1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/page-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 7 * 8 * Contains functions related to writing back dirty pages at the 9 * address_space level. 10 * 11 * 10Apr2002 Andrew Morton 12 * Initial version 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/slab.h> 22 #include <linux/pagemap.h> 23 #include <linux/writeback.h> 24 #include <linux/init.h> 25 #include <linux/backing-dev.h> 26 #include <linux/task_io_accounting_ops.h> 27 #include <linux/blkdev.h> 28 #include <linux/mpage.h> 29 #include <linux/rmap.h> 30 #include <linux/percpu.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */ 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/sched/signal.h> 40 #include <linux/mm_inline.h> 41 #include <trace/events/writeback.h> 42 43 #include "internal.h" 44 45 /* 46 * Sleep at most 200ms at a time in balance_dirty_pages(). 47 */ 48 #define MAX_PAUSE max(HZ/5, 1) 49 50 /* 51 * Try to keep balance_dirty_pages() call intervals higher than this many pages 52 * by raising pause time to max_pause when falls below it. 53 */ 54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 55 56 /* 57 * Estimate write bandwidth at 200ms intervals. 58 */ 59 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 60 61 #define RATELIMIT_CALC_SHIFT 10 62 63 /* 64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 65 * will look to see if it needs to force writeback or throttling. 66 */ 67 static long ratelimit_pages = 32; 68 69 /* The following parameters are exported via /proc/sys/vm */ 70 71 /* 72 * Start background writeback (via writeback threads) at this percentage 73 */ 74 int dirty_background_ratio = 10; 75 76 /* 77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 78 * dirty_background_ratio * the amount of dirtyable memory 79 */ 80 unsigned long dirty_background_bytes; 81 82 /* 83 * free highmem will not be subtracted from the total free memory 84 * for calculating free ratios if vm_highmem_is_dirtyable is true 85 */ 86 int vm_highmem_is_dirtyable; 87 88 /* 89 * The generator of dirty data starts writeback at this percentage 90 */ 91 int vm_dirty_ratio = 20; 92 93 /* 94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 95 * vm_dirty_ratio * the amount of dirtyable memory 96 */ 97 unsigned long vm_dirty_bytes; 98 99 /* 100 * The interval between `kupdate'-style writebacks 101 */ 102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 103 104 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 105 106 /* 107 * The longest time for which data is allowed to remain dirty 108 */ 109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 110 111 /* 112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 113 * a full sync is triggered after this time elapses without any disk activity. 114 */ 115 int laptop_mode; 116 117 EXPORT_SYMBOL(laptop_mode); 118 119 /* End of sysctl-exported parameters */ 120 121 struct wb_domain global_wb_domain; 122 123 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 124 struct dirty_throttle_control { 125 #ifdef CONFIG_CGROUP_WRITEBACK 126 struct wb_domain *dom; 127 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 128 #endif 129 struct bdi_writeback *wb; 130 struct fprop_local_percpu *wb_completions; 131 132 unsigned long avail; /* dirtyable */ 133 unsigned long dirty; /* file_dirty + write + nfs */ 134 unsigned long thresh; /* dirty threshold */ 135 unsigned long bg_thresh; /* dirty background threshold */ 136 137 unsigned long wb_dirty; /* per-wb counterparts */ 138 unsigned long wb_thresh; 139 unsigned long wb_bg_thresh; 140 141 unsigned long pos_ratio; 142 }; 143 144 /* 145 * Length of period for aging writeout fractions of bdis. This is an 146 * arbitrarily chosen number. The longer the period, the slower fractions will 147 * reflect changes in current writeout rate. 148 */ 149 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 150 151 #ifdef CONFIG_CGROUP_WRITEBACK 152 153 #define GDTC_INIT(__wb) .wb = (__wb), \ 154 .dom = &global_wb_domain, \ 155 .wb_completions = &(__wb)->completions 156 157 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 158 159 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 160 .dom = mem_cgroup_wb_domain(__wb), \ 161 .wb_completions = &(__wb)->memcg_completions, \ 162 .gdtc = __gdtc 163 164 static bool mdtc_valid(struct dirty_throttle_control *dtc) 165 { 166 return dtc->dom; 167 } 168 169 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 170 { 171 return dtc->dom; 172 } 173 174 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 175 { 176 return mdtc->gdtc; 177 } 178 179 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 180 { 181 return &wb->memcg_completions; 182 } 183 184 static void wb_min_max_ratio(struct bdi_writeback *wb, 185 unsigned long *minp, unsigned long *maxp) 186 { 187 unsigned long this_bw = wb->avg_write_bandwidth; 188 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 189 unsigned long long min = wb->bdi->min_ratio; 190 unsigned long long max = wb->bdi->max_ratio; 191 192 /* 193 * @wb may already be clean by the time control reaches here and 194 * the total may not include its bw. 195 */ 196 if (this_bw < tot_bw) { 197 if (min) { 198 min *= this_bw; 199 min = div64_ul(min, tot_bw); 200 } 201 if (max < 100) { 202 max *= this_bw; 203 max = div64_ul(max, tot_bw); 204 } 205 } 206 207 *minp = min; 208 *maxp = max; 209 } 210 211 #else /* CONFIG_CGROUP_WRITEBACK */ 212 213 #define GDTC_INIT(__wb) .wb = (__wb), \ 214 .wb_completions = &(__wb)->completions 215 #define GDTC_INIT_NO_WB 216 #define MDTC_INIT(__wb, __gdtc) 217 218 static bool mdtc_valid(struct dirty_throttle_control *dtc) 219 { 220 return false; 221 } 222 223 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 224 { 225 return &global_wb_domain; 226 } 227 228 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 229 { 230 return NULL; 231 } 232 233 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 234 { 235 return NULL; 236 } 237 238 static void wb_min_max_ratio(struct bdi_writeback *wb, 239 unsigned long *minp, unsigned long *maxp) 240 { 241 *minp = wb->bdi->min_ratio; 242 *maxp = wb->bdi->max_ratio; 243 } 244 245 #endif /* CONFIG_CGROUP_WRITEBACK */ 246 247 /* 248 * In a memory zone, there is a certain amount of pages we consider 249 * available for the page cache, which is essentially the number of 250 * free and reclaimable pages, minus some zone reserves to protect 251 * lowmem and the ability to uphold the zone's watermarks without 252 * requiring writeback. 253 * 254 * This number of dirtyable pages is the base value of which the 255 * user-configurable dirty ratio is the effective number of pages that 256 * are allowed to be actually dirtied. Per individual zone, or 257 * globally by using the sum of dirtyable pages over all zones. 258 * 259 * Because the user is allowed to specify the dirty limit globally as 260 * absolute number of bytes, calculating the per-zone dirty limit can 261 * require translating the configured limit into a percentage of 262 * global dirtyable memory first. 263 */ 264 265 /** 266 * node_dirtyable_memory - number of dirtyable pages in a node 267 * @pgdat: the node 268 * 269 * Return: the node's number of pages potentially available for dirty 270 * page cache. This is the base value for the per-node dirty limits. 271 */ 272 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 273 { 274 unsigned long nr_pages = 0; 275 int z; 276 277 for (z = 0; z < MAX_NR_ZONES; z++) { 278 struct zone *zone = pgdat->node_zones + z; 279 280 if (!populated_zone(zone)) 281 continue; 282 283 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 284 } 285 286 /* 287 * Pages reserved for the kernel should not be considered 288 * dirtyable, to prevent a situation where reclaim has to 289 * clean pages in order to balance the zones. 290 */ 291 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 292 293 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 294 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 295 296 return nr_pages; 297 } 298 299 static unsigned long highmem_dirtyable_memory(unsigned long total) 300 { 301 #ifdef CONFIG_HIGHMEM 302 int node; 303 unsigned long x = 0; 304 int i; 305 306 for_each_node_state(node, N_HIGH_MEMORY) { 307 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 308 struct zone *z; 309 unsigned long nr_pages; 310 311 if (!is_highmem_idx(i)) 312 continue; 313 314 z = &NODE_DATA(node)->node_zones[i]; 315 if (!populated_zone(z)) 316 continue; 317 318 nr_pages = zone_page_state(z, NR_FREE_PAGES); 319 /* watch for underflows */ 320 nr_pages -= min(nr_pages, high_wmark_pages(z)); 321 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 322 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 323 x += nr_pages; 324 } 325 } 326 327 /* 328 * Unreclaimable memory (kernel memory or anonymous memory 329 * without swap) can bring down the dirtyable pages below 330 * the zone's dirty balance reserve and the above calculation 331 * will underflow. However we still want to add in nodes 332 * which are below threshold (negative values) to get a more 333 * accurate calculation but make sure that the total never 334 * underflows. 335 */ 336 if ((long)x < 0) 337 x = 0; 338 339 /* 340 * Make sure that the number of highmem pages is never larger 341 * than the number of the total dirtyable memory. This can only 342 * occur in very strange VM situations but we want to make sure 343 * that this does not occur. 344 */ 345 return min(x, total); 346 #else 347 return 0; 348 #endif 349 } 350 351 /** 352 * global_dirtyable_memory - number of globally dirtyable pages 353 * 354 * Return: the global number of pages potentially available for dirty 355 * page cache. This is the base value for the global dirty limits. 356 */ 357 static unsigned long global_dirtyable_memory(void) 358 { 359 unsigned long x; 360 361 x = global_zone_page_state(NR_FREE_PAGES); 362 /* 363 * Pages reserved for the kernel should not be considered 364 * dirtyable, to prevent a situation where reclaim has to 365 * clean pages in order to balance the zones. 366 */ 367 x -= min(x, totalreserve_pages); 368 369 x += global_node_page_state(NR_INACTIVE_FILE); 370 x += global_node_page_state(NR_ACTIVE_FILE); 371 372 if (!vm_highmem_is_dirtyable) 373 x -= highmem_dirtyable_memory(x); 374 375 return x + 1; /* Ensure that we never return 0 */ 376 } 377 378 /** 379 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 380 * @dtc: dirty_throttle_control of interest 381 * 382 * Calculate @dtc->thresh and ->bg_thresh considering 383 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 384 * must ensure that @dtc->avail is set before calling this function. The 385 * dirty limits will be lifted by 1/4 for real-time tasks. 386 */ 387 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 388 { 389 const unsigned long available_memory = dtc->avail; 390 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 391 unsigned long bytes = vm_dirty_bytes; 392 unsigned long bg_bytes = dirty_background_bytes; 393 /* convert ratios to per-PAGE_SIZE for higher precision */ 394 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 395 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 396 unsigned long thresh; 397 unsigned long bg_thresh; 398 struct task_struct *tsk; 399 400 /* gdtc is !NULL iff @dtc is for memcg domain */ 401 if (gdtc) { 402 unsigned long global_avail = gdtc->avail; 403 404 /* 405 * The byte settings can't be applied directly to memcg 406 * domains. Convert them to ratios by scaling against 407 * globally available memory. As the ratios are in 408 * per-PAGE_SIZE, they can be obtained by dividing bytes by 409 * number of pages. 410 */ 411 if (bytes) 412 ratio = min(DIV_ROUND_UP(bytes, global_avail), 413 PAGE_SIZE); 414 if (bg_bytes) 415 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 416 PAGE_SIZE); 417 bytes = bg_bytes = 0; 418 } 419 420 if (bytes) 421 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 422 else 423 thresh = (ratio * available_memory) / PAGE_SIZE; 424 425 if (bg_bytes) 426 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 427 else 428 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 429 430 if (bg_thresh >= thresh) 431 bg_thresh = thresh / 2; 432 tsk = current; 433 if (rt_task(tsk)) { 434 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 435 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 436 } 437 dtc->thresh = thresh; 438 dtc->bg_thresh = bg_thresh; 439 440 /* we should eventually report the domain in the TP */ 441 if (!gdtc) 442 trace_global_dirty_state(bg_thresh, thresh); 443 } 444 445 /** 446 * global_dirty_limits - background-writeback and dirty-throttling thresholds 447 * @pbackground: out parameter for bg_thresh 448 * @pdirty: out parameter for thresh 449 * 450 * Calculate bg_thresh and thresh for global_wb_domain. See 451 * domain_dirty_limits() for details. 452 */ 453 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 454 { 455 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 456 457 gdtc.avail = global_dirtyable_memory(); 458 domain_dirty_limits(&gdtc); 459 460 *pbackground = gdtc.bg_thresh; 461 *pdirty = gdtc.thresh; 462 } 463 464 /** 465 * node_dirty_limit - maximum number of dirty pages allowed in a node 466 * @pgdat: the node 467 * 468 * Return: the maximum number of dirty pages allowed in a node, based 469 * on the node's dirtyable memory. 470 */ 471 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 472 { 473 unsigned long node_memory = node_dirtyable_memory(pgdat); 474 struct task_struct *tsk = current; 475 unsigned long dirty; 476 477 if (vm_dirty_bytes) 478 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 479 node_memory / global_dirtyable_memory(); 480 else 481 dirty = vm_dirty_ratio * node_memory / 100; 482 483 if (rt_task(tsk)) 484 dirty += dirty / 4; 485 486 return dirty; 487 } 488 489 /** 490 * node_dirty_ok - tells whether a node is within its dirty limits 491 * @pgdat: the node to check 492 * 493 * Return: %true when the dirty pages in @pgdat are within the node's 494 * dirty limit, %false if the limit is exceeded. 495 */ 496 bool node_dirty_ok(struct pglist_data *pgdat) 497 { 498 unsigned long limit = node_dirty_limit(pgdat); 499 unsigned long nr_pages = 0; 500 501 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 502 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 503 504 return nr_pages <= limit; 505 } 506 507 int dirty_background_ratio_handler(struct ctl_table *table, int write, 508 void *buffer, size_t *lenp, loff_t *ppos) 509 { 510 int ret; 511 512 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 513 if (ret == 0 && write) 514 dirty_background_bytes = 0; 515 return ret; 516 } 517 518 int dirty_background_bytes_handler(struct ctl_table *table, int write, 519 void *buffer, size_t *lenp, loff_t *ppos) 520 { 521 int ret; 522 523 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 524 if (ret == 0 && write) 525 dirty_background_ratio = 0; 526 return ret; 527 } 528 529 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer, 530 size_t *lenp, loff_t *ppos) 531 { 532 int old_ratio = vm_dirty_ratio; 533 int ret; 534 535 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 536 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 537 writeback_set_ratelimit(); 538 vm_dirty_bytes = 0; 539 } 540 return ret; 541 } 542 543 int dirty_bytes_handler(struct ctl_table *table, int write, 544 void *buffer, size_t *lenp, loff_t *ppos) 545 { 546 unsigned long old_bytes = vm_dirty_bytes; 547 int ret; 548 549 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 550 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 551 writeback_set_ratelimit(); 552 vm_dirty_ratio = 0; 553 } 554 return ret; 555 } 556 557 static unsigned long wp_next_time(unsigned long cur_time) 558 { 559 cur_time += VM_COMPLETIONS_PERIOD_LEN; 560 /* 0 has a special meaning... */ 561 if (!cur_time) 562 return 1; 563 return cur_time; 564 } 565 566 static void wb_domain_writeout_inc(struct wb_domain *dom, 567 struct fprop_local_percpu *completions, 568 unsigned int max_prop_frac) 569 { 570 __fprop_inc_percpu_max(&dom->completions, completions, 571 max_prop_frac); 572 /* First event after period switching was turned off? */ 573 if (unlikely(!dom->period_time)) { 574 /* 575 * We can race with other __bdi_writeout_inc calls here but 576 * it does not cause any harm since the resulting time when 577 * timer will fire and what is in writeout_period_time will be 578 * roughly the same. 579 */ 580 dom->period_time = wp_next_time(jiffies); 581 mod_timer(&dom->period_timer, dom->period_time); 582 } 583 } 584 585 /* 586 * Increment @wb's writeout completion count and the global writeout 587 * completion count. Called from test_clear_page_writeback(). 588 */ 589 static inline void __wb_writeout_inc(struct bdi_writeback *wb) 590 { 591 struct wb_domain *cgdom; 592 593 inc_wb_stat(wb, WB_WRITTEN); 594 wb_domain_writeout_inc(&global_wb_domain, &wb->completions, 595 wb->bdi->max_prop_frac); 596 597 cgdom = mem_cgroup_wb_domain(wb); 598 if (cgdom) 599 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb), 600 wb->bdi->max_prop_frac); 601 } 602 603 void wb_writeout_inc(struct bdi_writeback *wb) 604 { 605 unsigned long flags; 606 607 local_irq_save(flags); 608 __wb_writeout_inc(wb); 609 local_irq_restore(flags); 610 } 611 EXPORT_SYMBOL_GPL(wb_writeout_inc); 612 613 /* 614 * On idle system, we can be called long after we scheduled because we use 615 * deferred timers so count with missed periods. 616 */ 617 static void writeout_period(struct timer_list *t) 618 { 619 struct wb_domain *dom = from_timer(dom, t, period_timer); 620 int miss_periods = (jiffies - dom->period_time) / 621 VM_COMPLETIONS_PERIOD_LEN; 622 623 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 624 dom->period_time = wp_next_time(dom->period_time + 625 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 626 mod_timer(&dom->period_timer, dom->period_time); 627 } else { 628 /* 629 * Aging has zeroed all fractions. Stop wasting CPU on period 630 * updates. 631 */ 632 dom->period_time = 0; 633 } 634 } 635 636 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 637 { 638 memset(dom, 0, sizeof(*dom)); 639 640 spin_lock_init(&dom->lock); 641 642 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 643 644 dom->dirty_limit_tstamp = jiffies; 645 646 return fprop_global_init(&dom->completions, gfp); 647 } 648 649 #ifdef CONFIG_CGROUP_WRITEBACK 650 void wb_domain_exit(struct wb_domain *dom) 651 { 652 del_timer_sync(&dom->period_timer); 653 fprop_global_destroy(&dom->completions); 654 } 655 #endif 656 657 /* 658 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 659 * registered backing devices, which, for obvious reasons, can not 660 * exceed 100%. 661 */ 662 static unsigned int bdi_min_ratio; 663 664 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 665 { 666 int ret = 0; 667 668 spin_lock_bh(&bdi_lock); 669 if (min_ratio > bdi->max_ratio) { 670 ret = -EINVAL; 671 } else { 672 min_ratio -= bdi->min_ratio; 673 if (bdi_min_ratio + min_ratio < 100) { 674 bdi_min_ratio += min_ratio; 675 bdi->min_ratio += min_ratio; 676 } else { 677 ret = -EINVAL; 678 } 679 } 680 spin_unlock_bh(&bdi_lock); 681 682 return ret; 683 } 684 685 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 686 { 687 int ret = 0; 688 689 if (max_ratio > 100) 690 return -EINVAL; 691 692 spin_lock_bh(&bdi_lock); 693 if (bdi->min_ratio > max_ratio) { 694 ret = -EINVAL; 695 } else { 696 bdi->max_ratio = max_ratio; 697 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 698 } 699 spin_unlock_bh(&bdi_lock); 700 701 return ret; 702 } 703 EXPORT_SYMBOL(bdi_set_max_ratio); 704 705 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 706 unsigned long bg_thresh) 707 { 708 return (thresh + bg_thresh) / 2; 709 } 710 711 static unsigned long hard_dirty_limit(struct wb_domain *dom, 712 unsigned long thresh) 713 { 714 return max(thresh, dom->dirty_limit); 715 } 716 717 /* 718 * Memory which can be further allocated to a memcg domain is capped by 719 * system-wide clean memory excluding the amount being used in the domain. 720 */ 721 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 722 unsigned long filepages, unsigned long headroom) 723 { 724 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 725 unsigned long clean = filepages - min(filepages, mdtc->dirty); 726 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 727 unsigned long other_clean = global_clean - min(global_clean, clean); 728 729 mdtc->avail = filepages + min(headroom, other_clean); 730 } 731 732 /** 733 * __wb_calc_thresh - @wb's share of dirty throttling threshold 734 * @dtc: dirty_throttle_context of interest 735 * 736 * Note that balance_dirty_pages() will only seriously take it as a hard limit 737 * when sleeping max_pause per page is not enough to keep the dirty pages under 738 * control. For example, when the device is completely stalled due to some error 739 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 740 * In the other normal situations, it acts more gently by throttling the tasks 741 * more (rather than completely block them) when the wb dirty pages go high. 742 * 743 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 744 * - starving fast devices 745 * - piling up dirty pages (that will take long time to sync) on slow devices 746 * 747 * The wb's share of dirty limit will be adapting to its throughput and 748 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 749 * 750 * Return: @wb's dirty limit in pages. The term "dirty" in the context of 751 * dirty balancing includes all PG_dirty and PG_writeback pages. 752 */ 753 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) 754 { 755 struct wb_domain *dom = dtc_dom(dtc); 756 unsigned long thresh = dtc->thresh; 757 u64 wb_thresh; 758 unsigned long numerator, denominator; 759 unsigned long wb_min_ratio, wb_max_ratio; 760 761 /* 762 * Calculate this BDI's share of the thresh ratio. 763 */ 764 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 765 &numerator, &denominator); 766 767 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100; 768 wb_thresh *= numerator; 769 wb_thresh = div64_ul(wb_thresh, denominator); 770 771 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 772 773 wb_thresh += (thresh * wb_min_ratio) / 100; 774 if (wb_thresh > (thresh * wb_max_ratio) / 100) 775 wb_thresh = thresh * wb_max_ratio / 100; 776 777 return wb_thresh; 778 } 779 780 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 781 { 782 struct dirty_throttle_control gdtc = { GDTC_INIT(wb), 783 .thresh = thresh }; 784 return __wb_calc_thresh(&gdtc); 785 } 786 787 /* 788 * setpoint - dirty 3 789 * f(dirty) := 1.0 + (----------------) 790 * limit - setpoint 791 * 792 * it's a 3rd order polynomial that subjects to 793 * 794 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 795 * (2) f(setpoint) = 1.0 => the balance point 796 * (3) f(limit) = 0 => the hard limit 797 * (4) df/dx <= 0 => negative feedback control 798 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 799 * => fast response on large errors; small oscillation near setpoint 800 */ 801 static long long pos_ratio_polynom(unsigned long setpoint, 802 unsigned long dirty, 803 unsigned long limit) 804 { 805 long long pos_ratio; 806 long x; 807 808 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 809 (limit - setpoint) | 1); 810 pos_ratio = x; 811 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 812 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 813 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 814 815 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 816 } 817 818 /* 819 * Dirty position control. 820 * 821 * (o) global/bdi setpoints 822 * 823 * We want the dirty pages be balanced around the global/wb setpoints. 824 * When the number of dirty pages is higher/lower than the setpoint, the 825 * dirty position control ratio (and hence task dirty ratelimit) will be 826 * decreased/increased to bring the dirty pages back to the setpoint. 827 * 828 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 829 * 830 * if (dirty < setpoint) scale up pos_ratio 831 * if (dirty > setpoint) scale down pos_ratio 832 * 833 * if (wb_dirty < wb_setpoint) scale up pos_ratio 834 * if (wb_dirty > wb_setpoint) scale down pos_ratio 835 * 836 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 837 * 838 * (o) global control line 839 * 840 * ^ pos_ratio 841 * | 842 * | |<===== global dirty control scope ======>| 843 * 2.0 .............* 844 * | .* 845 * | . * 846 * | . * 847 * | . * 848 * | . * 849 * | . * 850 * 1.0 ................................* 851 * | . . * 852 * | . . * 853 * | . . * 854 * | . . * 855 * | . . * 856 * 0 +------------.------------------.----------------------*-------------> 857 * freerun^ setpoint^ limit^ dirty pages 858 * 859 * (o) wb control line 860 * 861 * ^ pos_ratio 862 * | 863 * | * 864 * | * 865 * | * 866 * | * 867 * | * |<=========== span ============>| 868 * 1.0 .......................* 869 * | . * 870 * | . * 871 * | . * 872 * | . * 873 * | . * 874 * | . * 875 * | . * 876 * | . * 877 * | . * 878 * | . * 879 * | . * 880 * 1/4 ...............................................* * * * * * * * * * * * 881 * | . . 882 * | . . 883 * | . . 884 * 0 +----------------------.-------------------------------.-------------> 885 * wb_setpoint^ x_intercept^ 886 * 887 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 888 * be smoothly throttled down to normal if it starts high in situations like 889 * - start writing to a slow SD card and a fast disk at the same time. The SD 890 * card's wb_dirty may rush to many times higher than wb_setpoint. 891 * - the wb dirty thresh drops quickly due to change of JBOD workload 892 */ 893 static void wb_position_ratio(struct dirty_throttle_control *dtc) 894 { 895 struct bdi_writeback *wb = dtc->wb; 896 unsigned long write_bw = wb->avg_write_bandwidth; 897 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 898 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 899 unsigned long wb_thresh = dtc->wb_thresh; 900 unsigned long x_intercept; 901 unsigned long setpoint; /* dirty pages' target balance point */ 902 unsigned long wb_setpoint; 903 unsigned long span; 904 long long pos_ratio; /* for scaling up/down the rate limit */ 905 long x; 906 907 dtc->pos_ratio = 0; 908 909 if (unlikely(dtc->dirty >= limit)) 910 return; 911 912 /* 913 * global setpoint 914 * 915 * See comment for pos_ratio_polynom(). 916 */ 917 setpoint = (freerun + limit) / 2; 918 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 919 920 /* 921 * The strictlimit feature is a tool preventing mistrusted filesystems 922 * from growing a large number of dirty pages before throttling. For 923 * such filesystems balance_dirty_pages always checks wb counters 924 * against wb limits. Even if global "nr_dirty" is under "freerun". 925 * This is especially important for fuse which sets bdi->max_ratio to 926 * 1% by default. Without strictlimit feature, fuse writeback may 927 * consume arbitrary amount of RAM because it is accounted in 928 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 929 * 930 * Here, in wb_position_ratio(), we calculate pos_ratio based on 931 * two values: wb_dirty and wb_thresh. Let's consider an example: 932 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 933 * limits are set by default to 10% and 20% (background and throttle). 934 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 935 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 936 * about ~6K pages (as the average of background and throttle wb 937 * limits). The 3rd order polynomial will provide positive feedback if 938 * wb_dirty is under wb_setpoint and vice versa. 939 * 940 * Note, that we cannot use global counters in these calculations 941 * because we want to throttle process writing to a strictlimit wb 942 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 943 * in the example above). 944 */ 945 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 946 long long wb_pos_ratio; 947 948 if (dtc->wb_dirty < 8) { 949 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 950 2 << RATELIMIT_CALC_SHIFT); 951 return; 952 } 953 954 if (dtc->wb_dirty >= wb_thresh) 955 return; 956 957 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 958 dtc->wb_bg_thresh); 959 960 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 961 return; 962 963 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 964 wb_thresh); 965 966 /* 967 * Typically, for strictlimit case, wb_setpoint << setpoint 968 * and pos_ratio >> wb_pos_ratio. In the other words global 969 * state ("dirty") is not limiting factor and we have to 970 * make decision based on wb counters. But there is an 971 * important case when global pos_ratio should get precedence: 972 * global limits are exceeded (e.g. due to activities on other 973 * wb's) while given strictlimit wb is below limit. 974 * 975 * "pos_ratio * wb_pos_ratio" would work for the case above, 976 * but it would look too non-natural for the case of all 977 * activity in the system coming from a single strictlimit wb 978 * with bdi->max_ratio == 100%. 979 * 980 * Note that min() below somewhat changes the dynamics of the 981 * control system. Normally, pos_ratio value can be well over 3 982 * (when globally we are at freerun and wb is well below wb 983 * setpoint). Now the maximum pos_ratio in the same situation 984 * is 2. We might want to tweak this if we observe the control 985 * system is too slow to adapt. 986 */ 987 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 988 return; 989 } 990 991 /* 992 * We have computed basic pos_ratio above based on global situation. If 993 * the wb is over/under its share of dirty pages, we want to scale 994 * pos_ratio further down/up. That is done by the following mechanism. 995 */ 996 997 /* 998 * wb setpoint 999 * 1000 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 1001 * 1002 * x_intercept - wb_dirty 1003 * := -------------------------- 1004 * x_intercept - wb_setpoint 1005 * 1006 * The main wb control line is a linear function that subjects to 1007 * 1008 * (1) f(wb_setpoint) = 1.0 1009 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1010 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1011 * 1012 * For single wb case, the dirty pages are observed to fluctuate 1013 * regularly within range 1014 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1015 * for various filesystems, where (2) can yield in a reasonable 12.5% 1016 * fluctuation range for pos_ratio. 1017 * 1018 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1019 * own size, so move the slope over accordingly and choose a slope that 1020 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1021 */ 1022 if (unlikely(wb_thresh > dtc->thresh)) 1023 wb_thresh = dtc->thresh; 1024 /* 1025 * It's very possible that wb_thresh is close to 0 not because the 1026 * device is slow, but that it has remained inactive for long time. 1027 * Honour such devices a reasonable good (hopefully IO efficient) 1028 * threshold, so that the occasional writes won't be blocked and active 1029 * writes can rampup the threshold quickly. 1030 */ 1031 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1032 /* 1033 * scale global setpoint to wb's: 1034 * wb_setpoint = setpoint * wb_thresh / thresh 1035 */ 1036 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1037 wb_setpoint = setpoint * (u64)x >> 16; 1038 /* 1039 * Use span=(8*write_bw) in single wb case as indicated by 1040 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1041 * 1042 * wb_thresh thresh - wb_thresh 1043 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1044 * thresh thresh 1045 */ 1046 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1047 x_intercept = wb_setpoint + span; 1048 1049 if (dtc->wb_dirty < x_intercept - span / 4) { 1050 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1051 (x_intercept - wb_setpoint) | 1); 1052 } else 1053 pos_ratio /= 4; 1054 1055 /* 1056 * wb reserve area, safeguard against dirty pool underrun and disk idle 1057 * It may push the desired control point of global dirty pages higher 1058 * than setpoint. 1059 */ 1060 x_intercept = wb_thresh / 2; 1061 if (dtc->wb_dirty < x_intercept) { 1062 if (dtc->wb_dirty > x_intercept / 8) 1063 pos_ratio = div_u64(pos_ratio * x_intercept, 1064 dtc->wb_dirty); 1065 else 1066 pos_ratio *= 8; 1067 } 1068 1069 dtc->pos_ratio = pos_ratio; 1070 } 1071 1072 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1073 unsigned long elapsed, 1074 unsigned long written) 1075 { 1076 const unsigned long period = roundup_pow_of_two(3 * HZ); 1077 unsigned long avg = wb->avg_write_bandwidth; 1078 unsigned long old = wb->write_bandwidth; 1079 u64 bw; 1080 1081 /* 1082 * bw = written * HZ / elapsed 1083 * 1084 * bw * elapsed + write_bandwidth * (period - elapsed) 1085 * write_bandwidth = --------------------------------------------------- 1086 * period 1087 * 1088 * @written may have decreased due to account_page_redirty(). 1089 * Avoid underflowing @bw calculation. 1090 */ 1091 bw = written - min(written, wb->written_stamp); 1092 bw *= HZ; 1093 if (unlikely(elapsed > period)) { 1094 bw = div64_ul(bw, elapsed); 1095 avg = bw; 1096 goto out; 1097 } 1098 bw += (u64)wb->write_bandwidth * (period - elapsed); 1099 bw >>= ilog2(period); 1100 1101 /* 1102 * one more level of smoothing, for filtering out sudden spikes 1103 */ 1104 if (avg > old && old >= (unsigned long)bw) 1105 avg -= (avg - old) >> 3; 1106 1107 if (avg < old && old <= (unsigned long)bw) 1108 avg += (old - avg) >> 3; 1109 1110 out: 1111 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1112 avg = max(avg, 1LU); 1113 if (wb_has_dirty_io(wb)) { 1114 long delta = avg - wb->avg_write_bandwidth; 1115 WARN_ON_ONCE(atomic_long_add_return(delta, 1116 &wb->bdi->tot_write_bandwidth) <= 0); 1117 } 1118 wb->write_bandwidth = bw; 1119 wb->avg_write_bandwidth = avg; 1120 } 1121 1122 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1123 { 1124 struct wb_domain *dom = dtc_dom(dtc); 1125 unsigned long thresh = dtc->thresh; 1126 unsigned long limit = dom->dirty_limit; 1127 1128 /* 1129 * Follow up in one step. 1130 */ 1131 if (limit < thresh) { 1132 limit = thresh; 1133 goto update; 1134 } 1135 1136 /* 1137 * Follow down slowly. Use the higher one as the target, because thresh 1138 * may drop below dirty. This is exactly the reason to introduce 1139 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1140 */ 1141 thresh = max(thresh, dtc->dirty); 1142 if (limit > thresh) { 1143 limit -= (limit - thresh) >> 5; 1144 goto update; 1145 } 1146 return; 1147 update: 1148 dom->dirty_limit = limit; 1149 } 1150 1151 static void domain_update_bandwidth(struct dirty_throttle_control *dtc, 1152 unsigned long now) 1153 { 1154 struct wb_domain *dom = dtc_dom(dtc); 1155 1156 /* 1157 * check locklessly first to optimize away locking for the most time 1158 */ 1159 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1160 return; 1161 1162 spin_lock(&dom->lock); 1163 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1164 update_dirty_limit(dtc); 1165 dom->dirty_limit_tstamp = now; 1166 } 1167 spin_unlock(&dom->lock); 1168 } 1169 1170 /* 1171 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1172 * 1173 * Normal wb tasks will be curbed at or below it in long term. 1174 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1175 */ 1176 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1177 unsigned long dirtied, 1178 unsigned long elapsed) 1179 { 1180 struct bdi_writeback *wb = dtc->wb; 1181 unsigned long dirty = dtc->dirty; 1182 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1183 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1184 unsigned long setpoint = (freerun + limit) / 2; 1185 unsigned long write_bw = wb->avg_write_bandwidth; 1186 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1187 unsigned long dirty_rate; 1188 unsigned long task_ratelimit; 1189 unsigned long balanced_dirty_ratelimit; 1190 unsigned long step; 1191 unsigned long x; 1192 unsigned long shift; 1193 1194 /* 1195 * The dirty rate will match the writeout rate in long term, except 1196 * when dirty pages are truncated by userspace or re-dirtied by FS. 1197 */ 1198 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1199 1200 /* 1201 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1202 */ 1203 task_ratelimit = (u64)dirty_ratelimit * 1204 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1205 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1206 1207 /* 1208 * A linear estimation of the "balanced" throttle rate. The theory is, 1209 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1210 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1211 * formula will yield the balanced rate limit (write_bw / N). 1212 * 1213 * Note that the expanded form is not a pure rate feedback: 1214 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1215 * but also takes pos_ratio into account: 1216 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1217 * 1218 * (1) is not realistic because pos_ratio also takes part in balancing 1219 * the dirty rate. Consider the state 1220 * pos_ratio = 0.5 (3) 1221 * rate = 2 * (write_bw / N) (4) 1222 * If (1) is used, it will stuck in that state! Because each dd will 1223 * be throttled at 1224 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1225 * yielding 1226 * dirty_rate = N * task_ratelimit = write_bw (6) 1227 * put (6) into (1) we get 1228 * rate_(i+1) = rate_(i) (7) 1229 * 1230 * So we end up using (2) to always keep 1231 * rate_(i+1) ~= (write_bw / N) (8) 1232 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1233 * pos_ratio is able to drive itself to 1.0, which is not only where 1234 * the dirty count meet the setpoint, but also where the slope of 1235 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1236 */ 1237 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1238 dirty_rate | 1); 1239 /* 1240 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1241 */ 1242 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1243 balanced_dirty_ratelimit = write_bw; 1244 1245 /* 1246 * We could safely do this and return immediately: 1247 * 1248 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1249 * 1250 * However to get a more stable dirty_ratelimit, the below elaborated 1251 * code makes use of task_ratelimit to filter out singular points and 1252 * limit the step size. 1253 * 1254 * The below code essentially only uses the relative value of 1255 * 1256 * task_ratelimit - dirty_ratelimit 1257 * = (pos_ratio - 1) * dirty_ratelimit 1258 * 1259 * which reflects the direction and size of dirty position error. 1260 */ 1261 1262 /* 1263 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1264 * task_ratelimit is on the same side of dirty_ratelimit, too. 1265 * For example, when 1266 * - dirty_ratelimit > balanced_dirty_ratelimit 1267 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1268 * lowering dirty_ratelimit will help meet both the position and rate 1269 * control targets. Otherwise, don't update dirty_ratelimit if it will 1270 * only help meet the rate target. After all, what the users ultimately 1271 * feel and care are stable dirty rate and small position error. 1272 * 1273 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1274 * and filter out the singular points of balanced_dirty_ratelimit. Which 1275 * keeps jumping around randomly and can even leap far away at times 1276 * due to the small 200ms estimation period of dirty_rate (we want to 1277 * keep that period small to reduce time lags). 1278 */ 1279 step = 0; 1280 1281 /* 1282 * For strictlimit case, calculations above were based on wb counters 1283 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1284 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1285 * Hence, to calculate "step" properly, we have to use wb_dirty as 1286 * "dirty" and wb_setpoint as "setpoint". 1287 * 1288 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1289 * it's possible that wb_thresh is close to zero due to inactivity 1290 * of backing device. 1291 */ 1292 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1293 dirty = dtc->wb_dirty; 1294 if (dtc->wb_dirty < 8) 1295 setpoint = dtc->wb_dirty + 1; 1296 else 1297 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1298 } 1299 1300 if (dirty < setpoint) { 1301 x = min3(wb->balanced_dirty_ratelimit, 1302 balanced_dirty_ratelimit, task_ratelimit); 1303 if (dirty_ratelimit < x) 1304 step = x - dirty_ratelimit; 1305 } else { 1306 x = max3(wb->balanced_dirty_ratelimit, 1307 balanced_dirty_ratelimit, task_ratelimit); 1308 if (dirty_ratelimit > x) 1309 step = dirty_ratelimit - x; 1310 } 1311 1312 /* 1313 * Don't pursue 100% rate matching. It's impossible since the balanced 1314 * rate itself is constantly fluctuating. So decrease the track speed 1315 * when it gets close to the target. Helps eliminate pointless tremors. 1316 */ 1317 shift = dirty_ratelimit / (2 * step + 1); 1318 if (shift < BITS_PER_LONG) 1319 step = DIV_ROUND_UP(step >> shift, 8); 1320 else 1321 step = 0; 1322 1323 if (dirty_ratelimit < balanced_dirty_ratelimit) 1324 dirty_ratelimit += step; 1325 else 1326 dirty_ratelimit -= step; 1327 1328 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL); 1329 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1330 1331 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1332 } 1333 1334 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1335 struct dirty_throttle_control *mdtc, 1336 unsigned long start_time, 1337 bool update_ratelimit) 1338 { 1339 struct bdi_writeback *wb = gdtc->wb; 1340 unsigned long now = jiffies; 1341 unsigned long elapsed = now - wb->bw_time_stamp; 1342 unsigned long dirtied; 1343 unsigned long written; 1344 1345 lockdep_assert_held(&wb->list_lock); 1346 1347 /* 1348 * rate-limit, only update once every 200ms. 1349 */ 1350 if (elapsed < BANDWIDTH_INTERVAL) 1351 return; 1352 1353 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1354 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1355 1356 /* 1357 * Skip quiet periods when disk bandwidth is under-utilized. 1358 * (at least 1s idle time between two flusher runs) 1359 */ 1360 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time)) 1361 goto snapshot; 1362 1363 if (update_ratelimit) { 1364 domain_update_bandwidth(gdtc, now); 1365 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1366 1367 /* 1368 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1369 * compiler has no way to figure that out. Help it. 1370 */ 1371 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1372 domain_update_bandwidth(mdtc, now); 1373 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1374 } 1375 } 1376 wb_update_write_bandwidth(wb, elapsed, written); 1377 1378 snapshot: 1379 wb->dirtied_stamp = dirtied; 1380 wb->written_stamp = written; 1381 wb->bw_time_stamp = now; 1382 } 1383 1384 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time) 1385 { 1386 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1387 1388 __wb_update_bandwidth(&gdtc, NULL, start_time, false); 1389 } 1390 1391 /* 1392 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1393 * will look to see if it needs to start dirty throttling. 1394 * 1395 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1396 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1397 * (the number of pages we may dirty without exceeding the dirty limits). 1398 */ 1399 static unsigned long dirty_poll_interval(unsigned long dirty, 1400 unsigned long thresh) 1401 { 1402 if (thresh > dirty) 1403 return 1UL << (ilog2(thresh - dirty) >> 1); 1404 1405 return 1; 1406 } 1407 1408 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1409 unsigned long wb_dirty) 1410 { 1411 unsigned long bw = wb->avg_write_bandwidth; 1412 unsigned long t; 1413 1414 /* 1415 * Limit pause time for small memory systems. If sleeping for too long 1416 * time, a small pool of dirty/writeback pages may go empty and disk go 1417 * idle. 1418 * 1419 * 8 serves as the safety ratio. 1420 */ 1421 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1422 t++; 1423 1424 return min_t(unsigned long, t, MAX_PAUSE); 1425 } 1426 1427 static long wb_min_pause(struct bdi_writeback *wb, 1428 long max_pause, 1429 unsigned long task_ratelimit, 1430 unsigned long dirty_ratelimit, 1431 int *nr_dirtied_pause) 1432 { 1433 long hi = ilog2(wb->avg_write_bandwidth); 1434 long lo = ilog2(wb->dirty_ratelimit); 1435 long t; /* target pause */ 1436 long pause; /* estimated next pause */ 1437 int pages; /* target nr_dirtied_pause */ 1438 1439 /* target for 10ms pause on 1-dd case */ 1440 t = max(1, HZ / 100); 1441 1442 /* 1443 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1444 * overheads. 1445 * 1446 * (N * 10ms) on 2^N concurrent tasks. 1447 */ 1448 if (hi > lo) 1449 t += (hi - lo) * (10 * HZ) / 1024; 1450 1451 /* 1452 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1453 * on the much more stable dirty_ratelimit. However the next pause time 1454 * will be computed based on task_ratelimit and the two rate limits may 1455 * depart considerably at some time. Especially if task_ratelimit goes 1456 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1457 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1458 * result task_ratelimit won't be executed faithfully, which could 1459 * eventually bring down dirty_ratelimit. 1460 * 1461 * We apply two rules to fix it up: 1462 * 1) try to estimate the next pause time and if necessary, use a lower 1463 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1464 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1465 * 2) limit the target pause time to max_pause/2, so that the normal 1466 * small fluctuations of task_ratelimit won't trigger rule (1) and 1467 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1468 */ 1469 t = min(t, 1 + max_pause / 2); 1470 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1471 1472 /* 1473 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1474 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1475 * When the 16 consecutive reads are often interrupted by some dirty 1476 * throttling pause during the async writes, cfq will go into idles 1477 * (deadline is fine). So push nr_dirtied_pause as high as possible 1478 * until reaches DIRTY_POLL_THRESH=32 pages. 1479 */ 1480 if (pages < DIRTY_POLL_THRESH) { 1481 t = max_pause; 1482 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1483 if (pages > DIRTY_POLL_THRESH) { 1484 pages = DIRTY_POLL_THRESH; 1485 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1486 } 1487 } 1488 1489 pause = HZ * pages / (task_ratelimit + 1); 1490 if (pause > max_pause) { 1491 t = max_pause; 1492 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1493 } 1494 1495 *nr_dirtied_pause = pages; 1496 /* 1497 * The minimal pause time will normally be half the target pause time. 1498 */ 1499 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1500 } 1501 1502 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1503 { 1504 struct bdi_writeback *wb = dtc->wb; 1505 unsigned long wb_reclaimable; 1506 1507 /* 1508 * wb_thresh is not treated as some limiting factor as 1509 * dirty_thresh, due to reasons 1510 * - in JBOD setup, wb_thresh can fluctuate a lot 1511 * - in a system with HDD and USB key, the USB key may somehow 1512 * go into state (wb_dirty >> wb_thresh) either because 1513 * wb_dirty starts high, or because wb_thresh drops low. 1514 * In this case we don't want to hard throttle the USB key 1515 * dirtiers for 100 seconds until wb_dirty drops under 1516 * wb_thresh. Instead the auxiliary wb control line in 1517 * wb_position_ratio() will let the dirtier task progress 1518 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1519 */ 1520 dtc->wb_thresh = __wb_calc_thresh(dtc); 1521 dtc->wb_bg_thresh = dtc->thresh ? 1522 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1523 1524 /* 1525 * In order to avoid the stacked BDI deadlock we need 1526 * to ensure we accurately count the 'dirty' pages when 1527 * the threshold is low. 1528 * 1529 * Otherwise it would be possible to get thresh+n pages 1530 * reported dirty, even though there are thresh-m pages 1531 * actually dirty; with m+n sitting in the percpu 1532 * deltas. 1533 */ 1534 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1535 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1536 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1537 } else { 1538 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1539 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1540 } 1541 } 1542 1543 /* 1544 * balance_dirty_pages() must be called by processes which are generating dirty 1545 * data. It looks at the number of dirty pages in the machine and will force 1546 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1547 * If we're over `background_thresh' then the writeback threads are woken to 1548 * perform some writeout. 1549 */ 1550 static void balance_dirty_pages(struct bdi_writeback *wb, 1551 unsigned long pages_dirtied) 1552 { 1553 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1554 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1555 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1556 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1557 &mdtc_stor : NULL; 1558 struct dirty_throttle_control *sdtc; 1559 unsigned long nr_reclaimable; /* = file_dirty */ 1560 long period; 1561 long pause; 1562 long max_pause; 1563 long min_pause; 1564 int nr_dirtied_pause; 1565 bool dirty_exceeded = false; 1566 unsigned long task_ratelimit; 1567 unsigned long dirty_ratelimit; 1568 struct backing_dev_info *bdi = wb->bdi; 1569 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1570 unsigned long start_time = jiffies; 1571 1572 for (;;) { 1573 unsigned long now = jiffies; 1574 unsigned long dirty, thresh, bg_thresh; 1575 unsigned long m_dirty = 0; /* stop bogus uninit warnings */ 1576 unsigned long m_thresh = 0; 1577 unsigned long m_bg_thresh = 0; 1578 1579 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY); 1580 gdtc->avail = global_dirtyable_memory(); 1581 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK); 1582 1583 domain_dirty_limits(gdtc); 1584 1585 if (unlikely(strictlimit)) { 1586 wb_dirty_limits(gdtc); 1587 1588 dirty = gdtc->wb_dirty; 1589 thresh = gdtc->wb_thresh; 1590 bg_thresh = gdtc->wb_bg_thresh; 1591 } else { 1592 dirty = gdtc->dirty; 1593 thresh = gdtc->thresh; 1594 bg_thresh = gdtc->bg_thresh; 1595 } 1596 1597 if (mdtc) { 1598 unsigned long filepages, headroom, writeback; 1599 1600 /* 1601 * If @wb belongs to !root memcg, repeat the same 1602 * basic calculations for the memcg domain. 1603 */ 1604 mem_cgroup_wb_stats(wb, &filepages, &headroom, 1605 &mdtc->dirty, &writeback); 1606 mdtc->dirty += writeback; 1607 mdtc_calc_avail(mdtc, filepages, headroom); 1608 1609 domain_dirty_limits(mdtc); 1610 1611 if (unlikely(strictlimit)) { 1612 wb_dirty_limits(mdtc); 1613 m_dirty = mdtc->wb_dirty; 1614 m_thresh = mdtc->wb_thresh; 1615 m_bg_thresh = mdtc->wb_bg_thresh; 1616 } else { 1617 m_dirty = mdtc->dirty; 1618 m_thresh = mdtc->thresh; 1619 m_bg_thresh = mdtc->bg_thresh; 1620 } 1621 } 1622 1623 /* 1624 * Throttle it only when the background writeback cannot 1625 * catch-up. This avoids (excessively) small writeouts 1626 * when the wb limits are ramping up in case of !strictlimit. 1627 * 1628 * In strictlimit case make decision based on the wb counters 1629 * and limits. Small writeouts when the wb limits are ramping 1630 * up are the price we consciously pay for strictlimit-ing. 1631 * 1632 * If memcg domain is in effect, @dirty should be under 1633 * both global and memcg freerun ceilings. 1634 */ 1635 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && 1636 (!mdtc || 1637 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { 1638 unsigned long intv; 1639 unsigned long m_intv; 1640 1641 free_running: 1642 intv = dirty_poll_interval(dirty, thresh); 1643 m_intv = ULONG_MAX; 1644 1645 current->dirty_paused_when = now; 1646 current->nr_dirtied = 0; 1647 if (mdtc) 1648 m_intv = dirty_poll_interval(m_dirty, m_thresh); 1649 current->nr_dirtied_pause = min(intv, m_intv); 1650 break; 1651 } 1652 1653 if (unlikely(!writeback_in_progress(wb))) 1654 wb_start_background_writeback(wb); 1655 1656 mem_cgroup_flush_foreign(wb); 1657 1658 /* 1659 * Calculate global domain's pos_ratio and select the 1660 * global dtc by default. 1661 */ 1662 if (!strictlimit) { 1663 wb_dirty_limits(gdtc); 1664 1665 if ((current->flags & PF_LOCAL_THROTTLE) && 1666 gdtc->wb_dirty < 1667 dirty_freerun_ceiling(gdtc->wb_thresh, 1668 gdtc->wb_bg_thresh)) 1669 /* 1670 * LOCAL_THROTTLE tasks must not be throttled 1671 * when below the per-wb freerun ceiling. 1672 */ 1673 goto free_running; 1674 } 1675 1676 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && 1677 ((gdtc->dirty > gdtc->thresh) || strictlimit); 1678 1679 wb_position_ratio(gdtc); 1680 sdtc = gdtc; 1681 1682 if (mdtc) { 1683 /* 1684 * If memcg domain is in effect, calculate its 1685 * pos_ratio. @wb should satisfy constraints from 1686 * both global and memcg domains. Choose the one 1687 * w/ lower pos_ratio. 1688 */ 1689 if (!strictlimit) { 1690 wb_dirty_limits(mdtc); 1691 1692 if ((current->flags & PF_LOCAL_THROTTLE) && 1693 mdtc->wb_dirty < 1694 dirty_freerun_ceiling(mdtc->wb_thresh, 1695 mdtc->wb_bg_thresh)) 1696 /* 1697 * LOCAL_THROTTLE tasks must not be 1698 * throttled when below the per-wb 1699 * freerun ceiling. 1700 */ 1701 goto free_running; 1702 } 1703 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && 1704 ((mdtc->dirty > mdtc->thresh) || strictlimit); 1705 1706 wb_position_ratio(mdtc); 1707 if (mdtc->pos_ratio < gdtc->pos_ratio) 1708 sdtc = mdtc; 1709 } 1710 1711 if (dirty_exceeded && !wb->dirty_exceeded) 1712 wb->dirty_exceeded = 1; 1713 1714 if (time_is_before_jiffies(wb->bw_time_stamp + 1715 BANDWIDTH_INTERVAL)) { 1716 spin_lock(&wb->list_lock); 1717 __wb_update_bandwidth(gdtc, mdtc, start_time, true); 1718 spin_unlock(&wb->list_lock); 1719 } 1720 1721 /* throttle according to the chosen dtc */ 1722 dirty_ratelimit = wb->dirty_ratelimit; 1723 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1724 RATELIMIT_CALC_SHIFT; 1725 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1726 min_pause = wb_min_pause(wb, max_pause, 1727 task_ratelimit, dirty_ratelimit, 1728 &nr_dirtied_pause); 1729 1730 if (unlikely(task_ratelimit == 0)) { 1731 period = max_pause; 1732 pause = max_pause; 1733 goto pause; 1734 } 1735 period = HZ * pages_dirtied / task_ratelimit; 1736 pause = period; 1737 if (current->dirty_paused_when) 1738 pause -= now - current->dirty_paused_when; 1739 /* 1740 * For less than 1s think time (ext3/4 may block the dirtier 1741 * for up to 800ms from time to time on 1-HDD; so does xfs, 1742 * however at much less frequency), try to compensate it in 1743 * future periods by updating the virtual time; otherwise just 1744 * do a reset, as it may be a light dirtier. 1745 */ 1746 if (pause < min_pause) { 1747 trace_balance_dirty_pages(wb, 1748 sdtc->thresh, 1749 sdtc->bg_thresh, 1750 sdtc->dirty, 1751 sdtc->wb_thresh, 1752 sdtc->wb_dirty, 1753 dirty_ratelimit, 1754 task_ratelimit, 1755 pages_dirtied, 1756 period, 1757 min(pause, 0L), 1758 start_time); 1759 if (pause < -HZ) { 1760 current->dirty_paused_when = now; 1761 current->nr_dirtied = 0; 1762 } else if (period) { 1763 current->dirty_paused_when += period; 1764 current->nr_dirtied = 0; 1765 } else if (current->nr_dirtied_pause <= pages_dirtied) 1766 current->nr_dirtied_pause += pages_dirtied; 1767 break; 1768 } 1769 if (unlikely(pause > max_pause)) { 1770 /* for occasional dropped task_ratelimit */ 1771 now += min(pause - max_pause, max_pause); 1772 pause = max_pause; 1773 } 1774 1775 pause: 1776 trace_balance_dirty_pages(wb, 1777 sdtc->thresh, 1778 sdtc->bg_thresh, 1779 sdtc->dirty, 1780 sdtc->wb_thresh, 1781 sdtc->wb_dirty, 1782 dirty_ratelimit, 1783 task_ratelimit, 1784 pages_dirtied, 1785 period, 1786 pause, 1787 start_time); 1788 __set_current_state(TASK_KILLABLE); 1789 wb->dirty_sleep = now; 1790 io_schedule_timeout(pause); 1791 1792 current->dirty_paused_when = now + pause; 1793 current->nr_dirtied = 0; 1794 current->nr_dirtied_pause = nr_dirtied_pause; 1795 1796 /* 1797 * This is typically equal to (dirty < thresh) and can also 1798 * keep "1000+ dd on a slow USB stick" under control. 1799 */ 1800 if (task_ratelimit) 1801 break; 1802 1803 /* 1804 * In the case of an unresponsive NFS server and the NFS dirty 1805 * pages exceeds dirty_thresh, give the other good wb's a pipe 1806 * to go through, so that tasks on them still remain responsive. 1807 * 1808 * In theory 1 page is enough to keep the consumer-producer 1809 * pipe going: the flusher cleans 1 page => the task dirties 1 1810 * more page. However wb_dirty has accounting errors. So use 1811 * the larger and more IO friendly wb_stat_error. 1812 */ 1813 if (sdtc->wb_dirty <= wb_stat_error()) 1814 break; 1815 1816 if (fatal_signal_pending(current)) 1817 break; 1818 } 1819 1820 if (!dirty_exceeded && wb->dirty_exceeded) 1821 wb->dirty_exceeded = 0; 1822 1823 if (writeback_in_progress(wb)) 1824 return; 1825 1826 /* 1827 * In laptop mode, we wait until hitting the higher threshold before 1828 * starting background writeout, and then write out all the way down 1829 * to the lower threshold. So slow writers cause minimal disk activity. 1830 * 1831 * In normal mode, we start background writeout at the lower 1832 * background_thresh, to keep the amount of dirty memory low. 1833 */ 1834 if (laptop_mode) 1835 return; 1836 1837 if (nr_reclaimable > gdtc->bg_thresh) 1838 wb_start_background_writeback(wb); 1839 } 1840 1841 static DEFINE_PER_CPU(int, bdp_ratelimits); 1842 1843 /* 1844 * Normal tasks are throttled by 1845 * loop { 1846 * dirty tsk->nr_dirtied_pause pages; 1847 * take a snap in balance_dirty_pages(); 1848 * } 1849 * However there is a worst case. If every task exit immediately when dirtied 1850 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1851 * called to throttle the page dirties. The solution is to save the not yet 1852 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1853 * randomly into the running tasks. This works well for the above worst case, 1854 * as the new task will pick up and accumulate the old task's leaked dirty 1855 * count and eventually get throttled. 1856 */ 1857 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1858 1859 /** 1860 * balance_dirty_pages_ratelimited - balance dirty memory state 1861 * @mapping: address_space which was dirtied 1862 * 1863 * Processes which are dirtying memory should call in here once for each page 1864 * which was newly dirtied. The function will periodically check the system's 1865 * dirty state and will initiate writeback if needed. 1866 * 1867 * On really big machines, get_writeback_state is expensive, so try to avoid 1868 * calling it too often (ratelimiting). But once we're over the dirty memory 1869 * limit we decrease the ratelimiting by a lot, to prevent individual processes 1870 * from overshooting the limit by (ratelimit_pages) each. 1871 */ 1872 void balance_dirty_pages_ratelimited(struct address_space *mapping) 1873 { 1874 struct inode *inode = mapping->host; 1875 struct backing_dev_info *bdi = inode_to_bdi(inode); 1876 struct bdi_writeback *wb = NULL; 1877 int ratelimit; 1878 int *p; 1879 1880 if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) 1881 return; 1882 1883 if (inode_cgwb_enabled(inode)) 1884 wb = wb_get_create_current(bdi, GFP_KERNEL); 1885 if (!wb) 1886 wb = &bdi->wb; 1887 1888 ratelimit = current->nr_dirtied_pause; 1889 if (wb->dirty_exceeded) 1890 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1891 1892 preempt_disable(); 1893 /* 1894 * This prevents one CPU to accumulate too many dirtied pages without 1895 * calling into balance_dirty_pages(), which can happen when there are 1896 * 1000+ tasks, all of them start dirtying pages at exactly the same 1897 * time, hence all honoured too large initial task->nr_dirtied_pause. 1898 */ 1899 p = this_cpu_ptr(&bdp_ratelimits); 1900 if (unlikely(current->nr_dirtied >= ratelimit)) 1901 *p = 0; 1902 else if (unlikely(*p >= ratelimit_pages)) { 1903 *p = 0; 1904 ratelimit = 0; 1905 } 1906 /* 1907 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1908 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1909 * the dirty throttling and livelock other long-run dirtiers. 1910 */ 1911 p = this_cpu_ptr(&dirty_throttle_leaks); 1912 if (*p > 0 && current->nr_dirtied < ratelimit) { 1913 unsigned long nr_pages_dirtied; 1914 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1915 *p -= nr_pages_dirtied; 1916 current->nr_dirtied += nr_pages_dirtied; 1917 } 1918 preempt_enable(); 1919 1920 if (unlikely(current->nr_dirtied >= ratelimit)) 1921 balance_dirty_pages(wb, current->nr_dirtied); 1922 1923 wb_put(wb); 1924 } 1925 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 1926 1927 /** 1928 * wb_over_bg_thresh - does @wb need to be written back? 1929 * @wb: bdi_writeback of interest 1930 * 1931 * Determines whether background writeback should keep writing @wb or it's 1932 * clean enough. 1933 * 1934 * Return: %true if writeback should continue. 1935 */ 1936 bool wb_over_bg_thresh(struct bdi_writeback *wb) 1937 { 1938 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1939 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1940 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1941 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1942 &mdtc_stor : NULL; 1943 1944 /* 1945 * Similar to balance_dirty_pages() but ignores pages being written 1946 * as we're trying to decide whether to put more under writeback. 1947 */ 1948 gdtc->avail = global_dirtyable_memory(); 1949 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY); 1950 domain_dirty_limits(gdtc); 1951 1952 if (gdtc->dirty > gdtc->bg_thresh) 1953 return true; 1954 1955 if (wb_stat(wb, WB_RECLAIMABLE) > 1956 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh)) 1957 return true; 1958 1959 if (mdtc) { 1960 unsigned long filepages, headroom, writeback; 1961 1962 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, 1963 &writeback); 1964 mdtc_calc_avail(mdtc, filepages, headroom); 1965 domain_dirty_limits(mdtc); /* ditto, ignore writeback */ 1966 1967 if (mdtc->dirty > mdtc->bg_thresh) 1968 return true; 1969 1970 if (wb_stat(wb, WB_RECLAIMABLE) > 1971 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh)) 1972 return true; 1973 } 1974 1975 return false; 1976 } 1977 1978 /* 1979 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1980 */ 1981 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 1982 void *buffer, size_t *length, loff_t *ppos) 1983 { 1984 unsigned int old_interval = dirty_writeback_interval; 1985 int ret; 1986 1987 ret = proc_dointvec(table, write, buffer, length, ppos); 1988 1989 /* 1990 * Writing 0 to dirty_writeback_interval will disable periodic writeback 1991 * and a different non-zero value will wakeup the writeback threads. 1992 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 1993 * iterate over all bdis and wbs. 1994 * The reason we do this is to make the change take effect immediately. 1995 */ 1996 if (!ret && write && dirty_writeback_interval && 1997 dirty_writeback_interval != old_interval) 1998 wakeup_flusher_threads(WB_REASON_PERIODIC); 1999 2000 return ret; 2001 } 2002 2003 #ifdef CONFIG_BLOCK 2004 void laptop_mode_timer_fn(struct timer_list *t) 2005 { 2006 struct backing_dev_info *backing_dev_info = 2007 from_timer(backing_dev_info, t, laptop_mode_wb_timer); 2008 2009 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); 2010 } 2011 2012 /* 2013 * We've spun up the disk and we're in laptop mode: schedule writeback 2014 * of all dirty data a few seconds from now. If the flush is already scheduled 2015 * then push it back - the user is still using the disk. 2016 */ 2017 void laptop_io_completion(struct backing_dev_info *info) 2018 { 2019 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2020 } 2021 2022 /* 2023 * We're in laptop mode and we've just synced. The sync's writes will have 2024 * caused another writeback to be scheduled by laptop_io_completion. 2025 * Nothing needs to be written back anymore, so we unschedule the writeback. 2026 */ 2027 void laptop_sync_completion(void) 2028 { 2029 struct backing_dev_info *bdi; 2030 2031 rcu_read_lock(); 2032 2033 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2034 del_timer(&bdi->laptop_mode_wb_timer); 2035 2036 rcu_read_unlock(); 2037 } 2038 #endif 2039 2040 /* 2041 * If ratelimit_pages is too high then we can get into dirty-data overload 2042 * if a large number of processes all perform writes at the same time. 2043 * If it is too low then SMP machines will call the (expensive) 2044 * get_writeback_state too often. 2045 * 2046 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2047 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2048 * thresholds. 2049 */ 2050 2051 void writeback_set_ratelimit(void) 2052 { 2053 struct wb_domain *dom = &global_wb_domain; 2054 unsigned long background_thresh; 2055 unsigned long dirty_thresh; 2056 2057 global_dirty_limits(&background_thresh, &dirty_thresh); 2058 dom->dirty_limit = dirty_thresh; 2059 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2060 if (ratelimit_pages < 16) 2061 ratelimit_pages = 16; 2062 } 2063 2064 static int page_writeback_cpu_online(unsigned int cpu) 2065 { 2066 writeback_set_ratelimit(); 2067 return 0; 2068 } 2069 2070 /* 2071 * Called early on to tune the page writeback dirty limits. 2072 * 2073 * We used to scale dirty pages according to how total memory 2074 * related to pages that could be allocated for buffers. 2075 * 2076 * However, that was when we used "dirty_ratio" to scale with 2077 * all memory, and we don't do that any more. "dirty_ratio" 2078 * is now applied to total non-HIGHPAGE memory, and as such we can't 2079 * get into the old insane situation any more where we had 2080 * large amounts of dirty pages compared to a small amount of 2081 * non-HIGHMEM memory. 2082 * 2083 * But we might still want to scale the dirty_ratio by how 2084 * much memory the box has.. 2085 */ 2086 void __init page_writeback_init(void) 2087 { 2088 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2089 2090 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2091 page_writeback_cpu_online, NULL); 2092 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2093 page_writeback_cpu_online); 2094 } 2095 2096 /** 2097 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 2098 * @mapping: address space structure to write 2099 * @start: starting page index 2100 * @end: ending page index (inclusive) 2101 * 2102 * This function scans the page range from @start to @end (inclusive) and tags 2103 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 2104 * that write_cache_pages (or whoever calls this function) will then use 2105 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 2106 * used to avoid livelocking of writeback by a process steadily creating new 2107 * dirty pages in the file (thus it is important for this function to be quick 2108 * so that it can tag pages faster than a dirtying process can create them). 2109 */ 2110 void tag_pages_for_writeback(struct address_space *mapping, 2111 pgoff_t start, pgoff_t end) 2112 { 2113 XA_STATE(xas, &mapping->i_pages, start); 2114 unsigned int tagged = 0; 2115 void *page; 2116 2117 xas_lock_irq(&xas); 2118 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { 2119 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2120 if (++tagged % XA_CHECK_SCHED) 2121 continue; 2122 2123 xas_pause(&xas); 2124 xas_unlock_irq(&xas); 2125 cond_resched(); 2126 xas_lock_irq(&xas); 2127 } 2128 xas_unlock_irq(&xas); 2129 } 2130 EXPORT_SYMBOL(tag_pages_for_writeback); 2131 2132 /** 2133 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2134 * @mapping: address space structure to write 2135 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2136 * @writepage: function called for each page 2137 * @data: data passed to writepage function 2138 * 2139 * If a page is already under I/O, write_cache_pages() skips it, even 2140 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2141 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2142 * and msync() need to guarantee that all the data which was dirty at the time 2143 * the call was made get new I/O started against them. If wbc->sync_mode is 2144 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2145 * existing IO to complete. 2146 * 2147 * To avoid livelocks (when other process dirties new pages), we first tag 2148 * pages which should be written back with TOWRITE tag and only then start 2149 * writing them. For data-integrity sync we have to be careful so that we do 2150 * not miss some pages (e.g., because some other process has cleared TOWRITE 2151 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 2152 * by the process clearing the DIRTY tag (and submitting the page for IO). 2153 * 2154 * To avoid deadlocks between range_cyclic writeback and callers that hold 2155 * pages in PageWriteback to aggregate IO until write_cache_pages() returns, 2156 * we do not loop back to the start of the file. Doing so causes a page 2157 * lock/page writeback access order inversion - we should only ever lock 2158 * multiple pages in ascending page->index order, and looping back to the start 2159 * of the file violates that rule and causes deadlocks. 2160 * 2161 * Return: %0 on success, negative error code otherwise 2162 */ 2163 int write_cache_pages(struct address_space *mapping, 2164 struct writeback_control *wbc, writepage_t writepage, 2165 void *data) 2166 { 2167 int ret = 0; 2168 int done = 0; 2169 int error; 2170 struct pagevec pvec; 2171 int nr_pages; 2172 pgoff_t index; 2173 pgoff_t end; /* Inclusive */ 2174 pgoff_t done_index; 2175 int range_whole = 0; 2176 xa_mark_t tag; 2177 2178 pagevec_init(&pvec); 2179 if (wbc->range_cyclic) { 2180 index = mapping->writeback_index; /* prev offset */ 2181 end = -1; 2182 } else { 2183 index = wbc->range_start >> PAGE_SHIFT; 2184 end = wbc->range_end >> PAGE_SHIFT; 2185 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2186 range_whole = 1; 2187 } 2188 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) { 2189 tag_pages_for_writeback(mapping, index, end); 2190 tag = PAGECACHE_TAG_TOWRITE; 2191 } else { 2192 tag = PAGECACHE_TAG_DIRTY; 2193 } 2194 done_index = index; 2195 while (!done && (index <= end)) { 2196 int i; 2197 2198 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2199 tag); 2200 if (nr_pages == 0) 2201 break; 2202 2203 for (i = 0; i < nr_pages; i++) { 2204 struct page *page = pvec.pages[i]; 2205 2206 done_index = page->index; 2207 2208 lock_page(page); 2209 2210 /* 2211 * Page truncated or invalidated. We can freely skip it 2212 * then, even for data integrity operations: the page 2213 * has disappeared concurrently, so there could be no 2214 * real expectation of this data integrity operation 2215 * even if there is now a new, dirty page at the same 2216 * pagecache address. 2217 */ 2218 if (unlikely(page->mapping != mapping)) { 2219 continue_unlock: 2220 unlock_page(page); 2221 continue; 2222 } 2223 2224 if (!PageDirty(page)) { 2225 /* someone wrote it for us */ 2226 goto continue_unlock; 2227 } 2228 2229 if (PageWriteback(page)) { 2230 if (wbc->sync_mode != WB_SYNC_NONE) 2231 wait_on_page_writeback(page); 2232 else 2233 goto continue_unlock; 2234 } 2235 2236 BUG_ON(PageWriteback(page)); 2237 if (!clear_page_dirty_for_io(page)) 2238 goto continue_unlock; 2239 2240 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2241 error = (*writepage)(page, wbc, data); 2242 if (unlikely(error)) { 2243 /* 2244 * Handle errors according to the type of 2245 * writeback. There's no need to continue for 2246 * background writeback. Just push done_index 2247 * past this page so media errors won't choke 2248 * writeout for the entire file. For integrity 2249 * writeback, we must process the entire dirty 2250 * set regardless of errors because the fs may 2251 * still have state to clear for each page. In 2252 * that case we continue processing and return 2253 * the first error. 2254 */ 2255 if (error == AOP_WRITEPAGE_ACTIVATE) { 2256 unlock_page(page); 2257 error = 0; 2258 } else if (wbc->sync_mode != WB_SYNC_ALL) { 2259 ret = error; 2260 done_index = page->index + 1; 2261 done = 1; 2262 break; 2263 } 2264 if (!ret) 2265 ret = error; 2266 } 2267 2268 /* 2269 * We stop writing back only if we are not doing 2270 * integrity sync. In case of integrity sync we have to 2271 * keep going until we have written all the pages 2272 * we tagged for writeback prior to entering this loop. 2273 */ 2274 if (--wbc->nr_to_write <= 0 && 2275 wbc->sync_mode == WB_SYNC_NONE) { 2276 done = 1; 2277 break; 2278 } 2279 } 2280 pagevec_release(&pvec); 2281 cond_resched(); 2282 } 2283 2284 /* 2285 * If we hit the last page and there is more work to be done: wrap 2286 * back the index back to the start of the file for the next 2287 * time we are called. 2288 */ 2289 if (wbc->range_cyclic && !done) 2290 done_index = 0; 2291 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2292 mapping->writeback_index = done_index; 2293 2294 return ret; 2295 } 2296 EXPORT_SYMBOL(write_cache_pages); 2297 2298 /* 2299 * Function used by generic_writepages to call the real writepage 2300 * function and set the mapping flags on error 2301 */ 2302 static int __writepage(struct page *page, struct writeback_control *wbc, 2303 void *data) 2304 { 2305 struct address_space *mapping = data; 2306 int ret = mapping->a_ops->writepage(page, wbc); 2307 mapping_set_error(mapping, ret); 2308 return ret; 2309 } 2310 2311 /** 2312 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 2313 * @mapping: address space structure to write 2314 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2315 * 2316 * This is a library function, which implements the writepages() 2317 * address_space_operation. 2318 * 2319 * Return: %0 on success, negative error code otherwise 2320 */ 2321 int generic_writepages(struct address_space *mapping, 2322 struct writeback_control *wbc) 2323 { 2324 struct blk_plug plug; 2325 int ret; 2326 2327 /* deal with chardevs and other special file */ 2328 if (!mapping->a_ops->writepage) 2329 return 0; 2330 2331 blk_start_plug(&plug); 2332 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2333 blk_finish_plug(&plug); 2334 return ret; 2335 } 2336 2337 EXPORT_SYMBOL(generic_writepages); 2338 2339 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2340 { 2341 int ret; 2342 2343 if (wbc->nr_to_write <= 0) 2344 return 0; 2345 while (1) { 2346 if (mapping->a_ops->writepages) 2347 ret = mapping->a_ops->writepages(mapping, wbc); 2348 else 2349 ret = generic_writepages(mapping, wbc); 2350 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL)) 2351 break; 2352 cond_resched(); 2353 congestion_wait(BLK_RW_ASYNC, HZ/50); 2354 } 2355 return ret; 2356 } 2357 2358 /** 2359 * write_one_page - write out a single page and wait on I/O 2360 * @page: the page to write 2361 * 2362 * The page must be locked by the caller and will be unlocked upon return. 2363 * 2364 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this 2365 * function returns. 2366 * 2367 * Return: %0 on success, negative error code otherwise 2368 */ 2369 int write_one_page(struct page *page) 2370 { 2371 struct address_space *mapping = page->mapping; 2372 int ret = 0; 2373 struct writeback_control wbc = { 2374 .sync_mode = WB_SYNC_ALL, 2375 .nr_to_write = 1, 2376 }; 2377 2378 BUG_ON(!PageLocked(page)); 2379 2380 wait_on_page_writeback(page); 2381 2382 if (clear_page_dirty_for_io(page)) { 2383 get_page(page); 2384 ret = mapping->a_ops->writepage(page, &wbc); 2385 if (ret == 0) 2386 wait_on_page_writeback(page); 2387 put_page(page); 2388 } else { 2389 unlock_page(page); 2390 } 2391 2392 if (!ret) 2393 ret = filemap_check_errors(mapping); 2394 return ret; 2395 } 2396 EXPORT_SYMBOL(write_one_page); 2397 2398 /* 2399 * For address_spaces which do not use buffers nor write back. 2400 */ 2401 int __set_page_dirty_no_writeback(struct page *page) 2402 { 2403 if (!PageDirty(page)) 2404 return !TestSetPageDirty(page); 2405 return 0; 2406 } 2407 2408 /* 2409 * Helper function for set_page_dirty family. 2410 * 2411 * Caller must hold lock_page_memcg(). 2412 * 2413 * NOTE: This relies on being atomic wrt interrupts. 2414 */ 2415 void account_page_dirtied(struct page *page, struct address_space *mapping) 2416 { 2417 struct inode *inode = mapping->host; 2418 2419 trace_writeback_dirty_page(page, mapping); 2420 2421 if (mapping_can_writeback(mapping)) { 2422 struct bdi_writeback *wb; 2423 2424 inode_attach_wb(inode, page); 2425 wb = inode_to_wb(inode); 2426 2427 __inc_lruvec_page_state(page, NR_FILE_DIRTY); 2428 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2429 __inc_node_page_state(page, NR_DIRTIED); 2430 inc_wb_stat(wb, WB_RECLAIMABLE); 2431 inc_wb_stat(wb, WB_DIRTIED); 2432 task_io_account_write(PAGE_SIZE); 2433 current->nr_dirtied++; 2434 this_cpu_inc(bdp_ratelimits); 2435 2436 mem_cgroup_track_foreign_dirty(page, wb); 2437 } 2438 } 2439 2440 /* 2441 * Helper function for deaccounting dirty page without writeback. 2442 * 2443 * Caller must hold lock_page_memcg(). 2444 */ 2445 void account_page_cleaned(struct page *page, struct address_space *mapping, 2446 struct bdi_writeback *wb) 2447 { 2448 if (mapping_can_writeback(mapping)) { 2449 dec_lruvec_page_state(page, NR_FILE_DIRTY); 2450 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2451 dec_wb_stat(wb, WB_RECLAIMABLE); 2452 task_io_account_cancelled_write(PAGE_SIZE); 2453 } 2454 } 2455 2456 /* 2457 * For address_spaces which do not use buffers. Just tag the page as dirty in 2458 * the xarray. 2459 * 2460 * This is also used when a single buffer is being dirtied: we want to set the 2461 * page dirty in that case, but not all the buffers. This is a "bottom-up" 2462 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 2463 * 2464 * The caller must ensure this doesn't race with truncation. Most will simply 2465 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and 2466 * the pte lock held, which also locks out truncation. 2467 */ 2468 int __set_page_dirty_nobuffers(struct page *page) 2469 { 2470 lock_page_memcg(page); 2471 if (!TestSetPageDirty(page)) { 2472 struct address_space *mapping = page_mapping(page); 2473 unsigned long flags; 2474 2475 if (!mapping) { 2476 unlock_page_memcg(page); 2477 return 1; 2478 } 2479 2480 xa_lock_irqsave(&mapping->i_pages, flags); 2481 BUG_ON(page_mapping(page) != mapping); 2482 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 2483 account_page_dirtied(page, mapping); 2484 __xa_set_mark(&mapping->i_pages, page_index(page), 2485 PAGECACHE_TAG_DIRTY); 2486 xa_unlock_irqrestore(&mapping->i_pages, flags); 2487 unlock_page_memcg(page); 2488 2489 if (mapping->host) { 2490 /* !PageAnon && !swapper_space */ 2491 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2492 } 2493 return 1; 2494 } 2495 unlock_page_memcg(page); 2496 return 0; 2497 } 2498 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 2499 2500 /* 2501 * Call this whenever redirtying a page, to de-account the dirty counters 2502 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written 2503 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to 2504 * systematic errors in balanced_dirty_ratelimit and the dirty pages position 2505 * control. 2506 */ 2507 void account_page_redirty(struct page *page) 2508 { 2509 struct address_space *mapping = page->mapping; 2510 2511 if (mapping && mapping_can_writeback(mapping)) { 2512 struct inode *inode = mapping->host; 2513 struct bdi_writeback *wb; 2514 struct wb_lock_cookie cookie = {}; 2515 2516 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2517 current->nr_dirtied--; 2518 dec_node_page_state(page, NR_DIRTIED); 2519 dec_wb_stat(wb, WB_DIRTIED); 2520 unlocked_inode_to_wb_end(inode, &cookie); 2521 } 2522 } 2523 EXPORT_SYMBOL(account_page_redirty); 2524 2525 /* 2526 * When a writepage implementation decides that it doesn't want to write this 2527 * page for some reason, it should redirty the locked page via 2528 * redirty_page_for_writepage() and it should then unlock the page and return 0 2529 */ 2530 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 2531 { 2532 int ret; 2533 2534 wbc->pages_skipped++; 2535 ret = __set_page_dirty_nobuffers(page); 2536 account_page_redirty(page); 2537 return ret; 2538 } 2539 EXPORT_SYMBOL(redirty_page_for_writepage); 2540 2541 /* 2542 * Dirty a page. 2543 * 2544 * For pages with a mapping this should be done under the page lock 2545 * for the benefit of asynchronous memory errors who prefer a consistent 2546 * dirty state. This rule can be broken in some special cases, 2547 * but should be better not to. 2548 * 2549 * If the mapping doesn't provide a set_page_dirty a_op, then 2550 * just fall through and assume that it wants buffer_heads. 2551 */ 2552 int set_page_dirty(struct page *page) 2553 { 2554 struct address_space *mapping = page_mapping(page); 2555 2556 page = compound_head(page); 2557 if (likely(mapping)) { 2558 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 2559 /* 2560 * readahead/lru_deactivate_page could remain 2561 * PG_readahead/PG_reclaim due to race with end_page_writeback 2562 * About readahead, if the page is written, the flags would be 2563 * reset. So no problem. 2564 * About lru_deactivate_page, if the page is redirty, the flag 2565 * will be reset. So no problem. but if the page is used by readahead 2566 * it will confuse readahead and make it restart the size rampup 2567 * process. But it's a trivial problem. 2568 */ 2569 if (PageReclaim(page)) 2570 ClearPageReclaim(page); 2571 #ifdef CONFIG_BLOCK 2572 if (!spd) 2573 spd = __set_page_dirty_buffers; 2574 #endif 2575 return (*spd)(page); 2576 } 2577 if (!PageDirty(page)) { 2578 if (!TestSetPageDirty(page)) 2579 return 1; 2580 } 2581 return 0; 2582 } 2583 EXPORT_SYMBOL(set_page_dirty); 2584 2585 /* 2586 * set_page_dirty() is racy if the caller has no reference against 2587 * page->mapping->host, and if the page is unlocked. This is because another 2588 * CPU could truncate the page off the mapping and then free the mapping. 2589 * 2590 * Usually, the page _is_ locked, or the caller is a user-space process which 2591 * holds a reference on the inode by having an open file. 2592 * 2593 * In other cases, the page should be locked before running set_page_dirty(). 2594 */ 2595 int set_page_dirty_lock(struct page *page) 2596 { 2597 int ret; 2598 2599 lock_page(page); 2600 ret = set_page_dirty(page); 2601 unlock_page(page); 2602 return ret; 2603 } 2604 EXPORT_SYMBOL(set_page_dirty_lock); 2605 2606 /* 2607 * This cancels just the dirty bit on the kernel page itself, it does NOT 2608 * actually remove dirty bits on any mmap's that may be around. It also 2609 * leaves the page tagged dirty, so any sync activity will still find it on 2610 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2611 * look at the dirty bits in the VM. 2612 * 2613 * Doing this should *normally* only ever be done when a page is truncated, 2614 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2615 * this when it notices that somebody has cleaned out all the buffers on a 2616 * page without actually doing it through the VM. Can you say "ext3 is 2617 * horribly ugly"? Thought you could. 2618 */ 2619 void __cancel_dirty_page(struct page *page) 2620 { 2621 struct address_space *mapping = page_mapping(page); 2622 2623 if (mapping_can_writeback(mapping)) { 2624 struct inode *inode = mapping->host; 2625 struct bdi_writeback *wb; 2626 struct wb_lock_cookie cookie = {}; 2627 2628 lock_page_memcg(page); 2629 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2630 2631 if (TestClearPageDirty(page)) 2632 account_page_cleaned(page, mapping, wb); 2633 2634 unlocked_inode_to_wb_end(inode, &cookie); 2635 unlock_page_memcg(page); 2636 } else { 2637 ClearPageDirty(page); 2638 } 2639 } 2640 EXPORT_SYMBOL(__cancel_dirty_page); 2641 2642 /* 2643 * Clear a page's dirty flag, while caring for dirty memory accounting. 2644 * Returns true if the page was previously dirty. 2645 * 2646 * This is for preparing to put the page under writeout. We leave the page 2647 * tagged as dirty in the xarray so that a concurrent write-for-sync 2648 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 2649 * implementation will run either set_page_writeback() or set_page_dirty(), 2650 * at which stage we bring the page's dirty flag and xarray dirty tag 2651 * back into sync. 2652 * 2653 * This incoherency between the page's dirty flag and xarray tag is 2654 * unfortunate, but it only exists while the page is locked. 2655 */ 2656 int clear_page_dirty_for_io(struct page *page) 2657 { 2658 struct address_space *mapping = page_mapping(page); 2659 int ret = 0; 2660 2661 VM_BUG_ON_PAGE(!PageLocked(page), page); 2662 2663 if (mapping && mapping_can_writeback(mapping)) { 2664 struct inode *inode = mapping->host; 2665 struct bdi_writeback *wb; 2666 struct wb_lock_cookie cookie = {}; 2667 2668 /* 2669 * Yes, Virginia, this is indeed insane. 2670 * 2671 * We use this sequence to make sure that 2672 * (a) we account for dirty stats properly 2673 * (b) we tell the low-level filesystem to 2674 * mark the whole page dirty if it was 2675 * dirty in a pagetable. Only to then 2676 * (c) clean the page again and return 1 to 2677 * cause the writeback. 2678 * 2679 * This way we avoid all nasty races with the 2680 * dirty bit in multiple places and clearing 2681 * them concurrently from different threads. 2682 * 2683 * Note! Normally the "set_page_dirty(page)" 2684 * has no effect on the actual dirty bit - since 2685 * that will already usually be set. But we 2686 * need the side effects, and it can help us 2687 * avoid races. 2688 * 2689 * We basically use the page "master dirty bit" 2690 * as a serialization point for all the different 2691 * threads doing their things. 2692 */ 2693 if (page_mkclean(page)) 2694 set_page_dirty(page); 2695 /* 2696 * We carefully synchronise fault handlers against 2697 * installing a dirty pte and marking the page dirty 2698 * at this point. We do this by having them hold the 2699 * page lock while dirtying the page, and pages are 2700 * always locked coming in here, so we get the desired 2701 * exclusion. 2702 */ 2703 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2704 if (TestClearPageDirty(page)) { 2705 dec_lruvec_page_state(page, NR_FILE_DIRTY); 2706 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2707 dec_wb_stat(wb, WB_RECLAIMABLE); 2708 ret = 1; 2709 } 2710 unlocked_inode_to_wb_end(inode, &cookie); 2711 return ret; 2712 } 2713 return TestClearPageDirty(page); 2714 } 2715 EXPORT_SYMBOL(clear_page_dirty_for_io); 2716 2717 int test_clear_page_writeback(struct page *page) 2718 { 2719 struct address_space *mapping = page_mapping(page); 2720 int ret; 2721 2722 lock_page_memcg(page); 2723 if (mapping && mapping_use_writeback_tags(mapping)) { 2724 struct inode *inode = mapping->host; 2725 struct backing_dev_info *bdi = inode_to_bdi(inode); 2726 unsigned long flags; 2727 2728 xa_lock_irqsave(&mapping->i_pages, flags); 2729 ret = TestClearPageWriteback(page); 2730 if (ret) { 2731 __xa_clear_mark(&mapping->i_pages, page_index(page), 2732 PAGECACHE_TAG_WRITEBACK); 2733 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 2734 struct bdi_writeback *wb = inode_to_wb(inode); 2735 2736 dec_wb_stat(wb, WB_WRITEBACK); 2737 __wb_writeout_inc(wb); 2738 } 2739 } 2740 2741 if (mapping->host && !mapping_tagged(mapping, 2742 PAGECACHE_TAG_WRITEBACK)) 2743 sb_clear_inode_writeback(mapping->host); 2744 2745 xa_unlock_irqrestore(&mapping->i_pages, flags); 2746 } else { 2747 ret = TestClearPageWriteback(page); 2748 } 2749 if (ret) { 2750 dec_lruvec_page_state(page, NR_WRITEBACK); 2751 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2752 inc_node_page_state(page, NR_WRITTEN); 2753 } 2754 unlock_page_memcg(page); 2755 return ret; 2756 } 2757 2758 int __test_set_page_writeback(struct page *page, bool keep_write) 2759 { 2760 struct address_space *mapping = page_mapping(page); 2761 int ret, access_ret; 2762 2763 lock_page_memcg(page); 2764 if (mapping && mapping_use_writeback_tags(mapping)) { 2765 XA_STATE(xas, &mapping->i_pages, page_index(page)); 2766 struct inode *inode = mapping->host; 2767 struct backing_dev_info *bdi = inode_to_bdi(inode); 2768 unsigned long flags; 2769 2770 xas_lock_irqsave(&xas, flags); 2771 xas_load(&xas); 2772 ret = TestSetPageWriteback(page); 2773 if (!ret) { 2774 bool on_wblist; 2775 2776 on_wblist = mapping_tagged(mapping, 2777 PAGECACHE_TAG_WRITEBACK); 2778 2779 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 2780 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) 2781 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK); 2782 2783 /* 2784 * We can come through here when swapping anonymous 2785 * pages, so we don't necessarily have an inode to track 2786 * for sync. 2787 */ 2788 if (mapping->host && !on_wblist) 2789 sb_mark_inode_writeback(mapping->host); 2790 } 2791 if (!PageDirty(page)) 2792 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 2793 if (!keep_write) 2794 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 2795 xas_unlock_irqrestore(&xas, flags); 2796 } else { 2797 ret = TestSetPageWriteback(page); 2798 } 2799 if (!ret) { 2800 inc_lruvec_page_state(page, NR_WRITEBACK); 2801 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2802 } 2803 unlock_page_memcg(page); 2804 access_ret = arch_make_page_accessible(page); 2805 /* 2806 * If writeback has been triggered on a page that cannot be made 2807 * accessible, it is too late to recover here. 2808 */ 2809 VM_BUG_ON_PAGE(access_ret != 0, page); 2810 2811 return ret; 2812 2813 } 2814 EXPORT_SYMBOL(__test_set_page_writeback); 2815 2816 /* 2817 * Wait for a page to complete writeback 2818 */ 2819 void wait_on_page_writeback(struct page *page) 2820 { 2821 while (PageWriteback(page)) { 2822 trace_wait_on_page_writeback(page, page_mapping(page)); 2823 wait_on_page_bit(page, PG_writeback); 2824 } 2825 } 2826 EXPORT_SYMBOL_GPL(wait_on_page_writeback); 2827 2828 /* 2829 * Wait for a page to complete writeback. Returns -EINTR if we get a 2830 * fatal signal while waiting. 2831 */ 2832 int wait_on_page_writeback_killable(struct page *page) 2833 { 2834 while (PageWriteback(page)) { 2835 trace_wait_on_page_writeback(page, page_mapping(page)); 2836 if (wait_on_page_bit_killable(page, PG_writeback)) 2837 return -EINTR; 2838 } 2839 2840 return 0; 2841 } 2842 EXPORT_SYMBOL_GPL(wait_on_page_writeback_killable); 2843 2844 /** 2845 * wait_for_stable_page() - wait for writeback to finish, if necessary. 2846 * @page: The page to wait on. 2847 * 2848 * This function determines if the given page is related to a backing device 2849 * that requires page contents to be held stable during writeback. If so, then 2850 * it will wait for any pending writeback to complete. 2851 */ 2852 void wait_for_stable_page(struct page *page) 2853 { 2854 page = thp_head(page); 2855 if (page->mapping->host->i_sb->s_iflags & SB_I_STABLE_WRITES) 2856 wait_on_page_writeback(page); 2857 } 2858 EXPORT_SYMBOL_GPL(wait_for_stable_page); 2859