was 1294 * dirty in a pagetable. Only to then 1295 * (c) clean the page again and return 1 to 1296 * cause the writeback. 1297 * 1298 * This way we avoid all nasty races with the 1299 * dirty bit in multiple places and clearing 1300 * them concurrently from different threads. 1301 * 1302 * Note! Normally the "set_page_dirty(page)" 1303 * has no effect on the actual dirty bit - since 1304 * that will already usually be set. But we 1305 * need the side effects, and it can help us 1306 * avoid races. 1307 * 1308 * We basically use the page "master dirty bit" 1309 * as a serialization point for all the different 1310 * threads doing their things. 1311 */ 1312 if (page_mkclean(page)) 1313 set_page_dirty(page); 1314 /* 1315 * We carefully synchronise fault handlers against 1316 * installing a dirty pte and marking the page dirty 1317 * at this point. We do this by having them hold the 1318 * page lock at some point after installing their 1319 * pte, but before marking the page dirty. 1320 * Pages are always locked coming in here, so we get 1321 * the desired exclusion. See mm/memory.c:do_wp_page() 1322 * for more comments. 1323 */ 1324 if (TestClearPageDirty(page)) { 1325 dec_zone_page_state(page, NR_FILE_DIRTY); 1326 dec_bdi_stat(mapping->backing_dev_info, 1327 BDI_RECLAIMABLE); 1328 return 1; 1329 } 1330 return 0; 1331 } 1332 return TestClearPageDirty(page); 1333 } 1334 EXPORT_SYMBOL(clear_page_dirty_for_io); 1335 1336 int test_clear_page_writeback(struct page *page) 1337 { 1338 struct address_space *mapping = page_mapping(page); 1339 int ret; 1340 1341 if (mapping) { 1342 struct backing_dev_info *bdi = mapping->backing_dev_info; 1343 unsigned long flags; 1344 1345 spin_lock_irqsave(&mapping->tree_lock, flags); 1346 ret = TestClearPageWriteback(page); 1347 if (ret) { 1348 radix_tree_tag_clear(&mapping->page_tree, 1349 page_index(page), 1350 PAGECACHE_TAG_WRITEBACK); 1351 if (bdi_cap_account_writeback(bdi)) { 1352 __dec_bdi_stat(bdi, BDI_WRITEBACK); 1353 __bdi_writeout_inc(bdi); 1354 } 1355 } 1356 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1357 } else { 1358 ret = TestClearPageWriteback(page); 1359 } 1360 if (ret) 1361 dec_zone_page_state(page, NR_WRITEBACK); 1362 return ret; 1363 } 1364 1365 int test_set_page_writeback(struct page *page) 1366 { 1367 struct address_space *mapping = page_mapping(page); 1368 int ret; 1369 1370 if (mapping) { 1371 struct backing_dev_info *bdi = mapping->backing_dev_info; 1372 unsigned long flags; 1373 1374 spin_lock_irqsave(&mapping->tree_lock, flags); 1375 ret = TestSetPageWriteback(page); 1376 if (!ret) { 1377 radix_tree_tag_set(&mapping->page_tree, 1378 page_index(page), 1379 PAGECACHE_TAG_WRITEBACK); 1380 if (bdi_cap_account_writeback(bdi)) 1381 __inc_bdi_stat(bdi, BDI_WRITEBACK); 1382 } 1383 if (!PageDirty(page)) 1384 radix_tree_tag_clear(&mapping->page_tree, 1385 page_index(page), 1386 PAGECACHE_TAG_DIRTY); 1387 radix_tree_tag_clear(&mapping->page_tree, 1388 page_index(page), 1389 PAGECACHE_TAG_TOWRITE); 1390 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1391 } else { 1392 ret = TestSetPageWriteback(page); 1393 } 1394 if (!ret) 1395 account_page_writeback(page); 1396 return ret; 1397 1398 } 1399 EXPORT_SYMBOL(test_set_page_writeback); 1400 1401 /* 1402 * Return true if any of the pages in the mapping are marked with the 1403 * passed tag. 1404 */ 1405 int mapping_tagged(struct address_space *mapping, int tag) 1406 { 1407 int ret; 1408 rcu_read_lock(); 1409 ret = radix_tree_tagged(&mapping->page_tree, tag); 1410 rcu_read_unlock(); 1411 return ret; 1412 } 1413 EXPORT_SYMBOL(mapping_tagged); 1414