1 /* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/module.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/rmap.h> 25 #include <linux/topology.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/writeback.h> 29 #include <linux/mempolicy.h> 30 #include <linux/vmalloc.h> 31 #include <linux/security.h> 32 #include <linux/memcontrol.h> 33 #include <linux/syscalls.h> 34 35 #include "internal.h" 36 37 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 38 39 /* 40 * Isolate one page from the LRU lists. If successful put it onto 41 * the indicated list with elevated page count. 42 * 43 * Result: 44 * -EBUSY: page not on LRU list 45 * 0: page removed from LRU list and added to the specified list. 46 */ 47 int isolate_lru_page(struct page *page, struct list_head *pagelist) 48 { 49 int ret = -EBUSY; 50 51 if (PageLRU(page)) { 52 struct zone *zone = page_zone(page); 53 54 spin_lock_irq(&zone->lru_lock); 55 if (PageLRU(page) && get_page_unless_zero(page)) { 56 ret = 0; 57 ClearPageLRU(page); 58 if (PageActive(page)) 59 del_page_from_active_list(zone, page); 60 else 61 del_page_from_inactive_list(zone, page); 62 list_add_tail(&page->lru, pagelist); 63 } 64 spin_unlock_irq(&zone->lru_lock); 65 } 66 return ret; 67 } 68 69 /* 70 * migrate_prep() needs to be called before we start compiling a list of pages 71 * to be migrated using isolate_lru_page(). 72 */ 73 int migrate_prep(void) 74 { 75 /* 76 * Clear the LRU lists so pages can be isolated. 77 * Note that pages may be moved off the LRU after we have 78 * drained them. Those pages will fail to migrate like other 79 * pages that may be busy. 80 */ 81 lru_add_drain_all(); 82 83 return 0; 84 } 85 86 static inline void move_to_lru(struct page *page) 87 { 88 if (PageActive(page)) { 89 /* 90 * lru_cache_add_active checks that 91 * the PG_active bit is off. 92 */ 93 ClearPageActive(page); 94 lru_cache_add_active(page); 95 } else { 96 lru_cache_add(page); 97 } 98 put_page(page); 99 } 100 101 /* 102 * Add isolated pages on the list back to the LRU. 103 * 104 * returns the number of pages put back. 105 */ 106 int putback_lru_pages(struct list_head *l) 107 { 108 struct page *page; 109 struct page *page2; 110 int count = 0; 111 112 list_for_each_entry_safe(page, page2, l, lru) { 113 list_del(&page->lru); 114 move_to_lru(page); 115 count++; 116 } 117 return count; 118 } 119 120 /* 121 * Restore a potential migration pte to a working pte entry 122 */ 123 static void remove_migration_pte(struct vm_area_struct *vma, 124 struct page *old, struct page *new) 125 { 126 struct mm_struct *mm = vma->vm_mm; 127 swp_entry_t entry; 128 pgd_t *pgd; 129 pud_t *pud; 130 pmd_t *pmd; 131 pte_t *ptep, pte; 132 spinlock_t *ptl; 133 unsigned long addr = page_address_in_vma(new, vma); 134 135 if (addr == -EFAULT) 136 return; 137 138 pgd = pgd_offset(mm, addr); 139 if (!pgd_present(*pgd)) 140 return; 141 142 pud = pud_offset(pgd, addr); 143 if (!pud_present(*pud)) 144 return; 145 146 pmd = pmd_offset(pud, addr); 147 if (!pmd_present(*pmd)) 148 return; 149 150 ptep = pte_offset_map(pmd, addr); 151 152 if (!is_swap_pte(*ptep)) { 153 pte_unmap(ptep); 154 return; 155 } 156 157 ptl = pte_lockptr(mm, pmd); 158 spin_lock(ptl); 159 pte = *ptep; 160 if (!is_swap_pte(pte)) 161 goto out; 162 163 entry = pte_to_swp_entry(pte); 164 165 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old) 166 goto out; 167 168 /* 169 * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge. 170 * Failure is not an option here: we're now expected to remove every 171 * migration pte, and will cause crashes otherwise. Normally this 172 * is not an issue: mem_cgroup_prepare_migration bumped up the old 173 * page_cgroup count for safety, that's now attached to the new page, 174 * so this charge should just be another incrementation of the count, 175 * to keep in balance with rmap.c's mem_cgroup_uncharging. But if 176 * there's been a force_empty, those reference counts may no longer 177 * be reliable, and this charge can actually fail: oh well, we don't 178 * make the situation any worse by proceeding as if it had succeeded. 179 */ 180 mem_cgroup_charge(new, mm, GFP_ATOMIC); 181 182 get_page(new); 183 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 184 if (is_write_migration_entry(entry)) 185 pte = pte_mkwrite(pte); 186 flush_cache_page(vma, addr, pte_pfn(pte)); 187 set_pte_at(mm, addr, ptep, pte); 188 189 if (PageAnon(new)) 190 page_add_anon_rmap(new, vma, addr); 191 else 192 page_add_file_rmap(new); 193 194 /* No need to invalidate - it was non-present before */ 195 update_mmu_cache(vma, addr, pte); 196 197 out: 198 pte_unmap_unlock(ptep, ptl); 199 } 200 201 /* 202 * Note that remove_file_migration_ptes will only work on regular mappings, 203 * Nonlinear mappings do not use migration entries. 204 */ 205 static void remove_file_migration_ptes(struct page *old, struct page *new) 206 { 207 struct vm_area_struct *vma; 208 struct address_space *mapping = page_mapping(new); 209 struct prio_tree_iter iter; 210 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 211 212 if (!mapping) 213 return; 214 215 spin_lock(&mapping->i_mmap_lock); 216 217 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) 218 remove_migration_pte(vma, old, new); 219 220 spin_unlock(&mapping->i_mmap_lock); 221 } 222 223 /* 224 * Must hold mmap_sem lock on at least one of the vmas containing 225 * the page so that the anon_vma cannot vanish. 226 */ 227 static void remove_anon_migration_ptes(struct page *old, struct page *new) 228 { 229 struct anon_vma *anon_vma; 230 struct vm_area_struct *vma; 231 unsigned long mapping; 232 233 mapping = (unsigned long)new->mapping; 234 235 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0) 236 return; 237 238 /* 239 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma. 240 */ 241 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON); 242 spin_lock(&anon_vma->lock); 243 244 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) 245 remove_migration_pte(vma, old, new); 246 247 spin_unlock(&anon_vma->lock); 248 } 249 250 /* 251 * Get rid of all migration entries and replace them by 252 * references to the indicated page. 253 */ 254 static void remove_migration_ptes(struct page *old, struct page *new) 255 { 256 if (PageAnon(new)) 257 remove_anon_migration_ptes(old, new); 258 else 259 remove_file_migration_ptes(old, new); 260 } 261 262 /* 263 * Something used the pte of a page under migration. We need to 264 * get to the page and wait until migration is finished. 265 * When we return from this function the fault will be retried. 266 * 267 * This function is called from do_swap_page(). 268 */ 269 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 270 unsigned long address) 271 { 272 pte_t *ptep, pte; 273 spinlock_t *ptl; 274 swp_entry_t entry; 275 struct page *page; 276 277 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 278 pte = *ptep; 279 if (!is_swap_pte(pte)) 280 goto out; 281 282 entry = pte_to_swp_entry(pte); 283 if (!is_migration_entry(entry)) 284 goto out; 285 286 page = migration_entry_to_page(entry); 287 288 /* 289 * Once radix-tree replacement of page migration started, page_count 290 * *must* be zero. And, we don't want to call wait_on_page_locked() 291 * against a page without get_page(). 292 * So, we use get_page_unless_zero(), here. Even failed, page fault 293 * will occur again. 294 */ 295 if (!get_page_unless_zero(page)) 296 goto out; 297 pte_unmap_unlock(ptep, ptl); 298 wait_on_page_locked(page); 299 put_page(page); 300 return; 301 out: 302 pte_unmap_unlock(ptep, ptl); 303 } 304 305 /* 306 * Replace the page in the mapping. 307 * 308 * The number of remaining references must be: 309 * 1 for anonymous pages without a mapping 310 * 2 for pages with a mapping 311 * 3 for pages with a mapping and PagePrivate set. 312 */ 313 static int migrate_page_move_mapping(struct address_space *mapping, 314 struct page *newpage, struct page *page) 315 { 316 int expected_count; 317 void **pslot; 318 319 if (!mapping) { 320 /* Anonymous page without mapping */ 321 if (page_count(page) != 1) 322 return -EAGAIN; 323 return 0; 324 } 325 326 write_lock_irq(&mapping->tree_lock); 327 328 pslot = radix_tree_lookup_slot(&mapping->page_tree, 329 page_index(page)); 330 331 expected_count = 2 + !!PagePrivate(page); 332 if (page_count(page) != expected_count || 333 (struct page *)radix_tree_deref_slot(pslot) != page) { 334 write_unlock_irq(&mapping->tree_lock); 335 return -EAGAIN; 336 } 337 338 if (!page_freeze_refs(page, expected_count)) { 339 write_unlock_irq(&mapping->tree_lock); 340 return -EAGAIN; 341 } 342 343 /* 344 * Now we know that no one else is looking at the page. 345 */ 346 get_page(newpage); /* add cache reference */ 347 #ifdef CONFIG_SWAP 348 if (PageSwapCache(page)) { 349 SetPageSwapCache(newpage); 350 set_page_private(newpage, page_private(page)); 351 } 352 #endif 353 354 radix_tree_replace_slot(pslot, newpage); 355 356 page_unfreeze_refs(page, expected_count); 357 /* 358 * Drop cache reference from old page. 359 * We know this isn't the last reference. 360 */ 361 __put_page(page); 362 363 /* 364 * If moved to a different zone then also account 365 * the page for that zone. Other VM counters will be 366 * taken care of when we establish references to the 367 * new page and drop references to the old page. 368 * 369 * Note that anonymous pages are accounted for 370 * via NR_FILE_PAGES and NR_ANON_PAGES if they 371 * are mapped to swap space. 372 */ 373 __dec_zone_page_state(page, NR_FILE_PAGES); 374 __inc_zone_page_state(newpage, NR_FILE_PAGES); 375 376 write_unlock_irq(&mapping->tree_lock); 377 if (!PageSwapCache(newpage)) { 378 mem_cgroup_uncharge_cache_page(page); 379 } 380 381 return 0; 382 } 383 384 /* 385 * Copy the page to its new location 386 */ 387 static void migrate_page_copy(struct page *newpage, struct page *page) 388 { 389 copy_highpage(newpage, page); 390 391 if (PageError(page)) 392 SetPageError(newpage); 393 if (PageReferenced(page)) 394 SetPageReferenced(newpage); 395 if (PageUptodate(page)) 396 SetPageUptodate(newpage); 397 if (PageActive(page)) 398 SetPageActive(newpage); 399 if (PageChecked(page)) 400 SetPageChecked(newpage); 401 if (PageMappedToDisk(page)) 402 SetPageMappedToDisk(newpage); 403 404 if (PageDirty(page)) { 405 clear_page_dirty_for_io(page); 406 /* 407 * Want to mark the page and the radix tree as dirty, and 408 * redo the accounting that clear_page_dirty_for_io undid, 409 * but we can't use set_page_dirty because that function 410 * is actually a signal that all of the page has become dirty. 411 * Wheras only part of our page may be dirty. 412 */ 413 __set_page_dirty_nobuffers(newpage); 414 } 415 416 #ifdef CONFIG_SWAP 417 ClearPageSwapCache(page); 418 #endif 419 ClearPageActive(page); 420 ClearPagePrivate(page); 421 set_page_private(page, 0); 422 page->mapping = NULL; 423 424 /* 425 * If any waiters have accumulated on the new page then 426 * wake them up. 427 */ 428 if (PageWriteback(newpage)) 429 end_page_writeback(newpage); 430 } 431 432 /************************************************************ 433 * Migration functions 434 ***********************************************************/ 435 436 /* Always fail migration. Used for mappings that are not movable */ 437 int fail_migrate_page(struct address_space *mapping, 438 struct page *newpage, struct page *page) 439 { 440 return -EIO; 441 } 442 EXPORT_SYMBOL(fail_migrate_page); 443 444 /* 445 * Common logic to directly migrate a single page suitable for 446 * pages that do not use PagePrivate. 447 * 448 * Pages are locked upon entry and exit. 449 */ 450 int migrate_page(struct address_space *mapping, 451 struct page *newpage, struct page *page) 452 { 453 int rc; 454 455 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 456 457 rc = migrate_page_move_mapping(mapping, newpage, page); 458 459 if (rc) 460 return rc; 461 462 migrate_page_copy(newpage, page); 463 return 0; 464 } 465 EXPORT_SYMBOL(migrate_page); 466 467 #ifdef CONFIG_BLOCK 468 /* 469 * Migration function for pages with buffers. This function can only be used 470 * if the underlying filesystem guarantees that no other references to "page" 471 * exist. 472 */ 473 int buffer_migrate_page(struct address_space *mapping, 474 struct page *newpage, struct page *page) 475 { 476 struct buffer_head *bh, *head; 477 int rc; 478 479 if (!page_has_buffers(page)) 480 return migrate_page(mapping, newpage, page); 481 482 head = page_buffers(page); 483 484 rc = migrate_page_move_mapping(mapping, newpage, page); 485 486 if (rc) 487 return rc; 488 489 bh = head; 490 do { 491 get_bh(bh); 492 lock_buffer(bh); 493 bh = bh->b_this_page; 494 495 } while (bh != head); 496 497 ClearPagePrivate(page); 498 set_page_private(newpage, page_private(page)); 499 set_page_private(page, 0); 500 put_page(page); 501 get_page(newpage); 502 503 bh = head; 504 do { 505 set_bh_page(bh, newpage, bh_offset(bh)); 506 bh = bh->b_this_page; 507 508 } while (bh != head); 509 510 SetPagePrivate(newpage); 511 512 migrate_page_copy(newpage, page); 513 514 bh = head; 515 do { 516 unlock_buffer(bh); 517 put_bh(bh); 518 bh = bh->b_this_page; 519 520 } while (bh != head); 521 522 return 0; 523 } 524 EXPORT_SYMBOL(buffer_migrate_page); 525 #endif 526 527 /* 528 * Writeback a page to clean the dirty state 529 */ 530 static int writeout(struct address_space *mapping, struct page *page) 531 { 532 struct writeback_control wbc = { 533 .sync_mode = WB_SYNC_NONE, 534 .nr_to_write = 1, 535 .range_start = 0, 536 .range_end = LLONG_MAX, 537 .nonblocking = 1, 538 .for_reclaim = 1 539 }; 540 int rc; 541 542 if (!mapping->a_ops->writepage) 543 /* No write method for the address space */ 544 return -EINVAL; 545 546 if (!clear_page_dirty_for_io(page)) 547 /* Someone else already triggered a write */ 548 return -EAGAIN; 549 550 /* 551 * A dirty page may imply that the underlying filesystem has 552 * the page on some queue. So the page must be clean for 553 * migration. Writeout may mean we loose the lock and the 554 * page state is no longer what we checked for earlier. 555 * At this point we know that the migration attempt cannot 556 * be successful. 557 */ 558 remove_migration_ptes(page, page); 559 560 rc = mapping->a_ops->writepage(page, &wbc); 561 if (rc < 0) 562 /* I/O Error writing */ 563 return -EIO; 564 565 if (rc != AOP_WRITEPAGE_ACTIVATE) 566 /* unlocked. Relock */ 567 lock_page(page); 568 569 return -EAGAIN; 570 } 571 572 /* 573 * Default handling if a filesystem does not provide a migration function. 574 */ 575 static int fallback_migrate_page(struct address_space *mapping, 576 struct page *newpage, struct page *page) 577 { 578 if (PageDirty(page)) 579 return writeout(mapping, page); 580 581 /* 582 * Buffers may be managed in a filesystem specific way. 583 * We must have no buffers or drop them. 584 */ 585 if (PagePrivate(page) && 586 !try_to_release_page(page, GFP_KERNEL)) 587 return -EAGAIN; 588 589 return migrate_page(mapping, newpage, page); 590 } 591 592 /* 593 * Move a page to a newly allocated page 594 * The page is locked and all ptes have been successfully removed. 595 * 596 * The new page will have replaced the old page if this function 597 * is successful. 598 */ 599 static int move_to_new_page(struct page *newpage, struct page *page) 600 { 601 struct address_space *mapping; 602 int rc; 603 604 /* 605 * Block others from accessing the page when we get around to 606 * establishing additional references. We are the only one 607 * holding a reference to the new page at this point. 608 */ 609 if (TestSetPageLocked(newpage)) 610 BUG(); 611 612 /* Prepare mapping for the new page.*/ 613 newpage->index = page->index; 614 newpage->mapping = page->mapping; 615 616 mapping = page_mapping(page); 617 if (!mapping) 618 rc = migrate_page(mapping, newpage, page); 619 else if (mapping->a_ops->migratepage) 620 /* 621 * Most pages have a mapping and most filesystems 622 * should provide a migration function. Anonymous 623 * pages are part of swap space which also has its 624 * own migration function. This is the most common 625 * path for page migration. 626 */ 627 rc = mapping->a_ops->migratepage(mapping, 628 newpage, page); 629 else 630 rc = fallback_migrate_page(mapping, newpage, page); 631 632 if (!rc) { 633 remove_migration_ptes(page, newpage); 634 } else 635 newpage->mapping = NULL; 636 637 unlock_page(newpage); 638 639 return rc; 640 } 641 642 /* 643 * Obtain the lock on page, remove all ptes and migrate the page 644 * to the newly allocated page in newpage. 645 */ 646 static int unmap_and_move(new_page_t get_new_page, unsigned long private, 647 struct page *page, int force) 648 { 649 int rc = 0; 650 int *result = NULL; 651 struct page *newpage = get_new_page(page, private, &result); 652 int rcu_locked = 0; 653 int charge = 0; 654 655 if (!newpage) 656 return -ENOMEM; 657 658 if (page_count(page) == 1) 659 /* page was freed from under us. So we are done. */ 660 goto move_newpage; 661 662 charge = mem_cgroup_prepare_migration(page, newpage); 663 if (charge == -ENOMEM) { 664 rc = -ENOMEM; 665 goto move_newpage; 666 } 667 /* prepare cgroup just returns 0 or -ENOMEM */ 668 BUG_ON(charge); 669 670 rc = -EAGAIN; 671 if (TestSetPageLocked(page)) { 672 if (!force) 673 goto move_newpage; 674 lock_page(page); 675 } 676 677 if (PageWriteback(page)) { 678 if (!force) 679 goto unlock; 680 wait_on_page_writeback(page); 681 } 682 /* 683 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 684 * we cannot notice that anon_vma is freed while we migrates a page. 685 * This rcu_read_lock() delays freeing anon_vma pointer until the end 686 * of migration. File cache pages are no problem because of page_lock() 687 * File Caches may use write_page() or lock_page() in migration, then, 688 * just care Anon page here. 689 */ 690 if (PageAnon(page)) { 691 rcu_read_lock(); 692 rcu_locked = 1; 693 } 694 695 /* 696 * Corner case handling: 697 * 1. When a new swap-cache page is read into, it is added to the LRU 698 * and treated as swapcache but it has no rmap yet. 699 * Calling try_to_unmap() against a page->mapping==NULL page will 700 * trigger a BUG. So handle it here. 701 * 2. An orphaned page (see truncate_complete_page) might have 702 * fs-private metadata. The page can be picked up due to memory 703 * offlining. Everywhere else except page reclaim, the page is 704 * invisible to the vm, so the page can not be migrated. So try to 705 * free the metadata, so the page can be freed. 706 */ 707 if (!page->mapping) { 708 if (!PageAnon(page) && PagePrivate(page)) { 709 /* 710 * Go direct to try_to_free_buffers() here because 711 * a) that's what try_to_release_page() would do anyway 712 * b) we may be under rcu_read_lock() here, so we can't 713 * use GFP_KERNEL which is what try_to_release_page() 714 * needs to be effective. 715 */ 716 try_to_free_buffers(page); 717 } 718 goto rcu_unlock; 719 } 720 721 /* Establish migration ptes or remove ptes */ 722 try_to_unmap(page, 1); 723 724 if (!page_mapped(page)) 725 rc = move_to_new_page(newpage, page); 726 727 if (rc) 728 remove_migration_ptes(page, page); 729 rcu_unlock: 730 if (rcu_locked) 731 rcu_read_unlock(); 732 733 unlock: 734 735 unlock_page(page); 736 737 if (rc != -EAGAIN) { 738 /* 739 * A page that has been migrated has all references 740 * removed and will be freed. A page that has not been 741 * migrated will have kepts its references and be 742 * restored. 743 */ 744 list_del(&page->lru); 745 move_to_lru(page); 746 } 747 748 move_newpage: 749 if (!charge) 750 mem_cgroup_end_migration(newpage); 751 /* 752 * Move the new page to the LRU. If migration was not successful 753 * then this will free the page. 754 */ 755 move_to_lru(newpage); 756 if (result) { 757 if (rc) 758 *result = rc; 759 else 760 *result = page_to_nid(newpage); 761 } 762 return rc; 763 } 764 765 /* 766 * migrate_pages 767 * 768 * The function takes one list of pages to migrate and a function 769 * that determines from the page to be migrated and the private data 770 * the target of the move and allocates the page. 771 * 772 * The function returns after 10 attempts or if no pages 773 * are movable anymore because to has become empty 774 * or no retryable pages exist anymore. All pages will be 775 * returned to the LRU or freed. 776 * 777 * Return: Number of pages not migrated or error code. 778 */ 779 int migrate_pages(struct list_head *from, 780 new_page_t get_new_page, unsigned long private) 781 { 782 int retry = 1; 783 int nr_failed = 0; 784 int pass = 0; 785 struct page *page; 786 struct page *page2; 787 int swapwrite = current->flags & PF_SWAPWRITE; 788 int rc; 789 790 if (!swapwrite) 791 current->flags |= PF_SWAPWRITE; 792 793 for(pass = 0; pass < 10 && retry; pass++) { 794 retry = 0; 795 796 list_for_each_entry_safe(page, page2, from, lru) { 797 cond_resched(); 798 799 rc = unmap_and_move(get_new_page, private, 800 page, pass > 2); 801 802 switch(rc) { 803 case -ENOMEM: 804 goto out; 805 case -EAGAIN: 806 retry++; 807 break; 808 case 0: 809 break; 810 default: 811 /* Permanent failure */ 812 nr_failed++; 813 break; 814 } 815 } 816 } 817 rc = 0; 818 out: 819 if (!swapwrite) 820 current->flags &= ~PF_SWAPWRITE; 821 822 putback_lru_pages(from); 823 824 if (rc) 825 return rc; 826 827 return nr_failed + retry; 828 } 829 830 #ifdef CONFIG_NUMA 831 /* 832 * Move a list of individual pages 833 */ 834 struct page_to_node { 835 unsigned long addr; 836 struct page *page; 837 int node; 838 int status; 839 }; 840 841 static struct page *new_page_node(struct page *p, unsigned long private, 842 int **result) 843 { 844 struct page_to_node *pm = (struct page_to_node *)private; 845 846 while (pm->node != MAX_NUMNODES && pm->page != p) 847 pm++; 848 849 if (pm->node == MAX_NUMNODES) 850 return NULL; 851 852 *result = &pm->status; 853 854 return alloc_pages_node(pm->node, 855 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0); 856 } 857 858 /* 859 * Move a set of pages as indicated in the pm array. The addr 860 * field must be set to the virtual address of the page to be moved 861 * and the node number must contain a valid target node. 862 */ 863 static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm, 864 int migrate_all) 865 { 866 int err; 867 struct page_to_node *pp; 868 LIST_HEAD(pagelist); 869 870 down_read(&mm->mmap_sem); 871 872 /* 873 * Build a list of pages to migrate 874 */ 875 migrate_prep(); 876 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 877 struct vm_area_struct *vma; 878 struct page *page; 879 880 /* 881 * A valid page pointer that will not match any of the 882 * pages that will be moved. 883 */ 884 pp->page = ZERO_PAGE(0); 885 886 err = -EFAULT; 887 vma = find_vma(mm, pp->addr); 888 if (!vma || !vma_migratable(vma)) 889 goto set_status; 890 891 page = follow_page(vma, pp->addr, FOLL_GET); 892 893 err = PTR_ERR(page); 894 if (IS_ERR(page)) 895 goto set_status; 896 897 err = -ENOENT; 898 if (!page) 899 goto set_status; 900 901 if (PageReserved(page)) /* Check for zero page */ 902 goto put_and_set; 903 904 pp->page = page; 905 err = page_to_nid(page); 906 907 if (err == pp->node) 908 /* 909 * Node already in the right place 910 */ 911 goto put_and_set; 912 913 err = -EACCES; 914 if (page_mapcount(page) > 1 && 915 !migrate_all) 916 goto put_and_set; 917 918 err = isolate_lru_page(page, &pagelist); 919 put_and_set: 920 /* 921 * Either remove the duplicate refcount from 922 * isolate_lru_page() or drop the page ref if it was 923 * not isolated. 924 */ 925 put_page(page); 926 set_status: 927 pp->status = err; 928 } 929 930 if (!list_empty(&pagelist)) 931 err = migrate_pages(&pagelist, new_page_node, 932 (unsigned long)pm); 933 else 934 err = -ENOENT; 935 936 up_read(&mm->mmap_sem); 937 return err; 938 } 939 940 /* 941 * Determine the nodes of a list of pages. The addr in the pm array 942 * must have been set to the virtual address of which we want to determine 943 * the node number. 944 */ 945 static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm) 946 { 947 down_read(&mm->mmap_sem); 948 949 for ( ; pm->node != MAX_NUMNODES; pm++) { 950 struct vm_area_struct *vma; 951 struct page *page; 952 int err; 953 954 err = -EFAULT; 955 vma = find_vma(mm, pm->addr); 956 if (!vma) 957 goto set_status; 958 959 page = follow_page(vma, pm->addr, 0); 960 961 err = PTR_ERR(page); 962 if (IS_ERR(page)) 963 goto set_status; 964 965 err = -ENOENT; 966 /* Use PageReserved to check for zero page */ 967 if (!page || PageReserved(page)) 968 goto set_status; 969 970 err = page_to_nid(page); 971 set_status: 972 pm->status = err; 973 } 974 975 up_read(&mm->mmap_sem); 976 return 0; 977 } 978 979 /* 980 * Move a list of pages in the address space of the currently executing 981 * process. 982 */ 983 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages, 984 const void __user * __user *pages, 985 const int __user *nodes, 986 int __user *status, int flags) 987 { 988 int err = 0; 989 int i; 990 struct task_struct *task; 991 nodemask_t task_nodes; 992 struct mm_struct *mm; 993 struct page_to_node *pm = NULL; 994 995 /* Check flags */ 996 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 997 return -EINVAL; 998 999 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1000 return -EPERM; 1001 1002 /* Find the mm_struct */ 1003 read_lock(&tasklist_lock); 1004 task = pid ? find_task_by_vpid(pid) : current; 1005 if (!task) { 1006 read_unlock(&tasklist_lock); 1007 return -ESRCH; 1008 } 1009 mm = get_task_mm(task); 1010 read_unlock(&tasklist_lock); 1011 1012 if (!mm) 1013 return -EINVAL; 1014 1015 /* 1016 * Check if this process has the right to modify the specified 1017 * process. The right exists if the process has administrative 1018 * capabilities, superuser privileges or the same 1019 * userid as the target process. 1020 */ 1021 if ((current->euid != task->suid) && (current->euid != task->uid) && 1022 (current->uid != task->suid) && (current->uid != task->uid) && 1023 !capable(CAP_SYS_NICE)) { 1024 err = -EPERM; 1025 goto out2; 1026 } 1027 1028 err = security_task_movememory(task); 1029 if (err) 1030 goto out2; 1031 1032 1033 task_nodes = cpuset_mems_allowed(task); 1034 1035 /* Limit nr_pages so that the multiplication may not overflow */ 1036 if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) { 1037 err = -E2BIG; 1038 goto out2; 1039 } 1040 1041 pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node)); 1042 if (!pm) { 1043 err = -ENOMEM; 1044 goto out2; 1045 } 1046 1047 /* 1048 * Get parameters from user space and initialize the pm 1049 * array. Return various errors if the user did something wrong. 1050 */ 1051 for (i = 0; i < nr_pages; i++) { 1052 const void __user *p; 1053 1054 err = -EFAULT; 1055 if (get_user(p, pages + i)) 1056 goto out; 1057 1058 pm[i].addr = (unsigned long)p; 1059 if (nodes) { 1060 int node; 1061 1062 if (get_user(node, nodes + i)) 1063 goto out; 1064 1065 err = -ENODEV; 1066 if (!node_state(node, N_HIGH_MEMORY)) 1067 goto out; 1068 1069 err = -EACCES; 1070 if (!node_isset(node, task_nodes)) 1071 goto out; 1072 1073 pm[i].node = node; 1074 } else 1075 pm[i].node = 0; /* anything to not match MAX_NUMNODES */ 1076 } 1077 /* End marker */ 1078 pm[nr_pages].node = MAX_NUMNODES; 1079 1080 if (nodes) 1081 err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL); 1082 else 1083 err = do_pages_stat(mm, pm); 1084 1085 if (err >= 0) 1086 /* Return status information */ 1087 for (i = 0; i < nr_pages; i++) 1088 if (put_user(pm[i].status, status + i)) 1089 err = -EFAULT; 1090 1091 out: 1092 vfree(pm); 1093 out2: 1094 mmput(mm); 1095 return err; 1096 } 1097 1098 /* 1099 * Call migration functions in the vma_ops that may prepare 1100 * memory in a vm for migration. migration functions may perform 1101 * the migration for vmas that do not have an underlying page struct. 1102 */ 1103 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, 1104 const nodemask_t *from, unsigned long flags) 1105 { 1106 struct vm_area_struct *vma; 1107 int err = 0; 1108 1109 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) { 1110 if (vma->vm_ops && vma->vm_ops->migrate) { 1111 err = vma->vm_ops->migrate(vma, to, from, flags); 1112 if (err) 1113 break; 1114 } 1115 } 1116 return err; 1117 } 1118 #endif 1119