xref: /openbmc/linux/mm/page-writeback.c (revision 3e26c149c358529b1605f8959341d34bc4b880a3)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	akpm@zip.com.au
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 
38 /*
39  * The maximum number of pages to writeout in a single bdflush/kupdate
40  * operation.  We do this so we don't hold I_LOCK against an inode for
41  * enormous amounts of time, which would block a userspace task which has
42  * been forced to throttle against that inode.  Also, the code reevaluates
43  * the dirty each time it has written this many pages.
44  */
45 #define MAX_WRITEBACK_PAGES	1024
46 
47 /*
48  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49  * will look to see if it needs to force writeback or throttling.
50  */
51 static long ratelimit_pages = 32;
52 
53 /*
54  * When balance_dirty_pages decides that the caller needs to perform some
55  * non-background writeback, this is how many pages it will attempt to write.
56  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57  * large amounts of I/O are submitted.
58  */
59 static inline long sync_writeback_pages(void)
60 {
61 	return ratelimit_pages + ratelimit_pages / 2;
62 }
63 
64 /* The following parameters are exported via /proc/sys/vm */
65 
66 /*
67  * Start background writeback (via pdflush) at this percentage
68  */
69 int dirty_background_ratio = 5;
70 
71 /*
72  * The generator of dirty data starts writeback at this percentage
73  */
74 int vm_dirty_ratio = 10;
75 
76 /*
77  * The interval between `kupdate'-style writebacks, in jiffies
78  */
79 int dirty_writeback_interval = 5 * HZ;
80 
81 /*
82  * The longest number of jiffies for which data is allowed to remain dirty
83  */
84 int dirty_expire_interval = 30 * HZ;
85 
86 /*
87  * Flag that makes the machine dump writes/reads and block dirtyings.
88  */
89 int block_dump;
90 
91 /*
92  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
93  * a full sync is triggered after this time elapses without any disk activity.
94  */
95 int laptop_mode;
96 
97 EXPORT_SYMBOL(laptop_mode);
98 
99 /* End of sysctl-exported parameters */
100 
101 
102 static void background_writeout(unsigned long _min_pages);
103 
104 /*
105  * Scale the writeback cache size proportional to the relative writeout speeds.
106  *
107  * We do this by keeping a floating proportion between BDIs, based on page
108  * writeback completions [end_page_writeback()]. Those devices that write out
109  * pages fastest will get the larger share, while the slower will get a smaller
110  * share.
111  *
112  * We use page writeout completions because we are interested in getting rid of
113  * dirty pages. Having them written out is the primary goal.
114  *
115  * We introduce a concept of time, a period over which we measure these events,
116  * because demand can/will vary over time. The length of this period itself is
117  * measured in page writeback completions.
118  *
119  */
120 static struct prop_descriptor vm_completions;
121 static struct prop_descriptor vm_dirties;
122 
123 static unsigned long determine_dirtyable_memory(void);
124 
125 /*
126  * couple the period to the dirty_ratio:
127  *
128  *   period/2 ~ roundup_pow_of_two(dirty limit)
129  */
130 static int calc_period_shift(void)
131 {
132 	unsigned long dirty_total;
133 
134 	dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
135 	return 2 + ilog2(dirty_total - 1);
136 }
137 
138 /*
139  * update the period when the dirty ratio changes.
140  */
141 int dirty_ratio_handler(struct ctl_table *table, int write,
142 		struct file *filp, void __user *buffer, size_t *lenp,
143 		loff_t *ppos)
144 {
145 	int old_ratio = vm_dirty_ratio;
146 	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
147 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
148 		int shift = calc_period_shift();
149 		prop_change_shift(&vm_completions, shift);
150 		prop_change_shift(&vm_dirties, shift);
151 	}
152 	return ret;
153 }
154 
155 /*
156  * Increment the BDI's writeout completion count and the global writeout
157  * completion count. Called from test_clear_page_writeback().
158  */
159 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
160 {
161 	__prop_inc_percpu(&vm_completions, &bdi->completions);
162 }
163 
164 static inline void task_dirty_inc(struct task_struct *tsk)
165 {
166 	prop_inc_single(&vm_dirties, &tsk->dirties);
167 }
168 
169 /*
170  * Obtain an accurate fraction of the BDI's portion.
171  */
172 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
173 		long *numerator, long *denominator)
174 {
175 	if (bdi_cap_writeback_dirty(bdi)) {
176 		prop_fraction_percpu(&vm_completions, &bdi->completions,
177 				numerator, denominator);
178 	} else {
179 		*numerator = 0;
180 		*denominator = 1;
181 	}
182 }
183 
184 /*
185  * Clip the earned share of dirty pages to that which is actually available.
186  * This avoids exceeding the total dirty_limit when the floating averages
187  * fluctuate too quickly.
188  */
189 static void
190 clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
191 {
192 	long avail_dirty;
193 
194 	avail_dirty = dirty -
195 		(global_page_state(NR_FILE_DIRTY) +
196 		 global_page_state(NR_WRITEBACK) +
197 		 global_page_state(NR_UNSTABLE_NFS));
198 
199 	if (avail_dirty < 0)
200 		avail_dirty = 0;
201 
202 	avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
203 		bdi_stat(bdi, BDI_WRITEBACK);
204 
205 	*pbdi_dirty = min(*pbdi_dirty, avail_dirty);
206 }
207 
208 static inline void task_dirties_fraction(struct task_struct *tsk,
209 		long *numerator, long *denominator)
210 {
211 	prop_fraction_single(&vm_dirties, &tsk->dirties,
212 				numerator, denominator);
213 }
214 
215 /*
216  * scale the dirty limit
217  *
218  * task specific dirty limit:
219  *
220  *   dirty -= (dirty/8) * p_{t}
221  */
222 void task_dirty_limit(struct task_struct *tsk, long *pdirty)
223 {
224 	long numerator, denominator;
225 	long dirty = *pdirty;
226 	u64 inv = dirty >> 3;
227 
228 	task_dirties_fraction(tsk, &numerator, &denominator);
229 	inv *= numerator;
230 	do_div(inv, denominator);
231 
232 	dirty -= inv;
233 	if (dirty < *pdirty/2)
234 		dirty = *pdirty/2;
235 
236 	*pdirty = dirty;
237 }
238 
239 /*
240  * Work out the current dirty-memory clamping and background writeout
241  * thresholds.
242  *
243  * The main aim here is to lower them aggressively if there is a lot of mapped
244  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
245  * pages.  It is better to clamp down on writers than to start swapping, and
246  * performing lots of scanning.
247  *
248  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
249  *
250  * We don't permit the clamping level to fall below 5% - that is getting rather
251  * excessive.
252  *
253  * We make sure that the background writeout level is below the adjusted
254  * clamping level.
255  */
256 
257 static unsigned long highmem_dirtyable_memory(unsigned long total)
258 {
259 #ifdef CONFIG_HIGHMEM
260 	int node;
261 	unsigned long x = 0;
262 
263 	for_each_node_state(node, N_HIGH_MEMORY) {
264 		struct zone *z =
265 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
266 
267 		x += zone_page_state(z, NR_FREE_PAGES)
268 			+ zone_page_state(z, NR_INACTIVE)
269 			+ zone_page_state(z, NR_ACTIVE);
270 	}
271 	/*
272 	 * Make sure that the number of highmem pages is never larger
273 	 * than the number of the total dirtyable memory. This can only
274 	 * occur in very strange VM situations but we want to make sure
275 	 * that this does not occur.
276 	 */
277 	return min(x, total);
278 #else
279 	return 0;
280 #endif
281 }
282 
283 static unsigned long determine_dirtyable_memory(void)
284 {
285 	unsigned long x;
286 
287 	x = global_page_state(NR_FREE_PAGES)
288 		+ global_page_state(NR_INACTIVE)
289 		+ global_page_state(NR_ACTIVE);
290 	x -= highmem_dirtyable_memory(x);
291 	return x + 1;	/* Ensure that we never return 0 */
292 }
293 
294 static void
295 get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
296 		 struct backing_dev_info *bdi)
297 {
298 	int background_ratio;		/* Percentages */
299 	int dirty_ratio;
300 	int unmapped_ratio;
301 	long background;
302 	long dirty;
303 	unsigned long available_memory = determine_dirtyable_memory();
304 	struct task_struct *tsk;
305 
306 	unmapped_ratio = 100 - ((global_page_state(NR_FILE_MAPPED) +
307 				global_page_state(NR_ANON_PAGES)) * 100) /
308 					available_memory;
309 
310 	dirty_ratio = vm_dirty_ratio;
311 	if (dirty_ratio > unmapped_ratio / 2)
312 		dirty_ratio = unmapped_ratio / 2;
313 
314 	if (dirty_ratio < 5)
315 		dirty_ratio = 5;
316 
317 	background_ratio = dirty_background_ratio;
318 	if (background_ratio >= dirty_ratio)
319 		background_ratio = dirty_ratio / 2;
320 
321 	background = (background_ratio * available_memory) / 100;
322 	dirty = (dirty_ratio * available_memory) / 100;
323 	tsk = current;
324 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
325 		background += background / 4;
326 		dirty += dirty / 4;
327 	}
328 	*pbackground = background;
329 	*pdirty = dirty;
330 
331 	if (bdi) {
332 		u64 bdi_dirty = dirty;
333 		long numerator, denominator;
334 
335 		/*
336 		 * Calculate this BDI's share of the dirty ratio.
337 		 */
338 		bdi_writeout_fraction(bdi, &numerator, &denominator);
339 
340 		bdi_dirty *= numerator;
341 		do_div(bdi_dirty, denominator);
342 
343 		*pbdi_dirty = bdi_dirty;
344 		clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
345 		task_dirty_limit(current, pbdi_dirty);
346 	}
347 }
348 
349 /*
350  * balance_dirty_pages() must be called by processes which are generating dirty
351  * data.  It looks at the number of dirty pages in the machine and will force
352  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
353  * If we're over `background_thresh' then pdflush is woken to perform some
354  * writeout.
355  */
356 static void balance_dirty_pages(struct address_space *mapping)
357 {
358 	long bdi_nr_reclaimable;
359 	long bdi_nr_writeback;
360 	long background_thresh;
361 	long dirty_thresh;
362 	long bdi_thresh;
363 	unsigned long pages_written = 0;
364 	unsigned long write_chunk = sync_writeback_pages();
365 
366 	struct backing_dev_info *bdi = mapping->backing_dev_info;
367 
368 	for (;;) {
369 		struct writeback_control wbc = {
370 			.bdi		= bdi,
371 			.sync_mode	= WB_SYNC_NONE,
372 			.older_than_this = NULL,
373 			.nr_to_write	= write_chunk,
374 			.range_cyclic	= 1,
375 		};
376 
377 		get_dirty_limits(&background_thresh, &dirty_thresh,
378 				&bdi_thresh, bdi);
379 		bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
380 		bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
381 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
382 			break;
383 
384 		if (!bdi->dirty_exceeded)
385 			bdi->dirty_exceeded = 1;
386 
387 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
388 		 * Unstable writes are a feature of certain networked
389 		 * filesystems (i.e. NFS) in which data may have been
390 		 * written to the server's write cache, but has not yet
391 		 * been flushed to permanent storage.
392 		 */
393 		if (bdi_nr_reclaimable) {
394 			writeback_inodes(&wbc);
395 			pages_written += write_chunk - wbc.nr_to_write;
396 			get_dirty_limits(&background_thresh, &dirty_thresh,
397 				       &bdi_thresh, bdi);
398 		}
399 
400 		/*
401 		 * In order to avoid the stacked BDI deadlock we need
402 		 * to ensure we accurately count the 'dirty' pages when
403 		 * the threshold is low.
404 		 *
405 		 * Otherwise it would be possible to get thresh+n pages
406 		 * reported dirty, even though there are thresh-m pages
407 		 * actually dirty; with m+n sitting in the percpu
408 		 * deltas.
409 		 */
410 		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
411 			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
412 			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
413 		} else if (bdi_nr_reclaimable) {
414 			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
415 			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
416 		}
417 
418 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
419 			break;
420 		if (pages_written >= write_chunk)
421 			break;		/* We've done our duty */
422 
423 		congestion_wait(WRITE, HZ/10);
424 	}
425 
426 	if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
427 			bdi->dirty_exceeded)
428 		bdi->dirty_exceeded = 0;
429 
430 	if (writeback_in_progress(bdi))
431 		return;		/* pdflush is already working this queue */
432 
433 	/*
434 	 * In laptop mode, we wait until hitting the higher threshold before
435 	 * starting background writeout, and then write out all the way down
436 	 * to the lower threshold.  So slow writers cause minimal disk activity.
437 	 *
438 	 * In normal mode, we start background writeout at the lower
439 	 * background_thresh, to keep the amount of dirty memory low.
440 	 */
441 	if ((laptop_mode && pages_written) ||
442 			(!laptop_mode && (global_page_state(NR_FILE_DIRTY)
443 					  + global_page_state(NR_UNSTABLE_NFS)
444 					  > background_thresh)))
445 		pdflush_operation(background_writeout, 0);
446 }
447 
448 void set_page_dirty_balance(struct page *page, int page_mkwrite)
449 {
450 	if (set_page_dirty(page) || page_mkwrite) {
451 		struct address_space *mapping = page_mapping(page);
452 
453 		if (mapping)
454 			balance_dirty_pages_ratelimited(mapping);
455 	}
456 }
457 
458 /**
459  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
460  * @mapping: address_space which was dirtied
461  * @nr_pages_dirtied: number of pages which the caller has just dirtied
462  *
463  * Processes which are dirtying memory should call in here once for each page
464  * which was newly dirtied.  The function will periodically check the system's
465  * dirty state and will initiate writeback if needed.
466  *
467  * On really big machines, get_writeback_state is expensive, so try to avoid
468  * calling it too often (ratelimiting).  But once we're over the dirty memory
469  * limit we decrease the ratelimiting by a lot, to prevent individual processes
470  * from overshooting the limit by (ratelimit_pages) each.
471  */
472 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
473 					unsigned long nr_pages_dirtied)
474 {
475 	static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
476 	unsigned long ratelimit;
477 	unsigned long *p;
478 
479 	ratelimit = ratelimit_pages;
480 	if (mapping->backing_dev_info->dirty_exceeded)
481 		ratelimit = 8;
482 
483 	/*
484 	 * Check the rate limiting. Also, we do not want to throttle real-time
485 	 * tasks in balance_dirty_pages(). Period.
486 	 */
487 	preempt_disable();
488 	p =  &__get_cpu_var(ratelimits);
489 	*p += nr_pages_dirtied;
490 	if (unlikely(*p >= ratelimit)) {
491 		*p = 0;
492 		preempt_enable();
493 		balance_dirty_pages(mapping);
494 		return;
495 	}
496 	preempt_enable();
497 }
498 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
499 
500 void throttle_vm_writeout(gfp_t gfp_mask)
501 {
502 	long background_thresh;
503 	long dirty_thresh;
504 
505 	if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) {
506 		/*
507 		 * The caller might hold locks which can prevent IO completion
508 		 * or progress in the filesystem.  So we cannot just sit here
509 		 * waiting for IO to complete.
510 		 */
511 		congestion_wait(WRITE, HZ/10);
512 		return;
513 	}
514 
515         for ( ; ; ) {
516 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
517 
518                 /*
519                  * Boost the allowable dirty threshold a bit for page
520                  * allocators so they don't get DoS'ed by heavy writers
521                  */
522                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
523 
524                 if (global_page_state(NR_UNSTABLE_NFS) +
525 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
526                         	break;
527                 congestion_wait(WRITE, HZ/10);
528         }
529 }
530 
531 /*
532  * writeback at least _min_pages, and keep writing until the amount of dirty
533  * memory is less than the background threshold, or until we're all clean.
534  */
535 static void background_writeout(unsigned long _min_pages)
536 {
537 	long min_pages = _min_pages;
538 	struct writeback_control wbc = {
539 		.bdi		= NULL,
540 		.sync_mode	= WB_SYNC_NONE,
541 		.older_than_this = NULL,
542 		.nr_to_write	= 0,
543 		.nonblocking	= 1,
544 		.range_cyclic	= 1,
545 	};
546 
547 	for ( ; ; ) {
548 		long background_thresh;
549 		long dirty_thresh;
550 
551 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
552 		if (global_page_state(NR_FILE_DIRTY) +
553 			global_page_state(NR_UNSTABLE_NFS) < background_thresh
554 				&& min_pages <= 0)
555 			break;
556 		wbc.encountered_congestion = 0;
557 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
558 		wbc.pages_skipped = 0;
559 		writeback_inodes(&wbc);
560 		min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
561 		if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
562 			/* Wrote less than expected */
563 			congestion_wait(WRITE, HZ/10);
564 			if (!wbc.encountered_congestion)
565 				break;
566 		}
567 	}
568 }
569 
570 /*
571  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
572  * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
573  * -1 if all pdflush threads were busy.
574  */
575 int wakeup_pdflush(long nr_pages)
576 {
577 	if (nr_pages == 0)
578 		nr_pages = global_page_state(NR_FILE_DIRTY) +
579 				global_page_state(NR_UNSTABLE_NFS);
580 	return pdflush_operation(background_writeout, nr_pages);
581 }
582 
583 static void wb_timer_fn(unsigned long unused);
584 static void laptop_timer_fn(unsigned long unused);
585 
586 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
587 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
588 
589 /*
590  * Periodic writeback of "old" data.
591  *
592  * Define "old": the first time one of an inode's pages is dirtied, we mark the
593  * dirtying-time in the inode's address_space.  So this periodic writeback code
594  * just walks the superblock inode list, writing back any inodes which are
595  * older than a specific point in time.
596  *
597  * Try to run once per dirty_writeback_interval.  But if a writeback event
598  * takes longer than a dirty_writeback_interval interval, then leave a
599  * one-second gap.
600  *
601  * older_than_this takes precedence over nr_to_write.  So we'll only write back
602  * all dirty pages if they are all attached to "old" mappings.
603  */
604 static void wb_kupdate(unsigned long arg)
605 {
606 	unsigned long oldest_jif;
607 	unsigned long start_jif;
608 	unsigned long next_jif;
609 	long nr_to_write;
610 	struct writeback_control wbc = {
611 		.bdi		= NULL,
612 		.sync_mode	= WB_SYNC_NONE,
613 		.older_than_this = &oldest_jif,
614 		.nr_to_write	= 0,
615 		.nonblocking	= 1,
616 		.for_kupdate	= 1,
617 		.range_cyclic	= 1,
618 	};
619 
620 	sync_supers();
621 
622 	oldest_jif = jiffies - dirty_expire_interval;
623 	start_jif = jiffies;
624 	next_jif = start_jif + dirty_writeback_interval;
625 	nr_to_write = global_page_state(NR_FILE_DIRTY) +
626 			global_page_state(NR_UNSTABLE_NFS) +
627 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
628 	while (nr_to_write > 0) {
629 		wbc.encountered_congestion = 0;
630 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
631 		writeback_inodes(&wbc);
632 		if (wbc.nr_to_write > 0) {
633 			if (wbc.encountered_congestion)
634 				congestion_wait(WRITE, HZ/10);
635 			else
636 				break;	/* All the old data is written */
637 		}
638 		nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
639 	}
640 	if (time_before(next_jif, jiffies + HZ))
641 		next_jif = jiffies + HZ;
642 	if (dirty_writeback_interval)
643 		mod_timer(&wb_timer, next_jif);
644 }
645 
646 /*
647  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
648  */
649 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
650 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
651 {
652 	proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
653 	if (dirty_writeback_interval)
654 		mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
655 	else
656 		del_timer(&wb_timer);
657 	return 0;
658 }
659 
660 static void wb_timer_fn(unsigned long unused)
661 {
662 	if (pdflush_operation(wb_kupdate, 0) < 0)
663 		mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
664 }
665 
666 static void laptop_flush(unsigned long unused)
667 {
668 	sys_sync();
669 }
670 
671 static void laptop_timer_fn(unsigned long unused)
672 {
673 	pdflush_operation(laptop_flush, 0);
674 }
675 
676 /*
677  * We've spun up the disk and we're in laptop mode: schedule writeback
678  * of all dirty data a few seconds from now.  If the flush is already scheduled
679  * then push it back - the user is still using the disk.
680  */
681 void laptop_io_completion(void)
682 {
683 	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
684 }
685 
686 /*
687  * We're in laptop mode and we've just synced. The sync's writes will have
688  * caused another writeback to be scheduled by laptop_io_completion.
689  * Nothing needs to be written back anymore, so we unschedule the writeback.
690  */
691 void laptop_sync_completion(void)
692 {
693 	del_timer(&laptop_mode_wb_timer);
694 }
695 
696 /*
697  * If ratelimit_pages is too high then we can get into dirty-data overload
698  * if a large number of processes all perform writes at the same time.
699  * If it is too low then SMP machines will call the (expensive)
700  * get_writeback_state too often.
701  *
702  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
703  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
704  * thresholds before writeback cuts in.
705  *
706  * But the limit should not be set too high.  Because it also controls the
707  * amount of memory which the balance_dirty_pages() caller has to write back.
708  * If this is too large then the caller will block on the IO queue all the
709  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
710  * will write six megabyte chunks, max.
711  */
712 
713 void writeback_set_ratelimit(void)
714 {
715 	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
716 	if (ratelimit_pages < 16)
717 		ratelimit_pages = 16;
718 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
719 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
720 }
721 
722 static int __cpuinit
723 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
724 {
725 	writeback_set_ratelimit();
726 	return NOTIFY_DONE;
727 }
728 
729 static struct notifier_block __cpuinitdata ratelimit_nb = {
730 	.notifier_call	= ratelimit_handler,
731 	.next		= NULL,
732 };
733 
734 /*
735  * Called early on to tune the page writeback dirty limits.
736  *
737  * We used to scale dirty pages according to how total memory
738  * related to pages that could be allocated for buffers (by
739  * comparing nr_free_buffer_pages() to vm_total_pages.
740  *
741  * However, that was when we used "dirty_ratio" to scale with
742  * all memory, and we don't do that any more. "dirty_ratio"
743  * is now applied to total non-HIGHPAGE memory (by subtracting
744  * totalhigh_pages from vm_total_pages), and as such we can't
745  * get into the old insane situation any more where we had
746  * large amounts of dirty pages compared to a small amount of
747  * non-HIGHMEM memory.
748  *
749  * But we might still want to scale the dirty_ratio by how
750  * much memory the box has..
751  */
752 void __init page_writeback_init(void)
753 {
754 	int shift;
755 
756 	mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
757 	writeback_set_ratelimit();
758 	register_cpu_notifier(&ratelimit_nb);
759 
760 	shift = calc_period_shift();
761 	prop_descriptor_init(&vm_completions, shift);
762 	prop_descriptor_init(&vm_dirties, shift);
763 }
764 
765 /**
766  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
767  * @mapping: address space structure to write
768  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
769  * @writepage: function called for each page
770  * @data: data passed to writepage function
771  *
772  * If a page is already under I/O, write_cache_pages() skips it, even
773  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
774  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
775  * and msync() need to guarantee that all the data which was dirty at the time
776  * the call was made get new I/O started against them.  If wbc->sync_mode is
777  * WB_SYNC_ALL then we were called for data integrity and we must wait for
778  * existing IO to complete.
779  */
780 int write_cache_pages(struct address_space *mapping,
781 		      struct writeback_control *wbc, writepage_t writepage,
782 		      void *data)
783 {
784 	struct backing_dev_info *bdi = mapping->backing_dev_info;
785 	int ret = 0;
786 	int done = 0;
787 	struct pagevec pvec;
788 	int nr_pages;
789 	pgoff_t index;
790 	pgoff_t end;		/* Inclusive */
791 	int scanned = 0;
792 	int range_whole = 0;
793 
794 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
795 		wbc->encountered_congestion = 1;
796 		return 0;
797 	}
798 
799 	pagevec_init(&pvec, 0);
800 	if (wbc->range_cyclic) {
801 		index = mapping->writeback_index; /* Start from prev offset */
802 		end = -1;
803 	} else {
804 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
805 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
806 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
807 			range_whole = 1;
808 		scanned = 1;
809 	}
810 retry:
811 	while (!done && (index <= end) &&
812 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
813 					      PAGECACHE_TAG_DIRTY,
814 					      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
815 		unsigned i;
816 
817 		scanned = 1;
818 		for (i = 0; i < nr_pages; i++) {
819 			struct page *page = pvec.pages[i];
820 
821 			/*
822 			 * At this point we hold neither mapping->tree_lock nor
823 			 * lock on the page itself: the page may be truncated or
824 			 * invalidated (changing page->mapping to NULL), or even
825 			 * swizzled back from swapper_space to tmpfs file
826 			 * mapping
827 			 */
828 			lock_page(page);
829 
830 			if (unlikely(page->mapping != mapping)) {
831 				unlock_page(page);
832 				continue;
833 			}
834 
835 			if (!wbc->range_cyclic && page->index > end) {
836 				done = 1;
837 				unlock_page(page);
838 				continue;
839 			}
840 
841 			if (wbc->sync_mode != WB_SYNC_NONE)
842 				wait_on_page_writeback(page);
843 
844 			if (PageWriteback(page) ||
845 			    !clear_page_dirty_for_io(page)) {
846 				unlock_page(page);
847 				continue;
848 			}
849 
850 			ret = (*writepage)(page, wbc, data);
851 
852 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE))
853 				unlock_page(page);
854 			if (ret || (--(wbc->nr_to_write) <= 0))
855 				done = 1;
856 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
857 				wbc->encountered_congestion = 1;
858 				done = 1;
859 			}
860 		}
861 		pagevec_release(&pvec);
862 		cond_resched();
863 	}
864 	if (!scanned && !done) {
865 		/*
866 		 * We hit the last page and there is more work to be done: wrap
867 		 * back to the start of the file
868 		 */
869 		scanned = 1;
870 		index = 0;
871 		goto retry;
872 	}
873 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
874 		mapping->writeback_index = index;
875 	return ret;
876 }
877 EXPORT_SYMBOL(write_cache_pages);
878 
879 /*
880  * Function used by generic_writepages to call the real writepage
881  * function and set the mapping flags on error
882  */
883 static int __writepage(struct page *page, struct writeback_control *wbc,
884 		       void *data)
885 {
886 	struct address_space *mapping = data;
887 	int ret = mapping->a_ops->writepage(page, wbc);
888 	mapping_set_error(mapping, ret);
889 	return ret;
890 }
891 
892 /**
893  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
894  * @mapping: address space structure to write
895  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
896  *
897  * This is a library function, which implements the writepages()
898  * address_space_operation.
899  */
900 int generic_writepages(struct address_space *mapping,
901 		       struct writeback_control *wbc)
902 {
903 	/* deal with chardevs and other special file */
904 	if (!mapping->a_ops->writepage)
905 		return 0;
906 
907 	return write_cache_pages(mapping, wbc, __writepage, mapping);
908 }
909 
910 EXPORT_SYMBOL(generic_writepages);
911 
912 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
913 {
914 	int ret;
915 
916 	if (wbc->nr_to_write <= 0)
917 		return 0;
918 	wbc->for_writepages = 1;
919 	if (mapping->a_ops->writepages)
920 		ret = mapping->a_ops->writepages(mapping, wbc);
921 	else
922 		ret = generic_writepages(mapping, wbc);
923 	wbc->for_writepages = 0;
924 	return ret;
925 }
926 
927 /**
928  * write_one_page - write out a single page and optionally wait on I/O
929  * @page: the page to write
930  * @wait: if true, wait on writeout
931  *
932  * The page must be locked by the caller and will be unlocked upon return.
933  *
934  * write_one_page() returns a negative error code if I/O failed.
935  */
936 int write_one_page(struct page *page, int wait)
937 {
938 	struct address_space *mapping = page->mapping;
939 	int ret = 0;
940 	struct writeback_control wbc = {
941 		.sync_mode = WB_SYNC_ALL,
942 		.nr_to_write = 1,
943 	};
944 
945 	BUG_ON(!PageLocked(page));
946 
947 	if (wait)
948 		wait_on_page_writeback(page);
949 
950 	if (clear_page_dirty_for_io(page)) {
951 		page_cache_get(page);
952 		ret = mapping->a_ops->writepage(page, &wbc);
953 		if (ret == 0 && wait) {
954 			wait_on_page_writeback(page);
955 			if (PageError(page))
956 				ret = -EIO;
957 		}
958 		page_cache_release(page);
959 	} else {
960 		unlock_page(page);
961 	}
962 	return ret;
963 }
964 EXPORT_SYMBOL(write_one_page);
965 
966 /*
967  * For address_spaces which do not use buffers nor write back.
968  */
969 int __set_page_dirty_no_writeback(struct page *page)
970 {
971 	if (!PageDirty(page))
972 		SetPageDirty(page);
973 	return 0;
974 }
975 
976 /*
977  * For address_spaces which do not use buffers.  Just tag the page as dirty in
978  * its radix tree.
979  *
980  * This is also used when a single buffer is being dirtied: we want to set the
981  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
982  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
983  *
984  * Most callers have locked the page, which pins the address_space in memory.
985  * But zap_pte_range() does not lock the page, however in that case the
986  * mapping is pinned by the vma's ->vm_file reference.
987  *
988  * We take care to handle the case where the page was truncated from the
989  * mapping by re-checking page_mapping() insode tree_lock.
990  */
991 int __set_page_dirty_nobuffers(struct page *page)
992 {
993 	if (!TestSetPageDirty(page)) {
994 		struct address_space *mapping = page_mapping(page);
995 		struct address_space *mapping2;
996 
997 		if (!mapping)
998 			return 1;
999 
1000 		write_lock_irq(&mapping->tree_lock);
1001 		mapping2 = page_mapping(page);
1002 		if (mapping2) { /* Race with truncate? */
1003 			BUG_ON(mapping2 != mapping);
1004 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1005 			if (mapping_cap_account_dirty(mapping)) {
1006 				__inc_zone_page_state(page, NR_FILE_DIRTY);
1007 				__inc_bdi_stat(mapping->backing_dev_info,
1008 						BDI_RECLAIMABLE);
1009 				task_io_account_write(PAGE_CACHE_SIZE);
1010 			}
1011 			radix_tree_tag_set(&mapping->page_tree,
1012 				page_index(page), PAGECACHE_TAG_DIRTY);
1013 		}
1014 		write_unlock_irq(&mapping->tree_lock);
1015 		if (mapping->host) {
1016 			/* !PageAnon && !swapper_space */
1017 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1018 		}
1019 		return 1;
1020 	}
1021 	return 0;
1022 }
1023 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1024 
1025 /*
1026  * When a writepage implementation decides that it doesn't want to write this
1027  * page for some reason, it should redirty the locked page via
1028  * redirty_page_for_writepage() and it should then unlock the page and return 0
1029  */
1030 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1031 {
1032 	wbc->pages_skipped++;
1033 	return __set_page_dirty_nobuffers(page);
1034 }
1035 EXPORT_SYMBOL(redirty_page_for_writepage);
1036 
1037 /*
1038  * If the mapping doesn't provide a set_page_dirty a_op, then
1039  * just fall through and assume that it wants buffer_heads.
1040  */
1041 static int __set_page_dirty(struct page *page)
1042 {
1043 	struct address_space *mapping = page_mapping(page);
1044 
1045 	if (likely(mapping)) {
1046 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1047 #ifdef CONFIG_BLOCK
1048 		if (!spd)
1049 			spd = __set_page_dirty_buffers;
1050 #endif
1051 		return (*spd)(page);
1052 	}
1053 	if (!PageDirty(page)) {
1054 		if (!TestSetPageDirty(page))
1055 			return 1;
1056 	}
1057 	return 0;
1058 }
1059 
1060 int fastcall set_page_dirty(struct page *page)
1061 {
1062 	int ret = __set_page_dirty(page);
1063 	if (ret)
1064 		task_dirty_inc(current);
1065 	return ret;
1066 }
1067 EXPORT_SYMBOL(set_page_dirty);
1068 
1069 /*
1070  * set_page_dirty() is racy if the caller has no reference against
1071  * page->mapping->host, and if the page is unlocked.  This is because another
1072  * CPU could truncate the page off the mapping and then free the mapping.
1073  *
1074  * Usually, the page _is_ locked, or the caller is a user-space process which
1075  * holds a reference on the inode by having an open file.
1076  *
1077  * In other cases, the page should be locked before running set_page_dirty().
1078  */
1079 int set_page_dirty_lock(struct page *page)
1080 {
1081 	int ret;
1082 
1083 	lock_page_nosync(page);
1084 	ret = set_page_dirty(page);
1085 	unlock_page(page);
1086 	return ret;
1087 }
1088 EXPORT_SYMBOL(set_page_dirty_lock);
1089 
1090 /*
1091  * Clear a page's dirty flag, while caring for dirty memory accounting.
1092  * Returns true if the page was previously dirty.
1093  *
1094  * This is for preparing to put the page under writeout.  We leave the page
1095  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1096  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1097  * implementation will run either set_page_writeback() or set_page_dirty(),
1098  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1099  * back into sync.
1100  *
1101  * This incoherency between the page's dirty flag and radix-tree tag is
1102  * unfortunate, but it only exists while the page is locked.
1103  */
1104 int clear_page_dirty_for_io(struct page *page)
1105 {
1106 	struct address_space *mapping = page_mapping(page);
1107 
1108 	BUG_ON(!PageLocked(page));
1109 
1110 	ClearPageReclaim(page);
1111 	if (mapping && mapping_cap_account_dirty(mapping)) {
1112 		/*
1113 		 * Yes, Virginia, this is indeed insane.
1114 		 *
1115 		 * We use this sequence to make sure that
1116 		 *  (a) we account for dirty stats properly
1117 		 *  (b) we tell the low-level filesystem to
1118 		 *      mark the whole page dirty if it was
1119 		 *      dirty in a pagetable. Only to then
1120 		 *  (c) clean the page again and return 1 to
1121 		 *      cause the writeback.
1122 		 *
1123 		 * This way we avoid all nasty races with the
1124 		 * dirty bit in multiple places and clearing
1125 		 * them concurrently from different threads.
1126 		 *
1127 		 * Note! Normally the "set_page_dirty(page)"
1128 		 * has no effect on the actual dirty bit - since
1129 		 * that will already usually be set. But we
1130 		 * need the side effects, and it can help us
1131 		 * avoid races.
1132 		 *
1133 		 * We basically use the page "master dirty bit"
1134 		 * as a serialization point for all the different
1135 		 * threads doing their things.
1136 		 */
1137 		if (page_mkclean(page))
1138 			set_page_dirty(page);
1139 		/*
1140 		 * We carefully synchronise fault handlers against
1141 		 * installing a dirty pte and marking the page dirty
1142 		 * at this point. We do this by having them hold the
1143 		 * page lock at some point after installing their
1144 		 * pte, but before marking the page dirty.
1145 		 * Pages are always locked coming in here, so we get
1146 		 * the desired exclusion. See mm/memory.c:do_wp_page()
1147 		 * for more comments.
1148 		 */
1149 		if (TestClearPageDirty(page)) {
1150 			dec_zone_page_state(page, NR_FILE_DIRTY);
1151 			dec_bdi_stat(mapping->backing_dev_info,
1152 					BDI_RECLAIMABLE);
1153 			return 1;
1154 		}
1155 		return 0;
1156 	}
1157 	return TestClearPageDirty(page);
1158 }
1159 EXPORT_SYMBOL(clear_page_dirty_for_io);
1160 
1161 int test_clear_page_writeback(struct page *page)
1162 {
1163 	struct address_space *mapping = page_mapping(page);
1164 	int ret;
1165 
1166 	if (mapping) {
1167 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1168 		unsigned long flags;
1169 
1170 		write_lock_irqsave(&mapping->tree_lock, flags);
1171 		ret = TestClearPageWriteback(page);
1172 		if (ret) {
1173 			radix_tree_tag_clear(&mapping->page_tree,
1174 						page_index(page),
1175 						PAGECACHE_TAG_WRITEBACK);
1176 			if (bdi_cap_writeback_dirty(bdi)) {
1177 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1178 				__bdi_writeout_inc(bdi);
1179 			}
1180 		}
1181 		write_unlock_irqrestore(&mapping->tree_lock, flags);
1182 	} else {
1183 		ret = TestClearPageWriteback(page);
1184 	}
1185 	if (ret)
1186 		dec_zone_page_state(page, NR_WRITEBACK);
1187 	return ret;
1188 }
1189 
1190 int test_set_page_writeback(struct page *page)
1191 {
1192 	struct address_space *mapping = page_mapping(page);
1193 	int ret;
1194 
1195 	if (mapping) {
1196 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1197 		unsigned long flags;
1198 
1199 		write_lock_irqsave(&mapping->tree_lock, flags);
1200 		ret = TestSetPageWriteback(page);
1201 		if (!ret) {
1202 			radix_tree_tag_set(&mapping->page_tree,
1203 						page_index(page),
1204 						PAGECACHE_TAG_WRITEBACK);
1205 			if (bdi_cap_writeback_dirty(bdi))
1206 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1207 		}
1208 		if (!PageDirty(page))
1209 			radix_tree_tag_clear(&mapping->page_tree,
1210 						page_index(page),
1211 						PAGECACHE_TAG_DIRTY);
1212 		write_unlock_irqrestore(&mapping->tree_lock, flags);
1213 	} else {
1214 		ret = TestSetPageWriteback(page);
1215 	}
1216 	if (!ret)
1217 		inc_zone_page_state(page, NR_WRITEBACK);
1218 	return ret;
1219 
1220 }
1221 EXPORT_SYMBOL(test_set_page_writeback);
1222 
1223 /*
1224  * Return true if any of the pages in the mapping are marked with the
1225  * passed tag.
1226  */
1227 int mapping_tagged(struct address_space *mapping, int tag)
1228 {
1229 	int ret;
1230 	rcu_read_lock();
1231 	ret = radix_tree_tagged(&mapping->page_tree, tag);
1232 	rcu_read_unlock();
1233 	return ret;
1234 }
1235 EXPORT_SYMBOL(mapping_tagged);
1236