1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 akpm@zip.com.au 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> 36 #include <linux/pagevec.h> 37 38 /* 39 * The maximum number of pages to writeout in a single bdflush/kupdate 40 * operation. We do this so we don't hold I_SYNC against an inode for 41 * enormous amounts of time, which would block a userspace task which has 42 * been forced to throttle against that inode. Also, the code reevaluates 43 * the dirty each time it has written this many pages. 44 */ 45 #define MAX_WRITEBACK_PAGES 1024 46 47 /* 48 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 49 * will look to see if it needs to force writeback or throttling. 50 */ 51 static long ratelimit_pages = 32; 52 53 /* 54 * When balance_dirty_pages decides that the caller needs to perform some 55 * non-background writeback, this is how many pages it will attempt to write. 56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably 57 * large amounts of I/O are submitted. 58 */ 59 static inline long sync_writeback_pages(void) 60 { 61 return ratelimit_pages + ratelimit_pages / 2; 62 } 63 64 /* The following parameters are exported via /proc/sys/vm */ 65 66 /* 67 * Start background writeback (via pdflush) at this percentage 68 */ 69 int dirty_background_ratio = 5; 70 71 /* 72 * The generator of dirty data starts writeback at this percentage 73 */ 74 int vm_dirty_ratio = 10; 75 76 /* 77 * The interval between `kupdate'-style writebacks, in jiffies 78 */ 79 int dirty_writeback_interval = 5 * HZ; 80 81 /* 82 * The longest number of jiffies for which data is allowed to remain dirty 83 */ 84 int dirty_expire_interval = 30 * HZ; 85 86 /* 87 * Flag that makes the machine dump writes/reads and block dirtyings. 88 */ 89 int block_dump; 90 91 /* 92 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 93 * a full sync is triggered after this time elapses without any disk activity. 94 */ 95 int laptop_mode; 96 97 EXPORT_SYMBOL(laptop_mode); 98 99 /* End of sysctl-exported parameters */ 100 101 102 static void background_writeout(unsigned long _min_pages); 103 104 /* 105 * Scale the writeback cache size proportional to the relative writeout speeds. 106 * 107 * We do this by keeping a floating proportion between BDIs, based on page 108 * writeback completions [end_page_writeback()]. Those devices that write out 109 * pages fastest will get the larger share, while the slower will get a smaller 110 * share. 111 * 112 * We use page writeout completions because we are interested in getting rid of 113 * dirty pages. Having them written out is the primary goal. 114 * 115 * We introduce a concept of time, a period over which we measure these events, 116 * because demand can/will vary over time. The length of this period itself is 117 * measured in page writeback completions. 118 * 119 */ 120 static struct prop_descriptor vm_completions; 121 static struct prop_descriptor vm_dirties; 122 123 static unsigned long determine_dirtyable_memory(void); 124 125 /* 126 * couple the period to the dirty_ratio: 127 * 128 * period/2 ~ roundup_pow_of_two(dirty limit) 129 */ 130 static int calc_period_shift(void) 131 { 132 unsigned long dirty_total; 133 134 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100; 135 return 2 + ilog2(dirty_total - 1); 136 } 137 138 /* 139 * update the period when the dirty ratio changes. 140 */ 141 int dirty_ratio_handler(struct ctl_table *table, int write, 142 struct file *filp, void __user *buffer, size_t *lenp, 143 loff_t *ppos) 144 { 145 int old_ratio = vm_dirty_ratio; 146 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); 147 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 148 int shift = calc_period_shift(); 149 prop_change_shift(&vm_completions, shift); 150 prop_change_shift(&vm_dirties, shift); 151 } 152 return ret; 153 } 154 155 /* 156 * Increment the BDI's writeout completion count and the global writeout 157 * completion count. Called from test_clear_page_writeback(). 158 */ 159 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) 160 { 161 __prop_inc_percpu(&vm_completions, &bdi->completions); 162 } 163 164 static inline void task_dirty_inc(struct task_struct *tsk) 165 { 166 prop_inc_single(&vm_dirties, &tsk->dirties); 167 } 168 169 /* 170 * Obtain an accurate fraction of the BDI's portion. 171 */ 172 static void bdi_writeout_fraction(struct backing_dev_info *bdi, 173 long *numerator, long *denominator) 174 { 175 if (bdi_cap_writeback_dirty(bdi)) { 176 prop_fraction_percpu(&vm_completions, &bdi->completions, 177 numerator, denominator); 178 } else { 179 *numerator = 0; 180 *denominator = 1; 181 } 182 } 183 184 /* 185 * Clip the earned share of dirty pages to that which is actually available. 186 * This avoids exceeding the total dirty_limit when the floating averages 187 * fluctuate too quickly. 188 */ 189 static void 190 clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty) 191 { 192 long avail_dirty; 193 194 avail_dirty = dirty - 195 (global_page_state(NR_FILE_DIRTY) + 196 global_page_state(NR_WRITEBACK) + 197 global_page_state(NR_UNSTABLE_NFS)); 198 199 if (avail_dirty < 0) 200 avail_dirty = 0; 201 202 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) + 203 bdi_stat(bdi, BDI_WRITEBACK); 204 205 *pbdi_dirty = min(*pbdi_dirty, avail_dirty); 206 } 207 208 static inline void task_dirties_fraction(struct task_struct *tsk, 209 long *numerator, long *denominator) 210 { 211 prop_fraction_single(&vm_dirties, &tsk->dirties, 212 numerator, denominator); 213 } 214 215 /* 216 * scale the dirty limit 217 * 218 * task specific dirty limit: 219 * 220 * dirty -= (dirty/8) * p_{t} 221 */ 222 void task_dirty_limit(struct task_struct *tsk, long *pdirty) 223 { 224 long numerator, denominator; 225 long dirty = *pdirty; 226 u64 inv = dirty >> 3; 227 228 task_dirties_fraction(tsk, &numerator, &denominator); 229 inv *= numerator; 230 do_div(inv, denominator); 231 232 dirty -= inv; 233 if (dirty < *pdirty/2) 234 dirty = *pdirty/2; 235 236 *pdirty = dirty; 237 } 238 239 /* 240 * Work out the current dirty-memory clamping and background writeout 241 * thresholds. 242 * 243 * The main aim here is to lower them aggressively if there is a lot of mapped 244 * memory around. To avoid stressing page reclaim with lots of unreclaimable 245 * pages. It is better to clamp down on writers than to start swapping, and 246 * performing lots of scanning. 247 * 248 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 249 * 250 * We don't permit the clamping level to fall below 5% - that is getting rather 251 * excessive. 252 * 253 * We make sure that the background writeout level is below the adjusted 254 * clamping level. 255 */ 256 257 static unsigned long highmem_dirtyable_memory(unsigned long total) 258 { 259 #ifdef CONFIG_HIGHMEM 260 int node; 261 unsigned long x = 0; 262 263 for_each_node_state(node, N_HIGH_MEMORY) { 264 struct zone *z = 265 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 266 267 x += zone_page_state(z, NR_FREE_PAGES) 268 + zone_page_state(z, NR_INACTIVE) 269 + zone_page_state(z, NR_ACTIVE); 270 } 271 /* 272 * Make sure that the number of highmem pages is never larger 273 * than the number of the total dirtyable memory. This can only 274 * occur in very strange VM situations but we want to make sure 275 * that this does not occur. 276 */ 277 return min(x, total); 278 #else 279 return 0; 280 #endif 281 } 282 283 static unsigned long determine_dirtyable_memory(void) 284 { 285 unsigned long x; 286 287 x = global_page_state(NR_FREE_PAGES) 288 + global_page_state(NR_INACTIVE) 289 + global_page_state(NR_ACTIVE); 290 x -= highmem_dirtyable_memory(x); 291 return x + 1; /* Ensure that we never return 0 */ 292 } 293 294 static void 295 get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty, 296 struct backing_dev_info *bdi) 297 { 298 int background_ratio; /* Percentages */ 299 int dirty_ratio; 300 int unmapped_ratio; 301 long background; 302 long dirty; 303 unsigned long available_memory = determine_dirtyable_memory(); 304 struct task_struct *tsk; 305 306 unmapped_ratio = 100 - ((global_page_state(NR_FILE_MAPPED) + 307 global_page_state(NR_ANON_PAGES)) * 100) / 308 available_memory; 309 310 dirty_ratio = vm_dirty_ratio; 311 if (dirty_ratio > unmapped_ratio / 2) 312 dirty_ratio = unmapped_ratio / 2; 313 314 if (dirty_ratio < 5) 315 dirty_ratio = 5; 316 317 background_ratio = dirty_background_ratio; 318 if (background_ratio >= dirty_ratio) 319 background_ratio = dirty_ratio / 2; 320 321 background = (background_ratio * available_memory) / 100; 322 dirty = (dirty_ratio * available_memory) / 100; 323 tsk = current; 324 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 325 background += background / 4; 326 dirty += dirty / 4; 327 } 328 *pbackground = background; 329 *pdirty = dirty; 330 331 if (bdi) { 332 u64 bdi_dirty = dirty; 333 long numerator, denominator; 334 335 /* 336 * Calculate this BDI's share of the dirty ratio. 337 */ 338 bdi_writeout_fraction(bdi, &numerator, &denominator); 339 340 bdi_dirty *= numerator; 341 do_div(bdi_dirty, denominator); 342 343 *pbdi_dirty = bdi_dirty; 344 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty); 345 task_dirty_limit(current, pbdi_dirty); 346 } 347 } 348 349 /* 350 * balance_dirty_pages() must be called by processes which are generating dirty 351 * data. It looks at the number of dirty pages in the machine and will force 352 * the caller to perform writeback if the system is over `vm_dirty_ratio'. 353 * If we're over `background_thresh' then pdflush is woken to perform some 354 * writeout. 355 */ 356 static void balance_dirty_pages(struct address_space *mapping) 357 { 358 long bdi_nr_reclaimable; 359 long bdi_nr_writeback; 360 long background_thresh; 361 long dirty_thresh; 362 long bdi_thresh; 363 unsigned long pages_written = 0; 364 unsigned long write_chunk = sync_writeback_pages(); 365 366 struct backing_dev_info *bdi = mapping->backing_dev_info; 367 368 for (;;) { 369 struct writeback_control wbc = { 370 .bdi = bdi, 371 .sync_mode = WB_SYNC_NONE, 372 .older_than_this = NULL, 373 .nr_to_write = write_chunk, 374 .range_cyclic = 1, 375 }; 376 377 get_dirty_limits(&background_thresh, &dirty_thresh, 378 &bdi_thresh, bdi); 379 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 380 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); 381 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) 382 break; 383 384 if (!bdi->dirty_exceeded) 385 bdi->dirty_exceeded = 1; 386 387 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. 388 * Unstable writes are a feature of certain networked 389 * filesystems (i.e. NFS) in which data may have been 390 * written to the server's write cache, but has not yet 391 * been flushed to permanent storage. 392 */ 393 if (bdi_nr_reclaimable) { 394 writeback_inodes(&wbc); 395 pages_written += write_chunk - wbc.nr_to_write; 396 get_dirty_limits(&background_thresh, &dirty_thresh, 397 &bdi_thresh, bdi); 398 } 399 400 /* 401 * In order to avoid the stacked BDI deadlock we need 402 * to ensure we accurately count the 'dirty' pages when 403 * the threshold is low. 404 * 405 * Otherwise it would be possible to get thresh+n pages 406 * reported dirty, even though there are thresh-m pages 407 * actually dirty; with m+n sitting in the percpu 408 * deltas. 409 */ 410 if (bdi_thresh < 2*bdi_stat_error(bdi)) { 411 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); 412 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK); 413 } else if (bdi_nr_reclaimable) { 414 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 415 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); 416 } 417 418 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) 419 break; 420 if (pages_written >= write_chunk) 421 break; /* We've done our duty */ 422 423 congestion_wait(WRITE, HZ/10); 424 } 425 426 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh && 427 bdi->dirty_exceeded) 428 bdi->dirty_exceeded = 0; 429 430 if (writeback_in_progress(bdi)) 431 return; /* pdflush is already working this queue */ 432 433 /* 434 * In laptop mode, we wait until hitting the higher threshold before 435 * starting background writeout, and then write out all the way down 436 * to the lower threshold. So slow writers cause minimal disk activity. 437 * 438 * In normal mode, we start background writeout at the lower 439 * background_thresh, to keep the amount of dirty memory low. 440 */ 441 if ((laptop_mode && pages_written) || 442 (!laptop_mode && (global_page_state(NR_FILE_DIRTY) 443 + global_page_state(NR_UNSTABLE_NFS) 444 > background_thresh))) 445 pdflush_operation(background_writeout, 0); 446 } 447 448 void set_page_dirty_balance(struct page *page, int page_mkwrite) 449 { 450 if (set_page_dirty(page) || page_mkwrite) { 451 struct address_space *mapping = page_mapping(page); 452 453 if (mapping) 454 balance_dirty_pages_ratelimited(mapping); 455 } 456 } 457 458 /** 459 * balance_dirty_pages_ratelimited_nr - balance dirty memory state 460 * @mapping: address_space which was dirtied 461 * @nr_pages_dirtied: number of pages which the caller has just dirtied 462 * 463 * Processes which are dirtying memory should call in here once for each page 464 * which was newly dirtied. The function will periodically check the system's 465 * dirty state and will initiate writeback if needed. 466 * 467 * On really big machines, get_writeback_state is expensive, so try to avoid 468 * calling it too often (ratelimiting). But once we're over the dirty memory 469 * limit we decrease the ratelimiting by a lot, to prevent individual processes 470 * from overshooting the limit by (ratelimit_pages) each. 471 */ 472 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, 473 unsigned long nr_pages_dirtied) 474 { 475 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0; 476 unsigned long ratelimit; 477 unsigned long *p; 478 479 ratelimit = ratelimit_pages; 480 if (mapping->backing_dev_info->dirty_exceeded) 481 ratelimit = 8; 482 483 /* 484 * Check the rate limiting. Also, we do not want to throttle real-time 485 * tasks in balance_dirty_pages(). Period. 486 */ 487 preempt_disable(); 488 p = &__get_cpu_var(ratelimits); 489 *p += nr_pages_dirtied; 490 if (unlikely(*p >= ratelimit)) { 491 *p = 0; 492 preempt_enable(); 493 balance_dirty_pages(mapping); 494 return; 495 } 496 preempt_enable(); 497 } 498 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); 499 500 void throttle_vm_writeout(gfp_t gfp_mask) 501 { 502 long background_thresh; 503 long dirty_thresh; 504 505 for ( ; ; ) { 506 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); 507 508 /* 509 * Boost the allowable dirty threshold a bit for page 510 * allocators so they don't get DoS'ed by heavy writers 511 */ 512 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 513 514 if (global_page_state(NR_UNSTABLE_NFS) + 515 global_page_state(NR_WRITEBACK) <= dirty_thresh) 516 break; 517 congestion_wait(WRITE, HZ/10); 518 519 /* 520 * The caller might hold locks which can prevent IO completion 521 * or progress in the filesystem. So we cannot just sit here 522 * waiting for IO to complete. 523 */ 524 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 525 break; 526 } 527 } 528 529 /* 530 * writeback at least _min_pages, and keep writing until the amount of dirty 531 * memory is less than the background threshold, or until we're all clean. 532 */ 533 static void background_writeout(unsigned long _min_pages) 534 { 535 long min_pages = _min_pages; 536 struct writeback_control wbc = { 537 .bdi = NULL, 538 .sync_mode = WB_SYNC_NONE, 539 .older_than_this = NULL, 540 .nr_to_write = 0, 541 .nonblocking = 1, 542 .range_cyclic = 1, 543 }; 544 545 for ( ; ; ) { 546 long background_thresh; 547 long dirty_thresh; 548 549 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); 550 if (global_page_state(NR_FILE_DIRTY) + 551 global_page_state(NR_UNSTABLE_NFS) < background_thresh 552 && min_pages <= 0) 553 break; 554 wbc.more_io = 0; 555 wbc.encountered_congestion = 0; 556 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 557 wbc.pages_skipped = 0; 558 writeback_inodes(&wbc); 559 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 560 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) { 561 /* Wrote less than expected */ 562 if (wbc.encountered_congestion || wbc.more_io) 563 congestion_wait(WRITE, HZ/10); 564 else 565 break; 566 } 567 } 568 } 569 570 /* 571 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 572 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns 573 * -1 if all pdflush threads were busy. 574 */ 575 int wakeup_pdflush(long nr_pages) 576 { 577 if (nr_pages == 0) 578 nr_pages = global_page_state(NR_FILE_DIRTY) + 579 global_page_state(NR_UNSTABLE_NFS); 580 return pdflush_operation(background_writeout, nr_pages); 581 } 582 583 static void wb_timer_fn(unsigned long unused); 584 static void laptop_timer_fn(unsigned long unused); 585 586 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0); 587 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0); 588 589 /* 590 * Periodic writeback of "old" data. 591 * 592 * Define "old": the first time one of an inode's pages is dirtied, we mark the 593 * dirtying-time in the inode's address_space. So this periodic writeback code 594 * just walks the superblock inode list, writing back any inodes which are 595 * older than a specific point in time. 596 * 597 * Try to run once per dirty_writeback_interval. But if a writeback event 598 * takes longer than a dirty_writeback_interval interval, then leave a 599 * one-second gap. 600 * 601 * older_than_this takes precedence over nr_to_write. So we'll only write back 602 * all dirty pages if they are all attached to "old" mappings. 603 */ 604 static void wb_kupdate(unsigned long arg) 605 { 606 unsigned long oldest_jif; 607 unsigned long start_jif; 608 unsigned long next_jif; 609 long nr_to_write; 610 struct writeback_control wbc = { 611 .bdi = NULL, 612 .sync_mode = WB_SYNC_NONE, 613 .older_than_this = &oldest_jif, 614 .nr_to_write = 0, 615 .nonblocking = 1, 616 .for_kupdate = 1, 617 .range_cyclic = 1, 618 }; 619 620 sync_supers(); 621 622 oldest_jif = jiffies - dirty_expire_interval; 623 start_jif = jiffies; 624 next_jif = start_jif + dirty_writeback_interval; 625 nr_to_write = global_page_state(NR_FILE_DIRTY) + 626 global_page_state(NR_UNSTABLE_NFS) + 627 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 628 while (nr_to_write > 0) { 629 wbc.more_io = 0; 630 wbc.encountered_congestion = 0; 631 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 632 writeback_inodes(&wbc); 633 if (wbc.nr_to_write > 0) { 634 if (wbc.encountered_congestion || wbc.more_io) 635 congestion_wait(WRITE, HZ/10); 636 else 637 break; /* All the old data is written */ 638 } 639 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 640 } 641 if (time_before(next_jif, jiffies + HZ)) 642 next_jif = jiffies + HZ; 643 if (dirty_writeback_interval) 644 mod_timer(&wb_timer, next_jif); 645 } 646 647 /* 648 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 649 */ 650 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 651 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 652 { 653 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos); 654 if (dirty_writeback_interval) 655 mod_timer(&wb_timer, jiffies + dirty_writeback_interval); 656 else 657 del_timer(&wb_timer); 658 return 0; 659 } 660 661 static void wb_timer_fn(unsigned long unused) 662 { 663 if (pdflush_operation(wb_kupdate, 0) < 0) 664 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */ 665 } 666 667 static void laptop_flush(unsigned long unused) 668 { 669 sys_sync(); 670 } 671 672 static void laptop_timer_fn(unsigned long unused) 673 { 674 pdflush_operation(laptop_flush, 0); 675 } 676 677 /* 678 * We've spun up the disk and we're in laptop mode: schedule writeback 679 * of all dirty data a few seconds from now. If the flush is already scheduled 680 * then push it back - the user is still using the disk. 681 */ 682 void laptop_io_completion(void) 683 { 684 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode); 685 } 686 687 /* 688 * We're in laptop mode and we've just synced. The sync's writes will have 689 * caused another writeback to be scheduled by laptop_io_completion. 690 * Nothing needs to be written back anymore, so we unschedule the writeback. 691 */ 692 void laptop_sync_completion(void) 693 { 694 del_timer(&laptop_mode_wb_timer); 695 } 696 697 /* 698 * If ratelimit_pages is too high then we can get into dirty-data overload 699 * if a large number of processes all perform writes at the same time. 700 * If it is too low then SMP machines will call the (expensive) 701 * get_writeback_state too often. 702 * 703 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 704 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 705 * thresholds before writeback cuts in. 706 * 707 * But the limit should not be set too high. Because it also controls the 708 * amount of memory which the balance_dirty_pages() caller has to write back. 709 * If this is too large then the caller will block on the IO queue all the 710 * time. So limit it to four megabytes - the balance_dirty_pages() caller 711 * will write six megabyte chunks, max. 712 */ 713 714 void writeback_set_ratelimit(void) 715 { 716 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32); 717 if (ratelimit_pages < 16) 718 ratelimit_pages = 16; 719 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) 720 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; 721 } 722 723 static int __cpuinit 724 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) 725 { 726 writeback_set_ratelimit(); 727 return NOTIFY_DONE; 728 } 729 730 static struct notifier_block __cpuinitdata ratelimit_nb = { 731 .notifier_call = ratelimit_handler, 732 .next = NULL, 733 }; 734 735 /* 736 * Called early on to tune the page writeback dirty limits. 737 * 738 * We used to scale dirty pages according to how total memory 739 * related to pages that could be allocated for buffers (by 740 * comparing nr_free_buffer_pages() to vm_total_pages. 741 * 742 * However, that was when we used "dirty_ratio" to scale with 743 * all memory, and we don't do that any more. "dirty_ratio" 744 * is now applied to total non-HIGHPAGE memory (by subtracting 745 * totalhigh_pages from vm_total_pages), and as such we can't 746 * get into the old insane situation any more where we had 747 * large amounts of dirty pages compared to a small amount of 748 * non-HIGHMEM memory. 749 * 750 * But we might still want to scale the dirty_ratio by how 751 * much memory the box has.. 752 */ 753 void __init page_writeback_init(void) 754 { 755 int shift; 756 757 mod_timer(&wb_timer, jiffies + dirty_writeback_interval); 758 writeback_set_ratelimit(); 759 register_cpu_notifier(&ratelimit_nb); 760 761 shift = calc_period_shift(); 762 prop_descriptor_init(&vm_completions, shift); 763 prop_descriptor_init(&vm_dirties, shift); 764 } 765 766 /** 767 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 768 * @mapping: address space structure to write 769 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 770 * @writepage: function called for each page 771 * @data: data passed to writepage function 772 * 773 * If a page is already under I/O, write_cache_pages() skips it, even 774 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 775 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 776 * and msync() need to guarantee that all the data which was dirty at the time 777 * the call was made get new I/O started against them. If wbc->sync_mode is 778 * WB_SYNC_ALL then we were called for data integrity and we must wait for 779 * existing IO to complete. 780 */ 781 int write_cache_pages(struct address_space *mapping, 782 struct writeback_control *wbc, writepage_t writepage, 783 void *data) 784 { 785 struct backing_dev_info *bdi = mapping->backing_dev_info; 786 int ret = 0; 787 int done = 0; 788 struct pagevec pvec; 789 int nr_pages; 790 pgoff_t index; 791 pgoff_t end; /* Inclusive */ 792 int scanned = 0; 793 int range_whole = 0; 794 795 if (wbc->nonblocking && bdi_write_congested(bdi)) { 796 wbc->encountered_congestion = 1; 797 return 0; 798 } 799 800 pagevec_init(&pvec, 0); 801 if (wbc->range_cyclic) { 802 index = mapping->writeback_index; /* Start from prev offset */ 803 end = -1; 804 } else { 805 index = wbc->range_start >> PAGE_CACHE_SHIFT; 806 end = wbc->range_end >> PAGE_CACHE_SHIFT; 807 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 808 range_whole = 1; 809 scanned = 1; 810 } 811 retry: 812 while (!done && (index <= end) && 813 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 814 PAGECACHE_TAG_DIRTY, 815 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 816 unsigned i; 817 818 scanned = 1; 819 for (i = 0; i < nr_pages; i++) { 820 struct page *page = pvec.pages[i]; 821 822 /* 823 * At this point we hold neither mapping->tree_lock nor 824 * lock on the page itself: the page may be truncated or 825 * invalidated (changing page->mapping to NULL), or even 826 * swizzled back from swapper_space to tmpfs file 827 * mapping 828 */ 829 lock_page(page); 830 831 if (unlikely(page->mapping != mapping)) { 832 unlock_page(page); 833 continue; 834 } 835 836 if (!wbc->range_cyclic && page->index > end) { 837 done = 1; 838 unlock_page(page); 839 continue; 840 } 841 842 if (wbc->sync_mode != WB_SYNC_NONE) 843 wait_on_page_writeback(page); 844 845 if (PageWriteback(page) || 846 !clear_page_dirty_for_io(page)) { 847 unlock_page(page); 848 continue; 849 } 850 851 ret = (*writepage)(page, wbc, data); 852 853 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 854 unlock_page(page); 855 ret = 0; 856 } 857 if (ret || (--(wbc->nr_to_write) <= 0)) 858 done = 1; 859 if (wbc->nonblocking && bdi_write_congested(bdi)) { 860 wbc->encountered_congestion = 1; 861 done = 1; 862 } 863 } 864 pagevec_release(&pvec); 865 cond_resched(); 866 } 867 if (!scanned && !done) { 868 /* 869 * We hit the last page and there is more work to be done: wrap 870 * back to the start of the file 871 */ 872 scanned = 1; 873 index = 0; 874 goto retry; 875 } 876 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 877 mapping->writeback_index = index; 878 return ret; 879 } 880 EXPORT_SYMBOL(write_cache_pages); 881 882 /* 883 * Function used by generic_writepages to call the real writepage 884 * function and set the mapping flags on error 885 */ 886 static int __writepage(struct page *page, struct writeback_control *wbc, 887 void *data) 888 { 889 struct address_space *mapping = data; 890 int ret = mapping->a_ops->writepage(page, wbc); 891 mapping_set_error(mapping, ret); 892 return ret; 893 } 894 895 /** 896 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 897 * @mapping: address space structure to write 898 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 899 * 900 * This is a library function, which implements the writepages() 901 * address_space_operation. 902 */ 903 int generic_writepages(struct address_space *mapping, 904 struct writeback_control *wbc) 905 { 906 /* deal with chardevs and other special file */ 907 if (!mapping->a_ops->writepage) 908 return 0; 909 910 return write_cache_pages(mapping, wbc, __writepage, mapping); 911 } 912 913 EXPORT_SYMBOL(generic_writepages); 914 915 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 916 { 917 int ret; 918 919 if (wbc->nr_to_write <= 0) 920 return 0; 921 wbc->for_writepages = 1; 922 if (mapping->a_ops->writepages) 923 ret = mapping->a_ops->writepages(mapping, wbc); 924 else 925 ret = generic_writepages(mapping, wbc); 926 wbc->for_writepages = 0; 927 return ret; 928 } 929 930 /** 931 * write_one_page - write out a single page and optionally wait on I/O 932 * @page: the page to write 933 * @wait: if true, wait on writeout 934 * 935 * The page must be locked by the caller and will be unlocked upon return. 936 * 937 * write_one_page() returns a negative error code if I/O failed. 938 */ 939 int write_one_page(struct page *page, int wait) 940 { 941 struct address_space *mapping = page->mapping; 942 int ret = 0; 943 struct writeback_control wbc = { 944 .sync_mode = WB_SYNC_ALL, 945 .nr_to_write = 1, 946 }; 947 948 BUG_ON(!PageLocked(page)); 949 950 if (wait) 951 wait_on_page_writeback(page); 952 953 if (clear_page_dirty_for_io(page)) { 954 page_cache_get(page); 955 ret = mapping->a_ops->writepage(page, &wbc); 956 if (ret == 0 && wait) { 957 wait_on_page_writeback(page); 958 if (PageError(page)) 959 ret = -EIO; 960 } 961 page_cache_release(page); 962 } else { 963 unlock_page(page); 964 } 965 return ret; 966 } 967 EXPORT_SYMBOL(write_one_page); 968 969 /* 970 * For address_spaces which do not use buffers nor write back. 971 */ 972 int __set_page_dirty_no_writeback(struct page *page) 973 { 974 if (!PageDirty(page)) 975 SetPageDirty(page); 976 return 0; 977 } 978 979 /* 980 * For address_spaces which do not use buffers. Just tag the page as dirty in 981 * its radix tree. 982 * 983 * This is also used when a single buffer is being dirtied: we want to set the 984 * page dirty in that case, but not all the buffers. This is a "bottom-up" 985 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 986 * 987 * Most callers have locked the page, which pins the address_space in memory. 988 * But zap_pte_range() does not lock the page, however in that case the 989 * mapping is pinned by the vma's ->vm_file reference. 990 * 991 * We take care to handle the case where the page was truncated from the 992 * mapping by re-checking page_mapping() insode tree_lock. 993 */ 994 int __set_page_dirty_nobuffers(struct page *page) 995 { 996 if (!TestSetPageDirty(page)) { 997 struct address_space *mapping = page_mapping(page); 998 struct address_space *mapping2; 999 1000 if (!mapping) 1001 return 1; 1002 1003 write_lock_irq(&mapping->tree_lock); 1004 mapping2 = page_mapping(page); 1005 if (mapping2) { /* Race with truncate? */ 1006 BUG_ON(mapping2 != mapping); 1007 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 1008 if (mapping_cap_account_dirty(mapping)) { 1009 __inc_zone_page_state(page, NR_FILE_DIRTY); 1010 __inc_bdi_stat(mapping->backing_dev_info, 1011 BDI_RECLAIMABLE); 1012 task_io_account_write(PAGE_CACHE_SIZE); 1013 } 1014 radix_tree_tag_set(&mapping->page_tree, 1015 page_index(page), PAGECACHE_TAG_DIRTY); 1016 } 1017 write_unlock_irq(&mapping->tree_lock); 1018 if (mapping->host) { 1019 /* !PageAnon && !swapper_space */ 1020 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1021 } 1022 return 1; 1023 } 1024 return 0; 1025 } 1026 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 1027 1028 /* 1029 * When a writepage implementation decides that it doesn't want to write this 1030 * page for some reason, it should redirty the locked page via 1031 * redirty_page_for_writepage() and it should then unlock the page and return 0 1032 */ 1033 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 1034 { 1035 wbc->pages_skipped++; 1036 return __set_page_dirty_nobuffers(page); 1037 } 1038 EXPORT_SYMBOL(redirty_page_for_writepage); 1039 1040 /* 1041 * If the mapping doesn't provide a set_page_dirty a_op, then 1042 * just fall through and assume that it wants buffer_heads. 1043 */ 1044 static int __set_page_dirty(struct page *page) 1045 { 1046 struct address_space *mapping = page_mapping(page); 1047 1048 if (likely(mapping)) { 1049 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 1050 #ifdef CONFIG_BLOCK 1051 if (!spd) 1052 spd = __set_page_dirty_buffers; 1053 #endif 1054 return (*spd)(page); 1055 } 1056 if (!PageDirty(page)) { 1057 if (!TestSetPageDirty(page)) 1058 return 1; 1059 } 1060 return 0; 1061 } 1062 1063 int fastcall set_page_dirty(struct page *page) 1064 { 1065 int ret = __set_page_dirty(page); 1066 if (ret) 1067 task_dirty_inc(current); 1068 return ret; 1069 } 1070 EXPORT_SYMBOL(set_page_dirty); 1071 1072 /* 1073 * set_page_dirty() is racy if the caller has no reference against 1074 * page->mapping->host, and if the page is unlocked. This is because another 1075 * CPU could truncate the page off the mapping and then free the mapping. 1076 * 1077 * Usually, the page _is_ locked, or the caller is a user-space process which 1078 * holds a reference on the inode by having an open file. 1079 * 1080 * In other cases, the page should be locked before running set_page_dirty(). 1081 */ 1082 int set_page_dirty_lock(struct page *page) 1083 { 1084 int ret; 1085 1086 lock_page_nosync(page); 1087 ret = set_page_dirty(page); 1088 unlock_page(page); 1089 return ret; 1090 } 1091 EXPORT_SYMBOL(set_page_dirty_lock); 1092 1093 /* 1094 * Clear a page's dirty flag, while caring for dirty memory accounting. 1095 * Returns true if the page was previously dirty. 1096 * 1097 * This is for preparing to put the page under writeout. We leave the page 1098 * tagged as dirty in the radix tree so that a concurrent write-for-sync 1099 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 1100 * implementation will run either set_page_writeback() or set_page_dirty(), 1101 * at which stage we bring the page's dirty flag and radix-tree dirty tag 1102 * back into sync. 1103 * 1104 * This incoherency between the page's dirty flag and radix-tree tag is 1105 * unfortunate, but it only exists while the page is locked. 1106 */ 1107 int clear_page_dirty_for_io(struct page *page) 1108 { 1109 struct address_space *mapping = page_mapping(page); 1110 1111 BUG_ON(!PageLocked(page)); 1112 1113 ClearPageReclaim(page); 1114 if (mapping && mapping_cap_account_dirty(mapping)) { 1115 /* 1116 * Yes, Virginia, this is indeed insane. 1117 * 1118 * We use this sequence to make sure that 1119 * (a) we account for dirty stats properly 1120 * (b) we tell the low-level filesystem to 1121 * mark the whole page dirty if it was 1122 * dirty in a pagetable. Only to then 1123 * (c) clean the page again and return 1 to 1124 * cause the writeback. 1125 * 1126 * This way we avoid all nasty races with the 1127 * dirty bit in multiple places and clearing 1128 * them concurrently from different threads. 1129 * 1130 * Note! Normally the "set_page_dirty(page)" 1131 * has no effect on the actual dirty bit - since 1132 * that will already usually be set. But we 1133 * need the side effects, and it can help us 1134 * avoid races. 1135 * 1136 * We basically use the page "master dirty bit" 1137 * as a serialization point for all the different 1138 * threads doing their things. 1139 */ 1140 if (page_mkclean(page)) 1141 set_page_dirty(page); 1142 /* 1143 * We carefully synchronise fault handlers against 1144 * installing a dirty pte and marking the page dirty 1145 * at this point. We do this by having them hold the 1146 * page lock at some point after installing their 1147 * pte, but before marking the page dirty. 1148 * Pages are always locked coming in here, so we get 1149 * the desired exclusion. See mm/memory.c:do_wp_page() 1150 * for more comments. 1151 */ 1152 if (TestClearPageDirty(page)) { 1153 dec_zone_page_state(page, NR_FILE_DIRTY); 1154 dec_bdi_stat(mapping->backing_dev_info, 1155 BDI_RECLAIMABLE); 1156 return 1; 1157 } 1158 return 0; 1159 } 1160 return TestClearPageDirty(page); 1161 } 1162 EXPORT_SYMBOL(clear_page_dirty_for_io); 1163 1164 int test_clear_page_writeback(struct page *page) 1165 { 1166 struct address_space *mapping = page_mapping(page); 1167 int ret; 1168 1169 if (mapping) { 1170 struct backing_dev_info *bdi = mapping->backing_dev_info; 1171 unsigned long flags; 1172 1173 write_lock_irqsave(&mapping->tree_lock, flags); 1174 ret = TestClearPageWriteback(page); 1175 if (ret) { 1176 radix_tree_tag_clear(&mapping->page_tree, 1177 page_index(page), 1178 PAGECACHE_TAG_WRITEBACK); 1179 if (bdi_cap_writeback_dirty(bdi)) { 1180 __dec_bdi_stat(bdi, BDI_WRITEBACK); 1181 __bdi_writeout_inc(bdi); 1182 } 1183 } 1184 write_unlock_irqrestore(&mapping->tree_lock, flags); 1185 } else { 1186 ret = TestClearPageWriteback(page); 1187 } 1188 if (ret) 1189 dec_zone_page_state(page, NR_WRITEBACK); 1190 return ret; 1191 } 1192 1193 int test_set_page_writeback(struct page *page) 1194 { 1195 struct address_space *mapping = page_mapping(page); 1196 int ret; 1197 1198 if (mapping) { 1199 struct backing_dev_info *bdi = mapping->backing_dev_info; 1200 unsigned long flags; 1201 1202 write_lock_irqsave(&mapping->tree_lock, flags); 1203 ret = TestSetPageWriteback(page); 1204 if (!ret) { 1205 radix_tree_tag_set(&mapping->page_tree, 1206 page_index(page), 1207 PAGECACHE_TAG_WRITEBACK); 1208 if (bdi_cap_writeback_dirty(bdi)) 1209 __inc_bdi_stat(bdi, BDI_WRITEBACK); 1210 } 1211 if (!PageDirty(page)) 1212 radix_tree_tag_clear(&mapping->page_tree, 1213 page_index(page), 1214 PAGECACHE_TAG_DIRTY); 1215 write_unlock_irqrestore(&mapping->tree_lock, flags); 1216 } else { 1217 ret = TestSetPageWriteback(page); 1218 } 1219 if (!ret) 1220 inc_zone_page_state(page, NR_WRITEBACK); 1221 return ret; 1222 1223 } 1224 EXPORT_SYMBOL(test_set_page_writeback); 1225 1226 /* 1227 * Return true if any of the pages in the mapping are marked with the 1228 * passed tag. 1229 */ 1230 int mapping_tagged(struct address_space *mapping, int tag) 1231 { 1232 int ret; 1233 rcu_read_lock(); 1234 ret = radix_tree_tagged(&mapping->page_tree, tag); 1235 rcu_read_unlock(); 1236 return ret; 1237 } 1238 EXPORT_SYMBOL(mapping_tagged); 1239