xref: /openbmc/linux/mm/page-writeback.c (revision d46db3d58233be4be980eb1e42eebe7808bcabab)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38 
39 /*
40  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
41  * will look to see if it needs to force writeback or throttling.
42  */
43 static long ratelimit_pages = 32;
44 
45 /*
46  * When balance_dirty_pages decides that the caller needs to perform some
47  * non-background writeback, this is how many pages it will attempt to write.
48  * It should be somewhat larger than dirtied pages to ensure that reasonably
49  * large amounts of I/O are submitted.
50  */
51 static inline long sync_writeback_pages(unsigned long dirtied)
52 {
53 	if (dirtied < ratelimit_pages)
54 		dirtied = ratelimit_pages;
55 
56 	return dirtied + dirtied / 2;
57 }
58 
59 /* The following parameters are exported via /proc/sys/vm */
60 
61 /*
62  * Start background writeback (via writeback threads) at this percentage
63  */
64 int dirty_background_ratio = 10;
65 
66 /*
67  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
68  * dirty_background_ratio * the amount of dirtyable memory
69  */
70 unsigned long dirty_background_bytes;
71 
72 /*
73  * free highmem will not be subtracted from the total free memory
74  * for calculating free ratios if vm_highmem_is_dirtyable is true
75  */
76 int vm_highmem_is_dirtyable;
77 
78 /*
79  * The generator of dirty data starts writeback at this percentage
80  */
81 int vm_dirty_ratio = 20;
82 
83 /*
84  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
85  * vm_dirty_ratio * the amount of dirtyable memory
86  */
87 unsigned long vm_dirty_bytes;
88 
89 /*
90  * The interval between `kupdate'-style writebacks
91  */
92 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
93 
94 /*
95  * The longest time for which data is allowed to remain dirty
96  */
97 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
98 
99 /*
100  * Flag that makes the machine dump writes/reads and block dirtyings.
101  */
102 int block_dump;
103 
104 /*
105  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
106  * a full sync is triggered after this time elapses without any disk activity.
107  */
108 int laptop_mode;
109 
110 EXPORT_SYMBOL(laptop_mode);
111 
112 /* End of sysctl-exported parameters */
113 
114 
115 /*
116  * Scale the writeback cache size proportional to the relative writeout speeds.
117  *
118  * We do this by keeping a floating proportion between BDIs, based on page
119  * writeback completions [end_page_writeback()]. Those devices that write out
120  * pages fastest will get the larger share, while the slower will get a smaller
121  * share.
122  *
123  * We use page writeout completions because we are interested in getting rid of
124  * dirty pages. Having them written out is the primary goal.
125  *
126  * We introduce a concept of time, a period over which we measure these events,
127  * because demand can/will vary over time. The length of this period itself is
128  * measured in page writeback completions.
129  *
130  */
131 static struct prop_descriptor vm_completions;
132 static struct prop_descriptor vm_dirties;
133 
134 /*
135  * couple the period to the dirty_ratio:
136  *
137  *   period/2 ~ roundup_pow_of_two(dirty limit)
138  */
139 static int calc_period_shift(void)
140 {
141 	unsigned long dirty_total;
142 
143 	if (vm_dirty_bytes)
144 		dirty_total = vm_dirty_bytes / PAGE_SIZE;
145 	else
146 		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
147 				100;
148 	return 2 + ilog2(dirty_total - 1);
149 }
150 
151 /*
152  * update the period when the dirty threshold changes.
153  */
154 static void update_completion_period(void)
155 {
156 	int shift = calc_period_shift();
157 	prop_change_shift(&vm_completions, shift);
158 	prop_change_shift(&vm_dirties, shift);
159 }
160 
161 int dirty_background_ratio_handler(struct ctl_table *table, int write,
162 		void __user *buffer, size_t *lenp,
163 		loff_t *ppos)
164 {
165 	int ret;
166 
167 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
168 	if (ret == 0 && write)
169 		dirty_background_bytes = 0;
170 	return ret;
171 }
172 
173 int dirty_background_bytes_handler(struct ctl_table *table, int write,
174 		void __user *buffer, size_t *lenp,
175 		loff_t *ppos)
176 {
177 	int ret;
178 
179 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
180 	if (ret == 0 && write)
181 		dirty_background_ratio = 0;
182 	return ret;
183 }
184 
185 int dirty_ratio_handler(struct ctl_table *table, int write,
186 		void __user *buffer, size_t *lenp,
187 		loff_t *ppos)
188 {
189 	int old_ratio = vm_dirty_ratio;
190 	int ret;
191 
192 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
193 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
194 		update_completion_period();
195 		vm_dirty_bytes = 0;
196 	}
197 	return ret;
198 }
199 
200 
201 int dirty_bytes_handler(struct ctl_table *table, int write,
202 		void __user *buffer, size_t *lenp,
203 		loff_t *ppos)
204 {
205 	unsigned long old_bytes = vm_dirty_bytes;
206 	int ret;
207 
208 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
209 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
210 		update_completion_period();
211 		vm_dirty_ratio = 0;
212 	}
213 	return ret;
214 }
215 
216 /*
217  * Increment the BDI's writeout completion count and the global writeout
218  * completion count. Called from test_clear_page_writeback().
219  */
220 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
221 {
222 	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
223 			      bdi->max_prop_frac);
224 }
225 
226 void bdi_writeout_inc(struct backing_dev_info *bdi)
227 {
228 	unsigned long flags;
229 
230 	local_irq_save(flags);
231 	__bdi_writeout_inc(bdi);
232 	local_irq_restore(flags);
233 }
234 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
235 
236 void task_dirty_inc(struct task_struct *tsk)
237 {
238 	prop_inc_single(&vm_dirties, &tsk->dirties);
239 }
240 
241 /*
242  * Obtain an accurate fraction of the BDI's portion.
243  */
244 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
245 		long *numerator, long *denominator)
246 {
247 	prop_fraction_percpu(&vm_completions, &bdi->completions,
248 				numerator, denominator);
249 }
250 
251 static inline void task_dirties_fraction(struct task_struct *tsk,
252 		long *numerator, long *denominator)
253 {
254 	prop_fraction_single(&vm_dirties, &tsk->dirties,
255 				numerator, denominator);
256 }
257 
258 /*
259  * task_dirty_limit - scale down dirty throttling threshold for one task
260  *
261  * task specific dirty limit:
262  *
263  *   dirty -= (dirty/8) * p_{t}
264  *
265  * To protect light/slow dirtying tasks from heavier/fast ones, we start
266  * throttling individual tasks before reaching the bdi dirty limit.
267  * Relatively low thresholds will be allocated to heavy dirtiers. So when
268  * dirty pages grow large, heavy dirtiers will be throttled first, which will
269  * effectively curb the growth of dirty pages. Light dirtiers with high enough
270  * dirty threshold may never get throttled.
271  */
272 static unsigned long task_dirty_limit(struct task_struct *tsk,
273 				       unsigned long bdi_dirty)
274 {
275 	long numerator, denominator;
276 	unsigned long dirty = bdi_dirty;
277 	u64 inv = dirty >> 3;
278 
279 	task_dirties_fraction(tsk, &numerator, &denominator);
280 	inv *= numerator;
281 	do_div(inv, denominator);
282 
283 	dirty -= inv;
284 
285 	return max(dirty, bdi_dirty/2);
286 }
287 
288 /*
289  *
290  */
291 static unsigned int bdi_min_ratio;
292 
293 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
294 {
295 	int ret = 0;
296 
297 	spin_lock_bh(&bdi_lock);
298 	if (min_ratio > bdi->max_ratio) {
299 		ret = -EINVAL;
300 	} else {
301 		min_ratio -= bdi->min_ratio;
302 		if (bdi_min_ratio + min_ratio < 100) {
303 			bdi_min_ratio += min_ratio;
304 			bdi->min_ratio += min_ratio;
305 		} else {
306 			ret = -EINVAL;
307 		}
308 	}
309 	spin_unlock_bh(&bdi_lock);
310 
311 	return ret;
312 }
313 
314 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
315 {
316 	int ret = 0;
317 
318 	if (max_ratio > 100)
319 		return -EINVAL;
320 
321 	spin_lock_bh(&bdi_lock);
322 	if (bdi->min_ratio > max_ratio) {
323 		ret = -EINVAL;
324 	} else {
325 		bdi->max_ratio = max_ratio;
326 		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
327 	}
328 	spin_unlock_bh(&bdi_lock);
329 
330 	return ret;
331 }
332 EXPORT_SYMBOL(bdi_set_max_ratio);
333 
334 /*
335  * Work out the current dirty-memory clamping and background writeout
336  * thresholds.
337  *
338  * The main aim here is to lower them aggressively if there is a lot of mapped
339  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
340  * pages.  It is better to clamp down on writers than to start swapping, and
341  * performing lots of scanning.
342  *
343  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
344  *
345  * We don't permit the clamping level to fall below 5% - that is getting rather
346  * excessive.
347  *
348  * We make sure that the background writeout level is below the adjusted
349  * clamping level.
350  */
351 
352 static unsigned long highmem_dirtyable_memory(unsigned long total)
353 {
354 #ifdef CONFIG_HIGHMEM
355 	int node;
356 	unsigned long x = 0;
357 
358 	for_each_node_state(node, N_HIGH_MEMORY) {
359 		struct zone *z =
360 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
361 
362 		x += zone_page_state(z, NR_FREE_PAGES) +
363 		     zone_reclaimable_pages(z);
364 	}
365 	/*
366 	 * Make sure that the number of highmem pages is never larger
367 	 * than the number of the total dirtyable memory. This can only
368 	 * occur in very strange VM situations but we want to make sure
369 	 * that this does not occur.
370 	 */
371 	return min(x, total);
372 #else
373 	return 0;
374 #endif
375 }
376 
377 /**
378  * determine_dirtyable_memory - amount of memory that may be used
379  *
380  * Returns the numebr of pages that can currently be freed and used
381  * by the kernel for direct mappings.
382  */
383 unsigned long determine_dirtyable_memory(void)
384 {
385 	unsigned long x;
386 
387 	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
388 
389 	if (!vm_highmem_is_dirtyable)
390 		x -= highmem_dirtyable_memory(x);
391 
392 	return x + 1;	/* Ensure that we never return 0 */
393 }
394 
395 /*
396  * global_dirty_limits - background-writeback and dirty-throttling thresholds
397  *
398  * Calculate the dirty thresholds based on sysctl parameters
399  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
400  * - vm.dirty_ratio             or  vm.dirty_bytes
401  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
402  * real-time tasks.
403  */
404 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
405 {
406 	unsigned long background;
407 	unsigned long dirty;
408 	unsigned long uninitialized_var(available_memory);
409 	struct task_struct *tsk;
410 
411 	if (!vm_dirty_bytes || !dirty_background_bytes)
412 		available_memory = determine_dirtyable_memory();
413 
414 	if (vm_dirty_bytes)
415 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
416 	else
417 		dirty = (vm_dirty_ratio * available_memory) / 100;
418 
419 	if (dirty_background_bytes)
420 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
421 	else
422 		background = (dirty_background_ratio * available_memory) / 100;
423 
424 	if (background >= dirty)
425 		background = dirty / 2;
426 	tsk = current;
427 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
428 		background += background / 4;
429 		dirty += dirty / 4;
430 	}
431 	*pbackground = background;
432 	*pdirty = dirty;
433 }
434 
435 /**
436  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
437  * @bdi: the backing_dev_info to query
438  * @dirty: global dirty limit in pages
439  *
440  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
441  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
442  * And the "limit" in the name is not seriously taken as hard limit in
443  * balance_dirty_pages().
444  *
445  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
446  * - starving fast devices
447  * - piling up dirty pages (that will take long time to sync) on slow devices
448  *
449  * The bdi's share of dirty limit will be adapting to its throughput and
450  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
451  */
452 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
453 {
454 	u64 bdi_dirty;
455 	long numerator, denominator;
456 
457 	/*
458 	 * Calculate this BDI's share of the dirty ratio.
459 	 */
460 	bdi_writeout_fraction(bdi, &numerator, &denominator);
461 
462 	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
463 	bdi_dirty *= numerator;
464 	do_div(bdi_dirty, denominator);
465 
466 	bdi_dirty += (dirty * bdi->min_ratio) / 100;
467 	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
468 		bdi_dirty = dirty * bdi->max_ratio / 100;
469 
470 	return bdi_dirty;
471 }
472 
473 /*
474  * balance_dirty_pages() must be called by processes which are generating dirty
475  * data.  It looks at the number of dirty pages in the machine and will force
476  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
477  * If we're over `background_thresh' then the writeback threads are woken to
478  * perform some writeout.
479  */
480 static void balance_dirty_pages(struct address_space *mapping,
481 				unsigned long write_chunk)
482 {
483 	long nr_reclaimable, bdi_nr_reclaimable;
484 	long nr_writeback, bdi_nr_writeback;
485 	unsigned long background_thresh;
486 	unsigned long dirty_thresh;
487 	unsigned long bdi_thresh;
488 	unsigned long pages_written = 0;
489 	unsigned long pause = 1;
490 	bool dirty_exceeded = false;
491 	struct backing_dev_info *bdi = mapping->backing_dev_info;
492 
493 	for (;;) {
494 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
495 					global_page_state(NR_UNSTABLE_NFS);
496 		nr_writeback = global_page_state(NR_WRITEBACK);
497 
498 		global_dirty_limits(&background_thresh, &dirty_thresh);
499 
500 		/*
501 		 * Throttle it only when the background writeback cannot
502 		 * catch-up. This avoids (excessively) small writeouts
503 		 * when the bdi limits are ramping up.
504 		 */
505 		if (nr_reclaimable + nr_writeback <=
506 				(background_thresh + dirty_thresh) / 2)
507 			break;
508 
509 		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
510 		bdi_thresh = task_dirty_limit(current, bdi_thresh);
511 
512 		/*
513 		 * In order to avoid the stacked BDI deadlock we need
514 		 * to ensure we accurately count the 'dirty' pages when
515 		 * the threshold is low.
516 		 *
517 		 * Otherwise it would be possible to get thresh+n pages
518 		 * reported dirty, even though there are thresh-m pages
519 		 * actually dirty; with m+n sitting in the percpu
520 		 * deltas.
521 		 */
522 		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
523 			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
524 			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
525 		} else {
526 			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
527 			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
528 		}
529 
530 		/*
531 		 * The bdi thresh is somehow "soft" limit derived from the
532 		 * global "hard" limit. The former helps to prevent heavy IO
533 		 * bdi or process from holding back light ones; The latter is
534 		 * the last resort safeguard.
535 		 */
536 		dirty_exceeded =
537 			(bdi_nr_reclaimable + bdi_nr_writeback > bdi_thresh)
538 			|| (nr_reclaimable + nr_writeback > dirty_thresh);
539 
540 		if (!dirty_exceeded)
541 			break;
542 
543 		if (!bdi->dirty_exceeded)
544 			bdi->dirty_exceeded = 1;
545 
546 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
547 		 * Unstable writes are a feature of certain networked
548 		 * filesystems (i.e. NFS) in which data may have been
549 		 * written to the server's write cache, but has not yet
550 		 * been flushed to permanent storage.
551 		 * Only move pages to writeback if this bdi is over its
552 		 * threshold otherwise wait until the disk writes catch
553 		 * up.
554 		 */
555 		trace_balance_dirty_start(bdi);
556 		if (bdi_nr_reclaimable > bdi_thresh) {
557 			pages_written += writeback_inodes_wb(&bdi->wb,
558 							     write_chunk);
559 			trace_balance_dirty_written(bdi, pages_written);
560 			if (pages_written >= write_chunk)
561 				break;		/* We've done our duty */
562 		}
563 		__set_current_state(TASK_UNINTERRUPTIBLE);
564 		io_schedule_timeout(pause);
565 		trace_balance_dirty_wait(bdi);
566 
567 		/*
568 		 * Increase the delay for each loop, up to our previous
569 		 * default of taking a 100ms nap.
570 		 */
571 		pause <<= 1;
572 		if (pause > HZ / 10)
573 			pause = HZ / 10;
574 	}
575 
576 	if (!dirty_exceeded && bdi->dirty_exceeded)
577 		bdi->dirty_exceeded = 0;
578 
579 	if (writeback_in_progress(bdi))
580 		return;
581 
582 	/*
583 	 * In laptop mode, we wait until hitting the higher threshold before
584 	 * starting background writeout, and then write out all the way down
585 	 * to the lower threshold.  So slow writers cause minimal disk activity.
586 	 *
587 	 * In normal mode, we start background writeout at the lower
588 	 * background_thresh, to keep the amount of dirty memory low.
589 	 */
590 	if ((laptop_mode && pages_written) ||
591 	    (!laptop_mode && (nr_reclaimable > background_thresh)))
592 		bdi_start_background_writeback(bdi);
593 }
594 
595 void set_page_dirty_balance(struct page *page, int page_mkwrite)
596 {
597 	if (set_page_dirty(page) || page_mkwrite) {
598 		struct address_space *mapping = page_mapping(page);
599 
600 		if (mapping)
601 			balance_dirty_pages_ratelimited(mapping);
602 	}
603 }
604 
605 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
606 
607 /**
608  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
609  * @mapping: address_space which was dirtied
610  * @nr_pages_dirtied: number of pages which the caller has just dirtied
611  *
612  * Processes which are dirtying memory should call in here once for each page
613  * which was newly dirtied.  The function will periodically check the system's
614  * dirty state and will initiate writeback if needed.
615  *
616  * On really big machines, get_writeback_state is expensive, so try to avoid
617  * calling it too often (ratelimiting).  But once we're over the dirty memory
618  * limit we decrease the ratelimiting by a lot, to prevent individual processes
619  * from overshooting the limit by (ratelimit_pages) each.
620  */
621 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
622 					unsigned long nr_pages_dirtied)
623 {
624 	struct backing_dev_info *bdi = mapping->backing_dev_info;
625 	unsigned long ratelimit;
626 	unsigned long *p;
627 
628 	if (!bdi_cap_account_dirty(bdi))
629 		return;
630 
631 	ratelimit = ratelimit_pages;
632 	if (mapping->backing_dev_info->dirty_exceeded)
633 		ratelimit = 8;
634 
635 	/*
636 	 * Check the rate limiting. Also, we do not want to throttle real-time
637 	 * tasks in balance_dirty_pages(). Period.
638 	 */
639 	preempt_disable();
640 	p =  &__get_cpu_var(bdp_ratelimits);
641 	*p += nr_pages_dirtied;
642 	if (unlikely(*p >= ratelimit)) {
643 		ratelimit = sync_writeback_pages(*p);
644 		*p = 0;
645 		preempt_enable();
646 		balance_dirty_pages(mapping, ratelimit);
647 		return;
648 	}
649 	preempt_enable();
650 }
651 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
652 
653 void throttle_vm_writeout(gfp_t gfp_mask)
654 {
655 	unsigned long background_thresh;
656 	unsigned long dirty_thresh;
657 
658         for ( ; ; ) {
659 		global_dirty_limits(&background_thresh, &dirty_thresh);
660 
661                 /*
662                  * Boost the allowable dirty threshold a bit for page
663                  * allocators so they don't get DoS'ed by heavy writers
664                  */
665                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
666 
667                 if (global_page_state(NR_UNSTABLE_NFS) +
668 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
669                         	break;
670                 congestion_wait(BLK_RW_ASYNC, HZ/10);
671 
672 		/*
673 		 * The caller might hold locks which can prevent IO completion
674 		 * or progress in the filesystem.  So we cannot just sit here
675 		 * waiting for IO to complete.
676 		 */
677 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
678 			break;
679         }
680 }
681 
682 /*
683  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
684  */
685 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
686 	void __user *buffer, size_t *length, loff_t *ppos)
687 {
688 	proc_dointvec(table, write, buffer, length, ppos);
689 	bdi_arm_supers_timer();
690 	return 0;
691 }
692 
693 #ifdef CONFIG_BLOCK
694 void laptop_mode_timer_fn(unsigned long data)
695 {
696 	struct request_queue *q = (struct request_queue *)data;
697 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
698 		global_page_state(NR_UNSTABLE_NFS);
699 
700 	/*
701 	 * We want to write everything out, not just down to the dirty
702 	 * threshold
703 	 */
704 	if (bdi_has_dirty_io(&q->backing_dev_info))
705 		bdi_start_writeback(&q->backing_dev_info, nr_pages);
706 }
707 
708 /*
709  * We've spun up the disk and we're in laptop mode: schedule writeback
710  * of all dirty data a few seconds from now.  If the flush is already scheduled
711  * then push it back - the user is still using the disk.
712  */
713 void laptop_io_completion(struct backing_dev_info *info)
714 {
715 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
716 }
717 
718 /*
719  * We're in laptop mode and we've just synced. The sync's writes will have
720  * caused another writeback to be scheduled by laptop_io_completion.
721  * Nothing needs to be written back anymore, so we unschedule the writeback.
722  */
723 void laptop_sync_completion(void)
724 {
725 	struct backing_dev_info *bdi;
726 
727 	rcu_read_lock();
728 
729 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
730 		del_timer(&bdi->laptop_mode_wb_timer);
731 
732 	rcu_read_unlock();
733 }
734 #endif
735 
736 /*
737  * If ratelimit_pages is too high then we can get into dirty-data overload
738  * if a large number of processes all perform writes at the same time.
739  * If it is too low then SMP machines will call the (expensive)
740  * get_writeback_state too often.
741  *
742  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
743  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
744  * thresholds before writeback cuts in.
745  *
746  * But the limit should not be set too high.  Because it also controls the
747  * amount of memory which the balance_dirty_pages() caller has to write back.
748  * If this is too large then the caller will block on the IO queue all the
749  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
750  * will write six megabyte chunks, max.
751  */
752 
753 void writeback_set_ratelimit(void)
754 {
755 	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
756 	if (ratelimit_pages < 16)
757 		ratelimit_pages = 16;
758 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
759 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
760 }
761 
762 static int __cpuinit
763 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
764 {
765 	writeback_set_ratelimit();
766 	return NOTIFY_DONE;
767 }
768 
769 static struct notifier_block __cpuinitdata ratelimit_nb = {
770 	.notifier_call	= ratelimit_handler,
771 	.next		= NULL,
772 };
773 
774 /*
775  * Called early on to tune the page writeback dirty limits.
776  *
777  * We used to scale dirty pages according to how total memory
778  * related to pages that could be allocated for buffers (by
779  * comparing nr_free_buffer_pages() to vm_total_pages.
780  *
781  * However, that was when we used "dirty_ratio" to scale with
782  * all memory, and we don't do that any more. "dirty_ratio"
783  * is now applied to total non-HIGHPAGE memory (by subtracting
784  * totalhigh_pages from vm_total_pages), and as such we can't
785  * get into the old insane situation any more where we had
786  * large amounts of dirty pages compared to a small amount of
787  * non-HIGHMEM memory.
788  *
789  * But we might still want to scale the dirty_ratio by how
790  * much memory the box has..
791  */
792 void __init page_writeback_init(void)
793 {
794 	int shift;
795 
796 	writeback_set_ratelimit();
797 	register_cpu_notifier(&ratelimit_nb);
798 
799 	shift = calc_period_shift();
800 	prop_descriptor_init(&vm_completions, shift);
801 	prop_descriptor_init(&vm_dirties, shift);
802 }
803 
804 /**
805  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
806  * @mapping: address space structure to write
807  * @start: starting page index
808  * @end: ending page index (inclusive)
809  *
810  * This function scans the page range from @start to @end (inclusive) and tags
811  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
812  * that write_cache_pages (or whoever calls this function) will then use
813  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
814  * used to avoid livelocking of writeback by a process steadily creating new
815  * dirty pages in the file (thus it is important for this function to be quick
816  * so that it can tag pages faster than a dirtying process can create them).
817  */
818 /*
819  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
820  */
821 void tag_pages_for_writeback(struct address_space *mapping,
822 			     pgoff_t start, pgoff_t end)
823 {
824 #define WRITEBACK_TAG_BATCH 4096
825 	unsigned long tagged;
826 
827 	do {
828 		spin_lock_irq(&mapping->tree_lock);
829 		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
830 				&start, end, WRITEBACK_TAG_BATCH,
831 				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
832 		spin_unlock_irq(&mapping->tree_lock);
833 		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
834 		cond_resched();
835 		/* We check 'start' to handle wrapping when end == ~0UL */
836 	} while (tagged >= WRITEBACK_TAG_BATCH && start);
837 }
838 EXPORT_SYMBOL(tag_pages_for_writeback);
839 
840 /**
841  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
842  * @mapping: address space structure to write
843  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
844  * @writepage: function called for each page
845  * @data: data passed to writepage function
846  *
847  * If a page is already under I/O, write_cache_pages() skips it, even
848  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
849  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
850  * and msync() need to guarantee that all the data which was dirty at the time
851  * the call was made get new I/O started against them.  If wbc->sync_mode is
852  * WB_SYNC_ALL then we were called for data integrity and we must wait for
853  * existing IO to complete.
854  *
855  * To avoid livelocks (when other process dirties new pages), we first tag
856  * pages which should be written back with TOWRITE tag and only then start
857  * writing them. For data-integrity sync we have to be careful so that we do
858  * not miss some pages (e.g., because some other process has cleared TOWRITE
859  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
860  * by the process clearing the DIRTY tag (and submitting the page for IO).
861  */
862 int write_cache_pages(struct address_space *mapping,
863 		      struct writeback_control *wbc, writepage_t writepage,
864 		      void *data)
865 {
866 	int ret = 0;
867 	int done = 0;
868 	struct pagevec pvec;
869 	int nr_pages;
870 	pgoff_t uninitialized_var(writeback_index);
871 	pgoff_t index;
872 	pgoff_t end;		/* Inclusive */
873 	pgoff_t done_index;
874 	int cycled;
875 	int range_whole = 0;
876 	int tag;
877 
878 	pagevec_init(&pvec, 0);
879 	if (wbc->range_cyclic) {
880 		writeback_index = mapping->writeback_index; /* prev offset */
881 		index = writeback_index;
882 		if (index == 0)
883 			cycled = 1;
884 		else
885 			cycled = 0;
886 		end = -1;
887 	} else {
888 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
889 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
890 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
891 			range_whole = 1;
892 		cycled = 1; /* ignore range_cyclic tests */
893 	}
894 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
895 		tag = PAGECACHE_TAG_TOWRITE;
896 	else
897 		tag = PAGECACHE_TAG_DIRTY;
898 retry:
899 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
900 		tag_pages_for_writeback(mapping, index, end);
901 	done_index = index;
902 	while (!done && (index <= end)) {
903 		int i;
904 
905 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
906 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
907 		if (nr_pages == 0)
908 			break;
909 
910 		for (i = 0; i < nr_pages; i++) {
911 			struct page *page = pvec.pages[i];
912 
913 			/*
914 			 * At this point, the page may be truncated or
915 			 * invalidated (changing page->mapping to NULL), or
916 			 * even swizzled back from swapper_space to tmpfs file
917 			 * mapping. However, page->index will not change
918 			 * because we have a reference on the page.
919 			 */
920 			if (page->index > end) {
921 				/*
922 				 * can't be range_cyclic (1st pass) because
923 				 * end == -1 in that case.
924 				 */
925 				done = 1;
926 				break;
927 			}
928 
929 			done_index = page->index;
930 
931 			lock_page(page);
932 
933 			/*
934 			 * Page truncated or invalidated. We can freely skip it
935 			 * then, even for data integrity operations: the page
936 			 * has disappeared concurrently, so there could be no
937 			 * real expectation of this data interity operation
938 			 * even if there is now a new, dirty page at the same
939 			 * pagecache address.
940 			 */
941 			if (unlikely(page->mapping != mapping)) {
942 continue_unlock:
943 				unlock_page(page);
944 				continue;
945 			}
946 
947 			if (!PageDirty(page)) {
948 				/* someone wrote it for us */
949 				goto continue_unlock;
950 			}
951 
952 			if (PageWriteback(page)) {
953 				if (wbc->sync_mode != WB_SYNC_NONE)
954 					wait_on_page_writeback(page);
955 				else
956 					goto continue_unlock;
957 			}
958 
959 			BUG_ON(PageWriteback(page));
960 			if (!clear_page_dirty_for_io(page))
961 				goto continue_unlock;
962 
963 			trace_wbc_writepage(wbc, mapping->backing_dev_info);
964 			ret = (*writepage)(page, wbc, data);
965 			if (unlikely(ret)) {
966 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
967 					unlock_page(page);
968 					ret = 0;
969 				} else {
970 					/*
971 					 * done_index is set past this page,
972 					 * so media errors will not choke
973 					 * background writeout for the entire
974 					 * file. This has consequences for
975 					 * range_cyclic semantics (ie. it may
976 					 * not be suitable for data integrity
977 					 * writeout).
978 					 */
979 					done_index = page->index + 1;
980 					done = 1;
981 					break;
982 				}
983 			}
984 
985 			/*
986 			 * We stop writing back only if we are not doing
987 			 * integrity sync. In case of integrity sync we have to
988 			 * keep going until we have written all the pages
989 			 * we tagged for writeback prior to entering this loop.
990 			 */
991 			if (--wbc->nr_to_write <= 0 &&
992 			    wbc->sync_mode == WB_SYNC_NONE) {
993 				done = 1;
994 				break;
995 			}
996 		}
997 		pagevec_release(&pvec);
998 		cond_resched();
999 	}
1000 	if (!cycled && !done) {
1001 		/*
1002 		 * range_cyclic:
1003 		 * We hit the last page and there is more work to be done: wrap
1004 		 * back to the start of the file
1005 		 */
1006 		cycled = 1;
1007 		index = 0;
1008 		end = writeback_index - 1;
1009 		goto retry;
1010 	}
1011 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1012 		mapping->writeback_index = done_index;
1013 
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL(write_cache_pages);
1017 
1018 /*
1019  * Function used by generic_writepages to call the real writepage
1020  * function and set the mapping flags on error
1021  */
1022 static int __writepage(struct page *page, struct writeback_control *wbc,
1023 		       void *data)
1024 {
1025 	struct address_space *mapping = data;
1026 	int ret = mapping->a_ops->writepage(page, wbc);
1027 	mapping_set_error(mapping, ret);
1028 	return ret;
1029 }
1030 
1031 /**
1032  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1033  * @mapping: address space structure to write
1034  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1035  *
1036  * This is a library function, which implements the writepages()
1037  * address_space_operation.
1038  */
1039 int generic_writepages(struct address_space *mapping,
1040 		       struct writeback_control *wbc)
1041 {
1042 	struct blk_plug plug;
1043 	int ret;
1044 
1045 	/* deal with chardevs and other special file */
1046 	if (!mapping->a_ops->writepage)
1047 		return 0;
1048 
1049 	blk_start_plug(&plug);
1050 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1051 	blk_finish_plug(&plug);
1052 	return ret;
1053 }
1054 
1055 EXPORT_SYMBOL(generic_writepages);
1056 
1057 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1058 {
1059 	int ret;
1060 
1061 	if (wbc->nr_to_write <= 0)
1062 		return 0;
1063 	if (mapping->a_ops->writepages)
1064 		ret = mapping->a_ops->writepages(mapping, wbc);
1065 	else
1066 		ret = generic_writepages(mapping, wbc);
1067 	return ret;
1068 }
1069 
1070 /**
1071  * write_one_page - write out a single page and optionally wait on I/O
1072  * @page: the page to write
1073  * @wait: if true, wait on writeout
1074  *
1075  * The page must be locked by the caller and will be unlocked upon return.
1076  *
1077  * write_one_page() returns a negative error code if I/O failed.
1078  */
1079 int write_one_page(struct page *page, int wait)
1080 {
1081 	struct address_space *mapping = page->mapping;
1082 	int ret = 0;
1083 	struct writeback_control wbc = {
1084 		.sync_mode = WB_SYNC_ALL,
1085 		.nr_to_write = 1,
1086 	};
1087 
1088 	BUG_ON(!PageLocked(page));
1089 
1090 	if (wait)
1091 		wait_on_page_writeback(page);
1092 
1093 	if (clear_page_dirty_for_io(page)) {
1094 		page_cache_get(page);
1095 		ret = mapping->a_ops->writepage(page, &wbc);
1096 		if (ret == 0 && wait) {
1097 			wait_on_page_writeback(page);
1098 			if (PageError(page))
1099 				ret = -EIO;
1100 		}
1101 		page_cache_release(page);
1102 	} else {
1103 		unlock_page(page);
1104 	}
1105 	return ret;
1106 }
1107 EXPORT_SYMBOL(write_one_page);
1108 
1109 /*
1110  * For address_spaces which do not use buffers nor write back.
1111  */
1112 int __set_page_dirty_no_writeback(struct page *page)
1113 {
1114 	if (!PageDirty(page))
1115 		return !TestSetPageDirty(page);
1116 	return 0;
1117 }
1118 
1119 /*
1120  * Helper function for set_page_dirty family.
1121  * NOTE: This relies on being atomic wrt interrupts.
1122  */
1123 void account_page_dirtied(struct page *page, struct address_space *mapping)
1124 {
1125 	if (mapping_cap_account_dirty(mapping)) {
1126 		__inc_zone_page_state(page, NR_FILE_DIRTY);
1127 		__inc_zone_page_state(page, NR_DIRTIED);
1128 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1129 		task_dirty_inc(current);
1130 		task_io_account_write(PAGE_CACHE_SIZE);
1131 	}
1132 }
1133 EXPORT_SYMBOL(account_page_dirtied);
1134 
1135 /*
1136  * Helper function for set_page_writeback family.
1137  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1138  * wrt interrupts.
1139  */
1140 void account_page_writeback(struct page *page)
1141 {
1142 	inc_zone_page_state(page, NR_WRITEBACK);
1143 	inc_zone_page_state(page, NR_WRITTEN);
1144 }
1145 EXPORT_SYMBOL(account_page_writeback);
1146 
1147 /*
1148  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1149  * its radix tree.
1150  *
1151  * This is also used when a single buffer is being dirtied: we want to set the
1152  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1153  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1154  *
1155  * Most callers have locked the page, which pins the address_space in memory.
1156  * But zap_pte_range() does not lock the page, however in that case the
1157  * mapping is pinned by the vma's ->vm_file reference.
1158  *
1159  * We take care to handle the case where the page was truncated from the
1160  * mapping by re-checking page_mapping() inside tree_lock.
1161  */
1162 int __set_page_dirty_nobuffers(struct page *page)
1163 {
1164 	if (!TestSetPageDirty(page)) {
1165 		struct address_space *mapping = page_mapping(page);
1166 		struct address_space *mapping2;
1167 
1168 		if (!mapping)
1169 			return 1;
1170 
1171 		spin_lock_irq(&mapping->tree_lock);
1172 		mapping2 = page_mapping(page);
1173 		if (mapping2) { /* Race with truncate? */
1174 			BUG_ON(mapping2 != mapping);
1175 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1176 			account_page_dirtied(page, mapping);
1177 			radix_tree_tag_set(&mapping->page_tree,
1178 				page_index(page), PAGECACHE_TAG_DIRTY);
1179 		}
1180 		spin_unlock_irq(&mapping->tree_lock);
1181 		if (mapping->host) {
1182 			/* !PageAnon && !swapper_space */
1183 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1184 		}
1185 		return 1;
1186 	}
1187 	return 0;
1188 }
1189 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1190 
1191 /*
1192  * When a writepage implementation decides that it doesn't want to write this
1193  * page for some reason, it should redirty the locked page via
1194  * redirty_page_for_writepage() and it should then unlock the page and return 0
1195  */
1196 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1197 {
1198 	wbc->pages_skipped++;
1199 	return __set_page_dirty_nobuffers(page);
1200 }
1201 EXPORT_SYMBOL(redirty_page_for_writepage);
1202 
1203 /*
1204  * Dirty a page.
1205  *
1206  * For pages with a mapping this should be done under the page lock
1207  * for the benefit of asynchronous memory errors who prefer a consistent
1208  * dirty state. This rule can be broken in some special cases,
1209  * but should be better not to.
1210  *
1211  * If the mapping doesn't provide a set_page_dirty a_op, then
1212  * just fall through and assume that it wants buffer_heads.
1213  */
1214 int set_page_dirty(struct page *page)
1215 {
1216 	struct address_space *mapping = page_mapping(page);
1217 
1218 	if (likely(mapping)) {
1219 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1220 		/*
1221 		 * readahead/lru_deactivate_page could remain
1222 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
1223 		 * About readahead, if the page is written, the flags would be
1224 		 * reset. So no problem.
1225 		 * About lru_deactivate_page, if the page is redirty, the flag
1226 		 * will be reset. So no problem. but if the page is used by readahead
1227 		 * it will confuse readahead and make it restart the size rampup
1228 		 * process. But it's a trivial problem.
1229 		 */
1230 		ClearPageReclaim(page);
1231 #ifdef CONFIG_BLOCK
1232 		if (!spd)
1233 			spd = __set_page_dirty_buffers;
1234 #endif
1235 		return (*spd)(page);
1236 	}
1237 	if (!PageDirty(page)) {
1238 		if (!TestSetPageDirty(page))
1239 			return 1;
1240 	}
1241 	return 0;
1242 }
1243 EXPORT_SYMBOL(set_page_dirty);
1244 
1245 /*
1246  * set_page_dirty() is racy if the caller has no reference against
1247  * page->mapping->host, and if the page is unlocked.  This is because another
1248  * CPU could truncate the page off the mapping and then free the mapping.
1249  *
1250  * Usually, the page _is_ locked, or the caller is a user-space process which
1251  * holds a reference on the inode by having an open file.
1252  *
1253  * In other cases, the page should be locked before running set_page_dirty().
1254  */
1255 int set_page_dirty_lock(struct page *page)
1256 {
1257 	int ret;
1258 
1259 	lock_page(page);
1260 	ret = set_page_dirty(page);
1261 	unlock_page(page);
1262 	return ret;
1263 }
1264 EXPORT_SYMBOL(set_page_dirty_lock);
1265 
1266 /*
1267  * Clear a page's dirty flag, while caring for dirty memory accounting.
1268  * Returns true if the page was previously dirty.
1269  *
1270  * This is for preparing to put the page under writeout.  We leave the page
1271  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1272  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1273  * implementation will run either set_page_writeback() or set_page_dirty(),
1274  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1275  * back into sync.
1276  *
1277  * This incoherency between the page's dirty flag and radix-tree tag is
1278  * unfortunate, but it only exists while the page is locked.
1279  */
1280 int clear_page_dirty_for_io(struct page *page)
1281 {
1282 	struct address_space *mapping = page_mapping(page);
1283 
1284 	BUG_ON(!PageLocked(page));
1285 
1286 	if (mapping && mapping_cap_account_dirty(mapping)) {
1287 		/*
1288 		 * Yes, Virginia, this is indeed insane.
1289 		 *
1290 		 * We use this sequence to make sure that
1291 		 *  (a) we account for dirty stats properly
1292 		 *  (b) we tell the low-level filesystem to
1293 		 *      mark the whole page dirty if it was
1294 		 *      dirty in a pagetable. Only to then
1295 		 *  (c) clean the page again and return 1 to
1296 		 *      cause the writeback.
1297 		 *
1298 		 * This way we avoid all nasty races with the
1299 		 * dirty bit in multiple places and clearing
1300 		 * them concurrently from different threads.
1301 		 *
1302 		 * Note! Normally the "set_page_dirty(page)"
1303 		 * has no effect on the actual dirty bit - since
1304 		 * that will already usually be set. But we
1305 		 * need the side effects, and it can help us
1306 		 * avoid races.
1307 		 *
1308 		 * We basically use the page "master dirty bit"
1309 		 * as a serialization point for all the different
1310 		 * threads doing their things.
1311 		 */
1312 		if (page_mkclean(page))
1313 			set_page_dirty(page);
1314 		/*
1315 		 * We carefully synchronise fault handlers against
1316 		 * installing a dirty pte and marking the page dirty
1317 		 * at this point. We do this by having them hold the
1318 		 * page lock at some point after installing their
1319 		 * pte, but before marking the page dirty.
1320 		 * Pages are always locked coming in here, so we get
1321 		 * the desired exclusion. See mm/memory.c:do_wp_page()
1322 		 * for more comments.
1323 		 */
1324 		if (TestClearPageDirty(page)) {
1325 			dec_zone_page_state(page, NR_FILE_DIRTY);
1326 			dec_bdi_stat(mapping->backing_dev_info,
1327 					BDI_RECLAIMABLE);
1328 			return 1;
1329 		}
1330 		return 0;
1331 	}
1332 	return TestClearPageDirty(page);
1333 }
1334 EXPORT_SYMBOL(clear_page_dirty_for_io);
1335 
1336 int test_clear_page_writeback(struct page *page)
1337 {
1338 	struct address_space *mapping = page_mapping(page);
1339 	int ret;
1340 
1341 	if (mapping) {
1342 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1343 		unsigned long flags;
1344 
1345 		spin_lock_irqsave(&mapping->tree_lock, flags);
1346 		ret = TestClearPageWriteback(page);
1347 		if (ret) {
1348 			radix_tree_tag_clear(&mapping->page_tree,
1349 						page_index(page),
1350 						PAGECACHE_TAG_WRITEBACK);
1351 			if (bdi_cap_account_writeback(bdi)) {
1352 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1353 				__bdi_writeout_inc(bdi);
1354 			}
1355 		}
1356 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1357 	} else {
1358 		ret = TestClearPageWriteback(page);
1359 	}
1360 	if (ret)
1361 		dec_zone_page_state(page, NR_WRITEBACK);
1362 	return ret;
1363 }
1364 
1365 int test_set_page_writeback(struct page *page)
1366 {
1367 	struct address_space *mapping = page_mapping(page);
1368 	int ret;
1369 
1370 	if (mapping) {
1371 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1372 		unsigned long flags;
1373 
1374 		spin_lock_irqsave(&mapping->tree_lock, flags);
1375 		ret = TestSetPageWriteback(page);
1376 		if (!ret) {
1377 			radix_tree_tag_set(&mapping->page_tree,
1378 						page_index(page),
1379 						PAGECACHE_TAG_WRITEBACK);
1380 			if (bdi_cap_account_writeback(bdi))
1381 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1382 		}
1383 		if (!PageDirty(page))
1384 			radix_tree_tag_clear(&mapping->page_tree,
1385 						page_index(page),
1386 						PAGECACHE_TAG_DIRTY);
1387 		radix_tree_tag_clear(&mapping->page_tree,
1388 				     page_index(page),
1389 				     PAGECACHE_TAG_TOWRITE);
1390 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1391 	} else {
1392 		ret = TestSetPageWriteback(page);
1393 	}
1394 	if (!ret)
1395 		account_page_writeback(page);
1396 	return ret;
1397 
1398 }
1399 EXPORT_SYMBOL(test_set_page_writeback);
1400 
1401 /*
1402  * Return true if any of the pages in the mapping are marked with the
1403  * passed tag.
1404  */
1405 int mapping_tagged(struct address_space *mapping, int tag)
1406 {
1407 	int ret;
1408 	rcu_read_lock();
1409 	ret = radix_tree_tagged(&mapping->page_tree, tag);
1410 	rcu_read_unlock();
1411 	return ret;
1412 }
1413 EXPORT_SYMBOL(mapping_tagged);
1414