1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm_init.c - Memory initialisation verification and debugging 4 * 5 * Copyright 2008 IBM Corporation, 2008 6 * Author Mel Gorman <mel@csn.ul.ie> 7 * 8 */ 9 #include <linux/kernel.h> 10 #include <linux/init.h> 11 #include <linux/kobject.h> 12 #include <linux/export.h> 13 #include <linux/memory.h> 14 #include <linux/notifier.h> 15 #include <linux/sched.h> 16 #include <linux/mman.h> 17 #include <linux/memblock.h> 18 #include <linux/page-isolation.h> 19 #include <linux/padata.h> 20 #include <linux/nmi.h> 21 #include <linux/buffer_head.h> 22 #include <linux/kmemleak.h> 23 #include <linux/kfence.h> 24 #include <linux/page_ext.h> 25 #include <linux/pti.h> 26 #include <linux/pgtable.h> 27 #include <linux/swap.h> 28 #include <linux/cma.h> 29 #include "internal.h" 30 #include "slab.h" 31 #include "shuffle.h" 32 33 #include <asm/setup.h> 34 35 #ifdef CONFIG_DEBUG_MEMORY_INIT 36 int __meminitdata mminit_loglevel; 37 38 /* The zonelists are simply reported, validation is manual. */ 39 void __init mminit_verify_zonelist(void) 40 { 41 int nid; 42 43 if (mminit_loglevel < MMINIT_VERIFY) 44 return; 45 46 for_each_online_node(nid) { 47 pg_data_t *pgdat = NODE_DATA(nid); 48 struct zone *zone; 49 struct zoneref *z; 50 struct zonelist *zonelist; 51 int i, listid, zoneid; 52 53 BUILD_BUG_ON(MAX_ZONELISTS > 2); 54 for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) { 55 56 /* Identify the zone and nodelist */ 57 zoneid = i % MAX_NR_ZONES; 58 listid = i / MAX_NR_ZONES; 59 zonelist = &pgdat->node_zonelists[listid]; 60 zone = &pgdat->node_zones[zoneid]; 61 if (!populated_zone(zone)) 62 continue; 63 64 /* Print information about the zonelist */ 65 printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ", 66 listid > 0 ? "thisnode" : "general", nid, 67 zone->name); 68 69 /* Iterate the zonelist */ 70 for_each_zone_zonelist(zone, z, zonelist, zoneid) 71 pr_cont("%d:%s ", zone_to_nid(zone), zone->name); 72 pr_cont("\n"); 73 } 74 } 75 } 76 77 void __init mminit_verify_pageflags_layout(void) 78 { 79 int shift, width; 80 unsigned long or_mask, add_mask; 81 82 shift = 8 * sizeof(unsigned long); 83 width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH 84 - LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH; 85 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths", 86 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n", 87 SECTIONS_WIDTH, 88 NODES_WIDTH, 89 ZONES_WIDTH, 90 LAST_CPUPID_WIDTH, 91 KASAN_TAG_WIDTH, 92 LRU_GEN_WIDTH, 93 LRU_REFS_WIDTH, 94 NR_PAGEFLAGS); 95 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts", 96 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n", 97 SECTIONS_SHIFT, 98 NODES_SHIFT, 99 ZONES_SHIFT, 100 LAST_CPUPID_SHIFT, 101 KASAN_TAG_WIDTH); 102 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts", 103 "Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n", 104 (unsigned long)SECTIONS_PGSHIFT, 105 (unsigned long)NODES_PGSHIFT, 106 (unsigned long)ZONES_PGSHIFT, 107 (unsigned long)LAST_CPUPID_PGSHIFT, 108 (unsigned long)KASAN_TAG_PGSHIFT); 109 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid", 110 "Node/Zone ID: %lu -> %lu\n", 111 (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT), 112 (unsigned long)ZONEID_PGOFF); 113 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage", 114 "location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n", 115 shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0); 116 #ifdef NODE_NOT_IN_PAGE_FLAGS 117 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", 118 "Node not in page flags"); 119 #endif 120 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 121 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", 122 "Last cpupid not in page flags"); 123 #endif 124 125 if (SECTIONS_WIDTH) { 126 shift -= SECTIONS_WIDTH; 127 BUG_ON(shift != SECTIONS_PGSHIFT); 128 } 129 if (NODES_WIDTH) { 130 shift -= NODES_WIDTH; 131 BUG_ON(shift != NODES_PGSHIFT); 132 } 133 if (ZONES_WIDTH) { 134 shift -= ZONES_WIDTH; 135 BUG_ON(shift != ZONES_PGSHIFT); 136 } 137 138 /* Check for bitmask overlaps */ 139 or_mask = (ZONES_MASK << ZONES_PGSHIFT) | 140 (NODES_MASK << NODES_PGSHIFT) | 141 (SECTIONS_MASK << SECTIONS_PGSHIFT); 142 add_mask = (ZONES_MASK << ZONES_PGSHIFT) + 143 (NODES_MASK << NODES_PGSHIFT) + 144 (SECTIONS_MASK << SECTIONS_PGSHIFT); 145 BUG_ON(or_mask != add_mask); 146 } 147 148 static __init int set_mminit_loglevel(char *str) 149 { 150 get_option(&str, &mminit_loglevel); 151 return 0; 152 } 153 early_param("mminit_loglevel", set_mminit_loglevel); 154 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 155 156 struct kobject *mm_kobj; 157 158 #ifdef CONFIG_SMP 159 s32 vm_committed_as_batch = 32; 160 161 void mm_compute_batch(int overcommit_policy) 162 { 163 u64 memsized_batch; 164 s32 nr = num_present_cpus(); 165 s32 batch = max_t(s32, nr*2, 32); 166 unsigned long ram_pages = totalram_pages(); 167 168 /* 169 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of 170 * (total memory/#cpus), and lift it to 25% for other policies 171 * to easy the possible lock contention for percpu_counter 172 * vm_committed_as, while the max limit is INT_MAX 173 */ 174 if (overcommit_policy == OVERCOMMIT_NEVER) 175 memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX); 176 else 177 memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX); 178 179 vm_committed_as_batch = max_t(s32, memsized_batch, batch); 180 } 181 182 static int __meminit mm_compute_batch_notifier(struct notifier_block *self, 183 unsigned long action, void *arg) 184 { 185 switch (action) { 186 case MEM_ONLINE: 187 case MEM_OFFLINE: 188 mm_compute_batch(sysctl_overcommit_memory); 189 break; 190 default: 191 break; 192 } 193 return NOTIFY_OK; 194 } 195 196 static int __init mm_compute_batch_init(void) 197 { 198 mm_compute_batch(sysctl_overcommit_memory); 199 hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI); 200 return 0; 201 } 202 203 __initcall(mm_compute_batch_init); 204 205 #endif 206 207 static int __init mm_sysfs_init(void) 208 { 209 mm_kobj = kobject_create_and_add("mm", kernel_kobj); 210 if (!mm_kobj) 211 return -ENOMEM; 212 213 return 0; 214 } 215 postcore_initcall(mm_sysfs_init); 216 217 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 218 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 219 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 220 221 static unsigned long required_kernelcore __initdata; 222 static unsigned long required_kernelcore_percent __initdata; 223 static unsigned long required_movablecore __initdata; 224 static unsigned long required_movablecore_percent __initdata; 225 226 static unsigned long nr_kernel_pages __initdata; 227 static unsigned long nr_all_pages __initdata; 228 static unsigned long dma_reserve __initdata; 229 230 static bool deferred_struct_pages __meminitdata; 231 232 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 233 234 static int __init cmdline_parse_core(char *p, unsigned long *core, 235 unsigned long *percent) 236 { 237 unsigned long long coremem; 238 char *endptr; 239 240 if (!p) 241 return -EINVAL; 242 243 /* Value may be a percentage of total memory, otherwise bytes */ 244 coremem = simple_strtoull(p, &endptr, 0); 245 if (*endptr == '%') { 246 /* Paranoid check for percent values greater than 100 */ 247 WARN_ON(coremem > 100); 248 249 *percent = coremem; 250 } else { 251 coremem = memparse(p, &p); 252 /* Paranoid check that UL is enough for the coremem value */ 253 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 254 255 *core = coremem >> PAGE_SHIFT; 256 *percent = 0UL; 257 } 258 return 0; 259 } 260 261 bool mirrored_kernelcore __initdata_memblock; 262 263 /* 264 * kernelcore=size sets the amount of memory for use for allocations that 265 * cannot be reclaimed or migrated. 266 */ 267 static int __init cmdline_parse_kernelcore(char *p) 268 { 269 /* parse kernelcore=mirror */ 270 if (parse_option_str(p, "mirror")) { 271 mirrored_kernelcore = true; 272 return 0; 273 } 274 275 return cmdline_parse_core(p, &required_kernelcore, 276 &required_kernelcore_percent); 277 } 278 early_param("kernelcore", cmdline_parse_kernelcore); 279 280 /* 281 * movablecore=size sets the amount of memory for use for allocations that 282 * can be reclaimed or migrated. 283 */ 284 static int __init cmdline_parse_movablecore(char *p) 285 { 286 return cmdline_parse_core(p, &required_movablecore, 287 &required_movablecore_percent); 288 } 289 early_param("movablecore", cmdline_parse_movablecore); 290 291 /* 292 * early_calculate_totalpages() 293 * Sum pages in active regions for movable zone. 294 * Populate N_MEMORY for calculating usable_nodes. 295 */ 296 static unsigned long __init early_calculate_totalpages(void) 297 { 298 unsigned long totalpages = 0; 299 unsigned long start_pfn, end_pfn; 300 int i, nid; 301 302 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 303 unsigned long pages = end_pfn - start_pfn; 304 305 totalpages += pages; 306 if (pages) 307 node_set_state(nid, N_MEMORY); 308 } 309 return totalpages; 310 } 311 312 /* 313 * This finds a zone that can be used for ZONE_MOVABLE pages. The 314 * assumption is made that zones within a node are ordered in monotonic 315 * increasing memory addresses so that the "highest" populated zone is used 316 */ 317 static void __init find_usable_zone_for_movable(void) 318 { 319 int zone_index; 320 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 321 if (zone_index == ZONE_MOVABLE) 322 continue; 323 324 if (arch_zone_highest_possible_pfn[zone_index] > 325 arch_zone_lowest_possible_pfn[zone_index]) 326 break; 327 } 328 329 VM_BUG_ON(zone_index == -1); 330 movable_zone = zone_index; 331 } 332 333 /* 334 * Find the PFN the Movable zone begins in each node. Kernel memory 335 * is spread evenly between nodes as long as the nodes have enough 336 * memory. When they don't, some nodes will have more kernelcore than 337 * others 338 */ 339 static void __init find_zone_movable_pfns_for_nodes(void) 340 { 341 int i, nid; 342 unsigned long usable_startpfn; 343 unsigned long kernelcore_node, kernelcore_remaining; 344 /* save the state before borrow the nodemask */ 345 nodemask_t saved_node_state = node_states[N_MEMORY]; 346 unsigned long totalpages = early_calculate_totalpages(); 347 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 348 struct memblock_region *r; 349 350 /* Need to find movable_zone earlier when movable_node is specified. */ 351 find_usable_zone_for_movable(); 352 353 /* 354 * If movable_node is specified, ignore kernelcore and movablecore 355 * options. 356 */ 357 if (movable_node_is_enabled()) { 358 for_each_mem_region(r) { 359 if (!memblock_is_hotpluggable(r)) 360 continue; 361 362 nid = memblock_get_region_node(r); 363 364 usable_startpfn = PFN_DOWN(r->base); 365 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 366 min(usable_startpfn, zone_movable_pfn[nid]) : 367 usable_startpfn; 368 } 369 370 goto out2; 371 } 372 373 /* 374 * If kernelcore=mirror is specified, ignore movablecore option 375 */ 376 if (mirrored_kernelcore) { 377 bool mem_below_4gb_not_mirrored = false; 378 379 for_each_mem_region(r) { 380 if (memblock_is_mirror(r)) 381 continue; 382 383 nid = memblock_get_region_node(r); 384 385 usable_startpfn = memblock_region_memory_base_pfn(r); 386 387 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 388 mem_below_4gb_not_mirrored = true; 389 continue; 390 } 391 392 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 393 min(usable_startpfn, zone_movable_pfn[nid]) : 394 usable_startpfn; 395 } 396 397 if (mem_below_4gb_not_mirrored) 398 pr_warn("This configuration results in unmirrored kernel memory.\n"); 399 400 goto out2; 401 } 402 403 /* 404 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 405 * amount of necessary memory. 406 */ 407 if (required_kernelcore_percent) 408 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 409 10000UL; 410 if (required_movablecore_percent) 411 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 412 10000UL; 413 414 /* 415 * If movablecore= was specified, calculate what size of 416 * kernelcore that corresponds so that memory usable for 417 * any allocation type is evenly spread. If both kernelcore 418 * and movablecore are specified, then the value of kernelcore 419 * will be used for required_kernelcore if it's greater than 420 * what movablecore would have allowed. 421 */ 422 if (required_movablecore) { 423 unsigned long corepages; 424 425 /* 426 * Round-up so that ZONE_MOVABLE is at least as large as what 427 * was requested by the user 428 */ 429 required_movablecore = 430 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 431 required_movablecore = min(totalpages, required_movablecore); 432 corepages = totalpages - required_movablecore; 433 434 required_kernelcore = max(required_kernelcore, corepages); 435 } 436 437 /* 438 * If kernelcore was not specified or kernelcore size is larger 439 * than totalpages, there is no ZONE_MOVABLE. 440 */ 441 if (!required_kernelcore || required_kernelcore >= totalpages) 442 goto out; 443 444 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 445 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 446 447 restart: 448 /* Spread kernelcore memory as evenly as possible throughout nodes */ 449 kernelcore_node = required_kernelcore / usable_nodes; 450 for_each_node_state(nid, N_MEMORY) { 451 unsigned long start_pfn, end_pfn; 452 453 /* 454 * Recalculate kernelcore_node if the division per node 455 * now exceeds what is necessary to satisfy the requested 456 * amount of memory for the kernel 457 */ 458 if (required_kernelcore < kernelcore_node) 459 kernelcore_node = required_kernelcore / usable_nodes; 460 461 /* 462 * As the map is walked, we track how much memory is usable 463 * by the kernel using kernelcore_remaining. When it is 464 * 0, the rest of the node is usable by ZONE_MOVABLE 465 */ 466 kernelcore_remaining = kernelcore_node; 467 468 /* Go through each range of PFNs within this node */ 469 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 470 unsigned long size_pages; 471 472 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 473 if (start_pfn >= end_pfn) 474 continue; 475 476 /* Account for what is only usable for kernelcore */ 477 if (start_pfn < usable_startpfn) { 478 unsigned long kernel_pages; 479 kernel_pages = min(end_pfn, usable_startpfn) 480 - start_pfn; 481 482 kernelcore_remaining -= min(kernel_pages, 483 kernelcore_remaining); 484 required_kernelcore -= min(kernel_pages, 485 required_kernelcore); 486 487 /* Continue if range is now fully accounted */ 488 if (end_pfn <= usable_startpfn) { 489 490 /* 491 * Push zone_movable_pfn to the end so 492 * that if we have to rebalance 493 * kernelcore across nodes, we will 494 * not double account here 495 */ 496 zone_movable_pfn[nid] = end_pfn; 497 continue; 498 } 499 start_pfn = usable_startpfn; 500 } 501 502 /* 503 * The usable PFN range for ZONE_MOVABLE is from 504 * start_pfn->end_pfn. Calculate size_pages as the 505 * number of pages used as kernelcore 506 */ 507 size_pages = end_pfn - start_pfn; 508 if (size_pages > kernelcore_remaining) 509 size_pages = kernelcore_remaining; 510 zone_movable_pfn[nid] = start_pfn + size_pages; 511 512 /* 513 * Some kernelcore has been met, update counts and 514 * break if the kernelcore for this node has been 515 * satisfied 516 */ 517 required_kernelcore -= min(required_kernelcore, 518 size_pages); 519 kernelcore_remaining -= size_pages; 520 if (!kernelcore_remaining) 521 break; 522 } 523 } 524 525 /* 526 * If there is still required_kernelcore, we do another pass with one 527 * less node in the count. This will push zone_movable_pfn[nid] further 528 * along on the nodes that still have memory until kernelcore is 529 * satisfied 530 */ 531 usable_nodes--; 532 if (usable_nodes && required_kernelcore > usable_nodes) 533 goto restart; 534 535 out2: 536 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 537 for (nid = 0; nid < MAX_NUMNODES; nid++) { 538 unsigned long start_pfn, end_pfn; 539 540 zone_movable_pfn[nid] = 541 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 542 543 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 544 if (zone_movable_pfn[nid] >= end_pfn) 545 zone_movable_pfn[nid] = 0; 546 } 547 548 out: 549 /* restore the node_state */ 550 node_states[N_MEMORY] = saved_node_state; 551 } 552 553 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 554 unsigned long zone, int nid) 555 { 556 mm_zero_struct_page(page); 557 set_page_links(page, zone, nid, pfn); 558 init_page_count(page); 559 page_mapcount_reset(page); 560 page_cpupid_reset_last(page); 561 page_kasan_tag_reset(page); 562 563 INIT_LIST_HEAD(&page->lru); 564 #ifdef WANT_PAGE_VIRTUAL 565 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 566 if (!is_highmem_idx(zone)) 567 set_page_address(page, __va(pfn << PAGE_SHIFT)); 568 #endif 569 } 570 571 #ifdef CONFIG_NUMA 572 /* 573 * During memory init memblocks map pfns to nids. The search is expensive and 574 * this caches recent lookups. The implementation of __early_pfn_to_nid 575 * treats start/end as pfns. 576 */ 577 struct mminit_pfnnid_cache { 578 unsigned long last_start; 579 unsigned long last_end; 580 int last_nid; 581 }; 582 583 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 584 585 /* 586 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 587 */ 588 static int __meminit __early_pfn_to_nid(unsigned long pfn, 589 struct mminit_pfnnid_cache *state) 590 { 591 unsigned long start_pfn, end_pfn; 592 int nid; 593 594 if (state->last_start <= pfn && pfn < state->last_end) 595 return state->last_nid; 596 597 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 598 if (nid != NUMA_NO_NODE) { 599 state->last_start = start_pfn; 600 state->last_end = end_pfn; 601 state->last_nid = nid; 602 } 603 604 return nid; 605 } 606 607 int __meminit early_pfn_to_nid(unsigned long pfn) 608 { 609 static DEFINE_SPINLOCK(early_pfn_lock); 610 int nid; 611 612 spin_lock(&early_pfn_lock); 613 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 614 if (nid < 0) 615 nid = first_online_node; 616 spin_unlock(&early_pfn_lock); 617 618 return nid; 619 } 620 621 int hashdist = HASHDIST_DEFAULT; 622 623 static int __init set_hashdist(char *str) 624 { 625 if (!str) 626 return 0; 627 hashdist = simple_strtoul(str, &str, 0); 628 return 1; 629 } 630 __setup("hashdist=", set_hashdist); 631 632 static inline void fixup_hashdist(void) 633 { 634 if (num_node_state(N_MEMORY) == 1) 635 hashdist = 0; 636 } 637 #else 638 static inline void fixup_hashdist(void) {} 639 #endif /* CONFIG_NUMA */ 640 641 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 642 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 643 { 644 pgdat->first_deferred_pfn = ULONG_MAX; 645 } 646 647 /* Returns true if the struct page for the pfn is initialised */ 648 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid) 649 { 650 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 651 return false; 652 653 return true; 654 } 655 656 /* 657 * Returns true when the remaining initialisation should be deferred until 658 * later in the boot cycle when it can be parallelised. 659 */ 660 static bool __meminit 661 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 662 { 663 static unsigned long prev_end_pfn, nr_initialised; 664 665 if (early_page_ext_enabled()) 666 return false; 667 /* 668 * prev_end_pfn static that contains the end of previous zone 669 * No need to protect because called very early in boot before smp_init. 670 */ 671 if (prev_end_pfn != end_pfn) { 672 prev_end_pfn = end_pfn; 673 nr_initialised = 0; 674 } 675 676 /* Always populate low zones for address-constrained allocations */ 677 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 678 return false; 679 680 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 681 return true; 682 /* 683 * We start only with one section of pages, more pages are added as 684 * needed until the rest of deferred pages are initialized. 685 */ 686 nr_initialised++; 687 if ((nr_initialised > PAGES_PER_SECTION) && 688 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 689 NODE_DATA(nid)->first_deferred_pfn = pfn; 690 return true; 691 } 692 return false; 693 } 694 695 static void __meminit init_reserved_page(unsigned long pfn, int nid) 696 { 697 pg_data_t *pgdat; 698 int zid; 699 700 if (early_page_initialised(pfn, nid)) 701 return; 702 703 pgdat = NODE_DATA(nid); 704 705 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 706 struct zone *zone = &pgdat->node_zones[zid]; 707 708 if (zone_spans_pfn(zone, pfn)) 709 break; 710 } 711 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 712 } 713 #else 714 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 715 716 static inline bool early_page_initialised(unsigned long pfn, int nid) 717 { 718 return true; 719 } 720 721 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 722 { 723 return false; 724 } 725 726 static inline void init_reserved_page(unsigned long pfn, int nid) 727 { 728 } 729 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 730 731 /* 732 * Initialised pages do not have PageReserved set. This function is 733 * called for each range allocated by the bootmem allocator and 734 * marks the pages PageReserved. The remaining valid pages are later 735 * sent to the buddy page allocator. 736 */ 737 void __meminit reserve_bootmem_region(phys_addr_t start, 738 phys_addr_t end, int nid) 739 { 740 unsigned long start_pfn = PFN_DOWN(start); 741 unsigned long end_pfn = PFN_UP(end); 742 743 for (; start_pfn < end_pfn; start_pfn++) { 744 if (pfn_valid(start_pfn)) { 745 struct page *page = pfn_to_page(start_pfn); 746 747 init_reserved_page(start_pfn, nid); 748 749 /* Avoid false-positive PageTail() */ 750 INIT_LIST_HEAD(&page->lru); 751 752 /* 753 * no need for atomic set_bit because the struct 754 * page is not visible yet so nobody should 755 * access it yet. 756 */ 757 __SetPageReserved(page); 758 } 759 } 760 } 761 762 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 763 static bool __meminit 764 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 765 { 766 static struct memblock_region *r; 767 768 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 769 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 770 for_each_mem_region(r) { 771 if (*pfn < memblock_region_memory_end_pfn(r)) 772 break; 773 } 774 } 775 if (*pfn >= memblock_region_memory_base_pfn(r) && 776 memblock_is_mirror(r)) { 777 *pfn = memblock_region_memory_end_pfn(r); 778 return true; 779 } 780 } 781 return false; 782 } 783 784 /* 785 * Only struct pages that correspond to ranges defined by memblock.memory 786 * are zeroed and initialized by going through __init_single_page() during 787 * memmap_init_zone_range(). 788 * 789 * But, there could be struct pages that correspond to holes in 790 * memblock.memory. This can happen because of the following reasons: 791 * - physical memory bank size is not necessarily the exact multiple of the 792 * arbitrary section size 793 * - early reserved memory may not be listed in memblock.memory 794 * - memory layouts defined with memmap= kernel parameter may not align 795 * nicely with memmap sections 796 * 797 * Explicitly initialize those struct pages so that: 798 * - PG_Reserved is set 799 * - zone and node links point to zone and node that span the page if the 800 * hole is in the middle of a zone 801 * - zone and node links point to adjacent zone/node if the hole falls on 802 * the zone boundary; the pages in such holes will be prepended to the 803 * zone/node above the hole except for the trailing pages in the last 804 * section that will be appended to the zone/node below. 805 */ 806 static void __init init_unavailable_range(unsigned long spfn, 807 unsigned long epfn, 808 int zone, int node) 809 { 810 unsigned long pfn; 811 u64 pgcnt = 0; 812 813 for (pfn = spfn; pfn < epfn; pfn++) { 814 if (!pfn_valid(pageblock_start_pfn(pfn))) { 815 pfn = pageblock_end_pfn(pfn) - 1; 816 continue; 817 } 818 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 819 __SetPageReserved(pfn_to_page(pfn)); 820 pgcnt++; 821 } 822 823 if (pgcnt) 824 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 825 node, zone_names[zone], pgcnt); 826 } 827 828 /* 829 * Initially all pages are reserved - free ones are freed 830 * up by memblock_free_all() once the early boot process is 831 * done. Non-atomic initialization, single-pass. 832 * 833 * All aligned pageblocks are initialized to the specified migratetype 834 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 835 * zone stats (e.g., nr_isolate_pageblock) are touched. 836 */ 837 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 838 unsigned long start_pfn, unsigned long zone_end_pfn, 839 enum meminit_context context, 840 struct vmem_altmap *altmap, int migratetype) 841 { 842 unsigned long pfn, end_pfn = start_pfn + size; 843 struct page *page; 844 845 if (highest_memmap_pfn < end_pfn - 1) 846 highest_memmap_pfn = end_pfn - 1; 847 848 #ifdef CONFIG_ZONE_DEVICE 849 /* 850 * Honor reservation requested by the driver for this ZONE_DEVICE 851 * memory. We limit the total number of pages to initialize to just 852 * those that might contain the memory mapping. We will defer the 853 * ZONE_DEVICE page initialization until after we have released 854 * the hotplug lock. 855 */ 856 if (zone == ZONE_DEVICE) { 857 if (!altmap) 858 return; 859 860 if (start_pfn == altmap->base_pfn) 861 start_pfn += altmap->reserve; 862 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 863 } 864 #endif 865 866 for (pfn = start_pfn; pfn < end_pfn; ) { 867 /* 868 * There can be holes in boot-time mem_map[]s handed to this 869 * function. They do not exist on hotplugged memory. 870 */ 871 if (context == MEMINIT_EARLY) { 872 if (overlap_memmap_init(zone, &pfn)) 873 continue; 874 if (defer_init(nid, pfn, zone_end_pfn)) { 875 deferred_struct_pages = true; 876 break; 877 } 878 } 879 880 page = pfn_to_page(pfn); 881 __init_single_page(page, pfn, zone, nid); 882 if (context == MEMINIT_HOTPLUG) 883 __SetPageReserved(page); 884 885 /* 886 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 887 * such that unmovable allocations won't be scattered all 888 * over the place during system boot. 889 */ 890 if (pageblock_aligned(pfn)) { 891 set_pageblock_migratetype(page, migratetype); 892 cond_resched(); 893 } 894 pfn++; 895 } 896 } 897 898 static void __init memmap_init_zone_range(struct zone *zone, 899 unsigned long start_pfn, 900 unsigned long end_pfn, 901 unsigned long *hole_pfn) 902 { 903 unsigned long zone_start_pfn = zone->zone_start_pfn; 904 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 905 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 906 907 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 908 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 909 910 if (start_pfn >= end_pfn) 911 return; 912 913 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 914 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 915 916 if (*hole_pfn < start_pfn) 917 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 918 919 *hole_pfn = end_pfn; 920 } 921 922 static void __init memmap_init(void) 923 { 924 unsigned long start_pfn, end_pfn; 925 unsigned long hole_pfn = 0; 926 int i, j, zone_id = 0, nid; 927 928 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 929 struct pglist_data *node = NODE_DATA(nid); 930 931 for (j = 0; j < MAX_NR_ZONES; j++) { 932 struct zone *zone = node->node_zones + j; 933 934 if (!populated_zone(zone)) 935 continue; 936 937 memmap_init_zone_range(zone, start_pfn, end_pfn, 938 &hole_pfn); 939 zone_id = j; 940 } 941 } 942 943 #ifdef CONFIG_SPARSEMEM 944 /* 945 * Initialize the memory map for hole in the range [memory_end, 946 * section_end]. 947 * Append the pages in this hole to the highest zone in the last 948 * node. 949 * The call to init_unavailable_range() is outside the ifdef to 950 * silence the compiler warining about zone_id set but not used; 951 * for FLATMEM it is a nop anyway 952 */ 953 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 954 if (hole_pfn < end_pfn) 955 #endif 956 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 957 } 958 959 #ifdef CONFIG_ZONE_DEVICE 960 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 961 unsigned long zone_idx, int nid, 962 struct dev_pagemap *pgmap) 963 { 964 965 __init_single_page(page, pfn, zone_idx, nid); 966 967 /* 968 * Mark page reserved as it will need to wait for onlining 969 * phase for it to be fully associated with a zone. 970 * 971 * We can use the non-atomic __set_bit operation for setting 972 * the flag as we are still initializing the pages. 973 */ 974 __SetPageReserved(page); 975 976 /* 977 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 978 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 979 * ever freed or placed on a driver-private list. 980 */ 981 page->pgmap = pgmap; 982 page->zone_device_data = NULL; 983 984 /* 985 * Mark the block movable so that blocks are reserved for 986 * movable at startup. This will force kernel allocations 987 * to reserve their blocks rather than leaking throughout 988 * the address space during boot when many long-lived 989 * kernel allocations are made. 990 * 991 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 992 * because this is done early in section_activate() 993 */ 994 if (pageblock_aligned(pfn)) { 995 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 996 cond_resched(); 997 } 998 999 /* 1000 * ZONE_DEVICE pages are released directly to the driver page allocator 1001 * which will set the page count to 1 when allocating the page. 1002 */ 1003 if (pgmap->type == MEMORY_DEVICE_PRIVATE || 1004 pgmap->type == MEMORY_DEVICE_COHERENT) 1005 set_page_count(page, 0); 1006 } 1007 1008 /* 1009 * With compound page geometry and when struct pages are stored in ram most 1010 * tail pages are reused. Consequently, the amount of unique struct pages to 1011 * initialize is a lot smaller that the total amount of struct pages being 1012 * mapped. This is a paired / mild layering violation with explicit knowledge 1013 * of how the sparse_vmemmap internals handle compound pages in the lack 1014 * of an altmap. See vmemmap_populate_compound_pages(). 1015 */ 1016 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 1017 struct dev_pagemap *pgmap) 1018 { 1019 if (!vmemmap_can_optimize(altmap, pgmap)) 1020 return pgmap_vmemmap_nr(pgmap); 1021 1022 return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page)); 1023 } 1024 1025 static void __ref memmap_init_compound(struct page *head, 1026 unsigned long head_pfn, 1027 unsigned long zone_idx, int nid, 1028 struct dev_pagemap *pgmap, 1029 unsigned long nr_pages) 1030 { 1031 unsigned long pfn, end_pfn = head_pfn + nr_pages; 1032 unsigned int order = pgmap->vmemmap_shift; 1033 1034 __SetPageHead(head); 1035 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 1036 struct page *page = pfn_to_page(pfn); 1037 1038 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 1039 prep_compound_tail(head, pfn - head_pfn); 1040 set_page_count(page, 0); 1041 1042 /* 1043 * The first tail page stores important compound page info. 1044 * Call prep_compound_head() after the first tail page has 1045 * been initialized, to not have the data overwritten. 1046 */ 1047 if (pfn == head_pfn + 1) 1048 prep_compound_head(head, order); 1049 } 1050 } 1051 1052 void __ref memmap_init_zone_device(struct zone *zone, 1053 unsigned long start_pfn, 1054 unsigned long nr_pages, 1055 struct dev_pagemap *pgmap) 1056 { 1057 unsigned long pfn, end_pfn = start_pfn + nr_pages; 1058 struct pglist_data *pgdat = zone->zone_pgdat; 1059 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 1060 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 1061 unsigned long zone_idx = zone_idx(zone); 1062 unsigned long start = jiffies; 1063 int nid = pgdat->node_id; 1064 1065 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) 1066 return; 1067 1068 /* 1069 * The call to memmap_init should have already taken care 1070 * of the pages reserved for the memmap, so we can just jump to 1071 * the end of that region and start processing the device pages. 1072 */ 1073 if (altmap) { 1074 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 1075 nr_pages = end_pfn - start_pfn; 1076 } 1077 1078 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 1079 struct page *page = pfn_to_page(pfn); 1080 1081 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 1082 1083 if (pfns_per_compound == 1) 1084 continue; 1085 1086 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 1087 compound_nr_pages(altmap, pgmap)); 1088 } 1089 1090 pr_debug("%s initialised %lu pages in %ums\n", __func__, 1091 nr_pages, jiffies_to_msecs(jiffies - start)); 1092 } 1093 #endif 1094 1095 /* 1096 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 1097 * because it is sized independent of architecture. Unlike the other zones, 1098 * the starting point for ZONE_MOVABLE is not fixed. It may be different 1099 * in each node depending on the size of each node and how evenly kernelcore 1100 * is distributed. This helper function adjusts the zone ranges 1101 * provided by the architecture for a given node by using the end of the 1102 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 1103 * zones within a node are in order of monotonic increases memory addresses 1104 */ 1105 static void __init adjust_zone_range_for_zone_movable(int nid, 1106 unsigned long zone_type, 1107 unsigned long node_end_pfn, 1108 unsigned long *zone_start_pfn, 1109 unsigned long *zone_end_pfn) 1110 { 1111 /* Only adjust if ZONE_MOVABLE is on this node */ 1112 if (zone_movable_pfn[nid]) { 1113 /* Size ZONE_MOVABLE */ 1114 if (zone_type == ZONE_MOVABLE) { 1115 *zone_start_pfn = zone_movable_pfn[nid]; 1116 *zone_end_pfn = min(node_end_pfn, 1117 arch_zone_highest_possible_pfn[movable_zone]); 1118 1119 /* Adjust for ZONE_MOVABLE starting within this range */ 1120 } else if (!mirrored_kernelcore && 1121 *zone_start_pfn < zone_movable_pfn[nid] && 1122 *zone_end_pfn > zone_movable_pfn[nid]) { 1123 *zone_end_pfn = zone_movable_pfn[nid]; 1124 1125 /* Check if this whole range is within ZONE_MOVABLE */ 1126 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 1127 *zone_start_pfn = *zone_end_pfn; 1128 } 1129 } 1130 1131 /* 1132 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 1133 * then all holes in the requested range will be accounted for. 1134 */ 1135 unsigned long __init __absent_pages_in_range(int nid, 1136 unsigned long range_start_pfn, 1137 unsigned long range_end_pfn) 1138 { 1139 unsigned long nr_absent = range_end_pfn - range_start_pfn; 1140 unsigned long start_pfn, end_pfn; 1141 int i; 1142 1143 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 1144 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 1145 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 1146 nr_absent -= end_pfn - start_pfn; 1147 } 1148 return nr_absent; 1149 } 1150 1151 /** 1152 * absent_pages_in_range - Return number of page frames in holes within a range 1153 * @start_pfn: The start PFN to start searching for holes 1154 * @end_pfn: The end PFN to stop searching for holes 1155 * 1156 * Return: the number of pages frames in memory holes within a range. 1157 */ 1158 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 1159 unsigned long end_pfn) 1160 { 1161 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 1162 } 1163 1164 /* Return the number of page frames in holes in a zone on a node */ 1165 static unsigned long __init zone_absent_pages_in_node(int nid, 1166 unsigned long zone_type, 1167 unsigned long zone_start_pfn, 1168 unsigned long zone_end_pfn) 1169 { 1170 unsigned long nr_absent; 1171 1172 /* zone is empty, we don't have any absent pages */ 1173 if (zone_start_pfn == zone_end_pfn) 1174 return 0; 1175 1176 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 1177 1178 /* 1179 * ZONE_MOVABLE handling. 1180 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 1181 * and vice versa. 1182 */ 1183 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 1184 unsigned long start_pfn, end_pfn; 1185 struct memblock_region *r; 1186 1187 for_each_mem_region(r) { 1188 start_pfn = clamp(memblock_region_memory_base_pfn(r), 1189 zone_start_pfn, zone_end_pfn); 1190 end_pfn = clamp(memblock_region_memory_end_pfn(r), 1191 zone_start_pfn, zone_end_pfn); 1192 1193 if (zone_type == ZONE_MOVABLE && 1194 memblock_is_mirror(r)) 1195 nr_absent += end_pfn - start_pfn; 1196 1197 if (zone_type == ZONE_NORMAL && 1198 !memblock_is_mirror(r)) 1199 nr_absent += end_pfn - start_pfn; 1200 } 1201 } 1202 1203 return nr_absent; 1204 } 1205 1206 /* 1207 * Return the number of pages a zone spans in a node, including holes 1208 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 1209 */ 1210 static unsigned long __init zone_spanned_pages_in_node(int nid, 1211 unsigned long zone_type, 1212 unsigned long node_start_pfn, 1213 unsigned long node_end_pfn, 1214 unsigned long *zone_start_pfn, 1215 unsigned long *zone_end_pfn) 1216 { 1217 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 1218 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 1219 1220 /* Get the start and end of the zone */ 1221 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 1222 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 1223 adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn, 1224 zone_start_pfn, zone_end_pfn); 1225 1226 /* Check that this node has pages within the zone's required range */ 1227 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 1228 return 0; 1229 1230 /* Move the zone boundaries inside the node if necessary */ 1231 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 1232 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 1233 1234 /* Return the spanned pages */ 1235 return *zone_end_pfn - *zone_start_pfn; 1236 } 1237 1238 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat) 1239 { 1240 struct zone *z; 1241 1242 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) { 1243 z->zone_start_pfn = 0; 1244 z->spanned_pages = 0; 1245 z->present_pages = 0; 1246 #if defined(CONFIG_MEMORY_HOTPLUG) 1247 z->present_early_pages = 0; 1248 #endif 1249 } 1250 1251 pgdat->node_spanned_pages = 0; 1252 pgdat->node_present_pages = 0; 1253 pr_debug("On node %d totalpages: 0\n", pgdat->node_id); 1254 } 1255 1256 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 1257 unsigned long node_start_pfn, 1258 unsigned long node_end_pfn) 1259 { 1260 unsigned long realtotalpages = 0, totalpages = 0; 1261 enum zone_type i; 1262 1263 for (i = 0; i < MAX_NR_ZONES; i++) { 1264 struct zone *zone = pgdat->node_zones + i; 1265 unsigned long zone_start_pfn, zone_end_pfn; 1266 unsigned long spanned, absent; 1267 unsigned long real_size; 1268 1269 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 1270 node_start_pfn, 1271 node_end_pfn, 1272 &zone_start_pfn, 1273 &zone_end_pfn); 1274 absent = zone_absent_pages_in_node(pgdat->node_id, i, 1275 zone_start_pfn, 1276 zone_end_pfn); 1277 1278 real_size = spanned - absent; 1279 1280 if (spanned) 1281 zone->zone_start_pfn = zone_start_pfn; 1282 else 1283 zone->zone_start_pfn = 0; 1284 zone->spanned_pages = spanned; 1285 zone->present_pages = real_size; 1286 #if defined(CONFIG_MEMORY_HOTPLUG) 1287 zone->present_early_pages = real_size; 1288 #endif 1289 1290 totalpages += spanned; 1291 realtotalpages += real_size; 1292 } 1293 1294 pgdat->node_spanned_pages = totalpages; 1295 pgdat->node_present_pages = realtotalpages; 1296 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1297 } 1298 1299 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 1300 unsigned long present_pages) 1301 { 1302 unsigned long pages = spanned_pages; 1303 1304 /* 1305 * Provide a more accurate estimation if there are holes within 1306 * the zone and SPARSEMEM is in use. If there are holes within the 1307 * zone, each populated memory region may cost us one or two extra 1308 * memmap pages due to alignment because memmap pages for each 1309 * populated regions may not be naturally aligned on page boundary. 1310 * So the (present_pages >> 4) heuristic is a tradeoff for that. 1311 */ 1312 if (spanned_pages > present_pages + (present_pages >> 4) && 1313 IS_ENABLED(CONFIG_SPARSEMEM)) 1314 pages = present_pages; 1315 1316 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 1317 } 1318 1319 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1320 static void pgdat_init_split_queue(struct pglist_data *pgdat) 1321 { 1322 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 1323 1324 spin_lock_init(&ds_queue->split_queue_lock); 1325 INIT_LIST_HEAD(&ds_queue->split_queue); 1326 ds_queue->split_queue_len = 0; 1327 } 1328 #else 1329 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 1330 #endif 1331 1332 #ifdef CONFIG_COMPACTION 1333 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 1334 { 1335 init_waitqueue_head(&pgdat->kcompactd_wait); 1336 } 1337 #else 1338 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 1339 #endif 1340 1341 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 1342 { 1343 int i; 1344 1345 pgdat_resize_init(pgdat); 1346 pgdat_kswapd_lock_init(pgdat); 1347 1348 pgdat_init_split_queue(pgdat); 1349 pgdat_init_kcompactd(pgdat); 1350 1351 init_waitqueue_head(&pgdat->kswapd_wait); 1352 init_waitqueue_head(&pgdat->pfmemalloc_wait); 1353 1354 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 1355 init_waitqueue_head(&pgdat->reclaim_wait[i]); 1356 1357 pgdat_page_ext_init(pgdat); 1358 lruvec_init(&pgdat->__lruvec); 1359 } 1360 1361 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 1362 unsigned long remaining_pages) 1363 { 1364 atomic_long_set(&zone->managed_pages, remaining_pages); 1365 zone_set_nid(zone, nid); 1366 zone->name = zone_names[idx]; 1367 zone->zone_pgdat = NODE_DATA(nid); 1368 spin_lock_init(&zone->lock); 1369 zone_seqlock_init(zone); 1370 zone_pcp_init(zone); 1371 } 1372 1373 static void __meminit zone_init_free_lists(struct zone *zone) 1374 { 1375 unsigned int order, t; 1376 for_each_migratetype_order(order, t) { 1377 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 1378 zone->free_area[order].nr_free = 0; 1379 } 1380 1381 #ifdef CONFIG_UNACCEPTED_MEMORY 1382 INIT_LIST_HEAD(&zone->unaccepted_pages); 1383 #endif 1384 } 1385 1386 void __meminit init_currently_empty_zone(struct zone *zone, 1387 unsigned long zone_start_pfn, 1388 unsigned long size) 1389 { 1390 struct pglist_data *pgdat = zone->zone_pgdat; 1391 int zone_idx = zone_idx(zone) + 1; 1392 1393 if (zone_idx > pgdat->nr_zones) 1394 pgdat->nr_zones = zone_idx; 1395 1396 zone->zone_start_pfn = zone_start_pfn; 1397 1398 mminit_dprintk(MMINIT_TRACE, "memmap_init", 1399 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 1400 pgdat->node_id, 1401 (unsigned long)zone_idx(zone), 1402 zone_start_pfn, (zone_start_pfn + size)); 1403 1404 zone_init_free_lists(zone); 1405 zone->initialized = 1; 1406 } 1407 1408 #ifndef CONFIG_SPARSEMEM 1409 /* 1410 * Calculate the size of the zone->blockflags rounded to an unsigned long 1411 * Start by making sure zonesize is a multiple of pageblock_order by rounding 1412 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 1413 * round what is now in bits to nearest long in bits, then return it in 1414 * bytes. 1415 */ 1416 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 1417 { 1418 unsigned long usemapsize; 1419 1420 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 1421 usemapsize = roundup(zonesize, pageblock_nr_pages); 1422 usemapsize = usemapsize >> pageblock_order; 1423 usemapsize *= NR_PAGEBLOCK_BITS; 1424 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 1425 1426 return usemapsize / 8; 1427 } 1428 1429 static void __ref setup_usemap(struct zone *zone) 1430 { 1431 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 1432 zone->spanned_pages); 1433 zone->pageblock_flags = NULL; 1434 if (usemapsize) { 1435 zone->pageblock_flags = 1436 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 1437 zone_to_nid(zone)); 1438 if (!zone->pageblock_flags) 1439 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 1440 usemapsize, zone->name, zone_to_nid(zone)); 1441 } 1442 } 1443 #else 1444 static inline void setup_usemap(struct zone *zone) {} 1445 #endif /* CONFIG_SPARSEMEM */ 1446 1447 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 1448 1449 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 1450 void __init set_pageblock_order(void) 1451 { 1452 unsigned int order = MAX_ORDER; 1453 1454 /* Check that pageblock_nr_pages has not already been setup */ 1455 if (pageblock_order) 1456 return; 1457 1458 /* Don't let pageblocks exceed the maximum allocation granularity. */ 1459 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 1460 order = HUGETLB_PAGE_ORDER; 1461 1462 /* 1463 * Assume the largest contiguous order of interest is a huge page. 1464 * This value may be variable depending on boot parameters on IA64 and 1465 * powerpc. 1466 */ 1467 pageblock_order = order; 1468 } 1469 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 1470 1471 /* 1472 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 1473 * is unused as pageblock_order is set at compile-time. See 1474 * include/linux/pageblock-flags.h for the values of pageblock_order based on 1475 * the kernel config 1476 */ 1477 void __init set_pageblock_order(void) 1478 { 1479 } 1480 1481 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 1482 1483 /* 1484 * Set up the zone data structures 1485 * - init pgdat internals 1486 * - init all zones belonging to this node 1487 * 1488 * NOTE: this function is only called during memory hotplug 1489 */ 1490 #ifdef CONFIG_MEMORY_HOTPLUG 1491 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 1492 { 1493 int nid = pgdat->node_id; 1494 enum zone_type z; 1495 int cpu; 1496 1497 pgdat_init_internals(pgdat); 1498 1499 if (pgdat->per_cpu_nodestats == &boot_nodestats) 1500 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 1501 1502 /* 1503 * Reset the nr_zones, order and highest_zoneidx before reuse. 1504 * Note that kswapd will init kswapd_highest_zoneidx properly 1505 * when it starts in the near future. 1506 */ 1507 pgdat->nr_zones = 0; 1508 pgdat->kswapd_order = 0; 1509 pgdat->kswapd_highest_zoneidx = 0; 1510 pgdat->node_start_pfn = 0; 1511 pgdat->node_present_pages = 0; 1512 1513 for_each_online_cpu(cpu) { 1514 struct per_cpu_nodestat *p; 1515 1516 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 1517 memset(p, 0, sizeof(*p)); 1518 } 1519 1520 /* 1521 * When memory is hot-added, all the memory is in offline state. So 1522 * clear all zones' present_pages and managed_pages because they will 1523 * be updated in online_pages() and offline_pages(). 1524 */ 1525 for (z = 0; z < MAX_NR_ZONES; z++) { 1526 struct zone *zone = pgdat->node_zones + z; 1527 1528 zone->present_pages = 0; 1529 zone_init_internals(zone, z, nid, 0); 1530 } 1531 } 1532 #endif 1533 1534 /* 1535 * Set up the zone data structures: 1536 * - mark all pages reserved 1537 * - mark all memory queues empty 1538 * - clear the memory bitmaps 1539 * 1540 * NOTE: pgdat should get zeroed by caller. 1541 * NOTE: this function is only called during early init. 1542 */ 1543 static void __init free_area_init_core(struct pglist_data *pgdat) 1544 { 1545 enum zone_type j; 1546 int nid = pgdat->node_id; 1547 1548 pgdat_init_internals(pgdat); 1549 pgdat->per_cpu_nodestats = &boot_nodestats; 1550 1551 for (j = 0; j < MAX_NR_ZONES; j++) { 1552 struct zone *zone = pgdat->node_zones + j; 1553 unsigned long size, freesize, memmap_pages; 1554 1555 size = zone->spanned_pages; 1556 freesize = zone->present_pages; 1557 1558 /* 1559 * Adjust freesize so that it accounts for how much memory 1560 * is used by this zone for memmap. This affects the watermark 1561 * and per-cpu initialisations 1562 */ 1563 memmap_pages = calc_memmap_size(size, freesize); 1564 if (!is_highmem_idx(j)) { 1565 if (freesize >= memmap_pages) { 1566 freesize -= memmap_pages; 1567 if (memmap_pages) 1568 pr_debug(" %s zone: %lu pages used for memmap\n", 1569 zone_names[j], memmap_pages); 1570 } else 1571 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 1572 zone_names[j], memmap_pages, freesize); 1573 } 1574 1575 /* Account for reserved pages */ 1576 if (j == 0 && freesize > dma_reserve) { 1577 freesize -= dma_reserve; 1578 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 1579 } 1580 1581 if (!is_highmem_idx(j)) 1582 nr_kernel_pages += freesize; 1583 /* Charge for highmem memmap if there are enough kernel pages */ 1584 else if (nr_kernel_pages > memmap_pages * 2) 1585 nr_kernel_pages -= memmap_pages; 1586 nr_all_pages += freesize; 1587 1588 /* 1589 * Set an approximate value for lowmem here, it will be adjusted 1590 * when the bootmem allocator frees pages into the buddy system. 1591 * And all highmem pages will be managed by the buddy system. 1592 */ 1593 zone_init_internals(zone, j, nid, freesize); 1594 1595 if (!size) 1596 continue; 1597 1598 setup_usemap(zone); 1599 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 1600 } 1601 } 1602 1603 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 1604 phys_addr_t min_addr, int nid, bool exact_nid) 1605 { 1606 void *ptr; 1607 1608 if (exact_nid) 1609 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 1610 MEMBLOCK_ALLOC_ACCESSIBLE, 1611 nid); 1612 else 1613 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 1614 MEMBLOCK_ALLOC_ACCESSIBLE, 1615 nid); 1616 1617 if (ptr && size > 0) 1618 page_init_poison(ptr, size); 1619 1620 return ptr; 1621 } 1622 1623 #ifdef CONFIG_FLATMEM 1624 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 1625 { 1626 unsigned long __maybe_unused start = 0; 1627 unsigned long __maybe_unused offset = 0; 1628 1629 /* Skip empty nodes */ 1630 if (!pgdat->node_spanned_pages) 1631 return; 1632 1633 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 1634 offset = pgdat->node_start_pfn - start; 1635 /* ia64 gets its own node_mem_map, before this, without bootmem */ 1636 if (!pgdat->node_mem_map) { 1637 unsigned long size, end; 1638 struct page *map; 1639 1640 /* 1641 * The zone's endpoints aren't required to be MAX_ORDER 1642 * aligned but the node_mem_map endpoints must be in order 1643 * for the buddy allocator to function correctly. 1644 */ 1645 end = pgdat_end_pfn(pgdat); 1646 end = ALIGN(end, MAX_ORDER_NR_PAGES); 1647 size = (end - start) * sizeof(struct page); 1648 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 1649 pgdat->node_id, false); 1650 if (!map) 1651 panic("Failed to allocate %ld bytes for node %d memory map\n", 1652 size, pgdat->node_id); 1653 pgdat->node_mem_map = map + offset; 1654 } 1655 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 1656 __func__, pgdat->node_id, (unsigned long)pgdat, 1657 (unsigned long)pgdat->node_mem_map); 1658 #ifndef CONFIG_NUMA 1659 /* 1660 * With no DISCONTIG, the global mem_map is just set as node 0's 1661 */ 1662 if (pgdat == NODE_DATA(0)) { 1663 mem_map = NODE_DATA(0)->node_mem_map; 1664 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 1665 mem_map -= offset; 1666 } 1667 #endif 1668 } 1669 #else 1670 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 1671 #endif /* CONFIG_FLATMEM */ 1672 1673 /** 1674 * get_pfn_range_for_nid - Return the start and end page frames for a node 1675 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 1676 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 1677 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 1678 * 1679 * It returns the start and end page frame of a node based on information 1680 * provided by memblock_set_node(). If called for a node 1681 * with no available memory, the start and end PFNs will be 0. 1682 */ 1683 void __init get_pfn_range_for_nid(unsigned int nid, 1684 unsigned long *start_pfn, unsigned long *end_pfn) 1685 { 1686 unsigned long this_start_pfn, this_end_pfn; 1687 int i; 1688 1689 *start_pfn = -1UL; 1690 *end_pfn = 0; 1691 1692 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 1693 *start_pfn = min(*start_pfn, this_start_pfn); 1694 *end_pfn = max(*end_pfn, this_end_pfn); 1695 } 1696 1697 if (*start_pfn == -1UL) 1698 *start_pfn = 0; 1699 } 1700 1701 static void __init free_area_init_node(int nid) 1702 { 1703 pg_data_t *pgdat = NODE_DATA(nid); 1704 unsigned long start_pfn = 0; 1705 unsigned long end_pfn = 0; 1706 1707 /* pg_data_t should be reset to zero when it's allocated */ 1708 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 1709 1710 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 1711 1712 pgdat->node_id = nid; 1713 pgdat->node_start_pfn = start_pfn; 1714 pgdat->per_cpu_nodestats = NULL; 1715 1716 if (start_pfn != end_pfn) { 1717 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 1718 (u64)start_pfn << PAGE_SHIFT, 1719 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 1720 1721 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 1722 } else { 1723 pr_info("Initmem setup node %d as memoryless\n", nid); 1724 1725 reset_memoryless_node_totalpages(pgdat); 1726 } 1727 1728 alloc_node_mem_map(pgdat); 1729 pgdat_set_deferred_range(pgdat); 1730 1731 free_area_init_core(pgdat); 1732 lru_gen_init_pgdat(pgdat); 1733 } 1734 1735 /* Any regular or high memory on that node ? */ 1736 static void __init check_for_memory(pg_data_t *pgdat) 1737 { 1738 enum zone_type zone_type; 1739 1740 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 1741 struct zone *zone = &pgdat->node_zones[zone_type]; 1742 if (populated_zone(zone)) { 1743 if (IS_ENABLED(CONFIG_HIGHMEM)) 1744 node_set_state(pgdat->node_id, N_HIGH_MEMORY); 1745 if (zone_type <= ZONE_NORMAL) 1746 node_set_state(pgdat->node_id, N_NORMAL_MEMORY); 1747 break; 1748 } 1749 } 1750 } 1751 1752 #if MAX_NUMNODES > 1 1753 /* 1754 * Figure out the number of possible node ids. 1755 */ 1756 void __init setup_nr_node_ids(void) 1757 { 1758 unsigned int highest; 1759 1760 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 1761 nr_node_ids = highest + 1; 1762 } 1763 #endif 1764 1765 /* 1766 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 1767 * such cases we allow max_zone_pfn sorted in the descending order 1768 */ 1769 static bool arch_has_descending_max_zone_pfns(void) 1770 { 1771 return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40); 1772 } 1773 1774 /** 1775 * free_area_init - Initialise all pg_data_t and zone data 1776 * @max_zone_pfn: an array of max PFNs for each zone 1777 * 1778 * This will call free_area_init_node() for each active node in the system. 1779 * Using the page ranges provided by memblock_set_node(), the size of each 1780 * zone in each node and their holes is calculated. If the maximum PFN 1781 * between two adjacent zones match, it is assumed that the zone is empty. 1782 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 1783 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 1784 * starts where the previous one ended. For example, ZONE_DMA32 starts 1785 * at arch_max_dma_pfn. 1786 */ 1787 void __init free_area_init(unsigned long *max_zone_pfn) 1788 { 1789 unsigned long start_pfn, end_pfn; 1790 int i, nid, zone; 1791 bool descending; 1792 1793 /* Record where the zone boundaries are */ 1794 memset(arch_zone_lowest_possible_pfn, 0, 1795 sizeof(arch_zone_lowest_possible_pfn)); 1796 memset(arch_zone_highest_possible_pfn, 0, 1797 sizeof(arch_zone_highest_possible_pfn)); 1798 1799 start_pfn = PHYS_PFN(memblock_start_of_DRAM()); 1800 descending = arch_has_descending_max_zone_pfns(); 1801 1802 for (i = 0; i < MAX_NR_ZONES; i++) { 1803 if (descending) 1804 zone = MAX_NR_ZONES - i - 1; 1805 else 1806 zone = i; 1807 1808 if (zone == ZONE_MOVABLE) 1809 continue; 1810 1811 end_pfn = max(max_zone_pfn[zone], start_pfn); 1812 arch_zone_lowest_possible_pfn[zone] = start_pfn; 1813 arch_zone_highest_possible_pfn[zone] = end_pfn; 1814 1815 start_pfn = end_pfn; 1816 } 1817 1818 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 1819 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 1820 find_zone_movable_pfns_for_nodes(); 1821 1822 /* Print out the zone ranges */ 1823 pr_info("Zone ranges:\n"); 1824 for (i = 0; i < MAX_NR_ZONES; i++) { 1825 if (i == ZONE_MOVABLE) 1826 continue; 1827 pr_info(" %-8s ", zone_names[i]); 1828 if (arch_zone_lowest_possible_pfn[i] == 1829 arch_zone_highest_possible_pfn[i]) 1830 pr_cont("empty\n"); 1831 else 1832 pr_cont("[mem %#018Lx-%#018Lx]\n", 1833 (u64)arch_zone_lowest_possible_pfn[i] 1834 << PAGE_SHIFT, 1835 ((u64)arch_zone_highest_possible_pfn[i] 1836 << PAGE_SHIFT) - 1); 1837 } 1838 1839 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 1840 pr_info("Movable zone start for each node\n"); 1841 for (i = 0; i < MAX_NUMNODES; i++) { 1842 if (zone_movable_pfn[i]) 1843 pr_info(" Node %d: %#018Lx\n", i, 1844 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 1845 } 1846 1847 /* 1848 * Print out the early node map, and initialize the 1849 * subsection-map relative to active online memory ranges to 1850 * enable future "sub-section" extensions of the memory map. 1851 */ 1852 pr_info("Early memory node ranges\n"); 1853 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 1854 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 1855 (u64)start_pfn << PAGE_SHIFT, 1856 ((u64)end_pfn << PAGE_SHIFT) - 1); 1857 subsection_map_init(start_pfn, end_pfn - start_pfn); 1858 } 1859 1860 /* Initialise every node */ 1861 mminit_verify_pageflags_layout(); 1862 setup_nr_node_ids(); 1863 set_pageblock_order(); 1864 1865 for_each_node(nid) { 1866 pg_data_t *pgdat; 1867 1868 if (!node_online(nid)) { 1869 pr_info("Initializing node %d as memoryless\n", nid); 1870 1871 /* Allocator not initialized yet */ 1872 pgdat = arch_alloc_nodedata(nid); 1873 if (!pgdat) 1874 panic("Cannot allocate %zuB for node %d.\n", 1875 sizeof(*pgdat), nid); 1876 arch_refresh_nodedata(nid, pgdat); 1877 free_area_init_node(nid); 1878 1879 /* 1880 * We do not want to confuse userspace by sysfs 1881 * files/directories for node without any memory 1882 * attached to it, so this node is not marked as 1883 * N_MEMORY and not marked online so that no sysfs 1884 * hierarchy will be created via register_one_node for 1885 * it. The pgdat will get fully initialized by 1886 * hotadd_init_pgdat() when memory is hotplugged into 1887 * this node. 1888 */ 1889 continue; 1890 } 1891 1892 pgdat = NODE_DATA(nid); 1893 free_area_init_node(nid); 1894 1895 /* Any memory on that node */ 1896 if (pgdat->node_present_pages) 1897 node_set_state(nid, N_MEMORY); 1898 check_for_memory(pgdat); 1899 } 1900 1901 memmap_init(); 1902 1903 /* disable hash distribution for systems with a single node */ 1904 fixup_hashdist(); 1905 } 1906 1907 /** 1908 * node_map_pfn_alignment - determine the maximum internode alignment 1909 * 1910 * This function should be called after node map is populated and sorted. 1911 * It calculates the maximum power of two alignment which can distinguish 1912 * all the nodes. 1913 * 1914 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 1915 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 1916 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 1917 * shifted, 1GiB is enough and this function will indicate so. 1918 * 1919 * This is used to test whether pfn -> nid mapping of the chosen memory 1920 * model has fine enough granularity to avoid incorrect mapping for the 1921 * populated node map. 1922 * 1923 * Return: the determined alignment in pfn's. 0 if there is no alignment 1924 * requirement (single node). 1925 */ 1926 unsigned long __init node_map_pfn_alignment(void) 1927 { 1928 unsigned long accl_mask = 0, last_end = 0; 1929 unsigned long start, end, mask; 1930 int last_nid = NUMA_NO_NODE; 1931 int i, nid; 1932 1933 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 1934 if (!start || last_nid < 0 || last_nid == nid) { 1935 last_nid = nid; 1936 last_end = end; 1937 continue; 1938 } 1939 1940 /* 1941 * Start with a mask granular enough to pin-point to the 1942 * start pfn and tick off bits one-by-one until it becomes 1943 * too coarse to separate the current node from the last. 1944 */ 1945 mask = ~((1 << __ffs(start)) - 1); 1946 while (mask && last_end <= (start & (mask << 1))) 1947 mask <<= 1; 1948 1949 /* accumulate all internode masks */ 1950 accl_mask |= mask; 1951 } 1952 1953 /* convert mask to number of pages */ 1954 return ~accl_mask + 1; 1955 } 1956 1957 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1958 static void __init deferred_free_range(unsigned long pfn, 1959 unsigned long nr_pages) 1960 { 1961 struct page *page; 1962 unsigned long i; 1963 1964 if (!nr_pages) 1965 return; 1966 1967 page = pfn_to_page(pfn); 1968 1969 /* Free a large naturally-aligned chunk if possible */ 1970 if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) { 1971 for (i = 0; i < nr_pages; i += pageblock_nr_pages) 1972 set_pageblock_migratetype(page + i, MIGRATE_MOVABLE); 1973 __free_pages_core(page, MAX_ORDER); 1974 return; 1975 } 1976 1977 /* Accept chunks smaller than MAX_ORDER upfront */ 1978 accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages)); 1979 1980 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1981 if (pageblock_aligned(pfn)) 1982 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1983 __free_pages_core(page, 0); 1984 } 1985 } 1986 1987 /* Completion tracking for deferred_init_memmap() threads */ 1988 static atomic_t pgdat_init_n_undone __initdata; 1989 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1990 1991 static inline void __init pgdat_init_report_one_done(void) 1992 { 1993 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1994 complete(&pgdat_init_all_done_comp); 1995 } 1996 1997 /* 1998 * Returns true if page needs to be initialized or freed to buddy allocator. 1999 * 2000 * We check if a current MAX_ORDER block is valid by only checking the validity 2001 * of the head pfn. 2002 */ 2003 static inline bool __init deferred_pfn_valid(unsigned long pfn) 2004 { 2005 if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn)) 2006 return false; 2007 return true; 2008 } 2009 2010 /* 2011 * Free pages to buddy allocator. Try to free aligned pages in 2012 * MAX_ORDER_NR_PAGES sizes. 2013 */ 2014 static void __init deferred_free_pages(unsigned long pfn, 2015 unsigned long end_pfn) 2016 { 2017 unsigned long nr_free = 0; 2018 2019 for (; pfn < end_pfn; pfn++) { 2020 if (!deferred_pfn_valid(pfn)) { 2021 deferred_free_range(pfn - nr_free, nr_free); 2022 nr_free = 0; 2023 } else if (IS_MAX_ORDER_ALIGNED(pfn)) { 2024 deferred_free_range(pfn - nr_free, nr_free); 2025 nr_free = 1; 2026 } else { 2027 nr_free++; 2028 } 2029 } 2030 /* Free the last block of pages to allocator */ 2031 deferred_free_range(pfn - nr_free, nr_free); 2032 } 2033 2034 /* 2035 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 2036 * by performing it only once every MAX_ORDER_NR_PAGES. 2037 * Return number of pages initialized. 2038 */ 2039 static unsigned long __init deferred_init_pages(struct zone *zone, 2040 unsigned long pfn, 2041 unsigned long end_pfn) 2042 { 2043 int nid = zone_to_nid(zone); 2044 unsigned long nr_pages = 0; 2045 int zid = zone_idx(zone); 2046 struct page *page = NULL; 2047 2048 for (; pfn < end_pfn; pfn++) { 2049 if (!deferred_pfn_valid(pfn)) { 2050 page = NULL; 2051 continue; 2052 } else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) { 2053 page = pfn_to_page(pfn); 2054 } else { 2055 page++; 2056 } 2057 __init_single_page(page, pfn, zid, nid); 2058 nr_pages++; 2059 } 2060 return (nr_pages); 2061 } 2062 2063 /* 2064 * This function is meant to pre-load the iterator for the zone init. 2065 * Specifically it walks through the ranges until we are caught up to the 2066 * first_init_pfn value and exits there. If we never encounter the value we 2067 * return false indicating there are no valid ranges left. 2068 */ 2069 static bool __init 2070 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 2071 unsigned long *spfn, unsigned long *epfn, 2072 unsigned long first_init_pfn) 2073 { 2074 u64 j; 2075 2076 /* 2077 * Start out by walking through the ranges in this zone that have 2078 * already been initialized. We don't need to do anything with them 2079 * so we just need to flush them out of the system. 2080 */ 2081 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 2082 if (*epfn <= first_init_pfn) 2083 continue; 2084 if (*spfn < first_init_pfn) 2085 *spfn = first_init_pfn; 2086 *i = j; 2087 return true; 2088 } 2089 2090 return false; 2091 } 2092 2093 /* 2094 * Initialize and free pages. We do it in two loops: first we initialize 2095 * struct page, then free to buddy allocator, because while we are 2096 * freeing pages we can access pages that are ahead (computing buddy 2097 * page in __free_one_page()). 2098 * 2099 * In order to try and keep some memory in the cache we have the loop 2100 * broken along max page order boundaries. This way we will not cause 2101 * any issues with the buddy page computation. 2102 */ 2103 static unsigned long __init 2104 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 2105 unsigned long *end_pfn) 2106 { 2107 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 2108 unsigned long spfn = *start_pfn, epfn = *end_pfn; 2109 unsigned long nr_pages = 0; 2110 u64 j = *i; 2111 2112 /* First we loop through and initialize the page values */ 2113 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 2114 unsigned long t; 2115 2116 if (mo_pfn <= *start_pfn) 2117 break; 2118 2119 t = min(mo_pfn, *end_pfn); 2120 nr_pages += deferred_init_pages(zone, *start_pfn, t); 2121 2122 if (mo_pfn < *end_pfn) { 2123 *start_pfn = mo_pfn; 2124 break; 2125 } 2126 } 2127 2128 /* Reset values and now loop through freeing pages as needed */ 2129 swap(j, *i); 2130 2131 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2132 unsigned long t; 2133 2134 if (mo_pfn <= spfn) 2135 break; 2136 2137 t = min(mo_pfn, epfn); 2138 deferred_free_pages(spfn, t); 2139 2140 if (mo_pfn <= epfn) 2141 break; 2142 } 2143 2144 return nr_pages; 2145 } 2146 2147 static void __init 2148 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2149 void *arg) 2150 { 2151 unsigned long spfn, epfn; 2152 struct zone *zone = arg; 2153 u64 i; 2154 2155 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2156 2157 /* 2158 * Initialize and free pages in MAX_ORDER sized increments so that we 2159 * can avoid introducing any issues with the buddy allocator. 2160 */ 2161 while (spfn < end_pfn) { 2162 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2163 cond_resched(); 2164 } 2165 } 2166 2167 /* An arch may override for more concurrency. */ 2168 __weak int __init 2169 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2170 { 2171 return 1; 2172 } 2173 2174 /* Initialise remaining memory on a node */ 2175 static int __init deferred_init_memmap(void *data) 2176 { 2177 pg_data_t *pgdat = data; 2178 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2179 unsigned long spfn = 0, epfn = 0; 2180 unsigned long first_init_pfn, flags; 2181 unsigned long start = jiffies; 2182 struct zone *zone; 2183 int zid, max_threads; 2184 u64 i; 2185 2186 /* Bind memory initialisation thread to a local node if possible */ 2187 if (!cpumask_empty(cpumask)) 2188 set_cpus_allowed_ptr(current, cpumask); 2189 2190 pgdat_resize_lock(pgdat, &flags); 2191 first_init_pfn = pgdat->first_deferred_pfn; 2192 if (first_init_pfn == ULONG_MAX) { 2193 pgdat_resize_unlock(pgdat, &flags); 2194 pgdat_init_report_one_done(); 2195 return 0; 2196 } 2197 2198 /* Sanity check boundaries */ 2199 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2200 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2201 pgdat->first_deferred_pfn = ULONG_MAX; 2202 2203 /* 2204 * Once we unlock here, the zone cannot be grown anymore, thus if an 2205 * interrupt thread must allocate this early in boot, zone must be 2206 * pre-grown prior to start of deferred page initialization. 2207 */ 2208 pgdat_resize_unlock(pgdat, &flags); 2209 2210 /* Only the highest zone is deferred so find it */ 2211 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2212 zone = pgdat->node_zones + zid; 2213 if (first_init_pfn < zone_end_pfn(zone)) 2214 break; 2215 } 2216 2217 /* If the zone is empty somebody else may have cleared out the zone */ 2218 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2219 first_init_pfn)) 2220 goto zone_empty; 2221 2222 max_threads = deferred_page_init_max_threads(cpumask); 2223 2224 while (spfn < epfn) { 2225 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2226 struct padata_mt_job job = { 2227 .thread_fn = deferred_init_memmap_chunk, 2228 .fn_arg = zone, 2229 .start = spfn, 2230 .size = epfn_align - spfn, 2231 .align = PAGES_PER_SECTION, 2232 .min_chunk = PAGES_PER_SECTION, 2233 .max_threads = max_threads, 2234 }; 2235 2236 padata_do_multithreaded(&job); 2237 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2238 epfn_align); 2239 } 2240 zone_empty: 2241 /* Sanity check that the next zone really is unpopulated */ 2242 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2243 2244 pr_info("node %d deferred pages initialised in %ums\n", 2245 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2246 2247 pgdat_init_report_one_done(); 2248 return 0; 2249 } 2250 2251 /* 2252 * If this zone has deferred pages, try to grow it by initializing enough 2253 * deferred pages to satisfy the allocation specified by order, rounded up to 2254 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2255 * of SECTION_SIZE bytes by initializing struct pages in increments of 2256 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2257 * 2258 * Return true when zone was grown, otherwise return false. We return true even 2259 * when we grow less than requested, to let the caller decide if there are 2260 * enough pages to satisfy the allocation. 2261 * 2262 * Note: We use noinline because this function is needed only during boot, and 2263 * it is called from a __ref function _deferred_grow_zone. This way we are 2264 * making sure that it is not inlined into permanent text section. 2265 */ 2266 bool __init deferred_grow_zone(struct zone *zone, unsigned int order) 2267 { 2268 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2269 pg_data_t *pgdat = zone->zone_pgdat; 2270 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2271 unsigned long spfn, epfn, flags; 2272 unsigned long nr_pages = 0; 2273 u64 i; 2274 2275 /* Only the last zone may have deferred pages */ 2276 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2277 return false; 2278 2279 pgdat_resize_lock(pgdat, &flags); 2280 2281 /* 2282 * If someone grew this zone while we were waiting for spinlock, return 2283 * true, as there might be enough pages already. 2284 */ 2285 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2286 pgdat_resize_unlock(pgdat, &flags); 2287 return true; 2288 } 2289 2290 /* If the zone is empty somebody else may have cleared out the zone */ 2291 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2292 first_deferred_pfn)) { 2293 pgdat->first_deferred_pfn = ULONG_MAX; 2294 pgdat_resize_unlock(pgdat, &flags); 2295 /* Retry only once. */ 2296 return first_deferred_pfn != ULONG_MAX; 2297 } 2298 2299 /* 2300 * Initialize and free pages in MAX_ORDER sized increments so 2301 * that we can avoid introducing any issues with the buddy 2302 * allocator. 2303 */ 2304 while (spfn < epfn) { 2305 /* update our first deferred PFN for this section */ 2306 first_deferred_pfn = spfn; 2307 2308 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2309 touch_nmi_watchdog(); 2310 2311 /* We should only stop along section boundaries */ 2312 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2313 continue; 2314 2315 /* If our quota has been met we can stop here */ 2316 if (nr_pages >= nr_pages_needed) 2317 break; 2318 } 2319 2320 pgdat->first_deferred_pfn = spfn; 2321 pgdat_resize_unlock(pgdat, &flags); 2322 2323 return nr_pages > 0; 2324 } 2325 2326 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2327 2328 #ifdef CONFIG_CMA 2329 void __init init_cma_reserved_pageblock(struct page *page) 2330 { 2331 unsigned i = pageblock_nr_pages; 2332 struct page *p = page; 2333 2334 do { 2335 __ClearPageReserved(p); 2336 set_page_count(p, 0); 2337 } while (++p, --i); 2338 2339 set_pageblock_migratetype(page, MIGRATE_CMA); 2340 set_page_refcounted(page); 2341 __free_pages(page, pageblock_order); 2342 2343 adjust_managed_page_count(page, pageblock_nr_pages); 2344 page_zone(page)->cma_pages += pageblock_nr_pages; 2345 } 2346 #endif 2347 2348 void set_zone_contiguous(struct zone *zone) 2349 { 2350 unsigned long block_start_pfn = zone->zone_start_pfn; 2351 unsigned long block_end_pfn; 2352 2353 block_end_pfn = pageblock_end_pfn(block_start_pfn); 2354 for (; block_start_pfn < zone_end_pfn(zone); 2355 block_start_pfn = block_end_pfn, 2356 block_end_pfn += pageblock_nr_pages) { 2357 2358 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 2359 2360 if (!__pageblock_pfn_to_page(block_start_pfn, 2361 block_end_pfn, zone)) 2362 return; 2363 cond_resched(); 2364 } 2365 2366 /* We confirm that there is no hole */ 2367 zone->contiguous = true; 2368 } 2369 2370 void __init page_alloc_init_late(void) 2371 { 2372 struct zone *zone; 2373 int nid; 2374 2375 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2376 2377 /* There will be num_node_state(N_MEMORY) threads */ 2378 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2379 for_each_node_state(nid, N_MEMORY) { 2380 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2381 } 2382 2383 /* Block until all are initialised */ 2384 wait_for_completion(&pgdat_init_all_done_comp); 2385 2386 /* 2387 * We initialized the rest of the deferred pages. Permanently disable 2388 * on-demand struct page initialization. 2389 */ 2390 static_branch_disable(&deferred_pages); 2391 2392 /* Reinit limits that are based on free pages after the kernel is up */ 2393 files_maxfiles_init(); 2394 #endif 2395 2396 buffer_init(); 2397 2398 /* Discard memblock private memory */ 2399 memblock_discard(); 2400 2401 for_each_node_state(nid, N_MEMORY) 2402 shuffle_free_memory(NODE_DATA(nid)); 2403 2404 for_each_populated_zone(zone) 2405 set_zone_contiguous(zone); 2406 2407 /* Initialize page ext after all struct pages are initialized. */ 2408 if (deferred_struct_pages) 2409 page_ext_init(); 2410 2411 page_alloc_sysctl_init(); 2412 } 2413 2414 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2415 /* 2416 * Returns the number of pages that arch has reserved but 2417 * is not known to alloc_large_system_hash(). 2418 */ 2419 static unsigned long __init arch_reserved_kernel_pages(void) 2420 { 2421 return 0; 2422 } 2423 #endif 2424 2425 /* 2426 * Adaptive scale is meant to reduce sizes of hash tables on large memory 2427 * machines. As memory size is increased the scale is also increased but at 2428 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 2429 * quadruples the scale is increased by one, which means the size of hash table 2430 * only doubles, instead of quadrupling as well. 2431 * Because 32-bit systems cannot have large physical memory, where this scaling 2432 * makes sense, it is disabled on such platforms. 2433 */ 2434 #if __BITS_PER_LONG > 32 2435 #define ADAPT_SCALE_BASE (64ul << 30) 2436 #define ADAPT_SCALE_SHIFT 2 2437 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 2438 #endif 2439 2440 /* 2441 * allocate a large system hash table from bootmem 2442 * - it is assumed that the hash table must contain an exact power-of-2 2443 * quantity of entries 2444 * - limit is the number of hash buckets, not the total allocation size 2445 */ 2446 void *__init alloc_large_system_hash(const char *tablename, 2447 unsigned long bucketsize, 2448 unsigned long numentries, 2449 int scale, 2450 int flags, 2451 unsigned int *_hash_shift, 2452 unsigned int *_hash_mask, 2453 unsigned long low_limit, 2454 unsigned long high_limit) 2455 { 2456 unsigned long long max = high_limit; 2457 unsigned long log2qty, size; 2458 void *table; 2459 gfp_t gfp_flags; 2460 bool virt; 2461 bool huge; 2462 2463 /* allow the kernel cmdline to have a say */ 2464 if (!numentries) { 2465 /* round applicable memory size up to nearest megabyte */ 2466 numentries = nr_kernel_pages; 2467 numentries -= arch_reserved_kernel_pages(); 2468 2469 /* It isn't necessary when PAGE_SIZE >= 1MB */ 2470 if (PAGE_SIZE < SZ_1M) 2471 numentries = round_up(numentries, SZ_1M / PAGE_SIZE); 2472 2473 #if __BITS_PER_LONG > 32 2474 if (!high_limit) { 2475 unsigned long adapt; 2476 2477 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 2478 adapt <<= ADAPT_SCALE_SHIFT) 2479 scale++; 2480 } 2481 #endif 2482 2483 /* limit to 1 bucket per 2^scale bytes of low memory */ 2484 if (scale > PAGE_SHIFT) 2485 numentries >>= (scale - PAGE_SHIFT); 2486 else 2487 numentries <<= (PAGE_SHIFT - scale); 2488 2489 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 2490 numentries = PAGE_SIZE / bucketsize; 2491 } 2492 numentries = roundup_pow_of_two(numentries); 2493 2494 /* limit allocation size to 1/16 total memory by default */ 2495 if (max == 0) { 2496 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2497 do_div(max, bucketsize); 2498 } 2499 max = min(max, 0x80000000ULL); 2500 2501 if (numentries < low_limit) 2502 numentries = low_limit; 2503 if (numentries > max) 2504 numentries = max; 2505 2506 log2qty = ilog2(numentries); 2507 2508 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 2509 do { 2510 virt = false; 2511 size = bucketsize << log2qty; 2512 if (flags & HASH_EARLY) { 2513 if (flags & HASH_ZERO) 2514 table = memblock_alloc(size, SMP_CACHE_BYTES); 2515 else 2516 table = memblock_alloc_raw(size, 2517 SMP_CACHE_BYTES); 2518 } else if (get_order(size) > MAX_ORDER || hashdist) { 2519 table = vmalloc_huge(size, gfp_flags); 2520 virt = true; 2521 if (table) 2522 huge = is_vm_area_hugepages(table); 2523 } else { 2524 /* 2525 * If bucketsize is not a power-of-two, we may free 2526 * some pages at the end of hash table which 2527 * alloc_pages_exact() automatically does 2528 */ 2529 table = alloc_pages_exact(size, gfp_flags); 2530 kmemleak_alloc(table, size, 1, gfp_flags); 2531 } 2532 } while (!table && size > PAGE_SIZE && --log2qty); 2533 2534 if (!table) 2535 panic("Failed to allocate %s hash table\n", tablename); 2536 2537 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 2538 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 2539 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 2540 2541 if (_hash_shift) 2542 *_hash_shift = log2qty; 2543 if (_hash_mask) 2544 *_hash_mask = (1 << log2qty) - 1; 2545 2546 return table; 2547 } 2548 2549 /** 2550 * set_dma_reserve - set the specified number of pages reserved in the first zone 2551 * @new_dma_reserve: The number of pages to mark reserved 2552 * 2553 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 2554 * In the DMA zone, a significant percentage may be consumed by kernel image 2555 * and other unfreeable allocations which can skew the watermarks badly. This 2556 * function may optionally be used to account for unfreeable pages in the 2557 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 2558 * smaller per-cpu batchsize. 2559 */ 2560 void __init set_dma_reserve(unsigned long new_dma_reserve) 2561 { 2562 dma_reserve = new_dma_reserve; 2563 } 2564 2565 void __init memblock_free_pages(struct page *page, unsigned long pfn, 2566 unsigned int order) 2567 { 2568 2569 if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) { 2570 int nid = early_pfn_to_nid(pfn); 2571 2572 if (!early_page_initialised(pfn, nid)) 2573 return; 2574 } 2575 2576 if (!kmsan_memblock_free_pages(page, order)) { 2577 /* KMSAN will take care of these pages. */ 2578 return; 2579 } 2580 __free_pages_core(page, order); 2581 } 2582 2583 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 2584 EXPORT_SYMBOL(init_on_alloc); 2585 2586 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 2587 EXPORT_SYMBOL(init_on_free); 2588 2589 static bool _init_on_alloc_enabled_early __read_mostly 2590 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 2591 static int __init early_init_on_alloc(char *buf) 2592 { 2593 2594 return kstrtobool(buf, &_init_on_alloc_enabled_early); 2595 } 2596 early_param("init_on_alloc", early_init_on_alloc); 2597 2598 static bool _init_on_free_enabled_early __read_mostly 2599 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 2600 static int __init early_init_on_free(char *buf) 2601 { 2602 return kstrtobool(buf, &_init_on_free_enabled_early); 2603 } 2604 early_param("init_on_free", early_init_on_free); 2605 2606 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); 2607 2608 /* 2609 * Enable static keys related to various memory debugging and hardening options. 2610 * Some override others, and depend on early params that are evaluated in the 2611 * order of appearance. So we need to first gather the full picture of what was 2612 * enabled, and then make decisions. 2613 */ 2614 static void __init mem_debugging_and_hardening_init(void) 2615 { 2616 bool page_poisoning_requested = false; 2617 bool want_check_pages = false; 2618 2619 #ifdef CONFIG_PAGE_POISONING 2620 /* 2621 * Page poisoning is debug page alloc for some arches. If 2622 * either of those options are enabled, enable poisoning. 2623 */ 2624 if (page_poisoning_enabled() || 2625 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 2626 debug_pagealloc_enabled())) { 2627 static_branch_enable(&_page_poisoning_enabled); 2628 page_poisoning_requested = true; 2629 want_check_pages = true; 2630 } 2631 #endif 2632 2633 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 2634 page_poisoning_requested) { 2635 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 2636 "will take precedence over init_on_alloc and init_on_free\n"); 2637 _init_on_alloc_enabled_early = false; 2638 _init_on_free_enabled_early = false; 2639 } 2640 2641 if (_init_on_alloc_enabled_early) { 2642 want_check_pages = true; 2643 static_branch_enable(&init_on_alloc); 2644 } else { 2645 static_branch_disable(&init_on_alloc); 2646 } 2647 2648 if (_init_on_free_enabled_early) { 2649 want_check_pages = true; 2650 static_branch_enable(&init_on_free); 2651 } else { 2652 static_branch_disable(&init_on_free); 2653 } 2654 2655 if (IS_ENABLED(CONFIG_KMSAN) && 2656 (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) 2657 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); 2658 2659 #ifdef CONFIG_DEBUG_PAGEALLOC 2660 if (debug_pagealloc_enabled()) { 2661 want_check_pages = true; 2662 static_branch_enable(&_debug_pagealloc_enabled); 2663 2664 if (debug_guardpage_minorder()) 2665 static_branch_enable(&_debug_guardpage_enabled); 2666 } 2667 #endif 2668 2669 /* 2670 * Any page debugging or hardening option also enables sanity checking 2671 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's 2672 * enabled already. 2673 */ 2674 if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages) 2675 static_branch_enable(&check_pages_enabled); 2676 } 2677 2678 /* Report memory auto-initialization states for this boot. */ 2679 static void __init report_meminit(void) 2680 { 2681 const char *stack; 2682 2683 if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN)) 2684 stack = "all(pattern)"; 2685 else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO)) 2686 stack = "all(zero)"; 2687 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL)) 2688 stack = "byref_all(zero)"; 2689 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF)) 2690 stack = "byref(zero)"; 2691 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER)) 2692 stack = "__user(zero)"; 2693 else 2694 stack = "off"; 2695 2696 pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n", 2697 stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off", 2698 want_init_on_free() ? "on" : "off"); 2699 if (want_init_on_free()) 2700 pr_info("mem auto-init: clearing system memory may take some time...\n"); 2701 } 2702 2703 static void __init mem_init_print_info(void) 2704 { 2705 unsigned long physpages, codesize, datasize, rosize, bss_size; 2706 unsigned long init_code_size, init_data_size; 2707 2708 physpages = get_num_physpages(); 2709 codesize = _etext - _stext; 2710 datasize = _edata - _sdata; 2711 rosize = __end_rodata - __start_rodata; 2712 bss_size = __bss_stop - __bss_start; 2713 init_data_size = __init_end - __init_begin; 2714 init_code_size = _einittext - _sinittext; 2715 2716 /* 2717 * Detect special cases and adjust section sizes accordingly: 2718 * 1) .init.* may be embedded into .data sections 2719 * 2) .init.text.* may be out of [__init_begin, __init_end], 2720 * please refer to arch/tile/kernel/vmlinux.lds.S. 2721 * 3) .rodata.* may be embedded into .text or .data sections. 2722 */ 2723 #define adj_init_size(start, end, size, pos, adj) \ 2724 do { \ 2725 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 2726 size -= adj; \ 2727 } while (0) 2728 2729 adj_init_size(__init_begin, __init_end, init_data_size, 2730 _sinittext, init_code_size); 2731 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 2732 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 2733 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 2734 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 2735 2736 #undef adj_init_size 2737 2738 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 2739 #ifdef CONFIG_HIGHMEM 2740 ", %luK highmem" 2741 #endif 2742 ")\n", 2743 K(nr_free_pages()), K(physpages), 2744 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, 2745 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, 2746 K(physpages - totalram_pages() - totalcma_pages), 2747 K(totalcma_pages) 2748 #ifdef CONFIG_HIGHMEM 2749 , K(totalhigh_pages()) 2750 #endif 2751 ); 2752 } 2753 2754 /* 2755 * Set up kernel memory allocators 2756 */ 2757 void __init mm_core_init(void) 2758 { 2759 /* Initializations relying on SMP setup */ 2760 build_all_zonelists(NULL); 2761 page_alloc_init_cpuhp(); 2762 2763 /* 2764 * page_ext requires contiguous pages, 2765 * bigger than MAX_ORDER unless SPARSEMEM. 2766 */ 2767 page_ext_init_flatmem(); 2768 mem_debugging_and_hardening_init(); 2769 kfence_alloc_pool_and_metadata(); 2770 report_meminit(); 2771 kmsan_init_shadow(); 2772 stack_depot_early_init(); 2773 mem_init(); 2774 mem_init_print_info(); 2775 kmem_cache_init(); 2776 /* 2777 * page_owner must be initialized after buddy is ready, and also after 2778 * slab is ready so that stack_depot_init() works properly 2779 */ 2780 page_ext_init_flatmem_late(); 2781 kmemleak_init(); 2782 ptlock_cache_init(); 2783 pgtable_cache_init(); 2784 debug_objects_mem_init(); 2785 vmalloc_init(); 2786 /* If no deferred init page_ext now, as vmap is fully initialized */ 2787 if (!deferred_struct_pages) 2788 page_ext_init(); 2789 /* Should be run before the first non-init thread is created */ 2790 init_espfix_bsp(); 2791 /* Should be run after espfix64 is set up. */ 2792 pti_init(); 2793 kmsan_init_runtime(); 2794 mm_cache_init(); 2795 } 2796